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ABSTRACT

Genetic programming algorithms seek to find interpretable
and good solutions for problems which are difficult to solve
analytically. For example, we plan to use this paradigm
to develop a car accident severity prediction model for new
occupant safety functions. This complex problem will suf-
fer from the major disadvantage of genetic programming,
which is its high demand for computational effort to find
good solutions. A main reason for this demand is a low rate
of convergence. In this paper, we introduce a new genetic
operator called forking to accelerate the rate of convergence.
Our idea is to interpret individuals dynamically as centers of
local Gaussian distributions and allow a sampling process in
these distributions when populations get too homogeneous.
We demonstrate this operator by extending the Cartesian
Genetic Programming algorithm and show that on our ex-
amples convergence is accelerated by over 50% on average.
We finish this paper with giving hints about parameteriza-
tion of the forking operator for other problems.

Categories and Subject Descriptors

1.2.2 [Artificial Intelligence]: Automatic Programming—
Program synthesis; 1.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods, and Search

General Terms

Algorithms, Design, Performance

Keywords

Cartesian Genetic Programming, optimization, genetic op-
erator

1. INTRODUCTION

In the field of evolutionary algorithms, genetic program-
ming (GP) is a paradigm which enables automatic derivation
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of programs that solve problems. In contrast to other algo-
rithms like artificial neural networks, GP algorithms learn
interpretable models so that e.g. safety applications may be
realized more easily. GP got significant attention after Koza
has applied it to solve complex problems [8]. One of these
problems is called symbolic regression, which seeks to find
mathematical expressions describing the relation between in-
put and output data. In contrast to parametrical regression,
symbolic regression builds up complex formulae automati-
cally by combining variables, basic operators (+,-,*,/) and
functions (for example sin, cos or tan). Recently, Schmidt
and Lipson used symbolic regression to discover natural laws
describing kinematics of different oscillators [16].

Although GP is able to solve difficult problems, its ma-
jor disadvantage is low efficiency. We define efficiency as
the required computational effort for an evolutionary algo-
rithm to achieve convergence. One measure for efficiency
is the average number of generations it takes to find a so-
lution. Another approach is to measure computation time
until convergence is achieved. Schmidt and Lipson used a
32-core implementation which needs 30 to 40 hours to learn
a solution for a specific oscillator problem [16]. Since they
optimized their algorithm to require only 7 to 8 hours, we
consider the original algorithm as being less efficient.

In contrast to accelerating execution by parallelization [9],
we focus on increasing efficiency of GP algorithms by intro-
ducing the forking operator. This operator uses population
statistics to interpret individuals dynamically as distribu-
tions in solution space. In that way, the forking operator
samples new individuals when populations get too homoge-
neous. As a result, diversity is increased, which may lead to
better convergence behavior. We demonstrate this improved
convergence behavior by extending the Cartesian Genetic
Programming (CGP) algorithm with the forking operator.
As Miller describes, CGP represents programs as graphs in
which nodes perform functions and the connection between
the nodes controls the data flow [12]. Thus, the learning
task consists of assigning functions to nodes and connecting
the nodes with each other.

In this paper, we explain the background and relevant lit-
erature at first. Next, we give reasons for low efficiency of
real-valued CGP and explain the forking operator. After-
wards, we present and discuss results for four symbolic re-
gression problems used to measure efficiency of our extended
CGP algorithm. We finish this paper with discussing con-
clusions and suggestions for future research questions.



2. BACKGROUND

In this section, we explain Cartesian Genetic Program-
ming, which is the GP algorithm that we extended with the
forking operator. Furthermore, we give an overview of rele-
vant literature.

2.1 Cartesian Genetic Programming

GP is a data-driven paradigm that seeks to evolve pro-
grams by applying genetic operators to individuals. Al-
though first steps towards GP have already been taken in
the 1970s [4, 15], this paradigm gained significant attention
after Koza applied it to complex optimization and search
problems [8]. Koza represented programs as LISP parse
trees, which combine multiple simple functions to more com-
plex functions. In 2000, Miller and Thomson introduced an-
other algorithm for GP called Cartesian Genetic Program-
ming (CGP) [14].
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Figure 1: Genotype and phenotype for CGP indi-
viduals, source: Clegg et al.[2]

CGP represents programs as indexed, acyclic and directed
graphs via genotype-phenotype-mapping. Originally, these
graphs were structured as a rectangular grid, but later work
focused on a graph with only one row [2]. In figure 1, we
show an example of a genotype and its corresponding phe-
notype. The sequence of numbers at the top of the figure
represents the genotype, in which each group maps to one
node of the graph except for the last group. These num-
bers are indexes and either describe the function to perform
(underlined number) or the index of the inputs to work on
(non-underlined number). The index in the last group spec-
ifies the output of the program. The algorithm evaluates a
program via recursive backward search through the directed
graph. It starts from program output and processes all nodes
directly or indirectly linked to it. In that way, only active
nodes are processed whereas inactive nodes, which are not
connected to the output, remain untouched. Thus, the given
example specifies the function z® — 2z + z2.

2.2 Related work

The presented genotype-phenotype-mapping offers some
properties, which were investigated in more detail. At first,
we note that the genotype can encode functionality that
is not relevant for the phenotype. In figure 1, the dashed
groups and the corresponding dashed, inactive nodes do not
have any direct or indirect connection to the output. There-
fore, these genes can be arbitrarily set, the phenotype will
not change. Miller and Thomson described this property as
an example of neutrality and published work emphasizing
its importance [14]. This genotype redundancy can improve
efficiency when unused genes are altered and used in future
individuals. Another important property is that integer-
based CGP usually only uses mutation but not crossover
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operators. Koza underlined the importance of crossover op-
erators for his tree-based program representation [8]. Ac-
cording to him, no run on his experiments, which used only
a mutation operator and a fitness-proportionate reproduc-
tion, has ever produced a solution to any problem. In con-
trast, Clegg et al. showed that omitting a crossover operator
and relying only on a mutation operator can produce a so-
lution in a CGP algorithm [2]. Clegg et al. also evaluated
different crossover operators, but reasoned that swapping in-
tegers as crossover operator influences efficiency negatively.
Therefore, they changed gene encoding to real values from
the interval [0, 1] as shown in figure 2. For receiving indexes
for the lookup tables, gene values are multiplied with the
function or input count. This modification of gene encod-
ing enables the use of a weighted average crossover opera-
tor. Without a crossover operator, integer-based and real-
valued CGP achieve similar efficiency. In contrast, adding
a weighted average crossover operator to real-valued CGP
improves efficiency significantly.

genes:( 0.740.03 0.4 ] 0.20.39 0.65 ] 0.41 0.61 0.92)
nodeterms: 2 3 4
(0.710.450.78] 0.20.920.23 ]0.54 0.37 0.94)

6 7 8
If gene; == function

Decode decodedi = floor(genei * functioncount); //functions: [+, -, *, /]
else //genei is input

decodedi = floor(genei * nodetermj);

(200Jo11]123) (224]061]227)
2 3 4 6 7 8

Oa

Figure 2: Decoding from real-valued to integer-
based genotype, bases on: Clegg et al.[2]

Other approaches have also been investigated to improve
efficiency of CGP. Miller analyzed the population size of a
CGP algorithm, but also show node count influences effi-
ciency [11]. With one exception out of 12 Boolean symbolic
regression problems, lower population sizes tend to improve
efficiency. It also improves when node count is increased.
However, Miller stated that these findings may be limited
to this type of problems. In a later publication, Miller and
Smith investigated the correlation between efficiency and
node count in more detail [13]. The authors presented a 2-
bit multiplier problem and showed that with increasing node
count, efficiency increases as well. According to them, the
reason for this correlation is increased redundancy utilized
by the mutation operator. Since a larger CGP individual
can hold multiple inactive programs in parallel, the muta-
tion operator may change the active program by deactivat-
ing or activating nodes. According to Miller, this behavior
is a confirmation for the importance of neutrality [12].

Low efficiency is also related to premature convergence.
Premature convergence is caused by decreasing population
diversity and describes the effect that a population converges
too early, thus getting stuck in local optima [3]. Despite
increasing mutation rate [1], another solution is to contin-
uously create new random individuals. Hornby introduced
the Age-Layered Population Structure (ALPS) which tracks
the age of each individual and allows genetic operations only
to work on individuals of similar age [5]. Hornby showed
that this paradigm helps to improve the fitness significantly



for an antenna design problem. Later, Slany combined the
ALPS paradigm with CGP and demonstrated a better per-
formance for the evolution of image operators [17]. However,
for more complex problems, the performance gain appears
to be less superior. Lehman and Stanley replaced the fitness
function in a GP algorithm with a novelty function, which
helps to maintain population diversity [10]. Although the
novelty function leads to better and smaller solutions in the
presented experiments, algorithms using a fitness function
may find a solution faster.

Tu and Lu presented a genetic algorithm, which interprets
individuals not only as points but also as stochastic regions
in solution space [18]. They consider each individual as mean
of a Gaussian distribution with an adaptable variance and
sample over this distribution to produce and evaluate new
individuals. In that way, each individual also covers slight
modifications, which helps to improve efficiency. In their ex-
periments, Tu and Lu showed a large increase in efficiency
due to this sampling. Four years later, they have published
a correction because of a mistake in their original implemen-
tation [19]. This mistake lead to much better results, but
was originally not discovered due to a special behavior of the
example problems. Although the corrected implementation
does not achieve satisfactory efficiency, sampling likely good
genes during evolution may be beneficial anyway. Thus, we
use and modify this idea for our forking operator.

3. FORKING OPERATOR

In this section, we present our preliminary considerations
that lead to the development of the new genetic operator
called forking. Afterwards, we explain the operator and
show how it integrates into the evolutionary process.

3.1 Preliminary considerations

In the previous section, we present approaches to improve
efficiency of evolutionary algorithms, especially for CGP.
Even for real-valued CGP, which we use as base for our
operator, we often note low efficiency. At the beginning of
evolution, the population converges fast towards good solu-
tions whereas the rate of convergence decreases notably in
the end. One way to avoid this low rate of convergence is to
define an easily reachable convergence threshold. For most
problems, we want to find very good or even perfect solu-
tions so that this threshold must be kept very low. There-
fore, other solutions have to be found to improve efficiency.

From our experience, the main reason for this convergence
behavior is that individuals are getting more and more simi-
lar during evolution. Thus, the algorithm evaluates (nearly)
identical individuals over and over again so that fewer re-
gions of solution space are covered. This reduces the gene
pool significantly so that crossover operators work less effi-
ciently. From our perspective, real-valued CGP even inten-
sifies this problem due to its genotype-phenotype-mapping.

The problem of genotype-phenotype-mapping is its large
difference in complexity of genotype and phenotype spaces.
Although all individuals in one population have most likely
different genotypes, the probability of sharing the same phe-
notype is much higher. To underline this statement, we con-
sider a example given in figure 3.

The example consists of one node with four possible func-
tions, two inputs and one program output. Each gene is en-
coded by a 32-bit floating-point variable, which is a common
size in modern programming languages like C [7]. Accord-
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2 genes 1 gene for 1 gene for 4 |EEE 754 variables
Genotype for node node + program = =~ 3,298e+38
inputs function output possible genotypes
Input 1
—
Output
Input2 |
Program
4 input 4 functions 3 program _ 48 possible
Phenotype pairs X X outputs phenotypes

Figure 3: Example for difference in complexity of
genotype and phenotype spaces

ing to IEEE 754 standard, a 32-bit floating-point variable
encodes 2%2 — 225 different normal numbers [6]. Thus, the
combination of four genes leads to (23?2 —22°)* =~.3,298¢+38
possible genotypes. However, there are only 48 possible phe-
notypes. That means ~3,298e+38 possible genotypes en-
code only 48 possible phenotypes, which prove the mapping
as being very robust. Even if we use a more efficient encod-
ing and pack all genes into one 32-bit floating-point variable,
we still have 232 — 225 = 4,261, 412, 864 possible genotypes.
Naturally, this is a very simplified example to emphasize the
disparity between phenotype and genotype spaces. Usually,
CGP programs consist of more nodes, have more node func-
tions and also more inputs. Furthermore, the gene encoding
may be more efficient, but for real-valued CGP genotype
and phenotype spaces will likely still maintain a large differ-
ence in complexity. However, CGP phenotype complexity
prevents an exhaustive search for the best solution.

This large difference in complexity of genotype and pheno-
type spaces leads to different problems, which common ge-
netic operators cannot easily address. Crossover operators
usually work best when individuals differ notably. How-
ever, CGP individuals that differ in genotype may have the
same phenotype with a reasonable probability. This prop-
erty can render crossover operators useless if individuals fo-
cus on one region of genotype space and thus represent the
same point in phenotype space. Mutation operators usu-
ally modify genotypes slightly by altering some genes. For
real-valued CGP, mutation operators must perform larger
modifications to genotypes. Otherwise changes in genotype
will most likely not reflect to phenotype. Thus, the mutation
rate may have to be increased or mutation operators must
alter genes relevantly, which may slow convergence down
when individuals are changed too much.

3.2 Introducing the forking operator

All these considerations lead to the development of a new
genetic operator that we call forking. As base for forking,
we use an idea similar to the approach published by Tu and
Lu [18]. This idea states that an individual should not only
represent a point but may also span a region in genotype
space as a multivariate Gaussian distribution. For this dis-
tribution, the individual is the mean whereas specified stan-
dard deviations for each dimension define the region’s size.
In that way, new individuals can be created by drawing a
sample from this distribution. In contrast to the work done
by Tu and Lu [18], we apply this idea to GP. Furthermore,



our algorithm decides dynamically whether it interprets an
individual as a point or as a distribution.

Initialize population p with random individuals

For each generation

For each individual i in p

Sample individuals s,t,u,v from i

Evaluate s,t,u,v,i and replace i by best
individual

Update standard deviations of i

Create new population p,

For each individual i in p,

Select individuals x, y from p

Crossover x, y to individual i and mutate i

Replace population p by population p,,

Figure 4: Structure chart of augmented algorithm

In our first implementation, we augmented real-valued
CGP presented by Clegg et al.[2] with the stochastic algo-
rithm described by Tu and Lu [18]. In figure 4 we show the
augmented algorithm in which differences to the original al-
gorithm are marked in bold. Since genotypes of real-valued
CGP individuals consist only of floating-point numbers, the
stochastic algorithm of Tu and Lu is applied without any
modifications. As Tu and Lu described, we sample four in-
dividuals s, ¢, and v in the distribution defined by each
individual ¢ and adapt the standard deviations of i as pro-
posed. We compare this algorithm with a real-valued CGP
algorithm similar to the one from Clegg et al., but grant the
augmented algorithm to have only one fifth of the population
size of the real-valued CGP algorithm. This adaptation is
necessary for a fair comparison, because the augmented algo-
rithm evaluates four additional individuals per each original
individual so that its population size is virtually increased
by factor five. In our experiments, real-valued CGP per-
forms much better because it utilizes its larger real popula-
tion size for covering more regions of genotype space in par-
allel. Even after reducing population size for the real-valued
CGP algorithm and keeping the augmented algorithm un-
touched, real-valued CGP converges faster. Furthermore,
we observed that when individuals are spread in genotype
space, it is more efficient to interpret them as points. How-
ever, if they focus on few regions in genotype space, it is
better to interpret them as distributions, because the sam-
pling process leads to less redundant phenotypes.

Based on our first experiments, we conclude that it is bet-
ter to combine both algorithms in a different way. In figure
5, we show real-valued CGP extended with the forking oper-
ator that realizes a dynamic combination of both algorithms.
Again, modifications to real-valued CGP are marked in bold.
Depending on current state of evolution, the forking opera-
tor decides for each individual whether it is interpreted as
a point or as a distribution in genotype space. For this
decision, forking uses population statistics. The central el-
ements of these statistics are fingerprints stored in a hash
map. As fingerprints, we use textual representations of phe-
notypes, e.g. a mathematical term like zp + z1 * @, where
2o and z; are inputs of the encoded program. The hash
map stores the frequency of every fingerprint in the current
population. Based on this frequency, the operator calcu-
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Initialize population p with random individuals

Create hash map m for statistics

For each generation

For each individual i in p

Get fingerprint frequency f for i’s fin-
gerprint from m

Fork probability p; = (f/size of p) *
amplifier

Limit p; to maximum fork probability

Random number < py

True False
Replace i by a sample &
from i
Evaluate i

Create new population p, with size of p

For each individual i in p,

Select individuals x, y from p

Crossover x, y to individual i and mutate i

Get fingerprint of i and update its fin-
gerprint frequency in m

Replace population p by population p,,

Figure 5: Structure chart of extended algorithm

lates a fork probability for an individual. The amplifier is a
parameter and controls how a relative fingerprint frequency
should be transformed into a fork probability. If the fork
probability exceeds an adjustable probability limit, the fork
probability will be set to this limit. Afterwards, the opera-
tor uses a uniform distribution to sample a random number
and if this number is below the fork probability, the current
individual will be interpreted as distribution. In this case,
a new individual is sampled from current individual’s dis-
tribution and it replaces the current individual. The next
step is the evaluation of the individual. After all individuals
have been evaluated, the population for the next generation
is created. During this step, the hash map is updated with
new fingerprint frequencies.

We realize sampling of new individuals from existing ones
in a different way than Tu and Lu [18]. Similar to their
work, we use the genotype of an individual as the mean of a
multivariate Gaussian distribution. However, we do not use
a separate standard deviation for each dimension. Instead,
we perform sampling as shown in equation 1 and 2

Gn,i ~ N (Gi, Ufnput) , VG; € input genes
Gnyg ~N (Gf, U?umtwn) , VGy € function genes

(1)
(2)

, where G, ; represents a gene for an input, which is sam-
pled from the Gaussian distribution defined by the current
gene G; as mean and oinpy: as standard deviation for inputs.
G, is a gene for a node function, which is sampled from
the Gaussian distribution defined by the current gene Gy as
mean and Ofunction as standard deviation for functions. By
sampling in all genes G; and Gy of an existing individual,
the genotype of a new individual is created. Additionally to



amplifier and probability limit, input deviation onpu as well
as function deviation ofunction are parameters of the forking
operator. In contrast to Tu and Lu, our two standard de-
viations are neither part of the genotype nor altered during
evolution. Instead, standard deviations have to be defined
carefully. As our example in figure 3 outlines, phenotype
space is much smaller than genotype space. Since forking
samples in genotype space, standard deviations have to be
large enough so that genotypes may be created that map on
different phenotypes. Setting standard deviations too large
may lead to completely randomly initialized individuals so
that any similarities to original individuals get lost. The
choice of standard deviations depends also on program in-
put and node functions count so that for many inputs and
node functions, standard deviations should be smaller.

Population statistics are the key to decide dynamically
between the two interpretations of individuals. When the
current individual’s phenotype and thus fingerprint is rare in
the population, the forking operator likely interprets this in-
dividual as a point. This is usually the case in the beginning
of evolution so that the algorithm behaves like real-valued
CGP proposed by Clegg et al. [2]. With ongoing evolution,
individuals focus on fewer regions so that the current indi-
vidual’s phenotype may be shared by other individuals as
well. In this case, its fingerprint frequency increases and
the forking operator will more likely interpret the current
individual as a distribution. We also experimented with up-
dating statistics, when a sampled individual replaces the
original, but we did not see any significant differences in our
experiments. The amplifier and probability limit influence
the decision between both interpretations of an individual.
It depends on the problem whether these parameters should
be raised to increase likelihood of forking.

In addition to crossover and mutation, the forking oper-
ator is another genetic operator that modifies the genotype
of individuals. Whereas mutation operators alter individ-
uals due to a specified mutation rate, the forking operator
always considers population statistics. These statistics base
on phenotype and not on genotype, so that forking pays at-
tention to the robust genotype-phenotype-mapping. Thus,
forking is a dynamic genetic operator as it only reacts when
phenotypes of individuals get too homogeneous. Further-
more, the forking operator performs a full sampling in all
dimensions of the distribution and thus, in all genes. Al-
though this sampling likely modifies all genes, it does not
guarantee that a sampled individual will have another phe-
notype than distribution’s mean. Instead, the probability
of changes in individual’s phenotype depends mostly on the
standard deviations for node inputs and functions.

4. EVALUATION

In this section, we compare the efficiency of real-valued
CGP and the algorithm using the forking operator. After
describing our methodology, we present and discuss results
for four symbolic regression experiments. Furthermore, we
give hints for configuring the parameters of the forking op-
erator and discuss the usage with other GP representations.

4.1 Methodology

For evaluating efficiency, we apply the real-valued CGP
algorithm and the algorithm using the forking operator on
the following symbolic regression problems.
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iz, y) =2 /y?

Function f; and f, are also used by Clegg et al. [2]. We
use the other functions to consider functions with multiple
inputs as well as functions that also include the save divi-
sion operator. As training data, we sample 50 random data
points from the interval [—1, 1]. Like Clegg et al., we use the
sum of absolute differences between expected and calculated
outputs as cost function and require it to be smaller than
0.01. Since the implementations of real-valued CGP differ
the results presented in this paper are not directly compara-
ble to results published by Clegg et al.. Furthermore, we do
not use variable crossover rates as proposed by Clegg et al.,
because their values were problem specific.

In our experiments, we use the same configuration for all
algorithms, which is also similar to the configuration used
by Clegg et al.. In table 1, we show this configuration.

Table 1: Basic configuration of all algorithms

Property Value
Maximum node count 10
Function lookup table + (0), - (1), *(2), / (3)
Population size 50
Maximum Generations 20,000

Crossover operator
Crossover rate
Mutation operator

Weighted average
0.75, not adaptive
Reset gene to value € [0,1]

Mutation rate 0.20, not adaptive
Tournament selection size 20
Elitism size 2

The optimal configuration of parameters of the forking op-
erator, amplifier, probability limit, input deviation and func-
tion deviation, depends on the problem to be solved so that
we list it for each experiment separately. We also performed
a meta-evolution on all four problems. This meta-evolution
found a general set of parameters, which minimizes the num-
ber of generations to converge on all four problems. In table
2, we show this general set.

Table 2: General set of forking parameters

Parameter Value
Amplifier 5
Probability limit 1.0
Input deviation 0.8
Function deviation 0.0

As measures for efficiency, we use the number of processed
generations and also the required computation time until
convergence. For every problem, we average these efficiency
measures over 1,000 runs, which are performed with dif-
ferent seeds for the pseudo-random number generator. For
each measure, e.g. 140 £ 316, the first number denotes the
average value and the second the standard deviation. Our



evaluation guarantees that all algorithms work on the same
seeds. Furthermore, all algorithms process exactly the same
input data. The algorithms are implemented in Java 6 (64-
Bit) and not optimized for speed. They were run on a laptop
equipped with an Intel Core i5-2520M CPU clocked at 2.50
GHz, 4 GB RAM and Microsoft Windows 7 Enterprise x64.

4.2 Results

Table 3: Efficiency for problem f(z) = 2% — 2% z* 4 2°
Avg. computation

Avg. number

Algorithm of generations time in ms
Real-valued CGP 140 + 316 837 + 2,186
Best general 61 + 91 330 + 542
Best specific 60 £+ 64 330 £+ 391

In table 3, we show results for the first problem. Real-
valued CGP is the equivalent to the algorithm proposed by
Clegg et al.[2] and Best general represents the general set
of forking parameters found by the meta-evolution. Best
specific represents the optimal configuration of the forking
operator for this problem and uses the following parameter
values: amplifier = 5, probability limit = 1.0, input de-
viation = 0.4, function deviation = 0.1. Compared with
real-valued CGP, this optimal configuration needs 57% fewer
generations and 61% less computation time per run to con-
verge on average. The general set of parameters is negligibly
slower as it needs 56% fewer generations and also 61% less
computation time per run.

In figure 6 and 7, we show plots summarizing convergence
behaviors for the first problem. Figure 6 presents the aver-
age fitness of all 1,000 runs over the first 500 generations.
Figure 7 shows the number of generations to converge for the
sorted, slowest 500 runs. As visible, the forking operator en-
ables notably faster convergence especially due to avoiding
very slow runs. For the remaining problems, we will use the
plot style as shown in figure 7. One main reason for this
decision is that some of the presented problems use high
polynomials, which lead to very high fitness values. Due to
space limitations, it is not possible to plot these graphs as
a whole in a good readable fashion. Furthermore, we are
interested in finding perfect solutions so that the detailed
development of convergence is not as important as the final
number of generations to converge.

As visible in the tables 4-6 and their corresponding fig-
ures 8-10, the forking operator converges much faster for
the other three problems as well. The configurations for the
best specific configuration differ notably for amplifier, in-
put and function deviation. Only the forking probability is
always the same with 0.9 or 1.0.

Table 4: Efficiency for fo(z) =2° -2+ 2% 4+ =
Avg. computation

Avg. number

Algorithm of generations time in ms
Real-valued CGP 900 + 1,882 5,720 + 13,280

Best general 248 4+ 294 1,431 + 1,765

Best specific 244 £+ 220 1,354 4+ 1,231
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Figure 6: Average convergence for problem fi(z)
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Figure 7: The number of generations to converge
over the slowest 500 runs for fi(z) = 2° — 2% z* + 22

4.3 Discussion

Efficiency evaluations for the presented problems show
that forking can accelerate convergence significantly. Al-
though best specific parameter sets and best general set
partly differ, their difference in efficiency is negligible. In
comparison to the real-valued CGP algorithm, the forking
operator configured with the best general parameter set re-
duces the number of necessary generations by 54% on aver-
age. Computation time per run is reduced by 61% on aver-
age. The reason for the difference between these speedups
is that often not all individuals of the last generation are
evaluated. Furthermore, the similar speedups for genera-
tion count and computation time in each experiment demon-
strate that the additional operations of the forking operator
do not affect computation time notably.

For number of generations to converge but also computa-
tion time, the standard deviations are significantly reduced
in comparison to real-valued CGP. This fact is also under-
lined by the presented figures. As we have shown in the fig-
ures, the forking operator based algorithms do not accelerate
all problem runs, but avoid very slow runs. Furthermore, all
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over the slowest 500 runs for fo(z) =2° — 2% 2% + 2

Table 5: Efficiency for f3(z,y) = (z° * y?)/(z + y)
Avg. computation

Avg. number

Algorithm of generations time in ms
Real-valued CGP 466 + 863 2,251 + 4,366

Best general 216 + 264 881 £+ 1,131

Best specific 194 + 224 741 + 894

runs of the algorithm with the forking operator found the
correct solution, so that premature convergence did not oc-
cur. However, it cannot be generalized that forking will not
lead to premature convergence in some cases.

Although the forking operator demonstrated its ability to
accelerate convergence, the introduction of new parameters
without supplying a well-founded description of how to ini-
tialize them is a disadvantage. If we take the best general set
of parameters for guidance, it seems that probability limit
should always be set to the maximum value of 1.0 so that this
parameter can be removed. Setting amplifier to 5 seems to
be a good general choice, so that input and function devia-
tions remain as most difficult parameters. According to their
values in the best general set, the main problem is rather the
correct connection between nodes, but not which function is
associated to each node. However, we only used four possible
node functions and ten nodes per CGP program. For other
problems, which use more possible node functions, impor-
tance of the function deviation may increase. One solution
for this problem could be the increase of available nodes per
CGP program. As Miller and Smith outlined, increasing
node count increases efficiency, too [13]. As a side effect, we
assume that this change will likely cause every possible node
function to be present in the graph. Thus, the problem could
be reduced to finding the correct connection between nodes
so that only the input deviation is of importance. However,
both deviations should not be set close to 1.0 at the same
time, because this may lead to a completely randomly ini-
tialized individual.

For using forking with other GP representations, effective
methods for creating fingerprints and sampling new individ-
uals from existing individuals have to be found. Basically,
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Figure 9: The number of generations to converge
over the slowest 500 runs for f3(z,y) = (z**y?)/(z+7v)

Table 6: Efficiency for fi(z,y) = 2°/y®
Avg. number

Avg. computation

Algorithm of generations time in ms
Real-valued CGP 411 + 1,187 2,352 + 7,563

Best general 260 £+ 583 1,181 4+ 2,705

Best specific 240 £ 471 1,128 + 2,303

fingerprinting offers a way to detect behavioral equivalence
in the population. Since every GP representation should
offer a textual representation of a program, this is the sim-
plest form to realize fingerprinting. However, especially for
large programs, a fingerprint mechanism that finds seman-
tical instead of only textual equivalence may be beneficial.
Sampling new individuals can be realized easily when the
genotype space is continuous. However, GP representations
like Koza’s parse trees have a discrete genotype space so
that sampling using a Gaussian distribution requires a map-
ping from real-valued space to discrete genotype space. This
mapping has to be considered, when standard deviations for
each distribution are defined. Maybe, CGP’s mapping from
real-valued genotype to its discrete phenotype space can be
modified to work with other GP representations as well.

5.  CONCLUSIONS AND FUTURE WORK

Genetic programming is a powerful paradigm for solv-
ing difficult problems, but its algorithms often demand high
computational effort to converge. In this paper, we intro-
duced the forking operator, which samples new individuals
from existing ones when populations get too homogeneous.
Experimental results on four symbolic regression problems
showed that forking can improve efficiency by over 50% on
average. Despite evaluating the operator for other problems
the choice of parameters for a specific problem in advance
remains as an important research question. Furthermore,
developing an improved fingerprint mechanism may be ben-
eficial, so that syntactically different but semantically equiv-
alent phenotypes could be recognized. Besides the forking
operator, we think combining population statistics upon fin-
gerprints with other genetic operators is an interesting re-
search topic. For instance, the variable crossover rate pro-
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Figure 10: The number of generations to converge
over the slowest 500 runs for fi(z,y) = z°/y*

posed by Clegg et al. [2] may be realized with these statistics
in a problem-independent way.

Another interesting research question could be extending
forking to evolutionary algorithms. In contrast to GP ap-
plications, phenotype spaces for evolutionary algorithms are
often continuous and not discrete. Thus, identifying individ-
uals with the same phenotype is not as easy as for discrete
spaces. A possible solution may be a metric that describes
similarity of individuals in a problem-independent fashion.

For future research, our main focus will rely on further ac-
celerating GP algorithms. Additionally, we will use these al-
gorithms to realize a prediction model for car accident sever-
ity so that new intelligent occupant safety functions could be
developed. By improving convergence behavior, we believe
that we find better solutions for this particular problem as
larger solution spaces could be covered.
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