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Abstract 
Parsimony pressure, the explicit penalization of larger programs, has been increasingly 
used as a means of controlling code growth in genetic programming. However, in many 
cases parsimony pressure degrades the performance of the genetic program. In this paper 
we show that poor average results with parsimony pressure are a result of “failed” pop- 
ulations that overshadow the results of populations that incorporate parsimony pressure 
successhlly. Additionally, we show that the effect of parsimony pressure can be measured 
by calculating the relationship between program size and performance within the popii- 
lation. This measure can be used as a partial indicator of success or failure for individual 
populations. 

Code growth, code bloat, parsimony, genetic programming, introns. 
Keywords 

1. Introduction 

The  use of parsimony pressure as a means of controlling the size ofprograms generated with 
genetic programming (GP) has grown considerably in recent years. In many cases parsimony 
pressure appears to have been added as means of controlling code growth without careful 
consideration of the possible side effects of its use or the fact that it has been known to 
degrade performance in some applications. In large part, this oversight occurs because the 
effects of parsimony pressure on an evolving population, beyond limiting code growth, are 
not well understood, nor are the reasons for its failures. 

The tendency of programs generated with GP to grow extremely large without corre- 
sponding increases in fitness is well documented in the GP literature (Koza, 1992; Blickle & 
Thiele, 1994; Nordin & Banzhaf, 1995; McPhee & Miller, 1995; Soule, Foster, & Dickinson, 
1996; Greeff & Aldrich, 1997; Soule, 1998). Most code growth consists of code that does 
not directly contribute to a program’s performance. 

Code growth is less well documented in areas of evolutionary computation other than 
GP. However, code growth has been demonstrated in a few other evolutionary paradigms 
(Nordin, 1997; Nordin & Banzhaf, 1995; Nordin, Banzhaf, & Francone, 1997; Banzhaf, 
Nordin, Keller, & Francone, 1998). Further, the research on code growth in GP strongly 
suggests that it will be a problem in any evolutionary technique that uses variable-size rep- 
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resentations. Most variable-size representations are vulnerable to the same causes of code 
growth that are believed to affect GP. 

Code growth is a significant problem as rapid program growth consumes considerable 
resources without directly contributing to a solution. Additionally, nonfunctional code may 
interfere with finding better solutions, since most of the code manipulation by evolutionary 
operators will occur in the nonfunctional regions. 

In addition to being a serious problem, code growth is an interesting phenomenon 
that demonstrates the strengths of evolutionary techniques. Code growth is believed to 
be a protective response to the destructive effects of crossover and mutation. Thus, the 
evolutionary process is capable of recognizing and evolving solutions to problems that were 
not anticipated by the designer. Clearly this is a highly desirable feature for a machine- 
learning system. 

Direct penalization of larger programs (parsimony pressure) is an obvious mechanism 
for limiting code growth. Parsimony pressure should take advantage of the evolutionary pro- 
cess itself to produce programs that are both successful and succinct. However, experiments 
using parsimony pressure have had mixed results. In some instances the desired parsimonious 
solutions were obtained (Soule et al., 1996; Sherrah, Bogner, & Bouzerdoum, 1997; Blickle, 
1996). hut in other instances the performance of the programs was clearly degraded by the 
parsimony requirement (Koza, 1992; Nordin & Banzhaf, 1995; Soule, 1998). This conflict 
has fiar-reaching consequences. If GP is not generally capable of balancing two distinct and 
possibly conflicting requirements, then it has limited usefulness as a general problem-solving 
technique. 

'This paper shows that parsimony pressure can produce poorer performance, the amount 
of degradation being dependent upon the distribution of individuals within a population. 
Although the results do suggest general guidelines for designing robust forms of parsimony 
pressure, our primary goal is to understand how balancing the twin goals of performance 
and parsimony affects the evolutionary process. 

2. Code Growth 

2.1 Terminology 
For a detailed discussion of code growth some terminology regarding the types of code found 
in GP-generated programs will be helpful. In handwritten code each instruction is expected, 
under some set of circumstances, to be executed and to serve some useful purpose. However, 
this is not the case for GP-generated code. GP code is normally saturated with instructions 
that are never executed or with instructions that, when executed, serve no useful purpose 
a n d  do not contribute to the individual's fitness. 

'The GP literature commonly divides sections of code into introns and exons. 
Informally, introns are sections of code that do not contribute to fitness, and exons are 

sections of code that do contribute. IIowever, these terms are often used without precise 
definitions. The definitions that have been presented in the literature are not always compat- 
ible. Furthermore, the terms intron and exon are borrowed from the biological community 
where they have somewhat different meanings than when applied to the evolution of pro- 
grams. U'e have found it usefiil to make a further distinction between regions of code which 
can possibl~~ contribute to a program's output, but happen not to, as opposed to regions which 
cannot contribute under any circumstances. 7'0 avoid adding to the confusion surrounding 
these terms we chose to introduce two new terms defined as follows: 

D E H S I T I ~ ~  1 : '4 node ?I i71 n pi.op-n"m :c y i t m  tree is operative if the removnl ofthe subtree lnotrd 
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at that node will change the program’s output on some input. Conversely, a node is inoperative if it 
is not operative. 

DEFINITION 2 :  A node n in a programk syntax tree is viable if there exists a tree such that 
replacing the tree rooted at node n with the new subtree will change the program? output on some 
input. Conversely, a node is inviable ifit is not viable. 

Notice that, with these definitions, inviable code is a proper subset of inoperative code. 
Thus, any program will have a t  least as much inoperative code as it does inviable code. 

Expanding these definitions to include nontree genome shapes is not difficult. 

2.2 Causes of Code Growth 
Several independent theories have been proposed to explain code growth. In roughly equiva- 
lent theories, Nordin and Banzhaf (1999, McPhee and Miller (1995), and Blickle and Thiele 
(1994) argue that code growth occurs to protect programs against the potentially destructive 
effects of evolutionary operations like crossover and subtree mutation. Intuitively, removing 
a section of code from a program and replacing it with randomly chosen code from another 
source would rarely be expected to increase the program’s performance. Several studies have 
confirmed this intuition by showing that few crossover events increase fitness and many lower 
fitness (Nordin & Banzhaf, 1995; Langdon & Poli, 1997b). Thus, on average, crossover is 
a destructive or neutral operation. 

The  percentage of possible destructive operations decreases as more of the code within 
a program becomes inviable. In this case, code modifymg operations are more likely to 
change the inviable code and, by definition, output and fitness will not be affected. Thus, 
an evolutionary advantage for growing inviable code should exist. 

To a more limited extent this argument may apply to inoperative code. Although 
inoperative code does not contribute to fitness, changing it may change the program’s output. 
Thus, it is less clear that increased inoperative code will protect programs against change in 
the same manner as inviable code. 

A second feature of these theories is that operative code should be minimized. Smaller 
sections of operative code are less likely to be affected, and thereby damaged, by crossover, 
providing another evolutionary benefit. 

Several studies with nondestructive (hill-climbing) versions of crossover have shown 
that they lead to much lower rates of overall code growth (O’Reilly & Oppacher, 1995a; 
Soule & Foster, 1997; Soule & Foster, 1998; Hooper, Flann, & Fuller, 1997). This is strong 
evidence that code growth occurs, at  least in part, to protect against crossover’s destructive 
effects. In addition, nondestructive crossover does not appear to decrease the amount of 
operative code (Soule, 1998). Thus, the ratio of operative to nonoperative code is much 
lower with destructive crossover, further evidence that code growth is a mechanism for 
protecting operative code. 

A second potential cause of code growth is removal bias (Soule & Foster, 1998; Soule, 
1998). Again, the general destructiveness of code modifying operations is the root cause of 
this form of code growth. In general, removing a smaller branch from a program’s syntax 
tree as a part of crossover, subtree mutation, or a similar operation, makes it more likely 
that only inviable code will be affected and thus that the operation will be fitness neutral. 
However, if the operation does occur in inviable code, then the replacement branch will not 
affect performance, regardless of its size. Thus, there is a bias toward programs that have 
a small branch removed, but not a corresponding bias in favor of programs that have had a 
small branch added. The net effect is a general growth in the inviable sections of a program’s 
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code. Although removal bias is most clearly applicable to inviable code, it may also apply, 
probably to a somewhat lesser extent, to inoperative code. 

Langdon and Poli (199%) have argued that code growth is partially caused by the dis- 
tribution of semantically equivalent solutions in the solution space. In most variable-length 
representations, a particular solution can be represented by many semantically equivalent, 
but syntactically different, programs. The  existence of inviable and inoperative code guar- 
antees that, for any given program size, there are many more larger versions of the solution 
than there are smaller ones. Langdon and Poli argue that, as a search progresses, it is more 
likely to find progressively larger solutions because there are more of them. Thus, it is 
possible that some code growth is simply due to the distribution of solutions in the search 
space, rather than to an evolutionan. influence. 

These are three distinct causes of code growth, each of which is capable of causing code 
growth by itself. However, it is likely that under normal circumstances they work in concert. 
For example, removal bias may produce inviable code, which is then conserved for protective 
purpses. 

In addition to these relatively neutral roles for inviable code, it is also possible that 
inviable code acts more directly in producing better solutions. Inviable code may act as a 
storage area for building blocks that  are later moved back into the viable regions of code. 
Alternatively, inviable code niay serve as “scratch paper” in which building blocks are created 
before being transferred into viable code. In either case, additional inviable code could 
improve the evolutionary process, creating an evolutionary advantage for programs with 
more inviable code and leading to code growth. 

Both of these possibilities rely on the mechanism of crossover to transfer code back and 
forth between viable and inviable regions or rely on mutation to turn introns on and off (for 
example, by changing an i f  ( false ) into i f  ( t r u e  ) ). Thus, recent experiments showing 
that crossover is not necessarily important in GP (O’Reilly & Oppacher, 1995b; Angeline, 
1997; Luke & Spector, 1997; Chellapilla, 1997) cast serious doubt on these theories. We 
are also suspicious of storage and “scratch paper” hypotheses because they require a kind 
of evolutionary foresight to determine which partial solutions to store, or which scratch 
manipulations to make. Rather, it seems that immediate selective pressure is the major force 
directing evolution. 

2.3 Solutions to Code Growth 
A large number of methods for controlling code growth have been proposed. Although this 
paper will focus on parsimony pressure, it is helpful to consider some of the other methods. 

Probably the most common approach to controlling code growth is to set a fixed limit 
on program size, either by limiting the number of instructions in the program or, in the 
case of syntax trees, by limiting the allowed depth of those trees. Programs exceeding the 
limits are removed from the population. Because the size of a program is easily calculated 
during evaluation, this approach requires relatively little additional computation. However, 
recent studies have shown that depth limits can interfere with the creation of good solutions 
(Gathercole & Ross, 1996; Langdon & Poli, 1997a). In addition, an appropriate size limit 
must be chosen in advance. X size limit that is too small may make it difficult or  impossible 
for a solution to evolve, whereas an overly generous limit will still allow extraneous growth. 
Clearly it would be preferable to allow the G P  to evolve the appropriate size. This is the 
goal of the parsimony pressure approach. 

Recently, nondestructive or hill-climbing versions of crossover have been shown to re- 
duce the rate of code growth in GP (Soule & Foster, 1997, 1998; Hooper et al., 1997). 
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In nondestructive crossover, the offspring of a crossover event is preserved only if its fit- 
ness is greater (or possibly equal) to its parent’s fitness. It is hypothesized that these 
methods work by reducing or eliminating the evolutionary advantage of protective code. 
This means that causes of code growth not directly related to protective code, such as 
those suggested by Langdon and Poli, will not be affected. Additionally, these forms of 
crossover limit GP to a hill-climbing search that may be insufficient for solving more difficult 
problems. 

Nordin, Francone, & Banzhaf (1996) have suggested using explicitly defined introns (EDIs) 
to reduce the impact of code growth and to improve GP search. An explicitly defined intron 
is an instruction that has no semantic effect, but does influence the probability of crossover. 
In tree-based GP, EDIs can be represented by nodes that have a variable chance of being 
selected for crossover, but no other effect. EDIs can protect against destructive operations 
in the same manner as normal inviable code. A few EDIs with high crossover probabilities 
make it much less likely that viable code will be affected by crossover, thus serving the same 
function as large sections of inviable code. In addition, because they are explicitly defined, 
EDIs are easily recognized and removed from the final program. Thus, EDIs have several 
distinct advantages over normal GP-generated inviable code. EDIs have been shown to be 
particularly effective at controlling code growth when combined with parsimony pressure 
(Nordin et al., 1996; Blickle, 1996). 

There are several reasons for focusing on parsimony pressure as a means of controlling 
code growth. First, several of the other methods are special cases of parsimony pressure or 
incorporate some parsimony pressure. For example, fixed limits are a form of parsimony 
pressure where the parsimony functionp(sj) is a step function. EDIs are commonly used with 
parsimony pressure as an additional limiting factor. Thus, an understanding of parsimony 
pressure should improve our understanding of these techniques as well. Second, parsimony 
pressure is a very general approach and should control growth regardless of its cause. Third, 
parsimony pressure is easily applied, requiring very little overhead. Fourth, and perhaps most 
important, parsimony pressure seems to be the natural method for controlling code growth 
in GP. It uses evolution itself to produce solutions that are both successful and succinct. If 
GP is found to be generally incapable of balancing the twin requirements of performance 
and parsimony, this would indicate a serious limitation of what it can accomplish. 

Parsimony pressure uses a fitness penalty based on size to deter code growth. Formally, 
the fitness function with parsimony pressure for a program i is: 

where P(i) measures how well individual i actually performs, si is the size of i, and p is the 
function defining the amount of parsimony pressure. Oftenp is a simple linear function and 
the fitness function is: 

f ( i )  = P(i) - as, 

Parsimony pressure has been quite effective in some cases (Soule et al., 1996; BlicMe, 1996; 
Droste, 1997) and a failure in others (Koza, 1992; Nordin & Banzhaf, 1995), but the cause 
of these different results is unclear. 

Zhang and Miihlenbein (1995) proposed an adaptive parsimony approach in which 
the parsimony factor a is a function of the performance and size of the best individual 
from preceding generations. Blickle (1996) used adaptive parsimony successfully on two 
regression problems. One limitation of this method is that it requires an error limit that 
must be predefined by the user. A poor choice for this parameter can hinder performance. A 
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Table 1. Summary of the even-iz-parity problem. 

0 b jec tive 1 Deterniine whether the parity of 
1 6 boolean inputs is even or odd 

Terminal Set 1 The 6 input values 
Function Set AND, NAND, OR,  

Fitness 

Population Size 1 500 
Initial Pouulation 1 Random trees 
Parameters 66.6% crossover, no mutation, 

results averaged over 100 trials 
Termination -50 or 7 5  generations 
No. of Trials 

further drawback of this approach over fixed parsimony pressure is that it requires additional 
overhead to calculate the new parsimony value a t  each generation. 

3. Sample Applications of Linear Parsimony Pressure 

We chose to use the even parity problem (with six inputs) as our test problem because it is 
commonly used in GP. [See, for example, Koza (1992, 1994), Harries & Smith (1997), and 
C;athercole & Ross (1997).] This choice makes it easier to compare our results to those of 
other researchers. Additionally, previous work with the even parity problem has shown that 
a simple GI), such as we are using, is unlikely to be successful on this problem with six inputs 
(Koza, 1992; Gathercole 8r Ross, 1997). Thus, we can be reasonably sure that, for each 
trial, the GP can always make further improvements and is not limited by having found the 
perfect solution. 

The details of this problem and our parameters are shown in Table 1. 
We performed separate trials using a linear parsimony function with the parsimony 

coefficients (a) of 0.0,0.01,0.02,0.05, and 0.1. Linear parsimony is used because it is the 
simplest form of parsimony, is commonly used, and is most amenable to analysis. However, 
the results can be generalized to other parsimony functions and, to a more limited extent, to 
adaptive forms of parsimony pressure. 

' l he  size of a program is the total number of nodes it contains. We ran 100 trials for each 
test case, and each trial ran for 75 generations, except in the case of no parsimony pressure 
in which the rapid code growth forced a halt a t  50 generations. Note that, for the lowest 
level of parsimony pressure (a = 0.01), the fimess improvement for correctly classifying one 
additional input case outweighs the parsimony penalty for 99 additional nodes. Thus, at this 
level o f  parsimony pressure the main effect will be to distinguish between programs of equal 
perfommance. 

'The average program size (over all 100 trials) for the five levels of parsimony pressure 
are shown in Figure 1. This fi_gure clearly shows that increasing amounts of parsimony 
pressure decrease the amount of code growth. The  differences in size become significant 
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Figure 1. Average program size for the even-6-parity problem with varying amounts of parsimony 
pressure. 

(two-tailed test, P < 0.01) after one generation between any two of the parsimony levels. 
Figure 2 shows the average performance (averaged over all 100 trials) for the five levels 

of parsimony pressure. Here it is clear that increasing the amount of parsimony pressure 
degrades the average performance of the genetic program. The differences in performance 
take longer to become significant than the differences in size. However, by generation 19 
all of the differences are significant (two-tailed test, P < 0.01). The two most extreme trials 
(Q = 0.0 versus Q = 0.1) become significantly different by generation 8 (two-tailed test, P < 
0.01). The best performances (averaged over all 100 trials) were, 48.82 for no parsimony 
(generation SO), 50.83 for a = 0.01 (generation 75), 48.76 for (I: = 0.02 (generation 75),41.95 
for Q = 0.05 (generation 75), and 35.14 for CI: = 0.1 (generation 75). 

These results are similar to other negative results with parsimony pressure (Koza, 1992; 
Nordin & Banzhaf, 1995). Program size is controlled, but performance suffers. Both the 
benefits and costs of parsimony pressure are clearly correlated with the amount of parsimony 
pressure used. 

The  initial rise in performance between generations 0 and 7 is similar for all five cases 
and is believed to occur as selection moves the population average toward the best individual 
in the initial, random population. Thus, because this increase does not depend on the 
production of improved solutions, it does not truly reflect the full evolutionary process and 
probably should not be interpreted as an early success for the more restrictive amounts of 
parsimony pressure. 

Although in these trials the average effect of parsimony pressure is clearly to decrease 
performance, as well as code size, the process of averaging over multiple trials obscures con- 
trary and interesting behaviors in the individual populations. In many cases the parsimony 
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Figure 2. Average performance on the even-6-parity problem with varying amounts of parsimony 
pressure. 

pressure drives the entire population to the minimal possible size (a single node for these ex- 
periments) without regard for the resulting performance. We will refer to these populations 
asfiiled populations to reflect that no improvement was made beyond the solutions in the 
initial population. Table 2 separates the trials based on the average performance at genera- 
tion 7-5 (generation 50 for the trial without any parsimony pressure). The  table includes the 
average performance, and standard deviations for all trials and for the subset of the trials in 
which performance exceeded 3 5. (For this problem, random guessing scores 32, achievable 
by a program with a single node. Scores lower than 32 require a larger program. Thus, it 
is reasonable to treat 32 as the minimal performance, and any program that cannot achieve 
performance of a t  least 35 can be considered a failure.) 

’The separated results show that, if the trials with a performance below 35 are omitted, 
the remaining trials show a minimal decline in performance with parsimony pressure. Of the 
trials using parsimony pressure, only the trial with u = 0.01 has a performance that is signifi- 
cantly better than the other trials (two-tailed test, P < 0.05). Further, the distribution of the 
nonfailed trials is similar, suggesting that evolution is occurring normally. We believe that, 
with higher levels of parsimony pressure, the trials generally produce a bimodal distribution 
with a sharp peak for the failed trials and a more normal distribution for the successful trials. 

.A chi-squared test was applied to the nonfailed trials to determine if their distribution 
was in fact normal. The  results of this test are shown in Table 3 .  For the a = 0.1 case, the 
number of nonfailed tests was insufficient to give statistically meaningful results. Four bins 
were used in the test, so 1’ values on the order of four suggest a normal distribution. 

These results strongly suggest that the nonfailed trials are evolving normally. While 
the 1‘ values are not entirely indicative of a normal distribution, they are very close to the 

300 Evolutionary Computation Volume 6 ,  Number 4 



Effects of Code Growth and Parsimony Pressure 

Table 2. Distribution of trial results a t  generation 75 (SO for CY = 0.0) for different levels of parsimony 
pressure. 

Avg. Performance # of Trials # of Trials # of Trials # of Trials # of Trials 
Range Q = 0.0 a = 0.01 Q = 0.02 a = 0.05 Q = 0.1 
5 35 0 1 6 46 86 
35-37 
3 7-40 
40-43 
43-46 
46-49 
49-52 
52-55 
55-58 
> 58 

0 
7 

19 
25 
2 3  
12 
6 
3 
5 

3 
6 

19 
26 
12 
9 

11 
9 
4 

7 
17 
17 
15 
10 
16 
5 
7 
0 

6 
11 
9 

10 
3 

13 
2 
0 
0 

Performance Q = 0.0 a = 0.01 a = 0.02 Q = 0.05 CY = 0.1 
Average 46.55 46.69 44.16 38.3 1 3 3.63 
Standard Deviation 5.07 6.09 6.57 7.02 4.43 
Average, Discounting 5 35 Case 46.55 46.84 44.90 43.60 43.26 
Standard Deviation, 5.07 5.94 6.05 5.47 5.74 
Discounting 5 35 Case 

Table 3. Results of applying a chi-squared test to the nonfailed trials. 

p X 2  
0.00 6.24 
0.01 4.80 
0.02 2.95 
0.05 9.24 
0.1 - 

values for the parsimony-free case. Thus, it is reasonable to conclude that the fitnesses 
form a bimodal distribution with one peak for the failed trials and a second, more normal, 
distribution for the successful trials. 

This is very strong evidence that most of the decrease in performance seen in Figure 2 is 
caused by those trials in which the entire population is trapped at a minimal, or near minimal, 
fitness. It further appears that populations that escape this trap show comparatively little 
degradation. Thus, in some cases GP is able to balance performance and parsimony, but 
when it fails to achieve a balance, the presumably simpler task of evolving minimal programs 
is favored. 

Table 4 gives the average sizes and standard deviations for all trials and separately for 
the failed trials only. Not surprisingly, the subset of unsuccessful trials shows much smaller 
average program sizes than for all of the trials. In general, this effect increases with increasing 
parsimony pressure. Thus, as with performance, it is clear that much of the size differences 
attributable to high levels of parsimony pressure is caused by the failed trials. However, unlike 
performance, the average size difference between trials with parsimony pressure and trials 
without parsimony pressure is quite large even when only the successful trials are considered. 
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Table 4. Average program sizes a t  generation 75 (50 for n = 0.0) for different levels of parsimony 
pressure. 

CI = 0.0 c\ = 0.01 a = 0.02 ck = 0.0s a = 0.1 
Avg. Size 374.32 103.56 77.42 32.86 7.80 
Standard Deviation 138.60 41,74 30.30 20.63 16.03 
Avg. Size, 374.32 1.00 16.03 3.38 1.77 
Only 5 3 5  C a w  
Standard Deviation, 138.60 - 23.83 7.17 2.75 
Only 5 3 5  case. 

Figure 2 shows a slow, but constant, increase in average performance even with the 
strongest levels of parsimony pressure used. The absence of a decrease in performance 
implies that the failed populations are trapped almost immediately. If they did evolve suc- 
cessfully for a time before being pulled down to the minimal performance, we would observe 
a decrease in performance. 

Averaging over multiple trials is clearly obscuring the fact that some trials evolve nearly 
normally in the presence of parsimony pressure. Given these observations, it is reasonable 
to ask, W%y are some populations adversely affected by parsimony pressure while others are 
relatively unaffected? 

4. An Analysis of Parsimony Pressure 

With parsimony pressure, the fitness of an individual is a function of both its performance 
and its size. Performance is the raw measure of how well a program performs, as opposed 
to fitness, which also incorporates the parsimony penalty. A simplified fitness landscape 
can he constructed using performance and program size as the two major axes. We believe 
that the distribution of the individuals of a population within this landscape can be used as 
an  indicator of whether a particular population will successfully evolve in the presence of a 
parsimony function. 

Major features of the simplified landscape are the regions of equal fitness. These are 
a series of  contours, each defining an area of performance and size in which the program 
have an identical fitness. The equation defining a contour of constant fitness is derived by 
making fitness a constant in Equation 1: 

These contours have the same shape as the parsimony function p(  ). So, a linear parsimony 
function produces linear contours with slopes equal to the coefficient o of the parsimony 
function, as is illustrated in Figure 3 .  More complex parsimony functions would produce 
correspondingly more complex regions of equal fitness. 

The  difference in fitness between two individuals is proportional to the distance be- 
tween them along an axis perpendicular to the contours of constant fitness. In contrast, 
two individuals on the same contour have the same fitness (although very likely different 
performances and sizes) and so there is no relative selection pressure between them. T ~ L I S ,  
selection pressure is strongest perpendicular to the contours. Over time selection should 
move a population through the landscape in the direction perpendicular to the contours and 
toward the contours representing the highest fitness. 

3 0 2  
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Figure 3. The simplified landscape created with linear parsimony pressure. 

The  effect of parsimony pressure on a population depends on the relationship between 
size and performance within the population. For simplicity we assume that this is a lin- 
ear relationship (we will present further justification for this assumption later) so that the 
population can be roughly described by the equation 

perfbmance = a * size + b 

It is now possible to compare a linear parsimony function with the population distri- 
bution by comparing the values of cy (the amount of parsimony pressure) and a (the average 
relationship between size and performance in the population). 

Figure 4 illustrates the two interesting and expected cases: a > a > 0 and cy > a > 0. 
(The case a < 0 implies reverse parsimony pressure is being used to favor larger programs, 
which is unlikely. The case a < 0 means there is a negative correlation between size and 
performance, in which case selection will naturally prefer the smaller programs and parsi- 
mony pressure would not be necessary.) Figure 4 shows that, for a > a, selection will be 
strongest for the better performing individuals but, for a < a, selection will be strongest for 
the smaller individuals. Thus, the distribution of the population helps determine whether 
performance or size is the primary factor in determining survival. 

Next we consider the expected relationship between size and performance within a 
population. Since an evolving population tends to converge, the fitness of the individuals 
within the population will move toward a region of equal fitness. This means that all of 
the individuals will tend to fall along one of the contour lines, resulting in a population 
that is roughly aligned with the contours and producing a positive correlation between size 
and performance. Because this correlation is aligned with the parsimony function, a linear 
parsimony function should result in a population with a roughly linear correlation between 
size and performance. Further, as the individuals converge toward a single fitness, the values 
of a and a should become equal. 

Of course, this is only a first approximation of a population’s distribution. Given the 
randomizing effects of crossover, it would be unreasonable to expect a perfectly linear rela- 
tionship between size and fitness. However, we will show that this approximation is sufficient 
to make predictions about how a population will respond to parsimony pressure. Addition- 
ally, if the parsimony function is not linear, or there are other reasons to expect a relationship 
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Figure 4. Two idealized populations (represented by the ovals) with different size and performance 
relations. Selection will be ron-ard the shaded regions of the populations. 

other than a linear one, it is possible to calculate the appropriate coefficients for the expected 
functional relationship instead of the linear coefficient used here. 

The tendency of populations to align with the contours of constant fitness defined by 
the parsimony function is the primary influence on a population's distributions. However, all 
three of the theories of code growth predict a secondary effect on the population distribution. 

If code growth protects against the destructive effects of crossover (and similar evolu- 
tionary operators), then after crossover the largest programs are most likely to have retained 
their fitness. If removal bias occurs, then the largest programs resulting from crossover are 
the least likely to have been damaged. If Langdon and Poli's hypothesis is correct, then the 
largest programs resulting from crossover are most likely to  be semantically equivalent to  
their predecessors. All three theories predict that the largest programs are the most likely to 
retain their fitness. Thus, all three theories predict that, in general, an additional relationship 
between size and performance exists that leads to a > a. It is important to realize that this 
does not mean that larger programs are better a t  solving the problem, but rather that they 
are more likely to retain a previously discovered solution. 

Figure 5 shows the relationship between size and performance (the value a) a t  each 
generation averaged over 100 trials. In some trials the population completely converged 
(all programs were identical in size and performance), leading to an undefined correlation. 
These trials became more frequent with increased parsimony pressure and generally were 
the cases in which the population converged to the minimal size. We omitted individual 
trials from these averages when their correlation became undefined. This omission meant 
that by the final generation only 2 5  trials contributed to the average for Q. = 0.1, 63 trials 
contributed for n = 0.05,96 trials contributed for Q = 0.02,99 trials contributed for Q = 0.01, 
and all 100 trials contributed for Q = 0.0. 

.As one would expect, Figure 5 shows that the correlation between size and performance 
is zero at generation zero, since a larger randotn program should not be better than a smaller 
random program. However, as evolution proceeds, the correlation increases until (1 > (L as 
predicted. This is an encouraging result for the effective use of parsimony pressure because, 
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Figure 5. Average relationship between size and performance for each of the test cases. 

as previously noted, a > a implies that selection is strongest in the direction of improved 
performance and size becomes a secondary factor. 

Figure 5 also helps explain why trials failed when parsimony pressure was applied. 
Although the ideal relationship of a > a eventually arises, for the first few generations 
the opposite case holds. Furthermore, there is a clear relationship between the number of 
generations during which n < cy and the number of trials that fail. For cy = 0.0 and 0.01, 
the condition a < Q is true only in the initial generation and there are almost no failed 
populations. For Q > 0.01, the condition a < a is true for several more generations and 
there are many more failed populations. 

This also suggests that most forms of adaptive parsimony pressure should work well, as 
long as the amount of pressure is changed relatively slowly. A slowly changing parsimony 
function gives the population time to adjust its distribution to maintain the optimal a > a 
condition. 

As expected, the relative difference between a and a (when a < a) also appears to 
influence the probability that a population will fail. As more parsimony pressure is applied, 
a lags further behind Q and more of the populations fail. This result occurs because the 
larger the difference between a and a, the more strongly selection favors small size over 
good performance. 

Figure 6 shows the correlation between the value a for the populations during the criti- 
cal early generations and the average performance of the populations in the final generation. 
In the initial, random population this correlation is quite low for all test cases. However, as 
the populations begin to evolve, the correlations increase, particularly for the cases where 
stronger parsimony pressure is used. This observation makes it clear that, when parsimony 
pressure is used, the relationship of size to performance in a population in the early genera- 
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Figure 6. <:orrelation between ( I ,  the linear coefficient relating size and performance in the early 
generations, and arerage performance in the final generation. 

tions has a significant effect on the performance of that population 70 generations later. To 
our knowledge this is the first measurement that can predict the eventual success or failure 
of a population based on its behavior in its earliest generations. 

The  size-to-performance relationship is clearly a key factor in determining whether a 
population subjected to parsimony pressure will succeed or fail. However, the correlation 
between n and final performance is almost always positive, even when no parsimony is used 
and no trials fail. Thus, the measure I/ predicts more than simply which trials will fail; it also 
partially predicts how successfully a successful population will evolve. 

Figure 6 also shows a clear, temporary drop in correlation a t  generation 7. This corre- 
sponds to a similar, teniporav drop in the measure n seen in Figure 5 .  However, currently 
we do not have any good hypotheses to explain this fluctuation. 

5. Conclusions 

\2llc.n we examine the effects of parsimony pressure on a trial-by-trial basis it is evident that 
reports of poor average results with parsimony pressure can largely be attributed to those 
trials in which every individual in the population is forced to a minimal size by the parsimony 
fiincdon. Even with very strong parsimony pressure, populations that are not trapped in this 
\yay tend to evolve with relatively little degradation. Thus, it is clear that GP can balance 
performance and parsimony, but not necessarily in every trial. 

It should be noted that we did not examine the generalizing ability of the programs 
from the successful trials. However, other research suggests that smaller programs, such 
as those produced in the successful trials with parsimony pressure, are generally good a t  
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generalization (Sherrah et al., 1997; Rosca, 1996). Thus, it seems likely that the successful 
trials should also generate programs that are good at generalization. 

The relationship between size and performance in an individual population (as measured 
by the linear coefficient a) is a useful indicator of whether that population will fail or will 
evolve successfully. In particular, the relationship between a and the amount of parsimony 
pressure Q is a key factor in determining whether selection pressure is strongest for smaller 
individuals or for better-performing individuals. Thus, this relationship is a useful tool for 
examining the influences of selection on an evolving population. 

However, it is not simply the case that success is predicated on the relative values ofa and 
the amount of parsimony pressure. Both the forces leading to code growth and the amount 
of parsimony pressure influence the value of a. Thus, there is a complex interaction between 
the selective forces leading to code growth, the external parsimony function, and the distri- 
bution of individuals within the evolving population. This raises the possibility of improving 
GP performance by manipulating these factors to improve a population’s distribution, for 
example, by increasing diversity. 

Although our focus was on understanding how parsimony pressure affects evolution 
rather than on improving techniques for applying parsimony pressure, our results suggest 
several possible improvements. First, and perhaps most simply, one could measure the 
value a in early generations and halt trials with a particularly low value. This would save a 
considerable amount of time that would otherwise be wasted on trials that are unlikely to 
be successful. Second, one could adjust the amount of parsimony pressure to maintain the 
favored relationship of a > a, at least for as long as performance is a more important factor 
than size. In fact, it should be possible to adjust the amount of parsimony pressure relative 
to a to favor either performance or size. 
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