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Chapter 1
Introduction

1.1 Seven Bridges of Konigsberg

This article is about an abstract problem. For the histori-
cal group of bridges in the city once known as Konigsberg,
and those of them that still exist, see § Present state of the
bridges.

The Seven Bridges of Konigsberg is a historically no-
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Map of Konigsberg in Euler’s time showing the actual layout of
the seven bridges, highlighting the river Pregel and the bridges

table problem in mathematics. Its negative resolution by
Leonhard Euler in 1736 laid the foundations of graph the-
ory and prefigured the idea of topology.!"

The city of Konigsberg in Prussia (now Kaliningrad,
Russia) was set on both sides of the Pregel River, and
included two large islands which were connected to each
other, or to the two mainland portions of the city, by seven
bridges. The problem was to devise a walk through the
city that would cross each of those bridges once and only
once.

By way of specifying the logical task unambiguously, so-
lutions involving either

1. reaching an island or mainland bank other than via
one of the bridges, or

2. accessing any bridge without crossing to its other
end

are explicitly unacceptable.

Euler proved that the problem has no solution. The dif-
ficulty he faced was the development of a suitable tech-
nique of analysis, and of subsequent tests that established
this assertion with mathematical rigor.

1.1.1 Euler’s analysis

First, Euler pointed out that the choice of route inside
each land mass is irrelevant. The only important feature
of a route is the sequence of bridges crossed. This al-
lowed him to reformulate the problem in abstract terms
(laying the foundations of graph theory), eliminating all
features except the list of land masses and the bridges
connecting them. In modern terms, one replaces each
land mass with an abstract "vertex" or node, and each
bridge with an abstract connection, an "edge", which only
serves to record which pair of vertices (land masses) is
connected by that bridge. The resulting mathematical
structure is called a graph.
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Since only the connection information is relevant, the
shape of pictorial representations of a graph may be dis-
torted in any way, without changing the graph itself. Only
the existence (or absence) of an edge between each pair
of nodes is significant. For example, it does not mat-
ter whether the edges drawn are straight or curved, or
whether one node is to the left or right of another.

Next, Euler observed that (except at the endpoints of the
walk), whenever one enters a vertex by a bridge, one
leaves the vertex by a bridge. In other words, during any
walk in the graph, the number of times one enters a non-
terminal vertex equals the number of times one leaves it.
Now, if every bridge has been traversed exactly once, it
follows that, for each land mass (except for the ones cho-
sen for the start and finish), the number of bridges touch-
ing that land mass must be even (half of them, in the par-
ticular traversal, will be traversed “toward” the landmass;
the other half, “away” from it). However, all four of the
land masses in the original problem are touched by an
odd number of bridges (one is touched by 5 bridges, and
each of the other three is touched by 3). Since, at most,
two land masses can serve as the endpoints of a walk, the
proposition of a walk traversing each bridge once leads to
a contradiction.

In modern language, Euler shows that the possibility of a
walk through a graph, traversing each edge exactly once,
depends on the degrees of the nodes. The degree of a
node is the number of edges touching it. Euler’s argu-
ment shows that a necessary condition for the walk of the
desired form is that the graph be connected and have ex-
actly zero or two nodes of odd degree. This condition
turns out also to be sufficient—a result stated by Euler
and later proven by Carl Hierholzer. Such a walk is now
called an Eulerian path or Euler walk in his honor. Fur-
ther, if there are nodes of odd degree, then any Eulerian
path will start at one of them and end at the other. Since
the graph corresponding to historical Konigsberg has four
nodes of odd degree, it cannot have an Eulerian path.

An alternative form of the problem asks for a path that
traverses all bridges and also has the same starting and
ending point. Such a walk is called an Eulerian circuit or
an Euler tour. Such a circuit exists if, and only if, the
graph is connected, and there are no nodes of odd degree
at all. All Eulerian circuits are also Eulerian paths, but
not all Eulerian paths are Eulerian circuits.

Euler's work was presented to the St.  Petersburg
Academy on 26 August 1735, and published as Solu-
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tio problematis ad geometriam situs pertinentis (The so-
lution of a problem relating to the geometry of posi-
tion) in the journal Commentarii academiae scientiarum
Petropolitanae in 1741.1%! It is available in English in The
World of Mathematics.

1.1.2 Significance in the history of mathe-
matics

In the history of mathematics, Euler’s solution of the
Konigsberg bridge problem is considered to be the first
theorem of graph theory and the first true proof in the
theory of networks,?®! a subject now generally regarded
as a branch of combinatorics. Combinatorial problems
of other types had been considered since antiquity.

In addition, Euler’s recognition that the key information
was the number of bridges and the list of their endpoints
(rather than their exact positions) presaged the develop-
ment of topology. The difference between the actual lay-
out and the graph schematic is a good example of the idea
that topology is not concerned with the rigid shape of ob-
jects.

1.1.3 Variations

The classic statement of the problem, given above, uses
unidentified nodes—that is, they are all alike except for
the way in which they are connected. There is a variation
in which the nodes are identified—each node is given a
unique name or color.

A variant with red and blue castles, a church and an inn.

The northern bank of the river is occupied by the Schlof3,
or castle, of the Blue Prince; the southern by that of
the Red Prince. The east bank is home to the Bishop’s
Kirche, or church; and on the small island in the center is
a Gasthaus, or inn.

It is understood that the problems to follow should be
taken in order, and begin with a statement of the origi-
nal problem:
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1.1. SEVEN BRIDGES OF KONIGSBERG

It being customary among the townsmen, after some
hours in the Gasthaus, to attempt to walk the bridges,
many have returned for more refreshment claiming suc-
cess. However, none have been able to repeat the feat by
the light of day.

Bridge 8: The Blue Prince, having analyzed the town’s
bridge system by means of graph theory, concludes that
the bridges cannot be walked. He contrives a stealthy
plan to build an eighth bridge so that he can begin in the
evening at his Schlof3, walk the bridges, and end at the
Gasthaus to brag of his victory. Of course, he wants the
Red Prince to be unable to duplicate the feat from the
Red Castle. Where does the Blue Prince build the eighth
bridge?

Bridge 9: The Red Prince, infuriated by his brother’s
Gordian solution to the problem, wants to build a ninth
bridge, enabling him to begin at his Schlof}, walk the
bridges, and end at the Gasthaus to rub dirt in his brother’s
face. As an extra bit of revenge, his brother should then
no longer be able to walk the bridges starting at his Schlof3
and ending at the Gasthaus as before. Where does the Red
Prince build the ninth bridge?

Bridge 10: The Bishop has watched this furious
bridge-building with dismay. It upsets the town’s
Weltanschauung and, worse, contributes to excessive
drunkenness. He wants to build a tenth bridge that allows
all the inhabitants to walk the bridges and return to their
own beds. Where does the Bishop build the tenth bridge?

Solutions

The colored graph

Reduce the city, as before, to a graph. Color each node.

The 8th edge

As in the classic problem, no Euler walk is possible; col-
oring does not affect this. All four nodes have an odd
number of edges.

Bridge 8: Euler walks are possible if exactly zero or two
nodes have an odd number of edges. If we have 2 nodes
with an odd number of edges, the walk must begin at one
such node and end at the other. Since there are only 4
nodes in the puzzle, the solution is simple. The walk de-
sired must begin at the blue node and end at the orange
node. Thus, a new edge is drawn between the other two
nodes. Since they each formerly had an odd number of
edges, they must now have an even number of edges, ful-
filling all conditions. This is a change in parity from an
odd to even degree.

Bridge 9: The 9th bridge is easy once the 8th is solved.
The desire is to enable the red castle and forbid the blue
castle as a starting point; the orange node remains the end
of the walk and the white node is unaffected. To change
the parity of both red and blue nodes, draw a new edge
between them.

Bridge 10: The 10th bridge takes us in a slightly different
direction. The Bishop wishes every citizen to return to his
starting point. This is an Euler circuit and requires that
all nodes be of even degree. After the solution of the 9th
bridge, the red and the orange nodes have odd degree,
so their parity must be changed by adding a new edge
between them.

1.1.4 Present state of the bridges

Two of the seven original bridges did not survive the
bombing of Konigsberg in World War II. Two others were
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8th, 9th, and 10th bridges
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Canterbury University in Christchurch, New Zealand, has
incorporated a model of the bridges into a grass area
between the old Physical Sciences Library and the Er-
skine Building, housing the Departments of Mathemat-
ics, Statistics and Computer Science.l®! The rivers are
replaced with short bushes and the central island sports
a stone tordo. Rochester Institute of Technology has in-

corporated the puzzle into the pavement in front of the
Gene Polisseni Center, an ice hockey arena that opened

The 10th edge
in 2014."1

later demolished and replaced by a modern highway. The
three other bridges remain, although only two of themare 1,1.,5 See also

from Euler’s time (one was rebuilt in 1935).1*! Thus, as
of 2000, there are five bridges in Kaliningrad that were a e Eulerian path
part of the Euler’s problem.
In terms of graph theory, two of the nodes now have de- * Five room puzzle
gree 2, and the other two have degree 3. Therefore, an e Glossary of graph theory
Eulerian path is now possible, but it must begin on one
e Hamiltonian path

island and end on the other.


https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg#cite_note-4
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg#cite_note-5
https://en.wikipedia.org/wiki/Canterbury_University
https://en.wikipedia.org/wiki/Christchurch
https://en.wikipedia.org/wiki/New_Zealand
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg#cite_note-6
https://en.wikipedia.org/wiki/T%C5%8Dr%C5%8D
https://en.wikipedia.org/wiki/Rochester_Institute_of_Technology
https://en.wikipedia.org/wiki/Gene_Polisseni_Center
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg#cite_note-7
https://en.wikipedia.org/wiki/Eulerian_path
https://en.wikipedia.org/wiki/Five_room_puzzle
https://en.wikipedia.org/wiki/Glossary_of_graph_theory
https://en.wikipedia.org/wiki/Hamiltonian_path

1.2.

GLOSSARY OF GRAPH THEORY

3

&
<)

.'
.'

Comparison of the graphs of the Seven bridges of Konigsberg
(top) and Five-room puzzles (bottom). The numbers denote the

number of edges connected to each node.

Nodes with an odd

number of edges are shaded orange.

Icosian game

Water, gas, and electricity
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1.1.7 External links

Coordinates:

Kaliningrad and the Konigsberg Bridge Problem at
Convergence

Euler’s original publication (in Latin)
The Bridges of Konigsberg

How the bridges of Konigsberg help to understand
the brain

Euler’s Konigsberg’s Bridges Problem at Math Dept.
Contra Costa College

Pregel —
problem

A Google graphing tool named after this
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1.2 Glossary of graph theory

This is a glossary of graph theory terms. Graph the-
ory is the study of graphs, systems of nodes or vertices
connected in pairs by edges.
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[1 G[S] is the induced subgraph of a graph G for vertex
subset S.. prime symbol

" The prime symbol is often used to modify notation for
graph invariants so that it applies to the line graph
instead of the given graph. For instance, a(G) is
the independence number of a graph; «’(G) is the
matching number of the graph, which equals the
independence number of its line graph. Similarly,
x(G) is the chromatic number of a graph; y "(G) is
the chromatic index of the graph, which equals the
chromatic number of its line graph.

1.22 A

achromatic The achromatic number of a graph is
the maximum number of colors in a complete
coloring.!!!

acyclic 1. A graph is acyclic if it has no cycles. An
acyclic undirected graph is the same thing as a
forest. Acyclic directed graphs are more often called
directed acyclic graphs.™!

2. An acyclic coloring of an undirected graph is a proper
coloring in which every two color classes induce a
forest.’!

CHAPTER 1. INTRODUCTION

adjacency matrix The adjacency matrix of a graph is a
matrix whose rows and columns are both indexed by
vertices of the graph, with a one in the cell for row i
and column j when vertices i and j are adjacent, and
a zero otherwise.*!

adjacent The relation between two vertices that are both
endpoints of the same edge.”’

o For a graph G, a(G) (using the Greek letter alpha) is its
independence number (see independent), and o'(G)
is its matching number (see matching).

alternating In a graph with a matching, an alternat-
ing path is a path whose edges alternate between
matched and unmatched edges. An alternating cycle
is, similarly, a cycle whose edges alternate between
matched and unmatched edges. An augmenting path
is an alternating path that starts and ends at unsatu-
rated vertices. A larger matching can be found as the
symmetric difference of the matching and the aug-
menting path; a matching is maximum if and only if
it has no augmenting path.

anti-edge Synonym for non-edge, a pair of non-adjacent
vertices.

anti-triangle A three-vertex independent set, the com-
plement of a triangle.

apex 1. An apex graph is a graph in which one vertex
can be removed, leaving a planar subgraph. The re-
moved vertex is called the apex. A k-apex graph is
a graph that can be made planar by the removal of k
vertices.

2. Synonym for universal vertex, a vertex adjacent to all
other vertices.

arborescence Synonym for a rooted and directed tree;
see tree.

arc See edge.

arrow An ordered pair of verfices, such as an edge in a
directed graph. An arrow (x, y) has a tail x, a head v,
and a direction from x to y; y is said to be the direct
successor to x and x the direct predecessor to y. The
arrow (y, x) is the inverted arrow of the arrow (x, y).

articulation point A vertex in a connected graph whose
removal would disconnect the graph.

-ary A k-ary tree is a rooted tree in which every inter-
nal vertex has no more than k children. A 1-ary tree
is just a path. A 2-ary tree is also called a binary
tree, although that term more properly refers to 2-
ary trees in which the children of each node are dis-
tinguished as being left or right children (with at
most one of each type). A k-ary tree is said to be
complete if every internal vertex has exactly k chil-
dren.
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augmenting A special type of alternating path; see
alternating.

automorphism A graph automorphism is a symmetry of
a graph, an isomorphism from the graph to itself.
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bag One of the sets of vertices in a tree decomposition.

balanced A bipartite or multipartite graph is balanced
if each two subsets of its vertex partition have sizes
within one of each other.

bandwidth The bandwidth of a graph G is the mini-
mum, over all orderings of vertices of G, of the
length of the longest edge (the number of steps in
the ordering between its two endpoints). It is also
one less than the size of the maximum clique in a
proper interval completion of G, chosen to minimize
the clique size.

biclique Synonym for complete bipartite graph or com-
plete bipartite subgraph; see complete.

biconnected Synonym for 2-vertex-connected. See
connected; for biconnected components, see
component.

bipartite A bipartite graph is a graph with no odd cy-
cles; equivalently, it is a graph that may be properly
colored with two colors. Bipartite graphs are often
written G = (U, V,E) where U and V are the subsets
of vertices of each color. However, unless the graph
is connected, it may not have a unique 2-coloring.

biregular A biregular graph is one in which there are
only two different vertex degrees.

block 1. A block or biconnected component is a
maximal subgraph in which every two vertices or
edges belong to a simple cycle. It may be a 2-
vertex-connected subgraph, a bridge edge, or an
isolated vertex. In a connected graph, the collec-
tion of blocks and the articulation points separat-
ing them form the vertices of a tree, the block-cut
tree, whose edges connect blocks to the articula-
tion points within those blocks. The block graph of
a graph G is another graph whose vertices are the
blocks of G, with an edge connecting two vertices
when the corresponding blocks share an articulation
point; that is, it is the intersection graph of the blocks
of G.

2. A block graph (also called a clique tree, and some-
times erroneously called a Husimi tree) is a graph all
of whose blocks are complete. The block graph of
any graph is a block graph, and every block graph
may be constructed as the block graph of a graph.

bond A minimal cut-set: a set of edges whose removal
disconnects the graph, for which no proper subset
has the same property.

book 1. A book, book graph, or triangular book is a
complete tripartite graph Ki,;,n; a collection of n
triangles joined at a shared edge.

2. Another type of graph, also called a book, or a
quadrilateral book, is a collection of 4-cycles joined
at a shared edge; the Cartesian product of a star with
an edge.

3. A book embedding is an embedding of a graph onto
a topological book, a space formed by joining a col-
lection of half-planes along a shared line. Usually,
the vertices of the embedding are required to be on
the line, which is called the spine of the embedding,
and the edges of the embedding are required to lie
within a single half-plane, one of the pages of the
book.

bramble A collection of mutually touching connected
subgraphs, where two subgraphs touch if they share
a vertex or each includes one endpoint of an edge.
The order of a bramble is the smallest size of a set
of vertices that has a nonempty intersection with all
of the subgraphs. The treewidth of a graph is the
maximum order of any of its brambles.

branch-decomposition A branch-decomposition of G
is a hierarchical clustering of the edges of G, rep-
resented by an unrooted binary tree with its leaves
labeled by the edges of G. The width of a branch-
decomposition is the maximum, over edges e of this
binary tree, of the number of shared vertices be-
tween the subgraphs determined by the edges of G
in the two subtrees separated by e. The branch-
width of G is the minimum width of any branch-
decomposition of G.

branchwidth See branch-decomposition.

bridge 1. A bridge, isthmus, or cut edge is an edge
whose removal would disconnect the graph. A
bridgeless graph is one that has no bridges; equiv-
alently, a 2-edge-connected graph.

2. Especially in the context of planarity testing, a bridge
of a cycle is a maximal subgraph that is disjoint from
the cycle and in which each two edges belong to
a path that is internally disjoint from the cycle. A
chord is a one-edge bridge. A peripheral cycle is a
cycle with at most one bridge; it must be a face in
any planar embedding of its graph.

3. Bridged graph, a graph in which every cycle of four or
more vertices has a shortcut, a pair of vertices closer
in the graph than they are in the cycle.

bridgeless A bridgeless graph is a graph that has no
bridge edges; that is, a 2-edge-connected graph.
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butterfly 1. The butterfly graph has five vertices and six
edges; it is formed by two triangles that share a ver-
tex.

2. The butterfly network is a graph used as a network ar-
chitecture in distributed computing, closely related
to the cube-connected cycles.

124 C

C Cn is an n-vertex cycle graph; see cycle.

cactus A cactus graph, cactus tree, cactus, or Husimi
tree is a connected graph in which each edge belongs
to at most one cycle. Its blocks are cycles or single
edges. If, in addition, each vertex belongs to at most
two blocks, then it is called a Christmas cactus.

cage A cage is a regular graph with the smallest possible
order for its girth.

canonical

canonization A canonical form of a graph is an invari-
ant such that two graphs have equal invariants if
and only if they are isomorphic. Canonical forms
may also be called canonical invariants or complete
invariants, and are sometimes defined only for the
graphs within a particular family of graphs. Graph
canonization is the process of computing a canonical
form.

card A graph formed from a given graph by deleting one
vertex, especially in the context of the reconstruction
conjecture. See also deck, the multiset of all cards
of a graph.

carving width Carving width is a notion of graph width
analogous to branchwidth, but using hierarchical
clusterings of vertices instead of hierarchical clus-
terings of edges.

caterpillar A caterpillar tree or caterpillar is a tree in
which the internal nodes induce a path.

center The center of a graph is the set of vertices of min-
imum eccentricity.

chain 1. Synonym for walk.

2. When applying methods from algebraic topology to
graphs, an element of a chain complex, namely a set
of vertices or a set of edges.

Cheeger constant See expansion.

2 x(G) (using the Greek letter chi) is the chromatic num-
ber of G and y ’(G) is its chromatic index; see
chromatic and coloring.

child In a rooted tree, a child of a vertex v is a neigh-
bor of v along an outgoing edge, one that is directed
away from the root.

CHAPTER 1. INTRODUCTION

chord

chordal 1. A chord of a cycle is an edge that does not
belong to the cycle, for which both endpoints belong
to the cycle.

2. A chordal graph is a graph in which every cycle of
four or more vertices has a chord, so the only in-
duced cycles are triangles.

3. A strongly chordal graph is a chordal graph in which
every cycle of length six or more has an odd chord.

4. A chordal bipartite graph is not chordal (unless it is a
forest); it is a bipartite graph in which every cycle of
six or more vertices has a chord, so the only induced
cycles are 4-cycles.

5. A chord of a circle is a line segment connecting two
points on the circle; the intersection graph of a col-
lection of chords is called a circle graph.

chromatic Having to do with coloring; see color. Chro-
matic graph theory is the theory of graph coloring.
The chromatic number y(G) is the minimum num-
ber of colors needed in a proper coloring of G. y '(G)
is the chromatic index of G, the minimum number
of colors needed in a proper edge coloring of G.

choosable

choosability A graph is k-choosable if it has a list col-
oring whenever each vertex has a list of k available
colors. The choosability of the graph is the smallest
k for which it is k-choosable.

circle A circle graph is the intersection graph of chords
of a circle.

circuit A circuit may refer to a simple cycle, a trail (a
closed tour without repeated edges), or an element
of the cycle space (an Eulerian spanning subgraph).
The circuit rank of a graph is the dimension of its
cycle space.

circumference The circumference of a graph is the
length of its longest simple cycle. The graph is
Hamiltonian if and only if its circumference equals
its order.

class 1. A class of graphs or family of graphs is a (usu-
ally infinite) collection of graphs, often defined as
the graphs having some specific property. The word
“class” is used rather than “set” because, unless spe-
cial restrictions are made (such as restricting the ver-
tices to be drawn from a particular set, and defining
edges to be sets of two vertices) classes of graphs are
usually not sets when formalized using set theory.

2. A color class of a colored graph is the set of vertices
or edges having one particular color.
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3. In the context of Vizing’s theorem, on edge coloring

simple graphs, a graph is said to be of class one if
its chromatic index equals its maximum degree, and
class two if its chromatic index equals one plus the
degree. According to Vizing’s theorem, all simple
graphs are either of class one or class two.

claw A claw is a tree with one internal vertex and three

leaves, or equivalently the complete bipartite graph
Ki,3. A claw-free graph is a graph that does not have
an induced subgraph that is a claw.

clique A clique is usually a complete subgraph, but some

sources define it as a maximal complete subgraph,
one that is not part of any larger complete subgraph.
A k-clique is a clique of order k. The clique number
k(G) of a graph G is the order of its largest clique.
A clique graph is an intersection graph of maximal
cliques. See also biclique, a complete bipartite sub-
graph.

clique tree A synonym for a block graph.

clique-width The clique-width of a graph G is the min-

imum number of distinct labels needed to construct
G by operations that create a labeled vertex, form
the disjoint union of two labeled graphs, add an edge
connecting all pairs of vertices with given labels, or
relabel all vertices with a given label. The graphs of
clique-width at most 2 are exactly the cographs.

closed 1. A closed neighborhood is one that includes its

central vertex; see neighbourhood.

2. A closed walk is one that starts and ends at the same

vertex; see walk.

3. A graph is transitively closed if it equals its own tran-

sitive closure; see transitive.

4. A graph property is closed under some operation on

graphs if, whenever the argument or arguments to
the operation have the property, then so does the re-
sult. For instance, hereditary properties are closed
under induced subgraphs; monotone properties are
closed under subgraphs; and minor-closed proper-
ties are closed under minors.

closure 1. For the transitive closure of a directed graph,

see transitive.

2. A closure of a directed graph is a set of vertices that

have no outgoing edges to vertices outside the clo-
sure. For instance, a sink is a one-vertex closure.
The closure problem is the problem of finding a clo-
sure of minimum or maximum weight.

co- This prefix has various meanings usually involving

complement graphs. For instance, a cograph is
a graph produced by operations that include com-
plementation; a cocoloring is a coloring in which
each vertex induces either an independent set (as in

proper coloring) or a clique (as in a coloring of the
complement).

color

coloring 1. A graph coloring is a labeling of the vertices

2.

3.

of a graph by elements from a given set of colors, or
equivalently a partition of the vertices into subsets,
called “color classes”, each of which is associated
with one of the colors.

Some authors use “coloring”, without qualification,
to mean a proper coloring, one that assigns differ-
ent colors to the endpoints of each edge. In graph
coloring, the goal is to find a proper coloring that
uses as few colors as possible; for instance, bipartite
graphs are the graphs that have colorings with only
two colors, and the four color theorem states that
every planar graph can be colored with at most four
colors. A graph is said to be k-colored if it has been
(properly) colored with k colors, and k-colorable or
k-chromatic if this is possible.

Many variations of coloring have been studied, in-
cluding edge coloring (coloring edges so that no two
edges with the same endpoint share a color), list col-
oring (proper coloring with each vertex restricted
to a subset of the available colors), acyclic coloring
(every 2-colored subgraph is acyclic), co-coloring
(every color class induces an independent set or a
clique), complete coloring (every two color classes
share an edge), and total coloring (both edges and
vertices are colored).

The coloring number of a graph is one plus the
degeneracy. It is so called because applying a greedy
coloring algorithm to a degeneracy ordering of the
graph uses at most this many colors.

comparability An undirected graph is a comparability

graph if its vertices are the elements of a partially
ordered set and two vertices are adjacent when they
are comparable in the partial order. Equivalently, a
comparability graph is a graph that has a transitive
orientation. Many other classes of graphs can be de-
fined as the comparability graphs of special types of
partial order.

complement The complement graph G of a simple

graph G is another graph on the same vertex set as
G, with an edge for each two vertices that are not
adjacent in G.

complete 1. A complete graph is one in which every

two vertices are adjacent: all edges that could ex-
ist are present. A complete graph with n vertices
is often denoted Kn. A complete bipartite graph is
one in which every two vertices on opposite sides
of the partition of vertices are adjacent. A com-
plete bipartite graph with a vertices on one side of
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the partition and b vertices on the other side is of-
ten denoted Ka,b. The same terminology and nota-
tion has also been extended to complete multipartite
graphs, graphs in which the vertices are divided into
more than two subsets and every pair of vertices in
different subsets are adjacent; if the numbers of ver-
tices in the subsets are a, b, c, ... then this graph is
denoted Ka, b, c, ....

2. A completion of a given graph is a supergraph that
has some desired property. For instance, a chordal
completion is a supergraph that is a chordal graph.

3. A complete matching is a synonym for a perfect
matching; see matching.

4. A complete coloring is a proper coloring in which
each pairs of colors is used for the endpoints of at
least one edge. Every coloring with a minimum
number of colors is complete, but there may exist
complete colorings with larger numbers of colors.
The achromatic number of a graph is the maximum
number of colors in a complete coloring.

5. A complete invariant of a graph is a synonym for a
canonical form, an invariant that has different values
for non-isomorphic graphs.

component A connected component of a graph is a max-
imal connected subgraph. The term is also used for
maximal subgraphs or subsets of a graph’s vertices
that have some higher order of connectivity, includ-
ing biconnected components, triconnected compo-
nents, and strongly connected components.

condensation The condensation of a directed graph G
is a directed acyclic graph with one vertex for each
strongly connected component of G, and an edge
connecting pairs of components that contain the two
endpoints of at least one edge in G.

cone A graph that contains a universal vertex.
connect Cause to be connected.

connected A connected graph is one in which each pair
of vertices forms the endpoints of a path. Higher
forms of connectivity include strong connectivity in
directed graphs (for each two vertices there are paths
from one to the other in both directions), k-vertex-
connected graphs (removing fewer than k vertices
cannot disconnect the graph), and k-edge-connected
graphs (removing fewer than k edges cannot discon-
nect the graph).

converse The converse graph is a synonym for the trans-
pose graph; see transpose.

core 1. A k-core is the induced subgraph formed by re-
moving all vertices of degree less than k, and all ver-
tices whose degree becomes less than k after earlier
removals. See degeneracy.

2.

4.

CHAPTER 1. INTRODUCTION

A core is a graph G such that every graph homomor-
phism from G to itself is an isomorphism.

The core of a graph G is a minimal graph H such
that there exist homomorphisms from G to H and
vice versa. H is unique up to isomorphism. It can
be represented as an induced subgraph of G, and is a
core in the sense that all of its self-homomorphisms
are isomorphisms.

In the theory of graph matchings, the core of a graph
is an aspect of its Dulmage—Mendelsohn decompo-
sition, formed as the union of all maximum match-
ings.

cotree 1. The complement of a spanning tree.

2.

A rooted tree structure used to describe a cograph, in
which each cograph vertex is a leaf of the tree, each
internal node of the tree is labeled with O or 1, and
two cograph vertices are adjacent if and only if their
lowest common ancestor in the tree is labeled 1.

cover A vertex cover is a set of vertices incident to every

edge in a graph. An edge cover is a set of edges
incident to every vertex in a graph.

critical A critical graph for a given property is a graph

that has the property but such that every subgraph
formed by deleting a single vertex does not have the
property. For instance, a factor-critical graph is one
that has a perfect matching (a 1-factor) for every ver-
tex deletion, but (because it has an odd number of
vertices) has no perfect matching itself. Compare
hypo-, used for graphs which do not have a property
but for which every one-vertex deletion does.

cube

cubic 1. Cube graph, the eight-vertex graph of the ver-

cut

tices and edges of a cube.

. Hypercube graph, a higher-dimensional generaliza-

tion of the cube graph.

Folded cube graph, formed from a hypercube by
adding a matching connecting opposite vertices.

. Halved cube graph, the half-square of a hypercube

graph.

. Partial cube, a distance-preserving subgraph of a hy-

percube.

. The cube of a graph G is the graph power G3.

. Cubic graph, another name for a 3-regular graph, one

in which each vertex has three incident edges.

. Cube-connected cycles, a cubic graph formed by re-

placing each vertex of a hypercube by a cycle.
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cut-set A cut is a partition of the vertices of a graph into
two subsets. An edge is said to span the cut if it has
endpoints in both subsets, and a cut-set is the set of
edges that span a cut. Thus, the removal of the cut-
set from a connected graph disconnects it.

cut point See articulation point.

cut space The cut space of a graph is a GF(2)-vector
space having the cut-sets of the graph as its elements
and symmetric difference of sets as its vector addition
operation.

cycle A cycle may either refer to a closed walk (also
called a tour) or more specifically to a closed walk
without repeated vertices or edges (a simple cy-
cle). In either case, the choice of starting vertex
is usually considered unimportant: cyclic permuta-
tions of the walk produce the same cycle. Important
special cases of cycles include Hamiltonian cycles,
induced cycles, peripheral cycles, and the shortest
cycle, which defines the girth of a graph. A k-cycle
is a cycle of length k; for instance a 2-cycle is a digon
and a 3-cycle is a triangle. A cycle graph is a graph
that is itself a simple cycle; a cycle graph with n ver-
tices is commonly denoted Cn. The cycle space is a
vector space generated by simple cycles in a graph.

1.25 D

DAG Abbreviation for directed acyclic graph, a directed
graph without any directed cycles.

deck The multiset of graphs formed from a single graph
G by deleting a single vertex in all possible ways,
especially in the context of the reconstruction con-
jecture. An edge-deck is formed in the same way
by deleting a single edge in all possible ways. The
graphs in a deck are also called cards. See also
critical (graphs that have a property that is not held
by any card) and hypo- (graphs that do not have a
property that is held by all cards).

decomposition See tree decomposition, path decomposi-
tion, or branch-decomposition.

degenerate

degeneracy A k-degenerate graph is an undirected
graph in which every induced subgraph has mini-
mum degree at most k. The degeneracy of a graph
is the smallest k for which it is k-degenerate. A de-
generacy ordering is an ordering of the vertices such
that each vertex has minimum degree in the induced
subgraph of it and all later vertices; in a degeneracy
ordering of a k-degenerate graph, every vertex has at
most k later neighbours. Degeneracy is also known
as the k-core number, width, and linkage, and one
plus the degeneracy is also called the coloring num-
ber or Szekeres—Wilf number. k-degenerate graphs
have also been called k-inductive graphs.
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degree 1. The degree of a vertex in a graph is its number
of incident edges.! The degree of a graph G (or its
maximum degree) is the maximum of the degrees of
its vertices, often denoted A(G); the minimum de-
gree of G is the minimum of its vertex degrees, often
denoted J(G). Degree is sometimes called valency;
the degree of vin G may be denoted dG(v), d(G), or
deg(v). The total degree is the sum of the degrees of
all vertices; by the handshaking lemma it is an even
number. The degree sequence is the collection of
degrees of all vertices, in sorted order from largest
to smallest. In a directed graph, one may distinguish
the in-degree (number of incoming edges) and out-
degree (number of outgoing edges).”!

2. The homomorphism degree of a graph is a synonym
for its Hadwiger number, the order of the largest
clique minor.

A, 6 A(G) (using the Greek letter delta) is the maximum
degree of a vertex in G, and 5(G) is the minimum
degree; see degree.

diameter The diameter of a connected graph is the max-
imum length of a shortest path. That is, it is the
maximum of the distances between pairs of vertices
in the graph. If the graph has weights on its edges,
then its weighted diameter measures path length by
the sum of the edge weights along a path, while the
unweighted diameter measures path length by the
number of edges. For disconnected graphs, defini-
tions vary: the diameter may be defined as infinite,
or as the largest diameter of a connected component,
or it may be undefined.

diamond The diamond graph is an undirected graph
with four vertices and five edges.

diconnected strongly connected.

digon A digon is a simple cycle of length two in a di-
rected graph or a multigraph. Digons cannot oc-
cur in simple undirected graphs, as forming a closed
walk by repeating the same edge twice does not pro-
duce a simple cycle.

digraph Synonym for directed graph.[?!
dipath See directed path.

direct predecessor The starting endpoint of a directed
edge to the given vertex.

direct successor The final endpoint of a directed edge
that starts at the given vertex.

directed A directed graph is one in which the edges
have a distinguished direction, from one vertex to
another.?! In a mixed graph, a directed edge is again
one that has a distinguished direction; directed edges
may also be called arcs or arrows.

directed arc See arrow.
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directed edge See arrow.
directed line See arrow.

directed path A path in which all the edges have the
same direction. If a directed path leads from vertex
X fo vertex 'y, X is a predecessor of y, y is a successor
of x, and y is said to be reachable from x.

direction 1. The asymmetric relation between two
adjacent vertices in a graph, represented as an arrow.

2. The asymmetric relation between two vertices in a
directed path.

disconnect Cause to be disconnected.
disconnected Not connected.

disjoint 1. Two subgraphs are edge disjoint if they share
no edges, and vertex disjoint if they share no ver-
tices.

2. The disjoint union of two or more graphs is a graph
whose vertex and edge sets are the disjoint unions of
the corresponding sets.

distance The distance between any two vertices in a
graph is the length of the shortest path having the
two vertices as its endpoints.

domatic A domatic partition of a graph is a partition of
the vertices into dominating sets. The domatic num-
ber of the graph is the maximum number of domi-
nating sets in such a partition.

dominating A dominating set is a set of vertices that in-
cludes or is adjacent to every vertex in the graph;
not to be confused with a vertex cover, a vertex set
that is incident to all edges in the graph. Important
special types of dominating sets include independent
dominating sets (dominating sets that are also inde-
pendent sets) and connected dominating sets (dom-
inating sets that induced connected subgraphs). A
single-vertex dominating set may also be called a
universal vertex. The domination number of a graph
is the number of vertices in the smallest dominating
set.

1.2.6 E

E E(G) is the edge set of G; see edge set.

ear An ear of a graph is a path whose endpoints may
coincide but in which otherwise there are no repeti-
tions of vertices or edges.

ear decomposition An ear decomposition is a partition
of the edges of a graph into a sequence of ears, each
of whose endpoints (after the first one) belong to a
previous ear and each of whose interior points do not
belong to any previous ear. An open ear is a simple

CHAPTER 1. INTRODUCTION

path (an ear that does not repeat any vertices), and
an open ear decomposition is an ear decomposition
in which each ear after the first is open; a graph has
an open ear decomposition if and only if it is bicon-
nected. An ear is odd if it has an odd number of
edges, and an odd ear decomposition is an ear de-
composition in which each ear is odd; a graph has
an odd ear decomposition if and only if it is factor-
critical.

eccentricity The eccentricity of a vertex is the farthest
distance from it to any other vertex.

edge An edge is (together with vertices) one of the two
basic units out of which graphs are constructed.
Each edge has two (or in hypergraphs, more) ver-
tices to which it is attached, called its endpoints.
Edges may be directed or undirected; undirected
edges are also called lines and directed edges are also
called arcs or arrows. In an undirected simple graph,
an edge may be represented as the set of its vertices,
and in a directed simple graph it may be represented
as an ordered pair of its vertices. An edge that con-
nects vertices x and y is sometimes written xy.

edge cut A set of edges whose removal disconnects the
graph. A one-edge cut is called a bridge, isthmus, or
cut edge.

edge set The set of edges of a given graph G, sometimes
denoted by E(G).

edgeless graph The edgeless graph or totally discon-
nected graph on a given set of vertices is the graph
that has no edges. It is sometimes called the empty
graph, but this term can also refer to a graph with no
vertices.

embedding A graph embedding is a topological repre-
sentation of a graph as a subset of a topological space
with each vertex represented as a point, each edge
represented as a curve having the endpoints of the
edge as endpoints of the curve, and no other inter-
sections between vertices or edges. A planar graph
is a graph that has such an embedding onto the Eu-
clidean plane, and a toroidal graph is a graph that
has such an embedding onto a torus. The genus of
a graph is the minimum possible genus of a two-
dimensional manifold onto which it can be embed-
ded.

empty graph 1. An edgeless graph on a set of vertices.
2. The graph with no vertices and no edges.

end An end of an infinite graph is an equivalence class
of rays, where two rays are equivalent if there is a
third ray that includes infinitely many vertices from
both of them.

endpoint One of the two vertices incident to a given
edge, or one of the two vertices at the start and end
of a walk or path.
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enumeration Graph enumeration is the problem of
counting the graphs in a given class of graphs, as
a function of their order. More generally, enumera-
tion problems can refer either to problems of count-
ing a certain class of combinatorial objects (such
as cliques, independent sets, colorings, or spanning
trees), or of algorithmically listing all such objects.

Eulerian An Eulerian path is a walk that uses every edge
of a graph exactly once. An Eulerian circuit (also
called an Eulerian cycle or an Euler tour) is a closed
walk that uses every edge exactly once. An Eulerian
graph is a graph that has an Eulerian circuit. For an
undirected graph, this means that the graph is con-
nected and every vertex has even degree. For a di-
rected graph, this means that the graph is strongly
connected and every vertex has in-degree equal to
the out-degree. In some cases, the connectivity re-
quirement is loosened, and a graph meeting only the
degree requirements is called Eulerian.

even Divisible by two; for instance, an even cycle is a
cycle whose length is even.

expander An expander graph is a graph whose edge ex-
pansion, vertex expansion, or spectral expansion is
bounded away from zero.

expansion 1. The edge expansion, isoperimetric num-
ber, or Cheeger constant of a graph G is the min-
imum ratio, over subsets S of at most half of the
vertices of G, of the number of edges leaving S to
the number of vertices in S.

2. The vertex expansion, vertex isoperimetric number,
or magnification of a graph G is the minimum ratio,
over subsets S of at most half of the vertices of G,
of the number of vertices outside but adjacent to S
to the number of vertices in S.

3. The unique neighbor expansion of a graph G is the
minimum ratio, over subsets of at most half of the
vertices of G, of the number of vertices outside S
but adjacent to a unique vertex in S to the number
of vertices in S.

4. The spectral expansion of a d-regular graph G is the
spectral gap between the largest eigenvalue d of its
adjacency matrix and the second-largest eigenvalue.

5. A family of graphs has bounded expansion if all its
r-shallow minors have a ratio of edges to vertices
bounded by a function of r, and polynomial expan-
sion if the function of r is a polynomial.

1.2.7 F

factor A factor of a graph is a spanning subgraph: a sub-
graph that includes all of the vertices of the graph.
The term is primarily used in the context of regu-
lar subgraphs: a k-factor is a factor that is k-regular.
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In particular, a 1-factor is the same thing as a per-
fect matching. A factor-critical graph is a graph for
which deleting any one vertex produces a graph with
a l-factor.

face In a plane graph or graph embedding, a connected
component of the subset of the plane or surface of
the embedding that is disjoint from the graph. For
an embedding in the plane, all but one face will be
bounded; the one exceptional face that extends to
infinity is called the outer face.

factorization A graph factorization is a partition of the
edges of the graph into factors; a k-factorization
is a partition into k-factors. For instance a 1-
factorization is an edge coloring with the additional
property that each vertex is incident to an edge of
each color.

family A synonym for class.

finite A graph is finite if it has a finite number of ver-
tices and a finite number of edges. Many sources
assume that all graphs are finite without explicitly
saying so. A graph is locally finite if each vertex has
a finite number of incident edges. An infinite graph
is a graph that is not finite: it has infinitely many
vertices, infinitely many edges, or both.

first order The first order logic of graphs is a form
of logic in which variables represent vertices of a
graph, and there exists a binary predicate to test
whether two vertices are adjacent. To be distin-
guished from second order logic, in which variables
can also represent sets of vertices or edges.

-flap For a set of vertices X, an X-flap is a connected
component of the induced subgraph formed by
deleting X. The flap terminology is commonly used
in the context of havens, functions that map small
sets of vertices to their flaps. See also the bridge of
a cycle, which is either a flap of the cycle vertices or
a chord of the cycle.

forbidden A forbidden graph characterization is a char-
acterization of a family of graphs as being the graphs
that do not have certain other graphs as subgraphs,
induced subgraphs, or minors. If H is one of the
graphs that does not occur as a subgraph, induced
subgraph, or minor, then H is said to be forbidden.

forest A forest is an undirected graph without cycles (a
disjoint union of unrooted trees), or a directed graph
formed as a disjoint union of rooted trees.

Frucht 1. Robert Frucht

2. The Frucht graph, one of the two smallest cubic
graphs with no nontrivial symmetries.

3. Frucht’s theorem that every finite group is the group
of symmetries of a finite graph.

full Synonym for induced.
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1.28 G

G A variable often used to denote a graph.

genus The genus of a graph is the minimum genus
of a surface onto which it can be embedded; see
embedding.

geodesic As a noun, a geodesic is a synonym for a
shortest path. When used as an adjective, it means
related to shortest paths or shortest path distances.

giant In the theory of random graphs, a giant compo-
nent is a connected component that contains a con-
stant fraction of the vertices of the graph. In stan-
dard models of random graphs, there is typically at
most one giant component.

girth The girth of a graph is the length of its shortest
cycle.

graph The fundamental object of study in graph theory,
a system of vertices connected in pairs by edges.
Often subdivided into directed graphs or undirected
graphs according to whether the edges have an ori-
entation or not. Mixed graphs include both types of
edges.

greedy Produced by a greedy algorithm. For instance,
a greedy coloring of a graph is a coloring produced
by considering the vertices in some sequence and as-
signing each vertex the first available color.

Grotzsch 1. Herbert Grotzsch

2. The Grotzsch graph, the smallest triangle-free graph
requiring four colors in any proper coloring.

3. Grotzsch’s theorem that triangle-free planar graphs
can always be colored with at most three colors.

Grundy number 1. The Grundy number of a graph
is the maximum number of colors produced by a
greedy coloring, with a badly-chosen vertex order-
ing.

1.29 H

H A variable often used to denote a graph, especially
when another graph has already been denoted by G.

H-coloring An H-coloring of a graph G (where H is also
a graph) is a homomorphism from H to G.

H-free A graph is H-free if it does not have an induced
subgraph isomorphic to H, that is, if H is a forbid-
den induced subgraph. The H-free graphs are the
family of all graphs (or, often, all finite graphs) that
are H-free.>! For instance the triangle-free graphs
are the graphs that do not have a triangle graph as
a subgraph. The property of being H-free is always
hereditary. A graph is H-minor-free if it does not
have a minor isomorphic to H.

CHAPTER 1. INTRODUCTION

Hadwiger 1. Hugo Hadwiger

2. The Hadwiger number of a graph is the order of
the largest complete minor of the graph. It is also
called the contraction clique number or the homo-
morphism degree.

3. The Hadwiger conjecture is the conjecture that the
Hadwiger number is never less than the chromatic
number.

Hamiltonian A Hamiltonian path or Hamiltonian cycle
is a simple spanning path or simple spanning cycle:
it covers all of the vertices in the graph exactly once.
A graph is Hamiltonian if it contains a Hamiilto-
nian cycle, and traceable if it contains a Hamiltonian
path.

haven A k-haven is a function that maps every set X of
fewer than k vertices to one of its flaps, often satis-
fying additional consistency conditions. The order
of a haven is the number k. Havens can be used to
characterize the treewidth of finite graphs and the
ends and Hadwiger numbers of infinite graphs.

hereditary A hereditary property of graphs is a prop-
erty that is closed under induced subgraphs: if G has
a hereditary property, then so must every induced
subgraph of G. Compare monotone (closed under all
subgraphs) or minor-closed (closed under minors).

hole A hole is an induced cycle of length four or more.
An odd hole is a hole of odd length. An anti-hole
is an induced subgraph of order four whose comple-
ment is a cycle; equivalently, it is a hole in the com-
plement graph. This terminology is mainly used in
the context of perfect graphs, which are character-
ized by the strong perfect graph theorem as being
the graphs with no odd holes or odd anti-holes. The
hole-free graphs are the same as the chordal graphs.

homomorphic equivalence Two graphs are
homomorphically equivalent if there exist two
homomorphisms, one from each graph to the other
graph.

homomorphism 1. A graph homomorphism is a map-
ping from the vertex set of one graph to the vertex
set of another graph that maps adjacent vertices to
adjacent vertices. This type of mapping between
graphs is the one that is most commonly used in
category-theoretic approaches to graph theory. A
proper graph coloring can equivalently be described
as a homomorphism to a complete graph.

2. The homomorphism degree of a graph is a synonym
for its Hadwiger number, the order of the largest
clique minor.

hyperedge An edge in a hypergraph, having any num-
ber of endpoints, in contrast to the requirement that
edges of graphs have exactly two endpoints.


https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#embedding
https://en.wikipedia.org/wiki/Shortest_path
https://en.wikipedia.org/wiki/Random_graph
https://en.wikipedia.org/wiki/Girth_(graph_theory)
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Mixed_graph
https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Greedy_coloring
https://en.wikipedia.org/wiki/Herbert_Gr%C3%B6tzsch
https://en.wikipedia.org/wiki/Gr%C3%B6tzsch_graph
https://en.wikipedia.org/wiki/Gr%C3%B6tzsch%2527s_theorem
https://en.wikipedia.org/wiki/Grundy_number
https://en.wikipedia.org/wiki/Greedy_coloring
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#cite_note-5
https://en.wikipedia.org/wiki/Triangle-free_graph
https://en.wikipedia.org/wiki/Triangle_graph
https://en.wikipedia.org/wiki/Hugo_Hadwiger
https://en.wikipedia.org/wiki/Hadwiger_number
https://en.wikipedia.org/wiki/Hadwiger_conjecture_(graph_theory)
https://en.wikipedia.org/wiki/Hamiltonian_path
https://en.wikipedia.org/wiki/Haven_(graph_theory)
https://en.wikipedia.org/wiki/Hereditary_property
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#monotone
https://en.wikipedia.org/wiki/Strong_perfect_graph_theorem
https://en.wikipedia.org/wiki/Chordal_graph
https://en.wikipedia.org/wiki/Graph_homomorphism
https://en.wikipedia.org/wiki/Graph_homomorphism
https://en.wikipedia.org/wiki/Hypergraph

1.2. GLOSSARY OF GRAPH THEORY

hypercube A hypercube graph is a graph formed from
the vertices and edges of a geometric hypercube.

hypergraph A hypergraph is a generalization of a graph
in which each edge (called a hyperedge in this con-
text) may have more than two endpoints.

hypo- This prefix, in combination with a graph property,
indicates a graph that does not have the property but
such that every subgraph formed by deleting a sin-
gle vertex does have the property. For instance, a
hypohamiltonian graph is one that does not have a
Hamiltonian cycle, but for which every one-vertex
deletion produces a Hamiltonian subgraph. Com-
pare critical, used for graphs which have a property
but for which every one-vertex deletion does not.®!

1.2.10 I

in-degree The number of incoming edges in a directed
graph; see degree.

incidence An incidence in a graph is a vertex-edge pair
such that the vertex is an endpoint of the edge.

incidence matrix The incidence matrix of a graph is a
matrix whose rows are indexed by vertices of the
graph, and whose columns are indexed by edges,
with a one in the cell for row i and column j when
vertex i and edge j are incident, and a zero other-
wise.

incident The relation between an edge and one of its
endpoints.*!

incomparability An incomparability graph is the
complement of a comparability graph; see
comparability.

independent 1. An independent set is a set of vertices
that induces an edgeless subgraph. It may also be
called a stable set or a coclique. The independence
number a(G) is the size of the maximum indepen-
dent set.

2. In the graphic matroid of a graph, a subset of edges
is independent if the corresponding subgraph is a
tree or forest. In the bicircular matroid, a subset of
edges is independent if the corresponding subgraph
is a pseudoforest.

indifference An indifference graph is another name for
a proper interval graph or unit interval graph; see

proper.

induced An induced subgraph or full subgraph of a
graph is a subgraph formed from a subset of vertices
and from all of the edges that have both endpoints in
the subset. Special cases include induced paths and
induced cycles, induced subgraphs that are paths or
cycles.
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inductive Synonym for degenerate.

infinite An infinite graph is one that is not finite; see
finite.

internal A vertex of a path or tree is internal if it is not
a leaf; that is, if its degree is greater than one. Two
paths are internally disjoint (some people call it in-
dependent) if they do not have any vertex in com-
mon, except the first and last ones.

intersection 1. The intersection of two graphs is their
largest common subgraph, the graph formed by the
vertices and edges that belong to both graphs.

2. An intersection graph is a graph whose vertices cor-
respond to sets or geometric objects, with an edge
between two vertices exactly when the correspond-
ing two sets or objects have a nonempty intersec-
tion. Several classes of graphs may be defined as
the intersection graphs of certain types of objects,
for instance chordal graphs (intersection graphs of
subtrees of a tree), circle graphs (intersection graphs
of chords of a circle), interval graphs (intersection
graphs of intervals of a line), line graphs (intersec-
tion graphs of the edges of a graph), and clique
graphs (intersection graphs of the maximal cliques
of a graph). Every graph is an intersection graph for
some family of sets, and this family is called an inter-
section representation of the graph. The intersection
number of a graph G is the minimum total number
of elements in any intersection representation of G.

interval An interval graph is an intersection graph of
intervals of a line.

interval thickness A synonym for pathwidth.
invariant A synonym of pathwidth.

inverted arrow An arrow with an opposite direction
compared to another arrow. The arrow (y, x) is the
inverted arrow of the arrow (x, y).

isolated An isolated vertex of a graph is a vertex whose
degree is zero, that is, a vertex with no incident
edges.”!

isomorphic Two graphs are isomorphic if there is an
isomorphism between them; see isomorphism.

isomorphism A graph isomorphism is a one-to-one in-
cidence preserving correspondence of the vertices
and edges of one graph to the vertices and edges of
another graph. Two graphs related in this way are
said to be isomorphic.

isoperimetric See expansion.

isthmus Synonym for bridge, in the sense of an edge
whose removal disconnects the graph.
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1.211 K

K For the notation for complete graphs, complete bipar-
tite graphs, and complete multipartite graphs, see
complete.

k x(G) (using the Greek letter kappa) is the size of the
maximum clique in G; see cligue.

knot An inescapable section of a directed graph. See
knot (mathematics) and knot theory.

1212 L

L L(G) is the line graph of G; see line.

label 1. Information associated with a vertex or edge of
agraph. A labeled graph is a graph whose vertices or
edges have labels. The terms vertex-labeled or edge-
labeled may be used to specify which objects of a
graph have labels. Graph labeling refers to several
different problems of assigning labels to graphs sub-
ject to certain constraints. See also graph coloring,
in which the labels are interpreted as colors.

2. In the context of graph enumeration, the vertices of
a graph are said to be labeled if they are all distin-
guishable from each other. For instance, this can be
made to be true by fixing a one-to-one correspon-
dence between the vertices and the integers from
1 to the order of the graph. When vertices are la-
beled, graphs that are isomorphic to each other (but
with different vertex orderings) are counted as sep-
arate objects. In contrast, when the vertices are un-
labeled, graphs that are isomorphic to each other are
not counted separately.

leaf 1. A leaf vertex or pendant vertex (especially in a
tree) is a vertex whose degree is 1. A leaf edge or
pendant edge is the edge connecting a leaf vertex to
its single neighbour.

2. A leaf power of a tree is a graph whose vertices are
the leaves of the tree and whose edges connect leaves
whose distance in the tree is at most a given thresh-
old.

length In an unweighted graph, the length of a cycle,
path, or walk is the number of edges it uses. In a
weighted graph, it may instead be the sum of the
weights of the edges that it uses. Length is used to
define the shortest path, girth (shortest cycle length),
and longest path between two vertices in a graph.
line A synonym for an undirected edge. The line graph
L(G) of a graph G is a graph with a vertex for each
edge of G and an edge for each pair of edge that
share an endpoint in G.

linkage A synonym for degeneracy.
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list 1. An adjacency list is a computer representation of
graphs for use in graph algorithms.

2. List coloring is a variation of graph coloring in which
each vertex has a list of available colors.

local A local property of a graph is a property that is de-
termined only by the neighbourhoods of the vertices
in the graph. For instance, a graph is locally finite if
all of its neighborhoods are finite.

loop A loop or self-loop is an edge both of whose end-
points are the same vertex. It forms a cycle of length
1. These are not allowed in simple graphs.

1213 M

magnification Synonym for vertex expansion.

matching A matching is a set of edges in which no two
share any vertex. A vertex is matched or saturated
if it is one of the endpoints of an edge in the match-
ing. A perfect matching or complete matching is a
matching that matches every vertex; it may also be
called a 1-factor, and can only exist when the order
is even. A near-perfect matching, in a graph with
odd order, is one that saturates all but one vertex. A
maximum matching is a matching that uses as many
edges as possible; the matching number a’(G) of
a graph G is the number of edges in a maximum
matching. A maximal matching is a matching to
which no additional edges can be added.

maximal 1. A subgraph of given graph G is maximal
for a particular property if it has that property but
no other supergraph of it that is also a subgraph of
G also has the same property. That is, it is a maximal
element of the subgraphs with the property. For in-
stance, a maximal clique is a complete subgraph that
cannot be expanded to a larger complete subgraph.
The word “maximal” should be distinguished from
“maximum": a maximum subgraph is always maxi-
mal, but not necessarily vice versa.

2. A simple graph with a given property is maximal
for that property if it is not possible to add any
more edges to it (keeping the vertex set unchanged)
while preserving both the simplicity of the graph and
the property. Thus, for instance, a maximal planar
graph is a planar graph such that adding any more
edges to it would create a non-planar graph.

maximum A subgraph of a given graph G is maximum
for a particular property if it is the largest subgraph
(by order or size) among all subgraphs with that
property. For instance, a maximum clique is any of
the largest cliques in a given graph.

median 1. A median of a triple of vertices, a vertex
that belongs to shortest paths between all pairs of
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vertices, especially in median graphs and modular
graphs.

2. A median graph is a graph in which every three ver-
tices have a unique median.

Meyniel 1. Henri Meyniel, French graph theorist.

2. A Meyniel graph is a graph in which every odd cycle
of length five or more has at least two chords.

minimal A subgraph of given graph is minimal for a par-
ticular property if it has that property but no proper
subgraph of it also has the same property. That is,
it is a minimal element of the subgraphs with the

property.

minimum cut A cut whose cut-set has minimum total
weight, possibly restricted to cuts that separate a des-
ignated pair of vertices; they are characterized by
the max-flow min-cut theorem.

minor A graph H is a minor of another graph G if H
can be obtained by deleting edges or vertices from
G and contracting edges in G. It is a shallow minor
if it can be formed as a minor in such a way that the
subgraphs of G that were contracted to form vertices
of H all have small diameter. H is a topological mi-
nor of G if G has a subgraph that is a subdvision of
H. A graph is H-minor-free if it does not have H as
a minor. A family of graphs is minor-closed if it is
closed under minors; the Robertson—Seymour theo-
rem characterizes minor-closed families as having a
finite set of forbidden minors.

mixed A mixed graph is a graph that may include both
directed and undirected edges.

modular 1. Modular graph, a graph in which each triple
of vertices has at least one median vertex that be-
longs to shortest paths between all pairs of the triple.

2. Modular decomposition, a decomposition of a graph
into subgraphs within which all vertices connect to
the rest of the graph in the same way.

3. Modularity of a graph clustering, the difference of
the number of cross-cluster edges from its expected
value.

monotone A monotone property of graphs is a property
that is closed under subgraphs: if G has a hereditary
property, then so must every subgraph of G. Com-
pare hereditary (closed under induced subgraphs) or
minor-closed (closed under minors).

Moore graph A Moore graph is a regular graph for
which the Moore bound is met exactly. The Moore
bound is an inequality relating the degree, diameter,
and order of a graph, proved by Edward F. Moore.
Every Moore graph is a cage.
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multigraph A multigraph is a graph that allows multiple
adjacencies (and, often, self-loops); a graph that is
not required to be simple.

multiple adjacency A multiple adjacency or multiple
edge is a set of more than one edge that all have the
same endpoints (in the same direction, in the case
of directed graphs). A graph with multiple edges is
often called a multigraph.

multiplicity The multiplicity of an edge is the number
of edges in a multiple adjacency. The multiplicity
of a graph is the maximum multiplicity of any of its
edges.

1.2.14 N

N 1. For the notation for open and closed neighbor-
hoods, see neighbourhood.

2. A lower-case n is often used (especially in computer
science) to denote the number of vertices in a given
graph.

neighbor
neighbour A vertex that is adjacent to a given vertex.
neighborhood

neighbourhood The open neighbourhood (or neighbor-
hood) of a vertex v is the subgraph induced by all
vertices that are adjacent to v. The closed neigh-
bourhood is defined in the same way but also in-
cludes v itself. The open neighborhood of v in
G may be denoted NG(v) or N(v), and the closed
neighborhood may be denoted NG[v] or N[v].
When the openness or closedness of a neighborhood
is not specified, it is assumed to be open.

network A graph in which attributes (e.g. names) are
associated with the nodes and/or edges.

node A synonym for vertex.

non-edge A non-edge or anti-edge is a pair of vertices
that are not adjacent; the edges of the complement
graph.

null graph See empty graph.
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odd 1. An odd cycle is a cycle whose length is odd. The
odd girth of a non-bipartite graph is the length of
its shortest odd cycle. An odd hole is a special case
of an odd cycle: one that is induced and has four or
more vertices.

2. An odd vertex is a vertex whose degree is odd. By the
handshaking lemma every finite undirected graph
has an even number of odd vertices.
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3. An odd ear is a simple path or simple cycle with an
odd number of edges, used in odd ear decomposi-
tions of factor-critical graphs; see ear.

4. An odd chord is an edge connecting two vertices
that are an odd distance apart in an even cycle. Odd
chords are used to define strongly chordal graphs.

5. An odd graph is a special case of a Kneser graph,
having one vertex for each (n — 1)-element subset of
a (2n — 1)-element set, and an edge connecting two
subsets when their corresponding sets are disjoint.

open 1. See neighbourhood.
2. See walk.

order 1. The order of a graph G is the number of its
vertices, | V(G)I. The variable n is often used for this
quantity. See also size, the number of edges.

2. A type of logic of graphs; see first order and second
order.

3. An order or ordering of a graph is an arrange-
ment of its vertices into a sequence, especially in
the context of topological ordering (an order of a di-
rected acyclic graph in which every edge goes from
an earlier vertex to a later vertex in the order) and
degeneracy ordering (an order in which each vertex
has minimum degree in the induced subgraph of it
and all later vertices).

4. For the order of a haven or bramble, see haven and
bramble.

orientation

oriented 1. An orientation of an undirected graph is
an assignment of directions to its edges, making it
into a directed graph. An oriented graph is one
that has been assigned an orientation. So, for in-
stance, a polytree is an oriented tree; it differs from
a directed tree (an arborescence) in that there is
no requirement of consistency in the directions of
its edges. Other special types of orientation in-
clude tournaments, orientations of complete graphs;
strong orientations, orientations that are strongly
connected; acyclic orientations, orientations that are
acyclic; Eulerian orientations, orientations that are
Eulerian; and transitive orientations, orientations
that are transitively closed.

2. Oriented graph, used by some authors as a synonym
for a directed graph.

out-degree See degree.
outer See face.

outerplanar An outerplanar graph is a graph that can be
embedded in the plane (without crossings) so that all
vertices are on the outer face of the graph.
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1.2.16 P

path A path may either be a walk (a sequence of vertices
and edges, with both endpoints of an edge appear-
ing adjacent to it in the sequence) or a simple path
(a walk with no repetitions of vertices or edges), de-
pending on the source. Important special cases in-
clude induced paths and shortest paths.

path decomposition A path decomposition of a graph
G is a tree decomposition whose underlying tree is
a path. Its width is defined in the same way as for
tree decompositions, as one less than the size of the
largest bag. The minimum width of any path de-
composition of G is the pathwidth of G.

pathwidth The pathwidth of a graph G is the minimum
width of a path decomposition of G. It may also be
defined in terms of the clique number of an inter-
val completion of G. It is always between the band-
width and the treewidth of G. It is also known as in-
terval thickness, vertex separation number, or node
searching number.

pendant See leaf .

perfect 1. A perfect graph is a graph in which, in ev-
ery induced subgraph, the chromatic number equals
the clique number. The perfect graph theorem
and strong perfect graph theorem are two theorems
about perfect graphs, the former proving that their
complements are also perfect and the latter proving
that they are exactly the graphs with no odd holes or
anti-holes.

2. A perfectly orderable graph is a graph whose vertices
can be ordered in such a way that a greedy coloring
algorithm with this ordering optimally colors every
induced subgraph. The perfectly orderable graphs
are a subclass of the perfect graphs.

3. A perfect matching is a matching that saturates every
vertex; see matching.

4. A perfect 1-factorization is a partition of the edges
of a graph into perfect matchings so that each two
matchings form a Hamiltonian cycle.

peripheral 1. A peripheral cycle or non-separating cycle
is a cycle with at most one bridge.

2. A peripheral vertex is a vertex whose eccentricity is
maximum. In a tree, this must be a leaf.

Petersen 1. Julius Petersen (1839-1910), Danish graph
theorist.

2. The Petersen graph, a 10-vertex 15-edge graph fre-
quently used as a counterexample.

3. Petersen’s theorem that every bridgeless cubic graph
has a perfect matching.
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planar A planar graph is a graph that has an embedding
onto the Euclidean plane. A plane graph is a pla-
nar graph for which a particular embedding has al-
ready been fixed. A k-planar graph is one that can
be drawn in the plane with at most k crossings per
edge.

polytree A polytree is an oriented tree; equivalently, a
directed acyclic graph whose underlying undirected
graph is a tree.

power 1. A graph power G* of a graph G is another
graph on the same vertex set; two vertices are adja-
cent in G* when they are at distance at mostk in G. A
leaf power is a closely related concept, derived from
a power of a tree by taking the subgraph induced by
the tree’s leaves.

2. Power graph analysis is a method for analyzing com-
plex networks by identifying cliques, bicliques, and
stars within the network.

3. Power laws in the degree distributions of scale-free
networks are a phenomenon in which the number of
vertices of a given degree is proportional to a power
of the degree.

predecessor A vertex coming before a given vertex in a
directed path.

proper 1. A proper subgraph is a subgraph that re-
moves at least one vertex or edge relative to the
whole graph; for finite graphs, proper subgraphs are
never isomorphic to the whole graph, but for infinite
graphs they can be.

2. A proper coloring is an assignment of colors to the
vertices of a graph (a coloring) that assigns different
colors to the endpoints of each edge; see color.

3. A proper interval graph or proper circular arc graph is
an intersection graph of a collection of intervals or
circular arcs (respectively) such that no interval or
arc contains another interval or arc. Proper interval
graphs are also called unit interval graphs (because
they can always be represented by unit intervals) or
indifference graphs.

property A graph property is something that can be true
of some graphs and false of others, and that de-
pends only on the graph structure and not on inci-
dental information such as labels. Graph properties
may equivalently be described in terms of classes of
graphs (the graphs that have a given property). More
generally, a graph property may also be a function of
graphs that is again independent of incidental infor-
mation, such as the size, order, or degree sequence
of a graph; this more general definition of a property
is also called an invariant of the graph.

pseudoforest A pseudoforest is an undirected graph in
which each connected component has at most one
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cycle, or a directed graph in which each vertex has
at most one outgoing edge.

pseudograph A pseudograph is a graph or multigraph
that allows self-loops.

1217 Q

quasi-line graph A quasi-line graph or locally co-
bipartite graph is a graph in which the open neigh-
borhood of every vertex can be partitioned into two
cliques. These graphs are always claw-free and they
include as a special case the line graphs. They are
used in the structure theory of claw-free graphs.

quiver A quiver is a directed multigraph, as used in
category theory. The edges of a quiver are called
arrows.

1.2.18 R

radius The radius of a graph is the minimum eccentricity
of any vertex.

Ramanujan A Ramanujan graph is a graph whose spec-
tral expansion is as large as possible. That is, it is a
d-regular graph, such that the second-largest eigen-
value of its adjacency matrix is at most 2v/d — 1 .

ray A ray, in an infinite graph, is an infinite simple path
with exactly one endpoint. The ends of a graph are
equivalence classes of rays.

reachability The ability to get from one vertex to another
within a graph.

reachable Has an affirmative reachability. A vertex y is
said to be reachable from a vertex x if there exists a
path from x to y.

recognizable In the context of the reconstruction con-
jecture, a graph property is recognizable if its truth
can be determined from the deck of the graph.
Many graph properties are known to be recogniz-
able. If the reconstruction conjecture is true, all
graph properties are recognizable.

reconstruction The reconstruction conjecture states
that each undirected graph G is uniquely determined
by its deck, a multiset of graphs formed by remov-
ing one vertex from G in all possible ways. In this
context, reconstruction is the formation of a graph
from its deck.

regular A graph is d-regular when all of its vertices have
degree d. A regular graph is a graph that is d-regular
for some d.

reverse See transpose.
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root 1. A designated vertex in a graph, particularly in
directed trees and rooted graphs.

2. The inverse operation to a graph power: a kth root
of a graph G is another graph on the same vertex set
such that two vertices are adjacent in G if and only
if they have distance at most k in the root.
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second order The second order logic of graphs is a
form of logic in which variables may represent ver-
tices, edges, sets of vertices, and (sometimes) sets
of edges. This logic includes predicates for testing
whether a vertex and edge are incident, as well as
whether a vertex or edge belongs to a set. To be dis-
tinguished from first order logic, in which variables
can only represent vertices.

saturated See matching.

searching number Node searching number is a syn-
onym for pathwidth.

self-loop Synonym for loop.
separating vertex See articulation point.

separation number Vertex separation number is a syn-
onym for pathwidth.

simple 1. A simple graph is a graph with no loops and
with no multiple adjacencies. That is, each edge
connects two distinct endpoints and no two edges
have the same endpoints. A simple edge is an edge
that is not part of a multiple adjacency. In many
cases, graphs are assumed to be simple unless spec-
ified otherwise.

2. A simple path or a simple cycle is a path or cycle that
has no repeated vertices (and no repeated edges).

sink A sink, in a directed graph, is a vertex with no out-
going edges.

size The size of a graph G is the number of its edges,
IE(G)I."" The variable m is often used for this quan-
tity. See also order, the number of vertices.

small-world network A small-world network is a graph
in which most nodes are not neighbors of one an-
other, but most nodes can be reached from every
other node by a small number of hops or steps.
Specifically, a small-world network is defined to be
a graph where the typical distance L between two
randomly chosen nodes (the number of steps re-
quired) grows proportionally to the logarithm of the
number of nodes N in the network *!

source A source, in a directed graph, is a vertex with no
incoming edges.
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space In algebraic graph theory, several vector spaces
over the binary field may be associated with a graph.
Each has sets of edges or vertices for its vectors, and
symmetric difference of sets as its vector sum opera-
tion. The edge space is the space of all sets of edges,
and the vertex space is the space of all sets of ver-
tices. The cut space is a subspace of the edge space
that has the cut-sets of the graph as its elements. The
cycle space has the Eulerian spanning subgraphs as
its elements.

spanner A spanner is a (usually sparse) graph whose
shortest path distances approximate those in a
dense graph or other metric space. Variations in-
clude geometric spanners, graphs whose vertices are
points in a geometric space; tree spanners, span-
ning trees of a graph whose distances approximate
the graph distances, and graph spanners, sparse sub-
graphs of a dense graph whose distances approxi-
mate the original graph’s distances. A greedy span-
ner is a graph spanner constructed by a greedy
algorithm, generally one that considers all edges
from shortest to longest and keeps the ones that are
needed to preserve the distance approximation.

spanning A subgraph is spanning when it includes all
of the vertices of the given graph. Important cases
include spanning trees, spanning subgraphs that are
trees, and perfect matchings, spanning subgraphs
that are matchings. A spanning subgraph may also
be called a factor, especially (but not only) when it
is regular.

sparse A sparse graph is one that has few edges relative
to its number of vertices. In some definitions the
same property should also be true for all subgraphs
of the given graph.

spectral

spectrum The spectrum of a graph is the collection of
eigenvalues of its adjacency matrix. Spectral graph
theory is the branch of graph theory that uses spectra
to analyze graphs. See also spectral expansion.

split 1. A split graph is a graph whose vertices can be
partitioned into a clique and an independent set. A
related class of graphs, the double split graphs, are
used in the proof of the strong perfect graph theo-
rem.

2. A split of an arbitrary graph is a partition of its
vertices into two nonempty subsets, such that the
edges spanning this cut form a complete bipartite
subgraph. The splits of a graph can be represented
by a tree structure called its split decomposition. A
split is called a strong split when it is not crossed by
any other split. A split is called nontrivial when both
of its sides have more than one vertex. A graph is
called prime when it has no nontrivial splits.
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square 1. The square of a graph G is the graph power
G2 in the other direction, G is the square root of G2
The half-square of a bipartite graph is the subgraph
of its square induced by one side of the bipartition.

2. A squaregraph is a planar graph that can be drawn so
that all bounded faces are 4-cycles and all vertices
of degree < 3 belong to the outer face.

3. A square grid graph is a lattice graph defined from
points in the plane with integer coordinates con-
nected by unit-length edges.

stable A stable set is a synonym for an independent set.

star A star is a tree with one internal vertex; equivalently,
it is a complete bipartite graph K,n for some n = 2.
The special case of a star with three leaves is called
a claw.

strength The strength of a graph is the minimum ratio
of the number of edges removed from the graph to
components created, over all possible removals; it is
analogous to toughness, based on vertex removals.

strong 1. For strong connectivity and strongly connected
components of directed graphs, see connected and
component. A strong orientation is an orientation
that is strongly connected; see orientation.

2. For the strong perfect graph theorem, see perfect.

3. A strongly regular graph is a regular graph in which
every two adjacent vertices have the same number of
shared neighbours and every two non-adjacent ver-
tices have the same number of shared neighbours.

4. A strongly chordal graph is a chordal graph in which
every even cycle of length six or more has an odd
chord.

5. A strongly perfect graph is a graph in which every in-
duced subgraph has an independent set meeting all
maximal cliques. The Meyniel graphs are also called
“very strongly perfect graphs” because in them, ev-
ery vertex belongs to such an independent set.

subforest A subgraph of a forest.

subgraph A subgraph of a graph G is another graph
formed from a subset of the vertices and edges of
G. The vertex subset must include all endpoints of
the edge subset, but may also include additional ver-
tices. A spanning subgraph is one that includes all
vertices of the graph; an induced subgraph is one
that includes all the edges whose endpoints belong
to the vertex subset.

subtree A subtree is a connected subgraph of a tree.
Sometimes, for rooted trees, subtrees are defined to
be a special type of connected subgraph, formed by
all vertices and edges reachable from a chosen ver-
tex.
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successor A vertex coming after a given vertex in a
directed path.

superconcentrator A superconcentrator is a graph with
two designated and equal-sized subsets of vertices |
and O, such that for every two equal-sized subsets S
of I and T O there exists a family of disjoint paths
connecting every vertex in S to a vertex in T. Some
sources require in addition that a superconcentrator
be a directed acyclic graph, with I as its sources and
O as its sinks.

supergraph A graph formed by adding vertices, edges,
or both to a given graph. If H is a subgraph of G,
then G is a supergraph of H.
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theta 1. A theta graph is the union of three internally
disjoint (simple) paths that have the same two dis-
tinct end vertices."!

2. The theta graph of a collection of points in the Eu-
clidean plane is constructed by constructing a sys-
tem of cones surrounding each point and adding one
edge per cone, to the point whose projection onto a
central ray of the cone is smallest.

3. The Lovédsz number or Lovész theta function of a
graph is a graph invariant related to the clique num-
ber and chromatic number that can be computed in
polynomial time by semidefinite programming.

topological 1. A topological graph is a representation
of the vertices and edges of a graph by points and
curves in the plane (not necessarily avoiding cross-

ings).

2. Topological graph theory is the study of graph em-
beddings.

3. Topological sorting is the algorithmic problem of ar-
ranging a directed acyclic graph into a topological
order, a vertex sequence such that each edge goes
from an earlier vertex to a later vertex in the se-
quence.

totally disconnected Synonym for edgeless.

tour A closed trail, a walk that starts and ends at the
same vertex and has no repeated edges. Euler
tours are tours that use all of the graph edges; see
Eulerian.

tournament A tournament is an orientation of a com-
plete graph; that is, it is a directed graph such that
every two vertices are connected by exactly one di-
rected edge (going in only one of the two directions
between the two vertices).

traceable A traceable graph is a graph that contains a
Hamiltonian path.
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trail A walk without repeated edges.

transitive Having to do with the transitive property. The
transitive closure of a given directed graph is a graph
on the same vertex set that has an edge from one
vertex to another whenever the original graph has a
path connecting the same two vertices. A transitive
reduction of a graph is a minimal graph having the
same transitive closure; directed acyclc graphs have
a unique transitive reduction. A transitive orienta-
tion is an orientation of a graph that is its own tran-
sitive closure; it exists only for comparability graphs.

transpose The transpose graph of a given directed graph
is a graph on the same vertices, with each edge re-
versed in direction. It may also be called the con-
verse or reverse of the graph.

tree 1. A tree is an undirected graph that is both con-
nected and acyclic, or a directed graph in which
there exists a unique walk from one vertex (the root
of the tree) to all remaining vertices.

2. A k-tree is a graph formed by gluing (k + 1)-cliques
together on shared k-cliques. A tree in the ordinary
sense is a 1-tree according to this definition.

tree decomposition A tree decomposition of a graph G
is a tree whose nodes are labeled with sets of vertices
of G; these sets are called bags. For each vertex v,
the bags that contain v must induce a subtree of the
tree, and for each edge uv there must exist a bag that
contains both u and v. The width of a tree decom-
position is one less than the maximum number of
vertices in any of its bags; the treewidth of G is the
minimum width of any tree decomposition of G.

treewidth The treewidth of a graph G is the minimum
width of a tree decomposition of G. It can also be
defined in terms of the clique number of a chordal
completion of G, the order of a haven of G, or the
order of a bramble of G.

triangle A cycle of length three in a graph. A triangle-
free graph is an undirected graph that does not have
any triangle subgraphs.

Turan 1. Pal Turdn

2. A Turén graph is a balanced complete multipartite
graph.

3. Turédn’s theorem states that Turdn graphs have the
maximum number of edges among all clique-free
graphs of a given order.

4. Turén’s brick factory problem asks for the minimum
number of crossings in a drawing of a complete bi-
partite graph.
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undirected An undirected graph is a graph in which the
two endpoints of each edge are not distinguished
from each other. See also directed and mixed. In
a mixed graph, an undirected edge is again one in
which the endpoints are not distinguished from each
other.

uniform A hypergraph is k-uniform when all its edges
have k endpoints, and uniform when it is k-uniform
for some k. For instance, ordinary graphs are the
same as 2-uniform hypergraphs.

universal 1. A universal graph is a graph that contains
as subgraphs all graphs in a given family of graphs,
or all graphs of a given size or order within a given
family of graphs.

2. A universal vertex (also called an apex or dominat-
ing vertex) is a vertex that is adjacent to every other
vertex in the graph. For instance, wheel graphs and
connected threshold graphs always have a universal
vertex.

3. In the logic of graphs, a vertex that is universally
quantified in a formula may be called a universal ver-
tex for that formula.

unweighted graph A graph whose vertices and edges
have not been assigned weights; the opposite of a
weighted graph.
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V See vertex set.
valency Synonym for degree.

vertex A vertex (plural vertices) is (together with edges)
one of the two basic units out of which graphs are
constructed. Vertices of graphs are often considered
to be atomic objects, with no internal structure.

vertex cut

separating set A set of verfices whose removal
disconnects the graph. A one-vertex cut is called an
articulation point or cut vertex.

vertex set The set of vertices of a given graph G, some-
times denoted by V(G).

vertices See vertex.
Vizing 1. Vadim G. Vizing

2. Vizing’s theorem that the chromatic index is at most
one more than the maximum degree.

3. Vizing’s conjecture on the domination number of
Cartesian products of graphs.


https://en.wikipedia.org/wiki/Transitive_property
https://en.wikipedia.org/wiki/Transitive_closure
https://en.wikipedia.org/wiki/Transitive_reduction
https://en.wikipedia.org/wiki/Transitive_reduction
https://en.wikipedia.org/wiki/Transitive_orientation
https://en.wikipedia.org/wiki/Transitive_orientation
https://en.wikipedia.org/wiki/Comparability_graph
https://en.wikipedia.org/wiki/Transpose_graph
https://en.wikipedia.org/wiki/Tree_(graph_theory)
https://en.wikipedia.org/wiki/K-tree
https://en.wikipedia.org/wiki/Tree_decomposition
https://en.wikipedia.org/wiki/Treewidth
https://en.wikipedia.org/wiki/Chordal_completion
https://en.wikipedia.org/wiki/Chordal_completion
https://en.wikipedia.org/wiki/Haven_(graph_theory)
https://en.wikipedia.org/wiki/Bramble_(graph_theory)
https://en.wikipedia.org/wiki/Triangle-free_graph
https://en.wikipedia.org/wiki/Triangle-free_graph
https://en.wikipedia.org/wiki/P%C3%A1l_Tur%C3%A1n
https://en.wikipedia.org/wiki/Tur%C3%A1n_graph
https://en.wikipedia.org/wiki/Tur%C3%A1n%2527s_theorem
https://en.wikipedia.org/wiki/Tur%C3%A1n%2527s_brick_factory_problem
https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Mixed_graph
https://en.wikipedia.org/wiki/Universal_graph
https://en.wikipedia.org/wiki/Universal_vertex
https://en.wikipedia.org/wiki/Wheel_graph
https://en.wikipedia.org/wiki/Threshold_graph
https://en.wikipedia.org/wiki/Logic_of_graphs
https://en.wikipedia.org/wiki/Universal_quantifier
https://en.wikipedia.org/wiki/Universal_quantifier
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#graph
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#vertex
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#edge
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#weight
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#weighted_graph
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#vertex
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#disconnected
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#graph
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#articulation_point
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#cut_vertex
https://en.wikipedia.org/wiki/Vadim_G._Vizing
https://en.wikipedia.org/wiki/Vizing%2527s_theorem
https://en.wikipedia.org/wiki/Vizing%2527s_conjecture

1.2. GLOSSARY OF GRAPH THEORY

1223 W

W The letter W is used in notation for wheel graphs and
windmill graphs. The notation is not standardized.

Wagner 1. Klaus Wagner
2. The Wagner graph, an eight-vertex Mobius ladder.

3. Wagner’s theorem characterizing planar graphs by
their forbidden minors.

4. Wagner’s theorem characterizing the K5-minor-free
graphs.

walk A walk is an alternating sequence of vertices and
edges, starting and ending at a vertex, in which each
edge is adjacent in the sequence to its two endpoints.
In a directed graph the ordering of the endpoints of
each edge in the sequence must be consistent with
the direction of the edge. Some sources call walks
paths, while others reserve the term “path” for a sim-
ple path (a walk without repeated vertices or edges).
Walks are also sometimes called chains.!'% A walk
is open if its starts and ends at two different vertices,
and closed if it starts and ends at the same vertex.
A closed walk may also be called a cycle. Alterna-
tively, the word “cycle” may be reserved for a simple
closed walk (one without repeated vertices or edges
except for the repetition of the starting and final ver-
tex). A walk without repeated edges (but with vertex
repetition allowed) may be called a trail and a closed
trail may be called a tour. In the context of ear de-
composition, a walk that can have the same starting
and ending vertex but otherwise avoids any repeated
vertices may be called an ear.

weight A numerical value, assigned as a label to a vertex
or edge of a graph. The weight of a subgraph is the
sum of the weights of the vertices or edges within
that subgraph.

weighted graph A graph whose vertices or edges have
been assigned weights; more specifically, a vertex-
weighted graph has weights on its vertices and an
edge-weighted graph has weights on its edges.

well-colored A well-colored graph is a graph all of
whose greedy colorings use the same number of col-
ors.

well-covered A well-covered graph is a graph all of
whose maximal independent sets are the same size.

wheel A wheel graph is a graph formed by adding a uni-
versal vertex to a simple cycle.

width 1. A synonym for degeneracy.

2. For other graph invariants known as width, see
bandwidth, branchwidth, clique-width, pathwidth,
and treewidth.

23

3. The width of a tree decomposition or path decom-
position is one less than the maximum size of one
of its bags, and may be used to define treewidth and
pathwidth.

windmill A windmill graph is the union of a collection
of cliques, all of the same order as each other, with
one shared vertex belonging to all the cliques and all
other vertices and edges distinct.

1.2.24 See also

e List of graph theory topics
e Gallery of named graphs
e Graph algorithms

e Glossary of areas of mathematics
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1.3 Graph theory

This article is about sets of vertices connected by edges.
For graphs of mathematical functions, see Graph of a
function. For other uses, see Graph (disambiguation).

In mathematics graph theory is the study of graphs,

A drawing of a graph

which are mathematical structures used to model pair-
wise relations between objects. A graph in this context
is made up of vertices, nodes, or points which are con-
nected by edges, arcs, or lines. A graph may be undi-
rected, meaning that there is no distinction between the
two vertices associated with each edge, or its edges may
be directed from one vertex to another; see Graph (dis-
crete mathematics) for more detailed definitions and for
other variations in the types of graph that are commonly
considered. Graphs are one of the prime objects of study
in discrete mathematics.

Refer to the glossary of graph theory for basic definitions
in graph theory.

1.3.1 Definitions

Definitions in graph theory vary. The following are some
of the more basic ways of defining graphs and related
mathematical structures.

Graph

In the most common sense of the term,!' a graph is an
ordered pair G = (V, E) comprising a set V of vertices
or nodes or points together with a set E of edges or arcs
or lines, which are 2-element subsets of V (i.e. an edge
is associated with two vertices, and that association takes
the form of the unordered pair comprising those two ver-
tices). To avoid ambiguity, this type of graph may be
described precisely as undirected and simple.

Other senses of graph stem from different conceptions of
the edge set. In one more generalized notion,”! V is a set
together with a relation of incidence that associates with
each edge two vertices. In another generalized notion, E
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is a multiset of unordered pairs of (not necessarily dis-
tinct) vertices. Many authors call this type of object a
multigraph or pseudograph.

All of these variants and others are described more fully
below.

The vertices belonging to an edge are called the ends or
end vertices of the edge. A vertex may exist in a graph
and not belong to an edge.

V and E are usually taken to be finite, and many of the
well-known results are not true (or are rather different)
for infinite graphs because many of the arguments fail in
the infinite case. The order of a graph is |V, its number
of vertices. The size of a graph is |El, its number of edges.
The degree or valency of a vertex is the number of edges
that connect to it, where an edge that connects a vertex to
itself (a loop) is counted twice.

For an edge {x, y}, graph theorists usually use the some-
what shorter notation xy.

1.3.2 Applications
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The network graph formed by Wikipedia editors (edges) con-
tributing to different Wikipedia language versions (vertices) dur-
ing one month in summer 2013 31
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Graphs can be used to model many types of relations and
processes in physical, biological,™ social and information
systems. Many practical problems can be represented by
graphs. Emphasizing their application to real-world sys-
tems, the term network is sometimes defined to mean a
graph in which attributes (e.g. names) are associated with
the nodes and/or edges.

In computer science, graphs are used to represent net-
works of communication, data organization, computa-
tional devices, the flow of computation, etc. For in-
stance, the link structure of a website can be repre-
sented by a directed graph, in which the vertices repre-
sent web pages and directed edges represent links from
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one page to another. A similar approach can be taken
to problems in social media,”®! travel, biology, computer
chip design, and many other fields. The development of
algorithms to handle graphs is therefore of major inter-
est in computer science. The transformation of graphs
is often formalized and represented by graph rewrite
systems. Complementary to graph transformation sys-
tems focusing on rule-based in-memory manipulation of
graphs are graph databases geared towards transaction-
safe, persistent storing and querying of graph-structured
data.

Graph-theoretic methods, in various forms, have proven
particularly useful in linguistics, since natural language
often lends itself well to discrete structure. Tradition-
ally, syntax and compositional semantics follow tree-
based structures, whose expressive power lies in the
principle of compositionality, modeled in a hierarchical
graph. More contemporary approaches such as head-
driven phrase structure grammar model the syntax of nat-
ural language using typed feature structures, which are
directed acyclic graphs. Within lexical semantics, es-
pecially as applied to computers, modeling word mean-
ing is easier when a given word is understood in terms
of related words; semantic networks are therefore im-
portant in computational linguistics. Still other methods
in phonology (e.g. optimality theory, which uses lattice
graphs) and morphology (e.g. finite-state morphology,
using finite-state transducers) are common in the anal-
ysis of language as a graph. Indeed, the usefulness of this
area of mathematics to linguistics has borne organizations
such as TextGraphs, as well as various 'Net' projects, such
as WordNet, VerbNet, and others.

Graph theory is also used to study molecules in chemistry
and physics. In condensed matter physics, the three-
dimensional structure of complicated simulated atomic
structures can be studied quantitatively by gathering
statistics on graph-theoretic properties related to the
topology of the atoms. In chemistry a graph makes a
natural model for a molecule, where vertices represent
atoms and edges bonds. This approach is especially used
in computer processing of molecular structures, ranging
from chemical editors to database searching. In statistical
physics, graphs can represent local connections between
interacting parts of a system, as well as the dynamics
of a physical process on such systems. Similarly, in
computational neuroscience graphs can be used to repre-
sent functional connections between brain areas that in-
teract to give rise to various cognitive processes, where
the vertices represent different areas of the brain and
the edges represent the connections between those areas.
Graphs are also used to represent the micro-scale chan-
nels of porous media, in which the vertices represent the
pores and the edges represent the smaller channels con-
necting the pores.

Graph theory is also widely used in sociology as a way, for
example, to measure actors’ prestige or to explore rumor
spreading, notably through the use of social network anal-
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Graph theory in sociology: Moreno Sociogram (1953 )/

ysis software. Under the umbrella of social networks
are many different types of graphs.”] Acquaintanceship
and friendship graphs describe whether people know each
other. Influence graphs model whether certain people can
influence the behavior of others. Finally, collaboration
graphs model whether two people work together in a par-
ticular way, such as acting in a movie together.

Likewise, graph theory is useful in biology and conserva-
tion efforts where a vertex can represent regions where
certain species exist (or inhabit) and the edges represent
migration paths, or movement between the regions. This
information is important when looking at breeding pat-
terns or tracking the spread of disease, parasites or how
changes to the movement can affect other species.

In mathematics, graphs are useful in geometry and certain
parts of topology such as knot theory. Algebraic graph
theory has close links with group theory.

A graph structure can be extended by assigning a weight
to each edge of the graph. Graphs with weights, or
weighted graphs, are used to represent structures in which
pairwise connections have some numerical values. For
example, if a graph represents a road network, the weights
could represent the length of each road.

1.3.3 History

The paper written by Leonhard Euler on the Seven Bridges
of Konigsberg and published in 1736 is regarded as the
first paper in the history of graph theory.!®! This paper,
as well as the one written by Vandermonde on the knight
problem, carried on with the analysis situs initiated by
Leibniz. Euler’s formula relating the number of edges,
vertices, and faces of a convex polyhedron was stud-
ied and generalized by Cauchy!® and L'Huillier,''! and
represents the beginning of the branch of mathematics
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The Konigsberg Bridge problem

known as topology.

More than one century after Euler’s paper on the bridges
of Konigsberg and while Listing was introducing the con-
cept of topology, Cayley was led by an interest in par-
ticular analytical forms arising from differential calculus
to study a particular class of graphs, the trees.'!! This
study had many implications for theoretical chemistry.
The techniques he used mainly concern the enumeration
of graphs with particular properties. Enumerative graph
theory then arose from the results of Cayley and the fun-
damental results published by Pélya between 1935 and
1937. These were generalized by De Bruijn in 1959.
Cayley linked his results on trees with contemporary stud-
ies of chemical composition.!'?! The fusion of ideas from
mathematics with those from chemistry began what has
become part of the standard terminology of graph theory.

In particular, the term “graph” was introduced by
Sylvester in a paper published in 1878 in Nature, where he
draws an analogy between “quantic invariants” and “co
variants” of algebra and molecular diagrams:''!

"[...] Every invariant and co-variant thus be-
comes expressible by a graph precisely identi-
cal with a Kekuléan diagram or chemicograph.
[...]I give a rule for the geometrical multipli-
cation of graphs, i.e. for constructing a graph
to the product of in- or co-variants whose sep-
arate graphs are given. [...]" (italics as in the
original).

The first textbook on graph theory was written by Dénes
K6nig, and published in 1936.14 Another book by Frank
Harary, published in 1969, was “considered the world
over to be the definitive textbook on the subject”,['>! and
enabled mathematicians, chemists, electrical engineers
and social scientists to talk to each other. Harary donated
all of the royalties to fund the Pélya Prize.!'®!

One of the most famous and stimulating problems in
graph theory is the four color problem: “Is it true that
any map drawn in the plane may have its regions colored
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with four colors, in such a way that any two regions hav-
ing a common border have different colors?" This prob-
lem was first posed by Francis Guthrie in 1852 and its
first written record is in a letter of De Morgan addressed
to Hamilton the same year. Many incorrect proofs have
been proposed, including those by Cayley, Kempe, and
others. The study and the generalization of this prob-
lem by Tait, Heawood, Ramsey and Hadwiger led to the
study of the colorings of the graphs embedded on sur-
faces with arbitrary genus. Tait’s reformulation gener-
ated a new class of problems, the factorization problems,
particularly studied by Petersen and Kénig. The works
of Ramsey on colorations and more specially the results
obtained by Turdn in 1941 was at the origin of another
branch of graph theory, extremal graph theory.

The four color problem remained unsolved for more than
a century. In 1969 Heinrich Heesch published a method
for solving the problem using computers.['”! A computer-
aided proof produced in 1976 by Kenneth Appel and
Wolfgang Haken makes fundamental use of the notion
of “discharging” developed by Heesch.!'8/1°! The proof
involved checking the properties of 1,936 configurations
by computer, and was not fully accepted at the time due
to its complexity. A simpler proof considering only 633
configurations was given twenty years later by Robertson,
Seymour, Sanders and Thomas.!>!

The autonomous development of topology from 1860
and 1930 fertilized graph theory back through the works
of Jordan, Kuratowski and Whitney. Another impor-
tant factor of common development of graph theory and
topology came from the use of the techniques of modern
algebra. The first example of such a use comes from the
work of the physicist Gustav Kirchhoff, who published
in 1845 his Kirchhoff’s circuit laws for calculating the
voltage and current in electric circuits.

The introduction of probabilistic methods in graph the-
ory, especially in the study of Erdds and Rényi of the
asymptotic probability of graph connectivity, gave rise
to yet another branch, known as random graph theory,
which has been a fruitful source of graph-theoretic re-
sults.

1.3.4 Graph drawing

Main article: Graph drawing

Graphs are represented visually by drawing a dot or circle
for every vertex, and drawing an arc between two vertices
if they are connected by an edge. If the graph is directed,
the direction is indicated by drawing an arrow.

A graph drawing should not be confused with the graph
itself (the abstract, non-visual structure) as there are sev-
eral ways to structure the graph drawing. All that matters
is which vertices are connected to which others by how
many edges and not the exact layout. In practice it is of-
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ten difficult to decide if two drawings represent the same
graph. Depending on the problem domain some layouts
may be better suited and easier to understand than others.

The pioneering work of W. T. Tutte was very influential
in the subject of graph drawing. Among other achieve-
ments, he introduced the use of linear algebraic methods
to obtain graph drawings.

Graph drawing also can be said to encompass problems
that deal with the crossing number and its various general-
izations. The crossing number of a graph is the minimum
number of intersections between edges that a drawing of
the graph in the plane must contain. For a planar graph,
the crossing number is zero by definition.

Drawings on surfaces other than the plane are also stud-
ied.

1.3.5 Graph-theoretic data structures

Main article: Graph (abstract data type)

There are different ways to store graphs in a computer
system. The data structure used depends on both the
graph structure and the algorithm used for manipulating
the graph. Theoretically one can distinguish between list
and matrix structures but in concrete applications the best
structure is often a combination of both. List structures
are often preferred for sparse graphs as they have smaller
memory requirements. Matrix structures on the other
hand provide faster access for some applications but can
consume huge amounts of memory.

List structures include the incidence list, an array of pairs
of vertices, and the adjacency list, which separately lists
the neighbors of each vertex: Much like the incidence list,
each vertex has a list of which vertices it is adjacent to.

Matrix structures include the incidence matrix, a matrix
of 0’s and 1’s whose rows represent vertices and whose
columns represent edges, and the adjacency matrix, in
which both the rows and columns are indexed by vertices.
In both cases a 1 indicates two adjacent objects and a 0
indicates two non-adjacent objects. The Laplacian matrix
is a modified form of the adjacency matrix that incorpo-
rates information about the degrees of the vertices, and is
useful in some calculations such as Kirchhoff’s theorem
on the number of spanning trees of a graph. The distance
matrix, like the adjacency matrix, has both its rows and
columns indexed by vertices, but rather than containing
a0 ora 1 in each cell it contains the length of a shortest
path between two vertices.

1.3.6 Problems in graph theory
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Enumeration

There is a large literature on graphical enumeration: the
problem of counting graphs meeting specified conditions.
Some of this work is found in Harary and Palmer (1973).

Subgraphs, induced subgraphs, and minors

A common problem, called the subgraph isomorphism
problem, is finding a fixed graph as a subgraph in a given
graph. One reason to be interested in such a question is
that many graph properties are hereditary for subgraphs,
which means that a graph has the property if and only if
all subgraphs have it too. Unfortunately, finding maxi-
mal subgraphs of a certain kind is often an NP-complete
problem. For example:

¢ Finding the largest complete subgraph is called the
clique problem (NP-complete).

A similar problem is finding induced subgraphs in a
given graph. Again, some important graph properties
are hereditary with respect to induced subgraphs, which
means that a graph has a property if and only if all in-
duced subgraphs also have it. Finding maximal induced
subgraphs of a certain kind is also often NP-complete.
For example:

e Finding the largest edgeless induced subgraph or
independent set is called the independent set prob-
lem (NP-complete).

Still another such problem, the minor containment prob-
lem, is to find a fixed graph as a minor of a given graph. A
minor or subcontraction of a graph is any graph obtained
by taking a subgraph and contracting some (or no) edges.
Many graph properties are hereditary for minors, which
means that a graph has a property if and only if all minors
have it too. For example, Wagner’s Theorem states:

e A graph is planar if it contains as a minor neither the
complete bipartite graph K3,3 (see the Three-cottage
problem) nor the complete graph K.

A similar problem, the subdivision containment problem,
is to find a fixed graph as a subdivision of a given graph.
A subdivision or homeomorphism of a graph is any graph
obtained by subdividing some (or no) edges. Subdivi-
sion containment is related to graph properties such as
planarity. For example, Kuratowski’s Theorem states:

e A graph is planar if it contains as a subdivision
neither the complete bipartite graph K3,3 nor the
complete graph K.

Another problem in subdivision containment is Kelmans-
Seymour conjecture:
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e Every 5-vertex-connected graph that is not planar
contains a subdivision of the 5-vertex complete
graph K.

Another class of problems has to do with the extent to
which various species and generalizations of graphs are
determined by their point-deleted subgraphs. For exam-
ple:

e The reconstruction conjecture

Graph coloring

Many problems have to do with various ways of coloring
graphs, for example:

e Four-color theorem

Strong perfect graph theorem

Erdds—Faber—Lovész conjecture (unsolved)

e Total coloring conjecture, also called Behzad's con-
jecture (unsolved)

List coloring conjecture (unsolved)

Hadwiger conjecture (graph theory) (unsolved)

Subsumption and unification

Constraint modeling theories concern families of directed
graphs related by a partial order. In these applications,
graphs are ordered by specificity, meaning that more con-
strained graphs—which are more specific and thus con-
tain a greater amount of information—are subsumed by
those that are more general. Operations between graphs
include evaluating the direction of a subsumption rela-
tionship between two graphs, if any, and computing graph
unification. The unification of two argument graphs is
defined as the most general graph (or the computation
thereof) that is consistent with (i.e. contains all of the in-
formation in) the inputs, if such a graph exists; efficient
unification algorithms are known.

For constraint frameworks which are strictly
compositional, graph unification is the sufficient
satisfiability and combination function. ~Well-known

applications include automatic theorem proving and
modeling the elaboration of linguistic structure.

Route problems
e Hamiltonian path problem

e Minimum spanning tree

e Route inspection problem (also called the “Chinese
postman problem”)
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Seven bridges of Konigsberg

Shortest path problem

Steiner tree

e Three-cottage problem

Traveling salesman problem (NP-hard)

Network flow

There are numerous problems arising especially from ap-
plications that have to do with various notions of flows in
networks, for example:

e Max flow min cut theorem

Visibility problems

e Museum guard problem

Covering problems

Covering problems in graphs are specific instances of
subgraph-finding problems, and they tend to be closely
related to the clique problem or the independent set prob-
lem.

e Set cover problem

e Vertex cover problem

Decomposition problems

Decomposition, defined as partitioning the edge set of a
graph (with as many vertices as necessary accompanying
the edges of each part of the partition), has a wide variety
of question. Often, it is required to decompose a graph
into subgraphs isomorphic to a fixed graph; for instance,
decomposing a complete graph into Hamiltonian cycles.
Other problems specify a family of graphs into which a
given graph should be decomposed, for instance, a family
of cycles, or decomposing a complete graph Kn into n —
1 specified trees having, respectively, 1, 2, 3, ..., n — 1
edges.

Some specific decomposition problems that have been
studied include:

e Arboricity, a decomposition into as few forests as
possible

e Cycle double cover, a decomposition into a collec-
tion of cycles covering each edge exactly twice

e Edge coloring, a decomposition into as few
matchings as possible

e Graph factorization, a decomposition of a regular
graph into regular subgraphs of given degrees
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Graph classes

Many problems involve characterizing the members of
various classes of graphs. Some examples of such ques-
tions are below:

Enumerating the members of a class

Characterizing a class in terms of forbidden sub-
structures

Ascertaining relationships among classes (e.g. does
one property of graphs imply another)

Finding efficient algorithms to decide membership
in a class

Finding representations for members of a class

1.3.7 See also

Gallery of named graphs

Glossary of graph theory

List of graph theory topics

List of unsolved problems in graph theory

Publications in graph theory

Related topics

Algebraic graph theory
Citation graph
Conceptual graph
Data structure
Disjoint-set data structure
Dual-phase evolution
Entitative graph
Existential graph
Graph algebra

Graph automorphism
Graph coloring

Graph database

Graph data structure
Graph drawing

Graph equation

Graph rewriting
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e Graph sandwich problem
e Graph property

e Intersection graph

e [ogical graph

e Loop

e Network theory

e Null graph

e Pebble motion problems
e Percolation

e Perfect graph

e Quantum graph

e Random regular graphs
e Semantic networks

e Spectral graph theory

e Strongly regular graphs
e Symmetric graphs

e Transitive reduction

e Tree data structure

Algorithms

e Bellman—Ford algorithm

e Dijkstra’s algorithm

e Ford-Fulkerson algorithm

e Kruskal’s algorithm

e Nearest neighbour algorithm
e Prim’s algorithm

e Depth-first search

e Breadth-first search

Subareas

e Algebraic graph theory

e Geometric graph theory

Extremal graph theory

e Probabilistic graph theory

Topological graph theory
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Related areas of mathematics

e Combinatorics
e Group theory
e Knot theory

e Ramsey theory

Generalizations

e Hypergraph

e Abstract simplicial complex
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Chapter 2

The Basics

2.1 Element

In mathematics, an element, or member, of a set is any
one of the distinct objects that make up that set.

2.1.1 Sets

Writing A = {1, 2, 3, 4} means that the elements of the
set A are the numbers 1, 2, 3 and 4. Sets of elements of
A, for example {1, 2}, are subsets of A.

Sets can themselves be elements. For example, consider
the set B= {1, 2, {3, 4}}. The elements of B are not 1,
2, 3, and 4. Rather, there are only three elements of B,
namely the numbers 1 and 2, and the set {3, 4}.

The elements of a set can be anything. For example, C
= { red, green, blue }, is the set whose elements are the
colors red, green and blue.

2.1.2 Notation and terminology

IV. De classibus.

Signo K significatur classis, sive entium aggregatio.

Signum € significat est. Ita aeb legitur a est quoddam b;aeK
significat a est gquaedam classis; aeP significat a est quaedam
propositio. ’

First usage of the symbol ¢ in the work Arithmetices principia
nova methodo exposita by Giuseppe Peano.

The relation “is an element of”, also called set member-
ship, is denoted by the symbol "€". Writing

reA

means that "x is an element of A". Equivalent expressions
are "x is amember of A", "x belongs to A", "xisin A" and
"x lies in A". The expressions "A includes x" and "A con-
tains x" are also used to mean set membership, however
some authors use them to mean instead "x is a subset of
A" Logician George Boolos strongly urged that “con-
tains” be used for membership only and “includes” for the
subset relation only.*!

Another possible notation for the same relation is

A>uz,

meaning "A contains x", though it is used less often.

The negation of set membership is denoted by the symbol
"¢". Writing

x ¢ A

means that "x is not an element of A".

The symbol € was first used by Giuseppe Peano 1889 in
his work Arithmetices principia nova methodo exposita.
Here he wrote on page X:

“Signum e significat est. Ita a € b legitur a
est quoddam b; ...”

which means

“The symbol € means is. So a € b is read as
aisab;..”

The symbol itself is a stylized lowercase Greek letter
epsilon ("e"), the first letter of the word £oti, which

(3Rl

means 1S .

The Unicode characters for these symbols are U+2208
(‘element of'), U+220B (‘contains as member') and
U+2209 ('not an element of'). The equivalent LaTeX
commands are "\in”, "\ni” and "\notin”. Mathematica has
commands "\[Element]" and "\[NotElement]".

2.1.3 Cardinality of sets

Main article: Cardinality

The number of elements in a particular set is a property
known as cardinality; informally, this is the size of a set.
In the above examples the cardinality of the set A is 4,
while the cardinality of either of the sets B and C is 3.
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2.2. PATH

An infinite set is a set with an infinite number of elements,
while a finite set is a set with a finite number of elements.
The above examples are examples of finite sets. An ex-
ample of an infinite set is the set of positive integers = {
1,2,3,4,.. }.

2.1.4 Examples

Using the sets defined above, namely A = {1,2,3,4 }, B
={1,2,{3,4}} and C = { red, green, blue }:

e 2cA

e {34} €B

e 34¢B

e {3,4} is a member of B
e Yellow ¢ C

e The cardinality of D = { 2, 4, 8, 10, 12 } is finite
and equal to 5.

e The cardinality of P = { 2, 3, 5, 7, 11, 13, ...}
(the prime numbers) is infinite (this was proven by
Euclid).

2.1.5 References

[1] Eric Schechter (1997). Handbook of Analysis and lIts
Foundations. Academic Press. ISBN 0-12-622760-8. p.
12

[2] George Boolos (February 4, 1992). 24.243 Classical Set
Theory (lecture). (Speech). Massachusetts Institute of
Technology, Cambridge, MA.

2.1.6 Further reading

e Halmos, Paul R. (1974) [1960], Naive Set Theory,
Undergraduate Texts in Mathematics (Hardcover
ed.), NY: Springer-Verlag, ISBN 0-387-90092-6 -
“Naive” means that it is not fully axiomatized, not
that it is silly or easy (Halmos’s treatment is neither).

e Jech, Thomas (2002), “Set Theory”, Stanford Ency-
clopedia of Philosophy

e Suppes, Patrick (1972) [1960], Axiomatic Set The-
ory, NY: Dover Publications, Inc., ISBN 0-486-
61630-4 - Both the notion of set (a collection of
members), membership or element-hood, the axiom
of extension, the axiom of separation, and the union
axiom (Suppes calls it the sum axiom) are needed for
a more thorough understanding of “set element”.

2.1.7 External links

e Weisstein, Eric W. “Element”. MathWorld.
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2.2 Path

For the family of graphs known as paths, see Path graph.
In graph theory, a path in a graph is a finite or infinite

110 111

100 101

010 011

000 001

A hypercube graph showing a Hamiltonian path in red, and a
longest induced path in bold black.

sequence of edges which connect a sequence of vertices
which, by most definitions, are all distinct from one an-
other. In a directed graph, a directed path (sometimes
called dipath!!) is again a sequence of edges (or arcs)
which connect a sequence of vertices, but with the added
restriction that the edges all be directed in the same di-
rection.

Paths are fundamental concepts of graph theory, de-
scribed in the introductory sections of most graph the-
ory texts. See e.g. Bondy and Murty (1976), Gibbons
(1985), or Diestel (2005). Korte et al. (1990) cover more
advanced algorithmic topics concerning paths in graphs.

2.2.1 Definitions

A path is a trail in which all vertices (except possi-
bly the first and last) are distinct. A trail is a walk in
which all edges are distinct. A walk of length k in a
graph is an alternating sequence of vertices and edges,
V0, €0, V1, €1, V2, - ., Vk—1, €k—1, Uk , Which begins and
ends with vertices. If the graph is undirected, then the
endpoints of e; are v; and v; 1 . If the graph is directed,
then e; is an arc from v; to v;41 . An infinite path is an
alternating sequence of the same type described here, but
with no first or last vertex, and a semi-infinite path (also
ray) has a first vertex, vg , but no last vertex. Most au-
thors require that all of the edges and vertices be distinct
from one another. However, some authors do not make
this requirement, and instead use the term simple path
to refer to a path which contains no repeated vertices.

A weighted graph associates a value (weight) with every
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edge in the graph. The weight of a path in a weighted
graph is the sum of the weights of the traversed edges.
Sometimes the words cost or length are used instead of
weight.

2.2.2 Examples

e A graph is connected if there are paths containing
each pair of vertices.

e A directed graph is strongly connected if there are
oppositely oriented directed paths containing each
pair of vertices.

e A path such that no graph edges connect two non-
consecutive path vertices is called an induced path.

e A path that includes every vertex of the graph is
known as a Hamiltonian path.

o Two paths are vertex-independent (alternatively, in-
ternally vertex-disjoint) if they do not have any inter-
nal vertex in common. Similarly, two paths are edge-
independent (or edge-disjoint) if they do not have any
internal edge in common. Two internally vertex-
disjoint paths are edge-disjoint, but the converse is
not necessarily true.

e The distance between two vertices in a graph is the
length of a shortest path between them, if one exists,
and otherwise the distance is infinity.

e The diameter of a connected graph is the largest dis-
tance (defined above) between pairs of vertices of
the graph.

2.2.3 Finding paths

Several algorithms exist to find shortest and longest paths
in graphs, with the important distinction that the former
problem is computationally much easier than the latter.

Dijkstra’s algorithm produces a list of shortest paths from
a source vertex to every other vertex in directed and undi-
rected graphs with non-negative edge weights (or no edge
weights), whilst the Bellman—Ford algorithm can be ap-
plied to directed graphs with negative edge weights. The
Floyd—Warshall algorithm can be used to find the short-
est paths between all pairs of vertices in weighted directed
graphs.

2.2.4 See also

e Glossary of graph theory

Path graph

Polygonal chain

Shortest path problem

CHAPTER 2. THE BASICS

Longest path problem

Dijkstra’s algorithm
e Bellman—Ford algorithm

e Floyd—Warshall algorithm

Self-avoiding walk

2.2.5 References

[1] Graph Structure Theory: Proceedings of the AMS-IMS-
SIAM Joint Summer Research Conference on Graph Mi-
nors, Held June 22 to July 5, 1991,, p.205

e Bondy, J. A.; Murty, U. S. R. (1976). Graph The-
ory with Applications. North Holland. pp. 12-21.
ISBN 0-444-19451-7.

e Diestel, Reinhard (2005). Graph Theory (3rd ed.).
Graduate Texts in Mathematics, vol. 173, Springer-
Verlag. pp. 6-9. ISBN 3-540-26182-6.

e Gibbons, A. (1985). Algorithmic Graph Theory.
Cambridge University Press. pp. 5-6. ISBN 0-521-
28881-9.

e Korte, Bernhard; Lovasz, Laszl6; Promel, Hans Jiir-
gen; Schrijver, Alexander (Eds.) (1990). Paths,
Flows, and VLSI-Layout. Algorithms and Combi-
natorics 9, Springer-Verlag. ISBN 0-387-52685-4.

2.3 Graph

This article is about sets of vertices connected by edges.
For graphs of mathematical functions, see Graph of a
function. For other uses, see Graph (disambiguation).

In mathematics, and more specifically in graph theory,

A drawing of a labeled graph on 6 vertices and 7 edges.

a graph is a structure amounting to a set of objects in
which some pairs of the objects are in some sense “re-
lated”. The objects correspond to mathematical abstrac-
tions called vertices (also called nodes or points) and each
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of the related pairs of vertices is called an edge (also called
an arc or line)."! Typically, a graph is depicted in dia-
grammatic form as a set of dots for the vertices, joined
by lines or curves for the edges. Graphs are one of the
objects of study in discrete mathematics.

The edges may be directed or undirected. For example,
if the vertices represent people at a party, and there is
an edge between two people if they shake hands, then
this graph is undirected because any person A can shake
hands with a person B only if B also shakes hands with
A. In contrast, if any edge from a person A to a person B
corresponds to A's admiring B, then this graph is directed,
because admiration is not necessarily reciprocated. The
former type of graph is called an undirected graph and the
edges are called undirected edges while the latter type of
graph is called a directed graph and the edges are called
directed edges.

Graphs are the basic subject studied by graph theory. The
word “graph” was first used in this sense by J. J. Sylvester
in 1878.12113!

2.3.1 Definitions

Definitions in graph theory vary. The following are some
of the more basic ways of defining graphs and related
mathematical structures.

Graph

In the most common sense of the term,*! a graph is an
ordered pair G = (V, E) comprising a set V of vertices,
nodes or points together with a set E of edges, arcs or
lines, which are 2-element subsets of V (i.e., an edge is
associated with two vertices, and the association takes the
form of the unordered pair of the vertices ). To avoid
ambiguity, this type of graph may be described precisely
as undirected and simple.

Other senses of graph stem from different conceptions
of the edge set. In one more general conception, ! E is
a set together with a relation of incidence that associates
with each edge two vertices. In another generalized no-
tion, E is a multiset of unordered pairs of (not necessarily
distinct) vertices. Many authors call this type of object a
multigraph or pseudograph.

All of these variants and others are described more fully
below.

The vertices belonging to an edge are called the ends or
end vertices of the edge. A vertex may exist in a graph
and not belong to an edge.

V and E are usually taken to be finite, and many of the
well-known results are not true (or are rather different)
for infinite graphs because many of the arguments fail in
the infinite case. Moreover, V is often assumed to be non-
empty, but E is allowed to be the empty set. The order of
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a graph is | V1, its number of vertices. The size of a graph
is |EI, its number of edges. The degree or valency of a
vertex is the number of edges that connect to it, where an
edge that connects to the vertex at both ends (a loop) is
counted twice.

For an edge {x, y}, graph theorists usually use the some-
what shorter notation xy.

Adjacency relation

The edges E of an undirected graph G induce a symmetric
binary relation ~ on V that is called the adjacency relation
of G. Specifically, for each edge {x, y}, the vertices x and
y are said to be adjacent to one another, which is denoted

X~y

2.3.2 Types of graphs
Distinction in terms of the main definition

As stated above, in different contexts it may be useful to
refine the term graph with different degrees of general-
ity. Whenever it is necessary to draw a strict distinction,
the following terms are used. Most commonly, in mod-
ern texts in graph theory, unless stated otherwise, graph
means “undirected simple finite graph” (see the defini-
tions below).

A directed graph.

A simple undirected graph with
three vertices and three edges. Each vertex has degree
two, so this is also a regular graph.

Undirected graph An undirected graph is a graph in
which edges have no orientation. The edge (x, y) is iden-
tical to the edge (y, x), i.e., they are not ordered pairs,
but sets {x, y} (or 2-multisets) of vertices. The maxi-
mum number of edges in an undirected graph without a
loop is n(n — 1)/2.

Directed graph Main article: Directed graph
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A directed graph or digraph is a graph in which edges have
orientations. It is written as an ordered pair G = (V, A)
(sometimes G = (V, E)) with

e V aset whose elements are called vertices, nodes, or
points;

e A a set of ordered pairs of vertices, called arrows,
directed edges (sometimes simply edges with the cor-
responding set named E instead of A), directed arcs,
or directed lines.

An arrow (x, y) is considered to be directed from x to y;,
y is called the head and x is called the tail of the arrow;
y is said to be a direct successor of x and x is said to be a
direct predecessor of y. If a path leads from x to y, then y
is said to be a successor of x and reachable from x, and x
is said to be a predecessor of y. The arrow (y, x) is called
the inverted arrow of (x, y).

A directed graph G is called symmetric if, for every arrow
in G, the corresponding inverted arrow also belongs to G.
A symmetric loopless directed graph G = (V, A) is equiv-
alent to a simple undirected graph G” = (V, E), where the
pairs of inverse arrows in A correspond one-to-one with
the edges in E; thus the number of edges in G'is | E | = |
A /2, that is half the number of arrows in G.

Oriented graph An oriented graph is a directed graph
in which at most one of (x, y) and (y, x) may be arrows
of the graph. That is, it is a directed graph that can be
formed as an orientation of an undirected graph. How-
ever, some authors use “oriented graph” to mean the same
as “directed graph”.

Mixed graph Main article: Mixed graph

A mixed graph is a graph in which some edges may be
directed and some may be undirected. It is written as an
ordered triple G = (V, E, A) with V, E, and A defined as
above. Directed and undirected graphs are special cases.

Multigraph Main article: Multigraph

Multiple edges are two or more edges that connect the
same two vertices. A loop is an edge (directed or undi-
rected) that connects a vertex to itself; it may be permit-
ted or not, according to the application. In this context,
an edge with two different ends is called a link.

A multigraph, as opposed to a simple graph, is an undi-
rected graph in which multiple edges (and sometimes
loops) are allowed.

Where graphs are defined so as to disallow both mul-
tiple edges and loops, a multigraph is often defined to
mean a graph which can have both multiple edges and
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loops, ¢! although many use the term pseudograph for this
meaning.[”! Where graphs are defined so as to allow both
multiple edges and loops, a multigraph is often defined to
mean a graph without loops.®!

Simple graph A simple graph, as opposed to a
multigraph, is an undirected graph in which both multi-
ple edges and loops are disallowed. In a simple graph the
edges form a set (rather than a multiset) and each edge is
an unordered pair of distinct vertices. In a simple graph
with n vertices, the degree of every vertex is at most n —
1.

Quiver Main article: Quiver (mathematics)

A quiver or multidigraph is a directed multigraph. A
quiver may also have directed loops in it.

Weighted graph A weighted graph is a graph in which
a number (the weight) is assigned to each edge.!’ Such
weights might represent for example costs, lengths or ca-
pacities, depending on the problem at hand. Some au-
thors call such a graph a network.!'”) Weighted correlation
networks can be defined by soft-thresholding the pair-
wise correlations among variables (e.g. gene measure-
ments). Such graphs arise in many contexts, for example
in shortest path problems such as the traveling salesman
problem.

Half-edges, loose edges In certain situations it can be
helpful to allow edges with only one end, called half-
edges, or no ends, called loose edges; see the articles
Signed graphs and Biased graphs.

Important classes of graph

Regular graph Main article: Regular graph

A regular graph is a graph in which each vertex has the
same number of neighbours, i.e., every vertex has the
same degree. A regular graph with vertices of degree k
is called a k-regular graph or regular graph of degree k.

Complete graph Main article: Complete graph

A complete graph is a graph in which each pair of ver-
tices is joined by an edge. A complete graph contains all
possible edges.

Finite graph A finite graph is a graph in which the ver-
tex set and the edge set are finite sets. Otherwise, it is
called an infinite graph.
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A complete graph with 5 vertices. Each vertex has an edge to
every other vertex.

Most commonly in graph theory it is implied that the
graphs discussed are finite. If the graphs are infinite, that
is usually specifically stated.

Connected graph Main article: Connectivity (graph
theory)

In an undirected graph, an unordered pair of vertices {x,
v} is called connected if a path leads from x to y. Other-
wise, the unordered pair is called disconnected.

A connected graph is an undirected graph in which ev-
ery unordered pair of vertices in the graph is connected.
Otherwise, it is called a disconnected graph.

In a directed graph, an ordered pair of vertices (x, y) is
called strongly connected if a directed path leads from x to
y. Otherwise, the ordered pair is called weakly connected
if an undirected path leads from x to y after replacing all
of its directed edges with undirected edges. Otherwise,
the ordered pair is called disconnected.

A strongly connected graph is a directed graph in which
every ordered pair of vertices in the graph is strongly con-
nected. Otherwise, it is called a weakly connected graph
if every ordered pair of vertices in the graph is weakly
connected. Otherwise it is called a disconnected graph.

A k-vertex-connected graph or k-edge-connected graph is
a graph in which no set of k — 1 vertices (respectively,
edges) exists that, when removed, disconnects the graph.
A k-vertex-connected graph is often called simply a k-
connected graph.

Bipartite graph Main article: Bipartite graph

A bipartite graph is a graph in which the vertex set can
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be partitioned into two sets, W and X, so that no two ver-
tices in W share a common edge and no two vertices in X
share a common edge. Alternatively, it is a graph with a
chromatic number of 2.

In a complete bipartite graph, the vertex set is the union
of two disjoint sets, W and X, so that every vertex in W is
adjacent to every vertex in X but there are no edges within
Wor X.

Path graph Main article: Path graph

A path graph or linear graph of order n > 2 is a graph
in which the vertices can be listed in an order v, v, ...,
vn such that the edges are the {vi, vi,;} where i = 1, 2,
..., n— 1. Path graphs can be characterized as connected
graphs in which the degree of all but two vertices is 2 and
the degree of the two remaining vertices is 1. If a path
graph occurs as a subgraph of another graph, it is a path
in that graph.

Planar graph Main article: Planar graph

A planar graph is a graph whose vertices and edges can be
drawn in a plane such that no two of the edges intersect.

Cycle graph Main article: Cycle graph

A cycle graph or circular graph of order n = 3 is a graph
in which the vertices can be listed in an order v, v, ...,
vn such that the edges are the {vi, vi,;} where i = 1, 2,
..., n — 1, plus the edge {vn, v;}. Cycle graphs can be
characterized as connected graphs in which the degree of
all vertices is 2. If a cycle graph occurs as a subgraph of
another graph, it is a cycle or circuit in that graph.

Tree Main article: Tree (graph theory)

A tree is a connected graph with no cycles.

A forest is a graph with no cycles, i.e. the disjoint union
of one or more trees.

Advanced classes More advanced kinds of graphs are:

e Petersen graph and its generalizations;
e perfect graphs;

e cographs;

e chordal graphs;

e other graphs with large automorphism groups:
vertex-transitive, arc-transitive, and distance-
transitive graphs;
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e strongly regular graphs and their generalizations
distance-regular graphs.

2.3.3 Properties of graphs

See also: Glossary of graph theory and Graph property

Two edges of a graph are called adjacent if they share
a common vertex. Two arrows of a directed graph are
called consecutive if the head of the first one is the tail of
the second one. Similarly, two vertices are called adjacent
if they share a common edge (consecutive if the first one
is the tail and the second one is the head of an arrow),
in which case the common edge is said to join the two
vertices. An edge and a vertex on that edge are called
incident.

The graph with only one vertex and no edges is called the
trivial graph. A graph with only vertices and no edges is
known as an edgeless graph. The graph with no vertices
and no edges is sometimes called the null graph or empty
graph, but the terminology is not consistent and not all
mathematicians allow this object.

Normally, the vertices of a graph, by their nature as el-
ements of a set, are distinguishable. This kind of graph
may be called vertex-labeled. However, for many ques-
tions it is better to treat vertices as indistinguishable. (Of
course, the vertices may be still distinguishable by the
properties of the graph itself, e.g., by the numbers of
incident edges.) The same remarks apply to edges, so
graphs with labeled edges are called edge-labeled. Graphs
with labels attached to edges or vertices are more gener-
ally designated as labeled. Consequently, graphs in which
vertices are indistinguishable and edges are indistinguish-
able are called unlabeled. (Note that in the literature, the
term labeled may apply to other kinds of labeling, besides
that which serves only to distinguish different vertices or
edges.)

The category of all graphs is the slice category Set | D
where D: Set — Set is the functor taking a set s to s X s.

2.3.4 Examples

e The diagram at right is a graphic representation of
the following graph:

V={1,2,3,4,5,6};
E={{1,2},{1,5}, {2,3}, {2, 5},
{3,4}, {4,5}, {4,6}}.

e In category theory, a small category can be repre-
sented by a directed multigraph in which the ob-
jects of the category are represented as vertices and
the morphisms as directed edges. Then, the functors
between categories induce some, but not necessarily
all, of the digraph morphisms of the graph.
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A graph with six nodes.

e In computer science, directed graphs are used to
represent knowledge (e.g., conceptual graph), finite
state machines, and many other discrete structures.

e A binary relation R on a set X defines a directed
graph. An element x of X is a direct predecessor
of an element y of X if and only if xRy.

e A directed graph can model information net-
works such as Twitter, with one user following
another,11112!

e Particularly regular examples of directed graphs are
given by the Cayley graphs of finitely-generated
groups, as well as Schreier coset graphs

2.3.5 Graph operations

Main article: Graph operations

There are several operations that produce new graphs
from initial ones, which might be classified into the fol-
lowing categories:

e unary operations, which create a new graph from an
initial one, such as:

e edge contraction,

line graph,

dual graph,
e complement graph,
e graph rewriting;

e binary operations, which create a new graph from
two initial ones, such as:

disjoint union of graphs,

e cartesian product of graphs,

tensor product of graphs,

e strong product of graphs,

lexicographic product of graphs,

series-parallel graphs.
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2.3.6 Generalizations

In a hypergraph, an edge can join more than two vertices.

An undirected graph can be seen as a simplicial com-
plex consisting of 1-simplices (the edges) and O-simplices
(the vertices). As such, complexes are generalizations of
graphs since they allow for higher-dimensional simplices.

Every graph gives rise to a matroid.

In model theory, a graph is just a structure. But in that
case, there is no limitation on the number of edges: it can
be any cardinal number, see continuous graph.

In computational biology, power graph analysis intro-
duces power graphs as an alternative representation of
undirected graphs.

In geographic information systems, geometric networks
are closely modeled after graphs, and borrow many con-
cepts from graph theory to perform spatial analysis on
road networks or utility grids.

2.3.7 See also

e Conceptual graph

e Dual graph

e Glossary of graph theory

e Graph (abstract data type)

e Graph database

e Graph drawing

o Graph theory

e Hypergraph

e List of graph theory topics

e List of publications in graph theory

e Network theory

2.3.8 Notes

[1] Trudeau, Richard J. (1993). Introduction to Graph The-
ory (Corrected, enlarged republication. ed.). New York:
Dover Pub. p. 19. ISBN 978-0-486-67870-2. Retrieved
8 August 2012. A graph is an object consisting of two sets
called its vertex set and its edge set.

[2] See:

e J. J. Sylvester (February 7, 1878) “Chemistry and
algebra,” Nature, 17 : 284. From page 284: “Every
invariant and covariant thus becomes expressible by
a graph precisely identical with a Kekuléan diagram
or chemicograph.”
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e J.J. Sylvester (1878) “On an application of the new
atomic theory to the graphical representation of
the invariants and covariants of binary quantics, —
with three appendices,” American Journal of Math-
ematics, Pure and Applied, 1 (1) : 64-90. The term
“graph” first appears in this paper on page 65.

[3] Gross, Jonathan L.; Yellen, Jay (2004). Handbook of
graph theory. CRC Press. p. 35. ISBN 978-1-58488-
090-5.

[4] See, for instance, Iyanaga and Kawada, 69 J, p. 234 or
Biggs, p. 4.

[5] See, for instance, Graham et al., p. 5.
[6] For example, see. Bollobds, p. 7 and Diestel, p. 25.

[7] Gross (1998), p. 3, Gross (2003), p. 205, Harary, p.10,
and Zwillinger, p. 220.

[8] For example, see Balakrishnan, p. 1, Gross (2003), p. 4,
and Zwillinger, p. 220.

[9] Fletcher, Peter; Hoyle, Hughes; Patty, C. Wayne (1991).
Foundations of Discrete Mathematics (International stu-
dent ed.). Boston: PWS-KENT Pub. Co. p. 463. ISBN
0-53492-373-9. A weighted graph is a graph in which a
number w(e), called its weight, is assigned to each edge e.

[10] Strang, Gilbert (2005), Linear Algebra and Its Applica-

tions (4th ed.), Brooks Cole, ISBN 0-03-010567-6

[11] Grandjean, Martin (2016). “A social network analy-
sis of Twitter: Mapping the digital humanities commu-
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tional conference on World Wide Web
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2.3.11 External links

e Weisstein, Eric W. “Graph”. MathWorld.

2.4 Directed graph

In mathematics, and more specifically in graph theory,
a directed graph (or digraph) is a graph (that is a set
of vertices connected by edges), where the edges have a
direction associated with them.

2.4.1 Definition

In formal terms, a directed graph is an ordered pair G =
(V, A) where!!!

e V is a set whose elements are called vertices, nodes,
or points;

e Ais aset of ordered pairs of vertices, called arrows,
directed edges (sometimes simply edges with the cor-
responding set named E instead of A), directed arcs,
or directed lines.
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EE—

A simple directed graph.

It differs from an ordinary or undirected graph, in that the
latter is defined in terms of unordered pairs of vertices,
which are usually called edges, arcs, or lines.

The aforementioned definition does not allow a directed
graph to have multiple arrows with same source and
target nodes, but some authors consider a broader def-
inition that allow directed graphs to have such multi-
ple arrows (namely, they allow the arrows set to be a
multiset). More specifically, these entities are addressed
as directed multigraphs (or multidigraphs).

On the other hand, the aforementioned definition allows
a directed graph to have loops (that is, arrows that con-
nect nodes with themselves), but some authors consider a
narrower definition that doesn't allow directed graphs to
have loops.?! More specifically, directed graphs without
loops are addressed as simple directed graphs, while di-
rected graphs with loops are addressed as loop-digraphs
(see section Types of directed graphs).

2.4.2 Types of directed graphs

See also:
graphs

Graph (discrete mathematics) § Types of

Subclasses

e Symmetric directed graphs are directed graphs
where all edges are bidirected (that is, for every ar-
row that belongs to the digraph, the corresponding
inversed arrow also belongs to it).

e Simple directed graphs are directed graphs that
have no loops (arrows that connect vertices to them-
selves) and no multiple arrows with same source
and target nodes. As already introduced, in case
of multiple arrows the entity is usually addressed
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A simple acyclic directed graph.

—

<

A tournament on 4 vertices.

as directed multigraph. Some authors describe di-
graphs with loops as loop-digraphs.[*!

o Complete directed graphs are simple di-
rected graphs where each pair of vertices is
joined by a symmetric pair of directed arrows
(it is equivalent to an undirected complete
graph with the edges replaced by pairs of in-
verse arrows). It follows that a complete di-
graph is symmetric.

e Oriented graphs are directed graphs having
no bidirected edges (i.e. at most one of (x, )
and (y, x) may be arrows of the graph). It fol-
lows that a directed graph is an oriented graph
iff it hasn't any 2-cycle.®!

e Tournaments are oriented graphs ob-
tained by choosing a direction for each
edge in undirected complete graphs.

e Directed acyclic graphs (DAGs) are di-
rected graphs with no directed cycles.
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o Multitrees are DAGs in which no two
directed paths from a single starting
vertex meet back at the same ending
vertex.

e Oriented trees or polytrees are DAGs
formed by orienting the edges of
undirected acyclic graphs.

® Rooted trees are oriented trees in
which all edges of the underlying
undirected tree are directed away
from the roots.

Digraphs with supplementary properties

This list is incomplete; you can help by expanding it.

Weighted directed graphs (also known as directed
networks) are (simple) directed graphs with weights
assigned to their arrows, similarly to weighted
graphs (which are also known as undirected net-
works or weighted networks).[!

o Flow networks are weighted directed graphs
where two nodes are distinguished, a source
and a sink.

Rooted directed graphs (also known as flow
graphs) are digraphs in which a vertex has been dis-
tinguished as the root.

e Control flow graphs are rooted digraphs used
in computer science as a representation of the
paths that might be traversed through a pro-
gram during its execution.

Signal-flow graphs are directed graphs in which
nodes represent system variables and branches
(edges, arcs, or arrows) represent functional connec-
tions between pairs of nodes.

Flow graphs are digraphs associated with a set of
linear algebraic or differential equations.

State diagrams are directed multigraphs that rep-
resent finite state machines.

Commutative diagrams are digraphs used in
category theory, where the vertices represent (math-
ematical) objects and the arrows represent mor-
phisms, with the property that all directed paths with
the same start and endpoints lead to the same result
by composition.

In the theory of Lie groups, a quiver Q is a directed
graph serving as the domain of, and thus character-
izing the shape of, a representation V defined as a
functor, specifically an object of the functor cate-
gory FinVctK @ where F(Q) is the free category on
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Q consisting of paths in Q and FinVctK is the cate-
gory of finite-dimensional vector spaces over a field
K. Representations of a quiver label its vertices with
vector spaces and its edges (and hence paths) com-
patibly with linear transformations between them,
and transform via natural transformations.

2.4.3 Basic terminology
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Oriented graph with corresponding incidence matrix.

An arrow (x, y) is considered to be directed from x to y,
y is called the head and x is called the tail of the arrow;
y is said to be a direct successor of x and x is said to be a
direct predecessor of y. If a path leads from x to y, then y
is said to be a successor of x and reachable from x, and x
is said to be a predecessor of y. The arrow (y, x) is called
the inverted arrow of (x, y).

The adjacency matrix of a multidigraph with loops is the
integer-valued matrix with rows and columns correspond-
ing to the vertices, where a nondiagonal entry aij is the
number of arrows from vertex i to vertex j, and the di-
agonal entry aii is the number of loops at vertex i. The
adjacency matrix of a directed graph is unique up to iden-
tical permutation of rows and columns.

Another matrix representation for a directed graph is its
incidence matrix.

See direction for more definitions.

2.4.4 Indegree and outdegree

T

A directed graph with vertices labeled (indegree, outdegree).
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For a vertex, the number of head ends adjacent to a ver-
tex is called the indegree of the vertex and the number
of tail ends adjacent to a vertex is its outdegree (called
"branching factor" in trees).

Let G = (V, A) and veV. The indegree of v is denoted
deg(v) and its outdegree is denoted deg*(v).

A vertex with deg’(v) = 0 is called a source, as it is the
origin of each of its outcoming arrows. Similarly, a vertex
with deg*(v) = 0 is called a sink, since it is the end of each
of its incoming arrows.

If a vertex is neither a source nor a sink, it is called an
internal.

The degree sum formula states that, for a directed graph,

Y deg (v) =) degh(v) =|4].

veV veV

If for every vertex veV, deg*(v) = deg™(v), the graph is
called a balanced directed graph.¥

2.4.5 Degree sequence

The degree sequence of a directed graph is the list of
its indegree and outdegree pairs; for the above exam-
ple we have degree sequence ((2, 0), (2, 2), (0, 2), (1,
1)). The degree sequence is a directed graph invariant
so isomorphic directed graphs have the same degree se-
quence. However, the degree sequence does not, in gen-
eral, uniquely identify a directed graph; in some cases,
non-isomorphic digraphs have the same degree sequence.

The directed graph realization problem is the problem of
finding a directed graph with the degree sequence a given
sequence of positive integer pairs. (Trailing pairs of zeros
may be ignored since they are trivially realized by adding
an appropriate number of isolated vertices to the directed
graph.) A sequence which is the degree sequence of some
directed graph, i.e. for which the directed graph realiza-
tion problem has a solution, is called a directed graphic
or directed graphical sequence. This problem can ei-
ther be solved by the Kleitman—Wang algorithm or by the
Fulkerson—Chen—Anstee theorem.

2.4.6 Directed graph connectivity

Main article: Connectivity (graph theory)

A directed graph is weakly connected (or just con-
nected®') if the undirected underlying graph obtained by
replacing all directed edges of the graph with undirected
edges is a connected graph. A directed graph is strongly
connected or strong if it contains a directed path from x to
yand a directed path from y to x for every pair of vertices
{x, y}. The strong components are the maximal strongly
connected subgraphs.
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2.5. COMPLETE GRAPH

2.4.7 See also

e Coates graph

e Flow chart

o Glossary of graph theory
e Graph theory

e Graph (abstract data type)
e Network theory

e Orientation

e Preorder

e Transpose graph

e Vertical constraint graph
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2.5 Complete graph

In the mathematical field of graph theory, a complete
graph is a simple undirected graph in which every pair of
distinct vertices is connected by a unique edge. A com-
plete digraph is a directed graph in which every pair of
distinct vertices is connected by a pair of unique edges
(one in each direction).

Graph theory itself is typically dated as beginning with
Leonhard Euler's 1736 work on the Seven Bridges of
Konigsberg. However, drawings of complete graphs,
with their vertices placed on the points of a regular poly-
gon, appeared already in the 13th century, in the work of
Ramon Llull.""! Such a drawing is sometimes referred to
as a mystic rose.”

2.5.1 Properties

The complete graph on n vertices is denoted by Kn. Some
sources claim that the letter K in this notation stands for
the German word komplett,l®! but the German name for
a complete graph, vollstindiger Graph, does not contain
the letter K, and other sources state that the notation hon-
ors the contributions of Kazimierz Kuratowski to graph
theory.[*!

Kn has n(n — 1)/2 edges (a triangular number), and is
a regular graph of degree n — 1. All complete graphs
are their own maximal cliques. They are maximally
connected as the only vertex cut which disconnects the
graph is the complete set of vertices. The complement
graph of a complete graph is an empty graph.

If the edges of a complete graph are each given an
orientation, the resulting directed graph is called a
tournament.

The number of matchings of the complete graphs are
given by the telephone numbers

1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496,
35696, 140152, 568504, 2390480, 10349536,
46206736, ... (sequence A000085 in the
OEIS).

These numbers give the largest possible value of the
Hosoya index for an n-vertex graph.®! The number of
perfect matchings of the complete graph Kn (with n even)
is given by the double factorial (n — 1)!1.1°]

The crossing numbers up to K27 are known, with K28 re-
quiring either 7233 or 7234 crossings. Further values are
collected by the Rectilinear Crossing Number project.!”!
Crossing numbers for Kn are

0,0,0,0,1, 3,9, 19, 36, 62, 102, 153, 229,
324, 447, 603, 798, 1029, 1318, 1657, 2055,
2528, 3077, 3699, 4430, 5250, 6180, ... (se-
quence A014540 in the OEIS).
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2.5.2 Geometry and topology

A complete graph with n nodes represents the edges of an
(n—1)-simplex. Geometrically K5 forms the edge set of a
triangle, K4 a tetrahedron, etc. The Csdszar polyhedron,
a nonconvex polyhedron with the topology of a torus, has
the complete graph K as its skeleton. Every neighborly
polytope in four or more dimensions also has a complete
skeleton.

K through K, are all planar graphs. However, every pla-
nar drawing of a complete graph with five or more ver-
tices must contain a crossing, and the nonplanar complete
graph K5 plays a key role in the characterizations of pla-
nar graphs: by Kuratowski’s theorem, a graph is planar
if and only if it contains neither K5 nor the complete
bipartite graph K3,3 as a subdivision, and by Wagner’s
theorem the same result holds for graph minors in place
of subdivisions. As part of the Petersen family, Kg
plays a similar role as one of the forbidden minors for
linkless embedding.®® In other words, and as Conway
and Gordon™ proved, every embedding of K into three-
dimensional space is intrinsically linked, with at least
one pair of linked triangles. Conway and Gordon also
showed that any three-dimensional embedding of K7 con-
tains a Hamiltonian cycle that is embedded in space as a
nontrivial knot.

2.5.3 Examples

Complete graphs on n vertices, for n between 1 and 12,
are shown below along with the numbers of edges:

2.5.4 See also

e Complete bipartite graph
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Chapter 3
Elaborations

3.1 Tree

In mathematics, and more specifically in graph theory, a
tree is an undirected graph in which any two vertices are
connected by exactly one path. In other words, any acyclic
connected graph is a tree. A forest is a disjoint union of
trees.

The various kinds of data structures referred to as trees
in computer science have underlying graphs that are trees
in graph theory, although such data structures are gener-
ally rooted trees. A rooted tree may be directed, called
a directed rooted tree,!!?! either making all its edges
point away from the root—in which case it is called an
arborescence,” branching, or out-tree*'—or mak-
ing all its edges point towards the root—in which case it
is called an anti-arborescencel® or in-tree.[! A rooted
tree itself has been defined by some authors as a directed
graph.7/8109)

The term “tree” was coined in 1857 by the British math-
ematician Arthur Cayley.!'!

3.1.1 Definitions
Tree

A tree is an undirected graph G that satisfies any of the
following equivalent conditions:

e G is connected and has no cycles.

e Gisacyclic, and a simple cycle is formed if any edge

is added to G.

G is connected, but is not connected if any single
edge is removed from G.

G is connected and the 3-vertex complete graph K3
is not a minor of G.

Any two vertices in G can be connected by a unique
simple path.

If G has finitely many vertices, say n of them, then the
above statements are also equivalent to any of the follow-
ing conditions:
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e G is connected and has n — 1 edges.

e G has no simple cycles and has n — 1 edges.

As elsewhere in graph theory, the order-zero graph (graph
with no vertices) is generally excluded from considera-
tion: while it is vacuously connected as a graph (any two
vertices can be connected by a path), it is not O-connected
(or even (—1)-connected) in algebraic topology, unlike
non-empty trees, and violates the “one more vertex than
edges” relation.

An internal vertex (or inner vertex or branch vertex)
is a vertex of degree at least 2. Similarly, an external
vertex (or outer vertex, terminal vertex or leaf) is a vertex
of degree 1.

An irreducible tree (or series-reduced tree) is a tree in
which there is no vertex of degree 2.

Forest

A forest is an undirected graph, all of whose connected
components are trees; in other words, the graph consists
of a disjoint union of trees. Equivalently, a forest is an
undirected acyclic graph. As special cases, an empty
graph, a single tree, and the discrete graph on a set of
vertices (that is, the graph with these vertices that has no
edges), are examples of forests.

Polytree

Main article: Polytree

A polytree') (or oriented tree!'?'3! or singly connected
network!'¥) is a directed acyclic graph (DAG) whose un-
derlying undirected graph is a tree. In other words, if
we replace its directed edges with undirected edges, we
obtain an undirected graph that is both connected and
acyclic.

A directed tree is a directed graph which would be a tree if
the directions on the edges were ignored, i.e. a polytree.
Some authors restrict the phrase to the case where the
edges are all directed towards a particular vertex, or all
directed away from a particular vertex (see arborescence).
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Rooted tree

A rooted tree is a tree in which one vertex has been des-
ignated the roor. The edges of a rooted tree can be as-
signed a natural orientation, either away from or towards
the root, in which case the structure becomes a directed
rooted tree. When a directed rooted tree has an orien-
tation away from the root, it is called an arborescence,
branching, or out-tree; when it has an orientation towards
the root, it is called an anti-arborescence or in-tree. The
tree-order is the partial ordering on the vertices of a tree
with u < v if and only if the unique path from the root to
v passes through u. A rooted tree which is a subgraph of
some graph G is a normal tree if the ends of every edge in
G are comparable in this tree-order whenever those ends
are vertices of the tree (Diestel 2005, p. 15). Rooted
trees, often with additional structure such as ordering of
the neighbors at each vertex, are a key data structure in
computer science; see tree data structure.

In a context where trees are supposed to have a root, a
tree without any designated root is called a free tree.

A labeled tree is a tree in which each vertex is given a
unique label. The vertices of a labeled tree on n vertices
are typically given the labels 1, 2, ..., n. A recursive tree
is a labeled rooted tree where the vertex labels respect the
tree order (i.e., if u < v for two vertices u and v, then the
label of u is smaller than the label of v).

In a rooted tree, the parent of a vertex is the vertex con-
nected to it on the path to the root; every vertex except the
root has a unique parent. A child of a vertex v is a vertex
of which v is the parent. A descendent of any vertex v is
any vertex which is either the child of v or is (recursively)
the descendent of any of the children of v. A sibling to
a vertex v is any other vertex on the tree which has the
same parent as v. The root is an external vertex if it has
precisely one child. A leaf is different from the root.

The height of a vertex in a rooted tree is the length of the
longest downward path to a leaf from that vertex. The
height of the tree is the height of the root. The depth of a
vertex is the length of the path to its root (root path). This
is commonly needed in the manipulation of the various
self-balancing trees, AVL trees in particular. The root
has depth zero, leaves have height zero, and a tree with
only a single vertex (hence both a root and leaf) has depth
and height zero. Conventionally, an empty tree (tree with
no vertices, if such are allowed) has depth and height —1.

A k-ary tree is a rooted tree in which each vertex has at
most k children.''3! 2-ary trees are often called binary
trees, while 3-ary trees are sometimes called ternary trees.

Ordered tree

An ordered tree (or plane tree) is a rooted tree in which an
ordering is specified for the children of each vertex. This
is called a “plane tree” because an ordering of the children
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is equivalent to an embedding of the tree in the plane,
with the root at the top and the children of each vertex
lower than that vertex. Given an embedding of a rooted
tree in the plane, if one fixes a direction of children, say
left to right, then an embedding gives an ordering of the
children. Conversely, given an ordered tree, and conven-
tionally drawing the root at the top, then the child vertices
in an ordered tree can be drawn left-to-right, yielding an
essentially unique planar embedding .

3.1.2 Facts

e Every tree is a bipartite graph and a median graph.
Every tree with only countably many vertices is a
planar graph.

e Every connected graph G admits a spanning tree,
which is a tree that contains every vertex of G and
whose edges are edges of G.

e Every connected graph with only countably many
vertices admits a normal spanning tree (Diestel
2005, Prop. 8.2.4).

e There exist connected graphs with uncountably
many vertices which do not admit a normal span-
ning tree (Diestel 2005, Prop. 8.5.2).

e Every finite tree with n vertices, with n > 1, has at
least two terminal vertices (leaves). This minimal
number of leaves is characteristic of path graphs;
the maximal number, n — 1, is attained only by star
graphs. The number of leaves is at least the maximal
vertex degree.

e For any three vertices in a tree, the three paths be-
tween them have exactly one vertex in common.

e Otter showed that any n-vertex tree has either a
unique center vertex, whose removal splits the tree
into subtrees of fewer than n/2 vertices, or a unique
center edge, whose removal splits the tree into two
subtrees of exactly n/2 vertices.

3.1.3 Enumeration
Labeled trees

Cayley’s formula states that there are n"~? trees on n la-
beled vertices. A classic proof uses Priifer sequences,
which naturally show a stronger result: the number of
trees with vertices 1, 2, ..., n of degrees d1, do, ..., dn
respectively, is the multinomial coefficient

n—2
di—1,do—1,...,d, —1)°

A more general problem is to count spanning trees in an
undirected graph, which is addressed by the matrix tree
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theorem. (Cayley’s formula is the special case of span-
ning trees in a complete graph.) The similar problem of
counting all the subtrees regardless of size has been shown
to be #P-complete in the general case (Jerrum (1994)).

Unlabeled trees

See also: Combinatorial species § Unlabelled structures

Counting the number of unlabeled free trees is a harder
problem. No closed formula for the number #(n) of trees
with n vertices up to graph isomorphism is known. The
first few values of #(n) are

1, 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235,
551, 1301, 3159, ... (sequence AO000SS in the
OEIS).

Otter (1948) proved the asymptotic estimate

t(n) ~ Ca™n ™2  asn — oo,

with the values C and a known to be approxi-
mately 0.534949606... and 2.95576528565... (sequence
A051491 in the OEIS), respectively. (Here, f ~ g means
that lim,—oo f /g = 1.) This is a consequence of his
asymptotic estimate for the number r(n) of unlabeled
rooted trees with n vertices:

r(n) ~ Da"n=3?  asn — oo,

with D around 0.43992401257... and the same o as
above (cf. Knuth (1997), chap. 2.3.4.4 and Flajolet &
Sedgewick (2009), chap. VILS, p. 475).

The first few values of r(n) arel!®!

1,1,2,4,9,20,48, 115,286, 719, 1842, 4766,
12486, 32973, ...

3.1.4 Types of trees

o A star tree is a tree which consists of a single internal
vertex (and n — 1 leaves). In other words, a star tree
of order n is a tree of order n with as many leaves as
possible.

e A caterpillar tree is a tree in which all vertices are
within distance 1 of a central path subgraph.

o A lobster tree is a tree in which all vertices are within
distance 2 of a central path subgraph.
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3.1.5 See also

e Hypertree

e Tree structure

Tree (data structure)

Decision tree

Pseudoforest

Unrooted binary tree
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However it should be mentioned that in 1847, K.G.C. von
Staudt, in his book Geometrie der Lage (Niirnberg, (Ger-
many): Bauer und Raspe, 1847), presented a proof of Eu-
ler’s polyhedron theorem which relies on trees on pages
20-21. Alsoin 1847, the German physicist Gustav Kirch-
hoff investigated electrical circuits and found a relation
between the number (n) of wires/resistors (branches), the
number (m) of junctions (vertices), and the number (u) of
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loops (faces) in the circuit. He proved the relation via an
argument relying on trees. See: Kirchhoff, G. R. (1847)
“Ueber die Auflosung der Gleichungen, auf welche man
bei der Untersuchung der linearen Vertheilung galvanis-
cher Strome gefiihrt wird” (On the solution of equations
to which one is led by the investigation of the linear dis-
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Chemie, 72 (12) : 497-508.

[11] See Dasgupta (1999).

[12] See Harary & Sumner (1980).

[13] See Simion (1991).

[14] See Kim & Pearl (1983).

[15] See Black, Paul E. (4 May 2007). “k-ary tree”. U.S. Na-

tional Institute of Standards and Technology. Retrieved 8
February 2015.

[16] See Li (1996).
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3.2 Multigraph

This article is about the mathematical concept. For other
uses, see Multigraph (disambiguation).
“Pseudograph” redirects here. It is not to be confused
with Pseudepigraph.

In mathematics, and more specifically in graph the-

A multigraph with multiple edges (red) and several loops (blue).
Not all authors allow multigraphs to have loops.

ory, a multigraph is a graph which is permitted to have
multiple edges (also called parallel edges'), that is, edges
that have the same end nodes. Thus two vertices may be
connected by more than one edge.

There are two distinct notions of multiple edges:

o Edges without own identity: The identity of an edge
is defined solely by the two nodes it connects. In
this case, the term “multiple edges” means that the
same edge can occur several times between these
two nodes.

o FEdges with own identity: Edges are primitive entities
just like nodes. When multiple edges connect two
nodes, these are different edges.
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3.2. MULTIGRAPH

A multigraph is different from a hypergraph, which is a
graph in which an edge can connect any number of nodes,
not just two.

For some authors, the terms pseudograph and multigraph
are synonymous. For others, a pseudograph is a multi-
graph with loops.

3.2.1 Undirected multigraph (edges with-
out own identity)

A multigraph G is an ordered pair G:=(V, E) with

e V aset of vertices or nodes,

e E a multiset of unordered pairs of vertices, called
edges or lines.

3.2.2 Undirected multigraph (edges with
own identity)

A multigraph G is an ordered triple G:=(V, E, r) with

e V aset of vertices or nodes,
e F aset of edges or lines,

e r: E— {{x,y}: x, y € V}, assigning to each edge
an unordered pair of endpoint nodes.

Some authors allow multigraphs to have loops, that is, an
edge that connects a vertex to itself,”?! while others call
these pseudographs, reserving the term multigraph for
the case with no loops."!

3.2.3 Directed multigraph (edges without
own identity)

A multidigraph is a directed graph which is permitted to
have multiple arcs, i.e., arcs with the same source and tar-
get nodes. A multidigraph G is an ordered pair G:=(V,A)
with

e V aset of vertices or nodes,

e A a multiset of ordered pairs of vertices called di-
rected edges, arcs or arrows.

A mixed multigraph G:=(V,E, A) may be defined in the
same way as a mixed graph.

3.2.4 Directed multigraph (edges with own
identity)

A multidigraph or quiver G is an ordered 4-tuple G:=(V,
A, s, t) with
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e V aset of vertices or nodes,
e A aset of edges or lines,
e s: A— V, assigning to each edge its source node,

e t: A— V , assigning to each edge its target node.

This notion might be used to model the possible flight
connections offered by an airline. In this case the multi-
graph would be a directed graph with pairs of directed
parallel edges connecting cities to show that it is possible
to fly both fo and from these locations.

In category theory a small category can be defined as
a multidigraph (with edges having their own identity)
equipped with an associative composition law and a dis-
tinguished self-loop at each vertex serving as the left and
right identity for composition. For this reason, in cat-
egory theory the term graph is standardly taken to mean
“multidigraph”, and the underlying multidigraph of a cat-
egory is called its underlying digraph.

3.2.5 Labeling

Multigraphs and multidigraphs also support the notion of
graph labeling, in a similar way. However there is no unity
in terminology in this case.

The definitions of labeled multigraphs and labeled
multidigraphs are similar, and we define only the latter
ones here.

Definition 1: A labeled multidigraph is a labeled graph
with labeled arcs.

Formally: A labeled multidigraph G is a multigraph with
labeled vertices and arcs. Formally it is an 8-tuple G =
(By,2a4,V, A, s, t, by, L4) where

e Vs aset of vertices and A is a set of arcs.

e Xy and X 4 are finite alphabets of the available ver-
tex and arc labels,

e s: A— Vandt: A — V are two maps indicating
the source and target vertex of an arc,

by:V — Yy and £y: A — ¥4 are two maps
describing the labeling of the vertices and arcs.

Definition 2: A labeled multidigraph is a labeled graph
with multiple labeled arcs, i.e. arcs with the same end
vertices and the same arc label (note that this notion of
a labeled graph is different from the notion given by the
article graph labeling).

3.2.6 See also

e Multidimensional network
e Glossary of graph theory
e Graph theory
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3.2.7 Notes

[1] For example, see Balakrishnan 1997, p. 1 or Chartrand
and Zhang 2012, p. 26.

[2] For example, see Bollobds 2002, p. 7 or Diestel 2010, p.
28.

[3] For example, see Wilson 2002, p. 6 or Chartrand and
Zhang 2012, pp. 26-27.
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CHAPTER 3. ELABORATIONS

The Turdn graph T(n,r) is an example of an extremal graph. It
has the maximum possible number of edges for a graph on n
vertices without (r+1)-cliques. This is T(13,4).

3.3 [Extremal graph theory

Extremal graph theory is a branch of the mathematical
field of graph theory. Extremal graph theory studies ex-
tremal (maximal or minimal) graphs which satisfy a cer-
tain property. Extremality can be taken with respect to
different graph invariants, such as order, size or girth.
More abstractly, it studies how global properties of a
graph influence local substructures of the graph.!!!

3.3.1 Examples

For example, a simple extremal graph theory question is
“which acyclic graphs on n vertices have the maximum
number of edges?" The extremal graphs for this ques-
tion are trees on n vertices, which have n — 1 edges.”!
More generally, a typical question is the following: given
a graph property P, an invariant u, and a set of graphs H,
we wish to find the minimum value of m such that every
graph in H which has u larger than m possess property P.
In the example above, H was the set of n-vertex graphs, P
was the property of being cyclic, and # was the number of
edges in the graph. Thus every graph on n vertices with
more than n — 1 edges must contain a cycle.

Several foundational results in extremal graph theory are
questions of the above-mentioned form. For instance, the
question of how many edges an n-vertex graph can have
before it must contain as subgraph a clique of size k is
answered by Turdn’s theorem. Instead of cliques, if the
same question is asked for complete multi-partite graphs,
the answer is given by the Erd6s—Stone theorem.


https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-07-005489-4
https://en.wikipedia.org/wiki/B%C3%A9la_Bollob%C3%A1s
https://en.wikipedia.org/wiki/Graduate_Texts_in_Mathematics
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-387-98488-7
https://en.wikipedia.org/wiki/Gary_Chartrand
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-486-48368-9
https://en.wikipedia.org/wiki/Special:BookSources/978-0-486-48368-9
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-3-642-14278-9
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-8493-3982-0
https://en.wikipedia.org/wiki/Special:BookSources/0-8493-3982-0
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-58488-090-2
https://en.wikipedia.org/wiki/Frank_Harary
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-201-41033-8
https://en.wikipedia.org/wiki/Svante_Janson
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1002%252Frsa.3240040303
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/1042-9832
https://en.wikipedia.org/wiki/Mathematical_Reviews
https://www.ams.org/mathscinet-getitem?mr=1220220
https://books.google.com/books?id=iq0sSnIxJioC&pg=PA6&dq=pseudograph&lr=&ei=R-jrSKWoCJGgswOv0eiXBw&sig=ACfU3U20xuoH7jZDq-XGqSnfsmC0oE8KjQ
https://books.google.com/books?id=iq0sSnIxJioC&pg=PA6&dq=pseudograph&lr=&ei=R-jrSKWoCJGgswOv0eiXBw&sig=ACfU3U20xuoH7jZDq-XGqSnfsmC0oE8KjQ
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-19-851062-4
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-58488-291-3
https://en.wikipedia.org/wiki/Copyright_status_of_work_by_the_U.S._government
https://en.wikipedia.org/wiki/Copyright_status_of_work_by_the_U.S._government
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://xlinux.nist.gov/dads/HTML/multigraph.html
https://en.wikipedia.org/wiki/Dictionary_of_Algorithms_and_Data_Structures
https://en.wikipedia.org/wiki/Dictionary_of_Algorithms_and_Data_Structures
https://en.wikipedia.org/wiki/Tur%C3%A1n_graph
https://en.wikipedia.org/wiki/Clique_(graph_theory)
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Graph_invariant
https://en.wikipedia.org/wiki/Extremal_graph_theory#cite_note-1
https://en.wikipedia.org/wiki/Forest_(graph_theory)
https://en.wikipedia.org/wiki/Tree_(graph_theory)
https://en.wikipedia.org/wiki/Extremal_graph_theory#cite_note-2
https://en.wikipedia.org/wiki/Graph_property
https://en.wikipedia.org/wiki/Clique_(graph_theory)
https://en.wikipedia.org/wiki/Tur%C3%A1n%2527s_theorem
https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Stone_theorem

3.3. EXTREMAL GRAPH THEORY

3.3.2 History

Extremal graph theory, in its strictest sense, is a branch
of graph theory developed and loved by Hungarians.

Bollobis (2004)

Extremal graph theory started in 1941 when Turdn
proved his theorem determining those graphs of order n,
not containing the complete graph Kk of order k, and ex-
tremal with respect to size (that is, with as many edges
as possible).l?! Another crucial year for the subject was
1975 when Szemerédi proved his result a vital tool in at-
tacking extremal problems. !

3.3.3 Density results

A typical result in extremal graph theory is Turdn’s theo-
rem. It answers the following question. What is the max-
imum possible number of edges in an undirected graph G
with n vertices which does not contain K3 (three vertices
A, B, C with edges AB, AC, BC; i.e. a triangle) as a sub-
graph? The complete bipartite graph where the partite
sets differ in their size by at most 1, is the only extremal
graph with this property. It contains

n2

&

edges. Similar questions have been studied with vari-
ous other subgraphs H instead of K3; for instance, the
Zarankiewicz problem concerns the largest graph that
does not contain a fixed complete bipartite graph as a sub-
graph, and the even circuit theorem concerns the largest
graph without a fixed-length even cycle. Turan also found
the (unique) largest graph not containing Kk which is
named after him, namely the Turdn graph. This graph

is the complete join of “k-1” independent sets (as equi-
sized as possible) and has at most

w ] - [0-e)

edges. For C4, the largest graph on n vertices not con-
taining C4 has

<;+dn>ﬁ”

edges.

3.3.4 Minimum degree conditions

The preceding theorems give conditions for a small ob-
ject to appear within a (perhaps) very large graph. At the
opposite extreme, one might search for conditions which
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force the existence of a structure which covers every ver-
tex. But it is possible for a graph with

n—1

(")

edges to have an isolated vertex - even though almost ev-
ery possible edge is present in the graph - which means
that even a graph with very high density may have no in-
teresting structure covering every vertex. Simple edge
counting conditions, which give no indication as to how
the edges in the graph are distributed, thus often tend to
give uninteresting results for very large structures. In-

stead, we introduce the concept of minimum degree. The
minimum degree of a graph G is defined to be

i(G) = ggg d(v).

Specifying a large minimum degree removes the objec-
tion that there may be a few "pathological’ vertices; if the
minimum degree of a graph G is 1, for example, then
there can be no isolated vertices (even though G may have
very few edges).

A classic result is Dirac’s theorem, which states that every
graph G with n vertices and minimum degree at least n/2
contains a Hamilton cycle.

3.3.5 See also

e Ramsey theory

3.3.6 Notes

[1] Diestel 2010
[2] Bollobés 2004, p. 9

[3] Bollobds 1998, p. 104
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Chapter 4

Graph Traversal

4.1 Minimum spanning tree

A planar graph and its minimum spanning tree. Each edge is
labeled with its weight, which here is roughly proportional to its
length.

A minimum spanning tree (MST) or minimum
weight spanning tree is a subset of the edges of a
connected, edge-weighted undirected graph that connects
all the vertices together, without any cycles and with the
minimum possible total edge weight. That is, it is a
spanning tree whose sum of edge weights is as small as
possible. More generally, any undirected graph (not nec-
essarily connected) has a minimum spanning forest,
which is a union of the minimum spanning trees for its
connected components.

There are quite a few use cases for minimum spanning
trees. One example would be a telecommunications com-
pany which is trying to lay out cables in new neighbor-
hood. If it is constrained to bury the cable only along
certain paths (e.g. along roads), then there would be a
graph representing which points are connected by those
paths. Some of those paths might be more expensive, be-
cause they are longer, or require the cable to be buried
deeper; these paths would be represented by edges with
larger weights. Currency is an acceptable unit for edge
weight — there is no requirement for edge lengths to obey
normal rules of geometry such as the triangle inequality.
A spanning tree for that graph would be a subset of those
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paths that has no cycles but still connects to every house;
there might be several spanning trees possible. A min-
imum spanning tree would be one with the lowest total
cost, thus would represent the least expensive path for lay-
ing the cable.

4.1.1 Properties
Possible multiplicity

If there are n vertices in the graph, then each spanning
tree has n — 1 edges.

There may be several minimum spanning trees of the
same weight; in particular, if all the edge weights of a
given graph are the same, then every spanning tree of that
graph is minimum.

Uniqueness

If each edge has a distinct weight then there will be only
one, unique minimum spanning tree. This is true in many
realistic situations, such as the telecommunications com-
pany example above, where it’s unlikely any two paths
have exactly the same cost. This generalizes to spanning
forests as well.

Proof:

. Assume the contrary, that there are two different
MSTs A and B.

. Since A and B differ despite containing the same
nodes, there is at least one edge that belongs to one
but not the other. Among such edges, let e; be the
one with least weight; this choice is unique because
the edge weights are all distinct. Without loss of
generality, assume e is in A.

. As Bis a MST, {e; } U B must contain a cycle C.

. As a tree, A contains no cycles, therefore C must
have an edge e» that is not in A.

. Since e; was chosen as the unique lowest-weight
edge among those belonging to exactly one of A and
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This figure shows there may be more than one minimum spanning
tree in a graph. In the figure, the two trees below the graph are
two possibilities of minimum spanning tree of the given graph.

B, the weight of e> must be greater than the weight
of er.

6. Replacing ey with e; in B therefore yields a spanning
tree with a smaller weight.

7. This contradicts the assumption that B is a MST.

More generally, if the edge weights are not all distinct
then only the (multi-)set of weights in minimum span-
ning trees is certain to be unique; it is the same for all
minimum spanning trees.'!]

Minimum-cost subgraph

If the weights are positive, then a minimum spanning tree
is in fact a minimum-cost subgraph connecting all ver-
tices, since subgraphs containing cycles necessarily have
more total weight.
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Cycle property

For any cycle C in the graph, if the weight of an edge e of
C is larger than the individual weights of all other edges
of C, then this edge cannot belong to a MST.

Proof: Assume the contrary, i.e. that e belongs to an MST
T1. Then deleting e will break T1 into two subtrees with
the two ends of e in different subtrees. The remainder
of C reconnects the subtrees, hence there is an edge f of
C with ends in different subtrees, i.e., it reconnects the
subtrees into a tree T2 with weight less than that of T1,
because the weight of f is less than the weight of e.

Cut property

This figure shows the cut property of MSTs. T is the only MST
of the given graph. If S = {A,B,D,E}, thus V-S = {C,F}, then
there are 3 possibilities of the edge across the cut(S, V-S), they are
edges BC, EC, EF of the original graph. Then, e is one of the
minimum-weight-edge for the cut, therefore S U {e} is part of the
MSTT.

For any cut C of the graph, if the weight of an edge ¢ in
the cut-set of C is strictly smaller than the weights of all
other edges of the cut-set of C, then this edge belongs to all
MSTs of the graph.

Proof: assume the contrary, i.e., in the figure at right,
make edge BC (weight 6) part of the MST T instead of
edge e (weight 4). Adding e to T will produce a cycle,
while replacing BC with e would produce MST of smaller
weight. Thus, a tree containing BC is not a MST, a con-
tradiction that violates our assumption. By a similar argu-
ment, if more than one edge is of minimum weight across
a cut, then each such edge is contained in some minimum
spanning tree.

Minimum-cost edge

If the minimum cost edge e of a graph is unique, then this
edge is included in any MST.

Proof: if e was not included in the MST, removing any of
the (larger cost) edges in the cycle formed after adding e
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to the MST, would yield a spanning tree of smaller weight.

Contraction

If Tis a tree of MST edges, then we can contract T into a
single vertex while maintaining the invariant that the MST
of the contracted graph plus T gives the MST for the graph
before contraction.I’!

4.1.2 Algorithms
In all of the algorithms below, “m” is the number of edges
in the graph and “n” is the number of vertices.

Classic algorithms

The first algorithm for finding a minimum spanning tree
was developed by Czech scientist Otakar Bortivka in 1926
(see Bortvka’s algorithm). Its purpose was an efficient
electrical coverage of Moravia. The algorithm proceeds
in a sequence of stages. In each stage, called Boruvka
step, it identifies a forest F' consisting of the minimum-
weight edge incident to each vertex in the graph G, then
forms the graph as the input to the next step. Here de-
notes the graph derived from G by contracting edges in
F (by the Cut property, these edges belong to the MST).
Each Boruvka step takes linear time. Since the number of
vertices is reduced by at least half in each step, Boruvka’s
algorithm takes O(m log n) time.!”!

A second algorithm is Prim’s algorithm, which was in-
vented by Jarnik in 1930 and rediscovered by Prim in
1957 and Dijkstra in 1959. Basically, it grows the MST
(T) one edge at a time. Initially, 7' contains an arbitrary
vertex. In each step, T is augmented with a least-weight
edge (x,y) such that x is in 7 and y is not yet in 7. By the
Cut property, all edges added to T are in the MST. Its
run-time is either O(m log n) or O(m + n log n), depend-
ing on the data-structures used.

A third algorithm commonly in use is Kruskal’s algo-
rithm, which also takes O(m log n) time.

A fourth algorithm, not as commonly used, is the reverse-
delete algorithm, which is the reverse of Kruskal’s algo-
rithm. Its runtime is O(m log n (log log n)?).

All these four are greedy algorithms. Since they run in
polynomial time, the problem of finding such trees is in
FP, and related decision problems such as determining
whether a particular edge is in the MST or determining if
the minimum total weight exceeds a certain value are in
P.

Faster algorithms

Several researchers have tried to find more

computationally-efficient algorithms.
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In a comparison model, in which the only allowed opera-
tions on edge weights are pairwise comparisons, Karger,
Klein & Tarjan (1995) found a linear time randomized al-
gorithm based on a combination of Borlvka’s algorithm
and the reverse-delete algorithm. (4!

The fastest non-randomized comparison-based algorithm
with known complexity, by Bernard Chazelle, is based on
the soft heap, an approximate priority queue.’!!®! Its run-
ning time is O(m o(m,n)), where a is the classical func-
tional inverse of the Ackermann function. The function o
grows extremely slowly, so that for all practical purposes
it may be considered a constant no greater than 4; thus
Chazelle’s algorithm takes very close to linear time.

Linear-time algorithms in special cases

Dense graphs  If the graph is dense (i.e. m/n = log log
log n), then a deterministic algorithm by Fredman and
Tarjan finds the MST in time O(m).!”) The algorithm ex-
ecutes a number of phases. Each phase executes Prim’s
algorithm many times, each for a limited number of steps.
The run-time of each phase is O(m+n). If the number of
vertices before a phase is n’ , the number of vertices re-
maining after a phase is at most n’/2™/™" . Hence, at
most log xn phases are needed, which gives a linear run-
time for dense graphs.?!

There are other algorithms that work in linear time on
dense graphs.>/8!

Integer weights  If the edge weights are integers repre-
sented in binary, then deterministic algorithms are known
that solve the problem in O(m + n) integer operations.'!
Whether the problem can be solved deterministically for
a general graph in linear time by a comparison-based al-
gorithm remains an open question.

Decision trees

Given graph G where the nodes and edges are fixed but
the weights are unknown, it is possible to construct a bi-
nary decision tree (DT) for calculating the MST for any
permutation of weights. Each internal node of the DT
contains a comparison between two edges, e.g. “Is the
weight of the edge between x and y larger than the weight
of the edge between w and z?". The two children of
the node correspond to the two possible answers “yes” or
“no”. In each leaf of the DT, there is a list of edges from
G that correspond to an MST. The runtime complexity
of a DT is the largest number of queries required to find
the MST, which is just the depth of the DT. A DT for a
graph G is called optimal if it has the smallest depth of all
correct DTs for G.

For every integer r, it is possible to find optimal decision
trees for all graphs on r vertices by brute-force search.
This search proceeds in two steps.
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A. Generating all potential DTs

e There are 2(2) different graphs on r vertices.

e For each graph, an MST can always be found using
r(r—1) comparisons, e.g. by Prim’s algorithm.

e Hence, the depth of an optimal DT is less than 72 .

e Hence, the number of internal nodes in an optimal
DT is less than 2"~ .

e Every internal node compares two edges. The num-
ber of edges is at most r? so the different number
of comparisons is at most 7% .

e Hence, the number of potential DTs is less than:
(1)) = 2

B. Identifying the correct DTs To check if a DT is cor-
rect, it should be checked on all possible permutations of
the edge weights.

e The number of such permutations is at most (r2)! .

e For each permutation, solve the MST problem on
the given graph using any existing algorithm, and
compare the result to the answer given by the DT.

e The running time of any MST algorithm is at most
(r?) , so the total time required to check all permu-
tations is at most (r% + 1)! .

Hence, the total time required for finding an optimal DT

for all graphs with r vertices is: 2() .2 (r2+1)!

. . . 2T2+U(7“) 2]
, which is less than: 2 .

See also: Decision tree model

Optimal algorithm

Seth Pettie and Vijaya Ramachandran have found a prov-
ably optimal deterministic comparison-based minimum
spanning tree algorithm.”! The following is a simplified
description of the algorithm.

1. Letr = logloglogn , where n is the number of ver-
tices. Find all optimal decision trees on r vertices.
This can be done in time O(n) (see Decision trees
above).

2. Partition the graph to components with at most r ver-
tices in each component. This partition can be done
in time O(m).

3. Use the optimal decision trees to find an MST for
each component.
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4. Contract each connected component spanned by the
MSTs to a single vertex.

5. It is possible to prove that the resulting graph has at
most n/r vertices. Hence, the graph is dense and we
can use any algorithm which works on Dense graphs
in time O(m).

The runtime of all steps in the algorithm is O(m), except
for the step of using the decision trees. We don't know the
runtime of this step, but we know that it is optimal - no
algorithm can do better than the optimal decision tree.

Thus, this algorithm has the peculiar property that it is
provably optimal although its runtime complexity is un-
known.

Parallel and distributed algorithms

Research has also considered parallel algorithms for the
minimum spanning tree problem. With a linear num-
ber of processors it is possible to solve the problem in
O(logn) time.["%11] Bader & Cong (2006) demonstrate
an algorithm that can compute MSTs 5 times faster on 8
processors than an optimized sequential algorithm.!?!

Other specialized algorithms have been designed for com-
puting minimum spanning trees of a graph so large that
most of it must be stored on disk at all times. These exter-
nal storage algorithms, for example as described in “En-
gineering an External Memory Minimum Spanning Tree
Algorithm” by Roman, Dementiev et al.,"3! can operate,
by authors’ claims, as little as 2 to 5 times slower than a
traditional in-memory algorithm. They rely on efficient
external storage sorting algorithms and on graph contrac-
tion techniques for reducing the graph’s size efficiently.

The problem can also be approached in a distributed man-
ner. If each node is considered a computer and no node
knows anything except its own connected links, one can
still calculate the distributed minimum spanning tree.

4.1.3 MST on complete graphs

Alan M. Frieze showed that given a complete graph on
n vertices, with edge weights that are independent identi-
cally distributed random variables with distribution func-
tion F satisfying F(0) > 0, then as n approaches +oo
the expected weight of the MST approaches ¢(3)/F’(0)
, where ( is the Riemann zeta function. Frieze and Steele
also proved convergence in probability. Svante Janson
proved a central limit theorem for weight of the MST.

For uniform random weights in [0, 1] , the exact expected
size of the minimum spanning tree has been computed
for small complete graphs.!'4]
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4.1.4 Applications

Minimum spanning trees have direct applications in
the design of networks, including computer networks,
telecommunications networks, transportation networks,
water supply networks, and electrical grids (which they
were first invented for, as mentioned above).['’! They
are invoked as subroutines in algorithms for other prob-
lems, including the Christofides algorithm for approxi-
mating the traveling salesman problem, '® approximat-
ing the multi-terminal minimum cut problem (which is
equivalent in the single-terminal case to the maximum
flow problem),!'” and approximating the minimum-cost
weighted perfect matching.!'®!

Other practical applications based on minimal spanning
trees include:

e Taxonomy.!’!

e Cluster analysis: clustering points in the plane,?”
single-linkage clustering (a method of hierarchical
clustering),?!! graph-theoretic clustering,'”?! and
clustering gene expression data.?*!

e Constructing trees for broadcasting in computer
networks.?*! On Ethernet networks this is accom-
plished by means of the Spanning tree protocol.

o Image registration® and segmentation®®! — see

minimum spanning tree-based segmentation.

e Curvilinear feature extraction in computer Vvi-
sion.[27]

e Handwriting mathematical

expressions.?®!

recognition  of

o Circuit design: implementing efficient multiple con-
stant multiplications, as used in finite impulse re-
sponse filters.>"!

e Regionalisation of socio-geographic areas, the
grouping of areas into homogeneous, contiguous
regions. 3"

e Comparing ecotoxicology data.*!}
e Topological observability in power systems.!*?!

e Measuring homogeneity of two-dimensional

materials.**!
e Minimax process control.*#!

e Minimum spanning trees can also be used to de-
scribe financial markets.*>! A correlation matrix
can be created by calculating a coefficient of cor-
relation between any two stocks.This matrix can be
represented topologically as a complex network and
a minimum spanning tree can be constructed to vi-
sualize relationships.
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4.1.5 Related problems

The problem of finding the Steiner tree of a subset of the
vertices, that is, minimum tree that spans the given subset,
is known to be NP-Complete.*®

A related problem is the k-minimum spanning tree (k-
MST), which is the tree that spans some subset of k ver-
tices in the graph with minimum weight.

A set of k-smallest spanning trees is a subset of k spanning
trees (out of all possible spanning trees) such that no span-
ning tree outside the subset has smaller weight.[371138113]
(Note that this problem is unrelated to the k-minimum
spanning tree.)

The Euclidean minimum spanning tree is a spanning tree
of a graph with edge weights corresponding to the Eu-
clidean distance between vertices which are points in the
plane (or space).

The rectilinear minimum spanning tree is a spanning
tree of a graph with edge weights corresponding to the
rectilinear distance between vertices which are points in
the plane (or space).

In the distributed model, where each node is considered
a computer and no node knows anything except its own
connected links, one can consider distributed minimum
spanning tree. The mathematical definition of the prob-
lem is the same but there are different approaches for a
solution.

The capacitated minimum spanning tree is a tree that has
a marked node (origin, or root) and each of the subtrees
attached to the node contains no more than a ¢ nodes. ¢
is called a tree capacity. Solving CMST optimally is NP-
hard,* but good heuristics such as Esau-Williams and
Sharma produce solutions close to optimal in polynomial
time.

The degree constrained minimum spanning tree is a min-
imum spanning tree in which each vertex is connected to
no more than d other vertices, for some given number d.
The case d = 2 is a special case of the traveling salesman
problem, so the degree constrained minimum spanning
tree is NP-hard in general.

For directed graphs, the minimum spanning tree problem
is called the Arborescence problem and can be solved in
quadratic time using the Chu—Liu/Edmonds algorithm.

A maximum spanning tree is a spanning tree with
weight greater than or equal to the weight of every other
spanning tree. Such a tree can be found with algorithms
such as Prim’s or Kruskal’s after multiplying the edge
weights by —1 and solving the MST problem on the new
graph. A path in the maximum spanning tree is the widest
path in the graph between its two endpoints: among all
possible paths, it maximizes the weight of the minimum-
weight edge.*!! Maximum spanning trees find applica-
tions in parsing algorithms for natural languages'*”! and
in training algorithms for conditional random fields.


https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Telecommunications_network
https://en.wikipedia.org/wiki/Transport_network
https://en.wikipedia.org/wiki/Water_supply_network
https://en.wikipedia.org/wiki/Electrical_grid
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-15
https://en.wikipedia.org/wiki/Christofides_algorithm
https://en.wikipedia.org/wiki/Traveling_salesman_problem
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-16
https://en.wikipedia.org/wiki/Maximum_flow_problem
https://en.wikipedia.org/wiki/Maximum_flow_problem
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-17
https://en.wikipedia.org/wiki/Matching_(graph_theory)
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-18
https://en.wikipedia.org/wiki/Taxonomy_(general)
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-19
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-20
https://en.wikipedia.org/wiki/Single-linkage_clustering
https://en.wikipedia.org/wiki/Hierarchical_clustering
https://en.wikipedia.org/wiki/Hierarchical_clustering
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-21
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-22
https://en.wikipedia.org/wiki/Gene_expression
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-23
https://en.wikipedia.org/wiki/Broadcasting_(networking)
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-24
https://en.wikipedia.org/wiki/Spanning_tree_protocol
https://en.wikipedia.org/wiki/Image_registration
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-25
https://en.wikipedia.org/wiki/Image_segmentation
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-26
https://en.wikipedia.org/wiki/Minimum_spanning_tree-based_segmentation
https://en.wikipedia.org/wiki/Feature_extraction
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-27
https://en.wikipedia.org/wiki/Handwriting_recognition
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-28
https://en.wikipedia.org/wiki/Circuit_design
https://en.wikipedia.org/wiki/Finite_impulse_response
https://en.wikipedia.org/wiki/Finite_impulse_response
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-29
https://en.wikipedia.org/wiki/Regionalisation
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-30
https://en.wikipedia.org/wiki/Ecotoxicology
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-31
https://en.wikipedia.org/wiki/Observability
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-32
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-33
https://en.wikipedia.org/wiki/Process_control
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-34
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-35
https://en.wikipedia.org/wiki/Steiner_tree
https://en.wikipedia.org/wiki/NP-Complete
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-36
https://en.wikipedia.org/wiki/K-minimum_spanning_tree
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-37
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-38
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-39
https://en.wikipedia.org/wiki/Euclidean_minimum_spanning_tree
https://en.wikipedia.org/wiki/Rectilinear_minimum_spanning_tree
https://en.wikipedia.org/wiki/Rectilinear_distance
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Distributed_minimum_spanning_tree
https://en.wikipedia.org/wiki/Distributed_minimum_spanning_tree
https://en.wikipedia.org/wiki/Capacitated_minimum_spanning_tree
https://en.wikipedia.org/wiki/NP-hard
https://en.wikipedia.org/wiki/NP-hard
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-40
https://en.wikipedia.org/wiki/Degree-constrained_spanning_tree
https://en.wikipedia.org/wiki/Traveling_salesman_problem
https://en.wikipedia.org/wiki/Traveling_salesman_problem
https://en.wikipedia.org/wiki/NP-hard
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Arborescence_(graph_theory)
https://en.wikipedia.org/wiki/Chu%E2%80%93Liu/Edmonds_algorithm
https://en.wikipedia.org/wiki/Widest_path_problem
https://en.wikipedia.org/wiki/Widest_path_problem
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-41
https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Minimum_spanning_tree#cite_note-42
https://en.wikipedia.org/wiki/Conditional_random_field

4.1.

MINIMUM SPANNING TREE

The dynamic MST problem concerns the update of a
previously computed MST after an edge weight change

in the original graph or the insertion/deletion of a
vertex [431441143]

The minimum labeling spanning tree problem is to find
a spanning tree with least types of labels if each edge in
a graph is associated with a label from a finite label set
instead of a weight.[0)

A bottleneck edge is the highest weighted edge in a span-
ning tree. A spanning tree is a minimum bottleneck
spanning tree (or MBST) if the graph does not contain
a spanning tree with a smaller bottleneck edge weight. A
MST is necessarily a MBST (provable by the cut prop-
erty), but a MBST is not necessarily a MST.[#71148]
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4.2. STEINER TREE PROBLEM

4.1.7 Additional reading

e Otakar Boruvka on Minimum Spanning Tree Prob-
lem (translation of the both 1926 papers, comments,
history) (2000) Jaroslav Nesetfil, Eva Milkova,
Helena Nesetrilovd. (Section 7 gives his algo-
rithm, which looks like a cross between Prim’s and
Kruskal’s.)

e Thomas H. Cormen, Charles E. Leiserson, Ronald
L. Rivest, and Clifford Stein. Introduction to Algo-
rithms, Second Edition. MIT Press and McGraw-
Hill, 2001. ISBN 0-262-03293-7. Chapter 23:
Minimum Spanning Trees, pp. 561-579.

e FEisner, Jason (1997). State-of-the-art algorithms
for minimum spanning trees: A tutorial discussion.
Manuscript, University of Pennsylvania, April. 78

pp.

e Kromkowski, John David. “Still Unmelted after All
These Years”, in Annual Editions, Race and Ethnic
Relations, 17/e (2009 McGraw Hill) (Using mini-
mum spanning tree as method of demographic anal-
ysis of ethnic diversity across the United States).

4.1.8 External links

e Implemented in BGL, the Boost Graph Library

e The Stony Brook Algorithm Repository - Minimum
Spanning Tree codes

e Implemented in QuickGraph for .Net

4.2 Steiner tree problem

A

°C

Steiner tree for three points A, B, and C (note there are no direct
connections between A, B, C). The Steiner point S is located at
the Fermat point of the triangle ABC.
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S1

S2

C D

Solution for four points—there are two Steiner points, S1 and Sz

Steiner tree problem, or minimum Steiner tree prob-
lem, named after Jakob Steiner, is an umbrella term for
a class of problems in combinatorial optimization. While
Steiner tree problems may be formulated in a number
of settings, they all require an optimal interconnect for a
given set of objects and a predefined objective function.
One well-known variant, which is often used synony-
mously with the term Steiner tree problem, is the Steiner
tree problem in graphs. Given an undirected graph with
non-negative edge weights and a subset of vertices, usu-
ally referred to as terminals, the Steiner tree problem in
graphs requires a tree of minimum weight that contains
all terminals (but may include additional vertices). Fur-
ther well-known variants are the Euclidean Steiner tree
problem and the rectilinear minimum Steiner tree
problem.

The Steiner tree problem in graphs can be seen as a gener-
alization of two other famous combinatorial optimization
problems: the (non-negative) shortest path problem and
the minimum spanning tree problem. If a Steiner tree
problem in graphs contains exactly two terminals, it re-
duces to finding a shortest path. If, on the other hand, all
vertices are terminals, the Steiner tree problem in graphs
is equivalent to the minimum spanning tree. However,
while both the non-negative shortest path and the mini-
mum spanning tree problem are solvable in polynomial
time, the decision variant of the Steiner tree problem in
graphs is NP-complete (which implies that the optimiza-
tion variant is NP-hard); in fact, the decision variant was
among Karp’s original 21 NP-complete problems. The
Steiner tree problem in graphs has applications in circuit
layout or network design. However, practical applications
usually require variations, giving rise to a multitude of
Steiner tree problem variants.
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Most versions of the Steiner tree problem are NP-hard,
but some restricted cases can be solved in polynomial
time. Despite the pessimistic worst-case complexity, sev-
eral Steiner tree problem variants, including the Steiner
tree problem in graphs and the recitilinear Steiner tree
problem, can be solved efficiently in practice, even for
large-scale real-world problems. 112!

4.2.1 Euclidean Steiner tree

The original problem was stated in the form that has be-
come known as the Euclidean Steiner tree problem or
geometric Steiner tree problem: Given N points in the
plane, the goal is to connect them by lines of minimum
total length in such a way that any two points may be in-
terconnected by line segments either directly or via other
points and line segments. It may be shown that the con-
necting line segments do not intersect each other except
at the endpoints and form a tree, hence the name of the
problem.

For the Euclidean Steiner problem, points added to the
graph (Steiner points) must have a degree of three, and
the three edges incident to such a point must form three
120 degree angles (see Fermat point). It follows that the
maximum number of Steiner points that a Steiner tree
can have is N — 2, where N is the initial number of given
points.

For N = 3 there are two possible cases: if the trian-
gle formed by the given points has all angles which are
less than 120 degrees, the solution is given by a Steiner
point located at the Fermat point; otherwise the solution
is given by the two sides of the triangle which meet on the
angle with 120 or more degrees.

For general N, the Euclidean Steiner tree problem is NP-
hard, and hence it is not known whether an optimal so-
lution can be found by using a polynomial-time algo-
rithm. However, there is a polynomial-time approxima-
tion scheme (PTAS) for Euclidean Steiner trees, i.e., a
near-optimal solution can be found in polynomial time."!
It is not known whether the Euclidean Steiner tree prob-
lem is NP-complete, since membership to the complexity
class NP is not known.

4.2.2 Rectilinear Steiner tree

Main article: Rectilinear Steiner tree

The rectilinear Steiner tree problem is a variant of the
geometric Steiner tree problem in the plane, in which
the Euclidean distance is replaced with the rectilinear
distance. The problem arises in the physical design of
electronic design automation. In VLSI circuits, wire rout-
ing is carried out by wires that are often constrained by
design rules to run only in vertical and horizontal di-
rections, so the rectilinear Steiner tree problem can be
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used to model the routing of nets with more than two
terminals.'¥!

4.2.3 Steiner tree in graphs and variants

Steiner trees have been extensively studied in the con-
text of weighted graphs. The prototype is, arguably, the
Steiner tree problem in graphs. Let G = (V, E) be an
undirected graph with non-negative edge weights ¢ and let
S C V be asubset of vertices, called terminals. A Steiner
tree is a tree in G that spans S. There are two versions of
the problem: in the optimization problem associated with
Steiner trees, the task is to find a minimum-weight Steiner
tree; in the decision problem the edge weights are inte-
ger and the task is to determine whether a Steiner tree
exists whose total weight does not exceed a predefined
natural number k. The decision problem is one of Karp’s
21 NP-complete problems; hence the optimization prob-
lem is NP-hard.

A special case of this problem is when G is a complete
graph, each vertex v € V corresponds to a point in a
metric space, and the edge weights w(e) for each e € E
correspond to distances in the space. Put otherwise, the
edge weights satisfy the triangle inequality. This variant
is known as the metric Steiner tree problem. Given
an instance of the (non-metric) Steiner tree problem, we
can transform it in polynomial time into an equivalent in-
stance of the metric Steiner tree problem; the transfor-
mation preserves the approximation factor."!

‘While the Euclidean version admits a PTAS, it is known
that the metric Steiner tree problem is APX-complete,
i.e., unless P = NP, it is impossible to achieve approx-
imation ratios that are arbitrarily close to 1 in polyno-
mial time. There is a polynomial-time algorithm that
approximates the minimum Steiner tree to within a factor
of In(4)+€ ~ 1.386 ;! however, approximating within a
factor 96/95 ~ 1.0105 is NP-hard.!”! For the restricted
case of Steiner Tree problem with distances 1 and 2, a
1.25-approximation algorithm is known.[®!

In a special case of the graph problem, the Steiner tree
problem for quasi-bipartite graphs, S is required to in-
clude at least one endpoint of every edge in G.

The Steiner tree problem has also been investigated in
higher dimensions and on various surfaces. Algorithms
to find the Steiner minimal tree have been found on the
sphere, torus, projective plane, wide and narrow cones,
and others.[’!

Another generalizations of the Steiner tree problem
are the k-edge-connected Steiner network problem
and the k-vertex-connected Steiner network problem,
where the goal is to find a k-edge-connected graph or a k-
vertex-connected graph rather than any connected graph.

The Steiner problem has also been stated in the general
setting of metric spaces and for possibly infinitely many
points.[1%]
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4.2. STEINER TREE PROBLEM

4.2.4 Approximating the Steiner tree

The general graph Steiner tree problem can be approxi-
mated by computing the minimum spanning tree of the
subgraph of the metric closure of the graph induced by
the terminal vertices. The metric closure of a graph G
is the complete graph in which each edge is weighted by
the shortest path distance between the nodes in G. This
algorithm produces a tree whose weight is within a 2 - 2
/ t factor of the weight of the optimal Steiner tree; this
can be proven by considering a traveling salesperson tour
on the optimal Steiner tree. The approximate solution
is computable in polynomial time by first solving the all-
pairs shortest paths problem to compute the metric clo-
sure, then by solving the minimum spanning tree prob-
lem.

A series of papers provided approximation algorithms for
the minimum Steiner tree problem with approximation
ratios that improved upon the 2 - 2 / ¢ ratio. This se-
quence culminated with Robins and Zelikovsky’s algo-
rithm in 2000 which improved the ratio to 1.55 by itera-
tively improving upon the minimum cost terminal span-
ning tree. More recently, however, Jaroslaw Byrka et al.
proved an In(4) 4 € < 1.39 approximation using a linear
programming relaxation and a technique called iterative,
randomized rounding.®’

4.2.5 Steiner ratio

The Steiner ratio is the supremum of the ratio of the total
length of the minimum spanning tree to the minimum
Steiner tree for a set of points in the Euclidean plane.!'!!

In the Euclidean Steiner tree problem, the Steiner ratio

is conjectured to be % . Despite earlier claims of a

proof,!?! the conjecture is still open.!'3! In the Rectilin-

ear Steiner tree problem, the Steiner ratio is % 4]

4.2.6 See also

e Opaque forest problem

4.2.7 Notes

[1] “Report by Polzin and Vahdati Daneshmand” (PDF). Re-
trieved 11 November 2016.

[2] Juhletal. (2014).

[3] Crescenzi et al. (2000).

[4] Sherwani (1993), p. 228.
[5] Vazirani (2003), pp. 27-28.
[6] Byrka etal. (2010).

[7] Chlebik & Chlebikové (2008).
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[8] Berman, Karpinski & Zelikovsky (2009).
[9] Smith & Winter (1995), p. 361.
[10] Paolini & Stepanov (2012).
(11]

[12]

Ganley (2004).

The New York Times, Oct 30, 1990, reported that a proof
had been found, and that Ronald Graham, who had offered
$500 for a proof, was about to mail a check to the authors.

[13] Ivanov & Tuzhilin (2012).

[14] Hwang (1976).
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4.3 Shortest path problem

In graph theory, the shortest path problem is the prob-
lem of finding a path between two vertices (or nodes) in
a graph such that the sum of the weights of its constituent
edges is minimized.

The problem of finding the shortest path between two
intersections on a road map (the graph’s vertices corre-
spond to intersections and the edges correspond to road
segments, each weighted by the length of its road seg-
ment) may be modeled by a special case of the shortest
path problem in graphs.
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(6, 4,5, 1)and (6, 4, 3, 2, 1) are both paths between vertices 6
and 1

10
11

Shortest path (A, C, E, D, F) between vertices A and F in the
weighted directed graph

4.3.1 Definition

The shortest path problem can be defined for graphs
whether undirected, directed, or mixed. It is defined here
for undirected graphs; for directed graphs the definition
of path requires that consecutive vertices be connected by
an appropriate directed edge.

Two vertices are adjacent when they are both incident
to a common edge. A path in an undirected graph is a
sequence of vertices P = (v1,va,...,0,) € V X V X
-+ x V such that v; is adjacent to v; 1 for 1 < i < n.
Such a path P is called a path of length n — 1 from v; to
v, . (The v; are variables; their numbering here relates
to their position in the sequence and needs not to relate
to any canonical labeling of the vertices.)

Let e; ; be the edge incident to both v; and v; . Given a
real-valued weight function f : £ — R, and an undi-
rected (simple) graph G , the shortest path from v to v’
is the path P = (vy,vs,...,v,) (where v; = v and
v, = v’ ) that over all possible 7 minimizes the sum
Z?;ll f(eii+1). When each edge in the graph has unit
weight or f : E — {1}, this is equivalent to finding the
path with fewest edges.

The problem is also sometimes called the single-pair
shortest path problem, to distinguish it from the follow-
ing variations:

e The single-source shortest path problem, in
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which we have to find shortest paths from a source
vertex v to all other vertices in the graph.

e The single-destination shortest path problem, in
which we have to find shortest paths from all vertices
in the directed graph to a single destination vertex
v. This can be reduced to the single-source shortest
path problem by reversing the arcs in the directed
graph.

e The all-pairs shortest path problem, in which we
have to find shortest paths between every pair of ver-
tices v, v' in the graph.

These generalizations have significantly more efficient al-
gorithms than the simplistic approach of running a single-
pair shortest path algorithm on all relevant pairs of ver-
tices.

4.3.2 Algorithms

The most important algorithms for solving this problem
are:

e Dijkstra’s algorithm solves the single-source shortest
path problem.

e Bellman—Ford algorithm solves the single-source
problem if edge weights may be negative.

e A¥* search algorithm solves for single pair shortest
path using heuristics to try to speed up the search.

e Floyd—Warshall algorithm solves all pairs shortest
paths.

e Johnson’s algorithm solves all pairs shortest paths,
and may be faster than Floyd—Warshall on sparse
graphs.

e Viterbi algorithm solves the shortest stochastic path
problem with an additional probabilistic weight on
each node.

Additional algorithms and associated evaluations may be
found in Cherkassky, Goldberg & Radzik (1996).

4.3.3 Single-source shortest paths
Undirected graphs

Unweighted graphs

Directed acyclic graphs

An algorithm using topological sorting can solve the

single-source shortest path problem in linear time, @(E
+ V), in weighted DAGs.
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Directed graphs with nonnegative weights

The following table is taken from Schrijver (2004). A
green background indicates an asymptotically best bound
in the table.

This list is incomplete; you can help by expanding it.

Planar directed graphs with nonnegative weights

Directed graphs with arbitrary weights without neg-
ative cycles

This list is incomplete; you can help by expanding it.

Planar directed graphs with arbitrary weights

4.3.4 All-pairs shortest paths

The all-pairs shortest path problem finds the shortest
paths between every pair of vertices v, v' in the graph.
The all-pairs shortest paths problem for unweighted di-
rected graphs was introduced by Shimbel (1953), who
observed that it could be solved by a linear number of
matrix multiplications that takes a total time of O( V4.

Undirected graph

Directed graph

4.3.5 Applications

Shortest path algorithms are applied to automatically find
directions between physical locations, such as driving
directions on web mapping websites like MapQuest or
Google Maps. For this application fast specialized algo-
rithms are available.!!!

If one represents a nondeterministic abstract machine as
a graph where vertices describe states and edges describe
possible transitions, shortest path algorithms can be used
to find an optimal sequence of choices to reach a certain
goal state, or to establish lower bounds on the time needed
to reach a given state. For example, if vertices represent
the states of a puzzle like a Rubik’s Cube and each di-
rected edge corresponds to a single move or turn, shortest
path algorithms can be used to find a solution that uses
the minimum possible number of moves.

In a networking or telecommunications mindset, this
shortest path problem is sometimes called the min-delay
path problem and usually tied with a widest path problem.
For example, the algorithm may seek the shortest (min-
delay) widest path, or widest shortest (min-delay) path.
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A more lighthearted application is the games of "six de-
grees of separation” that try to find the shortest path in
graphs like movie stars appearing in the same film.

Other applications, often studied in operations research,
include plant and facility layout, robotics, transportation,
and VLSI design”.[?!

Road networks

A road network can be considered as a graph with posi-
tive weights. The nodes represent road junctions and each
edge of the graph is associated with a road segment be-
tween two junctions. The weight of an edge may cor-
respond to the length of the associated road segment,
the time needed to traverse the segment, or the cost of
traversing the segment. Using directed edges it is also
possible to model one-way streets. Such graphs are spe-
cial in the sense that some edges are more important than
others for long distance travel (e.g. highways). This prop-
erty has been formalized using the notion of highway
dimension."3! There are a great number of algorithms that
exploit this property and are therefore able to compute
the shortest path a lot quicker than would be possible on
general graphs.

All of these algorithms work in two phases. In the
first phase, the graph is preprocessed without knowing
the source or target node. The second phase is the
query phase. In this phase, source and target node are
known.The idea is that the road network is static, so the
preprocessing phase can be done once and used for a large
number of queries on the same road network.

The algorithm with the fastest known query time is called
hub labeling and is able to compute shortest path on the
road networks of Europe or the USA in a fraction of a
microsecond.*! Other techniques that have been used are:

o ALT (A* search, landmarks, and triangle inequality)
e Arc flags

Contraction hierarchies

Transit node routing

Reach-based pruning

Labeling

4.3.6 Related problems

For shortest path problems in computational geometry,
see Euclidean shortest path.

The travelling salesman problem is the problem of find-
ing the shortest path that goes through every vertex ex-
actly once, and returns to the start. Unlike the shortest
path problem, which can be solved in polynomial time
in graphs without negative cycles, the travelling salesman
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problem is NP-complete and, as such, is believed not to
be efficiently solvable for large sets of data (see P = NP
problem). The problem of finding the longest path in a
graph is also NP-complete.

The Canadian traveller problem and the stochastic short-
est path problem are generalizations where either the
graph isn't completely known to the mover, changes over
time, or where actions (traversals) are probabilistic.

The shortest multiple disconnected path 1% is a represen-
tation of the primitive path network within the framework
of Reptation theory.

The widest path problem seeks a path so that the mini-
mum label of any edge is as large as possible.

Strategic shortest-paths

Sometimes, the edges in a graph have personalities: each
edge has its own selfish interest. An example is a commu-
nication network, in which each edge is a computer that
possibly belongs to a different person. Different comput-
ers have different transmission speeds, so every edge in
the network has a numeric weight equal to the number of
milliseconds it takes to transmit a message. Our goal is
to send a message between two points in the network in
the shortest time possible. If we know the transmission-
time of each computer (the weight of each edge), then we
can use a standard shortest-paths algorithm. If we do not
know the transmission times, then we have to ask each
computer to tell us its transmission-time. But, the com-
puters may be selfish: a computer might tell us that its
transmission time is very long, so that we will not bother
it with our messages. A possible solution to this problem
is to use a variant of the VCG mechanism, which gives
the computers an incentive to reveal their true weights.

4.3.7 Linear programming formulation

There is a natural linear programming formulation for the
shortest path problem, given below. It is very simple com-
pared to most other uses of linear programs in discrete
optimization, however it illustrates connections to other
concepts.

Given a directed graph (V, A) with source node s, target
node ¢, and cost wij for each edge (i, j) in A, consider the
program with variables xij

minimize EUGA w;;T;; subject to x>
0 and for all i, iji]' — ijji =

1, ifi = s;
-1, ifi=t;
0, otherwise.

The intuition behind this is that z;; is an indicator variable
for whether edge (i, j) is part of the shortest path: 1 when
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it is, and O if it is not. We wish to select the set of edges
with minimal weight, subject to the constraint that this
set forms a path from s to ¢ (represented by the equality
constraint: for all vertices except s and ¢ the number of
incoming and outcoming edges that are part of the path
must be the same (i.e., that it should be a path from s to

).

This LP has the special property that it is integral; more
specifically, every basic optimal solution (when one ex-
ists) has all variables equal to O or 1, and the set of edges
whose variables equal 1 form an s-f dipath. See Ahuja et
al.!! for one proof, although the origin of this approach
dates back to mid-20th century.

The dual for this linear program is

maximize yt — y, subject to for all §j, yj — yi <
wij

and feasible duals correspond to the concept of a
consistent heuristic for the A* algorithm for shortest
paths. For any feasible dual y the reduced costs w) j
w;i; — Y; + y; are nonnegative and A* essentially runs
Dijkstra’s algorithm on these reduced costs.

4.3.8 General algebraic framework on
semirings: the algebraic path prob-
lem

Many problems can be framed as a form of the short-
est path for some suitably substituted notions of addi-
tion along a path and taking the minimum. The gen-
eral approach to these is to consider the two operations to
be those of a semiring. Semiring multiplication is done
along the path, and the addition is between paths. This

general framework is known as the algebraic path prob-
lerm 7181191

Most of the classic shortest-path algorithms (and new
ones) can be formulated as solving linear systems over
such algebraic structures.!”!

More recently, an even more general framework for solv-
ing these (and much less obviously related problems)
has been developed under the banner of valuation alge-
bras.['!]

4.3.9 Shortest path in stochastic time-
dependent networks

In real-life situations, the transportation network is usu-
ally stochastic and time-dependent. In fact, a traveler
traversing a link daily may experiences different travel
times on that link due not only to the fluctuations in travel
demand (origin-destination matrix) but also due to such
incidents as work zones, bad weather conditions, acci-
dents and vehicle breakdowns. As a result, a stochastic
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time-dependent (STD) network is a more realistic repre-
sentation of an actual road network compared with the
deterministic one.!?!

Despite considerable progress during the course of the
past decade, it remains a controversial question how an
optimal path should be defined and identified in stochas-
tic road networks. In other words, there is no unique def-
inition of an optimal path under uncertainty. One pos-
sible and common answer to this question is to find a
path with the minimum expected travel time. The main
advantage of using this approach is that efficient short-
est path algorithms introduced for the deterministic net-
works can be readily employed to identify the path with
the minimum expected travel time in a stochastic net-
work. However, the resulting optimal path identified by
this approach may not be reliable, because this approach
fails to address travel time variability. To tackle this issue
some researchers use distribution of travel time instead
of expected value of it so they find the probability distri-
bution of total traveling time using different optimization
methods such as dynamic programming and Dijkstra’s al-
gorithm .['3 These methods use stochastic optimization,
specifically stochastic dynamic programming to find the
shortest path in networks with probabilistic arc length.[4!
It should be noted that the concept of travel time reliabil-
ity is used interchangeably with travel time variability in
the transportation research literature, so that, in general,
one can say that the higher the variability in travel time,
the lower the reliability would be, and vice versa.

In order to account for travel time reliability more accu-
rately, two common alternative definitions for an optimal
path under uncertainty have been suggested. Some have
introduced the concept of the most reliable path, aim-
ing to maximize the probability of arriving on time or
earlier than a given travel time budget. Others, alterna-
tively, have put forward the concept of an a-reliable path
based on which they intended to minimize the travel time
budget required to ensure a pre-specified on-time arrival
probability.

4.3.10 See also

e Pathfinding

e IEEE 802.1aq

e Flow network

e Shortest path tree

e Euclidean shortest path

e Min-plus matrix multiplication

e Bidirectional search, an algorithm that finds the
shortest path between two vertices on a directed
graph

e Travel time reliability
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4.4 Dijkstra’s algorithm
Not to be confused with Dykstra’s projection algorithm.

Dijkstra’s algorithm is an algorithm for finding the
shortest paths between nodes in a graph, which may rep-
resent, for example, road networks. It was conceived by
computer scientist Edsger W. Dijkstra in 1956 and pub-
lished three years later.!!?]

The algorithm exists in many variants; Dijkstra’s original
variant found the shortest path between two nodes,?! but
amore common variant fixes a single node as the “source”
node and finds shortest paths from the source to all other
nodes in the graph, producing a shortest-path tree.
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For a given source node in the graph, the algorithm
finds the shortest path between that node and every
other.13:196-206 Tt can also be used for finding the shortest
paths from a single node to a single destination node by
stopping the algorithm once the shortest path to the des-
tination node has been determined. For example, if the
nodes of the graph represent cities and edge path costs
represent driving distances between pairs of cities con-
nected by a direct road, Dijkstra’s algorithm can be used
to find the shortest route between one city and all other
cities. As a result, the shortest path algorithm is widely
used in network routing protocols, most notably IS-IS and
Open Shortest Path First (OSPF). It is also employed as
a subroutine in other algorithms such as Johnson’s.

Dijkstra’s original algorithm does not use a min-priority
queue and runs in time O(|V|?) (where |V/| is the num-
ber of nodes). The idea of this algorithm is also given
in Leyzorek et al. 1957. The implementation based on
a min-priority queue implemented by a Fibonacci heap
and running in O(|E| + |V|log|V]) (where |E| is the
number of edges) is due to Fredman & Tarjan 1984.
This is asymptotically the fastest known single-source
shortest-path algorithm for arbitrary directed graphs with
unbounded non-negative weights. However, specialized
cases (such as bounded/integer weights, directed acyclic
graphs etc.) can indeed be improved further as detailed
in § Specialized variants.

In some fields, artificial intelligence in particular, Dijk-
stra’s algorithm or a variant of it is known as uniform-
cost search and formulated as an instance of the more
general idea of best-first search.[*!

4.4.1 History

Dijkstra thought about the shortest path problem when
working at the Mathematical Center in Amsterdam in
1956 as a programmer to demonstrate capabilities of
a new computer called ARMAC. His objective was to
choose both a problem as well as an answer (that would be
produced by computer) that non-computing people could
understand. He designed the shortest path algorithm and
later implemented it for ARMAC for a slightly simpli-
fied transportation map of 64 cities in the Netherlands
(64, so that 6 bits would be sufficient to encode the city
number).['l A year later, he came across another prob-
lem from hardware engineers working on the institute’s
next computer: minimize the amount of wire needed
to connect the pins on the back panel of the machine.
As a solution, he re-discovered the algorithm known as
Prim’s minimal spanning tree algorithm (known earlier
to Jarnik, and also rediscovered by Prim).!>!l% Dijkstra
published the algorithm in 1959, two years after Prim and
29 years after Jarnik.!”/[8]
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4.4. DIJKSTRA'S ALGORITHM

Hllustration of Dijkstra’s algorithm search for finding path from
a start node (lower left, red) to a goal node (upper right, green) in
a robot motion planning problem. Open nodes represent the ‘ten-
tative” set. Filled nodes are visited ones, with color representing
the distance: the greener, the farther. Nodes in all the different
directions are explored uniformly, appearing as a more-or-less
circular wavefront as Dijkstra’s algorithm uses a heuristic iden-
tically equal to 0.

4.4.2 Algorithm

Let the node at which we are starting be called the ini-
tial node. Let the distance of node Y be the distance
from the initial node to Y. Dijkstra’s algorithm will as-
sign some initial distance values and will try to improve
them step by step.

1. Assign to every node a tentative distance value: set
it to zero for our initial node and to infinity for all
other nodes.

2. Set the initial node as current. Mark all other nodes
unvisited. Create a set of all the unvisited nodes
called the unvisited set.

3. For the current node, consider all of its unvis-
ited neighbors and calculate their fentative distances.
Compare the newly calculated fentative distance to
the current assigned value and assign the smaller
one. For example, if the current node A is marked
with a distance of 6, and the edge connecting it with
a neighbor B has length 2, then the distance to B
(through A) will be 6 + 2 = 8. If B was previously
marked with a distance greater than 8 then change it
to 8. Otherwise, keep the current value.

4. When we are done considering all of the neighbors
of the current node, mark the current node as visited
and remove it from the unvisited set. A visited node
will never be checked again.
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5. If the destination node has been marked visited
(when planning a route between two specific nodes)
or if the smallest tentative distance among the nodes
in the unvisited set is infinity (when planning a com-
plete traversal; occurs when there is no connection
between the initial node and remaining unvisited
nodes), then stop. The algorithm has finished.

6. Otherwise, select the unvisited node that is marked
with the smallest tentative distance, set it as the new
“current node”, and go back to step 3.

4.4.3 Description

Note: For ease of understanding, this discussion
uses the terms intersection, road and map —
however, in formal terminology these terms are
vertex, edge and graph, respectively.

Suppose you would like to find the shortest path between
two intersections on a city map: a starting point and a
destination. Dijkstra’s algorithm initially marks the dis-
tance (from the starting point) to every other intersection
on the map with infinity. This is done not to imply there
is an infinite distance, but to note that those intersections
have not yet been visited; some variants of this method
simply leave the intersections’ distances unlabeled. Now,
at each iteration, select the current intersection. For the
first iteration, the current intersection will be the starting
point, and the distance to it (the intersection’s label) will
be zero. For subsequent iterations (after the first), the cur-
rent intersection will be the closest unvisited intersection
to the starting point (this will be easy to find).

From the current intersection, update the distance to ev-
ery unvisited intersection that is directly connected to it.
This is done by determining the sum of the distance be-
tween an unvisited intersection and the value of the cur-
rent intersection, and relabeling the unvisited intersection
with this value (the sum), if it is less than its current value.
In effect, the intersection is relabeled if the path to it
through the current intersection is shorter than the pre-
viously known paths. To facilitate shortest path identifi-
cation, in pencil, mark the road with an arrow pointing
to the relabeled intersection if you label/relabel it, and
erase all others pointing to it. After you have updated
the distances to each neighboring intersection, mark the
current intersection as visited, and select the unvisited in-
tersection with lowest distance (from the starting point)
— or the lowest label—as the current intersection. Nodes
marked as visited are labeled with the shortest path from
the starting point to it and will not be revisited or returned
to.

Continue this process of updating the neighboring inter-
sections with the shortest distances, then marking the cur-
rent intersection as visited and moving onto the closest
unvisited intersection until you have marked the destina-
tion as visited. Once you have marked the destination as
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visited (as is the case with any visited intersection) you
have determined the shortest path to it, from the starting
point, and can trace your way back, following the arrows
in reverse; in the algorithm’s implementations, this is usu-
ally done (after the algorithm has reached the destination
node) by following the nodes’ parents from the destina-
tion node up to the starting node; that’s why we keep also
track of each node’s parent.

This algorithm makes no attempt to direct “exploration”
towards the destination as one might expect. Rather, the
sole consideration in determining the next “current” inter-
section is its distance from the starting point. This algo-
rithm therefore expands outward from the starting point,
interactively considering every node that is closer in terms
of shortest path distance until it reaches the destination.
When understood in this way, it is clear how the algo-
rithm necessarily finds the shortest path. However, it may
also reveal one of the algorithm’s weaknesses: its relative
slowness in some topologies.

4.4.4 Pseudocode

In the following algorithm, the code u « vertex in Q with
min dist[u], searches for the vertex u in the vertex set Q
that has the least dist[u] value. length(u, v) returns the
length of the edge joining (i.e. the distance between) the
two neighbor-nodes u and v. The variable alt on line 17 is
the length of the path from the root node to the neighbor
node v if it were to go through u. If this path is shorter
than the current shortest path recorded for v, that current
path is replaced with this alt path. The prev array is pop-
ulated with a pointer to the “next-hop” node on the source
graph to get the shortest route to the source.
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A demo of Dijkstra’s algorithm based on Euclidean distance. Red
lines are the shortest path covering, i.e., connecting u and prev[u].
Blue lines indicate where relaxing happens, i.e., connecting v with
a node u in Q, which gives a shorter path from the source to v.
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1 function Dijkstra(Graph, source): 2 3 create vertex
set Q 4 5 for each vertex v in Graph: // Initialization 6
dist[v] «- INFINITY // Unknown distance from source to
v 7 prev[v] <~ UNDEFINED // Previous node in optimal
path from source 8 add v to Q // All nodes initially in Q
(unvisited nodes) 9 10 dist[source] < 0 // Distance from
source to source 11 12 while Q is not empty: 13 u « ver-
tex in Q with min dist[u] // Node with the least distance
will be selected first 14 remove u from Q 15 16 for each
neighbor v of u: // where v is still in Q. 17 alt « dist[u] +
length(u, v) 18 if alt < dist[v]: // A shorter path to v has
been found 19 dist[v] < alt 20 prev[v] « u 21 22 return
dist[], prev[]

If we are only interested in a shortest path between ver-
tices source and target, we can terminate the search after
line 13 if u = target. Now we can read the shortest path
from source to target by reverse iteration:

1 S < empty sequence 2 u « target 3 while prev[u] is de-
fined: // Construct the shortest path with a stack S 4 insert
u at the beginning of S // Push the vertex onto the stack 5
u « prev{u] // Traverse from target to source 6 insert u at
the beginning of S // Push the source onto the stack

Now sequence S is the list of vertices constituting one
of the shortest paths from source to target, or the empty
sequence if no path exists.

A more general problem would be to find all the shortest
paths between source and target (there might be several
different ones of the same length). Then instead of stor-
ing only a single node in each entry of prev[] we would
store all nodes satisfying the relaxation condition. For
example, if both r and source connect to target and both
of them lie on different shortest paths through target (be-
cause the edge cost is the same in both cases), then we
would add both r and source to prev[target]. When the
algorithm completes, prev[] data structure will actually
describe a graph that is a subset of the original graph with
some edges removed. Its key property will be that if the
algorithm was run with some starting node, then every
path from that node to any other node in the new graph
will be the shortest path between those nodes in the orig-
inal graph, and all paths of that length from the original
graph will be present in the new graph. Then to actually
find all these shortest paths between two given nodes we
would use a path finding algorithm on the new graph, such
as depth-first search.

Using a priority queue

A min-priority queue is an abstract data type that pro-
vides 3 basic operations : add_with_priority(), de-
crease_priority() and extract_min(). As mentioned ear-
lier, using such a data structure can lead to faster comput-
ing times than using a basic queue. Notably, Fibonacci
heap (Fredman & Tarjan 1984) or Brodal queue offer
optimal implementations for those 3 operations. As the
algorithm is slightly different, we mention it here, in
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pseudo-code as well :

1 function Dijkstra(Graph, source): 2 dist[source] « 0
// Initialization 3 4 create vertex set Q 5 6 for each ver-
tex v in Graph: 7 if v # source 8 dist[v] « INFINITY //
Unknown distance from source to v 9 prev[v] <~ UNDE-
FINED // Predecessor of v 10 11 Q.add_with_priority(v,
dist[v]) 12 13 14 while Q is not empty: // The main loop
15 u « Q.extract_min() // Remove and return best vertex
16 for each neighbor v of u: //only v that is still in Q 17
alt = dist[u] + length(u, v) 18 if alt < dist[v] 19 dist[v] «
alt 20 prev[v] « u 21 Q.decrease_priority(v, alt) 22 23
return dist[], prev[]

Instead of filling the priority queue with all nodes in the
initialization phase, it is also possible to initialize it to
contain only source; then, inside the if alf < dist[v] block,
the node must be inserted if not already in the queue (in-
stead of performing a decrease_priority operation)./*:1%

Other data structures can be used to achieve even faster
computing times in practice.!

4.4.5 Proof of correctness

Proof is by induction on the number of visited nodes.

Invariant hypothesis: For each visited node v, dist[v] is
the shortest distance from source to v; and for each un-
visited node u, dist[u] is the shortest distance via visited
nodes only from source to u (if such a path exists, other-
wise infinity; note we do not assume dist[u] is the actual
shortest distance for unvisited nodes).

The base case is when there is just one visited node,
namely the initial node source, and the hypothesis is triv-
ial.

Assume the hypothesis for n-1 visited nodes. Now we
choose an edge vu where u has the least dist[u] of any un-
visited node and the edge vu is such that dist[u] = dist[v]
+ length[v,u]. dist[u] must be the shortest distance from
source to u because if there were a shorter path, and if w
was the first unvisited node on that path then by hypoth-
esis dist[w] < dist[u] creating a contradiction. Similarly
if there was a shorter path to u without using unvisited
nodes then dist[u] would have been less than dist[v] +
length[v,u].

After processing u it will still be true that for each unvis-
ited node w, dist[w] is the shortest distance from source
to w using visited nodes only, since if there were a shorter
path which doesn't visit u we would have found it previ-
ously, and if there is a shorter path using u we update it
when processing u .

4.4.6 Running time

Bounds of the running time of Dijkstra’s algorithm on
a graph with edges I and vertices V' can be expressed
, and
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the number of vertices, denoted |V| , using big-O nota-
tion. How tight a bound is possible depends on the way
the vertex set @ is implemented. In the following, upper
bounds can be simplified because |E| = O(]V|?) for any
graph, but that simplification disregards the fact that in
some problems, other upper bounds on | E'| may hold.

For any implementation of the vertex set () , the running
time is in

O(|E| : Tdk + |V| : Tem)

where Ty, and T, are the complexities of the decrease-
key and extract-minimum operations in () , respectively.
The simplest implementation of Dijkstra’s algorithm
stores the vertex set ) as an ordinary linked list or array,
and extract-minimum is simply a linear search through
all vertices in () . In this case, the running time is
O(IE| + V) = O(IV[?) .

For sparse graphs, that is, graphs with far fewer than |V |2
edges, Dijkstra’s algorithm can be implemented more ef-
ficiently by storing the graph in the form of adjacency lists
and using a self-balancing binary search tree, binary heap,
pairing heap, or Fibonacci heap as a priority queue to
implement extracting minimum efficiently. To perform
decrease-key steps in a binary heap efficiently, it is nec-
essary to use an auxiliary data structure that maps each
vertex to its position in the heap, and to keep this struc-
ture up to date as the priority queue ) changes. With a
self-balancing binary search tree or binary heap, the al-
gorithm requires

O(([E]+ V) log [V])

time in the worst case; for connected graphs this time
bound can be simplified to O(|E|log|V|) . The
Fibonacci heap improves this to

O(|E| + [V]log V)

When using binary heaps, the average case time complex-
ity is lower than the worst-case: assuming edge costs are
drawn independently from a common probability distri-
bution, the expected number of decrease-key operations
is bounded by O(|V| log(|E|/|V])) , giving a total run-
ning time of31:199-200

O(IE| + V] log 2]

log |V

Practical optimizations and infinite graphs

In common presentations of Dijkstra’s algorithm, initially
all nodes are entered into the priority queue. This is,
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however, not necessary: the algorithm can start with a
priority queue that contains only one item, and insert new
items as they are discovered (instead of doing a decrease-
key, check whether the key is in the queue; if it is, de-
crease its key, otherwise insert it).31198 Thig variant has
the same worst-case bounds as the common variant, but
maintains a smaller priority queue in practice, speeding
up the queue operations.*!

Moreover, not inserting all nodes in a graph makes it pos-
sible to extend the algorithm to find the shortest path from
a single source to the closest of a set of target nodes on
infinite graphs or those too large to represent in mem-
ory. The resulting algorithm is called uniform-cost search
(UCS) in the artificial intelligence literature!*/!'9/111 and
can be expressed in pseudocode as

procedure UniformCostSearch(Graph, start, goal) node
« start cost < O frontier « priority queue containing
node only explored « empty set do if frontier is empty
return failure node « frontier.pop() if node is goal
return solution explored.add(node) for each of node’s
neighbors n if n is not in explored if n is not in frontier
frontier.add(n) else if n is in frontier with higher cost re-
place existing node with n

The complexity of this algorithm can be expressed in an
alternative way for very large graphs: when C* is the
length of the shortest path from the start node to any node
satisfying the “goal” predicate, each edge has cost at least
g, and the number of neighbors per node is bounded by b,
then the algorithm’s worst-case time and space complex-
ity are both in O(p!*C /1) 110]

Further optimizations of Dijkstra’s algorithm for the
single-target case include bidirectional variants, goal-
directed variants such as the A* algorithm (see § Related
problems and algorithms), graph pruning to determine
which nodes are likely to form the middle segment of
shortest paths (reach-based routing), and hierarchical de-
compositions of the input graph that reduce s—¢ routing to
connecting s and t to their respective “transit nodes” fol-
lowed by shortest-path computation between these transit
nodes using a “highway”.l'>! Combinations of such tech-
niques may be needed for optimal practical performance
on specific problems.?!

Specialized variants

When arc weights are small integers (bounded by a pa-
rameter C), a monotone priority queue can be used to
speed up Dijkstra’s algorithm. The first algorithm of
this type was Dial’s algorithm, which used a bucket
queue to obtain a running time O(|E| 4+ diam(G)) that
depends on the weighted diameter of a graph with in-
teger edge weights (Dial 1969). The use of a Van
Emde Boas tree as the priority queue brings the com-
plexity to O(|E|loglogC) (Ahuja et al. 1990). An-
other interesting implementation based on a combi-
nation of a new radix heap and the well-known Fi-
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bonacci heap runs in time O(|E| + |V |y/Iog C) (Ahuja
et al. 1990). Finally, the best algorithms in this
special case are as follows. The algorithm given by
(Thorup 2000) runs in O(|E|loglog|V|) time and the
algorithm given by (Raman 1997) runs in O(|E| +
|V | min{(log |V[)1/3+¢, (log C)*/4*<}) time.

Also, for directed acyclic graphs, it is possible to find
shortest paths from a given starting vertex in linear
O(|E| + |V]) time, by processing the vertices in a
topological order, and calculating the path length for each
vertex to be the minimum length obtained via any of its
incoming edges.['41113]

In the special case of integer weights and undirected
graphs, Dijkstra’s algorithm can be completely countered
with a linear O(|V'| 4+ |E|) complexity algorithm, given
by (Thorup 1999).

4.4.7 Related problems and algorithms

The functionality of Dijkstra’s original algorithm can be
extended with a variety of modifications. For example,
sometimes it is desirable to present solutions which are
less than mathematically optimal. To obtain a ranked list
of less-than-optimal solutions, the optimal solution is first
calculated. A single edge appearing in the optimal solu-
tion is removed from the graph, and the optimum solution
to this new graph is calculated. Each edge of the origi-
nal solution is suppressed in turn and a new shortest-path
calculated. The secondary solutions are then ranked and
presented after the first optimal solution.

Dijkstra’s algorithm is usually the working principle be-
hind link-state routing protocols, OSPF and IS-IS being
the most common ones.

Unlike Dijkstra’s algorithm, the Bellman—Ford algorithm
can be used on graphs with negative edge weights, as long
as the graph contains no negative cycle reachable from the
source vertex s. The presence of such cycles means there
is no shortest path, since the total weight becomes lower
each time the cycle is traversed. It is possible to adapt
Dijkstra’s algorithm to handle negative weight edges by
combining it with the Bellman-Ford algorithm (to remove
negative edges and detect negative cycles), such an algo-
rithm is called Johnson’s algorithm.

The A* algorithm is a generalization of Dijkstra’s algo-
rithm that cuts down on the size of the subgraph that
must be explored, if additional information is available
that provides a lower bound on the “distance” to the tar-
get. This approach can be viewed from the perspective of
linear programming: there is a natural linear program for
computing shortest paths, and solutions to its dual linear
program are feasible if and only if they form a consistent
heuristic (speaking roughly, since the sign conventions
differ from place to place in the literature). This feasible
dual / consistent heuristic defines a non-negative reduced
cost and A* is essentially running Dijkstra’s algorithm
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with these reduced costs. If the dual satisfies the weaker
condition of admissibility, then A* is instead more akin
to the Bellman—Ford algorithm.

The process that underlies Dijkstra’s algorithm is similar
to the greedy process used in Prim’s algorithm. Prim’s
purpose is to find a minimum spanning tree that connects
all nodes in the graph; Dijkstra is concerned with only
two nodes. Prim’s does not evaluate the total weight of
the path from the starting node, only the individual path.

Breadth-first search can be viewed as a special-case of Di-
jkstra’s algorithm on unweighted graphs, where the pri-
ority queue degenerates into a FIFO queue.

Fast marching method can be viewed as a continuous ver-
sion of Dijkstra’s algorithm which computes the geodesic
distance on a triangle mesh.

Dynamic programming perspective

From a dynamic programming point of view, Dijk-
stra’s algorithm is a successive approximation scheme
that solves the dynamic programming functional equa-
tion for the shortest path problem by the Reaching
method. 16111711181

In fact, Dijkstra’s explanation of the logic behind the
algorithm,!"! namely

Problem 2. Find the path of minimum to-
tal length between two given nodes P and @

We use the fact that, if R is a node on the
minimal path from P to @) , knowledge of the

latter implies the knowledge of the minimal
path from P to R .

is a paraphrasing of Bellman’s famous Principle of Opti-
mality in the context of the shortest path problem.

4.4.8 See also

e A* search algorithm

Bellman—Ford algorithm

Euclidean shortest path

Flood fill

Floyd—Warshall algorithm

Johnson’s algorithm

Longest path problem
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4.4.11 External links

e Oral history interview with Edsger W. Dijkstra,
Charles Babbage Institute University of Minnesota,
Minneapolis.

e Implementation of Dijkstra’s algorithm using TDD,
Robert Cecil Martin, The Clean Code Blog

4.5 Bellman-Ford algorithm

The Bellman—Ford algorithm is an algorithm that com-
putes shortest paths from a single source vertex to all of
the other vertices in a weighted digraph.!'! It is slower
than Dijkstra’s algorithm for the same problem, but more
versatile, as it is capable of handling graphs in which
some of the edge weights are negative numbers. The algo-
rithm was first proposed by Alfonso Shimbel in 1955, but
is instead named after Richard Bellman and Lester Ford,
Jr., who published it in 1958 and 1956, respectively.?!
Edward F. Moore also published the same algorithm in
1957, and for this reason it is also sometimes called the
Bellman-Ford-Moore algorithm.[!!

Negative edge weights are found in various applications
of graphs, hence the usefulness of this algorithm.B! If a
graph contains a “negative cycle” (i.e. a cycle whose edges
sum to a negative value) that is reachable from the source,
then there is no cheapest path: any path that has a point on
the negative cycle can be made cheaper by one more walk
around the negative cycle. In such a case, the Bellman—
Ford algorithm can detect negative cycles and report their
existence.!'14]
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—1 or 4 iterations for the distance estimates to converge. Con-
versely, if the edges are processed in the best order, from left to
right, the algorithm converges in a single iteration.

4.5.1 Algorithm

Like Dijkstra’s Algorithm, Bellman—Ford is based on the
principle of relaxation, in which an approximation to the
correct distance is gradually replaced by more accurate
values until eventually reaching the optimum solution. In
both algorithms, the approximate distance to each vertex
is always an overestimate of the true distance, and is re-
placed by the minimum of its old value with the length
of a newly found path. However, Dijkstra’s algorithm
uses a priority queue to greedily select the closest vertex
that has not yet been processed, and performs this relax-
ation process on all of its outgoing edges; by contrast, the
Bellman-Ford algorithm simply relaxes all the edges, and
does this |V| — 1 times, where |V/| is the number of ver-
tices in the graph. In each of these repetitions, the num-
ber of vertices with correctly calculated distances grows,
from which it follows that eventually all vertices will have
their correct distances. This method allows the Bellman—
Ford algorithm to be applied to a wider class of inputs
than Dijkstra.

Bellman—Ford runs in O(|V| - |E|) time, where |V | and
|E| are the number of vertices and edges respectively.

function BellmanFord(list vertices, list edges, vertex
source) ::distance[],predecessor[] // This implementation
takes in a graph, represented as // lists of vertices and
edges, and fills two arrays // (distance and predecessor)
with shortest-path // (less cost/distance/metric) informa-
tion // Step 1: initialize graph for each vertex v in ver-
tices: distance[v] := inf // At the beginning , all vertices
have a weight of infinity predecessor[v] := null // And a
null predecessor distance[source] := 0 // Except for the
Source, where the Weight is zero // Step 2: relax edges re-
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peatedly for i from 1 to size(vertices)—1: for each edge
(u, v) with weight w in edges: if distance[u] + w < dis-
tance[v]: distance[v] := distance[u] + w predecessor[v]
==u // Step 3: check for negative-weight cycles for each
edge (u, v) with weight w in edges: if distance[u] + w
< distance[v]: error “Graph contains a negative-weight
cycle” return distance([], predecessor][]

Simply put, the algorithm initializes the distance to the
source to 0 and all other nodes to infinity. Then for all
edges, if the distance to the destination can be shortened
by taking the edge, the distance is updated to the new
lower value. At each iteration ¢ that the edges are scanned,
the algorithm finds all shortest paths of at most length
1 edges (and possibly some paths longer than i edges).
Since the longest possible path without a cycle can be
|[V| — 1 edges, the edges must be scanned |V| — 1 times
to ensure the shortest path has been found for all nodes.
A final scan of all the edges is performed and if any dis-
tance is updated, then a path of length | V| edges has been
found which can only occur if at least one negative cycle
exists in the graph.

4.5.2 Proof of correctness

The correctness of the algorithm can be shown by
induction. The precise statement shown by induction is:

Lemma. After i repetitions of for loop:

o If Distance(u) is not infinity, it is equal to the length
of some path from s to u;

o If there is a path from s to u with at most i edges,
then Distance(u) is at most the length of the shortest
path from s to u with at most i edges.

Proof. For the base case of induction, consider i=0 and
the moment before for loop is executed for the first time.
Then, for the source vertex, source.distance = 0, which is
correct. For other vertices u, u.distance = infinity, which
is also correct because there is no path from source to u
with O edges.

For the inductive case, we first prove the first part. Con-
sider a moment when a vertex’s distance is updated by
v.distance := u.distance + uv.weight. By inductive as-
sumption, u.distance is the length of some path from
source to u. Then u.distance + uv.weight is the length
of the path from source to v that follows the path from
source to u and then goes to v.

For the second part, consider the shortest path from
source to u with at most i edges. Let v be the last ver-
tex before u on this path. Then, the part of the path from
source to v is the shortest path from source to v with at
most i-/ edges. By inductive assumption, v.distance af-
ter i—1 iterations is at most the length of this path. There-
fore, uv.weight + v.distance is at most the length of the
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path from s to u. In the i iteration, u.distance gets com-
pared with uv.weight + v.distance, and is set equal to it
if uv.weight + v.distance was smaller. Therefore, after i
iteration, u.distance is at most the length of the shortest
path from source to u that uses at most i edges.

If there are no negative-weight cycles, then every short-
est path visits each vertex at most once, so at step 3 no
further improvements can be made. Conversely, suppose
no improvement can be made. Then for any cycle with
vertices v[0], ..., v[k—1],

v[i].distance <= v[i-1 (mod k)].distance + v[i-1 (mod
k)]v[i].weight

Summing around the cycle, the v[i].distance and v[i—1
(mod k)].distance terms cancel, leaving

0 <= sum from 1 to k of v[i-1 (mod k)]v[i].weight

Le., every cycle has nonnegative weight.

4.5.3 Finding negative cycles

When the algorithm is used to find shortest paths, the ex-
istence of negative cycles is a problem, preventing the al-
gorithm from finding a correct answer. However, since
it terminates upon finding a negative cycle, the Bellman—
Ford algorithm can be used for applications in which this
is the target to be sought - for example in cycle-cancelling
techniques in network flow analysis.[!!

4.5.4 Applications in routing

A distributed variant of the Bellman—Ford algorithm is
used in distance-vector routing protocols, for example
the Routing Information Protocol (RIP). The algorithm
is distributed because it involves a number of nodes
(routers) within an Autonomous system, a collection of
IP networks typically owned by an ISP. It consists of the
following steps:

1. Each node calculates the distances between itself
and all other nodes within the AS and stores this in-
formation as a table.

2. Each node sends its table to all neighboring nodes.

3. When a node receives distance tables from its neigh-
bors, it calculates the shortest routes to all other
nodes and updates its own table to reflect any
changes.

The main disadvantages of the Bellman—Ford algorithm
in this setting are as follows:

e It does not scale well.

e Changes in network topology are not reflected
quickly since updates are spread node-by-node.
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e Count to infinity if link or node failures render a
node unreachable from some set of other nodes,
those nodes may spend forever gradually increasing
their estimates of the distance to it, and in the mean-
time there may be routing loops.

4.5.5 Improvements

The Bellman—Ford algorithm may be improved in prac-
tice (although not in the worst case) by the observation
that, if an iteration of the main loop of the algorithm ter-
minates without making any changes, the algorithm can
be immediately terminated, as subsequent iterations will
not make any more changes. With this early termination
condition, the main loop may in some cases use many
fewer than | V' | — 1 iterations, even though the worst case
of the algorithm remains unchanged.

Yen (1970) described two more improvements to the
Bellman—Ford algorithm for a graph without negative-
weight cycles; again, while making the algorithm faster
in practice, they do not change its O(|V| - | E||) worst case
time bound. His first improvement reduces the number
of relaxation steps that need to be performed within each
iteration of the algorithm. If a vertex v has a distance
value that has not changed since the last time the edges
out of v were relaxed, then there is no need to relax the
edges out of v a second time. In this way, as the number
of vertices with correct distance values grows, the num-
ber whose outgoing edges that need to be relaxed in each
iteration shrinks, leading to a constant-factor savings in
time for dense graphs.

Yen’s second improvement first assigns some arbitrary
linear order on all vertices and then partitions the set of
all edges into two subsets. The first subset, Ef, contains
all edges (vi, vj) such that i < j; the second, Eb, contains
edges (vi, vj) such that i > j. Each vertex is visited in the
order vy, va, ..., WIVI, relaxing each outgoing edge from
that vertex in Ef. Each vertex is then visited in the order
VIV, vIVL,, ..., v1, relaxing each outgoing edge from that
vertex in Eb. Each iteration of the main loop of the algo-
rithm, after the first one, adds at least two edges to the set
of edges whose relaxed distances match the correct short-
est path distances: one from Ef and one from Eb. This
modification reduces the worst-case number of iterations

of the main loop of the algorithm from | V' 1-1 to |V'|/2
[5116]

Another improvement, by Bannister & Eppstein (2012),
replaces the arbitrary linear order of the vertices used
in Yen’s second improvement by a random permutation.
This change makes the worst case for Yen’s improvement
(in which the edges of a shortest path strictly alternate be-
tween the two subsets Ef and Eb) very unlikely to happen.
With a randomly permuted vertex ordering, the expected
number of iterations needed in the main loop is at most
V]/3.1°
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4.6. A* SEARCH ALGORITHM

4.5.6 Notes

[1] Bang-Jensen & Gutin (2000)

[2] Schrijver (2005)

[3] Sedgewick (2002).

[4] Kleinberg & Tardos (2006).

[5] Cormen et al., 2nd ed., Problem 24-1, pp. 614-615.

[6] See Sedgewick’s web exercises for Algorithms, 4th ed., ex-
ercises 5 and 11 (retrieved 2013-01-30).
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4.6 A* search algorithm

In computer science, A* (pronounced as “A star” ()
listen)) is a computer algorithm that is widely used in
pathfinding and graph traversal, the process of plotting an
efficiently directed path between multiple points, called
nodes. It enjoys widespread use due to its performance
and accuracy. However, in practical travel-routing sys-
tems, it is generally outperformed by algorithms which
can pre-process the graph to attain better performance,!!!
although other work has found A* to be superior to other
approaches.”!

Peter Hart, Nils Nilsson and Bertram Raphael of Stanford
Research Institute (now SRI International) first described
the algorithm in 1968.%) It is an extension of Edsger Di-
jkstra’s 1959 algorithm. A* achieves better performance
by using heuristics to guide its search.

4.6.1 History

In 1968, Al researcher Nils Nilsson was trying to improve
the path planning done by Shakey the Robot, a proto-
type robot that could navigate through a room contain-
ing obstacles. This path-finding algorithm, which Nils-
son called A1, was a faster version of the then best known
method, Dijkstra’s algorithm, for finding shortest paths in
graphs. Bertram Raphael suggested some significant im-
provements upon this algorithm, calling the revised ver-
sion A2. Then Peter E. Hart introduced an argument
that established A2, with only minor changes, to be the
best possible algorithm for finding shortest paths. Hart,
Nilsson and Raphael then jointly developed a proof that
the revised A2 algorithm was optimal for finding shortest
paths under certain well-defined conditions.
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A* was invented by researchers working on Shakey the Robot’s
path planning.

4.6.2 Description

A* is an informed search algorithm, or a best-first search,
meaning that it solves problems by searching among all
possible paths to the solution (goal) for the one that in-
curs the smallest cost (least distance travelled, shortest
time, etc.), and among these paths it first considers the
ones that appear to lead most quickly to the solution. It is
formulated in terms of weighted graphs: starting from a
specific node of a graph, it constructs a tree of paths start-
ing from that node, expanding paths one step at a time,
until one of its paths ends at the predetermined goal node.

At each iteration of its main loop, A* needs to deter-
mine which of its partial paths to expand into one or more
longer paths. It does so based on an estimate of the cost
(total weight) still to go to the goal node. Specifically, A*
selects the path that minimizes

f(n) = g(n) + h(n)

where n is the last node on the path, g(n) is the cost of the
path from the start node to n, and A(n) is a heuristic that
estimates the cost of the cheapest path from n to the goal.
The heuristic is problem-specific. For the algorithm to
find the actual shortest path, the heuristic function must
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be admissible, meaning that it never overestimates the ac-
tual cost to get to the nearest goal node.

Typical implementations of A* use a priority queue to
perform the repeated selection of minimum (estimated)
cost nodes to expand. This priority queue is known as
the open set or fringe. At each step of the algorithm,
the node with the lowest f(x) value is removed from the
queue, the f and g values of its neighbors are updated ac-
cordingly, and these neighbors are added to the queue.
The algorithm continues until a goal node has a lower
f value than any node in the queue (or until the queue
is empty).lover-alpha 1l The f value of the goal is then the
length of the shortest path, since h at the goal is zero in
an admissible heuristic.

The algorithm described so far gives us only the length of
the shortest path. To find the actual sequence of steps, the
algorithm can be easily revised so that each node on the
path keeps track of its predecessor. After this algorithm
is run, the ending node will point to its predecessor, and
so on, until some node’s predecessor is the start node.

As an example, when searching for the shortest route on a
map, h(x) might represent the straight-line distance to the
goal, since that is physically the smallest possible distance
between any two points.

If the heuristic h satisfies the additional condition /(x)
< d(x, y) + h(y) for every edge (x, y) of the graph
(where d denotes the length of that edge), then h is called
monotone, or consistent. In such a case, A* can be im-
plemented more efficiently—roughly speaking, no node
needs to be processed more than once (see closed set
below)—and A* is equivalent to running Dijkstra’s algo-
rithm with the reduced cost d'(x, y) = d(x, y) + h(y) —
h(x).

Pseudocode

The following pseudocode describes the algorithm:

function A*(start, goal) // The set of nodes already eval-
uated. closedSet := {} // The set of currently discovered
nodes that are already evaluated. // Initially, only the
start node is known. openSet := {start} // For each node,
which node it can most efficiently be reached from. // If
a node can be reached from many nodes, cameFrom will
eventually contain the // most efficient previous step.
cameFrom := the empty map // For each node, the cost
of getting from the start node to that node. gScore :=
map with default value of Infinity // The cost of going
from start to start is zero. gScore[start] := 0 // For each
node, the total cost of getting from the start node to
the goal // by passing by that node. That value is partly
known, partly heuristic. fScore := map with default value
of Infinity // For the first node, that value is completely
heuristic. fScore[start] := heuristic_cost_estimate(start,
goal) while openSet is not empty current := the node
in openSet having the lowest fScore[] value if current
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= goal return reconstruct_path(cameFrom, current)
openSet.Remove(current) closedSet.Add(current) for
each neighbor of current if neighbor in closedSet con-
tinue // Ignore the neighbor which is already evaluated.
/I The distance from start to a neighbor tentative_gScore
= gScore[current] + dist_between(current, neigh-
bor) if neighbor not in openSet // Discover a new
node openSet.Add(neighbor) else if tentative_gScore
>= gScore[neighbor] continue // This is not a better
path. // This path is the best until now. Record it!
cameFrom[neighbor] := current gScore[neighbor] :=
tentative_gScore fScore[neighbor] := gScore[neighbor]
+  heuristic_cost_estimate(neighbor,  goal) return
failure function reconstruct_path(cameFrom, cur-
rent) total_path := [current] while current in
cameFrom.Keys: current := cameFrom[current] to-
tal_path.append(current) return total_path

Remark: the above pseudocode assumes that the heuris-
tic function is monotonic (or consistent, see below), which
is a frequent case in many practical problems, such as the
Shortest Distance Path in road networks. However, if the
assumption is not true, nodes in the closed set may be
rediscovered and their cost improved. In other words,
the closed set can be omitted (yielding a tree search algo-
rithm) if a solution is guaranteed to exist, or if the algo-
rithm is adapted so that new nodes are added to the open
set only if they have a lower f value than at any previous
iteration.

Hlustration of A* search for finding path from a start node to a
goal node in a robot motion planning problem. The empty circles
represent the nodes in the open set, i.e., those that remain to be
explored, and the filled ones are in the closed set. Color on each
closed node indicates the distance from the start: the greener, the
farther. One can first see the A* moving in a straight line in the
direction of the goal, then when hitting the obstacle, it explores
alternative routes through the nodes from the open set.

See also: Dijkstra’s algorithm
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Example

An example of an A* algorithm in action where nodes
are cities connected with roads and h(x) is the straight-
line distance to target point:

2

4

Key: green: start; blue: goal; orange: visited

The A* algorithm also has real-world applications. In this
example, edges are railroads and h(x) is the great-circle
distance (the shortest possible distance on a sphere) to
the target. The algorithm is searching for a path between
Washington, D.C. and Los Angeles.

fla)=15 + 4
fid)=2 + 4.5
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Monotonicity implies admissibility when the heuristic es-
timate at any goal node itself is zero, since (letting P =
(f,v1,v2,...,vn,g) be a shortest path from any node f to the
nearest goal g):
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@ order of breaking ties in|the priority
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4.6.3 Properties

Like breadth-first search, A* is complete and will always
find a solution if one exists provided d(z,y) > & > 0 for
fixed € .

If the heuristic function 4 is admissible, meaning that it
never overestimates the actual minimal cost of reaching
the goal, then A* is itself admissible (or optimal) if we do
not use a closed set. If a closed set is used, then 2 must
also be monotonic (or consistent) for A* to be optimal.
This means that for any pair of adjacent nodes x and y,
where denotes the length of the edge between them, we
must have:

h(z) < d(z,y) + h(y)

This ensures that for any path X from the initial node to
x:

L(X) +h(z) < L(X)+d(z,y) +h(y) = LY) +h(y)

where L is a function that denotes the length of a path,
and Y is the path X extended to include y. In other words,
it is impossible to decrease (total distance so far + esti-
mated remaining distance) by extending a path to include
a neighboring node. (This is analogous to the restric-
tion to nonnegative edge weights in Dijkstra’s algorithm.)

i!miwleted using the A* by ggsiglering that there is a
global counter C initialized with a very large value. Ev-
ery time we process a node we assign C to all of its newly
discovered neighbors. After each single assignment, we
decrease the counter C by one. Thus the earlier a node is
discovered, the higher its value. It should be noted, how-
ever, that both Dijkstra’s algorithm and depth-first search
can be implemented more efficiently without including a
value at each node.

Implementation details

There are a number of simple optimizations or implemen-
tation details that can significantly affect the performance
of an A* implementation. The first detail to note is that
the way the priority queue handles ties can have a sig-
nificant effect on performance in some situations. If ties
are broken so the queue behaves in a LIFO manner, A*
will behave like depth-first search among equal cost paths
(avoiding exploring more than one equally optimal solu-
tion).

‘When a path is required at the end of the search, it is com-
mon to keep with each node a reference to that node’s
parent. At the end of the search these references can be
used to recover the optimal path. If these references are
being kept then it can be important that the same node
doesn't appear in the priority queue more than once (each
entry corresponding to a different path to the node, and
each with a different cost). A standard approach here
is to check if a node about to be added already appears
in the priority queue. If it does, then the priority and
parent pointers are changed to correspond to the lower
cost path. A standard binary heap based priority queue
does not directly support the operation of searching for
one of its elements, but it can be augmented with a hash

2)+h(vz) < ... < L(P)+h(
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table that maps elements to their position in the heap, al-
lowing this decrease-priority operation to be performed
in logarithmic time. Alternatively, a Fibonacci heap can
perform the same decrease-priority operations in constant
amortized time.

4.6.4 Admissibility and optimality

A* is admissible and considers fewer nodes than any other
admissible search algorithm with the same heuristic. This
is because A* uses an “optimistic” estimate of the cost of
a path through every node that it considers—optimistic in
that the true cost of a path through that node to the goal
will be at least as great as the estimate. But, critically,
as far as A* “knows”, that optimistic estimate might be
achievable.

To prove the admissibility of A*, the solution path re-
turned by the algorithm is used as follows:

When A* terminates its search, it has found a path whose
actual cost is lower than the estimated cost of any path
through any open node. But since those estimates are
optimistic, A* can safely ignore those nodes. In other
words, A* will never overlook the possibility of a lower-
cost path and so is admissible.

Suppose now that some other search algorithm B termi-
nates its search with a path whose actual cost is not less
than the estimated cost of a path through some open node.
Based on the heuristic information it has, Algorithm B
cannot rule out the possibility that a path through that
node has a lower cost. So while B might consider fewer
nodes than A*, it cannot be admissible. Accordingly, A*
considers the fewest nodes of any admissible search algo-
rithm.

This is only true if both:

e A* uses an admissible heuristic. Otherwise, A* is
not guaranteed to expand fewer nodes than another
search algorithm with the same heuristic.%!

e A* solves only one search problem rather than
a series of similar search problems. Otherwise,
A* is not guaranteed to expand fewer nodes than
incremental heuristic search algorithms.!”!

Bounded relaxation

While the admissibility criterion guarantees an optimal
solution path, it also means that A* must examine all
equally meritorious paths to find the optimal path. It is
possible to speed up the search at the expense of optimal-
ity by relaxing the admissibility criterion. Oftentimes we
want to bound this relaxation, so that we can guarantee
that the solution path is no worse than (1 + €) times the
optimal solution path. This new guarantee is referred to
as g-admissible.
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A* search that uses a heuristic that is 5.0(=¢) times a consistent
heuristic, and obtains a suboptimal path.

There are a number of e-admissible algorithms:

e Weighted A*/Static Weighting.®! If ha(n) is an ad-
missible heuristic function, in the weighted version
of the A* search one uses hiw(n) = € ha(n), € > 1
as the heuristic function, and perform the A* search
as usual (which eventually happens faster than us-
ing ha since fewer nodes are expanded). The path
hence found by the search algorithm can have a cost
of at most € times that of the least cost path in the
graph.”!

e Dynamic Weighting!'"! uses the cost function ,
1- 4 gm) <N
0 otherwise

is the depth of the search and N is the anticipated
length of the solution path.

where w(n) = ,and where

e Sampled Dynamic Weighting!'!! uses sampling of
nodes to better estimate and debias the heuristic er-
ror.

o A 21 yses two heuristic functions. The first is the
FOCAL list, which is used to select candidate nodes,
and the second A F is used to select the most promis-
ing node from the FOCAL list.

e Acl3l gelects nodes with the function , where A and
B are constants. If no nodes can be selected, the
algorithm will backtrack with the function , where
C and D are constants.

o AlphA*['4] attempts to promote depth-first exploita-
tion by preferring recently expanded nodes. AlphA*
uses the cost function f,(n) = (1 + ws(n))f(n)
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A < g(n
 where 1wy (1) 9(m(n)) < (1)
A otherwise
A are constants with A < A, zz(n) is the parent of n, and
71 is the most recently expanded node.

, where A and

4.6.5 Complexity

The time complexity of A* depends on the heuristic. In
the worst case of an unbounded search space, the number
of nodes expanded is exponential in the depth of the solu-
tion (the shortest path) d: O(b?), where b is the branching
factor (the average number of successors per state).!!)
This assumes that a goal state exists at all, and is reach-
able from the start state; if it is not, and the state space is
infinite, the algorithm will not terminate.

The heuristic function has a major effect on the practical
performance of A* search, since a good heuristic allows
A* to prune away many of the b? nodes that an unin-
formed search would expand. Its quality can be expressed
in terms of the effective branching factor b*, which can
be determined empirically for a problem instance by mea-
suring the number of nodes expanded, N, and the depth
of the solution, then solving!'®!

N+1=1+b"+ ()24 + (09

Good heuristics are those with low effective branching
factor (the optimal being b* = 1).

The time complexity is polynomial when the search space
is a tree, there is a single goal state, and the heuristic func-
tion & meets the following condition:

|h(x) — h*(z)| = O(log h™ ()

where 4" is the optimal heuristic, the exact cost to get
from x to the goal. In other words, the error of h will not
grow faster than the logarithm of the “perfect heuristic”
h” that returns the true distance from x to the goal.’1[!>]

4.6.6 Applications

A* is commonly used for the common pathfinding prob-
lem in applications such as games, but was originally de-
signed as a general graph traversal algorithm.(®! It finds
applications to diverse problems, including the problem
of parsing using stochastic grammars in NLP.!'”] Other
cases include an Informational search with online learn-
ing [18]

4.6.7 Relations to other algorithms
What sets A* apart from a greedy best-first search algo-

rithm is that it takes the cost/distance already traveled,
g(n), into account.
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Some common variants of Dijkstra’s algorithm can be
viewed as a special case of A* where the heuristic h(n) =
0 for all nodes;*/B! in turn, both Dijkstra and A* are spe-
cial cases of dynamic programming.'*! A* itself is a spe-
cial case of a generalization of branch and bound®” and
can be derived from the primal-dual algorithm for linear
programming.?!!

Variants of A*
e Anytime Repairing A* (ARA*)[?!
e Block A*
e D*
e Field D*
e Fringe
e Fringe Saving A* (FSA¥*)
e Generalized Adaptive A* (GAA¥)
o IDA*
e Informational search %!
e Jump point search
o Lifelong Planning A* (LPA¥)
e Simplified Memory bounded A* (SMA*)
e Theta*
e Anytime A* 23]
e Realtime A* (4]
e Anytime Dynamic A*
A* can also be adapted to a bidirectional search algo-

rithm. Special care needs to be taken for the stopping
criterion.!?!

4.6.8 See also

e Pathfinding
e Breadth-first search
e Depth-first search

e Any-angle path planning, search for paths that are
not limited to move along graph edges but rather can
take on any angle

4.6.9 Notes

[1] Goal nodes may be passed over multiple times if there
remain other nodes with lower f values, as they may lead
to a shorter path to a goal.
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Chapter 5

Analysis

5.1 Bipartite graph

Example of a bipartite graph without cycles

A complete bipartite graph withm = 5 and n = 3

In the mathematical field of graph theory, a bipartite
graph (or bigraph) is a graph whose vertices can be di-
vided into two disjoint sets U and V' (that is, U and V'
are each independent sets) such that every edge connects
avertex in U to one in V' . Vertex sets U and V' are usu-
ally called the parts of the graph. Equivalently, a bipar-
tite graph is a graph that does not contain any odd-length
cycles.[1112]

The two sets U and V' may be thought of as a coloring
of the graph with two colors: if one colors all nodes in U
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blue, and all nodes in V' green, each edge has endpoints
of differing colors, as is required in the graph coloring
problem.'™ In contrast, such a coloring is impossible in
the case of a non-bipartite graph, such as a triangle: after
one node is colored blue and another green, the third ver-
tex of the triangle is connected to vertices of both colors,
preventing it from being assigned either color.

One often writes G = (U, V, E) to denote a bipartite
graph whose partition has the parts U and V' , with E
denoting the edges of the graph. If a bipartite graph is
not connected, it may have more than one bipartition;"!
in this case, the (U, V, E) notation is helpful in specifying
one particular bipartition that may be of importance in an
application. If |U| = |V|, that is, if the two subsets have
equal cardinality, then G is called a balanced bipartite
graph.®! If all vertices on the same side of the bipartition
have the same degree, then G is called biregular.

5.1.1 Examples

When modelling relations between two different classes
of objects, bipartite graphs very often arise naturally. For
instance, a graph of football players and clubs, with an
edge between a player and a club if the player has played
for that club, is a natural example of an affiliation network,
a type of bipartite graph used in social network analysis.®!

Another example where bipartite graphs appear naturally
is in the (NP-complete) railway optimization problem, in
which the input is a schedule of trains and their stops, and
the goal is to find a set of train stations as small as possi-
ble such that every train visits at least one of the chosen
stations. This problem can be modeled as a dominating
set problem in a bipartite graph that has a vertex for each
train and each station and an edge for each pair of a sta-
tion and a train that stops at that station.”]

A third example is in the academic field of numismatics.
Ancient coins are made using two positive impressions of
the design (the obverse and reverse). The charts numis-
matists produce to represent the production of coins are
bipartite graphs. (!

More abstract examples include the following:

e Every tree is bipartite.]
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e Cycle graphs with an even number of vertices are
bipartite.[*!

e Every planar graph whose faces all have even length
is bipartite.””] Special cases of this are grid graphs
and squaregraphs, in which every inner face consists
of 4 edges and every inner vertex has four or more
neighbors.[1*!

e The complete bipartite graph on m and n vertices,
denoted by Kn,m is the bipartite graph G = (U, V,
E), where U and V are disjoint sets of size m and
n, respectively, and E connects every vertex in U
with all vertices in V. It follows that Km,n has mn
edges.!'!! Closely related to the complete bipartite
graphs are the crown graphs, formed from complete
bipartite graphs by removing the edges of a perfect
matching.[?!

e Hypercube graphs, partial cubes, and median graphs
are bipartite. In these graphs, the vertices may be la-
beled by bitvectors, in such a way that two vertices
are adjacent if and only if the corresponding bitvec-
tors differ in a single position. A bipartition may be
formed by separating the vertices whose bitvectors
have an even number of ones from the vertices with
an odd number of ones. Trees and squaregraphs
form examples of median graphs, and every median
graph is a partial cube.!'*!

5.1.2 Properties
Characterization

Bipartite graphs may be characterized in several different
ways:

e A graph is bipartite if and only if it does not contain
an odd cycle.['¥

e A graph is bipartite if and only if it is 2-colorable,
(i.e. its chromatic number is less than or equal to
2).13]

e The spectrum of a graph is symmetric if and only if
it’s a bipartite graph.[!>!

Konig’s theorem and perfect graphs

In bipartite graphs, the size of minimum vertex cover
is equal to the size of the maximum matching; this
is Konig’s theorem.!'®17] An alternative and equivalent
form of this theorem is that the size of the maximum in-
dependent set plus the size of the maximum matching is
equal to the number of vertices. In any graph without
isolated vertices the size of the minimum edge cover plus
the size of a maximum matching equals the number of
vertices.!'8! Combining this equality with Konig’s theo-
rem leads to the facts that, in bipartite graphs, the size of
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the minimum edge cover is equal to the size of the maxi-
mum independent set, and the size of the minimum edge
cover plus the size of the minimum vertex cover is equal
to the number of vertices.

Another class of related results concerns perfect graphs:
every bipartite graph, the complement of every bipartite
graph, the line graph of every bipartite graph, and the
complement of the line graph of every bipartite graph,
are all perfect. Perfection of bipartite graphs is easy to
see (their chromatic number is two and their maximum
clique size is also two) but perfection of the complements
of bipartite graphs is less trivial, and is another restate-
ment of Konig’s theorem. This was one of the results
that motivated the initial definition of perfect graphs.!”!
Perfection of the complements of line graphs of perfect
graphs is yet another restatement of Konig’s theorem, and
perfection of the line graphs themselves is a restatement
of an earlier theorem of Konig, that every bipartite graph
has an edge coloring using a number of colors equal to its
maximum degree.

According to the strong perfect graph theorem, the per-
fect graphs have a forbidden graph characterization re-
sembling that of bipartite graphs: a graph is bipartite if
and only if it has no odd cycle as a subgraph, and a graph is
perfect if and only if it has no odd cycle or its complement
as an induced subgraph. The bipartite graphs, line graphs
of bipartite graphs, and their complements form four out
of the five basic classes of perfect graphs used in the proof
of the strong perfect graph theorem.>!

Degree

For a vertex, the number of adjacent vertices is called the
degree of the vertex and is denoted deg(v) . The degree
sum formula for a bipartite graph states that

S deg(v) = 3 deg(u) = |

veV uelU

The degree sequence of a bipartite graph is the pair of
lists each containing the degrees of the two parts U and
V' . For example, the complete bipartite graph K3,5 has
degree sequence (5,5,5),(3,3,3,3,3) . Isomorphic bi-
partite graphs have the same degree sequence. However,
the degree sequence does not, in general, uniquely iden-
tify a bipartite graph; in some cases, non-isomorphic bi-
partite graphs may have the same degree sequence.

The bipartite realization problem is the problem of find-
ing a simple bipartite graph with the degree sequence
being two given lists of natural numbers. (Trailing ze-
ros may be ignored since they are trivially realized by
adding an appropriate number of isolated vertices to the
digraph.)
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Relation to hypergraphs and directed graphs

The biadjacency matrix of a bipartite graph (U,V, E)
is a (0,1)-matrix of size |U| x |V| that has a one for
each pair of adjacent vertices and a zero for nonadja-
cent vertices.!*!! Biadjacency matrices may be used to
describe equivalences between bipartite graphs, hyper-
graphs, and directed graphs.

A hypergraph is a combinatorial structure that, like an
undirected graph, has vertices and edges, but in which
the edges may be arbitrary sets of vertices rather than
having to have exactly two endpoints. A bipartite graph
(U, V, E) may be used to model a hypergraph in which
U is the set of vertices of the hypergraph, V is the set
of hyperedges, and F contains an edge from a hyper-
graph vertex v to a hypergraph edge e exactly when v
is one of the endpoints of v . Under this correspondence,
the biadjacency matrices of bipartite graphs are exactly
the incidence matrices of the corresponding hypergraphs.
As a special case of this correspondence between bipar-
tite graphs and hypergraphs, any multigraph (a graph in
which there may be two or more edges between the same
two vertices) may be interpreted as a hypergraph in which
some hyperedges have equal sets of endpoints, and rep-
resented by a bipartite graph that does not have multiple
adjacencies and in which the vertices on one side of the
bipartition all have degree two.[??]

A similar reinterpretation of adjacency matrices may
be used to show a one-to-one correspondence between
directed graphs (on a given number of labeled vertices,
allowing self-loops) and balanced bipartite graphs, with
the same number of vertices on both sides of the biparti-
tion. For, the adjacency matrix of a directed graph with n
vertices can be any (0, 1) -matrix of size n xn , which can
then be reinterpreted as the adjacency matrix of a bipar-
tite graph with 1 vertices on each side of its bipartition.**!
In this construction, the bipartite graph is the bipartite
double cover of the directed graph.

5.1.3 Algorithms
Testing bipartiteness

It is possible to test whether a graph is bipartite, and to re-
turn either a two-coloring (if it is bipartite) or an odd cycle
(if it is not) in linear time, using depth-first search. The
main idea is to assign to each vertex the color that differs
from the color of its parent in the depth-first search tree,
assigning colors in a preorder traversal of the depth-first-
search tree. This will necessarily provide a two-coloring
of the spanning tree consisting of the edges connecting
vertices to their parents, but it may not properly color
some of the non-tree edges. In a depth-first search tree,
one of the two endpoints of every non-tree edge is an
ancestor of the other endpoint, and when the depth first
search discovers an edge of this type it should check that
these two vertices have different colors. If they do not,

CHAPTER 5. ANALYSIS

then the path in the tree from ancestor to descendant,
together with the miscolored edge, form an odd cycle,
which is returned from the algorithm together with the
result that the graph is not bipartite. However, if the al-
gorithm terminates without detecting an odd cycle of this
type, then every edge must be properly colored, and the
algorithm returns the coloring together with the result that
the graph is bipartite.[>*!

Alternatively, a similar procedure may be used with
breadth-first search in place of depth-first search. Again,
each node is given the opposite color to its parent in the
search tree, in breadth-first order. If, when a vertex is
colored, there exists an edge connecting it to a previously-
colored vertex with the same color, then this edge to-
gether with the paths in the breadth-first search tree con-
necting its two endpoints to their lowest common ancestor
forms an odd cycle. If the algorithm terminates without
finding an odd cycle in this way, then it must have found
a proper coloring, and can safely conclude that the graph
is bipartite.[>>]

For the intersection graphs of n line segments or other
simple shapes in the Euclidean plane, it is possible to test
whether the graph is bipartite and return either a two-
coloring or an odd cycle in time O(n logn) , even though
the graph itself may have as many as Q(n?) edges.*®!

0Odd cycle transversal

A graph with an odd cycle transversal of size 2: removing the
two blue bottom vertices leaves a bipartite graph.

Odd cycle transversal is an NP-complete algorithmic
problem that asks, given a graph G = (V,E) and a number
k, whether there exists a set of k vertices whose removal
from G would cause the resulting graph to be bipartite.!>”)
The problem is fixed-parameter tractable, meaning that
there is an algorithm whose running time can be bounded
by a polynomial function of the size of the graph multi-
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plied by a larger function of £.1?8! More specifically, the
time for this algorithm is O(3* mn), although this was not
stated in that paper.”®! The result by Reed et al. was ob-
tained using a completely new method, which later was
called iterative compression and turned out to be an ex-
tremely useful algorithmic tool, especially in the field of
fixed-parameter tractability. This tool is now considered
one of the fundamental tools for parameterized algorith-
mics.

The name odd cycle transversal comes from the fact that
a graph is bipartite if and only if it has no odd cycles.
Hence, to delete vertices from a graph in order to obtain
a bipartite graph, one needs to “hit all odd cycle”, or find
a so-called odd cycle transversal set. In the illustration,
one can observe that every odd cycle in the graph contains
the blue (the bottommost) vertices, hence removing those
vertices kills all odd cycles and leaves a bipartite graph.

The edge bipartization problem is the algorithmic prob-
lem of deleting as few edges as possible to make a
graph bipartite and is also an important problem in graph
modification algorithmics. This problem is also fixed-
parameter tractable, and can be solved in time O(2*
m?),13% where k is the number of edges to delete and m
is the number of edges in the input graph.

Matching

A matching in a graph is a subset of its edges, no two of
which share an endpoint. Polynomial time algorithms are
known for many algorithmic problems on matchings, in-
cluding maximum matching (finding a matching that uses
as many edges as possible), maximum weight matching,
and stable marriage.*'! In many cases, matching prob-
lems are simpler to solve on bipartite graphs than on non-
bipartite graphs,[*?! and many matching algorithms such
as the Hopcroft—Karp algorithm for maximum cardinal-
ity matching!®3! work correctly only on bipartite inputs.

As a simple example, suppose that a set P of people are
all seeking jobs from among a set of J jobs, with not all
people suitable for all jobs. This situation can be mod-
eled as a bipartite graph (P, J, E) where an edge con-
nects each job-seeker with each suitable job.1** A perfect
matching describes a way of simultaneously satisfying all
job-seekers and filling all jobs; Hall’s marriage theorem
provides a characterization of the bipartite graphs which
allow perfect matchings. The National Resident Match-
ing Program applies graph matching methods to solve
this problem for U.S. medical student job-seekers and
hospital residency jobs.[**!

The Dulmage—Mendelsohn decomposition is a structural
decomposition of bipartite graphs that is useful in finding
maximum matchings.3!

87

5.1.4 Additional applications

Bipartite graphs are extensively used in modern coding
theory, especially to decode codewords received from the
channel. Factor graphs and Tanner graphs are examples
of this. A Tanner graph is a bipartite graph in which the
vertices on one side of the bipartition represent digits of
a codeword, and the vertices on the other side represent
combinations of digits that are expected to sum to zero in
a codeword without errors.1*”] A factor graph is a closely
related belief network used for probabilistic decoding of
LDPC and turbo codes.*®!

In computer science, a Petri net is a mathematical mod-
eling tool used in analysis and simulations of concurrent
systems. A system is modeled as a bipartite directed
graph with two sets of nodes: A set of “place” nodes that
contain resources, and a set of “event” nodes which gener-
ate and/or consume resources. There are additional con-
straints on the nodes and edges that constrain the behavior
of the system. Petri nets utilize the properties of bipartite
directed graphs and other properties to allow mathemati-
cal proofs of the behavior of systems while also allowing
easy implementation of simulations of the system.[*"!

In projective geometry, Levi graphs are a form of bipar-
tite graph used to model the incidences between points
and lines in a configuration. Corresponding to the geo-
metric property of points and lines that every two lines
meet in at most one point and every two points be con-
nected with a single line, Levi graphs necessarily do not
contain any cycles of length four, so their girth must be
six or more. 0]

5.1.5 See also

e Bipartite dimension, the minimum number of com-
plete bipartite graphs whose union is the given graph

e Bipartite double cover, a way of transforming any
graph into a bipartite graph by doubling its vertices

e Bipartite matroid, a class of matroids that includes
the graphic matroids of bipartite graphs

e Bipartite network projection, a weighting technique
for compressing information about bipartite net-
works

e Convex bipartite graph, a bipartite graph whose ver-
tices can be ordered so that the vertex neighbor-
hoods are contiguous

e Multipartite graph, a generalization of bipartite
graphs to more than two subsets of vertices

e Parity graph, a generalization of bipartite graphs in
which every two induced paths between the same
two points have the same parity
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e Quasi-bipartite graph, a type of Steiner tree problem
instance in which the terminals form an independent
set, allowing approximation algorithms that general-
ize those for bipartite graphs

e Split graph, a graph in which the vertices can be par-
titioned into two subsets, one of which is indepen-
dent and the other of which is a clique

e Zarankiewicz problem on the maximum number of
edges in a bipartite graph with forbidden subgraphs
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5.2 Complete bipartite graph

In the mathematical field of graph theory, a complete bi-
partite graph or biclique is a special kind of bipartite
graph where every vertex of the first set is connected to
every vertex of the second set.!!?]

Graph theory itself is typically dated as beginning with
Leonhard Euler's 1736 work on the Seven Bridges of
Konigsberg. However, drawings of complete bipartite
graphs were already printed as early as 1669, in connec-
tion with an edition of the works of Ramon Llull edited by
Athanasius Kircher.?! Llull himself had made similar
drawings of complete graphs three centuries earlier."”!

5.2.1 Definition

A complete bipartite graph is a graph whose vertices
can be partitioned into two subsets V; and V5 such that
no edge has both endpoints in the same subset, and every
possible edge that could connect vertices in different sub-
sets is part of the graph. That s, itis a bipartite graph (V,
V3, E) such that for every two vertices v; € V1 and v, €
V3, v1vs is an edge in E. A complete bipartite graph with
partitions of size |V |=m and |V5|=n, is denoted K ;{1
every two graphs with the same notation are isomorphic.

5.2.2 Examples

~ K

The star graphs K1,3, K1,4, K1,5, and K1,6.

e For any k, K,k is called a star.[2 All complete bi-
partite graphs which are trees are stars.

e The graph K,3 is called a claw, and is used to define
the claw-free graphs.!

e The graph K3,3 is called the utility graph. This us-
age comes from a standard mathematical puzzle in
which three utilities must each be connected to three
buildings; it is impossible to solve without crossings
due to the nonplanarity of K3,3.1

5.2.3 Properties

e Given a bipartite graph, testing whether it contains
a complete bipartite subgraph Ki,i for a parameter i
is an NP-complete problem.®!

e A planar graph cannot contain K3,3 as a minor; an
outerplanar graph cannot contain K3,, as a minor
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(These are not sufficient conditions for planarity and
outerplanarity, but necessary). Conversely, every
nonplanar graph contains either K3,3 or the complete
graph K5 as a minor; this is Wagner’s theorem.”!

e Every complete bipartite graph. Kn,n is a Moore
graph and a (n,4)-cage.!'”!

e The complete bipartite graphs Kn,n and Kn,n,; have
the maximum possible number of edges among all
triangle-free graphs with the same number of ver-
tices; this is Mantel’s theorem. Mantel’s result was
generalized to k-partite graphs and graphs that avoid
larger cliques as subgraphs in Turdn’s theorem, and
these two complete bipartite graphs are examples of
Turan graphs, the extremal graphs for this more gen-
eral problem.!!!!

e The complete bipartite graph Km,n has a vertex cov-
ering number of min{m,n} and an edge covering
number of max{m,n}.

e The complete bipartite graph Km,n has a maximum
independent set of size max{m,n}.

e The adjacency matrix of a complete bipartite graph
Km,n has eigenvalues N(nm), —(nm) and 0; with
multiplicity 1, 1 and n+m-2 respectively.!?!

e The Laplacian matrix of a complete bipartite graph
Kim,n has eigenvalues n+m, n, m, and 0; with multi-
plicity 1, m—1, n—1 and 1 respectively.

e A complete bipartite graph Km,n has m"! n™!
spanning trees.!!3!

e A complete bipartite graph Km,n has a maximum
matching of size min{m,n}.

e A complete bipartite graph Kn,n has a proper n-
edge-coloring corresponding to a Latin square.!'!

e Every complete bipartite graph is a modular graph:
every triple of vertices has a median that belongs to
shortest paths between each pair of vertices. !/

5.2.4 See also

e Biclique-free graph, a class of sparse graphs defined
by avoidance of complete bipartite subgraphs

e Crown graph, a graph formed by removing a perfect
matching from a complete bipartite graph

e Complete multipartite graph, a generalization of
complete bipartite graphs to more than two sets of
vertices
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net) is one of several mathematical modeling languages
for the description of distributed systems. A Petri net is
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5.3. PETRI NET

a directed bipartite graph, in which the nodes represent
transitions (i.e. events that may occur, represented by
bars) and places (i.e. conditions, represented by circles).
The directed arcs describe which places are pre- and/or
postconditions for which transitions (signified by arrows).
Some sources!!! state that Petri nets were invented in Au-
gust 1939 by Carl Adam Petri—at the age of 13—for the
purpose of describing chemical processes.

Like industry standards such as UML activity diagrams,
Business Process Model and Notation and EPCs, Petri
nets offer a graphical notation for stepwise processes that
include choice, iteration, and concurrent execution. Un-
like these standards, Petri nets have an exact mathemat-
ical definition of their execution semantics, with a well-
developed mathematical theory for process analysis.

—> )
|

(a) Petri net trajectory example

5.3.1 Petri net basics

A Petri net consists of places, transitions, and arcs. Arcs
run from a place to a transition or vice versa, never be-
tween places or between transitions. The places from
which an arc runs to a transition are called the input places
of the transition; the places to which arcs run from a tran-
sition are called the output places of the transition.

Graphically, places in a Petri net may contain a discrete
number of marks called tokens. Any distribution of to-
kens over the places will represent a configuration of the
net called a marking. In an abstract sense relating to a
Petri net diagram, a transition of a Petri net may fire if it
is enabled, i.e. there are sufficient tokens in all of its input
places; when the transition fires, it consumes the required
input tokens, and creates tokens in its output places. A
firing is atomic, i.e. a single non-interruptible step.

Unless an execution policy is defined, the execution of
Petri nets is nondeterministic: when multiple transitions
are enabled at the same time, any one of them may fire.

Since firing is nondeterministic, and multiple tokens may
be present anywhere in the net (even in the same place),
Petri nets are well suited for modeling the concurrent be-
havior of distributed systems.
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5.3.2 Formal definition and basic termi-
nology

Petri nets are state-transition systems that extend a class
of nets called elementary nets.?!

Definition 1. A ner is a triple N = (P, T, F') where:

1. P and T are disjoint finite sets of places and transi-
tions, respectively.

2. F C (PxT)U(T x P) is aset of arcs (or flow
relations).

Definition 2. Given a net N = (P, T, F), a configuration
isaset Csothat C C P.

a
(. .)\
.
b : P2
2
N, \ >
(.

e

PN.!]

A Petri net with an enabled transition.

PN,

The Petri net that follows after the transition fires (Initial Petri
net in the figure above).

Definition 3. An elementary net is a net of the form EN
= (N, C) where:

1. N=(P, T, F) is a net.

2. Cissuch that C C P is a configuration.

Definition 4. A Petri net is a net of the form PN = (N,
M, W), which extends the elementary net so that:

1. N=(P, T, F)isanet.

2. M : P — Zis aplace multiset, where Z is a countable
set. M extends the concept of configuration and is
commonly described with reference to Petri net di-
agrams as a marking.
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3. W: F — Zis an arc multiset, so that the count (or
weight) for each arc is a measure of the arc multi-
plicity.

If a Petri net is equivalent to an elementary net, then Z
can be the countable set {0,1} and those elements in P
that map to 1 under M form a configuration. Similarly, if
a Petri net is not an elementary net, then the multiset M
can be interpreted as representing a non-singleton set of
configurations. In this respect, M extends the concept of
configuration for elementary nets to Petri nets.

In the diagram of a Petri net (see top figure right), places
are conventionally depicted with circles, transitions with
long narrow rectangles and arcs as one-way arrows that
show connections of places to transitions or transitions to
places. If the diagram were of an elementary net, then
those places in a configuration would be conventionally
depicted as circles, where each circle encompasses a sin-
gle dot called a foken. In the given diagram of a Petri net
(see right), the place circles may encompass more than
one token to show the number of times a place appears in
a configuration. The configuration of tokens distributed
over an entire Petri net diagram is called a marking.

In the top figure (see right), the place p; is an input place
of transition #; whereas, the place py is an output place
to the same transition. Let PN, (Fig. top) be a Petri net
with a marking configured M, and PN; (Fig. bottom) be
a Petri net with a marking configured ;. The configura-
tion of PNy enable transition ¢ through the property that
all input places have sufficient number of tokens (shown
in the figures as dots) “equal to or greater” than the multi-
plicities on their respective arcs to . Once and only once a
transition is enabled will the transition fire. In this exam-
ple, the firing of transition ¢ generates a map that has the
marking configured M; in the image of M and results in
Petri net PNy, seen in the bottom figure. In the diagram,
the firing rule for a transition can be characterised by sub-
tracting a number of tokens from its input places equal to
the multiplicity of the respective input arcs and accumu-
lating a new number of tokens at the output places equal
to the multiplicity of the respective output arcs.

Remark 1. The precise meaning of “equal to or greater”
will depend on the precise algebraic properties of addi-
tion being applied on Z in the firing rule, where subtle
variations on the algebraic properties can lead to other
classes of Petri nets; for example, Algebraic Petri nets.!

The following formal definition is loosely based on
(Peterson 1981). Many alternative definitions exist.

Syntax

A Petri net graph (called Petri net by some, but see be-
low) is a 3-tuple (S, T, W), where

e S is a finite set of places

CHAPTER 5. ANALYSIS

e T is a finite set of transitions

e S and T are disjoint, i.e. no object can be both a
place and a transition

e W:(SxT)U(T x S)— Nisamultiset of arcs,
i.e. it assigns to each arc a non-negative integer arc
multiplicity (or weight); note that no arc may connect
two places or two transitions.

The flow relation is the set of arcs: F = {(x,y) |
W (z,y) > 0} . In many textbooks, arcs can only have
multiplicity 1. These texts often define Petri nets using
F instead of W. When using this convention, a Petri net
graph is a bipartite multigraph (S UT, F') with node par-
titions S and 7.

The preset of a transition ¢ is the set of its input places:
*t={s eS| W(s,t)> 0} ;its postset is the set of its
output places: t* = {s € S | W (¢, s) > 0} . Definitions
of pre- and postsets of places are analogous.

A marking of a Petri net (graph) is a multiset of its places,

i.e.,amapping M : S — N. We say the marking assigns
to each place a number of tokens.

A Petri net (called marked Petri net by some, see above)
is a 4-tuple (S, T, W, My), where
e (S,T,W) is a Petri net graph;

o My is the initial marking, a marking of the Petri net
graph.

Execution semantics
In words:

e firing a transition t in a marking M consumes
W (s,t) tokens from each of its input places s, and
produces W (¢, s) tokens in each of its output places
S

e a transition is enabled (it may fire) in M if there are
enough tokens in its input places for the consump-
tions to be possible, i.e. iff Vs : M(s) > W(s,t)

We are generally interested in what may happen when
transitions may continually fire in arbitrary order.

We say that a marking M' is reachable from a marking
M in one step if M ?M ", we say that it is reachable

from M if M %M " where % is the reflexive transitive

closure of ? ; that s, if it is reachable in 0 or more steps.

For a (marked) Petri net N = (S, T, W, M), we are in-
terested in the firings that can be performed starting with
the initial marking My . Its set of reachable markings is

the set R(V) 2 {M’

MOAM’}
(S, T,W)
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The reachability graph of N is the transition relation ?

restricted to its reachable markings R(N) . It is the state
space of the net.

A firing sequence for a Petri net with graph G and initial
marking M is a sequence of transitions & = (¢;, ...%;,)
such that My—— My A.. .NM,,_1—M,, . The set

Wby
of firing sequences is denoted as L(N) .

slip

5.3.3 Variations on the definition

As already remarked, a common variation is to disallow
arc multiplicities and replace the bag of arcs W with a
simple set, called the flow relation, F C (SxT)J(T'xS)
. This doesn't limit expressive power as both can repre-
sent each other.

Another common variation, e.g. in, Desel and Juhas
(2001),"*! is to allow capacities to be defined on places.
This is discussed under extensions below.

5.3.4 Formulation in terms of vectors and
matrices

The markings of a Petri net (S, 7, W, M) can be re-
garded as vectors of nonnegative integers of length |.S|

Its transition relation can be described as a pair of |.S| by
|T| matrices:

o W~ ,defined by Vs,t : W~ [s,t] = W(s,t)
o W, defined by Vs, t : Wt[s, t] = W(t,s).

Then their difference
o Wl =W+ _w-

can be used to describe the reachable markings in terms
of matrix multiplication, as follows. For any sequence of
transitions w, write o(w) for the vector that maps every
transition to its number of occurrences in w. Then, we
have

e R(N) ={M | 3w : M = My + W7 .o(w) A
w of sequence firing ais N} .

Note that it must be required that w is a firing sequence;
allowing arbitrary sequences of transitions will generally
produce a larger set.

) x  tl t2
pl 0 1 pl 1 0
WH=1p2 1 0|, W =1|p2 0 1|, Wwl=
p3 1 0 p3 0 1
pd 0 1 pd 0 0

My=1[1 0 2 1]
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P2 P4
P1 T1 . T2 o
(b) Petri net Example

5.3.5 Mathematical properties of Petri
nets

One thing that makes Petri nets interesting is that they
provide a balance between modeling power and analyz-
ability: many things one would like to know about con-
current systems can be automatically determined for Petri
nets, although some of those things are very expensive
to determine in the general case. Several subclasses of
Petri nets have been studied that can still model interest-
ing classes of concurrent systems, while these problems
become easier.

An overview of such decision problems, with decidability
and complexity results for Petri nets and some subclasses,
can be found in Esparza and Nielsen (1995).5!

Reachability

The reachability problem for Petri nets is to decide, given
a Petri net N and a marking M, whether M € R(N) .

Clearly, this is a matter of walking the reachability graph
defined above, until either we reach the requested mark-
ing or we know it can no longer be found. This is harder
than it may seem at first: the reachability graph is gener-
ally infinite, and it is not easy to determine when it is safe
to stop.

In fact, this problem was shown to be EXPSPACE-hard!®!
years before it was shown to be decidable at all (Mayr,
1981). Papers continue to be published on how to do it
efficiently.!”!

While reachability seems to be a good tool to find erro-
neous states, for practical problems the constructed graph
>Euallyc/ has {ir too many states to calculate. To alleviate
this problem, linear temporal logic is usually used in con-
15lcti_ with the tableau method to prove that such states
not be reached. LTL uses the semi-decision technique
{6 find if indeeld a state can be reached, by finding a set
é necessary conditions for the state to be reached then
proving that those conditions cannot be satisfied.
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A Petri net in which transition tq is dead, while for all 7 > 0, t;
is Lj -live

Liveness

Petri nets can be described as having different degrees of
liveness Ly — L4 . A Petrinet (N, My) is called Ly, -live
iff all of its transitions are L, -live, where a transition is

e dead, if it can never fire, i.e. it is not in any firing
sequence in L(N, My)

o [ -live (potentially fireable), iff it may fire, i.e. it is
in some firing sequence in L(N, M)

e [, -live iff it can fire arbitrarily often, i.e. if for
every positive integer k, it occurs at least k times in
some firing sequence in L(N, My)

e L3 -live iff it can fire infinitely often, i.e. if for
every positive integer k, it occurs at least k times

in V, for some prefix-closed set of firing sequences
V C L(N, My)

o [, -live (live) iff it may always fire, i.e., it is L1 -live
in every reachable marking in R(N, M)

Note that these are increasingly stringent requirements:
L; 1 -liveness implies L; -liveness, for j € 1,2, 3.

These definitions are in accordance with Murata’s
overview,®! which additionally uses L -live as a term for
dead.

Boundedness

A place in a Petri net is called k-bounded if it does not
contain more than k tokens in all reachable markings, in-
cluding the initial marking; it is said to be safe if it is
1-bounded; it is bounded if it is k-bounded for some k.

A (marked) Petri net is called k-bounded, safe, or
bounded when all of its places are. A Petri net (graph)
is called (structurally) bounded if it is bounded for every
possible initial marking.

CHAPTER 5. ANALYSIS

I3

J3

The reachability graph of N2.

Note that a Petri net is bounded if and only if its reacha-
bility graph is finite.

Boundedness is decidable by looking at covering, by con-
structing the Karp—Miller Tree.

It can be useful to explicitly impose a bound on places
in a given net. This can be used to model limited system
resources.

Some definitions of Petri nets explicitly allow this as a
syntactic feature.”! Formally, Petri nets with place capac-
ities can be defined as tuples (S, T, W, C, M) , where
(S, T,W, My) is a Petri net, C : P —IN an assignment
of capacities to (some or all) places, and the transition re-
lation is the usual one restricted to the markings in which
each place with a capacity has at most that many tokens.

For example, if in the net NV, both places are assigned ca-
pacity 2, we obtain a Petri net with place capacities, say
N2; its reachability graph is displayed on the right.

Alternatively, places can be made bounded by extending
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An unbounded Petri net, N.
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A two-bounded Petri net, obtained by extending N with “counter-
places’.

the net. To be exact, a place can be made k-bounded by
adding a “counter-place” with flow opposite to that of the
place, and adding tokens to make the total in both places
k.

5.3.6 Discrete, continuous, and hybrid
Petri nets

As well as for discrete events, there are Petri nets for
continuous and hybrid discrete-continuous processes that
are useful in discrete, continuous and hybrid control the-
ory,'% and related to discrete, continuous and hybrid
automata.

5.3.7 Extensions

There are many extensions to Petri nets. Some of them
are completely backwards-compatible (e.g. coloured
Petri nets) with the original Petri net, some add prop-
erties that cannot be modelled in the original Petri net
formalism (e.g. timed Petri nets). Although backwards-
compatible models do not extend the computational
power of Petri nets, they may have more succinct repre-
sentations and may be more convenient for modeling.['!]
Extensions that cannot be transformed into Petri nets are
sometimes very powerful, but usually lack the full range
of mathematical tools available to analyse ordinary Petri
nets.

The term high-level Petri net is used for many Petri net
formalisms that extend the basic P/T net formalism; this
includes coloured Petri nets, hierarchical Petri nets such
as Nets within Nets, and all other extensions sketched in
this section. The term is also used specifically for the type
of coloured nets supported by CPN Tools.

A short list of possible extensions:
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e Additional types of arcs; two common types are:

e a reset arc does not impose a precondi-
tion on firing, and empties the place when
the transition fires; this makes reachability
undecidable,!'?! while some other properties,
such as termination, remain decidable;!3!

e an inhibitor arc imposes the precondition that
the transition may only fire when the place
is empty; this allows arbitrary computations
on numbers of tokens to be expressed, which
makes the formalism Turing complete and im-
plies existence of a universal net.!'#]

e In a standard Petri net, tokens are indistinguishable.

In a Coloured Petri net, every token has a value.!'”!
In popular tools for coloured Petri nets such as CPN
Tools, the values of tokens are typed, and can be
tested (using guard expressions) and manipulated
with a functional programming language. A sub-
sidiary of coloured Petri nets are the well-formed
Petri nets, where the arc and guard expressions are
restricted to make it easier to analyse the net.

Another popular extension of Petri nets is hierar-
chy; this in the form of different views supporting
levels of refinement and abstraction was studied by
Fehling. Another form of hierarchy is found in so-
called object Petri nets or object systems where a
Petri net can contain Petri nets as its tokens induc-
ing a hierarchy of nested Petri nets that communi-
cate by synchronisation of transitions on different
levels. See!'%! for an informal introduction to object
Petri nets.

A vector addition system with states (VASS) is an
equivalent formalism to Petri nets. However, it can
be superficially viewed as a generalisation of Petri
nets. Consider a finite state automaton where each
transition is labelled by a transition from the Petri
net. The Petri net is then synchronised with the fi-
nite state automaton, i.e., a transition in the automa-
ton is taken at the same time as the corresponding
transition in the Petri net. It is only possible to take
a transition in the automaton if the corresponding
transition in the Petri net is enabled, and it is only
possible to fire a transition in the Petri net if there is
a transition from the current state in the automaton
labelled by it. (The definition of VASS is usually
formulated slightly differently.)

Prioritised Petri nets add priorities to transitions,
whereby a transition cannot fire, if a higher-priority
transition is enabled (i.e. can fire). Thus, transitions
are in priority groups, and e.g. priority group 3 can
only fire if all transitions are disabled in groups 1
and 2. Within a priority group, firing is s#ill non-
deterministic.

The non-deterministic property has been a very
valuable one, as it lets the user abstract a large
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number of properties (depending on what the net
is used for). In certain cases, however, the need
arises to also model the timing, not only the struc-
ture of a model. For these cases, timed Petri nets
have evolved, where there are transitions that are
timed, and possibly transitions which are not timed
(if there are, transitions that are not timed have a
higher priority than timed ones). A subsidiary of
timed Petri nets are the stochastic Petri nets that add
nondeterministic time through adjustable random-
ness of the transitions. The exponential random dis-
tribution is usually used to 'time' these nets. In this
case, the nets’ reachability graph can be used as a
continuous time Markov chain (CTMC).

e Dualistic Petri Nets (dP-Nets) is a Petri Net exten-
sion developed by E. Dawis, et al.l'”! to better rep-
resent real-world process. dP-Nets balance the du-
ality of change/no-change, action/passivity, (trans-
formation) time/space, etc., between the bipartite
Petri Net constructs of transformation and place re-
sulting in the unique characteristic of transforma-
tion marking, i.e., when the transformation is “work-
ing” it is marked. This allows for the transforma-
tion to fire (or be marked) multiple times represent-
ing the real-world behavior of process throughput.
Marking of the transformation assumes that trans-
formation time must be greater than zero. A zero
transformation time used in many typical Petri Nets
may be mathematically appealing but impractical in
representing real-world processes. dP-Nets also ex-
ploit the power of Petri Nets’ hierarchical abstrac-
tion to depict Process architecture. Complex pro-
cess systems are modeled as a series of simpler nets
interconnected through various levels of hierarchi-
cal abstraction. The process architecture of a packet
switch is demonstrated in,!'8! where development
requirements are organized around the structure of
the designed system.

There are many more extensions to Petri nets, however, it
is important to keep in mind, that as the complexity of the
net increases in terms of extended properties, the harder
it is to use standard tools to evaluate certain properties of
the net. For this reason, it is a good idea to use the most
simple net type possible for a given modelling task.

5.3.8 Restrictions

Instead of extending the Petri net formalism, we can also
look at restricting it, and look at particular types of Petri
nets, obtained by restricting the syntax in a particular way.
Ordinary Petri nets are the nets where all arc weights are
1. Restricting further, the following types of ordinary
Petri nets are commonly used and studied:

1. Inastate machine (SM), every transition has one in-
coming arc, and one outgoing arc, and all markings
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Petri Net

Asymmetric Confusion
Extended Fee Choice
free Choice

State Marked

Machine

Graph

Petri net types graphically

have exactly one token. As a consequence, there can
not be concurrency, but there can be conflict (i.e.
nondeterminism). Mathematically: V¢ € T : [t*| =
[*t] =1

2. In a marked graph (MG), every place has one in-
coming arc, and one outgoing arc. This means, that
there can not be conflict, but there can be concur-
rency. Mathematically: Vs € S : |s*] = |*s| =1

3. Ina free choice net (FC), - every arc from a place to
a transition is either the only arc from that place or
the only arc to that transition. I.e. there can be both
concurrency and conflict, but not at the same time.
Mathematically: Vs € S : (|s*| < 1)V (*(s*) =
{s})

4. Extended free choice (EFC) - a Petri net that can be
transformed into an FC.

5. In an asymmetric choice net (AC), concurrency and
conflict (in sum, confusion) may occur, but not sym-
metrically. Mathematically: Vsi,s2 € S : (s1° N
52. 75 @) — [(81. - 32.) V (82. - 81')]

5.3.9 Workflow nets

Workflow nets (WF-nets) are a subclass of Petri nets in-
tending to model the workflow of process activities.!!”!
The WF-net transitions are assigned to tasks or activities,
and places are assigned to the pre/post conditions. The
WF-nets have additional structural and operational re-
quirements, mainly the addition of a single input (source)
place with no previous transitions, and output place (sink)
with no following transitions. Accordingly start and ter-
mination markings can be defined that represent the pro-
cess status.

WF-nets have the soundness property,!'”! indicating that
a process with a start marking of k tokens in its source
place, can reach the termination state marking with k to-
kens in its sink place (defined as K-sound WF-net). Ad-
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ditionally, all the transitions in the process could fire (i.e.,
for each transition there is a reachable state in which the
transition is enabled). A general sound (G-sound) WF-
net is defined as being K-sound for every k>0.1"!

A directed path in the Petri net is defined as the sequence
of nodes (places and transitions) linked by the directed
arcs. An elementary path includes every node in the se-
quence only once.

A Well-handled Petri net is a net in which there are no
fully distinct elementary paths between a place and a tran-
sition (or transition and a place), i.e., if there are two
paths between the pair of node then these paths share
a node. An acyclic well-handled WF-net is sound (G-
sound).[?!]

Extended WF-net is a Petri net that is composed of a WF-
net with additional transition t (feedback transition). The
sink place is connected as the input place of transition t
and the source place as its output place. Firing of the tran-
sition causes iteration of the process (Note: the extended
WF-net is not a WF-net).['°]

WRI (Well-handled with Regular Iteration) WF-net, is
an extended acyclic well-handled WF-net. WRI-WF-net
can be built as composition of nets, i.e., replacing a tran-
sition within a WRI-WF-net with a subnet which is a
WRI-WF-net. The result is also WRI-WF-net. WRI-
WF-nets are G-sound,?!! therefore by using only WRI-
WF-net building blocks, one can get WF-nets that are G-
sound by construction.

The Design structure matrix (DSM) can model pro-
cess relations, and be utilized for process planning.
The DSM-nets are realization of DSM-based plans into
workflow processes by Petri nets, and are equivalent to
WRI-WF-nets. The DSM-net construction process en-
sures the soundness property of the resulting net.

5.3.10 Other models of concurrency

Other ways of modelling concurrent computation have
been proposed, including process algebra, the actor
model, and trace theory.?”! Different models pro-
vide tradeoffs of concepts such as compositionality,
modularity, and locality.

An approach to relating some of these models of con-
currency is proposed in the chapter by Winskel and
Nielsen. 23]

5.3.11 Application areas

e Business Process Modeling
e Concurrent programming
e Data analysis

e Diagnosis (Artificial intelligence)
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e Discrete process control
e Kahn process networks
e Process modeling

e Reliability engineering
e Simulation

e Software design

e Workflow management systems

5.3.12 See also

e Communicating finite-state machine

Finite state machine

e Kahn process networks

e Petri Net Markup Language

Petriscript

Process architecture

5.3.13 References

[1] Petri, Carl Adam; Reisig,
“Petri  net”. Scholarpedia.
doi:10.4249/scholarpedia.6477.

Wolfgang
3 @):

(2008).
6477.

[2] Rozenburg, G.; Engelfriet, J. (1998). “Elementary Net
Systems”. In Reisig, W.; Rozenberg, G. Lectures on Petri
Nets I: Basic Models - Advances in Petri Nets. Lecture
Notes in Computer Science. 1491. Springer. pp. 12—
121.

[3] Reisig, Wolfgang (1991). “Petri Nets and Algebraic Spec-
ifications”. Theoretical Computer Science. 80 (1): 1-34.
doi:10.1016/0304-3975(91)90203-¢.

[4] Desel, Jorg; Juhds, Gabriel (2001). “What Is a Petri
Net? Informal Answers for the Informed Reader”. In
Ehrig, Hartmut; et al. Unifying Petri Nets. LNCS. 2128.
Springerlink.com. pp. 1-25. Retrieved 2014-05-14.

[5] Esparza, Javier; Nielsen, Mogens (1995) [1994].
“Decidability issues for Petri nets - a survey”. Bulletin of
the EATCS (Revised ed.). Retrieved 2014-05-14.

[6] Lipton, R. (1976). “The Reachability Problem Requires
Exponential Space”. Technical Report 62. Yale Univer-
sity.

[7] Kiingas, P. (July 26-29, 2005). Petri Net Reachability
Checking Is Polynomial with Optimal Abstraction Hierar-
chies. Proceedings of the 6th International Symposium on
Abstraction, Reformulation and Approximation—SARA
2005. Airth Castle, Scotland, UK.

[8] Murata, Tadao (April 1989). “Petri Nets: Properties,
Analysis and Applications”. Proceedings of the IEEE. T7
(4): 541-558. doi:10.1109/5.24143. Retrieved 2014-10-
13.


https://en.wikipedia.org/wiki/Petri_net#cite_note-Hee_et_al..2C_2003-20
https://en.wikipedia.org/wiki/Path_(graph_theory)
https://en.wikipedia.org/wiki/Petri_net#cite_note-Ping_et_al..2C_2004-21
https://en.wikipedia.org/wiki/Petri_net#cite_note-Aalst.2C1998-19
https://en.wikipedia.org/wiki/Petri_net#cite_note-Ping_et_al..2C_2004-21
https://en.wikipedia.org/wiki/Design_structure_matrix
https://en.wikipedia.org/wiki/Process_algebra
https://en.wikipedia.org/wiki/Actor_model
https://en.wikipedia.org/wiki/Actor_model
https://en.wikipedia.org/wiki/Trace_theory
https://en.wikipedia.org/wiki/Petri_net#cite_note-22
https://en.wikipedia.org/wiki/Compositionality
https://en.wikipedia.org/wiki/Modularity_(programming)
https://en.wikipedia.org/wiki/Petri_net#cite_note-23
https://en.wikipedia.org/wiki/Business_Process_Modeling
https://en.wikipedia.org/wiki/Concurrent_programming
https://en.wikipedia.org/wiki/Data_analysis
https://en.wikipedia.org/wiki/Diagnosis_(Artificial_intelligence)
https://en.wikipedia.org/wiki/Sequential_function_chart
https://en.wikipedia.org/wiki/Kahn_process_networks
https://en.wikipedia.org/wiki/Process_modeling
https://en.wikipedia.org/wiki/Reliability_engineering
https://en.wikipedia.org/wiki/Simulation
https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Workflow_management_system
https://en.wikipedia.org/wiki/Communicating_finite-state_machine
https://en.wikipedia.org/wiki/Finite_state_machine
https://en.wikipedia.org/wiki/Kahn_process_networks
https://en.wikipedia.org/wiki/Petri_Net_Markup_Language
https://en.wikipedia.org/wiki/Petriscript
https://en.wikipedia.org/wiki/Process_architecture
http://www.scholarpedia.org/article/Petri_net
https://en.wikipedia.org/wiki/Scholarpedia
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.4249%252Fscholarpedia.6477
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1016%252F0304-3975%252891%252990203-e
http://www.springerlink.com/content/a6lmwqye66ll5w56/
http://citeseer.ist.psu.edu/226920.html
http://citeseer.ist.psu.edu/contextsummary/115623/0
http://citeseer.ist.psu.edu/contextsummary/115623/0
http://www.idi.ntnu.no/%257Epeep/papers/SARA2005Kung.ps
http://www.idi.ntnu.no/%257Epeep/papers/SARA2005Kung.ps
http://www.idi.ntnu.no/%257Epeep/papers/SARA2005Kung.ps
http://www.cs.uic.edu/bin/view/Murata/Publications
http://www.cs.uic.edu/bin/view/Murata/Publications
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1109%252F5.24143

98

(9]

(10]

[11]

(12]

[13]

[14]

(15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

“Petri Nets”. www.techfak.uni-bielefeld.de.

David, René; Alla, Hassane (2005). Discrete, continuous,
and hybrid Petri Nets. Springer. ISBN 978-3-540-22480-
8.

Jensen, Kurt. “A brief introduction to colored Petri nets”
(PDF).

Araki, T.; Kasami, T. (1977). “Some Decision Prob-
lems Related to the Reachability Problem for Petri
Nets”. Theoretical Computer Science. 3 (1): 85-104.
doi:10.1016/0304-3975(76)90067-0.

Dufourd, C.; Finkel, A.; Schnoebelen, Ph. (1998). “Reset
Nets Between Decidability and Undecidability”. Proceed-
ings of the 25th International Colloguium on Automata,
Languages and Programming. LNCS. 1443. pp. 103-
115.

Zaitsev, D. A. (2013).
Universal Petri Net”. IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems. 44: 1-12.
doi:10.1109/TSMC.2012.2237549.

“Toward the Minimal

“Very Brief Introduction to CP-nets”. Department of
Computer Science, University of Aarhus, Denmark.

http://llpn.com/OPNs.html

Dawis, E. P.; Dawis, J. F.; Koo, Wei-Pin (2001). Ar-
chitecture of Computer-based Systems using Dualistic Petri
Nets. 2001 IEEE International Conference on Systems,
Man, and Cybernetics. 3. pp. 1554-1558.

Dawis, E. P. (2001). Architecture of an SS7 Protocol Stack
on a Broadband Switch Platform using Dualistic Petri Nets.
2001 IEEE Pacific Rim Conference on Communications,
Computers and signal Processing. 1. pp. 323-326.

van der Aalst, W. M. P. (1998). “The application
of Petri nets to workflow management” (PDF). Jour-
nal of Circuits, Systems and Computers. 8 (1): 21-66.
doi:10.1142/s0218126698000043.

van Hee, K.; Sidorova, N.; Voorhoeve, M. (2003).
“Soundness and separability of workflow nets in the step-
wise refinement approach” (PDF). In van der Aalst, W.
M. P.; Best, E. Application and Theory of Petri Nets 2003.
Lect Notes in Comput Sci. 2678. Springer. pp. 337-356.

Ping, L.; Hao, H.; Jian, L. (2004). Moldt, Daniel, ed. On
1-soundness and soundness of workflow nets. Proc of the
3rd Workshop on Modelling of Objects, Components, and
Agents. 571. Aarhus, Denmark: DAIMI PB. pp. 21-36.

Mazurkiewicz, Antoni (1995). “Introduction to Trace
Theory”. In Diekert, V.; Rozenberg, G. The Book of
Traces. Singapore: World Scientific. pp. 3-67.

Winskel, G.; Nielsen, M. “Models for Concurrency”
(PDF). Handbook of Logic and the Foundations of Com-
puter Science. 4. OUP. pp. 1-148.

5.3.

CHAPTER 5. ANALYSIS

14 Further reading

Cardoso, Janette; Camargo, Heloisa (1999). Fuzzi-
ness in Petri Nets. Physica-Verlag. ISBN 3-7908-
1158-0.

Grobelna, Iwona (2011). “Formal verification of
embedded logic controller specification with com-
puter deduction in temporal logic”. Przeglad Elek-
trotechniczny. 87 (12a): 47-50.

Jensen, Kurt (1997). Coloured Petri Nets. Springer
Verlag. ISBN 3-540-62867-3.

Korog, Bagum (1984). Cemu Ilempu (Petri Nets, in
Russian). Hayka, Mockaa.

Pataricza, Andras (2004). Formdlis mdédszerek az
informatikaban (Formal methods in informatics).

TYPOTEX Kiadé. ISBN 963-9548-08-1.

Peterson, James L. (1977).
ACM Computing Surveys.
doi:10.1145/356698.356702.

“Petri  Nets”.
9 (3): 223-252.

Peterson, James Lyle (1981). “Petri Net Theory and
the Modeling of Systems”. Prentice Hall. ISBN 0-
13-661983-5.

Petri, Carl A. (1962). Kommunikation mit Auto-
maten (Ph. D. thesis). University of Bonn.

Petri, Carl Adam; Reisig, Wolfgang.
“Petri net”. Scholarpedia. 3 @): 64717.
doi:10.4249/scholarpedia.6477. Retrieved 2008-
07-13.

Reisig, Wolfgang (1992). A Primer in Petri Net De-
sign. Springer-Verlag. ISBN 3-540-52044-9.

Riemann, Robert-Christoph (1999).  Modelling
of Concurrent Systems: Structural and Semantical
Methods in the High Level Petri Net Calculus. Her-
bert Utz Verlag. ISBN 3-89675-629-X.

Storrle, Harald (2000). Models of Software Archi-
tecture - Design and Analysis with UML and Petri-
Nets (PDF). Books on Demand. ISBN 3-8311-
1330-0.

Zhou, Mengchu; Dicesare, Frank (1993). Petri Net
Synthesis for Discrete Event Control of Manufactur-
ing Systems. Kluwer Academic Publishers. ISBN
0-7923-9289-2.

Zhou, Mengchu; Venkatesh, Kurapati (1998). Mod-
eling, Simulation, & Control of Flexible Manufactur-
ing Systems: A Petri Net Approach. World Scientific
Publishing. ISBN 981-02-3029-X.

Zaitsev, Dmitry (2013). Clans of Petri Nets: Veri-
fication of protocols and performance evaluation of
networks. LAP LAMBERT Academic Publishing.
ISBN 978-3-659-42228-7.


http://www.techfak.uni-bielefeld.de/~mchen/BioPNML/Intro/pnfaq.html
https://books.google.com/books?id=VsS0JkMcXGwC
https://books.google.com/books?id=VsS0JkMcXGwC
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-3-540-22480-8
https://en.wikipedia.org/wiki/Special:BookSources/978-3-540-22480-8
http://heim.ifi.uio.no/~andersmo/petrinet/papers/cpn/brief.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1016%252F0304-3975%252876%252990067-0
https://en.wikipedia.org/wiki/Lecture_Notes_in_Computer_Science
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1109%252FTSMC.2012.2237549
http://www.daimi.au.dk/CPnets/intro/verybrief.html
http://llpn.com/OPNs.html
http://wwwis.win.tue.nl/~wvdaalst/publications/p53.pdf
http://wwwis.win.tue.nl/~wvdaalst/publications/p53.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1142%252Fs0218126698000043
http://www.win.tue.nl/~sidorova/03/van_Hee_Sidorova_Voorhoeve.pdf
http://www.win.tue.nl/~sidorova/03/van_Hee_Sidorova_Voorhoeve.pdf
http://www.daimi.au.dk/PB/463/PB-463.pdf
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/3-7908-1158-0
https://en.wikipedia.org/wiki/Special:BookSources/3-7908-1158-0
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/3-540-62867-3
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/963-9548-08-1
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F356698.356702
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-13-661983-5
https://en.wikipedia.org/wiki/Special:BookSources/0-13-661983-5
http://www.scholarpedia.org/article/Petri_net
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.4249%252Fscholarpedia.6477
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/3-540-52044-9
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/3-89675-629-X
http://www.pst.informatik.uni-muenchen.de/~stoerrle/V/Dissertation.pdf
http://www.pst.informatik.uni-muenchen.de/~stoerrle/V/Dissertation.pdf
http://www.pst.informatik.uni-muenchen.de/~stoerrle/V/Dissertation.pdf
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/3-8311-1330-0
https://en.wikipedia.org/wiki/Special:BookSources/3-8311-1330-0
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-7923-9289-2
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/981-02-3029-X
https://www.morebooks.de/store/gb/book/clans-of-petri-nets/isbn/978-3-659-42228-7
https://www.morebooks.de/store/gb/book/clans-of-petri-nets/isbn/978-3-659-42228-7
https://www.morebooks.de/store/gb/book/clans-of-petri-nets/isbn/978-3-659-42228-7
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-3-659-42228-7

5.4. ADJACENCY MATRIX

5.3.15 External links

e Petri Nets World
e Petri Net Markup Language

e Java implementation of Petri nets in the jBPT li-
brary (see jbpt-petri module)

e Java Petri net simulator

e Petia Wohed’s Flash-based tutorial introduction to
Workflow Technology with Petri Nets

e List of Petri net tools

5.4 Adjacency matrix

In graph theory and computer science, an adjacency ma-
trix is a square matrix used to represent a finite graph.
The elements of the matrix indicate whether pairs of ver-
tices are adjacent or not in the graph.

In the special case of a finite simple graph, the adjacency
matrix is a (0,1)-matrix with zeros on its diagonal. If the
graph is undirected, the adjacency matrix is symmetric.
The relationship between a graph and the eigenvalues and
eigenvectors of its adjacency matrix is studied in spectral
graph theory.

The adjacency matrix should be distinguished from the
incidence matrix for a graph, a different matrix repre-
sentation whose elements indicate whether vertex—edge
pairs are incident or not.

5.4.1 Definition

For a simple graph with vertex set V, the adjacency matrix
isasquare | V | x| V | matrix A such that its element Ajj
is one when there is an edge from vertex i to vertex j,
and zero when there is no edge.!'! The diagonal elements
of the matrix are all zero, since edges from a vertex to
itself (loops) are not allowed in simple graphs. It is also
sometimes useful in algebraic graph theory to replace the
nonzero elements with algebraic variables.?!

The same concept can be extended to multigraphs and
graphs with loops by storing the number of edges be-
tween each two vertices in the corresponding matrix ele-
ment, and by allowing nonzero diagonal elements. Loops
may be counted either once (as a single edge) or twice (as
two vertex-edge incidences), as long as a consistent con-
vention is followed. Undirected graphs often use the lat-
ter convention of counting loops twice, whereas directed
graphs typically use the former convention.

Adjacency matrix of a bipartite graph

The adjacency matrix A of a bipartite graph whose two
parts have r and s vertices can be written in the form

99

0., B
A= (BT Os,s>7

where B is an r x s matrix, and Or,r and Os,s represent
the r x r and s X 5 zero matrices. In this case, the smaller
matrix B uniquely represents the graph, and the remaining
parts of A can be discarded as redundant. B is sometimes
called the biadjacency matrix.

Formally, let G = (U, V, E) be a bipartite graph with parts
U={uy,...,ur}and V = {vq, ..., vs}. The biadjacency
matrix is the r x s 0—1 matrix B in which bi,j = 1 if and
only if (ui, vj) € E.

If G is a bipartite multigraph or weighted graph then the
elements bi,j are taken to be the number of edges between
the vertices or the weight of the edge (ui, vj), respectively.

Variations

An (a, b, ¢)-adjacency matrix A of a simple graph has
Ai,j = a if (i, j) is an edge, b if it is not, and ¢ on the
diagonal. The Seidel adjacency matrix is a (-1, 1, 0)-
adjacency matrix. This matrix is used in studying strongly
regular graphs and two-graphs.!

The distance matrix has in position (i, j) the distance
between vertices vi and vj. The distance is the length of
a shortest path connecting the vertices. Unless lengths
of edges are explicitly provided, the length of a path is
the number of edges in it. The distance matrix resem-
bles a high power of the adjacency matrix, but instead
of telling only whether or not two vertices are connected
(i.e., the connection matrix, which contains boolean val-
ues), it gives the exact distance between them.

5.4.2 Examples

The convention followed here (for an undirected graph) is
that each edge adds 1 to the appropriate cell in the matrix,
and each loop adds 2. This allows the degree of a vertex
to be easily found by taking the sum of the values in either
its respective row or column in the adjacency matrix.

The adjacency matrix of a complete graph contains all
ones except along the diagonal where there are only zeros.
The adjacency matrix of an empty graph is a zero matrix.

5.4.3 Properties

Spectrum

The adjacency matrix of an undirected simple graph
is symmetric, and therefore has a complete set of real

eigenvalues and an orthogonal eigenvector basis. The set
of eigenvalues of a graph is the spectrum of the graph.'*!
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For d-regular graphs, d is also an eigenvalue of A for the
vector v=(1, ..., 1), and G is connected if and only if the
multiplicity of the eigenvalue d is 1. It can be shown that
—d is also an eigenvalue of A if G is a connected bipartite
graph. The above are results of the Perron—Frobenius
theorem.

Isomorphism and invariants

Suppose two directed or undirected graphs G; and Gs
with adjacency matrices A; and A, are given. G; and Go
are isomorphic if and only if there exists a permutation
matrix P such that

PA, P! = As.

In particular, A; and As are similar and therefore have
the same minimal polynomial, characteristic polynomial,
eigenvalues, determinant and trace. These can therefore
serve as isomorphism invariants of graphs. However,
two graphs may possess the same set of eigenvalues but
not be isomorphic."®! Such linear operators are said to be
isospectral.

Matrix powers

If A is the adjacency matrix of the directed or undirected
graph G, then the matrix A" (i.e., the matrix product of n
copies of A) has an interesting interpretation: the element
(@, j) gives the number of (directed or undirected) walks
of length n from vertex i to vertex j. If n is the smallest
nonnegative integer, such that for all i, j, the element (i, j)
of A" is positive, then n is the distance between vertex i
and vertex j. This implies, for example, that the number
of triangles in an undirected graph G is exactly the trace
of A divided by 6. Note that the adjacency matrix can be
used to determine whether or not the graph is connected.

5.4.4 Data structures

The adjacency matrix may be used as a data structure
for the representation of graphs in computer programs for
manipulating graphs. The main alternative data structure,
also in use for this application, is the adjacency list.[®/[7}

Because each entry in the adjacency matrix requires only
one bit, it can be represented in a very compact way, oc-
cupying only | V 12/8 bytes to represent a directed graph,
or (by using a packed triangular format and only storing
the lower triangular part of the matrix) approximately
| V 12/16 bytes to represent an undirected graph. Al-
though slightly more succinct representations are possi-
ble, this method gets close to the information-theoretic
lower bound for the minimum number of bits needed
to represent all n-vertex graphs.’®! For storing graphs
in text files, fewer bits per byte can be used to ensure
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that all bytes are text characters, for instance by using a
Base64 representation.””) Besides avoiding wasted space,
this compactness encourages locality of reference. How-
ever, for a large sparse graph, adjacency lists require less
storage space, because they do not waste any space to rep-
resent edges that are not present.[7!110]

An alternative form of adjacency matrix, which however
requires a larger amount of space, replaces the numbers in
each element of the matrix with pointers to edge objects
(when edges are present) or null pointers (when there is no
edge).'"% It is also possible to store edge weights directly
in the elements of an adjacency matrix.!”]

Besides the space tradeoff, the different data structures
also facilitate different operations. Finding all vertices
adjacent to a given vertex in an adjacency list is as sim-
ple as reading the list, and takes time proportional to the
number of neighbors. With an adjacency matrix, an en-
tire row must instead be scanned, which takes a larger
amount of time, proportional to the number of vertices
in the whole graph. On the other hand, testing whether
there is an edge between two given vertices can be deter-
mined at once with an adjacency matrix, while requiring
time proportional to the minimum degree of the two ver-
tices with the adjacency list.!”/1%]
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Chapter 6

Example Applications of Graph Theory

6.1 Travelling salesman problem

Solution of a travelling salesman problem: the black line shows
the shortest possible loop that connects every red dot

The travelling salesman problem (TSP) asks the fol-
lowing question: “Given a list of cities and the dis-
tances between each pair of cities, what is the shortest
possible route that visits each city exactly once and re-
turns to the origin city?” It is an NP-hard problem in
combinatorial optimization, important in operations re-
search and theoretical computer science.

TSP is a special case of the travelling purchaser problem
and the vehicle routing problem.

In the theory of computational complexity, the decision
version of the TSP (where, given a length L, the task is
to decide whether the graph has any tour shorter than L)
belongs to the class of NP-complete problems. Thus, it
is possible that the worst-case running time for any al-
gorithm for the TSP increases superpolynomially (but no
more than exponentially) with the number of cities.

The problem was first formulated in 1930 and is one of
the most intensively studied problems in optimization.
It is used as a benchmark for many optimization meth-
ods. Even though the problem is computationally diffi-
cult, a large number of heuristics and exact algorithms

are known, so that some instances with tens of thousands
of cities can be solved completely and even problems with
millions of cities can be approximated within a small frac-
tion of 1%.[1

The TSP has several applications even in its purest for-
mulation, such as planning, logistics, and the manufac-
ture of microchips. Slightly modified, it appears as a
sub-problem in many areas, such as DNA sequencing. In
these applications, the concept city represents, for exam-
ple, customers, soldering points, or DNA fragments, and
the concept distance represents travelling times or cost,
or a similarity measure between DNA fragments. The
TSP also appears in astronomy, as astronomers observing
many sources will want to minimize the time spent mov-
ing the telescope between the sources. In many applica-
tions, additional constraints such as limited resources or
time windows may be imposed.

6.1.1 History

The origins of the travelling salesman problem are un-
clear. A handbook for travelling salesmen from 1832
mentions the problem and includes example tours through
Germany and Switzerland, but contains no mathematical
treatment. !

The travelling salesman problem was mathematically for-
mulated in the 1800s by the Irish mathematician W.R.
Hamilton and by the British mathematician Thomas
Kirkman. Hamilton’s Icosian Game was a recreational
puzzle based on finding a Hamiltonian cycle.!*! The gen-
eral form of the TSP appears to have been first studied
by mathematicians during the 1930s in Vienna and at
Harvard, notably by Karl Menger, who defines the prob-
lem, considers the obvious brute-force algorithm, and ob-
serves the non-optimality of the nearest neighbour heuris-
tic:

We denote by messenger problem (since in
practice this question should be solved by each
postman, anyway also by many travelers) the
task to find, for finitely many points whose pair-
wise distances are known, the shortest route
connecting the points. Of course, this prob-
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6.1. TRAVELLING SALESMAN PROBLEM

William Rowan Hamilton

lem is solvable by finitely many trials. Rules
which would push the number of trials be-
low the number of permutations of the given
points, are not known. The rule that one first
should go from the starting point to the closest
point, then to the point closest to this, etc., in
general does not yield the shortest route. 4!

It was first considered mathematically in the 1930s by
Merrill Flood who was looking to solve a school bus rout-
ing problem.! Hassler Whitney at Princeton University
introduced the name travelling salesman problem soon
after.%!

In the 1950s and 1960s, the problem became increasingly
popular in scientific circles in Europe and the USA after
the RAND Corporation in Santa Monica, offered prizes
for steps in solving the problem.! Notable contributions
were made by George Dantzig, Delbert Ray Fulkerson
and Selmer M. Johnson from the RAND Corporation,
who expressed the problem as an integer linear program
and developed the cutting plane method for its solution.
They wrote what is considered the seminal paper on the
subject in which with these new methods they solved an
instance with 49 cities to optimality by constructing a tour
and proving that no other tour could be shorter. Dantzig,
Fulkerson and Johnson, however, speculated that given a
near optimal solution we may be able to find optimality
or prove optimality by adding a small amount of extra in-
equalities (cuts). They used this idea to solve their initial
49 city problem using a string model. They found they
only needed 26 cuts to come to a solution for their 49
city problem. While this paper did not give an algorith-
mic approach to TSP problems, the ideas that lay within it
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were indispensable to later creating exact solution meth-
ods for the TSP, though it would take 15 years to find an
algorithmic approach in creating these cuts.>) As well as
cutting plane methods, Dantzig, Fulkerson and Johnson
used branch and bound algorithms perhaps for the first
time.>!

In the following decades, the problem was studied by
many researchers from mathematics, computer science,
chemistry, physics, and other sciences. In the 1960s how-
ever a new approach was created, instead of finding opti-
mal solutions, people tried to instead find the worst solu-
tions and in doing so, created lower bounds for the prob-
lem. These may then be used with branch and bound ap-
proaches. One method of doing this was to create the
minimum spanning tree of the graph and then multiply
the cost of this by 2.5

Christofides made a big advance in this approach of giv-
ing an approach for which we know the worst-case sce-
nario. His algorithm given in 1976, at worst is 1.5 times
longer than the optimal solution. As the algorithm was
so simple and quick, many hoped it would give way to a
near optimal solution method. However, until 2011 when
it was beaten by less than a billionth of a percent, this re-
mained the method with the best worst-case scenario.”!

Richard M. Karp showed in 1972 that the Hamiltonian
cycle problem was NP-complete, which implies the NP-
hardness of TSP. This supplied a mathematical explana-
tion for the apparent computational difficulty of finding
optimal tours.

Great progress was made in the late 1970s and 1980,
when Grotschel, Padberg, Rinaldi and others managed to
exactly solve instances with up to 2392 cities, using cut-
ting planes and branch-and-bound.

In the 1990s, Applegate, Bixby, Chvatal, and Cook devel-
oped the program Concorde that has been used in many
recent record solutions. Gerhard Reinelt published the
TSPLIB in 1991, a collection of benchmark instances
of varying difficulty, which has been used by many re-
search groups for comparing results. In 2006, Cook and
others computed an optimal tour through an 85,900-city
instance given by a microchip layout problem, currently
the largest solved TSPLIB instance. For many other in-
stances with millions of cities, solutions can be found that
are guaranteed to be within 2-3% of an optimal tour.%!

The problem is sometimes, especially in newer publica-
tions, referred to as Travelling Salesperson Problem.

6.1.2 Description

As a graph problem

TSP can be modelled as an undirected weighted graph,
such that cities are the graph’s vertices, paths are the

graph’s edges, and a path’s distance is the edge’s weight. It
is a minimization problem starting and finishing at a spec-
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Symmetric TSP with four cities

ified vertex after having visited each other vertex exactly
once. Often, the model is a complete graph (i.e. each pair
of vertices is connected by an edge). If no path exists
between two cities, adding an arbitrarily long edge will
complete the graph without affecting the optimal tour.

Asymmetric and symmetric

In the symmetric TSP, the distance between two cities
is the same in each opposite direction, forming an
undirected graph. This symmetry halves the number of
possible solutions. In the asymmetric TSP, paths may not
exist in both directions or the distances might be differ-
ent, forming a directed graph. Traffic collisions, one-
way streets, and airfares for cities with different depar-
ture and arrival fees are examples of how this symmetry
could break down.

Related problems

e An equivalent formulation in terms of graph theory
is: Given a complete weighted graph (where the ver-
tices would represent the cities, the edges would rep-
resent the roads, and the weights would be the cost
or distance of that road), find a Hamiltonian cycle
with the least weight.

e The requirement of returning to the starting city
does not change the computational complexity of
the problem, see Hamiltonian path problem.

e Another related problem is the bottleneck travelling
salesman problem (bottleneck TSP): Find a Hamil-
tonian cycle in a weighted graph with the minimal
weight of the weightiest edge. The problem is of
considerable practical importance, apart from evi-
dent transportation and logistics areas. A classic ex-
ample is in printed circuit manufacturing: schedul-
ing of a route of the drill machine to drill holes in a
PCB. In robotic machining or drilling applications,
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the “cities” are parts to machine or holes (of differ-
ent sizes) to drill, and the “cost of travel” includes
time for retooling the robot (single machine job se-
quencing problem)."!

e The generalized travelling salesman problem, also
known as the “travelling politician problem”, deals
with “states” that have (one or more) “cities” and the
salesman has to visit exactly one “city” from each
“state”. One application is encountered in order-
ing a solution to the cutting stock problem in or-
der to minimize knife changes. Another is con-
cerned with drilling in semiconductor manufactur-
ing, see e.g., U.S. Patent 7,054,798. Noon and Bean
demonstrated that the generalized travelling sales-
man problem can be transformed into a standard
travelling salesman problem with the same number
of cities, but a modified distance matrix.

e The sequential ordering problem deals with the
problem of visiting a set of cities where precedence
relations between the cities exist.

e A common interview question at Google is how to
route data among data processing nodes; routes vary
by time to transfer the data, but nodes also differ by
their computing power and storage, compunding the
problem of where to send data.

e The travelling purchaser problem deals with a pur-
chaser who is charged with purchasing a set of prod-
ucts. He can purchase these products in several
cities, but at different prices and not all cities offer
the same products. The objective is to find a route
between a subset of the cities, which minimizes to-
tal cost (travel cost + purchasing cost) and which en-
ables the purchase of all required products.

6.1.3 Integer linear programming formu-
lation

TSP can be formulated as an integer linear pro-
gram.[lo][“][m Label the cities with the numbers 1, ...,
n and define:

1 city from goes path thei city to j
J—
Y 0 otherwise

Fori=1, ..., n, let u; be a dummy variable, and finally
take ¢;; to be the distance from city i to city j. Then TSP
can be written as the following integer linear program-
ming problem:
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The first set of equalities requires that each city be ar-
rived at from exactly one other city, and the second set of
equalities requires that from each city there is a departure
to exactly one other city. The last constraints enforce that
there is only a single tour covering all cities, and not two
or more disjointed tours that only collectively cover all
cities. To prove this, it is shown below (1) that every fea-
sible solution contains only one closed sequence of cities,
and (2) that for every single tour covering all cities, there
are values for the dummy variables u; that satisfy the con-
straints.

To prove that every feasible solution contains only one
closed sequence of cities, it suffices to show that every
subtour in a feasible solution passes through city 1 (noting
that the equalities ensure there can only be one such tour).
For if we sum all the inequalities corresponding to x;; =
1 for any subtour of k steps not passing through city 1, we
obtain:

nk < (n— 1)k,

which is a contradiction.

It now must be shown that for every single tour covering
all cities, there are values for the dummy variables u; that
satisfy the constraints.

Without loss of generality, define the tour as originating
(and ending) at city 1. Choose u; = t if city i is visited
instepr (i,t=1,2,..,n). Then

Ui — Uy S n — ].,
since u; can be no greater than n and u; can be no less

than 1; hence the constraints are satisfied whenever x;; =
0. For ;5 = 1, we have:

w—uj+nr;=0)—t+1)+n=n—-1,

satisfying the constraint.

105

6.1.4 Computing a solution

The traditional lines of attack for the NP-hard problems
are the following:

e Devising exact algorithms, which work reasonably
fast only for small problem sizes.

e Devising “suboptimal” or heuristic algorithms, i.e.,
algorithms that deliver either seemingly or probably
good solutions, but which could not be proved to be
optimal.

e Finding special cases for the problem (“subprob-
lems”) for which either better or exact heuristics are
possible.

Exact algorithms

The most direct solution would be to try all permutations
(ordered combinations) and see which one is cheapest
(using brute force search). The running time for this
approach lies within a polynomial factor of O(n!) , the
factorial of the number of cities, so this solution becomes
impractical even for only 20 cities.

One of the earliest applications of dynamic programming
is the Held—Karp algorithm that solves the problem in
time O(n?2") .13

100 100
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Solution to a symmetric TSP with 7 cities using brute force search.
Note: Number of permutations: (7-1)!/2 = 360

Improving these time bounds seems to be difficult. For
example, it has not been determined whether an exact al-
gorithm for TSP that runs in time O(1.9999") exists.!!4]

Other approaches include:

e Various branch-and-bound algorithms, which can be
used to process TSPs containing 40-60 cities.

e Progressive improvement algorithms which use
techniques reminiscent of linear programming.
Works well for up to 200 cities.

e Implementations of  branch-and-bound and
problem-specific cut generation (branch-and-
cut!’)); this is the method of choice for solving
large instances. This approach holds the current
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Solution of a TSP with 7 cities using a simple Branch and bound
algorithm. Note: The number of permutations is much less than
Brute force search

record, solving an instance with 85,900 cities, see
Applegate et al. (2006).

An exact solution for 15,112 German towns from
TSPLIB was found in 2001 using the cutting-plane
method proposed by George Dantzig, Ray Fulkerson, and
Selmer M. Johnson in 1954, based on linear program-
ming. The computations were performed on a network of
110 processors located at Rice University and Princeton
University (see the Princeton external link). The total
computation time was equivalent to 22.6 years on a single
500 MHz Alpha processor. In May 2004, the travelling
salesman problem of visiting all 24,978 towns in Swe-
den was solved: a tour of length approximately 72,500
kilometres was found and it was proven that no shorter
tour exists.['® In March 2005, the travelling salesman
problem of visiting all 33,810 points in a circuit board
was solved using Concorde TSP Solver: a tour of length
66,048,945 units was found and it was proven that no
shorter tour exists. The computation took approximately
15.7 CPU-years (Cook et al. 2006). In April 2006 an in-
stance with 85,900 points was solved using Concorde TSP
Solver, taking over 136 CPU-years, see Applegate et al.
(2006).

Heuristic and approximation algorithms

Various heuristics and approximation algorithms, which
quickly yield good solutions have been devised. Mod-
ern methods can find solutions for extremely large prob-
lems (millions of cities) within a reasonable time which
are with a high probability just 2-3% away from the op-
timal solution.®!

Several categories of heuristics are recognized.

Constructive heuristics The nearest neighbour (NN)
algorithm (a greedy algorithm) lets the salesman choose
the nearest unvisited city as his next move. This algo-
rithm quickly yields an effectively short route. For N
cities randomly distributed on a plane, the algorithm on
average yields a path 25% longer than the shortest possi-
ble path.['”] However, there exist many specially arranged
city distributions which make the NN algorithm give the
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Nearest Neighbour algorithm for a TSP with 7 cities. The solution
changes as the starting point is changed

worst route (Gutin, Yeo, and Zverovich, 2002). This is
true for both asymmetric and symmetric TSPs (Gutin and
Yeo, 2007). Rosenkrantz et al. [1977] showed that the
NN algorithm has the approximation factor ©(log|V|)
for instances satisfying the triangle inequality. A vari-
ation of NN algorithm, called Nearest Fragment (NF)
operator, which connects a group (fragment) of nearest
unvisited cities, can find shorter route with successive
iterations.!'8! The NF operator can also be applied on an
initial solution obtained by NN algorithm for further im-
provement in an elitist model, where only better solutions
are accepted.

The bitonic tour of a set of points is the minimum-
perimeter monotone polygon that has the points as its ver-
tices; it can be computed efficiently by dynamic program-
ming.

Another constructive heuristic, Match Twice and Stitch
(MTS) (Kahng, Reda 2004 1), performs two sequential
matchings, where the second matching is executed after
deleting all the edges of the first matching, to yield a set
of cycles. The cycles are then stitched to produce the final
tour.

Christofides’ algorithm for the TSP  The Christofides
algorithm follows a similar outline but combines the min-
imum spanning tree with a solution of another problem,
minimum-weight perfect matching. This gives a TSP tour
which is at most 1.5 times the optimal. The Christofides
algorithm was one of the first approximation algorithms,
and was in part responsible for drawing attention to ap-
proximation algorithms as a practical approach to in-
tractable problems. As a matter of fact, the term “al-
gorithm” was not commonly extended to approximation
algorithms until later; the Christofides algorithm was ini-
tially referred to as the Christofides heuristic.

This algorithm looks at things differently by using a re-
sult from graph theory which helps improve on the LB of
the TSP which originated from doubling the cost of the
minimum spanning tree. Given an Eulerian graph we can
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find an Eulerian tour in O(n) time.! So if we had an Eu-
lerian graph with cities from a TSP as vertices then we
can easily see that we could use such a method for find-
ing an Eulerian tour to find a TSP solution. By triangular
inequality we know that the TSP tour can be no longer
than the Eulerian tour and as such we have a LB for the
TSP. Such a method is described below.

Using a shortcut heuristic on the graph created by the matching
below

1. Find a minimum spanning tree for the problem

2. Create duplicates for every edge to create an Eule-
rian graph

3. Find an Eulerian tour for this graph

4. Convert to TSP: if a city is visited twice, create a
shortcut from the city before this in the tour to the
one after this.

To improve our lower bound, we therefore need a better
way of creating an Eulerian graph. But by triangular in-
equality, the best Eulerian graph must have the same cost
as the best travelling salesman tour, hence finding opti-
mal Eulerian graphs is at least as hard as TSP. One way
of doing this that has been proposed is by the concept
of minimum weight matching for the creation of which
there exist algorithms of O(n?) .15

To make a graph into an Eulerian graph, one starts with
the minimum spanning tree. Then all the vertices of odd
order must be made even. So a matching for the odd de-
gree vertices must be added which increases the order of
every odd degree vertex by one.l’! This leaves us with a
graph where every vertex is of even order which is thus
Eulerian. Now we can adapt the above method to give
Christofides’ algorithm,

1. Find a minimum spanning tree for the problem

2. Create a matching for the problem with the set of
cities of odd order.

3. Find an Eulerian tour for this graph

4. Convert to TSP using shortcuts.
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Creating a matching

Iterative improvement

Pairwise exchange The pairwise exchange or 2-opt
technique involves iteratively removing two edges
and replacing these with two different edges that re-
connect the fragments created by edge removal into
a new and shorter tour. This is a special case of the
k-opt method. Note that the label Lin—Kernighan is
an often heard misnomer for 2-opt. Lin—Kernighan
is actually the more general k-opt method.

For Euclidean instances, 2-opt heuristics give on average
solutions that are about 5% better than Christofides’ al-
gorithm. If we start with an initial solution made with a
greedy algorithm, the average number of moves greatly
decreases again and is O(n). For random starts however,
the average number of moves is O(n log(n)). However
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An example of a 2-opt iteration

whilst in order this is a small increase in size, the initial
number of moves for small problems is 10 times as big
for a random start compared to one made from a greedy
heuristic. This is because such 2-opt heuristics exploit
“bad' parts of a solution such as crossings. These types of
heuristics are often used within Vehicle routing problem
heuristics to reoptimize route solutions.!'”)

k-opt heuristic, or Lin—-Kernighan heuristics Take a
given tour and delete k mutually disjoint edges. Re-
assemble the remaining fragments into a tour, leav-
ing no disjoint subtours (that is, don't connect a frag-
ment’s endpoints together). This in effect simpli-
fies the TSP under consideration into a much sim-
pler problem. Each fragment endpoint can be con-
nected to 2k — 2 other possibilities: of 2k total frag-
ment endpoints available, the two endpoints of the
fragment under consideration are disallowed. Such
a constrained 2k-city TSP can then be solved with
brute force methods to find the least-cost recombi-
nation of the original fragments. The k-opt tech-
nique is a special case of the V-opt or variable-opt
technique. The most popular of the k-opt methods
are 3-opt, and these were introduced by Shen Lin of
Bell Labs in 1965. There is a special case of 3-opt
where the edges are not disjoint (two of the edges
are adjacent to one another). In practice, it is often
possible to achieve substantial improvement over 2-
opt without the combinatorial cost of the general 3-
opt by restricting the 3-changes to this special subset
where two of the removed edges are adjacent. This
so-called two-and-a-half-opt typically falls roughly
midway between 2-opt and 3-opt, both in terms of
the quality of tours achieved and the time required
to achieve those tours.

V-opt heuristic The variable-opt method is related to,
and a generalization of the k-opt method. Whereas
the k-opt methods remove a fixed number (k) of
edges from the original tour, the variable-opt meth-
ods do not fix the size of the edge set to remove.
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Instead they grow the set as the search process
continues. The best known method in this fam-
ily is the Lin—Kernighan method (mentioned above
as a misnomer for 2-opt). Shen Lin and Brian
Kernighan first published their method in 1972, and
it was the most reliable heuristic for solving trav-
elling salesman problems for nearly two decades.
More advanced variable-opt methods were devel-
oped at Bell Labs in the late 1980s by David John-
son and his research team. These methods (some-
times called Lin—Kernighan—Johnson) build on the
Lin—Kernighan method, adding ideas from tabu
search and evolutionary computing. The basic Lin—
Kernighan technique gives results that are guaran-
teed to be at least 3-opt. The Lin—Kernighan—
Johnson methods compute a Lin—Kernighan tour,
and then perturb the tour by what has been described
as a mutation that removes at least four edges and
reconnecting the tour in a different way, then V-
opting the new tour. The mutation is often enough
to move the tour from the local minimum identified
by Lin—Kernighan. V-opt methods are widely con-
sidered the most powerful heuristics for the prob-
lem, and are able to address special cases, such as
the Hamilton Cycle Problem and other non-metric
TSPs that other heuristics fail on. For many years
Lin—Kernighan—Johnson had identified optimal so-
lutions for all TSPs where an optimal solution was
known and had identified the best known solutions
for all other TSPs on which the method had been
tried.

Randomized improvement Optimized Markov chain
algorithms which use local searching heuristic sub-
algorithms can find a route extremely close to the optimal
route for 700 to 800 cities.

TSP is a touchstone for many general heuristics de-
vised for combinatorial optimization such as genetic al-
gorithms, simulated annealing, Tabu search, ant colony
optimization, river formation dynamics (see swarm intel-
ligence) and the cross entropy method.

Ant colony optimization Main article: Ant colony
optimization algorithms

Artificial intelligence researcher Marco Dorigo described
in 1993 a method of heuristically generating “good so-
lutions” to the TSP using a simulation of an ant colony
called ACS (Ant Colony System).?°! Tt models behaviour
observed in real ants to find short paths between food
sources and their nest, an emergent behaviour resulting
from each ant’s preference to follow trail pheromones de-
posited by other ants.

ACS sends out a large number of virtual ant agents to ex-
plore many possible routes on the map. Each ant proba-
bilistically chooses the next city to visit based on a heuris-
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tic combining the distance to the city and the amount
of virtual pheromone deposited on the edge to the city.
The ants explore, depositing pheromone on each edge that
they cross, until they have all completed a tour. At this
point the ant which completed the shortest tour deposits
virtual pheromone along its complete tour route (global
trail updating). The amount of pheromone deposited is
inversely proportional to the tour length: the shorter the
tour, the more it deposits.

Ant Colony Optimization Algorithm for a TSP with 7 cities: Red
and thick lines in the pheromone map indicate presence of more
pheromone

6.1.5 Special cases of the TSP
Metric TSP

In the metric TSP, also known as delta-TSP or A-TSP, the
intercity distances satisfy the triangle inequality.

A very natural restriction of the TSP is to require that
the distances between cities form a metric to satisfy the
triangle inequality; that is the direct connection from A to
B is never farther than the route via intermediate C:

dap < dac +dca

The edge spans then build a metric on the set of vertices.
When the cities are viewed as points in the plane, many
natural distance functions are metrics, and so many natu-
ral instances of TSP satisfy this constraint.

The following are some examples of metric TSPs for var-
ious metrics.

e In the Euclidean TSP (see below) the distance be-
tween two cities is the Euclidean distance between
the corresponding points.

e In the rectilinear TSP the distance between two
cities is the sum of the differences of their x-
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and y-coordinates. This metric is often called the
Manhattan distance or city-block metric.

e In the maximum metric, the distance between two
points is the maximum of the absolute values of dif-
ferences of their x- and y-coordinates.

The last two metrics appear for example in routing a ma-
chine that drills a given set of holes in a printed circuit
board. The Manhattan metric corresponds to a machine
that adjusts first one co-ordinate, and then the other, so
the time to move to a new point is the sum of both move-
ments. The maximum metric corresponds to a machine
that adjusts both co-ordinates simultaneously, so the time
to move to a new point is the slower of the two move-
ments.

In its definition, the TSP does not allow cities to be vis-
ited twice, but many applications do not need this con-
straint. In such cases, a symmetric, non-metric instance
can be reduced to a metric one. This replaces the orig-
inal graph with a complete graph in which the inter-city
distance d 4 g is replaced by the shortest path between A
and B in the original graph.

Euclidean TSP

When the input numbers can be arbitrary real numbers,
Euclidean TSP is a particular case of metric TSP, since
distances in a plane obey the triangle inequality. When
the input numbers must be integers, comparing lengths
of tours involves comparing sums of square-roots.

Like the general TSP, Euclidean TSP is NP-hard in ei-
ther case. With rational coordinates and discretized met-
ric (distances rounded up to an integer), the problem is
NP-complete.*!! With rational coordinates and the ac-
tual Euclidean metric, Euclidean TSP is known to be in
the Counting Hierarchy,??! a subclass of PSPACE. With
arbitrary real coordinates, Euclidean TSP cannot be in
such classes, since there are uncountably many possible
inputs. However, Euclidean TSP is probably the easiest
version for approximation.?*! For example, the minimum
spanning tree of the graph associated with an instance
of the Euclidean TSP is a Euclidean minimum spanning
tree, and so can be computed in expected O (n log n)
time for n points (considerably less than the number of
edges). This enables the simple 2-approximation algo-
rithm for TSP with triangle inequality above to operate
more quickly.

In general, for any ¢ > 0, where d is the number of dimen-
sions in the Euclidean space, there is a polynomial-time
algorithm that finds a tour of length at most (1 + 1/c) times
the optimal for geometric instances of TSP in

O (n(log n)(o(cﬁ))dq) ,

time; this is called a polynomial-time approximation
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scheme (PTAS).**! Sanjeev Arora and Joseph S. B.
Mitchell were awarded the Godel Prize in 2010 for their
concurrent discovery of a PTAS for the Euclidean TSP.

In practice, simpler heuristics with weaker guarantees
continue to be used.

Asymmetric TSP

In most cases, the distance between two nodes in the TSP
network is the same in both directions. The case where
the distance from A to B is not equal to the distance from
B to A is called asymmetric TSP. A practical applica-
tion of an asymmetric TSP is route optimization using
street-level routing (which is made asymmetric by one-
way streets, slip-roads, motorways, etc.).

Solving by conversion to symmetric TSP  Solving an
asymmetric TSP graph can be somewhat complex. The
following is a 3x3 matrix containing all possible path
weights between the nodes A, B and C. One option is to
turn an asymmetric matrix of size N into a symmetric
matrix of size 2N.[%!

To double the size, each of the nodes in the graph is dupli-
cated, creating a second ghost node, linked to the original
node with a “ghost” edge of very low (possibly negative)
weight, here denoted —w. (Alternatively, the ghost edges
have weight 0, and weight w is added to all other edges.)
The original 3x3 matrix shown above is visible in the bot-
tom left and the inverse of the original in the top-right.
Both copies of the matrix have had their diagonals re-
placed by the low-cost hop paths, represented by —w. In
the new graph, no edge directly links original nodes and
no edge directly links ghost nodes.

The weight —w of the “ghost” edges linking the ghost
nodes to the corresponding original nodes must be low
enough to ensure that all ghost edges must belong to any
optimal symmetric TSP solution on the new graph (w=0
is not always low enough). As a consequence, in the op-
timal symmetric tour, each original node appears next to
its ghost node (e.g. a possible pathis A -> A" -> C -> C’
-> B -> B’ -> A) and by mergeing the original and ghost
nodes again we get an (optimal) solution of the original
asymmetric problem (in our example, A -> C -> B -> A).

Analyst’s travelling salesman problem

There is an analogous problem in geometric measure the-
ory which asks the following: under what conditions may
a subset E of Euclidean space be contained in a rectifiable
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curve (that is, when is there a curve with finite length that
visits every point in E)? This problem is known as the
analyst’s travelling salesman problem

TSP path length for random sets of points in a square

Suppose X1, ..., X, are n independent random vari-
ables with uniform distribution in the square [0, 1]? , and
let Ly, be the shortest path length (i.e. TSP solution) for
this set of points, according to the usual Euclidean dis-
tance. Tt is known20! that, almost surely,

*

Jn

where /3 is a positive constant that is not known ex-
plicitly. Since LX < 2y/n + 2 (see below), it fol-
lows from bounded convergence theorem that 8 =
lim,,_, o, E[L¥]/+/1 , hence lower and upper bounds on
B follow from bounds on E[L7] .

whenn — o0,

. .. L*
The almost sure limit —= — (3 as n — oo may not ex-

ist if the independent locations X1, ..., X,, are replaced
with observations from a stationary ergodic process with
uniform marginals. 27

Upper bound

e One has L* < 2¢/n + 2, and therefore 8 < 2,
by using a naive path which visits monotonically the
points inside each of /n slices of width 1/y/n in
the square.

e Few ® proved L* < v/2n+1.75, hence 3 < v/2
, later improved by Karloff (1987): 3 < 0.984+/2 .

e The currently *°! best upper bound is 3 < 0.92...

Lower bound

e By observing that E[L] is greater than n times the
distance between X and the closest point X; # X
, one gets (after a short computation)

E[LZ] > 1/n.

e A better lower bound is obtained!*’! by observing
that E[L}] is greater than 1n times the sum of the
distances between X and the closest and second
closest points X;, X; # X , which gives
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e The currently *°! best lower bound is

E[Ly] > (§ + 5180V,

e Held and Karp!®*! gave a polynomial-time algorithm
that provides numerical lower bounds for L} , and
thus for 8(~ LZ%/\/n) which seem to be good
up to more or less 1%.1*" In particular, David S.
Johnson*?! obtained a lower bound by computer ex-
periment:

LY > 0.7080y/n + 0.522,
where 0.522 comes from the points near square bound-
ary which have fewer neighbours, and Christine L. Valen-
zuela and Antonia J. Jones 3 obtained the following
other numerical lower bound:

L} > 0.7078y/n + 0.551

6.1.6 Computational complexity

The problem has been shown to be NP-hard (more pre-
cisely, it is complete for the complexity class FPNP;
see function problem), and the decision problem version
(“given the costs and a number x, decide whether there is
a round-trip route cheaper than x") is NP-complete. The
bottleneck travelling salesman problem is also NP-hard.
The problem remains NP-hard even for the case when the
cities are in the plane with Euclidean distances, as well as
in a number of other restrictive cases. Removing the con-
dition of visiting each city “only once” does not remove
the NP-hardness, since it is easily seen that in the planar
case there is an optimal tour that visits each city only once
(otherwise, by the triangle inequality, a shortcut that skips
a repeated visit would not increase the tour length).

Complexity of approximation

In the general case, finding a shortest travelling sales-
man tour is NPO-complete.** If the distance measure
is a metric and symmetric, the problem becomes APX-
complete!**! and Christofides’s algorithm approximates it
within 1.5.561 The best known inapproximability bound
is 123/122 137

If the distances are restricted to 1 and 2 (but still are a
metric) the approximation ratio becomes 8/7.1%! In the
asymmetric, metric case, only logarithmic performance
guarantees are known, the best current algorithm achieves
performance ratio 0.814 log(n);*°! it is an open question
if a constant factor approximation exists.
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The corresponding maximization problem of finding the
longest travelling salesman tour is approximable within
63/38.1401 If the distance function is symmetric, the
longest tour can be approximated within 4/3 by a deter-
ministic algorithm™!! and within = (33 + €) by a ran-
domized algorithm.4?!

6.1.7 Human performance on TSP

The TSP, in particular the Euclidean variant of the prob-
lem, has attracted the attention of researchers in cognitive
psychology. It has been observed that humans are able to
produce good quality solutions quickly./**! These results
suggest that computer performance on the TSP may be
improved by understanding and emulating the methods
used by humans for these problems, and have also led to
new insights into the mechanisms of human thought.[*¥
The first issue of the Journal of Problem Solving was de-
voted to the topic of human performance on TSP,*3 and
a 2011 review listed dozens of papers on the subject.[**!

6.1.8 Natural computation

When presented with a spatial configuration of food
sources, the amoeboid Physarum polycephalum adapts
its morphology to create an efficient path between the
food sources which can also be viewed as an approximate
solution to TSP.[*®! It’s considered to present interesting
possibilities and it has been studied in the area of natural
computing.

6.1.9 Benchmarks

For benchmarking of TSP algorithms, TSPLIB is a li-
brary of sample instances of the TSP and related prob-
lems is maintained, see the TSPLIB external reference.
Many of them are lists of actual cities and layouts of ac-
tual printed circuits.

6.1.10 Popular culture

o The thriller novel The Steradian Trail by M. N. Krish
weaves The Traveling Salesman Problem and math-
ematician Srinivasa Ramanujan and his accidental
discovery into its plot connecting religion, mathe-
matics, finance and economics.!471148]

o Travelling Salesman, by director Timothy Lanzone,
is the story of four mathematicians hired by the U.S.
government to solve the most elusive problem in
computer-science history: P vs. NP.[4%]

6.1.11 See also

e Canadian traveller problem
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Exact algorithm

Route inspection problem (also known as “Chinese
postman problem”)

Set TSP problem

Seven Bridges of Konigsberg
Tube Challenge

Vehicle routing problem

Graph Exploration
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6.1.15 External links

e Traveling Salesman Problem at University of Water-
loo

e TSPLIB at the University of Heidelberg

o Traveling Salesman Problem by Jon McLoone at the
Wolfram Demonstrations Project

6.2 Route inspection problem

In graph theory, a branch of mathematics and computer
science, the Chinese postman problem (CPP), post-
man tour or route inspection problem is to find a
shortest closed path or circuit that visits every edge of a
(connected) undirected graph. When the graph has an
Eulerian circuit (a closed walk that covers every edge
once), that circuit is an optimal solution. Otherwise, the
optimization problem is to find the smallest number of
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graph edges to duplicate (or the subset of edges with
the minimum possible total weight) so that the result-
ing multigraph does have an Eulerian circuit.!!! It may be
solved in polynomial time.!

The problem was originally studied by the Chinese math-
ematician Kwan Mei-Ko in 1960, whose Chinese pa-
per was translated into English in 1962.3) The alterna-
tive name “Chinese postman problem” was coined in his
honor; different sources credit the coinage either to Alan
J. Goldman or Jack Edmonds, both of whom were at the
U.S. National Bureau of Standards at the time.1/>]

6.2.1 Undirected solution

The undirected route inspection problem may be solved
in polynomial time by an algorithm based on the concept
of a T-join. Let T be a subset of the vertex set of a graph.
An edge set J is called a T-join if the collection of ver-
tices that have an odd number of neighboring edges in J
is exactly the set 7. A T-join exists whenever every con-
nected component of the graph contains an even number
of vertices in 7. The T-join problem is to find a 7-join
with the minimum possible number of edges or the min-
imum possible total weight.

For any 7, a smallest 7-join (when it exists) necessar-
ily consists of % IT1 paths that join the vertices of 7 in
pairs. The paths will be such that the total length or total
weight of all of them is as small as possible. In an opti-
mal solution, no two of these paths will share any edge,
but they may have shared vertices. A minimum 7-join
can be obtained by constructing a complete graph on the
vertices of 7T, with edges that represent shortest paths in
the given input graph, and then finding a minimum weight
perfect matching in this complete graph. The edges of
this matching represent paths in the original graph, whose
union forms the desired 7-join. Both constructing the
complete graph, and then finding a matching in it, can be
done in O(n3) computational steps.

For the route inspection problem, T should be chosen as
the set of all odd-degree vertices. By the assumptions
of the problem, the whole graph is connected (otherwise
no tour exists), and by the handshaking lemma it has an
even number of odd vertices, so a T-join always exists.
Doubling the edges of a T-join causes the given graph
to become an Eulerian multigraph (a connected graph in
which every vertex has even degree), from which it fol-
lows that it has an Euler tour, a tour that visits each edge
of the multigraph exactly once. This tour will be an opti-
mal solution to the route inspection problem.![?!

6.2.2 Directed solution

On a directed graph, the same general ideas apply, but
different techniques must be used. If the graph is Eu-
lerian, one need only find an Euler cycle. If it is not,
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one must find 7-joins, which in this case entails finding
paths from vertices with an in-degree greater than their
out-degree to those with an out-degree greater than their
in-degree such that they would make in-degree of ev-
ery vertex equal to its out-degree. This can be solved as
an instance of the minimum-cost flow problem in which
there is one unit of supply for every unit of excess in-
degree, and one unit of demand for every unit of excess
out-degree. As such it is solvable in O(IVI?|El) time. A
solution exists if and only if the given graph is strongly
connected.?!7!

6.2.3 Windy postman problem

The windy postman problem is a variant of the route
inspection problem in which the input is an undirected
graph, but where each edge may have a different cost for
traversing it in one direction than for traversing it in the
other direction. In contrast to the solutions for directed
and undirected graphs, it is NP-complete.[311°]

6.2.4 Applications

Various combinatorial problems are reduced to the Chi-
nese Postman Problem, including finding a maximum cut
in a planar graph and a minimum-mean length circuit in
an undirected graph.[!?!

6.2.5 Variants

A few variants of the Chinese Postman Problem have
been studied and shown to be NP-complete.!'!!

e Minimize the Chinese postman problem for mixed
graphs: for this problem, some of the edges may be
directed and can therefore only be visited from one
direction. When the problem calls for a minimal
traversal of a digraph (or multidigraph) it is known
as the “New York Street Sweeper problem.”!?!

e Minimize the k-Chinese postman problem: find k
cycles all starting at a designated location such that
each edge is traversed by at least one cycle. The goal
is to minimize the cost of the most expensive cycle.

e Minimize the “Rural Postman Problem": solve the
problem with some edges not required. [*!

6.2.6 See also

o Travelling salesman problem
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6.3 Hamiltonian path problem

This article is about the specific problem of determining
whether a Hamiltonian path or cycle exists in a given
graph. For the general graph theory concepts, see
Hamiltonian path.
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6.3. HAMILTONIAN PATH PROBLEM

In the mathematical field of graph theory the Hamilto-
nian path problem and the Hamiltonian cycle prob-
lem are problems of determining whether a Hamiltonian
path (a path in an undirected or directed graph that visits
each vertex exactly once) or a Hamiltonian cycle exists
in a given graph (whether directed or undirected). Both
problems are NP-complete.[!]

There is a simple relation between the problems of find-
ing a Hamiltonian path and a Hamiltonian cycle. In one
direction, the Hamiltonian path problem for graph G is
equivalent to the Hamiltonian cycle problem in a graph H
obtained from G by adding a new vertex and connecting it
to all vertices of G. Thus, finding a Hamiltonian path can-
not be significantly slower (in the worst case, as a func-
tion of the number of vertices) than finding a Hamiltonian
cycle. In the other direction, the Hamiltonian cycle prob-
lem for a graph G is equivalent to the Hamiltonian path
problem in the graph H obtained by copying one vertex v
of G, v', that is, letting v' have the same neighbourhood
as v, and by adding two dummy vertices of degree one,
and connecting them with v and V', respectively.!?! The
Hamiltonian cycle problem is also a special case of the
travelling salesman problem, obtained by setting the dis-
tance between two cities to one if they are adjacent and
two otherwise, and verifying that the total distance trav-
elled is equal to n (if so, the route is a Hamiltonian circuit;
if there is no Hamiltonian circuit then the shortest route
will be longer).

6.3.1 Algorithms

The first algorithm for finding an Hamiltonian cycle
on a directed graph was the enumerative algorithm of
Martello.®! There are n! different sequences of vertices
that might be Hamiltonian paths in a given n-vertex graph
(and are, in a complete graph), so a brute force search al-
gorithm that tests all possible sequences would be very
slow. There are several faster approaches. A search pro-
cedure by Frank Rubin!*! divides the edges of the graph
into three classes: those that must be in the path, those
that cannot be in the path, and undecided. As the search
proceeds, a set of decision rules classifies the undecided
edges, and determines whether to halt or continue the
search. The algorithm divides the graph into components
that can be solved separately. Also, a dynamic program-
ming algorithm of Bellman, Held, and Karp can be used
to solve the problem in time O(n?% 2"). In this method, one
determines, for each set S of vertices and each vertex v in
S, whether there is a path that covers exactly the vertices
in §'and ends at v. For each choice of S and v, a path exists
for (S,v) if and only if v has a neighbor w such that a path
exists for (S — v,w), which can be looked up from already-
computed information in the dynamic program.>'6!

Andreas Bjorklund provided an alternative approach us-
ing the inclusion—exclusion principle to reduce the prob-
lem of counting the number of Hamiltonian cycles to
a simpler counting problem, of counting cycle covers,
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which can be solved by computing certain matrix deter-
minants. Using this method, he showed how to solve the
Hamiltonian cycle problem in arbitrary n-vertex graphs
by a Monte Carlo algorithm in time O(1.657"); for
bipartite graphs this algorithm can be further improved
to time o(1.415%).1"1

For graphs of maximum degree three, a careful back-
tracking search can find a Hamiltonian cycle (if one ex-
ists) in time O(1.251%).[81

Because of the difficulty of solving the Hamiltonian path
and cycle problems on conventional computers, they have
also been studied in unconventional models of comput-
ing. For instance, Leonard Adleman showed that the
Hamiltonian path problem may be solved using a DNA
computer. Exploiting the parallelism inherent in chemi-
cal reactions, the problem may be solved using a number
of chemical reaction steps linear in the number of ver-
tices of the graph; however, it requires a factorial number
of DNA molecules to participate in the reaction.!”!

6.3.2 Complexity

The problem of finding a Hamiltonian cycle or path
is in FNP; the analogous decision problem is to test
whether a Hamiltonian cycle or path exists. The di-
rected and undirected Hamiltonian cycle problems were
two of Karp’s 21 NP-complete problems. They remain
NP-complete even for undirected planar graphs of maxi-
mum degree three,'”! for directed planar graphs with in-
degree and outdegree at most two,!'!! for bridgeless undi-
rected planar 3-regular bipartite graphs, for 3-connected
3-regular bipartite graphs,['?! subgraphs of the square
grid graph,!'3 and cubic subgraphs of the square grid
graph.!'4]

However, putting all of these conditions together, it re-
mains open whether 3-connected 3-regular bipartite pla-
nar graphs must always contain a Hamiltonian cycle, in
which case the problem restricted to those graphs could
not be NP-complete; see Barnette’s conjecture.

In graphs in which all vertices have odd degree, an ar-
gument related to the handshaking lemma shows that the
number of Hamiltonian cycles through any fixed edge is
always even, so if one Hamiltonian cycle is given, then
a second one must also exist.'>! However, finding this
second cycle does not seem to be an easy computational
task. Papadimitriou defined the complexity class PPA to
encapsulate problems such as this one.[']
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eral Wesc, LC~enwiki, The Anome, Shd~enwiki, JeLuF, B4hand, Michael Hardy, Chris-martin, Ijon, Dcoetzee, Dysprosia, Furrykef,
Pigorsch, Altenmann, Lzur, Sho Uemura, Giftlite, Wolfkeeper, BenFrantzDale, Andris, Lgs, OverlordQ, Andreas Kaufmann, Rich Farm-
brough, Rasmusdf, DcoetzeeBot~enwiki, ESkog, TerraFrost, Brian0918, MisterSheik, Caesura, Oleg Alexandrov, Nuno Tavares, Mindma-
trix, Camw, Oliphaunt, Ruud Koot, BD2412, Qwertyus, Rjwilmsi, Xperimental~enwiki, Mathbot, Mathiastck, Choess, Kri, Cthe, Chobot,
Phelanpt, Chris Capoccia, Gaius Cornelius, Anomie, Nethgirb, Lt-wiki-bot, Cedar101, Treesmill, SmackBot, Mcld, Ohnoitsjamie, DHN-
bot~enwiki, Tommyjb, Lpgeffen, RomanSpa, MadScientistVX, Optakeover, Graph Theory page blanker, Devis, Headbomb, Magioladitis,
Squire55, David Eppstein, Kope, Glrx, R'n'B, Edepot, Essess, Dmforcier, Alcidesfonseca, Aaron Rotenberg, Alfredo J. Herrera Lago,
Kbrose, SieBot, Jan Winnicki, Taemyr, Lourakis, Jdaloner, Hariva, Denisarona, Justin W Smith, Metaprimer, Cairomax, Daveagp, Joh-
nuniq, Marc van Leeuwen, C. lorenz, Addbot, Fgnievinski, Jason.surratt, Download, Delaszk, Cipher1024, WikiDreamer Bot, Jarble,
Luckas-bot, Yobot, AnomieBOT, Erel Segal, Materialscientist, Citation bot, Xgbot, Alexander Anoprienko, Pmlineditor, Suzhouwuyue,
Captain-n0Odle, Deanphd, Citation bot 1, RedBot, Serols, Robert Geisberger, RobinK, Mjs1991, Trappist the monk, MoreNet, Hor-
crux92, ToneDaBass, John of Reading, WikitanvirBot, Super48paul, RA0808, Hari6389, Fe, Mkroeger, Templatetypedef, ClueBot NG,
MiroBrada, Nullzero, BG19bot, Marcelkcs, Happyuk, BattyBot, Jerry Hintze, Jochen Burghardt, Simonpratt, Amine.marref, HoboMcJoe,
Ginsuloft, Robmccoll, Artyom Kalinin, Yacs, Monkbot, JIMP EAX, Boky90, HelpUsStopSpam, KasparBot, CAPTAIN RAJU, Danielo-
liveira56, Mikkel2thorup, Bahaabadi, Bender the Bot and Anonymous: 128

Dijkstra’s algorithm Source:  https://en.wikipedia.org/wiki/Dijkstra’{ }s_algorithm?o0ldid=760769431 Contributors: ~ AxelBoldt,
LC~enwiki, Css, Shd~enwiki, Matusz, Edemaine, Ezubaric, Someone else, Michael Hardy, Nixdorf, Kku, Cyde, Julesd, Aragorn2, Cema,
Hashar, Charles Matthews, Timwi, Dcoetzee, Dysprosia, Gutza, Hao2lian, Itai, Csurguine, Shizhao, Owen, Quidquam, Jaredwf, Altenmann,
MathMartin, Bkell, Hadal, Wildcat dunny, Clementi, Decrypt3, Giftlite, Christopher Parham, BenFrantzDale, Tesse, Brona, Robert South-
worth, Leonard G., AJim, Guanaco, Sundar, Esrogs, MarkSweep, Watcher, RISHARTHA, Gerrit, MementoVivere, Kooo, Kndiaye, Ze-
roOne, BACbKA, Diego UFCG~enwiki, Nicholasbishop, Vecrumba, RoyBoy, Aydee, Ewedistrict, Foobaz, Jellyworld, Quill18, Obradovic
Goran, Haham hanuka, 4v410n42, HasharBot~enwiki, Lawpjc, Terrycojones, Jeltz, B3virq3b, Velella, Mikeo, K3rb, LunaticFringe, Yuriv-
ict, Oleg Alexandrov, Mahanga, ProBoj!, Shreevatsa, LOL, Dandv, Oliphaunt, Danmaz74, Jacobolus, MattGiuca, Drostie, Pol098, Ruud
Koot, Noogz, GregorB, Dionyziz, Agthorr, Kesla, Graham87, Qwertyus, Laurinkus, Grammarbot, Rjwilmsi, Assimil8or~enwiki, Dos-
man, Bés~enwiki, TheRingess, Eric Burnett, JanSuchy, Grantstevens, Mathiastck, Jorvis, Choess, Fresheneesz, King of Hearts, Chobot,
Bgwhite, FrankTobia, YurikBot, Wavelength, Borgx, Angus Lepper, Hairy Dude, Michael Slone, Wierdy1024, CambridgeBayWeather,
Pseudomonas, Zhaladshar, Anog, Shizny, RFBailey, Nethgirb, Tomisti, Sarkar112, Abu adam~enwiki, Zr2d2, GraemeL, Alanb, HereTo-
Help, DoriSmith, Sidonath~enwiki, NetRolller 3D, Thijswijs, Dudzcom, SmackBot, McGeddon, KocjoBot~enwiki, Mgreenbe, Gilliam,
Optikos, Gaiacarra, Oli Filth, MalafayaBot, Kostmo, DHN-bot~enwiki, Frap, GRuban, B4, Ryan Roos, Illnab1024, Daniel.Cardenas,
Ycl6, Tobei, Slakr, SQGibbon, Scorintha, MTSbot~enwiki, RamiWissa, Norm mit, BranStark, Iridescent, Paul Koning, Lavaka, Jonis-
cool98, JForget, Ahyl, Ezrakilty, VTBassMatt, Arrenlex, Huazheng, TOljan~enwiki, Sytelus, Boemanneke, ThomasGHenry, Thijs!bot,
RodrigoCamargo, Crazy george, Sprhodes, Williamyf, WikiSlasher, AntiVandalBot, Behco, Mccraig, Spencer, Dougher, Deflective, Har-
ish victory, Gordonnovak, Jheiv, Mwarren us, Radim Baca, JBocco, SiobhanHansa, Rami R, Stdazi, B3N, David Eppstein, Martynas
Patasius, PoliticalJunkie, Piojo, Obscurans, Yonidebot, Ryanli, AlcoholVat, Turketwh, Joelimlimit, Benof, Sk2613, BernardZ, PesoSwe,
JohnBlackburne, Andreasneumann, Soytuny, TXiKiBoT, Kjmitch, MusicScience, Dmforcier, Mcculley, Milcke~enwiki, Mkw813, Andy
Dingley, Kbkorb, AlleborgoBot, Mameisam, Davekaminski, Rhanekom, Subh83, SieBot, Wphamilton, Adamarnesen, Sephiroth storm,
Keilana, Digwuren, Quest for Truth, Beatle Fab Four, Gerel, Ctxppc, Svick, AlanUS, Sokari, ClueBot, Justin W Smith, Foxj, CGames-
Play, Pskjs~enwiki, Cicconetti, Adamianash, Nanobear~enwiki, Daveagp, Vermooten, Coralmizu, ElonNarai, Dr.Koljan, Peatar, Peasaep,
Sniedo, DumZiBoT, XLinkBot, SilvonenBot, Hell112342, Apalamarchuk, SteveJothen, Addbot, DarrylNester, Alquantor, Alex.mccarthy,
Jason.Rafe.Miller, KorinoChikara, MrOllie, Herry12, Torla42, AgadaUrbanit, Vwm, Mat€&j Grabovsky, Jarble, Luckas-bot, ZX81, Yobot,
Vevek, AnomieBOT, Erel Segal, Arjun G. Menon, Rubinbot, Jim1138, Galoubet, Materialscientist, 90 Auto, Citation bot, ArthurBot,
Amenel, Airalcorn2, Quintus314, LordArtemis, Crefrog, Davub, Jongman.koo, Thayts, Geron82, X7q, Recognizance, Ibmua, D'ohBot,
Jewillco, Shuroo, I dream of horses, Frankrod44, Jonesey95, The Arbiter, Skyerise, MondalorBot, Yutsi, Mikrosam Akademija 2,
Merlion444, Dmitri666, Cincoutprabu, Faure.thomas~enwiki, EmausBot, Dreske, Pixelu, Kh naba, Blueshifting, Wikipelli, Pshanka,
Pxtreme75, Woshiqgiqiye, Allan speck, Sheepeatgrass, Venkatarun95, ClueBot NG, Muon, Sambayless, Helpful Pixie Bot, BG19bot,
Mr.TAMER.Shlash, AdamTReineke, Happyuk, Pilode, Arsstyleh, BattyBot, Xerox 5B, IkamusumeFan, Trunks175, Tehwikipwnerer,
IgushevEdward, Thom2729, Megharajv, Lone boatman, MindAfterMath, Jochen Burghardt, Aladdin.chettouh, Kyousuke.k, Seanhalle,
Ryangerard, I am One of Many, Olivernina, Chehabz, Gauravxpress, Quenhitran, Juliusz Gonera, Alyssaq, Yujianzhao, Monkbot, The-
greekgonzo, KH-1, WillemienH, Kanargias, Ldthai, Zairwolf, Giovatardu, Prakashmeansvictory, Z5eacom, Kupferhirn, Nbro, Mark
Schroder, Jackson tale, Sro23, Mikymaione, Bo.chen.cool, Trianam, Drishti Wali, Tzanger, Dirkjhogan, Marble machine, Shiyu Ji, Cul-
turefanatic12, Vampamp, Tusharsoni099, Karspider and Anonymous: 542

Bellman-Ford algorithm Source: https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm?o0ldid=759185442 Contributors:
Tomo, Michael Hardy, Phoe6, Docu, Ciphergoth, Poor Yorick, Charles Matthews, Dcoetzee, Itai, Fvw, Mazin07, Jaredwf, Fredrik, Alten-
mann, Bkell, Enochlau, Giftlite, BenFrantzDale, Brona, Stern~enwiki, Andris, Wmahan, Gadfium, Sam Hocevar, Rspeer, Orbst, Jellyworld,
Helix84, HasharBot~enwiki, B3virq3b, Pion, Oleg Alexandrov, Brookie, Stderr.dk, LOL, BlankVerse, Ruud Koot, GregorB, Waldir, Agth-
orr, Sigkill, Qwertyus, Rjwilmsi, Salix alba, Ucucha, FlaBot, Ecb29, Mathbot, Nihiltres, Jftuga, AlexCovarrubias, Quuxplusone, Istanton,
CiaPan, Chobot, FrankTobia, Roboto de Ajvol, YurikBot, Wavelength, Taejo, Rsrikanth05, Josteinaj, Nils Grimsmo, BOT-Superzerocool,
Bota47, Cedar101, SmackBot, Posix4e, McGeddon, P b1999, Mcld, Skizzik, DHN-bot~enwiki, Konstable, Anabus, Mathmike, N Shar,
Solon.KR, SpyMagician, Drdevil44, Pjrm, CBM, Myasuda, Thijs!bot, Epbr123, Headbomb, Williamyf, Heineman, Lavv17, JAnDbot, Har-
ish victory, Magioladitis, Tonyfaull, Abednigo, Stdazi, David Eppstein, Gwern, J.delanoy, Lord AnubisBOT, Monsday, VolkovBot, Zholdas,
JohnBlackburne, TXiKiBoT, Ferengi, Aaron Rotenberg, Jamelan, SQL, AlleborgoBot, Aednichols, YonaBot, ToePeu.bot, VVVBot, Tvi-
das, Naroza, Arlekean, PipepBot, Justin W Smith, Pskjs~enwiki, Alexbot, PixelBot, Arjayay, Aene, DumZiBoT, Writer130, Addbot,
Tsunanet, Iceblock, Protonk, Jasper Deng, Luckas-bot, Yobot, Ptbotgourou, The Earwig, Linket, Gmile~enwiki, Backslash Forwardslash,
PanLevan, ArthurBot, Str82nol, Miym, Mario777Zelda, Shuroo, RobinK, Dinamik-bot, ToneDaBass, Nostalgius, EmausBot, Wikipelli,
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Bjozen, Guahnala, AManWithNoPlan, ClueBot NG, Nullzero, Happyuk, Cyberbot II, Lone boatman, Aladdin.chettouh, Carlwitt, Gauravx-
press, Jianhui67, Jonchen42, Amortias, AHusain3141, Subshiri, Shelke.disha, Georgiraichovgeorgiev, Ericpony, Adreno, Tusharsoni099,
Karaminchan, Plurmiscuous and Anonymous: 183

e A* search algorithm Source: https://en.wikipedia.org/wiki/A*_search_algorithm?0ldid=761920249 Contributors: Damian Yerrick,
AxelBoldt, Mav, PierreAbbat, Mrwojo, Frecklefoot, Bdesham, Kku, Ahoerstemeier, Docu, Julesd, Trisweb, JIl, BenKovitz, IMSoP,
Cherkash, Charles Matthews, Timwi, Dcoetzee, Nohat, JCarriker, Dysprosia, Furrykef, GPHemsley, Phil Boswell, Catskul, Robbot,
Fredrik, Altenmann, Auric, Hadal, Tea2min, Giftlite, Mat-C, Mintleaf~enwiki, Laurens~enwiki, Lee ] Haywood, Brona, Mellum, Siroxo,
Neilc, Rdsmith4, Beau~enwiki, Discospinster, Rich Farmbrough, Rspeer, Yknott, Talldean, Kndiaye, Bender235, ZeroOne, Blogjack,
BACDKA, Hart~enwiki, Whosyourjudas, Eje211, Keenan Pepper, RoySmith, Runtime, Xnk, MIT Trekkie, Joelpt, TheGoblin, MattGiuca,
JonH, Ruud Koot, GregorB, Dionyziz, TrentonLipscomb, Rufous, Kesla, Ashmoo, Kaisal., Qwertyus, Jacob Finn, AllanBz, Rjwilmsi,
Grantstevens, Jameshfisher, Wctaiwan, Quuxplusone, Fresheneesz, Kri, Samkass, Chobot, DVdm, YurikBot, Wavelength, Michael Slone,
Taejo, KamuiShirou, Stephenb, Ritchy, Thsgrn, Nick, Neil.steiner, Orca456, Syrthiss, BOT-Superzerocool, BIS Suma, Eyal0, Reg-
naron~enwiki, Cedar101, Gulliveig, Kevin, JLaTondre, Katieh5584, Tomp, SmackBot, Mcld, DHN-bot~enwiki, Tekhnofiend, Nick Levine,
Trudslev, Acdx, Remko~enwiki, Disavian, Jrouquie, Ripe, Pjrm, SkyWalker, Ale jrb, Szabolcs Nagy, Tac-Tics, Simeon, DumbBOT, Keo-
san, Martyr2566, AlexAlex, Headbomb, Markulf, Braphael, GiM, Malcolm, Falsedef, Kainino, Gokhan, IanOsgood, Geoffadams, Siobhan-
Hansa, Benstown, Magioladitis, VoABot II, Hornbydd, CountingPine, David Chouinard, David Eppstein, HebrewHammerTime, Justinhj,
Piojo, FelipeVargasRigo, Hodja Nasreddin, Arronax50, Sigmundur, Joshua Issac, JoshReeves2, Aninhumer, Thomas.W, Chaos5023, John-
Blackburne, TXiKiBoT, Oshwah, Mcculley, WillUther, Alexander Shekhovtsov, Subh83, Yintan, Henke37, Xprycker, JackSchmidt, Abra-
ham, B.S., Svick, Fiarr, WikiLaurent, Denisarona, Muhends, Justin W Smith, Kotniski, Nanobear~enwiki, Daveagp, Mohit05011992,
Excirial, Alexbot, Dr.Koljan, Dmyersturnbull, Peatar, Gmentat, 1ForTheMoney, Pzoxicuvybtnrm, Ddccc, Darkicebot, Alex Krainov,
XLinkBot, Rankiri, C. A. Russell, Maco1421, SteveJothen, Addbot, Mortense, Crazy2be, DOI bot, Alex.mccarthy, LinkFA-Bot, Tassede-
the, Glenstamp, HerculeBot, Luckas-bot, Yobot, DavidHarkness, AnomieBOT, DemocraticLuntz, Piano non troppo, Silnarm, Kingpin13,
Hiihammuk, Materialscientist, Cycling-professor, Vanished user 04, Citation bot, Xgbot, Leirbag.arc, Naugtur, Boom1234567, FrescoBot,
CT7protal, Age Happens, Albertzeyer, Sanderd17, Georgel26~enwiki, MastiBot, Yuval Baror, Trappist the monk, Electro, Lotje, An-
tonbharkamsan, Faure.thomas~enwiki, RjwilmsiBot, Millerdl, VernoWhitney, Timotei21, EmausBot, Dreske, WikitanvirBot, Ghodsnia,
Srossd, Gaganbansall23, K6ka, Jiri Pavelka, Johnjianfang, DrOb3rts, Josve05a, MithrandirAgain, Chire, Bamyers99, Sylverone, Hand-
someFella, Alejandro.isaza, ClueBot NG, Andrewrosenberg, Khanser, MelbourneStar, Jiyeyuran, Keithphw, Korrawit, Arrandale, Masssly,
CaroleHenson, Widr, Salzahrani, 316 student, HMSSolent, BG19bot, Hallows AG, Aedieder, Frasmog, Axule, Pratyya Ghosh, Dexbot,
JingguoYao, Bjorn Reese, Mogism, Frosty, Sriharsh1234, JimDeLaHunt, Theemathas, Cesarramsan, Bojannestorovic, Manish181192,
Lyn240690234, Treaster, Mhavard999, Amcshane, Opencooper, Raaghu03, HXZBZSHDHDHED, Kanargias, BringsVictory, Johanna,
Rivascalps2, Mutantoe, Nbro, HelpUsStopSpam, Gdamyanov, CAPTAIN RAJU, Jfraumen, PeizonChen, MacShrike, Wiki2016edit, Pp-
pery, Markjin1990, Mehrotraparth and Anonymous: 410

e Bipartite graph Source: https://en.wikipedia.org/wiki/Bipartite_graph?oldid=742021681 Contributors: Jdpipe, Nonenmac, Michael
Hardy, Chris-martin, Manojmp, TakuyaMurata, Delirium, Eric119, Altenmann, Netpilot43556, MathMartin, Giftlite, Tom harrison,
Tobo~enwiki, Tomruen, Corti, Shahab, Paul August, Rgdboer, Bobo192, Mdd, Jéréme, Burn, Bkkbrad, BD2412, Brighterorange, FlaBot,
Kri, YurikBot, Freiberg, Catgofire, Jpbowen, Nethgirb, Bota47, H@r@ld, Melchoir, BiT, DHN-bot~enwiki, Tsca.bot, Gassa, Jon Awbrey,
Michael Dinolfo, Ojan, CRGreathouse, Flamholz, Cydebot, Kozuch, Thijs!bot, Jdudar, MistWiz, AndreasWittenstein, Kevinmon, David
Eppstein, JoergenB, Robin S, Hpfister, Robert Illes, Policron, AlnoktaBOT, PaulTanenbaum, Jason Klaus, Charliearcuri, Mild Bill Hiccup,
Alexbot, Addbot, Luckas-bot, Yobot, Rubinbot, Twri, Miym, Shmomuffin, Locobot, Howard McCay, LucienBOT, D'ohBot, Doostdar-
WKP, Pinethicket, RjwilmsiBot, Ripchip Bot, Ebrambot, Pgdx, ClueBot NG, Wcherowi, Hoorayforturtles, 149AFK, Nullzero, Helpful
Pixie Bot, Solomon7968, AndiPersti, GeoffreyT2000, SofjaKovalevskaja, Bender the Bot and Anonymous: 68

o Complete bipartite graph Source: https://en.wikipedia.org/wiki/Complete_bipartite_graph?oldid=743601363 Contributors: PierreAb-
bat, Nonenmac, Chris-martin, Yaronf, Dcoetzee, Adoarns, McKay, Jaredwf, MathMartin, Giftlite, Dbenbenn, Tom harrison, JeffBobFrank,
Andris, Tomruen, Shahab, Paul August, Keenan Pepper, FlaBot, Quuxplusone, Chobot, Michael Slone, Evilbu, J. Finkelstein, Nong-
Bot~enwiki, David Eppstein, Koko90, Robert Illes, VolkovBot, Jamelan, Robert Samal, Justin W Smith, Alexbot, Bender2k14, Addbot,
Numbo3-bot, PV=nRT, Calle, Twri, DSisyphBot, Miym, Erik9bot, LucienBOT, X7q, RobinK, Solomon7968, PIZZ?7, Bender the Bot
and Anonymous: 33

o Petri net Source: https://en.wikipedia.org/wiki/Petri_net?0ldid=760944973 Contributors: Zundark, Ap, Andre Engels, LionKimbro, Mark
Durst, Michael Hardy, JakeVortex, Rp, Charles Matthews, Samsara, Phil Boswell, Robbot, Giftlite, Thv, Pretzelpaws, Michael Devore,
Khalid hassani, Neilc, Gadfium, RedCrystal, Andreas Kaufmann, Ericbodden, Leibniz, Ascdnder, Manil, Mkegelmann, Bobo192, Sam
Korn, Mdd, Ramaz, Kotasik, Kelly Martin, Linas, Ruud Koot, Josh Parris, Rjwilmsi, Ligulem, John Deas, Gurch, Vonkje, Gpig2013, Anrie
Nord, Roboto de Ajvol, YurikBot, Arado, Gaius Cornelius, CarlHewitt, Lpedro, Msoos, Gareth Jones, ArmadniGeneral, Jpbowen, El Pollo
Diablo, K.Nevelsteen, Cbogart2, Cedar101, Xaxafrad, Esprit15d, ArielGold, That Guy, From That Show!, Jsnx, SmackBot, Eskimbot,
Theone256, Dfletter, AndrewChinery, JonHarder, Allan Mclnnes, SQB, Clicketyclack, Spiritia, JorisvS, Loadmaster, Mets501, Phuzion,
Randomity, Vocaro, Spdegabrielle, CRGreathouse, CmdrObot, Outriggr (2006-2009), Neonleonb, Cydebot, Sam Staton, Patrick O'Leary,
Smiteri, Malleus Fatuorum, Thijs!bot, Torben.green, Headbomb, Polymorph self, Gioto, Heysan, Remaire, JAnDbot, Fbahr, MattBan,
Nouiz, Creacon, Magioladitis, MyNameIsNeo, Wvdaalst, A3nm, Gwern, Glrx, R'n'B, Theups, Alessiobissoli, Helios369, Outmind~enwiki,
Yoichi3, Marashie, SieBot, OKBot, ClueBot, Alksentrs, Polyamorph, Niceguyedc, Vivio Testarossa, Singularity42, Un11imig, Wikiplant,
Good Olfactory, Addbot, DOI bot, IXavier, Jklowden, MrOllie, WikiDreamer Bot, Janrou, Favrin, Luckas-bot, Yobot, Plasticbot, Demo-
craticLuntz, Thachx, Citation bot, Pelerin2, False vacuum, WaysToEscape, FrescoBot, Ariek, Patrick J. May, Citation bot 1, Arthur MIL-
CHIOR, DrilBot, Vasywriter, RedBot, Lotje, Clemens2000, Amkilpatrick, Pyschobbens, Bethnim, W, Yagalone, Runestonel, Nerlnsqy,
Robbiemorrison, ClueBot NG, Widr, Helpful Pixie Bot, BG19bot, Manu31415, Lmkaff, David Maung, Adgijg, Igor potapov, Mark viking,
Lenaherscheid, Zsoftua, MichaelBlondin, Monkbot, U2fanboi, DraXus, GFavrin, Gfavrinl, Le blue, HelpUsStopSpam, TimmKam, Bender
the Bot, Wilvdaalst and Anonymous: 176

o Adjacency matrix Source: https://en.wikipedia.org/wiki/Adjacency_matrix?0ldid=751840428 Contributors: AxelBoldt, Tbackstr, Tomo,
Michael Hardy, Chris-martin, TakuyaMurata, Mbogelund, Schneelocke, Dcoetzee, Dysprosia, Reina riemann, Aleph4, Fredrik, Math-
Martin, Bkell, EIBenevolente, Giftlite, BenFrantzDale, Arthouse~enwiki, MarkSweep, Tomruen, Abdull, Rich Farmbrough, Bender235,
Zaslav, Gauge, Rgdboer, Phils, Burn, Cburnett, Oleg Alexandrov, Timendum, BD2412, Rjwilmsi, YurikBot, Jpbowen, Jogers, Netrapt,
Sneftel, SmackBot, Ttzz, Kneufeld, Senfo, Abha Jain, Tamfang, Juffi, EVula, Dreadstar, Mdrine, Paulish, Tim Q. Wells, Beetstra, Hul2,
Rhetth, CmdrObot, Only2sea, Thijs!bot, Headbomb, Olenielsen, Salgueiro~enwiki, Natelewis, Xeno, JamesBWatson, David Eppstein,
Yonidebot, Squids and Chips, VolkovBot, LokiClock, YuryKirienko, Morre~enwiki, Periergeia, JackSchmidt, Garyzx, Watchduck, Ben-
der2k14, Yoav HaCohen, Addbot, Fgnievinski, LaaknorBot, Debresser, Matéj Grabovsky, ¢ - Luckas-bot, Calle, Milk’s Favorite Bot
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II, AnomieBOT, Twri, ArthurBot, SPTWriter, Miym, Bitsianshash, X7q, Jean Honorio, Stawomir Bialy, Maggyero, Chenopodiaceous,
Tom.Reding, RobinK, TobeBot, Patmorin, John of Reading, WikitanvirBot, Felix Hoffmann, ZéroBot, ChuispastonBot, ClueBot NG,
Wecherowi, Helpful Pixie Bot, Shilpi4560, Snowcream, DarafshBot, Minidiable, Kompot 3, Horseless Headman, Shamus03, Rmatych and
Anonymous: 86

Travelling salesman problem Source: https://en.wikipedia.org/wiki/Travelling_salesman_problem?oldid=760378776 Contributors: Marj
Tiefert, The Anome, AstroNomer, Aldie, ChangChienFu, FvdP, B4hand, Stevertigo, Edward, Michael Hardy, Wwwwolf, Ixfd64, Zeno
Gantner, Karada, Ellywa, Ahoerstemeier, Kyokpae~enwiki, Hike395, Charles Matthews, Dcoetzee, Dino, Dysprosia, Doradus, Raul654,
Johnleach, David.Monniaux, JackH, Donarreiskoffer, Fredrik, R3mOt, Altenmann, MathMartin, Brw12, Bkell, Chris-gore, Ruakh, Mat-
tflaschen, Tea2min, Giftlite, Laudaka, MSGJ, Herbee, Qaramazov, Mellum, Andris, Prosfilaes, Boothinator, Vanished user wdjklasdjskla,
Rheun, PeterC, Gdr, Quadell, Beland, DragonflySixtyseven, Naff89, Hyperneural, Andreas Kaufmann, The stuart, Mormegil, Tinman,
Ronaldo~enwiki, Random contributor, Sladen, ArnoldReinhold, Smyth, Zamfi, Bender235, ZeroOne, Petrus~enwiki, STGM, El C, Su-
perninja, Gnomz007, Aaronbrick, Shoujun, Touriste, Tomgally, Stochastix, Obradovic Goran, Mdd, Musiphil, Jhertel, Kotasik, Ynhockey,
Zyqgh, Theodore Kloba, DreamGuy, MoraSique, Isaac, LFaraone, Pauli133, Kenyon, Stemonitis, Simetrical, LOL, StradivariusTV, Ruud
Koot, DavidBiesack, Jok2000, Smmurphy, GregorB, Male1979, Nobbie, Graham87, BD2412, Kane5187, Ketiltrout, Rjwilmsi, MarSch,
Seraphimblade, Salix alba, SpNeo, Bubba73, Bensin, Nguyen Thanh Quang, Tedder, Kri, JonathanFreed, Chobot, DVdm, Siddhant, Yurik-
Bot, Wavelength, Angus Lepper, Hairy Dude, RedLyons, Michael Slone, Jefthoy, SpuriousQ, Jugander, Pmdboi, Irrevenant, Astral, Dbfirs,
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