A graphical representation of a function—here the
i number of hours of daylight as a function of the time
= of year at various latitudes— is often the most nat-

ural and convenient way to represent the function.
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Funcrions and Models




The fundamental objects that we deal with in calculus are
functions. This chapter prepares the way for calculus by
discussing the basic ideas concerning functions, their
graphs, and ways of transforming and combining them.
We stress that a function can be represented in different
ways: by an equation, in a table, by a graph, or in words. We look at the main
types of functions that occur in calculus and describe the process of using these func-
tions as mathematical models of real-world phenomena. We also discuss the use of

graphing calculators and graphing software for computers.

1] 1.1 Four Ways to Represent a Function

Functions arise whenever one quantity depends on another. Consider the following four
situations.

A. The area A of a circle depends on the radius r of the circle. The rule that connects r
and A is given by the equation A = 777, With each positive number r there is associ-
ated one value of A, and we say that A is a function of r.

B. The human population of the world P depends on the time ¢. The table gives estimates

Population ; : . :
Year (millions) of the world population P(z) at time ¢, for certain years. For instance,
1900 1650 P(1950) = 2,560,000,000
1910 1750 But for each value of the time 7 there is a corresponding value of P, and we say that
1920 1860 P is a function of t.
1930 2070 .- .
C. The cost C of mailing a first-class letter depends on the weight w of the letter.
1940 2300 . .
1950 2560 Although there is no simple formula that connects w and C, the post office has a rule
1960 3040 for determining C when w is known.
1970 3710 D. The vertical acceleration a of the ground as measured by a seismograph during an
1980 4450 earthquake is a function of the elapsed time . Figure 1 shows a graph generated by
1990 5280 seismic activity during the Northridge earthquake that shook Los Angeles in 1994.
2000 6080 For a given value of ¢, the graph provides a corresponding value of a.
a
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Machine diagram for a function f

A -

FIGURE 3
Arrow diagram for f

Each of these examples describes a rule whereby, given a number (r, ¢, w, or t), another
number (A, P, C, or a) is assigned. In each case we say that the second number is a func-
tion of the first number.

A function f is a rule that assigns to each element x in a set A exactly one ele-
ment, called f(x), in a set B.

‘We usually consider functions for which the sets A and B are sets of real numbers. The
set A is called the domain of the function. The number f(x) is the value of f at x and is
read “f of x.” The range of f is the set of all possible values of f(x) as x varies through-
out the domain. A symbol that represents an arbitrary number in the domain of a function
f is called an independent variable. A symbol that represents a number in the range of f
is called a dependent variable. In Example A, for instance, r is the independent variable
and A is the dependent variable.

It’s helpful to think of a function as a machine (see Figure 2). If x is in the domain of
the function f, then when x enters the machine, it’s accepted as an input and the machine
produces an output f(x) according to the rule of the function. Thus, we can think of the
domain as the set of all possible inputs and the range as the set of all possible outputs.

The preprogrammed functions in a calculator are good examples of a function as a
machine. For example, the square root key on your calculator computes such a function.
You press the key labeled v/ (or \/)—c) and enter the input x. If x < 0, then x is not in the
domain of this function; that is, x is not an acceptable input, and the calculator will indi-
cate an error. If x = 0, then an approximation to +/x will appear in the display. Thus, the
V/x key on your calculator is not quite the same as the exact mathematical function f defined
by f(x) = Vx.

Another way to picture a function is by an arrow diagram as in Figure 3. Each arrow
connects an element of A to an element of B. The arrow indicates that f(x) is associated
with x, f(a) is associated with a, and so on.

The most common method for visualizing a function is its graph. If f is a function with
domain A, then its graph is the set of ordered pairs

{Cx, f(0)) [x € A}

(Notice that these are input-output pairs.) In other words, the graph of f consists of all
points (x, y) in the coordinate plane such that y = f(x) and x is in the domain of f.

The graph of a function f gives us a useful picture of the behavior or “life history” of
a function. Since the y-coordinate of any point (x, y) on the graph is y = f(x), we can read
the value of f(x) from the graph as being the height of the graph above the point x (see
Figure 4). The graph of f also allows us to picture the domain of f on the x-axis and its
range on the y-axis as in Figure 5.
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FIGURE 4 FIGURE 5



EXAMPLE 1 The graph of a function f is shown in Figure 6.
(a) Find the values of f(1) and f(5).
(b) What are the domain and range of f?

y

FIGURE 6

SOLUTION
(a) We see from Figure 6 that the point (1, 3) lies on the graph of f, so the value of f at
1 is f(1) = 3. (In other words, the point on the graph that lies above x = 1 is 3 units
above the x-axis.)

When x = 5, the graph lies about 0.7 unit below the x-axis, so we estimate that
f(5) = —=0.7.

IIIl" The notation for intervals is given in (b) We see that f(x) is defined when 0 < x < 7, so the domain of f is the closed inter-
Appendix A. val [0, 7]. Notice that f takes on all values from —2 to 4, so the range of f is

{y|2<ys<4=[-24] ]

EXAMPLE 2 Sketch the graph and find the domain and range of each function.
(a) flx) =2x—1 (b) g(x) = x?

SOLUTION
Y (a) The equation of the graph is y = 2x — 1, and we recognize this as being the equa-
tion of a line with slope 2 and y-intercept — 1. (Recall the slope-intercept form of the
equation of a line: y = mx + b. See Appendix B.) This enables us to sketch the graph of
y=2x-1 f in Figure 7. The expression 2x — 1 is defined for all real numbers, so the domain of f
is the set of all real numbers, which we denote by R. The graph shows that the range is
x also R.
-1 (b) Since g(2) = 2? = 4 and g(—1) = (—1)* = 1, we could plot the points (2, 4) and
(—1, 1), together with a few other points on the graph, and join them to produce the
graph (Figure 8). The equation of the graph is y = x?, which represents a parabola (see
Appendix C). The domain of g is R. The range of g consists of all values of g(x), that is,
all numbers of the form x2. But x> = 0 for all numbers x and any positive number y is a
square. So the range of g is {y| y = 0} = [0, ). This can also be seen from Figure 8.
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|||| Representations of Functions

There are four possible ways to represent a function:

= verbally (by a description in words)
- numerically (by a table of values)

> visually (by a graph)

- algebraically (by an explicit formula)

If a single function can be represented in all four ways, it is often useful to go from one
representation to another to gain additional insight into the function. (In Example 2, for
instance, we started with algebraic formulas and then obtained the graphs.) But certain
functions are described more naturally by one method than by another. With this in mind,
let’s reexamine the four situations that we considered at the beginning of this section.

A. The most useful representation of the area of a circle as a function of its radius is
probably the algebraic formula A(r) = 77, though it is possible to compile a table of
values or to sketch a graph (half a parabola). Because a circle has to have a positive
radius, the domain is {r|r > 0} = (0, ), and the range is also (0, ).

B. We are given a description of the function in words: P(z) is the human population of
the world at time . The table of values of world population on page 11 provides a
convenient representation of this function. If we plot these values, we get the graph
(called a scatter plot) in Figure 9. It too is a useful representation; the graph allows us
to absorb all the data at once. What about a formula? Of course, it’s impossible to
devise an explicit formula that gives the exact human population P(z) at any time z.
But it is possible to find an expression for a function that approximates P(t). In fact,
using methods explained in Section 1.5, we obtain the approximation

P(r) = f(r) = (0.008079266) - (1.013731)"

and Figure 10 shows that it is a reasonably good “fit.” The function f is called a
mathematical model for population growth. In other words, it is a function with an
explicit formula that approximates the behavior of our given function. We will see,
however, that the ideas of calculus can be applied to a table of values; an explicit
formula is not necessary.
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[l A function defined by a table of values is
called a tabular function.

w (ounces) C(w) (dollars)
O<w=1 0.37
l<ws<2 0.60
2<w=23 0.83
3<w=4 1.06
4<w=<>5 1.29

The function P is typical of the functions that arise whenever we attempt to apply
calculus to the real world. We start with a verbal description of a function. Then we
may be able to construct a table of values of the function, perhaps from instrument
readings in a scientific experiment. Even though we don’t have complete knowledge
of the values of the function, we will see throughout the book that it is still possible to
perform the operations of calculus on such a function.

C. Again the function is described in words: C(w) is the cost of mailing a first-class letter
with weight w. The rule that the U.S. Postal Service used as of 2002 is as follows:
The cost is 37 cents for up to one ounce, plus 23 cents for each successive ounce up
to 11 ounces. The table of values shown in the margin is the most convenient repre-
sentation for this function, though it is possible to sketch a graph (see Example 10).

D. The graph shown in Figure 1 is the most natural representation of the vertical acceler-
ation function a(z). It’s true that a table of values could be compiled, and it is even
possible to devise an approximate formula. But everything a geologist needs to
know—amplitudes and patterns—can be seen easily from the graph. (The same is true
for the patterns seen in electrocardiograms of heart patients and polygraphs for lie-
detection.) Figures 11 and 12 show the graphs of the north-south and east-west accel-
erations for the Northridge earthquake; when used in conjunction with Figure 1, they
provide a great deal of information about the earthquake.

a a
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Calif. Dept. of Mines and Geology Calif. Dept. of Mines and Geology
FIGURE 11 North-south acceleration for the Northridge earthquake FIGURE 12 East-west acceleration for the Northridge earthquake
In the next example we sketch the graph of a function that is defined verbally.
EXAMPLE 3 When you turn on a hot-water faucet, the temperature 7 of the water depends
T on how long the water has been running. Draw a rough graph of T as a function of the
time 7 that has elapsed since the faucet was turned on.
SOLUTION The initial temperature of the running water is close to room temperature
because of the water that has been sitting in the pipes. When the water from the hot-
water tank starts coming out, 7 increases quickly. In the next phase, 7 is constant
0 ¢+ at the temperature of the heated water in the tank. When the tank is drained, 7" decreases
to the temperature of the water supply. This enables us to make the rough sketch of 7" as
FIGURE 13 a function of ¢ in Figure 13. -



t C(1)
0 0.0800
2 0.0570
4 0.0408
6 0.0295
8 0.0210
\
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FIGURE 16

A more accurate graph of the function in Example 3 could be obtained by using a ther-
mometer to measure the temperature of the water at 10-second intervals. In general, sci-
entists collect experimental data and use them to sketch the graphs of functions, as the next
example illustrates.

EXAMPLE 4 The data shown in the margin come from an experiment on the lactonization
of hydroxyvaleric acid at 25°C. They give the concentration C(z) of this acid (in moles
per liter) after  minutes. Use these data to draw an approximation to the graph of the
concentration function. Then use this graph to estimate the concentration after 5 minutes.

SOLUTION We plot the five points corresponding to the data from the table in Figure 14.
The curve-fitting methods of Section 1.2 could be used to choose a model and graph it.
But the data points in Figure 14 look quite well behaved, so we simply draw a smooth
curve through them by hand as in Figure 15.

C(1) C(1)
0.08 1 0.08 4
0.06 T o 0.06 4
0.04 1 . 0.04+ T
0.02 1 . 0.02 1 ‘
0O 12345678 ! 0l 123 456 7281
FIGURE 14 FIGURE 15

Then we use the graph to estimate that the concentration after 5 minutes is

C(5) = 0.035 mole/liter ]

In the following example we start with a verbal description of a function in a physical
situation and obtain an explicit algebraic formula. The ability to do this is a useful skill in
solving calculus problems that ask for the maximum or minimum values of quantities.

EXAMPLE 5 A rectangular storage container with an open top has a volume of 10 m®. The
length of its base is twice its width. Material for the base costs $10 per square meter;
material for the sides costs $6 per square meter. Express the cost of materials as a func-
tion of the width of the base.

SOLUTION We draw a diagram as in Figure 16 and introduce notation by letting w and 2w
be the width and length of the base, respectively, and & be the height.

The area of the base is (2w)w = 2w?, so the cost, in dollars, of the material for the
base is 10(2w?). Two of the sides have area wh and the other two have area 2wh, so the
cost of the material for the sides is 6[2(wh) + 2(2wh)]. The total cost is therefore

C = 10Q2w?) + 6[2(wh) + 2(2wh)] = 20w> + 36wh

To express C as a function of w alone, we need to eliminate 4 and we do so by using the
fact that the volume is 10 m’. Thus

ww)h = 10

which gives h = =—



In setting up applied functions as in
Example 5, it may be useful to review the
principles of problem solving as discussed on
page 80, particularly Step 1: Understand the
Problem.

[I1IIf a function is given by a formula and the
domain is not stated explicitly, the convention is
that the domain is the set of all numbers for
which the formula makes sense and defines a
real number.

FIGURE 17

Substituting this into the expression for C, we have

5 180
C =20w* + 361,0(—2) =20w* + —
w w

Therefore, the equation

180
Clw) = 20w* + — w >0
w
expresses C as a function of w. ]
EXAMPLE 6 Find the domain of each function.
1
(@) flx) =vx+2 (b) g(x)=m

SOLUTION
(a) Because the square root of a negative number is not defined (as a real number), the
domain of f consists of all values of x such that x + 2 = 0. This is equivalent to
x = —2, so the domain is the interval [ —2, ).
(b) Since
1 1

—x:x(x—l)

g(x) = =

and division by 0 is not allowed, we see that g(x) is not defined when x = 0 or x = 1.
Thus, the domain of ¢ is

{x|x#0,x# 1}
which could also be written in interval notation as
(=,00U (0, 1) U (1, -

The graph of a function is a curve in the xy-plane. But the question arises: Which curves
in the xy-plane are graphs of functions? This is answered by the following test.

The Vertical Line Test A curve in the xy-plane is the graph of a function of x if and
only if no vertical line intersects the curve more than once.

The reason for the truth of the Vertical Line Test can be seen in Figure 17. If each ver-
tical line x = « intersects a curve only once, at (a, b), then exactly one functional value
is defined by f(a) = b. But if a line x = a intersects the curve twice, at (a, b) and (a, ¢),
then the curve can’t represent a function because a function can’t assign two different val-
ues to a.
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FIGURE 19

FIGURE 18

For example, the parabola x = y* — 2 shown in Figure 18(a) is not the graph of a func-
tion of x because, as you can see, there are vertical lines that intersect the parabola twice.
The parabola, however, does contain the graphs of rwo functions of x. Notice that the equa-
tion x = y? — 2 implies y* = x + 2,s0 y = *./x + 2. Thus, the upper and lower halves
of the parabola are the graphs of the functions f(x) = /x + 2 [from Example 6(a)] and
g(x) = —/x + 2. [See Figures 18(b) and (c).] We observe that if we reverse the roles of
x and y, then the equation x = h(y) = y> — 2 does define x as a function of y (with y as
the independent variable and x as the dependent variable) and the parabola now appears as
the graph of the function 4.

/ —
-2, ON X 7'2 0 X ‘ 0 X
\

(@) x=y"—2 (b) y=+/x+2 (©)y=—vx+2

|||| Piecewise Defined Functions

The functions in the following four examples are defined by different formulas in different
parts of their domains.

EXAMPLE 7 A function f is defined by

x ifx=sl

1_
f(x)={x2 if x> 1

Evaluate f(0), f(1), and f(2) and sketch the graph.

SOLUTION Remember that a function is a rule. For this particular function the rule is the
following: First look at the value of the input x. If it happens that x < 1, then the value
of f(x)is 1 — x. On the other hand, if x > 1, then the value of f(x) is x>

Since 0 < 1, we have f(0) =1 — 0 = 1.
Since 1 < 1, we have f(1) =1 —1=0.
Since 2 > 1, we have f(2) = 2*> = 4.

How do we draw the graph of f? We observe that if x < 1, then f(x) = 1 — x, so the
part of the graph of f that lies to the left of the vertical line x = 1 must coincide with
the line y = 1 — x, which has slope —1 and y-intercept 1. If x > 1, then f(x) = x? so
the part of the graph of f that lies to the right of the line x = 1 must coincide with the
graph of y = x?, which is a parabola. This enables us to sketch the graph in Figure 19.
The solid dot indicates that the point (1, 0) is included on the graph; the open dot indi-
cates that the point (1, 1) is excluded from the graph. ]



[IIl For a more extensive review of absolute
values, see Appendix A.

FIGURE 20

FIGURE 21

[IIl' Point-slope form of the equation of a line:
y =y =mx—x)
See Appendix B.

The next example of a piecewise defined function is the absolute value function. Recall
that the absolute value of a number a, denoted by |a |, is the distance from a to 0 on the
real number line. Distances are always positive or 0, so we have

|la| =0  for every number a
For example,
3]=3  [-3]=3  Jo|=0 [VZ-1]=vZ-1 [3-a[=7-3
In general, we have

la| =a if a=0

la|=—a ifa<0

(Remember that if a is negative, then —a is positive.)

EXAMPLE 8 Sketch the graph of the absolute value function f(x) = |x|.

SOLUTION From the preceding discussion we know that

‘ |_ x if x=0
* —x ifx<0

Using the same method as in Example 7, we see that the graph of f coincides with the
line y = x to the right of the y-axis and coincides with the line y = —x to the left of the
y-axis (see Figure 20). ]

EXAMPLE 9 Find a formula for the function f graphed in Figure 21.

y

SOLUTION The line through (0, 0) and (1, 1) has slope m = 1 and y-intercept b = 0, so its
equation is y = x. Thus, for the part of the graph of f that joins (0, 0) to (1, 1), we have

flx) =x fosx=<1
The line through (1, 1) and (2, 0) has slope m = —1, so its point-slope form is
y=0=(-Dx—-2) or y=2-—x

So we have

fx)=2—x if 1<x<2
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FIGURE 23

An even function

FIGURE 24

An odd function

We also see that the graph of f coincides with the x-axis for x > 2. Putting this informa-
tion together, we have the following three-piece formula for f:

X fosx<1
fx)=492—x if 1<x=<2
0 if x>2

EXAMPLE 10 In Example C at the beginning of this section we considered the cost C(w)
of mailing a first-class letter with weight w. In effect, this is a piecewise defined function
because, from the table of values, we have

037 f0<ws=1
060 if | <w=2
Clw) = :
083 if2<w=<3
1.06 if 3<w<4

The graph is shown in Figure 22. You can see why functions similar to this one are
called step functions—they jump from one value to the next. Such functions will be
studied in Chapter 2.

|H| Symmelry

If a function f satisfies f(—x) = f(x) for every number x in its domain, then f is called an
even function. For instance, the function f(x) = x? is even because

f(=x) = (=07 = x> = f(x)

The geometric significance of an even function is that its graph is symmetric with respect
to the y-axis (see Figure 23). This means that if we have plotted the graph of f for x = 0,
we obtain the entire graph simply by reficting about the 3axis.

If f satisfies f(—x) = —f(x) for every number x in its domain, then f is called an odd
function. For example, the function f(x) = x* is odd because

(=0 = (=) = = = ~f(0)

The graph of an odd function is symmetric about the origin (see Figure 24). If we already
have the graph of f for x = 0, we can obtain the entire graph by rotating through 180°
about the origin.

EXAMPLE 11 Determine whether each of the following functions is even, odd, or neither
even nor odd.

(a) f(x) =x>+x (b) glx)=1—x* (c) h(x) =2x — x?
SOLUTION
(a) f(=x) = (= + (=x) = (=1)’x" + (—x)
=—x —x=—(x"+x
= —f(x)

Therefore, f is an odd function.

(b) g—x)=1—-(—x)'=1-x"=gx)

So g is even.



(c) h(—x) =2(—x) — (—x)* = —2x — x*

Since h(—x) # h(x) and h(—x) # —h(x), we conclude that A is neither even
nor odd. ]

The graphs of the functions in Example 11 are shown in Figure 25. Notice that the
graph of /4 is symmetric neither about the y-axis nor about the origin.

y y y
1t f 1 g T h
_'1 i X X i X
71 +
FIGURE 25 @) (b) ©

|||| [ncreasing and Decreasing Functions

The graph shown in Figure 26 rises from A to B, falls from B to C, and rises again from C
to D. The function f is said to be increasing on the interval [a, b], decreasing on [b, c], and
increasing again on [c, d]. Notice that if x, and x, are any two numbers between a and b
with x; < x,, then f(x;) < f(x»). We use this as the defining property of an increasing
function.

y

0 X
FIGURE 26
A function f is called increasing on an interval / if
y Fx) < f(x2) whenever x; < x,in/
y=x? It is called decreasing on [ if
f(x)) > f(x2) whenever x; < x,in [

In the definition of an increasing function it is important to realize that the inequality
0 x f(x1) < f(x2) must be satisfied for every pair of numbers x; and x, in [ with x; < x,.

You can see from Figure 27 that the function f(x) = x? is decreasing on the interval
FIGURE 27 (—o0, 0] and increasing on the interval [0, o).




1.1 Exercises

1. The graph of a function f is given.
(a) State the value of f(—1).
(b) Estimate the value of f(2).
(¢) For what values of x is f(x) = 2?
(d) Estimate the values of x such that f(x) = 0.
(e) State the domain and range of f.
(f) On what interval is f increasing?

2. The graphs of f and g are given.
(a) State the values of f(—4) and g(3).
(b) For what values of x is f(x) = g(x)?
(¢) Estimate the solution of the equation f(x) = —1.
(d) On what interval is f decreasing?
(e) State the domain and range of f.
(f) State the domain and range of g.

3. Figures 1, 11, and 12 were recorded by an instrument operated
by the California Department of Mines and Geology at the
University Hospital of the University of Southern California in
Los Angeles. Use them to estimate the ranges of the vertical,
north-south, and east-west ground acceleration functions at
USC during the Northridge earthquake.

4. In this section we discussed examples of ordinary, everyday
functions: Population is a function of time, postage cost is a
function of weight, water temperature is a function of time.
Give three other examples of functions from everyday life that
are described verbally. What can you say about the domain and
range of each of your functions? If possible, sketch a rough
graph of each function.

5-8 Il Determine whether the curve is the graph of a function of x.

If it is, state the domain and range of the function.

5
5. . 6.
—
1 1
0 1 X 0 1 X
//
7. y - 8 y
1 1
0 1 X 0 1 X
9. The graph shown gives the weight of a certain person as a

function of age. Describe in words how this person’s weight
varies over time. What do you think happened when this person
was 30 years old?

200 T
Weight 1507
d
(pounds) 100+
50T
0 10 20 30 40 50 60 70 Age
(years)

. The graph shown gives a salesman’s distance from his home as

a function of time on a certain day. Describe in words what the
graph indicates about his travels on this day.

Distance

from home

(miles)
8aMm. 10 Noon 2 4 6 Time
(hours)

. You put some ice cubes in a glass, fill the glass with cold

water, and then let the glass sit on a table. Describe how the
temperature of the water changes as time passes. Then sketch a
rough graph of the temperature of the water as a function of the
elapsed time.



12. Sketch a rough graph of the number of hours of daylight as a
function of the time of year.

13. Sketch a rough graph of the outdoor temperature as a function
of time during a typical spring day.

14. You place a frozen pie in an oven and bake it for an hour. Then
you take it out and let it cool before eating it. Describe how the
temperature of the pie changes as time passes. Then sketch a
rough graph of the temperature of the pie as a function of time.

15. A homeowner mows the lawn every Wednesday afternoon.
Sketch a rough graph of the height of the grass as a function of
time over the course of a four-week period.

16. An airplane flies from an airport and lands an hour later at
another airport, 400 miles away. If 7 represents the time in min-
utes since the plane has left the terminal building, let x(7) be
the horizontal distance traveled and y(7) be the altitude of the
plane.

(a) Sketch a possible graph of x(7).

(b) Sketch a possible graph of y(7).

(c) Sketch a possible graph of the ground speed.
(d) Sketch a possible graph of the vertical velocity.

17. The number N (in thousands) of cellular phone subscribers in
Malaysia is shown in the table. (Midyear estimates are given.)

t 1991 1993 1995 1997

N 132 304 873 2461

(a) Use the data to sketch a rough graph of N as a function of 7.

(b) Use your graph to estimate the number of cell-phone sub-
scribers in Malaysia at midyear in 1994 and 1996.

18. Temperature readings 7 (in °F) were recorded every two hours
from midnight to 2:00 p.M. in Dallas on June 2, 2001. The time
t was measured in hours from midnight.

t 0 2 4 6 8 10 12 14

T 73 73 70 69 72 81 88 91

(a) Use the readings to sketch a rough graph of 7" as a function
of ¢.
(b) Use your graph to estimate the temperature at 11:00 A.m.

19. If f(x) = 3x* — x + 2, find £(2), f(—2), f(a), f(—a),
fla +1),2f(a), fQa), f(a®), [f(@))? and f(a + h).

20. A spherical balloon with radius r inches has volume
Vir) = %’n’r3. Find a function that represents the amount of air
required to inflate the balloon from a radius of r inches to a
radius of  + 1 inches.

fae+h) —f&

21-22 i Find (2 + h), f(x + h), and P

where h # 0.

X
x+ 1

21. f(x) =x — x? 22. f(x) =

o o o o o o o o o o o o

23-27 1 Find the domain of the function.

X 5x + 4
B0 =5 BSN=m 52
25. f() =+t + It 26. g(u) = Vu + /4 — u
27, h(x) = ——t

vx — 5x

o o o o o o o o o o o o

28. Find the domain and range and sketch the graph of the function

h(x) = /4 — x2,

29-40 i Find the domain and sketch the graph of the function.

29. f(x) =5 30. F(x) =1(x+3)
3. F() =12 — 6 32 H() = 42__’:

33 gx) =vx—35

34. F(x) = |2x + 1]

3x +
35 Gy = 1 3. g(n = 12
X
X if x<0
1. f(x) =
3. /() {erl if x>0
2x+3 if x < —1
38. f(x) =
) {3—x if x=—1

x+2 ifx< -l
¥ f(x)={x2 if x> —1

-1 if x=<—1
40. f(x) ={3x +2 if [x]| <1
7—2x ifx=1

o o o o o o o o o o o o

41-46 1 Find an expression for the function whose graph is the
given curve.

41. The line segment joining the points (=2, 1) and (4, —6)
42. The line segment joining the points (—3, —2) and (6, 3)
43. The bottom half of the parabola x + (y — 1)> =0

44. The top half of the circle (x — 1)*> + y> =1

45. y 46. y




47-51 i Find a formula for the described function and state its
domain.

47. A rectangle has perimeter 20 m. Express the area of the rect-
angle as a function of the length of one of its sides.

48. A rectangle has area 16 m?. Express the perimeter of the rect-
angle as a function of the length of one of its sides.

49. Express the area of an equilateral triangle as a function of the
length of a side.

50. Express the surface area of a cube as a function of its volume.

51. An open rectangular box with volume 2 m® has a square base.
Express the surface area of the box as a function of the length
of a side of the base.

52. A Norman window has the shape of a rectangle surmounted by
a semicircle. If the perimeter of the window is 30 ft, express
the area A of the window as a function of the width x of the
window.

f——x—

53. A box with an open top is to be constructed from a rectangular
piece of cardboard with dimensions 12 in. by 20 in. by cutting
out equal squares of side x at each corner and then folding up
the sides as in the figure. Express the volume V of the box as a
function of x.

| 20 1
’ x x
x x
12
x x
‘ x x

54. A taxi company charges two dollars for the first mile (or part of
a mile) and 20 cents for each succeeding tenth of a mile (or
part). Express the cost C (in dollars) of a ride as a function of
the distance x traveled (in miles) for 0 < x < 2, and sketch the
graph of this function.

55. In a certain country, income tax is assessed as follows. There is
no tax on income up to $10,000. Any income over $10,000 is
taxed at a rate of 10%, up to an income of $20,000. Any income
over $20,000 is taxed at 15%.

(a) Sketch the graph of the tax rate R as a function of the
income /.

(b) How much tax is assessed on an income of $14,000?
On $26,000?

(c) Sketch the graph of the total assessed tax T as a function of
the income /.

56. The functions in Example 10 and Exercises 54 and 55(a) are
called step functions because their graphs look like stairs. Give
two other examples of step functions that arise in everyday life.

57-58 1 Graphs of f and g are shown. Decide whether each func-
tion is even, odd, or neither. Explain your reasoning.

57. 58. y

NV

o o o o o o o o o o o o

59. (a) If the point (5, 3) is on the graph of an even function, what
other point must also be on the graph?

(b) If the point (5, 3) is on the graph of an odd function, what
other point must also be on the graph?

60. A function f has domain [—35, 5] and a portion of its graph is
shown.
(a) Complete the graph of f if it is known that f is even.
(b) Complete the graph of f if it is known that f is odd.

y

61-66 11 Determine whether f is even, odd, or neither. If f is even
or odd, use symmetry to sketch its graph.

6l. f(x) =x? 62. f(x)=x"
63. f(x) =x>+x 04, f(x) = x* — 4x?
65. f(x) =x°—x 66. f(x) =3x>+ 2x*+ 1

o o o o o o o o o o



1.2 Mathematical Models: A Cafalog of Essential Functions

FIGURE 1
The modeling process

[Ill' The coordinate geometry of lines is reviewed
in Appendix B.

A mathematical model is a mathematical description (often by means of a function or an
equation) of a real-world phenomenon such as the size of a population, the demand for a
product, the speed of a falling object, the concentration of a product in a chemical reac-
tion, the life expectancy of a person at birth, or the cost of emission reductions. The pur-
pose of the model is to understand the phenomenon and perhaps to make predictions about
future behavior.

Figure 1 illustrates the process of mathematical modeling. Given a real-world problem,
our first task is to formulate a mathematical model by identifying and naming the inde-
pendent and dependent variables and making assumptions that simplify the phenomenon
enough to make it mathematically tractable. We use our knowledge of the physical situa-
tion and our mathematical skills to obtain equations that relate the variables. In situations
where there is no physical law to guide us, we may need to collect data (either from a
library or the Internet or by conducting our own experiments) and examine the data in the
form of a table in order to discern patterns. From this numerical representation of a func-
tion we may wish to obtain a graphical representation by plotting the data. The graph
might even suggest a suitable algebraic formula in some cases.

Real-world Formulate .| Mathematical
problem ” model
A
Test Solve
Real-world | Mathematical
predictions - Interpret conclusions

The second stage is to apply the mathematics that we know (such as the calculus that
will be developed throughout this book) to the mathematical model that we have formu-
lated in order to derive mathematical conclusions. Then, in the third stage, we take those
mathematical conclusions and interpret them as information about the original real-world
phenomenon by way of offering explanations or making predictions. The final step is to
test our predictions by checking against new real data. If the predictions don’t compare
well with reality, we need to refine our model or to formulate a new model and start the
cycle again.

A mathematical model is never a completely accurate representation of a physical situ-
ation—it is an idealization. A good model simplifies reality enough to permit mathemati-
cal calculations but is accurate enough to provide valuable conclusions. It is important to
realize the limitations of the model. In the end, Mother Nature has the final say.

There are many different types of functions that can be used to model relationships
observed in the real world. In what follows, we discuss the behavior and graphs of these
functions and give examples of situations appropriately modeled by such functions.

|||| Linear Models

When we say that y is a linear function of x, we mean that the graph of the function is a
line, so we can use the slope-intercept form of the equation of a line to write a formula for



20 1

10 +

T=-10h+ 20

FIGURE 3

h

FIGURE 2

the function as
y=f(x) =mx +b

where m is the slope of the line and b is the y-intercept.

A characteristic feature of linear functions is that they grow at a constant rate. For
instance, Figure 2 shows a graph of the linear function f(x) = 3x — 2 and a table of sam-
ple values. Notice that whenever x increases by 0.1, the value of f(x) increases by 0.3. So
f(x) increases three times as fast as x. Thus, the slope of the graph y = 3x — 2, namely 3,
can be interpreted as the rate of change of y with respect to x.

y

X flx)=3x—2
y=3x—2 1.0 1.0
1.1 1.3
1.2 1.6
0 > 1.3 1.9
1.4 2.2
-2 1.5 2.5

EXAMPLE 1

(a) As dry air moves upward, it expands and cools. If the ground temperature is 20°C
and the temperature at a height of 1 km is 10°C, express the temperature 7 (in °C) as a
function of the height % (in kilometers), assuming that a linear model is appropriate.
(b) Draw the graph of the function in part (a). What does the slope represent?

(c) What is the temperature at a height of 2.5 km?

SOLUTION
(a) Because we are assuming that 7 is a linear function of 4, we can write

T=mh+b
We are given that T = 20 when & = 0, so
20=m-0+b=0>

In other words, the y-intercept is b = 20.
We are also given that 7 = 10 when 7 = 1, so

10=m-1+20
The slope of the line is therefore m = 10 — 20 = —10 and the required linear function is
T=—10h + 20

(b) The graph is sketched in Figure 3. The slope is m = —10°C/km, and this represents
the rate of change of temperature with respect to height.

(c) At a height of h = 2.5 km, the temperature is
T= —10(2.5) + 20 = —5°C ]

If there is no physical law or principle to help us formulate a model, we construct an
empirical model, which is based entirely on collected data. We seek a curve that “fits” the
data in the sense that it captures the basic trend of the data points.



TABLE 1
Year CO, level (in ppm)
1980 338.7
1982 341.1
1984 344.4
1986 347.2
1988 351.5
1990 354.2
1992 356.4
1994 358.9
1996 362.6
1998 366.6
2000 369.4

FIGURE 4

Scatter plot for the average CO, level

FIGURE 5
Linear model through
first and last data points

EXAMPLE 2 Table 1 lists the average carbon dioxide level in the atmosphere, measured in
parts per million at Mauna Loa Observatory from 1980 to 2000. Use the data in Table 1
to find a model for the carbon dioxide level.

SOLUTION We use the data in Table 1 to make the scatter plot in Figure 4, where ¢ repre-
sents time (in years) and C represents the CO, level (in parts per million, ppm).

C
370

360 T

350 +

3401

1980 1985 1990 1995 2000 !

Notice that the data points appear to lie close to a straight line, so it’s natural to
choose a linear model in this case. But there are many possible lines that approximate
these data points, so which one should we use? From the graph, it appears that one possi-
bility is the line that passes through the first and last data points. The slope of this line is

369.4 — 338.7  30.7
2000 — 1980 20

= 1.535

and its equation is
C — 338.7 = 1.535(t — 1980)

or
] C = 1.535¢ — 2700.6

Equation 1 gives one possible linear model for the carbon dioxide level; it is graphed
in Figure 5.
C

370 +
360 T

350 1

340 T

1980 1985 1990 1995 2000 !

Although our model fits the data reasonably well, it gives values higher than most of
the actual CO;, levels. A better linear model is obtained by a procedure from statistics



[IIl" A computer or graphing calculator finds the
regression line by the method of least squares,
which is to minimize the sum of the squares

of the vertical distances between the data
points and the line. The details are explained

in Section 14.7.

FIGURE 6
The regression line

called linear regression. If we use a graphing calculator, we enter the data from Table 1
into the data editor and choose the linear regression command. (With Maple we use the
fit[leastsquare] command in the stats package; with Mathematica we use the Fit com-
mand.) The machine gives the slope and y-intercept of the regression line as

m = 1.53818 b = —2707.25

So our least squares model for the CO, level is
(2] C = 1.53818¢ — 2707.25

In Figure 6 we graph the regression line as well as the data points. Comparing with
Figure 5, we see that it gives a better fit than our previous linear model.

C
370 +

360 T

350 1

340 1

1980 1985 1990 1995 2000 !

EXAMPLE 3 Use the linear model given by Equation 2 to estimate the average CO, level
for 1987 and to predict the level for the year 2010. According to this model, when will
the CO, level exceed 400 parts per million?

SOLUTION Using Equation 2 with r = 1987, we estimate that the average CO, level in 1987
was
C(1987) = (1.53818)(1987) — 2707.25 =~ 349.11

This is an example of interpolation because we have estimated a value between observed
values. (In fact, the Mauna Loa Observatory reported that the average CO, level in 1987
was 348.93 ppm, so our estimate is quite accurate.)

With r = 2010, we get

C(2010) = (1.53818)(2010) — 2707.25 ~ 384.49

So we predict that the average CO; level in the year 2010 will be 384.5 ppm. This is

an example of extrapolation because we have predicted a value outside the region of

observations. Consequently, we are far less certain about the accuracy of our prediction.
Using Equation 2, we see that the CO, level exceeds 400 ppm when

1.53818¢ — 2707.25 > 400

Solving this inequality, we get

3107.25

——— =~ 2020.08
1.53818



FIGURE 7

The graphs of quadratic
functions are parabolas.

FIGURE 8

We therefore predict that the CO, level will exceed 400 ppm by the year 2020.
This prediction is somewhat risky because it involves a time quite remote from our
observations.

|||| Polynomials

A function P is called a polynomial if
P(x) = apx" + a1 x"' + -+ ax’ + aix + ao

where 7 is a nonnegative integer and the numbers ao, a1, a», . . ., a, are constants called the
coefficients of the polynomial. The domain of any polynomial is R = (—oo, o). If
the leading coefficient a, # 0, then the degree of the polynomial is n. For example, the
function

P(x) =2x° — x* + x> + 2

is a polynomial of degree 6.

A polynomial of degree 1 is of the form P(x) = mx + b and so it is a linear function.
A polynomial of degree 2 is of the form P(x) = ax* + bx + c and is called a quadratic
function. Its graph is always a parabola obtained by shifting the parabola y = ax?, as we
will see in the next section. The parabola opens upward if @ > 0 and downward if a < 0.
(See Figure 7.)

[=]
—_

=
—_

-

(@) y=x"+x+1 (b) y=—2x"+3x+1

A polynomial of degree 3 is of the form
P(x) =ax® + bx*+cx +d

and is called a cubic function. Figure 8 shows the graph of a cubic function in part (a) and
graphs of polynomials of degrees 4 and 5 in parts (b) and (c). We will see later why the
graphs have these shapes.

y y y

1 27T
1
/ 0 i X

@y=x*—x+1 (b)y=x*—3x"+x (c) y=3x"—25x*+ 60x



TABLE 2

Time
(seconds)

Height
(meters)

—
(e}

O 00 1 ON U B~ W N =

450
445
431
408
375
332
279
216
143

61

Polynomials are commonly used to model various quantities that occur in the natural
and social sciences. For instance, in Section 3.3 we will explain why economists often
use a polynomial P(x) to represent the cost of producing x units of a commodity. In the
following example we use a quadratic function to model the fall of a ball.

EXAMPLE 4 A ball is dropped from the upper observation deck of the CN Tower, 450 m

above the ground, and its height 4 above the ground is recorded at 1-second intervals in
Table 2. Find a model to fit the data and use the model to predict the time at which the

ball hits the ground.

SOLUTION We draw a scatter plot of the data in Figure 9 and observe that a linear model is
inappropriate. But it looks as if the data points might lie on a parabola, so we try a qua-
dratic model instead. Using a graphing calculator or computer algebra system (which
uses the least squares method), we obtain the following quadratic model:

13 h = 449.36 + 0.961 — 4.90¢>
h h
(meters)

a0t 4001

200 : 200

o 2 & & s 0 r
(seconds)
FIGURE 9 FIGURE 10
Scatter plot for a falling ball Quadratic model for a falling ball

In Figure 10 we plot the graph of Equation 3 together with the data points and see
that the quadratic model gives a very good fit.
The ball hits the ground when 2 = 0, so we solve the quadratic equation

—4.901* + 0.961 + 449.36 = 0
The quadratic formula gives

096 + /(096 — 4(—4.90)(449.36)
= 2(—4.90)

The positive root is ¢ = 9.67, so we predict that the ball will hit the ground after about
9.7 seconds. -

|||| Power Functions

A function of the form f(x) = x“ where a is a constant, is called a power function. We
consider several cases.

(i) a = n, where n is a positive integer

The graphs of f(x) = x" forn = 1, 2, 3, 4, and 5 are shown in Figure 11. (These are poly-
nomials with only one term.) We already know the shape of the graphs of y = x (a line
through the origin with slope 1) and y = x* [a parabola, see Example 2(b) in Section 1.1].



FIGURE 11

Graphs of f(x)=x"forn=1,2,3,4,5

FIGURE 12
Families of power functions

FIGURE 13

Graphs of root functions

y=x =X y=x
y y Y y
1+ 1 1+
0 X 0 . X 0 | X

The general shape of the graph of f(x) = x" depends on whether n is even or odd.
If n is even, then f(x) = x" is an even function and its graph is similar to the parabola
y = x% If nis odd, then f(x) = x"is an odd function and its graph is similar to that
of y = x°. Notice from Figure 12, however, that as n increases, the graph of y = x"
becomes flatter near 0 and steeper when |x\ = 1. (If x is small, then x? is smaller, x° is
even smaller, x* is smaller still, and so on.)

(i) @ = 1/n, where n is a positive integer
The function f(x) = x'/" = /x is a root function. For n = 2 it is the square root func-
tion f(x) = v/x, whose domain is [0, %) and whose graph is the upper half of the

parabola x = y?. [See Figure 13(a).] For other even values of 7, the graph of y = ¢/x is
similar to that of y = +/x. For n = 3 we have the cube root function f(x) = </x whose
domain is R (recall that every real number has a cube root) and whose graph is shown in
Figure 13(b). The graph of y = \/)—c for n odd (n > 3) is similar to that of y = Jx.

(1.1

(@) fx)=+/x

(1.1

®) f(x)=x



FIGURE 14
The reciprocal function

FIGURE 15
Volume as a function of pressure
at constant temperature

\,) y u
20+
0 ; X
FIGURE 16
2xt—x2+1
f(-x)_ X2_4

(i) a = —1
The graph of the reciprocal function f(x) = x~' = 1/x is shown in Figure 14. Its graph
has the equation y = 1/x, or xy = 1, and is a hyperbola with the coordinate axes as its
asymptotes.

This function arises in physics and chemistry in connection with Boyle’s Law, which
says that, when the temperature is constant, the volume V of a gas is inversely propor-
tional to the pressure P:

1

C
V=—
P

where C is a constant. Thus, the graph of V as a function of P (see Figure 15) has the
same general shape as the right half of Figure 14.

14

0 P

Another instance in which a power function is used to model a physical phenomenon
is discussed in Exercise 22.

||H Rational Funcfions

A rational function f is a ratio of two polynomials:

where P and Q are polynomials. The domain consists of all values of x such that Q(x) # 0.
A simple example of a rational function is the function f(x) = 1/x, whose domain is
{x|x # 0}; this is the reciprocal function graphed in Figure 14. The function

) 2t —xr+ 1
X)) =—F—
x> —4

is a rational function with domain {x|x # =*2}. Its graph is shown in Figure 16.

|| Mebraic Functions

A function f is called an algebraic function if it can be constructed using algebraic oper-
ations (such as addition, subtraction, multiplication, division, and taking roots) starting
with polynomials. Any rational function is automatically an algebraic function. Here are
two more examples:

x* — 16x?

flx) =+/x2+ 1 gx) =—F+—+ (x —2)Jx + 1
x + \/;



When we sketch algebraic functions in Chapter 4, we will see that their graphs can assume
a variety of shapes. Figure 17 illustrates some of the possibilities.

y y y
2 +
1 ; >
1t Ity
0 é x 0 ; X
FIGURE 17 (@) fx)=xJx+3 (b) g(x)= ¢xr=25 (c) h(x)=x*(x—2)

An example of an algebraic function occurs in the theory of relativity. The mass of a
particle with velocity v is

mo

A e

where my is the rest mass of the particle and ¢ = 3.0 X 10° km/s is the speed of light in
a vacuum.

||| Trigonometric Functions

Trigonometry and the trigonometric functions are reviewed on Reference Page 2 and also
in Appendix D. In calculus the convention is that radian measure is always used (except
when otherwise indicated). For example, when we use the function f(x) = sin x, it is
understood that sin x means the sine of the angle whose radian measure is x. Thus, the
graphs of the sine and cosine functions are as shown in Figure 18.
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(a) f(x)=sinx (b) g(x) =cos x
FIGURE 18

Notice that for both the sine and cosine functions the domain is (—, «) and the range
is the closed interval [—1, 1]. Thus, for all values of x, we have

or, in terms of absolute values,

[sinx| <1 |cosx| <1
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FIGURE 19
y=tanx
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FIGURE 20

Also, the zeros of the sine function occur at the integer multiples of 7r; that is,
sin x = 0 when X =nmw naninteger

An important property of the sine and cosine functions is that they are periodic func-
tions and have period 2. This means that, for all values of x,

sin(x + 2m) = sin x cos(x + 2m) = cos x

The periodic nature of these functions makes them suitable for modeling repetitive phe-
nomena such as tides, vibrating springs, and sound waves. For instance, in Example 4 in
Section 1.3 we will see that a reasonable model for the number of hours of daylight in
Philadelphia 7 days after January 1 is given by the function

2
L(t) = 12 + 2.8 sin| —(t — 80
SR

The tangent function is related to the sine and cosine functions by the equation

and its graph is shown in Figure 19. It is undefined whenever cos x = 0, that is, when
x = *a/2,+37/2, ... ltsrange is (—o0, ). Notice that the tangent function has period 7

tan(x + ) = tan x for all x

The remaining three trigonometric functions (cosecant, secant, and cotangent) are
the reciprocals of the sine, cosine, and tangent functions. Their graphs are shown in
Appendix D.

|||| Exponential Functions

The exponential functions are the functions of the form f(x) = a*, where the base a is a
positive constant. The graphs of y = 2* and y = (0.5) are shown in Figure 20. In both
cases the domain is (—2, %) and the range is (0, ).

y y

—/1 1

0 1 X 0 1 X

(a)y=2" (b) y=(0.5)"

Exponential functions will be studied in detail in Section 1.5, and we will see that they
are useful for modeling many natural phenomena, such as population growth (if a > 1)
and radioactive decay (if a < 1).



FIGURE 21

|| Logarithmic Functions

The logarithmic functions f(x) = log,x, where the base a is a positive constant, are the
inverse functions of the exponential functions. They will be studied in Section 1.6. Figure
21 shows the graphs of four logarithmic functions with various bases. In each case the
domain is (0, «), the range is (—o, o), and the function increases slowly when x > 1.

Yy y=log,x
y=log;x
1+ y=logsx
y=log,x
0 X

|||| Transcendental Functions

These are functions that are not algebraic. The set of transcendental functions includes the
trigonometric, inverse trigonometric, exponential, and logarithmic functions, but it also
includes a vast number of other functions that have never been named. In Chapter 11 we
will study transcendental functions that are defined as sums of infinite series.

EXAMPLE 5 Classify the following functions as one of the types of functions that we have
discussed.

(@) f(x) =5 (b) g(x) = x°

h(x) = 2 @ ult) =1—1+ 5¢*
(¢) h(x 1 — \/)—C
SOLUTION

(a) f(x) = 5"is an exponential function. (The x is the exponent.)

(b) g(x) = x’is a power function. (The x is the base.) We could also consider it to be a
polynomial of degree 5.

1+x . . .
(¢) h(x) = —= is an algebraic function.
1 — x

(d) u(t) =1 — t + 5¢*is a polynomial of degree 4. ]

1.2 Exercises

1-2 i Classify each function as a power function, root function,
polynomial (state its degree), rational function, algebraic func-
tion, trigonometric function, exponential function, or logarithmic
function.

1. (a) f(x) = Ix (b) g(x) = V1 —x2
2
(c) h(x) = x° + x* @) r(x) = v

x4+ x

(e) s(x) = tan 2x

x—6
2. =
@y x+6
©y=10"

e)y=2t+t"—m

(f) t(x) = 10g10x

2

X
Vx =1

(b) y=x+

@ y=x"
(f) y=cos 6 + sin 0



3-4 1 Match each equation with its graph. Explain your choices.
(Don’t use a computer or graphing calculator.)

3. (@ y=x’ (b) y=x’ () y=x*
y
g
h
0 X
!
4, (a) y = 3x (b) y=3"
(©)y=x d y=kx

]

o o o o o o o o o o o o

5. (a) Find an equation for the family of linear functions with
slope 2 and sketch several members of the family.
(b) Find an equation for the family of linear functions such that
f(2) = 1 and sketch several members of the family.
(c) Which function belongs to both families?

6. What do all members of the family of linear functions
f(x) =1 + m(x + 3) have in common? Sketch several mem-
bers of the family.

7. What do all members of the family of linear functions
f(x) = ¢ — x have in common? Sketch several members of
the family.

8. The manager of a weekend flea market knows from past expe-
rience that if he charges x dollars for a rental space at the flea
market, then the number y of spaces he can rent is given by the
equation y = 200 — 4x.

(a) Sketch a graph of this linear function. (Remember that the
rental charge per space and the number of spaces rented
can’t be negative quantities.)

(b) What do the slope, the y-intercept, and the x-intercept of
the graph represent?

. The relationship between the Fahrenheit (F) and Celsius (C)

temperature scales is given by the linear function F' = %C + 32.

(a) Sketch a graph of this function.

(b) What is the slope of the graph and what does it represent?
What is the F-intercept and what does it represent?

. Jason leaves Detroit at 2:00 p.M. and drives at a constant speed

west along 1-96. He passes Ann Arbor, 40 mi from Detroit, at
2:50 pm.

(a) Express the distance traveled in terms of the time elapsed.
(b) Draw the graph of the equation in part (a).

(c) What is the slope of this line? What does it represent?

. Biologists have noticed that the chirping rate of crickets of a

certain species is related to temperature, and the relationship

appears to be very nearly linear. A cricket produces 113 chirps

per minute at 70°F and 173 chirps per minute at 80°F.

(a) Find a linear equation that models the temperature 7" as a
function of the number of chirps per minute N.

(b) What is the slope of the graph? What does it represent?

(c) If the crickets are chirping at 150 chirps per minute,
estimate the temperature.

. The manager of a furniture factory finds that it costs $2200 to

manufacture 100 chairs in one day and $4800 to produce

300 chairs in one day.

(a) Express the cost as a function of the number of chairs pro-
duced, assuming that it is linear. Then sketch the graph.

(b) What is the slope of the graph and what does it represent?

(c) What is the y-intercept of the graph and what does it
represent?

. At the surface of the ocean, the water pressure is the same as

the air pressure above the water, 15 1b/in’. Below the surface,

the water pressure increases by 4.34 1b/in” for every 10 ft of

descent.

(a) Express the water pressure as a function of the depth below
the ocean surface.

(b) At what depth is the pressure 100 Ib/in*?

. The monthly cost of driving a car depends on the number of

miles driven. Lynn found that in May it cost her $380 to drive

480 mi and in June it cost her $460 to drive 800 mi.

(a) Express the monthly cost C as a function of the distance
driven d, assuming that a linear relationship gives a suitable
model.

(b) Use part (a) to predict the cost of driving 1500 miles per
month.

(c) Draw the graph of the linear function. What does the slope
represent?

(d) What does the y-intercept represent?

(e) Why does a linear function give a suitable model in this
situation?



15-16 1 For each scatter plot, decide what type of function you Temperature (°F Chirping rate (chirps/mi
might choose as a model for the data. Explain your choices. emperature (°F) irping rate (chirps/min)
15. (a) (b) :2 4212
y y -
60 79
65 91
. - . .. 70 113
Vs s T, 75 140
ey 80 173
85 198
90 211
0 X 0 X
(a) Make a scatter plot of the data.
16. (a) (b) (b) Find and graph the regression line.
y . Y. (c) Use the linear model in part (b) to estimate the chirping
rate at 100°F.
B 19 19. The table gives the winning heights for the Olympic pole vault
o competitions in the 20th century.
%, e ._-“_'"_-_- Year Height (ft) Year Height (ft)
0 X 0 X 1900 10.83 1956 14.96
1904 11.48 1960 15.42
. . . . . . . . . . . . 1908 12.17 1964 16.73
1912 12.96 1968 17.71
{19 17. The table shows (lifetime) peptic ulcer rates (per 100 1920 13.42 1972 18.04
population) for various family incomes as reported by the 1989 1924 12.96 1976 18.04
National Health Interview Survey. 1928 13.77 1980 18.96
1932 14.15 1984 18.85
Ulcer rate 1936 14.27 1988 19.77
Income (per 100 population) 1948 14.10 1992 19.02
$4.000 141 1952 14.92 1996 19.42
$6,000 13.0
$8,000 13.4 (a) Make a scatter plot and decide whether a linear model is
$12,000 12.5 appropriate.
$16,000 12.0 (b) Find and graph the regression line.
$20,000 12.4 (c) Use the linear model to predict the height of the winning
$30,000 10.5 pole vault at the 2000 Olympics and compare with the
$45,000 9.4 winning height of 19.36 feet.
$60,000 8.2 (d) Is it reasonable to use the model to predict the winning

height at the 2100 Olympics?

(a) Make a scatter plot of these data and decide whether a {9 20. A study by the U.S. Office of Science and Technology in 1972

linear model is appropriate. estimated the cost (in 1972 dollars) to reduce automobile emis-
(b) Find and graph a linear model using the first and last data sions by certain percentages:

points.

(c) Find and graph the least squares regression line.

X ‘ " Reduction in Cost per Reduction in Cost per
(d) Use the linear model in part (c) to estimate the ulcer rate emissions (%) car (in $) emissions (%) car (in $)
for an income of $25,000. f 5 .
(e) According to the model, how likely is someone with an 20 . s o0
. . 55 55 80 100
income of $80,000 to suffer from peptic ulcers?
L 60 62 85 200
(f) Do you think it would be reasonable to apply the model to
ith an income of $200,000? o 70 o .
someone wi ,0007? 70 20 95 600

18. Biologists have observed that the chirping rate of crickets of a
certain species appears to be related to temperature. The table Find a model that captures the “diminishing returns” trend of
shows the chirping rates for various temperatures. these data.



i 21. Use the data in the table to model the population of the world distance from Earth to the Sun) and their periods 7' (time of

in the 20th century by a cubic function. Then use your model revolution in years).
to estimate the population in the year 1925.
Planet d T
Year Population (millions) Mercury 0.387 0.241
S 2
1900 1650 Venus 0.723 0.615
1910 1750 Earth 1.000 1.000
) Mars 1.523 1.881
1920 1860 .
Jupiter 5.203 11.861
1930 2070
1940 2300 Saturn 9.541 29.457
- Uranus 19.190 84.008
1950 2560
1960 3040 Neptune 30.086 164.784
1970 3710 Pluto 39.507 248.350
1980 4450
1990 5280 (a) Fit a power model to the data.
2000 6080 (b) Kepler’s Third Law of Planetary Motion states that “The
square of the period of revolution of a planet is proportional
{9 22. The table shows the mean (average) distances d of the planets to the cube of its mean distance from the Sun.” Does your
from the Sun (taking the unit of measurement to be the model corroborate Kepler’s Third Law?

1.3 New Functions from 01d Functions

In this section we start with the basic functions we discussed in Section 1.2 and obtain new
functions by shifting, stretching, and reflecting their graphs. We also show how to combine
pairs of functions by the standard arithmetic operations and by composition.

|||| Transformations of Functions

By applying certain transformations to the graph of a given function we can obtain the
graphs of certain related functions. This will give us the ability to sketch the graphs of
many functions quickly by hand. It will also enable us to write equations for given graphs.
Let’s first consider translations. If ¢ is a positive number, then the graph of y = f(x) + cis
just the graph of y = f(x) shifted upward a distance of ¢ units (because each y-coordinate
is increased by the same number c). Likewise, if g(x) = f(x — ¢), where ¢ > 0, then the
value of g at x is the same as the value of f at x — ¢ (c units to the left of x). Therefore,
the graph of y = f(x — ¢) is just the graph of y = f(x) shifted ¢ units to the right (see
Figure 1).

Vertical and Horizontal Shifts Suppose ¢ > 0. To obtain the graph of
y = f(x) + c, shift the graph of y = f(x) a distance ¢ units upward
y = f(x) — ¢, shift the graph of y = f(x) a distance ¢ units downward
y = f(x — ¢), shift the graph of y = f(x) a distance c units to the right
y = f(x + ¢), shift the graph of y = f(x) a distance ¢ units to the left

Now let’s consider the stretching and reflecting transformations. If ¢ > 1, then the
graph of y = ¢f(x) is the graph of y = f(x) stretched by a factor of ¢ in the vertical
direction (because each y-coordinate is multiplied by the same number c). The graph of



y=f=x)

FIGURE 1
Translating the graph of f

In Module 1.3 you can see the effect
& of combining the transformations of

©this section.

FIGURE 3

y=flx)—c
y==f(x)

FIGURE 2
Stretching and reflecting the graph of f

y = —f(x) is the graph of y = f(x) reflected about the x-axis because the point (x, y) is
replaced by the point (x, —y). (See Figure 2 and the following chart, where the results of
other stretching, compressing, and reflecting transformations are also given.)

Vertical and Horizontal Stretching and Reflecting Suppose ¢ > 1. To obtain the graph of
y = ¢f(x), stretch the graph of y = f(x) vertically by a factor of ¢
y = (1/¢)f(x), compress the graph of y = f(x) vertically by a factor of ¢
y = f(cx), compress the graph of y = f(x) horizontally by a factor of ¢
y = f(x/c), stretch the graph of y = f(x) horizontally by a factor of ¢
y = —f(x), reflect the graph of y = f(x) about the x-axis
y = f(—x), reflect the graph of y = f(x) about the y-axis

Figure 3 illustrates these stretching transformations when applied to the cosine function
with ¢ = 2. For instance, in order to get the graph of y = 2cosx we multiply the
y-coordinate of each point on the graph of y = cos x by 2. This means that the graph of
y = cos x gets stretched vertically by a factor of 2.

Y y=2cos x Y

2 — 1 y=cost
/ y =cos x 21y cos X

1 _1 1
T y=5cosx l

o t t t t t — zo >

f
1 1 y=cosx
y=cos2x




EXAMPLE 1 Given the graph of y = V/x, use transformations to graph y = Vx =2,
y=4x—2,y= —\/;,y=2\/;,andy=\/—x.

SOLUTION The graph of the square root function y = 1/, obtained from Figure 13 in Sec-
tion 1.2, is shown in Figure 4(a). In the other parts of the figure we sketch y = Vx =2
by shifting 2 units downward, y = /x — 2 by shifting 2 units to the right, y = —Jx by
reflecting about the x-axis, y = 2x by stretching vertically by a factor of 2, and

y = V—x by reflecting about the y-axis.

y y y y y y
1+ /
o] x 0 / X 0 N x 0 X 0 x o] X
72 £
(@) y=\/x (b) y=\x—2 ©y=vx-2 @y=—Vx (© y=2Vx (f) y=+/=x
FIGURE 4 ]
EXAMPLE 2 Sketch the graph of the function f(x) = x* + 6x + 10.
SOLUTION Completing the square, we write the equation of the graph as
y=x>+6x+10=(x+37>+1
This means we obtain the desired graph by starting with the parabola y = x? and shifting
3 units to the left and then 1 unit upward (see Figure 5).
y y
(-3.1) o
0 X ,'3 ' ,'1 0 X
FIGURE 5 (a) y=x? (b)yy=(x+3>+1 -
EXAMPLE 3 Sketch the graphs of the following functions.
(a) y =sin2x b)) y=1—sinx
SOLUTION
(a) We obtain the graph of y = sin 2x from that of y = sin x by compressing horizon-
tally by a factor of 2 (see Figures 6 and 7). Thus, whereas the period of y = sinx is 277,
the period of y = sin2x is 27/2 = 1.
Y y
y=sinx y=sin2x
o

\ 1+

FIGURE 6

A

9N
<
=
(e)
SN
z
3
—

FIGURE 7



FIGURE 8

FIGURE 9

Graph of the length of daylight
from March 21 through December 21
at various latitudes

(b) To obtain the graph of y = 1 — sin x, we again start with y = sin x. We reflect
about the x-axis to get the graph of y = —sin x and then we shift 1 unit upward to get
y = 1 — sin x. (See Figure 8.)

EXAMPLE 4 Figure 9 shows graphs of the number of hours of daylight as functions of the
time of the year at several latitudes. Given that Philadelphia is located at approximately
40°N latitude, find a function that models the length of daylight at Philadelphia.

20
18
\\
16
14 — B :\\
12 J%/o—" © \o~§§
Yﬁ\o__o
Hours 10 \\‘:\#
[ —}
) —— 60°N |
50°N
6 —— 40°N
—— 30°N
4 — 20°N
2

Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Source: Lucia C. Harrison, Daylight, Twilight, Darkness and Time (New York: Silver, Burdett, 1935) page 40.

SOLUTION Notice that each curve resembles a shifted and stretched sine function. By look-
ing at the blue curve we see that, at the latitude of Philadelphia, daylight lasts about
14.8 hours on June 21 and 9.2 hours on December 21, so the amplitude of the curve (the
factor by which we have to stretch the sine curve vertically) is 5(14.8 — 9.2) = 2.8.

By what factor do we need to stretch the sine curve horizontally if we measure the
time 7 in days? Because there are about 365 days in a year, the period of our model
should be 365. But the period of y = sint is 2, so the horizontal stretching factor is
¢ = 2/365.

We also notice that the curve begins its cycle on March 21, the 80th day of the year,
so we have to shift the curve 80 units to the right. In addition, we shift it 12 units
upward. Therefore, we model the length of daylight in Philadelphia on the ¢th day of
the year by the function

| 27
L(t) = 12 + 2.8 sin| —(t — 80)
365 -
Another transformation of some interest is taking the absolute value of a function. If

y = | f(x)], then according to the definition of absolute value, y = f(x) when f(x) = 0 and
y = —f(x) when f(x) < 0. This tells us how to get the graph of y = | f(x)| from the graph




FIGURE 10

of y = f(x): The part of the graph that lies above the x-axis remains the same; the part that
lies below the x-axis is reflected about the x-axis.

EXAMPLE 5 Sketch the graph of the function y = |x* — 1].

SOLUTION We first graph the parabola y = x> — 1 in Figure 10(a) by shifting the parabola
y = x? downward 1 unit. We see that the graph lies below the x-axis when —1 < x < 1,
so we reflect that part of the graph about the x-axis to obtain the graph of y = |x* — 1|
in Figure 10(b).

y y
—1 0 1 X 1 0 1 X
@y=x*—1 (b)y=|x*—1] —

|||| Combinations of Functions

Two functions f and g can be combined to form new functions f + g, f — g, fg, and f/g in
a manner similar to the way we add, subtract, multiply, and divide real numbers.
If we define the sum f + g by the equation

[ (f + 9)x) =f(x) + g(x)

then the right side of Equation 1 makes sense if both f(x) and g(x) are defined, that is, if
x belongs to the domain of f and also to the domain of g. If the domain of f is A and the
domain of g is B, then the domain of f + g is the intersection of these domains, that is,
AN B.

Notice that the + sign on the left side of Equation 1 stands for the operation of addi-
tion of functions, but the + sign on the right side of the equation stands for addition of the
numbers f(x) and g(x).

Similarly, we can define the difference f — g and the product fg, and their domains are
also A N B. But in defining the quotient f/g we must remember not to divide by 0.

Algebra of Functions Let f and g be functions with domains A and B. Then the
functions f + g, f — g, fg, and f/g are defined as follows:

(f+ 9)x) =f(x) + g(x) domain = A N B
(f— g9)x) = f(x) — g(x) domain = A N B

(fo)(x) = f(x)g(x) domain = A N B

<l>(x) = S domain = {x € A N B|g(x) # 0}
g g(x)




[l Another way to solve 4 — x2 = 0:
RQ-02+x=0

EXAMPLE 6 If f(x) = V/x and g(x) = /4 — x2, find the functions ' + g, f — g, /9,
and f/g.

SOLUTION The domain of f(x) = +/x is [0, ®). The domain of g(x) = v/4 — x2 consists

of all numbers x such that 4 — x* = 0, that is, x> < 4. Taking square roots of both sides,
we get |x| < 2, or —2 < x < 2, so the domain of g is the interval [—2, 2]. The inter-
section of the domains of f and g is

[O’ oo) N [_2, 2] = [0, 2]

Thus, according to the definitions, we have
(f+g)(x)=\/;+\/4—x2 )
(f_g)(x):\/_—\/4—x2 0<x<?

(fg)(x):\/;\/4—)€2=\/4x—x3 0<x<2?2

AV, x _
(;)(x)—\/4 = 0s=sx<?2

— x2 4 — x?

Notice that the domain of f/g is the interval [0, 2); we have to exclude x = 2 because
g9(2) = 0. -

The graph of the function f + ¢ is obtained from the graphs of f and g by graphical
addition. This means that we add corresponding y-coordinates as in Figure 11. Figure 12
shows the result of using this procedure to graph the function f + g from Example 6.

FIGURE 11

FIGURE 12

|| _Composition of Functions

There is another way of combining two functions to get a new function. For example,
suppose that y = f(u) = v/u and u = g(x) = x> + 1. Since y is a function of u and u is,
in turn, a function of x, it follows that y is ultimately a function of x. We compute this by
substitution:

y=f) =f(g) =f(x* + 1) = Vx> + 1



The procedure is called composition because the new function is composed of the two
given functions f and g.

In general, given any two functions f and g, we start with a number x in the domain of
g and find its image g(x). If this number g(x) is in the domain of f, then we can calculate
the value of f(g(x)). The result is a new function h(x) = f(g(x)) obtained by substituting
g into f. It is called the composition (or composite) of f and g and is denoted by fe g
(“f circle g7).

Definition Given two functions f and g, the composite function f < g (also called
the composition of f and g) is defined by

(fo9)(x) = f(g(x)

The domain of f o g is the set of all x in the domain of g such that g(x) is in the domain
of f. In other words, (f° g)(x) is defined whenever both g(x) and f(g(x)) are defined. The
best way to picture f o g is by either a machine diagram (Figure 13) or an arrow diagram
(Figure 14).

FIGURE 13
The f°g machine is composed of y — B g g(x) f — f(g(x)
the g machine (first) and then (input) (output)

the f machine.

FIGURE 14

Arrow diagram for fog

EXAMPLE 7 If f(x) = x* and g(x) = x — 3, find the composite functions f° g and g © f.
SOLUTION We have
(feog)(x) = flg(x) = flx = 3) = (x = 3)?
(gof)x) = g(f(x) = g(x*) =x* =3 -
@ NOTE = You can see from Example 7 that, in general, fog # g o f. Remember, the
notation fe g means that the function g is applied first and then f is applied second. In

Example 7, f e g is the function that first subtracts 3 and then squares; g  f is the function
that first squares and then subtracts 3.

EXAMPLE 8 If f(x) = +/x and g(x) = +/2 — x, find each function and its domain.
(@) fog () gof (©) fof d) geyg

SOLUTION

@ (fo@) =flgt) =f(V2—x) =V2—x=2—x

The domain of fogis{x|2 — x =0} = {x|x <2} = (-, 2].




(b) (g°f)x) = g(f()) = g(\/x) = V2 = Jx

For /x to be defined we must have x = 0. For /2 — /x to be defined we must have
If0<a<bh,thena® < b’ 2 — \/; = (), that is, \/} =< 2, or x =< 4. Thus, we have 0 =< x < 4, so the domain of
g ° f is the closed interval [0, 4].

© (fo ) = F(F) = F(Vx) = YV =
The domain of fo f is [0, ©).
(d) (gog)x) =glglx) =g(v2 —x) =2 — V2 —x

This expression is defined when 2 — x = 0, thatis, x < 2, and 2 — /2 — x = 0. This
latter inequality is equivalent to /2 — x < 2, or 2 — x < 4, that is, x = —2. Thus,
—2 < x < 2, so the domain of g ° g is the closed interval [ -2, 2]. -

It is possible to take the composition of three or more functions. For instance, the com-
posite function f o g ° h is found by first applying A, then g, and then f as follows:

(foge°h(x) = f(g(h(x)

EXAMPLE 9 Find fo go hif f(x) = x/(x + 1), g(x) = x'°, and h(x) = x + 3.

SOLUTION (feogeh)(x)=f(g(h(x)) = f(g(x + 3))
_ 10y (x+—3)10
_f((x+3) )_(x+3)10+1 [

So far we have used composition to build complicated functions from simpler ones. But
in calculus it is often useful to be able to decompose a complicated function into simpler
ones, as in the following example.

EXAMPLE 10 Given F(x) = cos*(x + 9), find functions f, g, and 4 such that F = fo g ° h.

SOLUTION Since F(x) = [cos(x + 9)]% the formula for F says: First add 9, then take the
cosine of the result, and finally square. So we let

hx) =x+9 g(x) = cos x flx) =x2
Then
(fogeom(x) = f(g(h(x) = f(g(x + 9)) = f(cos(x + 9))
= [cos(x + 9)]* = F(x) -
1.3 Exercises
1. Suppose the graph of f is given. Write equations for the graphs (d) Shift 3 units to the left.
that are obtained from the graph of f as follows. (e) Reflect about the x-axis.
(a) Shift 3 units upward. (f) Reflect about the y-axis.
(b) Shift 3 units downward. (g) Stretch vertically by a factor of 3.

(c) Shift 3 units to the right. (h) Shrink vertically by a factor of 3.



2. Explain how the following graphs are obtained from the graph 6. y
of y = f(x). 51
(@ y=5f(x) (®) y=fx—5)
©y=-fx @ y=-5f(x)
() y =f(5x) (f) y=5f(x) =3
3. The graph of y = f(x) is given. Match each equation with its
graph and give reasons for your choices. 0 2 50
@ y=flx—4 b y=fx +3
©y =3 @ y=—f(x+4) ;
€ y=2f(x +6) ' g
@ _‘4 _51 0 X
U Vil
® T—2.5
—6 6 * 8. (a) How is the graph of y = 2 sin x related to the graph of
y = sin x? Use your answer and Figure 6 to sketch the
graph of y = 2 sin x.
(b) How is the graph of y = 1 + /x related to the graph of
y = /x? Use your answer and Figure 4(a) to sketch the
4. The graph of f is given. Draw the graphs of the following graph of y = 1 + /.
functions.
= + = + 9-24 1 Graph the function, not by plotting points, but by starting
@ y=flx+4) (b)) y=/f) +4
ith the graph of one of the standard functions given in Section 1.2
=2 d) y=—3f(x) +3 With the grap g :
©y f®) @y 2f (%) and then applying the appropriate transformations.
y
9. y=—x° 10 y=1—x
1. y=(x+ 1) 120 y=x>—4x + 3
| 13. y=1+ 2cosx 14. y = 4 sin 3x
1
0| 1 X 15. y = sin(x/2) 16. y =
: x—4
5. Ell;e;ﬁge;psh of f is given. Use it to graph the following 17.y=vx+3 18 y=(x+2)°+3
(@) y = £(2%) ®) y=r(3x) 19. y = 2(x% + 8x) 2. y=1+Jx—1
© y=f(= @ y=—f(=) 5 | _
21. y = 22. y=—tan|x — —
y x+1
I 23. y = |sin x| 4. y=|x* - 2x]
0] 1
‘ 25. The city of New Orleans is located at latitude 30°N. Use

Figure 9 to find a function that models the number of hours of
daylight at New Orleans as a function of the time of year. Use
the fact that on March 31 the Sun rises at 5:51 A.M. and sets at
6:18 p.m. in New Orleans to check the accuracy of your model.

67 I The graph of y = /3x — x? is given. Use transformations

to create a function whose graph is as shown.

y 26. A variable star is one whose brightness alternately increases

3y — 12 and decreases. For the most visible variable star, Delta Cephei,
the time between periods of maximum brightness is 5.4 days,
the average brightness (or magnitude) of the star is 4.0, and its

0 3 > brightness varies by *0.35 magnitude. Find a function that

models the brightness of Delta Cephei as a function of time.

<
Il

1.5




27. (a) How is the graph of y = f(| x|) related to the graph of /2
(b) Sketch the graph of y = sin | x|.
(c) Sketch the graph of y = /| x|.

28. Use the given graph of f to sketch the graph of y = 1/f(x).
Which features of f are the most important in sketching
y = 1/f(x)? Explain how they are used.

y

1

/I |
01\/)‘

29-30 1 Use graphical addition to sketch the graph of f + g.

2. [V
~Ly
~
f I~
0
30. y
N F
=
0 g X]

o o o o o o o o o o o

31-32 i Find f + g, f — g, fg, and f/g and state their domains.
3. f(x) =x*+2x% g(x) =3x*—1
32. f(x) =1 +x, ¢gx)=+1—x

o o o o o o o o o o

33-34 1 Use the graphs of f and g and the method of graphical
addition to sketch the graph of f + g.

33 f(x) =x, gx)=1/x 34, f(x) = x°,

o o o o o o o o o o o

g(x) = —x?

35-40 1 Find the functions fo g, ge°f, f°f, and g ° g and their
domains.

35 f(x) =2x*—x, g(x)=3x+2
36. f(x)=1—x° gx)=1/x
37. f(x) =sinx, g(x)=1—x

o

38. f(x) =1—3x, g(x) =5x*+3x+2
x + 1
x+2

20. f(x) =+2x+3, glx)=x>+1

o o o o o o o o o o o

39. f(x) =x + %, g(x) =

41-44 i Find fego h.

4. f(x)=x+1, h(x)=x—1

42. f(x) =2x—1, glx)=x% h(x)=1—-x

8. f)=vVx—1, gx)=x>+2, hx) =x+3
M. f(x) = , glx) =cosx, h(x)=+x+3

o o o o o o o o o o o

g(x) = 2x,

x+ 1

45-50 1 Express the function in the form fo g.
45. F(x) = (x> + DY 46. F(x) = sin(+/x)

2

47. G(x) = i 48. G(x) = <13
t
49. u(r) = /cost 50. u(t) = _anr
1 + tant

o o o o o o o o o o o

51-53 1 Express the function in the form fo g o h.
51. Hx) = 1 — 3" 52. H(x) = Jx — 1
53. H(x) = sec*(v/x)

o o o o o o o o o o o

54. Use the table to evaluate each expression.

(a) f(g(1) (b) g(f(1)
(d) g(g(1)) (e) (g°/)3)

() f(f(1)
() (f°9)(6)

[\
(3]
wn

f | 3|1 | 4

g(x) 6 3

[}
(3]
W

55. Use the given graphs of f and g to evaluate each expression,
or explain why it is undefined.
@ f(g(2) (b) g(f(0))
(d) (g°/)6) © (9°9)(=2)

© (f°9)0)
() (fof)4)

y




56.

57.

58.

59.

Use the given graphs of f and g to estimate the value of
f(g(x)) for x = =5, —4, =3, ..., 5. Use these estimates to
sketch a rough graph of fog.

y
| ™~
Kt
\

A stone is dropped into a lake, creating a circular ripple that
travels outward at a speed of 60 cm/s.
(a) Express the radius r of this circle as a function of the
time 7 (in seconds).
(b) If A is the area of this circle as a function of the radius, find
A o r and interpret it.

An airplane is flying at a speed of 350 mi/h at an altitude of

one mile and passes directly over a radar station at time ¢ = 0.

(a) Express the horizontal distance d (in miles) that the plane
has flown as a function of ¢.

(b) Express the distance s between the plane and the radar
station as a function of d.

(c) Use composition to express s as a function of 7.

60.

61.

(b) Sketch the graph of the voltage V(¢) in a circuit if the
switch is turned on at time # = 0 and 120 volts are applied
instantaneously to the circuit. Write a formula for V(7) in
terms of H(z).

(c) Sketch the graph of the voltage V(¢) in a circuit if the
switch is turned on at time r = 5 seconds and 240 volts are
applied instantaneously to the circuit. Write a formula for
V() in terms of H(r). (Note that starting at ¢t = 5 corre-
sponds to a translation.)

The Heaviside function defined in Exercise 59 can also be used
to define the ramp function y = crH(r), which represents a
gradual increase in voltage or current in a circuit.

(a) Sketch the graph of the ramp function y = rH(7).

(b) Sketch the graph of the voltage V(¢) in a circuit if the
switch is turned on at time # = 0 and the voltage is gradu-
ally increased to 120 volts over a 60-second time interval.
Write a formula for V(z) in terms of H(z) for r < 60.

(c) Sketch the graph of the voltage V(¢) in a circuit if the
switch is turned on at time r = 7 seconds and the voltage
is gradually increased to 100 volts over a period of
25 seconds. Write a formula for V(¢) in terms of H(z) for
t =< 32.

(a) If g(x) = 2x + 1 and h(x) = 4x> + 4x + 7, find a function
f such that fo g = h. (Think about what operations you
would have to perform on the formula for g to end up with
the formula for £.)

(b) If f(x) = 3x + 5 and h(x) = 3x* + 3x + 2, find a function
g such that fog = h.

The Heaviside function H is defined by
o 0 if1<0 62. Ifo];f,z : x + 4 and h(x) = 4x — 1, find a function g such that
1 iti=0 9 ’

It is used in the study of electric circuits to represent the
sudden surge of electric current, or voltage, when a switch is
instantaneously turned on.

(a) Sketch the graph of the Heaviside function.

1.4 Graphing Calculators and Computers

63.

o4,

Suppose g is an even function and let 7 = fo g. Is h always an
even function?

Suppose ¢ is an odd function and let 7 = fo g. Is h always an
odd function? What if f is odd? What if f is even?

In this section we assume that you have access to a graphing calculator or a computer with
graphing software. We will see that the use of such a device enables us to graph more com-
plicated functions and to solve more complex problems than would otherwise be possible.
We also point out some of the pitfalls that can occur with these machines.

Graphing calculators and computers can give very accurate graphs of functions. But we
will see in Chapter 4 that only through the use of calculus can we be sure that we have
uncovered all the interesting aspects of a graph.

A graphing calculator or computer displays a rectangular portion of the graph of a func-
tion in a display window or viewing screen, which we refer to as a viewing rectangle.
The default screen often gives an incomplete or misleading picture, so it is important to
choose the viewing rectangle with care. If we choose the x-values to range from a mini-
mum value of Xmin = a to a maximum value of Xmax = b and the y-values to range from



(a,d) y=d (b, d)
x=a x=b
(a, c) y=c (b, )

FIGURE 1

The viewing rectangle [a, b] by [c,d ]

2
-2 2
-2
(@) [=2,2]by [-2,2]
4
—4 4
-4

(b) [-4,4] by [—4, 4]
FIGURE 2 Graphs of f(x)=x>+3

a minimum of Ymin = ¢ to a maximum of Ymax = d, then the visible portion of the graph
lies in the rectangle

la,b] X [c,d] ={(x,y) |a<x<b,c<y=d}

shown in Figure 1. We refer to this rectangle as the [a, b] by [c, d] viewing rectangle.

The machine draws the graph of a function f much as you would. It plots points of the
form (x, f(x)) for a certain number of equally spaced values of x between a and b. If an
x-value is not in the domain of f, or if f(x) lies outside the viewing rectangle, it moves on
to the next x-value. The machine connects each point to the preceding plotted point to form
a representation of the graph of f.

EXAMPLE 1 Draw the graph of the function f(x) = x? + 3 in each of the following view-
ing rectangles.

(a) [=2,2] by [-2,2]

(c) [—10, 10] by [—5, 30]

(b) [—4,4] by [—4,4]
(d) [—50, 50] by [—100, 1000]

SOLUTION For part (a) we select the range by setting Xmin = —2, Xmax = 2, Ymin = —2,
and Ymax = 2. The resulting graph is shown in Figure 2(a). The display window is
blank! A moment’s thought provides the explanation: Notice that x> = 0 for all x, so
x* 4+ 3 = 3 for all x. Thus, the range of the function f(x) = x* + 3 is [3, «). This
means that the graph of f lies entirely outside the viewing rectangle [—2, 2] by [—2, 2].
The graphs for the viewing rectangles in parts (b), (c), and (d) are also shown in
Figure 2. Observe that we get a more complete picture in parts (c) and (d), but in part (d)
it is not clear that the y-intercept is 3.

30 1000

‘ } 50
-5 —100

(d) [50, 50] by [—100, 1000]

() [-10, 10] by [-5, 30]

We see from Example 1 that the choice of a viewing rectangle can make a big differ-
ence in the appearance of a graph. Sometimes it’s necessary to change to a larger viewing
rectangle to obtain a more complete picture, a more global view, of the graph. In the next
example we see that knowledge of the domain and range of a function sometimes provides
us with enough information to select a good viewing rectangle.

EXAMPLE 2 Determine an appropriate viewing rectangle for the function
f(x) = /8 — 2x? and use it to graph f.
SOLUTION The expression for f(x) is defined when

8§ —2x'=0 <= 2’8 <& x's4

& k=2 & -2=xs2
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FIGURE 3
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FIGURE 4
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(a)

FIGURE 5 f(x)=x*—150x

Therefore, the domain of f is the interval [—2, 2]. Also,
0<B—-2x2<.8=2,2~283

so the range of f is the interval [O, 22 ]

We choose the viewing rectangle so that the x-interval is somewhat larger than the
domain and the y-interval is larger than the range. Taking the viewing rectangle to be
[—3,3] by [—1, 4], we get the graph shown in Figure 3. ]

EXAMPLE 3 Graph the function y = x* — 150x.

SOLUTION Here the domain is R, the set of all real numbers. That doesn’t help us choose a
viewing rectangle. Let’s experiment. If we start with the viewing rectangle [—35, 5] by
[—5, 5], we get the graph in Figure 4. It appears blank, but actually the graph is so
nearly vertical that it blends in with the y-axis.

If we change the viewing rectangle to [—20, 20] by [—20, 20], we get the picture
shown in Figure 5(a). The graph appears to consist of vertical lines, but we know that
can’t be correct. If we look carefully while the graph is being drawn, we see that the
graph leaves the screen and reappears during the graphing process. This indicates that
we need to see more in the vertical direction, so we change the viewing rectangle to
[—20, 20] by [—500, 500]. The resulting graph is shown in Figure 5(b). It still doesn’t
quite reveal all the main features of the function, so we try [ —20, 20] by [—1000, 1000]
in Figure 5(c). Now we are more confident that we have arrived at an appropriate view-
ing rectangle. In Chapter 4 we will be able to see that the graph shown in Figure 5(c)
does indeed reveal all the main features of the function.

500 1000

—20 20 —20 20

—500 —1000

(b) (©)

EXAMPLE 4 Graph the function f(x) = sin 50x in an appropriate viewing rectangle.

SOLUTION Figure 6(a) shows the graph of f produced by a graphing calculator using the
viewing rectangle [—12, 12] by [—1.5, 1.5]. At first glance the graph appears to be rea-
sonable. But if we change the viewing rectangle to the ones shown in the following parts
of Figure 6, the graphs look very different. Something strange is happening.

In order to explain the big differences in appearance of these graphs and to find an
appropriate viewing rectangle, we need to find the period of the function y = sin 50x.
We know that the function y = sin x has period 27 and the graph of y = sin 50x is
compressed horizontally by a factor of 50, so the period of y = sin 50x is

2T T
—=—=0.12
50 25 0-126



[IIl' The appearance of the graphs in Figure 6
depends on the machine used. The graphs you
get with your own graphing device might not

loak like these figures, but they will also be

quite inaccurate.

FIGURE 6
Graphs of f(x) = sin 50x
in four viewing rectangles

1.5

A

AN
Y

vV

FIGURE 7
f(x)=sin 50x

-1.5

25

1.5 1.5
-12 12 -10 10

-1.5 -15

() (b)

L5
-6 6

-15 -15

(© (d)

This suggests that we should deal only with small values of x in order to show just a few
oscillations of the graph. If we choose the viewing rectangle [—0.25, 0.25] by [—1.5, 1.5],
we get the graph shown in Figure 7.

Now we see what went wrong in Figure 6. The oscillations of y = sin 50x are so rapid
that when the calculator plots points and joins them, it misses most of the maximum and
minimum points and therefore gives a very misleading impression of the graph.

We have seen that the use of an inappropriate viewing rectangle can give a misleading
impression of the graph of a function. In Examples 1 and 3 we solved the problem by
changing to a larger viewing rectangle. In Example 4 we had to make the viewing rect-
angle smaller. In the next example we look at a function for which there is no single view-
ing rectangle that reveals the true shape of the graph.

EXAMPLE 5 Graph the function f(x) = sinx + 55 cos 100x.

SOLUTION Figure 8 shows the graph of f produced by a graphing calculator with viewing
rectangle [ —6.5, 6.5] by [—1.5, 1.5]. It looks much like the graph of y = sin x, but per-
haps with some bumps attached. If we zoom in to the viewing rectangle [—0.1, 0.1] by
[—0.1, 0.1], we can see much more clearly the shape of these bumps in Figure 9. The
reason for this behavior is that the second term, ﬁ cos 100x, is very small in comparison
with the first term, sin x. Thus, we really need two graphs to see the true nature of this
function.

(ﬂ

FIGURE 8

1.5 0.1

\/

6.5 —0.1 0.1

-1.5 —0.1

FIGURE 9



[l Another way to avoid the extraneous line is
to change the graphing mode on the calculator
so that the dots are not connected. Alternatively,
we could zoom in using the Zoom Decimal mode.

FIGURE 10

1
y_l—x

1

_x'

EXAMPLE 6 Draw the graph of the function y = "

SOLUTION Figure 10(a) shows the graph produced by a graphing calculator with

viewing rectangle [—9, 9] by [—9, 9]. In connecting successive points on the graph, the
calculator produced a steep line segment from the top to the bottom of the screen. That
line segment is not truly part of the graph. Notice that the domain of the function

y = 1/(1 = x) is {x| x # 1}. We can eliminate the extraneous near-vertical line by exper-
imenting with a change of scale. When we change to the smaller viewing rectangle
[—4.7,4.7] by [—4.7, 4.7] on this particular calculator, we obtain the much better graph
in Figure 10(b).

9 4.7
-9 h 9 47— 4.7
-9 —4.7
(a) (b)

EXAMPLE 7 Graph the function y = Jx.

SOLUTION Some graphing devices display the graph shown in Figure 11, whereas others
produce a graph like that in Figure 12. We know from Section 1.2 (Figure 13) that the
graph in Figure 12 is correct, so what happened in Figure 11?7 The explanation is that
some machines compute the cube root of x using a logarithm, which is not defined if x is
negative, so only the right half of the graph is produced.

2 2

FIGURE 11 FIGURE 12

You should experiment with your own machine to see which of these two graphs is
produced. If you get the graph in Figure 11, you can obtain the correct picture by graph-
ing the function

flx) = X |x|1/3
| x|
Notice that this function is equal to Jx (except when x = 0). 1

To understand how the expression for a function relates to its graph, it’s helpful to graph
a family of functions, that is, a collection of functions whose equations are related. In the
next example we graph members of a family of cubic polynomials.



EXAMPLE 8 Graph the function y = x* + cx for various values of the number c. How
does the graph change when c is changed?

SOLUTION Figure 13 shows the graphs of y = x>+ exforc=2,1,0, —1,and —2. We
see that, for positive values of ¢, the graph increases from left to right with no maximum
or minimum points (peaks or valleys). When ¢ = 0, the curve is flat at the origin. When
c is negative, the curve has a maximum point and a minimum point. As ¢ decreases, the
maximum point becomes higher and the minimum point lower.

(a) y=x>+2x (b)yy=x3+x ) y=x* (dyy=x*—x (e)y=x*—2x

FIGURE 13

Several members of the family of
functions y = x* + cx, all graphed
in the viewing rectangle [—2, 2]
by [-2.5,2.5]

EXAMPLE 9 Find the solution of the equation cos x = x correct to two decimal places.

SOLUTION The solutions of the equation cos x = x are the x-coordinates of the points of
intersection of the curves y = cos x and y = x. From Figure 14(a) we see that there is
only one solution and it lies between 0 and 1. Zooming in to the viewing rectangle [0, 1]
by [0, 1], we see from Figure 14(b) that the root lies between 0.7 and 0.8. So we zoom in
further to the viewing rectangle [0.7, 0.8] by [0.7, 0.8] in Figure 14(c). By moving the
cursor to the intersection point of the two curves, or by inspection and the fact that the
x-scale is 0.01, we see that the root of the equation is about 0.74. (Many calculators have
a built-in intersection feature.)

1.5 1 0.8
y=x
y=cCos X
/ y=cosx
h \/ \/ 5 -
1.5 0 :
FIGURE 14 '
Locating the roots (a) [-5,5] by [-1.5,1.5] (b) [0,1] by [0, 1] (c) [0.7,0.8] by [0.7,0.8]
of cosx=x x-scale =1 x-scale = 0.1 x-scale = 0.01 _—
1.4 7~ Exercises
1. Use a graphing calculator or computer to determine which of 2. Use a graphing calculator or computer to determine which of

the given viewing rectangles produces the most appropriate the given viewing rectangles produces the most appropriate

graph of the function f(x) = x* + 2. graph of the function f(x) = x* + 7x + 6.

(@) [-2,2] by [-2,2] (b) [0, 4] by [0, 4] (@) [=5,5]by [-5,5]

(c) [~4,4] by [-4, 4]
(d) [~8, 8] by [—4, 40]
(e) [—40, 40] by [—80, 800]

(b) [0, 10] by [—20, 100]
(c) [—15, 8] by [—20, 100]
(d) [—10, 3] by [—100, 20]



3. Use a graphing calculator or computer to determine which of
the given viewing rectangles produces the most appropriate
graph of the function f(x) = 10 + 25x — x°.

() [-4,4] by [-4,4]

(b) [—10, 10] by [—10, 10]

(c) [—20, 20] by [—100, 100]
(d) [—100, 100] by [—200, 200]

4. Use a graphing calculator or computer to determine which of
the given viewing rectangles produces the most appropriate
graph of the function f(x) = /8x — x2.

() [-4,4] by [—4,4]

(b) [-5, 5] by [0, 100]

(c) [—10, 10] by [—10, 40]
() [~2,10] by [-2, 6]

5-18 1 Determine an appropriate viewing rectangle for the given
function and use it to draw the graph.

1

5. f(x) =5+ 20x — x?

6. f(x) = x* + 30x% + 200x

7. f(x) =0.01x* — x>+ 5 8. f(x) =x(x+ 6)(x—9)

9. f(x) = V81 — x* 10. f(x) = +0.1x + 20
100 X

1. f(x):xz-i-T 12. f(x):m

3. f(x) = cos 100x 14. f(x) = 3sin 120x

5. f(x) = sin(x/40) 16. y = tan 25x

7. y =309 18. y = x* 4+ 0.02 sin 50x

o o o o o o o o o o

9. Graph the ellipse 4x> + 2y? = 1 by graphing the functions
whose graphs are the upper and lower halves of the ellipse.

20. Graph the hyperbola y*> — 9x* = 1 by graphing the functions

whose graphs are the upper and lower branches of the
hyperbola.

21-23 i Find all solutions of the equation correct to two decimal
places.

21 X3 —x?—4=0

22, xP=4x—1

23. x> =sinx

o

o o o

24. We saw in Example 9 that the equation cos x = x has exactly

one solution.
(a) Use a graph to show that the equation cos x = 0.3x has

three solutions and find their values correct to two decimal

places.
(b) Find an approximate value of m such that the equation
cos x = mx has exactly two solutions.

25. Use graphs to determine which of the functions f(x) = 10x?

and g(x) = x*/10 is eventually larger (that is, larger when x is
very large).

26.

27.
28.

29.

30.

31,

32.

33.

34.

35.

36.

Use graphs to determine which of the functions
f(x) = x* — 100x? and g(x) = x* is eventually larger.

For what values of x is it true that | sinx — x| < 0.1?

Graph the polynomials P(x) = 3x° — 5x° + 2x and

Q(x) = 3x° on the same screen, first using the viewing rect-
angle [—2, 2] by [—2, 2] and then changing to [~ 10, 10] by
[—10,000, 10,000]. What do you observe from these graphs?

In this exercise we consider the family of root functions

flx) = {/;c, where 7 is a positive integer.

(a) Graph the functions y = Vx, y = x, and y = ¥/x on the
same screen using the viewing rectangle [—1, 4] by [—1, 3].

(b) Graph the functions y = x, y = \3/;6, and y = \5/} on the
same screen using the viewing rectangle [—3, 3] by [—2, 2].
(See Example 7.)

(c) Graph the functions y = \/;c, y = Ix, y = V/x, and y = {/;c
on the same screen using the viewing rectangle [—1, 3] by
[—1,2]

(d) What conclusions can you make from these graphs?

In this exercise we consider the family of functions

f(x) = 1/x", where n is a positive integer.

(a) Graph the functions y = 1/x and y = 1/x* on the same
screen using the viewing rectangle [—3, 3] by [—3, 3].

(b) Graph the functions y = 1/x? and y = 1/x* on the same
screen using the same viewing rectangle as in part (a).

(c) Graph all of the functions in parts (a) and (b) on the same
screen using the viewing rectangle [—1, 3] by [—1, 3].

(d) What conclusions can you make from these graphs?

Graph the function f(x) = x* 4+ cx? + x for several values
of ¢. How does the graph change when ¢ changes?

Graph the function f(x) = +/1 + cx? for various values of c.
Describe how changing the value of ¢ affects the graph.

Graph the function y = x"27", x = 0,forn = 1,2, 3,4, 5,
and 6. How does the graph change as n increases?

The curves with equations

| x|
Ve — x?

are called bullet-nose curves. Graph some of these curves to
see why. What happens as ¢ increases?

What happens to the graph of the equation y* = cx* + x? as
c varies?

This exercise explores the effect of the inner function g on a

composite function y = f(g(x)).

(a) Graph the function y = sin(\/}) using the viewing rect-
angle [0, 400] by [—1.5, 1.5]. How does this graph differ
from the graph of the sine function?

(b) Graph the function y = sin(x?) using the viewing rectangle
[=5,5] by [—1.5, 1.5]. How does this graph differ from the
graph of the sine function?



37. The figure shows the graphs of y = sin 96x and y = sin 2x as
displayed by a TI-83 graphing calculator.

AN V"& I 2
0 \/ \sz 0 \\j‘, \”ﬂﬂ

y =sin 96x y=sin2x

The first graph is inaccurate. Explain why the two graphs
appear identical. [Hint: The TI-83’s graphing window is 95
pixels wide. What specific points does the calculator plot?]

38. The first graph in the figure is that of y = sin 45x as displayed

by a TI-83 graphing calculator. It is inaccurate and so, to help

0 2 OF

explain its appearance, we replot the curve in dot mode in the
second graph.

ey

What two sine curves does the calculator appear to be

plotting? Show that each point on the graph of y = sin 45x that
the TI-83 chooses to plot is in fact on one of these two curves.
(The TI-83’s graphing window is 95 pixels wide.)

1.5 Exponential Functions

FIGURE 1

Representation of y = 2, x rational

The function f(x) = 2% is called an exponential function because the variable, x, is the
exponent. It should not be confused with the power function g(x) = x?, in which the vari-
able is the base.

In general, an exponential function is a function of the form

fx) =a*

where a is a positive constant. Let’s recall what this means.
If x = n, a positive integer, then

n factors

If x = 0, then a® = 1, and if x = —n, where n is a positive integer, then

If x is a rational number, x = p/q, where p and ¢ are integers and ¢ > 0, then

14
a*=a?t = Ygqr = (\4/5)

But what is the meaning of a” if x is an irrational number? For instance, what is meant by
2¥3 or 577

To help us answer this question we first look at the graph of the function y = 27, where
x is rational. A representation of this graph is shown in Figure 1. We want to enlarge the
domain of y = 2* to include both rational and irrational numbers.

There are holes in the graph in Figure 1 corresponding to irrational values of x. We want
to fill in the holes by defining f(x) = 2%, where x € R, so that f is an increasing function.
In particular, since the irrational number ﬁ satisfies

17<J3<18



we must have
217 < zﬁ < 018

and we know what 2'7 and 2'* mean because 1.7 and 1.8 are rational numbers. Similarly,
if we use better approximations for /3, we obtain better approximations for 2V*:
1.73 <3< 1.74 > 2P <o
1732 <3< 1733 = 2172 <2 <ol7®
17320 < /3 < 17321 = 217320 < V3 < o173
1.73205 < /3 < 1.73206 = 2173205 < 23 < 9173206

Il A proof of this fact is given in J. Marsden It can be shown that there is exactly one number that is greater than all of the numbers
and A. Weinstein, Calculus Unlimited (Menlo
Park, CA: Benjamin/Cummings, 1980). 21,7, 21.73, 21,732, 217320, 21.73205,

y

and less than all of the numbers

21.8 21.74 21.733 2I.7321 21.73206
1 We define 23 to be this number. Using the preceding approximation process we can com-
pute it correct to six decimal places:

1
/ — 25 ~ 3321997

Similarly, we can define 2* (or a, if @ > 0) where x is any irrational number. Figure 2
FIGURE 2 shows how all the holes in Figure 1 have been filled to complete the graph of the function
y=2" xreal flx) =2 x ER.
The graphs of members of the family of functions y = a* are shown in Figure 3 for var-
ious values of the base a. Notice that all of these graphs pass through the same point (0, 1)
because a’ = 1 for a # 0. Notice also that as the base a gets larger, the exponential func-
tion grows more rapidly (for x > 0).

[IIl'f0 < a < 1, then a* approaches 0 as x
becomes large. If a > 1, then a* approaches 0
as x decreases through negative values. In both
cases the x-axis is a horizontal asymptote.
These matters are discussed in Section 2.6.

FIGURE 3

You can see from Figure 3 that there are basically three kinds of exponential functions
y=a". If 0 < a < 1, the exponential function decreases; if a = 1, it is a constant; and if
a > 1, it increases. These three cases are illustrated in Figure 4. Observe that if a # 1,



then the exponential function y = a* has domain R and range (0, ). Notice also that,
since (1/a)* = 1/a* = a*, the graph of y = (1/a)" is just the reflection of the graph of
y = a” about the y-axis.

y y y
0.1) 1
\ / o
0 X 0 X 0 X
(aAy=a*, 0<a<l b)yy=1* ©)y=a", a>1
FIGURE 4
One reason for the importance of the exponential function lies in the following proper-

ties. If x and y are rational numbers, then these laws are well known from elementary
algebra. It can be proved that they remain true for arbitrary real numbers x and y.

[l In Section 5.6 we will present a definition Laws of Exponents If @ and b are positive numbers and x and y are any real numbers,

of the exponential function that will enable us then

to give an easy proof of the Laws of Exponents. @

1. a*™ =a'a’ 240" =— 3. (a*) =a” 4. (ab)* = a*b*
a

EXAMPLE 1 Sketch the graph of the function y = 3 — 2* and determine its domain and
range.

Il For a review of reflecting and shifting SOLUTION First we reflect the graph of y = 2* (shown in Figure 2) about the x-axis to

graphs, see Section 1.3. get the graph of y = —2* in Figure 5(b). Then we shift the graph of y = —2* upward
3 units to obtain the graph of y = 3 — 2" in Figure 5(c). The domain is R and the range
is (—oo, 3).

y y y
2

0 X \0 X 0 X

-1

FIGURE 5 (a)y=2" (b) y=-2" (c)y=3-2" -
EXAMPLE 2 Use a graphing device to compare the exponential function f(x) = 2* and the
power function g(x) = x. Which function grows more quickly when x is large?

SOLUTION  Figure 6 shows both functions graphed in the viewing rectangle [—2, 6]
by [0, 40]. We see that the graphs intersect three times, but for x > 4 the graph of



[Ill Example 2 shows that y = 2* increases
more quickly than y = x?. To demonstrate just
how quickly f(x) = 2* increases, let's perform
the following thought experiment. Suppose we
start with a piece of paper a thousandth of an
inch thick and we fold it in half 50 times. Each
time we fold the paper in half, the thickness of
the paper doubles, so the thickness of the
resulting paper would be 2°°/1000 inches. How
thick do you think that is? It works out to be
more than 17 million miles!

TABLE 1

Population
Year (millions)
1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2560
1960 3040
1970 3710
1980 4450
1990 5280
2000 6080

f(x) = 2" stays above the graph of g(x) = x*. Figure 7 gives a more global view and
shows that for large values of x, the exponential function y = 2" grows far more rapidly
than the power function y = x*.

40 250

-2

FIGURE 6 FIGURE 7 b

|||| fipplications of Exponential Functions

The exponential function occurs very frequently in mathematical models of nature and
society. Here we indicate briefly how it arises in the description of population growth
and radioactive decay. In later chapters we will pursue these and other applications in
greater detail.

First we consider a population of bacteria in a homogeneous nutrient medium. Suppose
that by sampling the population at certain intervals it is determined that the population
doubles every hour. If the number of bacteria at time ¢ is p(¢), where ¢ is measured in hours,
and the initial population is p(0) = 1000, then we have

p(1) = 2p(0) = 2 X 1000

p(2) = 2p(1) = 2% X 1000

p(3) = 2p(2) = 2% X 1000
It seems from this pattern that, in general,

p(t) = 2" X 1000 = (1000)2’

This population function is a constant multiple of the exponential function y = 2/, so it
exhibits the rapid growth that we observed in Figures 2 and 7. Under ideal conditions
(unlimited space and nutrition and freedom from disease) this exponential growth is typi-
cal of what actually occurs in nature.

What about the human population? Table 1 shows data for the population of the world
in the 20th century and Figure 8 shows the corresponding scatter plot.

P

6x10°+ ¢

1900 1920 1940 1960 1980 2000 !

FIGURE 8 Scatter plot for world population growth



FIGURE 9
Exponential model for
population growth

The pattern of the data points in Figure 8 suggests exponential growth, so we use a
graphing calculator with exponential regression capability to apply the method of least
squares and obtain the exponential model

P = (0.008079266) - (1.013731)"

Figure 9 shows the graph of this exponential function together with the original data
points. We see that the exponential curve fits the data reasonably well. The period of rela-
tively slow population growth is explained by the two world wars and the Great Depres-
sion of the 1930s.

6Xx10°+

1900 1920 1940 1960 1980 2000 !

EXAMPLE 3 The half-life of strontium-90, *°Sr, is 25 years. This means that half of any
given quantity of **Sr will disintegrate in 25 years.

(a) If a sample of *°Sr has a mass of 24 mg, find an expression for the mass () that
remains after ¢ years.

(b) Find the mass remaining after 40 years, correct to the nearest milligram.

(¢) Use a graphing device to graph m(z) and use the graph to estimate the time required
for the mass to be reduced to 5 mg.

SOLUTION
(a) The mass is initially 24 mg and is halved during each 25-year period, so

m(0) = 24
m(25) = %(24)

m(50) = % : %(24) - %(24)
m(1s) = 5 - - 04) = - (4)

m(100) = % : %(24) _ %(24)

From this pattern, it appears that the mass remaining after ¢ years is

1

= 21/25

m(t) (24) =24 - 27

This is an exponential function with base a = 2% = 1/2V/%,



FIGURE 10

FIGURE 13
The natural exponential function
crosses the y-axis with a slope of 1.

(b) The mass that remains after 40 years is

m(40) = 24 - 2743 ~ 79 mg

(c) We use a graphing calculator or computer to graph the function m(f) = 24 - 27/% i

Figure 10. We also graph the line m = 5 and use the cursor to estimate that m(r) = 5
when ¢ = 57. So the mass of the sample will be reduced to 5 mg after about 57 years.

n

30

m=24.271%

|H| The Number e

Of all possible bases for an exponential function, there is one that is most convenient for
the purposes of calculus. The choice of a base a is influenced by the way the graph of
y = a* crosses the y-axis. Figures 11 and 12 show the tangent lines to the graphs of y = 2%
and y = 3" at the point (0, 1). (Tangent lines will be defined precisely in Section 2.7. For
present purposes, you can think of the tangent line to an exponential graph at a point as the
line that touches the graph only at that point.) If we measure the slopes of these tangent
lines at (0, 1), we find that m = 0.7 for y = 2* and m = 1.1 for y = 3™

FIGURE 11 FIGURE 12

It turns out, as we will see in Chapter 3, that some of the formulas of calculus will be
greatly simplified if we choose the base a so that the slope of the tangent line to y = a* at
(0, 1) is exactly 1 (see Figure 13). In fact, there is such a number (as we will see in Sec-
tion 5.6) and it is denoted by the letter e. (This notation was chosen by the Swiss mathe-
matician Leonhard Euler in 1727, probably because it is the first letter of the word
exponential.) In view of Figures 11 and 12, it comes as no surprise that the number e lies
between 2 and 3 and the graph of y = e” lies between the graphs of y = 2*and y = 3*. (See
Figure 14.) In Chapter 3 we will see that the value of e, correct to five decimal places, is

e~ 2.71828



- Module 1.5 enables you to graph expo-
IE' nential functions with various bases
. and their tangent lines in order to esti-

mate more closely the value of a for which the
tangent has slope 1.

FIGURE 14

g

EXAMPLE 4 Graph the function y = te™* — 1 and state the domain and range.

SOLUTION We start with the graph of y = e¢” from Figures 13 and 15(a) and reflect about
the y-axis to get the graph of y = ¢ in Figure 15(b). (Notice that the graph crosses the
y-axis with a slope of —1). Then we compress the graph vertically by a factor of 2 to
obtain the graph of y = se ¥ in Figure 15(c). Finally, we shift the graph downward one
unit to get the desired graph in Figure 15(d). The domain is R and the range is (—1, ).

y y y

1\ 1t 1+

0 X

(@y=e"
FIGURE 15

FIGURE 16

0 X 0 X 0 X

byy=e" (©)y= %e" d)y= %e"‘ -1

How far to the right do you think we would have to go for the height of the graph of
y = e” to exceed a million? The next example demonstrates the rapid growth of this func-
tion by providing an answer that might surprise you.

EXAMPLE 5 Use a graphing device to find the values of x for which e¢* > 1,000,000.

SOLUTION In Figure 16 we graph both the function y = e* and the horizontal line

y = 1,000,000. We see that these curves intersect when x =~ 13.8. Thus, ¢* > 10° when
x > 13.8. It is perhaps surprising that the values of the exponential function have already
surpassed a million when x is only 14.

1.5X10°

y=10°




1.5 Exercises

1. (a) Write an equation that defines the exponential function with
base a > 0.
(b) What is the domain of this function?
(c) If a # 1, what is the range of this function?
(d) Sketch the general shape of the graph of the exponential
function for each of the following cases.
i) a>1 (i) a =1 (i) 0<a <1

2. (a) How is the number e defined?
(b) What is an approximate value for e?
(c) What is the natural exponential function?

v . .
3-6 111 Graph the given functions on a common screen. How are

these graphs related?
.y=2% y=e', y=5, y=20"
b.y=e', y=e ', y=8, y=8"
5.y=3% y=100 y=(). y=G)
6. y=09" y=06" y=03, y=0.1"

o o o o o o o o o o o o

7-12 1 Make a rough sketch of the graph of the function. Do not
use a calculator. Just use the graphs given in Figures 3 and 14 and,
if necessary, the transformations of Section 1.3.

7.y=4"-3 8. y=4"
9. y=—-27" 10. y=1+ 2¢*
1. y=3—¢" 122 y=2+51—¢™)

o o o o o o o o o o o o

13. Starting with the graph of y = ¢, write the equation of the
graph that results from
(a) shifting 2 units downward
(b) shifting 2 units to the right
(c) reflecting about the x-axis
(d) reflecting about the y-axis
(e) reflecting about the x-axis and then about the y-axis

14. Starting with the graph of y = ¢*, find the equation of the
graph that results from
(a) reflecting about the line y = 4
(b) reflecting about the line x = 2

15=16 1 Find the domain of each function.

1+ e* ®) 1) = 1 —e*

16. (a) g(r) = sin(e™") (b) g(r) = 1 —2¢

o o o o o o o o o o o o

15. (@) f(x) =

17-18 i Find the exponential function f(x) = Ca* whose graph is
given.

17. vy 18.
(3,24

19. If f(x) = 5%, show that

fath =f® _ 50—
h B h

20. Suppose you are offered a job that lasts one month. Which of
the following methods of payment do you prefer?
I. One million dollars at the end of the month.
II. One cent on the first day of the month, two cents on the
second day, four cents on the third day, and, in general,
2"~ ! cents on the nth day.

21. Suppose the graphs of f(x) = x> and g(x) = 2* are drawn on a
coordinate grid where the unit of measurement is 1 inch. Show
that, at a distance 2 ft to the right of the origin, the height of
the graph of f is 48 ft but the height of the graph of g is about
265 mi.

{4 22. Compare the functions f(x) = x° and g(x) = 5" by graphing

both functions in several viewing rectangles. Find all points of
intersection of the graphs correct to one decimal place. Which
function grows more rapidly when x is large?

{4 23. Compare the functions f(x) = x'* and g(x) = e* by graphing

both f and g in several viewing rectangles. When does the
graph of ¢ finally surpass the graph of f?

24. Use a graph to estimate the values of x such that

e* > 1,000,000,000.

25. Under ideal conditions a certain bacteria population is known
to double every three hours. Suppose that there are initially 100
bacteria.

(a) What is the size of the population after 15 hours?
(b) What is the size of the population after ¢ hours?



26.

1.

(c) Estimate the size of the population after 20 hours.
(d) Graph the population function and estimate the time for the
population to reach 50,000.

An isotope of sodium, **Na, has a half-life of 15 hours. A

sample of this isotope has mass 2 g.

(a) Find the amount remaining after 60 hours.

(b) Find the amount remaining after ¢ hours.

(c) Estimate the amount remaining after 4 days.

(d) Use a graph to estimate the time required for the mass to be
reduced to 0.01 g.

Use a graphing calculator with exponential regression capa-
bility to model the population of the world with the data from
1950 to 2000 in Table 1 on page 58. Use the model to estimate
the population in 1993 and to predict the population in the
year 2010.

1.6 Inverse Functions and Logarithms

¥ 28. The table gives the population of the United States, in millions,

for the years 1900-2000.

Year Population Year Population
1900 76 1960 179
1910 92 1970 203
1920 106 1980 227
1930 123 1990 250
1940 131 2000 281
1950 150

Use a graphing calculator with exponential regression capabil-
ity to model the U.S. population since 1900. Use the model to
estimate the population in 1925 and to predict the population in
the years 2010 and 2020.

Table 1 gives data from an experiment in which a bacteria culture started with 100 bacte-
ria in a limited nutrient medium; the size of the bacteria population was recorded at hourly
intervals. The number of bacteria N is a function of the time t: N = f(z).

Suppose, however, that the biologist changes her point of view and becomes interested
in the time required for the population to reach various levels. In other words, she is think-
ing of ¢ as a function of N. This function is called the inverse function of f, denoted by f ',
and read “finverse.” Thus, t = f~'(N) is the time required for the population level to reach
N. The values of f~' can be found by reading Table 1 from right to left or by consulting
Table 2. For instance, f~'(550) = 6 because f(6) = 550.

TABLE 1 N as a function of ¢ TABLE 2 1 as a function of N
4e . 10 t N=f(@) r=f"'(N)
3 / o7 (hours) = population at time ¢ N = time to reach N bacteria
2 e ( o4 0 100 100 0
. \ . 1 168 168 1
2 259 259 2
s f 3 3 358 358 3
4 445 445 4
5 509 509 5
4 « 10 6 550 550 6
3 7 573 573 7
4 8 586 586 8
2
Lo °2 Not all functions possess inverses. Let’s compare the functions f and g whose arrow
g diagrams are shown in Figure 1.
A _— B . . . .
Note that f never takes on the same value twice (any two inputs in A have different out-
FIGURE 1 puts), whereas g does take on the same value twice (both 2 and 3 have the same output, 4).



[l In the language of inputs and outputs, this
definition says that f is one-to-one if each out-
put corresponds to only one input.

y
o |
| | y=f(x)
i) fln)i |
| |
| |
I I
0| x X,
FIGURE 2

This function is not one-to-one
because f(x,) = f(x,).

=
~

/ﬁ |

FIGURE 3
f(x)= x> is one-to-one.

e
\ |/

FIGURE 4

g(x) = x? is not one-to-one.

In symbols,
9(2) = ¢(3)

but f(x)) # f(x,) whenever x; # x,

Functions that have this property are called one-to-one functions.

[1] Definition A function f is called a one-to-one function if it never takes on the
same value twice; that is,

f(x)) # f(x,) whenever x, # x,

If a horizontal line intersects the graph of f in more than one point, then we see from
Figure 2 that there are numbers x, and x, such that f(x,) = f(x,). This means that f is not
one-to-one. Therefore, we have the following geometric method for determining whether
a function is one-to-one.

Horizontal Line Test A function is one-to-one if and only if no horizontal line inter-
sects its graph more than once.

EXAMPLE 1 Is the function f(x) = x* one-to-one?

SOLUTION 1 If x, # x,, then x; # x3 (two different numbers can’t have the same cube).
Therefore, by Definition 1, f(x) = x* is one-to-one.

SOLUTION 2 From Figure 3 we see that no horizontal line intersects the graph of f(x) = x?
more than once. Therefore, by the Horizontal Line Test, f is one-to-one. ]
EXAMPLE 2 Is the function g(x) = x* one-to-one?

SOLUTION T This function is not one-to-one because, for instance,
g(1) =1 =g(-1)

and so 1 and —1 have the same output.

SOLUTION 2 From Figure 4 we see that there are horizontal lines that intersect the graph of
g more than once. Therefore, by the Horizontal Line Test, g is not one-to-one. ]

One-to-one functions are important because they are precisely the functions that pos-
sess inverse functions according to the following definition.

[2] Definition Let f be a one-to-one function with domain A and range B. Then its
inverse function f ' has domain B and range A and is defined by

[l =x & fl=y

for any y in B.




r This definition says that if f maps x into y, then f~' maps y back into x. (If f were not

A
one-to-one, then f~' would not be uniquely defined.) The arrow diagram in Figure 5 indi-
f ! cates that f ! reverses the effect of f. Note that
B .
y
. o
FIGURE 5 domain of f range of f
range of ' = domain of f
For example, the inverse function of f(x) = x*is f~'(x) = x'/3 because if y = x>, then
S =7 = ) =
@ CAUTION = Do not mistake the —1 in ' for an exponent. Thus
@) does normean —
X oes not mean  —
()
The reciprocal 1/f(x) could, however, be written as [ f(x)] .
A B EXAMPLE 3 If £(1) = 5, f(3) = 7, and f(8) = —10, find £~ (7), £ '(5), and £~ '(—10).
. SOLUTION From the definition of f~! we have
. U7 =3  because  f(3) =7
8
') =1 because  f(1) =5
f
fi(—10) =8 because  f(8) = —10
A B
" The diagram in Figure 6 makes it clear how f ' reverses the effect of f in this case. W
3 . .- . . .
The letter x is traditionally used as the independent variable, so when we concentrate
. on f ! rather than on f, we usually reverse the roles of x and y in Definition 2 and write
f_]
FIGURE 6 [3] fﬁl(x) =y & f(y) =x

The inverse function reverses

inputs and outputs.
By substituting for y in Definition 2 and substituting for x in (3), we get the following

cancellation equations:

(4] f ' (f(x)) =x forevery xinA
f(f'(x)) =x forevery xin B




The first cancellation equation says that if we start with x, apply f, and then apply f ', we
arrive back at x, where we started (see the machine diagram in Figure 7). Thus, £ ' undoes
what f does. The second equation says that f undoes what f ' does.

X — f — [ — e x

FIGURE 7

For example, if f(x) = x°, then f~'(x) = x'/3 and so the cancellation equations become

£ = () = x
F70) = (1) = x

These equations simply say that the cube function and the cube root function cancel each
other when applied in succession.

Now let’s see how to compute inverse functions. If we have a function y = f(x) and are
able to solve this equation for x in terms of y, then according to Definition 2 we must have
x = f (). If we want to call the independent variable x, we then interchange x and y and
arrive at the equation y = £~ '(x).

[5] How to Find the Inverse Function of a One-to-One Function f
STEP 1 Write y = f(x).
STEP 2 Solve this equation for x in terms of y (if possible).

STEP 3 To express f ' as a function of x, interchange x and y.
The resulting equation is y = f~!(x).

EXAMPLE 4 Find the inverse function of f(x) = x* + 2.
SOLUTION According to (5) we first write

y = x+2
Then we solve this equation for x:

x3= y—2

x=+y—2

Finally, we interchange x and y:

y= =2

Il In Example 4, notice how f ! reverses the
effect of . The function f is the rule Cube,
then add 2 f ~is the rule Subtract 2, then Therefore, the inverse function is f~'(x) = J/x — 2. —

take the cube root.”

The principle of interchanging x and y to find the inverse function also gives us the
method for obtaining the graph of £~ from the graph of f. Since f(a) = b if and only if
f~1(b) = a, the point (a, b) is on the graph of f if and only if the point (b, a) is on the
graph of f~!. But we get the point (b, a) from (a, b) by reficting about the line y = x(See
Figure 8.)
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FIGURE 8 FIGURE 9

Therefore, as illustrated by Figure 9:

The graph of f~!is obtained by reflecting the graph of f about the line y = x.

EXAMPLE 5 Sketch the graphs of f(x) = +/—1 — x and its inverse function using the
same coordinate axes.

SOLUTION First we sketch the curve y = 4/—1 — x (the top half of the parabola

y2 = —1 — x, or x = —y? — 1) and then we reflect about the line y = x to get the
graph of f~'. (See Figure 10.) As a check on our graph, notice that the expression for

f Vs f7Y(x) = —x* — 1,x = 0. So the graph of f!is the right half of the parabola

y = —x? — 1 and this seems reasonable from Figure 10. -

|||| Looarithmic Functions

If @ > 0 and a # 1, the exponential function f(x) = a" is either increasing or decreasing
and so it is one-to-one by the Horizontal Line Test. It therefore has an inverse function [~ I
which is called the logarithmic function with base a and is denoted by log,,. If we use the
formulation of an inverse function given by (3),

o=y < f()=x
then we have

[6] log,x=y < a’' =x

Thus, if x > 0, then log , x is the exponent to which the base a must be raised to give x. For
example, log,,0.001 = —3 because 107° = 0.001.

The cancellation equations (4), when applied to the functions f(x) = a* and
£~ (x) = log,x, become

log,(a*) = x foreveryx € R

logax

a =x foreveryx >0

The logarithmic function log, has domain (0, ) and range R. Its graph is the reflection
of the graph of y = a* about the line y = x.
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FIGURE 11

' y=log, x

y=log;x
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0 1 X
y=logsx
y =logyx

FIGURE 12

[l NOTATION FOR LOGARITHMS

Most textbooks in calculus and the sciences,
as well as calculators, use the notation In x for
the natural logarithm and log x for the “com-
mon logarithm,” log o x. In the more advanced
mathematical and scientific literature and in
computer languages, however, the notation

log x usually denotes the natural logarithm.

Figure 11 shows the case where @ > 1. (The most important logarithmic functions have
base a > 1.) The fact that y = a" is a very rapidly increasing function for x > 0 is
reflected in the fact that y = log,x is a very slowly increasing function for x > 1.

Figure 12 shows the graphs of y = log,x with various values of the base a. Since
log, 1 = 0, the graphs of all logarithmic functions pass through the point (1, 0).

The following properties of logarithmic functions follow from the corresponding prop-
erties of exponential functions given in Section 1.5.

Laws of Logarithms If x and y are positive numbers, then

1. log,(xy) = log,x + log,y
X

2. loga<—> = log,x — log,y
y

3. log,(x") = rlog,x (where r is any real number)

EXAMPLE 6 Use the laws of logarithms to evaluate log, 80 — log, 5.
SOLUTION Using Law 2, we have

80
log,80 — log,5 = log2<?> = log,16 = 4

because 2* = 16. ]

|||| Natural Logarithms

Of all possible bases a for logarithms, we will see in Chapter 3 that the most convenient
choice of a base is the number e, which was defined in Section 1.5. The logarithm with
base e is called the natural logarithm and has a special notation:

log,x =Inx

If we put @ = e and replace log, with “In” in (6) and (7), then the defining properties
of the natural logarithm function become

Inx=y < e =x
[9] In(e*) = x xER
e =y x>0

In particular, if we set x = 1, we get

Ine =1




EXAMPLE 7 Find x if Inx = 5.
SOLUTION 1 From (8) we see that

Inx=25 means e’ =x

Therefore, x = e°.

(If you have trouble working with the “In” notation, just replace it by log,. Then the
equation becomes log,x = 5; so, by the definition of logarithm, ¢’ = x.)

SOLUTION 2 Start with the equation

Inx=35
and apply the exponential function to both sides of the equation:
Inx — ,5

e

Inx

But the second cancellation equation in (9) says that e™* = x. Therefore, x = e°. L

EXAMPLE 8 Solve the equation e * = 10.
SOLUTION We take natural logarithms of both sides of the equation and use (9):

In(e®3) =1n 10

5—3x=1In10
3x=5—-1In10
x=1(5—1n10)

Since the natural logarithm is found on scientific calculators, we can approximate the
solution to four decimal places: x = 0.8991. ]

EXAMPLE 9 Express Ina + 31n b as a single logarithm.
SOLUTION Using Laws 3 and 1 of logarithms, we have

Ina +ilnb=1Ina + Inb"?
=Ina + ln\/l—)
= ln(a\/Z) ]

The following formula shows that logarithms with any base can be expressed in terms
of the natural logarithm.

Change of Base Formula For any positive number a (a # 1), we have

In x
log,x = —
Ina




A

FIGURE 13

Proof Lety = log,x. Then, from (6), we have a” = x. Taking natural logarithms of both
sides of this equation, we get yIna = In x. Therefore

In x
Y na
na ]

Scientific calculators have a key for natural logarithms, so Formula 10 enables us to use
a calculator to compute a logarithm with any base (as shown in the next example). Simi-
larly, Formula 10 allows us to graph any logarithmic function on a graphing calculator or
computer (see Exercises 43 and 44).

EXAMPLE 10 Evaluate logg5 correct to six decimal places.
SOLUTION Formula 10 gives

log.5 — M _ 773976
0 =—=(.
£° 7 g

EXAMPLE 11 In Example 3 in Section 1.5 we showed that the mass of **Sr that remains
from a 24-mg sample after ¢ years is m = f(1) = 24 - 27/%_ Find the inverse of this
function and interpret it.

SOLUTION We need to solve the equation m = 24 - 27/ for . We start by isolating the
exponential and taking natural logarithms of both sides:

27{/25 — ﬂ

24

m
In(27"%) = In{ ——
e = (2]

t
—Eln2=lnm —In24

25 25
t= —E(lnm - 11‘124) =E(ln24 - lnm)
So the inverse function is
25
Y m) =—=(n24 — Inm)
In2

This function gives the time required for the mass to decay to m milligrams. In particu-
lar, the time required for the mass to be reduced to 5 mg is

25
t=f7'5 = E(ln 24 — In5) = 56.58 years

This answer agrees with the graphical estimate that we made in Example 3 in
Section 1.5.

The graphs of the exponential function y = e* and its inverse function, the natural log-
arithm function, are shown in Figure 13. Because the curve y = e” crosses the y-axis with
a slope of 1, it follows that the reflected curve y = In x crosses the x-axis with a slope of 1.



In common with all other logarithmic functions with base greater than 1, the natural
logarithm is an increasing function defined on (0, ) and the y-axis is a vertical asymptote.
(This means that the values of In x become very large negative as x approaches 0.)

EXAMPLE 12 Sketch the graph of the function y = In(x — 2) — 1.

SOLUTION We start with the graph of y = In x as given in Figure 13. Using the transforma-
tions of Section 1.3, we shift it 2 units to the right to get the graph of y = In(x — 2) and
then we shift it 1 unit downward to get the graph of y = In(x — 2) — 1. (See Figure 14.)

Y 7 [x=2 7 | x=2
| |
! | |
y=Inx | | =Ilnx—2)—1
: y=In(x—2) | v
|
f f
o /a0 0 21 /6.0 ¢ 0 2 :
| |
| | 3,-1
| | (3,71
| |
| |
| |
FIGURE 14 _—

Although In x is an increasing function, it grows very slowly when x > 1. In fact, In x
grows more slowly than any positive power of x. To illustrate this fact, we compare
approximate values of the functions y = Inx and y = x? = /x in the following table
and we graph them in Figures 15 and 16. You can see that initially the graphs of y = Vx
and y = Inx grow at comparable rates, but eventually the root function far surpasses the
logarithm.

X 1 2 5 10 50 100 500 1000 10,000 100,000
Inx 0 0.69 1.61 2.30 391 4.6 6.2 6.9 9.2 11.5
Vx 1 1.41 2.24 3.16 7.07 10.0 22.4 31.6 100 316
l X
e 0 049 | 0.72 | 0.73 0.55 | 046 0.28 0.22 0.09 0.04
VX

Y=NX

y=Inx

0 /1 x 0 1000 ¥

FIGURE 15 FIGURE 16




|||| Inverse Trigonometric Functions

When we try to find the inverse trigonometric functions, we have a slight difficulty:
Because the trigonometric functions are not one-to-one, they don’t have inverse functions.
The difficulty is overcome by restricting the domains of these functions so that they
become one-to-one.

You can see from Figure 17 that the sine function y = sin x is not one-to-one (use the
Horizontal Line Test). But the function f(x) = sin x, —7/2 < x < /2 (see Figure 18),
is one-to-one. The inverse function of this restricted sine function f exists and is denoted
by sin ! or arcsin. It is called the inverse sine function or the arcsine function.

y y
y=sinx

AN

FIGURE 17
1

a1l

@ sin” 'x # sin x
3
1
[
22
FIGURE 19

SN

—TT

AN ' 0
7\/ x

FIGURE 18 y=sinx,—§ <x<

DN T

01

Since the definition of an inverse function says that

)=y &= fy)=x

we have

YIS

T
sin'x=y <> siny=x and — SyS?

Thus, if —1 < x < 1, sin~'x is the number between —7r/2 and 7r/2 whose sine is x.

EXAMPLE 13 Evaluate (a) sin_'(%) and (b) tan(arcsin %)
SOLUTION
(a) We have
oy T
sin”1(3) =
because sin(7/6) = 5 and /6 lies between — /2 and /2.

(b) Let § = arcsin 3, so sin § = 1. Then we can draw a right triangle with angle 6 as in
Figure 19 and deduce from the Pythagorean Theorem that the third side has length
V9 — 1 = 2/2. This enables us to read from the triangle that

tan(arcsin %) =tan § = 1
242

The cancellation equations for inverse functions become, in this case,

oy, T T
sin”'(sin x) = x for—?sxs?

sin(sin"'x) =x for—-1<x=<1




The inverse sine function, sin"', has domain [—1, 1] and range [—#/2, m/2], and its
graph, shown in Figure 20, is obtained from that of the restricted sine function (Figure 18)

by reflection about the line y = x.

y
7 |
2
—1 0 1 X
47
FIGURE 20 2
y =sin~'x = arcsin x
y The inverse cosine function is handled similarly. The restricted

1«\ denoted by cos ! or arccos.

cosine function

f(x) = cos x, 0 < x < 7, is one-to-one (see Figure 21) and so it has an inverse function

0 b ' -
E\:T ) cos'x=y <> cosy=x and O0sys<m

The cancellation equations are

FIGURE 21

cos '(cosx)=x for0sx<nm
y=cosx,0sx=mw

cos(cos™'x) =x for—1<sx=<1

The inverse cosine function, cos ', has domain [—1, 1] and range [0, 7]. Its graph is

shown in Figure 22.

y | y |
| |
| |
ot I I
| |
| |
| |
s f f
2 =31 0 3 x
| |
| |
| |
+ + | |
-1 0 1 X | |
I I
FIGURE 22 FIGURE 23
y=cos 'x=arccos x y=tanx,—g<x<g

The tangent function can be made one-to-one by restricting it to the interval
(—m/2, w/2). Thus, the inverse tangent function is defined as the inverse of the function
f(x) = tan x, —7/2 < x < /2. (See Figure 23.) It is denoted by tan™' or arctan.

T
tan"'x =y <= tany=x and —?<y<

2




EXAMPLE 14 Simplify the expression cos(tan™'x).

SOLUTION 1 Lety = tan 'x. Thentany = x and —7/2 < y < /2. We want to find cos y
but, since tan y is known, it is easier to find sec y first:

sec’y =1 + tan’y = 1 + x?

secy = +/1 + x? (since secy > O for —w/2 <y < 7w/2)
1+ x? 4 1 1
Thus cos(tan” 'x) = cosy = =
x ( ) Y7 sec y 1+ x2
] SOLUTION 2 Instead of using trigonometric identities as in Solution 1, it is perhaps easier
to use a diagram. If y = tan 'x, then tan y = x, and we can read from Figure 24 (which
FIGURE 24 illustrates the case y > 0) that
(tan "1 1
cos(tan” 'x) = cosy = —F—
3 Yo T o —
2
The inverse tangent function, tan~' = arctan, has domain R and range (—/2, 7/2).
0 Its graph is shown in Figure 25.
x We know that the lines x = % 77/2 are vertical asymptotes of the graph of tan. Since the
graph of tan™' is obtained by reflecting the graph of the restricted tangent function about
__________ ~, 7777 theliney = x, it follows that the lines y = /2 and y = — /2 are horizontal asymptotes
2 of the graph of tan .
The remaining inverse trigonometric functions are not used as frequently and are sum-
FIGURE 25 marized here.
y=tan 'x = arctan x
] y=csc'x (x| =1) < cscy=x and y€ (0, w/2] U (m 37/2]
T I I I
IKJI IUI y=sec 'x (x| =1) < secy=x and y€ [0, n/2) U [m 37/2)
I I I I
I I I I
: I SR y=cot'x (xER) <> coty=x and y € (0, n
| 0 T I 27 1 X
A | |
I I m I I The choice of intervals for y in the definitions of csc™' and sec™' is not universally
agreed upon. For instance, some authors use y € [0, 7/2) U (7/2, 7] in the definition of
FIGURE 26 sec”'. [You can see from the graph of the secant function in Figure 26 that both this choice
y=secx and the one in (11) will work.]
1.6 Exercises
1. (a) What is a one-to-one function? (c) If you are given the graph of f, how do you find the graph
(b) How can you tell from the graph of a function whether it is of f712
-to-one?
one-to-one: ) ) 3-14 1 A function is given by a table of values, a graph, a formula,
2. (a) Suppose f is a one-to-one function with domain A and or a verbal description. Determine whether it is one-to-one.
range B. How is the inverse function f~' defined? What is
the domain of f~'? What is the range of f~'? 3. x 1 2 3 4 5 6

(b) If you are given a formula for f, how do you find a

() 1.5 2.0 3.6 5.3 2.8 2.0
formula for f~'? f(x)




4. x 1 2 3 4 5 6 21. The formula C = 3(F — 32), where F = —459.67, expresses
the Celsius temperature C as a function of the Fahrenheit
temperature F. Find a formula for the inverse function and
interpret it. What is the domain of the inverse function?

5. y 6. y 22. In the theory of relativity, the mass of a particle with speed v
is o

m=fO = e

where m is the rest mass of the particle and c is the speed of
light in a vacuum. Find the inverse function of f and explain
its meaning.

7. y 8. y 23-28 I Find a formula for the inverse of the function.
4x — 1
2x + 3
X x 25. f(x) = e* 2. y=2x*+3
1+ e
—— 97. y = In(x + 3) 28 y=-—°¢

1 —e"

o o o o o o o o o o o o

23. f(x) = /10 — 3x 2. f(x)=

9. =3(x+5 10. =1+ 4x—x?
f@) =2 +3) ) o ¥4 29-30 i Find an explicit formula for £~ and use it to graph f ',

1. g(x) = [ x| 12. g(x) = Vax f, and the line y = x on the same screen. To check your work, see
13. £(r) is the height of a football ¢ seconds after kickoff. whether the graphs of f and f ' are reflections about the line.

— 2 — ]
14. f(t) is your helght at age f 29. f(x) =1- 2/x , X >0 30. f(x) = /x*+ 2.X, x>0

o o o o o o o o o o o o
o o o o o o o o o o o o

31. Use the given graph of f to sketch the graph of f .
19 15-16 1 Use a graph to decide whether f is one-to-one.

15. f(x) =2 —x 16. f(x) =x>+x y
1<>
17. If f is a one-to-one function such that f(2) = 9, what 1 X
is £71(9)?
18. Let f(x) =3 + x? + tan(mx/2), where —1 < x < 1.

(a) Find f~'(3).
(b) Find f(f~'(5)).

] 32. Use the given graph of f to sketch the graphs of ' and 1/f.
19. Ifg(x) =3 + x + ¢ find g '(4).

20. The graph of f is given. ’

(a) Why is f one-to-one?
(b) State the domain and range of f .
(c) Estimate the value of £7'(1).

y
1 +
2 4
14 1 x
1
3 2 -1 0 N 2 3 Y 33. (a) How is the logarithmic function y = log,x defined?
-1+ (b) What is the domain of this function?
(c) What is the range of this function?

—27 (d) Sketch the general shape of the graph of the function

y =log.x ifa > 1.



34. (a) What is the natural logarithm?
(b) What is the common logarithm?
(c) Sketch the graphs of the natural logarithm function and the
natural exponential function with a common set of axes.

35-38 1 Find the exact value of each expression.
35. (a) log, 64 (b) logess
36. (a) logs2 (b) Ine’?

37. (a) logio1.25 + logio 80
(b) logs 10 + logs20 — 3 logs2
38. (a) 2(log23+lug25) (b) e31n2

o o o o o o o o o o o o

39-41 1 Express the given quantity as a single logarithm.

39. 2In4 — In2 40. Inx + alny — blnz

1. In(1 +x?) +3lnx — Insinx

o o o o o o o o o o o o

42. Use Formula 10 to evaluate each logarithm correct to six deci-
mal places.

(a) logi, 10 (b) log,8.4

/14 43-44 1 Use Formula 10 to graph the given functions on a com-

mon screen. How are these graphs related?
43. y =log;sx, y=1Inx, y=logpx, y=logsx
M., y=1Inx, y=Ilogpx, y=-e" y=10F

o o o o o o o o o o o o

45. Suppose that the graph of y = log,x is drawn on a coordinate
grid where the unit of measurement is an inch. How many
miles to the right of the origin do we have to move before the
height of the curve reaches 3 ft?

46. Compare the functions f(x) = x®! and g(x) = In x by graphing

both f and g in several viewing rectangles. When does the
graph of f finally surpass the graph of ¢?

47-48 11 Make a rough sketch of the graph of each function. Do
not use a calculator. Just use the graphs given in Figures 12 and 13
and, if necessary, the transformations of Section 1.3.

47. (a) y = logi(x + 5) (b) y=—Inx

48. (a) y = In(—x) (b) y=In|x]

49-52 1 Solve each equation for x.
49. () 2Inx =1

50. () ¥ —-7=0

51. @25 =3

52. (a) In(lnx) =1

b) e ¥ =5

(b) In(5 — 2x) = -3

(b) Inx +In(x — 1) =1
(b) e = Ce"™, where a # b

o o o o o o o o o o o o

53-54 I Solve each inequality for x.
53. (a) e < 10 (b) Inx > —1

54. ()2 <Inx<9 (b) ¥ >4

55-56 1l Find (a) the domain of f and (b) f ' and its domain.
55. f(x) =3 —e* 56. f(x) =In(2 + Inx)

o o o o o

57. Graph the function f(x) = /x* + x2 + x + 1 and explain

why it is one-to-one. Then use a computer algebra system to
find an explicit expression for f~!(x). (Your CAS will produce
three possible expressions. Explain why two of them are irrele-
vant in this context.)

(5] 58. (a) If g(x) = x® + x* x = 0, use a computer algebra system to

find an expression for g ~'(x).
(b) Use the expression in part (a) to graph y = g(x), y = x, and
y = g !(x) on the same screen.

59. If a bacteria population starts with 100 bacteria and doubles
every three hours, then the number of bacteria after ¢ hours is
n = f() = 100 - 2. (See Exercise 25 in Section 1.5.)
(a) Find the inverse of this function and explain its
meaning.
(b) When will the population reach 50,0007

60. When a camera flash goes off, the batteries immediately begin
to recharge the flash’s capacitor, which stores electric charge
given by

00 = Qy(1 — e/

(The maximum charge capacity is Qy and 7 is measured in

seconds.)

(a) Find the inverse of this function and explain its meaning.

(b) How long does it take to recharge the capacitor to 90% of
capacity if a = 2?

61. Starting with the graph of y = Inx, find the equation of the
graph that results from
(a) shifting 3 units upward
(b) shifting 3 units to the left
(c) reflecting about the x-axis
(d) reflecting about the y-axis
(e) reflecting about the line y = x
(f) reflecting about the x-axis and then about the line y = x
(g) reflecting about the y-axis and then about the line y = x
(h) shifting 3 units to the left and then reflecting about the

liney = x

62. (a) If we shift a curve to the left, what happens to its reflection
about the line y = x? In view of this geometric principle,
find an expression for the inverse of g(x) = f(x + ¢),
where f is a one-to-one function.

(b) Find an expression for the inverse of i(x) = f(cx), where
c# 0.



63

o

69

70
70

-68 1 Find the exact value of each expression.

. (a) sin"'(v/3/2) (b) cos '(—1)

. (a) arctan(—1) (b) csc™'2

. (a) tan"'\/3 (b) arcsin(—1/+/2)
. (a) sec™'y/2 (b) arcsin 1

. (a) sin(sin~'0.7) (b) tan‘(tan 4;)
. (a) sec(arctan 2) (b) cos(2 sin"(%))

o o o o o o o o o o o

. Prove that cos(sin"'x) = /1 — x2.

~72 1 Simplify the expression.

. tan(sin”'x)

1 Review

=d

. (a) What is a function? What are its domain and range?
(b) What is the graph of a function?
(c) How can you tell whether a given curve is the graph of a
function?

. Discuss four ways of representing a function. Illustrate your
discussion with examples.

. (a) What is an even function? How can you tell if a function is
even by looking at its graph?

(b) What is an odd function? How can you tell if a function is
odd by looking at its graph?

. What is an increasing function?
. What is a mathematical model?

. Give an example of each type of function.
(a) Linear function (b) Power function
(c) Exponential function (d) Quadratic function
(e) Polynomial of degree 5 (f) Rational function

. Sketch by hand, on the same axes, the graphs of the following
functions.

(@ f(x) =x (b) g(x) = x*
(©) h(x) = x° @ j(x) = x*
. Draw, by hand, a rough sketch of the graph of each function.
(a) y =sinx (b) y =tanx
©y=¢ (d) y=Inx
() y=1/x (f) y=|x|
@y =vx (h) y = tan”'x

. Suppose that f has domain A and g has domain B.
(a) What is the domain of f + ¢?

AR
72.

o

sin(tan~'x)

sin(2 cos ™ 'x)

o o o o

{4 73-74 i Graph the given functions on the same screen. How are

these graphs related?

73.
74.

o

75.

= CONCEPT CHECH -

10.

11.

12.

13.

y=sinx, —w/2<x<m/2; y=sinx; y=x

y=tanx, —7/2<x<m/2; y=tan 'x; y=x

o o o o o o o o o o o

Find the domain and range of the function

g(x) =sin'Gx + 1)

. (a rap! the function X) = sin(sin” "x) an exp ain the
/9 76. (a) Graph the function f(x) = sin(sin'x) and explain th

appearance of the graph.
(b) Graph the function g(x) = sin '(sin x). How do you explain
the appearance of this graph?

(b) What is the domain of fg?
(c) What is the domain of f/g?

How is the composite function f o g defined? What is its
domain?

Suppose the graph of f is given. Write an equation for each of
the graphs that are obtained from the graph of f as follows.
(a) Shift 2 units upward.

(b) Shift 2 units downward.

(c) Shift 2 units to the right.

(d) Shift 2 units to the left.

(e) Reflect about the x-axis.

(f) Reflect about the y-axis.

(g) Stretch vertically by a factor of 2.

(h) Shrink vertically by a factor of 2.

(i) Stretch horizontally by a factor of 2.

(j) Shrink horizontally by a factor of 2.

(a) What is a one-to-one function? How can you tell if a func-
tion is one-to-one by looking at its graph?

(b) If f is a one-to-one function, how is its inverse function
f ! defined? How do you obtain the graph of £~ from the
graph of f?

(a) How is the inverse sine function f(x) = sin™'x defined?
What are its domain and range?

(b) How is the inverse cosine function f(x) = cos 'x defined?
What are its domain and range?

(c) How is the inverse tangent function f(x) = tan'x defined?
What are its domain and range?



~TRUE-FALSE QUIT -

Determine whether the statement is true or false. If it is true, explain why. 6. If f and g are functions, then fog =go f.
If it is false, explain why or give an example that disproves the statement. 1
7. If f is one-to-one, then f'(x) = ——.

1. If f is a function, then f(s + 7) = f(s) + f(2). f(x)
2. If f(s) = f(¢2), then s = 1. 8. You can always divide by e™.
3. If £ is a function, then f(3x) = 3f(x). 9. If0 <a <b,thenlna <Inb.
6
4. If x; < x, and f is a decreasing function, then f(x;) > f(x2). 10. If x > 0, then (Inx)° = 6 In.x.
5. A vertical line intersects the graph of a function at most once. 1. If x > 0 and @ > 1, then llnix —m> .
na a
= EXERCISES -

1. Let f be the function whose graph is given. 3. The distance traveled by a car is given by the values in the table.

(a) Estimate the value of f(2).

(b) Estimate the values of x such that f(x) = 3. 1 (seconds) 0 1 2 3 4 5

(c) State the domain of f. d (feet) 0 | 10 | 32 | 70 | 119 | 178

(d) State the range of f.

(e) On what interval is f increasing?

(f) Is f one-to-one? Explain.

(g) Is f even, odd, or neither even nor odd? Explain.

(a) Use the data to sketch the graph of d as a function of 7.
(b) Use the graph to estimate the distance traveled after
4.5 seconds.

4. Sketch a rough graph of the yield of a crop as a function of the

y
amount of fertilizer used.
f
5-8 1 Find the domain and range of the function.
' 5. f(x) = & — 3¢ 6. g(v) = 1/(x + 1)
! A 7. y=1 +sinx 8. y=Inlnx
9. Suppose that the graph of f is given. Describe how the graphs
of the following functions can be obtained from the graph of f.
@ y=s) +8 (b) y=/f(x+38)
2. The graph of g is given. ©y=1+2f(x) d y=fx—-2 -2

(a) State the value of g(2). e y=—f () y=7"

(b) Why is g one-to-one? 10. The graph of f is given. Draw the graphs of the following

(c) Estimate the value of g '(2). functions.

(d) Estimate the domain of g~ . (@ y=f(x—28) b)) y=—f(x)

(e) Sketch the graph of g~ . ©y=2-f( @ y=1f0—1
@©y=/" () y=f"x+3)

) g — y
L1
1
> 1
0
1 A 0 1 X




11-16 1 Use transformations to sketch the graph of the function.

1
12
13
14

21

y = —sin2x
y=3In(x — 2)
y=(1+¢e%/2
y=2-+x
f(x)=x+2

—X if x<0
f(x){e*—1 if x=0

o o o o o o o o o o o

Determine whether f is even, odd, or neither even nor odd.
(a) f(x) =2x>—3x*+2

(b) flx) =x" —x7

© f) =e™

d f(x) =1+ sinx

Find an expression for the function whose graph consists of
the line segment from the point (—2, 2) to the point (—1, 0)
together with the top half of the circle with center the origin
and radius 1.

If f(x) = Inx and g(x) = x> — 9, find the functions f° g, g f,
fof,ge°g,and their domains.

Express the function F(x) = 1/y/x +,/x as a composition of
three functions.

Life expectancy improved dramatically in the 20th century. The
table gives the life expectancy at birth (in years) of males born
in the United States.

Birth year Life expectancy
1900 48.3
1910 51.1
1920 55.2
1930 57.4
1940 62.5
1950 65.6
1960 66.6
1970 67.1
1980 70.0
1990 71.8
2000 73.0

Use a scatter plot to choose an appropriate type of model. Use
your model to predict the life span of a male born in the year
2010.

22

23.

24,

25.

26.

27.

28.

Y
1<

Y
(K<

7 30.

29.

A small-appliance manufacturer finds that it costs $9000 to
produce 1000 toaster ovens a week and $12,000 to produce
1500 toaster ovens a week.

(a) Express the cost as a function of the number of toaster
ovens produced, assuming that it is linear. Then sketch the
graph.

(b) What is the slope of the graph and what does it represent?

(c) What is the y-intercept of the graph and what does it
represent?

If f(x) = 2x + Inx, find £'(2).

x+ 1
2x+ 1°

Find the inverse function of f(x) =

Find the exact value of each expression.
(a) e?™? (b) logp25 + logi4

(c) tan(arcsin 1) () sin(cos™(¥))

Solve each equation for x.
(a) e* =5 (b) Inx =2
(©) e =2 (d) tan"'x =1

The half-life of palladium-100, '"Pd, is four days. (So half of
any given quantity of '“’Pd will disintegrate in four days.) The
initial mass of a sample is one gram.

(a) Find the mass that remains after 16 days.

(b) Find the mass m(z) that remains after ¢ days.

(c) Find the inverse of this function and explain its meaning.
(d) When will the mass be reduced to 0.01 g?

The population of a certain species in a limited environment
with initial population 100 and carrying capacity 1000 is

100,000

Plt)=——""_—"—"
100 + 900e™"

where 7 is measured in years.

(a) Graph this function and estimate how long it takes for the
population to reach 900.

(b) Find the inverse of this function and explain its meaning.

(c) Use the inverse function to find the time required for the
population to reach 900. Compare with the result of
part ().

Graph members of the family of functions f(x) = In(x* — ¢)
for several values of c. How does the graph change when ¢
changes?

Graph the three functions y = x¢, y = a”, and y = log,x on
the same screen for two or three values of @ > 1. For large
values of x, which of these functions has the largest values
and which has the smallest values?



PRINCIPLES
OF PROBLEM
SOLVING

[1] UNDERSTAND
THE PROBLEM

[2] THINK OF A PLAN

There are no hard and fast rules that will ensure success in solving problems. However, it is
possible to outline some general steps in the problem-solving process and to give some prin-
ciples that may be useful in the solution of certain problems. These steps and principles are
just common sense made explicit. They have been adapted from George Polya’s book How
To Solve It.

The first step is to read the problem and make sure that you understand it clearly. Ask your-
self the following questions:

What is the unknown?
What are the given quantities?

What are the given conditions?

For many problems it is useful to

draw a diagram

and identify the given and required quantities on the diagram.
Usually it is necessary to

introduce suitable notation

In choosing symbols for the unknown quantities we often use letters such as a, b, ¢, m, n, x,
and y, but in some cases it helps to use initials as suggestive symbols; for instance, V for
volume or ¢ for time.

Find a connection between the given information and the unknown that will enable you to
calculate the unknown. It often helps to ask yourself explicitly: “How can I relate the given
to the unknown?” If you don’t see a connection immediately, the following ideas may be
helpful in devising a plan.

Try to Recognize Something Familiar Relate the given situation to previous knowledge. Look at
the unknown and try to recall a more familiar problem that has a similar unknown.

Try to Recognize Patterns Some problems are solved by recognizing that some kind of pattern
is occurring. The pattern could be geometric, or numerical, or algebraic. If you can see reg-
ularity or repetition in a problem, you might be able to guess what the continuing pattern is
and then prove it.

Use Analogy Try to think of an analogous problem, that is, a similar problem, a related
problem, but one that is easier than the original problem. If you can solve the similar, sim-
pler problem, then it might give you the clues you need to solve the original, more difficult
problem. For instance, if a problem involves very large numbers, you could first try a simi-
lar problem with smaller numbers. Or if the problem involves three-dimensional geometry,
you could look for a similar problem in two-dimensional geometry. Or if the problem you
start with is a general one, you could first try a special case.

Introduce Something Exira It may sometimes be necessary to introduce something new, an
auxiliary aid, to help make the connection between the given and the unknown. For instance,
in a problem where a diagram is useful the auxiliary aid could be a new line drawn in a dia-
gram. In a more algebraic problem it could be a new unknown that is related to the original
unknown.



[3] CARRY OUT THE PLAN

[4] LOOK BACK

Take Cases We may sometimes have to split a problem into several cases and give a dif-
ferent argument for each of the cases. For instance, we often have to use this strategy in deal-
ing with absolute value.

Work Backward Sometimes it is useful to imagine that your problem is solved and work
backward, step by step, until you arrive at the given data. Then you may be able to reverse
your steps and thereby construct a solution to the original problem. This procedure is com-
monly used in solving equations. For instance, in solving the equation 3x — 5 = 7, we sup-
pose that x is a number that satisfies 3x — 5 = 7 and work backward. We add 5 to each side
of the equation and then divide each side by 3 to get x = 4. Since each of these steps can
be reversed, we have solved the problem.

Establish Subgoals In a complex problem it is often useful to set subgoals (in which the
desired situation is only partially fulfilled). If we can first reach these subgoals, then we may
be able to build on them to reach our final goal.

Indirect Reasoning  Sometimes it is appropriate to attack a problem indirectly. In using proof
by contradiction to prove that P implies O, we assume that P is true and Q is false and try
to see why this can’t happen. Somehow we have to use this information and arrive at a con-
tradiction to what we absolutely know is true.

Mathematical Induction In proving statements that involve a positive integer n, it is frequently
helpful to use the following principle.

Principle of Mathematical Induction Let S, be a statement about the positive integer n.
Suppose that

1. S, is true.

2. Si+11s true whenever S, is true.

Then S, is true for all positive integers n.

This is reasonable because, since S is true, it follows from condition 2 (with k = 1) that
S is true. Then, using condition 2 with k£ = 2, we see that S; is true. Again using condition 2,
this time with k£ = 3, we have that S, is true. This procedure can be followed indefinitely.

In Step 2 a plan was devised. In carrying out that plan we have to check each stage of the
plan and write the details that prove that each stage is correct.

Having completed our solution, it is wise to look back over it, partly to see if we have made
errors in the solution and partly to see if we can think of an easier way to solve the problem.
Another reason for looking back is that it will familiarize us with the method of solution and
this may be useful for solving a future problem. Descartes said, “Every problem that I solved
became a rule which served afterwards to solve other problems.”

These principles of problem solving are illustrated in the following examples. Before you
look at the solutions, try to solve these problems yourself, referring to these Principles of
Problem Solving if you get stuck. You may find it useful to refer to this section from time
to time as you solve the exercises in the remaining chapters of this book.



Understand the problem

Draw a diagram

FIGURE 1

Connect the given with the unknown
Introduce something extra

Relate to the familiar

EXAMFLE 1 Express the hypotenuse & of a right triangle with area 25 m? as a function of
its perimeter P.

SOLUTION Let’s first sort out the information by identifying the unknown quantity and the
data:

Unknown: hypotenuse &

Given quantities: perimeter P, area 25 m?

It helps to draw a diagram and we do so in Figure 1.

h

a

In order to connect the given quantities to the unknown, we introduce two extra vari-
ables a and b, which are the lengths of the other two sides of the triangle. This enables us
to express the given condition, which is that the triangle is right-angled, by the Pythago-
rean Theorem:

h?* = a* + b*

The other connections among the variables come by writing expressions for the area and
perimeter:
25 =lab P=a+b+h

Since P is given, notice that we now have three equations in the three unknowns a, b,
and A:

1] h?=a®+ b2
2] 25 = jab
[3] P=a+b+h

Although we have the correct number of equations, they are not easy to solve in a straight-
forward fashion. But if we use the problem-solving strategy of trying to recognize some-
thing familiar, then we can solve these equations by an easier method. Look at the right
sides of Equations 1, 2, and 3. Do these expressions remind you of anything familiar?
Notice that they contain the ingredients of a familiar formula:

(a + b)* = a* + 2ab + b?
Using this idea, we express (a + b)? in two ways. From Equations 1 and 2 we have
(a + b)* = (a* + b*) + 2ab = h* + 4(25)
From Equation 3 we have

(@ + b)?= (P — h)?=P>—2Ph + h*

Thus h® + 100 = P> — 2Ph + h’
2Ph = P> — 100
P> — 100
h [ ————
2P

This is the required expression for 4 as a function of P. ]



As the next example illustrates, it is often necessary to use the problem-solving prin-
ciple of taking cases when dealing with absolute values.

EXAMPLE 2 Solve the inequality [x — 3| + |x + 2| < 11.

SOLUTION Recall the definition of absolute value:

X if x=0
|x]= —x ifx<O0

-3 ifx—3=0
It follows that |x — 3| = {x X

—(x—3) ifx—3<0
x—3 if x=3
—x+3 if x<3

- x+2 ifx+2=0
Similarly |x +2|= ,
—-(x+2) ifx+2<0
_jx+2 if x=-2
—x—2 ifx<-=-2
Take cases These expressions show that we must consider three cases:

x < =2 —2=x<3 x=3
CASE | = If x < —2, we have
|x =3+ |x+2] <11
—x+3-—x—-2<I1l
—2x < 10
x> =5
CASE Il = If —2 < x < 3, the given inequality becomes
—x+3+x+2<I11
5<11 (always true)
CASE Il = If x = 3, the inequality becomes
x—3+x+2<1l
2x < 12
x<6

Combining cases I, II, and III, we see that the inequality is satisfied when —5 < x < 6.
So the solution is the interval (=35, 6). [

In the following example we first guess the answer by looking at special cases and rec-
ognizing a pattern. Then we prove it by mathematical induction.

In using the Principle of Mathematical Induction, we follow three steps:

STEP 1 Prove that S, is true when n = 1.
STEP 2 Assume that S, is true when n = k and deduce that S, is true when n = k + 1.

STEP 3 Conclude that S, is true for all n by the Principle of Mathematical Induction.



[lll" Analogy: Try a similar, simpler problem

Il Look for a pattern

EXAMPLE 2 If fo(x) = x/(x + 1) and fos1 = foo fuforn=20,1,2,...,finda

formula for f,(x).

SOLUTION We start by finding formulas for f,(x) for the special cases n = 1, 2, and 3.

F0) = (oo fo) (1) = fl fow) =fo<x - 1)

X X
o x+1 _ox+1 X
x 2x+1  2x+1
x+1 x+1

£ = (oo ) () = HUA) =fo<2xi 1)

X X

o 2x+1 2x+1 x

x o 3x+ 1 3x+1
2x + 1 2x + 1

£ = (foo ) () = Al H) =fo<3xi 1 )

X X
_ 3x+1 _ 3x+1 X
T x 4x+1  4x+1
3x + 1 3x + 1

We notice a pattern: The coefficient of x in the denominator of f,(x) is n + 1 in the
three cases we have computed. So we make the guess that, in general,

(4] fulx) =

X

n+ x+1

To prove this, we use the Principle of Mathematical Induction. We have already verified
that (4) is true for n = 1. Assume that it is true for n = k, that is,

Jlx) =

Then  firi(x) = (fo o fi) () = fol filx)) :fO(

X

(k+1Dx+1

- x
(k+ Dx+1

X X
_ k+Dx+1  (k+Dx+1 X
B x C(k+2)x+1 (k+2)x+1
(k+ Dx + 1 k + Dx + 1

This expression shows that (4) is true for n = k + 1. Therefore, by mathematical induc-

tion, it is true for all positive integers n.



PROBLEMS

O 0 N o AW

10.

11.
12.

13.
14.
15.

16.
17.
18.
19.

20.

. One of the legs of a right triangle has length 4 cm. Express the length of the altitude perpen-

dicular to the hypotenuse as a function of the length of the hypotenuse.

. The altitude perpendicular to the hypotenuse of a right triangle is 12 cm. Express the length of

the hypotenuse as a function of the perimeter.

. Solve the equation |2x — 1| — |x + 5| = 3.

. Solve the inequality |x — 1] — |x — 3| = 5.

. Sketch the graph of the function f(x) = |x2 —4|x|+3 |

. Sketch the graph of the function g(x) = |x? — 1| — |x* — 4.

. Draw the graph of the equation x + |x| =y + | y|.

. Draw the graph of the equation x* — 4x? — x?y? + 4y? = 0.

. Sketch the region in the plane consisting of all points (x, y) such that | x| + |y| < 1.

Sketch the region in the plane consisting of all points (x, y) such that
lx = y| +[x[ = [y[=<2

Evaluate (log, 3)(log;4)(log,5) - - - (logs; 32).

(a) Show that the function f(x) = 1n(x + /X2 + l) is an odd function.
(b) Find the inverse function of f.

Solve the inequality In(x*> — 2x — 2) < 0.
Use indirect reasoning to prove that log, 5 is an irrational number.

A driver sets out on a journey. For the first half of the distance she drives at the leisurely pace
of 30 mi/h; she drives the second half at 60 mi/h. What is her average speed on this trip?

Is it true that fo (g + h) = fog + fo h?

Prove that if n is a positive integer, then 7" — 1 is divisible by 6.

Prove that 1 + 3+ 5+ - + 2n — 1) = n’.

If fo(x) = x?and f,+1(x) = fo( fu(x)) forn = 0, 1,2, . .., find a formula for f,(x).

() If fil) = 5

use mathematical induction to prove it.

and f,+1 =fo © fuforn=0,1,2,..., find an expression for f,(x) and

(b) Graph fy, fi, f>, f5 on the same screen and describe the effects of repeated composition.



The idea of a limit is
illustrated by secant lines

approaching a tangent line.

Limits and Derivalives




In A Preview of Calculus (page 2) we saw how the idea of
a limit underlies the various branches of calculus. It is there-
fore appropriate to begin our study of calculus by investi-
gating limits and their properties. The special type of limit
that is used to find tangents and velocities gives rise to the

central idea in differential calculus, the derivative.

|I| 2.1 The Tangent and Velocity Problems

Locate tangents interactively and explore
them numerically.

Resources / Module 1
. / Tangents
/ What Is a Tangent?

FIGURE 1

FIGURE 2

In this section we see how limits arise when we attempt to find the tangent to a curve or
the velocity of an object.

|||| The Tangent Problem

The word fangent is derived from the Latin word fangens, which means “touching.” Thus,
a tangent to a curve is a line that touches the curve. In other words, a tangent line should
have the same direction as the curve at the point of contact. How can this idea be made
precise?

For a circle we could simply follow Euclid and say that a tangent is a line that intersects
the circle once and only once as in Figure 1(a). For more complicated curves this defini-
tion is inadequate. Figure 1(b) shows two lines / and ¢ passing through a point P on a curve
C. The line / intersects C only once, but it certainly does not look like what we think of as
a tangent. The line 7, on the other hand, looks like a tangent but it intersects C twice.

(a) (b)

To be specific, let’s look at the problem of trying to find a tangent line 7 to the parabola
y = x? in the following example.

EXAMPLE 1 Find an equation of the tangent line to the parabola y = x? at the point P(1, 1).

SOLUTION We will be able to find an equation of the tangent line ¢ as soon as we know its
slope m. The difficulty is that we know only one point, P, on ¢, whereas we need two
points to compute the slope. But observe that we can compute an approximation to m by
choosing a nearby point Q(x, x?) on the parabola (as in Figure 2) and computing the
slope mpp of the secant line PQ.

We choose x # 1 so that Q # P. Then




X Mmpo
2 3
1.5 2.5
1.1 2.1
1.01 2.01
1.001 2.001
X Mmpg
0 1
0.5 1.5
0.9 1.9
0.99 1.99
0.999 1.999
y
0
y
Q0 P
0
FIGURE 3

In Module 2.1 you can see how the
m process in Figure 3 works for five

additional functions.

For instance, for the point Q(1.5, 2.25) we have

225 -1 1.25
= =25
1.5—-1 0.5

Mmpo =

The tables in the margin show the values of mp, for several values of x close to 1. The
closer Q is to P, the closer x is to 1 and, it appears from the tables, the closer mp is to 2.
This suggests that the slope of the tangent line ¢ should be m = 2.
We say that the slope of the tangent line is the /imir of the slopes of the secant lines,
and we express this symbolically by writing
2
lim e =m  and  lim——t =2
0—P =1 x — 1
Assuming that the slope of the tangent line is indeed 2, we use the point-slope form
of the equation of a line (see Appendix B) to write the equation of the tangent line
through (1, 1) as

y—1=2(x—1) or y=2x—1

Figure 3 illustrates the limiting process that occurs in this example. As Q approaches
P along the parabola, the corresponding secant lines rotate about P and approach the
tangent line 7.

y y
t t
0
0
P P
0 X 0 X
Q approaches P from the right
y y
t t
P P
2 0
0 X / X

Q approaches P from the left

Many functions that occur in science are not described by explicit equations; they are
defined by experimental data. The next example shows how to estimate the slope of the
tangent line to the graph of such a function.



t 0

0.00 100.00

0.02 81.87

0.04 67.03

0.06 54.88

0.08 44.93

0.10 36.76

FIGURE 4
R mpg

(0.00, 100.00) —824.25
(0.02, 81.87) —742.00
(0.06, 54.88) —607.50
(0.08, 44.93) —552.50
(0.10, 36.76) —504.50

[l The physical meaning of the answer in
Example 2 is that the electric current flowing
from the capacitor to the flash bulb after
0.04 second is about —670 microamperes.

EXAMPLE 2 The flash unit on a camera operates by storing charge on a capacitor and
releasing it suddenly when the flash is set off. The data at the left describe the charge Q
remaining on the capacitor (measured in microcoulombs) at time ¢ (measured in seconds
after the flash goes off ). Use the data to draw the graph of this function and estimate the
slope of the tangent line at the point where t = 0.04. [ Note: The slope of the tangent line
represents the electric current flowing from the capacitor to the flash bulb (measured in
microamperes).]

SOLUTION In Figure 4 we plot the given data and use them to sketch a curve that approxi-
mates the graph of the function.

[
100

—90

—80

h:N

70 P
60 \
50 B x;\

Given the points P(0.04, 67.03) and R(0.00, 100.00) on the graph, we find that the
slope of the secant line PR is

- 100.00 — 67.03 _ 82495
0.00 — 0.04
The table at the left shows the results of similar calculations for the slopes of other
secant lines. From this table we would expect the slope of the tangent line at = 0.04 to
lie somewhere between —742 and —607.5. In fact, the average of the slopes of the two
closest secant lines is

1(—742 — 607.5) = —674.75

So, by this method, we estimate the slope of the tangent line to be —675.

Another method is to draw an approximation to the tangent line at P and measure the
sides of the triangle ABC, as in Figure 4. This gives an estimate of the slope of the tan-
gent line as

_lAB| _ 804-536 _
|BC| 0.06 — 0.02

|||| The Velocity Problem

If you watch the speedometer of a car as you travel in city traffic, you see that the needle
doesn’t stay still for very long; that is, the velocity of the car is not constant. We assume
from watching the speedometer that the car has a definite velocity at each moment, but how
is the “instantaneous” velocity defined? Let’s investigate the example of a falling ball.



EXAMPLE 3 Suppose that a ball is dropped from the upper observation deck of the CN
Tower in Toronto, 450 m above the ground. Find the velocity of the ball after 5 seconds.

SOLUTION Through experiments carried out four centuries ago, Galileo discovered that the
distance fallen by any freely falling body is proportional to the square of the time it has
been falling. (This model for free fall neglects air resistance.) If the distance fallen after ¢
seconds is denoted by s(#) and measured in meters, then Galileo’s law is expressed by the
equation

s(t) = 4.9¢*

The difficulty in finding the velocity after 5 s is that we are dealing with a single instant
of time (r = 5), so no time interval is involved. However, we can approximate the desired
quantity by computing the average velocity over the brief time interval of a tenth of a
second from ¢ = 5tor = 5.1:

. distance traveled
average velocity = ~ime claosed
ime elapse

s(5.1) — s(5)

The CN Tower in Toronto is currently the tallest
freestanding building in the world. 0.1

_4.9(5.1) — 4.9(5)
N 0.1

= 49.49 m/s

The following table shows the results of similar calculations of the average velocity over
successively smaller time periods.

Time interval Average velocity (m/s)
5=str=6 539
5=sr=5.1 49.49
5<t=<3505 49.245
5=<tr=<50l1 49.049

5 =1=5.001 49.0049

It appears that as we shorten the time period, the average velocity is becoming closer to
49 m/s. The instantaneous velocity when ¢ = 5 is defined to be the limiting value of
these average velocities over shorter and shorter time periods that start at # = 5. Thus,
the (instantaneous) velocity after 5 s is

v=49m/s ]

You may have the feeling that the calculations used in solving this problem are very
similar to those used earlier in this section to find tangents. In fact, there is a close con-
nection between the tangent problem and the problem of finding velocities. If we draw the
graph of the distance function of the ball (as in Figure 5) and we consider the points
P(a,4.9a%) and Q(a + h,4.9(a + h)*) on the graph, then the slope of the secant line
PQis
~ 49(a + h)* — 494’

(a+h) —a

Mpg



which is the same as the average velocity over the time interval [a, a + h]. Therefore, the
velocity at time ¢ = a (the limit of these average velocities as /& approaches 0) must be
equal to the slope of the tangent line at P (the limit of the slopes of the secant lines).

S
x=4.9t2\

0

slope of secant line
= average velocity

)
5s=4.9¢

slope of tangent
P = instantaneous velocity

0 a a+th

FIGURE 5

Examples 1 and 3 show that in order to solve tangent and velocity problems we must
be able to find limits. After studying methods for computing limits in the next five sections,
we will return to the problems of finding tangents and velocities in Section 2.7.

2.1 Exercises

1. A tank holds 1000 gallons of water, which drains from the

bottom of the tank in half an hour. The values in the table show
the volume V of water remaining in the tank (in gallons) after
t minutes.

t (min) 5 10 15 20 25 30

V (gal) 694 444 250 111 28 0

(a) If P is the point (15, 250) on the graph of V, find the slopes
of the secant lines PQ when Q is the point on the graph
with ¢t = 5, 10, 20, 25, and 30.

(b) Estimate the slope of the tangent line at P by averaging the
slopes of two secant lines.

(c) Use a graph of the function to estimate the slope of the
tangent line at P. (This slope represents the rate at which the
water is flowing from the tank after 15 minutes.)

. A cardiac monitor is used to measure the heart rate of a patient
after surgery. It compiles the number of heartbeats after  min-
utes. When the data in the table are graphed, the slope of the
tangent line represents the heart rate in beats per minute.

¢ (min) 36 38 40 42 44

Heartbeats 2530 2661 2806 2948 3080

The monitor estimates this value by calculating the slope
of a secant line. Use the data to estimate the patient’s heart rate

after 42 minutes using the secant line between the points with
the given values of 1.
(a)t=36 and =42
(c)t=40 and r=42
What are your conclusions?

(b) t=238 and =42
(d) r=42 and =44

. The point P(1, ) lies on the curve y = x/(1 + x).

(a) If Q is the point (x, x/(1 + x)), use your calculator to find
the slope of the secant line PQ (correct to six decimal
places) for the following values of x:

(i) 0.5 (i) 0.9
(i) 0.99 (iv) 0.999
W) 1.5 i) 1.1
(vii) 1.01 (viii) 1.001

(b) Using the results of part (a), guess the value of the slope of
the tangent line to the curve at P(l, %)

(c) Using the slope from part (b), find an equation of the
tangent line to the curve at P(l, %)

. The point P(2, In 2) lies on the curve y = In x.

(a) If Q is the point (x, In x), use your calculator to find the
slope of the secant line PQ (correct to six decimal places)
for the following values of x:

G 15 (i) 1.9
(iii) 1.99 (iv) 1.999
V) 25 i) 2.1
(vii) 2.01 (viii) 2.001

(b) Using the results of part (a), guess the value of the slope of
the tangent line to the curve at P(2, In 2).



(c) Using the slope from part (b), find an equation of the
tangent line to the curve at P(2, In 2).

(d) Sketch the curve, two of the secant lines, and the tangent
line.

5. If a ball is thrown into the air with a velocity of 40 ft/s, its
height in feet after # seconds is given by y = 40t — 162
(a) Find the average velocity for the time period beginning

when ¢ = 2 and lasting
(i) 0.5 second (i1) 0.1 second
(ii1) 0.05 second  (iv) 0.01 second
(b) Find the instantaneous velocity when r = 2.

6. If an arrow is shot upward on the moon with a velocity of
58 m/s, its height in meters after 7 seconds is given by
h = 58t — 0.831%
(a) Find the average velocity over the given time intervals:
1) [1,2] (i) [1, 1.5] (iii) [1, 1.1]
@iv) [1, 1.01] (v) [1, 1.001]
(b) Find the instantaneous velocity after one second.
7. The displacement (in feet) of a certain particle moving in

a straight line is given by s = #°/6, where t is measured in
seconds.

(a) Find the average velocity over the following time periods:

@ [1,3] (i) [1,2]
(iii) [1, 1.5] @iv) [1, 1.1]
(b) Find the instantaneous velocity when 7 = 1.

2.2 The Limif of a Function

(c) Draw the graph of s as a function of ¢ and draw the secant
lines whose slopes are the average velocities found in
part ().

(d) Draw the tangent line whose slope is the instantaneous
velocity from part (b).

8. The position of a car is given by the values in the table.

t (seconds) 0 1 2 3 4 5
119 178

s (feet) 0 10 32 70

(a) Find the average velocity for the time period beginning
when ¢ = 2 and lasting
(i) 3 seconds (i1) 2 seconds
(b) Use the graph of s as a function of ¢ to estimate the instan-
taneous velocity when ¢ = 2.

(ii1) 1 second

9. The point P(1, 0) lies on the curve y = sin(107/x).

(a) If Q is the point (x, sin(1077/x)), find the slope of the secant
line PQ (correct to four decimal places) for x = 2, 1.5, 1.4,
1.3, 1.2, 1.1, 0.5, 0.6, 0.7, 0.8, and 0.9. Do the slopes
appear to be approaching a limit?

(b) Use a graph of the curve to explain why the slopes of the
secant lines in part (a) are not close to the slope of the
tangent line at P.

(c) By choosing appropriate secant lines, estimate the slope of
the tangent line at P.

Having seen in the preceding section how limits arise when we want to find the tangent to
a curve or the velocity of an object, we now turn our attention to limits in general and
numerical and graphical methods for computing them.

Let’s investigate the behavior of the function f defined by f(x) = x* — x + 2 for val-
ues of x near 2. The following table gives values of f(x) for values of x close to 2, but not

equal to 2.
y
| x 0 x £
1 1.0 2.000000 3.0 8.000000
f(x) | Y= x4 1.5 2.750000 2.5 5.750000
approaches T 4 1.8 3.440000 22 4.640000
4. 1 ! 1.9 3.710000 2.1 4.310000
\| 1.95 3.852500 2.05 4.152500
1.99 3.970100 2.01 4.030100
+ 1.995 3.985025 2.005 4.015025
) | ) 1.999 3.997001 2.001 4.003001
0 C i o X
As x approaches 2, R .
From the table and the graph of f (a parabola) shown in Figure 1 we see that when x is
FIGURE 1 close to 2 (on either side of 2), f(x) is close to 4. In fact, it appears that we can make the



values of f(x) as close as we like to 4 by taking x sufficiently close to 2. We express this
by saying “the limit of the function f(x) = x*> — x + 2 as x approaches 2 is equal to 4.”
The notation for this is

lirrg(xz—x+2)=4

In general, we use the following notation.

[1] Definition We write
lim f(x) = L
and say “the limit of f(x), as x approaches a, equals L”

if we can make the values of f(x) arbitrarily close to L (as close to L as we like)
by taking x to be sufficiently close to a (on either side of a) but not equal to a.

Roughly speaking, this says that the values of f(x) get closer and closer to the number
L as x gets closer and closer to the number a (from either side of @) but x # a. A more pre-
cise definition will be given in Section 2.4.

An alternative notation for

lim f(x) = L

is f(x) =L as x—a

which is usually read “f(x) approaches L as x approaches a.”

Notice the phrase “but x # a” in the definition of limit. This means that in finding the
limit of f(x) as x approaches a, we never consider x = a. In fact, f(x) need not even be
defined when x = a. The only thing that matters is how f is defined near a.

Figure 2 shows the graphs of three functions. Note that in part (c), f(a) is not defined
and in part (b), f(a) # L. But in each case, regardless of what happens at q, it is true that
lim,_,f(x) = L.

(a) (b) (©)
FIGURE 2 1lim f(x)= L in all three cases

x—a

EXAMPLE 1 Guess the value of lim — o
x—1 X7 —

SOLUTION Notice that the function f(x) = (x — 1)/(x* — 1) is not defined when x = 1,
but that doesn’t matter because the definition of lim.—., f(x) says that we consider values




x <1 f(x)

0.5 0.666667

0.9 0.526316

0.99 0.502513

0.999 0.500250

0.9999 0.500025

x> 1 f(x)

1.5 0.400000

1.1 0.476190

1.01 0.497512

1.001 0.499750

1.0001 0.499975

, V2 +9 -3

[2

*=0.0005 0.16800

*=0.0001 0.20000

*=0.00005 0.00000

*=0.00001 0.00000

of x that are close to a but not equal to a. The tables at the left give values of f(x)
(correct to six decimal places) for values of x that approach 1 (but are not equal to 1).
On the basis of the values in the tables, we make the guess that

x—1

11i111x2_1=0.5 -

Example 1 is illustrated by the graph of f in Figure 3. Now let’s change f slightly by
giving it the value 2 when x = 1 and calling the resulting function g:

2l S
2 _ 11T X
gy =% 1

2 if x=1

This new function g still has the same limit as x approaches 1 (see Figure 4).

EXAMPLE 2 Estimate the value of lim

t—0

y y
2«» °
_ox—1
y= Y=gt
0.5 A 0.5
w w |
0 4,1'& X 0 —>i<— X
FIGURE 3 FIGURE 4
NGET

t2

SOLUTION The table lists values of the function for several values of ¢ near O.

Z JETO -3
5
*+1.0 0.16228
*0.5 0.16553
*0.1 0.16662
*=0.05 0.16666
+0.01 0.16667

As t approaches 0, the values of the function seem to approach 0.1666666 . .. and so we

guess that
. AP+ 9 -3 1
lim—————=—
=0 t 6 [

In Example 2 what would have happened if we had taken even smaller values of ¢? The
table in the margin shows the results from one calculator; you can see that something
strange seems to be happening.



[l For a further explanation of why calculators
sometimes give false values, see the web site

www.stewartcalculus.com

Click on Additional Topics and then on Lies
My Calculator and Computer Told Me. In
particular, see the section called The Perils of

Subtraction.

If you try these calculations on your own calculator you might get different values, but
eventually you will get the value O if you make ¢ sufficiently small. Does this mean that
the answer is really 0 instead of ¢? No, the value of the limit is ¢, as we will show in the

@ next section. The problem is that the calculator gave false values because /¢ + 9 is very

close to 3 when ¢ is small. (In fact, when ¢ is sufficiently small, a calculator’s value for
V12 + 915 3.000. .. to as many digits as the calculator is capable of carrying.)
Something similar happens when we try to graph the function

f(t) = —Vﬂtf_?’

of Example 2 on a graphing calculator or computer. Parts (a) and (b) of Figure 5 show quite
accurate graphs of f, and when we use the trace mode (if available) we can estimate eas-
ily that the limit is about é But if we zoom in too far, as in parts (c) and (d), then we get
inaccurate graphs, again because of problems with subtraction.

0.2

0.1

i

0.1

(a) [-5, 5] by [-0.1,0.3]
FIGURE 5

(b) [<0.1, 0.1] by [<0.1, 0.3] (©) [-107°, 10T by [<0.1, 0.3] (d) [~1077,10 7] by [<0.1, 0.3]
. sinx
EXAMPLE 3 Guess the value of hmo .
xX— X

SOLUTION The function f(x) = (sin x)/x is not defined when x = 0. Using a calculator
(and remembering that, if x € R, sin x means the sine of the angle whose radian mea-
sure is x), we construct the following table of values correct to eight decimal places.
From the table and the graph in Figure 6 we guess that
. sinx
lim =1

x—0 X

This guess is in fact correct, as will be proved in Chapter 3 using a geometric argument.

sin x
X
X
*1.0 0.84147098 ' _sinx
+0.5 0.95885108 L Y=
+0.4 0.97354586 /\
+03 0.98506736
+0.2 0.99334665
+0.1 0.99833417 - 0 i >
+0.05 0.99958339
+0.01 0.99998333 FIGURE &
+0.005 0.99999583
+0.001 0.99999983




[l COMPUTER ALGEBRA SYSTEMS

Computer algebra systems (CAS) have commands
that compute limits. In order to avoid the types
of pitfalls demonstrated in Examples 2, 4, and 5,
they dont find limits by numerical experimen-
tation. Instead, they use more sophisticated
techniques such as computing infinite series. If
you have access to a CAS, use the limit command
to compute the limits in the examples of this
section and to check your answers in the exer-
cises of this chapter.

T
EXAMPLE 4 Investigate liII(l) sin —.
xX—> X

SOLUTION Again the function f(x) = sin(7r/x) is undefined at 0. Evaluating the function

for some small values of x, we get
f() =sinT=0 f(3) =sin27 =0

f(3) =sin37 =0 f(3) =sin4m =0

f(0.1) =sin 10 =0 £(0.01) = sin 1007 = 0

Similarly, f(0.001) = £(0.0001) = 0. On the basis of this information we might be
tempted to guess that

. .
limsin— =20
x—0 X

[%) but this time our guess is wrong. Note that although f(1/n) = sin nar = 0 for any integer

Listen to the sound of this function trying to
approach a limit.

. Resources / Module 2
J Ih

/ Basics of Limits

FIGURE 7

Module 2.2 helps you explore limits at
m points where graphs exhibit unusual
“" behavior.

, , cos5x
x X
10,000
1 1.000028
0.5 0.124920
0.1 0.001088
0.05 0.000222
0.01 0.000101

/ Sound of a Limit that Does Not Exist

n, it is also true that f(x) = 1 for infinitely many values of x that approach 0. [In fact,
sin(7r/x) = 1 when

T
—=?+2n77

and, solving for x, we get x = 2/(4n + 1).] The graph of f is given in Figure 7.

y = sin(7/x)

The dashed lines indicate that the values of sin(7r/x) oscillate between 1 and —1
infinitely often as x approaches 0 (see Exercise 37). Since the values of f(x) do not
approach a fixed number as x approaches 0,

. .. T .
lim sin — does not exist
x—0 X

cos 5x
10,000 /°
SOLUTION As before, we construct a table of values. From the table in the margin it

appears that
cos 5x
=0
10,000 )

EXAMPLE 5 Find liII(l) <x3 +

x—0

lim <x3 +



,  cos5x

x ¢
10,000
0.005 0.00010009
0.001 0.00010000

FIGURE 8

But if we persevere with smaller values of x, the second table suggests that

cos Sx
10,000

10,000

lirr(l) <x3 + ) = 0.000100 =

Later we will see that lim, .o cos 5x = 1; then it follows that the limit is 0.0001. ]

@ Examples 4 and 5 illustrate some of the pitfalls in guessing the value of a limit. It is

easy to guess the wrong value if we use inappropriate values of x, but it is difficult to know
when to stop calculating values. And, as the discussion after Example 2 shows, sometimes
calculators and computers give the wrong values. In the next two sections, however, we
will develop foolproof methods for calculating limits.

EXAMPLE 6 The Heaviside function H is defined by

HO) — 0 ifr<O
1 ifr=0

[This function is named after the electrical engineer Oliver Heaviside (1850—1925) and
can be used to describe an electric current that is switched on at time ¢t = 0.] Its graph is
shown in Figure 8.

As t approaches 0 from the left, H(z) approaches 0. As t approaches 0 from the right,
H(t) approaches 1. There is no single number that H(z) approaches as  approaches 0.
Therefore, lim, .o H(¢) does not exist. ]

|||| One-Sided Limits

We noticed in Example 6 that H(s) approaches 0 as ¢ approaches 0 from the left and H(r)
approaches 1 as ¢ approaches 0 from the right. We indicate this situation symbolically by
writing

li1(1)1 H(r)=0 and lirgl+ Hi =1
The symbol “s — 0 indicates that we consider only values of ¢ that are less than O.
Likewise, “t — 0™ indicates that we consider only values of 7 that are greater than 0.

[2] Definition We write
lim f(x) =L
and say the left-hand limit of f(x) as x approaches a [or the limit of f(x) as x

approaches a from the left] is equal to L if we can make the values of f(x) arbi-
trarily close to L by taking x to be sufficiently close to a and x less than a.

Notice that Definition 2 differs from Definition 1 only in that we require x to be less
than a. Similarly, if we require that x be greater than a, we get “the right-hand limit of
f(x) as x approaches «a is equal to L” and we write

lim_f(x) =L



FIGURE 9

FIGURE 10

Thus, the symbol “x — a*” means that we consider only x > a. These definitions are illus-
trated in Figure 9.

y y
—
f) L . f)
0 X — a X 0 a <« x X
(@) lim f(x)=L (b) lim f(x)=L

x—a- x—a

By comparing Definition 1 with the definitions of one-sided limits, we see that the fol-
lowing is true.

3] limf(x) =L ifandonlyif lim f(x)=L and lim f(x) =1L

EXAMPLE 7 The graph of a function g is shown in Figure 10. Use it to state the values
(if they exist) of the following:

(a) lim g(x) (b) lim g(x) (¢) lim g(x)
(@ lim g(x) (e) lim g(x) (f) Tim g(x)

SOLUTION From the graph we see that the values of g(x) approach 3 as x approaches 2
from the left, but they approach 1 as x approaches 2 from the right. Therefore

(a) lirgli glx) =3 and (b) lirgl+ glx) =1

(c) Since the left and right limits are different, we conclude from (3) that lim,—_, g(x)
does not exist.

The graph also shows that
(d) linsl, gx) =2 and (e) linsl+ gx) =2
(f) This time the left and right limits are the same and so, by (3), we have
ling gx) =2

Despite this fact, notice that g(5) # 2. ]

|||| [nfinite Limits

1
EXAMPLE 8 Find lir% — if it exists.
x—0 X
SOLUTION As x becomes close to 0, x> also becomes close to 0, and 1/)c2 becomes very
large. (See the table on the next page.) In fact, it appears from the graph of the function
f(x) = 1/x* shown in Figure 11 that the values of f(x) can be made arbitrarily large



| by taking x close enough to 0. Thus, the values of f(x) do not approach a number, so
x o lim,_ (1/x*) does not exist.
*1 1
*0.5 4
*=0.2 25
*0.1 100
*0.05 400
*0.01 10,000
+0.001 1,000,000
FIGURE 11

To indicate the kind of behavior exhibited in Example 8, we use the notation

1
lim — = o
x—0 X

@ This does not mean that we are regarding % as a number. Nor does it mean that the limit
exists. It simply expresses the particular way in which the limit does not exist: 1/x* can be
made as large as we like by taking x close enough to 0.

In general, we write symbolically

lim (x) = o

to indicate that the values of f(x) become larger and larger (or “increase without bound™)
Explore infinite limits interactively. as x becomes closer and closer to a.
Resources / Module 2

Jm / Limits that Are Infinite
=

/ Examples A and B

[4] Definition Let f be a function defined on both sides of a, except possibly at a
itself. Then

lim f(x) = o

means that the values of f(x) can be made arbitrarily large (as large as we please)
by taking x sufficiently close to a, but not equal to a.

Another notation for lim,_., f(x) = s

y
f(x) = o as xX—a
y=r)
Again the symbol % is not a number, but the expression lim,_., f(x) = % is often read as
\\/0 p > “the limit of f(x), as x approaches a, is infinity”
x=a or “f(x) becomes infinite as x approaches a”
FIGURE 12 or “f(x) increases without bound as x approaches a”
lim f(x)= oo

x—a This definition is illustrated graphically in Figure 12.



y A similar sort of limit, for functions that become large negative as x gets close to a, is
defined in Definition 5 and is illustrated in Figure 13.

/-\ a [5] Definition Let f be defined on both sides of a, except possibly at a itself. Then

lim f(x) = —o

means that the values of f(x) can be made arbitrarily large negative by taking x
sufficiently close to a, but not equal to a.

FIGURE 13
lim f(x)=—c

x—a

The symbol lim,_., f(x) = —o can be read as “the limit of f(x), as x approaches a,
is negative infinity” or “f(x) decreases without bound as x approaches a.” As an example

we have
lim | — = | = —=
X1~r>r(l) X 2 o

Similar definitions can be given for the one-sided infinite limits
lim f(x) = = lim f(x) = =
lim f) =~ lim f(x) =~

>

remembering that “x — a~” means that we consider only values of x that are less than a,
and similarly “x — a™” means that we consider only x > a. Illustrations of these four
cases are given in Figure 14.

) — /
\/a X Oa\x 0\\01 X Oa(/\/ X

(a) lim f(x)=o0 (b) limf(x)=co (¢) lim f(x)=—c0 (d) lim_f(x)=—c0

x—a x-a x—a x—-a

FIGURE 14

[6] Definition The line x = a is called a vertical asymptote of the curve y = f(x)
if at least one of the following statements is true:

lmf) = lmf) =% limf)=c
lim f() =~  lim f() = = lim f(x) = =

For instance, the y-axis is a vertical asymptote of the curve y = 1/x? because
lim, o (1/x*) = c. In Figure 14 the line x = a is a vertical asymptote in each of the four
cases shown. In general, knowledge of vertical asymptotes is very useful in sketching
graphs.



y
5<
0 X
x=3
FIGURE 15
[ P [ [
| | | |
| | | |
| | | |
| 4/ |
| | | |
srfla _a /|0 & /7 3w x
2 2 2 2
| | | |
| | | |
| | | |
| | | |
FIGURE 16
y=tanx
FIGURE 17

The y-axis is a vertical asymptote of
the natural logarithmic function.

EXAMPLE 9 Find lim ——— and lim :
=3t x — 3 =3~ x — 3
SOLUTION If x is close to 3 but larger than 3, then the denominator x — 3 is a small posi-
tive number and 2x is close to 6. So the quotient 2x/(x — 3) is a large positive number.
Thus, intuitively we see that
. 2x
lim = 0
x—=3t x — 3

Likewise, if x is close to 3 but smaller than 3, then x — 3 is a small negative number but
2x is still a positive number (close to 6). So 2x/(x — 3) is a numerically large negative

number. Thus

. 2x
lim = —
x—>3- x — 3

The graph of the curve y = 2x/(x — 3) is given in Figure 15. The line x = 3 is a verti-
cal asymptote. 1

EXAMPLE 10 Find the vertical asymptotes of f(x) = tan x.
SOLUTION Because

there are potential vertical asymptotes where cos x = 0. In fact, since cosx — 0 as
x— (m/2)” and cosx — 0~ as x — (7/2)", whereas sin x is positive when x is near
/2, we have
lim tanx = = and lim tanx = —o

x—(m/2)” x—(m/2)*
This shows that the line x = 77/2 is a vertical asymptote. Similar reasoning shows
that the lines x = (2n + 1)m/2, where n is an integer, are all vertical asymptotes of
f(x) = tanx. The graph in Figure 16 confirms this. ]

Another example of a function whose graph has a vertical asymptote is the natural log-
arithmic function y = In x. From Figure 17 we see that

lim Inx = —

x—0t

and so the line x = 0 (the y-axis) is a vertical asymptote. In fact, the same is true for
y = log, x provided that a > 1. (See Figures 11 and 12 in Section 1.6.)

0 1 X

y




2.2 Exercises

1. Explain in your own words what is meant by the equation
lin; fx) =5

Is it possible for this statement to be true and yet f(2) = 3?
Explain.

2. Explain what it means to say that

lim f(x) =3 and

lim lir% fx)y=17
In this situation is it possible that lim,_.; f(x) exists? Explain.

3. Explain the meaning of each of the following.
(@) lim f(x) = (b) lim f(x) =~

4. For the function f whose graph is given, state the value of the
given quantity, if it exists. If it does not exist, explain why.

(a) lim f (x) (b) lim f (x)
(c) lim f (x) (d) lim f (x)
(e) f(3)
y
-}
) ]
N
0 g 4

5. Use the given graph of f to state the value of each quantity,
if it exists. If it does not exist, explain why.

@ lm f() () lim f() (@ lim f(x)
@ lim f() (@) f(5)

6. For the function g whose graph is given, state the value of each
quantity, if it exists. If it does not exist, explain why.
@ lim g(x) () lim g(x) () lim g(x)

(d) g(=2) (@ lim g(x)  (f) lim g(x)
() lim g(x) (h) ¢(2) () lim g(x)

() lim g(x) (k) ¢(0) () lim g(x)

7. For the function g whose graph is given, state the value of each
quantity, if it exists. If it does not exist, explain why.
(@) lim g(r) (b) lim ¢(7) (¢) lim g(z)
1—0~ 1—0* —

@ lim g(2) (e) lim g(r) () lim g(z)
(2 9(2) (h) 1im ()

8. For the function R whose graph is shown, state the following.
(a) lin% R(x) (b) hng R(x)
(c) lirgiR(x) (d) li{r§+R(x)

(e) The equations of the vertical asymptotes.




9. For the function f whose graph is shown, state the following. 15-18 1 Guess the value of the limit (if it exists) by evaluating the

(a) lin_l7 f(x) (b) ‘lin_lz f(x) (©) ling f(x) function at the given numbers (correct to six decimal places).
d) lim f(x e) lim f(x -2
@ lip f6) @) Jim fix) 15. lim————— x=2.5,2.1,2.05, 2.01, 2.005, 2.001,

2 x?—x — 2

(f) The equations of the vertical asymptotes.
1.9, 1.95, 1.99, 1.995, 1.999

l Y l 2_9
1] \ 16 lim — " x=0,-05,~0.9, ~0.95, ~0.99,
L A e
\ \\_//\\ —0.999, =2, —1.5, —1.1, —1.01, —1.001
_7 _3 O _/ 6 X ex _ l —x
\\ // \ 17. lim ————— x = *I, £0.5, +0.1, +0.05, *0.01
X X
| | 18. 'lirgk xIn(x + x*), x=1,0.5,0.1,0.05, 0.01, 0.005, 0.001
10. A patient receives a 150-mg injection of a drug every 4 hours. - : : : : : : : ° ° ° °

The graph shows the amount f(7) of the drug in the blood-
stream after 7 hours. (Later we will be able to compute the
dosage and time interval to ensure that the concentration of the

19-22 1 Use a table of values to estimate the value of the limit.
If you have a graphing device, use it to confirm your result

) graphically.
drug does not reach a harmful level.) Find
19, 1 Vxt+4-=2 20. I tan 3x
rEr}r} f(0 and ’Er1r21+ f@) et X g tan 5x
. - . . Coxt =1 . 9Y— 5%
and explain the significance of these one-sided limits. 21. llHll T 22 11n(1) B
f(t) o o o o o o o o o o o o
2001 \ 23-30 1l Determine the infinite limit.
6 6
\ 23. lim 2. lim
\ =5t x — 5 x=>5-x — 5
150
2 —x x—1
25. lim——— 26. lim ————
\- L e L T
x—1
—— 27. lim ———— 28. li
O 4 8 12 16 ! S0+ 2) o
29. }i}r}z), sec x 30. lirg In(x — 5)
11. Use the graph of the function f(x) = 1/(1 + ') to state the i ) ) " ) ) ) ) ) ’ D‘ ) ) ) )
value of each limit, if it exists. If it does not exist, explain why.
@ xli%l [ (b) }f}} [ (© }E% [ 31. Determine lim — and lim —
x—1- x~ — x—1t x° —
12. Sketch the graph of the following function and use it to deter- (a) by evaluating f(x) = 1/(x* — 1) for values of x that
mine the values of a for which lim, ., f(x) exists: approach 1 from the left and from the right,
(b) by reasoning as in Example 9, and
2 —x if x<—1 (a5 (c) from a graph of f.
fx) =\x if —-1sx<l 32. (a) Find the vertical asymptotes of the function
(x—1?% ifx=1 .
y=—
13-14 1 Sketch the graph of an example of a function f that xP—x—2

satisfies all of the given conditions. a3

I Xlirg S0 =4, Xlgglf f) =2, Xlin}zf W =2, 33. (a) Estimate the value of the limit lim, ., (1 + x)"* to five
f3) =3, f(=2)=1 decimal places. Does this number look familiar?
A (b) Mlustrate part (a) by graphing the function y = (1 + x)/~.

(b) Confirm your answer to part (a) by graphing the function.

14. lirglﬁ flx) =1, lir(1)1+ flx)=—1, lilgl f(x)=0
o o o o . 34. The slope of the tangent line to the graph of the exponential
Xlirg fx) =1, f(2) =1, f(0)is undefined function y = 2* at the point (0, 1) is lim,—o (2" — 1)/x.

E - - - o o o o ° o o o Estimate the slope to three decimal places.



35. (a) Evaluate the function f(x) = x* — (2%/1000) for x = 1,
0.8, 0.6, 0.4, 0.2, 0.1, and 0.05, and guess the value of

lim | x* — 2
x—0 1000

(b) Evaluate f(x) for x = 0.04, 0.02, 0.01, 0.005, 0.003, and
0.001. Guess again.

36. (a) Evaluate 4(x) = (tan x — x)/x* forx = 1, 0.5, 0.1, 0.05,
0.01, and 0.005.

(b) Guess the value of 1in(1J
xX— X

tan x — x
—.

(¢) Evaluate h(x) for successively smaller values of x until you
finally reach 0 values for A(x). Are you still confident that
your guess in part (b) is correct? Explain why you eventu-
ally obtained 0 values. (In Section 4.4 a method for eval-
uating the limit will be explained.)

(d) Graph the function % in the viewing rectangle [—1, 1]
by [0, 1]. Then zoom in toward the point where the graph
crosses the y-axis to estimate the limit of A(x) as x
approaches 0. Continue to zoom in until you observe distor-
tions in the graph of 4. Compare with the results of part (c).

7 3.

38.

7 39.

A4 0.

2.3 Calculating Limits Using the Limit Laws

Graph the function f(x) = sin(7/x) of Example 4 in the view-
ing rectangle [—1, 1] by [—1, 1]. Then zoom in toward the
origin several times. Comment on the behavior of this function.

In the theory of relativity, the mass of a particle with velocity
vis

— Mo
A v*/c?
where m, is the rest mass of the particle and c is the speed of
light. What happens as v — ¢~ ?

Use a graph to estimate the equations of all the vertical asymp-
totes of the curve

y = tan(2 sin x) -T<xs<mw

Then find the exact equations of these asymptotes.

(a) Use numerical and graphical evidence to guess the value of

the limit
X =1

lim—F———
=1 y/x = 1
(b) How close to 1 does x have to be to ensure that the function
in part (a) is within a distance 0.5 of its limit?

In Section 2.2 we used calculators and graphs to guess the values of limits, but we saw that
such methods don’t always lead to the correct answer. In this section we use the following
properties of limits, called the Limit Laws, to calculate limits.

exist. Then

f(x)

__ x—a

im = =
o g(x)  lim g(x)

Limit Laws Suppose that c is a constant and the limits

lim f(x)

1 lim [£(x) + g(0] = lim £(x) + lim g(x)
2. lim [ /() = g(x)] = lim f(x) — lim g(x)
3. tim [f ()] = ¢ lim £(x)
4. lim [ £(x)g(x)] = lim f(x) - lim g(x)

lim f(x)

if lim g(x) # 0

and lim g(x)

x—a




Sum Law
Difference Law

Constant Multiple Law

Product Law

Quotient Law

y .
f
1
N
74 0 1
g ~
FIGURE 1
Power Law

These five laws can be stated verbally as follows:
1. The limit of a sum is the sum of the limits.
2. The limit of a difference is the difference of the limits.

3. The limit of a constant times a function is the constant times the limit of the
function.

4. The limit of a product is the product of the limits.

5. The limit of a quotient is the quotient of the limits (provided that the limit of the
denominator is not 0).

It is easy to believe that these properties are true. For instance, if f(x) is close to L and
g(x) is close to M, it is reasonable to conclude that f(x) + g(x) is close to L + M. This gives
us an intuitive basis for believing that Law 1 is true. In Section 2.4 we give a precise def-
inition of a limit and use it to prove this law. The proofs of the remaining laws are given
in Appendix F.

EXAMPLE 1 Use the Limit Laws and the graphs of f and g in Figure 1 to evaluate the
following limits, if they exist.

. . ) X
(@) lim [f(x) + 59(2)] (6) Tim [ £(x)g()] (©) lim =
SOLUTION
(a) From the graphs of f and g we see that
lin}2 flx)=1 and lin}2 gx) = —1
Therefore, we have

lin_l2 [f(x) + 5g(x)] = liII_l2 flx) + 1i1’£12 [5g(x)] (by Law 1)
= ‘lin}z flx) +5 lin}2 g(x) (by Law 3)

=1+5-1)=—4
(b) We see that lim,—.; f(x) = 2. But lim,_.; g(x) does not exist because the left and
right limits are different:
linl17 glx) = =2 linll+ gx) = —1

So we can’t use Law 4. The given limit does not exist, since the left limit is not equal to
the right limit.

(c) The graphs show that
lin% flx) =14 and lirr% gx)=0

Because the limit of the denominator is 0, we can’t use Law 5. The given limit does not
exist because the denominator approaches 0 while the numerator approaches a nonzero
number. e

If we use the Product Law repeatedly with g(x) = f(x), we obtain the following law.

6. 1133 [f)]" = [113 f (x)]" where 7 is a positive integer




Root Law

Explore limits like these interactively.
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In applying these six limit laws, we need to use two special limits:

7. limc=c¢ 8. limx=a

xX—a xX—a

These limits are obvious from an intuitive point of view (state them in words or draw
graphs of y = c and y = x), but proofs based on the precise definition are requested in the
exercises for Section 2.4.

If we now put f(x) = x in Law 6 and use Law 8, we get another useful special limit.

9. lim x" =a" where 7 is a positive integer

X—a

A similar limit holds for roots as follows. (For square roots the proof is outlined in Exer-
cise 37 in Section 2.4.)

10. lim ¢/x = V/a where 7 is a positive integer

X—a

(If n is even, we assume that a > 0.)

More generally, we have the following law, which is proved as a consequence of Law 10
in Section 2.5.

1. lim J/f(x) = //lim f(x) where n is a positive integer

[If n is even, we assume that lim f(x) > 0.]

EXAMPLE 2 Evaluate the following limits and justify each step.

. ) Cox 4 2x2 -1
(a) lim (2x* — 3x + 4) (b) lim ————
x5 x—=2 5 — 3x
SOLUTION
(a) lim (2x? — 3x + 4) = lim (2x?) — lim (3x) + lim 4 (by Laws 2 and 1)
x—5 x—5 x—5 x—5
=Zlin§x2—3lin§x+lin;4 (by 3)
= 2(52) —3(5 +4 (by 9, 8, and 7)
=39

(b) We start by using Law 5, but its use is fully justified only at the final stage when we
see that the limits of the numerator and denominator exist and the limit of the denomina-
tor is not 0.



[ NEWTON AND LIMITS

Isaac Newton was born on Christmas Day in
1642, the year of Galileo's death. When he
entered Cambridge University in 1661 Newton
didn't know much mathematics, but he learned
quickly by reading Euclid and Descartes and
by attending the lectures of Isaac Barrow.
Cambridge was closed because of the plague in
1665 and 1666, and Newton returned home to
reflect on what he had learned. Those two years
were amazingly productive for at that time he
made four of his major discoveries: (1) his
representation of functions as sums of infinite
series, including the binomial theorem; (2) his
work on differential and integral calculus; (3) his
laws of mation and law of universal gravitation;
and (4) his prism experiments on the nature of
light and color. Because of a fear of controversy
and criticism, he was reluctant to publish his dis-
coveries and it wasn't until 1687, at the urging of
the astronomer Halley, that Newton published
Principia Mathematica. In this work, the greatest
scientific treatise ever written, Newton set forth
his version of calculus and used it to investigate
mechanics, fluid dynamics, and wave mation,
and to explain the motion of planets and comets.
The beginnings of calculus are found in the
calculations of areas and volumes by ancient
Greek scholars such as Eudoxus and Archimedes.
Although aspects of the idea of a limit are
implicit in their “method of exhaustion,” Eudoxus
and Archimedes never explicitly formulated the
concept of a limit. Likewise, mathematicians
such as Cavalieri, Fermat, and Barrow, the imme-
diate precursors of Newton in the development
of calculus, did not actually use limits. It was
Isaac Newton who was the first to talk explicitly
about limits. He explained that the main idea
behind limits is that quantities “approach nearer
than by any given difference.” Newton stated
that the limit was the basic concept in calculus,
but it was left to later mathematicians like
Cauchy to clarify his ideas about limits.

ot — 1 lim (x* +2x>—1)
lim = x—>—2. (by Law 5)
x>-2 5 —3x 11r{12 (5—3x)

lim x* + 2 lim x®> — lim 1

x—>—2 x—>—2 x—>—2
= by 1, 2, and 3
lim 5 — 3 lim x by
x—>-2 x—>—2
(—2)° + 2(—2) — 1
= by 9, 8, and 7
5-3(-2) (b5 Band D
__1
T -

NOTE = If we let f(x) = 2x* — 3x + 4, then £(5) = 39. In other words, we would have
gotten the correct answer in Example 2(a) by substituting 5 for x. Similarly, direct substi-
tution provides the correct answer in part (b). The functions in Example 2 are a polyno-
mial and a rational function, respectively, and similar use of the Limit Laws proves that
direct substitution always works for such functions (see Exercises 53 and 54). We state this
fact as follows.

Direct Substitution Property If f is a polynomial or a rational function and a is in the
domain of f, then

lim £(x) = f(a)

Functions with the Direct Substitution Property are called continuous at a and will be
studied in Section 2.5. However, not all limits can be evaluated by direct substitution, as
the following examples show.

2

EXAMPLE 3 Find lim ~——

=1 x — 1
SOLUTION Let f(x) = (x* — 1)/(x — 1). We can’t find the limit by substituting x = 1
because f(1) isn’t defined. Nor can we apply the Quotient Law because the limit of the
denominator is 0. Instead, we need to do some preliminary algebra. We factor the numer-
ator as a difference of squares:

xr—1

x—1

x=—1Dkx+1
x—1

The numerator and denominator have a common factor of x — 1. When we take the limit
as x approaches 1, we have x # 1 and so x — 1 ¥ 0. Therefore, we can cancel the com-
mon factor and compute the limit as follows:

Coxt—1 = Dx+1)

lim = lim

x—=1 X — x—1 _x—l
=lirr11(x+1)
=1+1=2

The limit in this example arose in Section 2.1 when we were trying to find the tangent to
the parabola y = x” at the point (1, 1).



FIGURE 2

The graphs of the functions f (from
Example 3) and ¢ (from Example 4)

Explore a limit like this one interactively.

)
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NOTE © In Example 3 we were able to compute the limit by replacing the given func-
tion f(x) = (x* — 1)/(x — 1) by a simpler function, g(x) = x + 1, with the same limit.
This is valid because f(x) = g(x) except when x = 1, and in computing a limit as x
approaches 1 we don’t consider what happens when x is actually equal to 1. In general,
if f(x) = g(x) when x # q, then

lim f(x) = lim g(x)
EXAMPLE 4 Find lim g(x) where
x—1

x+1 ifx#1
glx) = e
T if x=1

SOLUTION Here g is defined at x = 1 and g(1) = 77, but the value of a limit as x
approaches 1 does not depend on the value of the function at 1. Since g(x) = x + 1 for
x # 1, we have

lim g(x) = lim (x + 1) =2

Note that the values of the functions in Examples 3 and 4 are identical except when
x = 1 (see Figure 2) and so they have the same limit as x approaches 1.

B+h?*—9

EXAMPLE 5 Evaluate lim
h—0 h

SOLUTION If we define
B+ hn*-9

F(h) = W

then, as in Example 3, we can’t compute lim,_.o F(h) by letting 2 = 0 since F(0) is
undefined. But if we simplify F(/) algebraically, we find that

O+ 6h+h*)—9 6h+h’
h h

=6+ h

F(h) =

(Recall that we consider only 4 # 0 when letting & approach 0.) Thus

34+ h?—9
1m£——l——=nmm+m=6
h—0 h h—0
/2 + 9 —
EXAMPLE 6 Find lin(} #

SOLUTION We can’t apply the Quotient Law immediately, since the limit of the denomina-
tor is 0. Here the preliminary algebra consists of rationalizing the numerator:

L 2P+ 9 -3 NP9 =3 JiP+9+ 3

hm—2=hm 5 N

1—0 t 1—0 t \/t2+9+3
*+9) -9 . ?

i r o3 M (J2+9 + 3)
1 1 1 |

= 1i = = =
V913 Jim@+9)+3 3+3 6

This calculation confirms the guess that we made in Example 2 in Section 2.2. ]



[l The result of Example 7 looks plausible
from Figure 3.

y
y=1x|
0 X
FIGURE 3
y
_ Il
Y= 1
0
-1
FIGURE 4

[l It is shown in Example 3 in
Section 2.4 that lim, - v/x = 0.

Some limits are best calculated by first finding the left- and right-hand limits. The fol-
lowing theorem is a reminder of what we discovered in Section 2.2. It says that a two-sided
limit exists if and only if both of the one-sided limits exist and are equal.

[1] Theorem lim f(x) = L if and only if lim f(x) = L = lim f (x)

When computing one-sided limits, we use the fact that the Limit Laws also hold for
one-sided limits.

EXAMPLE 7 Show that lim |x| = 0.

SOLUTION Recall that

| |_ X if x=0
* —x ifx<0

Since | x| = x for x > 0, we have

lim |x| = lim x =0
x—0*t x—0*
For x < 0 we have |x| = —x and so

lim |x| = lim (—x) =0
x—07 x—07

Therefore, by Theorem 1,

lim [x| =0
x—0 I
X
EXAMPLE 8 Prove that lin(l) u does not exist.
x— X
X X
SOLUTION lim u =lim—=1lml1=1
x—0t X x—0* x x—0*
X —Xx
lim u= lim — = lim (—1) = —1
x—0" X x—0" X x—0"

Since the right- and left-hand limits are different, it follows from Theorem 1 that
lim, o | x |/x does not exist. The graph of the function f(x) = |x|/x is shown in
Figure 4 and supports the one-sided limits that we found. ]

EXAMPLE 9 If

f(x)={‘/ —4 ifx>4

X
8 —2x ifx<4

determine whether lim,_, f(x) exists.

SOLUTION Since f(x) = v/x — 4 for x > 4, we have

lir£1+f(x) = lil?+ Vx—4=4—-4=0



FIGURE 5

II1 Other notations for [x] are [x] and Lx].

y
4 + —o
3 —o
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—_—t t t t t
O 1 2 3 4 5 %
*—

—o

FIGURE 6

Greatest integer function

y
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g
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|
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FIGURE 7

Since f(x) = 8 — 2x for x < 4, we have

lim f(x) = lim (8 — 2x) =8 —2-4=0

The right- and left-hand limits are equal. Thus, the limit exists and
lin}‘ fx)=0
The graph of f is shown in Figure 5. -

EXAMPLE 10 The greatest integer function is defined by [x]] = the largest integer
that is less than or equal to x. (For instance, [4] = 4, [4.8] = 4, [«#] = 3, Hﬁ]] =1,
[[—%]] = — l.) Show that lim, .3 [x] does not exist.

SOLUTION The graph of the greatest integer function is shown in Figure 6. Since [x] = 3
for 3 < x < 4, we have

lim [x] = lim 3 =3

x—3F
Since [[x] = 2 for 2 < x < 3, we have
lirgli [x] = liIgZ =2

Because these one-sided limits are not equal, lim,_.; [x[] does not exist by Theorem 1.

The next two theorems give two additional properties of limits. Their proofs can be
found in Appendix F.

[2] Theorem If f(x) < g(x) when x is near a (except possibly at a) and the limits
of f and g both exist as x approaches a, then

lim f(x) < lim g(x)

[3] The Squeeze Theorem If f(x) < g(x) < h(x) when x is near a (except possibly
at a) and

lim f(x) = lim h(x) = L

then lim g(x) = L

The Squeeze Theorem, which is sometimes called the Sandwich Theorem or the
Pinching Theorem, is illustrated by Figure 7. It says that if g(x) is squeezed between f(x)
and A(x) near a, and if f and & have the same limit L at a, then g is forced to have the same
limit L at a.



1
EXAMPLE 11 Show that lirr(l) x?sin— = 0.
xX—> X

SOLUTION First note that we cannot use

. 2 . 1 . 2 . . 1
lim x~sin— = lim x~ - lim sin —
x—0 X x—0 x—0 X

because lim, . sin(1/x) does not exist (see Example 4 in Section 2.2). However, since

we have, as illustrated by Figure 8,

.1
o o y=x2sm;
Watch an animation of a similar limit.
. Resources / Module 2 [\ o
m / Basics of Limits

/ Sound of a Limit that Exists

FIGURE 8

‘We know that

limx*> =0 and lim (—x?) =0

x—0 x—0

Taking f(x) = —x?, g(x) = x?sin(1/x), and h(x) = x” in the Squeeze Theorem, we

obtain
lim x>sin— =0
x—0 X —
2.3 Exercises
1. Given that (© lim VA0 () lim 1
lim /()= =3 limg(x)=0 limh(x)=8 x=a x=a f(x)

find the limits that exist. If the limit does not exist, explain (e) lim f (f) lim M

why. =a h(x) w—a f(x)

(@) lim [£(x) + h(x)] (b) lim [ £()]? (@ tim L (hy tim —2L)

g0 o hx) = ()



2. The graphs of f and g are given. Use them to evaluate each

3-9 i Evaluate the limit and justify each step by indicating the

limit, if it exists. If the limit does not exist, explain why.

y
y=flx) 1?
| 1

il

y=9(x)

0 1 X

\

@ lim [£(x) + ()]

(© lim [£()g()]

(e) lim x’f (x)

appropriate Limit Law(s).

3. lin}2 Gx*+2x*—x+1)

5. lirr% =4 +5x—1)

7.

9.

o

i 1+ 3x 3
XIE} 1+ 4x* + 3x*

lim /16 — x?

x—4-

(®) Tim [£() + (]

im L
® 1 g

(f) 1iir} V3t f(x)

) 2x2 + 1
4. lim——
=2 x"+ 6x — 4

6. liryl (# + 13t + 3y

8. lim Ju*+ 3u+6

u—>-2

o o o

10. (a) What is wrong with the following equation?

+x—-6
x—2

=x+3

(b) In view of part (a), explain why the equation

lim

is correct.

>+x—-6

x—2 X —

= lin% (x + 3)

11=-30 1 Evaluate the limit, if it exists.

11.

13.

15.

17.

19.

X2+ x—6
lim ———

x—2 X — 2

o xr—x+6
lim ——
x—2 x—2

) > =9
lim —5————
—-3 2t + Tt + 3
4+ h?—16

lim
h—0

(1+h*—-1

lim
h—0

P+ 5x+4
12. lim — -~
x——4 x°+ 3x — 4
2
-4
4. lim————
x—4 x°—3x — 4
x> — 4x
16. lim —————
xlrzll x2—3x—4
3
-1
18. lim -
x—1 x° — 1
2+ h)?—38
20 1im 2+ A"~ 8
h—0 h

21.

23.

25.

27.

29.

4 31.

1 32.

33.

4 34.

35.
36.

37.

38.

9 —1t oI+t h—1

E—— i
o +2-=-3 o oxt—16
lim —— 24. lim
=7 x =7 2 x — 2
1 1
s L
lim 26. lim | — — —
x——4 4+ x =0 \ 1 -+t
-8l +h) =37
Jim 22— 8L 2. Jim O =3
=9 \Jx — 3 h—0 h

1 1
lim| —F/— — — 30. lim—+
zgrr}<z\/1+z t> xlg}l—\/}
(a) Estimate the value of

X
lim —F—————-
A0 VT + 3x — 1
by graphing the function f(x) = x/(v/1 + 3x — 1).
(b) Make a table of values of f(x) for x close to 0 and guess
the value of the limit.
(c) Use the Limit Laws to prove that your guess is correct.

(a) Use a graph of

f@) = 7@ =

to estimate the value of lim,_,, f(x) to two decimal places.
(b) Use a table of values of f(x) to estimate the limit to four
decimal places.
(c) Use the Limit Laws to find the exact value of the limit.

Use the Squeeze Theorem to show that

lim,_, x? cos 207x = 0. Tllustrate by graphing the functions
f(x) = —x% g(x) = x? cos 207x, and h(x) = x? on the same
screen.

Use the Squeeze Theorem to show that

. LT
lim v/x? + x%sin— =0
X

x—0

Illustrate by graphing the functions f, g, and / (in the notation
of the Squeeze Theorem) on the same screen.

If 1 < f(x) < x> + 2x + 2 for all x, find lim__, _, f(x).

If 3x < f(x) < x* + 2 for 0 < x < 2, evaluate lim,__, f(x).
. 4 2

Prove that hm0 x*cos— = 0.
x—> X

Prove that li13)1+ Vx s = (.

39-44 1 Find the limit, if it exists. If the limit does not exist,
explain why.

39.

lim |x + 4| 40. lim_



45.

46.

47.

48.

49.

50.

2 _
82, tim 2%
=15 | 2x = 3|

The signum (or sign) function, denoted by sgn, is defined by
-1 ifx<0
sgnx = 0 ifx=0
I ifx>0

(a) Sketch the graph of this function.
(b) Find each of the following limits or explain why it does not
exist.
1) lir{)l} sgn x (i1) 1irgl sgn x
(iii) hn& sgn x (iv) hII(l) |sgn x|
Let

4 —x* ifxs<2

ﬂﬂ_{x—l if x> 2
(a) Find lim, .- f(x) and lim, .o+ f(x).
(b) Does lim ,_., f(x) exist?
(c) Sketch the graph of f.

2

-1
Let F(x) = N
lx = 1]

(a) Find

@) hrﬂ F(x) (ii) ,liIP, F(x)
(b) Does lim,_,, F(x) exist?
(c) Sketch the graph of F.

Let
X if x <0
h(x) =< x? fo<x<2
8—x ifx>2

(a) Evaluate each of the following limits, if it exists.
@) lir})l+ h(x) (i1) hn% h(x) (iii) lin} h(x)
(iv) lirgli h(x) (v) ’lirg h(x) (vi) lin% h(x)
(b) Sketch the graph of A.

(a) If the symbol [ ] denotes the greatest integer function
defined in Example 10, evaluate

(i) lim [x] (i) Tim [x] (i) Tim [x]

(b) If n is an integer, evaluate
(i) lim [x] (i) lim [x]
(c) For what values of a does lim

Let f(x) = x — [x].
(a) Sketch the graph of f.

[[x] exist?

x—a

51,

52.

53.
54.

55.

56.

57.

58.

59.

60.

(b) If n is an integer, evaluate
@) lim f(x) (i) lim f(x)
(¢) For what values of a does lim, ., f(x) exist?

If f(x) = [x] + [—x], show that lim__,, f(x) exists but is not
equal to f(2).

In the theory of relativity, the Lorentz contraction formula
L=LyJ/1— v¥c?

expresses the length L of an object as a function of its velocity
v with respect to an observer, where L is the length of the
object at rest and ¢ is the speed of light. Find lim,_, - L and

interpret the result. Why is a left-hand limit necessary?
If p is a polynomial, show that lim _,, p(x) = p(a).

If r is a rational function, use Exercise 53 to show that
lim,_,, r(x) = r(a) for every number ¢ in the domain of r.

If

if x is rational

fx) = {

0 if xisirrational
prove that lim,_., f(x) = 0.

Show by means of an example that lim,_,, [ f(x) + g(x)] may
exist even though neither lim__, , f(x) nor lim,__, , g(x) exists.

x—a

Show by means of an example that lim__, [ f(x)g(x)] may exist
even though neither lim_,, f(x) nor lim,_, , g(x) exists.

Evaluate lim Yo—* 2
valuate 1im .
=243 —x—1

Is there a number a such that

3x*+ax+a+3

lim 3
x“+x—2

x—>=2

exists? If so, find the value of a and the value of the limit.

The figure shows a fixed circle C, with equation

(x — 1)> + y* = 1 and a shrinking circle C, with radius » and
center the origin. P is the point (0, r), Q is the upper point of
intersection of the two circles, and R is the point of intersection
of the line PQ and the x-axis. What happens to R as C, shrinks,
that is, as r — 0*?

y

P 0

) O?V\ -
o




2.4 The Precise Definition of a Limit

[I1l It is traditional to use the Greek letter &
(delta) in this situation.

The intuitive definition of a limit given in Section 2.2 is inadequate for some purposes
because such phrases as “x is close to 2” and “f(x) gets closer and closer to L” are vague.
In order to be able to prove conclusively that

S .
lim x° + ~o" ) = 00001 or  lim—r =1
20 10,000

we must make the definition of a limit precise.
To motivate the precise definition of a limit, let’s consider the function

) 2x — 1 if x#3
x:
6 if x=3

Intuitively, it is clear that when x is close to 3 but x # 3, then f(x) is close to 5, and so
lim,_; f(x) = 5.

To obtain more detailed information about how f(x) varies when x is close to 3, we ask
the following question:

How close to 3 does x have to be so that f(x) differs from 5 by less than 0.1?

The distance from x to 3 is |x — 3| and the distance from f(x) to 5 is | f(x) — 5
problem is to find a number & such that

, SO our

|f(x) =5/ <01 if [x—3]<8& butx#3

If |[x — 3| > 0, then x # 3, so an equivalent formulation of our problem is to find a num-
ber & such that

If@) —5]<01 if O0<|x-3|<&
Notice that if 0 < |x — 3| < (0.1)/2 = 0.05, then
|f(x) =5|=|2x—1)—5|=]2x—6|=2|x—3]|<0.1
that is, |f(x) = 5] <01 if 0<]|x—3]<005

Thus, an answer to the problem is given by 6 = 0.05; that is, if x is within a distance of
0.05 from 3, then f(x) will be within a distance of 0.1 from 5.

If we change the number 0.1 in our problem to the smaller number 0.01, then by using
the same method we find that f(x) will differ from 5 by less than 0.01 provided that x dif-
fers from 3 by less than (0.01)/2 = 0.005:

| f(x) — 5] <0.01 if 0 <|x—3|<0.005
Similarly,

| f(x) =5/ <0001 if 0<|x—3|<0.0005

The numbers 0.1, 0.01, and 0.001 that we have considered are error tolerances that we
might allow. For 5 to be the precise limit of f(x) as x approaches 3, we must not only be
able to bring the difference between f(x) and 5 below each of these three numbers; we



f(x) 5+¢
is in { 5
here | 5_ .
0 / 3
3-8 3496
when x is in here
(x#3)
FIGURE 1

must be able to bring it below any positive number. And, by the same reasoning, we can!
If we write & (the Greek letter epsilon) for an arbitrary positive number, then we find as
before that

] If() —5|<e if O<|x—3|<8=§
This is a precise way of saying that f(x) is close to 5 when x is close to 3 because (1) says
that we can make the values of f(x) within an arbitrary distance & from 5 by taking the val-
ues of x within a distance /2 from 3 (but x # 3).

Note that (1) can be rewritten as

5-e<fx)<5+e whenever 3-6<x<3+56 (x #3)
and this is illustrated in Figure 1. By taking the values of x (¥ 3) to lie in the interval
(3 — 8,3 + 68) we can make the values of f(x) lie in the interval (5 — &, 5 + &).

Using (1) as a model, we give a precise definition of a limit.

[2] Definition Let f be a function defined on some open interval that contains the
number a, except possibly at a itself. Then we say that the limit of f(x) as x
approaches a is L, and we write

lim f(x) = L
if for every number € > 0 there is a number 6 > 0 such that
whenever

|f(x) = L|<e 0<|x—a|<$é

Another way of writing the last line of this definition is

if 0<|x—a|<d then |f(x) — L] <e

Since | x — a is the distance from x to a and | f(x) — L] is the distance from f(x) to L,
and since & can be arbitrarily small, the definition of a limit can be expressed in words
as follows:

lim,_., f(x) = L means that the distance between f(x) and L can be made arbitrarily small
by taking the distance from x to a sufficiently small (but not 0).

Alternatively,

lim,_., f(x) = L means that the values of f(x) can be made as close as we please to L
by taking x close enough to a (but not equal to a).

We can also reformulate Definition 2 in terms of intervals by observing that the in-
equality |x — a| < & is equivalent to —8 < x — a < §, which in turn can be written
asa—8<x<a+ 4 Also 0<|x—a| is true if and only if x — a # 0, that is,
x # a. Similarly, the inequality | f(x) — L| < & is equivalent to the pair of inequalities
L — & < f(x) < L + e. Therefore, in terms of intervals, Definition 2 can be stated
as follows:

lim,_., f(x) = L means that for every ¢ > 0 (no matter how small ¢ is) we can find
8 > 0 such that if x lies in the open interval (a — &, a + ) and x # a, then f(x) lies in
the open interval (L — &, L + g).



We interpret this statement geometrically by representing a function by an arrow diagram
as in Figure 2, where f maps a subset of R onto another subset of R.

FIGURE 2 X a

The definition of limit says that if any small interval (L — &, L + &) is given around L,
then we can find an interval (¢ — 8, @ + 8) around a such that f maps all the points in
(@ — 8,a + &) (except possibly a) into the interval (L — &, L + &). (See Figure 3.)

FIGURE 3 a—56 a4 g+6 L—-¢ L L+eg

Another geometric interpretation of limits can be given in terms of the graph of a func-
tion. If € > 0 is given, then we draw the horizontal lines y = L + ¢ and y = L — ¢ and
the graph of f (see Figure 4). If lim,_, f(x) = L, then we can find a number 6 > 0 such
that if we restrict x to lie in the interval (@ — 8, a + 8) and take x # a, then the curve
y = f(x) lies between the lines y = L — eand y = L + &. (See Figure 5.) You can see that
if such a 6 has been found, then any smaller § will also work.

It is important to realize that the process illustrated in Figures 4 and 5 must work for
every positive number & no matter how small it is chosen. Figure 6 shows that if a smaller
e is chosen, then a smaller § may be required.

y y y
= f(x
/y fx) Lte
a y=L+s / i ] y=L+s / N y=L+e
7 e — A (77 1 e 7 R 7
h
y=L-¢ e y=L—¢ / y=L—¢
L—¢
0 p X 0 /a\ X 0 /‘a\ X
a—2~0 a+ 0_5 a+5
when x is in here
(x# a)
FIGURE 4 FIGURE 5 FIGURE 6

EXAMPLE 1 Use a graph to find a number 0 such that
[(x =5x+6) —2| <02  whenever |x—1|<3$§

In other words, find a number 6 that corresponds to € = 0.2 in the definition of a limit for
the function f(x) = x* — 5x + 6 witha = 1 and L = 2.
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FIGURE 7

2.3

0.8 1.2
1.7

FIGURE 8

SOLUTION A graph of f is shown in Figure 7; we are interested in the region near the point
(1, 2). Notice that we can rewrite the inequality

|(x* =5x+6)—2| <02
as 18<x*—5x+6<22

So we need to determine the values of x for which the curve y = x* — 5x + 6 lies
between the horizontal lines y = 1.8 and y = 2.2. Therefore, we graph the curves
y=2x>—5x + 6,y = 1.8, and y = 2.2 near the point (1, 2) in Figure 8. Then we use
the cursor to estimate that the x-coordinate of the point of intersection of the line

y = 2.2 and the curve y = x* — 5x + 6 is about 0.911. Similarly, y = x> — 5x + 6
intersects the line y = 1.8 when x = 1.124. So, rounding to be safe, we can say that

18<x*—5x+6<22 whenever 092 <x<1.12

This interval (0.92, 1.12) is not symmetric about x = 1. The distance from x = 1 to the
left endpoint is 1 — 0.92 = 0.08 and the distance to the right endpoint is 0.12. We can
choose & to be the smaller of these numbers, that is, 6 = 0.08. Then we can rewrite our
inequalities in terms of distances as follows:

|(x* =5x+6) —2| <02  whenever |x— 1| <0.08

This just says that by keeping x within 0.08 of 1, we are able to keep f(x) within 0.2
of 2.

Although we chose 6 = 0.08, any smaller positive value of 6 would also have
worked.

The graphical procedure in Example 1 gives an illustration of the definition for ¢ = 0.2,
but it does not prove that the limit is equal to 2. A proof has to provide a & for every e.

In proving limit statements it may be helpful to think of the definition of limit as a chal-
lenge. First it challenges you with a number e. Then you must be able to produce a suit-
able 0. You have to be able to do this for every & > 0, not just a particular e.

Imagine a contest between two people, A and B, and imagine yourself to be B. Person
A stipulates that the fixed number L should be approximated by the values of f(x) to within
a degree of accuracy ¢ (say, 0.01). Person B then responds by finding a number 6 such that
| f(x) — L| < & whenever 0 < |x — a| < 8. Then A may become more exacting and
challenge B with a smaller value of & (say, 0.0001). Again B has to respond by finding a
corresponding 6. Usually the smaller the value of &, the smaller the corresponding value
of & must be. If B always wins, no matter how small A makes &, then lim,_., f(x) = L.

EXAMPLE 2 Prove that 1i1r31 4x —5)=1.
SOLUTION
1. Preliminary analysis of the problem (guessing a value for ). Let e be a given
positive number. We want to find a number 6 such that
[(4x —5) —7| <e  whenever 0<|x—3|<3é

But [(4x — 5) — 7| = |4x — 12| = |4(x — 3)| = 4|x — 3|. Therefore, we want

4x—3|<e  whenever 0<|x—3|<3$



y

T+e y=4x_5
/] —

T—e¢

FIGURE 9

that is, |x—3|<§ whenever 0 <|x—3|<$

This suggests that we should choose 6 = g/4.
2. Proof (showing that this 6 works). Given & > 0, choose & = g/4. If
0 < |x — 3| < 8, then

€

|(4x—5)—7|=|4x—12|=4|x—3|<48=4<4>=8

Thus
[(4x —5) — 7| <e  whenever 0<|x—3|<3é
Therefore, by the definition of a limit,

lirr% 4x =35 =17
This example is illustrated by Figure 9. ]

Note that in the solution of Example 2 there were two stages—guessing and proving.
We made a preliminary analysis that enabled us to guess a value for 6. But then in the sec-
ond stage we had to go back and prove in a careful, logical fashion that we had made a
correct guess. This procedure is typical of much of mathematics. Sometimes it is neces-
sary to first make an intelligent guess about the answer to a problem and then prove that
the guess is correct.

The intuitive definitions of one-sided limits that were given in Section 2.2 can be pre-
cisely reformulated as follows.

[3] Definition of Left-Hand Limit

lim f(x) = L

if for every number &€ > 0 there is a number 6 > 0 such that

|f(x) = L|<e whenever a—86<x<ua

[4] Definition of Right-Hand Limit
lim f (x) =L
if for every number & > 0 there is a number 6 > 0 such that

|f(x) —L|<e whenever a<x<a+$é

Notice that Definition 3 is the same as Definition 2 except that x is restricted to lie in
the left half (a — 6, a) of the interval (@ — 8, a + 6). In Definition 4, x is restricted to lie
in the right half (a, a + 8) of the interval (a — 6, a + 9).

EXAMPLE 3 Use Definition 4 to prove that liron+ Jx=o.



[l CAUCHY AND LIMITS

After the invention of calculus in the 17th cen-
tury, there followed a period of free development
of the subject in the 18th century. Mathemati-
cians like the Bernoulli brothers and Euler were
eager to exploit the power of calculus and boldly
explored the consequences of this new and
wonderful mathematical theory without worrying
too much about whether their proofs were com-
pletely correct.

The 19th century, by contrast, was the Age of
Rigor in mathematics. There was a movement to
go back to the foundations of the subject—to
provide careful definitions and rigorous proofs.
At the forefront of this movement was the
French mathematician Augustin-Louis Cauchy
(1789-1857), who started out as a military engi-
neer before becoming a mathematics professor
in Paris. Cauchy took Newton's idea of a limit,
which was kept alive in the 18th century by the
French mathematician Jean d'Alembert, and
made it mare precise. His definition of a limit
reads as follows: “When the successive values
attributed to a variable approach indefinitely a
fixed value so as to end by differing from it by
as little as one wishes, this last is called the
limit of all the others.” But when Cauchy used
this definition in examples and proofs, he often
employed delta-epsilon inequalities similar to
the ones in this section. A typical Cauchy proof
starts with: “Designate by & and & two very
small numbers; . . .” He used & because of the
correspondence between epsilon and the French
word erreur. Later, the German mathematician
Karl Weierstrass (1815-1897) stated the defini-
tion of a limit exactly as in our Definition 2.

SOLUTION
1. Guessing a value for 6. Let € be a given positive number. Here ¢ = 0 and L = 0,
so we want to find a number 6 such that

[Vx—0|<e
\/;c<s

or, squaring both sides of the inequality v/x < &, we get

whenever 0<x<éb

that is, whenever 0<x<$é

x < ¢’ whenever 0<x<$é

This suggests that we should choose & = &2,
2. Showing that this 8 works. Given & > 0, let § = &> If 0 < x < §, then

i< B=e=s
S0 [Vx—0]<e
According to Definition 4, this shows that lim ¢ \/)_c =0.

EXAMPLE 4 Prove that lin% x?=09.

SOLUTION
1. Guessing a value for o. Let € > 0 be given. We have to find a number 6 > 0
such that

|x* = 9| <e  whenever 0<|x—3|<3$§
To connect |x* — 9| with |x — 3| we write |x* — 9| = | (x + 3)(x — 3)|. Then we
want
[x+3||]x—3|<e  whenever 0<|x—3|<3é

Notice that if we can find a positive constant C such that |x + 3| < C, then
|x +3]|x — 3| <Clx— 3]

and we can make C|x — 3| < e by taking |x — 3| < &/C = 4.

We can find such a number C if we restrict x to lie in some interval centered at 3.
In fact, since we are interested only in values of x that are close to 3, it is reasonable
to assume that x is within a distance 1 from 3, that is, |x — 3 | < 1.Then2 < x < 4,
$05 < x + 3 < 7. Thus, we have |x + 3| < 7, and so C = 7 is a suitable choice for
the constant.

But now there are two restrictions on |x — 3

, namely

|x—3|<£=E
c 7

|x -3 <1 and

To make sure that both of these inequalities are satisfied, we take & to be the smaller of
the two numbers 1 and &/7. The notation for this is 6 = min{1, &/7}.

2. Showing that this & works. Given & > 0, let § = min{l, &/7}. If 0 < |x — 3| < §,
then |[x — 3| <1 = 2<x<4 = |x+ 3| <7 (asin part 1). We also have
|x — 3] <&/7,s0

2 _g| = _ LB
|x* = 9| =|x+3]|x—3| <7 S =

This shows that lim,—; x> = 9.



[l Triangle Inequality:
la+b|<|a|+|b]

(See Appendix A.)

As Example 4 shows, it is not always easy to prove that limit statements are true
using the &, 6 definition. In fact, if we had been given a more complicated function such
as f(x) = (6x* — 8x + 9)/(2x* — 1), a proof would require a great deal of ingenuity.
Fortunately this is unnecessary because the Limit Laws stated in Section 2.3 can be proved
using Definition 2, and then the limits of complicated functions can be found rigorously
from the Limit Laws without resorting to the definition directly.

For instance, we prove the Sum Law: If lim,_, f(x) = L and lim,_., g(x) = M both
exist, then

lim [f(x) + g(x)]=L+ M
The remaining laws are proved in the exercises and in Appendix F.
Proof of the Sum Law Let & > 0 be given. We must find 6 > 0 such that
| f(x) +gx) —(L+M)|<e whenever 0<|x—a|<$é
Using the Triangle Inequality we can write

5] [f0) +g(x) = (L + M)[=[(f(0) = L) + (9(x) = M)
< [f0) = L[ + [g(x) = M|

We make |f(x) + g(x) — (L + M)| less than & by making each of the terms | f(x) — L|
and | g(x) — M| less than &/2.
Since /2 > 0 and lim, ., f(x) = L, there exists a number 8, > 0 such that

|f(x)—L|<§ whenever 0 <|x —a| < §
Similarly, since lim,_., g(x) = M, there exists a number §, > 0 such that
\g(x)—M\<§ whenever 0<|x—a|<3é,

Let 6 = min{8,, 5,}. Notice that

if 0<|x—a|<é8 then 0<|x—a|<8 and 0<|x—al<$é
€ &
and so | f(x) — L] <5 and  |g(x) — M| <3

Therefore, by (5),

[f(0) +g(x) = (L + M)| < |f(x) = L] + [g(x) = M|

< + =&

.8
2 2
To summarize,

| f(x) +gx) —(L+M)|<e whenever 0<|x—a|<$é
Thus, by the definition of a limit,

lim [f(0) +g(x)] =L + M
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|||| [nfinite Limits

Infinite limits can also be defined in a precise way. The following is a precise version of
Definition 4 in Section 2.2.

[6] Definition Let f be a function defined on some open interval that contains the
number a, except possibly at a itself. Then

lim f(x) = oo
means that for every positive number M there is a positive number 6 such that

f(x) >M  whenever 0<|x—a|<$é

This says that the values of f(x) can be made arbitrarily large (larger than any given
number M) by taking x close enough to a (within a distance 8§, where & depends on M, but
with x # a). A geometric illustration is shown in Figure 10.

Given any horizontal line y = M, we can find a number 6 > 0 such that if we restrict
x to lie in the interval (@ — 8, a + 8) but x # a, then the curve y = f(x) lies above the line
y = M. You can see that if a larger M is chosen, then a smaller 6 may be required.

1
EXAMPLE 5 Use Definition 6 to prove that lirr(l) — = .
x—0 X

SOLUTION
1. Guessing a value for 6. Given M > 0, we want to find 6 > 0 such that

—>M whenever 0 <|x—0]|<$§
X
. L1
that is, X <H whenever 0<|x|<$
x| < — h 0<|x| <5
or x| < — whenever X
JM

This suggests that we should take & = 1//M.

2. Showing that this 8 works. If M > 0 is given, let 8 = 1/y/M.If 0 < |x — 0| < 8,
then

x| <8 = x¥*<§&
1

1
M
1
Thus —>M  whenever 0<|x—0|<3$
X
Therefore, by Definition 6,
o1
lim — =

x—0 X



Y Similarly, the following is a precise version of Definition 5 in Section 2.2. It is illus-
a—6 a+é trated by Figure 11.
/—\ “/ Definition Let f be a function defined on some open interval that contains the
0 \ / . number a, except possibly at a itself. Then
N U tim fla) = e

means that for every negative number N there is a positive number 6 such that
FIGURE 11

f(x) <N  whenever 0<|x—a|l<3é

2.4 Exercises

1. How close to 2 do we have to take x so that 5x + 3 is within a y
distance of (a) 0.1 and (b) 0.01 from 13? )4 y= \/;
2. How close to 5 do we have to take x so that 6x — 1 is within a 2
distance of (a) 0.01, (b) 0.001, and (c) 0.0001 from 29? 1.6 :
3. Use the given graph of f(x) = 1/x to find a number & such that !
X 0 9 A 9 X
‘ —05/ <02  whenever |x—2]<3$§
X
6. Use the given graph of f(x) = x? to find a number & such that
Y 1
1 |x* = 1| <3  whenever |x—1][<3$§
It Y=
0.7 Y
051====~ m 1.5 y=x"
0.3 :
| It==—=—
f |
0 0 2 o X
£l 3 0.5 :
|
4. Use the given graph of f to find a number & such that 0 9 R X
[f(x) = 3] <06 whenever O<[xr=5[<?d g 7. Usea graph to find a number & such that
y |V4x+1—-3] <05  whenever |x—2]<3$§
3.6
1 S i 8. Use a graph to find a number 8 such that
2.4 |
| . 1 T
| | sin —§| <0.1 whenever x—g <d
|
|
: /A9 9. For the limit
0 4 557 <

lim @4 +x —3x%) =2
5. Use the given graph of f(x) = v/x to find a number & such that !

illustrate Definition 2 by finding values of & that correspond to
|Vx—2] <04  whenever |x—4|<3$ e=1lande =0.1.



4 10.

A

A4 12

13.

4.

For the limit

et —1
lim =1
x—0 X

illustrate Definition 2 by finding values of & that correspond to
e=05and e =0.1.

Use a graph to find a number & such that

X
> 100

_— -1 <
1 D1 O<[r-1]<?

whenever

For the limit

lin(l) cot’x = o
illustrate Definition 6 by finding values of d that correspond to
(a) M = 100 and (b) M = 1000.

A machinist is required to manufacture a circular metal disk

with area 1000 cm?.

(a) What radius produces such a disk?

(b) If the machinist is allowed an error tolerance of *5 cm? in
the area of the disk, how close to the ideal radius in part (a)
must the machinist control the radius?

(¢) In terms of the &, 8 definition of lim,_., f(x) = L, what
is x? What is f(x)? What is a? What is L? What value of &
is given? What is the corresponding value of 6?

A crystal growth furnace is used in research to determine how
best to manufacture crystals used in electronic components for
the space shuttle. For proper growth of the crystal, the tempera-
ture must be controlled accurately by adjusting the input power.
Suppose the relationship is given by

T(w) = 0.1w? + 2.155w + 20

where T is the temperature in degrees Celsius and w is the

power input in watts.

(a) How much power is needed to maintain the temperature
at 200°C?

(b) If the temperature is allowed to vary from 200°C by up to
+1°C, what range of wattage is allowed for the input
power?

(¢c) In terms of the &, § definition of lim,_., f(x) = L, what
is x? What is f(x)? What is a? What is L? What value of &
is given? What is the corresponding value of 6?

15-18 1 Prove the statement using the &, 8 definition of limit and
illustrate with a diagram like Figure 9.

15.
17.

o

lim (2x + 3) = 5 6. lim (fx+3)=2

lim (1 = 4x) = 13 18. lim (7 — 3x) = =5

o o o o

19-32 1 Prove the statement using the &, & definition of limit.

19.

LX 3
lim— = —
x—3 5 5

X 9
20. lim|— + 3] =—
3337(4 ) 2

21.

23.

25.

27.

29.

31.

33.

34.

(As] 35.

36.

37.

38.

39.

40.

41.

42.

3 Phx— 12
lim (4 - 2] =7 22 lim>— =7
x—-5 5 x—=3 x—3
lim x = a 4. limc=c
lin}) x*=0 26. liII(l) x*=0
1in(1)|x|=0 28. 1irg{«4/9fx=0
lirg(x2—4x+5)=l 30. 1irr31(x2+x—4)=8
lin_12 (x*=1)=3 32. lin%x3 =38
Verify that another possible choice of & for showing that

lim,_; x* = 9 in Example 4 is § = min{2, &/8}.

Verify, by a geometric argument, that the largest possible
choice of & for showing that lim, ;x> =9is § = /9 + & — 3.

(a) For the limit lim, ., (x* + x + 1) = 3, use a graph to find a
value of & that corresponds to ¢ = 0.4.

(b) By using a computer algebra system to solve the cubic
equation x* + x + 1 = 3 + &, find the largest possible
value of & that works for any given £ > 0.

(c) Put ¢ = 0.4 in your answer to part (b) and compare with
your answer to part (a).

1 1
Prove that lim — = —.
x—2 X 2

Prove that lim /x = Va if a > 0.

x—a

|[x — al

[Hint: Use | x — va|= M}

If H is the Heaviside function defined in Example 6 in Sec-
tion 2.2, prove, using Definition 2, that lim,_.o H(¢) does not
exist. [Hint: Use an indirect proof as follows. Suppose that the
limit is L. Take & = 1 in the definition of a limit and try to
arrive at a contradiction. ]

If the function f is defined by

£ = {0

if x is rational
1 if xisirrational
prove that lim, o f(x) does not exist.

By comparing Definitions 2, 3, and 4, prove Theorem 1 in
Section 2.3.

How close to —3 do we have to take x so that

1
7( +3) > 10,000
X

1
Prove, using Definition 6, that lim ———— = .
x—=3 (x + 3)

. Prove that 1im+ Inx = —oo,

x—0



44. Suppose that lim,_., f(x) = © and lim,_., g(x) = ¢, where ¢ is
a real number. Prove each statement.

(@ lim [£(x) + g(0] = =

2.5 Continvity

() Tim [/()g(9] == if ¢ >0

(© lim [f()g(x)] = == if ¢ <0

Explore continuous functions interactively.
= Resources / Module 2

Jm / Continuity
- / Start of Continuity

[l As illustrated in Figure 1, if £ is continuous,
then the points (x, f(x)) on the graph of f
approach the paint (a, f(@)) on the graph. So
there is no gap in the curve.

J y=fx)
o) l
approaches + f(a)
fla). f
0 . jl . X
As x approaches a,

FIGURE 1

FIGURE 2

We noticed in Section 2.3 that the limit of a function as x approaches a can often be found
simply by calculating the value of the function at a. Functions with this property are called
continuous at a. We will see that the mathematical definition of continuity corresponds
closely with the meaning of the word continuity in everyday language. (A continuous
process is one that takes place gradually, without interruption or abrupt change.)

[1] Definition A function f is continuous at a number a if

lim f(x) = f(a)

Notice that Definition 1 implicitly requires three things if f is continuous at a:

1. f(a) is defined (that is, a is in the domain of f)
2. lim f(x) exists

x—a

3. lim /() = /(@)

The definition says that f is continuous at a if f(x) approaches f(a) as x approaches a.
Thus, a continuous function f has the property that a small change in x produces only a
small change in f(x). In fact, the change in f(x) can be kept as small as we please by keep-
ing the change in x sufficiently small.

If f is defined near a (in other words, f is defined on an open interval containing a,
except perhaps at a), we say that f is discontinuous at a, or f has a discontinuity at a, if
f 1s not continuous at a.

Physical phenomena are usually continuous. For instance, the displacement or velocity
of a vehicle varies continuously with time, as does a person’s height. But discontinuities
do occur in such situations as electric currents. [See Example 6 in Section 2.2, where the
Heaviside function is discontinuous at 0 because lim,_o H(¢) does not exist.]

Geometrically, you can think of a function that is continuous at every number in an
interval as a function whose graph has no break in it. The graph can be drawn without
removing your pen from the paper.

EXAMPLE 1 Figure 2 shows the graph of a function f. At which numbers is f discontinu-
ous? Why?

SOLUTION It looks as if there is a discontinuity when a = 1 because the graph has a break
there. The official reason that fis discontinuous at 1 is that f(1) is not defined.

The graph also has a break when a = 3, but the reason for the discontinuity is differ-
ent. Here, f(3) is defined, but lim,_.; f(x) does not exist (because the left and right limits
are different). So fis discontinuous at 3.

What about a = 5? Here, f(5) is defined and lim,_s f(x) exists (because the left and
right limits are the same). But

lim (x) # /(5)

So f is discontinuous at 5. 1



Now let’s see how to detect discontinuities when a function is defined by a formula.

EXAMPLE 2 Where are each of the following functions discontinuous?

1
T_x=-2 — ifx#0
2= Resources / Module 2 (a) f(x) = r ot c (b) flx) =4 x* o
Jn / Continuity x=2 1 ifx=0
. / Problems and Tests 2
XX 2 s
E—— X
(c) flx) = x—2 (d) f(x) =[]
1 if x=2

SOLUTION
(a) Notice that f(2) is not defined, so f is discontinuous at 2. Later we’ll see why f is
continuous at all other numbers.

(b) Here f(0) = 1 is defined but
. .1
fim f(x) = lim =3

does not exist. (See Example 8 in Section 2.2.) So f'is discontinuous at 0.
(¢) Here f(2) = 1 is defined and

2y -2 —)(x + 1
lim £(x) = lim ————= — i E 20D =3
x—2 x—2 X — 2 x—2 X — 2 x—2

exists. But
lim f(x) # (2)

so f is not continuous at 2.

(d) The greatest integer function f(x) = [x] has discontinuities at all of the integers
because lim,_., [x] does not exist if n is an integer. (See Example 10 and Exercise 49 in
Section 2.3.) ]

Figure 3 shows the graphs of the functions in Example 2. In each case the graph can’t
be drawn without lifting the pen from the paper because a hole or break or jump occurs in
the graph. The kind of discontinuity illustrated in parts (a) and (c) is called removable
because we could remove the discontinuity by redefining f at just the single number 2.
[The function g(x) = x + 1 is continuous.] The discontinuity in part (b) is called an infi-
nite discontinuity. The discontinuities in part (d) are called jump discontinuities because
the function “jumps” from one value to another.

y y Y ! —
1 1 1 ° 1 —o0
of | 2 x 0 x of | o o 1 2 3 X
Cox—2 1 ifx#0 Xox=2 4eun
@ f)=——"F"7— (b)f(x):{ e ©) flx)= x=2 ’ (d) fx)=x]
* b ifx=0 1 ifx=2

FIGURE 3 Graphs of the functions in Example 2



FIGURE 4

[2] Definition A function f is continuous from the right at a number a if
lim £(x) = f(a)
and f is continuous from the left at a if

lim () = f(@

EXAMPLE 3 At each integer n, the function f(x) = [x] [see Figure 3(d)] is continuous
from the right but discontinuous from the left because

Jim ) = fim [ = n = o

but lirqf(x) = ILIQ [xX]=n—1% f(n)

[3] Definition A function f is continuous on an interval if it is continuous at
every number in the interval. (If f is defined only on one side of an endpoint of the
interval, we understand continuous at the endpoint to mean continuous from the
right or continuous from the left.)

EXAMPLE 4 Show that the function f(x) = 1 — /1 — x? is continuous on the
interval [—1, 1].

SOLUTION If —1 < a < 1, then using the Limit Laws, we have
lim f(x) = lim (1 — 1 = x?)
=1—1lim 1 — x? (by Laws 2 and 7)

=1—/lim (1 — x?) (by 11)
=1-41-a? (by 2,7, and 9)
= f(a)
Thus, by Definition 1, f is continuous at a if —1 < a < 1. Similar calculations show that

E{I}+f(x) =1=f(-1 and hjﬂf(x) = 1=73)

so f is continuous from the right at —1 and continuous from the left at 1. Therefore,
according to Definition 3, f is continuous on [—1, 1].
The graph of f is sketched in Figure 4. It is the lower half of the circle

X+ (y-12=1 ]

Instead of always using Definitions 1, 2, and 3 to verify the continuity of a function as
we did in Example 4, it is often convenient to use the next theorem, which shows how to
build up complicated continuous functions from simple ones.



[4] Theorem If f and g are continuous at a and c is a constant, then the following
functions are also continuous at a:

. f+g 2. f—g 3. cf
4. fg 5.§ if gla) # 0

Proof Each of the five parts of this theorem follows from the corresponding Limit Law
in Section 2.3. For instance, we give the proof of part 1. Since f and g are continuous at
a, we have

lm /() =f(@)  and i g(x) = g(a)
Therefore
lim (£ + g)(x) = lim [£(x) + g(0)]
= liln flx) + liln g(x) (by Law 1)

= f(a) + g(a)
= (f+9)a)

This shows that f + g is continuous at a. ]

It follows from Theorem 4 and Definition 3 that if f and g are continuous on an inter-
val, then so are the functions f + g, f — g, cf, fg, and (if g is never 0) f/g. The following
theorem was stated in Section 2.3 as the Direct Substitution Property.

[5] Theorem

(a) Any polynomial is continuous everywhere; that is, it is continuous on
R = (—o0, o).

(b) Any rational function is continuous wherever it is defined; that is, it is continu-
ous on its domain.

Proof
(a) A polynomial is a function of the form

P(x) =cx"+copx" '+ -+ cx + ¢

where ¢y, ci, . .., ¢, are constants. We know that
lim ¢y = ¢o (by Law 7)
xX—a
and lim x” = a™ m=12,...,n (by 9)

X—a

This equation is precisely the statement that the function f(x) = x" is a continuous
function. Thus, by part 3 of Theorem 4, the function g(x) = c¢x" is continuous. Since P
is a sum of functions of this form and a constant function, it follows from part 1 of
Theorem 4 that P is continuous.
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[IIl" Another way to establish the limits in (6) is
to use the Squeeze Theorem with the inequality
sin 6 < 0 (for & > 0), which is proved in Sec-
tion 3.4.

(b) A rational function is a function of the form

P(x)
0(x)

fx) =

where P and Q are polynomials. The domain of f is D = {x € R|Q(x) # 0}. We know
from part (a) that P and Q are continuous everywhere. Thus, by part 5 of Theorem 4,
f 1s continuous at every number in D. ]

As an illustration of Theorem 5, observe that the volume of a sphere varies continuously
with its radius because the formula V(r) = 37> shows that V is a polynomial function
of r. Likewise, if a ball is thrown vertically into the air with a velocity of 50 ft/s, then the
height of the ball in feet after ¢ seconds is given by the formula 7 = 50¢ — 16¢2. Again this
is a polynomial function, so the height is a continuous function of the elapsed time.

Knowledge of which functions are continuous enables us to evaluate some limits very
quickly, as the following example shows. Compare it with Example 2(b) in Section 2.3.

. X+ 2x2—1
EXAMPLE 5 Find lim ————
x—=2 5 — 3x
SOLUTION The function
) x4+ 2xr -1
x TN e
5 —3x

is rational, so by Theorem 5 it is continuous on its domain, which is {x | x # %}
Therefore

X+ 2x2 =1 .
xlgl}zw— lim f(x) = f(=2)
D211
5 — 3(=2) 11 —

It turns out that most of the familiar functions are continuous at every number in their
domains. For instance, Limit Law 10 (page 106) implies that root functions are continu-
ous. [Example 3 in Section 2.4 shows that f(x) = /x is continuous from the right at 0.]

From the appearance of the graphs of the sine and cosine functions (Figure 18 in
Section 1.2), we would certainly guess that they are continuous. We know from the defin-
itions of sin 6 and cos 0 that the coordinates of the point P in Figure 5 are (cos 0, sin 6). As
60 — 0, we see that P approaches the point (1, 0) and so cos # — 1 and sin § — 0. Thus

[6] })IB’(I)COS@=1 }gr(l)sm0=0

Since cos 0 = 1 and sin 0 = 0, the equations in (6) assert that the cosine and sine func-
tions are continuous at 0. The addition formulas for cosine and sine can then be used to
deduce that these functions are continuous everywhere (see Exercises 56 and 57).

It follows from part 5 of Theorem 4 that

sin x

tanx =
COS X



FIGURE 6
y=tanx

[l The inverse trigonometric functions are
reviewed in Section 1.6.

[IIl This theorem says that a limit symbol can be
moved through a function symbol if the function
is continuous and the limit exists. In other words,
the order of these two symbols can be reversed.

is continuous except where cos x = 0. This happens when x is an odd integer multiple of
/2, so y = tan x has infinite discontinuities when x = * /2, *37/2, +577/2, and so on
(see Figure 6).
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The inverse function of any continuous function is also continuous. (The graph of f~!
is obtained by reflecting the graph of f about the line y = x. So if the graph of f has no
break in it, neither does the graph of f~'.) Thus, the inverse trigonometric functions are
continuous.

In Section 1.5 we defined the exponential function y = a” so as to fill in the holes in the
graph of y = a”* where x is rational. In other words, the very definition of y = a* makes
it a continuous function on R. Therefore, its inverse function y = log, x is continuous
on (0, ).

Theorem The following types of functions are continuous at every number in
their domains:

polynomials rational functions root functions
trigonometric functions inverse trigonometric functions
exponential functions logarithmic functions

In x + tan"'x

EXAMPLE 6 Where is the function f(x) = -1 continuous?

SOLUTION We know from Theorem 7 that the function y = In x is continuous for x > 0
and y = tan 'x is continuous on R. Thus, by part 1 of Theorem 4, y = Inx + tan 'x is
continuous on (0, ). The denominator, y = x> — 1, is a polynomial, so it is continuous
everywhere. Therefore, by part 5 of Theorem 4, f is continuous at all positive numbers x
except where x> — 1 = 0. So f is continuous on the intervals (0, 1) and (1, ). ]

Another way of combining continuous functions f and g to get a new continuous func-
tion is to form the composite function f o g. This fact is a consequence of the following
theorem.

Theorem If f is continuous at b and lim g(x) = b, then lim f(g(x)) = f(b).
In other words, e e

lim f(g(x)) = f (lgn g(x))




Intuitively, Theorem 8 is reasonable because if x is close to a, then g(x) is close to b,
and since f is continuous at b, if g(x) is close to b, then f(g(x)) is close to f(b). A proof
of Theorem 8§ is given in Appendix F.

1 —
EXAMPLE 7 Evaluate lim arcsin(l—\/;)

x—1

—x
SOLUTION Because arcsin is a continuous function, we can apply Theorem 8:

. (1= 1=
lim arcsin 1— = arcsin| lim ————

x—1 - X e e

arcsin<1ig} = ;;_)(\1/;; ﬁ))

1
ol 1
aI‘CSIIl(xl_r)l’]l T+ 7% \/)—c>

1 T
= arcsin— = —
2 6

Let’s now apply Theorem 8 in the special case where f(x) = {/x, with n being a posi-
tive integer. Then

f(g(x) = Vg(x)
and f (lim g(x)) = "/lim g(x)
If we put these expressions into Theorem 8, we get
lim /g(x) = //lim g(x)

and so Limit Law 11 has now been proved. (We assume that the roots exist.)

[9] Theorem If g is continuous at a and f is continuous at g(a), then the composite
function f o g given by (f° g)(x) = f(g(x)) is continuous at a.

This theorem is often expressed informally by saying “a continuous function of a con-
tinuous function is a continuous function.”

Proof Since g is continuous at a, we have
lim ¢(x) = g(a)
Since f is continuous at b = g(a), we can apply Theorem 8 to obtain

lim f(g(x) = f(g(a)

which is precisely the statement that the function 4(x) = f(g(x)) is continuous at a; that
is, fo g is continuous at a. 1
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EXAMPLE 8 Where are the following functions continuous?
(a) h(x) = sin(x?) (b) F(x) =1In(1 + cosx)

SOLUTION
(a) We have h(x) = f(g(x)), where

g(x) = x? and f(x) = sinx

Now g is continuous on R since it is a polynomial, and f is also continuous everywhere.
Thus, 4 = f o g is continuous on R by Theorem 9.

(b) We know from Theorem 7 that f(x) = In x is continuous and g(x) = 1 + cos x

is continuous (because both y = 1 and y = cos x are continuous). Therefore, by
Theorem 9, F(x) = f(g(x)) is continuous wherever it is defined. Now In(1 + cosx) is
defined when 1 + cosx > 0. So it is undefined when cos x = —1, and this happens
when x = =, £37, ... . Thus, F has discontinuities when x is an odd multiple of 7
and is continuous on the intervals between these values (see Figure 7). ]

An important property of continuous functions is expressed by the following theorem,
whose proof is found in more advanced books on calculus.

The Intermediate Valve Theorem Suppose that f is continuous on the closed inter-
val [a, b] and let N be any number between f(a) and f(b), where f(a) # f(b).
Then there exists a number c in (a, b) such that f(c) = N.

The Intermediate Value Theorem states that a continuous function takes on every inter-
mediate value between the function values f(a) and f(b). It is illustrated by Figure 8. Note
that the value N can be taken on once [as in part (a)] or more than once [as in part (b)].

y y
f(b) fib)
N y=7)
N
fla) y=f&) fla)
0 a ¢c b X 0 a ¢ I g b X

(a) (b)

If we think of a continuous function as a function whose graph has no hole or break,
then it is easy to believe that the Intermediate Value Theorem is true. In geometric terms it
says that if any horizontal line y = N is given between y = f(a) and y = f(b) as in Fig-
ure 9, then the graph of f can’t jump over the line. It must intersect y = N somewhere.

It is important that the function f in Theorem 10 be continuous. The Intermediate Value
Theorem is not true in general for discontinuous functions (see Exercise 44).

One use of the Intermediate Value Theorem is in locating roots of equations as in the
following example.



EXAMPLE 9 Show that there is a root of the equation
4 —6x* +3x —2=0

between 1 and 2.

SOLUTION Let f(x) = 4x* — 6x* 4+ 3x — 2. We are looking for a solution of the given
equation, that is, a number ¢ between 1 and 2 such that f(c) = 0. Therefore, we take
a=1,b=2,and N = 0 in Theorem 10. We have

f)=4—-6+3-2=-1<0
and f2)=32-244+6-2=12>0

Thus, f(1) < 0 < f(2); that is, N = 0 is a number between f(1) and f(2). Now f is
continuous since it is a polynomial, so the Intermediate Value Theorem says there
is a number ¢ between 1 and 2 such that f(c) = 0. In other words, the equation
4x3 — 6x* + 3x — 2 = 0 has at least one root c in the interval (1, 2).

In fact, we can locate a root more precisely by using the Intermediate Value Theorem
again. Since

f(1.2) = —0.128 <0 and f(1.3) =0.548 >0
a root must lie between 1.2 and 1.3. A calculator gives, by trial and error,
f(1.22) = —0.007008 < 0 and f(1.23) = 0.056068 > 0

so a root lies in the interval (1.22, 1.23). ]

We can use a graphing calculator or computer to illustrate the use of the Intermediate
Value Theorem in Example 9. Figure 10 shows the graph of f in the viewing rectangle
[—1, 3] by [—3, 3] and you can see that the graph crosses the x-axis between 1 and 2. Fig-
ure 11 shows the result of zooming in to the viewing rectangle [1.2, 1.3] by [—0.2, 0.2].

3 0.2

-1 /—/ 3 1.2 V 1.3
-3 -0.2
FIGURE 10 FIGURE 11

In fact, the Intermediate Value Theorem plays a role in the very way these graphing
devices work. A computer calculates a finite number of points on the graph and turns on
the pixels that contain these calculated points. It assumes that the function is continuous
and takes on all the intermediate values between two consecutive points. The computer
therefore connects the pixels by turning on the intermediate pixels.



2.5 Exercises

1. Write an equation that expresses the fact that a function f
is continuous at the number 4.

2. If f is continuous on (—o°, %), what can you say about its
graph?

3. (a) From the graph of f, state the numbers at which f is
discontinuous and explain why.
(b) For each of the numbers stated in part (a), determine
whether f is continuous from the right, or from the left,

or neither.
y
-4 -2 0 2 4 6 <

4. From the graph of g, state the intervals on which g is
continuous.

5. Sketch the graph of a function that is continuous everywhere
except at x = 3 and is continuous from the left at 3.

6. Sketch the graph of a function that has a jump discontinuity at
x = 2 and a removable discontinuity at x = 4, but is continu-
ous elsewhere.

7. A parking lot charges $3 for the first hour (or part of an hour)
and $2 for each succeeding hour (or part), up to a daily maxi-
mum of $10.

(a) Sketch a graph of the cost of parking at this lot as a func-
tion of the time parked there.

(b) Discuss the discontinuities of this function and their
significance to someone who parks in the lot.

8. Explain why each function is continuous or discontinuous.
(a) The temperature at a specific location as a function of time
(b) The temperature at a specific time as a function of the dis-
tance due west from New York City

(c) The altitude above sea level as a function of the distance
due west from New York City

(d) The cost of a taxi ride as a function of the distance traveled

(e) The current in the circuit for the lights in a room as a func-
tion of time

9. If f and g are continuous functions with f(3) = 5 and
lim,; [2f(x) — g(x)] = 4, find g(3).

10-12 1 Use the definition of continuity and the properties of lim-
its to show that the function is continuous at the given number.

10. f)=x>+7T—x, a=4
1. f(x) = (x +2x°)* a=—1
x+ 1
12. ) = ———, a=4
g9(x) i1 @

o o o o o o o o o o o o

13-14 1 Use the definition of continuity and the properties of lim-
its to show that the function is continuous on the given interval.

14, g(x) =23 —x, (-, 3]

2x + 3
x—2

13. f(x) = 5 (2, OC)

o o o o o o o o o o o o

15-20 - Explain why the function is discontinuous at the given
number a. Sketch the graph of the function.

15. f(x) =1In|x — 2| a=2
! if x#1
6 f)={x-1 = F a=1
2 if x=1
et if x<0
17. = =0
f®) {xz itx=0 “
X s
i
18. f(x) =< x>—1 * a=1
1 if x=1
x*—x—12
T2 ifa# 3
19. f(x) = x+3 e a= -3
-5 if x= -3

1+x* ifx<l1

20. f(x)—{ a=1

4—x iftx=1

o o o o o o o o o o o o

21-28 i Explain, using Theorems 4, 5, 7, and 9, why the function
is continuous at every number in its domain. State the domain.

X

2. Fix) = ——F—
() x2+5x+6

22. G(x) = Jx(1 +x)



23. R(x) = x> + 2x — 1 2%, h(x) = —0X

x+ 1
25. f(x) = e*sin5x 26. F(x) = sin '(x* — 1)
27. Gt) =In(t* — 1) 28. H(x) = cos(e*")

o o o o o o o o o o o o

¥4 29-30 1 Locate the discontinuities of the function and illustrate by

graphing.

1

29. y=—"+-
Y 1+ e

30. y = In(tan’x)

31-34 1 Use continuity to evaluate the limit.

5+ x

31. 1llriﬁ 32. )I(LH;IT sin(x + sinx)
2 2—4
33. 111111 e 34. llir% arctan<3;2_6x>

o o o o o o o o o o o o

35-36 11 Show that f is continuous on (—oo, %),

x? ifx<l1
3. f(x)_{ﬁ ifx=1
sinx if x < 7w/4
cosx if x= m/4

36. f(x) = {

o o o o o o o o o o o o

37-39 i Find the numbers at which f is discontinuous. At which
of these numbers is f continuous from the right, from the left, or
neither? Sketch the graph of f.

1+x* ifx<O0
37. f(x) =92 —x fo<x<?2

(x—=2)7 if x>2

x+1 ifx<1

38. f(x) =11/x if 1<x<3
x—3 ifx=3

x+2 if x<0
39. f(x) =1e" ifosx=<1
2—x ifx>1

o o o o o o o o o o o o

40. The gravitational force exerted by Earth on a unit mass at a dis-
tance r from the center of the planet is

GMr .
— if r<R
F(r) =
(r) oM
3 if r=R
’

where M is the mass of Earth, R is its radius, and G is the grav-
itational constant. Is F' a continuous function of r?

41. For what value of the constant ¢ is the function f continuous
on (=, ©©)?
) ex+1 ifx=<3
X) =
cex?—1 if x>3

42. Find the constant ¢ that makes g continuous on (—, ).

xP—c? ifx<4
g(x) = .
cx +20 if x=4

43. Which of the following functions f has a removable disconti-
nuity at a? If the discontinuity is removable, find a function g
that agrees with f for x # a and is continuous on R.

2 _ _

@ f) = 222 xixz 8 a=—
) f) == 4=

|x =7

x>+ 64
(C)f(x)*ﬁ, a=—4

3_
@ /() = 9_{5“, a=9

44. Suppose that a function f is continuous on [0, 1] except at
0.25 and that £(0) = 1 and f(1) = 3. Let N = 2. Sketch two
possible graphs of f, one showing that f might not satisfy the
conclusion of the Intermediate Value Theorem and one show-
ing that f might still satisfy the conclusion of the Intermediate
Value Theorem (even though it doesn’t satisfy the hypothesis).

45. If f(x) = x> — x* + x, show that there is a number ¢ such
that f(c) = 10.

46. Use the Intermediate Value Theorem to prove that there is a
positive number ¢ such that ¢? = 2. (This proves the existence
of the number ﬁ)

47-50 1 Use the Intermediate Value Theorem to show that there is
a root of the given equation in the specified interval.

47. x* +x—-3=0, (1,2 8. Sx=1-x (0,1
50. nx=¢", (1,2)

o o o o o o o o o o o o

49. cosx =x, (0,1)

51-52 i (a) Prove that the equation has at least one real root.
(b) Use your calculator to find an interval of length 0.01 that con-

tains a root.
51. e =2 — x 52 x° —x*+2x+3=0

o o o o o o o o o o o o

IAZ 53-54 1l (a) Prove that the equation has at least one real root.

(b) Use your graphing device to find the root correct to three deci-
mal places.

1
x+3

53. x> —x*—4=0

54, (/x — 5=



55.

56.

57.
58.

59.

Prove that f is continuous at « if and only if
lim f(a + h) = f(a)

To prove that sine is continuous, we need to show that
lim, ., sin x = sin a for every real number a. By Exercise 55
an equivalent statement is that

}in}) sin(a + h) = sina

Use (6) to show that this is true.
Prove that cosine is a continuous function.

(a) Prove Theorem 4, part 3.
(b) Prove Theorem 4, part 5.

For what values of x is f continuous?

F) = {0

if xis rational
1 if xisirrational

2.6 Limits at Infinity; Horizontal Asymptotes

60.

6l.
62.

63.

For what values of x is g continuous?

g(x) = {0
X

Is there a number that is exactly 1 more than its cube?

if x is rational
if x is irrational

(a) Show that the absolute value function F(x) = | x| is contin-
uous everywhere.

(b) Prove that if f is a continuous function on an interval, then
sois | f].

(c) Is the converse of the statement in part (b) also true? In
other words, if | f | is continuous, does it follow that f is
continuous? If so, prove it. If not, find a counterexample.

A Tibetan monk leaves the monastery at 7:00 A.Mm. and takes
his usual path to the top of the mountain, arriving at 7:00 p.M.
The following morning, he starts at 7:00 A.M. at the top and
takes the same path back, arriving at the monastery at 7:00 p.M.
Use the Intermediate Value Theorem to show that there is a
point on the path that the monk will cross at exactly the same
time of day on both days.

In Sections 2.2 and 2.4 we investigated infinite limits and vertical asymptotes. There we
let x approach a number and the result was that the values of y became arbitrarily large

(positive or negative). In this section we let x become arbitrarily large (positive or nega-

-1 Let’s begin by investigating the behavior of the function f defined by

x2—1

x2+1

flx) =

as x becomes large. The table at the left gives values of this function correct to six decimal
places, and the graph of f has been drawn by a computer in Figure 1.

y

N f® tive) and see what happens to y.
0
*1 0

*2 0.600000
*3 0.800000
*4 0.882353
*5 0.923077
*10 0.980198
*50 0.999200
*100 0.999800
+1000 0.999998

RN

FIGURE 1

Y/I x*=1 .
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As x grows larger and larger you can see that the values of f(x) get closer and closer
to 1. In fact, it seems that we can make the values of f(x) as close as we like to 1 by taking
x sufficiently large. This situation is expressed symbolically by writing

In general, we use the notation

oxr—1
lim ——— =
x—e x4+ 1

1

lim f(x) = L

to indicate that the values of f(x) become closer and closer to L as x becomes larger and

larger.



[T] Definition Let f be a function defined on some interval (a, ). Then
lim f(x) = L

means that the values of f(x) can be made arbitrarily close to L by taking x suf-
ficiently large.

Another notation for lim,_.. f(x) = L is
flx) =L as x—

The symbol % does not represent a number. Nonetheless, the expression lim f(x) = L is
often read as o
“the limit of f(x), as x approaches infinity, is L”

or “the limit of f(x), as x becomes infinite, is L”

or “the limit of f(x), as x increases without bound, is L”

The meaning of such phrases is given by Definition 1. A more precise definition, similar
to the &, 6 definition of Section 2.4, is given at the end of this section.

Geometric illustrations of Definition 1 are shown in Figure 2. Notice that there are
many ways for the graph of f to approach the line y = L (which is called a horizontal
asymptote) as we look to the far right of each graph.

N

\y=f(x)

FIGURE 2

Examples illustrating lim f(x)=L

Referring back to Figure 1, we see that for numerically large negative values of x, the
values of f(x) are close to 1. By letting x decrease through negative values without bound,
we can make f(x) as close as we like to 1. This is expressed by writing

ox2 =1
lim —
x——e x° 41

=1

The general definition is as follows.

[2] Definition Let f be a function defined on some interval (—°, a). Then

lim f(x) =L

means that the values of f(x) can be made arbitrarily close to L by taking x suf-
ficiently large negative.
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Examples illustrating lllzlm fx)=L

0
FIGURE 4
y=tan'x
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Again, the symbol —oo does not represent a number, but the expression lim f(x) = L
is often read as )

“the limit of f(x), as x approaches negative infinity, is L”

Definition 2 is illustrated in Figure 3. Notice that the graph approaches the line y = L as
we look to the far left of each graph.

[3] Definition The line y = L is called a horizontal asymptote of the curve
y = f(x) if either

lim f(x) =L or lim flx)=1L

For instance, the curve illustrated in Figure 1 has the line y = 1 as a horizontal asymp-
tote because

oxr—1
lim =

R
o x2 41

An example of a curve with two horizontal asymptotes is y = tan™'x. (See Figure 4.)
In fact,

T T
lim tan 'x = — — lim tan~'x = —
(4] Jim tan™x > lim tan™'x = =

so both of the lines y = —ar/2 and y = 7r/2 are horizontal asymptotes. (This follows from

the fact that the lines x = *77/2 are vertical asymptotes of the graph of tan.)

EXAMPLE 1 Find the infinite limits, limits at infinity, and asymptotes for the function f
whose graph is shown in Figure 5.

SOLUTION We see that the values of f(x) become large as x — —1 from both sides, so
Vlin}l flx) =

Notice that f(x) becomes large negative as x approaches 2 from the left, but large posi-
tive as x approaches 2 from the right. So

lin; flx) = — and lirgl+ flx) = o0
Thus, both of the lines x = —1 and x = 2 are vertical asymptotes.

As x becomes large, it appears that f(x) approaches 4. But as x decreases through
negative values, f(x) approaches 2. So

lim f(x) = 4 and lim f (x) =2

This means that both y = 4 and y = 2 are horizontal asymptotes. 1



1 1
EXAMPLE 2 Find lim — and lim —.

x—° X x——w X

SOLUTION Observe that when x is large, 1/x is small. For instance,

1 1
— =0.01

= 0.0001 ———— = 0.000001
100 10,000 1,000,000
y In fact, by taking x large enough, we can make 1/x as close to 0 as we please. Therefore,
according to Definition 1, we have
Iim—=20
e
0 x Similar reasoning shows that when x is large negative, 1/x is small negative, so we also
have
1
lim — =20
x——x X
FIGURE 6
1 1 It follows that the line y = 0 (the x-axis) is a horizontal asymptote of the curve y = 1/x.
lim °° =0, lim ~=0 (This is an equilateral hyperbola; see Figure 6.) ]

Most of the Limit Laws that were given in Section 2.3 also hold for limits at infinity. It
can be proved that the Limit Laws listed in Section 2.3 (with the exception of Laws 9 and
10) are also valid if “x — a” is replaced by “x — ®” or “x — —.” In particular, if we
combine Laws 6 and 11 with the results of Example 2, we obtain the following important
rule for calculating limits.

[5] Theorem If r > 0 is a rational number, then

1
lim—rZO

x—o X

If » > 0 is a rational number such that x" is defined for all x, then

. 1
lim — =20

x——© X

EXAMPLE 3 Evaluate
i P —x—2
im————
x—= Sx2 + 4x + 1

and indicate which properties of limits are used at each stage.

SOLUTION As x becomes large, both numerator and denominator become large, so it isn’t
obvious what happens to their ratio. We need to do some preliminary algebra.

To evaluate the limit at infinity of any rational function, we first divide both the
numerator and denominator by the highest power of x that occurs in the denominator.
(We may assume that x # 0, since we are interested only in large values of x.) In this
case the highest power of x in the denominator is x?, so we have



3P —x—2 . 12
o 3xr=x-2 ) x? . x  x?
Iim ————— = lim —— = lim
v 5x% 4+ 4x + 1 x—w SxT A+ 4x + 1w 4 1
I e— 5+—+ —
X X x
. 1 2
Iim(3 —-——-—
X X X
= (by Limit Law 5)
. 4 1
lim(5+—+ —
X% X X
y
=0.6 1 1
— . lim 3 — lim — — 2 lim —
\ xX—w x—w X x—® X
0 1 X = 1 1 (by 1, 2, and 3)
lim5 + 4 lim — + lim —
x—® x—w X x—w X
_3-0-0 by 7 and Theoren 5
5+0+0 (by 7 an eorem S
_3
5
FIGURE 7 A similar calculation shows that the limit as x — —o is also ;. Figure 7 illustrates the
3 —x-—2 results of these calculations by showing how the graph of the given rational function
YT 5+ Ax+1 approaches the horizontal asymptote y = 3. ]

EXAMPLE 4 Find the horizontal and vertical asymptotes of the graph of the function

V2x2+ 1

fo) =33

SOLUTION Dividing both numerator and denominator by x and using the properties of
limits, we have

(since /x2 = x for x > 0)

1 1
lim | [2 + — lim 2 + lim —
_)cA)oo X _ x—w x—w X

5 . .1
lim 3 — = lim3 — 5 lim —
xX—0 X xX—x x—% X
J2+0 V2
3-5-0 3

Therefore, the line y = /2/3 is a horizontal asymptote of the graph of f.
In computing the limit as x — —o, we must remember that for x < 0, we have
Vx¥ = |x| = —x. So when we divide the numerator by x, for x < 0 we get

1 1
\/W=—ﬁm=—1/2+;

==



y
2
-
—
__\2
3
5
73
FIGURE 8
_ JV2x2+1
Y= 3x=5

[IIl" We can think of the given function as having

a denominator of 1.

FIGURE 9

Therefore lim

1

—4 /2 + lim —
N e
1 3

3 -5 1lim —

Fareuri gy

Thus, the line y = —4/2/3 is also a horizontal asymptote.

A vertical asymptote is likely to occur when the denominator, 3x — 5, is 0, that is,
when x = % If x is close to % and x > %, then the denominator is close to 0 and 3x — 5
is positive. The numerator /2x2 + 1 is always positive, so f(x) is positive. Therefore

i
xﬂl(gn/3)+ 3x — 5
If x is close to 2 but x < 2, then 3x — 5 < 0 and so f(x) is large negative. Thus

V2x2+ 1
m ————— = —®
x—6/3)" 3x — 5

The vertical asymptote is x = 3. All three asymptotes are shown in Figure 8. ]
EXAMPLE 5 Compute lim (vx2 + 1 — x).

SOLUTION Because both 4/x? + 1 and x are large when x is large, it’s difficult to see what
happens to their difference, so we use algebra to rewrite the function. We first multiply
numerator and denominator by the conjugate radical:

Y1+
lim (Vo + 1 = x) = lim (i + 1 —x)——;JrHi
Iim (x*+ 1) — x? lim 1
= li = li
e X2+ 14+ x aoex2+ 1+ x

The Squeeze Theorem could be used to show that this limit is 0. But an easier method is
to divide numerator and denominator by x. Doing this and using the Limit Laws, we obtain

1
1 x
lim (Vx2 + 1 — x) = lim ———— = lim —————
xlil}o(x x) 0 x2+1+x 0 x2+1+x
X
s
I a 0 0
ﬁw\/ 1 VI+0+1
1+—*1
x2

Figure 9 illustrates this result. ]

The graph of the natural exponential function y = e¢* has the line y = 0 (the x-axis) as
a horizontal asymptote. (The same is true of any exponential function with base @ > 1.) In



fact, from the graph in Figure 10 and the corresponding table of values, we see that

[6] lim e*=0

x—>—%

Notice that the values of e* approach 0 very rapidly.

y
X e’
y=e*
0 1.00000
-1 0.36788
-2 0.13534
-3 0.04979

J -5 0.00674
; , ; ; -8 0.00034

0 1 x -10 0.00005

FIGURE 10

EXAMPLE 6 Evaluate lim e’

The problem-solving strategy for Example 6 SOLUTION If we let r = 1/x, we know that t — — as x — 0. Therefore, by (6),
is introducing something extra (see page 80).
Here, the something extra, the auxiliary aid, is lim ¢ = lim e¢' = 0
the new variable . x—0" -

(See Exercise 67.) ]

EXAMPLE 7 Evaluate lim sin x.

x—®

SOLUTION As x increases, the values of sin x oscillate between 1 and —1 infinitely often
and so they don’t approach any definite number. Thus, lim, ... sin x does not exist.

||| Infinite Limits at Infinity
The notation

lim f(x) = o

is used to indicate that the values of f(x) become large as x becomes large. Similar mean-
ings are attached to the following symbols:

lim f) =  lmf)=-  lm f()=-2

EXAMPLE 8 Find lim x° and lim x>.

xX—® xX—>—®

SOLUTION When x becomes large, x* also becomes large. For instance,
10° = 1000 100° = 1,000,000 1000* = 1,000,000,000

In fact, we can make x* as big as we like by taking x large enough. Therefore, we can
write
lim x* = o

x—



FIGURE 11

limx*=o0, lim x®=—o

x—00 x——0

FIGURE 12
e is much larger than x*
when x is large.

Similarly, when x is large negative, so is x*. Thus

lim x3 = —

x—>—®

These limit statements can also be seen from the graph of y = x* in Figure 11. -

Looking at Figure 10 we see that

lim e* = o

x—0

but, as Figure 12 demonstrates, y = e* becomes large as x — o0 at a much faster rate than
3
y=x".

100 1

EXAMPLE 9 Find lim (x> — x).

xX—®

[%)] soLuTioN Note that we cannot write

lim (x*> — x) = lim x> — lim x

x—w x—® x—w

The Limit Laws can’t be applied to infinite limits because % is not a number (¢ — %
can’t be defined). However, we can write

lim (x? — x) = limx(x — 1) =

x—
because both x and x — 1 become arbitrarily large and so their product does too. ]

. x4 x
EXAMPLE 10 Find lim 3

x—® —

SOLUTION As in Example 3, we divide the numerator and denominator by the highest
power of x in the denominator, which is just x:

Xt +x Cox+1
lim = lim = —o0
x—>%0 — X x—>® 3

——1

X

because x + 1 — o and 3/x — 1 — —1 as x — o, ]



FIGURE 13

The next example shows that by using infinite limits at infinity, together with intercepts,
we can get a rough idea of the graph of a polynomial without having to plot a large num-
ber of points.

EXAMPLE 11 Sketch the graph of y = (x — 2)*(x + 1)’(x — 1) by finding its intercepts
and its limits as x — ¢ and as x — —.

SOLUTION The y-intercept is f(0) = (—2)*1)*(—1) = —16 and the x-intercepts are
found by setting y = 0: x = 2, —1, 1. Notice that since (x — 2)* is positive, the function
doesn’t change sign at 2; thus, the graph doesn’t cross the x-axis at 2. The graph crosses
the axis at —1 and 1.

When x is large positive, all three factors are large, so

lif}c (x=2'(x+1)Px—1) =0

When x is large negative, the first factor is large positive and the second and third factors
are both large negative, so

lim (x = 2)'(x + 1’ = 1) = =0

Combining this information, we give a rough sketch of the graph in Figure 13.

y
; I a———
-1 0 1 2 2
y=@=20'x +1’x—1)
16

|||| Precise Definitions

Definition 1 can be stated precisely as follows.

Definition Let f be a function defined on some interval (a, ©©). Then

lim f(x) = L

means that for every € > 0 there is a corresponding number N such that

|f(x) —L|<e whenever x>N

In words, this says that the values of f(x) can be made arbitrarily close to L (within a
distance e, where ¢ is any positive number) by taking x sufficiently large (larger than N,
where N depends on g). Graphically it says that by choosing x large enough (larger than



FIGURE 14
lim f(x)=L

FIGURE 15
lim f(x)=L

x—o©

FIGURE 16
lim f(x)=L

some number N) we can make the graph of f lie between the given horizontal lines

y=L —¢eand y =L + ¢ as in Figure 14. This must be true no matter how small we
choose &. Figure 15 shows that if a smaller value of ¢ is chosen, then a larger value of N
may be required.

y
y=L+e y=7)

e }f(x)is
te in here
y=L—¢

0 N X

when x is in here

y

y=flx)
L y=L+e

~|
y=L—¢

0 N X

Similarly, a precise version of Definition 2 is given by Definition 8, which is illustrated

in Figure 16.

Definition Let f be a function defined on some interval (—, a). Then

lim f(x) = L

means that for every € > 0 there is a corresponding number N such that

|f(x) —L|<e whenever x<N

y=L+e
L

y\:Ly\/

N 0 x

In Example 3 we calculated that

oo 3xrP—x-2 3
lim ———— = —
xoe 5x° 4+ 4x + 1 5

In the next example we use a graphing device to relate this statement to Definition 7 with
L=73ande =0.1.



0
FIGURE 17

EXAMPLE 12 Use a graph to find a number N such that

3xZ—x—2

——— — 06| <0.1 whenever x> N
S5x-+4x + 1

SOLUTION We rewrite the given inequality as

P —x—2
05<—-<07
Sx?2 4+ 4x + 1

We need to determine the values of x for which the given curve lies between the horizon-
tal lines y = 0.5 and y = 0.7. So we graph the curve and these lines in Figure 17. Then
we use the cursor to estimate that the curve crosses the line y = 0.5 when x = 6.7. To
the right of this number the curve stays between the lines y = 0.5 and y = 0.7. Round-
ing to be safe, we can say that

3x2—x—2

——— — 0.6| <0.1 whenever x>7
5x°+4x + 1

In other words, for € = 0.1 we can choose N = 7 (or any larger number) in Definition 7.

1
EXAMPLE 13 Use Definition 7 to prove that lim — = 0.

x—o X

SOLUTION
1. Preliminary analysis of the problem (guessing a value for N). Given & > 0, we
want to find N such that

1
— =0
X

<eg whenever x> N

In computing the limit we may assume x > 0, in which case

1 1 1
—_ 0 = | —| = —
X X X
Therefore, we want
—<e whenever x> N
X
. 1
that is, x> — whenever x>N
€

This suggests that we should take N = 1/e.

2. Proof (showing that this N works). Given & > 0, we choose N = 1/e. Let x > N.
Then

1 1<1
- = < — =g
X X N
| |

1
—=0
X

Thus <e whenever x> N




Therefore, by Definition 7,
o1
Iim—=20

x—® X

Figure 18 illustrates the proof by showing some values of & and the corresponding values

of N.
y y
e=0.2 e=0.1
0 0

FIGURE 18 o

Finally we note that an infinite limit at infinity can be defined as follows. The geomet-
ric illustration is given in Figure 19.

[9] Definition Let f be a function defined on some interval (a, ). Then

lim f(x) = oo
0 N x means that for every positive number M there is a corresponding positive number
N such that
FIGURE 19 fx)y>M whenever x>N

lim f(x) = o0

Similar definitions apply when the symbol % is replaced by —. (See Exercise 66.)

2.6 Exercises

1. Explain in your own words the meaning of each of the (f) The equations of the asymptotes
following.
1 1]

(a) lim f(x) =5 (b) lim f(x) =3
2. (a) Can the graph of y = f(x) intersect a vertical asymptote? / /
Can it intersect a horizontal asymptote? [llustrate by \/ 1
sketching graphs. NI
(b) How many horizontal asymptotes can the graph of y = f(x) 1
have? Sketch graphs to illustrate the possibilities. /

3. For the function f whose graph is given, state the following. l
@lmf® O lm () (© lim f()

4. For the function g whose graph is given, state the following.
(d) lim f(x) (e) lim f(x) (a) lim g(x) (b) lim g(x)



() lim g(x) (d) Tim g(x)

(e) li{r%+ g(x) (f) The equations of the asymptotes

N A

5-8 1 Sketch the graph of an example of a function f that
satisfies all of the given conditions.

5. f0)=0, f()=1, limf(x)=0, fisodd

6. liI})1+ f(x) = o, liI(I)l f(x) = —oo, lim f(x) = 1,
lim f(x) =1

7 lim f(x) = —o,  lim f(x) =, lim f(x) =0,
lim f(x) = oo, lim f(x) = —o

8. lin_l2 f(x) = oo, ‘lirzlx f(x) =3, lim f(x) = -3

x—®

o o o o o o o o o o o o

. Guess the value of the limit

2

lim —

xow 2%
by evaluating the function f(x) = x*/2*forx =0, 1,2, 3, 4, 5,
6,7,8,9, 10, 20, 50, and 100. Then use a graph of f to support

your guess.
1= <1 - 2)"
X

to estimate the value of lim,_... f(x) correct to two decimal
places.

(b) Use a table of values of f(x) to estimate the limit to four
decimal places.

4 10.

(a) Use a graph of

11=12 i Evaluate the limit and justify each step by indicating the

appropriate properties of limits.
12x* — 5x + 2
12. lim xi?x%
x> 1 + 4x° + 3x°

o o o o o o o o o o o o

3> —x+4
M. lim— %
x—>®© 2x + 5x_ 8

13-34 1 Find the limit.

1 3+ 5
13. lim——— 14. 1im —
x—% 2x + 3 x—e x — 4
1—x— 2 2 — 3y?
15 lim ————— 16. lim ——>—
i 2x2 =7 y== Sy° + 4y
. x* + 5x . 2+ 2
e v+ 4 I8 tim
4u* + 5 x+2

19, lim——% ">
= 2)2u — 1)

Vox — x

20. lim ————
0 lim e

Vox — x

21. lim —; 22. lim 3
x—e x0 + 1 x—-n x> + 1
23. lim (v/9x2 + x — 3x) 24. lim (x + Va2 + 2x)
25. lim (X2 + ax — /x> + bx) 26. lim cos x
27. lim /x 28. lim Jx
P-2x+3
29. lim (x — /) 30. lim ———~—
x> xom 5 — 2x
31 lim (x* + x%) 32. lim tan '(x? — x*)

+ 3 + 5
33, lim% 34
x—e | — x X

lim elanx
x—(m/2)"

/A 35. (a) Estimate the value of
lim (VX +x + 1+ x)
by graphing the function f(x) = v/x> + x + 1 + x.
(b) Use a table of values of f(x) to guess the value of the limit.
(c) Prove that your guess is correct.
/14 36. (a) Use a graph of

F) =32+ 8x + 6 — /3x2 + 3x + 1

to estimate the value of lim,—... f(x) to one decimal place.
(b) Use a table of values of f(x) to estimate the limit to four
decimal places.
(c¢) Find the exact value of the limit.

¥ 37-42 1 Find the horizontal and vertical asymptotes of each
curve. Check your work by graphing the curve and estimating the
asymptotes.

x>+ 4
7. y= .y =
Soy="12 By="1,
x3 x4+
3‘)oy_x2+3x—10 40.y—x3+x
X x—9
Wb =t B N T T )

o o o o o o o o o o o o



43.

44.

Find a formula for a function f that satisfies the following
conditions:

lim f(x) =0, limf(x) = =, f(2)=0,
lim f() =, lim f(x) = —=

Find a formula for a function that has vertical asymptotes
x = 1 and x = 3 and horizontal asymptote y = 1.

45-48 1 Find the limits as x — % and as x — —o°. Use this
information, together with intercepts, to give a rough sketch of
the graph as in Example 11.

45.
46.
47.
48.

o

49.

[~ 50.

51,

52.

y=xx = 2)(1 - x)
Y=+ -G -2
y=(x+ 4 - 3)*
y=(1 =) = 3)x - 57

o o o o o o o o o o o

. sinx
(a) Use the Squeeze Theorem to evaluate lim

XX
(b) Graph f(x) = (sin x)/x. How many times does the graph
cross the asymptote?

By the end behavior of a function we mean the behavior of its
values as x — % and as x — —®,
(a) Describe and compare the end behavior of the functions

P(x) = 3x° — 5x° + 2x 0(x) = 3x°

by graphing both functions in the viewing rectangles
[=2,2] by [-2, 2] and [ 10, 10] by [—10,000, 10,000].

(b) Two functions are said to have the same end behavior if
their ratio approaches 1 as x — . Show that P and Q have
the same end behavior.

Let P and Q be polynomials. Find

. P(x)

lim

a== Q(x)

if the degree of P is (a) less than the degree of Q and
(b) greater than the degree of Q.

Make a rough sketch of the curve y = x" (n an integer) for the
following five cases:

i) n=0

(iii) n > 0, n even

(i) n > 0, n odd

(iv) n < 0, n odd
(v) n <0, neven

Then use these sketches to find the following limits.

@ i x ® g x

(c) lim x”" (d) _lir§ x"

53.

54.

55.

56.

i 57.

58.

i 59.

i 60.

Find lim,—... f(x) if

4x — 1 4x% + 3x
—<fl) < ———
X X

for all x > 5.

(a) A tank contains 5000 L of pure water. Brine that contains
30 g of salt per liter of water is pumped into the tank at a
rate of 25 L/min. Show that the concentration of salt after
¢t minutes (in grams per liter) is

30t

=00+

(b) What happens to the concentration as ¢ — %?

In Chapter 9 we will be able to show, under certain assump-
tions, that the velocity »(¢) of a falling raindrop at time ¢ is

v(t) = v*(1 — e 9/"")

where g is the acceleration due to gravity and v* is the terminal

velocity of the raindrop.

(a) Find lim, .. v(f).

(b) Graph v(?) if v* = 1 m/s and g = 9.8 m/s*>. How long does
it take for the velocity of the raindrop to reach 99% of its

terminal velocity?
(a) By graphing y = ¢ /® and y = 0.1 on a common screen,
discover how large you need to make x so that e /! < 0.1.

(b) Can you solve part (a) without using a graphing device?

Use a graph to find a number N such that

6x* + 5x — 3
% -3/ <02 whenever x> N
2x°—1
For the limit
CoA4Ax2+
Iim —=2

x+ 1

x—®

illustrate Definition 7 by finding values of N that correspond to
e=05and e = 0.1.

For the limit

i Vax?+1
im ——=
e x 41

-2
illustrate Definition 8 by finding values of N that correspond to
e=05and e = 0.1.

For the limit
i 2x + 1
im ———
x—w Jx + 1
illustrate Definition 9 by finding a value of N that corresponds
to M = 100.

=



6l.

62.

63.

64.

(a) How large do we have to take x so that 1/x* < 0.0001?
(b) Taking r = 2 in Theorem 5, we have the statement

lim — =0

Jim <5

Prove this directly using Definition 7.
(a) How large do we have to take x so that 1/ \/} < 0.0001?

(b) Taking r = 3 in Theorem 5, we have the statement

0

1
ims

Prove this directly using Definition 7.

1
Use Definition 8 to prove that lim — = 0.

el

Prove, using Definition 9, that lim x3 =00,

65.

66.

67.

Use Definition 9 to prove that

lim ¢* = o

Formulate a precise definition of
lim f(x) = —oo
Then use your definition to prove that

lim (1 +x°) =~

x—>—%

Prove that
lim f(x) = lir(r)1+f(1/t)
and li@ flx) = lir(r)lf(l/t)

if these limits exist.

2.7 Tangents, Velocities, and Other Rafes of Change

In Section 2.1 we guessed the values of slopes of tangent lines and velocities on the basis
of numerical evidence. Now that we have defined limits and have learned techniques for
computing them, we return to the tangent and velocity problems with the ability to calcu-

late slopes of tangents, velocities, and other rates of change.

|||| Tangents

If a curve C has equation y = f(x) and we want to find the tangent line to C at the point
P(a, f(a)), then we consider a nearby point Q(x, f(x)), where x # a, and compute the slope
of the secant line PQ:

Then we let Q approach P along the curve C by letting x approach a. If mpo approaches a
number m, then we define the tangent t to be the line through P with slope m. (This
amounts to saying that the tangent line is the limiting position of the secant line PQ as Q

approaches P. See Figure 1.)

_ S~ fla)
e X —a

FIGURE 1




[1] Definition The tangent line to the curve y = f(x) at the point P(a, f(a)) is the
line through P with slope

. f(x) = fla)

m 1Y

m=1i
x—a X —a

provided that this limit exists.

In our first example we confirm the guess we made in Example 1 in Section 2.1.

EXAMPLE 1 Find an equation of the tangent line to the parabola y = x” at the
point P(1, 1).

SOLUTION Here we have a = 1 and f(x) = x?, so the slope is

S - X1
m = lim = lim
x—l X — 1 x—1 x — 1
=D +1)
= lim——
x—1 X — 1

—limGx+D)=1+1=2

x—1

II1l Paint-slope form for a line through the Using the point-slope form of the equation of a line, we find that an equation of the
point (x1, y1) with slope m: tangent line at (1, 1) is
y =y =mx — xi)
y—1=2(x—-1) or y=2x—1

We sometimes refer to the slope of the tangent line to a curve at a point as the slope of
the curve at the point. The idea is that if we zoom in far enough toward the point, the curve
looks almost like a straight line. Figure 2 illustrates this procedure for the curve y = x? in
Example 1. The more we zoom in, the more the parabola looks like a line. In other words,

the curve becomes almost indistinguishable from its tangent line.

2 1.5 1.1

(1,1)

0 ‘ ‘ ‘ 2 0.5 L1

FIGURE 2 Zooming in toward the point (1, 1) on the parabola y = x*

There is another expression for the slope of a tangent line that is sometimes easier to

use. Let

Then x=a-+h



so the slope of the secant line PQ is

_ fla+h) ~ f@

me h

(See Figure 3 where the case 4 > 0 is illustrated and Q is to the right of P. If it happened
that 2 < 0, however, Q would be to the left of P.)

< — Qla+h, fla+h)
fla+h)— fla)

0 / a a+h X
FIGURE 3

Notice that as x approaches a, h approaches 0 (because 7 = x — a) and so the expres-
sion for the slope of the tangent line in Definition 1 becomes

2 o St~ f@

h—0 h

EXAMPLE 2 Find an equation of the tangent line to the hyperbola y = 3/x at the
point (3, 1).

SOLUTION Let f(x) = 3/x. Then the slope of the tangent at (3, 1) is

. f@+h) —fO)
m

m=1
h—0 h
3 1 3—-3+h)
. 3+h . 3+ h
= lim = lim
h—0 h h—0 h

x+3y—6=0

Therefore, an equation of the tangent at the point (3, 1) is

0 x y—1=—(x—3)
which simplifies to x+3y—-6=0

FIGURE 4 The hyperbola and its tangent are shown in Figure 4. 1
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EXAMPLE 3 Find the slopes of the tangent lines to the graph of the function f(x) = /x at
the points (1, 1), (4, 2), and (9, 3).

SOLUTION Since three slopes are requested, it is efficient to start by finding the slope at the
general point (a, NG ):

fath —fl@ . Vath-a
h

m = im I im
C Va+th—+a Jat+h+a
= lim .
h—0 h Va+h+ Ja
(a+h) —a h

= lim =

=0 h(v/a + h + a) Hm hW(Ja + h + a)
1 1

. 1 _ _
T et htva Ya+va 2va

At the point (1, 1), we have a = 1, so the slope of the tangent is m = 1/(2\/T) = 3.
At (4,2), we have m = 1/(2/4) = §;at (9, 3), m = 1/(2/9) = ¢. -

|||| Velocifies

In Section 2.1 we investigated the motion of a ball dropped from the CN Tower and defined
its velocity to be the limiting value of average velocities over shorter and shorter time
periods.

In general, suppose an object moves along a straight line according to an equation of
motion s = f(¢), where s is the displacement (directed distance) of the object from the ori-
gin at time 7. The function f that describes the motion is called the position function
of the object. In the time interval from r = a to t = a + h the change in position is
f(a + h) — f(a). (See Figure 5.) The average velocity over this time interval is

displacement  f(a + h) — f(a)
time h

average velocity =

which is the same as the slope of the secant line PQ in Figure 6.

s
Qla+h, fla+h)
P(a, fla))
position at position at —
timet=a timet=a-+h h
8 N —— s
fla+h) = fla) 0 a a+h t
e fla) —— _ flath - fa@
Mpy = 7
| flath = average velocity

FIGURE 5 FIGURE 6



[IIl' Recall from Section 2.1: The distance
(in meters) fallen after # seconds is 4.9¢%.

Now suppose we compute the average velocities over shorter and shorter time intervals
[a, a + h]. In other words, we let h approach 0. As in the example of the falling ball, we
define the velocity (or instantaneous velocity) v(a) at time 1 = a to be the limit of these
average velocities:

fla +h) — fla)

3] v(a) = lim h

This means that the velocity at time ¢ = a is equal to the slope of the tangent line at P
(compare Equations 2 and 3).

Now that we know how to compute limits, let’s reconsider the problem of the fall-
ing ball.

EXAMPLE 4 Suppose that a ball is dropped from the upper observation deck of the
CN Tower, 450 m above the ground.

(a) What is the velocity of the ball after 5 seconds?

(b) How fast is the ball traveling when it hits the ground?

SOLUTION We first use the equation of motion s = f(¢) = 4.9¢ to find the velocity v(a)
after a seconds:

. fla+ h) = fla) . 49(a + h)* — 494
v(a) = lim ————— = lim
h—0 h h—0 h
. 49(a* + 2ah + h* — a?) . 49Qah + h?)
= lim = lim
h—0 h h—0 h

= %in}) 4.9(2a + h) = 9.8a

(a) The velocity after 5 s is v(5) = (9.8)(5) = 49 m/s.
(b) Since the observation deck is 450 m above the ground, the ball will hit the ground at
the time #, when s(r;) = 450, that is,

4.911 = 450
This gives

450 450
E and Hh = E ~96s

11 =
The velocity of the ball as it hits the ground is therefore

450
o(t) = 9.8 = 9.8 |-~ 94 m/s .

|||| Other Rates of Change

Suppose y is a quantity that depends on another quantity x. Thus, y is a function of x and
we write y = f(x). If x changes from x, to x,, then the change in x (also called the incre-
ment of x) is

Ax = x, — x;



average rate of change = mpg

instantaneous rate of change =

slope of tangent at P

FIGURE 7

x (h) T (°C) x (h) T (°C)
0 6.5 13 16.0
1 6.1 14 17.3
2 5.6 15 18.2
3 4.9 16 18.8
4 4.2 17 17.6
5 4.0 18 16.0
6 4.0 19 14.1
7 4.8 20 11.5
8 6.1 21 10.2
9 8.3 22 9.0
10 10.0 23 79
11 12.1 24 7.0

12 14.3

[ ANOTE ON UNITS

The units for the average rate of change
AT/Ax are the units for AT divided by the
units for Ax, namely, degrees Celsius per hour.
The instantaneous rate of change is the limit of
the average rates of change, so it is measured
in the same units: degrees Celsius per hour.

and the corresponding change in y is

Ay = f(x2) — f(x1)
The difference quotient

Ay _ f) = flx)

Ax X2 — Xi

is called the average rate of change of y with respect to x over the interval [x, x,] and
can be interpreted as the slope of the secant line PQ in Figure 7.

By analogy with velocity, we consider the average rate of change over smaller and
smaller intervals by letting x, approach x, and therefore letting Ax approach 0. The limit
of these average rates of change is called the (instantaneous) rate of change of y with
respect to x at x = x;, which is interpreted as the slope of the tangent to the curve y = f(x)

at P(X],f(xl))l

A x) — flx
(4] instantaneous rate of change = lim =Y — fim M
Ax—0 Ax Xy X X2 — X1

EXAMPLE 5 Temperature readings 7 (in degrees Celsius) were recorded every hour start-
ing at midnight on a day in April in Whitefish, Montana. The time x is measured in hours
from midnight. The data are given in the table at the left.
(a) Find the average rate of change of temperature with respect to time
(i) from noon to 3 P.M. (i) from noon to 2 P.M.
(iii) from noon to 1 P.M.
(b) Estimate the instantaneous rate of change at noon.

SOLUTION
(a) (i) From noon to 3 p.M. the temperature changes from 14.3°C to 18.2°C, so

AT =T(15) — T(12) = 18.2 — 14.3 = 3.9°C

while the change in time is Ax = 3 h. Therefore, the average rate of change of
temperature with respect to time is

AT 39
= 22— 13°%C/h
Ax 3 /

(i) From noon to 2 p.M. the average rate of change is

AT T(14) - T(12) 173 — 143

= 1.5°C/h
Ax 14— 12 2 /
(iii) From noon to 1 p.M. the average rate of change is
AT T(13) — T(12 16.0 — 14.3

Ax 13— 12 1

(b) We plot the given data in Figure 8 and use them to sketch a smooth curve that
approximates the graph of the temperature function. Then we draw the tangent at the
point P where x = 12 and, after measuring the sides of triangle ABC, we estimate that



[IIl" Another method is to average the slopes of
two secant lines. See Example 2 in Section 2.1.

2.7 Exercises

FIGURE 8

the slope of the tangent line is

[BC| _ 103 _ o
AC| 55

Therefore, the instantaneous rate of change of temperature with respect to time at noon
is about 1.9°C/h.
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The velocity of a particle is the rate of change of displacement with respect to time.
Physicists are interested in other rates of change as well—for instance, the rate of change
of work with respect to time (which is called power). Chemists who study a chemical reac-
tion are interested in the rate of change in the concentration of a reactant with respect to
time (called the rate of reaction). A steel manufacturer is interested in the rate of change
of the cost of producing x tons of steel per day with respect to x (called the marginal cost).
A biologist is interested in the rate of change of the population of a colony of bacteria with
respect to time. In fact, the computation of rates of change is important in all of the nat-
ural sciences, in engineering, and even in the social sciences. Further examples will be
given in Section 3.3.

All these rates of change can be interpreted as slopes of tangents. This gives added sig-
nificance to the solution of the tangent problem. Whenever we solve a problem involving
tangent lines, we are not just solving a problem in geometry. We are also implicitly solv-
ing a great variety of problems involving rates of change in science and engineering.

1. A curve has equation y = f(x). y
(a) Write an expression for the slope of the secant line through
the points P(3, f(3)) and Q(x, f(x)).
(b) Write an expression for the slope of the tangent line at P.
2. Suppose an object moves with position function s = f(7).
(a) Write an expression for the average velocity of the object in
the time interval fromt=atot=a + h.
(b) Write an expression for the instantaneous velocity at 0 Y
time t = a.
¥ 4. Graph the curve y = e* in the viewing rectangles [—1, 1] by
3. Consider the slope of the given curve at each of the five points [0,2],[—0.5,0.5] by [0.5, 1.5], and [ 0.1, 0.1] by [0.9, 1.1].
shown. List these five slopes in decreasing order and explain What do you notice about the curve as you zoom in toward the

your reasoning.

point (0, 1)?



5.

A

6.

A

(a) Find the slope of the tangent line to the parabola
y = x* + 2x at the point (=3, 3)
(i) using Definition 1
(i1) using Equation 2

(b) Find an equation of the tangent line in part (a).

(c) Graph the parabola and the tangent line. As a check on your
work, zoom in toward the point (—3, 3) until the parabola
and the tangent line are indistinguishable.

(a) Find the slope of the tangent line to the curve y = x* at the
point (—1, —1)
(1) using Definition 1
(ii) using Equation 2

(b) Find an equation of the tangent line in part (a).

(c) Graph the curve and the tangent line in successively smaller
viewing rectangles centered at (—1, —1) until the curve and
the line appear to coincide.

7-10 i Find an equation of the tangent line to the curve at the
given point.

7.
8.
9.
10.

Y
1<

y=1+2x—x° (1,2
y=v2x+1, 43
y=&=-D/(x-2), 3,2
y=2x/(x+ 1) (0,0

o o o o o o o o o o o

. (a) Find the slope of the tangent to the curve y = 2/(x + 3) at

the point where x = a.
(b) Find the slopes of the tangent lines at the points whose
x-coordinates are (i) —1, (ii) 0, and (iii) 1.

. (a) Find the slope of the tangent to the parabola

y = 1 4+ x 4+ x? at the point where x = a.

(b) Find the slopes of the tangent lines at the points whose
x-coordinates are (i) —1, (ii) —, and (iii) 1.

(c) Graph the curve and the three tangents on a common
screen.

. (a) Find the slope of the tangent to the curve y = x* — 4x + 1

at the point where x = a.

(b) Find equations of the tangent lines at the points (1, —2)
and (2, 1).

(c) Graph the curve and both tangents on a common screen.

. (a) Find the slope of the tangent to the curve y = 1/ V/x at the

point where x = a.
(b) Find equations of the tangent lines at the points (1, 1) and
(4.5).

(c) Graph the curve and both tangents on a common screen.

. The graph shows the position function of a car. Use the shape

of the graph to explain your answers to the following
questions.

(a) What was the initial velocity of the car?

(b) Was the car going faster at B or at C?

16.

20.

21.

(c) Was the car slowing down or speeding up at A, B, and C?
(d) What happened between D and E?

N

D E

Valerie is driving along a highway. Sketch the graph of the
position function of her car if she drives in the following man-
ner: At time ¢ = 0, the car is at mile marker 15 and is traveling
at a constant speed of 55 mi/h. She travels at this speed for
exactly an hour. Then the car slows gradually over a 2-minute
period as Valerie comes to a stop for dinner. Dinner lasts

26 min; then she restarts the car, gradually speeding up to

65 mi/h over a 2-minute period. She drives at a constant

65 mi/h for two hours and then over a 3-minute period gradu-
ally slows to a complete stop.

. If a ball is thrown into the air with a velocity of 40 ft/s, its

height (in feet) after ¢ seconds is given by y = 40t — 16¢°.
Find the velocity when t = 2.

. If an arrow is shot upward on the moon with a velocity of

58 m/s, its height (in meters) after ¢ seconds is given by
H = 58t — 0.83t%

(a) Find the velocity of the arrow after one second.

(b) Find the velocity of the arrow when 7 = a.

(c¢) When will the arrow hit the moon?

(d) With what velocity will the arrow hit the moon?

. The displacement (in meters) of a particle moving in a straight

line is given by the equation of motion s = 4¢* + 61 + 2,
where 7 is measured in seconds. Find the velocity of the par-
ticle attimes t = a,t = 1,1 =2, and r = 3.

The displacement (in meters) of a particle moving in a straight
line is given by s = > — 8¢ + 18, where 7 is measured in
seconds.

(a) Find the average velocity over each time interval:

(1) [3,4] (ii) [3.5,4]
(iii) [4, 5] (iv) [4,4.5]

(b) Find the instantaneous velocity when ¢t = 4.

(c) Draw the graph of s as a function of ¢ and draw the secant
lines whose slopes are the average velocities in part (a) and
the tangent line whose slope is the instantaneous velocity in
part (b).

A warm can of soda is placed in a cold refrigerator. Sketch the
graph of the temperature of the soda as a function of time. Is
the initial rate of change of temperature greater or less than the
rate of change after an hour?



22

23.

24,

25.

A roast turkey is taken from an oven when its temperature has
reached 185°F and is placed on a table in a room where the
temperature is 75°F. The graph shows how the temperature of
the turkey decreases and eventually approaches room tempera-
ture. (In Section 9.4 we will be able to use Newton’s Law of
Cooling to find an equation for 7" as a function of time.) By
measuring the slope of the tangent, estimate the rate of change
of the temperature after an hour.

T (°F)
200
oy
100 ——
0 30 60 90 120 150 ¢ (min)

(a) Use the data in Example 5 to find the average rate of
change of temperature with respect to time
(i) from 8 M. to 11 P.M.
(i) from 8 p.M. to 10 P.M.
(iii) from 8 P.M. to 9 P.M.
(b) Estimate the instantaneous rate of change of 7" with respect
to time at 8§ P.M. by measuring the slope of a tangent.

The population P (in thousands) of Belgium from 1992 to 2000
is shown in the table. (Midyear estimates are given.)

Year 1992 1994 1996 1998 2000

P 10,036 | 10,109 | 10,152 | 10,175 | 10,186

(a) Find the average rate of growth
(i) from 1992 to 1996
(i) from 1994 to 1996
(iii) from 1996 to 1998

In each case, include the units.

(b) Estimate the instantaneous rate of growth in 1996 by
taking the average of two average rates of change. What
are its units?

(c) Estimate the instantaneous rate of growth in 1996 by mea-
suring the slope of a tangent.

The number N (in thousands) of cellular phone subscribers in
Malaysia is shown in the table. (Midyear estimates are given.)

Year 1993 1994 1995 1996 1997

N 304 572 873 1513 2461

26.

27.

28.

(a) Find the average rate of growth
(i) from 1995 to 1997
(i) from 1995 to 1996
(iii) from 1994 to 1995

In each case, include the units.

(b) Estimate the instantaneous rate of growth in 1995 by
taking the average of two average rates of change. What
are its units?

(c) Estimate the instantaneous rate of growth in 1995 by mea-
suring the slope of a tangent.

The number N of locations of a popular coffeehouse chain is
given in the table. (The numbers of locations as of June 30 are
given.)

Year 1996 1997 1998 1999 2000

N 1015 1412 1886 2135

(a) Find the average rate of growth
(i) from 1996 to 1998
(i) from 1997 to 1998
(iii) from 1998 to 1999

In each case, include the units.

(b) Estimate the instantaneous rate of growth in 1998 by
taking the average of two average rates of change. What
are its units?

(c) Estimate the instantaneous rate of growth in 1998 by mea-
suring the slope of a tangent.

The cost (in dollars) of producing x units of a certain com-

modity is C(x) = 5000 + 10x + 0.05x

(a) Find the average rate of change of C with respect to x when
the production level is changed
(i) from x = 100 to x = 105
(i) from x = 100 to x = 101

(b) Find the instantaneous rate of change of C with respect to x
when x = 100. (This is called the marginal cost. Its signifi-
cance will be explained in Section 3.3.)

If a cylindrical tank holds 100,000 gallons of water, which can
be drained from the bottom of the tank in an hour, then Torri-

celli’s Law gives the volume V of water remaining in the tank
after 1 minutes as

2
V() = 100,000(1 - t) 0=<r=<060
60

Find the rate at which the water is flowing out of the tank (the
instantaneous rate of change of V with respect to 7) as a func-
tion of 7. What are its units? For times ¢ = 0, 10, 20, 30, 40, 50,
and 60 min, find the flow rate and the amount of water remain-
ing in the tank. Summarize your findings in a sentence or two.
At what time is the flow rate the greatest? The least?



2.8 Derivalives

[l f'(a) is read “fprime of d'

Try problems like this one.
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In Section 2.7 we defined the slope of the tangent to a curve with equation y = f(x) at the
point where x = a to be

m o St W)~ @

) h

We also saw that the velocity of an object with position function s = f(¢) at time 7 = a is

In fact, limits of the form

i fla +h) — fla)
hlgé h

arise whenever we calculate a rate of change in any of the sciences or engineering, such as
a rate of reaction in chemistry or a marginal cost in economics. Since this type of limit
occurs so widely, it is given a special name and notation.

[2] Definition The derivative of a function f at a number a, denoted by f'(a), is

fla +h) — fla)

fa) = lim h

if this limit exists.

If we write x = a + h,thenh = x — aand h approaches 0 if and only if x approaches
a. Therefore, an equivalent way of stating the definition of the derivative, as we saw in
finding tangent lines, is

f(x) — fla)
X

—da

[3] f'(@) = lim

EXAMPLE 1 Find the derivative of the function f(x) = x*> — 8x + 9 at the number a.
SOLUTION From Definition 2 we have

e — i L0 S @)

h

. [l@+ h?—8a+ h)+ 9] —[a* — 8a + 9]
= lim

h—0 h

a’+2ah+h*—8a—8h+9—a*+ 8 —9
= lim

h—0 h

. 2ah+ h*— 8h .
=lim———=1mQ2a + h — 8)

h—0 h h—0

=2a — 8 ]



FIGURE 1

Geometric interpretation
of the derivative

y=x*—8x+9
0 X
(3,-6)
y=-2x
FIGURE 2

|||| Interpretation of the Derivative as the Slope of a Tangent

In Section 2.7 we defined the tangent line to the curve y = f(x) at the point P(a, f(a)) to
be the line that passes through P and has slope m given by Equation 1. Since, by Defini-
tion 2, this is the same as the derivative f'(a), we can now say the following.

The tangent line to y = f(x) at (a, f(a)) is the line through (a, f(a)) whose slope is
equal to f'(a), the derivative of f at a.

Thus, the geometric interpretation of a derivative [as defined by either (2) or (3)] is as
shown in Figure 1.

y
0
\——/ a a+h X
. fla+h-fa . ) fa)
@ f'f@) =lim == (b) f'(@) = lim ——
= slope of tangent at P = slope of tangent at P
= slope of curve at P = slope of curve at P

If we use the point-slope form of the equation of a line, we can write an equation of the
tangent line to the curve y = f(x) at the point (a, f(a)):

y = fla) = fa)(x — a)

EXAMPLE 2 Find an equation of the tangent line to the parabola y = x> — 8x + 9 at the
point (3, —6).

SOLUTION From Example 1 we know that the derivative of f(x) = x* — 8x + 9 at the
number a is f'(a) = 2a — 8. Therefore, the slope of the tangent line at (3, —6) is
f'(3) = 2(3) — 8 = —2. Thus, an equation of the tangent line, shown in Figure 2, is

y—(=6)=(=2)(x—3) or y=-2x —

EXAMPLE 3 Let f(x) = 2*. Estimate the value of f'(0) in two ways:

(a) By using Definition 2 and taking successively smaller values of 4.

(b) By interpreting f'(0) as the slope of a tangent and using a graphing calculator to
zoom in on the graph of y = 2%,

SOLUTION
(a) From Definition 2 we have

fB) —f©) _ 2"~ 1

f (O) - 111153 h h—0 h



2h—1
h
h

0.1 0.718
0.01 0.696
0.001 0.693
0.0001 0.693
—0.1 0.670
—0.01 0.691
—0.001 0.693
—0.0001 0.693

Since we are not yet able to evaluate this limit exactly, we use a calculator to approxi-
mate the values of (2" — 1)/h. From the numerical evidence in the table at the left we
see that as h approaches 0, these values appear to approach a number near 0.69. So our
estimate is

£(0) = 0.69

(b) In Figure 3 we graph the curve y = 2 and zoom in toward the point (0, 1). We see
that the closer we get to (0, 1), the more the curve looks like a straight line. In fact, in
Figure 3(c) the curve is practically indistinguishable from its tangent line at (0, 1). Since
the x-scale and the y-scale are both 0.01, we estimate that the slope of this line is

0.14

= 0.7
0.20

So our estimate of the derivative is f'(0) = 0.7. In Section 3.5 we will show that, correct
to six decimal places, f'(0) = 0.693147.

/

0. 1)

ﬁ P (0, 1)

(@ [~1,1]by [0,2] (b) [0.5,0.5] by [0.5, 1.5] (¢) [<0.1,0.1] by [0.9, 1.1]

FIGURE 3 Zooming in on the graph of y = 2" near (0, 1) -

|||| Interpretation of the Derivative as a Rafe of Change

In Section 2.7 we defined the instantaneous rate of change of y = f(x) with respect to x at
x = x; as the limit of the average rates of change over smaller and smaller intervals. If the
interval is [x, x»], then the change in x is Ax = x, — x,, the corresponding change in y is

Ay = f(x2) = f(x1)

and

A x2) — fx
(4] instantaneous rate of change = lim 2 - lim M
Ax—0 Ax X X2 — Xj

From Equation 3 we recognize this limit as being the derivative of f at x;, that is, f'(x)).
This gives a second interpretation of the derivative:

The derivative f'(a) is the instantaneous rate of change of y = f(x) with respect to
x when x = a.

The connection with the first interpretation is that if we sketch the curve y = f(x), then
the instantaneous rate of change is the slope of the tangent to this curve at the point where



/

FIGURE 4
The y-values are changing rapidly
at P and slowly at Q.

In Module 2.8 you are asked to compare
and order the slopes of tangent and

secant lines at several points on a curve.

x = a. This means that when the derivative is large (and therefore the curve is steep, as at
the point P in Figure 4), the y-values change rapidly. When the derivative is small, the
curve is relatively flat and the y-values change slowly.

In particular, if s = f(¢) is the position function of a particle that moves along a straight
line, then f'(a) is the rate of change of the displacement s with respect to the time z. In
other words, f'(a) is the velocity of the particle at time t = a. (See Section 2.7.) The speed
of the particle is the absolute value of the velocity, that is, | f'(a) |.

EXAMPLE 4 The position of a particle is given by the equation of motion
s = f(@) = 1/(1 + 1), where 1 is measured in seconds and s in meters. Find the velocity
and the speed after 2 seconds.

SOLUTION The derivative of f when t = 2 is

1 1
2+ h) — f2 1+Q+h 142
') = limM = lim ( )

h—0 h h—0 h
1 _l 3—-3+h)

. 3+h . 3(3 + h)

= lim = lim

h—0 h h—0 h

—h -1 1

—lm——— = lim———— = ——
033 + Wk i 33 + h) 9

Thus, the velocity after 2 seconds is f'(2) = —3 m/s, and the speed is

[F@]=l=s|=sms.

EXAMPLE 5 A manufacturer produces bolts of a fabric with a fixed width. The cost of
producing x yards of this fabric is C = f(x) dollars.

(a) What is the meaning of the derivative f'(x)? What are its units?

(b) In practical terms, what does it mean to say that f'(1000) = 9?

(¢) Which do you think is greater, f'(50) or f'(500)? What about f'(5000)?

SOLUTION
(a) The derivative f’(x) is the instantaneous rate of change of C with respect to x; that
is, f'(x) means the rate of change of the production cost with respect to the number of
yards produced. (Economists call this rate of change the marginal cost. This idea is dis-
cussed in more detail in Sections 3.3 and 4.8.)

Because

, . AC
S0 = AI}TO Ax
the units for f'(x) are the same as the units for the difference quotient AC/Ax. Since
AC is measured in dollars and Ax in yards, it follows that the units for f'(x) are dollars
per yard.
(b) The statement that f'(1000) = 9 means that, after 1000 yards of fabric have been

manufactured, the rate at which the production cost is increasing is $9/yard. (When
x = 1000, C is increasing 9 times as fast as x.)



[IIl' Here we are assuming that the cost function
is well behaved; in other words, C(x) doesn't
oscillate rapidly near x = 1000.

t

D(t)

1980
1985
1990
1995
2000

930.2
1945.9
32333
4974.0
5674.2

[IIl Anather method is to plot the debt function
and estimate the slope of the tangent line when
t = 1990. (See Example 5 in Section 2.7.)

Since Ax = 1 is small compared with x = 1000, we could use the approximation

AC AC
f'(1000) =~ — = —— = AC
Ax 1

and say that the cost of manufacturing the 1000th yard (or the 1001st) is about $9.

(c) The rate at which the production cost is increasing (per yard) is probably lower
when x = 500 than when x = 50 (the cost of making the 500th yard is less than the cost
of the 50th yard) because of economies of scale. (The manufacturer makes more efficient
use of the fixed costs of production.) So

f'(50) > £'(500)

But, as production expands, the resulting large-scale operation might become inefficient
and there might be overtime costs. Thus, it is possible that the rate of increase of costs
will eventually start to rise. So it may happen that

£'(5000) > £'(500) -

The following example shows how to estimate the derivative of a tabular function, that
is, a function defined not by a formula but by a table of values.

EXAMPLE 6 Let D(r) be the U.S. national debt at time ¢. The table in the margin gives
approximate values of this function by providing end of year estimates, in billions of
dollars, from 1980 to 2000. Interpret and estimate the value of D’(1990).

SOLUTION The derivative D'(1990) means the rate of change of D with respect to 1 when
t = 1990, that is, the rate of increase of the national debt in 1990.
According to Equation 3,

_ D) — D(1990)
D'(1990) = lim ——————2
(1990) = lim r — 1990

So we compute and tabulate values of the difference quotient (the average rates of
change) as follows.

D(t) — D(1990)
! t — 1990
1980 230.31
1985 257.48
1995 348.14
2000 244.09

From this table we see that D'(1990) lies somewhere between 257.48 and 348.14 billion
dollars per year. [Here we are making the reasonable assumption that the debt didn’t
fluctuate wildly between 1980 and 2000.] We estimate that the rate of increase of the
national debt of the United States in 1990 was the average of these two numbers, namely

D’(1990) = 303 billion dollars per year ]



2.8 Exercises

1. On the given graph of f, mark lengths that represent f(2),
f(2 + h), f(2 + h) — f(2), and h. (Choose & > 0.) What
fe+ 1) =)

line has slope N

(=]

[ "

2. For the function f whose graph is shown in Exercise 1, arrange

the following numbers in increasing order and explain your
reasoning:

0 @ fB) -f2  s[f@ - f@)]

3. For the function g whose graph is given, arrange the following
numbers in increasing order and explain your reasoning:

0 g2 40 g g'4)
y
y=g)
o 0 2

4. If the tangent line to y = f(x) at (4, 3) passes through the point

(0, 2), find £(4) and £'(4).

5. Sketch the graph of a function f for which £(0) = 0, f'(0) = 3,

f'(1) =0, and f'2) = —1.

6. Sketch the graph of a function g for which ¢g(0) = 0, ¢'(0) = 3,

g'(1) = 0,and g'(2) = 1.

7. If f(x) = 3x* — 5x, find £'(2) and use it to find an equation
of the tangent line to the parabola y = 3x* — 5x at the
point (2, 2).

8. If g(x) = 1 — x?, find ¢'(0) and use it to find an equation of the

tangent line to the curve y = 1 — x? at the point (0, 1).

9. (a) If F(x) = x* — 5x + 1, find F'(1) and use it to find an
equation of the tangent line to the curve y = x* — 5x + 1
at the point (1, —3).

Y
K<

on the same screen.

(b) Mlustrate part (a) by graphing the curve and the tangent line

A

A

10. (a) If G(x) = x/(1 + 2x), find G'(a) and use it to find an equa-
tion of the tangent line to the curve y = x/(1 + 2x) at the
point (—3, —3).
(b) Illustrate part (a) by graphing the curve and the tangent line
on the same screen.

11. Let f(x) = 3*. Estimate the value of f'(1) in two ways:
(a) By using Definition 2 and taking successively smaller
values of h.
(b) By zooming in on the graph of y = 3" and estimating the
slope.

12. Let g(x) = tan x. Estimate the value of g'(7/4) in two ways:
(a) By using Definition 2 and taking successively smaller
values of h.
(b) By zooming in on the graph of y = tan x and estimating the
slope.

13-18 i Find f'(a).

13. f(x) =3 — 2x + 4x? 14. f(1)=1t*— 5t

15 f() = 2::31 16, f(x) = ’;f;
17. f(x) = 18. f(x) =+/3x+ 1

x+2

o o o o o o o o o o o o

19-24 1 Each limit represents the derivative of some function f at
some number a. State such an f and « in each case.

I+m°—1 Y16 + h — 2
19. lim¥ 20. im———
h—0 h h—0 h
2% — 32 tan x — 1
21. lim —— = 22, lim X~
=5 x—5 x—n/s x — /4

+h) +
93] fim ST M L 2,

h—0 h

th+r—2
t—1

lim

t—1

o o o o

25-26 11 A particle moves along a straight line with equation of
motion s = f(¢), where s is measured in meters and 7 in seconds.
Find the velocity when ¢ = 2.

25. fo)=t*—6t—5 26. f()=2—t+1

o o o o o o o o o o o o

27. The cost of producing x ounces of gold from a new gold mine
is C = f(x) dollars.
(a) What is the meaning of the derivative f'(x)? What are its
units?
(b) What does the statement f'(800) = 17 mean?
(¢) Do you think the values of f'(x) will increase or decrease
in the short term? What about the long term? Explain.



28.

29.

30.

31.

32.

The number of bacteria after ¢ hours in a controlled laboratory

experiment is n = f(z).

(a) What is the meaning of the derivative f'(5)? What are its
units?

(b) Suppose there is an unlimited amount of space and
nutrients for the bacteria. Which do you think is larger,
f'(5) or £'(10)? If the supply of nutrients is limited, would
that affect your conclusion? Explain.

The fuel consumption (measured in gallons per hour) of a car

traveling at a speed of v miles per hour is ¢ = f(v).

(a) What is the meaning of the derivative f'(v)? What are its
units?

(b) Write a sentence (in layman’s terms) that explains the
meaning of the equation f'(20) = —0.05.

The quantity (in pounds) of a gourmet ground coffee that is

sold by a coffee company at a price of p dollars per pound

is 0 =f(p).

(a) What is the meaning of the derivative f'(8)? What are its
units?

(b) Is f'(8) positive or negative? Explain.

Let 7(¢) be the temperature (in °F) in Dallas 7 hours after mid-
night on June 2, 2001. The table shows values of this function
recorded every two hours. What is the meaning of 7’ (10)?
Estimate its value.

t 0 2 4 6 8 10 12 14

T 73 73 70 69 72 81 88 91

Life expectancy improved dramatically in the 20th century. The
table gives values of E(z), the life expectancy at birth (in years)
of a male born in the year ¢ in the United States. Interpret and
estimate the values of E£'(1910) and E'(1950).

t E(7) t E(1)
1900 48.3 1960 66.6
1910 51.1 1970 67.1
1920 55.2 1980 70.0
1930 57.4 1990 71.8
1940 62.5 2000 74.1
1950 65.6

WRITING PROJECT

33.

34,

The quantity of oxygen that can dissolve in water depends on
the temperature of the water. (So thermal pollution influences
the oxygen content of water.) The graph shows how oxygen
solubility S varies as a function of the water temperature 7.
(a) What is the meaning of the derivative S'(7)? What are its
units?
(b) Estimate the value of S'(16) and interpret it.
S
(mg/L)
161

127

8+

16 24 32 40 T(°C)

The graph shows the influence of the temperature 7 on the

maximum sustainable swimming speed S of Coho salmon.

(a) What is the meaning of the derivative S'(T')? What are its
units?

(b) Estimate the values of S’(15) and S'(25) and interpret them.

S

(cm/s)
20+

(=]
—
=]
(3]
S

35-36 I Determine whether f'(0) exists.

35.

36.

1

xsin— if x#0
fx) = x

0 if x=0

, .

x“sin— if x#0
fx) = x

0 if x=0

Early Methods for Finding Tangents

The first person to formulate explicitly the ideas of limits and derivatives was Sir Isaac Newton in
the 1660s. But Newton acknowledged that “If I have seen further than other men, it is because I
have stood on the shoulders of giants.” Two of those giants were Pierre Fermat (1601-1665) and
Newton’s teacher at Cambridge, Isaac Barrow (1630—1677). Newton was familiar with the methods
that these men used to find tangent lines, and their methods played a role in Newton’s eventual

formulation of calculus.



The following references contain explanations of these methods. Read one or more of the
references and write a report comparing the methods of either Fermat or Barrow to modern meth-
ods. In particular, use the method of Section 2.8 to find an equation of the tangent line to the
curve y = x> 4+ 2x at the point (1, 3) and show how either Fermat or Barrow would have solved
the same problem. Although you used derivatives and they did not, point out similarities between
the methods.

1. Carl Boyer and Uta Merzbach, A History of Mathematics (New York: Wiley, 1989),
pp. 389, 432.

2. C. H. Edwards, The Historical Development of the Calculus (New York: Springer-Verlag,
1979), pp. 124, 132.

3. Howard Eves, An Introduction to the History of Mathematics, 6th ed. (New York: Saunders,
1990), pp. 391, 395.

4. Morris Kline, Mathematical Thought from Ancient to Modern Times (New York: Oxford
University Press, 1972), pp. 344, 346.

2.9 The Derivative as a Function

FIGURE 1

In the preceding section we considered the derivative of a function f at a fixed number a:

] f'a) = lim fla + f;l) — fla)

Here we change our point of view and let the number a vary. If we replace a in Equation 1
by a variable x, we obtain

S+ h) — fx)

[2] [ = lim P

Given any number x for which this limit exists, we assign to x the number f'(x). So we can
regard f' as a new function, called the derivative of f and defined by Equation 2. We
know that the value of f” at x, f'(x), can be interpreted geometrically as the slope of the
tangent line to the graph of f at the point (x, f(x)).

The function f” is called the derivative of f because it has been “derived” from f by
the limiting operation in Equation 2. The domain of f” is the set {x | f'(x) exists} and may
be smaller than the domain of f.

EXAMPLE 1 The graph of a function f is given in Figure 1. Use it to sketch the graph of
the derivative f'.




Watch an animation of the relation between a
function and its derivative.
= Resources / Module 3
Jm / Derivatives as Functions
L. / Mars Rover
Resources / Module 3

Jm / Slope-a-Scope
.

/ Derivative of a Cubic

[IIl" Notice that where the derivative is positive
(to the right of C and between A and B), the
function f is increasing. Where f'(x) is negative
(to the left of A and between B and C), f is
decreasing. In Section 4.3 we will prove that this
is true for all functions.

FIGURE 2

SOLUTION We can estimate the value of the derivative at any value of x by drawing the
tangent at the point (x, f(x)) and estimating its slope. For instance, for x = 5 we draw the
tangent at P in Figure 2(a) and estimate its slope to be about 3 , so f'(5) = 1.5. This
allows us to plot the point P'(5, 1.5) on the graph of /" directly beneath P. Repeating
this procedure at several points, we get the graph shown in Figure 2(b). Notice that the
tangents at A, B, and C are horizontal, so the derivative is O there and the graph of f’
crosses the x-axis at the points A’, B’, and C’, directly beneath A, B, and C. Between A
and B the tangents have positive slope, so f'(x) is positive there. But between B and C
the tangents have negative slope, so f'(x) is negative there.

y
B
17 y=fx)
A P
0 } } } 5 >
C

(a)

y
P'(5,1.5)
14 y=f'x)
B, I I I

0 A’ C’' 5 X

(b) —

If a function is defined by a table of values, then we can construct a table of approxi-
mate values of its derivative, as in the next example.



t B(1)
1980 9,847
1982 9,856
1984 9,855
1986 9,862
1988 9,884
1990 9,962
1992 10,036
1994 10,109
1996 10,152
1998 10,175
2000 10,186

t B'(1)

1980 4.5

1982 2.0

1984 1.5

1986 7.3

1988 25.0

1990 38.0

1992 36.8

1994 29.0

1996 16.5

1998 8.5

2000 5.5

[IIl" Figure 3 illustrates Example 2 by showing
graphs of the population function B(¢) and its
derivative B'(¢). Notice how the rate of popu-
lation growth increases to a maximum in 1990
and decreases thereafter.

FIGURE 3

EXAMPLE 2 Let B(z) be the population of Belgium at time ¢. The table at the left gives
midyear values of B(7), in thousands, from 1980 to 2000. Construct a table of values for
the derivative of this function.

SOLUTION We assume that there were no wild fluctuations in the population between the
stated values. Let’s start by approximating B'(1988), the rate of increase of the popula-
tion of Belgium in mid-1988. Since
B(1988 + h) — B(1988)

h

B'(1988) = lim

we have
B(1988 + h) — B(1988)

h

B'(1988) ~

for small values of .
For h = 2, we get

B(1990) — B(1988) 9962 — 9884

B'(1988) = 39
(1988) 3 3
(This is the average rate of increase between 1988 and 1990.) For i = —2, we have
B(1986) — B(1988 9862 — 9884
B'(1988) = ( ) ( ) = =11

-2 -2

which is the average rate of increase between 1986 and 1988. We get a more accurate
approximation if we take the average of these rates of change:

B'(1988) =~ (39 + 11) = 25

This means that in 1988 the population was increasing at a rate of about 25,000 people
per year.
Making similar calculations for the other values (except at the endpoints), we get the
table at the left, which shows the approximate values for the derivative. ]
y

10,200 +
10,100 +
10,000 +
9900 +
9,800 +

4
t

4 4 4 4
t t t t

1988 1992 1996 2000 !

1984

1980

30+
20+

10 +

y 4 4 4 4
t t t t t

1980 1984 1988 1992 1996 2000 !




2 EXAMPLE 3

(a) If f(x) = x* — x, find a formula for f'(x).
f (b) Illustrate by comparing the graphs of f and f'.
-2 2 SOLUTION
(a) When using Equation 2 to compute a derivative, we must remember that the variable
is & and that x is temporarily regarded as a constant during the calculation of the limit.
-2
P i € ) M 4 G I (€ o ) bl € o ) Bl E it
f'(x) = lim = lim
2 h—0 h h—0 h
5 oy X+ 3x°h+3xh*+ R —x—h—x*+x
hl—% h
-2 2
/ 3%+ 3xh+ R —h
= lim
h—0 h
) =%irr(1)(3x2+3xh+h2—l)=3x2—l
FIGURE 4
(b) We use a graphing device to graph f and f’ in Figure 4. Notice that f'(x) = 0 when
/ has horizontal tangents and f’(x) is positive when the tangents have positive slope. So
these graphs serve as a check on our work in part (a). ]
EXAMPLE 4 If f(x) = +/x — 1, find the derivative of f. State the domain of f.
See more problems like these. SOLUTION
= Resources / Module 3 +h) —
J‘Lm / How to Calculate f'(x) = lim St h) —f)
- / The Essential Examples h—0 h
CoVxt+h—1-—Yx—1
= lim
h—0 h
i Jx+h—-1—yx—1 Jx+h—1+x—1
- ra 1 aly o . = lm .
Here we rationalize the numerator m h \/x T -1+ \/x —1

i x+h—1)—x-1)

= lim

=0 h(Jx + h— 1+ x—1)
li !

= lim
=0 x +h— 1+ Jx—1

_ 1 B 1
Vr—1++Jx—1 24x — 1

We see that f'(x) exists if x > 1, so the domain of f” is (1, ). This is smaller than
the domain of f, which is [1, ).

Let’s check to see that the result of Example 4 is reasonable by looking at the graphs of
f and f' in Figure 5. When x is close to 1, v/x — 1 is close to 0, so f'(x) = 1/(2/x — 1)
is very large; this corresponds to the steep tangent lines near (1, 0) in Figure 5(a) and the
large values of f’(x) just to the right of 1 in Figure 5(b). When x is large, f'(x) is very
small; this corresponds to the flatter tangent lines at the far right of the graph of f and the
horizontal asymptote of the graph of f’.



0 1 X 0 1 X
1
FIGURE 5 =Jx—1 (x) =
(@) f(x)=/x ® 0 =37
. ) 1 —x
EXAMPLE 5 Find f' if f(x) =
2+ x
+ h) —
SOLUTION f1x) = lim w

l-—(x+h 1-x
2+ (x+h 2+x

= lim
h—0 h
.
Ul e =lim(l—x—h)(2+x)—(1—x)(2+x-|—h)
bd e h=0 hQ2 + x + h)(2 + x)
i Q2—x—-2h—x"—xh)— 2 —x+h—x>—xh)
= um
it h2 + x + W2 + x)
. —3h
= 1nm
=0 h(2 + x + h)(2 + x)
i -3 3
= l1m = —
-0 (2 +x+ h)(Q2 + x) (2 + x)?

|||| Other Nofations

If we use the traditional notation y = f(x) to indicate that the independent variable is x and
the dependent variable is y, then some common alternative notations for the derivative are
as follows:

F =y =2 Ly~ pr) = Dos)

The symbols D and d/dx are called differentiation operators because they indicate the
operation of differentiation, which is the process of calculating a derivative.

The symbol dy/dx, which was introduced by Leibniz, should not be regarded as a ratio
(for the time being); it is simply a synonym for f'(x). Nonetheless, it is a very useful and
suggestive notation, especially when used in conjunction with increment notation.
Referring to Equation 2.8.4, we can rewrite the definition of derivative in Leibniz notation
in the form
B _ o Y

= lim
dx  a—0 Ax



[l Gottfried Wilhelm Leibniz was born in
Leipzig in 1646 and studied law, theology,
philosophy, and mathematics at the university
there, graduating with a bachelor’s degree at age
17. After earning his doctorate in law at age 20,
Leibniz entered the diplomatic service and spent
most of his life traveling to the capitals of Europe
on political missions. In particular, he worked to
avert a French military threat against Germany
and attempted to reconcile the Catholic and
Protestant churches.

His serious study of mathematics did not
begin until 1672 while he was on a diplomatic
mission in Paris. There he built a calculating
machine and met scientists, like Huygens, who
directed his attention to the latest developments
in mathematics and science. Leibniz sought to
develop a symbolic logic and system of notation
that would simplify logical reasoning. In particu-
lar, the version of calculus that he published in
1684 established the notation and the rules for
finding derivatives that we use today.

Unfortunately, a dreadful priority dispute arose
in the 1690s between the followers of Newton
and those of Leibniz as to who had invented
calculus first. Leibniz was even accused of
plagiarism by members of the Royal Society in
England. The truth is that each man invented
calculus independently. Newton arrived at his
version of calculus first but, because of his fear
of controversy, did not publish it inmediately. So
Leibniz's 1684 account of calculus was the first
to be published.

If we want to indicate the value of a derivative dy/dx in Leibniz notation at a specific num-

ber a, we use the notation

dy
dx

dy
or e
x=a dx x=a

which is a synonym for f'(a).

[3] Definition A function f is differentiable at a if f'(a) exists. It is differentiable
on an open interval (a, b) [or (a, ) or (—, a) or (—, »)] if it is differentiable
at every number in the interval.

EXAMPLE 6 Where is the function f(x) = | x| differentiable?

SOLUTION If x > 0, then | x| = x and we can choose & small enough that x + & > 0 and

hence |x + h| = x + h. Therefore, for x > 0 we have

v e x| = x|
f'(x) = lim
+ J—
BTG ) e N T
h—0 h h—0 h h—0

and so f is differentiable for any x > 0.

Similarly, for x < 0 we have | x| = —x and h can be chosen small enough that
x+h<O0andso|x + h|= —(x + h). Therefore, for x < 0,
) — fig LE = x|
f'(x) = lim h
—(x+h — (- —h
N Y T e = -1
h—0 h h—0 h h—0

and so f is differentiable for any x < 0.
For x = 0 we have to investigate

SO+ n — f0)
h

_ . [0+ h|—]|0]
= lim h

f1(0) = lim
(if it exists)

Let’s compute the left and right limits separately:

|0+ n[—fof . [ . h_
lim lim lim lim 1 1
h—0+ h h—07 h—0t h h—0F
0O+ h|—10 h —h .
and lim | [ = [9] lim u = lim — = lim (1) = —1
h—0- h h—0- h —o- h h—0

Since these limits are different, f'(0) does not exist. Thus, f is differentiable at all x
except 0.



(@) y=fx)=|x|

(®) y=f'(x)
FIGURE 6

A formula for f’ is given by

f/(x):{l—l if x>0

if x<0

and its graph is shown in Figure 6(b). The fact that f'(0) does not exist is reflected geo-
metrically in the fact that the curve y = | x| does not have a tangent line at (0, 0).
[See Figure 6(a).] ]

Both continuity and differentiability are desirable properties for a function to have. The
following theorem shows how these properties are related.

[4] Theorem If f is differentiable at a, then f is continuous at a.

Proof To prove that f is continuous at a, we have to show that lim,_., f(x) = f(a). We
do this by showing that the difference f(x) — f(a) approaches 0.
The given information is that f is differentiable at a, that is,
a1 L8 @
i—a X —a

exists (see Equation 2.8.3). To connect the given and the unknown, we divide and multi-

ply f(x) — f(a) by x — a (which we can do when x # a):

1) — flay = LEZLD (g

Thus, using the Product Law and (2.8.3), we can write

tim [£09 — f@)] = tim L=
i LW @ (x — a)
x—a X — d x—a
=f'a)-0=0

To use what we have just proved, we start with f(x) and add and subtract f(a):
lim f(x) = lim [f(a) + (f(x) = f(a)]
= lim f(a) + lim [f(x) — f(a)]
= fla) + 0= f(a)
Therefore, f is continuous at a. -

NOTE - The converse of Theorem 4 is false; that is, there are functions that are continu-
ous but not differentiable. For instance, the function f(x) = |x| is continuous at 0 because

lim £(x) = lim | x| = 0 = £(0)

(See Example 7 in Section 2.3.) But in Example 6 we showed that f is not differentiable
at 0.



|||| How Can a Function Fail to Be Differentiable?

We saw that the function y = | x| in Example 6 is not differentiable at 0 and Figure 6(a)
shows that its graph changes direction abruptly when x = 0. In general, if the graph of a
function f has a “corner” or “kink” in it, then the graph of f has no tangent at this point

line limits are different.]

vertical tangent and f is not differentiable there. [In trying to compute f'(a), we find that the left and right

~ K, Theorem 4 gives another way for a function not to have a derivative. It says that if f is

a jump discontinuity) f fails to be differentiable.

is continuous at a and

0 a X l,im |f'(x)| — o

not continuous at a, then f is not differentiable at a. So at any discontinuity (for instance,

A third possibility is that the curve has a vertical tangent line when x = q; that is, f

FIGURE 7 This means that the tangent lines become steeper and steeper as x — a. Figure 7 shows
one way that this can happen; Figure 8(c) shows another. Figure 8 illustrates the three pos-

sibilities that we have discussed.

0 a X 0 a
FIGURE 8
Three ways for f not to be
differentiable at a (a) A corner (b) A discontinuity

(c) A vertical tangent

A graphing calculator or computer provides another way of looking at differentiability.
If f is differentiable at a, then when we zoom in toward the point (g, f(a)) the graph
straightens out and appears more and more like a line. (See Figure 9. We saw a specific
example of this in Figure 3 in Section 2.8.) But no matter how much we zoom in toward a
point like the ones in Figures 7 and 8(a), we can’t eliminate the sharp point or corner (see

Figure 10).

y y

0 ; X 0
FIGURE 9 FIGURE 10

f is differentiable at a. f is not differentiable at a.




2.9 Exercises

1-3 1 Use the given graph to estimate the value of each derivative. I y 1I y

Then sketch the graph of f'.
1. (a) f'(1) y H ‘ ‘ /\

(b) £2) |y=7w) 0 x 0 x
© £16) \
(d f'@)
LM 11 y v y
‘ 0 \ X 0 X
2 (a) f'0) V]
(b) f(1) \| y=fw)
© @) \ \ 5=13 1 Trace or copy the graph of the given function f. (Assume
, / that the axes have equal scales.) Then use the method of Example 1
@ G to sketch the graph of f’ below it.
(@) f'(4) —1 5. , 6. v
() £'5) ol 1 > /\{ /
3. (@ f'(=3) ‘ ‘ y 0 x
() f'(=2) y = f(‘x) 0 X
© F1(=1) 1
(d) f1(0) .
(e) f1(1) : Ly 8. ,
) f'2)
© ) / \ }
o o o o o o o o o o o 0 J X
0 X ——
4. Match the graph of each function in (a)—(d) with the graph of /
its derivative in I-IV. Give reasons for your choices.
@ y ) y - y 10. v
\ / J\\_/
0 \ X 0 X
0 X
0 X
11. ¥ 12. y
(© Y (d) Y
= T i Ta
0 X




o
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14. Shown is the graph of the population function P(¢) for yeast

cells in a laboratory culture. Use the method of Example 1 to
graph the derivative P'(¢). What does the graph of P’ tell us
about the yeast population?

P4 (yeast cells)

4 4

0 5 10 15 t(hours)

. The graph shows how the average age of first marriage of

Japanese men varied in the last half of the 20th century. Sketch
the graph of the derivative function M’(¢). During which years
was the derivative negative?

M

27 +

251

y y y y y y y y y y

1960 1970 1980 1990 !

16-18 11 Make a careful sketch of the graph of f and below it
sketch the graph of f' in the same manner as in Exercises 5-13.
Can you guess a formula for f’(x) from its graph?

16. f(x) = sinx
18. f(x) =Inx

A1n9.

17. f(x) =e"

o o o o o o o o o o

Let f(x) = x*

(a) Estimate the values of £'(0), f'(), £'(1), and f'(2) by
using a graphing device to zoom in on the graph of f.

(b) Use symmetry to deduce the values of f'(—1), f'(=1),
and f'(—2).

(c) Use the results from parts (a) and (b) to guess a formula
for f'(x).

(d) Use the definition of a derivative to prove that your guess in
part (c) is correct.

7 20.

Let f(x) = x°.

(a) Estimate the values of £'(0), f'(). f'(1), £'(2), and f'(3)
by using a graphing device to zoom in on the graph of f.

(b) Use symmetry to deduce the values of f'(—1), f'(=1),
f'(=2), and f'(=3).

(c) Use the values from parts (a) and (b) to graph f'.

(d) Guess a formula for f'(x).

(e) Use the definition of a derivative to prove that your guess in
part (d) is correct.

21-31 1 Find the derivative of the function using the definition of
derivative. State the domain of the function and the domain of its

derivative.
21. f(x) = 37 22. f(x) =12 + 7x
23. f(x) =1 — 3x? 2. f(x) =5x"+3x—2
25. f(x) =x>—3x+5 26. f(x) =x+ Jx
+
27. g(x) = V1 + 2x 28. f(x) = ]3 3x
- 3x
4t 1
0. GO =— 30. g) =3
3. f(x) =x*
32. (a) Sketch the graph of f(x) = /6 — x by starting with the

33.

34.

35.

graph of y = /x and using the transformations of Sec-
tion 1.3.

(b) Use the graph from part (a) to sketch the graph of f'.

(¢) Use the definition of a derivative to find f'(x). What are the
domains of fand f'?

(d) Use a graphing device to graph f’ and compare with your
sketch in part (b).

(@) If f(x) = x — (2/x), find f'(x).
(b) Check to see that your answer to part (a) is reasonable by
comparing the graphs of f and f'.

(a) If £(r) = 6/(1 + £%), find £'(¢).
(b) Check to see that your answer to part (a) is reasonable by
comparing the graphs of f and f'.

The unemployment rate U(¢) varies with time. The table (from
the Bureau of Labor Statistics) gives the percentage of unem-
ployed in the U.S. labor force from 1991 to 2000.

t Uy t Uy
1991 6.8 1996 5.4
1992 7.5 1997 4.9
1993 6.9 1998 4.5
1994 6.1 1999 4.2
1995 5.6 2000 4.0

(a) What is the meaning of U’(¢)? What are its units?
(b) Construct a table of values for U'(z).



36.

37.

38.

4 39.

4 40.

41.

Let P(t) be the percentage of Americans under the age of 18 at
time ¢. The table gives values of this function in census years
from 1950 to 2000.

t P(1) t P(t)

1950 31.1 1980 28.0
1960 35.7 1990 25.7
1970 34.0 2000 25.7

(a) What is the meaning of P'(z)? What are its units?

(b) Construct a table of values for P'(z).

(¢) Graph P and P'.

(d) How would it be possible to get more accurate values
for P'(¢)?

The graph of f is given. State, with reasons, the numbers at
which f is not differentiable.

y

V 2 4 6 8 10 kx

The graph of g is given.
(a) At what numbers is g discontinuous? Why?
(b) At what numbers is g not differentiable? Why?

Graph the function f(x) = x + \/m . Zoom in repeatedly, first
toward the point (—1, 0) and then toward the origin. What is
different about the behavior of f in the vicinity of these two
points? What do you conclude about the differentiability of f?

Zoom in toward the points (1, 0), (0, 1), and (—1, 0) on the
graph of the function g(x) = (x> — 1)**. What do you notice?
Account for what you see in terms of the differentiability of g.

Let f(x) = ¥x.
(a) If a # 0, use Equation 2.8.3 to find f'(a).
(b) Show that f'(0) does not exist.

Y
K<

42.

43.

44.

45.

46.

47.

48.

49.

(¢) Show that y = ¢/x has a vertical tangent line at (0, 0).
(Recall the shape of the graph of f. See Figure 13 in Sec-
tion 1.2.)

(a) If g(x) = x*3, show that ¢’(0) does not exist.

(b) If a # 0, find g'(a).

(c) Show that y = x** has a vertical tangent line at (0, 0).
(d) Tllustrate part (c) by graphing y = x>,

Show that the function f(x) = |x — 6| is not differentiable
at 6. Find a formula for f’ and sketch its graph.

Where is the greatest integer function f(x) = [x] not differen-
tiable? Find a formula for f’ and sketch its graph.

(a) Sketch the graph of the function f(x) = x|x|.
(b) For what values of x is f differentiable?
(¢) Find a formula for f'.

The left-hand and right-hand derivatives of f at a are defined
by

fla+h) — fla)

@ = Jim K
and fli(a) = )L’Eﬁ w

if these limits exist. Then f'(a) exists if and only if these one-
sided derivatives exist and are equal.
(a) Find f”(4) andf’.(4) for the function

0 if x<0
S5—x if0<x<4
flx) =
if x=4
54 if x

(b) Sketch the graph of f.
(c) Where is f discontinuous?
(d) Where is f not differentiable?

Recall that a function f is called even if f(—x) = f(x) for all x
in its domain and odd if f(—x) = —f(x) for all such x. Prove
each of the following.

(a) The derivative of an even function is an odd function.

(b) The derivative of an odd function is an even function.

When you turn on a hot-water faucet, the temperature 7 of the

water depends on how long the water has been running.

(a) Sketch a possible graph of T as a function of the time ¢ that
has elapsed since the faucet was turned on.

(b) Describe how the rate of change of 7 with respect to ¢
varies as t increases.

(c) Sketch a graph of the derivative of 7.

Let € be the tangent line to the parabola y = x? at the point

(1, 1). The angle of inclination of € is the angle ¢ that € makes
with the positive direction of the x-axis. Calculate ¢ correct to
the nearest degree.



2 Review

. Explain what each of the following means and illustrate with a

sketch.
(a) lim f(x) = L

(©) lim f() =L
(e) lim f(x) = L

(b) lim f(x) =L
(@ lim /() = =

. Describe several ways in which a limit can fail to exist.

Illustrate with sketches.

. State the following Limit Laws.

(b) Difference Law
(d) Product Law
(f) Power Law

(a) Sum Law

(c) Constant Multiple Law
(e) Quotient Law

(g) Root Law

. What does the Squeeze Theorem say?

. (a) What does it mean to say that the line x = a is a vertical

asymptote of the curve y = f(x)? Draw curves to illustrate
the various possibilities.

(b) What does it mean to say that the line y = L is a horizontal
asymptote of the curve y = f(x)? Draw curves to illustrate
the various possibilities.

. Which of the following curves have vertical asymptotes?

Which have horizontal asymptotes?

(a) y =x* (b) y =sinx
(c) y =tanx (d) y =tan'x
(e)y=¢e" (f) y=Inx
(@ y=1/x (h) y=+x

Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1.

. 2x 8 . 2x . 8
lim - = lim — lim

x—4 x4 X — x—4x — 4

X4 6x—7 )lciil}(x2+6x—7)
. lim— = — 3

=l x>+ 5x—6 Ilrrll(x + 5x — 6)
. x—3 lim (x — 3)
. lim =

=l x?2+2x — 4 lim (x* 4+ 2x — 4)
x—1

. If lim,—s f(x) = 2 and lim,_sg(x) = 0, then

lim, s [ f(x)/g(x)] does not exist.

. If lim,—s f(x) = 0 and lim,_s g(x) = 0, then

lim, s [ f(x)/g(x)] does not exist.

= CONCEPT CHECH -

1.

- TRUE-FALSE QUIZ -

10.

11.

12.

13.

(a) What does it mean for f to be continuous at a?

(b) What does it mean for f to be continuous on the interval
(=00, ©)? What can you say about the graph of such a
function?

. What does the Intermediate Value Theorem say?

. Write an expression for the slope of the tangent line to the

curve y = f(x) at the point (a, f(a)).

. Suppose an object moves along a straight line with position

f(¢) at time ¢. Write an expression for the instantaneous veloc-
ity of the object at time t = a. How can you interpret this
velocity in terms of the graph of f?

. If y = f(x) and x changes from x; to x», write expressions for

the following.

(a) The average rate of change of y with respect to x over the
interval [x;, x5 ].

(b) The instantaneous rate of change of y with respect to x
atx = xi.

. Define the derivative f'(a). Discuss two ways of interpreting

this number.

. (a) What does it mean for f to be differentiable at a?

(b) What is the relation between the differentiability and conti-
nuity of a function?

(c) Sketch the graph of a function that is continuous but not
differentiable at a = 2.

. Describe several ways in which a function can fail to be differ-

entiable. Illustrate with sketches.

. If lim, ¢ f(x)g(x) exists, then the limit must be f(6)g(6).
. If p is a polynomial, then lim,_., p(x) = p(b).

. If lim, .o f(x) = o and lim,_.( g(x) = o, then

limeo [f(x) = g(x)] = 0.

. A function can have two different horizontal asymptotes.

If f has domain [0, %) and has no horizontal asymptote, then
lim, .. f(x) = © or lim,_... f(x) = —oo.

If the line x = 1 is a vertical asymptote of y = f(x), then f is
not defined at 1.

If £(1) > 0 and f(3) < 0, then there exists a number ¢
between 1 and 3 such that f(c) = 0.

If fis continuous at 5 and f(5) = 2 and f(4) = 3, then
lim, ., f(4x*> — 11) = 2.



14. If fis continuous on [—1, 1] and f(—1) = 4 and f(1) = 3, 16. If f(x) > 1 for all x and lim,_., f(x) exists, then

then there exists a number r such that | r| < 1 and f(r) = . lim, o f(x) > 1.

15. Let f be a function such that lim.—o f(x) = 6. Then there 17. If f is continuous at a, then f is differentiable at a.
exists a number 8 such that if 0 < |x| < §, then
|f(x) — 6] < 1. 18. If f'(r) exists, then lim,—., f(x) = f(r).

- EXERCISES -

1. The graph of f is given. o |x—8] ) —
(a) Find each limit, or explain why it does not exist. 13. Xhl? x—8 14, }E& ( x=9+[x+ 1]])
i) lim f(x ii) lim X
M lim f() G lim £ N ey
(i) Jim f(x) ) lim () T x = B
. o 1+ 2x — x2 50— x*+2
(V) }chO f(x) (Vl) AIE?* f(x) 17. lim 17):_2){2 18. lim %
== 1 —x X == 2x° + x —
(vii) lim f(x) (viii) lim f(x)
x—% x—>—% . x2 - 9 .

(b) State the equations of the horizontal asymptotes. 19. lim 6 20. lim In(100 — x?)

(c) State the equations of the vertical asymptotes.

(d) At what numbers is f discontinuous? Explain. 21. }me e 22. Xlglolc arctan(x’ — x)
vE o o o o o o o o o o o o
/’ \\ {4 23-24 1 Use graphs to discover the asymptotes of the curve. Then

— prove what you have discovered.
2
\ 93,  — SOSX
/L | S
0
N —— 8, y=x2+x+1—Jx*—x
2. Sketch the graph of an example of a function f that satisfies all 25. If 2x — 1 < f(x) < x* for 0 < x < 3, find lim,—; f(x).
of the following conditions: 26. Prove that lim, .o x> cos(1/x?) = 0.

lim f() = =2, lim f(x) =1, f(0)=-1,

) ; ) 27-30 11 Prove the statement using the precise definition of a limit.
lim f() =, lim f(x) = =, lim f(x) =3,

27. lim (7x — 27) = 8 28. limJ/x =0
lim f(x) = 4 s 0
X—>—00 2
29. lim (x* — 3x) = —2 30. lim ———= =
3-22 Wi Find the limit. o R E
1 R - - - - - - - - - - - -
3. lime* " 4, lim ———7—
g w3 X%+ 2x — 3 31. Let
) =09 . ¥2—09 V—x %fx<0
5. xlir{137x2+2x_3 6. ,xlirﬁix2+2x—3 flx) =43 —x ifosx<3
(x —3)? if x>3
(= 1P+1 o P —4
7. lim———— 8 lim———
h—0 h =21 — 8 (a) Evaluate each limit, if it exists.
Jr 40 @) lim f() @) lim f(x) (i) lim f(x)
9. lim—— 10. lim —— x0 x0 =0
=5 (r=9) =i 4 =] () lim f(x) () lim fGx)  (vi) lim f(x)
1. Lim 4 - \/E 12. 1im v’ +20—8 (b) Where is f discontinuous?

s—16 s — 16 =2 p*— 16 (c) Sketch the graph of f.



32. Let
2x — x> if0<sx=<2
() = 2 —x if2<x<3
TV 7V x—4 if3<x<4
T if x=4

(a) For each of the numbers 2, 3, and 4, discover whether g is
continuous from the left, continuous from the right, or con-
tinuous at the number.

(b) Sketch the graph of g.

33=34 1 Show that the function is continuous on its domain. State
the domain.
33. h(x) = xe'™

Vx2—9

34. g(x) = Ry

o o o o o o o o o o o o

35-36 1 Use the Intermediate Value Theorem to show that there is
a root of the equation in the given interval.

3. 20 +x2+2=0, (-2,—-1)
36. e =x, (0,1)
37. (a) Find the slope of the tangent line to the curve y = 9 — 2x?

at the point (2, 1).
(b) Find an equation of this tangent line.

38. Find equations of the tangent lines to the curve

at the points with x-coordinates 0 and —1.

39. The displacement (in meters) of an object moving in a straight
line is given by s = 1 + 2¢ + /4, where ¢ is measured in
seconds.

(a) Find the average velocity over each time period.
@ [1,3] (i) [1,2]
(i) [1,1.5] (iv) [1,1.1]

(b) Find the instantaneous velocity when r = 1.

40. According to Boyle’s Law, if the temperature of a confined gas

is held fixed, then the product of the pressure P and the volume

V is a constant. Suppose that, for a certain gas, PV = 800,

where P is measured in pounds per square inch and V is mea-

sured in cubic inches.

(a) Find the average rate of change of P as V increases from
200 in® to 250 in’.

(b) Express V as a function of P and show that the instantan-
eous rate of change of V with respect to P is inversely pro-

portional to the square of P.

Y
1<

A

41. (a) Use the definition of a derivative to find f'(2), where
flx) =x* — 2x.
(b) Find an equation of the tangent line to the curve
y = x — 2x at the point (2, 4).
(c) lustrate part (b) by graphing the curve and the tangent line
on the same screen.

42.

Find a function f and a number a such that

2+ h—o64 ,
lim ————— = ")
43. The total cost of repaying a student loan at an interest rate of
r% per year is C = f(r).

(a) What is the meaning of the derivative f'(r)? What are its

units?

(b) What does the statement f'(10) = 1200 mean?

(¢) Is f'(r) always positive or does it change sign?

44-46 11 Trace or copy the graph of the function. Then sketch a
graph of its derivative directly beneath.

T
R

A

/i

o o o o o o o o o o o o

47. (a) If f(x) = +/3 — 5x, use the definition of a derivative to
find f'(x).
(b) Find the domains of f and f".
(c) Graph f and f' on a common screen. Compare the graphs
to see whether your answer to part (a) is reasonable.

48. (a) Find the asymptotes of the graph of
4 —x
f = 3+ x

and use them to sketch the graph.

(b) Use your graph from part (a) to sketch the graph of f'.

(¢) Use the definition of a derivative to find f'(x).

(d) Use a graphing device to graph f’ and compare with your
sketch in part (b).



49. The graph of f is shown. State, with reasons, the numbers at
which f is not differentiable.

y

//—10 2 4 6 *

50. The rotal fertility rate at time t, denoted by F(), is an esti-
mate of the average number of children born to each woman

Y

baby
357 boom

3.0+ baby

bust
2.5 1 baby

boomlet

2.0t

L5

4 4 4 4 4 4 4 4 4 4

1940 1950 1960 1970 1980 1990

4 52

53.

54.

(assuming that current birth rates remain constant). The graph
of the total fertility rate in the United States shows the fluctua-
tions from 1940 to 1990.

(a) Estimate the values of F'(1950), F'(1965), and F'(1987).
(b) What are the meanings of these derivatives?

(c) Can you suggest reasons for the values of these derivatives?

. Let B(t) be the total value of U.S. banknotes in circulation at

time 7. The table gives values of this function from 1980 to
1998, at year end, in billions of dollars. Interpret and estimate
the value of B’(1990).

t B(t)

1980 124.8

1985 182.0
1990 268.2
1995 401.5

1998 492.2

Graph the curve y = (x + 1)/(x — 1) and the tangent lines to
this curve at the points (2, 3) and (—1, 0).

Suppose that | f(x) | < g(x) for all x, where lim,—, g(x) = 0.
Find lim, ., f(x).

Let f(x) = [x] + [—x].
(a) For what values of a does lim, ., f(x) exist?
(b) At what numbers is f discontinuous?



PROBLEMS
FLUS

In our discussion of the principles of problem solving we considered the problem-solving
strategy of introducing something extra (see page 80). In the following example we show
how this principle is sometimes useful when we evaluate limits. The idea is to change the
variablete-introduce a new variable that is related to the original variablein-such a way

as to make the problem simpler. Later, in Section 5.5, we will make more extensive use of
this general idea.

STFer— 1

EXAMFLE 1 Evaluate lin})
x— X

, Where ¢ is a constant.

SOLUTION As it stands, this limit looks challenging. In Section 2.3 we evaluated several lim-
its in which both numerator and denominator approached 0. There our strategy was to per-
form some sort of algebraic manipulation that led to a simplifying cancellation, but here
it’s not clear what kind of algebra is necessary.

So we introduce a new variable 7 by the equation

=431+ cx
We also need to express x in terms of 7, so we solve this equation:
=1+cx

=1
C

X =

Notice that x — 0 is equivalent to  — 1. This allows us to convert the given limit into one
involving the variable :

J1 +cx — 1 t—1

lim———— =1i
0 x M = 1e
et —1)
= lim —;
=1 7 =1

The change of variable allowed us to replace a relatively complicated limit by a simpler
one of a type that we have seen before. Factoring the denominator as a difference of
cubes, we get

ct—1) ct - 1)

li =1
P T ()

. Cc
m-———— = —
—1t2+tr+1 3 ]

The following problems are meant to test and challenge your problem-solving skills.
Some of them require a considerable amount of time to think through, so don’t be discour-
aged if you can’t solve them right away. If you get stuck, you might find it helpful to refer
to the discussion of the principles of problem solving on page 80.



PROBLEMS

FIGURE FOR PROBLEM 4

B

M

FIGURE FOR PROBLEM 10

1.

12.

13.

14.

. Find numbers a and b such that lim

. Evaluate lim
x—0

Jx—1

. Evaluate lim ———.
valuate lim ~“=——

\/ax+b—2_1

x—0 X

[2x — 1| — |2x + 1]
. .

. The figure shows a point P on the parabola y = x? and the point Q where the perpendicular

bisector of OP intersects the y-axis. As P approaches the origin along the parabola, what
happens to Q? Does it have a limiting position? If so, find it.

. If [x]] denotes the greatest integer function, find lim ... x/[x].

. Sketch the region in the plane defined by each of the following equations.

@ +DPFP=1 OMN-DF=3 ©k+y'=1 @I+DhI=1

. Find all values of a such that f is continuous on R:

f(x)={x+l if x<a

x? if x>a

. A fixed point of a function f is a number c in its domain such that f(c) = c. (The function

doesn’t move c; it stays fixed.)

(a) Sketch the graph of a continuous function with domain [0, 1] whose range also lies
in [0, 1]. Locate a fixed point of f.

(b) Try to draw the graph of a continuous function with domain [0, 1] and range in [0, 1] that
does not have a fixed point. What is the obstacle?

(c) Use the Intermediate Value Theorem to prove that any continuous function with domain
[0, 1] and range a subset of [0, 1] must have a fixed point.

. Iflim,—, [ f(x) + g(x)] = 2 and lim,—, [ f(x) — g(x)] = 1, find lim,_, f(x)g(x).
10.

(a) The figure shows an isosceles triangle ABC with £B = £ C. The bisector of angle B
intersects the side AC at the point P. Suppose that the base BC remains fixed but the
altitude | AM | of the triangle approaches 0, so A approaches the midpoint M of BC. What
happens to P during this process? Does it have a limiting position? If so, find it.

(b) Try to sketch the path traced out by P during this process. Then find the equation of this
curve and use this equation to sketch the curve.

(a) If we start from 0° latitude and proceed in a westerly direction, we can let T(x) denote
the temperature at the point x at any given time. Assuming that 7" is a continuous function
of x, show that at any fixed time there are at least two diametrically opposite points on the
equator that have exactly the same temperature.

(b) Does the result in part (a) hold for points lying on any circle on Earth’s surface?

(c) Does the result in part (a) hold for barometric pressure and for altitude above sea level?

If f is a differentiable function and g(x) = xf(x), use the definition of a derivative to show
that g'(x) = xf'(x) + f(x).

Suppose f is a function that satisfies the equation f(x + y) = f(x) + f(y) + x*y + xy?* for all
real numbers x and y. Suppose also that

lim RiC) =1
x—0 X
(a) Find £(0). (b) Find £(0). (c) Find f'(x).

Suppose f is a function with the property that | f(x) | < x? for all x. Show that f(0) = 0. Then
show that f'(0) = 0.



By measuring slopes at points on the sine curve,
we get strong visual evidence that the derivative
of the sine function is the cosine function.




We have seen how to interpret derivatives as slopes and
rates of change. We have seen how to estimate derivatives
of functions given by tables of values. We have learned
how to graph derivatives of functions that are defined
graphically. We have used the definition of a derivative to
calculate the derivatives of functions defined by formulas. But it would be tedious
if we always had to use the definition, so in this chapter we develop rules for find-
ing derivatives without having fo use the definition directly. These differentiation
rules enable us to calculate with relative ease the derivatives of polynomials,
rational functions, algebraic functions, exponential and logarithmic functions, and
trigonometric and inverse trigonometric functions. We then use these rules to solve

problems involving rates of change and the approximation of functions.

|l 3.1 Derivatives of Polynomials and Exponential Functions

y
c y=c
slope =0
0
FIGURE 1

The graph of f(x) = cis the
line y =¢, so f'(x) =0.

y
y=x
slope =1
0
FIGURE 2

The graph of f(x) = x is the
line y=x,so f'(x)=1.

In this section we learn how to differentiate constant functions, power functions, polyno-
mials, and exponential functions.

Let’s start with the simplest of all functions, the constant function f(x) = c. The graph
of this function is the horizontal line y = ¢, which has slope 0, so we must have f’'(x) = 0.
(See Figure 1.) A formal proof, from the definition of a derivative, is also easy:
fx+h) = f(x) c—c

h

= lim
=0 h

f'(x) = lim
=1lim0=0
h—0

In Leibniz notation, we write this rule as follows.

d
Derivative of a Constant Function I (c)=0
by

”” Power Functions

We next look at the functions f(x) = x”", where n is a positive integer. If n = 1, the graph
of f(x) = x is the line y = x, which has slope 1 (see Figure 2). So

[l %(@:1

(You can also verify Equation 1 from the definition of a derivative.) We have already
investigated the cases n = 2 and n = 3. In fact, in Section 2.9 (Exercises 19 and 20) we
found that

2 D=2 Ly=ae




[III' The Binomial Theorem is given on
Reference Page 1.

For n = 4 we find the derivative of f(x) = x* as follows:

o fe+h)—f . (x+ k)=t
f'x) = lim h = lim h
x4 4x%h + 6xPhE 4 4xh + bt — x*
= jim h

= %in% (4x® + 6x°h + 4xh*> + h®) = 4x°
Thus

3 ) =

Comparing the equations in (1), (2), and (3), we see a pattern emerging. It seems to be a
reasonable guess that, when 7 is a positive integer, (d/dx)(x") = nx""'. This turns out to
be true. We prove it in two ways; the second proof uses the Binomial Theorem.

The Power Rule If n is a positive integer, then

d
Z (xn) — nxn—l

First Proof The formula
X"—a"=x—a)x"'+x"a+ - +xa"*+a"")

can be verified simply by multiplying out the right-hand side (or by summing the second
factor as a geometric series). If f(x) = x”, we can use Equation 2.8.3 for f’(a) and the
equation above to write

f(a@) = tim L L@y X
x—a X —da x—a X — da
= lim (xnil =+ x"iza 4+ e+ xan*Z + an*l)
=an*1 + an*2a 4+ e+ aan—z + an—[
= na""!
Second Proof
oy St h) —f) (e h) =X
o) = %12(1) h n /}IE(I) h

In finding the derivative of x* we had to expand (x + h)*. Here we need to expand
(x + h)" and we use the Binomial Theorem to do so:

nn—1)

5 X"Phr+ -+ nxh" + h”] —x"

[x” + nx""'h +

f'x) = lim h



nn — 1)

. 2
= lim
h—0 h

nx""'h + X"2hr+ - 4+ nxh" N+ Rt

-1
= lirr(l) |:nx”l + —n(n2 )x”’zh + o+ nxh"? + h"1:|

n—1

= nx

because every term except the first has 4 as a factor and therefore approaches 0. ]

We illustrate the Power Rule using various notations in Example 1.

EXAMPLE 1
(a) If f(x) = x° then f'(x) = 6x°. (b) If y = x'%° then y’ = 1000x*®.
dy d
If y = t*, then — = 4¢°. d) — () =3
(c) Ify en ()dr(r) r .

What about power functions with negative integer exponents? In Exercise 53 we ask
you to verify from the definition of a derivative that

da(1y__1
dx \ x x?

d -1\ — (_ -2
E(X )= (=Dx

We can rewrite this equation as

and so the Power Rule is true when n = —1. In fact, we will show in the next section
[Exercise 44(c)] that it holds for all negative integers.
What if the exponent is a fraction? In Example 3 in Section 2.7 we found, in effect, that

d 1
dx Vr = 2/x
which can be written as
d _
E (x1/2) _ %x 1/2

This shows that the Power Rule is true even when n = % In fact, we will show in
Section 3.8 that it is true for all real numbers n.

The Power Rule (General Version) If n is any real number, then

— (xn) — nxnfl

dx




EXAMPLE 2 Differentiate:

1
(a) f(X)=? (b) y = v/x?
I1l" Figure 3 shows the function y in SOLUTION In each case we rewrite the function as a power of x.
Example 2(b) and its derivative y’. Notice that . _ 2 . — _»~.
y is not differentiable at O (y” is not defined (a) Since f(x) %, we use the Power Rule with n 2
there). Observe that y’ is positive when y
increases and is negative when y decreases ’ — d -2\ — -2-1 -3 _ 2
: f(x)—E(x ) = —2x = —2x =
2
dy d d 2 2
y b — = — (3¥52) = — x2/3 =,)6(2/3)—1 =*x71/3
, (b) o= W) = o () =3 ;
-3 3
EXAMPLE 3 Find an equation of the tangent line to the curve y = x+/x at the point (1, 1).
Illustrate by graphing the curve and its tangent line.
-2 SOLUTION The derivative of f(x) = x/x = xx'/? = x¥?is
FIGURE 3 3 - 3 3
y=3x fix) =3x027 = 3x2 =3

So the slope of the tangent line at (1, 1) is £(1) = 3. Therefore, an equation of the tan-
gent line is

=

y=1l=3x=1 or y=jx-

We graph the curve and its tangent line in Figure 4.

3

y=xyx

FIGURE 4 -1 [

|||| New Derivatives from 0Id

When new functions are formed from old functions by addition, subtraction, or multipli-
cation by a constant, their derivatives can be calculated in terms of derivatives of the old
functions. In particular, the following formula says that the derivative of a constant times
a function is the constant times the derivative of the function.

The Constant Multiple Rule If ¢ is a constant and f is a differentiable function, then

d d
e [cf(0)]=c Ef(x)




[11I" GEOMETRIC INTERPRETATION
OF THE CONSTANT MULTIPLE RULE

/\ y=2f(x)
fx)

/—\y=

y

Multiplying by ¢ = 2 stretches the graph verti-
cally by a factor of 2. All the rises have been
doubled but the runs stay the same. So the
slopes are doubled, too.

[IIl" Using prime notation, we can write the
Sum Rule as

(F+a) =1+

Proof Let g(x) = cf(x). Then

gyt h) =g | cfx+h) = cfl®)

9'x) = lim h = jim n
L [f(x+h) —f(x)]
=mmc|—————
h—0 h
+h) —
= ¢ lim M (by Law 3 of limits)
h—0 h
= cf'(x) —

EXAMPLE 4
(a) < (3x*) =3 a4 (x*) = 3(4x?) = 12x°
dx dx

d d d
®) (=0 =[xl = (=) - () = ~1(1) = =1

The next rule tells us that the derivative of a sum of functions is the sum of the
derivatives.

The Sum Rule If fand g are both differentiable, then

d d d
I [f(x) + g(x)] = Ef(x) = g(x)

Proof Let F(x) = f(x) + g(x). Then

F(x + h) — F(x)

F'(x) = lim
h—0

h

. [f(x + h) + glx + B)] — [f(x) + g(x)]
- hll;r(l) h
y [ fa+h) = f() g+ h) - g(x)]
= lim +

h—0 h h
— lim flx+ h) — fx) + Lim g(x + h) — g(x) oy L 1)

h—0 h h—0 h
=f'(x) + g'(x) —

The Sum Rule can be extended to the sum of any number of functions. For instance,
using this theorem twice, we get

(frg+h =[f+tg +hl'=(+g +h=f+g +N

By writing f — g as f + (—1)g and applying the Sum Rule and the Constant Multiple
Rule, we get the following formula.



The Difference Rule If fand g are both differentiable, then

d d d
2 0 =gl = ——f(x) = ——g(x)

The Constant Multiple Rule, the Sum Rule, and the Difference Rule can be combined
with the Power Rule to differentiate any polynomial, as the following examples demonstrate.

EXAMPLE 5

d
. (x® + 12x° — 4x* + 10x° — 6x + 5)
x
Try more problems like this one.
d d d d d d
Resources / Module 4 =—GxH)+12—E)—-4—xH+ 10— (x*) —6— + — (5
,l_n / Polynomial Models dx ") dx () dx (%) dx ") dx () dx ®)
- / Basic Differentiation Rules and Quiz
= 8x7 + 12(5x*) — 4(4x*) + 10(3x*) — 6(1) + 0
=8x" + 60x* — 16x* + 30x* — 6 ]
EXAMPLE 6 Find the points on the curve y = x* — 6x? + 4 where the tangent line is
horizontal.
SOLUTION Horizontal tangents occur where the derivative is zero. We have
@ _4
dx dx
=4x* — 12x + 0 = 4x(x*> — 3)

g6 oy 44
() = 62 () + - ()

Thus, dy/dx = 0 if x = 0 or x> — 3 = 0, that is, x = t\/§. So the given curve has
horizontal tangents when x = 0, /3, and —+/3. The corresponding points are (0, 4),
(\/§, —5), and (—ﬁ, —5). (See Figure 5.)

(0.4)

ANS.A

The curve y = x* — 6x> + 4 and (—3.-5) (/3.-5)
its horizontal tangents ’ ' ]

||| Exponential Functions

Let’s try to compute the derivative of the exponential function f(x) = a* using the defini-
tion of a derivative:

vy feth)—f) . a—a
R
o oata"—af . a'a" —1)
= lim = lim

h—0 h h—0 h



2 —1 3 -1
h
h h
0.1 0.7177 1.1612
0.01 0.6956 1.1047
0.001 0.6934 1.0992
0.0001 0.6932 1.0987

[l In Exercise 1 we will see that e lies
between 2.7 and 2.8. In Section 5.6 we will
give a definition of e that will enable us to
show that, correct to five decimal places,

e =~ 271828

The factor a* doesn’t depend on &, so we can take it in front of the limit:

a"—1
h

f'(x) = a* lim
h—0
Notice that the limit is the value of the derivative of f at 0, that is,

a"— 1
h

=10)

lim
h—0

Therefore, we have shown that if the exponential function f(x) = a* is differentiable at 0,
then it is differentiable everywhere and

@ 1) = fO)a*

This equation says that the rate of change of any exponential function is proportional to
the function itself. (The slope is proportional to the height.)

Numerical evidence for the existence of f'(0) is given in the table at the left for the
cases a = 2 and a = 3. (Values are stated correct to four decimal places. For the case
a = 2, see also Example 3 in Section 2.8.) It appears that the limits exist and

h

1
~ 0.69

.2
fora=2, f'(0)= ]hrr(l)

h

3
fora =3, f'(0)= lhrr(l) ~ 1.10

In fact, we will show in Section 5.6 that these limits exist and, correct to six decimal places,
the values are

d d
— (2Y) ~ 0.693147 — (3%) ~ 1.098612
dx dx

x=0 x=0

Thus, from Equation 4 we have

[5] 4 (2%) = (0.69)2* 4 (3%) = (1.10)3*
dx x
Of all possible choices for the base a in Equation 4, the simplest differentiation formula
occurs when f'(0) = 1. In view of the estimates of f'(0) fora = 2 and a = 3, it seems rea-
sonable that there is a number a between 2 and 3 for which f'(0) = 1. It is traditional to
denote this value by the letter e. (In fact, that is how we introduced e in Section 1.5.) Thus,
we have the following definition.

Definition of the Number e

h
. e —1
e is the number such that lim =1
h—0




-15

FIGURE 8

FIGURE 9

1.5

Geometrically, this means that of all the possible exponential functions y = a*, the
function f(x) = e*is the one whose tangent line at (0, 1) has a slope f'(0) that is exactly 1.
(See Figures 6 and 7.)

y

|
/ y=e"

0 X 0 X

FIGURE 6 FIGURE 7

If we puta = e and, therefore, f'(0) = 1 in Equation 4, it becomes the following impor-
tant differentiation formula.

Derivative of the Natural Exponential Function

d
I (') =e*

Thus, the exponential function f(x) = e* has the property that it is its own derivative.
The geometrical significance of this fact is that the slope of a tangent line to the curve
y = e" is equal to the y-coordinate of the point (see Figure 7).

EXAMPLE 7 If f(x) = ¢* — x, find f'. Compare the graphs of f and f'.
SOLUTION Using the Difference Rule, we have

The function f and its derivative f' are graphed in Figure 8. Notice that f has a horizon-
tal tangent when x = 0; this corresponds to the fact that f'(0) = 0. Notice also that,

for x > 0, f'(x) is positive and f is increasing. When x < 0, f”(x) is negative and f is
decreasing. ]

EXAMPLE 8 At what point on the curve y = e is the tangent line parallel to the
line y = 2x?

SOLUTION Since y = e*, we have y’ = e”. Let the x-coordinate of the point in question be
a. Then the slope of the tangent line at that point is e“. This tangent line will be parallel
to the line y = 2x if it has the same slope, that is, 2. Equating slopes, we get

e’ =72 a=1n2

Therefore, the required point is (a, ¢*) = (In 2, 2). (See Figure 9.) [



3.1 Exercises

1. (a) How is the number e defined?
(b) Use a calculator to estimate the values of the limits
A 28" —1
Iim —— and lim ———
h—0 h h—0
correct to two decimal places. What can you conclude
about the value of e?

2. (a) Sketch, by hand, the graph of the function f(x) = e, pay-
ing particular attention to how the graph crosses the y-axis.
What fact allows you to do this?
(b) What types of functions are f(x) = ¢* and g(x) = x°?
Compare the differentiation formulas for f and g.
(c) Which of the two functions in part (b) grows more
rapidly when x is large?

3-32 i Differentiate the function.

3. f(x) = 186.5 4. F(x) = /30
5 f(x) =5x—1 6. F(x) = —4x"
7. f(x) =x*+3x—4 8. glx) =5x"—2x>+6
9. f(1) =1(* + 8) 10. f()=2t°—3¢" +1
M y=x72" 12. y =5+ 3
13. V() =2mr? 14. R(1) = 5¢7°
10
15. Y(1) = 6¢° 16. R(x) = \{;
17. G(x) = Vx — 2¢* 18. y=x
1
—(1.,)5 — o
19. F(x) = (5x) 20. () =t 7
1
21. g(x) = x>+ — 22. y=+x(x—1)
X
x>+ 4x+3 x2 = 2x
2 y= 2270 4, y= =V
3.y NE y B
25. y = 47? 26. g(u) = 2u + 3u
5 b c
27. y=ax>+ bx + ¢ 28. y=ae'+—+—
v v
1
29.U=t2*47[3 30.M=\3/l‘72+2\/73
31.2:%4-36" 2oy=et 41

o o o o o o o o o o o o

{4 33-36 11 Find f'(x). Compare the graphs of f and £’ and use them
to explain why your answer is reasonable.

8. ) =€t = 5x 3. f(x) = 3x° = 20" + 50x

3. ) =3x5 - 50 +3 36 fx) —x+ %

o o o o o o o o o o o o

{9 37-38 i Estimate the value of f'(a) by zooming in on the graph
of f. Then differentiate f to find the exact value of f’(a) and com-
pare with your estimate.

37. f(x) = 3x* — &%, 38. f(x)=1/J/x, a=4

o o o o o o o o o o o o

a=1

39-40 i Find an equation of the tangent line to the curve at the
given point.

39. y=x*+2¢%, (0,2) 40. y=(1 +2x)? (1,9

o o o o o o o o o o o o

{9 41-42 1 Find an equation of the tangent line to the curve at the
given point. [llustrate by graphing the curve and the tangent line on
the same screen.

M. y=3x*—-x% (1,2 42. y =xx, (4,8)

o o o o o o o o o o o o

[ 43.

(a) Use a graphing calculator or computer to graph the func-
tion f(x) = x* — 3x* — 6x? + 7x + 30 in the viewing
rectangle [—3, 5] by [—10, 50].

(b) Using the graph in part (a) to estimate slopes, make a
rough sketch, by hand, of the graph of f’. (See Example 1
in Section 2.9.)

(c) Calculate f'(x) and use this expression, with a graphing
device, to graph f'. Compare with your sketch in part (b).

4 44,

(a) Use a graphing calculator or computer to graph the function
g(x) = e* — 3x?in the viewing rectangle [—1, 4] by
[-8,8].

(b) Using the graph in part (a) to estimate slopes, make a rough
sketch, by hand, of the graph of ¢'. (See Example 1 in Sec-
tion 2.9.)

(c) Calculate g'(x) and use this expression, with a graphing
device, to graph g'. Compare with your sketch in part (b).

45. Find the points on the curve y = 2x* + 3x*> — 12x + 1 where
the tangent is horizontal.

46. For what values of x does the graph of
f(x) = x* + 3x* + x + 3 have a horizontal tangent?

47. Show that the curve y = 6x* 4+ 5x — 3 has no tangent line
with slope 4.

A 48.

At what point on the curve y = 1 + 2¢* — 3x is the tangent
line parallel to the line 3x — y = 5? Illustrate by graphing the
curve and both lines.

49. Draw a diagram to show that there are two tangent lines to the
parabola y = x? that pass through the point (0, —4). Find the
coordinates of the points where these tangent lines intersect the
parabola.

50. Find equations of both lines through the point (2, —3) that are
tangent to the parabola y = x* + x.



Velocity, density, and current are not the only rates of change that are important in
physics. Others include power (the rate at which work is done), the rate of heat 8w, tem-
perature gradient (the rate of change of temperature with respect to position), and the rate
of decay of a radioactive substance in nuclear physics.

|||| Chemistry

EXAMPLE 4 A chemical reaction results in the formation of one or more substances
(called products) from one or more starting materials (called reactants). For instance, the
&quation”

2H2 + 02% 2H20

indicates that two molecules of hydrogen and one molecule of oxygen form two mole-
cules of water. Let’s consider the reaction

A+ B—C

where A and B are the reactants and C is the product. The concentration of a reactant

A is the number of moles (1 mole = 6.022 X 10* molecules) per liter and is denoted by
[A]. The concentration varies during a reaction, so [A], [B], and [C] are all functions of
time (7). The average rate of reaction of the product C over a time interval 1, < t < 1, is

ALC] _ [C]®) — [C)r)

At hH— N

But chemists are more interested in the instantaneous rate of reaction, which is
obtained by taking the limit of the average rate of reaction as the time interval Az
approaches 0:

. . A[C]  d[C]
rate of reaction = lim —— = ——
Aar—0 At dt

Since the concentration of the product increases as the reaction proceeds, the derivative
d[C]/dt will be positive. (You can see intuitively that the slope of the tangent to the
graph of an increasing function is positive.) Thus, the rate of reaction of C is positive.
The concentrations of the reactants, however, decrease during the reaction, so, to make
the rates of reaction of A and B positive numbers, we put minus signs in front of the
derivatives d[A]/dt and d[B]/dt. Since [A] and [B] each decrease at the same rate that
[C] increases, we have

dIC]  d[A]l _ d[B]
a4t dt

rate of reaction =

More generally, it turns out that for a reaction of the form
aA + bB—cC + dD

we have

1 d[A]  1d[B] 1d[C] 1 d[D]
a dt b dt c dt d dt




The rate of reaction can be determined by graphical methods (see Exercise 22). In some
cases we can use the rate of reaction to find explicit formulas for the concentrations as
functions of time (see Exercises 9.3). |

EXAMPLE 5 One of the quantities of interest in thermodynamics is compressibility. If a
given substance is kept at a constant temperature, then its volume V depends on its pres-
sure P. We can consider the rate of change of volume with respect to pressure—namely,
the derivative dV/dP. As P increases, V decreases, so dV/dP < 0. The compressibility
is defined by introducing a minus sign and dividing this derivative by the volume V:

. o 1 dv
isothermal compressibility = 8 = VP

Thus, B measures how fast, per unit volume, the volume of a substance decreases as the
pressure on it increases at constant temperature.

For instance, the volume V (in cubic meters) of a sample of air at 25°C was found to
be related to the pressure P (in kilopascals) by the equation

5.3
V="
P

The rate of change of V with respect to P when P = 50 kPa is

av|  __s3
dP | p—so p? P=50
53
= ——— = —0.00212 m*/kP
2500 m/kPa
The compressibility at that pressure is
1 dv 0.00212
= ——— = ——— = 0.02 (m¥kPa)/m’
V dP |p—so 53
50 ]

|||| Biology

EXAMPLE 6 Let n = f(¢) be the number of individuals in an animal or plant population
at time 7. The change in the population size between the times t = t, and t = 1, is

An = f(t,) — f(t1), and so the average rate of growth during the time period , < t < 1
is

average rate of growth = ﬂ = M

g g At L —t
The instantaneous rate of growth is obtained from this average rate of growth by let-
ting the time period At approach 0:

thrate — lim 2% — "
rowtn rate = Iim —— = ——
& Ar—0 At dt



FIGURE 5
A smooth curve approximating
a growth function

Strictly speaking, this is not quite accurate because the actual graph of a population
function n = (1) would be a step function that is discontinuous whenever a birth or
death occurs and, therefore, not differentiable. However, for a large animal or plant
population, we can replace the graph by a smooth approximating curve as in Figure 5.

n

To be more specific, consider a population of bacteria in a homogeneous nutrient
medium. Suppose that by sampling the population at certain intervals it is determined
that the population doubles every hour. If the initial population is n, and the time 7 is
measured in hours, then

J(1) = 2f(0) = 2no
f2) =2f(1) = 2°no
fB3) =2f(2) = 2°no

and, in general,

f(l) = 2'ng
The population function is n = ny2".
In Section 3.1 we discussed derivatives of exponential functions and found that

d
——(2) = (0692

So the rate of growth of the bacteria population at time ¢ is

dn d
E = E (n02‘) =~ n0(0.69)2’

For example, suppose that we start with an initial population of ny = 100 bacteria. Then
the rate of growth after 4 hours is

d
S < 100(0.69)2* = 1104
dt =4

This means that, after 4 hours, the bacteria population is growing at a rate of about
1100 bacteria per hour. ]



FIGURE 6

Blood flow in an artery

EXAMPLE 7 When we consider the flow of blood through a blood vessel, such as a vein or
artery, we can take the shape of the blood vessel to be a cylindrical tube with radius R
and length [ as illustrated in Figure 6.

l__klr___% ________
/’ =
)

-

Because of friction at the walls of the tube, the velocity v of the blood is greatest
along the central axis of the tube and decreases as the distance r from the axis increases
until » becomes 0 at the wall. The relationship between v and r is given by the law of
laminar flow discovered by the French physician Jean-Louis-Marie Poiseuille in 1840.
This states that

P
— RZ 2

where 7 is the viscosity of the blood and P is the pressure difference between the ends
of the tube. If P and [ are constant, then v is a function of r with domain [0, R]. [For
more detailed information, see W. Nichols and M. O’Rourke (eds.), McDonald’s Blood
Flow in Arteries: Theoretic, Experimental, and Clinical Principles, 4th ed. (New York:
Oxford University Press, 1998).]

The average rate of change of the velocity as we move from r = r, outward to r = r,
is given by

Ao o(r) — o(r)
Ar =

and if we let Ar — 0, we obtain the velocity gradient, that is, the instantaneous rate of
change of velocity with respect to r:

Jocit dient = 1i Av  dv
velocity gradient = lim — = —
yE Ar—0 Ar dr
Using Equation 1, we obtain
d P P
_U - (0 _ 2}’) _ _ r
dr  4nl 21l

For one of the smaller human arteries we can take n = 0.027, R = 0.008 cm, [ = 2 cm,
and P = 4000 dynes/cm?® which gives

4000
V= —"
4(0.027)2
~ 1.85 X 10%6.4 X 1075 — r?)

(0.000064 — r2)

At r = 0.002 cm the blood is flowing at a speed of

2(0.002) =~ 1.85 X 10%(64 X 1076 — 4 X 107°)
= 1.11 cm/s



and the velocity gradient at that point is

dv ~4000(0.002)

dr = —74
dr | ,=0.002 2(0.027)2 (cm/s)/cm

To get a feeling for what this statement means, let’s change our units from centi-
meters to micrometers (1 cm = 10,000 pm). Then the radius of the artery is 80 wm. The
velocity at the central axis is 11,850 wm/s, which decreases to 11,110 wm/s at a distance
of r = 20 pm. The fact that dv/dr = —74 (um/s)/pwm means that, when r = 20 pwm, the
velocity is decreasing at a rate of about 74 wm/s for each micrometer that we proceed
away from the center. 1

HH Economics

EXAMPLE 8 Suppose C(x) is the total cost that a company incurs in producing x units of
a certain commodity. The function C is called a cost function. If the number of items
produced is increased from x; to x,, the additional cost is AC = C(x;) — C(x;), and the
average rate of change of the cost is

AC _ C(x2) — Clxy) _ Clx; + Ax) — C(xy)
Ax X2 — Xi Ax

The limit of this quantity as Ax — 0, that is, the instantaneous rate of change of cost
with respect to the number of items produced, is called the marginal cost by economists:

nal cost = i AC dC
marginal cost = lim — = —
£ Ax—0 Ax dx

[Since x often takes on only integer values, it may not make literal sense to let Ax
approach 0, but we can always replace C(x) by a smooth approximating function as in
Example 6.]

Taking Ax = 1 and n large (so that Ax is small compared to n), we have

C'ln)=Cn+1) — Chn)

Thus, the marginal cost of producing » units is approximately equal to the cost of pro-
ducing one more unit [the (z + 1)st unit].
It is often appropriate to represent a total cost function by a polynomial

C(x) =a + bx + cx* + dx*®

where a represents the overhead cost (rent, heat, maintenance) and the other terms
represent the cost of raw materials, labor, and so on. (The cost of raw materials may be
proportional to x, but labor costs might depend partly on higher powers of x because of
overtime costs and inefficiencies involved in large-scale operations.)

For instance, suppose a company has estimated that the cost (in dollars) of producing
X items is

C(x) = 10,000 + 5x + 0.01x?
Then the marginal cost function is

C'(x) =5+ 0.02x



The marginal cost at the production level of 500 items is
C'(500) = 5 + 0.02(500) = $15/item

This gives the rate at which costs are increasing with respect to the production level
when x = 500 and predicts the cost of the 501st item.
The actual cost of producing the 501st item is

C(501) — C(500) = [10,000 + 5(501) + 0.01(501)?]
— [10,000 + 5(500) + 0.01(500)*]
= $15.01

Notice that C'(500) = C(501) — C(500).

Economists also study marginal demand, marginal revenue, and marginal profit, which
are the derivatives of the demand, revenue, and profit functions. These will be considered
in Chapter 4 after we have developed techniques for finding the maximum and minimum
values of functions.

||H Other Sciences

Rates of change occur in all the sciences. A geologist is interested in knowing the rate at
which an intruded body of molten rock cools by conduction of heat into surrounding rocks.
An engineer wants to know the rate at which water flows into or out of a reservoir. An
urban geographer is interested in the rate of change of the population density in a city as
the distance from the city center increases. A meteorologist is concerned with the rate of
change of atmospheric pressure with respect to height (see Exercise 17 in Section 9.4).

In psychology, those interested in learning theory study the so-called learning curve,
which graphs the performance P(7) of someone learning a skill as a function of the train-
ing time ¢. Of particular interest is the rate at which performance improves as time passes,
that is, dP/dt.

In sociology, differential calculus is used in analyzing the spread of rumors (or innova-
tions or fads or fashions). If p(¢) denotes the proportion of a population that knows a rumor
by time ¢, then the derivative dp/dt represents the rate of spread of the rumor (see Exer-
cise 70 in Section 3.5).

HH Symmary

Velocity, density, current, power, and temperature gradient in physics, rate of reaction and
compressibility in chemistry, rate of growth and blood velocity gradient in biology, mar-
ginal cost and marginal profit in economics, rate of heat flow in geology, rate of improve-
ment of performance in psychology, rate of spread of a rumor in sociology—these are all
special cases of a single mathematical concept, the derivative.

This is an illustration of the fact that part of the power of mathematics lies in its
abstractness. A single abstract mathematical concept (such as the derivative) can have dif-
ferent interpretations in each of the sciences. When we develop the properties of the math-
ematical concept once and for all, we can then turn around and apply these results to all of
the sciences. This is much more efficient than developing properties of special concepts in
each separate science. The French mathematician Joseph Fourier (1768—-1830) put it suc-
cinctly: “Mathematics compares the most diverse phenomena and discovers the secret
analogies that unite them.”



3.3 Exercises

1-6 1 A particle moves according to a law of motion s = f (1),
t = 0, where ¢ is measured in seconds and s in feet.

(a) Find the velocity at time ¢.

(b) What is the velocity after 3 s?

(c) When is the particle at rest?

(d) When is the particle moving in the positive direction?

(e) Find the total distance traveled during the first 8 s.

(f) Draw a diagram like Figure 2 to illustrate the motion of the

12.

. fe)=1*— 10t + 12

particle.
2 fO)=1>—9*+ 15t + 10

. f) =1 — 1217 + 361 4 () =1 —4r+ 1
t

S 6. s = /1(3r> — 35t + 90)

. The position function of a particle is given by

s=1—45t*— Tt t=0

When does the particle reach a velocity of 5 m/s?

. If a ball is given a push so that it has an initial velocity of

5 m/s down a certain inclined plane, then the distance it has
rolled after ¢ seconds is s = 5t + 372

(a) Find the velocity after 2 s.

(b) How long does it take for the velocity to reach 35 m/s?

. If a stone is thrown vertically upward from the surface of the

moon with a velocity of 10 m/s, its height (in meters) after
t seconds is h = 10t — 0.83¢%

(a) What is the velocity of the stone after 3 s?

(b) What is the velocity of the stone after it has risen 25 m?

. If a ball is thrown vertically upward with a velocity of

80 ft/s, then its height after  seconds is s = 80r — 1617

(a) What is the maximum height reached by the ball?

(b) What is the velocity of the ball when it is 96 ft above the
ground on its way up? On its way down?

. (a) A company makes computer chips from square wafers

of silicon. It wants to keep the side length of a wafer very
close to 15 mm and it wants to know how the area A(x) of a
wafer changes when the side length x changes. Find A’(15)
and explain its meaning in this situation.

(b) Show that the rate of change of the area of a square with
respect to its side length is half its perimeter. Try to explain
geometrically why this is true by drawing a square whose
side length x is increased by an amount Ax. How can you
approximate the resulting change in area AA if Ax is small?

(a) Sodium chlorate crystals are easy to grow in the shape of
cubes by allowing a solution of water and sodium chlorate
to evaporate slowly. If V is the volume of such a cube with
side length x, calculate dV/dx when x = 3 mm and explain
its meaning.

18.

(b) Show that the rate of change of the volume of a cube with
respect to its edge length is equal to half the surface area of
the cube. Explain geometrically why this result is true by
arguing by analogy with Exercise 11(b).

. (a) Find the average rate of change of the area of a circle with

respect to its radius r as r changes from
(i) 2to 3 (i) 2t0 2.5 (iii) 2to 2.1

(b) Find the instantaneous rate of change when r = 2.

(c) Show that the rate of change of the area of a circle with
respect to its radius (at any r) is equal to the circumference
of the circle. Try to explain geometrically why this is true
by drawing a circle whose radius is increased by an amount
Ar. How can you approximate the resulting change in area
AA if Ar is small?

. A stone is dropped into a lake, creating a circular ripple that

travels outward at a speed of 60 cm/s. Find the rate at which
the area within the circle is increasing after (a) 1 s, (b) 3 s, and
(c) 5 s. What can you conclude?

. A spherical balloon is being inflated. Find the rate of increase

of the surface area (S = 47r*) with respect to the radius r
when ris (a) 1 ft, (b) 2 ft, and (c) 3 ft. What conclusion can
you make?

. (a) The volume of a growing spherical cell is V = 771, where

the radius 7 is measured in micrometers (1 um = 10°m).
Find the average rate of change of V with respect to r when
r changes from

(i) 5to 8 pm (i) 5to 6 pm (iii) 5t0o 5.1 pm

(b) Find the instantaneous rate of change of V with respect to r
when r = 5 pm.

(c) Show that the rate of change of the volume of a sphere with
respect to its radius is equal to its surface area. Explain
geometrically why this result is true. Argue by analogy with
Exercise 13(c).

. The mass of the part of a metal rod that lies between its left

end and a point x meters to the right is 3x kg. Find the linear
density (see Example 2) when x is (a) 1 m, (b) 2 m, and
(c) 3 m. Where is the density the highest? The lowest?

If a tank holds 5000 gallons of water, which drains from the
bottom of the tank in 40 minutes, then Torricelli’s Law gives
the volume V of water remaining in the tank after # minutes as

t 2
V=5000{1—— 0=<1r=<40

Find the rate at which water is draining from the tank after

(a) 5 min, (b) 10 min, (¢) 20 min, and (d) 40 min. At what time

is the water flowing out the fastest? The slowest? Summarize

your findings.

. The quantity of charge Q in coulombs (C) that has passed

through a point in a wire up to time ¢ (measured in seconds) is



20.

21.

22

given by Q(#) = t* — 2¢* + 6¢ + 2. Find the current when
(a) t = 0.5sand (b) r = 1 s. [See Example 3. The unit of cur-
rent is an ampere (1 A = 1 C/s).] At what time is the current
lowest?

Newton’s Law of Gravitation says that the magnitude F' of the
force exerted by a body of mass m on a body of mass M is

_ GmM

r2

F

where G is the gravitational constant and r is the distance
between the bodies.
(a) Find dF/dr and explain its meaning. What does the minus
sign indicate?
(b) Suppose it is known that Earth attracts an object with
a force that decreases at the rate of 2 N/km when
r = 20,000 km. How fast does this force change when
r = 10,000 km?

Boyle’s Law states that when a sample of gas is compressed at
a constant temperature, the product of the pressure and the vol-
ume remains constant: PV = C.
(a) Find the rate of change of volume with respect to

pressure.
(b) A sample of gas is in a container at low pressure and is

steadily compressed at constant temperature for 10 minutes.

Is the volume decreasing more rapidly at the beginning or
the end of the 10 minutes? Explain.

(c) Prove that the isothermal compressibility (see Example 5)
is given by B = 1/P.

The data in the table concern the lactonization of hydroxy-
valeric acid at 25°C. They give the concentration C() of this
acid in moles per liter after # minutes.

t 0 2 4 6 8

0.0800

C(t) 0.0570 0.0408 0.0295 0.0210

7 23.

(a) Find the average rate of reaction for the following time
intervals:
) 2<t<6 ) 2str<4 i) 0str<2
(b) Plot the points from the table and draw a smooth curve
through them as an approximation to the graph of the con-
centration function. Then draw the tangent at # = 2 and use
it to estimate the instantaneous rate of reaction when r = 2.

The table gives the population of the world in the 20th century.

Population Population

Year (in millions) Year (in millions)
1900 1650 1960 3040
1910 1750 1970 3710
1920 1860 1980 4450
1930 2070 1990 5280
1940 2300 2000 6080
1950 2560

A 24.

25.

26.

27.

(a) Estimate the rate of population growth in 1920 and in 1980
by averaging the slopes of two secant lines.

(b) Use a graphing calculator or computer to find a cubic func-
tion (a third-degree polynomial) that models the data. (See
Section 1.2.)

(c) Use your model in part (b) to find a model for the rate of
population growth in the 20th century.

(d) Use part (c) to estimate the rates of growth in 1920 and
1980. Compare with your estimates in part (a).

(e) Estimate the rate of growth in 1985.

The table shows how the average age of first marriage of
Japanese women varied in the last half of the 20th century.

t A(r) t A(r)
1950 23.0 1975 24.7
1955 23.8 1980 25.2
1960 24.4 1985 25.5
1965 24.5 1990 25.9
1970 24.2 1995 26.3

(a) Use a graphing calculator or computer to model these data
with a fourth-degree polynomial.

(b) Use part (a) to find a model for A’(z).

(c) Estimate the rate of change of marriage age for women
in 1990.

(d) Graph the data points and the models for A and A’.

If, in Example 4, one molecule of the product C is formed
from one molecule of the reactant A and one molecule of
the reactant B, and the initial concentrations of A and B have
a common value [A] = [B] = a moles/L, then

[C] = a’kt/(akt + 1)

where k is a constant.
(a) Find the rate of reaction at time .
(b) Show that if x = [C], then

dx
— = kla — 2
o (@ —x)
(c) What happens to the concentration as t — %?
(d) What happens to the rate of reaction as r — %?
(e) What do the results of parts (c) and (d) mean in practical
terms?

Suppose that a bacteria population starts with 500 bacteria and
triples every hour.
(a) What is the population after 3 hours? After 4 hours? After
t hours?
(b) Use (5) in Section 3.1 to estimate the rate of increase of the
bacteria population after 6 hours.

Refer to the law of laminar flow given in Example 7. Consider

a blood vessel with radius 0.01 cm, length 3 cm, pressure dif-

ference 3000 dynes/cm?, and viscosity = 0.027.

(a) Find the velocity of the blood along the centerline r = 0, at
radius r = 0.005 cm, and at the wall r = R = 0.01 cm.



28.

29.

30.

31.

32.

(b) Find the velocity gradient at » = 0, » = 0.005, and
r = 0.01.

(c) Where is the velocity the greatest? Where is the velocity
changing most?

The frequency of vibrations of a vibrating violin string is given

by

f=5r A\~

p
where L is the length of the string, 7 is its tension, and p is its
linear density. [See Chapter 11 in Donald E. Hall, Musical

Acoustics, 3d ed. (Pacific Grove, CA: Brooks/Cole, 2002).]

(a) Find the rate of change of the frequency with respect to

(i) the length (when T and p are constant),
(ii) the tension (when L and p are constant), and
(iii) the linear density (when L and T are constant).

(b) The pitch of a note (how high or low the note sounds) is
determined by the frequency f. (The higher the frequency,
the higher the pitch.) Use the signs of the derivatives in
part (a) to determine what happens to the pitch of a note

(i) when the effective length of a string is decreased by
placing a finger on the string so a shorter portion of
the string vibrates,

(i1) when the tension is increased by turning a tuning peg,
(i) when the linear density is increased by switching to
another string.

Suppose that the cost (in dollars) for a company to produce
x pairs of a new line of jeans is

C(x) = 2000 + 3x + 0.01x* + 0.0002x°

(a) Find the marginal cost function.

(b) Find C’(100) and explain its meaning. What does it predict?

(¢) Compare C’(100) with the cost of manufacturing the 101st
pair of jeans.

The cost function for a certain commodity is
C(x) = 84 + 0.16x — 0.0006x* + 0.000003x*

(a) Find and interpret C'(100).
(b) Compare C'(100) with the cost of producing the 101st item.

If p(x) is the total value of the production when there are
x workers in a plant, then the average productivity of the work-
force at the plant is

(a) Find A'(x). Why does the company want to hire more
workers if A'(x) > 0?

(b) Show that A’(x) > 0 if p'(x) is greater than the average
productivity.

If R denotes the reaction of the body to some stimulus of
strength x, the sensitivity S is defined to be the rate of change
of the reaction with respect to x. A particular example is that

33.

34,

35.

when the brightness x of a light source is increased, the eye
reacts by decreasing the area R of the pupil. The experimental
formula

40 + 240"

R R —
1 + 4x%

has been used to model the dependence of R on x when R is
measured in square millimeters and x is measured in appropri-
ate units of brightness.
(a) Find the sensitivity.
(b) Illustrate part (a) by graphing both R and S as functions
of x. Comment on the values of R and S at low levels of
brightness. Is this what you would expect?

The gas law for an ideal gas at absolute temperature 7 (in
kelvins), pressure P (in atmospheres), and volume V (in liters)
is PV = nRT, where n is the number of moles of the gas

and R = 0.0821 is the gas constant. Suppose that, at a

certain instant, P = 8.0 atm and is increasing at a rate of

0.10 atm/min and V = 10 L and is decreasing at a rate of
0.15 L/min. Find the rate of change of T with respect to time
at that instant if n = 10 mol.

In a fish farm, a population of fish is introduced into a pond
and harvested regularly. A model for the rate of change of the
fish population is given by the equation

dpP 1 - P(?)
dt

— =17
P(‘

>P(t) — BP(?)

where ry is the birth rate of the fish, P. is the maximum popula-

tion that the pond can sustain (called the carrying capacity),

and B is the percentage of the population that is harvested.

(a) What value of dP/dt corresponds to a stable population?

(b) If the pond can sustain 10,000 fish, the birth rate is 5%, and
the harvesting rate is 4%, find the stable population level.

(c) What happens if B is raised to 5%?

In the study of ecosystems, predator-prey models are often
used to study the interaction between species. Consider popu-
lations of tundra wolves, given by W(z), and caribou, given by
C(#), in northern Canada. The interaction has been modeled by
the equations

dc aw
— =aC — bCW — = —cW + dCW
dt dt

(a) What values of dC/dt and dW/dt correspond to stable
populations?

(b) How would the statement “The caribou go extinct” be
represented mathematically?

(c) Suppose that a = 0.05, b = 0.001, ¢ = 0.05, and
d = 0.0001. Find all population pairs (C, W) that lead to
stable populations. According to this model, is it possible
for the two species to live in balance or will one or both
species become extinct?



3.4 Derivatives of Trigonometric Functions

[l A review of the trigonometric functions is
given in Appendix D.

See an animation of Figure 1.
Resources / Module 4

J‘Lm / Trigonometric Models

/ Slope-A-Scope for Sine

FIGURE 1

[l We have used the addition formula for sine.
See Appendix D.

Before starting this section, you might need to review the trigonometric functions. In par-
ticular, it is important to remember that when we talk about the function f defined for all
real numbers x by

f(x) = sinx

it is understood that sin x means the sine of the angle whose radian measure is x. A simi-
lar convention holds for the other trigonometric functions cos, tan, csc, sec, and cot. Recall
from Section 2.5 that all of the trigonometric functions are continuous at every number in
their domains.

If we sketch the graph of the function f(x) = sin x and use the interpretation of f'(x)
as the slope of the tangent to the sine curve in order to sketch the graph of f’ (see Exer-
cise 16 in Section 2.9), then it looks as if the graph of f’ may be the same as the cosine
curve (see Figure 1 and also page 182).

~

f(x)=sin x
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Let’s try to confirm our guess that if f(x) = sin x, then f'(x) = cos x. From the defin-
ition of a derivative, we have

fx+h) — fx)

f'(x) = lim h

sin(x + h) — sinx

= lim
h—0 h
sin x cos h + cos x sin h — sin x
h—0 h

. sinx cos h — sinx cos x sin h
= lim +
h

—0 h h
— . cosh — 1 N sin h
= lim | sinx { —— —— cos x| —
h—1 in i
[1] — lim sin x - lim ———— + lim cos x * lim ——

h—0 h—0 h h—0 h—0 h



Velocity, density, and current are not the only rates of change that are important in
physics. Others include power (the rate at which work is done), the rate of heat 8w, tem-
perature gradient (the rate of change of temperature with respect to position), and the rate
of decay of a radioactive substance in nuclear physics.

|||| Chemistry

EXAMPLE 4 A chemical reaction results in the formation of one or more substances
(called products) from one or more starting materials (called reactants). For instance, the
&quation”

2H2 + 02% 2H20

indicates that two molecules of hydrogen and one molecule of oxygen form two mole-
cules of water. Let’s consider the reaction

A+ B—C

where A and B are the reactants and C is the product. The concentration of a reactant

A is the number of moles (1 mole = 6.022 X 10* molecules) per liter and is denoted by
[A]. The concentration varies during a reaction, so [A], [B], and [C] are all functions of
time (7). The average rate of reaction of the product C over a time interval 1, < t < 1, is

ALC] _ [C]®) — [C)r)

At hH— N

But chemists are more interested in the instantaneous rate of reaction, which is
obtained by taking the limit of the average rate of reaction as the time interval Az
approaches 0:

. . A[C]  d[C]
rate of reaction = lim —— = ——
Aar—0 At dt

Since the concentration of the product increases as the reaction proceeds, the derivative
d[C]/dt will be positive. (You can see intuitively that the slope of the tangent to the
graph of an increasing function is positive.) Thus, the rate of reaction of C is positive.
The concentrations of the reactants, however, decrease during the reaction, so, to make
the rates of reaction of A and B positive numbers, we put minus signs in front of the
derivatives d[A]/dt and d[B]/dt. Since [A] and [B] each decrease at the same rate that
[C] increases, we have

dIC]  d[A]l _ d[B]
a4t dt

rate of reaction =

More generally, it turns out that for a reaction of the form
aA + bB—cC + dD

we have

1 d[A]  1d[B] 1d[C] 1 d[D]
a dt b dt c dt d dt




The rate of reaction can be determined by graphical methods (see Exercise 22). In some
cases we can use the rate of reaction to find explicit formulas for the concentrations as
functions of time (see Exercises 9.3). |

EXAMPLE 5 One of the quantities of interest in thermodynamics is compressibility. If a
given substance is kept at a constant temperature, then its volume V depends on its pres-
sure P. We can consider the rate of change of volume with respect to pressure—namely,
the derivative dV/dP. As P increases, V decreases, so dV/dP < 0. The compressibility
is defined by introducing a minus sign and dividing this derivative by the volume V:

. o 1 dv
isothermal compressibility = 8 = VP

Thus, B measures how fast, per unit volume, the volume of a substance decreases as the
pressure on it increases at constant temperature.

For instance, the volume V (in cubic meters) of a sample of air at 25°C was found to
be related to the pressure P (in kilopascals) by the equation

5.3
V="
P

The rate of change of V with respect to P when P = 50 kPa is

av|  __s3
dP | p—so p? P=50
53
= ——— = —0.00212 m*/kP
2500 m/kPa
The compressibility at that pressure is
1 dv 0.00212
= ——— = ——— = 0.02 (m¥kPa)/m’
V dP |p—so 53
50 ]

|||| Biology

EXAMPLE 6 Let n = f(¢) be the number of individuals in an animal or plant population
at time 7. The change in the population size between the times t = t, and t = 1, is

An = f(t,) — f(t1), and so the average rate of growth during the time period , < t < 1
is

average rate of growth = ﬂ = M

g g At L —t
The instantaneous rate of growth is obtained from this average rate of growth by let-
ting the time period At approach 0:

thrate — lim 2% — "
rowtn rate = Iim —— = ——
& Ar—0 At dt



FIGURE 5
A smooth curve approximating
a growth function

Strictly speaking, this is not quite accurate because the actual graph of a population
function n = (1) would be a step function that is discontinuous whenever a birth or
death occurs and, therefore, not differentiable. However, for a large animal or plant
population, we can replace the graph by a smooth approximating curve as in Figure 5.

n

To be more specific, consider a population of bacteria in a homogeneous nutrient
medium. Suppose that by sampling the population at certain intervals it is determined
that the population doubles every hour. If the initial population is n, and the time 7 is
measured in hours, then

J(1) = 2f(0) = 2no
f2) =2f(1) = 2°no
fB3) =2f(2) = 2°no

and, in general,

f(l) = 2'ng
The population function is n = ny2".
In Section 3.1 we discussed derivatives of exponential functions and found that

d
——(2) = (0692

So the rate of growth of the bacteria population at time ¢ is

dn d
E = E (n02‘) =~ n0(0.69)2’

For example, suppose that we start with an initial population of ny = 100 bacteria. Then
the rate of growth after 4 hours is

d
S < 100(0.69)2* = 1104
dt =4

This means that, after 4 hours, the bacteria population is growing at a rate of about
1100 bacteria per hour. ]



FIGURE 6

Blood flow in an artery

EXAMPLE 7 When we consider the flow of blood through a blood vessel, such as a vein or
artery, we can take the shape of the blood vessel to be a cylindrical tube with radius R
and length [ as illustrated in Figure 6.

l__klr___% ________
/’ =
)

-

Because of friction at the walls of the tube, the velocity v of the blood is greatest
along the central axis of the tube and decreases as the distance r from the axis increases
until » becomes 0 at the wall. The relationship between v and r is given by the law of
laminar flow discovered by the French physician Jean-Louis-Marie Poiseuille in 1840.
This states that

P
— RZ 2

where 7 is the viscosity of the blood and P is the pressure difference between the ends
of the tube. If P and [ are constant, then v is a function of r with domain [0, R]. [For
more detailed information, see W. Nichols and M. O’Rourke (eds.), McDonald’s Blood
Flow in Arteries: Theoretic, Experimental, and Clinical Principles, 4th ed. (New York:
Oxford University Press, 1998).]

The average rate of change of the velocity as we move from r = r, outward to r = r,
is given by

Ao o(r) — o(r)
Ar =

and if we let Ar — 0, we obtain the velocity gradient, that is, the instantaneous rate of
change of velocity with respect to r:

Jocit dient = 1i Av  dv
velocity gradient = lim — = —
yE Ar—0 Ar dr
Using Equation 1, we obtain
d P P
_U - (0 _ 2}’) _ _ r
dr  4nl 21l

For one of the smaller human arteries we can take n = 0.027, R = 0.008 cm, [ = 2 cm,
and P = 4000 dynes/cm?® which gives

4000
V= —"
4(0.027)2
~ 1.85 X 10%6.4 X 1075 — r?)

(0.000064 — r2)

At r = 0.002 cm the blood is flowing at a speed of

2(0.002) =~ 1.85 X 10%(64 X 1076 — 4 X 107°)
= 1.11 cm/s



and the velocity gradient at that point is

dv ~4000(0.002)

dr = —74
dr | ,=0.002 2(0.027)2 (cm/s)/cm

To get a feeling for what this statement means, let’s change our units from centi-
meters to micrometers (1 cm = 10,000 pm). Then the radius of the artery is 80 wm. The
velocity at the central axis is 11,850 wm/s, which decreases to 11,110 wm/s at a distance
of r = 20 pm. The fact that dv/dr = —74 (um/s)/pwm means that, when r = 20 pwm, the
velocity is decreasing at a rate of about 74 wm/s for each micrometer that we proceed
away from the center. 1

HH Economics

EXAMPLE 8 Suppose C(x) is the total cost that a company incurs in producing x units of
a certain commodity. The function C is called a cost function. If the number of items
produced is increased from x; to x,, the additional cost is AC = C(x;) — C(x;), and the
average rate of change of the cost is

AC _ C(x2) — Clxy) _ Clx; + Ax) — C(xy)
Ax X2 — Xi Ax

The limit of this quantity as Ax — 0, that is, the instantaneous rate of change of cost
with respect to the number of items produced, is called the marginal cost by economists:

nal cost = i AC dC
marginal cost = lim — = —
£ Ax—0 Ax dx

[Since x often takes on only integer values, it may not make literal sense to let Ax
approach 0, but we can always replace C(x) by a smooth approximating function as in
Example 6.]

Taking Ax = 1 and n large (so that Ax is small compared to n), we have

C'ln)=Cn+1) — Chn)

Thus, the marginal cost of producing » units is approximately equal to the cost of pro-
ducing one more unit [the (z + 1)st unit].
It is often appropriate to represent a total cost function by a polynomial

C(x) =a + bx + cx* + dx*®

where a represents the overhead cost (rent, heat, maintenance) and the other terms
represent the cost of raw materials, labor, and so on. (The cost of raw materials may be
proportional to x, but labor costs might depend partly on higher powers of x because of
overtime costs and inefficiencies involved in large-scale operations.)

For instance, suppose a company has estimated that the cost (in dollars) of producing
X items is

C(x) = 10,000 + 5x + 0.01x?
Then the marginal cost function is

C'(x) =5+ 0.02x



The marginal cost at the production level of 500 items is
C'(500) = 5 + 0.02(500) = $15/item

This gives the rate at which costs are increasing with respect to the production level
when x = 500 and predicts the cost of the 501st item.
The actual cost of producing the 501st item is

C(501) — C(500) = [10,000 + 5(501) + 0.01(501)?]
— [10,000 + 5(500) + 0.01(500)*]
= $15.01

Notice that C'(500) = C(501) — C(500).

Economists also study marginal demand, marginal revenue, and marginal profit, which
are the derivatives of the demand, revenue, and profit functions. These will be considered
in Chapter 4 after we have developed techniques for finding the maximum and minimum
values of functions.

||H Other Sciences

Rates of change occur in all the sciences. A geologist is interested in knowing the rate at
which an intruded body of molten rock cools by conduction of heat into surrounding rocks.
An engineer wants to know the rate at which water flows into or out of a reservoir. An
urban geographer is interested in the rate of change of the population density in a city as
the distance from the city center increases. A meteorologist is concerned with the rate of
change of atmospheric pressure with respect to height (see Exercise 17 in Section 9.4).

In psychology, those interested in learning theory study the so-called learning curve,
which graphs the performance P(7) of someone learning a skill as a function of the train-
ing time ¢. Of particular interest is the rate at which performance improves as time passes,
that is, dP/dt.

In sociology, differential calculus is used in analyzing the spread of rumors (or innova-
tions or fads or fashions). If p(¢) denotes the proportion of a population that knows a rumor
by time ¢, then the derivative dp/dt represents the rate of spread of the rumor (see Exer-
cise 70 in Section 3.5).

HH Symmary

Velocity, density, current, power, and temperature gradient in physics, rate of reaction and
compressibility in chemistry, rate of growth and blood velocity gradient in biology, mar-
ginal cost and marginal profit in economics, rate of heat flow in geology, rate of improve-
ment of performance in psychology, rate of spread of a rumor in sociology—these are all
special cases of a single mathematical concept, the derivative.

This is an illustration of the fact that part of the power of mathematics lies in its
abstractness. A single abstract mathematical concept (such as the derivative) can have dif-
ferent interpretations in each of the sciences. When we develop the properties of the math-
ematical concept once and for all, we can then turn around and apply these results to all of
the sciences. This is much more efficient than developing properties of special concepts in
each separate science. The French mathematician Joseph Fourier (1768—-1830) put it suc-
cinctly: “Mathematics compares the most diverse phenomena and discovers the secret
analogies that unite them.”



3.3 Exercises

1-6 1 A particle moves according to a law of motion s = f (1),
t = 0, where ¢ is measured in seconds and s in feet.

(a) Find the velocity at time ¢.

(b) What is the velocity after 3 s?

(c) When is the particle at rest?

(d) When is the particle moving in the positive direction?

(e) Find the total distance traveled during the first 8 s.

(f) Draw a diagram like Figure 2 to illustrate the motion of the

12.

. fe)=1*— 10t + 12

particle.
2 fO)=1>—9*+ 15t + 10

. f) =1 — 1217 + 361 4 () =1 —4r+ 1
t

S 6. s = /1(3r> — 35t + 90)

. The position function of a particle is given by

s=1—45t*— Tt t=0

When does the particle reach a velocity of 5 m/s?

. If a ball is given a push so that it has an initial velocity of

5 m/s down a certain inclined plane, then the distance it has
rolled after ¢ seconds is s = 5t + 372

(a) Find the velocity after 2 s.

(b) How long does it take for the velocity to reach 35 m/s?

. If a stone is thrown vertically upward from the surface of the

moon with a velocity of 10 m/s, its height (in meters) after
t seconds is h = 10t — 0.83¢%

(a) What is the velocity of the stone after 3 s?

(b) What is the velocity of the stone after it has risen 25 m?

. If a ball is thrown vertically upward with a velocity of

80 ft/s, then its height after  seconds is s = 80r — 1617

(a) What is the maximum height reached by the ball?

(b) What is the velocity of the ball when it is 96 ft above the
ground on its way up? On its way down?

. (a) A company makes computer chips from square wafers

of silicon. It wants to keep the side length of a wafer very
close to 15 mm and it wants to know how the area A(x) of a
wafer changes when the side length x changes. Find A’(15)
and explain its meaning in this situation.

(b) Show that the rate of change of the area of a square with
respect to its side length is half its perimeter. Try to explain
geometrically why this is true by drawing a square whose
side length x is increased by an amount Ax. How can you
approximate the resulting change in area AA if Ax is small?

(a) Sodium chlorate crystals are easy to grow in the shape of
cubes by allowing a solution of water and sodium chlorate
to evaporate slowly. If V is the volume of such a cube with
side length x, calculate dV/dx when x = 3 mm and explain
its meaning.

18.

(b) Show that the rate of change of the volume of a cube with
respect to its edge length is equal to half the surface area of
the cube. Explain geometrically why this result is true by
arguing by analogy with Exercise 11(b).

. (a) Find the average rate of change of the area of a circle with

respect to its radius r as r changes from
(i) 2to 3 (i) 2t0 2.5 (iii) 2to 2.1

(b) Find the instantaneous rate of change when r = 2.

(c) Show that the rate of change of the area of a circle with
respect to its radius (at any r) is equal to the circumference
of the circle. Try to explain geometrically why this is true
by drawing a circle whose radius is increased by an amount
Ar. How can you approximate the resulting change in area
AA if Ar is small?

. A stone is dropped into a lake, creating a circular ripple that

travels outward at a speed of 60 cm/s. Find the rate at which
the area within the circle is increasing after (a) 1 s, (b) 3 s, and
(c) 5 s. What can you conclude?

. A spherical balloon is being inflated. Find the rate of increase

of the surface area (S = 47r*) with respect to the radius r
when ris (a) 1 ft, (b) 2 ft, and (c) 3 ft. What conclusion can
you make?

. (a) The volume of a growing spherical cell is V = 771, where

the radius 7 is measured in micrometers (1 um = 10°m).
Find the average rate of change of V with respect to r when
r changes from

(i) 5to 8 pm (i) 5to 6 pm (iii) 5t0o 5.1 pm

(b) Find the instantaneous rate of change of V with respect to r
when r = 5 pm.

(c) Show that the rate of change of the volume of a sphere with
respect to its radius is equal to its surface area. Explain
geometrically why this result is true. Argue by analogy with
Exercise 13(c).

. The mass of the part of a metal rod that lies between its left

end and a point x meters to the right is 3x kg. Find the linear
density (see Example 2) when x is (a) 1 m, (b) 2 m, and
(c) 3 m. Where is the density the highest? The lowest?

If a tank holds 5000 gallons of water, which drains from the
bottom of the tank in 40 minutes, then Torricelli’s Law gives
the volume V of water remaining in the tank after # minutes as

t 2
V=5000{1—— 0=<1r=<40

Find the rate at which water is draining from the tank after

(a) 5 min, (b) 10 min, (¢) 20 min, and (d) 40 min. At what time

is the water flowing out the fastest? The slowest? Summarize

your findings.

. The quantity of charge Q in coulombs (C) that has passed

through a point in a wire up to time ¢ (measured in seconds) is



20.

21.

22

given by Q(#) = t* — 2¢* + 6¢ + 2. Find the current when
(a) t = 0.5sand (b) r = 1 s. [See Example 3. The unit of cur-
rent is an ampere (1 A = 1 C/s).] At what time is the current
lowest?

Newton’s Law of Gravitation says that the magnitude F' of the
force exerted by a body of mass m on a body of mass M is

_ GmM

r2

F

where G is the gravitational constant and r is the distance
between the bodies.
(a) Find dF/dr and explain its meaning. What does the minus
sign indicate?
(b) Suppose it is known that Earth attracts an object with
a force that decreases at the rate of 2 N/km when
r = 20,000 km. How fast does this force change when
r = 10,000 km?

Boyle’s Law states that when a sample of gas is compressed at
a constant temperature, the product of the pressure and the vol-
ume remains constant: PV = C.
(a) Find the rate of change of volume with respect to

pressure.
(b) A sample of gas is in a container at low pressure and is

steadily compressed at constant temperature for 10 minutes.

Is the volume decreasing more rapidly at the beginning or
the end of the 10 minutes? Explain.

(c) Prove that the isothermal compressibility (see Example 5)
is given by B = 1/P.

The data in the table concern the lactonization of hydroxy-
valeric acid at 25°C. They give the concentration C() of this
acid in moles per liter after # minutes.

t 0 2 4 6 8

0.0800

C(t) 0.0570 0.0408 0.0295 0.0210

7 23.

(a) Find the average rate of reaction for the following time
intervals:
) 2<t<6 ) 2str<4 i) 0str<2
(b) Plot the points from the table and draw a smooth curve
through them as an approximation to the graph of the con-
centration function. Then draw the tangent at # = 2 and use
it to estimate the instantaneous rate of reaction when r = 2.

The table gives the population of the world in the 20th century.

Population Population

Year (in millions) Year (in millions)
1900 1650 1960 3040
1910 1750 1970 3710
1920 1860 1980 4450
1930 2070 1990 5280
1940 2300 2000 6080
1950 2560

A 24.

25.

26.

27.

(a) Estimate the rate of population growth in 1920 and in 1980
by averaging the slopes of two secant lines.

(b) Use a graphing calculator or computer to find a cubic func-
tion (a third-degree polynomial) that models the data. (See
Section 1.2.)

(c) Use your model in part (b) to find a model for the rate of
population growth in the 20th century.

(d) Use part (c) to estimate the rates of growth in 1920 and
1980. Compare with your estimates in part (a).

(e) Estimate the rate of growth in 1985.

The table shows how the average age of first marriage of
Japanese women varied in the last half of the 20th century.

t A(r) t A(r)
1950 23.0 1975 24.7
1955 23.8 1980 25.2
1960 24.4 1985 25.5
1965 24.5 1990 25.9
1970 24.2 1995 26.3

(a) Use a graphing calculator or computer to model these data
with a fourth-degree polynomial.

(b) Use part (a) to find a model for A’(z).

(c) Estimate the rate of change of marriage age for women
in 1990.

(d) Graph the data points and the models for A and A’.

If, in Example 4, one molecule of the product C is formed
from one molecule of the reactant A and one molecule of
the reactant B, and the initial concentrations of A and B have
a common value [A] = [B] = a moles/L, then

[C] = a’kt/(akt + 1)

where k is a constant.
(a) Find the rate of reaction at time .
(b) Show that if x = [C], then

dx
— = kla — 2
o (@ —x)
(c) What happens to the concentration as t — %?
(d) What happens to the rate of reaction as r — %?
(e) What do the results of parts (c) and (d) mean in practical
terms?

Suppose that a bacteria population starts with 500 bacteria and
triples every hour.
(a) What is the population after 3 hours? After 4 hours? After
t hours?
(b) Use (5) in Section 3.1 to estimate the rate of increase of the
bacteria population after 6 hours.

Refer to the law of laminar flow given in Example 7. Consider

a blood vessel with radius 0.01 cm, length 3 cm, pressure dif-

ference 3000 dynes/cm?, and viscosity = 0.027.

(a) Find the velocity of the blood along the centerline r = 0, at
radius r = 0.005 cm, and at the wall r = R = 0.01 cm.



28.

29.

30.

31.

32.

(b) Find the velocity gradient at » = 0, » = 0.005, and
r = 0.01.

(c) Where is the velocity the greatest? Where is the velocity
changing most?

The frequency of vibrations of a vibrating violin string is given

by

f=5r A\~

p
where L is the length of the string, 7 is its tension, and p is its
linear density. [See Chapter 11 in Donald E. Hall, Musical

Acoustics, 3d ed. (Pacific Grove, CA: Brooks/Cole, 2002).]

(a) Find the rate of change of the frequency with respect to

(i) the length (when T and p are constant),
(ii) the tension (when L and p are constant), and
(iii) the linear density (when L and T are constant).

(b) The pitch of a note (how high or low the note sounds) is
determined by the frequency f. (The higher the frequency,
the higher the pitch.) Use the signs of the derivatives in
part (a) to determine what happens to the pitch of a note

(i) when the effective length of a string is decreased by
placing a finger on the string so a shorter portion of
the string vibrates,

(i1) when the tension is increased by turning a tuning peg,
(i) when the linear density is increased by switching to
another string.

Suppose that the cost (in dollars) for a company to produce
x pairs of a new line of jeans is

C(x) = 2000 + 3x + 0.01x* + 0.0002x°

(a) Find the marginal cost function.

(b) Find C’(100) and explain its meaning. What does it predict?

(¢) Compare C’(100) with the cost of manufacturing the 101st
pair of jeans.

The cost function for a certain commodity is
C(x) = 84 + 0.16x — 0.0006x* + 0.000003x*

(a) Find and interpret C'(100).
(b) Compare C'(100) with the cost of producing the 101st item.

If p(x) is the total value of the production when there are
x workers in a plant, then the average productivity of the work-
force at the plant is

(a) Find A'(x). Why does the company want to hire more
workers if A'(x) > 0?

(b) Show that A’(x) > 0 if p'(x) is greater than the average
productivity.

If R denotes the reaction of the body to some stimulus of
strength x, the sensitivity S is defined to be the rate of change
of the reaction with respect to x. A particular example is that

33.

34,

35.

when the brightness x of a light source is increased, the eye
reacts by decreasing the area R of the pupil. The experimental
formula

40 + 240"

R R —
1 + 4x%

has been used to model the dependence of R on x when R is
measured in square millimeters and x is measured in appropri-
ate units of brightness.
(a) Find the sensitivity.
(b) Illustrate part (a) by graphing both R and S as functions
of x. Comment on the values of R and S at low levels of
brightness. Is this what you would expect?

The gas law for an ideal gas at absolute temperature 7 (in
kelvins), pressure P (in atmospheres), and volume V (in liters)
is PV = nRT, where n is the number of moles of the gas

and R = 0.0821 is the gas constant. Suppose that, at a

certain instant, P = 8.0 atm and is increasing at a rate of

0.10 atm/min and V = 10 L and is decreasing at a rate of
0.15 L/min. Find the rate of change of T with respect to time
at that instant if n = 10 mol.

In a fish farm, a population of fish is introduced into a pond
and harvested regularly. A model for the rate of change of the
fish population is given by the equation

dpP 1 - P(?)
dt

— =17
P(‘

>P(t) — BP(?)

where ry is the birth rate of the fish, P. is the maximum popula-

tion that the pond can sustain (called the carrying capacity),

and B is the percentage of the population that is harvested.

(a) What value of dP/dt corresponds to a stable population?

(b) If the pond can sustain 10,000 fish, the birth rate is 5%, and
the harvesting rate is 4%, find the stable population level.

(c) What happens if B is raised to 5%?

In the study of ecosystems, predator-prey models are often
used to study the interaction between species. Consider popu-
lations of tundra wolves, given by W(z), and caribou, given by
C(#), in northern Canada. The interaction has been modeled by
the equations

dc aw
— =aC — bCW — = —cW + dCW
dt dt

(a) What values of dC/dt and dW/dt correspond to stable
populations?

(b) How would the statement “The caribou go extinct” be
represented mathematically?

(c) Suppose that a = 0.05, b = 0.001, ¢ = 0.05, and
d = 0.0001. Find all population pairs (C, W) that lead to
stable populations. According to this model, is it possible
for the two species to live in balance or will one or both
species become extinct?



3.4 Derivatives of Trigonometric Functions

[l A review of the trigonometric functions is
given in Appendix D.

See an animation of Figure 1.
Resources / Module 4

J‘Lm / Trigonometric Models

/ Slope-A-Scope for Sine

FIGURE 1

[l We have used the addition formula for sine.
See Appendix D.

Before starting this section, you might need to review the trigonometric functions. In par-
ticular, it is important to remember that when we talk about the function f defined for all
real numbers x by

f(x) = sinx

it is understood that sin x means the sine of the angle whose radian measure is x. A simi-
lar convention holds for the other trigonometric functions cos, tan, csc, sec, and cot. Recall
from Section 2.5 that all of the trigonometric functions are continuous at every number in
their domains.

If we sketch the graph of the function f(x) = sin x and use the interpretation of f'(x)
as the slope of the tangent to the sine curve in order to sketch the graph of f’ (see Exer-
cise 16 in Section 2.9), then it looks as if the graph of f’ may be the same as the cosine
curve (see Figure 1 and also page 182).

~

f(x)=sin x
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Let’s try to confirm our guess that if f(x) = sin x, then f'(x) = cos x. From the defin-
ition of a derivative, we have

fx+h) — fx)

f'(x) = lim h

sin(x + h) — sinx

= lim
h—0 h
sin x cos h + cos x sin h — sin x
h—0 h

. sinx cos h — sinx cos x sin h
= lim +
h

—0 h h
— . cosh — 1 N sin h
= lim | sinx { —— —— cos x| —
h—1 in i
[1] — lim sin x - lim ———— + lim cos x * lim ——

h—0 h—0 h h—0 h—0 h
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Two of these four limits are easy to evaluate. Since we regard x as a constant when com-
puting a limit as 47 — 0, we have

lim sin x = sin x and lim cos x = cos x
h—0 h—0

The limit of (sin /)/h is not so obvious. In Example 3 in Section 2.2 we made the guess,
on the basis of numerical and graphical evidence, that

sin 6
[2] lim

6—0 @

=1

We now use a geometric argument to prove Equation 2. Assume first that 0 lies between
0 and 7r/2. Figure 2(a) shows a sector of a circle with center O, central angle 6, and
radius 1. BC is drawn perpendicular to OA. By the definition of radian measure, we have
arc AB = 0. Also, | BC| = | OB|sin 6 = sin 6. From the diagram we see that

|BC| < |AB| < arc AB

sin 6
0

Therefore sin 0 < 6 SO <1

Let the tangent lines at A and B intersect at E. You can see from Figure 2(b) that the
circumference of a circle is smaller than the length of a circumscribed polygon, and so
arc AB < |AE| + | EB/|. Thus

6 = arc AB < |AE| + |EB|
< |AE| + |ED|
= |AD| = |OA| tan 6
= tan 0

(In Appendix F the inequality 6 < tan 6 is proved directly from the definition of the length
of an arc without resorting to geometric intuition as we did here.) Therefore, we have

sin 6

0 <
cos 0

sin 6
SO cos0<T<1

We know that limy .o 1 = 1 and lim,_., cos 6 = 1, so by the Squeeze Theorem, we have

in 6
lim 207 —
-0t @

But the function (sin 6)/6 is an even function, so its right and left limits must be equal.
Hence, we have

so we have proved Equation 2.



[ We multiply numerator and denominator by
cos 0 + 1 in order to put the function in a form
in which we can use the limits we know.

[l Figure 3 shows the graphs of the function of
Example 1 and its derivative. Notice that y’ = 0
whenever y has a horizontal tangent.

5
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FIGURE 3

We can deduce the value of the remaining limit in (1) as follows:

. cosh—1 . cosf—1 cosf+1 ) cos’f — 1
lim ——— = lim . = lim———
6—0 0 6—0 0 cos O+ 1 0—0 @(cos 6 + 1)
) —sin’6 . sin @ sin 6
=lim————= —lim .
6—0 @(cos 6 + 1) =0 0 cos 6+ 1
. sinf . sin 0
= —lim .

im
0—0 0 9—0 cos 6 + 1

0
=—1- ( ) =0 (by Equation 2)

cos 6 — 1
[3] lim —— =

0—0

0

If we now put the limits (2) and (3) in (1), we get

, . . . cosh—1 . . sinh
f'(x) = lim sin x + lim ————— + lim cos x * lim
h—0 h—0 h h—0 h—0

= (sinx) * 0 + (cosx) * 1 = cosx

So we have proved the formula for the derivative of the sine function:

d
(4] — (sin x) = cos x
dx

EXAMPLE 1 Differentiate y = x?sin x.
SOLUTION Using the Product Rule and Formula 4, we have

d d d
% =x25 (sin x) + sin x - (x?)
= x%cos x + 2xsin x

Using the same methods as in the proof of Formula 4, one can prove (see Exercise 20)
that

d
[5] — (cos x) = —sin x
dx

The tangent function can also be differentiated by using the definition of a derivative,



[l When you memorize this table, it is helpful
to notice that the minus signs go with the der-
ivatives of the ¢ofunctions, that is, cosine,
cosecant, and cotangent.

but it is easier to use the Quotient Rule together with Formulas 4 and 5:
d (tan x) d [ sinx
— (tanx) = — | ——
dx dx \ cos x

cos i(s'n ) — si i( )
x— - (sinx inx— - (cos.x

cos’x

cos x * cos x — sin x (—sin x)

cos’x

cos’x + sin’x

cosx

1
= —— = sec’x
cos’x

d
[6] — (tan x) = secx
dx

The derivatives of the remaining trigonometric functions, csc, sec, and cot, can also be
found easily using the Quotient Rule (see Exercises 17-19). We collect all the differentia-
tion formulas for trigonometric functions in the following table. Remember that they are
valid only when x is measured in radians.

Derivatives of Trigonometric Functions

d . d
— (sin x) = cos x — (csc x) = —csc x cot x
dx dx

d ) d
— (cos x) = —sin x — (sec x) = sec x tan x
dx dx

d d
— (tan x) = sec’x — (cot x) = —csc’x

dx dx

Sec x

EXAMPLE 2 Differentiate f(x) =
have a horizontal tangent?

— . For what values of x does the graph of f
I + tan x

SOLUTION The Quotient Rule gives

d d
(1 + tan x) — (sec x) — sec x — (1 + tan x)
dx dx

') =

(1 + tan x)*

(1 + tan x) sec x tan x — sec x * sec’x
(1 + tan x)?

sec x (tan x + tan*x — sec’x)
(1 + tan x)*

_ secx(tanx — 1)
(1 + tan x)?
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Note that sin 7x # 7 sin x.

In simplifying the answer we have used the identity tan’x + 1 = sec’x.
Since sec x is never 0, we see that f’(x) = 0 when tan x = 1, and this occurs when
x = nm + 7/4, where n is an integer (see Figure 4). ]

Trigonometric functions are often used in modeling real-world phenomena. In particu-
lar, vibrations, waves, elastic motions, and other quantities that vary in a periodic manner
can be described using trigonometric functions. In the following example we discuss an
instance of simple harmonic motion.

EXAMPLE 3 An object at the end of a vertical spring is stretched 4 cm beyond its rest
position and released at time ¢ = 0. (See Figure 5 and note that the downward direction
is positive.) Its position at time 7 is

s =f(t) =4cost

Find the velocity at time 7 and use it to analyze the motion of the object.

SOLUTION The velocity is

ds d d )
V== (4cost) =4 0 (cos 1) 4sint

The object oscillates from the lowest point (s = 4 cm) to the highest point
(s = —4 cm). The period of the oscillation is 277, the period of cos z.

The speed is |v| = 4|sin 7|, which is greatest when |sin 7| = 1, that is, when
cos t = 0. So the object moves fastest as it passes through its equilibrium position
(s = 0). Its speed is 0 when sin ¢ = 0, that is, at the high and low points. See the graphs
in Figure 6. —

Our main use for the limit in Equation 2 has been to prove the differentiation formula
for the sine function. But this limit is also useful in finding certain other trigonometric lim-
its, as the following two examples show.

. . sin7x
EXAMPLE 4 Find lim .
x—0 4x

SOLUTION In order to apply Equation 2, we first rewrite the function by multiplying and
dividing by 7:
sin7x 7 ( sin 7x
4x 4 7x

Notice that as x — 0, we have 7x — 0, and so, by Equation 2 with 6 = 7x,

. sin7x sin(7x)
im = =

—0 Tx x—0  Tx

. sin7x .7 {(sin7x
Thus lim = lim —
X x—0 4 Tx

1

7 . sin7x 7 7
= — lim =—-1=Z

40 Tx 4




EXAMPLE 5 Calculate lirn0 xcot x.

SOLUTION Here we divide numerator and denominator by x:

lim x cot x = lim
x—0

3.4 Exercises

X COS X
x>0 sin x
lim cos x
. COSX 50
= lim — = -
x—0 sin x . sinx
lim
X x—=0 X
cos 0 o . ‘
= 1 (by the continuity of cosine and Equation 2)
=1 —-—

1-16 1 Differentiate.

1. f(x) =x — 3sinx 2. f(x) = xsinx
3. y=sinx + 10tan x 4, y=2cscx + 5cosx
5. g(t) = t*cos t 6. g(t) =4sect + tant
7. h(h) = csc 6 + e’cot 6 8. y=-c"(cosu + cu)
9 y— X Io.y:l-ksinx
COS X X + cos x
sec 0 tanx — 1
1. f(0) = ——— 120 y= ——
10) 1+ sec o Y sec x
13. y= szx 14. y = csc 6 (6 + cot 6)
X
15. y =sec 6 tan 0 16. y = x sin x cos x
d
17. Prove that I (csc x) = —csc x cot x.
by

d
18. Prove that I (sec x) = sec x tan x.
by

d
19. Prove thatE (cot x) = —cscx.

20. Prove, using the definition of derivative, that if f(x) = cos x,
then f'(x) = —sin x.

21-24 1 Find an equation of the tangent line to the curve at the
given point.

2. y=tanx, (w/4,1) 22. y=e*cosx, (0,1)

23. y=x+cosx, (0,1) 2. y= 0, 1)

sin x + cos x’

Y
1<

25. (a) Find an equation of the tangent line to the curve
y = xcos x at the point (7, — ).

a3 (b) Mlustrate part (a) by graphing the curve and the tangent line

on the same screen.

26. (a) Find an equation of the tangent line to the curve
y = sec x — 2 cos x at the point (7/3, 1).
(b) Hlustrate part (a) by graphing the curve and the tangent line
on the same screen.

27. (a) If f(x) = 2x + cot x, find f'(x).

@ (b) Check to see that your answer to part (a) is reasonable by

graphing both f and f’ for 0 < x < .
28. (a) If f(x) = xsin x, find f'(x).

@ (b) Check to see that your answer to part (a) is reasonable by

graphing both f and f’ for 0 < x < 2.

29. For what values of x does the graph of f(x) = x + 2 sin x have
a horizontal tangent?

30. Find the points on the curve y = (cos x)/(2 + sin x) at which
the tangent is horizontal.

31. A mass on a spring vibrates horizontally on a smooth level
surface (see the figure). Its equation of motion is x(z) = 8 sin z,
where 7 is in seconds and x in centimeters.

(a) Find the velocity at time 7.
(b) Find the position and velocity of the mass at time 1 = 27/3.
In what direction is it moving at that time?

equilibrium
position

VWWWWWWV/



¥4 32. An elastic band is hung on a hook and a mass is hung on the
lower end of the band. When the mass is pulled downward and
then released, it vibrates vertically. The equation of motion is
s =2cost + 3sint, r = 0, where s is measured in centi-
meters and 7 in seconds. (We take the positive direction to be
downward.)
(a) Find the velocity at time .
(b) Graph the velocity and position functions.
(c) When does the mass pass through the equilibrium position

for the first time?

(d) How far from its equilibrium position does the mass travel?
(e) When is the speed the greatest?

33. A ladder 10 ft long rests against a vertical wall. Let 6 be the
angle between the top of the ladder and the wall and let x be
the distance from the bottom of the ladder to the wall. If the
bottom of the ladder slides away from the wall, how fast does
x change with respect to 6 when 6 = 7/3?

34. An object with weight W is dragged along a horizontal plane
by a force acting along a rope attached to the object. If the rope
makes an angle 6 with the plane, then the magnitude of the
force is

R A
usin 6 + cos 6

where w is a constant called the coefficient of friction.
(a) Find the rate of change of F' with respect to 6.
(b) When is this rate of change equal to 0?
a5 (¢) f W=501band u = 0.6, draw the graph of F as a func-
tion of 6 and use it to locate the value of 6 for which
dF/d6 = 0. Is the value consistent with your answer to
part (b)?

35-44 11 Find the limit.

in3 ind
35. lim —— 36. lim —
=0 X x—0 sin 6x
tan 6¢ 60—1
370 lim —— 38. lim——
1—0 sin 2t 9—0  sin 0
i [7) in> 3¢
39, Jim S8 6) 40. Tim 2
0—0 sec O =0
t2 inx —
A, tim == 42. lim %
x—0 CSC X x—7/4 cos 2x

3.5 The Chain Rule

in 6 i -1
43] lim ——7 M. lim 732“(’6 )
6—0 @ + tan 0 =l x”+x—2

o o o o o o o o o o o

45. Differentiate each trigonometric identity to obtain a new
(or familiar) identity.

sin x
(a) tan x =
cos x
(b) sec x =
cos X
. 1 + cotx
(¢c)sinx +cosx=—"—"—
csc x

46. A semicircle with diameter PQ sits on an isosceles triangle

POR to form a region shaped like an ice-cream cone, as shown

in the figure. If A(9) is the area of the semicircle and B(6) is
the area of the triangle, find

lim A®)
0 B(6)

R

47. The figure shows a circular arc of length s and a chord of
length d, both subtended by a central angle 6. Find
s

lim —
6—0t

N

I
e

Suppose you are asked to differentiate the function

The differentiation formulas you learned in the previous sections of this chapter do not

Fx)=+x2+1

enable you to calculate F'(x).



[l See Section 1.3 for a review of

composite functions.

¥

Resources / Module 4
/ Trigonometric Models
/ The Chain Rule

Observe that F is a composite function. In fact, if we let y = f(u) = Vu and let
u = g(x) = x* + 1, then we can write y = F(x) = f(g(x)), that is, F = fe g. We know
how to differentiate both f and g, so it would be useful to have a rule that tells us how to
find the derivative of F = fo g in terms of the derivatives of f and g.

It turns out that the derivative of the composite function f° g is the product of the deriv-
atives of f and g. This fact is one of the most important of the differentiation rules and is
called the Chain Rule. It seems plausible if we interpret derivatives as rates of change.
Regard du/dx as the rate of change of u with respect to x, dy/du as the rate of change of
y with respect to u, and dy/dx as the rate of change of y with respect to x. If u changes
twice as fast as x and y changes three times as fast as u, then it seems reasonable that y
changes six times as fast as x, and so we expect that

&y _dy du
dx du dx

The Chain Rule If fand g are both differentiable and F' = f o g is the composite func-
tion defined by F(x) = f(g(x)), then F is differentiable and F' is given by the
product

F'(x) = f'(g(x))g'(x)
In Leibniz notation, if y = f(«) and u = g(x) are both differentiable functions, then

dy _ dy du
dx du dx

Comments on the Proof of the Chain Rule Let Au be the change in u corresponding to a change
of Ax in x, that is,

Au = g(x + Ax) — g(x)
Then the corresponding change in y is

Ay = f(u + Au) = f(u)

It is tempting to write

dy i Ay
D him 2
dx Ax—0 Ax
. Ay Au
[ N Alxlgo Au  Ax
A A
= lim -2 - lim —

Ax—0 Ay Ax—0 Ax

Ay . Au (Note that Au — 0 as Ax — 0
since g is continuous.)

im
Au—0 Ay Ax—0 Ax

dy du
du dx

The only flaw in this reasoning is that in (1) it might happen that Au = 0 (even when



Ax # 0) and, of course, we can’t divide by 0. Nonetheless, this reasoning does at least
suggest that the Chain Rule is true. A full proof of the Chain Rule is given at the end of
this section. ]

The Chain Rule can be written either in the prime notation
2] (f°9)'(x) = f'(g(x)g'(x)
or, if y = f(u) and u = g(x), in Leibniz notation:

& _dydu

H dx  du dx

Equation 3 is easy to remember because if dy/du and du/dx were quotients, then we could
cancel du. Remember, however, that du has not been defined and du/dx should not be
thought of as an actual quotient.

EXAMPLE 1 Find F'(x) if F(x) = v/x2 + 1.

SOLUTION 1 (using Equation 2): At the beginning of this section we expressed F as
F(x) = (fo g)(x) = f(g(x)) where f(u) = /u and g(x) = x> + 1. Since

flu) = su'? = ﬁ and  ¢'(x) = 2x
we have F'(x) = f'(9(x)g'(x)
1 X

Oy =
W +r1 T e
SOLUTION 2 (using Equation 3): If we let u = x> + 1 and y = /u, then

dy d 1
—ya_ (2x)

F'(x) = — =
() du dx 2u

X
(2 = Jx2+1 ]

1
2x2+ 1
When using Formula 3 we should bear in mind that dy/dx refers to the derivative of y
when y is considered as a function of x (called the derivative of y with respect to x),
whereas dy/du refers to the derivative of y when considered as a function of u (the deriv-
ative of y with respect to ). For instance, in Example 1, y can be considered as a function
of x (y = x?+ 1) and also as a function of u (y = \/ﬁ) Note that

dy X

dy _ 1

dy
Fr — h — = f! =
T (x) pepn ] whereas T f(uw) N

NOTE - In using the Chain Rule we work from the outside to the inside. Formula 2 says
that we differentiate the outer function f [at the inner function g(x)] and then we multiply
by the derivative of the inner function.

d
o ) () = f () - g
— — — — —
outer evaluated derivative evaluated derivative

function at inner of outer at inner of inner
function function function function



[IIl" See Reference Page 2 or Appendix D.

EXAMPLE 2 Differentiate (a) y = sin(x?) and (b) y = sin’x.

SOLUTION
(a) If y = sin(x?), then the outer function is the sine function and the inner function is
the squaring function, so the Chain Rule gives

d d .
Dol xyH = cos x» - 2x
dx dx
— —— — ——
outer evaluated derivative evaluated derivative
function at inner of outer at inner of inner
function function function function
= 2x cos(x?)

(b) Note that sin?x = (sin x) Here the outer function is the squaring function and the
inner function is the sine function. So

dy _ d . 5 _ )
— = — (sin x) = 2 + (sinx) ¢ cosx
dx dx
inner derivative evaluated derivative
function of outer at inner of inner
function function function

The answer can be left as 2 sin x cos x or written as sin 2x (by a trigonometric identity
known as the double-angle formula). 1

In Example 2(a) we combined the Chain Rule with the rule for differentiating the sine
function. In general, if y = sin u, where u is a differentiable function of x, then, by the
Chain Rule,

& _dydu_ o du
dx du dx " dx
d d
Thus T (sin u) = cos u d_z

In a similar fashion, all of the formulas for differentiating trigonometric functions can
be combined with the Chain Rule.

Let’s make explicit the special case of the Chain Rule where the outer function f is a
power function. If y = [g(x)]", then we can write y = f(u) = u" where u = g(x). By using
the Chain Rule and then the Power Rule, we get

dy _dy du

du
= — n—1 — n—1_1
== = nlg(0) g ()

[4] The Power Rule Combined with the Chain Rule If £ is any real number and u = g(x)
is differentiable, then

d d
£ =
. d n n—1 !
Alternatively, o [9(x)]" = n[g(x)]""" - g'(x)

Notice that the derivative in Example 1 could be calculated by taking n = 3 in Rule 4.



[IIl' The graphs of the functions y and y’ in
Example 6 are shown in Figure 1. Notice that y’
is large when y increases rapidly and y’ = 0
when y has a horizontal tangent. So our answer
appears to be reasonable.

Y HiJ
A\

-10
FIGURE 1

EXAMPLE 3 Differentiate y = (x* — 1)'%.
SOLUTION Taking u = g(x) = x* — 1 and n = 100 in (4), we have
dy _d
dx dx
= 100(x* — 1) - 3x* = 300x*(x* — 1)”

(¢ = D' = 1000 — 1= (% — 1)
dx

. N 1
EXAMPLE 4 Find f'(x) if f(x) = W
SOLUTION First rewrite f: f(x) = (x> 4+ x + 1)~ Thus
, N ) —4/3 d 2
flx)=—x*+x+ D) —Gx*+x+1)
dx
= =i+ x+ )PRx+ 1)
EXAMPLE 5 Find the derivative of the function
t—2\°
t ==
90 (2; + 1)
SOLUTION Combining the Power Rule, Chain Rule, and Quotient Rule, we get
W0 =09 t—=2\d [t—2
g 2%+1) dt\2+1

_of =2 SQr+ 1)1 —20—2) 450 — 2)°
S\ 2+ 1 (2t + 1) R

EXAMPLE 6 Differentiate y = (2x + 1)°(x* — x + 1)*.

SOLUTION In this example we must use the Product Rule before using the Chain Rule:

d d d
D+ 1) A D —x 1) e Qx 1)
dx dx dx

d
=2x+ 1) 4xP—x+1)P—x*—x+1
dx
3 4 . d
+ (P —x+1)"-52x+1) d—(2x+l)
X

=4Q2x + 1P —x + 1G> — 1) +5(x* —x + D*Q2x + 1)*- 2

Noticing that each term has the common factor 2(2x + 1)*(x* — x + 1)°, we could
factor it out and write the answer as

d
d_y =202x + D*x* —x + 1)°(17x* + 62> — 9x + 3)
X



[l More generally, the Chain Rule gives

[l Dont confuse Formula 5 (where xis the
exponent) with the Power Rule (where x is the

base):

d
dx

4
dx

du
T

(x") = nx

n—1

EXAMPLE 7 Differentiate y = ™.

SOLUTION Here the inner function is g(x) = sin x and the outer function is the exponential
function f(x) = e*. So, by the Chain Rule,

dy d ( sinx) sin x d ( : ) sin x
—_— — — —_— 1mn —
dx dx e e dx S x e COS x

We can use the Chain Rule to differentiate an exponential function with any base a > 0.
Recall from Section 1.6 that a = ™. So

at = (elna)x — e(lna)x

and the Chain Rule gives

d d d
E (ax) — E (e(lna)x) — e(lna)xg (ln CZ)X
=M. Ing=qg‘lna

because In a is a constant. So we have the formula

d
[5] — (@) =a'lna
dx

In particular, if a = 2, we get
d
[6] — (2*)=2"In2
dx
In Section 3.1 we gave the estimate
d
— (2%) = (0.69)2"
dx

This is consistent with the exact formula (6) because In 2 = (0.693147.

In Example 6 in Section 3.3 we considered a population of bacteria cells that doubles
every hour and saw that the population after ¢ hours is n = n¢2’, where ny is the initial pop-
ulation. Formula 6 enables us to find the rate of growth of the bacteria population:

dn
— =1no2'In2
dt

The reason for the name Chain Rule’becomes clear when we make a longer chain by
adding another link. Suppose that y = f(u), u = g(x), and x = h(r), where f, g, and h are
differentiable functions. Then, to compute the derivative of y with respect to ¢, we use the
Chain Rule twice:

dy _dy dx _ dy du dx

dt  dx dt  du dx dt



EXAMPLE 8 If f(x) = sin(cos(tan x)), then

f'(x) = cos(cos(tan x)) dii cos(tan x)

cos(cos(tan x))[ —sin(tan x)] d%c (tan x)

—cos(cos(tan x)) sin(tan x) sec*x

Notice that the Chain Rule has been used twice. ]

EXAMPLE 9 Differentiate y = e*3’.

SOLUTION The outer function is the exponential function, the middle function is the secant
function and the inner function is the tripling function. So we have

d d
_y — esec}@_

20 70 (sec 30)

d
= ¢ sec 36 tan 30— (36
e sec an d0( )

= 3¢%°3¥ gec 36 tan 36 -

|||| How to Prove the Chain Rule

Recall that if y = f(x) and x changes from a to a + Ax, we defined the increment of y as
Ay =fla + Ax) — f(a)
According to the definition of a derivative, we have

m 2 = ()

Ax—0 Ax
So if we denote by e the difference between the difference quotient and the derivative,

we obtain

Ax—0 Ax—0

lim & = lim (ﬂ - f’(a)) =f'a) — f'la)=0
Ax
Ay .
But 8=E—f’(a) > Ay = f'(a) Ax + & Ax

If we define € to be 0 when Ax = 0, then £ becomes a continuous function of Ax. Thus,
for a differentiable function f, we can write

Ay = f'(a) Ax + & Ax where &€ —0 as Ax—0

and ¢ is a continuous function of Ax. This property of differentiable functions is what
enables us to prove the Chain Rule.



3.5 Exercises

Proof of the Chain Rule Suppose u = g(x) is differentiable at a and y = f(u) is differen-
tiable at b = g(a). If Ax is an increment in x and Au and Ay are the corresponding incre-
ments in # and y, then we can use Equation 7 to write

Au=g'(a) Ax + & Ax = [g'(a) + & 1] Ax
where &, — 0 as Ax — 0. Similarly
[9] Ay = f'(b) Au + & Au = [f'(b) + &] Au

where &, — 0 as Au — 0. If we now substitute the expression for Au from Equation 8
into Equation 9, we get

Ay =[f'(b) + &]lg'(a) + &] Ax
" L =170) + ellg@ + 5]

As Ax — 0, Equation 8 shows that Au — 0. So both &, — 0 and &, — 0 as Ax — 0.
Therefore

dy _ o Ay o /
T Am = im (1) + e]lg'(@) + ]

= f'(b)g'(a) = f'(g9(a))g'(a)
This proves the Chain Rule. ]

1-6 111 Write the composite function in the form f(g(x)). 2. y=xe " 22. y = ¢ **cos 3x
[Identify the inner function u = g(x) and the outer function

y = f(u).] Then find the derivative dy/dx. . y=e"" 0. y=10""
= i _ Ji T3 —1 — 1
1. y =sin4x 2y 4 + 3x 25. F(z) = z - 2. G(y) = (()2’ - 2))5
y=(1—x»)" 4. y = tan(sin x) : Y Y
2u
5.y= eV 6. y = sin(e") 27. y = B — 28. y = 677
\/m e+ e
2.2
7-42 1 Find the derivative of the function. 29. y = tan(cos x) 30. y = Smx
cos x
7. F(x) = (x> + 4x)’ 8. Flx) = (x*—x+ 1) _
31, y =20 32. y = tan’(36)
9. F(x) = /1 + 2x + 10. f(x) = (1 +x*)°
1
33. y = (1 + cos’x)® 34. y = xsin—
11. g(l) = m 12. f(t) =31 + tant Y Y X
— 2 2 — k(z\n\/;c
13. y = cos(a’® + x?) 14. y = a® + cos’x 35. y = sec’x + tan’x 3. y=e
15 y= e 16. y = 4 sec 5x 37. y = cot*(sin 6) 38. y = sin(sin(sin x))
17. g(x) = (1 + 4x9°3 + x — x?)* 39. y = x + Jx 80. y = x + Jx + x
(4 1V3(43 4 2
18. (1) = (z D@+ 1 41. y = sin(tan /sin x) 42, y=2°

.y =(2x — 5)*@8x*—5)"*

20.

y=x"+ DyYx>+2



43-

46 1 Find an equation of the tangent line to the curve at the

given point.

43.
45.

o

47.

48.

49.

A4 s0.

51,

52.

53.

54.

55.

56.

y=(1+2x" (0,1)

(7, 0)

44. y =sinx + sin’x, (0,0)

y = sin(sin x), 46. y =x%" (1,1/e)

o o o o o o o o o o o

(a) Find an equation of the tangent line to the curve
y=2/(1 + ™) at the point (0, 1).

(b) Mlustrate part (a) by graphing the curve and the tangent line
on the same screen.

(a) The curve y = |x|/y/2 — x?is called a bullet-nose curve.
Find an equation of the tangent line to this curve at the
point (1, 1).

(b) Hllustrate part (a) by graphing the curve and the tangent line
on the same screen.

(a) If f(x) = /1 — x2/x, find f'(x).
(b) Check to see that your answer to part (a) is reasonable by
comparing the graphs of f and f'.

The function f(x) = sin(x + sin 2x), 0 < x < 7, arises in

applications to frequency modulation (FM) synthesis.

(a) Use a graph of f produced by a graphing device to make a
rough sketch of the graph of f’.

(b) Calculate f'(x) and use this expression, with a graphing
device, to graph f'. Compare with your sketch in part (a).

Find all points on the graph of the function
f(x) = 2sin x + sin’x
at which the tangent line is horizontal.

Find the x-coordinates of all points on the curve
y = sin 2x — 2 sin x at which the tangent line is horizontal.

Suppose that F(x) = f(g(x)) and ¢(3) = 6, g'(3) = 4,
£'(3) = 2, and £'(6) = 7. Find F'(3).

Suppose that w = u ° v and u(0) = 1, v(0) = 2, u'(0) = 3,
u'(2) = 4,9'(0) = 5, and v'(2) = 6. Find w'(0).

A table of values for f, g, f', and ¢’ is given.

=N
=

x | S| glx fx) ] g

1 3 2 4 6
2 1 8 5 7
3 7 2 7 9

(a) If h(x) = f(g(x)), find A'(1).
(b) If H(x) = g(f(x)), find H'(1).

Let f and g be the functions in Exercise 55.
(a) If F(x) = f(f(x)), find F'(2).
(b) If G(x) = g(g(x)), find G'(3).

57. If f and g are the functions whose graphs are shown, let

u(x) = f(g(x)), v(x) = g(f(x)), and w(x) = g(g(x)). Find each
derivative, if it exists. If it does not exist, explain why.

@) o) (© w)
y
\[ [r
\\
VAR
0 1 X

58. If f is the function whose graph is shown, let A(x) = f(f(x))

and g(x) = f(x?). Use the graph of f to estimate the value of
each derivative.

(a) h'(2) () g'(2)
g 1]
y=fw!/
TN
—1
0 ‘1 X

59. Use the table to estimate the value of /4'(0.5), where

h(x) = f(g(x)).

X 0 0.1 0.2 0.3 0.4 0.5 0.6

f(x)

14.8 18.4 25.9

g(x) 0.58 0.40 0.37 0.17

60. If g(x) = f(f(x)), use the table to estimate the value of g'(1).

6l.

X 0.0 0.5 1.0 1.5 2.0 2.5

F | 17 | 18 | 20 | 24 | 31 | 44

Suppose f is differentiable on R. Let F(x) = f(e*) and
G(x) = e/, Find expressions for (a) F'(x) and (b) G'(x).

62. Suppose f is differentiable on R and « is a real number. Let

F(x) = f(x*) and G(x) = [ f(x)]*. Find expressions for
(a) F'(x) and (b) G'(x).

63. Suppose L is a function such that L'(x) = 1/x for x > 0. Find

an expression for the derivative of each function.
(@) f(x) = L(x*) (b) g(x) = L(4x)
(©) F(x) = [L&]* (d) G(x) = L(1/x)

64. Let r(x) = f(g(h(x))), where h(1) = 2, g(2) = 3, h'(1) = 4,

g'(2) = 5, and f'(3) = 6. Find r'(1).




65.

66.

67.

68.

69.

70.

The displacement of a particle on a vibrating string is given by
the equation

s(r) = 10 + § sin(10777)

where s is measured in centimeters and ¢ in seconds. Find the
velocity of the particle after # seconds.

If the equation of motion of a particle is given by

s = A cos(wt + 8), the particle is said to undergo simple
harmonic motion.

(a) Find the velocity of the particle at time ¢.

(b) When is the velocity 0?

A Cepheid variable star is a star whose brightness alternately
increases and decreases. The most easily visible such star is
Delta Cephei, for which the interval between times of maxi-
mum brightness is 5.4 days. The average brightness of this star
is 4.0 and its brightness changes by *=0.35. In view of these
data, the brightness of Delta Cephei at time ¢, where 7 is mea-
sured in days, has been modeled by the function

B(r) = 4.0 + 0.35sin(271/5.4)

(a) Find the rate of change of the brightness after ¢ days.
(b) Find, correct to two decimal places, the rate of increase
after one day.

In Example 4 in Section 1.3 we arrived at a model for the
length of daylight (in hours) in Philadelphia on the rth day of
the year:

2m
L(t) = 12 + 2.8 sin| ——(t — 80
(®) sm[ 365 ¢ )]
Use this model to compare how the number of hours of day-
light is increasing in Philadelphia on March 21 and May 21.

The motion of a spring that is subject to a frictional force or
a damping force (such as a shock absorber in a car) is often
modeled by the product of an exponential function and a sine
or cosine function. Suppose the equation of motion of a point
on such a spring is

s(t) = 2e~""sin 277t

where s is measured in centimeters and ¢ in seconds. Find the
velocity after # seconds and graph both the position and veloc-
ity functions for 0 = 7 < 2.

Under certain circumstances a rumor spreads according to the
equation

1
)= —
plo) 1+ ae ™™

where p() is the proportion of the population that knows the
rumor at time ¢ and a and k are positive constants. [In Sec-
tion 9.5 we will see that this is a reasonable equation for p(z).]
(a) Find lim, .. p(z).

(b) Find the rate of spread of the rumor.

A

.

2.

(AS] 73.

(c) Graph p for the case a = 10, k = 0.5 with # measured in
hours. Use the graph to estimate how long it will take for
80% of the population to hear the rumor.

The flash unit on a camera operates by storing charge on a
capacitor and releasing it suddenly when the flash is set off.
The following data describe the charge Q remaining on the
capacitor (measured in microcoulombs, nC) at time ¢ (mea-
sured in seconds).

t 0.00 0.02 0.04 0.06 0.08 0.10

0 100.00 81.87 | 67.03 | 54.88 | 44.93 36.76

(a) Use a graphing calculator or computer to find an exponen-
tial model for the charge. (See Section 1.5.)

(b) The derivative Q'(r) represents the electric current
(measured in microamperes, LA) flowing from the capaci-
tor to the flash bulb. Use part (a) to estimate the current
when ¢ = 0.04 s. Compare with the result of Example 2 in
Section 2.1.

The table gives the U.S. population from 1790 to 1860.

Year Population Year Population
1790 3,929,000 1830 12,861,000
1800 5,308,000 1840 17,063,000
1810 7,240,000 1850 23,192,000
1820 9,639,000 1860 31,443,000

(a) Use a graphing calculator or computer to fit an exponential
function to the data. Graph the data points and the exponen-
tial model. How good is the fit?

(b) Estimate the rates of population growth in 1800 and 1850
by averaging slopes of secant lines.

(c) Use the exponential model in part (a) to estimate the rates
of growth in 1800 and 1850. Compare these estimates with
the ones in part (b).

(d) Use the exponential model to predict the population in
1870. Compare with the actual population of 38,558,000.
Can you explain the discrepancy?

Computer algebra systems have commands that differentiate
functions, but the form of the answer may not be convenient
and so further commands may be necessary to simplify the
answer.

(a) Use a CAS to find the derivative in Example 5 and compare
with the answer in that example. Then use the simplify
command and compare again.

(b) Use a CAS to find the derivative in Example 6. What hap-
pens if you use the simplify command? What happens if
you use the factor command? Which form of the answer
would be best for locating horizontal tangents?



74.

75.

76.

77.

78.

(a) Use a CAS to differentiate the function

xt—x+1
and to simplify the result.
(b) Where does the graph of f have horizontal tangents?

(c) Graph f and f’ on the same screen. Are the graphs consis-
tent with your answer to part (b)?

Use the Chain Rule to prove the following.
(a) The derivative of an even function is an odd function.
(b) The derivative of an odd function is an even function.

Use the Chain Rule and the Product Rule to give an alternative
proof of the Quotient Rule.

[Hint: Write f(x)/g(x) = f(x)[g(x)] "]

(a) If n is a positive integer, prove that
d . R
. (sin"x cos nx) = nsin" 'x cos(n + 1)x

(b) Find a formula for the derivative of
y = cos"x cos nx
that is similar to the one in part (a).

Suppose y = f(x) is a curve that always lies above the x-axis
and never has a horizontal tangent, where f is differentiable

3.6 Implicit Differentiation

79.

80.

81.

everywhere. For what value of y is the rate of change of y’
with respect to x eighty times the rate of change of y with
respect to x?

Use the Chain Rule to show that if 6 is measured in degrees,
then

d
T (sin 0) = %cos 0

(This gives one reason for the convention that radian measure
is always used when dealing with trigonometric functions in
calculus: The differentiation formulas would not be as simple if
we used degree measure.)

(a) Write | x| = y/x? and use the Chain Rule to show that

(b) If f(x) = |sin x|, find f'(x) and sketch the graphs of f
and f'. Where is f not differentiable?

() If g(x) = sin | x|, find g'(x) and sketch the graphs of g
and g'. Where is g not differentiable?

Suppose P and Q are polynomials and # is a positive integer.
Use mathematical induction to prove that the nth derivative of
the rational function f(x) = P(x)/Q(x) can be written as a
rational function with denominator [Q(x)]"*". In other words,
there is a polynomial A, such that £ (x) = A,(x)/[Q(x)]""".

The functions that we have met so far can be described by expressing one variable explic-
itly in terms of another variable—for example,

y=4x+1 or

y = xsinx

or, in general, y = f(x). Some functions, however, are defined implicitly by a relation

between x and y such as

1]

or

2]

x?+yr=25

x* +y = 6xy

In some cases it is possible to solve such an equation for y as an explicit function (or sev-
eral functions) of x. For instance, if we solve Equation 1 for y, we get y = *4/25 — x2,
so two of the functions determined by the implicit Equation 1 are f(x) = /25 — x? and
g(x) = —+/25 — x2. The graphs of f and g are the upper and lower semicircles of the
circle x* + y* = 25. (See Figure 1.)



FIGURE 1

xX*+y3=6xy

FIGURE 2 The folium of Descartes
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(@) x>+ y2=25 () fx)=+25—x2 (©) glx)=—25—x2

It’s not easy to solve Equation 2 for y explicitly as a function of x by hand. (A computer
algebra system has no trouble, but the expressions it obtains are very complicated.)
Nonetheless, (2) is the equation of a curve called the folium of Descartes shown in
Figure 2 and it implicitly defines y as several functions of x. The graphs of three such func-
tions are shown in Figure 3. When we say that f is a function defined implicitly by Equa-
tion 2, we mean that the equation

x+ [ = 6xf(x)
is true for all values of x in the domain of f.

y y y

~

AN
FIGURE 3 Graphs of three functions defined by the folium of Descartes

Fortunately, we don’t need to solve an equation for y in terms of x in order to find the
derivative of y. Instead we can use the method of implicit differentiation. This consists of
differentiating both sides of the equation with respect to x and then solving the resulting
equation for y’. In the examples and exercises of this section it is always assumed that the
given equation determines y implicitly as a differentiable function of x so that the method
of implicit differentiation can be applied.

EXAMPLE 1
d
(a) If x* + y2 = 25, find 2.
dx
(b) Find an equation of the tangent to the circle x> + y* = 25 at the point (3, 4).

SOLUTION 1
(a) Differentiate both sides of the equation x* + y* = 25:

d ) d
—(*+y)=——(25
Oy = - (25)

d , . d
() +—(y) =0
2o )+ 07



Remembering that y is a function of x and using the Chain Rule, we have

d d ., dy dy
_ _ _=2_
R (y*) a0 (y)dx Y

dy
Th 2x+2y—=0
us X ydx

Now we solve this equation for dy/dx:

d_y_x

dx y
(b) At the point (3, 4) we have x = 3 and y = 4, so

dy 3

dx 4

An equation of the tangent to the circle at (3, 4) is therefore

y—4=-3(x—3) or 3x+4y=25
SOLUTION 2
(b) Solving the equation x* + y* = 25, we get y = *./25 — x2 The point (3, 4) lies on

the upper semicircle y = /25 — x2 and so we consider the function f(x) = /25 — x2
Differentiating f using the Chain Rule, we have

P =105 —x) 2 L 05— 22

dx
=105 = X)) (-20) = ——e——
2 V25 — x?
3 3
S MR = ——— = — =
© re) %5 3 4

and, as in Solution 1, an equation of the tangent is 3x + 4y = 25. ]

NOTE1 - Example 1 illustrates that even when it is possible to solve an equation explic-
itly for y in terms of x, it may be easier to use implicit differentiation.

NOTE 2 = The expression dy/dx = —x/y gives the derivative in terms of both x and y. It
is correct no matter which function y is determined by the given equation. For instance, for

y = f(x) = /25 — x2 we have

& _ _x x

dx y 25— 2
whereas for y = g(x) = —+/25 — x? we have

d_y_x X X

&y —J2B5-x JB-x



(3.3)

FIGURE 4

4

0
FIGURE 5

[l The Norwegian mathematician Niels Abel
proved in 1824 that no general formula can be
given for the roots of a fifth-degree equation in
terms of radicals. Later the French mathemati-
cian Evariste Galois proved that it is impossible
to find a general formula for the roots of an
nth-degree equation (in terms of algebraic
operations on the coefficients) if n is any integer
larger than 4.

EXAMPLE 2

(a) Find y’ if x* + y* = 6xy.

(b) Find the tangent to the folium of Descartes x* + y* = 6xy at the point (3, 3).
(c) At what points on the curve is the tangent line horizontal?

SOLUTION

(a) Differentiating both sides of x* + y* = 6xy with respect to x, regarding y as a func-
tion of x, and using the Chain Rule on the y* term and the Product Rule on the 6xy term,
we get

3x% + 3y%y’ = 6y + 6xy'
or X2+ iy =2y + 2xy'
We now solve for y': vy = 2xy’ =2y — x?

(y* = 2x)y" =2y — x?

,_2y—x2
Y y2—2x
(b) Whenx =y =3,
,_2-3—32__1
YT 3o

and a glance at Figure 4 confirms that this is a reasonable value for the slope at (3, 3). So
an equation of the tangent to the folium at (3, 3) is

y—3=—1(x—3) or x+y=6

(c) The tangent line is horizontal if y* = 0. Using the expression for y’ from part (a),
we see that y’ = 0 when 2y — x? = 0. Substituting y = 1x%in the equation of the curve,
we get

x4 (3x%) = 6x(5x?)

which simplifies to x® = 16x>. So either x = 0 or x* = 16. If x = 16'* = 2*/% then

y = 3(2%%) = 2. Thus, the tangent is horizontal at (0, 0) and at (2%, 2%?), which

is approximately (2.5198, 3.1748). Looking at Figure 5, we see that our answer is
reasonable. ]

NOTE 3 - There is a formula for the three roots of a cubic equation that is like the qua-
dratic formula but much more complicated. If we use this formula (or a computer algebra
system) to solve the equation x* + y* = 6xy for y in terms of x, we get three functions
determined by the equation:

y =) = V—1x> + VI — 820 + /—1x — VIxf — 8y

and

y =1l = V31 + Vi 8 — i — Vi — 8]

(These are the three functions whose graphs are shown in Figure 3.) You can see that the
method of implicit differentiation saves an enormous amount of work in cases such as this.



FIGURE 6

FIGURE 7

Moreover, implicit differentiation works just as easily for equations such as
v+ 3x%yr 4+ 5xt =12

for which it is impossible to find a similar expression for y in terms of x.

EXAMPLE 3 Find y' if sin(x + y) = y®cos x.

SOLUTION Differentiating implicitly with respect to x and remembering that y is a function
of x, we get

cos(x +y) + (1 +y') = 2yy’ cos x + y*(—sin x)

(Note that we have used the Chain Rule on the left side and the Product Rule and Chain
Rule on the right side.) If we collect the terms that involve y’, we get

cos(x + y) + y*sin x = (2ycos x)y’ — cos(x + y) + ¥’

. y’sinx + cos(x + )
So y =

2y cos x — cos(x + y)

Figure 6, drawn with the implicit-plotting command of a computer algebra system,
shows part of the curve sin(x + y) = y*cos x. As a check on our calculation, notice that
y" = —1 when x = y = 0 and it appears from the graph that the slope is approximately
—1 at the origin. ]

|||| Orthogonal Trajectories

Two curves are called orthogonal if at each point of intersection their tangent lines are
perpendicular. In the next example we use implicit differentiation to show that two fami-
lies of curves are orthogonal trajectories of each other; that is, every curve in one family
is orthogonal to every curve in the other family. Orthogonal families arise in several areas
of physics. For example, the lines of force in an electrostatic field are orthogonal to the
lines of constant potential. In thermodynamics, the isotherms (curves of equal tempera-
ture) are orthogonal to the flow lines of heat. In aerodynamics, the streamlines (curves of
direction of airflow) are orthogonal trajectories of the velocity-equipotential curves.

EXAMPLE 4 The equation
[3] xy=c c#0

represents a family of hyperbolas. (Different values of the constant ¢ give different
hyperbolas. See Figure 7.) The equation

[4] x*=y*=k k#0

represents another family of hyperbolas with asymptotes y = *x. Show that every curve
in the family (3) is orthogonal to every curve in the family (4); that is, the families are
orthogonal trajectories of each other.

SOLUTION Implicit differentiation of Equation 3 gives

o _ Y

dy
— +y=0
(5] * dx Y 50 dx X



[l The same method can be used to find a

formula for the derivative of any inverse function.

See Exercise 67.

Il Figure 8 shows the graph of f(x) = tan 'x
and its derivative f'(x) = 1/(1 + x?).

Notice that f is increasing and f'(x) is always
positive. The fact that tan~'x — = /2 as

x — =*oo s reficted in the fact that

f'(x) = 0asx — *oo.

1.5

y=tan 'x

FIGURE 8

Implicit differentiation of Equation 4 gives

d d
[6] 2x—2y—y=0 o) _2
dx dx y

From (5) and (6) we see that at any point of intersection of curves from each family, the
slopes of the tangents are negative reciprocals of each other. Therefore, the curves inter-
sect at right angles; that is, they are orthogonal. ]

|||| Derivatives of Inverse Trigonometric Functions

The inverse trigonometric functions were reviewed in Section 1.6. We discussed their con-
tinuity in Section 2.5 and their asymptotes in Section 2.6. Here we use implicit differenti-
ation to find the derivatives of the inverse trigonometric functions, assuming that these
functions are differentiable. [In fact, if f is any one-to-one differentiable function, it can
be proved that its inverse function f'is also differentiable, except where its tangents are
vertical. This is plausible because the graph of a differentiable function has no corner or
kink and so if we reflect it about y = x, the graph of its inverse function also has no cor-
ner or Kink.]
Recall the definition of the arcsine function:

Y
A
“
I

Y

y=sin"'x  means siny=x and —

Differentiating sin y = x implicitly with respect to x, we obtain

cos d_y =1 or ﬂ = L
Y dx dx cos y

Now cosy = 0, since —7/2 <y < 7/2, s0

cosy = /1 — sin2y = /1 — x2

dy 1
dx cosy /1 —x?

Therefore

d .
S =S

The formula for the derivative of the arctangent function is derived in a similar way. If
y = tan"'x, then tan y = x. Differentiating this latter equation implicitly with respect to
x, we have

dy
2 — 1
sec”y It

dy 1 1 1

dx  sec’y 1 +tan’y 1 +x?

1

d -1 —
dx (tan”x) = 1 + x?




EXAMPLE 5 Differentiate (a) y = and (b) f(x) = x arctan/x.

sin”'x

SOLUTION
d d d
(a) % = (sin”'x)™' = —(sin"'x) 2 o (sin"'x)
_ 1
(sin™x)’y/1 — x2
) 1 .
llllRecall that arctan x is an alternative (b) fix) = xw(%x '/2) + arctan /x

notation for tan™ 'x.

\/; + arctan\/)—c

"2 + ) -

The inverse trigonometric functions that occur most frequently are the ones that we
have just discussed. The derivatives of the remaining four are given in the following table.
The proofs of the formulas are left as exercises.

Derivatives of Inverse Trigonometric Functions

4 (ino) 1 4 (eser) 1
— \Sin x) = —(csc ) = ———
dx 1 — x? dx x+/x2—1
[IIl' The formulas for the derivatives of csc™'x d 1 d 1
-1 L —1 -
and sec™'x depend on the definitions that are — (cos x) = ——F——— — (sec™lx) = ———
used for these functions. See Exercise 54. dx 1 — x? dx x/x2—1
d 1 d 1
— (tan"x) = — (cot™x) = —
dx ( ) 1+ x? dx ( ) 1+ x?

3.6 Exercises

1-4 i 1. x*y* + xsiny = 4 12. 1 + x = sin(xy?)
(a) Find y’ by implicit differentiation. L R NP
(b) Solve the equation explicitly for y and differentiate to get y’ in 3.4 SOS xsiny =1 14. y sin(x®) = x sin(y*)
terms of x. 15. e =x+y 16. /x +y =1+ x%?
(c) Check that your solutions to parts (a) and (b) are consistent by y
substituting the expression for y into your solution for part (a). 17. Vxy =1+ x% 18. tan(x — y) = 2
Ixy+2x+3x°=4 2. 4x* + 9y* =36
* T X+ 9y 19. xy = cot(xy) 20. sinx + cosy = sin x cos y
1 1 - B B B - - - -
3. —+—=1 4 Jx+y=4
x oy 2. If 1+ f(x) + 2*[f(0)] = 0and £(1) = 2, find f'(1).

22. If g(x) + xsin g(x) = x*and g(1) = 0, find g'(1).
5-20 u Find dy/dx by implicit differentiation.

5. 2+ y2 =1 6. x> — y =1 23-24 1 Regard y as the independent variable and x as the depen-
, , , , \ dent variable and use implicit differentiation to find dx/dy.
Tx+xy+ 4 =6 8. ¥ -2y tyi=c 23y xyr +xt=y+ 1 28 (7 + vy )P =ax?y
9. x?y + xy*=3x 10. 35+ x2° =1+ ye* . . . . . . . . . . . .



25-30 i Use implicit differentiation to find an equation of the
tangent line to the curve at the given point.

25.
26.
27.

29.

31

32.

33.

X +xy+y2=3, (1,1

X+ 2xy —yr+x=2,

(ellipse)
(1,2) (hyperbola)
X2+ =(2x* 4+ 2y —x)? 28. x¥° +yi =4

(0,3) (-33,1)
(cardioid) (astroid)
y y

AN
N

2(x* 4+ y?)? = 25(x* — y?)
G, D
(lemniscate)

30. y*(y* —4) = x*(x* — 5)
0, =2)
(devil’s curve)

y
X
o o o a a a a

(a) The curve with equation y* = 5x* — x? is called a
kampyle of Eudoxus. Find an equation of the tangent line
to this curve at the point (1, 2).

(b) Mlustrate part (a) by graphing the curve and the tangent line
on a common screen. (If your graphing device will graph
implicitly defined curves, then use that capability. If not,
you can still graph this curve by graphing its upper and
lower halves separately.)

o o o o

(a) The curve with equation y* = x* + 3x? s called the
Tschirnhausen cubic. Find an equation of the tangent line
to this curve at the point (1, —2).

(b) At what points does this curve have a horizontal tangent?

(c) Ilustrate parts (a) and (b) by graphing the curve and the
tangent lines on a common screen.

Fanciful shapes can be created by using the implicit plotting
capabilities of computer algebra systems.
(a) Graph the curve with equation

y(»? = Dy —2) =x(x — D(x — 2)

At how many points does this curve have horizontal
tangents? Estimate the x-coordinates of these points.
(b) Find equations of the tangent lines at the points (0, 1)
and (0, 2).
(c) Find the exact x-coordinates of the points in part (a).
(d) Create even more fanciful curves by modifying the
equation in part (a).

(hs] 34.

35.

36.

37.

38.

39.

40.

(a) The curve with equation
293 +yr =y i =xt —2x7 + x?

has been likened to a bouncing wagon. Use a computer

algebra system to graph this curve and discover why.
(b) At how many points does this curve have horizontal

tangent lines? Find the x-coordinates of these points.

Find the points on the lemniscate in Exercise 29 where the
tangent is horizontal.

Show by implicit differentiation that the tangent to the ellipse
x2 y2
St
a b
at the point (xo, yo) is
XoX Yoy _
a’ b> !
Find an equation of the tangent line to the hyperbola
2 2
e
a b

at the point (xo, yo).

Show that the sum of the x- and y-intercepts of any tangent
line to the curve v/x + /y = v/c is equal to c.

Show, using implicit differentiation, that any tangent line at
a point P to a circle with center O is perpendicular to the
radius OP.

The Power Rule can be proved using implicit differentiation
for the case where 7 is a rational number, n = p/q, and

y = f(x) = x" is assumed beforehand to be a differentiable
function. If y = x/4, then y¢ = x”. Use implicit differentiation
to show that

P

y' = 7x(p/q)*1
q
41-50 i Find the derivative of the function. Simplify where
possible.
4. y =tan"'Vx 42. y = \/tan"'x

43.
45.
47.
48.
49.

o

44, h(x) = /1 — x?arcsin x
46. y = tan"'(x — 1 + x2)

y=sin"'(2x + 1)

H(x) = (1 + x?)arctan x
h(t) = cot™ (1) + cot™'(1/1)
y=xcos 'x — /1 —x2

y = cos” !(e*) 50. y = arctan(cos 6)

o o o o o o o o o o o

/A 51-52 i Find f'(x). Check that your answer is reasonable by com-

paring the graphs of f and f'.

51,

o

52. f(x) = x arcsin(l — x?)

o o o o o o o o o o o

f(x) = e* — x*arctan x



53. Prove the formula for (d/dx)(cos 'x) by the same method as

for (d/dx)(sin"'x).

54. (a) One way of defining sec™'x is to say that

y=sec 'x < secy=xand0<y< 7/2o0r
7 <y < 37/2. Show that, with this definition,

d 1
Pl N o}

(b) Another way of defining sec™'x that is sometimes used is
to say thaty = sec”'x < secy =xand0 <y < 7,
y # 0. Show that, with this definition,

d( iy 1
—(sec x) = ——F——
dx * [x|v/x2—1

55-56 1 Show that the given curves are orthogonal.

55. 2x% 4+ y? =3,
56. x* — y* =5,

o

x=y?
4x* + 9y =172

o o o o o o o o o o o

57. Contour lines on a map of a hilly region are curves that join

points with the same elevation. A ball rolling down a hill
follows a curve of steepest descent, which is orthogonal to the
contour lines. Given the contour map of a hill in the figure,
sketch the paths of balls that start at positions A and B.

A

M
NOO
\

[

00
200,

400

\

58. TV meteorologists often present maps showing pressure fronts.

Such maps display isobars—curves along which the air pres-
sure is constant. Consider the family of isobars shown in the
figure. Sketch several members of the family of orthogonal
trajectories of the isobars. Given the fact that wind blows from
regions of high air pressure to regions of low air pressure, what
does the orthogonal family represent?

Y

59-62 i Show that the given families of curves are orthogonal
trajectories of each other. Sketch both families of curves on the

same axes.
59. x> +y*=7r% ax+by=0

60. x> +y>*=ax, x>+ y>=bhy

6l. y=cx? x*+2y°=k

62. y=ax’, x*+3y’=0b

63. The equation x> — xy + y* = 3 represents a “rotated ellipse,”

o4,

65.

66.

67.

68.

that is, an ellipse whose axes are not parallel to the coordinate
axes. Find the points at which this ellipse crosses the x-axis
and show that the tangent lines at these points are parallel.

(a) Where does the normal line to the ellipse
x? — xy + y* = 3 at the point (—1, 1) intersect the ellipse
a second time? (See page 192 for the definition of a normal
line.)

(b) Hllustrate part (a) by graphing the ellipse and the normal
line.

Find all points on the curve x*y* + xy = 2 where the slope of
the tangent line is —1.

Find equations of both the tangent lines to the ellipse
x? + 4y? = 36 that pass through the point (12, 3).

(a) Suppose f is a one-to-one differentiable function and its
inverse function f ' is also differentiable. Use implicit dif-
ferentiation to show that

Sy !
ST

provided that the denominator is not 0.
(b) If £(4) = 5 and f(4) = 3, find (f)'(5).

(a) Show that f(x) = 2x + cos x is one-to-one.
(b) What is the value of f~'(1)?
(c) Use the formula from Exercise 67(a) to find (£ ')(1).

. The figure shows a lamp located three units to the right of

the y-axis and a shadow created by the elliptical region
x* + 4y? < 5. If the point (=5, 0) is on the edge of the
shadow, how far above the x-axis is the lamp located?
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3.7 Higher Derivatives

If f is a differentiable function, then its derivative f' is also a function, so f’ may have a
derivative of its own, denoted by (f')" = f". This new function f” is called the second
derivative of f because it is the derivative of the derivative of f. Using Leibniz notation,
we write the second derivative of y = f(x) as

d (dy) _ d
dx \ dx dx?

Another notation is f"(x) = D*f(x).

ing the coefficients of a polynomial f

I'E-' In Module 3.7A you can see how chang-  EXAMPLE 1 If f(x) = x cos x, find and interpret f"(x).
affects the appearance of the graphs of ~ SOLUTION Using the Product Rule, we have

f.f' and f".
, d d
f'(x) = x—(cos x) + cos x— (x)
dx dx
= —Xxsinx + cos x
To find f”(x) we differentiate f'(x):
d .
3 f"(x) = — (—xsin x + cos x)
dx
" d d d
, = —x—(sinx) + sinx— (—x) + — (cos x
f ; dx ( ) dx (=) dx ( )
-3 3 = —Xxcosx — sinx — sinx
= —xcosx — 2sinx
The graphs of f, f', and f” are shown in Figure 1.
- We can interpret f"(x) as the slope of the curve y = f”(x) at the point (x, f'(x)). In
other words, it is the rate of change of the slope of the original curve y = f(x).
FIGURE 1 Notice from Figure 1 that f”(x) = 0 whenever y = f'(x) has a horizontal tangent.
The graphs of f(x)= x cos x and Also, f"(x) is positive when y = f’(x) has positive slope and negative when y = f'(x)
its first and second derivatives has negative slope. So the graphs serve as a check on our calculations. 1

In general, we can interpret a second derivative as a rate of change of a rate of change.
The most familiar example of this is acceleration, which we define as follows.

If s = s(z) is the position function of an object that moves in a straight line, we know
that its first derivative represents the velocity v(7) of the object as a function of time:

o(t) = s'(r) = %

The instantaneous rate of change of velocity with respect to time is called the acceleration
a(1) of the object. Thus, the acceleration function is the derivative of the velocity function
and is therefore the second derivative of the position function:

a(t) = v'(t) = s"(¢t)



or, in Leibniz notation,
dv  d’s
4g=—=—-—-
dt  dr?

EXAMPLE 2 The position of a particle is given by the equation
s=f() =1 —6t*+ 9t

where 7 is measured in seconds and s in meters.

(a) Find the acceleration at time 7. What is the acceleration after 4 s?

(b) Graph the position, velocity, and acceleration functions for 0 < ¢ < 5.
(c) When is the particle speeding up? When is it slowing down?

SOLUTION
(a) The velocity function is the derivative of the position function:

s=ft)=1t>— 61>+ 9¢

ds
N=—=3"—12t+9
o(t) 7

The acceleration is the derivative of the velocity function:

d*>s dv
alt)y =—5=—=06r—12
® dar*  dt
Il The units for acceleration are meters per a(4) =6(4) — 12 = 12 m/s*
second per second, written as m/s%.

(b) Figure 2 shows the graphs of s, v, and a.

(c) The particle speeds up when the velocity is positive and increasing (v and a are both
positive) and also when the velocity is negative and decreasing (v and a are both nega-
tive). In other words, the particle speeds up when the velocity and acceleration have the
same sign. (The particle is pushed in the same direction it is moving.) From Figure 2 we
see that this happens when 1 < ¢ < 2 and when ¢ > 3. The particle slows down when v
and a have opposite signs, that is, when 0 < 7 < 1 and when 2 < ¢ < 3. Figure 3 sum-
marizes the motion of the particle.

FIGURE 2
+ a
v
5+ N
. In Module 3.7B you can see an anima-
IE‘ tion of Figure 3 with an expression for s ;
“* that you can choose yourself. 0 1 !
_5 4+
forward backward forward

I ] ] ]
T T T T

N S N S —
slows  speeds slows speeds

FIGURE 3 down up down up [




[IIl' The factor (—1)" occurs in the formula for
£™(x) because we introduce another negative
sign every time we differentiate. Since the suc-
cessive values of (—1)"are —1, 1, —1, 1, —1,
1,..., the presence of (—1)" indicates that the
sign changes with each successive derivative.

The third derivative " is the derivative of the second derivative: /" = (f")". So
Jf"(x) can be interpreted as the slope of the curve y = f"(x) or as the rate of change of
f"(x). If y = f(x), then alternative notations for the third derivative are

n " d dzy d3y
y'=f (X)=E<dx2> =§=D3f(X)

The process can be continued. The fourth derivative f”” is usually denoted by . In gen-
eral, the nth derivative of f is denoted by f® and is obtained from f by differentiating n
times. If y = f(x), we write
d)ly
Y =0 =~ = D'f(x)
X

We can interpret the third derivative physically in the case where the function is the
position function s = s(f) of an object that moves along a straight line. Because
s" = (s")" = a’, the third derivative of the position function is the derivative of the accel-
eration function and is called the jerk:

. da

T T ar
Thus, the jerk j is the rate of change of acceleration. It is aptly named because a large jerk
means a sudden change in acceleration, which causes an abrupt movement in a vehicle.

EXAMPLE 3 If y=x>—6x>—5x+3
then y =3x*—12x—5
y'=6x— 12
Y =6
y@ =0

and in fact y* = 0 for all n = 4. [

1
EXAMPLE 4 If f(x) = —, find £®(x).
X

1
SOLUTION flx)=—=x"
X

100 = (D=1 = =
X

f"(x)=-3-2-1-x""*
F90) =4-3-2-1-x°
%) =-5-4:3-2-1-x°=—-51x°

f(n)(x) : (=D)'n(n —1)n—2)---2-1- )]



[l Figure 4 shows the graph of the curve

x* + y* = 16 of Example 5. Notice that it's

a stretched and flattened version of the circle
x* + y? = 4. For this reason it's sometimes
called a fat circle. It starts out very steep on the
left but quickly becomes very flat. This can be
seen from the expression

y

x*+yt=16
2
0 g X

FIGURE 4

Il Look for a pattern.

or f(")(x) = %

Here we have used the factorial symbol 7! for the product of the first n positive integers.

nl=1+2+3+ - (n=1)+n

The following example shows how to find the second derivative of a function that is
defined implicitly.
EXAMPLE 5 Find y” if x* + y* = 16.
SOLUTION Differentiating the equation implicitly with respect to x, we get
4x° + 4y°y' =0

Solving for y’ gives
[ y=-=

To find y” we differentiate this expression for y’ using the Quotient Rule and remember-
ing that y is a function of x:

,_d (_x_3> Y@/ — X dfd)(y)
v (»*)?
_ 3 = x3y%y)

y6

If we now substitute Equation 1 into this expression, we get

x3
3x%y? — 3)63)12<——y3
yrr _

y

C30yt a0  3x(yt + x)
7 - 7

y y

But the values of x and y must satisfy the original equation x* + y* = 16. So the answer
simplifies to

3x%(16) x?
T

[/

EXAMPLE 6 Find D* cos x.
SOLUTION The first few derivatives of cos x are as follows:

D cos x = —sin x
D?cos x = —cos x
D?*cos x = sin x
D*cos x = cos x

D3cos x = —sin x



3.7 Exercises

We see that the successive derivatives occur in a cycle of length 4 and, in particular,
D"cos x = cos x whenever n is a multiple of 4. Therefore

D*cos x = cos x
and, differentiating three more times, we have

D? cos x = sin x

We have seen that one application of second and third derivatives occurs in analyzing
the motion of objects using acceleration and jerk. We will investigate another application
of second derivatives in Exercise 62 and in Section 4.3, where we show how knowledge of
f" gives us information about the shape of the graph of f. In Chapter 11 we will see how
second and higher derivatives enable us to represent functions as sums of infinite series.

1. The figure shows the graphs of f, f', and f". Identify each
curve, and explain your choices.

4

4. The figure shows the graphs of four functions. One is the
position function of a car, one is the velocity of the car, one is
its acceleration, and one is its jerk. Identify each curve, and
explain your choices.

y

y

a
g\
X
\/4/
0
2. The figure shows graphs of f, f’, f”, and f". Identify each
curve, and explain your choices.

abcd

@c 9. F() = (1 — 71)° 10. g(x) = 2xx_+ 11

5=20 11 Find the first and second derivatives of the function.
5. f(x) = x° + 6x* — Tx 6. f(t) =1 — 7t° + 2¢*

7. y =cos 26 8. y=10sin6

1 —4u b
1. A(u) = 12. H(s) = + —
) =175 () = a/s 7
= /x2 — cx
3. The figure shows the graphs of three functions. One is the posi- 13. h(x) ol 14. y = xe

tion function of a car, one is the velocity of the car, and one is , s Ax

i i i i i 15. y = + 1 16. y =

its acceleration. Identify each curve, and explain your choices. y=(x ) y NS

y

o o o o o o o o o o o o

21. (a) If f(x) = 2 cos x + sin’x, find f'(x) and f"(x).
(b) Check to see that your answers to part (a) are reasonable by
comparing the graphs of f, f', and f".

“ 17. H(t) = tan 3t 18. g(s) = s*cos s
b .
Q}CC 19. g(t) = t?e™ 20. h(x) = tan"'(x?)
\/ |

Y
K<



22. (a) If f(x) = e* — x°, find f'(x) and f"(x).
(b) Check to see that your answers to part (a) are reasonable by
comparing the graphs of f, f', and f".

23-24 i Find y".

23. y=+2x+3

o o o o o o o o o o o o

2%, y=
S T

25. If f(r) = tcost, find f"(0).

26. If g(x) = /5 — 2x, find g" (2).

27. If f(6) = cot 6, find f"(7/6).

28. 1f g(x) = sec x, find g"(7/4).

29-32 i Find y” by implicit differentiation.

29. 9x% +y* =9 30 Vx+Jy=1
3L X+ yi=1 32 x*+yt=4a"

o o o o o o o o o o o o

33-37 u Find a formula for f*(x).

33. f(x) =x" 34 f(x) =

S5x — 1

35. f(x) = e 36. f(x) = x

37. f(x) = $

o o o o o o o o o o o o

38-40 i Find the given derivative by finding the first few deriva-
tives and observing the pattern that occurs.

38. D™sinx 39. D'® cos 2x
40. D"y

o o o o o o o o o o o o

41. A car starts from rest and the graph of its position function
is shown in the figure, where s is measured in feet and ¢ in
seconds. Use it to graph the velocity and estimate the accelera-
tion at r = 2 seconds from the velocity graph. Then sketch a
graph of the acceleration function.

N

120 T
100 T
80 T
60 T
40 T
20 T

42. (a) The graph of a position function of a car is shown, where s
is measured in feet and 7 in seconds. Use it to graph the
velocity and acceleration of the car. What is the accelera-
tion at = 10 seconds?

N

100 +

4 4
t t

0 10 20 f

(b) Use the acceleration curve from part (a) to estimate the jerk
at t = 10 seconds. What are the units for jerk?

43-46 1 The equation of motion is given for a particle, where s is
in meters and 7 is in seconds. Find (a) the velocity and acceleration
as functions of ¢, (b) the acceleration after 1 second, and (c) the
acceleration at the instants when the velocity is 0.

43. s =27 — 15t*+ 36t +2, t=0

M, s=2t—3>—12t, t=0

45, s = sin(7wt/6) + cos(mwt/6), 0<t<2
46. s =277t +4t+1, t=0

o o o o o o o o o o o o

47-48 1 An equation of motion is given, where s is in meters and
t in seconds. Find (a) the times at which the acceleration is 0 and
(b) the displacement and velocity at these times.

47. s=1t"— 4> + 2 48. s =21 — or?

o o o o o o o o o o o o

49. A particle moves according to a law of motion

s=f(t) =1>— 121> + 36t, t = 0, where ¢ is measured in

seconds and s in meters.

(a) Find the acceleration at time ¢ and after 3 s.

(b) Graph the position, velocity, and acceleration functions
forO0 <=7 =<38.

(c) When is the particle speeding up? When is it slowing
down?

50. A particle moves along the x-axis, its position at time 7 given
by x(t) = t/(1 + t*),t = 0, where t is measured in seconds
and x in meters.

(a) Find the acceleration at time z. When is it 0?

(b) Graph the position, velocity, and acceleration functions
for0 <t <4.

(c) When is the particle speeding up? When is it slowing
down?

51. A mass attached to a vertical spring has position function given
by y(r) = A sin wt, where A is the amplitude of its oscillations
and w is a constant.

(a) Find the velocity and acceleration as functions of time.



[l The same method can be used to find a

formula for the derivative of any inverse function.

See Exercise 67.

Il Figure 8 shows the graph of f(x) = tan 'x
and its derivative f'(x) = 1/(1 + x?).

Notice that f is increasing and f'(x) is always
positive. The fact that tan~'x — = /2 as

x — =*oo s reficted in the fact that

f'(x) = 0asx — *oo.

1.5

y=tan 'x

FIGURE 8

Implicit differentiation of Equation 4 gives

d d
[6] 2x—2y—y=0 o) _2
dx dx y

From (5) and (6) we see that at any point of intersection of curves from each family, the
slopes of the tangents are negative reciprocals of each other. Therefore, the curves inter-
sect at right angles; that is, they are orthogonal. ]

|||| Derivatives of Inverse Trigonometric Functions

The inverse trigonometric functions were reviewed in Section 1.6. We discussed their con-
tinuity in Section 2.5 and their asymptotes in Section 2.6. Here we use implicit differenti-
ation to find the derivatives of the inverse trigonometric functions, assuming that these
functions are differentiable. [In fact, if f is any one-to-one differentiable function, it can
be proved that its inverse function f'is also differentiable, except where its tangents are
vertical. This is plausible because the graph of a differentiable function has no corner or
kink and so if we reflect it about y = x, the graph of its inverse function also has no cor-
ner or Kink.]
Recall the definition of the arcsine function:

Y
A
“
I

Y

y=sin"'x  means siny=x and —

Differentiating sin y = x implicitly with respect to x, we obtain

cos d_y =1 or ﬂ = L
Y dx dx cos y

Now cosy = 0, since —7/2 <y < 7/2, s0

cosy = /1 — sin2y = /1 — x2

dy 1
dx cosy /1 —x?

Therefore

d .
S =S

The formula for the derivative of the arctangent function is derived in a similar way. If
y = tan"'x, then tan y = x. Differentiating this latter equation implicitly with respect to
x, we have

dy
2 — 1
sec”y It

dy 1 1 1

dx  sec’y 1 +tan’y 1 +x?

1

d -1 —
dx (tan”x) = 1 + x?




EXAMPLE 5 Differentiate (a) y = and (b) f(x) = x arctan/x.

sin”'x

SOLUTION
d d d
(a) % = (sin”'x)™' = —(sin"'x) 2 o (sin"'x)
_ 1
(sin™x)’y/1 — x2
) 1 .
llllRecall that arctan x is an alternative (b) fix) = xw(%x '/2) + arctan /x

notation for tan™ 'x.

\/; + arctan\/)—c

"2 + ) -

The inverse trigonometric functions that occur most frequently are the ones that we
have just discussed. The derivatives of the remaining four are given in the following table.
The proofs of the formulas are left as exercises.

Derivatives of Inverse Trigonometric Functions

4 (ino) 1 4 (eser) 1
— \Sin x) = —(csc ) = ———
dx 1 — x? dx x+/x2—1
[IIl' The formulas for the derivatives of csc™'x d 1 d 1
-1 L —1 -
and sec™'x depend on the definitions that are — (cos x) = ——F——— — (sec™lx) = ———
used for these functions. See Exercise 54. dx 1 — x? dx x/x2—1
d 1 d 1
— (tan"x) = — (cot™x) = —
dx ( ) 1+ x? dx ( ) 1+ x?

3.6 Exercises

1-4 i 1. x*y* + xsiny = 4 12. 1 + x = sin(xy?)
(a) Find y’ by implicit differentiation. L R NP
(b) Solve the equation explicitly for y and differentiate to get y’ in 3.4 SOS xsiny =1 14. y sin(x®) = x sin(y*)
terms of x. 15. e =x+y 16. /x +y =1+ x%?
(c) Check that your solutions to parts (a) and (b) are consistent by y
substituting the expression for y into your solution for part (a). 17. Vxy =1+ x% 18. tan(x — y) = 2
Ixy+2x+3x°=4 2. 4x* + 9y* =36
* T X+ 9y 19. xy = cot(xy) 20. sinx + cosy = sin x cos y
1 1 - B B B - - - -
3. —+—=1 4 Jx+y=4
x oy 2. If 1+ f(x) + 2*[f(0)] = 0and £(1) = 2, find f'(1).

22. If g(x) + xsin g(x) = x*and g(1) = 0, find g'(1).
5-20 u Find dy/dx by implicit differentiation.

5. 2+ y2 =1 6. x> — y =1 23-24 1 Regard y as the independent variable and x as the depen-
, , , , \ dent variable and use implicit differentiation to find dx/dy.
Tx+xy+ 4 =6 8. ¥ -2y tyi=c 23y xyr +xt=y+ 1 28 (7 + vy )P =ax?y
9. x?y + xy*=3x 10. 35+ x2° =1+ ye* . . . . . . . . . . . .



25-30 i Use implicit differentiation to find an equation of the
tangent line to the curve at the given point.

25.
26.
27.

29.

31

32.

33.

X +xy+y2=3, (1,1

X+ 2xy —yr+x=2,

(ellipse)
(1,2) (hyperbola)
X2+ =(2x* 4+ 2y —x)? 28. x¥° +yi =4

(0,3) (-33,1)
(cardioid) (astroid)
y y

AN
N

2(x* 4+ y?)? = 25(x* — y?)
G, D
(lemniscate)

30. y*(y* —4) = x*(x* — 5)
0, =2)
(devil’s curve)

y
X
o o o a a a a

(a) The curve with equation y* = 5x* — x? is called a
kampyle of Eudoxus. Find an equation of the tangent line
to this curve at the point (1, 2).

(b) Mlustrate part (a) by graphing the curve and the tangent line
on a common screen. (If your graphing device will graph
implicitly defined curves, then use that capability. If not,
you can still graph this curve by graphing its upper and
lower halves separately.)

o o o o

(a) The curve with equation y* = x* + 3x? s called the
Tschirnhausen cubic. Find an equation of the tangent line
to this curve at the point (1, —2).

(b) At what points does this curve have a horizontal tangent?

(c) Ilustrate parts (a) and (b) by graphing the curve and the
tangent lines on a common screen.

Fanciful shapes can be created by using the implicit plotting
capabilities of computer algebra systems.
(a) Graph the curve with equation

y(»? = Dy —2) =x(x — D(x — 2)

At how many points does this curve have horizontal
tangents? Estimate the x-coordinates of these points.
(b) Find equations of the tangent lines at the points (0, 1)
and (0, 2).
(c) Find the exact x-coordinates of the points in part (a).
(d) Create even more fanciful curves by modifying the
equation in part (a).

(hs] 34.

35.

36.

37.

38.

39.

40.

(a) The curve with equation
293 +yr =y i =xt —2x7 + x?

has been likened to a bouncing wagon. Use a computer

algebra system to graph this curve and discover why.
(b) At how many points does this curve have horizontal

tangent lines? Find the x-coordinates of these points.

Find the points on the lemniscate in Exercise 29 where the
tangent is horizontal.

Show by implicit differentiation that the tangent to the ellipse
x2 y2
St
a b
at the point (xo, yo) is
XoX Yoy _
a’ b> !
Find an equation of the tangent line to the hyperbola
2 2
e
a b

at the point (xo, yo).

Show that the sum of the x- and y-intercepts of any tangent
line to the curve v/x + /y = v/c is equal to c.

Show, using implicit differentiation, that any tangent line at
a point P to a circle with center O is perpendicular to the
radius OP.

The Power Rule can be proved using implicit differentiation
for the case where 7 is a rational number, n = p/q, and

y = f(x) = x" is assumed beforehand to be a differentiable
function. If y = x/4, then y¢ = x”. Use implicit differentiation
to show that

P

y' = 7x(p/q)*1
q
41-50 i Find the derivative of the function. Simplify where
possible.
4. y =tan"'Vx 42. y = \/tan"'x

43.
45.
47.
48.
49.

o

44, h(x) = /1 — x?arcsin x
46. y = tan"'(x — 1 + x2)

y=sin"'(2x + 1)

H(x) = (1 + x?)arctan x
h(t) = cot™ (1) + cot™'(1/1)
y=xcos 'x — /1 —x2

y = cos” !(e*) 50. y = arctan(cos 6)

o o o o o o o o o o o

/A 51-52 i Find f'(x). Check that your answer is reasonable by com-

paring the graphs of f and f'.

51,

o

52. f(x) = x arcsin(l — x?)

o o o o o o o o o o o

f(x) = e* — x*arctan x



53. Prove the formula for (d/dx)(cos 'x) by the same method as

for (d/dx)(sin"'x).

54. (a) One way of defining sec™'x is to say that

y=sec 'x < secy=xand0<y< 7/2o0r
7 <y < 37/2. Show that, with this definition,

d 1
Pl N o}

(b) Another way of defining sec™'x that is sometimes used is
to say thaty = sec”'x < secy =xand0 <y < 7,
y # 0. Show that, with this definition,

d( iy 1
—(sec x) = ——F——
dx * [x|v/x2—1

55-56 1 Show that the given curves are orthogonal.

55. 2x% 4+ y? =3,
56. x* — y* =5,

o

x=y?
4x* + 9y =172

o o o o o o o o o o o

57. Contour lines on a map of a hilly region are curves that join

points with the same elevation. A ball rolling down a hill
follows a curve of steepest descent, which is orthogonal to the
contour lines. Given the contour map of a hill in the figure,
sketch the paths of balls that start at positions A and B.

A

M
NOO
\

[

00
200,

400

\

58. TV meteorologists often present maps showing pressure fronts.

Such maps display isobars—curves along which the air pres-
sure is constant. Consider the family of isobars shown in the
figure. Sketch several members of the family of orthogonal
trajectories of the isobars. Given the fact that wind blows from
regions of high air pressure to regions of low air pressure, what
does the orthogonal family represent?

Y

59-62 i Show that the given families of curves are orthogonal
trajectories of each other. Sketch both families of curves on the

same axes.
59. x> +y*=7r% ax+by=0

60. x> +y>*=ax, x>+ y>=bhy

6l. y=cx? x*+2y°=k

62. y=ax’, x*+3y’=0b

63. The equation x> — xy + y* = 3 represents a “rotated ellipse,”

o4,

65.

66.

67.

68.

that is, an ellipse whose axes are not parallel to the coordinate
axes. Find the points at which this ellipse crosses the x-axis
and show that the tangent lines at these points are parallel.

(a) Where does the normal line to the ellipse
x? — xy + y* = 3 at the point (—1, 1) intersect the ellipse
a second time? (See page 192 for the definition of a normal
line.)

(b) Hllustrate part (a) by graphing the ellipse and the normal
line.

Find all points on the curve x*y* + xy = 2 where the slope of
the tangent line is —1.

Find equations of both the tangent lines to the ellipse
x? + 4y? = 36 that pass through the point (12, 3).

(a) Suppose f is a one-to-one differentiable function and its
inverse function f ' is also differentiable. Use implicit dif-
ferentiation to show that

Sy !
ST

provided that the denominator is not 0.
(b) If £(4) = 5 and f(4) = 3, find (f)'(5).

(a) Show that f(x) = 2x + cos x is one-to-one.
(b) What is the value of f~'(1)?
(c) Use the formula from Exercise 67(a) to find (£ ')(1).

. The figure shows a lamp located three units to the right of

the y-axis and a shadow created by the elliptical region
x* + 4y? < 5. If the point (=5, 0) is on the edge of the
shadow, how far above the x-axis is the lamp located?

__F

/

//// T
k///// /‘\/ | l
J/
/
/
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3.7 Higher Derivatives

If f is a differentiable function, then its derivative f' is also a function, so f’ may have a
derivative of its own, denoted by (f')" = f". This new function f” is called the second
derivative of f because it is the derivative of the derivative of f. Using Leibniz notation,
we write the second derivative of y = f(x) as

d (dy) _ d
dx \ dx dx?

Another notation is f"(x) = D*f(x).

ing the coefficients of a polynomial f

I'E-' In Module 3.7A you can see how chang-  EXAMPLE 1 If f(x) = x cos x, find and interpret f"(x).
affects the appearance of the graphs of ~ SOLUTION Using the Product Rule, we have

f.f' and f".
, d d
f'(x) = x—(cos x) + cos x— (x)
dx dx
= —Xxsinx + cos x
To find f”(x) we differentiate f'(x):
d .
3 f"(x) = — (—xsin x + cos x)
dx
" d d d
, = —x—(sinx) + sinx— (—x) + — (cos x
f ; dx ( ) dx (=) dx ( )
-3 3 = —Xxcosx — sinx — sinx
= —xcosx — 2sinx
The graphs of f, f', and f” are shown in Figure 1.
- We can interpret f"(x) as the slope of the curve y = f”(x) at the point (x, f'(x)). In
other words, it is the rate of change of the slope of the original curve y = f(x).
FIGURE 1 Notice from Figure 1 that f”(x) = 0 whenever y = f'(x) has a horizontal tangent.
The graphs of f(x)= x cos x and Also, f"(x) is positive when y = f’(x) has positive slope and negative when y = f'(x)
its first and second derivatives has negative slope. So the graphs serve as a check on our calculations. 1

In general, we can interpret a second derivative as a rate of change of a rate of change.
The most familiar example of this is acceleration, which we define as follows.

If s = s(z) is the position function of an object that moves in a straight line, we know
that its first derivative represents the velocity v(7) of the object as a function of time:

o(t) = s'(r) = %

The instantaneous rate of change of velocity with respect to time is called the acceleration
a(1) of the object. Thus, the acceleration function is the derivative of the velocity function
and is therefore the second derivative of the position function:

a(t) = v'(t) = s"(¢t)



or, in Leibniz notation,
dv  d’s
4g=—=—-—-
dt  dr?

EXAMPLE 2 The position of a particle is given by the equation
s=f() =1 —6t*+ 9t

where 7 is measured in seconds and s in meters.

(a) Find the acceleration at time 7. What is the acceleration after 4 s?

(b) Graph the position, velocity, and acceleration functions for 0 < ¢ < 5.
(c) When is the particle speeding up? When is it slowing down?

SOLUTION
(a) The velocity function is the derivative of the position function:

s=ft)=1t>— 61>+ 9¢

ds
N=—=3"—12t+9
o(t) 7

The acceleration is the derivative of the velocity function:

d*>s dv
alt)y =—5=—=06r—12
® dar*  dt
Il The units for acceleration are meters per a(4) =6(4) — 12 = 12 m/s*
second per second, written as m/s%.

(b) Figure 2 shows the graphs of s, v, and a.

(c) The particle speeds up when the velocity is positive and increasing (v and a are both
positive) and also when the velocity is negative and decreasing (v and a are both nega-
tive). In other words, the particle speeds up when the velocity and acceleration have the
same sign. (The particle is pushed in the same direction it is moving.) From Figure 2 we
see that this happens when 1 < ¢ < 2 and when ¢ > 3. The particle slows down when v
and a have opposite signs, that is, when 0 < 7 < 1 and when 2 < ¢ < 3. Figure 3 sum-
marizes the motion of the particle.

FIGURE 2
+ a
v
5+ N
. In Module 3.7B you can see an anima-
IE‘ tion of Figure 3 with an expression for s ;
“* that you can choose yourself. 0 1 !
_5 4+
forward backward forward

I ] ] ]
T T T T

N S N S —
slows  speeds slows speeds

FIGURE 3 down up down up [




[IIl' The factor (—1)" occurs in the formula for
£™(x) because we introduce another negative
sign every time we differentiate. Since the suc-
cessive values of (—1)"are —1, 1, —1, 1, —1,
1,..., the presence of (—1)" indicates that the
sign changes with each successive derivative.

The third derivative " is the derivative of the second derivative: /" = (f")". So
Jf"(x) can be interpreted as the slope of the curve y = f"(x) or as the rate of change of
f"(x). If y = f(x), then alternative notations for the third derivative are

n " d dzy d3y
y'=f (X)=E<dx2> =§=D3f(X)

The process can be continued. The fourth derivative f”” is usually denoted by . In gen-
eral, the nth derivative of f is denoted by f® and is obtained from f by differentiating n
times. If y = f(x), we write
d)ly
Y =0 =~ = D'f(x)
X

We can interpret the third derivative physically in the case where the function is the
position function s = s(f) of an object that moves along a straight line. Because
s" = (s")" = a’, the third derivative of the position function is the derivative of the accel-
eration function and is called the jerk:

. da

T T ar
Thus, the jerk j is the rate of change of acceleration. It is aptly named because a large jerk
means a sudden change in acceleration, which causes an abrupt movement in a vehicle.

EXAMPLE 3 If y=x>—6x>—5x+3
then y =3x*—12x—5
y'=6x— 12
Y =6
y@ =0

and in fact y* = 0 for all n = 4. [

1
EXAMPLE 4 If f(x) = —, find £®(x).
X

1
SOLUTION flx)=—=x"
X

100 = (D=1 = =
X

f"(x)=-3-2-1-x""*
F90) =4-3-2-1-x°
%) =-5-4:3-2-1-x°=—-51x°

f(n)(x) : (=D)'n(n —1)n—2)---2-1- )]



[l Figure 4 shows the graph of the curve

x* + y* = 16 of Example 5. Notice that it's

a stretched and flattened version of the circle
x* + y? = 4. For this reason it's sometimes
called a fat circle. It starts out very steep on the
left but quickly becomes very flat. This can be
seen from the expression

y

x*+yt=16
2
0 g X

FIGURE 4

Il Look for a pattern.

or f(")(x) = %

Here we have used the factorial symbol 7! for the product of the first n positive integers.

nl=1+2+3+ - (n=1)+n

The following example shows how to find the second derivative of a function that is
defined implicitly.
EXAMPLE 5 Find y” if x* + y* = 16.
SOLUTION Differentiating the equation implicitly with respect to x, we get
4x° + 4y°y' =0

Solving for y’ gives
[ y=-=

To find y” we differentiate this expression for y’ using the Quotient Rule and remember-
ing that y is a function of x:

,_d (_x_3> Y@/ — X dfd)(y)
v (»*)?
_ 3 = x3y%y)

y6

If we now substitute Equation 1 into this expression, we get

x3
3x%y? — 3)63)12<——y3
yrr _

y

C30yt a0  3x(yt + x)
7 - 7

y y

But the values of x and y must satisfy the original equation x* + y* = 16. So the answer
simplifies to

3x%(16) x?
T

[/

EXAMPLE 6 Find D* cos x.
SOLUTION The first few derivatives of cos x are as follows:

D cos x = —sin x
D?cos x = —cos x
D?*cos x = sin x
D*cos x = cos x

D3cos x = —sin x



3.7 Exercises

We see that the successive derivatives occur in a cycle of length 4 and, in particular,
D"cos x = cos x whenever n is a multiple of 4. Therefore

D*cos x = cos x
and, differentiating three more times, we have

D? cos x = sin x

We have seen that one application of second and third derivatives occurs in analyzing
the motion of objects using acceleration and jerk. We will investigate another application
of second derivatives in Exercise 62 and in Section 4.3, where we show how knowledge of
f" gives us information about the shape of the graph of f. In Chapter 11 we will see how
second and higher derivatives enable us to represent functions as sums of infinite series.

1. The figure shows the graphs of f, f', and f". Identify each
curve, and explain your choices.

4

4. The figure shows the graphs of four functions. One is the
position function of a car, one is the velocity of the car, one is
its acceleration, and one is its jerk. Identify each curve, and
explain your choices.

y

y

a
g\
X
\/4/
0
2. The figure shows graphs of f, f’, f”, and f". Identify each
curve, and explain your choices.

abcd

@c 9. F() = (1 — 71)° 10. g(x) = 2xx_+ 11

5=20 11 Find the first and second derivatives of the function.
5. f(x) = x° + 6x* — Tx 6. f(t) =1 — 7t° + 2¢*

7. y =cos 26 8. y=10sin6

1 —4u b
1. A(u) = 12. H(s) = + —
) =175 () = a/s 7
= /x2 — cx
3. The figure shows the graphs of three functions. One is the posi- 13. h(x) ol 14. y = xe

tion function of a car, one is the velocity of the car, and one is , s Ax

i i i i i 15. y = + 1 16. y =

its acceleration. Identify each curve, and explain your choices. y=(x ) y NS

y

o o o o o o o o o o o o

21. (a) If f(x) = 2 cos x + sin’x, find f'(x) and f"(x).
(b) Check to see that your answers to part (a) are reasonable by
comparing the graphs of f, f', and f".

“ 17. H(t) = tan 3t 18. g(s) = s*cos s
b .
Q}CC 19. g(t) = t?e™ 20. h(x) = tan"'(x?)
\/ |

Y
K<



22. (a) If f(x) = e* — x°, find f'(x) and f"(x).
(b) Check to see that your answers to part (a) are reasonable by
comparing the graphs of f, f', and f".

23-24 i Find y".

23. y=+2x+3

o o o o o o o o o o o o

2%, y=
S T

25. If f(r) = tcost, find f"(0).

26. If g(x) = /5 — 2x, find g" (2).

27. If f(6) = cot 6, find f"(7/6).

28. 1f g(x) = sec x, find g"(7/4).

29-32 i Find y” by implicit differentiation.

29. 9x% +y* =9 30 Vx+Jy=1
3L X+ yi=1 32 x*+yt=4a"

o o o o o o o o o o o o

33-37 u Find a formula for f*(x).

33. f(x) =x" 34 f(x) =

S5x — 1

35. f(x) = e 36. f(x) = x

37. f(x) = $

o o o o o o o o o o o o

38-40 i Find the given derivative by finding the first few deriva-
tives and observing the pattern that occurs.

38. D™sinx 39. D'® cos 2x
40. D"y

o o o o o o o o o o o o

41. A car starts from rest and the graph of its position function
is shown in the figure, where s is measured in feet and ¢ in
seconds. Use it to graph the velocity and estimate the accelera-
tion at r = 2 seconds from the velocity graph. Then sketch a
graph of the acceleration function.

N

120 T
100 T
80 T
60 T
40 T
20 T

42. (a) The graph of a position function of a car is shown, where s
is measured in feet and 7 in seconds. Use it to graph the
velocity and acceleration of the car. What is the accelera-
tion at = 10 seconds?

N

100 +

4 4
t t

0 10 20 f

(b) Use the acceleration curve from part (a) to estimate the jerk
at t = 10 seconds. What are the units for jerk?

43-46 1 The equation of motion is given for a particle, where s is
in meters and 7 is in seconds. Find (a) the velocity and acceleration
as functions of ¢, (b) the acceleration after 1 second, and (c) the
acceleration at the instants when the velocity is 0.

43. s =27 — 15t*+ 36t +2, t=0

M, s=2t—3>—12t, t=0

45, s = sin(7wt/6) + cos(mwt/6), 0<t<2
46. s =277t +4t+1, t=0

o o o o o o o o o o o o

47-48 1 An equation of motion is given, where s is in meters and
t in seconds. Find (a) the times at which the acceleration is 0 and
(b) the displacement and velocity at these times.

47. s=1t"— 4> + 2 48. s =21 — or?

o o o o o o o o o o o o

49. A particle moves according to a law of motion

s=f(t) =1>— 121> + 36t, t = 0, where ¢ is measured in

seconds and s in meters.

(a) Find the acceleration at time ¢ and after 3 s.

(b) Graph the position, velocity, and acceleration functions
forO0 <=7 =<38.

(c) When is the particle speeding up? When is it slowing
down?

50. A particle moves along the x-axis, its position at time 7 given
by x(t) = t/(1 + t*),t = 0, where t is measured in seconds
and x in meters.

(a) Find the acceleration at time z. When is it 0?

(b) Graph the position, velocity, and acceleration functions
for0 <t <4.

(c) When is the particle speeding up? When is it slowing
down?

51. A mass attached to a vertical spring has position function given
by y(r) = A sin wt, where A is the amplitude of its oscillations
and w is a constant.

(a) Find the velocity and acceleration as functions of time.



52.

53.

54.

55.

56.

57.

58.

59-61 1 The function g is a twice differentiable function. Find f”

(b) Show that the acceleration is proportional to the displace-
ment y.

(c) Show that the speed is a maximum when the acceleration
is 0.

A particle moves along a straight line with displacement s(),
velocity v(t), and acceleration a(¢). Show that

a(t) = v(r) %

Explain the difference between the meanings of the derivatives
dv/dt and dv/ds.

Find a second-degree polynomial P such that P(2) = 5,
P'(2) = 3,and P"(2) = 2.

Find a third-degree polynomial Q such that Q(1) = 1,
Q'(1) =3, Q"(1) = 6, and Q"(1) = 12.

The equation y” + y’ — 2y = sin x is called a differential
equation because it involves an unknown function y and its
derivatives y" and y”. Find constants A and B such that the
function y = A sin x + B cos x satisfies this equation. (Differ-
ential equations will be studied in detail in Chapter 9.)

Find constants A, B, and C such that the function

y = Ax? + Bx + C satisfies the differential equation

Y 4y =2y =x%

For what values of r does the function y = e satisfy the
equation y” + 5y’ — 6y = 0?

Find the values of A for which y = ¢** satisfies the equation
y+y =y

in terms of g, g, and ¢".

59.

60.

6l.

o

) 62.

f(x) = xg(x?)

) = g(v/x)

o o o o o o o o o o o

If f(x) = 3x° — 10x* + 5, graph both f and f”. On what
intervals is f”(x) > 0? On those intervals, how is the graph of
f related to its tangent lines? What about the intervals where
f"(x) <0?

63.

(AS] 64.

05.

66.

67.

68.

69.

(a) Compute the first few derivatives of the function
f(x) = 1/(x* + x) until you see that the computations are
becoming algebraically unmanageable.

(b) Use the identity

1 1 1
x(x+1) x x+1
to compute the derivatives much more easily. Then find an
expression for f®(x). This method of splitting up a fraction
in terms of simpler fractions, called partial fractions, will
be pursued further in Section 7.4.

(a) Use a computer algebra system to compute f”, where
Tx + 17
) = 2x* = Tx — 4

"

(b) Find a much simpler expression for f” by first splitting
f into partial fractions. [In Maple, use the command
convert(f,parfrac,x); in Mathematica, use Apart[f].]

Find expressions for the first five derivatives of f(x) = x’%e™.
Do you see a pattern in these expressions? Guess a formula for
f"(x) and prove it using mathematical induction.

(a) If F(x) = f(x)g(x), where f and g have derivatives of all
orders, show that

F'=f'g + 219 +fq'

(b) Find similar formulas for F” and F“.
(c) Guess a formula for F.

If y = f(u) and u = g(x), where f and g are twice differen-
tiable functions, show that

d*y ( du \? dy d*u
= =)+ =
du® \ dx du  dx*

If y = f(u) and u = g(x), where f and g possess third
derivatives, find a formula for d*y/dx* similar to the one given
in Exercise 67.

Suppose p is a positive integer such that the function f is
p-times differentiable and f” = f. Using mathematical induc-
tion, show that f is in fact n-times differentiable for every posi-
tive integer n and that each of its higher derivatives f® equals
one of the p functions f, f, ", ..., f*7".



AFPFPLIED PROJECT
Where Should a Pilot Start Descent?

An approach path for an aircraft landing is shown in the figure and satisfies the following
— conditions:
(i) The cruising altitude is 2 when descent starts at a horizontal distance ¢ from touchdown at
the origin.
y=Px) (i1) The pilot must maintain a constant horizontal speed v throughout descent.
(ii1) The absolute value of the vertical acceleration should not exceed a constant k (which is
much less than the acceleration due to gravity).

1. Find a cubic polynomial P(x) = ax® + bx* + cx + d that satisfies condition (i) by
imposing suitable conditions on P(x) and P'(x) at the start of descent and at touchdown.

2. Use conditions (ii) and (iii) to show that

6hv?
¢ 2
3. Suppose that an airline decides not to allow vertical acceleration of a plane to exceed
k = 860 mi/h? If the cruising altitude of a plane is 35,000 ft and the speed is 300 mi/h,
how far away from the airport should the pilot start descent?

<k

/] 4. Graph the approach path if the conditions stated in Problem 3 are satisfied.

APPLIED PROJECT
Building a Better Roller Coaster

Suppose you are asked to design the first ascent and drop for a new roller coaster. By studying
photographs of your favorite coasters, you decide to make the slope of the ascent 0.8 and the
slope of the drop —1.6. You decide to connect these two straight stretches y = L;(x) and

y = L,(x) with part of a parabola y = f(x) = ax® + bx + ¢, where x and f(x) are measured

in feet. For the track to be smooth there can’t be abrupt changes in direction, so you want the
linear segments L; and L, to be tangent to the parabola at the transition points P and Q. (See the
figure.) To simplify the equations, you decide to place the origin at P.

1. (a) Suppose the horizontal distance between P and Q is 100 ft. Write equations in a, b, and
c that will ensure that the track is smooth at the transition points.
(b) Solve the equations in part (a) for a, b, and ¢ to find a formula for f(x).
4 (c) PlotL,, f, and L, to verify graphically that the transitions are smooth.
(d) Find the difference in elevation between P and Q.

2. The solution in Problem 1 might look smooth, but it might not feel smooth because the
piecewise defined function [consisting of L,(x) for x < 0, f(x) for 0 < x < 100, and L(x)
for x > 100] doesn’t have a continuous second derivative. So you decide to improve the
design by using a quadratic function g(x) = ax® + bx + c only on the interval 10 < x < 90
and connecting it to the linear functions by means of two cubic functions:

g(x) = kx* + Ix* + mx + n 0<x<10

hx) =px*+ gx*+rx +s 90 < x = 100
(a) Write a system of equations in 11 unknowns that ensure that the functions and their first
two derivatives agree at the transition points.
CAS (b) Solve the equations in part (a) with a computer algebra system to find formulas for

q(x), g(x), and h(x).
(c) Plot Ly, g, g, h, and L,, and compare with the plot in Problem 1(c).



3.8 Derivatives of Logarithmic Functions

In this section we use implicit differentiation to find the derivatives of the logarithmic func-
tions y = log,x and, in particular, the natural logarithmic function y = In x. We assume
that logarithmic functions are differentiable; this is certainly plausible from their graphs
(see Figure 12 in Section 1.6).

d
—_ 1 § —
il dx (log. x) x1Ina
Proof Let y = log,x. Then
a’ =x
II1l Formula 3.5.5 says that Differentiating this equation implicitly with respect to x, using Formula 3.5.5, we get

d x — X

E(a‘)—a Ina ‘ dy

a’lna) — =1
dx

and so d_y_;_ !
dx a’lna xIna ]

If we put a = e in Formula 1, then the factor In a on the right side becomes Ine = 1
and we get the formula for the derivative of the natural logarithmic function log, x = In x:

d 1
2] = Inx) =—

By comparing Formulas 1 and 2, we see one of the main reasons that natural logarithms
(logarithms with base e) are used in calculus: The differentiation formula is simplest when
a = e because Ine = 1.

EXAMPLE 1 Differentiate y = In(x* + 1).
SOLUTION To use the Chain Rule, we let u = x* + 1. Then y = In u, so

3x2

d dy d 1d 1
dy _dydw Ldw_ 1.
x°+ 1 ]

dx_dudx_;dx x4 1

In general, if we combine Formula 2 with the Chain Rule as in Example 1, we get

1 du d g'(x)

d
@ E (ln Lt) = ; E or E [ln g(x)] = g(x)




[l Figure 1 shows the graph of the function f
of Example 5 together with the graph of its deriv-
ative. It gives a visual check on our calculation.
Notice that f'(x) is large negative when f is
rapidly decreasing.

FIGURE 1

d
EXAMPLE 2 Find — In(sin x).
dx

SOLUTION Using (3), we have

d .
— (sin x) = ——cos x = cot x

d .
— In(sin x) = —
dx sin x dx sin x ]

EXAMPLE 3 Differentiate f(x) = +/In x.

SOLUTION This time the logarithm is the inner function, so the Chain Rule gives

1 1 1

) = L(tn 02 (1n x) = P— =
f'(x) = 3(In x) dx (In x) 2JInx x  2xyInx —

EXAMPLE 4 Differentiate f(x) = logo(2 + sin x).
SOLUTION Using Formula 1 with a = 10, we have
d 1 d
(x) = —log (2 + sinx) = ——————— — (2 + i
F&) dx ogio sin %) (2 +sinx)In10 dx ( sin %)

B cos x
(2 + sinx) In 10 ]

x+1

Ny

d
EXAMPLE 5 Find —1
n I n

SOLUTION 1

d x+1 1 d x+1
dx  Jx—2 x+1 dx Jx—2

Vx =2
V2 -2 - e D) -2

x+1 x—2

x—2—%(x+1)_ x—35
(x+Dx—-2)  2x+ Dx—2)

SOLUTION 2 If we first simplify the given function using the laws of logarithms, then the
differentiation becomes easier:

d x+1
In

E Vx — 2

= d%c [In(x + 1) — 3 In(x — 2)]

1 _l 1
x+1 2\x—2

(This answer can be left as written, but if we used a common denominator we would see
that it gives the same answer as in Solution 1.) ]




[IIl" Figure 2 shows the graph of the function
f(x) = In | x| in Example 6 and its derivative
f'(x) = 1/x. Notice that when x is small, the
graph of y = In | x| is steep and so f'(x) is
large (positive or negative).

3

FIGURE 2

[l If we hadn't used logarithmic differentiation
in Example 7, we would have had to use both the
Quotient Rule and the Product Rule. The resulting
calculation would have been horrendous.

EXAMPLE 6 Find f(x) if f(x) = In |x|.
SOLUTION Since

In x if x>0
f = {ln(—x) if x<0

it follows that

— if x>0

rw=1"

1
—(-)=— ifx<0
—X X

Thus, f'(x) = 1/x for all x # 0. ]

The result of Example 6 is worth remembering:

d 1
2 - —
[4] Sl =—

|||| Logarithmic Differentiation

The calculation of derivatives of complicated functions involving products, quotients, or
powers can often be simplified by taking logarithms. The method used in the following
example is called logarithmic differentiation.

X xr+ 1

EXAMPLE 7 Differentiate y = Gx + 2y
X

SOLUTION We take logarithms of both sides of the equation and use the Laws of Loga-
rithms to simplify:

Iny= > Inx+ sIn(x*>+ 1) — 5In(3x + 2)

Differentiating implicitly with respect to x gives

2x 3
2 -5
x-+1 3x + 2

3 1 1
—_ = — e — 4 — .
4 x 2
Solving for dy/dx, we get

dy 3 by 15
dx 4x x°+ 1 3x +2

Because we have an explicit expression for y, we can substitute and write

ﬂ_x3/4«/x2+1(3+ x 15 )

dx Grx+2)5 \4x  x*4+1 3x+2




[IIlIf x = 0, we can show that f'(0) = 0 for
n > 1 directly from the definition of a derivative.

Steps in Logarithmic Differentiation

1. Take natural logarithms of both sides of an equation y = f(x) and use the Laws
of Logarithms to simplify.

2. Differentiate implicitly with respect to x.

3. Solve the resulting equation for y’.

If f(x) <0 for some values of x, then In f(x) is not defined, but we can write
|v| = | f(x) | and use Equation 4. We illustrate this procedure by proving the general ver-
sion of the Power Rule, as promised in Section 3.1.

The Power Rule If n is any real number and f(x) = x", then

f’(x) — nxn—l

Proof Let y = x" and use logarithmic differentiation:

In|y|=In|x|"=nln|x|] x#0

Therefore r_
y X

Hence y =n
X 1

@ You should distinguish carefully between the Power Rule [(x")" = nx""'], where the

[l Figure 3 illustrates Example 8 by showing
the graphs of £(x) = x"* and its derivative.

y

0 / i X

FIGURE 3

base is variable and the exponent is constant, and the rule for differentiating exponential
functions [(a*)’ = a” In a], where the base is constant and the exponent is variable.
In general there are four cases for exponents and bases:

d
1. o (@) =0 (a and b are constants)
X

2 WY = 1)
X

d
3. — [a*™] = a'“(In a)g'(x)
dx

4. To find (d/dx)[ f(x)]*", logarithmic differentiation can be used, as in the next
example.

EXAMPLE 8 Differentiate y = x*.
SOLUTION 1 Using logarithmic differentiation, we have
Iny = Inx* = xInx

y' 1 1
2 = =1 _
y \/;C X (In x) 2\/;

. L_i_lnx _ s[ 2+ Inx
POV T2k T T2k



: y
|
: -3
=(1+ 1/x
: 51 y=(+x
____.'_ 1< __________
!
i 0 X
|
FIGURE 4
x (1 + x)*
0.1 2.59374246
0.01 2.70481383
0.001 2.71692393
0.0001 2.71814593
0.00001 2.71826824
0.000001 2.71828047
0.0000001 2.71828169

0.00000001

2.71828181

SOLUTION 2 Another method is to write x¥* = (" ")V

d d d
- \/; - \/;lnx — \/;lnx
I (x ) I (e ) e _dx (\/} In x)
= xVr <—2 ;\/1; x) (as in Solution 1)

|||| The Number e as a Limit

We have shown that if f(x) = In x, then f'(x) = 1/x. Thus, f'(1) = 1. We now use this
fact to express the number e as a limit.
From the definition of a derivative as a limit, we have

SA+R) = f) | f(L+2) — f(1)

)= %lil(l) h 1L0 X
In(1 +x) —Inl 1
= limm = lim —In(1 + x)
x—0 X x—0 X

= lim In(1 + x)"*

Because f'(1) = 1, we have
lirl(]J In(1 + x)* =1
Then, by Theorem 2.5.8 and the continuity of the exponential function, we have

i 1x . 1x .
e = 81 — ehmxﬁoln(l+x) = lim eln(1+x) = lim (1 + x)l/x
x—0

x—0

[5] e= lin% (1 + x)"~

Formula 5 is illustrated by the graph of the function y = (1 + x)"”* in Figure 4 and a
table of values for small values of x. This illustrates the fact that, correct to seven decimal
places,

e~ 27182818

If we put n = 1/x in Formula 5, then n — o as x — 0 and so an alternative expres-
sion for e is

1 n
[6] e = lim <1 + —)
e n




3.8 Exercises

1. Explain why the natural logarithmic function y = In x is used
much more frequently in calculus than the other logarithmic

functions y = log, x.

2-20 1 Differentiate the function.

2. f(x) = In(x* + 10)
3. (6) = In(cos 6)

5. f(x) = loga(1 — 3x)

7. f(x) = JInx

9. f(x) =+VxInx

@+

1. Fit) = 1n7(3t )

13. g(x) = In Z ;i
Inu

B ) = how

17. y=1n|2 — x — 5x7

19. y=1In(e™™ + xe ™)

21-24 i Find y" and y".
2. y=xInx

23. y = logiox

o

4. f(x) = cos(In x)

6. f(x) = logm(xfl)
8. f(x) =Inx

1+ Int
10. 7(2) 1" s

12. h(x) = ln(x +Jxr—1)
14. F(y) = yIn(l + &)

16. y = In(x"sin’v)
3u+2
3u—2

20. y = [In(1 + e%)]?

18. G(u) = In

o o o

1
22, y = —
X

24. y = In(sec x + tan x)

o o o

25-28 I Differentiate f and find the domain of f.

X
25. f(x) = T-he—1
B I= e

27. f(x) = x*In(1 — x?)

28. f(x) =Inlnlnx

o o o o o o

29. If £(x) = % find £(e).

B
X

30. If f(x) = x*In x, find £'(1).

31-32 i Find an equation of the tangent line to the curve at the
given point.

3. y=1Inlnx, (e 0)

32. y=In(x*—-7), (2,0)

o o o o o o o o o o o

{4 33. If f(x) = sin x + In x, find f’(x). Check that your answer is
reasonable by comparing the graphs of f and f'.

¥4 34. Find equations of the tangent lines to the curve y = (In x)/x at
the points (1, 0) and (e, 1/¢). Illustrate by graphing the curve
and its tangent lines.

35-46 11 Use logarithmic differentiation to find the derivative of
the function.

35 y = (2x + 1)°(x* — 3)°
36. y = Vxe (x> + 1)

2 4
sSIn“x tan'x
37. y=

pE
2

38 y= iz J_r 1

3. y=x 20, y= 2

41, y = xsiov 42. y = (sin x)*

43. y = (In x)* 44, y = x"

85,y = x*' 46, y = (In )

4]7. Find y' if y = In(x? + y?).
48. Find y' if x” = y™.

49. Find a formula for f“(x) if f(x) = In(x — 1).

9

50. Find d

dx‘)

(x%1n x).
51. Use the definition of derivative to prove that

In(1 +
L (O
x—0 X

52. Show that lim <1 + x) = ¢* for any x > 0.
n

n—w



3.9 Huperbolic Functions

FIGURE 1

y=sinhx= %e*’

y

FIGURE 4

A catenary y = ¢ + a cosh(x/a)

Certain combinations of the exponential functions e* and e ™ arise so frequently in math-
ematics and its applications that they deserve to be given special names. In many ways they
are analogous to the trigonometric functions, and they have the same relationship to the
hyperbola that the trigonometric functions have to the circle. For this reason they are col-
lectively called hyperbolic functions and individually called hyperbolic sine, hyperbolic
cosine, and so on.

Definition of the Hyperbolic Functions
inh et — e h 1
sinh x = csch x =
2 sinh x
h et + e h 1
cosh x = sech x =
2 cosh x
sinh x cosh x
tanh x = coth x = —
cosh x sinh x

The graphs of hyperbolic sine and cosine can be sketched using graphical addition as
in Figures 1 and 2.

y
y:coshx\ y
y=1
1
17 N, 0 X
y=se y=se
T y=a
0 X
FIGURE 2 FIGURE 3
y=coshx=%e*+%e’)‘ y = tanh x

Note that sinh has domain R and range R, while cosh has domain R and range [1, ).
The graph of tanh is shown in Figure 3. It has the horizontal asymptotes y = *=1. (See
Exercise 23.)

Some of the mathematical uses of hyperbolic functions will be seen in Chapter 7.
Applications to science and engineering occur whenever an entity such as light, velocity,
electricity, or radioactivity is gradually absorbed or extinguished, for the decay can be rep-
resented by hyperbolic functions. The most famous application is the use of hyperbolic
cosine to describe the shape of a hanging wire. It can be proved that if a heavy flexible
cable (such as a telephone or power line) is suspended between two points at the same
height, then it takes the shape of a curve with equation y = ¢ + a cosh(x/a) called a cate-
nary (see Figure 4). (The Latin word cafena means “chain.”)



P(cost,sint)

FIGURE 5

FIGURE 6

-
NS

x“t+y =

\

1

y P(cosht,sinh )

The hyperbolic functions satisfy a number of identities that are similar to well-known
trigonometric identities. We list some of them here and leave most of the proofs to the
exercises.

Hyperbolic Identities
sinh(—x) = —sinh x cosh(—x) = cosh x
cosh’x — sinh’x = 1 1 — tanh’x = sech’x
sinh(x + y) = sinh x cosh y + cosh x sinh y

cosh(x + y) = cosh x cosh y + sinh x sinh y

EXAMPLE 1 Prove (a) cosh’x — sinh’x = 1 and (b) 1 — tanh?x = sech’x.
SOLUTION

ex + e*x 2 ex _ e*x 2
h2 oo hZ — — - —
(a) cosh“x — sinh“x < > > < 5 )

(b) We start with the identity proved in part (a):
cosh’x — sinh’x = 1

If we divide both sides by cosh*x, we get

| sinh’x 1
cosh®>x  cosh’x
or 1 — tanh®x = sech’x -

The identity proved in Example 1(a) gives a clue to the reason for the name “hyper-
bolic” functions:

If ¢ is any real number, then the point P(cos ¢, sin ¢) lies on the unit circle X+ yr=1
because cos’t + sin’t = 1. In fact, ¢ can be interpreted as the radian measure of ZPOQ
in Figure 5. For this reason the trigonometric functions are sometimes called circular
functions.

Likewise, if # is any real number, then the point P(cosh ¢, sinh ) lies on the right branch
of the hyperbola x? — y?> = 1 because cosh’t — sinh’t = 1 and cosh ¢t = 1. This time, ¢
does not represent the measure of an angle. However, it turns out that ¢ represents twice
the area of the shaded hyperbolic sector in Figure 6, just as in the trigonometric case f rep-
resents twice the area of the shaded circular sector in Figure 5.

The derivatives of the hyperbolic functions are easily computed. For example,

d . d [e*— e " e*+e*
— (sinh x) = — = = cosh x
dx dx 2 2




FIGURE 7 y=sinh'x

domain = R

range = R

We list the differentiation formulas for the hyperbolic functions as Table 1. The remaining
proofs are left as exercises. Note the analogy with the differentiation formulas for trigono-
metric functions, but beware that the signs are different in some cases.

[1] Derivatives of Hyperbolic Functions

d . d

— (sinh x) = cosh x — (csch x) = —csch x coth x
dx dx

d ) d
— (cosh x) = sinh x — (sech x) = —sech x tanh x
dx dx

d 2 d 2

— (tanh x) = sech®x — (coth x) = —csch’x

dx dx

EXAMPLE 2 Any of these differentiation rules can be combined with the Chain Rule. For
instance,

d , d ~  sinhy/x
I (cosh\/;)—smh\/;c dx\/;c— N —

||| Inverse Hyperbalic Functions

You can see from Figures 1 and 3 that sinh and tanh are one-to-one functions and so they
have inverse functions denoted by sinh™' and tanh™'. Figure 2 shows that cosh is not one-
to-one, but when restricted to the domain [0, %) it becomes one-to-one. The inverse hyper-
bolic cosine function is defined as the inverse of this restricted function.

[2] y=sinh"'x <& sinhy=x
y=cosh™'x <> coshy=x and y=0

y=tanh"'x <= tanhy=x

The remaining inverse hyperbolic functions are defined similarly (see Exercise 28).
We can sketch the graphs of sinh™!, cosh™, and tanh™' in Figures 7, 8, and 9 by using
Figures 1, 2, and 3.

T
Y | |
| |
| |
U
1 I x
t | |
0 1 x | |
| |
| |
| |
FIGURE 8 y=cosh'x FIGURE 9 y=tanh 'x
domain =[1,) range = [0, ) domain = (—=1,1) range =R



[IIl Formula 3 is proved in Example 3. The
proofs of Formulas 4 and 5 are requested in

Exercises 26 and 27.

[IIl" Notice that the formulas for the derivatives
of tanh™'x and coth™'x appear to be identical.

But the domains of these functions have no num-
bers in common: tanh™~"x is defined for | x| < 1,

whereas coth™'x is defined for | x| > 1.

Since the hyperbolic functions are defined in terms of exponential functions, it’s not
surprising to learn that the inverse hyperbolic functions can be expressed in terms of log-
arithms. In particular, we have:

[3] sinh'x=In(x + /x> +1) x€R
(4] cosh'x=In(x+x*—1) x=1
1+
[5] tanh1x=éln< x> -1<x<l1
1 —x
EXAMPLE 3 Show that sinh~'x = In(x + /x> + 1).
SOLUTION Let y = sinh™'x. Then
ey — e_)'
=gnhy= ———
x =sinhy 5
SO e’ —2x—e’=0

or, multiplying by e’,
e? —2xe’ —1=0
This is really a quadratic equation in e”:
() —2x(e’) — 1=0

Solving by the quadratic formula, we get

e

-+ 2
P e S ) V24x+4=xix/m

Note that e” > 0, but x — /x> + 1 <0 (because x < 4/x*+ 1). Thus, the minus sign
is inadmissible and we have

e’ =x+ Jx?+1

y=1In(e’) = In(x + /x> + 1)

(See Exercise 25 for another method.) ]

Therefore

[6] Derivatives of Inverse Hyperbolic Functions

d (sinh™'x) ! d (csch™1x) !
4 N = 4 N =
dx V1+ x? dx [x]vx2+ 1
1 d 1

d
. h*l - _— h—! -
dx (cosh™) Vxr =1 dx (sech™'x) x+/1 — x?

1
1 —x2

d d
m (tanh~'x) = m (coth™1x) =




The inverse hyperbolic functions are all differentiable because the hyperbolic functions
are differentiable. The formulas in Table 6 can be proved either by the method for inverse
functions or by differentiating Formulas 3, 4, and 5.

d
EXAMPLE 4 Prove that o (sinh~'x) =
X

1
V1 + x2°

SOLUTION 1 Let y = sinh™'x. Then sinh y = x. If we differentiate this equation implicitly
with respect to x, we get

d
coshyd—y= 1
X

Since cosh*y — sinh’y = 1 and cosh y = 0, we have cosh y = /1 + sinh2y, so

dy 1 1 B 1
dx coshy /1 +sinh?y /1 + x?

SOLUTION 2 From Equation 3 (proved in Example 3), we have

4 (sinh~'x) = i1n(x +x2+1)
dx dx

1

d
= —_ /y2
)C-F\/)cz—kldx(x+ x+1)

1 by
= 1+
x+\/x2+1< \/x2+1>
x2+1+x
(x+\/x2+1)\/x2+1
1

:\/x2+1 ]

d
EXAMPLE 5 Find o [tanh™'(sin x)].
X

SOLUTION Using Table 6 and the Chain Rule, we have

d 1 d

— [tanh™!(sin x)] = ———— — (sin x

dx [ ( ] 1 — (sin x)* dx ( )

COS x
= _—— 5, COSX=——— =secx
1 — sinx COS“X -
3.9 Exercises

I-6 1 Find the numerical value of each expression. 4. (a) cosh 3 (b) cosh(ln 3)
1. (a) sinh 0 (b) cosh 0 5. (a) sech 0 (b) cosh™'1
2. (a) tanh O (b) tanh 1 6. (a) sinh 1 (b) sinh~'1

3. (a) sinh(In 2) (b) sinh 2



7-19 i Prove the identity.

7. sinh(—x) = —sinh x
(This shows that sinh is an odd function.)

8. cosh(—x) = cosh x
(This shows that cosh is an even function.)

9. cosh x + sinh x = e*
10. cosh x — sinh x = ¢™*

11. sinh(x + y) = sinh x cosh y + cosh x sinh y
12. cosh(x + y) = cosh x cosh y + sinh x sinh y

13. coth®x — 1 = csch’x

tanh x + tanhy
14. tanh(x + y) = —MMM@MM8M8m™—
anh(x + ) 1 + tanh x tanh y
15. sinh 2x = 2 sinh x cosh x

16. cosh 2x = cosh’x + sinh’x

x> =1

xP+1

17. tanh(In x) =

1 + tanh

18— niT = o
1 — tanh x

19. (cosh x + sinh x)" = cosh nx + sinh nx
(n any real number)

o o o o o o o o o o o

20. If sinh x = 2, find the values of the other hyperbolic functions
at x.

21. If tanh x = , find the values of the other hyperbolic functions
at x.

22. (a) Use the graphs of sinh, cosh, and tanh in Figures 1-3 to
draw the graphs of csch, sech, and coth.
(b) Check the graphs that you sketched in part (a) by using a
graphing device to produce them.

23. Use the definitions of the hyperbolic functions to find each of
the following limits.

(a) 1in_1 tanh x (b) liIII tanh x

(¢) lim sinh x

x—

(d) liIP sinh x

(e) lim sech x (f) lim coth x

(2) lil‘{)1+ coth x (h) 111})17 coth x
(i) lirzl csch x

24. Prove the formulas given in Table 1 for the derivatives of the
functions (a) cosh, (b) tanh, (c) csch, (d) sech, and (e) coth.

25. Give an alternative solution to Example 3 by letting
y = sinh™'x and then using Exercise 9 and Example 1(a)
with x replaced by y.

26. Prove Equation 4.

27. Prove Equation 5 using (a) the method of Example 3 and
(b) Exercise 18 with x replaced by y.

28. For each of the following functions (i) give a definition like
those in (2), (ii) sketch the graph, and (iii) find a formula simi-
lar to Equation 3.
(a) csch™!

(b) sech™! (c) coth™

29. Prove the formulas given in Table 6 for the derivatives of the
following functions.

(a) cosh™! (b) tanh™! (c) csch™!
(d) sech™! (e) coth™
30-47 1 Find the derivative.
30. f(x) = tanh 4x 31. f(x) = xcoshx
32. g(x) = sinh’x 33. h(x) = sinh(x?)
34, F(x) = sinh x tanh x 35. G(x) = %
36. f(r) = e'secht 37. h(t) = cothy/1 + 12
38. (1) = In(sinh 1) 39. H(r) = tanh(e’)
40. y = sinh(cosh x) 41, y = e
42. y = x?sinh '(2x) 43. y = tanh 'Vx

M. y=xtanh™'x + In/1 — x2
45. y = xsinh™'(x/3) — /9 + x2
46. y =sech'y1 —x% x>0
47. y = coth™'y/x> + 1

o o o o o o o

48. A flexible cable always hangs in the shape of a catenary

y = ¢ + acosh(x/a), where ¢ and a are constants and a > 0
(see Figure 4 and Exercise 50). Graph several members of the
family of functions y = a cosh(x/a). How does the graph
change as a varies?

49. A telephone line hangs between two poles 14 m apart in the
shape of the catenary y = 20 cosh(x/20) — 15, where x and y
are measured in meters.

(a) Find the slope of this curve where it meets the right pole.
(b) Find the angle 6 between the line and the pole.

y

=7 0 7 x

50. Using principles from physics it can be shown that when a
cable is hung between two poles, it takes the shape of a curve
y = f(x) that satisfies the differential equation

2 2
dy _p9 | (D
dx? T dx




where p is the linear density of the cable, g is the acceleration
due to gravity, and T is the tension in the cable at its lowest
point, and the coordinate system is chosen appropriately. Verify
that the function

52,

(b) Find y = y(x) such that y" = 9y, y(0) = —4,
and y'(0) = 6.

sinh x

et

Evaluate lim

x—

y=f(x)= lcosh

P9

is a solution of this differential equation.

51. (a) Show that any function of the form
y = A sinh mx + B cosh mx

satisfies the differential equation y” = m?y.

3.10 Related Rates

pgx
T

53. At what point of the curve y = cosh x does the tangent have
slope 1?

54. 1If x = In(sec 6 + tan ), show that sec § = cosh x.

55. Show that if a # 0 and b # 0, then there exist numbers « and
B such that ae* + be * equals either « sinh(x + ) or
a cosh(x + B). In other words, almost every function of the
form f(x) = ae* + be " is a shifted and stretched hyperbolic
sine or cosine function.

Explore an expanding balloon interactively.
= Resources / Module 5

Jm / Related Rates
. / Start of Related Rates

According to the Principles of Problem
Solving discussed on page 80, the first step is to
understand the problem. This includes reading
the problem carefully, identifying the given and
the unknown, and introducing suitable notation.

If we are pumping air into a balloon, both the volume and the radius of the balloon are
increasing and their rates of increase are related to each other. But it is much easier to mea-
sure directly the rate of increase of the volume than the rate of increase of the radius.

In a related rates problem the idea is to compute the rate of change of one quantity in
terms of the rate of change of another quantity (which may be more easily measured). The
procedure is to find an equation that relates the two quantities and then use the Chain Rule
to differentiate both sides with respect to time.

EXAMPLE 1 Air is being pumped into a spherical balloon so that its volume increases at a
rate of 100 cm?/s. How fast is the radius of the balloon increasing when the diameter is
50 cm?

SOLUTION We start by identifying two things:
the given information:
the rate of increase of the volume of air is 100 cm?/s
and the unknown:
the rate of increase of the radius when the diameter is 50 cm

In order to express these quantities mathematically, we introduce some suggestive
notation:

Let V be the volume of the balloon and let r be its radius.

The key thing to remember is that rates of change are derivatives. In this problem, the
volume and the radius are both functions of the time ¢. The rate of increase of the vol-
ume with respect to time is the derivative dV/dt, and the rate of increase of the radius is
dr/dt. We can therefore restate the given and the unknown as follows:

dv

Given: — =100 cm?/s

when r = 25 cm

dt

dr
Unk o —
nknown ”



The second stage of problem solving is to
think of a plan for connecting the given and the
unknown.

[l Notice that, although dV/dt is constant,
dr/dt is not constant.

How high will a fireman get while climbing a
sliding ladder?

B Resources / Module 5
Jm / Related Rates

- / Start of the Sliding Fireman

wall
10
y
N
X ground
FIGURE 1
a_,
dt
y
= X
dx _
o =1
FIGURE 2

In order to connect dV/dt and dr/dt, we first relate V and r by the formula for the
volume of a sphere:

4
V=35

In order to use the given information, we differentiate each side of this equation with
respect to t. To differentiate the right side, we need to use the Chain Rule:

dv dv dr , dr

SNk R Bl

dt dr dt dt

Now we solve for the unknown quantity:

dr_ 1 av

dt 4wt dt

If we put » = 25 and dV/dt = 100 in this equation, we obtain

dr_ ! 100 = !
dt 47(25)* 25m

The radius of the balloon is increasing at the rate of 1/(257) cm/s. ]

EXAMPLE 2 A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder
slides away from the wall at a rate of 1 ft/s, how fast is the top of the ladder sliding
down the wall when the bottom of the ladder is 6 ft from the wall?

SOLUTION We first draw a diagram and label it as in Figure 1. Let x feet be the distance
from the bottom of the ladder to the wall and y feet the distance from the top of the
ladder to the ground. Note that x and y are both functions of ¢ (time).

We are given that dx/dr = 1 ft/s and we are asked to find dy/dt when x = 6 ft (see
Figure 2). In this problem, the relationship between x and y is given by the Pythagorean
Theorem:

x>+ y? =100
Differentiating each side with respect to ¢ using the Chain Rule, we have

dx dy
2x— + 2y —=
xdt ydt

and solving this equation for the desired rate, we obtain

dy _ _xdx

dt y dt

When x = 6, the Pythagorean Theorem gives y = 8 and so, substituting these values and
dx/dt = 1, we have
dy

6 3
E —g(l) = _Z ft/S

The fact that dy/dr is negative means that the distance from the top of the ladder to
the ground is decreasing at a rate of ; ft/s. In other words, the top of the ladder is sliding
down the wall at a rate of 3 ft/s. ]



FIGURE 3

Look back: What have we learned from
Examples 1-3 that will help us solve future
problems?

@ \WARNING: A common error is to substi-

tute the given numerical information (for quanti-

ties that vary with time) too early. This should
be done only after the differentiation. (Step 7
follows Step 6.) For instance, in Example 3 we
dealt with general values of 4 until we finally
substituted 4 = 3 at the last stage. (If we had
put i = 3 earlier, we would have gotten
dV/dt = 0, which is clearly wrong.)

EXAMPLE 3 A water tank has the shape of an inverted circular cone with base radius 2 m
and height 4 m. If water is being pumped into the tank at a rate of 2 m*/min, find the rate
at which the water level is rising when the water is 3 m deep.

SOLUTION We first sketch the cone and label it as in Figure 3. Let V, r, and & be the vol-
ume of the water, the radius of the surface, and the height at time ¢, where ¢ is measured
in minutes.

We are given that dV/dt = 2 m*/min and we are asked to find dh/dt when h is 3 m.
The quantities V and / are related by the equation

V =1mr’h

but it is very useful to express V as a function of 4 alone. In order to eliminate r, we use
the similar triangles in Figure 3 to write

Now we can differentiate each side with respect to 7:

ﬂzthﬁ
dt 4 dt
© dn _ 4 av
dt wh? dt

Substituting # = 3 m and dV/dt = 2 m*/min, we have

dh 4 8

e .
d  w(3)? 9
The water level is rising at a rate of 8/(97r) = 0.28 m/min. ]

Strategy It is useful to recall some of the problem-solving principles from page 80 and
adapt them to related rates in light of our experience in Examples 1-3:
1. Read the problem carefully.

. Draw a diagram if possible.

2
3. Introduce notation. Assign symbols to all quantities that are functions of time.
4. Express the given information and the required rate in terms of derivatives.

5

. Write an equation that relates the various quantities of the problem. If necessary, use
the geometry of the situation to eliminate one of the variables by substitution (as in
Example 3).

6. Use the Chain Rule to differentiate both sides of the equation with respect to ¢.
7. Substitute the given information into the resulting equation and solve for the
unknown rate.

The following examples are further illustrations of the strategy.



EXAMPLE 4 Car A is traveling west at 50 mi/h and car B is traveling north at 60 mi/h.
Both are headed for the intersection of the two roads. At what rate are the cars approach-
ing each other when car A is 0.3 mi and car B is 0.4 mi from the intersection?

SOLUTION We draw Figure 4, where C is the intersection of the roads. At a given time ¢,
c X A let x be the distance from car A to C, let y be the distance from car B to C, and let z be
the distance between the cars, where x, y, and z are measured in miles.
y We are given that dx/dt = —50 mi/h and dy/dt = —60 mi/h. (The derivatives are
: negative because x and y are decreasing.) We are asked to find dz/dt. The equation that
B relates x, y, and z is given by the Pythagorean Theorem:
22 =52 4+ yz
FIGURE 4 Differentiating each side with respect to ¢, we have
dz dx dy
27— =2x—+ 2y —
: dt * dt Y dt
dz 1 dx dy
dat  z dt dt
When x = 0.3 mi and y = 0.4 mi, the Pythagorean Theorem gives z = (0.5 mi, so
dz 1
— = —[0.3(—50) + 0.4(—60
= 55 [03(=50) + 0.4(~60)]
= —78 mi/h
The cars are approaching each other at a rate of 78 mi/h. -
EXAMPLE 5 A man walks along a straight path at a speed of 4 ft/s. A searchlight is
located on the ground 20 ft from the path and is kept focused on the man. At what rate is
the searchlight rotating when the man is 15 ft from the point on the path closest to the
searchlight?
SOLUTION We draw Figure 5 and let x be the distance from the man to the point on the
path closest to the searchlight. We let 6 be the angle between the beam of the searchlight
- and the perpendicular to the path.
&‘D We are given that dx/dt = 4 ft/s and are asked to find d6/dt when x = 15. The equa-
4?&, tion that relates x and 6 can be written from Figure 5:
X \
X
0 Z—O—tane x =20tan 0
o Differentiating each side with respect to #, we get
dx ,. do
FIGURE 5 o~ 20sec’d—-
dae dx
) o = COSZOE = 55 c0s°0 (4) = 1 cos’0

When x = 15, the length of the beam is 25, so cos § = % and

o 1[4\ 16
—=—|=] =—==0.128
i 5\5 125

The searchlight is rotating at a rate of 0.128 rad/s. -



3.10 Exercises

1. If V is the volume of a cube with edge length x and the cube
expands as time passes, find dV/dr in terms of dx/dk.

2. (a) If A is the area of a circle with radius r and the circle
expands as time passes, find dA/dt in terms of dr/dt.

(b) Suppose oil spills from a ruptured tanker and spreads in a
circular pattern. If the radius of the oil spill increases at a
constant rate of 1 m/s, how fast is the area of the spill
increasing when the radius is 30 m?

3. If y = x° + 2x and dx/dt = 5, find dy/dt when x = 2.
4. If x> + y*> = 25 and dy/dt = 6, find dx/dt when y = 4.

5. If 22 = x* + y?, dx/dt = 2, and dy/dt = 3, find dz/dt when
x=>5andy=12.

6. A particle moves along the curve y = /1 + x3. As it reaches
the point (2, 3), the y-coordinate is increasing at a rate of
4 cm/s. How fast is the x-coordinate of the point changing at
that instant?

7-10 1

(a) What quantities are given in the problem?
(b) What is the unknown?

(c) Draw a picture of the situation for any time ¢.
(d) Write an equation that relates the quantities.
(e) Finish solving the problem.

7. A plane flying horizontally at an altitude of 1 mi and a speed of

500 mi/h passes directly over a radar station. Find the rate at
which the distance from the plane to the station is increasing
when it is 2 mi away from the station.

8. If a snowball melts so that its surface area decreases at a rate of

1 cm*/min, find the rate at which the diameter decreases when
the diameter is 10 cm.

9. A street light is mounted at the top of a 15-ft-tall pole. A man
6 ft tall walks away from the pole with a speed of 5 ft/s along

a straight path. How fast is the tip of his shadow moving when

he is 40 ft from the pole?

10. At noon, ship A is 150 km west of ship B. Ship A is sailing east
at 35 km/h and ship B is sailing north at 25 km/h. How fast is

the distance between the ships changing at 4:00 p.M.?
11. Two cars start moving from the same point. One travels south

at 60 mi/h and the other travels west at 25 mi/h. At what rate
is the distance between the cars increasing two hours later?

12. A spotlight on the ground shines on a wall 12 m away. If a man
2 m tall walks from the spotlight toward the building at a speed
of 1.6 m/s, how fast is the length of his shadow on the building

decreasing when he is 4 m from the building?

13. A man starts walking north at 4 ft/s from a point P. Five min-
utes later a woman starts walking south at 5 ft/s from a point

20.

500 ft due east of P. At what rate are the people moving apart
15 min after the woman starts walking?

. A baseball diamond is a square with side 90 ft. A batter hits the

ball and runs toward first base with a speed of 24 ft/s.

(a) At what rate is his distance from second base decreasing
when he is halfway to first base?

(b) At what rate is his distance from third base increasing at
the same moment?

> = )

/\
¢

90 ft

. The altitude of a triangle is increasing at a rate of 1 cm/min

while the area of the triangle is increasing at a rate of
2 cm?/min. At what rate is the base of the triangle changing
when the altitude is 10 cm and the area is 100 cm*?

. A boat is pulled into a dock by a rope attached to the bow of

the boat and passing through a pulley on the dock that is 1 m
higher than the bow of the boat. If the rope is pulled in at a rate
of 1 m/s, how fast is the boat approaching the dock when it is
8 m from the dock?

. At noon, ship A is 100 km west of ship B. Ship A is sailing

south at 35 km/h and ship B is sailing north at 25 km/h. How
fast is the distance between the ships changing at 4:00 p.m.?

. A particle is moving along the curve y = /x. As the particle

passes through the point (4, 2), its x-coordinate increases at a
rate of 3 cm/s. How fast is the distance from the particle to the
origin changing at this instant?

. Water is leaking out of an inverted conical tank at a rate of

10,000 cm?/min at the same time that water is being pumped
into the tank at a constant rate. The tank has height 6 m and the
diameter at the top is 4 m. If the water level is rising at a rate
of 20 cm/min when the height of the water is 2 m, find the rate
at which water is being pumped into the tank.

A trough is 10 ft long and its ends have the shape of isosceles
triangles that are 3 ft across at the top and have a height of 1 ft.
If the trough is being filled with water at a rate of 12 ft’/min,



21.

22.

23.

24,

25.

26.

27.

how fast is the water level rising when the water is 6 inches
deep?

A water trough is 10 m long and a cross-section has the shape
of an isosceles trapezoid that is 30 cm wide at the bottom,

80 cm wide at the top, and has height 50 cm. If the trough is
being filled with water at the rate of 0.2 m*/min, how fast is the
water level rising when the water is 30 cm deep?

A swimming pool is 20 ft wide, 40 ft long, 3 ft deep at the
shallow end, and 9 ft deep at its deepest point. A cross-
section is shown in the figure. If the pool is being filled at a
rate of 0.8 ft3/min, how fast is the water level rising when the
depth at the deepest point is 5 ft?

L

6 12 16 6

Gravel is being dumped from a conveyor belt at a rate of

30 ft%/min, and its coarseness is such that it forms a pile in the
shape of a cone whose base diameter and height are always
equal. How fast is the height of the pile increasing when the
pile is 10 ft high?

A kite 100 ft above the ground moves horizontally at a speed
of 8 ft/s. At what rate is the angle between the string and the
horizontal decreasing when 200 ft of string have been let out?

Two sides of a triangle are 4 m and 5 m in length and the angle
between them is increasing at a rate of 0.06 rad/s. Find the rate
at which the area of the triangle is increasing when the angle
between the sides of fixed length is /3.

Two sides of a triangle have lengths 12 m and 15 m. The angle
between them is increasing at a rate of 2%/min. How fast is the
length of the third side increasing when the angle between the
sides of fixed length is 60°?

Boyle’s Law states that when a sample of gas is compressed at

a constant temperature, the pressure P and volume V satisfy the
equation PV = C, where C is a constant. Suppose that at a cer-
tain instant the volume is 600 cm?, the pressure is 150 kPa, and
the pressure is increasing at a rate of 20 kPa/min. At what rate

is the volume decreasing at this instant?

28.

29.

30.

31.

32.

33.

When air expands adiabatically (without gaining or losing
heat), its pressure P and volume V are related by the equation
PV'* = C, where C is a constant. Suppose that at a certain
instant the volume is 400 cm® and the pressure is 80 kPa and is
decreasing at a rate of 10 kPa/min. At what rate is the volume
increasing at this instant?

If two resistors with resistances R, and R, are connected in
parallel, as in the figure, then the total resistance R, measured
in ohms (£}), is given by

1 1 1

_ =4 —

R | Ry
If R, and R, are increasing at rates of 0.3 (/s and 0.2 /s,
respectively, how fast is R changing when R; = 80 () and
R, = 100 Q?

Brain weight B as a function of body weight W in fish has
been modeled by the power function B = 0.007W??, where
B and W are measured in grams. A model for body weight

as a function of body length L (measured in centimeters) is
W = 0.12L*%. If, over 10 million years, the average length of
a certain species of fish evolved from 15 cm to 20 cm at a
constant rate, how fast was this species’ brain growing when
the average length was 18 cm?

A ladder 10 ft long rests against a vertical wall. If the bottom
of the ladder slides away from the wall at a speed of 2 ft/s,
how fast is the angle between the top of the ladder and the wall
changing when the angle is 7/4 rad?

Two carts, A and B, are connected by a rope 39 ft long that
passes over a pulley P (see the figure). The point Q is on the
floor 12 ft directly beneath P and between the carts. Cart A is
being pulled away from Q at a speed of 2 ft/s. How fast is cart
B moving toward Q at the instant when cart A is 5 ft from Q?

= A
00

A television camera is positioned 4000 ft from the base of a
rocket launching pad. The angle of elevation of the camera has
to change at the correct rate in order to keep the rocket in sight.
Also, the mechanism for focusing the camera has to take into
account the increasing distance from the camera to the rising



rocket. Let’s assume the rocket rises vertically and its speed is angle of 30°. At what rate is the distance from the plane to the
600 ft/s when it has risen 3000 ft. radar station increasing a minute later?
(a) How fast is the distance from the television camera to the 36
rocket changing at that moment?
(b) If the television camera is always kept aimed at the rocket,
how fast is the camera’s angle of elevation changing at that

. Two people start from the same point. One walks east at
3 mi/h and the other walks northeast at 2 mi/h. How fast is
the distance between the people changing after 15 minutes?

same moment? 37. A runner sprints around a circular track of radius 100 m at a
constant speed of 7 m/s. The runner’s friend is standing at a
34. A lighthouse is located on a small island 3 km away from the distance 200 m from the center of the track. How fast is the
nearest point P on a straight shoreline and its light makes four distance between the friends changing when the distance
revolutions per minute. How fast is the beam of light moving between them is 200 m?

long the shoreli hen it is 1 km from P? . .
a‘ong fie shofefme wien 1t 15 1 Xm from 38. The minute hand on a watch is 8 mm long and the hour hand

35. A plane flying with a constant speed of 300 km/h passes over a is 4 mm long. How fast is the distance between the tips of the
ground radar station at an altitude of 1 km and climbs at an hands changing at one o’clock?

3.11 Linear Approximations and Differentials

We have seen that a curve lies very close to its tangent line near the point of tangency. In

3 Resources / Module 3 fact, by zooming in toward a point on the graph of a differentiable function, we noticed

.1 g, /linear Approximation that the graph looks more and more like its tangent line. (See Figure 2 in Section 2.7 and

) / Start of Lingar Approximation Figure 3 in Section 2.8.) This observation is the basis for a method of finding approximate
values of functions.

The idea is that it might be easy to calculate a value f(a) of a function, but difficult (or
even impossible) to compute nearby values of f. So we settle for the easily computed val-
ues of the linear function L whose graph is the tangent line of f at (a, f(a)). (See Figure 1.)

In other words, we use the tangent line at (a, f(a)) as an approximation to the curve
y = f(x) when x is near a. An equation of this tangent line is

y=fla) + f'(a)x — a)

and the approximation

0 x (1] f(x) = fla) + fa)(x — a)
FIGURE 1 is called the linear approximation or tangent line approximation of f at a. The linear
function whose graph is this tangent line, that is,
[2] L(x) = f(a) + f(a)(x — a)

is called the linearization of f at a.
The following example is typical of situations in which we use a linear approximation
to predict the future behavior of a function given by empirical data.

EXAMPLE 1 Suppose that after you stuff a turkey its temperature is S0°F and you then put
it in a 325°F oven. After an hour the meat thermometer indicates that the temperature of
the turkey is 93°F and after two hours it indicates 129°F. Predict the temperature of the
turkey after three hours.

SOLUTION If T'(¢) represents the temperature of the turkey after 7 hours, we are given that
T(0) = 50, T(1) = 93, and T(2) = 129. In order to make a linear approximation with
a = 2, we need an estimate for the derivative 7”(2). Because

7(2) = lim L~ 1@
1—2 t—2
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we could estimate T'(2) by the difference quotient with = 1:

T(1) — T(2) 93— 129
1-2 -1

T'(2) = 36

This amounts to approximating the instantaneous rate of temperature change by the
average rate of change between ¢ = 1 and ¢ = 2, which is 36°F/h. With this estimate, the
linear approximation (1) for the temperature after 3 h is

U

T(3)=TQ2) +T'2)3 —2)

~ 129 + 36 -1 =165
So the predicted temperature after three hours is 165°F.

We obtain a more accurate estimate for 7(2) by plotting the given data, as in Fig-
ure 2, and estimating the slope of the tangent line at = 2 to be

T'(2) = 33
Then our linear approximation becomes
T(3) =~ T(2) + T'(2) - 1 =~ 129 + 33 = 162

and our improved estimate for the temperature is 162°F.
Because the temperature curve lies below the tangent line, it appears that the actual
temperature after three hours will be somewhat less than 162°F, perhaps closer to 160°F.

EXAMPLE 2 Find the linearization of the function f(x) = /x + 3 ata = 1 and use it to
approximate the numbers /3.98 and /4.05. Are these approximations overestimates or
underestimates?

SOLUTION The derivative of f(x) = (x + 3)"?is

’ 1 —-1/2 _ 1
f(x)_z(x+3) /_2\/m

and so we have f(1) = 2 and f'(1) = ;. Putting these values into Equation 2, we see that
the linearization is

L) =f1) +f()x—1) =2+ x—1)= % .

N

The corresponding linear approximation (1) is

(when x is near 1)

7
N

*
4
In particular, we have

V398 =1+ % =1995 and 405 =1+ =20125

The linear approximation is illustrated in Figure 3. We see that, indeed, the tangent
line approximation is a good approximation to the given function when x is near 1. We
also see that our approximations are overestimates because the tangent line lies above the
curve.
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1
y=\x+3+0.5

L(x)
~1
FIGURE 4

FIGURE 5

Of course, a calculator could give us approximations for 1/3.98 and 1/4.05, but the
linear approximation gives an approximation over an entire interval. ]

In the following table we compare the estimates from the linear approximation in
Example 2 with the true values. Notice from this table, and also from Figure 3, that the
tangent line approximation gives good estimates when x is close to 1 but the accuracy of
the approximation deteriorates when x is farther away from 1.

x From L(x) Actual value
V3.9 0.9 1.975 1.97484176 . . .
V/3.98 0.98 1.995 1.99499373 . ..
N2 1 2 2.00000000 . . .
J4.05 1.05 2.0125 2.01246117 . ..
NZW 1.1 2.025 2.02484567 . . .
NG 2 2.25 223606797 . . .
V6 3 2.5 2.44948974 . . .

How good is the approximation that we obtained in Example 2? The next example
shows that by using a graphing calculator or computer we can determine an interval through-
out which a linear approximation provides a specified accuracy.

EXAMPLE 3 For what values of x is the linear approximation

7

T3~—
* 4

X
+_
4

accurate to within 0.5? What about accuracy to within 0.1?

SOLUTION Accuracy to within 0.5 means that the functions should differ by less than 0.5:

(i

4

<0.5

Equivalently, we could write

7
\&+3—05<Z+%<q&+3+05

This says that the linear approximation should lie between the curves obtained by shift-
ing the curve y = 4/x + 3 upward and downward by an amount 0.5. Figure 4 shows
the tangent line y = (7 + x)/4 intersecting the upper curve y = 4/x + 3 + 0.5 at P
and Q. Zooming in and using the cursor, we estimate that the x-coordinate of P is about
—2.66 and the x-coordinate of Q is about 8.66. Thus, we see from the graph that the
approximation

7 X

x+3=—+—

4 4

is accurate to within 0.5 when —2.6 < x < 8.6. (We have rounded to be safe.)

Similarly, from Figure 5 we see that the approximation is accurate to within 0.1 when
—1.1 <x<30. 1



[IIlIf dx # 0, we can divide both sides of
Equation 3 by dx to obtain
dy

=W

We have seen similar equations before, but now
the left side can genuinely be interpreted as a
ratio of differentials.

y
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=
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FIGURE 6

|||| fipplications to Physics

Linear approximations are often used in physics. In analyzing the consequences of an
equation, a physicist sometimes needs to simplify a function by replacing it with its linear
approximation. For instance, in deriving a formula for the period of a pendulum, physics
textbooks obtain the expression ar = —g sin 0 for tangential acceleration and then replace
sin 6 by 0 with the remark that sin 6 is very close to 6 if 0 is not too large. [See, for
example, Physics: Calculus, 2d ed., by Eugene Hecht (Pacific Grove, CA: Brooks/Cole,
2000), p. 431.] You can verify that the linearization of the function f(x) = sinxata = 0
is L(x) = x and so the linear approximation at 0 is

sin x = x

(see Exercise 48). So, in effect, the derivation of the formula for the period of a pendulum
uses the tangent line approximation for the sine function.

Another example occurs in the theory of optics, where light rays that arrive at shallow
angles relative to the optical axis are called paraxial rays. In paraxial (or Gaussian) optics,
both sin 6 and cos 6 are replaced by their linearizations. In other words, the linear approx-
imations

sin § = 0 and cos O = 1
are used because 6 is close to 0. The results of calculations made with these approxima-
tions became the basic theoretical tool used to design lenses. [See Optics, 4th ed., by
Eugene Hecht (Reading, MA: Addison-Wesley, 2002), p. 154.]

In Section 11.12 we will present several other applications of the idea of linear approx-
imations to physics.

|||| Differentials

The ideas behind linear approximations are sometimes formulated in the terminology and
notation of differentials. If y = f(x), where f is a differentiable function, then the differ-
ential dx is an independent variable; that is, dx can be given the value of any real number.
The differential dy is then defined in terms of dx by the equation

[3] dy = f'(x) dx

So dy is a dependent variable; it depends on the values of x and dx. If dx is given a spe-
cific value and x is taken to be some specific number in the domain of f, then the numer-
ical value of dy is determined.

The geometric meaning of differentials is shown in Figure 6. Let P(x, f(x)) and
O(x + Ax, f(x + Ax)) be points on the graph of f and let dx = Ax. The corresponding
change in y is

Ay = f(x + Ax) = f(x)

The slope of the tangent line PR is the derivative f'(x). Thus, the directed distance from S
to R is f'(x) dx = dy. Therefore, dy represents the amount that the tangent line rises or
falls (the change in the linearization), whereas Ay represents the amount that the curve
y = f(x) rises or falls when x changes by an amount dx.



[l Figure 7 shows the function in Example 4
and a comparison of dy and Ay when a = 2.

The viewing rectangle is [1.8, 2.5] by [6, 18].

FIGURE 7

EXAMPLE 4 Compare the values of Ay and dy if y = f(x) = x> + x> — 2x + 1 and
x changes (a) from 2 to 2.05 and (b) from 2 to 2.01.

SOLUTION
(a) We have
fQ)=2+2"-22)+1=9
£(2.05) = (2.05)* + (2.05)> — 2(2.05) + 1 = 9.717625
Ay = f(2.05) — f(2) = 0.717625
In general, dy = f'(x)dx = (3x* + 2x — 2)dx

When x = 2 and dx = Ax = 0.05, this becomes
dy = [3(2)* + 2(2) — 2]0.05 = 0.7
(b) £(2.01) = (2.01)* + (2.01)* = 2(2.01) + 1 = 9.140701
Ay = f(2.01) — f(2) = 0.140701
When dx = Ax = 0.01,

dy = [3(2)* + 2(2) — 2]0.01 = 0.14 ]

Notice that the approximation Ay = dy becomes better as Ax becomes smaller in
Example 4. Notice also that dy was easier to compute than Ay. For more complicated func-
tions it may be impossible to compute Ay exactly. In such cases the approximation by dif-

ferentials is especially useful.
In the notation of differentials, the linear approximation (1) can be written as

fla + dx) = f(a) + dy
For instance, for the function f(x) = +/x + 3 in Example 2, we have

dy =f(x)d _d—x
Y e 2x+ 3

If a =1 and dx = Ax = 0.05, then

0.05
dy = ——— = 00125
Wi
and JA05 = £(1.05) = £(1) + dy = 2.0125

just as we found in Example 2.
Our final example illustrates the use of differentials in estimating the errors that occur
because of approximate measurements.

EXAMPLE 5 The radius of a sphere was measured and found to be 21 cm with a possible
error in measurement of at most 0.05 cm. What is the maximum error in using this value
of the radius to compute the volume of the sphere?

SOLUTION If the radius of the sphere is r, then its volume is V = %wr3. If the error in the
measured value of r is denoted by dr = Ar, then the corresponding error in the calcu-



3.11 Exercises

lated value of V is AV, which can be approximated by the differential
dV = 4mr’dr
When r = 21 and dr = 0.05, this becomes
dV = 4m(21)*0.05 = 277

The maximum error in the calculated volume is about 277 cm?®. ]

NOTE = Although the possible error in Example 5 may appear to be rather large, a better
picture of the error is given by the relative error, which is computed by dividing the error
by the total volume:

AV dv _ 4artdr dr

)
1% %4 sar’ r

Thus, the relative error in the volume is about three times the relative error in the radius.
In Example 5 the relative error in the radius is approximately dr/r = 0.05/21 = 0.0024
and it produces a relative error of about 0.007 in the volume. The errors could also be
expressed as percentage errors of 0.24% in the radius and 0.7% in the volume.

1. The turkey in Example 1 is removed from the oven when its 4. The table shows the population of Nepal (in millions) as of
temperature reaches 185°F and is placed on a table in a room June 30 of the given year. Use a linear approximation to esti-
where the temperature is 75°F. After 10 minutes the tempera- mate the population at midyear in 1984. Use another linear
ture of the turkey is 172°F and after 20 minutes it is 160°F. approximation to predict the population in 2006.

Use a linear approximation to predict the temperature of the

aged 65 and over. Use a linear approximation to predict the
percentage of the population that will be 65 and over in the /.
years 2040 and 2050. Do you think your predictions are too

turkey after half an hour. Do you think your prediction is an . o . 5
overestimate or an underestimate? Why? ! 1980 1983 1990 1995 2000

2. Atmospheric pressure P decreases as altitude / increases. At a N@) 15.0 17.0 19.3 22.0 24.9
temperature of 15°C, the pressure is 101.3 kilopascals (kPa) at
sea level, 87.1 kPa at h = 1 km, and 74.9 kPa at h = 2 km. 5-8 1 Find the linearization L(x) of the function at a.
Use a linear approximation to estimate the atmospheric pres- s
sure at an altitude of 3 km. 5. f)=x% a=1 6. f(x) =Inx, a=1

3. The graph indicates how Australia’s population is aging by 1. f(x) = cosx, a=m/2 8 f(x)=x a=-8
showing the past and projected percentage of the population o : : : : : : : o o o o

Find the linear approximation of the function f(x) = /1 — x
at a = 0 and use it to approximate the numbers /0.9 and
1/0.99. Illustrate by graphing f and the tangent line.

¥4 10. Find the linear approximation of the function g(x) = ¥/1 + x
at a = 0 and use it to approximate the numbers /0.95 and
J/1.1. Tllustrate by graphing g and the tangent line.

¥ 11-14 i Verify the given linear approximation at ¢ = 0. Then
determine the values of x for which the linear approximation is
accurate to within 0.1.

Y1 —x=1-1x 12. tanx =~ x

high or too low? Why?
P
20+
Percent i
amdover 101
0 1900

o001 13, 1/(1 + 20* = 1 — 8x Woet=1+x

o o o o o o o o o o o o



15=20 i Find the differential of the function.

15. y = x* + 5x 16. y = cos mx

17. y=xInx 18. y =41+ 12
+ 1
19 y =2 20. y=(1+27)"
u—1

o o o o o o o o o o o o

21-26 i (a) Find the differential dy and (b) evaluate dy for the
given values of x and dx.

21, y=x>+2x, x=3, dr=3
22. y=e"" x=0, dc=0.1
2. y=4+5x, x=0, dr=004
4. y=1/(x+1), x=1, dx=—001

x=m/4, dx= —0.1
x = /3,

o o o o o o o o o o o o

25. y = tan x,

26. y = cos x, dx = 0.05

27-30 m Compute Ay and dy for the given values of x and
dx = Ax. Then sketch a diagram like Figure 6 showing the line
segments with lengths dx, dy, and Ay.

27. y=x%* x=1, Ax=05

2. y=+x, x=1, Ax=1
2.y=6—-x% x=-2, Ax=04
30. y=16/x, x=4, Ax=—1

o o o o o o o o o o o o

31-36 1 Use differentials (or, equivalently, a linear approximation)
to estimate the given number.

31. (2.001)°
33. (8.06)*2 34, 1/1002
35. tan 44° 36. 1In 1.07

o o o o o o o o o o o o

32. /99.8

37-39 i Explain, in terms of linear approximations or differentials,
why the approximation is reasonable.

37. sec 0.08 = 1
38. (1.01)° = 1.06
39. In 1.05 = 0.05

o o o o o o o o o o o o

2x

40. Let fx) = (x—1)?

and h(x) =1+ In(1 — 2x)

g(x) = e

(a) Find the linearizations of f, g, and 4 at a = 0. What do you
notice? How do you explain what happened?

41.

42.

43.

44.

45.

46.

47.

(b) Graph f, g, and / and their linear approximation. For which
function is the linear approximation best? For which is it
worst? Explain.

The edge of a cube was found to be 30 cm with a possible error
in measurement of 0.1 cm. Use differentials to estimate the
maximum possible error, relative error, and percentage error in
computing (a) the volume of the cube and (b) the surface area
of the cube.

The radius of a circular disk is given as 24 cm with a maxi-

mum error in measurement of 0.2 cm.

(a) Use differentials to estimate the maximum error in the cal-
culated area of the disk.

(b) What is the relative error? What is the percentage error?

The circumference of a sphere was measured to be 84 cm with

a possible error of 0.5 cm.

(a) Use differentials to estimate the maximum error in the
calculated surface area. What is the relative error?

(b) Use differentials to estimate the maximum error in the
calculated volume. What is the relative error?

Use differentials to estimate the amount of paint needed to
apply a coat of paint 0.05 cm thick to a hemispherical dome
with diameter 50 m.

(a) Use differentials to find a formula for the approximate vol-
ume of a thin cylindrical shell with height /4, inner radius r,
and thickness Ar.

(b) What is the error involved in using the formula from
part (a)?

When blood flows along a blood vessel, the flux F (the volume
of blood per unit time that flows past a given point) is propor-
tional to the fourth power of the radius R of the blood vessel:

F =kR*

(This is known as Poiseuille’s Law; we will show why it is true
in Section 8.4.) A partially clogged artery can be expanded by
an operation called angioplasty, in which a balloon-tipped
catheter is inflated inside the artery in order to widen it and
restore the normal blood flow.

Show that the relative change in F is about four times the
relative change in R. How will a 5% increase in the radius
affect the flow of blood?

Establish the following rules for working with differentials
(where ¢ denotes a constant and u and v are functions of x).
(@) de =0

(b) d(cu) = cdu

) dlu+ v) =du+ dv

(d) dluv) = udv + vdu

u vdu — udv
) d| =) = ===
v v

(f) d(x") = nx" 'dx



48. On page 431 of Physics: Calculus, 2d ed., by Eugene Hecht (b) Are your estimates in part (a) too large or too small?
(Pacific Grove, CA: Brooks/Cole, 2000), in the course of deriv- Explain.

49.

ing the formula 7 = 277+/L /g for the period of a pendulum of y
length L, the author obtains the equation ar = —gsin 6 for the \
tangential acceleration of the bob of the pendulum. He then
says, “for small angles, the value of 6 in radians is very nearly y=fx)
the value of sin 6; they differ by less than 2% out to about 20°.”
(a) Verity the linear approximation at 0 for the sine function:

sin x = x

(b) Use a graphing device to determine the values of x for
which sin x and x differ by less than 2%. Then verify 50
Hecht’s statement by converting from radians to degrees.

. Suppose that we don’t have a formula for g(x) but we know
that g(2) = —4 and ¢'(x) = +/x* + 5 for all x.

Suppose that the only information we have about a function f (a) Use a linear approximation to estimate g(1.95) and g(2.05).
is that f(1) = 5 and the graph of its derivative is as shown. (b) Are your estimates in part (a) too large or too small?
(a) Use a linear approximation to estimate f(0.9) and f(1.1). Explain.

LABORATORY PROJECT

Taylor Polynomials

The tangent line approximation L(x) is the best first-degree (linear) approximation to f(x) near
x = a because f(x) and L(x) have the same rate of change (derivative) at a. For a better approx-
imation than a linear one, let’s try a second-degree (quadratic) approximation P(x). In other
words, we approximate a curve by a parabola instead of by a straight line. To make sure that the
approximation is a good one, we stipulate the following:

1) P(a) = f(a) (P and f should have the same value at a.)
(ii) P'(a) = f'(a) (P and f should have the same rate of change at a.)
(iii) P"(a) = f"(a) (The slopes of P and f should change at the same rate.)

. Find the quadratic approximation P(x) = A + Bx + Cx? to the function f(x) = cos x that

satisfies conditions (i), (ii), and (iii) with a = 0. Graph P, f, and the linear approximation
L(x) = 1 on a common screen. Comment on how well the functions P and L approximate f.

. Determine the values of x for which the quadratic approximation f(x) = P(x) in Problem 1

is accurate to within 0.1. [Hint: Graph y = P(x), y = cos x — 0.1, and y = cos x + 0.1 on
a common screen. ]

. To approximate a function f by a quadratic function P near a number a, it is best to write P

in the form
P(x) =A + B(x — a) + C(x — a)*

Show that the quadratic function that satisfies conditions (i), (ii), and (iii) is

P(x) = f(a) + f(@)(x — a) + 3/ "(@)(x — a)?

. Find the quadratic approximation to f(x) = v/x + 3 near a = 1. Graph f, the quadratic

approximation, and the linear approximation from Example 3 in Section 3.11 on a common
screen. What do you conclude?

. Instead of being satisfied with a linear or quadratic approximation to f(x) near x = a, let’s

try to find better approximations with higher-degree polynomials. We look for an nth-degree
polynomial

T.x)=cot+c(x—a)+ax—a’+cax—a?’+: - +clx—ar



such that 7}, and its first n derivatives have the same values at x = a as f and its first n deriv-
atives. By differentiating repeatedly and setting x = a, show that these conditions are satis-
fied if co = f(a), c1 = f'(a), c» = 5 f"(a), and in general

_ Y
“T T
where k! =1-2+3-4- --- -k The resulting polynomial
" ()
1,09 = £@) + F@ = ) + L —ap 4o+ LD gy
! n!

is called the nth-degree Taylor polynomial of f centered at a.

6. Find the 8th-degree Taylor polynomial centered at @ = 0 for the function f(x) = cos x.
Graph f together with the Taylor polynomials 75, T4, T, T in the viewing rectangle [—5, 5]
by [—1.4, 1.4] and comment on how well they approximate f.

3 Review = CONCEPT CHECH -
1. State each of the following differentiation rules both in 3. (a) How is the number e defined?
symbols and in words. (b) Express e as a limit.
(a) The Power Rule (c) Why is the natural exponential function y = ¢”* used more
(b) The Constant Multiple Rule often in calculus than the other exponential functions
(¢) The Sum Rule y=a"?
(d) The Difference Rule (d) Why is the natural logarithmic function y = In x used more
(e) The Product Rule often in calculus than the other logarithmic functions
(f) The Quotient Rule y = logax?
(g) The Chain Rule 4. (a) Explain how implicit differentiation works.

.. . (b) Explain how logarithmic differentiation works.
2. State the derivative of each function.

(a) y = x" (b) y=e" (c) y=a" 5. What are the second and third derivatives of a function f? If f
(dy=Inx (e) y = log.x (f) y =sinx is the position function of an object, how can you interpret f”
(g) y = cos x (h) y = tan x (i) y =cscx and f"?

(j)y =secx (k) y = cotx (1) y=sin""x 6. (a) Write an expression for the linearization of f at a.

(m)y = cos™'x (n) y = tan”'x (0) y = sinh x (b) If y = f(x), write an expression for the differential dy.

(p) y = coshx (@) y = tanhx (r) y = sinh™'x (c) If dx = Ax, draw a picture showing the geometric mean-
(s) y=rcosh™'x (t) y=tanh 'x ings of Ay and dy.

* TRUE-FALSE QUIZ -

Determine whether the statement is true or false. If it is true, explain why. 3. If f and g are differentiable, then
If it is false, explain why or give an example that disproves the statement. d
. [f(g())] = f'(g(x))g'(x)

1. If f and g are differentiable, then

S . d !
%[f(x) + g0 =f(x) + ¢'(x) 4. If f is differentiable, thena f(x) = 2{/%.
2. If f and g are differentiable, then _ f'(x)

d
5. 1If f is differentiable, then —— F(Wx) Nl

d o — ! !
“ L/ 0g0] = (99 6. Ify = ¢ then y’ — 2.



7

9

10

d

. == (10%) = x10*!
dx( ) =x
d d

S (tan’x) = o (sec*)

d
.7|x2+x|:|2x+1|
x

d 1
L n10) = —
2 10 =5

1-48 1 Calculate y'.

1

cy=(x*=-3x>+5)

3.y=\/}+%

5. y=2xJ/x2+1

7. y =¥

9. y= 1 _ttz

. y=xe '

13. y=tan /1 — x

15. xy* + x%y = x + 3y

17.

~ sec26
’ 1 + tan 20

19. y = e“(c sinx — cos x)
21, y = ¢

2. y=(1—x"H"!

25. sin(xy) = x> —y

27.

y = logs(1 + 2x)

29. y = In sin x — & sin’x
31. y = xtan '(4x)
33. y = In|sec 5x + tan 5x|

35. y = cot(3x2 + 5)

37. y = sin(tan /1 + x°)

39. y = tan’(sin 6)

PR Gl Kehut 'l
(x + 3)

43. y = x sinh(x?)

2. y = cos(tan x)
4y — 3x — 2
YT 1
eX
6. y= 1+ x?
8. y=c'(t*—2t+2)
10. y = sin '(e¥)
120 y = x'e™
1
B y=——"-—"
Y sin(x — sin x)
16. y = In(csc 5x)
18. x%cosy + sin 2y = xy
20. y = In(x%")
22. y = sec(l + x?)
2%, y=1/Ix+ Vx
26. y = \/sin Vx
28. y = (cos x)*
2 + 1 4
O L ) M
2x +1)°’Gx—1)
32, y = e + cos(e”)
3. y = 10w
36. y = /rn(z%)
38. y = arctan(arcsin v/x)
40, xe' =y — 1
(x + »)*
42, y=—F1+—7>
Y x4+t
M y— sin mx
X

11.

12.

13.

- EXERCISES -

45.

47.

o

49.
50.
51,
52.
53.

54.

gx) — g2 _

80.
x—2

If g(x) = x°, then lim

x—2
d2y B ﬂ 2
dx? dx
An equation of the tangent line to the parabola y = x? at
(=2,4)isy — 4 = 2x(x + 2).

x2—4
2x +5

48. y = xtanh™'/x

o o o o o o o o o o o

46. y =1In

y = In(cosh 3x)

y = cosh !(sinh x)

If £(t) = V4t + 1, find £"(2).

If g(0) = Osin 6, find g"(7/6).

Find y" if x® + y°= 1.

Find f"(x) if f(x) = 1/(2 — x).

Use mathematical induction to show that if f(x) = xe*,
then f™(x) = (x + n)e".

3

Evaluate lim —s—.
vatuate TI‘I}& tan3(2t)

55-59 I Find an equation of the tangent to the curve at the given
point.
55. y = 4sin’x, (w/6,1)
2 _
56. VA S 0,-1)
57. y=+/1 + 4sinx, (0,1)
58. x* + 4xy +y* =13, (2,1)
59. y=02 +xe", (0,2
9 60. 1f f(x) = xe*™, find f’(x). Graph f and f on the same screen
and comment.
61. (a) If f(x) = x+/5 — x, find f'(x).
(b) Find equations of the tangent lines to the curve
y = x+/5 — x at the points (1, 2) and (4, 4).
a3 (c) Nlustrate part (b) by graphing the curve and tangent lines
on the same screen.
ﬁ (d) Check to see that your answer to part (a) is reasonable by
comparing the graphs of f and f'.
62. (a) If f(x) =4x —tanx, —7/2 < x < w/2, find f" and f".
A (b) Check to see that your answers to part (a) are reasonable by

comparing the graphs of f, f', and f".



63
64

65

66

67

68

69
69
71
73
75
77

77

79

o

4 80

. At what points on the curve y = sin x + cos x, 0 < x < 277,
is the tangent line horizontal?

. Find the points on the ellipse x> + 2y? = 1 where the tangent
line has slope 1.

. If f(x) = (x — a)(x — b)(x — ¢), show that
foo 1 1
f(x) x—a x—b x—c

. (a) By differentiating the double-angle formula
cos 2x = cos™x — sin’*x
obtain the double-angle formula for the sine function.
(b) By differentiating the addition formula
sin(x + a) = sin x cos a + cos x sin a
obtain the addition formula for the cosine function.

. Suppose that i(x) = f(x)g(x) and F(x) = f(g(x)), where
f(2) =3,9(2) =5,¢'(2) =4, f'(2) = =2, and f'(5) = 11.
Find (a) /'(2) and (b) F'(2).

. If f and g are the functions whose graphs are shown, let

P(x) = f(x)g(x), Q(x) = f(x)/g(x), and C(x) = f(g(x)).
Find (a) P'(2), (b) Q'(2), and (c) C'(2).

y
9
/
f
W /
o 1
=76 1 Find ' in terms of ¢'.
. f(x) = x%g(x) 70. f(x) = g(x?)
- f) =T[g] 72. f(x) = g(g(x))
. f(x) = g(e*) T4 f(x) ='W
C f() =1n |g(x) | 76. f(x) = g(in x)
=79 i Find 4’ in terms of " and ¢'.
__f()g) _ /W
A TE R 8=\

. h(x) = f(g(sin 4x))

. (a) Graph the function f(x) = x — 2 sin x in the viewing rect-

angle [0, 8] by [—2, 8].

(b) On which interval is the average rate of change larger:
[1,2]or[2,3]?

(c) At which value of x is the instantaneous rate of change
larger: x = 2 or x = 57

(d) Check your visual estimates in part (c) by computing f'(x)
and comparing the numerical values of f'(2) and f'(5).

o

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

9.

At what point on the curve y = [In(x + 4)]*is the tangent
horizontal?

(a) Find an equation of the tangent to the curve y = e” that is
parallel to the line x — 4y = 1.

(b) Find an equation of the tangent to the curve y = e” that
passes through the origin.

Find a parabola y = ax* + bx + c that passes through the
point (1, 4) and whose tangent lines at x = —1 and x = 5 have
slopes 6 and —2, respectively.

The function C(f) = K(e " — e~""), where a, b, and K are pos-

itive constants and b > q, is used to model the concentration at

time ¢ of a drug injected into the bloodstream.

(a) Show that lim, ... C(r) = 0.

(b) Find C'(z), the rate at which the drug is cleared from
circulation.

(c) When is this rate equal to 0?

—ct

An equation of motion of the form s = Ae ' cos(wt + ) rep-
resents damped oscillation of an object. Find the velocity and
acceleration of the object.

A particle moves along a horizontal line so that its coordinate

at time 7is x = /b? + ¢?t%,t = 0, where b and c are positive

constants.

(a) Find the velocity and acceleration functions.

(b) Show that the particle always moves in the positive
direction.

A particle moves on a vertical line so that its coordinate at

timerisy = 1> — 12t + 3,+ = 0.

(a) Find the velocity and acceleration functions.

(b) When is the particle moving upward and when is it moving
downward?

(c) Find the distance that the particle travels in the time inter-
val0 = 1< 3.

The volume of a right circular cone is V = 7r’h/3, where r is

the radius of the base and /4 is the height.

(a) Find the rate of change of the volume with respect to the
height if the radius is constant.

(b) Find the rate of change of the volume with respect to the
radius if the height is constant.

The mass of part of a wire is x(l + \/}) kilograms, where x is
measured in meters from one end of the wire. Find the linear
density of the wire when x = 4 m.

The cost, in dollars, of producing x units of a certain commod-
ity is
C(x) = 920 + 2x — 0.02x* + 0.00007x*

(a) Find the marginal cost function.

(b) Find C'(100) and explain its meaning.

(c) Compare C'(100) with the cost of producing the 101st item.
The volume of a cube is increasing at a rate of 10 cm®/min.

How fast is the surface area increasing when the length of an
edge is 30 cm?



92.

93.

94,

95.

I~ 9.

97.

A paper cup has the shape of a cone with height 10 cm and
radius 3 cm (at the top). If water is poured into the cup at a rate
of 2 cm®/s, how fast is the water level rising when the water is
5 cm deep?

A balloon is rising at a constant speed of 5 ft/s. A boy is
cycling along a straight road at a speed of 15 ft/s. When he
passes under the balloon, it is 45 ft above him. How fast is the
distance between the boy and the balloon increasing 3 s later?

A waterskier skis over the ramp shown in the figure at a speed
of 30 ft/s. How fast is she rising as she leaves the ramp?

~

-

14 ft

P
| 15 ft |

The angle of elevation of the Sun is decreasing at a rate of
0.25 rad/h. How fast is the shadow cast by a 400-ft-tall build-
ing increasing when the angle of elevation of the Sun is 7/6?

(a) Find the linear approximation to f(x) = /25 — x2 near 3.

(b) Mlustrate part (a) by graphing f and the linear
approximation.

(c) For what values of x is the linear approximation accurate to
within 0.1?

(a) Find the linearization of f(x) = /1 + 3x at a = 0. State
the corresponding linear approximation and use it to give
an approximate value for v/1.03.

A

98.
99.

100-

100.

102.

103.

104,

105.

106.

(b) Determine the values of x for which the linear approxima-
tion given in part (a) is accurate to within 0.1.

Evaluate dy if y = x* — 2x* + 1, x = 2, and dx = 0.2.

A window has the shape of a square surmounted by a semi-
circle. The base of the window is measured as having width

60 cm with a possible error in measurement of 0.1 cm. Use dif-
ferentials to estimate the maximum error possible in computing
the area of the window.

102 1 Express the limit as a derivative and evaluate.

oxT -1 . 16 +h—2
lim ———— 101. lim ——
= x—1 h—0 h
. cosBH—0.5
lim ————
o—a/3 0 — /3
V1 +tanx — /1 + sin x

Evaluate lim 3
x—0 X

Suppose f is a differentiable function such that f(g(x)) = x
and f'(x) = 1 + [f(x)]* Show that g'(x) = 1/(1 + x?).

Find f'(x) if it is known that
d
o [f2x)]=x*
X

Show that the length of the portion of any tangent line to the
astroid x** + y** = 4 cut off by the coordinate axes is
constant.
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Before you look at the example, cover up the solution and try it yourself first.

EXAMPLE 1 How many lines are tangent to both of the parabolas y = —1 — x? and
y = 1 + x*? Find the coordinates of the points at which these tangents touch the
parabolas.

SOLUTION To gain insight into this problem, it is essential to draw a diagram. So we sketch
the parabolas y = 1 + x? (which is the standard parabola y = x? shifted 1 unit upward)
and y = —1 — x? (which is obtained by reficting the first parabola about the x-axis). If
we try to draw a line tangent to both parabolas, we soon discover that there are only two
possibilities, as illustrated in Figure 1.

Let P be a point at which one of these tangents touches the upper parabola and let a
be its x-coordinate. (The choice of notation for the unknown is important. Of course we
could have used b or ¢ or x, or x; instead of a. However, it’s not advisable to use x in
place of a because that x could be confused with the variable x in the equation of the
parabola.) Then, since P lies on the parabolay = 1 + x?, its y-coordinate must be 1 + a>.
Because of the symmetry shown in Figure 1, the coordinates of the point Q where the
tangent touches the lower parabola must be (—a, —(1 + a?)).

To use the given information that the line is a tangent, we equate the slope of the line
PQ to the slope of the tangent line at P. We have

l+a>—(—1—a%* 1+a*
mpg = =

a— (—a) a

If £(x) = 1 + x?, then the slope of the tangent line at P is f'(a) = 2a. Thus, the condi-
tion that we need to use is that

1 + a?
a

= 2a

Solving this equation, we get 1 + a* = 2a* so a’> = 1 and a = * 1. Therefore, the
points are (1, 2) and (—1, —2). By symmetry, the two remaining points are (—1, 2)
and (1, —2). ]

EXAMPLE 2 For what values of ¢ does the equation In x = cx? have exactly one
solution?

SOLUTION One of the most important principles of problem solving is to draw a diagram,
even if the problem as stated doesn’t explicitly mention a geometric situation. Our pre-
sent problem can be reformulated geometrically as follows: For what values of ¢ does
the curve y = In x intersect the curve y = cx? in exactly one point?

Let’s start by graphing y = In x and y = cx? for various values of ¢. We know that,
for ¢ # 0, y = cx?is a parabola that opens upward if ¢ > 0 and downward if ¢ < 0.
Figure 2 shows the parabolas y = cx? for several positive values of c. Most of them
don’t intersect y = In x at all and one intersects twice. We have the feeling that there
must be a value of ¢ (somewhere between 0.1 and 0.3) for which the curves intersect
exactly once, as in Figure 3.

To find that particular value of ¢, we let a be the x-coordinate of the single point of
intersection. In other words, In @ = ca?, so a is the unique solution of the given equa-
tion. We see from Figure 3 that the curves just touch, so they have a common tangent



line when x = a. That means the curves y = In x and y = cx” have the same slope when
x = a. Therefore

1
— = 2ca
a

Solving the equations In a = ca” and 1/a = 2ca, we get

i 5 1 1
na=ca - =c*—=_
y 2c 2
y=Inx Thus, a = ¢"/? and
9 > _Ina e 1

a’ e 2e

For negative values of ¢ we have the situation illustrated in Figure 4: All parabolas

y = cx?* with negative values of ¢ intersect y = In x exactly once. And let’s not forget

about ¢ = 0: The curve y = 0x* = 0 is just the x-axis, which intersects y = In x exactly
FIGURE 4 once.

To summarize, the required values of ¢ are ¢ = 1/(2¢) and ¢ < 0. ]

FROBLEMS 1. Find points P and Q on the parabola y = 1 — x? so that the triangle ABC formed by the x-axis
and the tangent lines at P and Q is an equilateral triangle.

. Find the point where the curves y = x* — 3x + 4 and y = 3(x* — x) are tangent to each
other, that is, have a common tangent line. [llustrate by sketching both curves and the common
y tangent.

3. Show that sin”!(tanh x) = tan"'(sinh x).

P 4. A car is traveling at night along a highway shaped like a parabola with its vertex at the origin
x (see the figure). The car starts at a point 100 m west and 100 m north of the origin and travels
in an easterly direction. There is a statue located 100 m east and 50 m north of the origin. At
what point on the highway will the car’s headlights illuminate the statue?

n

5. Prove that

-4 4N — gn-1
FIGURE FOR PROBLEM 4 I (sin*x + cos'x) = 4" 'cos(4x + nm/2).
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X

10.

11.

12.

13.

14.

15.

16.

Find the nth derivative of the function f(x) = x"/(1 — x).

The figure shows a circle with radius 1 inscribed in the parabola y = x?. Find the center of
the circle.

If f is differentiable at a, where a > 0, evaluate the following limit in terms of f'(a):

i L)~ /(@
Xx—a \/.; - »\/a
The figure shows a rotating wheel with radius 40 cm and a connecting rod AP with length
1.2 m. The pin P slides back and forth along the x-axis as the wheel rotates counterclockwise
at a rate of 360 revolutions per minute.
(a) Find the angular velocity of the connecting rod, da/dt, in radians per second, when

0= m/3.
(b) Express the distance x = | OP | in terms of 6.
(c) Find an expression for the velocity of the pin P in terms of 6.

Tangent lines 7 and T are drawn at two points P, and P, on the parabola y = x* and they
intersect at a point P. Another tangent line 7 is drawn at a point between P; and P-; it inter-
sects 7 at Q, and T, at Q,. Show that

| PO N | PO |
| PP | | PP; |

Show that

n

dx”

(e sin bx) = r"e“* sin(bx + n6)

where a and b are positive numbers, > = a* + b?, and 6 = tan"'(b/a).
) sinx __ l

Evaluate lim

xom X — T
Let 7 and N be the tangent and normal lines to the ellipse x*/9 + y?/4 = 1 at any point P on
the ellipse in the first quadrant. Let x7 and y be the x- and y-intercepts of 7" and xy and yy be
the intercepts of N. As P moves along the ellipse in the first quadrant (but not on the axes),
what values can x7, yr, xy, and yy take on? First try to guess the answers just by looking at the
figure. Then use calculus to solve the problem and see how good your intuition is.

sin(3 + x)> — sin 9

Evaluate lim
x—0 X

(a) Use the identity for tan(x — y) (see Equation 14b in Appendix D) to show that if two lines
L, and L, intersect at an angle «, then
m,; — m
tanag =——"—
1+ mms
where m; and m;, are the slopes of L, and L, respectively.

(b) The angle between the curves C; and C, at a point of intersection P is defined to be the
angle between the tangent lines to C; and C; at P (if these tangent lines exist). Use part (a)
to find, correct to the nearest degree, the angle between each pair of curves at each point
of intersection.

(i) y=x* and y=(x —2)?
() x?—y*=3 and x*—4x+y*+3=0

Let P(x,, y1) be a point on the parabola y? = 4px with focus F(p, 0). Let a be the angle
between the parabola and the line segment FP, and let 3 be the angle between the horizontal
line y = y; and the parabola as in the figure. Prove that @ = . (Thus, by a principle of geo-
metrical optics, light from a source placed at F' will be reflected along a line parallel to the
x-axis. This explains why paraboloids, the surfaces obtained by rotating parabolas about their
axes, are used as the shape of some automobile headlights and mirrors for telescopes.)



FIGURE FOR PROBLEM 17 19
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24,
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26.
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28.

29.

17.

18.

. Evaluate lim

Suppose that we replace the parabolic mirror of Problem 16 by a spherical mirror. Although
the mirror has no focus, we can show the existence of an approximate focus. In the figure,
C is a semicircle with center O. A ray of light coming in toward the mirror parallel to the
axis along the line PQ will be reflected to the point R on the axis so that ZPQO = LOQR
(the angle of incidence is equal to the angle of reflection). What happens to the point R as P
is taken closer and closer to the axis?

If f and g are differentiable functions with f(0) = g(0) = 0 and g'(0) # 0, show that
i fx) _ f10)
im =
=0 g(x)  g¢'(0)

sin(a + 2x) — 2 sin(a + x) + sina
5 .

x—0 X

(a) The cubic function f(x) = x(x — 2)(x — 6) has three distinct zeros: 0, 2, and 6. Graph f
and its tangent lines at the average of each pair of zeros. What do you notice?

(b) Suppose the cubic function f(x) = (x — a)(x — b)(x — ¢) has three distinct zeros: a, b,
and c. Prove, with the help of a computer algebra system, that a tangent line drawn at the
average of the zeros a and b intersects the graph of f at the third zero.

2x —

For what value of k does the equation e k+/x have exactly one solution?

For which positive numbers « is it true that a* = 1 + x for all x?

If
X 2 . sin x
= - arctan
Y Var—1 Ja>—1 a++a?>—1+ cosx
show that y’ = ———.
a + cos x
Given an ellipse x*/a® + y*/b* = 1, where a # b, find the equation of the set of all points

from which there are two tangents to the curve whose slopes are (a) reciprocals and
(b) negative reciprocals.

Find the two points on the curve y = x* — 2x? — x that have a common tangent line.

Suppose that three points on the parabola y = x> have the property that their normal lines
intersect at a common point. Show that the sum of their x-coordinates is 0.

A lattice point in the plane is a point with integer coordinates. Suppose that circles with
radius r are drawn using all lattice points as centers. Find the smallest value of r such that any
line with slope 2 intersects some of these circles.

A cone of radius r centimeters and height / centimeters is lowered point first at a rate of
1 cm/s into a tall cylinder of radius R centimeters that is partially filled with water. How fast
is the water level rising at the instant the cone is completely submerged?

A container in the shape of an inverted cone has height 16 cm and radius 5 cm at the top. It
is partially filled with a liquid that oozes through the sides at a rate proportional to the area
of the container that is in contact with the liquid. (The surface area of a cone is 7rl, where
r is the radius and / is the slant height.) If we pour the liquid into the container at a rate of

2 cm¥min, then the height of the liquid decreases at a rate of 0.3 cm/min when the height is
10 cm. If our goal is to keep the liquid at a constant height of 10 cm, at what rate should we
pour the liquid into the container?



Scientists have tried to
explain how rainbows are
formed since the time of
Aristotle. In the project on
page 288, you will be able
to use the principles of
differential calculus to
explain the formation,
location, and colors of

the rainbow.

Applicafions of Differenfiation




We have already investigated some of the applications of
derivatives, but now that we know the differentiation rules
we are in a better position to pursue the applications of dif-
ferentiation in greater depth. Here we learn how derivatives
affect the shape of a graph of a function and, in particu-
lar, how they help us locate maximum and minimum values of functions. Many prac-
tical problems require us to minimize a cost or maximize an area or somehow find
the best possible outcome of a situation. In particular, we will be able to investigate

the optimal shape of a can and to explain the location of rainbows in the sky.

1| 4.1 Maximum and Minimum Values

Some of the most important applications of differential calculus are optimization prob-
lems, in which we are required to find the optimal (best) way of doing something. Here are
examples of such problems that we will solve in this chapter:

= What is the shape of a can that minimizes manufacturing costs?

© What is the maximum acceleration of a space shuttle? (This is an important
question to the astronauts who have to withstand the effects of acceleration.)

- What is the radius of a contracted windpipe that expels air most rapidly during
a cough?

= At what angle should blood vessels branch so as to minimize the energy expended
by the heart in pumping blood?

These problems can be reduced to finding the maximum or minimum values of a function.
Let’s first explain exactly what we mean by maximum and minimum values.

[T] Definition A function f has an absolute maximum (or global maximum) at ¢
if f(c) = f(x) for all x in D, where D is the domain of f. The number f(c) is called
the maximum value of f on D. Similarly, f has an absolute minimum at c if
f(c) < f(x) for all x in D and the number f(c) is called the minimum value of f
on D. The maximum and minimum values of f are called the extreme values of f.

Figure 1 shows the graph of a function f with absolute maximum at d and absolute
minimum at a. Note that (d, f(d)) is the highest point on the graph and (a, f(a)) is the low-

est point.
y
|
FIGURE 1 flan
Minimum value f(a), a O x
maximum value f(d)




FIGURE 2

Minimum value 0, no maximum

FIGURE 3

No minimum, no maximum

FIGURE 4

In Figure 1, if we consider only values of x near b [for instance, if we restrict our atten-
tion to the interval (a, )], then f(b) is the largest of those values of f(x) and is called a
local maximum value of f. Likewise, f(c) is called a local minimum value of f because
f(c) < f(x) for x near c [in the interval (b, d), for instance]. The function f also has a local
minimum at e. In general, we have the following definition.

[2] Definition A function f has a local maximum (or relative maximum) at c if
f(c) = f(x) when x is near c¢. [This means that f(c) = f(x) for all x in some open
interval containing c.] Similarly, f has a local minimum at ¢ if f(c) < f(x) when
X is near c.

EXAMPLE 1 The function f(x) = cos x takes on its (local and absolute) maximum value
of 1 infinitely many times, since cos 2n7r = 1 for any integer n and —1 < cos x < 1 for
all x. Likewise, cos(2n + 1) = —1 is its minimum value, where n is any integer. L

EXAMPLE 2 If f(x) = x? then f(x) = £(0) because x> = 0 for all x. Therefore, £(0) = 0
is the absolute (and local) minimum value of f. This corresponds to the fact that the
origin is the lowest point on the parabola y = x2. (See Figure 2.) However, there is no
highest point on the parabola and so this function has no maximum value. ]

EXAMPLE 3 From the graph of the function f(x) = x*, shown in Figure 3, we see that this
function has neither an absolute maximum value nor an absolute minimum value. In fact,
it has no local extreme values either. ]

EXAMPLE 4 The graph of the function
f(x) = 3x* — 16x* + 18x? —-1<x<4

is shown in Figure 4. You can see that f(1) = 5 is a local maximum, whereas the
absolute maximum is f(—1) = 37. (This absolute maximum is not a local maximum
because it occurs at an endpoint.) Also, f(0) = 0 is a local minimum and f(3) = —27
is both a local and an absolute minimum. Note that f has neither a local nor an absolute
maximum at x = 4.

(=1,37) y=3x*—16x>+ 18x2

(3,—27)

We have seen that some functions have extreme values, whereas others do not. The
following theorem gives conditions under which a function is guaranteed to possess
extreme values.



[3] The Extreme Valve Theorem If f is continuous on a closed interval [a, b], then f
attains an absolute maximum value f(c) and an absolute minimum value f(d) at
some numbers ¢ and d in [a, b].

The Extreme Value Theorem is illustrated in Figure 5. Note that an extreme value can
be taken on more than once. Although the Extreme Value Theorem is intuitively very plau-
sible, it is difficult to prove and so we omit the proof.
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Figures 6 and 7 show that a function need not possess extreme values if either hypoth-
esis (continuity or closed interval) is omitted from the Extreme Value Theorem.
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FIGURE 6 FIGURE 7
This function has minimum value This continuous function g has
f(2) =0, but no maximum value. Nno maximum or minimum.

The function f whose graph is shown in Figure 6 is defined on the closed interval [0, 2]
but has no maximum value. (Notice that the range of f is [0, 3). The function takes on val-
ues arbitrarily close to 3, but never actually attains the value 3.) This does not contradict
the Extreme Value Theorem because f is not continuous. [Nonetheless, a discontinuous
function could have maximum and minimum values. See Exercise 13(b).]

The function g shown in Figure 7 is continuous on the open interval (0, 2) but has nei-
ther a maximum nor a minimum value. [The range of g is (1, «). The function takes on
arbitrarily large values.] This does not contradict the Extreme Value Theorem because the
interval (0, 2) is not closed.

The Extreme Value Theorem says that a continuous function on a closed interval has a
maximum value and a minimum value, but it does not tell us how to find these extreme
values. We start by looking for local extreme values.

d £(d)) Figure 8 shows the graph of a function f with a local maximum at ¢ and a local minimum
at d. It appears that at the maximum and minimum points the tangent lines are horizontal
and therefore each has slope 0. We know that the derivative is the slope of the tangent line,
so it appears that f'(c) = 0 and f'(d) = 0. The following theorem says that this is always
FIGURE 8 true for differentiable functions.
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[IIl Fermat's Theorem is named after Pierre
Fermat (1601-1665), a French lawyer who took
up mathematics as a hobby. Despite his amateur
status, Fermat was one of the two inventors of
analytic geometry (Descartes was the other). His

methods for finding tangents to curves and maxi-

mum and minimum values (before the invention
of limits and derivatives) made him a forerunner

of Newton in the creation of differential calculus.

FIGURE 9
If f(x)=x3, then f'(0) =0 but f
has no maximum or minimum.

[4] Fermat’s Theorem If f has a local maximum or minimum at ¢, and if f'(c)
exists, then f(c) = 0.

Proof Suppose, for the sake of definiteness, that f has a local maximum at ¢. Then,
according to Definition 2, f(c) = f(x) if x is sufficiently close to c. This implies that if
h is sufficiently close to 0, with & being positive or negative, then

fle)=flc+ h)
and therefore
H fle+h —fle)<0

We can divide both sides of an inequality by a positive number. Thus, if # > 0 and / is
sufficiently small, we have

fle+m =1 _,
h

Taking the right-hand limit of both sides of this inequality (using Theorem 2.3.2), we get

Hmlgiﬂ;ﬂQ$HmO=O

h—0F h h—0*
But since f'(c) exists, we have

fleth) —flo) . fleth) = [
h 1m

h—0* h

f'(e) = lim

and so we have shown that f'(c) < 0.
If 1 < 0, then the direction of the inequality (5) is reversed when we divide by h:

fletm =@ _
h

h <0

So, taking the left-hand limit, we have

fle+h) —fle) . fle+h) = flo) _
h - h -

f'(e) = lim 0
We have shown that f'(c) = 0 and also that f'(c) < 0. Since both of these inequalities
must be true, the only possibility is that f'(c) = 0.

We have proved Fermat’s Theorem for the case of a local maximum. The case of a
local minimum can be proved in a similar manner, or we could use Exercise 76 to
deduce it from the case we have just proved (see Exercise 77). 1

The following examples caution us against reading too much into Fermat’s Theorem.
We can’t expect to locate extreme values simply by setting f'(x) = 0 and solving for x.

EXAMPLE 5 If f(x) = x°, then f'(x) = 3x2 so f'(0) = 0. But f has no maximum or mini-
mum at 0, as you can see from its graph in Figure 9. (Or observe that x* > 0 for x > 0
but x* < 0 for x < 0.) The fact that f'(0) = 0 simply means that the curve y = x° has a



y
y=1x|
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FIGURE 10

If f(x)=|x|, then f(0)=0isa
minimum value, but f'(0) does not exist.

[IIl Figure 11 shows a graph of the function f
in Example 7. It supports our answer because
there is a horizontal tangent when x = 1.5 and
a vertical tangent when x = 0.

3.5

—0.5 5

-2

FIGURE 11

horizontal tangent at (0, 0). Instead of having a maximum or minimum at (0, 0), the
curve crosses its horizontal tangent there. ]

EXAMPLE 6 The function f(x) = | x| has its (local and absolute) minimum value at 0, but
that value can’t be found by setting f'(x) = 0 because, as was shown in Example 6 in
Section 2.9, f'(0) does not exist. (See Figure 10.) ]

WARNING = Examples 5 and 6 show that we must be careful when using Fermat’s
Theorem. Example 5 demonstrates that even when f'(¢) = 0 there need not be a maximum
or minimum at ¢. (In other words, the converse of Fermat’s Theorem is false in general.)
Furthermore, there may be an extreme value even when f'(c) does not exist (as in
Example 6).

Fermat’s Theorem does suggest that we should at least starf looking for extreme values
of f at the numbers ¢ where f'(c) = 0 or where f'(c) does not exist. Such numbers are
given a special name.

[6] Definition A critical number of a function f is a number ¢ in the domain of f
such that either f'(c) = 0 or f'(c) does not exist.

EXAMPLE 7 Find the critical numbers of f(x) = x*°(4 — x).
SOLUTION The Product Rule gives

3(4 — x)
5x25

1) = 30 = x) + (1) = s

_3(4—x) —5x 12 —8x
N 5x2/ T 5y

[The same result could be obtained by first writing f(x) = 4x*° — x%°.] Therefore,
f'(x) = 0if 12 — 8x = 0, that is, x = 3, and f’(x) does not exist when x = 0. Thus, the
critical numbers are % and 0. [

In terms of critical numbers, Fermat’s Theorem can be rephrased as follows (compare
Definition 6 with Theorem 4):

If f has a local maximum or minimum at ¢, then c is a critical number of f.

To find an absolute maximum or minimum of a continuous function on a closed interval,
we note that either it is local [in which case it occurs at a critical number by (7)] or it occurs
at an endpoint of the interval. Thus, the following three-step procedure always works.

The Closed Interval Method To find the absolute maximum and minimum values of a
continuous function f on a closed interval [a, b]:

1. Find the values of f at the critical numbers of f in (a, b).
2. Find the values of f at the endpoints of the interval.

3. The largest of the values from Steps 1 and 2 is the absolute maximum value;
the smallest of these values is the absolute minimum value.
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y=x*-3x*+1
(4,17)

FIGURE 12

‘27r

FIGURE 13

EXAMPLE 8 Find the absolute maximum and minimum values of the function
fx)=x—3x*+1 —<x<4
SOLUTION Since f is continuous on [—%, 4], we can use the Closed Interval Method:
fx)=x—3x*+1
f'(x) = 3x* — 6x = 3x(x — 2)

Since f'(x) exists for all x, the only critical numbers of f occur when f'(x) = 0, that is,
x = 0 or x = 2. Notice that each of these critical numbers lies in the interval (—%, 4).
The values of f at these critical numbers are

f0)=1 f2)=-3

The values of f at the endpoints of the interval are
f(=3) =5 f@ =17

Comparing these four numbers, we see that the absolute maximum value is f(4) = 17
and the absolute minimum value is f(2) = —3.

Note that in this example the absolute maximum occurs at an endpoint, whereas the
absolute minimum occurs at a critical number. The graph of f is sketched in Figure 12.

If you have a graphing calculator or a computer with graphing software, it is possible
to estimate maximum and minimum values very easily. But, as the next example shows,
calculus is needed to find the exact values.

EXAMPLE 9

(a) Use a graphing device to estimate the absolute minimum and maximum values of
the function f(x) = x — 2sinx, 0 < x < 2.

(b) Use calculus to find the exact minimum and maximum values.

SOLUTION

(a) Figure 13 shows a graph of f in the viewing rectangle [0, 277] by [—1, 8]. By mov-
ing the cursor close to the maximum point, we see that the y-coordinates don’t change
very much in the vicinity of the maximum. The absolute maximum value is about 6.97
and it occurs when x = 5.2. Similarly, by moving the cursor close to the minimum point,
we see that the absolute minimum value is about —0.68 and it occurs when x = 1.0. It is
possible to get more accurate estimates by zooming in toward the maximum and mini-
mum points, but instead let’s use calculus.

(b) The function f(x) = x — 2 sin xis continuous on [0, 27]. Since f'(x) = 1 — 2 cos x,
we have f'(x) = 0 when cos x = % and this occurs when x = 77/3 or 577/3. The values
of f at these critical points are

f(/3) = % —2 sin% = % — /3= —0.684853

5 57 5
and f(57/3) = Tﬂ -2 sinT” - TW + /3 = 6.968039



The values of f at the endpoints are
f(0)=0 and fQm) =27 =628

Comparing these four numbers and using the Closed Interval Method, we see that the
absolute minimum value is f(/3) = 7/3 — /3 and the absolute maximum value is
f(57/3) = 57/3 + /3. The values from part (a) serve as a check on our work. ]

EXAMPLE 10 The Hubble Space Telescope was deployed on April 24, 1990, by the space
shuttle Discovery. A model for the velocity of the shuttle during this mission, from liftoff
at r = 0 until the solid rocket boosters were jettisoned at r = 126 s, is given by

() = 0.001302#* — 0.090297* + 23.61¢ — 3.083

(in feet per second). Using this model, estimate the absolute maximum and minimum
values of the acceleration of the shuttle between liftoff and the jettisoning of the boosters.

SOLUTION We are asked for the extreme values not of the given velocity function, but
rather of the acceleration function. So we first need to differentiate to find the acceleration:

d
alt) = () = - (0.001302¢ = 0.09029¢" + 23.617 — 3.083)

= 0.003906¢> — 0.18058¢ + 23.61

We now apply the Closed Interval Method to the continuous function a on the interval
0 =<t = 126. Its derivative is

a'(r) = 0.007812¢ — 0.18058

The only critical number occurs when a'(f) = 0:

0.18058

=————-= 2312
0.007812

h

Evaluating a(r) at the critical number and at the endpoints, we have
a(0) = 23.61 a(n) = 21.52 a(126) = 62.87

So the maximum acceleration is about 62.87 ft/s* and the minimum acceleration is
about 21.52 ft/s% ]

4.1 Exercises

1. Explain the difference between an absolute minimum and a (a) What theorem guarantees the existence of an absolute max-
local minimum. imum value and an absolute minimum value for f?
2. Suppose f is a continuous function defined on a closed (b) What steps would you take to find those maximum and

interval [a, b]. minimum values?



3-4 1 For each of the numbers a, b, ¢, d, e, r, s, and ¢, state
whether the function whose graph is shown has an absolute maxi-
mum or minimum, a local maximum or minimum, or neither a
maximum nor a minimum.

3. y

0 X
4. y

0 X

o o o o o o o o o o o o

5-6 1 Use the graph to state the absolute and local maximum and
minimum values of the function.

5. ;
y=7f)

7-10 1 Sketch the graph of a function f that is continuous on
[1, 5] and has the given properties.

7. Absolute minimum at 2, absolute maximum at 3,
local minimum at 4

8. Absolute minimum at 1, absolute maximum at 5,
local maximum at 2, local minimum at 4

. Absolute maximum at 5, absolute minimum at 2,

local maximum at 3, local minima at 2 and 4

. f has no local maximum or minimum, but 2 and 4 are critical

numbers

o o o o

. (a) Sketch the graph of a function that has a local maximum

at 2 and is differentiable at 2.

(b) Sketch the graph of a function that has a local maximum
at 2 and is continuous but not differentiable at 2.

(c) Sketch the graph of a function that has a local maximum
at 2 and is not continuous at 2.

. (a) Sketch the graph of a function on [—1, 2] that has an

absolute maximum but no local maximum.
(b) Sketch the graph of a function on [—1, 2] that has a local
maximum but no absolute maximum.

. (a) Sketch the graph of a function on [—1, 2] that has an

absolute maximum but no absolute minimum.

(b) Sketch the graph of a function on [—1, 2] that is discontin-
uous but has both an absolute maximum and an absolute
minimum.

. (a) Sketch the graph of a function that has two local maxima,

one local minimum, and no absolute minimum.
(b) Sketch the graph of a function that has three local minima,
two local maxima, and seven critical numbers.

15-30 1 Sketch the graph of f by hand and use your sketch to
find the absolute and local maximum and minimum values of f.
(Use the graphs and transformations of Sections 1.2 and 1.3.)

15.
16.
17.
18.
19.
20.
21.
22
23.
24,
25.
26.
27.
28.

29.

30.

fx)=8—-3x, x=1
f(x) =3 —-2x, x<5
fx)=x% 0<x<2
fx)=x% 0<x=<2
fx)=x% 0sx<2
fx)=x% 0sx<2
flx)=x% -3=sx<2

f)=1+x+1% -2=<x<5

f=1/t 0<r<l1
fy=1/t 0<r=<l1
f() =sinh, —27w<0<27w
f(0) =tan 0, —7w/4<0<m/2
f)=1-x
flx) =e”

1-x if0osx<2
ﬂ@_{n—4 if2<x<3
f(x)={; if —1<x<0

—x? if0sx=<1



1 64.

31-46 11 Find the critical numbers of the function.
3. f(x) = 5x% + 4x 32.
33, f(x) = x° + 3x% — 24x 34.

f)=x3+x*—x

f)=x*+x*+x

3. 5() = 36 + 46 — 617 36, f(z) = %
37. 9(0) = |2x + 3| 38 glx) =x"?—x?"
39. g(t) = 5¢%° + 1°7 80. g(t) = i (1 — 1)
41. F(x) = x*(x — 4)? 42. G(x) = Jx* — x
43. f(0) = 2cos O + sin*0 44. g(0) = 460 — tan 0
45, f(x) = xInx 46. f(x) = xe™

47-62 1 Find the absolute maximum and absolute minimum
values of f on the given interval.

47. f(x) =3x* — 12x + 5, [0,3]
48. f(x)=x>—3x+1, [0,3]
49. f(x) =2x*—3x*—12x + 1, [-2,3]
50. f(x) =x°—6x2+9x+2, [—1,4]
51, f(x) =x* —2x2 + 3, [—-2,3]
52. f(x) = (x* = 1), [—1,2]
x

53. f(x) = e [0, 2]

x*—4
54. f(x) = i [—4, 4]
55. f(1) =14 =12, [-1,2]
56. (1) =/t(8 — 1), [0,8]
57. f(x) =sinx + cosx, [0, 7/3]
58. f(x) =x —2cosx, [~ 7]
59. f(x) = xe*, [0,2]
60. f(x) = (Inx)/x, [1,3]
6l. f(x) =x —3Inx, [1,4]
62. f(x) =e*—e ™, [0,1]

o o o o o o o o o o o

63. If a and b are positive numbers, find the maximum value of
f(x)=x(01—-x"0<x<1.

Use a graph to estimate the critical numbers of
f(x) = |x* = 3x* + 2] correct to one decimal place.

9 65-68 i

(a) Use a graph to estimate the absolute maximum and minimum
values of the function to two decimal places.

(b) Use calculus to find the exact maximum and minimum values.

—3=x=3

65. f(x) =x*—8x+ 1,
66. f(x) = e*g"", —-1<sx<0

67.
68.

09.

70.

1.

72.

f(x) = xy/x — x?

f(x) = (cos x)/(2 + sin x),

o o o o o o o o o o o

0=x=<27

Between 0°C and 30°C, the volume V (in cubic centimeters) of
1 kg of water at a temperature 7 is given approximately by the
formula

V = 999.87 — 0.06426T + 0.00850437* — 0.00006797T *

Find the temperature at which water has its maximum density.

An object with weight W is dragged along a horizontal plane
by a force acting along a rope attached to the object. If the rope
makes an angle 6 with the plane, then the magnitude of the
force is

_ W
sin 6 + cos 6

where u is a positive constant called the coefficient of friction
and where 0 < 6 < 7/2. Show that F is minimized when
tan 0 = .

A model for the food-price index (the price of a representative
“basket” of foods) between 1984 and 1994 is given by the
function

I(¢) = 0.00009045¢° + 0.001438¢* — 0.06561¢°
+ 0.45981* — 0.6270¢ + 99.33

where ¢ is measured in years since midyear 1984, so

0 < < 10, and () is measured in 1987 dollars and scaled
such that 7(3) = 100. Estimate the times when food was
cheapest and most expensive during the period 1984-1994.

On May 7, 1992, the space shuttle Endeavour was launched
on mission STS-49, the purpose of which was to install a new
perigee kick motor in an Intelsat communications satellite. The
table gives the velocity data for the shuttle between liftoff and
the jettisoning of the solid rocket boosters.

Event Time (s) Velocity (ft/s)
Launch 0 0
Begin roll maneuver 10 185
End roll maneuver 15 319
Throttle to 89% 20 447
Throttle to 67% 32 742
Throttle to 104% 59 1325
Maximum dynamic pressure 62 1445
Solid rocket booster separation 125 4151

(a) Use a graphing calculator or computer to find the cubic
polynomial that best models the velocity of the shuttle for
the time interval 7 € [0, 125]. Then graph this polynomial.

(b) Find a model for the acceleration of the shuttle and use it to
estimate the maximum and minimum values of the acceler-
ation during the first 125 seconds.



73. When a foreign object lodged in the trachea (windpipe) forces
a person to cough, the diaphragm thrusts upward causing an
increase in pressure in the lungs. This is accompanied by a
contraction of the trachea, making a narrower channel for the
expelled air to flow through. For a given amount of air to
escape in a fixed time, it must move faster through the nar-
rower channel than the wider one. The greater the velocity
of the airstream, the greater the force on the foreign object.
X rays show that the radius of the circular tracheal tube
contracts to about two-thirds of its normal radius during a
cough. According to a mathematical model of coughing, the
velocity v of the airstream is related to the radius r of the
trachea by the equation

o(r) = k(ry — r)r? Inh<r<r

where k is a constant and r, is the normal radius of the trachea.

The restriction on r is due to the fact that the tracheal wall

stiffens under pressure and a contraction greater than 37 is

prevented (otherwise the person would suffocate).

(a) Determine the value of r in the interval [%ro, ro] at which »
has an absolute maximum. How does this compare with
experimental evidence?

APPLIED PROJECT

74.

75.

76.

7.

78.

(b) What is the absolute maximum value of v on the interval?
(c) Sketch the graph of v on the interval [0, r,].

Show that 5 is a critical number of the function
gx) =2+ (x — 5)°
but g does not have a local extreme value at 5.
Prove that the function
fx)=x""+x" +x+1
has neither a local maximum nor a local minimum.

If f has a minimum value at ¢, show that the function
g(x) = —f(x) has a maximum value at c.

Prove Fermat’s Theorem for the case in which f has a local
minimum at c.

A cubic function is a polynomial of degree 3; that is, it has the

form f(x) = ax® + bx* + cx + d, where a # 0.

(a) Show that a cubic function can have two, one, or no critical
number(s). Give examples and sketches to illustrate the
three possibilities.

(b) How many local extreme values can a cubic function have?

The Calculus of Rainbows

Rainbows are created when raindrops scatter sunlight. They have fascinated mankind since
ancient times and have inspired attempts at scientific explanation since the time of Aristotle. In
this project we use the ideas of Descartes and Newton to explain the shape, location, and colors

of rainbows.

1. The figure shows a ray of sunlight entering a spherical raindrop at A. Some of the light is

observer

Formation of the primary rainbow

reflected, but the line AB shows the path of the part that enters the drop. Notice that the light
is refracted toward the normal line AO and in fact Snell’s Law says that sin & = k sin f3,
where « is the angle of incidence, 3 is the angle of refraction, and k = § is the index of
refraction for water. At B some of the light passes through the drop and is refracted into the
air, but the line BC shows the part that is reflected. (The angle of incidence equals the angle
of reflection.) When the ray reaches C, part of it is reflected, but for the time being we are
more interested in the part that leaves the raindrop at C. (Notice that it is refracted away
from the normal line.) The angle of deviation D(e) is the amount of clockwise rotation that
the ray has undergone during this three-stage process. Thus

D@)=(a—B) + (7—2B) + (a— p)=m+ 2a — 48

Show that the minimum value of the deviation is D(«) = 138° and occurs when o = 59.4°.
The significance of the minimum deviation is that when a = 59.4° we have D'(a) = 0, so

AD/Aa = 0. This means that many rays with a = 59.4° become deviated by approximately

the same amount. It is the concentration of rays coming from near the direction of minimum



deviation that creates the brightness of the primary rainbow. The following figure shows
that the angle of elevation from the observer up to the highest point on the rainbow is
180° — 138° = 42°. (This angle is called the rainbow angle.)

rays from Sun

rays from Sun

/\ [
~
~

observer 4

2. Problem 1 explains the location of the primary rainbow, but how do we explain the colors?
Sunlight comprises a range of wavelengths, from the red range through orange, yellow,
green, blue, indigo, and violet. As Newton discovered in his prism experiments of 1666, the
index of refraction is different for each color. (The effect is called dispersion.) For red light
the refractive index is k = 1.3318 whereas for violet light it is kK = 1.3435. By repeating the
calculation of Problem 1 for these values of k, show that the rainbow angle is about 42.3° for
the red bow and 40.6° for the violet bow. So the rainbow really consists of seven individual
bows corresponding to the seven colors.

C 3. Perhaps you have seen a fainter secondary rainbow above the primary bow. That results from
the part of a ray that enters a raindrop and is refracted at A, reflected twice (at B and C), and
refracted as it leaves the drop at D (see the figure). This time the deviation angle D(«) is the

total amount of counterclockwise rotation that the ray undergoes in this four-stage process.

to Show that
observer D(a) =20 — 6B + 277
and D(«) has a minimum value when
from B
Sun p k2 — 1
/ =
A cos a .
EomnAHORORE e enca bR Taking k = %, show that the minimum deviation is about 129° and so the rainbow angle for

the secondary rainbow is about 51°, as shown in the figure.

4. Show that the colors in the secondary rainbow appear in the opposite order from those in the
primary rainbow.



4.2 The Mean Valve Theorem

[l Rolle’s Theorem was first published in

1691 by the French mathematician Michel Rolle
(1652—1719) in a book entitled Méthode pour
résoudre les égalitéz. Later, however, he became
a vocal critic of the methods of his day and
attacked calculus as being a ¢ollection of
ingenious fallacies.”

We will see that many of the results of this chapter depend on one central fact, which is
called the Mean Value Theorem. But to arrive at the Mean Value Theorem we first need the
following result.

Rolle’s Theorem Let f be a function that satisfies the following three hypotheses:
1. f is continuous on the closed interval [a, b].

2. f is differentiable on the open interval (a, b).

3. fla) =f(b)

Then there is a number ¢ in (a, b) such that f'(c) = 0.

Before giving the proof let’s take a look at the graphs of some typical functions that sat-
isfy the three hypotheses. Figure 1 shows the graphs of four such functions. In each case
it appears that there is at least one point (c, f(c)) on the graph where the tangent is hori-
zontal and therefore f'(c) = 0. Thus, Rolle’s Theorem is plausible.

y y y
/ | \ |
| |
| | | |
| | | | ,
| L, . I | —1 L . I |
0l a ¢ o b X a ¢ b x 0 a ¢ ¢ b X 0l a ¢ b x
(2) (b) (©) (d
FIGURE 1
Take cases Proof There are three cases:

(ASE| = f(x) =k, a constant
Then f'(x) = 0, so the number ¢ can be taken to be any number in (a, b).

CASETl = f(x) > f(a) for some x in (a, b) [as in Figure 1(b) or (¢)]

By the Extreme Value Theorem (which we can apply by hypothesis 1), f has a maxi-
mum value somewhere in [a, b]. Since f(a) = f(b), it must attain this maximum value at
a number c¢ in the open interval (a, b). Then f has a local maximum at ¢ and, by hypoth-
esis 2, f is differentiable at c. Therefore, f'(c) = 0 by Fermat’s Theorem.

CASENIl = f(x) < f(a) for some x in (a, b) [as in Figure 1(c) or (d)]
By the Extreme Value Theorem, f has a minimum value in [a, 5] and, since f(a) = f(b), it
attains this minimum value at a number ¢ in (a, b). Again f'(c) = 0 by Fermat’s Theorem.

EXAMPLE 1 Let’s apply Rolle’s Theorem to the position function s = f(z) of a moving
object. If the object is in the same place at two different instants t = a and ¢t = b, then
f(a) = f(b). Rolle’s Theorem says that there is some instant of time ¢ = ¢ between a and
b when f'(c) = 0; that is, the velocity is 0. (In particular, you can see that this is true
when a ball is thrown directly upward.) ]



[IIl" Figure 2 shows a graph of the function

f(x) = x* + x — 1discussed in Example 2.
Rolle’s Theorem shows that, no matter how much
we enlarge the viewing rectangle, we can never
find a second x-intercept.

3

FIGURE 2

[IIl' The Mean Value Theorem is an example of
what is called an existence theorem. Like the
Intermediate Value Theorem, the Extreme Value
Theorem, and Rolle’s Theorem, it guarantees that
there exists a number with a certain property,
but it doesn't tell us how to find the number.

EXAMPLE 2 Prove that the equation x*> + x — 1 = 0 has exactly one real root.

SOLUTION First we use the Intermediate Value Theorem (2.5.10) to show that a root exists.
Let f(x) = x* + x — 1. Then f(0) = —1 < 0 and f(1) = 1 > 0. Since f is a polyno-
mial, it is continuous, so the Intermediate Value Theorem states that there is a number ¢
between 0 and 1 such that f(c¢) = 0. Thus, the given equation has a root.

To show that the equation has no other real root, we use Rolle’s Theorem and argue by
contradiction. Suppose that it had two roots @ and b. Then f(a) = 0 = f(b) and, since f
is a polynomial, it is differentiable on (a, ) and continuous on [a, b]. Thus, by Rolle’s
Theorem, there is a number ¢ between a and b such that f'(c) = 0. But

fx)=3x"+1=1 for all x

(since x* = 0) so f'(x) can never be 0. This gives a contradiction. Therefore, the equa-
tion can’t have two real roots. -

Our main use of Rolle’s Theorem is in proving the following important theorem, which
was first stated by another French mathematician, Joseph-Louis Lagrange.

The Mean Value Theorem Let f be a function that satisfies the following hypotheses:

1. f is continuous on the closed interval [a, b].

2. f is differentiable on the open interval (a, b).

Then there is a number ¢ in (a, b) such that

m o = 101
a

or, equivalently,

[2] f) = fla) = b - a)

Before proving this theorem, we can see that it is reasonable by interpreting it geomet-
rically. Figures 3 and 4 show the points A(a, f(a)) and B(b, (b)) on the graphs of two dif-
ferentiable functions. The slope of the secant line AB is

(b) — fla)
3 g = L)~ S@
b—a
y y
X P, B
A A : IPZ
| |
| |
| |
| I I |
0 0l a o I b X
FIGURE 3 FIGURE 4



FIGURE 5

[IIl' The Mean Value Theorem was first formu-
lated by Joseph-Louis Lagrange (1736-1813),
born in Italy of a French father and an Italian
mother. He was a child prodigy and became a
professor in Turin at the tender age of 19.
Lagrange made great contributions to number
theory, theory of functions, theory of equations,

and analytical and celestial mechanics. In partic-

ular, he applied calculus to the analysis of the
stability of the solar system. At the invitation of
Frederick the Great, he succeeded Euler at the
Berlin Academy and, when Frederick died,
Lagrange accepted King Louis XVI's invitation to
Paris, where he was given apartments in the
Louvre. Despite all the trappings of luxury and
fame, he was a kind and quiet man, living only
for science.

which is the same expression as on the right side of Equation 1. Since f”(c) is the slope of
the tangent line at the point (c, f(c)), the Mean Value Theorem, in the form given by
Equation 1, says that there is at least one point P(c, f(c)) on the graph where the slope of
the tangent line is the same as the slope of the secant line AB. In other words, there is a
point P where the tangent line is parallel to the secant line AB.

Proof We apply Rolle’s Theorem to a new function & defined as the difference between
f and the function whose graph is the secant line AB. Using Equation 3, we see that the
equation of the line AB can be written as

y -l = L0 (g
a
or as y=f(a)+M(x—a)
b—a
So, as shown in Figure 5,
@ o) = 1) — fla) — LU LD (g

First we must verify that £ satisfies the three hypotheses of Rolle’s Theorem.
1. The function % is continuous on [a, b] because it is the sum of f and a first-degree
polynomial, both of which are continuous.

2. The function 4 is differentiable on (a, b) because both f and the first-degree poly-
nomial are differentiable. In fact, we can compute &' directly from Equation 4:

f) — fla)

R

(Note that f(a) and [ f(b) — f(a)]/(b — a) are constants.)

3 ) = £la) — fl@) — LU LD (g — gy =
a
i) = 1) — fia) — LE=LD

=f) = fla) = [f(b) = fl@] =0

Therefore, h(a) = h(b).

Since h satisfies the hypotheses of Rolle’s Theorem, that theorem says there is a num-
ber c in (a, b) such that 4'(c) = 0. Therefore

0= hie) = fi0) - LE=LD
and so £10) = M
b—a L

EXAMPLE 3 To illustrate the Mean Value Theorem with a specific function, let’s consider
f(x) = x* — x,a =0,b = 2. Since f is a polynomial, it is continuous and differentiable



y y=x3— x
B
O n
¢ 2
FIGURE 6

for all x, so it is certainly continuous on [0, 2] and differentiable on (0, 2). Therefore, by
the Mean Value Theorem, there is a number c in (0, 2) such that

f@2) = f(0) = f(e)2 = 0)
Now f(2) = 6, f(0) = 0, and f'(x) = 3x* — 1, so this equation becomes
6=0Bc>—1)2=06c2-2

which gives ¢? = 3, that is, ¢ = +2//3. But ¢ must lie in (0, 2), so ¢ = 2//3.
Figure 6 illustrates this calculation: The tangent line at this value of c is parallel to the
secant line OB. ]

EXAMPLE 4 If an object moves in a straight line with position function s = f (), then the
average velocity between t = a and t = b is

fb) — fla)
b—a

and the velocity at t = c is f(c). Thus, the Mean Value Theorem (in the form of Equa-
tion 1) tells us that at some time ¢ = ¢ between a and b the instantaneous velocity f'(c)
is equal to that average velocity. For instance, if a car traveled 180 km in 2 hours, then
the speedometer must have read 90 km/h at least once.

In general, the Mean Value Theorem can be interpreted as saying that there is a num-
ber at which the instantaneous rate of change is equal to the average rate of change over
an interval. 1

The main significance of the Mean Value Theorem is that it enables us to obtain infor-
mation about a function from information about its derivative. The next example provides
an instance of this principle.

EXAMPLE 5 Suppose that f(0) = —3 and f’(x) < 5 for all values of x. How large can
f(2) possibly be?

SOLUTION We are given that f is differentiable (and therefore continuous) everywhere.
In particular, we can apply the Mean Value Theorem on the interval [0, 2]. There exists a
number c¢ such that

f2) = f(0) =72 -0
S0 f2) =f0) + 2f"(c) = =3 + 2f(c)

We are given that f'(x) < 5 for all x, so in particular we know that f'(c) < 5. Multiply-
ing both sides of this inequality by 2, we have 2f'(c) < 10, so

fQ) ==3+2f(c)<-3+10=7

The largest possible value for f(2) is 7. ]

The Mean Value Theorem can be used to establish some of the basic facts of differen-
tial calculus. One of these basic facts is the following theorem. Others will be found in the
following sections.

[5] Theorem If f'(x) = O for all x in an interval (a, b), then f is constant on (a, b).




Proof Let x; and x, be any two numbers in (a, b) with x; < x,. Since f is differen-
tiable on (a, b), it must be differentiable on (x;, x») and continuous on [xi, x,]. By apply-
ing the Mean Value Theorem to f on the interval [x;, x»], we get a number ¢ such that
x<c<x; and

(6] Jflx2) = flxr) = fe)x2 — x1)
Since f'(x) = 0 for all x, we have f'(c) = 0, and so Equation 6 becomes
f2) =fG) =0 or  f(x2) = flx1)

Therefore, f has the same value at any two numbers x; and x; in (a, b). This means that
f is constant on (a, b). [

Corollary If f'(x) = g'(x) for all x in an interval (a, b), then f — g is constant
on (a, b); that is, f(x) = g(x) + ¢ where c is a constant.

Proof Let F(x) = f(x) — g(x). Then
F'(x) =f'(x) —g'(x) =0
for all x in (a, b). Thus, by Theorem 5, F is constant; that is, / — ¢ is constant. ]

NOTE = Care must be taken in applying Theorem 5. Let
X 1 if x>0
f(x)_7|_{ 1 ifx<0

The domain of f is D = {x|x # 0} and f'(x) = 0 for all x in D. But f is obviously not a
constant function. This does not contradict Theorem 5 because D is not an interval. Notice
that f is constant on the interval (0, ) and also on the interval (—oo, 0).

EXAMPLE 6 Prove the identity tan 'x + cot 'x = /2.
SOLUTION Although calculus isn’t needed to prove this identity, the proof using calculus is

quite simple. If f(x) = tan"'x + cot 'x, then

Fl = — L__o

1+x> 1+

for all values of x. Therefore, f(x) = C, a constant. To determine the value of C, we put
x = 1 [because we can evaluate /(1) exactly]. Then

1 711 711
C =f(1) = tan + cot —4+4 >

Thus, tan"'x + cot™'x = /2. -



4.2 Exercises

I-4 1 Verify that the function satisfies the three hypotheses of
Rolle’s Theorem on the given interval. Then find all numbers ¢ that
satisfy the conclusion of Rolle’s Theorem.

1.

4 10.

2 f(x) =x>—3x>+2x+5,
3.
4. f(x) = x/x+6, [—6,0]

f(x)=x*—4x+1, [0,4]
[0, 2]
f(x) = sin 2mx,

[—1,1]

o o o o

. Let f(x) = 1 — x*3. Show that f(—1) = £(1) but there is no

number ¢ in (—1, 1) such that f'(c) = 0. Why does this not
contradict Rolle’s Theorem?

. Let f(x) = (x — 1)~ Show that £(0) = £(2) but there is no

number ¢ in (0, 2) such that f'(c) = 0. Why does this not con-
tradict Rolle’s Theorem?

. Use the graph of f to estimate the values of ¢ that satisfy the

conclusion of the Mean Value Theorem for the interval [0, 8].

y

<
I
=
=
.

)

0 1 X

. Use the graph of f given in Exercise 7 to estimate the values of

¢ that satisfy the conclusion of the Mean Value Theorem for the
interval [1, 7].

. (a) Graph the function f(x) = x + 4/x in the viewing

rectangle [0, 10] by [0, 10].

(b) Graph the secant line that passes through the points (1, 5)
and (8, 8.5) on the same screen with f.

(c) Find the number c that satisfies the conclusion of the Mean
Value Theorem for this function f and the interval [1, 8].
Then graph the tangent line at the point (c, f(c)) and notice
that it is parallel to the secant line.

(a) In the viewing rectangle [—3, 3] by [—35, 5], graph the
function f(x) = x* — 2x and its secant line through the
points (—2, —4) and (2, 4). Use the graph to estimate
the x-coordinates of the points where the tangent line is
parallel to the secant line.

(b) Find the exact values of the numbers ¢ that satisfy the con-
clusion of the Mean Value Theorem for the interval [ —2, 2]
and compare with your answers to part (a).

11-14 i Verify that the function satisfies the hypotheses of the
Mean Value Theorem on the given interval. Then find all numbers
c that satisfy the conclusion of the Mean Value Theorem.

11.
12.
13.

14.

o

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

fx)=3x"+2x+5, [—1,1]
f=x'+x-1 [02]
fx) =e?, [0,3]
x
- 1,4
=2 [
Let f(x) = |x — 1|. Show that there is no value of ¢ such that

f(3) — f(0) = f'(c)(3 — 0). Why does this not contradict the
Mean Value Theorem?

Let f(x) = (x + 1)/(x — 1). Show that there is no value of ¢
such that f(2) — £(0) = f'(c)(2 — 0). Why does this not con-
tradict the Mean Value Theorem?

Show that the equation 1 + 2x + x* 4+ 4x> = 0 has exactly
one real root.

Show that the equation 2x — 1 — sinx = 0 has exactly one
real root.

Show that the equation x* — 15x + ¢ = 0 has at most one root
in the interval [—2, 2].

Show that the equation x* + 4x + ¢ = 0 has at most two
real roots.

(a) Show that a polynomial of degree 3 has at most three
real roots.

(b) Show that a polynomial of degree n has at most n real
roots.

(a) Suppose that f is differentiable on R and has two roots.
Show that /' has at least one root.

(b) Suppose f is twice differentiable on R and has three roots.
Show that f” has at least one real root.

(c) Can you generalize parts (a) and (b)?

If f(1) = 10 and f'(x) = 2 for 1 < x < 4, how small can f(4)
possibly be?

Suppose that 3 < f’'(x) < 5 for all values of x. Show that

18 < £(8) — £(2) < 30.

Does there exist a function f such that f(0) = —1, f(2) = 4,
and f'(x) < 2 for all x?

Suppose that f and g are continuous on [a, b] and differentiable
on (a, b). Suppose also that f(a) = g(a) and f'(x) < g'(x) for
a < x < b. Prove that f(b) < g(b). [Hint: Apply the Mean
Value Theorem to the function 7 = f — g.]

Show that /1 + x < 1 + xif x > 0.



28. Suppose f is an odd function and is differentiable everywhere. 32. Use the method of Example 6 to prove the identity
Prove that for every positive number b, there exists a number ¢ o ~1 )

2 = 1-2 =0

in (—b, b) such that £'(c) = f(b)/b. sin“x = cos (1 = 2x%)  x

. ) 33. Prove the identity
29. Use the Mean Value Theorem to prove the inequality

|sina — sinb| < |a — b| for all a and b arcsinx_i=2arctan\/7*%
X
30. If f'(x) = ¢ (c a constant) for all x, use Corollary 7 to show
that f(x) = cx + d for some constant d. 34. At 2:00 p.M. a car’s speedometer reads 30 mi/h. At 2:10 p.m. it
reads 50 mi/h. Show that at some time between 2:00 and 2:10
31. Let f(x) = 1/x and the acceleration is exactly 120 mi/h%
1 ) 35. Two runners start a race at the same time and finish in a tie.
P if x>0 Prove that at some time during the race they have the same
glx) = | speed. [Hint: Consider f(r) = g(t) — h(r), where g and h are
1+— if x<O0 the position functions of the two runners.]
X
36. A number a is called a fixed point of a function f if f(a) = a.
Show that f'(x) = g'(x) for all x in their domains. Can we con- Prove that if f'(x) # 1 for all real numbers x, then f has at
clude from Corollary 7 that f — g is constant? most one fixed point.

4.3 How Derivatives Affect the Shape of a Graph

Many of the applications of calculus depend on our ability to deduce facts about a func-
tion f from information concerning its derivatives. Because f'(x) represents the slope of
the curve y = f(x) at the point (x, f(x)), it tells us the direction in which the curve proceeds

y D at each point. So it is reasonable to expect that information about f'(x) will provide us with
information about f(x).
B
|||| What Does £’ Say about £?
To see how the derivative of f can tell us where a function is increasing or decreasing, look
c at Figure 1. (Increasing functions and decreasing functions were defined in Section 1.1.)
A Between A and B and between C and D, the tangent lines have positive slope and so
0 x  f'(x) > 0. Between B and C, the tangent lines have negative slope and so f'(x) < 0. Thus,
it appears that f increases when f'(x) is positive and decreases when f’(x) is negative. To
FIGURE 1 prove that this is always the case, we use the Mean Value Theorem.
Increasing/Decreasing Test
Il Let's abbreviate the name of this test to (a) If f'(x) > 0 on an interval, then f is increasing on that interval.
the I/0 Test (b) If f'(x) < 0 on an interval, then f is decreasing on that interval.
Proof
= Resources / Module 3 (a) Let x; and x, be any two numbers in the interval with x; < x,. According to the defi-
'1 I / Increasing and Decreasing Functions  pition of an increasing function (page 21) we have to show that f(x;) < f(x2).

/ Increasing-Decreasing Detector Because we are given that f'(x) > 0, we know that f is differentiable on [x,, x,]. So,

by the Mean Value Theorem there is a number ¢ between x; and x such that

E fG2) = f(x1) = f(e)(x2 — x1)

Now f’(¢) > 0 by assumption and x, — x; > 0 because x; < x», Thus, the right side of



Module 4.3A guides you in determining ~ Equation 1 is positive, and so
m properties of the derivative /' by examin-
. ing the graphs of a variety of functions f. f(xz) _f(xl) >0 or f(xl) <f(x2)
This shows that f is increasing.
Part (b) is proved similarly. 1

EXAMPLE 1 Find where the function f(x) = 3x* — 4x’ — 12x* + 5 is increasing and
where it is decreasing.

SOLUTION fl(x) = 12x — 12x* — 24x = 12x(x — 2)(x + 1)

To use the I/D Test we have to know where f'(x) > 0 and where f'(x) < 0. This
depends on the signs of the three factors of f’(x), namely, 12x, x — 2, and x + 1. We
divide the real line into intervals whose endpoints are the critical numbers —1, 0, and

2 and arrange our work in a chart. A plus sign indicates that the given expression is posi-
tive, and a minus sign indicates that it is negative. The last column of the chart gives the
conclusion based on the 1/D Test. For instance, f'(x) < 0 for 0 < x < 2, so f is decreas-
ing on (0, 2). (It would also be true to say that f is decreasing on the closed interval [0, 2].)

20
K/ ﬂ Interval 12x x—2 x+ 1 f'(x) f
) 3 x < —1 — — — - decreasing on (—o, —1)
-1 <x<0 — - + + increasing on (—1, 0)
0<x<?2 + — + — decreasing on (0, 2)
x>2 + + + + increasing on (2, )
—30
FIGURE 2 The graph of f shown in Figure 2 confirms the information in the chart. ]

Recall from Section 4.1 that if f has a local maximum or minimum at ¢, then ¢ must be
a critical number of f (by Fermat’s Theorem), but not every critical number gives rise to a
maximum or a minimum. We therefore need a test that will tell us whether or not f has a
local maximum or minimum at a critical number.

You can see from Figure 2 that f(0) = 5 is a local maximum value of f because f
increases on (—1,0) and decreases on (0, 2). Or, in terms of derivatives, f'(x) > 0 for
—1 <x < 0and f'(x) < 0for0 < x < 2. In other words, the sign of f'(x) changes from
positive to negative at 0. This observation is the basis of the following test.

The First Derivative Test Suppose that ¢ is a critical number of a continuous
function f.

(a) If f' changes from positive to negative at ¢, then f has a local maximum at c.
(b) If f' changes from negative to positive at ¢, then f has a local minimum at c.

(c) If f" does not change sign at ¢ (for example, if f' is positive on both sides of ¢
or negative on both sides), then f has no local maximum or minimum at c.

The First Derivative Test is a consequence of the I/D Test. In part (a), for instance, since
the sign of f'(x) changes from positive to negative at ¢, f is increasing to the left of ¢ and
decreasing to the right of c. It follows that f has a local maximum at c.



It is easy to remember the First Derivative Test by visualizing diagrams such as those
in Figure 3.

y y y y
fix)<0
flx)y>0 /7 f'x)<0 ) >0

| , , o T T~y =0
| <0 I1>0 | >0 |
| | |
| | | |

0 / ¢ \ X 0 ¢ X 0 I ¢ X 0 ¢ \ X

(a) Local maximum (b) Local minimum (c) No maximum or minimum (d) No maximum or minimum
FIGURE 3

[IIl' The + signs in the table come from the fact
that g'(x) > 0 when cos x > —3. From the
graph of y = cos x, this is true in the indicated
intervals.

0 . . 2

FIGURE 4

y=x+2sinx

EXAMPLE 2 Find the local minimum and maximum values of the function f in Example 1.

SOLUTION From the chart in the solution to Example 1 we see that f'(x) changes from
negative to positive at —1, so f(—1) = 0 is a local minimum value by the First Deriva-
tive Test. Similarly, /' changes from negative to positive at 2, so f(2) = —27 is also a
local minimum value. As previously noted, f(0) = 5 is a local maximum value because
f'(x) changes from positive to negative at 0. ]

EXAMPLE 3 Find the local maximum and minimum values of the function
g(x) = x + 2sinx 0<x<2mw
SOLUTION To find the critical numbers of g, we differentiate:
g'(x) =1+ 2cosx

So ¢'(x) = 0 when cos x = —3. The solutions of this equation are 27/3 and 47/3.
Because g is differentiable everywhere, the only critical numbers are 277/3 and 477/3 and
so we analyze g in the following table.

Interval g'(x) =1+ 2cosx g
0<x<2m/3 + increasing on (0, 27/3)
2mw/3 < x < 4w/3 — decreasing on (27/3, 47/3)

4m/3 <x <2m + increasing on (4/3, 21)

Because g'(x) changes from positive to negative at 27r/3, the First Derivative Test tells us
that there is a local maximum at 277/3 and the local maximum value is

2 2 2 3 2
g(27T/3) ZTW-F 2SinT7T=TW+ 2(%) =T7T+ \/§23.83

Likewise, g'(x) changes from negative to positive at 47/3 and so

4 Am _ 4 3\ _4
g(dm/3) =T7T+ 28in%=%+ 2<—£> =T7T— J3 = 246

is a local minimum value. The graph of g in Figure 4 supports our conclusion. 1



|||| What Does f£” Say about f?

Explore concavity on a roller coaster. Figure 5 shows the graphs of two increasing functions on (a, b). Both graphs join point A
g, Fesources/Module 3 to point B but they look different because they bend in different directions. How can we
'1‘ / 512??0\’(;3@“0” distinguish between these two types of behavior? In Figure 6 tangents to these curves have

been drawn at several points. In (a) the curve lies above the tangents and f is called con-
cave upward on (a, b). In (b) the curve lies below the tangents and ¢ is called concave
downward on (a, b).

y B y B
| |
| |
g
f | |
| |
| |
A : A :
| I | I
0 a b X 0 a b X
FIGURE 5 (a) (b)
y B y B
¥ g
A A
0 X 0 X
FIGURE 6 (a) Concave upward (b) Concave downward

Definition If the graph of f lies above all of its tangents on an interval /, then it is
called concave upward on /. If the graph of f lies below all of its tangents on /, it
is called concave downward on /.

Figure 7 shows the graph of a function that is concave upward (abbreviated CU) on the
intervals (b, c), (d, e), and (e, p) and concave downward (CD) on the intervals (a, b), (¢, d),
and (p, q).

y

|

|

|

| |

! |

14 q
FIGURE 7 } CD | CU l<— CD —}«— CU —} CU —}« CD

Let’s see how the second derivative helps determine the intervals of concavity. Looking
at Figure 6(a), you can see that, going from left to right, the slope of the tangent increases.



FIGURE 8

This means that the derivative f’ is an increasing function and therefore its derivative f”
is positive. Likewise, in Figure 6(b) the slope of the tangent decreases from left to right,
so f' decreases and therefore f” is negative. This reasoning can be reversed and suggests
that the following theorem is true. A proof is given in Appendix F with the help of the
Mean Value Theorem.

Concavity Test
(a) If f"(x) > 0 for all x in I, then the graph of f is concave upward on /.
(b) If f"(x) < 0 for all x in 7, then the graph of f is concave downward on 1.

EXAMPLE 4 Figure 8 shows a population graph for Cyprian honeybees raised in an apiary.
How does the rate of population increase change over time? When is this rate highest?
Over what intervals is P concave upward or concave downward?

P
80

Number of bees 60t

(in thousands)
40 +

20 +

0 3 6 9 12 15 18

Time (in weeks)

SOLUTION By looking at the slope of the curve as ¢ increases, we see that the rate of
increase of the population is initially very small, then gets larger until it reaches a maxi-
mum at about = 12 weeks, and decreases as the population begins to level off. As the
population approaches its maximum value of about 75,000 (called the carrying capac-
ity), the rate of increase, P'(1), approaches 0. The curve appears to be concave upward on
(0, 12) and concave downward on (12, 18). ]

In Example 4, the population curve changed from concave upward to concave down-
ward at approximately the point (12, 38,000). This point is called an inflection point of the
curve. The significance of this point is that the rate of population increase has its maximum
value there. In general, an inflection point is a point where a curve changes its direction of
concavity.

Definition A point P on a curve y = f(x) is called an inflection point if f is contin-
uous there and the curve changes from concave upward to concave downward or
from concave downward to concave upward at P.

For instance, in Figure 7, B, C, D, and P are the points of inflection. Notice that if a
curve has a tangent at a point of inflection, then the curve crosses its tangent there.

In view of the Concavity Test, there is a point of inflection at any point where the sec-
ond derivative changes sign.



y=-2
FIGURE 9
y
f
P
flo=0 | )
| fo
|
0 c X X
FIGURE 10

f"(c) >0, fis concave upward

EXAMPLE 5 Sketch a possible graph of a function f that satisfies the following
conditions:

(i) f'(x) >0on (=%, 1), f'(x) <0Oon(l,o)
(ii) f"(x) > 0on (=%, —2) and (2, ), f"(x) <O0on(—2,2)
(i) Jim f(x) = =2, lim /() = 0

SOLUTION Condition (i) tells us that f is increasing on (—, 1) and decreasing on (1, ).
Condition (ii) says that f is concave upward on (—o, —2) and (2, ), and concave down-
ward on (—2, 2). From condition (iii) we know that the graph of f has two horizontal
asymptotes: y = —2 and y = 0.

We first draw the horizontal asymptote y = —2 as a dashed line (see Figure 9). We
then draw the graph of f approaching this asymptote at the far left, increasing to its maxi-
mum point at x = 1 and decreasing toward the x-axis at the far right. We also make sure
that the graph has inflection points when x = —2 and 2. Notice that we made the curve
bend upward for x < —2 and x > 2, and bend downward when x is between —2 and 2.

Another application of the second derivative is the following test for maximum and
minimum values. It is a consequence of the Concavity Test.

The Second Derivative Test Suppose f” is continuous near c.
(a) If f'(c) = 0 and f"(c) > 0, then f has a local minimum at c.
(b) If f'(c) = 0 and f"(c) < 0, then f has a local maximum at c.

For instance, part (a) is true because f”(x) > 0 near c and so f is concave upward near
c. This means that the graph of f lies above its horizontal tangent at ¢ and so f has a local
minimum at c. (See Figure 10.)

EXAMPLE 6 Discuss the curve y = x* — 4x* with respect to concavity, points of inflection,
and local maxima and minima. Use this information to sketch the curve.

SOLUTION If f(x) = x* — 4x°, then

f(x) = 4x* — 12x* = 4x*(x — 3)

fr(x) = 12x* — 24x = 12x(x — 2)

To find the critical numbers we set f'(x) = 0 and obtain x = 0 and x = 3. To use the
Second Derivative Test we evaluate [ at these critical numbers:

£(0) =0 f"3) =36>0

Since f'(3) = 0 and f"(3) > 0, f(3) = —27 is a local minimum. Since f"(0) = 0, the
Second Derivative Test gives no information about the critical number 0. But since

Sf'(x) < 0 for x < 0 and also for 0 < x < 3, the First Derivative Test tells us that f does
not have a local maximum or minimum at 0. [In fact, the expression for f’'(x) shows that
[ decreases to the left of 3 and increases to the right of 3.]
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inflection .
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FIGURE 11

(2,-16)

(3,—27)

[IIl" Try reproducing the graph in Figure 12
with a graphing calculator or computer. Some
machines produce the complete graph, some
produce only the portion to the right of the
y-axis, and some produce only the portion
between x = 0 and x = 6. For an explanation
and cure, see Example 7 in Section 1.4. An
equivalent expression that gives the correct

graph is
6 —x
y= ()" WM — x|
y
4" (4’25/3)
3 =+
2<>
0l 1 2 3 4 5 7 X
y=x2/'3(6—x)m
FIGURE 12

Since f”(x) = 0 when x = 0 or 2, we divide the real line into intervals with these
numbers as endpoints and complete the following chart.

Interval f"(x) = 12x(x — 2) Concavity
(=00, 0) + upward
0, 2) — downward
(2, ) + upward

The point (0, 0) is an inflection point since the curve changes from concave upward to
concave downward there. Also (2, —16) is an inflection point since the curve changes
from concave downward to concave upward there.

Using the local minimum, the intervals of concavity, and the inflection points, we
sketch the curve in Figure 11.

NOTE = The Second Derivative Test is inconclusive when f"(c) = 0. In other words, at
such a point there might be a maximum, there might be a minimum, or there might be nei-
ther (as in Example 6). This test also fails when f"(c) does not exist. In such cases the First
Derivative Test must be used. In fact, even when both tests apply, the First Derivative Test
is often the easier one to use.

EXAMPLE 7 Sketch the graph of the function f(x) = x*3(6 — x)'/°.

SOLUTION You can use the differentiation rules to check that the first two derivatives are

, 4 —x v -8
f'x) = x1/3(6 — x)2/3 ') = X6 — %)
Since f'(x) = 0 when x = 4 and f’(x) does not exist when x = 0 or x = 6, the critical
numbers are 0, 4, and 6.

Interval 4 —x x'3 6 — x)*? £(x) f
x <0 + — + — decreasing on (—, 0)
0<x<4 + + + + increasing on (0, 4)
4<x<6 — + + — decreasing on (4, 6)
x>6 — + + — decreasing on (6, ®)

To find the local extreme values we use the First Derivative Test. Since f’ changes
from negative to positive at 0, f(0) = 0 is a local minimum. Since f’ changes from
positive to negative at 4, f(4) = 2% is a local maximum. The sign of f’ does not change
at 6, so there is no minimum or maximum there. (The Second Derivative Test could be
used at 4, but not at 0 or 6 since f” does not exist at either of these numbers.)

Looking at the expression for f”(x) and noting that x** = 0 for all x, we have
f"(x) < 0forx <0andfor0<x<6and f"(x) > 0 for x > 6. So f is concave down-
ward on (—o, 0) and (0, 6) and concave upward on (6, ), and the only inflection point
is (6, 0). The graph is sketched in Figure 12. Note that the curve has vertical tangents at
(0, 0) and (6, 0) because | f'(x) | — o as x — 0 and as x — 6. ]
EXAMPLE 8 Use the first and second derivatives of f(x) = e'/*, together with asymptotes,
to sketch its graph.



In Module 4.3B you can practice using
m graphical information about f” to deter-

mine the shape of the graph of f.

(a) Preliminary sketch

FIGURE 13

SOLUTION Notice that the domain of f is {x|x # 0}, so we check for vertical asymptotes
by computing the left and right limits as x — 0. As x — 0%, we know that t = 1/x — oo,
SO

lim e'* = lime' =

x—0" t—>o
and this shows that x = 0 is a vertical asymptote. As x — 0, we have r = 1/x — —oo,
SO

lim ¢* = lim ¢’ =0

x—07" t—>—o

As x — *o, we have 1/x — 0 and so

lim e/ =¢°=1

x—>*®©

This shows that y = 1 is a horizontal asymptote.
Now let’s compute the derivative. The Chain Rule gives

el/x

[ =——
X

Since ¢/* > 0 and x2 > 0 for all x # 0, we have f'(x) < 0 for all x # 0. Thus, f is
decreasing on (—, 0) and on (0, ). There is no critical number, so the function has no
maximum or minimum. The second derivative is

X2 (=1/x2) — e'*(2x) B e 2x + 1)
. —

X X4

£ = -

Since e'/* > 0 and x* > 0, we have f"(x) > 0 when x > —3 (x # 0) and f"(x) < 0
when x < —3. So the curve is concave downward on (—00, —%) and concave upward on
(=3, 0) and on (0, ®). The inflection point is (—3, ¢72).

To sketch the graph of f we first draw the horizontal asymptote y = 1 (as a dashed
line), together with the parts of the curve near the asymptotes in a preliminary sketch
[Figure 13(a)]. These parts reflect the information concerning limits and the fact that f is
decreasing on both (—o, 0) and (0, ). Notice that we have indicated that f(x) — 0 as
x — 0 even though f(0) does not exist. In Figure 13(b) we finish the sketch by incorpo-
rating the information concerning concavity and the inflection point. In Figure 13(c) we
check our work with a graphing device.

y
4
inflection
point \\
of X 0
(b) Finished sketch (c) Computer confirmation



4.3 Exercises

1-2 i Use the given graph of f to find the following.

(a) The largest open intervals on which f is increasing.

(b) The largest open intervals on which f is decreasing.

(c) The largest open intervals on which f is concave upward.

(d) The largest open intervals on which f is concave downward.

(e) The coordinates of the points of inflection.

Ly

3. Suppose you are given a formula for a function f.

(a) How do you determine where f is increasing or decreasing?

(b) How do you determine where the graph of f is concave
upward or concave downward?
(c) How do you locate inflection points?

4. (a) State the First Derivative Test.

(b) State the Second Derivative Test. Under what circumstances

is it inconclusive? What do you do if it fails?

5-6 1 The graph of the derivative f' of a function f is shown.
(a) On what intervals is f increasing or decreasing?

(b) At what values of x does f have a local maximum or minimum?

5. y 6. v

7o

The graph of the second derivative f” of a function f is shown.
State the x-coordinates of the inflection points of f. Give rea-
sons for your answers.

y

(=]
—
)
A~
=N
o0

=

The graph of the first derivative f' of a function f is shown.

(a) On what intervals is f increasing? Explain.

(b) At what values of x does f have a local maximum or mini-
mum? Explain.

(c) On what intervals is f concave upward or concave down-
ward? Explain.

(d) What are the x-coordinates of the inflection points of f?
Why?

y

4

y=fw
i é\é/%'éx

. Sketch the graph of a function whose first and second deriva-

tives are always negative.

. A graph of a population of yeast cells in a new laboratory cul-

ture as a function of time is shown.

(a) Describe how the rate of population increase varies.

(b) When is this rate highest?

(c) On what intervals is the population function concave
upward or downward?

(d) Estimate the coordinates of the inflection point.

700 T
600 T

Number 5001
of 400 T

yeastcells 30 +
200 T
100 T

0| 2 4 6 8 10 12 14 16 18

Time (in hours)

11-20 m

(a) Find the intervals on which f is increasing or decreasing.
(b) Find the local maximum and minimum values of f.

(c) Find the intervals of concavity and the inflection points.

11.

fx)=x*—12x+1 12. f(x) =5 —3x*+x°



)C2

X +3

13. f(x) =x*—2x"+3 14. f(x) =

15. f(x) =x — 2sinx, 0<x<3m

16. f(x) = cos’x —2sinx, 0<x<2mw
17. f(x) = xe*

19. f(x) = (In x)/\/x

o o o o o o o o o o o o

18. f(x) = x%*
20. f(x) =xInx

21-23 1 Find the local maximum and minimum values of f using
both the First and Second Derivative Tests. Which method do you
prefer?

X
x>+ 4

2. f(x) =x>—5x+3 22. f(x) =

23 f(x) =x+ 1 —x

o o o o o o o o o o o o

24. (a) Find the critical numbers of f(x) = x*(x — 1)*.
(b) What does the Second Derivative Test tell you about the
behavior of f at these critical numbers?
(c) What does the First Derivative Test tell you?

25. Suppose f” is continuous on (—, %),
(a) If f/(2) = 0 and f"(2) = —5, what can you say about f?
(b) If f'(6) = 0 and f"(6) = 0, what can you say about f?

26-30 11 Sketch the graph of a function that satisfies all of the
given conditions.

26. f'(x) > 0 forall x # 1, vertical asymptote x = 1,
f"x) >0ifx<lorx>3, f'(x)<0ifl<x<3

0)=f@2=fM4=0,

(x) >0ifx<Oor2 <x<4,

x) <0if0<x<2o0rx>4,

(x) >0ifl <x<3, f"(x)<0ifx<lorx>3

27.

’
’
’
lZ
!

(

() =f'(=1)=0, f'(x)<0if x| <1,

") >0if 1 <|x| <2, f'(x)=—1if|x|>2,
"(x) < 0if =2 < x <0, inflection point (0, 1)
(x) >0if [x] <2, f'(x)<0if|x]|>2,
"(=2) =0, lin;\f’(x)|=00, f"(x) >0ifx #2

!

f
f
f
f
2. f
f
f
29, f

f
30. f'(x) >0if x| <2, f'(x)<O0if|x|>2,

@) =0, lim fl) =1, f(=x) = —f(),

) <0if0<x<3, f'(x)>0ifx>3

o o o o o o o o o o o o

31-32 i The graph of the derivative f' of a continuous function f

is shown.

(a) On what intervals is f increasing or decreasing?

(b) At what values of x does f have a local maximum or
minimum?

(c) On what intervals is f concave upward or downward?

(d) State the x-coordinate(s) of the point(s) of inflection.
(e) Assuming that f(0) = 0, sketch a graph of f.

3. [y ‘ ‘
y=1Ff'x)

L 9%
T

32. [y

(e}
[\)
N
N
—-

o o o o o o o o o o o o

33-44

(a) Find the intervals of increase or decrease.

(b) Find the local maximum and minimum values.

(c) Find the intervals of concavity and the inflection points.

(d) Use the information from parts (a)—(c) to sketch the graph.
Check your work with a graphing device if you have one.

33 f(x) =2x*—3x*—12x 34 f(x) =2+ 3x — x°

35. f(x) = x* — 6x2 36. g(x) =200 + 8x3 + x*
37. h(x) =3x° — 5x° + 3 38, h(x) = (x> — 1)

39. A(x) = xx + 3 40. B(x) = 3x*% — x

41. C(x) = x"P(x + 4) 42. f(x) = In(x* + 27)

43. f(0) =2 cos O —cos26, 0<0<27

4. f()=1t+cost, 2m<t<2mw

o o o o o o o o o

45-52

(a) Find the vertical and horizontal asymptotes.

(b) Find the intervals of increase or decrease.

(c) Find the local maximum and minimum values.

(d) Find the intervals of concavity and the inflection points.

(e) Use the information from parts (a)—(d) to sketch the graph of f.

2 2

x x
45, f(x) = e 46. f(x) = m
47. f(x) = Vx> + 1 —x

48. f(x) =xtanx, —w/2<x<m/2

89. £(x) = In(1 — Inx) 0. (x) = ie



51. f(x) = e V0D 52. f(x) = In(tan’x)

o o o o o o o o o o

A9 53-54 i

(a) Use a graph of f to estimate the maximum and minimum
values. Then find the exact values.

(b) Estimate the value of x at which f increases most rapidly. Then
find the exact value.

x+ 1

53. f(x) = ﬁ

o o o o o o o o o o o o

54, f(x) = x%*

A 55-56

(a) Use a graph of f to give a rough estimate of the intervals of
concavity and the coordinates of the points of inflection.
(b) Use a graph of f” to give better estimates.

55. f(x) =cosx +3cos2x, 0<ux<2r

56. f(x) = x*(x — 2)*

o o o o o o o o o o

57-58 I Estimate the intervals of concavity to one decimal place

by using a computer algebra system to compute and graph f”.

x> =10x+ 5 (x + 1’(x*+5)

57. = —— 58. =
fO =73 FO = T e+ 9)

o o o o o o o o o o o o

59. Let K() be a measure of the knowledge you gain by studying
for a test for ¢ hours. Which do you think is larger, K(8) — K(7)
or K(3) — K(2)? Is the graph of K concave upward or concave
downward? Why?

60. Coffee is being poured into the mug shown in the figure at a
constant rate (measured in volume per unit time). Sketch a
rough graph of the depth of the coffee in the mug as a function
of time. Account for the shape of the graph in terms of concav-
ity. What is the significance of the inflection point?

¥ 61. For the period from 1980 to 2000, the percentage of house-

holds in the United States with at least one VCR has been

modeled by the function
85
Vi) = ———
® 1+ 53¢

where the time 7 is measured in years since midyear 1980, so
0 =<t = 20. Use a graph to estimate the time at which the

number of VCRs was increasing most rapidly. Then use deriva-
tives to give a more accurate estimate.

62. The family of bell-shaped curves

1
o2

y = e*(X*/-L)Z/(ZUZ)

occurs in probability and statistics, where it is called the
normal density function. The constant w is called the mean and
the positive constant o is called the standard deviation. For
simplicity, let’s scale the function so as to remove the factor

1/ (0' 277) and let’s analyze the special case where u = 0. So
we study the function

Fl) = e’

(a) Find the asymptote, maximum value, and inflection points
of f.

(b) What role does o play in the shape of the curve?

(c) Nlustrate by graphing four members of this family on the
same screen.

63. Find a cubic function f(x) = ax® + bx* + cx + d thathas a
local maximum value of 3 at —2 and a local minimum value
of Oat 1.

64. For what values of the numbers a and b does the function

F(x) = axe™
have the maximum value f(2) = 1?

65. Suppose f is differentiable on an interval I and f”'(x) > 0 for
all numbers x in / except for a single number c. Prove that f is
increasing on the entire interval /.

66-68 11 Assume that all of the functions are twice differentiable
and the second derivatives are never 0.

66. (a) If f and g are concave upward on I, show that f + ¢ is con-
cave upward on /.
(b) If f is positive and concave upward on /, show that the
function g(x) = [ f(x)]* is concave upward on I.

67. (a) If f and g are positive, increasing, concave upward func-
tions on /, show that the product function fg is concave
upward on /.

(b) Show that part (a) remains true if f and g are both
decreasing.

(c) Suppose f is increasing and g is decreasing. Show, by
giving three examples, that fg may be concave upward,
concave downward, or linear. Why doesn’t the argument in
parts (a) and (b) work in this case?

68. Suppose f and g are both concave upward on (—oe, ). Under
what condition on f will the composite function A(x) = f(g(x))
be concave upward?

o o o o o o o o o o o o

69. Show that tan x > x for 0 < x < /2. [Hint: Show that
f(x) = tan x — x is increasing on (0, 7/2).]



70.

1.

1.

(a) Show thate* =1 + x for x = 0.

(b) Deduce that e* = 1 + x + 3x2 for x = 0.

(c) Use mathematical induction to prove that for x = 0 and any
positive integer n,

x2 n
X = J—
R R

n!

Show that a cubic function (a third-degree polynomial) always
has exactly one point of inflection. If its graph has three
x-intercepts xi, x», and x3, show that the x-coordinate of the
inflection point is (x; + x2 + x3)/3.

For what values of ¢ does the polynomial
P(x) = x* 4+ ¢x* + x? have two inflection points? One inflec-

73.

74.

75.

76.

4.4 Indeterminate Forms and L'Hospital's Rule

tion point? None? Illustrate by graphing P for several values
of ¢. How does the graph change as ¢ decreases?

Prove that if (c, f(c)) is a point of inflection of the graph of f
and f" exists in an open interval that contains c, then f"(c) = 0.
[Hint: Apply the First Derivative Test and Fermat’s Theorem to
the function g = f'.]

Show that if f(x) = x*, then £"(0) = 0, but (0, 0) is not an
inflection point of the graph of f.

Show that the function g(x) = x| x| has an inflection point at
(0, 0) but g"(0) does not exist.

"

Suppose that f” is continuous and f'(c) = f"(c) = 0, but
f"(c) > 0. Does f have a local maximum or minimum at c?
Does f have a point of inflection at ¢?

Suppose we are trying to analyze the behavior of the function

1
Flx) — nx
x—1

Although F is not defined when x = 1, we need to know how F behaves near 1. In par-
ticular, we would like to know the value of the limit

1]

In x

lim
=1 x — 1

In computing this limit we can’t apply Law 5 of limits (the limit of a quotient is the quo-
tient of the limits, see Section 2.3) because the limit of the denominator is 0. In fact,
although the limit in (1) exists, its value is not obvious because both numerator and denom-
inator approach 0 and 3 is not defined.

In general, if we have a limit of the form

lim LX)
g

where both f(x) — 0 and g(x) — 0 as x — q, then this limit may or may not exist and is
called an indeterminate form of type §. We met some limits of this type in Chapter 2. For
rational functions, we can cancel common factors:

x(x —1) . X 1

lim

x—1 x° —

I _ _
G Dr-1) Six+1 2

We used a geometric argument to show that

. sinx
lim =1
x—0 X

But these methods do not work for limits such as (1), so in this section we introduce a sys-
tematic method, known as I’Hospital’s Rule, for the evaluation of indeterminate forms.



FIGURE 1

[l Figure 1 suggests visually why I'Hospital’s
Rule might be true. The first graph shows two
differentiable functions f and g, each of which
approaches 0 as x — a. If we were to zoom in
toward the point (a, 0), the graphs would start
to look almost linear. But if the functions actually
were linear, as in the second graph, then their
ratio would be

m(x —a) _ m

mz(x - a) B my

which is the ratio of their derivatives. This sug-
gests that

tim L. jiy L
0 T g

Another situation in which a limit is not obvious occurs when we look for a horizontal
asymptote of F' and need to evaluate the limit

In x

[2] lim

a—e x — 1
Itisn’t obvious how to evaluate this limit because both numerator and denominator become
large as x — . There is a struggle between numerator and denominator. If the numerator
wins, the limit will be o¢; if the denominator wins, the answer will be 0. Or there may be

some compromise, in which case the answer may be some finite positive number.
In general, if we have a limit of the form

—AC)
=a g(x)

where both f(x) — o (or —0) and g(x) — o (or —0), then the limit may or may not exist
and is called an indeterminate form of type o/c. We saw in Section 2.6 that this type of
limit can be evaluated for certain functions, including rational functions, by dividing
numerator and denominator by the highest power of x that occurs in the denominator. For
1nstance,

1
l__
X = ) x? 1-0 1
lim ——— = lim = = —
e 2x7 + 1 x>0 1 2+0 2
2+—2
X

This method does not work for limits such as (2), but I"Hospital’s Rule also applies to this
type of indeterminate form.

L’Hospital’s Rule Suppose f and g are differentiable and g'(x) # 0 near a (except
possibly at a). Suppose that

lim f(x) =0 and lim g(x) = 0

or that lim f(x) = £ and lim g(x) = *o
(In other words, we have an indeterminate form of type § or %/%.) Then

tim L& _ iy L
g T g

if the limit on the right side exists (or is % or —®).

NOTE 1 - L’Hospital’s Rule says that the limit of a quotient of functions is equal to the
limit of the quotient of their derivatives, provided that the given conditions are satisfied. It
is especially important to verify the conditions regarding the limits of f and g before using
I’Hospital’s Rule.

NOTE 2 = L’Hospital’s Rule is also valid for one-sided limits and for limits at infinity or
negative infinity; that is, “x — a” can be replaced by any of the symbols x — a*, x —a”,
X —> 0, 0r x —> —®,

NOTE 3 - For the special case in which f(a) = g(a) = 0, f" and g’ are continuous, and
g'(a) # 0, it is easy to see why I’'Hospital’s Rule is true. In fact, using the alternative form



[l 'Hospital’s Rule is named after a

French nobleman, the Marquis de I'Hospital
(1661-1704), but was discovered by a Swiss
mathematician, John Bernoulli (1667-1748).
See Exercise 71 for the example that the
Marquis used to illustrate his rule. See the
project on page 315 for further historical details.

@ Notice that when using I'Hospital’s Rule we
differentiate the numerator and denominator
separately. We do not use the Quotient Rule.

[l The graph of the function of Example 2 is
shown in Figure 2. We have noticed previously
that exponential functions grow far more rapidly
than power functions, so the result of Example 2
is not unexpected. See also Exercise 67.

20

0 10

FIGURE 2

of the definition of a derivative, we have

lim f(x) — fla)
im L Sf@ e x—a
—a g'(x)  g'(a) lim g(x) — g(a)
x—a X —da
fx) = f(a)
M0 - @
X —d
W@
x—a g(x) — gl(a)
= limM
w—a g(x)

It is more difficult to prove the general version of ’Hospital’s Rule. See Appendix F.

. . In x
EXAMPLE 1 Find lim I

x—>1 X —

SOLUTION Since

Iirrlllnx=ln1=0 and lin}(x—l)ZO
we can apply I’Hospital’s Rule:
d
— (1
In x ) d (In x) 1/x
hrrll 1 = hrrll p = lm} EE
x—1 x — x— X—
—(x—1
- D
o1
=lim—=1
x—1 X

EXAMPLE 2 Calculate lim — .

x—® X

SOLUTION We have lim, ... e* = o and lim,_... x> = %, so I’'Hospital’s Rule gives

Since e* — o and 2x — % as x — oo, the limit on the right side is also indeterminate,
but a second application of 1’Hospital’s Rule gives

ex X X
lim — = lim = lim—=®
x—w 2x 2

x—% X




. Inx
Il1I' The graph of the function of Example 3 is EXAMPLE 3 Calculate lim —~.
shown in Figure 3. We have discussed previously e X

the slow growth of logarithms, so it isn't surpris- . o 3 o s D .
—> 0 N
ing that this ratio approaches 0 as x — <. See SOLUTION Since In x — % and ¥/x — % as x , ’'Hospital’s Rule applies:

also Exercise 68.
i In x i 1/x
m m
2 x—® \3/_; x—>® 1x72/2

Notice that the limit on the right side is now indeterminate of type §. But instead of
applying I’Hospital’s Rule a second time as we did in Example 2, we simplify the
expression and see that a second application is unnecessary:

10,000
. Inx . 1/x 3
b lim S = lim 5~ lim =0 -
FIGURE 3
. . tanx —x . . .
EXAMPLE 4 Find hn(l) —— . [See Exercise 36(d) in Section 2.2.]
x— X
SOLUTION Noting that both tan x — x — 0 and x*> — 0 as x — 0, we use I’'Hospital’s
Rule:
| tanx —x  sec’x — |
meo 33 xlil(l) 3x2

Since the limit on the right side is still indeterminate of type §, we apply 1I"Hospital’s
Rule again:

sec’x — 1 . 2sec’xtan x
im———— =lim—M—
x—0 3x2 x—0 6x

[l The graph in Figure 4 gives visual confirma-

tion of the result of Example 4. If we were to Because lim, . sec’x = 1, we simplify the calculation by writing
zoom in too far, however, we would get an

inaccurate graph because tan x is close to x )
2 sec”x tan x 1 tan x

when x is small. See Exercise 36(d) in . - . T - .
lim —— = — lim sec”x lim = im
x—0

1 tan x
Section 2.2. x—0 6x 3 x—0 X 3 x>0 x

We can evaluate this last limit either by using I’Hospital’s Rule a third time or by
writing tan x as (sin x)/(cos x) and making use of our knowledge of trigonometric limits.
Putting together all the steps, we get

. tanx — x ~ sectx — 1 _ 2sec’x tan x
lim 3 = lim 5 = lim
X0 x x—0 3x x—0 6x
-1
1 tanx 1 sec’x 1
= — lim = — lim =—
FIGURE 4 3 =0 x 3 =0 1 3 ]
sin x

EXAMPLE 5 Find lim .
x—7" 1 — cos x

SOLUTION If we blindly attempted to use 1’Hospital’s Rule, we would get

. sin x . COoSX
@ lim —22E gy S5
—a~ sin x

x—a~ 1 —cosx x—mw

This is wrong! Although the numerator sin x — 0 as x — 77, notice that the denomi-
nator (1 — cos x) does not approach 0, so I’Hospital’s Rule can’t be applied here.



[l Figure 5 shows the graph of the function in
Example 6. Notice that the function is undefined
at x = 0; the graph approaches the origin but
never quite reaches it.

y
y=xlnx
—
oN_" x

FIGURE 5

The required limit is, in fact, easy to find because the function is continuous and the
denominator is nonzero at r:
. sin x sin 7 0
lim = = =0
x—=a 1 —cosx 1 —cosm 1—(—1) ]

Example 5 shows what can go wrong if you use I’Hospital’s Rule without thinking.
Other limits can be found using 1’Hospital’s Rule but are more easily found by other meth-
ods. (See Examples 3 and 5 in Section 2.3, Example 3 in Section 2.6, and the discussion
at the beginning of this section.) So when evaluating any limit, you should consider other
methods before using 1’Hospital’s Rule.

|||| Indeferminate Products

If lim,—, f(x) = 0 and lim,_, g(x) = o (or —°), then it isn’t clear what the value of
lim,—, f(x)g(x), if any, will be. There is a struggle between f and g. If f wins, the answer
will be 0; if g wins, the answer will be o (or —20). Or there may be a compromise where
the answer is a finite nonzero number. This kind of limit is called an indeterminate form
of type 0 - . We can deal with it by writing the product fg as a quotient:

__f _ 9
1/g 1/f

This converts the given limit into an indeterminate form of type § or %/ so that we can
use I’Hospital’s Rule.

J9 J9

EXAMPLE 6 Evaluate _lir(r)1+ x1n x.

SOLUTION The given limit is indeterminate because, as x — 07, the first factor (x)
approaches 0 while the second factor (In x) approaches —co. Writing x = 1/(1/x), we
have 1/x — o« as x — 07, so I'Hospital’s Rule gives

) . Inx . 1/x .
lim xInx = lim — = lim ——— = lim (—x) =0
x—0+t x—0+ l/x x—0+t —l/x x—0+t

NOTE - In solving Example 6 another possible option would have been to write

li 1 =l
A T O Ulnx

This gives an indeterminate form of the type 0/0, but if we apply I’Hospital’s Rule we get
a more complicated expression than the one we started with. In general, when we rewrite
an indeterminate product, we try to choose the option that leads to the simpler limit.

|||| Indeterminate Differences

If lim,_, f(x) = % and lim,_., g(x) = o, then the limit

lim () = ()]

is called an indeterminate form of type « — %. Again there is a contest between f and
g. Will the answer be % ( f wins) or will it be —% (g wins) or will they compromise on a
finite number? To find out, we try to convert the difference into a quotient (for instance,



by using a common denominator, or rationalization, or factoring out a common factor) so
. . 0
that we have an indeterminate form of type  or co/ce.

EXAMPLE 7 Compute lim (sec x — tan x).

x—(m/2)"

SOLUTION First notice that sec x — % and tan x — % as x — (77/2) ", so the limit is inde-
terminate. Here we use a common denominator:

) . 1 sin x
lim (sec x — tan x) lim —
x—(m/2) x—(/27 \ cos X oS X

. 1 —sinx . —COoS X
= |lim ————= lim - =
x—=(m/2”  COS X x—(m/2)7 —sin x

Note that the use of I’Hospital’s Rule is justified because 1 — sin x — 0 and cos x — 0
as x — (m/2)". ]

|||| [ndeferminate Powers

Several indeterminate forms arise from the limit

lim [ f (x) ]
1. lim f(x) =0 and limg(x) =0 type 0°
2. lim f(x) = and limg(x) =0 type «°°

3. limf(x) =1 and limg(x) = *o type 17
Each of these three cases can be treated either by taking the natural logarithm:

let y=[f(x]", then Iny= g(x)Inf(x)

or by writing the function as an exponential:
[f(x)]g(X) = 9@ Infx)

(Recall that both of these methods were used in differentiating such functions.) In either
method we are led to the indeterminate product g(x) In f(x), which is of type 0 - .

EXAMPLE 8 Calculate 1iI{)1+ (1 + sin 4x)«~.

SOLUTION First notice that as x — 0", we have 1 + sin 4x — 1 and cot x — <, so the
given limit is indeterminate. Let

y = (1 + sin 4x)**

Then Iny = In[(1 + sin 4x)**] = cot x In(1 + sin 4x)
so I’Hospital’s Rule gives
4 cos 4x
) . In(1 + sin 4x) . 1 + sin 4x
lim Iny = lim ——— = lim ————=
x—0F x—07F tan x x—=07F secx

So far we have computed the limit of In y, but what we want is the limit of y. To find this



we use the fact that y = e™:

liI})1+ (1 + sin 4x)°* = lirgl+ y= 1iI£1+ e = ¢t
EXAMPLE 9 Find lilgxx.

[l The graph of the function y = x*, x > 0, is
shown in Figure 6. Notice that although 0 is not
defined, the values of the function approach 1 as

SOLUTION Notice that this limit is indeterminate since 0* = 0 for any x > 0 but x* = 1
for any x # 0. We could proceed as in Example 8 or by writing the function as an

x — 07. This confirms the result of Example 9. exponential:
2 Xt = (elnx)x — pthnx
In Example 6 we used I’Hospital’s Rule to show that
Xlil})l+ xInx=0
1 . 2 Therefore
FIGURE 6 Jlim 1= lim e™ = ¢® =1 -

4.4 Exercises

I-4 1 Given that 5-62 I Find the limit. Use I’Hospital’s Rule where appropriate. If

there is a more elementary method, consider using it. If I’Hospital’s

lim £ (x)=0 lim g(x) =0 lim h(x) =1 Rule doesn’t apply, explain why.
. . Coxt—1 . x+ 2
el == lmelx) = > LY )
which of the following limits are indeterminate forms? For those 71 x’ =1 8 1 x4 =1
that are not an indeterminate form, evaluate the limit where > =1 gt xb =1
possible.
. Cos x x + tanx
9., lim —— 10. lim————
I. (a) lim f((x)) (b) lim f((x)) =@ ] — gin x 20 sinx
xX—a g X x—a p X
e — 1 e —1
h(x) . pl) 11. lim 12. lim
(c) lim (d) lim —0 —0 t
i=a p(x) =a f(x)
t 1 —sin 6
(e 1im 2% 13. lim 2~ 4. lim ———
i—a g(x) x—0 tan gx 0—m/2  csc 0
. . 1 :
2. (2 lim [ f(x)p(x)] (b) lim [A(x)p(x)] 15. lim —— 16. lim
x—a x—a x—w X x—=% X
(©) lim [ p(x)g(x)] Inx .
17. lirgki 18. lim
3. (@) lim [f(x) = p(x)] (b) lim [p(x) — g(x)] R B
x—a x—a . _ t ) nx
(c) llirj [P(x) + Q(x)] 19. }E% t 2. )lcllr} sin mx
4 @ m[F) (b) Em [ (e) lim [ 2 tim &L 2. fim &L X 072)
x—a x—a X—a x—0 X x—0 X’
@ lim [p)1™ (@) lim[p(]™ () lim "Yp(x) . :
' 23. lim — 24. lim s.mx
B B B . X X x—0 sinh x



25. 1

27.

29.

31.

33.

35.

37.
39.
41.

43.

45.

47.

49.

51.

53.

55.

57.

59.

61.

o

{19 63-64 11 Use a graph to estimate the value of the limit. Then use

im

x—0
lim

x—0

lim

sin”'x

X

2

X

1 — cos x

x + sinx

x—0 X + cos x

lim ——>———
A% (1 + 2¢%)

lim

lim

x—1

lim /x In x
x—0

1 —x+Inx

1 + cos mx

(x = 1y?

lim cot 2x sin 6x

x—0

. 2
lim x% ~*

x—>0

x—ax+a—1

'lirln+ In x tan(7x/2)

lim

x—0

lim (\/x2 +x - x)

x—>®

— — CSC X

<1

X

3
1+=+=

lim (x — Inx)
lim x*

x—0*

lim (1 — 2x)"*
x—0

lim <

xX—® X
lim x '/~

. X
lim

x—e \ x + 1

j

lim (cos x)"/*
x—0t

o

o

o

)

5

X

2

j

o

o

26. 1

28.

30. 1

32. lim——————
+—0 tan”'(4x)

34

36.

38.
40.
42.

44

48.

50.

52.

54.

56.

58.

62. 1

o

im

x—0

lim

x—w

im

x—0

im
lim

x—®

lim

x—0

sin x — x

x3

(In x)?

X

cos mx — COS nx

x2

X

N

2x* + 1

1—e

—2x

S€C x

lim x%*

x——%

lim sinx In x
x—0*F

lim (1 — tan x)sec x

x—m/4

lim x tan(1/x)

lim

x—1

In x

1

5 lin(l) (csc x — cot x)
xX—>

(

1

x—1

lim (xe'* — x)

x—o

}fg (tan 2x)*

a bx
1+2)
X

lim

x—®

lim x

x—w

[

(In2)/(1 + Inx)

lim (e* + x)'/*

x—>%

im

x—>%

I’Hospital’s Rule to find the exact value.

63. lim x[In(x + 5) — In x]

64. lim (tan x)™**

o

x—>/-

o

(

2x — 3
2x + 5

o

. lim (cos 3x)*/*
x—0

>2x+l

o

)

o

¥4 65-66 1 Tlustrate 1'Hospital’s Rule by graphing both f(x)/g(x)
and f'(x)/g'(x) near x = 0 to see that these ratios have the same
limit as x — 0. Also calculate the exact value of the limit.

65.
66.

o

67.

68.

09.

70.

7.

f(x)=e"—1, g(x)=x*+ 4x

f(x) =2xsinx, g(x) =secx — 1
Prove that
X
lim — =
ol

for any positive integer n. This shows that the exponential func-
tion approaches infinity faster than any power of x.

Prove that
o Inx
lim =0
re xP

for any number p > 0. This shows that the logarithmic
function approaches % more slowly than any power of x.

If an initial amount A, of money is invested at an interest rate i
compounded 7 times a year, the value of the investment after

t years is
i nt
A= Ao 1 + —
n

If we let n — oo, we refer to the continuous compounding of
interest. Use 1I’'Hospital’s Rule to show that if interest is com-
pounded continuously, then the amount after n years is

A= A()E”
If an object with mass m is dropped from rest, one model for
its speed v after ¢ seconds, taking air resistance into account, is

"9

v = (1 — e <)
c
where ¢ is the acceleration due to gravity and c is a positive
constant. (In Chapter 9 we will be able to deduce this equation
from the assumption that the air resistance is proportional to
the speed of the object.)
(a) Calculate lim,_... . What is the meaning of this limit?
(b) For fixed ¢, use I’Hospital’s Rule to calculate lim,, — .. v.
What can you conclude about the speed of a very heavy
falling object?
The first appearance in print of I’Hospital’s Rule was in
the book Analyse des Infiniment Petits published by the
Marquis de 1I’'Hospital in 1696. This was the first calculus
textbook ever published and the example that the Marquis
used in that book to illustrate his rule was to find the limit
of the function

V2a’*x — x* — a</aax
y= T
a — <Jax

as x approaches a, where a > 0. (At that time it was common
to write aa instead of a*.) Solve this problem.



72. The figure shows a sector of a circle with central angle 6. Let

76. If f" is continuous, show that

A(6) be the area of the segment between the chord PR and

the arc PR. Let B(6) be the area of the triangle POR. Find lim [t h) = 2f(x) +flx — ) = f"(x)
limy—o- A(6)/B(6). h=0 h?
P
77. Let
Al6) e it x#0
W= irx=o0
B(6)
0 (a) Use the definition of derivative to compute f'(0).
o) 0 R (b) Show that f has derivatives of all orders that are defined

73. If f' is continuous, f(2) = 0, and f'(2) = 7, evaluate

li

f(2 + 3x) + f(2 + 5x)
m

on R. [Hint: First show by induction that there is a poly-
nomial p,(x) and a nonnegative integer k, such that
F(x) = pu(x)f (x)/x* for x # 0.]

x—0

74. For what values of a and b is the following equation true?

b
+a+2>—0
X

75. If f' is continuous, use 1’Hospital’s Rule to show that

. sin 2x
lim 3

x—0 X

A 78. Let

Cflxl i x#0
() {1 if x=0

(a) Show that f is continuous at 0.
(b) Investigate graphically whether f is differentiable at O by
zooming in several times toward the point (0, 1) on the

li
h—0 2h

Explain the meaning of this equation with the aid of a diagram.
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[IIl' The Internet is another source of infor-

mation for this project. See the web site
www.stewartcalculus.com

and click on History of Mathematics.

St h) —f—h)
m

=f'(x) graph of f.
(c) Show that f is not differentiable at 0. How can you recon-
cile this fact with the appearance of the graphs in part (b)?

The Origins of L'Hospital's Rule

L’Hospital’s Rule was first published in 1696 in the Marquis de I"Hospital’s calculus textbook
Analyse des Infiniment Petits, but the rule was discovered in 1694 by the Swiss mathematician
John (Johann) Bernoulli. The explanation is that these two mathematicians had entered into a
curious business arrangement whereby the Marquis de 1’'Hospital bought the rights to Bernoulli’s
mathematical discoveries. The details, including a translation of 1’Hospital’s letter to Bernoulli
proposing the arrangement, can be found in the book by Eves [1].

Write a report on the historical and mathematical origins of 1’Hospital’s Rule. Start by pro-
viding brief biographical details of both men (the dictionary edited by Gillispie [2] is a good
source) and outline the business deal between them. Then give 1’Hospital’s statement of his rule,
which is found in Struik’s sourcebook [4] and more briefly in the book of Katz [3]. Notice that
I’Hospital and Bernoulli formulated the rule geometrically and gave the answer in terms of dif-
ferentials. Compare their statement with the version of 1’Hospital’s Rule given in Section 4.4 and
show that the two statements are essentially the same.

1. Howard Eves, In Mathematical Circles (Volume 2: Quadrants III and IV) (Boston: Prindle,
Weber and Schmidt, 1969), pp. 20-22.

2. C. C. Gillispie, ed., Dictionary of Scientific Biography (New York: Scribner’s, 1974). See the
article on Johann Bernoulli by E. A. Fellmann and J. O. Fleckenstein in Volume II and the
article on the Marquis de 1’Hospital by Abraham Robinson in Volume VIIIL.

3. Victor Katz, A History of Mathematics: An Introduction (New York: HarperCollins, 1993),
p. 484.

4. D.J. Struik, ed., A Sourcebook in Mathematics, 1200—1800 (Princeton, NJ: Princeton Uni-
versity Press, 1969), pp. 315-316.



4.5 Summary of Curve Sketching

So far we have been concerned with some particular aspects of curve sketching: domain,
range, and symmetry in Chapter 1; limits, continuity, and asymptotes in Chapter 2; deriva-
tives and tangents in Chapters 2 and 3; and extreme values, intervals of increase and
decrease, concavity, points of inflection, and I’Hospital’s Rule in this chapter. It is now
time to put all of this information together to sketch graphs that reveal the important fea-
tures of functions.

You may ask: What is wrong with just using a calculator to plot points and then joining
these points with a smooth curve? To see the pitfalls of this approach, suppose you have
used a calculator to produce the table of values and corresponding points in Figure 1.

y
’ 204
X f(x) X f(x)
15 +
-5 2 1 7 ol
—4 7 2 10 .
_ _ 5+
; z ) 1 -5 —4 -3 =2 -1
-2 —4 4 10 L
—1 -2 5 8 |
0 3 6 -8
FIGURE 1
You might then join these points to produce the curve shown in Figure 2, but the cor-
rect graph might be the one shown in Figure 3. You can see the drawbacks of the method
of plotting points. Certain essential features of the graph may be missed, such as the max-
imum and minimum values between —2 and — 1 or between 2 and 5. If you just plot points,
you don’t know when to stop. (How far should you plot to the left or right?) But the use
of calculus ensures that all the important aspects of the curve are illustrated.
y | Y |
20 + : 20 4 :
15+ | 15+ |
| |
| |
| |
[ [
| |
X : : X
| |
| |
[ [
| |
FIGURE 2 FIGURE 3

You might respond: Yes, but what about graphing calculators and computers? Don’t
they plot such a huge number of points that the sort of uncertainty demonstrated by Fig-
ures 2 and 3 is unlikely to happen?

It’s true that modern technology is capable of producing very accurate graphs. But even
the best graphing devices have to be used intelligently. We saw in Section 1.4 that it is
extremely important to choose an appropriate viewing rectangle to avoid getting a mis-
leading graph. (See especially Examples 1, 3, 4, and 5 in that section.) The use of calculus



30 y=8x>—2Ix’+18x+2
4

—2‘ / 4

—10

FIGURE 4

8

y=8x>—21x>+18x+2
0 ‘
6

FIGURE 5

2

T

(a) Even function: reflectional symmetry

\

— I

(b) Odd function: rotational symmetry

FIGURE 6

FIGURE 7
Periodic function:
translational symmetry

enables us to discover the most interesting aspects of graphs and in many cases to calcu-
late maximum and minimum points and inflection points exactly instead of approximately.

For instance, Figure 4 shows the graph of f(x) = 8x* — 21x? + 18x + 2. At first
glance it seems reasonable: It has the same shape as cubic curves like y = x°, and it
appears to have no maximum or minimum point. But if you compute the derivative, you
will see that there is a maximum when x = 0.75 and a minimum when x = 1. Indeed, if
we zoom in to this portion of the graph, we see that behavior exhibited in Figure 5. Without
calculus, we could easily have overlooked it.

In the next section we will graph functions by using the interaction between calculus
and graphing devices. In this section we draw graphs by first considering the following
information. We don’t assume that you have a graphing device, but if you do have one you
should use it as a check on your work.

|||| Guidelines for Sketching a Curve

The following checklist is intended as a guide to sketching a curve y = f(x) by hand. Not
every item is relevant to every function. (For instance, a given curve might not have an
asymptote or possess symmetry.) But the guidelines provide all the information you need
to make a sketch that displays the most important aspects of the function.

A. Domain It’s often useful to start by determining the domain D of f, that is, the set of val-
ues of x for which f(x) is defined.

B. Intercepts The y-intercept is f(0) and this tells us where the curve intersects the y-axis.
To find the x-intercepts, we set y = 0 and solve for x. (You can omit this step if the
equation is difficult to solve.)

C. Symmetry

(i) If f(—x) = f(x) for all x in D, that is, the equation of the curve is unchanged
when x is replaced by —ux, then f is an even function and the curve is symmetric about
the y-axis. This means that our work is cut in half. If we know what the curve looks like
for x = 0, then we need only reflect about the y-axis to obtain the complete curve [see
Figure 6(a)]. Here are some examples: y = x%, y = x*,y = | x|, and y = cos x.

(ii) If f(—x) = —f(x) for all x in D, then f is an odd function and the curve is
symmetric about the origin. Again we can obtain the complete curve if we know what
it looks like for x = 0. [Rotate 180° about the origin; see Figure 6(b).] Some simple
examples of odd functions are y = x,y = x*,y = x°, and y = sin x.

(iii) If f(x + p) = f(x) for all x in D, where p is a positive constant, then f is called
a periodic function and the smallest such number p is called the period. For instance,
y = sin x has period 27 and y = tan x has period 7. If we know what the graph looks
like in an interval of length p, then we can use translation to sketch the entire graph (see
Figure 7).

y
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D. Asymptotes
(i) Horizontal Asymptotes. Recall from Section 2.6 that if either lim,_.. f(x) = L
or lim, .. f(x) = L, then the line y = L is a horizontal asymptote of the curve
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In Module 4.5 you can practice using
information about f’, £, and asymp-
totes to determine the shape of the
graph of f.

EXAMPLE 1 Use the guidelines to sketch the curve y =

y = f(x). If it turns out that lim,_... f(x) = % (or —), then we do not have an asymp-
tote to the right, but that is still useful information for sketching the curve.

(i1) Vertical Asymptotes. Recall from Section 2.2 that the line x = a is a vertical
asymptote if at least one of the following statements is true:

[ lim f(x) = o lim f(x) = o
lim f(x) = —o lim f(x) = —o

(For rational functions you can locate the vertical asymptotes by equating the denomi-
nator to 0 after canceling any common factors. But for other functions this method does
not apply.) Furthermore, in sketching the curve it is very useful to know exactly which
of the statements in (1) is true. If f(a) is not defined but a is an endpoint of the domain
of f, then you should compute lim, .- f(x) or lim,_.+ f(x), whether or not this limit
is infinite.

(iii) Slant Asymptotes. These are discussed at the end of this section.

. Intervals of Increase or Decrease Use the I/D Test. Compute f'(x) and find the intervals

on which f'(x) is positive ( f is increasing) and the intervals on which f’(x) is negative
(f is decreasing).

. Local Maximum and Minimum Valves Find the critical numbers of f [the numbers ¢ where

f'(c) = 0or f'(c) does not exist]. Then use the First Derivative Test. If /' changes from
positive to negative at a critical number ¢, then f(c) is a local maximum. If f” changes
from negative to positive at ¢, then f(c) is a local minimum. Although it is usually
preferable to use the First Derivative Test, you can use the Second Derivative Test if ¢
is a critical number such that f"(c) # 0. Then f"(c) > 0 implies that f(c) is a local
minimum, whereas f"(c) < 0 implies that f(c) is a local maximum.

. Concavity and Points of Inflection Compute f"(x) and use the Concavity Test. The curve is

concave upward where f"(x) > 0 and concave downward where f”(x) < 0. Inflection
points occur where the direction of concavity changes.

. Sketch the Curve Using the information in items A—G, draw the graph. Sketch the asymp-

totes as dashed lines. Plot the intercepts, maximum and minimum points, and inflection
points. Then make the curve pass through these points, rising and falling according to
E, with concavity according to G, and approaching the asymptotes. If additional accu-
racy is desired near any point, you can compute the value of the derivative there. The
tangent indicates the direction in which the curve proceeds.

2x2
x2—=1"

A. The domain is

{x[x* =1#0} ={x|x# £1} = (=, —=1) U (=1, 1) U (1, %)

B. The x- and y-intercepts are both 0.
C. Since f(—x) = f(x), the function f is even. The curve is symmetric about the y-axis.

2 :
lim — = lim > =
xore x7 — 1 aore | — 1/x

Therefore, the line y = 2 is a horizontal asymptote.
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Preliminary sketch

[l We have shown the curve approaching its
horizontal asymptote from above in Figure 8. This
is confirmed by the intervals of increase and
decrease.
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Finished sketch of y = xzil

Since the denominator is 0 when x = =1, we compute the following limits:

) 2x? ) 2x?
lim — = lim — = —w
x—1+ x° — 1 x—1- x- — 1
2x? _ 2x?
im — = — lim — =
x——1t x° — 1 x——1"x- — 1
Therefore, the lines x = 1 and x = —1 are vertical asymptotes. This information

about limits and asymptotes enables us to draw the preliminary sketch in Figure 8,
showing the parts of the curve near the asymptotes.

£ Pl = 4x(x* — 1) —2x*+2x  —4x

-1 @1
Since f'(x) > 0 whenx < 0 (x # —1) and f'(x) < Owhenx >0 (x # 1), fis
increasing on (—<0, —1) and (—1, 0) and decreasing on (0, 1) and (1, ).
F. The only critical number is x = 0. Since f’ changes from positive to negative at 0,
f(0) = 0 is a local maximum by the First Derivative Test.

—4(x* = 1) + 4x - 2(x> — 1)2x  12x° + 4
(x* = 1) (x* =1y

G. f"(x) =

Since 12x% + 4 > 0 for all x, we have
') >0 < xX*-1>0 < |x|>1

and f"(x) <0 <= |x| < l. Thus, the curve is concave upward on the intervals
(—o0, —1) and (1, %) and concave downward on (—1, 1). It has no point of inflection
since 1 and —1 are not in the domain of f.

H. Using the information in E-G, we finish the sketch in Figure 9. ]

xz

EXAMPLE 2 Sketch the graph of f(x) = ﬁ
x+1

A. Domain = {x|x + 1 > 0} = {x|x > —1} = (=1, %)
B. The x- and y-intercepts are both 0.

C. Symmetry: None

D. Since
2

X

lim ———

x—e 4/x + 1

there is no horizontal asymptote. Since /x + 1 — 0 as x — —17 and f(x) is always
positive, we have

2

X
lim ——— =
xig}* Vx + 1
and so the line x = —1 is a vertical asymptote.
E ) 2xy/x + 1 —x2- 1/2Vx + 1) x(3x + 4)
. x) = =
x+1 2(x + 1)

We see that f'(x) = 0 when x = 0 (notice that —% is not in the domain of f), so the
only critical number is 0. Since f'(x) < 0 when —1 < x < 0 and f’(x) > 0 when
x>0, f is decreasing on (—1, 0) and increasing on (0, ©).

F. Since f'(0) = 0 and f' changes from negative to positive at 0, f(0) = 0 is a local
(and absolute) minimum by the First Derivative Test.
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100 20 + D¥2(6x +4) — Bx2 4+ 4x)3(x + D'* 3x*+ 8x + 8
¥) = -
4(x + 1)} 4(x + 1)

Note that the denominator is always positive. The numerator is the quadratic

3x* + 8x + 8, which is always positive because its discriminant is b — 4ac = —32,

which is negative, and the coefficient of x? is positive. Thus, f"(x) > 0 for all x in the
domain of f, which means that f is concave upward on (—1, ) and there is no point

of inflection.

The curve is sketched in Figure 10. 1

EXAMPLE 3 Sketch the graph of f(x) = xe™.

A.
B. The x- and y-intercepts are both 0.

C

D. Because both x and e* become large as x — oo, we have lim ... xe* = . As x — —o0,

H.

The domain is R.
Symmetry: None

however, e* — 0 and so we have an indeterminate product that requires the use of
I’Hospital’s Rule:

1
lim xe* = lim —— = lim —— = lim (—e*) = 0

x——® x—>—% @ x—>—x —e x—>—%
Thus, the x-axis is a horizontal asymptote.
f'(x) =xe* + e* = (x + 1)e*

Since e* is always positive, we see that f'(x) > 0 whenx + 1 > 0, and f'(x) < 0 when
x + 1 <0.Sofis increasing on (—1, «©) and decreasing on (—o, —1).

Because f'(—1) = 0 and f changes from negative to positive at x = —1,

f(=1) = —e 'is alocal (and absolute) minimum.

f'(x)=(x + 1)e* + e* = (x + 2)e*

Since f"(x) > 0if x > —2and f"(x) < 0if x < —2, f is concave upward on (—2, ©)
and concave downward on (—c, —2). The inflection point is (—2, —2¢?).
We use this information to sketch the curve in Figure 11. ]

EXAMPLE 4 Sketch the graph of f(x) = 2 cos x + sin 2x.

A.
B.

C

The domain is R.
The y-intercept is f(0) = 2. The x-intercepts occur when

2cosx + sin2x =2cosx + 2sinxcosx =2cos x (1 + sinx) =0

that is, when cos x = 0 or sin x = — 1. Thus, in the interval [0, 277], the x-intercepts
are 7/2 and 37/2.

f is neither even nor odd, but f(x + 27) = f(x) for all x and so f is periodic and has
period 2. Thus, in what follows we need to consider only 0 < x < 277 and then
extend the curve by translation in H.

. Asymptotes: None

(x) = —2sinx + 2 cos 2x = —2sin x + 2(1 — 2 sin’x)
f'(x)

= —2(2sin’x + sinx — 1) = —=2(2sinx — 1)(sinx + 1)

Thus, f'(x) = 0 when sin x = 3 or sin x = —1, so in [0, 277] we have x = /6,
51/6, and 377/2. In determining the sign of f”(x) in the following chart, we use the
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«; = 1 + arcsin 3
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a, = 277 — arcsin 3

FIGURE 12

fact that sin x + 1 = 0 for all x.

Interval f'(x) f
0<x< /6 + increasing on (0, 7/6)
7/6 <x<5m/6 — decreasing on (7/6, 577/6)
Sm/6 < x<3m/2 + increasing on (57/6, 37/2)
3m/2 < x <2 + increasing on (37/2, 2m)

F. From the chart in E the First Derivative Test says that f(r/6) = 34/3/2 is a local
maximum and f(57/6) = —3+/3/2 is a local minimum, but f has no maximum or
minimum at 377/2, only a horizontal tangent.

G. f"(x) = —2cos x — 4sin2x = =2 cos x (1 + 4 sin x)

Thus, f"(x) = 0 when cos x = 0 (so x = 7/2 or 377/2) and when sin x = —3.
From Figure 12 we see that there are two values of x between 0 and 27 for which
sin x = —3. Let’s call them a; and a,. Then f"(x) > 0 on (7/2, a;) and (377/2, av),
so f is concave upward there. Also f"(x) < 0 on (0, 7/2), (a1, 37/2), and (a2, 27),
so f is concave downward there. Inflection points occur when x = /2, ay, 37/2,
and ax.

y=sinx

H. The graph of the function restricted to 0 < x < 2 is shown in Figure 13. Then it is
extended, using periodicity, to the complete graph in Figure 14.

y . y
(1 ﬁ)
6° 2
24 j
o «  _3n "z O = 3 s¢ Iz om\ X
6 2 2 2 2 2 2 2
y=2cosx+sin2x
FIGURE 13 FIGURE 14

EXAMPLE 5 Sketch the graph of y = In(4 — x?).
A. The domain is

{x|4 = x>0} ={x|x? <4} = {x||x] <2} = (-2,2)

B. The y-intercept is f(0) = In 4. To find the x-intercept we set

y=In(4 —x*) =0



FIGURE 15
y=1In4 —x?)

FIGURE 16

We know that In 1 = log,1 = 0 (since ¢® = 1), sowe have 4 — x> =1 = x* =3
and therefore the x-intercepts are ++/3.

C. Since f(—x) = f(x), f is even and the curve is symmetric about the y-axis.

D. We look for vertical asymptotes at the endpoints of the domain. Since 4 — x> — 0" as
x — 2 and also as x — —27, we have

lim In(4 — x?) = —o lim In(d — x?) = —=
Thus, the lines x = 2 and x = —2 are vertical asymptotes.
, —2x
E. 0 =7=">:

Since f'(x) > 0 when —2 < x < 0 and f'(x) < 0 when 0 < x < 2, f is increasing on
(=2, 0) and decreasing on (0, 2).

F. The only critical number is x = 0. Since f' changes from positive to negative at 0,
f(0) = In 4 is a local maximum by the First Derivative Test.

(4 —x°)(=2) +2x(—2x)  —8 —2x°
4 — x?)? CEESS

G. f"(x) =
Since f"(x) < O for all x, the curve is concave downward on (—2, 2) and has no inflec-
tion point.

H. Using this information, we sketch the curve in Figure 15.

|||| Slant Asymptotes

Some curves have asymptotes that are obligue, that is, neither horizontal nor vertical. If
lim [ f(x) — (mx + b)] =0

then the line y = mx + b is called a slant asymptote because the vertical distance
between the curve y = f(x) and the line y = mx + b approaches 0, as in Figure 16. (A
similar situation exists if we let x — —cc.) For rational functions, slant asymptotes occur
when the degree of the numerator is one more than the degree of the denominator. In such
a case the equation of the slant asymptote can be found by long division as in the follow-
ing example.

3

X
x2+ 17

EXAMPLE 6 Sketch the graph of f(x) =

A. The domain is R = (—o0, ),
B. The x- and y-intercepts are both 0.
C. Since f(—x) = —f(x), f is odd and its graph is symmetric about the origin.
D. Since x? + 1 is never 0, there is no vertical asymptote. Since f(x) — © as x — % and
f(x) = —o as x — —oo, there is no horizontal asymptote. But long division gives
3

X X
f(x)—x2+1—x x2+1
1
B x X N
f(x)—x——x2+1—— 1%0 as x — *o
1+—2
X

So the line y = x is a slant asymptote.



3x%(x? + 1) —x* - 2x  x*(x? + 3)
(x* + 1) (x* + 1)

E. ') =

Since f'(x) > 0 for all x (except 0), f is increasing on (—oo, ).
F. Although f'(0) = 0, f' does not change sign at 0, so there is no local maximum or

minimum.
6 1) @x® + 6x)(x*> + 1) — (x* + 3x?) - 2(x* + D2x  2x(3 — x?)
. x = =
(x*+1)* (x*+1)°
y y= x?
Al Since f"(x) = 0 when x = 0 or x = *./3, we set up the following chart:
g
//
/ 2 2 3 n
// (\/5 3Vy3> Interval X 3—x° (x*+1) f"(x) f
’ "y
ol,” x< =43 — — + + CU on (*x,*\/?)
(43 m) g x -3<x<0 - + + - CD on (—+/3,0)
—3,- % P ‘ B .
/7/\ inflection 0<x< \/j + + + + CU on (0, /3 )
74 points x>./3 + - + - CD on (y/3, )
2
V-
The points of inflection are (—+/3, —3+/3/4), (0, 0), and (/3, 3+/3/4).
FIGURE 17 H. The graph of f is sketched in Figure 17. ]
4.5 Exercises
1-52 1 Use the guidelines of this section to sketch the curve. 27. y = x — 3x'/3 28. y = x"° — 5x%3
Ly=x*+x 2. y=x°+ 6x>+ 9% 29. y =x+ V|x]|
3.y=2—15x+ 9> —x* 4, y=8x>—x* 30. y = J(x2— 1)
5. y=x"+ 4x° 6. y=x(x+2) 31. y = 3sinx — sin’x
7.y=2x"—5x*+ 1 8. y=20x* — 3x° 32. y =sinx — tan x
9 y= xl |o.y=ﬁ 33, y=xtanx, —7/2<x<m/2
X — X —
| . 3. y=2x —tanx, —w/2<x<m/2
”.y=x2_9 |2-y=x2_9 35. y=1x—sinx, 0<x<3m
x x? — cox — 2 g
]3.y:x2+9 14'y:x2+9 36. y = cos’x — 2sinx
37. y =sin2x — 2sinx 38. y=sinx —x
x—1 2-2
15. y = 22 16. y = x“ 39, y = sin x 40. y = cos-x
) N 1 + cosx 2 + sinx
17 y=—— 18 =~ - :
YT 13 R 4. y=1/(1 + ™) 42, y=¢* — e*
19 y = x5 — x 20. y=2Jx —x 43. y=xInx 44, y = ¢Y/x
45. y = xe™ 46. y = In(x* — 3x + 2)
x
M y=yr+1-x 2. y= x—5 47. y = In(sin x) 48. y = x(In x)°
__ X _ — 49. y = xe ™ 50. y=¢"— 3¢ — 4x
23. y N 4. y=xy2—x
— Sly= e+ o™ 52 y = tan 2
_vl=x X ) i x+1
25 y=——"— 26. y = T
x X2 — o . ; ; . . . . . .



53.

54.

The figure shows a beam of length L embedded in concrete
walls. If a constant load W is distributed evenly along its
length, the beam takes the shape of the deflection curve

w

- WL, WL
24E1

+ p—
12E1"  24EIT

4 2

y =

where E and ] are positive constants. (E is Young’s modulus of
elasticity and / is the moment of inertia of a cross-section of
the beam.) Sketch the graph of the deflection curve.

bbb

Coulomb’s Law states that the force of attraction between two
charged particles is directly proportional to the product of the
charges and inversely proportional to the square of the distance
between them. The figure shows particles with charge 1 located
at positions 0 and 2 on a coordinate line and a particle with
charge —1 at a position x between them. It follows from
Coulomb’s Law that the net force acting on the middle particle
is

F(x)=—£+ k

e 0<x<?2
x2 (x—2)7 *

where £ is a positive constant. Sketch the graph of the net force
function. What does the graph say about the force?

55-58 I Find an equation of the slant asymptote. Do not sketch
the curve.

55.

x*+1
x+ 1

2% + x>+ x+ 3
x*+ 2x

y = 56. y =

4.6 Graphing with Calculus and Calculators

57.

4x3 — 2x + 5

e 2x*+x—3 X’ —x

59-64 11 Use the guidelines of this section to sketch the curve. In
guideline D find an equation of the slant asymptote.

59.

6l.

63.

65.

66.

67.

68.

69.

70.

_—2x2+5x—1 60 _x2+12
J 2 — 1 i 2
xy=x*+4 62. y=¢"—x
2x° + x*+ 1 (x+1)7°
y=——>""" 4. y=—"""—"3+
x*+1 x—=1)
Show that the curve y = x — tan™'x has two slant asymptotes:

y=x+ m/2and y = x — /2. Use this fact to help sketch
the curve.

Show that the curve y = /x> + 4x has two slant asymptotes:
y=x+ 2and y = —x — 2. Use this fact to help sketch the
curve.

Show that the lines y = (b/a)x and y = —(b/a)x are slant
asymptotes of the hyperbola (x*/a?) — (y*/b?) = 1.

Let f(x) = (x* + 1)/x. Show that
tim [£() = x’] =0

This shows that the graph of f approaches the graph of y = x?,
and we say that the curve y = f(x) is asymptotic to the
parabola y = x?. Use this fact to help sketch the graph of f.

Discuss the asymptotic behavior of f(x) = (x* + 1)/x in the
same manner as in Exercise 68. Then use your results to help
sketch the graph of f.

Use the asymptotic behavior of f(x) = cos x + 1/x* to sketch
its graph without going through the curve-sketching procedure
of this section.

[IIl" If you have not already read Section 1.4, you
should do so now. In particular, it explains how
to avoid some of the pitfalls of graphing devices
by choosing appropriate viewing rectangles.

The method we used to sketch curves in the preceding section was a culmination of much
of our study of differential calculus. The graph was the final object that we produced. In
this section our point of view is completely different. Here we start with a graph produced
by a graphing calculator or computer and then we refine it. We use calculus to make sure

that we reveal all the important aspects of the curve. And with the use of graphing devices
we can tackle curves that would be far too complicated to consider without technology.
The theme is the interaction between calculus and calculators.
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EXAMPLE 1 Graph the polynomial f(x) = 2x° + 3x° + 3x* — 2x2 Use the graphs of f’
and f" to estimate all maximum and minimum points and intervals of concavity.

SOLUTION If we specify a domain but not a range, many graphing devices will deduce a
suitable range from the values computed. Figure 1 shows the plot from one such device
if we specify that —5 < x < 5. Although this viewing rectangle is useful for showing
that the asymptotic behavior (or end behavior) is the same as for y = 2x°, it is obviously
hiding some finer detail. So we change to the viewing rectangle [—3, 2] by [—50, 100]
shown in Figure 2.

From this graph it appears that there is an absolute minimum value of about —15.33
when x = —1.62 (by using the cursor) and f is decreasing on (—o, —1.62) and increas-
ing on (—1.62, ). Also there appears to be a horizontal tangent at the origin and inflec-
tion points when x = 0 and when x is somewhere between —2 and —1.

Now let’s try to confirm these impressions using calculus. We differentiate and get

f(x) = 12x° + 15x* + 9x* — 4x
£"(x) = 60x* + 60x* + 18x — 4

When we graph f” in Figure 3 we see that f'(x) changes from negative to positive when
x = —1.62; this confirms (by the First Derivative Test) the minimum value that we
found earlier. But, perhaps to our surprise, we also notice that f'(x) changes from posi-
tive to negative when x = 0 and from negative to positive when x = 0.35. This means
that f has a local maximum at 0 and a local minimum when x = 0.35, but these were
hidden in Figure 2. Indeed, if we now zoom in toward the origin in Figure 4, we see
what we missed before: a local maximum value of 0 when x = 0 and a local minimum
value of about —0.1 when x = 0.35.

20 1

FIGURE 3 FIGURE 4

What about concavity and inflection points? From Figures 2 and 4 there appear to be
inflection points when x is a little to the left of —1 and when x is a little to the right of 0.
But it’s difficult to determine inflection points from the graph of f, so we graph the sec-
ond derivative f” in Figure 5. We see that f” changes from positive to negative when
x =~ —1.23 and from negative to positive when x = 0.19. So, correct to two decimal
places, f is concave upward on (—o0, —1.23) and (0.19, ) and concave downward on
(—1.23, 0.19). The inflection points are (—1.23, —10.18) and (0.19, —0.05).

We have discovered that no single graph reveals all the important features of this
polynomial. But Figures 2 and 4, when taken together, do provide an accurate picture.

EXAMPLE 2 Draw the graph of the function

x2+7x+3

fl) =3

in a viewing rectangle that contains all the important features of the function. Estimate



—20

FIGURE 8
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FIGURE 9

the maximum and minimum values and the intervals of concavity. Then use calculus to
find these quantities exactly.

SOLUTION Figure 6, produced by a computer with automatic scaling, is a disaster. Some
graphing calculators use [—10, 10] by [—10, 10] as the default viewing rectangle, so
let’s try it. We get the graph shown in Figure 7; it’s a major improvement.

3 x10% 10

N 10

. "

FIGURE 6 FIGURE 7

—10

The y-axis appears to be a vertical asymptote and indeed it is because

x2+7x+3
=

lim 5

x—0 X
Figure 7 also allows us to estimate the x-intercepts: about —0.5 and —6.5. The
exact values are obtained by using the quadratic formula to solve the equation
x*+ Tx+3=0; wegetx = (—7 * /37)/2.

To get a better look at horizontal asymptotes, we change to the viewing rectangle
[—20, 20] by [—5, 10] in Figure 8. It appears that y = 1 is the horizontal asymptote and
this is easily confirmed:
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To estimate the minimum value we zoom in to the viewing rectangle [ —3, 0] by
[—4, 2] in Figure 9. The cursor indicates that the absolute minimum value is about —3.1
when x = —0.9, and we see that the function decreases on (—c0, —0.9) and (0, ) and
increases on (—0.9, 0). The exact values are obtained by differentiating:

7 6 Tx + 6
fO=-F-5=""3

X X X

This shows that f'(x) > 0 when —2 < x < 0 and f’(x) < 0 when x < —% and when

x > 0. The exact minimum value is f(—g) = —7 =~ —3.08.
Figure 9 also shows that an inflection point occurs somewhere between x = —1 and
x = —2. We could estimate it much more accurately using the graph of the second deriv-

ative, but in this case it’s just as easy to find exact values. Since

14 18 _7x+9
ffW=—7F+—73=2—3
X X X

we see that £”(x) > 0 when x > —2 (x # 0). So f is concave upward on (—%, O) and
(0, ) and concave downward on (—00, —%) The inflection point is (—%, _f).

The analysis using the first two derivatives shows that Figures 7 and 8 display all the
major aspects of the curve. ]
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EXAMPLE 3 Graph the function f(x) = W
x— 2)%(x —

SOLUTION Drawing on our experience with a rational function in Example 2, let’s start by
graphing f in the viewing rectangle [—10, 10] by [—10, 10]. From Figure 10 we have
the feeling that we are going to have to zoom in to see some finer detail and also zoom
out to see the larger picture. But, as a guide to intelligent zooming, let’s first take a close
look at the expression for f(x). Because of the factors (x — 2)* and (x — 4)* in the
denominator, we expect x = 2 and x = 4 to be the vertical asymptotes. Indeed

xX(x+ 1) xX(x+ 1)

lim————————— = d lim———— =
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To find the horizontal asymptotes we divide numerator and denominator by x°:

1 1)\?
x(x+1)° X x

= —(0 as x— *w

R < 2Y< 4y
1-=){1-=
X X

so the x-axis is the horizontal asymptote.

It is also very useful to consider the behavior of the graph near the x-intercepts using
an analysis like that in Example 11 in Section 2.6. Since x? is positive, f(x) does not
change sign at 0 and so its graph doesn’t cross the x-axis at 0. But, because of the factor
(x + 1)*, the graph does cross the x-axis at —1 and has a horizontal tangent there.
Putting all this information together, but without using derivatives, we see that the curve
has to look something like the one in Figure 11.

Now that we know what to look for, we zoom in (several times) to produce the graphs
in Figures 12 and 13 and zoom out (several times) to get Figure 14.
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We can read from these graphs that the absolute minimum is about —0.02 and occurs
when x = —20. There is also a local maximum = 0.00002 when x = —0.3 and a local
minimum ~211 when x = 2.5. These graphs also show three inflection points near —35,
—5, and —1 and two between —1 and 0. To estimate the inflection points closely we
would need to graph f”, but to compute f” by hand is an unreasonable chore. If you
have a computer algebra system, then it’s easy to do (see Exercise 17).

We have seen that, for this particular function, three graphs (Figures 12, 13, and 14)
are necessary to convey all the useful information. The only way to display all these
features of the function on a single graph is to draw it by hand. Despite the exaggera-
tions and distortions, Figure 11 does manage to summarize the essential nature of the
function. 1



I11l" The family of functions EXAMPLE 4 Graph the function f(x) = sin(x + sin 2x). For 0 < x < m, locate all maxi-
f(x) = sin(x + sin cx) mum and minimum values, intervals of increase and decrease, and inflction points cor-

where ¢ is a constant, occurs in applications to rect to one decimal place.

frequency modulation (FM) synthesis. A sine ) o ) ) )
wave is modulated by a wave with a different SOLUTION We first note that f is periodic with period 2. Also, f is odd and | f(x)| < 1

frequency (sin cx). The case where ¢ = 2 is for all x. So the choice of a viewing rectangle is not a problem for this function: We start

studied in Example 4. Exercise 25 explores with [0, 7r] by [— 1.1, 1.1]. (See Figure 15.) It appears that there are three local maxi-

another special case. mum values and two local minimum values in that window. To confirm this and locate
1.1 them more accurately, we calculate that

M f'(x) = cos(x + sin 2x) - (1 + 2 cos 2x)
0 and graph both f and f’ in Figure 16. Using zoom-in and the First Derivative Test, we

find the following values to one decimal place.

Intervals of increase: (0,0.6), (1.0, 1.6), (2.1, 2.5)

F_Il(;URE 15 Intervals of decrease: (0.6, 1.0), (1.6,2.1), (2.5, m)
Local maximum values: f(0.6) = 1, f(1.6) = 1, f(2.5) = 1
1.2 Local minimum values:  f(1.0) = 0.94, f(2.1) = 0.94
y=f) The second derivative is
0 \Z — ™ £"(x) = —(1 + 2 cos 2x)* sin(x + sin 2x) — 4 sin 2x cos(x + sin 2x)
y=r1') Graphing both f and f” in Figure 17, we obtain the following approximate values:
-1.2 Concave upward on: (0.8,1.3), (1.8,2.3)
FIGURE 16 Concave downward on: (0, 0.8), (1.3, 1.8), (2.3, m)
Inflection points: (0,0), (0.8,0.97), (1.3,0.97), (1.8,0.97), (2.3,0.97)
1.2 1.2
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Having checked that Figure 15 does indeed represent f accurately for 0 < x < m,
we can state that the extended graph in Figure 18 represents f accurately for
—2ms=sx<2m [

Our final example is concerned with families of functions. As discussed in Section 1.4,
this means that the functions in the family are related to each other by a formula that
contains one or more arbitrary constants. Each value of the constant gives rise to a mem-
ber of the family and the idea is to see how the graph of the function changes as the con-
stant changes.
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EXAMPLE 5 How does the graph of f(x) = 1/(x* + 2x + c¢) vary as c varies?

SOLUTION The graphs in Figures 19 and 20 (the special cases ¢ = 2 and ¢ = —2) show
two very different-looking curves. Before drawing any more graphs, let’s see what mem-
bers of this family have in common. Since

1
lim ———
x—xe x4+ 2x + ¢

for any value of c, they all have the x-axis as a horizontal asymptote. A vertical asymp-
tote will occur when x* + 2x 4+ ¢ = 0. Solving this quadratic equation, we get
x=—1=4/1 — c. When ¢ > 1, there is no vertical asymptote (as in Figure 19). When
¢ = 1, the graph has a single vertical asymptote x = —1 because

1
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When ¢ < 1, there are two vertical asymptotes: x = —1 = /1 — ¢ (as in Figure 20).
Now we compute the derivative:

2x + 2
(x> +2x + ¢)?

') = -

This shows that f'(x) = 0 when x = —1 (if ¢ # 1), f'(x) > 0 when x < —1, and
f'(x) < 0when x > —1. For ¢ = 1, this means that f increases on (—, —1) and
decreases on (—1, ). For ¢ > 1, there is an absolute maximum value

f(=1)=1/(c — 1). Forc < 1, f(=1) = 1/(c — 1) is a local maximum value and the
intervals of increase and decrease are interrupted at the vertical asymptotes.

Figure 21 is a “slide show” displaying five members of the family, all graphed in the
viewing rectangle [ —5, 4] by [ =2, 2]. As predicted, ¢ = 1 is the value at which a transi-
tion takes place from two vertical asymptotes to one, and then to none. As ¢ increases
from 1, we see that the maximum point becomes lower; this is explained by the fact that
1/(c — 1) — 0 as ¢ — . As ¢ decreases from 1, the vertical asymptotes become more
widely separated because the distance between them is 2+4/1 — ¢, which becomes large
as ¢ — —oo, Again, the maximum point approaches the x-axis because 1/(c — 1) = 0
as ¢ —> —o,
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FIGURE 21 The family of functions f(x)=1/(x*+ 2x+¢)

There is clearly no inflection point when ¢ =< 1. For ¢ > 1 we calculate that

23x* + 6x+ 4 —¢)
(x*+2x+¢)

() =

and deduce that inflection points occur when x = —1 %= /3(c — 1)/3. So the inflection
points become more spread out as ¢ increases and this seems plausible from the last two
parts of Figure 21. ]



4.6 Exercises

1-8 I Produce graphs of f that reveal all the important aspects of
the curve. In particular, you should use graphs of f’ and f” to esti-
mate the intervals of increase and decrease, extreme values, inter-
vals of concavity, and inflection points.

1. f(x) = 4x* — 32x% + 89x> — 95x + 29
2. f(x) = x% — 15x° + 75x* — 125x° — x
. f) =Y —3x—5
x4+ xd—2xr+ 2

x4+ x—-2

X
sof(x):x3*x2*4x+1

6. f(x) =tanx + 5cos x
7. f(x) = x* —4x + 7 cos x,

4 f(x) =

X

e

8. flx) = e

o o o o o o o o o o o o

9-12 1 Produce graphs of f that reveal all the important aspects of
the curve. Estimate the intervals of increase and decrease, extreme
values, intervals of concavity, and inflection points, and use calcu-
lus to find these quantities exactly.

9. f(x) =8x? —3x*— 10

x2+ 11x — 20
10, ) ===

X

1. f(x) = x/9 — x2

12. f(x) =x — 2sinx,

o o o o o o o o o o o o

—2Tm=x=<27

13-14 i

(a) Graph the function.

(b) Use I’Hospital’s Rule to explain the behavior as x — 0.

(c) Estimate the minimum value and intervals of concavity. Then
use calculus to find the exact values.

13. f(x) =x*Inx 14. f(x) = xe'™

o o o o o

15-16 1 Sketch the graph by hand using asymptotes and
intercepts, but not derivatives. Then use your sketch as a guide to
producing graphs (with a graphing device) that display the major
features of the curve. Use these graphs to estimate the maximum
and minimum values.
(x + 4)(x — 3)?
15. =
@ xt(x—1)
10x(x — 1)*
16. =0
O = G+

o o o o o o o o o o o o

17. If f is the function considered in Example 3, use a computer
algebra system to calculate f’ and then graph it to confirm
that all the maximum and minimum values are as given in the
example. Calculate f” and use it to estimate the intervals of
concavity and inflection points.

(AS] 18. If f is the function of Exercise 16, find f’ and f" and use their
graphs to estimate the intervals of increase and decrease and

concavity of f.

19-22 1 Use a computer algebra system to graph f and to find f’
and f". Use graphs of these derivatives to estimate the intervals of
increase and decrease, extreme values, intervals of concavity, and
inflection points of f.

202
19. f(x):%, 0<x<3rm
2x — 1
BI0=T

1 —e*
21. f(x) = T3 o7

nfm=Tf=—

tan x

e

o o o o o o o o o o o o

23-24 1

(a) Graph the function.

(b) Explain the shape of the graph by computing the limit as
x— 0" orasx— o,

(c) Estimate the maximum and minimum values and then use
calculus to find the exact values.

(d) Use a graph of f" to estimate the x-coordinates of the inflec-
tion points.

23. f(x) =x' 24, f(x) = (sin x)"*

o o o o o o o o o o o o

25. In Example 4 we considered a member of the family of func-
tions f(x) = sin(x + sin cx) that occur in FM synthesis. Here
we investigate the function with ¢ = 3. Start by graphing f in
the viewing rectangle [0, 7] by [—1.2, 1.2]. How many local
maximum points do you see? The graph has more than are vis-
ible to the naked eye. To discover the hidden maximum and
minimum points you will need to examine the graph of f’ very
carefully. In fact, it helps to look at the graph of f” at the same
time. Find all the maximum and minimum values and inflection
points. Then graph f in the viewing rectangle [ —2, 2] by
[-1.2, 1.2] and comment on symmetry.

26-33 1 Describe how the graph of f varies as ¢ varies. Graph
several members of the family to illustrate the trends that you dis-
cover. In particular, you should investigate how maximum and



minimum points and inflection points move when ¢ changes. You
should also identify any transitional values of ¢ at which the basic
shape of the curve changes.

26. f(x) =x° + cx
28. f(x) = x*/c? — x?

30. f(x) = In(x*+ ¢)

1
(1 —x*)?+ ex?

27. f(x) = x* + cx?

29. f(x) = e’
cx
2

W =1

+ cxx?

32. f(x) = 33. f(x) = cx + sinx

o o o o o o o o o o o

34. The family of functions f(f) = C(e™* — e*'), where a, b, and
C are positive numbers and b > a, has been used to model the

concentration of a drug injected into the blood at time ¢t = 0.
Graph several members of this family. What do they have in
common? For fixed values of C and a, discover graphically
what happens as b increases. Then use calculus to prove what
you have discovered.
35. Investigate the family of curves given by f(x) = xe %, where
¢ is a real number. Start by computing the limits as x — *oo,
Identify any transitional values of ¢ where the basic shape

4.7 Optimization Problems

36.

37.

38.

changes. What happens to the maximum or minimum points
and inflection points as ¢ changes? Illustrate by graphing sev-
eral members of the family.

Investigate the family of curves given by the equation

f(x) = x* 4+ cx? + x. Start by determining the transitional
value of ¢ at which the number of inflection points changes.
Then graph several members of the family to see what shapes
are possible. There is another transitional value of ¢ at which
the number of critical numbers changes. Try to discover it
graphically. Then prove what you have discovered.

(a) Investigate the family of polynomials given by the equation
f(x) = cx* — 2x* + 1. For what values of ¢ does the curve
have minimum points?

(b) Show that the minimum and maximum points of every
curve in the family lie on the parabola y = 1 — x?. Illus-
trate by graphing this parabola and several members of the
family.

(a) Investigate the family of polynomials given by the equation
f(x) = 2x* + cx? + 2x. For what values of ¢ does the
curve have maximum and minimum points?

(b) Show that the minimum and maximum points of every
curve in the family lie on the curve y = x — x*. Illustrate
by graphing this curve and several members of the family.

The methods we have learned in this chapter for finding extreme values have practical
applications in many areas of life. A businessperson wants to minimize costs and maxi-
mize profits. A traveler wants to minimize transportation time. Fermat’s Principle in optics
states that light follows the path that takes the least time. In this section and the next we
solve such problems as maximizing areas, volumes, and profits and minimizing distances,

times, and costs.

In solving such practical problems the greatest challenge is often to convert the word
problem into a mathematical optimization problem by setting up the function that is to be
maximized or minimized. Let’s recall the problem-solving principles discussed on page 80
and adapt them to this situation:

Steps in Solving Optimization Problems

1. Understand the Problem The first step is to read the problem carefully until it is clearly
understood. Ask yourself: What is the unknown? What are the given quantities?
What are the given conditions?

2. Draw a Diagram In most problems it is useful to draw a diagram and identify the
given and required quantities on the diagram.

3. Introduce Notation Assign a symbol to the quantity that is to be maximized or mini-
mized (let’s call it Q for now). Also select symbols (a, b, c, . . ., x, y) for other
unknown quantities and label the diagram with these symbols. It may help to use
initials as suggestive symbols—for example, A for area, & for height, ¢ for time.

4. Express Q in terms of some of the other symbols from Step 3.



5. If O has been expressed as a function of more than one variable in Step 4, use the
given information to find relationships (in the form of equations) among these
variables. Then use these equations to eliminate all but one of the variables in the
expression for Q. Thus, O will be expressed as a function of one variable x, say,
QO = f(x). Write the domain of this function.

6. Use the methods of Sections 4.1 and 4.3 to find the absolute maximum or mini-
mum value of f. In particular, if the domain of f is a closed interval, then the
Closed Interval Method in Section 4.1 can be used.

EXAMPLE 1 A farmer has 2400 ft of fencing and wants to fence off a rectangular field that
borders a straight river. He needs no fence along the river. What are the dimensions of
the field that has the largest area?

IIIl Understand the problem SOLUTION In order to get a feeling for what is happening in this problem, let’s experiment
11!l Analogy: Try special cases with some special cases. Figure 1 (not to scale) shows three possible ways of laying out
IIl' Draw diagrams the 2400 ft of fencing. We see that when we try shallow, wide fields or deep, narrow

fields, we get relatively small areas. It seems plausible that there is some intermediate
configuration that produces the largest area.

Area = 100 - 2200 = 220,000 ft* Area =700 - 1000 = 700,000 ft* Area = 1000 - 400 = 400,000 ft*
FIGURE 1
Figure 2 illustrates the general case. We wish to maximize the area A of the rectangle.
Il Introduce notation Let x and y be the depth and width of the rectangle (in feet). Then we express A in terms
of x and y:
A= xy

We want to express A as a function of just one variable, so we eliminate y by expressing
it in terms of x. To do this we use the given information that the total length of the fenc-
ing is 2400 ft. Thus

2x + y = 2400

From this equation we have y = 2400 — 2x, which gives

A = x(2400 — 2x) = 2400x — 2x>

FIGURE 2

Note that x = 0 and x < 1200 (otherwise A < 0). So the function that we wish to maxi-
mize is

A(x) = 2400x — 2x? 0<x=<1200
The derivative is A'(x) = 2400 — 4x, so to find the critical numbers we solve the

equation
2400 —4x =0
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[I1I" In the Applied Project on page 341 we inves-

tigate the most economical shape for a can by
taking into account other manufacturing costs.

which gives x = 600. The maximum value of A must occur either at this critical number
or at an endpoint of the interval. Since A(0) = 0, A(600) = 720,000, and A(1200) = 0,
the Closed Interval Method gives the maximum value as A(600) = 720,000.
[Alternatively, we could have observed that A”(x) = —4 < 0 for all x, so A is always
concave downward and the local maximum at x = 600 must be an absolute maximum.]
Thus, the rectangular field should be 600 ft deep and 1200 ft wide. -

EXAMPLE 2 A cylindrical can is to be made to hold 1 L of oil. Find the dimensions that
will minimize the cost of the metal to manufacture the can.

SOLUTION Draw the diagram as in Figure 3, where r is the radius and & the height (both in
centimeters). In order to minimize the cost of the metal, we minimize the total surface
area of the cylinder (top, bottom, and sides). From Figure 4 we see that the sides are
made from a rectangular sheet with dimensions 2777 and h. So the surface area is

A =2mr* + 2mrh

To eliminate 4 we use the fact that the volume is given as 1 L, which we take to be
1000 cm®. Thus
7r’h = 1000

which gives & = 1000/(7rr*). Substitution of this into the expression for A gives

5 1000 , 2000
A =2mr" + 2mr > | =27 + ——
r r
Therefore, the function that we want to minimize is
2000
A(r) = 2@ + —— r>0
r

To find the critical numbers, we differentiate:

2000  4(zr’ — 500)

r2 r2

A(r) = 4mr —

Then A'(r) = 0 when 7rr* = 500, so the only critical number is r = 3/500/ .

Since the domain of A is (0, ), we can’t use the argument of Example 1 concerning
endpoints. But we can observe that A'(r) < 0 for r < /500/7 and A'(r) > O for
r > /500/, so A is decreasing for all r to the left of the critical number and increasing
for all r to the right. Thus, r = 3/500/7r must give rise to an absolute minimum.

[Alternatively, we could argue that A(r) — % as r — 0" and A(r) — o as r — o, 0
there must be a minimum value of A(r), which must occur at the critical number. See
Figure 5.]

The value of & corresponding to r = /500/ 7 is

I 1000 1000 5 500 )
= = = — =2r
ar? w(500/ )3 T

Thus, to minimize the cost of the can, the radius should be /500/7 cm and the height
should be equal to twice the radius, namely, the diameter. ]

NOTE1 - The argument used in Example 2 to justify the absolute minimum is a variant
of the First Derivative Test (which applies only to local maximum or minimum values) and
is stated here for future reference.



additional optimization problems, includ- continuous function f defined on an interval.

IE' Module 4.7 takes you through eight First Derivative Test for Absolute Extreme Values Suppose that c is a critical number of a
ing animations of the physical situations.

(a) If f'(x) > O for all x < c and f'(x) < O for all x > ¢, then f(c) is the absolute
maximum value of f.

(b) If f'(x) < 0 forall x < c and f'(x) > 0 for all x > ¢, then f(c) is the absolute
minimum value of f.

NOTE 2 - An alternative method for solving optimization problems is to use implicit dif-
ferentiation. Let’s look at Example 2 again to illustrate the method. We work with the same
equations

A =27’ + 2arh 7r*h = 100
but instead of eliminating &, we differentiate both equations implicitly with respect to r:
A = 4qr + 2ah + 27k’ 2arh + wr*h' =0

The minimum occurs at a critical number, so we set A" = 0, simplify, and arrive at the
equations

2r+h+rh =0 2h+rh' =0

and subtraction gives 2r — h = 0, or h = 2r.

EXAMPLE 3 Find the point on the parabola y* = 2x that is closest to the point (1, 4).
y SOLUTION The distance between the point (1, 4) and the point (x, y) is

d= =17+ (5~ 47

(See Figure 6.) But if (x, y) lies on the parabola, then x = y*/2, so the expression for d
i1 ) becomes

N1 2 3 4 x d=Gy = 1)+ (- 47

(Alternatively, we could have substituted y = 4/2x to get d in terms of x alone.) Instead
of minimizing d, we minimize its square:

FIGURE 6 P=f() =Gy — 1)+ (y— 47

(You should convince yourself that the minimum of d occurs at the same point as the
minimum of d?, but d? is easier to work with.) Differentiating, we obtain

) =2Gy"—y+200—4=y"-38

so f'(y) = 0 when y = 2. Observe that f'(y) < 0 when y < 2 and f’(y) > 0 when

y > 2, so by the First Derivative Test for Absolute Extreme Values, the absolute mini-
mum occurs when y = 2. (Or we could simply say that because of the geometric nature
of the problem, it’s obvious that there is a closest point but not a farthest point.) The

corresponding value of x is x = y?/2 = 2. Thus, the point on y*> = 2x closest to (1, 4)
is (2, 2). -
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EXAMPLE 4 A man launches his boat from point A on a bank of a straight river, 3 km
wide, and wants to reach point B, 8 km downstream on the opposite bank, as quickly as
possible (see Figure 7). He could row his boat directly across the river to point C and
then run to B, or he could row directly to B, or he could row to some point D between C
and B and then run to B. If he can row 6 km/h and run 8 km/h, where should he land to
reach B as soon as possible? (We assume that the speed of the water is negligible com-
pared with the speed at which the man rows.)

SOLUTION If we let x be the distance from C to D, then the running distance
is |DB| = 8 — x and the Pythagorean Theorem gives the rowing distance as

|AD| = {/x? + 9. We use the equation

. distance
time = ———
rate

Then the rowing time is /x> + 9/6 and the running time is (8 — x)/8, so the total time
T as a function of x is

\/x2+9+8—x

T(x) = 5 3

The domain of this function 7 is [0, 8]. Notice that if x = 0 he rows to C and if x = 8
he rows directly to B. The derivative of T is

X

N}

1
8
Thus, using the fact that x = 0, we have

X 1
6/x2+9 8

&= 16x2=9(x*+9) < 7x*=38l1

< 4x=3x*+9

T'x) =0 <

9
P X—W

The only critical number is x = 9/ /7. To see whether the minimum occurs at this criti-
cal number or at an endpoint of the domain [0, 8], we evaluate T at all three points:

~ 142

_ I DI _VB
T0)=1.5 T<ﬁ>—1+ g ~ 1.33 @) = 6

Since the smallest of these values of T occurs when x = 9/ \/7 , the absolute minimum
value of 7" must occur there. Figure 8 illustrates this calculation by showing the graph
of T.

Thus, the man should land the boat at a point 9/ ﬁ km (=3.4 km) downstream from
his starting point. ]
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4.7 Exercises

EXAMPLE 5 Find the area of the largest rectangle that can be inscribed in a semicircle of
radius r.

SOLUTION 1 Let’s take the semicircle to be the upper half of the circle x> + y* = r* with
center the origin. Then the word inscribed means that the rectangle has two vertices on
the semicircle and two vertices on the x-axis as shown in Figure 9.
Let (x, y) be the vertex that lies in the first quadrant. Then the rectangle has sides of
lengths 2x and y, so its area is
A = 2xy

To eliminate y we use the fact that (x, y) lies on the circle x* + y? = r? and so

y = /r? — x% Thus
A=2efi

The domain of this function is 0 < x =< r. Its derivative is
2x2 2(r? —2x?)
\/rz — x2 \/rz — x2
which is 0 when 2x> = 2, that is, x = r/+/2 (since x = 0). This value of x gives a

maximum value of A since A(0) = 0 and A(r) = 0. Therefore, the area of the largest
inscribed rectangle is

A =2r*—x?—

A L — zL r2 _ r_z — r2
V2 V2 2
SOLUTION 2 A simpler solution is possible if we think of using an angle as a variable. Let
0 be the angle shown in Figure 10. Then the area of the rectangle is

A(0) = (2r cos 0)(rsin §) = r*(2sin 6 cos §) = r*sin 26

We know that sin 26 has a maximum value of 1 and it occurs when 20 = /2. So A(0)
has a maximum value of 7 and it occurs when 6 = /4.

Notice that this trigonometric solution doesn’t involve differentiation. In fact, we
didn’t need to use calculus at all. ]

1. Consider the following problem: Find two numbers whose sum (b) Use calculus to solve the problem and compare with your
is 23 and whose product is a maximum. answer to part (a).
() Make a table of values, like the following one, so that the 2. Find two numbers whose difference is 100 and whose product

sum of the numbers in the first two columns is always 23.

is a minimum.

On the basis of the evidence in your table, estimate the
answer to the problem.

3. Find two positive numbers whose product is 100 and whose
sum is a minimum.

20

First number Second number Product 4. Find a positive number such that the sum of the number and its
1 22 22 reciprocal is as small as possible.
z ’l 42 5. Find the dimensions of a rectangle with perimeter 100 m

60 whose area is as large as possible.

6. Find the dimensions of a rectangle with area 1000 m* whose
perimeter is as small as possible.
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10.

12.

13.

14.

Consider the following problem: A farmer with 750 ft of fenc-
ing wants to enclose a rectangular area and then divide it into
four pens with fencing parallel to one side of the rectangle.
What is the largest possible total area of the four pens?

(a) Draw several diagrams illustrating the situation, some with
shallow, wide pens and some with deep, narrow pens. Find
the total areas of these configurations. Does it appear that
there is a maximum area? If so, estimate it.

(b) Draw a diagram illustrating the general situation. Introduce
notation and label the diagram with your symbols.

(c) Write an expression for the total area.

(d) Use the given information to write an equation that relates
the variables.

(e) Use part (d) to write the total area as a function of one
variable.

(f) Finish solving the problem and compare the answer with
your estimate in part (a).

. Consider the following problem: A box with an open top is to

be constructed from a square piece of cardboard, 3 ft wide, by

cutting out a square from each of the four corners and bending

up the sides. Find the largest volume that such a box can have.

(a) Draw several diagrams to illustrate the situation, some short
boxes with large bases and some tall boxes with small
bases. Find the volumes of several such boxes. Does it
appear that there is a maximum volume? If so, estimate it.

(b) Draw a diagram illustrating the general situation. Introduce
notation and label the diagram with your symbols.

(c) Write an expression for the volume.

(d) Use the given information to write an equation that relates
the variables.

(e) Use part (d) to write the volume as a function of one
variable.

(f) Finish solving the problem and compare the answer with
your estimate in part (a).

. A farmer wants to fence an area of 1.5 million square feet in a

rectangular field and then divide it in half with a fence parallel
to one of the sides of the rectangle. How can he do this so as to
minimize the cost of the fence?

A box with a square base and open top must have a volume of
32,000 cm®. Find the dimensions of the box that minimize the
amount of material used.

. If 1200 cm? of material is available to make a box with a

square base and an open top, find the largest possible volume
of the box.

A rectangular storage container with an open top is to have a
volume of 10 m®. The length of its base is twice the width.
Material for the base costs $10 per square meter. Material for
the sides costs $6 per square meter. Find the cost of materials
for the cheapest such container.

Do Exercise 12 assuming the container has a lid that is made
from the same material as the sides.

(a) Show that of all the rectangles with a given area, the one
with smallest perimeter is a square.

15.
16.

17.

418,

19.
20.

21.

22

23.

24,

25.

26.

27.

28.

29.

30.

31,

(b) Show that of all the rectangles with a given perimeter, the
one with greatest area is a square.

Find the point on the line y = 4x + 7 that is closest to the
origin.

Find the point on the line 6x + y = 9 that is closest to the
point (=3, 1).

Find the points on the ellipse 4x* + y* = 4 that are farthest
away from the point (1, 0).

Find, correct to two decimal places, the coordinates of the
point on the curve y = tan x that is closest to the point (1, 1).

Find the dimensions of the rectangle of largest area that can be
inscribed in a circle of radius r.

Find the area of the largest rectangle that can be inscribed in
the ellipse x%/a* + y*/b* = 1.

Find the dimensions of the rectangle of largest area that can be
inscribed in an equilateral triangle of side L if one side of the
rectangle lies on the base of the triangle.

Find the dimensions of the rectangle of largest area that has its
base on the x-axis and its other two vertices above the x-axis
and lying on the parabola y = 8 — x2.

Find the dimensions of the isosceles triangle of largest area that
can be inscribed in a circle of radius r.

Find the area of the largest rectangle that can be inscribed in a
right triangle with legs of lengths 3 cm and 4 cm if two sides of
the rectangle lie along the legs.

A right circular cylinder is inscribed in a sphere of radius r.
Find the largest possible volume of such a cylinder.

A right circular cylinder is inscribed in a cone with height i
and base radius r. Find the largest possible volume of such a
cylinder.

A right circular cylinder is inscribed in a sphere of radius r.
Find the largest possible surface area of such a cylinder.

A Norman window has the shape of a rectangle surmounted
by a semicircle. (Thus, the diameter of the semicircle is equal
to the width of the rectangle. See Exercise 52 on page 24.) If
the perimeter of the window is 30 ft, find the dimensions of
the window so that the greatest possible amount of light is
admitted.

The top and bottom margins of a poster are each 6 cm and the
side margins are each 4 cm. If the area of printed material on
the poster is fixed at 384 cm?, find the dimensions of the poster
with the smallest area.

A poster is to have an area of 180 in> with 1-inch margins at
the bottom and sides and a 2-inch margin at the top. What
dimensions will give the largest printed area?

A piece of wire 10 m long is cut into two pieces. One piece
is bent into a square and the other is bent into an equilateral
triangle. How should the wire be cut so that the total area
enclosed is (a) a maximum? (b) A minimum?



32.

33.

34.

35.

36.

37.

38.

39.

Answer Exercise 31 if one piece is bent into a square and the
other into a circle.

A cylindrical can without a top is made to contain V cm® of
liquid. Find the dimensions that will minimize the cost of the
metal to make the can.

A fence 8 ft tall runs parallel to a tall building at a distance of
4 ft from the building. What is the length of the shortest ladder
that will reach from the ground over the fence to the wall of the
building?

A cone-shaped drinking cup is made from a circular piece of
paper of radius R by cutting out a sector and joining the edges
CA and CB. Find the maximum capacity of such a cup.

A B

A cone-shaped paper drinking cup is to be made to hold 27 cm’
of water. Find the height and radius of the cup that will use the
smallest amount of paper.

A cone with height £ is inscribed in a larger cone with height
H so that its vertex is at the center of the base of the larger
cone. Show that the inner cone has maximum volume when
h=1H.

For a fish swimming at a speed v relative to the water, the
energy expenditure per unit time is proportional to »*. It is
believed that migrating fish try to minimize the total energy
required to swim a fixed distance. If the fish are swimming
against a current u (1 < v), then the time required to swim a
distance L is L/(v — u) and the total energy E required to
swim the distance is given by

L
E() = av® -
v—u
where a is the proportionality constant.

(a) Determine the value of v that minimizes E.
(b) Sketch the graph of E.

Note: This result has been verified experimentally; migrating
fish swim against a current at a speed 50% greater than the
current speed.

In a beehive, each cell is a regular hexagonal prism, open at
one end with a trihedral angle at the other end. It is believed
that bees form their cells in such a way as to minimize the sur-
face area for a given volume, thus using the least amount of
wax in cell construction. Examination of these cells has shown
that the measure of the apex angle 6 is amazingly consistent.
Based on the geometry of the cell, it can be shown that the

40.

41.

42.

43.

44.

surface area S is given by
S = 6sh — 3s>cot § + (35%/3/2) csc 0

where s, the length of the sides of the hexagon, and 4, the

height, are constants.

(a) Calculate dS/d6.

(b) What angle should the bees prefer?

(c) Determine the minimum surface area of the cell (in terms
of s and h).

Note: Actual measurements of the angle 6 in beehives have

been made, and the measures of these angles seldom differ

from the calculated value by more than 2°.

rear | trihel:dral
of cell ~ pr—angled
|
|
|
|
|
I'n
|
|
|
-
front
§ of cell

A boat leaves a dock at 2:00 p.M. and travels due south at a
speed of 20 km/h. Another boat has been heading due east at
15 km/h and reaches the same dock at 3:00 P.M. At what time
were the two boats closest together?

Solve the problem in Example 4 if the river is 5 km wide and
point B is only 5 km downstream from A.

A woman at a point A on the shore of a circular lake with
radius 2 mi wants to arrive at the point C diametrically oppo-
site A on the other side of the lake in the shortest possible
time. She can walk at the rate of 4 mi/h and row a boat at

2 mi/h. How should she proceed?

The illumination of an object by a light source is directly
proportional to the strength of the source and inversely propor-
tional to the square of the distance from the source. If two
light sources, one three times as strong as the other, are placed
10 ft apart, where should an object be placed on the line
between the sources so as to receive the least illumination?

Find an equation of the line through the point (3, 5) that cuts
off the least area from the first quadrant.
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Let a and b be positive numbers. Find the length of the shortest
line segment that is cut off by the first quadrant and passes
through the point (a, b).

At which points on the curve y = 1 + 40x* — 3x’ does the
tangent line have the largest slope?

Show that of all the isosceles triangles with a given perimeter,
the one with the greatest area is equilateral.

The frame for a kite is to be made from six pieces of wood.
The four exterior pieces have been cut with the lengths indi-
cated in the figure. To maximize the area of the kite, how long
should the diagonal pieces be?

A point P needs to be located somewhere on the line AD so
that the total length L of cables linking P to the points A, B,
and C is minimized (see the figure). Express L as a function of
x = |AP| and use the graphs of L and dL/dx to estimate the
minimum value.

A _

The graph shows the fuel consumption ¢ of a car (measured in
gallons per hour) as a function of the speed v of the car. At very
low speeds the engine runs inefficiently, so initially ¢ decreases
as the speed increases. But at high speeds the fuel consumption
increases. You can see that c(v) is minimized for this car when
v = 30 mi/h. However, for fuel efficiency, what must be mini-
mized is not the consumption in gallons per hour but rather the
fuel consumption in gallons per mile. Let’s call this consump-
tion G. Using the graph, estimate the speed at which G has its
minimum value.

c

Let v, be the velocity of light in air and v, the velocity of light
in water. According to Fermat’s Principle, a ray of light will

52.

53.

54.

travel from a point A in the air to a point B in the water by a
path ACB that minimizes the time taken. Show that

sinfy v

sin 02 (%)
where 6, (the angle of incidence) and 6, (the angle of refrac-
tion) are as shown. This equation is known as Snell’s Law.

A
6,

6>
B

Two vertical poles PQ and ST are secured by a rope PRS
going from the top of the first pole to a point R on the ground
between the poles and then to the top of the second pole as in
the figure. Show that the shortest length of such a rope occurs
when 6, = 0,.

P

95}

) 0,
0 R T

The upper right-hand corner of a piece of paper, 12 in. by 8 in.,
as in the figure, is folded over to the bottom edge. How would
you fold it so as to minimize the length of the fold? In other
words, how would you choose x to minimize y?

A steel pipe is being carried down a hallway 9 ft wide. At the
end of the hall there is a right-angled turn into a narrower hall-
way 6 ft wide. What is the length of the longest pipe that can
be carried horizontally around the corner?

-« QN —>

~— 9 —



55. An observer stands at a point P, one unit away from a track.
Two runners start at the point S in the figure and run along the
track. One runner runs three times as fast as the other. Find the
maximum value of the observer’s angle of sight 6 between the
runners. [Hint: Maximize tan 6.]

56. A rain gutter is to be constructed from a metal sheet of width
30 cm by bending up one-third of the sheet on each side
through an angle 6. How should 6 be chosen so that the gutter
will carry the maximum amount of water?

0/ 0

\H 10 cm H\H 10 cm H\H 10 cm H\

57. Where should the point P be chosen on the line segment AB so
as to maximize the angle 6?

[ —]

58. A painting in an art gallery has height 4 and is hung so that its
lower edge is a distance d above the eye of an observer (as in
the figure). How far from the wall should the observer stand to
get the best view? (In other words, where should the observer
stand so as to maximize the angle 6 subtended at his eye by the
painting?)

59. Find the maximum area of a rectangle that can be circum-
scribed about a given rectangle with length L and width W.

60. The blood vascular system consists of blood vessels (arteries,
arterioles, capillaries, and veins) that convey blood from the
heart to the organs and back to the heart. This system should
work so as to minimize the energy expended by the heart in
pumping the blood. In particular, this energy is reduced when
the resistance of the blood is lowered. One of Poiseuille’s Laws
gives the resistance R of the blood as

R_CL
4

where L is the length of the blood vessel, r is the radius, and C
is a positive constant determined by the viscosity of the blood.
(Poiseuille established this law experimentally, but it also
follows from Equation 8.4.2.) The figure shows a main blood
vessel with radius r, branching at an angle 6 into a smaller ves-
sel with radius 7.

vascular
branching

(a) Use Poiseuille’s Law to show that the total resistance of the
blood along the path ABC is

a— bcoth bcsc
R=C +

ri r3

where a and b are the distances shown in the figure.
(b) Prove that this resistance is minimized when

cos 6 =

\:‘\
[N YN



(c) Find the optimal branching angle (correct to the nearest
degree) when the radius of the smaller blood vessel is two-
thirds the radius of the larger vessel.

61. Ornithologists have determined that some species of birds
tend to avoid flights over large bodies of water during daylight
hours. It is believed that more energy is required to fly over
water than land because air generally rises over land and falls
over water during the day. A bird with these tendencies is
released from an island that is 5 km from the nearest point B
on a straight shoreline, flies to a point C on the shoreline, and
then flies along the shoreline to its nesting area D. Assume that
the bird instinctively chooses a path that will minimize its
energy expenditure. Points B and D are 13 km apart.

(a) In general, if it takes 1.4 times as much energy to fly over
water as land, to what point C should the bird fly in order
to minimize the total energy expended in returning to its
nesting area?

(b) Let W and L denote the energy (in joules) per kilometer

flown over water and land, respectively. What would a large

value of the ratio W/L mean in terms of the bird’s flight?
What would a small value mean? Determine the ratio W/L
corresponding to the minimum expenditure of energy.

(¢) What should the value of W/L be in order for the bird to fly
directly to its nesting area D? What should the value of
W/L be for the bird to fly to B and then along the shore
to D?

HH APPLIED PROJECT

The Shape of a Can

(d) If the ornithologists observe that birds of a certain species
reach the shore at a point 4 km from B, how many times
more energy does it take a bird to fly over water than land?

| 13 km |‘

62. Two light sources of identical strength are placed 10 m apart.

An object is to be placed at a point P on a line € parallel to the
line joining the light sources and at a distance d meters from it
(see the figure). We want to locate P on ¢ so that the intensity
of illumination is minimized. We need to use the fact that the
intensity of illumination for a single source is directly propor-
tional to the strength of the source and inversely proportional to
the square of the distance from the source.

(a) Find an expression for the intensity /(x) at the point P.

(b) If d = 5 m, use graphs of /(x) and I'(x) to show that the
intensity is minimized when x = 5 m, that is, when P is at
the midpoint of €.

(c) If d = 10 m, show that the intensity (perhaps surprisingly)
is not minimized at the midpoint.

(d) Somewhere between d = 5 m and d = 10 m there is a tran-
sitional value of d at which the point of minimal illumina-
tion abruptly changes. Estimate this value of d by graphical
methods. Then find the exact value of d.

. ¢
P

X

— o, — >

‘ 10 m

In this project we investigate the most economical shape for a can. We first interpret this to mean
that the volume V of a cylindrical can is given and we need to find the height / and radius r that
minimize the cost of the metal to make the can (see the figure). If we disregard any waste metal

in the manufacturing process, then the problem is to minimize the surface area of the cylinder.

We solved this problem in Example 2 in Section 4.7 and we found that 7 = 2r; that is, the height
should be the same as the diameter. But if you go to your cupboard or your supermarket with a
i ruler, you will discover that the height is usually greater than the diameter and the ratio h/r varies

from 2 up to about 3.8. Let’s see if we can explain this phenomenon.



Discs cut from squares

Discs cut from hexagons

1. The material for the cans is cut from sheets of metal. The cylindrical sides are formed by
bending rectangles; these rectangles are cut from the sheet with little or no waste. But if the
top and bottom discs are cut from squares of side 2r (as in the figure), this leaves consider-
able waste metal, which may be recycled but has little or no value to the can makers. If this
is the case, show that the amount of metal used is minimized when

h 8
—=—=1255
roa
2. A more efficient packing of the discs is obtained by dividing the metal sheet into hexagons
and cutting the circular lids and bases from the hexagons (see the figure). Show that if this

strategy is adopted, then
h 43
T

~ 221

=

3. The values of //r that we found in Problems 1 and 2 are a little closer to the ones that
actually occur on supermarket shelves, but they still don’t account for everything. If we
look more closely at some real cans, we see that the lid and the base are formed from discs
with radius larger than r that are bent over the ends of the can. If we allow for this we
would increase i/r. More significantly, in addition to the cost of the metal we need to incor-
porate the manufacturing of the can into the cost. Let’s assume that most of the expense is
incurred in joining the sides to the rims of the cans. If we cut the discs from hexagons as in
Problem 2, then the total cost is proportional to

4.3 r* + 2arh + k(4ar + h)

where k is the reciprocal of the length that can be joined for the cost of one unit area of
metal. Show that this expression is minimized when

3/\77 S Th 2a — h/r
k r ah/r — 4.3

¥4 4. Plot 3/V/k as a function of x = //r and use your graph to argue that when a can is large or

joining is cheap, we should make 4/r approximately 2.21 (as in Problem 2). But when the
can is small or joining is costly, 4/r should be substantially larger.

5. Our analysis shows that large cans should be almost square but small cans should be tall and
thin. Take a look at the relative shapes of the cans in a supermarket. Is our conclusion usu-
ally true in practice? Are there exceptions? Can you suggest reasons why small cans are not
always tall and thin?

4.8 fApplications fo Business and Economics

inflection
point

c(x) =slope /

0

FIGURE 1 Cost function

In Section 3.3 we introduced the idea of marginal cost. Recall that if C(x), the cost func-
tion, is the cost of producing x units of a certain product, then the marginal cost is the rate
of change of C with respect to x. In other words, the marginal cost function is the deriva-
tive, C'(x), of the cost function.

The graph of a typical cost function is shown in Figure 1. The marginal cost C’(x) is the
slope of the tangent to the cost curve at (x, C(x)). Notice that the cost curve is initially con-
cave downward (the marginal cost is decreasing) because of economies of scale (more effi-
cient use of the fixed costs of production). But eventually there is an inflection point and
the cost curve becomes concave upward (the marginal cost is increasing), perhaps because
of overtime costs or the inefficiencies of a large-scale operation.



FIGURE 2
Average cost function

[l See Example 8 in Section 3.3 for an
explanation of why it is reasonable to model
a cost function by a polynomial.

The average cost function

1] clx) = )

X
represents the cost per unit when x units are produced. We sketch a typical average cost
function in Figure 2 by noting that C(x)/x is the slope of the line that joins the origin to
the point (x, C(x)) in Figure 1. It appears that there will be an absolute minimum. To find
it we locate the critical point of ¢ by using the Quotient Rule to differentiate Equation 1:

) — xC'(x) — C(x)

X
Now ¢'(x) = 0 when xC'(x) — C(x) = 0 and this gives

c(x)

Therefore:

If the average cost is a minimum, then

marginal cost = average cost

This principle is plausible because if our marginal cost is smaller than our average cost,
then we should produce more, thereby lowering our average cost. Similarly, if our mar-
ginal cost is larger than our average cost, then we should produce less in order to lower our
average cost.

EXAMPLE 1 A company estimates that the cost (in dollars) of producing x items is

C(x) = 2600 + 2x + 0.001x%

(a) Find the cost, average cost, and marginal cost of producing 1000 items, 2000 items,
and 3000 items.

(b) At what production level will the average cost be lowest, and what is this minimum
average cost?

SOLUTION
(a) The average cost function is
C(x) 2600

— + 2 + 0.001x
X

c(x) =

The marginal cost function is

C'(x) =2 + 0.002x

We use these expressions to fill in the following table, giving the cost, average cost, and
marginal cost (in dollars, or dollars per item, rounded to the nearest cent).

X C(x) c(x) C'(x)

1000 5,600.00 5.60 4.00
2000 10,600.00 5.30 6.00
3000 17,600.00 5.87 8.00




[l Figure 3 shows the graphs of the marginal
cost function C" and average cost function ¢ in
Example 1. Notice that ¢ has its minimum value
when the two graphs intersect.
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FIGURE 3

(b) To minimize the average cost we must have
marginal cost = average cost
C'(x) = c(x)

2600
2+ 0.002x = —— + 2 + 0.001x
X

This equation simplifies to

2
0.001x = 600
X
2600
2="""" =9
SO X 0.001 ,600,000

and x = 4/2,600,000 = 1612

To see that this production level actually gives a minimum, we note that
¢"(x) = 5200/x* > 0, so c is concave upward on its entire domain. The minimum
average cost is

2600
¢(1612) = <5 + 2 + 0.001(1612) = $5.22/item

Now let’s consider marketing. Let p(x) be the price per unit that the company can
charge if it sells x units. Then p is called the demand function (or price function) and we
would expect it to be a decreasing function of x. If x units are sold and the price per unit
is p(x), then the total revenue is

R(x) = xp(x)

and R is called the revenue function (or sales function). The derivative R’ of the revenue
function is called the marginal revenue function and is the rate of change of revenue with
respect to the number of units sold.

If x units are sold, then the total profit is

P(x) = R(x) — C(x)

and P is called the profit function. The marginal profit function is P’, the derivative of
the profit function. In order to maximize profit we look for the critical numbers of P, that
is, the numbers where the marginal profit is 0. But if

P'(x) =R'(x) = C'(x) =0
then R'(x) = C'(x)

Therefore:

If the profit is a maximum, then
marginal revenue = marginal cost




[IIl" Figure 4 shows the graphs of the revenue
and cost functions in Example 2. The company
makes a profit when R > C and the profitis a
maximum when x = 103. Notice that the curves
have parallel tangents at this production level
because marginal revenue equals marginal cost.
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To ensure that this condition gives a maximum, we could use the Second Derivative
Test. Note that

P'(x) =R"(x) — C"(x) <0
when R"(x) < C"(x)

and this condition says that the rate of increase of marginal revenue is less than the rate of
increase of marginal cost. Thus, the profit will be a maximum when

R'(x) = C'(x) and R"(x) < C"(x)

EXAMPLE 2 Determine the production level that will maximize the profit for a company
with cost and demand functions

C(x) = 84 + 1.26x — 0.01x? + 0.00007x* and p(x) =35 —0.0lx
SOLUTION The revenue function is
R(x) = xp(x) = 3.5x — 0.01x
so the marginal revenue function is
R'(x) = 3.5 — 0.02x
and the marginal cost function is
C'(x) = 1.26 — 0.02x + 0.00021x>

Thus, marginal revenue is equal to marginal cost when

3.5 — 0.02x = 1.26 — 0.02x + 0.00021x>

2.24
X=|/——=103
0.00021

To check that this gives a maximum, we compute the second derivatives:

Solving, we get

R"(x) = —0.02 C"(x) = —0.02 + 0.00042x

Thus, R"(x) < C"(x) for all x > 0. Therefore, a production level of 103 units will maxi-
mize the profit.

EXAMPLE 3 A store has been selling 200 DVD players a week at $350 each. A market
survey indicates that for each $10 rebate offered to buyers, the number of players sold
will increase by 20 a week. Find the demand function and the revenue function. How
large a rebate should the store offer to maximize its revenue?

SOLUTION If x is the number of DVD players sold per week, then the weekly increase in
sales is x — 200. For each increase of 20 players sold, the price is decreased by $10. So
for each additional player sold, the decrease in price will be 5; X 10 and the demand
function is

p(x) =350 — 20 (x — 200) = 450 — 1x



The revenue function is
R(x) = xp(x) = 450x — 1x?

Since R'(x) = 450 — x, we see that R'(x) = 0 when x = 450. This value of x gives an
absolute maximum by the First Derivative Test (or simply by observing that the graph of
R is a parabola that opens downward). The corresponding price is

p(450) = 450 — 1(450) = 225

and the rebate is 350 — 225 = 125. Therefore, to maximize revenue the store should
offer a rebate of $125.

4.8 Exercises

1. A manufacturer keeps precise records of the cost C(x) of 4. The figure shows graphs of the cost and revenue functions
making x items and produces the graph of the cost function reported by a manufacturer.
shown in the figure. (a) Identify on the graph the value of x for which the profit is
(a) Explain why C(0) > 0. maximized.
(b) What is the significance of the inflection point? (b) Sketch a graph of the profit function.
(c) Use the graph of C to sketch the graph of the marginal cost (c) Sketch a graph of the marginal profit function.
function. y
c y=R(x)
y=Clx)
0 X
0 X
5-8 1l For each cost function (given in dollars), find (a) the cost,

average cost, and marginal cost at a production level of 1000 units;

2. The graph of a cost function C is given. (b) the production level that will minimize the average cost; and
(a) Draw a careful sketch of the marginal cost function. (c) the minimum average cost.
(b) Use the geomf:tric interpretation of the average cost c(x) as 5. C(x) = 40,000 + 300x + x2
a slope (see Figure 1) to draw a careful sketch of the aver-
age cost function. 6. C(x) = 25,000 + 120x + 0.1x>
(¢) Estimate the value of x for which.c(x) is a minimum. How 7. C(x) = 16,000 + 200x + 4x*/>
are the average cost and the marginal cost related at that
value of x? 4 8. C(x) = 10,000 + 340x — 0.3x> + 0.0001x>

[ 9-10 i A cost function is given.
(a) Find the average cost and marginal cost functions.
(b) Use graphs of the functions in part (a) to estimate the produc-
tion level that minimizes the average cost.
200 (c) Use calculus to find the minimum average cost.
(d) Find the minimum value of the marginal cost.

— 9. C(X) = 3700 + 5x — 0.04x* + 0.0003x°
10. C(x) = 339 + 25x — 0.09x% + 0.0004x°

o o o o o o o o o o o

3. The average cost of producing x units of a commodity is
c(x) = 21.4 — 0.002x. Find th