
InteGene: An Integer Linear Programming Tool for
Discovering Approximate Gene Clusters

Princess Danielle V. Florendo1
1
Department of Physical Sciences and Mathematics

University of the Philippines Manila

Manila, Philippines
pvflorendo@up.edu.ph

Geoffrey A. Solano1,2
2
Algorithms and Complexity Laboratory

University of the Philippines Diliman

Manila, Philippines
gasolano@up.edu.ph

Abstract—The opportunity of finding conserved segments in

different species has increased with the increasing availability of

completely sequenced genomes. Similarity of different parts or

regions of different genomes suggests evolutionary relationships

among different species and might foretell functional roles which

prevented genes to separate. These similar segments are called

conserved gene clusters or gene clusters. Approximate Gene

Cluster Discovery Problem (AGCDP) is the problem of finding

genes that are kept together in different species. Presented in this

study is an Integer Linear Programming (ILP) formulation of the

AGCDP. Since ILP is proven to be NP -complete, the study also

made use of LP Relaxation since linear programming problems

can be solved in polynomial time. The software used Java for

the interface and other functionalities and R for solving ILP.

InteGene, the tool produced by the study, can provide the user

the best clusters given a set of data and input constraints which

can be further tested for biological significance.

Index Terms—Genome, Gene, Gene Clusters, Approximate

Gene Cluster Discovery Problem, Integer Linear Programming,

LP Relaxation

I. INTRODUCTION

In the field of comparative genomics, a field in biology that
focuses in the comparison of genome sequences of different
species, it is imperative to find how different species are inter-
connected at the genetic level. With the increasing availability
of completely sequenced genomes, the opportunity of finding
conserved segments in different species has increased as well.
Different biological processes such as gene rearrangements,
gene transfer, gene duplication, and gene loss result to changes
in gene order. And over time, the gene order and gene comple-
ment of the genomes that initially have the same gene order
and gene content will diverge [6], [7]. However, gene order
is not random [2]. Similarity of different parts or regions of
different genomes suggests evolutionary relationships among
different species and might foretell functional roles which
prevented genes to separate [6]. These similar segments are
called conserved gene clusters or gene clusters.

Gene clusters, defined as ”genomic regions that share a
common ancestor [3]”, are set of genes in two or more
genomes [8]. Comparative genomics suggests that genes that
stay conserved in different species imply a biological function
[9]. Biological reasons are due to being part of a biochemical
network, co-expression, functional pressure, and evolutionary

proximity [10] [11]. Through identification of common gene
clusters among different organisms, it can be identified how
these organisms are related at the genetic level. Different
models for gene clusters have been defined such as r-window
clusters, gene teams or max-gap clusters, and common in-
tervals [2]. Different approaches of finding gene clusters
depending on the model have materialized in the past years.

An integer linear programming approach to the Approx-
imate Gene Cluster Discovery Problem (AGCDP) was pre-
sented in a study by Rahmann and Klau in 2008 [12]. The
approximate gene cluster discovery problem aims to find genes
that are kept most likely together. Although ILP generally
do not produce efficient algorithms, it provides a general
framework to identify gene clusters of different models. The
advantage of such formulation versatility of the objective
function defined. The formulation is general in the sense that
the constraints can be easily tweaked to find max-gap clusters,
r-window clusters, and common intervals in permutations and
sequences. In succeeding years, further studies were done on
AGCDP It was proven NP-hard in a study by Cabunducan et.
al. [16] while its graph theoretic aspects were explored in [1].

The goal of the study is to develop a system that implements
the integer linear programming formulation for AGCDP in
[12] and test it using available data on genomes and gene
clusters. The software tool can help the researchers identify
approximate gene clusters.

A. This Study

InteGene is a tool for discovering approximate gene clusters
will be produced. The tool uses Integer Linear Programming
(ILP) and also allows relaxing the integral constraints in
finding an optimal gene cluster provided a set of genomes and
formulation constraints as input. The tool allows the researcher
to:

1) Input genomic data of the species in csv format.
2) Preview the transformed data from genes to integers.
3) Choose whether to use Integer Linear Progamming or

LP relaxation.
4) Choose whether to use the basic integer linear pro-

gramming formulation or the modified formulation for
978-1-7281-4959-2/19$31.00 © 2019 IEEE

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:18:14 UTC from IEEE Xplore. Restrictions apply.

finding either common intervals, max-gap clusters, or
r-windows.

5) Input the constraints that will be used in ILP minimiza-
tion such as:

a) size range [D�, D+] for the reference genome
b) integer weights w� � 0 and w+ � 0 for the cost

of missing and additional genes
c) gap size g if user is interested in finding max-gap

clusters
d) size k if user is interested in finding r-windows

6) View the generated gene clusters.
7) View user guide on how to use the tool.
8) Export the results in a PDF file.
9) Export the results in csv format.
Identification of gene clusters can provide information about

the relationship of different species. Gene clusters may also
be associated to a function, a trait, or a disease. However,
manual identification of gene clusters among genomes can be
tedious since the number of genes in a chromosome range
from hundreds to thousands. By the help of a software tool,
the process of identifying these gene clusters can be performed
faster.

Proprietary tools for solving integer linear programming
problems have been developed such as CPLEX of International
Business Machines (IBM). The ILP formulation derived by
Rahmann in [12] was demonstrated using CPLEX. However,
no tool especially designed for finding gene clusters using
integer linear programming has been made.

Upon discovery of optimal gene clusters using the software,
new researches can be conducted to verify if the approximate
gene clusters have a biological significance.

II. PRELIMINARY CONCEPTS

A. Gene

A gene is a DNA segment that encodes for proteins and
RNAs [17] [18]. In this study, genes are represented as positive
integers. Genes that are homologs of each other are represented
with the same integer. Homologs are genes that occur in the
same genome or across different genomes that account for the
same function. Orthologs are homologs which are conserved
sequences of genes found in different genomes predicted to
have come from a single ancestor. Paralogs are homologs
which are conserved sequences found in the same genome
due to gene duplication [19].

Genes are stored in molecules called chromosomes which
consist of two DNA strands in opposite directions. In these
strands are where genes are located. A gene’s orientation is
dependent on which strand it is located. The orientation tells
how the information is read, either positive(+) or negative(-
). Gene order is the sequential location of a gene in a
chromosome. Changes in gene order and gene orientation are
due to gene rearrangements [20]. In this study, gene orientation
is ignored since orientation is sometimes not conserved.

A gene is represented as an integer g 2 Z+. The gene
universe U = {1, 2, ...N} is the set of all genes with

existing homologs where N is the total number of genes in
consideration. Genes that do not have a homolog known is
represented as the integer 0.

B. Genome

A genome constitutes to the complete DNA of an organism
[21]. A genome g = (g1, g2, ...gn) is a sequence of n genes.
A set of genomes is represented by G = {g1, g2, ...gm} where
m is the total number of genomes in the set. Given a genome
gi where gi is the ith genome in the set of genomes G, the
number of genes in gi or its length is denoted by |gi| = n

i

.

C. Linear Interval and Gene Content

A linear interval is a set of genes that occur consecutively
in a genome. A linear interval J in genome gi is represented
as an index set which can be empty J = ; or non-empty
J = {j, j+1, ...k}. It can also be denoted as J = [j : k] where
1  j  k  n. The length of a linear interval J = [j : k]
is |J | = k � j + 1. The gene content of a linear interval
is the set of all genes that are included in the interval. The
corresponding gene content of linear interval J = [j : k] is
the set G

J

= {g
j

, ...g
k

}.

D. Models of Gene Clusters

Gene clusters, defined as “genomic regions that share a
common ancestor [3]”, are set of genes in two or more
genomes [8]. In the context of the study, a gene cluster is a
conserved region that occurs in a set of genomes where gene
order and content is not strictly conserved [3]. A genome, or
a subset of it, is represented as a string of integers. Models
of gene clusters were thoroughly defined in [2], [3], and
[8]. r-windows and max-gap clusters were introduced in [3].
Combinatorial models were discussed in [2]: common interval
versus max-gap in permutations versus sequences. Conserved
segments was also introduced. In [8], the notion of nested
intervals was discussed.

E. lp solve

lp solve, a free library written in ANSI C, is an open source
(mixed-integer) linear programming (MILP) system. There are
four versions available for use; the most recent was version
5.5 that was released in 2005. It solves linear programming
problems using two algorithms: revised simplex method and
the branch-and-bound algorithm. lp solve can be called as a
library in different languages such as C, VB, .NET, Java, etc.
Similarly, the library can be called from AMPL, MATLAB,
Octave, R, etc. The library can handle integer variables, semi-
continuous variables, and special ordered sets by using the
branch-and-bound algorithm.

The Revised Simplex Method expresses linear programs as
matrices. The revised simplex method is preferable than its
original, the simplex method, since it works faster on large
problems [22]. On the other hand, the Branch-and-Bound
algorithm is for solving NP -hard combinatorial optimization
problems. It looks for the best solution by looking at all
potential solutions.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:18:14 UTC from IEEE Xplore. Restrictions apply.

F. Approximate Gene Cluster Discovery Problem (AGCDP)

The approximate gene cluster discovery problem is the
problem of finding genes that are kept together in different
species. The advantage of using the formulation presented in
this paper is its independence of hard constraints. Given

• gene universe U = {1, 2, ..., N}
• m genomes (gi)

i=1,...m where gi = {gi1, ..., gini
}

• integer weights w+ and w� which correspond to the cost
of additional gene and missing gene, respectively

• a size range [D�, D+] for the reference gene set
find X ⇢ U such that 0 /2 X and D�  |X|  D+ and a
linear interval J i for each genome to minimize the objective
function

c := c(X, (J
i

)) =
mX

i=1

[w� · |X \Gi

Ji
|+ w+ · |Gi

Ji
\X|] (1)

where c is the cost function, |X \ Gi

Ji
| is the number of X-

genes not found in the interval or “missing genes”, and |Gi

Ji
\

X| is the number of genes found in the interval that are not
in X or “additional genes”.

The modeling approach does not give a closed definition on
what is contained in the set of all approximate gene clusters. It
is not interested in all approximate gene clusters but of the best
clusters in terms of the objective function. It is, thus, sure to
provide a solution unless the objective function is constrained
[12].

G. Integer Linear Programming Formulation

An overview of the variables used in the ILP formulation
[12] is provided in below. All variables are binary.

Main Objects ILP Variables (Binary)
Reference gene set X x = (xq)q=0,...,N

Interval Ji in ith genome z

i = (zij)j=1,...,ni , i = 1, ...,m
Gene content Gi

ji
ofJi in g

i
X

i = (Xi
q)q=0,...,N , i = 1, ...,m

Auxiliary Objects ILP Variables (Binary)
Increments is z

i +
z

i = (+z

i
j)j=1,...,ni , i = 1, ...,m

Decrements in z

i �
z

i = (�z

i
j)j=1,...,ni , i = 1, ...,m

Intersection X \G

i
Ji

◆

i = (◆iq)q=0,...,N , i = 1, ...,m

Target Quantities ILP Expression
#{Missing genes in g

i}: |X \G

i
Ji
|

PN
q=0 xq � ◆

i
q

#{Additional genes in g

i}: |Gi
Ji

\X|
PN

q=0 Xq � ◆

i
q

TABLE I
OVERVIEW OF VARIABLES AND EXPRESSIONS REPRESENTING OBJECTS

AND QUANTITIES IN THE BASIC ILP FORMULATION

1) Modeling the Reference Gene Set X: The reference gene
set X is represented as a binary vector x = (x0, ..., xN

) 2
{0, 1}N+1, where we set x

q

= 1 if and only if q 2 X .
Additional conditions include

x
o

= 0 and D� 
X

q

x
q

 D+.

2) Modeling the Intervals J
i

: Binary indicator vectors zi =
(zi

j

)
j

= 1, ..., n
i

are used to model the selected interval J
i

in
the genome i. A linear interval in genome i is characterized
by zi occurring consecutively. This property is enforced by
introducing auxiliary binary vectors +zi = (+zi1, ...,

+ zi
ni
)

and �zi = (�zi1, ...,
� zi

ni
) which increments and decrements,

respectively in zi.
Therefore, zi1 =+ zi1 �� zi1, and for 2  j  n

i

: zi
j

=
zi
j�1 +

+ zi
j

�� zi
j

. Simultaneous increment and decrement at
each position is not allowed: +zi

j

+� zi
j

 1 for all j =
1, ..., n

i

. At most one increment and decrement is allowed:P
ni

j=1
+zi

j

 1 and
P

ni

j=1
�zi

j

 1.
All three vectors zi, +zi and �zi are elements of {0, 1}ni .

An interval [j : k] with 1  j  n
i

can be represented in a
unique way by setting +zi

j

= 1 and �zi
k+1 = 1. If k = n

i

,
then �z is the zero vector.

3) Modeling the Intervals’ Gene Contents Gi

Ji
: The gene

content Gi

Ji
in genome i, is modeled by another indicator

vector Xi = (Xi

q

)
q=0,...,N : if some position j is covered

by the chosen interval J
i

, the corresponding gene must be
included in the gene content; thus Xi

g

i
j

for all j = 1, ..., n
i

.
On the other hand, if some gene q 2 1, ..., N is not covered
by J

i

, it must not be included: Xi

q


P

j:gi
j=q

zi
j

for all
q 2 0, ..., N . If gene q is not in genome i, the sum inequality
is Xi

q

= 0.

4) Modeling the Target Function: The intersection between
the reference gene set X and the selected gene content Gi

Ji
in

the ith genome. A family of indicator vectors for i = 1, ...,m :
◆i = (◆i

q

)
q=0,...,N is introduced to model the set intersection

X \ Gi

Ji
via the inequalities ◆i

q

 x
q

, ◆i
q

 Xi

q

, and ◆i
q

�
x
q

+Xi

q

� 1. Therefore, the target function is composed of

|X \Gi

Ji
| =

NX

q=0

(x
q

� ◆i
q

); |Gi

Ji
\X| =

NX

q=0

(Xi

q

� ◆i
q

)

where |X \ Gi

Ji
| is the number of “missing genes” and

|Gi

Ji
\X| is the number of “additional genes”.

The whole ILP formulation for (AGCDP) is provided in
[12].

III. DESIGN AND IMPLEMENTATION

A. Data Specifications

To find approximate gene clusters, the researcher shall input
a file. The format of the file should strictly comply with the
following:

• The input file is in csv format.
• Each row in the data input shall correspond to one

genome.
• The first column of each row is the scientific name of the

organism.
• Subsequent columns after the first column must contain

the genes of the species represented by its symbol.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:18:14 UTC from IEEE Xplore. Restrictions apply.

• Genes that are unidentified or missing at a certain position
must be represented as the number 0.

• The homologous genes in the data file are already repre-
sented with the same names.

• The ordering of genes in the input file is the same to the
ordering of genes in the genome.

B. System Design

The succeeding illustrations show how the system is imple-
mented. The input and output requirements of the application
is defined in Figure 1. The researcher inputs genomic data
alongside the parameters needed for solving the ILP problem.
In return, the tool produces approximate gene clusters as
results.

Fig. 1. Context Diagram

Fig. 2. Flowchart Diagram - Researcher

The tool has only one user, the researcher. The use case
diagram for the researcher is provided in Figure 2.

The researcher can input a genome file in CSV format. The
researcher may browse through the transformed data i.e. the

data after each gene is represented as an integer. The researcher
can either use Integer Linear Programming or LP Relaxation.
The researcher can also enter the constraints for solving the
problem. After running the program, the researcher can view
the approximate gene clusters discovered. The researcher can
also check out the tool manual provided.

The flowchart diagram of the system is provided in Figure
3. The first step in using the tool is to input a file in csv format
which contains the genomic data. The system transforms the
genomic data by representing genes as integers and allows
the user to view the processed data. The user is then asked
to choose between using Integer Linear Programming and LP
Relaxation. The user is then asked if the formulation to be used
is basic or modified. After selecting which formulation to use,
the researcher is prompted to input the variables needed for the
formulation. The system then computes for approximate gene
clusters and displays the results. The user may also export the
results in a file in csv format.

Fig. 3. Flowchart Diagram - Researcher

C. System Architecture

The software uses R and the library lp solve to minimize
the integer linear programming (ILP) function and integrates
backend processes to Java which handles other functionalities
and the user interface. The user can run the program without

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:18:14 UTC from IEEE Xplore. Restrictions apply.

an installed Java Runtime Environment (JRE) and can run on
any operating system.

D. Technical Architecture

Specifications required for the software to run smoothly
include: 4 GB RAM and processor speed of 2.40 GHz.

IV. SYSTEM INTERFACE NAVIGATION

The main window is shown once the application is opened.
The user can either start finding gene clusters, read the user
manuals, or learn more what the application is about.

Fig. 4. Home Screen, Approximate Gene Cluster Discovery Tool

First, the user must be able to provide input data. Once
the user has provided the data, the user will be able to
see the contents of the data. After providing the input data,
the application will now convert the genomes in the data to
integers. Once this process is finished, the user will now be
able to proceed in the Preview tab seen in Figure 5. There
the user will be able to see the converted data where the non-
homologs in the original data as seen in the first text box are
converted to zero as seen on the second text box.

After viewing the transformed data, the user can proceed
to the Constraints tab. The default formulation is general. In
here, the user is given the power to change the formulation,
size range, and additional and missing gene weights. The gap
size can only be used if the formulation chosen is for finding
max-gap clusters. Similarly, the k-size can only be used if
the formulation chosen is for finding r-Window clusters. After
changing the constraints as desired by the user, the user can
now proceed to finding the best clusters given the constraints.
Solving for approximate gene clusters may take a few minutes
especially if the data provided is big. The view while this
process is happening can be seen in Figure 6.

After the application has computed for the best clusters, the
user will be able to see the results in the Results tab as seen
in Figure 7. From here, the user can export the results in CSV
format or in PDF format.

Fig. 5. Preview, InteGene

Fig. 6. Constraints, InteGene

Fig. 7. Results, InteGene

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:18:14 UTC from IEEE Xplore. Restrictions apply.

V. RESULTS AND DISCUSSION

InteGene is a tool for finding approximate gene clusters
which uses an integer linear programming approach. The
application provides biologists and researchers in the field of
genomics a platform in which they can use for discovering
gene clusters that may have significance. Using available data,
the user or the researcher can define the constraints which
define the cluster the user is interested to find. However, since
the results returned by the system are those groups of genes
that are merely relatively near each other across genomes, it is
not certain that these resulting clusters really have biological
significance. This is outside the scope of the tool.

InteGene uses ILP that is proven to be NP -complete.
Other algorithms developed such as [14] for finding common
intervals in k permutations that run in O(kn + K). An
algorithm of time complexity O(n2log(n)) is also presented
in [13] for finding common intervals given 2 sequences where
n is the length of the longer sequence. Two algorithms for
finding max-gap clusters are also presented in [15]. Blin
et. al presented three efficient algorithms for finding nested
intervals, if present, that run in cubic time, quadratic time,
and linear time [8]. The advantage of using ILP, despite being
NP -complete is that it does not restrict the results to one
model of gene cluster such as presented in the other studies.
Furthermore, the ILP approach can be modified to cater other
gene models. However, other algorithms for finding specific
models that are more efficient are more preferable.

There is limited available data online that represents genes
as numbers since homologous genes in different species are
represented differently. However, there are already different
studies such as [12] that used genome data represented as
integers which means there are already available data in this
form. Two sets of of data were used to test the validity and
correctness of the application.

The data is adapted from [4] and [5]. The dataset pro-
vided in [4] provides a list of identified orthologous genes
between the species Escherichia coli and 36 other species.
The dataset found in [5] provided a list of orthologous
genes found in every species and their corresponding gene
number. The gene number is based on the chromosal posi-
tion of the gene. The data used in [4] and [5] can be ac-
cessed in http://www.cs.kent.edu/ arvind/intellibio/orthos.html
and https://academic.oup.com/mbe/article/22/6/1456/1111802,
respectively.

The data provided in [4] is structured as seen in Table V
but only columns 2 and 3 will be necessary and other columns
are disregarded. The table contains all the orthologous genes
found between genome1 and genome2. Note that genome1
will always correspond to Escherichia coli. The values in
columns 2 and 3 are gene symbols with their corresponding
gene position i.e. in row 1, column 2, the gene symbol is thrA
and the gene position is 2.

To fit the required data format for the application, the data
had to be modified by inserting 00s to positions with no

TABLE II
STRUCTURE OF DATA FROM [4]

Escherichia coli vs. genome2
No. Gene1 Gene2 Strands Location1 Location2
1. thrA.2 hom.3221 +:- 337..2799 3313886..3315187

Escherichia coli vs. genome2
Length1 Length2 Align1 Align2 Enzyme1:Enzyme2

820 433 550:704 75:228 “2.7.2.4”:“1.1.1.3”

available homologs. It must also be converted into the required
format for the application.

The dataset used in [5] is structured as seen in Table V
where the first column name contains the common names of
the genes in E. coli that have orthologs in the subsequent
columns, the second column contains the gene numbers of
E. coli, and the subsequent columns contains the gene numbers
of each genome. There are a total of 30 genomes.

Similarly, the only relevant data is the name of the or-
thologous gene and its gene number or gene position. Each
unique ortholog is represented as x where x 2 Z+. It follows
that orthologous genes are represented by the same positive
integer x. After representing each gene into a positive integer,
sequences of genomes can be derived. Provided the gene
number of each gene in a genome, the genome sequence can
be derived by using the integer representation of each gene
and all genes that are not represented will be assigned the
integer 0.

Also, the data was processed in order to fit the data speci-
fications of the application. Zero’s were inserted to positions
with no homologous gene in the data. This must be done since
non-homologous genes contribute to the validity of a gene
cluster.

In a study by Bansal and Woolverton [23], the authors used
the same data to predict metabolic pathways from identified
gene clusters in the data. However, they have refined the data
so there were newly introduced clusters that were not in the
original data. The identified pathways from gene clusters in the
study is provided in Table V. InteGene was able to produce
the same gene clusters provided the correct constraints. The
results and the corresponding constraints supplied is provided
in Table V. The time for computation is provided but this may
vary depending on the machine specifications.

It was observed that using very small sizes for finding gene

Escherichia coli vs. genome2
Aligned Length Identity Similarity Maximum continuous

58 29 97 3

TABLE III
STRUCTURE OF DATA FROM [5]

name econum BSgnum ... vpanum
aceE b0114 BUsg199 ... VP2519

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:18:14 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
PATHWAY SEEDS USING E. coli VERSUS B. subtilis

Pathway Genes

Citrate Cycle (sdhA, sdhB), (sucA, sucB),
(sucC, sucD)

Oxidative phosphorylation (sdhA, sdhB)
Butanoate metabolism (sdhA, sdhB)
Propanoate metabolism (sucC, sucD)
Lysine degradation (sucA, sucB)
Urea cycle and metabolism of
amino groups

(proB, proA), (argC, argB)

Reductive carboxylate cycle (sdhA, sdhB, sucC, sucD)
Purine metabolism (guaA, guaB, purM, purN),

(prsA, tchB, purD, purH)
Sulfur metabolism (cysC, cysH)
Peptideglycan biosynthesis (yabB, yabC, ftsl, murE,

murD, murF, mraY, ftsW,
murG, murC)

Flagellar assembly (fliE, fliF, fliG, fliI, flil, fliM,
fliN, flip, fliQ, fliR)

Pentose and glucuronate Intercon-
versions

(araD, araA, araB), (lyxk,
yiaS), (orf, ygcE)

Histidine metabolism (hisG, hisD, hisB, hisH, hisA,
hisF, hisl)

Valine, leucine, and isoleucine
biosynthesis

(leuC, leuB, leuA)

Fatty acid biosynthesis (folP, hflB)
Terpenoid biosynthesis (plsX, fabD, fabG, acpP)
Alanine and aspartate metabolism (orf, ispA, xseB)
Cs-branched dibasic acid
metabolism

(argH, oxrR)

Phospholipid degradation (glpQ, glpT)

clusters takes much longer time since it produces more number
of intervals for finding the best gene cluster. In contrast, using
larger sizes for finding gene clusters takes much less time since
there are fewer intervals to check. Thus, using larger ranges
takes much more time since intervals with sizes in the interval
are generated, the number of which is much larger than when
considering one value for the range.

The data provided in [5] was also used to test the tool.
This contains 30 genomes where only genes shared among
the genomes are present in the data. Experimental results are
provided in Table V. It can be seen that the difference of
choosing between LP Relaxation and Integer Linear Program-
ming is not that significant as it only takes only a couple of
seconds.

VI. CONCLUSION

The software produced in this study uses an Integer Linear
Programming formulation adapted from [12] and datasets used
for testing from [4] and [5]. The application’s performance in
terms of time depends on the size of the input data and the
constraints specified by the user.

To prove the validity of the application, the results of the
study in [23] where the results were generated using the tool.
Some of the clusters identified in the study were generated
using the application, however, some were not found due to
modification of the data in the said study.

The performance of using Integer Linear Programming
versus LP Relaxation was also demonstrated using the dataset

TABLE V
GENE CLUSTERS GENERATED BY INTEGENE AND CORRESPONDING

INPUT CONSTRAINTS

Genes Formulation D- D+ w- w+ g k Time Elapsed

(sucA,
sucB)

General 2 2 1 1 - - 1973.1019s

(sucC,
sucD)

General 2 2 1 1 - - 1973.1019s

(proB,
proA

General 2 2 1 1 - - 1973.1019s

(yabB,
yabC, ftsl,
murE,
murD,
murF,
mraY,
ftsW,
murG,
murC)

Max-gap 10 11 0 0 3 -

(fliE, fliF,
fliG, fliI,
flil, fliM,
fliN, flip,
fliQ, fliR)

Max-gap 10 18 0 0 8 - > 7200s

(araD,
araA,
araB/lyxK)

Max-gap 3 3 0 0 1 - > 3600s

(orf,
ygcE)

General 2 2 1 1 - - 1973.1019s

(hisG,
hisD,
hisB,
hisH,
hisA,
hisF, hisl)

Max-gap 7 8 0 0 1 - 98.2902s

(leuC,
leuB,
leuA)

General 3 3 1 1 - - 504.2793s

(plsX,
fabD,
fabG,
acpP)⇤

General 3 3 1 1 - - 504.2793s

(orf, ispA,
xseB)

General 3 3 1 1 - - 504.2793s

(glpQ,
glpT)

General 2 2 1 1 - - 1973.1019s

⇤The gene plsX does not exist in the dataset, however, {fabD, fabG,
acpP} were discovered by the tool.

TABLE VI
SUMMARY OF RESULTS AND THE CORRESPONDING INPUT CONSTRAINTS

USING THE DATASET FROM [5]

Formulation D-
/D+

w-
/w+

Cost Number
of
Results

Time
Elapsed
(ILP)

Time
Elapsed
(LP Re-
laxation)

General 5 1 8 4 581.8555s 599.7276s
General 6 1 8 2 325.5048s 380.4599s
General 7 1 16 10 226.1462s 221.3463s
General 8 1 18 6 144.7781s 142.3204s

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:18:14 UTC from IEEE Xplore. Restrictions apply.

from [5]. The standalone software produced in the study
provides biologists and researchers of the same field a tool
that finds gene clusters from different genomes given a set of
constraints.

VII. RECOMMENDATIONS

One improvement that can be done is to allow homologous
genes from different species to be accepted by the system
even if they are not represented in the same manner. This will
lessen the user’s effort in preprocessing data since there are
online repositories where whole sequences of genomes can be
downloaded. Instead, representation of the same symbol shall
be done internally.

ACKNOWLEDGMENT

G. Solano is supported by the Engineering Research and
Development for Technology (ERDT) Scholarship Program of
the Department of Science and Technology(DOST) and the
Doctoral Sandwich Scholarship Program of the Commission
on Higher Education (CHEd) Philippines.

REFERENCES

[1] J. A. Aborot, H. Adorna, J. B. Clemente, B. K. de Jesus and G.
Solano. Search for a Star: Approximate Gene Cluster Discovery Problem
(AGCDP) as a Graph Problem. Philippine Computing Journal, vol.7 no.2
(2012)

[2] A. Bergeron, Y. Gingras, and C. Chauve, Formal models of gene
clusters, in Bioinformatics Algorithms: Techniques and Applications (I.
I. Mndoiu and A. Zelikovsky, eds.), ch. 8, pp. 177-202, Hoboken, New
Jersey, United States: John Wiley Sons, Inc., 2008.

[3] R. Hoberman and D. Durand, The incompatible desiderata of gene
cluster properties, Lecture Notes in Bioinformatics, vol. 3678, pp. 77-87,
2005.

[4] A. K. Bansal, An automated comparative analysis of 17 compelete
microbial genomes, Bioinformatics, vol. 15, pp. 900-908, 1999.

[5] E. Belda, A. Moya, and F. J. Silva, Genome rearrangement distances
and gene order phylogeny in gamma-proteobacteria, Molecular biology
and evolution, vol. 22, 2005.

[6] D. Durand and D. Sankoff, Tests for gene clustering, Journal of
Computational Biology: A Journal of Computational Molecular Cell
Biology, vol. 10, 2003.

[7] S. Bocker, K. Jahn, J. Mixtacki, and J. Stoye, Computation of median
gene clusters, Journal of Computational Biology, vol. 16, no. 8, pp.
10851099, 2009.

[8] G. Blin, D. Faye, and J. Stoye, Finding nested common intervals
efficiently, Journal of Computational Biology, vol. 17, no. 9, pp. 1183-
1194, 2010.

[9] J. Alfoldi and K. Lindblad-Toh, Comparative genomics as a tool to
understand evolution and disease, Genome Res, vol. 23, pp. 1063-1068,
Jul 2013. 23817047[pmid].

[10] M. Semon and L. Duret, Evolutionary origin and maintenance of coex-
pressed gene clusters in mammals, Molecular Biology and Evolution,
vol. 23, no. 9, pp. 1715-1723, 2006.

[11] B. Snel, P. Bork, and M. A. Huynen, The identification of functional
modules from the genomic association of genes, Proceedings of the
National Academy of Sciences, vol. 99, no. 9, pp. 5890-5895, 2002.

[12] S. Rahmann and G. W. Klau, Integer linear programming techniques for
discovering approximate gene clusters, in Bioinformatics Algorithms:
Techniques and Applications (I. I. Mndoiu and A. Zelikovsky, eds.), ch.
9, pp. 203-222, Hoboken, New Jersey, United States: John Wiley Sons,
Inc., 2008.

[13] G. Didier, Common intervals of two sequences, in WABI, pp. 1724,
Springer, 2003.

[14] T. Uno and M. Yagiura, Fast algorithms to enumerate all common
intervals of two permutations, Algorithmica, vol. 26, no. 2, pp. 290-
309, 2000.

[15] A. Bergeron, S. Corteel, and M. Raffinot, The algorithmic of gene teams,
in International Workshop on Algorithms in Bioinformatics, pp. 464-
476, Springer, 2002.

[16] G. S. Cabunducan, J. B. Clemente, R. T. Relator, and H. N. Adorna,
Approximate gene cluster discovery problem (agcdp) is np-hard, 2011.

[17] E. Fox Keller and D. Harel, Beyond the gene, PLoS One, vol. 2, p.
e1231, Nov 2007.

[18] H. M. Wain, E. A. Bruford, R. C. Lovering, M. J. Lush, M. W. Wright,
and S. Povey, Guidelines for human gene nomenclature.

[19] D. W. Mount, Bioinformatics Sequence and Genome Analysis. Cold
Spring Harbor Laboratory Press, 2004.

[20] A. Griffiths, W. Gelbart, and J. Miller, Modern Genetic Analysis. New
York: W. H. Freeman, 1999.

[21] R. J. Reece, Analysis of Genes and Genomes. John Wiley Sons, Ltd,
2004.

[22] S. S. Morgan, A comparison of simplex method algorithms, 1997.
[23] A. K. Bansal and C. J. Woolverton, Applying automatically derived

gene-groups to automatically predict and refine metabolic pathways,
IEEE Transactions on Knowledge and Data Engineering, vol. 15, no.
4, pp. 883-894, 2003.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:18:14 UTC from IEEE Xplore. Restrictions apply.

