
Fine-Grained Population Diversity Estimation for Genetic
Programming Based Structure Identification

Stephan M. Winkler
Upper Austria University of

Applied Sciences
School of Informatics,

Communications and Media
Softwarepark 11

A-4232 Hagenberg, Austria
stephan@heuristiclab.com

Michael Affenzeller
Upper Austria University of

Applied Sciences
School of Informatics,

Communications and Media
Softwarepark 11

A-4232 Hagenberg, Austria
michael@heuristiclab.com

Stefan Wagner
Upper Austria University of

Applied Sciences
School of Informatics,

Communications and Media
Softwarepark 11

A-4232 Hagenberg, Austria
stefan@heuristiclab.com

ABSTRACT
We here describe a novel formalism for estimating the struc-
tural similarity of formulas that are evolved by a genetic pro-
gramming (GP) based identification process. This method
takes into account several aspects of structure tree compar-
ison that are particularly important in the context of evolu-
tionary system identification; this similarity measure is used
for measuring the genetic diversity among GP populations.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Process metrics;
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms
Algorithms, Measurement, Design, Experimentation

Keywords
Genetic Programming, Data Mining, Machine Learning, Pop-
ulation Diversity Analysis, System Identification

1. FINE-GRAINED SIMILARITY
ESTIMATION

The standard tree structures representation in GP makes
it possible to use more fine grain structural measures that
consider nodes, subtrees, and other graph theoretic prop-
erties; a comprehensive overview of program tree similar-
ity and diversity measures has been given for instance in
[1]. As an alternative, we have designed and implemented a
method that systematically collects all pairs of ancestor and
descendant nodes in structure trees representing mathemat-
ical models and information about the properties of these
nodes. Additionally, for each pair we also document the dis-
tance (with respect to the level in the model tree) and the

This work was done within the research project L284-N04
“GP-Based Techniques for the Design of Virtual Sensors”
sponsored by the Austrian Science Fund (FWF).

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-130-9/08/07.

index of the ancestor’s child tree containing the descendant
node. The similarity of two models is then, in analogy to the
method described in the previous section, calculated by com-
paring all pairs of ancestors and descendants in one model
to all pairs of the other model and averaging the similarity
of the respective best matches.

Figure 1 shows a simple formula and all pairs of ancestors
and descendants included in the structure tree representing
it; the input indices as well as the level differences (“level
delta”) are also given. Please note: The pairs given on the
right side of Figure 1 are shown intentionally as they sym-
bolize the pairs of nodes with level difference 0, i.e. nodes
combined with themselves.

 

+ 

ex 0.7*X4t-2 

1.1*X2t-1 

+ ex 

1.1*X2t-1 + 

+ 0.7*X4t-2 

ex 1.1*X2t-1 

Index: 1 
Level Delta: 1 

Index: 1 
Level Delta: 2 

Index: 2 
Level Delta: 1 

Index: 1 
Level Delta: 1 

1 

2 

3 

4 

1 

2 

3 

4 

+ 

1.1*X2t-1 

+ 

0.7*X4t-2 

ex 

1.1*X2t-1 

Index: - 
Level Delta: 0 

Index: - 
Level Delta: 0 

Index: - 
Level Delta: 0 

Index: - 
Level Delta: 0 0.7*X4t-2 

ex 

Figure 1: Simple formula structure and all included
pairs of ancestors and descendants.

We define a genetic item as a 6-tuple storing the following
information about the ancestor node a and descendant node
d: The type of the node a (typea), the type of the node d
(typed), the level delta (δl), the index of the child branch
of a that includes d (index), the node parameters charac-
terizing a (npa), and the node parameters characterizing d
(npd). The parameters characterizing nodes are hereby rep-
resented by tuples containing the following information: For
functions the variant (var), and for terminals the coefficient
(coeff), the time offset (to), and the variable index (vi).

Now we can define the similarity of two genetic items gi1
and gi2, s(gi1, gi2), as follows:

Most important are the types of the definitions referenced
by the nodes; if these are not equal, then the similarity is 0
regardless of all other parameters:

∀gi1 ,gi2 : gi1.typea �= gi2.typea ⇒ s(gi1, gi2) = 0 (1)

∀gi1 ,gi2 : gi1.typed �= gi2.typed ⇒ s(gi1 , gi2) = 0 (2)

1435



If the types of the nodes correspond correctly, then the
similarity of gi1 and gi2 is calculated using the difference
contributions d1 . . . d10 of the parameters of gi1 and gi2 and
coefficients c1 . . . c10 whose use is to be explained later. The
differences regarding input index, variant and variable index
are not anyhow relativized, their similarity contribution is 1
in the case of equal parameters for both genetic items and 0
otherwise. The differences regarding level difference, coeffi-
cient and time offset, on the contrary, are indeed relativized:

• The level difference is divided by the maximum tree
height heightmax,

• the difference of coefficients is divided by the range of
the referenced terminal definition (in case of uniformly
distributed coefficients) or divided by the standard de-
viation σ (in case coefficients are normal distributed),

• and the difference of the time offsets is divided by the
maximum time offset allowed offsetmax.

∀gi1 , gi2 : (gi1 .typea = gi2 .typea) & (gi1 .typed = gi2 .typed) ⇒

d1 =
|gi1.δl − gi2.δl|

heightmax
(3)

d2 =
{

0 : gi1.index �= gi2.index
1 : gi1.index = gi2.index

(4)

d3 =
{

0 : gi1.npa.var �= gi2.npa.var
1 : gi1.npa.var = gi2.npa.var

(5)

d4 =
{

0 : gi1.npd.var �= gi2.npd.var
1 : gi1.npd.var = gi2.npd.var

(6)

δca = |gi1.npa.coeff − gi2.npa.coeff| (7)

d5 = 1 −

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

if(isUniformT erminal(gi1 .typea)) :
δca

gi1.typea.max−gi1.typea.min

if(isGaussianT erminal(gi1 .typea)) :
δca

gi1.typea.σ∗4

(8)

δcd = |gi1.npd.coeff − gi2.npd.coeff| (9)

d6 = 1 −

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

if(isUniformT erminal(gi1 .typed)) :
δcd

gi1.typed.max−gi1.typed.min

if(isGaussianT erminal(gi1 .typed)) :
δcd

gi1.typed.σ∗4

(10)

d7 = 1 −
|gi1.npa.to − gi2 .npa.to|

offsetmax
(11)

d8 = 1 −
|gi1.npd.to − gi2.npd.to|

offsetmax
(12)

d9 =
{

0 : gi1.npa.vi �= gi2.npa.vi
1 : gi1.npa.vi = gi2.npa.vi

(13)

d10 =
{

0 : gi1.npd.vi �= gi2.npd.vi
1 : gi1.npd.vi = gi2.npd.vi

(14)

Finally, there are two possibilities how to calculate the
structural similarity of gi1 and gi2, sim(gi1, gi2):

• When using the additive calculation, which is the ob-
viously more simple way, sim(gi1, gi2) is calculated as
the sum of these similarity contributions d1...10 weight-
ed using the factors c1...10 and divided by the sum of
the weighting factors:

sim(gi1 , gi2) =

∑10
i=1 di · ci∑10

i=1 ci

(15)

• Otherwise, when using the more complicated multi-
plicative calculation method, we first calculate a pun-
ishment factor pi for each di (again using weighting
factors ci, 0 ≤ ci ≤ for all i ∈ [1; 10]) and then get the
temporary similarity result simtmp:

∀i∈[1;10] : pi = (1 − di) · ci (16)

simtmp(gi1, gi2) =
10∏

i=1
(1 − pi). (17)

In the worst case scenario we get di = 0 for all i ∈
[1; 10] and therefore the worst possible simtmp is

simworst =
10∏

i=1
(1 − ((1 − di) · ci)) =

10∏
i=1

(1 − ci). (18)

As simworst is surely greater than 0 we linearly scale
the results to the interval [0; 1]:

sim(gi1 , gi2) =
simtmp(gi1 , gi2) − simworst

1 − simworst

. (19)

In fact, we prefer this multiplicative similarity calcula-
tion method since it allows more specific analysis: By
setting a weighting coefficient cj to a rather high value
(i.e., near or even equal to 1.0) the total similarity will
become very small for pairs of genetic items that do not
correspond with respect to this specific aspect, even if
all other aspects would lead to a high similarity result.

For comparing models m1 and m2 we collect all pairs of
ancestors and descendants (up to a given maximum level
difference) in m1 and m2 and look for the best matches in
the respective opposite model’s pool of genetic items. For
each genetic item gi1 in the structure tree of m1 we elicit that
genetic item gix in the model structure m2 with the highest
similarity to gi1; the similarity values s are collected for all
genetic items contained in m1 and their mean value finally
gives us a measurement for the structure based similarity of
the models m1 and m2, sim(m1, m2).

2. GENETIC DIVERSITY
We finally describe the measures which we use to monitor

the diversity and population dynamics with respect to the
genetic make-up of solution candidates; we hereby use the
similarity measures described in Section 1. As we know that
both these similarity functions are not symmetric, we can al-
ternatively use the mean value of the two possible similarity
calls and so define a symmetric similarity measurement:

symmetricAnalysis ⇒

sim(m1, m2) =
sim(m1, m2) + sim(m2, m1)

2
(20)

In the context of single-population GP we are mainly inter-
ested in the similarity among the individuals of the popula-
tion: For each model m of the population P we calculate the
mean and the maximum similarity with all other individuals
in the population:

meanSim(m, P ) =
1

|P | − 1

∑
m2∈P,m2�=m

sim(m, m2) (21)

maxSim(m, P ) = max(m2∈P,m2�=m)sim(m, m2) (22)

The mean values of all individuals’ similarity values are
used for calculating the mean and maximum similarity mea-
sures for populations:

meanSim(P ) =
1

|P |
∑

m∈P

meanSim(m, P ) (23)

maxSim(P ) =
1

|P |
∑

m∈P

maxSim(m, P) (24)

3. REFERENCES
[1] E. Burke, S. Gustafson, and G. Kendall. A survey and

analysis of diversity measures in genetic programming.
In GECCO 2002: Proceedings of the Genetic and
Evolutionary Computation Conference, pages 716–723,
New York, 2002. Morgan Kaufmann Publishers.

1436


