
Effects of Code Growth and Parsimony
Pressure on Populations in Genetic
Programming

Terence Soule James A. Foster
Computer Science Dept.
St. Cloud State University
139 Engineering and Computing Center
St. Cloud, MN 56301-4498
tsoule@eeyore.stcloudstate.edu foster@cs.uidaho.edu

Laboratory for Applied Logic
Computer Science Dept.
University of Idaho
Moscow, Idaho 83844-1010

Abstract
Parsimony pressure, the explicit penalization of larger programs, has been increasingly
used as a means of controlling code growth in genetic programming. However, in many
cases parsimony pressure degrades the performance of the genetic program. In this paper
we show that poor average results with parsimony pressure are a result of “failed” pop-
ulations that overshadow the results of populations that incorporate parsimony pressure
successhlly. Additionally, we show that the effect of parsimony pressure can be measured
by calculating the relationship between program size and performance within the popii-
lation. This measure can be used as a partial indicator of success or failure for individual
populations.

Code growth, code bloat, parsimony, genetic programming, introns.
Keywords

1. Introduction

The use of parsimony pressure as a means of controlling the size ofprograms generated with
genetic programming (GP) has grown considerably in recent years. In many cases parsimony
pressure appears to have been added as means of controlling code growth without careful
consideration of the possible side effects of its use or the fact that it has been known to
degrade performance in some applications. In large part, this oversight occurs because the
effects of parsimony pressure on an evolving population, beyond limiting code growth, are
not well understood, nor are the reasons for its failures.

The tendency of programs generated with GP to grow extremely large without corre-
sponding increases in fitness is well documented in the GP literature (Koza, 1992; Blickle &
Thiele, 1994; Nordin & Banzhaf, 1995; McPhee & Miller, 1995; Soule, Foster, & Dickinson,
1996; Greeff & Aldrich, 1997; Soule, 1998). Most code growth consists of code that does
not directly contribute to a program’s performance.

Code growth is less well documented in areas of evolutionary computation other than
GP. However, code growth has been demonstrated in a few other evolutionary paradigms
(Nordin, 1997; Nordin & Banzhaf, 1995; Nordin, Banzhaf, & Francone, 1997; Banzhaf,
Nordin, Keller, & Francone, 1998). Further, the research on code growth in GP strongly
suggests that it will be a problem in any evolutionary technique that uses variable-size rep-

@ 1999 by the Massachusetts Institute of Technology Evolutionary Computation 6(4): 293-309

,- Ierence Soule and James A. Foster

resentations. Most variable-size representations are vulnerable to the same causes of code
growth that are believed to affect GP.

Code growth is a significant problem as rapid program growth consumes considerable
resources without directly contributing to a solution. Additionally, nonfunctional code may
interfere with finding better solutions, since most of the code manipulation by evolutionary
operators will occur in the nonfunctional regions.

In addition to being a serious problem, code growth is an interesting phenomenon
that demonstrates the strengths of evolutionary techniques. Code growth is believed to
be a protective response to the destructive effects of crossover and mutation. Thus, the
evolutionary process is capable of recognizing and evolving solutions to problems that were
not anticipated by the designer. Clearly this is a highly desirable feature for a machine-
learning system.

Direct penalization of larger programs (parsimony pressure) is an obvious mechanism
for limiting code growth. Parsimony pressure should take advantage of the evolutionary pro-
cess itself to produce programs that are both successful and succinct. However, experiments
using parsimony pressure have had mixed results. In some instances the desired parsimonious
solutions were obtained (Soule et al., 1996; Sherrah, Bogner, & Bouzerdoum, 1997; Blickle,
1996). hut in other instances the performance of the programs was clearly degraded by the
parsimony requirement (Koza, 1992; Nordin & Banzhaf, 1995; Soule, 1998). This conflict
has fiar-reaching consequences. If GP is not generally capable of balancing two distinct and
possibly conflicting requirements, then it has limited usefulness as a general problem-solving
technique.

'This paper shows that parsimony pressure can produce poorer performance, the amount
of degradation being dependent upon the distribution of individuals within a population.
Although the results do suggest general guidelines for designing robust forms of parsimony
pressure, our primary goal is to understand how balancing the twin goals of performance
and parsimony affects the evolutionary process.

2. Code Growth

2.1 Terminology
For a detailed discussion of code growth some terminology regarding the types of code found
in GP-generated programs will be helpful. In handwritten code each instruction is expected,
under some set of circumstances, to be executed and to serve some useful purpose. However,
this is not the case for GP-generated code. GP code is normally saturated with instructions
that are never executed or with instructions that, when executed, serve no useful purpose
a n d do not contribute to the individual's fitness.

'The GP literature commonly divides sections of code into introns and exons.
Informally, introns are sections of code that do not contribute to fitness, and exons are

sections of code that do contribute. IIowever, these terms are often used without precise
definitions. The definitions that have been presented in the literature are not always compat-
ible. Furthermore, the terms intron and exon are borrowed from the biological community
where they have somewhat different meanings than when applied to the evolution of pro-
grams. U'e have found it usefiil to make a further distinction between regions of code which
can possibl~~ contribute to a program's output, but happen not to, as opposed to regions which
cannot contribute under any circumstances. 7'0 avoid adding to the confusion surrounding
these terms we chose to introduce two new terms defined as follows:

D E H S I T I ~ ~ 1 : '4 node ?I i71 n pi.op-n"m :c y i t m tree is operative if the removnl ofthe subtree lnotrd

Effects of Code Growth and Parsimony Pressure

at that node will change the program’s output on some input. Conversely, a node is inoperative if it
is not operative.

DEFINITION 2 : A node n in a programk syntax tree is viable if there exists a tree such that
replacing the tree rooted at node n with the new subtree will change the program? output on some
input. Conversely, a node is inviable ifit is not viable.

Notice that, with these definitions, inviable code is a proper subset of inoperative code.
Thus, any program will have a t least as much inoperative code as it does inviable code.

Expanding these definitions to include nontree genome shapes is not difficult.

2.2 Causes of Code Growth
Several independent theories have been proposed to explain code growth. In roughly equiva-
lent theories, Nordin and Banzhaf (1999, McPhee and Miller (1995), and Blickle and Thiele
(1994) argue that code growth occurs to protect programs against the potentially destructive
effects of evolutionary operations like crossover and subtree mutation. Intuitively, removing
a section of code from a program and replacing it with randomly chosen code from another
source would rarely be expected to increase the program’s performance. Several studies have
confirmed this intuition by showing that few crossover events increase fitness and many lower
fitness (Nordin & Banzhaf, 1995; Langdon & Poli, 1997b). Thus, on average, crossover is
a destructive or neutral operation.

The percentage of possible destructive operations decreases as more of the code within
a program becomes inviable. In this case, code modifymg operations are more likely to
change the inviable code and, by definition, output and fitness will not be affected. Thus,
an evolutionary advantage for growing inviable code should exist.

To a more limited extent this argument may apply to inoperative code. Although
inoperative code does not contribute to fitness, changing it may change the program’s output.
Thus, it is less clear that increased inoperative code will protect programs against change in
the same manner as inviable code.

A second feature of these theories is that operative code should be minimized. Smaller
sections of operative code are less likely to be affected, and thereby damaged, by crossover,
providing another evolutionary benefit.

Several studies with nondestructive (hill-climbing) versions of crossover have shown
that they lead to much lower rates of overall code growth (O’Reilly & Oppacher, 1995a;
Soule & Foster, 1997; Soule & Foster, 1998; Hooper, Flann, & Fuller, 1997). This is strong
evidence that code growth occurs, at least in part, to protect against crossover’s destructive
effects. In addition, nondestructive crossover does not appear to decrease the amount of
operative code (Soule, 1998). Thus, the ratio of operative to nonoperative code is much
lower with destructive crossover, further evidence that code growth is a mechanism for
protecting operative code.

A second potential cause of code growth is removal bias (Soule & Foster, 1998; Soule,
1998). Again, the general destructiveness of code modifying operations is the root cause of
this form of code growth. In general, removing a smaller branch from a program’s syntax
tree as a part of crossover, subtree mutation, or a similar operation, makes it more likely
that only inviable code will be affected and thus that the operation will be fitness neutral.
However, if the operation does occur in inviable code, then the replacement branch will not
affect performance, regardless of its size. Thus, there is a bias toward programs that have
a small branch removed, but not a corresponding bias in favor of programs that have had a
small branch added. The net effect is a general growth in the inviable sections of a program’s

Evolutionary Computation Volume 6 , Number 4 295

l‘erence Soule and James A. Foster

code. Although removal bias is most clearly applicable to inviable code, it may also apply,
probably to a somewhat lesser extent, to inoperative code.

Langdon and Poli (199%) have argued that code growth is partially caused by the dis-
tribution of semantically equivalent solutions in the solution space. In most variable-length
representations, a particular solution can be represented by many semantically equivalent,
but syntactically different, programs. The existence of inviable and inoperative code guar-
antees that, for any given program size, there are many more larger versions of the solution
than there are smaller ones. Langdon and Poli argue that, as a search progresses, it is more
likely to find progressively larger solutions because there are more of them. Thus, it is
possible that some code growth is simply due to the distribution of solutions in the search
space, rather than to an evolutionan. influence.

These are three distinct causes of code growth, each of which is capable of causing code
growth by itself. However, it is likely that under normal circumstances they work in concert.
For example, removal bias may produce inviable code, which is then conserved for protective
purpses.

In addition to these relatively neutral roles for inviable code, it is also possible that
inviable code acts more directly in producing better solutions. Inviable code may act as a
storage area for building blocks that are later moved back into the viable regions of code.
Alternatively, inviable code niay serve as “scratch paper” in which building blocks are created
before being transferred into viable code. In either case, additional inviable code could
improve the evolutionary process, creating an evolutionary advantage for programs with
more inviable code and leading to code growth.

Both of these possibilities rely on the mechanism of crossover to transfer code back and
forth between viable and inviable regions or rely on mutation to turn introns on and off (for
example, by changing an i f (false) into i f (t r u e)). Thus, recent experiments showing
that crossover is not necessarily important in GP (O’Reilly & Oppacher, 1995b; Angeline,
1997; Luke & Spector, 1997; Chellapilla, 1997) cast serious doubt on these theories. We
are also suspicious of storage and “scratch paper” hypotheses because they require a kind
of evolutionary foresight to determine which partial solutions to store, or which scratch
manipulations to make. Rather, it seems that immediate selective pressure is the major force
directing evolution.

2.3 Solutions to Code Growth
A large number of methods for controlling code growth have been proposed. Although this
paper will focus on parsimony pressure, it is helpful to consider some of the other methods.

Probably the most common approach to controlling code growth is to set a fixed limit
on program size, either by limiting the number of instructions in the program or, in the
case of syntax trees, by limiting the allowed depth of those trees. Programs exceeding the
limits are removed from the population. Because the size of a program is easily calculated
during evaluation, this approach requires relatively little additional computation. However,
recent studies have shown that depth limits can interfere with the creation of good solutions
(Gathercole & Ross, 1996; Langdon & Poli, 1997a). In addition, an appropriate size limit
must be chosen in advance. X size limit that is too small may make it difficult or impossible
for a solution to evolve, whereas an overly generous limit will still allow extraneous growth.
Clearly it would be preferable to allow the G P to evolve the appropriate size. This is the
goal of the parsimony pressure approach.

Recently, nondestructive or hill-climbing versions of crossover have been shown to re-
duce the rate of code growth in GP (Soule & Foster, 1997, 1998; Hooper et al., 1997).

2 06 Evolutionar?; Computation Volume 6, Numher 4

Effects of Code Growth and Parsimony Pressure

In nondestructive crossover, the offspring of a crossover event is preserved only if its fit-
ness is greater (or possibly equal) to its parent’s fitness. It is hypothesized that these
methods work by reducing or eliminating the evolutionary advantage of protective code.
This means that causes of code growth not directly related to protective code, such as
those suggested by Langdon and Poli, will not be affected. Additionally, these forms of
crossover limit GP to a hill-climbing search that may be insufficient for solving more difficult
problems.

Nordin, Francone, & Banzhaf (1996) have suggested using explicitly defined introns (EDIs)
to reduce the impact of code growth and to improve GP search. An explicitly defined intron
is an instruction that has no semantic effect, but does influence the probability of crossover.
In tree-based GP, EDIs can be represented by nodes that have a variable chance of being
selected for crossover, but no other effect. EDIs can protect against destructive operations
in the same manner as normal inviable code. A few EDIs with high crossover probabilities
make it much less likely that viable code will be affected by crossover, thus serving the same
function as large sections of inviable code. In addition, because they are explicitly defined,
EDIs are easily recognized and removed from the final program. Thus, EDIs have several
distinct advantages over normal GP-generated inviable code. EDIs have been shown to be
particularly effective at controlling code growth when combined with parsimony pressure
(Nordin et al., 1996; Blickle, 1996).

There are several reasons for focusing on parsimony pressure as a means of controlling
code growth. First, several of the other methods are special cases of parsimony pressure or
incorporate some parsimony pressure. For example, fixed limits are a form of parsimony
pressure where the parsimony functionp(sj) is a step function. EDIs are commonly used with
parsimony pressure as an additional limiting factor. Thus, an understanding of parsimony
pressure should improve our understanding of these techniques as well. Second, parsimony
pressure is a very general approach and should control growth regardless of its cause. Third,
parsimony pressure is easily applied, requiring very little overhead. Fourth, and perhaps most
important, parsimony pressure seems to be the natural method for controlling code growth
in GP. It uses evolution itself to produce solutions that are both successful and succinct. If
GP is found to be generally incapable of balancing the twin requirements of performance
and parsimony, this would indicate a serious limitation of what it can accomplish.

Parsimony pressure uses a fitness penalty based on size to deter code growth. Formally,
the fitness function with parsimony pressure for a program i is:

where P(i) measures how well individual i actually performs, si is the size of i, and p is the
function defining the amount of parsimony pressure. Oftenp is a simple linear function and
the fitness function is:

f (i) = P(i) - as,

Parsimony pressure has been quite effective in some cases (Soule et al., 1996; BlicMe, 1996;
Droste, 1997) and a failure in others (Koza, 1992; Nordin & Banzhaf, 1995), but the cause
of these different results is unclear.

Zhang and Miihlenbein (1995) proposed an adaptive parsimony approach in which
the parsimony factor a is a function of the performance and size of the best individual
from preceding generations. Blickle (1996) used adaptive parsimony successfully on two
regression problems. One limitation of this method is that it requires an error limit that
must be predefined by the user. A poor choice for this parameter can hinder performance. A

Evolutionary Computation Volume 6, Number 4 297

Terence Soule and James A. Foster

Table 1. Summary of the even-iz-parity problem.

0 b jec tive 1 Deterniine whether the parity of
1 6 boolean inputs is even or odd

Terminal Set 1 The 6 input values
Function Set AND, NAND, OR,

Fitness

Population Size 1 500
Initial Pouulation 1 Random trees
Parameters 66.6% crossover, no mutation,

results averaged over 100 trials
Termination -50 or 7 5 generations
No. of Trials

further drawback of this approach over fixed parsimony pressure is that it requires additional
overhead to calculate the new parsimony value a t each generation.

3. Sample Applications of Linear Parsimony Pressure

We chose to use the even parity problem (with six inputs) as our test problem because it is
commonly used in GP. [See, for example, Koza (1992, 1994), Harries & Smith (1997), and
C;athercole & Ross (1997).] This choice makes it easier to compare our results to those of
other researchers. Additionally, previous work with the even parity problem has shown that
a simple GI), such as we are using, is unlikely to be successful on this problem with six inputs
(Koza, 1992; Gathercole 8r Ross, 1997). Thus, we can be reasonably sure that, for each
trial, the GP can always make further improvements and is not limited by having found the
perfect solution.

The details of this problem and our parameters are shown in Table 1.
We performed separate trials using a linear parsimony function with the parsimony

coefficients (a) of 0.0,0.01,0.02,0.05, and 0.1. Linear parsimony is used because it is the
simplest form of parsimony, is commonly used, and is most amenable to analysis. However,
the results can be generalized to other parsimony functions and, to a more limited extent, to
adaptive forms of parsimony pressure.

' l he size of a program is the total number of nodes it contains. We ran 100 trials for each
test case, and each trial ran for 75 generations, except in the case of no parsimony pressure
in which the rapid code growth forced a halt a t 50 generations. Note that, for the lowest
level of parsimony pressure (a = 0.01), the fimess improvement for correctly classifying one
additional input case outweighs the parsimony penalty for 99 additional nodes. Thus, at this
level o f parsimony pressure the main effect will be to distinguish between programs of equal
perfommance.

'The average program size (over all 100 trials) for the five levels of parsimony pressure
are shown in Figure 1. This fi_gure clearly shows that increasing amounts of parsimony
pressure decrease the amount of code growth. The differences in size become significant

Effects of Code Growth and Parsimony Pressure

160

140

120

100

80

60

40

20

0

I I I I I I I I

alpha=0.00 -

___----

..-.-

.

0 2 4 6 8 10 12 14 16 18 20
Generation

Figure 1. Average program size for the even-6-parity problem with varying amounts of parsimony
pressure.

(two-tailed test, P < 0.01) after one generation between any two of the parsimony levels.
Figure 2 shows the average performance (averaged over all 100 trials) for the five levels

of parsimony pressure. Here it is clear that increasing the amount of parsimony pressure
degrades the average performance of the genetic program. The differences in performance
take longer to become significant than the differences in size. However, by generation 19
all of the differences are significant (two-tailed test, P < 0.01). The two most extreme trials
(Q = 0.0 versus Q = 0.1) become significantly different by generation 8 (two-tailed test, P <
0.01). The best performances (averaged over all 100 trials) were, 48.82 for no parsimony
(generation SO), 50.83 for a = 0.01 (generation 75), 48.76 for (I: = 0.02 (generation 75),41.95
for Q = 0.05 (generation 75), and 35.14 for CI: = 0.1 (generation 75).

These results are similar to other negative results with parsimony pressure (Koza, 1992;
Nordin & Banzhaf, 1995). Program size is controlled, but performance suffers. Both the
benefits and costs of parsimony pressure are clearly correlated with the amount of parsimony
pressure used.

The initial rise in performance between generations 0 and 7 is similar for all five cases
and is believed to occur as selection moves the population average toward the best individual
in the initial, random population. Thus, because this increase does not depend on the
production of improved solutions, it does not truly reflect the full evolutionary process and
probably should not be interpreted as an early success for the more restrictive amounts of
parsimony pressure.

Although in these trials the average effect of parsimony pressure is clearly to decrease
performance, as well as code size, the process of averaging over multiple trials obscures con-
trary and interesting behaviors in the individual populations. In many cases the parsimony

Evolutionary Computation Volume 6, Number 4 2 99

Terence Soule and James A. Foster

alpha=0.00 -
alpha=0.01 - - - - -
alpha=0.02
alpha=0.05
alpha=0.10 - - -

37 I

0 2 4 6 8 10 12 14 16 18 20
Generation

Figure 2. Average performance on the even-6-parity problem with varying amounts of parsimony
pressure.

pressure drives the entire population to the minimal possible size (a single node for these ex-
periments) without regard for the resulting performance. We will refer to these populations
asfiiled populations to reflect that no improvement was made beyond the solutions in the
initial population. Table 2 separates the trials based on the average performance at genera-
tion 7-5 (generation 50 for the trial without any parsimony pressure). The table includes the
average performance, and standard deviations for all trials and for the subset of the trials in
which performance exceeded 3 5. (For this problem, random guessing scores 32, achievable
by a program with a single node. Scores lower than 32 require a larger program. Thus, it
is reasonable to treat 32 as the minimal performance, and any program that cannot achieve
performance of a t least 35 can be considered a failure.)

’The separated results show that, if the trials with a performance below 35 are omitted,
the remaining trials show a minimal decline in performance with parsimony pressure. Of the
trials using parsimony pressure, only the trial with u = 0.01 has a performance that is signifi-
cantly better than the other trials (two-tailed test, P < 0.05). Further, the distribution of the
nonfailed trials is similar, suggesting that evolution is occurring normally. We believe that,
with higher levels of parsimony pressure, the trials generally produce a bimodal distribution
with a sharp peak for the failed trials and a more normal distribution for the successful trials.

.A chi-squared test was applied to the nonfailed trials to determine if their distribution
was in fact normal. The results of this test are shown in Table 3 . For the a = 0.1 case, the
number of nonfailed tests was insufficient to give statistically meaningful results. Four bins
were used in the test, so 1’ values on the order of four suggest a normal distribution.

These results strongly suggest that the nonfailed trials are evolving normally. While
the 1‘ values are not entirely indicative of a normal distribution, they are very close to the

300 Evolutionary Computation Volume 6 , Number 4

Effects of Code Growth and Parsimony Pressure

Table 2. Distribution of trial results a t generation 75 (SO for CY = 0.0) for different levels of parsimony
pressure.

Avg. Performance # of Trials # of Trials # of Trials # of Trials # of Trials
Range Q = 0.0 a = 0.01 Q = 0.02 a = 0.05 Q = 0.1
5 35 0 1 6 46 86
35-37
3 7-40
40-43
43-46
46-49
49-52
52-55
55-58
> 58

0
7

19
25
2 3
12
6
3
5

3
6

19
26
12
9

11
9
4

7
17
17
15
10
16
5
7
0

6
11
9

10
3

13
2
0
0

Performance Q = 0.0 a = 0.01 a = 0.02 Q = 0.05 CY = 0.1
Average 46.55 46.69 44.16 38.3 1 3 3.63
Standard Deviation 5.07 6.09 6.57 7.02 4.43
Average, Discounting 5 35 Case 46.55 46.84 44.90 43.60 43.26
Standard Deviation, 5.07 5.94 6.05 5.47 5.74
Discounting 5 35 Case

Table 3. Results of applying a chi-squared test to the nonfailed trials.

p X 2
0.00 6.24
0.01 4.80
0.02 2.95
0.05 9.24
0.1 -

values for the parsimony-free case. Thus, it is reasonable to conclude that the fitnesses
form a bimodal distribution with one peak for the failed trials and a second, more normal,
distribution for the successful trials.

This is very strong evidence that most of the decrease in performance seen in Figure 2 is
caused by those trials in which the entire population is trapped at a minimal, or near minimal,
fitness. It further appears that populations that escape this trap show comparatively little
degradation. Thus, in some cases GP is able to balance performance and parsimony, but
when it fails to achieve a balance, the presumably simpler task of evolving minimal programs
is favored.

Table 4 gives the average sizes and standard deviations for all trials and separately for
the failed trials only. Not surprisingly, the subset of unsuccessful trials shows much smaller
average program sizes than for all of the trials. In general, this effect increases with increasing
parsimony pressure. Thus, as with performance, it is clear that much of the size differences
attributable to high levels of parsimony pressure is caused by the failed trials. However, unlike
performance, the average size difference between trials with parsimony pressure and trials
without parsimony pressure is quite large even when only the successful trials are considered.

Evolutionary Computation Volume 6 , Number 4 301

Terence Soule and James A. Foster

Table 4. Average program sizes a t generation 75 (50 for n = 0.0) for different levels of parsimony
pressure.

CI = 0.0 c\ = 0.01 a = 0.02 ck = 0.0s a = 0.1
Avg. Size 374.32 103.56 77.42 32.86 7.80
Standard Deviation 138.60 41,74 30.30 20.63 16.03
Avg. Size, 374.32 1.00 16.03 3.38 1.77
Only 5 3 5 C a w
Standard Deviation, 138.60 - 23.83 7.17 2.75
Only 5 3 5 case.

Figure 2 shows a slow, but constant, increase in average performance even with the
strongest levels of parsimony pressure used. The absence of a decrease in performance
implies that the failed populations are trapped almost immediately. If they did evolve suc-
cessfully for a time before being pulled down to the minimal performance, we would observe
a decrease in performance.

Averaging over multiple trials is clearly obscuring the fact that some trials evolve nearly
normally in the presence of parsimony pressure. Given these observations, it is reasonable
to ask, W%y are some populations adversely affected by parsimony pressure while others are
relatively unaffected?

4. An Analysis of Parsimony Pressure

With parsimony pressure, the fitness of an individual is a function of both its performance
and its size. Performance is the raw measure of how well a program performs, as opposed
to fitness, which also incorporates the parsimony penalty. A simplified fitness landscape
can he constructed using performance and program size as the two major axes. We believe
that the distribution of the individuals of a population within this landscape can be used as
an indicator of whether a particular population will successfully evolve in the presence of a
parsimony function.

Major features of the simplified landscape are the regions of equal fitness. These are
a series of contours, each defining an area of performance and size in which the program
have an identical fitness. The equation defining a contour of constant fitness is derived by
making fitness a constant in Equation 1:

These contours have the same shape as the parsimony function p(). So, a linear parsimony
function produces linear contours with slopes equal to the coefficient o of the parsimony
function, as is illustrated in Figure 3 . More complex parsimony functions would produce
correspondingly more complex regions of equal fitness.

The difference in fitness between two individuals is proportional to the distance be-
tween them along an axis perpendicular to the contours of constant fitness. In contrast,
two individuals on the same contour have the same fitness (although very likely different
performances and sizes) and so there is no relative selection pressure between them. T ~ L I S ,
selection pressure is strongest perpendicular to the contours. Over time selection should
move a population through the landscape in the direction perpendicular to the contours and
toward the contours representing the highest fitness.

3 0 2

Effects of Code Growth and Parsimony Pressure

___.---

\
_ _ - - _ _ - - _ _ - - - _ _ _ - - - _ _ - -

\Contours of
~ e q u a l fitness

_ _ _ - - - - _ - - - _ _ - - - - - - - _ _ - - _ _ - - _ _ - - _ _ - - Slope = a _ _ - - _ - - _ _ _ - - - - _ - - _ _ - - -

Size(s)

Figure 3. The simplified landscape created with linear parsimony pressure.

The effect of parsimony pressure on a population depends on the relationship between
size and performance within the population. For simplicity we assume that this is a lin-
ear relationship (we will present further justification for this assumption later) so that the
population can be roughly described by the equation

perfbmance = a * size + b

It is now possible to compare a linear parsimony function with the population distri-
bution by comparing the values of cy (the amount of parsimony pressure) and a (the average
relationship between size and performance in the population).

Figure 4 illustrates the two interesting and expected cases: a > a > 0 and cy > a > 0.
(The case a < 0 implies reverse parsimony pressure is being used to favor larger programs,
which is unlikely. The case a < 0 means there is a negative correlation between size and
performance, in which case selection will naturally prefer the smaller programs and parsi-
mony pressure would not be necessary.) Figure 4 shows that, for a > a, selection will be
strongest for the better performing individuals but, for a < a, selection will be strongest for
the smaller individuals. Thus, the distribution of the population helps determine whether
performance or size is the primary factor in determining survival.

Next we consider the expected relationship between size and performance within a
population. Since an evolving population tends to converge, the fitness of the individuals
within the population will move toward a region of equal fitness. This means that all of
the individuals will tend to fall along one of the contour lines, resulting in a population
that is roughly aligned with the contours and producing a positive correlation between size
and performance. Because this correlation is aligned with the parsimony function, a linear
parsimony function should result in a population with a roughly linear correlation between
size and performance. Further, as the individuals converge toward a single fitness, the values
of a and a should become equal.

Of course, this is only a first approximation of a population’s distribution. Given the
randomizing effects of crossover, it would be unreasonable to expect a perfectly linear rela-
tionship between size and fitness. However, we will show that this approximation is sufficient
to make predictions about how a population will respond to parsimony pressure. Addition-
ally, if the parsimony function is not linear, or there are other reasons to expect a relationship

Evolutionary Computation Volume 6, Number 4 303

' h e n c e Soule and James A. Foster

< a

Contours of
equal fitness
Slope = a

Size (s)

Figure 4. Two idealized populations (represented by the ovals) with different size and performance
relations. Selection will be ron-ard the shaded regions of the populations.

other than a linear one, it is possible to calculate the appropriate coefficients for the expected
functional relationship instead of the linear coefficient used here.

The tendency of populations to align with the contours of constant fitness defined by
the parsimony function is the primary influence on a population's distributions. However, all
three of the theories of code growth predict a secondary effect on the population distribution.

If code growth protects against the destructive effects of crossover (and similar evolu-
tionary operators), then after crossover the largest programs are most likely to have retained
their fitness. If removal bias occurs, then the largest programs resulting from crossover are
the least likely to have been damaged. If Langdon and Poli's hypothesis is correct, then the
largest programs resulting from crossover are most likely to be semantically equivalent to
their predecessors. All three theories predict that the largest programs are the most likely to
retain their fitness. Thus, all three theories predict that, in general, an additional relationship
between size and performance exists that leads to a > a. It is important to realize that this
does not mean that larger programs are better a t solving the problem, but rather that they
are more likely to retain a previously discovered solution.

Figure 5 shows the relationship between size and performance (the value a) a t each
generation averaged over 100 trials. In some trials the population completely converged
(all programs were identical in size and performance), leading to an undefined correlation.
These trials became more frequent with increased parsimony pressure and generally were
the cases in which the population converged to the minimal size. We omitted individual
trials from these averages when their correlation became undefined. This omission meant
that by the final generation only 2 5 trials contributed to the average for Q. = 0.1, 63 trials
contributed for n = 0.05,96 trials contributed for Q = 0.02,99 trials contributed for Q = 0.01,
and all 100 trials contributed for Q = 0.0.

.As one would expect, Figure 5 shows that the correlation between size and performance
is zero at generation zero, since a larger randotn program should not be better than a smaller
random program. However, as evolution proceeds, the correlation increases until (1 > (L as
predicted. This is an encouraging result for the effective use of parsimony pressure because,

3 04 Evolutionar). Computation \701ume 6, Number 4

Effects of Code Growth and Parsimony Pressure

-
p.
8 c m
E

3 w

‘t

a
7J
C

c

a,

=
a,

.-

._

s
t
a,
K ._

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

-0.02
0 10 20 30 40 50 60 70 80

Generation

Figure 5. Average relationship between size and performance for each of the test cases.

as previously noted, a > a implies that selection is strongest in the direction of improved
performance and size becomes a secondary factor.

Figure 5 also helps explain why trials failed when parsimony pressure was applied.
Although the ideal relationship of a > a eventually arises, for the first few generations
the opposite case holds. Furthermore, there is a clear relationship between the number of
generations during which n < cy and the number of trials that fail. For cy = 0.0 and 0.01,
the condition a < Q is true only in the initial generation and there are almost no failed
populations. For Q > 0.01, the condition a < a is true for several more generations and
there are many more failed populations.

This also suggests that most forms of adaptive parsimony pressure should work well, as
long as the amount of pressure is changed relatively slowly. A slowly changing parsimony
function gives the population time to adjust its distribution to maintain the optimal a > a
condition.

As expected, the relative difference between a and a (when a < a) also appears to
influence the probability that a population will fail. As more parsimony pressure is applied,
a lags further behind Q and more of the populations fail. This result occurs because the
larger the difference between a and a, the more strongly selection favors small size over
good performance.

Figure 6 shows the correlation between the value a for the populations during the criti-
cal early generations and the average performance of the populations in the final generation.
In the initial, random population this correlation is quite low for all test cases. However, as
the populations begin to evolve, the correlations increase, particularly for the cases where
stronger parsimony pressure is used. This observation makes it clear that, when parsimony
pressure is used, the relationship of size to performance in a population in the early genera-

Evolutionary Computation Volume 6 , Number 4 305

‘Ikrence Soule and James A. Foster

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

.o. 1
0 1 2 3 4 5 6 7 8 9

Generation

Figure 6. <:orrelation between (I , the linear coefficient relating size and performance in the early
generations, and arerage performance in the final generation.

tions has a significant effect on the performance of that population 70 generations later. To
our knowledge this is the first measurement that can predict the eventual success or failure
of a population based on its behavior in its earliest generations.

The size-to-performance relationship is clearly a key factor in determining whether a
population subjected to parsimony pressure will succeed or fail. However, the correlation
between n and final performance is almost always positive, even when no parsimony is used
and no trials fail. Thus, the measure I/ predicts more than simply which trials will fail; it also
partially predicts how successfully a successful population will evolve.

Figure 6 also shows a clear, temporary drop in correlation a t generation 7. This corre-
sponds to a similar, teniporav drop in the measure n seen in Figure 5 . However, currently
we do not have any good hypotheses to explain this fluctuation.

5. Conclusions

\2llc.n we examine the effects of parsimony pressure on a trial-by-trial basis it is evident that
reports of poor average results with parsimony pressure can largely be attributed to those
trials in which every individual in the population is forced to a minimal size by the parsimony
fiincdon. Even with very strong parsimony pressure, populations that are not trapped in this
\yay tend to evolve with relatively little degradation. Thus, it is clear that GP can balance
performance and parsimony, but not necessarily in every trial.

It should be noted that we did not examine the generalizing ability of the programs
from the successful trials. However, other research suggests that smaller programs, such
as those produced in the successful trials with parsimony pressure, are generally good a t

Effects of Code Growth and Parsimony Pressure

generalization (Sherrah et al., 1997; Rosca, 1996). Thus, it seems likely that the successful
trials should also generate programs that are good at generalization.

The relationship between size and performance in an individual population (as measured
by the linear coefficient a) is a useful indicator of whether that population will fail or will
evolve successfully. In particular, the relationship between a and the amount of parsimony
pressure Q is a key factor in determining whether selection pressure is strongest for smaller
individuals or for better-performing individuals. Thus, this relationship is a useful tool for
examining the influences of selection on an evolving population.

However, it is not simply the case that success is predicated on the relative values ofa and
the amount of parsimony pressure. Both the forces leading to code growth and the amount
of parsimony pressure influence the value of a. Thus, there is a complex interaction between
the selective forces leading to code growth, the external parsimony function, and the distri-
bution of individuals within the evolving population. This raises the possibility of improving
GP performance by manipulating these factors to improve a population’s distribution, for
example, by increasing diversity.

Although our focus was on understanding how parsimony pressure affects evolution
rather than on improving techniques for applying parsimony pressure, our results suggest
several possible improvements. First, and perhaps most simply, one could measure the
value a in early generations and halt trials with a particularly low value. This would save a
considerable amount of time that would otherwise be wasted on trials that are unlikely to
be successful. Second, one could adjust the amount of parsimony pressure to maintain the
favored relationship of a > a, at least for as long as performance is a more important factor
than size. In fact, it should be possible to adjust the amount of parsimony pressure relative
to a to favor either performance or size.

Acknowledgments
This work was supported by funding from the URO seed grant program.

References

Angeline, P. J. (1997). Subtree crossover: Building block engine or macromutation. In J. R. Koza,
K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, & R. R. Riolo (Eds.), Genetic Programming
1997: Proceedings of the Second Annual Conference (pp. 9-1 7). San Francisco, CA: Morgan Kaufmann.

Banzhaf, W., Nordin, P., Keller, R., & Francone, F. (1998). Geneticprogramming-An introduction. San
Francisco, CA: Morgan Kaufmann.

Blickle, T. (1996). Evolving compact solutions in genetic programming: A case study. In H.-M. Voigt,
W. Ebeling, I. Rechenberg, & H.-P. Schwefel (Eds.), Parallel Problem Solvingfiom Natzlre I F Proceed-
ings of the Intenuztianal Conference on Evolutionary Computing (pp. 564-57 3). Heidelberg, Germany:
S pringer-Verlag.

Blickle, T., & Thiele, L. (1994). Genetic programming and redundancy. In J. Hopf (Ed.), Genetic
algorithms within the framework of evolutionary computation (pp. 3 3-3 8). Saarbrucken, Germany:
Max-Planck-Institut fur Informatik.

Chellapilla, K. (I 997). Evolutionary programming with tree mutations: Evolving computer program-
ming without crossover. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, &
R. R. Riolo (Eds.), Genetic Programming 1997: Proceedings of the Second Annual Conference (pp. 43 1-
438). San Francisco, CA: Morgan Kaufmann.

Droste, S. (I 997). Efficient genetic programming for finding good generalizing boolean functions.
In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, & R. R. Riolo (Eds.), Genetic

Evolutionary Computation Volume 6, Number 4 307

Terence Soule and James A . Foster

Programming 1997: Pvoceerlings of' the Second A71nild Conjirence (pp. 82-87). San Francisco, CA:
Morgan Kaufmann.

Gathercolc, C., & Ross, P. (1 996). An adverse interaction beru-een crossover and restricted tree depth
in genetic programming. InJ . R. Koza, D. E. Goldberg, D. B. Fogel, & R. K. Riolo (Eds.), Genetic
Programnring 1996: Pl-oreedingx of the Fi7:rt Annrinl Conjerence (pp. 29 1-296). Cambridge, MA: MIT
Press.

Gathercole, C., & Ross, P. (1997). Tackling the boolean even ?I parity problem with genetic program-
ming and limited-error fitness. In J. K. Koza, K. Deb, ,M. Dorigo, D. B. Fogel, M. Garzon, H.
Iba, & K. R. Kiolo (Eds.), Genetit P?-opan?ming 1997: P?-oceedings of the Second Annual Conference
(pp. 119-127). San Francisco, CIS: Jlorgan Kaufmann.

Greeff, I). J., & Aldrich, C. (1997). Evolution of empirical models for metallurgical process systems.
InJ . R. Koza, K. Deb, 31. Dorigo, D. B. Fogel, &I. Garzon, H. h a , & R. R. Riolo (Eds.), Genetic
Progntnm~ing 1997: Pyoreedings of t h e Second Anniial Co72fel-ence (p. 13 8). San Francisco, CA: Morgan
K:i ti fma nn.

Exploring alternative operators and search strategies in genetic
prograinming. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, & R. R. Riolo
(Eds.), G e i t e t i ~ Progl-avming 1997: P?-oceedings of the Secoirri Annzal C o n f l ~ n c e (pp. 147-1 S S) . San
Fr;mcisco, CA: Morgan Kaufmann.

h o p e r , D. C., Flann, S. S., & Fuller, S. R. (1997). Recoinbinative hill-climbing: A stronger search
method for genetic programming. In J. R. Koza, K. Deb, M . Dorigo, D. B. Fogel, M. Garzon,
1-1. Iba, & R. K. Riolo (Eds.), Genetic P7-ogr-amming 1997: P?*oceedings ofthe Second Annaal Coilfewnce
(pp. 174-1 79). San Francisco, CX: Morgan Kaufmann.

Koza, J . K. (1992). Genetic progrmi~i i ing: o n the p7-ogrnmmi71g of cornputen by means of natlwal selection.
Cambridge, JIA: MU' Press.

Harries, K., & Smith, P. (1997).

Koza, J. R. (1 994). Genetic prog-mi17n1iig 11. Azitonmttc discoreiy ofl-eiisable projy-ams. Cambridge, MA:
l1TT Press.

Langdon, LfT B., & Poli, R. (1997a). analysis of the mas problem in genetic programming. In
I. K. Koza, K. Deb, M. Dorigo, D. B. Fogel, hl. Garzon, H. Iba, & R. R. Riolo (Eds.), Genetic
P7.0pmn7ning 1997: Pi.oceedings of the Second Aiintinl Coiife7wire (pp. 222-2 30). San Francisco, CA:
.Morgan Kaufinann.

Lanpdon, 11.. B., & Poli, R. (199711). Fitness ixnrises blotit. (Tech. Rep. CSRP-97-09). Birmingham, UK:
L!ni\-ersity of Birmingham.

Lukc, S., & Spector, L. (1997). .A comparison of crossover and mutation in genetic programming.
In J . K. Koza, K. Deb, Jl. Dorigo, D. B. Fogel, M. Garzon, H. Iba, & R. R. Riolo (Eds.), Genetic
P7.op.arnming 1997: Plareedings of the Second Annztnl Confll-ence (pp. 240-24s). San Francisco, CA:
hlorgan Kaufmann.

AIcPhee, N. F., & Millcr, J. D. (1995). Accurate replication in genetic programming. In L. J. Eshel-
man (Ed.)? P~oceedings of the Sixth Internntionnl Co7lfi.l-enre 071 Genetic ,4lgol-ith7ns (pp. 303-3 09). San
E'rancisco, CA: Morgan Kaufmann.

Nordin, P. (1 997). Erolittionniy pi-ognt7n inclurtion qfbirimy 7mx.hine code and its application. Muenster,
Germany: Krehl Verlag.

Nortiin, P., & Banzhaf, If'. (1995). Complexity compression and evolution. In L. J. Eshelman (Ed.),
Pi~oreedings 4th Sixth Inte77~atioiinl Coi$e7-erire on Genetic Algol-ithnis (pp. 3 10-3 17). San Francisco,

Sorclin, P., Banzhaf, M'., & Francone, F. D. (1997). Introns in nature and in simulated structure
evolution. In D. Lundt, B. Olsson, & A. Narayanan (Eds.), Proceedings Bio-Computing and Emel-gent
Ciinipnt~trrtion (pp. 19-3 3). Singapore: i1'orld Scientific Publishing.

S o r t l i n . P., Francone, F., & Banzhaf, If'. (1996). Explicitll; defined introns and destructive crossover

3 08 Evolutiomry CoInputation Volume 6, Number 4

Effects of Code Growth and Parsimony Pressure

in genetic programming. In P. Angeline & K. E. Kinnear (Eds.), Advances in genetic programming II
(pp. 11 1-134). Cambridge, MA: MIT Press.

O’Reilly, U.-M., & Oppacher, F. (1995a). Hybridized mossover-basedsearch techniquesforpmgram discoveiy.
(Tech. Rep. 95-02-007). Santa Fe, NM: Santa Fe Institute.

O’Reilly, U.-M., & Oppacher, E (1995b). The troubling aspects of a building-block hypothesis for
genetic programming. In L. D. Whitley & M. D. Vose (Eds.), Foundations ofgenetic programming 3
(pp. 73-88). San Francisco, CA: Morgan Kaufmann.

Rosca, J. P. (1996). Generality versus size in genetic programming. In J. R. Koza, D. E. Goldberg,
D. B. Fogel, & R. R. Riolo (Eds.), Genetic Programming 1996: Proceedings of the FirstAnnual Conference
(pp. 381-387). Cambridge, MA: MIT Press.

Sherrah, J. R., Bogner, R. E., & Bouzerdoum, A. (1997). The evolutionary pre-processor: Automatic
feature extraction for supervised classification using genetic programming. In J. R. Koza, K. Deb,
M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, & R. R. Riolo (Eds.), Genetic Programming 1997:
Proceedings of the Second Annual Conference (pp. 304-3 12). San Francisco, CA: Morgan Kaufmann.

Soule, T. (1998). Code growth in geneticprogramming. (Ph.D. thesis, University of Idaho).

Soule, T, & Foster, J. A. (1997). Code size and depth flows in genetic programming. In J. R. Koza,
K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, & R. R. Riolo (Eds.), Genetic Programming 1997:
Proceedings of the Second Annual Conference (pp. 3 13-320). San Francisco, CA: Morgan Kaufmann.

Soule, T, & Foster, J. A. (1998). Removal bias: A new cause of code growth in tree-based evolutionary
programming. In Proceedings of the IEEE International Conference on Evolutionaiy Computation 1998.
Piscataway, NJ: IEEE Press.

Soule, T., Foster, J. A., & Dickinson, J. (1996). Code growth in genetic programming. In J. R. Koza,
D. E. Goldberg, D. B. Fogel, & R. R. Riolo (Eds.), Genetic Programming 1996: Proceedings of the First
Annual Conference (pp. 2 15-22 3). Cambridge, MA: MIT Press.

Zhang, B., & Muhlenbein, H. (1995). Balancing accuracy and parsimony in genetic programming.
Evolutionary Computation, 3 (l), 17-3 8.

Evolutionary Computation Volume 6, Number 4 309

