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ABSTRACT

When using genetic programming for program synthesis, we are

usually constrained by a computational budget measured in pro-

gram executions during evolution. The computational budget is

in�uenced by the choice of population size and number of genera-

tions per run leading to a trade-o� between both possibilities. To

better understand this trade-o�, we analyze the e�ects of di�erent

combinations of population sizes and number of generations on

performance. Further, we analyze how the use of di�erent varia-

tion operators a�ects this trade-o�. We conduct experiments on

a range of common program synthesis benchmarks and �nd that

using larger population sizes lead to a better search performance.

Additionally, we �nd that using high probabilities for crossover and

mutation lead to higher success rates. Focusing on only crossover

or using only mutation usually leads to lower search performance.

In summary, we �nd that large populations combined with high

mutation and crossover rates yield highest GP performance for

program synthesis approaches.
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1 INTRODUCTION

Program synthesis deals with the automatic construction of source

code for a programming task. Usually, program synthesis problems

are speci�ed by using either natural language or input/output pairs

[18]. When working with input/output pairs, a well-known and

successful method is genetic programming (GP) [12]. Common GP
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approaches used in program synthesis task are grammar-guided

GP [5, 6, 21], stack-based GP [20], and linear GP [13].

GP runs for program synthesis problems are usually expensive

and thus constrained by a computational budget. This budget is

measured in program executions used for evolution; GP runs are

stopped when a solution passes all training cases or the computa-

tional budget is exhausted. The computational e�ort depends on

the size of the training set, the chosen population size, and the

maximum number of generations. While the size of the training

set is mostly given, population size and number of generations

can be chosen. Given a �xed budget, we have a trade-o� between

population size and number of generations. While there is some

work on GP in general [14, 15], there is only limited work on the

trade-o� between population size and number of generations for

the program synthesis domain [4, 10]. This is especially impor-

tant when allocating additional program executions gained from

down-sampled lexicase selection techniques [1, 11].

Therefore, in this work we study how allocating the compu-

tational budget to di�erent combinations of population size and

number of generations a�ects the performance of grammar-guided

GP for program synthesis problems. Furthermore, we investigate

the in�uence of the variation operators crossover and mutation on

the trade-o� between population size and running time.

We perform experiments for six common benchmark problems

from the program synthesis literature [7, 9] with di�erent combina-

tions of population size and number of generations while keeping

program executions constant. We compare population sizes ranging

from 250 to 4000 and corresponding numbers of generations ranging

from 1200 to 75. Additionally, we investigate di�erent combina-

tions of variation operators. In particular the 1) classical approach

with high crossover and low mutation probability, 2) pure mutation

without crossover, and 3) high crossover probability combined with

high mutation probability.

We �nd that for most problems, larger population sizes with

fewer number of generations yield higher success rates. Further-

more, in most cases crossover has a positive in�uence on search;

the in�uence of mutation depends on the problem. Combining

crossover with a high mutation rate yields the best results on most

of the studied problems.

Section 2 details on our experiments, followed by our results in

Sect. 3. Section 4 wraps up the paper with a conclusion and future

work.
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2 METHODOLOGY

We present the benchmark problems used in the experiments, de-

scribe the experimental details, and explain the used metrics.

2.1 Benchmark Problems

We use six di�erent program synthesis problems from common

benchmark suites for our experiments [7, 9]. The problems are of

varying di�culty and are well studied in literature [17, 18]. Addi-

tionally they consist of di�erent input and output types and require

di�erent program paradigms to be solved. All problems are speci-

�ed using input/output pairs as training and test cases. The training

and test set for each problem consists of 200 training and 1,000 test

cases.

We study the following problems: Count Odds, Fizz Buzz, Fuel

Cost, Grade, Scrabble Score, and Small or Large.

2.2 Experimental Setup

Our experiments are conducted using a grammar-guided GP ap-

proach [5, 6, 16, 21], using context-free grammars in Backus-Naur

form and a tree-based representation. For the implementation we

use the PonyGE2 framework [3].

All populations are initializedwith position-independent grow [2]

with a maximum initial tree depth of 10. Selection is performed

using lexicase [19]. We use subtree crossover and subtree mutation

with one mutation event as variation operators. An elite size of 5 is

used and the maximum tree depth is set to 17 [12].

To study the in�uence of di�erent allocation of the computa-

tional budget, we set the budget to 60,000,000 program executions

(with 200 training cases we obtain 300,000 evaluated individuals) as

suggested in [7] and vary the population size # and number of gen-

erations � per run. We use the following �ve combinations of pop-

ulation size and number of generations: [250,1200], [500,600],

[1000,300], [2000,150], [4000,75].

To examine how di�erent con�gurations of the variation opera-

tors a�ect the trade-o� between population size and generations,

we consider three di�erent settings of crossover probability ?2 and

mutation probability ?< : High crossover probability in combina-

tion with high mutation probability ([0.95,1]), no crossover and

only mutation as commonly used in other evolutionary systems

([0,1]) [8, 20], and the classical setting of high crossover and low

mutation probability ([0.95,0.05]).

For each parameter con�guration and program synthesis prob-

lem, we perform 100 independent runs. A run is terminated when

an individual is found that passes all training cases.

2.3 Metrics

As is common in GP-based program synthesis, we use success

rate as the main metric for evaluating GP performance. A GP run

is stopped as soon as it �nds a solution that solves all training

cases. A run is considered to be successful, if this solution passes

all (previously unseen) test cases. The success rate is de�ned as

the number of successful runs out of the 100 runs we perform per

con�guration and problem (percentage of successful runs). Higher

success rates are considered to be better.

3 RESULTS

We report the results of our experiments. First, we describe the

observed e�ects of di�erent combinations of population size and

number of generations. Second, we study how di�erent settings of

variation operators in�uence these e�ects.

3.1 Population Size vs. Number of Generations

We analyze how the success rates depend on the trade-o� between

population size and number of generations. Figure 1 plots the num-

ber of successful runs over the combination of population size and

number of generations for 100 runs. We use di�erent colors for the

variation operator settings and plot a linear regression line over

the di�erent popsize/generations combinations to better visualize

the trend.

We �nd that, in general, the combination of large population

and low number of generations leads to more successful runs. For

example for the Count Odds problem, all con�gurations of search

operators perform better if we allocate more computational budget

towards larger populations. For the Small or Large problem and

the high crossover/high mutation setting, we see an increase from

26 to 59 successful runs, more than doubling the success rate. Only

for Scrabble Score (Fig. 1e) we observe a slight downward trend.

Table 1 presents the success rates (given 100 runs, the success

rate is the number of successful runs) and the results of the sta-

tistical tests. The highest success rate per problem and variation

operator setting (indicated by the probability ?2 of crossover and

mutation ?<) is displayed in bold font; the highest success rate per

problem across all variation operator settings is indicated with an

underline. We also performed statistical pairwise tests per problem

between the combinations of population size # and number of gen-

erations � and di�erent settings of variation operator probabilities

?2 and ?< . All test where performed using a two-sided proportions

z-test and corrected for multiple comparisons with a Bonferroni-

Holm correction. A small letter in subscript indicates a signi�cant

di�erence to the corresponding combination of popsize/genera-

tions. A number in superscript marks a signi�cant di�erence to the

corresponding variation operator setting. All tests are performed

at a signi�cance level of U = 0.05.

We �nd that in 5 out of 6 problems the highest success rate is

achieved using larger populations and lower number of generations.

Only for the Scrabble Score problem, we observe higher success

rates with smaller populations.

We �nd signi�cant di�erences between allocating the computa-

tional budget either towards larger populations or towards higher

number of generations. In the Count Odds, Fuel Cost, Grade, and

Small or Large problem, at least one variation operator setting

is signi�cantly better with large populations in contrast to higher

number of generations. For larger number of generations, a sig-

ni�cantly higher performance is only observed on the Scrabble

Score problem.

In summary, the results (see Table 1) suggest that larger popu-

lations lead to signi�cantly higher success rates. In addition, the

results show di�erence between variation operator settings. There-

fore, the next section takes a closer look at the role of the variation

operators.
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(e) Scrabble Score
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Figure 1: Number of successful runs over combinations of popsize/generations. Results are for di�erent variation operator

settings and test problems. The trend per variation operator setting is indicated by a linear regression line.

3.2 In�uence of Crossover and Mutation

Figure 1 shows that the classical variation operator setting (high ?2 ,

low ?<) outperforms pure mutation without crossover in three out

of six problems (Fizz Buzz, Grade, and Small or Large). Pure mu-

tation, on the other hand, performs better than the classical setting

on the other problems (Count Odds, Fuel Costs, and Scrabble

Score). However, both options are outperformed by a combination

of high crossover and high mutation probability on �ve out of six

problems. Only for the Grade problem, the classical setting per-

forms slightly better. These di�erences are also con�rmed by our

statistical testing (see Table 1). Therefore, the combination of high

?2 and high ?< yields best results.

4 CONCLUSIONS AND FUTUREWORK

In this work we studied the trade-o� between population size and

number of generations when working with a constrained budget

of program executions in GP for program synthesis. Additionally,

we analyzed the e�ect of di�erent combinations of crossover and

mutation. Further, we studied the relationship between using either

recombination or mutation as main search operator.

We performed a set of experiments on standard and common

program synthesis benchmark problems and found that overall,

larger population sizes lead to a better search performance. Further-

more, we found that search performance is highest if both crossover

and mutation probability is high. Using only either mutation or

crossover usually leads to lower search performance.

Therefore, we encourage researchers that are faced with the

decision where to allocate the computational budget, to use larger

population sizes instead of longer runs with more generations. Fur-

thermore, we recommend to combine crossover and high mutation

rates in the program synthesis domain. We expect that even in pure

mutation based systems, a crossover operator could signi�cantly

improve problem solving performance.

In future work we will investigate if these results can also be

extended to other application areas of GP like symbolic regression.
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Table 1: Success rates for the di�erent problems. Highest

success rates per problem and variation operator setting are

displayed in bold font; highest success rate overall per prob-

lem with an underline. A number in superscript indicates a

signi�cant di�erence to the corresponding variation operator

setting (pc / pm). A small letter in subscript indicates a signif-

icant di�erence to the corresponding combination of popsize

T and number of generations M. All pairwise tests are per-

formed using a two-sided proportions z-test and Bonferroni-

Holm correction on a signi�cance level of " = 0.05.

1pc : 0.95
2pc : 0.00

3pc : 0.95

pm : 1.00 pm : 1.00 pm : 0.05

Count Odds

0 #=250 / �=1200 3

3
73 3

4 62
1,2 35

1 #=500 / �=600 3

3
74 3

4 64
1,2 42

2 #=1000 / �=300 3 76 3 70 1,2 46

3 #=2000 / �=150 3

0,1
90 3 78 1,2 44

4 #=4000 / �=75 3 88 3

0,1
83 1,2 50

Fizz Buzz

0 #=250 / �=1200 2,3 60 1 20 1

1
30

1 #=500 / �=600 2 61 1,3 13 2
0 51

2 #=1000 / �=300 2 59 1,3 14 2 44

3 #=2000 / �=150 2,3 61 1,3 16 1,2 40

4 #=4000 / �=75 2 62 1,3 10 2 48

Fuel Cost

0 #=250 / �=1200 3 28 4 21
1 10

1 #=500 / �=600 27 4 23 15

2 #=1000 / �=300 3 29 3 28 1,2 13

3 #=2000 / �=150 3 38 3 32 1,3 13

4 #=4000 / �=75 3 40 3

0,1
44 1,2 15

Grade

0 #=250 / �=1200 2 35 1
4 16 1,2,4 29

1 #=500 / �=600 2 39 1,3 15 2
0 51

2 #=1000 / �=300 2,3

3,4
27 1,3 11 1,2

0 50

3 #=2000 / �=150 2
2 47

1,3 11 2 42

4 #=4000 / �=75 2
2 51

1,3
0 4 2

0 60

Scrabble Score

0 #=250 / �=1200 7 3 8 6

1 #=500 / �=600 2,3
4 16 1 4 1 1

2 #=1000 / �=300 3 8 2 1 0

3 #=2000 / �=150 2 6 1
0 0 1

4 #=4000 / �=75 1 3 2 3

Small or Large

0 #=250 / �=1200 3,4 26 28 34

1 #=500 / �=600 2 44 1,3 22 2 39

2 #=1000 / �=300 2 42 1 24 34

3 #=2000 / �=150 2,3
0 58 1 30 1 35

4 #=4000 / �=75 2,3
0 59 1 36 1 42
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