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I. INTRODUCTION

We are going to be looking at how to describe and analyze a two-dimensional wave f(z,t)—i.e., a
function of one spatial variable x and time ¢. Since the spatial and temporal dependences of such a wave
are related, we don’t really need to be considering a function of two variables. We could, for example, sit at
one spot, say x = 0, and examine the wave’s temporal dependence, given by f(xz = 0,t), as it passes that
spot. On the other hand, we could study how the wave looks in space at a particular time, say ¢t = 0; i.e., we
could look at the function f(z,t = 0). In this document we are going to make the latter choice and study
the function

f(z) = f(z,t=0),

but you will want to keep in mind that everything we do can also be applied to a function of time.

II. SUPERPOSITIONS OF MONOCHROMATIC WAVES
The simplest kind of wave is a monochromatic wave
f(z,t) = Acos(kx — wt +6) ,

for which our function f(z) is
f(x) = Acos(kx +9) .

Though a monochromatic wave has the virtue of having a precise angular frequency w and a precise wave
number k, it is unphysical because it extends over all of space. A physically realistic wave, called a wave
packet, extends only over a finite region of space, with a well defined start and finish. The purpose of this
document is to show how a wave packet can be constructed as a superposition of monochromatic waves.
Thus monochromatic waves are important not just because they are simple, but more importantly because
they provide the building blocks for all other kinds of waves.

We begin our investigation by considering the superposition of just two monochromatic waves, which
have the same amplitude and phase and nearly the same wave number:

f(x) = Acos(kix + 0) + Acos(kex +9) . (1)

To see what this function looks like, it is useful to introduce phasors and to write f(x) as
f(x) =Re (Aei(h”‘s) + Aei(kﬂw)) .

Now we go through some mathematical manipulations,

f(z) = Re <Aei[(k1+k¢2)m/2+6] (ei(kﬁkz)x/z i ei(k1k2)m/2)>
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which put f(z) in the form



To say that the two wave numbers are nearly the same means that the wave-number difference Ak = k1 — k2
is (in magnitude) much smaller than the average wave number k = (k1 + k2)/2, i.e.,

k14 ko

Ak
Ak < 2

Thus we can think of f(z) in Eq. (2) as a wave cos(kz+§) that has the average wave number k and the phase
J, but whose amplitude 2A cos(Ak x/2) varies slowly and sinusoidally at half the wave-number difference.
When this amplitude has its largest absolute value of 24, i.e., when Ak x = nm where n is an even integer,
the two waves superposed in Eq. (1) are said to interfere constructively; in contrast, when the amplitude is
zero, i.e., when Ak xz = nm where n is an odd integer, the waves in Eq. (1) are said to interfere destructively.
The functions +2A cos(Ak x/2) form an envelope for the rapid oscillations of f(z); the rapid oscillations
with wave number k are bounded by this envelope.

The lesson here is that in a superposition of two monochromatic waves, destructive interference makes
the wave go to zero at certain places. Perhaps if we use more than two monochromatic waves in the
superposition, we can arrange the destructive interference so that the function f(z) is nonzero only in an
isolated region—woila, a wave packet.

To see how this can be achieved, we will use what you already know about Fourier series—that any
periodic function can be written as a superposition of cosines and sines. Specifically, suppose fr,(z) is periodic
over a length L. Then we can write fr(x) as the Fourier series

fo(z) = Z ay, cos k,x + by sink,x | (3)

n=0

where the wave numbers

kn=2nm/L , n=20,1,2,...

are chosen so that we include in the series all the sinusoidal functions that are periodic over the length L.
We can replace the trigonometric functions cos k,z and sin k,z by complex exponentials e*?*»% and rewrite
the Fourier series (3) as

o0
fL(m) _ Z cnezknx . (4)
n=—oo
It is sensible to let this sum run over both positive and negative integers, thereby including, for any nonneg-
ative n, both €”*"® and e~*n»® = ¢?*-»* The price we pay for this is that we have to remember that k, can
be either positive or negative. By using Euler’s relation for the complex exponential,

e*n® — coskpax + isink,z |

we can relate the two kinds of Fourier coefficients:

ap = cop , bp =0,

Qp =Cp +C_p bp=i(cp—c_p), n=1,2,....

The separate monochromatic terms in Eq. (4) are called Fourier components of the function fr(z). We
can find the Fourier coefficient c, for the nth Fourier component—i.e., we can invert the Fourier series—by
doing the integral

1 [L/2 '

= [ dofula)e o (5)

LJ 1)

Now we're ready to see what kind of Fourier series is required to represent a function that is nonzero

only over small part of each period. For specificity, let’s consider a function defined on the interval —L/2 <
x < L/2 by

_f1, for|z|<a/2,
fulz) = {o " for a/2 < |o| < L/2.
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This function is zero except that it has a bump of height 1 and width a centered at the origin. Of course,
since fr(x) is periodic, the same bump is repeated at each integral multiple of L. For this function the
Fourier coefficients (5) become

1 /“/2 dp o—ikna _ S(kna/2) _ sin(nma/L) (6)
L) o C kL2 am

We should record a couple of observations about these Fourier coefficients. First, for small values of |n|, for
which the period (or wavelength, if you wish) 27/|k,,| of the Fourier component is much bigger than a, the
Fourier coefficients all have approximately the same value,

cn:% , for |kpla < 2.

The reason is that the Fourier function e*»* doesn’t have room even to begin to oscillate within the inte-
gral (6) and thus it can be replaced by its value at the origin, which is 1. Second, for large values of |n|, for
which the period 27/|k,| is much bigger than a, the magnitude of the Fourier coefficients falls off as 1/|n|.
The reason is that in this situation the integral (6) averages over many periods of the Fourier function. The
lesson is that to represent a function with periodic bumps of width a, separated by distance L, we need to
have roughly equal contributions from the Fourier components with |k,|a < 27, with decreasing contribu-
tions from shorter-period Fourier components. The Fourier components interfere constructively within the
bumps at each integral multiple of L and interfere destructively otherwise.

III. THE FOURIER TRANSFORM

To eliminate the periodic structure, we need to include even more Fourier components; for example, it
should be clear that we have to include Fourier functions whose period is longer than L. We can do this by
considering the function f7(x) to be defined on the central interval —L/2 < z < L/2 and taking the limit
L — oo while keeping a fixed. The limit pushes all the bumps except the central one out beyond infinity,
leaving a function f(x) with a single bump of width a centered at the origin:

L 1, for|z| <a/2,
fla) = fim fi(z) = {0, for || > a/2.

We now have to take the required limit in the Fourier series (4) and in the Fourier coefficient (6). Dealing
with the Fourier series first, we write Eq. (4) as

fr(z) = Z TT/LCn@ i = Z %Lcne Fn (7)

n=—oo n=—oo

Here Ak = 27/L is the difference between successive values of k,. We now define a function f(k) of wave
number k by

flk) = ngr;o Le, = Llijrgo Legrjon -

In taking this limit, we write the Fourier coefficient as ¢, = ¢;1 /2, and think of it as a function of k instead
of n. Taking the limit in Eq. (6) gives

= sin(ka/2)
k) = RRA/E)
o = =2
and the limit of Eq. (7) is
— 1 - Ak iknx __ > dk - ikx
f(z) = ngr;o nzgioo o Leye = /_Oo o f(k)e ™ . (8)



The function f(k) is called the Fourier transform of f(x). Equation (8) gives the single-bump function f(z)
as a continuous superposition of Fourier components, the Fourier coefficient for each component now being
given by the continuous function f(k).

The lesson here is nearly the same as above. To represent a single bump of width a requires a continuous
superposition of monochromatic waves. The Fourier transform f (k) tells how much and with what phase
each monochromatic wave contributes to the superposition. The Fourier transform is roughly constant for
small wave numbers satisfying |k|la < 27 and then falls off as 1/|k| for larger wave numbers. You should
notice that the relation between the width of the function and the effective width of the Fourier transform
is an expression of the uncertainty principle.

It takes only a little work now to find the general relation between a function and its Fourier transform.
We start with a periodic function f,(z), whose Fourier series is given by Eq. (4) and whose Fourier coefficients
coefficients are given by Eq. (5). We then take the limit L — oo so that the central interval —L/2 < 2 < L/2
occupies the entire real line. The resulting function f(z) is related to the Fourier transform as in Eq. (8),

*® dk - -
_ v k ikx
fw) = [ o iwers. )
and the Fourier transform f(k:) =limp oo Lep = limp o Legr j2- is now given by

f) = [ g (10)

where we take the limit in Eq. (5). Equations (9) and (10) are called a Fourier transform pair. The Fourier
transform is the most important integral transform in physics. You should make yourself thoroughly familiar
with it.

You will often see the Fourier transform in slightly different guises. For example, the 1/27 in the k
integral can be put in the x integral instead, or it can be distributed symmetrically as a 1/ V27 in both the
k and x integrals. I like the convention used here, because all you have to remember is that the integration
measure for wave number is always dk/2m. As another example, when dealing with time and angular
frequency instead of space and wave number, physicists almost universally use the opposite sign convention
in the complex exponentials, i.e.,

0 du - ) B 0 )
= [ SR ad fw) = [ e
oo 2T oo
(can you figure out why?). Engineers, on the other hand, tend to stick with the original sign convention
when dealing with time and frequency.

Following is a list of properties of the Fourier transform.

1. Linearity: h(z) = af(z) + Bg(x) — h(k)=af(k)+ Bg(k),

2. Conjugation:  h(z) = f*(z) —  h(—k) = f*(k),

3. Reality: flx) = f*(x) — f(_k) = f*(k) ,

4. Product: h(z) = f(z)g(x) — hk)= /OO ‘;i:r'f(k')g(k — k),
5. Convolution:  h(z) = [ T f@glx — ') — (k)= f(k)g(k),

6. Derivative:  h(z) = diii (f> = (k) = (ik)"f(k) .

7. Completeness: f(x) =d0(z —2') = /OO % R e (k) = etk



You should be able to verify all of these properties.
Perhaps the most useful of the properties is the completeness property, so called because if the Fourier
functions are a complete set of expansion functions, then we must have

f(x) = / ;Z—k f:(kj)eikz :/ ;Lk eikr/ dx/f(x')efikxl — / dx’ f(l‘/)/ % eik(m—z’)
oo 4T Lo 4T o o

oo 2T

for all functions f(z). The only way this can be true for all functions is to have

/ % eik(m—z’) — 6(.%‘ _ J}/) ,
oo 2T

which is the completeness property. The physical way to state the completeness property is as the inverse
of the statement above, i.e., that the Fourier transform of a plane wave is a § function:

o0
f =t o F) = [ dee T ams(k - k).
— 00
The only properties that might present some difficulty are the product and convolution properties, but
even these are fairly easy to check. The product and convolution properties are inverses of one another.
The product property says that the Fourier transform of a product of two functions is the convolution of
the Fourier transforms of those two functions, whereas the the convolution property says that the Fourier
transform of the convolution of two functions is the product of the Fourier transforms of the two functions.
These two properties are important in the theory of dispersion and in the theory of signal processing. An
important special case of the product property occurs when g(z) = f*(x), so that h(z) = |f(x)|*:

> 2 jikx 7 mdkl~/~*/
de|f(@) e = h(k) = [ S FOOF 0 k).
This special case is called Parseval’s relation. When evaluated at k = 0, Parseval’s relation reduces to
o0 oo dk -
d 2= — |f(K)?.
| _ais@r= [ gEiw)

Following are some examples of Fourier transform pairs.

R P R L

0, for || > a/2. k—n)2

o= {5 BESIE o - (e )
R R A O B =R
f(@) = e~ rweine = fk) = (k_jﬁ ,

F(2) = e cos ka — f(k);((k_:;ﬂﬁ(Hj;ﬂQ),
Jla) = e o = f(k):;i((k—j)zﬂf(kwj)zﬂ?)’
fla) = eweine = )= Lot

f(z) = e coska — f(k) = % % (;(H)Q/zw n 6—<k+n>2/47) 7
F(@) = e sin ka — )= 211\/? (e—w—n)?/m _ e—(k+ﬁ)2/4’v) ,

You should think about verifying these examples. Moreover, you should notice that in each example the
function f(z) can be thought of as a wave packet; the relation between the width of the wave packet and
the width of its Fourier transform is an example of the uncertainty principle.
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IV. SOLVING EQUATIONS USING THE FOURIER TRANSFORM

One of the most important applications of Fourier transforms in physics is to the problem of finding the
solution of linear ordinary or partial differential equations. The derivative property of Fourier transforms
allows one to transform a linear ordinary or partial differential equation into an algebraic equation or to
transform a partial differential equation into an ordinary differential equation. Let’s take a look at the latter
technique by solving the two-dimensional scalar wave equation,

2f 1 0%f

522 "o (11)

The scalar function f(z,t) could be the magnitude of the electric field for a linearly polarized plane elec-
tromagnetic wave propagating along the x axis. Now let’s introduce the Fourier transform of f(x,t) with
respect to z only:

fk,t) = /Oo dx f(z,t)e” ™

— 00
If we Fourier transform the wave equation (11) using the derivative property, we obtain an ordinary differ-
ential equation for f(k,t),
a2 f(k,t)
dt?
This is an ordinary differential equation because the wave number k is just a parameter as far as the equation
is concerned. The solution of Eq. (12) should be familiar:

+ (vk)2f(k,t) =0, . (12)

Fk,t) = fr(k)e™ ™" + fp (k)™ .

Here f; r(k) and fL(k) are arbitrary functions of the wave number k. We get the solution of the wave equation
by doing the inverse Fourier transform to find

f(x,t):/ ij(k t) zka::/ dkf ( ) ik(z— vt)Jr/ f ( ) ik(z+ot)

—o0 — —o0
We see that the general solution is a superposition of a wave traveling to the right and a wave traveling to
the left:

f(z,t) = fr(z —vt) + fr(x + vt) .

Moreover, we see that the waves traveling to the right and to the left are completely arbitrary and that they
are built up from arbitrary superpositions of monochromatic waves. The tool for handling such superpositions
is the Fourier transform.

V. GROUP VELOCITY

Suppose now that one has a wave packet traveling to the right,

e R e Y O (13

The difference from the above discussion is that we now allow w/k = v(k), the phase velocity of the wave,
to be a function of wave number k (or of angular frequency w), a phenomenon called dispersion. Such
a dispersive wave packet, though not a solution of the wave equation, does correspond to many physical
situations. One example is the propagation of matter waves in nonrelativistic quantum mechanics, where
hw = p?/2m = Kh?k?/2m, which implies that w = hk?/2m and v(k) = w/k = hk/2m = p/2m. Another
example is the propagation of electromagnetic waves in dispersive materials.

We consider the situation where the Fourier amplitude f, r(k) has substantial support only over a narrow
interval of wave numbers centered at wave number ky. We assume that the width Ak of the narrow interval
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is so small that v(k) doesn’t vary much across the interval. This allows us to expand w(k) in a Taylor series
about the center of the interval:

k) =wlko) + 2 k)4 2 L

2 ~ .
ar |, e (k — ko)* + (higher-order terms) . (14)

k=ko

We shall see that the linear term describes a wave packet that moves to the right with the group velocity

_dw

== (15)

Vg

k=ko

The quadratic and higher-order terms describe spreading, or dispersion, of the wave packet. In this discussion
we shall neglect the dispersive terms, retaining only the linear term in the Taylor expansion.

Notice that no matter how fast v(k) varies with k, we can always consider a wave packet that is narrow
enough in & that we can justify keeping only the linear term in the Taylor expansion. This means, however,
in accordance with our discussion in Sec. ITI, that the wave packet has an extent a 2 27/Ak in position. If
we are forced to make Ak very small to justify keeping only the linear term, the wave packet will become
very extended in position. Certainly not all wave packets are of this sort, and thus not all wave packets can
be treated in the group-velocity approximation.

Returning now to the Taylor expansion (14), let’s retain only the linear term and plug the expansion
into the expression (13) for the wave packet:

f(z,t) = /°° ;Lk fR(k)ei(sz[w(k0)+’ug(k—k0)}t)
T

— e—i[w(ko)—vgko]t /OO ;lj f’R(k,)eik(a:—vgt))
m

_ e—i[w(ko)fvgkg]tf(x - Ugta 0) .

— 00

—00

Aside from the time-dependent phase, this is, as promised, a wave packet that propagates to the right with
a speed given by the group velocity. Each Fourier component moves through the wave packet at its phase
velocity w/k = v(k), but the various Fourier components interfere so that the whole wave packet moves at the
group velocity. Notice that for a nonrelativistic matter wave, the group velocity vy = dw/dk = hk/m = p/m
is in accord with classical notions of the velocity of a particle.



