
Preface

1 0 0 setrgbcolor

newpath

0 0 1 0 360 arc

stroke

newpath

1 0 1 0 360 arc

stroke

This book will show how to use PostScript for producing mathematical graphics, at several levels of sophistication.

It includes also some discussion of the mathematics involved in computer graphics as well as a few remarks about
good style in mathematical illustration.

To explain mathematics well often requires good illustrations, and computers in our age have changed drastically
the potential of graphical output for this purpose. There are many aspects to this change. The most apparent is

that computers allow one to produce graphics output of sheer volume never before imagined. A less obvious one

is that they have made it possible for amateurs to produce their own illustrations of professional quality. Possible,
but not easy, and certainly not as easy as it is to produce their own mathematical writing with Donald Knuth’s

program TEX. In spite of the advances in technology over the past 50 years, it is still not a trivial matter to come up
routinely with figures that show exactly what you want them to show, exactly where you want them to show it.

This is to some extent inevitable—pictures at their best contain a lot of information, and almost by definition this

means that they are capable of wide variety. It is surely not possible to come up with a really simple tool that will
let you create easily all the graphics you want to create—the range of possibilities is just too large. All you can

hope for is that the amount of work involved in producing an illustration is in proportion to the intrinsic difficulty

of what you want to do. And the intrinsic difficulty of producing a good mathematical illustration inevitably
means that you should expect to do some interesting mathematics as well as solve interesting computational

problems along the way. Mathematical illustrations are a special breed—a good mathematical illustration almost
always requires mathematics in the process of making it.

Nowadays there are many tools to help one produce mathematical graphics, of course. A partial list would
include the free packages xfig, pictex,PSTricks,MetaFont and MetaPost, as well as commercial mathematical

programs such as Maple and Mathematica and professional graphics design tools such as Illustrator. Which

one to choose apparently involves a trade­off between simplicity and quality, in which most go for what they
perceive to be simplicity. The truth is that the trade­off is unnecessary—once one has made a small initial

investment of effort, by far the best thing to do in most situations is to write a program in the graphics programming

language PostScript. There is practically no limit to the quality of the output of a PostScript program, and as one
acquires experience the difficulties of using the language decrease rapidly. The apparent complexity involved

in producing simple figures by programming in PostScript, as I hope this book will demonstrate, is largely an
illusion. And the amount of work involved in producing more complicated figures will usually be neither more

nor less than what is necessary.

The principal advantage of PostScript is that it allows essentially complete control over the final product, some­
thing impossible with all of the graphics packages I listed above. Having such fine control over your figures

means that once your code is in place, it is often quite easy to modify it. This makes it a great tool for discovering,
not only explaining, mathematics.

The advantage of control is very evident to those who have used, say, xfig or pictex, less so perhaps for Maple
and Mathematica. What becomes apparent in the course of heavy usage, however, is that a program like Maple is

designed for graphics only incidentally. It produces huge files—really, unnecessarily huge—and in practice seems

reluctant to draw exactly what you want to draw. It does do all sorts of interesting computations, but normally
the best way to use this talent is to have it output data files which a PostScript program can then access. The

program Mathematica seems to be better adapted for graphics, but there are still many simple tasks it has trouble

Preface 2

with. In addition, all Mathematicafigures somehow preserve in them the rather strong flavour of Mathematica.
Whereas PostScript is far more neutral, and is better able to take on a characteristic quality of your own devising.

This can be a source of great satisfaction.

The nearest competitor to PostScript is perhaps the programming language MetaPost. It is an extension of

Donald Knuth’s MetaFont written by John Hobby, once a graduate student of Knuth’s and the developer of the

great utility dvips. There are a few well known mathematicians who love it. It has many fine features, but I for
one find it much less intuitive to use than PostScript.

Another advantage of using PostScript is that there exists a PostScript interpreter of good quality that costs
nothing and runs on nearly all platforms—the program ghostscript, which I’ll refer to throughout this book.

One of the appendices explains how to install it on your computer if it is not already there, and how to configure

it for a pleasant working environment.

The principal disadvantage of using PostScript is that for complicated computations it is not as convenient or

efficient as the more standard languages such as Java or C. This problem has an easy solution: with just a little
knowledge of PostScript you can write a program in one of those languages that will produce a PostScript file.

There are some other disadvantages of PostScript, however. Anyone who takes up this book seriously will realize
this quite quickly, so I had better stave off disappointment ahead of time.

For one thing, PostScript is not a language with much structure. This, however, turns out to be both a plus and

a minus—a plus because you can program in PostScript by ‘cut and paste’ without worrying too much about
the consequences. For another, the complete language possesses an intimidating number of commands, but in

practice the basic drawing language is rather simple. Almost anyone familiar with coordinate geometry can learn
how to do some interesting drawing with the language, and in a remarkably short time. For more complicated

work one will want to build up a library of useful procedures. This book will explain a few, and in particular one

that extends PostScript to three dimensions.

Another bad feature of the language is that debugging and error handling are both atrocious, at least with the

interpreters available today. It would be nice if someone would come up with an interpreter with which one
could trace a PostScript program line by line while keeping an eye on its internal state. Such a tool would make

development a far easier job. Making an interpreter like this doesn’t look to be too difficult a task, at least if one

wants only to establish a good environment for technical graphics (as opposed to commercial production). For
this relatively restricted task it wouldn’t be necessary to interpret the whole language, and in fact it wouldn’t

even be absolutely necessary to interpret PostScript itself, but merely something close to it. But in any event such
an interpreter hasn’t been built yet.

And, finally, the integration of text and graphics, although quite feasible, is not as easy as it might be. There seems

to be no graphical problem more vexing to mathematicians than that of how to place TEX labels in a diagram.
This book will explain (in one of the Appendices) how to do it, if awkwardly, in a PostScript figure. Again,

what is needed is a tool that doesn’t exist but that shouldn’t be too hard to produce—one that creates technical
text displays that one can import easily into a basic background diagram. Preferably, one with a simple mouse

interface for text editing, scaling, and placement. In the end, such a program would presumably merely import

a PostScript program produced by TEX into another PostScript file. There used to be a demonstration program
named Import, made available by Adobe Systems when Display PostScript was first distributed on computers

running X­Windows, that was better than anything else now available. It didn’t do much, but it was refreshingly

simple. Among its virtues was that its output was basically no more complicated than it had to be, which meant
that you didn’t have to stop working on a figure once you had ‘imported’ it. Commercial graphics programs

(such as Adobe’s Illustrator) are capable of importing PostScript files, but they are expensive. In addition
they will take your PostScript programs up a one­way street—what they produce will be far more complicated

than what you started with. They will mangle all your nice hand­written code, and the output will be impossible

to adjust subsequently. Alas, Import was taken seriously by only a few, was always a bit buggy, ran on only a
few platforms, and has disappeared.

Preface 3

Even with all its drawbacks, however, PostScript is the tool of choice for mathematical illustration. This book
should therefore be of interest to a large group of people: (1) to any scientist who has to make up a fair number of

technical illustrations, but who has found himself limited by what the other packages can do; (2) to any teacher,

even at the level of secondary school, who would like to make mathematics a more comprehensible and better
motivated subject to his students; (3) to students who want to see how even elementary mathematics that might

have seemed useless when first seen can be applied to attractive real­world problems; (4) even to artists who

might be interested in abstract designs with a mathematical component.

Perhaps the most surprising feature of this book is that it has been used successfully as a text for a third year

undergraduate course in geometry. Students found that drawing in PostScript was a definite source of pleasure,
once an initial breaking­in period had passed. From an instructor’s point of view there are two great virtues to this:

(1) The pleasure of producing pictures with PostScript is enough to drive students even to learning mathematics

in order to do it. Drawing in PostScript forces students to become intimately familiar with coordinate systems
and linear algebra. (2) Being able to draw easily on a computer makes it an intriguing process to interpret much

of classical mathematics, for example Euclid’s Elements or Newton’s Principia, in graphical terms. In rendering
mathematics in images, a person is forced to understand the essentials of an argument in the most intimate way,

after all. This book does not deal directly with that possibility, but some references are given, and I hope that an

interested instructor will easily figure out how to implement it. If I have not made projects of this kind available,
it is because I like my own studenta to figure out things for themselves.

In spite of the difficulties of programming in PostScript, it is overall an enjoyable language to work with, largely
because the final product can be truly beautiful. It is above all a complete graphics language—the only real

limitation in working with it is ultimately your imagination. It is capable of extreme subtlety, brilliant colour, and

infinite variety. What more does one want? But I must recall a warning, one written in an earlier time but still
valid today:

From In praise of scribes

by Johannes Trithemius, c. 1492
(translation by Roland Behrendt)

Outline

The early chapters (1, 3–6) offer an introduction to basic features of the language. Chapters 2 and 12 offer accounts

of coordinate geometry in 2D and 3D. Chapters 7–10 explore more sophisticated features of PostScript in 2D, as

well as how mathematics and graphics algorithms interact in interesting ways. The remaining chapters explore
three dimensions, using a library of PostScript procedures designed for the purpose. In particular, Chapter 15

is largely concerned with an exposition of the last result in Euclid’s Elements, serving I hope as an example of

how 3D pictures produced by PostScript can be used for exposition. Certain technical matters are dealt with in

Preface 4

several appendices. I have have also included in an Epilogue a few brief remarks on the vast topic of style in
mathematical graphics design.

Web site

The book refers to a great deal of PostScript code, samples as well as libraries that the reader may download and

incorporate in his own programs. Links to this are to be found at

http://www.math.ubc.ca/~cass/graphics/manual/

along with other relevant material. In time, I will likely post an FAQ here. Errors in the text will be flagged and

corrected at this site, too. Readers finding errors, or even just with suggestions for improvement, should send

e­mail to cass@math.ubc.ca.

As an example of an undergraduate course that used this manual as a text, take a look at

http://www.math.ubc.ca/~cass/courses/m308-02b.html/

This includes links to student projects in PostScript, some of which are very good.

Acknowledgements

These notes have been written over a long period, and made available on the ’Net during that time, in various
intermediate stages. I wish to thank above all my patient undergraduate students during those years for their

help in improving them. I also wish to thank the many, many readers who have written to me from all over the
world with encouragement and advice. Special thanks to the referees selected by Cambridge Press for invaluable

suggestions. But above all I wish to thank Donald Knuth, not for any personal advice, but for writing all those

wonderful papers and books in which he tells us by word and example that interesting mathematics can be found
in nearly every corner of the computer.

Table of contents

Chapter 1. Getting started in PostScript 1
1. Simple drawing 2

2. Simple coordinate changes 7

3. Coordinate frames 9
4. Doing arithmetic in PostScript 11

5. Errors 14
6. Working with files and viewers GhostView or GSView 16

7. Some fine points 19

8. A trick for eliminating redundancy 22
9. Summary 22

10. Code 24

Chapter 2. Elementary coordinate geometry 26
1. Points and vectors 26

2. Areas of parallelograms 27

3. Lengths 32
4. Vector projections 34

5. Rotations 37
6. The cosine rule 39

7. Dot products in higher dimensions 41

8. Lines 41
9. Code 44

Chapter 3. Variables and procedures 46

1. Variables in PostScript 46
2. Procedures in PostScript 48

3. Keeping track of where you are 50
4. Passing arguments to procedures 52

5. Procedures as functions 54

6. Local variables 55
7. A final improvement 57

Chapter 4. Coordinates and conditionals 59

1. Coordinates 59
2. How PostScript stores coordinate transformations 62

3. Picturing the coordinate system 65
4. Moving into three dimensions 67

5. How coordinate changes are made 71

6. Drawing infinite lines: conditionals in PostScript 73
7. Another way to draw lines 78

8. Clipping 81

9. Order counts 82
10. Code 83

Chapter 5. Drawing polygons: loops and arrays 84
1. The repeat loop 84

2. The for loop 86

3. The loop loop 87

Table of contents 2

4. Graphing functions 87
5. General polygons 88

6. Clipping polygons 90

7. Code 94
Chapter 6. Curves 95

1. Arcs 95

2. Fancier curves 96
3. Bézier curves 97

4. How to use Bézier curves 100
5. The mathematics of Bézier curves 108

6. Quadratic Bézier curves 109

7. Mathematical motivation 110
8. Weighted averages 113

9. How the computer draws Bézier curves 116

10. Bernstein polynomials 118
11. This section brings you the letter O 120

Interlude 123
Chapter 7. Drawing curves automatically: procedures as arguments 126

1. Drawing an hyperbola 126

2. Parametrized curves 130
3. Drawing graphs automatically 131

4. Drawing parametrized paths automatically 133

5. How to use it 135
6. How it works 137

7. Code 138
Chapter 8. Non­linear 2D transformations: deconstructing paths 140

1. Two dimensional transformations 140

2. Conformal transforms 144
3. Transforming paths 145

4. Maps 146

5. Fonts want to be free 150
6. Code 150

Chapter 9. Recursion in PostScript 153
1. The perils of recursion 153

2. Sorting 155

3. Convex hulls 159
Chapter 10. Perspective and homogeneous coordinates 165

1. The projective plane 167

2. Boy’s surface 169
3. Projective transformations 171

4. The fundamental theorem 172
5. Projective lines 175

6. A remark about solving linear systems 176

7. The GIMP perspective tool, revisited 179
8. Projections in 2D 180

9. Perspective in 3D 181

Chapter 11. Introduction to drawing in three dimensions 185
Chapter 12. Transformations in 3D 187

1. Rigid transformations 187
2. Dot and cross products 189

3. Linear transformations and matrices 195

4. Changing coordinate systems 198

Table of contents 3

5. Rigid linear transformations 201
6. Orthogonal transformations in 2D 202

7. Orthogonal transformations in 3D 204

8. Calculating the effect of an axial rotation 207
9. Finding the axis and angle 209

10. Euler’s Theorem 210

11. More about projections 211
Chapter 13. PostScript in 3D 212

1. A survey of the package 213
2. The 3D graphics environment 217

3. Coordinate transformations 219

4. Drawing 221
5. Surfaces 222

6. Code 223

Chapter 14. Drawing surfaces in 3D 225
1. Faces 225

2. Polyhedra 227
3. Visibility for convex polyhedra 229

4. Shading 231

5. Smooth surfaces 235
6. Smoother surfaces 239

7. Abandoning convexity 244

8. Summary 249
9. Code 250

Chapter 15. The regular polyhedra 252
1. What exactly is a regular polyhedron? 253

2. There are no more than five regular solids 254

3. The proof of Euclid XI.21 258
4. Trihedral angles 261

5. The results we need from Book I 263

6. Constructing the regular polyhedra 265
7. Verifying regularity 269

8. Code 269
9. References 272

Appendix 1. Summary of PostScript commands 274

1. Mathematical functions 274
2. Stack operations 275

3. Arrays 276

4. Dictionaries 277
5. Conditionals 277

6. Loops 278
7. Conversions 279

8. File handling and miscellaneous 279

9. Display 280
10. Graphics state 281

11. Coordinates 282

12. Drawing 283
13. Displaying text 284

14. Errors 285
15. Alphabetical list 285

Appendix 2. Setting up your PostScript environment 288

1. Editing PostScript files 288

Table of contents 4

2. Running external files 289
3. Making images 290

4. Printing files 291

Appendix 3. Structured PostScript documents 293
Appendix 4. Simple text display 296

1. Simple PostScript text 296

2. Outline fonts 298
Appendix 5. Zooming 300

1. Zooming 300
2. An explicit procedure 301

3. Playing around 302

4. Code 303
Appendix 6. Evaluating polynomials: getting along without variables 304

1. The most straightforward way to do it 304

2. Horner’s method 305
3. Evaluating the derivatives efficiently 307

4. Evaluating Bernstein polynomials 309
5. Code 310

Appendix 7. Importing PostScript files 311

1. Labelling a graph 311
2. Importing TEX text 315

3. Fancy work 317

Epilogue 321

CHAPTER 14

Drawing surfaces in 3D

Only in mathematics books do spheres look like the thing on the left below, rather than the one on the right.

What your eye sees in reality are fragments of surfaces, or rather the light reflected from them. In computer
graphics, a surface is an assembly of flat plates, each of which is a 2D polygon moved into location in space,
together with a specification of one of its two sides. One difference between surfaces drawn by computer and
those in the real world is that in the real world surfaces possess detail down to microscopic size, including
the appearance of smooth curvature. Surfaces drawn by a computer can only be an approximation of these.
Sometimes the plates making up a surface will have some extra data added to them to help make the illusion of
reality stronger.

PostScript is not efficient enough to do very realistic 3D rendering. Among other things, it does not have access
to specialized 3D hardware, and in particular has little comprehension of depth. But it is efficient enough to do a
reasonable job on mathematical images.

1. Faces

A surface fragment or sometimes face will be an oriented polygon made up of 3D points all lying in some singlesurface fragments:1face:1

plane. The orientation means a choice of side to the polygon—a top as opposed to a bottom, or an outside as
opposed to an inside. The orientation in practice means that the vertices of the polygon are arranged in an array
going around the edges of the polygon according to the right hand rule—so that if the right hand curls around inright hand rule:1

the direction the vertices are numbered, the thumb points towards the side chosen. In other words, if the polygon
is on a plane in front of you and the vertices are arranged in a counter-clockwise direction, your eye is on the
outside.

Chapter 14. Drawing surfaces in 3D 2

P0

P1

P2

Associated to an oriented polygon in 3D is what I call its normal function, the unique linear function Ax + By +normal function:2

Cz + D with these three properties:

• All points in the polygon lie on the plane Ax + By + Cz + D = 0;
• the outside of the face is where Ax + By + Cz + D is positive;
• the length of the vector [A, B, C] is 1.

The normal function can be computed from the oriented polygon each time it is to be drawn, but it is more
efficient in designing a face to be drawn to compute the normal function once right when the array is determined,
and then carry it along as part of the structure of the face. Suppose the vertices of the face are P0, P1, P2, . . . We
shall always assume that the edges of a face are non-degenerate in the sense that none of its edges have length 0,
and that no two successive edges lie in a straight line. In practice this sometimes takes a little work to guarantee,
as we shall see later on. At any rate, under this assumption the vector cross-product

(P1 − P0) × (P2 − P1)

will be non-zero and perpendicular to the polygon, facing outwards. Let [A, B, C] be this vector normalized by
dividing it by its length. The value of Ax + By + Cz will be the same on all vertices of the polygon, and if we set
D to be the negative of this common value then Ax + By + Cz + D will be the normal function.

In the simplest of our methods of drawing surfaces, a face will be by convention an array of two other arrays,
the first being the oriented array of points making up the oriented polygon, the second an array of 4 numbers
making up the normal function. Thus

[[[0 0 0] [1 0 0] [1 1 0] [0 1 0]] [0 0 1 0]]

is the face representing a unit square in the (x, y) plane facing out along the positive z-axis, whose normal function
is z.

In the code in ps3d there is a procedure normal-function with one argument, an oriented array of 3D points,normal-function:2

which returns the array [A B C D] corresponding to its normal function. It implements exactly the calculation
described above. If the cross-product is 0, it returns an empty array, which is useful, as we shall see.

2. Polyhedra

A polyhedron in 3D is a collection of (flat) faces, each of which is a surface fragment whose orientation pointspolyhedron:2

outward, making up the boundary of a 3D region with inside and outside. Cubes, for examples, are polyhedra.
According to our convention, a polyhedron will be an array of faces, where a face is what is prescribed in the
previous section. The following, for example, defines a complete unit cube, centered at (1/2, 1/2, 1/2)with edgescube:2

aligned parallel to the coordinate axes:

/cube [

Chapter 14. Drawing surfaces in 3D 3

[[[0 0 1] [1 0 1] [1 1 1] [0 1 1]] [0 0 1 -1]]
[[[0 1 0] [1 1 0] [1 0 0] [0 0 0]] [0 0 -1 0]]
[[[0 0 0] [0 0 1] [0 1 1] [0 1 0]] [0 -1 0 0]]
[[[1 1 0] [1 1 1] [1 0 1] [1 0 0]] [1 0 0 -1]]
[[[0 1 0] [0 1 1] [1 1 1] [1 1 0]] [0 1 0 -1]]
[[[1 0 0] [1 0 1] [0 0 1] [0 0 0]] [0 -1 0 0]]

] def

Assembling cubes by hand takes some care in order to get all the orientations correctly, even for this simplest of
polyhedra. The faces here come in pairs which one might call back and front; the array on a back face is almost
the same as that on the front, but in reversed order and a shift in one coordinate. The face

[[[0 0 1] [1 0 1] [1 1 1] [0 1 1]] [0 0 1 -1]]

is the front face of the cube where z = 1, and

[[[0 1 0] [1 1 0] [1 0 0] [0 0 0]] [0 0 -1 0]]

is the back face corresponding to it, where z = 0. There are ways to use the symmetry of the cube to generate all
its faces automatically, which will be explored in the Chapter on regular polyhedra. In fact, one rarely constructs
a polyhedron without some sort of organizational scheme in mind to generate it.

One thing that will make polyhedra more efficient is to first write out in a single array all of its vertices, then
refer to this array in listing the faces. It is also a good idea to record the the normal-functions of the faces before
drawing begins. For the cube, for example, it would be better to include the following code in your program
rather than the stuff written above:

0 1

23

4 5

67

/V [
[0 0 0] [1 0 0] [1 1 0] [0 1 0]
[0 0 1] [1 0 1] [1 1 1] [0 1 1]

] def

/cube [
[[V 4 get V 5 get V 6 get V 7 get] dup normal-function]
[[V 3 get V 2 get V 1 get V 0 get] dup normal-function]
[[V 0 get V 4 get V 7 get V 3 get] dup normal-function]
[[V 5 get V 1 get V 2 get V 6 get] dup normal-function]
[[V 0 get V 1 get V 5 get V 4 get] dup normal-function]
[[V 7 get V 6 get V 2 get V 3 get] dup normal-function]

] def

It’s easier to use this numbering in seeing how to get the face arrays oriented correctly, too.

One interesting exercise is now to write out the arrays representing the triangles of the faces of a regulartetrahedron:regular:3

tetrahedron, which is a 3D figure with 4 vertices and 4 faces, all of which are equilateral triangles. The hard part

Chapter 14. Drawing surfaces in 3D 4

is to find its vertices, and there are several ways to do this. The first is to take a suitable selection of 4 vertices
from a cube—a selection of cube vertices with the property that any two are separated by a diagonal on a face of
the cube. I’ll leave that construction as an exercise without further comment. The trouble with it is that you aren’t
quite sure where you are, so to speak—the tetrahedron you get has an orientation in space that also requires some
calculation to work conveniently with. More convenient ultimately, but more difficult to design in the first place,
is one with a fixed radius and orientation, for example one such that

• the centre is at (0, 0, 0);
• the top is placed at (0, 0, 1);
• this leaves us free to rotate the tetrahedron around the z-axis; but now fix it by specifying one vertex of the

bottom is at (0, y, z) for some suitable values of y > 0 and z.

Exercise 1. Figure out what the vertices of this tetrahedron have to be in order to make all faces equilateral.
Compose PostScript code as was done above for the cube.

Exercise 2. Draw a regular tetrahedron by hand, including vertex numbers, and write a code fragment analogous
to that above.

Exercise 3. A regular octahedron has eight sides, all equilateral triangles. Find the vertices of some regularoctahedron:regular:4

octahedron. Write PostScript code to draw it.

3. Visibility for convex polyhedra

Usually when you draw objects in 3D they are solid—i.e. a face blocks off the faces behind it. Now in some
circumstances this can be quite difficult to deal with, but there is a large class of objects for which it is easy—
polyhedra which are convex and closed. ‘Closed’ means it has no holes. ‘Convex’ means it bulges out at allpolyhedron:convex:4

points, or at least never bulges in. For example, a sphere is convex, but the surface of a doughnut is not, since it
has that hole in the middle. The difference, for drawing purposes, is this: if a closed object is not convex, then
in some views you will have two faces pointing towards the eye, one at least partly obscured by the other. This
means that you have to draw them in the correct order, so that the one behind is covered over by the one in front.
If an object has holes, the plates making it up should be considered to have two sides, literally an in-side and an
out-side, and it will not be convex. We’ll look at the problems of drawing non-convex bodies later on.

A convex surface will lie entirely on one side of the plane spanned by each of its faces. (This is actually the
technical definition of convexity.) To draw a convex surface, therefore, we can just check visibility of each face
separately, without worrying about other faces. To check visibility for a single face, we have to check whether
the eye lies in the region of visibility of that face. There is something subtle involved in this—in constructing a
face we calculate its normal function, say f = Ax+By +Cz +D, and to check visibility for that original face we
just have to evaluate that function on the eye. The eye is usefully expressed in homogeneous or 4D coordinates
as [xe, ye, ze, we]. To check visibility we therefore just check the condition

[xe, ye, ze, we] • [A, B, C, D] = Axe + Bye + Cze + Dwe ≥ 0 .

But now in the course of making our program we have probably performed some transformations— for example,
rotations—on the surface. This changes the points we draw, and changes also the normal function of the face.
In principle we can recover the coordinates of the transformed face, and calculate also its new normal function.
We can do this because one of the data structures in ps3d is the current 3D transform matrix T which transforms
from the coordinates we are currently working with to the original default 3D coordinates. But there is something
more efficient to do. As far as visibility is concerned, rotating an object in one direction is equivalent to rotating
the eye in the opposite direction, and similarly moving an object away from you is equivalent to translating the
eye away from the object in the opposite direction. In other words, if we want to check visibility of a face, we can
either evaluate the visibility of the transformed face at the true eye, or evaluate the original normal function at
the eye-equivalent obtained by applying the inverses of the coordinate changes. For the first method, we would
apply the current 3D transform matrix T to the original face. But the ps3d mechanism also holds the inverse of

Chapter 14. Drawing surfaces in 3D 5

this matrix T−1. So applying T−1 to the eye will tell us where the ‘virtual-eye’ is at any moment. The matrix T
is item 0 in the array you get by calling cgfx3d, and T −1 is item 1 in it. Therefore the code

/E get-eye cgfx3d 1 get transform3d def

defines E to be the virtual-eye; the procedure get-virtual-eye in ps3d does exactly the same. The commandget-virtual-eye:5

sequence cim3d is also a shorter replacement defined in ps3d for cgfx3d 1 get. Here is a fragment of programcim3d:5

that, given the fragment above defining a cube and the usual 2D stuff setting the scale, will draw only the visible
faces of a cube.

[0 0 4 1] set-eye
[1 1 1] 60 rotate3d
-0.5 -0.5 0 translate3d

/E get-virtual-eye def

cube {
aload pop
/f exch def % f = normal function
/p exch def % p = array of vertices on the face
f E dot-product 0 ge {
newpath
% move to last point first
p p length 1 sub get aload pop moveto3d
p {
aload pop
lineto3d

} forall
stroke

} if
} forall

4. Shading

Checking visibility of faces will contribute to an illusion of solidity, especially if the object is shown in a sequence
of successive positions in a kind of animation. Another technique for creating an illusion of solidity is that of
shading faces according to where they are located relative to an imaginary light source.shading:5

The light source will usually be a direction in 3D, therefore a 4-vector whose last coordinate is 0. A light sourcelight sources:5

straight overhead would be [0 1 0 0], for example. Conventionally, a light source from overhead, slightly
behind, and slightly to the left seems to be what the human eye is comfortable with, which would make the vector
[-0.25 1 0.25 0]. It is best to normalize the light source so it has total length 1.

The shade of a face will then be a function of the angle between the light source and the vector perpendicular to
the face. If it is 0◦ the face will be towards the light, and bright. If it is 180◦ it will be away from the light, and
dark. The angle is a function of the dot-product of the two vectors, and in fact there is no need to work with the
angle itself, just the dot-product.

With our normalizations of the normal function and the light source, the dot-product will lie between −1 and
1. If −1 dark, if 1 bright. The simplest way to assign a shade is to let d be the dot-product, and assign a color
(d + 1)/2 in PostScript. So −1 becomes black, 1 white.

As with the eye, it is best to use a light-source-equivalent. So possible code for shading is this:

/light-source [-0.25 1 0.25 0] normalized def
/L light-source ctm3d 1 get transform3d def

Chapter 14. Drawing surfaces in 3D 6

cube {
aload pop
/f exch def % f = normal function

/p exch def % p = array of vertices on the face

f E dot-product 0 ge {
newpath
% move to last point first

p p length 1 sub get aload pop moveto3d
p {
aload pop
lineto3d

} forall
gsave
/s L f dot-product 1 add 2 div def
s setgray
fill
grestore
stroke

} if
} forall

This is not yet ideal. Relying on a straight linear translation from dot-product to shade produces lighting that
seems a bit harsh to the eye. For one thing, in the real world even the darkest places usually have a bit of reflected
light from the environment, so the darkest shade allowable shouldn’t actually be black. And often you won’t
want the brightest to be 1, which will make a face invisible against a white background. It is best to allow more
control over the translation, to allow a more general function to do the job. We’ll think of this in the following
way: we first calculate the linear translation (d + 1)/2 just as above, but then we fudge things a bit by translating
the result, which lies between 0 and 1, to some other number between 0 and 1. We want to be able to specify a
function from the interval [0, 1] to itself. The best way to understand what is going on is to look at the graph of
our fudge function. We can put it all in a unit box. For example, here is the default translation, with no fudging
(recall, we are looking at the translation after we have moved [−1, 1] into [0, 1]):shading functions:6

0 Input 1
0

O
ut

pu
t

1

If we want to lighten the shadows and darken the bright spots, we want something like this:

Chapter 14. Drawing surfaces in 3D 7

0 Input 1
0

O
ut

pu
t

1

If we want to increase contrast, we want darks darker, lights lighter. If we want to increase contrast a lot, we
want an S-shaped curve like this:

0 Input 1
0

O
ut

pu
t

1

The default method of fudging I have included in ps3d doesn’t allow the full range of these options. It uses a
procedure I call shade to translate from the dot-product to a shade factor. There are two arguments to shade,
a single number between −1 and 1 and an array of 4 numbers. The first and last numbers in the array are the
minimum and maximum values of the shade factor, and the other two are more subtle parametrs of the shade
function, ones that determine control nodes (1/3, s1) and (2/3, s2) for the graph. For the default shading, without
fudging, the array is [0 1/3 2/3 1]:

0 Input 1
0

O
ut

pu
t

1

For an arbitrary straight line fudge function, choose the values in the array so that (0, s0), (1/3, s1), (2/3, s2),
(1, s3) all lie in a straight line.

Chapter 14. Drawing surfaces in 3D 8

0 Input 1
0

O
ut

pu
t

1

For non-linear fudging, the control values s1 and s2 are chosen to force the fudge graph to lie close to the points
(1/3, s1) and (2/3, s2) without passing through them. There is a fault with this scheme, since the amount of
contrast it can achieve is limited:

0 Input 1
0

O
ut

pu
t

1

In order to avoid unwelcome curiousities, the array numbers should satisfy 0 ≤ s0 ≤ s1 ≤ s2 ≤ 1, but anything
in that range should be acceptable.

For more control over shading, say with higher contrast, you can apply a Bernstein polynomial of degree higherlynomial:Bernstein:8

than 3. The disadvantage of doing this is that it requires more computational effort, the advantage is that you can
make arbitrarily strong contrast. Here, for example, are some fudge graphs you can get by using a cubic Bézieromial:Bézier, cubic:8

curve (i.e. Bernstein polynomial of degree 3), and then Bernstein polynomials of degree 5 and 7.

0 Input 1
0

O
ut

pu
t

1

Chapter 14. Drawing surfaces in 3D 9

5. Smooth surfaces

In reality, most surfaces look essentially smooth, not at all like polyhedra. Nonetheless, computers can only
approximate them, usually as polyhedra together with some extra data. For a few surfaces like spheres there
are special ways to approximate them in this way, but for most surfaces the first step in drawing them is to
parametrize them—to find maps from 2D into 3D that describe them.rization:of surfaces:8

Let’s start with spheres. A sphere is determined completely by its centre and its radius. In drawing, the centre
might as well be taken to be the origin, since translate3d can just move a sphere around. Different radii can be
dealt with by scale3d, so I’ll assume the radius to be R = 1.

A point on the surface of a sphere has longitude θ and latitude ϕ as its coordinates. Longitude measures the
angular distance between it and a fixed meridian line, while latitude measures how far it is from an equator. If a
point on a sphere of radius R has longitude θ and latitude ϕ then its (x, y, z) coordinates arerization:of a sphere:9

S(θ, ϕ) = (R cos θ cosϕ, R sin θ cosϕ, R sinϕ) .

The parametrization must have the right orientation—these variables must look more or less like x and y
everywhere on the surface, as it does here. The parametrization procedure has two arguments θ and ϕ, and
returns the 3D point exhibited above.

% longitude latitude -> point on unit sphere

/P { 1 dict begin
/l exch def
/L exch def
% L=longitude l=latitude

[L cos l cos mul
L sin l cos mul
l sin]

end } def

We want now to use this parametrization to approximate the sphere by an assembly of flat plates. That’s easy—a
plate will be what you get when you map a coordinate rectangle into 3D. As θ ranges from 0 to 360 and ϕ from
−90 to 90 (using degrees instead of radians, as is normal in PostScript) we cover the whole sphere. First we
assemble the vertices in a double array. We use a procedure with a single argument N that returns an N by 2N
array of grid points on the sphere, except that the poles are singletons. Each internal array is an array of points
laid out along a parallel of latitude.

% N -> latitudes in N+1 rows

/sphere-vertex { 1 dict begin
/N exch def

/dA 180 N div def
/dB 360 N div 2 div def

% A = latitude

[
[
[0 0 -1]

]
/A -90 dA add def
N 1 sub {
[
/B 0 def
% B = longitude

Chapter 14. Drawing surfaces in 3D 10

2 N mul 1 add {
B A P
/B B dB add def

} repeat
]
/A A dA add def
} repeat
[
[0 0 1]

]
]
end } def

Finally, we assemble the vertices into faces.

% N -> array of faces

/sphere { 1 dict begin
/N exch def

/S N sphere-vertex def
% S now is an array of vertices, arranged in latitudes

[
% the triangles at the south pole

0 1 2 N mul 1 sub { /j exch def
[
[S 0 get 0 get
S 1 get j 1 add get

S 1 get j get
] dup normal-function

]
} for
% the rectangular regions in the middle

1 1 N 2 sub { /i exch def
0 1 2 N mul 1 sub { /j exch def
[

[
S i get j get
S i get j 1 add get

S i 1 add get j 1 add get
S i 1 add get j get

] dup normal-function
]

} for
} for
% the triangles at the north pole

0 1 2 N mul 1 sub { /j exch def
[
[S N 1 sub get j get
S N 1 sub get j 1 add get
S N get 0 get

] dup normal-function
]

} for

Chapter 14. Drawing surfaces in 3D 11

]
end } def

To draw the regions on the sphere that we have constructed, we can just plug in the array of faces of a sphere
where we dealt with the faces of a cube in earlier code.

/S 18 sphere def
/E get-eye cim3d transform3d def
/L light-source cim3d transform3d def

S {
aload pop
/f exch def % f = normal function

/p exch def % p = array of vertices on the face

f E dot-product 0 ge {
newpath
% move to last point first

p p length 1 sub get aload pop moveto3d
p {
aload pop
lineto3d

} forall
gsave
L f dot-product [0.2 0.2 0.9 0.9] shade
setgray
fill
grestore
stroke

} if
} forall

Here is what we see with N = 16, in one version stroking the rectangle boundaries, in the other not.

In the following figure, N = 32. I would have liked to have included a picture with N = 64, but that would mean
drawing—well, making an attempt to draw—roughly 8, 192 rectangles in 3D. I am afraid that my printer freezes
up at the prospect, just contemplating this task. We’ll see in the next section that this is unnecessary, anyway.

Chapter 14. Drawing surfaces in 3D 12

6. Smoother surfaces

Version 3 of PostScript introduced high quality shading. In earlier versions, if you wanted to show a gradient of
color across a region you had to fill in all the separate colours in small regions, or maybe draw zillions of lines
of different colours. This was almost always painful or slow or both. In the new scheme, you set colours at
certain points and PostScript fills in between these points by interpolating the specified colours. There are several
different methods for doing this—seven in all, to be exact—but we shall look here at one which nicely balances
simplicity against quality, called free-form Gouraud shading. It fits in quite well with surface parametrization.shading:Gouraud:12

There is one extra requirement now, however—the parametrization must specify not only location, but also the
normal function at each point of the surface. We’ll see why in a moment. At any rate, this is easy enough to
obtain from the parametrization, by calculus. If the parametrization is

(s, t) �−→ (x(s, t), y(s, t), z(s, t))

then the vectors
[∂x/∂s, ∂y/∂s, ∂z/∂s] , [∂x/∂t, ∂y/∂t, ∂z/∂t]

span the tangent plane to the surface, and their cross product will be perpendicular to it and facing out—ases:tangent planes:12

long as the orientation of the parametrization is correct, so that (s, t) have the same orientation as (x, y) on the
surface. Normalize this cross product to get [A, B, C]. For Gouraud shading, the parametrization should return
this normal vector as well as the location. For the sphere, the following procedure will do, since the normal vector
is the same as the location vector:

% longitude latitude -> [point on unit sphere, normal vector]

/P { 1 dict begin
/l exch def
/L exch def
% L=longitude l=latitude

/x L cos l cos mul def
/y L sin l cos mul def
/z l sin def
[[x y z] [x y z 0]]

end } def

The way PostScript does shading of any kind is through a special data structure called a shading dictionary. Allictionary:shading:12

you have to know is that the code that produces the shading looks like this:shfill:12

<<
/ShadingType 4
/ColorSpace [/DeviceGray]
/DataSource [0 x y g ...]

Chapter 14. Drawing surfaces in 3D 13

>>
shfill

or this:

<<
/ShadingType 4
/ColorSpace [/DeviceRGB]
/DataSource [0 x y r g b ...]

>>
shfill

Here shfill is a command, a ‘shading fill,’ with the dictionary << ... >> as argument. A dictionary is a list ofdictionary:13

key and value entries, associating a value with each key word listed. In the dictionary /ShadingType 4 specifies
what kind of a shading dictionary (free-form Gouraud) this is. Another kind that you might want to look into is
Type 6, Coons patch meshes, which allows you to introduce curvature into your shaded fragments. These are allding:Coons patch:13

discussed in the section on patterns in the PostScript Reference Manual. The key ColorSpace specifies the type
of colours to be used. The value /DeviceGray says that colours are specified by a single number between 0 and
1, specifying a shade of grey. Another possibility would be /DeviceRGB, indicating three numbers RGB. The
/DataSource lists 2D points and colours to be interpolated between them. Here it is an array of 3 × 4 numbers,
since there are three vertices in a triangular plate. Each of the 4 numbers is associated to a single vertex. The first
of the 4 numbers is a ‘magic number’ that for us will always be 0. The next two are coordinates in the current user
2D coordinate system of the image of the vertex, and g the shade of grey associated to that vertex. If the colour
space is RGB then this single number becomes three colour components. The point (x, y) is calculated from our
3D points in a way I’ll explain in a moment.

These shading routines are not unique to 3D drawing. The following code fragment draws a single triangle with
colours black, red, and white at the vertices.

/A [0 3 sqrt 2 div] def
/B [-0.5 0] def
/C [0.5 0] def

/ds [
0 A aload pop 1 0 0
0 B aload pop 1 1 1
0 C aload pop 0 0 0

] def

newpath
<<
/ShadingType 4
/ColorSpace [/DeviceRGB]
/DataSource ds

>>
shfill

For a 3D object, the colour at any point will be determined by the light source and the normal vector at that point.
Thus the data structures needed for Gouraud shading are slightly different from the flat-plate scheme we used
earlier. For one thing, we now must use triangular plates instead of rectangular ones. To use Gouraud shading
to draw any 3D shape, the first step is to build it as a family of triangles, each with normal vectors at the vertices
plus a normal function for the triangle itself. The normal vector for the triangle is used to test visibility, and
the ones at the vertices are used to interpolate colours. We think of the surface to be drawn as an array of such
coloured triangles.

Chapter 14. Drawing surfaces in 3D 14

To be precise, a vertex P is here is an array [[x y z] [A B C 0]] where x, y, z are the 3D coordinates of
P , [A, B, C] the unit normal vector at P . This is the sort of structure to be returned from the parametrization
procedure. A triangle is an array [P Q R [A B C 0]] where P , Q, R are vertices in this sense. A surface is an
array of triangles. Thus

/T [
P Q R
[P 0 get Q 0 get R 0 get] normal-function

] def

defines a triangle T, if P , Q, R are vertices.

Usually these data will be constructed from a parametrization, but not always. We’ll discuss how to do that
efficiently in a moment.

Given an array surface, an array of triangles in this sense, here is how it is drawn:

surface {
% [P Q R normal] now on stack

aload pop
/f exch def % f = normal function

/R exch def
/Q exch def
/P exch def
% P, Q, R = vertex = [pt + normal]

f E dot-product 0 ge {
newpath
% define grey tones for shading

/sP L P 1 get dot-product 1 add 2 div def
/sQ L Q 1 get dot-product 1 add 2 div def
/sR L R 1 get dot-product 1 add 2 div def
/ds [
0 [P 0 get aload pop 1] CTM transform3d render sP
0 [Q 0 get aload pop 1] CTM transform3d render sQ
0 [R 0 get aload pop 1] CTM transform3d render sR

] def

newpath
<< /ShadingType 4

/ColorSpace [/DeviceGray]
/DataSource ds >>

shfill
} if

} forall

The line

0 P 0 get transformto2d sP

has the ‘magic number’ 0; the 3D point P rendered to 2d; and then the shade at P . Here is what the figure looks
like if surface is a sphere:

Chapter 14. Drawing surfaces in 3D 15

Smooth, eh? Shading in this figure has been done with a Bernstein polynomial of degree 5.ynomial:Bernstein:15

Most surfaces will be built from a parametrization by a rectangular array. Here is a sketch of the way things go,
at least when we are drawing a surface covered by a rectangle via parametrization. Before we do any drawing
at all, we do some preparation. (1) We write the parametrization function, which returns an array of two arrays,
location plus normal function. (2) We build the (M + 1) × (N + 1) array of the object’s 3D points plus normal
function at those points, using the parametrization function. Here M and N are positive integers which we
choose large enough to give an illusion of smoothness. Experimentation will probably be necessary to get them
right. In effect we have now built a grid of size M × N covering the surface.

Then we build all the triangular faces we want to draw, using the grid as indicated here:

i, j i+1, j

i, j+1 i+1, j+1

Here’s code that does this:

/sphere [
0 1 2 N mul 1 sub {
/i exch def
0 1 N 1 sub { /j exch def

/P S i get j get def
/Q S i 1 add get j get def
/R S i 1 add get j 1 add get def
/n [P 0 get Q 0 get R 0 get] normal-function def
n length 0 ne {

[P Q R n]
} if
/P S i get j get def
/Q S i 1 add get j 1 add get def
/R S i get j 1 add get def

Chapter 14. Drawing surfaces in 3D 16

/n [P 0 get Q 0 get R 0 get] normal-function def
n length 0 ne {

[P Q R n]
} if

} for
} for
] def

7. Abandoning convexity

Few scenes other than the very simplest, even in theoretical mathematical figures, consist of a single convex body.
A simple visibility test by means of normal functions will no longer work.visibility:16

The basic problem can be demonstrated with a simple example. Suppose that you want to draw not just one but
two cubes. In certain situations, one of them will hide part or even all of the other from view.

The basic idea is to draw the one that is farthest away first, and then the nearest one, because PostScript paints
over what it draws. Indeed, this strategy is called the painter’s algorithm. Furthermore, if you are doing an
animation, in effect moving your eye around the pair of cubes, which one is farthest away and which one is
nearest will change, so you must decide dynamically as the scene changes which is to be drawn first. In addition,
if you have a large number of objects to draw, you will have to make these dynamical choices efficiently. These
all seem like impossible demands, right?

Drawing complicated scenes in much more complicated in 3D than in 2D—and more interesting, since some real
ideas are required. Much high-end 3D drawing, for example in video games or movies, relies on a pixel-by-pixel
treatment. the pixels in hardware designed for this purpose incorporate a depth coordinate—that is to say, depth
with respect to the plane of the screen—and pixels are coloured in the order of their depth, so that close pixels are
painted after far ones. This hardware option is unavailable to PostScript, which is essentially device-independent.
The PostScript program itself must therefore be responsible for keeping track of depth. The standard method for
doing this is to use a binary space partition.ry space partition:16

In drawing the two cubes, for example, the trick is to place a plane between the two cubes, and use that to keep
track of how the eye is related to the cubes. The cube to draw first is the one on the side of this plane opposite
from the eye.

In other words, we divide space into two parts by a plane. Each side of this plane contains one of the cubes. The
question of nearest and farthest is determined by determining which side of this plain the eye (or, in practice,
what I have called the virtual eye) is on.

Chapter 14. Drawing surfaces in 3D 17

This division of space into two components by means of this plane is about the simplest example of a binary
(two-fold) partition of space. If there are more than two convex objects to be drawn, the idea is to partition all of
space by a plane separating one group of objects from the other, then partition each of the half-spaces if necessary
by its intersection with a plane, etc. until each of the pieces that space has been chopped up into contains exactly
one of the objects to be drawn.

This partition is stored in a way that makes it easy and rapid to decide where the eye lies in relation to these
partitioning planes. The important thing is that the construction of the partition itself, which takes up a relatively
large amount of time, can be accomplished before any drawing at all. The amount of work involved in this is
roughly proportional to n2 if there are n objects to be drawn. The drawing itself turns out to be proportional to
n, which is generally much smaller.

P1

P2P3

P4

P1

P2P3

P4

Eye

1

2

3

4

5

The basic idea, illustrated on the left, is to first partition all of space into two pieces by a single plane (here P1),
then partition each of the remaining components by its intersection with a plane (P2 and P3), etc. When using this
partition to draw, in this example the program first decides what side of P1 the eye lies on, and then recursively
looks at each side in turn. The right hand image shows the order of drawing with the eye at upper right. The
structure necessary to do this drawing is a binary tree whose nodes are the separating planes and whose leaves
the objects to be drawn.

P1

P2

P3

P4

This strategy of partitioning by half-spaces might work easily, or it might not. Sometimes some extra work is
involved. As the figure on the left below illustrates, the given figures might have to be chopped up. This is
acceptable, since what we are drawing are surface fragments, and a plane cuts a surface fragment into smaller
fragments. But we definitely have to allow for this chopping.

Chapter 14. Drawing surfaces in 3D 18

There are special ways to draw special surfaces, but a binary space partition can be used to draw any collection
of surface fragments from any perspective. To be precise, a binary space partition is a tree, as I have mentioned,
with two kinds of nodes, branches and leaves, and it is defined in an essentially recursive manner. A leaf is
simply a surface fragment. A branch is in essence a separating plane, and in practice this plane is chosen to be
the support of one of the surface fragments. So it becomes a surface fragment together with the two binary space
partitions of the half spaces it determines, conventionally called left and right. If f ≥ 0 is the defining equation
of the separating plane, then all the leaves of the left partition lie entirely in the region f ≤ 0 and all those on
the right lie in f ≥ 0. More completely, any leaf lies in the intersection of all of the half spaces associated to
the branches containing it, which is of course a convex set. The leaves of a binary space partition are drawn
recursively. Each node ν of the partition is examined; if the eye lies, say, in the region fν ≥ 0 then all the leaves in
the left partition are drawn, followed by the fragment associated to the node itself, followed in turn by the right
partition. In constructing the partition associated to a collection of fragments, a fragment is chosen at random
from the collection and all the other fragments split into the halves determined by its support. These are collected
into left and right collections, and the partitions associated to each of these is then constructed. This is allowable
since the chosen surface fragment itself is excluded from both left and right, and the complexity of each partition
construction is decreased at each step.

The results can be quite pleasant, although complicated figures require a long time for PostScript to draw.

Certain configurations illustrate that in some configurations there is absolutely no way to guarantee back-to-front
drawing without splitting up fragments, since there is no way to order the original fragments.

Chapter 14. Drawing surfaces in 3D 19

Another application of the splitting algorithm used in binary space partitioning is to chop away things in 3D that
lie behind the eye, thus eliminating the weird effects mentioned in another chapter.

8. Summary

Drawing surfaces is quite complicated, and it is probably a good idea if I summarize the process here, at least in
the most common cases. I’ll work here with the most complicated case, where we are interested in using shfill.
It should be easy enough to adapt what I say to the easier case that doesn’t use it.

• I’ll assume the surface can be parametrized by a map f(s, t) from 2D to 3D. The first step is to write the
parametrization function f that has an array [s t] of length two as argument and returns the 4-item array
[x y z n], where n is the unit normal vector to the surface at (x, y, z), the point parametrized by (s, t).
I’ll call such an array a vertex.

• Build an array of vertices over the range you want to look at. Usually this will be correspond to a rectangle
in parameter space.

• Assemble the plates of the surface into an array. These can be triangles, rectangles, . . . It is best—i.e. most
efficient—to build the largest flat plates possible. For example, on a sphere you build the rectangles laid out
by longitude and latitude. Be careful about singular points of the parametrization, such as the poles of the
parametrization of the sphere by latitude and longitude, where the rectangles collapse to triangles.

• Decide on a colour scheme. Usually just a single colour.
• Pick a light source and a shading scheme.
• If you’re dealing with a single convex object, there is nothing more to be done except to draw it and shade it,

testing visibility with the normal function for plates.
• Otherwise, make up a BSP structure. Then draw. In my code, the procedure that builds the BSP has as one

of ist aguments an interpolation routine that constructs the normal vector at a point on a segment between
two other vertices. This is needed because constructing the BSP tree occasionally requires that the plates it
starts with get split into smaller plates.

9. Code

PostScript routines for building binary space partitions can be found in the file bsp.inc, and sample usage in
triad.ps, box.ps, and doughnut.ps. The last illustrates a complete construction of a smooth surface. Well,
maybe not that smooth—note the straight line segments on the boundary of the doughnut. This can be fixed by
only the more sophisticated shading using Coons patches.ng:Coons patches:19

Chapter 14. Drawing surfaces in 3D 20

The parametrization of the doughnut (or torus, which my Latin dictionary translates as ‘cushion’) istorus:20

(s, t) �−→ ((R + r cos t) cos s, (R + r cos t) sin s, r sin t)

where R and r are the two radii involved. The easiest way to see this is to start with the circle in the (x, z) plane
of radius r at centre (R, 0) and rotate it around the z-axis in 3D.

In implementing binary space partitioning for drawing fragments, some extra care has to be taken to avoid nastyry space partition:20

floating point problems. The main difficulty is in splitting, because if two fragments are almost parallel and one
is split by the other, the result may vary wildly depending on floating point errors in the calculation. In practice
in drawing 3D figures a lot of fragments will have exactly the same normal function, which can cause extremely
bad effects without precautions. One good thing to do is to assign all these fragments exactly the same normal
functions—i.e. exactly the same array. Another is not to split any fragment by a plane approximately parallel to
it, although this is a costly and somewhat arbitrary test.

References

1. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational geometry—algorithms and
applications, Springer Verlag, 1991. Chapter 12 is all about binary space partitions.

CHAPTER 1

Getting started in PostScript

PostScript is a rather low level computer language developed by Adobe Systems in its startup days. Its primary

purpose is to produce high quality graphics from computers, and especially to output computer graphics on
printers. Professional graphics designers, for example, often work with high­end programs that in turn produce

their output through PostScript. To them, the PostScript itself is usually invisible. One would not therefore expect
PostScript to be comprehensible to humans. It is nonetheless a convenient computer language for producing by

hand, so to speak, designs with a large mathematical component. One great virtue of PostScript is that there is no

effective limit on the quality of the final product, precisely because it is designed for use by professionals. Some
other virtues are that it is amenable to ‘programming by cut and paste’, and that the effects of commands are

very local in nature—local, that is to say, within the text of the program. Both virtues and drawbacks will become

better known as we proceed.

In this book we shall use a program called Ghostscript, as well as one of several programs which in turn rely on

Ghostscript running behind the scenes, to serve as our PostScript interpreter and interface. All the programs we
shall use are available without cost through the Internet. Be careful—the language we are writing our programs

in is PostScript, and the program we’ll use to interpret them is Ghostscript. See Appendix 2 for how to set up

your programming environment.

The interpreter Ghostscript has by itself a relatively primitive user interface which will turn out to be too awkward

to use for very long, but learning this interface will give you a valuable feel for the way PostScript works.
Furthermore, it will continue to serve a useful although limited purpose, in debugging as well as animations.

We shall begin in this chapter by showing how Ghostscript works, and then later on explain a more convenient
way to produce pictures with PostScript.

1. Simple drawing

Start up Ghostscript. On Unix networks this is usually done by typing gs in a terminal window, and on other
systems it is usually done by clicking on the icon for Ghostscript. (You can also run Ghostscript in a terminal

window, even on Windows systems—see Appendix 2.) What you get while gs is running are two windows, one

a kind of terminal window into which you type commands and from which you read plain text output, and the
other a graphics window in which things are drawn.

Chapter 1. Getting started in PostScript 2

The program Ghostscript running, image and terminal windows showing.

The graphics window—which I shall often call the page—opens up with a default coordinate system. The origin
of this coordinate system on a page is at the lower left, and the unit of measurement—which is the same in both

horizontal and vertical directions—is equal to a point, exactly equal to 1/72 of an inch. (This Adobe point is

almost, but not quite, the same as the classical printer’s point, which measures 72.27 to an inch.) The size of the
graphics window will probably be either letter size (8.5′′ × 11′′ or 612× 792 points2) or the size of European A4

paper, depending on your locality. As we shall see in a moment, the coordinate system can be easily changed so
as to arrange x and y units to be anything you want, with the origin anywhere in the plane of the page.

When I start up running my local version of Ghostscript in a terminal window I get a display in that window
looking like this:

AFPL Ghostscript 7.04 (2002-01-31)

Copyright (C) 2001 artofcode LLC, Benicia, CA. All rights reserved.

This software comes with NO WARRANTY: see the file PUBLIC for details.

GS>

In short, I am facing the Ghostscript prompt GS>, and I am expected to type in commands. Let’s start off by

drawing a line in the middle of the page. On the left is what the terminal window displays, and on the right is
what the graphics window looks like:

GS>newpath

GS>144 144 moveto

GS>288 288 lineto

GS>stroke

GS>

Chapter 1. Getting started in PostScript 3

(The grid is just there to help you orient yourself, and not displayed in the real window.) The machine produces
the prompts here, and everything else is typed by you. The graphics window displays the diagonal line in the

figure on the right.

If we look really closely at the line on the screen that comes up, say with a magnifying glass,
we’ll see a rather jagged image. That’s because the screen is made up of pixels, with about 75

pixels in an inch. But PostScript is a scalable graphics language, which means that if you look
at output on a device with a higher resolution than your screen, the effects of pixelization will

be seen only at that resolution. Exactly how the computer transforms the directions for drawing

a line into a bunch of black pixels is an extremely interesting question, but not one that this book will consider.
So in effect in this book all lines will be assumed to be . . . well, lines—not pixelly things that look odd and ugly

close up.

You draw things in PostScript by constructing paths. Any path in PostScript is a sequence of lines and curves.

At the beginning, we shall work only with lines. In all cases, first you build a path, and then you actually draw it.

• You begin building a path with the command newpath. This is like picking up a pen to begin drawing on a

piece of paper. In case you have already drawn a path, the command newpath also clears away the old path.

• You start the path itself with the command moveto. This is like placing your pen at the beginning of your
path. In PostScript, things are generally what you might think to be backwards, so you write down first the

coordinates of the point to move to, then the command.

• You add a line to your path with the command lineto. This is like moving your pen on the paper. Again
you place the coordinates first, then the command.

• So far you have just built your path. You draw it—i.e. make it visible—with the command stroke. You
have some choice over what colour you can draw with, but the colour that is used by default is black.

From now on I will usually leave the prompts GS> out. Let me repeat what I hope to be clear from this example:

• PostScript always writes things backwards. The arguments to an operator always go before the operator
itself.

This convention is called Reverse Polish Notation (RPN). It will seem somewhat bizarre at first, but you’ll get used

to it. It is arguable that manual calculations, at least when carried out by those trained in European languages,

should have followed RPN conventions instead of the ones used commonly in mathematics. It makes a great
deal of sense to apply operations as you write from left to right.

RPN was invented by logicians for purely theoretical reasons, but PostScript is like this for practical reasons of
efficiency. There is one great advantage from a user’s standpoint—it allows a simple ‘cut and paste’ style of

programming.

You would draw a square 2 inches on a side with the command sequence

newpath

144 144 moveto

288 144 lineto

288 288 lineto

144 288 lineto

144 144 lineto

stroke

Chapter 1. Getting started in PostScript 4

If you type this immediately after the previous command sequence, you will just put the square down on top of
the line you have already drawn:

I’ll tell you later how to start over with a clean page. For now, it is important to remember that PostScript paints
over what you have already drawn, just like painting on a canvas. There is no command that erases stuff already

drawn.

There are often lots of different ways to do the same thing in PostScript. Here is a different way to draw the

square:

newpath

144 144 moveto

144 0 rlineto

0 144 rlineto

-144 0 rlineto

closepath

stroke

The commands rmoveto and rlinetomean motion relative to where you were before. The command closepath

closes up your path back to the last point to which you applied a moveto.

A very different effect is obtained with:

newpath

144 144 moveto

144 0 rlineto

0 144 rlineto

-144 0 rlineto

closepath

fill

This just makes a big black square in the same location. Whenever you build a path, the operations you perform
to make it visible are stroke and fill. The first draws the path, the second fills the region inside it.

You can draw in different shades and colours with two different commands, setgray and setrgbcolor. Thus:

0.5 setgray

newpath

144 144 moveto

144 0 rlineto

0 144 rlineto

-144 0 rlineto

Chapter 1. Getting started in PostScript 5

closepath

fill

will make a grey square, and

1 0 0 setrgbcolor

newpath

144 144 moveto

144 0 rlineto

0 144 rlineto

-144 0 rlineto

closepath

fill

will make a red one. Note the American spelling of both ‘grey’ and ‘colour’. The rgb here stands for Red, Green,

Blue, and for each colour you choose a set of three parameters between 0 and 1. Whenever you set a new colour,
it will generally persist until you change it again. Note that 0 is black, 1 white. The command x setgray is the

same as x x x setrgbcolor. You can remember that 1 is white by recalling from high school physics that white

is made up of all the colors put together.

Exercise 1. How would you set the current colour to green? Pink? Violet? Orange?

Filling or stroking a path normally deletes it from the record. So if you want to fill and stroke the same path you

have to be careful. One way of dealing with this is straightforward if tedious—just copy code. If you want to

draw a red square with a black outline you then type

1 0 0 setrgbcolor

newpath

144 144 moveto

144 0 rlineto

0 144 rlineto

-144 0 rlineto

closepath

fill

0 setgray

newpath

144 144 moveto

144 0 rlineto

0 144 rlineto

-144 0 rlineto

closepath

stroke

We shall see later a way to produce this figure without redundant typing.

Exercise 2. Run Ghostscript. Draw an equilateral triangle near the centre of the page, instead of a square. Make
it 100 points on a side, with one side horizontal. First draw it in outline, then fill it in black. Next, make it in turn
red, green, and blue with a black outline. (You will have to do a few calculations first. In fact, as we shall see
later, you can get PostScript to do the calculations.)

Chapter 1. Getting started in PostScript 6

2. Simple coordinate changes

Working with points as a unit of measure is not for most purposes very convenient. For North Americans, since

the default page size is 8.5′′ × 11′′, working with inches usually proves easier. We can change the basic unit of
length to an inch by typing

72 72 scale

which scales up the x and y units by a factor of 72. Scaling affects the current units, so scaling by 72 is the same

as scaling first by 8, then by 9. This is the way it always works. The general principle here is this:

• Coordinate changes are always interpreted relative to the current coordinate system.

You can scale the x and y axes by different factors, but it is usually a bad idea. Lines are themselves drawable
objects of finite width. If scaling is not uniform, the thickness of a line will depend on its direction. So that scaling

x by 2 and y by 1 has this effect on a square with a thick border:

To be sure to get both scale factors the same, you can also type 72 dup scale. The command dup duplicates the
previous entry.

When you scale, you must take into account the fact that the default choice of the width of lines is 1 unit. So if
you scale to inches, you will get lines 1 inch wide unless you do something about it. It might be a good idea to

add

0.01389 setlinewidth

when you scale to inches. This sets the width of lines to 1/72 of an inch. A linewidth of 0 is also allowable—it just
produces the thinnest possible lines which do not actually vanish. You should realize, however, that on a device

of high resolution, such as a 1200 DPI printer, this will be nearly invisible. Setting the line width to 0 contradicts

the general principle of device independence—you should always aim in PostScript to produce figures which
do not in any way depend directly on the particular device on which it will be reproduced.

Exercise 3. How would you scale to centimeters?

You can also shift the origin.

1 2 translate

moves the coordinate origin to the right by 1 unit and up by 2 units. The combination

72 72 scale

4.25 5.5 translate

moves the origin to the centre of an 8.5′′ × 11′′ page.

There is one more simple coordinate change—rotate.

Chapter 1. Getting started in PostScript 7

144 144 translate

30 rotate

newpath

0 0 moveto

144 0 lineto

144 144 lineto

0 144 lineto

0 0 lineto

stroke

The translation is done first because rotation always takes place around the current origin. Note that PostScript
works with angles in degrees.

This will cause us some trouble later on, but for now it is probably A Good Thing.

Exercise 4. Europeans use A4 paper. Find out its dimensions, and show how to draw a square one centimetre
on a side with centre in the middle of an A4 page. (What is the special mathematical property of A4 paper?)

3. Coordinate frames

It is sometimes not quite so easy to predict the effect of coordinate changes. The secret to doing so is to think
in terms of coordinate frames. Frames are associated to linear coordinate systems, and vice­versa. The way to

visualize how the coordinate changes scale, translate, and rotate affect drawing is by realizing their effect

on the frame of the coordinate system.

A simple frame, with units in centimetres

Scaled by
√

2 in both directions

Chapter 1. Getting started in PostScript 8

Translated by [1, 1]

Rotated by 45◦

There are two fundamental things to keep in mind when wondering how coordinate changes affect drawing.

• Coordinate changes affect the current frame in the natural and direct way. That is to say, 2 2 scale scales
the current frame vectors by a factor of 2, etc.

• Drawing commands take effect relative to the current frame.

For example, rotate always rotates the coordinate system around the current origin, which means that it rotates

the current coordinate frame. The commands translate, scale, and rotate when combined in the right
fashion can make any reasonable coordinate change you want (as well as a few you will probably never want).

The restriction of ‘reasonability’ here means those that in effect lay down a grid of parallel lines on the plane. As
an example, suppose you want to rotate your coordinate system around some point other than the origin. More

explicitly, suppose you want to rotate by 45◦ around the point whose coordinates in the current system are (2, 2).

In other words, we want to move the current coordinate frame like this:

The way to get this is

2 2 translate 45 rotate -2 -2 translate

Chapter 1. Getting started in PostScript 9

In other words, in order to rotate the coordinate system by θ around the point P , you perform in sequence (1)
translation by the vector (P − O) from the origin O to P ; (2) rotation by θ; (3) translation by −(P − O).

The effect of ‘zooming in’ is rather similar, and analyzed in Appendix 5.

4. Doing arithmetic in PostScript

PostScript is a complete programming language. But with the goal of handling data rapidly, it has only limited

built­in arithmetical capabilities. As in many programming languages both integers and real numbers are of

severely limited precision. In some implementations of PostScript, integers must lie in the range [−32784, 32783],
and real numbers are only accurate to about 7 significant places. This is where the the roots of the language

in graphics work show up, since normally drawing a picture on a page of reasonable size does not have to be

extremely accurate. This limited accuracy is not usually a serious problem, but it does mean you have to be
careful.

At any rate, with arithmetical operations as with drawing operations, the sequence of commands is backwards
from what you might expect. To add two numbers, first enter the numbers, followed by the command add.

The result of adding numbers is also not quite what you might expect. Here is a sample run in the Ghostscript
interpreter:

GS>3 4 add

GS<1>

What’s going on here? What does the <1> mean? Where is the answer?

PostScript uses a stack to do its operations. This is an array of arbitrary length which grows and shrinks as a

program moves along. The very first item entered is said to be at the bottom of the stack, and the last item entered
is said to be at its top. This is rather like manipulating dishes at a cafeteria. Generally, operations affect only the

things towards the top of the stack, and compute them without displaying results. For example, the sequence 3

4 add does this:

Entry What happens What the stack looks like
3 The number 3 goes onto the stack 3

4 The number 4 goes above the 3 on the stack 3 4

add The operation add goes above 4 . . . 3 4 add

. . . then collapses the stack to just a single number 7

You might be able to guess now that the <1> in our run tells us the size of the stack. To display the top of the

stack we type =. If we do this we get

GS>3 4 add

GS<1>=

7

GS>

Note that = removes the result when it displays it (as does the similar command ==).

An alternative is to type stack or pstack, which displays the entire stack, and does not destroy anything on it.

GS>3 4 add

GS<1>stack

7

GS<1>

The difference between = and == is too technical to explain here, but in practice you should usually use ==.

Similarly, you should usually use pstack, which is a bit more capable than stack. There is a third and slightly

more sophisticated display operator called print. It differs from the others in that it does not automatically put

Chapter 1. Getting started in PostScript 10

in a carriage return, and can be used to format output. The print command applies basically only to strings,
which are put within parentheses. (Refer to Appendix 1 for instructions on how to use print.)

Other arithmetic operations are sub, mul, div. Some of the mathematical functions we can use are sqrt, cos,

sin, atan. For example, here is a command sequence computing and displaying
√

3 ∗ 3 + 4 ∗ 4.

GS>3 3 mul

GS<1>4 4 mul

GS<2>add

GS<1>sqrt

GS<1>=

5.0

GS>

One thing to note here is that the number 5 is written as 5.0, which means that it is a real number, not an integer.

PostScript generally treats integers differently from real numbers; only integers can be used as counters, for
example. But it can’t really tell that the square root of 25 is an integer.

Exercise 5. Explain what the stack holds as the calculation proceeds.

Exercise 6. Use Ghostscript to calculate and display
√

92 + 72.

Here is a list of nearly all the mathematical operations and functions.

x y add puts x + y on the stack

x y sub puts x − y on the stack
x y mul puts xy on the stack

x y div puts x/y on the stack

m n idiv puts the integer quotient of m divided by n on the stack
m n mod puts remainder after division of m by n on the stack

x neg puts −x on the stack
y x atan puts the polar angle of (x, y) on the stack (in degrees)

x sqrt puts
√

x on the stack

x sin puts sin x on the stack (x in degrees)
x cos puts cosx on the stack (x in degrees)

y x exp puts yx on the stack

x ln puts ln x on the stack
x abs puts |x| on the stack

x round puts on the stack the integer nearest x
x floor puts on the stack the integer just below x
x ceiling puts on the stack the integer just above x

Note that atan has two arguments, and that the order of the arguments is not quite what you might expect. This

is commonly done in programming languages.

Exercise 7. Do floor and ceiling return real numbers or integers? What are the floor and ceiling of 1? −0.5?

Exercise 8. Recall that acos(x) is the unique angle between 0◦ and 180◦ whose cosine is x. Use Ghostscript to
find acos(0.4). (This will require thinking a bit about the geometry of angles.) (Some versions of PostScript will
have acos built in. Do not use it, but restrict yourself to getting by with atan.)

In addition to these mathematical functions you will probably find useful a few elementary commands that move

things around on the stack.

x y exch exchanges the top two items on the stack to make them y x

x pop removes the top item on the stack

x dup makes an extra copy of the top item on the stack

Chapter 1. Getting started in PostScript 11

5. Errors

You will make mistakes from time to time. The default method for handling errors in Ghostscript (and indeed in

all PostScript interpreters I am familiar with) is pretty poor. This is not an easy problem to correct, unfortunately.
Here is a typical session with a mistake signaled. If you enter

GS>5 0 div

this is what you will get (more or less) spilled out on the screen:

Error: /undefinedresult in --div--

Operand stack:

5 0

Execution stack:

%interp_exit --nostringval--

--nostringval-- --nostringval--

%loop_continue --nostringval--

--nostringval-- false --nostringval--

--nostringval-- --nostringval--

Dictionary stack:

--dict:592/631-- --dict:0/20-- --dict:34/200--

Current allocation mode is local

GS<2>

Holy cow! Your adrenaline level goes way up and your palms break out in sweat. What the $%#?! are you

supposed to do now? Calm down. The important thing here and with just about all error messages from
Ghostscript is that you can ignore all but these first lines:

Error: /undefinedresult in --div--

Operand stack:

5 0

which shows you the general category of error and what the stack was like when the error occurred. Here it is

division by 0. It never pays to try too hard to interpret Ghostscript error messages. The only way to deal with
them is to try to figure out where the error occurred, and examine your input carefully. There is one trick you can

use to find out where the error occurred: put lines like (1) = or (location #1) = at various points in your

program and try to trace how things go from the way output is displayed. Simple, but it often helps. The way
this works is that (1) denotes the string "1", and = will display it on the terminal. This technique is clumsy, but

not much more is possible.

If you are running Ghostscript, then to recover from an error you probably want to clear the stack completely and

start over, with the single command clear.

Incidentally, the way errors are handled by your PostScript interpreter can be modified by suitable embedded

PostScript code. In particular, there is a convenient error handler called ehandler.ps available from Adobe via

the Internet, at www.adobe.com. If you have a copy of it in your current directory, you can use it by putting

(ehandler.ps) run

at the beginning of your program. This will simplify your error messages enormously. You can also arrange for

Ghostscript to use it instead of its default error handling, but exactly how depends on which computer you are

using. If you do import ehandler.ps you must remove all reference to it before sending your work to a printer.

You should keep in mind that, even for experts, tracking a PostScript program explicitly can be very difficult.

One way to write better code in the first place is to include lots of comments, so that someone (usually the
programmer!) can tell what the program is doing without following the code itself. In PostScript these are begun

with a percent sign %. All text in a line after a % is ignored. Thus the effect of these two lines is the same:

Chapter 1. Getting started in PostScript 12

(ehandler.ps) run

(ehandler.ps) run % imports the error handler

Another trick for more convenient debugging is to run your program without visual output. On a Unix system

this is done with the command gsnd (for ‘ghostscript no display’) plus the name of the input file. The messages
you get are the same, but this seems to help you concentrate on what Ghostscript is trying to tell you.

6. Working with files and viewers GhostView or GSView

Using the Ghostscript interpreter directly shows interesting things, and you should be ready and willing to do it
occasionally (for example when using the gsnd option mentioned above), but it is an extremely inefficient way

to produce pictures, mostly because data entered cannot be changed easily, and errors will force you to start all

over again. Much better is to work with a Ghostscript viewer such as GhostView or GSView, which has a far more
convenient interface. Then to produce PostScript programs and visualize them, perform the following sequence

of operations:

• Start up your viewer.
• Start up a text editor.
• Create or open up in your text editor the file you want to hold your PostScript program. Be sure your file is to

be saved as plain text, as opposed to one of the special formats many word processors, at least on Windows
machines, seem to prefer. This is the default with the simple editing program Notepad. Notepad is capable
of handling only short files, however, and sooner or later you will find it inadequate.

• Open up that file from the viewer and see what you’ve drawn.
• As you make up your program inside the editor, save it from time to time and reopen it in the viewer, where

your picture and possibly other messages will be displayed. You can probably set your viewer to reopen the
file automatically whenever it is changed, with a ‘Watch file’ option.

There are some new features of using files for PostScript programs that you’ll have to take into account, but

otherwise this works well—indeed, almost painlessly.

• At the very beginning of your file you must have the two characters %!. This tells your computer that the
file is a PostScript file. Sometimes your viewer will be happier if you have a longer line something like
%!PS-Adobe-2.0.

• At the end of your file you should have a line with showpage on it.

Neither of these is usually absolutely necessary, but there will be times when both are required. They will
definitely be required if you want to print out your picture on a printer, or if you want to import your PostScript
file into an image manipulation program in order to turn it into a graphics file of some other format.

The command showpage displays the current page, at least in some situations, and then starts a new page. Later

on you will want to make up files with several pages in them, and each page must have a showpage at the end.

There is one tricky feature of showpage, however.

• Setting up coordinates, for example scaling, should be done over again on each page.

There are better and worse ways to deal with this. The best is to put the commands gsave at the beginning and
grestore at the end of each page. We will see later exactly what these commands do, but the brief description

is that they save and restore the graphics state. Using them as I suggest here just means that every page starts all
over in the original graphics environment. Let me repeat this, because it is extremely important: Start each page
clean.

Here, for example, is a complete two­page program:

%!

gsave

Chapter 1. Getting started in PostScript 13

72 72 scale

1 72 div setlinewidth

4 5 translate

newpath

0 0 moveto

1 0 lineto

0.5 1 lineto

closepath

stroke

grestore

showpage

gsave

72 72 scale

1 72 div setlinewidth

4 5 translate

newpath

0 0 moveto

1 0 lineto

1 1 lineto

closepath

stroke

grestore

showpage

Exercise 9. What does this program do?

By the way, I want to emphasise that spaces, tabs, and line breaks are all the same to PostScript. Thus in the above

program I could have written either

72 72 scale

1 72 div setlinewidth

4 5 translate

or

72 72 scale 1 72 div setlinewidth 4 5 translate

The only reason to be careful about spaces or tabs or line breaks in a PostScript program is to make the program
readable by humans. This is extremely important to keep in mind, even when the only person who reads the

program is the one who writes it. Because the person who reads a program is never the one who writes it. The

programmer’s brain inevitably changes state in between writing and reading, and it is often very difficult for the
reader of tomorrow to recall exactly what the writer of today had in mind.

Chapter 1. Getting started in PostScript 14

7. Some fine points

There are a number of commands that control fine points of the way PostScript draws.

Every line in PostScript has a finite width. Usually this is not apparent, but occasionally it will be. How should
the end of a line look (i.e. be capped)? How should two lines join at a corner?

PostScript stores internally a variable linecap which controls how lines are capped. This table shows the effect:

linecap Appearance of a thick line segment

0

1

2

This variable is set with a command sequence like 1 setlinecap. If it is not explicitly set, it is 0.

How lines join is controlled by an internal variable linejoin.

9 setlinewidth

% linejoin = 0 by default

newpath

0 0 moveto

0 72 lineto

72 0 lineto

stroke

If I add a single line like the following, near the beginning, I get something very slightly different.

1 setlinejoin

Another possibility:

2 setlinejoin

There is nothing wrong with any of these pictures, but in some circumstances you will want to use something

other than the default, which is the first one. This is particularly true, for example, in drawing three dimensional
figures, when linejoin and linecap should both be set to 1.

Also, the effect of closepath may not be what you expect. Compare:

Chapter 1. Getting started in PostScript 15

newpath

0 0 moveto

72 0 rlineto

0 72 rlineto

0 72 lineto

0 0 lineto

stroke

and

newpath

0 0 moveto

72 0 rlineto

0 72 rlineto

0 72 lineto

closepath

stroke

The moral of this is that if you mean to draw a closed path, then use closepath. It closes up the path into a
seamless path—without break—so that all corners become essentially equivalent. As I shall likely repeat often,

programs should reflect concepts—i.e. not depend on accidents to look OK.

Exercise 10. Draw in PostScript the following pictures, taken, with modifications, from the proof of Proposition
I.47 in the standard edition of Euclid’s Elements. Of course you might want to look up Euclid’s argument first.
One thing to keep in mind is that in drawing a complex figure, each conceptual component in the program should
be handled as a unit. A triangle is not just a bunch of line segments, but line segments assembled in a particular
order and style. You should also think here about about using colours in an intelligent way to help explain
Euclid’s proof.

Here and elsewhere, when you are asked to reproduce a picture, you are almost always expected to reproduce
its dimensions as closely as you can.

One of the main purposes of this book is to get a reader used to the idea that pictures can and should play a larger
role in the exploration and exposition of mathematics. Nothing like diving in at the deep end—you should take

it as dogma here that

Chapter 1. Getting started in PostScript 16

• The ideal proof has no words and no labels on the figures.

A good picture—well, a really good one—tells its story without these crutches. The point is that the reader should

be able to tell what’s going on without having to go back and forth between text and figure, and see in a glance

what no number of words could express as clearly.

Of course the word ‘proof’ in these circumstances does not have the conventional meaning. Now a proof in

mathematics is what it always has been—a rigourous arrangement of statements, each one following logically
from previous ones. But in much mathematics, such an arrangement is often flat and without appropriate

emphasis. It does not lay out clearly the important points to be dealt with, whereas pictures often do this
superbly. The magic of geometry in mathematics, even at the most sophisticated level, is that geometrical

concepts are somehow more . . . well, more visible than others.

Exercise 11. Draw a picture of the French flag (blue, white, and red vertical stripes). Do two versions, one with
and one without thin black lines separating the different colours and outlining the flag.

I do not know the official aspect ratio, but you should try to find it out before you do this exercise.

Exercise 12. Try a Canadian flag, too. This is somewhat more difficult, but you ought to be able to produce a
schematic maple leaf.

8. A trick for eliminating redundancy

I mentioned before that if we want to fill a path with one colour and then stroke it with another, it is not necessary

to build the path a second time. Instead, we can use gsave and grestore in a tricky way. These two operators
save and restore the graphics state, but the graphics state includes any current paths unfinished, as well as the

current colour. Therefore we can do this:

newpath

144 144 moveto

144 0 rlineto

0 144 rlineto

-144 0 rlineto

closepath

gsave

1 0 0 setrgbcolor

fill

grestore

0 setgray

stroke

to get a red square outlined in black, and without any redundant code. This trick may seem like a lot trouble here
in this simple case, but when diagrams are more complicated it will prove its worth.

9. Summary

The basic commands necessary to draw in Postscript are pretty simple. The commands

newpath

moveto

lineto

rmoveto

rlineto

closepath

stroke

fill

Chapter 1. Getting started in PostScript 17

are used to build and draw paths. The commands

translate

scale

rotate

allow us to make simple coordinate changes. The commands

setlinewidth

setrgbcolor

setgray

setlinejoin

setlinecap

allow us to change the attributes of paths to be drawn. Finally

gsave

grestore

showpage

lets us put together several pages of drawings.

These are almost all the basic drawing commands. They are pretty simple, and it might be difficult at this stage
to understand how one can use them to draw anything complicated. Constructing interesting things to draw can

take a lot of work. To help us here we have so far seen only a small set of mathematics functions like cos, etc.

and the stack manipulation commands dup, exch, and pop. Next we need to learn how to get PostScript to do
more sophisticated things for us.

Finally, remember that in PostScript you put data on the stack before you say what to do with those data.

10. Code

The file beginning.ps contains several of the figures from this chapter, on successive pages.

References

1. PostScript Language—Tutorial and Cookbook, Adobe Systems, 1985. Available at

http://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF

This is easy and pleasant reading, with lots of intriguing examples. Known informally as ‘the blue book’.

2. PostScript Language—Program Design, Adobe Systems, 1985. Available at

http://www-cdf.fnal.gov/offline/PostScript/GREENBK.PDF

Not quite so useful as the tutorial, but still with useful ideas. Particularly valuable is the alphabetical list of all
PostScript operators, in addition to a list of operators grouped by function. Known informally as ‘the green book’.

Both of these classic manuals are also available from the source at

http://partners.adobe.com/asn/tech/ps/download/samplecode/ps psbooks/index.jsp

3. PostScript Language Reference, Adobe Systems, Third Edition, 1999. Available at

http://partners.adobe.com/asn/developer/technotes/postscript.html

Invaluable. Huge, comprehensive, but nonetheless very readable. Known informally as ‘the red book’.

4. The file ehandler.ps can be found at

Chapter 1. Getting started in PostScript 18

http://www.adobe.com/support/downloads/detail.jsp?hexID=5396

and many other places on the Internet.

5. Three good ’Net sources for PostScript are

http://www.prepressure.com/ps/whatis/PSlanguage.htm (PostScript humour)

http://www.vergenet.net/ conrad/fractals/legobrot/ (PostScript LEGO)

http://cgm.cs.mcgill.ca/ luc/PSgeneral.html (Luc Devroye’s PostScript pages)

There are many sites on the ’Net that display country flags. One aapparently good one is

http://flagspot.net/flags/

CHAPTER 2

Elementary coordinate geometry

C

The page on which you draw may, for all practical purposes, be considered as a window onto a plane extending

uniformly to infinity. We shall not look too closely at the assumptions made in this statement, but instead rely
strongly on intuition depending on visual experience to deduce important facts about this plane.

Using computers to draw requires translating from geometry to numbers—i.e. to a coordinate system—and back
again. There are a few basic formulas that are used over and over again. It is best to memorize them. Calculating

the distance between points whose coordinates are given requires Pythagoras’ Theorem, which we recall almost

at the beginning of this chapter. Before that, however, comes a discussion of the areas of parallelograms; and
even before that comes a short note about distinguishing points from vectors. Towards the end of the chapter we

shall look at a number of results related principally to projections.

For many readers, the results presented in this chapter will be well known. Even for them, however, the use of

visual reasoning might be interesting and, in some aspects, novel.

1. Points and vectors

It is important to distinguish points from vectors, even though a coordinate system assigns a pair of numbers

to either a point or a vector. Points are . . . well, points. They possess no attribute other than position, and in

particular they are (in spite of how they are drawn!) without dimension or size or color or smell or . . . anything
other than position. Vectors, on the other hand, have magnitude and direction. They measure relative position.

It is very important to keep in mind that both points and vectors are objects independent of which coordinate
system is being used.

Vectors can be added to each other, and they can be multiplied by constants. There is also a kind of limited

algebra involving points. If P = (xP , yP) and Q = (xQ, yQ) are two points then there is a unique vector with
tail at P and head at Q whose coordinates are xQ − xP and yQ − yP , describing the relative position of the two

points. It is written as Q−P . One reason that it is common to confuse points with vectors is that to each point P
corresponds the vector P − O from the origin to P . However, if the coordinate system changes, the origin may

change. The points themselves won’t change, but the vectors they correspond to will likely do so.

If we are given a coordinate system, the vector with coordinates x, y will be [x, y] and the point with those

coordinates will be (x, y). The (x, y) corresponds to the vector [x, y] from the origin to itself—but I repeat that

this point and this vector are not the same geometrical object.

If P is a point and v a vector it makes sense to consider P + v as a point—it is the point Q such that Q − P = v.

It is the point P displaced or translated by v. If t is a real number between 0 and 1 then the point t of the
way from P to Q is equal to P + t(Q − P) with coordinates (1 − t)xP + txQ, (1 − t)yP + tyQ). I write it as

(1− t)P + tQ. It is a kind of weighted average of P and Q. For example, the point point midway between P and

Q is (1/2)P + (1/2)Q. As we shall see later, we can also take weighted averages of collections of several points.

In summary: we can subtract two points to get a vector; or calculate a weighted average to obtain another point;

but the sum of two points or a scalar multiple of a point makes no intrinsic sense.

Chapter 2. Elementary coordinate geometry 2

2. Areas of parallelograms

Area is a somewhat sophisticated concept, not easily analyzed in complete rigour. We are used to thinking of it

as a number, but of course the number involved depends on the units involved—it is really a ratio of the area
of a region to that of a unit square. So area seems to be a fundamental, geometrical characteristic of a region. It

is interesting that Euclid starts off Book I of the Elements with properties of area that are encapsulated in a few

particularly simple axioms. One of these is that congruent regions have the same area. Recall that one region is
said to be congruent to another if it is obtained from it by translation, rotation, or reflection, without altering the

relative distances between points of the region. Another basic principle is the additive principle of areas: If two
regions have the same area and congruent regions are added to each, then the new regions also have the same
area. This leads to the following more general criterion, which is very close to the one used implicitly by Euclid

in his treatment of area:

• (Euclid’s first criterion for areas) Two regions have the same area if they can be chopped into smaller pieces
which are congruent.

This does not allow for a treatment of areas with curved boundaries, but it does allow us to see that

• A parallelogram has the same area as a rectangle with the same base and height.

Why is this true? A proof according to Euclid’s criterion must show how to decompose the parallelogram and

the rectangle into congruent pieces. In some circumstances, this is simple. The complexity of the decomposition
involved depends on how skewed the parallelogram is, or how far removed it is from the rectangle it is to be

compared to. If it not too skewed, then we can lop off a triangle at one end of the parallelogram and paste it in at

the other to make a rectangle.

But this means exactly that in these circumstances we can decompose the rectangle and the parallelogram into

congruent pieces.

If the parallelogram is very skewed, however, then what we lop off at one end is not a triangle, and this argument

fails.

The first, simple argument works when the parallelogram is mildly skewed—i.e. when the piece chopped off one
end is indeed a triangle. This happens when the entire parallelogram fits into the region shown in this figure:

Just about all proofs of the result are the same for mildly skewed parallelograms. There are lots of different ways

to proceed for the rest. Here are a few:

Proof 1. We can get an idea of a possible way to proceed if we again translate the lopped off region to the left and

glue it on, just as if it were a triangle.

Chapter 2. Elementary coordinate geometry 3

The natural thing to do now is to lop off the bit of triangle at the far right and shift it back again to fill in a rectangle.

This gives us finally a way to chop up both the rectangles and the original parallelogram into congruent regions.

As the parallelogram gets more and more skewed, the number of pieces the parallelogram gets chopped up into
increases, but there is a definite pattern to the way things go. Here are a couple of pictures to show what happens:

Exercise 1. Define the skew of a parallelogram to be the length of the perpendicular projection of its upper left
corner onto its base line, divided by the length of the base. Count negatively to the left. A parallelogram is a
rectangle if and only if its skew is 0. The argument above shows that if the skew s satisfies 0 < s ≤ 1, then the
simple decomposition will prove the claim. Explain by a picture what happens if −1 ≤ s < 0.

Exercise 2. Explain the argument in the previous exercise by producing figures in PostScript.

Exercise 3. The second group of pictures shows what happens if 1 < s ≤ 2. What about −2 ≤ s < −1?
2 < s ≤ 3?

Exercise 4. If the skew s satisfies n < s ≤ n + 1 (n positive), what is the least number of pieces in the
decomposition of the parallelogram and rectangle into congruent pieces suggested by the above reasoning?

Exercise 5. The reasoning above has just shown how the decomposition of rectangle and parallelogram works
in a few cases, and the exercises above have shown how to include a few more cases. Write out in detail a recipe
for making congruent decompositions of rectangle and parallelogram that will prove the claim when the skew s
satisfies 0 < n < s ≤ n + 1.

Proof 2. The transformation of a rectangle into a parallelogram with the same base and height is called a shear.

The result we are proving amounts to this:

Chapter 2. Elementary coordinate geometry 4

• Shears preserve area.

A shear can be visualized as a continuous sequence of sliding motions, if you think of the original rectangle as

made up of very thin strips piled on top of each other. Like a sliding deck of cards.

In this way, preservation of area under shear becomes intuitive—you can think of the rectangle as an infinite
number of horizontal strips piled on top of one another. Shearing it just translates each of these, not changing

its area, hence not changing the area of the total figure as it is sheared. This sort of reasoning is not always
dependable, but it is valuable nonetheless. Historically, it played an important role in the development of

calculus long before the nature of limits was understood clearly. Here, however, it suggests an entirely valid and

perhaps the best motivated proof of the result. We don’t have to chop up the rectangle into an infinite number of
horizontal strips, but just enough strips so that each one becomes only a mildly skewed parallelogram when it is

sheared.

Proof 3. That two parallelograms with the same base and height have the same area is Proposition I.35 in Euclid’s
Elements. But his proof of it depends on the subtractive principle of areas: If congruent regions are taken away
from two regions of equal area, then the remaining regions have equal area.

The simplest of all proofs depends on this principle, but it is not the same as Euclid’s. It can be explained in a

single pair of diagrams:

Exercise 6. Analyze Euclid’s own proof of I.35 by breaking it up into a sequence of pictures.

Exercise 7. Neither the result nor any of these proofs depends on interpreting area as a number, nor even how to
compare the area of two distinct rectangles. Make a first step in this direction by explaining in your own words
how to construct geometrically, for any rectangle with base b and height a, a square of the same area. (This is
II.14 of Euclid’s Elements).

Chapter 2. Elementary coordinate geometry 5

3. Lengths

The principal result concerning lengths is Pythagoras’ Theorem.

• For a right­angled triangle with short sides a and b and long side c, c2 = a2 + b2.

This result, as also the one in the previous section, can be phrased in terms of equality of areas. We erect squares

on each of the sides of the given triangle. The Theorem asserts neither more nor less than that

• The area of the largest square is the sum of the areas of the other two.

There are many ways to prove Pythagoras’ Theorem. There is even a book which purports to contain 365 different

proofs, one for each day of the year (and includes a few extra). The proof given here is close to Euclid’s own
(Pythagoras’ Theorem is I.47 in the Elements). I first saw it in a book by Howard Eves, but it probably derives

originally from the proof of a generalization of Pythagoras’ Theorem due to the later Alexandrian mathematician

Pappus.

It exhibits a decomposition of the larger square (the ‘square on the hypotenuse’) into rectangles whose areas

match the smaller squares (the ‘squares on the sides’).

The proof proceeds by a sequence of shears and translations, which we know to preserve areas, transforming the
rectangles in the large square into the squares on the sides.

Chapter 2. Elementary coordinate geometry 6

Exercise 8. This is very elegant, but if looked at closely there appear to be a few gaps. Find them and fill them in.

4. Vector projections

If v is a vector in the plane, then any other vector u can be expressed as the sum of a vector u0 parallel to v and a
vector u⊥ perpendicular to it.

v

u0

u⊥

u = u0 + u⊥

We ask the following question:

Chapter 2. Elementary coordinate geometry 7

• If v = [a, b] and u = [x, y], how do we calculate u0?

The projection u0 will be a scalar multiple of v, say u0 = cv, and our problem is to calculate c. The length of the

projection will be

‖u0‖ = |c|‖v‖ .

So if we know the length ‖u0‖, we can calculate |c| = ‖u0‖/‖v‖. In order to get the sign of c, we introduce the

notion of signed length. If the ordinary length of the projection is s, then its signed length (relative to the vector

v) is just s if the projection is in the same direction as v, but −s if in the opposite direction.

v

positive length

negative length

We now need to find a formula for the signed length of u0.

The first observation is that the parallel projection is an additive function of u, which means that if u = u1 + u2

then the projection of u is the sum of the projections of u1 and u2.

u u1

u2

u

Since u is equal to the sum of its projections onto the x and y axes, it is only necessary to find the signed lengths
of the projections of [x, 0] and [0, y] and add them together.

Let’s look at the projection of [x, 0].

v = [a, b]

[a, 0]
[x, 0]

sx

Chapter 2. Elementary coordinate geometry 8

Let sx be the signed length of the projection of [x, 0], and let v = [a, b]. The two triangles in the figure are similar,
so we see that

sx

x
=

a

‖v‖ , sx =
ax

‖v‖ .

Similarly if sy is that of [0, y] then

sy =
by

‖v‖ .

u

The figure deals with positive lengths, but the final result remains valid for negative ones as well. Hence the

signed length of u = [x, y] is

s = sx + sy =
ax + by

‖v‖ .

• If u = [x, y] and v = [a, b] are vectors, the projection of u onto a line parallel to v is

ax + by√
a2 + b2

[a, b]√
a2 + b2

=

(

ax + by

a2 + b2

)

[a, b] .

There is another formula for the signed length. If θ is the angle between u and v then

s = ‖u‖ cos θ .

v

u0

u

signed length of u0 = ‖u‖ cos θ
θ

If we compare the two formulas we see that the angle θ between the vectors v = [a, b] and u = [x, y] can be found

from this identity:

cos θ =
ax + by

‖u‖ ‖v‖ .

If u = [a, b] and v = [x, y] then the numerator of the formula above is called their dot product:

u • v = ax + by .

Chapter 2. Elementary coordinate geometry 9

Thus the formula for the cosine of the angle between them becomes

cos θ =
u • v

‖u‖ ‖v‖ .

The dot product satisfies a number of simple formal algebraic rules:

cx • y = c(x • y)

x • cy = c(x • y)

(x + y) • z = x • z + y • z

x • x = ‖x‖2

where ‖x‖ is the length of the vector x, the distance of its head from its tail.

5. Rotations

We now look at a new problem: Suppose we start with the vector v = [x, y] and rotate it around the origin by
angle θ. What are the coordinates of the new vector?

θ

Rotation by θ

The answer to this depends directly on the answer to the simplest case, that where the angle is 90◦.

• If v = [x, y] then rotating v counter­clockwise by 90◦ gives us v⊥ = [−y, x].

This can be seen easily in this picture:

Rotation by 90◦

But now we are in good shape, since from this figure

θ

v

v⊥

v rotated by θ is (cos θ)v + (sin θ)v⊥

we can deduce:

Chapter 2. Elementary coordinate geometry 10

• If v = [x, y] then rotating v by θ gives us

(cos θ) v + (sin θ) v⊥ = [x cos θ − y sin θ, x sin θ + y cos θ] .

This expression can be calculated by a matrix. Rotation by θ takes the vector [x y] to

[x y]

[

cos θ sin θ
− sin θ cos θ

]

In this book, vectors will usually be row vectors, and matrices will multiply them on the right. This is a common

convention in computer graphics, as opposed to that in mathematics, and makes especially good sense in dealing
with PostScript calculations, as we shall see.

If v is the unit vector [cosα, sin α] and V∗ is v rotated by β, we obtain on the one hand the vector corresponding
to angle α + β, and on the other, according to the formula for rotations I have just derived, the vector

[cos(α + β), sin(α + β)] = [cosα, sin α]

[

cosβ sinβ
− sinβ cosβ

]

.

This gives us the cosine and sine sum rules:

cos(α + β) = cosα cosβ − sin α sin β

sin(α + β) = sin α cosβ + cosα sin β

6. The cosine rule

The cosine rule is a generalization of Pythagoras’ Theorem that applies to triangles which are not necessarily

right­angled.

C

a

b

c

• (Cosine rule) In a triangle with sides a, b, c, and angle C opposite c

c2 = a2 + b2 − 2ab cosC .

I sketch three proofs, the first a mixture of algebra and geometry, the second almost purely geometric, and the

third almost entirely algebraic.

Chapter 2. Elementary coordinate geometry 11

C2

C1

a

b

c1

c2

The first one applies the cosine sum formula and Pythagoras’ Theorem to the diagram above.

C

The second generalizes Euclid’s proof of Pythagoras’ Theorem. It begins by showing that the two rectangular
areas in the diagram above have equal areas, and then finally applies the definition of cosine.

As for the third, it uses the dot­product in 2D. Recall:

• If the angle between two vectors u and v is θ then

cos θ =
u • v

‖u‖ ‖v‖ .

Now start by writing the cosine rule in terms of vectors. We want to show that

cos θ =
‖u − v‖2 − ‖u‖2 − ‖v‖2

2‖u‖ ‖v‖

Chapter 2. Elementary coordinate geometry 12

where u and v are vectors along the sides of the triangle with lengths a and b, and therefore the third side of the
triangle is u − v. Following the equation above we reduce

(u − v) • (u − v) − u •u − v • v

2‖u‖ ‖v‖ =
u •u − 2 u • v + v • v − u •u − v • v

2‖u‖ ‖v‖
=

u • v

‖u‖ ‖v‖
= cos θ sure enough.

Exercise 9. Finish both the first two proofs. For the second, add several diagrams illustrating the argument.

7. Dot products in higher dimensions

The dot product of two vectors in any number n of dimensions greater than two or three is by definition the sum
of the products of their coordinates:

(x1, x2, . . . , xn) • (y1, y2, . . . , yn) = x1y1 + x2y2 + · · · + xnyn .

The formal rules we have seen to be true in two dimensions hold also in three dimensions and more.

• For vectors u and v in 2 or 3 dimensions

u • v = ‖u‖ ‖v‖ cos θ

where θ is the angle between them.

The proof of this is just the reverse of the third argument in the last section.

In particular:

• The dot product of two vectors is 0 precisely when they are perpendicular to each other.

Of course it is only in 2 or 3 dimensions that we have a geometric definition of the angle between two vectors. In

higher dimensions, this formula is used to define that angle algebraically.

8. Lines

One way of representing lines in the plane is by means of an equation

y = mx + b .

But this cannot represent vertical lines, those parallel to the y­axis, which have an equation x = a. The uniform

way to represent all lines is by means of an equation

Ax + By + C = 0 .

For example, y − mx − b = 0 or x − a = 0. Lines which are not vertical are those with B 6= 0, in which case

we can solve for y. The problem with this scheme is that if Ax + By + C = 0 is the equation of a line and c is

a non­zero constant then cAx + cBy + cC = (cA)x + (cB)y + (cC) = 0 is also the equation of the same line.
This means that the coordinates [A, B, C] of a line are homogeneous—only determined up to multiplication by

a non­zero scalar. This is the first place in which homogeneous coordinates occur in this book. They will play
an extremely important role later on, especially when we come to 3D graphics, and also in understanding how

PostScript handles coordinates in 2D.

In the equation y = mx + b both m and b have a geometrical interpretation—m is the slope and b the y­intercept.
What is the geometrical significance of A, B, and C in the equation Ax + By + C = 0?

Chapter 2. Elementary coordinate geometry 13

Suppose C = 0. The equation is Ax + By = 0, which can be rewritten

[A, B] • [x, y] = 0 .

But this is the condition that [x, y] be perpendicular to [A, B]. In other words, [A, B] is the direction perpendicular

to the line Ax + By = 0. In other words, the line Ax + By = 0 is the unique line that is (1) perpendicular to the

vector [A, B] and (2) passing through the origin.

Now look at the general case Ax + By + C = 0. If P = (xP , yP) and Q = (xQ, yQ) are two points on this line,

then
AxP + ByP + C = 0

AxQ + ByQ + C = 0

A(xQ − xP) + B(yQ − yP) = 0

which says that the vector Q − P is perpendicular to [A, B]. In other words, we have the following picture:

P

Q

[A, B]

A
x
+

B
y
+

C
=

0A
x
+

B
y
=

0

• The vector [A, B] is perpendicular to the line Ax + By + C = 0.

What is the meaning of C? If C = 0 the line passes through the origin. This makes plausible:

• The quantity
−C√

A2 + B2

is the signed distance of the line Ax + By + C = 0 from the line Ax + By = 0.

Exercise 10. Explain why this is true. (Hint: use projections.)

Exercise 11. Given a line Ax + By + C = 0 and a point P , find a formula for the perpendicular projection of P
onto the line.

Exercise 12. Given two lines A1x + B1y + C1 = 0 and A2x + B2y + C2 = 0, find a formula for the point of
intersection.

Exercise 13. Given two points P and Q, find a formula for the line containing them.

Exercise 14. Given a line Ax + By + C = 0, find a formula for the line obtained by rotating it by 90◦ around the
origin.

The line Ax+By +C = 0 separates the plane into two halves, one where Ax+By +C > 0 and the other where

it is negative. Which side is which?

Chapter 2. Elementary coordinate geometry 14

[A, B]

A
x
+

B
y
+

C
=

0

Ax + By + C > 0

Ax + By + C < 0

As we cross the line in the direction of [A, B] the values of Ax + By + C change from negative to positive. This
is easy to see indirectly. If (x, y) = (tA, tB) then Ax + By + C = t(A2 + B2) + C and for t � 0 will definitely

be positive.

The function f(x, y) = Ax + By + C is called an affine function. One useful property of affine functions is this:

• If P and Q are two points in the plane, t a real number, and f an affine function then

f
(

(1 − t)P + tQ
)

= (1 − t)f(P) + tf(Q) .

Recall that (1 − t)P + tQ is the weighted average of P and Q. As t varies over all real numbers this expression
produces all points on the line through P and Q. Proving this property is an easy calculation.

Exercise 15. An affine function f(x) = Ax + By + C is equal to −4 at (0, 0) and 7 at (1, 2). Where on the line
segment between these two points is f(x) = 0?

9. Code

The file eves-animation.eps is a page­turning animation of Eves’ proof of Pythagoras’ Theorem.

References

1. Euclid, The Elements, translated by T. L. Heath. This is available in a commonly found Dover reprint. The

part due to Euclid, but not Heath’s very valuable comments, is also available on the ’Net at

http://aleph0.clarku.edu/ djoyce/java/elements/elements.html

The commentary used to be found at

http://www.perseus.tufts.edu/

but at the moment I write this (December, 2003) all links to Heath’s comments, other than the initial chapters, are
unfortunately dead.

2. Elisha S. Loomis, The Pythagorean proposition: its demonstrations analyzed and classified, and bibliography

of sources for data of the four kinds of proofs, National Council of Teachers, Washington, 1968. Not wildly

exciting. Not as much variety as you might hope for, either. But still curious.

3. H. Eves, In mathematical circles, 1969. The idea for the sequence of pictures for Pythagoras’ Theorem is taken

from p. 75.

CHAPTER 3

Variables and procedures

At this point, I have explained how to draw only the simplest figures. In particular, I have given no hint of how

to use the real programming capability of PostScript.

Before beginning to look at more complex features of the language, place this principle firmly in your mind:debugging:1

• To get good results from PostScript, first get a simple picture up on the screen that comes somewhere close
to what you want, and then refine it and add to it until it is exactly what you want.

It is the secret to efficient PostScript programming, because once you have a picture—any picture—you can
often visualize your errors. Another suggestion is that since debugging large chunks of PostScript all at once is

extremely painful, you want to keep small the scope of your errors. Yet another thing to keep in mind as you
develop programs is flexibility. Ask yourself frequently if you might reuse in another drawing what you are

doing in this one. We shall see how to take advantage of reusable code in an efficient way.

The basic technique of this chapter will be to see how one PostScript program evolves according to this process.

Technically, the main ingredients we are going to add to our tool kit are variables and procedures.variables:1

1. Variables in PostScript

The following program draws a square one inch on a side roughly in the middle of a page.

%!

72 72 scale

4.25 5.5 translate

1 72 div setlinewidth

newpath

0 0 moveto

1 0 rlineto

0 1 rlineto

-1 0 rlineto

closepath

stroke

showpage

It is extremely simple, and frankly not very interesting.

Among other things, it is not very flexible. Suppose you wanted to change the size of the square? You would

have to replace each occurrence of “1” with the new size. This is awkward—you might miss an occurrence, at
least if your program were more complicated. It would be better to introduce a variable s to control the length ofvariables:1

the side of the square.

Chapter 3. Variables and procedures 2

Variables in PostScript can be just about any sequence of letters and symbols. They are defined and assignedvariables:definition:1les:assigning values to:1

values in statements like thisdef:1

/s 1 def

which sets the variable s to be 1. The /s here is the name of the variable s. We can’t write s 1 def because thenles:names versus values:2

the value of s would go on the stack and its name lost track of, whereas what we want to do is associate the new
value 1 with the letter s.

• After a variable is defined in your program, any occurrence of that variable will be replaced by the last value
assigned to it.

We shall see later that this is not quite true in certain local environments.

If you attempt to use the name of a variable that has not been defined, you will get an error message aboutundefined:2

/undefined in ...

Using a variable for the side of the square, the new program would look like this (I include only the interesting

parts from now on):

/s 1 def

newpath

0 0 moveto

s 0 rlineto

0 s rlineto

s neg 0 rlineto

closepath

stroke

I recall that the command neg replaces anything on the top of the stack by its negative. This code is indeed a bit

more flexible than the original, because if you want to draw a square of different size you would have to change
only the first line.

Technical remark. Definition and assignment in PostScript look the same, and differ only in technical ways. In
order to understand how this works, it is helpful to know how PostScript keeps track of the values of variables.

It stores them in a dictionary, which is a collection of of names and the values assigned to them. There may bedictionary:PostScript:2

several dictionaries currently in use at any given point in a program; they are kept in the dictionary stack. Whenstack:dictionary:2

a variable is defined, its name and value are registered in the top dictionary, replacing any value it has had before.

When the variable is encountered in a program, all the dictionaries in use are searched until its value is found,
starting at the top of the dictionary stack.

2. Procedures in PostScript

Suppose you wanted to draw two squares, one of them at (0, 0) and the other at (0,−1) (that is to say, just below

the first). Most straightforward:

Chapter 3. Variables and procedures 3

%!

72 72 scale

4.25 5.5 translate

1 72 div setlinewidth

newpath

0 0 moveto

s 0 rlineto

0 s rlineto

s neg 0 rlineto

closepath

stroke

0 -1 translate

newpath

0 0 moveto

s 0 rlineto

0 s rlineto

s neg 0 rlineto

closepath

stroke

showpage

The program just repeats the part of the program which actually draws the square, of course. Recall that
translate shifts the origin of the user’s coordinate system in the current units.

Repeating the code to draw the two squares is somewhat inefficient—this technique will lead to a lot of text
pasting and turns out to be very prone to error. It is both more efficient and safer to use a PostScript procedureprocedures:3

to repeat the code for you. A procedure in PostScript is an extremely simple thing.

• A procedure in PostScript is just any sequence of commands, enclosed in brackets {. . .}.

You can assign procedures to variables just as you can assign any other kind of data. When you insert this

variable in your program, it is replaced by the sequence of commands inside the brackets. In other words, using
a procedure in PostScript to draw squares proceeds in two steps:

(1) Define a procedure, called say draw-square, in the following way:

/draw-square {

newpath

0 0 moveto

s 0 rlineto

0 s rlineto

s neg 0 rlineto

closepath

stroke

} def

At any point in a program after this definition, whenever the expression draw-square occurs, PostScript will
simply substitute the lines in between the curly brackets { and }. The effect of calling a procedure in PostScript

is always this sort of straightforward substitution.

(2) Call the procedure when it is needed. In this case, the new commands on the page will include the above

definition, and also this:

Chapter 3. Variables and procedures 4

draw-square

0 -1 translate

draw-square

Of course if we have done things correctly, the page looks the same as before. But we can now change it easily by

mixing several translations and calls to draw-square like this:procedures:4

draw-square

-1 -1 translate

draw-square

1 -1 translate

draw-square

3. Keeping track of where you are

In the lines of PostScript above, you can easily forget exactly where you are with all those translations. What you

might do is translate back again after each translation and drawing operation to restore the original coordinates.

But this would become complicated later on in your work, when you will perform several changes of coordinates
and it will be difficult to figure out how to invert them. Instead, you can get PostScript to do the work of

remembering where you are. It has a pair of commands that help you do the job easily: gsave saves the currentgsave:4

coordinate system somewhere (together with a few other things like the current line width) and grestorebringsgrestore:4

back the coordinate system you saved with your last gsave.

• The commands gsave and grestore must be used in pairs!

In this scheme we could write

draw-square

gsave

-1 -1 translate

draw-square

grestore

1 -1 translate

draw-square

and get something quite different.

To be a bit more precise, gsave saves the current graphics state and grestore brings it back. The graphics state
holds data about coordinates, line widths, the way lines are joined together, the current color, and more—in effect

everything that you can change easily to affect how things are drawn. You might recall that we saw gsave and
grestore earlier, where we used them to set up successive pages correctly, enclosing each page in a pair of gsave

and grestore.

Chapter 3. Variables and procedures 5

Incidentally, it is usually—but not always—a bad (very bad) idea to change anything in the graphics state in the
middle of drawing a path. Effects of this bad practice are often unintuitive, and therefore unexpected. There

are definite exceptions to this rule, but one must be careful. The problem is to know what parts of the graphic

state take effect in various commands. The principal exceptions use translate and rotate to build paths
conveniently. For example, the following sequence builds a square.

1 0 moveto 90 rotate

1 0 lineto 90 rotate

1 0 lineto 90 rotate

1 0 lineto 90 rotate

1 0 lineto

The commands rotate etc. change the coordinate system in a figure, and the drawing commands lineto etc.
use the coordinate system current when they are applied to build a path in physical coordinates.es:when they take effect:5

4. Passing arguments to procedures

The definition of the procedure draw-square has a variable s in it. The variable s is not defined in the procedure
itself, but must be defined before the procedure is used. This is awkward—if you want to draw squares of

different sizes, you have to redefine s each time you want to use a new size.

For example, if we want two squares of different sizes, we write the code on the left below:

/s 1 def

draw-square

/s 2 def

draw-square

Let me repeat here: If you want to assign a new value to a variable you have to define it over again, using the
name of the variable, which begins with /.

Now for a new idea. It is awkward to have to assign a value to s every time we want to draw a square. It would
be much better if we could just type something like 2 draw-square to do the job. This in fact possible, by doing

a bit of stack manipulation inside the procedure itself. Let’s see—we want to type 2 draw-square and draw a

square of side 2. This means that the procedure should have access to the item that’s put on the stack just before
it’s called, and assign its value to a variable. This requires a trick. Normally we assign a value to a variable byguments:passing to procedures:5

putting the name of the variable on the stack, then the new value, then calling def, like this: /s 2 def. In order
to assign a value to the variable s inside the procedure, we must somehow get the name /s on the stack below
the value on the stack when the procedure is called. The way to do this is to put /s on the stack after the new

value and then call exch. The command exch exchanges the top two items on the stack. Therefore 2 /s exch

makes the stack /s 2, and then 2 /s exch def has exactly the same effect as /s 2 def. Thus the lines

/draw-square {

/s exch def

newpath

0 0 moveto

Chapter 3. Variables and procedures 6

s 0 rlineto

0 s rlineto

s neg 0 rlineto

closepath

stroke

} def

2 draw-square

do exactly what we want—the side of the square is picked up off the stack, assigned to the variable s, and then

used for drawing. The important point is that the procedure itself now handles the assignment of a value to s,

and all we do is pass the value of s to the procedure as an argument to it by putting it on the stack before theargument:6

procedure is called. If you know how programming language compilers work, you will recognize this as what

programming languages do to pass arguments, but behind the scenes. The difference is that PostScript does it in

the open, and effectively forces you to do a bit more work yourself.guments:passing to procedures:6

If you wanted to draw rectangles with different width and height, you would pass two arguments in a similar

way:

/draw-rectangle {

/h exch def

/w exch def

newpath

0 0 moveto

w 0 rlineto

0 h rlineto

w neg 0 rlineto

closepath

stroke

} def

2 3 draw-rectangle

draws a rectangle of width 2 and height 3. Notice that the stuff on the stack is removed in the order opposite to

that in which you placed it there.

• In PostScript the arguments of a procedure are data that go on the stack before the procedure is called.

By the way, it seems to me that one of PostScript’s principal mistakes in design is the order of the arguments to
def. There would be several advantages to having the command work like 2 /s def rather than the way it does.

For one thing, reading the arguments of procedures would be more sensible. For another, programmers would

be encouraged to make programs more readable. Very often you want to make a very long calculation and then
assign the result to a variable. The most common way to do this is to make the calculation and then pick the result

off the stack just as above, with ... exch def. So here, too, programs would benefit from the change. And

they would be more readable, because the name of the variable would be close to where it is used. The program
would be more local in a sense. Locality is one important feature of happy programming.

5. Procedures as functions

A procedure can be a function. That is to say, it can accept some kind of input, calculate something depending on

the input, and pass back or return the results of the calculation. There are of course several built in functions in

PostScript, for example the mathematical functions neg, add etc. The way these work is that you put arguments

on the stack, call the function, and then next get the return value (or values) on the stack. For example, thereturn value:6

sequence 30 sin in your program, when the program is executed, puts 30 on the stack (the argument), calls the
sin procedure, and leaves 0.5 on the stack (the return value). Some others, like atan have two arguments. I

repeat:

Chapter 3. Variables and procedures 7

• The return value of a procedure is what it leaves on the stack.

It can in fact leave lots of stuff on the stack, and can have several return values.

There is only a formal difference between functions and procedures.

Example. We will make up a procedure hypotenuse that has two arguments and returns the square root of the

sum of their squares. In fact, we shall see two versions of this. The first will use variables, the second will do all
of its work directly with the stack. Both are used in the same way: 3 4 hypotenuse will leave a 5 on the stack.

Here is the first, using variables.

/hypotenuse {

/b exch def

/a exch def

a dup mul b dup mul add sqrt

} def

This is reasonably easy to read and understand. There is a problem with it we shall deal with later. The second

version is not so readable:

/hypotenuse {

dup mul

exch

dup mul

add sqrt

} def

This is more efficient than the first—PostScript is generally very efficient when operating directly with stuff on
the stack (as opposed to using variables). Still, the cost in terms of readability here is high enough that my general

advice is to imitate the first one of these styles, rather than the second. If you do want to be more efficient, it is a

good idea to add lots of comments, so as to trace what’s on the stack.

/hypotenuse { % a b

dup mul % a b*b

exch % b*b a

dup mul % b*b a*a

add % b*b+a*a

sqrt % the square root of the sum is left on the stack

} def

6. Local variables

There is another problem lurking in our present definition of draw-square, and that of variable name conflicts.variables:local:7ariables:name conflicts:7

If you have a large program with lots of different figures being drawn in various orders, you might very well

have several places where you use w and h with different meanings. This can cause a lot of trouble. The way
around this is a technique in PostScript that I suggest you use without trying to understand too much about it in

detail. We want the variables we use in a procedure to be local to that procedure, so that assignments we make

to them inside that procedure don’t affect other variables with the same name outside the procedure. To do this
we add some lines to the procedure:begin:7end:7dict:7

/draw-rectangle { 2 dict begin

/h exch def

/w exch def

newpath

0 0 moveto

w 0 rlineto

0 h rlineto

Chapter 3. Variables and procedures 8

w neg 0 rlineto

0 h neg rlineto

closepath

stroke

end } def

2 3 draw-rectangle

There are exactly two new lines, in fact, one at either end of the procedure. The line 2 dict begin sets up a
local variable mechanism, and end restores the original environment. The 2 is in the statement because we are

defining 2 local variables.

• You should set up a local variable mechanism in all procedures in which you make variable definitions.

One tricky thing to be aware of is that all variables defined within this pair will be local variables, so that it is
impossible to change the value of global variables within them. It is not usually a good idea to redefine global
variables within a procedure, anyway. It is only slightly too strong to say that you should never assign a value to

a global variable inside a PostScript procedure. Again: begin and end have to come in pairs. If they don’t, the

effect will be that a certain block of space in the computer will fill up. You might get away with it for a while,
but unless you are careful sooner or later some awful error is bound to occur. Another good rule to follow is

that if you change coordinates inside a procedure, say in order to build a path, you should restore the original
coordinates before it exits—unless the explicit purpose of the procedure is to change coordinates. The general

principle is that

• Procedures should have as few side effects as possible, and those side effects should always be explicit.

Another thing to keep in mind is that while local variables are indispensable in procedures, they can in fact be

useful anywhere in a program where you want to avoid name conflicts. Encapsulating a segment of code with 1

dict begin ... end is often a great way to handle variables safely.

Dictionaries are expensive to set up, in the programmer’s sense. They are costly in time. Sometimes, in critical
places, it is definitely worthwhile not to introduce any variables at all in a procedure and rely entirely on stack

manipulations alone. Or at least use them sparingly. The first of the two procedures

/h1 {

dup mul exch dup mul add sqrt

} def

/h2 { 2 dict begin

/y exch def

/x exch def

x x mul y y mul add sqrt

end } def

takes noticeably less time than the second: 10, 000, 000 calls on the first take about 5 seconds on my machine,
versus about 35 seconds for the second. Recall that to run PostScript programs with no display, as is often useful,

you can use Ghostscript in command­line mode as gsnd.

At any rate, don’t worry too much about exactly what you have to do to set up local variables. Just copy the

pattern without thinking about it. The 2 in 2 dict begin could have been 3 or 4 or 20. In the earliest version
of PostScript, it had to be at least as large as the number of variables you are about to define, but in more recent

versions a dictionary will expand to whatever size is needed. So even a 1 would be acceptable. In most of my

code I am very sloppy about this.variables:local:8

Chapter 3. Variables and procedures 9

7. A final improvement

I want to mention here a subtle but valuable point about procedures. It is only rarely a good idea in PostScript to

do any actual drawing inside a procedure. This is part of the general principle that the side effects of procedures
ought to be severely restricted. Instead, it is usually a good idea to use procedures to build paths without drawing

them. Furthermore, it is always a good idea to tell in a comment what you have to do to use a procedure, and
what its effect is. Thus

% Builds a rectangular path with

% first corner at origin.

% On stack at entry: width height

/rectangle { 2 dict begin

/h exch def

/w exch def

0 0 moveto

w 0 rlineto

0 h rlineto

w neg 0 rlineto

0 h neg rlineto

closepath

end } def

newpath

2 3 rectangle

stroke

is the preferable way to use a procedure to draw rectangles. This way you can fill them or clip them as well as

stroke them. (We shall meet clipping later.) You can also link paths together to make more complicated paths.

CHAPTER 4

Coordinates and conditionals

We’ll take up here a number of drawing problems which require some elementary mathematics and a few new

PostScript techniques. These will require that we can interpret absolute location on a page no matter what
coordinate changes we have made, and therefore motivate a discussion of coordinate systems in PostScript.

At the end we will have, among other things, a complete set of procedures that will draw an arbitrary line
specified by its equation. This is not an extremely difficult problem, but is one of many whose solution will

require understanding how PostScript handles coordinate transformations.

1. Coordinates

The main purpose of PostScript is to draw something, to render it visible by making marks on a physical device

of some kind. Every PostScript interpreter is linked to a physical device—Ghostscript running on your computer

is linked to your monitor, and printers capable of turning PostScript code into an image possess an interpreter of
their own.

When you write a command like 0 0 moveto or 1 0 lineto that takes part in constructing a path, the PostScriptveto:rendered immediately:1veto:rendered immediately:1

interpreter immediately translates the coordinates in the command into coordinates more specifically tied to the

physical device, and then adds these coordinates and the command to a list of commands that will be applied to

make marks when the path is finally stroked or filled.

Thus a PostScript interpreter needs a way to translate the coordinates you write to those required by the physical

device—it has to transform the user’s coordinates to the ones relevant to the device, and it must store internally
some data necessary for this task.

In fact, PostScript deals internally—at least implicitly—with a total of three coordinate systems.

The first is the physical coordinate system. This system is the one naturally adapted to the physical device youcoordinates:physical:1

are working on. Here, even the location of the origin will depend on the device your pictures are being drawn in.
For example, on a computer running a version of the Windows operating system it is apparently always at the

lower left. But on a Unix machine it is frequently at the upper left, with the y coordinate reading down. The basic

units of length in the physical coordinate system are usually the width and the height of one pixel (one horizontal,pixel:1

the other vertical), which is the smallest mark that the physical device can deal with. On your computer screen

a pixel is typically 1/75 of an inch wide and high, while on a high quality laser printer it might be 1/1200 of an

inch on a side. This makes sense, because in the end every drawing merely colours certain pixels on your screen
or printer page.

The second is what I call the page coordinate system. This is the one you start up with, in which the origin is atcoordinates:page:1

the lower left of the page, but the unit of length is one Adobe point—equal to 1/72 of an inch—in each direction.

This might be thought of as a kind of ideal physical device.

The third is the system of user coordinates. These are the coordinates you are currently using to draw. Whencoordinates:user:1

PostScript starts up, page coordinates and user coordinates are the same, but certain operations such as scale,

translate, and rotate change the relationship between the two. For example, the sequence 72 72 scalecoordinate changes:1

makes the unit in user coordinates equal to an inch. If we then subsequently perform 4.25 5.5 translate,

the translation takes place in the new user coordinates, so the origin is shifted up and right by several inches.

Chapter 4. Coordinates and conditionals 2

This is the same as if we had done 306 396 translate before we scaled to inches, since 306 = 4.25 · 72 and
396 = 5.5 · 72.

At all times, PostScript maintains internally the data required to change from user to physical coordinates, and
implicitly the data required to change from user to page coordinates as well. The formula used to transform

coordinates from one system to another involves six numbers, and looks like this:

xphysical = axuser + cyuser + e

yphysical = bxuser + dyuser + f

PostScript stores these six numbers a, b, etc. in a data structure we shall see more of a bit later.

Coordinate changes like this are called affine coordinate transformations. An affine transformation is a com­transformations:affine:2

bination of a linear transformation with a shift of the origin. One good way to write the formula for an affinetransformations:linear:2

coordinate transformation is in terms of a matrix:

[x• y•] = [x y]

[

a b
c d

]

+ [e f] .

The 2 × 2 matrix is called the linear component of the coordinate transformation, and the vector added on is

called its translation component. The translation component records where the origin is transformed to, and the
linear component records how relative positions are transformed.

Affine transformations are characterized by the geometric property that they take lines to lines. They also have
the stronger property that they take parallel lines to parallel lines. Linear transformations have in addition the

property that they take the origin to itself. The following can be rigourously proven:

• An affine transformation of the plane takes lines to lines and parallel lines. Conversely, any transformation
of the plane with these properties is an affine transformation.

Later on, we shall see also a third class of transformations of the plane called projective transformations (relatedormations:projective:2

to perspective viewing). These are not built into PostScript as affine transformations are.

I have said that PostScript uses six numbers to transform user coordinates to physical coordinates, and that these
six numbers change if you put in commands like scale, translate, and rotate. It might be useful to track how

things go as a program proceeds. In this example, I’ll assume that the physical coordinates are the same as page

coordinates. When PostScript starts up the user coordinates (x0, y0) are the same as page coordinates.

xpage = x0

ypage = y0 .

or

[xpage ypage] = [x0 y0]

[

1 0
0 1

]

.

If we perform 306 396 translate, we find ourselves with new coordinates (x1, y1). The page coordinates of the

new origin are (306, 396). The command sequence x y movetonow refers to the point which in page coordinates
is (x + 306, y + 396). We thus have

[x0 y0] = [x1 y1] + [306 396]

or

[xpage ypage] = [x1 y1]

[

1 0
0 1

]

+ [306 396] .

Chapter 4. Coordinates and conditionals 3

If we now perform 72 72 scale, we find ourselves with a new coordinate system (x2, y2). The origin doesn’t
change, but the command 1 1 movetomoves to the point which was (72, 72) a moment ago, and (72+306, 72+
396) before that.

[x1 y1] = [x2 y2]

[

72 0
0 72

]

or

[xpage ypage] = [x2 y2]

[

72 0
0 72

]

+ [306 396] .

If we now put in 90 rotate we have new coordinates (x3, y3). The command 1 1 moveto moves to the point
which was (−1, 1) a moment ago.

[x2 y2] = [x3 y3]

[

0 1
−1 0

]

or

[xpage ypage] = [x3 y3]

[

0 1
−1 0

] [

72 0
0 72

]

+ [306 396]

= [x3 y3]

[

0 72
−72 0

]

+ [306 396] .

The point is that coordinate changes accumulate. We’ll see later (in §5) more about how this works.

2. How PostScript stores coordinate transformations

The data determining an affine coordinate change

[x• y•] = [x y]

[

a b
c d

]

+ [e f]

are stored in PostScript in an array [a b c d e f] of length six, which it calls a matrix. (We’ll look at arraysarrays:PostScript:3matrix:in PostScript:3

in more detail in the next chapter, and we’ll see in a short while why the word ‘matrix’ is used.) PostScript has

several operators which allow you to find out what these arrays are, and to manipulate them.matrix:3currentmatrix:3

Command sequence Effect
matrix currentmatrix Puts the current transformation matrix on the stack

There are good reasons why this is a little more complicated than you might expect. The current transformationmatrix:current transformation:3

matrix or CTM holds data giving the current transformation from user to physical coordinates. Here the command

matrix puts an array [1 0 0 1 0 0] on the stack (the identity transformation), and currentmatrix stores the
current transformation matrix entries in this array. The way this works might seem a bit strange, but it restricts

us from manipulating the CTM too carelessly.

For example, we might try this at the beginning of a program and get

matrix currentmatrix ==

[1.33333 0 0 1.33333 0 0]

The difference between = and ==, which both pop and display the top of the stack, is that the second displays the=:3==:3

contents of arrays, which is what we want to do here, while = does not.

The output we get here depends strongly on what kind of machine we are working on. The one here was a laptop

running Windows 95. Windows 95 puts a coordinate system in every window with the origin at lower left, with
one unit of length equal to the width of a pixel. The origin is thus the same as that of the default PostScript

coordinate system, but the unit size might not match. In fact, we can read off from what we see here that on my

laptop that one Adobe point is 4/3 pixels wide.

Exercise 1. What is the screen resolution of this machine in DPI (dots per inch)?

As we perform various coordinate changes, the CTM will change drastically. But we can always recover what it

was at start­up by using the command defaultmatrix.defaultmatrix:3

Chapter 4. Coordinates and conditionals 4

matrix defaultmatrix Puts the original transformation matrix on the stack

The default matrix holds the transformation from page to physical coordinates. Thus at the start of a PostScript

program, the commands defaultmatrix and currentmatrixwill have the same effect.

We can solve the equations

[x• y•] = [x y]

[

a b
c d

]

+ [e f]

for x and y in terms of x• and y•. The transformation taking x• and y• to x and y is the transformation inverse

to the original. Explicitly, from

P• = PA + v

we get

P = P•A
−1 − vA−1

so it is again an affine transformation. PostScript has an operator that calculates it. The composition of two affine
transformations is also an affine transformation that PostScript can calculate:invertmatrix:4concatmatrix:4

M matrix invertmatrix Puts the transformation matrix inverse to M on the stack
A B matrix concatmatrix Puts the product AB on the stack

Here, M , A, B, are transformation ‘matrices’—arrays of 6 numbers.

Thus, the following procedure returns the ‘matrix’ corresponding to the transformation from user to page coor­

dinates:

/user-to-page-matrix {

matrix currentmatrix

matrix defaultmatrix

matrix invertmatrix

matrix concatmatrix

} def

To see why, let C be the matrix transforming user coordinates to physical coordinates, which we can read off with
the command currentmatrix. Let D be the default matrix we get at start­up.

C

D
page

user

physical

The transformation from the current user coordinate system to the original one is therefore the matrix product
CD−1: C takes user coordinates to physical ones, and the inverse of D takes these back to page coordinates.

For most purposes, you will not need to use invertmatrix or concatmatrix. The transformation from user to
physical coordinates, and back again, can be carried out explicitly in PostScript with the commands transformtransform:4

and itransform. At any point in a program the sequence x y transformwill return the physical coordinates ofitransform:4

the point whose user coordinates are (x, y), and the sequence x y itransform will return the user coordinates
of the point whose physical coordinates are (x, y). If m is a matrix then

x y m transform

will transform (x, y) by m, and similarly for x y m itransform. Thus

x y transform matrix defaultmatrix itransform

Chapter 4. Coordinates and conditionals 5

will return the page coordinates of (x, y).

The operators transform and itransform are somewhat unusual among PostScript operators in that their effect

depends on the type of data on the stack when they are used. You, too, can define procedures that behave like
this, by using the type operator to see what kind of stuff is on the stack before acting.type:4

Exercise 2. Write a procedure page-to-user with two arguments x y which returns on the stack the user
coordinates of the point whose page coordinates are x y. And also user-to-page.

3. Picturing the coordinate system

In trying to understand how things work with coordinate changes, it might be helpful to show some pictures of

the two coordinate systems, the user’s and the page’s, in different circumstances. (Recall that the page coordinate

system is for a kind of imaginary physical device.)

The basic geometric property of an affine transformation is that it takes parallelograms to parallelograms, and so

does its inverse. Here are several pictures of how the process works. On the left in each figure is a sequence of
commands, and on the right is how the resulting coordinate grid lies over the page.

72 72 scale
4.25 5.5 translate

In this figure, the user unit is one inch, and a grid at that spacing is drawn at the right.

72 72 scale
4.25 5.5 translate
30 rotate

Chapter 4. Coordinates and conditionals 6

A line drawn in user coordinates is drawn on the page after rotation of 30◦ relative to what it was drawn as
before.

72 72 scale
4.25 5.5 translate
30 rotate
0.88 1.16 scale
-18 rotate

A combination of rotations and scales can have odd effects after a scale where the x­scale and the y­scale are
distinct. This is non­intuitive, but happens because after such a scale rotations take place in that skewed metric.

4. Moving into three dimensions

It turns out to be convenient, when working with affine transformations in two dimensions, to relate them to

linear transformations in three dimensions.

The basic idea is to associate to each point (x, y) in 2D the point (x, y, 1) in 3D. In other words, we are embedding

the two­dimensional (x, y) plane in three dimensions by shifting it up one unit in height. The main point is that
the affine 2D transformation

[x• y•] = [x y]

[

a b
c d

]

+ [e f]

can be rewritten in terms of the linear 3D transformation

[x• y• 1] = [x y 1]





a b 0
c d 0
e f 1



 .

You should check by explicit calculation to see that this is true. In other words, the special 3 × 3 matrices of the
form





a b 0
c d 0
e f 1





are essentially affine transformations in two dimensions, if we identify 2D vectors [x, y] with 3D vectors [x, y, 1]
obtained by tacking on 1 as last coordinate. This identifies the usual 2D plane, not with the plane z = 0, but with

z = 1. One advantage of this association is that if we perform two affine transformations successively

[x y] 7−→ [x1 y1] = [x y]

[

a b
c d

]

+ [e f]

[x1 y1] 7−→ [x2 y2] = [x1 y1]

[

a1 b1

c1 d1

]

+ [e1 f1]

Chapter 4. Coordinates and conditionals 7

then the composition of the two corresponds to the product of the two associate 3 × 3 matrices





a b 0
c d 0
e f 1









a1 b1 0
c1 d1 0
e1 f1 1



 .

This makes the rule for calculating the composition of affine transformations relatively easy to remember.

There are other advantages to moving 2D points into 3D. A big one involves calculating the effect of coordinate

changes on the equations of lines. For example, the line x+y−100 = 0 is visible in the default coordinate systemlines:equations of:7

as a line that crosses the screen at lower left from (0, 100) to (100, 0). If we then 100 50 translate we will be

operating in a new coordinate system where the new origin is at the point that used to be (100, 50). The line that

was formerly x + y − 100 = 0 will have a new equation in the new coordinates.

(0, 100)

(100, 0)

(-100, 50)

(0, -50)

The line itself is something that doesn’t change—in practical terms it’s that same collection of pixels at the lower
left—but its representation by an equation will change. What is the new equation? We have

x• = x − 100, y• = y − 50

so
x + y − 100 = (x• + 100) + (y• + 50)− 100 = x• + y• − 50 .

Now let’s look at the general case. The equation of the line

Ax + By + C = 0

can be expressed purely in terms of matrix multiplication as

[x y 1]





A
B
C



 = 0 .

This makes it simple to answer the following question:

• Suppose we perform an affine coordinate change

[x y] 7−→ [x• y•] = [x y]

[

a b
c d

]

+ [e f] .

If the equation of a line in (x, y) coordinates is Ax + By + C = 0, what is it in terms of (x•, y•) coordinates?

For example, if we choose new coordinates to be the old ones rotated by 90◦, then the old x­axis becomes the new

y­axis, and vice­versa.

Chapter 4. Coordinates and conditionals 8

How to answer the question? The equation we start with is

[x y 1]





A
B
C



 = 0 .

We have

[x• y• 1] = [x y 1]





a b 0
c d 0
e f 1



 , [x y 1] = [x• y• 1]





a b 0
c d 0
e f 1





−1

therefore

Ax + By + C = [x y 1]





A
B
C





= [x• y• 1]





a b 0
c d 0
e f 1





−1 



A
B
C





= [x• y• 1•]





A•

B•

C•





= A•x• + B•y• + C•

if




A•

B•

C•



 =





a b 0
c d 0
e f 1





−1 



A
B
C



 .

To summarize:

• If we change coordinates according to the formula

[x• y• 1] = [x y 1]





a b 0
c d 0
e f 1





then the line Ax + By + C = 0 is the same as the line A•x• + B•y• + C• = 0, where





A•

B•

C•



 =





a b 0
c d 0
e f 1





−1 



A
B
C



 .

To go with this result, it is useful to know that

[

A 0
v 1

]

−1

=

[

A−1 0
−vA−1 1

]

as you can check by multiplying. Here A is a 2 × 2 matrix and v a row vector. It is also useful to know that

[

a c
b d

]

−1

=

[

d/∆ −c/∆
−b/∆ a/∆

]

, ∆ = ad − bc .

Chapter 4. Coordinates and conditionals 9

Here is a PostScript procedure which has two arguments, a ‘matrix’ M and and array of three numbers A, B, and
C , which returns on the stack the array of three numbers A•, B•, C• which go in the equation for the transform

under M of the line Ax + By + C = 0. The procedure starts by removing its components. It begins this with

a short command sequence aload pop which spills out the array onto the stack, in order. (The operator aloadaload:8

puts the array itself on the stack as well, and pop gets rid of it.)get:8

/transform-line { 1 dict begin

aload pop

/C exch def

/B exch def

/A exch def

/M exch def

/Minv M matrix invertmatrix def

[

A Minv 0 get mul B Minv 1 get mul add

A Minv 2 get mul B Minv 3 get mul add

A Minv 4 get mul B Minv 5 get mul add C add

]

end } def

This is the first time arrays have been dealt with directly in this book. In order to understand this program, you
should know thatarrays:indexing:9ys:recovering items in:9

(1) the items in a PostScript array are indexed starting with 0;
(2) if A is an array in PostScript, then A i get returns the i­th element of A.

Exercise 3. If we set
x• = x + 3, y• = y − 2

what is the equation in (x•, y•) of the line x + y = 1?

Exercise 4. If we set
x• = −y + 3, y• = x − 2

what is the equation in (x•, y•) of the line x + y = 1?

Exercise 5. If we set
x• = x − y + 1, y• = x + y − 1

what is the equation in (x•, y•) of the line x + y = 1?

5. How coordinate changes are made

Let’s look more closely at how PostScript makes coordinate changes.

Suppose we are working with a coordinate system (x•, y•). After a scale change

2 3 scale

we’ll have new coordinates (x, y). What is the relationship between new and old? One unit along the x­axis in
the new system spans two in the old, and one along the y­axis spans three of the old. In other words

x• = 2x

y• = 3y

or

[x• y•] = [x y]

[

2 0
0 3

]

Chapter 4. Coordinates and conditionals 10

or

[x• y• 1] = [x y 1]





2 0 0
0 3 0
0 0 1



 .

If T• is the original CTM then
[x• y• 1] T• = [xphysical yphysical 1]

and for the new coordinates we have

[x y 1]





2 0 0
0 3 0
0 0 1



T• = [xphysical yphysical 1]

so that the new CTM is

T =





2 0 0
0 3 0
0 0 1



T• .

This is the general pattern. To each of the basic coordinate­changing commands in PostScript corresponds a 3× 3
matrix, according to the transformation from new coordinates to old ones:

a b scale





a 0 0
0 b 0
0 0 1





x rotate





cosx sin x 0
− sin x cosx 0

0 0 1





a b translate





1 0 0
0 1 0
a b 1





The effect of applying one of these commands is to multiply the current transformation matrix on the left by the
appropriate matrix.

You can perform such a matrix multiplication explicitly in PostScript. The command sequence

[a b c d e f] concat

has the effect of multiplying the CTM on the left by





a b 0
c d 0
e f 1



 .

You will rarely want to do this. Normally a combination of rotations, scales, and translations will suffice. In fact,

every affine transformation can be expressed as such a combination, although it is not quite trivial to find it.

Exercise 6. After operations

72 72 scale

4 5 translate

30 rotate

what is the user­to­page coordinate transformation matrix?

Chapter 4. Coordinates and conditionals 11

Exercise 7. Any 2 × 2 matrix A may be expressed as

A = R1

[

s
t

]

R2

where R1 and R2 are rotation matrices. How to find these factors? Write

tA A = tR2
tS tR1R1SR2

= R−1
2 S2R2

since R−1 = tR for a rotation matrix R. and tS = S. This means that the diagonal entries of S2 are the eigenvalues
of the symmetric matrix tA A and that the rows of R2 are its eigenvectors. In order to find S from S2 the signs of
square roots must be chosen. Describe how to do this, and then how to find R1. Find this factorization for the
shear

[

1 1
1

]

.

Then write a PostScript program that combines rotations and scales to draw a sheared unit circle around the
origin. What shape do you get? Why?

6. Drawing infinite lines: conditionals in PostScript

We have seen that a line can be described by an equationlines:drawing:11lines:equations of:11

Ax + By + C = 0 .

Recall that the geometrical meaning of the constants A and B is that the direction (A, B) is perpendicular to the
line, as long as the coordinate system is an orthogonal one, where the x and y units are the same and their axes

perpendicular.

The problem we now want to take up is this:

• We want to make up a procedure with a single argument, an array of three coordinates [A B C], whose effect
is to draw the part of the line Ax + By + C = 0 visible on the page.

I recall that an argument for a PostScript procedure is an item put onto the stack just before the procedure itself is

called. I recall also that generally the best way to use procedures in PostScript to make figures is to use them to
build paths, not to do any of the actual drawing. Thus the procedure we are to design, which I will call mkline,

will be used like this

newpath

[1 1 1] mkline

stroke

if we want to draw the visible part of the line x + y + 1 = 0.

One reason this is not quite a trivial problem is that we are certainly not able to draw the entire infinite line. There

is essentially only one way to draw parts of a line in PostScript, and that is to use moveto and lineto to draw

a segment of the line, given two points on it. Therefore, the mathematical problem we are looking at is this: If
we are given A, B, and C , how can we find two points P and Q with the property that the line segment between
them contains all the visible part of the line Ax + By + C = 0? We do not have to worry about whether or not

the segment PQ coincides exactly with the visible part; PostScript will handle naturally the problem of ignoring
the parts that are not visible. Of course the visible part of the line will exit the page usually at two points, and

if we want to do a really professional job, we can at least think about the more refined problem of finding them.
But we’ll postpone this approach for now.

Chapter 4. Coordinates and conditionals 12

Here is the rough idea of our approach: (1) look first at the case where the coordinates system is the initial page
coordinate system; (2) reduce the general case to that one.

Suppose for the moment that we are working with page coordinates, with the origin at lower right and units are
points. In these circumstances, we shall divide the problem into two cases: (a) that where the line is ‘essentially’

horizontal; (b) that where it is ‘essentially’ vertical. We could in fact divide the cases into truly vertical (where

B = 0) and the rest, but for technical reasons, having B near 0 is almost as bad as having it actually equal to
0. Instead, we want to classify lines as ‘essentially horizontal’ and ‘essentially vertical’. In this scheme, we shall

consider a line essentially horizontal if its slope lies between −1 and 1, and otherwise essentially vertical. In
other words, we think of it as essentially horizontal if it is more horizontal than vertical. Recalling that if a line

has equation Ax + By + C = 0 then the direction (A, B) is perpendicular to that line, we have the criterion:

• The line Ax + By + C = 0 will be considered ‘essentially horizontal’ if |A| ≤ |B|, otherwise ‘essentially
vertical’.

Recall that our coordinate system is in points. The left hand side of the page is therefore at xleft = 0, the right one
at xright = 72 · 8.5 = 612. The point is that an essentially horizontal line is guaranteed to intercept both of the
lines x = xleft and x = xright. Why? Since A and B cannot both be 0 and |A| ≤ |B| for a horizontal line, we must

have B 6= 0 as well. Therefore we can solve to get y = (−C − Ax)/B, where we choose x to be in turn xleft and
xright. In this case, we shall choose for P and Q these intercepts. It may happen that P or Q is not on the edge

of the page, and it may even happen that the line segment PQ is totally invisible, but this doesn’t matter. What
does matter is that the segment PQ is guaranteed to contain all of the visible part of the line.

P

Q

[A, B]
Ax + By + C = 0

Similarly, an essentially vertical line must intercept the lines across the top and bottom of the page, and in this

case P and Q shall be these intercepts.

So: we must design a procedure in PostScript that does one thing for essentially horizontal lines, another for

essentially vertical ones. We need to use a test together with a conditional in our procedure.

A test is a command sequence in PostScript which returns one of the boolean values true or false on the stack.data:in PostScript:12true:12false:12

There are several that we will find useful: le, lt, ge, gt, eq, ne which stand for ≤, <, ≥, >, =, and 6=. They aregt:12ge:12lt:12le:12eq:12ne:12

used backwards, of course. For example, the command sequence

a b lt

will put true on the stack if a < b, otherwise false.

Here is a sample from a Ghostscript session:gt:12

Chapter 4. Coordinates and conditionals 13

1 2 gt =

false

2 1 gt =

true

A conditional is a command sequence that does one thing in some circumstances, something else in others. Theconditionals:13

most commonly used form of a conditional is this:

boolean

{ ... }

{ ... }

ifelse

That is to say, we include a few commands to perform a test of some kind, following the test with two procedures

and the command ifelse. If the result of the test is true, the first procedure is performed, otherwise the second.ifelse:13

Recall that a procedure in PostScript is any sequence of commands, entered on the stack surrounded by { and }.

A slightly simpler form is also possible:

boolean

{ ... }

if

This performs the procedure if the boolean is true, and otherwise does nothing.

To apply if or ifelse, normally you apply a test of some kind. You can combine tests with and, not, or.if:13and:13not:13or:13

We now have just about everything we need to write the procedure mkline. Actually, for reasons that will become

clear in a moment we make up a procedure called segment-page that instead of building the line returns (i.e.
leaves on the stack) the two endpoints P and Q, as a pair of arrays of two numbers. We need to recall that x abs

returns the absolute value of x.

% [A B C] on stack

/segment-page { 1 dict begin

aload pop

/C exch def

/B exch def

/A exch def

A abs B abs le

{

/xleft 0 def

/xright 612 def

/yleft C A xleft mul add B div neg def

% y = -C - Ax / B

/yright ... def

[xleft yleft]

[xright yright]

}{

...

} ifelse

end } def

I have left a few blank spots—on purpose.

Exercise 8. Fill in the ... to get a working procedure. Demonstrate it with a few samples.

Chapter 4. Coordinates and conditionals 14

Exercise 9. Show how to use this procedure in a program that draws the line 113x + 141y − 300 in page
coordinates.

Now we cease to assume that we are dealing with page coordinates. We would like to make up a similar
procedure that works no matter what the user coordinates are. So we are looking for a procedure with a single

array argument [A B C] that builds in the current coordinate system, no matter what it may be, a line segment

including all of line that’s visible on a page. This takes place in three stages: (1) We find the equation of the line
in page coordinates; (2) we apply segment-page to find points containing the segment we want to draw, in page

coordinates; (3) we transform these points back into user coordinates.

Here is the final routine we want:

% [A B C] on stack

/mkline { 1 dict begin

aload pop

/C exch def

/B exch def

/A exch def

% T = page to user matrix

/T

matrix defaultmatrix

matrix currentmatrix

matrix invertmatrix

matrix concatmatrix

def

% get line in page coordinates

[

A T 0 get mul

B T 1 get mul add

A T 2 get mul

B T 3 get mul add

T 4 get A mul

T 5 get B mul add

C add

]

% find P, Q

segment-page

% build the line

aload pop T transform moveto

aload pop T transform lineto

end } def

Exercise 10. Finish the unfinished procedures you need, and assemble all the pieces into a pair of procedures
that will include this main procedure. Exhibit some examples of how things work.

Chapter 4. Coordinates and conditionals 15

7. Another way to draw lines

There is another way to solve the problem posed in this chapter, and that is to find exactly where the line enters

and exits the page. This reduces to the following problem: Suppose (x0, y0) and (x1, y1) are the lower left and
upper right corners of a rectangle, and Ax + By + C = 0 the equation of a line. How can you find the points
where the line intersects the boundary of the rectangle?

There are many possibilities, of course—the line could intersect in 0, 1, or 2 points, and in the course of solving

the problem you must decide which. We’ll deal with a related problem in a more organized fashion later on when
we look at the Hodgman­Sutherland algorithm, but the problem here, although somewhat related, is simpler.Hodgman­Sutherland algorithm:14

We want to define a procedure with three arguments—(x0, y0), (x1, y1) (corners of the rectangle) and [A, B, C]—
that returns an array of 0, 1, or 2 points of intersection. Details will be left as an exercise, but I want to explain
here some of the features of the procedure that will be applicable in other situations, too.

Let’s look at an explicit example to see how things are going to go. Suppose we ask whether the line f(x, y) =
2x + 3y − 1 = 0 intersects the frame of the unit square, that tand if so where it intersects. The thing to keep

in mind here is he computer is, of course, blind. It can’t see anything, so how is it going to figure out where

intersections occur? The fundamental criterion is this: if P and Q are two points on either side of the line, then
f(P) and f(Q) will have different signs. In other words, we evaluate f(x, y) at each of the corners of the square,

and if we find sides where the signs at the ends are different, we have an intersection. Here is what happens in
this case:

f(0, 0) = −1 f(1, 0) = 1

f(0, 1) = 2 f(1, 1) = 4

There are two sides where the sign of f(x) is different at the end points. At the bottom the range is −1 to 1, and

will be 0 at the midpoint. At the left the range is −1 to 2, which tells us that the intersection point is 1/3 of the

way from bottom to top.

What happens in the procedure? Start at one corner, say the lower left, and then ‘walk around’ the sides of the

rectangle, checking to see if the line Ax + BY + C intersects that side. There are a few subtle points to be taken
into account.

One subtle thing is to be careful exactly what a side is. As we walk around the sides, we traverse them in a
particular direction—the sides are oriented segments. It turns out to be best to define a side of the rectangle to

include its endpoint but exclude its beginning. Thus a side looks like this, metaphorically:

Before I start with details, let’s think about the possibilities. (1) There could of course be no point of intersection

at all. (2) There could be a single intersection, which could be either be (a) in the middle or (b) at the endpoint.

(3) The whole side could be part of the line.

Chapter 4. Coordinates and conditionals 16

P Q

How can we distinguish these cases? Basically, by checking the sign of Ax + By + C at the two ends of the side.
Let

FP = AxP + ByP + C, FQ = AxQ + ByQ + C .

Here is a complete logical breakdown:

• If FP < 0 and FQ > 0, there is a single interior point of intersection.

• Same conclusion if FP > 0 and FQ < 0.
• If FP < 0 and FQ = 0 then the endpoint Q is a point of intersection.

• Similarly if FP > 0 and FQ = 0.

• If FP = 0 and FQ = 0 the side is contained in the line.
• In all other cases there is no intersection.

One question is how to deal with the case where the side is contained in the line. It turns out that there is one best
thing to do, and that is to treat it exactly the same as other cases where Q is on the line. This will work because

on the previous side the point P will be counted, and the procedure will return both P and Q, which is quite

reasonable.

The breakdown can be summarized: (1) if FP FQ < 0 then there is an interior point; (2) if FQ = 0 then Q is the

point of intersection; (3) otherwise, there is no intersection.

Another problem is mathematical. In the case of an interior point of intersection, how is it calculated? The

function Ax + By + C is equal to FP at P , 0 at the intersection point, and FQ at Q. Therefore the intersection is
t = FP /(FP − FQ) of the way from P to Q, and we interpolate to get it as (1 − t)P + tQ.

I can say some more about what the procedure does. After defining some variables, it puts a [down on the stack,
then looks at each side in turn. If there is a point of intersection (x, y) it puts it on the stack as an array of two

points. Otherwise it does nothing. As the procedure exits it puts] on the stack. What’s returned on the stack will

be thus of the form [], [[. .]], or [[. .][. .]]. I can offer one hint, too, for efficiency—start off with P
equal to the corner point, and calculate FP immediately. When you have looked at a side, define the new values

of P and FP to be the current values of Q and FQ and go on to the next side.

Exercise 11. Define the procedure in detail. Write it so that it will handle any convex closed polygon, that is to
say one that bulges out, so that the intersection of a line with it is always either empty, a single point, two points,
or a whole side.

8. Clipping

It might be that we don’t want to draw all of the visible line, but want to allow some margins on our page. Weclipping:16

could modify the procedure very easily to do this, by changing the definitions of xleft etc., but this is inelegant,
since it would require putting in a new procedure for every different type of margin. There is a more flexible

way. There is a third command in the same family as stroke and fill, called clip. It, too, is applied to a path

just constructed. Its effect is to restrict drawing to the interior of the path. Thusclip:16

newpath

72 72 moveto

540 72 lineto

540 720 lineto

Chapter 4. Coordinates and conditionals 17

72 720 lineto

closepath

clip

creates margins of size 1′′ on an 8.5′′ × 11′′ page in page coordinates. If you want to restrict drawing for a while

and then abandon the restriction, you can enclose the relevant stuff inside gsave and grestore. The command

clip is like fill in that it will automatically close a path before clipping to it, but as with fill it is not a good
habit to rely on this. This is another example of the idea that programs should reflect concepts: if what you really

have in mind is a closed path, close it yourself. The default closure may not be what you intend.

9. Order counts

This seems like a good place to recall that the order in which a sequence of coordinate changes takes places is

important. Sometimes this is a useful feature, sometimes just a nuisance.

I have said before that non­uniform scaling (i.e. scaling by different factors on the different axes) can have peculiar

effects. This is particularly so when applying rotations. It is very important in what order rotating and scaling

occur, if the scaling is not uniform.

Here is what happens for each of these sequences:

30 rotate

1 1.5 scale

newpath

0.5 square

stroke

1 1.5 scale

30 rotate

newpath

0.5 square

stroke

The point to keep in mind is something I have said before—after a coordinate change is made, all further

coordinate changes take place with respect to that new system. Rotation always preserves the curve x2 + y2 = 1.
But if x and y are scaled by different factors, a circle will become an ellipse, and rotation takes place around this
ellipse instead of around a true circle. We can see what happens by doing it in stages:

Chapter 4. Coordinates and conditionals 18

10. Code

The code to draw lines can be found in lines.inc.

CHAPTER 5

Drawing polygons:

loops and arrays

We begin by learning how to draw regular polygons, and then look at arbitrary polygons. Both will use loops,

and the second will require learning about arrays.

There are several kinds of loop constructs in PostScript. Three are frequently used.

1. The repeat loop

The simplest loop is the repeat loop. It works very directly. The basic pattern is:repeat:1repeat:1

N {

...

} repeat

Here N is an integer. Next comes a procedure, followed by the command repeat. The effect is very simple: the
lines of the procedure are repeated N times. Of course these lines can have side effects, so the overall complexity

of the loop might not be negligible.

One natural place to use a loop in PostScript is to draw a regular N ­sided polygon. This is a polygon that has N
sides all of the same length, and which also possesses central symmetry around a single point. If you are drawing

a regular polygon by hand, the simplest thing to do is draw first a circle of the required size, mark N points
evenly around this circle, and then connect neighbours. Here we shall assume that the radius is to be 1, and that

the location of the N points is fixed by assuming one of them to be (1, 0).

(cos 72◦, sin 72◦)

(1, 0)

(cos 144◦, sin 144◦)

If we set θ = 360/N , then the other points on the circle will be (cos θ, sin θ), (cos 2θ, sin 2θ), etc. To draw the

regular polygon, we first move to (1, 0) and then add the lines from one vertex to the next. At the n­th stage we

must add a line from (cos(n−1)θ, sin(n−1)θ) to (cos nθ, sin nθ). How can we make this into a repetitive action?

Chapter 5. Drawing polygons: loops and arrays 2

By using a variable to store the current angle, and incrementing it by 360/N in each repeat. Here is a procedure
that will do the job:

% At entrance the number of sides is on the stack

% The effect is to build a regular polygon of N sides

/make-regular-polygon { 4 dict begin

/N exch def

/A 360 N div def

1 0 moveto

N {

A cos A sin lineto

/A A 360 N div add def

} repeat

closepath

end } def

In the first iteration, A = 360/N , in the second A = 720/N , etc.

Exercise 1. Modify this procedure to have two arguments, the first equal to the radius of the polygon. Why is
not worthwhile to add the centre and the location of the initial point as arguments?

2. The for loop

Repeat loops are the simplest in PostScript. Slightly more complicated is the for loop. To show how it works,for:2

here is an example of drawing a regular pentagon:for:2

1 0 moveto

1 1 5 {

/i exch def

i 72 mul cos i 72 mul sin lineto

} for

closepath

The for loop has one slightly tricky feature which requires the line /i exch def. The structure of the for loop
is this:

s h N {

...

} for

This loop involves a ‘hidden’ and nameless variable which starts with a value of s, increments itself by h each
time the procedure is performed, and stops after doing the last loop where this variable is equal to or less than

N . This hidden (or implicit) variable is put on the stack just before each repetition of the procedure. The line /i

exch def behaves just like the similar lines in procedures—it takes that hidden variable off the stack and assigns
it to the named variable i. It is not necessary to do this, but you must do something with that number on the

stack, because otherwise it will just accumulate there, causing eventual if not immediate trouble. If you don’t
need to use the loop variable, but just want to get rid of it, use the command pop, which just removes the top

item from the stack.

Incidentally, it is safer to use only integer variables in the initial part of a for loop, because otherwise rounding

errors may cause a last loop to be missed, or an extra one to be done.

Exercise 2. Make up a procedure polygon just like the one in the first section, but using a for loop instead of a
repeat loop.

Chapter 5. Drawing polygons: loops and arrays 3

Exercise 3. Write a complete PostScript program which makes your own graph paper. There should be light
grey lines 1 mm. apart, heavier gray ones 1 cm apart, and the axes done in black. The centre of the axes should
be at the centre of the page. Fill as much of the page as you can with the grid.

3. The loop loop

The third kind of loop is the most complicated, but also the most versatile. It operates somewhat like a while

loop in other languages, but with a slight extra complication.loop:3exit:3

1 0 moveto

/A 72 def

{ A cos A sin lineto

/A A 72 add def

A 360 gt { exit } if

} loop

closepath

The complication is that you must test a condition in the loop, and explicitly force an exit if it is not satisfied.
Otherwise you will loop forever. If you put in your condition at the beginning of the loop, you have the equivalent

of a while loop, while if at the end a do . . . while loop. Thus, the commands loop and exit should almost

always be used together. Exits can be put into any loop in order to break out of it under exceptional conditions.

4. Graphing functions

Function graphs or parametrized curves can de done easily with simple loops, although we shall see in the next

chapter a more sophisticated way to do them. Here would be sample code to draw a graph of y = x2 from −1 to
1:

/N 100 def

/x -1 def

/dx 2 N div def

/f {

dup mul

} def

newpath

x dup f moveto

N {

/x x dx add def

x dup f lineto

} repeat

stroke

5. General polygons

Polygons don’t have to be regular. In general a polygon is essentially a sequence of points P0, P1, . . . , Pn−1

called its vertices. The edges of the polygon are the line segments connecting the successive vertices. We shall
impose a convention here: a point will be an array of two numbers [x y] and a polygon will be an array of pointsarray:3

[P0 P2 . . . Pn−1]. We now want to define a procedure which has an array like this as a single argument, and

builds the polygon from that array by making line segments along its edges.

There are a few things you have to know about arrays in PostScript in order to make this work (and they are just

about all you have to know):

Chapter 5. Drawing polygons: loops and arrays 4

(1) The numbering of items in an array starts at 0;
(2) if a is an array then a length returns the number of items in the array;length:3

(3) if a is an array then a i get puts the i­th item on the stack;get:4

(4) you create an array on the stack by entering [, a few items, then];[:4]:4

% argument: array of points

% builds the corresponding polygon

/make-polygon { 3 dict begin

/a exch def

/n a length def

n 1 gt {

a 0 get 0 get

a 0 get 1 get

moveto

1 1 n 1 sub {

/i exch def

a i get 0 get

a i get 1 get

lineto

} for

} if

end } def

This procedure starts out by defining the local variable a to be the array on the stack which is its argument. Then

it defines n to be the number of items in a. If n ≤ 1 there is nothing to be done at all. If n > 1, we move to the
first point in the array, and then draw n − 1 line segments. Since there are n points in the array, we draw n − 1
segments, and the last point is Pn−1. Note also that since the i­th item in the array is a point Pi, which is itself an

array of two items, we must ‘get’ its elements to make a line. If P = [x y] then P 0 get P 1 get puts x y on the
stack.

There is another way to unload the items in an array onto the stack: the sequence P aload puts all the entries of
P onto the stack, together with the array P itself at the top. The sequence P aload pop thus puts all the entries

on the stack, in order. This is simpler and more efficient than getting the items one by one.

Note also that if we want a closed polygon, we must add closepath outside the procedure. There is no

requirement that the first and last points of the polygon be the same.

There is one more important thing to know about arrays. Normally, you build one by entering any sequence of

items in between square brackets [and], separated by space, possibly on separate lines. An array can be any

sequence of items, not necessarily all of the same kind. The following is a legitimate use of make-polygon to
draw a pentagon:

newpath

[

[1 0]

[72 cos 72 sin]

[144 cos 144 sin]

[216 cos 216 sin]

[288 cos 288 sin]

]

make-polygon

closepath

stroke

Chapter 5. Drawing polygons: loops and arrays 5

Exercise 4. Use loops and make-polygon to draw the American flag in colour, say 3 ′′ high and 5′′ inches wide.flag:American:4

(The stars—there are 50 of them—are the interesting part.)

Exercise 5. Another useful pair of commands involving arrays are array and put. The sequence n array putsarray:5put:5

on the stack an array of length n. What is in it? A sequence of null objects, that is to say essentially faceless
entities. Of course the array will be of no use until null objects are replaced by proper data. The way to do this is
with the put command. The sequence A n x put sets A[n] = x.

(1) Construct a procedure reversed that replaces an array by the array that lists the same objects in the opposite
order, without changing the original array. (2) Then use put and careful stack manipulations to do this without
using any variables in your procedure. Thus

[0 1 2 3] reversed

should return [3 2 1 0].

6. Clipping polygons

In this section, now that we are equipped with loops and arrays, we shall take up a slight generalization of the

problem we began with in the last chapter. We shall also see a new kind of loop.

Here is the new problem:

• We are given a closed planar polygonal path γ, together with a line Ax + By + C = 0. We want to replace γ
by its intersection with the half plane f(x, y) = Ax + By + C ≤ 0.

We are going to see here a simple but elegant way of solving these problems called the Hodgman­SutherlandHodgman­Sutherland algorithm:5

algorithm after its inventors. We may as well assume the path to be oriented. The solution to the problem reduces

to one basic idea: if the path γ exits the half plane at a point P and next crosses back at Q, we want to replace
that part of γ between P and Q by the straight line PQ.

Chapter 5. Drawing polygons: loops and arrays 6

P

Q

We want to design a procedure, which I’ll call hodgman-sutherland, that has the closed polygon γ and the line
Ax + By + C = 0 as arguments and returns on the stack a new polygon obtained from γ by cutting off the part

in the region Ax + By + C > 0. The polygon γ will be represented by the array of its vertices and the line by the
array ` = (A, B, C). Let

〈`, P 〉 = Ax + By + C

if P = (x, y).

The procedure looks in turn at each edge of the polygon, in the order determined by the array. It starts with the

edge Pn−1, P0, a convenient trick in such situations. As we proceed, we are going to build up the replacement
polygon by adding points to it. Suppose we are looking at an edge PQ. What we do will depend on circumstances.

Roughly put:

(1) If 〈`, P 〉 ≤ 0 and 〈`, Q〉 ≤ 0 (both P and Q inside the half plane determined by `) we add Q to the new
polygon;

(2) if 〈`, P 〉 < 0 but 〈`, Q〉 > 0 (P inside, Q outside) we add the intersection PQ ∩ ` of the segment PQ with
`, which is

〈`, Q〉P − 〈`, P 〉Q

〈`, Q〉 − 〈`, P 〉
,

to the new polygon;

(3) if 〈`, P 〉 = 0 but 〈`, Q〉 > 0 we do nothing;

(4) if 〈`, P 〉 > 0 but 〈`, Q〉 ≤ 0 (P outside, Q inside) then we add both PQ ∩ ` and Q, unless they are the
same, in which case we just add one;

(5) if both P and Q are outside we do nothing.

This process is very much like that performed in Chapter 4 to find the intersection of a line and a rectangle, and

one convention is certainly the same—an edge does not really contain its starting point.

In certain singular cases, one of the vertices lies on ` and no new point is calculated.

One peculiar aspect of the process is that if the line crosses and recrosses several times, it still returns a single
polygon.

In writing the procedure to do this, we are going to use the forall loop. It is used like this:forall:6

a {

...

} forall

where a is an array. The procedure { ... } is called once for each element of the array a, with that element on

top of the stack. It acts much like the for loop, and in fact some for loops can be simulated with an equivalent
forall loop by putting an appropriate array on the stack.

Chapter 5. Drawing polygons: loops and arrays 7

In the program excerpt below there are a few things to notice in addition to the use of forall. One is that for
efficiency’s sake the way in which a local dictionary is used is a bit different from previously. I have defined a

procedure evaluate which calculates Ax + By + C given [A B C] and [x y]. If I were following the pattern

recommended earlier, this procedure would set up its own local dictionary on each call to it. But setting up a
dictionary is inefficient, and evaluate is called several times in the main procedure here. So I use no dictionary,

but rely entirely on stack operations. The new stack operation used here is roll. It has two arguments n and i,roll:6

shifting the top n elements on the stack cyclically up by i—i.e. it rolls the top n elements of the stack. If the stack
is currently

x4 x3 x2 x1 x0 (bottom to top)

then the sequence 5 2 roll changes it to
x1 x0 x4 x3 x2 .

% x y [A B C] => Ax + By + C

/evaluate { % x y [A B C]

aload pop % x y A B C

5 1 roll % C x y A B

3 2 roll % C x A B y

mul % C x A By

3 1 roll % C By x A

mul % C By Ax

add add % Ax+By+C

} def

Another thing to notice is that the data we are given are the vertices of the polygon, but what we really want to
do is look at its edges, or pairs of successive vertices. So we use two variables P and Q, and start with P = Pn−1.

In looping through P0, P1, . . . we are therefore looping through edges Pn−1P0, P0P1, . . .

% arguments: polygon [A B C]

% returns: closure of polygon truncated to Ax+By+C <= 0

/hodgman-sutherland { 4 dict begin

/f exch def

/p exch def

/n p length def

% P = p[n-1] to start

/P p n 1 sub get def

/d P length 1 sub def

/fP P aload pop f evaluate def

[

p {

/Q exch def

/fQ Q aload pop f evaluate def

fP 0 le {

fQ 0 le {

% P <= 0, Q <= 0: add Q

Q

}{

% P <= 0, Q > 0

fP 0 lt {

% if P < 0, add intersection

/QP fQ fP sub def

[

fQ P 0 get mul fP Q 0 get mul sub QP div

Chapter 5. Drawing polygons: loops and arrays 8

fQ P 1 get mul fP Q 1 get mul sub QP div

]

} if

} ifelse

}{

% P > 0

fQ 0 le {

% P > 0, Q <= 0: if fQ < 0, add intersection;

% add Q in any case

fQ 0 lt {

/QP fQ fP sub def

[

fQ P 0 get mul fP Q 0 get mul sub QP div

fQ P 1 get mul fP Q 1 get mul sub QP div

]

} if

Q

} if

% else P > 0, Q > 0: do nothing

} ifelse

/P Q def

/fP fQ def

} forall

]

end } def

Exercise 6. If a path goes exactly to a line and then retreats, the code above will include in the new path just the
single point of contact. Redesign the procedure so as to put two copies of that point in the new path. It is often
useful to have a path cross a line in an even number of points.

7. Code

There is a sample function graph in function-graph.ps, and code for polygon clipping in dimensions three as

well as two in hodgman-sutherland.inc.

CHAPTER 6

Curves

So far, the only paths we have learned how to draw in PostScript are sequences of line segments. It is possible

to assemble a good approximation of just about any curve by a large number of segments, but there are more
elegant and efficient ways, involving Bézier curves.

1. Arcs

The simplest curves are circles. There are two special commands to draw circles and pieces of circles. The
sequence

0 0 10 47 67 arc

will add to the current path the short arc of a circle of radius 10, centred at the origin, between arguments 47◦

and 67◦. If arcn is used it will draw the clockwise arc around the long way, instead (arcn for arc negative).

It would be a good idea to investigate here what ‘adding to the current path’ means, because it is behaviour many

of our later procedures will imitate. Here are two short sketches that should illustrate how it works. In the first,

we draw a line and then continue drawing an arc. The default behaviour is for an arc to continue the current
path in this way—to add a line from the last point of the previous path to the first point of the arc. Sometimes

this is not what one wants or expects, in which case it is necessary to add a moveto to break up the path, as in the
second figure.

newpath

0 0 moveto

1 0 lineto

0 0 1 45 90 arc

stroke

newpath

0 0 moveto

1 0 lineto

45 cos 45 sin moveto

0 0 1 45 90 arc

stroke

Another curiousity of arc is that in a coordinate system in which y­units are distinct from x­units it produces an

ellipse. In other words, it always draws the locus of an equation (x − a)2 + (y − b)2 = r2 in user coordinates

(x, y). If the axes are not perpendicular or the x and y units are different, it will look like an ellipse.

Chapter 6. Curves 2

2. Fancier curves

Lines and arcs of circles make up a very limited repertoire. PostScript allows a third method to build paths, which

is much more versatile. In creating complicated paths, for example the outlines of characters in a font, this third

method is indispensable.

Conceptually, the simplest way to draw even a complicated curve is by drawing a sequence of line segments—that

is to say, making a polygonal approximation to it—but this usually requires a very large number of segments to
be at all acceptable. It also suffers from the handicap that it is not very scalable—that is to say, even if a collection

of segments looks smooth at one scale, it may not look good at another. Here, for example, is a portion of the

graph of y = x4 drawn with eight linear segments.

The overall shape is not too bad, but the breaks are quite visible. You can certainly improve the quality of the

curve by using more segments, but then the number of segments required to satisfy the eye changes with the

scale used in representing the curve. One trouble is that the human eye can easily perceive that the directions
vary discontinuously in this figure. This is not at all something to be taken for granted—the more we learn about

vision in nature the more we learn that most features like this depend on sophisticated image processing. In

contrast, the human eye apparently has trouble perceiving discontinuities in curvature.

In any event, it is better, if possible, to produce smooth curves—at least as smooth as the physical device at hand

will allow. PostScript does this by approximating segments of a curve by Bézier cubic curves. This allows us to
have the tangent direction of a curve vary continuously as well.

The Bézier curve is the last major ingredient of PostScript to be encountered. In the rest of this book we shall
learn how to manipulate and combine the basic tools we have already been introduced to.

3. Bézier curves

In PostScript, to add a curved path to a path already begun, you put in a command sequence like

1 1

2 1

3 0

curveto

This makes a curve starting at the current point P0, ending at P3 = (3, 0), and in between following a path

controlled by the intermediate points P1 = (1, 1) and P2 = (2, 1). If there is no current point, a moveto command

should precede this. Thus:

0 0 moveto

1 1

2 1

3 0

curveto

would make a complete curve starting at (0, 0).

Chapter 6. Curves 3

In short, curveto behaves very much like lineto but depends on a larger set of points. At any rate, what we get
is this (where the four relevant points are marked):

P0

P1 P2

P3

In this book I shall usually call P0 and P3 the end points and P1 and P2 the control points of the curve.

Occasionally I shall just call all of them control points, which is more standard terminology. Even from this single

picture you will see that the effect of the control points on the shape of the curve is not so simple. In order to
draw curves efficiently and well, we have to understand this matter much better. We shall see later the exact

mathematics of what is going on, but right now I shall simply exhibit several examples.

You should be able to see from these examples that the use of control points to specify curves becomes intuitive

with experience. The following facts may give a rough feeling for how things go.

(1) The path starts at P0 and ends at P3.
(2) When the curve starts out from P0 it is heading straight for P1.
(3) Similarly, when it arrives at P3 it is coming from the direction of P2.
(4) The longer the line from P0 to P1, the tighter the curve sticks to that line when it starts out from P0.

Similarly for P2 and P3.

Chapter 6. Curves 4

There is another fact that is somewhat less apparent.

(5) If we wrap up the four points Pi in a quadrilateral box, then the whole curve is contained inside that box.

The intuitive picture of a Bézier curve conceives of it as a path followed by a particle in motion between certain

times. The vector from P0 to P1 is proportional to the velocity of the particle as it starts out from P0, and the
vector from P2 to P3 is proportional to its velocity when it arrives at P3. Another way of putting this is that

roughly speaking the control points are a convenient way to encode the initial and final velocities in geometric

data. This explains properties (2), (3), and (4). Property (5) is implied by the fact that any point on the curve is
some kind of weighted average of the four points Pi, as we shall see later.

Curves drawn by using control points in this way are called Bézier curves after the twentieth century French
automobile designer Pierre Bézier who was one of the very first to use them extensively in computer graphics,

even though their use in mathematics under the name of cubic interpolation curves is much older.

One natural feature of Bézier curves described by control points is that they are stable under arbitrary affine

transformations—that is to say that the affine transformation of a Bézier curve is the Bézier curve defined by the

affine transformations of its control points. This is often an extremely useful property to keep in mind.

Exercise 1. Write a PostScript procedure pixelcurve with arguments 4 arrays P0, P1, P2, P3 of size 2, with
the effect of drawing the corresponding Bézier curve, including also black pixels of width 0.05′′ at each of these
points.

4. How to use Bézier curves

In this section we shall be introduced to a recipe for using Bézier curves to draw very general curves. In the next
this recipe will be justified. In order to make the recipe plausible, we shall begin by looking at the problem of

how to approximate a given curve by polygons.

The first question we must answer, however, is more fundamental: How are curves to be described in the first
place? In this book the answer will usually be in terms of a parametrization. Recall that a parametrized curve

is a map from points of the real line to points in the plane—that is to say, to values of t in a selected range we
associate points (x(t), y(t)) in the plane. It often helps one’s intuition to think of the parameter t as time, so as

time proceeds we move along the curve from one point to another. In this scheme, with a parametrization P (t),

the velocity vector at time t is the limit of average velocities over smaller and smaller intervals of time (t, t + h):

V (t) = P ′(t) = lim
h→0

P (t + h) − P (t)

h
= [x′(t), y′(t)] .

Chapter 6. Curves 5

The direction of the velocity vector is tangent to the curve, and its magnitude is determined by the speed of

motion along the curve.

Example. The unit circle with centre at the origin has parametrization t 7→ (cos t, sin t).

Example. If f(x) is a function of one variable x, its graph has the parametrization t 7→ (t, f(t)).

In other words, a parametrization is essentially just a pair of functions (x(t), y(t)) of a single variable, which

is called the parameter. The parameter often has geometric significance. For example, in the parametrization

t 7→ (cos t, sin t) of the unit circle it is the angle at the origin between the positive x­axis and the radius to the
point on the circle.

Example. Besides the standard parametrization of the circle there is another interesting one. If ` is any line
through the point (1, 0) other than the vertical line x = 1, it will intersect the circle at exactly one other point on

the circle.

y = m(x − 1)

The equation of such a line will be y = m(x − 1) = mx − m, where m is its slope. The condition that a point
(x, mx − m) lie on the circle is

x2 + y2 = 1

= x2 + m2(x − 1)2

= x2(1 + m2) − 2m2x + m2

x2 − 2
m2

m2 + 1
x +

m2 − 1

m2 + 1
= 0

(x − 1)

(

x −
m2 − 1

m2 + 1

)

= 0

so that

x =
m2 − 1

m2 + 1
, y =

−2m

m2 + 1
.

Chapter 6. Curves 6

As m varies from −∞ to ∞ the point (x, y) traverses the whole circle except the point (1, 0). Thus m is a
parameter, and

m 7−→

(

m2 − 1

m2 + 1
,

−2m

m2 + 1

)

a kind of parametrization of the unit circle. This has historical significance. If we set m = p/q to be a fraction, the

point (x, y) will be a point on the unit circle with rational coordinates, say (a/c, b/c) with (a/c)2 + (b/c)2 = 1. If
we clear denominators, we obtain a set of three integers a, b, c with a2+b2 = c2. Such a set is called a Pythagorean

triple. There is evidence that this construction was known to the Babylonians in about 1800 B.C.

Exercise 2. Use this idea to find the smallest several Pythagorean triples.

Example. There are two common ways to specify a curve in the plane. The first is a parametrization. The second
is an equation relating x and y. An example is the oval

x4 + y4 = 1 .

This is not the graph of a function, and it has no obvious single parametrization. We can solve the equation

x4 + y4 = 1 to get

y =
4

√

1 − x4

which gives the top half of our oval, and get the bottom half similarly. Neither half is yet the graph of a good

function, however, because both have infinite slope at x = ±1. We can, however, restrict the range of x away

from ±1, say to [− 4

√

1/2, 4

√

1/2]. We can then turn the curve sideways and now solve for x in terms of y to write

the rest as a graph rotated 90◦. To summarize, we can at least express this curve as the union of four separate
pieces, each of which we can deal with.

Exercise 3. Find a parametrization of this oval by drawing inside it a circle, and taking as the point corresponding
to t the point of intersection of the oval with the ray from the origin at angle t.

Exercise 4. Sketch the curve y2 = x2(x + 1) by hand in the region |x| ≤ 3, |y| ≤ 3. Find a parametrization of
this curve by using the fact that the line y = mx will intersect it at exactly one point other than the origin. Write
down this parametrization. Use it to redo your sketch in PostScript, in any way that looks convincing, to check
your drawing.

With this understanding of how a curve is given to us, the question we are now confronted with is this:

Chapter 6. Curves 7

• Given a parametrization t 7→ P (t) of a curve in the plane, how do we draw part of it using Bézier curves?

If we were to try to draw it using linear segments, the answer would go like this: Suppose we want to draw the

part between given values t0 and t1 of t. We divide the interval [t0, t1] into n smaller intervals [t0+ih, t0+(i+1)h],
and then draw lines P (t0)P (t0 + h), P (t0 + h)P (t0 + 2h), P (t0 + 2h)P (t0 + 3h), etc. Here h = (t1 − t0)/n. If

we choose n large enough, we expect the series of linear segments to approximate the curve reasonably well.

To use Bézier curves, we will follow the roughly the same plan—chop the curve up into smaller pieces, and on

each small piece attempt to approximate the curve by a single Bézier curve. In order to do that, the essential

problem we face is this: Suppose we are given two values of the parameter t, which we may as well assume to
be t0 and t1, and which we assume not to be too far apart. How do we approximate by a single Bézier curve the
part of the curve parametrized by the range [t0, t1]?

Calculating the end points is no problem. But how to get the two interior control points? Since they have

something to do with the directions of the curve at the end points, we expect to use the values of the velocity

vector at the endpoints. The exact recipe is this. Start by setting

P0 = (x(t0), y(t0))

P3 = (x(t1), y(t1)) .

These are the end points of our small Bézier curve. Then set

∆t = t1 − t0

P1 = P0 + (∆t/3)P ′(t0)

P2 = P3 − (∆t/3)P ′(t1)

to get the control points.

Example. Let’s draw the graph of the parabola y = x2 for x in [−1, 1]. It turns out that a single Bézier curve will

make a perfect fit over the whole range. Here the parametrization is P (t) = (t, t2), P ′(t) = [1, 2t].

t0 = −1

t1 = 1

∆t = 2

P0 = (−1, 1)

P1 = (1, 1)

P ′(−1) = (1,−2)

P ′(1) = (1, 2)

P1 = P0 + (2/3)P ′(t0)

= (−1/3,−1/3)

P2 = (1/3,−1/3)

Chapter 6. Curves 8

Example. Let’s draw the graph of y = x4 for x = −1 to x = 1. Here P (t) = (t, t4), P ′(t) = (1, 4t3). We shall do
this with 1, 2, and 4 segments in turn.

(a) One segment [−1], 1]. We have this table, with the control points interpolated.

x y x′ y′

−1.0000 1.0000 1.0 −4.0
−0.3333−1.6667
0.3333−1.6667
1.0000 1.0000 1.0 4.0

The approximation is foul. Droopy.

(b) Two segments [−1, 0] and [0, 1].

x y x′ y′

−1.0000 1.0000 1.0 −4.0
−0.6667 ­0.3333

−0.3333 0.0000
0.0000 0.0000 1.0 0.0
0.3333 0.0000

0.6667 ­0.3333
1.0000 1.0000 1.0 4.0

Somewhat better.

Chapter 6. Curves 9

(c) Four segments [−1.0,−0.5], [−0.5, 0.0], [0.0, 0.5], [0.5, 1.0].

x y x′ y′

−1.0000 1.0000 1.0 −4.0
−0.8333 0.3333
−0.6667 0.1458
−0.5000 0.0625 1.0 −0.5
−0.3333 −0.0208
−0.1667 0.0000

0.0000 0.0000 1.0 0.0
0.1667 0.0000
0.3333 −0.0208
0.5000 0.0625 1.0 0.5
0.6667 0.1458
0.8333 0.3333
1.0000 1.0000 1.0 4.0

It is almost indistinguishable from the true graph. It is perhaps only when you see where the control points lie

that you notice the slight rise in the middle.

Exercise 5. In many situations, drawing a parametrized path by Bézier curves, using the velocity vector to
produce control points, is more trouble than it’s worth. This is true even if the procedure is to be automated
somewhat as explained in the next chapter, since calculating the velocity can be quite messy. There is one situation
in Bézier plotting is definitely the method of choice, however, and that is when the path is given by a path integral.
The Cornu spiral, for example, is the path in the complex plane defined by

C(t) =

∫ t

0

e−is2

ds

as t ranges from −∞ to ∞. In this case, C(t) can only be approximated incrementally by numerical methods, say
by Simpson’s rule, but the velocity C ′(t) comes out of the calculation at no extra cost, since it is just the integrand.
Furthermore, evaluating C(t) will be expensive in effort since each step of the approximation involves some
work, so the fewer steps taken the better.

Chapter 6. Curves 10

Plot the Cornu spiral, which is shown above, using Bézier curves. One subtle point in this figure is that the
thickness of the path above decreases as the curve spirals further in, because otherwise the spirals would be
clotted.

Exercise 6. The remarks in the previous exercise are just as valid for the plots of first order differential equations
in the plane by numerical methods. Plot using Bézier curves the trajectories of

[

x′

y′

]

=

[

−1 −1
1 −1

] [

x
y

]

starting at a few uniformly distributed points around the unit circle.

5. The mathematics of Bézier curves

The mathematical problem we are looking at in drawing good curves in computer graphics is that of approx­
imating an arbitrary parametrized path t 7→ (x(t), y(t)) by a simpler one. If we are approximating a path by

line segments, for example, then we are replacing various pieces of the curve between points P0 = P (t0) and

P1 = P (t1) by a linearly parametrized path

t 7→
(t1 − t)P0 + (t − t0)P1

(t1 − t0)

from one point to the other. This parametrization can be better understood if we write this as

t 7→ (1 − s)P0 + sP1 where s =
t − t0
t1 − t0

.

With Bézier curves, we are asking for a parametrization from one point to the other with the property that its

coordinates are cubic polynomials of t (instead of linear). In other words, we are looking for approximations to
the coordinates of a parametrization by polynomials of degree three. We expect an approximation of degree three

to be much better than a linear one.

The Bézier curve, then, is to be a parametrized path B(t) from P0 to P3, cubic in the parameter t, and depending

in some way on the interior control points P1 and P2. Here it is:

B(t) =
(t1 − t)3P0 + 3(t − t1)

2(t − t0)P1 + 3(t1 − t)(t − t0)
2P2 + (t − t0)

3P3

(t1 − t0)3

= (1 − s)3P0 + 3(1− s)2sP1 + 3(1− s)s2P2 + s3P3

(

s = (t − t0)/(t1 − t0)
)

.

Chapter 6. Curves 11

We shall justify this formula later on. The form using s is easier to calculate with than the other, as well as more
digestible.

It is simple to verify that

B(t0) = P0

B(t1) = P3 .

We can also calculate (term by term)

(t1 − t0)
3B′(t) = −3(t1 − t)2P0 + 3(t1 − t)2P1 − 6(t − t0)(t1 − t)P1

+ 6(t − t0)(t1 − t)P2 − 3(t − t0)
2P2 + 3(t − t0)

2P3

B′(t) =
3(t1 − t)2(P1 − P0) + 6(T − t0)(t − t1)(P2 − P1) + 3(t − t0)

2(P3 − P2)

(t1 − t0)3

B′(t0) =
3(P1 − P0)

t1 − t0

B′(t1) =
3(P3 − P2)

t1 − t0

These calculations verify our earlier assertions relating the control points to velocity, since we can deduce from

them that

P1 = P0 +

(

t1 − t0
3

)

B′(t0)

P2 = P3 −

(

t1 − t0
3

)

B′(t1) .

6. Quadratic Bézier curves

A quadratic Bézier curve determined by three control points P0, P1, and P2 is defined by the parametrization

Q(s) = (1 − s)2P0 + 2s(1 − s)P1 + s2P2 .

P0

P1

P2

It is a degenerate case of a Bézier curve, with control points P0, (1/3)P0 + (2/3)P1, (2/3)P1 + (1/3)P2, P2, as

you can easily check. But sometimes it is easy to find control points for a quadratic curve, not so easy to find

good ones for a cubic curve. One good example arises in drawing implicit curves f(x, y) = 0. In this case, we
can often calculate the gradient vector [∂f/∂x, ∂f/∂y] and then that of the tangent line

∂f

∂x
(x − x0) +

∂f

∂y
(y − y0) = 0

at a point (x0, y0) on the curve. But we can approximate the curve between two points P and Q by the quadratic

Bézier curve with intermediate control point the intersection of the two tangent lines at P and Q. The figure
below shows how the curve x2 +y2−1 = 0 is approximated by four quadratic curves (in red). An approximation

by eight quadratic curves is just about indistinguishable from a true circle.

Chapter 6. Curves 12

7. Mathematical motivation

In using linear or Bézier paths to do computer graphics, we are concerned with the problem of approximating

the coordinate functions of an arbitrary path by polynomials of degree one or three. Considering each coordinate
separately, we are led to try to approximate an arbitrary function of one variable by a polynomial of degree one

or three.

The basic difference between linear approximations and cubic approximations lies in the following facts:

• If t0, t1, y0, and y1 are given then there exists a unique linear function f(t) such that

f(t0) = y0

f(t1) = y1

• Given t0, t1, y0, y1, v0, v1, there exists a unique cubic polynomial f(t) such that

f(t0) = y0

f ′(t0) = v0

f(t1) = y1

f ′(t1) = v1 .

Roughly speaking, with linear approximations we can only get the location of end points exactly, but with cubic
approximation we can get directions exact as well.

We shall prove here the assertion about cubic functions. If

f(t) = a0 + a1t + a2t
2 + a3t

3

then the conditions on P (t) set up four equations in the four unknowns ai which turn out to have a unique

solution (assuming of course that t0 6= t1). Here are the equations:

a0 + a1t0 + a2t
2
0 + a3t

3
0 = y0

a1 + 2a2t0 + 3a3t
2
0 = v0

a0 + a1t1 + a2t
2
1 + a3t

3
1 = y1

a1 + 2a2t1 + 3a3t
2
1 = v1

The coefficient matrix is










1 t0 t20 t30

1 2t0 3t20
1 t1 t21 t31

1 2t1 3t21











Chapter 6. Curves 13

It has already been remarked that the mathematics is simplified by normalizing the parameter variable t, so that
instead of going from t0 to t1 it goes from 0 to 1. This is done by defining a new parameter variable

s =
t − t0
t1 − t0

.

Note that s takes values 0 and 1 at the ends t = t0 and t = t1. Changing the parameter variable in this way

doesn’t affect the curve traversed. It simplifies the assertion above.

• Given y0, y1, v0, v1, there exists a unique cubic polynomial f(t) such that

f(0) = y0

f ′(0) = v0

f(1) = y1

f ′(1) = v1 .

The coefficient matrix is now
1 0 0 0
0 1 0 0
1 1 1 1
0 1 2 3

I leave it to you as an exercise to check now by direct row reduction that the determinant is not zero, which
implies that the system of four equations in four unknowns has a unique solution. Of course we know from the

formula used in the previous section what the explicit formula is, but the reasoning in this section shows that this

formula is the well defined answer to a natural mathematical question.

Exercise 7. What is the determinant of this 4 × 4 matrix?

Exercise 8. Find the coefficients ai explicitly.

If we put together the results of this section with those of the previous one, we have this useful characterization:

• Given two parameter values t0, t1 and four points P0, P1, P2, P3, the Bézier path B(t) is the unique path
(x(t), y(t)) with these properties:
(1) The coordinates are cubic as a function of t;
(2) B(t0) = P0, B(t1) = P3;
(3) B′(t0) = 3(P1 − P0)/∆t and B′(t1) = 3(P3 − P2)/∆t, where ∆t = t1 − t0.

The new assertion here is uniqueness. Roughly, the idea is that four control points require eight numbers, and

that the cubic coordinate functions also require eight numbers.

8. Weighted averages

The formula for a linear path from P0 to P1 is

P (t) = (1 − t)P0 + tP1

= P0 + t(P1 − P0) .

We have observed before that P0 + t(P1 − P0) may be seen as the point t of the way from P0 to P1. When t = 0
this gives P0, and when t = 1 it gives P1. There is also an intuitive way to understand the first formula that we
have not considered so far.

Let’s begin with some examples. With t = 1/2 we get the mid­point of the segment

P0 + P1

2

Chapter 6. Curves 14

which is the average of the two. With t = 1/3 we get the point one third of the way

2P0 + P1

3

which is to say that it is a weighted average of the endpoints with P0 given twice as much weight as P1.

There is a similar way to understand the formula for Bézier curves. It is implicit in what was said in the last

section that the control points Pi determine a cubic path from P0 to P1

B(t) = (1 − t)3P0 + 3t(1 − t)2P1 + 3t2(1 − t)P2 + t3P3

and that this path is a parametrization of the Bézier curve with these control points. In other words, B(t) is

a weighted combination of the control points. It is actually an average—which is to say, that the sum of the

coefficients is 1:
(1 − t)3 + 3t(1 − t)2 + 3t2(1 − t) + t3 =

(

(1 − t) + t
)3

= 1

by the binomial theorem for n = 3, which asserts that

(a + b)3 = a3 + 3a2b + 3ab2 + b3 .

Since all the coefficients in our expression are non­negative for 0 ≤ t ≤ 1, B(t) will lie inside the quadrilateral

wrapped by the control points.

This idea will now be explored in more detail.

If P0, P1, . . . Pn−1 is a collection of n points in the plane, then a sum

c0P0 + c1P1 + · · · + cn−1Pn−1

is called a weighted average of the collection if (1) all the ci ≥ 0; (2) the sum of all the ci is equal to 1. In the

rest of this section, our primary goal will be to describe geometrically the set of all points we get as the weighted

averages of a collection of points, as the coefficients vary over all possibilities.

If n = 2, we know already that the set of all weighted averages c0P0 + c1P1 is the same as the line segment

between P0 and P1, since we can write c1 = t, c0 = (1 − t).

Suppose n = 3, and consider the weighted average

c0P0 + c1P1 + c2P2 .

Let’s look at an explicit example—look more precisely at

P = (1/4)P0 + (1/4)P1 + (1/2)P2 .

The trick we need to carry out is to rewrite this as

P = (1/2)[(1/2)P0 + (1/2)P1] + (1/2)P2 = (1/2)Q + (1/2)P2

where Q = (1/2)P0 + (1/2)P1. In other words, P is the weighted average of the two points Q and P2. The point
Q is the weighted average of the original points P0 and P1, hence must lie on the line segment between P0 and

P1. In other words, we have the following picture:

Chapter 6. Curves 15

P0 P1

P2

P

Q

Now we can almost always perform this trick, since we can write

c0P0 + c1P1 + c2P2 = (c0 + c1)

((

c0

c0 + c1

)

P0 +

(

c1

c0 + c1

)

P1

)

+ c2P2

unless c0 + c1 = 1 − c2 = 0. In the exceptional case we are just looking at P2 itself, and in all other cases each

weighted average of the three points is a weighted average of P2 with a point on the line segment between P0

and P1. In other words, the set of all weighted averages of the three points coincides with the triangle spanned

by the three points.

P0 P1

P2

If we now look at four points, we get all the points on line segments connecting P3 to a point in the triangle
spanned by the first three. And in general we get all the points in a shape called the convex hull of the collection

of points, which may be described very roughly as the set of points which would be contained inside a rubber

band stretched around the whole collection and allowed to snap to them.

Chapter 6. Curves 16

The convex hull of a set of points in the plane or in space is very commonly used in mathematical applications,
and plays a major role in computational graphics as well.

Exercise 9. Write the simplest procedure you can with these properties: (1) it has two arguments x0 and x1 and
(2) it draws the graph of y = x2 between x0 and x1 with a single Bézier curve.

Exercise 10. Draw y = x5 between x = −1 and x = 1 in the same way we drew y = x4 earlier.

9. How the computer draws Bézier curves

In this section we shall see how the computer goes about drawing a Bézier curve. It turns out to be an extremely

efficient process. First of all, a computer ‘thinks of’ any path as a succession of small points (pixels) on the

particular device it is dealing with. This is somewhat easier to see on a computer screen, certainly if you use
a magnifying glass, but remains true even of the highest resolution printers. So in order to draw something it

just has to decide which pixels to color. It does this by an elegant recursive procedure, something akin to the
following way to draw a straight line segment: (1) Color the pixels at each end. (2) Color the pixel at the middle.

(3) This divides the segment into two halves. Apply steps (2) and (3) again to each of the halves. And so on, until

the segments you are looking at are so small that they cannot be distinguished from individual pixels.

The analogous construction for Bézier curves, attributed to the car designer de Casteljau, goes like this:

Start with a Bézier curve with control points P0, P1, P2, P3. Perform the following construction. Set

P01 = the median between P0 and P1

P12 = the median between P1 and P2

P23 = the median between P2 and P3

P012 = the median between P01 and P12

P123 = the median between P12 and P23

P0123 = the median between P012 and P123

P0

P1 P2

P3

P01

P12

P23

P012 P123P0123

P •

0

P •

1

P •

2 P •

3

Then set
P •

0 = P0

P •

1 = P01

P •

2 = P012

P •

3 = P ••

0 = P0123

P ••

1 = P123

P ••

2 = P23

P ••

3 = P3 .

The point P •

3 turns out to lie on the Bézier curve determined by the original points Pi, at approximately the

halfway point. The Bézier curve can now be split into two halves, each of which is itself a Bézier cubic, and the
control points of the two new curves are among those constructed above. The two halves might be called the

Bézier curves derived from the original. The points P •

i are those for the first half, the P ••

i for the second. If

Chapter 6. Curves 17

we keep subdividing in this way we get a sequence of midpoints for the smaller segments (actually a kind of
branched list), and to draw the curve we just plot these points after the curve has been subdivided far enough.

This sort of subdivision can be done very rapidly by a computer, since dividing by two is a one­step operation in

base 2 calculations, and in fact drawing the pixels to go on a straight line is not a great deal faster.

Exercise 11. Draw the figure above with PostScript.

Exercise 12. The point P •

1 is (1/2)P0 + (1/2)P1. Find similar expressions for all the points constructed in terms
of the original four.

Exercise 13. The purpose of this exercise is to prove that each half of a Bézier curve is also a Bézier curve. Let

P (s) = (1 − s)3P0 + 3s(1− s)2P1 + 3s2(1 − s)P2 + s3P3 .

The point is to verify that this formula agrees with the geometrical process described above. Let P •

1 etc. be the
points defined just above. The first half of the Bézier curve we started with is a cubic curve with initial parameter
0 and final parameter 1/2. Let ∆t = 1/2. Verify that

P (0) = P0 (trivial)

P ′(0) = (∆t/3)(P •

1 − P0) (almost trivial)

P (1/2) = P •

3

P ′(1/2) = (∆t/3)(P •

3 − P •

2) .

These equations, by the earlier characterization of control points in terms of derivatives, guarantee that the first
half of the original Bézier path is a Bézier path with control points P0 = P •

0 , P •

1 , P •

2 , P •

3 .

Exercise 14. How might a computer construct quadratic Bézier curves in a similar way?

10. Bernstein polynomials

The Bézier cubic polynomial

y0(1 − t)3 + 3y1(1 − t)2t + 3y2(1 − t)t2 + y3t
3

is just a special case of a more general construction of Bernstein polynomials. In degree one we have the linear
interpolating function

y0(1 − t) + y1t ,

in degree two we have the quadratic functions mentioned earlier, and in degree n we have the polynomial

By(t) = y0(1 − t)n + ny1t(1 − t)n−1 +
n(n − 1)

2
y2 (1 − t)n−2t2 + · · · + yntn

where y is the array of the control values yi and the other coefficients make up the n­th row of Pascal’s triangle

1
1 1

1 2 1
1 3 3 1

. . .

These polynomials were first defined by the Russian mathematician Sergei Bernstein in the early twentieth century

in order to answer a sophisticated question in approximation theory.

Chapter 6. Curves 18

These also are weighted sums of the control values, so for 0 ≤ t ≤ 1 the value of By(t) will lie in the range
spanned by the yi. In particular, if the yi are a non­decreasing sequence

y0 ≤ y1 ≤ . . . yn

then y0 ≤ By(t) ≤ yn for 0 ≤ t ≤ 1. But much more can be said.

Exercise 15. Prove that
B′

y(t) = nB∆y(t)

where ∆y is the array of differences

∆y = (y1 − y0, y2 − y1, . . . , yn − yn−1) .

Exercise 16. Prove that if the yi are non­decreasing then By(t) is a non­decreasing function over the range [0, 1].

Exercise 17. There is a way to evaluate By(t) for 0 ≤ t ≤ 1 along the lines used by the computer to construct
the Bézier cubic curve. It can be described best in a recursive fashion. First of all, if y has length 1 the Bernstein
polynomial is just a constant. Otherwise, with n > 0, form a derived sequence of length n − 1:

δy = ((1 − t)y0 + ty1, . . . , (1 − t)yn−1 + tyn) .

Then
By(t) = Bδy(t) .

Prove this. Explain how this process is related to the naı̈ve construction of Pascal’s triangle, one row at a time.

11. This section brings you the letter O

Paths can be constructed in PostScript in various ways through commands moveto, etc. but internally PostScript

stores a path as an array storing exactly 4 different types of objects—moveto, lineto, curveto, closepath
tags together with the arguments of the command. This array can be accessed explicitly by means of the

command pathforall. This command has four arguments, each of which is a procedure. It loops through all

the components of the current path, pushing appropriate data on the stack and then applying the procedures
respectively to moveto, lineto, curveto, and closepath components. For moveto and lineto components it

pushes the corresponding values of x and y in current user coordinates; for curveto it pushes the six values of x1,
y1, etc. (also in user coordinates); and for closepath it pushes nothing. The following procedure, for example,

displays the current path.

/path-display {

{ [3 1 roll (moveto)] == }

{ [3 1 roll (lineto)] == }

{ [7 1 roll (curveto)] == }

{ [(closepath)] == }

pathforall

} def

The following procedure tells whether a current path has already been started, since it returns with true on the
stack if and only if the current path has at least one component.

Chapter 6. Curves 19

/thereisacurrentpoint{

false {

{ 3 { pop } repeat true exit }

{ 3 { pop } repeat true exit }

{ 7 { pop } repeat true exit }

{ pop true exit }

} pathforall

} def

The most interesting paths in PostScript are probably strings—i.e. the paths formed by strings when the show

operator is applied, or in other words the path the string will make when it is drawn in the current font. This

outline can be accessed as a path by applying the command charpath, which has two arguments. The first is a
string. The second is a boolean variable which is more or less irrelevant to our purposes. The command appends

the path described by the string in the current graphics environment to the current path, assuming in particular

that a font has been selected. In this way, for example, you can deal with the outlines of strings as if they were
ordinary paths. The code

/Times-Roman findfont

40 scalefont

setfont

newpath

0 0 moveto

(Times-Roman) false charpath

gsave

1 0 0 setrgbcolor

fill

grestore

stroke

produces

You can combine charpath and pathforall to see the explicit path determined by a string, but only under

suitable conditions. Many if not most PostScript fonts have a security mechanism built into them that does not
allow the paths of their characters to be deconstructed, and you will get an error from pathforall if you attempt

to do so. So if you want to poke around in character paths you must be working with a font that has not been
declared inaccessible. This is not a serious restriction for most of us, since there are many fonts, including the

ones usually stocked with GhostScript, that are readable. Here is the path of the character ‘O’ from the font called

/Times-Roman by GhostScript:

0.360998541 0.673999 moveto

0.169997558 0.673999 0.039997559 0.530835 0.039997559 0.33099854 curveto

0.039997559 0.236999512 0.0697631836 0.145998538 0.119995117 0.0879980475 curveto

0.177995607 0.0249975584 0.266994625 -0.0140014645 0.354995131 -0.0140014645 curveto

0.551994622 -0.0140014645 0.689997554 0.125998542 0.689997554 0.326999515 curveto

0.689997554 0.425998539 0.660305202 0.510998547 0.603996575 0.570998549 curveto

0.540996075 0.639997542 0.456999511 0.673999 0.360998541 0.673999 curveto

closepath

0.360996097 0.63399905 moveto

0.406997085 0.63399905 0.452998042 0.618159175 0.488999 0.58999753 curveto

Chapter 6. Curves 20

0.542998075 0.540998518 0.58 0.44699952 0.58 0.328000486 curveto

0.58 0.269001454 0.564633787 0.200002447 0.540998518 0.148002923 curveto

0.531999528 0.123002931 0.515 0.098002933 0.491999507 0.0750024393 curveto

0.456999511 0.0400024429 0.411999524 0.0260009766 0.358999 0.0260009766 curveto

0.312998056 0.0260009766 0.26799804 0.04253418 0.232998043 0.0710034147 curveto

0.180998534 0.117004395 0.15 0.218005374 0.15 0.329006344 curveto

0.15 0.431005865 0.177197263 0.528005362 0.217998043 0.575004876 curveto

0.256997079 0.618005395 0.30599609 0.63399905 0.360996097 0.63399905 curveto

closepath

0.721999526 -0.0 moveto

and here is the first Bézier curve in the path:

References

1. R. E. Barnhill and R. F. Riesenfeld (editors), Computer Aided Geometric Design, Academic Press, 1974. This
book contains papers presented at a conference at the University of Utah that initiated much of modern computer

graphics. The article by P. Bézier is very readable.

2. G. Farin, Curves and surfaces for computer aided design, Academic Press, 1988. This is a pleasant book that
probably covers more about curves and surfaces than most readers of this book will want, but the first chapter is

an enjoyable account by P. Bézier on the origins of his development of the curves that bear his name. These curves
were actually discovered much earlier (before computers were even a dream) by the mathematicians Hermite and

Bernstein, but it was only the work of Bézier, who worked at the automobile maker Renault, and de Casteljau,

who worked at Citroen, that made these curves familiar to graphics specialists.

3. D. E. Knuth,
��������

: the Program, Addison­Wesley, 1986. Pages 123–131 explain extremely clearly the

author’s implementation of Bézier curves in his program
��������

. For the admittedly rare programmer who
wishes to build his own implementation (at the level of pixels), or for anyone who wants to see what attention to

detail in first class work really amounts to, this is the best resource available.

Interlude

At this point you have seen just about all the basic PostScript commands you’ll ever use. The rest of this book will

be spent showing you how to combine them together to make some very complicated—one would hope even
very beautiful—figures.

In principle you should by now have no trouble drawing simple figures, but are starting to worry about how
to do more difficult things. I want to offer you some advice, in part just to collect in one place remarks I have

made throughout the text. Much of what I have to say is not specific to PostScript, but might well be made about
programming in general.

• Most programs you write will be just an assembly of smaller chunks that are themselves quite simple. Your

coding should reflect this, making the chunks in your code as independent of each other as possible. Just
like your pages should be independent of each other.

• The reason you should try to arrange your program so it looks as much as possible like an assembly of smaller

chunks is that you can then concentrate on getting each chunk completely correct. The most important thing
to keep in mind in good programming is, as the real estate agents (don’t) say, locality, Locality, LOCALITY.

The effects of your code should be carefully set up to be local in nature, affecting if possible only data needed

at the moment it is running. One example of this I have already remarked on is that procedures above all,
which may be called from anywhere in your code, should use local variables and have few or no side effects.

Those it does have should be clearly specified.

• Procedures should be as isolated as possible from the rest of your code. Best is to put them in separate files
and run these. Then you can test your procedures independently of the rest of your program. With the PERL

script described in Appendix 2, embedding files that are run during development into the final program is

simple.

• In particular, make up a file defining your favourite constants like e, π etc. and run that file to obtain
access to them. One thing I haven’t mentioned is that for efficiency you can get PostScript to embed these

numbers directly if you write using //. For example, //pi will immediately substitute 3.1415 . . . if you
have previously written /pi 3.1415926535 def. (Whereas ordinarily it defers evaluating the expression

pi because you might very well have redefined it. It doesn’t know that you mean it to be a constant.) I don’t

suppose that for the programs we are concerned with here that this really increases speed much, but it makes
you feel good.

• As a programming language, PostScript is special because of its direct link to graphics. Use this feature.

When starting to draw a picture, begin by getting something up on the screen that looks roughly like what
you want and then begin to modify it. Visual debugging compensates somewhat for the otherwise terrible

debugging environment of PostSCript.

• Debugging PostScript using Ghostscript is nasty. The only way to avoid it, however, is to write only perfect
lines of code that never need rewriting. But for those presumably rare moments when things aren’t going

quite right, you’ll have to descend to the land of mortals. So far I have mentioned the techniques of spilling

out data in the terminal window and running gsnd. To make this easier I myself use a procedure display
with one argument n that spills out in an array, without destruction, the top n items on the stack:

/display { 1 dict begin

/n exch def

n copy [n 1 add 1 roll] ==

end } def

Interlude 2

I put this in a file display.inc and run it at the top of nearly all my programs. For line breaks to make
output more readable, use () =. You can also use quit to break your code off at a selected spot.

• Keep your stack clean. A common error is to forget to take everything off the stack in procedures. You can

check this by running gs, which indicates the stack size at the end.

• Remember that coordinate changes are cumulative.

• The part of your code that actually does the drawing should be as clean and readable as possible. Do
all necessary calculations ahead of time. Path drawing is the cockpit of PostScript programming. Leave

unnecessary items at the door when you enter.

• At the beginning of a project, use lots of variables and procedures. Readability at that stage is extremely
important. Comment freely. Slim down your code when and if necessary.

• Make your code readable, not only by adding comments but by separating different parts by dividers, say

like this;

% --- this part does blah blah ---

so you can scan your file easily to get where you want to go. As for comments, the most important ones are
those that describe procedures—tell what arguments they need, what they return, and what side effects they

have. Procedures will usually be called many times in many different environments, and you will not likely
want to read the whole procedure over again to figure out what it’s doing.

CHAPTER 7

Drawing curves automatically:

procedures as arguments

curveto
lineto
moveto

stroke
fill
clip

curveto
lineto

stroke
fill
clip

The process of drawing curves by programming each one specially is too complicated to be done easily. In this

chapter we shall see how to construct procedures to help out enormously. We proceed in stages, starting with a

reasonably simple example.

1. Drawing an hyperbola

The curves we have drawn so far are really too simple to give you an idea of how useful Bézier curves are. This
is because the Bézier curve is guaranteed to match exactly the graph of any polynomial of degree 3 or less, so no

approximation is involved. In this section we will develop a procedure hyperbola with three arguments—x0,

x1, N—that constructs the graph of the upper branch of an hyperbola

y2 − x2 = 1, y =
√

1 + x2 .

by using N Bézier segments in between x0 and x1.

As is usually the best idea, the procedure builds the path without drawing it. Thus the sequence

newpath

-2 2 4 hyperbola

stroke

will draw the curve y =
√

1 + x2 from x = −2 to x = 2 in 4 Bézier segments.

Paths drawn by -2 2 1 hyperbola (pink) and -2 2 2 hyperbola (red).

What goes into the procedure hyperbola? We can immediately write down the skeleton

/hyperbola { 16 dict begin

/N exch def

/x1 exch def

/x0 exch def

Chapter 7. Drawing curves automatically: procedures as arguments 2

...

end } def

and we must now fill in the real computation. First we set a step size h = (x1 − x0)/N so that in N steps we

cross from x0 to x1:

/h x1 x0 sub N div def

Then we introduce variables x and y which are going to change as the procedure runs, and move to the first point

on the graph. It will also help to keep a variable s to hold the current value of the slope. Note that if

y = f(x) =
√

1 + x2 = (1 + x2)1/2

then

s = f ′(x) = (1/2)(2x)(1 + x2)−1/2 =
x

√

1 + x2
=

x

y
.

Recall that the control points are

(x0, y0)

(x0 + h/3, y0 + y′(x0)/3

(x1 − h/3, y1 − y′(x1)/3

(x1, y1) .

where x1 = x + h, y1 = y(x1). The code begins:

/x x0 def

/y 1 x x mul add sqrt def

/s x y div def

x y moveto

Now we must build N Bézier segments, using a repeat loop.

N { % repeat

x h 3 div add

y h 3 div s mul add

/x x h add def

/y 1 x x mul add sqrt def

/s x y div def

x h 3 div sub

y h 3 div s mul sub

x y

curveto

} repeat

and that’s it.

We could make this program somewhat more readable and more flexible if we add to it a couple of procedures
that calculate f(x) and f ′(x), instead of doing it in line. Each of the procedures should have a single argument

x. They are short enough that we do not need to use a variable inside them. Explicitly:

% sqrt(1 + x^2)

/f {

dup mul 1 add sqrt

} def

% x/sqrt(1 + x^2)

/f’ {

dup dup mul 1 add sqrt div

Chapter 7. Drawing curves automatically: procedures as arguments 3

} def

Recall that dup just duplicates the item on the top of the stack. The new loop would be

N { % repeat

x h 3 div add

y h 3 div s mul add

/x x h add def

/y x f def

/s x f’ def

x h 3 div sub

y h 3 div s mul sub

x y

curveto

} repeat

It would be better to have a single procedure that calculates f(x) and f ′(x) all in one package. For one thing, it

would be more efficient since we wouldn’t have to calculate square roots more often than necessary. For another,
I prefer to have things that go together . . . well, go together. The calculation of f(x) and f ′(x) are related, and

if you modify one to draw some different graph, then you will have to modify the other. For this reason they

should be dealt with in one visible and indivisible unit. We can do this by using a single procedure with one
argument x and as output an array of two numbers [y s]. But now a variable to hold the value of x is useful. It

might be a good idea here to exhibit all procedures we are using:

% x -> [sqrt(1 + x^2), x/sqrt(1 + x^2)]

/f { 2 dict begin

/x exch def

/y 1 x x mul add sqrt def

[

y

x y div

]

end } def

% x0 x1 N

/hyperbola { 16 dict begin

/N exch def

/x1 exch def

/x0 exch def

% h = (x1 - x0)/N

/h x1 x0 sub N div def

/x x0 def

/F x f def

/y F 0 get def

/s F 1 get def

x y moveto

N { % repeat

x h 3 div add

y h 3 div s mul add

/x x h add def

/F x f def

/y F 0 get def

/s F 1 get def

Chapter 7. Drawing curves automatically: procedures as arguments 4

x h 3 div sub

y h 3 div s mul sub

x y

curveto

} repeat

end } def

It is true that using a dictionary and an array has made the program somewhat less efficient than it was at the

start. On the good side, the program is now perhaps a bit more readable—or perhaps not, depending probably
on your own taste. It has one great virtue, however—it is a great deal more flexible. If we want to draw some
other graph, we need only to rewrite the single procedure f, making sure that it, too, has a single argument x and
returns an array of two values [y s].

Exercise 1. Modify the procedure f so you can use essentially the same stuff to graph the function y = x3 − x
between −1 and 1.

Exercise 2. Modify the procedure f so you can use essentially the same stuff to graph the function y = sin x
between −1 and 1. Be careful about degrees and radians—it is only when x is expressed in radians that
sin′ x = cosx. Use it to draw the graph of sin x between x = 0 and x = π with 1, 2, 4 segments, all on one plot.
Make them successively lighter so you can distinguish them.

2. Parametrized curves

We now have a good idea of how to draw smooth function graphs. However, not all curves in the plane are the

graphs of functions. What is true is that almost any curve we can imagine is the union of a number of smooth

segments, where each segment is a parametrized path (x(t), y(t)) in the plane.

I recall that to draw by Bézier curves a segment between t = t0 and t1 I use control points

P0 = (x0, y0)

= (x(t0), y(t0))

P1 = (x1, y1)

= (x(t1), y(t1))

P1/3 =

[

x1/3

y1/3

]

=

[

x0

y0

]

+
∆t

3

[

x′

0

y′

0

]

P2/3 =

[

x2/3

y2/3

]

=

[

x1

y1

]

−
∆t

3

[

x′

1

y′

1

]

.

Let’s look again at the problem posed at the beginning of this section, and see how we would draw a parametrized

path by using Bézier curves. We must first divide it up into a certain number of segments. Calculate the position
and velocity at the endpoints of each of the segments. Move to the first point and add one Bézier curve for each

segment. (The command moveto is not necessary in the intermediate curves, because drawing a Bézier curve in

PostScript advances the current point to the end­point.) Then stroke it or fill it or clip it (if in the latter cases it is
closed).

Chapter 7. Drawing curves automatically: procedures as arguments 5

3. Drawing graphs automatically

In the next section I’ll explain a technique for drawing parametrized curves which will become a standard trick in

your bag of tools. There are several new ingredients in it, and it may help if I explain one of them by improving
the procedure for drawing hyperbolas along the same lines. We have already made that procedure reasonably

flexible by isolating how the actual function f(x) is used to draw the graph. What I will do now is show how

you can change functions by using the graphing function itself as an argument to a general procedure for making
graphs. The only part of the procedure hyperbola which must be changed is the very first part. Since the

procedure no longer draws only hyperbolas, its name must be changed. And it has an extra argument, the name

of the function f , which must be a procedure into which you put x and out of which you get an array [f(x) f ′(x)].
We must read this fourth argument and convert that name into a procedure so we can call it. The few lines of this

procedure where it differs from the older one are here:

/mkgraph {

load

16 dict begin

/f exch def

/N exch def

/x1 exch def

/x0 exch def

Not quite as simple as might be expected. A slight technical difficulty is caused by the fact that the name of

the parametrization procedure being used here might be redefined inside the procedure—it might, for example,

be /f—so it must be retrieved from its dictionary with load before a new dictionary is introduced. Here is a
complete program which uses this to draw the graph of y = x4.

% x0 x1 N /f

/mkgraph { load

/f exch def

1 dict begin

/N exch def

/x1 exch def

/x0 exch def

% h = (x1 - x0)/N

/h x1 x0 sub N div def

/x x0 def

/F x f def

/y F 0 get def

/s F 1 get def

x y moveto

N {

x h 3 div add

y h 3 div s mul add

/x x h add def

/F x f def

/y F 0 get def

/s F 1 get def

x h 3 div sub

y h 3 div s mul sub

x y

curveto

} repeat

end } def

Chapter 7. Drawing curves automatically: procedures as arguments 6

% [x^4 4x^3]

/quartic { 2 dict begin

/x exch def

[

x x mul x mul x mul

x x mul x mul 4 mul

]

end } def

% ---

72 72 scale

4.25 5.5 translate

1 72 div setlinewidth

newpath

-1 1 8 /quartic mkgraph

stroke

In the next section we’ll see a procedure which is rather similar to this one, but differs in these aspects: (1) It deals
with parametrized curves instead of graphs; (2) it allows you to use a single procedure to draw any one of a large

family of curves, for example all of the graphs y = cx4 where c is a constant you can specify when you draw the
curve; (3) it adds the new path to the path that already exists, if there is one. Like the command arc.

Exercise 3. Write a PostScript procedure with the same arguments as mkgraphbut which simply draws a polygon
among the successive points. (This can be used to debug your calculus.)

Exercise 4. Write a PostScript procedure that will graph a polynomial between x0 and x1 with N Bézier segments.
There are a number of things you have to think about: (1) For evaluating a polynomial in a program it is easiest
to use an expression like 5x3 + 2x + 3x + 4 = ((5x + 2)x + 3)x + 4. (2) You will have to add an argument to this
procedure to pass the polynomial coefficients as an array. Recall that length returns the size of an array. (See
Appendix 6 for more about polynomial evaluation.)

4. Drawing parametrized paths automatically

If you are given a parametrized path and you want to draw it by using Bézier curves, you must calculate position

and velocity at several points of the path. This is tedious and prone to error, and you will quickly ask if there
is some way to get PostScript to do the work. This is certainly possible, if you can write a PostScript routine

which calculates position and velocity for the parametrization. One tricky point is that we don’t want to rewrite
the drawing routine for every path we draw, but would like instead to put in the parametrization itself as an

argument passed to the routine. The parametrization should be a procedure which has a single argument, namely

a value of t, and returns data giving position and velocity for that value of t. We shall in fact do this, and make
the name of the routine which calculates position and velocity one of the arguments. How PostScript handles this

is somewhat technical, but you won’t have to understand underlying details to understand the routine. Another

tricky point is that we would like to make a routine for drawing a family of curves—we don’t want to have to
make separate routines for y = x2, y = 2x2, etc. We would like to be able at least to write one routine that

can draw y = cx2 for any specified constant c. This will be accomplished by passing to the routine an array
of parameters to pick a specific curve from a family. The terminology is a bit clumsy—we have the parameters

determining which path from a family is to be drawn and the variable t which parametrizes the curve. The last,

to avoid confusion, I shall call the parametrizing variable.

I will first simply lay out the main routine we shall use from now on for drawing parametrized paths. It is a bit

complicated. In the next two sections I shall explain how to use it and how it works.

Chapter 7. Drawing curves automatically: procedures as arguments 7

% stack: t0 t1 N [parameters] /f

/mkpath { load

1 dict begin

/f exch def

/pars exch def

/N exch def

/t1 exch def

/t0 exch def

% h = (t1-t0)/N

/h t1 t0 sub N div def

% h3 = h/3

/h3 h 3 div def

% set current location = [f(t0) f’(t0)]

/currentloc pars t0 f def

pars t0 f 0 get

aload pop % calculate the first point

thereisacurrentpoint % if a path already under construction ...

{ lineto }

{ moveto }

ifelse

N { % x y = currentpoint

currentloc 0 get 0 get % x0 dx0

currentloc 1 get 0 get

h3 mul

add

% x1

currentloc 0 get 1 get

currentloc 1 get 1 get

h3 mul

add

% y1

/t0 t0 h add def

% move ahead one step

/currentloc pars t0 f def

currentloc 0 get 0 get

currentloc 1 get 0 get

h3 mul sub

currentloc 0 get 1 get

currentloc 1 get 1 get

h3 mul sub

% x2 y2

currentloc 0 get 0 get

currentloc 0 get 1 get

% x3 y3

curveto

} repeat

end } def

The procedure thereisacurrentpoint returns true or false, depending on whether a path has been started. We
have already seen it in Chapter 6.

Chapter 7. Drawing curves automatically: procedures as arguments 8

5. How to use it

The input to the procedure consists of five items on the stack.

• The first is the initial value of t for the path.
• The second is the final value of t.
• third is the number N of Bézier segments to be drawn.
• Fourth comes an array [...] of parameters, which I shall say something more about in a moment. It can

be just the empty array [], but it must be there.
• Last follows the name of a routine specifying the parametrization in PostScript. A name in PostScript starts

with the symbol /. As I have already said, this routine has two arguments. The first is an array of things
which the routine can use to do its calculation. The second is the variable t. Its output (left on the stack) will
be a 2 × 2 matrix written according to my conventions as an array of two 2D arrays.

The most important, and complicated, item here is the parametrization routine.

For example, suppose we want to draw circles of varying radii, centred at the origin. The parametrization of such

a circle is

t 7→ P (t) = (R cos t, R sin t)

and the velocity vector of this parametrization is

t 7→ P ′(t) = (−R sin t, R cos t)

if t is in radians. The variable t is the parameter which traverse the path, while R is a parameter specifying which

of several possible circles are to be drawn. Thus the input to the circle drawing routine will be a pair [R] t and
output will be [[xt yt][dxt dyt]].

Here is a more explicit block of PostScript code (assuming pi defined elsewhere to be π). Note that PostScript
uses degrees instead of radians, but that the formula for the velocity vector assumes radians.

/circle { 4 dict begin

/t exch def

/pars exch def

/R pars 0 get def

/t t 180 mul //pi div def

[

[t cos R mul t sin R mul]

[t sin neg R mul t cos R mul]

]

end } def

(mkpath.inc) run

newpath

[2] /circle 0 2 //pi mul 8 mkpath

closepath

stroke

You might not have seen anything like //pi before—using // before a variable name means the interpreter puts

its current value in place immediately, rather than wait until the procedure is run to look up pi and evaluate it.

The array of parameters passed to one of these routines can be of any size you want. It can even be empty if in

fact you just want to draw one of a kind. But you will probably find that most paths you want to draw are just
part of a larger family.

Chapter 7. Drawing curves automatically: procedures as arguments 9

There is one other point. It is very common to get the routine for the velocity vector wrong, since after all you
must first calculate a derivative. When this happens, the curve will hit the points representing position, but will

wander wildly in between. One way to see if in fact you have computed the derivative correctly is to use a

routine that might be called mkpolypathwhich simply draws a polygonal path instead of one made up of Bézier
segments. It has exactly the same usage as mkpath, but ignores the velocity vector in building the path, and can

hence be used to see if the rest of your routine is working.

Exercise 5. Write a procedure mkpolypath which has the same arguments as mkpath but draws a polygon
instead.

Exercise 6. Write down a parametrization of the ellipse

x2

a2
+

y2

b2
= 1 .

Write a procedure which will draw it. For example you would write 3 4 drawellipse.

Exercise 7. Draw the image of the 12 × 12 grid centred at (0, 0), under the map (x, y) 7→ (x2 − y2, 2xy). The
spacing between grid lines is to be 0.25 cm.

6. How it works

The basic idea is simply to automate the procedure you used earlier to draw the graph of y = x4. The point is that
if we are given a parametrization of a path we can draw an approximation by Bézier curves using the velocity

vectors associated to the parametrization in order to construct control points. The routine is fairly straightforward,

except that it calls a procedure thereisacurrentpoint to tell whether the path being drawn is the beginning of
a new path or the continuation of an old one. You don’t have to know the details of the procedure called — it

operates in a very simple manner at a somewhat low level of PostScript.

This routine all by itself is very useful, and is capable of making interesting pictures. But the ideas behind it are

applicable in a wide range of circumstances.

thales
pythagoras

eudoxus
euclid

archimedes

thales
pythagoras

eudoxus
euclid

archimedes

7. Code

The file mkpath.inc contains a procedure mkpath as well as mkgraph a few related ones.

CHAPTER 8

Non­linear 2D transformations:

deconstructing paths

Sometimes we want to draw a figure after a non­linear transformation has been applied to it. In image manipula­

tion programs, this is often called morphing. For example, here is a morphed 10×10 grid produced by a program
in which the basic drawing commands drew a square grid and these were followed by some transforming code

before stroking.

In order to apply transformations to paths, we just have to understand (a) transformations and (b) paths!

1. Two dimensional transformations

A 2D transformation is a function f(x, y) of two variables which returns a pair of numbers u(x, y) and v(x, y),

the coordinates of the transform of the point (x, y). We have already seen affine transformations where

f(x, y) = (ax + by + c, dx + ey + f)

for suitable constants a, b, etc. But now we want to allow more complicated ones. I should say right at the
beginning that these can be very complicated. An affine transformation is not so difficult to visualize because we

know what the transformation does everywhere if we know what it does to just a single square. But an arbitrary
transformation may have very different effects in different parts of the plane, and this is the source of much

difficulty in comprehending it. Indeed, the nature of 2D transformations has been in not­so­distant times the

subject of interesting mathematical research. (I am referring to the stability of properties of such transformations
under perturbation, part of the so­called ‘catastrophe theory’.)

I’ll spend some time looking at one which is not too complicated:

f(x, y) = (x2 − y2, 2xy) .

This is not quite a random choice—it is derived from the function of complex numbers that takes z to z2, since

(x + iy)2 = (x2 − y2) + i (2xy) .

Chapter 8. Non­linear 2D transformations: deconstructing paths 2

The best way to understand what it does is to write (x, y) in polar coordinates as (r cos θ, r sin θ), since in these
terms f takes (x, y) to

(r2 cos2 θ − r2 sin θ, 2r2 cos θ sin θ) = (r2 cos 2θ, r2 sin 2θ) .

In other words, it squares r and doubles θ. We can see how this works in the following figures. On the left is the

sector of the unit circle between 0 and π/2, on the right its image with respect to f :

That seems simple enough. And yet, the image that began this chapter is the transformation with respect to this

same f of the square with lower left corner at (1/2, 0), upper right at (3/2, 1), sides aligned with the axes. So
even this simple transformation has some interesting effects. We’ll see others when we look at what it does to

character strings.

A transformation is completely described by the formula for its separate components, i.e. the functions u and v
in the expression

f(x, y) = (u(x, y), v(x, y)) .

This is all we’ll need to know about f in order to apply it. But in order to understand in any deep sense how a

transformation in 2D behaves, we also must consider its Jacobian derivative. This is a matrix­valued function of
x and y whose entries are the partial derivatives of f :

Jacf (x, y) =







∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y






.

For the example we have already looked at this is

[

2x 2y
−2y 2x

]

.

The importance of the Jacobian matrix is that it allows us to approximate the map f by an affine map in any small

neighbourhood of a point. The exact statement is:

• If ∆x and ∆y are small then we have an approximate equality

f(x + ∆x, y + ∆y) ≈ f(x, y) + [∆x ∆y] Jacf (x, y)

Another way to say it:

• If (x, y) lies near (x0, y0) then we have an approximate equality

f(x, y) ≈ f(x0, y0) + [(x − x0) (y − y0)] Jacf (x, y) .

What this says, roughly, is that locally in small regions the transformation looks as though it were affine.

This phenomenon can be seen geometrically. If we look at the figure that started this chapter, but zoom in, we
see:

Chapter 8. Non­linear 2D transformations: deconstructing paths 3

In other words, if we zoom in to a part of the plane, the transformation looks straighter and straighter as the

scale shrinks. I’ll not say much more about why this Jacobian approximation is valid, but only remark that
it is essentially the definition of partial derivatives. It is the generalization to 2D of the linear approximation

f(x + ∆x) ≈ f(x) + f ′(x)∆x encountered in the ordinary calculus of one variable.

In our example, we have an exact equation

f(x + ∆x, y + ∆y) = ((x + ∆x)2 − (y + ∆y)2, 2(x + ∆x)(y + ∆y))

= ((x2 + 2x∆x + ∆x2) − (y2 + 2y∆y + ∆y2), 2(xy + x∆y + y∆x + ∆x∆y)

which becomes

((x2 + 2x∆x) − (y2 + 2y∆y), 2(xy + x∆y + y∆x) ≈ (x2 − y2, 2xy) + [2x∆x − 2y∆y, 2x∆y + y∆x]

= f(x, y) + [∆x ∆y]

[

2x 2y
−2y 2x

]

if we ignore the terms of order two—i.e. ∆x2, ∆y2, ∆x∆y. But this linear approximation is the Jacobian

approximation. As it always is.

I’ll not use the Jacobian derivative in PostScript procedures, although it could conceivably improve quality at the

cost of complication. But it is important to realize that the reason our transformation procedures will work so
well is precisely because in very small regions the function f looks affine.

In routines to be described later, a 2D transformation f will be given as a procedure with two arguments x and
y, and it will return a pair u v. In our example it would be

% on stack: x y

/fcn { 2 dict begin

/y exch def

/x exch def

x dup mul y dup mul sub % x^2-y^2

2 x mul y mul % 2xy

end } def

It would in principle be possible to get a smoother output if I added a second version that takes advantage of the

Jacobian approximation. In this version the function f would return the Jacobian matrix on the stack as well, in
the form of an array of 4 variables. In practice this doesn’t seem to be important.

Chapter 8. Non­linear 2D transformations: deconstructing paths 4

2. Conformal transforms

As we have seen, the Jacobian matrix of the transform (x, y) 7→ (x2 − y2, 2xy) is

[

2x 2y
−2y 2x

]

.

This matrix has the form
[

a b
−b a

]

,

and such matrices, which I’ll call similarity matrices for reasons that will become apparent in a moment, have

interesting properties. One example of such a matrix is the rotation matrix

[

cos θ sin θ
− sin θ cos θ

]

,

and another is the scalar matrix
[

r
r

]

,

So also is the product of these two
[

r cos θ r sin θ
−r sin θ r cos θ

]

.

In fact, if S is any similarity matrix
[

a b
−b a

]

,

We can write
a√

a2 + b2
= cos θ

b√
a2 + b2

= sin θ

and then

[

a b
−b a

]

=

[

r cos θ r sin θ
−r sin θ r cos θ

]

where r =
√

a2 + b2, so that every similarity matrix is the product of a rotation and a scaling.

• A matrix is a similarity matrix if and only if (1) it has positive determinant and (2) the linear transformation
associated to it is a similarity transformation—that is to say, it preserves the shape of figures.

In particular, a similarity transformation takes squares to (possibly larger or smaller) squares, which explains

what we have seen in the pictures of the map (x, y) 7→ (x2 − y2, 2xy).

In general, a transform from 2D to 2D is called conformal if its Jacobian matrix is a similarity matrix at all but

a few isolated points. Such a map looks like a similarity transformation in small regions, and hence preserves

the angles between paths, even though it may distort large shapes wildly. Thus the map (x, y) 7→ (x2 − y2, 2xy)
is conformal, except at the origin (where it doubles angles). As I mentioned before, this map was derived from

the map z 7→ z2 of complex numbers. There is a huge class of similar complex­valued functions of a complex

variable which are conformal.

Chapter 8. Non­linear 2D transformations: deconstructing paths 5

3. Transforming paths

The technique for transforming paths involves decomposing them first, and then reassembling them transformed.

The following code uses pathforall to scan through the current path and build an array setting up the trans­
formed path. Then it annihilates the current path with newpath and scans through that array to build the

transformed path. The transformation is simply applied to control points to obtain new control points. Stack

manipulations are used for efficiency.

% Argument: the name of the transforming procedure

% It takes x y -> u v

/ctransform { load % first we load the procedure onto the stack

1 dict begin

% and now give it a local name

/f exch def

% build an array from the current path

[

{ % x y

[3 1 roll f {moveto}]

}

{ % x y

[3 1 roll f {lineto}]

}

{ % x1 y1 x2 y2 x3 y3

[7 1 roll % [P1 P2 P3

f 6 2 roll % [U3 P1 P2

f 6 2 roll % [U2 U3 P1

f 6 2 roll % [U1 U2 U3

{curveto}

]

}

{

[{closepath}]

}

pathforall

]

% and then replace the current path

newpath

{

aload pop exec

} forall

end } def

This is generally pretty unsatisfactory unless the components of the path are small. A line segment is just mapped

onto another line, and this will usually ignore the non­linearity of f . For this reason it is useful to subdivide the

current path one or more times, breaking segments into smaller ones. This is easy to do with a routine subdivide,
which replaces line segments by Bézier curves and bisects Bézier curves into two smaller curves.

Chapter 8. Non­linear 2D transformations: deconstructing paths 6

4. Maps

The classical examples of 2D transformations, although with an implicit 3D twist, occur in the design of maps of

the Earth. The basic problem is that there is no faithful way to render the surface of a sphere on a flat surface.
There is no one single kind of map that does for all purposes, and various kinds must be designed to conform to

various criteria.

Coordinates on the sphere are East longitude x and latitude y. Assuming the Earth’s surface to be a sphere of

radius R, the coordinate map takes

(x, y) 7−→ (R cosx cos y, R sin x cos y, R sin y) .

The image of a small rectangle dx× dy is an approximate rectangle in space of dimensions R cos y dx×R dy. Of
course the coordinates are singular near the poles, since the poles have indeterminate longitude.

I’ll assume from now on for convenience that R = 1. (This is just a matter of choosing units of lengths correctly.)

The simplest map just transforms longitude and latitude into x and y:

There’s not much to be said for it. It preserves distance measured along meridians, but distorts wildly distances

along parallels.

Chapter 8. Non­linear 2D transformations: deconstructing paths 7

The next simplest map is called the cylindrical projection, because it projects a point on the Earth’s surface straight
out to a vertical cylinder wrapped around the Earth, touching at the Equator. Explicitly,

(x, y) 7−→ (x, sin y) .

It was proven by Archimedes in his classic ‘On sphere and cylinder’ that this map preserves areas, although it

certainly distorts distances near the poles. The modern proof that area is preserved calculates that the region
cos y dx × dy maps to that of dimensions dx × cos y dy.

A more interesting one is the Mercator projection

(x, y) 7→
(

x, ln tan(π/4 + y/2)
)

.

Chapter 8. Non­linear 2D transformations: deconstructing paths 8

Here, distances and areas near the poles are grossly exaggerated, but angles are conserved, so that plotting a

route by compass is relatively simple. Indeed this is exactly the purpose for which this projection was designed.
The first map of this sort was constructed by the 16th century geographer Gerardus Mercator himself, but it was

likely the Englishman Thomas Harriot who understood its mathematical basis thoroughly—well, as thoroughly

as could be done without calculus.

Why is the Mercator map conformal? Recall that the image of a small coordinate rectangle dx by dy is very

approximately a rectangle on the sphere of dimensions cos y dx × dy. Its image under Mercator’s map has size
dx by

tan′(π/4 + y/2) dy =
dy

cos y
.

But these two rectangles are similar to each other, with a scale factor of 1/ cosy. In other words, the function
tan(π/4 + y/2) has been chosen precisely because its derivative is 1/ cosy.

All of the maps exhibited here were obtained from the original map data by applying ctransform.

5. Fonts want to be free

Text can be transformed, too. After setting up a font and defining procedures subdivide and ctransform

newpath

1 0 moveto

(Roman) true charpath

subdivide

/f ctransform

gsave

1 0.7 0.7 setrgbcolor

fill

grestore

Chapter 8. Non­linear 2D transformations: deconstructing paths 9

currentlinewidth 2 div setlinewidth

stroke

produces (except for the comparison image in light gray)

Roman
Subdivision is important here because font paths possess a lot of straight segments which are much better off
transformed as curves.

6. Code

The procedures subdivide and ctransform are to be found in the package transform.inc. The map data can

be found in the PostScript files coasts.1.inc etc, which I have made from the MWDB files mentioned below. The
index indicates level of detail—index 1 is the greatest detail, index 5 the least.

References

1. John P. Snyder, Flattening the Earth: Two Thousand Years of Map Projections, University of Chicago Press,

1993. This is a very readable history of map­making, including descriptions of dozens of different ones.

2. For the maps I have used the data from the ‘World Database II’, which is now included in the file world.zip

accessible by clicking on the icon at

http://archive.msmonline.com/1999/12/vis2.htm

These map data, which are now in the public domain, were compiled by Fred Pospeschil and Antonio Riveria
from data originally created by the Central intelligence Agency. The particular files I have used incorporate

further modifications by by Paul Anderson of Global Associates, Ltd. The Bodleian Library of Oxford University

maintains a convenient web page with links to sources of other map data available without cost.

3. Tristan Needham, Visual Complex Analysis, Oxford University Press, 1997. This explains the relationship

between complex numbers and conformal maps with lots of illustrations.

4. Timothy G. Freeman, Portraits of the Earth—A mathematician looks at maps, American Mathematical Society,

2002. An appendix includes an account of how what seems to be the same map data that I have used can be used
to draw maps using Maple.

5. David Hilbert and Stephan Cohn­Vossen, Geometry and the Imagination, Chelsea, 1952. Many maps are
conformal—preserve angles—and one of the basic theorems in the subject is that stereographic projection is

a conformal map. Nowadays this can be proven quickly by calculus, but an elegant geometric proof can be

found in §36 of this book. Early Greek astronomers knew that stereographic projection maps circles to circles,
which is closely related to conformality. But this theorem was apparently first stated and proved by the English

mathematician Thomas Harriot, who was Walter Raleigh’s navigation expert, in about 1600, in the golden

age of map­making stimulated by the discovery of America and the great Portugese voyages to the Far East.
Harriot’s proof was unpublished, but it can be reconstructed from a rather handsome sketch in his manuscripts.

A reproduction can be found in the article by J. A. Lohne, ‘Thomas Harriot als Mathematiker’, Centaurus 11
(1965/66). The first published proof was by Edmund Halley, who is often and incorrectly given credit for having

discovered it first.

Chapter 8. Non­linear 2D transformations: deconstructing paths 10

6. J. L. Berggren and A. Jones, Ptolemy’s Geography, Princeton University Press, 1997. Mathematical map­making
began with the Greeks. This book is an interesting source of graphics projects.

CHAPTER 9

Recursion in PostScript

For various technical reasons, recursion in PostScript is a tricky business. It is possible, however, and in some

circumstances nearly indispensable. It is extremely useful to have some idea of how to deal with it, since
standard algorithms in the literature, for example those traversing lists of various kinds, are often laid out in

terms of recursion.

9.1. The perils of recursion

The factorial n! of a positive integer n is defined informally by the rule that it is the product of all positive integers
less than or equal to n. Thus 4! = 1 · 2 · 3 · 4 = 24. If we want to get a computer to calculate it, we follow these
rules: (1) if n = 1 thenn! = 1; (2) ifn > 1 thenn! = n ·(n−1)!. This sort of formula, where a function is evaluated
directly by reduction to a simpler case, is called recursion . It could be argued that recursion encapsulates the
essence of mathematics—which trys to reduce every assertion either to an axiom or to one that has already been
proven, or in broad terms to reduce every problem to a simpler one that has already been solved.

At any rate, we can write a procedure in PostScript that follows these two last rules exactly:

/factorial { 1 dict begin

/n exch def

n 0 eq {

1

}{

n n 1 sub factorial mul

} ifelse

end } def

This code is correct and will run, but probably only if n is small. Why is that? Well, there are two reasons. One is
that n! is large number, andwill exceed the size of allowable PostScript integers. This happens even on calculators
and in most computer software. But there is another, more technical reason. When you begin a dictionary in a

procedure, that dictionary is put on top of a stack of dictionaries, and when you end that dictionary it is taken off

this stack. Unlike a few other stacks used by PostScript, the dictionary stack is usually severely limited in size. If
you call a procedure recursively which uses a local dictionary, the size of the dictionary stack will build up with

every call, quite possibly beyond the maximum size allowed. If this occurs you will get a dictstackoverflow

error message. So this procedure might very well work for small values of n but fail for large ones.

Therefore

• You should never introduce a dictionary to handle local variables in a recursive procedure exactly as you do
in others.

There is nothingwrongwith using dictionaries in recursive procedures, but they shouldn’t remain open across the
recursive procedure calls. That is to say, you should begin and end the dictionary without making any recursive
calls in between. You might very well want to do this so as to do some complicated calculations before setting
up the recursion calls. We’ll see an example later on. The simplest rule to follow with recursive procedures in

PostScript is to use variables as little as possible, and to resort to stackmanipulations instead. In effect, you should

Chapter 9. Recursion in PostScript 2

use data on the stack to serve as a substitute for the execution stack PostScript doesn’t want you to use. The
drawback, of course, is that such manipulations are very likely to make the procedure much less readable than it

should ideally be. The technique is usually painful and bug­prone, and hence best avoided. Nonetheless, here is

a simple example—a correct recursive procedure to calculate n! correctly (except for problems with floating point
accuracy):

% args: a single non-negative integer n

% effect: returns n!

/factorial {

% stack: n

dup 0 eq { % stack: n (equal to 1)

% just leave n itself on the stack

}{

% stack: n > 1

% recall that n = n(n-1)!

dup 1 sub

% stack: n n-1

factorial

% stack: n (n-1)!

mul

} ifelse

% stack: n!

} def

The comments here trace what is on the stack, which is an especially good idea in programs where complicated
stack manipulations are made.

Of course this version of factorial is hardly efficient. It is simple enough to write a factorial routine that just
uses a for loop. But this version illustrates nicely the perils of recursion in PostScript.

Exercise 9.1. The gcd (greatest common divisor) of two non­negative integersm and n is n ifm = 0 or the gcd
ofm and n mod m ifm 6= 0. Construct a recursive procedure in PostScript to find it.

Overflow on the dictionary stack occurs in my current implementation only when the stack reaches a size of

about 500. So much of what I am saying here is silly in many situations. But there is another reason not to allow
the dictionary stack to grow large—when looking up the value of a variable, the PostScript interpreter looks

through all of the dictionaries on the stack, starting at the top, until it finds the variable’s name as a key. If the
name is inserted in one of the bottom dictionaries, a lot of searching has to be done. The efficiency of a recursive

procedure can thus be cut down dramatically as the recursion builds up.

9.2. Sorting

A common and extremely useful example of a procedure which uses recursion is a sorting routine called quick
sort . I am going to present it below without much explanation, but I shall make a few preliminary remarks.

Let me first explain what just about any sorting routine will do. It will have one argument, an array of items
which can be ranked relative to each other—for example an array of numbers. The routine will rearrange the

items in the array in ascending order, from smallest up. For example

[4 3 2 1] quicksort

will rearrange the items in the array to make it equal to [1 2 3 4]. You might think that this isn’t a very
mathematical activity, and that a mathematician would have no serious interest in such a routine, especially in

PostScript where you are only interested in drawing stuff. That is not at all correct. Agood sorting routine should
be part of the tool kit of every mathematical illustrator. For example, we shall see a bit later on a procedure that

Chapter 9. Recursion in PostScript 3

constructs the convex hull of a given finite collection of points, and which depends upon a sorting routine in a
highly non­trivial way. Sorting routines can also play a role in 3D drawing, where objects must be drawn from

back to front.

As any introduction to programming will tell you, there are lots of ways to sort items in an array. They vary

enormously in efficiency. One very simple one is called the bubble sort , because it pushes big items up to the
top end of the array as though they were bubbles. It makes several scans of the array, each time bubbling up the
largest item. For example, on the first pass it moves the largest item to the end, on the second it moves the second

largest item to the place next to the end, and so on.

Here is PostScript code for a bubble sort.

% args: array a of numbers

% effect: sorts the array in order

/bubblesort { 4 dict begin

/a exch def

/n a length 1 sub def

n 0 gt {

% at this point only the n+1 items in the bottom of a remain to be sorted

% the largest item in that block is to be moved up into position n

n {

0 1 n 1 sub {

/i exch def

a i get a i 1 add get gt {

% if a[i] > a[i+1] swap a[i] and a[i+1]

a i 1 add

a i get

a i a i 1 add get

% set new a[i] = old a[i+1]

put

% set new a[i+1] = old a[i]

put

} if

} for

/n n 1 sub def

} repeat

} if

end } def

For example, if we sort [5 4 3 2 1 0] in this way, we get successively in each bubble:

[4 3 2 1 0 5]

[3 2 1 0 4 5]

[2 1 0 3 4 5]

[1 0 2 3 4 5]

[0 1 2 3 4 5]

[0 1 2 3 4 5]

Bubble sorting is very easy to put into correct PostScript code. But it is pretty inefficient if the size n of the array is
large. On the first bubbling pass it makes n− 1 comparisons, on the second n− 2, etc. This makes approximately
n(n − 1)/2 comparisons in all, so the time it takes is proportional to the square of n.

We can do much better. The sorting routine which is generally fastest of all is called quick sort . One of the
things that makes it unusual is that it tries a divide and conquer approach, basically splitting the array into halves
and then calling itself recursively on each half. Its running time is nearly always proportional to n log n, a great
improvement over bubblesort.

Chapter 9. Recursion in PostScript 4

Quick sort has three components. The principal routine is quicksort itself, with only the array as an argument.
It calls a routine subsort which has as argument not only the array but also two indices L < R picking out a
range inside the array to sort. For the call in quicksort these are 0 and n− 1. But subsort calls itself recursively
with smaller ranges. It also calls a third routine partitionwhich does the real swapping. This procedure has
four arguments—the array a, a lower indexL and an upper indexR, and an integer x. It moves items in the [L, R]
range of the array around so the left half [L, i] is made up of items less than or equal to x, the right half [j, R] of
items greater than or equal to x. It then returns the pair i and j on the stack. I hide the details. of partition, but
here is the pseudo­code for subsort:

subsort(a, L, R) {

x := a[(L+R)/2];

[i, j] = partition(a, L, R, x);

if (L < j) subsort(a, L, j);

if (i < R) subsort(a, i, R);

}

and here in PostScript is the whole package:

% args: a L R x

% effect: effects a partition into two pieces [L j] [i R]

% leaves i j on stack

/partition { 1 dict begin

... end } def

% args: a L R

% effect: sorts a[L .. R]

/subsort {

1 dict begin

/R exch def

/L exch def

/a exch def

% x = a[(L+R)/2]

/x a L R add 2 idiv get def

a L R x partition

/j exch def

/i exch def

% put recursion arguments on the stack

% as well as the arguments for the tests

a L j

j L gt

a i R

i R lt

% close dictionary

end

{ subsort }{

% get rid of unused arguments

pop pop pop

} ifelse

{ subsort }{ pop pop pop } ifelse

} def

% args: a

% effect: sorts the numerical array a

Chapter 9. Recursion in PostScript 5

% and leaves a copy on the stack

/quicksort { 4 dict begin

/a exch def

/n a length 1 sub def

n 0 gt {

a 0 n subsort

} if

a

} def

The important thing here is to notice how the recursive routine subsort manages the dictionary and stack in

a coordinated way. The most interesting thing in the way it does that is how the arguments for the recursion
are put on the stack before it is even known if the calls will be made, and removed if not used. The procedure

partition, on the other hand, does not call itself and is therefore allowed to use a local dictionary in the usual

way.

This will give you an idea of what goes on, but theworking version of the quicksort routine has an extra feature.

We will be interested in sorting arrays of things other than numbers in a moment. Rather than design a different
sort routine for each kind of array, we add to this one an argument /comp, the name of a comparison test replacing

lt for numbers. For numbers themselves, we would define

/comp { lt } def

and then write

/comp [5 4 3 2 1 0] quicksort

This is an extremely valuable modification.

To get an idea of how much faster quicksort is than bubblesort, if n = 1, 000 then n(n − 1)/2 = 495, 000
while n logn is about 7, 000. Of course each loop in quicksort is more complicated. In actual runs, quicksort
takes 0.07 seconds to sort 1, 000 items, while bubblesort takes 0.79 seconds on the same array. The quicksort
is definitely fast enough to include in drawing programs without noticeable penalty.

Exercise 9.2. Use recursion to draw the following picture, with an optional parameter to determine the depth of
the recursion:

Chapter 9. Recursion in PostScript 6

Notice that even the line widths get smaller further out along the branches. If you are a mathematician, you
might like to know that this is the Bruhat­Tits building of SL2(Q2). If you are not a mathematician, you can think
of it as one non­mathematician of my acquaintance called it, “chicken wire on growth hormones.”

9.3. Convex hulls

Mostly to convince you that sorting is not an empty exercise, but also to give you a procedure you might find

very useful, I shall describe here a well known and relatively efficient way to find the convex hull of a finite set of

points in the plane. It will have a single argument, an array of points, which we may as well take to be arrays [x
y]. It will return an array made up of a subset of the given set of points, listed so that traversing them in order

will go clockwise around the convex hull of the point set. The output, in other words, consists of the extreme
members of the original set, those which are in some sense on its outside. Finding the outside points, and in the
correct order, is not exactly a difficult task, but before you start the discussion you might think of how you would

do it yourself. Extra complications are caused by possible errors in the way PostScript handles floating point
numbers.

P0

P1

P2

P3

The algorithm to be described is not in fact terribly complicated, but certain aspects of it might not seem so well

motivated without a few preliminary remarks. First of all, what does sorting have to do with the problem? The

following picture illustrates that points of the original data set furthest to the left and furthest to the right will be
part of the output.

But finding these points will involve sorting the original point set according to values of the x coordinate. We
have to be a bit more careful in fact. It might very well be the case that several points in the set have the same x
coordinate, so there might not be a unique point furthest left or right. We will therefore be more particular: we

say that (x0, y0) is less than the point (x1, y1) if x0 < x1 (the first point is further left) or x0 = x1 but y0 < y1 (in
case they have equal x coordinates, the one on the bottom will be called smaller). When we sort the data, this
is the ranking procedure we use. It is still true that the largest and smallest points in the set must be part of the

output.

Chapter 9. Recursion in PostScript 7

In fact, sorting the original points is one of two key steps in the procedure. We may in effect assume that the
original set of points is an array in which the points are listed so that points which are ‘smaller’ in the sense

described above come first. This immediately reduces the difficulty of the problem somewhat, since we can take

the first point of the (sorted) input to be the first point in the output. In the following figure the points are linearly
ordered along a polygon ‘from left to right’ in the slightly generalized sense.

Another idea is that we shall do a left­to­right scan of the input, producing eventually all the points in the output

which lie along the top of the convex hull. Then we shall do a right to left scan which produces the bottom.
Again, the preliminary sorting guarantees that the last point in the array will end the top construction and begin

the bottom one.

What is it exactly that we are going to do as we move right? At any moment we shall be looking at a new point in

the input array. It will either have the largest x­value among all the points looked at so far, or it will at least have
the largest y­value among those which have the largest x­value. In either event, let its x­value be xr . Then we
shall try to construct the top half of the convex hull of the set of all input points with x­value at most xr . Certainly

the current point P we are looking at will be among these. But as we add it, we might very well render invalid a
few of the points on the list we have already constructed. We therefore go backwards among those, deleting from

the list the ones which lie distinctly inside the top hull of the whole list. A point Pk will be one of those precisely

when the polygon Pk−1PkP has an upward bend, so that the polygon Pk−1PkP is below the segment Pk−1P .
So we go backwards, throwing away those in such a bend, until we reach a triple where the bend is to the right.

Then we move on to the next point to the right. The following figures show the progression across the top in a

particular example, including the ‘left turns’ that are eliminated as we go along:

Chapter 9. Recursion in PostScript 8

I reproduce below the principal routine for finding the convex hull. It uses routines comp for sorting, vsubwhich

subtracts two vectors, dot to calculate the dot product of two vectors, and vperpwhich rotates the difference of

two vectors counter­clockwise by 90◦. The routine /comp tests whether (x0, y0) < (x1, y1). All these are defined
internally in hull.inc.

% args: an array of points C

% effect: returns the array of points on the boundary of

% the convex hull of C, in clockwise order

/hull { 16 dict begin

/C exch def

% sort the array

/comp C quicksort

/n C length def

% Q circles around to the start

% make it a big empty array

/Q n 1 add array def

Q 0 C 0 get put

Q 1 C 1 get put

/i 2 def

/k 2 def

% i is next point in C to be looked at

% k is next point in Q to be added

% [Q[0] Q[1] ...]

% scan the points to make the top hull

n 2 sub {

% P is the current point at right

/P C i get def

/i i 1 add def

{

% if k = 1 then just add P

k 2 lt { exit } if

% now k is 2 or more

% look at Q[k-2] Q[k-1] P: a left turn (or in a line)?

% yes if (P - Q[k-1])*(Q[k-1] - Q[k-2])perp >= 0

P Q k 1 sub get vsub

Q k 1 sub get Q k 2 sub get vperp

dot 0 lt {

% not a left turn

exit

} if

Chapter 9. Recursion in PostScript 9

% it is a left turn; we must replace Q[k-1]

/k k 1 sub def

} loop

Q k P put

/k k 1 add def

} repeat

% done with top half

% K is where the right hand point is

/K k 1 sub def

/i n 2 sub def

Q k C i get put

/i i 1 sub def

/k k 1 add def

n 2 sub {

% P is the current point at right

/P C i get def

/i i 1 sub def

{

% in this pass k is always 2 or more

k K 2 add lt { exit } if

% look at Q[k-2] Q[k-1] P: a left turn (or in a line)?

% yes if (P - Q[k-1])*(Q[k-1] - Q[k-2])perp >= 0

P Q k 1 sub get vsub

Q k 1 sub get Q k 2 sub get vperp

dot 0 lt {

% not a left turn

exit

} if

/k k 1 sub def

} loop

Q k P put

/k k 1 add def

} repeat

% strip Q down to [Q[0] Q[1] ... Q[k-2]]

% excluding the doubled initial point

[0 1 k 2 sub {

Q exch get

} for]

end } def

9.4. Code

The code for sorting is in sort.inc, that for finding convex hulls is in hull.inc.

References

1. M. de Berg, M. van Creveld, M. Overmars, and O. Schwarzkopf, Computational Geometry - algorithms and
applications , Springer, 1997. The convex hull algorithm is taken from Chapter 1 of this book. Like many books
on the subject of computational geometry, the routines it explains are oftenmore beautiful than practical. Among
them, however, are a fewuseful gems. And the illustrations are, rarely for books on computer graphics, absolutely

first rate.

Chapter 9. Recursion in PostScript 10

2. R. Sedgewick, Algorithms , Addison­Wesley. There are several editions of this, setting out code in various
programming languages. The latest one (2003) uses Java. Chapter Five has a nice discussion of recursion and

tree structures, while Chapters Six and Seven are about sorting.

CHAPTER 10

Perspective and homogeneous coordinates

Many image manipulation programs have a tool for modifying the perspective of images. Thus, I start out with

this familiar picture

and then I import it into my image manipulation program (which happens to be the Gnu Image Manipulation

Program or GIMP). I next open the transform tool and choose the perspective option. When I click now in theGIMP:1

image window, what I see is this:

The tool lays down a grid on top of my image, and simultaneously brings up what it calls a Perspective TransformGIMP:perspective transform:1

Info window, in which is displayed a 3× 3 matrix. It also shows some boxes at the corners of the grid that I can
grab and move around. When I do so, the original image remains the same, and the grid adjusts itself to my

choices. In effect, a geometrical transform of some kind is applied to the grid. The matrix changes, alas, in some

apparently incomprehensible manner.

Chapter 10. Perspective and homogeneous coordinates 2

Finally, if I click on the transform button in the matrix window, the image itself is transformed:

The original image has been distorted in such a way as to make it look as though it were being viewed from

below—as though it were being viewed in a different perspective.

What kind of a transform are we seeing here? How is it different from others we have already seen, such as
translation, rotation, shearing, and scale change? The image manipulation program has in fact other transform

tools corresponding to those, such as the rotate and scale tools. All those other transforms have one property
that the perspective transform doesn’t—they all transform a pair of parallel lines into some other pair of parallel

lines. They are all affine transforms, and all affine transforms have this property. So the perspective transform is

really something new. As we’ll see, in gaining flexibility we must sacrifice something else.

This chapter will analyze perspective transforms mathematically. The matrix window in the figures above turns

out to be a major clue. The analysis will involve at first what seems like an enormous detour. Before we begin
on that journey, I should motivate it by mentioning that perspective in 3D is a crucial ingredient in any graphics

toolkit, and that the techniques to be explained here are, for that reason, ubiquitous. The advantage of working

with this 2D image manipulation tool is that things are simpler to visualize. It should be thought of as a model
for the more interesting 3D version.

1. The projective plane

In order to understand what the perspective tool does we must enlarge the usual plane by adding points ‘at
infinity’. Familiarity with the use of perspective in art, where lines meet at infinity and the horizon becomes a lineperspective:2

on a canvas, should make this seem like a natural step. We have seen already a hint that this is necessary—two

parallel lines meet only at infinity, but after a perspective transform is applied to them they may meet in a definite
point of the image plane.

Chapter 10. Perspective and homogeneous coordinates 3

This means that the transform has converted some points at infinity into ordinary ones. We shall see also that it

may move some ordinary points off to infinity as well.

How to enlarge the plane by adding points at infinity? There are several ways to do this. The one I’ll follow is notpoints at infinity:3

quite the obvious one—I’ll add one point at infinity for every non­oriented direction. In other words, on every
line there exists one of these new infinite points, and we can reach it, so to speak, going infinitely far along the

line—in either direction. The more obvious thing to do would be to add a point at infinity for every direction, so
that every line contains two points at infinity, but this turns out not to be so useful.

The extended plane we get by adding points at infinity to the usual plane in this way is called the projectiveprojective plane:3

plane. We can put coordinates on its points—there are two cases to be dealt with. (1) The ordinary finite points
can be specified by the usual coordinates (x, y). (2) A direction can be specified by a vector [x, y], but x and y
are only determined up to a non­zero scalar multiple—[cx, cy] has the same direction as [x, y]. Because of this
ambiguity, the second are called homogeneous coordinates.eneous coordinates:3

Any two parallel lines have the same direction, so they will contain the same unique point at infinity. In other
words, with these new points added every pair of parallel lines will intersect at a single point. In fact, every two

distinct lines, whether parallel or not, intersect in exactly one point. This is a very simple property of the new

plane.

Adding the points at infinity in the way I have done it is intuitive if somewhat awkward. In particular it doesn’t

seem to give any clues about what GIMP does. And it is bothersome that the points at infinity are treated
differently from the rest. There is a surprisingly elegant but equivalent way to carry out the construction.

We have already seen how to embed 2D points (x, y) into 3D by adding a third coordinate z = 1 to get (x, y, 1).
The ordinary 2D plane z = 0 becomes the plane z = 1. But it turns out that we can also embed the points at

infinity into 3D? A direction [x, y] in 2D is to be identified with the same direction [x, y, 0] in the plane z = 0.

Thus far, the finite points and the infinite ones are still treated quite differently. But in fact we can identify even
the points in the plane z = 1 with directions in 3D. A direction in 3D is essentially a vector [x, y, z] (with one

coordinate not 0), and this determines a unique line through the origin with that direction, that of all points
(tx, ty, tz) as t ranges from −∞ to ∞. That line will intersect the plane z = 1 in a unique point (x/z, y/z, 1)
(with t = 1/z) as long as z 6= 0. If z vanishes, then the line with direction [x, y, 0] amounts to a point at infinity

on the projective plane. In summary:

• The points of the extended plane we get by adding unoriented directions to the usual plane are in exact
correspondence with lines in 3D through the origin.

To repeat: the 3D line with direction [x, y, 0] corresponds to the direction [x, y] in 2D, a point at infinity; and the

line with direction [x, y, z] where z 6= 0 corresponds to the ‘finite’ point (x/z, y/z).

Chapter 10. Perspective and homogeneous coordinates 4

A line through the origin in 3D may be assigned the vector [x, y, z] indicating its direction. These are homogeneous

coordinates in the sense that multiplying them all by a non­zero constant doesn’t change the direction. If c 6= 0
then the coordinates [x, y, z] and [cx, cy, cz] are associated to the same point of the projective plane. We have seen

homogeneous coordinates before, when we assigned the coordinates [A, B, C] to the line Ax + By + C = 0.

If (x, y, z) is any point in 3D with z 6= 0 then the point (x/z, y/z, 1) on our copy of the usual 2D plane that is

equivalent to it will be called its projective normalization. This corresponds in turn to the 2D point (x/z, y/z),
which I call its 2D projection.

There is one important relationship between the ordinary points and points at infinity. If we start at a point
P = (a, b) and head off to infinity in the direction [x, y] then we pass through points P + t[x, y] = (a+ tx, b+ ty).

As t gets larger and larger, we should be approaching some point at infinity, shouldn’t we? Sure enough, in terms

of homogeneous coordinates we are passing through the points

[a + tx, b + ty, 1] ∼ [a/t + x, b/t + y, 1/t] −→ [x, y, 0]

as t→∞.

2. Boy’s surface

The projective plane has one very surprising property. If we move along a line to infinity we will pass through
infinity and come back towards where we started—but from the opposite direction. We can see this in a simple

topological model of the projective plane—i.e. one that preserves its qualitative features. In this model a point

on the boundary of the square is identified with its opposite.

If we follow this procedure with an oriented square—i.e. pass it off through infinity and back again from the

other direction—it comes back oriented the other way! This is shown in the following figures in the topological

model:

After a little thought, this makes sense. The opposite sides are identified, but with a twist much like that of the
familiar Möbius strip. The projective plane is non­oriented, one­sided just like the Möbius strip.Möbius strip:4non­oriented surfaces:4

There is still something unsatisfactory about my definition of the projective plane. If it really is a 2D surface, why
can’t we picture it as we do a sphere or a doughnut? Because it is nonorientable. Like the Klein bottle, which is

also one­sided, it can only be realized in 3D as a surface that intersects itself. It is called Boy’s surface after itsBoy’s surface:4

Chapter 10. Perspective and homogeneous coordinates 5

discoverer, Werner Boy. Here are the original sketches (from his 1903 Mathematische Annalen article) showingBoy:W.:4

how to construct a qualitatively correct version of it.

It is an interesting exercise to walk around on the surface and verify that it is one­sided. To see why it is a

topological model for the projective plane is more difficult, and I won’t really attempt it. One way to begin to

understand what’s at stake—keep in mind that each line through the origin in 3D intersects the unit sphere in
exactly two opposite or antipodal points, say (x, y, z) and (−x,−y,−z). Thus in modeling the projective plane as

a surface, we are looking for a way to map the sphere onto a surface in which these two antipodal points collapse

to one.

3. Projective transformations

The payoff in this business is that we can enlarge the collection of transformations we can apply to the points of

the plane. We have seen that PostScript implicitly conceives of the affine transformation

x′ = ax + cy + e

y′ = bx + dy + f

in terms of the 3D linear transformation

[x′ y′ 1] = [x y 1]





a b 0
c d 0
e f 1





Chapter 10. Perspective and homogeneous coordinates 6

This works because the 3D linear transformation corresponding to this particular matrix takes the plane z = 1
into itself. We now enlarge the transformations of the plane z = 1 by allowing right multiplication by an arbitrary

3× 3 matrix which happens to be invertible—i.e. with non­zero determinant. Such a linear transformation takes

lines through the origin into other lines through the origin, and therefore acts as a transformation of points of
the projective plane—a projective transformation. It will not often take points with z = 1 into other points withormations:projective:5

z = 1, nor even necessarily into other points with z 6= 0, but it will usually do so. What does this mean in

algebraic and geometrical terms?

Any 3× 3 matrix acts as a transformation on the usual Euclidean space of 3 dimensions. Suppose T to be a 3× 3
matrix, (x, y) a 2D point. How can T be used to transform this 2D point into another 2D point? (1) Extend it to a
3D point by adding on 1 as a last coordinate, so it becomes

(x, y, 1)

(2) The matrix T will transform this to another 3D point

(x, y, 1) T = (x′, y′, z′)

(3) To get a 2D point back again, divide through by z′ and throw away the final coordinate to get

(x′/z′, y′/z′) .

There will be problems when z ′ = 0, and we shall discuss these later.

4. The fundamental theorem

There is one fundamental theorem in this subject that makes the GIMP perspective tool practical. We have seen

that the tool allows the user to move any one of four points around with the mouse to obtain the transformation
desired. The mathematical assertion to go with this is:

• Given four points P , Q, R, S in the projective plane with the property that no three of them lie on any one
line. If P ′, Q′, R′, S′ are another four points with the same property, then there exists a unique projective
transformation taking P to P ′, etc.

I’ll come back to this in a while, but place it in context first. Here is an analogous but simpler result:

• Given three vectors u, v, w in 3D that are linearly independent. If u′, v′, w′ are any another three vectors,
then there exists a unique 3× 3 matrix transformation taking u to u′, etc.

In the special case when u, v, and w are the three basis vectors

e1 = [1, 0, 0]

e2 = [0, 1, 0]

e3 = [0, 0, 1]

the matrix can be written down explicitly. It is




u′

v′

w′



 ,

whose rows are u′, v′, w′. In the general case, let T take e1 to u etc. and T ′ take e1 to u′ etc.




u
v
w



 ←−T





e1

e2

e3



 −→T
′





u′

v′

w′





.

Then the transformation T−1T ′ with matrix




u
v
w





−1 



u′

v′

w′





takes u to u′ etc.

Here is a consequence:

Chapter 10. Perspective and homogeneous coordinates 7

• Given three points P , Q, R in the 2D plane, no two of which lie in a single line. If P ′, Q′, R′ are any another
three 2D points, then there exists a unique affine transformation transformation taking P to P ′, etc.

Embed these 2D points in 3D by making z = 1. According to the previous result, the 3D linear transformation

whose matrix is




xP yP 1
xQ yQ 1
xR yR 1





−1 



xP ′ yP ′ 1
xQ′ yQ′ 1
xR′ yR′ 1





takes P etc. to P ′ etc. It is easy enough to check that it must then take the whole plane z = 1 into itself. From

this it follows But then it can be checked in turn that this matrix has the form




∗ ∗ 0
∗ ∗ 0
∗ ∗ 1





which means that it is the matrix of an affine transformation.

Exercise 1. Prove the last two claims: (1) If a linear transformation takes three non­linear points on the plane
z = 1 into other points on the same plane, then it takes all points on the plane z = 1 into points on the plane
z = 1; (2) that if it takes the plane z = 1 to itself then it derives from an affine 2D transformation.

Now let’s return to the original claim about projective transformations. Translating it through the definition of

projective points, it follows from this:

• Given four vectors P , Q, R, S in 3D such that no three of them lie in one plane. If P ′, Q′, R′, S′ are another
four vectors with the same property, then there exists an invertible 3× 3 matrix taking P to a scalar multiple
of P ′, etc. It is unique up to a single scalar multiplication.

In effect, the transformation takes the line through P to that through P ′ etc. The proof will construct the matrix
explicitly. The basic idea is similar to that of the first result in this section. I first look at the special case

P = e1 = [1, 0, 0]

Q = e2 = [0, 1, 0]

R = e3 = [0, 0, 1

S = e123 = [1, 1, 1] .

This special case is simple. Let M be the matrix with rows equal to P ′, Q′, R′:

M =





P ′

Q′

R′



 .

By assumption on the vectors P ′ etc. it will be invertible. And it takes [1, 0, 0] to P ′, [0, 1, 0] to Q′, [0, 0, 1] to R′,
as you can calculate. By assumption also we can write

S′ = cP ′P ′ + cQ′Q′ + cR′R′ .

We can find these coefficients by solving the 3× 3 system of linear equations with coefficient matrix




P ′

Q′

R′



 .

The matrix




cP ′P ′

cQ′Q′

cR′R′





will have the same effect on the projective points (1, 0, 0) etc. as M , and will take [1, 1, 1] to S ′.

In the general case, we can find transformations T taking e1 to a multiple of P etc, and T ′ taking e1 to a multiple
of P ′ etc. But then the composite T −1T ′ takes P etc. to a multiple of P ′ etc.

Chapter 10. Perspective and homogeneous coordinates 8

5. Projective lines

A projective 2D point is now understood to be a row vector [x, y, z], where x etc. are determined only up to a

common non­zero­scalar multiple, and are not all equal to 0. If [A, B, C] is another similar triple, then the set of
points where

Ax + By + Cz = 0

is a plane—in fact a union of lines through the origin in 3D—and is called a projective line. Its intersection withprojective lines:8

the plane z = 1 is the familiar 2D line Ax + By + C = 0. We shall consider projective lines as column vectors, so

Ax + By + Cz is a matrix product.

Normally, the equation Ax + By + C = 0 with A = B = 0 makes no sense. But now in the projective plane, it

becomes the plane Cz = 0 or just z = 0. It is the set of projective points at infinity, which is often called the line

at infinity, or in effect the horizon.

If

T =





t1,1 t1,2 t1,3

t2,1 t2,2 t2,3

t3,1 t3,2 t3,3





is a projective transformation, it acts on 2D points by taking

(x, y) 7→

(

t1,1x + t2,1y + t3,1

t1,3x + t2,3y + t3,3

,
t1,2x + t2,2y + t3,2

t1,3x + t2,3y + t3,3

,

)

.

It will take a finite point off to infinity if the denominator vanishes. This will happen on the line whose coordinates
are the last column of T .

6. A remark about solving linear systems

A system of n linear equations in n unknowns can be written as a matrix equation

xA = b

where A is an n× n matrix and has solution

x = bA−1 .

When A is 2 × 2 or 3 × 3 there is a formula for the inverse which is easy to program and relatively efficient.matrix:inverse:8

The same formula is valid in any number of dimensions, but for 4× 4 matrices or larger it becomes impractical

compared to other numerical methods, for example those involving Gauss elimination.

This formula involves the determinant of several matrices. The determinant det(A) of a square matrix A is amatrix:determinant:8

number that can be calculated in a variety of ways. One way is directly from its definition, which is, for a general

matrix, rather complicated.

For 2× 2 matrices, the formula is quite simple. If

A =

[

a1,1 a1,2

a2,1 a2,2

]

then

det(A) = a1,1a2,2 − a1,2a2,1 .

But if A has size n× n, then its determinant is a sum of signed products

±a1,c1
a2,c2

. . . an,cn

Chapter 10. Perspective and homogeneous coordinates 9

where the n­tuple (c1, . . . , cn) ranges over all permutations of (1, 2, . . . , n), so there are n! in all—a potentially
very large number. How is the sign determined? It is equal to the parity sgn(c) of the number of inversions ofinversion:8

the permutation c, the pairs ci > cj with i < j. So

det A =
∑

c

sgn(c) a1,c1
a2,c2

. . . an,cn

where c ranges over all permutations of [1, n].

For n = 3 we have the following parity assignments:

Permutation Inversions Parity
(1, 2, 3) ∅ 1
(2, 3, 1) (3, 1), (2, 1) 1
(3, 1, 2) (3, 1), (3, 2) 1
(2, 1, 3) (1, 2) −1
(1, 3, 2) (3, 2) −1
(3, 2, 1) (3, 1), (3, 2), (2, 1) −1

If

A =





a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3





then this assignment of signs tells us that its determinant is

D = a1,1a2,2a3,3 + a1,2a2,3a3,1 + a1,3a2,1a3,2 − a1,2a2,1a3,3 − a1,1a2,3a3,2 − a1,3a2,2a3,1 .

The formula for this 3× 3 determinant can be remembered easily if you note that the + terms are products going
in a sense from upper left to lower right





a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3





and the− terms from lower left to upper right:





a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3





If A is any n × n matrix, its its cofactor matrix A∗, sometimes called its adjoint, is a new n × n matrix derivedmatrix:cofactor:9matrix:adjoint:9

from it. For any 1 ≤ i ≤ n, 1 ≤ j ≤ n the associated (i, j)­th minor is the determinant of the (n− 1)× (n − 1)
matrix you get by cutting out from A the i­th row and j­th column. The cofactor matrix is that obtained from

A whose (i, j)­entry A∗

i,j is that minor, multiplied by (−1)i+j . For example, the following figure shows that the

cofactor entry A∗

1,2 is −(a2,1a3,3 − a2,3a3,1).

Chapter 10. Perspective and homogeneous coordinates 10





a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3





The cofactor matrix is involved in another formula for the determinant:

det(A) =

n
∑

j=1

ai,jA
∗

i,j

for any choice of i. I’ll leave it as an exercise to see that the two general formulas agree.

I recall also that the transpose tA of a matrix A is the matrix obtained by reflecting it around its principal diagonal.matrix:transpose:10

The formula for the determinant has as immediate consequence:

• The inverse of a matrix A is the transpose of its cofactor matrix, divided by its determinant.

For example, if

A =

[

a b
c d

]

then its cofactor matrix is

A∗ =

[

d −c
−b a

]

,

its transpose cofactor matrix is

tA∗ =

[

d −b
−c a

]

,

and its inverse is

A−1 =
1

ad− bc

[

d −b
−c a

]

.

You can check this if you multiply it by A.

The cofactor matrix of the 3× 3 matrix A = (ai,j) is

A∗ =



















∣

∣

∣

∣

a2,2 a2,3

a3,2 a3,3

∣

∣

∣

∣

−

∣

∣

∣

∣

a2,1 a2,3

a3,1 a3,3

∣

∣

∣

∣

∣

∣

∣

∣

a2,1 a2,2

a3,1 a3,2

∣

∣

∣

∣

−

∣

∣

∣

∣

a1,2 a1,3

a3,2 a3,3

∣

∣

∣

∣

∣

∣

∣

∣

a1,1 a1,3

a3,1 a3,3

∣

∣

∣

∣

−

∣

∣

∣

∣

a1,1 a1,2

a3,1 a3,2

∣

∣

∣

∣

∣

∣

∣

∣

a1,2 a1,3

a2,2 a2,3

∣

∣

∣

∣

−

∣

∣

∣

∣

a1,1 a1,3

a2,1 a2,3

∣

∣

∣

∣

∣

∣

∣

∣

a1,1 a1,2

a2,1 a2,2

∣

∣

∣

∣



















.

Note that the signs form a checkerboard pattern like this:





+ − +
− + −
+ − +



 .

You can check explicitly that A tA∗ = I .

Exercise 2. Construct a PostScript procedure with one argument, a 3× 3 matrix, that returns its inverse matrix.
In this exercise, a 3× 3 matrix should be an array of 3 arrays of 3 numbers, which are its rows:

[[1 0 0][0 1 0][0 0 1]]

is the identity matrix.

Chapter 10. Perspective and homogeneous coordinates 11

7. The GIMP perspective tool, revisited

How does the Theorem relate to the perspective tool? We start off with a rectangular image with corners atGIMP:10

Ci for i = 1, 2, 3, 4. The mouse picks four points Pi somewhere in the image and calculates the perspective
transformation taking each Ci to Pi, or equivalently the 3× 3 matrix taking each

(Ci,x, Ci,y, 1) 7−→ (Pi,x, Pi,y, 1)

in the sense of homogeneous coordinates. We can calculate this matrix explicitly. Let

ε1 = (1, 0, 0)

ε2 = (0, 1, 0)

ε3 = (0, 0, 1)

ε4 = (1, 1, 1)

Let σ be the 3× 3 matrix taking the εi to the Ci, τ the one taking them to the Pi. Then σ−1τ takes the Ci to the Pi.

Finally, the perspective transform tool first shows the effect of this matrix on a grid, and then when it has been

accepted, applies it to every pixel in the image. Incidentally, the matrix that the tool displays is that of the
projective transformation that we have constructed, except that GIMP follows mathematical conventions rather

than those of computer graphics, so it is in fact the transpose of the one seen here.

Exercise 3. Construct a PostScript program that reproduces with some flexibility the GIMP window at the
beginning of this chapter. That is to say, it displays two 5× 5 grids, one the transform of the other by a projective
transformation corresponding to any given 3× 3 matrix. Then set that matrix equal to the transpose of the one
in the tool window:





0.535 −0.219 39
0 0.5 24
0 −0.00205 1





and verify that what you see is what you should see. There is one thing to be careful about—the origin of GIMP
coordinates is at the upper left, with y increasing downwards. So start your drawing by translating your origin
to the upper left corner, and then writing 1 -1 scale.

8. Projections in 2D

One special case of a transformation nicely described by 3 × 3 homogeneous matrices is projection onto a linespective projection:11

from a point. It is not a projective transformation, since it collapses 2D onto 1D, and is hence singular, with no

inverse. Suppose P = (xP , yP) is the point from which things are projected, f(x, y) = Ax + By + C = 0 the
line onto which things are projected. A point Q is transformed to the intersection of the line PQ with the line

f(x, y) = 0, assuming it is not parallel to that line. This will be the point R = (1 − t)P + tQ where f(R) = 0.

We solve
f(R) = (1− t)f(P) + tf(Q)

= 0

t(f(Q)− f(P)) = −f(P)

t =
−f(Q)

f(P)− f(Q)

R =
f(P)Q− f(Q)P

f(P)− f(Q)
.

If we embed 2D in 3D this, then P becomes (xP , yP , 1), Q becomes (x, y, 1), and

R = (f(P)Q− f(Q)P, f(P)− f(Q))

= f(P)(x, y, 1)− f(Q)(xP , yP , 1)

= f(P)Q− f(Q)P .

Chapter 10. Perspective and homogeneous coordinates 12

This already looks promising, since we no longer have to contemplate dividing by 0—instead, when PQ is
parallel to f = 0 the intersection will be a point at infinity. It becomes even more promising if we note that the

expression f(P)Q − f(Q)P is linear as a function of Q, so the projection arises from a linear transformation in

3D, or in other words a 3× 3 matrix.

Exercise 4. What is the matrix?

9. Perspective in 3D

One way in which projective transformations originate is in viewing a plane in perspective in 3D. I’ll look at just
one example. Let’s place a an observer in 3D at the point E = (0, 0, e) with e > 0, looking down the z­axis in the

negative direction. We are going to have him looking at images by projecting them onto the plane z = 0. That is

to say, we are going to map points P = (x, y, z) onto the point of intersection of the line from P to E with the
viewing plane. This map is explicitly

(x, y, z) 7−→

(

ex

e− z
,

ey

e− z

)

.

I’ll now restrict this map to a plane of the form y = y0, so we have a 2D map

(x, z) 7−→

(

ex

e− z
,

ey0

e− z

)

.

I claim that this can be seen as a projective transformation—that is to say, calculated in terms of a 3×3 homogeneous

matrix acting on homogeneous coordinates. This is not quite obvious. Later on when we look at 3D drawing in
more detail, we’ll see it as a special case of a very general fact, but it’s worthwhile doing a simple case first.

First we change (x, z) into (x, z, 1), and then into (x, z, w). The map above then becomes the restriction to (x, z, 1)
of the homogeneous linear map

(x, z, w) 7−→ (ex, ey0, w, ew − z) .

or

[x z w] 7−→ [x z w]





e
−1

ey0 e



 .

And of course these transforms may be combined with the techniques of Chapter 8.

Chapter 10. Perspective and homogeneous coordinates 13

Exercise 5. Construct a PostScript procedure with four 2D points Pi as arguments, returning the 3 × 3 matrix
taking

(0, 0) 7→ P0

(1, 0) 7→ P1

(0, 1) 7→ P2

(1, 1) 7→ P3 .

References

1. D. A. Brannan, M. Esplen, and J. Gray, Geometry, Cambridge University Press, 1999. The literature onGray:J.:13

projective geometry is large. With the advent of computers, the goals of the subject have become less abstract,

so that older books tend to look a bit out of date. This is a recent comprehensive text that illustrates the trend

towards less abstraction. Lots of pictures.

2. M. Kemp, The Science of Art: optical themes in western art from Brunelleschi to Seurat, Yale UniversityKemp:M.:13

Pres, 1990. The literature on perspective is even more vast. This is an extremely thorough history, with lots of
implicit suggestions for projects. in mathematical graphics.

3. Three books by the well known expert in computer graphics, Jim Blinn—Blinn:J.:13

Jim Blinn’s Corner: a Trip Down the Graphics Pipeline, Morgan Kaufmann, 1996

Jim Blinn’s Corner: Dirty Pixels, Morgan Kaufmann, 1998
Jim Blinn’s Corner: Notation, Notation, Notation, Morgan Kaufmann, 2003

—offer a well motivated outsider’s look at geometry. The essays are taken from Blinn’s column in the journal
IEEE Computer Graphics and Applications. Most are interesting, and some are absolutely delightful. Especially

valuable are his essays on homogeneous coordinates, but there’s a lot of other mathematics and mathematical

pictures to be found in these volumes.

4. Andrew Glassner, Andrew Glassner’s Notebook: Recreational Computer Graphics, Morgan Kaufmann, 1999.Glassner:A.:13

I mention this book here because it has much in common with Blinn’s, although not much with the topic of this
chapter. Like Blinn’s books, it is based on a column in IEEE Computer Graphics and Applications, and amounts

to a collection of improved essays from that column. More mathematical, less practical than Blinn’s books. For

that reason, not quite so interesting to a mathematician. Much fancier pictures!

5. The program GIMP is available on essentially all operating systems, and without cost for Linux and Windows.GIMP:13

Invaluable as an image manipulation tool for most. Almost as capable as Photoshop and—for better or worse—
about as easy to use. But for simple tasks it’s fine. The GIMP home page is at

http://www.gimp.org/

6. Werner Boy, ‘Über die Curvatura integra’, Mathematische Annalen (57), 1903, 151–184.Boy:W.:13

This paper can be seen in the digitized edition of the Annalen at

http://134.76.163.65/agora docs/25917TABLE OF CONTENTS.html

which is part of the Göttingen digitalization project.

7. Stephan Cohn­Vossen and David Hilbert, Geometry and the Imagination, Chelsea, 1952. Werner Boy wasCohn­Vossen:S.:13Hilbvert:D.:13

a student of Hilbert’s, and his surface is said to have been a surprise to his advisor. Several variants of the
surface are discussed on pp. 317–321 of Hilbert & Cohn­Vossen, but alas! without any history. Frano̧is Apéry hasApéry:F.:13

written the beautiful book Models of the real projective plane (Vieweg, 1987) on the same subject. It includes

many handsome computer­generated pictures, and explains how they were generated. Many other computer­
generated pictures of the surface immersed in 3D can be found on the ’Net, but I find Boy’s original figures easiest

to understand.

CHAPTER 11

Introduction to drawing in three dimensions

Drawing figures in 3D is considerably more complicated than drawing in 2D, because we want to create the

illusion of three dimensions on a two­dimensional page. There are in fact different ways to deal with this
problem. I shall illustrate a few ideas by showing a progression of pictures of a cube.

The first is a simple orthogonal projection of the frame of the cube. This just renders the image of the cubeojection:orthogonal:1frame rendering:1

projected by parallel lines onto the (x, y) plane.

In the next we use perspective projection, which in effect renders the image of the cube by intersecting the (x, y)ojection:perspective:1

plane with rays from points in space to a fixed location, which plays the role of the eye. This scheme has the

virtue that objects further away from the eye look smaller. This provides an illusion of distance.

In the third we hide those faces of the cube which the eye lies behind. This adds the illusion of solidity.

In the fourth we vary the darkness of the face of the cube according to the degree to which they face towards anshading:1

imaginary vertical light source. We also get some colour.

Chapter 11. Introduction to drawing in three dimensions 2

And in the fifth we embed the cube into a simple environment, even projecting a shadow from the same imaginaryshadows:2

light source that affected brightness. Environment also adds visual cues for depth and orientation.

We shall see in a later chapter that these effects are not too difficult to obtain with a 3D extension of PostScript. In

the very next one we shall see the mathematics on which these effects depend.

CHAPTER 12

Transformations in 3D

There are no built-in routines for 3D drawing in PostScript. For this purpose we shall have to use a library of
PostScript procedures designed especially for the task, as an extension to basic PostScript. In this chapter we
shall look at some of the mathematics behind such a library, which is much more complicated than that required
in 2D.

We shall examine principally rigid transformations, those which affect an object without distorting it, but then atnsformations:rigid:1

the end look at something related to shadow projections. The importance of rigid transformations is especially
great because in order to build an illusion of 3D through 2D images the illusion of motion helps a lot. One
point is that motion leads to an illusion of depth through size change, and another is that it allows one to see an
object from different sides. The motions used will be mostly rotations and translations, those which occur most
commonly in the real world.

There are several reasons why it is a good idea to examine such transformations in dimensions one and two as
well as three.

1. Rigid transformations

If we move an object around normally, it will not visibly distort—that is to say, to all appearances it will remain
rigid. The points of the object themselves will move around, but the relative distances between points of the object
will not change. We can formulate this notion more precisely. Suppose we move an object from one position to
another. In this process, a point P will be moved to another point P∗. We shall say that the points of the object
are transformed into other points. A transformation is said to be rigid if it preserves relative distances—that is to
say, if P and Q are transformed to P∗ and Q∗ then the distance from P∗ to Q∗ is the same as that from P to Q.

We shall take for granted something that can actually be proven, but by a somewhat distracting argument:

• A rigid transformation is affine.

This means that if we have chosen a linear coordinate system in whatever context we are looking at (a line, a
plane, or space). then the transformation P �→ P∗ is calculated in terms of coordinate arrays x and x∗ according
to the formula

x∗ = xA + v

where A is a matrix and v a vector. Another way of saying this is that first we apply a linear transformation
whose matrix is A, then a translation by v. In 3D, for example, we require that

[x∗ y∗ z∗] = [x y z] A + [vx vy vz] .

The matrix A is called the linear component, v the translation component of the transformation.

It is clear that what we would intuitively call a rigid transformation preserves relative distances, but it might not
be so clear that this requirement encapsulates rigidity completely. The following assertion may add conviction:

Chapter 12. Transformations in 3D 2

• A rigid transformation (in the sense I have defined it) preserves angles as well as distances.

That is to say, if P , Q and R are three points transformed to P∗, Q∗, and R∗, then the angle θ∗ between segments
P∗Q∗ and P∗R∗ is the same as the angle θ between PQ and PR. This is because of the cosine law, which says
that

cos θ∗ =
‖Q∗R∗‖2 − ‖P∗Q∗‖2 − ‖P∗R∗‖2

‖P∗Q∗‖ ‖P∗R∗‖
=

‖QR‖2 − ‖PQ‖2 − ‖PR‖2

‖PQ‖ ‖PR‖
= cos θ .

A few other facts are more elementary:

• A transformation obtained by performing one rigid transformation followed by another rigid transformation
is itself rigid.

• The inverse of a rigid transformations is rigid.

In the second statement, it is implicit that a rigid transformation has an inverse. This is easy to see. First of all,
any affine transformation will be invertible if and only if its linear component is. But if a linear transformation
does not have an inverse, then it must collapse at least one non-zero vector into the zero vector, and it cannot be
rigid.

Exercise 1. Recall exactly why it is that a square matrix with determinant equal to zero must transform at least
one non-zero vector into zero.

An affine transformation is rigid if and only if its linear component is, since translation certainly doesn’t affect
relative distances. In order to classify rigid transformations, we must thus classify the linear ones. We’ll do that
in a later section, after some coordinate calculations.

Exercise 2. The inverse of the transformation x �→ Ax + v is also affine. What are its linear and translation
components?

2. Dot and cross products

In this section I’ll recall some basic facts about vector algebra.

Dot products. In any dimension the dot product of two vectorsdot product:2

u = (x1, x2 . . . , xn), v = (y1, y2, . . . , yn)

is defined to be
u • v = x1y1 + x2y2 + · · ·xnyn .

The relation between dot products and geometry is expressed by the cosine rule for triangles, which asserts that
if θ is the angle between u and v then

cos θ =
u • v

‖u‖ ‖v‖ .

In particular u and v are perpendicular when u • v = 0.

Chapter 12. Transformations in 3D 3

Parallel projection. One important use of dot products and cross products will be in calculating various projec-
tions.

Suppose α to be any vector in space and u some other vector in space. The projection of u along α is the vectorparallel projection:2

u0 we get by projecting u perpendicularly onto the line through α.

u⊥

u

u0

α

How to calculate this projection? It must be a multiple of α. We can figure out which multiple by using
trigonometry. We know three facts: (a) The angle θ between α and u is determined by the formula

cos θ =
u •α

‖α‖ ‖u‖ .

(b) The length of the vector u0 is ‖u‖ cosθ, and this is to be interpreted algebraically in the sense that if u0 faces
in the direction opposite to α it is negative. (c) Its direction is either the same or opposite to α. The vector α/‖α‖
is a vector of unit length pointing in the same direction as α. Therefore

u0 = ‖u‖ cos θ
α

‖α‖ = ‖u‖ u •α

‖α‖ ‖u‖
α

‖α‖ =
(

u •α

‖α‖2

)
α =

(u •α

α •α

)
α .

Volumes. The basic result about volumes is that in any dimension n, the signed volume of the parallelopipedvolume:3volume:3

spanned by vectors v1, v2, . . . , vn is the determinant of the matrix

⎡
⎢⎣

v1

v2

. . .
vn

⎤
⎥⎦

whose rows are the vectors vi.

Let me illustrate this in dimension 2. First of all, what do I mean by the signed volume?

A pair of vectors u and v in 2D determine not only a parallelogram but an orientation, a sign. The sign is positiveorientation:3

if u is rotated in a positive direction through the parallelogram to reach v, and negative in the other case. If u and
v happen to lie on the same line, then the parallelogram is degenerate, and the sign is 0. The signed area of the
paralleogram they span is this sign multiplied by the area of the parallelogram itself. Thus in the figure on the
left the sign is positive while on the right it is negative. Notice that the sign depends on the order in which we
list u and v.

Chapter 12. Transformations in 3D 4

u

v

(u, v) oriented +

v

u

(u, v) oriented −
I’ll offer two proofs of the fact that in 2D the signed area of the parallelogram spanned by two vectors u and v is
the determinant of the matrix whose rows are u and v. The first is the simplest, but it has the drawback that it
does not extend to higher dimensions, although it does play an important role.

In the first argument, recall that u⊥ is the vector obtained from u by rotating it positively through 90◦. If u = [x, y]
then u⊥ = [−y, x]. As the following figure illustrates, the signed area of the paralleogram spanned by u and v is
the product of ‖u‖ and the signed length of the projection of v onto the line through u⊥.

u

v

v0

Thus the area is
(

[−uy, ux] • [vx, vy]
‖u‖

)
‖u‖ = uxvy − uyvx = det

[
ux uy

vx vy

]
=

∣∣∣∣ux uy

vx vy

∣∣∣∣ .

The starting observation of the second argument is that shearing one of the rows of the matrix changes neither
the determinant nor the area. For the area, this is because shears don’t change area, while for the determinant it
is a simple calculation: ∣∣∣∣ x1 + cx2 y1 + cy2

x2 y2

∣∣∣∣ =
∣∣∣∣ x1 y1

x2 y2

∣∣∣∣ .

Thus in each of the transitions below, neither the determinant nor the area changes. Since they agree in the final
figure, where the matrix is a diagonal matrix, they must agree in the first.

There are exceptional circumstances in which one has to be a bit fussy, but this is nonetheless the core of a valid
proof that in dimension two determinants and area agree. It is still, with a little care, valid in dimension three. It
is closely related to the Gauss elimination process.Gauss elimination:4

Chapter 12. Transformations in 3D 5

Exercise 3. Suppose A to be the matrix whose rows are the vectors v1 and v2. The argument above means that
for most A we can write [

1
c2 1

] [
1 c1

1

]
A = D

where D is a diagonal matrix. Prove this, being careful about exceptions. For which A in 2D does it fail? Provide
an explicit example of an A for which it fails. Show that even for such A (in 2D) the equality of determinant and
area remains true.

In n dimensions, the Gaussian elimination process finds for any matrix A a permutation matrix w, a lower
trinagular matrix �, and an upper triangulation matrix u such that

A = �uw .

The second argument in 2D shows that the the claim is reduced to the special case of a permutation matrix, in
which case it is clear.

Cross products. In 3D—and essentially only in 3D—there is a kind of product that multiplies two vectors to getcross product:5

another vector. If
u = (x1, x2, x3), v = (y1, y2, y3)

then their cross product u × v is the vector

(x2y3 − y2x3, x3y1 − x1y3, x1y2 − x2y1) .

This formula can be remembered if we write the vectors u and v in a 2 × 3 matrix[
x1 x2 x3

y1 y2 y3

]

and then for each column of this matrix calculate the determinant of the 2 × 2 matrix we get by crossing out in
turn each of the columns. The only tricky part is that with the middle coefficient we must reverse sign. Thus

u × v =
(∣∣∣∣x2 x3

y2 y3

∣∣∣∣ ,−
∣∣∣∣x1 x3

y1 y3

∣∣∣∣ ,
∣∣∣∣ x1 x2

y1 y2

∣∣∣∣
)

.

It makes a difference in which order we write the terms in the cross product. More precisely

u × v = −v × u .

Recall that a vector is completely determined by its direction and its magnitude. The geometrical significance
of the cross product is therefore contained in these two rules, which specify the cross product of two vectors
uniquely.

• The length of w = u × v is the area of the parallelogram spanned in space by u and v.
• The vector w lies in the line perpendicular to the plane containing u and v and its direction is determined by

the right hand rule—curl the fingers so as to go from u to v and the cross-product will lie along your thumb.

u

v

u × v

Chapter 12. Transformations in 3D 6

The cross product u × v will vanish only when the area of this parallelogram vanishes, or when u and v lie in a
single line. Equivalently, when they are multiples of one another.

That the length of the cross-product is equal to the area of the parallelogram is a variant of Pythagoras’ Theorem
applied to areas—it says precisely that the square of the area of a parallelogram is equal to the sum of the squares
of the areas of its projections onto the coordinate planes. I do not know a really simple way to see that it is true,
however. The simplest argument I know of is to start with the determinant formula for volume. If u, v, and w are
three vectors, then on the one hand the volume of the parallelopiped they span is the determinant of the matrix

⎡
⎣ u

v
w

⎤
⎦

which can be written as the dot product of u and v × w, while on the other this volume is the product of the
projection of u onto the line perpendicular to the plane spanned by v and w and the area of the parallelogram
spanned by v and w. A similar formula is valid in all dimensions, where it becomes part of the theory of exterior
products of vector spaces, a topic beyond the scope of this book.

Perpendicular projection. Now let u⊥ be the projection of u onto the plane perpendicular to α.ction:perpendicular:6

The vector u has the orthogonal decomposition

u = u0 + u⊥

and therefore we can calculate
u⊥ = u − u0 .

Incidentally, in all of this discussion it is only the direction of α that plays a role. It is often useful to normalize α
right at the beginning of these calculations, that is to say replace α by α/‖α‖.

Any good collection of PostScript procedures for 3D drawing will contain ones to calculate dot products, cross
products, u0 and u⊥.

3. Linear transformations and matrices

It is time to recall the precise relationship between linear transformations and matrices. The link is the notion of
frames. A frame in any number of dimensions d is a set of d linearly independent vectors of dimension d. Thusframe:6

a frame in 1D is just a single non-zero vector. A frame in 2D is a pair of vectors whose directions do not lie in a
single line. A frame in 3D is a set of three vectors not all lying in the same plane.

A frame in dimension d determines a coordinate system of dimension d, and vice-versa. If the frame is made up
of e1, . . . , ed then every other vector x of dimension d can be expressed as a linear combination

x = x1e1 + · · · + xded

and the coefficients xi are its coordinates with respect to that basis. They give rise to the representation of x as a
row array

[x1 . . . xd] .

Conversely, given a coordinate system the vectors

e1 = [1, 0, . . . , 0], . . . , ed = [0, 0, . . . , 1]

are the frame giving rise to it.

I emphasize:

Chapter 12. Transformations in 3D 7

• A vector is a geometric entity with intrinsic significance, for example the relative position of two points. Or,vector:6

if a unit of length has been chosen, something with direction and magnitude. In the presence of a frame, and
only in the presence of a frame, it can be assigned coordinates.

In other words, the vector is, if you will, an arrow and it can be assigned coordinates only with respect to a given
frame. Change the frame, change the coordinates.

In a context where lengths are important, one usually works with orthonormal frames, those made up of a set of
vectors ei with each ei of length 1 and distinct ei and ej perpendicular to each other:

ei • ej =
{ 1 if i = j

0 otherwise.

In the presence of any frame, vectors may be assigned coordinates. If the frame is orthonormal, the coordinates
of a vector are given simply:

v =
∑

ciei, ci = ei • v .

If a particular point is fixed as origin, an arbitrary point may be assigned coordinates as well, namely those of the
vector by which the origin is displaced to reach that point.

Another geometric object is a linear function. A linear function � assigns to very vector a number, with thelinear function:7

property, called linearity, that
�(au + bv) = a�(u) + b�(v) .

A linear function � may also be assigned coordinates, namely the coefficients �i in its expression in terms of
coordinates:

�(x) = �1x1 + · · · + �dxd .

A linear function is represented as a column array

⎡
⎣ �1

. . .
�d

⎤
⎦ .

Then �(x) is the matrix product

[x1 . . . xd]

⎡
⎣ �1

. . .
�d

⎤
⎦ .

Another point to emphasize:

• A linear function is a geometric entity with intrinsic significance, which assigns a number to any vector. In
the presence of a frame, and only in the presence of a frame, it can be assigned coordinates, the coefficients
of its expression with respect to the coordinates of vectors.

In physics, what I call vectors are called contravariant vectors and linear functions are called covariant ones.
There is often some confusion about these notions, because often one has at hand an orthonormal frame and a
notion of length, and given those each vector u determines a linear function fu:

fu(v) = u • v .

A linear transformation T assigns vectors to vectors, also with a property of linearity. In the presence of aansformation:linear:7

coordinate system it, too, may be assigned coordinates, the array of coefficients ti,j such that

(xT)j =
d∑

i=1

xiti,j .

Chapter 12. Transformations in 3D 8

For example, in 2D we have

xT = [x1 x2]
[

t1,1 t1,2

t2,1 t2,2

]
.

The rectangular array ti,j is called the of a linear matrix assigned to T in the presence of the coordinate system.ion:linear, matrix of:7near transformation:7

In particular, the i-th row of the matrix is the coordinate array of the image of the frame element ei with respect
to T . For example,

[1 0]
[

t1,1 t1,2

t2,1 t2,2

]
= [t1,1 t1,2]

[0 1]
[

t1,1 t1,2

t2,1 t2,2

]
= [t2,1 t2,2] .

A final point, then, to emphasize:

• A linear transformation is a geometric entity with intrinsic significance, transforming a vector into another
vector. In the presence of a coordinate system (i.e. a frame), and only in the presence of a coordinate system,
it can be assigned a matrix.

In summary, it is important to distinguish between intrinsic properties of a geometric object and properties of its
coordinates.

If A is any square matrix, one can calculate its determinant. It is perhaps surprising to know that this has intrinsicdeterminant:8

significance.

• Suppose T to be a linear transformation in dimension d and A the matrix associated to T with respect to
some coordinate system. The determinant of A is the factor by which T scales all d-dimensional volumes.

This explains why, for example, the determinant of a matrix product AB is just the same as det(A) det(B). If A
changes volumes by a factor det(A) and B by the factor det(B) then the composite changes them by the factor
det(A) det(B).

If this determinant is 0, for example, it means that T is degenerate: it collapses d-dimensional objects down to
something of lower dimension.

What is the significance of the sign of the determinant? Let’s look at an example, where T amounts to 2D reflection
in the y-axis. This takes (1, 0) to (−1, 0) and (0, 1) to itself, so the matrix is

[−1
1

]
,

which has determinant −1. Here is its effect on a familiar shape:

R R
Now the transformed letter R is qualitatively different from the original—there is no continuous way to deform
one into the other without some kind of one-dimensional degeneration. In effect, reflection in the y-axis changes
orientation in the plane. This is always the case:orientation:8

• A linear transformation with negative determinant changes orientation.

Chapter 12. Transformations in 3D 9

4. Changing coordinate systems

Vectors, linear functions, linear transformations all acquire coordinates in the presence of a frame. What happens
if we change frames?coordinate changes:8

The first question to be answered is, how can we describe the relationship between two frames?

The answer is, by a matrix. To see how this works, let’s look at the 2D case first. Suppose e1, e2 and f1, f2 are two
frames in 2D. Make up column matrices E and F whose entries are vectors instead of numbers, vectors chosen
from the frames:

e =
[

e1

e2

]
, f =

[
f1

f2

]
.

We can write
f1 = f1,1e1 + f1,2e2

f2 = f2,1e1 + f2,2e2

and it seems natural to define the 2 × 2 matrix

T e
f =

[
f1,1 f1,2

f2,1 f2,2

]
.

Then
f = T e

f e ,

so the matrix T e
f relates the two frames. This use of a matrix, relating two different coordinate systems, is

conceptually quite different from that in which it describes a linear transformation.

In general, suppose e and f are two frames. Each of them is a set of d vectors. Let T e
f be the matrix whose i-th

row is the array of coordinates of fi with respect to e. We can write this relationship in an equation f = T e
f e.

This may seem a bit cryptic. In this equation, we think of the frames e and f themselves as column matrices

e =

⎡
⎣ e1

. . .
ed

⎤
⎦ , f =

⎡
⎣ f1

. . .
fd

⎤
⎦

whose entries are vectors, not numbers. One odd thing to keep in mind is that when we apply a matrix to a vector
we write the matrix on the right, but when we apply it to a frame we put it on the left.

Now suppose x to be a vector whose array of coordinates with respect to e is xe. We can write this relationship as

x = xe e = [x1 . . . xd]

⎡
⎣ e1

. . .
ed

⎤
⎦ ,

again expressing the frame as a column of vectors.

With respect to the frame f we can write
x = xf f .

We want to know how to compute xe in terms of xf and vice-versa. But we can write

x = xf f = xf (T e
f e) = (xfT e

f)e = xe e

which implies:

Chapter 12. Transformations in 3D 10

• If e and f are two frames with f = T e
f e then for any vector x

xe = xfT e
f .

A similar result is this:

• If e and f are two frames with f = T e
f e then for any linear function �

�e = (T e
f)−1�f .

This is what has to happen, since the function evaluation

xf �f = xe�e = xeT
e

f �e ,

is intrinsic.

Finally, we deal with linear transformations. We get from the first frame e a matrix Ae associated to A, and from
the second a matrix Af . What is the relationship between the matrices Ae and Af ? We start out by recalling that
the meaning of Ae can be encapsulated in the formula

(xA)e = xeAe

for any vector x. In other words, the matrix Ae calculates the coordinates of xA with respect to the frame e.
Similarly

(xA)f = xfAf

and then we deduce
xeAe = (xA)e

= (xA)fT e
f

= (xfAf)Ae
f

= xf (AfT e
f)

= (xe(T e
f)−1)AfT e

f

= xe((T e
f)−1AfT e

f) .

Hence

• If e and f are two frames with f = T e
f e then for any linear transformation T

Te = (T e
f)−1AfT e

f .

This is an extremely important formula. For example, it allows us to see immediately that the determinant of
a linear transformation, which is defined in terms of a matrix associated to it, is independent of the coordinate
system which gives rise to the matrix. That’s because

Ae = (T e
f)−1AfT e

f , det(Ae) = det((T e
f)−1AfT e

f) = det((T e
f)−1) det(Af) det(T e

f) = det(Af) .

Two matrices A and T−1AT are said to be similar. They are actually equivalent, in the sense that they are thesimilar matrices:10

matrices of the same linear transformation, but with respect to different coordinate systems.

Chapter 12. Transformations in 3D 11

5. Rigid linear transformations

Let A be an d × d matrix, representing a rigid linear transformation T with respect to the frame e.

A =

⎡
⎢⎣

a1,1 a1,2 . . . a1,d

a2,1 a2,2 . . . a2,d

. . .
ad,1 ad,2 . . . ad,d

⎤
⎥⎦ .

Then eiA is equal to the i-th row of A. Therefore the length of the i-th row of A is also 1. The angle between ei

and ej is 90◦ if i �= j, and therefore the angle between the i-th and j-th rows of A is also 90◦, and the two rows
must be perpendicular to each other. In other words, the rows of A must be an orthogonal frame. In fact:

• A linear transformation is rigid precisely when its rows make up an orthogonal frame.

Any such matrix A is said to be orthogonal.orthogonal matrix:11

The transpose tA of a matrix A has as its rows the columns of A, and vice-versa. By definition of the matrixmatrix:transpose:11

product A tA, its entries are the various dot products of the rows of A with the columns of tA. Therefore:

• A matrix A is orthogonal if and only if
A tA = I ,

or equivalently if and only if its transpose is the same as as its inverse.

If A and B are two n × n matrices, then

det(AB) = det(A) det(B) .

The determinant of A is the same as that of its transpose. If A is an orthogonal matrix, then

det(I) = det(A) det(tA) = det(A)2

so that:

• The determinant of an orthogonal matrix is ±1.

If det(A) = 1, A preserves orientation, otherwise it reverses orientation. As we have already seen, there is aorientation:11

serious qualitative difference between the two types. If we start with an object in one position and move it
continuously, then the transformation describing its motion will be a continuous family of rigid transformations.
The linear component at the beginning is the identity matrix, with determinant 1. Since the family varies
continuously, the linear component can never change the sign of its determinant, and must therefore always be
orientation preserving. A way to change orientation would be to reflect the object, as if in a mirror.

6. Orthogonal transformations in 2D

In 2D the classification of orthogonal transformations is very simple. First of all, we can rotate an object through
some angle θ (possibly 0◦).

θ

Chapter 12. Transformations in 3D 12

This preserves orientation. The matrix of this transformation is, as we saw much earlier,[
cos θ sin θ

− sin θ cos θ

]
.

Second, we can reflect things in an arbitrary line.reflection:12

That is to say, given a line �, we can transform points on � into themselves, points in the line through the origin
perpendicular to � into their negatives. This reverses orientation.

Exercise 4. If � is the line at angle θ with respect to the positive x-axis, what is the matrix of this reflection?

It turns out there are no more possibilities.

• Every linear rigid transformation in 2D is either a rotation or a reflection.

Let e1 = [1, 0], e2 = [0, 1], and let T be a linear rigid transformation. Since e1 and e2 both have length 1, both Te1

and Te1 also have length 1. All of these lie on the unit circle. Since the angle between e1 and e2 is 90◦, so is that
between Te1 and Te2. There are two distinct possibilities, however. Either we rotate in the positive direction
from Te1 to Te2, or in the negative direction.

e1

e2

Te1

Te2

e1

e2

Te1

Te2

In the first case, we obtain Te1 and Te2 from e1 and e2 by a rotation. In the second case, something more
complicated is going on. Here, as we move a vector u from e1 towards e2 and all the way around again to e1, Tu
moves along the arc from Te1 to Te2 all the way around again to Te1, and in the opposite direction. Now if we
start with two points anywhere on the unit circle and move them around in opposite directions, sooner or later
they will meet. At that point we have Tu = u. Since T fixes u it fixes the line through u, hence takes points on
the line through the origin perpendicular to it into itself. It cannot fix the points on that line, so it must negate
them. In other words, T amounts to reflection in the line through u.

Exercise 5. Explain why we can take u to be either of the points half way between e1 and Te1.

Exercise 6. Find a formula for the reflection of v in the line through u.

Chapter 12. Transformations in 3D 13

7. Orthogonal transformations in 3D

There is one natural way to construct rigid linear motions in 3D. Choose an axis, and choose on it a direction.
Equivalently choose a unit vector u, and the axis to be the line through u with direction that of u.

α

Choose an angle θ. Rotate things around the axis through angle θ, in the positive direction as seen along the axis
from the positive direction. This is called a axial rotation.rotation:axial:13

α

The motion can in some sense be decomposed into two parts. The plane through the origin perpendicular to he
axis is rotated into itself, and points on the axis remain fixed. Therefore the height of a point above the plane
remains constant, and the projection of the motion onto this plane is just an ordinary 2D rotation.

Chapter 12. Transformations in 3D 14

• Every orientation-preserving linear rigid transformation in 3D is an axial rotation.

I’ll show this in one way here, and in a slightly different way later on.

Recall that an eigenvector v for a linear transformation T is a non-zero vector v taken into a multiple of itself by
T :

Tv = cv

for some constant c, which is called the associated eigenvalue. This equation can be rewritten

Tv = cv = (T − cI)v = 0 .

If T − cI were invertible, then we would deduce from this that

v = (T − cI)−10 = 0

which contradicts the assumption that v �= 0. Therefore T − cI is not invertible, and det(T − cI) = 0. In other
words, c is a root of the characteristic polynomial

det(A − xI)

where A is a matrix representing T and x is a variable. For a 3 × 3 matrix

A − xI =

⎡
⎣ a1,1 − x a1,2 a1,3

a2,1 a2,2 − x a2,3

a3,1 a3,2 a3,3 − x

⎤
⎦

and the characteristic polynomial is a cubic polynomial which starts out

−x3 + · · · .

For x < 0 and |x| large, this expression is positive, and for x > 0 and |x| large it is negative. It must cross
the x-axis somewhere, which means that it must have at least one real root. Therefore A has at least one real
eigenvalue. In 2D this reasoning fails—there may be two conjugate complex eigenvalues instead.

Let c be a real eigenvalue of T , v a corresponding eigenvector. Since T is a rigid transformation, ‖Tv‖ = ‖v‖, or
‖cv‖ = ‖v‖. Since ‖cv‖ = |c|‖v‖ and ‖v‖ �= 0, |c| = 1 and c = ±1.

If c = 1, then we have a vector fixed by T . Since T preserves angles, it takes all vectors in the plane through
the origin perpendicular to v into itself. Since T reserves orientation and Tv = v, the restriction of T on this
plane also preserves orientation. Therefore T rotates vectors in this plane, and must be a rotation around the axis
through v.

If c = −1, then we have Tv = −v. The transformation T still takes the complementary plane into itself. Since T
preserves orientation in 3D but reverses orientation on the line through v, T reverses orientation on this plane.
But then T must be a reflection on this plane, according to the results of the previous section. We can find u such
that Tu = u, and w perpendicular to u and v such that Tw = −w. In this case, T is rotation through 180◦ around
the axis through u.

Chapter 12. Transformations in 3D 15

8. Calculating the effect of an axial rotation

To begin this section, I remark again that to determine an axial rotation we must specify not only an axis and
an angle but a direction on the axis. This is because the sign of a rotation in 3D is only determined if we know
whether it is assigned by a left hand or right hand rule. At any rate choosing a vector along an axis fixes a
direction on it. Given a direction on an axis I’ll adopt the convention that the direction of positive rotation follows
the right hand rule.

So now the question we want to answer is this: Given a vector α �= 0 and an angle θ. If u is any vector in space
and we rotate u around the axis through α by θ, what new point v do we get? This is one of the basic calculations
we will make to draw moved or moving objects in 3D.

There are some cases which are simple. If u lies on the axis, it is fixed by the rotation. If it lies on the plane
perpendicular to α it is rotated by θ in that plane (with the direction of positive rotation determined by the right
hand rule).

If u is an arbitrary vector, we express it as a sum of two vectors, one along the axis and one perpendicular to it,
and then use linearity to find the effect of the rotation on it.

To be precise, let R be the rotation we are considering. Given u we can find its projection onto the axis along α
to be

u0 =
(α •u

α •α

)
α

Let u⊥ be the projection of u perpendicular to α. It is equal to u − u0. We write

u = u0 + u⊥
Ru = Ru0 + Ru⊥

= u0 + Ru⊥ .

How can we find Ru⊥?

Normalize α so ‖α‖ = 1, in effect replacing α by α/‖α‖. This normalized vector has the same direction and axis
as α. The vector u∗ = α × u⊥ will then be perpendicular to both α and to u⊥ and will have the same length as
u⊥. The plane perpendicular to α is spanned by u⊥ and u∗, which are perpendicular to each other and have the
same length. The rotation R acts as a 2D rotation in the plane perpendicular to α, so:

• The rotation by θ takes u⊥ to
Ru⊥ = (cos θ) u⊥ + (sin θ) u∗ .

In summary:

(1) Normalize α, replacing α by α/‖α‖.

(2) Calculate

u0 =
(α •u

α •α

)
α = (α •u) α .

(3) Calculate
u⊥ = u − u0 .

(4) Calculate
u∗ = α × u⊥ .

(5) Finally set
Ru = u0 + (cos θ) u⊥ + (sin θ) u∗ .

Exercise 7. What do we get if we rotate the vector (1, 0, 0) around the axis through (1, 1, 0) by 36◦?

Exercise 8. Write a PostScript procedure with α and θ as arguments that returns the matrix associated to rotation
by θ around α.

Chapter 12. Transformations in 3D 16

9. Finding the axis and angle

If we are given a matrix R which we know to be orthogonal and with determinant 1, how do we find its axis and
rotation angle? As we have seen, it is a special case of the problem of finding eigenvalues and eigenvectors. But
the situation is rather special, and can be done in a more elementary manner. In stages:

(1) How do we find its axis? If ei is the i-th standard basis vector (one of i, j, or k) the i-th column of R is Rei.
Now for any vector u the difference Ru − u is perpendicular to the rotation axis. Therefore we can find the axis
by calculating a cross product (Rei − ei) × (Rej − ej) for one of the three possible distinct pairs from the set of
indices 1, 2, 3–unless it happens that this cross-product vanishes. Usually all three of these cross products will
be non-zero vectors on the rotation axis, but in exceptional circumstances it can happen that one or more will
vanish. It can even happen that all three vanish! But this only when A is the identity matrix, in which case we
are dealing with the trivial rotation, whose axis isn’t well defined anyway.

At any rate, any of the three which is not zero will tell us what the axis is.

(2) How do we find the rotation angle?

As a result of part (1), we have a vector α on the rotation axis. Normalize it to have length 1. Choose one of the
ei so that α is not a multiple of ei. Let u = ei. Then Ru is the i-th column of R.

Find the projection u0 of u along α, set u⊥ = u − u0. Calculate Ru⊥ = Ru − u0. Next calculate

u∗ = α × u⊥ .

and let θ be the angle between u⊥ and Ru⊥. The rotation angle is θ if the dot-product Ru⊥ •u∗ ≥ 0 otherwise
−θ.

Exercise 9. If

R =

⎡
⎣ 0.899318 −0.425548 0.100682

0.425548 0.798635 −0.425548
0.100682 0.425548 0.899318

⎤
⎦

find the axis and angle.

10. Euler’s Theorem

The fact that every orthogonal matrix with determinant 1 is an axial rotation may seem quite reasonable, after
some thought about what else might such a linear transformation be, but I don’t think it is quite intuitive. To
demonstrate this, let me point out that it implies that the combination of rotations around distinct axes is again a
rotation. This is not at all obvious, and in particular it is difficult to see what the axis of the combination should
be. This axis was constructed geometrically by Euler.Euler:L.:16

Chapter 12. Transformations in 3D 17

P1

P2

βα

θ1
2

θ1
2

θ2
2

θ2
2

Let P1 and P2 be points on the unit sphere. Suppose P1 to be on the axis of a rotation of angle θ1, P2 on that of
a rotation of angle θ2. Draw the spherical arc from P1 to P2. On either side of this arc, at P1 draw arcs making
an angle of θ1/2 and at P2 draw arcs making an angle of θ2/2. Let these side arcs intersect at α and β on the
unit sphere. The the rotation R1 around P1 rotates α to β, and the rotation R2 around P2 moves β back to α.
Therefore α is fixed by the composition R2R1, and must be on its axis.

Exercise 10. What is the axis of R1R2 in the diagram above? Deduce from this result under what circumstances
R1R2 = R2R1.

11. More about projections

If P is a point in space and f(x, y, z) = Ax + By + Cz + D = 0 a plane, then just about any point other than Pprojections:17

can be projected from P onto the plane. The formula for this is very simple. Suppose the point being projected is
Q. The projection of Q onto the plane will be the point of the line through P and Q lying in the plane. The points
of the line through P and Q are those of the form R = (1 − t)P + tQ, so we must solve

f((1 − t)P + tQ) = (1 − t)f(P) + tf(Q) = 0

to get

R =
f(P) Q − f(Q) P

f(P) − f(Q)
.

The explicit formula for this is ugly, unless we use 4D homogeneous coordinates. We embed 3D into 4D by setting
the last coordinate 1, making

P = (a, b, c, 1), Q = (x, y, z, 1)

and thus in homogeneous coordinates the projection formula becomes simply

R = f(P)Q − f(Q)P .

Projection in homogeneous coordinates is a linear transformation whose matrix is

f(P)I −

⎡
⎢⎣

A
B
C
D

⎤
⎥⎦ [xP yP zP wP] = f(P)I −

⎡
⎢⎣

AxP AyP AzP AwP

BxP ByP BzP BwP

CxP CyP CzP CwP

DxP DyP DzP DwP

⎤
⎥⎦ .

This is an especially pleasant formula because it continues to make sense even if P is at infinity. Also, it respects
our interpretation of points as row vectors and affine functions as column vectors.

CHAPTER 13

PostScript in 3D

In this chapter I’ll explain a 3D extension to PostScript that I call ps3d, which you can find in the file ps3d.inc.

In order to make this extension available, just put a line (ps3d.inc) run at the top of your program, once you
have downloaded ps3d.inc. The 3D graphics environment you get in this way is as close to the usual 2D one as

I could make it, with a few unusual features I’ll mention later.

The underlying computations involved in 3D drawing are much more intensive than that for 2D, and in view of

that it was surprising to me that package ps3d has turned out to be acceptably efficient. As I have mentioned

already, I have used the usual PostScript routines in 2D as a model, except that instead of being restricted to
affine transformations, and therefore in this case to matrix arrays of size 32 + 3 = 12, the underlying code

works with arbitrary homogeneous 4 × 4 matrices, or arrays of size 16. There are several reasons for doing
this, among them that it makes the final perspective rendering simpler. It also makes it possible to cast shadows

easily. But the principal one, I have to confess, is mathematical simplicity. The disadvantage might be slowness,

but although noticeable in some circumstances it doesn’t seem to be a fatal problem. This whole package owes
much to Jim Blinn’s book A Trip Down the Graphics Pipeline, mostly for the rigourous use of homogeneous

coordinates throughout. On the other hand, using normal functions instead of just normal vectors is something

only a mathematician would suggest happily. The advantage of doing this is that non­orthogonal transformations
can be handled, although this is perhaps only a theoretical advantage, since most coordinate changes are in fact

orthogonal.

Still following graphics conventions (i.e. as opposed to mathematical ones) point­vectors are rows, and matrices

are applied to them on the right. Affine functions Ax + By + Cz + D will be expressed as column vectors.
Matrices multiply them on the left, and evaluation of such a function is a matrix product

Ax + By + Cz + D = [x y z 1]







A
B
C
D






.

I recall that composition on the stack is the principal motivation for these conventions of order in PostScript
programming. Thus x S T conveniently applies S to x and then T . This conforms to the usual PostScript

convention of applying operators to the object operated on so as to be ready to apply the next operator.

In this package, four dimensional directions are expressed in homogeneous coordinates as [x, y, z, w]. Such a

point with w 6= 0 can be identified with the 3D point (x/w, y/w, z/w), and one with w = 0 can be identified

with a non­oriented direction in 3D. There is some inconsistency involved in this last point, because sometimes
the package implicitly uses oriented directions.

Chapter 13. PostScript in 3D 2

1. A survey of the package

In beginning 3D drawing, after loading the file ps3d.inc, the programmer has the option of choosing a position

for his eye, by convention somewhere on the positive z­axis. He is then looking down towards the negative z­axis,
and what he sees is the projection of objects upon his viewing screen, which is the plane z = 0. On this plane x
and y are the usual 2D user coordinates. This projection of a point onto the viewing screen is the intersection of
the line from that point to the observer’s location with the plane z = 0. It is expected that most objects drawn

will be located with z < 0.

If the programmer does not choose an eye location, the default mode of projection is orthogonal projection onto

the plane z = 0, so that the eye is effectively at∞ on the z­axis, the 4D point [0, 0, 1, 0]. The point of the convention

that we are looking down (rather than up) the z­axis is to get the 3D orientation to be that of the right hand rule
as well as to have the usual 2D coordinates interpreted naturally. I recall that, according to the right hand rule, if

the right fist is curled so as to indicate how the positive x­axis is to be rotated towards the positive y­axis, then

the extended thumb points towards positive values of z.

This setup has some paradoxical features. The following figures are identical except for the location of the eye,
which is at z = 27, z = 9, and z = 3, respectively:

What’s odd here is that as we move closer the cube becomes smaller! The explanation for this is that moving the

eye in this model is not like moving your head back to change your view. When you move your head you move
the whole eye, which includes both the lens at the front and the retina at the back. The distance from the lens to

the retina—the focal length of the eye—does not change. Whereas in the graphics model I am using, moving the

eye really means changing the focal length as well as the location of the eye. We are looking at the plane z = 0
as though it were a window onto which the world in the region z ≤ 0 is projected, but as we move away our

focal length is increased, too. In effect the left picture is taken with a telephoto lens, the right hand one with a

wide angle lens. The two changes, location and focal length, compensate for each other, so that the grid, which is
located on the plane z = 0, remains constant. This behaviour might take getting used to. In the current version,

Chapter 13. PostScript in 3D 3

the eye location is set once at the very beginning of a program and should never be changed again. In some
future version I’ll make it possible to move the eye around like a camera, changing location and also zooming in

and out.

There is another odd feature of these conventions. As I have already mentioned, normally the 3D objects drawn

will lie in the region z < 0, beyond the viewing screen.

Normal viewing Too close Behind the eye

If the object lies between the eye and z = 0, it will be enlarged. If it lies behind the eye, it will be placed in an odd

location. It is because of this unfamiliar behaviour that it is best to draw only objects behind the plane z = 0.

The most frequently used commands in ps3d.inc are those which construct 3D paths—moveto3d, lineto3d,

closepath3d and their relative versions. There are also 3D coordinate changes such as translate3d, scale3d,
and rotate3d. Rotations require an axis as well as an angle as argument. As with PostScript in 2D, there are

implicitly two 3D coordinate systems. One is the user’s 3D coordinate system, and the other the default 3D
system, which is also the user’s system when 3D programming starts. Part of the 3D graphics environment keeps

track of the transformation from the first to the second, by means of a 4×4 matrix. Thus when a program executes

a command like 0 0 0 moveto3d this transformation is applied to the 3D point (0, 0, 0) to get its default 3D
coordinates, and then the projection of this point upon the viewing plane is calculated. In this way, a 2D path is

constructed as the 3D drawing proceeds. The transformation from user 3D to default 3D coordinates is affected

by the 3D coordinate changes. As in 2D, coordinate changes affect directly the frame with respect to which the
user coordinates are interpreted. Thus:

[0 0 3 1] set-eye

[0 1 0] -45 rotate3d

newpath

-0.5 -0.5 0 moveto3d

0.5 -0.5 0 lineto3d

0.5 0.5 0 lineto3d

-0.5 0.5 0 lineto3d

-0.5 -0.5 0 lineto3d

closepath

gsave

0.7 0 0 setrgbcolor

fill

grestore

stroke

Chapter 13. PostScript in 3D 4

Just as in ordinary 2D PostScript, we use a graphics stack to manage 3D graphics environments. The 3D graphics
environment at any moment amounts to two homogeneous linear transformations T (4 × 4) and D (4 × 3), the

first transforming user 3D coordinates to the default ones, and that determining the collapse from 3D onto the

viewing screen. The graphics stack is an array gstack3d of some arbitrary height gmax—it happens to be 64 in
ps3d. But the part of the stack that’s used bounces around. The current height of the stack at any moment is ght

and the current graphics data T and D are in gstack3d[ght]. The user will ordinarily not need to access the
3D graphics stack directly, because there are operators that access its components directly. The 3D graphics stack

is managed with commands gsave3d and grestore3d. One use for the 3D graphics stack is to move different

components of a figure independently, or even in linkage with other components. (This technique is explained
quite nicely in Chapter 3 of Blinn’s book.)

The 3D graphics environment really requires only T and D, but also, for efficiency and convenience, the inverse
matrix T−1 is part of the stored data. Thus an item on the 3D graphics stack is an array of 3 matrices; T , T−1, and

D. The first component is called the current 3D transformation matrix. The effect of transforming coordinates

by a matrix R (rotation, translation, scaling, projection, etc.) is to replace T by RT , T−1 by T−1R−1. The third
component D is called the display matrix, used to transform homogeneous 4­vectors to homogeneous 3­vectors.

At the moment the only display matrices used are those implementing perspective onto the plane z = 0 to an eye

located in homogeneous space. Also at the moment it is set once and for all at the beginning of 3D drawing.

We shall see later why we want quick access to T−1.

In Blinn’s terms, 3D graphics involves a pipeline: a composition of coordinate changes from user coordinates to

default 3D coordinates, then to the display plane (here z = 0), finally to the page. The last step is controlled by

the usual 2D PostScript commands. The first two are managed in this package.

Loading ps3d (with the command (ps3d.inc) run) causes a file matrix.inc of 3D matrix procedures to be

loaded as well. It also causes the variables gstack3d, gmax, ght that determine the 3D graphics environment to
be defined. Initially, �ght is 0, T and T−1 are the 4× 4 identity matrices, and D amounts to orthogonal projection

along the positive z­axis.

In addition ps3d defines variables cpt3d and lm3d, the current point and the last point moved to, 3D points

expressed in default 3D coordinates. Normally, the user will have no need to know them.

The usual 3D vectors are identified with a 4D vector whose last coordinate is 1.

Next I’ll explain the commands, grouped by subject.

2. The 3D graphics environment

Arguments Command Return value

• — gsave3d —

Puts a new copy of the current 3d environment on the graphics stack. It is extremely important to realize that

manipulating the 3d graphics stack has no effect whatsoever on the 2D graphics state. And vice versa.

• — grestore3d —

Restores the previous 3d graphics state.

• — cgfx3d [T U D]
• — ctm3d T
• — cim3d T −1

• — cdm3d D

• — currentpoint3d [x y z]

This returns the current point in user space, T−1 applied to cpt3d.

• — display-matrix D

Chapter 13. PostScript in 3D 5

Returns a 4 × 3 homogeneous matrix.

• [x y z w] set-eye —

Sets the eye at (x, y, z, w). In practice, currently it is assumed that x = y = 0. Here, as elsewhere in 3D drawing,
w = 0 indicates a direction in space, whereas (x, y, z, 1) indicates an ordinary 3D point.

(x, y, z)

(X, Y, 0)

(e, 0, 0)

The 3D to 2D projection takes a point (x, y, z) to the intersection (X, Y) of the line from that point to the eye with
the plane z = 0. Assuming the eye is at (e

x
, e

y
, e

z
) we can find it explicitly as

(1 − t)(e
x
, e

y
, e

z
) + t(x, y, z)

where (1 − t)e
z

+ tz = 0. Therefore

t =
e

z

e
z
− z

1 − t =
−z

e
z
− z

X =
xe

z
− ze

x

e
z
− z

, Y =
ye

z
− ze

y

e − z
.

If the eye is at (0, 0, e) this becomes

X =
ex

e − z
, Y =

ey

e − z
.

In terms of homogeneous coordinates it takes (x, y, z, w) to (xe
z
− ze

x
, ye

z
− ze

y
, e

z
w − ze

w
). Equivalently, it

sets the display matrix to be






e
z

0 0
0 e

z
0

−e
x

−e
y

−e
w

0 0 e
z







• — get-eye [x y z w]
• — get-virtual-eye [x y z w]

This last will be explained later.

• [x y z w] render [X/W Y/W]

This applies the display matrix to the original point, then turns the result [X Y W] into a real 2D point in 2D user

coordinates.

• x y z transform2d x′ y′

Transforms from user 3D coordinates first to default 3D coordinates, then to 2D user coordinates.

Chapter 13. PostScript in 3D 6

3. Coordinate transformations

A coordinate transformation multiplies the current transformation matrix by the matrix of the transformation.

The current matrix is an array of 16 numbers, interpreted as







T0 T4 T8 T12

T1 T5 T9 T13

T2 T6 T10 T14

T3 T7 T11 T15






.

Let U be the inverse of T .

• x y z translate3d —

The new current matrix becomes







1 0 0 0
0 1 0 0
0 0 1 0
x y z 1













T0 T4 T8 T12

T1 T5 T9 T13

T2 T6 T10 T14

T3 T7 T11 T15







and the inverse transformation becomes







U0 U4 U8 U12

U1 U5 U9 U13

U2 U6 U10 U14

U3 U7 U11 U15













1 0 0 0
0 1 0 0
0 0 1 0

−x −y −z 1







• [x y z] A rotate3d —

The arguments are axis and angle. The new current transformation matrix becomes







R0 R3 R6 0
R1 R4 R7 0
R2 R5 R8 0
0 0 0 1













T0 T4 T8 T12

T1 T5 T9 T13

T2 T6 T10 T14

T3 T7 T11 T15







and the inverse transformation







U0 U4 U8 U12

U1 U5 U9 U13

U2 U6 U10 U14

U3 U7 U11 U15













R0 R1 R2 0
R3 R4 R5 0
R6 R7 R8 0
0 0 0 1







since the inverse of a rotation matrix is its transpose.

• a b c scale3d —

The new 3D transformation matrix is







a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 1













T0 T4 T8 T12

T1 T5 T9 T13

T2 T6 T10 T14

T3 T7 T11 T15







Chapter 13. PostScript in 3D 7

and the inverse transformation







U0 U4 U8 U12

U1 U5 U9 U13

U2 U6 U10 U14

U3 U7 U11 U15













a−1 0 0 0
0 b−1 0 0
0 0 c−1 0
0 0 0 1







• matrix concat3d —

The argument is a 3 × 3 matrix M , i.e. an array of 9 numbers. This replaces T by M (extended) T .

The new 3D transformation matrix is







M0 M3 M6 0
M1 M4 M7 0
M2 M5 M8 0
0 0 0 1













T0 T4 T8 T12

T1 T5 T9 T13

T2 T6 T10 T14

T3 T7 T11 T15







and the inverse transformation is







U0 U4 U8 U12

U1 U5 U9 U13

U2 U6 U10 U14

U3 U7 U11 U15













M ′

0 M ′

3 M ′

6 0
M ′

1
M ′

4
M ′

7
0

M ′

2
M ′

5
M ′

8
0

0 0 0 1







• [A B C D] P plane-project —

Projects from the 3D homogeneous point P onto a plane. After this change, which is not invertible, paths are
projected onto the plane. Explicitly, the map here is Q 7→ f(P) Q− f(Q) P .

The matrix transformation is







f(P) − AP0 −AP1 −AP2 −AP3

−BP0 f(P) − BP1 −BP2 −BP3

−CP0 −CP1 f(P) − CP2 −CP3

−DP0 −DP1 −DP2 f(P) − DP3













T0 T4 T8 T12

T1 T5 T9 T13

T2 T6 T10 T14

T3 T7 T11 T15






.

The inverse transformation is invalid.

• v = [x y z w] M transform3d vM
• M f dual-transform3d Mf

4. Drawing

• x y z moveto3d —
• x y z lineto3d —

• x y z rmoveto3d —

• x y z rlineto3d —
• x1 y1 z1 . . . curveto3d —

The input is nine numbers.

• x1 y1 z1 . . . rcurveto3d —

• — closepath3d —

It updates the current 3D point.

• [see below] mkpath3d —

Chapter 13. PostScript in 3D 8

The arguments are t0, t1, N , an array of parameters, and the function /f. This function has two arguments, the
array of parameters and a single variable t. It returns an array made up of (1) a 3D point (x, y, z) and (2) a velocity

vector x′, y′, z′). This procedure draws the path in N pieces using f as parametrization.

• — 2d-path-convert —

This converts the current 2D path to a 3D path according to the current 3D environment. Thus

[0 0 5 1] set-eye

[0 1 0] 45 rotate3d

newpath

0 0 moveto

(ABC) true charpath

2d-path-convert

gsave

0.7 0 0.1 setrgbcolor

fill

grestore

stroke

5. Surfaces

I’ll deal with surface rendering in much more detail in the next chapter, but make a few preliminary remarks here.

Surfaces are most conveniently interpreted to be an assembly of flat plates, maybe very small ones to be sure.
To ensure an illusion of depth in 3D pictures, they are often shaded according to the position of some imaginary

light source. In mathematical graphics we are not interested in realistic rendering, which may even clutter up a

good diagram with irrelevant junk, and can settle for simple tricks. Still, a few things are important for the right
illusion.

• x [a0 a1] lshade —

• x [a0 a1 a2 a3] shade —

• x [a0 . . . a
n
] bshade —

The number x lies in [−1, 1], and is usually the result of the calculation of the dot­product of normal vector and

light direction. It is shifted to [0, 1] and then the weighting function is applied.

The coordinates a0, etc. are control values for a Bernstein polynomial determining the shading weight. The

values of a0 and a
n

are minimum and maximum. The first two are duplicated by the last one, but they are
significantly more efficient. For shade itself, [0 1/3 2/3 1] would be neutral and [0 0 1 1] would be relatively

strong contrast. These things are discussed in detail in the next chapter.

• array of 3D points normal-function [A, B, C, D]

Returns the normal function Ax + By + Cz + D which is 0 on the points of the array, and increasing in the
direction determined by the right­hand rule.

It is in dealing with matters affecting the appearance of surfaces—visibility and shading—that we need T−1. The
point x is outside the piece of surface Σ if and only if x · fΣ ≥ 0, where fΣ is the normal function associated to S.

We often want to know similarly if x is outside the transformed surface ST . This happens if and only if xT−1 is

outside S, or
xT−1 · fΣ = x · T−1fΣ ≥ 0 ,

from which we see that fΣT
= T−1fΣ. We could calculate T−1fΣ for each Σ but in practice we shall want to

test ‘visibility’ for many bits of surface Σ and only one x (the ‘eye’, say). So we must be ready to calculate T −1x.
This, and similar calculations involving the light source, motivate the extra matrix T −1 on the graphics stack.

The command get-virtual-eye returns this point.

Chapter 13. PostScript in 3D 9

6. Code

The ps3d package is in ps3d.inc. This incorporates a collection of generic matrix routines, imported from

matrix.inc. This package is documented separately in matrix.pdf. Sample 3D drawing is contained in
the files cube-frame.ps, cube-solid.ps, cube-shaded.ps, and cube-shadow.ps. The last two of these use

techniques discussed in the next chapter.

References

1. Modern perspective was discovered in the early 15th century,a bd early accounts are still of interest. Leon

Alberti wrote the first treatise on it in 1435, and what he said cannot be bettered for succinctness: ‘. . . whoever
looks at a picture sees a certain cross section of a visual pyramid.’ (This is quoted from p. 209 of A Documentary

History of Art, edited and translated by Elizabeth Holt, published by Doubleday Anchor Books.)

2. Jim Blinn, Jim Blinn’s Corner—A Trip Down the Graphics Pipeline, Morgan Kaufmann, SanFrancisco, 1996.

Chapter 8 of this book examines interesting questions about allowing not only a change in 3D coordinates, but

also ways in which the display matrix can be changed to conform to different ways of viewing 3D space. In
mathematical graphics, this isn’t so important as it is in non­mathematical graphics, where one often has to track

a moving object.

CHAPTER 15

The regular polyhedra

A regular figure is one which is . . . well, more regular than most. A polyhedron is a shape in three dimensions
whose surface is a collection of flat polygons, and a regular polyhedron is one all of whose faces and vertices lookpolyhedron:regular:1

the same. It has been known for a very long time that there are exactly five regular polyhedra. Although they are
favourites for computer graphics, they are probably not clearly understood by those who draw them.

That there are no more than five is by no means a trivial fact, although it is one to which we have become
accustomed. The regular polyhedra have been known for a very long time as mathematical history goes—the
oldest extant Greek mathematical text, some scribbling on discarded pottery discovered on Elephantine Island
near the Aswan cataracts that dates to about 250 B.C., is concerned with them. Their properties are in fact not easy
to understand, and perhaps familiarity has made it more difficult to realize how remarkable they are. Although
it is perhaps not the most mathematically sophisticated part of Euclid, the regular polyhedra are discussed only
in the last book of the Elements, and the treatment is not at all transparent. In order to show how an extendedElements:Euclid’s:1

graphical reconstruction of Euclid can go, I will sketch his treatment in this Chapter.

There are two quite different parts of the story: (1) It is possible to construct five different regular polyhedra; (2)
it is not possible to construct any others. Exactly what these assertions mean, and how very distinct they are, will
be appreciated later on. For both, at least to start with, I shall follow Euclid rather closely. At an elementary level,
it is a hard act to beat.

I shall begin with part (2), and deal with the construction later on. But first a few more opening remarks.

Chapter 15. The regular polyhedra 2

1. What exactly is a regular polyhedron?

It is important first to understand exactly what a regular polyhedron is. The first, and simplest condition, is that
its faces are to be regular polygons. Another is that all of these faces be congruent to each other. But there has to
be some extra condition to guarantee regularity. For example, these two conditions of facial congruence will be
satisfied by an icosahedron with some of its sides pushed in, which surely wouldn’t be considered to be all that
regular:

So there has to be something more required. For one thing, the figure should be convex, which means loosely
that it bulges out. Technically this means that any two points in the figure can be joined by a segment contained
completely inside the figure itself. At any rate, this new condition certainly excludes the mutant above. But it
isn’t sufficient to characterize regularity either, since the following figure, which is constructed by gluing two
regular tetrahedra together, shouldn’t qualify as regular.

This suggests that we impose the condition that all the vertices of the figure, as well as all its faces, ‘look alike’ in
the sense that they are congruent. We shall in all specify:

• By definition, a regular polyhedron is one satisfying all four of these conditions:
(a) All of its faces are regular polygons;
(b) they are all congruent to one another;
(c) the figure is convex;
(d) all of its vertices are congruent.

In fact, these conditions are unnecessarily strong. It is actually the case that we need only require that the
number of faces around each vertex be the same for all vertices. A remarkable theorem proven by the French
mathematician Cauchy in the early nineteenth century asserts that these conditions are redundant. But it is not aCauchy:A.:2

simple result, and it is better in an elementary treatment not to depend on it.

Chapter 15. The regular polyhedra 3

2. There are no more than five regular solids

I shall first explain roughly why there cannot be more than five regular polyhedra, and then go over the argument
later in detail. Incidentally, this assertion is somewhat informally inserted at the end of Book XIII of Euclid’s:Euclid’s, Book XIII:2

Elements, even though many of his earlier results are clearly leading up to it.

That there cannot be more than five regular solids just depends essentially on what happens around one of the
vertices, call it P , of a regular polyhedron. Throw away all of the faces of the polyhedron which do not touch P .
Then flatten out the faces that are left. For the polyhedra we know about, we get the following pictures of what I
call the splayed vertices.

It is intuitively reasonably clear that when we do that, the vertex ‘opens up’ in the sense that in going around the
vertex we don’t go all around its image in the plane. In fact, this is a special case of Proposition XI.21 from Euclid,s, Proposition XI.21:3

which is much more general:

• (Euclid XI.21) In going once around the faces touching any convex vertex, the angles traversed always add
up to less than 360◦.

The word ‘convex’ here, as with the earlier use of the same word, means a vertex which always bulges out.
Convexity is clearly a necessary condition, since if we are allowed to fold up the faces around a vertex like an
accordion the proposition is no longer true. I shall come back later to give the details of the argument, nearly all
of which arise in the very beginning (Book I) of Euclid. Let’s assume for now that the result is true and see why
it implies that there can be no more than five regular polyhedra.

Chapter 15. The regular polyhedra 4

Since all faces of a regular polyhedron are congruent, each one of them will be a regular polygon with some fixed
number of sides. Furthermore, all the vertices are congruent, which means that the number of faces touching
each vertex must be the same. Suppose that each face has m sides, and that each vertex is touched by n faces.
What are the possibilities?

• In a regular plane polygon of m sides, the angle at each corner is equal to 180◦ − 360◦/m.

360◦/m

m = 5

Since the inside angle at any corner is 180◦ less the angle turned at that corner, this follows immediately from a
more intuitive result:’s, Proposition I.32:4

• (Euclid I.32) If we follow around the outside of a convex plane polygon, the total angle turned is 360◦.

This is intuitively clear, but it can be reduced to something really apparent by translating these angles to one
vertex:

At any rate, if we have n polygons at a single convex vertex, each of m sides, then the total angle traversed as we
go around the faces next to the vertex will be n (180◦ − 360◦/m) and this must be less than 360:

n(1 − 2/m) 180◦ < 360◦

180◦ − 360◦

m
<

360◦

n

which leads to the inequality
1
2

<
1
m

+
1
n

.

Chapter 15. The regular polyhedra 5

Each face must be at least a triangle, so m ≥ 3. The number of faces meeting a true vertex has to be at least three,
hence n ≥ 3 as well. Therefore

1
2

<
1
m

+
1
n

≤ 1
m

+
1
3

1
6

<
1
m

n < 6 .

Similarly, m < 6. So we have only a finite number of possibilities to look at, examined in the following table,
which shows 1/m + 1/n for 3 ≤ m, n < 6, except that those that don’t qualify are left out:

Values of 1/m + 1/n > 1/2
n 3 4 5 6

m
3 2/3 7/12 8/15 −
4 7/12 − − −
5 8/15 − − −
6 − − − −

We see that there are exactly five possibilities, each corresponding to one of the known regular polyhedra.

Another way to see which m and n qualify is to sketch the region 1/x+1/y > 1/2, x ≥ 3, y ≥ 3 in the (x, y)-plane,
and observe which points with integral coordinates lie inside it.

1
x

+ 1
y

= 1
2

y = 3

x = 3

3. The proof of Euclid XI.21

The proof that Euclid gives for Proposition XI.21 involves a sequence of subsidiary results, mostly taken froms, Proposition XI.21:5

Book I of the The Elements. Since the proposition itself seems, as do so many results in Euclid, almost obvious, I
should say a few words of comment about the argument.

One’s intuition about why XI.21 is true is based, presumably, on the nearly physical feeling involved in squashing
the vertex flat.

Chapter 15. The regular polyhedra 6

Translated into mathematics this is probably equivalent to the idea that projecting one of the facial angles of a
convex vertex onto a plane spreads that angle out. And so it does, in the right circumstances, but not always.
So it is not apparently true that we can make a direct comparison of the angles on each face with those in a 2D
projection. Euclid must have been aware of this, although as usual he doesn’t tell you more than you have to
know. He manages, however, to get around the difficulties in a very elegant manner. I suppose his argument is a
natural one, and one which some would perhaps call obvious. Nonetheless, I believe it to be one of the highlights
in The Elements.

I shall present Euclid’s argument by a backwards progression. First of all, along with Euclid I shall assume that
the vertex is surrounded by three faces, in order to make the reasoning a little more concrete.

We need to label the figure. Cut off the faces by a plane Π intersecting them transversely. Each face becomes a
triangle, and the interior of Π cut off is also a triangle. To picture better what is going on, we can unfold and
spread these triangles out on a plane. Label the angles in these triangles like this:

A1

A2A3

B1

C1

D1

B2

D2

D3

Here A1, A2, A3 are the angles immediately surrounding the original vertex. Thus, each one of the lower vertices
in this tetrahedron will have angles B, C , D around it. This is the crucial fact:s, Proposition XI.20:6

Chapter 15. The regular polyhedra 7

• (Euclid XI.20) If B, C , and D are any three angles around a trihedral vertex, then B + C > D.

I’ll postpone the proof of this for a moment, but right now let’s see why this implies Proposition XI.21. In each
triangle, the sum of its interior angles must be 180◦. Therefore∑

(Ai + Bi + Ci) = 3 · 180◦ .

where the sum is taken over the three faces of the vertex. But in addition, according to the result we have yet to
prove ∑

(Ai + Bi + Ci) >
∑

Ai +
∑

Di∑
Ai <

∑
(Ai + Bi + Ci) −

∑
Di

since Bi + Ci > Di. However ∑
Di = 180◦

since the Di are all the interior angles of a triangle. This gives us∑
Ai <

∑
(Ai + Bi + Ci) −

∑
Di = 3 · 180◦ − 180◦ = 360◦ ,

which is just what Proposition XI.21 asserts.

Exercise 1. Work out the proof for an arbitrary convex vertex.

Suppose that, conversely, that one is given a collection of angles in the plane splayed out around a vertex, whose
sum is less than 360◦. When can one construct a vertex in 3D that gives rise to it? Can one design an algorithm for
doing this? First of all, this is not always possible. For example, for three angles α, β and γ with α+β +γ < 360◦

it is possible only if α + β > γ, for example (as we shall see later on). And if there are more than three angles the
vertex will not be unique—it will not in fact be rigid. This means that if one is given such a vertex that one can
always move the faces around as movable plates without changing their shape. This is just another way of saying
that polygons in the plane are similarly flexible—for example, one can always deform a square into a rhombus.

Exercise 2. Suppose that mα < 360◦. Explain how to construct a regular vertex with vertex angle α—i.e. one
whose orthogonal section is a regular polygon of m sides. (Hint: start with the regular polygon in a plane. The
vertex should be somewhere on the perpendicular line through its centre. The fact that mα < 360◦ guarantees
that the vertex can be located outide the plane.)

4. Trihedral angles

It remains to prove

• (Euclid XI.20) If B, C , and D are any three angles around a trihedral vertex, then B + C > D.

Before proving it, I will make it somewhat more plausible by translating it into a statement about geometry on a
sphere. A great circle on a sphere is the intersection of the sphere with a plane through its origin.

Chapter 15. The regular polyhedra 8

Between any two points P and Q on a sphere which are not directly opposite to each other there passes a unique
great circle, that determined by the plane containing P and Q and the sphere’s centre O. The part of that great
circle lying between the two points is the shortest route between them that lies entirely on the sphere.—the
spherical geodesic line between them. Distance on the sphere along a great circle is proportional to the spanning
angle POQ at the centre of the sphere. If the radius of the sphere is 1 then that distance is exactly equal to that
angle measured in radians.

OQ

P

In particular, if R is a third point on the sphere which does not lie on the great circle arc between them, then the
spherical distance PQ must be less than the sum of PR and RQ.

R

Q

P

This is the spherical triangle inequality, analogous to the triangle inequality in the plane. Since spherical distances
are proportional to central angles, it is equivalent to the assertion we are trying to prove. So in effect, in proving
XI.21 we are proving the spherical analogue of a familiar inequality about paths on the plane (Euclid I.20, which
we’ll see in a moment).

How about the proof itself?

We follow Euclid. If all three of the vertex angles are the same, the claim is trivial. So suppose that one of the
angles is actually larger than another. In the following figure at the left, these are on the faces we are looking at.

Chapter 15. The regular polyhedra 9

Lay a copy of the face with the smaller vertex angle on the face with the larger one, as in the figure on the right.
Then slice off a triangle on the face with the larger vertex angle. Mirror that slice back onto the face with the
smaller vertex angle, as in the figure on the left, just below:

A

B

C

D

P

Let P be the vertex, and label some other vertices as shown. The sum AB +BC is greater than AC = AD +DC ,
by a result from Euclid (I.20) that I have already mentioned. Since AD = AB, DC < BC. By another result from
Euclid (I.25), the angle DPC is less than the angle CPB. But then finallyd’s, Proposition I.25:9

APC = APD + DPC < APB + BPC .

Here are the results from Book I that we have used:

• (Euclid I.20) In any triangle, the length of one side is less than the sum of the lengths of the two other sides.’s, Proposition I.20:9

• (Euclid I.25) If we are given two triangles two of whose sides match in length, then the angle opposite the
third side is larger in the triangle with the longer third side.

I’ll recall their proofs in the next section.

5. The results we need from Book I

There are actually a number of results that we’ll need from Book I of Euclid before we’re through, since the proofs
of the results we need will in turn take us back to others. Since we are not concerned here with complete rigour,
but just with making the reasons as intuitively transparent as possible, the main difficulty is knowing where to
begin. For some of these early results in Euclid, pictures alone should suffice.

• (Euclid I.32) In any triangle, the exterior angle of one corner is equal to the sum of the opposite interior’s, Proposition I.32:9

angles.

Chapter 15. The regular polyhedra 10

This will be applied in the next proof, but only in so far as it implies that the exterior angle is larger than either of
the interior ones. This weaker result, unlike that above, can be proven without using the axiom of parallels, and
is Euclid I.16.’s, Proposition I.16:10’s, Proposition I.18:10

• (Euclid I.18) In any triangle, the angle opposite a larger side is larger.

• (Euclid I.20) The length of any side of a triangle is less than the sum of the other two sides.

I leave this as an exercise, including pictures.

• (Euclid I.25) Given two triangles with two sides in each matching two sides in the other, the one with the
longer third side has the larger angle opposite the third side.

This we shall actually see proven. The demonstration I am about to give is attributed to Menelaus in Heath’s
comments on Proposition I.25. We start with the two triangles, pictured above. We translate the one with the
smaller side and then rotate it and reflect it so as to get this picture:

Chapter 15. The regular polyhedra 11

Then we construct the isosceles triangle as shown below, and extend the line also. Finally, we apply the previous
Proposition.

This concludes the proof that there are no more than 5 regular solids. It remains to tell how to construct them.

6. Constructing the regular polyhedra

As far as showing that the regular solids can be constructed is concerned, the proof above is somewhat limited in
relevance. It says no more and no less than that a single vertex of each of the regular polyhedra can be constructed.
But constructing a vertex is not the same as constructing the whole figure, since it is not at all obvious that the
construction of a vertex can be extended to give the whole figure. Of course starting with one vertex we can go
on building new vertices attached to what we already have, but there is no obvious reason why at some point we
won’t get some kind of peculiar incompatibility between pieces we have constructed. In fact, one can do a lot of
calculations for each of the five regular solids and see that this problem does not arise. But an argument which
shows directly and uniformly in all cases that such an incompatibility never occurs was found, as far as I know,
only fairly recently. The argument we shall see here, following Euclid, looks at each case on its own. There is one
notable accidental feature, however—it turns out that all of the regular polyhedra can be constructed by starting
with cubes!

In the rest of this section I shall describe without proof the essentials of construction in all cases. In the next I
shall sketch the justification of the construction.

• Cube

This is easy. I make its side of length 2, aligned along the axes, with one corner at (−1,−1,−1). Then the cornerscube:11

are all points with either 1 or ε = −1 as coordinate, making eight in all.

(1, 1, 1)

(1, ε, 1)

(ε, 1, 1)

(ε, ε, 1)

(1, 1, ε)

(1, ε, ε)

(ε, 1, ε)

(ε, ε, ε)

Chapter 15. The regular polyhedra 12

In the PostScript data file regular-polyhedron.incdescribing the regular polyhedra, these points are put into
an array:

[[-1 -1 -1]
[-1 1 -1]
[1 1 -1]
[1 -1 -1]
[-1 -1 1]
[-1 1 1]
[1 1 1]
[1 -1 1]]

That is to say, I go around the back square with z = −1 in the positive orientation as seen from behind, starting
from the origin, then around the front face z = 1 in a parallel track.

• Tetrahedron

The vertices of the cube (x, y, z) with x + y + z equal to −3 or 1 are the vertices of a regular tetrahedron, as aretrahedron:regular:12

those where the sum is 3 or −1.

Exercise 3. Prove this. Find an exact formula for the height of the tetrahedron, the distance from a vertex to the
opposite face. Find the length of an edge.

• Octahedron

The centres of the faces of a cube form a regular octahedron. The octahedron is therefore the dual of the cube.ctahedron:regular:12

Exercise 4. Find the length of an edge of this octahedron.

Chapter 15. The regular polyhedra 13

• Dodecahedron

The tetrahedron and octahedron are relatively simple figures. Their analogues and that of the cube exist in allecahedron:regular:12

dimensions. It is perhaps more surprising that a dodecahedron can also be constructed by starting with a cube.

First construct a regular pentagon whose diagonal is equal to the side of the cube. Attach it along a diagonal to
an edge of the cube, in effect making the diagonal into a hinge. Attach another congruent pentagon to the edge
opposite, on the same face. You can check that if the two pentagons lie flat on the common face of the cube,
they will overlap. If they are rotated away from the cube, of course eventually they will have no intersection. So
somewhere in between they can be situated like this, so they just touch:

The remarkable thing is that you can attach a pair of pentagons to each face of the cube in this way, changing the
orientation if necessary, so as to have twelve pentagons making up a dodecahedron with the 12 pentagons for
faces.

Exercise 5. Find the coordinates (x, y, z) of the point P in 3D above the face of a cube making this work.

P

Chapter 15. The regular polyhedra 14

• Icosahedron

The icosahedron is different. Assemble a band of ten equilateral triangles, and then add to this two pentagonalosahedron:regular:13

caps of five equilateral triangles.

The icosahedron can also be constructed as the dual of the dodecahedron.

Exercise 6. Find the coordinates of all the vertices, and in particular the vertical height of the top vertex and the
top pentagon.

Exercise 7. The icosahedron, too, can be constructed more directly from the cube. Write a PostScript program
to follow the recipe of H. Taylor described in the comments on Proposition XIII.16 in Heath’s English edition ofProposition XIII.16:14

Euclid.

7. Verifying regularity

The dodecahedron and icosahedron are not constructed uniformly, and it is not apparent that they are in fact
regular. I leave this as an exercise.

For the dodecahedron, in addition to showing that the vertices are all congruent, it must be shown that the
pentagons constructed on each face actually attach to the pentagons from other faces in the way they should.

For the icosahedron, the faces join together and are all congruent by definition. What remains to be shown is that
the vertices are congruent.

8. Code

The regular polyhedra are catalogued in the file regular-polyhedra.inc. Their vertices are listed, and then
their faces. Each face is an array of two items, first the the array of vertices on the face, traversed in a counter-
clockwise direction, and then the coefficients [A B C D] such that Ax + By + Cz + D ≥ 0 describes the outside
of that face.

Here, for example, is the listing for the cube:

/cube-vertex [
[-1 -1 -1]
[-1 1 -1]
[1 1 -1]
[1 -1 -1]
[-1 -1 1]
[-1 1 1]
[1 1 1]
[1 -1 1]

] def

/cube [

Chapter 15. The regular polyhedra 15

[
[
cube-vertex 0 get
cube-vertex 1 get
cube-vertex 2 get
cube-vertex 3 get

] dup normal-function
]
[
[
cube-vertex 4 get
cube-vertex 7 get
cube-vertex 6 get
cube-vertex 5 get

] dup normal-function
]
[
[
cube-vertex 0 get
cube-vertex 4 get
cube-vertex 5 get
cube-vertex 1 get

] dup normal-function
]
[
[
cube-vertex 6 get
cube-vertex 7 get
cube-vertex 3 get
cube-vertex 2 get

] dup normal-function
]
[
[
cube-vertex 2 get
cube-vertex 1 get
cube-vertex 5 get
cube-vertex 6 get

] dup normal-function
]
[
[
cube-vertex 0 get
cube-vertex 3 get
cube-vertex 7 get
cube-vertex 4 get

] dup normal-function
]
] def

The file regular-polyhedron.inc contains enough data to describe all the regular polyhedra. There are
commands tetrahedron, octahedron, dodecahedron, and icosahedronwhich return for each figure an array

Chapter 15. The regular polyhedra 16

of faces like the one shown above for the cube. In order to use it, you have to know the numbering scheme for
the vertices. Here are some diagrams which do that. We start off with one we have seen before.

(1, 1, 1)

(1, ε, 1)

(ε, 1, 1)

(ε, ε, 1)

(1, 1, ε)

(1, ε, ε)

(ε, 1, ε)

(ε, ε, ε)

0

1

2

3

4

5
6

7

0

1

2

3

0

1

23

4

5

15

0

1 2

3

4

5 6

7

8

9

10

11

1213

14
16

17

18

19

Finally, I just mention that the numbering of the icosahedron starts at the top and goes down. With this
information, it can be deduced from the facial structure.

Chapter 15. The regular polyhedra 17

9. References

1. H. S. M. Coxeter, Regular polytopes, Dover. Regular polyhedra in all dimensions are dealt with in this classic.Coxeter:H. S. M.:16

Euclid’s construction of the five regular polyhedra is impressive, but there is something unsatisfying in that each
is on its own. He does not present a uniform way to build all. The modern way to construct them is through
their symmetries—the rigid transformations that take them into themselves—and that is what Coxeter’s book is
all about. The crucial point is that the symmetries are generated by reflections. Other situations in which this
occurs are in the main stream of mathematics, and give rise among are associated with the most interesting of
all mathematical objects. They have come to play a role in nearly branches of the field. The best construction of
these from simple data was discovered by Jacques Tits about 1960, and is contained in the surprisingly readableTits:J.:16

book Groupes et algèbres de Lie IV, V, VI by Nicholas Bourbaki.

2. Peter Cromwell, Polyhedra, Cambridge University Press. Lots of stuff here. The rigidity theorem of Cauchy isCromwell:P.:17Cauchy:17

in Chapter 6. Euclid’s proposition that the sum of angles around a convex vertex is less than 360◦ was explained
in a more geometric way—a precursor of curvature arguments—by Descartes, and this is in Chapter 5.

3. Euclid, The Elements. All three volumes are in print from Dover, and the text of Euclid itself can be found atElements:Euclid’s:17

http://aleph0.clarku.edu/ djoyce/java/elements/elements.html

Heath’s comments on Euclid’s text, which are extremely valuable, used to be available at the Perseus site

http://www.perseus.tufts.edu/cgi-bin/ptext?lookup=Euc.+1

but now (August, 2003), as I have mentioned elsewhere, only the text of Heath’s translation is there, with
comments exclusively from the introductory chapters. This is a great loss.

4. Jürgen Mau and Wolfgang Müller, ‘Mathematische Ostraka aus der Berliner Sammlung’, Archiv für Papyrus-
forschung 17 (1982), pp. 1–10. This is the only published account of the pottery shards found on Elephantine
Island, containing the oldest extant fragments of Greek mathematics. They are concerned with technical details
of the construction of an icosahedron, related to material in Boox XIII of Euclid’s Elements.:The Elements:17

APPENDIX 6

Evaluating polynomials:

getting along without variables

Being able to evaluate arbitrary polynomials is very useful. We want a procedure with two arguments, the firstpolynomials:1

a number x and the second an array [a0 a1 . . . an−1] to be interpreted as the coefficients of a polynomial.
The procedure should return P (x) = a0 + a1x + · · · + an−1x

n−1. In choosing this order for the arguments, I

am following the usual rule of PostScript with an argument x first and then the object to be applied to it (the
polynomial). The point is that this choice makes composition easy.

In using polynomial evaluation in some tools, such as mkpath, the derivatives of P are also needed. The method

used to evaluate P (x) can evaluate P ′(x) with little extra effort.

In many applications, a polynomial has to be evaluated many times, and it is therefore important to design the

evaluation procedure to be efficient. This will offer an excuse to include a few remarks about managing the stack
without variable names.

1. The most straightforward way to do it

Here is a simple procedure that will evaluate an arbitrary polynomial a3x
3 + a2x

2 + a1x + a0 of degree three.

% arguments: number x and array a = [a0 a1 a2 a3]

cubic-poly { 2 dict begin

/a exch def

/x exch def

a 0 get

a 1 get x mul add

a 2 get x 2 exp mul add

a 3 get x 3 exp mul add

end } def

Exercise 1. Extend this procedure, using a for loop, so that it will evaluate a polynomial of arbitrary degree. Be
careful that your procedure works even for a polynomial of degree 0 (a constant). Also, it should return 0 if the
array is empty. (Note that the degree is one less than the length of the coefficient array.)

Exercise 2. Extend in turn the procedure from the previous exercise so that it will return the array of two numbers
[P (x) P ′(x)].

2. Horner’s method

The PostScript command exp is somewhat slow, and the straightforward procedure used above is thereforemethod of evaluation:1

probably inefficient. Better is an elegant method of evaluating polynomials due to the nineteenth century English

mathematician W. G. Horner. It does not use exp, but gets by with just successive multiplications and additions.Horner, W. G.:1

We start off by rewriting a cubic polynomial:

P (x) = a3x
3 + a2x

2 + a1x + a0 = (((a3)x + a2)x + a1)x + a0 .

Appendix 6. Evaluating polynomials: getting along without variables 2

In other words, to evaluate the polynomial it suffices to calculate in succession

a3

a3x + a2

(a3x + a2)x + a1

(((a3)x + a2)x + a1)x + a0

or, in other words, giving these expressions labels, we calculate

b2 = a3

b1 = b2x + a2

b0 = b1x + a1

b−1 = b0x + a0 .

At the end b−1 = P (x). In PostScript this becomes

/b a 3 get def

/b b x mul a 2 get add def

/b b x mul a 1 get add def

/b b x mul a 0 get add def

and at the end b = P (x). We can even get by without definitions.

a 3 get

x mul a 2 get add

x mul a 1 get add

x mul a 0 get add

will leave P (x) on the stack. There is the germ of a simple loop here.

Exercise 3. Write a procedure which evaluates an arbitrary fourth degree polynomial P (x) using a loop, and
without defining b.

It would be easy enough to construct a PostScript procedure that implements Horner’s algorithm using variables

x and a, but it a bit more interesting to construct one that does all its work on the stack. The point of this is that
accessing the value of a variable is an operation costly in time. Besides, it’s often an enjoyable exercise.

I haven’t said much about what’s involved in sophisticated stack management. The most important thing to keep
in mind is this:stack:manipulation:2

• If you are going to get along without variable names, then the stack has to hold at every moment the entire
state of the computation.

In Horner’s method, the state of the computation involves the value of x, the current value of the polynomial, and
a specification of the coefficients yet to be used. In the following code, this is encapsulated in the list of unused

coefficients ai, the current polynomial value P , and the variable x, sitting on the stack bottom to top in that order,
inside a repeat loop.

% x [a0 a1 ...]

/horner {

aload length % x a0 a1 ... an n+1

dup 2 add -1 roll % a0 a1 ... an n+1 x

exch 1 sub { % a0 a1 ... P=an x

dup 4 1 roll % a0 ... x ak P x

mul add exch % a0 ... a[k-1] P x

} repeat

% at end P x on stack

pop % P

} def

Appendix 6. Evaluating polynomials: getting along without variables 3

3. Evaluating the derivatives efficiently

Very often in plotting a graph it is useful to obtain the value of P ′(x) at the same time as P (x). Horner’s method

allows this to be done with little extra work.

The formulas for the bi above can be rewritten as

a3 = b2

a2 = b1 − b2x

a1 = b0 − b1x

a0 = b−1 − b0x

We can therefore write

P (X) = a3X
3 + a2X

2 + a1X + a0

= b2X
3 + (b1 − b2x)X2 + (b0 − b1x)X + (b−1 − b0x)

= b2(X
3 − X2x) + b1(X

2 − Xx) + b0(X − x)

= (b2X
2 + b1X + b0)(X − x) + b−1

= (b2X
2 + b1X + b0)(X − x) + P (x) .

Therefore the coefficients bi have significance in themselves; they are the coefficients of a simple polynomial:

b2X
2 + b1X + b0 =

P (X) − P (x)

X − x
= (say) P1(X) .

One remarkable consequence of this is that we can evaluate P ′(x) easily since a simple limit argument gives

P ′(x) = b2x
2 + b1x + b0

which means that we can apply Horner’s method to the polynomial

P1(X) = b2X
2 + b1X + b0

in turn to find it. We can in fact evaluate P (x) and P ′(x) more or less simultaneously, if we think a bit about it.

Let the numbers ci be calculated from P1(X) in the same way that the b’s came from P (X) = P0.

b2 = a3

b1 = b2x + a2

b0 = b1x + a1

b−1 = b0x + a0

c1 = b2

c0 = c1x + b1

c−1 = c0x + b0

concluding with P (x) = b−1, P ′(x) = c−1. This requires that we store the values of bi to be used in calculating

the c’s. In fact we can avoid this by interlacing the calculations:

b2 = a3

c1 = b2

b1 = b2x + a2

c0 = c1x + b1

b0 = b1x + a1

c−1 = c0x + b0

b−1 = b0x + a0

Appendix 6. Evaluating polynomials: getting along without variables 4

concluding with P (x) = b−1, P ′(x) = c−1.

Exercise 4. Design a procedure with two arguments, an array and a number x, which returns [P (x) P ′(x)],
where the polynomial P is defined by the array argument. It should use Horner’s method to do this, preferably in
the most efficient version. (Hint: evaluatng the derivative requires one less step than evaluating the polynomial.
This can be dealt with by initializing c to 0 in the steps shown above. In this way, c and b can be handled in the
same number of steps, and writing the loop becomes simpler.)

4. Evaluating Bernstein polynomials

The Bernstein polynomials are the generalizations of the Bézier cubic polynomials, polynomials of the formynomials:Bernstein:4ynomials:Bézier cubic:4

By(t) = (1 − t)ny0 + n(1 − t)n−1ty1 +
n(n − 1)

2
(1 − t)n−2t2y2 + · · · + tnyn .

They are used frequently in computer graphics, for reasons explained elsewhere. A procedure to evaluate one

has two arguments, the number t and the array of the yi, and returns By(t). The basic principle here will be as in

Horner’s algorithm, except that here the polynomial coefficients must be calculated as we go along. Fix n and let

Ck =
n(n − 1) . . . (n − (k − 1))

k!
tk

so that

By(t) =

n∑

k=0

Cn−kyn−ksk (s = 1 − t) .

In evaluating By(t) by Horner’s method, the coefficients Ck must be evaluated on the fly. This is done by the

inductive process

C0 = 1

Ck+1 = Ck · t ·
n − k

k + 1
.

We run Horner’s algorithm with variables P (the current value of the polynomial), k (an index), and C (equal
to Ck at all times). We start with P = y0, k = 1, and C = C1 = nt. Then the appropriate variant of Horner’s

algorithm repeats n times, setting in each loop

P := P · s + C · yk

C := C ·
n − k

k + 1
· t

k := k + 1

and end with P = By(t). It seems plausible that this procedure will be evaluated often, so efficiency is a major
concern. For this reason, in the following code, no dictionary is used. This is one of the more complicated code

segments in which I do this—note the heavy use of index to retrieve the values of y, n, s, and t. This is especially

reasonable since they remain constant throughout the calculation once stored. (There is no storage operator to
match the retrieval operator index.)

% t y=[y0 y1 ... yn]

/bernstein { % t y

% constants y n t s=1-t

% variables k C P

dup length % t y n+1

1 sub % t y n

3 -1 roll 1 % y n t 1

1 index sub % y n t s

Appendix 6. Evaluating polynomials: getting along without variables 5

% constants in place

1 % y n t s k

3 index 3 index mul % y n t s k C=nt

5 index 0 get % y n t s k C P=y0

5 index { % y n t s k C P

% P -> P* = s.P + C.y[k]

% C -> C* = C.t.(n-k)/(k+1)

% k -> k* = k+1

3 index mul % y n t s k C P.s

1 index % y n t s k C P.s C

7 index % y n t s k C P.s C y

4 index get mul add % y n t s k C P.s+C.y[k]=new P

3 1 roll % y n t s P* k C

5 index % y n t s P* k C n

2 index sub mul % y n t s P* k C.(n-k)

1 index 1 add div % y n t s P* k C.(n-k)/(k+1)

4 index mul % y n t s P* k C*

3 1 roll 1 add % y n t s C* P* k*

3 1 roll % y n t s k* C* P*

} repeat

7 1 roll 6 { pop } repeat

} def

5. Code

The filehorner.inchas one procedurehornerwith arguments x and a that returns A(x). The filebernstein.inchorner:5

has a procedure bernstein with arguments t and y that returns By(t).bernstein:5

APPENDIX 1

Summary of PostScript commands

This Appendix offers a summary of PostScript operators useful for producing mathematical figures. Most have

already been introduced. In addition, a few that are likely to be more rarely used than the rest are explained here.
This is a large list, but by no means a complete list of PostScript commands. The PostScript reference manual

(‘Red Book’) contains a complete list by function as well as a list in alphabetical order in which the operators are

described in occasionally invaluable detail.

There are many operators even in this restricted list, but fortunately most commands are very close to normal

English usage and should be easy to remember.

The symbol ∅ means no arguments, or no return value.

1. Mathematical functions

Arguments Command Left on stack; side effects
x y add x + y
x y sub x − y
x y mul xy
x y div x/y
x y idiv the integral part of x/y
x y mod the remainder of x after division by y

x abs the absolute value of x
x neg −x
x ceiling the integer just above x
x floor the integer just below x
x round x rounded to nearest integer
x truncate x with fractional part chopped off

x sqrt square root of x
y x atan the polar argument of the point (x, y)

x cos cosx (x in degrees)

x sin sin x (x in degrees)
x y exp xy

x ln ln x
x log log x (base 10)

rand a random number

PostScript works with two kinds of numbers, integers and real. Real numbers are floating point, with a limited
number of decimals of accuracy. Arguments for some operations, such as repeat, must be integers. I leave as an

exercise to tell whether ceiling etc. return—i.e. leave on the stack—integers or real numbers. Many operations

have an implicit range restriction—i.e. sqrt must be applied to a non­negative number.

Appendix 1. Summary of PostScript commands 2

2. Stack operations

x pop ∅
x y exch y x

x dup x x
xn−1 . . . x0 n i roll xi−1 . . . x0 xn−1 . . . xi

This rolls the top n elements on the stack around by a shift up of i elements. For example, if the stack holds 1
2 3 4 5 (from the bottom up) then 5 2 roll changes it to 4 5 1 2 3. It is more efficient if more complicated

to do stack operations than access them by variable names, although the extra efficiency is often not worth the
inconvenience of having to keep track of what’s what on the stack.

xn−1 . . . x0 n copy xn−1 . . . x0 xn−1 . . . x0

A good trick for debugging is to combine copy and roll to view in a terminal window the top n items on the

stack. The best way to do this (where n = 3):

3 copy [4 1 roll] ==

xi . . . x0 i index xi . . . x0 xi

3. Arrays

[begins an array

] closes an array

an array a length number of items in the array a
a i get ai

a i x put −

Sets the i­th entry of a equal to x. The way to remember the order of the arguments here is to think of this as

formally equivalent to a[i] x def.

a i j getinterval ai . . . aj

n array an empty array of length n with null entries

The null item in PostScript is like nothing . . . else.

a aload a0 . . . a`−1 a (` is the length of a)

This essentially just unpacks a onto the stack, but also puts a itself on top. If you want just to unpack a, use the
pair aload pop.

An array in PostScript is what in other languages is called a pointer, which is to say it is stored in PostScript as an
address in the machine where the items in the array are stored. The practical importance of this is that if a is an

array then the sequence a dup doesn’t make a new copy of the data stored by a, but only a copy of the address

where the data is stored. The sequence

a [exch aload pop]

will make a new array with the same data as a.

4. Dictionaries

name item def makes an entry in the current dictionary

n dict puts a dictionary of n null entries on the stack
dictionary d begin opens d for use

end closes the last dictionary opened

Dictionaries in PostScript keep track of variable names and their current values. There may be several dictionaries

in use at any moment; they are stored on a stack (the dictionary stack) and searched from the top down. The

command begin puts a dictionary on this stack and end pops it off. So begin and end should be nested pairs.

Appendix 1. Summary of PostScript commands 3

something bind used before def to construct a procedure immediately

Normally, when defining a procedure, the names occurring in it are left as strings, without attempting to look up

their values when the definition is made. These names are looked up when the procedure is called. But when

bind is used, the names that do occur in dictionaries are evaluated immediately.

5. Conditionals

The first few return ‘boolean’ constants true or false. A few others have boolean values as arguments.

false false (boolean constant)
true true (boolean constant)

x y eq x = y?

x y ne x 6= y?
x y ge x ≥ y?

x y gt x > y?
x y le x ≤ y?

x y lt x < y?

s t and s and t are both true?
s t or at least one of s and t is true?

s not s is not true?

s { . . . } if executes the procedure if s is true
s { . . . }{ . . .} ifelse executes the first procedure if s is true, otherwise the second

6. Loops

i h f { . . . } for steps through the loop from i to f , incrementing by h

The tricky part of this is that at the start of each loop it leaves the loop variables i, i + h, i + 2h on the stack. It is

safest to use this only with integer loop variables.

n { . . . } repeat executes the procedure n times
{ . . . } loop executes the procedure until exit is called from within the procedure

∅ exit exits the loop it is contained in

∅ quit stops everything
a { . . . } forall loops through the elements of a, leaving each in turn on the stack

{.}{.}{.}{.} pathforall loops through the current path (see below)

The four arguments to pathforall are procedures to be called in the course of looking at the current path. This

is a tricky command, but it can produce spectacular effects. A path is a special kind of array. Each element in it is

one of the four commands x y moveto, x y lineto, x[1] y[1] x[2] y[2] x[3] y[3] curveto, closepath.
The data are expressed in device coordinates. The command pathforall loops through the elements of the

current path, pushing its arguments on the stack and then executing the corresponding procedure. For example,
the following segment displays the current path.

{ [3 1 roll (moveto)] == }

{ [3 1 roll (lineto)] == }

{ [7 1 roll (curveto)] == }

{ [(closepath)] == }

pathforall

The values of the coordinates are in the current user coordinates.

7. Conversions

x s cvs an initial substring of the string s expressing x
x cvi x converted to integer

Appendix 1. Summary of PostScript commands 4

8. File handling and miscellaneous

a string s run executes the file s
showpage changes a page

a procedure exec executes a procedure
a name load loads the value associated to the name

− save puts a copy of the entire current state on the stack
state restore restores the state on the stack

Thus

save /SavedState exch def

...

SavedState restore

will save and restore a snapshot of a state.

type tells what type the object at the top of the stack is

It pops that object from the stack, so you will likely want to use dup and type together. This is one of the more
complicated PostScript operators. First of all, what it returns is one of the following names

arraytype an array
booleantype a boolean like true or false

dicttype a dictionary

fonttype a font
integertype an integer like 1
marktype a [

nametype a name like /x

nulltype a null object

operatortype an operator like add
realtype a real number like 3.14159
stringtype a string like (x)

or possibly one of a few types I haven’t introduced.

Second, what it returns is an executable object, which means if you apply to it the exec operator it will execute
whatever has been defined by you to be associated to that name. Thus after

/arraytype { dup length = == } def

/integertype { = } def

the sequence dup type exec will display and pop the object at the top of the stack if it is an integer, display

and pop it and its length if it is an array, and give you an undefined error otherwise. This allows you to have
a procedure do different things, depending on what kind of arguments you are passing to it. The PostScript

operator transform behaves like this, for example, detecting whether the top of the stack contains a matrix or a
number.

9. Display

x = pops x from the stack and displays it on the terminal

x == almost the same as =

The most important difference between the two is that the operator == displays the contents of arrays, while =

does not. One curious difference is how they handle strings. Thus (x) = displays x in the terminal window
while (x) == displays (x). In particular, it is useful when using terminal output for debugging to know that ()

= produces an empty line.

Appendix 1. Summary of PostScript commands 5

. . . stack displays the whole stack (but not arrays), not changing it

. . . pstack same as stack. but also displays arrays

string s print prints a string; has better format control than the others

The difference between = and == is that == will display arrays and = will not. Sometimes this is a good thing, and
sometimes not; sometimes arrays will be huge and displaying them will fill up your screen with garbage. The

difference between stack and pstack is the same.

As for print, it is a much fancier way to display items—more difficult to use, but with output under better

control. For example

(x =) print

x () cvs print

(\n) print

will display "x = " plus the current value of x on a single line. What’s tricky is that print displays only strings,

so everything has to be converted to one first. That’s what cvs does. The (\n) is a string made up of a single
carriage return, because otherwise print doesn’t put one in.

Implicitly the value of x here is converted to a string.

10. Graphics state

∅ gsave saves the current graphics state, installs a new copy of it

∅ grestore brings back the last graphics state saved

The graphics state holds data such as the current path, current line width, current point, current colour, current

font, etc. These data are held on the graphics stack, and gsave and grestore put stuff on this stack and then

remove it. They should always occur in nested pairs. All changes to the graphics state have no effect outside a
pair. It is a good idea to encapsulate inside a gsave ... grestore pair all fragments of a PostScript program

that change the graphics state to draw something, unless you really want a long­lasting change.

We have seen three stacks used by a PostScript interpreter—the operator stack which is used for calculations,stack:operator:5

the dictionary stack which controls access to variable names, and the graphics stack. There is one other stack,stack:dictionary:5stack:graphics:5

the execution stack, which is used to keep track of what procedures are currently running, but the user has littlestack:execution:5

explicit control over it, and it is not important to know about it.

x setlinewidth sets current linewidth to x (in current units)
currentlinewidth the current linewidth in current units

x setlinecap determines how lines are capped

x setlinejoin determines how lines are joined
[. . .] x setdash sets current dash pattern

For example [3 2] 1 setdash makes it a sequence of dashes 3 units long and blanks 2 units long each, with an
offset of 1 unit at the beginning.

Experimentation with setdash can be interesting. The initial array specifying the on/off pattern can be long and
complicated, and itself produced by a program. Go figure.

g setgray sets current colour to a shade of grey
r g b setrgbcolor sets current colour

In both of these, the arguments should be in the range [0, 1].

Appendix 1. Summary of PostScript commands 6

11. Coordinates

Here, a matrix is an array of 6 numbers. The CTM is the Current Transformation Matrix.

∅ matrix puts a matrix on the stack
matrix m defaultmatrix fills m with the default TM, leaves it on the stack

m currentmatrix fills the matrix with the current CTM, leaves it
x y translate translates the origin by [x, y]
a b scale scales x by a, y by b
A rotate rotates by Ac degrees
m concat multiplies the CTM by m
m setmatrix sets the current CTM to m

identmatrix the identity matrix
x y transform x′ y′, transform of x y by the CTM

x y m transform x′ y′, transform of x y by m
x y itransform x′ y′, transform of x y by the inverse of the CTM

x y m itransform x′ y′, transform of x y by the inverse of m

There are also operators dtransform and idtransform that apply just the linear component of the matrices (todtransform:6idtransform:6

get relative position).

m1 m2 invertmatrix m2 (the matrix m2 is filled by the inverse of m1

12. Drawing

∅ newpath starts a new path, deleting the old one

∅ currentpoint the current point x y in device coordinates

In order for there to be a current point, a current path must have been started. Every path must begin with a

moveto, so an error message complaining that there is no current point probably means you forgot a moveto.

x y moveto begins a new piece of the current path

x y lineto adds a line to the current path

dx dy rmoveto relative move
dx dy rlineto relative line

x y r a b arc adds an arc from angle a to angle b, centre (x, y), radius r
x y r a b arcn negative direction

The operators arc and arcn are a bit complicated. If there is no current path under construction, it starts off at

the first angle and makes the arc to the second. If there is a current path already it adds to it a line from where it
ends to the beginning of the arc, before it adds the arc to the current path.

x1 y1 x2 y2 x3 y3 curveto adds a Bezier curve to the current path
dx1 dy1 dx2 dy2 dx3 dy3 rcurveto coordinates relative to the current point

∅ closepath closes up the current path back to the last point moved to

∅ stroke draws the current path
∅ fill fills the outline made by the current path

∅ clip clips drawing to the region outlined by the current path

∅ pathbbox x` y` xu yu

This returns four numbers llx lly urx ury on the stack which specify the lower left and upper right corners

of a rectangle just containing the current path.

∅ strokepath replaces the current path by its outline

a special dictionary shfill used for gradient fill

Appendix 1. Summary of PostScript commands 7

13. Displaying text

font name findfont puts the font on the stack

font s scalefont sets the size of the font (in current units), & leaves it on the stack

font setfont sets that font to be the current font

So that

/Helvetica-Bold findfont

12 scalefont

setfont

sets the current font equal to Helvetica­Bold at approximate height 12 units.

string s show displays s

The string is placed at the current point, and moves that current point to the end of the string. Usually it is

prefaced by a moveto. There must also be a current font set.

string s stringwidth wx wy , the shift caused by showing s

I.e. displaying a string moves the current point. This returns the shift in that point.

string s boolean t charpath the path this string would make if displayed.

Usetrue for filling or clipping the path,false for stroking it. In some circumstances these will produce somewhat

different results, and in particular the path produced by true might not be what you want to see stroked.

14. Errors

When a program encounters an error it displays a key word describing the type of error it has met. Here are some

of the more likely ones, roughly in the order of frequency, along with some typical situations that will cause them.

undefined A word has been used that is undefined. Often a typing error.
rangecheck An attempt has been made to apply an operation to something not in its range.

For example, -1 sqrt or [0 1] 2 get.

syntaxerror Probably an (or { without matching) or }.

typecheck An attempt to perform an operation on an unsuitable type of datum.
undefinedfilename An attempt to run a file that doesn’t exist.

undefinedresult 5 0 div

unmatchedmark] without a previous [.
dictstackoverflow Dictionaries have not been closed. Probably a begin without end.

15. Alphabetical list

Here is a list of all the operators described above, along with the section it can be found in.

= 9

== 9

[4

] 4

abs 1

add 1

aload 3

and 5

arc 12

arcn 12

array 3

atan 1

begin 4

bind 4

ceiling 1

charpath 13

clip 12

closepath 12

Appendix 1. Summary of PostScript commands 8

concat 11

concatmatrix 11

copy 2

cos 1

currentlinewidth 10

currentmatrix 11

currentpoint 12

curveto 12

cvi 6

cvs 6

def 4

defaultmatrix 11

dict 4

dictstackoverflow 14

div 1

dtransform 11

dup 2

end 4

eq 5

exch 2

exec 8

exit 6

exp 1

false 5

fill 12

findfont 13

floor 1

for 6

forall 6

ge 5

get 3

getinterval 3

grestore 10

gsave 10

gt 5

identmatrix 11

idiv 1

idtransform 11

if 5

ifelse 5

index 2

invertmatrix 11

itransform 11

le 5

length 3

lineto 12

ln 1

load 8

log 1

loop 6

lt 5

matrix 11

mod 1

moveto 12

mul 1

ne 5

neg 1

newpath 12

not 5

or 5

pathforall 6

pathbbox 12

pop 2

print 9

pstack 9

put 3

quit 6

rand 1

rangecheck 14

rcurveto 12

repeat 6

restore 8

rlineto 12

rmoveto 12

roll 2

rotate 11

round 1

run 7

save 8

scale 11

scalefont 13

setdash 10

setfont 13

setgray 10

setlinecap 10

setlinejoin 10

setlinewidth 10

setmatrix 11

setrgbcolor 10

shfill 12

show 13

showpage 8

sin 1

sqrt 1

stack 9

stringwidth 13

stroke 12

strokepath 12

sub 1

syntaxerror 14

transform 11

translate 11

true 5

truncate 1

Appendix 1. Summary of PostScript commands 9

typecheck 14

undefined 14

undefinedfilename 14

undefinedresult 14

APPENDIX 2

Setting up your PostScript environment

In order to run PostScript programs, you will need to have a PostScript viewer installed on your machine. The

most convenient way to do this is to install the basic PostScript interpreter Ghostscript, and then on top of that
one of several possible interactive viewers that call on Ghostscript for basic graphics rendering. The program

Ghostscript is available without cost for download from http://www.cs.wisc.edu/~ghost/. The viewers

GhostView, GSView, MacGSView, and GV (for various platforms) can also be found there.

On UNIX and Macs the command line interface for the interpreter Ghostscript (as opposed to a file viewer)

should be straightforward to figure out, but for Windows machines it is a little more difficult. First run (i.e. Run)
the program cmd.exe, and then in the terminal window that pops up type gswin32c.exe togther with various

options to get Ghostscript on its own. One variant that you can use fruitfully for debugging is

gswin32c.exe -dNODISPLAY <filename>

You should be able to set shortcuts up so that not so much typing is involved.

1. Editing PostScript files

It is important to use the right text editor in writing PostScript programs, or at least to know how to use correctly

the one that you do use. First of all, a PostScript file must be just an ordinary text file, without formatting
adornments such as those produced by Microsoft Word in its default configuration. So you must be careful, if

necessary, to save your file as a plain text file. In some text editors, text files will be automatically given an

extension _txt. This is not necessarily a problem, but for your own long­term sanity it is probably best to store all
your PostScript files with an extension .ps (or a variation like .eps). This may require that you explicitly rename

it.

2. Running external files

Once you have installed Ghostscript and a viewer, you will have to do a small amount of work to configure your

environment for easy PostScript program development. I have described in this book a number of packages of

PostScript procedures that you will want to incorporate in your own programs with the PostScript run command.
This command simply loads a file that it interprets as any other sequence of PostScript code. But for security

reasons, the way most PS viewers are configured by default is to disallow this. In order to allow it you must

toggle one of the viewer options, usually associated with the keyword Safer. In GSView, for example, you can do
this by opening the Options menu (here showing Safer toggled on):

Appendix 2. Setting up your PostScript environment 2

If you do this, and you use your viewer to look at PostScript files on the Internet from within your browser,
you should be sure to make the Safer option still in force inside the browser. How to do this depends on which

browser and which operating system you are using. With my viewer gv inside Netscape, I set the application
that reads PostScript documents to be gv -safer %s.

Another remark about the run command: recent versions of Ghostscript (8.0 and after) handle some files (those

with an EPSF in the first line) to be run differently from others. In effect, alas, the default Ghostscript is no
longer a strict PostScript interpreter, since it reads comments. This dubious ‘feature’ should probably be normally

disabled by specifying the option gs -dNOEPS in your viewer.

3. Making images

At some point you will probably want to make image files from PostScript programs, for example .jpg or .gif

images that you can include directly inside a Web page. There are several ways to do this, one being to use

Ghostscript itself to do the job, or your Ghostscript viewer. With GSView, for example, you can see what your
options are if you look at the menu item File/Convert. But you will have a bit more control over the output

if you use a full­featured image manipulation program. The most comprehensive of these is PhotoShop, but
it is expensive and complicated. Another possibility is the program GIMP (Gnu Image Manipulation Program),

available without cost for many platforms.

• In order to use GIMP on Windows machines to interpret PostScript programs, it must be able to locate the
Ghostscript executable file. The simplest way to do this is to copy the file gswin32c.exe, which is put
somewhere on your computer as part of the installation of gs, into the directory C:\Windows.

One thing to be careful about when importing a PostScript file into an image manipulation program is that many

of them require that the file be terminated with showpage. Another is that all files which are imported into your
file with a run command must normally be included in the file explicitly. I’ll discuss this problem in the next

section.

When you import a PostScript file into an image manipulation program, you will likely have some choices to
make about the size and quality of the import. The most subtle choice to make is about anti­aliasing. A PostScript

file is normally scalable, which means it has no intrinsic granularity. But an image manipulation program will
turn this into a bit map, an image with a particular resolution. In other words, it works with discrete units of

colour called pixels. In rendering a scalable picture into a bit map, different algorithms are possible. The highest

quality will be obtained if transitions of pixel colours are as smooth as possible, and this is what anti­aliasing

Appendix 2. Setting up your PostScript environment 3

accomplishes. The term ‘aliasing’ here comes from the theory of the Fourier transform, but to explain how it
applies here would take up far too much space.

4. Printing files

You can print PostScript files if you have a PostScript driver for your printer. This is no problem on some

operating systems, but on Windows machines it is not present in the usual installation. It will be possible once
you have Ghostscript installed, however. You can also use your PostScript viewer to print PostScript files with a

few mouse clicks.

In any event, there are a few precautions to observe. First of all, most printers will not print a page unless it

is terminated by showpage. Second, the printer will not be able to load files referred to with a run command,

so you must actually include such files inside your program before printing them. (This is usually true of files
imported into an image manipulation program, also.) Your text editor almost certainly allows file inclusion,

but this is a relatively slow process, and awkward. Awkward because you will usually be much happier doing
your own editing in a file without the package included. Once you include the file explicitly, then, your own

program development will be somewhat restricted. I prefer to make the process somewhat automatic, as well

as flexible. For this purpose I do the following: (1) I write my original program in a file called, say, x.px. It
may contain several run commands. (2) I apply a PERL script I call psinc which includes explicitly all the files

referred to by run commands, and then creates a new file x.ps which is self­contained. Furthermore, it includes

files recursively, which means that even the files that are included may themselves run other files. I work with a
Linux system, but this sort of thing should be possible on almost any system. Here is my PERL script:

#!/usr/bin/perl

This reads in ps files, printing out all lines except

^(...) run

where it performs an inclusion --- recursively.

The current directory is updated.

use File::Basename;

include("", STDIN, 0, "stdin");

insert a file into output

sub include {

local($curdir, $input, $depth, $cf) = }@_;

$i = $depth;

while ($i > 0) {

print STDERR " ";

$i--;

}

print STDERR "Opening $cf\n";

$fh++;

while ($_ = <$input>) {

if (/^\((.*)\)[]*run/) {

($name, $dir, $suffix) = fileparse($1, ’’);

if ($dir eq ’./’) {

$dir = "";

}

$file = "$curdirdirname$suffix";

print STDERR "file to open = {$file}\n";

if (open($fh, $file)) {

print "\n";

print "% - Inserting $name ----------------------\n\n";

Appendix 2. Setting up your PostScript environment 4

include($curdir.$dir, $fh, $depth+1, $file);

} else {

print("Current directory $curdir.$dir\n");

print STDERR "Unable to open $file\n";

exit 1;

}

} else {

print $_;

}

}

if ($input ne STDIN) {

$i = $depth;

while ($i > 0) {

print STDERR " ";

$i--;

}

print "\n";

print "% - closing $name ------------------------\n";

print STDERR "Closing $cf\n";

close($input);

}

}

On my Linux system, I have available to me the make utility, and turning a .px file into a .ps file is an option

built into my make configuration:

.SUFFIXES: .px .ps

.px.ps:

rm -f $*.ps; EPS2eps < $*.px | psinc > $*.ps

The whole process therefore becomes quite painless—I just type make x.ps when x.ps is changed.

APPENDIX 3

Structured PostScript documents

A PostScript program is just a sequence of PostScript commands to be interpreted in the order in which they

are encountered. It swallows one command after another. Once it has executed a sequence of commands, it
essentially forgets them. In short, the PostScript interpreter knows nothing about the global structure of your file,

and in particular has no idea of the separate pages as individual items.es:in a PostScript file:1

But there are conventions which allow you to put such a structure in your file. These are called documentcomments:document structure:1

structure comments. You will likely have seen these, if you ever peeked at a PostScript file produced by

some other program. For example, the program dvips that turns the .dvi files produced by the mathematical
typesetting program TEX into PostScript might produce a file that looks like this:%%BoundingBox:1%%Pages:1%%Page:1

%!PS-Adobe-2.0

%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software

%%Title: a3.dvi

%%Pages: 2

%%PageOrder: Ascend

%%BoundingBox: 0 0 596 842

%%DocumentFonts: Helvetica-Bold Palatino-Roman CMTT10

%%EndComments

%DVIPSWebPage: (www.radicaleye.com)

%DVIPSCommandLine: dvips a3.dvi -o a3.ps

%%BeginProcSet: texc.pro

...

%%EndProlog

%%BeginSetup

%%Feature: *Resolution 600dpi

TeXDict begin

%%PaperSize: letter

%%EndSetup

%%Page: 1 1

1 0 bop 0 191 a Fd(Appendix)24 b(3.)36 b(Structured)24

b(P)l(ostScript)i(documents)0 540 y Fc(A)h(PostScript)h(pr)o(ogram)f

...

%%Trailer

end

userdict /end-hook known{end-hook}if

%%EOF

Indeed, this is the PostScript file making up this very appendix! All those lines starting with %% are document

structure comments (with acronym DSC) meant to be interpreted by a program such as a PostScript viewer thatDSC:1

allows it to output some information about the source of this document and allow a reader to move around in

it from one page to the other, not necessarily in the order in which the pages were naturally encountered. Some
of these comments are more important than the others, in particular those allowing moving around among the

pages. And any PostScript program that intends to allow this sort of page­by­page viewing must follow certain
conventions that make it feasible.

A PostScript program following DSC conventions should begin with a line such as

Appendix 3. Structured PostScript documents 2

%!PS-Adobe-2.0

that tell a viewing program that the appropriate conventions have been followed. The 2.0 refers to a version

number for the conventions. I have to confess that in practice a lot of slop is tolerated here, and that I just put
that very line at the beginning of almost all my own PostScript programs! This may very well cause the viewer

to excrete nasty looking warning messages, but these can be ignored, or even switched off by choosing options

suitably.

Second, the page structure has to be indicated. Towards the beginning of the file there should be a line like

%%Pages: 7

and as each page is begun there should be a line like

%%Page: 1 1

The duplication of numbers here is not necessary, but in hand­written PostScript code is probably the right thing
to do (one number indicates the real page number, the other a nominal page number).

The leading line %!PS-Adobe-xxx and the %%Pages: x and %%Page: x x comments are the minimal set of
comments needed to guide the viewer. But in order for the viewer not to be confused, it is extremely important

to make the partition into pages meaningful:

• In a PostScript file setting up a page structure, each page must be independent of every other page, so that
pages may be interpreted correctly no matter the order in which they are read.

This means above all that no variable may be defined on one page and used on another without an independent

definition. As a general rule, all procedures to be used in the program should be put in a preliminary section of

the file called the prolog. A coordinate system should be set up anew on each page, and encapsulated within
a gsave . . . grestore pair (as I have recommended already in Chapter 1). Here is a rather simple PostScript

program demonstrating these points:

%!PS-Adobe-2.0

%%Pages: 2

/page-begin {

gsave

72 dup scale

1 72 div setlinewidth

} def

/page-end {

grestore

showpage

} def

%%Page: 1 1

page-begin

...

% draw something

...

page-end

%%Page: 2 2

page-begin

...

% draw something else

...

page-end

APPENDIX 4

Simple text display

You will very often want to put text in your figures. PostScript’s font­handling capabilities are extremely good, but

most of the techniques for high quality font management are designed to be automated by some other program,
because good text—especially mathematical text—requires a lot of computation to get font choices, spacing, and

sizes right.

In this Appendix I’ll explain how to place simple text in PostScript figures. and also a few playful possibilities.

What I explain here will be adequate for many purposes. (See Appendix 7 for more sophisticated techniques.)

1. Simple PostScript text

The simplest, essentially the only simple, way to put text into pictures is to use the almost universally available

PostScript fonts to assemble your text ‘by hand’, i.e. by thinking out for yourself what layout, font choice, and

text size are to be. This is a relatively straightforward process, and probably your best choice, if the text you want
to include is not too complicated.

There are three steps to be carried out each time you want to use a new font.

(1) You must decide which font you are going to use. There is a limited choice of fonts guaranteed to be available

in all environments. The choice is, roughly, from this list:fonts:PostScript:1

Times­Roman Times­Italic Times­Bold Times­Bolditalic

Helvetica Helvetica­Oblique Helvetica­Bold Helvetica­Bold­Oblique
Courier Courier­Oblique Courier­Bold Courier­Bold­Oblique

Symbol

The Helvetica fonts have no serifs, and display well on a computer. The Courier fonts have uniform character
spacing. The Symbol font contains Greek letters. You load a font with the command findfont applied tofindfont:1

the name of the font.

(2) You decide what scale you are going to use it at. With the command scalefont, you set what is essentiallyscalefont:1

the vertical size of the letters in terms of the current unit.

(3) You apply the command setfont.setfont:1

If the current unit is one inch, for example, this will give you letters 1/4
′′ high:

/Helvetica-Bold findfont

0.25 scalefont

setfont

The command findfont loads the font named onto the stack. The command scalefont sets the size of the font
on the stack, leaving the font there. The command setfont sets the current font to the one on the top of the stack.

The current font is part of the graphics state, so it is affected by the gsave and grestore commands.

Of course, you can switch back and forth among several fonts. If you are going to do this, you will probably want
to write procedures to do this efficiently, rather than having to go through the whole sequence above.

You can use other PostScript fonts, too, but you ought to include them explicitly in your file. I’ll say something
about that later. I’ll also explain later how to display all the characters in a font.

To put text on a page, after you have set a current font, you move to where you want the text to begin, and then
use the show command. The text itself is made into a string by enclosing it within parentheses. Thusshow:1

Appendix 4. Simple text display 2

0 0 moveto

(Geometry) show

after the previous command sequence will give you

Geometry
You can print out the value of a variable on the page. To do this, you must convert the variable to a string with

the command cvs, using an empty string of sufficient size to hold the variable’s value.cvs:2ariables:displaying:2

0 0 moveto

(x =) show

x () cvs show

will produce this, if x = 3:

x = 3

A font is part of the graphics state, and the way it’s displayed depends entirely on the current coordinate system.

You can understand exactly what happens if you keep this in mind:

• PostScript treats letters as paths.

Scaling of a font is in terms of the current units. Changing the scale of the entire figure will also affect a font’s
true size, along with the size of everything else. But you can also shear a font or reverse it by suitable concat

operations. You can get interesting effects.

Geometry

2. Outline fonts

If characters are paths, you should be able to do with them all the things you can do with ordinary paths. This

is almost true—the only exception is that often the inner details of fonts are hidden from close inspection. Thisfont encryption:2

is for legal reasons. Characters from a font, along with all other images, are subject to copyright, but because of

their high reproducibility they are often encrypted. On the other hand, there are a lot of high quality fonts which
are in the public domain and unencrypted.

The command show applied to a string fills in a special way the path generated by the string. But you can access

the path itself by using the command charpath, which appends the path of the string to the current path. You
could then fill it, but for that task this wouldn’t be a very efficient way of proceeding. One more interesting

thing you can do, however, is stroke it or clip to it. The command charpath takes two arguments, a string and
a boolean value. Use true if you intend to stroke the outline, false if you intend to fill or clip. It is also a good

idea to set the values of linejoin and linecap to something other than 0.

Appendix 4. Simple text display 3

1 setlinejoin

1 setlinecap

/Helvetica-Bold findfont

48 scalefont

setfont

gsave

newpath

0 0 moveto

(ABC) false charpath

clip

1 0 0 setrgbcolor

newpath

2 setlinewidth

-24 8 96 {

/i exch def

i 0 moveto

40 40 rlineto

} for

stroke

grestore

newpath

0 0 moveto

(ABC) true charpath

0.5 setlinewidth

stroke

APPENDIX 5

Zooming

One of the greatest advantages of using PostScript for illustrations is that it is scalable—there are no artefacts

in the illustration that show up when it is examined closely. This is in opposition to digital photographs, for
example, when blow­up will start to show pixels. This appendix will explain how to take advantage of this.

1. Zooming

I shall explain here a procedure called zoom which has the effect of zooming in at a point by a given scale. Thezoom:1

overall effect can be illustrated by these three figures, where the zoom factor is 2:

Ευχλειδ Ευχλειδ

Ευχλειδ

How can we do this? There are three arguments for this procedure. One is the scale factor c. If it’s greater than

one, the scale change is a magnification and we are zooming in. If it’s less than 1, we are zooming out, not in.

If it’s exactly 1, there is no scale change, the zoom will amount to a translation of the origin. Another argument
is a point (x, y) in the original figure. The last argument is the point (cx, cy) to which (x, y) is to be relocated.

If we want to locate (x, y) at the centre of a page, for example, and if the current coordinate system is the page
coordinate system. then (cx, cy) = (306, 396). But if the origin of the current coordinate system is already at the

centre of the page it is (0, 0).

I call c the zoom factor, (x, y) the focus of the zoom, (cx, cy) its centre.

It is more or less clear that what we want is a succession of translation and scales, but in what order? And which

ones? The simplest way to decide is to portray geometrically what has to be done:

focus

origin

centre

focus

origin

centre

focus

origin

centre

focus

origin

centre

Appendix 5. Zooming 2

This leads to the following code

cx cy translate

s dup scale

x neg y neg translate

which is to be inserted before the original drawing commands.

If you want to rotate the figure with the focus as the pivot, then add the correct line as here:

cx cy translate

20 rotate

s dup scale

x neg y neg translate

focus

origin

centre

2. An explicit procedure

Call the following procedure before drawing.

% On the stack when called are

% [cx cy] [x y] s: the place that is now (x, y) is located at [cx cy]

% and lengths scaled by s

/zoom { 3 dict begin

/s exch def

aload pop

/y exch def

/x exch def

aload pop

translate

s dup scale

x neg y neg translate

currentlinewidth s div setlinewidth

end } def

3. Playing around

Try this:

(zoom.inc) run

/draw {

gsave

1 0 0 setrgbcolor

newpath

x y moveto

-100 0 rlineto

Appendix 5. Zooming 3

200 0 rlineto

x y moveto

0 -100 rlineto

0 200 rlineto

stroke

grestore

x y moveto

(Euclid) show

} def

/Helvetica-Bold findfont

25 scalefont

setfont

/s 1 def

/x 100 def

/y 100 def

{ % loop

gsave

[x y] [x y] s zoom

draw

grestore

/s s 1.1 mul def

showpage

} loop

How would you get the text to rotate around the focus as the loop proceeds?

4. Code

See zoom.inc. There is a variant in there of the procedure zoom, called Zoom. The third argument for this
procedure is an array of four numbers, specifying a linear transformation to be applied at the focus of the zoom.

Used with [s 0 0 s], for example, it is equivalent to a zoom with scale factor s.

APPENDIX 7

Importing PostScript files

Very often you want to import one PostScript file into another. The one you want to import will quite possiblyting PostScript files:1

have been produced by another program, and may be a more or less generic PostScript file, so you have to be
prepared for almost anything. You have to encapsulate the imported file so that it does not upset the environment

into which it is imported.

A special case of this is one of the most vexing tasks among all those a professional mathematician encounters,

that of putting high quality TEX labels into a mathematical diagram. The most general task of this nature canlabels:TEX:1

indeed be daunting, but the exact one described here need not be.

I’ll explain what to do by a simple example, then add remarks on fancier or more difficult variations.

1. Labelling a graph

Let’s suppose you have created the graph of a parabola:

72 dup scale

1 72 div setlinewidth

/N 100 def

newpath

/x -1.25 def

/dx 2.5 N div def

x dup dup mul moveto

N {

/x x dx add def

x dup dup mul lineto

} repeat

stroke

and now you want to add a label to it, so it becomes:

y = x2

You could produce your own label in PostScript, but getting the fonts to look right, and getting the spacing right

in mathematical text—for example the superscript in this case—is hard, and better left to some other program. I
have used Donald Knuth’s program TEX here to make up the label, and then dvips, a program written by John

Hobby (once a graduate student of Knuth’s), to produce from the TEX output a PostScript file. I’ll say more about

this process later, even though it is not really a PostScript matter. The important thing is that in the end I get
a file called, say, label.eps which contains the PostScript code to write the text ‘y = x2’. The basic idea is

now simple—to include a line (label.eps) run in the PostScript file containing the parabola. There are two

additional things to do, however: (1) take into account the different coordinate systems in parabola drawing and
in the label file; (2) isolate effects of the program in the label file.

Appendix 7. Importing PostScript files 2

Dealing with the coordinates is simple, at least in normal circumstances. Dealing with the second will usually
involve only annulling the effect of a possible showpage in the imported file, at least if the imported file is as well

behaved as it ought to be. My new file, producing the label and the parabola, now looks like this:

gsave

% ... parabola drawing as listed above ...

grestore

gsave

10 10 translate

-290 -695 translate

save /SavedState exch def

/showpage {} def

(yx2.eps) run

SavedState restore

grestore

You might not have encountered save and restore before. The command save does two things: (i) it puts a
record of the complete current environment on the stack, and (ii) it saves the current graphics state as gsave

does. Thus save /SavedState exch def (why not /SavedState save def?) defines SavedState to be the

current state. The command restore has one argument, a complete state in the format produced by save. The
point of using them here, among other things, is to take care of possible showpage commands in the imported

file, but then bringing back the normal definition of showpage after the file is read. Unless showpage is disabled,
an importing program might try to turn a page after reading each import. This technique is especially important

in versions 8.0 and later of Ghostscript, which seem to add implicitly a showpage command to EPS files it reads,

even if there isn’t one there originally.

Another and perhaps simpler way to turn off showpage is to use a temporary dictionary:

1 dict begin

/showpage {} def

(yx2.eps) run

end

But save ... restore is a more flexible technique. Now all you have to know is where the mysterioussave:2restore:2

numbers 290 and 695 come from. But that’s easy. The file produced by dvips is an encapsulated PostScript fileostScript:encapsulated:2

(or EPS file), which means, among other things, that it contains near the beginning a linebounding box:2

%%BoundingBox: 290 695 321 708

to advertise to applications that want to use it (and that includes us!) what the boundaries of its drawing area—its

bounding box—are. These are the coordinates of the lower left and upper right corners of that box. The image
that TEX and dvips produced, in other words, was intended to be placed on a page as on the left, with the label

sitting inside its bounding box as in the close­up on the right:

Appendix 7. Importing PostScript files 3

y = x2

(290, 695)

(321, 708)

The line -290 -695 translate therefore sets the lower left corner of the imported image at the origin of the

figure it is being imported to. So dealing with different coordinate systems is very simple, actually. All you
need to do is figure out the bounding box of the imported file. The line 10 10 translate placed before the

importation thus has the effect of locating this corner at (10, 10) in the importing file. You might very well want

to do some other transformations to that imported file. Suppose that in addition you want to scale the import in
place, for example: make it

10 10 translate

4 4 scale

-290 -695 translate

Order is important here, as it always is in coordinate changes.

Deciding where to place the imported file may not be straightforward, and usually

requires some fiddling around. Most Ghostscript viewers track the location of the

mouse in default coordinates to help you out in this task. The viewer I use, for
example, records those coordinates—here (12, 307)—in the upper left corner. This

is often extremely useful. In order to take advantage of this feature, you must restore

default coordinates before importing files.

What I have said so far will handle most imports, but sometimes a somewhat more robust technique is required.

The principal new feature is to restore the default graphics environment before importation. Also, messy stack
handling by the imported files has to be allowed for.

/BeginImport {

% save the current state

save /SavedState exch def

% save the sizes of two stacks

count /OpStackSize exch def

/DictStackSize countdictstack def

% turn off showpage

/showpage {} def

% set up default graphics state

0 setgray 0 setlinecap

1 setlinewidth 0 setlinejoin

10 setmiterlimit [] 0 setdash newpath

/languagelevel where

Appendix 7. Importing PostScript files 4

{pop languagelevel 1 ne

{false setstrokeadjust false setoverprint} if

} if

} bind def

/EndImport {

count OpStackSize sub

dup 0 gt { {pop} repeat} {pop} ifelse

countdictstack DictStackSize sub

dup 0 gt { {end} repeat} {pop} ifelse

SavedState restore

} bind def

followed by code like this:

BeginImport

% --- import stuff here

EndImport

2. Importing TEX text

In this section I want to say more specifically about how to import text produced by TEX, although it is not directlyostScript files produced by:4

connected with PostScript. Those not familiar with TEX may skip it. I also restrict myself to plain TEX, since the

unfortunately more popular variant Latex does all kinds of extra formatting I don’t want to deal with.

Generally, you will want to import small fragments of mathematics. The only serious requirement for doing this

correctly is that, at least in plain TEX, you must put the line \nopagenumbers at the start of your file. This means
that there will be no secret writing on your output. Then TEX your file as usual. To produce PostScript output,

you should run dvips on the corresponding .dvi file, but with the -E option:

dvips -E x.dvi -o x.eps

if x.tex is your TEX file. This produces an EPS file with the bounding box data written into it. If you use dvips
without the -E option, you will get a full page with your TEX on it, whereas the -E option will produce a bounding

box just covering the text you want.

There is one problem with this procedure. The file produced will be quite large. For example, the file yx2.eps I

used as an example in the first section was about 17,000 bytes long! The reason is that dvips puts in a number

of header files and font definitions, and they take up space. These can be amalgamated, but I’m not going to say
anything about that here, except to raise the issue. Anyway, in the modern world 17,000 byes is not all that large,

although if you have a lot of labels the redundant code will add up.

If you are using TEX, then you will probably not be able to avoid meeting the PostScript files produced by dvips.

It’s also likely that sooner or later you’ll want to modify one of these by hand, so I’ll say something here about

their structure. In fact, I’ll look at the one responsible for the label ‘y = x2’ dealt with above. It starts off with
something like

%!PS-Adobe-2.0 EPSF-2.0

%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software

%%Title: yx2.dvi

%%BoundingBox: 290 695 321 708

%%DocumentFonts: CMMI10 CMR10 CMR7

%%EndComments

Appendix 7. Importing PostScript files 5

%DVIPSWebPage: (www.radicaleye.com)

%DVIPSCommandLine: dvips -o yx2.eps -E yx2.dvi

%DVIPSParameters: dpi=600, compressed

%DVIPSSource: TeX output 2003.03.12:1926

These are all comment lines. The initial one declares that this file conforms to the conventions for documentcomments:document structure:5

structure mentioned in an earlier appendix. It also declares that this is an encapsulated PostScript file. TheEPS:5ostScript:encapsulated:5

comments beginning with %% are part of the document structure (see Appendix 3). Next comes two sections like

this:

%%BeginProcSet: texc.pro

%!

/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S

...

end

%%EndProcSet

%%BeginProcSet: texps.pro

...

%%EndProcSet

This just contains two fragments of PostScript code that were imported by dvips to set up its own dictionaries.
Next comes

%%BeginFont: CMR7

%!PS-AdobeFont-1.1: CMR7 1.0

%%CreationDate: 1991 Aug 20 16:39:21

% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.

...

%%EndFont

which just defines a font to be used. More fonts follow. The structure of fonts is a very specialized part of

PostScript, a world pretty much isolated from the rest of the language. Among other things, font files usually

contain large chunks of almost indecipherable code.fonts:PostScript:5

Finally, the last few lines of the file are

TeXDict begin 40258437 52099154 1000 600 600 (yx2.dvi)

@start /Fa 205[33 50[{}1 58.1154 /CMR7 rf /Fb 194[65

61[{}1 83.022 /CMR10 rf /Fc 134[41 47 120[{}2 83.022

/CMMI10 rf end

%%EndProlog

%%BeginSetup

TeXDict begin

%%EndSetup

1 0 bop 1830 183 a Fc(y)26 b Fb(=)d Fc(x)2032 148 y Fa(2)p

eop

%%Trailer

end

userdict /end-hook known{end-hook}if

%%EOF

This is the real meat of the file. Some abbreviations are defined, and then the actual typesetting is done in the

single line

Appendix 7. Importing PostScript files 6

1 0 bop 1830 183 a Fc(y)26 b Fb(=)d Fc(x)2032 148 y Fa(2)p

This doesn’t make a lot of sense immediately, but actually it’s pretty simple. The program dvips abbreviates font

changes for efficiency, as well as other commonly used PostScript commands. It defines bop to begin pages. So

all that’s going on here is that characters from different fonts are being placed on the page, and the characters
being placed are those in the string ‘y = x2’. As with a modern army at war, then, almost all the effort goes into

logistics!

3. Fancy work

You can in fact apply any 2D transformation to the image produced by any PostScript code—for example that in

a file to be imported—without modifying the code itself, at least in most circumstances. Why would you want

to do this? Well, this is one of those things about which it is said, “If you have to ask . . . ” Any serious book on
mysticism will tell you that the highest levels of experience are not accessible to everyone.Trithemius:J.:6

From In praise of scribes

by Johannes Trithemius, c. 1492
(translation by Roland Behrendt)

The techniques involved here are much less trivial than others in this book. The difficult point here is that you do

not want to examine the internals of the code of the transformed image, except perhaps taking into account its
size, as specified by its bounding box. This means that some of the very basic PostScript drawing commands must
be modified, instead. There are a number of approaches to this problem—the basic choice is whether to modify

the paths in the imported code as they are laid down or as they are drawn. In the first scheme the operators
moveto etc. are redefined, and in the second stroke etc. I’ll choose here the second method. It requires quite a

bit less programming, is slightly more efficient, and is also somewhat more flexible.

There are only a few operators involved in actually realizing a path in PostScript, as opposed to building it. The

obvious ones are stroke, fill, and clip. In addition is the operator show, which essentially fills in the path

made up by a string of characters in whatever the current font is. There are others—principally those concerned
with user paths, which I have not talked about—but I’ll ignore them here. In redefining the drawing operators,user paths:6

it must be kept in mind that the coordinate system may be changed continually in the segment of code to be
transformed. For this reason, a base coordinate system in which the transformation is to be applied must be fixed.

One concern that has to be taken into account is that transforming a path will mean transforming the pieces of
that path, which may be line and curve segments. Doing this assumes that these pieces are small enough that the

transformation is well approximated by an affine transformation on them. This may not be valid for the original

path, so we must allow for path subdivision.

Appendix 7. Importing PostScript files 7

Yet another concern is that we want to be able to escape from our redefinitions, since we might want to keep on
drawing normally after we have drawn the transformed imported file. This will be handled by including the

redefinitions in a special dictionary which can be pushed and popped on and off the dictionary stack with begin

and end.

All these things are handled in a package transform.inc. It has procedures

integer set-sd sets subdivision depth
procedure set-transform defines the transform

PS matrix set-base sets coordinates for the transform to be applied in
subdivide subdivides the current path

path-transform applies the transform at hand to the current path

Just below is the part of the code that manages the final drawing. The file trithemius.eps contains the text

Manuscripts . . . itself, all laid out in a line. The file trithemius2.eps contains the text to be placed inside

the circle, just as is. The bounding box data is taken from the file trithemius.eps, to be used to transform it
correctly.

As for the transform, it knows nothing of the contents of the file it is transforming, and simply wraps a rectangle
around a circle, starting at an angle A0 and ending at an angle A1, which in this case have been chosen at

−90◦ ± 7◦.

% define the base coordinate system

/B matrix currentmatrix def

(transform.inc) run

% --- first the outer text ---

% set up the transform

% the bounding box of the imported file

/llx 81 def

/lly 713 def

/urx 389 def

/ury 719 def

% the dimensions of the box we are displaying

/boxwidth urx llx sub def

/boxheight ury lly sub def

% the angles where the circular text starts and ends

/A0 270 7 sub def

/A1 -90 7 add def

% radius of the circular text

/radius 100 def

% proportion of a full circle the text takes up

/factor A0 A1 sub 360 div def

% the length it will take up on the circle

/truelength factor 3.1416 mul 2 mul radius mul def

% the transform itself

/f { 1 dict begin

/y exch lly sub def

/x exch llx sub def

/T 1 x boxwidth div sub A0 A1 sub mul A1 add def

/R 100 boxheight 2 div sub y truelength boxwidth div mul add def

T cos R mul T sin R mul

end } def

gsave

transformdict begin

Appendix 7. Importing PostScript files 8

/f load set-transform

% set the base coordinate system

B set-base

1 dict begin

/showpage{} def

(trithemius.eps) run

end % the temporary dictionary

end % transformdict

grestore

% --- now the inner text ---

0.92 dup scale

-91 -683 translate

58 98 translate

1 dict begin

/showpage{} def

(trithemius2.eps) run

end

References

1. Adobe Systems, Adobe Type 1 Font Format, 1990. This is the original edition of the definitive document.fonts:type 1:8

Newer versions are available on line.

2. Johannes Trithemius, In Praise of Scribes, translated into English from De Laude Scriptorum by RolandTrithemius:J.:8

Behrendt, Coronado Press, 1974.

Epilogue

The association between mathematics and graphics is ancient. Indeed, as the

scholar of Greek mathematics T. L. Heath has observed, the Greek root of the
word ‘graphics’ seems to mean in places ‘to prove’. But the association is far

older than even the civilization of classical Greece. One of the very oldest math­
ematical documents we now possess is YBC 7289, a tablet dating from about

1800 B.C. and now found in the Yale Babylonian Collection. The three numbers

written on the tablet (in base 60 notation) express 1/2, an approximation of
√

2
to about 8 decimal figures, and the corresponding product

√
2/2. The diagram

on it is plausibly a part of a simple geometric proof of Pythagoras’ theorem

for isosceles right triangles, closely related to the well known figure associated
with the discussion of this result in Plato’s Meno. This extraordinary object

therefore seems to show that the person who made it knew both that the ratio of the diagonal to the side of a
square was a real number whose square was two, and why it was so. I like to think that this diagram tells us

that the association of logical reasoning with mathematics originated with deductions from figures, although of

course any train of real evidence of how mathematical reasoning came about is to us is beyond recovery.

The quality of mathematical reasoning made an extraordi­

nary leap among the Greeks, notably with the appearance

of the Elements of Euclid. Figures were still required, of
course, and one small but significant advance was made by

linking text and figures with labels. Of course the connec­

tion between pictures and reasoning has continued for the
entire history of mathematics, although with varying impor­

tance. It reached a low point during the 18th century, prob­
ably because from the earliest days of modern mathematical

analysis it was realized that pictures were inadequate to deal

with the complexities of the subject, and could be seriously deceptive. The tone was struck most forcefully in
Lagrange’s famous boast in the preface to his Analytical mechanics that “One will not find any figures in this

work. The methods which I explain in it require neither constructions nor geometrical nor mechanical reasoning,

but only algebraic operations.” Such an attitude towards illustration in mathematics continued to be sounded,
and with some justification, through the entire nineteenth century and into the twentieth. During much of that

time, it was often amateurs who came up with the best graphics in mathematics, although there were notable
exceptions. Technology was poor—even through the nineteenth century technical illustrations were often done

with woodcuts. To compensate for this, labour was fairly cheap during much of the century, but eventually costs

overtook convenience, and the quality of mathematical illustration went down. Cost presumably explains why
we had in the twentieth century otherwise fine books on geometry notoriously lacking illustrations, such as

Julian Coolidge’s History of Geometrical Methods. (In speaking of the origins of perspective drawing (p. 107 in

my Dover reprint), he writes “Alberti does not explain himself very clearly, and we may say that . . . the easiest
way to understand those early works on perspective is to study the pictures, not to read the text.” But Coolidge

has no pictures!) Later in that century, computers restored to mathematics the potential of being associated with
great graphics, one that has even been occasionally realized. But although computers have made it possible to

publish great pictures, technology alone does not guarantee that the worth of a picture reflects how much work

went into it. It is important to think carefully about exactly what one wants. Pictures should be drawn with as
much care as paragraphs are written.

Epilogue 2

Edward Tufte, now retired from a career as Professor at Yale University, has written several books on what he calls
‘information graphics’. They are very beautiful books—produced by his own press, which was founded expressly

for the purpose—and indeed these books illustrate that the medium really is often the message. Nonetheless,

there are a few more or less practical rules to be extracted from them that could be of value to anybody who wants
to explain something by visual means. A lot of Tufte’s effort goes into the display of data—weather patterns,

train schedules, the attrition in Napoleon’s army on the long, cold, winter road to Moscow—but many of his

ideas apply to the task of mapping out a train of logic. I’ll give an example here.

I will do this by comparing what I am embarrassed to call the traditional mode of mathematical exposition with

one adapted from Tufte’s suggestions.

I am going to look at the classical result, known to the ancient Greeks, that the golden ratio is irrational–cannot

be expressed as a ratio of whole numbers. This is of course one of the oldest mathematical discoveries, and
perhaps the first truly astonishing one. There is much discussion in the literature—almost entirely speculative, of

course—as to how incommensurability was first found. One common and reasonable speculation is that it was

arrived at by geometric reasoning—not that geometry provided at first a completely rigourous proof in view of
the then primitive state of Greek mathematics, but that it at least provided a convincing chain of reasoning of

some kind leading to the result.

The golden ratio is also the ratio between the side and diagonal of a regular pentagon, and what we shall actually

demonstrate is that the side and diagonal of a regular pentagon are incommensurable. Very briefly, the idea of the

argument used here is to see that if the side and diagonal are both multiples of an interval ε then so are the side
and diagonal of the smaller pentagon at the center of the five­sided star whose vertices are those of the original

pentagon. Recursion leads to a contradiction.

I will begin by quoting a very traditional approach to this question, from a 1945 paper by Kurt von Fritz on the

discovery of incommensurability. Keep in mind throughout what is to follow that the point, as von Fritz says,
is not merely to prove the result, but to make it “almost apparent at first sight”. Here is my copy of the figure

drawn by von Fritz:

A

B

CD

E

A′

B′

C′ D′

E′

A′′

B′′

C′′D′′

E′′

Von Fritz’ Figure

Here is what he writes:

. . . the diameters of the pentagon form a new regular pentagon in the centre, . . . the diameters of

this smaller pentagon will again form a regular pentagon, and so on in an infinite process. It is . . .
easy to see that in the pentagons produced in this way AE = AB′ and B′D = B′E′ and therefore

AD − AE = B′E′, and likewise AE = ED′ = EA′ and B′E′ = B′D = B′E and therefore

AE − B′E′ = B′A′, and so forth ad infinitum, or, in other words, that the difference between the
diameter and the side of the greater pentagon is equal to the diameter of the smaller pentagon, and

the difference between the side of the greater pentagon and the diameter of the smaller pentagon

Epilogue 3

is equal to the side of the smaller pentagon, and again the difference between the diameter of the
smaller pentagon and its side is equal to to the diameter of the next smaller pentagon and so forth in

infinitum. Since ever new regular pentagons are produced by the diameters it is then evident that

the process of mutual subtraction will go on forever, and therefore no greatest common measure of
the diameter and the side of the regular pentagon can be found.

There is nothing wrong in the logic of this treatment, although it does stumble around a bit. What we are
interested in right now, however, is how the argument relates to the figure. The answer, I think it is fair to say, is

“not well”. Reading the original article is even more difficult than apparent here because, as often happens, the

text and figure are on separate pages. What I claim is that von Fritz stumbles precisely because he is trying to put
in words what could have been far better put in pictures. His one figure is not really used in a serious way, and

essentially does no more than make the argument unambiguous. I also think it is fair to say that von Fritz is far

from making the result apparent at first sight. Contrary to what he wants to do, he is preaching to the converted.
Of course one might object that a paper over 50 years old cannot be held completely responsible for its graphics,

but actually von Fritz does better than many more recent authors.

Let’s see what help Tufte might be able to offer. The first step is to decide to take the graphics more seriously—to

make the graphics the main part of the narrative, rather than subsidiary to it. The next step is to integrate text
and graphics better; this is von Fritz’ major failing, because in reading his argument you are constantly forced to

go back to the diagram, relocate yourself there, etc. A third is to determine which elements of the illustrations

are important, and then to emphasize them. In von Fritz’ figure there are only the labelling of the vertices to
orient the reader. But in fact the entities involved are not really the vertices at all, but instead various edges and

sub­regions of the pentagon.

Perhaps the most succinct application of Tufte’s principles is found in Chapter 4 of Visual Explanations, ‘The

Smallest Effective Difference’. It opens up with a diagram of the ear taken from the Random House Dictionary
of the English Language, which has a remarkable resemblance to von Fritz’ diagram! Tufte redraws it to make it
clearer, by carrying through the following ideas:

• Tone down the secondary elements of a picture in order to reduce visual clutter, to clarify the primary
elements of the figure, and also to eliminate unwanted visual interactions. Tufte calls this layering the figure

to produce a visual hierarchy.

• Reduce discontinuity in the exposition—replace coding labels in the figure by locally useful information in

the figure itself. The general principle is to integrate text and graphics. One point is that unnecessary eye

movements are fatal to easy comprehension.

• Produce emphasis by using the smallest possible effective distinctions. In practice this often, but not always,

means replacing bold, strongly contrasting colors by quieter shades. This is perhaps the hardest of all sins to
avoid, since it is often extremely tempting for the beginner to introduce strong colors whenever he can. In

Web graphics, this does often work well.

To this list might be added a few ideas from elsewhere in Tufte’s books:

• Eliminate parts of the figure that do not actually add to its content. If they do not add to it then they will

subtract from it.

• Use what Tufte calls small multiples, numerous repetitions of a single figure with slight variations. Human

perception is sharp in making comparisons. Another way to put this, particularly in trying to track a logical
argument visually, is to say that the sequence should have continuity, in the dramatic sense.

• Make the graphics itself carry the tale, as much as possible. Where text is necessary, elininate one major
source of annoyance by placing related text and graphics close to each other.

All of these are nearly self­evident principles, and if the use of graphics in mathematics were more sophisticated
than it is now one might consider this an objection to Tufte’s books.

Here now is the argument I have made in up in an attempt to apply these principles:

Epilogue 4

The basic fact is that in a regular pentagon a diagonal and the side opposite to it are
parallel. This property in some sense characterizes the regular pentagon.

As a consequence, the shaded region shown at left is a parallelogram all of whose
sides are equal (a rhombus).

Assume now that the side s and diagonal d in are commensurable, which is to say
that they are both multiples of a common interval ε.

Then d − s is also a multiple of the interval ε.

And so is the interval we get in the middle of the diagonal, which has length
d − 2(d − s) = 2s − d.

But this interval is the side of the smaller pentagon at the centre of the star we get by
drawing all diagonals.

The figure emphasized in the diagram to the left is a parallelogram, since opposite

sides are parallel to the same side of the pentagon. Therefore the quantity d − s is
the diagonal of the smaller pentagon.

Therefore under the assumption that the diagonal and side of a pentagon are mul­

tiples of a common interval ε, we deduce that so are the side and diagonal of the
smaller pentagon inscribed in it.

We can reason in the same way about the pentagon in its interior in turn, etc. The

interval ε will divide all the sides and diagonals of the infinite series of pentagons
we get. But eventually the sides of those pentagons will be smaller than ε, a contra­

diction.

I imagine that some readers will find my argument distasteful. I am, however, in good company. It is no less
than J. E. Littlewood who points out (p. 54 of the Miscellany)

A heavy warning used to be given that pictures are not rigourous; this has never had its bluff called and
has permanently frightened its victims into playing for safety.

Littlewood’s remark accompanies an elegant ‘picture proof’ of a lemma of Landau’s.

Epilogue 5

References

1. Bill Casselman, A review of Visual Explanations by E. Tufte, Notices of the AMS 46, January 1999, pp. 43–46.

Much of this epilogue was taken from this.

2. K. von Fritz, ‘The discovery of incommensurability by Hppasus of Metapontium’, Annals of Mathematics

(1945), pp. 242–264.

3. T. L. Heath, A History of Greek Mathematics volume I, Dover, 1981. The discussion of ‘drawing’ and ‘proof’ is

in the extensive footnote on p. 203. This question has been taken up more recently by Wilbur Knorr in §III.II of
The Evolution of Euclid’s Elements, and again in §2.2 of The Shaping of Deduction, an exhaustive investigation

of Greek mathematical diagrams by the classical scholar Reviel Netz. Both of these later discussions are very

interesting. Especially for those like me who believe on a priori grounds that mathematical proofs originated
with diagrams, where visualization led inevitably to reasoning.

4. J. E. Littlewood, Littlewood’s Miscellany, Cambridge University Press, 1988.

5. E. Tufte, The Visual Display of Quantitative Information, Graphics Press, Cheshire, Connecticut, 1983.

6. , Envisioning Information, Graphics Press, 1990.

7. , Visual Explanations, Graphics Press, 1997.

Geometrical symmetry and the fine structure of regular polyhedra

Bill Casselman
Department of Mathematics
University of B.C.
cass@math.ubc.ca

We shall be concerned with geometrical figures with a high degree of symmetry, in both 2D and 3D. In 3D
the most symmetrical figures are the five Platonic solids, which we shall see how to construct in the last section.
There are many ways to do this, and many described in the literature, but the most satisfactory method is one
which extends to a wide variety of regular figures of all kinds. This depends on understanding its symmetry
transformations, which make up what is called a Coxeter group, generated by reflections of a particular kind.

1. Mathematical symmetry

In common English usage, the term symmetry seems to have meant at first the property of being balanced or
well-proportioned. This original meaning continues in a slightly more technical sense in the phrases bilateral
symmetry and mirror symmetry applied to a figure which looks the same as its image in a mirror. For example,
the triangle on the left has mirror symmetry while the one on the right does not.

In effect, the reason we say the figure on the left has mirror symmetry is that we can slice it with a line to divide
it into two halves which are congruent to one another, but with orientation reversed, as if reflected in a mirror.
The line is called an axis of symmetry of the triangle.

Geometrical symmetry and the fine structure of regular polyhedra 2

In mathematics, we distinguish between degrees of symmetry. For example, the equilateral triangle shown below
has more symmetry than the triangles above.

To be precise, it has three axes of symmetry.

Exercise. Is it true that every triangle with three axes of symmetry is equilateral? Explain.

The kinds of symmetry a finite plane figure can have is very limited. Exactly what kinds of symmetry can a figure
have? First of all, there are several elementary kinds of symmetry. We have already seen mirror or reflection
symmetry. But the figure in this picture also has a kind of symmetry, which we shall call rotational:

That is to say, we can rotate this figure by 120� and we just get the same figure again. As the equilateral triangle
demonstrates, a finite figure can have both reflection and rotation symmetry.

A figure can also have translation symmetry.

This requires that the figure be infinite in extent.

Geometrical symmetry and the fine structure of regular polyhedra 3

It is in fact possible to classify all the possible kinds of symmetry a plane figure can have, according to the set of all
of its symmetries. Here by a symmetry of a figure we mean any rigid transformation which takes the figure into
itself. I remind you that every rigid 2D transformation of a figure is one which doesn’t distort it in any way—i.e.
which preserves relative lengths and angles. Any rigid transformation can be obtained as the composition of a
rotation or reflection with a translation.

From now on we shall restrict ourselves to figures which are of bounded size. This makes our discussion much
simpler (and perhaps less interesting). In order to avoid technicalities we shall assume that the figure is the union
of the interior of some finite region of the plane and its boundary.

There are two basic and self-evident principles we work with:

� Composition principle. The composition of two symmetries of a figure, one applied after the other, is also a
symmetry of the figure.

� Inversion principle. The inverse of any symmetry of a figure is also a symmetry of the figure.

Any set of transformations of an object satisfying these conditions is called a group. We are examining the possible
symmetry groups of geometrical figures.

These principles allow us to narrow down the possibilities quite a bit. Suppose that we are given a bounded
figure with more than one symmetry. It is not too difficult to see that if it has an infinite number of symmetries
then it has to be a circle. Suppose, then, that it has only a finite number of symmetries s1, s2, : : : , sn (including
the trivial one which doesn’t transform anything). If P is any point of the figure, consider the vector average

P =
s1(P) + s2(P) + � � � + sN (P)

n
:

which is also the centre of gravity of the n points. If we apply si to it, we get

siP =
sis1(P) + sis2(P) + � � � + sisN (P)

n
:

By the composition principle, each of the products is also a symmetry of the figure. These products are all
different, for if sisj = sisk then we can apply s�1

i
to both sides and see that sj = sk. But if the products are all

different then since there are n of them they must range over the whole set of symmetries. The sum for siP is
therefore over the same set as that defining P . In other words

siP = P :

This tells us that if a figure possesses only a finite number of symmetries then there is one point somewhere in the
plane fixed by all of its symmetries. I will not go into details here, but it is not difficult to deduce from this result
that bounded figures, as far as their symmetry is concerned, fall into three classes: (1) total circular symmetry; (2)
a finite degree of rotation symmetry; (3) a finite degree of mixed rotation and reflection symmetry. In the second
category are those figures with no noticeable symmetry—for the only symmetry is the rotation by 0�— and in the
last category are those figures whose only non-trivial symmetry is a single reflection.

Here are pictures of examples from each of the three types:

Geometrical symmetry and the fine structure of regular polyhedra 4

The only figure with circular symmetry is : : : well : : : a circle. The rest of the figures will be polygons of various
shapes. In the case of rotation symmetry, the figure will have n-fold rotation symmetry for some integer n, in
which case it can be rotated into itself through 360�=n. If it has mixed symmetry, then it will be invariant under
n rotations and n reflections for some integer n, a total of 2n. The rotations are all generated by a single rotation
through 360�=n, and the reflections will be throughn lines evenly spaced at 360�=n apart. As already mentioned,
a figure can have no symmetry whatsoever, as a special case of rotation symmetry with n = 1.

Suppose a figure has N symmetry transformations in all (and is not a circle). It can always be partitioned into
N distinct regions, each of which is congruent to the others. If we move the figure so that one of its axes of
symmetry—if it possesses any—is the x-axis, then these regions are just the intersections of the figure with one
of the sections 0 � � < 360�=N . I shall call them the symmetry chambers of the figure.

There are exactly as many chambers in this partition as there are symmetries of the figure. Suppose we fix one of
the pieces in the partition. Call it, say, C . If s is a symmetry transformation of the figure then s will transform
C to one of the other pieces of the partition. In this way we specify an exact association between pieces of the
partition and symmetries of the figure—that is to say, as s ranges over all symmetries of the figure s(C) ranges
over all the pieces of the partition.

This is one way of using geometry to classify the symmetries. Another is to describe the symmetries more directly
in geometrical terms: to a figure of mixed symmetry with 2n symmetries n of them are rotations by multiples of
360�=n and the other n are reflections in various axes of symmetry of the figure. These two ways of describing
the symmetries are rather different in flavour. They are perhaps complementary. Both descriptions are valuable.

2. Reflections

The key to our construction of the Platonic solids is understanding certain reflection symmetries of these figures.
In this section we shall look in detail at reflections.

A reflection is the mathematical way to transform something into its mirror image. In 2D a reflection is associated
to a line, and in 3D it is associated to a plane. In both cases, we shall be concerned here only with reflections in
lines or planes that pass through the origin. Such reflections are linear transformations.

In either 2D or 3D the object through which things are reflected is described by a single equation f = 0 where in
2D the linear function f has the form f(x; y) = Ax+By and in 3D it has the form f(x; y; z) = Ax+ By +Cz.
In either case the function f specifies a vector � which is perpendicular to the reflection line or surface, since the
equation can be read � � v = 0 where in 2D the vector � is (A;B) and in 3D it is (A;B;C).

Given �, how can we specify the reflection precisely?

Geometrical symmetry and the fine structure of regular polyhedra 5

u

u� 2u0

u0

Suppose we are given u and the vector � perpendicular to the line we are reflecting in. Let

u0 =
�u ��
� ��

�
�

be the projection of u along �. The figure shows that the reflection of u in the line perpendicular to � is

u� 2u0 :

This formula works in any number of dimensions:

� The reflection of u in � � v = 0 is
r�u = u� 2

�u ��
� ��

�
� :

It is often convenient to arrange that k�k = 1. Suppose now that the line we reflecting in has angle � with respect
to the x-axis. The vector (cos�; sin �) lies along this line, and to obtain � we rotate this by 90�. We get

� = [� sin � cos �] :

The matrix corresponding to the reflection is the one whose columns are the images of (1; 0) and (0; 1) with
respect to the reflection. We get these columns to be

�
1

0

�
� 2(� sin �)

�
� sin �

cos �

�
=

�
1� 2 sin2 �

2 sin � cos �

�
;

�
0

1

�
� 2(cos �)

�
� sin �

cos �

�
=

�
2 sin � cos �

1� 2 cos2 �

�
:

By using the trigonometrical formulas
cos 2� = cos2 � � sin2 �

= 2cos2 � � 1

= 1� 2 sin2 �

sin 2� = 2 sin � cos � :

we see that

� The matrix for reflection in the line at angle � with respect to the x-axis is

�
cos 2� sin 2�
sin 2� � cos 2�

�
:

Geometrical symmetry and the fine structure of regular polyhedra 6

As a check on this calculation, note that this matrix has determinant �1. Note also that � and � + 180� give the
same matrix, as they should, since these two angles determine the same line of reflection. Finally, this matrix can
be computed by a direct geometric argument.

Exercise. Write a procedure reflect with one argument �, which changes the CTM by reflecting in the line at
angle � with respect to the x-axis.

Exercise. Let v0 be a point in 2D. Find a formula for a rotation of angle � around v0. Check by showing that v0
is fixed by your transformation.

Exercise. Show that every rigid motion in 2D which is not a translation is a rotation around some point. The
main problem is to show that there exists some point fixed by the transformation. You should be able to calculate
what it is.

Exercise. Given a line Ax+By +C = 0 write down a formula for reflection in this line.

Exercise. A sliding reflection in 2D reflects in some line called the axis of the transformation, and then slides
along parallel to this axis. Given a line Ax + By + C = 0 and a shift distance a write down a formula for the
combination of reflection in the line followed by a shift of a parallel to it.

Exercise. Show that every rigid transformation in 2D which is not a rigid motion is either a reflection through
some line or a sliding reflection.

Exercise. Find a formula for rotation around an axis v0 + t� in 3D.

Exercise. A helical motion in 3D is a motion which twists and shifts around an axis all at the same time. That is
to say it rotates around an axis and then shifts parallel to it. Show that every rigid motion in 3D which is not a
translation or a rotation is a helical motion.

Exercise. Write down the parametrization for a helix in 3D winding around the z-axis and shifting a distance a
in every coil.

3. Regular polygons

We will in this section restrict our attention to regular polygons, that is to say polygons with as much symmetry
as possible. All vertices will be at a fixed distance from the origin, and the lengths of all sides are the same.

As we travel around the outside of the polygon of n sides, we make n turns for a total of 360�. The internal angle
at each corner is therefore 180� � 360�=n.

If the figure has n sides, it has 2n symmetries in all—n rotations and n reflections. The geometry of the reflections
is a bit different for even and odd values of n.

Geometrical symmetry and the fine structure of regular polyhedra 7

When n is odd, all reflections are through a line cutting through a vertex and the middle of a side, while if n is
even there are two kinds of reflections, in lines through vertices and in lines bisecting sides. In either case, the
partition of the polygon into chambers determined by its symmetry is into triangles with one vertex at the centre,
one at a vertex of the polygon, and one in the middle of a side. These chambers have the properties (1) any two
are equivalent with respect to symmetries of the figure, and (2) no symmetry of the figure is also a symmetry of
a chamber.

We can see easily from this why there are exactly 2n symmetries, 2 each for each of the n sides, since that’s how
the chambers are distributed.

The main reason why we are looking at regular polygons in 2D is because these polygons are the faces of the
Platonic solids (regular polyhedra) in 3D. There is one feature of the symmetries of a regular polygon which will
be crucial in constructing the regular polyhedra. Fix a single chamber. The property I want to single out here
is that each of the lines bordering that chamber (its sides or edges) is an axis of symmetry for the figure. To be
able to discuss what is going on more precisely, label those sides. The side meeting the side of the polygon will
be indexed by 1, the one meeting the vertex of the polygon will be labeled by 2. Similarly, let r1 and r2 be the
reflections in those sides. The effect of r1 is therefore to interchange the two chambers on the left, and the effect
of r2 is to interchange the two on the right.

r2

r1

Geometrical symmetry and the fine structure of regular polyhedra 8

Let �1 and �2 be the unit vectors perpendicular to the lines of reflection of r1and r2. We choose the direction of
�i so that the chamber is on the same side of the line through the origin perpendicular to �i as �i is.

�2

�1

In our examples
�1 = (sin �;� cos �); �2 = (0; 1)

where � = �n = 360�=2n. These explicit vectors depend on the particular orientation of the polygon, but the
important properties are that both �1 and �2 have length 1 and that the angle between the two is 180���n. More
precisely:

�1 ��1 = 1

�2 ��2 = 1

�1 ��2 = � cos (180�=n)

Here is a table for small values of n:

n � cos(180�=n)

2 0

3 �1=2

4 �
p
2=2

5 �1=4�
p
5=4

6 �
p
3=2

Exercise. In all these cases cos(180�=n) involves a single radical, such as
p
2,
p
3,
p
5. Are there any others?

What happens if we apply several reflections alternately? If we apply r1r2 toC (first r2, then r1) we get the figure
on the left, and if we apply r2r1 (first r1, then r2) we get that on the right.

C

r2C

r1r2C

C

r1C

r2r1C

That is to say that r1r2 amounts to rotation counter-clockwise by 360�=n, while r2r1 amounts to a rotation by the
same angle in the opposite direction. Let � be rotation by 360�=n. Then the rotation symmetries of the n-sided
regular polygon are the transformation 1, �, : : : , �n�1. All the compositions r2�m with 0 � m < n have negative
determinant, and in fact run through all reflection symmetries. This implies, among other things, that every one

Geometrical symmetry and the fine structure of regular polyhedra 9

of its symmetries can be expressed as a product in some order of r1 and r2. We shall more about this in the next
section.

Exercise. If r is a reflection through the x-axis and � a rotation through �, describe the line of reflection for r�.

4. Listing the symmetries of a regular polygon

The triangles in the figures above don’t seem to be added in a geometrically readable fashion. Now, however,
let’s look at the sequences of chambers r1(C), r1r2(C), r1r2r1(C):

Here, the chambers r1(C), r1r2(C), r1r2r1(C) form a geometrically connected chain of chambers, pictured all at
once in this figure:

Exercise. Write a PostScript program to draw the picture above. Incorporate routines which change the CTM by
a sequence of reflections r1 and r2, where the sequence is given as an array of entries 1 and 2.

Where are we heading? Suppose we are given a chain of chambers C0 = C , C1, C2, : : : , Cn from C to a final
chamber Cn. How can we write down a string of reflections whose product takes C to Cn? The answer is very
simple, but not quite intuitive. First of all, label each radial segment in the polygon by either 1 or 2—the ones
going to sides by 1, the ones going out to the vertices of the polygon by 2. This is consistent with our initial
labeling. For example, on the left I have marked all the segments labeled 1 and on the right those labeled 2.

Geometrical symmetry and the fine structure of regular polyhedra 10

The main property of this labeling is that the labels are preserved by the symmetries of the figure: any symmetry
will take a side of type 1 into another of type 1, and one of type 2 to another of type 2. The classification of sides
into types is intrinsic to the geometry of the polygon.

� Suppose we are given a chain of chambers C0 = C , C1, C2, : : : , Cn from C to a final chamber Cn. Suppose
the successive segments separating these are labeled i1, i2, : : : in. If for each m we set

rm = ri1ri2 : : : rim

then rm(C) = Cm for all m.

The point is that the geometrical chain of chambers relates directly to multiplication by the simple reflections r1
and r2. The unusual feature is that we build the chain in the order opposite to that in which the reflections are
applied. The reason this is important is that it gives us a way to label all symmetries of the figure in a way that
relates directly to geometry. I shall elaborate on this in a moment.

The proof of the assertion is elementary. Let r = ri with i either 1 or 2. The chambers C and r(C) are separated
by a side of type i. When we apply s to this pair, the pair s(C) and sr(C) we get is again separated by a side of
type i, since the type of a side does not change when it is transformed by a symmetry.

C

r(C)

s(
C
)

sr
(C

)

Consider, for example, r2r1r2. We start with the pair C , r2(C) separated by a side of type 1. Then we want to
know that r2 and r2r1(C) are separated by a side of type 1. But this is the pair we get by applying r2 to the pair
C , r1(C). Etc.

One consequence is another proof of this basic fact:

� Every symmetry of a regular polygon can be expressed as a product of r1 and r2.

Explicitly, if s is a symmetry of the polygon, connect C and s(C) by a chain of chambers. This chain corresponds
to an expression for s in terms of r1 and r2.

We can in fact find a well defined and unique expression for every symmetry s, if we follow these rules: (1) We
connect s(C) and C by a chain of shortest length and write s in terms of that chain. (2) There is one symmetry s

for which there are two chains of minimal length connecting s(C) to C . For example if N = 5 then

r1r2r1r2r1(C) = r2r1r2r1r2(C)

as the picture shows.

Geometrical symmetry and the fine structure of regular polyhedra 11

In this case we choose as the expression for s the one which is least in what is called inverse dictionary order,
namely r1r2r1r2r1. This is because r2r1r2r1r2 would come after r1r2r1r2r1 in a dictionary where words were
read backwards. In 2D this ordering is not important, but in 3D it helps us avoid chaos.

We can now make a list of all symmetries of a regular polygon. The order in which the elements are listed is to
be in inverse dictionary order. For N = 5 our list is this (where we use the ‘empty’ expression ; for the trivial
symmetry):

;
r1
r2r1
r1r2r1
r2r1r2r1
r1r2r1r2r1
r2
r1r2
r2r1r2
r1r2r1r2

Exercise. Let n = 6. Draw the chain for r1r2r1r2.

Exercise. List all the symmetries of the equilateral triangle, following the scheme above.

Exercise. List all the symmetries of the square, following the scheme above.

5. Regular polyhedra

A polyhedron in three dimensions is any figure which is a union of plane polygonal figures forming its boundary.
These polygonal surfaces are called the faces of the polyhedron. The sides of the faces are called the edges of the
polyhedron, and their corners are called its vertices.

A regular polyhedron in 3D is a polyhedron all of whose faces, edges, and vertices look the same. It is enough to
require that every face is a regular polygon and that any two faces must be congruent.

It was known very early to Greek mathematicians that there are only five regular polyhedra. As far as I know,
the earliest surviving discussion from the classical Greek period is in Euclid’s Book XIII, but the main facts were
certainly known earlier. Several Greek books written shortly after Euclid’s refer to earlier treatises apparently
then still in existence. Three of the regular polyhedra (the tetrahedron, cube, octahedron) are relatively simple,
but the remaining two (dodecahedron, icosahedron) are considerably more complicated. It is apparently not
known exactly how they were first discovered. (Refer to the introduction by Heath to Book XIII in his edition of
Euclid.)

We shall concern ourselves with two questions: (1) Why are there exactly five regular polyhedra? (2) How can
one construct them? We interpret the second question as meaning: Specify explicitly all of the vertices of the
polyhedra.

Geometrical symmetry and the fine structure of regular polyhedra 12

Exercise. Answering the second question for the cube is trivial. The octahedron is not much more complicated,
since it can be derived from the cube. The tetrahedron is not quite so simple, but still reasonably elementary. List
all the vertices of a tetrahedron centred at the origin if one vertex is a (0; 0; 1) and a second is of the form (x; 0; z)
with x > 0.

The first question will be dealt with in this section, the second in the next.

Suppose we have a regular polyhedron. Its faces will all be congruent regular polygons, say of m sides. Each of
its vertices will look the same; let n be the number of faces surrounding each of them. For the cube, for example,
n = 3 and m = 4.

Pick one of its vertices. Cut away from the polyhedron all of its faces except the ones touching this vertex. On
each of these faces’ sides the angle between two neighbouring edges will be 180� � 360�=m. I now claim that as
I cycle around the vertex adding up the angles I meet on the faces, I have to get a total of less than 360�. Roughly
speaking, this claim amounts to the assertion that if we cut out the faces of a regular polyhedron around a given
vertex and then flatten them, we get one of the following figures:

To be precise, the claim implies that

180� 360=m < 360=n; 180 < 360

�
1

m
+

1

n

�
;

1

2
<

1

m
+

1

n
:

The integers m and n must be at least 3, since our figure is assumed to be genuinely three-dimensional. The
possibilities are hence quite limited, as the following table shows with more precision than the figure above.

Geometrical symmetry and the fine structure of regular polyhedra 13

m n 1=m+ 1=n
� 3 3 2=3

� 4 7=12
� 5 8=15

6 1=2
� 4 3 7=12

4 1=2

� 5 3 8=15
4 9=20

6 3 1=2

In particular, we cannot have m or n greater than 5. Thus we get five possibilities in all. There is some subtle
logic here—this argument asserts that there at most 5 possibilities, but it does not guarantee that each possibility
is actually realized by a regular polyhedron. It is the construction in the next section that will do that.

The claim I have made is a special case of a much more general result about arbitrary convex polyhedra.

� For any convex polyhedron, the sum of angles on the faces around any of its vertices is less than 360�.

The term convex means, roughly, that the polyhedron bends outward at all vertices and edges. As before, what
the result means is that if we are given something like the cone on the left, then if we cut it and flatten it out we
get the figure on the right:

This result is almost intuitively true. However, as far as I can see, this intuition is based only on special cases
which do not cover all possibilities. This result is, at any rate, proven in Euclid (Book XI, Propositions 20 and 21),
and it is used exactly as we are using it in the classification of regular polyhedra. It is also possible to describe in
geometric terms the defect of the vertex (360� less the sum of the vertex angles), but that is another story.

6. Construction

Suppose we are given a regular polyhedron. We can partition its surface into chambers, just as we partitioned
a regular polyhedron into chambers. In fact, each chamber of the polyhedron will be a chamber of one of the
regular polygons making up the polyhedron’s faces. Fix one of the chambers, call it C . We can extend it into the
third dimension by joining its vertices to the origin O. Let $1 be the vertex at a corner of the polyhedron, $2 in
the middle of an edge, $3 in the centre of a face.

Geometrical symmetry and the fine structure of regular polyhedra 14

$1

$2

$3

Each one of the $i gives rise to an integer ni, half the number of chambers surrounding the point $i. For
example, for the cube we have

n1 = 3; n2 = 2; n3 = 4 :

I now want to introduce three vectors �1, �2, �3. Each of them will have length 1. The vector�1 be perpendicular
to the face O$2$3, and it will be on the same side of this plane as the chamber C . Similarly, �2 be perpendicular
to the face O$1$3, and on the same side of this face as C . And �3 be perpendicular to the face O$1$2, on the
same side as C .

�1

�2

�3

Geometrical symmetry and the fine structure of regular polyhedra 15

More precisely, in all cases we have the rules

k�ik = 1

�i �$j = 0 if j 6= i

�i �$i > 0

which determine the �i completely. We can also see what the angles between the various �i must be. For
example, �1 and �2 are both perpendicular to $3. Therefore if we project them onto a plane perpendicular to$3

they preserve their length. But if we project the polyhedron onto that plane we just get a regular polygon with
n3 sides and $3 as centre. We can apply what we said in a previous section about the � in that case:

�1 ��2 = cos(180� � 180�=n3) :

Similarly, if we project the polyhedron onto a plane perpendicular to $1, the configuration of $1 and its neigh-
bouring vertices projects to a regular polygon of n1 sides, and hence all in all

�2 ��3 = cos(180� � 180�=n1) :

It is also simple to see that
�1 ��3 = 0

All in all
�1 ��2 = � cos(180�=n3)

�1 ��3 = 0

�2 ��3 = � cos(180�=n1)

The real point of all this work is that

� These equations, a choice of scale and orientation of the polyhedron, and a choice of the ni allow us to
calculate the �i explicitly.

� From the �i we can calculate the $i.

� From these and some reasoning about the symmetries of the polyhedron we can construct all the faces.

We shall deal with these in order. We will take the radius of the polyhedron to be 1.

� Fix the vector �1 to be at (1; 0; 0). We may assume the vector �2 to be in the (x; y) plane with y > 0, and the
vector �3 to lie in the region z > 0. This only amounts to an alignment of the polyhedron.

We start with
�1 = (1; 0; 0) :

The angle between �1 and �2 is equal to 180� � 180�=n3. We also know that k�2k = 1. Therefore

�2 =
�
� cos(180�=n3); sin(180

�=n3); 0
�
= (x2; y2; 0) :

Note that y2 > 0.

Let
�3 = (x3; y3; z3) :

Recall that n2 = 2 in all cases. Thus
�1 ��3 = � cos(180�=n2)

= x3

�2 ��3 = � cos(180�=n1)

= x2x3 + y2y3

Geometrical symmetry and the fine structure of regular polyhedra 16

so that
x3 = 0

y3 = � cos(180�=n1)=y2

z3 =

q
1� x2

3
� y2

3
:

� How to locate the vectors $i? Let �i be three vectors such that

�i � �j =

�
1 i = j
0 i 6= j

Then on the one hand, since $i satisfies the same conditions of perpendicularity, and $i
��i > 0, $i is a positive

multiple of �i. On the other we can find the �i in a very simple way. The equations for the �i assert that they are
the columns of the matrix N such that

tAN = I

so that
N = tA�1 :

To find $i we just have to scale �i correctly. For i = 1 this is simple, because k$1k = 1. For i = 2 or 3 let �1;i be
the angle between �1 and �i, which is the same as the angle between $1 and $i. Then the length of $i is cos �1;i.

� We now know the points $1, $2, and $3 on a single face containing the chamber C . Its centre is $3, and $1 is
one of its vertices. Let ri be reflection through the plane perpendicular to �i. Thus r1 and r2 both leave $3 fixed
and fix as well the face containing it. We get the other vertices on this face by applying the symmetries generated
by r1 and r2, which we know how to list because of our the results in 2D. The other faces of the polygon are what
we get by applying various symmetries of the polyhedron to this one face. Therefore we have to learn something
about the symmetries of the various polyhedra.

The reflection r3 will reflect this face into some other one. It will also reflect the chamber C into some other
chamber on this face. It is true here as in 2D that the number of symmetries is the same as the number of
chambers. The total number of chambers is the product of the number of chambers on one face and the number
of faces. We have the following table:

Type Number of faces Type of face Number of symmetries

tetrahedron 4 triangle 24

cube 6 square 48

octahedron 8 triangle 48

dodecahedron 12 pentagon 120

icosahedron 20 triangle 120

Symmetries correspond to chambers. If we are given a chamber then we can construct a path from it to the
chamber C , and corresponding to this path is an expression as a product of the ri. The ri are listed from left to
right in the order in which edges are crossed, and ri is inserted in an edge of type i is crossed. In 3D we label
the edges much as we did for 2D—the edge through which �i reflects is labeled by i. For each face this gives a
different indexing from the one we assigned earlier.

To each symmetry we can assign a unique expression as a product of the ri according to these rules: (1) We choose
the shortest expression if it is unique. This corresponds to a shortest path among the chambers. (2) If there are
several shortest paths, we choose the one least in the inverse dictionary order. For each face there will exist a
shortest one of these expressions taking our original face into it.

We get these lists generating all the faces. Of course all these expressions have to end in r3.

Geometrical symmetry and the fine structure of regular polyhedra 17

Type Symmetries defining faces

tetrahedron ;
r3
r2r3
r1r2r3

cube ;
r3
r2r3
r1r2r3
r2r1r2r3
r3r2r1r2r3

octahedron ;
r3
r2r3
r1r2r3
r3r1r2r3
r2r3r1r2r3
r3r2r3r1r2r3
r3r2r3

dodecahedron ;
r3
r2r3
r1r2r3
r2r1r2r3
r1r2r1r2r3
r3r1r2r1r2r3
r2r3r1r2r1r2r3
r1r2r3r1r2r1r2r3
r2r1r2r3r1r2r1r2r3
r3r2r1r2r3r1r2r1r2r3
r3r2r1r2r3

icosahedron ;
r3
r2r3
r1r2r3
r3r1r2r3
r2r3r1r2r3
r1r2r3r1r2r3
r3r1r2r3r1r2r3
r2r3r1r2r3r1r2r3
r1r2r3r1r2r3r1r2r3
r3r1r2r3r1r2r3r1r2r3
r2r3r1r2r3r1r2r3r1r2r3
r3r2r3r1r2r3r1r2r3r1r2r3
r3r2r3r1r2r3r1r2r3
r3r2r3r1r2r3
r2r3r2r3r1r2r3
r1r2r3r2r3r1r2r3
r3r2r3
r2r3r2r3
r1r2r3r2r3

Geometrical symmetry and the fine structure of regular polyhedra 18

In all cases, if we are given this list of expressions we can recreate the full list of symmetries in a simple fashion—we
just tack onto these expressions the strings representing the symmetries of the original face.

In the following figure, these paths are shown in the case of the dodecahedron.

7. Final remarks

One can construct regular polyhedra in higher dimensions as well, although it is nearly impossible to picture
them. As Coxeter’s book Regular Polytopes explains, the most interesting things happen in dimension 4. One can
also classify regular figures in affine and non-Euclidean geometry. The secret to understanding the construction
of every regular figure in every case is again its symmetry group. It is always generated by reflections with certain
products equal to two-dimensional rotations of certain kinds.

8. References

1. Jim Blinn, ‘The Three-Dimensional Kaleidoscope’, Chapter 9 in Jim Blinn’s Corner. Morgan Kauffmann, San
Francisco, 1996. From the author’s column in the September, 1988 issue of Computer graphics and applications.
The Platonic solids are mentioned in many places in the literature of computer graphics, but this is the only place
I have seen the symmetry group dealt with. What I call a chamber is called by Blinn a seed triangle. Quite
reasonably, since it grows to be a tree.

2. Harold S. M. Coxeter, Regular polytopes. Dover, 1973. Difficult to read, but nonetheless a classic.

3. The thirteen books of Euclid’s Elements, edited with commentary by T. L. Heath. Second edition, Dover, 1956.
The comments after Propositions XI.20–21, and before Book XIII are especially relevant.

4. Branko Grünbaum, ‘Geometry strikes again’, Mathematics Magazine, 58 (1988), 13–18. Fine examples of poor
pictures in the mathematical literature. The MAA has cleaned up its logo since then, but pictures in its journals
continue to be of dubious quality. It is arguable that they need a special graphics editor.

Supplementary Note

Clipping

In Chapter 4 the Hodgman­Sutherland clipping algorithm was explained. Given an affine function f(x) and a

polygonal path γ, it returns the truncation of γ to the region f ≤ 0. It has one major fault, however—if the path
being clipped does not enclose a convex region and when clipped is really a union of distinct components, this

algorithm returns a single path instead of the collection of paths one would expect. We’ll see a new version in
this note, one that can also be used with minor modification to draw regions on spheres, clipping them to the

visible side of the sphere.

1. The problem

This figure explains the problem:

The Hodgman­Sutherland algorithm described in Chapter 4 returns here a single path instead of two—the figure

on the left instead of that on the right:

Clipping 2

2. A technical tool

In the procedures we’ll use, it will be useful to have available the notion of a stack in PostScript. This will be an

array of two items, an array a of the items on the stack and an integer n indicating the current height of the stack.
Relevant procedures associated to this are:

Arguments Command Left on stack; side effects
n stack a stack of potential size n

x s spush pushes x on the stack s
s spop pops the top item off s and returns it
s slength returns the current number of items on s
s sempty returns whether the size is 0 or not

s sfull returns whether s is about to overflow
s sextend doubles the potential size of s
s sarray returns an array made up of the current stack items

The stack doesn’t handle overflow or underflow automatically, but it is possible to detect them by using sempty

andsfull. If overflow is a problem usesextend to double the potential size of the stack. All of these implemented
purely by PostScript stack manipulations for efficiency. In many programs, a stack will be used primarily as an

extensible array. The procedure sarray returns the active stack as a fixed array.

3. The solution

Input: the path γ, the (oriented) boundary of a region Γ; and a function f with certain auxiliary properties: (1)
given a point, a procedure that returns a value; (2) given two points P and Q with values f(P) ≤ 0, f(Q) > 0, a

function that returns a unique point of intersection where f = 0; (3) a way to sort any finite set of points on f = 0.
For a line, the first two are straightforward, and if the linear function is Ax + By + C then we sort according

to the value of −Bx + Ay, which is [A, B] rotated by 90◦. This idea can be used also in 3D where the region

is on a sphere, and the truncation takes place with respect to the visible part of the sphere, or across the plane
separating visible from invisible. In that case, as things move, say rotating the sphere with the region drawn on

it, the calculation will take place dynamically, so it had better be reasonably fast.

We proceed through the edges of the polygonal path γ, which is to say of pairs P , Q of successive points from γ,

starting with P = γn−1. I assume that γ is oriented positively, so that the region Γ lies to its left. I also assume

that γ is simple and closed. We then let Q be in turn γ0 etc., keeping track of f(P) and f(Q). We maintain three
stacks as we go. The first A is of all points on the new paths, the second B classifies those in the first, according to

whether they are intersections of in,out; out,in; or neither, which means they are just inside. The third stack C is of

indices of the points which are of the first or second kind. The first array is made up of the points themselves,the
third of indices in the first (as well as second) array. All points in the third array are boundary points lying on

the curve f = 0 and are calculated as intersections of a segment with the boundary curve. Cases for P , Q:

(1) f(P) ≤ 0, f(Q) ≤ 0: we add Q to our arrays A and B.

(2) f(P) ≤ 0, f(Q) > 0: we add the point of intersection R to all three arrays.

(3) f(P) > 0, f(Q) > 0: we do nothing.
(4) f(P) > 0, f(Q) ≤ 0: if R is the point of intersection, then we add R and Q to the first two arrays, R to the

third.

These rules differ from the ones applied in the earlier version of Hodgman­Sutherland in the special case where

one of P and Q lie in the plane f = 0. In the previous algorithm, this was dealt with so as not to add a point twice,
but here, on the other hand, the rules will produce three copies of the same point if we get a triple of successive

vertices of γ where the first and last points lie in the region f > 0 but the middle point P satisfies f(P) = 0. This

case is treated no differently from the case f(P) < 0, and therefore places three copies of P on the curve to be
drawn, two of which are tagged as boundary points. Of course in the real world the probability that P will fall

exactly on the curve f = 0 is infinitesimal, but in theoretical constructions it happens often. One consequence of

the rules applied here here is that boundary points always come in pairs, one ingoing and one outgoing.

Clipping 3

At the end, after this pass through the edges of the polygon γ, we sort the points in the third array. This sorting
is first of all geometrical, compatible with The sorting has to be compatible with orientation—so if P is outgoing

and Q the next (ingoing) point in our sorted list, then PQ has the region on the left.

Make up a fourth array of the same length as the first, giving for every boundary point its index in the sorted
boundary point array, and ∅ for every point that’s not a boundary point.

We now want to locate the components of the original region cut off by f ≤ 0. We loop, building one component
in each loop. At the beginning of a loop we search through the boundary points to find an outgoing point that

hasn’t been assigned yet. Then we build the component boundary starting with this point, adding one point at
a time. How we choose the next point (i.e. its index) dpends on the type of the current point. If it is outgoing,

we choose the next (ingoing) point in the boundary list; if it is ingoing we just choose the next point in the path;

and similarly if it is an interior point. We stop when the next point is our starting point, in which case we have a
component path. As we add points we keep count, and when all point shave been put on some componnet we

stop.

When we add a point to a component, we mark it as used.

What we return finally is an array of polygons, the oriented boundaries γi of regions Γi.

4. Other applications

The same technique can be used to draw regions on a sphere, for example countries on a map. In this case, we first

calculate the plane separating the visible region of the sphere from the rest, and then truncate when a segment of

the path crosses this. As for sorting, we pick one outgoing point, and the sort by angular distance (clockwise, as
seen by the eye) away from this. This angular distance can be calculated by means of dot products with a plane

vector to this point and this vector rotated 90◦. Otherwise the whole algorithm looks pretty much the same. If
we use the path we get as a 2D clipping path, we can even produce good shading.

What surfaces will this work on? Presumably convex ones for which we can compute the horizon. It remains

difficult to find something that works for others.

5. Code

The relevant code for this new version of Hodgman­Sutherland is in the file hs.inc, which contains the single

procedure hs. This has the path and the line as arguments, and returns the array of component boundary paths
as polygons.

The stack procedures are contained in the file stack.inc. In order to access the code defined there after running
this file, place stackdict begin in your program as well, and (of course) an end when you don’t need stacks

anymore.

