Serial Peripheral Interface (SPI)

SPI = Simple, 3 wire, full duplex, synchronous serial data transfer

Interfaces to many devices, even many non-SPI peripherals

Can be a master or slave interface

4 1nterface pins:
-MOSI master out slave in
-MISO master in slave out
-SCK serial clock

-SS n slave select

3 registers:
-SPCR control register
-SPSR status register
-SPDR data register

*—

M

PIN CONTROL LOGIC

B

AL

S by
KTAL MSE LSB -
} 8 BIT SHIFT REGISTER R A
READ DATA BUFFER
DIVIDER :
2/4/8/16/32/64/128
I I CLOCK
SP| CLOCK (MASTER
SELECT | CLOCK |* S
_D'Elc i
F Y # = I
Alx| F
& o
a &
| o
~MSTR
SP| CONTROL +SFE .
L F3 ol w | ol A s
wl| O i i o =
T © e ol | & 5| B £ & & &
l.-"." == | | | | |% eyl w0 = (& [l
| 8P| STATUS REGISTER | [5P| CONTROL REGISTER
8, B,
- __.—’ | .-"‘ -

SPIINTERREUPT |INTERMAI

REQUEST

DATA BUS

DORD

Serial Peripheral Interface (SPI)

Full duplex, synchronous serial data transfer

MSB MASTER LSB | o0 wiso MSE SLAVE LSB
& BIT SHIFT REGISTER -+ . 8 BIT SHIFT REG|STER®
MOS| MOS) "
SHIFT
EMABLE
g ._-| S SCK
CLOCK GEMERATOR, * ¥ = —
master SPI device slave SPI device

Data 1s shifted out of the master's (megal28) MOSI pin and in it's MISO pin
Data transfer is initiated by simply writing data to the SPI data register.

All data movement is coordinated by SCK.

Slave select may or may not be used depending on interfacing device.

To get input data only you send “junk”™ data to SPDR to start the clock.

Serial Peripheral Interface (SPI)

Slave Select... use 1t carefully!

In master mode:
-SPI interface has no control of SS n
-User software has full control of SS n (Port B, bit 0)
-If configured as output, it’s a general purpose output
-If configured as input,

We will use SPI in master mode, full duplex

Serial Peripheral Interface (SPI)

SPI Control Register (SPCR)

1

Bit 7 & 5
SPIE | SPE | DORD

SPR1 SPRO I SPCR

Read Writs RN RAY RAN

Initial Yalua

interrupt enable: if set, interrupt
occurs when SPI interrupt flag —
and global interrupt enable are set

spi enable: if set, SPI interface
is enabled

data order: 1f set, LSB is
transmitted first

A A

(in SPSR)

master/slave select: 1f set,
SPI in master mode

clock polarity:
'0' SCK low in idle

'l' SCK high in idle

clock phase:
'0' leading edge sample, trailing edge setup
'l' leading edge setup, trailing edge sample

R R
0 _

clock rate

SPI2X SPR1 SPRO SCLK

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

fosc/4
fosc/16
fosc/64
fosc/128
fosc/2
fosc/8
fosc/32
fosc/64

Serial Peripheral Interface (SPI)
SPI Status Register (SPSR)

Bit Fi & b 4 3 2 1 i]
| sPF | wcol - - - - - sPEx | spsm
Read Wit R R R R R R A RN
Initial Valus 0 0] i 0] 0 i}
A A
reserved bits
interrupt flag: set when serial
transfer is complete
write collision: set if SPDR is
written during a receive transfer
2x clock rate: if set, doubles
clock rate in master mode
SPI Data Register (SPDR)
Bit Fi [5 4 3 2 1 i
I I SPDR
FaadWrits R RN R RN RN RwW R R
Initial Yalus X X X X X X X X Lindefined

SPDR i1s a read/write register used for data transfer. Writing SPDR sends data
out MOSI. Reading SPDR gets the data that was clocked into MISO.

Pot

3 [2
4 8 |
o 9]

16K
S

T4he 164
Hvee oo
01

02

SCK, PBI Tt r
LCD strobe, PF3—t= =

J12
MOSI, PB2

Serial Peripheral Interface (SPI)
SPI Application - Code

/***/
// spi init
//Initializes the SPI port on the megal28. Does not do any further

//external device specific initializations.
/***/

void spi init (void) {

DDRB = 0x07; //Turn on SS, MOSI, SCLK (SS is output)
SPCR = (1<<SPE) | (1<<MSTR); //SPI enabled, master, low polarity, MSB 1lst
SPSR = (1<<SPI2X); //run at i1/o clock/2

}//spi init

/****~k~k********~k~k*****~k~k********~k~k**************************************/
// digi pot send

//Sends command and data to the digital pot. SPI device chip select is
//active low and is connected to port F bit 2. Total of 16 bits are sent.
//One byte for control and one byte as data passed in.

/***/

void digi pot send(uint8 t data) {

PORTF &= OxFB; //port F bit 2, assert active low

SPDR = 0x13; //send command byte (fixed value)
while (bit is clear (SPSR,SPIF)) {} //wait till data is sent out

SPDR = data; //send data byte

while (bit is clear (SPSR,SPIF)) {} //wait till data is sent out

PORTF |= 0x04; //port F bit 2, deassert to logic high

} //digi pot send

Serial Peripheral Interface (SPI)
Typical SPI IC (MCP42010)

T There must always be multiples of 18 clocks while CS iz low or commands will abort.
T The serial data out pin {50} is only available on the MCP42X3X device.
*P1is a ‘don't carg’ bit for the MCP4120

«u|losH
RS SHDN TS . '
Voo E’ EI —tcs N Few tchs o
] P - _ -
) SSD_.. ;_,; 1 P?D tci“- tH| Lo — tCE1
Wiper i Resistor j-— —\ — —\ — —
leuggtggl Register | | Array 0 SCK __J | _ N A e \ / . L
+ L FAD S
¢] P'WD
- < PB1 sl Y msbin | " ¥ Y)
SOy L Wiper |Resistor A msbin g / A
- 16-Bit Register| Array 1+[€0 PAT : t
SICH| shit «OPW A
Register - - _ . '
SCK [S0 (First 16 bits out are always zeros),, A AN
S0 5] 4%
*Potentiometer P1 is only available on the dual Vour +1% Error Band? =
MCP42XXX version 4
Diata is always latched Data is always clocked out
| in on the rising edge of the S0 pin after the
_ / of SCHK. -~ | falling edge of SCK_ —
C5t ! / / | Data Registers are
" loaded on rising
| | edge of C5. Shift
10 11 12 13 14 15 16 register is loaded
SCK with zeros at this time.
B COMMAND Byte o Data Byie .
Don't I;_[:-n': Channe
C:,alt';e GBR};"‘j are DE;'IE:I -—— MNew Register Data ——»
T —
| X)X C']‘L-D:' f:l X IF'I*IF_:'.Df!D“tDEII D4:ID3':DE:ID1!D"_'H
SO pin will always
- drive ow when CS
sot |-l— Firat 18 bite shifted out will always be zeros 4-1-7-,/ goes high.

Serial Peripheral Interface (SPI)

g 13 D
12
REK —Dc
14 I: I:
SER o 1]] 0 P
. ==
R

13

1

LLLLLLLLL
TTTTTTTTTTT

[

[

]
!
FYYY Y Y

]

]

00
J>c o> —of>
L]
10 9 . SEAMAL DATA
IR ———GD_ D“: 9— TH o qureur

Figure 1. Logic Diagram (Positive Logic)

74HCS595 — A perfectly fine SPI peripheral

Serial Peripheral Interface (SPI)

What if you want only to read the SPI port?

To get the SPI clock to run, a "dummy" write 1s made to the SPI
SPDR register. This starts the clock running so the data on MISO
1s brought into the uC.

If no peripherals are selected, the outgoing data will be 1gnored. If you
are clever, you can send data out and bring data in at the same time.

/***/

// spi read
//Reads the SPI port.

/***/

uint8 t spi read(void) {

SPDR = 0x00; //"dummy" write to SPDR
while (bit is clear (SPSR,SPIF)){} //wait till 8 clock cycles are done
return (SPDR) ; //return incoming data from SPDR

}//read spi

Serial Peripheral Interface (SPI)

Connection Diagram

Pin Assignments for DIP, SOIC, SOP and TSS0P

PARALLEL INPUTS

CLOCK —— - SERIAL QUTRUT
Voo INHET D c a & INPUT Oy
115 15 14 13 12 1 10 9
CLOCK D C B & SERIAL
INHIBIT iN
SHIFT
v
LOAD A
CK
A E F G H Oy
1 Fi b] 4] [£] T a
SHIFT ' CLOCK E F G H OUTPUT GND

LOAD

PARALLEL MPUTS
Top View

Qn

Function Table

Inputs Internal | Qutput
Shift! | Clock | Clock | Serial | Parallel | QOutputs Qy
Load |Inhibit A...H|Qy Qg
L x x X a...h| a b h
H L L x % Qap Qpo| QHo
H L I H X H Qan| Qen
H L T L X L Qan| Qe
H H x X X Qap Qgg| Qpo
H= HIGH Level {steady state], L = LOW Level (steady state)

X = krelevant (any nput, ncluding ransitions)
I' = Transition from LOW-to-HIGH level

Qyp = The level of Q,, Qg, or Q. respectively, before the indi-
cated steady-state input conditions were established.
Qg Doy = The level of @, or O before the most recent T transition of the
clock; indicates a one-bit shift.

74HC165 — Another fine SPI peripheral

Serial Peripheral Interface (SPI)

SPI “Gotchas”

“Now my board won’t program.”
SPI shares SCK with programming interface. If it won’t program anymore,
you likely messed up SCK.

“SPI acts totally wierd.”
Often a symptom of SS n being configured as an input and being left to float
or allowed to go high. SPI goes in and out between slave and master modes.

“I never get data to the SPI device.”

Is clock correctly oriented ? Did you assert the device chip select?
(hint: put SPI write inside a “tight” loop and check with scope. Watch
SCK, data, and chip select)

"SPI device interactions:" When programming, the programmer first does a chip
reset. When the megal28 resets, all pins are set to input with high impedance
(floating). If a SPI device is on the SPI bus, its chip-select may

float low and enable the device, and SPI data will crash the programming data.
Adding a pull-up resistor to chip selects will solve this problem.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

