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ABSTRACT
A new model of Genetic Programming with variable size popu-
lation is presented in this paper and applied to the reconstruction
of target functions in dynamic environments (i.e. problems where
target functions change with time). The suitability of this model
is tested on a set of benchmarks based on some well known sym-
bolic regression problems. Experimental results confirm that our
variable size population model finds solutions of the same quality
as the ones found by standard Genetic Programming, but with a
smaller amount of computational effort.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming

General Terms
Algorithms, Performance

Keywords
Genetic Programming, Variable Size Population, Dynamic Opti-
mization

1. INTRODUCTION
Many real-world problems are anchored in dynamic environ-

ments, where some element of the problem domain, typically the
target, changes with time. In the last few years, many contribu-
tions have appeared which studied dynamic optimization environ-
ments and developped new evolutionary frameworks for solving
them. Nonetheless, for the majority of those approaches the prob-
lem objective is finding the extrema (maxima or minima) of a tar-
get function that changes with time. On the other hand, very few
contributions have appeared to date studying the ability of Genetic
Programming (GP) to reconstruct target functions on dynamic opti-
mization environments. In this paper we hypothesize that variable
size population GP outperforms standard (fixed size) GP on dy-
namic optimization problems. This idea is not new in evolutionary
computation; for instance, it has been applied to PSO in [2]. How-
ever, it has never been applied to GP before. We propose a variable
size population GP model called DynPopGP, inspired by the one
presented in [4] and we compare its performance with the one of
standard GP on a set of new symbolic regression-like dynamic op-
timization benchmarks.
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2. THE PROPOSED ALGORITHM
DynPopGP can be summarized by the pseudo-code in Figure 1,

where we consider minimization problems (i.e. small fitness val-
ues are better than large ones). This algorithm uses the follow-
ing functions: (i) update pop size(x), that adds |x| individuals to
the population if x is positive and suppresses |x| individuals if x
is negative; and (ii) Δpop(), that returns the number of individu-
als that have to be to be added or suppressed from the population
when neither the old best fitness value nor the new one approximate
the optimal fitness value in a satisfaisable way. The Δpop() func-
tion performs the following calculation: Δpop() = pivot · strength ·
best fit contribution() · pop size contribution(), where: (iii) pivot
is a variable whose value is −1 if the best fitness in the population
at the current generation is better then the one at the previous gener-
ation and +1 otherwise (in practice, the value of pivot determines
if individuals have to be added or suppressed); (iv) strength is a
variable that determines how strong populations inflate and deflate
have to be at each step; (v) the best fit contribution() function, that
determines the contribution given to the Δpop() by the best fitness
value reached (it is defined by the pseudo-code in Figure 2); and
(vi) the pop size contribution() function, that is analogous to the
best fit contribution() function, except that it determines the con-
tribution to the Δpop() given by the current population size.

3. TEST PROBLEMS
It would make no sense to use moving peaks benchmarks as the

ones presented for instance in [1] in this work. In fact, in those
kinds of benchmark, extrema are moved by changing some addi-
tive or multiplicative constants to a (otherwise not changing) target
function. If one uses GP with linear scaling (introduced in [3]),
the moving peaks problem reduces to a static GP problem, given
that linear scaling allows to reconstruct the shape of the target
functions, offering a method to automatically determine additive
and multiplicative constants. For this reason, we define a new set
of benchmark problems that can be used to test GP ability to re-
construct target functions in dynamic environments. Maintaining
the same terminology as in [3], we have considered test functions
F12, F13, F14, F15 and F16 and we have used them to build dy-
namic test problems in which the importance of the modification
of the target function can be tuned. Using these test functions,
we have built three benchmarks for dynamic optimization that we
have called BENCH1, BENCH2 and BENCH3. The target func-
tion at each generation is calculated by the algorithm in Figure 3,
where given a test function Fi, with 12 ≤ i ≤ 15 succ(Fi) = Fi+1
and succ(F16) = F12.
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begin
Generate a population of N random individuals;
best = best individual in the population;
old got trg = false;
for g := 1 to maxgen do

new got trg = (fitness(best) ≤ trg fit);
if (not new got trg)

then
elitism (i.e. copy of the best);
selection;
reproduction / crossover;
mutation;
best = best individual in the new population;
new got trg = (fitness(best) ≤ trg fit);
if (old got trg)

then
// The old best had reached the target, while
// the new best has not reached it:
// the target function has surely changed.
// Set the population size to the initial size
update pop size(N - current pop size);

else
// Neither the new best, nor the old best
// have reached the target: update the
// population size using the Δpop function
update pop size(Δpop());

endif
else

if (not old got trg)
then

// The new best has reached the target, while
// the old best had not reached it. This means
// that the target has been found now.
// I have to spend as few computational effort
// as possible until the target function changes
// (or the process terminates).
// I set the population size to a prefixed
// “stand-by” value
update pop size(stand by size - current pop size);

endif
endif
old got trg = new got trg;

endfor
end

Figure 1: Pseudo-code for the DynPopGP algorithm.

best fit contribution() ::
if ( fitness(best) ≤ trg fit) then return min coeff;
elsif (fitness(best) ≥ max fit) then return max coeff;
else return

max coeff −min coeff · fitness(best)−trg fit
max fit−trg fit +min coeff

endif

Figure 2: Pseudo-code for the best fit contribution function.

begin
Define a set of test functions F = { f1, f2 , ..., fn}
for g := 1 to maxgen do

For each fitness case (x,y), the target value is:
n

∑
i=1

fi(x,y)

if (g mod period = 0) then
∀1 ≤ i ≤ n : fi := succ( fi)

endif
endfor

end

Figure 3: Pseudo-code for target calculation in benchmark
problems BENCH1, BENCH2 and BENCH3 The difference
between these benchmark is in the size of set F: n = 2 for
BENCH1; n = 3 for BENCH2 and n = 4 for BENCH3.

4. EXPERIMENTAL RESULTS
In Figure 4 we report the results obtained executing 100 inde-

pendent runs against generations for standard GP (stdGP) and Dyn-
PopGP for BENCH3. This figure clearly shows that: (a) the two

GP models find solutions of similar qualities at corresponding gen-
erations; (b) the effort spent by DynPopGP is smaller than the one
spent by stdGP; (c) solutions are found by DynPopGP with less
computational effort than by stdGP; and (d) the population size of
DynPopGP is always smaller than the one of stdGP. We also re-
mark that, as expected, the population size of DynPopGP tends to
grow at each period generations (generation number multiple of
20), because of the modification in the target function. Results for
BENCH1 and BENCH2, not shown here for lack of space, are qual-
itatively analogous to the ones for BENCH3.

(a) (b)

(c) (d)

Figure 4: Experimental results obtained using stdGP and Dyn-
PopGP for BENCH3. (a): Average best fitness against genera-
tions; (b): Computational effort against generations; (c): Av-
erage best fitness against computational effort; (d): Population
size against generations.
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