

2

Paul P. Debono

PaulOS
An 8051 Real-Time Operating System

Part I

Download free eBooks at bookboon.com

3

PaulOS: An 8051 Real-Time Operating System
Part I
1st edition
© 2013 Paul P. Debono & bookboon.com
ISBN 978-87-403-0449-7

Download free eBooks at bookboon.com

http://bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

4

Contents

Contents

	 Preface	 10

	 Acknowledgements	 13

	 Dedications	 14

	 List of Figures	 15

	 List of Tables	 18

1	 8051 Basics	 21
1.1	 Introduction	 21
1.2	 Memory Types	 22
1.3	 Code Memory	 25
1.4	 External RAM	 25
1.5	 Register Banks	 28
1.6	 Bit Memory	 29

Download free eBooks at bookboon.com

Click on the ad to read more

81,000 km
In the past four years we have drilled

That’s more than twice around the world.

What will you be?

Who are we?
We are the world’s leading oilfield services company. Working
globally—often in remote and challenging locations—we invent,
design, engineer, manufacture, apply, and maintain technology
to help customers find and produce oil and gas safely.

Who are we looking for?
We offer countless opportunities in the following domains:
n Engineering, Research, and Operations
n Geoscience and Petrotechnical
n Commercial and Business

If you are a self-motivated graduate looking for a dynamic career,
apply to join our team.

careers.slb.com

http://s.bookboon.com/Schlumberger1

PaulOS An 8051 Real-Time Operating System
Part I

5

Contents

1.7	 Special Function Register (SFR) Memory	 31
1.8	 SFR Descriptions	 34

2	 Basic Registers	 55
2.1	 The Accumulator, Address E0H, Bit-addressable 	 55
2.2	 The R registers	 56
2.3	 The B Register, address F0H, Bit-addressable	 57
2.4	 The Data Pointer (DPTR)	 57
2.5	 The Program Counter (PC)	 57
2.6	 The Stack Pointer (SP), address 81H	 58
2.7	 Addressing Modes	 59
2.8	 Program Flow	 64
2.9	 Low-Level Information	 68
2.10	 Timers	 70
2.11	 Serial Port Operation	 99
2.12	 Interrupts	 111

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read more

http://s.bookboon.com/accentureUS

PaulOS An 8051 Real-Time Operating System
Part I

6

Contents

3	 A51 Examples	 128
3.1	 Template.a51	 128
3.2	 Serial Port Example Program	 131
3.3	 Traffic Lights A51 Program	 135

4	 8032 Differences	 140
4.1	 8032 Extras	 140
4.2	 256 Bytes of Internal RAM	 141
4.3	 Additional Timer 2	 143

5	 Evaluation Boards	 152
5.1	 FLITE-32 Development Board	 152
5.2	 Typical Settings for KEIL uV2	 159
5.3	 The NMIY-0031 Board	 160
5.4	 C8051F020TB	 165

6	� Programming in C with KEIL µV2 IDE	 167
6.1	 Byte Ordering – BIG ENDIAN and LITTLE ENDIAN	 168
6.2	 Explicitly Declared Memory Types	 180

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.bio-rad.com/careers

John Randall, PhD
Senior Marketing Manager, Bio-Plex Business Unit

Find and follow us: http://twitter.com/bioradlscareers
www.linkedin.com/groupsDirectory, search for Bio-Rad Life Sciences Careers
http://bio-radlifesciencescareersblog.blogspot.com

Bio-Rad is a longtime leader in the life science research industry and has been
voted one of the Best Places to Work by our employees in the San Francisco
Bay Area. Bring out your best in one of our many positions in research and
development, sales, marketing, operations, and software development.
Opportunities await — share your passion at Bio-Rad!

http://s.bookboon.com/Bio-RadCareers

PaulOS An 8051 Real-Time Operating System
Part I

7

Contents

6.3	 Data types	 180
6.4	 Interrupt routines	 183

7	 Real-Time Operating System	 185
7.1	 What is a Real-Time Operating System	 185
7.2	 Types of RTOSs	 187

8	 SanctOS – a Round-Robin RTOS	 190
8.1	 SanctOS System Commands	 190
8.2	 Variations from the A51 version	 191
8.3	 SanctOS example program	 194

9	 PaulOS – a Co-operative RTOS	 200
9.1	 Description of the RTOS Operation	 201
9.2	 PaulOS.C System Commands	 204
9.3	 Descriptions of the commands	 206
9.4	 PaulOS parameters header file	 218
9.5	 Example using PaulOS RTOS	 219

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

��������������	
��	�
�����

����
�

�

���������������������	
��
���	
��
��
����������
�������	
��	�����
���
������
��

�
���
�����

��
���
�������
	�
����	�
����
��������
������������������
��������
���
	�
����	

���
����
���
	�
����	�
���
��
���
����
�������	
�������
	��	�
���
�
�
���	
	�	

���
�����
���
��
��
�
	�	��
�����
������
�
����
���
������
���
���������

�
	
�
�	
��
�������	
	�
��
���
��
����������	
��
������� �

http://s.bookboon.com/ChalmersINTL2016

PaulOS An 8051 Real-Time Operating System
Part I

8

Contents

10	 MagnOS – a Pre-Emptive RTOS	 224
10.1	 MagnOS System Commands	 224
10.2	 Detailed description of commands	 226

11	 Interfacing	 245
11.1	 Interfacing add-ons to the 8051	 245
11.2	 LEDs	 246
11.3	 Input Switches	 257
11.4	 Keypad	 260
10.5	 LCD Display	 263
11.6	 LCD Command Set	 265
11.7	 DC Motor 	 274
11.8	 DC motor using H-Bridge	 276
11.9	 Model Servo Control	 284
11.10	 Stepper Motor	 285

	 Index for Part I	 287

	 Index for Part II	 290

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Linköping University –
innovative, highly ranked,
European
Interested in Engineering and its various branches? Kick-
start your career with an English-taught master’s degree.

Click here!

http://s.bookboon.com/liu

PaulOS An 8051 Real-Time Operating System
Part I

9

Contents

12	 Programming Tips and Pitfalls	 Part II
12.1	 RAM size	 Part II
12.2	 SP setting	 Part II
12.3	 SFRs	 Part II
12.4	 Port usage	 Part II
12.5	 DPTR	 Part II
12.6	 Serial port (UART)	 Part II
12.7	 Interrupts	 Part II
12.8	 RTOSs pitfalls	 Part II
12.8	 C Tips	 Part II

	 Appendix A ParrOS.a51	 Part II

	 Appendix B PaulOS A51 version	 Part II

	 Appendix C SanctOS.C	 Part II

	 Appendix D PaulOS.C	 Part II

	 Appendix E MagnOS.C	 Part II

	 Appendix F Further Examples	 Part II

	 Appendix G 8086 PaulOS RTOS	 Part II

	 Appendix H 8051 Instruction Set	 Part II

	 Bibliography	 Part II

	 Index	 Part II

	 End Notes	 Part II

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

10

Preface
This text book is intended to be used either as a stand-alone text for an 8051-based course on micro
controllers or as a reference book for those whose work requires familiarity with micro controllers and
real-time operating systems.

The strong emphasis of this book is on interfacing and programming the 8051 to typical real-world devices
such as switches, displays, motors, and A/D converters through both assembly language and C language
programming. In particular, a variety of Real-Time Operating Systems (RTOS) are well explained and
working programs are actually implemented (and well documented). Many programming examples, in
both assembly language and C, are also included in order to help the students (and anyone interested
in the topic) better understand the RTOS principle.

It would be helpful if the reader has already got some familiarity with personal computers and has taken
introductory courses in digital devices and some experience with assembly language programming. It is
assumed that the reader is familiar with binary and hexadecimal numbers.

Learning to write programs is like learning to ride a bicycle in that reading alone is not enough. Hands-
on practical experience is essential. Therefore, to enhance the usefulness of this book as a learning tool,
the reader is encouraged to test some of the example programs given throughout this book using easily
available free software, such as the latest demo version of the KEIL IDE (http://www.keil.com).

The book is structured into 12 chapters and apendecies with the full source code. A brief outline of the
contents of each chapter is given below:

Chapter 1:
This chapter describes the basic 8051 micro-controller and explains its internal organization and uses
of the internal special function registers.

Chapter 2:
This chapter deals with the controller addressing mode, interrupts and internal peripherals (timers, serial
and parallel input/output ports) of the basic 8051 and goes into more detail on the actual internal special
function registers and how they are use in order to program and control the peripherals.

Chapter 3:
In this chapter we present the first simple user progam using assembly language. A template is provided
which can be used in other user developed programs.

Download free eBooks at bookboon.com

http://www.keil.com

PaulOS An 8051 Real-Time Operating System
Part I

11

Preface

Chapter 4:
The 8051 is the very basic micro-controller. In this chapter we present one of the first improved versions,
namely the 8032/8052 micro-controller, with an enhanced internal memory and with an additional
timer. An explanation of the new special function registers associated with the new internal peripheral
is also given.

Chapter 5:
Here we discuss just a few of the many development boards which are widely available for the 8051
family of micro-controllers. These evaluation boards can be used to develop and test the program on the
actual hardware and are especially useful for students whilst gaining experience on the micro-controller.
Actual add-on hardware (such as LCD displays, dc motors, LEDs, keyboards) can also be connected
to these boards in order to implement the required project. We discuss and explain the main features
of the Flite-32 from Flite Electronics International Limited (http://www.flite.co.uk) 8032 board, the
NMIY-0032 8051 board from New Micros, Inc. (http://www.newmicros.com) and the high performance
C8051F020TB from Silicon Labs (http://www.silabs.com).

Chapter 6:
This chapter explains the use of the KEIL IDE and how we can set it up to reflect the actual hardware
which we intend to use for our particular project. Example programs written in C are given to help the
reader grasp the basic principles involved when programming micro-controllers.

Chapter 7:
We now come to the Real-Time Operating System (RTOS) itself and we start by giving the general
principles behind the RTOS concept. An explanation of the three main variations of RTOSs which we will
deal with is given, namely the round-robin, the co-operative and the pre-emptive versions of the RTOS.

Chapter 8:
This chapter explains the very simple round-robin RTOS called SanctOS, where each task (or function)
works for a specified amount of time before passing on the processor time to the next task.

Chapter 9:
The PaulOS co-operative RTOS is described here. This is the ‘flagship’ RTOS which we regularly use
during the year with our students. It is heavily used also for their final year theses and it has been
regularly refined to reflect the changes and upgrading requested by the students as they became more
and more familiar with the performance and limitations of this co-operative RTOS. In this RTOS, each
task is free to run for as long as it wishes. The task itself can control when to give up the processor time
to allow other tasks to run.

Download free eBooks at bookboon.com

http://www.silabs.com

PaulOS An 8051 Real-Time Operating System
Part I

12

Preface

Chapter 10:
The final RTOS which we discuss is the MagnOS, which gives a demonstration of a pre-emptive RTOS.
In this system, each task is given a priority, and the basic control logic of this RTOS is that the highest
priority task runs for as long as necessary, until a higher priority task becomes ready to execute. The
trick here is to learn to decide what priority to give to the individual tasks so as to avoid having a single
task taking over completely the processor time, without giving a chance for other tasks to run.

Chapter 11:
This chapter deals with interfacing various devices to the 8051 family of micro-controllers. The list here
is endless but the basic add-ons such as simple LEDs, switches, keypads, LCDs, DC motors (including
servos and stepper motors) are all well covered with example programs.

Chapter 12: (Part II)
In this final chapter we discuss some programming tips and common pitfalls which should be avoided
when programming such micro-controllers. It would be a good idea to read this chapter first before
attempting to write the first program.

Appendices: (Part II) Finally in the appendices we can find program source listings of all the various types
of RTOSs found in earlier chapters, both in assembly language and in C language format. A complete
list of the basic 8051 intruction set is also given at the end.

Whilst hoping that you will find this book useful, please feel free to contact me on pawlu.debono@yahoo.
co.uk if you have any queries or suggestions. A version of PaulOS RTOS for the C8051F020 device is
also available and I would be glad to email it to anyone who is genuinely interested.

Download free eBooks at bookboon.com

mailto:pawlu.debono@yahoo.co.uk
mailto:pawlu.debono@yahoo.co.uk

PaulOS An 8051 Real-Time Operating System
Part I

13

Preface

Acknowledgements
I would like to acknowledge the assistance given by my students who helped me test some of the examples
and pointed out some mistakes and omissions.

I am also very grateful for the contributions made by my brother Egidio who tested some of the example
programs and to my other brother Albert who proof read the first draft. I would also like to thank my
nephew Conrad Micallef for his suggestions and constructive comments.

Finally I am deeply grateful to Prof. Ing. Victor Buttigieg who kindly reviewed the final version of the
book and put forward valuable and much appreciated suggestions.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

14

Acknowledgements

Dedications
To

My wife Maria for being so supportive and patient with me
and my two sons Neil and Luke for their continuous encouragement.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

15

Dedications

List of Figures
Figure 1-1 	 Basic 8051
Figure 1-2 	 Pull-Up resistors
Figure 1-3 	 8051 Port 0 Structure
Figure 1-4	 Setting 8051 Port 0.X as an input pin
Figure 1-5 	 8051 Port 1 Structure, with internal load
Figure 1-6 	 Writing ‘0’ to a port
Figure 1-7	 Never connect an input port pin directly to Vcc
Figure 1-8 	 Input switch with no Vcc
Figure 1-9 	 Input switch with pull-up resistor on Port 0
Figure 1-10 	 Input switch with pull-resistor on Port 1
Figure 1-11 	 Buffering input switch connected directly to Vcc
Figure 1-12 	 Reading the latch

Figure 2-1 	 Timer/Counter 1 Mode 0 and Mode 1 operation
Figure 2-2 	 Timer 1 Mode 1
Figure 2-3 	 Timer 1 Mode 2
Figure 2-4 	 Timer 0 16-bit pulse-duration mode

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/academictransfer

PaulOS An 8051 Real-Time Operating System
Part I

16

List of Figures

Figure 2-5 	 Timer 1 16-bit pulse duration mode
Figure 2-6 	 Master-slaves connection
Figure 2-7 	 Tri-state buffers

Figure 4-1 	 Timer 2 Auto-reload Mode
Figure 4-2 	 Timer 2 in 16-bit capture mode

Figure 5-1 	 Flite-32 Board
Figure 5-2 	 NMIY-0031 Board
Figure 5-3 	 C8051F020 Board

Figure 6-1 	 The KEIL µV2 environment
Figure 6-2 	 KEIL µV2 CPU type selection
Figure 6-3 	 KEIL µV2 Target setup
Figure 6-4 	 KEIL µV2 Target Output options
Figure 6-5 	 KEIL µV2 Target listing options
Figure 6-6 	 KEIL µV2 C51 options

Figure 7-1 	 RTOS Task states diagram

Figure B-1	 Keil Screen shot using PaulOS RTOS

Figure 9-1 	 RTOS Task states diagram

Figure 11-1 	 Port Driving LED (pin High = LED on)
Figure 11-2 	 Port Sinking LED (pin Low = LED on)
Figure 11-3 	 7-segmnet LED displays
Figure 11-4 	 Multiplexing displays
Figure 11-5 	 LED BCD driver
Figure 11-6 	 Multiplexing 4511s
Figure 11-7 	 Switch (normally open, high on port pin)
Figure 11-8 	 Switch (normally open, low on port pin)
Figure 11-9 	 Switch bounce
Figure 11-10 	 Keypad switch matrix
Figure 11-11 	 Interrupt keypad interface
Figure 11-12 	 Standard LCD connections
Figure 11-13 	 DC Motor interfacing
Figure 11-14 	 PWM used to control DC motor speed

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

17

List of Figures

Figure 11-15 	 Motor Off
Figure 11-16 	 Motor Clockwise Rotation
Figure 11-17 	 Motor Anti-Clockwise Rotation
Figure 11-18 	 H-Bridge circuit with discrete devices
Figure 11-19 	 L293D H-bridge connection
Figure 11-20 	 RC Servo (www.parallaxinc.com)
Figure 11-21 	 RC Servo connection
Figure 11-22 	 Typical Stepper Motors
Figure 11-23 	 Stepper Motor sequence (zone.ni.com)

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

18

List of Tables

List of Tables
Table 1-1 	 8051 memory space
Table 1-2 	 8032 memory map (Development System)
Table 1-3 	 8051 Total Internal RAM organisation
Table 1-4	 8051 Internal RAM organisation
Table 1-5 	 8051 Special Function Registers (SFRs)-DIRECT addressing ONLY
Table 1-6 	 P0
Table 1-7 	 P1
Table 1-8 	 Read-Modify-Write Instructions
Table 1-9 	 P2
Table 1-10 	 P3
Table 1-11 	 PCON
Table 1-12 	 TCON
Table 1-13 	 TMOD
Table 1-14 	 SCON
Table 1-15 	 IE
Table 1-16 	 IP
Table 1-17 	 PSW

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/JAMRS

PaulOS An 8051 Real-Time Operating System
Part I

19

List of Tables

Table 1-18 	 Register Bank Selection bits
Table 1-19 	 ACC
Table 1-20 	 B

Table 2-1 	 ACC
Table 2-2 	 B
Table 2-3 	 Timer-related SFRs
Table 2-4 	 TMOD (89H) SFR
Table 2-5 	 Timer Mode Control bits
Table 2-6 	 Timer counters registers
Table 2-7 	 TCON (88H) SFR
Table 2-8 	 TCON (88H) SFR
Table 2-9 	 SCON (99H) SFR
Table 2-10 	 Serial Mode selection bits
Table 2-11 	 Baud Rate calculation
Table 2-12 	 Crystal Divisor
Table 2-13 	 Tri-state truth table
Table 2-14 	 8051 Interrupt Vector Table location
Table 2-15 	 IE (A8H) SFR
Table 2-16 	 Polling Sequence Order
Table 2-17 	 IP (B8H) SFR

Table 4-1 	 8032 Total Internal RAM organisation
Table 4-2 	 8032 Internal RAM organisation
Table 4-3 	 8032 Special Function Registers (SFRs)-DIRECT addressing ONLY
Table 4-4 	 T2CON (C8H) SFR
Table 4-5 	 8032 Interrupt Vector Table location

Table 5-1 	 FLT-32 Memory map
Table 5-2 	 FLT-32 Interrupt Vector Table
Table 5-3 	 RAM Size Dec-Hex Conversion
Table 5-4 	 External Memory (Link Settings)
Table 5-5 	 NMIY J4 Pinouts
Table 5-6 	 NMIY J5 Pinouts
Table 5-7 	 NMIY J6 Pinouts

Table 6-1 	 8032 Interrupt Vector Table location
Table 6-2 	 FLITE-32 Interrupt Vector Table location
Table 6-3 	 Locations of Variables
Table 6-4 	 C51 compiler data types

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

20

List of Tables

Table 8-1 	 IEMASK Parameter (SanctOS)

Table 9-1 	 IEMASK Parameter (PaulOS)

Table 10-1 	 IEMASK values

Table 11-1 	 LED 7 segment connections
Table 11-2	 LCD 8-bit write sequence
Table 11-3 	 LCD 4-bit write sequence
Table 11-4 	 LCD Command set
Table 11-5 	 LCD 8-bit mode initialisation
Table 11-6 	 LCD 4-bit mode initialisation

Table A-1 	 PARROS.A51 Variables setup, with 20 tasks. (NOOFTSKS=20)

Table B-2 	 System Calls without any parameters
Table B-3 	 System calls needing some parameters
Table B-4 	 IEMASK parameter
Table B-5 	 PaulOS.A51 Variables setup, with 18 (12H) tasks. (NOOFTSKS=12H)

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Bartending is your ticket to the world

26 destinations 4 continents

GET STARTED

http://s.bookboon.com/ebsbarschools

PaulOS An 8051 Real-Time Operating System
Part I

21

8051 Basics

1	 8051 Basics
This chapter describes the basic 8051 micro-controller and explains its internal organization and uses
of the internal special function registers. Many web pages, books (see bibliography list [1], [2], [3], [8],
[9], [13], [14], [15], [18]), and tools are available for the 8051 developer, and many of them are free!.
This chapter will assist the reader in mastering basic 8051 programming (using both assembly language
and C language) and should eliminate the need to have an additional book specifically on the 8051.

1.1	 Introduction

Despite its relatively old age, the 8051 (developed by Intel Corporation in the early 1980s) is one of the
most popular micro-controllers in use today. Many derivative micro controllers have since been developed
that are based on and compatible with the 8051. Thus, the ability to program an 8051 is an important
skill for anyone who plans to develop products that will take advantage of most micro controllers.

The various sections of the first two chapters will explain the 8051micro-controller step by step. The
sections in these chapters are targeted at students who are attempting to learn the 8051 assembly language
programming and are also useful to those who prefer using C. The appendices are a useful reference
tool that will assist both the novice programmer as well as the experienced professional developer, since
they provide a wide range of programs complete with source code.

No knowledge of the 8051 is assumed; however, it is assumed some amount of programming has been
done before with a basic understanding of the hardware and a firm grasp on the three numbering
systems mentioned above. The concept of converting a number from decimal to hexadecimal and/or to
binary is not within the scope of this book, and familiarity with these types of conversions would help
in understanding some concepts.

This chapter attempts to address the need of the typical programmer. For example, there are certain
features that are nifty and in some cases very useful, but 95% of the programmers will never use these
features. Those already familiar with the 8051 may skim over some details described in this chapter.

The basic 8051 is a 40-pin IC as shown in Figure 1-1.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

22

8051 Basics

Figure 1-1 Basic 8051

We shall now deal with the internal organisation of the 8051 micro-controller.

1.2	 Memory Types

The 8051 has three very general types of memory and each type has to be addressed in a different way.
To effectively program the 8051 it is necessary to have a basic understanding of these memory types and
how to address them, especially when programming directly in assembly language. The memory types
found on the 8051 are illustrated in Table 11 namely the On-Chip Memory, the External Code Memory
and External Data RAM. Addresses throughout this book are shown suffixed either with a lower case h
(i.e. 0Fh) or with a upper case H (i.e. 0FH) to signify that they are hexadecimal numbers.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

23

8051 Basics

Higher memory non
existent

FFFFH

External

Code

Memory

0000H

FFFFH

External

Data

Memory

0000H

0FFH

Not

Available on basic 8051

80H

7FH

Internal

On-Chip

Memory

00H

Table 1-1 8051 memory space

It is also very common, especially in many development boards, that the external ram is organised as
a contiguous memory map, made up as shown in Table 1-2. Generally, the EEPROM (or ROM) would
occupy the lower address area, since the 8051 starts executing instructions from location number 0000H.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 .

http://s.bookboon.com/AlcatelLucent

PaulOS An 8051 Real-Time Operating System
Part I

24

8051 Basics

Not

Available

FFFFH (32KB) or 9FFH (8KB)

External
RAM
Area

(Code and Data)

8000H
7FFFH

16K

External

EPROM

Area

(Code)

Memory

00H

FFH
Internal

On-Chip

Memory

00H

Table 1-2 8032 memory map (Development System)

The EEPROM would generally contain the monitor program so that the user can communicate with the
board via the RS232, and also he would be able to transfer his own program into the upper RAM area,
where it would be executed for testing and prototyping. The monitor program usually sets the serial
port, perhaps under interrupt control (see section 2.9). It would also map the interrupt vector table into
the RAM area so that the user application can make use of interrupts by having access to the interrupt
vector table. If the interrupt vector table is left in the ROM, the user would not be able to write the
address of his Interrupt Service Routines (ISRs) in the EEPROM directly and easily, (he would have to
burn a new EEPROM each time! Recent versions with Flash memory have eliminated this problem.).
The monitor system must at least have enough commands to be able to transfer and run the program.
More commands are usually available depending on the sophistication required. Some have built-in
assemblers, dis-assemblers, step-by-step execution and trace facilities for de-bugging purposes.

Most common memory set-ups involve an 8KB or a 16KB EPROM and at least 8KB RAM, both of which
can be expanded. The address range would normally be selected by means of shorting some links. The
internal memory on chip is only 128 bytes for the normal 8051 (see Table 1-1) but is doubled on the
8032 to 256 bytes as shown in Table 1-2.

On-Chip Memory refers to any memory (Code, RAM, or other) that physically exists on the micro
controller itself. On-chip memory can be of several types, but we’ll get into that shortly.

External Code Memory is code (or program) memory that resides off-chip. This is often in the form
of an external EEPROM.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

25

8051 Basics

External RAM is RAM memory that resides off-chip. This is often in the form of standard static RAM
or flash RAM.

1.3	 Code Memory

Code memory is the memory that holds the actual 8051 program that is to be executed. This memory is
normally limited to 64KB although it comes in many shapes and sizes. Since there are many variants of
the basic 8051 the Code memory may be found in various forms depending on the device. It can either
be burned into the micro-controller as ROM or as an EEPROM and it may also be stored completely off-
chip in an external ROM or, more commonly in basic versions, as an external EEPROM. Flash memory
is also another popular method of storing a program or code. Various combinations of these memory
types may also be used, that is to say, it is possible to have 4KB of code memory on-chip and 64KB of
code memory off-chip in an EEPROM.

When the program is stored on-chip, the 64KB maximum value is often reduced to 4KB, 8KB, or 16KB.
This varies depending on the version of the micro-controller that is being used. Each version offers
specific capabilities and one of the distinguishing factors from one chip to another is how much ROM/
EEPROM space the chip has. 64KB and even 128KB flash eprom devices are now available, such as the
Silicon Labs C8051F020.

However, code memory is most commonly implemented as off-chip EEPROM, in low-cost development
systems and in systems developed by students.

Speeds (and hence performance) are also rapidly increasing with improved architecture and now we
have high-speed devices running at 40MHz and using only one clock cycle per instruction instead of
the original twelve clock cycles found on the early devices.

1.4	 External RAM

As an obvious opposite of Internal RAM, the 8051 also supports what is called External RAM.

As the name suggests, External RAM is any random access memory which is found off-chip. Since the
memory is off-chip it is not as flexible in terms of accessing, and is also slower. For example, to increment
an Internal RAM location by 1 (such as INC R1) requires only one instruction which is executed in one
instruction cycle. To increment a 1-byte value stored in External RAM requires four instructions which
are executed in seven instruction cycles. In this case, external memory is seven times slower!

MOV DPTR, #address	 (2 instruction cycles)
MOVX A, @DPTR	 (2 instruction cycles)
INC A	 (1 instruction cycle)
MOVX @DPTR, A	 (2 instruction cycles)

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

26

8051 Basics

What External RAM loses in speed and flexibility it gains in quantity. While the Internal RAM is limited
to 128 bytes (256 bytes with an 8032/8052), the 8051 supports an External RAM of up to 64KB.

Modern devices now also have this so-called external RAM, physically residing on the same chip, but it
is still referred to as external (or XDATA) and all the information listed in this book still holds.

1.4.1	 On-Chip Memory

As mentioned at the beginning of this chapter, the 8051 includes a certain amount of on-chip memory.
On-chip memory is really one of two types: Internal RAM usually used to store variable and Special
Function Register (SFR) memory, used to store the registers which control the built-in peripherals. The
layout of the 8051’s internal memory is presented in the memory map shown in Table 1-3.

The 8051 has a bank of 128 bytes of Internal RAM. This Internal RAM is found on-chip on the 8051 so
it is the fastest RAM available, and it is also the most flexible in terms of reading, writing, and modifying
its contents. Internal RAM is volatile, so that when the 8051 is reset this memory is cleared.

Hex Byte
Address

Notes Hex Byte
Address

Not
Available
On the

Basic 8051

(8032 ONLY)
Accessible
By Indirect
Addressing

only

SFR area
Accessible
By Direct
Addressing

only

FFH

80H

7FH

Lower
128
bytes

00H

Accessible
By Direct

And Indirect
Addressing.

Table 1-3 8051 Total Internal RAM organisation

The 128 bytes of internal ram is subdivided as shown on the memory map in Table 1-4. The first eight
bytes (00h – 07h) are referred to as register bank 0. By manipulating certain SFR bits (in the PSW special
function register), a program may choose to use register banks 1, 2, or 3. These alternative register banks
are located in internal RAM, occupying addresses 08h through 1Fh. We will discuss register banks in
more detail in section 1.5. For now it is sufficient to know that they are part of the internal RAM.

Bit Memory is also another part of internal RAM, which as the name implies is able to store and
manipulate bit variables. We will say more about the bit memory area later (see section 1.6), but for
now we just have to keep in mind that the bit memory actually resides in internal RAM, ranging from
address 20h through address 2Fh.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

27

8051 Basics

The 80 bytes that remain in Internal RAM, from address 30h through address 7Fh, may be used to
store any user variables that need to be accessed frequently or at high-speed during the execution of
the program. This area is also utilised by the micro-controller as a storage area for the operating stack.

Hex
Byte

Address

Hex
Bit

Address
Notes

7FH

30H

Directly and
Indirectly
Addressable
General
Purpose

RAM

Used as
a STACK
Area

and to store
user variables

2FH 7F 7E 7D 7C 7B 7A 79 78

Bit

Addressable

Section

(Bit Addresses
shown

are in hex)

2EH 77 76 75 74 73 72 71 70

2DH 6F 6E 6D 6C 6B 6A 69 68

2CH 67 66 65 64 63 62 61 60

2BH 5F 5E 5D 5C 5B 5A 59 58

2AH 57 56 55 54 53 52 51 50

29H 4F 4E 4D 4C 4B 4A 49 48

28H 47 46 45 44 43 42 41 40

27H 3F 3E 3D 3C 3B 3A 39 38

26H 37 36 35 34 33 32 31 30

25H 2F 2E 2D 2C 2B 2A 29 28

24H 27 26 25 24 23 22 21 20

23H 1F 1E 1D 1C 1B 1A 19 18

22H 17 16 15 14 13 12 11 10

21H 0F 0E 0D 0C 0B 0A 09 08

20H 07 06 05 04 03 02 01 00

1FH
18H

Register Bank 3
(R0 – R7) Bank is

Selected
Using

RS0 and RS1
In the PSW
Register.

See
SFRs.

17H
10H

Register Bank 2
(R0 – R7)

0FH
08H

Register Bank 1
(R0 – R7)

07H
00H

Register Bank 0
(R0 – R7)

Table 1-4 8051 Internal RAM organisation

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

28

8051 Basics

The stack is used to save return addresses when calling functions or subroutines. It is also used to store
some values temporarily until they are retrieved again when needed. The fact that the stack size is rather
small severely limits the 8051’s stack use since, as illustrated in the memory map of Table 1-4, the area
reserved for the stack is only 80 bytes, and usually it is effectively a little bit less since these 80 bytes have
to be shared between the stack and user variables.

1.5	 Register Banks

The 8051 uses eight so-called R registers which are used in many of its instructions. These R registers
are numbered from 0 through 7 (R0, R1, R2, R3, R4, R5, R6, and R7) and are generally used to assist in
manipulating values and moving data from one memory location to another. For example, to add the
value of R4 to the Accumulator, we would execute the following instruction:

ADD A,R4

Thus if the Accumulator (A) contained the value 6 and R4 contained the value 3, the Accumulator would
contain the value 9 after this instruction was executed.

However, as the memory map of Table 1-4 shows, register R4 is really part of Internal RAM. Specifically,
R4 (of bank 0) is located at address 04h. Thus the above instruction accomplishes the same thing as the
following operation:

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Sweden
www.teknat.umu.se/english

Think Umeå. Get a Master’s degree!
• modern campus • world class research • 31 000 students
• top class teachers • ranked nr 1 by international students

Master’s programmes:
• Architecture • Industrial Design • Science • Engineering

http://s.bookboon.com/umeaa

PaulOS An 8051 Real-Time Operating System
Part I

29

8051 Basics

ADD A,04h

This instruction adds the value found in Internal RAM address 04h (the contents of location 04h) to the
value of the Accumulator, leaving the result in the Accumulator. Since R4 is really residing in Internal
RAM address 04h, the above instruction has therefore effectively accomplished the same thing as the
ADD A,R4 instruction.

But we must be careful since as the memory map shows, the 8051 has four distinct register banks. When
the 8051 is first booted up, register bank 0 (addresses 00h through 07h) is used by default. However,
our program may instruct the 8051 to use one of the alternate register banks; i.e., register banks 1, 2, or
3. In this case, R4 will no longer be in Internal RAM address 04h but somewhere else. For example, if
our program instructs the 8051 to use register bank 3, register R4 will now be located at Internal RAM
address 1Ch (see Table 1-4).

The concept of register banks adds a great level of flexibility to the 8051, especially when dealing with
interrupts, where we can allocate a specific register bank to a particular interrupt, so as not to corrupt
other main program information stored in another bank of registers. (we shall cover interrupts in more
detail later, see section 2.9). However we must always remember that the register banks really reside in
the first 32 bytes of Internal RAM.

1.6	 Bit Memory

The 8051, being a communications-oriented micro-controller, gives the user the ability to access a number
of bit variables. These variables may only take the value of either 1 or 0.

There are 128 bit variables available to the user (see Table 1-4), individually numbered 00h through 7Fh.
We may make use of these variables with assembly language commands such as SETB bit address and
CLR bit address. For example, to set bit number 24 (hex) to 1 we would execute the instruction:

SETB 24h

It is important to note that the Bit Memory area is really a part of the Internal RAM. In fact, the 128 bit
variables occupy the 16 bytes of Internal RAM from address 20h through address 2Fh. Thus, if we write
the value FFh to Internal RAM address 20h we have effectively set bits 00h through 07h to 1 with just
one instruction. That is to say that:

MOV 20h, #0FFh

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

30

8051 Basics

is equivalent to the following 8 instructions, where we are setting the bits one at a time:

SETB 00h

SETB 01h

SETB 02h

SETB 03h

SETB 04h

SETB 05h

SETB 06h

SETB 07h

As illustrated in Table 1-4, the bit memory is not a new type of memory but it is just a subset of Internal
RAM. Since the 8051 provides special instructions to access these 16 bytes (or 128 bits) of memory on a
bit by bit basis it is useful to think of it as a separate type of memory. However, since it is just a subset of
Internal RAM then we must remember that any operations performed on the Internal RAM can change
the values of these bit variables.

Bit variables 00h through 7Fh are for user-defined variables used in the program. These are not the only bit
variables available on the 8051. Other bits in certain Special Function Registers (SFRs) can also be addressed
individually as explained in the next section. These bits variables have an address of 80h or higher and are
actually used to access certain Special Function Registers (SFRs) on a bit-by-bit basis so as to program and
control certain peripherals of the 8051. For example, if output lines P0.0 through P0.7 are all cleared (0)
and we want to turn on the P0.0 output line (set bit 0 of port 0 to logic 1) we may either execute:

MOV P0,#01h

	 or

ORL P0,#01h		 ; logically OR P0 with 00000001 binary

	 or

SETB 80h

	 or even

SETB P0.0 		 ; the assembler knows that P0.0 = 80h

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

31

8051 Basics

All these instructions listed above accomplish the same thing, although there are some slight differences.
Using the SETB or the ORL command will turn on (set to 1) the P0.0 line without affecting the status
of any of the other P0 output lines. The MOV command effectively would indeed turn on (1) the P0.0
line but it would also turn off (0) all the other seven output lines (P0.1 to P0.7) which in some cases,
may not be what is actually required. Hence caution has to be taken to ensure that we use the correct
and most efficient method when setting or clearing bits.

1.7	 Special Function Register (SFR) Memory

Special Function Registers (SFRs) reside in areas of internal memory that control specific functionality
of the 8051 processor. For example, four SFRs permit access to the 8051’s 32 input/output lines. Another
SFR allows a program to read or write to the 8051’s serial port. Other SFRs allow the user to set the serial
baud rate, control and access timers and configure the 8051’s interrupt system.

When programming, we may get the illusion that the SFRs are Internal Memory. This is because they
are directly addressable. For example, if we want to write the value 1 to Internal RAM location 50 hex
we would execute the instruction:

 	 MOV 50h, #01h

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 By thinking about things that nobody has ever thought about before

 By writing a dissertation about the highest building on earth

 With an internship about natural hazards at popular tourist destinations

 By discussing with doctors, engineers and seismologists

 By all of the above

How could you take your studies to new heights?

From climate change to space travel – as one of the leading reinsurers, we
examine risks of all kinds and insure against them. Learn with us how you
can drive projects of global significance forwards. Profit from the know-how
and network of our staff. Lay the foundation stone for your professional career,
while still at university. Find out how you can get involved at Munich Re as
a student at munichre.com/career.

http://s.bookboon.com/munichre

PaulOS An 8051 Real-Time Operating System
Part I

32

8051 Basics

Similarly, if we want to write the value 1 to the 8051’s serial port we would write this value to the SBUF
SFR, which has an SFR address of 99 Hex. Thus, to write the value 1 to the serial port we would execute
the instruction:

 	 MOV 99h,#01h or MOV SBUF,#01h

When using this method of memory access (called direct addressing mode), any instruction that has an
address of 00h through 7Fh refers to an Internal RAM memory address while any instruction with an
address of 80h through FFh refers to an SFR control register.

1.7.1	 SFR Addresses

The 8051 is a flexible micro-controller with a relatively large number of modes of operations. In order to
be able to make full use of these different modes or ways of using the built in peripherals of this versatile
micro-control, our program may inspect and/or change the operating mode of the 8051 by manipulating
the values of some specific 8051’s SFRs.

They are accessed as if they were normal Internal RAM. The only difference is that Internal RAM for
the 8051 resides from address 00h through 7Fh whereas the SFR registers exist in the address range of
80h through FFh. Each SFR has an address (80h through FFh) and a name.

Table 1-5a and 1-5b provide a graphical representation of the 8051’s SFRs, their name, and their address in
hexadecimal. Although the address range is from 80h through FFh, thus offering 128 possible addresses,
there are only 21 SFRs in a standard 8051. The free locations are reserved for future enhanced and upgraded
versions of the 8051 family, such as the 8032 discussed in Chapter 4. Moreover, reading data from these
empty addresses will in general return some meaningless random data while writing data to these addresses
will have no effect. In fact the actual memory cell of these free locations might not be physically present.

Hex Byte
Address

Hex Bit Address Symbol

FF – F9 Not implemented on chip -

* F8 * Not implemented on chip -

F7 – F1 Not implemented on chip -

* F0 * F7 F6 F5 F4 F3 F2 F1 F0 B

EF – E9 Not implemented on chip -

* E8 * Not implemented on chip -

E7 – E1 Not implemented on chip -

* E0 * E7 E6 E5 E4 E3 E2 E1 E0 ACC

DF – D9 Not implemented on chip -

* D8 * Not implemented on chip -

Table 1-5a 8051 Special Function Registers (SFRs)-DIRECT addressing ONLY

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

33

8051 Basics

Hex Byte
Address

Hex Bit Address Symbol

D7 – D1 Not implemented on chip -

* D0 * D7 D6 D5 D4 D3 D2 D1 D0 PSW

CF – C9 Not implemented on chip -

* C8 * Not implemented on chip -

C7 – C1 Not implemented on chip -

* C0 * Not implemented on chip -

BF – B9 Not implemented on chip -

* B8 * - - - BC BB BA B9 B8 IP

B7 – B1 Not implemented on chip -

* B0 * B7 B6 B5 B4 B3 B2 B1 B0 P3

AF – A9 Not implemented on chip -

* A8 * AF - - AC AB AA A9 A8 IE

A7 – A1 Not implemented on chip -

* A0 * A7 A6 A5 A4 A3 A2 A1 A0 P2

9F – 9A Not implemented on chip -

99 SBUF

* 98 * 9F 9E 9D 9C 9B 9A 99 98 SCON

97 – 91 Not implemented on chip -

* 90 * 97 96 95 94 93 92 91 90 P1

8F –8E Not implemented on chip -

8D TH1

8C TH0

8B TL1

8A TL0

89 TMOD

* 88 * 8F 8E 8D 8C 8B 8A 89 88 TCON

87 PCON

86 – 84 Not implemented on chip -

83 DPH

82 DPL

81 SP

* 80 * 87 86 85 84 83 82 81 80 P0

Hex addresses shown within asterisks are bit-addressable locations.

Table 1-5b 8051 Special Function Registers (SFRs)-DIRECT addressing ONLY

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

34

8051 Basics

We should therefore stick to the rule that any user developed software should not write anything to
these unimplemented locations, since they may be used in future products to invoke new features. All
unimplemented addresses in the SFR range (80h through0 FFh) are considered invalid and writing to
or reading from these non-existent register locations may produce undefined values or behaviour.

1.7.2	 SFR Types

As mentioned in Table 1-5 itself, some SFRs (P0, P1, P2 and P3) are SFRs related to the I/O ports. The
8051 has four I/O ports of 8 bits, for a total of 32 I/O lines. Whether a given I/O line is high or low and
the value read from the line are controlled by these SFRs. It should be noted that all of these ports are
Bit-addressable. This means that we can read from or write to a single bit of any port.

Some other SFRs are used to control the operation or the configuration of some aspect of the 8051. For
example, TCON and TMOD control the timers while SCON controls serial port operations.

The other remaining SFRs can be thought of as auxillary SFRs in the sense that they do not directly
configure the 8051 but obviously the 8051 cannot operate without them. For example, once the serial
port has been configured using SCON, the program may read or write data characters or bytes to the
serial port using the SBUF register.

The SFRs whose address has an asterisk (*) in the Table 1-5 above, are special SFRs that may also be
accessed via bit operations (i.e., using the SETB and CLR instructions). The other SFRs cannot be
accessed using bit operations but have to be handled using byte operations. As we can see, all SFRs
whose addresses are divisible by 8 (having an address ending with a 0h or 8h) can be accessed with bit
operations, meaning that they are bit-addressable.

1.8	 SFR Descriptions

This section will endeavour to quickly overview each of the standard SFRs found in the above SFR chart
map (Table 1-5). It is not the intention of this section to fully explain the functionality of each SFR, as
this information will be covered in separate dedicated sections of this chapter.

1.8.1	 P0 (Port 0, Address 80h, Bit-Addressable)

All four ports P0, P1, P2 and P3 each use 8 pins, making them 8-bit ports. All the ports upon RESET
are configured as output ports. To use any bit of these ports as an input port bit, it must be programmed
to do so, by writing a 1 to that particular bit. The operation of the ports is well explained in ([9] Mazidi
& Mazidi 2000, pp. 384–390), and is being reproduced with some added comments in the following
paragraphs dealing with the ports.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

35

8051 Basics

The structure of input/output port 0 or P0, is shown in Figure 1-2. Each bit of this SFR corresponds to
one of the port pins on the micro-controller. For example, bit 0 of port 0 is pin P0.0, bit 7 is pin P0.7.
Writing a value of 1 to a bit (SETB P0.7) of this SFR will send a high level on the corresponding I/O pin
whereas writing a value of 0 (CLR P0.7) will bring it to a low level. If used as an input, the status of a
bit can be checked by the program by using for example:

JB P0.7,Label ; (Jump to Label if bit P0.7 is 1).

or in C, assuming that Port0_bit7 was declared by ujsing the sbit bit variable declaration

sbit Port0_bit7 = P0^7;

then we can write

……

if (Port0_bit7 == 1) { ……… }

or

if (Port0_bit7) { ……… }

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Open your mind to
new opportunities
With 31,000 students, Linnaeus University is
one of the larger universities in Sweden. We
are a modern university, known for our strong
international profile. Every year more than
1,600 international students from all over the
world choose to enjoy the friendly atmosphere
and active student life at Linnaeus University.
Welcome to join us!

Bachelor programmes in
Business & Economics | Computer Science/IT |
Design | Mathematics

Master programmes in
Business & Economics | Behavioural Sciences | Computer
Science/IT | Cultural Studies & Social Sciences | Design |
Mathematics | Natural Sciences | Technology & Engineering

Summer Academy courses

Scholarships

http://s.bookboon.com/LNU

PaulOS An 8051 Real-Time Operating System
Part I

36

8051 Basics

The sbit variable declaration enables us to gain access to the port pin by giving the pin a name. The caret
symbol (^) is used in C instead of the dot (.) when referring to bits, since the dot is used in C when
referring to union members. Although the caret symbol is also used in C for the bitwise XOR (exclusive
OR) operator, no XOR operation is involved here. The sbit keyword helps the compiler to sort this out.

To use the pins of port 0 as both input and output ports, each pin must be connected externally to a
+5V rail via a 10k ohm pull-up resistor. This is due to the fact that P0 uses an open drain configuration,
unlike P1, P2 and P3. Open drain is a term used for MOS chips in the same way that an open collector
is used for TTL chips. With external pull-up resistors connected, upon reset port 0 is configured as an
output port (default mode). This setup is also shown in Figure 1-2 with the pull-up resistor shown in a
shaded box to highlight the fact that this is an additional external connection.

Figure 1-2 Pull-Up resistors

With resistors connected, in order to make it an input port, the port must first be programmed to the
input mopde. This is achieved by writing a 1 to all the bits required to act as an input. For example to
make all port 0 act as an input port, we must first use:

MOV P0, #0FFH

or in C

P0 = 0xFF;

And then we can read data from the port into the accumulator by using

MOV A, P0

or in C, assuming Inputdata was previously declared as an 8-bit variable

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

37

8051 Basics

Inputdata = P0;

Hex Byte
Address

Bit-addressable Symbol

80 87 86 85 84 83 82 81 80 P0

P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0 Bit – ASM

P0^7 P0^6 P0^5 P0^4 P0^3 P0^2 P0^1 P0^0 Bit – KEIL C

Table 1-6 P0

Figure 1-3 8051 Port 0 Structure

Port 0 has a dual role, allowing it to be used for both address and data transfers. When connecting the
8051 to an external memory, port 0 provides both the address and the data signals. The 8051 multiplexes
address and data functions through port 0 in order to save on the number of pins on the IC, the Address
Latch Enable (ALE) pin providing the necessary control function. If ALE = 0, port 0 provides data and
when ALE = 1 it carries address bits A0 to A7.

Since all the ports of the 8051 are bi-directional, they all have the following three basic components:

•	 D latch
•	 Output driver
•	 Input buffer

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

38

8051 Basics

Now the question arises when reading the port, are we reading the status of the input pin or are we
reading the status of the latch? That is an extremely important question and its answer depends on the
type of instruction we are using to address the port. The instruction itself would dictate which tri-state
input buffer is to be activated, whether TB1(pin) or TB2 (latch). The explanation is given in section 1.8.5.

1.8.2	 Reading the input pin

As stated earlier, in order to make any bit of any port of the 8051 an input port, we first must write a
1 (logic high) to that port bit. With reference to Figure 1-4, since we have chosen port 0, the load R1
would be an externally connected pull-up resistor of say 10kΩ (shown in a shaded box to denote an
additional external component).

Writing a 1 to the port bit, causes a 1 to be written to the latch and the D latch therefore has a logic high
on its pin. Therefore Q = 1 and Q = 0.

Consequently the transistor M1 gate is 0 or at a low level and the transistor is therefore turned off.

M1 therefore blocks the path to ground for any signal connected to the input pin P0.X and the input
signal is therefore directed to the tri-state buffer TB1.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Enterprise Content Management

InnovationCyber Crime

Web-enabled Applications IT
 C

on
su

lta
nc

ySA
P

SQL
JavaC

RM

.NETEn
te

rp
ris

e
A

pp
lic

at
io

n

Big Data

Information Management

So
ci

al
 B

us
in

es
s

Implementation

Technology Advisory

D
at

a
A

na
ly

tic
s

C
lo

ud
 C

om
pu

tin
g

End-to-End Solution

Implementation

Technology

Are you ready to do what matters
when it comes to Technology?

http://s.bookboon.com/deloitteUS

PaulOS An 8051 Real-Time Operating System
Part I

39

8051 Basics

When reading the input port with an instruction such as using MOV A, P1 we are therefore actually
reading directly the data present at the pin since this instruction activates the read pin of TB1 and lets
the data flow into the CPU’s internal bus.

Figure 1-4 Setting 8051 Port 0.X as an input pin

Writing to a pin which was previously set to the input mode can have serious repercussions on the port
and this is dealt with in section 1.8.4 where we explain how we can damage the port. This particular
situation can easily occur if we are not careful when programming the device.

1.8.3	 P1 (Port 1, Address 90h, Bit-Addressable)

This is input/output port 1 as shown in Figure 1-5. Each bit of this SFR corresponds to one of the pins
on the micro-controller. For example, bit 0 of port 1 is pin P1.0, bit 7 is pin P1.7. Writing a value of 1
to a bit (SETB P1.7) of this SFR will send a high logic level (say 3.5–5 V) on the corresponding I/O pin
whereas a value of 0 (CLR P1.7) will bring it to a low logic level (0V). If used as an input, the status of
a bit can be checked by the program by using for example

JB P1.7,Label ;(Jump to Label if bit P1.7 is 1).

or in C, again assuming the sbit variable declaration

sbit Port1_bit7 = P1^7;

….

 If (Port1_bit7 == 1) { … … }

As seen in Figure 1-5, in contrast to port 0, this port does not need any pull-up resistors since they are
already built-in internally. However, once again as in port 0, in order to make it an input port, the port
must first be programmed by writing a 1 to all the bits required to act as an input.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

40

8051 Basics

Hex Byte
Address

Bit-addressable Symbol

90 97 96 95 94 93 92 91 90 P1

P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0 Bit – ASM

P1^7 P1^6 P1^5 P1^4 P1^3 P1^2 P1^1 P1^0 Bit – KEIL C

Table 1-7 P1

Figure 1-5 8051 Port 1 Structure, with internal load

1.8.4	 Damaging the port

Looking at Figure 1-6 we can see that if we write a 0 (low) to a port bit, then Q = 0 and Q = 1. As a
result transistor M1 is now ON and therefore provides a path to ground for load L1 and the pin P1.X
is effectively grounded.

Figure 1-6 Writing ‘0’ to a port

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

41

8051 Basics

This is normal and correct, since when we write a zero to an output port, we expect to have 0V at the
output pin. If however the port was originally intended to be used as an input port and we had an external
connection as shown in Figure 1-7 the effect of inadvertently writing a ‘0’ to an input configured port
could have a very damaging effect. With the transistor switched on and if a two-way switch between
supply Vcc and ground is connected directly to the pin as shown, then the transistor will sink current
from both the internal load L1 and the external Vcc via the switch. This will cause too much current
to flow in M1 and thus damaging permanently the port bit. In order to avoid damaging the port even
if we use the wrong instruction by mistake, the correct kind of connection should be used when using
switches or when supplying signals to an input port.

Some examples of the correct type of connection are shown in Figure 1-8 to Figure 1-11.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA2016

PaulOS An 8051 Real-Time Operating System
Part I

42

8051 Basics

Figure 1-7 Never connect an input port pin directly to Vcc

Figure 1-8 Input switch with no Vcc

Figure 1-9 Input switch with pull-up resistor on Port 0

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

43

8051 Basics

Figure 1-10 Input switch with pull-resistor on Port 1

Figure 1-11 Buffering input switch connected directly to Vcc

1.8.5	 Reading the latch

In reading the port, (see Figure 1-12) we may be reading the latch instead of the actual port pin. Consider
the case of the logical AND instruction

ANL P1,A

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

44

8051 Basics

which is actually a READ-MODIFY-WRITE instruction. This is typical for bit-wise operations such as
ANL, ORL and XRL. There are usually no side-effects of READ-MODIFY-WRITE instructions when
accessing registers that have the same values when read or when written (because they act like RAM).
However, READ-MODIFY-WRITE instructions can cause problems when the register being accessed
is write-only or reads a different value than what was written.

A characteristic of the I/O ports of the 8051 is that the value you write may not be the value you read
(since reading the port returns the state of the port pins). However, these registers are specially treated
for READ-MODIFY-WRITE instructions.

Looking at the sequence of actions taking place when this instruction (ANL P1,A) is executed, we shall
see exactly why and what we are reading:

•	 The read latch in this case activates the tri-state buffer TB2 and brings the data from the Q
latch (not the input pins via TB1 as in previous examples) into the CPU.

•	 This data is ANDed with the contents of register A.
•	 The result is re-written to the latch.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/GTca

PaulOS An 8051 Real-Time Operating System
Part I

45

8051 Basics

After re-writing the result to the latch there are two possibilities:

If Q = 0, then Q = 1 and M1 is ON. The output pin has 0, the same as the status of the Q latch.

If Q = 1, then Q = 0 and M1 is OFF. The output pin has a 1, the same as the status of the Q latch.

From the above discussion, we conclude that the instruction that reads the latch normally reads a value,
performs an operation (possibly changing the value), and re-writes it to the latch. Hence this is often
called a READ-MODIFY-WRITE instruction. Table 1-8 provides a list of examples for such instructions,
which ALL use the port as the destination operand.

•	 ANL P1,A
•	 ORL P1,A
•	 XRL P1,A
•	 JBC P1.1, LABEL
•	 CPL P1.2
•	 INC P1
•	 DEC P1
•	 DJNZ P1, LABEL
•	 MOV P1.2,C
•	 CLR P1.3
•	 SETB P1.4

Table 1-8 Read-Modify-Write Instructions

Figure 1-12 Reading the latch

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

46

8051 Basics

1.8.6	 P2 (Port 2, Address A0h, Bit-addressable)

This is input/output port 2. Each bit of this SFR corresponds to one of the pins on the micro-controller.
For example, bit 0 of port 2 is pin P2.0, bit 7 is pin P2.7. Writing a value of 1 to a bit (SETB P2.7) of this
SFR will send a high level on the corresponding I/O pin whereas a value of 0 (CLR P2.7) will bring it to
a low level. If used as an input, the status of a bit can be checked by the program by using for example:

JB P2.7, Label ; (Jump to Label if bit P2.7 is 1).

or in C, with a previous sbit declaration of the variable Port2_bit

if (Port2_bit7) { ……}

Same as port 1, this port does not need any pull-up resistors since they are already built-in internally.
Also as in port 1, in order to make it an input port, the port must first be programmed by writing a 1
to all the bits required to act as an input.

Hex Byte
Address

Bit-addressable Symbol

A0 A7 A6 A5 A4 A3 A2 A1 A0 P2

P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0 Bit – ASM

P2^7 P2^6 P2^5 P2^4 P2^3 P2^2 P2^1 P2^0 Bit – KEIL C

Table 1-9 P2

Port 2 as port 0, also has a dual role, allowing it to be used to provide the higher 8-bit address when
connecting the 8051 to external memory. Used in conjunction with port 0 provides the address bits A8
to A15 thus making the 8051 capable of addressing up to 64KB (16-bit) of external memory.

1.8.7	 P3 (Port 3, Address B0h, Bit-addressable)

This is input/output port 3 and each bit of this SFR corresponds to one of the pins on the micro-controller.
For example, bit 0 of port 3 is pin P3.0, bit 7 is pin P3.7.

Hex Byte
Address

Bit-addressable Symbol

B0 B7 B6 B5 B4 B3 B2 B1 B0 P3

RD WR T1 T0 INT1 INT0 TXD RXD Other use

P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0 Bit – ASM

P3^7 P3^6 P3^5 P3^4 P3^3 P3^2 P3^1 P3^0 Bit – KEIL C

Table 1-10 P3

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

47

8051 Basics

Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas
writing a value of 0 will bring it down to a low level.

P3 is also used for interrupts as well as other signals as shown in Table 1-10. Port 3 too, does not need
any pull-up resistors, same as P1 and P2. Although port 3 is configured as an output port upon reset,
this is not the way it is commonly used.

•	 Bits 0 and 1 are used for the RxD (input data) and TxD (output data) serial communications
signals.

•	 Bits 2 and 3 are set aside for external interrupt input signals.
•	 Bits 4 and 5 can be used as input signals for the timers and
•	 Bits 6 and 7 can provide the write and read signals for any external memories connected to

the 8051.

Thus P3 has some pins dedicated for specific jobs which restrict its use for other purposes.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 CHARLES JENKINS

 Quality Engineer
ZF Friedrichshafen AG

I’M WITH ZF.
ENGINEER AND EASY RIDER.
www.im-with-zf.com

Scan the code and find
out more about me
and what I do at ZF:

http://s.bookboon.com/zf

PaulOS An 8051 Real-Time Operating System
Part I

48

8051 Basics

1.8.8	 SP (Stack Pointer, Address 81h)

This is the stack pointer of the micro-controller. This SFR indicates where the next value to be taken from
the stack will be read from in Internal RAM. If we push a value onto the stack, the value will be written
to the address of SP + 1. That is to say, if SP holds the value 07h (this is the default reset value), a PUSH
instruction will push the value onto the stack at address 08h. This SFR is modified by all instructions
which modify the stack, such as PUSH, POP, LCALL, RET, RETI, and whenever interrupts are provoked
by the micro-controller.

1.8.9	 DPL/DPH (Data Pointer Low/High, Addresses 82h/83h)

The SFRs DPL and DPH work together to represent a 16-bit value called the Data Pointer (DPTR) and
is used in operations regarding external RAM and some instructions involving code memory. Having
16-bits it can represent values from 0000h to FFFFh (0 through 65,535 decimal).

1.8.10	 PCON (Power Control, Address 87h)

The Power Control SFR is used to control the 8051’s power control modes. Certain operating modes of
the 8051 allow the 8051 to go into a sort of sleep mode which requires much less power. These modes of
operation are controlled through specific bits in PCON.Additionally, one of the bits in PCON (PCON.7
also known as SMOD) is used to double the effective baud rate of the 8051’s serial port. Other bits are
not implemented (-). Note that this SFR is not Bit-addressable, and hence in order to set SMOD to 1,
without altering the other bits in the SFR, we should use:

ORL PCON, #80h

or in C

PCON |= 0x80;

Hex Byte
Address

Not Bit-addressable

 7 6 5 4 3 2 1 0

Symbol

87 - - - - - - - - PCON

SMOD - - - GF1 GF2 PD IDL Bit

Table 1-11 PCON

1.8.11	 TCON (Timer Control, Addresses 88h, Bit-addressable)

The Timer Control (TCON) SFR is used to configure and modify the way in which the 8051’s two timers
operate.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

49

8051 Basics

Hex
Byte

Address

Bit-addressable Symbol

88 8F 8E 8D 8C 8B 8A 89 88 TCON

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 Bit
Symbol

TCON.7 TCON.6 TCON.5 TCON.4 TCON.3 TCON.2 TCON.1 TCON.0 Bit – ASM

TCON^7 TCON^6 TCON^5 TCON^4 TCON^3 TCON^2 TCON^1 TCON^0 Bit –
KEIL C

Table 1-12 TCON

This SFR controls whether each of the two timers is running or stopped and contains a flag to indicate
that the timer has overflowed. Additionally, some non-timer related bits are also located in the TCON
SFR. These bits are used to configure the way in which the external interrupts are activated and also
contain the external interrupt flags which are set when an external interrupt has occured.

1.8.12	 TMOD (Timer Mode, Address 89h)

The Timer Mode SFR is used to configure the mode of operation of each of the two timers. Using this
SFR, (see Table 113) our program may configure each timer to be a 16-bit timer, an 8-bit auto-reload
timer, a 13-bit timer, or two separate timers. The timer can be used to count pulses from the internal
clock (C/T = 0) or to count events (C/T = 1) connected to an external pin (P3.5 T1 for timer 1 or P3.4
T0 for timer 0). Additionally, in order to facilitate pulse-width measurements, we may configure the
timers (setting the GATE bit to 1) to only start counting when an external pin (P3.3 INT1 for timer 1
or P3.2 INT0 for timer 0) is high. This is further explained in section 2.11.15.

Hex Byte
Address

Not Bit-addressable Symbol

89 - - - - - - - - TMOD

GATE C/ M1 M0 GATE C/ M1 M0 Bit

Timer 1 Timer0

Table 1-13 TMOD

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

50

8051 Basics

1.8.13	 TL0/TH0 (Timer 0 Low/High, Addresses 8Ah/8Ch)

These two SFRs, taken together, represent the timer 0 counting registers. Their exact behaviour depends
on how the timer is configured in the TMOD SFR; however, these timers always count up. What is
configurable is how and when they increment in value. Note that these two registers do not occupy
consecutive address locations, and hence cannot be loaded together say by using an SFR16 data type
variable in KEIL C. (see note on Little Endian / Big Endian in section 6.1).

1.8.14	 TL1/TH1 (Timer 1 Low/High, Addresses 8Bh/8Dh)

These two SFRs, taken together, represent the timer 1 counting registers. As for timer 0, their exact
behaviour depends on how the timer is configured in the TMOD SFR; however, these timers always
count up. What is configurable is how and when they increment in value. Note that these two registers,
same as TL0 and TH0, do not occupy consecutive address locations, and hence once again they cannot
be loaded together say by using an SFR16 data type variable in KEIL C.

1.8.15	 SCON (Serial Control, Address 98h, Bit-Addressable)

The Serial Control SFR is used to configure the behaviour of the 8051’s on-board serial port. This SFR
controls the baud rate of the serial port, whether the serial port is activated to receive data, and also
contains flags (TI and RI) that are set when a byte is successfully sent or received. These in turn can
also be programmed to generate interrupts, thus providing the capability to have an interrupt controlled
serial reception and/or transmission.

Hex Byte
Address

Bit-addressable Symbol

98 9F 9E 9D 9C 9B 9A 99 98 SCON

SM0 SM1 SM2 REN TB8 RB8 TI RI Bit Symbol

SCON.7 SCON.6 SCON.5 SCON.4 SCON.3 SCON.2 SCON.1 SCON.0 Bit – ASM

SCON^7 SCON^6 SCON^5 SCON^4 SCON^3 SCON^2 SCON^1 SCON^0 Bit – KEIL C

Table 1-14 SCON

1.8.16	 SBUF (Serial Buffer Address 99h)

The Serial Buffer SFR is used to send and receive data via the on-board serial port. Any value written to
SBUF will be sent out the serial port’s TXD pin (which is actually pin P3.1). Likewise, any value which
the 8051 receives via the serial port’s RXD pin (which is actually pin P3.0) will be delivered to the user
program via SBUF. In other words, SBUF serves as the output port when written to and as an input
port when read from. Although SBUF has just one address, it is actually two separate registers, one
activated by a READ instruction (to read a character which has been received) and the other activated
by a WRITE instruction used to send the data which has to be transmitted. Simultaneous transmit and
receive operations (full-duplex) can thus be handled.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

51

8051 Basics

Moreover, when data is received into SBUF, RI flag (bit SCON.0) is set. This may in turn be programmed
to generate an interrupt, signaling that a character has been received which can then be read by the
program. Similarly, when a character has been sent by the device, TI flag (bit SCON.1) is set which can
also be programmed to trigger an interrupt. This would indicate that a character has been transmitted
and thus SBUF can be loaded again which a fresh character for subsequent transmission. Both RI and
TI trigger the same serial interrupt and therefore the Interrupt Service Routine would have to check
which flag caused the interrupt (it may even be both of them at the same time!) and branch accordingly.

1.8.17	 IE (Interrupt Enable, Addresses A8h)

The Interrupt Enable SFR is used to enable and disable specific interrupts. The low 7 bits of the SFR are
used to enable/disable the specific interrupts, whereas the most significant bit (msb) is used to enable or
disable ALL the interrupts. Thus, if the msb of IE is 0 all interrupts are disabled regardless of whether
an individual interrupt is enabled by setting a lower bit.

Hex Byte
Address

Bit-addressable Symbol

A8 AF AE AD AC AB AA A9 A8 IE

EA - ET2 ES ET1 EX1 ET0 EX0 Bit Symbol

IE.7 IE.6 IE.5 IE.4 IE.3 IE.2 IE.1 IE.0 Bit – ASM

IE^7 IE^6 IE^5 IE^4 IE^3 IE^2 IE^1 IE^0 Bit – KEIL C

Table 1-15 IE

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

If it really matters, make it happen –
with a career at Siemens.

siemens.com/careers

http://s.bookboon.com/siemensUSA2015

PaulOS An 8051 Real-Time Operating System
Part I

52

8051 Basics

1.8.18	 IP (Interrupt Priority, Address B8h, Bit-Addressable)

The Interrupt Priority SFR is used to specify the relative priority of each interrupt. On the 8051, an
interrupt can be of any one of two types. It may either be of a low (0) priority or a high (1) priority.

Hex Byte
Address

Bit-addressable Symbol

B8 BF BE BD BC BB BA B9 B8 IP

- - PT2 PS PT1 PX1 PT0 PX0 Bit Symbol

IP.7 IP.6 IP.5 IP.4 IP.3 IP.2 IP.1 IP.0 Bit – ASM

IP^7 IP^6 IP^5 IP^4 IP^3 IP^2 IP^1 IP^0 Bit – KEIL C

Table 1-16 IP

An interrupt may only interrupt other interrupts of lower priority. For example, if we configure the 8051
so that all interrupts are of low priority except the serial interrupt, the serial interrupt will always be able
to interrupt the system, even if another interrupt is currently executing its service routine. However, if
a serial interrupt service routine is executing then no other interrupt will be able to interfere with the
serial interrupt service routine since the serial interrupt has the highest priority.

1.8.19	 PSW (Program Status Word, Address D0h, Bit-Addressable)

The Program Status Word is used to store a number of important bits that are set and cleared by some
of the 8051 instructions. The PSW SFR contains the carry flag, the auxiliary carry flag, the overflow flag,
and the parity flag. Additionally, the PSW register contains the register bank select flags (RS1 and RS0)
which are used to select which of the register banks is currently selected. Bits 3 and 4 of the PSW SFR
determine which register bank is currently being used as shown in Table 1-18 Register Bank Selection
bits. The default (at switch-on) reset value is bank 0 (RS0 = RS1 = 0).

Hex Byte
Address

Bit-addressable Symbol

D0 D7 D6 D5 D4 D3 D2 D1 D0 PSW

CY AC F0 RS1 RS0 OV - P Bit Symbol

PSW.7 PSW.6 PSW.5 PSW.4 PSW.3 PSW.2 PSW.1 PSW.0 Bit – ASM

PSW^7 PSW^6 PSW^5 PSW^4 PSW^3 PSW^2 PSW^1 PSW^0 Bit – KEIL C

Table 1-17 PSW

RS1 RS0 Register Bank Address Range

0 0 0 00H – 07H

0 1 1 08H – 0FH

1 0 2 10H – 17H

1 1 3 18H – 1FH

Table 1-18 Register Bank Selection bits

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

53

8051 Basics

1.8.20	 ACC (Accumulator A, Address E0h, Bit-Addressable)

The Accumulator is one of the most used SFRs on the 8051 since it is involved in so many instructions.
The Accumulator resides as an SFR at E0h, which means the instruction MOV A, #20h is really the same
as MOV 0E0h, #20h. However, it is a good idea to use the first method since it only requires two bytes
whereas the latter instruction requires three bytes.

Hex Byte
Address

Bit-addressable Symbol

E0 E7 E6 E5 E4 E3 E2 E1 E0 ACC
ACC.7 ACC.6 ACC.5 ACC.4 ACC.3 ACC.2 ACC.1 ACC.0 Bit – ASM

ACC^7 ACC^6 ACC^5 ACC^4 ACC^3 ACC^2 ACC^1 ACC^0 Bit – KEIL C

Table 1-19 ACC

1.8.21	 B (B Register, Address F0h, Bit-Addressable)

The B register is used specifically in two instructions: the multiply (MUL AB) and divide (DIV AB)
operations. The B register is also commonly used by programmers as an auxiliary register to temporarily
store values.

Hex Byte
Address

Bit-addressable Symbol

F0 F7 F6 F5 F4 F3 F2 F1 F0 B

B.7 B.6 B.5 B.4 B.3 B.2 B.1 B.0 Bit – ASM

B^7 B^6 B^5 B^4 B^3 B^2 B^1 B^0 Bit – KEIL C

Table 1-20 B

1.8.22	 Other SFRs

As we have already seen, Table 1-5 gives a summary of all the SFRs that exist in a standard 8051. All
derivative micro-controllers of the 8051 must support these basic SFRs in order to maintain compatibility
with the underlying MSCS51 standard.

A common practice when semiconductor firms wish to develop a new 8051 derivative is to add additional
SFRs to support new functions that exist in the new chip. For example, the Dallas Semiconductor
DS80C320 is upwards compatible with the 8051. This means that any program that runs on a standard
8051 should run without modification on the DS80C320. It also means that all the SFRs defined above
apply to the Dallas device.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

54

8051 Basics

However, since the DS80C320 provides many new features or devices which the standard 8051 does not
support, there must be some way to control and configure these new features. This is accomplished by
implementing additional SFRs to those listed here. For example, since the DS80C320 supports two serial
ports (as opposed to just one on the 8051), the SFRs SBUF2 and SCON2 have been added. In addition
to all the SFRs listed above, the DS80C320 also recognizes these two new SFRs as valid and uses their
values to determine the mode of operation of the secondary serial port. Obviously, these new SFRs have
been assigned to SFR addresses that were unused in the original 8051.

In this manner, new 8051 derivative chips may be developed which will still run existing 8051 programs.
This is also one of the reasons stated earlier, why SFR addresses which are not utilised on one 8051 type
should not be used, so that the program would still be compatible with other 8051 versions.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

55

Basic Registers

2	 Basic Registers
This chapter deals with the addressing modes, interrupts and internal peripherals (timers, serial and
parallel input/output ports) of the basic 8051 and goes into more detail on the actual internal registers
and how they are use in order to program and control the peripherals.

2.1	 The Accumulator, Address E0H, Bit-addressable

Hex Byte
Address

Bit-addressable Symbol

E0 E7 E6 E5 E4 E3 E2 E1 E0 ACC

ACC.7 ACC.6 ACC.5 ACC.4 ACC.3 ACC.2 ACC.1 ACC.0 Bit – ASM

ACC^7 ACC^6 ACC^5 ACC^4 ACC^3 ACC^2 ACC^1 ACC^0 Bit – KEIL C

Table 2-1 ACC

The Accumulator, as its name suggests, is used as a general purpose register to accumulate the results
of certain instructions. It can hold an 8-bit (1 byte) value and is the most versatile register the 8051 has,
due to the large number of instructions that make use of this accumulator register. More than half of the
8051’s 255 instructions manipulate or make use of the accumulator in some way or another.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

PaulOS An 8051 Real-Time Operating System
Part I

56

Basic Registers

For example, if we want to add the numbers 10 and 20, the resulting answer 30 will be stored in the
Accumulator. Once we have a value in the Accumulator we may continue processing the value or we
may store it in another register or in memory.

2.2	 The R registers

There are 4 banks of registers, with 8 registers, named R0, R1, R2, R3, R4, R5, R6 and R7 per bank. The
default bank is Bank 0, with R0 having address 00H and R7 having address 07H.

These registers are used as auxiliary registers in many operations. To continue with the above example,
suppose we are adding the numbers 10 and 20. The original number 10 may be stored in the Accumulator
whereas the value 20 may be stored in, say, register R4. To process the addition we would use the command:

ADD A, R4

After executing this instruction the Accumulator will contain the value 30. We may think of the R registers
as some very important auxiliary or helper registers. The Accumulator alone would not be very useful
if it were not for these R registers.

These registers are also used to store values temporarily. For example, let us say we want to add the
values in R1 and R2 together and then subtract the values of R3 and R4. One way to do this would be:

MOV A, R3 	 ; Move the value of R3 into the accumulator

ADD A, R4 	 ; Add the value of R4

MOV R5, A 	 ; Store the resulting value temporarily in R5

MOV A, R1 	 ; Move the value of R1 into the accumulator

ADD A, R2 	 ; Add the value of R2 to the accumulator

SUBB A, R5 	 ; Subtract the value of R5, which now contains R3 + R4

As you can see, we used R5 to temporarily hold the sum of R3 and R4. Of course, this is not the most
efficient way to calculate

(R1+R2) - (R3 +R4)

but it does illustrate the use of the R registers as a way of storing values temporarily. Note that we are
assuming that the resultant sum of (R1+R2) and (R3+R4) fits in an 8-bit register.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

57

Basic Registers

2.3	 The B Register, address F0H, Bit-addressable

The B register is very similar to the Accumulator in the sense that it may hold an 8-bit (1-byte) value.

Hex Byte
Address

Bit-addressable Symbol

F0 F7 F6 F5 F4 F3 F2 F1 F0 B

B.7 B.6 B.5 B.4 B.3 B.2 B.1 B.0 Bit – ASM

B^7 B^6 B^5 B^4 B^3 B^2 B^1 B^0 Bit – KEIL C

Table 2-2 B

The B register is only used directly by two 8051 instructions: MUL AB and DIV AB. Thus, if we want
to quickly and easily multiply or divide A by another number, we may store the other number in B and
make use of these two instructions.

Aside from the MUL and DIV instructions, the B register is often used as yet another temporary storage
register much like a ninth R register.

2.4	 The Data Pointer (DPTR)

The Data Pointer (DPTR) is the 8051’s only user-accessable 16-bit (2-byte) register. The Accumulator, R
registers, and B register are all 1-byte registers.

DPTR as the name suggests, is used to point to data. It is used by a number of commands which allow
the 8051 to access external memory. When the 8051 accesses the external memory, it will access it at
the address indicated by DPTR.

While DPTR is most often used to point to data in external memory, many programmers often take
advantage of the fact that it is the only true 16-bit register available. It is often used to store 2-byte values
which have nothing to do with memory locations. Moreover, it can be used as 2 separate and independent
8-bit registers, the high byte register DPH and the low byte register DPL.

2.5	 The Program Counter (PC)

The Program Counter (PC) register is not part of the SFRs. It contains a 2-byte address which tells the
8051 where the next instruction to execute is found in memory. When the 8051 is initialized, the PC is
set to 0000h and is incremented each time an instruction is executed. It is important to note that PC is
not always incremented by one after each instruction. This is because of the fact that some instructions
require 2 or 3 bytes and the PC will therefore be incremented by 2 or 3 in these cases.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

58

Basic Registers

The Program Counter is special in that there is no way to directly modify its value. That is to say, we
cannot code something like PC = 2430h. On the other hand, if we execute LJMP 2430h (meaning junp
to location 2430 hex), we would have effectively accomplished the same thing, since the micro-controller
would need to load the program counter with the address of the location where it needs to jump to and
continue the execution of the code from there.

It is also interesting to note that while we may change the value of the PC (by executing a jump instruction,
etc.) there is no specific direct instruction to read the value of the PC. That is to say, there is no way to
ask the 8051 “What is the address of the instruction you are about to execute?” As it turns out, this is
not completely true; there is one trick that may be used to determine the current value of PC. When for
example a CALL is executed, the address of the instruction after the CALL is pushed on stack (first the
low byte followed by the high byte). Once it is on the stack, this address can be popped or modified at
will! This trick is used extensively in the PaulOS Real-Time Operating System (RTOS) and other RTOSs
in order to swap tasks.

2.6	 The Stack Pointer (SP), address 81H

The Stack Pointer, like all registers except DPTR and PC, may hold an 8-bit (1-byte) value. The Stack
Pointer is used to indicate where the next value to be removed from the stack should be taken from.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

At Navigant, there is no limit to the impact you
can have. As you envision your future and all
the wonderful rewards your exceptional talents
will bring, we offer this simple guiding principle:
It’s not what we do. It’s how we do it.

Impact matters.

©2013 Navigant Consulting, Inc. All rights reserved. Navigant Consulting is not a certified public accounting firm and does not provide
audit, attest, or public accounting services.
See navigant.com/licensing for a complete listing of private investigator licenses.

navigant.com

http://s.bookboon.com/Navigant2

PaulOS An 8051 Real-Time Operating System
Part I

59

Basic Registers

When we push a value onto the stack, the 8051 first increments the value of the SP and then stores the
value at the resulting indirectly addressable memory location.

When we pop a value off the stack, the 8051 returns the value from the indirectly addressable memory
location indicated by the SP, and then decrements the value of the SP.

This order of operation is important. When the 8051 is initialized (reset), the SP will be set to 07h. If we
immediately push a value onto the stack, the value will be stored in Internal RAM address 08h. This makes
sense taking into account what was mentioned two paragraphs above: First the 8051 will increment the
value of the SP (from 07h to 08h) and then it will store the pushed value at that memory address (08h).

The SP is modified directly by the 8051 by the following 6 instructions: PUSH, POP, ACALL, LCALL, RET,
and RETI. It is also used intrinsically whenever an interrupt is triggered (more on interrupts in section
2.13). The SP always points to an indirectly addressable internal memory area and these instructions act
as in the Indirect Addressing mode. (see section 2.7.3). They make use of or modify the contents of the
indirectly addressable memory pointed to by the SP. Since the stack resides in the indirectly addressable
internal memory, there is a limit to the size of stack which can be used, which is also affected by the
number and type of the variables being stored in this same area.

2.7	 Addressing Modes

An addressing mode refers to how we are addressing a given memory location. In summary, the addressing
modes are as follows, with an example of each:

Immediate Addressing 		 MOV A,#20h

Direct Addressing 		 MOV A,30h

Indirect Addressing		 MOV A,@R0

External Indirect 			 MOVX A,@DPTR

Code Indirect 			 MOVC A,@A+DPTR

Each of these addressing modes provides important flexibility. Moreover, the type of addressing mode
also determines the memory area that is being accessed by the instruction. Reference to Table 13 would
be helpful at this stage.

2.7.1	 Immediate Addressing

Immediate addressing is so-named because the value to be stored in memory immediately follows the
operation code in memory. That is to say, the instruction itself dictates what value will be stored in memory.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

60

Basic Registers

For example, the instruction:

MOV A, #20h

uses Immediate Addressing because the Accumulator will be loaded with the value that immediately
follows; in this case 20 (hexadecimal). Immediate addressing is very fast since the value to be loaded
is included in the instruction. However, since the value to be loaded is fixed at compile-time it is not
very flexible.

2.7.2	 Direct Addressing – Data in Directly Addressable Internal RAM

Direct addressing is so-named because the value to be stored in memory is obtained by directly retrieving
it from another memory location address which is given with the instruction. For example, the instruction:

MOV A, 30h

will read the data out of the Directly Addressable Internal RAM address 30 (hexadecimal) and store it in
the Accumulator. Direct addressing is generally fast since, although the value to be loaded is not included
in the instruction, it is quickly accessible since it is stored in the 8051’s Internal Directly Addressable
RAM. It is also much more flexible than Immediate Addressing since the value to be loaded is whatever
is found at the given address; which may be variable.

Also, referring to the 8051 Internal memory map, in Table 1.2.3. it is important to note that when using
direct addressing any instruction which refers to an address between 00h and 7Fh is referring to Internal
Memory. Any instruction which refers to an address between 80h and FFh is referring to the SFR control
registers that control the 8051 micro-controller itself.

Certain versions of the 8051 such as the 8032 have 256 bytes (0 to FF hex) of Internal ram. The obvious
question that may arise is, “If indirect addressing, an address from 80h through FFh refers to SFRs, how
can we access the upper 128 bytes of Internal RAM that are available on the 8032?” The answer is: We
cannot access them using direct addressing. As stated earlier, if we directly refer to an address in the
range of 80h through FFh, we will be referring to an SFR. However, we may access the 8032’s upper 128
bytes of RAM by using the next addressing mode, which is indirect addressing.

2.7.3	 Indirect Addressing – Data in Indirectly Addressable Internal RAM

Indirect addressing is a very powerful addressing mode which in many cases provides an exceptional
level of flexibility. Indirect addressing is also the only way to access the extra 128 bytes of Indirectly
Addressable Internal RAM found on an 8032 or other improved 8051 versions.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

61

Basic Registers

A typical instruction using Indirect addressing is the following:

MOV A, @R0

This instruction causes the 8051 to examine the value of the R0 register. The 8051 will then load the
accumulator with the value from Internal RAM which is found at the address indicated by R0. R0 is
simply acting as a pointer to an Indirectly Addressable Internal memory location.

For example, let us say R0 holds the value 40h and Internal RAM address 40h holds the value 67h. When
the above instruction is executed the 8051 will check the value of R0. Since R0 holds 40h the 8051 will
get the value out of Internal RAM address 40h (which holds 67h) and store it in the Accumulator. Thus,
the Accumulator ends up holding 67h.

Indirect addressing always refers to the Indirectly Addressable Internal RAM only; it never refers to
an SFR. In a prior example we mentioned that SFR 99h can be used to write a value to the serial port.
Thus one may think that the following would be a valid solution to write the value 1 to the serial port:

MOV R0, #99h 		 ;Load the address of the serial port into R0

MOV @R0, #01h 	 ;Send 01 to the serial port – Wrong!!

Download free eBooks at bookboon.com

Click on the ad to read more

Do you have to be a banker to
work in investment banking?

Agile minds value ideas as well as experience

Global Graduate Programs

Ours is a complex, fast-moving, global business. There’s no time for traditional
thinking, and no space for complacency. Instead, we believe that success
comes from many perspectives — and that an inclusive workforce goes hand
in hand with delivering innovative solutions for our clients. It’s why we employ
135 different nationalities. It’s why we’ve taken proactive steps to increase
female representation at the highest levels. And it’s just one of the reasons
why you’ll find the working culture here so refreshing.

Discover something different at db.com/careers

Deutsche Bank
db.com/careers

https://www.db.com/careers/content/en/students_graduates.html?kid=uk.generic.graduates.bookboon.webdisplayad

PaulOS An 8051 Real-Time Operating System
Part I

62

Basic Registers

This is not the correct way. Since indirect addressing always refers to Indirect Internal RAM these two
instructions would write the value 01h to Internal RAM address 99h on an 8032. On an 8051 these two
instructions would produce an undefined result since the 8051 only has 128 bytes of Internal RAM.
Indirect addressing cannot therefore be used to access the SFRs, which can only be accessed using direct
addressing. The correct way would therefore be:

MOV 99h, #01h 	 ;Load location 99h (serial port SBUF register location) with 01

or since the assembler would know that SBUF resides at address 99h

MOV SBUF, #01h	 	 ;Send 01 to the serial port SBUF register

2.7.4	 External Indirect – 16-bit address

External Memory is accessed using a very limited number of commands. In the case of a 16-bit external
data memory address, there are only two commands that can be used for External Indirect addressing
mode:

MOVX A, @DPTR

MOVX @DPTR, A

The X in MOVX signifies that an External address is being used. As we can see, both commands utilize
DPTR. In these instructions, DPTR must first be loaded with the address of external memory (or
memory mapped device such as an 8255 input/output port chip) that we wish to read from or write to.
Once DPTR holds the correct external memory address, the first command will move the contents of
that external memory address into the Accumulator. The second command will do the opposite; it will
allow us to write the value of the Accumulator to the external memory address pointed to by DPTR.

If the address to be accessed is the Program (or Code) area, then the following commands must be used:

MOVC A, @A + PC

or

MOVC A, @A + DPTR

Here the address of the byte fetched is the sum of the original unsigned 8-bit Accumulator contents and
the contents of either the 16-bit Program Counter (PC) or the 16-bit Data Pointer (DPTR). In some
instances therefore, the accumulator has to be zeroed in order to use these commands.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

63

Basic Registers

In other cases, the value in the accumulator comes in handy when using translation or conversion tables.
As a simple example assume that we have a table with the heights of a number of students (as an 8 bit
integer 0–255 cms), and we want to get the height of a particular student.

The accumulator would be loaded with that student number (also in the range from 0 to 255) and DPTR
would be loaded with the address of the start of the table.

Using MOVC A,@A + DPTR we can immediately get the height of that particular student loaded in
the accumulator.

In conjunction with the MOVX and MOVC instructions, the micro-controller internal hardware would
also set up the special control signals RD (Read), ALE (Address Latch Enable) and PSEN (Program Store
Enable) which should be used by the external logic to enable the correct ROM or RAM for program
and/or data access.

2.7.5	 External Indirect – 8-bit

This form of addressing is usually only used in relatively small projects that have a very small (256 bytes
max) amount of external data RAM. An example of this addressing mode is:

MOVX @R0, A

Once again, the value of R0 (containg the external RAM address) is first read and the value of the
Accumulator is written to that address in External RAM. Since the value of @R0 can only be 00h through
FFh the project would effectively be limited to 256 bytes of External RAM. There are relatively simple
hardware/software tricks that can be implemented to access more than 256 bytes of memory using
External Indirect 8-bit addressing; however, it is usually easier to use the DPTR version of addressing if
the project in hand has more than 256 bytes of External RAM.

It should be noted here that if we are using C, the compiler when converting the C source program to
machine code, is intelligent enough to choose the correct addressing mode to address the variables.
When declaring the variable types in our C progam, the location of their storage space would also be
given or implied. Thus the compiler would know in which part of memory they are being stored so that
it would be able to refer to them in the correct addressing mode.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

64

Basic Registers

2.8	 Program Flow

When an 8051 is first initialised, it resets the PC to 0000h. The 8051 then begins to execute the instructions
sequentially in memory unless a program instruction causes the PC to be otherwise altered. There are
various instructions that can modify the value of the PC; specifically, conditional branching instructions,
direct jumps, calls to subroutines, and returns from subroutines. Additionally, interrupts, when enabled,
can cause the program flow to deviate from its otherwise sequential flow.

2.8.1	 Conditional Branching

The 8051 contains a suite of instructions which, as a group, are referred to as conditional branching
instructions. These instructions cause program execution to follow a non-sequential path if a certain
condition is satisfied (true).

Let us take for example, the JB instruction. This instruction means Jump if Bit Set. An example of the
JB instruction might be:

JB 45h, HELLO

MOV A, #10

 …….

 …….

 HELLO: 	

In this case, the 8051 will analyse the contents of bit 45h. If the bit is set (1) then the program execution
will jump immediately to the label HELLO, skipping the MOV A, #10 instruction and those following
it. If the bit is not set (0) the conditional branch fails and the program execution continues, as usual,
with the MOV A, #10 instruction which follows.

Conditional branching is really the fundamental building block of program logic since all decisions are
accomplished by using conditional branching. These 8051 assembly language conditional branching
instructions can be thought of as the equivalent “IF…THEN” structure found in other higher level
programming languages.

An important note worth mentioning about conditional branching is that the program may only branch
to instructions located within 128 bytes prior to or 127 bytes following the address which follows the
conditional branch instruction. This means that in the above example the label HELLO must be within
+127 /-128 bytes of the memory address which contains the conditional branching instruction.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

65

Basic Registers

If it so happens that in our program we cannot avoid having the label HELLO occurring very far from
the conditional branch address, then we can use what is referred to as a Stepping Stone. This is easily
understood by following this example, where the target jump for the conditional JB instruction is actually
HELLO. We instead make use of the stepping stone label HELLO2:

	 JB 45h, HELLO2	 ; use the stepping stone, to a near location

	 SJMP CONTINUE	 ; skip over the stepping stone

HELLO2:

	 LJMP HELLO		 ; now jump to the far location HELLO

CONTINUE:

	 MOV A, #10

	 …….

	 …….

HELLO: 		 ; this label is very far away from the JB 45h, HELLO2 location

Download free eBooks at bookboon.com

Click on the ad to read more

Real drive.
Unreal destination.

As an intern, you’re eager to put what you’ve learned
to the test. At Ernst & Young, you’ll have the perfect
testing ground. There are plenty of real work challenges.
Along with real-time feedback from mentors and leaders.
You’ll also get to test what you learn. Even better, you’ll
get experience to learn where your career may lead.
Visit ey.com/internships.

See More | Opportunities

©
 2

01
2

Er
ns

t
&

 Y
ou

ng
 L

LP
. A

ll
R

ig
ht

s
R

es
er

ve
d.

http://ey.com/internships

PaulOS An 8051 Real-Time Operating System
Part I

66

Basic Registers

2.8.2	 Direct Jumps

While conditional branching is extremely important, it is often necessary to make a direct branch to a
given memory location without basing it on a given logical decision. This is equivalent to the rarely used
GOTO command in C. In this case we want the program flow to continue at a given memory address
without considering any conditions.

This is accomplished in the 8051 using the Direct Jump and Call instructions. As illustrated in the last
paragraph, this suite of instructions causes program flow to change unconditionally.

Consider the example:

LJMP NEW_ADDRESS

.

.

.

NEW_ADDRESS:

The LJMP (Long Jump) instruction when executed, the PC is loaded with the address of NEW_ADDRESS
location and program execution continues sequentially from there.

The obvious difference between the Direct Jump / Call instructions and the conditional branching is
that with Direct Jumps and Calls program flow always changes. With conditional branching program
flow only changes if a certain condition is true.

It is worth mentioning that, aside from LJMP, there are two other instructions which cause a direct
jump to occur; the SJMP (Short Jump) and AJMP (Absolute Jump) commands. Functionally, these two
commands perform exactly the same function as the LJMP command – that is to say, they always cause
program flow to continue at the address indicated by the command. However, SJMP and AJMP differ
in the following ways:

The SJMP command, like the conditional branching instructions, can only jump to an address within
+127/-128 bytes of the SJMP command (hence the Short in the name).

The AJMP command can only jump to an absolute address that is in the same 2KB block of memory
where the AJMP command is residing. That is to say, if the AJMP command is at code memory location
650h, it can only do a jump to addresses 0000h through 07FFh (0 through 2047, decimal).

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

67

Basic Registers

We may ask, “Why would we want to use the SJMP or AJMP command which have restrictions as to how
far they can jump, if we can just use the LJMP command which can jump to any location in memory?”
The answer is simply a matter of code usage.

The LJMP command requires three bytes of code memory whereas both the SJMP and AJMP commands
require only two. Thus, if we are developing an application that has memory restrictions we can often
save quite a bit of memory using the 2-byte AJMP/SJMP instructions instead of the 3-byte instruction.
Speed is not affected since all the three instruction types require 2 machine cycles to execute.

Suppose we are writing a program that requires 2100 bytes of memory but we have a memory restriction
of 2KB (2048 bytes). If we do a simple search/replace operation to change if possible the LJMPs to
SJMPs or AJMPs, the program might shrink down to an allowable size. Thus, without changing any logic
whatsoever in our program, we might save enough bytes to meet our 2048 byte code memory restriction.

Some quality assemblers will actually do the above conversion for us automatically. That is, they will
automatically change our LJMPs to SJMPs whenever possible. This is a very powerful capability that
we may want to look for in an assembler if we plan to develop many projects that have code memory
restrictions.

If we are using C, most compilers, when converting the C source program to machine code, are intelligent
enough to choose the correct JMP type in order to save code space.

2.8.3	 Direct Calls

Another operation that will be familiar to seasoned programmers is the LCALL or ACALL instruction.
This is similar to a function call in C.

When the 8051 executes an LCALL instruction, the PC is incremented twice to obtain the address of the
following instruction. It then pushes the updated Program Counter onto the stack and then continues
executing code at the 16-bit address indicated by the LCALL instruction.

When the 8051 executes an ACALL instruction, the PC is incremented twice to obtain the address of the
following instruction. It then pushes the updated Program Counter onto the stack and then continues
executing code at the 16-bit address formed by successively concatinating the 5 high-order bits of the
updated PC with the 11-bit address supplied with the ACALL instruction. The subroutine called must
therefore start within the same 2KB block, since its address must have the same higher 5-bits as the
updated PC.

2.8.4	 Returns from Routines

Another structure that can cause program flow to change is the “Return from Subroutine” instruction,
known as RET in 8051 Assembly Language.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

68

Basic Registers

The RET instruction, when executed, returns to the address following the instruction that called the
given subroutine. More accurately, it returns to the address that is stored on the stack.

The RET command is unconditional in the sense that it always changes program flow without basing it
on any condition. It is also variable in the sense that program flow can be different each time the RET
instruction is executed, since this depends on the address of the CALL instruction (and the address
popped on stack when the CALL was made).

2.8.5	 Interrupts and RETI

An interrupt is a special feature which allows the 8051 to provide the illusion of multi-tasking, although
in reality the 8051 is only doing one thing at a time. The word interrupt can often be substituted with
the word event.

An interrupt is triggered whenever a corresponding event occurs. When the event occurs, the 8051
temporarily puts on hold the normal execution of the program (saving on stack the return address and
updating the stack pointer register) and executes a special section of code referred to as an interrupt
handler or an interrupt service routine (ISR) by changing the program counter contents. The interrupt
handler performs whatever special functions are required to handle the event and then returns control
to the 8051 (using the RETI instruction) at which point program execution continues as if it had never
been interrupted (naturally some time would have been lost while executing the interrupt routine).

The topic of interrupts is somewhat tricky but very important. For that reason, an entire section (2.13) will
be dedicated to the topic, but for now suffice it to say that Interrupts can cause program flow to change.

2.9	 Low-Level Information

In order to understand and make better use of the 8051, it is necessary to understand some underlying
information concerning timing.

The 8051 operations are based on an external crystal clock. This is an electrical device which, when
supplied with energy, emits pulses at a fixed frequency. One can find crystals of virtually any frequency
depending on the application requirements. When using an 8051, the most common crystal frequencies
are 12 MHz or 11.059 MHz – with the latter being much more common. Why would anyone pick such
an odd frequency? There is a good reason for it – it has to do with generating baud rates for the serial
port and we will talk more about it in the Serial Communications section 2.12. For the remainder of this
discussion, unless stated otherwise, we will assume that we are using an 11.0592 MHz crystal.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

69

Basic Registers

Micro-controllers (and many other electrical systems) use crystals oscillators in order to synchronise
operations and the 8051 is no exception. Effectively, the 8051 operates using what are called “machine
cycles”. A single machine cycle is the minimum amount of time (or clock cycles) in which a single 8051
instruction can be executed, although many instructions take multiple cycles.

A machine cycle in the basic 8051 is in reality 12 pulses of the crystal clock. That is to say, if an instruction
takes one machine cycle to execute, it will take 12 pulses of the crystal to execute. Since we know the
crystal is pulsing 11,059,200 times per second and that one machine cycle is 12 pulses, we can calculate
how many instruction cycles the 8051 can execute in one second:

11,059,200 / 12 = 921,600

This means that the 8051 can execute 921,600 single-cycle instructions per second. Since a large number
of 8051 instructions are single-cycle instructions it is often stated that the 8051 can execute roughly 1
million instructions per second, although in reality it is less – and depending on the instructions being
used, an average estimate of about 600,000 instructions per second is more realistic.

Download free eBooks at bookboon.com

Click on the ad to read more

STUDY. PLAY.
The stuff you'll need to make a good living The stuff that makes life worth living

NORWAY.
YOUR IDEAL STUDY DESTINATION.

WWW.STUDYINNORWAY.NO
FACEBOOK.COM/STUDYINNORWAY

http://s.bookboon.com/studyinnorway

PaulOS An 8051 Real-Time Operating System
Part I

70

Basic Registers

For example, if we are using exclusively 2-cycle instructions we would find that the 8051 would execute
460,800 instructions per second. The 8051 also has two really slow instructions (MUL AB and DIV AB)
that require a full 4 cycles to execute – if we were to execute nothing but those instructions we would
find the performance reduced to about 230,400 instructions per second.

Many 8051 derivative chips change the instruction timing. For example, many optimised versions of the
8051 execute instructions in 1 oscillator cycle instead of 12; such a chip would be effectively 12 times
faster than the 8051 when used with the same 11.0592 MHz crystal. Moreover, these modern 8051
derivative micro-controllers use crystals of 22.1184 MHz or even higher, making them, overall at least
24 times faster than the standard 8051.

Since all the instructions require different amounts of time to execute a very obvious question comes
to mind: How can we keep track of time in a time-critical application if we have no reference to time
in the outside world?

Luckily, the 8051 includes timers which allow us to time events with high precision. This will be the
topic of the next section.

2.10	 Timers

The basic 8051 comes equipped with two timers, both of which may be controlled, set, read, and configured
individually. The 8051 timers have three general functions:

•	 Keeping time and/or calculating the time elapsed between events.
•	 Counting the events themselves.
•	 Generating baud rates for the serial port.

The three timer uses are distinct so we will talk about each of them separately. The first two uses will be
discussed in this chapter while the use of timers for baud rate generation will be discussed in section 2.11.2.

2.10.1	 How does a timer count?

The answer to this question is very simple: A timer always counts up. It does not matter whether the timer
is being used as a timer, as a counter, or as a baud rate generator: a timer is always incremented by the
micro-controller. Moreover, when the timer register reaches the upper limit, a timer flag is set (TF0 or
TF1) which can be checked by the program or it can even be made to generate an interrupt. The timer
then resumes counting from zero unless instructed otherwise by having it setup in the auto-reload mode.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

71

Basic Registers

2.10.2	 Using Timers to measure time

Obviously, one of the primary uses of timers is to measure time. We will discuss this use of timers first in
the following sections and then in section 2.10.15 we will subsequently discuss the use of timers to count
events. When a timer is used to measure time it is also called an “interval timer” since it is measuring
the time of the interval between two events.

2.10.3	 How long does a timer take to count?

First, it is worth mentioning that when a timer is in interval timer mode (as opposed to event counter
mode) and correctly configured, it will increment by 1 at every machine cycle. As you will recall from
section 2.9, a single machine cycle consists of 12 crystal pulses. Thus a running timer will be incremented
at the rate of

11,059,200 / 12 = 921,600 times per second

or

1/921600 seconds per count (1.0851 micro-seconds)

Unlike instructions which require 1, 2 or 4 machine cycles, the timers are consistent; they will always
be incremented once per machine cycle. Even new variants of the 8051 which run very fast and use
only one clock cycle per machine cycle, they all have the option to run the timers slower (dividing the
clock frequency by twelve or more) so that the timings remain the same thus maintaining compatibility
between different versions of the micro-controller. Thus if a timer has counted from 0 to 65535 (the
maximum count of 65536 times) we may calculate the elapsed time to be:

65,536 / 921,600 = 0.0711 seconds or approximately 71 milliseconds

This would represent the maximum time we can use on a 16-bit timer. Normally we would need to
execute a certain section of code say once every second, or we would need to have a delay of say 50
milliseconds. Since the timer registers can only hold integer values ranging from 0 to 65535 we should
find suitable integer values which can give us some suitable delay, which we can then use to get our
actual required delay (of 1 second) in our program.

So we come to another important calculation. Let us say we want to know how many times will the timer
be incremented in 0.05 seconds (50 milliseconds). We can do simple multiplication:

0.05 * 921,600 = 46,080

which also happens to be an exact integer and thus we can use it in our timer to get accurate timings.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

72

Basic Registers

This tells us that it will take 0.05 seconds to count from 0 to 46,080. Now this is a little more useful. If
we know that it takes 1/20th of a second to count from 0 to 46,080 and we want to execute some event
every second we simply wait for the timer to count from 0 to 46,080 twenty times (also an exact integer);
then we execute our event. We would need to reset the timer every time it reaches 46080, unless we are
using the auto-reload mode as will be explained later. We would need to wait for the timer to count up
another 20 times. In this manner we will effectively be executing our event once every second, accurate
to within thousandths of a second.

If we are using the timer as a 16-bit (0 to 65535) timer and since as we have already stated, the timer
actually counts up and moreover noting that it will set the overflow flag or even generate an interrupt
when it overflows, then we would actually load the timer registers with 19456, (which is 65536–46080)
so that it would take another 46080 counts in order to overflow. Thus we can have an interrupt generated
every 1/20 of a second and then counting 20 interrupts before executing the required code. Otherwise,
we can start the timer, wait for the overflow flag to be set by the timer, resetting the overflow flag and
reloading the timer registers with 19456 and repeating the process 20 times and then proceed once the
1 second has passed.

Thus, we now have a system with which to measure time. All we need to review is how to control the
timers and initialise them to provide us with the interrupt delay that we need. Figure 2-1 shows the
pins, bits and SFRs which control Timer 1, and similarly for Timer 0. These will be used to configure
the timers as explained further down.

Download free eBooks at bookboon.com

Click on the ad to read more

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

PaulOS An 8051 Real-Time Operating System
Part I

73

Basic Registers

Figure 2-1 Timer/Counter 1 Mode 0 and Mode 1 operation

2.10.4	 Timer SFRs

As mentioned before, the 8051 has two timers each of which functions essentially in the same way.
One timer is TIMER0 and the other is TIMER1. The two timers share two SFRs (TMOD and TCON)
which control the timer mode of operation, and each timer also has two SFRs dedicated solely to itself
(TH0/TL0 and TH1/TL1).

The SFRs have been assigned names (which all assemblers and compilers know) in order to make it easier
to refer to, but in reality an SFR has a numeric address. It is often useful to know the numeric address
that corresponds to an SFR name. The SFRs relating to timers are shown in Table 2-3.

SFR Name Description SFR Hex Address

TH0 Timer 0 High Byte 8C

TL0 Timer 0 Low Byte 8A

TH1 Timer 1 High Byte 8D

TL1 Timer 1 Low Byte 8B

TCON Timer Control Register 88

TMOD Timer Mode Register 89

Table 2-3 Timer-related SFRs

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

74

Basic Registers

When we enter the name of an SFR into an assembler, it internally converts it to its correct address. For
example, the command:

MOV TH0, #25h

moves the value 25h into the TH0 SFR. However, since TH0 is the same as SFR address 8Ch this
command is equivalent to:

MOV 8Ch, #25h

Now, back to the timers. First, let us talk about Timer 0 which has two SFRs dedicated exclusively to
TH0 and TL0. Without making things too complicated to start off with, we may just think of these as
the high and low bytes of the timer counter. That is to say, when Timer 0 has a value of 0, both TH0
and TL0 will contain 0. When Timer 0 has the value 1000 decimal, TH0 will hold the high byte of the
value (3 decimal) and TL0 will contain the low byte of the value (232 decimal). Reviewing low/high byte
notation, recall that we must multiply the high byte by 256 and add the low byte to get the final 16-bit
decimal value. That is to say:

(TH0 * 256) + TL0 = 1000

(3 * 256) + 232 = 1000

Or else, knowing the final decimal value (1000), we can calculate what values we need to load into TH0
and TL0 using the following simple C instructions:

TH0 = 1000/256; 	 // (integer division, just taking the integer part of the answer)

TL0 = 1000%256; 	 // (modular division, just taking the remainder after dividing)

Certain assembler/compilers can work out these simple equations for us or else we can write our own
macros. We might also use the following alternative instructions, obviously giving the same result:

TH0 = 1000>>8; 	 //(shift the number 8 bits to the right, to get the high byte)

TL0 = 1000 & 255; 	 //(bitwise AND, in order to get the lower 8 bits)

Timer 1 works in exactly the same way, but its SFRs are designated as TH1 and TL1.

Since there are only two bytes devoted to the value of each timer it is obvious that the maximum value
a timer may have is 65,535. If a timer contains the value 65,535 and is subsequently incremented, it will
reset or overflow back to 0. It is this overflow action which triggers the interrupt if enabled.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

75

Basic Registers

2.10.5	 The TMOD SFR

Let us first talk about our first control SFR: TMOD (Timer Mode). The TMOD SFR is used to control the
mode of operation of both timers. Each bit of this SFR gives the micro-controller specific information
concerning how to run a timer. The higher four bits (bits 4 through 7) relate to Timer 1 whereas the
lower four bits (bits 0 through 3) perform the exact same functions, but for Timer 0. TMOD is not bit-
addressable.

The functions of the individual bits of TMOD are shown in Table 2-4.

Download free eBooks at bookboon.com

Click on the ad to read more

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

PaulOS An 8051 Real-Time Operating System
Part I

76

Basic Registers

Not Bit-addressable

Bit Name Timer Explanation of the Timer Functions

7 GATE 1

When this bit is set (1), Timer 1 will only run when
INT1 (P3.3, EXT1) pin is high, provided that TR1 is set
to 1. When this bit is cleared (0), timer 1 will run as
dictated by the state of TR1, regardless of the state
of INT1 pin. In each case, TR1 (in TCON) must be set
to 1 for the timer to run.

6 C/T 1
When this bit is set (1), Timer 1 will count events
(pulses) on T1 (P3.5) pin. When this bit is cleared (0),
the timer will increment every machine cycle (XTAL/12)

5 M1 1 Timer 1 mode bit (see Table 25)

4 M0 1 Timer 1 mode bit (see Table 25)

3 GATE 0

When this bit is set (1), Timer 0 will only run when
INT0 (P3.2, EXT0) pin is high, provided that TR0 is set
to 1. When this bit is cleared (0), timer 0 will run as
dictated by the state of TR0, regardless of the state
of INT0 pin. In each case, TR0 (in TCON) must be set
to 1 for the timer to run.

2 C/T 0
When this bit is set (1), Timer 0 will count events
(pulses) on T0 (P3.4) pin. When this bit is cleared (0),
the timer will increment every machine cycle (XTAL/12)

1 M1 0 Timer 0 mode bit (see Table 25)

0 M0 0 Timer 0 mode bit (see Table 25)

Table 2-4 TMOD (89H) SFR

As we can see in the Table 2-5 below, four bits (two for each timer, TM0 and TM1) are used to specify
a mode of operation for the particular timer.

M1 M0 Timer Mode Description

0 0 0 13-bit timer

0 1 1 16-bit timer

1 0 2 8-bit auto-reload

1 1 3 Split timer mode

Table 2-5 Timer Mode Control bits

2.10.6	 13-bit Timer Mode (mode 0)

Timer mode 0 is a 13-bit timer mode. This is a relic that was kept in the 8051 to maintain compatibility
with its predecessor, the 8048. Generally the 13-bit timer mode is not used in new development projects.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

77

Basic Registers

When the timer is in 13-bit mode, TLx (meaning TL0 or TL1) will count from 0 to 31. When TLx is
incremented from 31, it will “reset” to 0 and increment THx. Thus, effectively, only 13 bits of the two
timer bytes are being used: bits 0-4 of TLx and bits 0-7 of THx. This also means, in essence, the timer
can only contain 8192 values. If you set a 13-bit timer to 0, it will overflow back to zero 8192 machine
cycles later.

Again, there is hardly any reason to use this mode and it is only mentioned so we would not be surprised if
we ever end up analysing archaic code which has been passed down through generations of programmers.

Figure 2-2 Timer 1 Mode 1

2.10.7	 16-bit Timer Mode (mode 1)

Timer mode 1 is a 16-bit timer as shown in Figure 2-2 for the case of Timer 1. This is a very commonly
used mode and it functions just like 13-bit mode except that all 16 bits are used.

TLx (TL0 or TL1) is incremented from 0 to 255. When TLx is incremented from 255, it resets to 0 and
causes THx to be incremented by 1. Since this is a full 16-bit timer, the timer may contain up to 65536
distinct values. If you set a 16-bit timer to 0, it will overflow back to 0 after 65,536 machine cycles,
resulting in the longest delay possible.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

78

Basic Registers

2.10.8	 8-bit Timer Mode (mode 2)

Timer mode 2 is an 8-bit auto-reload mode, as shown in Figure 2-3 for Timer 1. When a timer is in
mode 2, THx holds the reload value and TLx is the 8-bit timer register itself. Thus, TLx starts counting
up and when TLx reaches 255 and is subsequently incremented, instead of resetting to 0 (as in the case
of modes 0 and 1), it will be reset to the reload value stored in THx.

Figure 2-3 Timer 1 Mode 2

For example, let us say TH0 holds the value FDh and TL0 holds the value FDh. After 1 machine cycle,
TL0 would be incremented to FEH and if we were to watch the values of TH0 and TL0 for a few machine
cycles this is what we would see:

Machine Cycle TH0 Hex Value TL0 Hex Value

1 FD FE

2 FD FF

3 FD FD

4 FD FE

5 FD FF

6 FD FD

7 FD FE

Table 2-6 Timer counters registers

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

79

Basic Registers

As we can see, the value of TH0 never changed. In fact, when we use mode 2 we almost always set THx
to a known value and TLx is the SFR that is constantly incremented. Whenever TLx overflows, the
overflow flag TFx will be set, and an interrupt will be generated if so desired.

What is the benefit of auto-reload mode? Perhaps we want the timer to always have a value from 200 to
255 (i.e. we always need the timer to overflow after 56 counts) . If we use mode 0 or 1, we would have
to check in code to see if the timer had overflowed and, if so, reset the timer to 200. This wastes time in
checking the value and/or to reload it. When we use mode 2 the micro-controller takes care of this for
us. Once we have configured a timer in mode 2 we do not have to worry about checking to see if the
timer has overflowed nor do we have to worry about resetting the value; the micro-controller hardware
will do it all for us.

The auto-reload mode is very commonly used for establishing a baud rate which we will talk more about
in the Serial Communications chapter. It is also frequently used whenever we need to have interrupt
signals at regular intervals, thus avoiding the need to reset the timer counter registers in the Interrupt
Service Routine. We will expand on this later on, in the Interrupts section.

It should be remembered that for Timers 0 and 1, auto-reload is only available in 8-bit mode. Enhanced
versions of the 8051, such as the 8031 have other timers which have 16-bit auto-reload capabilities.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/EOT

PaulOS An 8051 Real-Time Operating System
Part I

80

Basic Registers

2.10.9	 Split Timer Mode (mode 3)

Timer mode 3 is a split-timer mode and can be used only with Timer 0. When Timer 0 is placed in
mode 3, it essentially becomes two separate 8-bit timers. That is to say, Timer 0 runs using TL0 and a
new Timer 00 running using TH0. Both timers count from 0 to 255 and overflow back to 0. The bits TR1
and TF1 that are related to the real Timer 1 will now be tied to Timer 00 and thus TH0 now controls
the original Timer 1 interrupt.

While Timer 0 is in split mode, the real Timer 1 (i.e. TH1 and TL1) can be put into mode 0, 1 or 2 in
the normal way but without any interrupt (since TF1 is being used by Timer 0 in mode 3), and may be
started or stopped by switching it out of and into its own mode 3. An example of the timers operating
in this mode is given in Appendix F.

The only real necessity of using split timer mode is if we need to have two separate timers and, additionally,
a baud rate generator and we are using the original 8051 with only two timers available. In such a case
we can use the real Timer 1 as a baud rate generator (usually in mode 2) and use TH0 and TL0 as two
separate 8-bit timers, by setting Timer 0 in mode 3. Most modern upgrades of the 8051 family have 4
timers or more, making this mode not so really useful.

2.10.10 	 The TCON SFR

Finally, there is one more SFR that controls the two timers and provides valuable information about
them. As we may notice, we have only defined the higher 4 (nibble) of the 8 bits. That is because the
other lower 4 bits of the SFR do not have anything to do with timers – they have to do with external
interrupts and they will be discussed in section 2.10.16.

The TCON SFR has the following structure, as shown in Table 2-7. A new piece of information in this
table is the column bit address. This is because this SFR is bit-addressable (note that the address of the
SFR is divisible by 8, hence it is bit-addressable as mentioned earlier on).

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

81

Basic Registers

Bit-addressable

Bit Name Alternate
Name
(ASM)

Alternate
Name
(Keil C)

Bit Hex
Address

Explanation Of Function Timer
Number

7 TF1 TCON.7 TCON^7 8F Timer 1 overflow flag.
This bit is set by
the micro-controller
when timer register
overflows.

1

6 TR1 TCON.6 TCON^6 8E Timer 1 start/stop.
Timer runs if this bit
is set to 1.

1

5 TF0 TCON.5 TCON^5 8D Timer 0 overflow flag.
This bit is set by
the micro-controller
when timer register
overflows.

0

4 TR0 TCON.4 TCON^4 8C Timer 0 start/stop.
Timer runs if this bit
is set to 1.

0

The lower 4 bits have nothing to do with the timers as such and are not
being listed here.
They are used to detect and initiate external interrupts and they are
discussed in a later section, under external interrupts (section 2.10.16).

Table 2-7 TCON (88H) SFR

This bit-addressing capability means that if we want to set the bit TF1, which is the highest bit of TCON,
instead of executing:

MOV TCON, #80h	 ;(sets bit 7, and clears the other bits)

or

ORL TCON, #80h	 ;(sets bit 7 only, without modifying the other bits)

we could just execute the command:

SETB TF1		 ;(sets bit 7 only)

which is much more easy and user friendly.

This has the benefit of setting the high bit of TCON without changing the value of any of the other bits
of the SFR and also it is more easily understood by anybody seeing the code. Usually when we start or
stop a timer we do not want to modify the other values in TCON, so we take advantage of the fact that
this SFR is bit-addressable.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

82

Basic Registers

2.10.11	 Initialising a Timer

Now that we have discussed the timer-related SFRs we are ready to write a piece of code that will initialise
the timer and start it running.

As we will recall, we must first decide what mode we want the timer to be in. In this case let us suppose
that we want a 16-bit timer that runs continuously; that is to say it is not dependent on any external
pin condition.

We must first initialise the TMOD SFR. Assume we are working with timer 0. We will therefore be using
the lowest 4 bits of TMOD. The first two bits, GATE0 and C/T are both 0 since we want the timer to be
independent of the external pins. 16-bit mode is timer mode 1 so we must clear T0M1 and set T0M0.
Effectively, the only bit we want to turn on is bit 0 of TMOD. Thus to initialise the timer we execute
the instruction:

MOV TMOD,#01h	 ; sets bit 0 and clears the other bits, hence affecting Timer 1 too.

or

ANL TMOD, #0F0h 	 ; clears the lower T0 mode control bits, leaving T1 bits unchanged

			 ; momentarily placing Timer 0 in mode 0.

ORL TMOD, #01h 	 ; sets bit 0 only (mode 1), leaving the other bits unchanged.

Download free eBooks at bookboon.com

Click on the ad to read more

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

PaulOS An 8051 Real-Time Operating System
Part I

83

Basic Registers

Timer 0 is now in 16-bit timer mode. However, the timer is not running. To start the timer running we
must set the TR0 bit and we can do that by executing the instruction:

SETB TR0;

Upon executing these instructions Timer 0 will immediately begin counting, being incremented once
every machine cycle (every 12 clock pulses).

2.10.12 	 Reading the Timer registers

There are two common ways of reading the value of a 16-bit timer; which one we use depends on the
application. We may either read the actual value of the timer as a 16-bit number, or we may simply
detect when the timer has overflowed.

2.10.13 	 Reading the value of a Timer register

If our timer is in an 8-bit mode, that is either 8-bit auto-reload mode or in split timer mode, then
reading the value of the timer is simple. We simply read the 1-byte value of the timer register (TLx or
THx depending on the mode we are in) and we are done.

However, if we are dealing with a 13-bit or 16-bit timer this gets a little more complicated. Let us suppose
that the timer registers are presently loaded with the values 14 and 255 (high byte 14, low byte 255).
Consider what would happen if we read the low byte first then go on to read the high byte of the timer.
It could well happen that we read the low byte of the timer as 255, then read the high byte of the timer
as 15. Why? We correctly read the low byte as 255, but when we executed the next instruction a small
amount of time would have passed, small but long enough for the timer to increment again at which
time the values of the register pairs THx,TLx would have rolled over from 14, 255 to 15, 0. But in the
process we would have wrongly read the timer registers as being 15,255 and this is a problem which
may well lead to complete failure of our program.

The solution is not too tricky, really. We read the high byte of the timer, then read the low byte, then
read the high byte again. If the high byte which we read the second time is not the same as the high byte
read the first time we repeat the cycle, because we would conclude there was a roll-over. In assembly
code, this would appear as:

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

84

Basic Registers

REPEAT:	 MOV A, TH0			 ; read THO and store it in the Accumulator

 		 MOV R0, TL0			 ; read TL0 and store it register R0

 		 CJNE A, TH0, REPEAT		 ; compare the new TH0 with the previous

						 ; value and jump to REPEAT if not the same

			 ……

			 ……

In this case, we load the accumulator with the high byte of Timer 0. We then load R0 with the low byte
of Timer 0. Finally, we check to see if the high byte that we read out of TH0 the first time, which is now
stored in the Accumulator is the same as the current TH0 high byte, now read by the CJNE A, TH0,
REPEAT instruction. If it is not the same, it means that we have just rolled over and must read again
the timer values – which we do by going back to REPEAT. When the loop exits we will correctly have
the low byte of the timer register (TL0) in R0 and the high byte (TH0) in the Accumulator.

Another much simpler alternative is to simply turn off the timer run bit (i.e. CLR TR0), read the timer
values and then turn on the timer run bit (i.e. SETB TR0). In this case, the timer is not running whilst
we are taking the readings, so no special precautions are necessary. Of course, this implies that our
timer will be stopped for a few machine cycles. Whether or not this is tolerable to us depends on the
specific application.

2.10.14 	 Detecting Timer Overflow

Often it is necessary to determine when the timer has reset to 0. That is to say, we are not particularly
interested in the value of the timer but rather we are interested in knowing when the timer has overflowed
and starts back to 0.

Whenever a timer overflows from its highest value back to 0, the micro-controller automatically sets
the TFx bit or flag in the TCON register. This is useful since rather than checking the exact value of the
timer we can just check if the TFx bit is set. If TF0 is set it means that timer 0 has overflowed; if TF1 is
set it means that timer 1 has overflowed.

We can use this approach to cause the program to execute a fixed delay. We calculated earlier that it
takes the 8051 1/20th of a second to count from 0 to 46,080. However, the TFx flag is set when the timer
overflows back to 0. Thus, if we want to use the TFx flag to indicate when 1/20th of a second has passed
we must set the timer initially to 65536 less 46080, or 19456. If we therefore set the timer to 19456 then
1/20th of a second later the timer will overflow. Thus we come up with the following code to execute a
pause of 1/20th of a second:

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

85

Basic Registers

; 50 millisecond delay

MOV TH0, #76		 ; High byte of 19456 (19456/256 = 76 exactly)

			 ; You can use MOV TH0, #HIGH(19456)

MOV TL0, #00		 ; Low byte of 19456 (19456%256 = 0 i.e. no remainder after dividing)

			 ; You can use MOV TLO, #LOW(19456)

ANL TMOD, #0F0h 	 ; clears the lower T0 mode bits, leaving T1 bits unchanged

ORL TMOD, #01	 ; Put Timer 0 in 16-bit mode

CLR TF0 		 ; Clear the overflow flag

SETB TR0		 ; Start Timer 0 in order to begin counting

JNB TF0,$; If TF0 is not set, jump back

	 		 ; to this same instruction, that is

			 ; wait here until timer overflows, and 0.05s have passed

CLR TR0 	 ; switch off timer 0

PROCEED: ..

Download free eBooks at bookboon.com

Click on the ad to read more

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

PaulOS An 8051 Real-Time Operating System
Part I

86

Basic Registers

In the above code the first two lines initialise the Timer 0 registers starting value to 19456. The next four
instructions configure Timer 0, clear the overflow flag and turn the timer on. Finally, the last instruction
JNB TF0,$ translates to “Jump, if TF0 is not set, back to this same instruction.” The $ operand means,
in most assemblers, the address of the current instruction. Thus as long as the timer has not overflowed
and the TF0 bit has not been set the program will keep executing this same instruction. After 1/20th of
a second timer 0 will overflow, setting the TF0 bit, and program execution will then break out of this
one-line loop and continues at label PROCEED.

The program can easily be modified as shown below, to get the one second delay mentioned earlier.

; ONE SECOND DELAY

MOV R0, #20	 ; We need to count the 50ms delay twenty times

ANL TMOD, #0F0h	 ; clears the lower T0 mode bits, leaving T1 bits unchanged

ORL TMOD, #01	 ; Put Timer 0 in 16-bit mode

DELAY_50MS:

MOV TH0, #76	 ; High byte of 19456 (19456/256 = 76 exactly)

	 ; You can use MOV TH0, #HIGH(19456)

MOV TL0, #00	 ; Low byte of 19456 (19456%256 = 0 i.e. no remainder after dividing)

	 ; You can use MOV TLO, #LOW(19456)

CLR TF0	 ; Clear the overflow flag

SETB TR0	 ; Start Timer 0 in order to begin counting

JNB TF0,$; If TF0 is not set, jump back

	 ; to this same instruction, that is

	 ; wait here until timer overflows, and 0.05s have passed

CLR TR0 	 ; switch off timer 0

DJNZ R0, DELAY_50MS	 ; repeat 0.05s delay 20 times to get the one second delay

PROCEED: ..

2.10.15 	 Timing the length of events

The 8051 provides another important option that can be used to time the length of events.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

87

Basic Registers

For example, let us say that we are trying to save electricity in the office and we are interested in how
long a light is turned on each day. When the light is turned on, we want to measure the time that it is
on. When the light is turned off we do not want to time it. One option would be to connect the light
switch (voltage level suitably converted to the 0-5V DC range) to one of the pins, constantly read the
pin, and turn the timer on or off using TR0 based on the state of that pin. While this would work fine,
the 8051 provides us with an easier method of accomplishing this.

Looking again at the TMOD SFR, there is a bit called GATE. So far we have always cleared this bit
because we wanted the timer to run regardless of the state of the external pins. However, now it would
be nice if an external pin could control whether the timer was running or not. It can (see Figure 2-4).
All we need to do is connect the light switch (having the voltage level suitably scaled down and rectified,
since obviously we cannot apply 230V AC directly to the 8051 pin) to pin INT0 (P3.2) on the 8051 and
set the bits GATE and TR0 to 1. When both the GATE and TR0 are set, Timer 0 will only run if P3.2 is
high. When P3.2 is low (i.e., the light switch is off) the timer will automatically be stopped.

Figure 2-4 Timer 0 16-bit pulse-duration mode

Thus, with no control code whatsoever, the external pin P3.2 can control whether or not our timer is
running. Naturally, our code would have to be adjusted so that we can then count also the number of
overflows that have occurred so that at the end of the day we can add up the total time. This is explained
in the next example.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

88

Basic Registers

Figure 2-5 Timer 1 16-bit pulse duration mode

2.10.16	 Using Timers to calculate a pulse or signal duration

The circuits shown in Figure 2-4 and in Figure 2-5 can also be used to calculate the duration of a positive
pulse. Let us suppose we are using Timer 0 as a 16-bit timer (since Timer 1 would most probably be
used for the serial port baud-rate generation). The positive pulse would be fed to pin P3.2 and the
Gate and TR0 would be set to one. Thus due to the AND,OR logic gates the timer would effectively be
operational only when there is a positive pulse on pin P3.2, and it would shut itself off as soon as the
signal goes back down to zero. The counter registers TH0 and TL0 would have therefore counted the
duration of the pulse. Assuming that we are using a crystal of 11.0592 MHz, and a timer counting rate
of 1/12 this frequency, it would work out that every count is equivalent to 12/11.0592 microseconds
(1.085 microseconds). To read the values of TH0,TL0 we would need to be monitoring the pulse so
that we would know that it has finished. Thus a 16-bit timer starting from 0, would take 65536*1.085
microseconds or 71.11ms till it overflows.

It should be noted, that if the pulse lasts longer than approximately 71 ms, then the TH0,TL0 registers
would overflow (setting TF0 =1) and the counter would continue counting from zero. Hence for longer
pulses, the TF0 interrupt should be used so as to keep track of the number of overflows. Jumping to the
interrupt service routine would automatically clear the TF0 flag for the next overflow interrupt.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

89

Basic Registers

However, we can even use another facility which is provided by the 8051, so that we can automate this
process even further, without the need to monitor or poll the signal to know when it has finished. Since
the signal is being fed directly to pin P3.2, and since this ‘happens’ to be the external 0 (interrupt 0) pin,
we can activate the EXT0 interrupt capability of the 8051, make it falling-edge triggered (setting IT0=1,
see Table 2-8), and thus the signal itself would generate an EXT0 interrupt when it falls back to zero.
Thus we would have a timer counting whilst the signal is present, TF0 interrupt being used to trigger a
routine so that we can count the number of overflows (if any occur during the duration of the pulse),
and EXT0 interrupt to signal the end of pulse (using an appropriate Interrupt Service Routine (ISR) to
read the registers and calculate the pulse duration).

Bit-addressable

Bit Name Alternate
Name
(ASM)

Alternate
Name
(Keil C)

Bit Hex
Address

Explanation Of Function Timer
Number

7 TF1 TCON.7 TCON^7 8F Timer overflow. This bit
is set by the micro-
controller

1

6 TR1 TCON.6 TCON^6 8E Start(1), Stop (0) timer 1

5 TF0 TCON.5 TCON^5 8D Timer overflow. This bit
is set by the micro-
controller

0

4 TR0 TCON.4 TCON^4 8C Start(1), Stop (0) timer 0

3 IE1 TCON.3 TCON^3 8B Ext Interrupt flag. Set/
cleared by hardware

1

2 IT1 TCON.2 TCON^2 8A Falling edege (1), low
level (0) triggering
selection

1

1 IE0 TCON.1 TCON^1 89 Ext Interrupt flag. Set/
cleared by hardware

0

0 IT0 TCON.0 TCON^0 88 Falling edege (1), low
level (0) triggering
selection

0

The lower 4 bits are used to detect and initiate external interrupts.

Table 2-8 TCON (88H) SFR

Here is an example of the important routines written in assembly language. The KEIL IDE provides all
the necessary explanations for the keywords used, such as SEGMENT, RSEG etc and the reader is urged
to consult the KEIL IDE package for further details.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

90

Basic Registers

; PulseT0.a51

; Test

MyBitData SEGMENT BIT

RSEG MyBitData

PULSE_OK: DBIT 1

MyData SEGMENT DATA

RSEG MyData

TIMER_OVF: DS 1

TIMER_OV: DS 1 	 ; values for use in other section of the program

TIMER_HI: DS 1 	 ; values for use in other section of the program

TIMER_LO: DS 1 	 ; values for use in other section of the program

MyCode SEGMENT CODE

RSEG MyCode

	 LCALL Main

ORG 0003H 	 ; external 0 ivt

	 LJMP EXT0_ISR

ORG 000BH 	 ; timer 0 ivt

	 LJMP TIM0_ISR

ORG 30H

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

91

Basic Registers

Main:

; First clear the 8032 Internal RAM (from 0 to FFH)

	 CLR A

	 MOV R0, #0FFH

CLR_RAM:

	 MOV @R0, A

	 DJNZ R0, CLR_RAM

; next set up the stack pointer

	 MOV SP, #2FH

; Program starts here

; set up timer 0 for pulse width counting

	 ANL TMOD, #0F0H

	 ORL TMOD, #09H ; set 16-bit timer mode, gate = 1

	 MOV TH0, #0

	 MOV TL0, #0 ; reset 16-bit counter

	 CLR TF0 ; clear the timer overflow flag

	 SETB IT0 ; falling-edge triggered ext0 interrupt

	 SETB P3.2 ; set p3.2 for input

	 SETB TR0 ; prepare timer to count whenever P3.2 is high

	 SETB EX0 ; enable external zero interrupts

	 SETB ET0 ; enable timer 0 interrupts

	 SETB EA ; enable global interrupts

; display pulse width values

; the number of overflows, the value of TH0 and the value of TL0

; at the end of the pulse.

; the actual duration of the pulse would be

; (65536*timer_ov + 256*TH0 + TL0) * 1.085 microseconds

;

; assuming that we have a routine called disp_reg which

; displays on screen the 8-bit value of register r0, the

; program stays looping in this loop_again routine

; prints values only if bit pulse_ok is set by the end of pulse isr

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

92

Basic Registers

LOOP_AGAIN:

	 JNB PULSE_OK, LOOP_AGAIN

	 MOV R0,TIMER_OV

	 LCALL DISP_REG

	 MOV R0,TIMER_HI

	 LCALL DISP_REG

	 MOV R0,TIMER_LO

	 LCALL DISP_REG

	 CLR PULSE_OK

	 SJMP LOOP_AGAIN

; this routine executes only every ext0 interrupt,

; that is when the pulse has just ended

; the main program would be halted and would continue only

; after this routine has finished

EXT0_ISR:	

	 MOV TIMER_OV, TIMER_OVF 	 ; store values

	 MOV TIMER_HI, TH0

	 MOV TIMER_LO, TL0

	 MOV TIMER_OVF, #0 			 ; reset counters

	 MOV TH0, #0

	 MOV TL0, #0

	 SETB PULSE_OK ; set flag indicating pulse time ready for printing

	 RETI

; this interrupt service routine executes when timer0 overflows

TIM0_ISR:

	 INC TIMER_OVF ; increment the overflow counter

	 RETI

	 end

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

93

Basic Registers

And here is the same example this time written in C:

/* Test program PULSE */

#include <reg52.h>

#include <absacc.h>

#include <stdio.h>

#include “SerP3Pkg.h” // used for setting the UART for serial input/output

// Variables

unsigned int Timer_OVF, Timer_Overflows;

unsigned long Timer_CNT;

unsigned char Timer_HI, Timer_LO;

bit PulseOK;

void init_timer0(void)

{

TMOD &= 0xF0;	 // clear timer 0 bits, leaving timer 1 as it was set

TMOD |= 0x09;	 // timer 0 as a 16-bit timer, GATE = 1

P3 |= 0x04; // set P3.2 for input

TF0 = 0;	 // clear the overflow flag

TR0 = 1;	 // timer 0 ready to count, whenever pin P3.2 is a 1 (pulse present)

IT0 = 1;	 // external 0 interrupt falling-edge triggered (pulse just off)

EX0 = 1;	 // enable external 0 interrupts

ET0 = 1;	 // enable timer 0 interrupts

EA = 1;	 // enable global interrupts

}

// This ISR executes when the pulse has just ended

void ext0_isr (void) interrupt 0 using 1

{

Timer_OVF = Timer_Overflows;		 /* save all timer readings */

Timer_HI = TH0;

Timer_LO = TL0;

Timer_CNT = Timer_OVF*65536 + Timer_HI*256 + TL0;

TH0 = TL0 = Timer_Overflows = 0;		 /* reset all timer readings */

PulseOK = 1; /* indicates that a NEW pulse reading has been taken */

}

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

94

Basic Registers

// This ISR executes when timer 0 overflows (TF0 =1)

// TF0 is cleared (reset to 0) automatically when using interrupts

void tf0_isr (void) interrupt 1 using 2

{

Timer_Overflows++;

}

void main(void)

{

	 init_serial(57600);

	 init_timer0();

	 printf(“\n\n Pulse Duration Timing\n\n\r”);

	 printf(“\n\nToggle P3.2 to simulate pulse.\n\n\r”);

	 printf(“ Timer Overflows TH0 TL0 Total Counts Microseconds\n\r”);

while (1)

	 {

	 if (PulseOK==1) {

		 printf(“ %05u %03bu %03bu %010lu %12.1f\r”,

			 Timer_OVF,

			 Timer_HI,

			 Timer_LO,

			 Timer_CNT,

			 1.0851*Timer_CNT); /* 12/11.0592 = 1.0851 */

		 PulseOK = 0;

	 }

}

}

And finally here is yet again the same example written in C, but this time making use of the UNION
to make calculations even simpler.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

95

Basic Registers

/* Test program PULSE2 */

#include <reg52.h>

#include <absacc.h>

#include <stdio.h>

#include “SerP3Pkg.h”

/* types */

typedef union UTYPELONG {

	 unsigned long Long;

	 unsigned int Int[2];

	 unsigned char Char[4];

}UTYPELONG;

// Variables

unsigned int Timer_Overflows;

UTYPELONG Timer_CNT;

bit PulseOK;

void init_timer0(void)

{

TMOD &= 0xF0;	 // clear timer 0 bits, leaving timer 1 as it was set

TMOD |= 0x09;	 // timer 0 as a 16-bit timer, GATE = 1

P3 |= 0x04; 		 // set P3.2 for input

TF0 = 0;		 // clear timer overflow flag

TR0 = 1;		 // timer 0 ready to count, whenever pin P3.2 is a 1 (pulse present)

IT0 = 1;		 // external 0 interrupt falling-edge triggered (pulse just off)

EX0 = 1;		 // enable external 0 interrupts

ET0 = 1;		 // enable timer 0 interrupts

EA = 1;		 // enable global interrupts

}

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

96

Basic Registers

void ext0_isr (void) interrupt 0 using 1

{

Timer_CNT.Int[0] = Timer_Overflows;	 /* save all timer readings */

Timer_CNT.Char[2] = TH0;

Timer_CNT.Char[3] = TL0;			 /* NOTE the Big Endian storage style */

TH0 = TL0 = Timer_Overflows = 0; 		 /* reset all timer readings */

PulseOK = 1; 	 /* indicates that a NEW pulse reading has been taken */

}

// This ISR executes when Timer 0 overflows (TF0=1)

// TF0 is cleared (reset to 0) automatically when interrupts are used

void tf0_isr (void) interrupt 1 using 2

{

Timer_Overflows++;

}

void main(void)

{

	 init_serial(57600);		 /* set up UART */

	 init_timer0();			 /* set up timer 0 */

	 printf(“\n\n 		 Pulse Duration Timing\n\n\r”);

	 printf(“\n\nToggle P3.2 to simulate pulse.\n\n\r”);

	 printf(“Timer Overflows TH0 TL0 Total Counts Microseconds\n\r”);

while (1)

	 {
	 if (PulseOK == 1) {
		 printf(“ %05u %03bu %03bu %010lu %12.1f\r”,
			 Timer_CNT.Int[0],
			 Timer_CNT.Char[2],
			 Timer_CNT.Char[3],
			 Timer_CNT.Long,
			 1.0851*Timer_CNT.Long); /* 12/(11.0592) = 1.0851 */
		 PulseOK = 0;
	 }

}
}

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

97

Basic Registers

2.10.17 	 Using Timers as event counters

We have discussed how a timer can be used for the obvious purpose of keeping track of time. However,
the 8051 also allows us to use the timers to count events.

How can this be useful? Let us say we had a sensor placed across a road that would send a pulse every
time a car wheel passed over it. This could be used to determine the volume of traffic on the road. We
could attach this sensor to one of the 8051’s I/O lines and constantly monitor it, detecting when it pulsed
high and then incrementing our counter when it went back to a low state. This is not terribly difficult,
but requires some code. Let us say we hooked the sensor to P1.0; the code to count cars passing would
look something like this:

CAR:

JNB P1.0,$; If a car has not raised the signal, keep waiting

JB P1.0,$; The line is high which means the car is on the sensor right now

			 ; hence wait here until the car passes

INC COUNTER	 ; The wheel has passed completely, so we count it

SJMP CAR 		 ; go back to wait for another car

Download free eBooks at bookboon.com

Click on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

PaulOS An 8051 Real-Time Operating System
Part I

98

Basic Registers

As we can see, it is only four lines of code. But what if we need to be doing other processing at the same
time? We do not want to be stuck in the JNB P1.0,$ loop waiting for a car to pass if we need to be doing
other things. Of course, there are ways to get around this limitation but the code quickly becomes big,
complex, and ugly.

Luckily, since the 8051 provides us with a way to use the timers to count events we do not have to bother
with it. It is actually easy since we only have to configure one additional bit.

Let us say we want to use Timer 0 to count the number of cars that pass. If we look back to the bit table
for the TMOD SFR (see Table 2-4 and Figure 2-4) we will see that there is a bit called “C/T0” – it is bit
2 (TMOD.2). Reviewing the explanation of the bit we see that if the bit is cleared then timer 0 will be
incremented at every machine cycle, using the crystal oscillator. This is what we have already used in
order to measure time. However, if we set C/T0 to 1, then timer 0 will monitor the P3.4 line. Instead of
being incremented every machine cycle, timer 0 will count events (pulses) on the P3.4 line. So in our
case we simply connect our sensor to P3.4 and let the 8051 do the work. Then, when we want to know
how many cars have passed, we just read the value of timer 0 registers TL0 and TH0. This value of timer
0 will be the number of wheels that have passed. If we expect more than 65535 pulses, then we would
also need to take care of how many overflows have taken place, but this too is easy since the overflows
are indicated by TF0 bit being set. This can also be programmed to cause an interrupt and hence the TF0
interrupt routine simply counts the number of overflows automatically. Each overflow would indicate
that 65536 wheels have passed. For this setup, TR0 is set to 1 and the GATE is set to 0. Thus TMOD =
xxxx0101, setting Timer 0 in 16-bit mode.

So what exactly is an event? What does timer 0 actually count? Speaking at the electrical level, the 8051
counts 1-0 (high to low) transitions on the P3.4 line. This means that when a wheel first runs over our
sensor it will raise the input to a high (“1”) condition. At that point the 8051 will not count anything
since this is a 0-1 transition. However, when the car wheel has passed the sensor, the input will fall back
to a low (“0”) state. This is a 1-0 transition and at that instant the counter will be incremented by 1. If
we are really counting cars, the final value would obviously have to be divided by two since each car has
got front and rear wheels, with both pairs triggering the timer count.

It is important to note that the 8051 checks the P3.4 line each instruction cycle (12 clock cycles). This
means that if P3.4 is low, goes high, and goes back low in say 6 clock cycles it will probably not be
detected by the 8051. This also means the 8051 event counter is only capable of counting events that
occur at a maximum of 1/24th the rate of the crystal frequency. That is to say, if the crystal frequency is
12.000 MHz it can detect a maximum of 500,000 events per second (12.000 MHz * 1/24 = 500,000), even
though the timer itself works at twice that frequency. If the event being counted occurs more frequently
than 500,000 times per second it will not be able to be accurately detected and counted by the 8051.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

99

Basic Registers

2.11	 Serial Port Operation

One of the 8051’s many powerful features is its integrated UART, otherwise known as a serial port. The
fact that the 8051 has an integrated serial port means that we may very easily read and write values to
the serial port. If it were not for the integrated serial port, writing a byte to a serial line would be a rather
tedious process requiring turning on and off one of the I/O lines in rapid succession to properly “clock
out” each individual bit, including start bits, stop bits, and parity bits. The clocking out of the bits has
to be done at the pre-defined speed or baud rate.

However, we do not have to do this. Instead, we simply need to configure the serial port’s operating
mode and baud rate. Once configured, all we have to do is write to an SFR (SBUF) to transmit a value
from the serial port (through the TXD pin P3.1) or read the same SFR to get the received value from
the serial port (using the RXD pin P3.0). The 8051 will automatically let us know when it has finished
sending the character we wrote and will also let us know whenever it has received a byte so that we can
process it. We do not have to worry about transmission at the bit level, which saves us quite a bit of
coding and processing time.

2.11.1	 Setting the Serial Port Mode

The first thing we must do when using the 8051’s integrated serial port is, obviously, configure it. This
instructs the 8051 about how many data bits we want, the baud rate we will be using, and how the baud
rate will be determined.

Download free eBooks at bookboon.com

Click on the ad to read more

81,000 km
In the past four years we have drilled

That’s more than twice around the world.

What will you be?

Who are we?
We are the world’s leading oilfield services company. Working
globally—often in remote and challenging locations—we invent,
design, engineer, manufacture, apply, and maintain technology
to help customers find and produce oil and gas safely.

Who are we looking for?
We offer countless opportunities in the following domains:
n Engineering, Research, and Operations
n Geoscience and Petrotechnical
n Commercial and Business

If you are a self-motivated graduate looking for a dynamic career,
apply to join our team.

careers.slb.com

http://s.bookboon.com/Schlumberger1

PaulOS An 8051 Real-Time Operating System
Part I

100

Basic Registers

First, let us present the “Serial Control” (SCON) SFR and define what each bit of the SFR represents:

Bit-addressable

Bit Name Alternate
Name
(ASM)

Alternate
Name

(Keil C)

Bit Hex
Address

Explanation of Function

7 SM0 SCON.7 SCON^7 9F Serial port mode bit 0

6 SM1 SCON.6 SCON^6 9E Serial port mode bit 1

5 SM2 SCON.5 SCON^5 9D Multiprocessor comms enable

4 REN SCON.4 SCON^4 9C Receiver enable. This bit must be
set in order to receive characters.

3 TB8 SCON.3 SCON^3 9B Transmit bit 8. The 9th bit which is
transmitted when operating in mode 2
or mode 3

2 RB8 SCON.2 SCON^2 9A Receive bit 8. The 9th bit which is
received when operating in mode 2 or
mode 3

1 TI SCON.1 SCON^1 99 Transmit flag. Set when a byte has
been completely transmitted. Will
cause a serial interrupt if the
interrupts are enabled. Must be
cleared by software. Can also be
set by software to signal that the
transmitter is ready.

0 RI SCON.0 SCON^0 98 Receive flag. Set when a byte has
been completely received. Will cause
a serial interrupt if the interrupts
are enabled. Must be cleared by
software.

Table 2-9 SCON (99H) SFR

It is necessary to define the function of SM0 and SM1 as in Table 2-10:

SM0 SM1 Serial Mode Explanation Baud Rate Clock

0 0 0 8-bit shift register Oscillator/12

0 1 1 8-bit UART Set by timer 1 (*)

1 0 2 9-bit UART Oscillator/32 (*)

1 1 3 9-bit UART Set by timer 1 (*)

 (*) Note: The baud rate indicated in this table is doubled if PCON.7 (SMOD) is set.

Table 2-10 Serial Mode selection bits

The SCON SFR allows us to configure the Serial Port. Thus, we will go through each bit and review its
function. The higher four bits (bits 4 through 7) are the configuration bits.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

101

Basic Registers

Bits SM0 and SM1 set the serial mode to a value between 0 and 3 inclusive. The four modes are defined
in Table 2-10. As we can see, selecting the Serial Mode selects the mode of operation (8-bit/9-bit, UART
or Shift Register) and also determines how the baud rate will be calculated. In modes 0 and 2 the baud
rate is fixed based on the oscillator’s frequency. In modes 1 and 3 the baud rate is variable, based on how
often Timer 1 overflows. We will talk more about the various Serial Modes in a moment.

The next bit, SM2, is a flag for “Multiprocessor communication.” Generally, whenever a byte has been
received the 8051 will set the “RI” (Receiver Interrupt) flag. This lets the program know that a byte has
been received and that it needs to be processed. However when SM2 is set, the “RI” flag will only be
triggered if the 9th bit received was a “1”. That is to say, if SM2 is set and a byte is received whose 9th
bit is cleared, the RI flag will never be set. This can be useful in certain advanced serial applications,
where we need to communicate with one out of many microcontrollers. (see Master-Slave section 2.12.4
below). For now it is safe to say that we will almost always want to clear this bit so that the RI flag is set
upon reception of any character.

The next bit REN is “Receiver Enable.” This bit is very straightforward; if you want to receive data via
the serial port, set this bit. We will almost always want to set this bit.

The lower four bits (bits 0 through 3) are operational bits. They are used when actually sending and
receiving data, they are not used to configure the serial port.

The TB8 bit is used in modes 2 and 3. In these mode a total of nine data bits are transmitted. The first
8 bits are the 8 bits of the actual data to be transmitted (taken from SBUF), and the ninth bit is taken
from TB8. If TB8 is set (1) and a value is written to the serial port, the data bits will be written to the
serial line followed by a “set (1)” ninth bit. If TB8 is cleared the ninth bit will be “cleared (0)”. (see
Master-Slave section 2.12.4 below).

The RB8 also operates in modes 2 and 3 and functions essentially the same way as TB8, but on the
reception side. When a byte is received in modes 2 or 3, a total of nine bits are received (from the RXD
pin P3.0). In this case, the first eight bits received are the data of the serial byte received (stored in SBUF)
and the value of the ninth bit received will be placed in RB8. (see 2.12.4).

TI means “Transmitter Interrupt.” When a program writes a value to the serial port, a certain amount
of time will pass before the individual bits of the byte are “clocked out” or transmitted out of the serial
port (TXD pin P3.1). If the program were to write another byte to the serial port before the first byte
was completely sent, the data being sent would be garbled. Thus, the 8051 lets the program know that it
has “clocked out” the last bit by setting the TI bit. When the TI bit is set, the program may assume that
the serial port is “free” and ready to send the next byte.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

102

Basic Registers

Finally, RI means “Receiver Interrupt.” It functions similarly to the “TI” bit, but it indicates that a byte
has been received. That is to say, whenever the 8051 has received a complete byte it will trigger the RI
bit to let the program know that it needs to read the value quickly, before another byte is read, which
would overwrite the one just received.

2.11.2	 Setting the Serial Port Baud Rate

Once the Serial Port Mode has been properly configured as explained above, the program must configure
the serial port’s baud rate. This only applies to Serial Port modes 1 and 3. The Baud Rate is determined
based on the oscillator’s frequency when in mode 0 and 2.

In mode 0, the baud rate is always the oscillator frequency divided by 12. This means if your crystal is
11.0592 MHz, mode 0 baud rate will always be 921,583 baud.

In mode 2 the baud rate is the oscillator frequency divided by 32 (if SMOD [PCON.7] = 1) or 64, (if
SMOD [PCON.7] = 0), so an 11.0592 MHz crystal frequency will yield a baud rate of 345,600 or 172,800.

In modes 1 and 3, the baud rate is determined by how frequently timer 1 overflows. It is this timer 1
overflow frequency which is divided either by 16 or by 32 (again depending on SMOD) to give the
required baud rate. The more frequently timer 1 overflows, the higher the baud rate. There are many
ways one can cause timer 1 to overflow at a rate that determines a baud rate, but the most common
method is to put timer 1 in the 8-bit auto-reload mode (timer 1 mode 2 as already seen in Figure 2-3)
and set a reload value (TH1) that causes Timer 1 to overflow at a frequency appropriate to generate one
of the standard baud rates. That is, the timer must overflow at 32 (SMOD=0) or 16 (SMOD=1) times
the required baud rate, or in other words, the time it takes the timer to overflow must be equal to 1/32nd
(or 1/16th) the time of one serial bit.

To determine the value that must be placed in TH1 to generate a given baud rate, we may use the
following equation (assuming PCON.7 is cleared, that is we are dividing by 32).

Oscillator freq. = (Crystal freq. / 12)

Time for one timer count 	 = 1/(Osc. Freq.)

	 = (12/Crystal freq.) seconds

Since PCON.7 is assumed to be zero, the pulses coming from the timer overflow are divided by 32 to give
the correct baud rate. We must therefore ensure that we have (32*Baud Rate) overflows every second.

Time to overflow = 1/(32 * Baud Rate) seconds

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

103

Basic Registers

Thus, we need to determine how many counts are needed to get this overflow time. By simple proportion
we can work it out very easily. If we have one count in (12/Crystal freq.) seconds, how many counts do
we have in 1/(32 * Baud Rate) seconds. The answer is obviously

 counts

Since the timers always count up, we must start off the timer with register TH1 set at this value below
the top, or:

TH1 = 256 – ((Crystal freq.) / (32 * 12 * Baud Rate))

i.e.

TH1 = 256 – ((Crystal freq.) / (384 * Baud Rate)) ………. Equation 2-1

If PCON.7 is set, then the divisor is set to 16 and not to 32 and the baud rate is effectively doubled, thus
the equation becomes:

TH1 = 256 – ((Crystal freq.) / (192 * Baud Rate)) …….. Equation 2-2

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/accentureUS

PaulOS An 8051 Real-Time Operating System
Part I

104

Basic Registers

For example, suppose we have an 11.0592 MHz crystal and we want to configure the serial port to 19,200
baud. Using Equation 2.1:

TH1 = 256 – ((11059200 / 384) / 19200)

TH1 = 256 – (28800 / 19200)

TH1 = 256 – 1.5 = 254.5

This is not an integer and therefore not possible to set correctly.

If we set TH1 to 254 we will get 14,400 baud and if we set it to 255 we will get 28,800 baud. It looks like
we are stuck but there is a solution.

To achieve 19,200 baud we simply need to set PCON.7 (SMOD) to 1. When we do this, we double the
baud rate and use equation 2-2. Thus we get:

TH1 = 256 – ((11059200 / 192) / 19200)

TH1 = 256 – ((57600) / 19200)

TH1 = 256 – 3 = 253

Here we get an exact integer TH1 value. Therefore, to obtain 19,200 baud with an 11.0592 MHz crystal
we must:

•	 Configure Serial Port mode 1 (8-bit variable baudrate) or 3 (9-bit variable baudrate).
•	 Configure Timer 1 to timer mode 2 (8-bit auto-reload).
•	 Set TH1 and TL1 to 253
•	 Set PCON.7 (SMOD) to double the baud rate.

This is in fact the reason why the oddly numbered frequency of 11.0592 MHz is chosen. This will ensure
that these calculations would always give an integer value for TH1 for the standard baud rates, as shown
in Table 2-11 below. This table compares some values with another crystal frequency of 12 MHz (also
used often since it results in timers incrementing every one microsecond).

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

105

Basic Registers

Target
Baud Rate

Crystal
Frequency

MHz

PCON.7
PCON^7
SMOD

TH1 Reload Value Actual
Baud Rate

Error
(%)

9600 12 1 249 (F9H) (-7) 8923 7

2400 12 0 243 (F3H) (-13) 2404 0.16

1200 12 0 230 (E6H) (-26) 1202 0.16

57600 11.0592 1 255 (FFH) (-1) 57600 0

19200 11.0592 1 253 (FDH) (-3) 19200 0

9600 11.0592 0 253 (FDH) (-3) 9600 0

2400 11.0592 0 244 (F4H) (-12) 2400 0

1200 11.0592 0 232 (E8H) (-24) 1200 0

Table 2-11 Baud Rate calculation

With the standard 11.0592 MHz crystal, the equations for calculating TH1, can be simplified to:

		 TH1 = 256 – (28800 / Baud Rate) if SMOD = 0 		 ………… Equation 23

		 TH1 = 256 – (57600 / Baud Rate) if SMOD = 1 		 …….…… Equation 24

or

		 Baud Rate = 28800 / (256 – TH1) if SMOD = 0		 ………… Equation 25

		 Baud Rate = 57600 / (256 – TH1) if SMOD = 1	 	 ………… Equation 26

Once the Serial Port has been properly configured as explained above, it is ready to be used to send and
receive data.

To write a byte to the serial port we must simply write the value to the SBUF (99h) SFR. For example,
if we want to send the letter “A” (the 8-bit ASCII code of the letter A is 65 decimal) to the serial port, it
could be accomplished simply by loading the serial buffer register SBUF:

MOV SBUF, #”A” or MOV SBUF, #65

Upon execution of the above instruction the 8051 will begin transmitting the character via the serial port,
starting with the low Start bit, bit 0 to bit 7 of the actual data, followed by a high Stop bit). Obviously
transmission is not instantaneous – it takes a measurable amount of time to transmit. Since the 8051
does not have a serial output buffer we need to be sure that a character is completely transmitted before
we try to transmit the next character by loading a new value into SBUF.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

106

Basic Registers

The 8051 lets us know when it is done transmitting a character by setting the TI bit in SCON. When this
bit is set we know that the last character has been transmitted and that we may send the next character,
if any. Consider the following code segment:

	 CLR TI 		 ; Be sure the bit is initially cleared

	 MOV SBUF, #”A”	 ; Start sending the letter “A” via the serial port

HERE: JNB TI, HERE		 ; Wait here until the transmission is done, namely TI bit is set.

The above three instructions will successfully transmit a character and wait for the TI bit to be set before
continuing. Thus the 8051 will pause on the JNB instruction until the TI bit is set by the 8051 upon
successful transmission of the character. We can then transmit another character.

2.11.3	 Reading the Serial Port

Reading data received by the serial port is equally easy. To read a byte from the serial port we just need
to read the value stored in the SBUF (99h) SFR after the 8051 has automatically set the RI flag in SCON
to indicate that a character has just been received.

For example, if our program wants to wait for a character to be received and subsequently read it into
the Accumulator, the following code segment may be used:

Download free eBooks at bookboon.com

Click on the ad to read more

www.bio-rad.com/careers

John Randall, PhD
Senior Marketing Manager, Bio-Plex Business Unit

Find and follow us: http://twitter.com/bioradlscareers
www.linkedin.com/groupsDirectory, search for Bio-Rad Life Sciences Careers
http://bio-radlifesciencescareersblog.blogspot.com

Bio-Rad is a longtime leader in the life science research industry and has been
voted one of the Best Places to Work by our employees in the San Francisco
Bay Area. Bring out your best in one of our many positions in research and
development, sales, marketing, operations, and software development.
Opportunities await — share your passion at Bio-Rad!

http://s.bookboon.com/Bio-RadCareers

PaulOS An 8051 Real-Time Operating System
Part I

107

Basic Registers

HERE: JNB RI, HERE 		 ; Wait here for the 8051 to set the RI flag

				 ; (wait for the reception of a character)

	 MOV A, SBUF 		 ; Read the character from the serial port

	 CLR RI			 ; clear RI, ready for the next character to be received

The first line of the above code segment waits for the 8051 to set the RI flag; again, the 8051 sets the
RI flag automatically when it receives a character via the serial port. So as long as the bit is not set the
program repeats the “HERE: JNB RI, HERE” instruction continuously.

Once the RI bit is set upon character reception the above condition automatically fails and program flow
falls through to the “MOV A, SBUF” instruction which reads the value and stores it in the accumulator.
The RI flag is finally cleared so as to be ready for the next possible character to be received.

Section 3.2 describes a complete serial port example for transmitting and receiving text.

2.11.4	 Master-Slave Operation

Mode 2 or mode 3, (9-bit mode), is generally used whenever inter micro-controller communication is
desired. Generally speaking, mode 2 is used for high speed communications (up to 345600 baud with
an 11.0592 MHz crystal, without using timers), and mode 3 is used when standard baud rates (using
timer 1) are required.

For 9-bit mode 2, the baud rates are determined directly by the crystal frequency (assumed 11.0592
MHz) and the value of SMOD (PCON.7) as shown in the Table 2-12.

SMOD Crystal
divisor

Baud Rate
(=Xtal/divisor)

0 64 172800

1 32 345600

Table 2-12 Crystal Divisor

When using the 9-bit mode, one micro-controller is generally configured to act as the master controller,
with up to 256 other slave micro-controllers. They can be connected in a 3-wire setup, for two-way
communication as shown in Figure 2-6, which shows the setup for a master board with two slave boards.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

108

Basic Registers

Figure 2-6 Master-slaves connection

The diodes are needed since all the slave TXD lines of the slaves are connected together and they are
acting as output lines, feeding into the RXD line of the Master. Therefore one slave cannot send data
into another TXD line of another slave and the diodes ensure that the TXD lines act only as output
lines and do not sink any other signals. The switching time of these diodes will restrict the transmission
speed of the slaves to the master.

Figure 2-7 Tri-state buffers

Instead of these diodes, we can also use tri-state buffers (see Figure 2-7) which have the capability
(when not in operation) to offer a high-impedance. Thus when a slave is not transmitting, it disables
the tri-state buffer so that its TXD line is effectively isolated from the network. When a slave wants to
transmit, it would enable the tri-state buffer so that the signal present on its TXD line is transferred on
to the network. It would disable the tri-state buffer once it has finished with the transmission. In order
to control the tri-state buffer, an additional pin from some port of the slave micro-controller has to be
used in order to enable/disable the tri-state buffer. Depending on whether it is using active high or low
control, a 1 or a 0 at the port pin would enable the buffer.

c z

0 Z

1 x

Table 2-13 Tri-state truth table

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

109

Basic Registers

As it can be seen in Table 2-13, when c = 1 the tri-state active-high device is active and z = x, that is the
output z connected to the network would reflect the TXD signal at x. When c = 0 the tri-state device is
not active, and z = Z (e.g., high impedance/no current).

If the slave units are not required to communicate back or acknowledge, then the diodes and their TXD
lines can be left unconnected, and we just have a two-wire set up, with just the Ground and the TXD
line from the master to the RXD pin of all the slave units.

Use is made of SM2, TB8 and RB8 as explained in the flow sequence below, which explains in detail
how this master-slave communication can be achieved.

•	 All slave units have their UART serial device set to work under interrupt control, and with
SM2 initially set 1. This means that their UART interrupt service routine (ISR) will only be
called when the 9th received bit (bit number 8, since we normally count from bit 0) is a 1.

•	 All devices are set in 9-bit mode 2 or mode 3, depending on the required baud rates. Mode
3 is the most commonly used, especially if the diodes are being used. A slow baudrate would
be required otherwise the diodes would not have enough time to pass through the data. TB8
is initially cleared, set to 0.

•	 All slave units are given (by means of a software #define statement) a particular unique 8-bit
address (0–255).

Download free eBooks at bookboon.com

Click on the ad to read more

��������������	
��	�
�����

����
�

�

���������������������	
��
���	
��
��
����������
�������	
��	�����
���
������
��

�
���
�����

��
���
�������
	�
����	�
����
��������
������������������
��������
���
	�
����	

���
����
���
	�
����	�
���
��
���
����
�������	
�������
	��	�
���
�
�
���	
	�	

���
�����
���
��
��
�
	�	��
�����
������
�
����
���
������
���
���������

�
	
�
�	
��
�������	
	�
��
���
��
����������	
��
������� �

http://s.bookboon.com/ChalmersINTL2016

PaulOS An 8051 Real-Time Operating System
Part I

110

Basic Registers

•	 The master starts a transmission (not necessarily under interrupt control) by sending an
address corresponding to the slave to which it wants to send data. When sending this
address, the master sets its own TB8 bit to 1, so that the master is effectively adding on a ‘1’
bit to the address it is sending. SM2 for the master is left cleared (=0).

•	 All slave units receive this address with the extra ‘1’ bit and since they would at this stage all
have their own SM2 bit set to 1, each one of the slave units would get a serial RI interrupt.
The ISR would be activated and each slave unit would receive, read and check the address to
see whether the master is intending to communicate with it.

•	 Only the slave unit whose address corresponds to the received address would be taking
further action. The other slave units would simple return from their own ISR without doing
or changing anything. They would simply wait for another address (with a 9th ‘1’ bit) to be
received.

•	 The slave unit with the correct address would now set its own SM2 to 0, so that from now
on and until SM2 is changed again to 1, its own serial ISR would come into action for every
data byte sent by the master (even if with a 9th bit of ‘0’).

•	 The master, after sending the slave address, depending on the software algorithm could:
-- Either wait for an acknowledgement from the addressed slave.
-- Or just wait a while to give time for the slave to change its setup (mainly setting SM2

to 0).
•	 The master, after this waiting period, would set its own TB8 to 0 so that when sending the

data over, it will affix a ‘0’ at the end of each data byte, so as not to be interpreted as an
address and trigger the serial interrupt of the other slave units. Some pre-arranged ‘end of
data’ character would be sent at the end of all the data, as an indication to the addressed
slave unit that no more data is going to be sent.

•	 Only the addressed slave unit would be interrupted to receive this data, since it would be
the only slave controller with its SM2 reset to 0. The other slaves would not even notice that
there is data passing, since their RI bit would not be set with bytes having a 9th bit of ‘0’, and
hence their own ISR would not be triggered.

•	 When the addressed slave unit receives the ‘end of data’ marker, it would once again revert
back to the original mode, by setting SM2 to 1, and the transmission would pause. All the
slave units would now once again be waiting for an address to be sent by the master board.

•	 Naturally, whilst waiting for the serial ISR to be activated, the slave units could be executing
some other code for their particular application, rather than staying idle.

In general, address 255 is reserved for a ‘general call’ to be used whenever the master needs to send data
to ALL slave units (such as an emergency switch off). Every slave unit would programmed to recognise
this address, and all slave units would then switch their SM2 to 0 and react to this general transmission.
No acknowledgement is sent by the slave units, otherwise there would simply be rubbish on the TxD
line since every slave unit would be transmitting the acknowledgement at the same time.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

111

Basic Registers

We can also have special group addresses so that the master can send data simultaneously to a group of
slave units, again without any acknowledgement coming from them.

This 3-wire multiprocessor communication is very effective over short distances and very easy to
implement. A sample program is also given in the appendix.

2.12	 Interrupts

As the name implies, an interrupt is some event which interrupts normal program execution.

As stated earlier, program flow is always sequential, being altered only by those instructions which
expressly cause program flow to deviate in some way. However, interrupts give us a mechanism by means
of which we can “put on hold” the normal program flow, execute a subroutine, and then resume normal
program flow as if we had never left it. This subroutine, called an interrupt handler or an interrupt
service routine (ISR), is only executed when a certain event (interrupt) occurs. The event may be any
of the following:

•	 one of the timers overflowing,
•	 receiving a character via the serial port,
•	 transmitting a character via the serial port,
•	 one of two external events, normally pulses on dedicated pins.

The 8051 may be configured so that when any of these events occur the main program is temporarily
suspended and control is passed to a special section of code or interrupt service routine (ISR) which
presumably would execute some function related to the event that has just occurred. Once the ISR is
completed, control would be returned to the original program. The main program so to speak, would
never even know that it was interrupted.

The ability to interrupt normal program execution when certain events occur makes it much easier and
much more efficient to handle certain events. If it were not for interrupts we would have to repeatedly
check in our main program whether the timers had over-flowed, or whether we have received another
character via the serial port, or if some external event has occurred. Besides making the main program
ugly and hard to read, such a situation would make our program inefficient since we would be using
precious instruction cycles, regularly and frequently checking for events even if they do not happen so
frequently.

For example, let us say we have a program executing many subroutines performing many tasks. Let us
also suppose that we want our program to automatically toggle the P3.0 port every time timer 0 overflows.
The code to do this without using interrupts would look something like this:

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

112

Basic Registers

TOP: 	 . . .

. . .

 		 JNB TF0, SKIP_TOGGLE	 ; check for timer overflow here (2 cycles)

 		 CPL P3.0			 ; toggle the bit (1 machine cycle)

 		 CLR TF0			 ; clear the overflow flag to be ready for

						 ; the next overflow (1 cycle)

 SKIP_TOGGLE: 	

		 . . .				 ; assume that 98 cycles are involved here

		 . . .

 		 JMP TOP			 ; loop endlessly

Download free eBooks at bookboon.com

Click on the ad to read more

Linköping University –
innovative, highly ranked,
European
Interested in Engineering and its various branches? Kick-
start your career with an English-taught master’s degree.

Click here!

http://s.bookboon.com/liu

PaulOS An 8051 Real-Time Operating System
Part I

113

Basic Registers

Since the TF0 flag is set whenever timer 0 overflows, the above code will toggle P3.0 every time timer 0
overflows. This accomplishes what we want, but is inefficient. The JNB instruction consumes 2 machine
cycles to determine that the flag is not set and jump over the unnecessary code. In the event that timer 0
overflows, the CPL and CLR instruction require an additional 2 machine cycles to execute. To make the
arithmetic easy, let us say that the rest of the code (until JMP TOP) in the program requires 98 machine
cycles. Thus in total, our code consumes 100 machine cycles (98 instruction cycles plus the 2 that are
executed at every iteration to determine whether or not timer 0 has overflowed). If we are in 16-bit timer
mode, timer 0 will overflow every 65,536 machine cycles. In the time between overflows we would have
performed 65536/100 or 655 JNB tests, consuming 1310 machine cycles plus another 2 machine cycles
to perform the code when there is the overflow. So to achieve our goal, we have spent 1312 out of 65536
or 2% of the time just checking when to toggle P3.0. Moreover, we would not be reacting immediately
to the overflow since we would only notice it when we come to the check instruction. And our code
is not efficient because we have to make that check during every iteration of our main program loop.

Luckily with interrupts this is not necessary and we can forget about checking for the overflow condition.
The micro-controller itself will check for the condition automatically after every instruction (thus the
reaction is much quicker) and when the condition is met it will jump to a subroutine, execute the code,
then return to where it was before the interrupt. In this case, our subroutine would be nothing more than:

CSEG AT 000BH 	 ; this ensures routine is written in

			 ; the correct vector table location for Timer 0 interrupt

CPL P3.0

RETI

First, it should be noted that the ISR has to be located at a specified code location, depending on the
interrupt being used. (see section 2.13.1).

Secondly, it can be noticed that the CLR TF0 command has disappeared. That is because when the
8051 executes our “timer 0 interrupt routine,” it automatically clears the TF0 flag which had originally
generated the interrupt. Also instead of a normal RET instruction we have a RETI instruction. The RETI
instruction does the same thing as a RET instruction (that is it pops the high- and low-order bytes of
the program counter successively from the stack), but it also tells the 8051 that an interrupt routine has
finished so that it would restore the interrupt logic to accept additional interrupts at the same priority
level as the one just processed. We must always end our interrupt service routines with RETI instruction.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

114

Basic Registers

Thus, every 65536 instruction cycles (when timer 0 overflows), control is transferred to the ISR
automatically at the end of the current instruction, and the CPL and the RETI instructions are executed
only once. These two instructions together require 3 instruction cycles, and we have accomplished the
same goal as the first example that required 1312 instruction cycles. As far as the toggling of P3.0 goes,
our code is 437 times more efficient! Not to mention the fact that it is much easier to read and understand
because we do not have to remember to always check for the timer 0 flag in our main program. We just
set up the interrupt and forget about it, secure in the knowledge that the 8051 will execute our code
whenever it is necessary.

The same idea applies to receiving data via the serial port. One way to do it is to continuously check
the status of the RI flag in an endless loop. Or we could check the RI flag as part of a larger program
loop. However, in the latter case we run the risk of missing characters. What happens if a character is
received right after we do the check, the rest of our program executes, and before we even check RI
again a second character has come in. We will lose the first character. With interrupts, the 8051 will put
the main program “on hold” and call our special routine to handle the reception of a character. Thus,
we neither have to put an ugly check in our main code nor do we lose characters.

2.12.1	 What Events Can Trigger Interrupts?

We can configure the 8051 so that any of the following events will cause an interrupt:

•	 Timer 0 Overflow.
•	 Timer 1 Overflow.
•	 Reception/Transmission of Serial Character.
•	 External Event 0.
•	 External Event 1.

In other words, we can configure the 8051 so that when Timer 0 Overflows or when a character is sent/
received, the appropriate interrupt routines are called.

Obviously we need to be able to distinguish between various interrupts and executing different code
depending on what interrupt was triggered. This is accomplished by jumping to a fixed address when
a given interrupt occurs.

By consulting Table 2-14 it can be seen that whenever Timer 0 overflows (i.e., the TF0 bit is set), the
main program will be temporarily suspended and control will jump to 000BH. It is assumed that we
have some code written at address 000BH that handles the situation of Timer 0 overflowing.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

115

Basic Registers

Interrupt
Name

Interrupt
Number

Flag Interrupt
Hex Vector
Address

External 0 0 IE0 0003

Timer 0 1 TF0 000B

External 1 2 IE1 0013

Timer 1 3 TF1 001B

Serial 4 RI or TI 0023

Table 2-14 8051 Interrupt Vector Table location

The Interrupt Vector Addresses shown in this table indicate the location where the ISR code for that
particular interrupt should be written. Only 8 bytes are allocated for every interrupt (provided that one
is using them all) and so if the ISR requires more than 8 bytes, then one would simply write

LJMP MY_ISR

at the Interrupt Vector Address and then at MY_ISR (located elsewhere in the main code area) we
can write our routine which can be of any length. This is also shown in the A51 template in the A51
examples in Chapter 3.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/academictransfer

PaulOS An 8051 Real-Time Operating System
Part I

116

Basic Registers

It should also be noted here, that both RI and TI interrupts cause the program to jump to the same
address (0023H). Hence it is up to the ISR to check which event (RI or TI) caused the interrupt and
subsequently clear the appropriate RI or TI flag. These are not cleared automatically by the controller.

2.12.2	 Setting Up Interrupts

By default at power up, all interrupts are disabled. This means that even if, for example, the TF0 bit is
set, the 8051 will not execute the interrupt service routine

Bit-addressable

Bit Name
Alternate
Name (ASM)

Alternate
Name (Keil C)

Hex Bit
Address

Explanation of Function

7 EA IE.7 IE^7 AF Global Interrupt Enable/Disable

6 - IE.6 IE^6 AE Undefined on the 8051

5 - IE.5 IE^5 AD Undefined on the 8051

4 ES IE.4 IE^4 AC Enable/Disable Serial Interrupt

3 ET1 IE.3 IE^3 AB Enable/Disable Timer 1 Interrupt

2 EX1 IE.2 IE^2 AA Enable/Disable External 1
1nterrupt

1 ET0 IE.1 IE^1 A9 Enable/Disable Timer 0 Interrupt

0 EX0 IE.0 IE^0 A8 Enable/Disable External 0 Interrupt

Table 2-15 IE (A8H) SFR

Our program must specifically tell the 8051 that it wishes to enable interrupts and specifically which
interrupts it wishes to enable. We can do this by modifying the IE SFR (A8h), setting the corresponding
bits accordingly. As we can see in Table 2-15, each of the 8051’s interrupts has its own bit in the IE SFR.
We enable a given interrupt by setting the corresponding bit to 1. For example, if we wish to enable
Timer 1 Interrupt only, we would execute either:

ORL IE, #08h

	 or

SETB ET1

Each of the above instructions set bit 3 of IE, thus enabling Timer 1 Interrupt. Once Timer 1 Interrupt
is enabled, whenever the TF1 bit is set, the 8051 will automatically put “on hold” the main program and
execute the Timer 1 Interrupt Handler at address 001Bh. In C, this would simply be one ET1 = 1; line.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

117

Basic Registers

However, before Timer 1 Interrupt (or any other interrupt) is truly enabled, we must also set bit 7
of IE. (SETB EA). This bit, the Global Interrupt Enable/Disable bit, enables or disables all interrupts
simultaneously. That is to say, if bit 7 is cleared then no interrupt servicing will occur, even if all the
other bits of IE are set. Setting bit 7 will enable all the interrupts that have been selected by setting other
bits in IE. This is useful in program execution if we have time-critical code that needs to execute. In this
case, we may need the code to execute from start to finish without any interrupt getting in the way. To
accomplish this we can simply clear bit 7 of IE (CLR EA) just before starting the critical code and then
set it again to 1 after our time-critical code has been executed.

We should also clear the interrupt flag initially, just to be sure that we start at the right condition. So,
to sum up what has been stated in this section, to enable the Timer 1 Interrupt the most common
approach is to execute the following instructions (assuming we have already written and properly stored
the corresponding ISR):

CLR TF1

SETB ET1

SETB EA

Thereafter, the Timer 1 Interrupt Handler at 01Bh will automatically be called whenever the TF1 bit is
set (upon Timer 1 overflow). Moreover, the TF1 bit will automatically be cleared once the ISR is being
executed.

2.12.3	 Polling Sequence

The 8051 automatically evaluates whether an interrupt should occur after every instruction. When
checking for interrupt conditions, it checks them in the following order, as shown in Table 2-16:

1.	 External 0 Interrupt
2.	 Timer 0 Interrupt
3.	 External 1 Interrupt
4.	 Timer 1 Interrupt
5.	 Serial Interrupt

Table 2-16 Polling Sequence Order

This means that if a Serial Interrupt occurs at the exact same instant that an External 0 Interrupt occurs,
the External 0 ISR will be executed first and the Serial ISR will be executed only when the External 0
ISR has been completed. This order is only respected in the extreme case that interrupts happen exactly
at the same time. It should be remembered, that interrupts having the same priority cannot interrupt
each other, irrespective of the polling sequence order.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

118

Basic Registers

2.12.4	 Interrupt Priorities

The 8051 offers two levels of interrupt priority: high and low. By using interrupt priorities we may assign
a higher priority to certain important or critical interrupt conditions.

For example, we may have enabled Timer 0 Interrupt which is automatically called every time Timer 0
overflows. Additionally, we may have enabled the Serial Interrupt which is called every time a character is
received via the serial port. However, we may consider that receiving a character is much more important
than the timer interrupt. In this case, if Timer 0 Interrupt is already executing we may wish that the
serial interrupt itself interrupts the Timer 0 ISR if it happens to be executing. When the serial interrupt
is complete, control passes back to Timer 0 ISR to continue from where it had been stopped and finally
back to the main program. We may accomplish this by assigning a high priority to the Serial Interrupt
and a low priority to the Timer 0 Interrupt.

Interrupt priorities are controlled by the IP SFR (B8h), where setting the bit to one raises the priority
of that particular interrupt. The IP SFR has the following format:

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/JAMRS

PaulOS An 8051 Real-Time Operating System
Part I

119

Basic Registers

Bit-addressable

Bit Name Alternate
Name (ASM)

Alternate Name
(Keil C)

Bit Hex
Address

Explanation of Function

7 - IP.7 IP^7 - Undefined – future expansion

6 - IP.6 IP^6 - Undefined – future expansion

5 - IP.5 IP^5 - Undefined – future expansion

4 PS IP.4 IP^4 BC Serial interrupt priority

3 PT1 IP.3 IP^3 BB Timer 1 interrupt priority

2 PX1 IP.2 IP^2 BA External 1 interrupt priority

1 PT0 IP.1 IP^1 B9 Timer 0 interrupt priority

0 PX0 IP.0 IP^0 B8 External 0 interrupt priority

Table 2-17 IP (B8H) SFR

When considering interrupt priorities, the following rules apply:

•	 Nothing can interrupt a high priority interrupt; not even another high priority interrupt.
Same priority interrupts cannot interrupt each other.

•	 A high priority interrupt may interrupt a low priority interrupt.
•	 A low priority interrupt may be dealt with only if no other interrupt is already executing.
•	 If two interrupts occur at the same time, the interrupt with higher priority will execute first.

If both these interrupts happen to have the same priority, the interrupt which is serviced
first is determined by polling sequence order of Table 2-16.

•	 An new interrupt cannot pause an already running ISR which was triggered by an interrupt
having the same priority as the new one, irrespective of the polling sequence order
mentioned in Table 2-16.

2.12.5	 What Happens When an Interrupt Occurs?

When an interrupt is triggered, the following actions are taken automatically by the microcontroller:

1.	 The current Program Counter (address of the next code/instruction to be executed) is saved
(pushed) on the stack, low byte first.

2.	 Interrupts of the same and lower priority are blocked.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

120

Basic Registers

3.	 In the case of Timer and External interrupts, the corresponding interrupt flag is cleared
automatically. Take special note of this third step: If the interrupt being handled is a Timer
0 or Timer 1 or External interrupt, the microcontroller automatically clears the interrupt
flag before passing control to your interrupt handler routine. This is because there is no
ambiguity as to what caused the interrupt, and it is not necessary to clear the bit in the ISR
code. If the external interrupt was programmed as being level triggered, then the hardware
has to ensure that the level is again restored so as no to cause repeated interrupts. However
we would have to clear the particular flag in the ISR software for the Serial port and Timer
2 (in the case of the 8032 controller). This is due to the fact that for each of these devices,
two different events can trigger the same interrupt number. For the serial port it can be
a Received character interrupt (RI) or a Transmitted character interrupt (TI), or both, as
explained in the section below. For the Timer 2, it could be the timer overflow flag (TF2) or
EXT2 flag which caused the interrupt.

4.	 Program execution transfers to the corresponding interrupt handler vector address.
5.	 The Interrupt Service Routine executes.
6.	 At the end of the ISR, the Program Counter is popped back automatically from the stack

once the RETI instruction is executed.

Additionally, apart from these automatic events, other precautions may need to be taken. It is good
programming practice to save (push) the PSW register immediately at the beginning of the ISR so that
we save the status of the various flags which might have been in use by the interrupted section of the
code. The interrupt jump might have occurred just before our main program was about to execute a JC
label (jump if carry bit is set). If the ISR routine modifies the carry bit, then when the ISR is finished
and the main program resumes operation, it would not perform as expected. The PSW should then be
popped back before executing the RETI instruction.

If we are absolutely certain that our ISR does not modify any flags, then there is no need to PUSH/POP
the PSW register.

ISR_EXAMPLE_01:
		 PUSH PSW		 ;save flags

		 …………….

		 …………….

		 POP PSW		 ;restore flags

		 RETI

If in our ISR we intend to overwrite and use some registers which are being used in our main program
or in some other ISR, we would also need to be very careful.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

121

Basic Registers

We can push all these registers at the start of your ISR and pop them back at the end, before executing
the RETI instruction.

ISR_EXAMPLE_02:
		 PUSH PSW		 ;save flags

		 PUSH ACC		 ;save registers being used in this routine

		 PUSH B		 ;with their original values

		 PUSH 0		 ;save register r0 bank 0 (address 0h)

		 PUSH 1		 ;save register r1 bank 0 (address 1h)

		 …………….

		 …………….

		 POP 1			 ;restore registers to original values

		 POP 0

		 POP B

		 POP ACC

		 POP PSW		 ; restore flags

		 RETI

Note that the registers should be popped out of the stack in the reverse order from the way they were
pushed. The first register that was pushed on the stack, should be the last register that is popped from
the stack.

Instead of pushing and popping registers R0-R7 in the ISR, we might consider using a separate dedicated
bank for the ISR routine. The PSW (and ACC, B, DPL and DPH if used) should still be pushed/popped.
This could be done by setting the corresponding bits in the PSW register as shown:

ISR_EXAMPLE_03:
		 PUSH PSW	 ;save flags and register bank in use flags

		 SETB RS0

		 CLR RS1	 ; use register bank 1

		 …………….

		 …………….

		 POP PSW	 ; restore flags and original register bank

		 RETI

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

122

Basic Registers

The POP PSW instruction automatically restore the original register bank since RS0 and RS1 bits are
actually part of the PSW SFR.

2.12.6	 What Happens When an Interrupt Ends?

An interrupt ends when your program executes the RETI (Return from Interrupt) instruction. When
the RETI instruction is executed the following actions are taken by the microcontroller:

•	 The high and low order bytes of the program counter are popped back from the stack. These
contain the address of the instruction to be executed next.

•	 The interrupt logic is restored so as to accept additional interrupts at the same priority level
as the one just processed.

Using RET instead of RETI at the end of the ISR would ultimately cause the programme not to run as
expected since the controller would not handle other interrupts correctly.

2.12.7	 Serial Interrupts

Serial Interrupts are slightly different from the rest of the interrupts. This is due to the fact that there
are two interrupt flags: RI and TI. If either flag is set (or even both), a serial interrupt is triggered. As
we will recall from the section on the serial port, the RI bit is set when a byte is received by the serial
port and the TI bit is set when a byte has been sent.

This means that when our serial interrupt is executed, it may have been triggered because the RI flag
was set or because the TI flag was set or perhaps because both flags were set. It should be remembered
that both transmission and reception can work simultaneously in the 8051. Thus, our routine must check
the status of these flags to determine what action is appropriate, and hence the 8051 cannot and does
not automatically clear the RI and TI flags. We must therefore make sure to clear these bits in the ISR.

A brief code example of such a serial ISR is in order. Note that the serial interrupt might have occurred
because of a received character and/or a character has just been transmitted:

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

123

Basic Registers

INT_SERIAL:
;First we check whether a character has just been transmitted
	 JNB TI,CHECK_RX 			 ; If the TI flag is not set, we
 						 ; jump to check RI

; transmitter section
	 CLR TI 				 ; Clear the TI flag
	 JNB TX_BUFFER_FULL, CHK_RX 	 ; Check RI if nothing else to transmit
	 MOV SBUF,TX_BUF 			 ; Transmit character stored
						 ; in location TX_BUF

	 CLR TX_BUFFER_FULL 		 ; Buffer now empty, ready for
						 ; the next character
; We still need to check the receiver since BOTH TI and RI might have occurred.
; Hence once we are finished with the TI case, we fall through to the RI case.
;
; receiver section
CHK_RX:
	 JNB RI,EXIT_ISR 			 ; Ignore if RI is not set
	 CLR RI 				 ; Clear the RI flag
	 JNB RX_BUFFER_FULL,RTR 		 ; Check if ok to store received character
	 SJMP EXIT_ISR			 ; If not, then exit service routine, without saving
						 ; it, thus losing the character.

RTR:
	 MOV RX_BUF,SBUF			 ; Store character in buffer RX_BUF
	 SETB RX_BUFFER_FULL 		 ; Indicate new character in buffer
EXIT_ISR:
	 RETI

The main program would regularly check variable RX_BUFFER_FULL and gets the character from
RX_BUF when available. It would then clear RX_BUFFER_FULL.

As we can see, our code checks the status of both interrupts flags. If both flags were set, both sections of
code will be executed. Also note that each section of code clears its corresponding interrupt flag. If we
forget to clear the interrupt bits, the serial interrupt will be executed over and over again until we clear
the bit. Thus it is very important that we always clear the interrupt flags in a serial interrupt.

The above code is an example of a simple serial routine. Other more complete routines can be found
in the appendix.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

124

Basic Registers

2.12.8	 Important Interrupt Considerations:

We now list some important considerations to be made when using interrupts and writing interrupt
service routines.

2.12.8.1 Register Protection

One very important rule applies to all interrupt handlers:

Interrupts must leave the processor in the same state that it was in when the interrupt was initiated.

Remember, the idea behind interrupts is that the main program is not aware that they are executing in
the “background”. However, consider the following code:

CLR C 			 ; Clear carry

MOV A, #25h 		 ; Load the accumulator with 25h

ADDC A, #10h 		 ; Add 10h, with carry

After the above three instructions are executed, the accumulator will contain a value of 35h.

Download free eBooks at bookboon.com

Click on the ad to read more

Bartending is your ticket to the world

26 destinations 4 continents

GET STARTED

http://s.bookboon.com/ebsbarschools

PaulOS An 8051 Real-Time Operating System
Part I

125

Basic Registers

But what would happen if right after the MOV instruction an interrupt has occurred. Let us assume that
during this interrupt service routine, the carry bit was set and the value of the accumulator was changed
to 40h. When the interrupt finished and control is passed back to the main program, the ADDC would
add 10h to 40h, and add an additional 01h because the carry bit is set. In this case, the accumulator will
contain the value 51h at the end of execution.

The program has calculated the wrong answer. A programmer who is unfamiliar with interrupts would
be convinced that the microcontroller was damaged in some way, provoking problems with mathematical
calculations.

What has happened, in reality is that the interrupt did not protect the registers it was using.

What does this mean? It means that if our interrupt uses the accumulator, it must ensure that the value
of the accumulator is the same at the end of the interrupt as it was at the beginning. This is generally
accomplished with a PUSH and POP sequence. For example:

PUSH ACC

PUSH PSW

MOV A, #0FFh

ADD A, #02h

…….

…….

POP PSW

POP ACC

The main code of the ISR is the MOV instruction and the ADD instruction. However, these two
instructions modify the Accumulator (the MOV instruction) and also modify the value of the carry bit
(the ADD instruction can cause the carry bit to be set). Since an interrupt routine must guarantee that
the registers remain unchanged by the routine, the routine pushes the original values onto the stack
using the PUSH instruction. It is then free to use the registers that it has protected or pushed on stack.
Once the interrupt has finished its task, it pops the original values back into the registers. When the
interrupt exits, the main program will never know the difference because the registers are exactly the
same as they were before the interrupt was executed.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

126

Basic Registers

In general, our interrupt routine must protect the following registers if somehow they are being modified
in the ISR:

•	 PSW
•	 DPTR (DPH/DPL)
•	 ACC
•	 B
•	 Registers R0-R7

Remember that PSW consists of many individual bits that are set by various 8051 instructions. Unless
we are absolutely sure of what we are doing and have a complete understanding of which instructions
set which bits, it is generally a good idea to always protect PSW by pushing and popping it off the stack
at the beginning and end of our interrupts. The PSW register would preserve the status of the register
bank we were using prior to the interrupt, the carry flag, the zero flag etc.

Note also that most assemblers (in fact, ALL assemblers that I know of) will not allow us to execute the
instruction:

PUSH R0

This is due to the fact that depending on which register bank is selected, R0 may refer to either internal
RAM address 00h, 08h, 10h, or 18h. Hence R0 is not a valid memory address that the PUSH and POP
instructions can use.

Thus, if we are using any “R” register in our interrupt routine, we will have to push that register’s absolute
address onto the stack instead of just saying PUSH R0. For example, when using bank 0 instead of PUSH
R0 we would execute:

PUSH 00h

Of course, this only works if we have selected the default register bank 0. If we are using an alternate
register set, we must PUSH the address which corresponds to the register we are using in that alternate
bank. For example, if we are using register bank 1, then the register R0 for that bank would have an
address of 08h, hence we would use:

PUSH 08h

Certain assemblers allow special keywords (such as PUSH AR2) to be used in order to calculate
automatically the correct address for the register being pushed of popped. Such as:

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

127

Basic Registers

; if we intend using register 2 of bank 1 in our ISR

PUSH 	 PSW	 ; save PSW

SETB 	 RS0	 ; select bank 1 (RS0=1, RS1=0)

CLR	 RS1

USING 	 1 	 ; advise pre-processor to use register bank 1 (no code)

PUSH 	 AR2 	 ; push R2 in bank 1 (address 0Ah)

; if we intend using register 7 of bank 3 in our ISR

PUSH	 PSW	 ; save PSW

SETB 	 RS0	 ; select bank 3 (RS0 = RS1 = 1)

SETB 	 RS1

USING 	 3 	 ; advise pre-processor to use register bank 3 (no code)

PUSH 	 AR7 	 ; push R7 in bank 3 (address 1Fh)

Note that the keyword USING does not generate any code. It is used by the pre-processor to calculate
the correct address for the register being pushed or popped.

Alternatively, we might want to make use of a separate register bank for our ISR, a register bank which
is used only in the ISR. In this case, provided that we do not use any other registers which are used
elsewhere, there would not be the need to push any of the registers R0-R7. We push only the PSW and
ACC (and perhaps B, DPH and DPL if we use them in the ISR, since they would be common with other
sections of the code) and then set RS0, RS1 (two bits themselves residing in the PSW register) to select
our reserved bank. Then, before leaving, we simply pop back the pushed registers in reverse order. There
would not be the need to reset again RS0 and RS1 separately, since their original value would be re-instated
anyway when we pop back the PSW register, where the original RS0 and RS1 bit settings were stored.

2.12.9	 Common Problems with Interrupts

Interrupts are a very powerful tool available to the 8051 developer, but if used incorrectly they can be the
source of a number of bugs. Errors in interrupt routines are often very difficult to diagnose and correct.

If we are using interrupts and our program is crashing or does not seem to be performing as we would
expect, we should always review the interrupt-related issues. See section 11.7 for some hints on using
interrupts.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

128

A51 Examples

3	 A51 Examples
In this chapter we present a few assembly language programs which use most of the topics discussed in
the previous chapters. Before starting to write the first program, we provide a template which explains the
general organisation of an 8051 assembly language program. The remarks by the side of the instructions
in the template and in the other example programs provide most of the explanations required.

Further examples in C are provided in the Appendix.

3.1	 Template.a51

; Template.a51
$NOMOD51
#include <reg52.inc> 		 ; assuming that we are using an 8032 instead of an 8051
				 ; reg52.inc would include all the SFRs present on the 8032

start 	 equ 0000H 		 ; these equates can be changed if using a development
				 ; board, depending on where the code is to reside.
Ext0_IVA 	 equ 0003H		 ; Interrupt Vector address for External 0 interrupt number 0
TF0_IVA 	 equ 000BH	; Interrupt Vector address for Timer 0 interrupt number 1
Ext1_IVA 	 equ 0013H		 ; Interrupt Vector address for External 1 interrupt number 2
TF1_IVA 	 equ 001BH	; Interrupt Vector address for Timer 1 interrupt number 3
Ser_IVA 	 equ 0023H		 ; Interrupt Vector address for Serial interrupt number 4
TF2_IVA 	 equ 002BH	; Interrupt Vector address for Timer 2 interrupt number 5

Past_IVT equ 0030H

; The following equates are used for RAM zero initialisation routines
IDATASTART 	 EQU 0H 		 ; the absolute start-address of IDATA memory is always 0
IDATALEN 	 EQU 100H 	 ; the length of IDATA memory in bytes for the 8032 (256 bytes).

XDATASTART 	 EQU 0H 		 ; the absolute start-address of XDATA memory (say 8100H)
XDATALEN 	 EQU 0H 		 ; the length of XDATA memory in bytes.

CSEG AT start
	 LJMP Main 		 ; this is the first instruction executed on reset

CSEG AT Ext0_IVA
	 RETI			 ; good practice to include this if not using interrupt, just in case.
				 ; comment above code if this interrupt is being used
; or if the ISR code is within 8 bytes long, it can be written directly here.
; if not then use
;	 LJMP Ext0_ISR 		 ; to jump to the correct ISR

CSEG AT TF0_IVA
;	 RETI			 ; good practice to include this if not using interrupt, just in case.
				 ; comment above code if this interrupt is being used
; or if the ISR code is within 8 bytes long, it can be written directly here.
; if not then use
	 LJMP TF00_ISR 		 ; to jump to the correct ISR
; and so on for the other interrupts

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

129

A51 Examples

CSEG AT Ext1_IVA
	 RETI			 ; good practice to include this if not using interrupt, just in case.
				 ; comment above code if this interrupt is being used
; or if the ISR code is within 8 bytes long, it can be written directly here.
; if not then use
;	 LJMP Ext1_ISR 		 ; to jump to the correct ISR

CSEG AT TF1_IVA
	 RETI			 ; good practice to include this if not using interrupt, just in case.
				 ; comment above code if this interrupt is being used
; or if the ISR code is within 8 bytes long, it can be written directly here.
; if not then use
;	 LJMP TF1_ISR 		 ; to jump to the correct ISR

CSEG AT Ser_IVA
	 CLR RI			 ; good practice to include this if not using interrupt, just in case.
	 CLR TI 			 ; good practice to include this if not using interrupt, just in case.
	 RETI			 ; good practice to include this if not using interrupt, just in case.
				 ; comment above 3 code lines if this interrupt is being used
; or if the ISR code is within 8 bytes long, it can be written directly here.
; if not then use
;	 LJMP Ser_ISR 		 ; to jump to the correct ISR

CSEG AT TF2_IVA
	 CLR TF2			 ; good practice to include this if not using interrupt, just in case.
	 CLR EXF2		 ; good practice to include this if not using interrupt, just in case.
	 RETI			 ; good practice to include this if not using interrupt, just in case.
				 ; comment above 3 code lines if this interrupt is being used
; or if the ISR code is within 8 bytes long, it can be written directly here.
; if not then use
;	 LJMP Ext0_ISR 		 ; to jump to the correct ISR

; skip over Interrupt Vector Table in the code area
org Past_IVT
Main:
; First clear the 8032 Internal RAM (from 0 to FFH)
	 CLR A

MOV R0,#(IDATALEN - 1)
CLR_RAM:
 	 MOV @R0,A

DJNZ R0,CLR_RAM

; then clear external RAM if required, using conditional assembly, depending on XDATALEN
IF XDATALEN <> 0
	 MOV 	 DPTR,#XDATASTART
	 MOV 	 R7,#LOW (XDATALEN)
IF (LOW (XDATALEN)) <> 0	; check needed so that the DJNZ checks below will work
 				 ; correctly, since if R7 is zero before the DJNZ, it will loop
		 		 ; for 256 times and not zero times.
 				 ; (check with XDATALEN of 255 bytes and then 256 bytes !!)
	 MOV 	 R6,#(HIGH (XDATALEN) +1)
ELSE
	 MOV 	 R6,#(HIGH (XDATALEN))
ENDIF

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

130

A51 Examples

	 CLR 	 A
CLR_XDATA:
	 MOVX 	 @DPTR, A
	 INC 	 DPTR
	 DJNZ 	 R7,CLR_XDATA
	 DJNZ 	 R6,CLR_XDATA
ENDIF

; set up stack pointer, above Bit-addressable area (not necessarily always set to this point)
 	 MOV SP,#2FH

; Program starts here
……………….
……………....
……………….

; Long Interrupt Service Routines can be written here, after the main program
TF0_ISR:
	 PUSH PSW

 ………..
 ……………

	 POP PSW
	 RETI

; Constants can be stored here, at the end of the code area.
 OneHundred: DB 100
 SixHundred: DW 600
 Message: DB “Hello !!”,10,13

; Variables can be stored either in the internal 256 bytes data area or in the external volatile
; memory. Bit variables are stored in the bit data area

MyBits SEGMENT BIT
RSEG MyBits
	 Flag1:	 DBIT 1		 ; 1 bit in Bit-addressable area, allocated to Flag1
	 Flag2:	 DBIT 1		 ; 1 bit in Bit-addressable area, allocated to Flag2

Var1 SEGMENT DATA
RSEG Var1
	 Answer:	 DS	 1	 ; 1 byte in data area, allocated to Answer
	 Year:	 DS	 2	 ; 1 bytes in data area, allocated to Year
	 Month:	 DS`	 1	 ; 1 byte in data area, allocated to Month

Var2 SEGMENT XDATA
RSEG Var2
	 Numbers:	 DS	 500	 ; 500 bytes allocated to Numbers, in external RAM

end

The first real program, SerP3.a51 is a serial port example program (section 3.2) which basically initializes
the UART and then provides routines for reading and writing characters via the UART.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

131

A51 Examples

The second program (3.3) is a simple Traffic light controller which also uses the SerP3.a51 routines. It
makes use of Timer 2 interrupt which is used to accurately time the duration in seconds for each traffic
pattern. Note the way the Interrupt Vector Table (IVT) is jumped over when the program starts executing
from location 0000H. For those Interrupts which are not in use, it is generally a good practice to insert
a simple RETI instruction at the corresponding IVT location just in case an inadvertent event causes
an undesired interrupt to occur.

3.2	 Serial Port Example Program

; SERP3.A51
; march 2003 - paul p. debono
; works fine using p3 serial socket
; no interrupts
;
$NOMOD51
#include <reg52.inc>

; These routines are declared PUBLIC so that they can be used in other modules
PUBLIC INIT_SERIAL, TX_CHAR, RX_CHAR
PUBLIC TX_IMSG,TX_CMSG, TX_XMSG
;
; SERIAL PORT RELATED ROUTINES
;
; INIT_SERIAL(BAUDRATE) 	 Initialise Serial port, 9600, 19200 or 57600 baud.
; RX_CHAR()	 		 Receive character from port, (WAIT FOR CHARACTER)
; TX_CHAR(ALPHA) 		 Send character to Port
; TX_MSG(*MESSSAGE) 		 Transmit null terminated string (Internal RAM)
; TX_CMSG(*MESSSAGE) 		 Transmit null terminated string (PROGRAM CODE AREA)
; TX_XMSG(*MESSSAGE) 		 Transmit null terminated string (External DATA AREA)
;

SERIAL_RTN SEGMENT CODE
RSEG SERIAL_RTN

; SUBROUTINES USED IN APPLICATION
;
; ***
;
; serial port support
;
; initialise the serial port for required baud rate,
; not under interrupt control.

; baud rate passed in r7 bank 0
; 	 parameter 96 => 9600 baud
; 	 parameter 192 => 19200 baud
; 	 parameter 57 => 57600 baud

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

132

A51 Examples

INIT_SERIAL:
	 ANL TMOD, #00001111B 	 ; clear all timer 1 bits in tmod
	 ORL TMOD, #20H 		 ; timer 1 8-bit auto reload mode 2
	 CLR RCLK 		 ; use timer 1 for receive baud rate
	 CLR TCLK		 ; use timer 1 for transmit baud rate
	 MOV TH1, #0FDH 		 ; 9600/19200 baud counter value
	 MOV TL1, #0FDH
	 MOV PCON, #0H 		 ; choose 9600 baud
	 CJNE R7, #192, CHK_IF_57
	 MOV PCON, #80H 		 ; choose 19200 baud, smod=1
	 SJMP BAUD_OK
CHK_IF_57:
	 CJNE R7, #57, BAUD_OK
	 MOV TH1, #0FFH 		 ; 57600 baud counter value
	 MOV TL1, #0FFH
	 MOV PCON, #80H 		 ; smod=1
BAUD_OK:
	 CLR ET1 		 	 ; disable timer 1 interrupts, just in case
	 SETB TR1 	 	 ; start timer 1 (tr1 = 1) or mov tcon,#40h
	 MOV SCON, #52H 		 ; 1 start, 8 data, 1 stop bit, RI=0, and setTI=1
				 ; so as to be ready to start the first time
	 			 ; enable receiver (ren=1)

RET

; ***

; ***
; character received through serial port p3, is passed on to r7 bank 0 (address 07)
RX_CHAR:
	 JNB RI, $; wait here for character
	 CLR RI
	 MOV 07, SBUF
	 RET

; ***

; ***
; character in r7 is transmitted through serial port p3
TX_CHAR:
	 JNB TI, $; if tx is ready, then you are clear to send, else wait
	 CLR TI
	 MOV SBUF, 07	 	 ; transmission starts, t1 set to 1 when ready

; the following delay might be needed depending on receiving equipment requirements
 	 PUSH B
	 MOV B, #0A0H 		 ; small delay between transmissions
	 DJNZ B, $; since we are not using any handshaking
	 POP B

RET

; ***

; ***

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

133

A51 Examples

; transmit message residing in internal memory
; pointer to message passed in r1
; message must terminate with a null (0) character.
; on exit, r1 is corrupted

TX_IMSG:
	 MOV A, @R1
	 CJNE A, #0, SEND_IT
	 RET
SEND_IT:
	 MOV 07, A
	 ACALL TX_CHAR
	 INC R1
	 SJMP TX_IMSG

; ***

; ***
; transmit message residing in program (code) memory
; pointer to message passed in dph (hi) and dpl (lo)
; message must terminate with a null (0) character.
; on exit, dptr is corrupted.
TX_CMSG:
	 CLR A
	 MOVC A, @A + DPTR
	 CJNE A, #0, SEND_IT2C
	 RET
SEND_IT2C:
	 MOV 07, A
	 ACALL TX_CHAR
	 INC DPTR
	 SJMP TX_CMSG

; ***

; ***
; transmit message residing in external memory
; pointer to message passed in dph (hi) and dpl (lo)
; message must terminate with a null (0) character.
; on exit dptr is corrupted.
TX_XMSG:
	 MOVX A, @DPTR
	 CJNE A, #0, SEND_IT2
	 RET
SEND_IT2:
	 MOV 07, A
	 ACALL TX_CHAR
	 INC DPTR
	 SJMP TX_XMSG

; ***
 END
; ***

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

134

A51 Examples

The second program (section 3.3) is Traffic lights program, and it is targeted to be run from an EPROM.
This means that the code area starts from location 0000H. It is also targeted for the FLT-32 development
board, which has an 8255 input/output chip added on, providing three additional 8-bit ports, labelled
as PORTA, PORTB and PORTC in this program.

Download free eBooks at bookboon.com

Click on the ad to read more

 .

http://s.bookboon.com/AlcatelLucent

PaulOS An 8051 Real-Time Operating System
Part I

135

A51 Examples

3.3	 Traffic Lights A51 Program

; lesson07EP.a51 targeted for eprom

$NOMOD51
#include <reg52.inc>
; use model for 8032/8052
; this will ensure that the assembler will recognise
; all the labels referring to the various
; Special Function Registers (SFRs).
;
;
; Traffic lights program with TIMER2 delay
; in 16-bit AUTO-RELOAD mode
;
; Timers count up at 12/11.0592 microseconds per count
; i.e. at 1.085 microseconds per count.
; Thus for a 50 millisecond delay, they need to count
; up 50000/1.085 = 46082 times. Hence the counters
; have to be loaded with 65536-46082 = 19454 decimal
; or 4BFEH
;
;
; The following routines are declared as EXTRN (within brackets)
; since they are actually defined in a different module.
;
EXTRN CODE (INIT_SERIAL, RX_CHAR, TX_CHAR)
EXTRN CODE (TX_IMSG, TX_CMSG, TX_XMSG)
;
; serial port related routines found in serp3.a51
;
; INIT_SERIAL(BAUDRATE) 	 Initialise Serial port, 9600, 19200 or 57600 baud.
; RX_CHAR()	 		 Receive character from port, (WAIT FOR CHARACTER)
; TX_CHAR(ALPHA) 		 Send character to Port
; TX_MSG(*MESSSAGE) 		 Transmit null terminated string (Internal RAM)
; TX_CMSG(*MESSSAGE) 		 Transmit null terminated string (PROGRAM CODE AREA)
; TX_XMSG(*MESSSAGE) 		 Transmit null terminated string (External DATA AREA)
;
CR 		 EQU 13
LF 		 EQU 10

CTRL_WD 	 EQU 91H 		 ; control word for the 8255
PORTA 	 EQU 0FF40H 	 ; 8255 ports addresses in FLT-32 board
PORTB 	 EQU 0FF41H
PORTC 	 EQU 0FF42H
CONTROL 	 EQU 0FF43H

; Interrupts vector table location when targeting EPROM.
RESET 		 EQU 0000H
EXT0_ISR_VEC 		 EQU 0003H
T0_ISR_VEC 		 EQU 000BH
EXT1_ISR_VEC 		 EQU 0013H
T1_ISR_VEC 		 EQU 001BH
SERIAL_ISR_VEC 	 EQU 0023H
T2_ISR_VEC 		 EQU 002BH

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

136

A51 Examples

PROG_AREA 		 EQU 0030H 	 ; Main program area starting point
;
;
	 ORG RESET
	 LJMP MAIN 		 ; Continue with MAIN, jumping over the interrupt vector table.

	 ORG EXT0_ISR_VEC
; 	 LJMP EXT0_ISR 		 ; point to my interrupt service routine
	 RETI 			 ; remark this line if using ISR

	 ORG T0_ISR_VEC
	 ; LJMP T0_ISR 		 ; point to my interrupt service routine
	 RETI 			 ; remark this line if using ISR

	 ORG EXT1_ISR_VEC
;	 LJMP EXT1_ISR 		 ; point to my interrupt service routine
	 RETI 			 ; remark this line if using ISR

	 ORG T1_ISR_VEC
; 	 LJMP T1_ISR 		 ; point to my interrupt service routine
	 RETI 			 ; remark this line if using ISR

	 ORG SERIAL_ISR_VEC
; 	 LJMP SERIAL_ISR 		 ; point to my interrupt service routine
	 RETI 			 ; remark this line if using ISR

	 ORG T2_ISR_VEC
	 LJMP T2_ISR 		 ; point to my timer 2 service routine
; 	 RETI 			 ; remark this line if using ISR

ORG PROG_AREA

MAIN:
; initialise stack pointer past bit-addressable area

MOV SP, #30H

; First clear the 8032 Internal RAM (from 0 to FFH)
CLR A
MOV R0, #0FFH

CLR_RAM:
MOV @R0, A
DJNZ R0, CLR_RAM

; initialise serial port
MOV R7, #57

	 LCALL INIT_SERIAL

; print message
	 MOV DPTR, #MESSAGE1
	 LCALL TX_CMSG

; initialise 8255 i/o chip
	 MOV DPTR, #CONTROL
	 MOV A, #CTRL_WD
	 MOVX @DPTR, A 		 ; initialise 8255 ports mode

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

137

A51 Examples

; initialise timer 2
	 MOV RCAP2H, #4BH 	 ; re-load timer counters
	 MOV RCAP2L, #0FEH 	 ; 50 msec timer delay
	 MOV TH2, RCAP2H 		 ; used for the first interrupt
	 MOV TL2, RCAP2L

	 MOV T2CON, #0 		 ; set timer 2 16-bit auto-reload

	 SETB TR2 			 ; start timer 2
	 SETB ET2 			 ; enable interrupts from timers
	 SETB EA 			 ; allow interrupts
	 SETB PT2 			 ; Timer 2 with high priority

; start traffic lights
	 MOV DPTR, #TABLE 	 ; point DPTR to table
	 MOV A, DPL 		 ; DEC DPTR
	 JNZ DECSKIP
	 DEC DPH
DECSKIP:
	 DEC DPL 			 ; DPTR now points ahead of TABLE
	 MOV R7, #1
	 MOV R6, #1 		 ; R6,R7 set to 1 to start immediately from Top of Table
	 SETB TF2 			 ; simulate timer 2 interrupt

LOOP: SJMP LOOP 		 ; main program simply loops here
 				 ; forever. It could be doing something
 				 ; else whilst the timer takes care of
 				 ; scheduling the display pattern.

; traffic control isr.
; permanent data stored in code (eprom) area		
T2_ISR:
	 CLR TF2 			 ; clear interrupt flag
	 PUSH ACC
	 DJNZ R6, EXIT_NOW 	 ; exit immediately if 1 second
 				 ; has not yet passed
	 MOV R6, #20 		 ; reset R6 otherwise
	 DJNZ R7, EXIT_NOW 	 ; has required time passed ?
	 INC DPTR 		 ; yes
	 CLR A 			 ; we need to clear it first
	 MOVC A, @A + DPTR 	 ; get next pattern
	 JNZ SKIP 			 ; 0 pattern indicates end of table, hence start again
	 MOV DPTR, #TABLE 	 ; acc=0 hence no need to clear it
	 MOVC A, @A + DPTR 	 ; load 1st pattern in Acc,
SKIP: PUSH DPH
	 PUSH DPL
	 MOV DPTR, #PORTB
	 MOVX @DPTR, A 		 ; light up leds with pattern
	 POP DPL
	 POP DPH
	 INC DPTR
	 CLR A
	 MOVC A, @A + DPTR 	 ; get duration byte and
	 MOV R7, A 		 ; store the seconds in R7

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

138

A51 Examples

; initialise timer 2
	 MOV RCAP2H, #4BH 	 ; re-load timer counters
	 MOV RCAP2L, #0FEH 	 ; 50 msec timer delay
	 MOV TH2, RCAP2H 		 ; used for the first interrupt
	 MOV TL2, RCAP2L

	 MOV T2CON, #0 		 ; set timer 2 16-bit auto-reload

	 SETB TR2 			 ; start timer 2
	 SETB ET2 			 ; enable interrupts from timers
	 SETB EA 			 ; allow interrupts
	 SETB PT2 			 ; Timer 2 with high priority

; start traffic lights
	 MOV DPTR, #TABLE 	 ; point DPTR to table
	 MOV A, DPL 		 ; DEC DPTR
	 JNZ DECSKIP
	 DEC DPH
DECSKIP:
	 DEC DPL 			 ; DPTR now points ahead of TABLE
	 MOV R7, #1
	 MOV R6, #1 		 ; R6,R7 set to 1 to start immediately from Top of Table
	 SETB TF2 			 ; simulate timer 2 interrupt

LOOP: SJMP LOOP 		 ; main program simply loops here
 				 ; forever. It could be doing something
 				 ; else whilst the timer takes care of
 				 ; scheduling the display pattern.

; traffic control isr.
; permanent data stored in code (eprom) area		
T2_ISR:
	 CLR TF2 			 ; clear interrupt flag
	 PUSH ACC
	 DJNZ R6, EXIT_NOW 	 ; exit immediately if 1 second
 				 ; has not yet passed
	 MOV R6, #20 		 ; reset R6 otherwise
	 DJNZ R7, EXIT_NOW 	 ; has required time passed ?
	 INC DPTR 		 ; yes
	 CLR A 			 ; we need to clear it first
	 MOVC A, @A + DPTR 	 ; get next pattern
	 JNZ SKIP 			 ; 0 pattern indicates end of table, hence start again
	 MOV DPTR, #TABLE 	 ; acc=0 hence no need to clear it
	 MOVC A, @A + DPTR 	 ; load 1st pattern in Acc,
SKIP: PUSH DPH
	 PUSH DPL
	 MOV DPTR, #PORTB
	 MOVX @DPTR, A 		 ; light up leds with pattern
	 POP DPL
	 POP DPH
	 INC DPTR
	 CLR A
	 MOVC A, @A + DPTR 	 ; get duration byte and
	 MOV R7, A 		 ; store the seconds in R7

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

139

A51 Examples

EXIT_NOW:
	 POP ACC
	 RETI

; permanent data, can be stored in code area (not rewriteable)
; Table storing Pattern and Duration in seconds
;
TABLE:

DB 82H,10 	 ; R - G
 	 DB 84H,2 		 ; R - Y
 	 DB 88H,1 		 ; R - R
 	 DB 0C8H,2 	 ; RY - R
 	 DB 28H,8 		 ; G - R
 	 DB 48H,2 		 ; Y - R
 	 DB 88H,1 		 ; R - R
 	 DB 8CH,2 	; R - RY
 	 DB 0		 ; end of array marker

; Message must terminate with a zero for correct performance of the print routine
MESSAGE1: 	 db 	 13,10,’This is a serial port test.’,CR,LF,LF
 		 db 	 ‘Read the program carefully and try to’,CR,LF
 		 db 	 ‘understand it well.’,CR,LF,0

 END

Download free eBooks at bookboon.com

Click on the ad to read more

Sweden
www.teknat.umu.se/english

Think Umeå. Get a Master’s degree!
• modern campus • world class research • 31 000 students
• top class teachers • ranked nr 1 by international students

Master’s programmes:
• Architecture • Industrial Design • Science • Engineering

http://s.bookboon.com/umeaa

PaulOS An 8051 Real-Time Operating System
Part I

140

8032 Differences

4	 8032 Differences
The 8051 is the very basic micro-controller. In this chapter we present one of the first improved versions
or variants, namely the 8032/8052 micro-controller, with an enhanced internal memory and an additional
timer. An explanation of the new special function registers associated with the new internal peripheral
is also given.

4.1	 8032 Extras

The 8032 microcontroller is the 8051’s “big brother.” It is a slightly more powerful microcontroller,
sporting a number of additional features which the developer may make use of.

Hex Byte
Address

Notes Notes
Hex Byte
Address

FF

Upper
128
bytes

80

(8032 ONLY)
Accessible
by Indirect
Addressing

only

SFR area
Acces-
sible

by Direct
Address-

ing
only

FF
80

7F

Lower
128
bytes

00

Accessible
by Direct
and Indi-
rect Ad-
dressing.

Table 4-1 8032 Total Internal RAM organisation

•	 256 bytes of Internal RAM (compared to 128 in the standard 8051). The lower 128 bytes are
accessible using either Direct or Indirect addressing modes. The additional upper 128 bytes
can only be accessed using the Indirect addressing mode.

•	 A third 16-bit timer (Timer 2), capable of a number of new operating modes, interrupts and
16-bit reloads.

•	 The serial port can now make use of either Timer 1 or Timer 2 to generate the baud rates.
•	 Additional SFRs to support the functionality offered by the third timer. These SFRs still

reside in the 80h-FFh area accessible only by Direct Addressing to differentiate them from
the Indirectly addressable internal RAM used for program stack and/or variables.

Table 4-1 shows the internal memory differences that there are between the 8051 and 8032. The remainder
of this chapter will explain these additional features offered by the 8032, and how they are used within
user programs.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

141

8032 Differences

4.2	 256 Bytes of Internal RAM

The standard 8051 microcontroller contains 128 bytes of Internal RAM that are available to the developer
as working memory for variables and/or for the operating stack. Instructions that refer to internal ram
addresses in the range of 00h through 7Fh refer to the basic 8051.

Addresses which are accessible using direct addressing, in the range of 80h through FFh refer to Special
Function Registers (SFRs).

Although the 8032 has 256 bytes of Internal RAM, the above mentioned method of referencing them
remains true. Using Direct Addressing, any address between 00h and 7Fh refers to Internal RAM whereas
any address in the range of 80h through FFh refers to SFRs.

The 8032’s additional Internal RAM may only be accessed using Indirect Addressing. Indirect addressing
always refers to Internal RAM and never to an SFR.

Thus, to read the value contained in Internal RAM address 90h, we would need to code something along
the following lines:

MOV R0, #90h 		 ;Set the indirect address to 90h

MOV A, @R0 		 ;Read the contents of Internal RAM pointed to by R0

The above code first assigns the value 90h to the register R0. It subsequently reads, indirectly, the contents
of the address contained in (pointed by) R0 (90h). Thus, after these two instructions have executed, the
Accumulator will contain the value of Internal RAM address 90h.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

142

8032 Differences

Hex Byte
Address

Hex Bit Address Notes

FF

80

Additional
Indirectly
Addressable
General
Purpose

RAM

Can be
used as
a STACK
Area by

loading SP
with 7FH
or higher

7F

30

Directly and
Indirectly
Addressable

General Purpose RAM

2F 7F 7E 7D 7C 7B 7A 79 78

Bit

Addressable

Section

2E 77 76 75 74 73 72 71 70
2D 6F 6E 6D 6C 6B 6A 69 68
2C 67 66 65 64 63 62 61 60
2B 5F 5E 5D 5C 5B 5A 59 58
2A 57 56 55 54 53 52 51 50
29 4F 4E 4D 4C 4B 4A 49 48
28 47 46 45 44 43 42 41 40
27 3F 3E 3D 3C 3B 3A 39 38
26 37 36 35 34 33 32 31 30
25 2F 2E 2D 2C 2B 2A 29 28
24 27 26 25 24 23 22 21 20
23 1F 1E 1D 1C 1B 1A 19 18
22 17 16 15 14 13 12 11 10
21 0F 0E 0D 0C 0B 0A 09 08
20 07 06 05 04 03 02 01 00
1F

18

Register Bank 3

(R0 – R7)
Bank is

selected

using

RS0 and RS1

in the PSW

register.

See SFRs.

17

10

Register Bank 2

(R0 – R7)
0F

08

Register Bank 1

(R0 – R7)
07

00

Register Bank 0

(R0 – R7)

Table 4-2 8032 Internal RAM organisation

It is very important to understand that the above code just mentioned, is not the same as the following:

MOV A, 90h ;Reads the contents of SFR 90h (P1)

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

143

8032 Differences

This instruction uses direct addressing; recall that direct addressing reads Internal RAM when the address
is in the range of 00h through 7Fh, and reads an SFR when the address is in the range of 80h through
FFh. Thus in the case of this second example, the move instruction reads the value of SFR 90h, which
happens to be P1 (I/O Port 1).

The importance of using the correct addressing mode cannot be over-emphasised. It should however
be noted here, that when using a compiler to compile a C source code program into machine code,
the compiler automatically would use the correct addressing form. The compiler would know where
the variable or SFR is located and could therefore decide which type of addressing mode is required to
access that variable or SFR.

4.3	 Additional Timer 2

An important addition for the 8032 is the availability of a third timer, referred to as Timer 2. We shall
now deal with the SFRs connected with this timer, as well as the various modes of operation for this
extra timer.

Download free eBooks at bookboon.com

Click on the ad to read more

 By thinking about things that nobody has ever thought about before

 By writing a dissertation about the highest building on earth

 With an internship about natural hazards at popular tourist destinations

 By discussing with doctors, engineers and seismologists

 By all of the above

How could you take your studies to new heights?

From climate change to space travel – as one of the leading reinsurers, we
examine risks of all kinds and insure against them. Learn with us how you
can drive projects of global significance forwards. Profit from the know-how
and network of our staff. Lay the foundation stone for your professional career,
while still at university. Find out how you can get involved at Munich Re as
a student at munichre.com/career.

http://s.bookboon.com/munichre

PaulOS An 8051 Real-Time Operating System
Part I

144

8032 Differences

4.3.1	 New SFRs for 8032’s third timer (T2)

In addition to the 8051’s standard 21 SFRs, the 8032 adds an additional 5 SFRs related to the 8032’s
third timer as shown shaded in Table 4-3a. All of the original 8051 SFRs shown in Tables 4-3a and 4-3b
function exactly as they do in the 8051 – the 8032 simply adds new SFRs, it doesn’t change the definition
of the standard SFRs. The five new SFRs are in the range of C8h to CDh (SFR C9h is not defined), plus
some additional bits shown shaded.

Note that the TL2/TH2 register pair and the RCAP2L/RCAP2H register pair occupy consecutive memory
addresses, low byte first, contrary to the registers available for Timer 0 and Timer 1. This means that
in KEIL C, we can load the whole 16-bit Timer 2 counter registers TL2 and TH2 by using the SFR16
data type.

Hex Byte
Address

Hex Bit Address Symbol

FF – F9 Not implemented on chip -

* F8 * Not implemented on chip -

F7 – F1 Not implemented on chip -

* F0 * F7 F6 F5 F4 F3 F2 F1 F0 B

EF – E9 Not implemented on chip -

* E8 * Not implemented on chip -

E7 – E1 Not implemented on chip -

* E0 * E7 E6 E5 E4 E3 E2 E1 E0 ACC

DF – D9 Not implemented on chip -

* D8 * Not implemented on chip -

D7 – D1 Not implemented on chip -

* D0 * D7 D6 D5 D4 D3 D2 D1 D0 PSW

CF – CE Not implemented on chip -

CD TH2

CC TL2

CB RCAP2H

CA RCAP2L

C9 Not implemented on chip -

C8 CF CE CD CC CB CA C9 C8 T2CON

C7 – C1 Not implemented on chip -

* C0 * Not implemented on chip -

BF – B9 Not implemented on chip -

* B8 * - - BD BC BB BA B9 B8 IP

B7 – B1 Not implemented on chip -

* B0 * B7 B6 B5 B4 B3 B2 B1 B0 P3

AF – A9 Not implemented on chip -

* A8 * AF - AD AC AB AA A9 A8 IE

A7 – A1 Not implemented on chip -

* A0 * A7 A6 A5 A4 A3 A2 A1 A0 P2

Table 4-3a 8032 Special Function Registers (SFRs)-DIRECT addressing ONLY

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

145

8032 Differences

Hex Byte
Address

Hex Bit Address Symbol

9F – 9A Not implemented on chip -

99 SBUF

* 98 * 9F 9E 9D 9C 9B 9A 99 98 SCON

97 – 91 Not implemented on chip -

* 90 * 97 96 95 94 93 92 91 90 P1

8F –8E Not implemented on chip -

8D TH1

8C TH0

8B TL1

8A TL0

89 TMOD

* 88 * 8F 8E 8D 8C 8B 8A 89 88 TCON

87 PCON

86 – 84 Not implemented on chip -

83 DPH

82 DPL

81 SP

* 80 * 87 86 85 84 83 82 81 80 P0

Table 4-3b 8032 Special Function Registers (SFRs)-DIRECT addressing ONLY

The procedure would be as follows:

•	 We first declare a variable of type SFR16, say using
SFR16 T2REG = 0xCC;

•	 We then simply write
T2REG = 0x1234; //This would load 34H in TL2 and 12H in TH2.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

146

8032 Differences

4.3.2	 T2CON SFR (C8H)

Bit-addressable

Bit Name
Alternate
Names

Bit Hex
Address

Explanation of Function

7 TF2 T2CON.7 CF Timer 2 overflow. This bit is set when T2
overflows. When T2 interrupt is enabled,
this bit will cause the interrupt to be
triggered. This bit will not be set if ei-
ther TCLK or RCLK bits are set

6 EXF2 T2CON.6 CE Timer 2 External flag. Set by a reload or
capture caused b a 1-0 transition on T2EX
(P1.1), but only when EXEN2 is set. When
T2 interrupt is enabled, this bit will
also trigger the interrupt.

5 RCLK T2CON.5 CD Timer 2 Receiver Clock. When this bit is
set, Timer 2 will be used to determine
the serial port receive baud rate. When
cleared, Timer 1 will be used as the baud
rate generator.

4 TCLK T2CON.4 CC Timer 2 Transmitter Clock. When this bit
is set, Timer 2 will be used to determine
the serial port transmitter baud rate.
When cleared, Timer 1 will be used as the
baud rate generator.

3 EXEN2 T2CON.3 CB Timer 2 External enable. When set, a 1-0
transition on T2EX (P1.1) will cause a
capture or a reload to occur.

2 TR2 T2CON.2 CA Timer 2 run. When set, timer 2 will start.
Timer 2 will stop when this bit is cleared.

1 C/T2 T2CON.1 C9 Timer 2 Counter/Interval timer. If cleared,
Timer 2 is an interval counter. If set,
Timer 2 is incremented by 1-0 transitions
on T2 (P1.0).

0 CP/RL2C T2CON.0 C8 Timer 2 Capture/Reload. If cleared, auto
reload occurs on timer 2 overflow, or T2EX
1-0 transition if EXEN2 is set. If set, a
capture will occur on a 1-0 transition of
T2EX, if EXEN2 is set.

Table 4-4 T2CON (C8H) SFR

The operation of Timer 2 (T2) is controlled almost entirely by the T2CON SFR shown in Table 4-4, at
address C8h. Note that since this SFR has an address which is divisible by 8, then it is Bit-addressable.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

147

8032 Differences

4.3.3	 Timer 2 as a baud-rate generator

Timer 2 may be used as a baud rate generator. This is accomplished by setting either RCLK (T2CON.5)
or TCLK (T2CON.4). With the standard 8051, Timer 1 is the only timer which may be used to determine
the baud rate of the serial port. Additionally for the standard 8051 the receive and transmit baud rate
must be the same.

With the 8032, however, we may configure the serial port to receive at one baud rate and transmit at
another baud rate. For example, if RCLK is set and TCLK is cleared, serial data will be received at the baud
rate determined by Timer 2 whereas the baud rate of transmitted data will be determined by Timer 1.

Determining the auto-reload values of Timer 1 for a specific baud rate was discussed in section 2.12.2.
Timer 2 can similarly be programmed, the only difference is that in the case of Timer 2, the auto-reload
value is placed in RCAP2H and RCAP2L, and the value is a 16-bit value rather than an 8-bit value.

The baud rates (in serial modes 1 and 3) are determined by Timer 2’s overflow rate as follows:

Baud Rate = (Timer 2 Overflow Rate)/ 16

The Timer can be configured for either timer or counter operation. The timer operation is a little different
for Timer 2 when it is being used as a baud rate generator. Normally, as a timer it would increment
every machine cycle (oscillator frequency/12). However, when being used as a baud rate generator, it
increments at every state time (oscillator frequency/2) and the equations for determining the variable
baud rate (serial modes 1 or 3), using Timer 2 become:

Baud Rate = (Osc. Frequency)/(32 [65536 – (RCAP2H,RCAP2L)]) 	 … Equation 4-1

or

(RCAP2H,RCAP2L) = [2097152 – (Osc. Freq.)/(Baud Rate)] / 32 	 … Equation 4-2

Where (RCAP2H,RCAP2L) is the content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

Thus to get a baudrate of 345600 baud with an 11.0592 MHz clock, using equation 4-2 we would need
to load (RCAP2H,RCAP2L) with 65535. Thus the intial Timer 2 registers TH2 and TL2 as well as the
reload registers RCAP2H and RCAP2L would all be loaded with 255 or FFH. An example using Timer
2 as the baud rate generator is given in Appendix F.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

148

8032 Differences

Note that when Timer 2 is used as a baud rate generator (having either TCLK or RCLK set), the Timer
2 Overflow Flag (TF2) will not be set, therefore the Timer 2 interrupt does not have to be disabled.
Thus when Timer 2 is being used as a baud rate generator, T2EX can still be used as an extra external
interrupt if required.

4.3.4	 Timer 2 in auto-reload mode

The first mode in which Timer 2 may be used is Auto-Reload. The auto-reload mode functions just like
Timer 0 and Timer 1 in auto-reload mode, except that the Timer 2 auto-reload mode performs a full
16-bit reload (recall that Timer 0 and Timer 1 only have 8-bit reload capability). When a reload occurs,
the value of TH2 will be reloaded with the value contained in RCAP2H and the value of TL2 will be
reloaded with the value contained in RCAP2L.

Figure 4-1 Timer 2 Auto-reload Mode

To operate Timer 2 in auto-reload mode, the CP/RL2 bit (T2CON.0) must be cleared. In this mode,
Timer 2 (TH2/TL2) will be reloaded with the reload value (RCAP2H/RCAP2L) whenever it overflows
from FFFFh back to 0000h. An overflow of Timer 2 will cause the TF2 bit to be set, which will cause an
interrupt to be triggered, if Timer 2 interrupt is enabled. Note that TF2 will not be set on an overflow
condition if either RCLK or TCLK (T2CON.5 or T2CON.4) are set, which is the case if Timer 2 is being
used as a baud rate generator.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

149

8032 Differences

Additionally, by also setting EXEN2 (T2CON.3), a reload will also occur whenever a 1-0 transition is
detected on T2EX (P1.1). A reload which occurs as a result of such a transition will cause the EXF2
(T2CON.6) flag to be set, triggering a Timer 2 interrupt if the said interrupt has been enabled.

4.3.5	 Timer 2 in Capture mode

A new mode specific to Timer 2 is called “Capture Mode.” As the name implies, this mode captures the
value of Timer 2 (TH2 and TL2) into the capture SFRs (RCAP2H and RCAP2L). To put Timer 2 in
capture mode, CP/RL2 (T2CON.0) must be set, as must be EXEN2 (T2CON.3).

Figure 4-2 Timer 2 in 16-bit capture mode

When configured as mentioned above, a capture will occur whenever a 1-0 transition is detected on
T2EX (P1.1). At the moment the transition is detected, the current values of TH2 and TL2 will be copied
into RCAP2H and RCAP2L, respectively. At the same time, the EXF2 (T2CON.6) bit will be set, which
will trigger an interrupt if Timer 2 interrupt is enabled.

NOTE 1: Even in capture mode, an overflow of Timer 2 will result in TF2 being set and an interrupt
being triggered.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

150

8032 Differences

NOTE 2: Capture mode is an efficient way to measure the time between events. At the moment that an
event occurs, the current value of Timer 2 will be copied into RCAP2H/L. However, Timer 2 will not
stop and an interrupt will be triggered. Thus our interrupt routine may copy the value of RCAP2H/L to a
temporary holding variable without having to stop Timer 2. When another capture occurs, our interrupt
can take the difference between the two values to determine the elapsed time. Again, the main advantage
is that we do not have to stop Timer 2 to read its value, as is the case with Timer 0 and Timer 1, where
there is the possibility of reading the wrong value if the timer count happens to be close to a roll-over .

4.3.6	 Timer 2 Interrupt

As is the case with the other two timers, Timer 2 can be configured to trigger an interrupt. In fact, as
can be seen in Table 4-5 a number of situations can trigger a Timer 2 interrupt.

To enable Timer 2 interrupt, set ET2 (IE.5) and it should be noted that this bit of IE is only valid on an
8032 or other devices of the 8051 family which have a Tmer 2 on board. Similarly, the priority of Timer
2 interrupt can be configured using PT2 (IP.5). As always, we have to make sure to also set the EA (IE.7)
bit when enabling any interrupt. This will ensure that the controller would recognize the interrupt.

Download free eBooks at bookboon.com

Click on the ad to read more

Open your mind to
new opportunities
With 31,000 students, Linnaeus University is
one of the larger universities in Sweden. We
are a modern university, known for our strong
international profile. Every year more than
1,600 international students from all over the
world choose to enjoy the friendly atmosphere
and active student life at Linnaeus University.
Welcome to join us!

Bachelor programmes in
Business & Economics | Computer Science/IT |
Design | Mathematics

Master programmes in
Business & Economics | Behavioural Sciences | Computer
Science/IT | Cultural Studies & Social Sciences | Design |
Mathematics | Natural Sciences | Technology & Engineering

Summer Academy courses

Scholarships

http://s.bookboon.com/LNU

PaulOS An 8051 Real-Time Operating System
Part I

151

8032 Differences

Interrupt
Name

Interrupt
Number

Flag Interrupt
Hex Vector
Address

External 0 0 IE0 0003

Timer 0 1 TF0 000B

External 1 2 IE1 0013

Timer 1 3 TF1 001B

Serial 4 RI or TI 0023

Timer 2 5 TF2 or EXF2 002B

Table 4-5 8032 Interrupt Vector Table location

Once Timer 2 interrupt has been enabled, a Timer 2 interrupt will be triggered whenever TF2 (T2CON.7)
or EXF2 (T2CON.6) are set. The Timer 2 Interrupt routine must be placed at 002Bh in code memory.

NOTE: Like the Serial Interrupt, Timer 2 interrupt does not automatically clear the interrupt flag that
triggered the interrupt. Since there are two conditions that can trigger a Timer 2 interrupt, either TF2
or EXF2 being set, the microcontroller does not reset these flags automatically when jumping to the
ISR. Therefore we have to add some code in the interrupt routine which determines the source of the
interrupt and act accordingly. It is possible (and even probable!) that we will want to do one thing when
the timer overflows and something completely different when a capture or reload is triggered by an
external event. Thus it is imperative to always clear TF2 and/or EXF2 in the Timer 2 ISR. Failing to do
so will cause the interrupt to be triggered repeatedly until the bits are cleared.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

152

Evaluation Boards

5	 Evaluation Boards
Here we discuss just a few of the many development boards which are widely available for the 8051
family of micro-controllers. These evaluation boards can be used to develop and test the program on the
actual hardware and arte especially useful for students whilst gaining experience on the micro-controller.
Actual add-on hardware (such as LCD displays, servo motors, LEDs, keyboards) can also be connected to
these boards in order to implement the required project. We discuss and explain the main features of the
Flite-32 board from Flite Electronics International Limited (http://www.flite.co.uk) using an 8032 micro-
controller, the NMIY-0032 8051 board from New Micros, Inc. (http://www.newmicros.com) using an
8051 and the C8051F020TB from Silicon Labs (http://www.silabs.com) using the very high performance
C8051F020 micro-controller. These are all available at the University of Malta Communications and
Computer Engineering department laboratories for student use.

Naturally, if you are using another kind of board, you might wish to skip this chapter completely or just
skim through it perhaps you might pick some new idea.

5.1	 FLITE-32 Development Board

The FLITE-32 development board is available from Flite Electronics International Limited (see http://
www.flite.co.uk/flite-flt-32-803251-training-system.htm), is used extensively in our course program to
train the students on the 8051-family of microcontrollers. It uses the 8032 device, thus having available
three timers and 256 bytes of internal RAM. Co effectively mplete schematics and manuals are available
from this site.

The board also has some additional peripherals, which further enhance its capabilities. Namely it has:

•	 32KB monitor EPROM program
•	 8KB (which we have expanded to 32KB) external memory
•	 8255 Peripheral Interface Adaptor IC providing an additional 24 I/O lines (3 I/O ports

having 8-bits each)
•	 26C91 Universal Asynchronous Receiver/Transmitter (UART) providing an additional serial

port, running at a maximum of 38400 baud, using socket P2

Download free eBooks at bookboon.com

http://www.newmicros.com
http://www.silabs.com

PaulOS An 8051 Real-Time Operating System
Part I

153

Evaluation Boards

Figure 5-1 Flite-32 Board

Download free eBooks at bookboon.com

Click on the ad to read more

Enterprise Content Management

InnovationCyber Crime

Web-enabled Applications IT
 C

on
su

lta
nc

ySA
P

SQL
JavaC

RM

.NETEn
te

rp
ris

e
A

pp
lic

at
io

n

Big Data

Information Management

So
ci

al
 B

us
in

es
s

Implementation

Technology Advisory

D
at

a
A

na
ly

tic
s

C
lo

ud
 C

om
pu

tin
g

End-to-End Solution

Implementation

Technology

Are you ready to do what matters
when it comes to Technology?

http://s.bookboon.com/deloitteUS

PaulOS An 8051 Real-Time Operating System
Part I

154

Evaluation Boards

5.1.1	 FLITE-32 General Setup

Microprocessor:	 Intel 8032

Internal RAM:		 256 bytes

External RAM:		� either 8KB using the 6264 SRAM IC.
(address 8000H to 9FFFH, with J2/J3 having links 2-3)
or 32KB using the 62256 SRAM IC.
(address 8000H to FDFFH, with J2/J3 links 1-2)

			 User area for code and data starts from 8100H

Reserved Areas:	� The monitor program residing in the 32KB EPROM, having Address range 0000
to 7FFFH, also uses some memory in the internal RAM and in the external
RAM. In particular if some printing routines from the monitor are being used,
internal RAM locations 20H and 21H should be avoided together with external
RAM area 8000H to 80FFH.

5.1.2	 Peripherals:

The lists below describe the address mapping and register names given to the peripherals found on the
board.

8255 Input-Output IC:

	 Port A	 – FF40H

	 Port B	 – FF41H

	 Port C	 – FF42H

	 Control – FF43H

2691 External UART (P2):
UART_2691_BASE	 EQU	 0FFF8H	 	 ; UART BASE ADDRESS, on Flite-32

UART_MR1 		 EQU 	 UART_2691_BASE 	 ; MR1 – Mode Register 1

UART_MR2 		 EQU 	 UART_2691_BASE 	 ; MR2 – Mode Register 2

UART_SR		 EQU	 UART_2691_BASE + 1; READ SR – Channel Status Register

UART_CSR		 EQU	 UART_2691_BASE + 1; WRITE CSR – Clock Select Register

UART_CR		 EQU	 UART_2691_BASE + 2; WRITE CR – Command Register

UART_RHR		 EQU	 UART_2691_BASE + 3; READ RHR – Rx Holding Reg

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

155

Evaluation Boards

UART_THR		 EQU	 UART_2691_BASE + 3; WRITE THR – Tx Holding Reg

UART_ACR		 EQU	 UART_2691_BASE + 4; WRITE ACR – Auxiliary Control

UART_ISR		 EQU	 UART_2691_BASE + 5; READ ISR – Interrupt Status Register

UART_IMR		 EQU	 UART_2691_BASE + 5; WRITE IMR – Interrupt Mask Reg

UART_CTU		 EQU	 UART_2691_BASE + 6

; READ/WRITE CTU – Counter Timer Upper Register

UART_CTL		 EQU	 UART_2691_BASE + 7	

; READ/WRITE CTL – Counter Timer Lower Register

RX			 EQU	 0FFE8H		 ; READ RX DATA input (socket P2).

					 ; This is used if required to auto-determine the baud rate

The 2691 can also be used under interrupt control, by connecting the link J8 to External 0 Interrupt
(link 5-6), or External 1 Interrupt (link 5-4).

The main memory map of the board is shown in Table 5-1.

Internal RAM External EPROM or RAM Remarks

Not

Available

FFFFH UART

FE40H 8255

FE00H Peripherals

FDFFH

If 32KB External

RAM

(Code and Data)

A000H

User

Area

9FFFH

8KB External

RAM

(Code and Data)

8100H

User

Area

80FFH

to

8000H

Reserved

For monitor

Use

7FFFH

External
EPROM

(Monitor Code Area)

0000H

Monitor

Program

FFH

Internal

On-chip

Memory

00H

Table 5-1 FLT-32 Memory map

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

156

Evaluation Boards

Additional RAM can be added by replacing the default RAM chip. Even the EPROM can be replaced
with a smaller or larger capacity EPROM. In every case, some jumper links would have to be re-arranged
to get the correct address coverage.

The Interrupt Vector Table, which normally resides in the low ROM area, (0000H to 0030H), is re-
mapped on start-up and points to the external RAM area starting at 8000H. For example, in the monitor
EPROM, at address location 0003H, which is the normal EXT0 interrupt vector address, there is written
the instruction LJMP 8000H (jump to address 8000H).

Download free eBooks at bookboon.com

Click on the ad to read more

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA2016

PaulOS An 8051 Real-Time Operating System
Part I

157

Evaluation Boards

Interrupt
Number

0 1 2 3 4 5

Interrupt

Name

External

0

Timer

0

External

1

Timer

1

Serial Timer

2

Standard

Vector

Address

0003H 000BH 0013H 001BH 0023H 002BH

FLT-32

Vector

Address

(Monitor Version V0)

8000H N/A 8010H 8018H 8020H 8028H

FLT-32

Vector

Address

(Monitor Version 3)

8000H

*

8008H 8010H 8018H 8020H 8028H

Flags

Causing

Interrupt

IE0 IT0 IE1 TF1 RI

&

TI

TF2

&

EXF2

Interrupt

Enable bit

(+ EA)

EX0 ET0 EX1 ET1 ES ET2

Interrupt
Priority bit

PX0 PT0 PX1 PT1 PS PT2

Falling Edge
Triggering

IT0 IT1

Table 5-2 FLT-32 Interrupt Vector Table

* This 8008H address is only available if using version 3 monitor EPROM which we modified. The
modification in the EPROM involved over-writing locations starting at 0008H with a JMP 8008H
instruction, thus replacing the original jump to the Single Step command which existed in the standard
monitor program. Otherwise, it would not be available since this interrupt is normally used by the default
EPROM monitor for the SINGLE STEP command.

Note:

Link J8 can be used to divert signals to EXT0 or EXT1 interrupt pins of the CPU as described here:

External Interrupt pin 5 on the optional P4 connector can be connected to EXT0 (link 2-3) or to EXT1
(link 1-2)

Also interrupts from the external 2691 UART can also be diverted to EXT0 (link 5-6) or to EXT1 (link 5-4)

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

158

Evaluation Boards

Timers:

Timer 0 is used by the monitor Version 0 program (under interrupt control) whenever Single Step or
Trace is being performed. Hence it is available to the user (not using interrupts since the vector is not
available in RAM) providing no tracing is being done. Moreover, if the program is intended for stand-
alone EPROM use (that is we eventually will replace the monitor EPROM with another EPROM which
we will write ourselves containing just our application program), then even the interrupt can be used
(using Timer 0 vector address 000BH). Otherwise, the interrupts connected with Timer 0 can only be
used with the modified version 3 of the monitor program, which removes the Single Step function.

Timer 1 is used (not under interrupt control) as the baud rate generator whenever socket P3 (the 8032
internal UART) is being used by the monitor program, usually to output characters to a printer or to a
terminal. Hence if the monitor routines for printing using socket P3 are not being used, then Timer 1
can be used in any mode as we deem fit.

Serial Printer:

Socket P3 (serial printer) is selected by pressing

W 	 (set baud rate),

WO 	 (enable printer) and

WX 	 (disable printer),

when in the monitor prompt.

5.1.3	 Some Important FLITE-32 Monitor Routines:

Use LCALL <address> to use these routines which are already coded in the monitor program. CALLed
from the user program, they will RETurn on completion.

•	 0090H	 Convert character in the ACC to upper case.
•	 0093H	 Send the character in the ACC to external UART (socket P2).
•	 0096H	 Get character from external UART (socket P2) to the ACC.
•	 0099H	 Send Carriage Return and Line Feed to external UART (socket P2).
•	 009CH	 Send to UART message pointed to by DPTR, terminated by 00H.
•	 009FH	 Restart board without initialising.
•	 00A2H	 As above but with sign-on message.
•	 00A5H	 Send to UART the Hex word in found in registers AB as ASCII characters.
•	 00A8H	 Convert the ASCII value in ACC to Hex.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

159

Evaluation Boards

It should be noted here that the monitor program makes use of the internal RAM memory from 00H
to 5FH. In fact, the monitor program intialises the stack pointer SP to 5FH, thus having the actual stack
starting at 60H. Use of the internal RAM area 00 to 7FH should be avoided if one intends to make use
of the functions/commands of the monitor program. For the PaulOS RTOS, all monitor commands
and functions are ignored, and all the 256 bytes of the internal RAM area, from 00H to FFH are used
extensively by the RTOS and any application program which is running.

5.2	 Typical Settings for KEIL uV2

USE the following settings in Options for Target 1

Memory Model: 	 LARGE: VARIABLES IN XDATA
Code Model: 		 LARGE: 64K Program

 		 START 		 SIZE 		 (If using 32KB RAM)
CODE: 		 0X8100 	 0X5D00
RAM: 		 0XDE00 	 0X2000
Interrupt Vector address at 0x7FFD (click on C51 tab)

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/GTca

PaulOS An 8051 Real-Time Operating System
Part I

160

Evaluation Boards

 		 START	 	 SIZE 		 (If using 8KB RAM)
CODE: 		 0X8100 	 0X1B00
RAM: 		 0X9C00 	 0X0400
Interrupt Vector address at 0x7FFD (click on C51 tab)

 		 START	 	 SIZE 		 (If using 32KB EPROM)
CODE: 		 0X0000 	 0X8000
RAM: 		 0X8000 	 0X7E00
Interrupt Vector address at 0x0000 (click on C51 tab)

5.3	 The NMIY-0031 Board

This is another low-cost 8051 evaluation board, available from New Micros Inc. (see http://www.
newmicros.com/cgi-bin/store/order.cgi?form=prod_detail&part=NMIY-0031). Complete schematics
and user manual are available from this site.

5.3.1	 NMIY General Data

NMIY uses an 8051 micro-controller having two timers (T0 and T1), one UART (equivalent to the P3
socket found on the FLITE-32 board) and only 128 bytes internal RAM.

Figure 5-2 NMIY-0031 Board

Download free eBooks at bookboon.com

http://www.keil.com/_relinks/link.asp?http://www.newmicros.com/cgi-bin/store/order.cgi?form=prod_detail&part=NMIY-0031
http://www.keil.com/_relinks/link.asp?http://www.newmicros.com/cgi-bin/store/order.cgi?form=prod_detail&part=NMIY-0031

PaulOS An 8051 Real-Time Operating System
Part I

161

Evaluation Boards

T1 can be used for the serial port. The serial interrupt is not available when using the monitor EPROM.

Initially, whilst developing and loading the hex file onto the board, use only a serial baud-rate of 9600
baud (8-N-1-N), 2 ms/character and 5 ms/line delays in the terminal software (such as TERATERM)
settings. The baud rate can then be changed to any standard value in the user’s source file program,
depending on the application requirements.

Use CAPITAL letters to talk to the monitor program:

H – Help
L – Load
X – Execute

As standard, the board has only 8KB of monitor code and 8KB of RAM to use for code and data.
Additional RAM (for decimal/hex sizes see Table 5-3 where the hex size is shown using the 0x prefix
notation instead of the H suffix notation) can be plugged in, up to 64Kbytes (say two 32KB RAM ICs
in sockets U3 and U4). See link settings Table 5-4.

We may start program code from 8100H (same as in FLITE-32), so we may adjust the ORG position in
the STARTUP.A51 file accordingly.

Download free eBooks at bookboon.com

Click on the ad to read more

 CHARLES JENKINS

 Quality Engineer
ZF Friedrichshafen AG

I’M WITH ZF.
ENGINEER AND EASY RIDER.
www.im-with-zf.com

Scan the code and find
out more about me
and what I do at ZF:

http://s.bookboon.com/zf

PaulOS An 8051 Real-Time Operating System
Part I

162

Evaluation Boards

Also, in the STARTUP.A51 file, the IDATALEN has to be modified to 80H (128 bytes).

The Interrupt Vector Base address should be adjusted to 8000H (not 7FFDH as for the FLITE-32). This
is because the interrupt vectors use slightly different mapping addresses than on the FLITE-32 board.

RAM SIZE KBYTES RAM SIZE BYTES (DECIMAL) RAM SIZE BYTES (HEX)

0.5 512 0x0200

1 1024 0x0400

2 2048 0x0800

3 3072 0x0C00

4 4096 0x1000

5 5120 0x1400

6 6144 0x1800

7 7166 0x1C00

8 8192 0x2000

9 9216 0x2400

10 10240 0x2800

11 11264 0x2C00

12 12288 0x3000

13 13312 0x3400

14 14336 0x3800

15 15360 0x3C00

16 16384 0x4000

17 17408 0x4400

18 18432 0x4800

19 19456 0x4C00

20 20480 0x5000

30 30720 0x7800

32 32768 0x8000

Table 5-3 RAM Size Dec-Hex Conversion

5.3.2	 MEMORY MAPPING:

Addresses above 0XFC00 (or FC00H) are reserved.
In fact address 0xFFFC refers to the additional external IC input/output latched port.
This is available from the J4 socket.
You may use for example, in your C program:

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

163

Evaluation Boards

#define MyPort 		 XBYTE [0XFFFC]
// define MyPort address (FFFCH) as the input/output port
// PB0 to PB7 will be the output bits
// PA0 to PA7 will be the input bits
unsigned char dataout, datain;

MyPort = dataout; 	 /* send data stored in variable dataout, to the output port (PB0-PB7) */
datain = MyPort; 	 /* read data from MyPort (PA0-PA7) to the datain variable */

Socket U2 (EPROM) U3 (RAM) U4 (RAM)

H3

(1-2)

Code only

H3

(2-3)

Code + Data

H4

32K or

64K

H2

(1-2)

Code + Data

H2

(2-3)

Data only

Data only

2764

8KB

N = 0011001

0x0000 – 0x1FFF

(1-2) O = 011001

0x8000 – 0x9FFF

P = 011001

0x0000 - 0x1FFF

27128

16KB

N = 0010101

0x0000 – 0x3FFF

(1-2) O = 010101

0x8000 – 0xBFFF

P = 010101

0x0000 – 0x3FFF

27256

32KB

N = 0010110

0x0000 – 0x7FFF

(1-2) O = 100101

0x8000 – 0xFC00

P = 100101

0x0000 – 0x7FFF

27512

64K

N = 1000110

0x0000 – 0xFFFF

(2-3) Not available Not available

Table 5-4 External Memory (Link Settings)

Normally, whilst developing the program:

•	 U2 is set to code only (containing the monitor program)
•	 U3 is set to code + data
•	 U4 (if available) is set to data only (cannot set it in any other mode)

We must make sure to set the memory map in the Target Options to reflect our particular memory setup.

5.3.3	 Input-Output connections

J4 is the latched input – output port (address 0xFFFC)
PA pins are the INPUT pins, and PB pins are the OUTPUT pins.
Pin 1 is in the direction of U1 and closest to U2.
Make sure that we have the correct pin orientation!

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

164

Evaluation Boards

Pin No: Signal Pin No: Signal

1 +5 V 2 +5 V

3 PA^0 4 PA^1

5 PA^2 6 PA^3

7 PA^4 8 PA^5

9 PA^6 10 PA^7

11 GND 12 GND

13 PB^0 14 PB^1

15 PB^2 16 PB^3

17 PB^4 18 PB^5

19 PB^6 20 PB^7

Table 5-5 NMIY J4 Pinouts

J5 is the 8051 port 1, external timer inputs and external interrupts.
Pin 1 is in the direction of U1 and closest to U2.
Make sure that we have the correct pin orientation!

Download free eBooks at bookboon.com

Click on the ad to read more

If it really matters, make it happen –
with a career at Siemens.

siemens.com/careers

http://s.bookboon.com/siemensUSA2015

PaulOS An 8051 Real-Time Operating System
Part I

165

Evaluation Boards

Pin No: Signal Pin No: Signal

1 GND 2 GND

3 RST 4 CSX

5 P1^0 6 P1^1

7 P1^2 8 P1^3

9 P1^4 10 P1^5

11 P1^6 12 P1^7

13 GND 14 GND

15 +5 V 16 +5 V

17 INT 0 18 INT 1

19 T0 20 T1

Table 5-6 NMIY J5 Pinouts

J6 is the LCD connector. P1 is located in the row nearest to U2 and closest to the board edge. Address
0xFFF8 is used to send COMMANDS and address 0xFFF9 is used for sending DATA to the LCD.

Pin No: Signal Pin No: Signal Pin No: Signal

1 GND 2 +5 V 3 GND

4 CONTRAST 5 A0 6 CONTRAST

7 WR1 8 E1 9 WR1

10 D0 11 D1 12 D0

13 D2 14 D3 15 D2

16 D4 17 D5 18 D4

19 D6 20 D7 21 D6

22 N.C. 23 E3 24 N.C.

Table 5-7 NMIY J6 Pinouts

5.4	 C8051F020TB

This is at the time of writing, one of the latest super-charged versions of the 8051 family. It is the product
of Silicon Labs.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

166

Evaluation Boards

Figure 5-3 C8051F020 Board

Further details, manuals and example programs can be found at the Silicon Labs site, whose contact
details are being listed here under:

Silicon Laboratories Inc.
4635 Boston Lane
Austin,
Texas TX 78735
USA
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: MCUinfo@silabs.com
Internet: www.silabs.com

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

167

Programming in C with KEIL µV2 IDE

6	� Programming in C with KEIL µV2
IDE

C Compilers are used to translate programs written in C to the native language of the intended target
processor. In our case the intention is to write programs in C which ultimately are intended to be executed
on an 8051 micro-controller or any of its derivatives. There are a large number of such compilers available,
and even some device makers themselves have their own Integrated Development Environment (IDE)
software.

This chapter explains the use of the KEIL IDE which is practically the industry-standard in this field. It
supports every level of software developer from the professional applications engineer to the student just
learning about embedded software development. Further information about this IDE can be obtained
from the web site http://www.keil.com/uvision/uv4.asp. Detailed examples are given so that after reading
this chapter, we would be able to set it up so as to reflect the actual hardware which we intend to use
for our particular task or project. Example programs written in C are given to help the reader grasp the
basic principles involved when programming micro-controllers. Most of the tables and diagrams are
taken directly from the Keil uV2 user manuals and screen shots.

Download free eBooks at bookboon.com

Click on the ad to read more

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://www.keil.com/uvision/uv4.asp
http://s.bookboon.com/osram

PaulOS An 8051 Real-Time Operating System
Part I

168

Programming in C with KEIL µV2 IDE

Programming in C for the 8051 micro-controller with the KEIL development system and using the
RTOS is not problematic. The Integrated Development Environment (IDE) provided with KEIL µVx
(the latest version at time of printing is µV4) is very user friendly and similar to other IDEs used on the
standard PCs for C# or C++ etc. Familiarity with any such tools will greatly help in grasping the basics
of the KEIL environment. Before explaining how to set up a project to write programs with KEIL µVx,
let us first mention a very important point about the way variables are stored on the 8051 and how they
are handled by the compiler. The KEIL user manual provides more detailed information on the subject,
but the most important details are being reproduced here.

6.1	 Byte Ordering – BIG ENDIAN and LITTLE ENDIAN

Most microprocessors have a memory architecture that is composed of 8-bit address locations known
as bytes. Many data items (addresses, numbers, and strings) are too long to be stored using a single byte
and must be stored in a series of consecutive bytes.

When using data that are stored in multiple bytes, byte ordering becomes an issue. Unfortunately, there
is not just one standard for the order in which bytes in multi-byte data are stored. There are two popular
methods of byte ordering currently in widespread use.

The first method is called “little endian” and is often referred to as the Intel order. In little endian, the
least significant, or low-order byte is stored first. For example, a 16-bit integer value of 0x1234 (4660
decimal) would be stored using the little endian method in two consecutive bytes as follows:

Address +0 +1

Contents 0x34 0x12

A 32-bit integer value of 0x57415244 (1463898692 decimal) would be stored using the little endian
method as follows:

Address +0 +1 +2 +3

Contents 0x44 0x52 0x41 0x57

A second method of accessing multi-byte data is called “big endian” and is often referred to as the Motorola
order. In big endian, the most significant, or high-order byte is stored first, and the least significant, or
low-order byte is stored last. For example, a 16-bit integer value of 0x1234 would be stored using the
big endian method in two consecutive bytes as follows:

Address +0 +1

Contents 0x12 0x34

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

169

Programming in C with KEIL µV2 IDE

A 32-bit integer value of 0x004A4F4E would be stored using the big endian method as follows:

Address +0 +1 +2 +3

Contents 0x00 0x4A 0x4F 0x4E

The 8051 is an 8-bit machine and has no instructions for directly manipulating data objects that are
larger than 8 bits. Multi-byte data are stored according to the following rules.

•	 The 8051 LCALL instruction stores the address of the next instruction on the stack. The
address is pushed onto the stack low-order byte first. The address is, therefore, stored in
memory in little endian format.

•	 All other 16-bit and 32-bit values are stored, contrary to other Intel processors, in big
endian format, with the high-order byte stored first. For example, the LJMP and LCALL
instructions expect 16-bit addresses that are in big endian format.

•	 Floating-point numbers are stored according to the IEEE-754 format and are stored in big
endian format with the high-order byte stored first. It should be noted here that the 8051
does not have any floating point handling instructions and normally this is handled by the
compiler.

If the 8051 embedded application performs data communications with other microprocessors or devices,
it may be necessary to know the byte ordering method used by the other CPU or peripheral.

Here is an example which may be used to test and understand the storage format of the micro-controller
and of the KEIL compiler itself.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

170

Programming in C with KEIL µV2 IDE

/*---

	 Endian.c -- Big Endian and Little Endian explanation

---*/

#include <stdio.h>

#include <string.h>

#include "reg52.h"

#include "UART0b.h"

typedef unsigned char 		 UCHAR;

typedef unsigned int 	 UINT;

typedef unsigned long	 ULONG;

typedef union UTYPELONG {

	 ULONG Long;

	 UINT Int[2];

	 UCHAR Char[4];

}UTYPELONG;

typedef union UTYPEINT {

	 UINT Int;

	 UCHAR Char[2];

}UTYPEINT;

UTYPELONG bdata Y;

sbit y0 = Y.Long^0;

sbit y1 = Y.Long^1;

sbit y2 = Y.Long^2;

sbit y3 = Y.Long^3;

sbit y4 = Y.Long^4;

sbit y5 = Y.Long^5;

sbit y6 = Y.Long^6;

sbit y7 = Y.Long^7;

sbit y24 = Y.Long^24;

sbit y25 = Y.Long^25;

sbit y26 = Y.Long^26;

sbit y27 = Y.Long^27;

sbit y28 = Y.Long^28;

sbit y29 = Y.Long^29;

sbit y30 = Y.Long^30;

sbit y31 = Y.Long^31;

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

171

Programming in C with KEIL µV2 IDE

char Bit2Char (bit x)

	 {

	 return (char) (x == 1 ? '1' : '0');

	 }

/*---

MAIN C function

---*/

void main (void)

{

UART0_Init (57600);

printf("\n\n*** Notes on BIG ENDIAN and LITTLE ENDIAN ***\n\n");

printf("Compilers, processors and devices all have their own choice of storing numbers.\n\n");

printf("The KEIL compiler is BIG ENDIAN, that is HIGH BYTE FIRST.\n");

printf("However, since the 16-bit SFR16 registers are stored in the 8051 as\n");

printf("LITTLE ENDIAN, the KEIL compiler deals with SFR16 types as LITTLE ENDIAN.\n");

printf("For example, RCAP2L has an address CAH, and RCAP2H has an address CBH.\n");

printf("Thus, RCAP2 can be declared to be of type SFR16 at address CAH, (SFR16 RCAP2=0xCA;)\n");

printf("and if you want to load RCAP2L with 01H and RCAP2H with 23H,\n");

printf("you may use RCAP2=0x2301; and it will be loaded correctly, LOW BYTE FIRST.\n\n");

RCAP2 = 0x2301;

printf("This is shown below, showing the contents of RCAP2, RCAP2H and RCAP2L\n");

printf("RCAP2, is declared as an sfr16 at address 0xCA is loaded with %04XH\n", RCAP2);

printf("RCAP2L, at address 0xCA therefore contains %02BXH\n", RCAP2L);

printf("RCAP2H, at address 0xCB therefore contains %02BXH\n\n", RCAP2H);

printf("The architecture of the 8051 is also BIG ENDIAN (except LCALL stack pushes\n");

printf("and some SFRs!)\n");

printf("However certain other processors and devices (peripherals) can be\n");

printf("either BIG or LITTLE ENDIAN.\n\n");

printf("Care should therefore be taken when reading or writing data from/to such\n");

printf��("devices, to ensure that the correct order is maintained.\n\n");

	 Y.Long = 0x01234567;

printf("Y = %08LXH (type long)\n\r",Y.Long);

printf("Int(0) = %04XH and Int(1) = %04XH\n\r",Y.Int[0],Y.Int[1]);

printf("Byte(0) = %02BXH, Byte(1) = %02BXH, Byte(2) = %02BXH and Byte(3)= %02BXH\n\n",

	 Y.Char[0],Y.Char[1],Y.Char[2],Y.Char[3]);

printf("This check explains how the bytes are stored by the COMPILER in arrays.\n");

printf("Namely, HIGH BYTE FIRST.\n\n");

printf("One has also to be careful with the way one addresses the bits.\n");

printf("Bit Y.0 would refer to the first bit of the variable Y as it is stored\n");

printf("by KEIL, which would be bit 0 of the MSB as shown below.\n\n");

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

172

Programming in C with KEIL µV2 IDE

printf("bit Y.0 = %c bit zero of the most significant byte\n", Bit2Char(y0));

printf("bit Y.1 = %c bit one of the most significant byte\n", Bit2Char(y1));

printf("bit Y.2 = %c bit two of the most significant byte\n", Bit2Char(y2));

printf("bit Y.3 = %c bit three of the most significant byte\n", Bit2Char(y3));

printf("bit Y.4 = %c bit four of the most significant byte\n", Bit2Char(y4));

printf("bit Y.5 = %c bit five of the most significant byte\n", Bit2Char(y5));

printf("bit Y.6 = %c bit six of the most significant byte\n", Bit2Char(y6));

printf("bit Y.7 = %c bit seven of the most significant byte\n\n\n", Bit2Char(y7));

printf("bit Y.24 = %c bit zero of the least significant byte\n", Bit2Char(y24));

printf("bit Y.25 = %c bit one of the least significant byte\n", Bit2Char(y25));

printf("bit Y.26 = %c bit two of the least significant byte\n", Bit2Char(y26));

printf("bit Y.27 = %c bit three of the least significant byte\n", Bit2Char(y27));

printf("bit Y.28 = %c bit four of the least significant byte\n", Bit2Char(y28));

printf("bit Y.29 = %c bit five of the least significant byte\n", Bit2Char(y29));

printf("bit Y.30 = %c bit six of the least significant byte\n", Bit2Char(y30));

printf("bit Y.31 = %c bit seven of the least significant byte\n", Bit2Char(y31));

while(1);

}

/*---

---*/

We now move to the actual KEIL µV2 IDE and describe briefly the basic setup required so as to be able
to write the program and ultimately store the program on the device.

Download free eBooks at bookboon.com

Click on the ad to read more

At Navigant, there is no limit to the impact you
can have. As you envision your future and all
the wonderful rewards your exceptional talents
will bring, we offer this simple guiding principle:
It’s not what we do. It’s how we do it.

Impact matters.

©2013 Navigant Consulting, Inc. All rights reserved. Navigant Consulting is not a certified public accounting firm and does not provide
audit, attest, or public accounting services.
See navigant.com/licensing for a complete listing of private investigator licenses.

navigant.com

http://s.bookboon.com/Navigant2

PaulOS An 8051 Real-Time Operating System
Part I

173

Programming in C with KEIL µV2 IDE

The first screen shot (Figure 6-1) shows the layout under the KEIL µV2 environment.

Figure 6-1 The KEIL µV2 environment

We would need first to create a project by selecting the New Project from the Project Tab (fourth item
from the top left hand corner) and give it a name. It will then also ask us for the type of micro-controller
(say Generic, 8051 or 8032) and whether we want to copy the Standard 8051 Startup code (automatically
named Startup.a51) to the Project folder and Add it to the project. We normally answer yes to this prompt.
Later on, by right clicking on the topmost folder in the Files list area (TrafficLights in our Figure 6-2),
we could select a different micro-controller (device) for the Target. A ‘Generic’ type would do as a start
as shown in the second screen shot (see Figure 6-2).

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

174

Programming in C with KEIL µV2 IDE

Figure 6-2 KEIL µV2 CPU type selection

We would then need to define the options for the particular target board, in particular the code and data
area which are available. Screenshot 3 (Figure 6-3) shows the setup for the FLITE-32 board with 32KB
EPROM and 32KB RAM. The clock speed is set to the crystal frequency on the board, 11.0592 MHz
in this case. This crystal setting is not that critical but it has to be set to the correct value if we want to
calculate the delays or duration of certain code using the debugging functions available in KEIL.

The settings for the off-chip Code area shown give a start address of 8100 hex and a size of 5000 hex,
that is the code will reside from 8100H to D0FFH. This reflects the fact that the intended board is the
FLITE-32 and thus the code (AAA.hex file) has to be dumped on to the external RAM of the board so
that it can be tested while the FLITE-32 monitor program still resides on the EPROM from 0000H to
7FFFH. The first 100 hex bytes in RAM (8000H to 80FFH) are reserved for monitor use.

The settings for the off-chip XDATA area shown give a start address of D100 hex and a size of 2D00
hex, and the data area will therefore reside from D100H to FDFFH. The area from FE00H to FFFFH is
reserved for other peripherals (8255 parallel i/o chip and SC2691 UART) and therefore must be left free.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

175

Programming in C with KEIL µV2 IDE

These off-chip areas must be set to reflect the actual hardware. If we intend to have the program run on
a 32KB EPROM (replacing the monitor EPROM), then code area would start at 0000H with a size of
8000H. The XDATA area could then be set to start at 8000H with a size of FE00H.

Figure 6-3 KEIL µV2 Target setup

The output and listing tabs should be selected to define the directory and file name for the output files
generated by the compiler/linker, as shown in Figure 6-4 and in Figure 6-5.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

176

Programming in C with KEIL µV2 IDE

Figure 6-4 KEIL µV2 Target Output options

Download free eBooks at bookboon.com

Click on the ad to read more

Do you have to be a banker to
work in investment banking?

Agile minds value ideas as well as experience

Global Graduate Programs

Ours is a complex, fast-moving, global business. There’s no time for traditional
thinking, and no space for complacency. Instead, we believe that success
comes from many perspectives — and that an inclusive workforce goes hand
in hand with delivering innovative solutions for our clients. It’s why we employ
135 different nationalities. It’s why we’ve taken proactive steps to increase
female representation at the highest levels. And it’s just one of the reasons
why you’ll find the working culture here so refreshing.

Discover something different at db.com/careers

Deutsche Bank
db.com/careers

https://www.db.com/careers/content/en/students_graduates.html?kid=uk.generic.graduates.bookboon.webdisplayad

PaulOS An 8051 Real-Time Operating System
Part I

177

Programming in C with KEIL µV2 IDE

Figure 6-5 KEIL µV2 Target listing options

When using interrupts, and with the RTOS we would be using at least one timer interrupt, and it is
therefore imperative to set correctly the Interrupt Vector Base address. The interrupt addresses, are
shown once again in Table 6-1 below for the normal 8032.

Interrupt
Name

Interrupt
Number

Flag Interrupt
Hex Vector
Address

Reset 0000

External 0 0 IE0 0003

Timer 0 1 TF0 000B

External 1 2 IE1 0013

Timer 1 3 TF1 001B

Serial 4 RI or TI 0023

Timer 2 5 TF2 or EXF2 002B

Table 6-1 8032 Interrupt Vector Table location

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

178

Programming in C with KEIL µV2 IDE

If the code is in an EPROM, starting at address 0000H is the Reset vector and this is the location where
the controller fetches its first instruction on startup. Usually the three bytes stored in this location contain
an instruction to jump to the start of the program which is the main() function when writing in C. In
KEIL, the start location can also be set manually by setting the ?START variable in the STARTUP.A51
file. At the other interrupt vector addresses, all spaced 8 bytes apart, we could have either ALL the code
of the interrupt service routine (ISR), if it is short enough to fit in the space without overwriting areas
reserved for other interrupts which are going to be used, or else it would have a jump instruction to the
main interrupt service routine. Note that if we use say External 0 and Timer 2 interrupts only, then we
could use the space form 0003H to 002AH for our external 0 ISR. There is a CODE keyword command
which can be used to specify exactly where we want the code to be stored, but this is dealt with later on.

Setting the Interrupt vector address base to 0000H in the C51 tab would leave the addresses for the vectors
set as shown in the table above, that is they would reside in EPROM code area. It should be noted once
again that the first interrupt (External 0) is offset by 3 bytes from the base address of 0000H, and all the
other interrupts are offset an additional 8 bytes from each other.

On a development board, since we would be loading the program in RAM and since it would not be
possible to write on an EPROM (without an EPROM programmer), these interrupt vector addresses
would in general be re-mapped by the monitor program on to the RAM area. That is, the monitor program
residing in ROM, would have pre-programmed jumps at these 0003H to 002BH locations to re-route
the program on to the RAM area. For example, our modified FLITE-32 monitor program version 3 has
the following re-mappings:

Interrupt
Name

Int.
No:

Original Int.
Hex Vector

Address (ROM)

Instruction On
monitor ROM

Modified Int. Hex
Vector Address

(RAM)

Base address  0000 7FFD

External 0 0 0003 LJMP 8000H 8000

Timer 0 1 000B LJMP 8008H 8008

External 1 2 0013 LJMP 8010H 8010

Timer 1 3 001B LJMP 8018H 8018

Serial 4 0023 LJMP 8020H 8020

Timer 2 5 002B LJMP 8028H 8028

Table 6-2 FLITE-32 Interrupt Vector Table location

The interrupts are still spaced 8 bytes apart, but the first interrupt is now 3 bytes away from the base of
7FFDH and not 3 bytes away from 0000H. Thus in order for the compiler to know exactly where the
interrupt routines should be placed, all we need to do is to set the base address, (using the C51 tab in
the target options) to 7FFDH, as shown in Figure 6-6.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

179

Programming in C with KEIL µV2 IDE

Other development boards may use a different base address, but the setup would still be done in a
similar manner.

Figure 6-6 KEIL µV2 C51 options

Download free eBooks at bookboon.com

Click on the ad to read more

Real drive.
Unreal destination.

As an intern, you’re eager to put what you’ve learned
to the test. At Ernst & Young, you’ll have the perfect
testing ground. There are plenty of real work challenges.
Along with real-time feedback from mentors and leaders.
You’ll also get to test what you learn. Even better, you’ll
get experience to learn where your career may lead.
Visit ey.com/internships.

See More | Opportunities

©
 2

01
2

Er
ns

t
&

 Y
ou

ng
 L

LP
. A

ll
R

ig
ht

s
R

es
er

ve
d.

http://ey.com/internships

PaulOS An 8051 Real-Time Operating System
Part I

180

Programming in C with KEIL µV2 IDE

These are the main important setup parameters to be adjusted when creating a new project. With this
setup completed, we can proceed to describe the various C related functions and methods which might
have to be adapted for the 8051–KEIL environment.

6.2	 Explicitly Declared Memory Types

We may specify where the variables are to be stored by including a memory type specifier in the variable
declaration. The following table summarises the available memory specifiers:

Memory Type Description

code Program memory (max size 64KBytes code)

data Directly addressable internal data memory, faster access to variables. (max size128 bytes)

idata Indirectly addressable internal data memory; accessed across the full internal address space
(max size 256 bytes) using MOVC @A+DPTR

bdata Bit-addressable internal data memory; supports mixed bit and byte access. (max size 16 bytes)

xdata External data memory (max size 64KBytes), accessed by MOVX @DPTR

far Extended RAM and ROM memory spaces (up to 16Mbytes)

pdata Paged (256 bytes) external data memory, accessed by MOVX @Rn

Table 6-3 Locations of Variables

When variables are declared at a specific location, the C compiler automatically uses the correct addressing
mode (direct or indirect or external) when referring to these variables. If during the declaration no specific
memory location is specified, the compiler will place the variable at the default location, as specified in
the target option setting. Some examples on the use of these declarations are given below:

char data variable1;			 /* variable1 byte placed in internal data area */

unsigned long xdata array[100];		 /* array placed in external data area */

unsigned char bdata sensor;		 /* sensor byte placed in Bit-addressable area */

6.3	 Data types

The following are the data types with the corresponding value ranges, available when using the C51
compiler:

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

181

Programming in C with KEIL µV2 IDE

Data Types Bits Bytes Value Ranges (decimal)

bit (*) 1 0 to 1

signed char 8 1 -128 to +127

unsigned char 8 1 0 to 255

enum 8 or 16 1 or 2 -128 to +127 or –32768 to +32767

signed short 16 2 –32768 to +32767

unsigned short 16 2 0 to 65535

signed int 16 2 –32768 to +32767

unsigned int 16 2 0 to 65535

signed long 32 4 -2147483648 to +2147483647

unsigned long 32 4 0 to 4294967295

float 32 4 +- 1.175494E-38 to +-3.402823E+38

sbit (*) 1 0 to 1

sfr (*) 8 1 0 to 255

sfr16 (*) 16 2 0 to 65535

(*) the bit, sbit, sfr and sfr16 data types are not provided in ANSI C standard and are unique to the C51 compiler.

Table 6-4 C51 compiler data types

The bit data type in particular is well suited to make full use of the bit-addressable area capability of
the 8051. A header file, reg51.h or reg52.h is already available in the INC directory of the Keil program,
where all the 8032/8051 SFR registers are defined as well as the bit-addressable flags. Similar files (with
the .INC suffix exist for A51 use, when using assembly language).

Note that an array of type bit is not allowed.

For example to start timer 2 we could simply use:

TR2 = 1;

in the C program, provided that the reg52.h header file is included. This is equivalent to the assembly
language command:

SETB TR2

Another possibility of using the bit and sbit data type is for example when we are reading a data byte
from some port and each bit of this data byte corresponds to some particular sensor or flag. Let us
suppose that we have 8 sensors connected to some input port, say P1. To define each bit of this port (P1
is a bit-addressable SFR), we would use the sbit data type as shown:

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

182

Programming in C with KEIL µV2 IDE

sbit fire 	 = P1 ^ 0; 	 /* bit 0 of port P1 */

sbit window	 = P1 ^ 1;	 /* bit 1 of port P1 */	

sbit door	 = P1 ^ 2;	 /* bit 2 of port P1 */

…

…

The ^ (caret) is used instead of the . (dot) which is normally used in assembly. Even though the caret
sign is normally used in C to denote an XOR operation, when used with the sbit keyword, it denotes
the bit number of the variable, which must be in a bit-addressable area. Incidentally, the dot is used
in C structure types.

The above declarations, one could check whether there is a fire simply by using:

if (fire)

   {

….

….

   }

Download free eBooks at bookboon.com

Click on the ad to read more

STUDY. PLAY.
The stuff you'll need to make a good living The stuff that makes life worth living

NORWAY.
YOUR IDEAL STUDY DESTINATION.

WWW.STUDYINNORWAY.NO
FACEBOOK.COM/STUDYINNORWAY

http://s.bookboon.com/studyinnorway

PaulOS An 8051 Real-Time Operating System
Part I

183

Programming in C with KEIL µV2 IDE

We might also need to have a variable that needs to be addressed either as one-byte or as individual bits.
This can be achieved by declaring the variable to reside in the bit-addressable data area bdata.

char bdata display;			 /* byte variable display */

					 /* residing in Bit-addressable area */

sbit red		 = display ^ 0; 		 /* bit 0 of display byte */

sbit amber	 = display ^ 1;		 /* bit 1 of display byte */	

sbit green	 = display ^ 2;		 /* bit 2 of display byte */

To clear all the byte (say switch off all leds or lights), simply use:

display = 0;

To set a particular bit on, we can use:

red = 1;

We may also have functions which return a bit value, for example:

bit validvalue (char idata value) {

…

…

}

6.4	 Interrupt routines

Using interrupts in C is very straight forward. All we have to do is to declare a function as shown below:

void serial (void) interrupt 4 using 2 { /* using register bank 2 for the ISR */

…

…

}

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

184

Programming in C with KEIL µV2 IDE

Here the function named ‘serial’ is to run under interrupt number 4 (see Table 6-1) , which is the serial
interrupt. The compiler automatically inserts at the correct vector table address (using the Interrupt
Base address given in the target options setup, say 7FFDH as reference) a jump to this function. Hence,
whenever a serial interrupt occurs, the program first jumps to the interrupt vector address location and
there it executes another jump to this serial function. The pushes, pops and RETI instruction are handled
automatically by the compiler.

The ‘using 2’ at the end of the declaration instructs the compiler to switch over to register bank 2 whenever
this serial interrupt occurs. This saves the compiler from using additional pushes and pops to save the
registers of the bank which was being used prior to the interrupt. Ideally and when possible, we should
use a separate register bank for every interrupt function.

Download free eBooks at bookboon.com

Click on the ad to read more

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

PaulOS An 8051 Real-Time Operating System
Part I

185

Real-Time Operating System

7	 Real-Time Operating System
We now come to the Real-Time Operating System (RTOS) and we start by giving the general principles
behind the RTOS concept. An explanation of the three main variations of RTOSs which we will deal with
is given, namely the round-robin, co-operative and pre-emptive versions of the RTOS. These categories
are explained in section 7.2 I have developed operating systems of these three main versions of RTOSs
and will be explained in detail in the following chapters. There are the ParrOS (assembly language version,
Appendix A) and SanctOS (C language version, see Chapter 8 and Appendix C) which are both of the
round-robin type. Then there is the PaulOS RTOS (see Chapter 9 and Appendix B and Appendix D)
which is of the co-operative type and finally I have the MagnOS (see Chapter 10 and Appendix E) which
falls in the pre-emptive category.

7.1	 What is a Real-Time Operating System

This chapter introduces the concept of the RTOS. Such a system is not something out of this world, and
once the concept is understood, one would be able to modify and expand the programs listed in this
book, to suit his/her own requirements. It should be pointed out at the outset, that all the programs
found in this book, are experimental. They all work, but I do not accept any responsibility if they are
used in a system.

The RTOS is an operating system that guarantees a certain capability within a specified time constraint.
For example, an operating system might be designed to ensure that a certain part or item is available
at a certain point on an assembly line. In what is usually called a “hard” real-time operating system, if
the program code for such an operation cannot be performed in time for making the part available at
the designated time and place, the operating system would terminate with a failure. In a “soft” real-time
operating system, the assembly line would continue to function but the production output might be
lower as objects fail to appear at their designated time, causing the operator (or robot) to be temporarily
unproductive. Some real-time operating systems are created for a special specific application and others
are more of a general purpose type which can be adapted to various situations. It immediately becomes
clear that real-time does not have an absolute value of time but the reaction time can vary depending
on the application.

One might already be familiar with other operating systems used on personal computers, such as DOS,
Windows, Unix or Linux. The RTOS to be discussed in this chapter is a much smaller version, written
specifically for small micro-controllers.

The general idea is to write an operating system which would take overall control of the whole situation,
particularly scheduling tasks (routines) at appropriate times according to the program logic or algorithm.

Download free eBooks at bookboon.com

http://searchcio-midmarket.techtarget.com/definition/operating-system

PaulOS An 8051 Real-Time Operating System
Part I

186

Real-Time Operating System

Waiting

Queue

Running

Ready

(to execute)

Queue

Figure 7-1 RTOS Task states diagram

The application program would be split up into “short” ENDLESS programs (routines, functions or
procedures) known in the RTOS environment as TASKs. The RTOS can then be thought of as an
organiser or scheduler of these individual tasks, controlling which task should be running and which
task should run next. There would of course be only one task running at a particular time, but tasks
would be switching in and out so fast that they would give the impression of running simultaneously or
multi-tasking. The RTOS is simply time-slotting each task, in a time-multiplexing technique.

As show in Figure 7-1, a task can be in one of the following three states:

•	 RUNNING: Only one task would be in this state, since the micro-controller can only
execute one program at any one time. As the name implies, this would be the task currently
executing.

•	 WAITING: Tasks end up here after running for a preset time or because the task itself
requested to wait. Tasks can be made to wait for:

-- Timeout: wait for a specified time
-- Signal: wait for a signal which would come from another task
-- Interrupt: wait for some external interrupt
-- Some other event: usually, tasks which have finished waiting are placed in the Ready

queue.

•	 READY: This is a queue where all the tasks which are ready to execute are held whilst
waiting their turn. Once the task currently running either has its time-slot expired or itself
opts to wait, then the task next in line in this ready queue will take over and become the
running task.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

187

Real-Time Operating System

It should be emphasised here that each task should be written as an endless loop or sub-program. Since
tasks would be switching on and off, and each particular task can make use of a certain number of registers
and it might also push on the stack some registers (or addresses in case of some call instructions), the
biggest problem of the RTOS is how to handle these situations so that the tasks do not overwrite the
registers used by other tasks, and they do not disturb the stack area.

Since the 8051 family of microprocessors have 4 register banks, allocating a different register bank to
each task would solve the first problem. This would restrict the number of tasks to 4 and therefore is
not that good unless you have only a very limited number of tasks.

The second problem could be solved by having a different stack area for each task, and loading the stack
pointer (SP) accordingly before switching tasks. Now the following question arises: How can we switch
tasks? If we remember what happens during an interrupt (or call instruction) we would be on the right
track to answer the question. Whenever a CALL is executed, the address of the next instruction in the
program is pushed on the stack. This address is retrieved by the RET (or RETI) instruction, using the
locations pointed to by SP, so that the program continues where it left from. The RTOS operates on an
interrupt basis, usually using a Timer interrupt at regular (for example 1ms) intervals. All that is required
to be done in order to change tasks is therefore to have on the stack the address of the next task instead
of the present one. This can be done by changing the actual address on the stack or else (and this is the
method used in our RTOSs), point the SP to a different stack area, where the address of the new task
is stored. With this method, the task swapping would be done and moreover, each task would have its
own stack area for pushing registers, call routines etc.

7.2	 Types of RTOSs

We could split the RTOSs into 3-types. There is the round-robin , co-operative and pre-emptive RTOS.
These are described in more detail in later chapters but as a brief explanation the main differences and
properties can be mentioned here.

7.2.1	 Round-robin RTOS

The round-robin RTOS is a very simple operating system which allocates each task a specific time
to operate. After this time elapses, the RTOS would stop this task, save its environment, replace the
environment with that of the next task and then start the next task again for a specific time. In general,
the time for each task would be the same, but not necessarily so.

It should be made clear at this point that once this allocated time slot is over, the processor shelves this
task at whatever instruction it happens to be executing and starts (or continues) the next task in the
queue. Each task could be a very small routine, written as an endless loop, which would be repeating
on and on, and executing in bursts, a few instructions at a time (depending on the slot time) when its
allocated time is used by the micro-controller.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

188

Real-Time Operating System

If a task needs to be stopped permanently at some time, there could be a

Here: 	 SJMP Here 	 (or while(1); if written in C)

so that the task would actually be running when its slot time comes around, but not doing anything
useful. This is not so efficient since it would still be wasting valuable processor time. A more efficient
way would be to kill the task completely by removing it from the queue.

More on this type of RTOS can be found in the assembly language version program ParrOS (see Appendix
A) and in the SanctOS, written in C which is fully described in Chapter 8.

7.2.2	 Co-operative RTOS

The co-operative RTOS (such as PaulOS in Appendix B and D and Chapter 9), is a further improvement
on the round-robin RTOS. In this case, a task, which is again written as an endless loop would run until
the task itself would issue an RTOS command which would cause a change of task. These commands
would depend on the operating system itself and for the case of PaulOS, there are commands which
would cause the task to pause and go into a waiting queue, thus giving up its processor time to another
task. The task may for example wait for a specified time delay, or it may wait for an interrupt or for some
signal from another task.

Download free eBooks at bookboon.com

Click on the ad to read more

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

PaulOS An 8051 Real-Time Operating System
Part I

189

Real-Time Operating System

Once this command is executed, the RTOS would initiate a change of task process similar to the round-
robin case, and the next task in the queue which is ready to execute would take over. There could be
instances where all the tasks would be waiting for a time delay or for an event to occur, in which case
there would not be any tasks ready to execute. In this case, the main() code would run, which would
normally be executing a useless while(1); loop (also setting the controller in an idle mode to save energy).

If all the tasks are independent and all have the RTOS instruction to wait for say 5ms, then the co-
operative RTOS would be working exactly the same as the round-robin type, with each task coming
into action in sequence.

More on this type of RTOS can be found when describing the PaulOS RTOS in Chapter 9.

7.2.3	 Pre-Emptive RTOS

The pre-emptive RTOS such as MagnOS is still a further improvement on the previously mentioned
RTOSs. Here each task is given a priority number and the task with the highest priority is given the
go-ahead to execute by the RTOS. Unless the task itself executes a ‘wait’ instruction to give up its time,
then it will continue to run since a task of a lower priority would not be permitted to run and thus
interrupt the higher priority one. On the other hand, if a low-priority task is currently running and a
higher priority task moves to the ready (to execute) queue (for example because it was waiting for some
time delay which has now passed), then the RTOS would stop the lower priority task and place it in
the ready queue and the higher priority task would then take over and start/continue to execute. More
information on the MagnOS RTOS is given in Chapter 10.

In this environment it is very important to allocate the right priorities to the tasks so as to be sure that all
tasks are given a chance to run. Various theories or ideas exist about priority allocation techniques, the
Rate Monotonic Scheduling or Algorithm ([19] C.L. Liu and J.W. Layland) being one of the most popular.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

190

SanctOS – a Round-Robin RTOS

8	 SanctOS – a Round-Robin RTOS
This chapter explains the very simple round-robin RTOS called SanctOS, where each task (or function)
works for a specified amount of time before passing on the processor time to the next task.

This RTOS is a direct adaptation of the home-brew round-robin ParrOS (Paul Round-Robin Operating
System) RTOS assembly language program described in great detail in the appendix. This is the improved
version written in the C language so as to make it more versatile and more easily portable to other micro-
controllers. The name SanctOS is an acronym for Small ANd CompacT Operating System, and before
proceeding further, it would be very advantageous if the ParrOS program is understood by reading the
appropriate appendix.

Most of the commands are exactly the same as those for the ParrOS RTOS, (with the additional OS_
prefix), and the settings regarding the number of tasks, tick time and stack size can be set in the
PARAMETERS.H file shown below.

There are some very immediate advantages in using C to write the RTOS. Parameters can be easily
changed from char to integer or long types and the routines would automatically reflect the changes
when they are compiled. An example here would be the OS_CREATE_TASK(parameter list) command
where in the A51 version, the slot time parameter was of type integer (0-65535). If we had to change
the parameter to long in order to be able to accommodate longer wait periods, we would have had to
re-write the routines so as to increment or decrement double words (32-bit) rather than words (16-bit).
In the C version this could be done fairly easily simply by changing the type declarations.

Naturally there are some memory space and speed penalties to pay for this versatility. However the
improvements more than outweigh the penalties, especially as far as student understanding of the RTOS
is concerned. Here we now list the RTOS commands, this time for the C version. The full SanctOS RTOS
source program listing can be found in Appendix C.

8.1	 SanctOS System Commands

The following are the only RTOS system calls available :

•	 OS_INIT_RTOS (uchar iemask); 	 // Initialises all RTOS variables

•	 OS_RTOS_GO (void);	 		 // Starts the RTOS

•	 OS_CREATE_TASK (uchar task_num, uint task_add, uint slot_time);
// Creates a task, allocating a slot_time during which it can execute

These commands are more fully explained in section 8.2 and its sub-sections.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

191

SanctOS – a Round-Robin RTOS

8.2	 Variations from the A51 version

The C version of the RTOS provides some variations and additional commands from ParrOS, which can
be implemented easily, after using the program for a while.

8.2.1	 OS_INIT_RTOS (uchar iemask)

This system command is used only once in the main program and its function is to initialise all the RTOS
variables. It sets up the RTOS timer (the so called tick timer, which generates the regular the critical
interrupt which calls the Interrupt Service Routine that handles the slot time counter and task swapping)
and enables the required interrupts according to the iemask parameter given within the command.

An example of the syntax used for this command is:

OS_INIT_RTOS(0x01);

This would initiatilise the RTOS, enabling the external interrupt 0 since the iemask contents correspond
to the interrupts shown in Table 8-1. The timer to be used for the RTOS tick timer (say Timer 0) and its
corresponding interrupt would be enabled automatically (irrespective of the iemask setting), depending
on the TICK_TIMER value declared in the SanctOS_Param.h header file. It should be noted here that
this tick timer interrupt is therefore used by the RTOS and cannot be used by the user program.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/EOT

PaulOS An 8051 Real-Time Operating System
Part I

192

SanctOS – a Round-Robin RTOS

Interrupt IE MASK Notes

No: Name Binary Hex

0 External Int 0 00000001 01

1 Timer Counter 0 00000010 02 Default RTOS timer for 8051

2 External Int 1 00000100 04

3 Timer Counter 1 00001000 08

4 Serial Port 00010000 10

5 Timer 2 (8032 only) 00100000 20 Default RTOS timer for 8032

Table 8-1 IEMASK Parameter (SanctOS)

8.2.2	 OS_RTOS_GO(void)

This system command is also used only once in the main program, when the RTOS would be required
to start supervising and scheduling the individual processes or tasks. It does not take any parameters.

An example of the syntax used for this command is:

OS_RTOS_GO();

This would start the RTOS ticking, at a reference time signal of TICKTIME milliseconds as set in the
parameters header file SanctOS_Param.h. This TICKTIME in milliseconds would then become the basic
reference unit for other system commands which use any timeout parameter, such as the OS_CREATE()
function.

8.2.3	 OS_CREATE_TASK (uchar task_num, uint task_add, uint slot_time)

This system command creates the tasks by setting the appropriate variables corresponding to the task
number (usually starting from 0), the function name (which actually corresponds to the address location
where the task function actually starts in the program code area and the slot-time required for this task.

An example of the syntax used for this command gives some further explanation of its function and
purpose.

OS_CREATE_TASK(0,Task_Zero_Routine,25);

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

193

SanctOS – a Round-Robin RTOS

This would create a task which refers to the function or sub-routine Task_Zero_Routine, having a task
number 0 to be handled by the RTOS. The slot-time given for this task is 25 ticktimes. The value of
TICKTIME milliseconds, declared in the SanctOS_Param.h would be used as the basic reference unit
for this slot-time. Thus if TICKTIME was declared as 1 (meaning one millisecond), then the above task
would run for 25ms each time it is given the go-ahead to run, that is this task would run in bursts of
25ms duration, stopping after 25ms when the next task would run for its own specified slot time and so
on until all the tasks would have run and the turn for Task_Zero_Routine comes up again.

8.2.4	 Other add-on MACROS

These macros (#define statements) add some more basic commands and flexibility.

OS_PAUSE_RTOS()		 // Disable the RTOS

OS_RESUME_RTOS()		 // Re-enable the RTOS

OS_CPU_IDLE()		 // Sets the microprocessor in idle mode

				 // This is usually used in the main program endless loop after

				 // initialising and starting the RTOS.

OS_CPU_DOWN()		 // Sets the microprocessor in power-down mode

These #define statements are simply substitutions for some instructions which might seem meaningless
if they are just written in the normal way. For example, using these 2 definitions

#define OS_CPU_IDLE()		 PCON |= 0x01 // Sets the microprocessor in idle mode

#define OS_CPU_DOWN()		 PCON |= 0x02 // Set microprocessor in power-down mode

It would make the program much easier to understand if we use

OS_CPU_IDLE();

rather than just writing

PCON |= 0x01;

This SanctOS operating system is very simple to use and is ideal for situations where we have totally
independent tasks. That is we have various jobs to do which do not rely on any input or event from
some other task. If our particular requirement stipulates that we need to do all jobs together rather than
sequentially, than this RTOS can be our solution. The tasks would all appear to be running simultaneously
although in fact they would be alternating and using the processor time for a few milliseconds each.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

194

SanctOS – a Round-Robin RTOS

8.3	 SanctOS example program

A simple example would help to explain how the OS works. The programs or modules required, apart
from the main example program are:

SanctOS_Startup.a51, SanctOS_A01.A51, SanctOS_V01.c using the header files SanctOS_V01.h and
SanctOS_param.h

This example program creates 255 tasks, which happen to be practically all the ‘same’ task just to make
it simpler to program. Each task simply outputs the task number to port P1. Thus the first task would
output a zero and the last task would output 254 to this port. The number 255 refers to the main()
function. The variable Running is actually used in the SanctOS RTOS to refer to the task number of the
currently executing task and is declared as an external variable so that it can be used in the example or
application program too.

Since the tasks, when created, are allocated a slot time of 50 and the parameter TICKTIME is given a value
of 1, then when the RTOS program is executing, it would first start task 0, thus P1 would be 0 for 50 ms.

Then task 1 would be invoked, and P1 would be 1 for another 50ms, then task 2 and so. Thus effectively,
P1 would be counting and showing 0 to 254 in 50ms steps!! So after Task 0 executes, it would have to wait
for the other tasks and the main() program(255 other routines) to each execute in turn for 50ms before it
can continue executing again. Because of the large number of tasks in this particular example, this delay
which works out to 12.75s might not be acceptable for the particular application. If on the other hand
we have fewer tasks (say 10) and you allocate a slot time of say 2ms per tasks, then the waiting period
for each task between successive executions would only be 20ms which might be more acceptable. This
can easily be checked in the example program, simply by changing the NOOFTASKS parameter in the
SanctOS_Param.h file and the slot-time in the OS_CREATE_TASK() command in the main program.

One can compare this round-robin RTOS with the Chinese juggler spinning plates on those long sticks
in some circus. Each stick (task) is ‘touched’ in turn, making sure that each plate (task) is visited before
it is too late. Depending on our application, we can determine the slot-time which we require for each
task, remembering that only one task would actually be executing at any particular moment.

It should also be mentioned at this point, that most applications can be written without using any RTOS,
making use instead of the various interrupt service routines. However, the use of an RTOS can most
of the time help us to write a more user-friendly programme which is neater and simpler to maintain.
Some time is needed to get familiar with the RTOS commands and the way it is initialised, but once this
is mastered, it should be relatively simple to implement our project using the RTOS.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

195

SanctOS – a Round-Robin RTOS

Example01.c

/**/

/* � */

/* 	 Example01.c: Demo � */

/* 		 SanctOS demo � */

/* � */

/* � */

/**/

#include <reg52.h> 	 /* special function registers 8052 � */

#include <absacc.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "SanctOS_V01.h" 	 /* SanctOS RTOS system calls definitions � */

/**/

/* 	 Task X: � */

/**/

// This variable 'Running is declared in SanctOS_V01.h as

// 'extern data unsigned char Running; '

// and contains the number of the currently running task

 	 // which can therefore be used in the main program if required

void OutPort(void){ 	 /* Output Task Number on to Port P1 � */

   while(1)

	 {

		 P1 = Running;

	 }

   }

/***/

/***/

/* Main: Initialise and CREATE tasks */

/***/

void main (void) 	 { 	 /* program execution starts here � */

unsigned char i;

 	 OS_INIT_RTOS(0x20); 	 /* initialise RTOS variables and stack � */

	 			 /* using Timer 2 interrupts � */

 				 /* OS_INIT_RTOS(0x00); would also be correct � */

 				 /* since the tick-timer interrupt � */

 				 /* will be set automatically � */

 	 for(i=0;i<NOOFTASKS;i++) OS_CREATE_TASK(i, OutPort, 50);

	 P1 = 0;

 	 OS_RTOS_GO(); 		 /* start SanctOS RTOS � */

 	 while (1) OS_CPU_IDLE();

}

/***/

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

196

SanctOS – a Round-Robin RTOS

SanctOS_Param.H

/*

*			 SanctOS_Param.H --- RTOS KERNEL HEADER FILE

*

* For use with SanctOS_V01.C - Round-robin RTOS written in C by Ing. Paul P. Debono

*			 for use with the 8051 family of microcontrollers

*

* File 		 : Parameters_V01.H

* Revision 	 : 8

* Date 		 : February 2006

* By	 	 : Paul P. Debono

*

* 			 B. Eng. (Hons.) Elec. Course

* 			 University Of Malta

*

*/

#ifndef __SANCTOS_PARAM_H__

#define __SANCTOS_PARAM_H__

/*

* RTOS USER DEFINITIONS

*/

#define STACKSIZE 	 0x10 	 // size of stack for each task - no need to change

#define CPU	 	 8032 	 // set to 8051 or 8032

#define TICK_TIMER 	 2 	 // Set to 0, 1 or 2 to select which timer to use as the RTOS tick
timer

#define TICKTIME	 1 	 // Length of RTOS basic tick in ms

#define NOOFTASKS	 255 	 // Number of tasks used in the application

/*

*/

#endif

Example 2

The second example shows a 3-task application, each task having a 5ms time-slot. Each task toggles a
different pin on port P1 every 1s, 1.5s and 3s respectively and these timings are worked out by a Timer 0
interrupt service routine, running independently from the RTOS interrupt. Timer 0 is set up to overflow
every 50ms and a simple counter can be used to determine the number of overflows so as to get the
correct pin-toggling timings. The RTOS this time uses Timer 2 as the tick-timer source, which is used
to give each task a 5ms time-slot in which to run.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

197

SanctOS – a Round-Robin RTOS

When executing, this program really gives the impression that all the three tasks are running
simultaneously. The timing of the LEDs is a bit approximate here since the task might not be actually
running when the LED toggle time expires. In the worst case scenario, the task might have to wait up to
10 milliseconds for the other two tasks to use their slot time before it would notice (when its time-slot
comes up) that the toggling time has passed.

Download free eBooks at bookboon.com

Click on the ad to read more

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

PaulOS An 8051 Real-Time Operating System
Part I

198

SanctOS – a Round-Robin RTOS

Example02.c

/**/

/* � */

/* Example02.c: Demo � */

/* SanctOS demo � */

/* � */

/* � */

/**/

#include <reg52.h> /* special function registers 8052 � */

#include <absacc.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "SanctOS_V01.h" /* SanctOS RTOS system calls definitions � */

sbit Led0 = P1^0;

sbit Led1 = P1^1;

sbit Led2 = P1^2;

bit Sec, OneSecFive, ThreeSecFive;

/* set up timer 0 as a 16-bit timer � */

/* Overflows every 50 milliseconds with 11.0592 MHz clock � */

/* Timer needs to count 46080 before it overflows � */

void SetUp_Timer0 (void)

{

	 TMOD &= 0xF0; 	 	 // clear timer 0 control bits only

	 TMOD |= 0x01;	 	 // 16-bit

	 TH0 = (65536-46080)/256;

	 TL0 = (65536-46080)%256; 	 // Overflows every 50 milli seconds

	 TR0 = 1;		 	 // Timer ON

	 ET0 = 1;		 	 // Enable TF0 interrupt

}

void TF0_ISR (void) interrupt 1 using 2

{

	 static unsigned int data overflow_count;

	 TH0 = (65536-46080)/256;

	 TL0 = (65536-46080)%256; 	 // Overflows every 50 milli seconds

	 �overflow_count = (overflow_count + 1) % 420; 		 // 420 is the LCDM of 20,30 and 70

	 if (overflow_count%20UL == 0) Sec = 1;		 // 20 overflows = 1s

	 if (overflow_count%30UL == 0) OneSecFive = 1;	 // 30 overflows = 1.5s

	 if (overflow_count%70UL == 0) ThreeSecFive = 1; 	 // 70 overflows = 3.5s

}

/**/

/* Task 0: */

/**/

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

199

SanctOS – a Round-Robin RTOS

void ToggleLed0(void){ 	 /* Toggle LED 0 � */
		 while(1)
 			 {
 			 Led0 = ~Led0;
			 while(Sec == 0);
			 Sec = 0;
		 }
 }

/***/

/**/
/* 	 Task 1: � */
/**/

void ToggleLed1(void){ 	 /* Toggle LED 1 � */
		 while(1)
 			 {
 			 Led1 = ~Led1;
			 while(OneSecFive == 0);
			 OneSecFive = 0;
		 }
 }

/***/

/**/
/* Task 2: */
/**/

void ToggleLed2(void){ 	 /* Toggle LED 2 � */
		 while(1)
 			 {
 			 Led2 = ~Led2;
			 while(ThreeSecFive == 0);
			 ThreeSecFive = 0;
		 }
 }

/***/

/***/

/* Main: Initialise and CREATE tasks */

/***/

void main (void) 	 { 	 /* program execution starts here � */
 	 OS INIT_RTOS(0x22); 	 /* initialise RTOS variables and stack � */
	 			 /* using Timer 0 & Timer 2 interrupts */
 	 OS CREATE_TASK(0, ToggleLed0, 5);
 	 OS CREATE_TASK(1, ToggleLed1, 5);
 	 OS CREATE_TASK(2, ToggleLed2, 5);
	 P1 = 0;
	 SetUp_Timer0(); /* Timer 0 interrupts are once again enabled here !! � */
 	 OS_RTOS_GO(); 		 /* start SanctOS RTOS � */
 	 while (1) OS_CPU_IDLE();
}

/***/

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

200

PaulOS – a Co-operative RTOS

9	 PaulOS – a Co-operative RTOS
The PaulOS (PAUL’s Operating System) co-operative RTOS is described here. This is the ‘flagship’ RTOS
which we regularly use during the year with our students. It is heavily used also for their final year theses
and it has been regularly refined to reflect the changes and upgrading requested by the students as they
became more and more familiar with the performance and limitations of this co-operative RTOS. In
this RTOS, each task is free to run for as long as it wishes. The task itself can control when to give up
the processor time to allow other tasks to run.

The original idea for this RTOS came from the book “C and the 8051 – Building Efficient Applications –
Volume II” by Thomas W. Schultz.1 This RTOS is a direct adaptation of my PaulOS assembly language
program, re-written in C so as to make it more versatile and more easily portable to other micro-
controllers. In fact it was even successfully ported to the Intel 8086 microprocessor and an 8086 version
with an example is also given in the Appendix. The main task of translating it from assembly to C was
undertaken years ago as a final year engineering degree thesis [20] (Blaut 2004), then a student under
my supervision. It was further developed and improved throughout the years by myself, thanks also to
input and suggestions from other students taking my study-units during their degree program, into the
version shown here. I consider this RTOS as providing a good basis to the study of a real-time operating
system for the 8051.

Download free eBooks at bookboon.com

Click on the ad to read more

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

PaulOS An 8051 Real-Time Operating System
Part I

201

PaulOS – a Co-operative RTOS

Most of the commands are exactly the same, (with the additional OS_ prefix) as explained in PaulOS.a51
RTOS assembly language version, also found in the appendix. The settings regarding the number of tasks
and stack size and location can be set in the parameters file, which is also listed at the end of this chapter.

There are some very immediate advantages in using C to write the RTOS. Parameters can be easily
changed from char to integer or long types and the routines would automatically reflect the changes
when they are compiled. An example here would be the ‘wait for timeout’ OS_WAITT(parameter)
command where in the A51 version, the parameter was of type integer (0-65535). In the A51 version,
if we had to change the parameter to long in order to be able to accommodate longer wait periods, we
would have to re-write the routines so as to increment or decrement double words (32-bit) rather than
words (16-bit). In the C version this could be done fairly easily simply by changing the type declarations.
The compiler would do the rest.

Naturally there are some memory space and speed penalties to pay for this versatility. However the
improvements are more than worth the penalties, especially as far as student understanding of the
RTOS is concerned. In the next paragraph we now list once again the RTOS commands, including the
improvements, mainly achieved with the use of MACROS which are listed in section 9.3.14. The full
source program can be found in appendix D.

9.1	 Description of the RTOS Operation

The PaulOS RTOS is a co-operative RTOS and hence, as explained earlier in the RTOS chapter, each task
has to take the initiative to give up its own time so as to allow other tasks to run. It has to be kept in mind
that this OS is running on an 8051-based micro-controller which can only run one program at a time
and hence this task swapping RTOS only gives the impression of having tasks running simultaneously.
In actual fact we can only have one task actually running, and at the time that the RTOS is doing its own
checks, no tasks at all would be running. This time ideally should be kept as short as possible.

The operation of the RTOS is as follows:

Each task, when created, would have its own memory area in external memory where there would be
stored all the registers (R’s, A, B, DPTR, PSW), stack area (including the return address of the task or
function). Once a change of task is required, the RTOS would take care to swap the relevant registers
and stack areas so that the micro-controller would have the correct data for the new task in its own
internal RAM.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

202

PaulOS – a Co-operative RTOS

Waiting

Queue

Running

Ready

(to execute)

Queue

Figure 9-1 RTOS Task states diagram

The RTOS tick-timer can be chosen by the user who can select from the different timers available on
the controller. Once set, at every timer overflow, an interrupt call is made to the main RTOS tick timer
interrupt service routine. This is the most important routine in the program since at every interrupt
the RTOS has to check the status of all the tasks so as to be able to decide whether a task can be moved
from the Waiting queue to the Ready queue (see Figure 9-1) or a task swap if the main() was running
is required. The RTOS achieves this by counting down the parameter variables holding the individual
waiting time required for those tasks in the waiting queue. When anyone of these timeout parameters
reaches 0, it means that the time to move on has arrived. Once again, being a co-operative RTOS, the
scheduler cannot swap tasks on its own accord. Only the main() code can be forced to give up its time,
so that if at any time whilst the main() code is running, there is a task which moves into the Ready
queue, then that task takes over.

On the other hand, when one of the OS commands which forces a task change is encountered in a task,
then it is only at that instance that a task swap is implemented. The currently running task is marked as
being in the Waiting queue and the first task in the Ready queue takes over, with the stack and registers
being conveniently swapped.

The idea behind the PaulOS RTOS is that any task (a function or a routine in a program) can be in any
ONE of three states, Running, Waiting (for some event or time delay) or Ready (to execute) state.

RUNNING

A task can be RUNNING, (obviously in the single 8051 environment, there can only be one task which is
actually in the running state). If there are no tasks which are ready to execute, then the RTOS will set the
main() as the running task. This will be interrupted at any time, as soon as a task becomes ready to run.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

203

PaulOS – a Co-operative RTOS

WAITING

A task can be in the WAITING (sometimes also referred to as SLEEPING) queue. Here a task could be
waiting for any one of the following time delays or events to occur:

•	 a specified amount of time delay, selected by the user with OS_WAITT command. OS_
DEFER command is actually an OS_WAITT(2) – wait for 2 ticks.

•	 a specified amount of time delay, selected by the user with OS_PERIODIC command. The
actual task is placed in the waiting queue when the OS_WAITP (wait for periodic interval)
is encountered.

•	 a specified interrupt to occur within a specified time, selected by the user with the OS_
WAITI command.

•	 a signal from some other task within a specified timeout, selected by the user with the OS_
WAITS(timeout) command.

•	 a signal from some other task indefinitely, selected by the user with the OS_WAITS(0)
command.

•	 a never-ending waiting period. A task could be waiting here indefinitely, effectively behaving
as if the task did not exist. This is specified by the OS_KILL_IT command.

Download free eBooks at bookboon.com

Click on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

PaulOS An 8051 Real-Time Operating System
Part I

204

PaulOS – a Co-operative RTOS

READY

It can also be in the READY QUEUE, waiting for its turn to execute. This can be visualised in Figure 9-1
which shows how the tasks can move from one state to another. The RTOS, when permitted to do so,
will select the top task from this queue to execute instead of the currently running task, which would
then be placed in the waiting queue.

The RTOS itself always resides in the background, and comes into play:

•	 At every RTOS TIMER interrupt (usually when Timer 2 or Timer 0 overflows, say every one
millisecond) so as to update the waiting time left for any tasks.

•	 At any other interrupt from other timers or external inputs so as to check whether it needs
to move to the ready queue any tasks which were waiting for such events or interrupts.

•	 Whenever an RTOS system command is issued by the main program or tasks, to perform
that system command.

The RTOS which is effectively supervising and scheduling all the other tasks, then has to make a decision
whether it has to pause the current task and resume a new one or whether it can let the current task
run on. There could be various reasons for changing tasks, as explained further on, but in order to do
this task swap smoothly, the RTOS has to save all the environment of the presently running task and
substitute it with the environment of the next task which is about to run. This is accomplished by saving
all the BANK 0 registers, the ACC, B, PSW, and DPTR registers. The STACK too has to be saved since
the task might have pushed some data on the stack (apart from the address at the point that the task
was interrupted, where it has to return to after the interrupt). This is the crux of the PaulOS RTOS.

9.2	 PaulOS.C System Commands

We now list and explain all the PaulOS RTOS system commands. These are first listed or grouped
according to whether or not they take any parameters. The list is then repeated, this tme sorted according
to whether the command causes a task swap or not.

The following RTOS system calls do not receive any parameters :

•	 OS_DEFER (void);	 	 // Stops current task and passes control to next task in queue

•	 OS_KILL_IT (void);	 	 // Kills a task - sets it waiting forever

•	 OS_RUNNING_TASK_ID(void); // Returns the task number of the currently executing task

•	 OS_SCHECK (void); 		 // Checks if running task’s signal bit is set, returns a bit value

 					 // of 1 if signal is already present.

•	 OS_WAITP (void); 		 // Waits for end of task’s periodic interval, set by

					 // the OS_PERIODIC command.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

205

PaulOS – a Co-operative RTOS

The following RTOS system calls do receive parameters:

•	 OS_CREATE_TASK (uchar tasknum, uint taskadd); 	 // Creates a task

•	 OS_INIT_RTOS (uchar iemask);	 // Initialises all RTOS variables

•	 OS_PERIODIC (uint ticks);		 // Tasks run periodically every number of ticks

•	 OS_RESUME_TASK (uchar tasknum);	// Resumes a task which was previously KILLed

•	 OS_RTOS_GO (uchar prior);	 	 // Starts the RTOS with priorities if required

•	 OS_SIGNAL_TASK (uchar tasknum);	 // Signals a task

•	 OS_WAITI (uchar intnum);		 // Waits for an event (interrupt) to occur

•	 OS_WAITS (uint ticks);	 	 // Waits for a signal within a number of ticks

•	 OS_WAITT (uint ticks);	 	 // Waits for a timeout defined by number of ticks

The list of commands can also be grouped as those which cause a change of task, might cause a change
of task and those which do not cause a task swap.

The following RTOS system calls force a task change after executing this command:

•	 OS_DEFER (void);	 	 // Stops current task and passes control to next task in queue

•	 OS_KILL_IT (void);	 	 // Kills a task – sets it waiting forever

•	 OS_WAITI (uchar intnum);	 // Waits for an event (interrupt) to occur

•	 OS_WAITT (uint ticks);	 // Waits for a timeout defined by number of ticks

•	 OS_WAITP (void); 		 // Waits for the end of the task’s periodic interval

The following RTOS system calls might force a task change after executing this command:

•	 OS_WAITS (uint ticks);	 // Waits for a signal within a number of ticks

If the signal is already present when the command is issued, then no task swap is made, otherwise a
task change is performed.

The following RTOS system calls do not force a task change, and the task using any of these commands
would continue to run after executing the command:

•	 OS_CREATE_TASK (uchar tasknum, uint taskadd); 	 // Creates a task

•	 OS_INIT_RTOS (uchar iemask);	 // Initialises all RTOS variables

•	 OS_PERIODIC (uint ticks);		 // Tasks run periodically every number of ticks

•	 OS_RESUME_TASK (uchar tasknum);	// Resumes a task which was previously KILLed

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

206

PaulOS – a Co-operative RTOS

•	 OS_RTOS_GO (uchar prior);	 	 // Starts the RTOS with priorities if required

•	 OS_RUNNING_TASK_ID(void); 	 // Returns the task number of the currently running task

•	 OS_SCHECK (void); 			 // Checks if running task’s signal bit is set

•	 OS_SIGNAL_TASK (uchar tasknum);	 // Signals a task

9.3	 Descriptions of the commands

The C version of the RTOS provides some variations and additional commands which were implemented
after having used the A51 program for a while. Some of the additions were only implemented in the C
version although they can be easily added in the assembly version as well. The detailed description of
the commands now follows, which would completely describe the RTOS. The complete PaulOS RTOS
source program can be found in the Appendix D and examples are given at the end of this chapter which
should make it easier to understand.

9.3.1	 OS_INIT_RTOS(IEMASK)

This system command must be the first command to be issued in the main program in order to initialise
the RTOS variables. It is called from the main program and takes the interrupt enable mask (IEMASK)
as a parameter. An example of the syntax used for this command is:

OS_INIT_RTOS(0x30);

Download free eBooks at bookboon.com

Click on the ad to read more

81,000 km
In the past four years we have drilled

That’s more than twice around the world.

What will you be?

Who are we?
We are the world’s leading oilfield services company. Working
globally—often in remote and challenging locations—we invent,
design, engineer, manufacture, apply, and maintain technology
to help customers find and produce oil and gas safely.

Who are we looking for?
We offer countless opportunities in the following domains:
n Engineering, Research, and Operations
n Geoscience and Petrotechnical
n Commercial and Business

If you are a self-motivated graduate looking for a dynamic career,
apply to join our team.

careers.slb.com

http://s.bookboon.com/Schlumberger1

PaulOS An 8051 Real-Time Operating System
Part I

207

PaulOS – a Co-operative RTOS

which would imply that the application program intends to use the Timer 2 interrupt (IEMASK=20H)
for the RTOS as well as the Serial Interrupt (IEMASK=10H). Hence the 0x30 parameter in the command.

Interrupt IE MASK Notes

No: Name Binary Hex

0 External Int 0 00000001 01

1 Timer Counter 0 00000010 02 Default RTOS timer for 8051

2 External Int 1 00000100 04

3 Timer Counter 1 00001000 08

4 Serial Port 00010000 10

5 Timer 2 (8032 only) 00100000 20 Default RTOS for 8032

Table 9-1 IEMASK Parameter (PaulOS)

The correct mask for the RTOS timer (defined in the file parameters.h) is always added (or ORed) by
the RTOS automatically to any other mask, even if one forgets to enable it in the IEMASK parameter.
The interrupts which are valid are shown in Table 9-1. This implies that in order to change the tick
timer (that is the interrupt number for the RTOS) we have to change the TICK_TIMER parameter in
the parameters.h file.

This system command performs the following:

•	 Clears the external memory area which is going to be used to store the stack of each task.
•	 Sets up the IE register (location A8H in the SFR area).
•	 Selects edge triggering on the external interrupts. This can be amended if a different triggering

is required by changing directly the default initialisation in the RTOS source code listing found
in Appendix D or by re-setting the correct triggering mode after having initialised the RTOS
so as to override the default value. This is done by setting the correct bit value for IT0 and IT1
residing in the TCON SFR as already stated in section 2.10.16.

•	 Loads the Ready Queue with the main idle task number, so that initially only the main task
will execute.

•	 Initialises all tasks as being not waiting for a timeout.
•	 Sets up the Stack Pointer (SP) variable of each task to point to the correct location in the stack

area of the particular task. The stack pointer, initially, is made to point to an offset of 14 bytes
above the base of the stack [(MAIN_STACK - 1) + NOOFPUSHES + 2] since NOOFPUSHES
in this case is 13. The first 13 locations would initially all contain a zero. This is done so as to
ensure that when the first RET instruction is executed after transferring the stack from external
RAM on to the 8032 RAM, the SP would be pointing correctly to the address of the task to be
started. This is seen in the QSHFT routine, where before the last RET instruction, there is the
Pop_Bank0_Reg macro which effectively pops 13 registers. The RET instruction would then
read the correct address to jump to from the next 2 locations.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

208

PaulOS – a Co-operative RTOS

9.3.2	 OS_CREATE_TASK(Task No:, Task Name)

This system command is used in the main program for each task to be created. It takes two parameters,
namely the task number (the first task is normally numbered as task 0), and the task address, which in
the C environment, would simply be the name of the procedure or function. An example of the syntax
used for this command is:

OS_CREATE_TASK(0, MotorOn);

This would create a task, numbered 0 which would refer to the MorotOn() procedure or function.

This system command performs the following:

•	 Places the task number in the next available location in Ready Queue, meaning that this task
is ready to execute. The location pointer in Ready Queue is referred to as READYQTOP in
the program, and is incremented every time this command is issued.

•	 Loads the address of the start of the task at the bottom of the stack area in external ram
allocated to this task. The SP for this task would have been already saved, by the INIT_
RTOS command, pointing to an offset 13 bytes above this, to compensate for the pops.

9.3.3	 OS_RTOS_GO(Priority)

This system command is used only ONCE in the main program, when the RTOS would be required to
start supervising the processes. It takes one Priority bit parameter.

The Priority bit parameter (0 or 1) if set to 1, implies that those tasks placed in the Ready Queue (meaning
ready to execute), would be sorted in descending order before the RTOS selects the next task to run. A
task number of 0 is taken to mean by the RTOS as the highest priority task, and would obviously be given
preference during the sorting. The main() task or function is automatically given the highest task number
(thus meaning the lowest priority) by the RTOS, so as all the other tasks would be able to interrupt it.

An example of the syntax used for this command is:

OS_RTOS_GO(1);

This would start the RTOS ticking with priority enabled. The tick time interval is determined by the
parameter TICKTIME set in the parameters header file (say 1ms, 5ms or 10ms). This value would then
become the basic reference unit for other system commands which use any timeout parameter.

The RTOS would also be required to execute “ready-tasks” sorting prior to any task change, since the
priority parameter was set to 1.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

209

PaulOS – a Co-operative RTOS

Assuming Timer 2 is being used to generate the ticktime this system command performs the following:

•	 Loads the variable DELAY (LO and HI bytes), with the number of BASIC_TICKS required to
obtain the required ticktime delay.

•	 Sets the PRIORITY bit according to the priority parameter supplied.
•	 Loads RCAP2H and RCAP2L, the Timer 2 registers, with the required count in order to

obtain the required delay between Timer 2 overflow interrupts. The value used depends on
the crystal frequency used on the board. The clock registers count up at one twelfth the clock
frequency, and using a clock frequency of 11.0592 MHz, each count would involve a time
delay of 12/11.0592 μs or 1.08507 μs. Therefore to get a delay of 1ms (1000 μs), 1000/1.08507
or 921.6 counts would be needed. We would use integer 921 to get this delay, hence the reload
registers (RCAP2H,RCAP2L) would be loaded with 65536 – 921 since the timers count up
till they overflow.

•	 Stores the reference time signal parameter in GOPARAM and TICKCOUNT.
•	 Starts Timer 2 in 16-bit auto-reload mode.
•	 Enables interrupts.
•	 Sets TF2, which is the Timer 2 overflow interrupt flag, thus causing the 1st interrupt immediately.

9.3.4	 OS_RUNNING_TASK_ID()

This system command is used by a task to get the number of the task itself. It returns an unsigned
character (1 byte) value and the same task continues to run after executing this system command.

An example of the syntax used for this command is:

X = OS_RUNNING_TASK_ID(); 	 /* where X would be an unsigned character */

9.3.5	 OS_SCHEK()

This system command is used by a task to test whether there was any signal sent to it by some other task.

•	 It returns a bit value of:
-- 0 if Signal is not present
-- 1 if Signal is present

•	 If the signal was present, the signal flag (bit) is also cleared before returning to the calling
task. The same task continues to run, irrespective of the returned value.

An example of the syntax used for this command is:

X = OS_SCHEK(); 	 /* where X would be a bit-type variable */

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

210

PaulOS – a Co-operative RTOS

or one may use it as in the following example to test the presence of the signal bit:

if (OS_SCHEK() == 1)

 {

 /* do these instructions if a signal was present */

 }

9.3.6	 OS_SIGNAL_TASK(Task No:)

This system command is used by a task to send a signal to another task. If the other task was already
waiting for a signal, then the other task is placed in the Ready Queue and its waiting for signal flag is
cleared. The task issuing the OS_SIGNAL_TASK command continues to run, irrespective of whether the
called task was waiting or not waiting for the signal. If we need to halt the task after the OS_SIGNAL_
TASK command to give way to other tasks, we must use the OS_DEFER() system command after the
OS_SIGNAL_TASK command.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/accentureUS

PaulOS An 8051 Real-Time Operating System
Part I

211

PaulOS – a Co-operative RTOS

This system command performs the following:

•	 It first checks whether the called task was already waiting for a signal.
•	 If the called (signaled) task was not waiting, it sets its waiting for signal (SIGW) flag and

exits to continue the same task.
•	 If the signaled task was already waiting, it places the called task in the Ready Queue and it

clears both the waiting for signal (SIGW) and the signal present (SIGS) flags.
•	 It also sets a flag (TINQFLAG) to indicate that a new task has been placed in the Ready

Queue. This flag is used by the RTOS_TIMER_INT routine (every half a millisecond) in
order to be able to decide whether there has to be a task change. It then exits the routine to
continue the same task.

An example of the syntax used for this command is:

OS_SIGNAL_TASK(1); 		 // send a signal to task number 1

OS_DEFER();			 // give cpu time to other tasks, if necessary

9.3.7	 OS_PERIODIC (uint ticks)

This command initalises the task to repeat periodically, every certain number of ticks given as a parameter
in the command. It is used at the beginning of a task, OUTSIDE of the endless loop, as shown in the
next sub-section 9.3.8. An example of its usage is also given in that same sub-section.

We now deal with the commands that do perform a voluntary (co-operative) change of task:

9.3.8	 OS_WAITP (void)

This command sets the task waiting for the preset periodic interval (set previously by the OS_
PERIODIC(ticks) command. The task goes into a waiting state and the next ready task takes over.

If the interval has already passed when this command is executed, then the task would continue to
execute. This is not normally the case, and only happens when there is a programming logic or algorithm
mistake, since it would generally mean that the task is actually taking longer to execute than the requested
periodic interval between executions.

It performs the following:

•	 Saves task environment in preparation for the expected task swap.
•	 If the periodic interval has not yet passed, as is generally the case, it sets the periodic interval

flag to indicate that it is waiting for the periodic interval and issues a voluntary task change.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

212

PaulOS – a Co-operative RTOS

•	 If however the periodic interval has already elapsed (this is usually due to bad
programming, in cases where the code of the task itself takes a longer time to execute than
the required periodic interval), then it clears the periodic interval flag and exits.

Such a command is used in a task, in conjunction with the OS_PERIODIC() command and an example
of its usage is shown below:

	 OS_PERIODIC(50);			 // declare task as wishing to execute every 50 ticks

	 while(1)				 // repeat forever

	 {

	 ….				 // code to be executed every 50 ticks

	 ….				 // which should not take longer than

	 ….				 // 50 ticks to execute.

	 OS_WAITP();			 // wait for the periodic interval to pass

	 }

9.3.9	 OS_WAITI(Interrupt No:)

This system command is called by a task to sleep and wait for an interrupt to occur. Another task, next in
line in the Ready Queue would then take over. If the interrupt never occurs, then the task will effectively
sleep for ever. This is one way of writing Interrupt Service Routines under PaulOS RTOS control. ISRs
can also be written in such a way as to run independently, as describe in section 9.3.15.

If required, this command can be modified to allow another timeout parameter to be passed, so that if
the interrupt does not arrive within the specified timeout, the task would resume. A timeout of 0 would
still leave the task waiting for the interrupt forever. The modification required to the RTOS source listing
would be similar to the OS_WAITS command, and the operation would then be as explained further
down in sub-section 9.3.10.

This system command performs the following:

•	 It sets the bit which corresponds to the interrupt number passed on as a parameter.
•	 It then calls the QSHFT routine in order to start the task next in line.

An example of the syntax used for this command is:

OS_WAITI(0);			 // wait for an interrupt from external int 0

The task would then go into the sleep or waiting mode and a new task would take over.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

213

PaulOS – a Co-operative RTOS

9.3.10	 OS_WAITS(Timeout)

This system command is called by a task to sleep and wait for a signal to arrive from some other task.
If the signal is already present (previously set or signaled by some other task), then the signal is simply
cleared and the task continues on. If the signal does not arrive within the specified timeout period, the
task resumes just the same. However, a timeout number of 0 would imply that the task has to keep on
waiting for a signal indefinitely. If the signal does not arrive, then the task never resumes to run and
effectively the task is killed.

This system command performs the following:

•	 It first checks whether the signal is already present.
•	 If the signal is present, then it clears the signal flag, exits and continues running.
•	 If the signal is not present, then:

-- It sets its own waiting for signal (SIGW) flag.
-- It also sets the waiting for timeout variable according to the supplied parameter.
-- It then jumps to the QSHFT routine in order to start the task next in line.

Download free eBooks at bookboon.com

Click on the ad to read more

www.bio-rad.com/careers

John Randall, PhD
Senior Marketing Manager, Bio-Plex Business Unit

Find and follow us: http://twitter.com/bioradlscareers
www.linkedin.com/groupsDirectory, search for Bio-Rad Life Sciences Careers
http://bio-radlifesciencescareersblog.blogspot.com

Bio-Rad is a longtime leader in the life science research industry and has been
voted one of the Best Places to Work by our employees in the San Francisco
Bay Area. Bring out your best in one of our many positions in research and
development, sales, marketing, operations, and software development.
Opportunities await — share your passion at Bio-Rad!

http://s.bookboon.com/Bio-RadCareers

PaulOS An 8051 Real-Time Operating System
Part I

214

PaulOS – a Co-operative RTOS

An example of the syntax used for this command is:

OS_WAITS(50);

// wait for a signal within 50 units or ticks, the value of the unit depends on

// the TICKTIME parameter used.

If for example, the TICKTIME was set to 10 milliseconds in the header file, an OS_WAITS(50) would
then imply waiting for a signal to arrive within 500 milliseconds.

or you can use:

OS_WAITS(0); // this would wait for a signal for ever

In both examples, if the signal is not already present, the task would then go into the sleep or waiting
mode and a new task would take over.

9.3.11	 OS_WAITT(Timeout)

This system command is called by a task to sleep and wait for a specified timeout period. The timeout
period is in units whose value depends on the TICKTIME parameter used. Valid values for the timeout
period are in the range 1 to 65535. A value of 0 is reserved for the OS_KILL_IT command, meaning
permanent sleep, and therefore is not allowed for this command. The OS_WAITT system command
therefore performs the required check on the parameter before accepting the value. If by mistake a value
of 0 is given as a timeout parameter, then it is automatically changed to a 1. Once the timeout period
passes, the task which had issued this command, would be moved from the waiting to the ready queue.

This system command performs the following:

•	 If the parameter is 0, then set it to 1, to avoid permanent sleep.
•	 Save the correct parameter in its correct place in the TTS table.
•	 Jump to the QSHFT routine in order to start the task next in line.

An example of the syntax used for this command is:

OS_WAITT(60);

// wait for a signal for 60 units, the value of the unit depends on

// the TICKTIME parameter used.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

215

PaulOS – a Co-operative RTOS

If for example, the command TICKTIME was set to 10, the reference unit would be 10 milliseconds,
and OS_WAITT(60) would then imply waiting or sleeping for 600 milliseconds. The task would then go
into the sleep or waiting mode for 600ms and a new task would take over. After 600ms it would move
to the ready queue.

9.3.12	 OS_KILL_IT()

This system command is used by a task in order to stop or terminate the task. As explained earlier in
OS_WAITT, this is simply the command OS_WAITT with an allowed timeout of 0. The task is then
placed permanently waiting and never resumes execution.

This system command performs the following:

•	 First it clears any waiting for signal or waiting for interrupt flags, so that that task would
definitely never restart.

•	 Then it sets its timeout period in the TTS table to 0, which is the magic number the RTOS
uses to define any non-timing task.

•	 Then it sets the INTVLRLD and INTVLCNT to 0, again implying that it is not a periodic
task.

•	 Finally it jumps to the QSHFT routine in order to start the task next in line.

An example of the syntax used for this command is:

OS_KILL_IT();

/* the task simply stops to execute and a new task would take over.*/

9.3.13	 OS_DEFER()

This system command is used by a task in order to hand over processor time to another task. The task
is simply placed at the end of the Ready Queue, while a new task resumes execution.

This system command performs the following:

•	 It sets its timeout period in the TTS table to 0, which is the magic number the RTOS uses to
describe any non-timing task.

•	 It places the task in the Ready Queue, by simply placing the task number in the next
available location in Ready Queue area.

•	 It then flows on to the QSHFT routine in order to start the task next in line.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

216

PaulOS – a Co-operative RTOS

An example of the syntax used for this command is:

OS_DEFER();

/* the task simply stops execution and is placed in Ready Queue.*/

/* A new task would then take over. */

9.3.14	 Enhanced event-waiting and other add-on MACROS

These macros (#define statements) perform the same functions of the OS_WAITT, OS_WAITS and
OS_PERIODIC calls but rather than ticks they accept absolute time values as parameters in terms of
minutes, seconds and millisecs. This difference is denoted by the _A suffix (the A standing for Absolute) –
eg. OS_WAITT_A(0,0,300) would cause a task to wait for 300ms and is the absolute-time version of
OS_WAITT(x), where x would have to be calculated to give the required number of ticks equivalent to
a 300ms delay.

Range of values (65535 TICKTIMES) accepted is listed below:

Using a minimum TICKTIME of 1ms :
	 Range from 1ms to 1m, 5s, 535ms in steps of 1ms.

Download free eBooks at bookboon.com

Click on the ad to read more

��������������	
��	�
�����

����
�

�

���������������������	
��
���	
��
��
����������
�������	
��	�����
���
������
��

�
���
�����

��
���
�������
	�
����	�
����
��������
������������������
��������
���
	�
����	

���
����
���
	�
����	�
���
��
���
����
�������	
�������
	��	�
���
�
�
���	
	�	

���
�����
���
��
��
�
	�	��
�����
������
�
����
���
������
���
���������

�
	
�
�	
��
�������	
	�
��
���
��
����������	
��
������� �

http://s.bookboon.com/ChalmersINTL2016

PaulOS An 8051 Real-Time Operating System
Part I

217

PaulOS – a Co-operative RTOS

Using a recommended TICKTIME of 10ms:
	 Range from 10ms to 10m, 55s, 350ms in steps of 10ms.

Using a maximum TICKTIME of 50 ms:
	 Range from 50ms–54m, 36s, 750ms in steps of 50ms

If the conversion from absolute time to ticks results in 0 (all parameters being 0 or overflow) this result
is only accepted by OS_WAITS() by virtue of how the OS_WAITT(), OS_WAITS() and OS_PERIODIC()
calls were written. In the case of the OS_WAITT() and OS_PERIODIC() calls the tick count would
automatically be changed to 1 meaning an interval of 1 ticktime.

OS_WAITT_A(M,S,ms)		 // Absolute OS_WAITT for minutes, seconds and milliseconds

OS_WAITS_A(M,S,ms)		 // Absolute OS_WAITS for minutes, seconds and milliseconds

OS_PERIODIC_A(M,S,ms)	 // Absolute OS_PERIODIC for minutes, seconds and milliseconds

OS_PAUSE_RTOS()		 // Disable the RTOS, used in a stand-alone ISR

OS_RESUME_RTOS()		 // Re-enable the RTOS, used in a stand-alone ISR

OS_CPU_IDLE()		 // Sets the µC in idle mode in PCON SFR (section 1.8.10).

				 // This is usually used in the main program endless loop after

				 // initialising and starting the RTOS.

OS_CPU_DOWN()		 // Sets the µC in power-down mode in PCON SFR (section 1.8.10).

9.3.15	 Stand-alone Interrupt Service Routines

In the C version of the RTOS, a simple method of having one or more stand-alone interrupt service
routine (ISR) which would run whenever some interrupt is generated has been included.

All we have to do is to set to ‘1’ the corresponding interrupt in the PaulOS.H file. For example if we intend
to have an ISR running under the EXT 0 interrupt (and not under RTOS control), then we have to make
sure to set to one the corresponding #define statement in PaulOS.H file. In some examples or listings
shown in this book, these STAND_ALONE_ISR parameters were moved to the parameters.h header
file so as to have all parameters which can be changed by the user in one file, but the effect is the same.

#define STAND_ALONE_ISR_00 1 // EXT0 – set to 1 if using this interrupt as a stand alone ISR

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

218

PaulOS – a Co-operative RTOS

Then in the ISR itself we should also include the commands OS_PAUSE_RTOS() when starting the ISR
and then OS_RESUME_RTOS() in order to resume the RTOS before exiting the ISR. This would ensure
that the RTOS does not interfere with the stand-alone ISR.

It is best to use register banks 2 or 3 for these ISRs.

Example of a stand-alone ISR, interrupting the RTOS and executing immediately when the interrupt
occurs.

void ISR_EXT0 (void) interrupt 0 using 2

   {

	 OS_PAUSE_RTOS()		 // Disable the RTOS, used in a stand-alone ISR
	 /* Our service routine code goes in here */
	 /* Our service routine code goes in here */
	 /* Our service routine code goes in here */
	 OS_RESUME_RTOS()		 // Re-enable the RTOS, before exiting the stand-alone ISR
   }

9.4	 PaulOS parameters header file

This is the RTOS parameters header file. We eould mainly be needing to set the TICK_TIMER, TICKTIME
and NOOFTAKS parameters to reflect out particular application program.

/*

* PARAMETERS.H -- RTOS USER DEFINITIONS

*/

#define STACKSIZE	 0x0F 	 // Number of bytes to allocate for the stack

#define CPU		 8032	 // set to 8051 or 8032

#define TICK_TIMER 2 		 // Set to 0, 1 or 2 to select which timer to

 				 // use as the RTOS tick timer

#define TICKTIME	 2 	 // Length of RTOS basic tick in msec - refer

 				 // to the RTOS timing definitions

#define NOOFTASKS	 8	 // Number of tasks used in application

/*

* PARAMETERS.H -- RTOS USER DEFINITIONS

*/

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

219

PaulOS – a Co-operative RTOS

9.5	 Example using PaulOS RTOS

This is an example using the PaulOS RTOS. The same function is used to represent 62 different tasks.

Each task would generate random x,y co-ordinates to represent the column (0–79) and row (5–20)
where to display a character to represent the task number (A = task 0, B = task 1 and so on). LEDs are
connected to Port B (assuming we have the FLT-32 development board) which display the running task
number as a binary number. Three other tasks are created to clear the screen, display the stack size used
by each task and to generate the random seed. As the program executes, the screen is populated with
different characters to represent the 62 tasks.

Download free eBooks at bookboon.com

Click on the ad to read more

Linköping University –
innovative, highly ranked,
European
Interested in Engineering and its various branches? Kick-
start your career with an English-taught master’s degree.

Click here!

http://s.bookboon.com/liu

PaulOS An 8051 Real-Time Operating System
Part I

220

PaulOS – a Co-operative RTOS

/*

**

* 					 PAULOS

* 				 The Real-Time Kernel

*

*

*

* 				 EXAMPLE random06.c

**

*/

#include <reg52.h> 		 /* special function registers 8052 */

#include "PaulOS.h" 		 /* PaulOS C version system calls definitions */

#include <absacc.h>

#include <stdio.h>

#include <stdlib.h>

#include "..\Others\SerP2Pkg.h"

#include "..\Others\Flt32Pkg.h"

#include "..\Others\HYPER_PC.H"

extern uchar MaxSPTs[NOOFTASKS];

#define TaskWaitmSec 900

/*

**

* 					 TASKS

**

*/

void CommonTask (void)

{

	 uchar x,y,z,s[5];

	 z = 1 + OS_RUNNING_TASK_ID();

	 OS_PERIODIC_A(0,z,TaskWaitmSec); 	 /* Run every (1 + Task ID) seconds */

	 while(1)

 	 {

 		 x = rand()%80; 	 /* Get X position (0-79) where task number will appear */

 		 y = 5 + rand()%16; 	 /* Get Y position (5-20) where task number will appear */

 		 z = OS_RUNNING_TASK_ID();

 		 PC_DispChar(y,x,z+'A'); 	 /* Display the task number on the screen */

 		 WritePort('B',z); 		 /* LEDs connected to Port B show running task No.*/

 		 sprintf(s,"%02bu",z);

 		 PC_DispStr(22,40,s);

		 OS_WAITP();

 	 }

}

/*

**

*/

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

221

PaulOS – a Co-operative RTOS

/*

**

*/

void StackSize (void) {

	 #if STACK_CHECK

		 uchar i,j;

 		 uchar s[20];

		 ulong k;

	 #endif

	 while(1) {

		 #if STACK_CHECK

			 OS_WAITT_A(0,20,0);

 			 j = OS_RUNNING_TASK_ID();

 			 sprintf(s,"%02bu",j);

 			 PC_DispStr(22,40,s); /* Display the task number on screen */

			 WritePort('B', j);

			 for (i=2;i<=20;i++) PC_DispClr2EndOfRow(i,0);

 			 PC_DispStrCntr (2,"Maximum Stack size (per task) used so far");

			 PC_DispStr(3,5,"Task Stack Size Task Stack Size Task Stack Size
Task Stack Size");

			 PC_DispStr(4,5," No Bytes No Bytes No Bytes No Bytes");

			 j=0;

			 for (i=0;i<=NOOFTASKS;)	 {

			 sprintf(s," %02bu 	 %03bu",i,MaxSPTs[i++] - MAINSTACK);

			 if(i<=NOOFTASKS+1) PC_DispStr(5+j,5,s);

			 sprintf(s," %02bu 	 %03bu",i,MaxSPTs[i++] - MAINSTACK);

			 if(i<=NOOFTASKS+1) PC_DispStr(5+j,22,s);

			 sprintf(s," %02bu 	 %03bu",i,MaxSPTs[i++] - MAINSTACK);

			 if(i<=NOOFTASKS+1) PC_DispStr(5+j,41,s);

			 sprintf(s," %02bu 	 %03bu",i,MaxSPTs[i++] - MAINSTACK);

			 if(i<=NOOFTASKS+1) PC_DispStr(5+j++,58,s);

 }

 		 for (k=0;k<80000;k++){};

		 for (i=2;i<=21;i++) PC_DispClr2EndOfRow(i,0);

 	 PC_DispStrCntr (2,"by Paul P. Debono - EXAMPLE Random 06");

 	 PC_DispStrCntr (3,"C Version by John Blaut");

		 #else

			 OS_KILL_IT();

		 #endif

 }

}

/*

/*

**

*/

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

222

PaulOS – a Co-operative RTOS

void ClearArea (void)

{

	 uchar i,s[3];

	 OS_PERIODIC_A(0,25,0); 	 /* Repeat every 25 seconds */

  while(1)

 {

	 i = OS_RUNNING_TASK_ID();

	 sprintf(s,"%02bu",i);

	 PC_DispStr(22,40,s); 		 /* Display the task number on the screen */

	 WritePort('B', i);

	 for (i=5;i<=20;i++) PC_DispClr2EndOfRow(i,0);

	 PC_DispStr(22,40,s); 		 /* Display the task number on the screen */

	 OS_WAITP();

 }

}

/*

**

*/

void RandomSeed (void)

{

	 uint x;

	 uchar z,s[3];

	 OS_PERIODIC_A(0,3,500); 		 /* Run every 3.5 seconds */

    while(1)

    {

 		 z = OS_RUNNING_TASK_ID();

		 sprintf(s,"%02bu",z);

		 PC_DispStr(22,40,s); 		 /* Display the task number on the screen */

		 WritePort('B',z);

		 x = (x+1)%0xFFFF;

		 srand(x);

 		 OS_WAITP();

    }

}

/***/

/***/

/*$PAGE*/

/***/

/** MAIN

**/

/* Using ANSI.SYS Escape control sequence 		 */

/* Clear Screen 		 Esc[2J 			 */

/* Position Cursor 		 Esc[row;colH 		 */

/* Clear to end of line Esc[K 			 */

void main (void)

{

	 uchar i;

	 OS_INIT_RTOS(0x20); /* initialise RTOS variables and stack */

	 Init_8255(0x91); /* Initialise the 8255 */

	 Set_P2_BaudRate (38400);

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

223

PaulOS – a Co-operative RTOS

	 PC_DispClrScr(); /* Clear the screen */

	 PC_DispStrCntr (1,"PaulOS, The Real-Time 8051 Co-Operative Kernel");

	 PC_DispStrCntr (2,"by Paul P. Debono - EXAMPLE Random 06 with 65 tasks");

	 PC_DispStr(22,31,"Task No:");

	 for(i=0;i<=61;i++)

		 {

		    OS_CREATE_TASK(i,CommonTask); /* CREATE common tasks */

		 }

	 OS_CREATE_TASK (62,StackSize);	 /* CREATE task */

	 OS_CREATE_TASK (63,ClearArea); /* CREATE task */

	 OS_CREATE_TASK (64,RandomSeed); /* CREATE task */

	 OS_RTOS_GO(0); /* Start multitasking */

	 while (1)

	   {

		 OS_CPU_IDLE();			

/* Go to idle mode if doing nothing, to conserve energy */

	   }

}

/*

**

*/

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/academictransfer

PaulOS An 8051 Real-Time Operating System
Part I

224

MagnOS – a Pre-Emptive RTOS

10	 MagnOS – a Pre-Emptive RTOS
The final RTOS which we discuss is the MagnOS (MAGNus Operating System, Magnus meaning Great in
Latin), which gives a demonstration of a pre-emptive RTOS. In this system, each task is given a priority,
and the basic control logic of this RTOS is that the highest priority task runs for as long as necessary,
until a higher priority task becomes ready to execute. The trick here is to learn to decide what priority to
give to the individual tasks so as to avoid having a single task take over completely the processor time,
without giving a chance for other tasks to run.

This RTOS, which is a pre-emptive RTOS is a further modification of the PaulOS co-operative RTOS
program, written in C to make it more versatile and easier to port to other micro-controller variations
and types. It can be further developed into a more complex RTOS if one can dedicate more time to it.
The original idea behind this RTOS once again came from the book by Prof. Thomas W. Schultz “C
and the 8051 – Volume II”2 which described the basic ideas and workings of such a simple but effective
pre-emptive RTOS.

Obviously, the main improvement of this RTOS over the PaulOS RTOS, is in the pre-emptive swapping
of tasks capability. If the RTOS sees any task which is ready to execute and which has a higher priority
than the current one running, it will interrupt that running task and it will start (or resume) executing
the higher priority task instead. The task will then continue to run until it either gives up the proces-
sor/controller time on its own accord by some command similar to the PaulOS method (such as OS_
WAITT(x)) or else another task having an even higher priority becomes ready to execute and therefore
the RTOS would give it the priority to run.

Great care has to be taken in deciding what priority to allocate to each of the individual tasks and also
in the use of variables and/or resources by more than one task.

Naturally there are some memory space and speed penalties to pay for this versatility. Because of this, if
one can perform the required project with a co-operative RTOS, then one has no need for the pre-emptive
RTOS. However the improvements more than outweigh the penalties, and since it is written in C, the
student can better understand the workings of the RTOS. The full source code listing of this RTOS can
be found in appendix E. Here is the list of the MagnOS RTOS commands and some description of each:

10.1	 MagnOS System Commands

Some of the commands are exactly the same as those used in the PaulOS RTOS, but are also being listed
here for the sake of completeness.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

225

MagnOS – a Pre-Emptive RTOS

The following RTOS system calls do not receive any parameters:

•	 OS_RTOS_GO (void);	 		 // Starts the RTOS with priorities if required
•	 OS_WAITP (void); 			 // Waits for end of task’s periodic interval
•	 OS_RUNNING_TASK_ID(void); 	 // Returns the number (unsigned char) of current task

The following RTOS system calls do receive parameters :

•	 OS_INIT_RTOS (uchar iemask);	 // Initialises all RTOS variables
•	 OS_WAITI (uchar intnum);		 // Waits for an event (interrupt) to occur
•	 OS_WAITT (uint ticks);		 // Waits for a timeout defined by number of ticks
•	 OS_PERIODIC(uint ticks);	 	 // Set task to repeat periodically

•	 OS_CHECK_TASK_PRIORITY (uchar task_num) 	 // gets the requested task priority setting
•	 OS_CHANGE_TASK_PRIORITY (uchar task_num, uchar new_prio) 	 // sets the task priority

•	 OS_RELEASE_RES (uchar Res_Num) 	// releases the resource, for use by other tasks
•	 OS_WAIT4RES (uchar Res_Num, uint ticks) 	 // wait for the resource within ticks time

•	 OS_SEND_MSG (struct letter xdata *msg) 	 // send a message to a task
•	 OS_CLEAR_MSG (struct letter xdata *msg) 	 // clears the message
•	 OS_CHECK_MSG (struct letter xdata *msg) 	 // checks if message is present
•	 OS_GET_MSG (struct letter xdata *msg) 	 // gets the message
•	 OS_WAIT_MESSAGE (struct letter xdata *msg) 	 // waits for a message

•	 OS_CHECK_TASK_SEMA4 (uchar task_num) 	 // checks the semaphore
•	 OS_SEMA4MINUS (uchar task_num, uchar units) 	 // deducts units from the semaphore
•	 OS_SEMA4_PLUS (uchar task_num, ucahr units) 	 // adds units to the semaphore
•	 OS_WAIT4SEM (uint ticks) 	 // waits for the semaphore to get to zero within ticks time

•	 OS_KILL_TASK (uchar tasknum);	 // Kills a task – sets it to wait forever
•	 OS_CREATE_TASK (uchar tasknum, uint taskadd, uchar priority); 	 // Creates a task

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

226

MagnOS – a Pre-Emptive RTOS

10.2	 Detailed description of commands

This pre-emptive RTOS (source listing given in the appendix E) provides some variations and additional
commands which were implemented after having used the first test versions of the program for some
time. We now describe what these commands actually do and how they were implemented. Although we
might be repeating ourselves the commands which are very similar to PaulOS are once again described
here since they might have some slight changes due to the priority and pre-emptive components of the
MagnOS RTOS. Moreover it eliminates the need to continuously flick over the pages for references. Later,
after reading this chapter, one can refer back to the PaulOS Chapter 9, and to the source code and the
remarks in appendices D and E for further explanations and comparisons.

Each task has its own set of parameters, as declared in MagnOS.h file (see Appendix E) and shown here,
since some of these parameters are used when explaining the commands in the various 10.2.x sub-sections.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/JAMRS

PaulOS An 8051 Real-Time Operating System
Part I

227

MagnOS – a Pre-Emptive RTOS

struct task_param { 		 /* 13 bytes + 13 registers + stack per task */
	 uchar catalog; 		 /* task id */
	 uchar status1; 		 /* status flags, see below for details */
	 uchar status2; 		 /* status flags, see below for details */
	 uchar priority; 		 /* priority number, low = high priority */
	 uchar semaphore; 	 /* counting semaphore for each task */
	 uchar resource; 		 /* resource number required */
	 uchar stackptr; 		 /* stack pointer SP storage location */
	 uchar intnum; 		 /* task waiting for this interrupt number */
	 uint timeout; 		 /* task waiting for this timeout in ticks, */
	 			 /* 0 = not waiting */
	 uint interval_count; 	 /* time left to wait for this periodic */
				 /* interval task in ticks */
	 uint interval_reload;	 /* periodic tick interval reload value */
	 uchar rega; 		 /* registers storage area, ready for context */
 				 /* switching use */
	 uchar regb;
	 uchar rdph;
	 uchar rdpl;
	 uchar rpsw;
	 uchar reg0;
	 uchar reg1;
	 uchar reg2;
	 uchar reg3;
	 uchar reg4;
	 uchar reg5;
	 uchar reg6;
	 uchar reg7;
	 char stack[STACKSIZE]; 	 /* stack storage area */
		 };

10.2.1	 OS_RTOS_GO (void)

This is the command which starts the RTOS going.

It performs the following:

•	 It loads the correct timer (selected by the parameter TICK_TIMER) with correct reload
value so as to generate overflow interrupts according to the BASIC_TICK selected.

•	 Starts the timer and sets the timer overflow interrupt flag so that it would cause an interrupt
immediately.

•	 Signals to the RTOS that there are tasks in the READY queue, by setting flag TinQFlag to 1.
•	 Enables global interrupts, so that the timer interrupt is recognised immediately.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

228

MagnOS – a Pre-Emptive RTOS

Such a command is used only once, normally in the main() function so as to start the RTOS going. An
example of its usage is shown below:

	 OS_RTOS_GO();

10.2.2	 OS_PERIODIC (uint ticks)

This command initalises the task to repeat periodically, every certain number of ticks given as a parameter
in the command. It is used at the beginning of a task, OUTSIDE of the endless loop, as shown in the
next sub-section 10.2.3. An example of its usage is also given in that same sub-section.

10.2.3	 OS_WAITP (void)

This command sets the task waiting for the preset periodic interval (set previously by the OS_
PERIODIC(ticks) command. The task goes into a waiting state and the next ready task with the highest
priority takes over.

If the interval has already passed when this command is executed, then the task would continue to
execute. This is not normally the case, and only happens when there is a programming logic or algorithm
mistake, since it would generally mean that the task is actually taking longer to execute than the requested
periodic interval between executions.

It performs the following:

•	 Saves task environment in preparation for the expected task swap.
•	 If the periodic interval has not yet passed, as is generally the case, it sets the periodic

interval flag to indicate that it is waiting for the periodic interval and issues a voluntary task
change.

•	 If however the periodic interval has already elapsed (this is usually due to bad
programming, in cases where the code of the task itself takes a longer time to execute than
the required periodic interval), then it clears the periodic interval flag and exits.

Such a command is used in a task, in conjunction with the OS_PERIODIC() command and an example
of its usage is shown below:

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

229

MagnOS – a Pre-Emptive RTOS

	 OS_PERIODIC(50);			 // declare task as wishing to execute every 50 ticks

	 while(1)				 // repeat forever

	 {

	 ….				 // code to be executed every 50 ticks

	 ….				 // which should not take longer than

	 ….				 // 50 ticks to execute.

	 OS_WAITP();			 // wait for the periodic interval to pass

	 }

10.2.4	 OS_RUNNING_TASK_ID(void)

This command simply returns the number (id) of the task which is currently running. This command
does not cause a voluntary task change. Its usage is very straight forward, assuming that CurrentTask
was previously declared as an unsigned char variable:

	 CurrentTask = OS_RUNNING_TASK_ID();

10.2.5	 OS_INIT_RTOS (uchar iemask)

This command initalises all the RTOS and tasks variables, stacks, interrupt masks to their default values
(mostly zeroes). The iemask is used to enable the interrupts which one intends to use for the tasks and
the RTOS tick timer itself. The iemask bits reflect the interrupt numbers used in the 8051as shown in
Table 10-1.

Bit 7 6 5 4 3 2 1 0

Interrupt NA NA Timer 2 Serial Timer 1 Ext 1 Timer 0 Ext 0

Table 10-1 IEMASK values

It is normally the first RTOS command used at the very beginning of the main() function, before creating
the tasks and its use is shown below:

	 OS_INIT_RTOS(0x25); 	// mask=00100101, use interrupts EXT0, EXT1 and TF2

				 // Timer 2 would presumably be the RTOS tick timer

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

230

MagnOS – a Pre-Emptive RTOS

10.2.6	 OS_WAITI (uchar interrupt)

This command causes the task to wait for the required interrupt. The task goes into a waiting state and
the next ready task with the highest priority takes over. The interrupt cannot be the same as that being
used for the tick timer and obviously there cannot be a stand-alone ISR routine which is being activated
this interrupt.

It performs the following:

•	 Sets the corresponding ‘waiting for interrupt’ flag for the task.
•	 Stores environment in preparation for the voluntary task swap.
•	 Performs the task swap.

It can be used by a task as follows:

	 OS_WAITI(4); // wait for the serial interrupt number 4

10.2.7	 OS_WAITT (uint ticks)

This command causes the task to wait for the required number of ticks. The task goes into a waiting
state and the next ready task with the highest priority takes over.

Download free eBooks at bookboon.com

Click on the ad to read more

Bartending is your ticket to the world

26 destinations 4 continents

GET STARTED

http://s.bookboon.com/ebsbarschools

PaulOS An 8051 Real-Time Operating System
Part I

231

MagnOS – a Pre-Emptive RTOS

It performs the following:

•	 Sets the corresponding ‘timeout waiting parameter’ for the task.
•	 Stores environment in preparation for the voluntary task swap.
•	 Performs the task swap

It can be used by a task as follows:

	 OS_WAITT(100); // wait for 100 ticks to pass

10.2.8	 OS_CHECK_TASK_PRIORITY (uchar task_num)

This command returns the value (type unsigned char) of the required task priority. This command does
not cause a voluntary task change and is used as follows:

	 Task_5_Priority = OS_CHECK_TASK_PRIORITY(5);

where Task_5_Priority would be a previously declared variable of type unsigned char.

It is mainly used in a task so as to be able to store the task priority before changing it. A higher value
indicates a higher priority, which is the opposite of what was the practice in PaulOS.

10.2.9	 OS_CHANGE_TASK_PRIORITY (uchar task_num, uchar new_prio)

This command changes the value of the required task priority. This command does not cause a voluntary
task change and is normally used so as to increase or reset the priority of a particular task. This is normally
required when for example something which cannot be interrupted is about to be executed, in which
case the priority is temporary set to the highest value until the time critical code is executed. The task
priority can then be restored to the original value. Such a task would be coded as follows:

	 P = OS_CHECK_TASK_PRIORITY(thistask);

	 OS_CHANGE_TASK_PRIORITY(thistask, highest_priority);

	 ……………..	 // time critical code here

	 ……………..

	 OS_CHANGE_TASK_PRIORITY(thistask, P);

	 ……………..

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

232

MagnOS – a Pre-Emptive RTOS

10.2.10	 OS_RELEASE_RES (uchar Res_Num)

This command frees the given resource, thus making it available to other tasks. This command may cause
a voluntary task change if there was another higher priority task waiting for this resource. The resource
can be used to represent a function, a device or a variable.

The command performs the following:

•	 Stores environment in preparation for the voluntary task swap.
•	 Checks all tasks in order to see which is the highest priority task that was waiting for this

resource.
•	 If no other higher priority task was waiting for this resource, then it simply marks this

resource as being free and exits without performing any task swap.
•	 If a higher priority task is found, then:

-- the resource is marked as being used by the new task.
-- The current task is placed in the waiting queue (code default is for 3 ticks, the number

was chosen for no particular reason).
-- Performs the task swap.

It can be used by a task as follows:

OS_RELEASE_RES(10); 	 // release resource number 10, which could represent a printer

				 // for example.

10.2.11	 OS_WAIT4RES (uchar Res_Num, uint ticks)

This command causes the task to wait for the required resource to become available within a given
timeout. A ticks value of zero implies keeping on waiting for the resource forever. The task goes into a
waiting state if the resource is not available and the next ready task with the highest priority takes over. If
the resource is already free and available, the task simply continues to execute. This command therefore
may or may not perform a task swap.

This command performs the following:

•	 Stores environment in preparation for the voluntary task swap, if needed.
•	 If the resource is already available, it simply marks the resource as being in use by this task

and exits without performing any task swap.
•	 If the resource is being used by some other task:

-- It sets the flags indicating that the task is waiting for a resource.
-- Marks which resource it is waiting for.
-- Sets the timeout tick time.
-- Performs the voluntary task change.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

233

MagnOS – a Pre-Emptive RTOS

The usage of this command is as follows:

	 OS_WAIT4RES(10,0); 	 // wait forever for resource number 10
or

	 OS_WAIT4RES(10,80); 	// wait for a maximum of 80 ticks for resource number 10,

				 // it will be placed in the ready queue once resource is available,

				 // if resource is still not available after 80 ticks, the task will

				 // still go ahead, which might be catastrophic!

10.2.12	 OS_SEND_MSG (struct letter xdata *msg)

This command sends a message to another task. There are two message arrays stored in external RAM
area associated with messages:

•	 A message (msg) array where messages are written to when a task wants to send a message.
This same array is also used when a task reads a message.

•	 A mailbox (mbox) array where messages are stored whilst waiting to be read by the
destination task.

Download free eBooks at bookboon.com

Click on the ad to read more

 .

http://s.bookboon.com/AlcatelLucent

PaulOS An 8051 Real-Time Operating System
Part I

234

MagnOS – a Pre-Emptive RTOS

If the other task was already waiting for this message, then a voluntary task change is invoked. The
message format (structure) carries information regarding the sender, recipient and data of the message
itself. The structure of the message is composed of bytes representing the destination, source, length of
message and up to 16 bytes for the message itself as shown in the declarations below:.

union dataformat {struct{ulong HI1,LO1,HI0,LO0;}dblwords;

 		 struct{uint Hi3,Lo3,Hi2,Lo2,Hi1,Lo1,Hi0,Lo0;}words;

 		 struct{uchar hi7,lo7,hi6,lo6,hi5,lo5,hi4,lo4,hi3,lo3,hi2,lo2,hi1,lo1,hi0,lo0;}bytes;

		 struct{char s[DATASIZE];}string;};

struct letter{uchar dest,src,len; union dataformat dat;};

The ‘union’ is used so that the data can be accessed easily in any form.

The command does the following:

•	 Stores the environment in preparation for the voluntary task swap, if needed.
•	 Goes through the mbox array and if it finds another task already waiting for this message:

-- Copies the message for that task on to the msg array.
-- Moves the task waiting for message into the ready queue.
-- Places the task sending the message into the waiting (for 1 tick) queue. It would then be

placed in the normal ready queue automatically by the RTOS at the next tick.
-- Performs the voluntary task change.

•	 If there is no other task currently waiting for this message, it simply leaves the message in
the mbox array and exits without performing any task swap.

The usage of this command is as follows:

OS_SEND_MSG(letter1);

10.2.13	 OS_CLEAR_MSG (uchar task_num)

This command simply clears a message from the mbox array, destined for the particular task number.
This command does not cause a voluntary task change.

The usage of this command is as follows:

OS_CLEAR_MSG(3);	 // clear message destined for task number 3

Please not that this does not cater for multiple messages to the same task.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

235

MagnOS – a Pre-Emptive RTOS

10.2.14	 OS_CHECK_MSG (uchar task_num)

This command checks if there is a message destined for a particular task. It returns a bit value of 1 if
the message is present and a bit value of zero if there is no message. This command does not cause a
voluntary task change.

The use of this command is as follows:

Bit_Message_Present = OS_CHECK_MSG(3);	 // checks if there is message for task 3

where Bit_Message_Present would be declared of type bit.

10.2.15	 OS_GET_MSG (struct letter xdata *msg)

This command reads the message destined for the current task. This command does not cause a voluntary
task change.

This command does the following:

•	 It goes through the mailbox mbox array and copies the message destined to it on to the
message msg array of the current task.

•	 It then clears the mailbox.

The use of this command is as follows:

OS_GET_MSG(letter3);		 // get the message for task number listed within the

				 // letter3 variable (type struct letter)

10.2.16	 OS_WAIT_MESSAGE (struct letter xdata *msg, uint ticks)

This command waits for a message within ticks time. If the ticks parameter is set to zero, then the task
would wait until the message is received, whenever that may occur. If the message is not already present,
then a voluntary task change is performed and the next ready task with the highest priority takes over.
If on the other hand the message is already present, no task swap is performed and the message is
transferred from the mbox to the msg array of the task.

This command performs the following:

•	 Saves task environment in preparation for the expected voluntary task swap.
•	 It checks the mbox array and if the message is already present:

-- it reads the message to the msg array.
-- clears the mbox and exits.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

236

MagnOS – a Pre-Emptive RTOS

•	 If the message is not present, then it has to wait for it and therefore
-- It searches the mbox for a free location and reserves that area in mbox for the message

to be received and performs the task swap, waiting for the message within the specified
ticks.

-- If no free location is found in mbox it exits, marking the NO_MBOX_FREE_F flag and
exits without performing the task swap.

This command can be used as follows:

	 OS_WAIT_MESSAGE(letter,0);

 	 if(task[Running].status2 & NO_MBOX_FREE_F)== NO_MBOX_FREE_F) {…..}

		 // implies no free storage space found in mailbox

For a full explanation of status2, please refer to Appendix E header file MagnOS.h.

10.2.17	 OS_CHECK_TASK_SEMA4 (uchar task_num)

This command checks for a semaphore of the particular task and simply returns an unsigned char value
of the semaphores left. Each task can have its own semaphore, stored in its parameters array (sec section
10.2). This command does not cause a voluntary task change.

This command can be used as follows:

Download free eBooks at bookboon.com

Click on the ad to read more
Click on the ad to read more

Sweden
www.teknat.umu.se/english

Think Umeå. Get a Master’s degree!
• modern campus • world class research • 31 000 students
• top class teachers • ranked nr 1 by international students

Master’s programmes:
• Architecture • Industrial Design • Science • Engineering

http://s.bookboon.com/umeaa

PaulOS An 8051 Real-Time Operating System
Part I

237

MagnOS – a Pre-Emptive RTOS

SemaphoresLeft = OS_CHECK_TASK_SEMA4(5); // checks the semaphores left for task 5

where SemaphoresLeft is of type unsigned char.

10.2.18	 OS_SEMA4MINUS (uchar task_num, uchar units)

This command deducts the given number of units (normally 1) from a semaphore of the particular task
number. This command causes a voluntary task change only if the semaphores for the required task drop
down to zero after the subtraction takes place. It therefore performs the following:

•	 Saves task environment in preparation for the eventual voluntary task swap.
•	 Deducts the required number of semaphore units (final resultant semaphores will be zero or

greater).
•	 If the semaphore is now zero and there was a task waiting for the semaphore (to reduce to

zero) then:
-- The task which was waiting for the semaphore is now placed in the waiting queue (the

usual 1 tick time waiting delay, then placed automatically in the ready queue by the
RTOS at the next tick) after clearing its semaphore waiting flag.

-- The present task is placed in the waiting queue (for 5 ticks, so as to give some time to
other tasks. This can be changed in the source code).

-- A task swap is performed.

This command is used as follows:

OS_SEMA4MINUS(4,1);	 // deduct 1 unit from the semaphore of task number 4

10.2.19	 OS_SEMA4_PLUS (uchar task_num, ucahr units)

This command simply adds the given number of units (normally 1) to a semaphore of the particular
task number. This command does not cause a voluntary task change.

This command is used as follows:

OS_SEMA4PLUS(4,1);		 // add 1 unit to the semaphore of task number 4

10.2.20	 OS_WAIT4SEM (uint ticks)

This command causes the task to wait for its semaphore to reach a value of zero within a given timeout
period. A timeout ticks of zero implies having to wait forever until the semaphore reaches zero. The task
goes into a waiting state if the semaphore is not zero and the next ready task with the highest priority
takes over.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

238

MagnOS – a Pre-Emptive RTOS

The command does the following:

•	 Saves task environment in preparation for the eventual voluntary task swap.
•	 If the semaphore is already zero, it clears the wait for semaphore flag and resumes execution.
•	 If however the semaphore is not yet zero it sets the wait for semaphore flag and the wait for

timeout flag and then it performs a voluntary task change.

The command can be used as follows:

OS_WAIT4SEM(0);		 // wait forever until the semaphore becomes zero

10.2.21	 OS_KILL_TASK (uchar tasknum)

This command kills the specified task and it will not execute again. This command will cause a voluntary
task change. It performs the following:

•	 If the task was already killed by some other task, it simply exits.
•	 Otherwise it

-- Marks it as killed by setting the TASK_KILLED_F flag.
-- Clears and frees any mbox messages intended for this task.
-- If the task happens to be the one currently running (the task wants to commit suicide!),

it clears all its flags and sets the timeout to zero so that it will appear to be waiting for
ever. A task change is not called, without the need to save the environment.

-- If the task happens to be in the Ready queue, then the task number is changed to that of
the idle task. Any multiple idle tasks entries in the queue are eliminated, so that at the
end we would have only one idle task in the Ready queue.

-- All the task flags are reset.

This command can be used as follows:

OS_KILL_TASK(4);		 // kill task number 4

10.2.22	 OS_CREATE_TASK (uchar task_num, uint task_add, uchar task_priority)

This last command in the list creates a task and is used in the main task after intialising the RTOS but
before starting the RTOS. This command does not cause a voluntary task change. The command does
the following:

•	 It increments the Ready queue pointer and stores the task number in the Ready queue.
•	 It places the task start address in the stack area of that task, which would ultimately end in

the SP once a task change is performed.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

239

MagnOS – a Pre-Emptive RTOS

•	 Stores the priority and other flags in the status area of that task and exits. A zero value would
represent a low priority, while a value of 255 would represent the highest (top) priority.
The command is normally used in the main() function, once for every task that needs to be
created:

OS_CREATE_TASK(2,task_two,5);

// creates task of function named task_two, giving it a task number of 2 with a priority of 5.

MagnOS Parameters.h header file

This is the header file which we would need to modify depending on the application program. Typically
we would need to set the TICKTIME and NOOFTASKS variables so as to reflect the actual tick time
(say 1, 10 or 50 milliseconds) and number of tasks which we have in our main program.

Download free eBooks at bookboon.com

Click on the ad to read more
Click on the ad to read more
Click on the ad to read more

 By thinking about things that nobody has ever thought about before

 By writing a dissertation about the highest building on earth

 With an internship about natural hazards at popular tourist destinations

 By discussing with doctors, engineers and seismologists

 By all of the above

How could you take your studies to new heights?

From climate change to space travel – as one of the leading reinsurers, we
examine risks of all kinds and insure against them. Learn with us how you
can drive projects of global significance forwards. Profit from the know-how
and network of our staff. Lay the foundation stone for your professional career,
while still at university. Find out how you can get involved at Munich Re as
a student at munichre.com/career.

http://s.bookboon.com/munichre

PaulOS An 8051 Real-Time Operating System
Part I

240

MagnOS – a Pre-Emptive RTOS

/*

*			 PARAMETERS.H --- RTOS KERNEL HEADER FILE

*

* For use with MagnOS_V01.C

* Co-Operative RTOS written in C by Ing. Paul P. Debono

*			 for use with the 8051 family of microcontrollers

*

* File 	 : Parameters_V01.H

* Revision 	: 8

* Date 	 : February 2006

* By	 	 : Paul P. Debono

*

* 			 B. Eng. (Hons.) Elec. Course

* 			 University Of Malta

*

*/

/*

* 							 RTOS USER DEFINITIONS

*/

#define STACKSIZE	 0x10

		 // Max size of stack for each task - no need to change

#define CPU		 8032	// set to 8051 or 8032

#define TICK_TIMER	 2 	 // Set to 0, 1 or 2 to select which timer to

				 // use as the RTOS tick timer

#define TICKTIME	 50 	 // Length of RTOS basic tick in msec

				 // - refer to the RTOS

				 // timing definitions

#define NOOFTASKS	 6	 // Number of tasks used in the application program

/*

*/

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

241

MagnOS – a Pre-Emptive RTOS

We now give an example using the MagnOS RTOS just for demonstration purposes.

•	 Task 0 runs every minute and displays the alphabet in upper case letters, priority 1.
•	 Task 1 runs every four and a half secomds and displays the alphabet in lower case letters,

priority 2.
•	 Task 2 runs every 700 milliseconds and displays the alphabet in Capital letters, priority 5.

It is interesting to change the periodicity (in the task functions) and priorities (in the main program)
of the tasks and see the effect on the overall performance of the program. We need to remember that
as far as the priority is concerned, a 0 value represents the lowest priority, and 255 would represent the
highest (top) priority available.

Certain values can cause the RTOS to fail to start/finish the tasks within the required intervals. Scheduling
probl;ems arise and the reader is urged to read material on task scheduling and assigning priorities for
pre-emptive RTOSs.

Download free eBooks at bookboon.com

Click on the ad to read more
Click on the ad to read more
Click on the ad to read moreClick on the ad to read more

Open your mind to
new opportunities
With 31,000 students, Linnaeus University is
one of the larger universities in Sweden. We
are a modern university, known for our strong
international profile. Every year more than
1,600 international students from all over the
world choose to enjoy the friendly atmosphere
and active student life at Linnaeus University.
Welcome to join us!

Bachelor programmes in
Business & Economics | Computer Science/IT |
Design | Mathematics

Master programmes in
Business & Economics | Behavioural Sciences | Computer
Science/IT | Cultural Studies & Social Sciences | Design |
Mathematics | Natural Sciences | Technology & Engineering

Summer Academy courses

Scholarships

http://s.bookboon.com/LNU

PaulOS An 8051 Real-Time Operating System
Part I

242

MagnOS – a Pre-Emptive RTOS

/***/

/* � */

/* 	 MagnosTest_00.c: Demo using pre-emptive Tasks � */

/*� */

/* � */

/***/

#include <reg52.h> 		 /* special function registers 8052� */

#include <MagnOS_V01.h> 	 /* RTOS system calls definitions� */

#include <absacc.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "UART_REENTRANT.h"

/***/

/* 	 Task 0:� */

/***/

void CAPS (void){ 		 /* Prints CAPITAL Letters� */

char code msg[]="ABCDEFGHIJKLMNOPQRSTUVWXYZ-ZYXWVUTSRQPONMLKJIHGFEDCBA";

		 static unsigned long i;

		 static unsigned int j;

		 OS_PERIODIC_A(1,0,0);	 /* runs every 1 minute� */
		 while(1)
 		 {	
		 TX_STRING("\nRunning Task: ");
 		 TX_CHAR('0'+ OS_RUNNING_TASK_ID());
		 TX_STRING(" Priority: ");
 		 TX_CHAR ('0' + OS_CHECK_TASK_PRIORITY(OS_RUNNING_TASK_
ID()));
		 TX_STRING("\n\r");
		 j=0;
			 while (msg[j]!='\0')
			 {
				 TX_CHAR(msg[j++]);
				 for (i=1;i<10000;i++);
 			 /* just a delay to simulate long process */
			 }
		 TX_STRING("\n\r");
 		 OS_WAITP();
		 }
 }

/***/

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

243

MagnOS – a Pre-Emptive RTOS

/***/

/* Task 1: */

/***/

void Small (void){ /* Prints small Letters */

char code msg[]="abcdefghijklmnopqrstuvwxyz-zyxwvutsrqponmlkjihgfedc-
ba";

		 static unsigned long i;

		 static unsigned int j;

		 OS_PERIODIC_A(0,4,500);	 /* runs every 4.5 seconds */

		 while(1)

		 {

		 TX_STRING("\nRunning Task: ");

		 TX_CHAR('0'+ OS_RUNNING_TASK_ID());

		 TX_STRING(" Priority: ");

		 TX_CHAR ('0' + OS_CHECK_TASK_PRIORITY(OS_RUNNING_TASK_
ID()));

		 TX_STRING("\n\r");

		 j=0;

			 while (msg[j]!='\0')

			 {

			 TX_CHAR(msg[j++]);

			 for (i=1;i<300;i++);

			 /* just a delay to simulate long process */

			 }

		 TX_STRING("\n\r");

		 OS_WAITP();

	 /* wait for Periodic timeout */

		 }

 }

/***/

/* 	 Task 2:� */

/***/

void Numbers (void){ /* Prints Numbers */

char code msg[]="0 1 2 3 4 5 6 7 8 9 - 9 8 7 6 5 4 3 2 1 0";

		 static unsigned long i;

		 static unsigned int j;

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

244

MagnOS – a Pre-Emptive RTOS

		 OS_PERIODIC_A(0,0,700);	 /* runs every 700 milliseconds */

		 while(1)

 		 {

		 TX_STRING("\nRunning Task: ");

 		 TX_CHAR('0'+ OS_RUNNING_TASK_ID());

		 TX_STRING(" Priority: ");

		 TX_CHAR ('0' + OS_CHECK_TASK_PRIORITY(OS_RUNNING_TASK_
ID()));

		 TX_STRING("\n\r");

		 j=0;

			 while (msg[j]!='\0')

			 {

			 TX_CHAR(msg[j++]);

			 for (i=1;i<100;i++);

 			 /* just a delay to simulate long process */

			 }

			 TX_STRING("\n\r");

			 OS_WAITP(); 	 /* wait for Periodic timeout */

		 }

 }

/***/

/* 	 Main: Initialise and CREATE tasks */

/***/

void main (void) 		 { 	 /* program execution starts here � */

 	 INIT_SERIAL_T1(57600);

 	 TX_STRING("Initialising MagnOS Pre-Emptive RTOS\n\r");

 	 OS_INIT_RTOS(0x20);/* initialise MagnOS RTOS variables and stack �*/

	 					 /* using Timer 2 interrupts � */

/* A HIGH PRIORITY NUMBER, MEANS A HIGH PRIORITY TASK */

 	 OS_CREATE_TASK(0, CAPS, 	 1); 	 // priority 1

 	 OS_CREATE_TASK(1, Small, 	 2); 	 // priority 2

 	 OS_CREATE_TASK(2, Numbers, 	 5);	 // priority 5

 	 TX_STRING("Tasks Created, running MagnOS RTOS\n\r");

 	 OS_RTOS_GO(); 				 /* start RTOS */

 	 while (1)

 	 {

	 OS_CPU_IDLE();

 	 }

}

/***/

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

245

Interfacing

11	 Interfacing
This chapter deals with interfacing various devices to the 8051 family of micro-controllers. The list here
is endless but the basic add-ons such as simple LEDs, switches, keypads, LCDs, DC motors (including
servos and stepper motors) are all well covered with example programs.

11.1	 Interfacing add-ons to the 8051

The 8051 on its own can be of little use unless we somehow manage to connect it to the real world.
Minimally we would need some form of output device, such as an LED or a buzzer and an input interface
which might even be a simple ON-OFF switch. Before going further, let us mention two important notes:

•	 A common fault when interfacing devices (even if simple) or other boards to the 8051 is to
forget to connect the ground of the external device to the ground of the 8051 board. This
would result in floating signals which would give indeterminate results.

•	 We should also remember when using the 8051 ports that port 0 needs external pull-up
resistors whilst ports 1, 2 and 3 do not need any since they have them already internally
wired. These pull-up resistors are not always shown in the following diagrams since it
depends to which port we are connecting the interface circuit.

Download free eBooks at bookboon.com

Click on the ad to read more
Click on the ad to read more
Click on the ad to read moreClick on the ad to read moreClick on the ad to read more

Enterprise Content Management

InnovationCyber Crime

Web-enabled Applications IT
 C

on
su

lta
nc

ySA
P

SQL
JavaC

RM

.NETEn
te

rp
ris

e
A

pp
lic

at
io

n

Big Data

Information Management

So
ci

al
 B

us
in

es
s

Implementation

Technology Advisory

D
at

a
A

na
ly

tic
s

C
lo

ud
 C

om
pu

tin
g

End-to-End Solution

Implementation

Technology

Are you ready to do what matters
when it comes to Technology?

http://s.bookboon.com/deloitteUS

PaulOS An 8051 Real-Time Operating System
Part I

246

Interfacing

With these notes in mind, we can list and describe a number of interface components which we can
connect to the 8051.

11.2	 LEDs

The simplest output indicator which we can connect would be a Light Emitting Diode (LED). We can
connect the LED to either light up when the port pin is High (see Figure 11-1) or to light up when the
port pin is Low (see Figure 11-2).

Figure 11-1 Port Driving LED (pin High = LED on)

The option shown in Figure 11-2 is better since the port is being used to sink the current rather than
providing the source voltage.

Figure 11-2 Port Sinking LED (pin Low = LED on)

We now list a section of code in C using Keil µVision4 for the circuit shown in Figure 11-2.

It will flicker the LED, switching it off for 1 second and then on for another second and so on until the
microcontroller circuit is switched off.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

247

Interfacing

#include <REG52.H>
void msdelay(unsigned int);

sbit LED1 = P3^1; 	 // refer to bit P3.1 (port 3 bit 1) as LED1

#define led_on 0

#define led_off 1

void main(){

LED1=0; 		 // set pin 1 of PORT3 as output

while(1){		 //infinite loop

LED1 = 1; 		 //pins high, LED is off, or use LED1 = led_off;
msdelay(250); 		 // some delay
LED1 = 0; 		 // pin low, LEDs are on, or use LED1 = led_on;
msdelay(250); 		 // some delay

}

}

//delay function
void msdelay(unsigned int value){

 	 unsigned int x,y;
 	 for(x=0;x<value;x++)
 	 for(y=0;y<1275;y++);
}

In C programs we cannot be sure of software delays, because they depend a lot on how the compiler
optimizes the loops. As soon as we make some changes in the compiling options, the delay time changes.

A better option would be to use the in-built micro-controller timers if we want to have exact delays.
Shown below is a function equivalent to a 1 second delay using timer 0, assuming we have an 11.0592
MHz crystal clock driving the micro-controller. The idea is to make a 50ms timer delay and repeat it
for 20 times (20×50ms = 1000ms = 1s) so as to obtain the required one second delay. The timer would
be counting at the rate of 12/11.0592 micro-seconds per count. Thus we need 46080 counts to get the
required 50ms delay, and therefore, as we recall, we need to load the timer with the value of 19456 (which
is 65536 – 46080) or 4C00 hex since our timer would be counting up until it overflows.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

248

Interfacing

delay_1s() 			 // using Timer 0 to get a 1 sec delay
{
int d;

TMOD &= 0xF0;		 // clear Timer 0 mode settings, temporarily to mode 0
TMOD |= 0×01;			 // set Timer 0 in mode 1, 16-bit
TF0 = 0; 			 // clear Timer 0 overflow flag

for (d=0; d<=20; d++)		 // repeat 20 times
 {
   TL0 = 0x00;			 // load it for 50ms overflow delay
   TH0 = 0x4C;			 // 4C00 hex = 19456
   TR0 = 1; 			 // start Timer 0.
   while (TF0 == 0); 		 // run until TF0 = 1, indicating overflow, waiting 50ms

   TR0 = 0; 			 // stop Timer 0
   TF0 = 0; 			 // reset the Timer 0 overflow flag
 }
}

This type of problem is very simple to write using the PaulOS RTOS. Just one task would be needed to
implement this LED flickering action:

Download free eBooks at bookboon.com

Click on the ad to read more
Click on the ad to read more
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA2016

PaulOS An 8051 Real-Time Operating System
Part I

249

Interfacing

void Task_LED (void) {

   while(1){		 //infinite loop

 	 LED1 = 1; 			 //pins high, LED is off, or use LED1 = led_off;
 	 OS_WAITT_A(0,0, 250); 	 // 250 millisecond delay
 	 LED1 = 0; 		 	 // pin low, LEDs are on, or use LED1 = led_on;
 	 OS_WAITT_A(0,0, 250); 	 // 250 millisecond delay

	 }

}

11.2.1	 Seven-Segment LED Displays

Another simple output indicator which we can use is the familiar 7-segment LED display. There are
basically two types of such displays, either the so-called Common Cathode (all the cathodes or negative
connections are connected together to one common ground [GND] terminal) or the Common Anode
type where all the anodes (or positive connections) are connected to one common supply [Vcc] terminal
as shown in Figure 11-3. Apart from the 7 segments (a-g) forming the digit, some displays have an
optional 8th segment which we could use to represent a decimal point (dp).

Figure 11-3 7-segmnet LED displays

In order to switch on the required decimal digit, we can connect the 7 or 8 segment diodes to the 8-bit
port of the 8051 as we have already seen in the example with just one LED in Figure 11-2.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

250

Interfacing

The software would be written in such a way so as to switch on the required LEDs to display our decimal
number. Thus to display the number 3, we would need to light up segments a, b, c, d and g and switch
off the other segments. We should remember that with this direct drive method, the port must keep on
presenting the same data to the 7-segment display, otherwise the display would change.

The following Table 11-1 shows how we can display the various digits. The 2nd and 3rd column in this
Table shows the output byte for the port, depending on the way the segments are connected to the port..

Digit gfedcba
6543210

abcdefg
6543210

a b c d e f g

0 0×3F 0×7E on on on on on on off a

b

d

ce

f
g

1 0×06 0×30 off on on off off off off a

b

d

ce

f
g

2 0×5B 0×6D on on off on on off on a

b

d

ce

f
g

3 0×4F 0×79 on on on on off off on a

b

d

ce

f
g

4 0×66 0×33 off on on off off on on a

b

d

ce

f
g

5 0×6D 0×5B on off on on off on on a

b

d

ce

f
g

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

251

Interfacing

Digit gfedcba
6543210

abcdefg
6543210

a b c d e f g

6 0×7D 0×5F on off on on on on on a

b

d

ce

f
g

7 0×07 0×70 on on on off off off off a

b

d

ce

f
g

8 0×7F 0×7F on on on on on on on a

b

d

ce

f
g

9 0×6F 0×7B on on on on off on on a

b

d

ce

f
g

A 0×77 0×77 on on on off on on on a

b

d

ce

f
g

b 0×7C 0×1F off off on on on on on a

b

d

ce

f
g

C 0×39 0×4E on off off on on on off a

b

d

ce

f
g

d 0×5E 0×3D off on on on on off on a

b

d

ce

f
g

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

252

Interfacing

Digit gfedcba
6543210

abcdefg
6543210

a b c d e f g

E 0×79 0×4F on off off on on on on a

b

d

ce

f
g

F 0×71 0×47 on off off off on on on a

b

d

ce

f
g

Table 11-1 LED 7 segment connections

We can also multiplex more than one 7-segment display by using a circuit as shown in Figure 11-4. One
port supplies the data to all the displays, whilst the transistors T1–T4 switch on one display at a time as
programmed by port 2. The first digit display would be left on for a few milliseconds and then switched
off. The data is then changed to reflect the second digit display which is then switched on also for a few
milliseconds. All the digits would be similarly switched on and off and this strobing action is repeated
indefinitely so as to the viewer all the displays would appear to be lighted up continuously. A sample
code program is listed to describe the program flow. We could also write the program using an RTOS
where a OS_WAITT_A() command would be used to replace the delay function, thus the processor can
be doing something else while waiting and driving the display.

Figure 11-4 Multiplexing displays

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

253

Interfacing

sbit digit0 = P2^0;

sbit digit1 = P2^1;

sbit digit2 = P2^2;

sbit digit3 = P2^3;

// Assuming segment a is connected to bit P1.6, segment b to bit P1.5 etc, then from Table 11-1

// we can select the segments to light up for each decimal digit 0–9 by sending the correct

// segment data from the array segment[].

// The digit can be selected by outputting a 1 on ONE pin from P2.0 to P2.3

unsigned char segments[10] = {0x7E, 0x30, 0x6D, 0x79, 0x33, 0x5B, 0x5F,

 				 0x70, 0x7F, 0x7B};

P2 &= 0xF0;		 // switch off all digits

while(1)		 // keep on looping

{

P1 = segments[0];	 // send data to reflect the segments which need to be lighted up

 // in this case the number shown would be 0

digit0 = 1;		 // switch on digit 0

delay();			 // wait for some time, calling the delay function

digit0 = 0;		 // switch off digit 0

// Now repeat for the second 7 segment LED digit

P1 = segments[1];	 // send data to reflect the segments which need to be lighted up

 // in this case the number shown would be 1

Digit1 = 1;		 // switch on digit 1

delay();			 // wait for some time, calling the delay function

digit1 = 0;		 // switch off digit 1

// and so on for the other digits.

……

……

}

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

254

Interfacing

To make programming easier and at the same time provide a data latching (memory) capability, avoiding
the need to keep on strobing the data, various 7-segment driver ICs were developed, the 4511 being one
of them. These generally have 4 data input pins (D1 to D4) to represent the digit number which we want
to display, D1 being the least significant bit. Some are decimal drivers, accepting a 4-bit BCD (binary
coded decimal number 0–9). Numbers greater than 9 (10–15) would show as blank. There are also Hex
drivers which can display the normal 0–9 decimal digits and also a, b, c, d, e and f with the limitations
of the 7-segment display. Thus A, C (not all drivers), E and F are shown as capital letters, whereas b, d
(and sometimes c) are shown as small letters. The latching (latch enable or LE pin) mechanism ensures
that once the data is latched on the IC (by putting LE low for a few micro-seconds, done in software by
setting the port pin which is connected to this LE terminal from high to low and then back to high),
then there is no need to keep the data at the 4511 input pins; the display would remain showing the
latched digit data until some new data is latched to that same LED driver.

Figure 11-5 LED BCD driver

If we have the port P1 connections as shown in Figure 11-5 then we can display the number 7 with the
following simple C code:

sbit LE = P1^4;

LE = 1;		 // ensure latch is High

P1 &= 0xF0;		 // clear lower 4 data bits

P1 |= 0x07;		 // set the correct data bits (in this case 7)

LE = 0;		 // toggle the Latch Enable bit

LE = 1;

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

255

Interfacing

Two other control pins are usually available. The LT (lamp test) pin is usually used just to check that
all the segments are working, and when set to low, the number 8 is displayed, irrespective of the D1–D4
input conditions. The BL (blanking input) pin is used to blank the display and is usually used to blank
the leading zeroes in a multi-digit display. If not required, these two control signals are usually connected
directly to the positive supply as shown in Figure 11-5.

We can also use the latch enable pin to multiplex more than one digit display to the same port. By latching
sequentially different 7-segment digits, we can easily have a 6-digit display to use as a clock to display
HH:MM:SS (the colon [:] can be obtained by using 4 separate LEDs, permanently on). Figure 11-6 shows
how we can connect two 7 segment displays using the 4511 BCD-to-7-segment driver, which we can
easily extend to more digits as required. The BCD data coming out of pins P1.0 to P1.3 is common to
all the digits but the display is selected by pulsing the correct LE pin, using P1.4 or P1.5

Download free eBooks at bookboon.com

Click on the ad to read more
Click on the ad to read more
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/GTca

PaulOS An 8051 Real-Time Operating System
Part I

256

Interfacing

Figure 11-6 Multiplexing 4511s

For the circuit shown above in Figure 11-6 we can easily write a function which will handle everything:

	 sbit LE1 = P1^4;

	 sbit LE2 = P1^4;

Void Display(unsigned char Digit, unsigned char BCD_Data) {

 	 P1 &= 0xF0;		 // clear lower 4 bits

 	 P1 |= BCD_Data;	 // place data on output lines

 	 if (Digit == 1) {

			 LE1 = 1;	 // latch data to digit 1

			 LE1 = 0;

`			 LE1 = 1;

			 }	

if (Digit == 2) {

			 LE2 = 1;	 // latch data to digit 2

			 LE2 = 0;

`			 LE2 = 1;

			 }

}

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

257

Interfacing

11.3	 Input Switches

The simplest input is the switch, as shown in Figure 11-7. Here we can easily see that whenever the switch
is open, the microcontroller port pin would be effectively connected to the 5V supply through the 10k
ohm resistor. The microcontroller would read a high logic level or a 1. Closing the switch would ground
the pin and the microcontroller would read a zero logic level. The port pin would be programmed for
the input mode by initially writing a 1 to that pin.

Figure 11-7 Switch (normally open, high on port pin)

On the other hand, in Figure 11-8 we can easily see that whenever the switch is open (normal position),
the microcontroller port pin would be effectively connected to the ground through the 10k ohm resistor.
The microcontroller would read a low logic level or a 0. Closing the switch would connect the pin to the
5V rail and the microcontroller would read a high logic level or a 1.

Figure 11-8 Switch (normally open, low on port pin)

11.3.1	 Switch Bounce

When a physical switch is closed the contacts bounce opened and closed rapidly for about 20 to 30 ms,
as illustrated below in Figure 11-9. The opening of a switch is normally clean and without bounce.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

258

Interfacing

Figure 11-9 Switch bounce

While switch-close bounce is a very short time in human terms it is a very long time for a micro-controller
(the basic 8051 running on a system clock of 12 MHz executes a 1-byte instruction in 1 µs). Without
switch de-bouncing, the microcontroller would ‘think’ the switch was opened and closed repeatedly.
Imagine if a push-button switch was being used to increment the output to a digital to analogue convertor.
The software routine to poll the push button switch (expecting an off-on-off action on the push switch,
returning a one when pressed, otherwise wait) would normally be:

•	 Wait while the switch is off
•	 Wait while the switch is on
•	 Switch can now be taken as pressed (off-on-off) and return a ‘1’

Download free eBooks at bookboon.com

Click on the ad to read more
Click on the ad to read more
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 CHARLES JENKINS

 Quality Engineer
ZF Friedrichshafen AG

I’M WITH ZF.
ENGINEER AND EASY RIDER.
www.im-with-zf.com

Scan the code and find
out more about me
and what I do at ZF:

http://s.bookboon.com/zf

PaulOS An 8051 Real-Time Operating System
Part I

259

Interfacing

The main program would then normally stay in the endless:

{

Call switch polling routine (outlined above)

Increment voltage routine

}

If the switch was connected to the microcontroller without any switch de-bouncing mechanism, then
a user pressing the switch once would actually result in the DAC output voltage being increased many
times because the microcontroller would respond as if the switch had been pressed many times.

De-bouncing mechanisms can be implemented:

1.	 By means of a software delay of around 30ms between two successive readings of the switch
(to let the bouncing die down), whilst it is being polled. If the switch readings agree, then
the switch is really on.
•	 Wait while the switch is off
•	 Wait 30ms
•	 Exit if switch is off (return a ‘0’), else
•	 Wait while the switch is on
•	 Switch can now be taken as pressed (off-on-off) and return a ‘1’

2.	 Another software technique is to connect the switch to an interrupt pin instead of polling
it routinely. It would be easier if a normally-high output from the switch is used and
connected to the external interrupt, negative-edge triggered mode. As soon as the switch is
pressed, we would have a high-to-low transition which would trigger an external interrupt.
The ISR is called where we would immediately disable the external interrupt (otherwise we
would have lots of them due to bouncing), wait for 30ms and then read the switch again. If
we still read an ON condition, then we have detected a valid switch-on event and proceed
accordingly. We can then enable the interrupts again and exit the ISR once finished with the
response required. If the second reading shows an OFF condition, then we can take it as a
glitch (or still bouncing) and that no switch has been pressed and once again we enable the
interrupts again and exit the ISR without taking further action. If the bouncing is still going
on, we would detect another interrupt and automatically repeat the ISR again.

3.	 By hardware, usually using a one shot device, which means that as soon as the switches
flickers to the on position, the output of the one-shot will remain steadily on and bouncing
is thus eliminated.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

260

Interfacing

11.4	 Keypad

Multiple switches (or keypads and keyboards) are normaly connected in the form of a matrix where the
vertical lines (columns) and horizontal lines (rows) are connected to the controller ports (either directly
or via pull-up resistors) as shown in Figure 11-10. The port connections can be programmed to act as
either input or output lines as required in order to be able to decide which key, if any, has been pressed.

Figure 11-10 Keypad switch matrix

The method to detect a key press is as follows:

1.	 We set all output columns bits to 0.
2.	 The input row pins are then read.
3.	 If any row pin is a zero, then we know that a key in that row is being pressed, although we

cannot tell yet which one of the four it is. If the input is not zero, we just have to wait and
keep on reading the input port, waiting for a key press (going back to step 2).

4.	 If in the input row reading we do indeed detect a zero, then usually a bouncing delay is
initiated so as to eliminate any bouncing or erroneous key contact (unless the bouncing is
being taken care of by other hardware devices).

5.	 We read once again the input after this delay, and if the same row is giving a zero then we
can start the process to determine exactly which column switch in that row is being pressed
(the correct row is now known). If we do not detect a zero in arrow, then we take it that it
was a glitch and go back to step 2, waiting for a key press.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

261

Interfacing

6.	 We can determine which key is being pressed by setting the input to zero for one column
at a time and reading the row state until we read a zero. When the correct column
is determined, then we have effectively decoded the key press, since we had already
determined the row in step 5.

11.4.1	 Keypad: interrupts vs polling

Instead of using this algorithm, where we are effectively waiting (whilst reading the port input)
for any key press, we can modify the circuit to that shown in Figure 11-11. Note that in this
figure, the rows are the output bits (P1.0 to P1.3) of the port, while the higher nibble of the
port (P1.4 to P1.7) act as the input to read the column values.

All the rows are first set to zero and the external INT0 interrupt is enabled. The column input
signals are ANDed together to provide an external INT0 interrupt low logic signal whenever
any column goes low (negative edge triggered, activated when the signal goes from high to low).
The INT0 interrupt service routine (ISR) would then be activated so that we can determine
which key is being pressed.

Download free eBooks at bookboon.com

Click on the ad to read more
Click on the ad to read more
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

If it really matters, make it happen –
with a career at Siemens.

siemens.com/careers

http://s.bookboon.com/siemensUSA2015

PaulOS An 8051 Real-Time Operating System
Part I

262

Interfacing

Figure 11-11 Interrupt keypad interface

We set all output row bits to 0, and enable the external negative-edge INT0 interrupt in the
main program. We cannot obviously keep on looping and waiting within the ISR itself so the
algorithm is modified as described below.

The ISR, activated whenever there is a key press would then perform the following:

1.	 The external interrupt is disabled. This is especially important in this case, since the
bouncing effect of a switch would otherwise cause repeated interrupts.

2.	 A de-bounce delay (typically 30 ms) is initiated so as to wait for any bouncing or erroneous
key contact to die down.

3.	 The input column pins are then read.
4.	 If any column pin is a zero, then we know that a key in that column is being pressed,

although we cannot tell yet which one of the four it is. If we do not detect a zero on any
input line, then the interrupt was probably caused by some glitch or intermittent key contact
and we jump immediately to step 7 to exit the ISR.

5.	 If in the input column reading we do indeed detect a zero, then we can start the process to
determine exactly which row switch in that column is being pressed (the correct column is
now known from the input data pattern).

6.	 We can determine which actual key is being pressed by setting the input to zero for
one row at a time and reading the column state until we read a zero. When the correct
row is determined, then we have effectively decoded the key press, since we had already
determined the column in step 5.

7.	 Enable once again the external INT0 interrupt, and exit the ISR.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

263

Interfacing

10.5	 LCD Display

A Liquid Crystal Display (LCD) provides a versatile output screen where normal text and graphics can be
displayed, thus providing more versatility than the simple LED devices mentioned above. LCD displays
come in many different versions, but here we shall deal with the cheap and simple 2 or 4 line display,
providing 16 or 20 characters per line capability. It can be programmed to run either in the 8-bit data
or in the 4-bit data mode if we do not have the luxury of using an 8-bit port dedicated to supply just
the data bits to the LCD.

Figure 11-12 shows how we can connect a standard LCD (such as the Hitachi HD44780) to an 8051
microcontroller. Apart from the ground, supply, back lighting and contrast pins, we would need 8 data
bits (D0–D7) in 8-bit mode or just 4 data bits (D4–D7) in the 4-bit mode so that we can communicate
with the LCD. There are also 3 additional control signals RS, R/W and E (or EN) which we need to
connect to the 8051 to provide the required hand-shaking control signals.

•	 RS is the register select signal, so that the LCD would know whether we are sending data to
be displayed or sending a command intended to give some instructions to the LCD.

•	 R/W, as the name implies is the Read or Write signal which determines the direction of the
data flow (reading from the LCD or writing to the LCD).

•	 E (or EN) is the enable pin, which has to be toggled so that any data is latched on to the
device.

Download free eBooks at bookboon.com

Click on the ad to read more
Click on the ad to read more
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

PaulOS An 8051 Real-Time Operating System
Part I

264

Interfacing

Figure 11-12 Standard LCD connections

The Read capability is mainly used to read the status of the LCD so that we can make sure that
the LCD is ready to receive the next data or instruction. This is because the LCD takes some
time to perform the required instructions, and not all instructions take the same amount of
time to be executed. Hence the need to read the status of the LCD and wait for the LCD ready
signal before proceeding. In many applications, we may only be required to write to the LCD,
without the need to read anything. In this case we may simply initiate a fixed delay between
issuing commands or data transfers, so as to be sure that the LCD has finished from the previous
command, without the need to check the LCD status. Since the Write pin is active low, we can
connect this pin permanently to ground in such cases. So, if we are only writing to the LCD
and if we are using the 4-bit mode, we would then need only 6 bits (4-bits data, the EN and
RS control signals) to communicate with the LCD. The LCD ground line naturally has to be
common with the 8051 ground.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

265

Interfacing

11.5.1	 Programming the HD44780

In order to write a command or data, the following sequence of commands needs to be made, depending
on the mode of operation of the LCD:

8-Bit Write Sequence

Make Sure “EN” is 0 or low

Set “R/S” to 0 for a command, or 1 for data/characters

Put the data/command on D7-0

Set “EN” (EN= 1 or High)

Wait At Least 450 ns!!!

Clear “EN” (EN= 0 or Low)

Wait 5ms for command writes, and 200us for data writes.

Table 11-2 LCD 8-bit write sequence

4-Bit Write Sequence

Make Sure “EN” is 0 or low

Set “R/S” to 0 for a command, or 1 for data/characters

Put the HIGH BYTE of the data/command on D7-4

Set “EN” (EN= 1 or High)

Wait At Least 450 ns!!!

Clear “EN” (EN= 0 or Low)

Wait 5ms for command writes, and 200us for data writes.

Put the LOW BYTE of the data/command on D7-4

Wait At Least 450 ns!!!

Clear “EN” (EN= 0 or Low)

Wait 5ms for command writes, and 200us for data writes.

Table 11-3 LCD 4-bit write sequence

11.6	 LCD Command Set

There are certain instructions or commands which we need to get familiar with in order to be able to
program or setup the LCD display. The R/S and R/W control lines are also used depending on the type
of the command required. Dedicated functions can be written which can take care of the initialisation
and LCD mode setup as explain in the following sub-sections.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

266

Interfacing

R/S R/W D7 D6 D5 D4 D3 D2 D1 D0 Instruction/Description

0 0 0 0 0 0 0 0 0 1 Clear Display and Home the Cursor

0 0 0 0 0 0 0 0 1 * Return Cursor and LCD to Home Position

0 0 0 0 0 0 0 1 ID S Set Cursor Move Direction

0 0 0 0 0 0 1 D C B Enable Display/Cursor

0 0 0 0 0 1 SC RL * * Move Cursor/Shift Display

0 0 0 0 1 DL N F * * Set Interface Length

0 0 0 1 A A A A A A Move Cursor into CGRAM

0 0 1 A A A A A A A Move Cursor to Display

0 1 BF * * * * * * * Poll the “Busy Flag”

1 0 D D D D D D D D Write a Character to the Display at the Current Cursor Position

1 1 D D D D D D D D Read the Character on the Display at the Current Cursor Position

Table 11-4 LCD Command set

Download free eBooks at bookboon.com

Click on the ad to read more
Click on the ad to read more
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

At Navigant, there is no limit to the impact you
can have. As you envision your future and all
the wonderful rewards your exceptional talents
will bring, we offer this simple guiding principle:
It’s not what we do. It’s how we do it.

Impact matters.

©2013 Navigant Consulting, Inc. All rights reserved. Navigant Consulting is not a certified public accounting firm and does not provide
audit, attest, or public accounting services.
See navigant.com/licensing for a complete listing of private investigator licenses.

navigant.com

http://s.bookboon.com/Navigant2

PaulOS An 8051 Real-Time Operating System
Part I

267

Interfacing

The bit abbreviations used in Table 11-4 for the different commands are explained in the following list:

“*” - Not Used/Ignored. This bit can be either “1” or “0”

Set Cursor Move Direction:
 ID 	 - Increment the Cursor After Each Byte Written to Display if set
 S 	 - Shift Display when Byte Written to Display if set

Enable Display/Cursor
 D 	 - Turn Display On(1)/Off(0)
 C 	 - Turn Cursor On(1)/Off(0)
 B 	 - Cursor Blink On(1)/Off(0)

Move Cursor/Shift Display
 SC 	 - Display Shift On(1)/Off(0)
 RL 	 - Direction of Shift Right(1)/Left(0)

Set Interface Length
 DL 	 - Set Data Interface Length 8(1)/4(0)
 N 	 - Number of Display Lines 1(0)/2(1)
 F 	 - Character Font 5x10(1)/5x7(0)

Poll the “Busy Flag”
 BF 	 - This bit is set while the LCD is processing

Move Cursor to CGRAM/Display
 A 	 - Address

Read/Write ASCII to the Display
 D 	 - Data

We now provide some basic initialisation code for the 8-bit and for the 4-bit connection so that we can
interface and communicate with this LCD.

General Initialisation Example Initialisation

1 Wait 20ms for LCD to power up

2 Write D7-0 = 30 hex, with RS = 0

3 Wait 5ms

4 Write D7-0 = 30 hex, with RS = 0, again

5 Wait 200us

6 Write D7-0 = 30 hex, with RS = 0, one more time

7 Wait 200us

8 Write Command “Set Interface” Write 38 hex (8-Bits, 2-lines)

9 Write Command “Enable Display/Cursor” Write 08 hex (don’t shift display, hide cursor)

10 Write Command “Clear and Home” Write 01 hex (clear and home display)

11 Write Command “Set Cursor Move Direction” Write 06 hex (move cursor right)

12 -- Write 0C hex (turn on display)

Display is ready to accept data.

Table 11-5 LCD 8-bit mode initialisation

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

268

Interfacing

11.6.1	 The 8-bit mode LCD initialisation sample program

From the above tables, we can write some basic initialisation program for the LCD, staring with the
8-bit mode of operation. In this program we are making certain assumptions regarding the port pin
connections to the LCD lines as can be seen from the initial remarks found in the code listing.

/* Assume that LCD-RS is connected to bit 0 of Port 2 (or LCD_CTRL_PORT)	*/

/* 		 0 = Command, 1 = Data 		 */

/* Assume that LCD-RW is connected to bit 1 of Port 2 (or LCD_CTRL_PORT)	 */

/* 		 0 = Write, 1 = Read 		 */

/* Assume that LCD-EN is connected to bit 2 of Port 2 (or LCD_CTRL_PORT)	 */

/* 	 A high (1) to low (0) transition is needed to latch data/command */

#define LCD_CTRL_PORT P2

sbit RSbit = LCD_CTRL_PORT^0;

sbit RWbit = LCD_CTRL_PORT^1;

sbit ENbit = LCD_CTRL_PORT^2;

/* If we only use the Control Port just for this purpose, we can send any one of the 	 */

/* following defined items to set all three control lines simultaneously 		 */

	 /* bit 	 2 	 1 	 0 	 */

#define ClearLines 		 0x00 		 /* EN = 0, RW = 0, RS = 0 */

#define LatchCommand1 	 0x04	 	 /* EN = 1, RW = 0, RS = 0 */

#define LatchCommand2 	 0x00	 	 /* EN = 0, RW = 0, RS = 0 */

#define LatchData1 		 0x05	 	 /* EN = 1, RW = 0, RS = 1 */

#define LatchData2 		 0x01	 	 /* EN = 0, RW = 0, RS = 1 */

#define ReadDataLines1 	 0x06	 	 /* EN = 1, RW = 1, RS = 0 */

#define ReadDataLines2 	 0x02	 	 /* EN = 0, RW = 1, RS = 0 */

/* Assume that the 8-bits data are connected to Port 1 (or LCD_DATA_PORT) */

#define LCD_DATA_PORT P1

/**/

void LCD_SOFT_WAIT (int x)

  {

  unsigned int i,j;

  for(j=1; j<=x; j++){

  for(i=0; i<=120; i++){}; /* JUST A DELAY */

  }

  }

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

269

Interfacing

/**/

void LCD_SHORT_WAIT (void)

  {

  unsigned char i;

  i++;

  i++;

  }

/**/

/* This Wait If Busy routine can be used ONLY after the initialisation */

void LCD_WAIT_IF_BUSY()

  {

  unsigned char Status;

  LCD_DATA_PORT = 0xFF;		 /* set DATA port to input mode */

  do

   {

	 RWbit = 1; RSbit = 0; ENbit = 1; 	 */ set reading mode */

	 		 /* or LCD_CTRL_PORT 	 = ReadDataLine2; */

	 LCD_SHORT_WAIT();

	 ENbit = 0; 	 /* or LCD_CTRL_PORT 	 = ReadDataLine1; */

	 Status = LCD_DATA_PORT;

   } while ((Status & 0x80) == 0x80);

  ENbit = 1;

  LCD_DATA_PORT = 0x00;		 /* set DATA port to output mode */

}

/**/

/**/

void LCD_SEND_INIT(char ch) 	/* send display init to lcd */

  {

  LCD_DATA_PORT = ch;

  ENbit = 1; RWbit = 0; RSbit = 0; 	 // command sending mode

  LCD_SHORT_WAIT();

  ENbit = 0;

  LCD_SOFT_WAIT(20); 		 /* wait for at least 5 milliseconds */

  ENbit = 1;

		 /* cannot check busy line yet, not until the initialisation has finished */

   }

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

270

Interfacing

/**/

void LCD_Send_Command(char ch) 	 /* write display command to lcd */
  {
  LCD_WAIT_IF_BUSY();
  LCD_DATA_PORT = ch;
  ENbit = 1; RWbit = 0; RSbit = 0; 	 // command sending mode
  LCD_SHORT_WAIT();
  ENbit = 0;
  } 		 /* end lcd write */

/**/

void LCD_Send_Data(char ch) 		 /* write display data to lcd */
  {
  LCD_WAIT_IF_BUSY();
  LCD_DATA_PORT = ch;
  ENbit = 1; RWbit = 0; RSbit = 1; 	 // data sending mode
  LCD_SHORT_WAIT();
  ENbit = 0;
  } 		 /* end lcd write */

/**/

/* 8-bit mode */
void LCD_INIT(void) 		 /* reset lcd display */
  {
  LCD_CTRL_PORT = LCD_DATA_PORT = 0;	 /* set both 8251 ports as output */
  LCD_SOFT_WAIT(50); 	 /* wait a few milliseconds, after power on */
  ENbit = 0; RWbit = 0; RSbit = 0; 	 // clear control lines
  LCD_SEND_INIT(0x38); 	 /* get attention */
  LCD_SEND_INIT(0x38); 	 /* set mode to 8 bit DATA 2 lines, 5×7 dots */
  LCD_SEND_COMMAND(0x0C); 	 /* Display On, Cursor Off and Blinking off */
  LCD_SEND_COMMAND(0x01); 	 /* Clear Display */
  LCD_SEND_COMMAND(0x06); 	 /* Set Entry Mode */
  } 		 /* end of lcd initialisation */

11.6.2	 4-bit mode LCD Initialisation

We have to remember that in this 4-bit mode any Data/Command writes of one-byte size are handled
using:

send high-nibble, delay, send low-nibble, delay

sequence, where 1 nibble is equivalent to 4 bits.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

271

Interfacing

General Initialisation Example Initialisation

1 Wait 20ms for LCD to power up

2 Write D7-4 = 3 hex, with RS = 0

3 Wait 5ms

4 Write D7-4 = 3 hex, with RS = 0, again

5 Wait 200us

6 Write D7-4 = 3 hex, with RS = 0, one more time

7 Wait 200us

8 Write D7-4 = 2 hex, to enable four-bit mode

9 Wait 5ms

10 Write Command “Set Interface” Write 28 hex (4-Bits, 2-lines)

11 Write Command “Enable Display/Cursor” Write 08 hex (don’t shift display, hide cursor)

12 Write Command “Clear and Home” Write 01 hex (clear and home display)

13 Write Command “Set Cursor Move Direction” Write 06 hex (move cursor right)

14 -- Write 0C hex (turn on display)

Display is ready to accept data.

Table 11-6 LCD 4-bit mode initialisation

11.6.3	 The 4-bit mode LCD initialisation sample program

Here we assume that the control signals are connected to the lower 3 bits (RS to bit 0, RW to bit 1 and
EN to bit 2), while the 4 data lines (D4–D7) are connected to the upper four bits of the port. D4 to port
bit 4, D5 to port bit 5 and so on.

#define LCD_PORT 	 P2

sbit RSbit = LCD_PORT^0;

sbit RWbit = LCD_PORT^1;

sbit ENbit = LCD_PORT^2;

#define 	 LCD_EN 	 0x04

#define 	 LCD_RW 	 0x02

#define 	 LCD_RS 	 0x01

// The 4 data lines (D4–D7) are connected to the upper four bits of the port.

// D4 to port bit 4, D5 to port bit 5 and so on.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

272

Interfacing

void LCD_Wait_If_Busy (void) 		 /* wait for lcd if busy */

  {

// The Busy Flag is the most significant bit of the received data

  char c,d;

  LCD_PORT = 0xF0;			 // set port upper nibble to input mode

  do {

  ENbit = 1;

  RWbit = 1;				 // prepare for a Write operation

  lcd_soft_wait(5);

  c = (LCD_PORT & 0xF0); 		 /* read high data nibble */

  ENbit = 0;

  RWbit = 0;

  lcd_soft_wait(5);

  ENbit = 1;

  RWbit = 1;				 // prepare for a Write operation

  lcd_soft_wait(5);

  d = (LCD_PORT & 0xF0); 		 /* read low data nibble, in Port.4 – Port.7 bits */

  ENbit = 0;

  RWbit = 0;

  d = d>>4;				 /* move it to the lower nibble

  c = c + d;				 /* combine nibbles to form 8-bit data */

  } while (c & 0x80); 			 /* wait for Busy Flag (BF) line to go low */

  LCD_PORT = 0x00;			 // set all port pins to output mode again

  } 		 /*end lcd busy wait */

void LCD_Send_Data(char ch) 		 /* write display data to lcd */

  {

  LCD_Wait_If_Busy();

  LCD_PORT = ((ch & 0xf0) | LCD_EN | LCD_RS); 	 /* send character high nibble */

  ENbit = 0;						

  lcd_soft_wait(3);

  LCD_PORT = (((ch & 0x0f) << 4) | LCD_EN | LCD_RS); 	 /* send character high nibble */

  ENbit = 0;

  } 		 /* end lcd data write */

void LCD_Send_Command(char ch) 	 /* write display command to lcd */

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

273

Interfacing

  {

  LCD_Wait_If_Busy();

  LCD_PORT = ((ch & 0xf0) | LCD_EN); 		 /* send character high nibble */

  ENbit = 0;

  lcd_soft_wait(3);

  LCD_PORT = (((ch & 0x0f) << 4) | LCD_EN); /* send character low nibble */

  ENbit = 0;

  } 		 /* end lcd write command function */

void LCD_Send_Init_Command(char ch) 		 /* write display initialization commands to lcd
*/

// Cannot use LCD_Wait_If_Busy routine yet.

  {

  LCD_PORT = ((ch & 0xf0) | LCD_EN); 		 /* send character high nibble */

  ENbit = 0;

  lcd_soft_wait(5);

  LCD_PORT = (((ch & 0x0f) << 4) | LCD_EN); 		 /* send character low nibble */

  ENbit = 0;

  lcd_soft_wait(5);

  } 		 /* end lcd write command function */

void LCD_Init_4(void) 		 /* reset lcd display */

  {

  lcd_soft_wait(10); 		 /* wait at least 15ms after power on*/

  LCD_Send_Init_Command (0x33); 	 /* get attention */

  lcd_soft_wait(5); 		 /* wait */

  LCD_Send_Init_Command (0x32); 	 /* get attention */

  lcd_soft_wait(10); 		 /* wait */

  LCD_Send_Init_Command (0x20); 	 /* 4 bit DATA transfer from now on */

  lcd_soft_wait(5);

// LCD_Send_Init_Command (0x28); 	 /* 4 bit data, 2 lines, 5×7 dots */

  LCD_Send_Init_Command (0x2C); 	 /* 4 bit data, 2 lines, 5×10 dots */

  LCD_Send_Command (0x06); 		 /* Move Cursor to the right. Do not shift display */

  LCD_Send_Command (0x0C); 		 /* Display On, Cursor and Blinking off */

// LCD_Send_Command (0x08); 	 /* Display, Cursor and Blinking Off */

// LCD_Send_Command (0x0F); 	 /* Display, Cursor and Blinking on */

  LCD_Send_Command (0x01); 		 /* Clear Display */

  } 		 /* end lcd initialize */

In any mode, in order to write a text string to the LCD, instead of writing a letter at a time we can write a
routine. In the smaple program below we are assuming that the length of the text fits into the LCD display.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

274

Interfacing

void LCD_Write_String (char *s)

{

  while (*s) { /* Write all characters within string, checking for the end of string char /0 */

	 LCD_Send_Data(*s++); /* Send character to LCD display */

   }

}

Similarly we can then write various other routines so that we can centre our text, write at any row or
column position, display a moving text and so on.

11.7	 DC Motor

A simple DC motor can be connected to the 8051 as shown in Figure 11-13. Since the motor takes some
appreciable amount of current, especially when switching on, we cannot drive it directly through the
port. We normally use a transistor such as the BD139 (or mechanical relay) to switch it on and off, as
shown in Figure 11-13. The type of the transistor used depends on the motor specification, mainly the
current that it takes. Since this current would all be passing through the transistor, Q1 must be able to
handle the power without overheating. A heat-sink is also used in most case to keep the temperature
of the transistor within limits. The diode across the motor is needed in order to provide a path for the
back emf generated by the motor itself.

Download free eBooks at bookboon.com

Click on the ad to read more
Click on the ad to read more
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Do you have to be a banker to
work in investment banking?

Agile minds value ideas as well as experience

Global Graduate Programs

Ours is a complex, fast-moving, global business. There’s no time for traditional
thinking, and no space for complacency. Instead, we believe that success
comes from many perspectives — and that an inclusive workforce goes hand
in hand with delivering innovative solutions for our clients. It’s why we employ
135 different nationalities. It’s why we’ve taken proactive steps to increase
female representation at the highest levels. And it’s just one of the reasons
why you’ll find the working culture here so refreshing.

Discover something different at db.com/careers

Deutsche Bank
db.com/careers

https://www.db.com/careers/content/en/students_graduates.html?kid=uk.generic.graduates.bookboon.webdisplayad

PaulOS An 8051 Real-Time Operating System
Part I

275

Interfacing

Figure 11-13 DC Motor interfacing

The supply for the dc motor is normally a separate supply which can handle the power requirements of
the motor and moreover reduces the glitches on the 8051 supply rail.

Apart from just switching it ON (running at maximum speed) when we need the motor and then switching
OFF when we are done with it, we can also make it run at variable speeds by switching it ON and OFF
with a pulse train (or Pulse Width Modulation [PWM] signal), varying the ON pulse width relative to
the OFF time. The inertia of the motor armature and whatever it is driving, will keep the motor turning
even during the OFF cycle. The greater the ON time, the faster it goes, since the average voltage of the
signal would be higher, as shown in Figure 11-14.

Figure 11-14 PWM used to control DC motor speed

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

276

Interfacing

Having a very low mark (1 or ON) to space (0 or OFF) ratio could result in the motor not turning at all.
It depends a lot on the type of motor and how free is the armature to rotate. So we can expect that the
mark-to-space ratio would need to be above 30% for the motor to start turning and overcome friction etc.

An example which can be adapted to this setup is given in section 11.8 when discussing the H-bridge
connection. The principle of using PWM to adjust and control the motor speed is still the same.

11.8	 DC motor using H-Bridge

If we add an H-bridge to our circuit, we can now also change the direction of rotation of the motor, apart
from controlling its speed. The H-bridge operation can be best explained with reference to the following
figures which describe the operation of the dc motor. The switches shown would actually be transistor
switches and they could be switched ON and OFF by means of signals coming out of the 8051 port.

Figure 11-15 shows the motor in the OFF position, where all the switches are off.

Figure 11-15 Motor Off

If now switches 1 and 4 are switched ON, leaving the others off, the motor would turn at full speed in
one direction say clockwise, as shown in Figure 11-16.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

277

Interfacing

Figure 11-16 Motor Clockwise Rotation

On the other hand, if we switch ON 2 and 3, and leaving switches 1 and 4 OFF as shown in Figure 11-17
the motor would turn at full speed in the opposite direction, since the supply would now be inverted
with respect to the motor terminals.

Download free eBooks at bookboon.com

Click on the ad to read more
Click on the ad to read more
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Real drive.
Unreal destination.

As an intern, you’re eager to put what you’ve learned
to the test. At Ernst & Young, you’ll have the perfect
testing ground. There are plenty of real work challenges.
Along with real-time feedback from mentors and leaders.
You’ll also get to test what you learn. Even better, you’ll
get experience to learn where your career may lead.
Visit ey.com/internships.

See More | Opportunities

©
 2

01
2

Er
ns

t
&

 Y
ou

ng
 L

LP
. A

ll
R

ig
ht

s
R

es
er

ve
d.

http://ey.com/internships

PaulOS An 8051 Real-Time Operating System
Part I

278

Interfacing

Figure 11-17 Motor Anti-Clockwise Rotation

Thus we can see that the switches normally operate in pairs since switches 1 and 4 switch on and off
together and the same thing with switches 2 and 3. We would therefore require two signals which moreover
are always of the opposite logic with respect to each other (one is the complement of the other). Hence
theoretically we could do with one signal and its complement (which we can obtain by using an inverter).
However, the need to avoid having all the switches ON at the same time (which can happen during the
transition due to the propagation delay), it would be best if we use two separate signals (S1 and S2) to
control the two separate pairs of switches as shown in Figure 11-18, making sure that we switch off one
pair before switching on the other pair.

Once again, if instead of switching these sets of switches permanently ON, we supply them with a PWM
signal, we now have the capability to control BOTH the speed and the direction of the DC motor.

A typical H-bridge, using discrete components is shown in Figure 11-18, with the transistors acting as
the switches, being driven from the 8051 ports. We have to ensure by means of our software program
not to have both transistors on either side of the motor ON at the same time, otherwise we would be
short-circuiting the motor supply.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

279

Interfacing

Figure 11-18 H-Bridge circuit with discrete devices

Thus, before switching from one set of transistors to the other set in order to change the direction, we
must make sure to switch off ALL the transistors first. The algorithm to control the speed and direction
is very simple and we describe it briefly here with the source code for a routine which controls the circuit
shown in Figure 11-18. Speed can take a value between 0 and 100 representing zero (off) to 100% full
speed. Direction can be either C (clockwise) or A (anti-clockwise). Duration would be the length of
time in milliseconds that the motor has to be in that state.

We are assuming that we have a timer routine called ms_delay(unsigned long delay) which would wait
for the specified amount of milliseconds.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

280

Interfacing

// H Bridge

#include <reg51.h>

sbit S1 = P1^0;

sbit S2 = P1^1;

void ms_delay(unsigned long);

// The following routine controls the motor, setting it at the required

// direction and speed for the specified time duration.

// The speed, although theoretically has the range 0–100, might need a value

// greater than 30 for the motor to actually start turning and overcome friction etc.

// The PWM signal has a periodic time of 100ms.

// Motor always exits the routine in the OFF condition.

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

281

Interfacing

void MotorControl(char Direction, unsigned char Speed, unsigned long Duration) {

	 unsigned long milliSeconds;

	 milliSeconds = 0;

  if (Speed == 0) {

	 S1 = S2 = 0;

	 ms_delay(Duration);

  }			 // switch off motor completely

  else if ((Speed == 100) && ((Direction == ‘A’) || (Direction == ‘a’))){

	 S1 = 0;

	 S2 = 1;

	 ms_delay(Duration);		 // full speed anti-clockwise, no PWM required

	 S1 = S2 = 0;

  }

  else if ((Speed == 100) && ((Direction == ‘C’) || (Direction == ‘c’))){

	 S1 = 1;

	 S2 = 0;

	 ms_delay(Duration);		 // full speed clockwise, no PWM equired

	 S1 = S2 = 0;

  }

  else{				 // 0 < speed < 100 hence PWM is required

 	 milliSeconds = 0;		 // used for timing the duration of the PWM

	 while(milliSeconds < Duration)

 		 {

		 // first switch off one pair of transistors, then turn on the other pair of transistors	

		 // to avoid shorting the power supply

		 if ((Direction == ‘A’) || (Direction == ‘a’)) {S1 = 0; S2 = 1;}

		 if ((Direction == ‘C’) || (Direction == ‘c’)) {S2 = 0; S1 = 1}

		 ms_delay((unsigned long)Speed);

 		 S1 = 0; S2 = 0;

		 ms_delay((unsigned long)(100 – Speed));

		 milliSeconds += 100UL; // add one PWM period to check duration

	 }

  }

}

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

282

Interfacing

void ms_delay(unsigned long delay_ms) {

// Assuming clock is 11.0592 MHz, then 921 timer counts

// would take approximately 1 millisecond

// Hence timer registers will be loaded with (65536 - 921)

// i.e. 64615, so that it will overflow after 1 millisecond

// TH0 = 64615/256 = 252

// TL0 = 64615%256 = 103

	 TMOD &= 0xF0;

	 TMOD |= 0x01;		 // set Timer 0 in 16-bit mode 1

	 ET0 = 0;			 // disable Timer 0 interrupts just in case

	 while (delay_ms > 0) {

	  TH0 = 252;

	  TL0 = 103;	 	 // load Timer 0 registers for 1 millisecond delay	

	  TF0 = 0;		 // clear Timer 0 overflow flag

	 TR0 = 1;			 // start Timer 0

	  while (!TF0);		 // wait for Timer 0 overflow

	  delay_ms--;		 // decrement 1 millisecond

	 TR0 = 0;			 // stop Timer 0

	 }

	 TF0 = 0;			 // Reset flag before exit

}

void main(void) {

  S1 = S2 = 0;				 // start with motor off

  MotorControl(‘A’,0,1000UL);		 // motor stopped for 1 second

  MotorControl(‘C’,90,4000UL);		 // motor clockwise at 90%, for 4 seconds

  MotorControl(‘A’,50,3000UL);		 // motor anti-clockwise at 50%, for 3 seconds

  MotorControl(‘C’,10,2000UL);		 // motor clockwise at 10%, for 2 seconds

  MotorControl(‘A’,100,2500UL);		 // motor anti-clockwise at 100%, for 2.5 seconds

  while(1);				 // stay here when finished

}

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

283

Interfacing

The H-bridge is so much in use that special ICs from a wide range of manufacturers have been designed.
Shown in Figure 11-19 is a typical IC, the L292D which has the capability to drive 2 dc motors separately.
Datasheets for this and similar devices are readily available on the internet, which fully describe the
operation complete with examples.

Figure 11-19 L293D H-bridge connection

Download free eBooks at bookboon.com

Click on the ad to read more
Click on the ad to read more
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

STUDY. PLAY.
The stuff you'll need to make a good living The stuff that makes life worth living

NORWAY.
YOUR IDEAL STUDY DESTINATION.

WWW.STUDYINNORWAY.NO
FACEBOOK.COM/STUDYINNORWAY

http://s.bookboon.com/studyinnorway

PaulOS An 8051 Real-Time Operating System
Part I

284

Interfacing

11.9	 Model Servo Control

Radio Controlled (RC) model servo motors, of the type shown in Figure 11-20 can also be very easily
controlled using the 8051. They are widely used in RC aero models and miniature robotics. These types
of motors require a PWM signal very similar to the one explained above in sections 11.7 and 11.8. We
need to have a PWM period of 20ms and we need to vary the ON time in the range of 1 to 2ms. A 1ms
pulse would result in a full right movement say while a 2ms ON pulse would turn the servo arm to the
full left position (a 1.5ms ON pulse would place the servo arm in the centre or neutral position).

Figure 11-20 RC Servo (www.parallaxinc.com)

Just three connections are needed as shown in Figure 11-21, two for the supply (usually around 5V, red
is positive and black is ground) and the third wire (usually white or yellow) is where the PWM signal is
fed from the micro-controller port pin. We should always remember to connect the ground of the servo
to the ground of the micro-controller, since we would normally be feeding the servo from a separate
higher capacity supply source.

Figure 11-21 RC Servo connection

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

285

Interfacing

Servos like all other motors, consume a lot of power especially when under load and it therefore would
make sense to use a separate power supply just for the servo motor which would also reduce the
interference on the 8051 supply lines.

We can also find servos which are slightly modified so that instead of just turning plus or minus 90
degrees, they are able to turn continuously. For example, a 1ms pulse would cause the servo to turn
continuously clockwise and a 2ms pulse would turn it continuously anti-clockwise. In order to stop the
servo, we would need to feed it with a 1.5ms pulse train, still using 20ms PWM periodicity.

11.10	 Stepper Motor

The stepper motor (see Figure 11-22) is one of the commonly used motors for precise angular movement.
The advantage of using a stepper motor is that the angular position of the motor shaft can be controlled
without the need of any feedback mechanism. They are widely used in industrial and commercial
applications as well as in drive systems of autonomous robots.

Figure 11-22 Typical Stepper Motors

They are commonly found in dot-matrix or ink-jet printers to drive the printing head and feed forward
the paper. By switching on the appropriate coils (see Figure 11-23), we can make the armature to rotate to
and then stop at a specified rotation angle, so as it would align with the stator magnetic field. Moreover,
if the whole 360 degree sequence is continuously repeated, the stepper motor can be made to turn at
the required speed and in the required direction. The program would just have to determine which coils
are to be energised and for how long.

Various ICs are available to drive these stepper motors and the L297 (or similar) stepper motor controller
IC in conjunction with the L298 (or similar) dual H-bridge IC can be used.

Download free eBooks at bookboon.com

http://www.engineersgarage.com/articles/stepper-motors
http://www.engineersgarage.com/articles/stepper-motors

PaulOS An 8051 Real-Time Operating System
Part I

286

Interfacing

Figure 11-23 Stepper Motor sequence (zone.ni.com)

Download free eBooks at bookboon.com

Click on the ad to read more
Click on the ad to read more
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

PaulOS An 8051 Real-Time Operating System
Part I

287

Index for Part I

Index for Part I
Symbols

8032 141
extras 141
T2CON 146
timer 2 144

B

baud rate
A51 example 132
setup 103
timer 2 148

big endian 169

C

CALL
ACALL 68
LCALL 68

conditional branching 65
Control Bit Symbol

AC 53
C/T 50, 77
CY 53
EA 52, 117
ES 52, 117
ET0 52, 117
ET1 52, 117
ET2 52
EX0 52, 117
EX1 52, 117
F0 53
GATE 50, 77
GF1 49
GF2 49
IDL 49
IE0 49
IE1 49
INT0 47
INT1 47
IT0 49
IT1 49
M0 50, 77
M1 50, 77
OV 53
P 53
PD 49
PS 53, 120
PT0 53, 120
PT1 53, 120
PT2 53

PX0 53, 120
PX1 53, 120
RB8 51, 101
RD 47
REN 51, 101
RI 51, 101, 123
RS0 53
RS1 53
RXD 47
SM0 51, 101
SM1 51, 101
SM2 51, 101
SMOD 49
T0 47
T1 47
TB8 51, 101
TF0 49, 82
TF1 49, 82
TH0 74
TH1 74
TI 51, 101, 123
TL0 74
TL1 74
TR0 49, 82
TR1 49, 82
TXD 47
WR 47

D

Development Boards
C8051F020TB 166
Flite-32 153
Flite-32 IVT setup 179
NMIY-0031 161

direct jumps 67

E

endian
big 169
little 169

Examples
Big Endian and Little Endian - C 170
PaulOS RTOS - C 220
Traffic Lights A51 136
UART baud rate A51 132

I

Interfacing
4-bit mode 271
7-Segment LEDs 250
DC Motor 275
H-bridge 277
Keypad 261
LCD 264

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

288

Index for Part I

LEDs 247
Servo Motor 283
Stepper Motor 285
Switches 258

Interrupts 69, 112, 115
common problems 128
considerations 125
IVT 152
polling sequence 118
priorities 119
sequence of events 120
serial 123
setting up 117
timer 2 151

Interrupt Vector Table 116, 152
ISR

stand-alone - PaulOS 218

J

jumps
conditional 65
direct 67

K

KEIL setup 173

L

little endian 169

M

MagnOS
description 225
OS_CHANGE_TASK_PRIORITY() 226, 232
OS_CHECK_MSG() 226, 236
OS_CHECK_TASk_PRIORITY() 232
OS_CHECK_TASK_PRIORITY() 226
OS_CHECK_TASK_SEMA4() 226, 237
OS_CLEAR_MSG() 226, 235
OS_CREATE_TASK() 226, 240
OS_GET_MSG() 226, 236
OS_INIT_RTOS() 226, 230
OS_KILL_IT() 239
OS_KILL_TASK() 226
OS_RELEASE_RES() 226, 233
OS_RTOS_GO() 226, 228
OS_RUNNING_TASK_ID() 226, 230
OS_SEMA4MINUS() 226, 238
OS_SEMA4_PLUS() 226, 238
OS_SEND_MSG() 226, 234
OS_WAIT4RES 233
OS_WAIT4RES() 226
OS_WAIT4SEM() 226, 239
OS_WAITI() 226, 231
OS_WAIT_MESSAGE() 226, 236

OS_WAITP() 212, 226, 229
OS_WAITT() 226, 231

Master-Slave 108
memory

bit-addressable 30
code area 26
external 26
internal data 27
on-chip 27
organisation 23

P

PaulOS
OS_CPU_DOWN() 218
OS_CREATE_TASK() 206, 209
OS_DEFER() 205, 206, 216
OS_INIT_RTOS() 206, 207
OS_KILL_IT() 205, 206, 216
OS_PAUSE_RTOS() 218
OS_PERIODIC() 206
OS_PERIODIC_A() 218
OS_RESUME_RTOS() 218
OS_RESUME_TASK() 206
OS_RTOS_GO() 206, 207, 209
OS_RUNNING_TASK_ID() 205, 210
OS_SCHECK() 205, 207, 210
OS_SIGNAL_TASK() 206, 207, 211
OS_WAITI() 206, 213
OS_WAITP() 205, 206
OS_WAITS() 206, 214
OS_WAITS_A() 218
OS_WAITT() 206, 215
OS_WAITT_A() 218
ready 205
running 203
stand-alone ISR 218
waiting 204

ports
P0 35
P1 40
P2 47
P3 47

R

register banks 29
RETI 123
round-robin rtos

SanctOS 191
RTOS

co-operative 189
MagnOS 225
pre-emptive 190, 225
ready state 187
round-robin 188, 191

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

289

Index for Part I

running state 187
SanctOS 191
states 187
types 188
waiting state 187

S

SanctOS
OS_CREATE_TASK() 191
OS_INIT_RTOS() 191
OS_INIT_RTOS(uchar iemask) 192

Serial Buffer 123
SFR 32

ACC 54, 56
B 54, 58
DPH 49
DPL 49
DPTR 49, 58
IE 52, 117
IP 53
P0 35
P1 40
P2 47
P3 47
PC 58
PCON 49
PSW 53
R 57
SBUF 51
SCON 51
SP 49, 59
T2CON 146

TCON 49, 81
TH0 51
TH1 51
timer 2 145
timer mode control bits 77
timer-related 74
TL0 51
TL1 51
TMOD 50, 76

Switch bounce 258

T

Timer
detecting overflow 85
initialisation 83
mode 0 77
mode 1 78
mode 2 79
mode 3 81
pulse duration 89
reading registers 84
timing events 87

Timer 2 144
auto relaod 149
capture mode 150

Timers 71

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

290

Index for Part II

Index for Part II
Examples

Buffered serial interrupt routines  80
SCC2691 UART  86
UART not under interrupt control  91
Light control using RTOS  98
Random display using RTOS  102
Master-Slave communication  105
Timer 0 Mode 3  247
Timer 1 as a baud-rate generator  247
Timer 2 as a baud-rate generator  251
XON/XOFF serial routine  253

P

programming
pitfalls  12
tips  12

S

SFR
DPTR  13

T

tips
C tips  18
DPTR  13
interrupts  15, 17
port usage  13
programming  12
ram size  12
serial  14
SFRs  13
SP setting  12
UART  14

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

291

To see Part II download PaulOS Part II

Download free eBooks at bookboon.com

	Preface
	Acknowledgements
	Dedications
	List of Figures
	List of Tables
	1	8051 Basics
	1.1	Introduction
	1.2	Memory Types
	1.3	Code Memory
	1.4	External RAM
	1.5	Register Banks
	1.6	Bit Memory
	1.7	Special Function Register (SFR) Memory
	1.8	SFR Descriptions

	2	Basic Registers
	2.1	The Accumulator, Address E0H, Bit-addressable
	2.2	The R registers
	2.3	The B Register, address F0H, Bit-addressable
	2.4	The Data Pointer (DPTR)
	2.5	The Program Counter (PC)
	2.6	The Stack Pointer (SP), address 81H
	2.7	Addressing Modes
	2.8	Program Flow
	2.9	Low-Level Information
	2.10	Timers
	2.11	Serial Port Operation
	2.12	Interrupts

	3	A51 Examples
	3.1	Template.a51
	3.2	Serial Port Example Program
	3.3	Traffic Lights A51 Program

	4	8032 Differences
	4.1	8032 Extras
	4.2	256 Bytes of Internal RAM
	4.3	Additional Timer 2

	5	Evaluation Boards
	5.1	FLITE-32 Development Board
	5.2	Typical Settings for KEIL uV2
	5.3	The NMIY-0031 Board
	5.4	C8051F020TB

	6	�Programming in C with KEIL µV2 IDE
	6.1	Byte Ordering – BIG ENDIAN and LITTLE ENDIAN
	6.2	Explicitly Declared Memory Types
	6.3	Data types:
	6.4	Interrupt routines

	7	Real-Time Operating System
	7.1	What is a Real-Time Operating System
	7.2	Types of RTOSs

	8	SanctOS – a Round-Robin RTOS
	8.1	SanctOS System Commands
	8.2	Variations from the A51 version
	8.3	SanctOS example program

	9	PaulOS – a Co-operative RTOS
	9.1	Description of the RTOS Operation
	9.2	PaulOS.C System Commands
	9.3	Descriptions of the commands
	9.4	PaulOS parameters header file
	9.5	Example using PaulOS RTOS

	10	MagnOS – a Pre-Emptive RTOS
	10.1	MagnOS System Commands
	10.2	Detailed description of commands

	11	Interfacing
	11.1	Interfacing add-ons to the 8051
	11.2	LEDs
	11.3	Input Switches
	11.4	Keypad
	10.5	LCD Display
	11.6	LCD Command Set
	11.7	DC Motor
	11.8	DC motor using H-Bridge
	11.9	Model Servo Control
	11.10	Stepper Motor

	Index

