
Genetic Programming with Genetic Regulatory Networks

Genetic Programming

Rui L. Lopes
Centro de Informática e Sistemas da

Universidade de Coimbra
Polo II - Pinhal de Marrocos
3030-290 Coimbra, Portugal

rmlopes@dei.uc.pt

Ernesto Costa
Centro de Informática e Sistemas da

Universidade de Coimbra
Polo II - Pinhal de Marrocos
3030-290 Coimbra, Portugal

ernesto@dei.uc.pt

ABSTRACT
Evolutionary Algorithms (EA) approach differently from na-
ture the genotype - phenotype relationship, and this view
is a recurrent issue among researchers. Recently, some re-
searchers have started exploring computationally the new
comprehension of the multitude of regulatory mechanisms
that are fundamental in both processes of inheritance and
of development in natural systems, by trying to include those
mechanisms in the EAs.

One of the first successful proposals was the Artificial Reg-
ulatory Network (ARN) model. Soon after some variants of
the ARN, including different improvements over the base
model, were tested. In this paper, we combine two of those
alternatives, demonstrating experimentally how the result-
ing model can deal with complex problems, including those
that have multiple outputs. The efficacy and efficiency of
this variant are tested experimentally using two benchmark
problems that show how we can evolve a controller or an
artificial artist.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic Methods

General Terms
Algorithms

Keywords
artificial regulatory network, genetic programming, inverted
pendulum, artificial art

1. INTRODUCTION
Nature-inspired algorithms are used extensively today to

solve a multitude of learning, design, and optimisation prob-
lems, giving rise to a new research area called Evolutionary

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1963-8/13/07 ...$15.00.

Computation (EC) [1]. Over time many variants of a basic
algorithm especially tuned for some problems and/or situa-
tions were proposed (e.g., algorithms for dealing with noisy,
uncertain or dynamic environments, for evolving rather than
designing the algorithm’s parameters or some of its compo-
nents, algorithms with local search operators or for multi-
objective optimisation). Typically, the objects manipulated
by the evolutionary algorithms are represented at two dif-
ferent levels. At a low level (the genotype) the representa-
tions are manipulated by the variation operators; at a high
level (the phenotype) the objects are evaluated to determine
their fitness and are selected accordingly. Because of that,
we need a mapping between these two levels. The issue of
the relationship between the genotype and the phenotype is
as old as the area itself, with many experts claiming that the
standard approach is too simplistic, and advocating that it
is worth trying to close the gap between EC and Biology,
introducing more complex relationships between the geno-
type and the phenotype, and evaluate if they are responsible
for an improvement in both robustness and evolvability [2,
3]. For example, typically in an EA, the two phases of tran-
scription and translation (that exist in nature) are merged
into just one and the regulatory processes are missing. At
a larger scale, we could add the lack of epigenetic phenom-
ena that contribute to the evolution and all the mechanisms
involved in the construction of an organism.

During the last years we saw the appearance of novel rep-
resentations and the corresponding genotype to phenotype
mapping: grammatical evolution [4], self-modifying carte-
sian genetic programming [5], gene expression programming
[6], or enzyme programming [7]. Along a different path,
W. Banzhaf et al. [3], suggested that one should enrich
the artificial model of evolution with the inclusion of feed-
back regulatory mechanisms. Earlier, in [8] the author had
proposed an artificial gene regulatory network(ARN) model
and showed how it could be used computationally in differ-
ent settings [9]. Later, the ARN model was extended by [10]
with the inclusion of extra input proteins and dividing the
gene’s products in transcription factors and non-regulatory
proteins. The latter are used as outputs. More recently [11]
presented another variant of the ARN, enlarging its appli-
cability, by transforming the regulatory gene network into a
computable graph, with or without feedback edges, similarly
to what is done in GP. In this work we merge these two ap-
proaches and explore further its capabilities.The combined
model is tested with two benchmark problems, one involv-
ing the evolution of a controller and the other an artificial

965

artist. The latter is developed as a proof-of-concept for the
model’s multiple output capabilities.

The paper is organised as follows. Section 2 is a brief
overview of the concepts behind regulation at the transcrip-
tional and translational levels, the types of models that have
been proposed, and the contribution of evolutionary compu-
tation to the problem of inferring GRNs from data. Section
3 describes the original ARN model as originally proposed
by the author. Then, Section 4 describes an extension of
that model, elucidating in particular how a program can be
extracted from a network. In Section 5 we briefly refer to
the problems used and we present the experimental setup in
Section 6. The results are presented and analysed in Sec-
tion 7. Finally, in Section 8 we draw some conclusions and
present ideas for future work.

2. GENE REGULATORY NETWORKS
For a long time it was believed that the DNA was tran-

scribed into RNA, which in turn was translated into proteins
in a one-way process. Today, we know that the process of
gene expression into proteins is more complex, and relies on
a network of interactions (known as regulatory network) be-
tween genes and many other molecules including proteins,
the very products of gene expression (see Fig. 1).

P GY

Prt

Gene

Promoter

RNA

poli

PrtPrt

Signal

mRNA

Prt Y

Prt Y

Prt Y

Prt Y

transcription

translation

Figure 1: Gene Regulation: the transcription of a gene is driven
by a protein called RNA polymerase, which binds to a special
regulatory region of the DNA called the promoter. Other proteins
(transcription factors) control the accessibility of the promoter to
RNA polymerase. These proteins are activated by external signals
and bind in the vicinity of the promoter. They can enhance the
production of a protein by a gene, as in the figure, or inhibit its
production.

A correct understanding of the behaviour of gene regula-
tory networks (GRN) is of paramount importance in many
areas of application, like personalised medicine, epidemic
prevention, energy production, bio-remediation or synthetic
biology [12].

Various approaches for formally modelling gene regula-
tory networks appeared in the last decades. The proposed
models can be classified according to the following aspects:
variables such as product concentrations are discrete, con-
tinuous or mixed; time is discrete and the update of the
variables is either synchronous or asynchronous (there are,
however, cases where time is continuous); space is discrete,
continuous or absent. Examples of models include directed
graphs, bayesian networks, ordinary and partial differential
equations, random boolean networks, neural networks, and
rule-based formalisms [13, 12, 14, 15]. Since these regula-
tory networks are highly non-linear and have several thou-
sand variables obtaining a model is a complex task. Compu-
tational approaches to this problem try to reconstruct the
GRN from experimental data, for instance, gene expression

data obtained from microarrays. Within this perspective
devising a GRN is viewed as a reverse engineering problem,
where one builds a model from data. Some attempts were
made to use evolutionary algorithms to solve this problem
for some of the formal models. In particular, there have been
proposed solutions based on genetic algorithms [16], genetic
programming [17], evolution strategies [18], and differential
evolution [19].

Researchers have been interested in GRNs from different
points of view, besides the biological one. For example, the
different artificial models have been studied from a system’s
perspective, trying to understand its topological and dynam-
ics properties [20, 21, 22, 9]. In a different path, some com-
putational explorations have been proposed that reflect our
comprehension about regulatory mechanisms and how they
mediate between evolution and development, i.e., that try
to incorporate those mechanisms into artificial evolutionary
systems. For example, in [23, 24, 25, 26, 27] GRNs are ex-
plored in the context of artificial 3D morphogenesis. In [28,
29] regulation is explored to evolve real-time controllers for
a robot, and to the task of automatically designing robots
in a physical-based virtual environment. In [20] the authors
proposed a model of an artificial genome and studied the
implications for artificial ontogeny, while [30] also proposed
a model of gene expression and regulation in an artificial
cellular organism and speculates about its application to
evolutionary computation. There is a third perspective for
studying artificial GRNs: using them as a computational
device. To the best of our knowledge, the unique proposal
of an artificial regulatory network used for problem solving,
was the one proposed in [8] (ARN). Due to its importance
for our work it will be detailed in the next section.

3. THE ARN MODEL
The Artificial Regulatory Network (ARN) [8] is an at-

tempt to incorporate regulatory mechanisms between the
genotype and the phenotype. There are no other products,
i.e., DNA, and processes in between these two levels. The
genome has fixed length and is constructed by simple du-
plication with mutation events. Regulation between genes
is a mediated process, achieved by means of a binding pro-
cess between proteins (i.e., transcription factors) and special
zones in the genome that appear upstream of the promoter
of a gene. The remaining of this section will describe this
with more detail.

Genome
The model presented in this paper uses a binary genome
and implements a simple algorithm to transcribe and then
translate it into proteins. The genome can be generated
randomly or by a process of duplication with mutation, also
called DM, that is considered the driving force for creating
new genes in biological genomes and has an important role
in the growth of gene regulatory networks [31]. In the latter
case we start with a random 32-bit binary sequence, that is
followed by several DM episodes. As we will see later the
number of duplications is an important parameter. So, if
we have 10 duplication events then the final length of the
genome is 25 × 210 = 32768. The mutation rate is typically
of 1%. The genome is divided in several regions, namely a
regulatory site, the promoter, and the gene itself. The first

966

32 bits of the regulation zone are the enhancer site, while
the following 32 bits are the inhibitory site. The promoter
is located downstream and has the form XY Z01010101.The
first 24 bits (the sequence represented by XY Z) can be ei-
ther 0 or 1, while the last 8 bits are fixed. This way, the
probability for a promoter to occur is 2−8 = 0, 39%. The
idea is to model what happens in nature, where we have a
small consensus sequence where the RNA polymerase binds
(in our case 01010101), inside a larger promoter. A gene is
composed of five 32-bit long sequences, i.e., a 160-bit string.
The choice of the method to obtain the genome, including
the values for the parameters, is guided by what happens in
the natural world.

Gene expression
The genotype - phenotype mapping is defined by expressing
each 160-bit long gene, resulting in a 32-bit protein. A gene
expresses a protein by a majority rule: if we consider a gene,
for example Gm, divided into 5 parts of size 32 each, Gm1 to
Gm5 , at position i, say, the protein’s bit will have a value
corresponding to the most frequent value in each of these 5
parts, at the same position, i.e.,

Pmi = majority(Gmki, ∀k = 1, . . . , 5), ∀i = 1, . . . , 32

Figure 2 show a simple illustrative example.

- 1 - - 1 - - 0 -

- 1 -

G
m
1

G
m
2

G
m
3

P
m

Figure 2: The majority rule: a simple example for a gene
with three regions of size three and the corresponding pro-
tein. Here just the process for the second position.

Figure 3 gives an idea of the representation. P is the pro-
moter region, that indicates the beginning of the gene; G1 to
G5 are the five parts of a gene; E is the gene activation bind-
ing site (enhancer) for the protein, and H is the repression
binding site for the protein (inhibitor).

H PE G1 G2 G3 G4 G5

Prt

GeneRegulation

Protein

Promoter

Figure 3: A genome element in the ARN model.

Regulation
Genes interact mediated by proteins, which bind to the reg-
ulatory region of each gene. If, say, gene A expresses protein
pA and that protein contributes to the activation of gene B,
we say that gene A regulates B (see Fig. 4).

Notice that in order for a link to exist between any two
genes, the concentration of the corresponding protein must

Prm Gene BRegulation Gene A

Prt

Figure 4: Gene - Protein - Gene interaction

attain a certain level, and that depends on the strength of
the binding. The strength of the binding is computed by
calculating the degree of complementarity between the pro-
tein and each of the regulatory regions, according to formula
1:

xi =
1

N

N∑
j=1

cje
β(µji−µmax) (1)

where xi represents the binding strength of the enhancer (ei)
or the inhibitory (hi) region, N is the number of proteins,
cj the concentration of protein j, µji is the number of bits
that are different in the protein (j) and in the regulation site
(ri), that is,

µji =

32∑
k=1

jk ⊕ rik (2)

µmax is the maximum match achievable, and β is a scaling
factor. The production of a protein over time depends on its
concentration, which in turn is a function of the way each
protein binds to that gene’s regulatory regions. It is defined
by the differential equation

dci
dt

= δ(ei − hi)ci (3)

where ei and hi are defined by equation 1, and δ is a scaling
factor.

Computational Device
Using this process we can build for each genome the corre-
sponding artificial gene regulatory network. From a problem-
solving perspective we want to transform an ARN into a
computational problem-solver.To that end we need to clar-
ify what we put into the system, what we extract from the
system, and how we define the semantics, that is, the mean-
ing of the computation in which the network is engaged.
Finally, and as a consequence of the points just identified,
it is also fundamental to determine if we are interested in
the input/output relationship or if what we want is just the
output. A solution for the latter situation was proposed in
[32] in the context of optimization problems. The idea is to
define (randomly) two new contiguous 32-bit sequences in
the genome. The first one being a new inhibitory site (hi),
and the second one a new activation site (ei). All generated
proteins can bind to these sites. The levels of activation
and inhibition can be computed as before (Equation 1), but
there is no gene (thus no protein) attached.

The state of this site is just the sum of all bindings (see
Eq. 4) and is defined as the output. This additional binding
is thus a method to extract a meaning from the variation of

967

the proteins’ concentrations over time.

s(t) =
∑
i

(ei − hi) (4)

To use the model as a representation formalism for genetic
programming one needs to define what are the inputs and
what are the outputs. For that purpose the ARNs model
was extended in two directions [10]. First, some extra pro-
teins, not produced by genes but contributing to regulation,
were introduced and act as inputs. Second, the genes were
divided into two sets, one producing proteins that are used
in regulation (i.e., transcriptional factors), and a second one
with proteins without regulatory function which are used
as outputs. These two types of genes are distinguished by
having different promoters (see Fig. 5).

Prt

Gene A

Prt

Prm

Output

Prm Gene BRegulation Gene C

Prt
Input

Figure 5: The modified ARN proposed in [10].

This model has been successfully used to solve different
problems, namely, the cart-pole balancing [10] and to pre-
dict time-series [33]. A different approach presented in [11],
called ReNCoDe, employs the original ARN architecture as
the genotypical representation, without using the proteins’
concentrations, and proposed an algorithm to extract a pro-
gram from the regulatory network. Moreover, new biologi-
cally inspired genetic operators were introduced, which im-
proved the performance of the algorithm. In particular the
transposon operator, which copies a section of the genome
and inserts it into a new random location. In the current
paper we propose to merge these approaches. We keep the
fundamental aspects of ReNCoDe, i.e., the transformation
of the GRN in a program that ignores the protein’s concen-
trations, and the new genetic operators, but introduce extra
input proteins and output proteins. This reformulation will
be described in the following sections.

4. GENETIC PROGRAMMING WITH ARNS
The merge of ReNCoDe [11] with the extended ARN model

presented in [10] involves three aspects: the definition of the
inputs and the outputs, the algorithm for extracting the
program from the network, and the mapping of proteins to
functions.

4.1 Input and Output
Extra proteins are introduced to represent the inputs and

the proteins coded in the genome are distinguished between
transcription factors and products, based on using two pro-
motersXY Z00000000 andXY Z11111111, respectively. The
extra proteins have distinct 32-bit signatures. The products
are regulated by all proteins but do not regulate, while the
inputs participate in the regulatory process but are not reg-
ulated. This means that, in the resulting network, there are
not connections towards the inputs, nor from the output(s)
towards other proteins (see Fig. 5).

4.2 Building the graph
First the ARN of the individual is built, composed of

multiple links (inhibition and excitation) between different

nodes (genes). In order to extract a graph from this network
it must first be reduced. This is achieved by transforming
every pair of inhibition (h) and excitation (e) connections
into a single link with the difference between both (e − h).
Connections whose weight is less than or equal to zero are
ignored.

The graph is constructed in a top-down fashion, starting
from the output node(s). Recursively, the inputs of each
protein in the circuit will be added until only the extra pro-
teins (inputs) are left aside. The order of inclusion in the
graph is defined by the corresponding connection weight (see
Eq. 2), that is, the strongest connections (with higher bind-
ing strength) will be added first. Finally, to avoid recursion,
if a node has input connections from others already in the
circuit, those are discarded.

When only one output is necessary each product is tested
as the graph output (a graph is built and tested for each
product). If one wants N outputs from the graph, then the
first N products are used as outputs and the graph is built
from these in the same fashion (there are no connections
amongst the outputs since they do not regulate). Note that
the initial individuals usually have fewer proteins and prod-
ucts. If there are not enough products in a network, 0 will
be returned for the missing outputs.

4.3 Mapping Proteins to Functions
A mapping is needed to translate nodes (i.e., genes/pro-

teins) to functions. The terminals are mapped sequentially
using the input proteins (disregard of their signature). For
the remaining nodes we use the gene-protein correspondence.

The protein’s signature is used to obtain the function by
a majority vote process (each protein codifies a function).
As an example, to code the function set { +, -, *, / }

only two bits are necessary. The protein’s signature is split
into sixteen two-bit chunks. Then we obtain the function set
index (two bits) by applying the majority vote rule over each
bit (two positions) of the sixteen chunks (since the number
of chunks is even, in case of a tie the result holds 1). If the
function set length is not a power of two, it is either used
circularly, or dummy functions may be added.

It is possible for some node to be included in the graph,
while not having any input connection available. In this
case the proteins’ signature is mapped to an integer and
wrapped by the hyperbolic tangent function (producing one
of the constants −1.0 or 1.0).

5. PROBLEMS
In this section we present the problems used to assess the

capabilities of this model. First, we show that the approach
is capable of evolving a controller for the inverted pendulum
(where only one product is necessary). Second, we test the
evolution of graphs with multiple outputs in the context of
symbolic expression for Artificial Art.

5.1 The Inverted Pendulum
In this problem there is a cart with an inverted pendulum,

the pole, in a finite length 1D track. The goal is to keep
the pole balanced and the cart inside the track limits by
successively applying a constant force in either direction (left
or right) [34].

The function set used was { +, -, *, / }. The terminal
set is composed by the position and velocity of the cart, as
well as the angle and angular velocity of the pole. Using

968

these building-blocks a controller is constructed whose out-
put is translated into a push to the left if negative, or to the
right if positive.

Each individual was tested over 10 randomised trials, re-
turning the mean fitness of the set. A trial ends when either
the cart goes off the track boundaries (±2.4m) or the pole
falls below 12◦. The individual fitness of each trial is defined
as in [10]:

F (x) =
120000

number of successful steps

The evolutionary run terminates when the an individual is
found that successfully balances the pole for 120000 steps for
each trial, or the maximum number of evaluations is reached.
After the evolutionary process the controller is tested for
generalisation over 54 = 625 trials (the four input variables,
combined using five different rates for each {0.05, 0.275, 0.5,
0.725, 0.95}), during 1000 steps, as described in [34].

5.2 Artificial Art
Evolutionary Art is a growing research field which gathers

nowadays researchers from the most varied areas. One of the
favourite techniques used to generate evolutionary artifacts
is symbolic expression [35]. In the context of GP, it consists
in evolving trees (or graphs) that generate for each pixel a
colour value which is a function of its coordinates. It is not
a goal of the present work to fully describe and improve on
the state of art of this field, but rather to provide a proof-
of-concept of the use of the model for generating multiple
outputs.

The function set used varies amongst researchers, depend-
ing on the specific approach/goals. The terminal set is com-
monly composed of {x, y}, although variations can be found
(for instance, one can use also the distance to the centre,
or information from a target image). Fitness can be inter-
active or automated, both presenting advantages and disad-
vantages [35].

In this work we intend to test the applicability of the
new computational model to this type of problem, by evolv-
ing coloured images. The function set that we used was
{+,−, ∗, /, sin, cos, sinh, cosh}, and the available inputs are
the coordinates (x, y), and the distance to the centre r. The
colour space used was RGB, so each graph will have three
outputs (one for each colour dimension). Fitness automation
was not implemented.

Every round the population is displayed on a grid, ordered
by fitness score. The run starts with equal fitness for each
individual and each time the user chooses one (a mouse click
on the interface), its score is increased.

6. EXPERIMENTAL SETUP
The experimental setup for both applications described in

the previous section is detailed in Table 1. In the inverted
pendulum case the experiment was repeated 50 times, for
comparability with results on the literature (as the evalua-
tion is interactive for the artificial artist, a number of runs
is not specified). The runs for evolving images lasted from
40 to 60 iterations. The evolution strategy used was an ES-
(250+250), while for the artist the strategy used was ES-
(25+5). with the initial population generated by a random
32-bit seed submitted to 8 DM-events. The mutation rate
used for generating the initial population was 0.02%. For
the bit-flip mutation operator a 0.01% rate was applied. In

order to allow variable length genomes (aimed at improving
efficiency [11]), the transposon operator was used in conjunc-
tion with the delete operator, using 64-bit length sections.
The crossover operator is not used in any experiment.

Table 1: Experimental Setup.

Problem Pendulum Artificial Art

Number of Runs 50 -
Evolution Strategy (250+250) (25+5)

Num. Iterations 103 40-60
Number of DMs 8

DM Mutation Rate 0.02
Mutation Operator Rate 0.01

Protein Bind Thresh. 16
Genome Length Variable
Operator Type Transposon

Operator Length 64

7. RESULTS
In the following sections we present the results for both

applications. Firstly, we present the results for the pole bal-
ancing and compare with other approaches in the literature.
Secondly, we display distinct images evolved with the artifi-
cial artist.

7.1 Inverted Pendulum
The experiments show that the present model is capable of

evolving solutions for the single-output problem of balancing
an inverted pendulum. Table 2 averages the generalisation
results of the 50 runs, indicating the performance of the best
solution found, as well as known results from the literature.
Although the approaches are not directly comparable, one
can see that this model performs as well as other methods
[10, 36], displaying better average over the runs and smaller
standard deviation. Also, when compared to [11] there is
some deterioration, although the fitness functions used in
the present work uses less random initialisations.

Table 2: Summary of the generalisation tests for the cart-
pole problem, by number of successful trials out of 625 (see
Sect. 5.1). Results from the literature are also transcribed.

Reference N Best Mean Std. Dev.

ARN-GP 50 434 373.8 48.3
[10] 50 422 202.18 110.01
[36] 50 406 203.18 116.05
[11] 50 497 478 12.63

Figure 6 shows the best circuit found. The output is iden-
tified by the hexagonal shape while the inputs are squared.
The oval nodes correspond to the transcription factors. It is
clear the re-use of functions (nodes) that are used simulta-
neously as inputs to various other nodes.

7.2 Artificial Artist
In order to test the multiple output features of the model

we tried to evolve genomes capable of generating interesting
images, by outputting the RGB values for each pixel given
the input set {x,y,r}. In this section we present some of

969

Figure 6: Controller for the best run of the Cart-Pole prob-
lem. The output is distinguished by the hexagonal shape,
the inputs by the square shape. Oval nodes correspond to
the transcription factors. The function set is composed by
the arithmetic functions. The input indexes represent, re-
spectively, cart position, pole angle, velocity, and angular
velocity.

those images, although the corresponding graphs are too big
to be displayed in the present format.

In Figure 7 we can see the four most fit individuals of
an experiment where the evolutionary process was driven
towards images with patterns, composed of circular shapes.
A higher resolution version of the picture on the bottom
left is presented in Figure 8. The display of patterns and
symmetries is clear and one can see some resemblance with
fractal images.

Driving the experiment to less complex, but more colour-
ful images we obtained individuals like those presented in
Figure 9. A higher resolution version of the picture on the
bottom left is presented in Figure 10. Despite the simplicity
of this image some symmetries and patterns are also present.

These experiments demonstrate the use of the present
model to generate parallel outputs. Although only inter-
active evolution was used, we have shown the ability of the
approach to generate solutions with different properties. It
is our believe that it provides a proof-of-concept for future
applications of this hybrid.

8. CONCLUSION
A fusion between the ReNCoDe and the extended ARN

models was presented, aimed at solving a different class of
problems. This method allows the extraction of executable
graphs with one or more outputs from an artificial regulatory
network. Moreover, the algorithm for the graph extraction
is more clear with the ordering based on the protein binding
strengths.

We have tested the hybrid in a typical GP benchmark
problem - the inverted pendulum - showing that the ap-
proach is competitive with others in the literature, includ-
ing the original ReNCoDe. In the domain of multiple output

Figure 7: Pattern generation through symbolic expression.

Figure 8: Augmented rendering of the individual on the
bottom left of Fig. 7.

970

Figure 9: Abstract symbolic expression.

Figure 10: Augmented rendering of the individual on the
bottom left of Fig. 7

applications, we provided a proof-of-concept for the method-
ology by testing it in an artificial art context. The evolved
images display complex repetitive patterns and symmetries,
as well as simpler forms, more colourful, also displaying sym-
metries and repetition with variation.

Future work will test the model’s ability to evolve solu-
tions for complex binary problems, such as the full adder
and binary multipliers of different input sizes.

Acknowledgements
The work of the first author was partially funded by Fun-
dação para a Ciência e Tecnologia, grant ref. SFRH / BD /
69106 / 2010.

9. REFERENCES
[1] A. E. Eiben and J. E. Smith, Introduction to

Evolutionary Computing. Springer Verlag, 2003.

[2] M. O’Neill, L. Vanneschi, S. Gustafson, and
W. Banzhaf, “Open issues in genetic programming,”
Genetic Programming and Evolvable Machines,
vol. 11, pp. 339–363, 2010.

[3] W. Banzhaf, G. Beslon, S. Christensen, J. Foster,
F. Képès, V. Lefort, J. Miller, M. Radman, and
J. Ramsden, “From artificial evolution to
computational evolution: a research agenda,” Nature
Reviews Genetics, vol. 7, no. 9, pp. 729–735, 2006.

[4] M. O’Neill and C. Ryan, Grammatical Evolution:
Evolutionary Automatic Programming in a Arbitrary
Language. Genetic programming, Kluwer Academic
Publishers, 2003.

[5] J. F. Miller, Cartesian Genetic Programming. Natural
Computing Series, Springer, 2011.

[6] C. Ferreira, Gene Expression Programming (2nd
Edition). Springer, 2006.

[7] M. A. Lones and A. M. Tyrrell, “Biomimetic
representation with genetic programming enzyme,”
Genetic Programming and Evolvable Machines, vol. 3,
pp. 193–217, June 2002.

[8] W. Banzhaf, “Artificial regulatory networks and
genetic programming,” in Genetic Programming
Theory and Practice (R. L. Riolo and B. Worzel, eds.),
ch. 4, pp. 43–62, Kluwer, 2003.

[9] P. Dwight Kuo, W. Banzhaf, and A. Leier, “Network
topology and the evolution of dynamics in an artificial
genetic regulatory network model created by whole
genome duplication and divergence.,” Bio Systems,
vol. 85, no. 3, pp. 177–200, 2006.

[10] M. Nicolau, M. Schoenauer, and W. Banzhaf,
“Evolving Genes to Balance a Pole,” in Proceedings of
the 13th European Conference on Genetic
Programming, EuroGP 2010 (A. I. and others
Esparcia-Alcazar, ed.), vol. 6021 of LNCS, (Istanbul),
pp. 196–207, Springer, 2010.

[11] R. Lopes and E. Costa, “The regulatory
computational device,” Genetic Programming and
Evolvable Machines, vol. 13, no. 3, pp. 339–375, 2012.

[12] H. Bolouri, Computational modeling of gene regulatory
networks: a primer. Imperial College Press, 2008.

[13] H. de Jong, “Modeling and simulation of genetic
regulatory systems: a litterature review,” Journal of
Computational Biology, vol. 9, no. 1, pp. 67–103, 2002.

971

[14] Â. Gonçalves and E. Costa, “A model for an
heterogeneous gene regulatory network,” in Handbook
of Research on Computational Methodologies in Gene
Regulatory Networks (S. Das, D. Caragea, S. M.
Welch, and W. H. Hsu, eds.), ch. Chapter 12, IGI
Global, 2009.

[15] M. Hecker, S. Lambeck, S. Toefler, E. van Soemren,
and R. Guthke, “Gene regulatory network inference:
data integration in dynamic models - a review,”
BioSystems, vol. 96, no. 1, pp. 86–103, 2009.

[16] D. Marbach, C. Mattiussi, and D. Floreano,
“Bio-mimetic evolutionary reverse engineering of gene
regulatory networks,” in 5th European Conference on
Evolutionary Computation,Machine Learning and
Data Mining in Bioinformatics, EvoBIO2007
(E. Marchiori, J. H. Moore, and J. C. Rajapakse,
eds.), vol. 4447 of LNCS, pp. 155–165, Springer, 2007.

[17] E. Sakamoto and H. Iba, “Inferring a system of
differential equations for a gene regulatory network by
using genetic programming,” in Proceedings of the
Congress on Evolutionary Computation, pp. 720–726,
IEEE Press, 2001.

[18] F. Streichert, H. Planatscher, C. Spieth, H. Ulmer,
and A. Zell, “Comparing genetic programming and
evolution strategies on inferring gene regulatory
networks,” in Proceeding of Genetic and Evolutionary
computation Conference (GECCO2004), vol. 3102 of
LNCS, pp. 471–480, 2004.

[19] N. Noman and H. Iba, “Inferring gene regulatory
networks using differential evolution with local search
heuristics,” Computational Biology and
Bioinformatics, IEEE/ACM Transactions on, vol. 4,
pp. 634 –647, oct.-dec. 2007.

[20] T. Reil, “Dynamics of gene expression in an artifical
genome - implications for biological and artificial
ontogeny,” in Proceedings of the 5th European
conference on Artificial Life (D. Floreano, J.-D.
Nicoud, and F. Mondada, eds.), pp. 457–466, Springer,
1999.

[21] S. Kauffman, The origins of order: self-organization
and selection of evolution. Oxford University Press,
1993.

[22] H. de Jong, J.-L. Gouzé, C. Hernandez, M. Page,
T. Sari, and J. Geiselmann, “Hybrid modeling and
simulation of genetic regulatory networks,” in
Proceedings of the 6th international conference on
Hybrid systems: computation and control, HSCC’03,
(Berlin, Heidelberg), pp. 267–282, Springer-Verlag,
2003.

[23] P. Eggenberger, “Evolving morphologies of simulated
3D organisms based on differential gene expression,” in
Fourth European Conference of Artificial Life
(P. Husbands and I. Harvey, eds.), pp. 205–213, MIT
Press, 1997.

[24] D. Roggen, D. Federici, and D. Floreano,
“Evolutionary morphogenesis for multi-cellular
systems,” Genetic Programming and Evolvable
Machines, vol. 8, pp. 61–96, Mar. 2007.

[25] M. Joachimczak and B. Wrobel, “Evo-devo in silico: a
model of a gene network regulating multicellular
development in 3d space with artificial physics,” in
Artificial Life XI: Proceedings of the Eleventh

International Conference on the Simulation and
Synthesis of Living Systems (S. Bullock, J. Noble,
R. Watson, and M. A. Bedau, eds.), pp. 297–304, MIT
Press, 2008.

[26] J. Knabe, M. Schilstra, and C. Nehaviv, “Evolution
and morphogenesis of differential multicellular
organisms: autonomously generated diffusion
gradients for positional information,” in Artificial Life
XI: Proceedings of the Eleventh International
Conference on the Simulation and Synthesis of Living
Systems (S. Bullock, J. Noble, R. Watson, and M. A.
Bedau, eds.), pp. 321–328, MIT Press, 2008.

[27] M. Kessler, Analysis of the dynamics of a GRN-based
Evo-devo system. PhD thesis, University of Zurich,
September 2009.

[28] J. Bongard, “Evolving modular genetic regulatory
networks,” in IEEE 2002 Congress on Evolutionary
Computation (CEC2002), pp. 1872–1877, IEEE Press,
2002.

[29] T. Quick, C. Nehaviv, K. Dautenhahn, and
G. Roberts, “Evolving embodied genetic regulatory
network-driven control systems,” in Proceedings of the
European Conference on Artificial Life (ECAL 2003)
(W. Banzhaf, ed.), vol. 2801 of Lecture Notes in
Artificial Intelligence, pp. 266–277, 2003.

[30] P. Kennedy and T. Osborn, “A model of gene
expression and regulation in an artificial cellular
organism,” Complex Systems, vol. 13, no. 1, pp. 33–59,
2001.

[31] S. A. Teichmann and M. M. Babu, “Gene regulatory
network growth by duplication.,” Nature Genetics,
vol. 36, pp. 492–6, May 2004.

[32] P. Kuo, A. Leier, and W. Banzhaf, “Evolving
dynamics in an artificial regulatory network model,”
Lecture Notes in Computer Science, pp. 571–580, 2004.

[33] M. Nicolau, M. O’Neill, and A. Brabazon, “Applying
Genetic Regulatory Networks to Index Trading,”
Parallel Problem Solving from Nature-PPSN XII,
pp. 428–437, 2012.

[34] D. Whitley, S. Dominic, R. Das, and C. W. Anderson,
“Genetic reinforcement learning for neurocontrol
problems,” Machine Learning, vol. 13, no. 2,
pp. 259–284, 1993.

[35] P. Machado, J. J. Romero, and A. Carballal,
Evolutionary and Biologically Inspired Music, Sound,
Art and Design. First International Conference,
EvoMUSART 2012, Málaga, Spain, April 11-13, 2012,
Proceedings, Springer-Verlag New York Incorporated,
Mar. 2012.

[36] E. Murphy, M. Nicolau, E. Hemberg, M. O’Neill, and
A. Brabazon, “Differential Gene Expression with
Tree-Adjunct Grammars,” Parallel Problem Solving
from Nature-PPSN XII, pp. 377–386, 2012.

972

