
Serial Peripheral Interface (SPI)

SPI = Simple, 3 wire, full duplex, synchronous serial data transfer

Interfaces to many devices, even many non-SPI peripherals

Can be a master or slave interface

4 interface pins:
-MOSI master out slave in
-MISO master in slave out
-SCK serial clock
-SS_n slave select

3 registers:
-SPCR control register
-SPSR status register
-SPDR data register

Serial Peripheral Interface (SPI)

Full duplex, synchronous serial data transfer

Data is shifted out of the master's (mega128) MOSI pin and in it's MISO pin

Data transfer is initiated by simply writing data to the SPI data register.

All data movement is coordinated by SCK.

Slave select may or may not be used depending on interfacing device.

To get input data only you send “junk” data to SPDR to start the clock.

slave SPI devicemaster SPI device

Serial Peripheral Interface (SPI)

Slave Select... use it carefully!

In master mode:
-SPI interface has no control of SS_n
-User software has full control of SS_n (Port B, bit 0)
-If configured as output, it’s a general purpose output
-If configured as input, it must be held high, else you will enter slave mode

We will use SPI in master mode, full duplex

Serial Peripheral Interface (SPI)

SPI Control Register (SPCR)

data order: if set, LSB is
transmitted first

interrupt enable: if set, interrupt
occurs when SPI interrupt flag
and global interrupt enable are set

spi enable: if set, SPI interface
is enabled

master/slave select: if set,
SPI in master mode

clock polarity:
'0' SCK low in idle
'1' SCK high in idle

clock phase:
'0' leading edge sample, trailing edge setup
'1' leading edge setup, trailing edge sample

clock rate

SPI2X SPR1 SPR0 SCLK
 0 0 0 fosc/4
 0 0 1 fosc/16
 0 1 0 fosc/64
 0 1 1 fosc/128
 1 0 0 fosc/2
 1 0 1 fosc/8
 1 1 0 fosc/32
 1 1 1 fosc/64

(in SPSR)

Serial Peripheral Interface (SPI)
SPI Status Register (SPSR)

interrupt flag: set when serial
transfer is complete

write collision: set if SPDR is
written during a receive transfer

2x clock rate: if set, doubles
clock rate in master mode

reserved bits

SPI Data Register (SPDR)

SPDR is a read/write register used for data transfer. Writing SPDR sends data
out MOSI. Reading SPDR gets the data that was clocked into MISO.

Serial Peripheral Interface (SPI)
Mega128 LCD interface

SCK, PB1
LCD strobe, PF3

MOSI, PB2

enable pulse generator

9-bit shift register

Serial Peripheral Interface (SPI)
SPI Application - Code

/***/
// spi_init
//Initializes the SPI port on the mega128. Does not do any further
//external device specific initializations.
/***/
void spi_init(void){
 DDRB = 0x07; //Turn on SS, MOSI, SCLK (SS is output)
 SPCR = (1<<SPE) | (1<<MSTR); //SPI enabled, master, low polarity, MSB 1st
 SPSR = (1<<SPI2X); //run at i/o clock/2
}//spi_init

/***/
// digi_pot_send
//Sends command and data to the digital pot. SPI device chip select is
//active low and is connected to port F bit 2. Total of 16 bits are sent.
//One byte for control and one byte as data passed in.
/***/
void digi_pot_send(uint8_t data){
 PORTF &= 0xFB; //port F bit 2, assert active low
 SPDR = 0x13; //send command byte (fixed value)
 while (bit_is_clear(SPSR,SPIF)) {} //wait till data is sent out
 SPDR = data; //send data byte
 while (bit_is_clear(SPSR,SPIF)) {} //wait till data is sent out
 PORTF |= 0x04; //port F bit 2, deassert to logic high
} //digi_pot_send

Serial Peripheral Interface (SPI)
Typical SPI IC (MCP42010)

Serial Peripheral Interface (SPI)

74HC595 – A perfectly fine SPI peripheral

Serial Peripheral Interface (SPI)

What if you want only to read the SPI port?

To get the SPI clock to run, a "dummy" write is made to the SPI
SPDR register. This starts the clock running so the data on MISO
is brought into the uC.

If no peripherals are selected, the outgoing data will be ignored. If you
are clever, you can send data out and bring data in at the same time.

/***/
// spi_read
//Reads the SPI port.
/***/
uint8_t spi_read(void){
 SPDR = 0x00; //"dummy" write to SPDR
 while (bit_is_clear(SPSR,SPIF)){} //wait till 8 clock cycles are done
 return(SPDR); //return incoming data from SPDR
}//read_spi

Serial Peripheral Interface (SPI)

74HC165 – Another fine SPI peripheral

Serial Peripheral Interface (SPI)
SPI “Gotchas”

“Now my board won’t program.”
SPI shares SCK with programming interface. If it won’t program anymore,
you likely messed up SCK.

“SPI acts totally wierd.”
Often a symptom of SS_n being configured as an input and being left to float
or allowed to go high. SPI goes in and out between slave and master modes.

“I never get data to the SPI device.”
Is clock correctly oriented ? Did you assert the device chip select?
(hint: put SPI write inside a “tight” loop and check with scope. Watch
SCK, data, and chip select)

"SPI device interactions:" When programming, the programmer first does a chip
reset. When the mega128 resets, all pins are set to input with high impedance
(floating). If a SPI device is on the SPI bus, its chip-select may
float low and enable the device, and SPI data will crash the programming data.
Adding a pull-up resistor to chip selects will solve this problem.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

