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Abstract—In this paper we study the problem of finding
optimal control policy for probabilistic Boolean networks (PBNs).
Previous works have been done by using dynamic programming-
based (DP) method. However, due to the high computational
complexity of PBNs, DP method is computationally inefficient for
large networks. Inspired by the state reduction strategies studied
in [10], we consider using dynamic programming in conjunction
with state reduction approach to reduce the computational cost
of DP method. Numerical examples are given to demonstrate the
efficiency of our proposed method.

I. INTRODUCTION

An important goal for studying the behavior of genes is to
develop control policy for the potential application to medical
therapy. While many models have been proposed for modeling
gene regulatory networks, Boolean Networks (BNs) [9] and its
extension Probabilistic Boolean Networks (PBNs) [12] have
received much attention. For reviews on BNs and PBNs,
interested readers can consult [2], [4], [11]. In fact, many
methods in control theory are available for the intervention
of PBNs. Datta et al. [7] proposed an external intervention
method based on optimal control theory. In their work, genes
are classified as internal nodes and external nodes (control
nodes). One can intervene the values of internal nodes in some
desirable manner by controlling the values of certain external
nodes. By defining the control cost for each control input and
terminal cost for each state, the problem is to find a sequence
of control inputs that leads the network into desirable states
at the terminal step with minimum average cost. The classical
techniques of dynamic programming is then employed to solve
the optimization problem. Later, Chen et al. [5] consider an
external intervention problem based on optimal control theory
and dynamic programming. Given the terminal cost of each
state, the objective is to derive the network into the state with
the maximum cost being minimized by applying external con-
trols. The problem is important in the view of medical therapy
because patients/organisms would like to minimize the damage
even for the worst case. They proved that both minimizing the
maximum cost and minimizing the average cost are Σp

2-hard.
A dynamic programming-based algorithm is then proposed for
finding a control sequence that minimize the maximum cost
in control of PBN. The above dynamic programming-based
methods have high computational complexity. One has to deal

with the matrices with size increasing exponentially with the
number of nodes in PBN. Hence one possible way out is to
consider network reduction approach.

Recently several reduction methods have been proposed. In
[8], a CoD-based reduction algorithm is introduced. Coeffi-
cient of Determination (CoD) helps to evaluate the influence
of a candidate node for deletion on the target node and
find the optimal candidate node for deletion. The proposed
algorithm can well preserve the attractor structure and long-
run dynamics of the original network. Qian et al. [10] proposed
a reduction method by considering deleting states directly.
Instead of deleting nodes, they choose to delete the out-most
states which have less influence on the network. Here we
consider a transition probability-based reduction strategy. The
strategy is easier to be carried out as we do not need the
stationary distribution information of PBNs beforehand.

We consider the problem of minimizing the maximum
cost in control of PBN and we use transition probability-
based reduction strategy to reduce the network complexity
of PBN. We show that the result of finding optimal control
sequence on the reduced network is the same as the one on the
original network. Then we apply dynamic programming-based
algorithm on the reduced network. Since the computational
complexity of dynamic programming-based algorithm on the
original network is O(2n) (depending on the number of
network states) for fixed number of control nodes m and
fixed number of steps M , using state reduction may reduce
the computation complexity to O(|R|), where R is the set of
states after reduction.

The remainder of the paper is structured as follows. In
Section 2, we briefly review basic definitions of PBNs. Section
3 gives a short introduction to dynamic programming-based
algorithm proposed in [5]. In Section 4, a brief review on
transition probability-based reduction strategy [10] will be
given. Then we apply dynamic programming-based algorithm
on the reduced network. Section 5 gives numerical experiments
to compare the results of the proposed method with results
given by the algorithm in [5]. Finally, concluding remarks are
given to discuss further research issues.
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II. A BRIEF REVIEW ON BNS AND PBNS

A BN consists of a set of n nodes (genes) as follows:

{v1, v2, . . . , vn}, vi ∈ {0, 1},
and a set of Boolean functions denoted by

{f1, f2, . . . , fn}.
Each vi(t) is defined as the state of node i at time t. The rules
of regulatory interactions among nodes is then represented by
the Boolean functions:

vi(t+ 1) = fi(vi1, vi2, . . . , vik)

where {vi1, vi2, . . . , vik} are input nodes of fi, and they are
called parent nodes of node vi. We define

IN(vi) = {vi1, vi2, . . . , vik}.
The number of parent nodes to vi is called the in-degree
of vi. The largest in-degree of {v1, v2, . . . , vn} is called the
maximum in-degree of BN and is denoted by K.

Since BN is a deterministic model, considering the high
complexity nature of gene regulatory networks, a stochastic
model is more preferable. Thus PBN is then introduced. A
PBN can be regarded as an extension of BN to a probabilistic
setting. In a PBN, each node vi has a set of Boolean functions:

{f (i)1 , f
(i)
2 , . . . , f

(i)
l(i)}. (1)

The state of vi at time t + 1 is predicted by one of Boolean
functions in (1) with selection probabilities c(i)j . Here

l(i)∑

j=1

c
(i)
j = 1, c

(i)
j ≥ 0 for j = 1, 2, . . . , l(i).

Moreover, a PBN can be regarded as a finite collection of BNs
over a fixed set of nodes, where each BN has a fixed set of
Boolean functions fj = {f (1)j1

, f
(2)
j2
, . . . , f

(n)
jn
}. The BN having

Boolean function set fj (j = 1, 2, . . . , N ) is called the jth BN.
At each time step t, one of BNs is selected with probability

qj = c
(1)
j1
c
(2)
j2
· · · c(n)jn

, j = 1, 2, . . . , N,

and the states of {v1(t + 1), v2(t + 1), . . . , vn(t + 1)} is
predicted by the Boolean function set fj. Then we introduce
the decimal representation of states. Suppose the current state
is {v1(t), v2(t), . . . , vn(t)}, we define

w(t) = 1 +

n∑

i=1

2n−ivi(t).

Since {v1(t), v2(t), . . . , vn(t)} ranges from {0, 0, . . . , 0} to
{1, 1, . . . , 1}, w(t) has a range [1, 2n].

The dynamics of a PBN can be studied by using Markov
chain theory, see for instance [6]. The one-step transition can
be described by the transition matrix A where each entry Aij

is given by

Aij =
∑

k∈I
qk, i, j = 1, 2, . . . , 2n. (2)

Here i = w(t+ 1) and j = w(t) and I is set of BNs that the
network can enter state i from state j. We remark that A is a
column stochastic matrix.

III. REVIEW ON DYNAMIC PROGRAMMING

In this section to facilitate the discussion, we first in-
troduce several definitions, we then introduce the dynamic
programming-based algorithm. Suppose a PBN has a set of
internal nodes {v1, v2, . . . , vn} which is the same as node
set defined in Section 2, and a set of external nodes (control
nodes) {vn+1, vn+2, . . . , vn+m}. At time t + 1, the states of
vi, i = 1, 2, . . . , n is predicted by

vi(t+ 1) = f
(i)
j (vi1, vi2, . . . , vik),

where vik can be either an internal node or an external node.
This provides a possible way for intervening the states of
internal nodes by controlling the values of external nodes.

To simplify our presentation, we adopt the decimal repre-
sentation of states and define

zt = 1 +

n∑

i=1

2n−ivi(t)

as the state of network. Then we define control input as

ut = 1 +

m∑

i=1

2m−ivn+i(t).

We are interested in the following problem: Minimizing the
maximum cost in control of PBN.

Given the terminal cost C(zM ) for each state
zM ∈ {1, 2, . . . , 2n} at terminal time step M , find a
sequence of control input u0, u1, . . . , uM such that starting
from the given initial state the network will enter into the
state with minimized maximum cost at time step M . In [5],
a dynamic programming-based method is proposed for the
above problem:

Step 0: Set t = M ;
J(zM , hM ) = C(zM ) for all hM = {0, . . . ,M}.
Step 1: t := t− 1.
Step 2: For any zt ∈ {1, . . . , 2n} and ht ∈ {0, . . . ,M},
compute

J(zt, ht) = min
ut∈{1,...,2m}




max
zt+1∈F (zt,ut)

J(zt+1, ht), if ut = u(zt+1, ht),

max
zt+1∈F (zt,ut)

J(zt+1, ht − 1), otherwise.

and

u(zt, ht) = argminut∈{1,...,2m}



max
zt+1∈F (zt,ut)

J(zt+1, ht), if ut = u(zt+1, ht),

max
zt+1∈F (zt,ut)

J(zt+1, ht − 1), otherwise.

Step 3: If t > 0, go back to Step 1; Otherwise, stop.
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IV. DYNAMIC PROGRAMMING-BASED ALGORITHM ON
THE REDUCED NETWORK

Due to the high network complexity of a PBN, if the
algorithm in Section 3 is applied, one has to deal with matrices
of huge size which increases exponentially with the number
of internal nodes. Hence network reduction is an important
issue to be addressed in this situation. In [10], a transition
probability-based state reduction strategy is proposed. In a
PBN, we consider all attractor states and initial state as critical
states, and they are preserved during state reduction. A state
i can be deleted if the following equation is satisfied:

2n∑

j=1

Aij < ξ (3)

where ξ > 0 is a parameter which needs to be predetermined.
The value of ξ depends on perturbation probability and it is
usually very small. When Equation (3) is satisfied, the network
will never enter state i from other states unless perturbation
happens. When we consider PBNs without perturbation, Equa-
tion (3) can be rewritten as

2n∑

j=1

Aij = 0. (4)

Which means that the network will never enter state i from
other states. Hence, deleting state i will not influence the
steady-state distribution of the network. Since the computa-
tional complexity of dynamic programming is O(2n) for fixed
number of control nodes m and fixed number of steps M ,
using state reduction may reduce the computation complexity
to O(|R|), where R is the set of states after reduction. It is
straightforward to see that we have the following theorem.

Theorem 1: the result of dynamic programming-based al-
gorithm on the reduced network will be the same as the one
on the original network.

Proof: It is straightforward to see that, starting from the
initial state, the network will never enter into transient states
for deletion, and therefore the network will never stop at
those states at the terminal time step. That means the deleted
states will not be included in the optimal route, and the cost
of deleted states will not be counted. Hence deleting these
transient states will not influence the result of DP method on
the reduced network.

Based on transition probability-based strategy, one can
iteratively delete those transient states until all the remaining
states are critical states. For each step, we need to update
the transition matrix for the reduced network by deleting the
corresponding row and column from the transition matrix.
After reduction, we can get a reduced network with set of
states R and |R| by |R| transition matrix B. Then we can
apply dynamic programming-based algorithm on the reduced
network.

V. NUMERICAL EXPERIMENTS

In this section, we give some numerical examples to com-
pare the results of dynamic programming-based algorithm on

the reduced network with the one on the original network.

A. A 6-Gene Example

We first consider a 6-node example. We consider the cases
of m = 1, 2, N = 2, 4, 8 and K = 2, 3. The Boolean function
set of PBN are randomly generated. We let M = 20 and
C(zM ) = zM . When m = 1, there are 5 internal nodes
and 1 control node. The original network size is 25. When
m = 2, there are 4 internal nodes and 2 control nodes. The
original network size is 24. Table 1 gives the numerical results
of this example. The second column gives the network size
before and after reduction. The third column gives minimized
maximum cost obtained by using the dynamic programming-
based algorithm on the original and reduced network. The
last column records the CPU time of running the program
for dynamic programming-based algorithm before and after
reduction.

B. A 12-Gene Example

We then consider a 12-node example. We consider the cases
of m = 1, 2, N = 2, 4, 8 and K = 2, 3. Again the Boolean
function set of PBN are randomly generated. We let M =
40, C(zM ) = zM . When m = 1, there are 11 internal nodes
and 1 control node. The original network size is 211. When
m = 2, there are 10 internal nodes and 2 control nodes. The
original network size is 210. Table 2 gives the corresponding
results. We see that our proposed reduction method is both
efficient and effective.

VI. CONCLUSION

From the experiment results, one can see that applying dy-
namic programming-based algorithm on the reduced network
can reduce the computational complexity and save time. The
performance of the algorithm on the reduced network depends
on the parameters of n,m,N and K. When the number of
nodes is large and K = 2, the algorithm on the reduced
network performs much better than the one on the original
network. Future research issues will pay attention to statistic
analysis of the distribution of zero rows in transition matrix in
terms of n. Moreover, we will keep exploring ways of reducing
computational complexity of intervention strategies.
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Size Cost CPU Time (sec.)
Original Reduced Original Reduced Original Reduced

m = 1
N = 2 2048 426 757 757 63.839384 4.069782
K = 2
m = 1
N = 2 2048 700 1258 1258 256.685488 36.892619
K = 3
m = 1
N = 4 2048 502 1830 1830 272.268905 23.274458
K = 2
m = 1
N = 4 2048 1462 1591 1591 264.38678 143.477244
K = 3
m = 1
N = 8 2048 1103 2036 2036 279.579186 88.793874
K = 2
m = 1
N = 8 2048 1801 1987 1987 272.351139 243.788024
K = 3
m = 2
N = 2 1024 350 607 607 153.849845 24.354139
K = 2
m = 2
N = 2 1024 444 179 179 148.797692 36.103486
K = 3
m = 2
N = 4 1024 415 342 342 140.623945 29.489216
K = 2
m = 2
N = 4 1024 801 328 328 150.20795 107.27338
K = 3
m = 2
N = 8 1024 759 736 736 146.975119 87.758299
K = 2
m = 2
N = 8 1024 937 756 756 172.926666 146.290486
K = 3

TABLE II
A 12-NODE EXAMPLE.
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