
Functional Programming with Python

Functional Programming with Python
Why It’s Good To Be Lazy?

Adam Byrtek
adambyrtek@gmail.com

EuroPython, Vilnius, July 9th 2008

http://www.adambyrtek.net
http://www.codesprinters.com

Functional Programming with Python

Introduction

Agenda

Agenda

1 Different programming paradigms

2 Functional programming in general

3 Functional features in Python

Functional Programming with Python

Introduction

Programming paradigms

Algorithm

How to explain your granny what is programming?

Algorithm is a recipe how to cook a program

Actually computers work this way (machine language)

Called imperative programming

Functional Programming with Python

Introduction

Programming paradigms

Functional programming

Functional programming is a more abstract approach

Program seen as evaluations of mathematical functions

More focused on what to compute than how to compute

Functional Programming with Python

Introduction

Functional programming

Features of functional languages

Functions as first-class objects

Support for high-order functions

Recursion used instead of loop constructs (tail recursion
often optimized)

Lists as basic data structures (see Lisp)

Avoiding side effects (no shared state)

Functional Programming with Python

Introduction

Functional programming

Benefits of stateless programs

Idempotent (pure) functions

Order of evaluation not defined

Lazy evaluation possible

Optimizations

Concurrent processing

Easier to test and debug

Side effects can’t be eliminated, but can be isolated (monads)

Functional Programming with Python

Introduction

Functional programming

Theoretical models

Turing machine (Alan Turing)

Lambda λ calculus (Alonzo Church)

TRUE := λxy .x
FALSE := λxy .y

Computationally equivalent (Church-Turing thesis)

Functional Programming with Python

Introduction

Functional programming

What about the real world?

Functional programming is not mainstream

But it widens your perspective on programming

Pure functional programming is difficult

Languages borrow concepts from the functional world

Recent revival due to a need for concurrency (Erlang)

Functional Programming with Python

Functional Python

Functional Python

Python is not a functional language

But has some functional features...

Functional Programming with Python

Functional Python

Functions as objects

First-class functions

Lambda defines an anonymous function

def square(x):

return x**2

equivalent to

square = lambda x: x**2

Unfortunately no multi-line lambdas (like blocks in Ruby)

Functional Programming with Python

Functional Python

Functions as objects

First-class functions

Lambda defines an anonymous function

def square(x):

return x**2

equivalent to

square = lambda x: x**2

Unfortunately no multi-line lambdas (like blocks in Ruby)

Functional Programming with Python

Functional Python

Functions as objects

Closures

Closure is a function with bound variables

def build_taxer(rate):

def taxer(amount):

return amount * (float(rate) / 100)

return taxer

vat1 = build_taxer(22)

vat2 = build_taxer(7)

Closure can be seen as a “functional object”

Functional Programming with Python

Functional Python

Functions as objects

Closures

Closure is a function with bound variables

def build_taxer(rate):

def taxer(amount):

return amount * (float(rate) / 100)

return taxer

vat1 = build_taxer(22)

vat2 = build_taxer(7)

Closure can be seen as a “functional object”

Functional Programming with Python

Functional Python

Prime numbers

Prime numbers

Definition

Natural number n is prime iff

¬∃k ∈ [2, n) : n ≡ 0 mod k

How to translate this into code?

Functional Programming with Python

Functional Python

Prime numbers

Imperative primes

def is_prime(n):

k = 2

while k < n:

if n % k == 0:

return False

k += 1

return True

List of statements to execute one after another

Not obvious if and when the loop ends

Local side effects

Functional Programming with Python

Functional Python

Prime numbers

Imperative primes

def is_prime(n):

k = 2

while k < n:

if n % k == 0:

return False

k += 1

return True

List of statements to execute one after another

Not obvious if and when the loop ends

Local side effects

Functional Programming with Python

Functional Python

Map, filter and reduce

Map, filter and reduce

High-order functions operating on lists (sequences)

Apply a function to every element
map(lambda x: x**2, range(1,5))

-> [1, 4, 9, 16]

Select elements matching the predicate
filter(lambda x: x%2==0, range(10))

-> [0, 2, 4, 6, 8]

Cumulatively reduce elements to a single value
reduce(lambda x,y: x+y, [7, 3, 12])

-> 22

Functional Programming with Python

Functional Python

Map, filter and reduce

Map, filter and reduce

High-order functions operating on lists (sequences)

Apply a function to every element
map(lambda x: x**2, range(1,5))

-> [1, 4, 9, 16]

Select elements matching the predicate
filter(lambda x: x%2==0, range(10))

-> [0, 2, 4, 6, 8]

Cumulatively reduce elements to a single value
reduce(lambda x,y: x+y, [7, 3, 12])

-> 22

Functional Programming with Python

Functional Python

Map, filter and reduce

Map, filter and reduce

High-order functions operating on lists (sequences)

Apply a function to every element
map(lambda x: x**2, range(1,5))

-> [1, 4, 9, 16]

Select elements matching the predicate
filter(lambda x: x%2==0, range(10))

-> [0, 2, 4, 6, 8]

Cumulatively reduce elements to a single value
reduce(lambda x,y: x+y, [7, 3, 12])

-> 22

Functional Programming with Python

Functional Python

Map, filter and reduce

Why map and reduce are so useful?

Can simplify complex loops

Can be chained

Many computations can be reduced to those (not only
numeric ones)

Can be easily distributed (see Google’s MapReduce)

Functional Programming with Python

Functional Python

Map, filter and reduce

Why map and reduce are so useful?

Can simplify complex loops

Can be chained

Many computations can be reduced to those (not only
numeric ones)

Can be easily distributed (see Google’s MapReduce)

Functional Programming with Python

Functional Python

Map, filter and reduce

Why map and reduce are so useful?

Can simplify complex loops

Can be chained

Many computations can be reduced to those (not only
numeric ones)

Can be easily distributed (see Google’s MapReduce)

Functional Programming with Python

Functional Python

Map, filter and reduce

Primes, second approach

def is_prime(n):

len(filter(lambda k: n%k==0, range(2,n))) == 0

def primes(m):

filter(is_prime, range(1,m))

Clear intention: “Is the list of non-trivial divisors empty?”

High-order functions can be composed

No side effects

return omitted for readability

Functional Programming with Python

Functional Python

Map, filter and reduce

Primes, second approach

def is_prime(n):

len(filter(lambda k: n%k==0, range(2,n))) == 0

def primes(m):

filter(is_prime, range(1,m))

Clear intention: “Is the list of non-trivial divisors empty?”

High-order functions can be composed

No side effects

return omitted for readability

Functional Programming with Python

Functional Python

Map, filter and reduce

Primes, second approach

def is_prime(n):

len(filter(lambda k: n%k==0, range(2,n))) == 0

def primes(m):

filter(is_prime, range(1,m))

Clear intention: “Is the list of non-trivial divisors empty?”

High-order functions can be composed

No side effects

return omitted for readability

Functional Programming with Python

Functional Python

Map, filter and reduce

Primes, second approach

def is_prime(n):

len(filter(lambda k: n%k==0, range(2,n))) == 0

def primes(m):

filter(is_prime, range(1,m))

Clear intention: “Is the list of non-trivial divisors empty?”

High-order functions can be composed

No side effects

return omitted for readability

Functional Programming with Python

Functional Python

Map, filter and reduce

Primes, second approach

def is_prime(n):

len(filter(lambda k: n%k==0, range(2,n))) == 0

def primes(m):

filter(is_prime, range(1,m))

Clear intention: “Is the list of non-trivial divisors empty?”

High-order functions can be composed

No side effects

return omitted for readability

Functional Programming with Python

Functional Python

List comprehensions

List comprehensions

But we can do better!

List comprehensions borrowed from Haskell

[i**2 for i in range(1,10) if i%2==0]

-> [4, 16, 36, 64]

Inspired by mathematical notation (slight difference)
{i2| i ∈ N, i ∈ [1, 10) : i ≡ 0 mod 2}
Can replace map and filter (even lambda)

Simplifies complex chains (more dimensions)

Functional Programming with Python

Functional Python

List comprehensions

List comprehensions

But we can do better!

List comprehensions borrowed from Haskell

[i**2 for i in range(1,10) if i%2==0]

-> [4, 16, 36, 64]

Inspired by mathematical notation (slight difference)
{i2| i ∈ N, i ∈ [1, 10) : i ≡ 0 mod 2}
Can replace map and filter (even lambda)

Simplifies complex chains (more dimensions)

Functional Programming with Python

Functional Python

List comprehensions

List comprehensions

But we can do better!

List comprehensions borrowed from Haskell

[i**2 for i in range(1,10) if i%2==0]

-> [4, 16, 36, 64]

Inspired by mathematical notation (slight difference)
{i2| i ∈ N, i ∈ [1, 10) : i ≡ 0 mod 2}
Can replace map and filter (even lambda)

Simplifies complex chains (more dimensions)

Functional Programming with Python

Functional Python

List comprehensions

Primes, third approach

def is_prime(n):

True not in [n%k==0 for k in range(2,n)]

def primes(m):

[n for n in range(1,m) if is_prime(n)]

Is there any problem with the last two versions?

Do we have to go through the whole list?

Functional Programming with Python

Functional Python

List comprehensions

Primes, third approach

def is_prime(n):

True not in [n%k==0 for k in range(2,n)]

def primes(m):

[n for n in range(1,m) if is_prime(n)]

Is there any problem with the last two versions?

Do we have to go through the whole list?

Functional Programming with Python

Functional Python

Streams

Generators, iterators and streams

It is said that good programmers are lazy...

Iterators are lazy sequences

Generator expressions help building iterators

(i**2 for i in xrange(1,10) if i%2==0)

-> <generator object at 0x12c4850>

Map and filter will be lazy in Python 3000

Called streams in the functional world

Functional Programming with Python

Functional Python

Streams

Prime numbers, fourth approach

def is_prime(n):

True not in (n%k==0 for k in xrange(2,n))

is_prime(100000000)

-> False

Lazy evaluation

Functional Programming with Python

Functional Python

Streams

Prime numbers, fourth approach

def is_prime(n):

True not in (n%k==0 for k in xrange(2,n))

is_prime(100000000)

-> False

Lazy evaluation

Functional Programming with Python

Functional Python

Quantification

Quantification

Can do even better with Python 2.5!

any(seq) returns true if at least one element of the
sequence is true (∃, exists)

all(seq) returns true if all elements of the sequence are
true (∀, for all)

Short-circuit lazy evaluation, like with logical operators

Functional Programming with Python

Functional Python

Quantification

Primes, grand finale

def is_prime(n):

not any(n%k==0 for k in xrange(2,n))

Does this look familiar?

Definition

Natural number n is prime iff

¬∃k ∈ [2, n) : n ≡ 0 mod k

Tadam!

Functional Programming with Python

Functional Python

Quantification

Primes, grand finale

def is_prime(n):

not any(n%k==0 for k in xrange(2,n))

Does this look familiar?

Definition

Natural number n is prime iff

¬∃k ∈ [2, n) : n ≡ 0 mod k

Tadam!

Functional Programming with Python

Functional Python

Quantification

Primes, grand finale

def is_prime(n):

not any(n%k==0 for k in xrange(2,n))

Does this look familiar?

Definition

Natural number n is prime iff

¬∃k ∈ [2, n) : n ≡ 0 mod k

Tadam!

Functional Programming with Python

Summary

Summary

Functional programming allows you to describe the
problem in a more abstract way

Learning functional approach widens your perspective on
programming

It’s worth applying when it makes sense

Python has some useful functional features

Python 3000 is getting more lazy

Functional Programming with Python

Summary

The wizard book

http://mitpress.mit.edu/sicp/

http://mitpress.mit.edu/sicp/

Functional Programming with Python

Summary

Thank you

May the λ be with You!
adambyrtek@gmail.com
http://www.adambyrtek.net

http://del.icio.us/alpha.pl/functional-programming

http://www.adambyrtek.net
http://del.icio.us/alpha.pl/functional-programming

	Introduction
	Agenda
	Programming paradigms
	Functional programming

	Functional Python
	Functions as objects
	Prime numbers
	Map, filter and reduce
	List comprehensions
	Streams
	Quantification

	Summary

