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FOREWORD

In the summer of 1937, when I was a young college student, I was
studying calculus by going through my father’s book Differential and
Integral Calculus with him. I believe that is when he first conceived of
writing an elementary book on the ideas and methods of mathematics
and of the possibility that I might help with such a project.

The book, What is Mathematics?, evolved in the following years. I
recall participating in intensive editing sessions, assisting Herbert Rob-
bins and my father, especially in the summers of 1940 and 1941.

When the book was published, a few copies had a special title page:
Mathematics for Lori, for my youngest sister (then thirteen years old).
A few years later, when I was about to be married, my father challenged
my wife-to-be to read What Is Mathematics. She did not get far, but she
was accepted into the family nonetheless.

For years the attic of the Courant house in New Rochelle was filled
with the wire frames used in the soap film demonstrations described in
Chapter VII, §11. These were a source of endless fascination for the
grandchildren. Although my father never repeated these demonstrations
for them, several of his grandchildren have since gone into mathematics
and related pursuits.

No really new edition was ever prepared since the original publica-
tion. The revised editions referred to in the preface were essentially
unchanged from the original except for a few corrections of minor er-
rors and misprints; all subsequent printings have been identical to the
third revised edition. In his last years, my father sometimes talked of
the possibility of a major modernization, but he no longer had the energy
for such a task.

Therefore I was delighted when Professor Ian Stewart proposed the

nresent revision. He has added commentaries and extensions to several
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of the chapters in the light of recent progress. We learn that Fermat's
Last Theorem and the four-color problem have been solved, and that
infinitesimal and infinite quantities, formerly frowned upon as flawed
concepts, have regained respectability in the context of “nonstandard
analysis.” (Once, during my undergraduate years, I used the word *in-
finity,” and my mathematics professor said, “I won't have bad language
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in my class!”) The bibliography has been extended to the present. We
hope that this new edition of What Is Mathematics? will again stimulate
interest among readers across a broad range of backgrounds.

Ermnest D. Courant
Bayport, N. Y.
September 1995



PREFACE TO THE SECOND EDITION

What Is Mathematics? is one of the great classics, a sparkling collec-
tion of mathematical gems, one of whose aims was to counter the idea
that “mathematics is nothing but a system of conclusions drawn from
definitions and postulates that must be consistent but otherwise may be
created by the free will of the mathematician.” In short, it wanted to put
the meaning back into mathematics. But it was meaning of a very dif-
ferent kind from physical reality, for the meaning of mathematical ob-
jects states “only the relationships between mathematically ‘undefined
objects’ and the rules governing operations with them.” It doesn't matter
what mathematical things are: it's what they do that counts. Thus math-
ematics hovers uneasily between the real and the not-real; its meaning
does not reside in formal abstractions, but neither is it tangible. This
may cause problems for philosophers who like tidy categories, but it is
the great strength of mathematics—what I have elsewhere called its
“unreal reality.” Mathematics links the abstract world of mental con-
cepts to the real world of physical things without being located com-
pletely in either.

I first encountered What Is Mathematics? in 1963. I was about to take
up a place at Cambridge University, and the book was recommended
reading for prospective mathematics students. Even today, anyone who
wants an advance look at university mathematics could profitably skim
through its pages. However, you do not have to be a budding mathe-
matician to get a great deal of pleasure and insight out of Courant and
Robbins’s masterpiece. You do need a modest attention span, an interest
in mathematics for its own sake, and enough background not to feel out
of your depth. High-school algebra, basic calculus, and trigonometric
functions are enough, although a bit of Euclidean geometry helps.

One might expect a book whose most recent edition was prepared
nearly fifty years ago to seem old-fashioned, its terminology dated, its
viewpoint out of line with current fashions. In fact, What Is Mathemat-
ics? has worn amazingly well. Its emphasis on problem-solving is up to
date, and its choice of material has lasted so well that not a single word
or symbol had to be deleted from this new edition.

In case you imagine this is because nothing ever changes in mathe-
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matics, I direct your attention to the new chapter, “Recent Develop-
ments,” which will show you just how rapid the changes have been. No,
the book has worn well because although mathematics is still growing,
it is the sort of subject in which old discoveries seldom become obso-
lete. You cannot “unprove” a theorem. True, you might occasionally find
that a long-accepted proof is wrong—it has happened. But then it was
never proved in the first place. However, new viewpoints can often ren-
der old proofs obsolete, or old facts no longer interesting. What Is Math-
ematics? has worn well because Richard Courant and Herbert Robbins
displayed impeccable taste in their choice of material.

Formal mathematics is like spelling and grammar—a matter of the
correct application of local rules. Meaningful mathematics is like jour-
nalism—it tells an interesting story. Unlike some journalism, the story
has to be true. The best mathematics is like literature—it brings a story
to life before your eyes and involves you in it, intellectually and emo-
tionally. Mathematically speaking, What Is Mathematics? is a very lit-
erate work. The main purpose of the new chapter is to bring Courant
and Robbins'’s stories up to date—for example, to describe proofs of
the Four Color Theorem and Fermat's Last Theorem. These were major
open problems when Courant and Robbins wrote their masterpiece, but
they have since been solved. I do have one genuine mathematical quib-
ble (see §9 of “Recent Developments”). I think that the particular issue
involved is very much a case where the viewpoint has changed. Courant
and Robbins’s argument is correct, within their stated assumptions, but
those assumptions no longer seem as reasonable as they did.

I have made no attempt to introduce new topics that have recently
come to prominence, such as chaos, broken symmetry, or the many
other intriguing mathematical inventions and discoveries of the late
twentieth century. You can find those in many sources, in particular my
book From Here to Infinity, which can be seen as a kind of companion-
piece to this new edition of What Is Mathematics?. My rule has been to
add only material that brings the original up to date—although I have
bent it on a few occasions and have been tempted to break it on others.

What Is Mathematics?

Unique.

Ian Stewart

Coventry
June 1995



PREFACE TO THE REVISED EDITIONS

During the last years the force of events has led to an increased de-
mand for mathematical information and training. Now more than ever
there exists the danger of frustration and disillusionment unless stu-
dents and teachers try to look beyond mathematical formalism and ma-
nipulation and to grasp the real essence of mathematics. This book was
written for such students and teachers, and the response to the first
edition encourages the authors in the hope that it will be helpful.

Criticism by many readers has led to numerous corrections and im-
provements. For generous help with the preparation of the third revised

edition cordial thanks are due to Mrs. Natascha Artin.

R. Courant
New Rochelle, N. Y.
March 18, 1943
October 10, 1945
October 28, 1947



PREFACE TO THE FIRST EDITION

For more than two thousand years some familiarity with mathematics
has been regarded as an indispensable part of the intellectual equipment
of every cultured person. Today the traditional place of mathematics In
education is in grave danger. Unfortunately, professional representa-
tives of mathematics share in the responsibility. The teaching of math-
ematics has sometimes degenerated into empty drill in problem solving,
which may develop formal ability but does not lead to real understand-
ing or to greater intellectual independence. Mathematical research has
shown a tendency toward overspecialization and overemphasis on ab-
straction. Applications and connections with other fields have been ne-
glected. However, such conditions do not in the least justify a policy of
retrenchment. On the contrary, the opposite reaction must and does
arise from those who are aware of the value of intellectual discipline.
Teachers, students, and the educated public demand constructive re-
form, not resignation along the line of least resistance. The goal is gen-
uine comprehension of mathematics as an organic whole and as a basis
for scientific thinking and acting.

Some splendid books on biography and history and some provocative
popular writings have stimulated the latent general interest. But knowl-
edge cannot be attained by indirect means alone. Understanding of
mathematics cannot be transmitted by painless entertainment any more
than education in music can be brought by the most brilliant journalism
to those who never have listened intensively. Actual contact with the
content of living mathematics is necessary. Nevertheless technicalities
and detours should be avoided, and the presentation of mathematics
should be just as free fromm emphasis on routine as from forbidding
dogmatism which refuses to disclose motive or goal and which is an
unfair obstacle to honest effort. It is possible to proceed on a straight
road from the very elements to vantage points from which the substance
and driving forces of modern mathematics can be surveyed.

The present book is an attempt in this direction. Inasmuch as it pre-

supposes only knowledge that a good high school course could impart,

it may be regarded as popular. But it is not a concession to the danger-
ous tendency toward dodging all exertion. It requires a certain degree
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of intellectual maturity and a willingness to do some thinking on one’s
own. The book is written for beginners and scholars, for students and
teachers, for philosophers and engineers, for class rooms and libraries.
Perhaps this is too ambitious an intention. Under the pressure of other
work some compromise had to be made in publishing the book after
many years of preparation, yet before it was really finished. Criticism
and suggestions will be welcomed.

At any rate, it is hoped that the book may serve a useful purpose as
a contribution to American higher education by one who is profoundly
grateful for the opportunity offered him in this country. While respon-
sibility for the plan and philosophy of this publication rests with the
undersigned, any credit for merits it may have must be shared with
Herbert Robbins. Ever since he became associated with the task, he has
unselfishly made it his own cause, and his collaboration has played a
decisive part in completing the work in its present form.

Grateful acknowledgement is due to the help of many friends. Dis-
cussions with Niels Bohr, Kurt Friedrichs, and Otto Neugebauer have
influenced the philosophical and historical attitude; Edna Kramer has
given much constructive criticism from the standpoint of the teacher;
David Gilbarg prepared the first lecture notes from which the book orig-
inated; Emest Courant, Norman Davids, Charles de Prima, Alfred Horn,
Herbert Mintzer, Wolfgang Wasow, and others helped in the endless task

of writing and rewriting the manuscript, and contributed much in im-

proving details; Donald Flanders made many valuable suggestions and
scrutinized the manuscript for the printer; John Knudsen, Hertha von
Gumppenberg, Irving Ritter, and Otto Neugebauer prepared the draw-
ings; H. Whitney contributed to the collection of exercises in the appen-
dix. The General Education Board of the Rockefeller Foundation
generously supported the development of courses and notes which then
became the basis of the book. Thanks are also due to the Waverly Press,
and in particular Mr. Grover C. Orth, for their extremely competent
work; and to the Oxford University Press, in particular Mr. Philip Vaud-
rin and Mr. W. Oman, for their encouraging initiative and cooperation.

R. Courant
New Rochelle, N. Y.
August 22, 1941



HOW TO USE THE BOOK

The book is written in a systematic order, but it is by no means nec-
essary for the reader to plow through it page by page and chapter by
chapter. For example, the historical and philosophical introduction
might best be postponed until the rest of the book has been read. The
different chapters are largely independent of one another. Often the
beginning of a section will be easy to understand. The path then leads
gradually upward, becoming steeper toward the end of a chapter and in
the supplements. Thus the reader who wants general information rather
than specific knowledge may be content with a selection of material
that can be made by avoiding the more detailed discussions.

The student with slight mathematical background will have to make
a choice. Asterisks or small print indicate parts that may be omitted at
a first reading without seriously impairing the understanding of subse-
quent parts. Moreover, no harm will be done if the study of the book is
confined to those sections or chapters in which the reader is most in-
terested. Most of the exercises are not of a routine nature; the more
difficult ones are marked with an asterisk. The reader should not be
alarmed if he cannot solve many of these.

High school teachers may find helpful material for clubs or selected
groups of students in the chapters on geometrical constructions and on
maxima and minima.

It is hoped that the book will serve both college students from fresh-
man to graduate level and professional men who are genuinely inter-
ested in science. Moreover, it may serve as a basis for college courses
of an unconventional type on the fundamental concepts of mathematics.
Chapters III, IV, and V could be used for a course in geometry, while
Chapters VI and VIII together form a self-contained presentation of the
calculus with emphasis on understanding rather than routine. They
could be used as an introductory text by a teacher who is willing to
make active contributions in supplementing the material according to
specific needs and especially in providing further numerical examples.
Numerous exercises scattered throughout the text and an additional
collection at the end should facilitate the use of the book in the class
room.

It is even hoped that the scholar will find something of interest in
details and in certain elementary discussions that contain the germ of a
broader development.



WHAT IS MATHEMATICS?

Mathematics as an expression of the human mind refiects the active
will, the contemplative reason, and the desire for aesthetic perfection.
Its basic elements are logic and intuition, analysis and construction,
generality and individuality. Though different traditions may emphasize
different aspects, it is only the interplay of these antithetic forces and
the struggle for their synthesis that constitute the life, usefulness, and
supreme value of mathematical science.

Without doubt, all mathematical development has its psychological
roots in more or less practical requirements. But once started under the
pressure of necessary applications, it inevitably gains momentum in it-
self and transcends the confines of immediate utility. This trend from
applied to theoretical science appears in ancient history as well as in
many contributions to modern mathematics by engineers and physicists.

Recorded mathematics begins in the Orient, where, about 2000 B.C,,
the Babylonians collected a great wealth of material that we would clas-
sify today under elementary algebra. Yet as a science in the modern
sense mathematics only emerges later, on Greek soil, in the fifth and
fourth centuries B.C. The ever-increasing contact between the Orient
and the Greeks, beginning at the time of the Persian empire and reaching
a climax in the period following Alexander’'s expeditions, made the
Greeks familiar with the achievements of Babylonian mathematics and
astronomy. Mathematics was soon subjected to the philosophical dis-
cussion that fiourished in the Greek city states. Thus Greek thinkers
became conscious of the great difficulties inherent in the mathematical
concepts of continuity, motion, and infinity, and in the problem of mea-
suring arbitrary quantities by given units. In an admirable effort the
challenge was met, and the result, Eudoxus’ theory of the geometrical
continuum, is an achievement that was only paralleled more than two
thousand years later by the modern theory of irrational numbers. The
deductive-postulational trend in mathematics originated at the time of
Eudoxus and was crystallized in Euclid’s Flements.

However, while the theoretical and postulational tendency of Greek
mathematics remains one of its important characteristics and has ex-
ercised an enormous influence, it cannot be emphasized too strongly
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that application and connection with physical reality played just as im-
portant a part in the mathematics of antiquity, and that a manner of
presentation less rigid than Euclid’s was very often preferred.

It may be that the early discovery of the difficulties connected with
“incommensurable” quantities deterred the Greeks from developing the
art of numerical reckoning achieved before in the Orient. Instead they
forced their way through the thicket of pure axiomatic geometry. Thus
one of the strange detours of the history of science began, and perhaps
a great opportunity was missed. For almost two thousand years the
weight of Greek geometrical tradition retarded the inevitable evolution
of the number concept and of algebraic manipulation, which later
formed the basis of modern science.

After a period of slow preparation, the revolution in mathematics and
science began its vigorous phase in the seventeenth century with ana-
lytic geometry and the differential and integral calculus. While Greek
geometry retained an important place, the Greek ideal of axiomatic crys-
tallization and systematic deduction disappeared in the seventeenth and
eighteenth centuries. Logically precise reasoning, starting from clear
definitions and non-contradictory, “evident” axioms, seemed imnmaterial
to the new pioneers of mathematical science. In a veritable orgy of in-
tuitive guesswork, of cogent reasoning interwoven with nonsensical
mysticism, with a blind confidence in the superhuman power of formal
procedure, they conquered a mathematical world of immense riches.
Gradually the ecstasy of progress gave way to a spirit of critical self-
control. In the nineteenth century the immanent need for consolidation
and the desire for more security in the extension of higher learning that
was prompted by the French revolution, inevitably led back to a revision
of the foundations of the new mathematics, in particular of the differ-
ential and integral calculus and the underlying concept of limit. Thus
the nineteenth century not only became a period of new advances, but
was also characterized by a successful return to the classical ideal of
precision and rigorous proof. In this respect it even surpassed the model
of Greek science. Once more the pendulum swung toward the side of
logical purity and abstraction. At present we still seem to be in this
period, although it is to be hoped that the resulting unfortunate sepa-
ration between pure mathematics and the vital applications, perhaps
inevitable in times of critical revision, will be followed by an era of
closer unity. The regained internal strength and, above all, the enormous
simplification attained on the basis of clearer comprehension make it
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possible today to master the mathematical theory without losing sight
of applications. To establish once again an organic union between pure
and applied science and a sound balance between abstract generality
and colorful individuality may well be the paramount task of mathe-
matics in the immediate future.

This is not the place for a detailed philosophical or psychological
analysis of mathematics. Only a few points should be stressed. There
seems to be a great danger in the prevailing overemphasis on the
deductive-postulational character of mathematics. True, the element of
constructive invention, of directing and motivating intuition, is apt to
elude a simple philosophical formulation; but it remains the core of any
mathematical achievement, even in the most abstract fields, If the crys-
tallized deductive form is the goal, intuition and construction are at least
the driving forces. A serious threat to the very life of science is implied
in the assertion that mathematics is nothing but a system of conclusions
drawn from definitions and postulates that must be consistent but oth-
erwise may be created by the free will of the mathematician. If this
description were accurate, mathematics could not attract any intelligent
person. It would be a game with definitions, rules, and syllogisms, with-
out motive or goal. The notion that the intellect can create meaningful
postulational systems at its whim is a deceptive halftruth. Only under
the discipline of responsibility to the organic whole, only guided by
intrinsic necessity, can the free mind achieve results of scientific value.

While the contemplative trend of logical analysis does not represent
all of mathematics, it has led to a more profound understanding of math-
ematical facts and their interdependence, and to a clearer comprehen-
sion of the essence of mathematical concepts. From it has evolved a
modern point of view in mathematics that is typical of a universal sci-
entific attitude.

Whatever our philosophical standpoint may be, for all purposes of
scientific observation an object exhausts itself in the totality of possible
relations to the perceiving subject or instrument. Of course, mere per-
ception does not constitute knowledge and insight; it must be coordi-
nated and interpreted by reference to some underlying entity, a “thing
in itself,” which is not an object of direct physical observation, but be-
longs to metaphysics. Yet for scientific procedure it is important to dis-
card elements of metaphysical character and to consider observable
facts always as the ultimate source of notions and constructions. To
renounce the goal of comprehending the “thing in itself,” of knowing
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the “ultimate truth,” of unraveling the innermost essence of the world,
may be a psychological hardship for naive enthusiasts, but in fact it was
one of the most fruitful turns in modern thinking.

Some of the greatest achievements in physics have come as a reward
for courageous adherence to the principle of eliminating metaphysics.
When Einstein tried to reduce the notion of “simultaneous events oc-
curring at different places” to observable phenomena, when he un-
masked as a metaphysical prejudice the belief that this concept must
have a scientific meaning in itself, he had found the key to his theory of
relativity. When Niels Bohr and his pupils analyzed the fact that any

physical observation must be accompanied by an effect of the observing
instrument on the observed object, it became clear that the sharp si-
multaneous fixation of position and velocity of a particle is not possible
in the sense of physics. The far-reaching consequences of this discovery,
embodied in the modern theory of quantum mechanics, are now familiar
to every physicist. In the nineteenth century the idea prevailed that me-
chanical forces and motions of particles in space are things in them-
selves, while electricity, light, and magnetism should be reduced to or
“explained” as mechanical phenomena, just as had been done with heat.
The “ether” was invented as a hypothetical medium capable of not en-
tirely explained mechanical motions that appear to us as light or elec-
tricity. Slowly it was realized that the ether is of necessity unobservable;
that it belongs to metaphysics and not to physics. With sorrow in some
quarters, with relief in others, the mechanical explanations of light and
electricity, and with them the ether, were finally abandoned.

A similar situation, even more accentuated, exists in mathematics.
Throughout the ages mathematicians have considered their objects,
such as numbers, points, etc., as substantial things in themselves. Since
these entities had always defied attempts at an adequate description, it
slowly dawned on the mathematicians of the nineteenth century that
the question of the meaning of these objects as substantial things does
not make sense within mathematics, if at all. The only relevant asser-
tions concerning them do not refer to substantial reality; they state only
the interrelations between mathematically “undefined objects” and the
rules governing operations with them. What points, lines, numbers “ac-
tually” are cannot and need not be discussed in mathematical science.
What matters and what corresponds to “verifiable” fact is structure and
relationship, that two points determine a line, that numbers combine
according to certain rules to form other numbers, etc. A clear insight
into the necessity of a dissubstantiation of elementary mathematical
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concepts has been one of the most important and fruitful results of the
modern postulational development.

Fortunately, creative minds forget dogmatic philosophical beliefs
whenever adherence to them would impede constructive achievement.
For scholars and layman alike it is not philosophy but active experience
in mathematics itself that alone can answer the question: What is math-
ematics?



CHAPTER 1

THE NATURAL NUMBERS
INTRODUCTION

Number is the basis of modern mathematics. But what is number?
What doesit meantosay thaty 41 =1,3.-4 =%} and{(-1) (—1) = 1?
We learn in school the mechanics of handling fractions and negative
numbers, but for a real understanding of the number system we must go
back to simpler elements. While the Greeks chose the geometrical con-
cepts of point and line as the basis of their mathematics, it has
become the modern guiding principle that all mathematical statements
should be reducible ultiinately to statements about the natural numbers,
1, 2, 3,.... “God created the natural numbers; everything else is
man’s handiwork.” In these words Leopold Kronecker (1823-1891)
pointed out the safe ground on which the structure of mathematics can
be built.

Created by the human mind to count the objects in various assem-
blages, numbers have no reference to the individual characteristics of
the objects counted. The number six is an abstraction from all actual
collections containing six things; it does not depend on any specific
qualities of these things or on the symbols used. Only at a rather
advanced stage of intellectual development does the abstract character
of the idea of number become clear. To children, numbers always re-
main connected with tangible objects such as fingers or beads, and primi-
tive languages display a concrete number sense by providing different
sets of number words for different types of objects.

Fortunately, the mathematician as such need not be concerned with
the philosophical nature of the transition from collections of concrete
objects to the abstract number concept. We shall therefore accept the
natural numbers as given, together with the two fundamental opera-
tions, addition and multiplication, by which they may be combined,.

§1. CALCULATION WITH INTEGERS

1. Laws of Arithmetic

The mathematical theory of the natural numbers or positive integers
is known as arithmetic. It is based on the fact that the addition and
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multiplication of integers are governed by certain laws. In order to
state these laws in full generality we cannot use symbols like 1, 2, 3
which refer to specific integers. The statement

1+2=241

is only a particular instance of the general law that the sum of two
integers is the same regardless of the order in which they are considered.
Hence, when we wish to express the fact that a certain relation between
integers is valid irrespective of the values of the particular integers
involved, we shall denote integers symbolically by letters a, b, ¢, --- .
With this agreement we may state five fundamental laws of arithmetic
with which the reader is familiar:

1) a+b=0>b+a, 2) ab = ba,
a4+ b+4+c)=(a+ b + ¢, 4) a(bc) = (ab)c,
5) a(d 4+ ¢) = ab + ac.

The first two of these, the commutative laws of addition and multipli-
cation, state that one may interchange the order of the elements involved
in addition or multiplication. The third, the associative law of addition,
states that addition of three numbers gives the same result whether we
add to the first the sum of the second and third, or to the third the sum
of the first and second. The fourth is the associative law of multiplica-
tion. The last, the distribulive law, expresses the fact that to multiply
a sum by an integer we may multiply each term of the sum by this integer
and then add the products.

These laws of arithmetic are very simple, and may seem obvious. But
they might not be applicable to entities other than integers. If a
and b are symbols not for integers but for chemical substances, and
if ‘“‘addition’’ is used in a colloquial sense, it is evident that the commuta-
tive law will not always hold. For example, if sulphuric acid is added to
water, a dilute solution is obtained, while the addition of water to pure
sulphuric acid may result in disaster to the experimenter. Similar illus-
trations will show that in this type of chemical “‘arithmetic’’ the associa-
tive and distributive laws of addition may also fail. Thus one can
imagine types of arithmectic in which one or more of the laws 1)-5)
do not hold. Such systems have actually been studied in modern mathe-
matics.

A concrete model for the abstract concept of integer will indicate the
intuitive basis on which the laws 1)- 5) rest. Instead of using the usual
number symbols 1, 2, 3, etc., let us denote the integer that gives the
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number of objects in a given collection (say the collection of apples on a
particular tree) by a set of dots placed in a rectangular box, one dot for
each object. By operating with these boxes we may investigate the laws
of the arithmetic of integers. To add two integers a and b, we place the
corresponding boxes end to end and remove the partition.

Loooool+|oooo|=Lo-oooo..ol

Fig. 1. Addition,

To multiply a and b, we arrange the dots in the two boxes in rows, and
form a new box with @ rows and b columns of dots. The rules 1)-5)

[orooo]X[OOO‘I:

Fig. 2. Multiplication.

will now be seen to correspond to intuitively obvious properties of these
operations with boxes.

[---]x([--]+[-----l)=

Fig. 3. The Distributive Law.

On the basis of the definition of addition of two integers we may define
the relation of tnequality. Each of the equivalent statements, a < b
(read, ‘‘a is less than b’’) and b > a (read, ‘‘bis greater than a’’), means
that box b may be obtained from box a by the addition of a properly
chosen third box ¢, so that b = a + ¢. When this is so we write

c=b-—a,

which defines the operation of subtraction.

Ioooo.ooo-—l—-looool:[ooo-o]

Fig. 4. Subtraction,

Addition and subtraction are said to be tnverse operations, since if
the addition of theinteger d to the integer a is followed by the subtraction
of the integer d, the result is the original integer a:

(@a+d) —-d=a.
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It should be noted that the integer b — a has been defined only when
b > a. The interpretation of the symbol b — a as a negative integer
when b < a will be discussed later (p. 54 et seq.).

It is often convenient to use one of the notations, b > a (read, ‘b is
greater than or equal to @’’) ora < b (read, “‘a is less than or equal to
b'’"), to express the denial of the statement, a > b. Thus, 2 > 2, anl
3 > 2

We may slightly extend the domain of positive integers, represented
by boxes of dots, by introducing the integer zero, represented by a
completely empty box. If we denote the empty box by the usual symbol
0, then, according to our definition of addition and multiplication,

a+ 0 =a,
a.-0 =0,
for every integer a. For a 4 0 denotes the addition of an empty box

to the box a, while 4.0 denotes a box with no columns;i.e. an empty
box. It is then natural to extend the definition of subtraction by setting

a—a=20

for every integer a. These are the characteristic arithmetical propertics
of zero.

Geometrical models like these boxes of dots, such as the ancient
abacus, were widely used for numecrical calculatrona untll late in thL
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symbolic methods based on the decimal system.

2. The Representation of Integers

We must carefully distinguish between an integer and the symbol,
5 V, ... etec., used to represent it. In the decimal system the ten
digit symbols, 0, 1,2, 3, ... , 9, are used for zero and the first nine posi-
tive integers. A larger integer, such as ‘‘three hundred and seventy-
two,”’ can be expressed in the form

3004+70+2=3.10"4+ 7-10 + 2,

and is denoted in the decimal system by the symbol 372. Here the
important point is that the meaning of the digit symbols 3, 7, 2 depends
on their posifion in the units, tens, or hundreds place. With this
‘‘positional notation’’ we can represent any integer by using only tha
ten digit symbolsin various combinations. The general rule is to express
an integer in the form illustrated by

z=a-10’+b-102+c-10+d,
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where the digits a, b, ¢, d are integers from zero to nine. The integer z
is then represented by the abbreviated symbol

abed.

We note in passing that the coefficients d, ¢, b, a are the remainders left
after successive divisions of z by 10. Thus

10)372 Remainder

10)37 2
103 7
0 3

The particular expression given above for z can only represent integers
less than ten thousand, since larger integers will require five or more digit
symbols. If z is an integer between ten thousand and one hundred
thousand, we can express it in the form

zma.10'4+0.10'4+¢.10"+d .10 + ¢,

and represent it by the symbol abede. A similar statement holds for
integers between one hundred thousand and one million, ete. It is very
useful to have a way of indicating the result in perfect generality by a
gingle formula. We may do this if we denote the different coefficients,
e, d, c, --., by the single letter a with different ‘‘subscripts,’’ a;, a1,
@, a;, - -+ ,and indicate the fact that the powers of ten may be as large
as necessary by denoting the highest power, not by 10 or 10* as in the
examples above, but by 10", where n is understood to stand for an arbi-
trary integer. Then the general method for representing an integer z
in the deciinal system is to express z in the form

(1) z2=10p+ 10"+ @ny 10" 4+ s 4+ a1 - 10 + ag,
and to represent it by the symbol
Anln-10p2 =+ Q1G9 .

As in the special case above, we see that the digits ao, a1, as, --- , @
are simply the successive remainders when z is divided repeatedly by 10.

In the decimal system the number ten is singled out to serve as a base,
The layman may not realize that the selection of ten is not essential,
and that any integer greater than one would serve the same purpose.
For example, a seplimal system (base 7) could be used. In such a sys-
tem, an integer would be expressed as

) ba s 7" 4 bact » T con F by - T+ by,
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where the b’s arc digits from zero to six, and denoted by the symbol
bnbn-—l LIRS blbu .

Thus ‘‘one hundred and nine’’ would be denoted in the septimal system
by the symbol 214, meaning
2.74+1.7+4 4.

As an exercise the reader may prove that the general rule for passing
from the base ten to any other base B is to perform successive divisions
of the number z by B; the remainders will be the digits of the number in
the system with base B. For example:

7)109 Remainder

15 4
N2 1
0 2

109 (decimal system) = 214 (geptimal system).

It is natural to ask whether any particular choice of base would be most
desirable. We shall see that too small a base has disadvantages, while
a large base requires the learning of many digit symbols, and an extended
multiplication table. The choice of {welve as base has been advocated,
since twelve is exactly divisible by two, three, four, and six, and, as a
result, work involving division and fractions would often be simplified.
To write any integer in terms of the basc twelve (duodecimal system),
we require two new digit symbols for ten and eleven. Let us write «
fo1 ten and 8 for eleven. Then in the duodecimal system ‘‘twelve’’
would be written 10, ‘“twenty-two’’ would be 1, ‘‘twenty-three’’ would
be 18, and ‘‘one hundred thirty-one’’ would be 8.

The invention of positiongl notation, attributed to the Sumerians or
Babylonians and developed by the Hindus, was of enormous significance
for civilization. Early systems of numeration were based on a purely
additive principle. In the Roman symbolisin, for example, one wrote

CXYVIII = one hundred + ten 4 five 4 onc -+ one - one.

The Egyptian, Hebrew, and Greck systems of numeration were on the
same level. One disadvantage of any purely additive notation is that
more and more new symbols are needed as numbers get larger. (Of
course, early scientists were not troubled by our modern astronomical
or atomic magnitudes.) But the chief fault of ancient systems, such as
the Roman, was that computation with numbers was so difficult that
only the specialist could handle any but the simplest problems. It is
quite different with the Hindu positional system now in use. This was
introduced into medieval Europe by the merchants of Italy, who learned
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it from the Moslems. The positional system has the agreeable property
that all numbers, however large or small, can be represented by the use
of a small set of different digit symbols (in the decimal system, these are
the “Arabic numerals’’ 0, 1, 2, ..., 9). Along with this goes the more
important advantage of ease of computation. The rules of reckoning
with numbers represented in positional notation can be stated in the
form of addition and multiplication tables for the digits that can bec memo-
rized once and forall. The ancient art of computation, once confined to a
few adepts, is now taught in elementary school. There are not many
instances where scientific progress has so deeply affected and facilitated

everyday life.

3. Computation in Systems Other than the Decimal

The use of ten as a base goes back to the dawn of civilization, and is
undoubtedly due to the fact that we have ten fingers on which to count.
But the number words of many languages show remnants of the use of
other bases, notably twelve and twenty. In English and German the
words for 11 and 12 are not constructed on the decimal principle of com-
bining 10 with the digits, as are the ‘‘teens,’’ but are linguistically inde-
pendent of the words for 10. In French the words ‘‘vingt’’ and ‘‘quatre-
vingt’’ for 20 and 80 suggest that for some purposes a system with base
20 might have been used. In Danish the word for 70, ‘‘halvfirsinds-
tyve,”’ means half-way (from three times) to four times twenty. The
Babylonian astronomers had a system of notation that was partly
sexagesimal (base 60), and this is believed to account for the customary
division of the hour and the angular degree into 60 minutcs.

In asystem other than the decimal the rules of arithmetic are the same,
but one must use different tables for the addition and multiplication of
digits. Accustomed to the decimal system and tied to it by thc number
words of our language, we might at first find this a little confusing. Let
us try an example of multiplication in the septimal system. Bcfore
proceeding, it is advisable to write down the tables we shall have to usc:

Addition Multiplication

1 2 3 4 5 6 1 2 3 4 5 ¢
1{ 2 3 4 5 6 10 1]1 2 3 4 5 6
21 3 4 5 6 10 11 212 4 6 11 13 15
31 4 5 6 10 11 12 3|3 6 12 15 21 24
41 5 6 10 11 12 13 4 (4 11 15 22 26 33
5/ 6 10 11 12 13 14 515 13 21 26 34 42
6|10 11 12 13 14 15 66 15 24 33 42 51
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Let us now multiply 265 by 24, where these number symbols are
written in the septimal system. (In the decimal system this would be
equivalent to multiplying 145 by 18.) The rules of multiplication are
the same as in the decimal system. We begin by multiplying 5 by 4,
which is 26, as the multiplication table shows.

265

Y Y]

We write down 6 in the units place, “‘carrying” the 2 to the next
place. Then we find 4.6 = 33, and 33 4+ 2 = 35. We write down 5,

nd nrnnanad in +thia oravy 11intil o vithine hoo ha nltirnhiad nlll— AAdA
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ing 1,456 + 5,630, we get 6 4 0 = 6 in the units place, 5 4 3 = 11in
the sevens place. Again we write down 1 and keep 1 for the forty-
nines place, where we have 1 4 6 4 4 = 14. The final result is
265-24 = 10,416.

To check this result we may multiply the same numbers in the decimal
system. 10,416 (septimal system) may be written in the decimal
gystem by finding the powers of 7 up to the fourth: 7° = 49, 7° = 343,
7' = 2,401. Hence 10,416 = 2,401 4 4.49 + 7 + 6, this evaluation
being in the decimal system. Adding these numbers we find that 10,416
in the septimal system is equal to 2,610 in the decimal system. Now
we multiply 145 by 18 in the decimal system; the result is 2,610, so
the calculations check.

Ezercises: 1) Set up the addition and multiplication tables in the duodecimal
syatem and work some examples of the same sort.

2) Express ‘‘thirty” and ‘‘one hundred and thirty-three’’ in the systems with
the bases §, 7, 11, 12,

8) What do the symbola 11111 and 21212 mean in these syatema?

4) Form the addition and multiplication tablea for the bascs 5, 11, 13.

From a theoretical point of view, the positional system with the
base 2 is singled out as the one with the smallest possible base. The
only digits in this dyadic system are 0 and 1; every other number 2z
is represented by a row of these symbols. The addition and multiplica-
tion tables consist merely of therules 1 4+ 1 = 10and 1.1 = 1, But
the disadvantage of this system is obvious: long expressions are needed
to represent small numbers. Thus seventy-nine, which may be ex-
pressed as 1:2° 4 0-2° 4 0-2' 4 1-2° 4 1-2° 4 1-2 + 1, is written
in the dyadic system as 1,001,111,
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As an 1llustration of the simplicity of multiplication in the dyadic
gystem, we shall multiply seven and five, which are respectively 111
and 101. Remembering that 1 4 1 = 10 in this system, we have

111
101

111
111

100011 = 22 4+ 2 4 1,

which is thirty-five, as it should be.

Gottfried Wilhelm Leibniz (1646~1716), one of the greatest intellects
of his time, was fond of the dyadic system. To quote Laplace: “Leib-
niz saw in hig binary arithmetic the image of creation. He imagined
that Unity represented God, and zero the void; that the Supreme Being
drew all beings from the void, just as unity and zero express all numbers
in his system of numeration.”’

.
Ezercise: Consider the quest.cn of re itegers witl base a.

In order to name the mtegers in this system we need words for the digits
0,1, ---,a—1and for the various powersof a:a, a%, a%, --« . How mnany different
number words are needed to name all numbers from zero to one thousand, for
a =2 34,5 ---, 167 Which base requires the fewest? (Examples: If
a = 10, we need ten words for the digits, plus words for 10, 100, and 1000, making
a total of 13. For a = 20, we need twenty words for the digits, plus words for
20 and 400, making a total of 22. If a = 100, we need 100 plus 1.)

*$2. THE INFINITUDE OF THE NUMBER SYSTEM.
MATHEMATICAL INDUCTION

1. The Principle of Mathematical Induction

There is no end to the sequence of integers 1, 2, 3, 4, ... ; for after
any integer n has been reached we may write the next integer, n 4 1,
We express this property of the sequence of integers by saying that
there are infinitely many integers. The sequence of integers represents
the simplest and most natural example of the mathematical infinitc,
which plays a dominant réle in modern mathematics. Everywhere in
this book we shall have to dcal with collections or “‘scts’ containing
infinitely many mathematical objects, like the set of all points on a line
or the sct of all triangles in a planc. The infinite sequence of intcgers
is the simplest example of an infinite set.

The step by step procedurc of passing from n to n 4+ 1 which gencrates
the infinite sequence of integers also forms the basis of one of the most
fundamental patterns of mathematical reasoning, the principle of
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mathematical induction. ‘‘Empirical induction” in the natural sciences
proceeds from a particular series of observations of a certain phenomenon
to the statement of a general law governing all occurrences of this
phenomenon. The degree of certainty with which the law is thereby
established depends on the number of single observations and confirma-
tions. This sort of inductive reasoning is often entirely convincing;
the prediction that the sun will rise tomorrow in the east is as certain
as anything can be, but the character of this statcment is not the same
as that of a theorem proved by strict logical or mathematical reasoning.
In quite a different way mathematical induction is used to establish
the truth of a mathematical theorem for an infinite sequence of cases,
the first, the second, the third, and so on without cxception. Let us
denote by A a statement that involves an arbitrary integer n. For
example, A may be the statement, “The sum of the angles in a convex
polygon of n + 2 sides is n times 180 degrees.”” Or A’ may be the as-
sertion, ‘“By drawing = lines in a plane we cannot divide the plane into
more than 2" parts.”” To prove such a theorem for every integer n it
does not suffice to prove it separatcly for the first 10 or 100 or even 1000
values of n. This indeed would correspond to the attitude of empirical
induction. Instead, we must use a method of strictly mathematical
and non-empirical reasoning whose character will be indicated by the
following proofs for the special examples A and A’. In the casc 4, we
know that for n = 1 the polygon is a triangle, and from elementary
geometry the sum of the angles is known to be 1:180°. For a quadri-
lateral, n = 2, we draw a diagonal which divides the quadrilateral into
two triangles. This shows immediately that the sum of the angles of
the quadrilateral is equal to the sum of the angles in the two triangles,
which yields 180° 4 180° = 2-180°. Proceeding to the case of a pen-
tagon with 5 edges, n = 3, we decompose it into a triangle plus a quad-
rilateral. Since the latter has the angle sum 2-180° as we have just
proved, and since the triangle has the angle sum 180° we obtain 3-180
degrees for the 5-gon. Now it is clear that we can proceed indefinitely
in the same way, proving the theorem for n = 4, then for n = 5, and
so on. Each statement follows in thc same way from the preceding
one, so that the general theorem A can be established for all n,
Similarly we can prove the theorem A’. For n = 1 it is obviously
true, since a single line divides the plane into 2 parts. Now add a
second line. Each of the previous parts will be divided into two new
parts, unless the new line is paralle] to the first. In either case, for
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n = 2 we have not more than 4 = 2° parts. Now we add a third line.
Each of the previous domains will either be cut into two parts or be
left untouched. Thus the sum of parts is not greater than 2°.2 = 2°,
Knowing this to be true, we can prove the next case in the same way,
and so on indefinitely,

The esscntial idea in the preceding arguments is to establish a
general theorcm A for all values of n by successively proving a sequence
of special cases, A,, A2, ---. The possibility of doing this depends
on two things: a) There is a general method for showing that if any
statement A, is true then thc next statement, A,.;, will also be true.
b) The first statement A, is known to be true. That these two condi-
tions are sufficient to establish the truth of all the statements
Ay, Ay, Ay, - is a logical principle which is as fundamental to mathe-
matics as are the classical rules of Aristotelian logic. We formulate it
as follows:

Let us suppose that we wish to establish a whole infinite sequence of
mathematical propositions

A1, 4., Ay, -

which together constitute the general proposition A. Suppose that a)
by some mathematical argument 1t is shown that if r is any inleger and if
the assertion A, is known to be true then the truth of the assertion A;y will
follow, and that b) the first proposition A, is known fo be true. Then all
the propositions of the sequence must be true, and A s proved.

We shall not hesitate to accept this, just as we accept the simple
rules of ordinary logic, as a basic principle of mathematical reasoning.
For we can establish the truth of every statement A,, starting from the
given assertion b) that A, is true, and proceeding by repcated use of
the assertion a) to establish successively the truth of 4., A;, A,, and
so on until we reach the statement A,. The principle of mathematical
induction thus rests on the fact that after any integer r there is a next,
r 4+ 1, and that any desired integer n may be reached by a finite number
of such steps, starting from the integer 1.

Often the principle of mathcmatical induction is applied without
explicit mention, or is simply indicated by a casual “cte.” or “‘and so
on.” This is especially frequent in clementary instruction. But the
explicit use of an inductive argument is indispensable in more subtle
proofs. We shall give a few illustrations of a simple but not quite
trivial chLaractcr.



For every valueof n, thesum 1 +2 4+ 3 4 ~+ n of the first n indegers
18 equal to n(n ;- 1 . In order to prove this theorem by mathematical
induction we must show that for every n the assertion A,:

nin+41
(1) 1+2+3+...+n=(_;‘_)

is true. a) We observe that if r is an integer and if the statement A, is
known to be true, i.e. if it is known that

142434 +r="0FD

then by adding the number (r + 1) to both sides of this equation we
obtain the equation

r(r + 1)

5 + (r 4+ 1)

1+24+3 4+ - F+r4+0+1)=

_rr+ 1) +200+1) _ (r+ 1)(r +2),
2 2

which is precisely the statement A,.;. b) The statement A, is ob-
viously true, since 1 = 1—2—2 Hence, by the principle of mathematical
induction, the statement A, is true for every n, as was to be proved.
Ordinarily this is shown by writing the sum1 42 +3 + --- 4+ n
in two forms:
Se=14+24 .-+ n-1)4n
and

Sa=n+Mn0-1)+-.-4+241.

On adding, we see that cach pair of numbers in the saine colunin yields
the sum n 4 1, and, since there are n columns in all, it follows that

28, = n(n + 1),

which proves the desired result.
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From (1) we may 1mmed1ate1y denve the formula. for the sum of the

@) Pn=a+(a+d)+(a+2d)+---+(a+nd)=(n+1)(22a+nd).

For

=n+Da+0+24---Fnd=n+1a +n(n+ 1)d

2+ Da+a(n+1d _ (n+ 1)(2a+ nd)
- 2 B 2 .
For the case a = 0, d = 1, this is equivalent to (1).

3. The Geometrical Progression

One may treat the general geometrical progression in a similar way,
We shall prove that for every value of n

R 1 — qn+1
(3) Gn=a+tag+ag + . +aq—a1_
(We suppose that ¢ # 1, since otherwise the right side of (3) has ne

meaning.)
Certainly this assertion is true for n = 1, for then it states that

a(l = ¢") _a(l + )1 — ¢)

And if we assume that
r 1—
Gf=a+aQ+"'+aq" 1_;1 ?
then we find as a consequence that
Gui=(a+ag+---+af)+af" =G, +a¢™" =a I_Z + ag™™
_ (l_qr+l)+qr+1(1 _q) _ al _qr+1+qr+1_qr+2_ l—q
1—g¢ 1—g¢ l—q

But this is precisely the assertion (3) for the case n = r 4+ 1. This
completes the proof.
In elementary textbooks the usual proof proceeds as follows. Set

Gn=a+aq+...+aq“,
and multiply both sides of this equation by ¢, obtaining

qGa = ag + ag’ + +-- + ag™"
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Now subtract corresponding sides of this equation from the preceding

[ -
-~ e s

equation, obtainin .
Gn"' an-: a — aqn+1’
(1~ ¢)G.=a(l ~ qnﬂ):

1 _ qn+1

G,.=a1__q

4. The Sum of the First n Squares

A further interesting application of the principle of mathematical
induction refers to the sum of the first n squares. By direct trial one
finds that, at least for small values of =,

(4) 1’+2’+3’+,,,+n==n(n+135(2n+1),

and one might guess that this remarkable formula is valid for all integers
n. To prove this, we shall again use the principle of mathematical
induction. We begin by observing that #f the assertion A,, which in
this case is the equation (4), is true for the case n = r, so that

12+2z+32_.*_”' +rz=1'(7'+1)é27'+1),

then on adding (r 4 1)* to both sides of this equation we obtain
r(r + 1)(2r + 1)

P+ 2 4+8 4. 7+ + 1) = 5 + (r + 1)?
_rr+ D@4+ 1) 641 _ (r+Dir(@r+1) + 6+ 1)]
6 6
_ @+ D@+ 7 4+6) _ (r+ D+ 2)(2r +3)
6 6 !

which is precisely the assertion A,4, in this case, since it is obtained by
substituting r 4+ 1 for n in (4). To complete the proof we need only
remark that the assertion A, , in this case the equation

o 10+ DE@+1D)
6 2

is obviously true. Hence the equation (4) is true for every n.
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Formulas of a similar sort may be found for higher powers of the
integers, 1* 4+ 2* 4 3" + ... 4 n*, where k is any positive integer
As an exercise, the reader may prove by mathematical induction that

(5) 1‘+2’+3'+---+n'=[n(n2+1)].

It should be remarked that although the principle of mathematical
induction suffices to prove the formula (5) once this formula has been
written down, the proof gives no indication of how this formula was
arrived at in the first place; why precisely the expression [n(n + 1)/2]*
should be guessed as an expression for the sum of the first n cubes,
rather than [n(n + 1)/3]* or (192 — 4ln + 24)/2 or any of the in-
finitely many expressions of a similar type that could have been con-
sidered. The fact that the proof of a theorem consists in the applica-

tion of certain simple rules of logic does not dispose of the creative

nlamant athamatine whinsh lag In tha shalna Af tha hﬂﬂﬂll’\lll+ 1ne tn
eieilieliv 1n Luauucujuuxw, WwillCll 1E8 1l L€ CNOICE O L€ POSSIDlLtIes W

be examined. The question of the origin of the hypothesis (5)
belongs to a domain in which no very general rules can be given; experi-
ment, analogy, and constructive intuition play their part here. But
once the correct hypothesis is formulated, the principle of mathematical
induction is often sufficient to provide the proof. Inasmuch as such a
proof does not give a clue to the act of discovery, it might more fittingly
be called a verification.

*5. An Important Inequality
In a subsequent chapter we shall find use for the inequality

(6) 1+p)" 214 np,

which holds for every number p > —1 and positive integer n. (For
the sake of generality we are anticipating here the use of negative and
non-integral numbers by allowing p to be any number greater than —1.
The proof for the general case is exactly the same as in the case where
p is a positive integer.) Again we use mathematical induction.

a) Ifitistrue that (1 4 p)" 2 1 4 rp, then on multiplying both sides
of this inequality by the positive number 1 + p, we obtain

A+ )™ 214rp+p+rp.
Dropping the positive term rp’ only strengthens this inequality, so that

14+ p™ 214+ p,
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which shows that the inequality (6) will also hold for the next integer,
r + 1. b) Itis obviously true that (1 + p)' > 1 4+ p. This completes
the proof that (6) is true forevery n. Therestriction to numbersp > —1
is essential. If p < —1, then 1 4 p is negative and the argument in
a) breaks down, since if both members of an inequality are multiplied
by a negative quantity, the sense of the inequality is reversed. (For
example, if we multiply both sides of the inequality 3 > 2 by —1 we
obtain —3 > —2, which is false.)

*6. The Binomial Theorem

Frequently it is important to have an explicit expression for the
nth power of a binomial, (a 4 b)". We find by explicit calculation that
forn =1, (a + b)' = a +b,

forn=2(a+b)’= (a+ b)a+ b = ala+ bd) + bla+b)
= a* + 2ab + b’
forn =3, (a + b)’ = (a + b)(a + b)’ = a(a® + 2ab + b?)
+ b(a’ + 2ab + b°) = a’ + 3a’b + 3ab® + U},

and so on. What general law of formation lies behind the words “and
so on”? Let us examine the process by which (a + b)* was computed.
Since (a + b)> = (a + b)(a + b), we obtained the expression for (a + b)*
by multiplying each term in the expression a 4 b by a, then by b, and
adding. The same procedure was used to calculate (a + b)’ =
(@ + b)(a + b)’. We may continue in the same way to calculate
(a + b), (a + b)*, and so on indefinitely. The expression for (a + b)"
will be obtained by multiplying each term of the previously obtained
expression for (a 4+ b)) by a, then by b, and adding. This leads to
the following diagram:

a+bdb = a\ -+ b\
e b ' &
, 2/ N / N .
(a+b)! = @& + 2 + b
¢/ \ a/ \b u/ B
(a 4+ b)* = /a\ /3ab + /3ab2 /
a » a \b a c \b
NN NN
(a 4 b)' = a 4+ 4dab + 6ab 4+ 4dad® + b

which gives at once the general rule for forming the coefficients in the ex-
pansion of (@ + b)". We construct a triangular array of numbers,
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starting with the coefficients 1, 1 of a + b, and such that each number of
the triangle is the sum of the two numbers on each side of it in the
preceding row. This array is known as Pascal’s Triangle.

1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

------------------------------------------------------------------

The nth row of this array gives the coeffictents tn the expansion of (a 4+ b)®
tn descending powers of a and ascending powers of b; thus
(@ + b) = a' + 7a’ + 21a°D° + 35a'* + 35a’* + 21a°* + 7ab® + b,
Using a concise subseript and superseript notation we may denote the
numbers in the nth row of Pascal’s Triangle by

¢y =10C1,Cs,Cy,--+,Ch4,Ch =1,
Then the general formula for'(a 4 b)" may be written
(7) (@4 b)" =a" 4 Cla™'b + Cra™b* + ... 4 Ch_adb™" + b™

According to the law of formation of Pascal’s Triangle, we have

(8) C} =Cin + ¢,
As an exercise, the experienced reader may use this relation, together
with the fact that Cg = Ci = 1, to show by mathematical induction that

w_nn-1)n-2)...(n—7t+4+1) _ n!
©®  Ci= 1.2.3...3 T =l
(For any positive integer n, the symbol n! (read, “n factorial’) de-
notes the product of the first n integers: n! = 1.2.3 ... n. Itis con-
venient also to define Q0! = 1, so that 9) is valid for ¢ = 0 and ¢ = n.)
This explicit formula for the coefficients in the binomial expansion is
sometimes called the btnomzial theorem. (See also p. 475.)

Ezercises: Prove by mathematical induction:

1 1 1 n
Dttt Yoy " nst
1 2 3 n n+2
2)2+2—‘+2—'+"'+§"-2— el
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*3) 1+29+3q’+---+nq~-1_1_("(‘|‘1)9‘)+nq'ﬂ.
: 1—g?

Y 31
) 1+ 0+ +¢9 - 1+ g7 -Ll—_""T.
Find the sum of the following geometrical progressions:

1 1 1

Tirztarar T T oo

z z z™

Fatarart T tar o

z’-y’ z’—y’l z’_yin
DAy y*'*'(z' T y*) oot (z*+ y') '
Using formulas (4) and () prove:

') 14 3 4 oer (20 + 13 = BT DER ;—1)(27: +3)

*9) 184+ 3%+ -+ +(2n + 1)* = (n + 1)*2r* + 4n + 1),

10) Prove the same results directly by mathematical induction.

6)1"‘""1

*7. Further Remarks on Mathematical Induction

The principle of mathematical induction may be generalized aslightly to read:
‘‘If a sequence of statements A, , Asy1 , Auyr, --- 18 given, where 8 i8 some positive
integer, and if

a) For every value of r > s, the truth of A,,, will follow from the truth of 4,,
and

b) A, is known to be true,
then all the statements A,, A. 1, Asps -+ are true; that is to say, A, is true
for all n > 8.”" Precisely the same reasoning used to establish the truth of the
ordinary principle of mathematical induction applies here, with the sequence
1, 2, 3, - repiaced by the similar sequences, s+ 1,8+ 2,84+ 3 ---. By using
the principle in this form we can atrengthen somewhat the inequality on page 15
by eliminating the posaibility of the ‘="' sign. We state: For every p # 0 and
> —1 and every integer n > 2,

(10) 1+ 2)*>1+ np.

The proof will be left to the reader.

Closely related to the principle of mathematical induction is the ‘‘principle
of the smallest integer'* which atates that every non-empty set Cof posilive tntegers
has a smallest member. A get is empty if it has no members, e.g., the set of
straight circles or the set of integers n such that n > n. For obvious reasons
we exclude such sets in the statement of the principle. The set C may be finite,
like the set 1, 2, 3, 4, &, orinfinite, like the set of all even numbers 2, 4, 6, 8,
10, +++. Any non-empty set C must contain at least one integer, say n, and
the smallest of the integers 1, 2, 3, -+ , n that belongs to C will be the amallesat
integer in C.

The only way to realize the significancc of this principle is to observe that it



REMARKS ON MATHEMATICAL INDUCTION 19

does not apply to every set C of numbers that are not integers; for example,
the set of positive fractions 1, &, §, %, ++ - does not contain a smallest member.
From the point of view of logic it is interesting to observe that the princi-
ple of the smallest integer may be used to prove the principle of mathematical in-
duction as a theorem. To this end, let us consider any sequence of statements
Ay, Ay, A;, --- such that
8) For any positive integer r the truth of A,,, will follow from that of A,.
b) A, is known to be true.
We shall show the hypothesis that any one of the A’s is false to be untenable.
For if even one of the A's were false, the set C of all positive integers n for which
A, is false would be non-empty. By the priuciple of the sinallest integer, C
would contain a smallest integer, p, which must be > 1 beeause of b). Hence 4,

would be false, but A,y true. This contradicts a)..

Once more we emphasize that the principle of mathematical induction
is quite distinct from empirical induction in the natural sciences.
The confirmation of a general law in any finite number of cases, no matter
how large, cannot provide a proof for the law in the rigorous mathemat-
ical sense of the word, even if no exception is known at the time. Such
a law would remain only a very reasonable hypothests, subject to modi-
fication by the results of future experience. In mathematics, alaw or a
theorem is proved only if it can be shown to be a necessary logical
consequence of certain assumptions which are accepted as valid. There
are many examples of mathematical statements which have been veri-
fied in every particular case considered thus far, but which have not
yet been proved to hold in general (for an example see p. 30). One
may suspect that a theorem is true in all generality by observing its
truth in a number of examples; one may then attempt to prove it by
mathematical induction. If the attempt succeeds the theorem is
proved to be true; if the attempt fails, the theorem may be true or false
and may some day be proved or disproved by other methods.

In using the principle of mathematical induction one must always be sure that
the conditions a) and b) are really satisfied. Neglect of this precaution may
lead to absurdities like the following, in which the reader is invited to discover
the fallacy. Wesnall “prove’’ that any twoe positive integers are equal; for exaniple,
that 5 = 10.

First a definition: If a and b are two unequal positive integers, we define
max (a, b) to be a or b, whichever is greater; if a = b we set max (¢, b) = a = b,
Thus max (3, 5) = max (5, 3) = 5, whilemax (4, 4) = 4. Now let A« be the state-
ment, ‘‘If a and b are any two positive integers such that max {(a, b) = n, then
a = b
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a) Suppose A, to be true. Let a and b be any two positive integers such that
max (a, b) = r 4 1. Consider the two integers

a=qag—1
B=b-1;

then max (a, 8) = r. Hence a = 8, for we are assuming A, to be true. It follows
that a = b; hence A,,, is true.

b) A,is obviously true, for if max (a, d) = 1, thensince a and b are by hypothe-
818 positive integers they must both be equal to 1. Therefore, by mathematical
induction, A. 18 true for every =.

Now if a and b are any two positive integers whatsoever, denote max (a, b) by r.
Since 4, has been shown to be true for every n, in particular 4, is true. Hence

} X
a=.og.
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and mysticism, but their interest for mathematicians has never waned.
Euclid (circa 300 B.C.), whose fame rests on the portion of his Elements
that forms the foundation of geometry studied in high school, seems to
have made original contributions to number theory, while his geometry
was largely a compilation of previous results. Diophantus of Alex-
andria (circa 275 A.D.), an early algebraist, left his mark on the theory
of numbers. Pierre de Fermat (1601-1665), a jurist of Toulouse, and
one of the greatest mathematicians of his time, initiated the modern
work in this field. Euler (1707-1783), the most prolific of mathemati-
cians, included much number-iheoretical work in his rescarches. Names
prominent in the annals of mathematics—Legendre, Dirichlet, Riemann
—can be added to the list. Gauss (1777-1855), the foremost mathe-
matieian of modern times, who devoted himself to many different
branches of mathematics, is said to have expressed his opinion of num-
ber theory in the remark, ‘“Mathematics is the queen of the sciences
and the theory of numbers is the queen of mathematics.”

§1. THE PRIME NUMBERS
1. Fundamental Facts

Most statements in number theory, as in mathematics as a whole,
are concerned not with a single object — the number 5 or the number
32—but with a whole class of objects that have some common prop-
erty, such as the class of all even integers,

2,4,6,8, .-,
or the class of all integers divisible by 3,

3,6,912 ...,
or the class of all squares of integers,

1, 4,9, 16, -.-
and 80 on.
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Of fundamental importance in number theory is the class of all
primes. Most integers can be resolved into smaller factors: 10 = 2.5,
111 = 3-37, 144 = 3.3.2.2.2.2, etc. Numbers that cannot be so
resolved are known as prime numbers or primes. More precisely, a
prime t8 an integer p, grealer than one, which has no factors other than
ttself and one. (An tnteger a is said to be a factor or divisor of an integer b
if there is some tnleger ¢ such that b = ac.) The numbers 2, 3, 5, 7,
11, 13, 17, . - - are primes, while 12, for example, is not, since 12 = 3.4.
The importance of the class of primes is due to the fact that every
integer can be expressed as a product of primes: if a number is not itself
a prime, it may be successively factored until all the factors are primes;
thus 360 = 3.120 = 3.30.4 = 3.3.10.2.2 = 3.3.5.2.2.2 = 28.3%5,
An integer (other than 0 or 1) which is not a prime is said to be
compostle.

One of the first questions that arises concerning the class of primes is
whether there is only a finite number of different primes or whether
the class of primes contains infinitely many members, like the class of
all integers, of which it forms a part. The answer is: There are in-
finitely many primes.

The proof of the infinitude of the class of primes as given by Euclid
remains a model of mathematical reasoning. It proceeds by the
“Indirect method”’. We start with the tentative assumption that the
theorem is false. This means that there would be only a finite number
of primes, perhaps very many—a billion or so—or, expressed in a general
and non-committal way, n. Using the subscript notation we may de-
note these primes by p;, P, --+,Pn. Any other number will be
composite, and must be divisible by at least one of the primes
D1, P2, +++, Pn. We now produce a contradiction by constructing a
number 4 which differs from every one of the primes p1, ps, - -, Pn
because it is larger than any of them, and which nevertheless is not
divisible by any of them. This number is

A =P1P2°°'Pn+1,

i.e. 1 plus the product of what we supposed to be all the primes. A is
larger than any of the p’s and hence must be composite. But 4 divided
by p: or by ps, ete., always leaves the remainder 1; therefore 4 has none
of the p’s as a divisor. Since our initial assumption that there is only
a finite number of primes leads to this contradiction, the assumption is
seen to be absurd, and hence its contrary must be true. This proves
the theorem.
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Although this proof is indirect, it can easily be modified to give a method for
constructing, at least in theory, an infinite sequence of primes. Starting with
any prime number, such as p) = 2, supposge we have found » primes p, , p1, ***, Pa;
we then observe that the number p,ps--- pa+ 1 eitherisitself a prime or contains
as a factor a prime which differs from those already found. Since this factor can
always be found by direct trial, we are sure in any case to find at least one new
prime pa4 ; proceeding in this way we see that the sequence of constructible
primes can never end.

Ezercise: Carry out this construction starting with p; = 2, p; = 3 and find
5 more primes,

When a number has been expressed as a product of primes, we may
arrange these prime factors in any order. A little experience shows that,
except for this arbitrariness in the order, the decomposition of a number
N into primes is unique: Every integer N greater than 1 can be factored
into a product of primes tn only one way. This statement seems at first
sight to be so obvious that the layman is very much inclined to take
it for granted. But it is by no means a triviality, and the proof, though
perfectly elementary, requires some subtle reasoning. The classical
proof given by Euclid of this “fundamental theorem of arithmetic’’ is
based on a method or “algorithm” for finding the greatest common
divisor of iwo numbers. This will be discussed on page 44. Here we
shall give instead a proof of more recent vintage, somewhat shorter
and perhaps more sophisticated than Euclid’s. It is a typical example
of an indirect proof. We shall assume the existence of an integer
capable of two essentially different prime decompositions, and from this
assumption derive a contradiction. This contradiction will show that
the hypothesis that there exists an integer with two essentially different
prime decompositions is untenable, and hence that the prime decomposi-
tion of every integer is unique.

*If there exists a positive integer capable of decomposition into two
essentially different products of primes, there will be a smallest such
integer (see p. 18),

(1) M=DPr-De=QG - G,y
where the p's and ¢'s are primes. By rearranging the order of the p’s
and ¢'s if necessary, we may suppose that

n<p<- <pe, n<@es----Lq.

Now p1 cannot be equal to ¢i, for if it were we could cancel the first
factor from each side of equation (1) and obtain two essentially different
prime decompositions of an integer smaller than m, contradicting the
choice of m as the smallest integer for which this is possible. Hence
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intercnange tne levters p and ¢ in wn

() m'=m — (p:gsgs - - - Q)

By substituting for m the two expressions of equation (1) we may write
the integer m’ in either of the two forms

either pr < qror g1 < p1. Suppose pr < . (If g1 < p. we gimply
i at = .

B) m'=(@pi++p)— @2+ @) = P1(Pspz -+ + Pr — Q2@ -+ Q)
4 m'=(@a@p-q@) —@p--q)=(@— p)iag- - q)

Since p; < ¢, it follows from (4) that m’ is a positive integer, while from
(2) it follows that m' is smaller than m. Hence the prime decomposi-
tion of m’ must be unique, aside from the order of the factors. But
from (3) it appears that the prime p, is a factor of m’, hence from (4)
71 must appear as a factor of either (1 — p1) or (g:¢z -+ ¢.). (This
follows from the assumed uniqueness of the prime decomposition of m’;
see the reasoning in the next paragraph.) The latter is impossible,
since all the ¢’'s are larger than p; . Hence py must be a factor of g1 — p1,
so that for some integer A,

a—pm=p-k or q=mpk-+l).

But this shows that p, is a factor of ¢1, contrary to the fact that ¢, is
a prime. This contradiction shows our initial assumption to be unten-
able and hence completes the proof of the fundamental theorem of
arithmetic.

An important corollary of the fundamental theorem is the following:
If a prime p is a factor of the product ab, then p must be a factor of etther
a or b. For if p were a factor of neither a nor b, then the product
of the prime decompositions of a and b would yield a prime decomposi-
tion of the integer ab not containing p. On the other hand, since p is
assumed to be a factor of ab, there exists an integer ¢ such that

ab = pl.
Hence the product of p by a prime decomposition of { would yield a prime

decomposition of the integer ab containing p, contrary to the fact that
the prime decomposition of ab is unique.

Examples: If one has verified the fact that 13 is a factor of 2652, and
the fact that 2652 = 6-442, one may conclude that 13 is a factor of 442,
On the other hand, 6 is a factor of 240, and 240 = 15.16, but 6 is not a
factor of either 15 or 16. This shows that the assumption that p is
prime is an essential one.
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Ezercise: Inorder to find all the divisors of any number a we need only decom-
pose a into a product

a = p\p% - pY,

where the p's are distinct primes, each raised to a certain power. All the divisors

of a are the numbers
b= 7~

where the 8's are any integers satiafying the inequalities
0<h <y, 0B <, ,0<8 < ar.

Prove this statement. As a consequence, show that the number of different
divisors of a (including the divisors a and 1) is given by the product

(ay + {az 4+ 1) +++ (ar 4+ 1).

For example,
144 = 24.32

has 5:3 divisors. They are 1, 2, 4, 8, 16, 3, 6, 12, 24, 48, 9, 18, 36, 72, 144.

2. The Distribution of the Primes

A list of all the primes up to any given integer N may be constructed
by writing down in order all the integers less than N, striking out all
those which are multiples of 2, then all those remaining which are
multiples of 3, and so on until all composite numbers have been elimi-
nated. This process, known as the ‘‘sieve of Eratosthenes,” will catch
in its meshes the primes up to N. Complete tables of primes up to
about 10,000,000 have gradually been computed by refinements of this
method, and they provide us with a tremendous mass of empirical data
concerning the distribution and properties of the primes. On the basis
of these tables we can make many highly plausible conjectures (as
though number theory were an experimental science) which are often
extremely difficult to prove.

a. Formulas Productng Primes

Attempts have been made to find simple arithmetical formulas that
yield only primes, even though they may not give all of them. Fermat
made the famous conjecture (but not the definite assertion) that all
numbers of the form

Fin) =2 41
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are primes. Indeed, for n = 1, 2, 3, 4 we obtain
F)=2"41=
FQ=2"4+1=2'"4+1=17,
F@) =2"4+1=2"4+1= 257,

F4) =2 41 = 2" 41 = 65537,

all primes. But in 1732 Euler discovered the factorization 41 =
641.6,700,417; hence F(5) isnot a prime. Later, more of these “Fermat
numbers” were found to be composite, deeper number-theoretical
methods being required in each case because of the insurmountable
difficulty of direct trial. To date it has not even been proved that
any of the numbers F(n) is a prime for n > 4.

Another remarkable and simple expression which produces many
primes 18

f(n) = n* — n + 41.

For n=1,23,...,40, f(n) is a prime; but for n = 41, we have
f(n) = 41% which is no longer a prime.

The expression

n* — 79n + 1601

yields primes for all n up to 79, but fails when n = 80. On the whole,
it has been a futile task to seek expressions of a simple type which
produce only primes. KEven less promising is the attempt to find an
algebraic formula which shall yield all the primes.

b. Primes in Arithmetical Progressions

While it was simple to prove that there are infinitely many primes in
the sequence of all integers, 1, 2, 3, 4, . .. , the step to sequences such as
1,4,7 10, 13, ... or 3, 7, 11, 15, 19, ... or, more generally, to any
anthmetlcal progression, a4, a + d, a 4 2d .a 4+ nd, - -+ ,whereaandd
have no common factor, was much more difﬁcult. All observations
pointed to the fact that in each such progression there are tnfinitely
many primes, just as in the simplest one, 1, 2, 3, ... . It required an

enormous effort to prove this general theorem. Lejeune Dirichlet
f1QnR 1Q50\ nno nf the laadine maothamotiniane nf tha ninataanth san.
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tury, obtamed full success by applying the most advanced tools of
mathematical analysis then known. His original papers on the subject
rank even now among the outstanding achievements in mathematics,
and after a hundred years the proof has not yet been simplified enough
to be within the reaech of students who are not well trained in the
technique of the calculus and of funection theory.
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Although we cannot attempt to prove Dirichlet’s general theorem,
it is easy to generalize Kuclid’s proof of the infinitude of primes to cover
some spectal arithmetical progressions such as 4n 4 3 and 6n + 5. To
treat the first of these, we observe that any prime greater than 2 is
odd (since otherwise it would be divisible by 2) and hence is of the form
4n 4 1 or 4n 4 3, for some integer n. Furthermore, the product of
two numbers of the form 4n 4 1 is again of that form, since

(d4a + 1)(4b + 1) = 16ab + 4a + 4b + 1 = 4(4ab + a + b) + 1.

Now suppose there were but a finite number of primes, p,, p1, -+ - Pa,
of the form 4n 4 3, and consider the number

N=4ppr---pa) —1=4(m---pa— 1) + 3.

Either N is itself a prime, or it may be decomposed into a product of
primes, none of which can be p,, ---, pa, since these divide N with a
remainder —1. Furthermore, all the prime factors of N cannot be of
the form 4n + 1, for N is not of that form and, as we have seen, the
product of numbers of the form 4n - 1 is again of that form. Hence
at least one prime factor must be of the form 4n + 3, which is impossible,
since we saw that none of the p’s, which we supposed to be all the primes
of the form 4n 4+ 3, can be a factor of N. Therefore the assumption
that the number of primes of the form 4n 4 3 is finite has led to a
contradiction, and hence the number of such primes must be infi-
nite.

Ezxereise: Prove the corresponding theorem for the progression 6n <4 6.

c. The Prime Number Theorem

In the scarch for a law governing the distribution of the primes, the
dccisive step was taken when mathematicians gave up futile attempts
to find a simple mathematical formula yielding all the primes or giving
the exact number of primes contained among the first n integers, and
sought instead for information concerning the average distribution of
the primes among the integers.

For any integer n let us denote by 4, the number of primes among
the integers 1, 2, 3, ... , n. If we underline the primes in the sequence
consisting of the first few integers: 1234567 89 1011 1213 14 15
16 17 18 19 ... we can compute the first few values of A, :

A1=0,Ag= 1,A;=A¢=2,A5=A5=3,A7=A3=Ag - Am = 4,
An = Au = 5, Au = Au = Au = Au = 6, A17 = Am = 7, Am == 8, ete.
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If we now take any sequence of values for n which increases without

limit, say _
n = 10, 10%, 10°, 10%, ...,
then the corresponding values of A,,

Ago, Argr, Asor, Aros, +o+ ,

will also increase without limit (although more slowly). For we know
that there are infinitely many primes, so the values of A, will sooner
or later exceed any finite number. The “density’’ of the primes among
the first n integers is given by the ratio A,./n, and from a table of primes
the values of A,/n may be eomputed empirically for fairly large values
of n.

n A,/n

10*| 0.168
10° | 0.078498
10° | 0.050847478

The last entry in this table may be regarded as giving the probability
that an integer picked at random from among the first 10° integers will
be a prime, since there arc 10° possible choices, of which A,» are

The distribution of the individual primes among the integers is ex-
tremely irregular. But this irregularity “in the small” disappears if
we fix our attention on the average distribution of the primes as given
by the ratio A./n. The simple law that governs the behavior of
this ratio is one of the most remarkable discoveries in the whole of

mathematics. In order to state the prime number theorem we must
define the ‘‘natural logarithm” of an integer n. To do this we take two
perpendicular axes in a plane, and consider the locus of all points in
the plane the product of whose distances z and y from these axes is
equal toone. Interms of the co6rdinates z and y thislocus, an equilat-
eral hyperbola, is defined by the equation zy = 1. We now define log
n to be the area in Figure 5 bounded by the hyperbola, the z-axis, and
the two vertical linesz = 1 and z = n. (A more detailed discussion of
the logarithm will be found in Chapter VIII.) From an empirical study
of prime number tables Gauss observed that the ratio A,/n is approxi-

mately equal to 1/log n, and that this approximation appears to improve
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as n increases. The goodness of the approximation is given by the
A./n

ratio T/log 7’ whose values for n = 1000, 1,000,000, 1,000,000,000 are
shown in the following table.
A./n
n A./n 1/log n Jlog n
10° 0.168 0.145 1.159

10° 0.078498 0.072382 1.084
10° 0.050847478 0.048254942 1.053
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Fig. 6. The area of the shaded region under the hyperbola defines log a.

On the basis of such empirical evidence Gauss made the conjecture that
the ratio A,/n is ‘‘asymptotically equal” to 1/log n. By this is meant
that if we take a sequence of larger and larger values of n, say n equal to
10, 10% 10°, 10%, -..

as before, then the ratio of A,/n to 1/log n,

A,/n

1/logn’
calculated for these successive values of n, will become more and more
nearly equal to 1, and that the difference of this ratio from 1 can be

made as small as we please by confining ourselves to sufficiently large
values of n. This assertion is symbolically expressed by the sign ~:
A, 1 An/n

n logn means 1/log n

tends to 1 as n increases,

That ~ cannot be replaced by the ordinary sign = of equality is clear
from the fact that while A, is always an integer, n/log 7 is not.
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That the average behavior of the prime number distribution can be
described by the logarithmic function is a very remarkable discovery,
for 1t 1s surprising that two mathematical concepts which seem so un-
related should be in fact so intimately connected.

Although the statement of Gauss’s conjectureis simple to understand,
a rigorous mathematical proof was far beyond the powers of mathemati-
cal science in Gauss’s time. To prove this theorem, concerned only with
the most elementary concepts, it is necessary to employ the most
powerful methods of modern mathematics. It took almost a hundred
years before analysis was developed to the point where Hadamard
(1896) in Paris and de la Vallée Poussin (1896) in Louvain could give
a complete proof of the prime number theorem. Simplifications and
important modifications were given by v. Mangoldt and Landau.
Long before Hadamard, decisive pioneering work had been done by Rie-
mann (1826-1866) in a famous paper where the strategic lines for the
attack were drawn. Recently, the American mathematician Norbert

‘.". 1eher was n}\]n +tn madifyv fhn nroanf 80 88 to avnid tha nes af comnlavy
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numbers at an important step of the reasoning. But the proof of the
prime number theorem is still no easy matter even for an advanced
student. We shall return to this subject on page 482 et seq.

d. Two Unsolved Problems Concerning Prime Numbers

While the problem of the average distribution of primes has been
satisfactorily solved, there are many other conjectures which are sup-
ported by all the empirical evidence but which have not yet been proved
to be true.

One of these is the famous Goldbach conjecture. Goldbach (1690-
1764) has no significance in the history of mathematics except for this
problem, which he proposed in 1742 in a letter to Euler. He observed
that for every case he tried, any even number (except 2, which is itself
a prime) could be represented as the sum of two primes. For example:

=24+26=34+3,8=5+3,10=5+512=5+714 =
7+7,16=13+3,18=11+7,20= 13 4 7, ... ,48 = 29 + 19,
, 100 = 97 + 3, ete.

(‘mldbach asked 1f Luler could prove this to be true for all even num-
bers, or if he could find an example disproving it. Euler never provided
an answer, nor has one been given since. The empirical evidence in
favor of the statement that every even number can be so represented
is thoroughly convincing, as anyone can verify by trying a number of
examples. The source of the difficulty is that primes are defined in
terms of multiplication, while the problem involves addition. Generally
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speaking, it is difficult to establish connections between the multi-
plicative and the additive properties of integers.

Until recently, a proof of Goldbach’s conjecture seemed completely
inaccessible. Today a solution no longer seems out of reach. An
important success, very unexpected and startling to all experts, was
achieved in 1931 by a then unknown young Russian mathematician,
Schnirelmann (1905-1938), who proved that every positive integer can
be represented as the sum of not more than 300,000 primes. Though this
result seems ludicrous in comparison with the original goal of proving
Goldbach’s conjecture, nevertheless it was a first step in that direction.
The proof is a direct, constructive one, although it does not provide any
practical method for finding the prime decomposition of an arbitrary
integer. More recently, the Russian mathematician Vinogradoff,
using methods due to Hardy, Littlewood and their great Indian col-
laborator Ramanujan, has succeeded in reducing the number from
300,000 to 4. This is much nearer to a solution of Goldbach’s problem.
But there is a striking difference between Schnirelmann’s result and
Vinogradoff’s; more significant, perhaps, than the difference between
300,000 and 4. Vinogradoff’s theorem was proved only for all “suffi-
ciently large” integers; more precisely, Vinogradoff proved that there
exists an integer N such that any integer n > N can be represented as
the sum of at most 4 primes. Vinogradofi’s proof does not permit us
to appraise N; in contrast to Schnirelmann’s theorem it is essentially
indirect and non-constructive. What Vinogradoff really proved is
that the assumption that infinitely many integers cannot be decomposed
into at most 4 prime summands leads to an absurdity. Here we have
a good example of the profound difference between the two types of
proof, direct and indirect. (See the general discussion on p. 86.)

The following even more striking problem than Goldbach’s has come
nowhere near a solution. It has been observed that primes frequently
occur in pairs of the form p and p 4+ 2. Such are 3 and 5, 11 and 13,
29 and 31, etc. The statement that there are infinitely many such pairs
is believed to be correct, but as yet not the slightest definite step has
been taken towards a proof.

§2. CONGRUENCES

1. General Concepts

Whenever the question of the divisibility of integers by a fixed integer
d occurs, the concept and the notation of “congruence” (due to Gauss)
serves to clarify and simplify the reasoning.
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To introduce this concept let us examine the remainders left when
integers are divided by the number 5. We have

0=0.540 7=1.5+42 —1=-1.5+ 4
1=0.541 8§=1.54+3 —2=-1.543
2=0.542 9=1.594+4 —-3=-1.5+4+2
3=0.54+3 10 =2.540 -4 = —-1.5+41
4 =0.54+4 11 =2.541 -5=-=1.540
5=1.540 12 =2.54 2 —6=—-2.5+4+4
6 =1.541 ete. ete.

We observe that the remainder left when any integer is divided by 5 is
one of the five integers 0, 1, 2, 3, 4. We say that two integers a and b
are ‘‘congruent modulo 5’ if they leave the same remainder on division
by 5. Thus 2, 7, 12, 17, 22, ..., —3, —8, —13, —18, ... are all
congruent modulo 5, since they leave the remainder 2. In general, we
say that two iuucgcus a and b are congruent modulo d, where d is a fixed
integer, if a and b leave the same remainder on division by d, i.e., if
there is an integer n such that a — b = nd. For example, 27 and 15 are

congruent modulo 4, since
27 = 6.4 + 3, 15 = 3.4 4 3.

The concept of congruence is so useful that it is desirable to have a
brief notation for it. We write

a=b (mod d)

to express the fact that a and b are congruent modulo d. If there is
no doubt concerning the modulus, the “mod d” of the formula may be
omitted. (If a is not congruent to b modulo d, we shall write a £ b
(mod d).)

Congruences occur frequently in daily life. For example, the hands
on a clock indicate the hour modulo 12, and the mileage indicator on a
car gives the total miles traveled modulo 100,000.

Before proceeding with the detailed discussion of congruences the
reader should observe that the following statements are all equivalent:

1. ais congruent to b modulo d.
2. a = b + nd for some integer n.
3. d dividesa — b.

The usefulness of Gauss’s congruence notation lies in the fact that
congruence with respect to a fixed modulus has many of the formal
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properties of ordinary equality. The most important formal properties
of the relation a = b are the following:

1) Always a = a.

2) If a = b, then b = a.

3) fa=>band b = ¢, thena =c.

Moreover, if a = a’ and b = b’, then

4) a+ b =a"+ b

5) a—b=a —V.

6) ab = a'd’.
These properties remain true when the relation a = b is replaced by the
congruence relation a = b (mod d). Thus

1) Always a = a (mod d).
2") If a = b (mod d) then b = a (mod d).
3') If a = b (mod d) and b = ¢ (mod d), then a = ¢ (mod d).

The trivial verification of these facts is left to the reader.
Moreover, if a = a’ (mod d) and b = b’ (mod d), then

4) a4+ b = a + b (mod d).
5)a—b=a — b (mod d).
6’) ab = a’V (mod d).

Thus congruences with respect to the same modulus may be added, sub-
tracted, and multiplied. 'To prove these three statements we need only
observe that if

a=a +4+rd, b=2"b4 &
then
a+b=a+ b+ (r+ s)d,
a—b=a —b 4+ (r — 8)d,
ab=ab + (a's+ b'r 4+ rsd)d,
from which the desired conclusions follow.

The concept of congruence has an illuminating geometrical inter-
pretation, Usually, if we wish to represent the integers geometrically,
we choose a segment of unit length and extend it by multiples of its
own length in both directions. In this way we can find a point on the
line corresponding to each integer, as in Figure 6. But when we are

dealing with the integers modulo d, any two congruent numbers are con-
sidered the same as far as their behavior on division by a is concerned,



34 THE THEORY OF NUMBERS [I]

since they leave the same remainder. In order to show this geometri-
cally, we use a circle divided into d equal parts. Any integer when
divided by d leaves as remainder one of the d numbers 0,1, -..,d — 1,
which are placed at equal intervals on the circumference of the circle.
Every integer is congruent modulo d to one of these numbers, and hence
is represented geometrically by one of these points; two numbers are
congruent if they are represented by the same point. Figure 7 is drawn
for the case d = 6. The face of a clock is another illustration from
daily life,

—_— - * {8 L -

-3 -2 -1 0 1 2
Fig. 0. Geometrical representation of the integers.

we
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1
4 5
1

10 1
Fig. 7. Geometrical representation of the integers modulo 8,

As an example of the use of the multiplicative property 6’) of con-
gruences we may determine the remainders left when successive powers
of 10 are divided by a given number. For example,

10 = —1 (mod 11),
since 10 = —1 4 11. Successively multiplying this congruence by
itself, we obtain

10 = (—1)(-1) =1 (mod 11),
10° = —1 “«

Pl
=)
Y
I

=1 “  ete
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From this we can show that any integer
z=as+ a;-10 + a2-10* + ... + a,-10",

expressed in the decimal system, leaves the same remainder on division
by 11 as does the sum of its digits, taken with alternating signs,

t=a —a +a—a+ ---.
For we may write
z— 1t =a. 11 + a(10’° — 1) + as(10* + 1) + a((10* = 1) + ... .

Since all the numbers 11, 10* — 1, 10* 4- 1, - - - are congruent to 0 modulo
11, z — t is also, and therefore z leaves the same remainder on division
by 11 as does t. It follows in particular that a number is divisible by 11
(i.e. leaves the remainder 0) if and only if the alternating sum of its digits
is divisible by 11. For example,since3 — 1+ 6 —24+8—1+4+9 =
22, the number z = 3162819 is divisible by 11. To find a rule for
divisibility by 3 or 9 is even simpler, since 10 = 1 (mod 3 or 9), and
therefore 10® = 1 (mod 3 or 9) for any n. It follows that a number 2

is divisible by 3 or 9 if and only if the sum of its digits
s=a+a+at+- ...+ a,

is likewise divisible by 3 or 9, respectively.
For congruences modulo 7 we have

10=3, 10°=2 10°= —1, 10'= —3, 10° = -2, 10° = 1.

I

The suceessive remainders then repeat. Thus z is divisible by 7 if and
only if the expression

r=ay+ 30, + 2a; — ag — 3ax — 205 + as + 3a; + .-
is divisible by 7.
Ezxercise: Find a similar rule for divisibility by 13.

In adding or multiplying congruences with respect to a fixed modulus,
say d = 5, we may keep the numbers involved from getting too large
by always replacing any number a by the number from the set

0, 1, 2, 3, 4
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to which it is congruent. Thus, in order to calculate sums and products
of integers modulo 5 we need only use the following addition and
multiplication tables.

a-+ b a-b
b=01 2 3 4 b=0 1 2 3 4
a=0 01 2 3 4 a=0 0 0 0 0 O
1 1 2 3 4 0 1 01 2 3 4
2 2 3 4 0 1 2 0 2 41 3
3 3 4 01 2 3 031 4 2
4 4 01 2 3 4 0 4 3 2 1

From the second of these tables it appears that a product ab is con-
gruent to 0 (mod 5) only if @ or bis = 0 (mod 5). This suggests the
general law

7) ab = 0 (mod d) only if eithera = 0 or b = 0 (mod d),

which is an extension of the ordinary law for integers which states that
ab=0onlyifa=00rb=0. Thelaw?7) holds only when the modulus d

18 a pryme. For the congruence
ab =0 (mod d)

means that d divides ab, and we have seen that a prime d divides a
product ab only if it divides a or b; that is, only if

a=0 (modd) or b=0 (mod d).

If d is not a prime the law need not hold; for we can write d = r-s,
where r and s are less than d, so that

r#0 (mod d), 8#0 (mod d),
but
rs=d=20 (mod d).

For example, 2 £ 0 (mod 6) and 3 # 0 (mod 6), but 2.3 = 6 = 0
(mod 6).

Ezercise: Show that the following law of cancellation holds for con-
gruences with respect to a prime modulus:

If ab = ac and a # 0, then b = c.

Ezercises: 1) To what number between 0 and 6 inclusive is the product 11-18.
2322-13-19 congruent modulo 7?
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2) To what number between 0 and 12 inclusive is 3-7-11:17.19-23-29-113
congruent modulo 13?

3) To what number between 0 and 4 inclusive is thesum1 4 2 4 22 4 ... 4 21
congruent modulo §?7

2. Fermat’s Theorem

In the seventeenth century, Fermat, the founder of modern number
theory, discovered a most important theorem: If p ¢s any prime which
does not divide the inleger a, then

a”'=1 (mod p).

This means that the (p — 1)st power of a leaves the remainder 1 upon
division by ».

Some of our previous calculations confirm this theorem; for example,
we found that 10° = 1 (mod 7), 10’ = 1 (mod 3), and 10*° = 1
(mod 11). Likewise we may show that 2" = 1 (mod 13) and 5" = 1
(mod 11). To check the latter congruences we need not actually cal-
culate such high powers, since we may take advantage of the multi-
plicative property of congruences:

2' =16 =3 (mod 13), 5' =3 (mod 11),
® =9=—4 “ 5 =m9= —2 “o,
M=—-43=-12=1 “ . 5 =4 “

¥
'=34=12=1 «
To prove Fermat’s theorem, we consider the multiples of a
m = a, m, = 2aq, ms=3a, .-+, My = (p — 1a.

No two of these integers can be congruent modulo p, for then p would
be a factor of m, — m, = (r — &)a for some pair of integers r, s with
1 <r<s<(p—1). Butthelaw 7) shows that this cannot occur;
for since s — r is less than p, p is not a factor of s — r, while by assump-
tion p is not a factor of a. Likewise, none of these numbers can be
congruent to 0. Therefore the numbers m,, m,;, ..., my_, must be
respectively congruent to the numbers 1, 2, 3, ... ,» — 1, In some
arrangement. It follows that

mmg - myy =123 ... (p—1a" ' =1.2.3... (p — 1) (mod p),
or, if for brevity we write K for 1.2.3 ... (p — 1),
K@ -1 =0 (mod p).
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But K is not divisible by p, since none of its factors is; hence by the
law 7), (@ — 1) must be divisible by p, i.e.

Pl 1=0 (mod p).
This is Fermat’s theorem.

To check the theorem once more, let us take p = 23 and a = 5.
We then have, all modulo 23, 5 =25=458=16= -7 5° =
49 = 3, 5° = 12, 5n 24 = With a = 4 instead of 5, we get,
again modulo 23, 4= -74 = —28 = —54'=-20=3,4" =9,
4" = —45 =1 4"51.

In the example above with a = 4, p = 23, and 1n others, we ob-
serve that not only the (p — 1)st power of a, but also a smaller power
may be congruent to 1. It is always true that the smallest such power,
in this case 11, is a divisorof p — 1. (See the following Exercise 3.)

Erercises: 1) Show by similar computation that 22 =1 (mod 17);3* = —1 (mod
17); 34 = —1 (mod 29); 214 = —1 (mod 29); 44 = 1 (mod 29); 54 = 1 (mod 29).
2) Check Fermat’s theorem for p = 5, 7, 11, 17, and 23 with different values
of a.
3) Prove the general theorem: The smallest positive integer ¢ for which a* = 1
(mod p) must be a divisor of p — 1. (Hint: Divide p — 1 by ¢, obtaining
p—1=1Fke+r,

where 0 < r < ¢, and use the fact that gt = g* m 1 (mod p).)

3. Quadratic Residues

Referring to the examples for Fermat’s theorem, we find that not
only is @™ = 1 (mod p) always, but (if p is a prime different from 2,
therefore odd and of the form p = 2p” 4+ 1) that for some values of q,
a* = a" " =1 (mod p). This fact suggests a chain of interesting
jnvestigations. We may write the theorem in the following form:

Pl _1=ag" —1=(@ — D@ +1)=0 (mod p).

Since a product is divisible by p only if one of the factors is, it appears

immediately that either a® — 1 or a® + 1 must be divisible by p, so

that for any prime p > 2 and any number a not divisible by p, either
(-D/2 _ (p~1/2 _

a = or a = —] (mod p).

From the beginning of modern number theory mathcmaticians have
been interested in finding out for what numbers a we have the first
case and for what numbers the second. Suppose a is congruent modulo
p to the square of some number z,

a=z (mod p).
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Then a*™?* = 2*, which according to Fermat’s theorem is congruent
to 1 modulo p. A number a, not a multiple of », which is congruent

modulo p to the square of some number is called a quadratic residue of p,
while a number b, not a multiple of p, which is not congruent to any
square is called a guadratic non-residue of p. We have just seen that
every quadratic residue a of p satisfies the congruence a¢*"* = 1
(mod p). Without serious difficulty it can be proved that for every
non-residue b we have the congruence b** = —1 (mod p). More-
over, we shall presently show that among the numbers 1, 2,3, --- , p—1
there are exactly (p — 1)/2 quadratic residues and (»p — 1)/2 non-
residues.

Although much empirical data could be gathered by direct computa-
tion, it was not easy at first to discover general laws governing the
distribution of quadratic residues and non-residues. The first deep-
lying property of these residues was observed by Legendre (1752-1833),
and later called by Gauss the Law of Quadratic Reciprocity. This
law concerns the behavior of two different primes p and ¢, and states
that ¢ is a quadratic residue of p if and only if p is a quadratic residue of g,
provided that the product (p______; 1).(q ; 1) is even. In case this
product is odd, the situation is reversed, so that p is a residue of ¢ if
and only if ¢ is a non-residue of p. One of the achievements of the
young Gauss was to give the first rigorous proof of this remarkable
theorem, which had long been a challenge to mathematicians. Gauss’s
first proof was by no means simple, and the reciprocity law is not too
easy to establish even today, although a great many different proofs
have been published. Its true significance has come to light only re-
cently in connection with modern developments in algebraic number
theory.

As an example illustrating the distribution of quadratic residues, let
us choose p = 7. Then, since

0'=0 1'=1, 2°=4, 3=2 =2 5=4 6 =1,

all modulo 7, and since the remaining squares repeat this sequence, the
quadratic residues of 7 are the numbers congruent to 1, 2, or 4, while
the non-residues are congruent to 3, 5, or 6. In the general case, the
quadratic residues of p consist of the numbers congruent to 17
2, ., (p — 1)>. But these are congrucnt in pairs, for

= (p — 2)° (mmod p) (e.g., 2" = 5° (mod 7)),
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since (p — z)* = p* — 2pz + 2’ = ' (mod p). Hence half the num-
bers 1,2, ... ,p — 1 are quadratic residues of p and half are quadratic
non-residues.

To illustrate the quadratic reciprocity law, let us choose p = 5§,
g = 11. Since 11 = 1° (mod 5), 11 is a quadratic residue (mod 5);
since the product [(6 — 1)/2][(11 — 1)/2] is even, the reciprocity law
tells us that 5 is a quadratic residue (mod 11). In confirmation of this,
we observe that 5 = 4* (mod 11). On the other hand, if p = 7, ¢ = 11,

the product {(7 — 1)/2][(11 — 1)/2] is odd, and indeed 11 is a residue
{m(’\d 7) (Since 11 = 92 {mad 7\\ while 715 8 'nnn_‘r-nmr]l'ln (mnr] 11\

lll\l\‘

Ezercises: 1, 62 = 36 m 13 (mod 23). I8 23 a quadratic residue (mod 13)?
2. We have seen that 73 = (p — z)? (mod p). Show that these are the only
congruences among the numbers 12, 22, 3%, .., (p — 1IN,

§3. PYTHAGOREAN NUMBERS AND FERMAT'S
LAST THEOREM

An interesting question in number theory is connected with the
Pythagorean theorem. The Greeks knew that a triangle with sides
3, 4, 5 is a right triangle. This suggests the general question: What
other right triangles have sides whose lengths are integral multiples of
a unit length? The Pythagorean theorem is expressed algebraically by

= a2 SSN = L = LaApie e Te s el L LW

the equation

(1) a + b =

where a and b are the lengths of the legs of a right triangle and c is the
length of the hypotenuse. The problem of finding all right triangles
with sides of integral length is thus equivalent to the problem of finding
all integer solutions (a, b, ¢) of equation (1). Any such triple of numbers
is called a Pythagorean number triple.

The problem of finding all Pythagorean number triples can be solved
very simply. If a, b and ¢ form a Pythagorean number triple, so that
a' + b* = ¢*, then we put, for abbreviation, a/c = z,b/c = y. zandy
are rational numbers for which 2> + 3° = 1. We then have 3* =
1—2)1+z),ory/(1 +2) = (1 —z)/y. The common value of the
two sides of this equation is a number ¢ which is expressible as the
quotient of two integers, u/v. We can now write ¥y = {1 + z) and
(1 —2x)=ty,or




Substituting for z, ¥ and ¢, we have

a_ o' — b_ 2w
c w+vr ¢ w4
Therefore
a= (' — u)r,
(2) b = (2uv)r,

c = (i + oV,

for some rational factor of proportionality ». This shows that if (q, b, ¢)
is a Pythagorean number triple, then g, b, ¢ are proportional to v* — u*,
2uv, u* + v*, respectively. Conversely, it is easy to see that any triple
(a, b, ¢) defined by (2) is a Pythagorean triple, for from (2) we obtain

o' = (u' — 2u™' + v

¢ = '+ 2u’' + oY)

so that a* + b* = ¢

This result may be simplified somewhat. From any Pythagorean
number triple (a, b, ¢) we may derive infinitely many other Pythagorean
triples (sa, sb, sc) for any positive integer s. Thus, from (3, 4, 5) we
obtain (6, 8, 10), (9, 12, 15), etc. Such triples are not essentially dis-
tinct, since they correspond to similar right triangles. We shall there-
fore define a primitive Pythagorean number triple to be one where aq,
b, and ¢ have no common factor. It can then be shown that the formulas

2 2
a=v —u,
b = 2uy,

2 2
c=u + v,

for any positive infegers u and v with v > u, where u and v have no com-
mon factor and are not both odd, yield all primitive Pythagorean number
triples.

*Rrercise: Prove the last statement.

As examples of primitive Pythagorean number triples we have u = 2,
v=1:(3,4,5),u=3,v=2:(512,13),u = 4,v = 3: (7, 24, 25), -- - ,
v = 10, v = 7: (51, 140, 149), etc.
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This result concerning Pythagorean numbers naturally raises the
question as to whether integers a, b, ¢ can be found for which a* + b* =
¢t or a' + b' = ¢!, or, in general, whether, for a given positive integral
exponent n > 2, the equation

3) a" + b" = ¢"

can be solved with positive integers a, b, ¢. An answer was provided
by Fermat in a spectacular way. Fermat had studied the work of
Diophantus, the ancient contributor to number theory, and was accus-
tomed to making comments in the margin of his copy. Although he
stated many theorems there without bothering to give proofs, all of
them have subsequently been proved, with but one significant exception.
While commenting on Pythagorean numbers, Fermat stated that
the equation (3) is not solvable in integers for any n > 2, but that the
elegant proof which he had found was unfortunately too long for the
margin in which he was writing.

Fermat’s general statement has never been proved true or false,
despite the efforts of some of the greatest mathematicians since his
time. The theorem has indeed been proved for many values of 7, in
particular, for all n < 619, but not for all n, although no counter-
example has ever been produced. Although the theorem itself is not
so important mathematically, attempts to prove it have given rise to
many important investigations in number theory. The problem has
also aroused much interest in non-mathematical circles, due in part to a
prize of 100,000 marks offered to the person who should first give a
solution and held in trust at the Royal Academy at Gottingen. Until
the post-war German inflation wiped out the monetary value of this
prize, a great number of incorrect “solutions’” was presented each year
to the trustees. Even serious mathematicians sometimes deceived
themselves into handing in or publishing proofs which collapsed after
some superficial mistake was discovered. General interest in the ques-
tion seems to have abated since the devaluation of the mark,.though from
time to time there is an announcement in the press that the problem has
been solved by some hitherto unknown genius.

§4. THE EUCLIDEAN ALGORITHM
1. General Theory

The reader is familiar with the ordinary process of long division of onc
integer a by another integer b and knows that the process can be carried
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out until the remainder is smaller than the divisor. Thus if a = 648
and h —_— 7 wo hava a nnuatiant o — Q92 nnrl ] rnmoinr‘nr r = A
Chil\A4A U [ ] YT LAWY v & H“UUIUI v Y Wid LhLANVA N A NARLALWAAANANSA T A
92
7]648 648 = 7.92 4+ 4.
63
18
_l_@
4

We may state this as a general theorem: If a is any tnteger and b ¢s
any inleger greater than 0, then we can always find an tnteger q such that

(1) a=bgq+r,
where T is an tnteger satisfying the inequality 0 < r < b,

To prove this statement without making use of the process of long division we
need only observe that any integer a is either itself a multiple of b,
a = bg,
or lies hetween two successive multiples of b,
bg <a <blg+1) =bg+b

In the first case the equation (1) holds with r = 0. In the second case we have,
from the first of the inequalities above,

a—bg=1r>0,
while from the second inequality we have

a—bg=r<Yh,
so that 0 < r < b as required by {1).

From this simple fact we shall deduce a variety of important conse-
quences. The first of these is a method for finding the greatest common
divisor of two integers.

Let a and b be any two integers, not both equal to 0, and consider the
set of all positive integers which divide both a and &. This set is cer-
tainly finite, since if a, for example, is 3 0, then no intcger greater in
magnitude than a can be a divisor of a, to say nothing of b. Hence
there can be but a finite number of common divisors of a and b, and of
thesc let d be the greatest.  The integer d is called the greatest common
divisor of a and b, and written d = (a, b). Thusfora = 8 and b = 12
we find by direct trial that (8, 12) = 4, whilec fora = Sand b = 9 we
find that (5,9) = 1. When a and b are large, say a = 1804 and b = 328,
the attempt to find (a. b) bv trial and error would be quite wearisome.
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A short and certain method is provided by the FEuclidean algorithm.
(An algorithm is a systematic method for computation.) It is based
on the fact that from any relation of the form

(2) a=bg+r
it follows that
3) (@, b) = (b, r).

For any number u which divides both a and b,
a = su, b = tu,

also divides r, sincer = a — bg = su — qiu = (s — gf)u; and con-
versely, every number v which divides b and r,

b = s'y, r=1ty,

also divides a, since a = bg + r = s'vg + t'v = (s'¢ + t)v. Hence
every common divisor of a and b is at the same time a common divisor
of b and r, and conversely. Since, therefore, the set of all common
divisors of a and b is identical with the set of all common divisors of b
and r, the greatest common divisor of @ and b must be equal to the
greatest common divisor of b and r, which establishes (3). The useful-
ness of this relation will be seen immediately.

Let us return to the question of finding the greatest common divisor
of 1804 and 328. By ordinary long division

5
328 | 1804

1640
164
we find that
1804 = 5.328 4+ 164.

(3) we conclude that

(1804, 328) = (328, 164).

Observe that the problem of finding (1804, 328) has been replaced by a
problem involving smaller numbers. We may continue the process.
Since

Haonro from

P AL

164|328
328
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we have 328 = 2.164 + 0, so that (328, 164) = (164,0) = 164. Hence
(1804, 328) = (328, 164) = (164, 0) = 164, which is the desired result.

This process for finding the greatest common divisor of two numbers
is given in a geometric form in Euclid’s Elements. For arbitrary integers
a and b, not both 0, it may be described arithmetically in the following
terms.

We may supposc that b 5% 0, since (a, 0) = a. Then by successive
division we can write

a=by+nr 0<r<b)
4@ b=rigz+ r 0<r<r
TN = TeQa t+ T3 (0<r<r)
re = riqq + 74 0 <re<ry

iiiiiiiiiiiiiiiiiiiiii

so long as the remainders 71, r, ry, - -+ are not 0. From an inspection
of the inequalities at the right, we sec that the successive remainders
form a steadily decreasing sequence of positive numbers:

(5) b>rn>r>r>r> . >0,

Hence after at most b steps (often many fewer, since the difference
between two successive ’s is usually greater than 1) the remainder 0 must
appear:

Ta2 = Tniqn + Ta
a1 = Infn4r + 0.
When this occurs we know that
(a,b) = 1a;

in other words, (&, b) s the last positive remainder in the sequence (5).
This follows from successive application of the equality (3) to the eq-
uations (4), since from successive lincs of (4) we have

(a: b) = (b: rl)l (bl T1) = (rll 7'2), (T1 ) Tz) = (r2 ’ Ta),

(r2lr3) = (r3:r4)l "':(rﬂ-—llrﬂ) = (TH:O) = Ta.

FEzxercise: Carry out the Euclidean algorithm for finding the greatest common
divisor of (a) 187, 77. (b) 105, 385. (¢) 245, 193.

An extremely important property of (a, ¥) can be derived from equa-
tions (4). Ifd = (a, b), then positive or negative integers k and 1 can be
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found such that

(6) d = ka + .

To show this, let us consider the sequence (5) of successive remainders.
From the first equation in (4)

n=a-— Q1b,

so that r; can be written in the form ki + Lb (in this case k; = 1,
L = —q). From the next equation,

ra=0b—q@n=>0— qka+ Ld)
= (—gk)a + (1 — gl)b = ksa + Lb.

Clearly this process can be repeated through the successive remainders
rs, ra, - - - until we arrive at a representation

rn = ka + b,
as was to be proved.
As an example, consider the Euclidean algorithm for finding (61, 24);
the greatest common divisor is 1 and the desired representation for 1
can be computed from the equations

61 = 2-24 4+ 13, 24 =1.13 + 11, 13 = 1.11 + 2,
11 = 5.2 + 1, 2=2.1+4+0.
We have from the first of these equations
13 = 61 — 2.24,
from the second,
11 =24 - 13 =24 — (61 — 2.24) = ~61 + 3.24,
from the third,
2=13-11 = (61 — 2.24) — (—61 + 3.24) = 2.61 — 5.24,
and from the fourth,
1=11—-5.2=(—6143.24) — 5(2.61 — 5.24) = —11.61 + 28.24.

2. Application to the Fundamental Theorem of Arithmetic

The fact that d = (a, b) can always be written in the form d =
ka + b may be uscd to give a proof of the fundamental theorem of
arithmetic that is independent of the proof given on page 23. First
we shall prove, as a lemma, the corollary of page 24, and then from this
lemma we shall deduce the fundamental theorem, thus reversing the
previous order of proos.
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Lemma: If a prime p divides a product ab, then p must divide a or b.

If a prime p does not divide the integer a, then (a, p) = 1, since the
only divisors of p are p and 1. Hence we can find integers k and 1
such that

1 = ka + Ip.
Multiplying both sides of this equation by b we obtain
b = kab + Ipbd.
Now if p divides ab we can write

ab = pr,

go that

b = kpr + lpb = plkr + Ib).

from which it is evident that p divides b. Thus we have shown that if
p divides ab but does not divide a then it must divide b, so that in any
event p must divide a or b if it divides ab.

The extension to products of more than two integers is irhmediate,
For example, if p divides abc, then by twice applying the lemma we can
show that p must divide at least one of the integers a, b, and ¢. For if
p divides neither a, b, nor ¢, then it cannot divide ab and hence cannot,
divide (ab)c = abe.

Ezercise: The extension of this argument to products of any number n of
integers requires the explieit or implicit use of the principle of mathematical in-
duction. Supply the details of this argument.

From this result the fundamental theorem of arithmetic follows at
once. Let us suppose given any two decompositions of a positive in-
teger N into-primes:

N = PPz Pr=(QiG2 ** - Qa -

Since p, divides the left side of this equation, it must also divide_the
right, and hence, by the previous exercise, must divide one of the
factors ¢« . But ¢x is a prime, therefore p, must be equal to this g .
After these equal factors have been cancelled from the equation, it
follows that p, must divide one of the remaining factors ¢;, and hence
must be equal to it. Striking out p; and ¢, , we proceed similarly with
Ps, »-+,Pr. At the end of this process all the p’s will be cancelled,
leaving only 1 on the left side. No ¢ can remain on the right side,
since all the ¢’s are larger than one. Hence the p's and g¢’s will be
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paired off into equal couples, which proves that, except perhaps for the
order of the factors, the two decompositions were identical.

3. Euler’s ¢ Function. Fermat’s Theorem Again

Two integers a and b are said to be relatively prime if their greatest
eommon divisor is 1:

(a, b) = 1.

For example, 24 and 35 are relatively prime, while 12 and 18 are not.
If a and b are relatively prime, then for suitably chosen postitve or negative
tnlegers k and 1 we can write

ka + b = 1.
This follows from the property of (a, b) stated on page 45.

Ezercise: Prove the theorem: Ifaninteger r divides a product ab and 1s relatively
prime to a, then r must divide b. (Hint: if r is relatively prime to a then we can
find integers k and ! such that

kr + la = 1.

of page 46 as a special case, since a prime p is relatively prime to an integer a if
and only if p does not divide a.

For any positive integer n, let ¢(n) denote the number of integers from
1 to n which are relatively prime to n, This function ¢(n), first intro-
duced by Euler, is a “number-theoretical function’ of great importance.
The values of ¢(n) for the first few values of n are easily computed:

e(1) =1 since 1 is relatively prime to 1,

e(2) =1 since 1 is relatively prime to 2,

¢(3) = 2 since 1 and 2 are relatively prime to 3,

e(4) = 2 since 1 and 3 are relatively prime to 4,

e(8) = 4 “ 1, 2, 3, 4 are relatively prime to 5,

o(6) = 2 “ 1,5 “« ¢« “ e

e(7) =6 “ 1,2, 3,4, 5, 6 are relatively prime to 7,

(p(S) — 4 (13 1’ 3, 5, 7 111 113 ({1 113 8,

‘p(g) — 6 4] 1, 2, 4, 5, 7, 8 111 {3 {3 {3 9,
o(10) = 4 “ 1,3,79 “« 1] “ « 10,
ete.

We observe that ¢(p) = p — 1 if p is & prime; for & prime p has no
divisors other than itself and 1, and hence it is relatively prime to all
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of the integers 1, 2, 3,...,p — 1. If n is composite, with prime
decomposition
n=mop'ps'... p:"’

where the p’s represent distinct primes, each raised to a certain power,
then

¢(n)=n/1—i\-/1—l\ Y
pI} pz} pr}

For example, since 12 = 2°.3,

e(12) = 121 — )1 - § = 12(HA) =

as it should be. The proof is quite elementary, but will be omitted here,

* Exercise: Using Euler's ¢ function, generalize Fermat's theorem of page 37.
The general theorem states: /f nis any integer, and a is relatively prime to n, then

a’™ = 1 (mod n).
4. Continued Fractions. Diophantine Equations

The Euclidean algorithm for finding the greatest common divisor of
two integers leads immediately to an important method for representing
the quotient of two integers as a composite fraction.

Applied to the numbers 840 and 611, for example, the Euclidean
algorithm yields the series of equations,

840 = 1.611 + 229, 611 = 2.229 4 153,
229 = 1.133 + 76, 183 = 2.76 + 1,

which show, incidentally, that (840, 611) = 1. From these equations
we may derive the following expressions:

o1 = ot = 1 griym
g;é"2+;gg_2+229}153'
=t i e
75 =2+ 5
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On combining these equations we obtain the development of the rational

number 840 in the form

611
840 1
SToE 1+ 1
2 + 1
1+
2+ .
{L
An expression of the form
1
(7) 6 =g+
¢ + 1
a +
o
+—!
Qn

where the a's are positive integers, is called a confinued fraction. The
Euclidean algorithm gives us a method for expressing any rational
number in this form.

Ezercise: Find the continued fraction developments of
2 43 169
5' 30" 70°

* Continued fractions are of great importance in the branch of higher arith-
metic known as Diophantine analysis. A Diophantine equation is an alge-
braic equation in one or more unknowns with inieger coefficients, for which integer
solutions are sought. Such an equation may have no solutions, a finite number,
or an infinite number of solutions. The simplest case is the linear Diophantine
cquation in two unknowns,

(8) az + by = ¢,

where @, b, and ¢ are given integers, and integer solutions z, y are desired. The
complete solution of an equation of this form may be found by the Euclidean
algorithm.

To begin with, let us find d = (g, b) by the Euclidean algorithm; then for
proper choice of the integers k and [,

9) ak 4+ bl = d.

Hence the equation (8) has the particular solution z = k, y = [ for the case ¢ = d,
More generally, if ¢ is any multiple of d:

C == d'Q|
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then from (9) we obtain

a(kg) + b(lg) = dg = ¢,
so that (8) has the particular solution z = z* = kg, y = y* = lg. Conversely,
if (8) has any solution z, y for a given ¢, then ¢ must be a multiple of d = (a, b);
for d divides both a and b, and hence must divide ¢. We have therefore proved
that the equation (8) has a solution if and only if ¢ is a multiple of (a, b).

To determine the other solutions of (8) we observe that if £ = £/, y = ¥’ is
any solution other than the one, z = z*, y = y*, found above by the Euclidean
algorithm, then £ = z/ — z* y = y' — y* is a solution of the “homogeneous’
equation
(10) az + by = 0.

For if
az' 4+ by’ = ¢ and az* 4 by* = ¢,
then on subtracting the second equation from the first we find that
a(z’ ~— z*) 4+ by’ — ¥*) = 0.

Now the most general solution of the equation (10) isz = rb/(a, b), ¥y = —ra/(qa, b),
where r is any integer. (We leave the proof as an exercise. Hint: Divide by
(a, b) and use the Exercise on page 48.) It follows immediately that

T = z* 4 rb/(a, b), y = y* — ra/(a, b).

To summarize: The linear Diophantine equation ax 4 by = ¢, where a, b,
and ¢ are integers, has a solution in integers if and only if ¢ is a multiple of (g, b).
In the latter case, a particular solution £ = z*, y = y* may be found by the
Euclidean algorithm, and the most general solution is of the form

z = z* 4 rb/(a, b), y = y* — ra/(a, b),
where r is any integer.

Examples: The equation 3z + 6y = 22 has no integral solution, since (3, 6) = 3,
which does not divide 22.

The equation 7z 4 11y = 13 has the particular solution z = =39, y = 26,
found as follows:

11=17+4 T=14+3 4=13+1  (7,11) =1,
1=4-3=4—-—(7T—-4)=24—-7T=2(11 -7)—-7=2.11 — 3.7.

Hence

7-(—=3) 4+ 11(2)

7-(—39) 4+ 11(26)
The other solutions arc given by

z = —39 +4 llr, y=26—1Tr

where r is any integer,

Ezxercise: Solve the Diophantine equations (a) 3z — 4y = 29, (b)llz 4 12y = B8,
(c) 163z — 34y = 51,

1,
13.



CHAPTER II
THE NUMBER SYSTEM OF MATHEMATICS

T
INTRODUCTI

We must greatly extend the original concept of number as natural
number in order to create an instrument powerful enough for the needs
of practice and theory. In a long and hesitant evolution zero, negative
integers, and fractions were gradually accepted on the same footing
as the positive integers, and today the rules of operation with these
numbers are mastered by the average school child. But to gain com-
plete freedom in algebraic operations we must go further by including
irrational and complex quantities in the number concept. Although
these extensions of the concept of natural number have been in use for
centuries and are at the basis of all modern mathematics it is only in
recent times that they have been put on a logically sound basis. In
the present chapter we shall give an account of this development.

§1. THE RATIONAL NUMBERS

1. Ratienal Numbers as a Device for Measuring

The integers are abstractions from the process of counting finite
collections of objects. But in daily life we need not only to count indi-
vidual objects, but also to measure quantities such as length, area,
weight, and time. If we want to operate freely with the measures of
these quantities, which are capable of arbitrarily fine subdivision, it
18 nccessary to extend the realm of arithmetic beyond the integers.
The first step is to reduce the problem of measuring to the problem oy
counting. First we select, quite arbitrarily, a unit of measurement —
foot, vard, inch, pound, gram, or second as the case may be-—to which
we assign the measure 1. Then we count the number of these units
which together make up the quantity to be measured. A given mass
of lcad may weigh exactly 54 pounds. In general, however, the process
of counting units will not ““‘come out cven,” and the given quantity will
not be exactly measurable in terms of integral multiples of the chosen
unit. The most we can say is that it lies between two successive mul-

62
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tiples of this unit, say between 53 and 54 pounds. When this occurs,
we take a further step by introducing new sub-units, obtained by sub-
dividing the original unit into a number n of equal parts. In ordinary
language, these new sub-units may have special names; for example, the
foot is divided into 12 inches, the meter into 100 centimeters, the pound
into 16 ounces, the hour into 60 minutes, the minute into 60 seconda,
etc. In the symbolism of mathematics, however, a sub-unit obtained
by dividing the original unit 1 into n equal parts is denoted by the
5 ; 1 i uantit al X ub-
units, its measure is denoted by the symbol m/n. This symbol is
called a fraction or ratio (sometimes written m:n). The next and de-
cisive step was consciously taken only after centuries of groping effort:
the symbol m/n was divested of its concrete reference to the process of
measuring and the quantities measured, and instead considered as a
pure number, an entity in itself, on the same footing with the natural
called a rational number.

The use of the word number (originally meaning natural number only)
for these new symbols is justified by the fact that addition and multi-
plication of these symbols obey the same Iaws that govern the operations
with natural numbers. Toshow this, addition, multiplication, and equal-
ity of rational numbers must first be defined. As everyone knows,
these definitions are:

numbers. When m and n are natural numbers the svmbol m/n is
Wwhen m and n are n al numbers, the symbol m/n 1s

a c_sdtbe o _a
b d bd '’ b d bd’
(1)
a a _c.,
for any integers a, b, ¢, d. For example:
2,4_25+34_16+12_22 2.4 _24_8
3 5 35 15 15’ 3 5 35 15
3 1 8 _6_2
3 ’ 12 9 3

Precisely these definitions are forced upon us if we wish to use the ra-
tional numbers as measures for lengths, areas, etc. But strictly speak-
ing, these rules for the addition, multiplication, and equality of our
symbols are established by our own definition and are not imposed upon
us by any prior necessity other than that of consistency and usefulness
for applications. On the basis of the definitions (1) we can show that
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the fundamental laws of the arithmetic of natural numbers continue to hold

'n the domain of rational numbers:

p+aq=q+0p (commutative law of addition),
p+(g+r)=(p+ q) + r (associative law of addition),
(2) pg = qp (commutative law of multiplication),
p(qr) = (pg)r (associative law of multiplication),
p(g+ 1) = pg+ pr (distributive law).

For example, the proof of the commutative law of addition for fractions is
exhibited by the equations

¢c __ad+b _cb+da_¢ |, a

a
Al v R SV S S

7+

of which the first and last equality signs correspond to the definition (1)
of z‘idditiﬁu, while the middle one is a conscquence of the commutative
laws of addition and multiplication of natural numbers. The reader may
verify the other four laws in the same way.

For a real understanding of these facts it must be emphasized once
more that the rational numbers are our own creations, and that the rules
(1) are imposed at our volition. We might whimsically decree some
other rule for addition, such as g + 3 = g%; \
yield 3 + 4 = 2/4, an absurd result from the point of view of measuring,.
Rules of this type, though logically permissible, would make the arith-
metic of our symbols & meaningless game. The free play of the intellcct
is guided here by the necessity of creating a suitable instrument for
handling measurements.

which in particular would

2. Intrinsic Need for the Rational Numbers. Principle of Generalization

Aside from the “practical’’ reason for the introduction of rational num-
bers, there is a more intrinsic and in son:e ways an cven more compelling
one, which we shall now discuss quite independently of the preceding
argument. It is of an entirely arithmetical character, and is typical of
a dominant tendency in mathematical procedure.

In the ordinary arithmetic of natural numbers we can always carry
out the two fundamental operations, addition and multiplication.
But the ‘“‘inverse operations” of subtraction and division are not always
possible. The difference b — a of two integers a, b is the integer ¢
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such that @ + ¢ = b, i.e. it is the solution of the equation a 4 z = b.
But in the domain of natural numbers the symbol b — a has a meaning
only under the restriction b > a, for only then does the equationa + z =
b have a natural number z as a solution. It was a very great step
towards removing this restriction when the symbol 0 was introduced by
setting a — a = 0. It was of even greater importance when, through
the introduction of the symbols —1, —2, —3, ... , together with the
definition

b—a=—(a—0)

for the case b < a, it was assured that subtraction could be performed
without restriction ¢n the domain of positive and negatlive integers. To
:“ﬁl--flf; Elemn wmanzer PR T, P 1 ) >} ter v armlacancd awid e adso
HICIUME LIIC HICY K YIlIIDWIS — 41, T 4, _O, «+ = 1l &Il Cllargceud aricvillliculiv
which embraces both positive and negative integers we must, of
course, define operations with them in such a way that the original rules

of arithmetical operations are preserved. For example, the rule

3) (=D(-1) =1,

which we set up to govern the multiplication of negative integers, is a
consequence of our desire to preserve the distributive law a(d + ¢) =
ab + ac. For if we had ruled that (—1)(—1) = —1, then, on setting
a=—-1,b=1,¢= —1,weshouldhavehad —1(1 — 1) = -1 -1 =
—2, while on the other hand we actually have —1(1 — 1) = —1 .0 = 0.
It took a long time for mathematicians to realize that the ‘‘rule of signs”
(3), together with all the other definitions governing negative integers
and fractions cannot be “proved.” They are created by us in order to
attain freedom of operation while preserving the fundamental laws of
arithmetic. What can—and must—Dbe proved is only that on the basis
of these definitions the commutative, associative, and distributive laws
of arithmetic are preserved. Even the great Euler resorted to a thor-
oughly unconvincing argument to show that (—1)(—1) “must’”’ be
equal to 4+1. For, as he reasoned, it must either be 41 or —1, and
cannot be —1, since —1 = (+1){(—1).

Just as the introduction of the negative integers and zero clears the
way for unrestricted subtraction, so the introduction of fractional num-
bers removes the analogous arithmetical obstacle to division. The
quotient z = b/a of two integers a and b, defined by the equation

(4) ax = b

>

exists as an inleger only if ais a factor of b. If this is not the case, as for
examne when a = 2, b = 3, we simply introduce & new symbol b/a,
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which we call a fraction, subject to the rule that a(b/a) = aq, so that
b/ais a solutlon of (4) “by definition.” The invention of the fractions
as new number symbols makes division possible without restriction—
except for division by zero, which is excluded once for all.

Expressions like 1/0, 3/0, 0/0, etc. will be for us meaningless symbols.
For if division by 0 were permitted, we eould deduee from the true equa-
tion 0.1 = 0.2 the absurd consequenee 1 = 2. It is, however, some-
times useful to denote such expressions by the symbol o (read, “infin-
ity’"), provided that one does not atlempt lo operate with the symbol = as
though tt were subject to the ordinary rules of calculation with numbers,

The purely arithmetical significance of the system of all rational
numbers—integers and fractions, positive and negative —is now appar-
ent. For in this extended number domain not only do the formal asso-
ciative, commutative, and distributive laws hold, but the equations
a+z = b and ax = b now have solutions,z = b —a and z = b/a, without
restriction, provided in the latter case that a ¢ 0. In other words, in
the domain of rational numbers the so-called rational operations—addi-
tion, subtraetion, multiplication, and division—may be performed
without restrietion and will never lead out of this domain. Sueh a
elosed domain of numbers is ealled a field. We shall meet with other
examples of fields later in this ehapter and in Chapter 111.

Extending a domain by introdueing new symbols in sueh a way
that the laws whieh hold in the original domain continue to hold in the
larger domain is one aspeet of the characteristic mathematical process
of generalization. The generalization from the natural to the rational
numbers satisfies both the theoretieal need for removing the restrietions
on subtraction and division, and the practical need for numbers to
express the results of measurement. It is the fact that the rational
numbers fill this two-fold need that gives them their true significance.
As we have seen, this extension of the number coneept was made possible
by the creation of new numbers in the form of abstract symbols like
0, —2, and 3/4. Today, when we deal with sueh numbers as a matter
of eourse, it is hard to believe that as late as the seventeenth eentury
they were not generally eredited with the same legitimacy as the posi-
tive integers, and that they were used, when necessary, with a certain
amount of doubt and trepidation. The inherent human tendency to
cling to the ‘“‘concrete,” as exemplified by the natural numbers, was
responsible for this slowness in taking an inevitable step. Only in the
realm of the abstraet ean a satisfactory system of arithmetic be ereated.
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3. Geometrical Interpretation of Rational Numbers

An illuminating geometrieal interpretation of the rational numbel
system is given by the following eonstruetion.

On a straight line, the ‘“‘number axis,” we mark off a segment 0 to 1,
as in Fig. 8. This establishes the length of the segment from 0 to 1
as the unit length, which we may ehoose at will. The positive and
negative integers are then represented as a set of equidistant points on
the number axis, the positive numbers to the right of the point 0 and the

- ——pe

L 2
-3 -2 -1 0 1 2 3
Fig. 8. The number axis.

negative numbers to the left. To represent fraetions with the denomina-
tor n, we divide eaeh of the segments of unit length into n equal parts;
the points of subdivision then represent the fraetions with denominator
n. If we do this for every integer n, then all the rational numbers will
be represented by points of the number axis. We shall eall sueh points
rational points, and we shall use the terms “rational number” and “ra-
tional point” interehangeably.

In Chapter T, §1, we defined the relation A < B for natural numbers.
This has its analog on the number axis in the fact that if natural number
4 is less than natural number B, then point A lies to the left of point B.
Since the geometrical relation holds between all rational points, we arc
led to try to extend the aritlunetieal relation in such a way as to preserve
the relative geometrieal order of the eorresponding points. This is
achieved by the following definition: The rational number A is said to be
less than the rational number B (A4 < B), and B is said to be greater than
A (B> A),if B — A is positive. It then follows that, if A < B, the
points (numbers) belween 4 and B are those which are both > A and <B.
Any such pair of distinet points, together with the points between
them, is ealled a segment, or interval, [A, B).

The distance of a point, A, from the origin, eonsidcred as positive,
is called the absolute value of A and is indicated by the symbol

[ 4].

In words, if A > 0, we have| 4| = 4;if A <0, wehave | 4| = — 4.
It is elear that if 4 and B have the same sign, the equation | 4 + B
= | A| + | B| holds, while if A and B have different signs, we have
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|A + B| < |A| + | B|. Henee, eombining these two statements,
we have the general inequality

|4+ B|<{4]|+]B],

whieh is valid irrespeetive of the signs of A and B,

A faet of fundamental importanee is expressed in the statement: The
rational points are dense on the line. By this we mean that within eaeh
interval, no matter how small, there are rational points. We need only
take a denominator n large enough so that the interval [0, 1/n] is smaller
than the interval [4, B] in question; then at least one of the fraetions
m/n must lie within the interval. Henee there is no interval on the line,
however small, whieh is free from rational points. It follows, moreover,
that there must be infinitely many rational points in any interval; for,
if there were only a finite number, the interval between any two adjaeent
rational points would be devoid of rational points, which we have just
seen to be impossible.

§2. INCOMMENSURABLE SEGMENTS, IRRATIONAL
NUMBERS, AND THE CONCEPT OF LIMIT

1. Introduction

In eomparing the magnitudes of two line segments a and b, it may
happen that a is contained in b an exaet integral number r of times.
In this case we ean express the measure of the segment b in terms of that
of a by saying that the length of b is r times that of a. Or it may turn
out that while no integral multiple of a equals b, we ean divide a into,
say, n equal segments, each of length a/n, sueh that some integral multi-
ple m of the segment a/n is equal to b:

m
When an equation of the form (1) holds we say that the two segments
a and b are commensurable, since they have as a common measure the

segment a/n whieh goes n times into a and m times into b, The totality

ol

2 .-f - o # ] 4 L &
Fig. 9. Rational pointas.

of all segments commensurable with a will be those whose length can be
expressed in the form (1) for some ehoice of integers m and n (n = 0).
If we ehoose a as the unit segment, [0, 1], in Figure 9, then the segments
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commensurable with the unit segment will correspond to all the ra-
tional points m/n on the number axis. For all practical purposes of
measuring, the rational numbers are entirely sufficient. Even from a
theoretical viewpoint, since the set of rational points covers the line
densely, it might seem that all points on the line are rational points.
If this were true, then any segment would be commensurable with the
unit. It was one of the most surprising discoveries of early Greek mathe-
matics (the Pythagorean school) that the situation is by no means so

. - . . .
etmnla Thara aviet smsasmammancurahls ecopmaonie 0 £ wn acanmn that +n
BIMPT. 124a00C CXRISU IRINIMENSUrave SCjranis ur, i W assulne uilai .o

every segment corresponds a number giving its length in terms of the
unit, ¢rrational numbers. This revelation was a scientific event of the
highest importance. Quite possibly it marked the origin of what we
eonsider to be the specifically Greek contribution to rigorous procedure
in mathematics. Certainly it has profoundly affected mathematics
and philosophy from the time of the Greeks to the present day.

Fudoxus’ theory of incoinmensurables, presented in geometrical form in
Euclid’s Elements, is a masterpicce of Greek mathematics, though it is
usually omitted from the diluted high-school versions of this classical
work. The theory beeame fully appreciated only in the late nine-
teenth century, after Dedekind, Cantor, and Weierstrass had constructed
a rigorous theory of irrational numbers. We shall present the theory
in the modern arithmetical way.

First we show: The diagonal of a square is incommensurable with its
side. We may suppose that the side of the given square is chosen as
the unit of length, and that the diagonal has the length z. Then, by

the Pythagorean theorem, we have
=1+ 1"=2

(We may denote z by the symbol 4/2.) Now if z were commensurable
with 1, we could find two integers p and g such that z = p/q and

(2) 102 = 2¢".

We may suppose that p/q is already in lowest terms, since any common
factor in numerator and denominator could be cancelled out at the begin-
ning. Since 2 appears as a factor of the right side, p’ is an even number,

and hence p itself is even, because the square of an odd number is odd.

We may therefore write p = 2r. Equation (2) then becomes
2

4r* = 2¢°, or 2¢* = ¢*.

Since 2 ia a factor of the left side, ¢*, and hence ¢ must also be even,
Thus p and ¢ are both divisible by 2, which contradicts the assumption
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that p and ¢ had no eommon faetor. Therefore, equation (2) eannot
hold, and z eannot be a rational number.

Our result ean be expressed by the statement that there is no rational
number equal to /2.

The argument of the preceding paragraph shows that a very simple
geometrical eonstruction may result in a segment incommensurable with
the unit. If such a segment is marked off on the number axis by means
of a ecompass, the point so eonstrueted eannot eoincide with any of the

0 1
Fig. 10. Conatruction of /2,

rational points: The system of rational points, although it is everywhere
dense, does not cover all of the number axis. To the naive mind it must
eertainly appear very strange and paradoxical that the dense set of ra-
tional points does not cover the whole line. Nothing in our *‘intuition”
ean help us to “see” the irrational points as distinct from the rational
ones. No wonder that the diseovery of the incommensurable stirred
the Greek philosophers and mathematicians, and that it has retained
even today its provocative effect on thoughtful minds,

It would be very easy to eonstruct as many segments ineommensurable

with the unit as we want. The end-points of such segments, if marked
off from the point 0 on the number axis, are ealled irrational points.
Now, the guiding prineiple in introducing {ractions was the measuring
of lengths by numbers, and we should like to maintain this principle in
dealing with segments incommensurable with the unit. If we demand
that there should be a mutual correspondence between numbers on the one
hand and poinis of a straight line on the other, it is necessary to introduce
trrational numbers.

Summarizing the situation thus far we may say that an irrational
number represents the length of a segment incommensurable with the
unit. In the following seetions we shall refine this somewhat vague and
entirely geometrical definition, until we arrive at one more satisfactory
from the point of view of logieal rigor. Our first approaeh to the sub-
jeet will be by way of the deeimal fraetions.

Ezercises: 1) Prove that -\'/5, V3, V5, \'/13. are not rational. (Hint: Use the
lemma of p. 47). :
2) Prove that v2 + v/3 and V2 + 2 are not rational. (Hint: If e.g. the
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first of these numbers were equal to a rational number r then, writing

v3 = r — /2 and squaring, 4/2 would be rational.)
3) Prove that +/2 + 4/3 4 +/Bisirrational. Try tomake up similar and more

general examples.

2. Decimal Fractions. Infinite Decimals

In order to eover the number axis with a set of points everywhere
dense, we do not need the totality of all rational numbers; for example,
it suffices to eonsider only those numbers whieh originate by subdivision
of each unit interval into 10, then 100, 1000, ete. equal segments. The
points so obtained eorrespond to the ‘“deeimal fraetions.” For example,
the point 0.12 = 1/10 4+ 2/100 eorresponds to the point lying in the
first unit interval, in the seeond subinterval of length 107, and at the
initial point of the third “sub-sub-” interval of length 107% (a™™®
means 1/a”.) Sueh a dectmal fraction, if it eontains n digits after the
deeimal point, has the form

f=z2+al0™" + al0® + q107° 4+ ... + a, 107",

where z is an integer and the a’s are digits—0, 1, 2, . .. , 9—indieating
the tenths, hundredths and so on. The number f is represented in the
deeimal system by the abbreviated symbol z.a,a3as --- a.. We see
immediately that these deeimal fraetions ean be written in the ordinary
form of a fraetion p/q where ¢ = 107; for example, f = 1.314 = 1 +
3/10 + 1/100 + 4/1000 = 1314/1000. If p and ¢ have a eommon
divisor, the deeimal fraetion may then be redueed to a fraction with a

- - ]
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tion in lowest terms whose denominator is not a divisor of some power of

10 ean be represented as a deeimal fraetion. For example, é = 1—20 =
0.2, and 557) = 10;400 = 0.004; but § eannot be written as a deeimal

fraetion with a finite number n of deeimal plaees, however great n be
chosen, for an equation of the form

$ = b/107
would imply
10" = 3b,

whieh is absurd, sinee 3 1s not a faetor of any power of 10.

Now let us ehoose any point P on the number axis whieh does not
eorrespond to a dceimal fraetion; e.g. the rational point 4 or the irra-
tional point /2. Then in the proeess of subdividing the unit interval
into ten equal parts, and so on, P will never oeeur as the initial point
of a aubinterval. Still, P ean be ineluded within smaller and amaller
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intervals of the deeimal division with any desired degree of approxi-
mation, This approximation proeess may be deseribed as follows.
Suppose that P lies in the first unit interval. We subdivide this
interval into 10 equal parts, each of length 107", and find, say, that P
lies in the third sueh interval. At this atage we ean say that P lies
between the deeimal fraetions 0.2 and 0.3. We subdivide the interval
from 0.2 to 0.3 into 10 equal parts, each of length 107, and find that P

lies, say, in the fourth sueh interval. Subdividing this in turn, we find
fhni‘ P lies in the first interval of leneth 10~ ! Wa ean now say that P

Usdide U AR UséNs ARAMDL Aa Vikd WL llddp Uid AN - T W wiWi Usdth vV &

lies between 0.230 and 0.231. This proeess ean be eontinued mdeﬁmtely,
and leads to an unending sequenee of digits, a1, @z, Gy, +-+ , An, +-+ ,
with the following property: whatever number n we choose, the point P
is ineluded in the interval I, whose left-hand end-point is the deeimal
fraction 0.4,0:05 -- @,-16, and whose right-hand end-point is
O0.a122a3 -+ - as-1(a, + 1), the length of I, being 10™". If we ehoose in
sueeession n = 1, 2, 3, 4, ... , we see that each of these intervals,
I, I,,1,, ..., is eontained in the preceding one, while their lengths,
107", 107, 1073, ..., tend to zero. We say that the point P is eon-
tained in a nested sequence of decimal intervals. For example, if P is
the rational point 4, then all the digits a,, a2, as, --- are cqual to 3,
and P is contained in every interval I, which extends from 0.333 ... 33
to 0.333 ... 34; i.e, 3 is greater than 0.333 -.- 33 but less than
0.333 ... 34, where the number of digits may be taken arbitrarily large.
We express this fact by saying that the n-digit decimal fraction 0.333
... 33 “tends to }"’ as n increases. We write

1=0333-..,

the dots indicating that the decimal fraction is to be extended ‘‘in-
definitely.”

The irrational point +/2 defined in Article 1 also leads to an in-
definitely extcnded decimal fraction. Here, however, the law which
determincs the values of the digits in the sequence is by no means ob-
vious. In fact, no explicit formula that determines the successive
digits is known, although one may calculate as many digits as desired:

’=1<2<2%=4
(1.4)° = 1.96 < 2 < (1.5)* = 2.25
(1.41)° = 1.9881 < 2 < (1.42)° = 2.0264
(1.414)" = 1.999396 < 2 < (1.415)° = 2.002225
(1.4142)" = 1.99996164 < 2 < (1.4143)* = 2.00024449, etc.
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As a general definition we say that a point P that is not represented
by any decimal fraction with a finite number n of digits is represented

by the infinite decimal fraction, z.aiazas - - - , if for every value of n the
point P lies in the interval of length 107" with z.a,a.a, - - . a, as its initial
point,

In this manner there is established a correspondence between all the
points on the number axis and all the finite and infinite decimal fractions
We offer the tentative definition: a “number” is a finile or infinite deci-
mal. Those infinite decimals which do not represent rational numbers
are called irrational numbers.

Until the middle of the nineteenth century these considerations were
accepted as a satisfactory explanation of the system of rational and
irrational numbers, the conttnuum of numbers. 'The enormous advance
of mathematics since the seventeenth century, in particular the de-
velopment of analytic geometry and of the differential and integral
basis. But during the period of critical re-examination of principles
and consolidation of results, it was felt more and more that the concept
of irrational number required & more precise analysis. As a preliminary
to our account of the modern theory of the number continuum we shaill
discuss in & more or less intuitive fashion the basie concept of limit.

Ezercise: Calculate v/2 and 4/5 with an accuracy of at leaat 10-2,

3. Limits. Infinite Geometrical Series

As we saw in the preceding section, it sometimes happens that a
certain rational number s is approximated by a sequence of other rational
numbers s,, where the index n assumes consecutively all the values
1,2,3,-.-. Forexample,if s = 1/3, then s, = 0.3, &2 = 033, sy =
0.333, etc. As another example, let us divide the unit interval into two
halves, the second half again into two equal parts, the second of these
again into two equal parts, and so forth, until the smallest intervals thus
obtained have the length 27", where n is chosen arbitrarily large, e.g. n =
100, » = 100,000, or any number we please. Then by adding together
all the intervals except the very last one we obtain a total length
equal to

1

2n°

We see that s, differs from 1 by (3)", and that this difference becomes ar-
bitrarily small, or “‘tends to zero’’ as n increases indefinitely. It makesno

1 1 1 1
(3) 8"_§+1+§+ﬁ“.+
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senge to say that the difference 7s zero if n 7s infinite. The infinite enters
only in the unending procedure and not as an actual quantity. We
describe the behavior of s, by saying that the sum s. approaches the

limit 1 as n lends to tnfinily, and by writing
1 1 1 1
(4) =g tmtmtmt

where on the right we have an infinite sertes. This “equation’” does
not mean that we actually have to add infinitely many terms; it is only
an abbreviated expression for the fact that 1 is the limit of the finite
sum 8, as n lends to infinity (by no means s infinity). Thus equation
(4) with its incomplete symbol “+ ...”” is merely mathematical short-
hand for the precise statement,

1 = the limit as n tends to infinity of the quantity
1 1 1 1
(5) 3n—§+§+2—3+"'+2—ﬂ.
In an even more abbreviated but expressive form we write
(6) sSan—lasn— o,
As another example of limit, we consider the powers of a number g.

If —1 <qg<1leg qgq=1/30orqg= —4/5, then the successive powers
of g,
2 3 4 n
G 9,9,Q, 149,y *°*,

will approach zero as n increases. If ¢ is negative, the sign of ¢" will
alternate from + to —, and ¢" will tend to zero from alternate sides
Thusif ¢ = 1/3,then¢* = 1/9, ¢' = 1/27,¢' = 1/81, ... , while if ¢ =
—1/2, then ¢ = 1/4,¢" = —1/8,¢' = 1/16, ... . We say that the
[imz't of q®, as n tends to tnfinety, 18 zero, or, in symbols,

(N g" —0asn— o, for -1 < g < 1.

(Incidentally, if ¢ > 1 or ¢ < —1 then ¢" does not tend to zero, but in-
creases in magnitude without limit.)

To give a rigorous proof of the assertion (7) we start with the inequal-
ity proved on page 15, which states that (1 4+ p)” > 1 + np for any
positive integer n and p > —1. If g is any fixed number between 0 and

1,eg.¢ = 9/10, we have ¢ = 1/(1 + p), where p > 0. Hence
1

q—,.=(1+p)"2:1+np>np,
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or (see rule 4, p. 322)

0<qg" < 1.1 .
!
q" is therefore included between the fixed bound 0 and the bound
(1/p)(1/n) which approaches zero as n increases, since p is fixed. This
makes it evident that ¢" — 0. If ¢ is negative, we haveqg = —1/(1 + p)
and the bounds become (—1/p)(1/n) and (1/p){(1/n) instead of 0
and (1/p)(1/n). Otherwise the reasoning remains unchanged.
We now consider the geometrical series

(8) ss=l+g+¢d+¢+ - +¢"

(The case ¢ = 1/2 was discussed above.) As shown on page 13, we
can express the sum s, in a simple and concise form. If we multiply
s, by ¢, we find

(8a) ga=g+q¢d+¢+¢+ - +¢",

and by subtraction of (8a) from (8) we see that all terms except 1 and

g""" cancel out. We obtain by this device

(1 —¢q)sa=1-—4¢g"",

or, by division,
n+l 1 n+1

_ _q
1—g¢ 1—¢ 1-9¢°

8y =

The concept of limit comes into play if we let n increase. As we have
seen, ¢"' = ¢ - ¢" tends to zero if —1 < ¢ < 1, and we obtain the
limiting relation

(9) s,.—>1—l——éasn—>oo,for——l<q<l.
Written as an infinite geometrical series this becomes
(10) 1+q+q2+q’+---=——é——é,f0r—-l<q<1.

For example,
1 1 1 1
1+2+§2+§,—+--- —————-1_%—2,
in agreenient with equation (4), and similarly

9,9 ,9 ., 9 91
Sttt Tot =1

104 0I=1/0 - "
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so that 0.99999 --- = 1. Similarly, the finite decimal 0.2374 and the
infinite decimal 0.23739999999 - - - represent the same number,

In Chapter VI we shall resume the general discussion of the limit
concept in the modern spirit of rigor.

1
14-¢

2) What is the limit of the sequence a,,a1,a3, -+ , where a, = n/(n + 1)?
(Hint: Write the expressionin the form n/{n 4+ 1) = 1 — 1/(n 4+ 1) and observe
that the second term tends to zero.)

Ezercises: 1) Provethatl — g4+ @2 — @* 4 g* — -« , if I 9[ <L

2 1
3) What is the limit of wirntl forn —» «»? (Hint: Write the expression
nt—n-41
in the form
1 1
14—
n n )
U
n nt
1
4) Prove, for | q| < 1, that 1 + 27 + 3¢* + 4g* 4 -+ = T (Hint:

Use the result of exercise 3 on p. 18.)
5) What is the limit of the infinite series

1 —2¢ + 3¢ — 4g* + -+ ?
14+2+483+ - 4n 14204 ...4n
n? " nd

3
= ? (Hint: Use the results of pp. 12, 14, 15.)

nd »f
AANAE L

[+]
'“

4. Rational Numbers and Periodic Decimals

Those rational numbers p/¢ which are not finite decimal fractions can
be expanded into infinite decimal fractions by performing the elementary
process of long division. At each stage in this process there must be a
non-zero remainder, for otherwise the decimal fraction would be finite.
All the different remainders that arise in the process of division will be
integers between 1 and ¢— 1, so that there are at most g— 1 different possi-
bilities for the values of the remainders. This means that within at
most g divisions some remainder & will turn up for a second time. But
then all subsequent remainders will repeat in the same order in which
they appeared after the remainder % first appeared. This shows that
the decimal expression for any rational number ts periodic; after some finite
set of digits has appeared initially, the same digit or group of digits will
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repeat itself infinitely often. For example, 1/6 = 0.166666666 ... ;
1/7 = 0.142857142857142857 -- . ;1/11 = 0.09090909 . .. ;122/1100 =
0.1109090909 ... ; 11/90 = 0.122222222 ... ; etc. (Those rational
numbers which can be represented as finite decimal fractions may be
thought of as having periodic decimal expansions with the figure 0
repeating itself infinitely often after a finite number of digits.) We see,
incidentally, that some of these periodic decimals have a non-periodic
head before the periodic tail begins.

Conversely, it may be shown that all periodic decimals are rational
numbers. As an example, let us take the infinite periodic decimal

p = 0.3322222 ... .

We have p = 33/100 + 107'2(1 + 107 4+ 107* 4 ...). The expression
in parentheses is the infinite geometrical series

-1 -1 ~3 1 _ 10
L4107+ 107+ 107+ e = e =
Hence
33 , 10 2970 +20 2090 299
[ 2. . - —1 - B e . = - —
P=190 T 2105 9.108 3000 _ 900

The proof in the general casc is essentially the same, but requires a
more general notation. 1In the general periodic decimal
P = O.ayazaz - -+ Ambibe + -+ b.bybs - - - babibg v« by oo+
we set O.bybs - .« b, = B, so that B represcnts the periodic part of the
decimal. Then p becomes
p =0 am+ 107"B(1 + 107" + 107*" + 107" ...).

The expression in parentheses is an infinite geonietrical series with
g = 107". Its sum, according to equation (10) of the previous article,
18 1/(1 — 107"), and therefore

1I0™B
— 0.“ F I ] am e
p ="t t - 10
1 1 2 3 1 2 . .
Ezxercises: 1) Expand the fractions — —, —, —, —, — into decimal fractions

11' 13" 13" 13" 17" 17
and determine the period.

*2) The number 142,857 has the property that multiplication with any one of
the numbers 2, 3, 4, 5, or 6 produces only a cyclic permutation of its digits. Ex-
plain this property, using the expansion of } into a decimal fraction.

3) Expand the rational numbers of exercise 1 as ‘‘decimals’ with bases 5, 7,
and 12.

4) Expand one-third as a dyadic numher.
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5) Write .11212121 ... as a fraction. Find the value of this symbol if it is
meant in the systems with the bases 3 or 5.

5. General Definition of Irrational Numbers by Nested Intervals

On page 63 we adopted the tentative definition: a “number” is a
finite or infinite decimal. We agreed that those infinite decimals which
do not represent rational numbers should be called irrational numbers.
On the basis of the results of the preceding section we may now formu-
late this definition as follows: the continuum of numbers, or real number
system (‘‘real’”’ in contrast to the “imaginary” or ‘“‘complex’” numbers
to be introduced in §5) s the totality of infinite decimals. (Finite decimals
may be considered as a special case where all digits from a certain point
on are zero, or one might just as well prescribe that, instead of taking a
finite decimal the last digit of which is a, we write down an infinite decimal
with a—1 in place of q, followed by an infinite number of digits all equal
to9. This expresses the fact that .999 ... = 1, according to Article 3.)
The rational numbers are the periodic decimals; the irrational numbers
are the non-periodic decimals. Even this definition does not seem
entirely satisfactory; for, as we have seen in Chapter I, the decimal sys-
tem iz in no way singled out by the nature of things. We might just as
well have gone through the reasoning with the dyadic or any other
svstem. For this reason it is desirable to give a more general definition
of the number continuum, detached from special reference to the base
ten. Perhaps the simplest way to do this is the following:

Let us consider any sequence I, Iy, -+ ,I,, ... of intervals on the
number axis with rational end-points, each of which is contained in the
preceding one, and such that the length of the n-th interval I, tends
to zero as n increases. Such a sequence is called a sequence of nested
intervals. In the case of decimal intervals the length of I, is 107" but
it may just as well be 27" or merely restricted to the milder requirement
that it be less than 1/n. Now we formulate as a basic postulate of geom-
etry: corresponding lo each such sequence of nested inlervals lhere 1s
precisely one point on the number-axis which ts conlained in all of them.
(Tt is seen directly that there cannot be more than one point common
to all the intervals, for the lengths of the intervals tend to zero, and two
different points could not both be contained in any interval smaller than
the distance between them.) This point is called by definition a real
number; if it is not a rational point it is called an irrational number.
By this definition we establish a perfect correspondence between points
and numbers. It is nothing but a more general formulation of what was
expressed by the definition using infinite decimals.
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Here the reader may be troubled by an entirely legitimate doubt.
What s this “point’’ on the number axis, which we assumed to belong
to all the intervals of a nested sequence, in case it is not a rational point?
Our answer is: the existence on the number axis (regarded as a line)
of a point contained in every nested sequence of intervals with rational
end-points is a fundamental postulate of geometry. No logical reduction
of this postulate to other mathematical facts is required. We accept it,
just as we accept other axioms or postulates in mathematics, becanse
of its intuitive plausibility and its usefulness in building a consistent
system of mathematical thought. From a purely formal point of view,
we may start with a line made up only of rational points and then define
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Fig. 11, Nested {ntervala,  Linits of serquences.

an irrational point as just a symbol for a certain sequence of nested rational
intervals. An irrational point is completely described by a sequence
of nested rational intervals with lengths tending to zero. Hence our
fundamental postulate really amounts to a definition. To make this
definition after having been led to a sequence of nested rational intervals
by an intuitive feeling that the irrational point “exists,” is to throw
away the intuitive crutch with which our reasoning proceeded and to
realize that all the mathematical properties of irrational points may be
expressed as properties of nested seqquences of rational intervals,

We have here a typical instance of the philosophical position described
in the introduction to this book; to discard the naive ‘‘realistic’’ approach
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that regards a mathematical object as a “thing in itself”” of which we
humbly investigate the properties, and instead to realize that the only
relevant existence of mathematical objects lies in their mathematical
properties and in the relations by which they are interconnected. These
relations and properties exhaust the possible aspects under which an
object can enter the rcalm of mathematical activity. We give up the
mathematical “thing in itself’’ as physics gave up the unobservable
ether. This is the meaning of the “intrinsic”’ definition of an irrational
number as a nested sequence of rational intervals.

The mathematically important point here is that for these irrational
numbers, defined as nested sequences of rational intervals, the operations
of addition, multiplication, etc., and the relations of “less than" and
“greater than,” are capable of immediate generalization from the field of
rational numbers in such a way that all the laws which hold in the ra-
tional number field are preserved. For example, the addition of two
irrational numbers « and 8 can be defined in terms of the two sequences
of nested intervals defining « and 8 respectively. We construct a third
sequence of nested intervals by adding the initial values and the end
values of corresponding intervals of the two sequences. The new
sequence of nested intervals defines « 4 8. Similarly, we may define the
product «f, the difference o — 8, and the quotient «/8. On the basis
of these definitions the arithmetical laws discussed in §1 of this chapter
can be shown to hold for irrational numbers also. The details are
omitted here,

The verification of these laws is siinple and straightforward, though
somewhat tedious for the beginner who is more anxious to learn what
can be done with mathematics than to analyze its logical foundations.
Some modern textbooks on mathematics repel many students by starting
with a pedantieally complete analysis of the real number system. The
reader who simply disregards these introductions may find comfort in
the thought that until late in the nineteenth century all the great mathe-
maticians made their discoveries on the basis of the “naive” con-
cept of the number system supplied by their intuition.

From a physical point of view, the definition of an irrational number
by a sequence of nested intervals corresponds to the determination of the
value of some observable quantity by a sequence of measurements of
greater and greater accuracy. Any given operation for determining,
say, a length, will have a practical meaning only within the limits of a
certain possible error which measures the precision of the operation,
Since the rational numnbers are dense on the line, it is impossible to deter-
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mine by any physical operation, however precise, whether a given length
is rational or irrational. Thus it might seem that the irrational numbers
are unnecessary for the adequate description of physical phenomena.
But as we shall see more clearly in Chapter VI, the real advantage which
the introduction of irrational numbers brings to the mathematical
description of physical phenomena is that this description is enormously
simplified by the free use of the limit concept, for which the number
continuum is the basis.

*6. Alternative Methods of Defining Irrational
Numbers. Dedekind Cuts

A somewhat different way of defining irrational numbers was chosen
by Richard Dedekind (1831 -1916), one of the great pioneersin the logical
and philosophical analysis of the foundations of mathematics. His
essays, Stetigkeit und irrationale Zahlen (1872) and Was sind und was
sollen die Zahlen? (1887), exercised a profound influence on studies in
the foundations of mathematics. Dedekind preferred to operate with
general abstract ideas rather than with specific sequences of nested
intervals. His procedure is based on the definition of a “cut,” which
we shall describe briefly.

Suppose there is given some method for dividing the set of all rational
numbers into two classes, A and B, such that every element b of class B
is greater than every element a of class A. Any classification of this
sort is called a cut in the set of rational numbers. For a cut there are just
three possibilities, one and only one of which must hold:

1) There is a largest element a* of A. This is the case, for example,

if A consists of all rational numbers < 1 and B of all rational num-
bers > 1.

2) There is a smallest element b* of B. This is the case, for example,
if A consists of all rational numbers < 1 and B of all rational num-
bers > 1.

3) There is neither a largest element in A nor a smallest element in B.
This is the case, for example, if A consists of all negative rational
numbers, 0, and all positive rational numbers with square less than
2 and B of all rational numbers with square greater than 2, 4
and B together include all rational numbers, for we have proved
that there is no rational number whose square is equal to 2.

The case in which A has a largest element a* and B a smallest element

b* is impossible, for then the rational number (e* + b*)/2, which lies
halfway between a* and 0¥, would be larger than the largest element of
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A and smaller than the smallest element of B, and hence could belong
to neither. .

In the third case, where there is neither a largest rational number in
A nor a smallest rational number in B, the cut is said by Dedekind to
define or simply to be an irrational number. It is easily seen that this
definition is in agreement with the definition by nested intervals; any
sequence I, I3, I, - -- of nested intervals defines a cut if we place in
the class A all those rational numbers which are exceeded by the left-
hand end-point of at least one of the intervals 7, and in B all other
rational numbers.

Philosophically, Dedekind’s definition of irrational numbers involves a rather
high degree of abstraction, since it places no restrictions on the nature of the
mathematical law which defines the two classes A and B. A more concrete
method of defining the real number continuum is due to Georg Cantor (1845-
1918). Although at first sight quite different from the method of nested intervals
or of cuts, it is equivalent to either of them, in the sense that the number systems
defined in these three ways have the same properties. Cantor's idea was sug-
gested by the facts that 1) real numbers may be regarded as infinite decimals,
and 2) infinite decimals are limits of finite decimal fractions. Freeing ourselves
from dependence on the decimal system, we may state with Cantor that any
sequence @, , 4z, Gy, -+» of rational numbers defines a real number if it “con-
verges.”! Convergence is understood to mean that the difference (am — aa)
between any two members of the sequence tends to zero when a. and a, are suffi-
ciently far out in the sequence, i.e. as m and n tend to infinity. (The successive
decimal approximations to any number have this property, since any two after
the nth can differ by at most 10-%.) Since there are many ways of approaching
the same real number by a sequence of rational numbers, we say that two con-
vergent sequences of rationals a;, @i, s, *-- and b;, bs, b, -+ define the
same real number if a, — b tends to zero as n increases indefinitely. The oper-
ations of addition, etc., for such sequences are quite easy to define.

§3. REMARKS ON ANALYTIC GEOMETRYY
1. The Basic Principle

The number continuum, whether it is accepted as a matter of course
or only after a critical examination, has been the basis of mathematics—
and in particular of analytic geometry and the calculus—since the
seventeenth century.

Introducing the continuum of numbers makes it possible to associate
with each line segment a definite real number asits length. But we may

1 For readers who are not familiar with the subject, a seres of exercises on the
elements of analytic geometry will be found in the appendix at the end of the
book, pp. 489-494,
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go much farther. Not only length, but every geometrical object and every
geometrical operation can be referred to the realm of numbers. The decisive
steps in this arithmetization of geometry were taken ' as early as 1629
by Fermat (1601-1655) and 1637 by Descartes (1596-1650). The
fundamental idea of analytic geometry is the introduction of “coérdi-
nates,” that is, numbers attached to or coérdinated with a geometrical
OO7¢ 1110 &I 8 CTTZINTE VIS OD]JE pmpiletvery. 1TOW L O IT0O8 all-
ers are the so-called rectangular or Cartesian codrdinates which serve
to characterize the position of an arbitrary point P in a plane. We
start with two fixed perpendicular lines in the plane, the “z-axis” and
the “y-axis,” to which we refer every point. These lines are regarded as
directed number axes, and measured with the same unit. To each point
P, as in Figure 12, two codrdinates, z and y, are assigned. These arc

f‘ll A Y

Qf-——5aP
yr/wl
. : X

0 x  p’ 17 x

kS
=

i v

Fig. 12. Rectangular coirdinates of & point, Fig. 13, The four quadrants.

obtained as follows: we consider the directed segment from the “origin”
O to the point P, and project this directed segment, sometimes called
the “position vector” of the point P, perpendicularly on the two axes,
obtaining the directed segment OP’ on the z-axis, with the number z
measuring its directed length from O, and likewise the dirceted segment,
0@’ on the y-axis, with the number ¥ measuring its directed length from
O. The two numbers z and y are called the codrdinates of P
Conversely, if z and y are two arbitrarily prescribed numbers, then the
corresponding point P is uniqucly determined. If z and y are both
positive, P is in the first quadrant of the codrdinate system (see Fig. 13);
if both arc negative, P is in the third quadrant; if z is positive and y
negative, it is in the fourth, and If z is negative and y positive, in the
second.
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The distance between the point P, with coérdinates z;, ¥, and the
point P; with codrdinates z2, ¥2 is given by the formula
(1) d' = (z1 — 22)° + (1 — )™
This follows immediately from the Pythagorean theorem, as may be
seen from Figure 14.
Y
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Fig. 14. The distance between two pointa.

*2. Equations of Lines and Curves

If C is a fixed point with codrdinates z = a, ¥y = b, then the locus of
all points P having a given distance r from C is a circle with C as center
and radius r. It follows from the distance formula (1) that the points
of this circle have coérdinates z, ¥ which satisfy the equation

(2) (x —a)*+ (y — b)) = 1.

This is called the equation of the circle, because it expresses the complete
(necessary and sufficient) condition on the cobrdinates z, y of a point P

v

Fig. 15. The circle.

that lies on the circle around C with radius r. If the parentheses are
expanded, equation (2) takes the form

(3) '+ y' — 2azx — 2by = k,
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where k = ¥ — o® — b’. Conversely, if an equation of the form (3) is
given, where a, b, and k are arbitrary constants such that k + a* + b*
is positive, then by the algebraic process of “completing the square”
we can write the equation in the form

(x - a)’ + (y - b)’ = r2:
where * = k& + a® + b° It follows that the equation (3) defincs a
circle of radius r around the point C with cobérdinates a and .

The equations of straight lines are even simpler in form. For example,
the z-axis has the equation ¥ = 0, since ¥y = 0 for all points on the
z-axis and for no other points. The y-axis has the equation z = 0.
The lines through the origin bisecting the angles between the axes have
the equations z = yand z = —y., It is easily shown that any straight
line has an equation of the form

(4) ax+by=c,

where a, b, ¢ arc fixed constants characterizing the line. The meaning
of equation (4) is again that all pairs of real numbers z, ¥ which satisfy
this equation are the cotrdinates of a point of the line, and conversely.
The reader may have learned that the equation
x! 2

(5) ?+§=1

represents an ellipse (Fig. 16). This curve cuts the z-axis at the points
A(p, 0) and A’(—p, 0), and the y-axis at B(0, ¢) and B’(0, —¢q). (The
notation P(r, ¥) or stmply (z, y¥) is used as a shorter way of writing
‘““the puint P with coérdinates z and y,”) If p > ¢, the segment AA4’,
of length 2p, is called the major axis of the ellipse, while the segment
BB’, of length 2¢, is called the minor axis. This ellipse is the locus of
all points P the sum of whose distances from the points F(+/p?* — ¢, 0)
and F'(—+/p* — ¢, 0) is 2p. As an exercise the reader may verify
this by using formula (1). The points F and F’ are called the foci

V= ¢
P

(singular, focus) of the ellipse, and the ratio ¢ = - is called the

eccentricity of the ellipse,
An equation of the form
2
(6) Y=
T
represents a hyperbola. This curve consists of two branches which cut
the z-axis at A(p, 0) and A’(—p, 0) (Fig. 17) respectively. The seginent
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AA’, of length 2p, is called the transverse axis of the hyperbola. The
hyperbola approaches more and more nearly the two straight lines
gr + py = 0 as we go out farther and farther from the origin, but it
never actually reaches these lines. They are called the asymptoles of
the hyperbola. The hyperbola is the locus of all points P the
difference of whose distances to the two points F(4/9® 4+ ¢% 0) and
F'(—+/p* + ¢, 0) is 2p. These points are again called the foci of

NET:

the hyperbola; by its eccentricity we mean the ratio e = >

Fig. 16, The ellipse; F and F’ are the focl, Fig. 17. The hyperbola; F and F' are the foci.

The equation
(7) zy = 1

also defines a hyperbola, whose asymptotes now are the two axes (Fig. 18).
The equation of this ‘“equilateral” hyperbola indicates that the area
of the rectangle determined by P is equal to 1 for every point P on the
curve, An equilateral hyperbola whose equation is

(7a) zy = ¢,

¢ being a constant, is only a special case of the general hyperbola, just as
the circle is a special case of the ellipse. The special character of the
equilateral hyperbola lics in the fact that its two asymptotes (in this
case the two coordinate axes) are perpendicular to each other.

For us the main point here is the fundamental idea that geometrical
objects may be completely represented in numerical and algebraic terms,
and that the same is true of geometrical operations. For example, if
we want to find the point of intersection of two lines, we consider their
two equations
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8 ax + by = ¢

) a'x + by = ¢'.

The point common to the two lines is then found simply by determining
its co6rdinates as the solution z, ¥ of the two simultaneous equations
(8). Similarly, the points of intersection of any two curves, such as
the circle 2> + y* — 2az — 2by = k and the straight line az + by = ¢,
are found by solving the two corresponding equations simultaneously.

“t

Fig. 18, The oquilateral hyperbola zy = 1. The area zv of the rectangle determined by the point
P (x, v) is oqual to 1,

§4. THE MATHEMATICAL ANALYSIS OF INFINITY
1. Fundamental Concepts

The sequence of positive integers
1,23, ---

is the first and most important example of an infinite set. There is no
mystery about the fact that this sequence has no end, no ‘‘finis’’; for,

however large be the integer n, the next integer, n + 1, can always be
formed. DBut in the passage from the adjective “‘infinite,” meaning
simply “without end,” to the noun “infinity’’ we must not make the
assumption that “infinity,” usually expressed by the special symbol <,
can be considered as though it were an ordinary number. We cannot
include the symbol o in the real number systemm and at the
same time preserve the fundamental rules of arithmetic. Neverthe-
less, the concept of the infinite pervades all of mathematics, since
mathematical objects are usually studied, not as individuals, but as

members of classes or aggregates containing infinitely many objects of
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the same type, such as the totality of integers, or of real numbers, or of
triangles in a plane. For this reason it is necessary to analyze the
mathematical infinite in a precise way. The modern theory of sets,
created by Georg Cantor and his school at the end of the nineteenth
century, has met this challenge with striking success. Cantor’s theory
of sets has penetrated and strongly influenced many fields of mathe-
matics, and has become of basic importance in the study of the logical
and philosophical foundations of mathematics. The point of departure
is the general concept of a set or aggregate. By this is meant any collec-
tion of objects defined by some rule which specifies exactly which ob-
jects belong to the given collection. As examples we may consider the
set of all positive integers, the set of all periodic decimals, the set of
all real numbers, or the set of all straight lines in three-dimensional space,

For comparing the ‘“‘magnitude’’ of two different sets the basic notion
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paired with each other in such a way that to each element of A there
corresponds one and only one element of B and to each element of B
corresponds one and only one element of 4, then the correspondence
i1s said to be biunique and A and B are said to be equivalent. The notion
of equivalence for finite sets coincides with the ordinary notion of
equality of number, since two finite sets have the same number of elements
if and only if the elements of the two sets can be put into biunique
correspondence. This isin fact the very idea of counting, for when we
count a finite set of objects, we simply establish a biunique correspond-
ence between these objects and a set of number symbols 1, 2, 3, --. , n.

Tt is not always necessary to count the objects in two finite sets to establish
their equivalence. For example, we can assert without counting that any finite
set of circles of radius 1 is equivalent to the set of their centers.

Cantor’s idea was to extend the concept of equivalence to infinite sets
in order to define an “arithmetic” of infinities, The set of all real
numbers and the set of all points on a straight line are equivalent, since
the choice of an origin and a unit allows us to associate in a biunique
manner with every point P of the line a definite real number z as its
coOrdinate:

P e 2,

The even integers form a proper subset of the set of all integers, and
the integers form a proper subset of the set of all rational numbers. (By
the phrase proper subset of a set S, we mean a set S’ consisting of some,
but not all, of the objectsin S.) Clearly, if a set is finite, i.e. if it contains
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some number n of elements and no more, then it cannot be equivalent to
any one of iis proper subsels, since any proper subset could contain at
most n — 1 elements. But, if a sef contains infinilely many objects,
then, paradoxically enough, it may be equivalent to a proper subset of
itself. For example, the codrdination

1 2 3 4 5 ... n «u.

111113 $
2 46 8 10..-2n...

establishes a biunique correspondence between the set of positive infegers
and the proper subset of even integers, which are thereby shown to be
equivalent. This contradiction to the familiar truth, ‘“‘the whole is
greater than any of its parts,”” shows what surprises are to be expected
in the domain of the infinite.

2. The Denumerability of the Rational Numbers and
the Non-Denumerability of the Continuum

One of Cantor’s first discoveries in his analysis of the infinite was that
the set of rational numbers (which contains the infinite set of integers
as a subset and is therefore itself infinite) is equivalent to the set of
infegers. At first sight it seems very strange that the dense set of
rational nuinbers should be on the same footing as its sparsely sown sub-
set of integers, True, one cannot arrange the positive rational numbers
in order of size (as one can the integers) by saying that a is the first
rational number, b the next larger, and so forth, because there are in-
finitely many rational numbers between any two given ones, and hence
there is no “next larger.” But, as Cantor observed, by disregarding
the relation of magnitude between successive elements, it is possible to
arrange all the rational numbers in a single row, r, ry, r3, re, + -+, like
that of the integers. In this sequence there will be a first rational
number, a second, a third, and so forth, and every rational number will
appear exactly once. Such an arrangement of a set of objects in a
scquence like that of the integers is called- a denumeraiion of the set.
By exhibiting such a denumeration Cantor showed the set of rational
numbers to be equivalent with the set of integers, since the cor-
respondence

<« Q)

1 2 4---n¢
11 1 1
r Tz T Tq---Tu---

is biunique. One way of denumerating the rational numbers will now be
described.
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Every rational number can be written in the form a/b, where a and b
are integers, and all these numbers can be put in an array, with a/b in
the ath column and bth row. For example, 3/4 is found in the third
column and fourth row of the table below. All the positive rational
numbers may now be arranged according to the following scheme: in
the array just defined we draw a continuous, broken line that goes
through all the numbers in the array. Starting at 1, we go horizontally
to the next place on the right, obtaining 2 as the second member of the
sequence, then diagonally down to the left until the first column is
reached at the position occupied by 1/2, then vertically down one place
to 1/3, diagonally up until the first row is reached again at 3, across to
4, diagonally down to 1/4, and so on, as shown in the figure. Travelling
along this broken line we arrive at a sequence 1, 2, 1/2, 1/3, 2/2, 3, 4,
3/2,2/3,1/4,1/5,2/4,3/3,4/2, 5, - - - containing the rational numbers
in the order in which they occur along the broken line. In this sequence
we now cancel all those numbers a/b for which a and b have a common
factor, so that each rattonal number r will appear exactly once and in
its simplest form, Thus we obtain a sequence

1 2 3 4 5 6 7

oo
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Fig. 19. Denumaeration of the rational numbers,

1,2,1/2,1/3,3,4,3/2,2/3,1/4,1/5,5, ... which contains each positive
rational number once and only once. This shows that the set of all
positive rational numbers is denumerable, In view of the fact that the
rational numbers correspond in a biunique manner with the rational
points on a line, we have proved at the samec time that the set of posi-
tive rational points on a line is denumerable.

Exercises: 1) Show that the set of all positive and negative integers is de-
numerable. Show that the set of all positive and negative rational numbers is
denumerable.
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2) Show that the set 8 4 7' (see p. 110) is denumerable if S and 7' are denumer-

Vaswm W RV

able sets. Show the same for the sum of three, four, or any number, n, of sets,
and finally for a set composed of denumerably many denumerable scts,

Since the rational numbers have been shown to be denumerable, one
might suspect that any infinite set is denumerable, and that this is the
ultimate result of the analysis of the infinite. This is far from being
the case. Cantor made the very significant discovery that the set of all
real numbers, rational and irrational, 7s nof denumerable. In other words,
the totality of real numbers presents a radically different and, so to
speak, higher type of infinity than that of the integers or of the rational
numbers alone. Cantor’s ingenious indirect proof of this fact has be-
come a model for many mathematical demonstrations. The outline of
the proof is as follows. We start with the tentative assumption that all
the real numbers have actually been denumerated in a sequence, and
then we exhibit a number which does not occur in the assumed denumera-
tion. This provides a contradiction, since the assumption was that all
the real numbers were included in the denumeration, and this assump-
tion must be false if even one number has been left out. Thus the as-
sumption that a denumeration of the real numbers is possible is shown
to be untenakle, and hence the opposite, i.e. Cantor’s statement that
the set of real numbers is not denumerable, is shown to be true.

To carry out this program, let us suppose that we have denumerated
all the real numbers by arranging them in a table of infinite decimals,

1st number N..aa:a;04a5 - - -
2nd number Nz. b1b2b3b|b5 "

3rd numher Nj. 163065 -

---------------------------

where the N's denote the integral parts and the small letters denote the
digits after the decimal point. We assume that this sequence of decimal
fractions contains all the real numbers. The essential point in the proof
is now to construct by a ‘‘diagonal process” a new number which we can
show to be not included in this sequence. To do this we first choose a
digit a which differs from a, and is neither 0 nor 9 (to avoid possible
ambiguities which may arise from equalities like 0.999 ... = 1.000 ...),
then a digit b different from b, and again unequal to 0 or 9, similarly ¢
different from ¢;, and so on. (For example, we might simply choose
a = 1 unless a, = 1, in which case we choose a = 2, and similarly down
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the table for all the digits b, ¢, d, ¢, ---.) Now consider the infinite
decimal

z = Q.abede -+ .

This new number z is certainly different from any one of the numbers
in the table abqve; it cannot be equal to the first because it differs
from it in the first digit after the decimal point; it cannot be equal to the
second since it differs from it in the second digit; and, in general, it
cannot be identical with the nth number in the table since it differs
from it in the nth digit. This shows that our table of consecutively
arranged decimals does not contain all the real numbers, Hence this set
is not denumerable.

The reader may perhaps imagine that the reason for the non-
denumerability of the number continuum lies in the fact that the straight
line is infinite in extent, and that a finite segment of the line would
contain only a denumerable infinity of points. This is not the case, for

7 N~
7/ / A\ N\ N ? ! *

Fig. 20 Fig 24

Fig. 20. Biunique torrespondence between the pointa of a bent segment and a whole straight line.
Fiz. 21. Biunique correapondence between the pointa of two segmenta of different length,

it is easy to show that the entire number continuum is equivalent to
any finite segment, say the segment from 0 to 1 with the endpoints
excluded. The desired biunique correspondence may be obtained by
bending the segment at % and 4 and projecting from a point, as shown
in Figure 20. It follows that even a finite segment of the number
axis contains a non-denumerable infinity of points.

Ezercise: Show that any interval [A, B] of the number axis is equivalent to
any other interval [C, D],

It is worthwhile to indicate another and perhaps more intuitive pronf
of the non-denumerability of the number continuum. In view of what
we have just proved it will be sufficient to confine our attention to the
set of points between 0 and 1. Again the proof is indirect. Let us
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suppose that the set of all points on the line between 0 and 1 can be ar-
ranged in a sequence

(1) G,,02,03, - .

Let us enclose the point with coérdinate @, in an interval of length
1/10, the point with codrdinate a, in an interval of length 1/10°, and so
on, If all points between 0 and 1 were included in the sequence (1),
the unit interval would be entirely covered by an infinite sequence of
possibly overlapping subintervals of lengths 1/10, 1/10% ---. (The
fact that some of these extend beyond the unit interval does not influ-
ence our proof.}) The sum of these lengths is given by the geometric
series

1/10 4+ 1/100 + 1/10° 4«0 = | =1 | = L,
10 1| 9
)

Thus the assumption that the sequence (1) contains all real numbers
from 0 to 1 leads to the possibility of covering the whole of an interval
of length 1 by a set of intervals of total length 1/9, which is intuitively
absurd, We might accept this contradiction asa proof, although from
a logical point of view it would require fuller analysis.

The reasoning of the preceding paragraph serves to establish a theorem of
great importance in the modern theory of “‘measure’’. Replacing the intervals
above by smaller intervals of length /10", where ¢ is an arbitrary small positive
number, we see that any denumerable set of points on the line can be included
in a set of intervals of total length ¢/9. Since ¢ was arbitrary, the latter number
can be inade as small as we please. In the terminology of measure theory we say
that a denumerable set of points has the measure zero.

Ezercise: Prove that the same result holds for a denumerable set of points
in the plane, replacing lengths of intervals by areas of squares.

3. Cantor’s ‘“Cardinal Numbers”

In summary of the results thus far: The number of elements in a
finite set A cannot equal the number of elements in a finite set B
if A contains more elements than B. If we replace the concept of “sets
with the same (finitc) number of elements’ by the more general concept
of equivalent sefs, then with infinite sets the previous statement does
not hold; the set of all integers contains more elements than the set of
even integers, and the set of rational numbers more than the set of in-
tegers, but we have seen that these sets are equivalent. One might
suspect that ell infinite sets are equivalent and that distinctions other
than that between finite numbers and infinity could not be made, but
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Cantor’s result disproves this; there is a set, the real number continuum,
which is not equivalent to any denumerable set.

Thus there are at least two different types of “infinity,” the denumer-
able infinity of the integers and the non-denumerable infinity of the
continuum. If two sets A4 and B, finite or infinite, are equivalent, we
shall say that they have the same cardinal number. This reduces to the
ordinary notion of same natural number if A and B are finite, and may
be regarded as a valid generalization of this concept. Moreover, if a
set A is equivalent with some subset of B, while B is not equivalent to
A or to any of its subsets, we shall say, following Cantor, that the set
B has a greater cardinal number than the set A. This use of the word
“number’’ also agrees with the ordinary notion of greater number for
finite sets. The set of integers is a subset of the set of real numbers,
while the set of real numbers is neither equivalent to the set of integers
nor to any subset of it (i.e. the set of real numbers is neither denumerable
nor finite). Hence, according to our definition, the continuum of real
numbers has a greater cardinal number than the set of integers.

* As a matter of fact, Cantor actually showed how to construct a whole sequence
of infinite sets with greater and greater cardinal numbers. Since we may start
with the set of positive integers, it clearly suffices to show that given any set A
1t i possible Lo construct another set B with a greater cardinal number. Because
of the great generality of this theorem, the proof is necessarily somewhat abatract.
We define the set B to be the set whose elements are all the different subsets of
the set A. By the word ‘‘subset’” we shall include not only the proper subsets
of A but also the set A itself, and the empty ‘subset’’ 0, containing no elements
at all. (Thus, if A consists of the three integers 1, 2, 3, then B contains the 8
different elements (1, 2, 3}, {1, 2}, (%, 3}, |2, 3}, {1}, {2}, {3}, and 0.) Each
element of the set B is itself a set, consisting of certain elements of A. Now
supposc that B is equivalent to A or to some subset of it, i.e. that there is some
rule which correlates in a biunique manner the elements of A or of a subset of
A with all the elements of B, i.e. with the subsets of A:

(2) ai—-—iSG,

where we denote by S. the subset of 4 corresponding to the element a of A. We
shall arrive at a contradiction by exhibiting an element of B (i.e. a subset 7" of 4)
which cannot have any element a correlated with it. In order to construct this
subset we observe that for any element z of A two possibilities exist: either the
set Sy assigned to z in the given correspondence (2) contains the element z, or
Sz does not contain z. We define 'I" asthe subset of A consistingofall those elementsx
such that S, does not contain x. Thia subset differs from every S. by at least the
element a, since if S. contains a, T’ does not, while if S; does not contain a, T does.
Hence T is not included in the ¢nrrespondence (2). This shows that it i8 im-



CANTOR’8 “CARDINAL NUMBERS" 85

possible to set up a biunique correspondence betwcen the elements of A or of
any subset of A and those of B. But the correlation

a «—— |a}

defines a biunique correspondence between the elements of A and the subset of B
consisting of all one-element subsets of A. Hence, by the definition of the last
paragraph, B has a greater cardinal number than A,

* Ezercise: If A contains n elements, where n is a positive integer, show that B,
definied as above, contains 2" elements. If A consists of the set of all positive
inntegers, show that B is equivalent to the continuum of real numhers from 0 to 1,
(Hint: Symbolize a subset of A in the first case by a finite and in the second
case by an infinite sequence of the symbols 0 and 1,

a|ﬂgﬂ. s ",

where a, = 1 or 0, according as the nth element of A does or does not belong to
the given subset.)

One might think it a simple matter to find a set of points with a greater cardinal
number than the set of real numbers from 0 to 1. Certainly a square, being
“two-dimensional,’” would appear to contain ‘‘more'’ points than a ‘‘one-dimen-
gional’’ segment. Surprisingly enough, this is not 8o; the cardinal number of the
get of points in a square is the same as the cardinal number of the set of points on a
segment. To prove this we set up the following correspondence,

If (z, ¥) is a point of the unit square, z and y may be written in decimal form as

T =0.00:0:84 ",
¥y = 0.5,bsbyby -,

where to avoid ambiguity we choose, for example, 0.250000 .- instead of
0.249999 - -- for the rational number }. To the point (z, ¥) of the square we then
assign the point

z = 0.a:b\asbsasbiadhe - -

of the segment from 0 to 1. Clearly, different points (x, ¥) and (z’, ¥') of the
square will correspond to different points z and 2’ of the segment, so that the
cardinal number of the square cannot exceed that of the segment.

(As a matter of fact, the correspondence just defined is biunique between the
set of all points of the square and a proper subset of the unit segment; no point
of the square could correspond to the point 0,2140909090 --- , for example, since
the form 0.25000 - -+ rather than 0.24999 .-+ was chosen for the numher . But
it is possible to modify the correspondence slightly so that it will be biunique
between the whole square and the whole segment, which are thus seen to have
the same cardinal number.)

A similar argument shows that the cardinal number of the points in a cube is
no greater than the cardinal number of the segment.

Although these results seem to contradict the intuitive notion of dimen-
sionality, we must remember that the correspondence we have aefined is not
‘“‘continuous’’; if we travel along the segnient from 0 to 1 continuously, the corre-
sponding points in the square will not form a continuous curve but will appear
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in a comnletely chaotic order. The dimension of a set of points depends not
only on the cardinal number of the set, but also on the manner in which the
points are distributed in space. In Chapter V we shall return to this subject.

4. The Indirect Method of Proof

The theory of cardinal numbers is but one aspect of the general
theory of sets, created by Cantor in the face of severe criticism by
some of the most distinguished mathematicians of the time. Many of
these critics, such as Kronecker and Poincaré, objected to the vague-
ness of the general concept of ‘‘set,” and to the non-constructive char-
acter of the reasoning used to define certain sets.

The objections to non-constructive reasoning refer to what may be
called essentially tndirect proofs. Indirect proofs themselves arc a
familiar sort of mathematical reasoning: to cstablish the truth of a
statement A, one makes the tentative assumption that A’, the contrary
of A4, is true. Then by some chain of reasoning one produces a con-
tradiction to A’, thus demonstrating the absurdity of A’. Hence, on
the basis of the fundamental logical principle of the ‘“excluded middle,”
the absurdity of A’ establishes the truth of 4.

Throughout this book we shall meet with examples where an indirect
proof can easily be converted into a direct proof, though the indirect
form of proof often has the advantages of brevity and freedom from
details not necessary for the immediate objective. But there are some
theorems for which it has not yet been possible to give other than in-
direct proofs. There are even theorems, provable by the indirect
method, for which direct constructive proofs could not possibly be given
even in prineiple, because of the very nature of the theorems them-
selves. Such, for example, is the theorem on page 81. On different
occasions in the history of mathematics, when the efforts of mathema-
ticians were directed towards constructing solutions for eertain problems
in order to show their solvability, someone else came along and side-
stepped the task of construction by giving an indirect and non-construc-
tive proof.

There is an essential difference between proving the existence of an
objccet of a certain type by constructing a tangible example of such an
object, and showing that if none existed one could deduce contradictory
results. In the first case one has a tangible object, while in the second
case one has only the contradiction. Some distinguished mathema-
ticians have recently advocated the more or less complete banishment
from mathematics of all non-constructive proofs. Even if such a
program were desirable, it would at present involve tremendous com-



INDIRECT METHOD OF PROOF 87

plication and even the partial destruction of the body of living mathe-
matics. For this reason it is no wonder that the school of “‘intui-
tionism,” which has adopted this program, has met with strong resistance,
and that even the most thoroughgoing intuitionists cannot always live
up to their eonvietions.

5. The Paradoxes of the Infinite

Although the uneompromising position of the intuitionists is far too
extreme for most mathematicians, a serious threat to the beautiful
theory of infinite aggregates arose when outright logical paradoxes in
the theory beeame apparent. It was soon observed that unrestricted
freedom in using the eoncept of ‘‘set” must lead to eontradietion. One
of the paradoxes, exhibited by Bertrand Russell, may be formulated
as follows. Most sets do not contain themselves as elements. For
example, the set A of all integers eontains as elements only integers; A,
being itself not an integer but a set of tnlegers, does not contain itself as
element. Sueh a set we may call “ordinary.” There may possibly be
gets which do eontain themselves as elements; for example, the set S
defined as follows: ‘“S contains as elements all sets definable by an
English phrase of less than twenty words” could be considered to con-
tain itself as an element. Sucl: sets we might call “extraordinary” sets,
In any case, however, most sets will be ordinary, and we may exclude
the erratic behavior of “extraordinary’” sets by confining our attention
to the set of all ordinary sets. Call this set C. Each element of the set

ﬁ 1Ly "ﬁn]r n ant . t nt e r] ~ 'T“-\n ~11aod -rlnﬁ

oD llJDLl.l o DUIJ inl uu.u vl Ul Ulllﬂll.y DUU 1 LT unDUlUll IIU“‘ ar IWD, lD C
itself an ordmary set or an extraordinary set? It must be one or the
other. If C is ordinary, it contains itself as an element, since C is de-
fined as containing all ordinary sets. This being so, C must be extra-
ordinary, since the extraordinary sets are those containing themselves
as members. This is a contradiction. Hence C must be extraordinary.
But then C contains as a member an extraordinary set (nameh C itself),
which contradicts the definition whe xuluv C was to contain ordinar Y sets
only. Thus in either case we see that the assumption of the mere exist-

ence of the set ' has led us to a contradiction.

6. The Foundations of Mathematics

Paradoxes like this have led Russell and others to a systematic study
of the foundations of mathematics and logic. The ultimate aim of
their efforts is to provide for mathematical reasoning a logical basis
which ecan be shown to be free from possible contradiction, and which
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still eovers everything that is considered important by all (or some)
mathematicians. While this ambitious goal has not been attained and
perhaps cannot ever be attained, the subject of mathematical logic has
attracted the attention of increasing numbers of students. Many
problems in this field which can be stated in very simple terms are very
difficult to solve. As an example, we mention the Hypothesis of the
Conttnuum, which states that there is no set whose cardinal number is
greater than that of the set of the integers but less than that of the set
of rcal numbers. Many interesting consequences can be deduced from
this hypothesis, but up to now it has neither been proved nor disproved,
though it has recently been shown by Kurt G&del that if the usual
postulates at the basis of set theory are consistent, then the enlarged
set of postulates obtained by adding the Hypothesis of the Continuum
is also consistent. Questions such as this ultimately reduce to the ques-
tion of what is meant by the concept of mathematical extstence. Luckily,
the existence of mathematics does not depend on a satisfactory answer.
The school of “formalists,” led by the great mathem«tician Hilbert,

asserts that in mathematics ‘‘existence’’ mmn]v means ‘‘freedom from
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contradiction.”” It then becomes necessary to construct a sct of postu-
lates from which all of mathematics can be deduced by purely formal
reasoning, and to show that this set of postulates will never lead to a
contradiction. Recent results by Goédel and others seem to show that
this program, at least as originally conceived by Hilbert, cannot be
carried out. Significantly, Hilbert’s theory of the formalized structure
of mathematics 15 essentially based on intuitive procedure. In sone
way or other, openly or hidden, even under the most uncompromising
formalistic, logical, or postulational aspect, constructive intuition always
remains the vital element in mathematics.

§5. COMPLEX NUMBERS
1. The Origin of Complex Numbers

For many reasons the concept of number has had to be extended even
beyond the real number continuum by the introduction of the so-called
complex numbers, One must realize that in the historical and psycho-
logical development of mathematics, all these extensions and new inven-
tions were by no means the products of some onc individual’s efforts.
They appear rather as the outcome of a gradual and hesitant evolution
for which no single person can receive major credit. It was the need
for more freedom in formal calculations that brought about the use of

negative and rational numbers. Only at the end of the middle ages
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did mathematiciana begin to lose their feeling of uneasiness in using
these concepts, which did not appear to have the same intuitive and
concrete character as do the natural numbers. It was not until the
middle of the nineteenth century that mathematicians fully realized
that the essential logical and philosophical basis for operating in an ex-
tended number domain is formalistic; that extensions have to be created
by definitions which, as such, are free, but which are useless if not
made in such a way that the prevailing rules and properties of the
original domain are preserved in the larger domain, That these exten-
sions may sometimes be linked with ‘‘real” objects and in this way
provide tools for new applications is of the highest importance, but this
can provide only a motivation and not a logical proof of the validity
of the extension,

The process which first requires the use of complex numbers is that
of solving quadratic equations. We recall the concept of the linear equa-
tion, ax = b, where the unknown quantity z is to be determined. The
golution is simply z = b/a, and the requirement that every linear
equation with integral coefficients a # 0 and b shall have a solution ne-
cessitated the introduction of the rational numbers. Equations such as

(1) 2} =2,

which has no solution z in the field of rational numbers, led us to con-
struct the wider field of real numbers in which a solution does exist.
But even the field of real numbers is not wide enough to provide a com-
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plete theory of quadratic equations. A simple equation like

(2) ' = —1
has no real solution, gince the square of any real number is never
negative,

We must either be content with the statement that this simple equa-
tion is not solvable, or follow the familiar path of extending our concept
of number by introducing numbers that will make the equation
solvable, This is exactly what is done when we introduce the new
symbol ¢ by defining ¢ = —1. Of course this object %, the “imaginary
unit,”’ has nothing to do with the concept of a number as a means of

counting. 1tispurely a symbol, subject to the fundamental rulei’ = —1,
and its value will depend entirely on whether by this introduction a
really useful and workable extension of the number system can be
effected.

Since we wish to add and multiply with the symbol ¢ as with an or-

dinary real number, we should be able to form symbols like 27, 37, —z,
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2 + 57, or more generally, ¢ 4+ bi, where a and b are any two real num-
bers. If these symbols are to obey the familiar commutative, associa-
tive, and distributive laws of addition and multiplication, then, for
example,

2+3)+Q+4)=2+1)+ B+4)x=3+T7,
(2 + 3)(1 + 40)) = 2 + 8 + 3i + 12¢°

= (2-—-12) + (8 4 3)r = —10 + 11z
Guided by these considerations we begin our systematic exposition
by making the following definition: A symbol of the form a + bi, where
a and b are any two real numbers, shall be called a complex number
with real part a and imaginary part b. The operations of addition
and multiplication shall be performed with these symbols just as though
¢ were an ordinary real number, except that ¢* shall always be replaced

by —1. More precisely, we define addition and multiplication of com-
plex numbers by the rules

(a+b) + (c+di) = (a+¢) + (b + d),
(a + W)(c + dt) = (ac — bd) + (ad + bo)i.
In particular, we have
(4) (@ + bi)(a — bi) = a® — abi + abi — b%® = a® + b°.

On the basis of these definitions it is easily verified that the commuta-
h

o} ool
LYAY] % 1Y

3)

tive, associative, and distributive laws hold for complex num
Moreover, not only addition and multiplication, but also subtraction
and division of two complex numbers lead again to numbers of the

form a + bZ, so that the complex numbers form a field (see p. 56):
(@ + ) — (c + di) = (a —¢) + (b — )i,

(5) a+bz‘_(a+bi)(c—-dz')_(uc+bd)+(bc—ad).
ctdi (td)lc—di) \+a& cta )t

(The second equation is meaningless when ¢ + d¢ = 0 + 0z, for then
¢ + d = 0. So again we must exclude division by zero, i.e. by 0 + 0z.)
or

24+3)—1+4)=1-73,
2+3 _2+3 1 -4 2-—-8+3i+12_14 8§

_'—‘io

1+4 1+4:1— 45 1+ 16 17
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The field of complex numbers includes the field of real numbers as a
gubfield, for the complex number a + 07 is regarded as the same as
the real number a. On the other hand, a complex number of the form
0 + b = bt is called a pure imaginary number.

(1492438 +1)

Ezercises: 1) Express 1—9 in the form a + be.

1 .+/3\
(-i++%)
in the form a + b1,

3) Expressin the form a + b1
14¢ 1412 l 1 (4 — 51)2
I1—4¢"2—1" ' (=240 -3)" (2 -3

4) Calculate /5 + 12:. (Hint: Write /5 + 12i = = + yf, square, and equate
real and imaginary parts.)

2) Express

By the introduction of the symbol ¢ we have extended the field of real
numbers to a field of symbols a + b¢ in which the special quadratic
equation

2

r = —1
has the two solutions = ¢ and z = —i. For by definition,
t.i = (—i)(—%) = * = —1. In reality we have gained much more:

we can easily verify that now every quadratic equation, which we may
write in the form

(6) ar’ + bz +¢ = 0,

has a solution. For from (6) we have

3;2+I.)_E= —g,
a a
2, b b? b? c
Yt T @
b b? — dac
(7) (x+2_a) - 4a2 ’
+_b_=:}:\/b’—4ac
2q 2a !
p = —b £V —dac
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Now if b — 4ac > 0, then /12 — 4ac is an ordinary real number, and
the solutions (7) are real, while if b° — 4ac < 0, then 4ac — b* > 0
and Vb — dac = \/ —(dac — b®) = /4ac — b?-1, so that the solutions
(7) are complex numbers. For example, the solutions of the equation

2 —5x2+6=0

arez = (5 + /25 — 24)/2 = (5 =+ 1)/2 = 2 or 3, while the solutions
of the equation

2P — 2z + 2 =0,
arez = (2+4—8)/2=2x+2)/2=1+1io0rl —1.

2. The Geometrical Interpretation of Complex Numbers

As early as the sixteenth century mathematicians were compelled
to introduce expressions for square roots of negative numbers in order
to solve all quadratic and cubic equations. But they were at a loss to
explain the exact meaning of thesc expressions, which they regarded
with superstitious awe. The name ‘‘imaginary” is a reminder of
the fuct that these expressions were considered to be somehow fictitious
and unreal. Finally, early in the nineteenth century, when the im-
portance of these numbers in many branches of mathematies had
become manifest, a simple geometric interpretation of the operations
with complex numbers was provided which set to rest the lingering
doubts about their validity. Of course, such an interpretation is
unnecessary from the modern point of view in which the justification
of formal calculations with complex numbers is given directly on the
basis of the formal definitions of addition and multiplication., But the
geometrie interpretation, given at about the same time by Wessel
(1745-1818), Argand (1768-1822) and Gauss, made these operations
seem mnore natural from an intuitive standpoint, and has ever since
been of the utmost importance in applications of complex numbers in
mathematics and the physical sciences.

This geometrical interpretation consists simply in representing the

complex number z = z + ¥¢ by the point in the plane with rectangular
cobrdinates z, ¥. Thus the real part of z is its z-cobrdinate, and the
imaginary part is its y-codrdinate. A correspondence is thereby estab-
lished between the complex numbers and the points in a “number
plane,” just as a correspondence was established in §2 betwcen the
real numbers and the points on a line, the number axis. The points on

the z-axis of the number plane correspond to the real numbers
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— 2 + 0i while t} L " . ! o ]

imaginary numbers z = 0 + .
If

z=zxz+ y
is any complex number, we call the complex number

=1z — Yyt
the conjugate of z. 'The point Z is represented in the number plane by
the reflection of the point 2z in the z-axis as in a mirror. If we denote

W

¢ 2w X+ i

Fig. 22, Geometrical repressntation of complex numbers. The point £ has the rectangular eoSrdinates z, ¥

the distance of the point z from the origin by p, then by the Pythagorean
theorem
=24y = (4 yi)x — yi) = z-2.
The real number p = \/z? + y2 is called the modulus of z, and written
p=|z|

If 2 lies on the real axis, its modulus is its ordinary absolute value. The
complex numbers with modulus 1 lie on the “unit cirele’”’ with center
at the origin and radius 1.

If |z| = O then z = 0. This follows from the definition of |z | as
the distance of z from the origin. Morcover the modulus of the product
of two complex numbers ts equal to the product of their moduli:

|21-22| = [z1]-] 2 .
This will follow from a more general theorem to be proved on page 95.

Ezxercises: 1. Prove this theorem directly from the definition of multiplication
of two complex numbers, 2z, = x; + yit and 24 = &3 4 yai.
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2. From the fact that the product of two real numbers is 0 only if one of the
factors is 0, prove the corresponding theorem for complex numbers. (Hint: Use
the two theorems just stated.)

From the definition of addition of two complex numbers, 2, = z1 + yit
and zz = z: + yit, we have

21+ 22 = (21 + 22) + (11 + )i

Hence the point z; + 23 is represented in the number plane by the
fourth vertex of a parallelogram, three of whose vertiees are the

¥

31+ Iz

o]

Fig. 23, Parallslogram law of addition of complex numbers.

points O, z;, z5. This simple geometrieal construction for the sum of
two complex numbers is of great importance in many applications.
From it we can deduce the important consequence that the modulus
of the sum of two complex numbers does not exceed the sum of the modult
(eompare p. 58):

|21+ 22|S|21]+|22|.

This follows from the fact that the length of any side of a triangle
cannot exceed the sum of the lengths of the other two sides.

Ezercise: When does the equality | 2z + z.| = | 2, | + | 21 | hold?

The angle between the positive direction of the z-axis and the line
Oz is called the angle of z, and is denoted by ¢ (Fig. 22). The modulus
of % is the same as the modulus of z,

2] = |z,

but the angle of Z is the negative of the angle of ¢z,

¢ = —¢.

Of course, the angle of z is not uniquely determined, since any integral
multiple of 360° can be added to or subtracted from an angle without
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affecting the position of its terminal side. Thus
¢, ¢ + 360° ¢ + 720° ¢ + 1080° ...,

all repregent graphically the same angle. By means of the modulus p
and the angle ¢, the complex number z can be written in the form

(8) 2 =2z + yi = p(cos ¢ + 7 sin ¢);
for, by the definition of sine and cosine (see p. 277),
T = pcos¢, Yy = p sin ¢.
Eg.forz=1¢p=1,¢ = 90° sothat f = 1 (cos 90° + ¢ sin 90°);

for z=1%7¢, p =2 ¢ = 45° so that
1 4 i = /2 (cos 45° + ¢ sin 45°);
for z=1-71, p=/2,¢ = —45° so that

1 — ¢ = +/2[cos (—45°) + 7 sin (—45°)];
for z=—1+ /371, p =2 ¢ =120° so that
—1 4+ /37 = 2 (cos 120° + ¢ sin 120°).

The reader should confirm these statements by substituting the values
of the trigonometrical functions.

The trigonometrical representation (8) is of great value when two
complex numbers are to be multiplied. If

z = p(cos ¢ + 17 sin ¢),
and 2z’ = p’(cos ¢’ + ¢ sin ¢'),
then 2z’ = pp'{(cos ¢ cos ¢’ — sin ¢ sin ¢')
+ #(cos ¢ sin ¢’ + sin ¢ cos ¢')}

Now, by the fundamental addition theorems for the sine and cosine,

cos ¢ cos ¢’ — sin ¢ sin ¢’ = cos (¢ + ¢'),

cos ¢ sin ¢’ + sin ¢ cos ¢’ = sin (¢ + ¢).
Hence
(9) 22’ = pp'{cos (¢ + ¢') + isin (@ + ¢')}.
This is the trigonometrical form of the complex number with modulus

pp' and angle ¢ + ¢’. In other words, to multeply two complex numbers,
we multiply their moduli and add their angles (Fig. 24). Thus we



96 NUMBER SYSTEM OF MATHEMATICS (II]

see that multiplication of complex numbers has something to do with
rotation. To be more precise, Jet us call the directed line segment
pointing from the origin to the point z the vector z; then p = | z | will be
its length. Let 2z’ be a number on the unit circle, so that p’ = 1; then
multiplying z by 2’ simply rotates the vector z through the angle ¢’
If o’ = 1, the length of the vector has to be multiplied by p’ after the
rotation. The reader may illustrate these facts by multiplying various
numbers by 2, = 7 (rotating by 90°); 2z = —¢ (rotating by 90° in the
opposite sense); 23 = 1 4+ ¢;and 2z, = 1 ~ .

Fig. 24. Multiplication oftwo complex numbers; the anglea are added and the moduli multiplied.

Formula (9) has a particularly important consequencc when z = 2/,
for then we have

2> = p*(cos 2¢ + ¢ sin 24).
Multiplying this result again by z we obtain
2 = p'(cos 3¢ + 1 sin 3¢),
and continuing indefinitely in this way,
(10 z" = p" (cos n¢ + 1 sin ng) for any integer n.

In particular, if z is a point on the unit circle, with p = 1, we obtain
the formula discovered by the English mathematician A. De Moivre
(1667-1754) :

(11) (cos @ + 2 sin ¢)" = cos ng + ¢ sin n¢.
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This formula is one of the most remarkable and useful relations in
elementary mathematics. An example will illustrate this. We may
apply the formula for n = 3 and expand the left hand side according
to the binomial formula,

(u + )" = «* + 3u'v + 3w’ + ¢,
obtaining the relation
cos 3¢ + 1sin 3¢ = cos' ¢ — 3 cos ¢ sin’ ¢ + 7(3 cos’ ¢ sin ¢ — sin® ¢).

A single equatton such as this between two complex numbers amounts
to a pair of equations between real numbers. For when two complex
numbers are equal, both real and imaginary parts must be equal. Hence
we may write

cos 3¢ = cos’p — 3cospsin®g,  s8in 3¢ = 3 cos’ ¢ sin ¢ — sin’ ¢.
Using the relation
cos’ ¢ + sin’¢ = 1,
we have finally
cos 3¢ = cos’ ¢ — 3 cosp(1 — cos’¢) = 4 cos’ ¢ — 3 cos ¢,
sin 3¢ = —4 sin* ¢ + 3 sin ¢.

Similar formulas, expressing sin n¢ and cos n¢ in terms of powers of
sin ¢ and cos ¢ respectively, can easily be obtained for any value of n,

Exercises: 1) Find the corresponding formulas for 8in 4¢ and cos 4¢.

2) Prove that for a point, 2z = cos ¢ + ¢ sin ¢, on the unit circle, 1/z =
cos ¢ — 1 8in ¢.

3) Prove without calculation that (a + bi)/(a — bi) always has the absolute
value 1.

4) If z; and z, are two complex numbers prove that the angle of z; — z, is equal
to the angle between the real axis and the vector pointing from z, to z; .

5) Interpret the angle of the complex number (z; — 21) /(2 — 2,) in the triangle
formed by the points z;, zs,and z; .

6) Prove that the quotient of two complex numbers with the same angle is real.
Ty — 2

7) Prove that if for four complex numbers 2, , 2z, , 23, z¢ the angles of
Iy — 2a

¢ — 2

and are the same, then the four numbers lie on a circle or on a straight

2y — 2
line, and conversely.
8) Prove that four points z,, 22, 231, 2, lie on a circle or on a straight line if

and only if
Z3 — 21/74 il 41
2y — &) s — ny

is real.
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3. De Moivre’s Formula and the Roots of Unity

By an nth root of a number a we mean a number b such that 5" = a.
In particular, the number 1 has two square roots, 1 and —1, since
1> = (=1)® = 1. The number 1 has only one real cube root, 1, while
it has four fourth roots: the real numbers 1 and —1, and the imaginary
numbers 7 and —%. These facts suggest that there may be two more
cube roots of 1 in the complex domain, making a total of threc in all.
That this is the case may be shown at once from De Moivre’s formula.

A
-

Fig. 25. The twelve twelfth roots of 1.

We shall see that in the field of complex numbers there are exactly n
different nth roots of 1. They are represented by the .ertices of the regular
n-sitded polygon inscribed in the unit circle and having the point z = 1 as
one of s vertices. This is almost immediately clear from Figure 25
(drawn for the case n = 12). The first vertex of the polygon is1l. The
next is

0 [+
360 + §sin 3(:20 ,

(12) @ = COS

since its angle must be the nth part of the total angle 360°. The next

vertex is a-a = o, since we obtain it by rotating the vector a through
Q

the angle 360 The next vertex is o', etc., and finally, after n steps,

n
we are back at the vertex 1, i.e., we have

" =1,
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which also follows from formula (11), since

[+] Q fn
[cos 3(;0 -+ ¢ sin 3{10 ] = ¢o0s 360° 4+ 7 sin 360° = 1 4 01,

The same is

1.
[+] [+]
true for the next vertex o = cos (710 ) 4 7 sin (717,0 ) We can see

It follows that @' = « is a root of the equation z” =

this by writing
(&))" = o™ = (@) = (1)" = 1,

or from De Moivre’s formula:

. o o
(a®)" = cos (n 20 ) + 7 sin (n 720 )
n n
= cos 720° 4+ 7s8in720°=1 4+ Qi = 1.

In the same way we see that all the n numbers

1 2 3 n—1
y @&, @, Q0 2, O

are nth roots of 1. To go farther in the sequence of exponents or to
use negative exponents would yield no new roots. Fora ' = 1/a =
a"/a =a" 'and a” = 1, a"™ = (@)’a = l.a = «, etc., so that the
previous values would simply be repeated. It is left as an exercise to
show that there are no other nth roots.

If n is even, then one of the vertices of the n-sided polygon will lie at
the point —1, in accordance with the algebraic fact that in this case —1
1s an nth root of 1.

The equation satisfied by the nth roots of 1

(13) z2"—1=0
is of the nth degree, but it ecan easily be reduced to an equation of the
(n — 1)st degree. We use the algebraic formula

(14) " —1l=(z—- D"+ 2" +2"+ .+

Sinee the product of two numbers is 0 if and only if at least one of the
two numbers is 0, the left hand side of (14) vanishes only if one of the
two factors on the right hand side is zero, i.e. only if either z = 1, or
the equation

-1 -2 -3
(15) A A A +z+4+1=20
is satisfied. This, then, is the equation which must be satisfied by
2 —_ . . . . [ T
the roots a, o, --- a"'; it is called the cyclotomic (cirele-dividing)
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equation. For example, the complex eube roots of 1,
a = cos 120° + £8in 120° = }(—1 + 1/3),
o’ = cos 240° + 7 8in 240° = H—1 — £4/3),
are the roots of the equation
z 4+z+1=0,

as the reader will readily see by direct substitution. Likewise the fifth
roots of 1, other than 1 itself, satisfy the equation

710\ 4 L 2y 1 N
(16) z+z +z4+xz+1=240.

To construet a regular pentagon, we have to solve this fourth degree
equation. By asimple algebraic device it can be reduced to a quadratic
equation in the quantity w = =z + 1/z. We divide (16) by z° and re-
arrange the terms:

2+l az1l4120,
x< x

or, since (z + 1/z)* = z° + 1/2* + 2, we obtain the equation

w4 w—-1=0,

bald H Lo 7 -

By formula (7) of Article 1 this equation has the roots

Wy = :1 + ‘\,/:5 _ -1 - ‘\,/-5
‘ 2 B 2 '
Hence the complex fifth roots of 1 are the roots of the two quadratic
equations
1 _
s+ _=w, or 2 +3vb6-Dz+1=0
and

x+:—]é=w-z, or 22— 35+ 1x+1=0,

which the reader may solve by the formula already used.

Ezercise: 1) Find the 6th roota of 1. 2) Find (1 + #).
3) Find all the different values of /1 + 1, V7 — 41, Vi, vV —i.

1
4) Calculate - (17 - i77).
2
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*4. The Fundamental Theorem of Algebra

Not only is every equation of the form ax’ + bz 4+ ¢ = 0 or of the form
z" — 1 = 0 solvable in the field of complex numbers, but far more is
true: Every algebraic equation of any degree n with real or complex
coeffictents,

(17) f@) =z2"+ az" ' + "+ oo+ @z 4 a0 =0,

has solutions in the field of complex numbers. For equations of the 3rd
and 4th degrees this was established in the sixteenth century by Tar-
taglia, Cardan, and others, who solved such equations by formulas es-
sentially similar to that for the quadratic equation, although much more
complicated. For almost two hundred years the general equations of
5th and higher degree were intensively studied, but all efforts to solve
them by similar methods failed. [t was a great achievement when the
young Gauss in his doctoral thesis (1799) succeeded in giving the first
complete proof that solutions ezzst, although the question of generalizing
the classical formulas, which express the solutions of equations of degree
less than 5 in terms of the rational operations plus root extraction, re-
mained unanswered at the time. (See p. 118.)

Gauss’s theorem states that for any algebraic equation of the form (17),

H
Y‘ o b o b o r r -
where n 18 a positive integer and the a’s are any real or even complex num-

bers, there exisis al least one complex number o = ¢ + di such that

J(a) = 0.
The number « is called a rool of the equation (17). A proof of this
theorem will be given on page 269. Assuming its truth for the moment,
we can prove what is known as the fundamental theorem of algebra (it
should more fittingly be called the fundamental tlieorem of the complex
number system): Every polynomial of degree n,

(18) f@) =z2"+ az” '+ .- + az + a0,
can be factored Tnlo the product of exaclly n factors,
(19) J@)=(z —a)(@ —a) .- (z — an),
where a,, az, az, -+, a, are compler numbers, the roots of the equalion
f(x) = 0. As an example illustrating this theorem, the polynomial
fz) =2 =1

may be factored into the form

fiz) = (z — (= — )@ + O + 1.
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That the a’s are roots of the equation f(xr) = 0 is evident from the
factorization (19), since for £ = a, one factor of f(z), and hence f(z)
itself, is equal to zero.

In some cases the factors (z — a1), (z — a2), -+ of a polynomial
f(z) of degree n will not all be distinct, as in the example

flz) =22 —2x+1 = (z — 1)(z — 1),

which has but one root, z = 1, “counted twice’’ or “‘of multiplicity 2.”
In any case, a polynomial of degree n can have no more than n distinet
factors (x — a) and the corresponding equation 7 roots.

To prove the factorization theorem we again make use of the alge-
braic identity
(20) 2t —ofF = (z — )@ ' Far" P+ T+ L+ QF T+ Y,

which for o = 1 is merely the formula for the geometrical series. Since
we are assuming the truth of Gauss’s theorem, we may suppose that
a = aj is a root of equation (17), so that
fl) = of + apief ™ + anaal "+ oo 4 @i+ a = 0.

Subtracting this from f(x) and rearranging the terms, we obtain the
identity
21)  flz) = f(z) = fl@) = (2" = of) + apa(z" — of )

+ i @iz — ).
Now, because of (20), we may factor out (z — a;) from cvery term of

(21), so that the dcgrec of the other factor of each term is reduced by 1.
Hence, on rearranging the terms again, we find that

J(z) = (z — an)g(2),

where g(z) is a polynomial of degree n — 1:
gx) = 2" + bpaz™  + ... + biz + be.

(For our purposes it is quite unnecessary to calculate the coefficients
bx.) Now we may apply the samec procedure to g(z). By Gauss’s
theorem there exists a root a; of the equation g(z) = 0, so that

9(z) = (z — a)h(2),
where A(z) 1s a polynomial of degree n — 2. Proceeding a total of
(n — 1) times in the same way (of course, this phrase is merely a sub-

stitute for an argument by mathematical induction) we finally obtain
the complete factorization

(22) Jz) =@ —a)z — as)(z — ag) ++ (2 — ).
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From (22) it follows not only that the complex numbers a; ,as, ++- , aa
are roots of the equation (17), but also that they are the only roots. For
if y were a root of equation (17), then by (22)

S@) =y —a)ly —ar) +-- (y — aa) = 0.

We have seen on page 94 that a product of complex numbers is equal to
0 if and only if one of the factors is equal to 0. Hence one of the factors
(y — a,) must be 0, and y must be equal to «,, as was to be shown.

*$6. ALGEBRAIC AND TRANSCENDENTAL
NUMBERS

1. Definition and Exisfence
An algebraic number is any number z, real or complex, that satisfies
some algebraic equation of the form
(1) az”" + ez F+ oo Faz+a=0 (n > 1, a, % 0)

where the a, are integers. For example, v/2 is an algebraic number,
since it satisfies the equation

"1
&
to
5
=
Lo }
S
&
[
Q
o
3
D
2

.I [l ¥ Y u\.iua

fourth hfth or any higher degree, is an algebraic number, whether or
not the roots can be expressed in terms of radicals. The concept of
algebraic number is a natural generalization of rational number, which
constitutes the special case when n = 1,

Not every real number is algebraic. This may be shown by a proof,
due to Cantor, that the totality of all algebraic numbers is denumerable.
Since the set of all real numbers is uuu—uenumeramc, there must exist
real numbers which are not algebraic.

A method for denumerating the set of algcbraic numbers is as follows:

To cach cquation of the form (1) the positive integer
h=lan| + lana|+ -+ |a|+ |al+n

is assigned as its “height.” For any fixed value of # there are only a finile
number of equations (1) with height 2. Each of these equations can
have at most n different roots. Therefore there can be but a finite
number of algebraic numbers whose equations are of height k, and we
can arrange all the algebraic numbers in a sequence by starting with
those of height 1, then taking those of height 2, and so on.

This proof that the set of algebraic numbers is denumerable assures
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the existence of real numbera which are not algebraic; such aumbers are
called ¢ranscendental, for, as Euler said, they ‘“‘transcend the power of
algebraic methods.”

Cantor’s proof of the existence of transcendental numbers can hardly
be called constructive. Theoretically, one could construct a transcen-
dental number by applying Cantor’s diagonal process to a denumerated
table of decimal expressions for the roots of algebraic equations, but this
procedure would be quite impractical and would not lead to any number
whose expression in the decimal or any other system could actually be
written down. Moreover, the most interesting problems concerning
transcendental numbers lie in proving that certain definite numbers
such as = and e (these numbers will be defined on pages 297 and 299)
are actually transcendental.

**2. Liouville’s Theorem and the Construction of
Transcendental Numbers

A proof for the existence of transcendental numbers which antedates
Cantor’s was given by J. Liouville (1809-1882). Liouville’s proof
actually permits the construction of examples of such numbers. It is
somewhat more difficult than Cantor’s proof, as are most constructions
when compared with mere existence proofs. The proof is included here
for the more advanced reader only, though it requires no more than
high school mathematics.

Liouville showed that irrational algebraic numbers are those which
cannot be approximated by rational numbers with a very high degree
of accuracy unless the denominators of the approximating fractions are
quite large.

Suppose the number z satisfies the algebraic equation with integer
coefficients

(2) J@) =a+az+az’ + ... + az" =0 (an # 0),

but no such equation of lower degree. Then z is said to be an algebraic
number of degree n. For example, z = /2 is an algebraic number of
degree 2, since it satisfies the equation z° — 2 = 0 but no equation of
the first degree; z = 42 is of the third degree because it satisfies the
equation 2 — 2 = 0 and, as we shall see in Chapter III, no equation
of lower degree. An algebraic number of degree n > 1 cannot be
rational, since a rational number z = p/q satisfiecs the equation
gr — p = 0 of degree 1. Now each irrational number z can be ap-



LIOUVILLE'S THEOREM 1056

proximated to any desired degree of accuracy by a rational number;
this means that we can find a sequence

P
¢ ) % ’
of rational numbers with larger and larger denominators such that
Pr ..
qr
Liouville’s theorem asserts: For any algebraic numnber z of degree n > 1
such an approximation must be less accurate than 1/¢*"'; ie., the
inequality
y 1
(3) 2= >

must hold for sufficiently large denominators gq.

We shall prove this theorem presently, but first we shall show how it
permits the construction of transcendental numbers. Let us take the
number (see p. 17 for the definition of the symbol nl)

4 a3 107" + g3 107+ ... + ap-107™
+ am+l'10_(m+1” + .
= 0.a,8:0002,00000000000000000a,0000000 - ,

where the a; are arbitrary digits from 1 to 9 (we could, for example,
choose all the a; equal to 1). Such a number is characterized by
rapidly increasing stretches of 0’s, interrupted by single non-zero digits.
Let us denote by z., the finite decimal fraction formed by taking only
the terms of z up to and including ¢,..10™. Then

(4) |2 — 2m | < 10.1077HVY,

Suppose that z were algebraic of degree n. Then in (3) let us set
p/q = zm» = p/10™, obtaining

Z = 01-10

1
Iz"'zm[ >1—6m!

for sufficiently large m. Combining this with (4), we should have
1 10 1

10(u+1)m! 10(m+l)‘.‘ - ]O(M—;l)!—l’

so that (n + 1)m! > (m + 1)!' — 1 for all sufficiently large m. But this
1s false for any value of m greater than n (the reader should give a de-
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tailed proof of this statement), which gives a contradiction. Hence 2
is transcendental.

............ | I [ T
.l.la I'UIH.H.]U.}S DO pI‘UVC l.al()UVlllG S tl]UUI‘UIH LDUpPpULdE <&

number of degree n > 1 which satisfies (1), so that

(5) J(z) =

Iet zm = pm/ga be & sequence of rational numbers with z, — 2. Then
(zm) = f(zm) — f(2) = y(2m — 2) + @s(zk — 2) + .- + aa(zh — 27).

Dividing both sides of this equation by z,, — 2, and using the algebraic
formula

. an alanliwns
13 all lgUUIH (¥

uu" : ::" — uﬂ—*l +un—2v + un—3vz + ... 1 uv"-2 4 vn—-l,
we obtain
flzw) 2 |
@  m—z - @t aln )+ alntmz )+

+ an(em ' + o0 F 2770
Since z» tends to z as a limit, it will differ from z by less than 1 for suffi-

ciently large m. We can therefore write the following rough estimate
for sufficiently large m:

J(zm) (zm)

Lol i< lal+20 ezl +D+3]a] (2] + D"+

(7)

+nla.| (2] +1)"" =M,

which is a fixed number, since z is fixed in our reasoning. If now we
P

choose m so large that in z, = f the denominator gm is larger than M|
then
_ [ S(zm) | [ f(za) |

(8) |z — 2 | > 7 i

For brevity let us denote p, by p and ¢, by ¢¢ Then
(9) S | = | 29 E ag 'p+ o+ anp” |

ql’l

Now the rational number z,, = p/g cannot be a root of f(z) = 0, for if

it were we could factor out (z — z.) from f(z), and z would satisfy an
equation of degree less than n. Hence f(z,,) # 0. But the numerator
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of the right hand side of (9) is an integer, so it must be at least equal to
1. Hence from (8) and (9) we have
11 1

10 Z— 2m | >-—== ,
( ) | | qqﬂ qn-i-l

which proves the theorem.

During the last few decades, investigations into the possibility of
approximating algebraic numbers by rational numbers have been car-
ried much farther. For example, the Norwegian mathematician A.
Thue (1863-1922) proved that in Liouville's inequality (3) the ex-
ponent 7 + 1 may be replaced by (n/2) + 1. C. L. Siegel later showed
that the even sharper statement (sharper for large n) with the exponent
2/ n holds.

The subject of transcendental numbers has always fascinated mathe-
maticians, But until recently, very few examples of numbers interest-
ing in themselves were known which could be shown to be transcenden-
tal. (In Chapter IIT we shall discuss the transcendental character of
7, from which follows the impossibility of squaring the circle with ruler
and compass.) In a famous address to the international congress of
mathematicians at Paris in 1900, David Hilbert proposed thirty mathe-
matical problems which were easy to formulate, some of them in ele-
mentary and popular language, but none of which had been solved nor
seemed 1mmediately accessible to the mathematical technique then
existing. These ‘“Hilbert problems” stood as a challenge to the sub-
sequent period of mathematical development. Almost all have been
solved in the meantime, and often the solution meant definite progress
in mathematical insight and general methods One of the problems
that seemed most hopeless was to prove that

2vV'e

is a transcendental, or even that it is an irrational number. For almost
three decades there was not the slightest suggestion of a promising line
of attack on this problem. Finally Siegel and, independently, the young
Russian, A. Gelfond, discovered new methods for proving the transcen-
‘dental character of many numbers significant in mathematics, including
the Hilbert number 2V'? and, more generally, any number a®* where
a 15 an algebraic number 0 or 1 and b is any irrational algebraic
number.



SUPPLEMENT TO CHAPTER II
THE ALGEBRA OF SETS

1. General Theory

The concept of a class or set of objects is one of the most fundamental
in mathematics. A set is defined by any property or attribute ¥ which

each object considered must either possess or not possess; those objects

which possess the property form a corresponding set A. Thus, if we
consider the integers, and the property ¥ is that of being a prime, the
corresponding set A is the set of all primes 2, 3, 5,7, ---

The mathematical study of sets is based on the fact that sets may be
combined by certain operations to form other sets, just as numbers
may be combined by addition and multiplication to form other numbers.
The Stlif.&_'y' of Operutluu:: on sets compr ises the * algebra of sets,” which
has many formal similarities with, as well as differences from, the algebra
of numbers. The fact that algebraic methods can be applied to the
study of non-numerical objects like sets illustrates the great generality
of the concepts of modern mathematics. In recent years it has become
apparent that the algebra of sets illuminates many branches of mathe-
matics such as measure theory and the theor}, of probability it is also
helpful in the systematic reduction of mathematical concepts to their
logical basis.

In what follows, I will denote a fixed set of objects of any nature,
called the universal set or universe of discourse, and A4, B, C,.
will denote arbitrary subsets of 7. If I denotes the set of all integers, A
may denote the set of all even integers, B the set of all odd integers, C
the set of all primes, etc. Or I might denote the set of all points of a
fixed plane, A the set of all points within some circle in the plane, B the
set of all points within some other circle in the plane, etc. For con-
venience we include as ‘‘subsets’ of I the set I itself and the ‘“‘empty
set’’ O which contains no elements. The aim of this artificial extension
is to preserve the rule that to each property ¥ corresponds the subset
A of all elements of I possessing this property. In case ¥ is some uni-
versally valid property such as the one specified by the trivial equation
z = z, the corresponding subset of I will be I itself, since every object
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satisfies this equation, while if ¥ is some self-contradictory property
like z # z, the corresponding subset will contain no objects, and may
be denoted by the symbol O.

The set 4 is said to be a subsel of the set B if there is no object in A
that is not also in B. When this is the case we write

ACRE or BRDA

Fes e — LR

For example, the set A of all integers that are multiples of 10 is a sub-
set of the set B of all integers that are multiples of 5, since every
multiple of 10 is also a multiple of 5. The statement A C B does not
exclude the possibility that B € A. If both relations hold, we say that
the sets A and B are equal, and write

A =B

For this to be true every element of A must be an element of B, and
conversely, so that the sets A and B contain exactly the same elements.

The relation A C B has many similarities with the order relation
a < b between real numbers. In particular, it is true that

1) A CA.
2) IfA CBand B C A, then A = B,
3) IfACBand BCC(C,thenAd CC.

For this reason we also call the relation A C B an ‘‘order relation.”
Its chief difference from the relation a < b for numbers is that, while
for every pair of numbers a and b at least one of the relations a < b or
b < a always holds, this is not true for sets. For example, if A denotes
the set consisting of the integers 1, 2, 3,

A = {1! 2l 3}!

and B the set consisting of the integers 2, 3, 4,

B = {21 3) 4}!
then neither A © B nor B © A. For this reason, the relation A C B
is said to determine a partial ordering among sets, whereas the rela-
tion @ < b determines a complete ordering among numbers.

In passing, we may remark that from the definition of the relation
A C B it follows that

4) O C A for any set A, and,

5) A CI,
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where A is any subset of the universe of discourse I. The relation
4) may seem somewhat paradoxical, but it is in agreement with a strict

interpretation of the definition of the sign C. For the statement O C A
could be false only if the empty set O contained an object not in A4,
and since the empty set contains no objects at all, this is impossible no
matter what the set A.

We shall now define two operations on sets which have many of the
algebraic properties of ordinary addition and multiplication of numbers,
though they are conceptually quite distinct from those operations. To
this end, let A and B be any two sets. By the ‘““union’ or “logical
sum’’ of A and B we mean the set which consists of all the objects
which are in either A or B (including any that may be in both). This
set we denote by the symbol A + B. By the “intersection’ or “logical
product” of A and B we mean the set consisting only of those elements
which are in both A and B. This set we denote by the symbol A-B or
simply AB. To illustrate these operations, we may again choose as
A and B the sets

A= {1,2 3], B =12 3, 4}.
Then A+ B=1{1223,4}, AB= {2 3}.

Among the important algebraic properties of the operations 4 + B
and AB we list the following. They should be verified by the reader
on the basis of the definition of these operations:

6) A+ B=B+ 4 7) AB = BA
8) A+ (B+C)=(A+B)+C 9) ABC) = (AB)C

10) A+ A4 =4 11) A4 = A

12) A(B+ C) = (AB + AC) 13) A + (BC) = (A + B)(A + C)
14) A+ 0 = 4 15) AT = A

16) A +1 =1 17) AO = 0

18) the relation A C B is equivalent to either of the two relations
A+ B=DB, AB = A.

The verification of these laws is a matter of clementary logic. For
example, 10) states that the set consisting of those objects which are
either in A or in A is precisely the set A, while 12) states that the sct
consisting of those objects which are in A and also in either B or C is
the same as the set consisting of those objects which are either in both
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A and B or in both A and C. The logical reasoning involved in this
and other arguments may be illustrated by representing the sets 4, B, C
as areas in a plane, provided that one is careful to provide for all the
possibilities of the sets involved having elements distinet from and in
common with each other.

AB

Fig. 20. Union and intersection of setas.

The reader will have observed that the laws 6, 7, 8, 9, and 12 are
identical with the familiar commutative, associative, and distributive
laws of algebra. It follows that all rules of the ordinary algebra of
numbers which are consequences of the commutative, associative, and
distributive laws are also valid in the algebra of sets, 'Thelaws 10, 11,
and 13, however, have no numerical analogs, and give the algebra of
sets a simpler structure than the algebra of numbers. For example,
the binomial theorem of ordinary algebra is replaced in the algebra of
sets by the equality

(A+B"=(A+B)-(A+B).-..(A+B =4+ B

which is a conscquence of 11. Laws 14, 15, and 17 indicate that the
properties of O and I with respect to union and intersection of sets are
largely similar to the properties of the numbers 0 and 1 with respect to
ordinary addition and multiplication, IlLaw 16 has no analog in the
algebra of numbers.

It remains to define one further operation in the algebra of sets. Let
A be any subset of the universal set I. Then by the complement of A
in I we mean the set which consists of all the objects in I which are not
in A. This set we denote by the symbol A’. Thus if I is the set of all
natural numbers and A the set of primes, A’ consists of 1 and the compos-
ites. The operation A’, which has no exact analog in the algebra of
numbers, possesses the following properties:
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19) A4+ A" =1 200 AA'=0

21) O =1 22) I'=0

23) A" = A

24) The relation A C B is equivalent to the relation B’ C A",
25) (A + B) = A'R’ 26) (AB)' = A’ + B'.

Again we shall leave the verification of these laws to the reader.
The laws 1 to 26 form the basis of the a]gebra of sets. They possess
the remarkable property of “duality,” in the following sense:

If in any one of the laws 1 to 26 the symbols

C and D
0 and I
+ and

are everywhere inlerchanged (insofar as they appear), then the result is

again one of these laws.
For example, the law 6 becomes 7, 12 becomes 13, 17 becomes 16, etc.
It follows that to any theorem which can be proved on the basis of the laws
1 to 26 there corresponds another, “‘dual,”’ theorem, obtained by making
the interchanges above. For, since the proof of any theorem will consist
of the successive application at each step of certain of the laws 1 to 26,
the application at each step of the dual law will provide a proof of
the dual theorem. (For a similar duality in geometry, see Chapt. IV.)

2. Application to Mathematical Logic

The verification of the laws of the algebra of sets rested on the analysis
of the logical meaning of the relation A C B and the operations A + B,
AB, and A’. We can now reverse this process and use the laws 1 to 26
as the basis for an “algebra of logic."” More precisely, that part of
logic which concerns sets, or what is equivalent, properties or allributes
of objects, may be reduced to a formal algebraic system based on the
laws 1 to 26. The logical “‘universe of discourse’” defines the set I;
each property or atlribute U of objects defines the sel A conststing of all
objects tn 1 which possess this attribute. The rules for translating the
usual logical terminology into the language of sets may be illustrated

by the following examples:
“Either 4 or B” A+ B
“Both A and B” AB
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“Not A" A’
“Neither 4 nor B” (A + B)’, or equivalently, A’B’
“Not both 4 and B” (AB)’, or equivalently, 4’ + B’

“All A are B"or“If AthenB" or“A A CB
implies B”’

“Some A are B” AB # 0
“No A are B” AB =0
“Some A are not B” AB' = O
“There are no 4” A=0

In terms of the algebra of sets, the syllogism “Barbara,” which states:
“If all A are B, and all B are C, then all A are C,” becomes simply

3) fACBand BCCthend CC.

Likewise, the “law of contradiction,’”” which states: ‘‘An object cannot.
both possess an attribute and not possess it,”” becomes

20) 44’ =0,

while the “law of excluded middle”’ which states: ‘“‘An object must either
possess & given attribute or not possess it"” becomes

19) A+ 4'=1

Thus the part of logic which is expressible in terms of the symbols C,
4, », and ’ can be treated as a formal algebraic system, subject to the
laws 1 to 26. This fusion of the logical analysis of mathematics with
the mathematical analysis of logic has resulted in the creation of a new
discipline, mathematical logic, which is now in the process of vigorous
development.

From the point of view of axiomatics, 1t is a remarkable fact that the
statements 1 to 26, together with all other theorems of the algebra of

gets, can be deduced from the following three equations:
A+B=B+ A

27) (A+B +C=A4+ (B+C)
(A’ + BY 4+ (A’ + B) = A.

It follows that the algebra of sets can he constructed as a purely deduc-
tive theory like Kuclidean geometry on the basis of these three state-
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ments taken as axioms. When this is done, the operation AB and the
order relation A C B are defined in terms of A + B and A':

A B means the set (4’ + B')’
A C Bmeansthat A + B = B.

A quite different example of a mathematical system satisfying all the
formal laws of the algebra of sets is provided by the eight numbers
1,2, 3,5, 6, 10, 15, 30, where a + b is defined to mean the least common
multiple of a and b, ab the greatest common divisor of a and b, a C b
the statement “a 1s a factor of b,”’ and @’ the number 30/a. The
existence of such examples has led to the study of general algebraic
systems satisfying the laws 27). These systems are called “Boolean
algebras” in honor of George Boole (1815~1864), an English mathema-
tician and logician whose book, An Investigation of the Laws of Thought,
appeared in 1854.

3. An Application to the Theory of Probability

The algebra of sets greatly illuminates the theory of probability. To con-
gider only the simpleat case, let us imagine an experiment with a finite number
of possible outcomes, all of which are assumed to be ‘‘equally likely.”” The experi-
ment may, for example, consist of drawing a card at random from a well-shuffled
deck of 52 cards. If the set of possible outcomes of the experiinent is denoted by
I, and if A denotes any subset of I, then the probability that the outcome of the
experiment will belong to the subset A ias defined to be the ratio

number of elements ln A

p(4) = number of elcmentsin 7’

If we denote the number of elements in any set A by the symbol n(4), then this
definition may be written in the forn

n(4)
1 A4) = ==L
(1) p(4) nD)"
In our example, if A denotes the subset of hearts, then n(4A) = 13, n(I) = 52,
13 1
and p(A) = 2

The concepts of the algebra of sets enter into the caleulation of probabilities
when the probabilities of certain sets are known and the probability of others are
required. For exaniple, from a knowledge of p(A), p(B), and p(AB) we may
compute the probability of p(A + B):

(2) p(4d + B) = p(4) + p(B) — p(4B).
The proof is simple. We have
n(A + B) = n(A) + n(B) — n(4B),



APPLICATION TO THEORY OF PROBABILITY 115

since the elements common to A and B, i.e. the elements in A B, will be counted
twice in the sum n(A) 4+ »n(B), and hence we must subtract n(AB) from thia sum
1n order to obtain the correct count for n(A + B). Dividing each term of this
equation by n(I), we obtain equation (2).

A more interesting formula arises when we consider three subsets, 4, B, C,
of I. From (2) we have

p(A+ B+ C) =pl(A+ B) +C]=p(4d + B) + p(C) — pl(4 + B)CI.
From (12) of the preceding section we know that (A + B)C = AC + BC. Henco
pl(A + B)C| = p(AC + BC) = p(AC) + p(BC) — p(ABC).

Substituting in the previous equation this value for p[(A 4 B)C] and the value
of p(A + B) given by (2), we obtain the desired formula:

p(4 + B + C) = p(A) + p(B)
+ p(C) — p(AB) — p(AC) — p(BC) + p(ABC).

As an example, let us consider the following experiment. The three digits
1, 2, 3 are written down in random order. What is the probability that at least
one digit will occupy its proper place? Let A denote the sct of all arrangements
in which the digit 1 comes first, B the set of all arrangements in which the digit
2 comes second, and C the set of all arrangementa in which the digit 3 comes third.
Then we wish to calculate p(A + B + C). It is clear that

p(Ad) = p(B) = p(C) = § = };
for when one digit occupies its proper place there are two possible orders for the

remaining digits, out of a total of 3:2-1 = 6 possible arrangements of the three
digits. Moreover,

(3)

p(AB) = p(AC) = p(BC) = ¢
and
p(ABC) = },

since there is only one way in which each of these cases may oecur. It follows
from (3) that

pA+B+C)=33-3@)+1
=1—-3+}=73=06666-.-

Ezercise: Find a corresponding formula for p(A + B + C + D) and apply it

to the case of four digits. The corresponding probability is § = 0.6250.
The general formula for the union of » subsets is

pA1 + Az + -+ + A = ? p(As) — ? p(Ai4d;) + ? p(AiA;Ay)
(4)

— ook p(A14, - -+ A4),
where the symbols 217, %, 2’3, ---,Z:lstand for summation of the possible com-
binations of the sets 4,, 44, ---, A. taken one, two, three, ++- |, (n — 1) at a
time. This formula may be established by mathematical induction in precisely
the same way that we derived (3) from (2). From (4) it is easy to show that if
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the n digital, 2, 3, --- , n are written down in random order, the probability that
at least one digit will occupy its proper place is

1

nl’

where the last term is taken with a plus or minus sign according as n is odd or
even. In particular, for n = § the probability is

1,1 1
(5) Pamloob =tk

1 1 1 1 19
ps =1 —2!+3! —“+5!"§6=0.ﬁ3333 ree,
We shall see in Chapter VII1 that as n tends to infinity the expreasion
1 1 1 1
S=aTantuT U EN

tends to a limit, 1/e, whose value to five places of decimala is .36788. Since from
(5) pa = 1 — S, , this shows that as n tends to infinity

P — | 1/6 = -63212.



CHAPTER III

GEOMETRICAL CONSTRUCTIONS. THE ALGEBRA OF
NUMBER FIELDS

INTRODUCTION

Construction problems have always been a favorite subject in geom-
etry. With ruler and compass alone a great variety of constructions
may be performed, as the reader will remember from school: a line seg-
ment or an angle may be bisected, a line may be drawn from a point
perpendicular to a given line, a regular hexagon may be inscribed in a
circle, etc. In all these problems the ruler is used merely as a straight-
edge, an instrument for drawing a straight line but not for measuring
or marking off distances. The traditional restriction to ruler and com-
pass alone goes back to antiquity, although the Greeks themselves did
not hesitate to use other instruments.

One of the most famous of the classical construction problems is
the so-called contact problem of Apollonius (circa 200 B.C.) in which
three arbitrary circles in the plane are given and a fourth circle tangent
to all three is required. In particular, it is permitted that one or more
of the given circles have degenerated into a point or a straight line
(a “‘circle” with radius zero or “infinity,” respectively). For example,
it may be required to construct a circle tangent to two given straight
lines and passing through a given point. While such special cases are
rather easily dealt with, the general problem is considerably more
difficult.

Of all construction problems, that of constructing with ruler and
compass a regular polygon of n sides has perhaps the greatest interest.
For certain values of n—e.g. n = 3, 4, 5, 6 -- the solution has been known
since antiquity, and forms an important part of school geometry. But
for the regular heptagon (n = 7) the construction has been proved
impossible, There are three other classical Greek problems for which
a solution has been sought in vain: to trisect an arbitrary given angle,
to double a given cube (i.e. to find the edge of a cube whose volume shall
be twice that of a cube with a given segment. as its edge) and to square
the circle (i.e. to construct a square having the same area as a given
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circle). In all these problems, ruler and compass are the only instru-
ments permitted.

Unsolved preblems of this sort gave rise to one of the most remarkable
and novel developments in mathematics, when, after centuries of futile
search for solutions, the suspicion grew that these problems might be
definitely unsolvable. Thus mathematicians were challenged to investi-
gate the question: How i3 tf possible to prove that certain problems cannot
be solved?

In algebra, it was the problem of solving equations of degree 5 and
higher which led to this new way of thinking. During the sixteenth
century mathematicians had learned that algebraic equations of degree
3 or 4 could be solved by a process similar to the elementary method
for solving quadratic equations. All these methods have the following
characteristic In common: the solutions or “roots’’ of the equation can
be written as algebraic expressions obtained from the coeflicients of the
equation by a sequence of operations, each of which is either a rational
operation—addition, subtraction, multiplication, or division--or the ex-
traction of a square root, cube root, or fourth root. One says that
algebraic equations up to the fourth degrce can be solved by radicals”
(radix is the Latin word for root). Nothing seemed more natural
than to extend this procedure to equations of degree 5 and higher, by

o 4 £ hioh A Al nh +4 + failad i T Avctin_
u-:uns rogous O1r DIgner Oraer. Aua suUucii aLuemp‘L% T&uta,  1Lven qgistin-

guished mathematicians of the eighteenth century deceived themselves
into thinking that they had found the solution. Tt was not until early
in the nineicenth century that the Italian Ruffini (1765 1822) and the
Norwegian genius N. H. Abel (1802-1829) conceived the then revolu-
tionary idea of proving the impossibility of the solution of the general
algebraic equation of degree n by means of radicals. One must clearly
understand that the question is not whether any algebraic equation of
degree n possesses solutions. This fact was first proved by Gauss in
his doctoral thesis in 1799. So there is no doubt about the existence
of the roots of an equation, especially since these roots can be found by
suitable procedures to any degree of accuracy. The art of the nu-
merical solution of equations is, of course, very important and highly
developed. But the problem of Abel and Ruffini was quite differcnt:
can the solution be effected by means of rational operations and radicals
alone? It was the desire to attain full clarity about this question that
inspired the magnificent development. of modern algebra and group
theory started by Ruflini, Abel, and Galois (1811-1832).

The question of proving the impossibility of certain geometrical con-
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structions provides one of the simplest examples of this trend in algebra.
By the use of algebraic concepts we shall be able in this chapter to
prove the impossibility of trisecting the angle, constructing the regular
heptagon, or doubling the cube, by ruler and compass alone. (The
problem of squaring the circle is much more difficult to dispose of; see
p. 140.) Our point of departure will be not so much the negative question
of the impossibility of certain constructions, but rather the positive
question: How can all constructible problems be completely charac-

terized? After we have answered this question, it will be an easy
matter to show that the problems mentioned above do not fall into this
category.

At the age of seventeen Gauss investigated the constructibility of
regular “p-gons” (polygons with p sides), where p is a prime number.
The construction was then known only for p = 3 and p = 5. Gauss
discovered that the regular p-gon is constructible if and only if p is a
prime ‘‘Fermat number,”

p=2" + 1.

The first Fermat numbers are 3, 5, 17, 257, 65537 (see p. 26). So
overwhelmed was young Gauss by his discovery that he at once gave
up his intention of becoming a philologist and resolved to devote his
life to mathematics and its applications. He always looked back on
this first of his great feats with particular pride. After his death, a
bronze statue of him was erected in Goettingen, and no more fitting
honor could be devised than to shape the pedestal in the form of a
regular 17-gon.

When dealing with a geometrical construction, one must never forget
that the problem is not that of drawing figures in practice with a certain
degree of accuracy, but of whether, by the use of straightedge and
compass alone, the solution can be found theoretically, supposing our
instruments to have perfect precision. What Gauss proved is that his
constructions could be performed in principle. His theory does not
concern the simplest way actually to perform them or the devices which
could be used to simplify and to cut down the number of necessary steps.
This is a question of much less theoretical importance. From a prac-
tical point of view, no such construction would give as satisfactory a
result as could be obtained by the use of a good protractor. I‘ailure
properly to understand the theoretical character of the question of geo-
metrical construction and stubbornness in refusing to take cognizance
of well-established scientific facts are responsible for the persistence of
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an unending line of angle-trisectors and circle-squarers. Those among
them who are able to understand elementary mathematics might profit
by studying this chapter.

Once more it should be emphasized that in some ways our concept
of geometrical construction seems artificial. Ruler and compass are
certainly the simplest instruments for drawing, but the restriction to
these instruments is by no means inherent in geometry. As the Greek
mathematicians recognized long ago, certain problems—for example
that of doubling the cube—can be solved if, e.g., the use of a ruler in the
form of a right angle is permitted; it is just as easy to invent instruments
other than the compass by means of which one can draw ellipses, hyper-
bolas, and more complicated curves, and whose use enlarges considerably
the domain of constructible figures. In the next sections, however, we
shall adhere to the standard concept of geometrical constructions using
only ruler and compass.

PART 1
IMPOSSIBILITY PROOFS AND ALGEBRA

§1. FUNDAMENTAL GEOMETRICAL CONSTRUCTIONS

1. Construction of Fields and Square Root Extraction

To shape our general ideas we shall begin by examining a few of the
classical constructions. The key to a more profound understanding
lies in translating the geometrical problems into the language of algebra.
Any geometrical construction problem is of the following type: a certain

set of line segments, say a, b, ¢, ---, is given, and one or more other
segments z, y, -+ -, are sought. It is always possible to formulate prob-

lems in this way, even when at first glance they have a quite different
aspect. The required segments may appear as sides of a triangle to be
constructed, as radii of circles, or as the rectangular codérdinates of
certain points (see e.g. p. 137). For simplicity we shall suppose that
only one segment z is required. The geometrical construction then
amounts to solving an algebraic problem: first we must find a relation-
ship (equation) between the required quantity z and the given quanti-
ties a, b, ¢, -+ + ; next we must find the unknown quantity z by solving
this equation, and finally we must determine whether this solution can
be obtained by algebraic processes that correspond to ruler and compass
constructions. It is the principle of analytic geometry, the quantita-
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tive characterization of geometrical objects by real numbers, based on
the introduction of the real number continuum, that provides the
foundation for the whole theory.

First we observe that some of the simplest algebraic operations corre-

pond to elementary geometrieal constructions. If t“o segments are
given with lengths @ and b (as measured by a given “unit” segment),
then it is very easy to construct @ + b, a — b, ra (where r is any rational
number), a/b, and ab.

To construct a + b (Fig. 27) we draw a straight line and on it mark
off with the compass the distances OA = a and AB = b. Then OB =
a + b. Similarly, for a — b we mark off OA = a and AB = b, but
this time with AB in the opposite direction from OA. Then OB =

a — b. To construct 3a we simply add a + a + a; similarly we can

i "

i- a ~—b—
1 \/\/\
e —-y - ——
o A — b 0L G 38 i
Foba+—b— ¢ a -4
Fig. 27. Conatructivn of a + banda — b. Fig. 28, Constructiun of a/3.
P J 4 1 - -.-i
Q - B A
Q
3 ~
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— D o - - \/
Fig. 28. Conatruction of a/b. Fig. 30. Construction of gb.

construct pa, where p is any integer. We construct a/3 by the following
device (Fig. 2R): we mark off OA = a on one line, and draw any second
line through O, On this line we mark off an arbitrary segment OC = ¢,
and eonstruct OD = 3¢. We connect A and D, and draw a line through
C parallel to AD, intersecting OA at B. The triangles OBC and OAD
are similar; hence OB/a = OB/0A = 0OC/0OD = 1/3, and OB = a/3.
In the same way we can construct a/q, where ¢ is any integer. By
performing this operation on the segment pa, we can thus construct ra,
where »r = p/q is any rational number.

To construet a/b (Fig. 29) we mark off OB = b and O4 = a on the
sides of any angle O, and on OB we mark off OD = 1. Through D we
draw a line parallel to A B meeting OA in C. Then OC will have the
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ength a/b. e construction of ab is shown in Figure 30, where ADisa
line parallel to BC through A.

From these considerations it follows that the ‘“‘rattonal”’ algebraic proc-
esses,—addition, subtraction, multiplication, and division of known
quantities—can be performed by geometrical constructions. From any
given segments, measured by real numbers a, b, ¢, - -- , we can, by suc-
cessive application of these simple constructions, construct any quantity-
that is expressible in terms of a, b, ¢, --- in a rational way, i.e. by re-
peated application of addition, subtraction, multiplication and division.
The totality of quantities that can be obtained in this way from
a, b, ¢, ... constitute what is called a number field, a set of numbers
such that any rational operations applied to two or more members of
the set again yield a number of the set. We recall that the rational
numbers, the real numbers, and the complex numbers form such fields.
In the present case, the field is said to be generated by the given numbers
a b, c ..

The decisive new construction which carries us beyond the field just
obtained is the extraction of a square root: if a segment a is given,
then v/a can also be constructed by using
only ruler and compass. On a straight line we
mark off OA = a and AB = 1 (Fig. 31). We
draw a circle with the segment OB as its dia-
meter and construct the perpendicular to OB
through A, which meets the circle in C. The
triangle OBC has a right angle at C, by the
theorem of elementary geometry which states that an angle inscribed
in a semicircle is a right angle. Hence, ZOCA = ZABC, the right
triangles OAC and CA B are similar, and we have for z = AC,

Fig. 31, Conatruction ol +/a,

, r =a, z=va.

&8
Il
-1

2. Regular Polygons

Let us now consider a few somewhat more elaborate construction
problems. We begin with the regular decagon. Suppose that a regular
decagon is inscribed in a circle with radius 1 (Fig. 32), and call its
side z. Since z will subtend an angle of 36° at the center of the circle,
the other two angles of the large triangle will each be 72°, and hence
the dotted line which bisects angle A divides triangle OAB into two
isosceles triangles, each with equal sides of length z. The radius of the
circle i1s thus divided into two segments, z and 1 — 2. Since OAB is



REGULAR POLYGONS 123

similar to the smaller isosceles triangle, we have 1/z = z/(1 — ).
From this proportion we get the quadratic equation z* + z — 1 = 0,
the solution of which is z = (1/5 — 1)/2. (The other solution of the
equation is irrelevant, since it yields a negative z.) From this it is
clear that z can be constructed geometrically. Having the length z, we
may now construet the regular decagon by marking off this length ten
times as a chord of the circle. The regular pentagon may now be
constructed by joining alternate vertices of the regular decagon.

Instead of constructing 4/5 by the method of Figure 31 we can also obtain
it as the hypotenuse of a right triangle whose other sides have lengths 1 and 2.
We then obtain x by subtracting the unit length from 4/5 and bisecting theresult.

The ratio OB:AB of the preceding problem has been called the
golden ratio, because the Greek mathematicians considered a rectangle

~— o

Fig. 32 Regular decagon. Fig. 33. Regular hexagon.

whose two sides are in this ratio to be aesthetically the most pleasing,.
Tfn value 1nn1r‘nnfo"17 'Iﬂ nl‘\nnf 1. 692
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Of all the regular polygons the hexagon 1s simplest to construct. We
start with a circle of radius r; the length of the side of a regular hexagon
inscribed in this circle will then be equal to ». The hexagon itself can
be constructed by successively marking off from any point of the circle
chords of length r until all six vertices are obtained.

From the regular n-gon we can obtain the regular 2n-gon by bisecting
the arc subtended on the circumscribed circle by each edge of the n-gon,
using the additional points thus found as well as the original vertices for
the required 2n-gon. Starting with the diameter of a circle (a “2-gon”’),
we can therefore construct the 4, 8, 16, ... , 2"-gon. Similarly, we can
obtain the 12-, 24-, 48-gon, etc. from the hexagon, and the 20-, 40-gon,
etc. from the decagon.
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If 8. denotes the length of the side of the regular n-gon inseribed in the unit
circle (circle with radiua 1), then the side of the 2n-gon is of length

82-=’\/2—m

This may be proved as follows: In Figure 34 s. is equal to DE = 2DC, 81 equal
to DB, and AB equal to 2. The area of the right triangle ABD is given by
$BD-AD and by $AB-CD. Since AD = /AB" — DB, we find, by substituting
AB = 2, BD = 83, , CD = }s., and by equating the two expreasions for the area,

3y = a,,‘\/ti — 21, or a: = s:.. (4 — s:,.).

Solving this quadratic equation for z = &;, and observing that z must be less
than 2, one easily finds the formula given above.

D
A B
l C |
QE
Fig. 3.
From this formula and the fact that s, (the side of the square) is equal to /2

it follows that

8.-‘\/2_\/2-, 810-‘\/2-‘\/2_;_‘\/5,

8n=1/;—-‘\/2+‘\/:2—+;;—.'2:,etc.

As a general formula we obtain, for n > 2,

,-—‘/g\ _/ = 4 ~ —
TN ETVZEV24. V2

with n — 1 nested square roots. The circumference of the 2"-gon in the circle
is 2"syn . As n tends to infinity, the 2™-gon tends to the circle. Hence 2"sm
approaches the length of the circumference of the unit circle, which is by defini-
tion 2x. Thus we obtain, by substituting m for n - 1 and cancelling a factor 2,
the limiting formula for =:

-
2 \/2—\/2+‘\/2+...+\/é — x a8 m— o,

m Bquare roots
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Ezercisc: Since 2™ — «, prove as a consequence that

Va2tv2t .

n square roots.

-‘\_/é — 2 as n—* o,

The results obtained thus far exhibit the following characteristic
feature: The stdes of the 2 -gon, the 5-2"-gon, and the 3.2"-gon, can all
be found entirely by the processes of addition, subtraction, mulliplication,
division, and the extraction of square roots.

*3. Apollonius’ Problem

Another construction problem that becomes quite simple from the
algebraic standpoint is the famous contact problem of Apollonius already
mentioned. In the present context it is unnecessary for us to find a
particularly elegant construction. What matters here is that in prin-
ciple the problem can be solved by straightedge and compass alone.
We shall give a brief indication of the proof, leaving the question of a
more elegant method of construction to page 161.

Let the centers of the three given circles have coordinates (z1, ¥1),
(72, y2) and (x5, 1), respectively, with radiir;, rs, and rs . Denote the
center and radius of the required circle by (z, ¥) and . Then the condi-
tion that the required circle be tangent to the three given circles is
obtained by observing that the distance between the centers of two
tangent circles is equal to the sum or difference of the radii, according
as the circles are tangent externally or internally. This yields the
equations

(1) z—z)+ @y —y) — (rxr) =0,
(2) z— 2+ (—y) — (rx£n) =0,
3) (z—2)’+ (w—w)— (rxn) =0,
or

(la) 2+¢ -1 — 2z — 2y = 2+ 28 + 91 — 1l =0,

etc. The plus or minus sign is to be chosen in each of these equations
according as the circles are to be externally or internally tangent. (See
Fig. 35.) Equations (1), (2), (3) are three quadratic equations in three
unknowns z, y, r with the property that the second degrece terms are
the same in each equation, as is seen from the expanded form (la).
Hence, by subtracting (2) from (1), we get a linear equation in z, y, r:

4) az + by + cr = 4,

where a = 2(z» — z;), etc. Similarly, by subtracting (3) from (1), we
get another linear equation,

(5) az+ by+ cr=4d.
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Q - ubs 3 in {1\
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we get a quadratic equation in r, which can be solved by rational opcrai
tions and the extraction of a square root (see p. 91). There will in
general be two solutions of this equation, of which only one will be
positive. After finding r from this equation we obtain z and y from the
two linear equations (4) and (5). The circle with center (z, ¥) and
radius » will be tangent to the three given circles. In the whole process
we have used only rational operations and square root extractions, It
follows that r, z, and y can be constructed by ruler and compass alone.

eo:
&

Fig. 35. Apollonius circles.

N 7

There will in general be eight solutions of the problem of Apollonius,
corresponding to the 2.2.2 = 8 possible combinations of 4- and — signs
in equations (1), (2), and (3). These choices correspond to the condi-
tions that the desired circles be externally or internally tangent to each
of the three given circles. It may happen that our algebraic procedure
does not actually yield real values for z, y, and r. This will be the
case, for example, if the three given circles are concentric, so that no
solution to the geometrical problem exists. Iikewise, we must expect
possible “degenerations’ of the solution, as in the case when the three
given circles degenerate into three points on a line. Then the Apol-
lonius circle degenerates into this line. We shall not discuss these
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able to complete the analysm

*82. CONSTRUCTIBLE NUMBERS AND NUMBER FIELDS
1. General Theory

QOur previous discussion indicates the general algebraic background
of geometrical constructions. F‘vprv ruler and comnass construction

P eai VA AViAss WASSSRI Ve el Walks 282 a Smatia SFa2%S WNseeRlpr g el Ve e Valsaa

consists of a sequence of steps, each of which 1s one of the following:
1) connecting two points by a straight line, 2) finding the point of
intersection of two lines, 3) drawing a circlc with a given radius about
a point, 4) finding the points of intersection of a circle with another
circle or with a line. An element (point, line, or circle) 1s considered to
be known if it was given at the outset or if it has been constructed in
some previous step. For a theoretical analysis we may refer the whole
construction to a coordinate system z, y (see p. 73). The given ele-
ments will then be represented by points or segments in the z, ¥ plane.
If only one segment is given at the outset, we may take this as the unit
length, which fixes the point z = 1, ¥y = 0. Sometimes there appear
“arbitrary’’ elements: arbitrary lines are drawn, arbitrary points or radii
are chosen. (An example of such an arbitrary element appears in
constructing the midpoint of a segment; we draw two circles of equal
but arbitrary radius from each endpoint of the segment, and join their
intersections.) Insuch cases we may choose the element to be rational;
1.e. arbitrary points may be chosen with rational coordinates z, y, arbi-
trary lines az + by + ¢ = 0 with rational coefficients a, b, ¢, arbitrary
circles with centers having rational codrdinates and with rational radii.
We shall make such a choice of rational arbitrary elements throughout;

if the nlnmnnfc are 1nrlnnrl nrhlfr-nrv fhle rnnfﬂﬂhnn cannot affart the
VI LALLMV AAWV) LA\ AdarNANs LA ASANA LY J A UNVA L " T AL Wa Y

result of a construction.

For the sake of simplicity, we shall assume in the following discussion
that only one clement, the unit length 1, is given at the outset. Then
according to §! we can construct by ruler and compass all numbers
that can be obtained from unity by the rational processes of addition,
subtraction, multiplication and division, i.e. all the rational numbers
r/s, where r and s are integers. The system of rational numbers is
“closed” with respect to the rational operations; that is, the sum, differ-
ence, product, or quotient of any two rational numbers— excluding divi-
sion by 0, as always- -is again a rational number., Any set of numbers
possessing this property of closure with respect to the four rational
operations is called a number field.
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Ezercise: S8how that every ficld containa all the rational numbers at least,
(Hint: If a & 0 is & number in the field F, then a/a = 1 belongs to F, and from 1
we can obtain any rational number by rational operations,)

Starting from the unit, we can thus construct the whole rational
number field and hence all the rational points (i.e. points with both
coordinates rational) in the z, y plane. We can reach new, irrational,
numbers by using the compass to construct e.g. the number 4/2 which,
as we know from Chapter II, §2, is not in the rational field. Having
constructed 4/2 we may then, by the “rational” constructions of §1,
find all numbers of the form

1) a+ bv2,
where a, b are rational, and therefore are themselves constructible, We
may likewise construct all numbers of the form
a + b'\/ﬁ 7 s 0w =~ s s > F SEEN
—= or (@ 4+ 0V 2)c + av2),
¢ + dv/2
where a, b, ¢, d are rational. These numbers, however, may always be
written in the form (1). For we have

a+bv2 _ a+4+bvV2 c—dv?2

c+d\/§_c+d\/§.c—d\/§
_ ac— 2bd , bc — ad

= + V2 =p+¢V/2,
G —2d ' &—2q

where p, g are rational. (Tl_)_e denominator ¢ — 2d* cannot be zero,

for if ¢ — 2d° = 0, then v/2 = ¢/d, contrary to the fact that 4/2 is
irrational,) Likewise

(@ + bv2)(c + dV/2) = (ac + 2bd) + (bc + ad)\/2 = r + /2,

where r, s are rational. Hence all that we reach by the construction

of 4/2 is the set of numbers of the form (1), with arbitrary rational a, b.

Exercises: Fromp =1+ /2, ¢ = 2— 4/2, r = —3 + 4/2 obtain the numbers

p pgr  p+agr

g
- 1 - pry 2 -
q,p+p,(p PY s g el

in the form (1).

These numbers (1) again form a field, as the preceding discussion
shows. (That the sum and difference of two numbers of the form (1)
are also of the form (1) is obvious.) This field is larger than the rational
field, which is a part or subfield of it. But, of course, it is smaller
than the field of all real numbers. Let us call the rational field F, and
the new field of numbers of the form (1), F,. The constructibility of
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every number in the “extension field” F, has been established. We may
now extend the scope of our constructions, e.g. by taking a number
of F,,say k& = 1 + 4/2, and extracting the square root, thus obtaining
the constructible number
VS —— —

V1+4+42=+/k,
and with it, according to §1, the field consisting of all the numbers
@) p + qV'k,

where now p and ¢ may be arbitrary numbers of F,, i.e. of the form
a + b\/2, with a, b in Fy, i.e. rational.

Ezxercizes: Represent
i, L, Viviegs (evil-vi(vi+)
+Vk (Vi)' —3 1+vV2k
in the form (2).

All these numbers have been constructed on the assumption that only one
gsegment was given at the outset, If two segments are given we may select one
of them as the unit length. In terms of this unit suppose that the length of the
other segment is «. Then we can construct the field G conasisting ‘of all numbers
of the form

Gma™ + Gm_1a™® 1 4+ v + a1+ a0
bua® + baga®t+ <o +F hia+ b

where the numbers aq, -+, am and bg, -+, by are rational, and m and n are
arbitrary positive integers.

Exercize: If two segments of lengths 1 and « are given, give actual construc-
tionaforl + a4 af, (1 + a) /(1 — a), o

Now let us assume more generally that we are able to construct all
the numbers of some number field F. We shall show that the use of the

A maasd

ruler alone will never lead us out UJ the me F. The equation of the
gtraight line through two points whose cotrdinates a,, b, and as , by are
in Fis (by — by)x + (62 — a))y + (abs — asb)) = 0 (see p. 491); its
coefficients are rational expressions formed from numbers in F, and
therefore, by definition of a field, are themselves in F. Morecover,
if we have two lines, az + 8y — ¥y = 0and o'z + B’y — ¥’ = 0, with
coefficients in F, then the codrdinates of their point of intersection,

found by solving these two simultaneous equations, are z = g — ? -
[ 4
ay’ — ya'
Y= B — B Since these are likewise numbers of F), it is clear that
a - [4 4

the use of the ruler alone cannot take us beyond the confines of the
field F.
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Exercises: The lines z + /2y — 1 = 0, 2x — y + 4/2 = 0, have coefficients in
the field (1}, Calculate the codrdinates of their point of intersection, and verify
that these have the form (1).—Join the points (1, 4/2) and (/2,1 — 4/2) by a
line ax + by + ¢ = 0, and verify that the coefficients are of the form (1).—Do

the same with reapect to the field (2) for the lines ‘\_/1 + \_/Ea: + \'/Qy = ],
(1 + v2)z — y=1—/1+ /2, and the points (+/2, - 1), (1 + V& V1 + v2),
reapectively,

We can only break through the walls of F by using the compass.
For this purpose we select an element k& of F which is such that /%
is not in F. Then we can construct 4/% and therefore all the numbers

(3) a + bk,

where a and b are rational, or even arbitrary eleinents of ¥. The sum
and the difference of two numbers a + bv/k and ¢ + dv/k, their
product, (@ + b/ %)(c + d\k) = (ac + kbd) + (ad + bec)\/k, and

their quotient,

a+ bvE (a+bf)(c—dﬂ) —kbd bc ad\/_
¢+ dvE — kd? c—i'm:i2 — kd®

are again of the form p + ¢+/k with p and ¢ in F. (The denominator
¢ — kd® cannot vanish unless ¢ and d are both zero; for otherwise we
would have v/k = ¢/d, a number in F, contrary to the assumption
that v/kis not in F.) Hence the set of numbers of the form a + by/k
forms a field F’. The field F’ contains the original field F, for we may,
in particular, choose b = 0. F’is ealled an extension field of F, and F
a subfield of F’,

As an example, let F be the field a 4 b+/2 with rational a, b, and take
k = 4/2. Then the numbers of the extension ficld F’ are represented
by p + g\/2, where pand garein F, p = a + bv/2, ¢ = a’ + b'\/2,
with rational a, b, a’, b’. Any number in F’ can be reduced to that
form; for example

! VE - /2 Vi3

T (V2HVRW2Z- V3 2-2

_ V2 V2 V2(2+42) (24 V72
2 -2 2—+/2 4—2 4—2

(1 4+ 42 — (1 + 3/2) V2

Exercise: Let F be tlie field p + gV 2 + /2, where p and ¢ are of the form

1 + \/9 + \/i
~-_ in this form.

2 -3vV2+ /2

T

to
+
Il I $
tol

a + by/2. a, b rational, Represent
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We have seen that if we start with any field F of eonstruetible num-
bers containing the number k, then by use of the ruler and a single
application of the compass we ean eonstruet 4/% and henee any number
of the form a + by/k, where a, b, are in F.

We now show, eonversely, that by a single applieation of the eompass
we can obtain only numbers of this form. For what the eompass does
in a construction is to define points (or their eobrdinates) as points of
intersection of a circle with a straight line, or of two cireles. A circle
with eenter £, 5 and radius r has the equation (z — £)* + (y — )* = #%;
henee, if & #, r are in F, the equation of the circle can be written in
the form

2+ '+ 2ar + 28y + v = 0,
with the coefficients «, 8, ¥ in F. A straight line,
ax + by +c¢=0,

joining any two points whose cotrdinates are in F, has coefficients a, b, ¢
in F, as we have seen on page 129. By eliminating y from these simulta-
neous equations, we obtain for the z-cobrdinate of a point of inter-
section of the circle and line a quadratic equation of the form

Az* + Bz + C = 0,

with coefficients A, B, C in F (explicitly: 4 = a* + bV, B =
2(ac + b’a — abp), C = ¢* — 2bcB + b%). The solution is given by the
formula

_ —Bx VB - 44AC
- 24 '
which is of the form p + ¢g\/%k, with p, ¢, ¥ in F. A similar formula

holds for the y-codrdinate of a point of intersection.
Again, if we have two circles,

4+ y + 2z + 28 +v =0,
 + ' + 2z + 28y + v =0,

then by subtracting the second equation from the first we obtain the
linear equation

2@ —a)z+2B—-8)y+ v —v) =0,

which may be solved with the equation of the first circle as before.
In either case, the construction yields the z- and y-coérdinates of either

z
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one or two new points, and these new quantities are of the form
p + g%, with p, g, k in F. In particular, of course, v/k may itself
belong to F, e.g., when & = 4, Then the construction does not yield
anything essentially new, and we remain in F. But in general this will
not be the ease.

Ezercises: Consider the circle with radius 24/2 about the origin, and the line
joining the points (1/2, 0), (44/Z, +/2). Find the field F’ determined by the
codrdinates of the points of intersection of the circle and the line. Do the same
with respect to the intersection of the given circle with the circle with radius

+/2/2 and center (0, 24/2).

Summarizing again: If eertain quantities are given at the outset, then
we can construct with a straightedge alone all the quantities in the
field F generated by rational processes from the given quantities.
Using the compass we can then extend the field F of constructible
quantities to a wider extension field by selecting any number k of ¥,
extracting the square root of k, and constructing the field #’ consisting
of the numbers a + b\/%, where a and b are in #. F is called a subfield
of F'; all quantities in F arec also contained in F’, sinee in the expression
a + bk we may choose b = 0. (It is assumed that /& is & new
number not lying in F, since otherwise the process of adjunction of
+/k would not lead to anything new, and F’ would be identical with #.)
We have shown that any step in a geometrical eonstruetion (drawing
a line through two known points, drawing a eirele with known center
and radius, or marking the intersection of two known lines or circles)
will either produee new quantities lying in the ficld already known to
eonsist of eonstruetible numbers, or, by the eonstruction of a square
root, will open up a new extension field of construetible numbers.

The totality of all eonstruetible numbers ean now be described with
preeision. We start with a given field Fo, defined by whatever quanti-
ties are given at the outset, e.g. the field of rational numbers if only a
single segment, ehosen as the unit, is given. Next, by the adjunc-
tion of 4/ko , where ko is in Fy , but 4/k is not, we construct an extension
field F, of constructible numbers, consisting of all numbers of the form
a0 + b\/ks, where g and by may be any numbers of Fo. Then F,,
a new extension field of F;, is defined by the numbers a; + b\/k;,
where a, and b, are any numbers of F,, and &, is some number of F,
whose square root does not lie in Fi. Repeating this procedure, we
shall reach a field F, after n adjunctions of square roots. Constructible
numbers are those and only those which can be reached by such a sequence of
extenston fields; that is, which lie in a field F, of the type described. The
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gize of the number n of necessary extensions does not matter; in a way
it measures the degree of complexity of the problem.

The following example may illustrate the process. We want to reach
the number

Ve + VYTt v+ v3+s

Let F, denote the rational field. Putting ky = 2, we obtain the field Fy,
which contains the number 1 + /2. We now take &y = 1 + /2
and k2 = 3. As a matter of fact, 3 is in the original field F,, and
a fortiort in the field Fy, so that it is perfectly permissible to take

ks = 3. We then take ks = V1 + /2 + +/3, and finally k, =
V V1 4+ /2 + /3 + 5. The field F; thus constructed contains the

desired number, for 4/6 is also in Fy, since 4/2 and /3, and therefore
their produet, are in F3 and therefore also in Fy.

Ezxercises: Verify that, starting with the rational field, the side of the regular
2=.gon (see p, 124) is a constructible number, with n = m — 1, Determine the
gsequence of extension fields. Do the aame for the numbers

V1+ V2 + V3 + /5 (+v5 + vID/(1 + V7 = /3),
(VZ+VEa)(VE+V1++/2+vE+V3 - 7).

2. All Constructible Numbers are Algebraic

If the initial field Fo is the rational field generated by a single segment, then
all constructible numbers will be algebraic. (For the definition of algebraic
numbers see p. 103). The numbera of the field F; are roota of quadratic equa-
tions, those of F, are roots of fourth degree equations, and, in general, the num-
bers of Fa are roots of equations of degree 2% with rational coefficients. To show
this for a field Fs we may first consider as anexamplez =v2++/3 1 /3. We
have (z — V2)1 =3+ V2, 21 +2—2V2x =3+ V2, 0r21—1 = \/2(2::: + 1),
& quadratic equation with coefficients in a field ¥; . By squaring, we finally
obtain

(2 — 1)* = 2(2z + 13,

ourth degree with rational coefficients.

general, any number in a field F, has the form
4) r=p + ¢\ w,

where p, ¢, w are in a field F,, and hence have the form p = a + b\/3, ¢ =
¢+ d\/2 w = e+ f1/2, wherea, b, ¢, d, ¢, f, s arc rational. From (4) we have

z! — 2px + p! = g'w,

P
o
(a9

=]
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where all the coefficients are in a field F , generated by v's. Hence this equa-
tion may be rewritten in the form

2+ uz + v =Va(rz + 1),

where r, s, t, u, v are rational. By squaring both sides we obtain an equation
of the fourth degree

(5) (22 + uz + )2 = s(rz + )2

with rational coefficients, as stated.
Exercises: 1} Find the equations with rational coefficients for a) z =

VZH Vb e =2+ 3¢)z=1/4/6+ V3.

2} Find by a similar method equations of the eighth degree for a) z =
V2Z+ V24 Vb e=v2+ VIt Vvide=1+/5+ VIt Vi

To prove the theorem in general for xz in a field Fa with arbitrary k, we show
by the procedure used above that x satisfies a quadratic equation with coeffi-
cients in a field Fi—1 . Repeating the procedure, we find that z satisfies an equa-
tion of degree 21 = 4 with coefficients in a field Fe_a, ete.

Exercise: Complete the general proof by using mathematical induction to
show that r satisfies an equation of degree 2* with coefficients in a field Fe_:,
0 <l < k. This statement for l = k ia the desired theorem.,

*§3. THE UNSOLVABILITY OF THE THREE GREEK PROBLEMS
1. Doubling the Cube

Now we are well prepared to investigate the old problems of trisecting
the angle, doubling the cube, and constructing the regular heptagon.
We consider first the problem of doubling the cube. If the given cube
has an edge of unit length, its volume will be the cubic unit; it is required
that we find the edge z of a cube with twice this volume. The required
edge r will therefore satisfy the simple cubic equation

(1) T —2=0.

Our proof that this number z cannot be constructed by ruler and compass
alone is indirect. We assume tentatively that a construction 1s possible.
According to the preceding discussion this means that z lies in some
field Fx obtained, as above, from the rational field by successive exten-
sions through adjunction of square roots. As we shall show, this
assumption leads to an absurd consequence.

We already know that z cannot lie in the rational field Fy , for \/2
is an irrational number (see Exercise 1, p. 60). Hence z can only
lie in some extension field Fr, where & is a positive integer. YWe may
as well assume that &k is the least positive integer such that z lies in
some I’y . It follows that z can be written in the form

z=7p+ ¢Vw.
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where p, ¢, and w belong to some Fi_;, but v/w does not. Now, by a
gimple but important type of algebraic reasoning, we shall show that if
z = p + ¢v/w is a solution of the cubic equation (1), then y =
p — gv/w is also a solution. Since z is in the field F;, 2* and 2 — 2
are also in F, and we have

(2) 2P — 2 =a+ by,

where @ and b are in Fiy—y. By an easy calculation we can show that
a=7p + 3pgdw — 2, b = 3p°¢ + ¢*'w. If we put

Y= — qvw,

then a substitution of —¢q for g in these expressions for a and b shows
that

(2" ¥y — 2 =a — b\/w.
Now z was supposed to be a root of 2 — 2 = 0, hence
(3) a -+ bvw = 0.

This implies—and here 1s the key to the argument—that a and b must
both be zero. If b were not zero, we would infer from (3) that /w =
—a/b. But then v/w would be a number of the field Fx—_; in which a
and b lie, contrary to our assumption. Hence b = 0, and it follows
immediately from (3) that a = 0 also.

Now that we have shown that a = b = 0, we immediately infer
from (2') that y = p — ¢+/w is also a solution of the cubic equation (1),
gince y° — 2 is equal to zero. Furthermore, y # z, ie. 2 — y = 0;
for, z — y = 2¢+/w can only vanish if ¢ = 0, and if this were so then
z = p would lie in Fx_;, contrary to our assumption.

We have therefore shown that, if z = p + g+/w is a root of the
eubic equation (1), then y = p — g4/u is a different root of this equa-
tion. This leads immediately to a contradiction. For there is only
one real number z which is a cube root of 2, the other cube roots of 2
being imaginary (see p. 98); ¥ = p — ¢v/w is obviously real, since
p, g, and 4/w were real.

Thus our basic assumption has led to an absurdity, and hence is
proved to be wrong; a solution of (1) cannot lie in a field Fi, so that
doubling the cube by ruler and compass is impossible.

2. A Theorem on Cubic Equations

Our concluding algebraic argument was especially adapted to the par-
ticular problem at hand. 1f we want to dispose of the two other Greek
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problems, it is desirable to proceed on a more general basis. All three
problems depend algebraically on cubic equations. It is a fundamental
fact concerning the cubic equation

(4) 24+al+bz+c=0
that, if z,, 3, ; are the three roots of this equation, then
(5) o+ I+ 5= —af

Let us consider any cubic equation (4) where the coefficients a, b, ¢ are
rational numbers. It may be that one of the roots of the equation is
rational; for example, the equation 2° — 1 = 0 has the rational root 1,
while the two other roots, given by the quadraticequationz® + z + 1 =
0, are necessarily imaginary. But we can easily prove the general theo-
rem: If a cubic equation with rational coefficients has no rational root, then
none of its rools ts constructible starting from the rational field Fy.

Again we give the proof by an indirect method. Suppose z were a
constructible root of (4). Then z would lie in the last field Fi of some
chain of extension fields, Fo, F,, -, Fi, as above. We may assume
that & is the smallest integer such that a root of the cubic equation (4)
lies in an extension field Fi. Certainly ¥ must be greater than zero,
since in the statement of the theorem it is assumed that no root z lies
in the rational field F,. Hence z can be written in the form

z=p+qVu,

where p, g, w are in the preceding field, Fy_, , but /w isnot. It follows,
exactly as for the special equation, 22 — 2 = 0, of the preceding article,
that another number of F

y=p— gV,
will also be a root of the equation (4) As before, we see that ¢ # 0
and hence z # y.

From (5) we know that the third root u of the equation (4) is given
byu = —a — z — y. Butsince z + y = 2p, this means that
u= —a— 2p,
t The polynomial z2* 4+ az? 4+ bz + ¢ may be factored into the product

(z — z1)(z — z1)(z — z3), where z,, z,, z3, are the three roota of the equation
(4) (see p. 101). Hence

22+ az! + bz +cm 2 — (27 + 23+ 23)21 + (2124 + 2123 + Za2a)z — 212925,
so that, since the coefficient of each power of z must be the same on hoth sides,

—-a = x; + 21 + 23, b = x,2y + 2123 + z223, —C = I 7121
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where v/w has disappearcd, so that « is a number in the field F_; .
This contradicts the hypothesis that k is the smallest number such that
some F; contains a root of (4). Hence the hypothesis 1s absurd, and
no root of (4) can lie in such a field F,. The general theorem 18 proved.
On the basis of this theorem, a construction by ruler and compass alone
is proved to be impossible if the algebraic equivalent of the problem 1is
the solution of a cubic equation withno rationalroots. This equivalence
was at once obvious for the problem of doubling the cube, and will now
be established for the other two Greek problems.

3. Trisecting the Angle

We shall now prove that the trisection of the angle by ruler and
compass alone is 7n general impossible. Of course, there are angles, such
as 90° and 180°, for which the trisection can be performed. What we
have to show is that the trisection cannot be effected by a procedure
valid for every angle. For the proof, it i1s quite sufficient to exhibit
only one angle that cannot be trisected, since a valid general method
would have to cover every single example. Hence the non-existence of
a general method will be proved if we can demonstrate, for example,
that the angle 60° cannot be trisected by ruler and compass alone.

We can obtain an algebraic equivalent of this problem in different
ways; the simplest is to consider an angle 8 asgiven by its cosine: cos 8 = g.
Then the problem is equi\ alent to that of ﬁnding the quantity x =

P 10 I‘)\ Ner o ot1vievla dmiocnrntiind mtna 1 frsmrnzrlan - (e ]y4 +hn nl\n:r\l\
LUD \V/v). iy & alllll)lb Dl lSUllUlIICDllLul 1Ul lllulu \DLL pn Ul), LIIC CUDLLIT

of 8/3 is connected with that of # by the equation
cos § = g = 4 cos’ (6/3) — 3 cos (6/3).

In other words, the problem of trisecting the angle 8 with cos 8 = ¢
amounts to constructing a solution of the cubic equation

(6) 42 — 3z — g = 0.
To show that this cannot in general be done, we take 8 = 60° so
that ¢ = cos 60° = 1. [Kquation (6) then becomes
(7) 8 — 6z = 1,
By virtue of the theoremn proved in the preceding article, we need

only show that this equation has no rational root. Let ¥ = 2z. Then
the equation becomes

(8) v* — 3v =
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If there were a rational number v = r/s satisfying this equation, where r
and s areintegers without a common factor > 1, weshould haver® — 3¢’ =
&. From this it follows that s = r(r* — 3¢°) is divisible by r, which
means that r and s have a common factor unless r = 1. Likewise,
§*is a factor of #* = §*(s + 3r), which means that r and s have a common
factor unless 8 = 1. Since we assumed that r and s had no common
factor, we have shown that. the only rational numbers which could
possibly satisfy equation (8) are +1 or —1. By substituting +1 and
—1 for v in equation (8) we sce that neither value satisfies it. Hence
(8), and consequently (7), has no rational root, and the impossibility of
trisecting the angle is proved.

The theorem that the general angle cannot be trisected with ruler and compass
alone is true only when the ruler is regarded as an instrument for drawing a
straight line through any two given points and nothing else. In our general

A 0
Fig. 36, Archimedesa' trisection of an angle,

characterization of constructible numbers the use of the ruler was always limited
to this operation only. By permitting other uses of the ruler the totality of
possible conatructions may be greatly extended., The following method for tri-
secting the angle, found in the works of Archimedes, is a good example,

Let an arbitrary angle z be given, as in Fig, 36. Extend the base of the
angle to the left, and swing a semicircle with O as center and arbitrary radius r.
Mark two points 4 end B on the edge of the ruler such that AB = r. Keeping
the point B on the semicircle, slide the ruler into the position where A lies on
the extended baae of the angle z, while the edge of the ruler passes through the
intersection of the terminal side of the angle z with the semicircle about 0. With
the ruler in this position draw a straight line, making an angle y with tlie ex-
tended base of the original angle z.

Ezxercise; Show that this construction actually yields y = z/3.

4. The Regular Heptagon

We shall now consider the problem of finding the side z of a regular
heptagon inscribed in the unit circle. The simplest way to dispose of
this problem 1s by means of complex numbers (see Ch. I, §5). We
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know that the vertices of the heptagon are given by the roots of the
equation

70\ 2 _ 1 _n
\9) 4 1=

the coordinates z, y of the vertices being considered as the real and
imaginary parts of complex numbers z = z 4 yi. One root of this
equation is z = 1, and the others are the roots of the equation

z::11-=zﬁ+z”’i-}-z‘—}-zs+zz—}-z-}-l = 0,
obtained from (9) by factoring out z — 1 (see p. 99). Dividing (10)
by 2°, we obtain the equation

(11) 2+ 12+ 4+ 1/ +24+1/z24+1=0.

By a simple algebraic transformation this may be written in the form
(12) (z+1/2)°=3(+1/2)+ (z+1/2) =2+ (z+ 1/2) +1 = 0.
Denoting the quantity z 4+ 1/z by », we find from (12) that

(10)

(13) y+y —2—1=0.
We know that 2z, the scventh root of unity, is given by
(14) z = cos ¢ + 1sin ¢,

where ¢ = 360°/7 is the angle subtended at the center of the circle by
the edge of the regular heptagon; likewise we know from KExercise 2,
page 97, that 1/z = cos ¢ — isin¢,sothat y = z + 1/z = 2 cos ¢.
If we can construct y, we can ~lso construct cos ¢, and conversely.
Hence, if we can prove that y is not constructible, we shall at the same
time show that z, and therefore the heptagon, is not constructible.
Thus, considering the theorem of Article 2, it remains merely to show
that the equation (13) has no rational roots. This, too, is proved
indirectly. Assume that (13) has a rational root r/s, where r and s are
integers having no common factor. Then we have

(15) PP+ r’s — 2rd — & = 0;

whence it is seen as above that r* has the factor s, and s* the factor r.
Since r and 8 have no common factor, each must be =1; therefore

y can have only the possible values +1 and —1, if it is to be rational.
On substituting these numbers in the eqnaf,inn, we see that neither of
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them satisfies it. Hence y, and thercfore the edge of the regular hepta-
gon, is not constructible.
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5. Remarks on the Problem of Squaring the Circle

We have been able to dispose of the problems of doubling the cube,
trisecting the angle, and constructing the regular heptagon, by com-
paratively elementary methods. The problem of squaring the circle is
much more difficult and requires the technique of advanced mathe-
matical analysis. Since a circle with radius r has the area =%, the
problem of constructing a square with area equal to that of a given circle
whose radius is the unit length 1 amounts to the construction of a
segment of length /= as the edge of the required square. This seg-
ment will be constructible if and only if the number = is constructible.
In the light of our general characterization of constructible numbers,
we could show the impossibility of squaring the circle by showing that
the number 7 cannot be contained in any field 7, that can be reachcd
by the successive adjunction of square roots to the rational field Fj.
Since all the members of any such field are algebraic numbers, i.e.
numbers that satisfy algebraic equations with integer coefficients, it
will be sufficient if the number = can be shown to be not algebraic, 1.e.
to be transcendental (see p. 104).

The technique necessary for proving that = is a transcendental number
was created by Charles Hermite (1822-1905), who proved the number
e to be transcendental. By a slight extension of Hermite’s method
F. Lindemann succeeded (1882) in proving the transcendence of =, and
thus definitely settled the age-old question of squaring the circle. The
proof is within the reach of the student of advanced analysis, but is
beyond the scope of this book.

PART II
VARIOUS METHODS FOR PERFORMING CONSTRUCTIONS

§4. GEOMETRICAL TRANSFORMATIONS. INVERSION

1. General Remarks

In the second part of this chapter we shall discuss In a8 systematic
way some general principles that may be applied to coustruction prob-
lems. Many of these problems can be more clearly viewed from the
general standpoint of “geomnetrical transformations”; instead of study-
ing an individual construction, we shall consider simultaneously a whole
class of problems eonnected by certain processes of trausformation.
The clarifying power of the concept of a class of geometrical transforma-



GENERAL REMARKS 141

tions is by no means restricted to construction problems, but affects
almost everything in geometry. In Chapters IV and V we shall deal
with this general aspect of geometrical transformations. Here we shall
study a particular type of transformation, the inversion of the plane
in a circle, which is a generalization of ordinary reflection in a straight
line.

By a transformation, or mapping, of the plane onto itself we mean a
rule which assigns to every point P of the plane another point P’ called
the #mage of P under the transformation; the point P is called the
antecedent of P’. A simple example of such a transformation is given
by the reflection of the plane in a given straight line L as in a mirror:
a point P on one side of L has as its image the point P’, on the other side
of L, and such that L is the perpendicular bisector of the segment PP’
A transformation may leave certain points of the plane fixed; in the

......... -~ 3

case of a reflection this is true of the points on L,

f ]

Fig. 37. Reflaction of a point in & line, Fig. 38. 1nversion of a point in a circle,

Other examples of transformations are the rotatzons of the plane about
a fixed point O, the parallel translations, which move every point a dis-
tance 4 in a given direction (such a transformation has no fixed points),
and, more generally, the rigid motions of the plane, which may be thought
of as compounded of rotations and parallel translations.

The particular class of transformations of interest to us now are the
tnversions with respect to circles. (These are sometimes known as cir-
cular reflections, because to a certan approximation they represent the
relation between original and image in reflection by a circular mirror.)
In a fixed plane let C be a given circle with center O (called the center
of inversion) and radius r. The image of a point P is defined to be the
point P’ lying on the line OP on the same side of O as P and such that

(1) OP-OP’ = 2,

The points P> and P’ are said to be inverse points with respect to C.
From this definition it follows that, if P’ is the inverse point of P,
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then P is the inverse of P’. An inversion interchanges the inside and
outside of the circle C, since for OP < r we have OP’ > r, and for
OP > r, we have OP’ < r. The only points of the plane that remain
fixed under the inversion are the points on the circle C itself.

Rule (1) does not define an image for the center 0. It is clear that
if a moving point P approaches O, the image P’ will recede farther and
farther out in the plane. For this reason we sometimes say that O itself
corresponds to the point al infinityunder the inversion. The usefulness of
this terminology lies in the fact that it enables us to state that an inver-
sion sets up a correspondence between the points of the plane and their
images which is biunique without exception: each point of the plane has
one and only one image and is itself the image of one and only one
point. This property is shared by all the transformations previously
considered.

L

Fig. 3. Inversion of a line L in a circle,

2. Properties of Inversion

The most important property of an inversion is that it transforms
straight lines and circles into straight lines and cireles. Morc pre-
cisely, we shall show that after an inversion

(a) a line through O becomes a line through 0,

(b) a line not through O becomes a circle through O,

(e) a circle through O becomes a line not through O,
(d) a circle not through O becomes a circle not through O.

Statement (a) is obvious, since from the definition of inversion any
point on the straight line has as image another point on the same line,
so that although the points on the line are interchanged, the line as a
whole is transformed into itself.

To prove statement (b), drop a perpendicular from O to the straight
line L (Fig.39). Let A be the point where this perpendicular meets L,
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and let A’ be the inverse point to A. Mark any point P on L, and let P’
be its inverse point. Since OA’'.0OA = OP'.OP = r* it follows that
OA’' _ OP
OF'  04°
Hence the triangles OP’A’ and OAP are similar and angle OP’A’ is a
right angle. From elementary geometry it follows that P’ lies on the
circle K with diameter OA’, so that the inverse of L is this circle. This
proves (b). Statement (c) now follows from the fact that since the in-

verse of L is K, the inverse of K is L.

It remains to prove statement (d). Let K be any circle not passing
through O, with center M and radius k. To obtain its image, we draw
a line through O intersecting K at A and B,and then determine how the

Fig. 40. Inversion of & cirele,

images A’, B’ vary when the line through O intersects K in all possible
ways. Denote the distances OA, OB, OA’, OB’, OM by a, b, a’, ¥/, m,
and let ¢ be the length of a tangent to K from 0. We have aa’ =
bb’ = r*, by dcfinition of inversion, and ab = {*, by an elementary geo-
metrical property of the circle. If we divide the first relations by
the sccond, we get

a'/b = b'ja =/t = ¢,
where ¢’ is & constant that depends only upon r and ¢, and is the same
for all positions of A and B. Through A’ we draw a lineparallelto BM
meeting OM at Q. Let OQ = gand A'Q = p. Then ¢/m = a’/b =
p/k, or
g = ma'/b =mc’, p=ka'/b=k

This means that for all positions of A and B,  will always be the same
point on OM, and the distance A’Q will always have the same value.
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ikewise = p, Since a = a. us the images o in
A, B on K are points whosc distance from @ is always p, i.e. the image
of K is a circle. This proves (d).

3. Geometrical Construction of Inverse Points

The following theorem will be useful in Article 4 of this section: The
point P’ inverse to a given point P with respect to a circle C may be con-
structed geometrically by the use of the compass alone. We consider first
the case where the given point P is exterior to C. With OP as radius
and P as center we describe an arc intersecting C at the points K and S.
With these two points as centers we describe arcs with radius r which

Fig. 41. Invereion of an outaide point in a circle,

intersect at O and at a point P’ on the line OP. In the isosceles triangles
ORP and ORP’,

X0RP = X POR = X0P'R,
so that these triangles are similar, and therefore

OP _ OR
OR ~ OP"
Hence P’ is the required inverse of P, which was to be constructed.

If the given point P lies inside C the same construction and proof
hold, provided that the circle of radius OP about P intersects C in two
points. If not, we can reduce the construction of the inverse point P’
to the previous case by the following simple artifice.

First we observe that with the compass alone we can find a point C
on the line joining two given points A, O and such that A0 = OC.
Uo do this, we draw a circle about O with radius » = A0, and mark off
on this circle, starting from A, the points P, @, C such that AP =
PQ = QC = r. Then C is the desired point, as is seen from the fact

i.e. OP.OP' = 1,
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that the triangles AOP, OPQ, OQC are equilateral, so that 04 and OC
form an angle of 180° and OC = 0Q = AO. By repeating this pro-
cedure, we can easily extend AQO any desired number of times. Inci-
dentally, since the length of the segment AQ is /3, as the reader can
easily verify, we have at the same time constructed /3 from the unit
without using the straightedge.

Now we can find the inverse of any point P inside the circle C. First
we find a point B on the line OP whose distance from O is an integral
multiple of OP and which lies outside C,

OR = n.0OP.
We can do this by successively measuring off the distance OP with the

compass until we land outside C. Now we find the point R’ inverse
to R by the construction previously given. Then

r’ = OR'-OR = OR'.(n-OP) = (n-OR")-OP.
Therefore the point P’ for which OP’ = n.0OR’ is the desired inverse.

,.( 0 }

Fig. 42. Doubling of & segment. Fig. 43. Inversion of an inside point 1n a circle.

4. How to Bisect a Segment and Find the Center of a Circle with the
Compass Alone

Now that we have learned how to find the inverse of a given point by
using the compass alone, we can perform some interesting constructions.
For example, we consider the problem of finding the point midway
between two given points A and B by using the compass alone (no
straight lines may be drawn!). Here is the solution: Draw the circle
with radius A B about B as center, and mark off three arcs with radius
AB, starting from A. The final point C will be on the line AB, with
AB = BC. Now draw the circle with radius AB and center A, and
let C’ be the point inverse to C with respect to this circle. Then

AC'.AC = AB?
AC'-2AB = AR
2AC' = AB.

Hence C’ i1s the desired midpoint
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Another compass construction using inverse points is that of finding
the center of a circle whose circumference only is given, the center being
unknown. We choose any point P on the circumference and about it
draw a circle intersecting the given circle in the points B and 8. With
these 83 centers we draw arcs with the radii RP = SP, intersecting
at the point . A comparison with Figure 41 shows that the unknown
center, @', is inverse to @ with respect to the circle about P, so that @’
~an be constructed by compass alone.

~ .
\“'\.h_‘-_d_'F

Fig. 44. Finding the midpoint of & segment. Fig. 45. Finding the center of a circle.

§5. CONSTRUCTIONS WITH OTHER TOOLS. MASCHERONI
CONSTRUCTIONS WITH COMPASS ALONE

*1. A Classical Construction for Doubling the Cube

Until now we have considered only problems of geometrical construc-
tion that use the straightedge and compass alone. When other instru-
ments are allowed the variety of possible constructions naturally be-
comes more extensive. For example, the Greeks solved the problem of
doubling the cube in the following way. Consider (as in Fig. 46) a rigid
right angle MZN and a movable right-angled cross B, VW, PQ. Two
additional edges RS and T'U are allowed to slide perpendicularly to the
arms of the right angle. On the cross let two fixed points E and G be
chosen such that GB = a and BE = f have prescribed lengths. By
placing the cross so that the points E and G lie on NZ and MZ respec-
tively, and sliding the edges 7U and RS, we can bring the entire appa-
ratus into a position where we have a rectangle ADEZ through whose
vertices A, D, E pass the arms BW, BQ, BV of the cross. Such an
arrangement is always possible if f > a. We see at once that a:z =
z:y = y:f, whence, if f is set equal to Za in the apparatus, z* = 24"
Hence z will be the edge of a cube whose volume is double that of the
cube with edge a. This is what is required for doubling the cube.
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2. Restriction fo the Use of the Compass Alone

While it is only natural that by permitting a greater variety of instru-
ments we can solve a large collection of construction problems, one
might expect that more restrictions on the tools allowed would narrow
the class of possible constructions. Hence it was a very surprising dis-
covery, made by the Italian Mascheroni (1750-1800), that all geometrical
constructions possible by straightedge and compass canbemade by the compass
alone. Of course,one cannntdraw the straight line joining two points with-

?’.GL/ \'IM
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Fig. 46. An instrument for doubling the cube.

out astraightedge, so that this fundamental construction is not really cov-~
ered by the Mascheroni theory. Instead, one must think of a straight
line as given by any two points on it. By using the compass alone, one
can find the point of intersection of two lines given in this way, and
likewise the intersections of a given circle with a straight line.

Perhaps the simplest example of a Mascheroni construction is the
doubling of a given segment AB. The solution was given on page 144.
On page 145 we bisected a straight segment. Now we shall solve the
problem of bisecting a given arc AB of a circle with given center O, The
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construction is as follows: from A and B as centers, swing two arcs with
radius AO. From O lay off arcs OP and 0Q equal to AB. Then swing
two arcs with PB and QA as radii and with P and @ as centers, inter-
secting at R. Finally, with OR as radius, describe an arc with either
P or Q as center until it intersects A B; this point of intersection is the
required midpoint of the arc AB. The proof is left as an exercise for
the reader.

It would be impossible to prove Mascheroni’s general theorem by
actually giving a construction by compass alone for every construction
possible with ruler and compass, since the number of possible construc-
tions is not finite. But we may arrive at the same goal by proving

R
x

PW

Fig. 47. Bisecting an arc with the compass,

that each of the following four fundamental constructions is possible
with com pass alone:

1. To draw a circle with given center and radius.

2. To find the points of intersection of two circles.

3. To find the points of intersection of a straight line and a circle.

4. To find the points of intersection of two straight lines.

Any geometrical construction in the usual sense, ruler and compass per-
mitted, consists of a finite succession of these elementary constructions.
The first two of these are clearly possible with the compass alone. The
solutions of the more difficult problems 3 and 4 depend on the properties
of inversion developed in the preceding section.

Let us solve problem 3, that of finding the points of intersection of a
circle C and a straight line given by the two points A and B. With
centers A and B and radn AO and BO, respectively, draw two ares,
intersecting again at I,  Now determine the point @ inverse to P with
respect to C, by the construction with compass alone given on p. 144.
Draw the circle with center @ and radius QO (this circle must inter-
sect C); the points of intersection X and X' of this circle with the given
circle C' are the required points. To prove this we need only show that
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X and X' are equidistant from O and P, since A and B are go by con-
gtruction. This follows from the fact that the inverse of Q is a point
whose distance from X and X’ is equal to the radius of C (p. 144).
Note that the circle through X, X’, and O is the inverse of the line AB,
since this circle and the line A B intersect C at the same points. (Points
on the circumference of a circle are their own inverses.)

The construction is invalid only if the line A B goes through the center
of C. But then the points of intersection can be found, by the con-
gtruction given on page 148, as the midpoints of arcs on C obtained
by swinging around B an arbitrary circle which intersects C in B,
and Bz .

Cc

Fig. 43. Interseotion of clrcle and line not Fig. 49. Intersection of circle and line through center.
through center.

The method of determining the circle inverse to the line joining two
given points permits an immediate solution of problem 4. Let the lines
be given by AB and A’B’ (Fig. 50). Draw any circle C in the plane,
and by the preceding method find the circles inverse to AB and 4'B’.
These circles intersect at O and at a point Y. The point X inverse
to Y is the required point of intersection, and can be constructed by
the process already used. That X is the required point is evident from
the fact that Y is the only point that is inverse to a point of both AB
and A’B’; hence the point X inverse to Y must lic on both AB and A’B’,

With these two constructions we have completed the proof of the
equivalence between Mascheroni constructions using only the compass
and the conventional geometrical constructions with ruler and compass,
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We have taken no pains to provide elegant solutions for individual
problems, since our aim was rather to give some insight into the general
scope of the Mascheroni constructions. We shall, however, give as an
example the construction of the regular pentagon. More precisely, we
shall find five points on a circle which will be the vertices of a regular

inscribed pentagon,

/
B/ C
/
A _H""‘h‘___

Fig, §80. Intarsection of two lines,

Let A be any point on the given circle X. The side of a regular in-
scribed hexagon is equal to the radius of K. Hence we can find points

B, C, D on K such that AB = BC = €D = 60° (Fig. 51). With 4

>

K

Fig. 51. Conatruetion of the regular pentagon.
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and D as centers and AC as radius we draw arcs meeting at X. Then if O
is the center of K, an arc about A of radius OX will meet K at the

midpoint F of BC (see p. 148). Now with the radius of K we draw
arcs about F meeting K at G and H. Let Y be a point whose distance
from G and H is OX, and which is separated from X by O. Then AY
will be equal to a side of the required pentagon. The proof is left as
an exercise for the reader. Note that only three different radii were
used 1n the construction.

In 1928 the Danish mathematician Hjelmslev found in a Copenhagen
bookstore a copy of a book, Euclides Danicus, published in 1672 by an
obscure author G. Mohr. From the title one might infer that this
work was simply a version of, or a commentary on Eucld’s Elements.
But when Hjelmslev examined the book, he found to his surprise that
it contained essentially the Mascheroni problem and its complete solu-
tion, found long before Mascheroni,

Ezxercises: The following is a description of Mohr’s constructions. Check
their validity. Why do they solve the Mascheroni problem?

1) On a segment AB of length p erect a perpendicular segment BC. (Hint:
Extend AB by a point D such that AB = BD. Draw arbitrary circles around
A and D and thus determine C.)

2) Two segments of length p and ¢ with p > ¢ are given somewhere in the
plane. Find a segment of the length £ = 4/p* — ¢? by making use of 1).

3) From a given segment a construct, the segment a4/2. (Hint: Observe that
(@+/2)* = (a+/3)* — at)

4) With given segments p and ¢ find a segment x = +/p? + ¢*. (Hint: Use the
relation z? = 2p* — (p* — ¢?).) Find other similar constructions,

5) Using the previous results, find segments of length p + ¢ and p — ¢ if
segmenta of length p and ¢ are given somewhere in the plane.

6) Check and prove the following construction for the midpoint M of a given
segment AB of length a. On the extension of AB find € and D such that
CA = AB = BD. Construct the isosceles triangle ECD with EC = ED = 2a, and
find M as the intersection of the circles with diameters EC and ED.

7) Find the orthogonal projection of a point 4 on a line BC.

8) Find z such that z:a = p:q, if a, p, and ¢ are given segments.

9) Find z = ab, if @ and b are given segments.

Inspired by Mascheroni, Jacob Steiner (1796-1863) tried to single
out as a tool the straightedge instead of the compass. Of course, the
straightedge alone does not lead out of a given number field, and hence
cannot suffice for all gecometrical constructions in the classical sense.
It is all the more remarkable that Steiner was able to restrict the use
of the compass to a single application. He proved that all constructions
in the plane which are possible with straightedge and compass are
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possible with the straightedge alone, provided that a single fixed circle
and its center aregiven. These constructions require projective meth-
ods and will be indicated later (see page 197).

* This circle and 1ts center cannot be dispensed with, For example, if a circle,
but not itas center, i1s given, it 18 impossible to conatruct the latter by the use of
the straightedge alone. To prove this we shall make use of a fact that will be
discussed later (p. 220): There exists a transformation of the plane into itself
which has the following properties: (a) the given circle is fixed under the trans-
formation., (b) Any straight line ig carried into a atraight line, (¢) The center
of the circle is carried into some other point. The mere existence of such a trans-
formation shows the impossibility of constructing with the straightedge alone the
center of the given circle, For, whatever the construction might be, it would
congist in drawing a certain number of straight lines and finding their intersec-
tions with one another and with the given circle. Now if the whole figure, con-
sisting of the given circle together with all points and lines of the construction,
is subjected to the transformation whose existence we have assumed, the trans-
formed figure will satisfy all the requirements of the construction, but will yield
as result a point other than the center of the given circle, Hence such a con-
struction is impoassible,

3. Drawing with Mechanical Instruments.
Mechanical Curves. Cycloids

By devising mechanisms to draw curves other than the circle and the
straight line we may greatly cnlarge the domain of constructible figures,
For example, if we have an instrument for drawing the hypecrbolas
zy = k, and another for drawing parabolas ¥ = az* + bz + ¢, then
any problem leading to a cubic equation,

(1) az’ + b2* + cx = k,
may be solved by construction, using only these instruments. For if
we set

(2) zy =k, y=az + bz+c,

then solving equation (1) amounts to solving the simultaneous equa-
tions (2) by eliminating y; i.e. the roots of (1) are the z-codrdinates of
the points of intersection of the hyperbola and parabola in (2). Thus
the solutions of (1) can be constructed if we have instruments with
which to draw the hyperbola and parabola of equations (2).

Since antiquity mathematicians have known that many interesting
curves can be defined and drawn by simple mechanical instruments.
Of these ‘‘mechanical curves” the cycloids are among the most remark-
able, Ptolemy (circa 200 A.D.) used them in a very ingenious way to
describe the movements of the vlanets in the heavens.
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y=ax?+bxr+ec

Fig. 52. Graphical evlution of a cubice equation,

The simplest cycloid is the curve described by a fixed point on the
circumference of a circle which rolls without slipping along a straight
line. Figure 53 shows four positions of the point P on the rolling circle.
The general appearance of the cycloid is that of a series of arches resting
on the line.

Fig. 63. The oyclold,

Variations of this curve may be obtained by choosing the point P
either inside the circle (as on a spoke of a wheel) or on an extension of
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its radius (as on the flange of a train wheel). Figure 54 illustrates these
two curves.

Fig. 54. General oycloids.

A further variation of the cycloid is obtained by allowing a circle to
roll, not along a straight line, but on another circle. If the rolling
circle ¢ of radius r remains internally tangent to the larger circle C of
radius R, the locus generated by a point fixed on the circumference of ¢
is called a hypocycloid.

NS

Fig. 55. Three-cusped hypocycloid.

If the circle ¢ describes the whole circumference of C just once, the
point P will return to its original position only if the radius of C is an
integral multiple of that of ¢. Figure 55 shows the case where R = 3r.
More generally, if the radius of C is m/n times that of ¢, the hypocycloid
will close up after n circuits around C, and will consist of m arches.
An interesting special case occurs if R = 2r. Any point P of the inner
circle will then describe a diameter of the larger circle (Fig. 56). We
propose the proof of this fact as a problem for the reader.
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Still another type of cycloid can be generated by means of a rolling
circle remaining externally tangent to a fixed circle. Such a curve is
called an epicycloid.

Fig. 59. Straight molion by points on a eircle rolling in & circle of double radius.

*4, Linkages. Peaucellier’s and Hart’s Inversors

We leave for the present the subject of cyeloids (they will appear
again in an unexpected place) to consider other methods of generating
curves. The simplest mechanical instruments for tracing curves are the
linkages. A linkage consists of a set of rigid rods, connected in some
manner at movable joints, in such a way that the whole system has
just enough freedom to allow a point on it to describe a certain curve.
The compass is really a simple linkage, consisting in principle of a single
rod which is fastened at one point.

Linkages have long been used in machine construction. One of the
historically famous examples, the “Watt parallelogram,” was invented
by James Watt to solve the problem of linking the piston of his steam
engine to a point on the flywheel in such a way that the rotation of the
flywheel would move the piston along a straight line. Watt’s solution
was only approximate, and despite the efforts of many distinguished
mathematicians, the problem of constructing a linkage to move a point
precisely on a straight line remained unsolved. At one time, when
proofs for the impossibility of solutions to certain problems were attract-
ing wide attention, the conjecture was made that the construction of
such a linkage was impossible. It was a great surprise when, in 1864, a
French naval officer. Peaucellier, invented a simple linkage that solved
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the problem. With the introduction of efficient lubricants the technical
problem for steam engines had by then lost its significance.

(@) V22277227772,
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Fig. 57, Rectilinear motion transformed into rotation.

The purpose of Peaucellier’s linkage is to eonvert circular into recti-
linear motion. It is based on the theory of inversion discussed in §4.
As shown in Figure 58, the linkage consists of seven rigid rods; two of
length ¢, four of length s, and a seventh of arbitrary length. O and R
are two fixed points, placed so that OR = PR. The entire apparatus is
free to move, subject to the given conditions. We shall prove that,

R / ‘

Fig. §8. Peaucellisr's transformation of rotation into true rectilinear motion,

as P describes an arc about R with radius PR, Q describes a segment of a
stratght line. Denoting the foot of the perpendicular from S to 0Q
by T, we observe that

OP.0Q = (OT — PT)(OT + PT) = OT* - PT*
= (0OT* + ST — (PT* + ST%

= £ — g
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The quantity £ — §* is a constant which we call 7*. Since OP.0Q = 7,
P and @ arc inverse points with respect to a circle with radius r and
center O. As P describes its circular path (which passes through 0),
Q describes the curve inverse to the circle. This curve must be a
straight linc, for we have proved that the inverse of a circle passing
through O is a straight line. Thus the path of @ is a straight line,
drawn without using a straightedge.

Another linkage that solves the same problem is Hart’s inversor.
This consists of five rods connected as in Figure 59. Here AB = CD,

B

N

Fig. §9. Hart's invarsor.

BC = AD. O, P and @ are points fixed on the rods AB, AD, CB,
respectively, such that AO/OB = AP/PD = CQ/QB = m/n. Points
O and S are fixed in the planc so that OS = PS, whilc the rest of the
linkage is free to move. FKvidently, AC is always parallel to BD.
Hence, O, P and @ are eollinear, and OP is parallel to AC. Draw AE
and CF perpendicular to BD. We have

AC.BD = EF-BD = (ED + EB)Y(ED — EB) = ED* — EB.
But ED* + AE* = AD?, and EB* + AE* = AB>. Hence ED* — EB* =
AD* — AB’. Now
OP/BD=A0/AB=m/(m+n) and OQ/AC =0B/AB=n/(m+ n).
Thus

OP.0Q = [mn/(m + n)*)BD.-AC = [mn/(m + n)*](AD* — AB®).

This quantity is the same for all possible positions of the linkage.
Therefore P and @ arc inverse points with respect to some circle about O.
When the linkage is moved, P describes a circle about S which passes
through O, while its inverse Q describes a straight line.
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Other linkages can be constructed (at least in principle) which will
draw ellipses, hyperbolas, and indeed any curve given by an algebraic
equation f(z, ) = 0 of any degree.

§6. MORE ABOUT INVERSION AND ITS APPLICATIONS

1. Invariance of Angles. Families of Circles

Although inversion in a circle greatly changes the appearance of gco-
metrical figures, it is a remarkable fact that the new figures continue
to posscss many of the properties of the old. These are the properties

e varia »

we already know, inversion transforms circles and straight lines into
circles and straight lines. We now add another important property:
The angle between two lines or curves 18 tnvariani under inversion. By
this we mean that any two intersecting curves are transformed by an
inversion into two other curves which still intersect at the same angle.
By the angle between two curves we mean, of course, the angle between
their tangents.

The proof may be understood from Figure 60, which illustrates the
special case of a curve C intersecting a straight line OL at a point P.
The inverse C’ of C meets OL in the inverse point P’, which, since OL

Ner

Fig. 60. Invariance of angles under inversion.
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is its own inverse, lies on OL. We shall show that the angle zy between
OL and the tangent to C at P is equal in magnitude to the corresponding
angle 4. To do this we choose a point A on the curve C near P, and
draw the secant AP. The inverse of A is a point A’ which, being on
both the line OA and the curve C’, must be at their intersection. We
draw the secant A’P’. By the definition of inversion,
y* = OP.OP' = OA.OA’,

or

OP _ OA’

04 = OP"
1.e. the triangles OAP and OA’P’ are similar. Hence angle z is equal
to angle OA’P’, which we call . Our final step consists in letting the
point A move along C and approach the point P. This causes the
secant line AP to revolve into the position of the tangent line to C at P,
while the angle z tends to 2. At the same time A’ will approach P’,
and A’P’ will revolve into the tangent at P’. The angle y approaches yq .
Since z is equal to y at every position of A, we must have in the limit,
o = Y.

Qur proof is only partially completed, however, since we have con-
gidered only the case of a curve intersecting a line through O. The
general case of two curves C, C* forming an angle z at P is now easily
disposed of. For it is evident that the line OPP’ divides z into two
angles, each of which we know to be preserved by the inversion,

It should be noted that although inversion preserves the magnitude of angles,
it reveraes their sense; i.e. if a ray through P sweeps out the angle z4in a counter-
clockwisc direction, ite image will sweep out angle ye in a clockwise direction.

A particular consequence of the invariance of angle under inversion is
that two circles or lines that are orthogonal, i.e. that intersect at right
angles, remain orthogonal after an inversion, while two circles which
are tangent, i.e. intersect at the angle zero, remain tangent,

Let us consider the family of all circles that pass through the center
of inversion O and through another fixed point 4 of the plane. From §4,
Article 2, we know that this family of circles is transformed into a family
of straight lines that radiate from A’, the image of A. The family of
circles orthogonal to the original family goes over into circles orthogonal
to the lines through A’, as shown in Figure 61. (The orthogonal cir-
cles are shown by broken lines.) The simple picture of the radiating
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straight lines appears to be quite different from that of the circles, yet
we see that they are closely related —indeed from the standpoint of
the theory of inversion they are entirely equivalent.

1
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]

Fig. 81. Two systems of orthogonal circles related by inversion.

Another example of the effect of inversion is given by a family of
circles tangent to each other at the center of inversion, After the trans-
formation they become a system of parallel lines. For the images of
the circles are straight lines, and no two of these lines intersect, since the
original circles meet only at O.
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Fig. 82, Tangent circles tranaformed into parsllel lines.
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2. Application to the Problem of Apollonius

A good illustration of the usefulness of the theory of inversion is the
following simple geometrical solution of the problem of Apollonius. By
inversion with respect to any center, the Apollonius problem for three
given circles can be transformed into the corresponding problem for
three other circles (why is this?). Hence, if we can solve the problem
for any one triple of circles, then it is solved for any other triple of
circles obtained from the first by inversion. We shall exploit this fact
by selecting among all these equivalent triples of circles one for which
the problem is almost trivially simple.

We start with three circles having centers A, B, C, and we shall
suppose the required circle U with center O and radius p to be exter-
nally tangent to the three given circles. If we increase the radii of
the three given circles by the same quantity d, then the eircle with the
same center O and the radius p — d will obviously solve the new problem.

Fig. 63. Preliminary to Apollonius’ oonstruction.

By way of preparation we make use of this fact in order to replace the
three given circles by three others such that two of them are tangent
to each other at a point K (Fig. 63). Next we invert the whole figure
in some circle with center K. The circles around B and C' become
parallel lines b and ¢, while the third circle becomes another circle a
(Fig. 64). We know that a, b, ¢ can all be constructed by ruler and
compass. The unknown circle is transformed into a circle u which
touches a, b, ¢. Its radius r is evidently half the distanec bhetween b
and c. Its center O’ is one of the two intersections of the linc midway
between b and ¢ with the circle about A4’ (the center of @) having the
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radius r 4+ s (s being the radius of @). Finally, by constructing the
circle inverse to u we find the center of the desired Apollonius circle U,
(Its center, O, will be the inverse in the circle of inversion of the point
inverse to K in u.)

Fig. 64. Solution of Apollonius’ problem.

*3. Repeated Reflections

Everyonc is familiar with the strange reflection phenomena that occur
when more than one mirror is used. If the four walls of a rectangular
room were covered with ideal non-absorbing mirrors, a lighted point
would have infinitely many images, one corresponding to each congruent
room obtained by rcflcction (Fig. 65). A less regular constellation of
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Fig. 65. Repeated reflection in rectangular walls,

mirrors, e.g. three mirrors, gives a much more complicated series of
images. The resulting configuration can be described easily only when
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the reflected triangles form a non-overlapping covering of the plane,
This occurs only for the case of the rectangular isosceles triangle, the

equilateral triangle, and the rectangular half of the latter; see Figure
60.

Fig. 88. Regular constellationa of triangular mirrors.

The situation becomes much more interesting if we consider repeated
inversion in a pair of circles. Standing between two concentric circular
mirrors one would see an infinite number of other circles concentric with
them. One sequence of these circles tends to infinity, while the other
concentrates araund the center. The case of two external circles is &
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Fig. 67. Repeated reflection in syatemas of two circles.
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Fig. 88. Reflection in a aystem of three circles.

little more complicated. Here the circles and their images reflect suc-
cessively into one another, growing smaller with each reflection, until
they narrow down to two points, one in cach circle. (These points have
the property of being mutually inverse with respeet to both ecircles.)
The situation is shown in Figure 67. The use of three circles lcads to

the beautiful pattern shown in Figure 68.



CHAPTER 1V

PROJECTIVE GEOMETRY. AXIOMATICS. NON-EUCLIDEAN
GEOMETRIES

§1. INTRODUCTION

1. Classification of Geometrical Properties. Invariance under
Transformations

Geometry deals with the properties of f‘trnrgu. m the n]n he or 1n space

A AR UawshF wrA A%s ZsaA A=  eden b

These properties are so numerous and so varied that some principle of
classification is necessary to bring order into this wealth of knowledge.
One might, for example, introduce a classification based on the method
used in deriving the theorems. I'rom this point of view a distinction
is usually made between the ‘‘synthetic” and the “‘analytic” procedures.
The first of these is the classical axiomatic method of Euclid, in which
the subject is built upon purely geometrical foundations independent of
algebra and the concept of the number continuum, and in which the
theorems are deduced by logical reasoning from an initial body of
statements called axtoms or postulates The second method is based
on the introduction of numerical LUUlumuu.a, and uses the uE‘:CuniqUé‘:
of algebra. This method has brought about a profound ehange in
mathematical science, resulting in a unification of geometry, analysis
and algebra into one organic system.

In this chapter a classification according to method will be less im
portant than a classification according to content, based on the char-
acter of the theorems themsclves, irrespective of the methods used to
prove them. In elementary plane geometry one distinguishes betwecn
theorems dealing with the congruence of figures, using the concepts of
length and angle, and theorems dealing with the similarity of figures,
using the concept of angle only. This particular distinetion is not very
important, since length and angle are so closely connected that it is
rather artificial to separate them. (It is the study of this connection
which makes up most of the subject of trigonometry.) Instead, we may
say that the theorems of elementary geometry concern magnitudes—
lengths, measures of angles, and areas. Two figures are equivalent from

1656
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this point of view if they are congruent, that is, if one can be obtained
from the other by a rigid motion, in which merely position but no mag-
nitude is changed. The question now arises whether the concept of
magnitude and the related concepts of congruence and similarity are
essential to geometry, or whether geometrical figures may have even
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drastic than the rigid motions. We shall see that this is indeed the case.
Suppose we draw a circle and a pair of its perpendicular diameters on
a rectangular block of soft wood, as in Figure 69. If we place thix

Fig. 80. Compression ol a circle,

block between the jaws of a powerful vise and compress it to half its
original width, the circle will become an ellipse and the angles between
the diameters of the ellipse will no longer be right angles. The circle
has the property that its points are equidistant from the center, while
this does not hold true of the ellipse. Thus it might seem that all the
geometrical properties of the original configuration are destroyed by
the compression. But this is far from being the case; for example, the
statement that the center bisects each diameter is true of both the
circle and the ellipse. Here we have a property which persists even
after a rather drastic change in the magnitudes of the original figure.
This observation suggests the possibility of classifying theorems about a
geometrical figure according to whether they remain true or become false
when the figure is subjected to a uniform compression. More generally,
given any definite class of transformations of a figure (such as the class
of all rigid motions compressions inversion in circles, ete.), we may ask

whut ‘JIU}}CILILU O1 DIIC u&uu:: "\'ll.l. oue UIADII“IIEW ulluLl uua UCla)y Ul
transformations. The body of theorems dealing with these properties
will be the geometry associated with this class of transformations. The
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idea of classifying the different branches of geometry according to the
classes of transformations considered was proposed by Felix Klein
(1849-1925) in a famous address (the “Erlanger program”) given in
1872. Since that time it has greatly influenced geometrical thinking.

In Chapter V we shall discover the very surprising fact that certain
properties of geometrical figures are so deeply inherent that they persist
even after the figures are subjected to quite arbitrary deformations;
figures drawn on a piece of rubber which is stretched or compressed in
any manner still preserve some of their original characteristics. In this
chapter, however, we shall be concerned with those properties which
remain unchanged, or “invariant,” under a special class of transforma-
tions which lies between the very restricted class of rigid motions on the
one hand, and the most general elass of arbitrary deformations on the
other. This is the class of ‘‘projective transformations.”

2. Projective Transformations

The study of these geometrical properties was forced upon mathema-
ticians long ago by the problems of perspective, which were studied by
artists such as Leonardo da Vinci and Albrecht Diirer. The image made
by a painter can be regarded as a projection of the original onto the
canvas, with the center of projection at the eye of the painter. Inthis
process lengths and angles are necessarily distorted, in a way that
depends on the relative positions of the various objects depicted. Still,
the geometrical structure of the original can usually be recognized on
the canvas. How is this possible? It must be because there exist
geometrical properties “invariant under projection”—properties which
appear unchanged in the image and make the identification possible.
To find and analyze these properties is the objecct of projective geometry.

It is clear that the theorems in this branch of geometry cannot be
statements about lengths and angles or about congruence. Some iso-
lated facts of a projective nature have been known since the seventeenth
century and even, as in the case of the “theorem of Menelaus,” since
antiquity. But a systematic study of projective gecometry was first
made at the end of the eighteenth century, when the Ecole Poly-
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particularly in geometry. This school, a product of the French Revolu-
tion, produced many officers for the military services of the Republic.
One of its graduates was J. V. Poncelet (1788-1867), who wrote his fam-
ous Traité des propriétés projectives des figures in 1813, while a prisoner
of war in Russia. In the nineteenth centurv, under the influence of
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Steiner, von Staudt, Chasles, and others, projective geometry became
one of the chief subjects of mathematical research. Its popularity was
due partly to its great aesthetic charm and partly to its clarifying effect
on geometry as a whole and its intimate connection with non-Euclidean
geometry and algebra.

§2. FUNDAMENTAL CONCEPTS
1. The Group of Projective Transformations

We first define the class, or ““group,”{ of projective transformations,
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to each other. We may then perform a central projection of = onto =
from a given center O not lying in = or #’ by defining the image of each
point P of = to be that point P’ of #’, such that P and P’ lie on the same
straight line through 0. We may also perform a parallel projection,
where the projecting lines are all parallel. In the same way, we can
define the projection of a line I in a plane = onto another line ' inx
from a point O in = or by a parallel projection,

0

Fig. 70. Projection from s point.

t The term ‘‘group,” when applied to a class of transformations, implies that
the successive application of two transformations of the class results again in a
transformation of the same class, and that the “inverse’ of a transformation of
the class again belongs to the class. Group properties of mathematical operations
have played and are playing a very great role in many fields, although in geometry,
perhaps, the importance of the group concept has been a little exaggerated.
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Any mapping of one figure onto another by a central or parallel pro-
jection, or by a finite succession of such projections, is called a projec-
tive transformation.t The projective geometry of the plane or of the line
consists of the body of those geometrical propositions which are un-
affected by arbitrary projective transformations of the figures to which
they refer. In contrast, we shall call metric geometry the body of those
propositions dealing with the magnitudes of fignres, invariant only under
the class of rigid motions.

/)
/iﬂ?x /

/

Fig. 71. Parallel projection.

Some projective properties can be recognized immediately. A point,
of course, projects into a point. Moreover, a straight line is projected
into a siraight line; for, if the line I in 7 is projected onto the plane »’,
the intersection of =’ with the plane through O and [ will be the straight
line!’.] 1If a point A and a straight line [ are incident,{t then after any
projection the corresponding point A’ and line I’ will again be incident.

t T'wo figures related by a single projection are commmonty said to be in perspec-
tive. Thus a figure F is related by a projective transforniation to a figure ¥’ if
F and F’ are in perspective, or if we can find a suecession of figures,
F,Fy, IFy, <« , Fn, F', such that each figure is in perspective with tlie following
one.

{ There are exceptions if the line OF (or if the plane throngh Oandl) is paraliel
to the plane x»’. These exceptiofs will be removed in §1.

tt A point and a line are called tncident if the line goes through the point, or
the point is on the line. The neutral word leaves it open whether the line or the
point is considered more important
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Thus the tncidence of a point and a line is invariant under the projective
group. From this fact many simple but important consequences follow.
If three or more points are collinear, i.e. incident with some straight line,
then their images will also be collinear. Likewise, if in the plane »
three or more straight lines are concurrent, i.e. incident with some point,
then their images will also be concurrent straight lines. While these

- ? ’ - c-
tive properties (i.e. properties invariant under projections), measures of
length and angle, and ratios of such magnitudes, are generally altered
by projection. Isosceles or equilateral triangles may project into
triangles all of whose sides have different lengths. Hence, although
‘“triangle” is a concept of projective geometry, ‘‘equilateral triangle”

is not, and belongs to metric geometry only.

2. Desargues’s Theorem

One of the earliest discoveries of projective geometry was the famous
triangle theorem of Desargues (15693-1662): If in a plane two triangles
ABC and A’B'C’ are situaled so that the straight lines joining correspond-
ing vertices are concurrent in a point O, then the corresponding sides, if
extended, will intersect in three collinear points. Figure 72 illustrates

Fig. 72, Desargueess configuration in the plane.

the theorem, and the reader should draw other figures to test it by
experiment. The proof 1s not trivial, in spite of the simplicity of the
figure, which involves only straight lines. The theorem clearly be-
longs to projective geometry, for if we project the whole figure onto
another plane, it will retain all the properties involved in the theorem.
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We shall return to this theorem on page 187. At the moment we wish
to call attention to the remarkable fact that Desargues’s theorem is also
true if the two triangles lie in two different (non-parallel) planes, and
that this Desargues’s theorem of three-dimensional geometry is very
eastly proved. Suppose that the lines A4’, BB’, and CC' intersect at
O (Fig. 73), according to hypothesis. Then AB lies in the same plane

O

A e
— // \\\\\\
// // /"/‘,R

B' //"
/
-

Fig. 73. Desarguea’s configuration in space.

as A'B’, so that these two lines intersect at some point Q; likewise AC
and A’C’ intersect in R, and BC and B’C’ intersect in P. Since P, Q,
and R are on extensions of the sides of ABC and A'B’C”, they lie in the
same plane with each of these two triangles, and must consequently
lic on the line of intcrscetion of these two planes. Therefore P, Q,
and R are collinear, as was to be proved.

This simple proof suggests that we might prove the theorem for two
dimensions by, so to speak, a passage to the limit, letting the whole
figure flatten out so that the two planes coincide in the limit and the
point O, together with all the others, falls into this plane. There is,
however, a certain difficulty in carrying out such a limiting process,
because the line of intersection PQR is not uniquely determined when
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the planes coincide. However, the configuration of Figure 72 may be
regarded as a perspcctive drawing of the space configuration of Figure
73, and this fact can be used to prove the theorem in the plane case.

There is actually & fundamental difference between Desargues’s theorem in the
plane and in space. Our proof in three dimensions used geometrical reasoning
based solely on the concepts of incidence and intersection of points, lines, and
planes. It can be shown that the proof of the two-dimensional theorem, provided
i1 18 lo proceed entirely in the plane, necessarily requires the use of the concept of
similarity of figures, which is based upon the metric concept of length and is no
longer a projective notion.

The converse of Desargues’s theorem states that if ABC and A’B’C’ are two
triangles situated so that the points where corresponding sides intersect are col-
linear, then the lines joining corresponding vertices are concurrent. Its proof
for the case where the two triangles are in two non-parallel planes is left to the
reader as an exercise.

§3. CROSS-RATIO
1. Definition and Proof of Invariance

Just as the length of a line segment is the key to metric geometry, so
there is one fundamental concept of projective geometry in terms of
which all distinctively projective properties of figures can be expressed.

If three points A4, B, C lie on a straight line, a projection will in
general change not only the distances AB and BC but also the ratio
AB/BC. 1In fact, any three points A, B, C on a straight line ! can
always be codrdinated with any three points A’, B’, C’ on another line
I’ by two successive projections. To do this, we may rotate the line I
about the point C’ until it assumes a position I’’ paralle]l to I (sce Fig.
74). We then project ! onto I’ by a projection parallel to the line

joining C and C’, defining three points, 4/, B”, and C" (= C’). The
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lines joining 4’, A’ and B’, B will intersect in a point O, which we
choose as the center of a second projection. These two projections
accomplish the desired result.t

As we have just seen, no quantity that involves only three points on
a line can be invariant under projection. But—and this is the decisive
discovery of projective geometry—if we have four points A, B, C, D
on a straight line, and project these into A’, B’, C’, D’ on another line,
then there is a certain quantity, called the cross-ratio of the four points,
that retains its value under the projection. Here is a mathematical
property of a set of four points on a line that is not destroyed by projec-
tion and that can be recognized in any image of the line. The cross-
ratio i8 neither a length, nor the ratio of two lengths, but the ratio of
two such ratios: iff we consider the ratios CA/CB and DA/DB, then
their ratio,

CA
CB/ DB’
is by definition the cross-ratio of the four points 4, B, C, D, taken in
that order.

We now show that the cross-ratio of four points is tnvariant under
projection, i.e. that if A, B, C, D and A’, B’, C’, D' are corresponding
points on two lines related by a projection, then

CA / D'A’

CB C B'/ D'B”
The proof follows by elementary means. We recall that the area of a
triangle is equal to 3(base X altitude) and is also given by half the

product of any two sides by the sine of the included angle. We then
have, in Figure 75,

area OCA = }h.CA = 30A.0C sin £ COA
area OCB = }h.CB = 10B.0C sin Z COB
area ODA = 3h.-DA = L0A.0D sin £ DOA
area ODB = }h.DB = 30B.0D sin £ DOB.

T =

I

$+ What if the lines joining A’, A" and B’, B’ are parallel?
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It follows that
CA /DA CA DB _0A.0C.sin £ COA OB.OD.sin £ DOB

CcB/ DB CB DA OB.OC.sin Z COB 0OA.0OD-sin Z DOA
_sin £ COA sin £ DOB

gin Z COB "sin Z DOA’

"
-

A
/ | "
S d 4
A B
Fig. 75. Invariance of cross-ratio under central projection.

Hence the cross-ratio of 4, B, C, D depends only on the angles sub-
tended at O by the segments joining A, B, C, D. Since these angles
are the same for any four points 4’, B’, C’, D’ into which A, B, C, D
may be projected from O, it follows that the cross-ratio remains un-
changed by projection.

That the cross-ratio of four points remains unchanged by a parallel projection
follows from elcmentary properties of similar triangles. The proof is left to the
reader as an exercise.

L

U"'h

Fig. 76. Invariance of cross-ratio under purallsl projectioa.
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So far we have understood the cross-ratio of four points A, B, C, D
on a line ! to be a ratio involving positive lengths. It is more con-
venient to modify this definition asfollows. We choose one direction onl
a3 positive, and agree that lengths measured in this direction shall be
positive, while lengths measured in the opposite direction shall be nega-
tive. We then define the cross-ratio of A, B, C, D in that order as the
quantity

CA /DA
n (ABCD) = &% / Tp
where the numbers CA, CB, DA, DB are understood to be taken with
the proper sign. Since a reversal of the chosen positive direction on [
will merely change the sign of every term of this ratio, the value of
(ABCD) will not depend on the direction chosen. It is easily seen that
(ABCD) will be negative or positive according as the pair of points
A, B is or is not separated (i.e. interlocked) by the pair C, D. Since
this separation property is invariant under projcction, the signed cross-
ratio (ABCD) is invariant also. If we select a fixed point O on [ as

(ABCD)>0
A B C D
O < -0 e
R (_ABCD)(O

A C B D

Fig. 77. Hign of crosa-ratio

origin and choose as the coordinate z of each point on [ its directed dis-
tance from O, so that the codrdinates of 4, B, C, D are z,, 22, 23, %4,
respcctively, then

CB/ DB z;— 22/ ZTi — X2 T3 — T2 T4 — Tt
When (ABCD) = —1, so that CA/CB = —DA/DB, then C and D

(ABCD) = €4 DA _ T T J T T I I3 — 31.34 — X

0 A B C D
—C) <> T Qe Y. X
—z, |
L3

Fig. 78. Crom-ratio in terms of codrdinates.
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divide the segment AB internally and externally in the same ratio.
In this case, C' and D are said to divide the segment A B harmonically,
and each of the points C, D is called the harmonic conjugate of the other
with respect to the pair A, B. If (ABCD) = 1, then the points C and D
(or A and B) coincide.

It should be kept in mind that the order in which A, B, C, D are
taken is an essential part of the definition of the cross-ratio (ABCD),
For example, if (ABCD) = X, then the cross-ratio (BACD) is 1/X, while
(ACBD) = 1 — X, as the reader may easily verify., Four points 4, B,
C, D can be ordered in 4-3-2-1 = 24 different ways, each of which gives
a certain value to their cross-ratio. Some of these permutations will
yield the same value for the cross-ratio as the original arrangement
A, B C,D;eg (ABCD) = (BADC(C). It is left as an exercise for the
reader to show that there are only six different values of the cross-ratio
for these 24 different permutations of the points, namely

e T e U
These six quantities are in general distinct, but two of them may coin-
cide—as in the case of harmonic division; when A = —1,

We may also define the cross-ratio of four coplanar (i.e. lying in a
common plane) and concurrent straight lines 1, 2, 3, 4 as the cross-ratio
of the four points of intersection of these lines with another straight
line lying in the same plane. The position of this fifth line is imma-
terial because of the invariance of the cross-ratio under projection.
Equivalent to this is the definition

sin (1,3) /sin (1, 4)

sin (2, 3) / sin (2, 4)’

taken with a plus or minus sign according as one pair of lines does not
or does separate the other. (In this formula, (1, 3), for example, means
the angle between the lines 1 and 3.) Finally, we may define the cross-
ratio of four coazial planes (four planes in space intersecting in a line |,
their axig). If a straight line intersects the planes in four points, these
points will always have the same cross-ratio, whatever the positicn of
the line may be. (The proof of this faet is left as an exerrise.) Hence
we may assign this value as the cross-ratio of the four planes. Equiva-
lently, we may define the cross-ratio of four coaxial planes as the cross-
ratio of the four lines in which they are intersected by any fifth plane
(see Fig. 79).

(1234) =
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The concept of the cross-ratio of four planes leads naturally to the
question of whether a projective transformation of three-dimensional
space into itself can be defined. The definition by central projection

—

/

Fig. 70. Cross-ratic of coaxial plancs.

cannot immediately be generalized from two to three dimensions. But
it can be proved that every continuous transformation of a plane into
itself that correlates in a biunique manner points with points and lines
with lines is a projective transformation. This theorem suggests the
following definition for three dimensions: A projective transformation
of space is a continuous biunique transformation that preserves
straight lines. It can be shown that these transformations leave the
cross-ratio invariant.

The preceding statements may be supplemented by a few remarks.
Suppose we have three distinet points, 4, B, C, on a line, with codrdi-
nates z, , 3, T3 . Required, to find a fourth point D so that the cross-
ratio (ABCD) = X, where X is prescribed. (The special case A = —1,
for which the problem amounts to the construction of the fourth har-
monic point, will be taken up in more detail in the next article.) In
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general, the problem has one and only one solution; for, if x is the eoordi-
nate of the desired point D, then the equation

Ty — T2 T — X2
s — T2 T — Iy

(2) = A

has exactly one solution z. If z,, x2, ;3 are given, and if we abbreviate
equation (2) by setting (xs — z1)/(xs — Z3) = k, we find on solving this
equation that * = (kz: — Az)/(k — A). For example, if the three
points A, B, C are equidistant, with coérdinatesz, = 0, 23 = d, 3 = 2d
respectively; then k = (2d — 0)/(2d — d) = 2, and z = 24/(2 — ).
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If we project the same line I onto two different lines I’, I”” from two
different centers O’ and O/, we obtain a correspondence P «— P’ between
the points of I and I’, and a correspondence P« P’ between those of
landl”. Thissets up a correspondence P’ «+ P’’ between the points of I

O"
Ol’

AII

tl’

’
C D’
Fig. 80. Projective correspondence between the points on two lines.

and those of I’ which has the property that every set of four points 47, B/,
C’, D’ on I’ has the same cross-ratio as the corresponding set 4”7, B”,
C"”, D" on1”. Any biunique correspondence between the points on two
lines which has this property is called a projective correspondence, irre-
spective of how the correspondence is defined.
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Ezercises: 1) Prove that, given two lines together with a projective cor-
respondence between their points, one ean shift one lire by a paralle! displace-
ment into such a position that the given correspondence is obtained by a simple
projection. (Hint: Bring a pair of corresponding points of the two lines into
coincidence.)

2) On the basis of the preceding result, show that if the points of two lines
! and I’ are codrdinated by any finite succession of projections onto various inter-
mediate lines, using arbitrary centers of projection, the same result can be ob-
tained by only two projections.

2. Application to the Complete Quadrilateral

As an interesting application of the invariance of the cross-ratio we
shall establish a simple but important theorem of projective geometry.
It concerns the complele quadrilateral, a figure consisting of any four
straight lines, no three of which are concurrent, and of the six points
where they intersect. In Figure 81 the four linesare AE, BE, BI, AF.
The lines through AB, EG, and IF are the diagonals of the quadrilateral.
Take any diagonal, say A B, and mark on it the points C' and D where

it meets the other two rhnrrnnnl:: We then have the theorem:

(ABCD) = —1; in words, the points of intersection of one diagonal with
the other two separale the vertices on that diagonal harmonically. To prove
this we simply observe that

Fig. 81. Complete quadrilateral.

z = (ABCD) = (IFHD) by projection from E,
(IFHD) = (BACD) by projection from G.
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But we know that (BACD) = 1/(ABCD); so that z = 1/z, 2* = 1,
z = =£1. Since C, D separate A, B, the cross-ratio = is negative and
must therefore be — 1, which was to be proved.

This remarkable property of the complete quadrilateral enables us to
find with the straightedge alone the harmonic conjugate with respect
to A, B of any third collinear point C. We need only choose a point £
off the line, draw EA, EB, EC, mark a point ¢ on EC, draw AG and
BG intersecting EB and EA4 at F and I respectively, and draw I'F, which
intersects the line of A, B, C in the required fourth harmonic point D.

Problem: Given a segment AB in the plane and a region R, as shown in Figure
82. It is desired to continue the line AB to the right of X. How may this be
done with straightedge alone so that the straightedge never crosses R during the
construction? (Hint: Choose two arbitrary points C, C’ on the segment AB,
then locate their harmonic conjugates D, D’ respectively by means of four quad-
rilaterals having A, B as vertices.)

o= —
A

Fig. 83. Producing a line bayond an obstscle.
§4. PARALLELISM AND INFINITY
1. Points at Infinity as “Ideal Points’
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our arguments fail if certain lines in the constructions, supposed to be
produced until they intersect, are in fact parallel. For example, in the
construction above the fourth harmonic point D fails to exist if the line
IF is parallel to AB. Geometrical reasoning seems to be hampered at
every step by the fact that two parallel lines do not intersect, so that in
any discussion involving the intersection of lines the exceptional case of
parallel lines has to be considered, and formulated separately. Likewise,
projection from a center O has to be distinguished from parallel pro-
jection, which requires separate treatment. If we really had to go
into a detailed discussion of every such exceptional case, projective
geometry would become very complicated. We are therefore led to
try an alternative—namely, to find extensions of our basic concepls that
will eliminate the exceptions.

Here geometrical intuition points the way: if a straight line that inter-
sects another is rotated slowly towards a parallel position, then the point
of intersection of the two lines will recede to infinity. We might naively
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say that the two lines intersect at a “point at infinity.” The essential
thing is then to give this vague statement a precise meaning, so that
points at infinity, or, as they are sometimes called, ideal points, can be
dealt with exactly as though they were ordinary points in the plane or
in space. In other words, we want all rules concerning the behavior of
points, lines, planes, etc. to persist, even when these geometric elements
are ideal. To achieve this goal we can proceed either intuitively or
formally, just as we did in extending the number system, where one
approach was from the intuitive idea of measuring, and another from
the formal rules of arithmetical operations.

First,let us realize that in synthetic geometry even the basic concepts of
“ordinary”’ point and line are not mathematically defined. The so-called
definitions of these concepts which are frequently found in textbooks on
elementary geometry are only suggestive descriptions. In the case of
ordinary geometrical elements our intuition makes us feel at ease
as far as their “existence’” is concerned. But all we really need in
geometry, considered as a mathematical system, is the validity of certain
rules by means of which we can operate with these concepts, as in
joining points, finding the intersection of lines, etc. Logically con-
sidered, a “point” is not a ‘“‘thing in itself,” but is completely described
by the totality of statements by which it is related to other objects.
The mathematical existence of “points at infinity”’ will be assured as soon
as we have stated in a clear and consistent manner the mathematical
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Properiies Ol these new cuuuca, i.e. their reiavions o orainary  poinis
and to each other. The ordinary axioms of geometry (e.g. Euclid’s)
are abstractions from the physical world of pencil and chalk marks,
stretched strings, light rays, rigid rods, etc. The properties which these
axioms attribute to mathematical points and lines are highly simplified
and i1dealized descriptions of the behavior of their physical counterparts.
Through any two actual pencil dots not one but many pencil lines can
be drawn. If the dots become smaller and smaller in diameter then all
these lines will have approximately the same appearance. This is what
we have in mind when we state as an axiom of geometry that “through
any two points one and only one straight line may be drawn’; we are
referring not to physical points and lines but to the abstract and con-
ceptual points and lines of geometry. Geometrical points and lines
have essentially simpler properties than do any physical objects, and
this simplification provides the essential condition for the development
of geometry as a deductive science,

As we have noticed, the ordinary geometry of points and lines is
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greatly complicated by the fact that a pair of parallel lines do not inter-
sect in a point. We are therefore led to make a further simplification
in the structure of geometry by enlarging the concept of geometrical
point in order to remove this exception, just as we enlarged the concept
of number in order to remove the restrictions on subtraction and divi-
sion. Here also we shall be guided throughout by the desire to preserve
in the extended domain the laws which governed the original domain.

We shall therefore agree to add to the ordinary points on each line a
single ““ideal” point. This point shall be considered to belong to all the
lines parallel to the given line and to no other lines. As a consequence of
this convention every pair of lines in the plane will now intersect in a
single point; if the lines are not parallel they will intersect in an ordinary
point, while if the lines are parallel they will intersect in the ideal point
common to the two lines. For intuitive reasons the ideal point on a
line is called the point at infinity on the line.

The intuitive concept of a point on & line receding to infinity might suggest
that we add two ideal points to each line, one for each direction along the line.
The reason for adding only one, as we have done, is that we wish to preserve the
law that through any two points one and only one line may be drawn. If a line
eontained two points at infinity in common with every parallel line then through
these two ‘‘points’ infinitely many parallel lines would pass.

We shall also agree to add to the ordinary lines in a plane a single ‘“ideal”
line (also called the line at infinity in the plane), containing all the ideal
points in the plane and no other potnis. Precisely this convention is
forced upon us if we wish to preserve the original law that through
every two points one line may be drawn, and the newly gained law that
every two lines intersect in a point. To see this, let us choose any two
ideal points. Then the unique line which is required to pass through
these points cannot be an ordinary line, since by our agreement any
ordinary line contains but one ideal point. DMoreover, this line cannot
contain any ordinary points, since an ordinary point and one ideal point
determine an ordinary line. Finally, this line must contain all the
ideal points, since we wish it to have a point in common with every
ordinary line. Hence this line must have precisely the properties which
we have assigned to the ideal line in the plane.

According to our conventions, a point at infinity is determined or is
represcnted by any family of parallel lines, just as an irrational number is
determined by a sequence of nested rational intervals, The statement
that the intersection of two parallel lines is & point at infinity has no
mysterious connotation, but is only a convenient way of stating that the
lines are parallel. This way of expressing parallelism, in the language
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originally reserved for intuitively different objects, has the sole purpose
of making the enumeration of exceptional cases superfluous; they are
now automatically covered by the same kind of linguistic expressions or
other symbols that are used for the “ordinary”’ cases.

To sum up: our conventions regarding points at infinity have been so
chosen that the laws governing the incidence relation between ordinary
points and lines continue to hold in the extended domain of points,
while the operation of finding the point of intersection of two lines,
previously possible only if the lines are not parallel, may now be per-
formed without restriction. The considerations which led to this formal
simplification in the properties of the incidence relation may seem some-
what abstract. But they are amply justified by the result, as the reader
will see in the following pages.

2. Ideal Elements and Projection

The introduction of the points at infinity and the line at infinity in a
plane enables us to treat the projection of one plane onto anotherin a
much more satisfactory way. Let us consider the projection of a plane
x onto a plane =’ from a center O (Fig. 83). This projection estab-

/\

Fig. 82. Projection into elements at infinity.

lishes a correspondence between the points and lines of = and those of =/,
To every point A of = corresponds a unique point A’ of ', with the
following exceptions: if the projecting ray through O is parallel to the
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plane =’, then it intersects = in a point A to which no ordinary point
of =’ corresponds. These exceptional points of = lie on a line ! to which
no ordinary line of =’ corresponds. But these exceptions are eliminated
if we make the agreement that to 4 corresponds the point at infinity
in =’ In the direction of the line OA4, and that to ! corresponds the line

+ infRnit PO Tn +han + —_—
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to any point B’ on the line m’ in =’ through which pass all the rays
from O parallel to the plane . To m' itself will correspond the line
at infinity in #. Thus, by the introduction of the points and line at
infinity in a plane, a projection of one plane onto another establishes a
correspondence between the points and lines of the two planes which is
biunique without exception. (This disposes of the exceptions mentioned
in the footnote on p. 169.) Moreover, it is easily seen to be a conse-
quence of our agreement that a point lies on a line if and only if the
projection of the point lies on the projection of the line. Hence all state-
ments about collinear points, concurrent lines, etc. that involve only
points, lines, and the incidence relation, are seen to be invariant under
projection in the extended sense. This enables us to operate with the
points at infinity in a plane = simply by operating with the corresponding
ordinary points in a plane =’ codérdinated with = by a projection.

* The interpretation of the points at infinity of a plane = by means of
projection from an external point O onto ordinary points in another
plane =’ may be used to give a concrete Euclidean “model” of the ex-
tended plane. To this end we merely disregard the plane =’ and fix our
attention on = and the lines through 0. To each ordinary point of =
corresponds a line through O not parallel to x; to each point at infinity
of x corresponds a line through O parallel to r. Hence to the totality of
all points, ordinary and ideal, of = corresponds the totality of all lines
through the point O, and this correspondence is biunique without
exception. The points on a lrne of = will correspond to the lines in a
plane through 0. A point and a line of = will be incident if and only if
the corresponding line and plane through O are incident. Hence the
geometry of incidence of points and lines in the extended plane is
entirely equivalent to the geometry of incidence of the ordinary lines and
planes through a fixed point of space.

*In three dimensions the situation is similar, although we can no
longer make matters intuitively clear by projection Again we intro-
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In each plane we have a line at infinity. Next we have to introduce a
new element, the plane at infinity, consigting of all points at infinity of
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the space and containing all lines at infinity. Each ordinary plane inter-
sects the plane at infinity in its line at infinity.

3. Cross-Ratio with Elements at Infinity

A remark must be made about cross-ratios involving elements at
infinity. Let us denote the point at infinity on a straight line I by the
symbol «. If A, B, C are three ordinary points on I, then we may
assign a value to the symbol (ABC ) in the following way: choose a
point P on l; then (4 BC «) should be the limit approached by (ABCP)
as P recedes to infinity along . But

Fig. 84. Cross-ratio with a point at infinity.

CA /PA
(ABCP) = 8/ BB’
and as P recedes to infinity, PA/PB approaches 1. Hence we define
(ABCw) = CA/CB.

In particular, if (ABC®) = —1, then C is the midpoint of the segment
AB: the midpoint and the point al infinity in the direction of a segment
divide the segment harmonically.

Exercisesa: What is the cross-ratio of four lines [}, Iy, I, L4 if they are parallel?
What is the cross-ratio if Il is the line at infinity?

§5. APPLICATIONS

1. Preliminary Remarks

With the introduetion of elements at infinity it is no longer neecessary
to state explieitly the exceptional eases that arise in construetions and
theorems when two or more lines are parallel. We need merely re-
member that when a point is at infinity all the lines through that point
are parallel. The distinetion between central and parallel projection
need no longer be made, since the latter simply means projection from
a point at infinity. Tu Figure 72 the point O or the line PQR may be
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at infinity (Fig. 85 shows the former case); it is left as an exercise for
the reader to formulate in “finite” language the corresponding state-
ments of Desargues’s theorem.

Fig. 85. Desargues's configuration wilth center at infinity.

Not only the statement but even the proof of a projective theorem is
often made simpler by the use of elements at infinity. The general
principle is the following. By the “projeetive class” of a geometrical
figure ' we mean the elass of all figures into which F may be earried
by projeetive transformations. The projective properties of ¥ will be
identical with those of any member of its projeetive elass, since pro-
jective properties are by definition invariant under projection. Thus,
any projeetive theorem (one involving only projective properties) that
is true of F will be true of any member of the projective class of F,
and conversely. Hence, in order to prove any such theorem for F, it
suffices to prove it for any other member of the projective class of F.
We may often take advantage of this by finding a special member of
the projective class of F for which the theorem is simpler to prove than
for F itself. For example, any two points A, B of a plane x can be
projected to infinity by projecting from a center O onto a plane =’
parallel to the plane of O, 4, B; the straight lines through 4 and those
through B will be transformed into two families of parallel lines. In
the projective theorems to be proved in this section we shall make such

. . .
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The following elementary fact about parallel lines will be useful. Let
two straight lines, intersecting at a point O, be cut by a pair of lines [,
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and b at points A, B, C, D, as shown in Figure 86. If I; and L are
parallel then

Fig. 86.
04 _ 0B
OoC =~ 0D’
.. OA OB
and conversely, if oc = 0D then !} and & are parallel. The proof

follows from elementary properties of similar triangles, and will be left
to the reader.

2. Proof of Desargues’s Theorem in the Plane

We now give the proof that for two triangles ABC and A’B’C’ in a
plane situated as shown in Figure 72, where the lines through corre-
sponding vertices meet in a point, the intersections P, @, R of the corre-
sponding sides lie on a straight line. To do this we first project the
figure so that @ and R go to infinity. After the projection, AB will be
parallel to A’B’, AC to A’C’, and the figure will appear as shown in
Figure 87. As we have pointed out in Article 1 of this section, to

A‘

co Y ¢
Fig. 87, Proof of Desargues’s theorem.
prove Desargues’s theorem in general it suffices to prove it for this special

type of figure For this purpose we need only show that the inter-
section of BC and B’C’ also goes to infinity, so that BC is parallel to
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B'C’; then P, @, R will indeed be collinear (since they will lie on the line
at mhnlty) Now

l
i

AB|| A'B’ implies :: ,

and

AC || A'C’ implies z-T,
y 8

Therefore -Tf = :E, this implies BC || B'C’, which was to be proved.
vy

Note that this proof of Desargues’s theorem makes use of the metric
notion of the length of a segment. Thus we have proved a projective
theorem by metric means. Moreover, if projective transformations are
defined “‘intrinsically’”’ as plane transformations that preserve cross-
ratio (see p. 177), then this proof remains entirely in the plane.

Ezxercise: Prove, in a similar manner, the converse of Desargues’s theorem: If
triangles ABC and A'B’C* have the property that P, Q, K arc collincar, then the
lines AA’, BB’, CC’, are concurrent.

3. Pascal’s Theoremt

This theorem states: If the vertices of a hezagon lic alternately on a
pair of intersecling lines, then the three intersections P, Q, R of the oppositc
sides of the hexagon are collinear (Fig. 88). (The hexagon may intersect
itself. The “opposite” sides can be recognized from the schematic
diagram of Fig. 89.)

By performing a preliminary projection we may assume that P and Q
are at infinity, Then we need only show that R also is at infinity.
The situation is illustrated in Figure 90, where 23 || 56 and 12 || 45.
We must show that 16 || 34. We have

e _ b+ y b _a_—_}_—_x_

at+z b+y+s’ b+y a+z+r

Therefore

e _atzxz+r
b b+ y+ s’
so that 16 || 34, as was to be proved.
1 On p. 209 we shall discuss a more general theorem of the same type. The

present special case 1s also known by the name of its discoverer, Pappus of Alex-
andria (third century A.D.),
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3
5
Fig. 89 Fig. 88, Pascal’s configuration.
A /
*
r
2
&
6
a

b 1 y 5 8 3

Fig. 80, Proof of Pascal's theorem.
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4. Brianchon’s Theorem

This theorem states: If the sides of a hexagon pass alternately through
two fized points P and Q, then the three diagonals joining opposite pairs
of vertices of the hexagon are concurrent (see Fig. 91). By a projection

Q

P
Fig. 91. Brianchon's configuration.
we may send to infinity the point P and the point where two of the
diagonals, say 14 and 36, intersect. The situation will then appear
as in Figure 92. Since 14 || 36 we have a/b = u/v. But z/y = a/b
and u/v = r/s, Therefore z/y = r/s and 36 || 25, so that all three of

the diagonals are parallel and therefore concurrent. This suffices to
prove the theorem in the general case.

Q

¥ig. 03. Prool of Brianchon's theorem.
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5. Remark on Duality

The reader may have noticed the remarkable similarity between the
theorems of Pascal (1623-1662) and Brianchon (1785-1864). This simi-
larity becomes particularly striking if we write the theorems side by side:

Pascal’s Theorem Brianchon’s Theorem

If the vertices of a hexagon lie If the sides of a hexagon pass
alternately on two straight lines, the | allernately through two points, the
points where opposite sides meet are | lines joining opposile vertices are
collinear, concurrent.

Not only the theorems of Pascal and Brianchon, but all the theorems
of projective geometry occur in pairs, each similar to the other, and, so
to speak, identical in structure. This relationship is called duality. In
plane geometry point and line are called dual elements. Drawing a line
through a point, and marking a point on a line are dual operations, Two
figures are dual if one may be obtained from the other by replacing each
element and operation by its dual element or operation. Two theorems
are dual if one becomes the other when all elements and operations are
replaced by their duals. For example, Pascal’s and Brianchon's theo-
rems are dual, and the dual of Desargues’s theorem is precisely its con-
verse. ‘This phenomenon of duality gives projective geometry a char-
acter quite distinct from that of elementary (metric) geometry, in which
no such duality exists. (For example, it would be meaningless to speak
of the dual of an angle of 37° or of a segment of length 2.) In many
textbooks on projective gcometry the principle of duality, which states
that the dual of any true theorem of projective geomelry 18 likewise a true
theorem of projective geometry, is exhibited by placing the dual theorems
together with their dual proofs in parallel columns on the page, as we
have done above. The basic reason for this duality will be considered
in the following scction (sec also p. 217).

§6. ANALYTIC REPRESENTATION
1. Introductory Remarks

In the early development of projective geometry there was a strong
tendency to build everything on a synthetic and ‘“‘purely geometric”
basis, avoiding the use of numbers and of algebraic methods. This
program met with great difficulties, since there always remained places
where some algebraic formulation seemed unavoidable. Complete suc-
cess in building up a purely synthetic projective geometry was only
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attained toward the end of the nineteenth century, at a rather high
cost in complication. In this respect the methods of analytic gcometry
have been much more successful. The general tendency in modern
mathematics is to base everything on the number concept, and in
geometry this tendency, which started with Fermat and Descartes, has
had decisive triumphs. Analytic geometry has developed from the

status of a mere tool in geometrical reasoning to a subject where the
intuitive geometrical interpretation of the operations and results is no
longer the ultimate and exclusive goal, but has rather the function of a
guiding principle that aids in suggesting and understanding the ana-
lytical results. This change in the meaning of geometry is the product
of a gradual historical growth that has greatly enlarged the scope of the
classical geometry, and at the same time has brought about an almost
organic union of geometry and analysis.

In analytic geometry the ‘“‘cobrdinates’” of a geometrical object are
any set of numbers which characterize that object uniquely. Thus a
point is defined by giving its rectangular codrdinates z, y or its polar
codrdinates p, 6, while a triangle can be defined by giving the codrdinates
of its three vertices, which requires six cotrdinates in all. We know
that a straight line in the z, y-plane is the geometrical locus of all points
P (z, y) (see p. 75 for this notation) whose codrdinates satisfy some
linear equation

(1) ax + by + ¢ = 0.

We may therefore call the three numbers a, b, ¢ the ““codrdinates” of
this line. For example, a = 0, b = 1, ¢ = 0 define the line y = 0,
which is the z-axis; a = 1, b = —1, ¢ = 0 define the line 2 = y, which
bisects the angle between the positive z-axis and the positive y-axis.
In the same way, quadratic equations define ‘‘conic sections':

2+ =1 a circle, center at origin, radius r,
(x—a)+ @y —-b)'=1 a circle, center at (a, b), radius 7,
2 2
% + % =1 an ellipse,

ete.

The naive approach to analytic geometry is to start with purely
“geometric” concepts—point, line, etc.—and then to translate these
into the language of numbers. The modern viewpoint is the reverse.
We start with the set of all pairs of numbers z, ¥ and call each such pair
a point, since we can, if we choose, interpret or visualize such a pair of
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numbers by the familiar notion of a geometrical point. Similarly, a
lincar equation between z and y is said to define a line. Such a shift of
emphasis from the intuitive to the analytical aspect of geometry opens
the way for a simple, yet rigorous, treatment of the points at infinity
in projective geometry, and is indispensable for a deeper understanding
of the whole subject. For those readers who possess a certain amount
of preliminary training we shall give an account of this approach.

*2. Homogeneous Coordinates. The Algebraic Basis of Duality
In ordinary analytic geometry, the rectangular cobrdinates of a point
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pendicular axes. This system breaks down for the points at infinity in
the extended plane of projective geometry. Hence if we wish to apply
analytic methods to projective geometry it is necessary to find a codrdi-
nate system which shall embrace the ideal as well as the ordinary points.
The introduction of such a coérdinate system is best described by
supposing the given X, Y-planc » imbedded in three-dimensional space,
where rectangular codrdinates z, y, z (the signed distances of a point
from the three codrdinate planes determined by the z, y, and z axes)
have been introduced. We place = parallel to the z, ¥ coérdinate plane
and at a distance 1 above it, so that any point P of » will have the
three-dimensional codrdinates (X, Y, 1). Taking the origin O of the
codrdinate system as the center of projection, we note that each point I
determines a unique line through O and conversely. (See p. 184. The
lines through O and parallel to » correspond to the points at infinity of =.)
We shall now describe a system of ‘‘homogeneous codrdinates” for
the points of . To find the homogeneous codrdinates of any ordinary
point P of x, we take the line through O and P and choose any point @
other than O on this line (see Fig. 93). Then the ordinary three-
dimensional cotrdinates z, ¥, z of @ are said to be homogeneous codrdinates
of P. In particular, the codrdinates (X, Y, 1) of P itself are a set of
homogeneous coordinates for P, Moreover, any other set of numbers
(tX, tY, t) with ¢ ¢ 0 will also be a set of homogeneous codrdinates for P,
since the coordinates of all points on the line OP other than O will be
of this form. (We have excluded the point (0, 0, 0) since it lies on all
lines through O and does not serve to distinguish one from another.)
This method of introducing codrdinates in the plane requires three
numbers instead of two to specify the position of a point, and has the
further disadvantage that the codrdinates of a point are not determined
uniquely but only up to an arbitrary factor {. But it has the great ad-
vantage that the points at infinity in x are now included in the coérdi-
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. ine
through O parallel to . Any point @ on this line will have cobrdinates
of the form (z, y, 0). Hence the homogeneous codrdinates of a point al
snfinily in x are of the form (x, y, 0).

z

)

Fig. 93. Homogeneous colrdinates.

The equation in homogeneous cosrdinates of a straight line in = is

readily found by observing that the lines ,ozmng O to the points of this

line lic in a plane through O. It is proved in analytic geometry that
the equation of such a plane is of the form

ax + by + cz = 0.
Hence this is the equation in homogeneous codrdinates of a straight
line in =.

Now that the geometrical model of the points of = as lines through O
has served its purpose, we may lay it aside and give the following
purely analytic definition of the extended plane:

A point is an ordered triple of real numbers (z, ¥, 2), not all of which
are zero. 'Two such triples, (11, %1, 21) and (22, ¥z, 22), define the same
point if for some ¢t #= 0,

xy = lz,,
y2=tyls
23 = l2a
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In other words, the cotrdinates of any point may be multiplied by any
non-zero factor without changing the point, (It is for this reason that
they are called homogeneous codrdinates.) A point (z, ¥, 2) is an
ordinary point if z = 0;if z = 0, it is a point at infinity.

A straight line in = consists of all points (z, ¥, z) which satisfy a linear
equation of the form

(1) ax + by + cz = 0,

where a, b, ¢ are any threce constants, not all zero. In particular, the
points at infinity in x all satisfy the linear equation

(2) z=0.

This is by definition a line, and is called the line at infinity in . Since
a line is defined by an equation of the form (17), we call the triple of
numbers (a, b, ¢) the homogeneous coérdinales of the line (1’). It follows
that (ta, tb, ic), for any ¢t # 0, arc also codrdinates of the line (1’), since
the cquation

3) (ta)r + (th)y + (kc)e = O

is satisfied by the same codrdinate-triples (z, y, z) as (1°).

In these definitions we observe the perfect symmetry between point
and line: each is specified by three homogeneous codrdinates (u, v, w).
The condition that the point (z, y, 2) lie on the line (a, b, ¢) is that

ar + by 4 cz = 0,

and this is likewise the condition that the point whose coordinates are
(a, b, ¢) lie on the line whose codrdinates are (z, y, 2). For example,
the arithmetical identity

2.3+ 1.4 —52=0

may be interpreted equally well as meaning that the pomnt (3, 4, 2)
lies on the line (2, 1, —5) or that the point (2, 1, —5) lies on the line
(3,4,2). This symmetry is the basis of the duality in projective geome-
try between point and line, for any relationship between points and
Jines becomes a relationship between lines and points when the coordi-
nates are properly re-interpreted. In the new interpretation the pre-
vious coordinates of points and lines are now thought of as representing
lines and points respectively. All the algebraic operations and results
remain the same, but their interpretation gives the dual counterpart of
the original theorem. 1t is to be noted that this duality does not ho}?
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in the ordinary plane of two cotrdinates X, Y, since the equation of a
straight line in ordinary coordinates

aX+bY +c=20

is not symmetrical in X, Y and a, b, ¢. Only by including the
points and the line at infinity is the principle of duality perfectly
established.

To pass from the homogeneous codrdinates z, y, 2z of an ordinary point P in
the plane.» to ordinary rectangular codrdinates, we simplyset X = z/2, Y = y/z.
Then X, Y represent the distances from the point P to two perpendicular axes in
x, parallel to the z- and y-axes, as shown in Figure 93. We know that an equation
of the form

aX +0Y +c=20

will represent a straight linein . Onsubstituting X = z/z, Y = y/2 and multi-
plying through by z we find that the equation of the same line in homogeneous co-
ordinates is, as stated on page 195,

az + by + cz = 0.

Thus the equation of the linc 2z — 3y + z = 0 in ordinary rectangular codrdinates
X,Yis2X — 3Y + 1= 0. Of course, the latter cquation fails for the point at
infinity on this line, one sct of whose homogeneous codrdinates is (3, 2, 0).

One thing remains to be said. We have succceded in giving a purely analytic
definition of point and line, but what of the equally important concept of projec-
tive transformation? It may be proved that a projective transformation of one
plane onto another as defined on page 189 is given analytically by a set of lincar
equations,

T =gz + by + ¢z,
4) y' = a3z + by + cez,
2' = a3 4 bay + caZ,

connecting the homogencous codrdinates ', y’, 2’ of the points in the planc »
with the homogeneous codrdinates z, ¥, 2 of the points in the plane ». ¥From
our present point of view we may now define a projective transforination as onc
given by any set of linear equations of the form (4). The tlhieorems of projective
geometry then become thcorems on the behavior of nuinber triples (z, y, z) under
such transformations. For example, the proof that the cross-ratio of four points
on a line is unchanged by such transformations becomes simply an exercise in
the algebra of linear transformations. We cannot go further into the details of
this analytic procedure. Instead we shall return to the more intuitive aspects
of projective geometry.

’

§7. PROBLEMS ON CONSTRUCTIONS WITH THE STRAIGHT-
EDGE ALONE

In the constructiona below it is understood that only the straightedge is
admitted as tool.



Problems 1 to 18 are contained in a8 paper by J. Steiner in which he proves
that the compass can be dispensed with as a tool for gcometrical constructions
if a fixed circle with its center is given (see Chapt. III, p. 161). The reader is
advised to solve these problems in the order given.

A set of four lines a, b, ¢, d through a point P 18 called harmonic, if the cross-
ratio (abed) equals —1. a and b are said to be conjugale with respect to ¢ and d,
and vice versa,

1) Prove: If, in a set of four harmonic lines a, b, ¢, d, the ray a bisects the angle
between ¢ and d, then b 18 perpendicular to a.

2) Construct the fourth harmonic line to three given lines through a point.
(Hint: Use the theorem on the complete quadrilateral.)

3) Coustruct the fourth harmonic point to three points on a line.

4) If a given right angle and a given arbitrary angle have their vertex and one
side in common, double the given arbitrary angle.

6) Given an angle and its bisector b, Construct a perpendicular to & through
the vertex P of the given angle.

6) Prove: If thelines!,,l;,1s, -+, I, through a point P intersect the straight
line a in the points A;, Ay, +--, A, and intersect the line b in the points
By, By, .-+, B., then all the intersections of the pairs of lines A:B; and AuBs
(I k;i,k=1,2 ..., n)lie on a straight line,

7) Prove: If a parallel to the side BC of the triangle ABC intersects AB in B’
and AC in C’, then the line joining A with the intersection D of B'C and C'B
bisects BC.

7a) Formulate and prove the converse of 7.

8) On a straight linec I three point P, @,Rare given, such that@ is the midpoiut
of the segment PR. Construct a paralle! to ! through a given point S,

9) Given two parallel lines /; and [, ; bisect a given segment ABon !, .

10) Draw a parallel through a given point P to two given parallel lines [, and
l. (Hint: Reduce 9 to 7 using 8.)

11) Steiner gives the following solution to the problem of doubling a given
line segment AB when a parallel I to ABis given: Through a point C noton ! nor
on the line AB draw CA intersecting I at A;, CB interseeting ! at B; . Then
(see 10) draw a parallel to! through C, which meets BA,; at D. If DB, meets AB
at E, then AE = 2-AB.

Prove the last statement.

12) Divide a segment AB into n equal parts if & parallel [ to AB is given,
(Hint: Construct first the n-fold of an arbitrary segment on !/, using 11,)

13) Given a parallelogram ABCD, draw a parallel through a point P to a
straight linc . (Hint: Apply 10 to the center of the parallelogram and use 8.)

14) Given a parallelogram, multiply a given scgment by n, (Hint: Use 13
and 11.)

15) Given a parallelogram, divide a given segment into n parts.

18) If a fixed circle and its center are given, draw a paralle! to a given straight
line through a given point. (Hint: Use 13.)

17) If & fixed circle and its center are given, multiply and divide a given seg-
ment by n. (Hint: Usc 13.)

18) Given a fixed circle and its center, draw a perpendicular to a given line
through a given point. (Hint: Using a rectangle inscribed in the fixed circle
and having two sides paralle! to the given line, reduce to previous exercised.)
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19) Using the results of problemis 1-18, which basic construction problems can
you solve if your tool is & ruler with two paralle! edges?

20) Two given straight lines I, and I, intersect at a point P outside the given
gshect of paper. Construct the line joining a given point Q with P. (Hint:
Complete the given elements to the figure of Desargues’s theorcin for the plane

in such a way that P and Q become intersections of corresponding sides of the
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21) Construct the line joining two given points whose distance is greater than
the length of the straightedge used. (Hint: Use 20.)

22) Two points P and @ outside the given shect of paper are determined by
two pairs of struight lines !, , Iy and m; , m, through P and Q, respectively. Con-
struct that part of the line PQ that lies on the given sheet of paper. (Hint: To
obtain a poiut of PQ coinplete the given cleinents ton figure of Desargues’s thicorem
in such a way that one triangle has two siddes on Iy and s, and the other one
corresponding sides on I; and m; .)

23) Solve 20 by means of Pascal’s theorem (p.188). (Hint: Complete the given
elementa to a figurc of Pascal’s theorem, using I3, s a8 u pair of opposite sides of
the hexagon and @ as point of intersection of another pair of opposite sides.)

*24) Two straight lines entirely outside the given sheet of paper are each given
by two pairs of straight lines intersecting at points of the lines outside the paper,
Determine their point of interscction by a pair of lines through it.

§8. CONICS AND QUADRIC SURTFACES
1. Elementary Metric Geometry of Conics

Until now we have been concerned only with points, lines, planes, and
figures formed by a number of these. If projective geometry were
nothing but the study of suel: “linear” figures, it would be of relatively
little interest. It is a fact of fundamental iiuportance that projective
geometry is nof confined to the study of linear figures, but includes also
dimensions. Apollonius’ metric treatment of the conic sections—
ellipses, hyperbolas, and parabolas—was one of the great mathematieal
achievements of antiquity. The importance of conic sections for pure
and applied mathematics (for example, the orbits of the planets and of
the electrons in the hydrogen atom are conic sections) can hardly be
overestimated. It is little wonder that the classical Greek theory of
conic sections is still an indispensable part of mathematical instruction,
But Greek geometry was by no means final. Two thousand years later
the important projective properties of the conics were discovered. In
spite of the simplicity and beauty of these properties, academic inertia
has so far prevented their introduction into the high school curriculum,

We shall begin by recalling the metric definitions of the conic sections.
There are various such definitions whose equivalence is shown in ele-
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mentary geometry. The usual ones refer to the foci. An ellipse is de-
fined as the geometrical locus of all points P in the plane the sum of
whose distances, ry, r;, from two fixed points F,, F,, the foct, has a
constant value. (If the two foci coincide the figure is a circle.) The
hyperbola 1s defined as the locus of all points P in the plane for which the
absolute value of the difference r; — r; is equal to a fixed constant.
The parabola is defined as the geometrical locus of all points P for
which the distance r to a fixed point F is equal to the distance to a given
line L.

In terms of analytic geometry these curves can all be expressed by
equations of the second degree in the cotrdinates x, . It is not hard
to prove, conversely, that any curve defined analytically by an equation
of the second degree:

ax’ + by +ezy+dz+ey+ f=0,

is either one of the three conics, a straight line, a pair of straight lines,
a point, or imaginary. Thisisusually proved by introducing a new and
suitable cobrdinate system, as is done in any course in analytic geometry.

These definitions of the conic sections are essentially metrie, since
they make use of the concept of distance. But there is another defi-
nition that establishes the place of the conic sections in projective
geometry: The conic sections are simply the projections of a circle on a plane.
If we project a circle C from a point O, then the projecting lines will
form an infinite double cone, and the intersection of this cone with a
plane r will be the projection of C. This intersection will be an ellipse
or a hyperbola according as the plane cuts one or both portions of the
cone. The intermediate case of the parabola occurs if = is parallel to
one of the lines through O (see Fig. 94),

The projecting cone need not be a right circular cone with its vertex O
perpendicularly above the center of the circle C; it may also be oblique.
In all cases, as we shall here accept without proof, the intersection of
the cone with a plane will be a curve whose equation is of second degree;
and conversely, every curve of second degree can be obtained from a
circle by such a projection. It is for this reason that the curves of
second degree are called conic sections.

When the plane intersects only one portion of a right circular cone
we have stated that the curve of intersection F is an ellipse. We may

+ * » + »
.
brove that E satisfies the usual foecal definition of the ellipse, as given

above, by a stimple but beautiful argument given in 1822 by the Belgian
mathematician G. P. Dandelin. The proof is based on the introduetion
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of the two spheres S; and S: (Fig. 95), which are tangent to » at the
points F; and Fa, respectively, and which touch the cone along the
parallel circles K; and K; respectively. We join an arbitrary point

Figx. 94, Conic sections.

P of E with F, and F; and draw the line joining P to the vertex O of the
cone. This line lies entirely on the surface of the cone, and intersects
the circles K, and K3 in the points @, and @Q: respectively. Now PF,
and PQ, are two tangents from P to S, , so that

PF, = PQ,.
Similarly,
PFy, = PQ,.
Adding these two equations we obtain
PFy 4+ PFy, = PQ, + PQ,.
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But PQ, + PQ: = Q. is just the distance along the surface of the
cone between the parallel circles K, and Kyand is therefore independent
of the particular choice of the point P on E. The resulting equation,

PF; + PF; = constant
0

Fig. 856. Dandelin's aphares,

for all points P of E, is precisely the focal definition of an ellipse. ¥ is
therefore an ellipse and F,, F; are its foci.

Ezxercise: When a plane cuts both portions of the cone, the curve of intersec-
tion is a hyperbola. Prove this fact, using one sphere in each portion of the cone.

2. Projective Properties of Conics

On the basis of the facts stated in the preceding section we shall
adopt the tentative definition: a conic is the projection of a circle on a
plane. This definition is more in keeping with the spirit of projective
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geometry than is the usual focal definition, since the latter is entirely
based on the metrie notion of distance. Even our present definition is
not free from this defect, since ““circle’’ is also a concept of metric geome-
try. We shall in a moment arrive at a purely projective definition
of the conics.

Since we have agreed that a conic is merely the projection of a circle
(i.e., that the word ‘“‘conic’ is to mean any curve in the projective
class of the circle; see p. 186), it follows that any property of the
circle that is invariant under projection will also be possessed by any
conic. Now a circle has the well-known (metric) property that a given
arc subtends the same angle at every point O on the eircle. In Figure 96,
the angle AOB subtended by the arc A B is independent of the position
of 0. This fact can be brought into relation with the projective concept
of cross-ratio by considering not two points A, B but four points A, B,
C, D on the circle. The four lines a, b, ¢, d joining them to a fifth
point O on the circle will have a cross-ratio (a b ¢ d) which depends
only on the angles subtended by the arcs CA, CB, DA, DB. If we

Fig. 98. Croas-ratios on a circle.

join A, B, C, D to another point O’ on the circle, we obtain four rays
a’, b, ¢’, d’. From the property of the eircle just mentioned, the two
quadruples of rays will be “congruent.”t Hence they will have the
same cross-ratio: (@’ b ¢’ d') = (@ b c d). If we now project the

1 A set of four concurrent lines a, b, ¢, d 18 =ad to be congruent to another
set a’, b’, ¢/, d’' if the angles between every pair of lines of the first set are equal
and have the same sense as the angles between eorresponding lines of the second
set
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circle into any conic K, we shall obtain on K four points, again called
A, B, C, D, two other points 0, 0’, and the two quadruples of lines
@, b,¢c,dand a, bV, ¢/, d. These quadruples will not be congruent,
since equality of angles is in general destroyed by projection. But since
cross-ratio is invariant under projection, the equality (@ b ¢ d) =
(@’ b ¢ d') will still hold. This leads to a fundamental theorem:
If any four given points A, B, C, D of a conic K are joined lo a fifth point
O of K by lines a, b, ¢, d, then the value of the cross-ratio (a b ¢ d) s
independent of the position of O on K (Fig. 97).

Fig. 97. Cross-ratios on an ellipse.

This is indeed a remarkable result. We already knew that any four
given points on a straight line appear under the same cross-ratio from
any fifth point O. This theorem on cross-ratios is the basic fact of
projective geometry. Now we learn that the same is true of four points
on a conic, with one important restriction: the fifth point is no longer
absolutely free in the plane, but is still free to move on the given conie.

It is not difficult to prove a converse of this result in the following
form: if there are two points O, O’ on a curve K such that every quad-
ruple of four points 4, B, C, D on K appears under the same cross-
ratio from both O and O’, then K is a conic, (and therefore 4, B, C, D
appear under the same cross-ratio from any third point O” of K). The
proof is omitted here.

These projective properties of the conics suggest a general method for
constructing such curves. By a pencil of lines we shall mean the
set of all straight lines in a plane which pass through a given point O.
Now consider the pencils through two points O and O’ which are chosen
to lie on a conic K. Betwcen the lines of pencil O and those of peneil O’
we may cstablish a biunique correspondence by coupling a line a of O
with a line @’ of O’ whenever a and @’ meet in a point 4 of the conic K.
Then any four lines g, b, ¢, d of the pencil O will have the same cross-ratio
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as the four corresponding lines a’, b, ¢/, d’ of O’. Any biunique cor-
respondence between two pencils of lines which has this property is
called a projective correspondence. (This definition is obviously the
dual of the definition given on p. 178 of a projective correspondence
between the points on two lines.) Pencils between which there is
defined a projective correspondence are said to be projectively related.
With this definition we can now state: The conic K is the locus of the
intersections of corresponding lines of two projectively related pencils.
This theorem provides the basis for a purely projective definition of the
conies: A conic is the locus of the inlersections of corresponding lines in two
projectively related pencils.t It is tempting to follow the path into the
theory of conics opened by this definition, but we shall confine ourselves
to a few remarks.

Pairs of projectively related pencils can be obtained as follows.
Project all the points P on r. straight line ! from two different centers O
and O'; in the projecting pencils let lines a and a” which intersect on [

L4

[

Fig. 98, Praliminary to construction of projectively related pencils.

correspond to each other. Then the two pencils will be projectively
related. Now take the pencil O’ and transport it rigidly into any
position O’. The resulting pencil O’ will be projectively related to O.
Moreover, any projective correspondence hetween two pencils can be so
obtained. (This fact is the dual of kx. 1 on p. 179.) If the pencils O
and O’ are congruent, we obtain a circle. If angles are equal but with
opposite scnse, the conic is an equilateral hyperbola (sce Fig. 99).

Note that this definition of conic may yicld a locus whicl is a straight
line, as in Figure 98. In this case the line O O corresponds to itself,

t This locus may, under certain circumstances, degenerate into a straight line;
see Fig. 08.
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and all its points are counted as belonging to the locus. Hence the
conic degenerates into a pair of lines, which agrees with the fact there
are sections of a cone {those obtained by planes through the vertex)
which consist of two lines.

Fig. 99. Circle and equilateral hyperbola generated by projective pencila,

Ezxercises: 1) Draw ellipses, hyperbolas, and parabolas by means of projective
pencils. (The reader is strongly urged to experiment with such constructions.
They will contribute greatly to his understanding.)

2) Given five points, O, 0/, A, B, C, of an unknown conic K. It is re-
quired to construct the point D where a given line d through O intersects K.
(Hint: Consider through O the rays q, b, ¢ given by OA, OB, OC, and similarly
through O’ the rays a’, ', ¢’. Draw through O the ray d and construct through
O’ the ray d’ such that (a, b, ¢, d) = (a’, V', ¢’, d’). Then the intersection of d
and d’ is necessarily a point of K.)

3. Conics as Line Curves

The concept of tangent to a conic belongs to projective gcometry, for
a tangent to a conic is a straight line that touches the conic in only
one point, and this property is unchanged by projection. The pro-
jective propertics of tangents to conics are based on the following funda-
mental theorem: The cross-ratio of the points of intersection of any four
fixed tangents lo a conic with a fifth tangent is the same for every position
of the fifth tangent.

The proof of this theorem is very simple.  Since a conie is a projection
of a circle, and since the theorem concerns only properties which arce
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invariant under projection, a proof for the case of the circle will suffice
to establish the theorem in general.

Fig. 100, A circlo sa & st of tangents.

For the circle, the theorem is a matter of elementary geometry. Let
P, Q, R, S be any four points on a circle K with the tangents a, b, c,
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If M is the center of the circle, then obviously X. TMA

D
y 42,
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Fig. 101. The tangent property of the circle,

and 4 X TMP is cqual to the angle subtended by the are TP at a point
of K. Similarly, X T'MB is the angle subtended by the arc 7Q at a

point of K. Thercfore X. AMB = 1PQ, where 3PQ is the angle sub-
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tended by the arc PQ at a point of K. Hence the points 4, B, C, D
are projected from M by four rays whose angles are given by the fixed
positions of P, @, R, 8. It follows that the cross-ratio (4 B C D)
depends only on the four tangents a, b, ¢, d and not on the particular
position of the fifth tangent 0. This is exactly the theorem that we
had to prove.

In the preceding section we have seen that a conic may be constructed
by marking the points of intersection of corresponding lines in two pro-
jectively related pencils. The theorem just proved enables us to dualize
this construction. Let us take two tangents @ and a’ of a conic K. A
third tangent ¢ will intersect @ and a’ in two points A and 4’ respectively.
If we allow ¢ to move along the conie, this will set up a correspondence

Ae 4

between the points of a and those of @’. This correspondence between
the points of @ and those of a’ will be projective, for by our thcorem
any four points of a will have the same cross-ratio as the corresponding
four points of @’. Hence it appears that a conic K, regarded as the set
of its tangents, consists of the lines which join corresponding points of the
two projeciively related rangest of points on a and a’.

L

Y m————— ™"

C
e D

Fig. 102, Projective point ranges cn two tangents of an ollipss.

t The set of points on a straight line is called a range of pointe. This is the
dual of a pencil of lines.
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This fact may be used to give a projective definition of a conic as a
“line curve.” Let us compare it with the projective definition of a
conic given in the preceding scetion:

I

A conic as a sct of points con-
sists of the points of intersection of
corresponding lines in two pro-
jectively related pencils of lines.

II

A conic as a set of lines consists
of the lines joining corresponding
points in two projectively related

ranges of points.

Fig. 104. A parabola defined by eimilar point ranges.

If we regard the tangent to a conic at a point as the dual element to
the point itself, and if we consider a “line curve” (the set of all its
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tangents) as the dual of a “point curve” (the sct of all its points), then
the complete duality between these two statements is apparent. In the
translation from one statement to the other, replacing each concept by
its dual, the word ‘““conic’’ remains the same: in one case it is a “point
conic,” defined by its points; in the other a “line conic,”’ defined by its
tangents.  (See Fig. 100, p. 206.)

An important consequence of this fact is that the principle of duality
in plane projective geometry, originally stated for points and lines only,
may now be extended to cover conics. If, in the statement of any theorem
concerning points, lines, and conics, each element is replaced by its dual
(keeping in mind that the dual of a point on a conic is a tangent to the
conic), the result will also be a true theorem. An example of the working
of this principle will be found in Article 4 of this section.

The construction of conics as line curves is shown in Figures 103-104.
If, on the two projectively related point ranges, the two points at
infinity correspond to each other (as must be the case with congruent or
similart ranges), the conic will be a parabola; the converse is also true.

Ezxercisc: Prove the converse theorem: On any two fixed tangents of a parabola
a moving tangent cuts out two similar point ranges.

4. Pascal’s and Brianchon’s General Theorems for Conics

One of the best illustrations of the duality prineiple for conies is the
rclation between the general theorems of Pascal and of Brianchon., The
first was discovered in 1640, the second only in 1806. Yet one is an
immediate consequence of the other, sinee any thcorem involving only
conics, straight lines, and points must remain true if replaced by its
dual statement.

'The theorems stated in §5 under the same name arc degenerate
cases of the following more general theorems:

Pascal’s theorem: The opposite cdges of a hexagon inscribed in a conic
meet in three collincar points,

Brianchon’s theorem: The three diagonals joining opposite vertices of a
hexagon cireumseribed about a conie are concurrent.

Both theorems are clearly of a projective character, Their dual
nature becomes obvious if they are formulated as follows:

Pascal’s theorem: Given six points, 1, 2, 3, 4, 5, 6, on a conic. Join
sucecessive points by the lines (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1).

t It is obvinus what is meant by a “‘congruent’’ or a “similar’’ correspondence
between two ranges of points.
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Mark the points of intersection of (1, 2) with (4, 5), (2, 3) with (5, 6),
and (3, 4) with (6, 1). Then these three points of intersection lie on a
straight line.

Brianchon’s theorem: Given six tangents, 1, 2, 3, 4, 5, 6, to a conic.
Successive tangents intersect in the points, (1, 2), (2, 3), (3, 4), (4, 5),
(5, 6), (6, 1). Draw the lines joining (1, 2) with (4, 5), (2, 3) with
(5, 8), and (3, 4) with (6, 1). Then these lines go through a point,

Fig 105. Paacal's genera! configuration. Two cases sre illustrated: ons for tho hexagon 1, 2, 3, 4.5, 8,
and one for the hexagon I, 3, 5, 2, &, 4.

The proofs can be given by a specialization similar to that used in
the degenerate cases. To prove Pascal’s thcorem, let A, B; C, D, E, F
be the vertices of a hexagon inscribed in a conic K. By projection we
can make AB paralle] to ED and FA parallel to CD, so that we obtain
the configuration of Figure 107. (For convenience in representation
the hexagon is taken as self-intersecting, although this is not necessary.)
Pascal’s theorem now reduces to the simple statement that CB is
parallel to FE; in other words, the line on which the opposite edges of
the hexagon mecet is the line at infinity. To prove this, let us consider
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Fig. 107. Prool of Paacal's theorem,
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the points F, 4, B, D, which, as we know, are projected by rays having
a constant cross-ratio & from any other point of K, e.g., from C or E.
Project these points from C; then the projecting rays intersect AF in
four points, F, A, Y, «, which have the cross-ratiok. Hence YF:YA =
k. (See p. 185.) If the same points are now projected from E onto
BA, we obtain

k = (XABx) = BX:BA.
Hence we have
BX:BA = YF:YA,
which establishes the parallelism of YB and FX. This completes the
proof of Pascal’s theorem.
Brianchon’s theorem follows either by the duality principle or by

direct reasoning dual to the above. The reader will find it a good
exercise to carry out the details of the argument.

5. The Hyperboloid

In three dimensions the figures that correspond to the conics in the
plane are the “quadric surfaces”; of these the sphere and the ellipsoid
are special cases. These surfaces offer more variety and considerably
more difficulty than do the conics. Here we shall discuss briefly and
without giving proofs one of the more interesting quadrics, the “‘one-
sheeted hyperboloid.”

This surface may be defined in the following manner. Choose any
three lines, I, L, &y, in general position in space. By this we mean
that no two of the lines are to lie in the same plane nor are they all to
be parallel to any one plane. It is a rather surprising fact that there
will be infinitely many lines in space each of which intersects all three
of the given lines. To see this, let us take any plane = through I, .
Then = will intersect ; and I3 in two points, and the line m joining
these two points will intersect I, &, and I;. As the plane = rotates
about [, , the line m will move, always intersecting I, , Iz, I3, and will
generate a surface of infinite extent. This surface is the one-sheeted
hyperboloid; it contains an infinite family of straight lines of the type m.
Any three of these lines, m;, ms, m;3, will also be in general position,
and all the lines in space that interscct these three lines will also lie
in the surface of the hyperboloid. This is the fundamental fact con-
cerning the hyperboloid: it is made up of two different families of
straight lines; every three lines of the same family are in general posi-
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tion, while each line of one family intersects all the lines of the other
family,
An important projective property of the hyperboloid is that the cross-

Fig. 109, The hyperboloid.
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ratio of the four points where any four given lines of one family intersect
a given line of the other family is independent of the position of the
latter line. This follows directly from the method of construction of
the hyperboloid by a rotating plane, as the reader may show as an
exercise.

One of the most remarkable properties of the hyperboloid is that
although it contains two families of intersecting straight lines, these
lines do not make the surface rigid. If a model of the surface is con-
structed from wire rods, frec to rotate at each intersection, then the
whole figure may be continuously deformed into a variety of shapes,

§9. AXIOMATICS AND NON-EUCLIDEAN GEOMETRY
1. The Axiomatic Method

The axiomatic method in mathematics goes back at least as far as
Euclid. By no means is it true that Greck mathematics was developed
or presented exclusively in the rigid postulational form of the Elements,
But so great was the impression made by this work on subsequent genera-
tions that it became a model for all rigorous demonstration in mathe-
matics. Sometimes even philosophers, e.g. Spinoza in his Ethica, more
geometrico demonstrala, tried to present arguments in the form of theo-
rems deduced from definitions and axioms. In modern mathematics,
after a departure from the Euclidean tradition during the seventeenth
and eighteenth centuries, there has been an increasing penetration of
the axiomatic method into every field. One of the most recent results
has been the creation of a new discipline, mathematical logic.

In general terms the axiomatic point of view can be described as
follows: To prove a theorem in a deductive system is to show that the
theorem is a necessary logical consequence of some previously proved
propositions; these, in, turn, must themselves be proved; and so on.
The process of mathematical proof would therefore be the impossible
task of an infinite regression unless, in going back, one is permitted to
stop at some point. Hence there must be a number of statements,
called postulales or axioms, which are accepted as true, and for which
proof is not required. From these we may attempt to deduce all other
theorems by purely logical argument. If the facts of a scientific field
are brought into such a logical order that all can be shown to follow
from a selected number of (preferably few, simple, and plausible) state-
ments, then the field is said to be presented in an axiomatic form. The
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choice of the propositions selected as axioms is to a large extent arbi-
trary. But little is gained by the axiomatic method unless the postu-
lates are simple and not too great in number. Moreover, the postulates
must be consistent, in the sense that no two theorems deducible from
them can be mutually contradictory, and complete, so that every theorem
of the system is deducible from them., For reasons of economy it is
also desirable that the postulates be independent, in the sense that no
one of them is a logical consequence of the others. The question of the
consistency and of the completeness of a set of axioms has been the
subject of much controversy. Different philosophical convictions con-
cerning the ultimate roots of human knowledge have led to apparently
irreconcilable views on the foundations of mathematics. If mathemati-
cal entities are considered as substantial objects in a realm of “pure in-
tuition”’, independent of definitions and of individual acts of the human
mind, then of course there can be no contradictions, since mathematical
facts are objectively true statements describing existing realities. From
this “Kantian” point of view there is no problem of consistency. Un-
fortunately, however, the actual body of mathematics cannot be fitted
into such a simple philosophical framework. The modern mathematical
intuitionists do not rely on pure intuition in the broad Kantian sense.
They accept the denumerably infinite as the legitimate child of intuition,
and they admit only constructive properties; but thus basic concepts
such as the number continuum would be banished, important parts
of actual mathematics excluded, and the rest almost hopelessly com-
plicated.

Quite different is the view taken by the “formalists.” They do not
attribute an intuitive reality to mathematical objects, nor do they claim
that axioms express obvious truths concerning the realities of pure
intuition; their concern is only with the formal logical procedure of
reasoning on the basis of postulates. This attitude has a definite ad-
vantage over intuitionism, since it grants to mathematics all the freedom
necessary for theory and applications. But it imposes on the formalist
the necessity of proving that his axioms, now appearing as arbitrary
creations of the human mind, cannot possibly lead to a contradiction.
Great efforts have been made during the last twenty years to find such
consistency proofs, at least for the axioms of arithmetic and algebra
and for the concept of the number continuum. The results are highly
significant, but success is still far off. Indeed, recent results indicate
that such efforts cannot be completely successful, in the sense that
proofs for consistency and completeness are not possible within strictly
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closed systems of concepts. Remarkably enough, all these arguments
on foundations proceed by methods that in themselves are thoroughly
constructive and directed by intuitive patterns.

Accentuated by the paradoxes of set theory (see p. 87), the clash
between the intuitionists and the formalists has been much publicized
by passionate partisans of these schools. The mathematical world has
resounded with a cry about the ““crisis in the foundations.” But the
alarm was not, and must not be, taken too seriously. With all credit
to the achievements produced in the struggle for clarification of the
foundations, it would be completely unjustified to infer that the living
body of mathematics is in the least threatened by such differences of
opinion or by the paradoxes inherent in an uncontrolled drift towards
houndlese oenerality
boundless generality.

Quite apart from philosophical considerations and from interest in
foundations, the axiomatic approach to a mathematical subject is the
natural way to unravel the network of interconnections between the
various facts and to exhibit the essential logical skeleton nf the structure.
It sometimes happens that such a concentration on the formal structure
rather than on the intuitive meaning of the concepts makes it easier to
find generalizations and applications that might have been overlooked
in a more intuitive approach. But a significant discovery or an illu-
minating insight is rarely obtained by an exclusively axiomatic pro-
cedure. Constructive thinking, guided by the intuition, is the truc
source of mathematical dynamics. Although the axiomatic form is an
ideal, it is a dangerous fallacy to believe that axiomatics constitutes the
essence of mathematics. The constructive intuition of the mathemati-
cian brings to mathematics a non-deductive and irrational element which
makes it comparable to music and art.

Since the days of Euclid, geometry has been the prototype of an
axiomatized discipline. For centuries Euclid’s set of axioms has been
the object of intensive study. But only recently has it become apparent
that his postulates must be modified and completed if all of elemen-
tary geometry is to be deducible from them. Late in the nineteenth
century, for example, Pasch discovered that the ordering of points on a
line, the notion of “betweenness,” requires a special postulate. Pasch
formulated the following statement as an axiom: A straight line that
intersects one side of a triangle in any point other than a vertex must

- L] [ ]
also intersect another side of the triangle. (Lack of regard for such

details leads to many apparent paradoxes in which absurd consequences
—e.g. the well-known “proof” that every triangle is isosceles—seem to
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be deduced rigorously from Ifuclid’s axioms. This is usually done on
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inside or outside certain triangles or cu'cles, whereas they really do not.)

In his famous book, Grundlagen der Geometrie (first edition published
in 1901), Hilbert gave a satisfactory set of axioms for gecometry and at
the same time made an exhaustive study of their mutual independence,
consistency, and completeness.

Into any set of axioms there must enter certain undefined concepts,
such as “point” and “line” in geometry. Their “meaning’ or connee-
tion with objects of the physical world is mathematically unessential.
They can be regarded as purely abstract entities whose mathematical
properties in a deduetive system are given entirely by the relations that
hold among them as stated by the axioms. For example, in projective
geometry we might begin with the undefined concepts of ‘“point,”
“line,” and “incidenee,” and with the two dual axioms: “Each two
distinct points are incident with a unique line” and “Each two distinct
lines are incident with a unique point.” From the point of view of
axiomatics, the dual form of such axioms is the very source of the
principle of duality in projective geometry. Any theorem which con-
tains in its statement and proof only elements connected by dual axioms
must admit of dualization. For the proof of the original theorem con-
sists in the successive application of certain axioms, and the application
of the dual axioms in the same order will provide a proof for the dual
theorem.

The totality of axioms of geometry provides the implicit definition of
all “undefined” geometrical terms such as ‘line,” “point,” ““incident,”
etc. For applications it is important that the concepts and axioms of
geometry correspond well with physically verifiable statements ahout
‘“real,” tangible objects. The physical reality behind the concept of
“point” is that of a very small object, such as a pencil dot, while a
“gtraight line’’ is an abstraction from a stretched thread or a ray of
light. The properties of these physical points and straight lines are
found by experience to agree more or less with the formal axioms of
geometry. Quite conceivably more precise experiments might necessi-
tate modification of these axioms if they are adequately to describe
physical phenomena. But if the formal axioms did not agree more or
less with the properties of physical objects, then geometry would be of
little interest. Thus, even for the formalist, there is an authority other
than the human mind, that decides the direction of mathematical
thought.
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2. Hyperbolic Non-Euclidean Geometry

There is one axiom of Euclidean geometry whose “truth,” that is,
whose correspondence with empirical data about stretched threads or
light rays, is by no means obvious. This is the famous postulate of the
unique parallel, which states that through any point not on a given line
one and only one line can be drawn parallel to the given line. The
remarkable feature of this axiom is that it makes an assertion about the
whole extent of a straight line, imagined as extending indefinitely in
either direction; for to say that two lines are parallel is to say that they
never intersect, no matter how far they may be produced. It goes
without saying that there are many lines through a point which do not
intersect a given line within any fixed finite distance, however large.
Since the maximum possible length of an actual ruler, thread, or even a
light ray visible to a telescope is certainly finite, and since within any
finite circle there are infinitely many straight lines through a given
point and not intersecting a given line inside the circle, it follows that
this axiom can never be verified by experiment. All the other axioms
of Euclidean geometry have a finite character in that they deal with
finite portions of lines and with plane figures of finite extent. The fact
that the parallel axiom is not experimentally verifiable raises the ques-
tion of whether or not it is t1ndependent of the other axioms. If it were a
necessary logical consequence of the others, then it would be possible to
strike it out as an axiom and to give a proof of it in terms of the other
Euclidean axioms. For centuries mathematicians tried to find such a
proof, because of the widespread feeling among students of geometry
that the parallel postulate is of a character essentially different from
the others, lacking the sort of compelling plausibility which an axiom
of geometry should possess. One of the first attempts of this nature
was made by Proclus {(fourth century A.D.), a commentator on Euclid,
who tried to dispense with the need for a special parallel postulate by
defining the parallel to a given line to be the locus of all points at a
given fixed distance from the line. In this he failed to observe that the
difficulty was only shifted to another place, for it would then be necessary
to prove that the locus of such points is in fact a straight line. Since
Proclus could not prove this, he would have to accept it instead of the
parallel axiom as a postulate, and nothing would be gained, for the two
are easily seen to be equivalent. The Jesuit Saccheri (1667-1733),
and later Lambert (1728-1777), tried to prove the parallel postulate by
the indirect method of assuming the contrary and drawing absurd
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consequences. I'ar from being absurd, their conclusions really
amounted to theorems of the non-Euclidean gcometry developed later.
Had they regarded them not as absurdities, but rather as self-consistent
statements, they would have been the discoverers of non-Euclidean
geometry.

At that time, any geometrical system not absolutely in accordance
with Euclid’s “ould have been considered as obvious nonsense. Kant,
the most influential philosopher of the period, formulated this attitude

in the statement that Euclid’s axioms are inherent in the human mind,

and therefore have an objective validity for “real” space. This belief
in the axioms of Euclidean geometry as unalterable truths, existing in
the realm of pure intuition, was one of the basic tenets of Kant’s phi-
losophy. But in the long run, neither old habits of thinking nor philo-
sophical authonty could suppress the conviction that the unending
record of failure in the search for a proof of the parallel postulate was
due not to any lack of ingenuity, but rather to the fact that the parallel
postulate is really independent of the others. (In much the same way,
the lack of success in proving that the general equation of the fifth degree
could be solved by radicals led to the suspicion, later verified, that such
a solution is impossible.) The Hungarian Bolyai (1802-1860) and the
Russian Lobachevsky (1793-1856), settled the question by constructing
in all detail a geometry in which the parallel axiom does not hold. When
the enthusiastic young genius Bolyai submitted his paper to Gauss, the
“‘nrince of mathematicians,” for the recognition he so eagerly expected,
he was informed that his work had been anticipated by Gauss himself,
but that the latter had not cared to publish his results because he
dreaded noisy publicity.

What does the independence of the parallel postulate mean? Simply
that it 1s possible to construct a consistent system of “geometrical”
statements dealing with points, lines, etc., by deduction from a set of
axioms in which the parallel postulate is replaced by a contrary postulate.
Such a system is called a non-Euclidean geometry. It required the in-
tellectual courage of Gauss, Bolyai, and Lobachevsky to realize that such
a geometry, based on a non-Euclidean system of axioms, can be per-
fectly consistent.

To show the consistency of the new geometry, it is not enough to de-
duce a large body of non-Euclidean theorems, as Bolyai and Lobachev-
sky did. Instead, we have learned to build “models” of such a geom-
etry which satisfy all the axioms of Euclid except for the parallel
postulate. The simplest such model was given by Felix Klein, whose
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work in the field was stimulated by the ideas of the English geometer
Cayley (1821-1895). In this model, infinitely many “‘straight lines”
can be drawn “parallel” to a given line through an external point. Such
a geometry is called Bolyai-Lobachevskian or “hyperbolic” geometry.
(The reason for the latter name will be found on p. 226.)

Klein's model is constructed by first considering objects of ordinary
duclidean geometry and then renaming certain of these objects and the
relations between them in such a way that a non-Euclidean geometry
arises. This must, eo ipso, be just as eonsistent as the original Euclidean
geometry, because it is presented to us, seen from another point of view
and described with other words, as a body of facts of ordinary Euclidean
geometry. This model can be easily understood by means of some con-
cepts of projective geometry.

If we subject the plane to a projective transformation onto another
plane, or rather onto itsclf (by afterwards making the image plane
coincide with the original plane), then, in general, a circle and its interior
will be transformed into a conie section. But one can easily show (the
proof is omitted here) that there exist infinitely many projective trans-
formations of the plane onto itself such that a given circle plus its in-
terior is transformed into itself. By such transformations points of the
interior or of the boundary are in general shifted to other positions, but
remain inside or on the boundary of the circle. (As a matter of fact,
one can move the center of the circle into any other iuterior point.) Let
us consider the totality of such transformations. Certainly they will
not leave the shapes of figures invariaut, and are therefore not rigid
displacements in the usual sense. But now we take the decisive step
of calling them ‘“non-FEuclidean displacements’ in the geometry to be
constructed. By meaus of these “displacements” we are able to define
congruence—two figures being called congruent if there exists a non-
Euclidean displacement transforming one into the other.

The Klein model of hyperbolic geometry is then the following: The
“plane” consists only of the points interior to the cirele; points outside
are disregarded. Fach point inside the cirele is called a non-Euclidean
“point”; each chord of the circle is called a non-Euclidean “straight line’;
““displacement’ and “congruence’ are defined as above; joining “point.”
and finding the interseetion of ‘‘straight lines” in the non-Fueclidean
sense remain the same as in Euclidean gecometry. It is an easy matter
to show that the new system satisfies all the postulates of IKuclidean
geometry, with the one exception of the parallel postulate. That the
parallel postulate does not hold in the new system is shown by the fact
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that through any “point” not on a “straight line" infinitely many
“straight lines” can be drawn having no “point” in common with the
given ‘“line.” The first “straight line” is a Euclidean chord of the
circle, while the second ‘‘straight line’”” may be any one of the chords
which pass through the given “point’’ and do not intersect the first
“line” inside the circle. This simple model is quite sufficient to settle
the fundamental question which gave rise to non-Euclidean geometry,;
it proves that the parallel postulate cannot be deduced from the other
axioms of KEuelidean geometry. For if it could be so deduced, it would
be a true theorem in the geometry of Klein’s model, and we have seen
that it is not.

Strictly speaking, this argument is based on the agsumption that the geometry
of Klein’s model is consistent, so that a theorem together with its contrary cannot

Fig. 110, Klein's non-Euclidean model. Fig. 111, Non-Euclidean distance,

be proved. But the geometry of Klein’s mode! is certainly as consistent as or-
dinary Fuclidean geometry, since statements eoneerning ‘“points,’”” ‘lines,”” ete.
in Klein’s model are merely different ways of phrasing certain theorems of Fuelid-
ean gcometry. A satisfactory proof of the consistency of the axioms of Iuclidean
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anglytic geometry and hence ultimately to the number continuum, whose con-
sistency is again an open question.

* One detail which goes beyond the immediate objective should be men-
tioned here, namely, how to define non-Euclidean ‘“‘distance’” in Klein’s
model. This “distance”’ is required to be invariant under any non-
Euclidean ‘““displacement’’; for displacemeut should leave distances in-
variant. We know that cross-ratios are invanant under j)i‘jSbuuu A
cross-ratio involving two arbitrary points ° and @ inside the circle pre-

sents itself immediately if the segment PO is extended to meet the
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eircle in O and S. The cross-ratio (OSQP) of these four points is a
(positive) number, which one might hope to take as the definition of the
“distance’”’ PQ between P and . But this definition must be modified
glightly to make it workable. For if the three points P, @, R are on a

line, it should be true that PQ 4 QR = PR. Now in general
(OSQP) + (OSRKQ) = (OSEP).

Instead, we have the relation
(1) (0SQP)(OSRQ) = (OSRP),
as is seen from the equations

Q0/QS RO/RS _ RO/RS
PO/PS ~ Q0/QS PO/PS

In consequence of the equation (1) we can give a satisfactory additive
definition by measuring “distance,” not by the cross-ratio itself, but by
the logarithm of the cross-ralio:

PQ = non-Euclidean distance from P to Q@ = log (OSQP).
This distance will be a positive number, since (OSQP) > 1if P # Q,
Using the fundamental property of the logarithm (see p. 444), it follows

from (1) that PQ 4 QR = PE. The base chosen for the logarithm i«
of no importance, since change of base merely changes the unit of
measurement. Incidentally, if one of the points, e.g. Q, approaches the

circle, then the non-Euclidean distance PQ will increase to infinity.
This shows that the straight line of our non-Euclidean geometry is of
infinite non-Euclidean length, although in the ordinary Euclidean sense
it is only a finite segment of a straight line.

(OSQP)(OSRQ) = = (OSRP).

3. Geometry and Reality

The Klein model shows that hyperbolic geometry, viewed as a formal
deductive system, is as consistent as the classical Euclidean geometry,
The question then arises, which of the two is to be preferred as a descrip-
tion of the geometry of the physical world? As we have already seen,
experiment can never decide whether there 1s but one or whether there
are infinitely many straight lines through a point and parallel to a given
line, In Euclidean geometry, however, the sum of the angles of any
triangle is 180°, while it can be shown that in hyperbolic geometry the
sum is less than 180°. Gauss accordingly performed an experiment to

settle the question. He accurately measured the angles in a triangle
formed by three fairly distant mountain peaks, and found the angle-sum
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to be 180°, within the limits of experimental error. Had the result been
noticeably less than 180°, the consequence would have been that hyper-
bolic geometry is preferable to describe physical reality. But, as it
turned out, nothing was settled by this experiment, since for small tr-
angles whose sides are only a few miles in length the deviation from
180° in the hyperbolic geometry might be so small as to have been un-
detectable by Gauss’s instruments. Thus, although the experiment was
inconclusive, it showed that the Euclidean and hyperbolic geomectries,
which differ widely in the large, coincide so closely for relatively small
figures that they are experimentally equivalent. Therefore, as long
as purely local properties of space are under consideration, the choice
between the two geometries is to be made solely on the basis of simplicity
and convenience. Since the Euclidean system is rather simpler to
deal with, we are justified in using it exclusively, as long as fairly small
distances (of a few million miles!) are under consideration. But we
should not necessarily expect it to be suitable for describing the universe
as a whole, in its largest aspects. The situation here is precisely
analogous to that which exists in physics, where the systems of Newton
and Einstein give the same results for small distances and velocities,
but diverge when very large magnitudes are involved.

The revolutionary importance of the discovery of non-Euclidean
geometry lay in the fact that it demolished the notion of the axioms
of Euclid as the immutable mathematical framework into which our
experimental knowledge of physical reality must be fitted.

4. Poincaré’s Model

The mathematician is free to consider a “geometry” as defined by any
sct of consistent axioms about “‘points,” “‘straight lines,” ete.; his in-
vestigations will be useful to the physicist only if thesc axioms corre-
spond to the physical behavior of objects in the real world. From this
point of view we wish to examine the meaning of the statement “light
travels in a straight line.”” If this is regarded as the physical definition
of “straight line,” then the axioms of geometry must be so chosen as to
correspond with the behavior of light rays. Let us imagine, with Poin-
caré, a world composed of the interior of a circle C, and such that the
velocity of light at any point inside the circle is equal to the distance of
that point from the circumference. It can be proved that rays of light
will then take the form of circular arcs perpendicular at their cxtremities
to the circumference C. In such a world, the geometrical properties of
“straight lines” (defined as light rays) will differ from the Euclidean
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properties of straight lines. In particular, the parallel axiom will not
hold, since there will be infinitcly many *‘straight lines” through any
point which do not intersect a given “‘straight line.”” As a matter of
fact, the “points’” and ‘“‘straight lines” in this world will have exactly
the geometrical properties of the “points” and “lines’” of the Klein
model. In other words, we shall have a different model of a hyper-
bolic geometry. But Euclidean geometry will also apply in this world;
instead of being non-Euclidean “‘straight lines,’”” the light rays would
be Euclidecan circles perpendicular to C. Thus we see that different
systems of geometry can describe the same physical situation, provided

T TN
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Fig. 112. Poincaré’s non-Euclidean model.
that the physical objects (in this case, light rays) are correlated with
different concepts of the two systems:
light ray — “straight line’’ —hyperbolic geometry
light ray — “‘circle”’—Euclidean geometry.

Since the concept of a straight line in Euelidean geometry corresponds
to the behavior of a light ray in a homogeneous medium, we would
say that the geometry of the region inside C' is hyperbolic, meaning only
that the physical properties of light rays in this world correspond to the
properties of the ‘straight lines” of hyperbolic geometry.

5. Elliptic or Riemannian Geometry

In Euclidean geometry, as well as in the hyperbolic or Bolvai-
Lobachevskian geometry, the taeit assumption is made that the line is
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infinite (the infinite extent of the line is essentially tied up with the
concept and the axioms of “betweenness”). But after hyperbolic
geometry had opened the way for freedom in constructing geometries,
it was only natural to ask whether different non-Euclidean geometries
could be constructed in which a straight line is not infinite but finite
and closed. Of course, in such geometries not only the parallel pos-
tulate, but also the axioms of “‘betweenness’’ will have to be abandoned.
Modern developments have brought out the physical importance of
these geometries. They were first considered in the inaugural address
delivered in 1851 by Riemann upon his admission as an unpaid in-
structor (“Privat-Docent”) at the University of Goettingen. Geome-
trics with closed finite lines can be constructed in a completely consistent

Fig. 113, "'Straight lines" in & Riemannian geometry.

way. Let usimagine a two-dimensional world consisting of the surface
S of a sphere, in which we define “‘straight line” to mean great circle of
the sphere This would be the natural way to describe the world of a
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between two points on a sphere and this is a characteristic property of
straight lines in the plane, In such a world, every two “straight lines”
intersect, so that from an external point no line can be drawn parallel
to (i.e. not intersecting) a given ‘‘straight line.,”” The geometry of
“straight lines” in this world is called an ellipiic gecometry. In this
geometry, the distance between two points is measured simply by the
distance along the shorter arc of the great circle connecting the points.
Angles are measured as in Euclidean geometry. We generally consider
as typical of an elliptic geometry the fact that no parallel exists to a line,
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Following Riemann, we can generalize this geometry as follows. Let
us consider a world consisting of a curved surface in space, not neces-
sarily a sphere, and let us define the “straight line’’ joiring any two
points to be the curve of shorfest length or “geodesic” joining these
points. The points of the surface can be divided into two classes:—1.
Points in the neighborhood of which the surface is like a sphere in that
it lies wholly on one side of the tangent plane at the point. 2. Points
in the neighborhood of which the surface is saddle-shaped, and lies on
both sides of the tangent plane at the point, Points of the first kind

4

Fig. 114, Elliptic point.

are called elliptic points of the surface, since, if the tangent plane is
shifted slightly parallel to itself, it intersects the surface in an elliptical
curve; while points of the second kind are called hyperbolie, since,
if the tangent plane is shifted slightly parallel to itself, it intersects the
surface in ¢ curve resembling a hyperbola. The geometry of the geo-
desic “‘straight lines” in the neighborhood of a point of the surface is
elliptic or hyperbolic according as the point is an elliptic or hyperbolic

. - .
noint. In such a model of non-Fuclidean reometry. an
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ured by their ordinary Euclidean value,
This idea was developed by Riemann, who considered a geometry of
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gpace analogous to this geometry of a surface, in which the “curvature”
of space may change the character of the geometry from point to point.
The “‘straight lines” in a Riemannian geometry are the geodesics. In
Einstein’s general theory of relativity the geometry of space is a Rie-
mannian geometry, light travels along geodesics, and the curvature of
space is detecrmined by the nature of the matter that fills it.

From its origin in the study of axiomatics, non-Euclidean geometry
has developed into an exceedingly useful instrument for application to
the physical world. In the theory of relativity, in optics, and in the
general theory of wave proragation, a non-Euclidean description of
phenomena is sometimes far more adequate than a Euclidean one.
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Fig. 115, Hyperbolio point,

APPENDIX

*GEOMETRY IN MORE THAN THREE DIMENSIONS
1. Introduction

The *‘real space’ that is the medium of our physical experience has
three dimensions, the plane has two dimensions, and the line one. Our
spatial intuition in its ordinary sense is definitely limited to three
dimensions. Still, on many occasions it is quite convenient to speak
of “spaces’’ having four or more dimensions. What is the meaning of
an n-dimensional space when n is greater than three, and what purposes

can it serve? An answer can be given from the analytic as well as from
the purely geometric point of view. The terminology of n-dimensional
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space may be regarded merely as a suggestive geometric language for
mathematical ideas that are no longer within reach of ordinary geometric
intuition, We shall give a brief indication of the simple considerations
that motivate and justify this language.

2. Analytic Approach

We have already remarked on the inversion of meaning which came
about in the course of development of analytic geometry. Points, lines,
curves, etc. were originally considered to be purely ‘‘geometrical”
entities, and the task of analytic geometry was merely to assign to them
systems of numbers or equations, and to interpret or to develop geometri-
cal theory by algebraic or analytic methods. In the course of time the
opposite point of view began increasingly to assert itself. A number z,
or a pair of numbers z, ¥, or a triple of numbers z, y, z were considered
as the fundamental objects, and these analytic entities were then “‘visual-
ized” as points on a line, in a plane, or in space. From this point of
view geometrical language serves only to state relations between
numbers. We may discard the primary or even the independent char-
acter of geometrical objects by saying that a number pair z, ¥ s a point
in the plane, the set of all number pairs z, ¥ that satisfy the linear
equation L(z, y) = az + by + ¢ = 0 with fixed numbers a, b, ¢ 15 a
line, etc. Similar definitions may be made in space of three dimensions.

Even if we are primarily interested in an algebraic problem, it may
be that the language of geometry lends itself to an adequate brief de-
scription of it, and that geometrical intuition suggests the appropriate
algebraic procedure. For example, if we wish to solve three simul-

L{z,y,z2) =ax +by +cz +d =0
L'(z,y,2) =a'x + by +c2 +d =0
Lll(x’ y’ z) —_ allx + blfy + C.H'z + d.”'

we may visualize the problem as that of finding the point of intersection
in three dimensional space B; of the three planes defined by the equa-
tions L = 0, L’ = 0, L” = 0. Again, if we are considering only the
number pairs z, ¥ for which > 0, we may visualize them as the half-
plane to the right of the z-axis. More generally, the totality of number
pairs z, y for which

I

f
L

Liz,y) =ax+by+d>0
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may be visualized as a half-plane on one side of the line L. = 0, and the
totality of number triples z, ¥, z for which

Lz,y,2) =az + by+czc+d >0

av he vianalized ac the (halfecrace’” on one side of the nlane
may De visualized as the ''hali-space”’ on one side of the plane
L(z, y,2z) = 0.

The introduction of a “four-dimensional space’” or even an ““n-dimen-
sional space” is now quite natural. Let us consider a quadruple of
numbers z, ¥, 2, {. Sueh a quadruple is said to be represented by, or
simply, to be a point in four-dimensional space K,. More generally,
a point of n-dimensional space R, is by definition simply an ordered set
of n real numbers z,, 23, -+, z,. It does not matter that we cannot
visualize such a point. The geometrical language remains just as
suggestive for algebraic properties involving four or n variables. The
reason for this is that many of the algebraic properties of linear equa-
tions, etc. are essentially independent of the number of variables in-
volved, or, as we may say, of the dimension of the space of the
variables. For example, we call ‘hyperplane’” the totality of all points
Z1, 2, -++, T in the n-dimensional space R, which satisfy a linear
equation

L(II,IZ;"' ,In) =an + axz -+ - 4 auta + b =0,

Then the fundamental algebraic problem of solving a system of n linear
equations in » unknowns,

Li(zy, 22, - ,2,) =0

Ly(zy, 22, +--,2,) =0

-----------------------

Ln(xl:xzj e :xﬂ) = 0:

is stated in geometrical language as that of finding the point of inter
section of the n hyperplanes L, = 0, L; = 0, ... , L, = 0.

The advantage of this geometrical mode of expression ts only that it
emphasizes certain algebraic features which are independent of n and which
are capable of visualization for n < 3. In many applications the use of
such a terminology has the advantage of abbreviating, facilitating, and
directing the intrinsically analytic considerations. The theory of rela-
tivity may be mentioned as an example where important progress was
attained by uniting the space cobrdinates z, ¥, z and the time coordinate
{ of an “event” into a four-dimensional ‘‘space-time’ manifold of number
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quadruples z, ¥, 2, {. By the introduction of a non-Euclidean hyper-
bolic geometry into this analytic framework, it became possible to de-
scribe many otherwise complex situations with remarkable simplicity.
Similar advantages have accrued in mechanics and statistical physics,
as well as in purely mathematical fields.

Here are some examples from mathematics. The totality of all circles
in the plane forms a three-dimensional manifold, because a circle with
center z, y and radius ¢ can be represented by a point with the co-
ordinates z, ¥, . Since the radius of a circle is a positive number, the
totality of points representing circles fills out a half-space. In the
same way, the totality of all spheres in ordinary three-dimensional space
forms a four-dimensional manifold, since each sphere with center
z, ¥, 2 and radius ¢ can be represented by a point with coordinates
z, y, 2, . A cube in three-dimensional space with edge of length 2,
sides parallel to the coérdinate planes, and center at the origin, consists
of the totality of all points z,, 2z, x5 for which [z:| £ 1, |z, | £ 1,
|za| £ 1. In the same way a ‘“cube” in n-dimensional space B, with
edge 2, sides parallel to the coordinate planes, and center at the origin,
is defined as the totality of points z; , 23, ««+ , Z, for which simultane-
ously

|z <1, Jz:[ <L v, |za| S 1.

The “surface” of this cube consists of all points for which at least one
equality sign holds. The surface elements of dimension n — 2 consist
of those points where at least fwo equality signs hold, etc.

Exzercise: Describe the surface of such a cube in the three-, four-, and n-dimen-
sional cases.

*3. Geometrical or Combinatorial Approach

While the analytical approach to n-dimensional geometry is simple and
well adapted to most applications, there is another method of procedure
which is purely geometrical in character. It is based on a reduction from
n- to (n — 1)-dimensional data that enables us to define geometry in
higher dimensions by a process of mathematical induction.

Let us start with the boundary of a triangle ABC in two dimensions.
By cutting the closed polygon at the point C and then rotating AC and
BC into the line AB we obtain the simple straight figure of Figure 116
in which the point C appears twice. This one-dimensional figure gives
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8 complete representation of the boundary of the two dimensional
triangle. By bending the segments AC and BC together in a plane, we
can make the two points C coincide again. But, and this is the im-
portant point, we need not do this bending. We need only agree to
“identify,” i.e. not to distinguish between, the two points C' in Figure
116, even though they do not actually coincide as geometrical entities
in the naive sense. We may even go a step farther by taking the three
gegments apart at the points A and B, obtaining a set of three segments
CA, AB, BC which can be put together again to form a ‘‘real’”’ triangle
by making the identified pairs of points coincide. This idea of identi-
fying different points in a set of segments to form a polygon (in this
case 8 triangle) is sometimes very practical, If we wish to ship a
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Fig. 116. Triangle defined by segments with oodrdinated ends.

O-T We »o :h'r b N

complicated framework of steel bars, such as the framework of a bridge,
we ship it in single bars and mark by the same symbol those endpoints
which are to be connected when the framework is put together in space.
The system of bars with marked endpoints is a complete equivalent of
the gpatial framework. This remark suggests the way to reduce a two-
dimensional polyhedron in three-dimensional space to figures of lower
dimensions. Let us take, for example, the surface of a cube (Fig. 117).
It can be immediately reduced to a system of six plane squares whose
boundary segments are appropriately identified, and in another step to
asystem of 12 straight segments with their endpoints properly identified.

In general, any polyhedron in three-dimensional space H; can be re-
duced in this way either to a system of plane polygons, or to a system
of straight segments.
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Ezercise: Carry out this reduction for all the regular polyhedra (see p. 237).

It is now quite clear that we can invert our reasoning, defining a
polygon in the plane by a system of straight segments, and a polyhedron
in B3 by a system of polygons in F or again, with a further reduction,
by a system of straight segments. Hence it is natural to define a
“polyhedron” in four-dimensional space K, by a system of polyhedra
in B, with proper identification of their two-dimensional faces; polyhedra
in Rs by systems of polyhedra in Ry, and so on. Ultimately we can
reduce every polyhedron in R, to a system of straight segments.
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Fig. 117. Cube definad by coSirdination of verticea and edgos.

It is not possible here to develop this subject much further. Only a
few remarks without proof may be added. A cube in R, is bounded
by 8 three-dimensional cubes, each identified with a “neighbor” along
a two-dimensional face. The cube in R, has 16 vertices, in each of
which four of the 32 straight edges meet. In E, there are six regular
polyhedra. Besides the ‘“‘cube’ there is one bounded by 5 regular
tetrahedra, one bounded by 16 tetrahedra, one bounded by 24 octahedra,
one bounded by 120 dodecahedra, and one bounded by 600 tetrahedra.
For n > 4 dimensions it has been proved that only 3 regular polyhedra
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are possible: one with n 4+ 1 vertices bounded by n + 1 polyhedra in
R._1 with n sides of (n — 2) dimensions; one with 2" vertices bounded
by 2n polyhedra in B, ., with 2n — 2 sides; and one with 2n vertices and
2" polyhedra of n sides in R,_; as boundaries.

* Ezercise: Compare the definition of the cube in R, given in Article 2 with the
definition given in this article, and show that the ‘“analytical’’ definition of the
surface of the cube of Article 2 is equivalent to the ‘‘combinatorial’’ definition
of this article,

From the structural, or ‘“combinatorial,’”” point of view, the simplest
geometrical figures of dimension 0, 1, 2, 3 are the point, the segment,
the triangle, and the tetrahedron, respectively. In the interests of a
uniform notation let us denote these figures by the symbols Ty, T,

n 2 A
</

\

O
<I.5

L T,

I

Fig. 118. The simpleat elements in 1, 2, 3, 4 dimensions.

T:, T, respectively. (The subscripts denote the dimension.) The
gtructure of each of these figures is described by the statement that
each T, contains n 4+ 1 vertices and that each subset of 7 + 1 vertices
of a T, (t=20,1, ..., n) determines a T;. For example, the three-
dimensional tetrahedron 7T; contains 4 vertices, 6 segments, and 4
triangles.

It is clear how to proceed. We define a four-dimensional ‘“tetrahe-
dron” T4 as a set of five vertices such that each subset of four vertices
determines a 75, each subset of three vertices determines a T;, etc.
The schematic diagram of T, is shown in Figure 118. We see that T’
contains 5 vertices, 10 segments, 10 triangles, and 5 tetrahedra.

The generalization to n dimensions is immediate. From the theory
r!

of combinations it is known that there are exactly C; = KT —
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different, subsets of ¢ objects each that can be formed from a given set
of r objects. Hence an n-dimensional ‘““tetrahedron’ contains

' =n+1 vertices (To's),
P :-3('—7(1—?24-_%! triangles (Ty's),
ndl _ (n 4 1)1 ’

e T 1

Ezercise: Draw a diagram of T’5 and determine the number of different Ti's it
contains, for s =0, 1, ..+, 8.



CHAPTER V
TOPOLOGY

INTRODUCTION

In the middle of the nineteenth century there began a completely new
development in geometry that was soon to become one of the great
forces in modern mathematics. The new subject, called analysis situs
or topology, has as its object the study of the properties of geometrical
figures that persist even when the figures are subjected to deformations
go drastic that all their metric and projective properties are lost.

One of the great geometers of the time was A. F. Moebius (1790-1868),
a man whose lack of seli-assertion destined him to the carcer of an
ingignificant astronomer in a second-rate German observatory. At the
age of sixty-eight he submitted to the Paris Academy a memoir on
“one-sided” surfaces that contained some of the most surprising facts of
this new kind of geometry. Like other important contributions before
it, his paper lay buried for years in the files of the Academy until it was
eventually made public by the author. Independently of Moebius, the
astronomer J. B. Listing (1808-1882) in Goettingen had made similar
discoveries, and at the suggestion of Gauss had published in 1847 a little
book, Vorstudien zur Topologie. YWhen Bernhard Riemann (1826-18606)
came to Goettingen as a student, he found the mathematical atmosphere
of that university town filled with keen interest in these strange new
geometrical ideas. Soon he realized that herc was the key to the under-
standing of the deepest properties of analytic functions of a complex
variable. Nothing, perhaps, has given more impetus to the later de-
velopment of topology than the great structure of Riemann’s theory of
functions, in which topological concepts are absolutely fundamental.

At first, the novelty of the methods in the new field left mathemati-
cians no time to present their results in the traditional postulational
form of elementary geometry. Instead, the pioneers, such as Poincaré,
were forced to rely largely upon geometrical intuition. Even today a
student of topology will find that by too much insistence on a rigorous
form of presentation he may easily lose sight of the essential gcometrical
content in a mass of formal detail. Still, it is a great merit of recent

235
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work to have brought topology within the framework of rigorous mathe-
matics, where intuition remains the source but not the final validation
of truth. During this process, started by L. E. J. Brouwer, the sig-
nificance of topology for almost the whole of mathematics has steadily
increased. American mathematicians, in particular O. Veblen, J. W.
Alexander, and S. Lefschetz, have made important contributions to the
subject.

While topology is definitely a ereation of the last hundred years, there
were a few isolated earlier discoveries that later found their place in
the modern systematic development. By far the most important of
these is a formula, relating the numbers of vertices, edges, and faces
of a simple polyhedron, observed as early as 1640 by Descartes, and
rediscovered and used by Euler in 1752. The typical character of this
relation as a topological theorem became apparent much later, after
Poincaré had recognized “Iuler’s formula” and 1ts generalizations as
one of the central theorems of topology. So, for reasons both historical
and intrinsic, we shall begin our discussion of topology with Euler’s
formula. Since the ideal of perfect rigor is neither necessary nor de-
sirable during one’s first steps in an unfamiliar field, we shall not hesitate
from time to time to appeal to the reader’s geometrical intuition.

§1. EULER’'S FORMULA FOR POLYHEDRA

Although the study of polvhedra held a central place in Greek geome-
try, it remained for Descartes and Euler to discover the following fact:
In a simple polyhedron let V denote the number of vertices, £ the
number of edges, and F the number of faces; then always
(1) V-E+F =2
By a polyhedron is meant a solid whose surface consists of a number of
polygonal faces. In the case of the regular solids, all the polygons are
congruent and all the angles at vertices are equal. A polyvhedron is
simple if there are no “holes’ in it, so that its surface can be deformed
continuously into the surface of a sphere. Figure 120 shows a simple
polyhedron which is not regular, while Figure 121 shows a polyhedron
which is not simple.

The reader should check the fuct that Euler's formula holds for the
simple polyhedra of Figures 119 and 120, but does not hold for the
polyhedron of Figure 121,

To prove Iuler’s formula, let us imagine the given simple polyhedron
to be hollow, with a surface made of thin rubber. Then if we cut out
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Fig. 119. The regular polyhedra.
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original polyhedron, while the number of polygons will be one less than
in the original polyhedron, since one face wag removed. We shall now
gshow that for the plane network, V — £ + F = 1, so that, if theremoved
face is counted, the resultis V — E + F = 2 for the original polyhedron.

First we “triangulate” the plane network in the following way: In
some polygon of the network which is not already a triangle we draw a
diagonal. The effect of this is to increase both £ and F by 1, thue
preserving the value of V — E 4+ F. We continue drawing diagonals
joining pairs of points (Fig. 122) until the figure consists entirely of
triangles, as it must eventually. In the triangulated network,
V — E + F has the value that it had before the divigion into tri-

@ v

Fig. 122. Proof of Euler's thecrem.

angles, since the drawing of diagonals has not changed it. Some of the
triangles have edges on the boundary of the plane network. Of these
some, such as ABC, have only one edge on the boundary, while other
triangles may have two edges on the boundary. We take any boundary
triangle and remove that part of it which does not also belong to some
other triangle. Thus, from ABC we remove the edge AC and the face,
leaving the vertices A, B, C and the two edges AB and BC; while from
DEF we remove the face, the two edges DF and FE, and the vertex F.
The removal of a triangle of type ABC decreases E and F by 1, while V
is unaffected, so that V — E -+ F remains the same. The removal of a
triangle of type DEF decreases V by 1, E by 2, and F by 1, so that
V — E + F again remains the same. By a properly chosen sequence of
these operations we can remove triangles with edges on the boundary
(which changes with each removal), until finally only one triangle
remains, with its three edges, three vertices, and one face. For this
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simple network, V — E+ F =3 — 3 4+ 1 = 1. But we have seen
that by constantly erasing triangles V — E + F was not altered.
Therefore in the original plane network V — E + F must equal 1 also,
and thus equals 1 for the polyhedron with one face missing. We
conclude that V — E 4 F = 2 for the complete polyhedron. This
completes the proof of Euler’s formula. (See (56), (567), pp. 496-7.)

On the basis of Euler’s formula it is easy to show that there are no more than
five regular polyhedra. For suppose that a regular polyhedron has F faces, each
of which is an n-sided regular polygon, and that r edges meet at each vertex.
Ccunting edges by faces and vertices, we see that

(2) nF = 2E;

for each edge belongs to two faces, and hence is counted twice in the product n¥;
moreover,

3) rV = 2E,

gince each edge has two vertices. Hence from (1) we obtain the equation
n r

or
1 1 1 1

(4) n + r 2 t E’

We know to begin with that n > 3 and r > 3, since a polygon must have at least
three sides, and at least three sides miust meet at each polyhedral angle., But
n and r cannot both be greater than three, for then the left hand side of equation
(4) could not exceed 4, which is impossible for any positive value of E. There-
fore, let us see what values r may have when n = 3, and what values n may have
when r = 3. The totality of polyhedra given by these two cases gives the number

]
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For n = 3, equation (4) becomes
1 1 1

;T8 E
r can thus equal 3, 4, or 8. (6, or any greater number, is obviously excluded,
since 1/E is always positive.) For these values of n and r we get E = 6, 12, or 30,
corresponding respectively to the tetrahedron, octahedron, and izosahedron.
Likewise, for r = 3 we obtain the equation

1 1 1

n 6 E’

from which it follows that n = 3, 4, or 5, and £ = 6, 12, or 30, respectively. These
values correspond respectively to the tetrahedron, cube, and dodecahedron.
Substituting these values for =, », and E in equations (2) and (3), we obtain the
numbers of vertices and faces in the corresponding polyhedra.
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§2. TOPOLOGICAL PROPERTIES OF FIGURES
1. Topological Properties

We have proved that the Euler formula holds for any simple polyhe-
dron. But the range of validity of this formula goes far beyond the
polyhedra of elementary geometry, with their flat faces and straight
edges; the proof just given would apply equally well to a simple polyhe-
dron with curved faces and edges, or to any subdivision of the surface
of a sphere into regions bounded by curved arcs. Moreover, if we
imagine the surface of the polyhedron or of the sphere to be made out
of a thin sheet of rubber, the Euler formula will still hold if the surface
is deformed by bending and stretching the rubber into any other shape,
so long as the rubber is not torn in the process. For the formula is
concerned only with the numbers of the vertices, edges, and faces, and
not with lengths, areas, straightness, cross-ratios, or any of the usual
concepts of elementary or projective geometry.

We recall that elementary geometry deals with the magnitudes
(length, angle, and area) that are unchanged by the rigid motions,
while projective geometry deals with the concepts (point, line, incidence,
and cross-ratio) which are unchanged by the still larger group of projec-
tive transformations. But the rigid motions and the projections are
both very special cases of what are called topological transformations:
a topological transformation of one geometrieal figure A into another
figure A’ is given by any correspondence

pep
between the points p of A and the points p’ of A’ which has the follow-
ing two properties:

1. The correspondence is biunique. This mecans that to each point
p of A corresponds just one point p’ of A’, and conversely.

2. The correspondence 1s continuous in both directions. ‘This means
that if we take any two points p, ¢ of A and move p so that the distance
between it and q approaches zero, then the distance between the cor-
responding points p’, ¢' of A’ will also approach zero, and conversely.

Any property of a geometrical figure A that holds as well for every
figure into which A may be transformed by a topological transformation
is called a topological property of A, and topology is the branch of geometry
which deals only with the topological properties of figures. Imagine a
figure to be copied “free-hand” by a conscientious but inexpert drafts-
man who makes straight lines curved and alters angles, distances and
areas; then, although the metric and projective properties of the original
figure would be lost, its topological properties would remain the same.



The most intuitive examples of general topological transformations
are the deformations. Imagine a figure such as a sphere or a triangle
to be made from or drawn upon a thin sheet of rubber, which is then
stretched and twisted in any manner without tearing it and without
bringing distinct points into actual coincidence. (Bringing distinct
points into coincidence would violate condition 1. Tearing the sheet
of rubber would violate condition 2, since two points of the original
figure which tend toward coincidence from opposite sides of a line along
which the sheet is torn would not tend towards coincidence in the torn
figure.) The final position of the figure will then be a topological image
of the original. A triangle can be deformed into any other triangle or

Fig. 124, Topologically non-equivalent surfacea.

into a circle or an ellipse, and hence these figures have exactly the same
topological properties. But one cannot deform a circle into a line seg-
nient, nor the surface of a sphere into the surface of an inner tube.
The general concept of topological transformation is wider than the
concept of deformation. For example, if a figure is cut during a de-
formation and the edges of the cut sewn together after the deformation
in exactly the same way as before, the process still defines a topological
transformation of the original figure, although it is not a deformation.
Thus the two curves of Figure 134 (p. 256) are topologically equivalent
to each other or to a circle, since they may be cut, untwisted, and the
cut sewn up. But it is impossible to deform one curve into the other

" a3 “hll\ s ‘l‘\l\“ c“ﬁ‘ ‘* 1 . I‘\ 11 W
or Luuu & circie witnout nrst cuvuing the curve.

Topological properties of figures (such as are given by Euler’s theorem
and others to be discussed in this section) are of the greatest interest
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and importance in many mathematical investigations. They are in a
sense the deepest and most fundamental of all geometrical properties,
since they persist under the most drastic changes of shape.

2. Connectivity

As another example of two figures that are not topologically equiva-
lent we may consider the plane domains of Figure 125. The first of

Fig. 115. Simple and double connectivity.

\

Fig. 126. Cutting a doubly connected domain to make it simply connected.

these consists of all points interior to a circle, while the second consists
of all points contained between two concentric circles. Any closed
curve lying in the domain a can be continuously deformed or “shrunk”
down to a single point within the domain. A domain with this property
is said to be stmply connected. The domain b is not simply connected.
For example, a circle concentric with the two boundary circles and mid-
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way between them cannot be shrunk to a single point within the domain,
since during this process the curve would necessarily pass over the center
of the circles, which is not a point of the domain. A domain which is
not simply connected is said to be multiply connected. If the multiply
connected domain b is cut along a radius, as in Figure 126, the resulting
domain is simply connected.

More generally, we can construct domains with two, three, or more
“holes,” such as the domain of Figure 127. In order to convert this
domain into a simply connected domain, two cuts are necessary. If

Y

Fig. 127. Reduction of & triply connected domain.

n — 1 non-intersecting cuts from boundary to boundary are needed to
convert a given multiply connected domain D into a simmply connected
domain, the domain D is said to be n-tuply connected. The degrec of
conncctivity of a domain in the plane 1s an important topological
invariant of the domain.

§3. OTHER EXAMPLES OIF TOPOLOGICAL THEOREMS

1. The Jordan Curve Theorem

A simple closed curve (one that does not intersect itself) is drawn

in the plane. What property of this figure persists even if the plane is
regarded as a sheet of rubber that can be deformed in any way? The
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length of the curve and the area that it encloses can be changed by a
deformation. But there is a topological property of the configuration
which is so simple that it may seem trivial: A simple closed curve C in
the plane divides the plane into exactly two domains, an inside and an
outside. By this is meant that the points of the plane fall into two
classes—A, the outside of the curve, and B, the inside—such that any
pair of points of the same class can be joined by a curve which does not
cross C, while any curve joining a pair of points belonging to different,
classes must cross C. This statement is obviously true for a circle or
an ellipse, but the self-evidence fades a little if one contemplates a
complicated curve like the twisted polygon in Figure 128.

e

Fig. 128. Which pointa of the plane are inside this polygon?

This theorem was first stated by Camille Jordan (1838-1922) in his
famous Cours d’Analyse, from which a whole generation of mathema-
ticians learned the modern concept of rigor in analysis. Strangely
cnough, the proof given by Jordan was neither short nor simple, and
the surprise was even greater when it turncd out that Jordan’s proof
was invalid and that considerable effort was necessary to fill the gaps in
his reasoning. The first rigorous proofs of the theorem were quite
complicated and hard to understand, even for many well-trained mathe-
maticians. Only recently have comparatively simple proofs been
found. One reason for the difficulty lies in the generality of the concept
of “simple closed curve,’” which is not restricted to the class of polygons
or ‘“smooth” curves, but includes all curves which are topological
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images of a circle. On the other hand, many concepts such as “inside,”
‘“outside,” etc., which are so clear to the intuition, must be made precise
before a rigorous proof is possible. It is of the highest theoretical im-
portance to analyze such concepts in their fullest generality, and much
of modern topology is devoted to this task. But one should never
forget that in the great majority of cases that arise from the study of
concrete geometrical phenomena it is quite beside the point to work
with concepts whose extreme generality creates unnecessary difficulties.
As a matter of fact, the Jordan curve theorem is quite simple to prove
for the reasonably well-behaved curves, such as polygons or curves with
continuously turning tangents, which occur in most important problems.
We shall prove the theorem for polygons in the appendix to this chapter.

2. The Four Color Problem

From the example of the Jordan curve theorem one might suppose

that topology is concerned with providing rigorous proofs for the sort
of obvious assertions that no sane person would doubt. On the con-

ARG Rt ia

trary, there are many topological questions, some of them quite simple
in form, to which the intuition gives no satisfactory answer. Anexample
of this kind is the renowned “four color problem.”

Fig. 129. Coloring a map.

In coloring a geographical map it is customary to give different colors
to any two countries that have a portion of their boundary in common.
It has been found empirically that any map, no matter how many

countries it contains nor how fhn}r are mi-nated can be so colored b-y

using only four different colors. It is easy to see that no smaller number
of colors will suffice for all cases. Figure 129 shows an island in the sea
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that certainly cannot be properly colored with less than four colors,
since it contains four countries, each of which touches the other three.

The fact that no map has yet been found whose coloring requires
more than four colors suggests the following mathematical theorem:
For any subdivision of the plane inlo non-overlapping regions, it 1s always
posstble lo mark the regions with one of the numbers 1, 2, 3, 4 in such a way
that no two adjacenl regions recetve the same number. By ‘‘adjacent”
regions we mean regions with a whole segment of boundary in common;
two regions which meet at a single point only or at a finite number of
points (such as the states of Colorado and Arizona) will not be called
adjacent, since no confusion would arise if they were colored with the
same color.

The problem of proving this theorem seems to have been first pro-
posed by Moebius in 1840, later by DeMorgan in 1850, and again by
Cayley in 1878. A “proof”’ was published by Kempe in 1879, but in
1890 Heawood found an error in Kempe’s reasoning. By a revision of
Kempe's proof, Heawood was able to show that five colors are always

sufficient. (A proof of the five color theorem is given in the appendix

to this chapter.) Despite the efforts of many famous mathematicians,
the matter essentially rests with this more modest result: It has been
proved that five colors suffice for all maps and it is conjectured that four
will likewise suffice. But, as in the case of the famous Fermat theorem
(see p. 42), neither a proof of this conjecture nor an example contra-
dicting it has been produced, and it remains one of the great unsolved
problems in mathematics. The four color theorem has indeed been
proved for all maps containing less than thirty-eight regions. In view
of this fact it appears that even if the general theorem 1s false it cannot
be disproved by any very simple example.

In the four color problem the maps may be drawn either in the plane
or on the surface of a sphere. The two cases are equivalent: any map
on the sphere may be represented on the plane by boring a small hole
through the interior of one of the regions A and deforming the resulting
surface until it is flat, as in the proof of Euler’s theorem. The resulting
map in the plane will be that of an ‘““island” consisting of the remaining
regions, surrounded by a ‘sea’ consisting of the region A. Conversely,
by a reversal of this process, any map in the plane may be represented
on the sphere. We may therefore confine ourselves to maps on the
sphere. Furthermore, since deformations of the regions and their
boundary lines do not affect the problem, we may suppose that the
boundary of each region is a simple closed polygon composed of circular
arcs. Even thus “regularized,” the problem remains unsolved; the
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difficulties here, unlike those involved in the Jordan curve theorem, do
not reside in the generality of the concepts of region and curve.

A remarkable fact connected with the four color problem is that for
surfaces more complicated than the plane or the sphere the correspond-
ing theorems have actually been proved, so that, paradoxically enough,
the analysis of more complicated geometrical surfaces appears in this
respect to be easier than that of the simplest cases. For example, on
the surface of a torus (see Figure 123), whose shape is that of a doughnut
or an inflated inner tube, it has been shown that any map may be colored
by using seven colors, while maps may be constructed containing seven
regions, each of which touches the other six.

*3. The Concept of Dimension

The concept of dimension presents no great difficulty so long as one deals only
with simple geometric figures such as points, lines, triangles, and polyhedra. A
single point or any finite set of points has dimension zero, a line segment is one-
dimensional, and the surface of a triangle or of a sphere two-dimensional. The
set of points in a solid cube is three-dimensional. But when one attempts to
extend this concept to more general point sets, the need for a precise definition
arises. What dimension should be assigned to the point set R consisting of all
points on the x-axis whose cobrdinates are ralional numbers? The set of rational
points is dense on the line and might therefore be considered to be one-
dimensional, like the line itself. On the other hand, there are irrational gaps
between any pair of rational points, as between any two points of a finite point
set, 80 that the dimension of the set R might also be considered to be zero,

An even more knotty problem arises if one tries to assign a dimension to the
following curious point set, first considered by Cantor. From thc unit segment
remove the middle third, consisting of all peoints z such that 1/3 < 2 < 2/3.
Call the remaining set of points C;. Now from C, remove the middle third of
each of its two segments, leaving a set which we call Ca. Repeat this process by
removing the middle third of each of the four intervals of Cy, leaving a set C,,

o

_--—H‘----—-—-H-.—_
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Fig. 130. Cantor’s point set.
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and proceed in this manner to farin seta €'y, Cy, Cy, -+ . Denote by C the set
of points on the unit segment that are left after all these intervals have been
removed, i.e. C is the set of points common to the infinite sequence of sets
Cy, Cy, ---. Since one interval, of length 1/3, was removed at the first step;
two intervals, each of length 1/31, at the second step; etc.; the total length of the
segments removed 18

1 1 1 1 2 2\!
. = u — ’l""" s s K& —- b — L N
13+23,+2 3'-%- 3(1+(3)+(3)+ )

The infinite scries in parentheses is a geometrical scries whose sum is
1/(1 — 2/3) = 3; hence the total length of the segments removed is 1. Still there
remain points in the set C. Such, for example, are the points 1/3, 2/3, 1/9, 2/9,
7/9, 8/9, ---, by which the successive segments are trisected. As a matter of
fact, it is easy to show that C will consist precisely of all those points z whose
expansions in the form of infinite triadic fractions can be written in the form

a) as as 479
z=§+3'+3'+"'+§n+"'r

where each a. is either 0 or 2, while the triadic expansion of every point removed
will have at least onc of the numbers a, equal to 1.

What shall be the dimension of the set C? The diagonal process used to prove
the non~dennmerability of the set of all real numbers can be so modified as to
yield the same result for the set ¢'. It would scem, therefore, that the set C
should be one-dimensiona}, Yet € contains no complete interval, no matter how
amall, 8o that C might also be thought of as zero-dimensional, like a finite set of
points, In the saine spirit, we might ask whether the set of points of the plane,
obtained by erecting at each rational point or at each point of the Cantor set C
a segment of umt length, should be considered to be one-dimensional or two-
dimensional.

It was Poincaré who (in 1912) first called attention to the need for a deeper
analysis and a precise definition of the concept of dimensionality. Poincaré
observed that the line is one-dimensional because we may separate any two points
on it by cutting it at a single point (which is of dimension 0), while the plane is
two-dimensional because in order toseparate a pair of points in the plane we must
cut out a whole closed curve (of dimension 1), This suggests the inductive
nature of dimensionality: a space 18 n-dimensional if any two points may be
separated by removing an (n — 1)-dimensional subset, and if a lower-dimensional
subset will not always suffice. An inductive definition of dimensionality 18 also
contained implicitly in Euclid’s Elements, where a one-dimensional figure is some-
thing whose boundary consists of points, a two-dimensional figure one whose
boundary consists of curves, and a three-dimensional figure one whose boundary
consists of surfaces.

In rccent years an extensive theory of dimnension has been developed. One
definition of dimension begins by making precise the concept ‘‘point set of di-
mension 0."”  Any finite set of points has the property that each point of the set
can be enclosed in a rcgion of space which can be made as sma!l as we please, and
which contains no points of the set on its boundary. This property is now taken
ag the definition of 0-dimensionalitv. For convenience, we say that an empty
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set, containing no points at all, has dimension —1. Then a point set § is of di-
mension 0 if it is not of dimension —1 (i.e. if S contains at least one point), and if
each point of § can be enclosed within an arbitrarily small region whose boundary
intersects Sin a set of dimension —1 (i.e. whose boundary contains no points of ).
For example, the set of rational points on the line is of dimension 0, since each
rational point can be made the center of an arbitrarily small interval with irra-
tional endpoints. The Cantor set C is also seen to be of dimension 0, since, like
the set of rational points, it is formed by removing a dense set of points from
the line.

So far we have defined only the concepts of dimension —1 and dimension 0,
The definition of dimension 1 suggeats itself at once: a set S of points is of di-
mension 1 if it is not of dimension —1 or 0, and if each point of S can be enclosed
within an arbitrarily small region whose boundary intersects S in a set of dimen-
sion 0. A line segment has this property, since the boundary of any interval is
a pair of points, which is a set of dimension 0 according to the preceding definition.
Moreover, by proceeding in the same manner, we can successively define the con-
cepts of dimension 2, 3, 4, 5, - -+ , each resting on the previcus definitions. Thus
a set S will be of dimension n 1f 1t is not of any lower dimenaion, and if each point
of S can be enclosed within an arbitrarily small region whose boundary intersects
S in a set of dimension n — 1. For example, the plane is of dimension 2, since
each point of the plane can be enclosed within an arbitrarily small circle, whose
circumference is of dimension 1.t No point set in ordinary space can have dimen-
sion higher than 3, since each point of space can be made the center of an arbi-
trarily small sphere whose surface is of dimension 2. But in modern mathematics
the word ‘“‘space’ is used to denote any system of objects for which a notion of
‘‘distance’’ or ‘‘neighborhood’ is defined (see p. 316), and these abstract ‘‘apaces’’
may have dimensions higher than 3. A simple example is Carlesian n-space,
whose ‘‘points’’ are ordered arrays of n real numbers:

P = (I],.‘I],Il,"',zn),

Q = (yl:y’lyli B yﬂ);
with the ‘‘distance” between the points P and Q defined as

dP, Q) =V (m — yN+ (@a— y* + -+ + (zn — ).

This space may be shown to have dimension n. A space which does not have
dimension n for any integer n is said to be of dimension infinity. Many examples
of such apaces are known.

One of the most interesting facts of dimension theory is the following char-
acteristic property of two-, three- or, in general, n-dimnensional figures. Consider
firsat the two-dimensional case. If any simple two-dimensional figure is sub-
divided into sufficiently small regions (each of which is regarded as including its

t This does not purport to be a rigorous proof that the plane is of dimension 2
according to our definition, since it assumes that the circumference of a circle is
known to be of dimension 1, and that the plane is known not to be of dimension
0 or 1. But a proof can be given for these facts and for their analogs in higher
dimensions. This proof shows that the definition of the dimension of a general
point set does not contradict ordinary usage for simple setas.
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boundary), then there will necessarily be points where three or more of these
regions meet, no matter what the shapes of the regions. In addition, there will exist
subdivisions of the figure in which each point belongs to al most three regions of
the subdivision. Thus, if the two-dimensional figure is a square, as in Figure 131,
then a point will belong to the three regions, 1, 2, and 3, while for this particular
subdivision no point belongs to more than three regions. Similarly, in the three-
dimensional case it may be proved that, if a volume is covered by aufficiently
small volumes, there always exiat points common to at least four of the latter,
while for a properly chosen subdivision no more than four will have a point in
common,

Fig. 131. The tiling theorsm.

These observations suggest the following theorem, due to Lebesgue and
Brouwer: If an n-dimensional figure is covered in any way by sufficiently small
subregions, then there will exist points which belong to at least n + 1 of these
subregions; morcover, it is always possible to find a covering by arbitrarily small
regions for which no point will belong to more than n + 1 regions. Because of
the method of covering considered here, this is known as the ‘‘tiling” theorem.
It characterizes the dimension of any geometrical figure: those figures for which
the theorem holds are n-dimensional, while all others are of some other dimen-
sion. For this reason it may be taken as the definilion of dimensionality, as is
done by some authors.

The dimension of any set is a topological feature of the set; no two figures of
different dimensions can be topologically equivalent. This is the famous topolo-
gical theorem of “invariance of dimensionality,” which gains in significance by
comparison with the fact stated on page 85, that the set of points in a square has
the same cardinal number as the set of points on a line segment. The correspond-
ence there defined is not topological because the continuity conditions are
violated.

*4, A Fixed Point Theorem

In the applications of topology to other branches of mathematics,
‘““fixed point” theorems play an important réle. A typical example is
the following theorem of Brouwer. It is much less obvious to the in-
tuition than most topological facts.
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We consider a circular disk in the plane. By this we mean the region
consisting of the interior of some circle, together with its circumference.
Let us suppose that the points of this disk are subjected to any continu-
ous transformation (which need not even be biunique) in which each
point remains within the circle, although differently situated. For
example, a thin rubber disk might be shrunk, turned, folded, stretched,
or deformed in any way, so long as the final position of each point of
the disk lies within its original circumference. Again, if the liquid in a
glass is set into motion by stirring it in such a manner that particles on
the surface remain on the surface but move around on it to other posi-
tions, then at any given instant the position of the particles on the
surface defines a continuous transformation of the original distribution
of the particles. The theorem of Brouwer now states: Each such trans-
formation leaves at least one poinl fixzed; that is, there exists at least one
point whose position after the transformation is the same as its original
position. (In the example of the surface of the liquid, the fixed point
will in general change with the time, although for a simple circular
rotation it is the center that is always fixed.) The proof of the existence
of a fixed point is typical of the reasoning used to establish many topo-
logical theorems.

Consider the disk before and after the transformation, and assume,
contrary to the statement of the theorem, that no point reinains fixed,
so that under the transformation each point moves to another point

Fig. 132. Transformation vectors.

inside or on the circle. To each point P of the original disk attach a
little arrow or “‘vector” pointing in the direction PF’, where P’ is the
image of P under the transformation. At every point of the disk there
is such an arrow, for every point was assumed to move somewhere else.
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Now consider the points on the boundary of the circle, with their asso-
ciated vectors. All of these vectors point into the circle, since, by as-
sumption, no points are transformed into points outside the circle. Let
us begin at some point P; on the boundary and travel in the counter-
clockwise direction around the circle. As we do so, the direction of
the vector will change, for the points on the boundary have variously
pointed vectors associated with them. The directions of these vectors
may be shown by drawing parallel arrows that issue from a single point
in the plane. We notice that in traversing the circle once from P,

Fig. 133.

around to P, , the vector turns around and comes back to its original
position. Let us call the number of complete revolutions made by this
vector the “index’” of the vectors on the circle; more precisely, we
define the index as the algebraic sum of the various chauges in angle of
the vectors, so that each clockwise portion of a revolution is taken with
a negative sign, while each counter-clockwise portion is regarded as
positive. The index is the net result, which may a priori be any one
of the numbers 0, 1, 2, 3, - - -, corresponding to a total change in
angle of 0, +£360, =720, --- degrees. We now asscrt that the index
equals 1; that is, the total change in the direction of the arrow amounts
to exactly one positive revolution. To show this, we recall that the
transformation vector at any poiut P on the circle is always directed
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inside the circle and never along the tangent. Now, if this transforma-
tion vector turns through a total angle different from the total angle
through which the tangent vector turns (which is 360°, because the
tangent vector obviously makes one complete positive revolution), then
the difference between the total angles through which the tangent vector
and the transformation vector turn will be some non-zero multiple of
360°, since each makes an integral number of revolutions. Hence the
transformation vector must turn completely around the tangent at
least once during the complete eircuit from P; back to Py, and since the
tangent and the transformation vectors turn continuously, at some
point of the circumferenee the transformation vector must point directly
along the tangent. But this is impossible, as we have seen.

If we now eonsider any eirele eoncentric with the circumference of
the disk and contained within it, together with the ecorresponding
transformation vectors on this circle, then the index of the transforma-
tion vectors on this eircle must also be 1. For as we pass continuously
from the circumference to any concentric circle, the index must change
continuously, since the directions of the transformation vectors vary
continuously from point to point within the disk. But the index can
assume only integral values and therefore must be constantly equal to
its original value 1, since & jump from 1 to some other integer would
be a discontinuity in the behavior of the index. (The conclusion that a
quantity that varies continuously but can assume only integral values
is necessarily a constant is a typical bit of mathematical reasoning which
intervenes in many proofs.) Thus we can find a concentric circle as
small as we please for which the index of the corresponding transforma-
tion vectors is 1. But this is impossible, since by the assumed con-
tinuity of the transformation the vectors on a sufficiently small circle
will all point in approximately the same direction as the vector at the
center of the circle. Thus the total net change of their angles can be
made as small as we please, less than 10°, say, by taking a small enough
circle. Hence the index, which must be an integer, will be zero. This
contradietion shows our initial hypothesis that there is no fixed point
under the transformation to be untenable, and completes the proof.

The theorem just proved holds not only for a disk but also for a
triangular or square region or any other surface that is the image of a
disk under a topological transformation. For if A4 is any figure corre-
lated with a disk by a biunique and continuous transformation, then a
continuous transformation of A into itself which had no fixed point
would define a continuous transformation of the disk into itself without
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a fixed point, which we have proved to be impossible. The theorem
also holds in three dimensions for solid spheres or cubes, but the proof
is not so simple.

Although the Brouwer fixed point theorem for the disk is not very obvious to
the intuition, it is easy to show that it is an immediate consequence of the follow-
ing fact, the truth of which is intuitively evident: It ig impossible to transform
continuously a circular digk into its circumference alone so that each point of the
circumference remains fixed, We shall show that the existence of a fixed-point-
free transformation of a disk into itself would contradict this fact. Suppose
P — P’ were such a transformation; for each point P of the disk we could draw an
arrow starting at P’ and continuing through P until it reached the circumference
at some point P*. Then the transformation P — P* would be a continuous
transformation of the whole disk into its circumference alone and would leave
each point of the circumference fixed, contrary to the assumption that auch a
transformation is impossible. Similar reasoning may be used to eatablish the
Brouwer theorem in three dimensions for the solid sphere or cube.

It ig easy to see that some geometrical figures do admit continuous fixed-point-
free transformations into themselves. For example, the ring-shaped region be-
tween two concentric circles admits as a continuous fixed-point-free transforma-
tion a rotation through any angle not a multiple of 360° about its center, The
surface of a sphere admits the continuous fixed-point-free tranaformation that
takes each point into its diametricelly opposite point. But it may be proved, by
reasoning analogous to that which we have used for the disk, that any continuous
transformation which carries no point into its diametrieally oppoaite point (e.g.,
any small deformation) has a fixed point.

Fixed point theorems such as these provide a powerful method for the proof
of many mathematical ‘‘existence theorems’’ which at first sight may not seem
to be of a geometrical character. A famous example ia a fixed point theorem
conjectured by Poinearé in 1912, shortly before his death. This theorem has as
an immediate consequence the existence of an infinite number of periodic orbits
in the restricted problem of three bodies. Poincaré was unable to confirm his
conjecture, and it was a major achievement of American mathematios when in
the following year G. D. Birkhoff succeeded in giving a proof, Since then topolog-
ical methods have been applied with great success to the study of the qualitative
behaviour of dynamical systems.

5. Knots

As a final example it may be pointed out that the study of khots
presents difficult mathematical problems of a topological character. A
knot is formed by first looping and interlacing a piece of string and then
joining the ends together. The resulting closed curve represents a ge-
ometrical figure that remains essentially the same even if it is deformed
by pulling or twisting without breaking the string. But how is it pos-
sible to give an intrinsic characterization that will distinguish a knotted
closed curve in space from an unknotted curve such as the circle? The
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answer is by no means gimple, and still less so is the complete mathe-
matical analysis of the various kinds of knots and the differences between
them. Even for the simplest case this has proved to be a sizable task.
Consider the two trefoil knots shown in Figure 134. These two knots
are completely symmetrical ‘“mirror images” of one another, and are
topologically equivalent, but they are not congruent. The problem
arises whether it is possible to deform one of these knots into the other
in a continuous way. The answer is in the negative, but the proof of
this fact requires considerably more knowledge of the technique of

tononloov an
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Fig. 1M. Topologically equivalent knota that are not deformable inte one another,

§4. THE TOPOLOGICAL CLASSIFICATION OF SURFACES
1. The Genus of a Surface

Many simple but important topological facts arise in the study of
two-dimensional surfaces. For example, let us compare the surface of
a sphere with that of a torus. It is clear from Figure 135 that the two
surfaces differ in a fundamental way: on the sphere, as in the plane,
every simple closed curve such as C separates the surface into two parts.
But on the torus there exist closed curves such as €’ that do not

Fig. 135. Cuts on sphere and torus.
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geparate the surface into two parts. To say that C separates the sphere
into two parts means that if the sphere is cut along C it will fall into
two distinct and unconnected pieces, or, what amounts to the same
thing, that we can find two points on the sphere such that any curve
on the sphere which joins them must intersect C. On the other hand,
if the torus is cut along the closed curve C’, the resulting surface still
hangs together: any point of the surface can be joined to any other
point by a curve that does not intersect C'. This difference between
the sphere and the torus marks the two types of surfaces as topologically
distinct, and shows that it is impossible to deform one into the other
in a continuous way.

Next let us consider the surface with two holes shown in Figure 136.
On this surface we ean draw two non-intersecting closed curves A and B
which do not separate the surface. The torus is always separated into
two parts by any two such curves. On the other hand, three closed non-
intersecting curves always separate the surface with two holes.

Fig. 136. A surface of genua 1.

These facts suggest that we define the genus of a surface as the largest
number of non-intersecting simple closed curves that can be drawn on
the surface without separating it. The genus of the spherc is 0, that of
the torus is 1, while that of the surface in Figure 136 is 2. A similar
surface with p holes has the genus p. The genus is a topological prop-
erty of a surface and remains the same if the surface is deformed. Con-
versely, it may be shown (we omit the proof) that if two closed surfaces
have the same genus, then one may be deformed into the other, so that
the genusp = 0, 1, 2, ... of a closed surface eharacterizes it completely
from the topological point of view. {We are assuming that the surfaces
considered are ordinary ‘“‘two-sided” closed surfaecs. In Article 3 of
this section we shall consider “one-sided’ surfaces.) IFor example,
the two-holed doughnut and the sphere with two ‘““handles” of Figure 137
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are both closed surfaces of genus 2, and it is clear that either of these
surfaces may be continuously deformed into the other. Since the
doughnut with p holes, or its equivalent, the sphere with p handles, is

Fig. 137 Surfaces of genus 2.

of genus p, we may take either of these surfaces as the topological
representative of all elosed surfaces of genus p.

*2. The Euler Characteristic of a Surface

Suppose that a closed surface S of genus p is divided into a number
of regions by marking a number of vertices on 8 and joining them by
curved ares. We shall show that

(1) V—E+F=2-2p,

where V = number of vertices, ¥ = number of arcs, and ¥ = number

of regions. The number 2 — 2p is called the Euler characteristic of the
surface. We have already seen that for the sphere, V — E + F = 2,
which agrees with (1), since p = 0 for the sphere.

To prove the general formula (1), we may assume that S is a sphere
with p handles. For, as we have stated, any surface of genus p
may be continuously deformed into such a surface, and during this
deformation the numbers V — E + F and 2 — 2p will not change.
We shall choose the deformation so as to ensure that the closed curves
Ay, A2, By, By, ... where the handles join the sphere consist of arcs
of the given subdivision. (We refer to Fig. 138, which illustrates the

proof for the case p = 2.)
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Now let us cut the surface S along the curves A,, B;, .-. and
straighten the handles out. Each handle will have a free edge bounded
by a new curve A*, B* ... with the same number of vertices and ares
as As, Bz, --- respectively. Hence V — E + F will not change, since
the additional vertices exactly counterbalance the additional arcs, while
no new regions are created. Next, we deform the surface by flattening
out the projecting handles, until the resulting surface is simply a sphere
from which 2p regions have been removed. Since V — E + Fisknown
to equal 2 for any subdivision of the whole sphere, we have

V—-E+F=2-2p

for the sphere with 2p regions removed, and hence for the original sphere
with » handles, as was to be proved.

Figure 121 illustrates the application of formula (1) to a surface S
consisting of flat polygons. This surface may be continuously deformed
into a torus, so that the genus pisland 2 — 2p =2 — 2= 0. As
predicted by formula (1),

V—-—E+F=16—-32+ 16 = 0.

Ezercise: Sabdivide the doughnut with two holes of Figure 137 into regions,
and show that V — E 4+ F = —2,

3. One-Sided Surfaces

An ordinary surface has two sides. This applies both to closed
surfaces like the sphere or the torus and to surfaces with boundary
curves, such as the disk or a torus from which a piece has been re-
moved. The two sides of such a surface could be painted with different
colors to distinguish them. If the surface is closed, the two colors never
meet. If the surface has boundary curves, the two colors meet only
along these curves. A bug crawling along such a surface and prevented
from crossing boundary curves, if any exist, would always remain on
the same side.

Moebius made the surprising discovery that there are surfaces with
only ore side. The simplest such surface is the so-called Moebius strip,
formed by taking a long rectangular stnip of paper and pasting its two
ends together after giving one a half-twist, as in Figure 139. A bug
crawling along this surface, keeping always to the middle of the strip,
will return to its original position upside down. The Moebius strip has
only one edge, for its boundary consists of a single closed eurve. The
ordinary two-sided surface formed by pasting together the two ends of a
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rectangle without twisting has two distinet boundary curves. If the
latter strip is cut along the center line it falls apart into two different
strips of the same kind. But if the Moebius strip is cut along this
line (shown in Figure 139) we find that it remains in one piece. It is

avw v Aviidiiiio i ULdo ploiuo,

rare for anyone not familiar with the Moebius strip to predict this

LI LY
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Fig. 130. Forming n Mosbins atrip.

behavior, so contrary to one’s intuition of what ‘“‘should” oceur. If the
surface that results from cutting the Moebius strip along the middle is
again cut along its middle, two separate but intertwined strips are
formed.
It is fascinating to play with such strips by cutting them along lines
parallel to a boundary curve and 1/2, 1/3, ete. of the distance across.
The boundary of a Moebius strip is an unknotted closed curve which
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can be deformed into a flat one e.g. a circle. During the deformation,
the strip may be allowed to interseet itself so that a onesided selfinter-
secting surface results as in Figure 140 known as a cross-cap. The locus
of selfintersection is regarded as two different hines, each belonging to

Fig. 140. Crom-cap

Fig. 141. Moebius strip with plane boundary.

one of the two portions of the surface which intersect there. The one-
sidedness of the Moebius strip is preserved because this property is
topological; a one-sided surface cannot be continuously deformed into
a two-sided surface. Strikingly enough it is even possible to conduect
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the deformation in such a way that the boundary of the Moebius strip
becomes flat, e.g. triangular, while the strip remains free from selfin-
tersections. Figure 141 indicates such a model, due to Dr. B. Tucker-
mann; the boundary is a triangle defining one half of one diagonal square
of a regular octahedron; the strip itself consists of six faces of the octa-
hedron and four rectangular triangles, each one fourth of a diagonal
plane.

Another interesting one-sided surface is the ‘“Klein bottle.” This
surface is closed, but it has no inside or outside. It is topologically
equivalent to a pair of cross-caps with their boundaries coinciding.

Fig. 142. Klsin bottle,

It may be shown that any closed, one-sided surface of genus p =
1, 2, ... is topologically equivalent to a sphere from which p disks have
been removed and replaced by cross-caps. From this it easily follows
that the Euler characteristic V — E + F of such a surface is related to p
by the equation

V—_—E+F=2-np.

The proof is analogous to that for two-sided surfaces. First we show that the
Euler characteristic of a cross-cap or Moebius strip 18 0. To do this we observe
that, by cutting across a Moebius strip which has been subdivided into a number
of regions, we obtain a rectangle that contains two more vertices, one more edge,
and the same number of regions as the Moebius strip. For the rectangle,
V — E + F =1, as we proved on page 239. Hence for the Moebius strip
V — E+ F =0. Asan exercise, the reader may complete the proof.

It 1s considerably sitapler to study the topological nature of surfaces
such as these by means of plane polygons with certain pairs of edges
conceptually identified (compare Chapt. IV, Appendix, Article 3). In
the diagrams of Figure 143, parallel arrows are to be brought into coinci-
dence actual or conceptual—in position and direction.

This method of identification may also be used to define three-dimen-
sional closed manifolds, analogous to the two-dimensional closed sur-
faces. For example, if we identify corresponding points of opposite
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Fig. 143. Closed surfaces defined by codrdination of edges in plane figure.

—

Fig. 144. Three-dimansinnal torus defined by bouadary ideatification.
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faces of a cube (Fig. 144), we obtain a closed, three-dimensional manifold
called the three-dimensional torus. This manifold is topologically
equivalent to the space between two concentric torus surfaces, one inside
the other, in which corresponding points of the two torus surfaces are
identified (Fig. 145). For the latter manifold is obtained from the cube
if two pairs of conceptually identified faces are brought together.

Fig. 148. Another representation of three-dimensional torus. (Figure cut towhow identifications

APPENDIX
*1. The Five Color Theorem

On the basis of Euler’s formula, we can prove that every map on the
sphere can be properly colored by using at most five different colors.
(According to p. 247, a map is regarded as properly colored if no two
regions having a whole segment of their boundaries in common receive
the same color.) We shall confine ourselves to maps whose regions are
bounded by simple closed polygons composed of circular arcs. We may
also suppose that exactly three arcs meet at each vertex; such a map
will be called regular. For if we replace every vertex at which more
than three arcs meet by a small circle, and join the interior of each such
circle to one of the regions meeting at the vertex, we obtain & new map in
which the multiple vertices are replaced by a number of triple vertices.
The new map will contain the same number of regions as the original
map. If this new map, which is regular, can be properly colored with
five colors, then by shrinking the circles down to points we shall have
the desired coloring of the original map. Thus it suffices to provethat
any regular map on the sphere can be colored with five colors.

First we show that every regular map must contain at least one
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polygon with fewer than six sides. Denote by F, the number of regions
of n sides in a regular map; then, if # denotes the total number of regions,

(1) F=F+F+F+ ...

Each arc has two ends, and three arcs end at each vertex. Hence, if E
denotes the number of arcs in the map, and ¥V the number of vertices,

(2) 2E = 3V.

Furthermore, a region bounded by n arcs has n vertiees, and each vertex
belongs to three regions, so that

3) 2E = 3V = 2F, + 3Fs + 4F( + ... .
By Euler’s formula, we have
V—E+F=2 or 6V —6E+ 6F =12
From (2), we see that 6V = 4F, so that 6F — 2E = 12,
Hence, from (1) and (3),
6(Fe +Fs+ F(+ --.) — (2F, + 3Fs +4F, + .-.)

Il

12,
or
(6 —2)F,+ (6 —3)F;3+ (6 —4)F+ (6 — 5)Fs + (6 — 6)F,
+ 6 ~-DF + ... =12,

Hence at least one of the terms on the left must be positive, so that at
least one of the numbers £, , F3 , Fy, Fy is positive, as we wished to show.

Now to prove the five color theorem. Let M be any regular map on
the sphere with n regions in all. We know that at least one of these
regions has fewer than six sides.

* - Ld - -
Case 1. M contains a region 4 with 2, 3, or 4 sides. In this case,

remove the boundary between A and one of the regions adjoining it.
(If A has 4 sides, one region may come around and touch two non-
adjacent sides of A. In this case, by the Jordan curve theorem, the
regions touching the other two sides of A will be distinet, and we remove
the boundary between A and one of the latter regions.)

N/

A

M /M D

Fig. 146,
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The resulting map M’ will be a regular map with n — 1 regions. If M’
roper red with b an M i
regions of M adjoin A, we can always find a fifth color for A.
Case 2. M contains a region A with five sides. Consider the five
regions adjoining A, and call them B, C, D, E, and F. We can always

” J ) ]

and D touch, they will prevent C from touching either E or F, since any
path leading from C to E or F will have to go through at least one of the
regions A, B, and D (Fig. 147). (It is clear that this fact, too, depends
essentially on the Jordan curve theorem, which holds for the plane or
sphere. It is not true on the torus, for example.) We may therefore
assume, say, that C and F do not touch. We remove the sides of 4

& Q

Fig. 147,

adjoining C and F, forming a new map M’ with n — 2 regions, which is
also regular. If the new map can be properly colored with five colors, then
so can the original map M. TFor when the boundaries are restored, 4 will
be in contact with no more than four different colors, since C and ¥
have the same color, and we can therefore find a fifth color for A.

Thus in either case if M is a regular map with n regions, we can con-
struct a new regular map M’ having n — 1 or n — 2 regions, and such
that if M’ can be colored with five colors, so can M. This process may
again be applied to M’ etc., and leads to a sequence of maps derived
from M:

M, M, M ...
Since the number of regions in the maps of this sequence steadily de-

creases, we must finally arrive at a map with five or fewer regions.
Such a map can always be colored with at most five colors. Hence,
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returning step by step to M, we see that M itself can be colored with
five colors. This completes the proof. Note that this proof is con-
gtructive, in that it gives a perfectly practicable, although wearisome,
method of actually coloring any map with n regions in a finite number
of steps.

2. The Jordan Curve Theorem for Polygons

The Jordan curve theorem states that any simple closed curve C
divides the points of the plane not on C into two distinct domains {(with
no points in common) of which C is the common boundary. We shall
give a proof of this theorem for the case where C is a closed polygon P.

We shall show that the points of the plane not on P fall into two
classes, A and B, such that any two points of the same class can be
joined by a polygonal path which does not cross P, while any path
joining a point of A to a point of B must cross P. The class A will
form the ‘“‘outside” of the polygon, while the class B will form the
“ingide.”

We begin the proof by choosing a fixed direction in the plane, not
parallel to any of the sides of P. Since P has but a finite number of
gides, this is always possible. We now define the classes A and B as
follows:

The point p belongs to A if the ray through p in the fixed direction
intersects P in an even number, 0, 2, 4, 6, - -+, of points. The point p
belongs to B if the ray through p in the fixed direction intersects P in
an odd number, 1, 3, 5, . .-, of points.

With regard to rays that intersect P at vertices, we shall not count an
intersection at a vertex where both edges of P meeting at the vertex
are on the same side of the ray, but we shall count an intersection at
a vertex where the two edges are on opposite sides of the ray. We shall
say that two points p and ¢ have the same “parity” if they belong to
the same class, A or B.

¥

Fig. 148. Counting intersections.
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First we observe that all the points on any line segment not inter-
secting P have the same parity. For the parity of a point » moving
lo h nt can only change when the ray in the fixed directio
through p passes through a vertex of P, and in neither of the two
possible cases will the parity actually change, because of the agreement
made in the preceding paragraph. From this it follows that if any
point py of A 18 joined to a point p1 of B by a polygonal path, then this path
must intersect P, for otherwise the parity of all the points of the path,
and in particular of p, and pz, would be the same. Moreover, we can
show that any two points of the same class, A or B, can be joined by a
polygonal path which does not intersect P. Call the two points p and q.
If the straight segment pg joining p to ¢ does not intersect P it is the
desired path. Otherwise, let p’ be the first point of intersection of this
segment with P, and let ¢’ be the last such point (Fig. 149). Construct
the path starting from p along the segment pp’, then turning off just
before p’ and following along P until P returns to pg at ¢’. If we can
prove that this path will intersect pg between ¢’ and ¢, rather than
between p’ and ¢’, then the path may be continued to ¢ along ¢’¢q without
intersecting P. It is clear that any two points r and s near enough to
each other, but on opposite sides of some segment of P, must have
different parity, for the ray through r will intersect 2 in one more point
than will the ray through s. Thus we see that the parity changes as
we cross the point ¢’ along the segment pg. It follows that the dotted
path crosses pg between ¢’ and g, since p and ¢ (and hence every point

on the dotted path) have the same parity.

| —

s
~

e

Fig. 149,

This completes the proof of the Jordan curve theorem for the case
of a polygon P. The “outside” of P may now be identified as the
class A, sinee if we travel far enough along any ray in the fixed direction
we shall come to a point beyond which there will be no intersection
with P, so that all such points have parity 0, and hence belong to A.
Thig leaves the “inside’”’ of P identified with the class B. No matter
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how twisted the simple closed polygon P, we can always determine
whether a given point p of the plane is inside or outside P by drawing a
ray and counting the number of intersections of the ray with P. If this
number is odd, then the point p is imprisoned within P, and cannot
escape without crossing P at some point. If the number is even, then
the point p is outside P. (Try this for Figure 128.)

*One may also prove the Jordan curve theorem for polygons in the {ollowing
way: Define the order of a point po with respect to any closed curve C which does
not pass through pe as the net number of complete revolutions made by an arrow
joining po to a moving point p on the curve as p traverses the curve once. Let

A = all points po not on P and with even order with respect to P,

B = all points p, not on P and with odd order with respect to P.
Then A and B, thus defined, form the outside and inside of P respectively. The
carrying out of the details of this proof is left as an exercise,

**3. The Fundamental Theorem of Algebra
The ‘“‘fundamental theorem of algebra” states that if
(1) f@) =2"+ anuz" '+ ap2z" " + -t + az + @,

where n > 1, and @a-1, @n2, - -+ , G are any complex numbers, then
there exists a complex number « such that f(a) = 0. In other words,
in the field of complex numbers every polynomial equation has a root. (On
p. 102 we drew the conclusion that f(z) can be factored into n linear
factors:

f2) = (2 — ez — ) --- (2 — aw),

where oy, @z, -+ - , an are the zeros of f(z).) It is remarkable that this
thcorem can be proved by considerations of a topological character,
related to those used in proving the Brouwer fixed point theorem.

The reader will recall that a complex number is a symbol =z + ¥i,
where z and y are real numbers and 7 has the property that i* = —1.
The complex number z + yi may be represented by the point in the
plane whose coordinates with respeet to a pair of perpendicular axes
are z, y. If we introduce polar codrdinates in this plane, taking the
origin and the positive direction of the z-axis as pole and prime direction
respectively, we may write

z=z 4+ yt = r (cos 8§ + ¢ sin 6),
where r = /22 4+ 32. It follows from De Moivre’s formula that

2" = r" (cos nf + ¢ sin nf).
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(See p. 96.) Thus, if we allow the complex number z to describe a
circle of radius r about the origin, 2" will describe n complete times g
circle of radius r" as z describes its circle once. We also recall that r, the
modulus of 2z, written |z |, gives the distance of z from O, and that if
2 =z’ + 1y, then |z — 2’| is the distance between z and 2/, With
these preliminaries we may proceed to the proof of the theorem.

Let us suppose that the polynomial (1) has no root, so that for every
complex number z

f(z) # 0.

On this assumption, if we now allow z to describe any closed curve in
the z,y-plane, f(z) will describe a closed curve I' which never passes

A

Fig. 150. Proof of fundamental theorem of algebra.

through the origin (Fig. 150). We may, therefore, define the order of
the origin O with respect to the function f(z) for any closed curve C
as the net number of complele revolutions made by an arrow joining O o a
point on the curve T' traced out by the point representing f(z) as z traces
out the curve €. As the curve C we shall take a circle with O as
center and with radius ¢, and we define the function ¢{¢f) to be the order
of O with respect to the function f(z) for the circle about O with radius .
Clearly ¢(0) = 0, since a circle with radius 0 is a single point, and the
curve I' reduces to the point f(0) = O. We ghall show in the next
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paragraph that ¢(¢) = = for large values of . But the order ¢(¢{) depends
continuously on ¢, since f(z) is a continuous function of z. Hence we
shall have a contradiction, for the function ¢(f) can assume only integral
values and therefore cannot pass continuously from the value 0 to the
value n.

It remains only to show that ¢({) = n for large values of . We ob-
serve that on a circle of radius 2 = ¢ so large that

t>1 and ¢t > |a|+ |a|+ -+ + |G,
we have the inequality

1f@) = 2" = |ana2" + o0 + agl
< lana | |2"" + |Gnal-|2]" 24 oo+ + | a0l

n—lr- iaﬂi_l
t Lla,._ll + .+

{

g1

S| + | @na [+ -+ + [a]] <8 = |27,

Since the expression on the left is the distance between the two points
z" and f(z), while the last expression on the right is the distance of the
point 2" from the origin, we see that the straight line segment joining
the two points f(z) and 2" cannot pass through the origin so long as z
i1s on the circle of radius ¢ about the origin. This being so, we may
continuously deform the curve traced out by f(z) into the curve traced
out by z" without ever passing through the origin, simply by pushing
each point f(z) along the segment joining it to z". Since the order of
the origin will vary continuously and can assume only integral values
during this deformation, it must be the same for both curves. Since
the order for 2" is n, the order for f(z) must also be n. This completes
the proof.



CHAPTER VI
FUNCTIONS AND LIMITS

INTRODUCTION

The main body of modern mathematics centers around the concepts
of function and limit. In this chapter we shall analyze these notiuns
systematically.

An expression such as

z' + 2z — 3
has no definite numerical value until the value of z is assigned. We

say that the value of this expression is a function of the value of z,
and write

t + 2z — 3 = f(z).

For example, when z = 2 then 2’ 4 2.2 — 3 = 5, so that f(2) = 5.
In the same way we may find by direct substitution the value of f(z)
for any integral, fractional, irrational, or even complex number z.
The number of primes less than n is a function x({n) of the integer =.
When a value of n is given, the value m(n) is determined, even though
no algebraic expression for computing it is known. The area of a
triangle is a function of the lengths of its three sides; it varies as the
lengths of the sides vary and is determined when these lengths are given
definite values. If a plane is subjected to a projective or a topological
transformation, then the codrdinates of a point after the transformation
depend on, i.e. are functions of, the original coordinates of the point.
The concept of function enters whenever quantities are connected by a
definite physical relationship. The volume of a gas enclosed in a
cylinder is a function of the temperature and of the pressure on the
piston. The atmospheric pressure as observed in a balloon is a function
of the altitude above sea level. The whole domain of periodic phe-
nomena—the motion of the tides, the vibratiuns of a plucked string, the
emission of light waves from an incandescent filament—is governed by

the simple trigonometric functions sin ¢ and cos z.

Teo Leibniz (1646-1716), who first used the word “fuuction,” and to
272
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the mathematicians of the eighteenth century, the idea of a functional
relationship was more or less identified with the existence of a simple
mathematical formula expressing the exact nature of the relationship.
'This concept proved too narrow for the requirements of mathematical
physics, and the idea of a function, together with the related notion of
limit, was subjected to a long process of generalization and clarification,
of which we shall give an account in this chapter.

§1. VARIABLE AND FUNCTION

1. Definitions and Examples

Often mathematical objects occur which we are free to choose arbi-
trarily from a whole set S of objects. Then we call such an object a
variable within the range or domasn S. It is customary to use letters
from the latter portion of the alphabet for variables. Thus if S denotes
the set of all integers, the variable X with the domain S denotes an
arbitrary integer. We say, ‘“the variable X ranges over the set S,”
meaning that we are free to identify the symbol X with any member of
the set S. The use of variables is convenient when we wish to make
statements involving objects chosen at will from a whole set. For
example, if S again denotes the set of integers and X and Y are both
variables with the domain S, the statement

X+Y=Y+X

is a convenient symbolic expression of the fact that the sum of any two
integers is independent of the order in which they are taken. A par-
ticular case is expressed by the equation

2+3=3+2

involving constants, but to express the general law, valid for all pairs
of numbers, symbols having the meaning of variables are needed.

It is by no means necessary that the domain S of a variable X be a
set of numbers. For example, S might be the set of all circles in the
plane; then X would denote any individual circle. Or S might be the
set of all closed polygons in the plane, and X any individual polygon.
Nor is it necessary that the domain of a variable contain an infinite
number of elements. For example, X might denote any member of the
population S of a given city at a given time. Or X might denote any
one of the possible remainders when an integer is divided by 5; in this
case the domain S would consist of the five numbers 0, 1, 2, 3, 4.
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The most important case of a numerical variable—in this case we
customarily use a small letter z—is that in which the domain of vari-
ability S is an interval a < z < b of the real number axis. We then
call x a confinuous variable in the interval. The domain of variability
of a continuous variable may be extended to infinity. Thus S may be
the set of all positive real numbers, z > 0, or even the set of all real
numbers without exception. In a similar way we may consider a vari-
able X whose values are the points in a plane or in some given domain
of the plane, such as the interior of a rectangle or of a circle. Since
each point of the plane is defined by its two codrdinates, z, y, with re-
spect to a fixed pair of axes, we often say in this case that we have a
pair of conltinuous variables, r and y.

It may be that with each value of a variable X there is assoeiated a
definite value of another variable U. Then U is called a function of X.
The way in whieh U is related to X is expressed by a symbol such as

U=F(X) (read, “F of X").

If X ranges over the set S, then the variable U/ will range over another
set, say T. For example, if S 1s the set of all triangles X in the plane,
a function F{X) may be defined by assigning to each triangle X the
length, U = F(X), of its perimeter; 7' will be the set of all positive
numbers. Here we note that two different triangles, X, and X;, may
have the same perimeter, so that the equation F(X,) = F(X,) is possible
even though X; # X:. A projective transformation of one plane, S,
onto another, T, assigns to each point X of S a single point U of T
according to a definite rule which we may express by the functional
symbol U = F(X). In this case F(X,) # F(X,) whenever X, # X,,
and we say that the mapping of S onto T is biunique (see p. 78).

Functions of a continuous variable are often defined by algebraic ex-
pressions. Examples are the functions

u=z ' 1 U= 1
- T 1+ 2%

In the first and last of these expressions, £ may range over the whole
set of real numbers; while in the second, £ may range over the set of
real numbers with the exception of 3 —the value 0 being excluded since
1/0 is not a number.

The number B(n) of prime factors of n is a function of n, where n
ranges over the domain of all natural numbers. More generally, any
sequence of numbers, a:, a2, a3, ---, may be regarded as the set of
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values of a function, ¥ = F(n), where the domain of the independent
variable n is the set of natural numbers. It is only for brevity that we
write a, for the nth term of the sequence, instead of the more explicit
functional notation I'{(n) The expressions discussed in Chapter I,

Sl(n)=1+2+...+n=’}_(_7%__1_)’
Se(n) = 1* + 2 + ... +nz=n(n+1)(2n+1)
6 H
2 2
Ss(n) =11+ 2" + ... +na=7£:4+—1),

are functions of the integral variable n.

If U = F(X) we usually reserve for X the name independent variable,
while U is called the dependent variable, since its value depends on the
value chosen for X.

It may happen that the same value of U is assigned to all values of X,
so that the set 7' consists of one element only. We then have the
special case where the value U of the function does not actually vary;
that is, U is constant. We shall include this case under the general
eoncept of function, even though this might seem strange to a beginner,
for whom the emphasis naturally seems to lie in the idea that U varies
when X does. But it will do no harm—and will in fact be useful—to
regard a constant as the special case of a variable whose ‘“domain of
variation” consists of a single element only.

The concept of function is of the greatest importance, not only in
pure mathematics Lut also in practical applications. Physical laws are
nothing but statements concerning the way in which certain quantities
depend on others when some of these are permitted to vary. Thus the
pitch of the note emitted by a plucked string depends on the length,
weight, and tension of the string, the pressure of the atmosphere depends
on the altitude, and the energy of a bullet depends on its mass and
velocity. The task of the physicist is to determine the exact or approxi-
mate nature of this functional dependence.

The function concept permits an exact mathematical characterization
of motion. If a moving particle is concentrated at a point in space with
rectangular codérdinates z, y, 2, and if { measures the time, then the
motion of the particle is completely described by giving its codrdinates
z, ¥, £ as functions of ¢:

z=f), y=90, z=~hQ.
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Thus, if a particle falls freely along the vertical z-axis under the influ-
ence of gravity alone,

z =0, ¥y = 0, z = _%gt!’

where g is the acceleration due to gravity. If a particle rotates uni-
formly on a circle of unit radius in the z, y-plane, its motion is char-
acterized by the functions

T = CoS wi, ¥y = sin w,

where w is a constant, the so-called angular velocity of the motion.

A mathematical function is simply a law governing the interdepend-
ence of variable quantities. It does not imply the existence of any
relationship of “‘cause and effect’”’ between them. Although in ordinary
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tiun, we shall avoid all such philosophical interpretations. Forexample,
Boyle’s law for a gas contained in an enclosure at constant temperature
states that the product of the pressure p and the volume v is a constant ¢
(whose value in turn depends on the temperature):

Py = C.
This relation may be solved for either p or v as a function of the other
variable,

=% or v="°
p=7 D’

without implying that a change in volume is the “cause” of a change in
pressure any more than that the change in pressure is the ‘‘cause” of
the change in volume It is only the form of the connection between the
two variables which is relevant to the mathematician.

Mathematicians and physicists differ sometimes as to the aspect of the func-
tion concept on which they put the emphasis. The former usually stresses the
law of correspondence, the mathematical operation that is applied to the independ-
ent variable z to obtain the value of the dependent variable u. In this sense
f( ) is a symbol for a mathematical operation; the value u = f(z) is the result of
applying the operation f( ) to the number z. On the other hand, the physicist is
often more interested in the gquantity u as such than in any mathematical pro-
cedure by which the values of u ¢an be computed from those of z. Thus the re-
sistance u of the air to a moving obhject depends on the velocity v and ean be found
by experiment, whether or not an explicit mathematical formula for computing
u = f(r) is known. Tt is the actual resistance which primarily interests the
physiciat and not any particular mathematical formuta f(r), except insofar as the
study of such a formula may aid in anaiyzing the behavior of the quantity v. This
i8 the attitude ordinarily taken if one applies mathematics to physics or engineer-
ing. In more advanced calculations with functions confusion can sometimes be
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avoided only by knowing exactly whether one means the operation f( )} which
assigns to z a quantity u = f(z), or the quantity u itself, which may also be con-
pidered to depend, in a quite different manner, on some other variable, z. For
example, the area of a circle is given by the function ¥ = f(z) = =% where zis the
radius, and also by the function u = g(z) = 22/4x, where z is the circumference.

Perhaps the simplest types of mathematical functions of one variable
are the polynomials, of the form

u=f(z) =a+ az+ az’+ .-+ + ax”,

with constant ‘“‘coefficients,” a,, a;, -+ ,a,. Next come the rational
functions, such as

1 241
o "TiFe YT EF3eT s
which are quotients of polynomials, and the {rigonomelric functions, cos z,
sin z, and tan £ = sin z/cos z, which are best defined by reference to
the unit circle in the ¢, 5-plane, £ + ° = 1. If the point P(¢, n) moves
on the circumference of this circle, and if z is the directed angle through
which the positive ¢-axis must be rotated in order to coincide with OP,
then cos z and sin z are the codrdinates of P: cosx = ¢, sinx = 9.

K=

N =

2. Radian Measure of Angles

For all practical purposes angles are measured in units obtained by
subdividing a right angle into a number of equal parts. If this number
is 90, then the unit is the familiar “degree.” A subdivision into 100
parts would be better adapted to our decimal system, but would repre-
sent the same principle of measuring. For theoretical purposes, how-
ever, it is advantageous to use an essentially different method of char-
acterizing the size of an angle, the so-called radian measure. Many
important formulas involving the trigonometric functions of angles have
a simpler form in this system than if the angles are measured in degrees.

To find the radian measure of an angle we describe a circle of radius 1
about the vertex of the angle. The angle will cut out an arc s on the
circumference of this circle, and we define the length of this arc as the
radian measure of the angle. Since the total circumference of a circle
with radius 1 has the length 2, the full angle of 360° has the radian
measure 2rx. It follows that if * denotes the radian measure of an
angle and y its degree measure, then x and y are connected by the
relation /360 = z/2n or

ry = 180z.
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Thus an angle of 90° (y = 90) has the radian measure x = 90»/180 =
/2, etc. On the other hand, an angle of 1 radian (the angle with
radian measure x = 1) is the angle that cuts out an arc equal to
the radius of the circle; in degrees this will be an angle of y = 180/» =
57.2957 ... degrees. We must always multiply the radian measure z
of an angle by the factor 180/x to obtain its degree measure y.

The radian measure = of an angle is also equal to twice the area A
of the sector of the unit circle cut out by the angle; for this area bears
to the whole area of the circle the ratio which the arc along the cir-
cumference bears to the whole circumference: z/2r = A/7, 2 = 2A.

Henceforth the angle x will mean the angle whose radian measure is z.
An angle of z degrees will be written z°, to avoid ambiguity.

It will become apparent that radian measure is very convenient for
analytic operations. For practical use, however, it would be rather
inconvenient. Since = is irrational, we shall never return to the same
point of the circle if we mark off repeatedly the unit angle, i.e. the angle

of radian measure 1. The ordinary measure is so devised that after
marking off 1 degree 360 times, or 90 degrees 4 times, we return to the

same position.

3. The Graph of a Function. Inverse Functions

The character of a function is often most clearly shown by a simple
geometrical graph. If x, u are coordinates in a plane with respect to a
pair of perpendicular axes, then linear functions such as

u=ar+b
are represented by straight lines; quadratic functions such as
u=az’ + bz + ¢
by parabolas; the funefion

1
U = —
T

by a hyperbola, etc. By definition, the graph of any function u = y(z)
consists of all the points in the plane whose codrdinates x, u are in the
relationship ¥ = f(z). The functions sin z, cos z, tan z, are repre-
sented by the curves in Figures 151 and 152. These graphs show
clearly how the values of the functions increase or decrease as x varies.



THE GRAPH OF A FUNCTION 279

"

Fig. 151. Grapha of ain z and coa 2.

-
-

-/ - 4] { 7 L z

Fig. 152. u = tan 7.

An important method for introducing new functions is the following,.
Beginning with a known function, F(X), we may try to solve the equa-
tion U = F(X) for X, so that X will appear as a function of U:

X = Q).

The function G(U) is then called an tnverse function of F(X). This
process leads to a unique result only if the function U = F(X) defines a
biunique mapping of the domain of X onto that of U, i.e. if the in-
equality X, # X, always implies the inequality F(X,) = F(X,), for
only then will there be a uniquely defined X correlated with each U.
Our previous example in which X denoted any triangle in the plane and
U = F(X) was its perimeter is a case in point. Obviously this mapping
of the set S of triangles onto the set T' of positive real numbers is not
biunique, since there are infinitely many different triangles with the
same perimeter. Hence in this case the relation U = F(X) does not
serve to define a unique inverse function. On the other hand, the fune-
tion m = 2n, where n ranges over the set S of integers and m over the
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set T of even integers, does give a biunique correspondence between
the two sets, and the inverse function n = m/2 is uniquely defined.
Another example of a biunique mapping is provided by the function

3

uUu=7=x.
£ 0
ayY
Fig. 153. u = xt,

As z ranges over the set of all real numbers, u will likewise range over
the set of all real numbers, assuming each value once and only once.
The uniquely defined inverse function is

z = v u.
In the case of the function
u = 7,

an inverse function is not uniquely determined. For since u = z* =
(—x)?, each positive value of u will have two antecedents. But if, as
is customary, we define the symbol 4/u to mean the positive number
whose square is %, then the inverse function

2 = Vi

exists, so long as we restrict  and u to positive values.

The existence of a unique inverse of a function of one variable, u = f(z),
can be seen by a glance at the graph of the function. The inverse
function will be uniquely defined only if to each value of % there corre-
sponds but one value of z. In terms of the graph, this means that no
parallel to the z-axis intersects the graph in more than one point. This
will certainly be the case if the function u = f(z) is monolone, i.e.
steadily increasing or steadily decreasing as x increases. For example,
if © = f(x) is steadily increasing, then for z; < x; we always have u, =
f(z)) < ua = f(x2). Hence for a given value of u there can be at most
one z such that u = f(z), and the inverse function will be uniquely
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defined. The graph of the inverse function x = g(u) is obtained merely
by rotating the original graph through an angle of 180° about the dotted
line (Fig. 154), so that the positions of the z-axisand the u-axis are inter-
changed. The new position of the graph will depict = as a function of wu.
In its original position the graph shows u as the height above the hori-
zontal z-axis, while after the rotation the same graph shows = as the
height above the horizontal u-axis.

-
8

/

Fig. 1564. Inverse functions,

The considerations of the preceding paragraph may be illustrated for
the case of the function

u = tan z.

This function is monotone for — n/2 < z < n/2 (Fig. 152). The values
of u, which increase steadily with z, range from — ® to 4+ o hence
the inverse function,

T = g(u)r
is defined for all values of u. This function is denoted by tan™ u or

arc tan u. Thus arc tan(l) = =/4, since tan /4 = 1. Its graph is
shown in Figure 155.

iz

Fig. 155. 3 = aro tan w,
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4. Compound Functions

A second important method for creating new functions from two or
more given ones is the compounding of functions. For example, the
function

u = f(zr) = V14 22
is “compounded” from the two simpler functions

- 2
a=g($)_1-l-$

and can be written as
u = f(z) = h(g[z)) (read, ““h of g of 2").
Likewise,
1
U= r) = —m= =
@) = e
is compounded from the three functions
z=g)=1—-2", w=hk) =2 u=kw=

so that
u = f(z) = k(hlg(z)]).

The function

1
u = f(z) = gin -
T
is compounded from the two functions
1 »
z = g(z) = oy u = h(z) = gin z.

The function f(x) is not defined for z = 0, since for z = 0 the expression 1/x has
no meaning. The graph of this remarkable funection is obtained from that of the
eine. We know that sin z = 0 for 2z = kx, where k is any positive or negative
integer. Furthermore,

1 for z=(4k+1)’25,
gin z m=

—1 for z = (4k — 1)'—25.
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if k is any integer. Hence

1
0 for z= —
or z= -,
1 2
in = = f -
sin ~ {1 o T = DY
g
-1 f = e
L oF =k — D

If we set successively
k=1234, -,

then, since the denominators of these fractions increase without limit, the values
of z for which the function sin (1/z) has the values 1, —1, 0, will cluster nearer
and nearer to the point £ = 0. Between any such point and the origin there will
gtill be an infinite number of oscillations of the funetion. The graph of the
function is shown in Figure 156.

(/)
A

. L1
Fig. 156. u = gin -,
x

5. Continuity

The graphs of the functions so far considered give an intuitive idea
of the property of continuity. We shall give a precise analysis of this
concept in §4, after the limit concept has been put an a rigorous
basis. But roughly speaking, we say that a function is continuous if
its graph is an uninterrupted curve (see p. 310). A given function
u = f(x) may be tested for continuity by letting the independent vari-
able £ move continuously from the right side and from the left side
towards any specified value ;. Unless the function ¥ = f(z) is con-
stant in the neighborhood of z: , its value will also change. If the value
f(z) approaches as a limit the value f(z;) of the function at the specified
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point x = x1, no matler whether we approach x, from one side or the other,
then the function is said to be continuous at x, . If this holds for every
point z; of a certain interval, then the function is said to be confinuous
in lhe inlerval.

Although every function represented by an unbroken graph is con-
tinuous, it is quite easy to define functions that are not everywhere
continuous. For example, the function of Figure 157, defined for all

values of z by setting
fx) =1+ =z for >0

fz) = -1 4+ 2 for <0

u:i

Y

Y
/

Fig. 157. Jump discontinuity.

is discontinuous at the point z, = 0, where it has the value —1. If we

try to draw a graph of this function, we shall have to lift our pencil

irom the paper at this point. If we approach the value ; = 0 from the

right side, then f(z) approaches +1. But this value differs from the

actual value, —1, at this point. The fact that —1 is approached by f(z)

s = tends to zero from the left side does not suffice to establish continuity.
The function f(z) defined for all z by setting

f(z) =0 for x 0, f(0) = 1,

presents a discontinuity of a different sort at the point z, = 0. Here
both right- and left-hand limits exist and are equal as z approaches 0,
but this common limiting value differs from f(0).
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Another type of discontinuity is shown by the function of Figure 158,

u = f(z) = é:

o
4

0

Fig, 158, Infinite discontinuity.

at the point £ = 0. If z is allowed to approach zero from either side,
u tends to infinity; the graph of the function is broken at this point,
and small changes of z in the neighborhood of £ = 0 may produce very
large changes in u. Strictly speaking, the value of the function is not
defined for x = 0, since we do not admit infinity as a number and
therefore we cannot say that f(z) ¢s infinite when z = 0. Hence we say
only that f(z) ‘“tends to infinity’’ as z approaches zero.

A still different type of discontinuity appears in the function v =
sin (1/z) at the point x = 0, as is apparent from the graph of that
function (Fig. 156).

The preceding examples exhibit several ways in which a function can
fail to be continuous at a point z = =z, :

1) It may be possible to make the function continuous at z = z; by
properly defining or redefining its value when £ = z,. For example,
the function v = z/x is constantly equal to 1 when =z # 0; it is not
defined for z = 0, since 0/0 is a meaningless symbol. But if we agree
in this case that the value « = 1 shall also correspond to the value
z = 0, then the function so extended becomes continuous for every
value of z without exception. The same effect is produced if we redefine
f(0) = 0 for the function defined at the bottom of the preceding page.
A discontinuity of this kind is said to be removable.

2) Different limits may be approached by the function as r ap-
proaches r, from the right and from the left, as in Figure 157.

3) Even one-sided limits may not exist, as in Figure 156.
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4) The function may tend to infinity as z approackes z,, as in
I'igure 158.

Discontinuities of the last three types are said to be essential; they
cannot be removed by properly defining or redefining the function at
the point x = =z, alone.

z—1 22-1 z

Ezercises: 1) Plot the functions 7 'Fil @ - D@+ D and find their

discontinuities.

.1 1 . .
2) Plot the functions z #in - and z? gin - and verify that they are continuous
z x

at z = 0, if one defines u = 0 for z = 0, in both cases.

. 1 . . .
*3) Show that the function arc tan; has a discontinuity of the second type

(Jump) at z = 0.

*6. Functions of Several Variables

We return to our systematic discussion of the function concept. If
the independent variable P is a point in the plane with coordinates z, y,
and if to each such point P corresponds a single number u—for example,
u might be the distance of the point P from the origin—then we usually
write

u = f(z, y).
This notation is also used if, as often happens, two quantities z and y
appear from the outset as independent variables. For example, the
pressure ¥ of a gas is a function of the volume z and the temperature y,
and the area u of a triangle is a function u = f(z, y, 2) of the lengths
z, y, and z of its three sides.

In the same way that a graph gives a geometrical representation of a
function of one variable, a geometrical representation of a function
u = f(z, y) of two variables is afforded by a surface in the three-dimen-
sional space with z, y, © as coordinates. To each point z, ¥ in the
z, y-plane we assign the point in space whose cotrdinates are z, ¥, and
u = f(z,y). Thus the function u = 4/1 — 22 — y? is represented by a
spherical surface with the equation %* 4+ 2* 4+ 3* = 1, the linear func-
tion ¥ = ax + by 4+ ¢ by a plane, the function ©« = zy by a hyperbolic
paraboloid, ete.

A different representation of the function © = f(z, ¥) may be given
in the z, y-plane alone by means of contour lines. Instead of considering
the three-dimensional “‘landscape” u = f(z, y), we draw, as on a contour
map, the level curves of the function, indicating the projections on the
z, y-plane of all points with equal vertical elevation u. These level
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curves are simply the curves f(z, ¥) = ¢, where ¢ remains constant for
each curve. Thus the function ¥ = z + y is characterized by Figure

~ "

T

Fig. 160. Hyperbolic paraboloid.

Fig. 161, A surface u = f(z, y). F1a. 162, The corresponding level curves.

Fig.163. Level curvesof u m 2 4 .

163. The level curves of a spherical surface
are a set of concentric circles. The func-
tion u = z° + ¥’ representing a paraboloid of
revolution is likewise characterized by circles
(Fig. 165). By numbers attached to the
different curves one may indicate the height
u = ¢.

Functions of several variables occur in
physics when the motion of a eontinuous
substance is to be described. For example,
suppose a string is stretched between two
points on the z-axis and then dcformed so that

the particle with the position z is moved a certain distance perpendicu-
larly to the axis. If the string is then released, it will vibrate in such
a way that the particle with the original codrdinate = will have at the
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time ¢ a distance v = f(z, ) from the z-axis. The motion is completely
described as soon as the function. 4 = f(z, t) is known.

N~

z ¥

Fig. 164. Paraboloid of revolution. Fig. 185, The corresponding lavel curves.

The definition of continuity given for functions of a single variable
carries over directly to functions of several variables. A function
u = f(z, y) is said to be continuous at the pointz = z,,y = y, if f(z, y)
always approaches the value f(z:, y1) when the point z, y approaches
the point z, , t from any direction or in any way whatever.

There is, however, one important difference between functions of one
and of several variables. In the latter case the concept of an inverse
function becomes meaningless, since we cannot solve an equation u =
f(z, ¥), e.g. v = = + y, in such a way that each of the independent
quantities * and y can be expressed in terms of the one quantity u. But
this difference in the aspect of functions of one and of several variables
disappears if we emphasize the idea of a function as defining a mapping
or transformation.

*7. Functions and Transformations

A correspondence between the points of one line I, characterized by a
codrdinate = along the line, and the points of another line I/, character-
ized by a codrdinate z’, is simply a function 2’ = f(z). In case the
correspondence is biunique we also have an inverse function z = g(z’).
The simplest example is a transformation by projection, which—we
state here without proof—is characterized in general by a function of
the form z’ = f(z) = (ax + b)/(cx + d), where a, b, ¢, d, are constants.
In this case, the inverse function is z = g(z’) = (—dz’ + b)/(cz’ — a).

Mappings in two dimensions from a plane x with coérdinates z, ¥
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onto a plane »’ with cosrdinates z’, ¥” cannot be represented by a single
function 2’ = f(z), but require two functions of two variables:

' = f(z, y),

¥ = g(z, y).
For example, a projective transformation is given by a function system,

N o
gr+ hy + Kk’

,_dr+ ey f

gz hy + K
where a, b, - .- , k are constants, and where z, ¥ and z’, ¥’ are cotrdi-
nates in thie two planes respectively., From this point of view the idea of
an inverse transformation makes sense. We simply have to solve this
system of equations for z and y in terms of =’ and y’. Geometrically,
this amounts to finding the inverse mapping of =’ onto . This will be
uniquely defined, provided the correspondence between the points of

the two planes is biunique.

The transformations of the plane studied in topology are given, not

LT SRl

by simple algebraic equations, but by any system of functiors,
z' = flz, y),
y = gz, ¥),

that define a biunique and bicontinuous transformation.

Ezxercises: *1) Show that the transformation of inversion (Chapter I11, p. 141)
in the unit circle is given analytically by the equations z’ = z/(z? + y?),
y' = y/(z? + y?). Find the inverse transformation. Prove analytically that
inversion transforms the totality of lines and cireles into lines and cireles.

2) Prove that by a transformation 2z’ = (az + b)/(cz + d) four points of the
z-axis are transformed into four points of the z’-axis with the same cross-ratio.
(See p. 175.)

§2. LIMITS

1. The Limit of a Sequence a,,

As we have seen in §1, the description of the continuity of a function
is based on the limit concept. Up to now we have used this concept
in a more or less intuitive forin. In this and the following sections we
shall consider it in a more systematic way. Since sequences are rather
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simpler than functions of a continuous variable, we shall begin with a
study of sequences.

In Chapter II we encountered sequences a, of numbers and studied
their limits as n increases indefinitely or ‘tends to infinity.” For ex-
ample, the sequence whose nth term is a, = 1/n,

11 1
(1) 1r§1§!"'!£!"':

has the limit 0 for increasing n:

(2) -—0 as n— «,

Let us Lry fo state exac uy what is meant b:y this. As we g0 out farther

and farther in the sequence, the terms become smaller and smaller.
After the 100th term all the terms are smaller than 1/100, after the
1000th term all the terms are smaller than 1/1000, and so on. None of
the terms is actually equal to 0. But if we go out far enough in the
sequence (1), we can be sure that each of its terms will differ from 0
by as litile as we please.

The only trouble with this explanation is that the meaning of the
italicized phrasesis not entirely clear. How far is “far enough,” and how
little is “‘as little as we please”? If we can attach a precise meaning
to these phrases then we can give a precise meaning to the limiting
relation (2).

A geometric interpretation will help to make the situation clearer.
If we represent the terms of the sequence (1) by their corresponding
points on the number axis we observe that the terms of the sequence
appear to cluster around the point 0. Let us choose any interval I on
the number axis with center at the point 0 and total width 2¢, so that
the interval extends a distance e on each side of the point 0. If we
choose ¢ = 10, then, of course, all the terms a, = 1/n of the sequence
will lie inside the interval I. If we choose e = 1/10, then the first few
terms of the sequence will lie outside I, but all the terms from a,; cn,

1 _1‘ _l_ 1
11'12° 13" 147
will lie within I. Even if we choose ¢ = 1/1000, only the first thou-

sand terms of the sequence will fail to lie within I, while from the term
awm on, all the infinitely many terms

(110(}1,01003,31003, e
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will lie within I. Clearly, this reasoning holds for any positive number e:
as soon as a positive e is chosen, no matter how small it may be, we can
then find an integer N so large that

1
N <e
From this it follows that all the terms a,. of the sequence for which
n > N will lie within I, and only the finite number of terms a;, @z, -- -,
ax_1 can lie outside. The important point is this: Firs{ the width of
the interval I is assigned at pleasure by choosing e. Then a suitable
integer N can be found. This process of first choosing a number ¢ and
then finding a suitable integer N can be carried out for any positive
number ¢, no matter how small, and gives a precise meaning to the
statement that all the terms of the sequence (1) will differ from 0 by
as little as we please, provided we go out far enough in the sequence.
To summarize: Let ¢ be any positive number. Then we can find an
integer N such that all the terms a, of the sequence (1) for whichn > N
will lie within the interval I of total width 2¢ and with center at the
point 0. This is the precise meaning of the limiting relation (2).
On the basis of this example we are now ready to give an exact defini-
tion of the general statement: “The sequence of real numbers a;, a2,
as, + -+ has the limit a.”” We include a in the interior of an interval I

~F +tha wrhaw aviar 3 f tha tmdarernl o all snra ~f

w buU uuluuex a.Aia | 59 UIIU Liyci Vﬂwl ID Dlllall’ QUILIT W thc uuulbcla LE 'Y uu:._y
lie outside the intetrval, but as soon as n becomes sufficiently large, say
greater than or equal to some integer IV, then all the numbers a, for
which n > N must lie within the interval I. Of course, the integer N
may have to be taken very large if a very small interval I is chosen,
but no matter how small the interval I, such an integer N must exist
if the scquence is to have a as its limit.

MTha fand ¢hat MNAMNIY AT AN hone tha livied ~ smv aveimaocnr] o m‘\nl:qﬂ]lir
A LI lauy buab u aUunubU Un L1ay UllU 11 llb W 13 UA}JI elel ¥ N | llUUll\Jally

by writing
lim @, = a asn — o,

or simply

an — a as n —
{fvoad dovirde tn n v namnarace fn Thna dAn v ~nf ¢ NANYTATFON ALl
\reaq. a, enas io &, Or CoTwergto U Q. A 110 Uc 1 NniviCn g1 v CiivVergenca

ormulated more concisely as follows: The
he limil a as n tends to infinily if, corre-

L L)

of a sequence a» to a may be
sequence ay, 82, 8;, «-+ has

Ty



202 FUNCTIONS AND LIMITS [VI]

sponding fo any positive number e, no matler how small, there may be
found an integer N (depending on. €), such that

(3) Ia'_'an|<f
for all
n> N,

This is the abstract formulation of the notion of the limit of a se-
quence. Small wonder that when confronted with it for the first time
one may not fathom it in a few minutes. There is an unfortunate,
almost snobbish attitude on the part of some writers of textbooks, who
present the reader with this definition without a thorough preparation,
as though an explanation were beneath the dignity of a mathematician.

The definition suggests a contest between two persons, A and B.
A sets the requirement that the fixed quantity a should be approached
by a. with a degree of accuracy better than a chosen margin ¢ = ¢ ;

B meets the requirement by demonstrating that there is a certain integer

N = N, such that all the a, after the element ay, satisfy the ¢-require-
ment. Then A may become more exacting and set a new, smaller,
margin, ¢ = . B again meets his demand by finding a (perhaps much
larger) integer N = N,. If B can satisfy A no malter how small A sets
his margin, then we have the silualion expressed by a, — a.

There is a definite psychological difficulty in grasping this precise

definition of limit. QOur intuition sugeests a ”dvnamm ides of a limit

Y Y S L T e Y e e L ) wAARS 22AVRSAUARNIIL LA YRY Y & 2142112 22l 72

as the result of a process of ““motion’; we move on through the row of
integers 1, 2, 3, .-+, n, ... and then observe the behavior of the se-
quence a.. We feel that the approach a, — a should be observable.
But this “natural” attitude is not capable of clear mathematical formu-
lation. To arrive at a precise definition we must reverse the order of
steps; instead of first looking at the independent variable » and then at the
dependent variable a. , we must base our definition on what we have to
do if we wish actually to check the statement a, — a. In such a pro-
cedure we must first choose an arbitrarily small margin around a and
then determine whether we can meet this condition by taking the inde-
pendent variable n sufficiently large. Then, by giving symbolic names,
¢ and N, to the phrases “arbitrarily small margin’ and “sufficiently
large n,”” we are led to the precise definition of limit.
As another example, let us consider the sequence

1 23 4 n

5’5’1’5' .-n_l_l:' ’
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n
where a, = —_—+_——1 I state that lim a, = 1. If you choose an interval

whose center is the point 1 and for which ¢ = 1/10, then I can satisfy
your requirement (3) by choosing N = 10; for

n _n4+l-n_ 1 < 1
n+1 n+1  n+41
as soon as n > 10. If you strengthen your demand by choosing e =
1 /1000 then agam I can meet it b} choosmg N = 1000' and similarly

0<1-

s 00Sse;
in fact I need only chooee any mteger N greater tha.n l/e This
process of assigning an arbitrarily small margin ¢ about the number a
and then proving that the terms of the sequence a, are all within a dis-
tance ¢ of a if we go far enough out in the sequence, is the detailed
description of the fact that lim a. = a.

If the members of the sequencea, , a2, as, - -« are expressed as infinite
decimals, then the statement lim a. = a simply means that for any
positive integer m the first m digits of a,. coincide with the first m digits
of the infinite decimal expansion of the fixed number a, provided that »
is chosen sufficiently large, say greater than or equal to some value N
(depending on m). This merely corresponds to choices of ¢ of the
form 107",

There is another, quite suggestive, way of expressing the limit concept.
If im a, = a, and if we enclose @ in the interior of an interval I, then
no matter how small I may be, all the numbers a. for which »n is greater
than or equal to some integer N will lie within 7, so that at most a
finite number, N—1, of terms at the beginning of the sequence,

ay,q2,y r++ , 051,

can lie outside I. If I is very small, N may be very large, say a hundred
or even a thousand billion; still only a finite number of terms of the
sequence will lie outside 7, while the infinitely many remaining terms
will lie within I.

We may say of the members of any infinite sequence that “almost all”
have a certain property if only a finite number, no matter how great,
do not have the property. For example “almost all” positive integers
are greater than 1,000,000,000,000. TUsing this terminology, the state-
ment Iim ¢, = a isequivalent to the statement: If I ¢s any interval with a
as its center, then almost all of the numbers a, lie within 1.

It should be noted in passing that it is not necessarily assumed that
all the terms a, of a sequence have different values. It is permissible for
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some, infinitely many, or even all the numbers a. to be equal to the
limit valuea. For example, the sequence for whicha; = 0,2, =0, ...
a, = 0, ... is a legitimate sequence, and its limit, of course, is 0.

A sequence a, with a limit a is called convergent. A sequence a,
without a limit is called divergent.

)

Ezxercises: Prove:

. . . 1
hrarat has the limit 0. (Hint: a, = 1
n 4+ -

T

1. The sequence for which as =

1
is less than - and greater than 0.)

1
14—
n? + 1 . . . n? .
2. The sequence gy = has the limit 0. (Hint: ¢, = lies between
nl + 1 1
n A+ -
n

0 and —2.)
n

3. The sequence 1, 2, 3, 4, --- and the oscillating sequences
1,2,1,2,1,2, -,
~1, 1, —1,1, =1, «++ (ie.an = (—1)"),
and 1,4,1,4 1,3 1,4, .-

do not have limits.

If in a sequence a, the members become so large that eventually a,
is larger than any preassigned number K, then we say that a, fends to
infinity and write lim a, = o, ora, —» «. For example, n* — « and
2" — w. This terminology is useful, though perhaps not quite con-
sistent, because = is not considered to be a number a. A sequence
tending to infinity s still called divergent.

nt + 1

Ezxercise: Prove that the sequence a, = tends to infinity; eimilarly

n’-}-la n'-—land nn
nt+ 1T MO T

n

for an =

Beginners sometimes fall into the error of thinking that a passage to
the limit as n — « may be performed simply by substituting n = o
in the expression for a, . For example, 1/72 — 0 because “1/o = 0.”
But the symbol © is not a number, and its use in the expression 1/
is illegitimate. Trving to imagine the limit of a sequence as the “ulti-
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mate’’ or “last” term a, when n = « misses the point and obscures the
issue.

2. Monotone Sequences

In the general definition of page 291, no specific type of approach of a
convergent sequence a;, 0z, a;, «-- to its limit a is required. The
simplest type is exhibited by a so-called monotone sequence, such as
the sequence

2 3 n )
’§'Z"“’n+1’“
Each term of this sequence is greater than the preceding term. For
n+1 1 1 n

itz Tar2 T Tarl T atd
of this sort, where a.,1 > a,, is said to be monolone increasing. Simi-
larly, a sequence for which a, > @41, such as the sequence 1, 1/2,
1/3, ..., is called monofone decreasing. Such sequences can approach
their limits from one side only. In contrast to these, there are sequences
that oscillate, such as the sequence —1, +1/2, —1/3, +1/4, ....
This sequence approaches its limit 0 from both sides (see Fig. 11, p. 69).

The behavior of a monotone sequence is especially easy to determine.
Such a sequence may have no limit, but run away completely, like the
sequence

B

= a.. A sequence

an41 =

1: 2: 3:4: Tt
where a, = n, or the sequence
2,35 7,11,13, -..,
where a, is the nth prime number, p, . In this case the sequence tends
to infinity. But if the terms of a monotone increasing sequence remain
bounded—that is, if every term is less than an upper bound B, known

in advance—then it is intuitively clear that the sequence must tend to a
certain limit @ which will be less than or at most equal to B. We

i ——
a a a a

& ¢, B

Fig. 166. Monotone bounded sequence.

formulate this as the Principle of Monolone Sequences: Any mono-
lone tncreasing sequence that has an upper bound must converge lo a limil.
(A similar statement holds for any monotone decreasing sequence with a
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lower bound.) It is remarkable that the value of the limit @ need not
be given or known in advance; the theorem states that under the pre-
scribed conditions the limit exzsts. Of course, this theorem depends on
the introduction of irrational numbers and would otherwise not always
be true; for, as we have seen in Chapter II, any irrational number (such
as 4/2) is the limit of the monotone increasing and bounded sequence
of rational decimal fractions obtained by breaking off a certain infinite
decimal at the nth digit.

* Although the principle of monotone sequences appeals to the intuition as an
obvious truth, it will be instructive to give a rigoroue proof in the modern fashion.
To do this we must show that the principle ie a logical consequence of the defini-
tions of real number and limit.

Suppose that the numbers a,, a:, as, -+ form a monotone increasing but
bounded sequence. We can express the terma of this sequence asinfinite decimals,

61 = Ai.p1paps - -,
ar = As.q1qsqs -+,

as = Ag.rirary oo,

--------------------

where the A; are integers and the p:, ¢:, etc. are digits from 0 to 9. Now run

down the column of integers 4., A1, A,;, --- . Since the sequence a,, ai,
as, --- 18 bounded, these integers cannot increase indefinitely, and since the
sequence i8 monotone increasing, the sequence of integers A, , Ay, Ay, -+~ will

remain constant after atlaining its mazimum value, Call this maximum value 4,
and suppose that it is attained at the Noth row. Now run down the second
column py, g1, r1, -+-, confining attention to the terms of the Noth and sub-
sequent rows. If z,is the largest digit to appear in this column after the Noth
row, then z; will appear constantly after its first appearance, which we may sup-
pose to occur in the N;th row, where Ny > No. For if the digit in this column
decreased at any time thereafter, the sequence a,, as, as, --- would not be mono-
tone increasing. Next we consider the digits py, g2, rs, - -+ of the third column.
A similar argument shows that after a certain integer Ny > N, the digits of the
third column are constantly equal to some digit rs. If we repeat this process
for the 4th, 6th, --- columns we obtain digits z;, ., zs, *-- and corresponding
integers Ny, N, N¢, »+- . It i8 easy to see that the number

a= A..’t;IgI;I‘ sew

is the limit of the sequence a,, a:, as, -+ . For if ¢ 18 chosen > 10~™, then for
all n > N. the integral part and first m places of digits after the decimal point
in as will coincide with those of a, 8o that the difference | @ — as | cannot exceed
10~=, Since this can be done for any positive ¢, however small, by choosing m
gufficiently large, the theorem is proved.

It is also possible to prove this theorem on the basis of any one of the other
definitions of real numbers given in Chapter 1I; for example, the definition by
nested intervals or by Dedekind cuts. Such proofs are to be found in most texts
on advanced calculus.
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The principle of monotone sequences could have been used in Chapter 1I to
define the sum and product of two positive infinite decimals,

a= A.aa:a; -,
b - B.bxbgbl b

Two such expressions cannot be added or multiplied in the ordinary way, starting
from the right-hand end, for there is no such end. (As an example, the reader may
try to add the two infinite decimals 0.333333 --- and 0.989898 ---.) But if za
denotes the finite decimal fraction obtained by breaking off the expressions for
a and b at the nth place and adding in the ordinary way, then the sequence z1 , z2,
zy, -+ will be monotone increasing and bounded (by the integer A + B + 2,
for example). Hence this sequence has a limit, and we may definea + b = lim z, .
A similar process serves to define the product ab. These definitions can then be
extended by the ordinary rules of arithmetic to cover all cases, where a and b are
positive or negative.

Ezercise: Show in this way that the sum of the two infinite decimals considered
above is the real number 1.323232 --- = 131/99.

The importance of the limit concept in mathematics lies in the fact
that many numbers are defined only as limils-——often as limits of mono-
tone bounded sequences. This is why the field of rational numbers, in
which such limits may not exist, is too narrow for the needs of
mathematics.

3. Euler’s Number e

The number e has had an established place in mathematics alongside
the Archimedean number = ever since the publication in 1748 of Euler’s
Introductio in Analysin Infinitorum. It provides an excellent illustra-
tion of how the principle of monotone sequences can serve to define a
new real number. Using the abbreviation

nl=1.2.3.4...n

for the product of the first n integers, we consider the sequence
&, Gz, a3, -+ - , Where

® T

The terms a. form a monotone increasing sequence, since a,.41 originates
from a. by the addition of the positive increment (7-1——1 I Moreover,
the values of a, are bounded above:

(5) an < B = 3.

For we have :—1=%%---%<%%---%=23ﬂ,
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and hence

1 _ 1=
= B g

=14+2(1- @3 <3,
using the formula given on page 13 for the sum of the first n terms of a
geometric series. Hence, by the principle of monotone sequences, a,
must approach a limit as n tends to infinity, and this limit we call e.

To express the fact that ¢ = lim a,, we may write ¢ as the “infinite
series’’

1 1 1
a,.<1+1+§+§2+§:+...+

1 1 1 1
(6) €=1+T-‘+§‘+§|+.--+;z-'+...

This “equality,” with a row of dots at the end, is simply another way
of expressing the contert of the two statements

1 1 1

and
an‘—""e as n — oo,

The series (6) permits the calculation of e to any desired degree of
accuracy. For example, the sum (to nine digits) of the terms in (6)
up to and including 1/12!is £ = 2.71828183 ... . (The reader should
check this result.) The “error,” i.e. the difference between this value
and the true value of e can easily be appraised. We have for the differ-
ence (¢ — Z) the expression

1 1 1 1 1
I’:’;‘z+i"4"1+"'<i§1(1+i":§+i§‘2+"')
1 1 1
T 13t 1~ 12.121

This is so small that it cannot affect the ninth digit of Z. Hence, allow-
ing for a possible error in the last figure of the value given above, we
have e = 2.7182818, to eight digits.

* The number e is irrational. T'o prove this we shall procced mdirectly by as-
suming that ¢ = p/q, where p and q are integers, and then dedueing an absurdity
from this assumption. Since we know that 2 < ¢ < 3, e cannot be an integer,
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and therefore ¢ must be at least equal to 2. Now we multiply both sides of (6)
by ¢! = 2-3 -+ ¢, obtaining

eq] = P23 - (q —])
=lgl+ gl +34--qg+45---g+ -+ (g—Dg+qg+1]

1 1
tarn T @ngra T

On the left side we obviously have an integer. On the right side, the term in
brackets is ikewise an integer. 'The remainder of the right side, however, is a
positive number that is less than } and hence no integer. For ¢ > 2, and henece
the terms of the series 1/(g + 1) + --- are respectively not greater than the
corresponding terms of the geometrical series 1/3 + 1/3* + 1/3% + ---, whose
sum is 1/3(1/(1 —1/3)) = §. Hence (7) presents a contradiction: the integer on
the left side cannot be equal to the nuniber on the right side: for this latter num-
ber, being the sum of an integer and a positive nuinber less than %, is not an
integer.

4. The Number =

As is known from school mathematics, the length of the circumference
of a circle of unit radius can be defined as the limit of a sequence of
lengths of regular polygons with an increasing number of sides. The
length of the circumference so defined is denoted by 2. DMore precisely,
if p., denotes the length of the inscribed, and g, the length of the circum-
scribed regular n-sided polygon, then p, < 27 < ¢.. Moreover, as n
increases, each of the sequences p., ¢. approaches 2r monotonically,
and with each step we obtain a smaller margin for the error in the
approximation of 27 given by p. or ¢, .

On page 124 we found the expression

pm = 2"/2 — /24 2 1.
containing m — 1 nested square root signs.

This formula can be used to compute the ap-
proximate value of 2,

Ezxercises: 1. IFind the approximate value of »
given by vy, ps, and pa.

* 2, Find a formula for gm,

* 3. Use this formula to find g4, g, and g .
From a knowledge of pu and g, state bounds between which x must lie.

Fig. 167. Circle approximated
by polygons.

What is the number #? 'The inequality p. < 27 < ¢, gives the com-
plete answer by setting up a sequence of nested intervals which close
down on the point 2x. Still, this answer leaves something to be de-
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sired, for it gives no information about the nature of = as a real number:
is it rational or irrational, algebraic or transcendental? As we have
mentioned on page 140, = is in fact a transcendental number, and hence
irrational. In contrast to the proof for e, the proof of the irrationality
of =, first given by J. H. Lambert (1728-1777), is rather difficult and
will not be undertaken here. However, other information about = is
within our reach. Recalling the statement that the integers are the basic
material of mathematics, we may ask whether the number r has any
simple relationship to the integers. The decimal expansion of =, al-
though it has been calculated to several hundred places, reveals no trace
of regularity. This is not surprising, since = and 10 have nothing to do
with one another. But in the eighteenth century Euler and others
found beautiful expressions linking = to the integers by means of infinite
series and products. Perhaps the simplest such formula is the following:
™

1 1 1
i~ 173ttt

expressing x/4 as the limit for increasing n of the partial sums

1
o2n + 1°

We shall derive this formula in Chapter VIII. Another infinite series
for = is

1 1 n
3n_1_§+5_"'+(_1)

1 1 1 1 1 1
Sptatatateteat

Still another striking expression for » was discovered by the English
mathematician John Wallis (1616-1703). His formula statcs that

22446 (_5 _ 2n 2n T
133557 2n—12n+1 2

asn — «,

This is sometimes written in the abbhreviated form

m_22146688
2 13355779 '
the expression on the right being called an infindte product.
A proof of the last two formulas will be found in any comprehensive

book on the calculus (see p. 482 and pp. 509-510).
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*5. Continued Fractions

Interesting limiting processes occur in connection with continued
fractions. A finite continued fraction, such as

57 1
w3t
2+ ——

|
l+g

represents a rational number. On page 49 we showed that every ra-
tional number can be written in this form by means of the Euclidean
algorithm. For irrational numbers, however, the algorithm does not
stop after a finite number of steps. Instead, it leads to a sequence of
fractions of increasing length, each representing a rational number. In
particular, all real algebraic numbers (see p. 103) of degree 2 may be
expressed in this way. Consider, for example, the number x = /2 — 1,
which is a root of the quadratic equation

1
24z
If on the right side z is again replaced by 1/(2 4 z) this yields the
expression

:z:’+2x=1, or r =

z = ! T
2+ 2 +z
and then
T = 1 ,
24—
2+ Stz
and so on, so that aftcr n steps we obtain the equation
. 1 1
2 + L
2+ 2 + » 1 steps.
. 1
2+ z)
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2+

24+

This remarkable formula connects 4/2 with the integers in a much
more striking way than does the decimal expansion of 4/2, which dis-
plays no regularity in the succession of its digits.
For the positive root of any quadratic equation of the form
$2=ax+1, or $=a+:.l:1_’
we obtain the expansion
T =a+

a+ i

e
T

@

For example, setting a = 1, we find
z=31++38) =1+ 1

1 + 1
T

(cf. p. 123). These examples are special cases of & general theorem
which states that the real rootfs of quadratic equations with integral co-
efficients have periodic continued fraction developments, just as rational
numbers have periodic decimal expansions.

Euler was able to find almost equally simple infinite continued
fractions for e and . The following are exhibited without proof:

1

1+ 1
2+ 1
1+ 7

1+ q

4+ 1

e =2+
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e =2+ 11 H
1+ 5
2 + 2
ttyy
T _ 1
T . ,
g =
2 + 5
2 + =
2 + o
2ty

§3. LIMITS BY CONTINUOUS APPROACH

1. Introduction. General Definition

In §2, Article 1 we succeeded in giving a precise formulation of the
statement, ‘“The sequence a, (i.e. the function a, = F(n) of the integral
variable n) has the limit a as n tends to infinity.” We shall now give a
corresponding definition of the statement, “The function u = f(z) of
the continuous variable z has the limit a as ¢ tends to the value z;.”
In an intuitive form this concept of limit by continuous approach of
the independent variable z was used in §1, Article 5 to test the con-
tinuity of the function f(x).

Again let us begin with a particular example. The function

2
flz) = (z -; z) is defined for all values of x other than z = 0, where the
denominator vanishes. If we draw a graph of the function u = f(x)
for values of z in the neighborhood of 0, it is evident that as z “‘ap-
proaches’”’ O from either side the corresponding value of u = f(z) “ap-
proaches” the limit 1. In order to give a precise description of this
fact, let us find an explicit formula for the difference between the value
f(z) and the fixed number 1:

3 ]
fa)—1=°F% 3tz -z

3
oz
z T
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If we agree to consider only values of z near 0, but not the valuez = 0
itself (for which f(z) is not even defined), we may divide both numerator
and denominator of the expression on the right side of this equation by
z, obtaining the simpler formula

flz) — 1 =z,
Au

e o

Fig. 188 u = (x 4 13)/x,
Clearly, we can make this difference as small as we please by confining

z to a sufficiently small neighborhood of the value 0. Thus forz = :I:%,

1 1 1
—_ = —_ -] = .
o’ 17 * = Figp' /@ 10,000
generally, if € is any positive number, no matter how small, then the
difference between f(z) and 1 will be smaller than ¢, provided only that

the distance of z from O is less than the number § = 4/¢. For if

lz| < /e

flx) — 1 = ; and so on. More

then
| fi@) — 1] =]z |< e

The analogy with our definition of limit for a sequence is complete.
On page 291 we made the definition, “The sequence a, has the limit a
as n tends to infinity if, corresponding to every positive number ¢, no
matter how small, there may be found an integer N (depending on ¢)
such that

|a, —a| < «
for all n satisfying the inequality
n>N.”

In the case of a function f(z) of a continuous variable z as z tends to a
finite value z;, we merely replace the ‘“sufficiently large’” n given by
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N by the “sufficiently near’ z, given by a number §, and arrive at the
following definition of limit by continuous approach, first given by
Cauchy around 1820: The function f(x) has the limit a as x tends to the
value x, if, corresponding to every positive number ¢, no matter how small,
there may be found a positive number & (depending on ¢ such that

| fz) —a| <e
for all x # xy salisfying the inequality
|z — 1] <.
When this is the case we write
fzy—a as z—2.

In the case of the function f(z) = (z + z°)/z we showed above that
f(z) has the limit 1 as z tends to the value z; = 0. In this case it was
sufficient always to choose § = /.

2. Remarks on the Limit Concept

The (¢, 8)-definition of limit is the result of more than a hundred
years of trial and error, and embodies in a few words the result of per-
sistent effort to put this concept on a sound mathematical basis. Only
by limiting processes can the fundamental notions of the calculus—
derivative and integral—be defined. But a clear understanding and a
precise definition of limits had long been blocked by an apparently
insurmountable difficulty.

In their study of motion and change the mathematicians of the
seventeenth and eighteenth centuries accepted as a matter of course
the concept of a quantity z steadily changing and moving in a contin-
uous flow toward a limiting value x;. Associated with this primary flow
of time or of a quantity = behaving like time they considered a sec-
ondary value u = f(z) that followed the motion of z. The problem
was to attach a precise mathematical meaning to the idea that f(z)
“tends to” or “‘approaches’” a fixed value a as x moves toward z; .

But from the time of Zeno and his paradoxes the intuitive physical
or metaphysical concept of continuous motion has eluded all attempts
at an exact mathematical formulation. There is no difficulty in proceed-
ing step by step through a discrete sequence of valuesa,, a2, a; ,. ...
But in dealing with a continuous variable z that ranges over a whole
interval of the number axis it is impossible to say how z shall “approach”
the fixed value z; in such a way as to assume consecutively and in their
order of magnitude all the values in the interval. For the points ona
line form a dense set, and there is no ‘“next” point after a given point
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has been reached. Certainly, the intuitive idea of a continuum has g
psychological reality in the human mind. But it cannot be called upon
to resolve a mathematical impossibility; there must remain a discrep-
ancy between the intuitive idea and the mathematical language
designed to describe the scientifically relevant features of our intuition
in exact logical terms. Zeno’s paradoxes are a pointed indication of this
discrepancy.

Cauchy’s achievement was to realize that, as far as the mathematical
concepts are concerned, any reference to a prior intuitive idea of con-
tinuous motion may and even must be omitted. As happens so often,
the path to scientific progress was opened by resigning an attempt in a
metaphysical direction and instead operating solely with notions that
in principle correspond to ‘“observable’” phenomena. If we analyze
what we really mean by the words ‘‘continuous approach,” how we must
proceed to verify it in a specific case, then we are forced to accept a
definition such as Cauchy’s. This definition is static; it does not pre-
suppose the intuitive idea of motion. On the contrary, only such a
static definition makes possible a precise mathematical analysis of con-
tinuous motion in time, and disposes of Zeno’s paradoxes as far as
mathematical science is concerned.

In the (¢, 6)-definition the independent variable does not move; it
does not “tend to”’ or “approach” a limit z; in any physical sense.
These phrases and the symbol — still remain, and no mathematician
need or should lose the suggestive intuitive feelin