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Abstract: 
It is well recognized that support vector machines (SVMs) 

would produce better classification performance in terms of 
generalization power. A SVM constructs an optimal separating 
hyper-plane through maximizing the margin between two 
classes in high-dimensional feature space. The inverse problem 
is how to split a given dataset into two clusters such that the 
margin between the two clusters attains the maximum. It is 
difficult to give an exact solution to this problem, so a genetic 
algorithm is designed to solve this problem. But the proposed 
genetic algorithm has large time complexity for the process of 
solving quadratic programs. In this paper, we replace the 
quadratic programming with a linear programming. The new 
algorithm can greatly decrease time complexity. The fast 
algorithm for acquiring the maximum margin can upgrade the 
applicability of the proposed genetic algorithm. 
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1. Introduction 

Support vector machines (SVMs) are a classification 
technique of machine learning based on statistical learning 
theory [1, 2]. Considering a classification problem with two 
classes, SVMs are to construct an optimal hyper-plane that 
maximizes the margin between two classes. According to 
Vapnik statistical learning theory[1], the maximum of 
margin implies the extraordinary generalization capability 
and good performances of SVM classifiers. So far, SVMs 
have already been successfully applied to many real fields. 

The investigation to the inverse problem of SVMs is 
motivated by designing a new decision tree generation 
procedure to improve the generalization capability of 
existing decision tree programs based on minimum entropy 
heuristic. Due to the relationship between the margin of 
SVMs and the generalization capability, the split with 
maximum margin may be considered as the new heuristic 
information for generating decision trees.  

It is difficult to give an exact solution to this problem, 
so a genetic algorithm is designed to solve this problem. 
But the proposed genetic algorithm has large time 
complexity for the process of solving quadratic programs. 
In this paper, we replace the quadratic programming with a 
linear programming. Our proposed techniques in this paper 
can greatly decrease time complexity. The fast algorithm 
for acquiring the maximum margin can upgrade the 
applicability of the proposed genetic algorithm. 

This paper has the following organization. Section 2 
briefly reviews the basic concept of support vector 
machines. Section 3 introduces the inverse problem of 
SVMs and a genetic algorithm to solve this problem. In 
section 4, we introduce linear programming approach to the 
inverse problem of support vector machines. And the last 
section briefly concludes this paper. 

2. Support Vector Machines 

2.1. The basic problem of SVMs 

Let { }1 1 2 2( , ), ( , ), , ( , )N NS x y x y x y= L
n

i

be a training 

set, where x R∈ { 1,1}iy ∈ −and  for i N1, 2, ,= L

( ) 0
. 

The optimal hyper-plane of S is defined as f x = , where 

( )0( ) 0f x w x b= ⋅ +                (1) 
0
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N
j j jj
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i⋅ = ⋅∑  is the inner product of the two 

vectors, where  and 1 2
0 0 0 0( , , , )nw w w w= L

1 2( , , , )nx x x x= L . The vector W0 can be determined 
according to the following quadratic programming [1] 
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Its dual problem is following: 
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where C is a positive constant. The constant  0b
is given by 

( )0
0 1

N
i i j j jj

b y x y xα
=

= − ⋅∑           (5) 

Substituting (2) for  in (1), we have 0w

( )0
01

( ) N
i i ii

f x y x xα
=

= ⋅∑ b+           (6) 

We can know separability of two subsets through 
checking whether the following inequalities 

( )0 1; 1, 2, ,i iy w x b i N⋅ − ≥ = L       (7) 
hold well[1]. 

A procedure to compute maximum margin for two 
subsets is described below. 

Procedure 1. The constant C in equation (4) is selected 
to be large at first. 

Step 1. Solving the quadratic programming (4). 
Step 2. Determining the separating hyper-plane (6) 

according to (5). 
Step 3. Checking the separability between two subsets 

according to inequalities (7). 
Step 4. Let the margin be 0 if the two subsets are not 

separable. 
Step 5. Computing the maximum margin according to 

)(/1 00 ww ⋅  for the separable case where the vector w is 
determined by (2). 

2.2. Generalization in Feature Space 

Practically the performance of SVMs based on the 
previous section may not be very good for the 
nonlinear-separable cases in the original space. To improve 
the performance and to reduce the computational load for 
the nonlinear separable datasets, Vapnik [1] extended the 
SVMs from the original space to the feature space. The key 
idea of the extension is that a SVM first maps the original 
input space into a high-dimensional feature space through 
some nonlinear mapping, and then constructs an optimal 
separating hyper-plane in the feature space. Without any 

knowledge of the mapping, the SVM can find the optimal 
hyper-plane by using the dot product function in the feature 
space. The dot function is usually called a kernel function. 
According to Hilbert-Schmidt theorem [1], there exists a 
relationship between the original space and its feature space 
for the dot product of two points. That is 

1 2 1 2( ) ( ,z z K x x )⋅ =                   (8) 
where it is assumed that a mapping  from the original 
space to the feature space exists, such that 

Φ
1( ) 1x zΦ =  and 

2( ) 2x zΦ = , and 1 2( , )K x x  is conventionally called a 
kernel function satisfying the Mercer theorem [1]. Usually 
the following three types of kernel functions can be used: 
polynomial with degree p, radial basis function and sigmoid 
function [1]. Replacing the inner product ( )1 2x x⋅  in (6) 

with the kernel function ( )1 2,K x x , the optimal separating 
hyper-plane becomes the following form: 

( )0
01

( ) ,N
i i ii

f x y K x xα
=

b= +∑          (9) 

It is worth noting that the conclusion of section 2.1 is 
still valid in the feature space if we substitute ( )1 2,K x x  
for the inner product ( )1 2x x⋅ . 

3. An inverse problem of SVMs and its solution based 
on genetic algorithms 

For a given dataset of which no class labels are 
assigned to instances, we can randomly split the dataset into 
two subsets. Suppose that one is the positive instance subset 
and the other is the negative instance subset, we can 
calculate the maximum margin between the two subsets 
according to Procedure 1 where the margin is equal to 0 for 
the non-separable case. Obviously the calculated margin 
depends on the random split of the dataset. Our problem is 
how to split the dataset such that the margin calculated 
according to Procedure 1 attains the maximum.[5] 

It is an optimization problem. We mathematically 
formulate it as follows. Let { }1 2, , , NS x x x= L be a 

dataset and n
ix R∈ for , 1, 2, ,i N= L

{ }| is a funct tof f Sion from {1, 1}Ω = − . Given a function 

f ∈Ω , the dataset can be split to two subsets and then the 
margin can be calculated by Procedure 1. We denote the 
calculated margin (the functional) by Margin( )f . Then the 
inverse problem is formulated as 

( )Maximum Margin( )f f∈Ω              (10) 
Due to the exponentially increased complexity, it is not 

feasible to enumerate all possible functions in Ω  for 
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calculating their margins according to Procedure 1. It is 
difficult to give an exact algorithm for solving the 
optimization problem (10). This paper makes an attempt to 
solve (10) by designing a genetic algorithm [4]. Because of 
the limit of the paper length, we only present the encoding 
mechanics and fitness function of our proposed genetic 
algorithm to solve equation (10). For details about genetic 
algorithms, one can refer to [4]. 

Each function  corresponds to a binary 
partition of the dataset S. Therefore each f can be viewed as 
a N-dimensional vector such as 100011101L 01 with N 
bits. Each bit taking value 0 or 1 is regarded as a gene 
corresponding to an instance in S. Thus each chromosome 
(a bit string such as 100011101L 01) consisting of N genes 
represents a function in  where if a bit is 1 it means that 
the corresponding instance is positive; and a value 0 
represents that the corresponding instance is negative. The 
fixed length of each chromosome’s coding is N, the number 
of instances of the initial dataset.  

f ∈Ω

Ω

Noting that each chromosome corresponds to a 
training set given in section 2, we define the fitness value 
for each chromosome as the margin value computed by 
Procedure 1. Here the fitness value is 0 if the chromosome 
corresponds to a non-separable training set, and is the real 
margin of the SVM if the chromosome corresponds to a 
separable training set. 

Due to the limit of paper length, we omit the 
formulation of the algorithm. For details, one can refer to 
[5]. 

4. Linear programming approach for the inverse 
problem of support vector machines 

In reference [5], a well-known dataset called Iris is 
selected to verify the relationship between the running time 
and the number of samples. 100 samples of the dataset (the 
second class and the third class) are used for the 
verification. Figure 1 shows the running time change with 
the increase of samples. The increase seems to be 
exponential.  

From the experiment result, we know that that the 
proposed genetic algorithm has large time complexity, the 
main reason is the process of solving quadratic programs. 
In this paper, we replace the quadratic programming with 
linear programming. In reference [6], quadratic 
programming (3) is replaced with the following linear 
programming: 

 
Figure 1. Running time change with the increase of samples 
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Through introducing linear programming, the time 
complexity of genetic algorithm for solving the inverse 
problem of support vector machines is improved, and the 
applicability of the proposed inverse problem of support 
vector machines.  

5. Concluding remarks 

Motivated by designing a new heuristic procedure of 
generating decision trees with higher generalization 
capability, reference [5] proposes a genetic algorithm for 
solving an inverse problem of SVMs. The algorithm is 
effective and efficient for small datasets. The main 
disadvantage of this algorithm is its large time complexity. 
In this paper, we replace the quadratic programming with 
linear programming, which improving greatly the time 
complexity, and the applicability of the proposed inverse 
problem of support vector machines. We have the following 
remarks: 

(1) We need to have some experiments to verify the 
effectiveness of linear programming support vector 
machines. 

(2) Whether the linear programming support vector 
machines has the loss in the generalization. 
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(3) If there is the loss in the linear programming 
support vector machines, we must evaluate whether it is 
worthy although linear programming SVM improves the 
time complexity. 
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