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Abstract 

Mafia can be described as an experiment in human psychology and mass hysteria, or 

as a game between informed minority and uninformed majority. Focus on a very 

restricted setting, Mossel et al. [to appear in Ann. Appl. Probab. Volume 18, Number 2] 

showed that in the mafia game without detectives, if the civilians and mafias both 

adopt the optimal randomized strategy, then the two groups have comparable 

probabilities of winning exactly when the total player size is R and the mafia size is of 

order R . They also proposed a conjecture which stated that this phenomenon should 

be valid in a more extensive framework. In this paper, we first indicate that the main 

theorem given by Mossel et al. [to appear in Ann. Appl. Probab. Volume 18, Number 

2] can not guarantee their conclusion, i.e., the two groups have comparable winning 

probabilities when the mafia size is of order R . Then we give a theorem which 

validates the correctness of their conclusion. In the last, by proving the conjecture 

proposed by Mossel et al. [to appear in Ann. Appl. Probab. Volume 18, Number 2], we 

generalize the phenomenon to a more extensive framework, of which the mafia game 

without detectives is only a special case. 
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1. Introduction 

Mafia can be described as an experiment in human psychology and mass hysteria, or 

as a game between informed minority and uninformed majority. The history of mafia 

game can be traced to the 1970’s, when a game called Murder, which was the 

prototype of mafia game, had been played for many years [1]. This is a game which 

can train one’s expressive ability, discrimination ability, imagination ability and acting 

ability, etc. The game has common characteristics with many real life games, for 

example: workers, managers and stockholders at a company; students, teachers and 

management of a school; or citizens, the mafia and the police at a certain city. All of 

these games share the following three similar features: (1) each player may belong to 

one or more coalitions; (2) different groups make decision in different ways and take 

actions of different types; (3) different players accumulate information in different 

ways [2, 3]. 

According to the classification of games, the mafia game is a type of dynamic, 

partial information and group game. However, the previous works on the partial 

information and group games are mostly concerned with general definitions and 

abstract results in the context of extensive games. This line of research has not 

resulted in much quantitative analysis [3, 4]. Focus on a very restricted setting, 

Braverman, Etesami and Mossel obtained very precise results on the relative power of 

different groups. In particular, they first find a randomized strategy that is optimal in 

the absence of detectives, which leads to a stochastic asymptotic analysis using 

martingale arguments and the martingale stopping time theorem [5], where it is shown 

that the two groups have comparable winning probabilities when the mafia size is of 

order R . Then they propose a conjecture which states that the following phenomena 

should be valid in further generality: “In cases where there exists a distinguished 

group of size M that has complete information and acts at all rounds playing against a 

group of players of size R−M with no prior information that acts only at fraction α of 
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the rounds, it is expected that the two groups will have comparable winning 

probabilities if M = Rα ” [2]. 

This paper investigates the quantitative analysis of mafia game without detectives 

and adopts the same setting of mafia game as [2]. We first note that the main theorem 

given by Braverman, Etesami and Mossel can not hold under the conditions given by 

them. More important, by constructing an example, we indicate that even the holding 

of the theorem can not guarantee their conclusion, i.e., the two groups have 

comparable winning probabilities when the mafia size is of order R . Then through 

the establishment of a recursive formula, we build almost tight bounds of the winning 

probability and validate the conclusion of Braverman et al. In the last, by the proof of 

the conjecture proposed by Braverman, Etesami and Mossel, we generalize that this 

phenomenon is valid in a more extensive framework, of which the mafia game 

without detectives is only a special case. 

Section 2 introduces the main results developed by Mossel et al. and indicates the 

deficiencies of their works. In Section 3, by the establishment of a recursive formula 

of the winning probability, we derive almost tight bounds of winning probability 

using the technique of mathematical induction, which validates the phenomenon that 

in the mafia game without detectives, the citizens and mafias have comparable 

winning probabilities when the mafia size is of order square root of the size of the 

total population. In Section 4, by the proof of a conjecture proposed by Mossel et al., 

we generalize the mafia game to a more extensive framework. Section 5 studies the 

change the existence of detectives can bring to the qualitative behavior of the game, 

where the deficiencies of existed works and future research directions are discussed. 

Section 6 summarizes this paper. 

2. Existed Works and Deficiencies 

In the absence of detectives, Braverman, Etesami and Mossel found that the 

randomized strategy is optimal for both the citizens and mafias [2]. Given the optimal 
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strategies, suppose initially there are in all R players and M mafia members among the 

players, and let w(R, M) denote the probability that the mafias win the mafia game 

without detectives when both the citizens and mafias adopt their optimal strategies. 

By using the martingale argument in stochastic asymptotic analysis [5], Braverman et 

al. draw one of their main results as the following theorem [2]: 

Conclusion 1. There exists functions p : (0, ∞) → (0, 1) and q : (0, ∞) → (0, 1) such 

that if 0 < η < ∞, the number of residents R is sufficiently large and the mafia size 

satisfies M ∈ [η R , η R + 1] then  

p(η) ≤ w(R, M) ≤ q(η). 

Furthermore,  

1)(lim =
∞→

η
η

p , 

and 

0)(lim
0

=
→

η
η

q . 

And according to the above theorem, the authors draw the conclusion that when 

there are no detectives the mafias and citizens have comparable chance to win when 

the mafia size M is of order R . Moreover if M is a large multiple of R  then the 

chance that the mafias win is close to 1 and if it is a small multiple of R  then the 

chance that the mafias win is close to 0. 

However, we note that the theorem does not hold under the conditions given above, 

the authors may have thought some conditions for granted during their proof process 

and the conditions should be slightly changed to make the theorem holds. More 

important, it will be indicated that according to the theorem, we can not derive the 

conclusion that the two groups have comparable winning probability when the mafia 

size M is of order R . 

Claim 1. The function q: (0, ∞) → (0, 1) in conclusion 1 does not exist. 

Proof. We note that for any finite R, the function q does not exist. For example, if 

R≥η , then M≥η R ≥R, which means that all the players are mafias, so it is clear 
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that w(R, M)=1 when R≥η . Suppose there exists q: (0, ∞) → (0, 1) such that w(R, 

M) ≤ q(η), then when R≥η , 

q(η)≥ w(R, M) =1, 

this contradicts with q(η)<1, so the function q does not exist. It is worth noting that 

even if we let q: (0, ∞) → (0, 1], for any finite R, there still does not exist function q 

such that w(R, M) ≤ q(η) and 0)(lim
0

=
→

η
η

q . This is because when η<1/ R , then 

η R <1, according to M∈ [η R , η R + 1] and M is integer, we have M =1. So we 

have when η<1/ R , 

w(R, 1) ≤ q(η), 

then 

)1,()(lim
0

Rwq ≥
→

η
η

. 

It is clear that w(R, 1)>0 for any finite R, then we have 

0)(lim
0

>
→

η
η

q , 

this contradicts with 

0)(lim
0

=
→

η
η

q . � 

It is clear that 

0)1,(lim =
∞→

Rw
R

, 

so 0)(lim
0

=
→

η
η

q  should be changed to: 

0)(limlim
0

=
→∞→

η
η

q
R

. 

Then conclusion 1 should be slightly changed as following: 

Conclusion 1’. There exists functions p : (0, ∞) → (0, 1) and q : (0, ∞) → (0, 1] such 

that if 0 < η < ∞, the number of residents R is sufficiently large and the mafia size 

satisfies M ∈ [η R , η R + 1] then 

p(η) ≤ w(R, M) ≤ q(η). 

Furthermore,  
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1)(lim =
∞→

η
η

p , 

and 

0)(limlim
0

=
→∞→

η
η

q
R

. 

However, we note that according to the holding of the above conclusion about 

winning probability, we can not arrive at the conclusion that the two groups have 

comparable winning probability when the mafia size M is of order R . We prove this 

point by constructing the following example: 

Example 1. Suppose  

w(R, M)=M/(R+M), 

we construct functions p: (0, ∞) → (0, 1) and q: (0, ∞) → (0, 1] as follows: let 

p(η)=η/(η+ R ). 

If η< R /2−1/ R , let 

q(η)=(η+1/ R )/(η+ R ); 

and if η≥ R /2−1/ R , let 

q(η)=1. 

Because R>0, it is clear that for any positive x and y, if x≥y, then 

x/(R+x)≥ y/(R+y). 

Since η R  ≤ M ≤ η R + 1, then we have: 

η R /(R+η R ) ≤ M/(R+M) ≤ (η R + 1)/(R+η R + 1)            (1) 

In Eq. (1), 

η R /(R+η R )=η/(η+ R )= p(η); 

(η R + 1)/(R+η R + 1)= (η+1/ R )/(η+ R +1/ R ) 

                   < (η+1/ R )/(η+ R )= q(η). 

Then according to Eq. (1) and M/(R+M) = w(R, M), we have 

p(η) ≤ w(R, M) ≤ q(η). 

And it is clear that 
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1lim)(lim =
+

=
∞→∞→ R

p
η

ηη
ηη

 

and 

01lim/1limlim)(limlim
00

==
+
+

=
∞→→∞→→∞→ RR

Rq
RRR η

ηη
ηη

. � 

It can be seen that w(R, M)=M/(R+M) and the functions p and q satisfy all the 

conditions in conclusion 1’. But it is clear that in this case only when M and R are in 

the same order, w(R, M) can be a comparable value with 1/2. So the holding of 

conclusion 1’ can not guarantee that the two groups have comparable winning 

probability when the mafia size M is of order R . Then what conditions should R and 

M satisfy to keep the two groups have comparable winning probabilities? The 

following section will answer this problem. 

3. Almost Tight Bounds of Winning Probability 

Suppose at the beginning of the game, there are in all n civilians and m mafias (here m 

and n+m correspond to the M and R in the above section respectively), let W(n, m) be 

the probability that the mafias win the game in the last. We note that in the mafia 

game without detectives, the randomized strategy is optimal for both sides only when 

the civilians are in majority of the players. When the mafias are in majority of the 

players, then no matter what strategy the civilians adopt, the mafias will surely win 

the game, which means that W(n, m)=1 if n<m. And it is clear that W(n, 0)=0 for any 

n>0. The left boundary case is n=1 and m=1, it is clear that in this case there will be a 

tie, since the civilian and mafia will vote each other. According to the rule adopted by 

Braverman, Etesami and Mossel, “In cases of a tie, the identity of the person to be 

killed is chosen uniformly at random among all players who received the maximal 

number of votes” [2], we should let W(1, 1)=0.5. 

If the civilians are in majority and both sides adopt their optimal strategy, then we 

have a recursive formula of W(n, m) as the following theorem: 

Theorem 1. In the mafia game without detectives, suppose initially there are n 
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civilians and m mafias, the civilians are in majority and both sides adopt their optimal 

randomized strategy. Let W(n, m) be the probability that the mafias win the game in 

the last, then we have: 

          )1,1(),2(),( −−
+

+−
+

= mnW
mn

mmnW
mn

nmnW                (2) 

holds for any n≥m≥1. 

Proof. The game consists of the iteration of the day round and the night round until 

the game terminates. If both sides adopt the randomized strategy, then in the day 

round every player has the equal chance to be voted to death. So in the vote round, 

one of the civilians is selected with probability n/(n+m) and one of the mafias is 

selected with probability m/(n+m). In the first case, in the night round one civilian is 

randomly selected to kill, so after the first iteration, there are n−2 civilians and m 

mafias left. In the second case, in the night round one civilian is randomly selected to 

kill, so after the first iteration, there are n−1 civilians and m−1 mafias left. So we have 

the recursive formula of W(n, m) as Eq. (2). � 

It would be nice if we can derive the closed-form expression of W(n, m) according 

to Eq. (2). However, we note that the closed-form expression of W(n, m) is difficult to 

derive even if when m is very small. But we can get almost tight bounds of W(n, m) as 

the following theorem: 

Theorem 2. In the mafia game without detectives, suppose initially there are n 

civilians and m mafias, the civilians are in majority and both sides adopt their optimal 

randomized strategy. Let W(n, m) be the probability that the mafias win the game in 

the last, if m ≤ k and n+m ≤ R, then we have for any n≥m: 

   
mn

mRmnW
mn

m
k
k

+
≤≤

+
− 100

1

),(22 .                         (3) 

Proof. Since W(m−2, m)=W(m−1, m)=1, it is clear that W(n, m)≥
mn

m
k
k

+
− 22  

holds when n=m−2 and n=m−1 for any 1≤ m ≤ k. According to W(n, 0)=0, we have 

W(n, m)≥
mn

m
k
k

+
− 22  holds when m=0 for any 1≤ n. Suppose for some m≥0, 
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W(n, m)≥
mn

m
k
k

+
− 22  holds for any m−2≤ n. Then in the case m+1 (m+1≤k), we 

already have W(n, m+1)≥
mn

m
k
k

+
− 22  holds for n= m−1 and n=m, suppose for 

some t ≥ m, W(n, m+1)≥
mn

m
k
k

+
− 22  holds for any n≤ t, then we have: 

mtmt
mtm

k
k

mt
m

k
k

mt
m

mt
m

k
k

mt
t

mtW
mt

mmtW
mt

tmtW

+++
+++

×
−

=

+
−

×
++

+
+

+
+−

×
++

+
≥

++
+

++−
++

+
=++

)2(
)1)(1(22

22
2

1122
2

1

),(
2

1)1,1(
2

1)1,1(

                 (4) 

It is obvious that 

2
21)

2
11( 2

++
−≥

++
−

mtmt
                      (5) 

Eq. (5) is equivalent to 
2

)
2
1( 2

++
+

≥
++
++

mt
mt

mt
mt , square root both sides, we have 

22
1

++
+

≥
++
++

mt
mt

mt
mt , divide both sides by mt +  and multiply both sides by 

)1(22
+

− m
k
k , we have: 

       
2

)1(22
)2(

)1)(1(22
++

+
×

−
≥

+++
+++

×
−

mt
m

k
k

mtmt
mtm

k
k              (6) 

According to Eq. (4) and (6), W(t+1, m+1)≥
2

)1(22
++

+
×

−
mt

m
k
k  holds. 

According to the mathematical induction, we have W(n, m+1)≥
1

122
++

+−
mn

m
k
k  

holds for any n≥ m−1. Since from assumption, we have W(n, m)≥
mn

m
k
k

+
− 22  

holds for any m−2≤ n, again according to the mathematical induction, we can draw 

that 
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                 W(n, m)≥
mn

m
k
k

+
− 22                         (7) 

holds for any m ≤ k and n≥m−2. 

Since W(m−2, m)=W(m−1, m)=1 and 1)( 100
1

≥+ mn , it is clear that W(n, m)≤ 

mn
mmn
+

+ 100
1

)(  holds when n=m−2 and n= m−1 for any 1≤ m. According to W(n, 

0)=0, we have W(n, m) ≤
mn

mmn
+

+ 100
1

)(  holds when m=0 for any 1≤ n. Through 

the computing using electronic computer, we can show that W(n, m) 

≤
mn

mmn
+

+ 100
1

)(  holds for any n+m ≤ 100. Suppose for some m≥0, W(n, m) 

≤
mn

mmn
+

+ 100
1

)(  holds for any m−2≤ n. Then in the case m+1, we already have 

W(n, m+1)≤
1

1)1( 100
1

++
+

++
mn

mmn  holds for n=m−1, m and n+m+1 ≤ 100, suppose 

for some t ≥ max{m, 99−m}, W(n, m+1)≤
1

1)1( 100
1

++
+

++
mn

mmn  holds for any n≤ t, 

then we have: 

mtmt
mtmmt

mt
mmt

mt
m

mt
mmt

mt
t

mtW
mt

mmtW
mt

tmtW

+++
+++

×+=

+
+×

++
+

+
+
+

+×
++

+
≤

++
+

++−
++

+
=++

)2(
)1)(1()(

)(
2

11)(
2

1

),(
2

1)1,1(
2

1)1,1(

100
1

100
1

100
1

         (8) 

To continue the proof, we first introduce the following inequality: 

n

nn

1
2
1

)21(11
−

−≤−                           (9) 

holds for any integer n>2. Let 1)21()( 2
1

−+−=
−

xxxf
x

 (0≤ x <0.5), it is obvious 

that f(0)=0. And ))21ln(1()21(1)(' 2
1

xxxf
x

−+−−=
−

, it is clear that if 0< x <0.5, 
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then f′(x)>0, so f(x)> f(0)=0 (0< x <0.5), which is equivalent to 
x

xx
−

−<− 2
1

)21(1 . 

For integer n>2, let x=1/n, then we have n

nn

1
2
1

)21(11
−

−≤−  holds. 

Since t+m+2>100, in Eq. (9), let n= t+m+2, we have: 

 2
1

2
1

)
2

21(
2

11 ++
−

++
−≤

++
− mt

mtmt
                     (10) 

Since 
100

1
2
1

2
1

2
1

−≥
++

−
mt

 and 1
2

21 <
++

−
mt

, then we have 

100
1

2
1

2
1

2
1

)
2

21()
2

21(
−

++
−

++
−≤

++
−

mtmt
mt  holds. According to Eq. (10), we arrive at 

100
1

2
1

)
2

21(
2

11
−

++
−≤

++
−

mtmt
, which under transformation is equivalent to 

2
)2(

)2(
1)(

100
1

100
1

++
++

≤
+++

++
+

mt
mt

mtmt
mtmt , both sides multiply with (m+1), we 

have 
2

)1()2(
)2(

)1)(1()( 100
1

100
1

++
+

++≤
+++
+++

+
mt

mmt
mtmt

mtmmt . According to Eq. (8), 

we have 
2

)1()2()1,1( 100
1

++
+

++≤++
mt

mmtmtW  holds. According to the 

mathematical induction, we have W(n, m+1)≤
1

1)1( 100
1

++
+

++
mn

mmn  holds for any 

n≥ m−1. Since from assumption we have W(n, m) ≤
mn

mmn
+

+ 100
1

)(  holds for any 

m−2≤ n, again according to the mathematical induction, we can draw that 

W(n, m) ≤
mn

mmn
+

+ 100
1

)(  

holds for any n≥m−2. Since n+m ≤ R, we have: 

W(n, m) ≤
mn

mmn
+

+ 100
1

)(
mn

mR
+

≤ 100
1

                    (11) 

Combining Eq. (7) and (11), we have if m ≤ k and n+m ≤ R, then for any n≥m, 
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mn
mRmnW

mn
m

k
k

+
≤≤

+
− 100

1

),(22  holds. � 

If the number of players R is not very big, for example R≤1010, then 100
1

R  is very 

close to 1. Note that during the proof process, it can be seen that the constant index 

0.01 of R can be enhanced to be very small, say, 0.0001. Then according to theorem 2, 

it is very clear that the two groups have comparable winning probabilities only when 

the mafia size M is of order R .  

It is worth noting that the almost tight bounds we got here can explain the 

phenomena of experiments in [2]. Braverman et al. calculated the winning probability 

of a mafia of size M=η R  as a function of η, suppose the function is p(η), they 

draw the conclusion that: when η is small, then p(η) is almost linear; and when η is 

big, p(η) tends to 1. Theorem 2 can explicitly explain this phenomenon. According to  

R
MRMRW

R
M

k
k 100

1

),(22
≤≤

−  (in Eq. (3), let m=M and n+m=R), if η is small, 

then 
k
k 22 −  is close to 1, and the winning probability p(η) lies between 

k
k 22 −

η and η, so it is almost linear; when η is big (for example, approaches 

22 −k
k ), then 

R
M

k
k 22 −  approaches 1, since ),(22 MRW

R
M

k
k

≤
− , then it 

is clear that p(η) tends to 1. 

4. Generalization by Proof of a Conjecture 

Braverman, Etesami and Mossel claimed that the following phenomenon should be 

valid in further generality: “In cases where there exists a distinguished group of size 

M that has complete information and acts at all rounds playing against a group of 

players of size R−M with no prior information that acts only at fraction α of the 

rounds, it is expected that the two groups will have comparable winning probabilities 
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if M = Rα”. In particular, they propose the following conjecture [2]: 

Conjecture 1. Consider a variant of the mafia game without detectives, where each r 

rounds are partitioned into d day rounds and r−d night rounds. Then the two groups 

have comparable winning probabilities if M=Rd/r. 

Note that the mafia game without detectives is only a special case where d=1 and 

r=2. We give the following theorem to prove this conjecture: 

Theorem 3. Suppose there is a winning probability W(n, m) (0≤ W(n, m) ≤1), W(n, 

0)=0 (n>0) and if n< m, W(n, m)=1, and satisfies the following recursive formula (r 

and d are integers and r > d): 

             ),(),(),( dmdrnW
mn

mmrnW
mn

nmnW −+−
+

+−
+

= .     (12) 

Then if m ≤ C1 and n+m ≤ C2, we have: 

r
d

r
d

mn

mCgmnW
mn

mCf
)(

)(),(
)(

)( 21

+
≤≤

+
                (13) 

Where f and g are functions with finite values. 

Proof. As the proof is very similar to that of Theorem 2, we shall only sketch it. 

Clearly we need only prove the following two inequalities. 

The first inequality is (with contrast to Eq. (5) in Theorem 2): 

dxrx r
d

−≤− 1)1(  for 0≤ x <1/r.                    (14) 

Let 1)1()( −+−= dxrxxp r
d

, it is clear that p(0)=0. And 
1

)1()('
−

−−= r
d

rxddxp , 

since x <1/r and d<r, we have 
1

)1(
−

− r
d

rx >1, then p′(x)<0, so p(x) < p(0)=0 (0< x 

<1/r), which is equivalent to dxrx r
d

−<− 1)1( . 

The second inequality is (with contrast to Eq. (9) in Theorem 2): 

                
dx

r
d

rxdx
−

−≤− )1(1  for 0≤ x <1/r.                    (15) 

Let 1)1()( −+−=
−

dxrxxq
dx

r
d

, it is clear that q(0)=0. And 

)1)1(ln()1()(' +−−−=
−

rxrxddxq
dx

r
d

, 

since x <1/r and d<r, we have 
dx

r
d

rx
−

− )1( <1 and (ln(1−rx)+1)<1, then q′ (x)>0, so 
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q(x) > q(0)=0 (0< x <1/r), which is equivalent to dxrx
dx

r
d

−>−
−

1)1( . � 

It is worth noting that the conditions, W(n, 0)=0 (n>0) and W(n, m)=1 if n<m, in 

Theorem 3 are prerequisite to the proof, because these conditions are the starting 

points of the mathematical induction, without the holding of the base, the conclusion 

may not be true. And if we do not consider the small cases (for example, n+ m ≤100), 

then the coefficients of the bounds (f(C1) and g(C2)) can be refined to be more 

accurate. 

5. Further Discussions and Open Problems 

Mossel et al. showed that even a single detective can change the qualitative behavior 

of the game dramatically. More formally they prove the following theorem [2]: 

Conclusion 2. (1) Consider the game with 1 detective and mafia of size M = ηR < 

R/49. Then for R sufficiently large the probability that the mafia wins denoted w(R, M, 

1) satisfies p(η, 1) ≤ w(R, M, 1) ≤ q(η, 1), where 0 < p(η, 1) < q(η, 1) < 1 for all η < 

1/49 and q(η, 1) → 0 as η → 0. 

(2) Let d ≥ 1 and consider the game with d detectives and mafia of size M = ηR, 

where η<1/2. Then for R sufficiently large, the probability that the mafia wins, 

denoted w(R, M, d) satisfies w(R, M, d) ≤ q(η, d), where for each η<1/2 it holds that 

∞→d
lim q(η, d)= 0. 

They state that the theorem shows that even a single detective dramatically changes 

the citizen’s team power: While in the game with no detectives a mafia of size R1/2+ε 

will surely win, as soon as there is one detective, the mafia will lose unless it is of size 

Ω(R). 

However, we first note that the condition M = ηR in Conclusion 2 should be M ∈ 

[ηR, ηR+1] as in Conclusion 1, else M may not be an integer. Second, we show that 

0)1,(lim
0

=
→

η
η

q  should be changed to 0)1,(limlim
0

=
→∞→

η
η

q
R

. 

Claim 2. The function q in conclusion 2 does not exist. 

Proof. We will prove that for any finite R, there does not exist function q such that 
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w(R, M, 1) ≤ q(η, 1) for all η < 1/49 and 0)1,(lim
0

=
→

η
η

q . This is because when η<1/R 

(R>49 and is finite), then ηR <1, according to M∈ [ηR, ηR+ 1] and M is integer, we 

have M =1. So we have when η<1/R, 

w(R, 1, 1) ≤ q(η, 1), 

then 

)1,1,()1,(lim
0

Rwq ≥
→

η
η

. 

It is clear that w(R, 1, 1)>0 for any finite R, then we have 

0)1,(lim
0

>
→

η
η

q , 

this contradicts with 

0)1,(lim
0

=
→

η
η

q . � 

It is clear that 

0)1,1,(lim =
∞→

Rw
R

, 

so 0)1,(lim
0

=
→

η
η

q  should be changed to: 

0)1,(limlim
0

=
→∞→

η
η

q
R

. 

Then conclusion 2 should be slightly changed as following: 

Conclusion 2’. (1) Consider the game with 1 detective and mafia of size M∈ [ηR, 

ηR+ 1], where η< R/49. Then for R sufficiently large the probability that the mafia 

wins denoted w(R, M, 1) satisfies p(η, 1) ≤ w(R, M, 1) ≤ q(η, 1), where 0 < p(η, 1) < 

q(η, 1) < 1 for all η < 1/49 and 0)1,(limlim
0

=
→∞→

η
η

q
R

. 

(2) Let d ≥ 1 and consider the game with d detectives and mafia of size M∈ [ηR, 

ηR+ 1], where η<1/2. Then for R sufficiently large, the probability that the mafia wins, 

denoted w(R, M, d) satisfies w(R, M, d) ≤ q(η, d), where for each η<1/2 it holds that 

∞→d
lim q(η, d)= 0. 

However we note that the holding of the first part of conclusion 2 can not guarantee 

that even a single detective dramatically changes the citizen’s team power: as soon as 

there is one detective, the mafia will lose unless it is of size Ω(R). We construct the 

following example to prove this: 
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Example 2. Suppose  

w(R, M, 1)=M/( R +M), 

we construct functions p(η, 1) and q(η, 1) as follows: let 

p(η, 1)= ηR /(ηR + R ), 

q(η, 1)=(ηR +1)/(ηR +1+ R ). 

Because R >0, it is clear that for any positive x and y, if x≥y, then 

x/( R +x)≥ y/( R +y). 

Since ηR ≤ M ≤ ηR + 1, then we have: 

ηR /(ηR + R ) ≤ M/( R +M) ≤ (ηR +1)/(ηR +1+ R ), 

According to the definition, we have 

p(η, 1) ≤ w(R, M, 1) ≤ q(η, 1). 

And it is clear that 

0
1

1lim
1

1limlim)1,(limlim
00

=
+

=
++
+

=
∞→→∞→→∞→ RRR

Rq
RRR η

ηη
ηη

. � 

It can be seen that w(R, M, 1)= M/( R +M) and the functions p and q satisfy all the 

conditions in part 1 of conclusion 2’. But it is clear that in this case only when M and 

R  are in the same order, w(R, M, 1) can be a comparable value with 1/2. So the 

holding of part 1 of conclusion 2’ can not guarantee that as soon as there is one 

detective, the mafia will lose unless it is of size Ω(R). 

We then give the following example to show that the condition 
∞→d

lim q(η, d)= 0 in 

the part 2 of Conclusion 2’ is obvious and can not explain any phenomenon. 

Example 3. Suppose  

w(R, M, d)=M/(M+f(R, d)), 

where f(R, d)>0 and satisfies 
∞→d

lim f(R, d)= ∞. Let 

q(η, d)=(ηR +1)/(ηR +1+ f(R, d)). 

Because f(R, d)>0, it is clear that for any positive x and y, if x≥y, then 
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x/( f(R, d)+x)≥ y/( f(R, d)+y). 

Since ηR ≤ M ≤ ηR + 1, then we have: 

M/(M+f(R, d)) ≤ (ηR +1)/(ηR +1+ f(R, d)), 

According to the definition, we have 

w(R, M, d) ≤ q(η, d). 

And it is clear that 

0
),(1

1lim),(lim =
++
+

=
∞→∞→ dRfR

Rdq
dd η

ηη . � 

It can be seen that w(R, M, d)=M/(M+f(R, d)) and the function q satisfy all the 

conditions in part 2 of conclusion 2’. But it is clear that in this case when M and any 

f(R, d) (i.e., f(R, d)= d + R  or f(R, d)=d2) are in the same order, w(R, M, d) can be a 

comparable value with 1/2. So the holding of part 2 of conclusion 2’ can not guarantee 

that the existence of detectives can dramatically change the citizen’s team power. It 

would be interesting to investigate what changes the existence of detectives can take 

to the qualitative behavior of the game. 

6. Conclusion 

In the mafia game without detectives, when both the citizens and mafias adopt the 

optimal randomized strategy, we focus on the winning probabilities of different 

groups. By developing almost tight bounds of the winning probability, we validate the 

phenomenon that the two groups have comparable winning chances when the total 

player size is R and the mafia size is of order R . By the proof of a conjecture, we 

generalize the mafia game to the following extensive framework: In cases where there 

exists a distinguished group of size M that has complete information and acts at all 

rounds playing against a group of players of size R−M with no prior information that 

acts only at fraction α of the rounds, then the two groups have comparable winning 

probabilities if M = Rα. 
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