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PREFACE

THE mathematical treatment of the principles of mathematics, which is

the subject of the present work, has arisen from the conjunction of two

different studies, both in the main very modern. On the one hand we have

the work of analysts and geometers, in the way of formulating and systematising

their axioms, and the work of Cantor and others on such matters as the theory

of aggregates. On the other hand we have symbolic logic, which, after a

necessary period of growth, has now, thanks to Peano and his followers,

acquired the technical adaptability and the logical comprehensiveness that are

essential to a mathematical instrument for dealing with what have hitherto

been the beginnings of mathematics. From the combination of these two

studies two results emerge, namely (1) that what were formerly taken, tacitly

or explicitly, as axioms, are either unnecessary or demonstrable; (2) that the

same methods by which supposed axioms are demonstrated will give valuable

results in regions, such as infinite number, which had formerly been regarded

as inaccessible to human knowledge. Hence the scope of mathematics is

enlarged both by the addition of new subjects and by a backward extension

into provinces hitherto abandoned to philosophy.

The present work was originally intended by us to be comprised in a

second volume of The Principles of Mathematics. With that object in view,

the writing of it was begun in 1900. But as we advanced, it became in-

creasingly evident that the subject is a very much larger one than we had

supposed; moreover on many fundamental questions which had been left

obscure and doubtful in the former work, we have now arrived at what we
believe to be satisfactory solutions. It therefore became necessary to make

our book independent of The Principles of Mathematics. We have, however,

avoided both controversy and general philosophy, and made our statements

dogmatic in form. The justification for this is that the chief reason in favour

of any theory on the principles of mathematics must always be inductive,

i.e. it must lie in the fact that the theory in question enables us to deduce

ordinary mathematics. In mathematics, the greatest degree of self-evidence

is usually not to be found quite at the beginning, but at some later point;

hence the early deductions, until they reach this point, give reasons rather'

for believing the premisses because true consequences follow from them, than

for believing the consequences because they follow from the premisses.

In constructing a deductive system such as that contained in the present

work, there are two opposite tasks which have to be concurrently performed.

On the one hand, we have to analyse existing mathematics, with a view

to discovering what premisses are employed, whether these premisses are

mutually consistent, and whether they are capable of reduction to more

fundamental premisses. On the other hand, when we have decided upon oUr

premisses, we have to build up again as much as may seem necessary of the

data previously analysed, anji as many other consequences of our premisses

as are of sufficient general interest to deserve statement. The preliminary

labour of analysis does not appear in the final presentation, which merely

sets forth the outcome of the analysis in certain undefined ideas and
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undemonstrated propositions. It is not claimed that the analysis could not
have been carried farther: we have no reason to suppose that it is impossible

to find simpler ideas and axioms by means of which those with which we
start could be defined and demonstrated. All that is affirmed is that the

ideas and axioms with which we start are sufficient, not that they are

necessary.

In making deductions from our premisses, we have considered it essential

to carry them up to the point where we have proved as much as is true in

whatever would ordinarily be taken for granted. But we have not thought
it desirable to limit ourselves too strictly to this task. It is customary to

consider only particular cases, even when, with our apparatus, it is just as
easy to deal with the general case. For example, cardinal arithmetic is

usually conceived in connection with finite numbers, but its general laws hold
equally for infinite numbers, and are most easily proved without any mention
of the distinction between finite and infinite. Again, many of the properties
commonly associated with series hold of arrangements which are not strictly

serial,, but have only some of the distinguishing properties of serial arrange-
ments. In such cases, it is a defect in logical style to prove for a particular
class ofarrangements what might just as well have been proved more generally.

An analogous process of generalization is involved, to a greater or less degree,
in all our work. We have sought always the most general reasonably simple
hypothesis from which any given conclusion could be reached. For this reason,
especially in the later parts of the book, the importance of a proposition
usually lies in its hypothesis. The conclusion will often be something which,
in a certain class of cases, is familiar, but the hypothesis will, whenever possible,

be wide enough to admit many cases besides those in which the conclusion is

familiar.

We have found it necessary to give very full proofs, because otherwise it

is scarcely possible to see what hypotheses are really required, or whether our
results follow from our explicit premisses. (It must be remembered that we
are not affirming merely that such and such propositions are true, but also

that the axioms stated by us are sufficient to prove them.) At the same time,
though full proofs are necessary for the avoidance of errors, and for convincing
those who may feel doubtful as to our correctness, yet the" proofs of propo-
sitions may usually be omitted by a reader who is not specially interested in
that part of the subject concerned, and who feels no doubt of our substantial
accuracy on the matter in hand. The reader who is specially interested in
some particular portion of the book will probably find it sufficient, as regards
earlier portions, to read the summaries of previous parts, sections, and
numbers, since these give explanations of the ideas involved and statements of
the principal propositions proved. The proofs in Part I, Section A, however,
are necessary, since in the course of them the maimer of stating proofs is

explained. The proofs of the earliest propositions are given without the
omission of any step, but as the work proceeds the proofs are gradually
compressed, retaining however sufficient detail to enable the reader by the
help of the references to reconstruct proofs in which no step is omitted.

The order adopted is to some extent optional. For example, we have treated
cardinal arithmetic and relation-arithmetic before series, but we might have
treated series first. To a great extent, however, the order is determined by
logical necessities.
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A very large part of the labour involved in writing the present work has

been expended on the contradictions and paradoxes which have infected logic

and the theory of aggregates. We have examined a great number of hypo-
theses for dealing with these contradictions ; many such hypotheses have been

. advanced by others, and about as many have been invented by ourselves.

Sometimes it has cost us several months' work to convince ourselves that
a hypothesis was untenable. In the course of such a prolonged study, we
have been led, as was to be expected, to modify our views from time to time

;

but it gradually became evident to us that some form of the doctrine of types
must be adopted if the contradictions were to be avoided. The particular

form of the doctrine of types advocated in the present work is not logically

indispensable, and there are various other forms equally compatible with the
truth of our deductions. We have particularized, both because the form of

the doctrine which we advocate appears to us the most probable, and because
it was necessary to give at least one perfectly definite theory which avoids
the contradictions. But hardly anything in our book would be changed by the
adoption of a different form of the doctrine of types. In fact, we may go
farther, and say that, supposing some other way of avoiding the contradictions
to exist, not very much of our book, except what explicitly deals with types,

is dependent upon the adoption of the doctrine of types in any form, so soon
as it has been shown (as we claim that we have shown) that it is possible

to construct a mathematical logic which does not lead to contradictions. It
should be observed that the whole effect of the doctrine of types is negative

:

it forbids certain inferences which would otherwise be valid, but does not
permit any which would otherwise be invalid. Hence we may reasonably
expect that the inferences which the doctrine of types permits would remain
valid even if the doctrine should be found to be invalid.

Our logical system is wholly contained in the numbered propositions, which
are independent of the Introduction and the Summaries. The Introduction
and the Summaries are wholly explanatory, and form no part of the chain of
deductions. The explanation of the hierarchy of types in the Introduction
differs slightly from that given in #12 of the body of the work. The latter

explanation is stricter and is that which is assumed throughout the rest of
the book.

The symbolic form of the work has been forced upon us by necessity

:

without its help we should have been unable to perform the requisite
reasoning. It has been developed as the result of actual practice, and is not
an excrescence introduced for the mere purpose of exposition. The general
method which guides our handling of logical symbols is due to Peano. His
great merit consists not so much in his definite logical discoveries nor in the
details of his notations (excellent as both are), as in the fact that he first

showed how symbolic logic was to be freed from its undue obsession with the
forms of ordinary algebra, and thereby made it a suitable instrument for

research. Guided by our study of his methods, we have used great freedom
in constructing, or reconstructing, a symbolism which shall be adequate to
deal with all parts of the subject. No symbol has been introduced except
on the ground of its practical utility for the immediate purposes of our
reasoning.

A certain number of forward references will be found in the notes and
explanations. Although we have taken every reasonable precaution to secure
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the accuracy of these forward references, we cannot of course guarantee their

accuracy with the same confidence as is possible in the case of backward
references.

Detailed acknowledgments of obligations to previous writers have not very

often been possible, as we have had to transform whatever we have borrowed,

in order to adapt it to our system and our notation. Our chief obligations

will be obvious to every reader who is familiar with the literature of the

subject. In the matter of notation, we have as far as possible followed Peano,

supplementing his notation, when necessary, by that of Frege or by that of

Schroder. A great deal of the symbolism, however, has had to be new, not

so much through dissatisfaction with the symbolism of others, as through the

fact that we deal with ideas not previously symbolised. In all questions of

logical analysis, our chief debt is to Frege. Where we differ from him, it is

largely because the contradictions showed that he, in common with all other

logicians ancient and modern, had allowed some error to creep into his pre-

misses; but apart from the contradictions, it would have been almost impossible

to detect this error. In Arithmetic and the theory of series, our whole work
is based on that of Georg Cantor. In Geometry we have had continually

before us the Writings of V. Staudt, Pasch, Peano, Pieri, and Veblen.

We have derived assistance at various stages from the criticisms of friends,

notably Mr G, G. Berry of the Bodleian Library and Mr R. G. Hawtrey.

We have to thank the Council of the Royal Society for a grant towards the

expenses of printing of £200 from the Government Publication Fund, and also

the Syndics of the University Press who have liberally undertaken the greater

portion of the expense incurred in the production of the work. The technical

excellence, in all departments, of the University Press, and the zeal and courtesy

of its officials, have materially lightened the task of proof-correction.

The second volume is already in the press, and both it and the third will

appear as soon as the printing can be completed.

A. N. W.

B. R.

Cambridge,

November, 1910.
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INTRODUCTION TO THE SECOND EDITION*

In preparing this new edition of Principia Mathematica, the authors have

thought it best to leave the text unchanged, except as regards misprints and

minor errorsf, even where they were aware of possible improvements. The

chief reason for this decision is that any alteration of the propositions would

have entailed alteration of the references, which would have meant a very

great labour. It seemed preferable, therefore, to state in an introduction the

main improvements which appear desirable. Some of these are scarcely open

to question ; others are, as yet, a matter of opinion.

The most definite improvement resulting from work in mathematical logic

during the past fourteen years is the substitution, in Part I, Section A, of the

one indefinable "p and q are incompatible" (or, alternatively, "p and q are

both false") for the two indefinables "not-p" and "p or q." This is due to

Dr H. M. Sheffer]:. Consequentially, M. Jean Nicod§ showed that one

primitive proposition could replace the five primitive propositions *1'2*3"4'5*6.

From this there follows a great simplification in the building up of

molecular propositions and matrices; #9 is replaced by a new chapter, #8,

given in Appendix A to this Volume.

Another point about which there can be no doubt is that there is no need

of the distinction between real and apparent variables, nor of the primitive

idea "assertion of a propositional function." On all occasions where, in

Principia Mathematica, we have an asserted proposition of the form "V .fx"

or "h .fp" this is to be taken as meaning "r-

.

(x) .fx " or " h . (p) .fp." Con-

sequently the primitive proposition *1*11 is no longer required. All that is

necessary, in order to adapt the propositions as printed to this change, is the

convention that, when the scope of an apparent variable is the whole of the

asserted proposition in which it occurs, this fact will not be explicitly indicated

unless " some " is involved instead of " all." That is to say, "h . <f>x
" is to mean

" h . (x) . <fix
"

; but in " I- . ( gar) . <f>x
" it is still necessary to indicate explicitly

the fact that " some " x (not " all " x's) is involved.

It is possible to indicate more clearly than was done formerly what are

the novelties introduced in Part I, Section B as compared with Section A.

* In this introduction, as -well as in the Appendices, the authors are under great obligations

to Mr F. P. Ramsey of King's College, Cambridge, who has read the whole in MS. and contributed

valuable criticisms and suggestions.

t In regard to these we are indebted to many readers, but especially to Drs Behmann and

Boscovitch, of Gdttingen.

X Tram. Amer. Math. Soc. Vol. xnr. pp. 481—488.

§ "A reduction in the number of the primitive propositions of logic," Proc. Camb. Phil. Soc.

Vol. MX.
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They are three in number, two being essential logical novelties, and the third

merely notational.

(1) For the "p" of Section A, we substitute " <}>x," so that in place of

" *- • (P) -fP
" we have " h . (<}>, x) ./(<f>x)." Also, if we have " h ./{p, q, r, .

.

.),"

we may substitute <f>x, <f>y,
4>z, ... for^, q, r, ... or <f>x, <f>y

for p, q, and yfrz, ...

for r, ..., and so on. We thus obtain a number of new general propositions

different from those of Section A.

(2) We introduce in Section B the new primitive idea " (g#) . <f>x," i.e.

existence-propositions, which do not occur in Section A, In virtue of the

abolition of the real variable, general propositions of the form " (p) . fp " do

occur in Section A, but " (<&p) .fp
" does not occur.

(3) By means of definitions, we introduce in Section B general propositions

which are molecular constituents of other propositions ; thus " (x) . <]>x . v .p " is

to mean " (x) . <f>xvp."

It is these three novelties which distinguish Section B from Section A.

One point in regard to which improvement is obviously desirable is the

axiom of reducibility (*12M1). This axiom has a purely pragmatic justifica-

tion : it leads to the desired results, and to no. others. But clearly it is not

the sort of axiom with which we can rest content. On this subject, however,

it cannot be said that a satisfactory solution is as yet obtainable. Dr Leon

Chwistek* took the heroic course of dispensing with the axiom without

adopting any substitute ; from his work, it is clear that this course compels

us to sacrifice a great deal of ordinary mathematics. There is another course,

recommended by Wittgensteinf for philosophical reasons. This is to assume

4hat functions of propositions are always truth-functions, and that a function

can only occur in a proposition through its values. There are difficulties in

the way of this view, but perhaps they are not insurmountable J.
It involves

the consequence that all functions of functions are extensional. It requires us

to maintain that " A believes p " is not a function of p. How this is possible,

is shown in Tractatus Logico-Philosophicus (loc. cit. and pp. 19—21). We are

not prepared to assert that this theory is certainly right, but it has seemed

worth while to work out its consequences in the following pages. It appears

that everything in Vol. I remains true (though often new proofs are required)

;

the theory of inductive cardinals and ordinals survives ; but it seems that the

theory of infinite Dedekindian and well-ordered series largely collapses, so

that irrationals, and real numbers generally, can no longer be adequately

dealt with. Also Cantor's proof that 2n > n breaks down unless n is finite.

Perhaps some further axiom, less objectionable than the axiom of reducibility,

might give these results, but we have not succeeded in finding such an axiom.

* In his " Theory of Constructive Types." See references »t the end of this Introduction,

j- Tractatus Logico-Philosophicus, *5*54 ff

.

X See Appendix C.
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It should be stated that a new and very powerful method in mathematical

logic has been invented by Dr H. M. Sheflfer. This method, however, would

demand a complete re-writing of Principia Mathematica. We recommend

this task to Dr Sheffer, since what has so far been published by him is

scarcely sufficient to enable others to undertake the necessary reconstruction.

We now proceed to the detailed development of the above general sketch.

I. ATOMIC AND MOLECULAR PROPOSITIONS

Our system begins with "atomic propositions." We accept these as a

datum, because the problems which arise concerning them belong to the

philosophical part of logic, and are not amenable (at any rate at present) to

mathematical treatment.

Atomic propositions may be defined negatively as propositions containing

no parts that are propositions, and not containing the notions "all" or "some."

Thus " this is red," "this is earlier than that," are atomic propositions.

Atomic propositions may also be defined positively—and this is the better

course—as propositions of the following sorts r

R1 (x), meaning "x has the predicate R^';

R*(x>y) [°r xRzy]' meaning "x has the relation R2 (in intension) to y";

R3 (x,y, z), meaning "x,y,z have the triadic relation R3 (in intension)";

R4 (x, y, z, w), meaning "x,y,z,w have the tetradic relation R4 (in intension)";

and so on ad infinitum, or at any rate as 'long as possible. Logic does not

know whetherthere are in fact n-adic relations (in intension); this is an empirical
question. We know as an empirical fact that there are at least dyadic relations

(in intension), because without them series would be impossible. But logic is

not interested in this fact; it is concerned solely with the hypothesis of there

being propositions of such-and-such a form. In certain cases, this hypothesis is

itself of the form in question, or contains a part which is of the form in question

;

in these cases, the fact that the hypothesis can be framed proves that it is

true. But even when a hypothesis occurs in logic, the fact that it can be
framed does not itself belong to logic.

Given all true atomic propositions, together with the fact that they are all,

every other true proposition can theoretically be deduced by logical methods.
That is to- say, the apparatus of crude fact required in proofs can all be con-

densed into the true atomic propositions together with the fact that every

true atomic proposition is one of the following: (here the list should follow).

If used, this method would presumably involve an infinite enumeration,
since it seems natural to suppose that the number of true atomic propositions

is infinite, though this should not be regarded as certain. In practice,

generality is not obtained by the method of complete enumeration, because

this method requires more knowledge than we possess.

R&W I h
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We must now advance to molecular propositions. Let p, q, r, s, t denote,

to begin with, atomic propositions. We introduce the primitive idea

which may be read "p is incompatible with q"* and is to be true whenever

either or both are false. Thus it may also be read "p is false or q is false";

or again, "p implies not-q." But as we are going to define disjunction, impli-

cation, and negation in terms of p |
q, these ways of reading p \

q are better

avoided to begin with. The symbol "p\ q" is pronounced: "p stroke q." We
now put

~P . = -P\P Df,

pD q . = -p|~<7 Df,

pv q . = .^pl^q Df,

p.q. = .~(p\q) Df.

Thus all the usual truth-functions can be constructed by means of the stroke.

Note that by the above,

p3q. = .p\(q\q) Df.

We find that
p.D.q.r. = .p\(q\r).

Thus p D q is a degenerate case of a function of three propositions.

We can construct new propositions indefinitely by means of the stroke

;

for example, (p \ q) j

r, p \ (q \
r), (p | q) |

(r\s), and so on. Note that the stroke obeys

the permutative law (p \
q) = (q \p) but not the associative law (p\q)\r =p\(q\r).

(These of course are results to be proved later.) Note also that, when we

construct a new proposition by means of the stroke, we cannot know its truth

or falsehood unless either (a) we know the truth or falsehood of some of its

constituents, or (b) at least one of its constituents occurs several times in a

suitable manner. The case (a) interests logic as giving rise to the rule of in-

ference, viz.

Given p and p \ (q \
r), we can infer r.

This or some variant must be taken as a primitive proposition. For the

moment, we are applying it only when p, q, r are atomic propositions, but we

shall extend it later. We shall consider (6) in a moment.

In constructing new propositions by means of the stroke, we assume that

the stroke can have on either side of it any proposition so constructed, and

need not have an atomic proposition on either side. Thus given three atomic

propositions p, q, r, we can form, first, p \
q and q \

r, and thence (p\q)\ r and

p | (q |
r). Given four, p, q, r, s,

N
we can form

{(p\q)\r}\s, (p\q)\(r\s), p\{q\(r\s)}

and of course others by permuting p, q, r, s. The above three are substantially

* For what follows, see Nicod, " A reduction in the number of the primitive propositions of

logic," Proc. Camb. Phil. Soc. Vol. xix. pp. 32—41.
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different propositions. We have in fact

{(P I <l)H I

s • - '-^P v ~<7 • r : v :~s,

(p\q)\(r\s). = :p.q.v.r.s,

p\{q\(r\s)} . = :.~p : V : q .~rv~*.

All the propositions obtained by this method follow from one rule: in

"P I

q" substitute, forp or q or both, propositions already constructed by means

of the stroke. This rule generates a definite assemblage of new propositions

out of the original assemblage of atomic propositions. All the propositions so

generated (excluding the original atomic propositions) will be called " mole-

cular propositions." Thus molecular propositions are all of the form p \
q, but

the p and q may now themselves be molecular propositions. If p is p1 \p2 ,

px and p2 may be molecular; suppose Pi = pn\pi2- Pn may be of the form

Piu \Piu, and so on; but after a finite number of steps of this kind, we are to

arrive at atomic constituents. In a proposition/)
|
q, the stroke between p and

q is called the "principal" stroke; ifp=px \p2 , the stroke between px and p2 is

a secondary stroke; so is the stroke between qx and q2 if q = qx
\ q2 . If pi =pu

| pu ,

the stroke between pn and p12 is a tertiary stroke, and so on.

Atomic and molecular propositions together are " elementary propositions."

Thus elementary propositions are atomic propositions together with all that

can be generated from them by means of the stroke applied any finite number

of times. This is a definite assemblage of propositions. We shall now, until

further notice, use the letters p, q, r, s, t to denote elementary propositions,

not necessarily atomic propositions. The rule of inference stated above is to

hold still; i.e.

If p, q, r are elementary propositions, given p and p | (q |
r), we can infer r.

This is a primitive proposition.

We can now take up the point (6) mentioned above. When a molecular

proposition contains repetitions of a constituent proposition in a suitable

manner, it can be known to be true without our having to know the truth or

falsehood of any constituent. The simplest instance is

P\(P\P)>

which is always true. It means "p is incompatible with the incompatibility

of p with itself," which is obvious. Again, take "p . q . D . p." This is

{(p \q)\(p\ q)\ I (P I P)-

Again, take "~jp.D.~pv~ q." This is

(p\p)\ {(p \q)\(p\ q)}>

Again, "p . D .p v q " is

p\i{(p\p)\(q\q)}\i(p\p)\(q\q)}l

All these are true however p and q may be chosen. It is the fact that we can

build up invariable truths of this sort that makes molecular propositions

important to logic. Logic is helpless with atomic propositions, because their

62
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truth or falsehood can only be known empirically. But the truth of molecular

propositions of suitable form can be known universally without empirical

evidence.

The laws of logic, so far as elementary propositions are concerned, are all

assertions to the effect that, whatever elementary propositions p, q, r, ... may
be, a certain function

F(p,q,r,...),

whose values are molecular propositions, built up by means of the stroke, is

always true. The proposition " F(p) is true, whatever elementary proposition

p may be " is denoted by
(p).F(p).

Similarly the proposition "F(p,q,r,...) is true, whatever elementary pro-

positions p, q, r, ... may be " is denoted by

(p,q,r, ...).F(p,q,r, ...).

When such a proposition is asserted, we shall omit the "(p,q,r, ...)" at the

beginning. Thus
"\-.F{p,q,r,...V

denotes the assertion (as opposed to the hypothesis) that F(p,q,r, ...) is true

whatever elementary propositions p, q, r, ... may be.

(The distinction between real and apparent variables, which occurs in

Frege and in Principia Mathematica, is unnecessary. "Whatever appears as a

real variable in Principia Mathematica is to be taken as an apparent variable

whose scope is the whole of the asserted proposition in which it occurs.)

The rule of inference, in the form given above, is never required within

logic, but only when logic is applied. Within logic, the rule required is different.

In the logic of propositions, which is what concerns us at present, the rule

used is

:

Given, whatever elementary propositions p, q, r may be, both

"K F(p, q, r,. ..)" and "h .F(p,q,r, ...)\{G(p,q,r, ...)\H(p, q,r, . ..)},"

we can infer " h . H{p, q, r, ...)."

Other forms of the rule of inference will meet us later. For the present,

the above is the form we shall use.

Nicod has shown that the logic of propositions (*1—*5) can be deduced,

by the help of the rule of inference, from two primitive propositions

and \- m.pDq.D.s\qDp\s.

The first of these may be interpreted as "p is incompatible with not-p," or

as "p or not-p," or as "not (p and not-p)," or as "p implies p." The second

may be interpreted as

pDq.DzqDf^s.D.pD^s,
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which is a form of the principle of the syllogism. Written wholly in terms of

the stroke, the principle becomes

{p\(9\q)}\[{(s\q)\((p\s)\(p\s))}\{(s\q)\((p\s)\(p\s))}].

Nicod has shown further that these two principles may be replaced by

one. Written wholly in terms of the stroke, this one principle is

bl(g|r)}|[{*|(*|*)}|K«l«)l((pl*)l(pl«))}]-

It will be seen that, written in this form, the principle is less complex than

the second of the above principles written wholly in terms of the stroke.

When interpreted into the language of implication, Nicod's one principle

becomes
p.0.q.r:^.tDt.s\qDp\s.

In this form, it looks more complex than

pDj.D .s\qDp\s,

but in itself it is less complex.

From the above primitive proposition, together with the rule of inference,

everything that logic can ascertain about elementary propositions can be

proved, provided we add one other primitive proposition, viz. that, given a

proposition (p, q, r, ...) . F (p, q> r, ...), we may substitute for p, q, r, ...

functions of the form

/,0>, ?, r, ...), f\ (p, q,r,...), fs (p, q, r, ...)

and assert

(p,q,r,...).FUi(p,q,r, ...), f3 (p,q,r, ...),f3 (p,q,r, ...), ...},

where f1} /2 , f3 , ... are functions constructed by means of the stroke. Since

the former assertion applied to all elementary propositions, while the latter

applies only to some, it is obvious that the former implies the latter.

A more general form of this principle will concern us later.

II. ELEMENTARY FUNCTIONS OF INDIVIDUALS

1. Definition of'" individual"

We saw that atomic propositions are of one of the series of forms:

Rx {x), R^{x,y), R3 (x,y,z), R^{x,y,zy w\ ....

Here Rlt R2 , Rs , R4 , ... are each characteristic of the special form in which

they are found: that is to say, Rn cannot occur in an atomic proposition

Rm (x1} #2 > ••• #m) unless n = m, and then can only occur as Rm occurs, not as

xlt x2 , ... xm occur. On the other hand, any term which can occur as the

a-'s occur in Rn (x1} x2 , ... xn) can also occur as one of the x's in Rm (xx , x2 , . . . xm)

even if m is not equal to n. Terms which can occur in any form of atomic

proposition are called " individuals" or " particulars"; terms which occur as the

R's occur are called " universals."

We might state our definition compendiously as follows: An " individual"

is anything that can be the subject of an atomic proposition.
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Given an atomic proposition Rn (x1} x2 , ... xn ), we shall call any of the x's

a "constituent" of the proposition, and Rn a " component " of the proposition*.

We shall say the same as regards any molecular proposition in which
Rn (x1} x2 , ... xn) occurs. Given an elementary proposition p j q, where p and q
may be atomic or molecular, we shall call p and q " parts " of p |

q; and any
parts of p or q will in turn be called parts of p |

q, and so on until we reach the

atomic parts of p \

q. Thus to say that a proposition r " occurs in" p \

q and to

say that r is a "part " ofp |
q will be synonymous.

2. Definition of an elementary function of an individual

Given any elementary proposition which contains a part of which an
individual a is a constituent, other propositions can be obtained by replacing

a by other individuals in succession. We thus obtain a certain assemblage
of elementary propositions. We may call the original proposition 0a, and
then the propositional function obtained by putting a variable x in the
place of a will be called <f>x. Thus <f>x is a function of which the argument
is x and the values are elementary propositions. The essential use of "<f>x"
is that it collects together a certain set of propositions, namely all those that

are its values with different arguments.

We have already had various special functions of propositions. If p is a
part of some molecular proposition, we may consider the set of propositions

resulting from the substitution of other propositions for p. If we call the

original molecular proposition fp, the result of substituting q is called /#.

When an individual or a proposition occurs twice in a proposition, three

functions can be obtained, by varying only one, or only another, or both, of

the occurrences. For example, p \p is a value of any one of the three functions

P I
<?> 9 1 P> 9 I 9> where q is the argument. Similar considerations apply when an

argument occurs more than twice. Thus p\(p\p) is a value of q\(r\s), or

9 ! (r I <l)>
or 9 i (<? 1

r), or q\(r\ r), or q\(q\ q). When we assert a proposition
" ^ • (P) » Fp," the p is to be varied whenever it occurs. We may similarly

assert a proposition of the form " (x) . <f>x," meaning " all propositions of the

assemblage indicated by <f>x are true"; here also, every occurrence of x is to be
varied.

• 3. "Always true" and "sometimes true"

Given any function, it may happen that all its values are true; again, it

may happen that at least one of its values is true. The proposition that all

the values of a function (x,y, z, ...) are true is expressed by the symbol

"(x,y,z, ...).$ (x,y,z,...)"

unless we wish to assert it, in which case the assertion is written

"h.(f)(x,y,z, ...)."

* This terminology is taken from Wittgenstein.
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We have already had assertions of this kind where the variables were ele-

mentary propositions. We want now to consider the case where the variables

are individuals and the function is elementary, i.e. all its values are elementary

propositions. We no longer wish to confine ourselves to the case in which it

is asserted that all the values of <f>(x,y,z, ...) are true; we desire to be able

to make the proposition

(x
}
y,z,...).<\>{x,y,z, ...)

a part of a stroke function. For the present, however, we will ignore this

desideratum, which will occupy us in Section III of this Introduction.

In addition to the proposition that a function $x is "always true"

(i.e. (x) . <j>x), we need also the proposition that <f>x is " sometimes true," i.e. is

true for at least one value of x. This we denote by

"(a*) • <K'

Similarly the proposition that
<f>

(x, y, z, . . .) is "sometimes true" is denoted by

il(^x,y,z, ...).4>(x,y,z,...)."

We need, in addition to (x, y, z, . .
.
) .

<f>
(x, y,z,...) and (3a;, y, z, ...).<£(#, y, z, ... ),

various other propositions of an analogous kind. Consider first a function of

two variables. We can form

(a*) : (y) •
<i> fo y)> O) : (as/) <t> (x> y)> (as/) = (#)<£ («, y)> (y) • (a*) <t> (*» y)-

These are substantially different propositions, of which no two are always

equivalent. It would seem natural, in forming these propositions, to regard

the function £ (x, y) as formed in two stages. Given
<f>

(a, b), where a and b

are constants, we can first form a function
<f>

(a, y), containing the one variable

y; we can then form

(y

)

.
<f> ( a, y) and (33/) . </> (a , y).

We can now vary a, obtaining again a function of one variable, and leading

to the four propositions

(x) :(y).<f> (x, y), (aa>) : (y) .
<f>

{x, y), (x) : (ay) . <f>
(x, y), (gar) : (33/) • <\> 0*. 2/)-

On the other hand, we might have gone from </> (a, b) to
<f>

(x, b), thence to

(x) . <j> (x, b) and (3a;) .
<f>

(x, 6), and thence to

(y) : {as) . <j> (x, y), (3y) :(*).£ (x, y), (y) : (a*) .
<f>

(x, y), (ay) : (3*0 • 0*. 2/)-

All of these will be called "general propositions"; thus eight general

propositions can be derived from the function
<f>

(x, y). We have

(x) : (y) .
<f>

(x, y) : = : (y) : («) . 4> (a?, y),

(a«) : (ay) • <f> te 2/) : = : (ay) = (a*0 4> te y)-

But there are no other equivalences that always hold. For example, the dis-

tinction between " (x) : (gy) . <j> (x, y)
" and " (gy) : (x) .

<f>
(x, y) " is the same

as the distinction in analysis between " For every e, however small, there is a

8 such that..." and " There is a 8 such that, for every e, however small
"
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Although it might seem easier, in view of the above considerations, to

regard every function of several variables as obtained by successive steps, each
involving only a function of one variable, yet there are powerful considerations

on the other side. There are two grounds in favour of the step-by-step method

;

first, that only functions of one variable need be taken as a primitive idea;

secondly, that such definitions as the above seem to require either that we
should first vary x, keeping y coostant, or that we should first vary y, keeping
x constant. The former seems to be involved when "

(y)
" or "

fay)
" appears

to the left of " (x) " or " fax)," the latter in the converse case. The grounds
against the step-by-step method are that it interferes with the method of

matrices, which brings order into the successive generation of types of pro-

positions and functions demanded by the theory of types, and that it requires

us, from the start, to deal with such propositions as (y) .
<f>

(a, y), which are

not elementary. Take, for example, the proposition " h : q . D . p v q." This
will be

\-:.(p):.(q):q.D .pvq,

or h:.(q):.(p):q.D.pvq,

and will thus involve all values of either

(q) : q . D . p v q considered as a function ofp,

or (p) :q.D .pvq considered as a function of q.

This makes it impossible to start our logic with elementary propositions, as

we wish to do. It is useless to enlarge the definition of elementary propositions,

since that only increases the values of q or p in the above functions. Hence
it seems necessary to start with an elementary function

(pi&l, x%, x3 , ... xn ),

before which we write, for each xr , either "(xr)" or " faxr)," the variables in

this process being taken in any order we like. Here
<f>

{xly x2i x3 , ... xn) is

called the " matrix," and what comes before it is called the " prefix." Thus in

(a^) : (y) • 4> 0> y)

"
<f>

(x, y) " is the matrix and " fax) : (y)
" is the prefix. It thus appears that

a matrix containing n variables gives rise to n 1

2

n propositions by taking its

variables in all possible orders and distinguishing " (xr)
" and " faxr) " in each

case. (Some of these, however, are equivalent.) The process of obtaining such

propositions from a matrix will be called " generalization," whether we take
" all values " or " some value," and the propositions which result will be called

" general propositions."

We shall later have occasion to consider matrices containing variables that

are not individuals ; we may therefore say

:

A " matrix " is a function of any number of variables (which may or may
not be individuals), which has elementary propositions as its values, and is

used for the purpose of generalization.
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A " general proposition " is one derived from a matrix by generalization.

We shall add one further definition at this stage

:

A " first-order proposition " is one derived by generalization from a matrix

in which all the variables are individuals.

4. Methods ofproving general propositions

There are two fundamental methods of proving general propositions, one

for universal propositions, the other for such as assert existence. The method

of proving universal propositions is as follows. Given a proposition

«\-.F(p,q,r,...y

where F is built up by the stroke, and p, q,r, ... are elementary, we may re-

place them by elementary functions of individuals in any way we like, putting

P ==Ji\plh) &?> ''• ®n)>

q z=j2\xii x2> ••• xn)>

and so on, and then assert the result for all values of xlt x2 , ... xn . What we

thus assert is less than the original assertion, since p, q, r, ... could originally

take all values that are elementary propositions, whereas now they can only

take such as are values of /i,/2,/3 ,— (Any two or more of /i,/2,/3 , ... may

be identical.)

For proving existence-theorems we have two primitive propositions, namely

#81. I- . (g#, y) . <f>a
|

(<f>a; | <f>y)
and

#811. I- . fax) . <f>x
|

(<pa
| <f>b)

Applying the definitions to be given shortly, these assert respectively

<pa . D . fax) . <px

and (x) . <j>x . D . <j>a . <f>b.

These two primitive propositions are to be assumed, not only for one variable,

but for any number. Thus we assume

<f> (<*!, a2 , ... an) . D . (g#i, x2 ,
... xn) . <f>

{x1> x2 , ... xn),

(x1} x2 , ... xn). <£(#i, #2 , ... xn). D. ^>(ai, Oa, ... a»). <£(&i, &2 > •• &»)•

The proposition (x) . <f>x . D . <f>a . <f>b, in this form, does not look suitable for

proving existence-theorems. But it may be written

(g#) . ~ <f>x . v . <f>a . <f>b

or ~ <j>a v ~ <f)b . D . fax) . ~ <f>x,

in which form it is identical with #911, writing
<f>

for ~^>. Thus our two

primitive propositions are the same as #91 and #911.

For purposes of inference, we still assume that from (x) . <j>x and

(x) . <f>x D yfrx we can infer (x) . yfrx, and from p and p D q we can infer q, even

when the functions or propositions involved are not elementary.
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Existence-theorems are very often obtained from the above primitive

propositions in the following manner. Suppose we know a proposition

\-.f(x,x).

Since <f>x . D . fay) .
<f>y,

we can infer

May) -/toy).

i.e. H:(#):(a2/)./(a;,y).

Similarly r : (y) : fax) .f(x, y).

Again, since <j> (x, y) . D • faz, w) . <£> (z, w\ we can infer

• (a^ y) "/(*» y)

and ' H. (ay, «)•/(*, y).

We may illustrate the proofs both of universal and of existence propo-

sitions by a simple example. We have

Hence, substituting <f>x for p,
h . {x) . <f>x D <f)X.

Hence, as in the case of/(#, x) above,

t- rfa) : (ay) fa D
<f>y,

b : (y) : fax) . <f>x D cf>y,

I" fax, y)-fa^ 4>y-

Apart from special axioms asserting existence-theorems (such as the axiom of

reducibility, the multiplicative axiom, and the axiom of infinity), the above

two primitive propositions give the sole method of proving existence-theorems

in logic. They are, in fact, always derived from general propositions of the

form (x).f(x,x) or (x) ,f(x,x,x) or etc., by substituting other variables for

some of the occurrences of x.

III. GENERAL PROPOSITIONS OF LIMITED SCOPE

In virtue of a primitive proposition, given (x) . <f>x and (x) . $x D -tyx, we

can infer (x) . yjrx. So far, however, we have introduced no notation which

would enable us to state the corresponding implication (as opposed to inference).

Again, fax) . §x and (x, y) . $x O yfry enable us to infer (y) . tyy; here again,

we wish to be able to state the corresponding implication. So far, we have only

defined occurrences of general propositions as complete asserted propositions.

Theoretically, this is their only use, and there is no need to define any other.

But practically, it is highly convenient to be able to treat them as parts

of stroke-functions. This is entirely a matter of definition. By introducing

suitable definitions, first-order propositions can be shown to satisfy all the

propositions of #1—*5. Hence in using the propositions of #1—#5, it will

no longer be necessary to assume that p, q, r, ... are elementary.

The fundamental definitions are given below.
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When a general proposition occurs as part of another, it is said to have

limited scope. If it contains an apparent variable x, the scope of x is said to

be limited to the general proposition in question. Thus in p \

{(x) . <f>x\, the

scope of x is limited to ix) . <ftx, whereas in (x) . p | fa the scope of x extends

to the whole proposition. Scope is indicated by dots.

The new chapter *8 (given in Appendix A) should replace *9 in Principia

Mathematica. Its general procedure will, however, be explained now.

The occurrence of a general proposition as part of a stroke-function is

denned by means of the following definitions:

{(x).<j>x}\q. = .fax).<f>x\q Df,

1(3*0 • fa) 1 9. = (*) fa 1 ? Df
>

p I {(ay) • tyy) • = (y) • v \ fy Df-

These define, in the first place, only what is meant by the stroke when it

occurs between two propositions of which one is elementary while the other is

of the first order. When the stroke occurs between two propositions which

are both of the first order, we shall adopt the convention that the one on the

left is to be eliminated first, treating the one on the right as if it were ele-

mentary; then the one on the right is to be eliminated, in each case, in

accordance with the above definitions. Thus

{{x) . <f>x}
|
[(y) . yjry] . = : fax) : <f>x\ {(y) . ^y} :

= = (3*0 = (32/) fa I t2A

(0) • fa] I Kay) •fy}- = - (3*0 = fa I {(ay) -M =

= = (3*0 : (y) • fa I tyy>

{fax) . <f>x}
|
\{y) .^ry}.= : (x) : fay) . <f>x

j fy.

The rule about the order of elimination is only required for the sake of

definiteness, since the two orders give equivalent results. For example, in

the last of the above instances, if we had eliminated y first we should have

obtained

(ay) : (*0 fa I
^y>

which requires either (x) ,<^>$x or fay) .<^-tyy, and is then true.

And (x) : fay) . <f>x | yfry

is true in the same circumstances. This possibility of changing the order of

the variables in the prefix is only due to the way in which they occur, i.e. to

the fact that x only occurs on one side of the stroke and y only on the other.

The order of the variables in the prefix is indifferent whenever the occurrences

of one variable are all on one side of a certain stroke, while those of the other

are all on the other side of it. We do not have in general

(a*0 : (y) • x (x> y)- = -iy)' (3*0 x 0»> y);
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here the right-hand side is more often true than the left-hand side. But we

do have

(ft®) '• iy) -<l>a!\yjry: = : (y) : (a*) . $x\^y.

The possibility of altering the order of the variables in the prefix when they

are separated by a stroke is a primitive proposition. In general it is convenient

to put on the left the variables of which "all" are involved, and on the right

those of which " some " are involved, after the elimination has been finished,

always assuming that the variables occur in a way to which our primitive

proposition is applicable.

It is not necessary for the above primitive proposition that the stroke

separating x and y should be the principal stroke, e.g.

p I [{(a*) • <H I {(y) • "fy}] = • p I
[0*0 : (ay) • 4>x

I ^y]

(a*) : (y) • p I
(<£*

I iry) -

(y) • (a«) • p I {<t>
x

1 1ry)>

All that is necessary is that there should be some stroke which separates x

from y. When this is not the case, the order cannot in general be changed.

Take e.g. the matrix

<f>x V yjry . ~ <f>x V <^» ifry.

This may be written (<j>x D yjry)
j
{$-y D <f>x)

or {fx
| (fy | tyy)} \ [tyy \

(Qx
| <f>x)}.

Here there is no stroke which separates all the occurrences of x from all those

of y, and in fact the two propositions

(y) ' (a57) • §x v "tyy ~^ v ^ ^y
and (a«) : (y) . 4>x v tyy .~^pv<v yfry

are not equivalent except for special values of
<f>
and i|r.

By means of the above definitions, we are able to derive all propositions,

of whatever order, from a matrix of elementary propositions combined by

means of the stroke. Given any such matrix, containing a part p, we may

replace p by <f>x or
<f>

(x, y) or etc., and proceed to add the prefix (x) or (g#)

or (x, y) or (x) : (gy) or (y) : (gp) or etc. Ifp and q both occur, we may replace

p by <f)X and q by tyy, or we may replace both by <j>%, or one by <f>x and another

by some stroke-function of <f>x.

In the case of a proposition such as

p I (O) = (ay) * (®> y) ]
>

we must treat it as a case ofp \

{(x) . </>#}, and first eliminate x. Thus

p I
{(«) : (ay) f («» y)} •

= : (a*) -(y)-p\ ^0*»y)«

That is to say, the definitions of {(x) . <f>x)}
\
q etc. are to be applicable un-

changed when <f>x is not an elementary function.
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The definitions of ~
Thus

•~ {(x) . <f>x\ . =

p, pv q, p .q, pOq are to be taken over unchanged.

p . D . (x) .</>#: =

(x) . <f>x . D . p : =

(x) . <f>x . v . p : =

p . v . (x) . <f>x : =

{(x) . fa] I

\(x) . <f>x}

:

(rx) : <f>x
|

{(x): <f>x\ :

(a«0 • (33/) • (<£#
1
4>y\

(x) : (y) . fox | <£y),

p'l [{<*)**} I
{(*)**}]:

P I
{(3*0 = (33/) • (4&

I #)} =

(x) : (y) .p
|
(<f>x | <£y),

{(#) . <f>x] \(p\p):

(rx) . <f>x
| (p |

p) : = : (gar) .<f>xDp,

[~{(»).^}]| ~p:
Ka«) : (ay) • (^ I <&/)} i

(/>
I P) :

(^)-{(ay)-(^l^)}|(i>lp):

(*):(y).(<M&/)KH.P)>
(x):(y).(p\p)\(<f>x\<f>y).

It will be seen that in the above two variables appear where only one might
have been expected. We shall find, before long, that the two variables can be'

reduced to one ; i.e. we shall have

(3*0 : (32/) - <£#
I <f>V

'• = • (3«) • 4>x
I
£*»

(a;) : (y) . <f>x \ <f>y : = . (a;) . <£#
|
<j>x.

These lead to

~ {(x) . <j)x} . = . (a«) . ~ fa,

~ {(a^) • 4*®} = (#) ~ <j>x.

But we cannot prove these propositions at our present stage ; nor, if we could,

would they be of much use to us, since we do not yet know that, when two

general propositions are equivalent, either may be substituted for the other

as part of a stroke-proposition without changing the truth-value.

For the present, therefore, suppose we have a stroke-function in which p
occurs several times, say p | (p |

p), and we wish to replace p by (x) . <f>x, we
shall have to write the second occurrence of p " (y) . <f>y," and the third

" (z) . <f>z." Thus the resulting proposition will contain as many separate

variables as there are occurrences of p.

The primitive propositions required, which have been already mentioned,

are four in number. They are as follows:

(1) I- . (a», y) . $a
|
(<f>x | <j>y), i.e. \-:<f>a.D . (ga?) . <f>x.

(2) I- . (g#) . <f>x
|
(<fxi j <f>b), i.e. H : (x) . <f>x . D . <f>a . <f>b.

(3) The extended rule of inference, i.e. from (x) . <f>x and (x) . <j>x D i/r#

we can infer (x) . tyx, even when <£ and yfr are not elementary.

(4) If all the occurrences of x are separated from all the occurrences of

y by a certain stroke, the order of x and y can be changed in the prefix; i.e.
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For (g#) : (y) . <f>x \ -fy we can substitute (y) : (ga;) . <f>% |

yjry, and vice

versa, even when this is only a part of the whole asserted proposition.

The above primitive propositions are to be assumed, not only for one

variable, but for any number.

By means of the above primitive propositions it can be proved that all

the propositions of #1—*5 apply equally when one or more of the propositions

p,q,r
t

... involved are not elementary. For this purpose, we make use of the

work of Nicod, who proved that the primitive propositions of *I can all be

deduced from
h .p Op

and b .pDq.D .s\qDp\s

together with the rule of inference: " Given p and p\(q\ r), we can infer r."

Thus all we have to do is to show that the above propositions remain true

when p, q, s, or some of them, are not elementary. This is done in #8 in

Appendix A
r

IV. FUNCTIONS AS VARIABLES

The essential use of a variable is to pick out a certain assemblage of

elementary propositions, and enable us to assert that all members of this

assemblage are true, or that at least one member is true. We have already

used functions of individuals, by substituting <j>x for p in the propositions of

#1 #5
7
and by the primitive propositions of #8. But hitherto we have always

supposed that the function is kept constant while the individual is varied, and

we have not considered cases where we have "g</>," or where the scope of "<]>"

is less than the whole asserted proposition. It is necessary now to consider

such cases.

Suppose a is a constant. Then "<j>a" will denote, for the various values

of
<f>,

all the various elementary propositions of which a is a constituent. This

is a different assemblage of elementary propositions from any that can be

obtained by variation of individuals; consequently it gives rise to new general

propositions. The values of the function are still elementary propositions,

just as when the argument is an individual; but they are a new assemblage

of elementary propositions, different from previous assemblages.

As we shall have occasion later to consider functions whose values are not

elementary propositions, we will distinguish those that have elementary

propositions for their values by a note of exclamation between the letter

denoting the function and the letter denoting the argument. Thus "<£ ! x" is

a function of two variables, x and </> ! £. It is a matrix, since it contains no

apparent variable and has elementary propositions for its values. We shall

henceforth write "<£ ! x" where we have hitherto written <j>x.

If we replace a? by a constant a, we can form such propositions as

(<f>).cf>l a, (a<£) .
<f>

! a.
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These are not elementary propositions, and are therefore not of the form </> ! a.

The assertion of such propositions is derived from matrices by the method of

#8. The primitive propositions of #8 are to apply when the variables, or some

of them, are elementary functions as well as when they are all individuals.

A function can only appear in a matrix through its values*. To obtain a

matrix, proceed, as before, by writing
<f>

! x, i/r ! y, % I z, . .. in place of p, q, r, ...

in some molecular proposition built up by means of the stroke. We can then

apply the rules of *8 to
<f>, ty, %, .

.

. as well as to x, y, z, The difference

between a function of an individual and a function of an elementary function

of individuals is that, in the former, the passage from one value to another

is effected by making the same statement about a different individual, while

in the latter it is effected by making a different statement about the same

individual. Thus the passage from "Socrates is mortal" to "Plato is mortal"

is a passage from/! x to fly, but the passage from "Socrates is mortal" to

"Socrates is wise" is a passage from <j> I a to yjr ! a. Functional variation is

involved in such a proposition as: "Napoleon had all the characteristics of a

great general."

Taking the collection of elementary propositions, every matrix has values

all of which belong to this collection. Every general proposition results from

some matrix by generalization f. Every matrix intrinsically determines a

certain classification of elementary propositions, which in turn determines the

scope of the generalization of that matrix. Thus " x loves Socrates " picks out

a certain collection of propositions, generalized in " (x) . x loves Socrates " and

"(qx) . x loves Socrates." But "
<f>

! Socrates" picks out those, among elementary

propositions, which mention Socrates. The generalizations "(<£) .
<f>

! Socrates"

and " (a0) . </> ! Socrates " involve a class of elementary propositions which

cannot be obtained from an individual-variable. But any value of "<j> ! Socrates
"

is an ordinary elementary proposition ; the novelty introduced by the variable

^> is a novelty of classification, not of material classified. On the other hand,

(x) . x loves Socrates, (<£) .
(f>

! Socrates, etc. are new propositions, not contained

among elementary propositions. It is the business of #8 to show that these

propositions obey the same rules as elementary propositions. The method of

proof makes it irrelevant what the variables are, so long as all the functions

concerned have values which are elementary propositions. The variables may

themselves be elementary propositions, as they are in #1—#5.

A variable function which has values that are not elementary propositions

starts a new set. But variables of this sort seem unnecessary. Every elementary

proposition is a value of </> ! & ; therefore

(p) .fp. = . (<£, *)./(* ! x) : (gp) . fp . = . (a</>, x) ./(<£ ! x).

* This assumption is fundamental in the following theory. It has its difficulties, but for the

moment we ignore them. It takes the place (not quite adequately) of the axiom of reducibility.

It is discussed in Appendix C.

f In a proposition of logic, all the variables in the matrix must be generalized. In other

general propositions, such as "all men are mortal," some of the variables in the matrix are re-

placed by constants.
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Hence all second-order propositions in which the variable is an elementary

proposition can be derived from elementary matrices. The question of other

second-order propositions will be dealt with in the next section. A function

of two variables, say
<f>

(x, y), picks out a certain class of classes of propositions.

We shall have the class
<f>

(a, y), for given a and variable y ; then the class of

all classes <£ (a, y) as a varies. Whether we are to regard our function as

giving classes
<f>

(a, y) or
<f>

(x, b) depends upon the order of generalization

adopted. Thus "(g#):(3/)" involves <f>(a,y), but "(y):(^as)" involves

Consider now the matrix
<f>

I x, as a function of two variables. If we first

vary x, keeping <£ fixed (which seems the more natural order), we form a class

of propositions
<f>

I x,
<f>

I y, <f>
! z, . . . which differ solely by the substitution of

one individual for another. Having made one such class, we make another,

and so on, until we have done so in all possible ways. But now suppose we
vary

<f>
first, keeping x fixed and equal to a. We then first form the class of

all propositions of the form
<f>

! a, i.e. all elementary propositions of which a is

a constituent ; we next form the class
<f>

I b ; and so on. The set of propositions

which are values of <£ ! a is a set not obtainable by variation of individuals,

i.e. not of the form fx [for constant / and variable x\ This is what makes
<f>

a new sort of variable, different from x. This also is why generalization of the

form
(<f>) . F I (<f>

1 2, x) gives a function not of the form /! x [for constant /].

Observe also that whereas a is a constituent of/! a, /is not ; thus the matrix

<f>
! x has the peculiarity that, when a value is assigned to x, this value is a

constituent of the result, but when a value is assigned to
<f>,

this value is

absorbed in the resulting proposition, and completely disappears. We may
define a function <£!& as that kind of similarity between propositions which

exists when one results from the other by the substitution of one individual

for another.

We have seen that there are matrices containing, as variables, functions

of individuals. We may denote any such matrix by

fl(<f>lz, ^r \z,xlz, ... x,y,z, ...).

Since a function can only occur through its values,
<f>

! 2 (e.g.) can only occur

in the above matrix through the occurrence of
<f>

! x, <j> ! y, <f>
! z, . .. or of

<f>
I a,

<f>lb,(f>lc, ..., where a, b, c are constants. Constants do not occur in logic, that

is to say, the a, b, c which we have been supposing constant are to be regarded

as obtained by an extra-logical assignment of values to variables. They may
therefore be absorbed into the x, y, z, Now x, y, z themselves will only

occur in logic as arguments to variable functions. Hence any matrix which

contains the variables
<f>

! z, yjr 1

2

, x • %> ®> V> z and no others, if it is of the sort

that can occur explicitly in logic, will result from substituting <f>\x,<f>\y,$\z,

yfrlx, yfrly, yfrlz, %lx, % 1 y, % I z, or some of them, for elementary propositions

in some stroke-function.
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It is necessary here to explain what is meant when we speak of a " matrix

that can occur explicitly in logic," or, as we may call it, a " logical matrix."

A logical matrix is one that contains no constants. Thus p |

q is a logical

matrix ; so is
<f>

! x, where
<f>
and x are both variable. Taking any elementary

proposition, we shall obtain a logical matrix if we replace all its components

and constituents by variables. Other matrices result from logical matrices by

assigning values to some of their variables. There are, however, various ways

of analysing a proposition, and therefore various logical matrices can be derived

from a given proposition. Thus a proposition which is a value of p |
q will

also be a value of (<j>lx)\ (^rly) and of %!(#, y). Different forms are required

for different purposes ; but all the forms of matrices required explicitly in

logic are logical matrices as above denned. This is merely an illustration of

the fact that logic aims always at complete generality. The test of a logical

matrix is that it can be expressed without introducing any symbols other

than those of logic, e.g. we must not require the symbol " Socrates." Consider

the expression

/! (<f>
! z, yfr I z, x ! z, ••• #, y, z).

When a value is assigned to /, this represents a matrix containing the variables

$' ty> X> • • • x> y> z
>

But wnile / remains unassigned, it is a matrix of a

new sort, containing the new variable /. We call / a " second-order function,"

because it takes functions among its arguments. When a value is assigned,

not only to /, but also to
<f>, yfr, %, . . . x

t y, z, . .

.

, we obtain an elementary

proposition ; but when a value is assigned to f alone, we obtain a matrix

containing as variables only first-order functions and individuals. This is

analogous to what happens when we consider the matrix <£ ! x. If we give

values to both
<f>
and #, we obtain an elementary proposition ; but if we give

a value to <£ alone, we obtain a matrix containing only an individual as variable.

There is no logical matrix of the form f !
(<f>

! 2). The only matrices in

which
<f>

! 1z is the only argument are those containing <j> I a,
<f>

! b,
<f>

! c, . .
.

, where

a, b, c, ... are constants; but these are not logical matrices, being derived

from the logical matrix
<f>

\x. Since
<f>

can only appear through its values, it

must appear, in a logical matrix, with one or more variable arguments. The
simplest logical functions of

<f>
alone are (#) .

<f>
! x and (a«) .

<f>
! x, but these

are not matrices. A logical matrix

fl(<f)lz, a?i,#2 , ... xn)
is always derived from a stroke-function

F(pi,Pz,Ps> >..pn)

by substituting <p I xlt (f>
! x2 , . . .

<f>
! xn for p\, p2> . . . pn . This is the sole method

of constructing such matrices. (We may however have xr = xs for some values

of r and s.)

Second-order functions have two connected properties which first-order

functions do not have. The first of these is that, when a value is assigned to

R&W I c
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/, the result may be a logical matrix; the second is that certain constant values

of/ can be assigned without going outside logic.

To take the first point first:/! (<j> ! z, x), for example, is a matrix containing

three variables,/, <£, and x. The following logical matrices (among an infinite

number) result from the above by assigning a value to/:
<f>

! x, (<j> ! x)
\ (<f>

! x),

<j>lxD<f>lx, etc. Similarly <f>lx2<f>ly, which is a logical matrix, results from

assigning a vulue to/in/! (<£ ! 2, x, y). In all these cases, the constant value

assigned to / is one which can be expressed in logical symbols alone (which

was the second property of/). This is not the case with
<f>

! x: in order to

assign a value to
<f>,
we must introduce what we may call "empirical constants,"

such as "Socrates" and "mortality" and "being Greek." The functions of x
that can be formed without going outside logic must involve a function as a

generalized variable; they are (in the simplest case) such as (<f>).<f>lx and

(a<£) .<plx.

To some extent, however, the above peculiarity of functions of the second

and higher orders is arbitrary. We might have adopted in logic the symbols

Ri (x), R* {so, y), R3 (#, y>z),

where R± represents a variable predicate, R% a variable dyadic relation (in

intension), and so on. Each of the symbols Rx {x), R2 (x,y), R3 (x,y,z), ... is

a logical matrix, so that, if we used them, we should have logical matrices not

containing variable functions. It is perhaps worth while to remind ourselves

of the meaning of
"<f>

! a," where a is a constant. Th<^ meaning is as follows.

Take any finite number of propositions of the various forms jRj (x), R2 (x, y), ...

and combine them by means of the stroke in any way desired, allowing any
one of them to be repeated any finite number, of times. If at least one of

them has a as a constituent, ie. is of the form

Rn (a,b1 , b2 , ... 6n_j), •

then the molecular proposition we have constructed is of the form <j> ! a,

i.e. is a value of "
<f>

! a" with a suitable
<f>.

This of course also holds of the

proposition Rn (a, b1} b2 , . . . 6M_i) itself. It is clear that the logic of propositions,

and still more of general propositions concerning a given argument, would be

intolerably complicated if we abstained from the use of variable functions;

but it can hardly be said that it would be impossible. As for the question of

matrices, we could form a matrix/! (i2j, x), of which Rt (x) would be a value.

That is to say, the properties of second-order matrices which we have been
discussing would also belong to matrices containing variable universals. They
cannot belong to matrices containing only variable individuals.

By assigning <£ ! £ and x in/! (<£ ! £, x), while leaving /variable, we obtain

an assemblage of elementary propositions not to be obtained by means of

variables representing individuals and first-order functions. This is why the

new variable /is useful.
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We can proceed in like manner to matrices

Fl{fl($l%$),gl($l%x), ...^\% X \$,...x,y, ...}

and so on indefinitely. These merely represent new ways of grouping ele-

mentary propositions, leading to new kinds of generality.

V. FUNCTIONS OTHER THAN MATRICES

When a matrix contains several variables, functions of some of them can

be obtained by turning the others into apparent variables. Functions obtained

in this way are not matrices, and their values are not elementary propositions.

The simplest examples are

(y) • £ '• (», V) and (ay) .<f>l(x, y).

When we have a general proposition (<£) . F {<£ I z, x, y, ...}, the only values
<f>

can take are matrices, so that functions containing apparent variables are not

included. We can, if we like, introduce a new variable^ to denote not only

functions such as
<f>

I ot,- but also such as

(y).<j>l($,y), (y,z).<f>l(x,y,z), ... (ay) •<£!(£, y), ...;

in a word, all such functions of one variable as can be derived by generalization

from matrices containing only individual-variables. Let us denote any such

function by fax, or -ty^sc, or Xl x, or etc. Here the suffix 1 is intended to indi-

cate that the values of the functions may be first-order propositions, resulting

from generalization in respect of individuals. In virtue of #8, no harm can

come from including such functions along with matrices as values of single

variables.

Theoretically, it is unnecessary to introduce such variables as fa, because

they can be replaced by an infinite conjunction or disjunction. Thus e.g.

((f),) .fax. = :
(<f>). <f>lx: (fa y) .xf) ! (x, y) : (0) : (ay) .<f>l(x,y): etc.,

(a<k) . fax . = : (a<£) .<f>l x:v: (g<£) : (y) . <j> ! (x,y):v :{>&<}>, y).<f> ! (x,y) :v: etc.,

and generally, given any matrix fl(<f>lz, x), we shall have the following pro-

cess for interpreting (c^) ./! (faz, x) and (a<£i) ./! (faz, #)• Put

(fa) ./! (fa%x) . =. :
(<f>) ./ ! {(y) .<£!(£, y), x] :

(<f>) ./! {(ay) . </> ! (z, y), x],

where/! {(y) .
<f>

! (z, y), x) is constructed as follows: wherever, in/! {<£ ! z, x},

a value of <j>, say <f>
I a, occurs, substitute (y) . <£ ! (a, y), and develop by the

definitions at the 'beginning of #8. / ! {(ay) .
<f>

I (z, y), x] is similarly con-

structed. Similarly put

(fa) ./! (fa lz,x). = : (</>) ./! {(y, w) .
<f>

! (% y, w), x) :

(</>) -/ ! {(y) ' (aw) •
<f> *(% y, w), x] : etc.,

where "etc." covers the prefixes (a.y) : (w) •> (33/> w) •> (w) : (32/)- We define

(f>

3
, fa, ... similarly. Then

(fa) .fl(fa% x) . = : (fa) ./! (^ 2, x) : (<£
2
) ./! (fa 3, x) : etc.

This process depends upon the fact that/! (<£ ! z, x), for each value of <}> and x,

is a proposition constructed out of elementary propositions by the stroke, and

c2
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that #8 enables us to replace any of these by a proposition which is not

elementary. (a<£i) .flifa'z, x) is defined by an exactly analogous disjunction.

It is obvious that, in practice, an infinite conjunction or disjunction such

as the above cannot be manipulated without assumptions ad hoc. We can

work out results for any segment of the infinite conjunction or disjunction,

and we can " see " that these results hold throughout. But we cannot prove

this, because mathematical induction is not applicable. We therefore adopt

certain primitive propositions, which assert only that what we can prove in

each case holds generally. By means of these it becomes possible to manipulate

such variables as fa.

In like manner we can introduce /, (faz, £), where any number of in-

dividuals and functions yjr1} ft, ... may appear as apparent variables.

No essential difficulty arises in this process so long as the apparent

variables involved in a function are not of higher order than the argument to

the function. For example, x e D'JR, which is (ay) . xRy, may be treated

without danger as if it were of the form
<f>

! x. In virtue of #8, fax may be

substituted for <£ ! x without interfering with the truth of any logical pro-

position which
<f>

! x is a part. Similarly whatever logical proposition holds

concerning/! (faz, x) will hold concerningfx (faz, x).

But when the apparent variable is of higher order than the argument, a

new situation arises. The simplest cases are

(*)./! ($!*,*), (3*) /! (*!*,*).

These are functions of x, but are obviously not included among the values

for"
<f>

! x (where
<f>

is the argument). If we adopt a new variable fa which is

to include functions in which
(f>

! z can be an apparent variable, we shall obtain

other new functions

ifa).f\{fa%x), (afc) ./!(#*,*)>

which are again not among values for fax (where fa is the argument), because

the totality of values of faz, which is now involved, is different from the totality

of values of
<f>

! £, which was formerly involved. However much we may en-

large the meaning of
<f>,

a function of x in which
<f>

occurs as apparent variable

has a correspondingly enlarged meaning, so that, however
<f>
may be defined,

(fa).f\(4>%x) and (a*) ./!(#,*)

can never be values for <f>x. To attempt to make them so is like attempting

to catch one's own shadow. It is impossible to obtain one variable which

embraces among its values all possible functions of individuals.

We denote by fax a function of x in which fa is an apparent variable, but

there is no variable of higher order. Similarly fax will contain fa as apparent

variable, and so on.



INTRODUCTION XXXV

The essence of the matter is that -a variable may travel through any well-

defined totality of values, provided these values are all such that any one can

replace any other significantly in any context. In constructing fax, the only

totality involved is that of individuals, which is already presupposed. But

when we allow <j> to be an apparent variable in a function of x, we enlarge the

totality of functions of a;, however <f>
may have been defined. It is therefore

always necessary to specify what sort of <j> is involved, whenever
<f>

appears as

an apparent variable.

The other condition, that of significance, is fully provided for by the

definitions of *8, together with the principle that a function can only occur

through its values. In virtue of the principle, a function of a function is a

stroke-function of values of the function. And in virtue of the definitions in

*8, a value of any function can significantly replace any proposition in a

stroke-function, because propositions containing any number of apparent

variables can always be substituted for elementary propositions and for each

other in any stroke-function. What is necessary for significance is that every

complete asserted proposition should be derived from a matrix by generaliza-

tion, and that, in the matrix, the substitution of constant values for the

variables should always result, ultimately, in a stroke-function of atomic

propositions. We say " ultimately," because, when such variables as fa% are

admitted, the substitution of a value for fa may yield a proposition still

containing apparent variables, and in this proposition the apparent variables

must be replaced by constants before we arrive at a stroke-function of atomic

propositions. We may introduce variables requiring several such stages, but

the end must always be the same : a stroke-function of atomic propositions.

It seems, however, though it might be difficult to prove formally, that the

functions fa, fi introduce no propositions that cannot be expressed without

them. Let us take first a very simple illustration. Consider the proposition

(H^i) fax m faa>
which we w*^ call /(a?, a).

Since fa includes all possible values of
<f>

! and also a great many-other values

in its range, /(«, a) might seem to make a smaller assertion than would be

made by
(g<£) .

<f>
I x . <j> ! a, which we will call/, (x, a).

But in fact f{x, a) . D ./„ (x, a). This may be seen as follows : fax has one of

the various sets of forms

:

(y) .
4> ! (x, y), (y, z).<}>l 0, y, z), ...,

(ay) $ 0*> y). to *) • tf>
! fo y.*).—>

(y) : (a*) • <M 0»» y. *)> (ay) : (*) •
! fo-y» z^

Suppose first that fax . = . (y) .
<f>

! (x, y). Then

fax . faa . =

D
(y) . <j> I (x, y) : (y) .

tf>
! (a, y)

<f, I (x, b).<f>l (a, b) :

(a</>) . <£ I x . <£ ! a.
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Next suppose fax . = . fay) .<f>\{x, y). Then

fax .faa. = : (gy) .
<f>

! O, ?/) : faz) .<f>l(a, z) :

3 ' (ay, z):<f>l(oe) y)v<f>l (x, z).fa\ (a, y)v<f>l (a, z) :

D : (g;0) . <j> I x . <j> ! a,

because <j> I (%, y) v (f>
1 (x, z) is of the form

<f>
I x, when y and z are fixed. It is

obvious that this method of proof applies to the other cases mentioned above.

Hence

fafa) . fax . faa . = . (>&<j>) .
<f>

1 x .
<f>

I a.

We can satisfy ourselves that the same result holds in the general form

(a&)./! (<M>*) = (a*) -/! (*!*,-*)

by a similar argument. We know that / ! (0 ! £, a?) is derived from some
stroke-function

F(p,q,r,...)

by substituting
<f>

I x,
<f>

I a, </> ! b, . . . (where a, b, ... are constants) for some of

the propositions p,q,r,... and gx l x, g2 lx, g3 lx, ... (where ^, #2 , gs , ... are

constants) for others of p, q, r, ..., while replacing any remaining propositions

p, q, r, ... by constant propositions. Take a typical case ; suppose

fl(<l>lz,x). = .(<f>la)\{(<f>lx)\(cl>lb)}.

We then have to prove

faa\(fax\fab).D.fa<f>).<f>la\(falx\<f>lb),

where fax may have any of the forms enumerated above.

Suppose first that fax . — . (y) . <$> ! (x, y). Then

faa
|
(fax | fab) . = : (ay) :(z,w).<f>\ (a, y)\{<f>l (x, z)\<t>\ (b, w)} :

D : (32/) . fal (a, y) \ {<f> ! (x, y)\<f>l (b, y)}

:

D:(a<£).<£!a|(<£!tf|0!&)
because, for a given y, <f>

! (x, y) is of the form
<f>

I x.

Suppose next that fax . = . (33/) . <j> ! (x, y). Then

faa
I
(&«

J
fab) . = : (y) : faz, w).<f>l (a, y) | {<f>

! (a;, *) | <f>
! (6, w)} :

D : (a>|r) . yjr ! a
j
(^ ! x

|
i/r ! b),

putting \jrlx .= . (ftl(x,z)v<j>l(x, w). Similarly the other cases can be dealt

with. Hence the result follows.

Consider next the correlative proposition

(fa) ./! (fa% x) . = . (<£) ./! (<£ ! X x).

Here it is the converse implication that needs proving, i.e.

(fa).f\(<t>l%x).1.(fa).f\(fa%x).
This follows from the previous case by transposition. It can also be seen in-

dependently as follows. Suppose, as before, that

fl(fa$,x). = .(faa)\(fax\fab),

and put first fax . = . (y) .<f>\(x, y).

Then (faa)
\
(fax

\
fab) . = : (Hy) : (z, w).<f>\ (a, y)\{<f>l (x, z)\<f>l (6, «/)}.
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Thus we require that, given

(ylr).(ylrla)\(yfrlx\^lb),

we should have (g#) : (z, w) .
<f>

I (a, y)\{<f>l (x, z)
\ <j> ! (6, w)}.

Now

(yft) . yfr ! a
\
(yfr ! x

\ yfr ! b) . D : .
<f>

! (a, z) . D .
<f>

! (#, z) .
<f>

I (b, z) :

<f>
! (a, w) . D . <£ ! (x, w) .

<f>
! (6, «/) :.

D :.
<f>

! (a, *) . <£ ! (a, w) . D . <£ ! (x, z).<f>l (b, w) :.

D:.<f>l(a,w).D:<f>l(a,z).D.(j>l(x> z).(l>l(b> w) (1)

Also ~^>!(a,?«).D:<^!(a,w;).D.</>!(«,5).^!(6 ) w) (2)

(l).(2).D:.(^).^!o|(^!ar|^!6):D:.(ay):^!(a,y).D.^!(a?,«).^!(6,w)

which was to be proved.

Put next fax . = . (33/) . <£ ! (x, y).

Then (fca) |
(fax

\
fab). = :(y): faz, w).<f>l (a, y) |

{</> ! (x, z)
\ <f>

! (6, w)}.

In this case we merely put z = w = y and the result follows.

The method will be the same in any other case. Hence generally

:

(fa) ./! (fa% x). = , (<j>) .fl(<j> \X x).

Although the above arguments do not amount to formal proofs, they suffice

to make it clear that, in fact, any general propositions about <j> ! z are also

true about faz. This gives us, so far as such functions are concerned, all that

could have been got from the axiom of reducibility.

Since the proof can only be conducted in each separate case, it is necessary

to introduce a primitive proposition stating that the result holds always. This

primitive proposition is

h :(*)./! (01 % x).D.fl(fa%x) Pp.

As an illustration : suppose we have proved some property of all classes denned

by functions of the form
<f>

! z, the above primitive proposition enables us to

substitute the class T)'R, where R is the relation denned by
<f>

! (x, p), or by

(gs) .
<f>

! (x, $, z), or etc. Wherever a class or relation is denned by a function

containing no apparent variables except individuals, the above primitive pro-

position enables us to treat it as if it were denned by a matrix.

We have nOw to consider functions of the form fax, where

fax . = . (<£) ./! (<f>
I % x) or fax . = . (gtf) ./! (<f>

I % x).

We want to discover whether, or under what circumstances, we have

(fa) .g\(4>\^x) .1 . g\(faz,x). (A)

Let us begin with an important particular case. Put

gl(<f>lz,x). = .<f>laD<f>lx.

Then (fa . g I
(<f>

I z, x) . = . x = a, according to #131.
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We want to prove

(<j>) . <j> I a D <f>
I x . D .

<f>2
a D

<f>2
x,

i.e. (<f>).<t>laD<f>lx.3: (£) ./! (tf>
! z, a) . D . (<f>) ./!(</>! % x) :

(a<*>) •/! (<*> l%a).D. (a<£) ./!(<£! *, *).

Now/! (0"! 2, a?) must be derived from some stroke-function

F(p,q,r,...)

by substituting for some of p, q,r, ... the values <j> I x, tf> I b, ! c, . . . where

b, c, ... are constants. As soon as
<f>

is assigned, this is of the form yfr ! #. Hence

(<f>).(j>laD<f>lx.D :(<!>) :/! (<£ ! % a) . D ./! (<f>
! % x) :

D:(*)./!(*!*,a). 3. (*)./!(*!*,*):

(a<*>) /' (<*> I % a) • ^ • (3*) /!(* ! *, *)•

Thus generally (<£) . </> ! a D <£ ! x . D . (<£2) .
<f>2
a D </>2 a? without the need of any

axiom of.reducibility.

It must not, however, be assumed that (A) is always true. The procedure

is as follows :/!(</>! 2, x) results from some stroke-function

F(p,q,r,...)

by substituting for some of p, q,r, ... the values <£ ! x, <j> ! a,
<f>

I b, ... (a, b, ...

being constants). We assume that, e.g.

4>2x. = .{<j>).f\{4>\z,x).

Thus
<f,2
x. = .(<}>). F((j> I x, <j>la, <f>lb, ...). (B)

What we want to discover is whether

{<\>).g\{^\%x).^.g\{^%x).

Now g !
(<f>

I z, x) will be derived from a stroke-function

G(p,q,r,...)

by substituting
<f>

I x, <j>la', <f>lb', ... for some of p, q, r, To obtain

g\($2 z,%), we have to put
<f>2

x,
<f>2 a, <f>2

b', ... in G(p, q, r, ...), instead of

<f>
! x, <f>la', <f>lb', We shall thus obtain a new matrix.

If ((f>) . g I ((f) ! z, x) is known to be true because G(p, q, r, ...) is always

true, then g !
(<f>2

z, x) is true in virtue of #8, because it is obtained from

G (p, q, r, ...) by substituting for some of p, q, r, ... the propositions
<f>2 x,

<f>2 a', <f>2
b', ... which contain apparent variables. Thus in this case an inference

is warranted.

We have thus the following important proposition

:

Whenever (</>) . gl(<j>lz,x) is known to be true because g ! (<£ ! z,x) is

always a value of a stroke-function

G(p, q, r, ...),

which is true for all values of p, q, r, ..., then g !
(<f>2

lz, x) is also true, and so

(of course) is (<£2) . g !
(<f>2

z. x).
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This, however, does not cover the case where (<j>) . g !
(<f>

! 2, x) is not a

truth of logic, but a hypothesis, which may be true for some values of x and

false for others. When this is the case, the infereDce to g ! (<£22, x) is some-

times legitimate and sometimes not ; the various cases must be investigated

separately. We shall have an important illustration of the failure of the

inference in connection with mathematical induction.

VI. CLASSES

The theory of classes is at once simplified in one direction and complicated

in another by the assumption that functions only occur through their values

and by the abandonment of the axiom of reducibility.

According to our present theory, all functions of functions are extensional,

i.e.

<t>x=x +x.l.f(p)=f(1rt).

This is obvious, since
<f>

can only occur in f(4>z) by the substitution of values

of <£ for p, q, r, ... in a stroke-function, and, if <f>x = yfrx, the substitution of

§x for p in a stroke-function gives the same truth-value to the truth-function

as the substitution of yfrx. Consequently there is no longer any reason to

distinguish between functions and classes, for we have, in virtue of the above,

<j)x =x tyx . D . <f>%
= yjrx.

We shall continue to use the notation & (<$>x), which is often more convenient

than <j)tc ; but there will no longer be any difference between the meanings of

the two symbols. Thus classes, as distinct from functions, lose even that

shadowy being which they retain in #20. The same, of course, applies to

relations in extension. This, so far, is a simplification.

On the other hand, we now have to distinguish classes of different orders

composed of members of the same order. Taking classes of individuals as the

simplest case, & (<£> ! x) must be distinguished from &
(<f>2

x) and so on. In

virtue of the proposition at the end of the last section, the general logical

properties of classes will be the same for classes of all orders. Thus e.g.

aC/3./3C7.D.aC 7

will hold whatever may be the orders of a, #, y respectively. In other kinds of

cases, however, trouble arises. Take, as a first instance, p
lK and s'k. We have

x epfK . = : a e k . D„ . x e a.

Thus p'tc is a class of higher order than any of the members of k. Hence the

hypothesis (a) .fa may not imply f{p'ic), if a is of the order of the members

of k. There is a kind of proof invented by Zermelo, of which the simplest

example is his second proof of the Schroder-Bernstein theorem (given in #73).

This kind of proof consists in defining a certain class of classes tc, and then

showing that p'tceic. On the face of it, "p'/ce/c" is impossible, since p'/e is
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not of the same order as members of k. This, however, is not all that is to be

said. A class of classes k is always denned by some function of the form

Ox, x2 , ...): (gyx , y2 , . . .) . Ffa e a, x2 e a, . . . yx e a, y2 e a, . . .),

where F is a stroke-function, and "oe«" means that the above function is

true. It may well happen that the above function is true when p'ic is sub-

stituted for a, and the result is interpreted by #8. Does this justify us in

asserting p*K etc?

Let us take an illustration which is important in connection with

mathematical induction. Put

K = a (R"a Ca.aea).

Then R"p'/cCp'K . aep'/c (see *40'81)

so that, in a sense, p
iK e k. That is to say, if we substitute p

lK for a in the

defining function of k, and apply #8, we obtain a true proposition. By the

definition of #90,
4—
R%.ta=p t

K.

<—
Thus R%a is a second-order class. Consequently, if we have a hypothesis

(a) .fa, where a is a first-order class, we cannot assume

(a)./a.D./CR*'a). (A)

By the proposition at the end of the previous section, if (a) ./a is deduced by

logic from a universally-true stroke-function of elementary propositions,

f(R%a) will also be true. Thus we may substitute R#a for a in any asserted

proposition " h .fa" which occurs in Principia Mathematica. But when

(a) ./a is a hypothesis, not a universal truth, the implication (A) is not, prima

facie, necessarily true.

For example, if k = a (R"a C a . a e a), we have

ae*.D:a«/3e/c. = . R"(a n@)C@ .ae/3.

Hence a e k . R"{ar\ 0) C /3 . a e . D .p'ic C /3 (1)

In many of the propositions of #90, as hitherto proved, we substitute p'ic for

a, whence we obtain

R"(/3np<,e)C/3.ae/3.D.p tfeC/3 (2)
i.e.

z e . aR%z . DZ) w . w e y8 : a e . aR%oc : D . x e /8

or aR^x . D :. z e /3 . aR%z . Dz w .M/e/3:ae/8:D.#e/3.

This is a more powerful form of induction than that used in the definition of

aR%x. But the proof is not valid, because we have no right to substitute p'tc

for a in passing from (1) to (2). Therefore the proofs which use this form of

induction have to be reconstructed.
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It will be found that the form to which we can reduce most of the fallacious

inferences that seem plausible is the following:

Given " h . (x) . f(x, %)" we can infer " h : (x) : (gy) . f(x, y)." Thus given
" I- . (a) ./(a, a)" we can infer " V : (a) : (g£) ./(a, #)." But this depends upon
the possibility of a = 0. If, now, a is of one order and /8 of another, we do

not know that a = /? is possible. Thus suppose we have

a e k . Da . got.

and we wish to infer g$, where # is a class of higher order satisfying /3 e k.

The proposition

(/3) :. a e /e . Da . #a : D : /3 e /c . D . gryS

becomes, when developed by #8,

(£) :: (ga) :.ae re .3 .ga-.D : fie k .D .g/3.

This is only valid if o = $ is possible. Hence the inference is fallacious if /3

is of higher order than a.

Let us apply these considerations to Zermelo's proof of the Schroder-

Bernstein theorem, given in *73"8 ff. We have a class of classes

*= 3(a C D'R . £- <l lR C a . R"a Ca)

and we prove p'tc e x (#73"81), which is admissible in the limited sense ex-

plained above. We then add the hypothesis

x~e(0-Q.'R)vIt"pt
ic

and proceed to prove p
lK — i'x e k (in the fourth line of the proof of *7382).

This also is admissible in the limited sense. But in the next line of the same

proof we make a use of it which is not admissible, arguing from p*K — i'xe k

to p'x Cp'tc — i
l
x, because

ae k . Da . p'k C a.

The inference from

a e k . Da .p (K Ca to p'/c— t'xe k .0 . p'/cCp'ic — i'x

is only valid if p
e
/c — i'x is a class of the same order as the members of k.

For, when a e k . Da . p
lK C a is written out it becomes

(a) ::: (g/S) ::. (x) :: a e k . D :. ft e k . D .xe /S : D . x e a.

This is deduced from
a e k .O :. a e k . D . x e a : D . x e a

by the principle that /(a, a) implies (g/3) ./(a, /3). But here the fi must be

of the same order as the a, while in our case a and /8 are not of the same

order, if a = p
lK — i

lx and /3 is an ordinary member of k. At this point, there-

fore, where we infer p
lK Qp'ic — fc'#,*the proof breaks down.

It is easy, however, to remedy this defect in the proof. All we need is

x~e(@-<l'R)u R"p'/c. D.x~ep'/c
or, conversely,
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Now
x ep'/c . D :. a e k . Da : a — i'x^e k :

3a . ^(p _ af
jR C a - i'a>) . v .~ [R"(ol - i'x) C a - t'«?}

:

X :xe0- Q.'R . v . xe R"{<t- l'x)

D :. x e - CF# : v : a e k . Da . x e i£"a.

Hence, by *72-341,

a; e|><* . D . x e (J3
- d'R) u R"p<"

which gives the required result.

We assume that a — l'x is of no higher order than a; this can be secured

by taking a to be of at least the second order, since i'x, and therefore — t'oc,

is of the second order. We may always assume our classes raised to a given

order, but not raised indefinitely.

Thus the Schroder-Bernstein theorem survives.

Another difficulty arises in regard to sub-classes. We put

Cl'a = /§(/3Ca) Df.

Now "0Ca" is significant when /3 is of higher order than a, provided its

members are of the same type as those of a. But when we have

0Ca.Dp.ffr

the /3 must be of some definite type. As a rule, we shall be able to show

that a proposition of this sort holds whatever the type of /3, if we can show

that it holds when is of the same type as a. Consequently no difficulty

arises until we come to Cantor's proposition 2W > n, which results from the

proposition
~{(Cl'a)sm«}

which is proved in #102. The proof is as follows:

R e 1 -» 1 . WR = a . <J'i2 C Cl'a . £= x [x e a - R'x) . D :

^ w ^

ye a. ye R'y .Oy.y^eg-.yeu. y~e R'y .Dy
.ye^:D:yea.Dy .^ R'y :

D :£<-€<!<#.

As this proposition is crucial, we shall enter into it somewhat minutely.

Let a = £ (A ! x), and let

xR${4>\z)). = .f\{4>\%x).

Then by our data,

Alx.D. (?[<!>).
fl(<j>l%x),

fl(<f>l^,x).D.Alx.cf>lyDy Aly >

fl(<f>lz,x).fl(<l>lz,y).O.x = y,

f !
(<f>

I % x).f\{^r\%x).0.<i>\y =y.^ ! y.

With these data,

xea — R'x . = '. A ! x :/!(<£! z, x) . D^ .~ <j> I x.

Thus £ = £{(<£) '• A ' x :/ ! (4> ' 2. x)
D -~4> ' x)-



INTRODUCTION xliii

Thus £ is defined by a function in which <\> appears as apparent variable. If

we enlarge the initial range of
<f>,
we shall enlarge the range of values involved

in the definition of £. There is therefore no.way of escaping from the result

that £ is of higher order than the sub-classes of a contemplated in the

definition of Cl'a. Consequently the proof of 2n >• n collapses when the

axiom of reducibility is not assumed. We shall find, however, that the propo-

sition remains true when n is finite.

With regard to relations, exactly similar questions arise as with regard to

classes. A relation is no longer to be distinguished from a function of two

variables, and we have

0(£,£) = ^(£,#) . = :<f>{x,y) . =,,„ .f(x,y).

The difficulties as regards^'X and Rl'Pare less important than those concerning

p'/c and Cl'a, becausep
l\ and HYP are less used. But a very serious difficulty

occurs as regards similarity. We have

a sm . = . (rR) . i2 e 1 -* 1 . a = D'i£ . /3 = (Pi*.

Here R must be confined within some type; but whatever type we choose,

there may be a correlator of higher type by which o and can be correlated.

Thus we can never prove <~(asmy8), except in such special cases as when

either a or is finite. This difficulty was illustrated by Cantor's theorem

2n > n, which we have just examined. Almost all our propositions are con-

cerned in proving that two classes are similar, and these can all be interpreted

so as to remain valid. But the few propositions which are concerned with

proving that two classes are not similar collapse, except where one at least of

the two is finite.

VII. MATHEMATICAL INDUCTION

All the propositions on mathematical induction in Part II, Section E and

Part III, Section C remain valid, when suitably interpreted. But the proofs

of many of them become fallacious when the axiom of reducibility is not

assumed, and in some cases new proofs can only be obtained with considerable

labour. The difficulty becomes at once apparent on observing the definition

of "xR%y" in #90. Omitting the factor "xeC'R," which is irrelevant for

our purposes, the definition of " xR%y " may be written

zRw.'Dz>w .<l>lz'2 4>l w.D^.^lxD^ly, (A)

i.e. " y has every elementary hereditary property possessed by x." We may,

instead of elementary properties, take any other order of properties ; as we

shall see later, it is advantageous to take third-order properties when R is

one-many or many- one, and fifth-order properties in other cases. But for

preliminary purposes it makes no difference what order of properties we take,

and therefore for the sake of definiteness we take elementary properties to

begin with. The difficulty is that, if
<f>2

is any second-order property, we

cannot deduce from (A)

zRw . Dz>w . <j> 2 z D <p2w : D .
<f>2
x D

<f>2y. (B)



xliv INTRODUCTION

Suppose, for example, that <j>2z.= .(<f>).fl(<frlz,z); then from (A) we can

deduce

zRw . DZj w ./! (<£ ! % z) D4/! (£ ! % iv) : D :/! (<£ ! % x) . D* ./! (<£ ! £, y) :

D : fax . D . <j>2y. (C)

But in general our hypothesis here is not implied by the hypothesis of.(B).

If we put
<f>2

z . = . (g<£) .f\ {<f>
I z, z), we get exactly analogous results.

Hence in order to apply mathematical induction to a second-order property,

it is not sufficient that it should be itself hereditary, but it must be composed

of hereditary elementary properties. That is to say, if the property in question

is
<f>2

z, where
(f>2z is either

(<f>) ./! (* ! % z) or (a*) ./! <* ! *,*),

it is not enough to have
zRw .D2>w .<l>2z~)<f>2w,

but we must have, for each elementary 0,

zRw.DZtW ./l t4> ! % z) D/I (0 ! f , «;).

One inconvenient consequence is that, primd facie, an inductive property

must not be of the form
xR%. z . <f>lz

or SeFotid'R.tfilS

or a e NC induct . <}> I a.

This is inconvenient, because often such properties are hereditary when
<f>

alone is not, i.e. we may have

xR^z .<f>lz .zRw . D2(OT . xR% w . <ft ! w
when we do not have

<f>
! z . zRw . Dz>w .<j>lw,

and similarly in the other cases.

These considerations make it necessary to re-examine all inductive proofs.

In some cases they are still valid, in others they are easily rectified; in still

others, the rectification is laborious, but it is always possible. The method of

rectification is explained in Appendix B to this volume.

There is, however, so far as we can discover, no way by which our present

primitive propositions can be made adequate to Dedekindian and well-ordered

relations. The practical uses of Dedekindian relations depend upon #211 "63

—

•692, which lead to #214'3—'34, showing that the series of segments of a series

is Dedekindian. It is upon this that the theory of real numbers rests, real

numbers being defined as segments of the series of rationals. This subject is

dealt with in #310. If we were to regard as doubtful the proposition that the

series of real numbers is Dedekindian, analysis would collapse.

The proofs of this proposition in Principia Mathematica depend upon the

axiom of reducibility, since they depend upon #21 1*64, which asserts

XCD'Pe.D.s'XeD'Pe.
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For reasons explained above, if a is of the order of members of X, (a) .fa may
not imply f(s'\), because s'\ is a class of higher order than the members of

\. Thus although we have

D<Pe = S{(a#).a = P"/3},

s<\ = P"s'Pe"K

yet we cannot infer s'X e D fP€ except when s*\ or s'Pe"\ is, for some special

reason, of the same order as the members of X. This will be the case when X
is finite, but not necessarily otherwise. Hence the theory of irrationals will

require reconstruction.

Exactly similar difficulties arise in regard to well-ordered series. The
theory of well-ordered series rests on the definition #250*01

:

Bord^PCClex'C'PCCFminp) Df,

whence PeBord . = : aCC'P.g ! a . Da .g ! a-P"a.

In making deductions, we constantly substitute for a some constructed class

of higher order than C'P. For instance, in #250*122 we substitute for a the

class GlP r\p'P"(a r\ C'P), which is in general of higher order than a. If this

substitution is illegitimate, we cannot prove that a class contained in C'P
and having successors must have an immediate successor, without which the

theory of well-ordered series becomes impossible. This particular difficulty

might be overcome, but it is obvious that many important propositions must

collapse.

It might be possible to sacrifice infinite well-ordered series to logical

rigour, but the theory of real numbers is an integral part of ordinary mathe-

matics, and can hardly be the object of a reasonable doubt. We are therefore

justified in supposing that some logical axiom which is true will justify it.

The axiom required may be more restricted than the axiom of reducibility,

but, if so, it remains to be discovered.

The following are among the contributions to mathematical logic since the

publication of the first edition of Principia Mathematica.

D. Hilbert. Axiomatisches Denken, Mathematische Annalen, Vol. 78. Die logischen

Grundlagen der Mathematik, ib. Vol. 88. Neue Begriindung der Mathematik,

Abhandlungen aus dem mathematischen Seminar der Hamburgischen UniversitcU, 1922.

P. Bernays. Ueber Hilbert's Gedanken zur {jrundleguug der Arithmetik, Jahresbei-icht

der deutschen Mathematiker- Vereinigung, Vol. 31.

H. Behmanx. Beitrage zur Algebra der Logik. Mathematische Annalen, Vol. 86.

L. Chwistek. Ueber die Antinomien der Prinzipien der Mathematik, Mathematische

Zeitschrift, Vol. 14. The Theory of Constructive Types. Annates de la Societe

Mathematique de Pologne, 1923. (Dr Chwistek has kindly allowed us to read in MS.
a longer work with the same title.)

H. Weyl. Das Kontinuum, Veit, 1918. Ueber die neue Grundlagenkrise der Mathematik,

Mat/iematische Zeitschrift, Vol. 10. Bandbemerkungen zu Hauptproblemen der

Mathematik, Mathematische Zeitschrift, Vol. 20.
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L. E. J. Brouwer. Begriindung der Mengenlehre unabhangig vom logischen Satz des

ausgeschlossenen Dritten. Yerhandelingen d. K. Akademie v. Wetenschappen, Amster-

dam, 1918, 1919. Intuitionistische Mengenlehre, Jahresbericht der deutschen Mathema-

tiker- Vereinigung, Vol. 28.

A. Tajtelbaum-Tarski. Sur le terme primitif de la logistique, Fundamenta Mathematical,

Tom. IV. Sur les "truth-functions" au sens de MM. Russell et Whitehead, ib.

Tom. V. Sur quelques theoremes qui equivalent a l'axiome du choix, ib.

F. Bernstein. Die Mengenlehre Georg Cantor's und der Finitismus, Jahresbericht der

deutschen Mathematiker- Vereinigung, Vol. 28.

J. Konig. Neue Orundlagen der Logik, Arithmetik und Mengenlehre, Veit, 1914.

C. I. Lewis. A Survey of Symbolic Logic, University of California, 1918.

H. M. Shefper. Total determinations of deductive systems with special reference to the

Algebra of Logic. Bulletin of the American Mathematical Society, Vol. xvi. Trans. Amer.

Math. Soc. Vol. xiv. pp. 481—488. The general theory of notational relativity, Cam-

bridge, Mass. 1921.

J. G. P. Nigod. A reduction in the number of the primitive propositions of logic. Proc.

Camb. Phil. Soc. Vol. xix.

L. Wittgenstein. Tractatus Logico-Philosophicus, Kegan Paul, 1922.

M. Schonwinkel. Ueber die Bausteine der mathematischen Logik, Math. Annalen, Vol. 92.



INTRODUCTION

The mathematical logic which occupies Part I of the present work has

been constructed under the guidance of three different purposes. In the first

place, it aims at effecting the greatest possible analysis of the ideas with

which it deals and of the processes by which it conducts demonstrations,

and at diminishing to the utmost the number of the undefined ideas and
undemonstrated propositions (called respectively primitive ideas and primitive

propositions) from which it starts. In the second place, it is framed with a

view to the perfectly precise expression, in its symbols, of mathematical

propositions : to secure such expression, and to secure it in the simplest and
most convenient notation possible, is the chief motive in the choice of topics.

In the third place, the system is specially framed to solve the paradoxes

which, in recent years, have troubled students of symbolic logic and the

theory of aggregates ; it is believed that the theory of types, as set forth in

what follows, leads both to the avoidance of contradictions, and to the

detection of the precise fallacy which has given rise to them.

Of the above three purposes, the first and third often compel us to adopt

methods, definitions, and notations which are more complicated or more
difficult than they would be if we had the second object alone in view. This

applies especially to the theory of descriptive expressions (#14 and #30) and

to the theory of classes and relations (#20 and #21). On these two points,

and to a lesser degree on others, it has been found necessary to make some
sacrifice of lucidity to correctness. The sacrifice is, however, in the main
only temporary : in each case, the notation ultimately adopted, though its

real meaning is very complicated, has an apparently simple meaning which,

except at certain crucial points, can without danger be substituted in

thought for the real meaning. It is therefore convenient, in a preliminary

explanation of the notation, to treat these apparently simple meanings as

primitive ideas, i.e. as ideas introduced without definition. When the notation

has grown more or less familiar, it is easier to follow the more complicated

explanations which we believe to be more correct. In the body of the work,

where it is necessary to adhere rigidly to the strict logical order, the easier

order of development could not be adopted ; it is therefore given in the

Introduction. The explanations given in Chapter I of the Introduction are

such as place lucidity before correctness ; the full explanations are partly

supplied in succeeding Chapters of the Introduction, partly given in the body

of the work.

The use of a symbolism, other than that of words, in all parts of the book

which aim at embodying strictly accurate demonstrative reasoning, has been

r&w i 1
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forced on us by the consistent pursuit of the above three purposes. The

reasons for this extension of symbolism beyond the familiar regions of number

and allied ideas are manjr

:

(1) The ideas here employed are more abstract than those familiarly con-

sidered in language. Accordingly there are no words which are used mainly

in the exact consistent senses which are required here. Any use of words

would require unnatural limitations to their ordinary meanings, which would

be in fact more difficult to remember consistently than are the definitions of

entirely new symbols.

(2) The grammatical structure of language is adapted to a wide variety

of usages. Thus it possesses no unique simplicity in representing the few

simple, though highly abstract, processes and ideas arising in the deductive

trains of reasoning employed here. In fact the very abstract simplicity of the

ideas of this work defeats language. Language can represent complex ideas

more easily. The proposition " a whale is big " represents language at its best,

giving terse expression to a complicated fact ; while the true analysis of " one

is a number" leads, in language, to an intolerable prolixity. Accordingly

terseness is gained by using a symbolism especially designed to represent the

ideas and processes of deduction which occur in this work.

(3) The adaptation of the rules of the symbolism to the processes of

deduction aids the intuition in regions too abstract for the imagination

readily to present to the mind the true relation between the ideas employed.

For various collocations of symbols become familiar as representing im-

portant collocations of ideas ; and in turn the possible relations—according

to the rules of the symbolism—between these collocations of symbols become

familiar, and these further collocations represent still more complicated

relations between the abstract ideas. And thus the mind is finally led to

construct trains of reasoning in regions of thought in which the imagination

would be entirely unable to sustain itself without symbolic help. Ordinary

language yields no such help. Its grammatical structure does not represent

uniquely the relations between the ideas involved. Thus, " a whale is big
"

and " one is a number " both look alike, so that the eye gives no help to the

imagination.

(4) The terseness of the symbolism enables a whole proposition to be

represented to the eyesight as one whole, or at most in two or three parts

divided where the natural breaks, represented in the symbolism, occur. This

is a humble property, but is in fact very important in connection with the

advantages enumerated under the heading (3).

(5) .The attainment of the first-mentioned object of this work, namely

the complete enumeration of all the ideas and steps, in reasoning employed
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in mathematics, necessitates both terseness and the presentation of each pro-

position with the maximum of formality in a form as characteristic of itself

as possible.

Further light on the methods and symbolism of this book is thrown by a

slight consideration of the limits to their useful employment

:

(a) Most mathematical investigation is concerned not with the analysis

of the complete process of reasoning, but with the presentation of such an

abstract of the proof as is sufficient to convince a properly instructed mind.

For such investigations the detailed presentation of the steps in reasoning is

of course unnecessary, provided that the detail is carried far enough to guard

against error. In this connection it may be remembered that the investiga-

tions of Weierstrass and others of the same school have shown that, even in

the common topics of mathematical thought, much more detail is necessary

than previous generations of mathematicians had anticipated.

(/3) In proportion as the imagination works easily in any region of

thought, symbolism (except for the express purpose of analysis) becomes only

necessary as a convenient shorthand writing to register results obtained

without its help. It is a subsidiary object of this work to show that, with

the aid of symbolism, deductive reasoning can be extended to regions of

thought not usually supposed amenable to mathematical treatment. And
until the ideas of such branches of knowledge have become more familiar,

the detailed type of reasoning, which is also required for the analysis of the

steps, is appropriate to the investigation of the general truths concerning

these subjects.

1—2



CHAPTER I

PRELIMINARY EXPLANATIONS OF IDEAS AND NOTATIONS

The notation adopted in the present work is based upon that of Peano,

and the following explanations are to some extent modelled on those which
he prefixes to his Formulario Mathematico. His use of dots as brackets is

adopted, and so are many of his symbols.

Variables. The idea of a variable, as it occurs in the present work, is

more general than that which is explicitly used in ordinary mathematics.

In ordinary mathematics, a variable generally stands for an undetermined
number or quantity. In mathematical logic, any symbol whose meaning is not

determinate is called a variable, and the various determinations of which its

meaning is susceptible are called the values of the variable. The values may
be any set of entities, propositions, functions, classes or relations, according

to circumstances. If a statement is made about " Mr A and Mr B," " Mr A "

and " Mr B " are variables whose values are confined to men. A variable may
either have a conventionally-assigned range of values, or may (in the absence

of any indication of the range of values) have as the range of its values all

determinations which render the statement in which it occurs significant.

Thus when a text-book of logic asserts that "A is A" without any indication

as to what A may be, what is meant is that any statement of the form

"A is A " is true. We may call a variable restricted when its values are

confined to some only of those of which it is capable ; otherwise, we shall call

it unrestricted. Thus when an unrestricted variable occurs, it represents any
object such that the statement concerned can be made significantly {i.e. either

truly or falsely) concerning that object. For the purposes of logic, the

unrestricted variable is more convenient than the restricted variable, and we
shall always employ it. We shall find that the unrestricted variable is still

subject to limitations imposed by the manner of its occurrence, i.e. things

which can be said significantly concerning a proposition cannot be said

significantly concerning a class or a relation, and so on. But the limitations

to which the unrestricted variable is subject do not need to be explicitly

indicated, since they are the limits of significance of the statement in which
the variable occurs, and are therefore intrinsically determined by this state-

ment. This will be more fully explained later*.

To sum up, the three salient facts connected with the use of the variable

are: (1) that a variable is ambiguous in its denotation and accordingly undefined

;

(2) that a variable preserves" a recognizable identity in various occurrences

throughout the same context, so that many variables can occur together in the

* Cf. Chapter II of the Introduction.
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same context each with its separate identity; and (3) that either the range of

possible determinations of two variables may be the same, so that a possible

determination of one variable is also a possible determination of the other, or

the ranges of two variables may be different, so that, if a possible determina-

tion of one variable is given to the other, the resulting complete phrase is

meaningless instead of becoming a complete unambiguous proposition (true

or false) as would be the case if all variables in it had been given any suitable

determinations.

The uses of various letters. Variables will be denoted by single letters, and

so will certain constants ; but a letter which has once been assigned to a constant

by a definition must not afterwards be used to denote a variable. The small

letters of the ordinary alphabet will all be used for variables, except p and s

after #40, in which constant meanings are assigned to these two letters. The

following capital letters will receive constant meanings : B, C, D, E, F, /and J.

Among small Greek letters, we shall give constant meanings to e, i and (at a

later stage) to rj, 6 and &>. Certain Greek capitals will from time to time be

introduced for constants, but Greek capitals will not be used for variables. Of

the remaining letters, p, q, r will be called propositional letters, and will stand

for variable propositions (except that, from #40 onwards, p must not be used

for a variable); /, g, <f>, yfr, x, & and (until #33) F will be called functional

letters, and will be used for variable, functions.

The small Greek letters not already mentioned will be used for variables

whose values are classes, and will be referred to simply as Greek letters. Ordinary

capital letters not already mentioned will be used for variables whose values

are relations, and will be referred to simply as capital letters. Ordinary small

letters other than p, q, r, s, f, g will be used for variables whose values are not

known to be functions, classes, or relations; these letters will be referred to

simply as small Latin letters.

After the early part of the work, variable propositions and variable functions

will hardly ever occur. We shall then have three main kinds of variables

:

variable classes, denoted by small Greek letters ; variable relations, denoted by

capitals ; and variables not given as necessarily classes or relations, which will

be denoted by small Latin letters.

In addition to this usage of small Greek letters for variable classes, capital

letters for variable relations, small Latin letters for variables of type wholly

undetermined by the context (these arise from the possibility of "systematic

ambiguity," explained later in the explanations of the theory of types), the

reader need only remember that all letters represent variables, unless they have

been defined as constants in some previous place in the book. In general the

structure of the context determines the scope of the variables contained in it;

but the special indication of the nature of the variables employed, as here

proposed, saves considerable labour of thought.
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Thefundamentalfunctions of propositions. An aggregation of propositions,

considered as wholes not necessarily unambiguously determined, into a single

proposition more complex than its constituents, is a function with propositions

as arguments. The general idea of such an aggregation of propositions, or of

variables representing propositions, will not be employed in this work. But

there are four special cases which are of fundamental importance, since all the

aggregations of subordinate propositions into one complex proposition which

occur in the sequel are formed out of them step by step.

They are (1) the Contradictory Function, (2) the Logical Sum, or Dis-

junctive Function, (3) the Logical Product, or Conjunctive Function, (4) the

Implicative Function. These functions in the sense in which they are required

in this work are not all independent ; and if two of them are taken as primitive

undefined ideas, the other two can be defined in terms of them. It is to some

extent—though not entirely—arbitrary as to which functions are taken as

primitive. Simplicity of primitive ideas and symmetry of treatment seem to

be gained by taking the first two functions as primitive ideas.

The Contradictory Function with argument p, where p is any proposition,

is the proposition which is the contradictory of p, that is, the proposition

asserting that p is not true. This is denoted by ^p. Thus ^p is the

contradictory function with p as argument and means the negation of the

proposition p. It will also be referred to as the proposition not-p. Thus ~ p
means not-p, which means the negation of p.

The Logical Sum is a propositional function with two arguments p and q,

and is the proposition asserting p or q disjunctively, that is, asserting that at

least one of the two p and q is true. This is denoted by p v q. Thus p v q is

the logical sum with p and q as arguments. It is also called the logical sum of

p and q. Accordingly p v q means that at least p or q is true, not excluding the

case in which both are true.

The Logical Product is a propositional function with two arguments p and

q, and is the proposition asserting p and q conjunctively, that is, asserting that

both p and q are true. This is denoted by p . q, or—in order to make the dots

act as brackets in a way to be explained immediately—by p : q, or by p :. q,

or by p :: q. Thus p . q is the logical product, with p and q as arguments. It

is also called the logical product of p and q. Accordingly p . q means that both

p and q are true. It is easily seen that this function can be defined in terms

of the two preceding functions. For when p and q are both true it must be
false that either ~p or ~ q is true. Hence in this book p . q is merely a

shortened form of symbolism for

~(~pv ~ q).

If any further idea attaches to the proposition " both p and q are true," it is

not required here.
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The Implicative Function is a pro-positional function with two arguments

p and q, and is the proposition that either not-p or q is true, that is, it is the

proposition ~pv q. Thus if p is true, ~p is false, and accordingly the only

alternative left by the proposition ~ p y q is that q is true. In other words

ifp and ~pvq are both true, then q is true. In this sense the proposition
;;

~ pvq will be quoted as stating that p implies q. The idea contained in

this propositional function is so important that it requires a symbolism which

with direct simplicity represents the proposition as connecting p and q

without the intervention of ~ p. But "implies" as used here expresses

nothing eke than the connection between p and q also expressed by the

disjunction "not-^ or q" The symbol employed for "p implies q" i.e. for

" ~ pyq" is "pD q." This symbol may also be read "if p, then q." The

association of implication with the use of an apparent variable produces

an extension called " formal implication." This is explained later : it is an

idea derivative from "implication" as here defined. When it is necessary

explicitly to discriminate " implication " from " formal implication," it is called

"material implication." Thus "material implication" is simply "implication"

as here defined. The process of inference, which in common usage is often

confused with implication, is explained immediately.

These four functions of propositions are the fundamental constant {i.e.

definite) propositional functions with propositions as arguments, and all other

constant propositional functions with propositions as arguments, so far as they

are required in the present work, are formed out of the.m by successive steps.

No variable propositional functions of this kind occur in this work.

Equivalence. The simplest example of the formation of a more complex

function of propositions by the use of these four fundamental forms is furnished

by "equivalence." Two propositions p and q are said to be "equivalent"

when p implies q and q implies p. This relation between p and q is denoted

by "p = q." Thus "p = q" stands for "(pDq).(q Op)." It is easily seen that

two propositions are equivalent when, and only when, they are both true or

are both false. Equivalence rises in the scale of importance when we come

to "formal implication" and thus to "formal equivalence." It must not

be supposed that two propositions which are equivalent are in any sense

identical or even remotely concerned with the same topic. Thus " Newton

was a man " and " the sun is hot " are equivalent as being both true, and

" Newton was not a man " and " the sun is cold " are equivalent as being both

false. But here we have anticipated deductions which follow later from our

formal reasoning. Equivalence in its origin is merely mutual implication as

stated above.

Truth-values. The " truth-value " of a proposition is truth if it is true,

and falsehood if it is false *. It will be. observed that the truth-values of

* This phrase is due to Frege.
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pvq,p .q,pOq, ~p, p = q depend only upon those of p and q, namely the

truth-value of'pvq" is truth if the truth-value of either p or q is truth,

and is falsehood otherwise ; that of "p . q " is truth if that of both p and q is

truth, and is falsehood otherwise ; that of "pDq" is truth if either that ofp
is falsehood or that of q is truth ; that of " ~ p " is the opposite of that of p ;

and that of " p = q" is truth if p and q have the same truth-value, and is

falsehood otherwise. Now the only ways in which propositions will occur

in the present work are ways derived from the above by combinations and
repetitions. Hence it is easy to see (though it cannot be formally proved
except in each particular case) that if a proposition p occurs in any propo-
sition f(p) which we shall ever have occasion to deal with, the truth-value

°f f(p) wiH depend, not upon the particular proposition p, but only upon
its truth-value ; i.e. if p = q, we shall have f(p) =f(q). Thus whenever two
propositions are known to be equivalent, either may be substituted for the

other in any formula with which we shall have occasion to deal.

We' may call a function f(p) a " truth-function " when its argument p is

a proposition, and the truth-value of f(p) depends only upon the truth-

value of p. Such functions are by no means the only common functions of

propositions. For example, "A believes p " is a function of p which will

vary its truth-value for different arguments having the same truth-value

:

A may believe one true proposition without believing another, and may
believe one false proposition without believing another. Such functions

are not excluded from our consideration, and are included in the scope of

any general propositions we may make about functions ; but the particular

functions of propositions which we shall have occasion to construct or to con-

sider explicitly are all truth-functions. This fact is closely connected with a

characteristic of mathematics, namely, that mathematics is always concerned
with extensions rather than intensions. The connection, ifnot now obvious, will

become more so when we have considered the theory of classes and relations.

Assertion-sign. The sign "b," called the "assertion-sign," means that

what follows is asserted. It is required for distinguishing a complete propo-

sition, which we assert, from any subordinate propositions contained in it but
not asserted. In ordinary written language a sentence contained between full

stops denotes an asserted proposition, and if it is false the book is in error.

The sign "h" prefixed to a proposition serves this same purpose in our sym-
bolism. For example, if " I- (p D p) " occurs, it is to be taken as a complete
assertion convicting the authors of error unless the proposition "pOp" is

true (as it is). Also a proposition stated in symbols without this sign " h
"

prefixed is not asserted, and is merely put forward for consideration, or as a
subordinate part of an asserted proposition.

Inference. The process of inference is as follows: a proposition "p" is

asserted, and a proposition "p implies q" is asserted, and then as a sequel
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the proposition "q" is asserted. The trust in inference is the belief that if the

two former assertions are not in error, the final assertion is not in error.

Accordingly whenever, in symbols, where p and q have of course special

determinations,

"Vp" and "\-(pDq)"

have occurred, then " h q " will occur if it is desired to put it on record. The
process of the inference cannot be reduced to symbols. Its sole record is the

occurrence of " h q." It is of course convenient, even at the risk of repetition,

to write "\-p" and "b(pDq)" in close juxtaposition before proceeding to

" h q" as the result of an inference. When this is to be done, for the sake of

drawing attention to the inference which is being made, we shall write

instead

"hpDbq,"
which is to be considered as a mere abbreviation of the threefold statement

" h p " and " h (p D q)
" and " h q."

Thus " bpDbq" may be read " p, therefore q," being in fact the same

abbreviation, essentially, as this is; for " p, therefore q" does not explicitly

state, what is part of its meaning, that p implies q. An inference is the

dropping of a true premiss ; it is the dissolution of an implication.

The use of dots. Dots on the line of the symbols have two uses, one to

bracket off propositions, the other to indicate the logical product of two

propositions. Dots immediately preceded or followed by " v " or " D " or

" = " or " h," or by "(a)," «(*, y)," "(*, y, z)"

.

. . or "(a*)," " (a*, yV "(a*, 2/>
*)'*•

• •

or "[(ix)(<f)x)]" or "[R'y]" or analogous expressions, serve to bracket off a

proposition ; dots occurring otherwise serve to mark a logical product. The
general principle is that a larger number of dots indicates an outside bracket,

a smaller number indicates an inside bracket. The exact rule as to the scope

of the bracket indicated by dots is arrived at by dividing the occurrences of

dots into three groups which we will name I, II, and III. Group I consists of

dots adjoining a sign of implication (D) or of equivalence (=) or of disjunction

(v) or of equality by definition (= Df). Group II consists of dots following

brackets indicative of an apparent variable, such as (w) or (x, y) or i^x) or

{$%,y) or [(?#) (<£#)] or analogous expressions* Group III consists of dots

which stand between propositions in order to indicate a logical product.

Group I is of greater force than Group II, and Group II than Group III.

The scope of the bracket indicated by any collection of dots extends backwards

or forwards beyond any smaller number of dots, or any equal number from a

group of less force, until we reach either the end of the asserted proposition

or a greater number of dots or an equal number belonging to a group of

equal or superior force. Dots indicating a logical product have a scope which

works both backwards and forwards; other dots only work away from the

* The meaning of these expressions will be explained later, and examples of the use of dots in

connection with them will be given on pp. 16, 17.
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adjacent sign of disjunction, implication, or equivalence, or forward from the

adjacent symbol of one of the other kinds enumerated in Group II.

Some examples will serve to illustrate the use of dots.

"pv q.D .qvp" means the proposition " 'p or q implies 'q or p.' " When
we assert this proposition, instead of merely considering it, we write

" h :pv q.D .qv p,"

where the two dots after the assertion-sign show that what is asserted is the

whole of what follows the assertion-sign, since there are not as many as two

dots anywhere else. If we had written "p : v : q . D . q v p" that would mean

the proposition " either p is true, or q implies 'q or p.'" If we wished to assert

this, we should have to put three dots after the assertion- sign. If we had

written "pvq . D .q:v :p," that would mean the proposition " either 'p or q'

implies q, orp is true." The forms "p . v .q . D .qv p" and "pv q . D .q . v .p"

have no meaning.

"p"Dq.D: qDr . D .pDr" will mean " ifp implies q, then if q implies r,

p implies r." If we wish to assert this (which is true) we write

" H :. p D q . D : q D r . D . p D r."

Again "pDq ,D .qDr :D .])Dr" will mean " if 'p implies q' implies 'q

implies r,' then p implies r." This is in general untrue. (Observe that

"P ^<l" ^s sometimes most conveniently read as " p implies q," and sometimes

as "if p, then q.") "pDq .qDr .D .p^>r" will mean "if p implies q, and

q implies r, then p implies r." In this formula, the first dot indicates a logical

product; hence the scope of the second dot extends backwards to the begin-

ning df the proposition, "p D q : q D r . D . p D r" will mean "p implies q ; and

if q implies r, then p implies r." (This is not true in general.) Here the two

dots indicate a logical product ; since two dots do not occur anywhere else, the

scope of these two dots extends backwards to the beginning of the proposition,

and forwards to the end.

"pvq .0 '..p • v . q Dr : D .pvr" will mean "if either p or q is true, then

if either p or 'q implies r ' is true, it follows that either p or r is true." If

this is to be asserted, we must put four dots after the assertion-sign, thus :

"\-
:: p v q .

'3
:.p . v . q D r : D .pvr."

(This proposition is proved in the body of the work ; it is *275.) If we wish

to assert (what is equivalent to the above) the proposition: "if either p or q

is true, and either p or 'q implies r' is true, then either p or r is true," we

write

" h :. p v q : p . v . qD r : D . p v r."

Here the first pair of dots indicates a logical product, while the second pair

does not. Thus the scope of the second pair of dots passes over the first pair,

and back until we reacn the three dots after the assertion-sign.

Other uses of dots follow the same principles, and will be explained as

they are introduced. In reading a proposition, the dots should be noticed
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first, as they show its structure. In a proposition containing several signs of

implication or equivalence, the one with the greatest number of dots before

or after it is the principal one : everything that goes before this one is stated

by the proposition to imply or be equivalent to everything that comes after it.

Definitions. A definition is a declaration that a certain newly-introduced

symbol or combination of symbols is to mean the same as a certain other

combination of symbols of which the meaning is already known. Or, if the

defining combination of symbols is one which only acquires meaning when

combined in a suitable manner with other symbols*, what is meant is that

any combination of symbols in which the newly-defined symbol or combination

of symbols occurs is to have that meaning (if any) which results from substi-

tuting the defining combination of symbols for the newly-defined symbol or

combination of symbols wherever the latter occurs. We will give the names

of definiendum and definiens respectively to what is defined and to that which

it is defined as meaning. We express a definition by putting the definiendum

to the left and the definiens to the right, with the sign "=" between, and the

letters "Df " to the right of the definiens. It is to be understood that the

sign "= " and the letters "Df " are to be regarded as together forming one

symbol. The sign " =" without the letters "Df " will have a different meaning,

to be explained shortly.

An example of a definition is

p"Dq. = . <^>p v q Df.

It is to be observed that a definition is, strictly speaking, no part of the

subject in which it occurs. For a definition is concerned wholly with the

symbols, not with what they symbolise. Moreover it is not true or false,

being the expression of a volition, not of a proposition. (For this reason,

definitions are not preceded by the assertion-sign.) Theoretically, it is

unnecessary ever to give a definition: we might always use the definiens

instead, and thus wholly dispense with the definiendum. Thus although we

employ definitions and do not define "definition," yet "definition" does not

appear among our primitive ideas, because the definitions are no part of our

subject, but are, strictly speaking, mere typographical conveniences. Prac-

tically, of course, if we introduced no definitions, our formulae would very soon

become so lengthy as to be unmanageable; but theoretically, all definitions are

superfluous.

In spite of the fact that definitions are theoretically superfluous, it is

nevertheless true that they often convey more important information than is

contained in the propositions in which they are used. This arises from two

causes. First, a definition usually implies that the definiens is worthy of

careful consideration. Hence the collection of definitions embodies our choice

* This case will be fully considered in Chapter III of the Introduction. It need not further

concern us at present.
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of subjects and our judgment as to what is most important. Secondly, when
what is defined is (as often occurs) something already familiar, such as cardinal

or ordinal numbers, the definition contains an analysis of a common idea, and

may therefore express a notable advance. Cantor's definition of the continuum

illustrates this: his definition amounts to the statement that what he is de-

fining is the object which has the properties commonly associated with the

word " continuum," though what precisely constitutes these properties had

not before been known. In such cases, a definition is a " making definite ": it

gives definiteness to an idea which had previously been more or less vague.

For these reasons, it will be found, in what follows, that the definitions

are what is most important, and what most deserves the reader's prolonged

attention.

Some important remarks must be made respecting the variables occurring

in the dejiniens and the definiendum. But these will be deferred till the

notion of an "apparent variable" has been introduced, when the subject can be

considered as a whole.

Summary of preceding statements. There are, in the above, three primi-

tive ideas which are not " defined " but only descriptively explained. Their

primitiveness is only relative to our exposition of logical connection and is

not absolute; though of course such an exposition gains in importance ac-

cording to the simplicity of its primitive ideas. These ideas are symbolised

by "~jd" and "p v q," and by "h" prefixed to a proposition.

Three definitions have been introduced:

p 1 g. = ,oj(~pv~g') Df,

p"Dq . = .~pv

q

Df,

p = q . = ,p"D q.qDp Df.

Primitive propositions. Some propositions must be assumed without proof,

since all inference proceeds from propositions previously asserted. These, as

far as they concern the functions of propositions mentioned above, will be

found stated in #1, where the formal and continuous exposition of the subject

commences. Such propositions will be called "primitive propositions." These,

like the primitive ideas, are to some extent a matter of arbitrary choice; though,

as in the previous case, a logical system grows in importance according as the

primitive propositions are few and simple. It will be found that owing to the

weakness of the imagination in dealing with simple abstract ideas no very

great stress can be laid upon their obviousness. They are obvious to the in-

structed mind, but then so are many propositions which cannot be quite true,

as being disproved by their contradictory consequences. The proof of a logical

system is its adequacy and its coherence. That is: (1) the system must embrace

among its deductions all those propositions which we believe to be true and

capable of deduction from logical premisses alone, though possibly they may
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require some -slight limitation in the form of an increased stringency of enun-
ciation; and (2) the system must lead to do contradictions, namely in pursuing,

our inferences we must never be led to assert both p and not-p, i.e. both "
I- .p"

and "h ,~p" cannot legitimately appear.

The following are the primitive propositions employed in the calculus of

propositions. The letters "Pp" stand for "primitive proposition."

(1) Anything implied by a true premiss is true Pp..

This is the rule which j ustifies inference.

(2) Y'.pvp.S.p Pp,

i.e. ifp or p is true, then p is true.

(3) bzq.D.pvq Pp,

i.e. if q is true, then p or q is true.

(4) h :p vq. D . q vp Pp,

i.e. ifp or q is true, then q or p is true.

(5) h :pv(qv?~). D.qv(pvr) Pp,

i.e. if either p is true or ,:

q or r" is true, then either q is true or "p or r" is

true.

(0) I- :. qDr . D \p~vq. D .^ vr Pp,

i.e. if </ implies r, then "_p or q" implies "p or r."

(7) Besides the above primitive propositions, we require a primitive pro-

position called "the axiom of identification of real variables." When we have

separately asserted two different functions of x, where x is undetermined, it

is often important to know whether we can identify the x in one assertion

with the x in the other. This will be the case—so our axiom allows us to

infer—if both assertions present x as the argument to some one function, that

is to say, if §x is a constituent in both assertions (whatever propositional func-

tion may be), or, more generally, if (f>(x, y, z, ...) is a constituent in one

assertion, and
<f>

(x, u, v, . . .) is a constituent in the other. This axiom introduces

notions which have not yet been explained; for a fuller account, see the remarks
accompanying *303, *1'7, *171, and *1*72 (which is the statement of this

axiom) in the body of the work, as well as the explanation of propositional

functions and ambiguous assertion to be given shortly.

Some simple p?-opositions. In addition to the primitive propositions we
have already mentioned, the following are among the most important of the

elementary properties of propositions appearing among the deductions.

The law of excluded middle:

h .pv<^p.

This is *211 below. We shall indicate in brackets the numbers given to the

following propositions in the body of the work.

The law of contradiction (*3
-

24):
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The law of double negation (#41 3)

:

The principle of transposition, i.e. "Up implies q, then not-q implies not-p,"

and vice versa: this principle has various forms, namely

(#4-1) I- :pDq. = .~qD~p,
(#4-11) t- :p = q. = f ~p = ~q,

(#414) h i.p.q.D .r: = :p.^r.D .^q,

as well as others which are variants of these.

The law of tautology, in the two forms

:

(#4'24) H : p . = . p .p,

(#425) Y:p. = .pyp,

i.e. "p is true" is equivalent to "p is true andp is true," as well as to "p is true

or p is true." From a formal point of view, it is through the law of tautology

and its consequences that the algebra of logic is chiefly distinguished from

ordinary algebra.

The law of absorption:

(#4-71) \-:.pDq.= :p. = .p.q,

i.e. "p implies q" is equivalent to "p is equivalent to p . q." This is called the

law of absorption because it shows that the factor q in the product is absorbed

by the factor p, if p implies q. This principle enables us to replace an impli-

cation (p D q) by an equivalence (p. = .p.q) whenever it is convenient to

do so.

An analogous and very important principle is the following:

(*473) h:.q.D:p. = .p.q.

Logical addition and multiplication of propositions obey the associative

and commutative laws, and the distributive law in two forms, namely

(#44) \- :. p . qv r . = : p . q . v . p . r,

(#441) b :.p .v .q .r: = :pv q .pvr.

The second of these distinguishes the relations of logical addition and multi-

plication from those of arithmetical addition and multiplication.

Propositioned functions. Let <frx be a statement containing a variable x

and such that it becomes a proposition when x is given any fixed determined

meaning. Then <f>x is called a "propositional function"; it is not a proposition,

since owing to the ambiguity of x it really makes no assertion at all. Thus

"x is hurt" really makes no assertion at all, till we have settled who x is. Yet

owing to the individuality retained by the ambiguous variable x, it is an am-

biguous example from the collection of propositions arrived at by giving all

possible determinations to x in "x is hurt" which yield a proposition, true or

false. Also if "x is hurt" and "y is hurt" occur in the same context, where y is
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another variable^ then according to the determinations given to x and y, they

can be settled to be (possibly) the same proposition or (possibly) different

propositions. But apart from some determination given to x and y, they retain

in that context their ambiguous differentiation. Thus "x is hurt" is an am-
biguous "value" of a propositional function. When we wish to speak of the

propositional function corresponding to "x is hurt," we shall write "& is hurt."

Thus "a> is hurt" is the propositional function and "x is hurt" is an ambiguous
value ofthat function. Accordingly though "x is hurt" and "y is hurt" occurring

in the same context can be distinguished, "ft is hurt" and "y is hurt" convey

no distinction of meaning at all. More generally, <f>x is an ambiguous value of

the propositional function <}>$, and when a definite signification a is substituted

for x, <f>a is an unambiguous value of <f)x.

Propositional functions are the fundamental kind from which the more usual

kinds of function, such as "sin a;" or "logo?" or "the father of x," are derived.

These derivative functions are considered later, and are called "descriptive

functions." The functions of propositions considered above are a particular

case of propositional functions.

The range of values and total variation. Thus corresponding to any propo-

sitional function <£a>, there is a range, or collection, of values, consisting of all

the propositions (true or false) which can be obtained by giving every possible

determination to x in <px. A value of x for which <f>x is true will be said to

"satisfy" <]>£. Now in respect to the truth or falsehood of propositions of this

range three important cases must be noted and symbolised. These cases are

given by three propositions of which one at least must be true. Either (1) all

propositions of the range are true, or (2) some propositions of the range are

true, or (3) no proposition of the range is true. The statement (1) is symbolised

by "(a?) . <f>x," and (2) is symbolised by "(g#) . <f>x." No definition is given of

these two symbols, which accordingly embody two new primitive ideas in our
system. The symbol "(x) . <j>x" may be read "<f>x always," or "<f>x is always true,"

or "<f>x is true for all possible values of x." The symbol "(ga?) . <f>x" may be
read "there exists an x for which <j>x is true," or "there exists an x satisfying

<f>&,"
and thus conforms to the natural form of the expression of thought.

Proposition (3) can be expressed in terms of the fundamental ideas now on
hand. In order to do this, note that " ~ <j>x" stands for the contradictory of <j>x.

Accordingly ~ 4>cb is another propositional function such that each value of <f>8l

contradicts a value of ~ <£&, and vice versa. Hence "(x) .^<f>x" symbolises the

proposition that every value of <f>% is untrue. This is number (3) as stated above.

It is an obvious error, though one easy to commit, to assume that cases

(1) and (3) are each other's contradictories. The symbolism exposes this fallacy

at once, for (1) is (x).<j>x, and (3) is (x).^<f>x, while the contradictory of (1) is

oj {(x) . <f)x\. For the sake of brevity of symbolism a definition is made, namely

~ (x) . §x . = . ~ [(x) . (f>x\ Df.
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Definitions of which the object is to gain some trivial advantage in brevity

by a slight adjustment of symbols will be said to be of "merely symbolic import,"

in contradistinction to those definitions which invite consideration of an im-

portant idea.

The proposition (x) . <f>x is called the "total variation" of the function <££.

For reasons which will be explained in Chapter II, we do not take negation

as a primitive idea when propositions of the forms (x) . <f>x and fax) . <f>x are

concerned, but we define the negation of (x) . <f>x, i.e. of "<f>x is always true," as

being "<f>x is sometimes false," i.e. "fax) . ~<$>x" and similarly we define the

negation of fax) . 4>x as being (x) . ~<f>x. Thus we put

~ {(x) . <t>x} . = . fax) . ~ <f>x Df,

~ {(3^) • $*'} = (#) ~ <f>®
1^

In like manner we define a disjunction in which one of the propositions is

of the form "(x) . <j>x" or "fax) . <f>x" in terms of a disjunction of propositions

not of this form, putting

(x) . <px . v . p : = . (x) . <fix v p Df,

i.e. "either <f>x is always true, orp is true" is to mean "'fyxoxp' is always true,"

with similar definitions in other cases. This subject is resumed in Chapter II,

and in #9 in the body of the work.

Apparent variables. The symbol "(x) . <f>x" denotes one definite proposition,

and there is no distinction in meaning between "(x) . <px" and "(y) . fyy" when

they occur in the same context. Thus the "a?" in "(x) . <j>x" is not an ambiguous

constituent of any expression in which "(.:). <f>x" occurs; and such an ex-

pression does not cease to convey a determinate meaning by reason of the

ambiguity of the x in the "<f>x." The symbol "(x) . (f>x" has some analogy to

the symbol

<j> (x) dx

for definite integration, since in neither case is the expression a function of x.

The range of x in "(x).<f>x" or "fax).<f>x" extends over the complete

field of the values of x for which "<f>x" has meaning, and accordingly the

meanino- of "(x) . <f>x" or "fax) . <f>x" involves the supposition that such a field

is determinate. The x which occurs in "(#).</>#" or "fax).<f>x" is called

(following Peano) an " apparent variable." It follows from the meaning of

"fax).<f>x" that the x in this expression is also an apparent variable. A
proposition in which x occurs as an apparent variable is not a function of x.

Thus e.g. "(.r) .x = x" will mean "everything is equal to itself." This is an

absolute Constant, not a function of a variable x. This is why the x is called

an apparent variable in such cases.

Besides the "range" of x in "(x).<f>x" or "fax).<f>x," which is the field

of the values that x may have, we shall speak of the "scope" of x, meaning
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the function of which all values or some value are being affirmed. If we are

asserting all values (or some value) of"<f>x," "<f>x" is the scope of #; if we are

asserting all values (or some value) of "<j>xDp," "<j>xDp" is the scope of x;

if we are asserting all values (or some value) of "<f>x D yfrx" "<f>x D yfrx" will be

the scope of x, and so on. The scope of x is indicated by the number of dots

after the "(#)" or "(g#)"; that is to say, the scope extends forwards until

we reach an equal number of dots not indicating a logical product, or a greater

number indicating a logical product, or the end of the asserted proposition in

which the "(#)" or "(3#)" occurs, whichever of these happens first*. Thus e.g.

"(x) :<f>x.D. yjrx"

will mean "<j>x always implies -tyx," but

"(x).(f>x.0.ylrx"

will mean "if <f>x is always true, then yjrx is true for the argument x."

Note that in the proposition

(x) . <f>x . D . yp-x

the two x'a have no connection with each other. Since only one dot follows

the x in brackets, the scope of the first x is limited to the "(j>x" immediately

following the x in brackets: It usually conduces to clearness to write

(x) . <f>x . D . yjry

rather than (x) . <f>x . D . yfrx,

since the use of different letters emphasises the absence of connection between

the two variables; but there is no logical necessity to use different letters,

and it is sometimes convenient to use the same letter.

Ambiguous assertion and the real variable. Any value "<fix" of the function

$x can be asserted. Such an assertion of an ambiguous member of the values

of $ob is symbolised by
"h.^x."

Ambiguous assertion of this kind is a primitive idea,which cannot be defined

in terms of the assertion of propositions. This primitive idea is the one which

embodies the use of the variable. Apart from ambiguous assertion, the con-

sideration of "<f>x," which is an ambiguous member of the values of cf>x, would

be of little consequence. When we are considering or asserting "<f>x," the

variable x is called a " real variable." Take, for example, the law of excluded

middle in the form which it has in traditional formal logic

:

" a is either b or not b."

Here a and b are real variables: as they vary, different propositions are

expressed, though all of them are true. While a and b are undetermined, as in

the above enunciation, no one definite proposition is asserted, but what is

asserted is any value of the propositional function in question. This can only

* This agrees with the rules for the occurrences of dots of the type of Group II as explained

above, pp. 9 and 10.

R&W I 2
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be legitimately asserted if, whatever value may be chosen, that value is true,

i.e. if all the values are true. Thus the above form of the law of excluded

middle is equivalent to
" (a, b) . a is either b or not b,"

i.e. to "it is always true that a is either b or not b." But these two, though

equivalent, are not identical, and we shall find it necessary to keep them

distinguished.

When we assert something containing a real variable, as in e.g.

"K# = #,"

we are asserting any value of a prepositional function. When we assert some-

thing containing an apparent variable, as in

" h . (x) . x = x"

or "V ,{^x).x = x"

we are asserting, in the first case all values, in the second case some value

(undetermined), of the propositional function in question. It is plain that

we can only legitimately assert " any value " if all values are true; for other-

wise, since the value of the variable remains to be determined, it might be so

determined as to give a false proposition. Thus in the above instance, since

we have
\- ,x = x

we may infer h.(x).x — x.

And generally, given an assertion containing a real variable x, we may trans-

form the real variable into an apparent one by placing the x in brackets at

the beginning, followed by as many dots as there are after the assertion-sign.

When we assert something containing a real variable, we cannot strictly

be said to be asserting a proposition, for we only obtain a definite proposition

by assigning a value to the variable, and then our assertion only applies to

one definite case, so that it has not at all the same force as before. When what

we assert contains a real variable, we are asserting a wholly undetermined one

of all the propositions that result from giving various values to the variable.

It will be convenient to speak of such assertions as asserting a propositional

function. The ordinary formulae of mathematics contain such assertions; for

example
"sin2 # + cos2 # = 1"

does not assert this or that particular case of the formula, nor does it assert

that the formula holds for all possible values of x, though it is equivalent to

this latter assertion; it simply asserts that the formula holds, leaving x wholly

undetermined; and it is able to do this legitimately, because, however x may

be determined, a true proposition results.

Although an assertion containing a real variable does not, in strictness,

assert a proposition, yet it will be spoken of as asserting a proposition except

when the nature of the ambiguous assertion involved is under discussion.
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Definition and real variables. When the definiens contains one or more

real variables, the definiendum must also contain them. For in this case we
have a function of the real variables, and the definiendum must have the same

meaning as the definiens for all values of these variables, which requires that

the symbol which is the definiendum should contain the letters representing

the real variables. This rule is not always observed by mathematicians, and

its infringement has sometimes caused important confusions of thought,

notably in geometry and the philosophy of space.

In the definitions given above of "p . q" and "p Dq" and "p = q," p and q
are real variables, and therefore appear on both sides of the definition. In

the definition of "~ {{%) . <f>x}" only the function considered, namely <f>z, is a

real variable; thus so far as concerns the rule in question, x need not appear

on the left. But when a real variable is a function, it is necessary to indicate

how the argument is to be supplied, and therefore there are objections to

omitting an apparent variable where (as in the case before us) this is the

argument to the function which is the real variable. This appears more

plainly if, instead of a general function <£&, we take some particular function,

say "ob ~ a" and consider the definition of ~ {(x) . x = a). Our definition gives

~ {(x) . x = a] . = . (a#) . ~ (x = a) Df.

But if we had adopted a notation in which the ambiguous value "x = a"
containing the apparent variable x, did not occur in the definiendum, we
should have had to construct a notation employing the function itself, namely
"& = a." This does not involve an apparent variable, but would be clumsy in

practice. In fact we have found it convenient and possible—except in the

explanatory portions—to keep the explicit use of symbols of the type "<£&,"

either as constants [e.g. £=a] or as real variables, almost entirely out of this

work.

Propositions connecting real and apparent variables. The most important

propositions connecting real and apparent variables are the following:

(1) " When a propositional function can be asserted, so can the proposition

that all values of the function are true." More briefly, if less exactly, " what

holds of any, however chosen, holds of all." This translates itself into the rule

that when a real variable occurs in an assertion, we may turn it into an apparent

variable by putting the letter representing it in brackets immediately after

the assertion-sign.

(2) " What holds of all, holds of any," i.e.

h : (x) . <f>x . D . $y.

This states " if <f>x is always true, then <\>y is true."

(3) "If
<f>y

is true, then <f>x is sometimes true," i.e.

\-:<f>y.D. (rx) . <t>x.

2—2
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An asserted proposition of the form " (g«) . </>&'
" expresses an " existence-

theorem," namely " there exists an x for which <f>x is true." The above pro-

position gives what is in practice the only way of proving existence-theorems:

we always have to find some particular y for which <f>y holds, and thence to

infer " (g#) . <f>x.". If we were to assume what is called the multiplicative

axiom, or the equivalent axiom enunciated by Zermelo, that would, in an

important class of cases, give an existence-theorem where no particular instance

of its truth can be found.

In virtue of " h : (x) ,<f)x.D.<f>y" and " h : $y . D . (g#) . <£#," we have
" I- : (x) .<j>x.D. (g#) . (j>x," i.e. " what is always true is sometimes true." This

would not be the case if nothing existed; thus our assumptions contain the

assumption that there is something. This is involved in the principle that

what holds of all, holds of any; for this would not be true if there were no

"any."

(4) " If <j>x is always true, and yfrx is always true, then '
<f>x . yjrw ' is always

true," i.e.

h : . (x) . (f>x : (x) . yfrx : D . (x) . <f>x . \^x.

(This requires that
<f>
and yfr should be functions which take arguments of the

same type. We shall explain this requirement at a later stage.) The converse

also holds ; i.e. we have

h : . (x) . (f>x . yfrx ."D:(x). <f>x : (x) . yjrx.

It is to some extent optional which of the propositions connecting real

and -apparent variables are taken as primitive propositions. The primitive

propositions assumed, on this subject, in the body of the work (*9), are the

following

:

(1) I" : <f>x . D . (a*) . <\>z.

(2) h:4>xv<f>y.D.(^z).cf>z,

i.e. if either </>.*. is true, or 4>y is true, then (rz) . cj>z is true. (On the necessity

for this primitive proposition, see remarks on #9-11 in the body of the work.)

(3) If we can assert
<f>y,

where y is a real variable, then we can assert

(x) . <px ; i.e. what holds of any, however chosen, holds of all.

Formal implication and formal equivalence. When an implication, say

<f>x . D . yfrx, is said to hold always, i.e. when (x) : <f>x . D . \jrx, we shall say that

<f)xformally implies yfrx ; and propositions of the form "
(x) z^.D.^x " will

be said to state formal implications. In the usual instances of implication,

such as "'Socrates is a man' implies 'Socrates is mortal,' "'we have a propo-
sition of the form " 4>x . D . \]rx " in a case in which " (x) :</>*•. D . yfrx

"
is true.

In such a case, we feel the implication as a particular case of a formal impli-

cation. Thus it has come about that implications which are not particular

cases of formal implications have not been regarded as implications at all.

There is also a practical ground for the neglect of such implications, for, speaking
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generally, they can only be known when it is already known either that their

hypothesis is false or that their conclusion is true ; and in neither of these

cases do they serve to make us know, the conclusion, since in the first case the

conclusion need not be true, and in the second it is known already. Thus
such implications do not serve the purpose for which implications are chiefly

useful, namely that of making us know, by deduction, conclusions of which we
were previously ignorant. Formal implications, on the contrary, do serve this

purpose, owing to the psychological fact that we often know "(x):^."^.^"
and

<f>y,
in cases where -tyy (which follows from these premisses) cannot easily

be known directly.

These reasons, though they do not warrant the complete neglect of impli-

cations that are not instances of formal implications, are reasons which make
formal implication very important. A formal implication states that, for all

possible values of x, if the hypothesis $x is true, the conclusion yjrx is true.

Since " $x . D . yfrx " will always be true when <f>x is false, it is only the values

of x that make <f>x true that are important in a formal implication ; what is

effectively stated is that, for all these values, tyx is true. Thus propositions

of the form " all a is /3," " no a is /9
" state formal implications, since the first

(as appears by what has just been said) states

(x) : x is an a . D . x is a /3,

while the second states

(x) : x is an a . D . x is not a yS.

And any formal implication " (x) : </># . D . yjrx " may be interpreted as :
" All

values of x which satisfy* <f>x satisfy tyx," while the formal implication
"
(x):<f)X.D .royfrx " may be interpreted as : " No values of x which satisfy <f>x

satisfy tyx."

We have similarly for " some a is /3
" the formula

(g#) . x is an a . x is a /3,

and for " some a is not /3
" the formula

(g#) . x is an a . x is not a /9.

Two functions <f>x, yfrx are called formally equivalent when each always

implies the other, i.e. when
(x) : <f>x . = . yfrx,

and a proposition of this form is called a formal equivalence. In virtue of

what was said about truth-values, if <f>x and tyx are formally equivalent, either

may replace the other in any truth-function. Hence for all the purposes of

mathematics or of the present work, <pz may replace yjrz or vice versa in any
proposition with which we shall be concerned. Now to say that <f>x and tyx

are formally equivalent is the same thing as to say that </>2 and yjrz have the

same extension, i.e. that any value of x which satisfies either satisfies the other.

* A value of x is said to satisfy <f>x or tj>x when <f>x is true for that value of x.
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Thus whenever a constant function occurs in our work, the truth-value of the

proposition in which it occurs depends only upon the extension of the function.

A proposition containing a function </>£ and having this property (i.e. that its

truth-value depends only upon the extension of <fiz) will be called an exten-

sional function of (f>z. Thus the functions of functions with which we shall be

specially concerned will all be extensional functions of functions.

What has just been said explains the connection (noted above) between

the fact that the functions of propositions with which mathematics is specially

concerned are all truth-functions and the fact that mathematics is concerned

with extensions rather than intensions.

Convenient abbreviation. The following definitions give alternative and often

more convenient notations

:

<f>x . Dx . yjrw : = : (x) : <f)X . D . -tyx Df,

<px .
=
x . ifrx : = :(x):<f>x. = . tyx Df.

This notation "
<f>x . Ox . yfrx

" is due to Peano, who, however, has no notation

for the general idea " (x) . <J3X." It may be noticed as an exercise in the use

of dots as brackets that we might have written

<px Dx ijrx . — . (x) . <f>% D ijrx Df,

cf>x
=
x yfrx . = .(#). <f>x = yjrx . Df.

In practice however, when </>£ and yjr^c are special functions, it is not possible

to employ fewer dots than in the first form, and often more are required.

The following definitions give abbreviated notations for functions of two

or more variables :

(x, y) .
<f>

(x, y) . = : (x) : (y) . <£ (x, y) Df,

and so on for any number of variables

;

</> (x, y) . Dx>y .^(x,y): = : (x, y) : 4>(x,y) .1 .^ (x, y) Df,

and so on for any number of variables.

Identity. The propositional function " x is identical with y " is expressed by

x = y.

This will be defined (cf. *13-01), but, owing to certain difficult points involved

in the definition, we shall here omit it (cf. Chapter II). We have, of course,

\- .x = x (the law of identity),

\-:x = y. = .y = x,

\-\x = y.y = z."5.x = z.

The first of these expresses the reflexive property of identity : a relation is

called reflexive when it holds between a term and itself, either universally, or

whenever it holds between that term and some term. The second of the

above propositions expresses that identity is a symmetrical relation : a relation

is called symmetrical if, whenever it holds between x and y, it also holds
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between y and a;. The third proposition expresses that identity is a transitive

relation : a relation is called transitive if, whenever it holds between x and y
and between y and z, it holds also between x and z.

We shall find that no new definition of the sign of equality is required in

mathematics : all mathematical equations in which the sign of equality is used

in the ordinary way express some identity,, and thus use the sign of equality

in the above sense.

If x and y are identical, either can replace the other in any proposition

without altering the truth-value of the proposition; thus we have

r- : x= y . D . <f>x = <j>y.

This is a fundamental property of identity, from which the remaining properties

mostly follow.

It might be thought that identity would not have much importance, since

it can only hold between x and y if x and y are different symbols for the same

object. This view, however, does not apply to what we shall call " descriptive

phrases," i.e. " the so-and-so." It is in regard to such phrases that identity is

important, as we shall shortly explain. A proposition such as " Scott was the

author of Waverley " expresses an identity in which there is a descriptive

phrase (namely " the author of Waverley ") ; this illustrates how, in such cases,

the assertion of identity may be important. It is essentially the same case

when the newspapers say " the identity of the criminal has not transpired."

In such a case, the criminal is known by a descriptive phrase, namely " the

man who did the deed," and we wish to find an x of whom it is true that

" #=the man who did the deed." When such an x has been found, the identity

of the criminal has transpired.

Classes and relations. A. class (which is the same as a manifold or aggre-

gate) is all the objects satisfying some propositional function. If a is the class

composed of the objects satisfying <px, we shall say that a is the class determined

by <£& Every propositional function thus determines a class, though if the

propositional function is one which is always false, the class will be null,

i.e. will have no members. The class determined by the function
<f>%

will be

represented by z (<f>z)*. Thus for example if <f>x is an equation, z (<f>z) will be

the class of its roots ; if <f>x is " x has two legs and no feathers," z (<j>z) will

be the class of men ; if <f>x is " < x < 1," z (<f>z) will be the class of proper

fractions, and so on.

It is obvious that the same class of objects will have many determining

functions. When it is not necessary to specify a determining function of a

class, the class may be conveniently represented by a single Greek letter.

Thus Greek letters, other than those to which some constant meaning is

assigned, will be exclusively used for classes.

* Any other letter may be used instead of z.
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There are two kinds of difficulties which arise in formal logic ; one kind

arises in connection with classes and relations and the other in connection

with descriptive functions. The point of the difficulty for classes and relations,

so far as it concerns classes, is that a class cannot be an object suitable as an
argument to any of its determining functions. If a represents a class and <j>x

one of its determining functions [so that a = z {<f>z)\ it is not sufficient that

<]>a be a false proposition, it must be nonsense. Thus a certain classification

of what appear to be objects into things of essentially different types seems

to be rendered necessary. This whole question is discussed in Chapter II, on

the theory of types, and the formal treatment in the systematic exposition,

which forms the main body of this work, is guided by this discussion. The
part of the systematic exposition which is specially concerned with the theory

of classes is #20, and in this Introduction it is discussed in Chapter III. It is

sufficient to note here that, in the complete treatment of #20, we have avoided

the decision as to whether a class of things has in any sense an existence as

one object. A decision of this question in either way is indifferent to our logic,

though perhaps, if we had regarded some solution which held classes and re-

lations to be in some real sense objects as both true and likely to be universally

received, we might have simplified one or two definitions and a few preliminary

propositions. Our symbols, such as " ct
(<f>%)

" and a and others, which represent

classes and relations, are merely defined in their use, just as V 2
, standing for

dx*
+
df

+
dz*

'

has no meaning apart from a suitable function of x, y, z on which to operate.

The result of our definitions is that the way in which we use classes corre-

sponds in general to their use in ordinary thought and speech ; and whatever

may be the ultimate interpretation of the one is also the interpretation of

the other. Thus in fact our classification of types in Chapter II really

performs the single, though essential, service of justifying us in refraining

from entering on trains of reasoning which lead to contradictory conclusions.

The justification is that what seem to be propositions are really nonsense.

The definitions which occur in the theory of classes, by which the idea of

a class (at least in use) is based on the other ideas assumed as primitive,

cannot be understood without a fuller discussion than can be given now
(cf. Chapter II of this Introduction and also #20). Accordingly, in this pre-

liminary survey, we proceed to state the more important simple propositions

which result from those definitions, leaving the reader to employ in his mind
the ordinary unanalysed idea of a class of things. Our symbols in their usage

conform to the ordinary usage of this idea in language. It is to be noticed

that in the systematic exposition our treatment of classes and relations requires

no new primitive ideas and only two new primitive propositions, namely the

two forms of the "Axiom of Reducibility " (cf. next Chapter) for one and two
variables respectively.
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The prepositional function "a? is a member of the class a" will be expressed,

following Peano, by the notation

area.

Here e is chosen as the initial of the word earL " x e a " may be read " x is

an a." Thus "x e man" will mean "x is a man," and so on. For typographical

convenience we shall put
x~ea. = .~(xea.) Df,

x, y eOL. = .xea. .y ea Df.

For " class " we shall write " Cls "; thus " ae Cls " means " a is a class."

We have
h : x e z (<f>z) . = • <f>x,

i.e. "'x is a member of the class determined by <f>z' is equivalent to 'x

satisfies <j)z,' or to '

<f>x is true.'
"

A class is wholly determinate when its membership is known, that is, there

cannot be two different classes having the same membership. Thus if <f>x, yfrx

are formally equivalent functions, they determine the same class ; for in that

case, if a? is a member of the class determined by <££, and therefore satisfies <f>x,

it also satisfies tyx, and is therefore a member of the class determined by yfrfc.

Thus we have
h :. z (<f)z) = z (tyz) . = m

.(f)X.=x . yfrx.

The following propositions are obvious and important

:

h :. a = 2 (<j>z) . = : x e a .
=
x . <f>x,

i.e. a is identical with the class determined by <fiz when, and only when, "x is

an a " is formally equivalent to (f>x;

b :.a = ft
,= :x60t.=x .xe/3,

i.e. two classes o and ft are identical when, and only when, they have the same

membership

;

h . & (x € a) = a,

i.e. the class whose determining function is " x is an o " is a, in other words,

a is the class of objects which are members of a

;

r-.2(£*)eCls,

i.e. the class determined by the function <pz is a class.

It Will be seen that, according to the above, any function of one variable

can be replaced by an equivalent function of the form "xea." Hence any

extensional function of functions which holds when its argument is a function

of the form "zea," whatever possible value a may have, will hold also when

its argument is any function <f>z. Thus variation of classes can replace varia-

tion of functions of one variable in all the propositions of the sort with which

we are concerned.
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In an exactly analogous manner we introduce dual or dyadic relations,

i.e. relations between two terms. Such relations will be called simply

"relations"; relations between more than two terms will be distinguished as

multiple relations, or (when the number of their terms is specified) as triple,

quadruple, . . . relations, or as triadic, tetradic, . . . relations. Such relations will

not concern us until we come to Geometry. For the present, the only relations

we are concerned with are dual relations.

Relations, like classes, are to be taken in extension, i.e. if R and S are

relations which hold between the same pairs of terms, R and S are to be

identical. We may regard a relation, in the sense in which it is required for

our purposes, as a class of couples ; i.e. the couple (x, y) is to be one of the

class of couples constituting the relation R if x has the relation R to y*.

This view of relations as classes of couples will not, however, be introduced

into our symbolic treatment, and is only mentioned in order to show that it

is possible so to understand the meaning of the word relation that a relation

shall be determined by its extension.

Any function
(f>

(x, y) determines a relation R between x and y. If we

regard a relation as a class of couples, the relation determined by <£ (x, y) is

the class of couples (x, y) for which </> (x, y) is true. The relation determined

by the function <£ (x, y) will be denoted by

We" shall use a capital letter for a relation when it is not necessary to specify

the determining function. Thus whenever a capital letter occurs, it is to be

understood that it stands for a relation.

The propositional function " x has the relation R to y " will be expressed

by the notation

xRy.

This notation is designed to keep as near as possible to common language,

which, when it has to express a relation, generally mentions it between its

terms, as in " x loves y," " x equals y," " x is -greater than y," and so on. For
" relation " we shall write " Rel "; thus " R e Rel " means "R is a relation."

Owing to our taking relations in extension, we shall have

r- :. x§<f> (x, y) = x§yfr (x,y).= :<f> (x, y) . =x
, y .ty 0> y),

i.e. two functions of two variables determine the same relation when, and only

when, the two functions are formally equivalent.

We have V . z {xf/rf* (x, y)}w . = ,<f>
(z, w),

* Such a couple has a sense, i.e. the couple (x, y) is different from the couple (y, x), unless

x= y. We shall call it a "couple with sense," to distinguish it from the class consisting of x
and y. It may also be called an ordered couple.
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i.e. "z has to w the relation determined by the function <j> (x, y)" is equivalent

to
<f>

(z, w)
;

I- :. R = %<£ (x, y) . = :#% . = x,y<f> («, 2/)>

h :.R = S . = :xRy .= Xjy .xSy,

\-.$f/(xRy) = R,

K®^(a?,y)}eRel.

These propositions are analogous to those previously given for classes. It

results from them that any function of two variables is formally equivalent to

some function of the form xRy; hence, in extensional functions of two variables,

variation of relations can replace variation of functions of two variables.

Both classes and relations have properties analogous to most of those of

propositions that result from negation and the logical sum. The logical product

of two classes a and /3 is their common part, i.e. the class of terms which are

members of both. This is represented by a r\ fi. Thus we put

ar\fi = <x}(xea.xe0) Df.

This gives us I- : x e a r\ . = . x e a . x e {3,

i.e. "x is a member of the logical product of a and 0" is equivalent to the

logical product of " x is a member of a " and " x is a member of fi"

Similarly the logical sum of two classes a and is the class of terms which

are members of either ; we denote it by a u 0. The definition is

ayj@ = x(x€a.v.xefi) Df,

and the connection with the logical sum of propositions is given by

V \.xeoL\J fi . = '.xea..v .xe ft.

The negation of a class a consists of those terms x for which "xea" can

be significantly and truly denied. We shall find that there are terms of other

types for which "xea" is neither true nor false, but nonsense. These terms

are not members of the negation of a.

Thus the negation of a class a is the class of terms of suitable type which

are not members of it, i.e. the class tc(x~ea). We call this class ",-a" (read

"hot-a"); thus the definition is

— a = x(x<^e a) Df,

and the connection with the negation of propositions is given by

h : xe — a. = . x<^>ea.

In place of implication we have the relation of inclusion. A class a is said

to be included or contained in a class if all members of a are members of 0,

i.e. if x e a . Dx . x e 0. We write " a C /3
" for " a is contained in 0." Thus we

put
aC/8. = :xea. Dx .xeft Df.
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Most of the formulae concerning p . q, p v q, ~p, pD q remain true if we
substitute a r\ ft, a u ft, — a, a C ft. In place of equivalence, we substitute

identity ; for " p = q " was denned as "pDq.q Dp" but " a C ft . ft C a " gives

"x e a . =3. . x e ft," whence a = ft.

The following are some propositions concerning classes which are analogues

of propositions previously given concerning propositions

:

h
?
an/3 = -(-au-/3),

i.e. the common part of a and ft is the negation of " not-a or not-/3 "

;

V . x e (a u — a),

i.e. " x is a member of a or not-a "

;

h . #~e (a n — a),

i.e. " # is not a member of both a and not-a "

;

h.a = -(-a),

h:aCft. = .-ftC-a,

\-:a = ft. = .-a = -ft,

h : a = a n a,

h« = au«.

The two last are the two forms of the law of tautology.

The law of absorption holds in the form

\- : aCft . = .a= ar\ ft.

Thus for example " all Cretans are liars " is equivalent to " Cretans are

identical with lying Cretans."

Just as we have hzjj'Dq.qDr.D.p'Dr,

so we have I- : a Cft . ftCy . D . aC^
This expresses the ordinary syllogism in Barbara (with the premisses

interchanged) ; for " a C ft
" means the same as " all a's are ft's," so that the

above proposition states :
'" If all a's are ft's, and all ft's are 7's, then all a's

are 7's." (It should be observed that syllogisms are traditionally expressed

with " therefore," as if they asserted both premisses and conclusion. This is,

of course, merely a slipshod way of speaking, since what is really asserted is

only the connection of premisses with conclusion.)

The syllogism in Barbara when the minor premiss has an individual

subject is

h : x e ft . ft C 7 . D . x e 7,

e.g. " if Socrates is a man, and all men are mortals, then Socrates is a

mortal." This, as was pointed out by Peano, is not a particular case of

"aC/3./3C7.D.aC 7," since " x e ft
" is not a particular case of " a C ft."

This point is important, since traditional logic is here mistaken. The nature

and magnitude of its mistake will become clearer at a later stage.
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For relations, we have precisely analogous definitions and propositions.

We put
knS=$p (xRy . xSy) Df,

which leads to h : x (R n S) y . = . xRy . xSy.

Similarly RvS = $y (xRy . v . xSy) Df,

^-R = xy {-{xRy)} Df,

RGS. = : xRy . D^ . xSy Df.

Generally, when we require analogous but different symbols for relations

and for classes, we shall choose for relations the symbol obtained by adding
a dot, in some convenient position, to the corresponding symbol for classes.

(The dot must not be put on the line, since that would cause confusion with

the use of dots as brackets.) But such symbols require and receive a special

definition in each case.

A class is said to exist when it has at least one member :
" a exists " is

denoted by " g ! a." Thus we put

3 ! a . = . (g#) . x e a Df.

The class which has no members is called the " null-class," and is denoted by
"A." Any propositional function which is always false determines the null-

class. One such function is known to us already, namely "x is not identical

with x," which we denote by " x 4= x." Thus we may use this function for de-

fining A, and put
A = x(x$x) Df.

The class determined by a function which is always true is called the

universal class, and is represented by V; thus

V = &(# = #) Df.

Thus A is the negation of V. We have

h . (x) .xeY,
i.e.

"
' x is a member of V ' is always true "

; and

J- . (x) . x~e A,

i.e. " 'x is a member of A' is always false." Also

h : a = A . = . ~g ! a,

i.e. " a is the null-class " is equivalent to " a does not exist."

For relations we use similar notations. We put

3 ! R . = . (g#, y) . xRy,

i.e. " a ! R " means that there is at least one couple x, y between which
the relation R holds. A will be the relation which never holds, and V the

relation which always holds. V is practically never required ; A will be the

relation xy (x ^ x . y 4= y). We have

Y.{x,y).~{xky),

and h : R = A. = . ~g! R.
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There are no classes which contain objects of more than one type. Ac-

cordingly there is a universal class and a null-class proper to each type of

object. But these symbols need not be distinguished, since it will be found

that there is no possibility of confusion. Similar remarks apply to relations.

Descriptions. By a "description" we mean a phrase of the form "the

so-and-so" or of some equivalent form. For the present, we confine our

attention to the in the singular. We shall use this word strictly, so as to

imply uniqueness ; e.g. we should not say "A is the son of B " if B had other

sons besides A. Thus a description of the form "the so-and-so" will only

have an application in the event of there being one so-and-so and no more.

Hence a description requires some propositional function
<f>£

which is satisfied

by one value of x and by no other values ; then " the x which satisfies
<f>£

"

is a description which definitely describes a certain object, though we may

not know what object it describes. For example, if y is a man, "x is the

father of y " must be true for one, and only one, value of x. Hence " the

father of y " is a description of a certain man, though we may not know what

man it describes. A phrase containing "the" always presupposes some initial

propositional function not containing "the"; thus instead of "x is the father

of y " we ought to take as our initial function " x begot y "
; then " the father

of y " means the one value of x which satisfies this propositional function.

If <f>&
is a propositional function, the symbol "(ix)(<j>x)" is used in our

symbolism in such a way that it can always be read as " the x which satisfies

<f>$."
But we do not define " (ix) (<f>x)

" as standing for " the x which satisfies

<£&," thus treating this last phrase as embodying a primitive idea. Every use

of " (ix) (<f)x)," where it apparently occurs as a constituent of a proposition

in the place of an object, is defined in terms of the primitive ideas already

on hand. An example of this definition in use is given by the proposition

" E ! (ix)(<px) " which is considered immediately. The whole subject is treated

more fully in Chapter III.

The symbol should be compared and contrasted with " & ((f>x)
" which in

use can always be read as "the x's which satisfy
<f>&."

Both symbols are in-

complete symbols defined only in use, and as such are discussed in Chapter III.

The symbol " cb (<f>x)
" always has an application, namely to the class determined

by <f>x ; but " (ix) (<f>x)
" only has an application when </>£ is only satisfied by

one value of x, neither more nor less. It should also be observed that the

meaning given to the symbol by the definition, given immediately below, of

E ! (ix) (<f>x) does not presuppose that we know the meaning of " one." This is

also characteristic of the definition of any other use of (ix) (<f>x).

We now proceed to define " E ! (ix) (<px) " so that it can be read " the x

satisfying <f>x exists." (It will be observed that this is a different meaning of

existence from that which we express by " g.") Its definition is

E ! (ix) (<f>x) . = : (gc) :<f>x.=x .x = c Df,
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i.e. " the x satisfying
<f>$;

exists " is to mean " there is an object c such that cf>x

is true when x is c but not otherwise."

The following are equivalent forms

:

H :. E! (ix) (<f)x) . = : (gc) : <f>c : <f>x . Dx . x = c,

H :. E! (ix) (<f>x) . = : (gc) . <f>c : <f>x . <f>y . DXjV .x = y,

\- :. E ! (7a?) ($#) . = : (gc) : <f>c : a? 4= c . Dx ~ <£#•

The last of these states that " the x satisfying
<f>£

exists " is equivalent to

"there is an object c satisfying
<f>$!,

and every object other than c does not

satisfy </>&."

The kind of existence just defined covers a great many cases. Thus for

example " the most perfect Being exists " will mean

:

(gc) : x is most perfect . =x . x = c,

which, taking the last of the above equivalences, is equivalent to

(gc) : c is most perfect : x
=J=

c . D^ . x is not most perfect.

A proposition such as "Apollo exists " is really of the same logical form,

although it does not explicitly contain the word the. For "Apollo" means
really " the object having such-and-such properties," say " the object having

the properties enumerated in the Classical Dictionary*." If these properties

make up the propositional function <f>x, then "Apollo" means " (ix) (<f>x),"

and "Apollo exists" means "E! (ix)(<f>x)." To take another illustration,

" the author of Waverley" means " the man who (or rather, the object which)

wrote Waverley." Thus " Scott is the author of Waverley " is

Scott = (ix) (x wrote Waverley).

Here (as we observed before) the importance of identity in connection with

descriptions plainly appears.

The notation " (ix) (<f>x)" which is long and inconvenient, is seldom used,

being chiefly required to lead up to another notation, namely "R'y" meaning
" the object having the relation R to y." That is, we put

R'y = (ix) (xRy) Df.

The inverted comma may be read "of." Thus "R'y" is read "the R of y."

Thus if R is the relation of father to son, "R'y" means "the father of y";

if R is the relation of son to father, "R'y " means " the son of y," which will

only " exist " if y has one son and no more. R'y is a function of y, but not

a propositional function; we shall call it a descriptive function. All the

ordinary functions of mathematics are of this kind, as will appear more fully

in the sequel. Thus in our notation, " sin y " would be written " sin 'y" and
" sin " would stand for the relation which sin 'y has to y. Instead of a variable

descriptive function fy, we put R'y, where the variable relation R takes the

* The same principle applies to many uses of the proper names of existent objects, e.g. to all

nses of proper names for objects known to the speaker only by report, and not by personal

acquaintance.
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place of the variable function /. A descriptive function will in general exist

while y belongs to a certain domain, but not outside that domain ; thus if we

are dealing with positive rationals, sjy will be significant if y is a perfect

square, but not otherwise; if we are dealing with real numbers, and agree

that " \]y " is to mean the positive square root (or, is to mean the negative

square root), \'y will be significant provided y is positive, but not otherwise

;

and so on. Thus every descriptive function has what we may call a " domain

of definition " or a " domain of existence," which may be thus defined : If the

function in question is R'y, its domain of definition or of existence will be

the class of those arguments y for which we have E! R'y, i.e. for which

E ! (ix) (xRy), i.e. for which there is one x, and no more, having the relation

R to y.

If R is any relation, we will speak of R'y as the " associated descriptive

function." A great many of the constant relations which we shall have occasion

to introduce are only or chiefly important on account of their associated descrip-

tive functions. / In such cases, it is easier (though less correct) to begin by

assigning the meaning of the descriptive function, and to deduce the meaning

of the relation from that of the descriptive function. This will be done in the

following explanations of notation.

Various descriptive functions of relations. If R is any relation, the converse

of R is the relation which holds between y and x whenever R holds between

x and y. Thus greater is the converse of less, before of after, cause of effect

husband of wife, etc. The converse of R is written* Cnv'R or R. The defi-

nition is

R = $$(yRx) Df,

Cnv'R = R Df.

The second of these is not a formally correct definition, since we ought to

define " Cnv " and deduce the meaning of Cnv'R. But it is not worth while

to adopt this plan in our present introductory account, which aims at simplicity

rather than formal correctness.

A relation is called symmetrical if R = R, i.e. if it holds between y and x

whenever it holds between x and y (and therefore vice versa). Identity,

diversity, agreement or disagreement in any respect, are symmetrical relations.

A relation is called asymmetrical when it is incompatible with its converse,

i.e. when R r\ R = A, or, what is equivalent,

xRy . Dx,y ~ (yRx).

Before and after, greater and less, ancestor and descendant, are asym-

metrical, as are all other relations of the sort that lead to series. But there are

many asymmetrical relations which do not lead to series, for instance, that of

* The second of these notations is taken from Schroder's Algebra und Logik der Relative.
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wife's brother*. A relation may be neither symmetrical nor asymmetrical

;

for example, this holds of the relation of inclusion between classes : a C /3 and
j3 C a will both/be true if a = /8, but otherwise only one of them, at most, will

be true. The relation brother is neither symmetrical nor asymmetrical, for if

x is the brother of y, y may be either the brother or the sister of x.

In the prepositional function xRy, we call x the referent and y the relatum.

The class x (xRy), consisting of all the xs which have the relation R to y, is

called the class of referents of y with respect to R; the class $ (xRy), consisting

of all the y'a to which x has the relation R
x
is called the class of relata of x

with respect to R. These two classes are denoted respectively by R'y and R l
x.

Thus

R'y = $(xRy) Df,

R'x = §{xRy) Df.

The arrow runs towards y in the first case, to show that we are concerned
with things having the relation R to y; it runs away from x in the second

case, to show that the relation R goesfrom x to the members of R l
x. It runs

in factfrom a referent and towards a relatum.
-* *-

The notations R'y, R'x are very important, and are used constantly. If
—

*

«—
R is the relation of parent to child, R'y = the parents of y, R'x = the children

of x. We have
—

h : x e R'y . = . xRy

and I- : y e R'x . = . xRy.

These equivalences are often embodied in common language. For example,
we say indiscriminately ux is an inhabitant of London" or "x inhabits London."
If we put "R"for "inhabits," "x inhabits London" is "xR London," while "x

is an inhabitant of London " is " x e R' London."
—> <—

Instead of R and R we sometimes use sg'R, gs'R, where " sg " stands for

" sagitta," and " gs " is " sg " backwards. Thus we put

sg'R = R Df,

gs'R = R Df.

These notations are sometimes more convenient than an arrow when the

relation concerned is represented by a combination of letters, instead of a
single letter such as R. Thus e.g. we should write sg'(.R r\ S), rather than put
an arrow over the whole length of (R r\ 8).

The class of all terms that have the relation R to something or other is

called the domain of R. Thus if R is the relation of parent and child, the

* This relation is not strictly asymmetrical, but is so except when the wife's brother is also

the sister's husband. In the Greek Church the relation is strictly asymmetrical.

R&W I 3
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domain of R will be the class of parents. We represent the domain of R by

" D'R." Thus we put
D<E = £{(ay).*%} Df.

Similarly the class of all terms to which something or other has the relation

R is called the converse domain of R ; it is the same as the domain of the

converse of R. The converse domain of R is represented by " CE'JR "; thus

Q-'R = $ {(a«) xRy) Df-

The sum of the domain and the converse domain is called the field, and is

represented by C'R: thus
C'R = D'Ryj(l'R Df.

The field is chiefly important in connection with series. IfR is the ordering

relation of a series, C'R will be the class of terms of the series, D'R will be all

the terms except the last (if any), and (I'R will be all the terms except the

first (if any). The first term, if it exists, is the only member of D'R n — Q.'R,

since it is the only term which is a predecessor but not a follower. Similarly

the last term (if any) is the only member of G.'R n - D'R. The condition

that a series should have no end is Q'RCD'R, i.e. "every follower is a pre-

decessor"; the condition for no beginning is D'R C (I'R. These conditions

are equivalent respectively to D'R = C'R and d'R = C'R.

The relative product of two relations R and S is the relation which holds

between x and z when there is an intermediate term y such that x has the

relation R to y and y has the relation S to z. The relative product of R and

S is represented by R
|
S ; thus we put

RlS^^K^.xRy.ySz} Df,

whence h : x (R
|

S) z . = . (gy) . xRy . ySz.

Thus "paternal aunt" is the relative product of sister and father; "paternal

grandmother " is the relative product of mother and father ;
" maternal grand-

father " is the relative product of father and mother. The relative product is

not commutative, but it obeys the associative law, i.e.

\-.(P\Q)\R = P\(Q\R).

It also obeys the distributive law with regard to the logical addition of

relations, i.e. we have
h.P\(QuR) = (P\Q)v(P\R),

\-.(QvR)\P = (Q\P)v(R\P).

But with regard to the logical product, we have only

b.P\(QnR)G(P\Q)r.(P\R)
>

h.(QnR)\PG(Q\P)n(Q\R).

The relative product does not obey the law of tautologjr, i,e. we do not

have in general R R = R. We put

R* = R\R Df.
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Thus paternal grandfather = (father)2
,

maternal grandmother = (mother)2
.

A relation is called transitive when R2 G R, i.e. when, if xRy and yRz, we
always have xRz, i.e. when

xRy . yRz .
"^

x,y,z • xRz.

Relations which generate series are always transitive ; thus e.g.

x>y .y> z t. D x, y, z
,x>z.

If P is a relation which generates a series, P may conveniently be read

"precedes"; thus "xPy .yPz .D Xt y Z .xPz" becomes "if a; precedes y and y
precedes z, then x always precedes z." The class of relations which generate

series are partially characterized by the fact that they are transitive and
asymmetrical, and never relate a term to itself.

If P is a relation which generates a series, and if we have not merely P2 G P,

but P2 = P, then P generates a series which is compact (uberall dicht), i.e. such

that there are terms between any two. For in this case we have

xPz . D . (ay) . xPy . yPz,

i.e. if x precedes z, there is a term y such that x precedes y and y precedes z,

i.e. there is a term between x and z. Thus among relations which generate

series, those which generate compact series are those for which P* — P.

Many relations which do not generate series are transitive, for example,

identity, or the relation of inclusion between classes. Such cases arise when
the relations are not asymmetrical. Relations which are transitive and sym-

metrical are an important class : they may be regarded as consisting in the

possession of some common property.

Plural descriptive functions. The class of terms x which have the relation

R to some member of a class a is denoted by R"a or R/a. The definition is

R"a = x-{(Ry).yea.xRy} Df.

Thus for example let R be the relation of inhabiting, and a the class of towns;

then R"a = inhabitants of towns. Let R be the relation " less than " among
rationals, and a the class of those rationals which are of the form 1 — 2~n

, for

integral values of n ; then R"a will be all rationals less than some member
of a, i.e. all rationals less than 1. If P is the generating relation of a series,

and a is any class ofmembers of the series, P"a will be predecessors of as, i.e. the

segment defined by a. If P is a relation such that Ply always exists when
yea, P"a will be the class of all terms of the form P'y for values of y which

are members of a ; i.e.

P"a = ${(>&y).yea.x = P<y}.

Thus a member of the class " fathers of great men " will be the father of y,

where y is some great man. In other cases, this will not hold ; for instance,

let P be the relation of a number to any number of which it is a factor ; then

3—2 -
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P" (even numbers) = factors of even numbers, but this class is not composed

of terms of the form "
the factor of x" where x is an even number, because

numbers do not have only one factor apiece.

Unit classes. The class whose only member is x might be thought to be

identical with x, but Peano and Frege have shown that this is not the case.

(The reasons why this is not the case will be explained in a preliminary way

in Chapter II of the Introduction.) We denote by " i
lx " the class whose only

member is x : thus
i'x = ${y = x) Df,

i.e. "i'x" means "the class of objects which are identical with x."

The class consisting of x and y will be i'x \j i
l

y ; the class got by adding

a; to a class a will be aw l'x\ the class got by taking away x from a class a

will be a — i'x. (We write a— ft as an abbreviation for a r\ — ft.)

It will be observed that unit classes have been defined without reference

to the number 1 ; in fact, we use unit classes to define the number 1. This

number is defined as the class of unit classes, i.e.

l = a{{<&x).a = l'x} Df.

This leads to

I- :. « e 1 . = : (&x) : y e a .
=
y . y =x:

From this it appears further that

r- : a e 1 . = . E ! (ix) {x e a),

whence V : % (<t>z) e 1 . = . E ! (ix) (<f>x),

i.e. " % (<f>z) is a unit class " is equivalent to " the x satisfying <f>fc exists."

If a e 1, t'a is the only member of a, for the only member of a is the only

term to which a has the relation i. Thus "iV takes the place of "(ix)(<f>x)"

if a stands for z(<f>z). In practice, "t'a" is a more convenient notation than
" (ix) (<f)x)," and is generally used instead of " (ix) (<f>x)."

The above account has explained most of the logical notation employed

in the present work. In the applications to various parts of mathematics,

other definitions are introduced; but the objects defined by these later defi-

nitions belong, for the most part, rather to mathematics than to logic. The
reader who has mastered the symbols explained above will find that any

later formulae can be deciphered by the help of comparatively few additional

definitions.



CHAPTER II

THE THEOKY OF LOGICAL TYPES

The theory of logical types, to be explained in the present Chapter, re-

commended itself to us in the first instance by its ability to solve certain

contradictions, of which the one best known to mathematicians is Burali-Forti's

concerning the greatest ordinal. But the theory in question is not wholly

dependent upon this indirect recommendation: it has also a certain consonance

with common sense which makes it inherently credible. In what follows, we
shall therefore first set forth the theory on its own account, and then apply it

to the solution of the contradictions.

I. The Vicious-Circle Principle.

An analysis of the paradoxes to be avoided shows that they all result from

a certain kind of vicious circle*. The vicious circles in question arise from

supposing that a collection of objects may contain members which can only be

defined by means of the collection as a whole. Thus, for example, the collection

of propositions will be supposed to contain a proposition stating that " all

propositions are either true or false." It would seem, however, that such a

statement could not be legitimate unless "all propositions" referred to some

already definite collection, which it cannot do if new propositions are created

by statements about " all propositions." We shall, therefore, have to say that

statements about "all propositions" are meaningless. More generally, given

any set of objects such that, if we suppose the set to have a total, it will con-

tain members which presuppose this total, then such a set cannot have a total.

By saying, that a set has "no total," we mean, primarily, that no significant

statement can be made about "all its members." Propositions, as the above

illustration shows, must be a set having no total. The same is true, as we shall

shortly see, of propositional functions, even when these are restricted to such

as can significantly have as argument a given object a. In such cases, it is

necessary to break up our set into smaller sets, each of which is capable of a

total. This is what the theory of types aims at effecting.

The principle which enables us to avoid illegitimate totalities may be

stated as follows: "Whatever involves all of a collection must not be one of

the collection"; or, conversely: "If, provided a certain collection had a total,

it would have members only definable in terms of that total, then the said

collection has no total." We shall call this the " vicious-circle principle," be-

cause it enables us to avoid the vicious circles involved in the assumption of

illegitimate totalities. Arguments which are condemned by the vicious-circle

* See the last section of the present Chapter. Cf. also H. Poincar£, " Les math^matiques et

la logique," Revue de Metaphysique et de Morale, Mai 1906, p. 307.
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principle will be called "vicious-circle fallacies." Such arguments, in certain

circumstances, may lead to contradictions, but it often happens that the con-

clusions to which they lead are in fact true, though the arguments are

fallacious. Take, for example, the law of excluded middle, in the form " all

propositions are true or false." If from this law we argue that, because the

law of excluded middle is a proposition, therefore the law of excluded middle

is true or false, we incur a vicious-circle fallacy. "All propositions" must be

in some way limited before it becomes a legitimate totality, and any limita-

tion which makes it legitimate must make any statement about the totality

fall outside the totality. Similarly, the imaginary sceptic, who asserts that

he knows nothing, and is refuted by being asked if he knows that he knows

nothing, has asserted nonsense, and has been fallaciously refuted by an

argument which involves a vicious-circle fallacy. In order that the sceptic's

assertion may become significant, it is necessary to place some limitation

upon the things of which he is asserting his ignorance, because the things

of which it is possible to be ignorant form an illegitimate totality. But as

soon as a suitable limitation has been placed by him upon the collection of

propositions of which he is asserting his ignorance, the proposition that he is

ignorant of every member of this collection must not itself be one of the

collection. Hence any significant scepticism is not open to the above form of

refutation.

The paradoxes of symbolic logic concern various sorts of objects: propo-

sitions., classes, cardinal and ordinal numbers, etc. All these sorts of objects,

as we shall show, represent illegitimate totalities, and are therefore capable of

giving rise to vicious-circle fallacies. But by means of the theory (to be

explained in Chapter III) which reduces statements that are verbally con-

cerned with classes and relations to statements that are concerned with

propositional functions, the paradoxes are reduced to such as are concerned

with propositions and propositional functions. The paradoxes that concern

propositions are only indirectly relevant to mathematics, .while those that

more nearly concern the mathematician are all concerned with propositional

functions. We shall therefore proceed at once to the consideration of propo-

sitional functions.

II. The Nature of Propositional Functions.

By a "propositional function" we mean something which contains a

variable x, and expresses a proposition as soon as a value is assigned to x.

That is to say, it differs from a proposition solely by the fact that it is

ambiguous : it contains a variable of which the value is unassigned. It agrees

with the ordinary functions of mathematics in the fact of containing an

unassigned variable; where it differs is in the fact that the values of the

function are propositions. Thus e.g. "x is a man" or "sin# = 1 " is a propo-

sitional function. We shall find that it is possible to incur a vicious-circle
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fallacy at the very outset, by admitting as possible arguments to a propositional

function terms which presuppose the function. This form of the fallacy is very

instructive, and its avoidance leads, as we shall see, to the hierarchy of types.

The question as to the nature of a function* is by no means an easy one.

It would seem, however, that the essential characteristic of a function is

ambiguity. Take, for example, the law of identity in the form "A is A" which

is the form in which it is usually enunciated. It is plain that, regarded

psychologically, we have here a single judgment. But what are we to say of

the object of the judgment ? We are not judging that Socrates is Socrates,

nor that Plato is Plato, nor any other of the definite judgments that are

instances of the law of identity. Yet each of these judgments is, in a sense,

within the scope of our judgment. We are in fact judging an ambiguous

instance of the propositional function "A is A." We appear to have a single

thought which does not have a definite object, but has as its object an

undetermined one of the values of the function "A is A." It is this kind of

ambiguity that constitutes the essence of a function. When we speak of "</>#,"

where x is not specified, we mean one value of the function, but not a definite

one. We may express this by saying that "<f>x" ambiguously denotes <f>a, <f>b, <£c,

etc., where <f>a, <f>b, <f>c, etc., are the various values of "<£#."

When we say that "<f>x" ambiguously denotes <f>a, <$>b, </>c, etc., Ave mean

that "<$>x" means one of the objects <f>a, <f)b, <f>c, etc., though not a definite

one, but an undetermined one. It follows that "<f>x" only has a well-defined

meaning (well-defined, that is to say, except in so far as it is of its essence to

be ambiguous) if the objects $>a, <f>b, <£c, etc., are well-defined. That is to say,

a function is not a well-defined function unless all its values are already well-

defined. It follows from this that no function can have among its values

anything which presupposes the function, for if it had, we could not regard

the objects ambiguously denoted by the function as definite until the function

was definite, while conversely, as we have just seen, the function cannot be

definite until its values are definite. This is a particular case, but perhaps the

most fundamental case, of the vicious-circle principle. A function is what

ambiguously denotes some one of a certain totality, namely the values of the

function ; hence this totality cannot contain any members which involve the

function, since, if it did, it would contain members involving the totality,

which, by the vicious-circle principle, no totality can do.

It will be seen that, according to the above account, the values of a

function are presupposed by the function, not vice versa. It is sufficiently

obvious, in any particular case, that a value of a function does not presuppose

the function. Thus for example the proposition " Socrates is human " can be

perfectly apprehended without regarding it as a value of the function "x is

human." It is true that, conversely, a function can be apprehended without

* "When the word " function " is used in the sequel, "propositional function " is always meant.

Other functions will not be in question in the present Chapter.
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its being necessary to apprehend its values severally and individually. If this

were not the case, no function could be apprehended at all, since the number
of values (true and false) of a function is necessarily infinite and there are

necessarily possible arguments with which we are unacquainted. What is

necessary is not that the values should be given individually and extensionally,

but that the totality of the values should be given intensionally, so that, con-

cerning any assigned object, it is at least theoretically determinate whether or

not the said object is a value of the function.

It is necessary practically to distinguish the function itself from an

undetermined value of the function. We may regard the function itself as

that which ambiguously denotes, while an undetermined value of the function

is that which is ambiguously denoted. If the undetermined value is written

"<f>x," we will write the function itself "</>&." (Any other letter may be used

in place of x.) Thus we should say "<j)% is a proposition," but "<]>& is a prepo-

sitional function." When we say "<f>x is a proposition," we mean to state

something which is true for every possible value of x, though we do not decide

what value x is to have. We are making an ambiguous statement about any

value of the function. But when we say "
<f)x is a function," we are not making

an ambiguous statement. It would be more correct to say that we are making
a statement about an ambiguity, taking the view that a function is an am-

biguity. The function itself, <f>w, is the single thing which ambiguously denotes

its many values ; while <f>x, where x is not specified, is one of the denoted

objects, with the ambiguity belonging to the manner of denoting.

We have seen that, in accordance with the vicious-circle principle, the

values of a function cannot contain terms only definable in terms of the

function. Now given a function
<f>£, the values for the function* are all pro-

positions of the form <px. It follows that there must be no propositions, of

the form <px, in which x has a value which involves <j><jc. (If this were the case,

the values of the function would not all be determinate until the function

was determinate, whereas we found that the function is not determinate unless

its values are previously determinate.) Hence there must be no such thing as

the value for <f>Zc with the argument <£&, or with any argument which involves

cf>x. That is to say, the symbol
"<f> (<f>£)" must not express a proposition, as

"<f>a" does if <f>a is a value for </>£. In fact
"<f> (<f>£)" must be a symbol which

does not express anything: we may therefore say that it is not significant. Thus
given any function <j>x, there are arguments with which the function has no

value, as well as arguments with which it has a value. We will call the

arguments with which <px has a value "possible values of x." We will say

that cf)x is "significant with the argument x" when <f>x has a value with the

argument x.

* We shall speak in this Chapter of "values for (f>x" and of "values of 4>x" meaning in eacli

case the same thing, namely (pa, <f>b, <pc, etc. The distinction of phraseology serves to avoid
ambiguity where several variables are concerned, especially when one of them is a function.
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When it is said that e.g. "
<f>

(<£2)" is meaningless, and therefore neither

true nor false, it is necessary to avoid a misunderstanding. If
"(f> (<f>2)" were

interpreted as meaning "the value for $z with the argument <f>% is true,"

that would be not meaningless, but false. It is false for the same reason for

which "the King of France is bald" is false, namely because there is no such

thing as "the value for $z with the argument <f>1z." But when, with some

argument a, we assert <pa, we are not meaning to assert "the value for <j>^c with

the argument a is true"; we are meaning to assert the actual proposition

which is the value for <f>x with the argument a. Thus for example if $» is

"x is a man,"
<f>

(Socrates) will be "Socrates is a man," not "the value for

the function lx is a man/ with the argument Socrates, is true." Thus

in accordance with our principle that "</> (#2)" is meaningless, we cannot

legitimately deny "the function 'x is a man' is a man," because this is

nonsense, but we can legitimately deny "the value for the function 'x is a

man' with the argument 'x is a man' is true," not on the ground that the

value in question is false, but on the ground that there is no such value for

the function.

We will denote by the symbol "(x) . <f>x" the proposition "<f>x always*,"

i.e. the proposition which asserts all the values for
<f>&.

This proposition

involves the function <f>£,
not merely an ambiguous value of the function. The

assertion of <f>x, where x is unspecified, is a different assertion from the one

which asserts all values for <f>x~, for the former is an ambiguous assertion,

whereas the latter is in no sense ambiguous. It will be observed that "(x).<f)x"

does not assert "<f>x with all values of x" because, as we have seen, there must

be values of x with which "<f>x" is meaningless. What is asserted by "(x).<f)x"

is all propositions which are values for <f>£ ; hence it is only with such values

of x as make "<f>x" significant, i.e. with all possible arguments, that <f>x is asserted

when we assert "(x) . <f>x." Thus a convenient way to read "(x) . <f>x" is "<f>x is

true with all possible values of x." This is, however, a less accurate reading

than "<j>x always," because the notion of truth is not part of the content of

what is judged. When we judge "all men are mortal," we judge truly, but

the notion of truth is not necessarily in our minds, any more than it need be-

when we judge "Socrates is mortal."

III. Definition and Systematic Ambiguity of Truth and Falsehood.

Since "(x) . <j>x" involves the function </>&, it must, according to our

principle, be impossible as an argument to
<f>.

That is to say, the symbol

"<f>
[(x) . <j>x}" must be meaningless. This principle would seem, at first sight,

to have certain exceptions. Take, for example, the function "p is false," and

consider the proposition "(p) . p is false." This should be a proposition

asserting all propositions of the form "p is false." Such a proposition, we

* We use "always" as meaning "in all cases," not "at all times." Similarly "sometimes"

will mean ' * in some cases."
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should be inclined to say, must be false, because "p is false" is not always

true. Hence we should be led to the proposition

" {(p) P is ^se
]

is false,"

i.e. we should be led to a proposition in which "(p) .p is false" is the argu-

ment to the function "p is false," which we had declared to be impossible.

Now it will be seen that "(p).p is false," in the above, purports to be a

proposition about all propositions, and that, by the general form of the vicious-

circle principle, there must be no propositions about all propositions. Never-

theless, it seems plain that, given any function, there is a proposition (true or

false) asserting all its values. Hence we are led to the conclusion that "p is

false" and "q is false" must not always be the values, with the arguments p
and q, for a single function " p is false." This, however, is only possible if the

word "false" really has many different meanings, appropriate to propositions

of different kinds.

That the words "true" and "false" have many different meanings, accord-

ing to the kind of proposition to which they are applied, is not difficult to

see. Let us take any function <f>x, and let <f>a be one of its values. Let us call

the sort of truth which is applicable to </>a "first truth." (This is not to assume

that this would be first truth in another context: it is merely to indicate that

it is the first sort of truth in our context.) Consider now the proposition

(x) . <f>x. If this has truth of the sort appropriate to it, that will mean that

every value <f>x has "first truth." Thus if we call the sort of truth that is

appropriate to (x) . <f>x " second truth," we may define "{{x).<j>x} has second

truth" as meaning "every value for <f>x has first truth," i.e. "(x) . {<f>%
has first

truth)." Similarly, if we denote by "(ga:) . <f>x" the proposition "<j>x sometimes,"

i.e. as we may less accurately express it, "(/># with some value of x," we find

that (gav) . (f)x has second truth if there is an x with which <f>x has first truth
;

thus we may define " {(gar) . <£a?} has second truth" as meaning "some value

for <f>x has first truth," i.e. "(g#) • ($x has first truth)." Similar remarks apply

to falsehood. Thus "{(x).<px) has second falsehood" will mean "some value

for <j>$ has first falsehood," i.e. "(qx) . (</># has first falsehood)," while

" {(a#) . 4>x) has second falsehood" will mean "all values for $$ have first

falsehood," i.e. "(x) . (cf)X has first falsehood)." Thus the sort of falsehood that

can belong to a general proposition is different from the sort that can belong

to a particular proposition.

Applying these considerations to the proposition "(p) . p is false," we see

that the kind of falsehood in question must be specified. If, for example,

first falsehood is meant, the function "p has first falsehood" is only signi-

ficant when p is the sort of proposition which has first falsehood or first

truth. Hence "{p).p is false" will be replaced by a statement which is

equivalent to "all propositions having either first truth or first falsehood

have first falsehood." This proposition has second falsehood, and is not
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a possible argument to the function "p has first falsehood." Thus the

apparent exception to the principle that
"<f> {(#) . <j>x}" must be meaningless

disappears.

Similar considerations will enable us to deal with "not-p" and with "p or q."

It might seem as if these were functions in which any proposition might

appear as argument. But this is due to a systematic ambiguity in the mean-

ings of "not" and "or," by which they adapt themselves to propositions of any

order. To explain fully how this occurs, it will be well to begin with a

definition of the simplest kind -of truth and falsehood.

The universe consists of objects having various qualities and standing

in various relations. Some of the objects which occur in the universe are

complex. When an object is complex, it consists of interrelated parts. Let

us consider a complex object composed of two parts a and b standing to each

other in the relation R. The complex object "a-in-the-relation-jR-to-6" may
be capable of being perceived ; when perceived, it is perceived as one object.

Attention may show that it is complex ; we then judge that a and b stand in

the relation R. Such a judgment, being derived from perception by mere

attention, may be called a "judgment of perception." This judgment of

perception, considered as an actual occurrence, is a relation of four terms,

namely a and b and R and the percipient. The perception, on the contrary, is

a relation of two terms, namely "a-in-the-relation-i2-to-6," and the percipient.

Since an object of perception cannot be nothing, we cannot perceive "a-in-the-

relation-i?-to-6 " unless a is in the relation jR to b. Hence a judgment of

perception, according to the above definition, must be true. This does not

mean that, in a judgment which appears to us to be one of perception, we

are sure of not being in error, since we may err in thinking that our judgment

has really been derived merely by analysis of what was perceived. But if our

judgment has been so derived, it must be true. In fact, we may define truth,

where such judgments are concerned, as consisting in the fact that there is a

complex corresponding to the discursive thoughtwhich is thejudgment. That is,

when we judge "a has the relation R to b" our judgment is said to be true

when there is a complex "<x-in-the-relation-JS-to-6," and is said to be false

when this is not the case. This is a definition of truth and falsehood in rela-

tion to judgments of this kind.

It will be seen that, according to the above account, a judgment does not

have a single object, namely the proposition, but has several interrelated

objects. That is to say, the relation which constitutes judgment is not a

relation of two terms, namely the judging mind and the proposition, but is a

relation of several terms, namely the mind and what are called the constituents

of the proposition. That is, when we judge (say) "this is red," what occurs

is a relation of three terms, the mind, and "this," and red. On the other hand,

when we perceive "the redness of this," there is a relation of two terms, namely
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the mind and the complex object "the redness of this." When a judgment

occurs, there is a certain complex entity, composed of the mind and the

various objects of the judgment. When the judgment is true, in the case of

the kind of judgments we have been considering, there is a corresponding

complex of the objects of the judgment alone. Falsehood, in regard to our

present class ofjudgments, consists in the absence of a corresponding complex

composed of the objects alone. It follows from the above theory that a

"proposition," in the sense in which a proposition is supposed to be the object

of a judgment, is a false abstraction, because a judgment has several objects,

not one. It is the severalness of the objects in judgment (as opposed to

perception) which has led people to speak of thought as "discursive," though
they do not appear to have realized clearly what was meant by this epithet.

Owing to the plurality of the objects of a single judgment, it follows that

what we call a "proposition" (in the sense in which this is distinguished from

the phrase expressing it) is not a single entity at all. That is to say, the phrase

which expresses a proposition is what we call an "incomplete" symbol*; it

does not have meaning in itself, but requires some supplementation in order

to acquire a complete meaning. This fact is somewhat concealed by the

circumstance thatjudgment in itself supplies a sufficient supplement, and that

judgment in itself makes no verbal addition to the proposition. Thus "the

proposition 'Socrates is human"' uses "Socrates is human" in a way which
requires a supplement of some kind before it acquires a complete meaning;
but when I judge "Socrates is human," the meaning is completed by the act of

judging,and we no longer have an incomplete symbol. The fact that propositions

are"incomplete symbols" is important philosophically, and is relevant at certain

points in symbolic logic.

The judgments we have been dealing with hitherto are such as are of the

same form as judgments of perception, i.e. their subjects are always particular

and definite. But there are many judgments which are not of this form. Such
are "all men are mortal," "I met a man," "some men are Greeks." Before

dealing with such judgments, we will introduce some technical terms.

We will give the name of "a complex" to any such object as "a in the re-

lation R to b" or "a having the quality q" or "a and b and c standing in the

relation S." Broadly speaking, a complex is anything which occurs in the

universe and is not simple. We will call a judgment elementary when it

merely asserts such things as " a has the relation R to b," " a has the quality q
"

or "a and b and c stand in the relation S." Then an elementary judgment is

true when there is a corresponding complex, and false when there is no corre-

sponding complex.

But take now such a proposition as "all men are mortal." Here the

judgment does not correspond to one complex, but to many, namely "Socrates

* See Chapter III.
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is mortal," "Plato is mortal," "Aristotle is mortal," etc. (For the moment, it

is unnecessary to inquire whether each of these does not require further

treatment before we reach the ultimate complexes involved. For purposes of

illustration, "Socrates is mortal" is here treated as an elementary judgment,

though it is in fact not one, as will be explained later. Truly elementary

judgments are not very easily found.) We do not mean to deny that there

may be some relation of the concept man to the concept mortal which may be

equivalent to "all men are mortal," but in any case this relation is not the

same thing as what we affirm when we say that all men are mortal. Our
judgment that all men are mortal collects together a number of elementary

judgments. It is not, however, composed of these, since {e.g.) the fact that

Socrates is mortal is no part of what we assert, as may be seen by considering

the fact that our assertion can be understood by a person who has never heard

of Socrates. In prder to understand the judgment "all men are mortal," it is

not necessary to know what men there are. We must admit, therefore, as a

radically new kind ofjudgment, such general assertions as "all men are mortal."

We assert that, given that x is human, x is always mortal. That is, we assert

"x is mortal" of every x which is human. Thus we are able to judge (whether

truly or falsely) that all the. objects which have some assigned property also

have some other assigned property. That is, given any propositional functions

<f>^e and yjr^c, there is a judgment asserting yfrx with every x for which we have

<f>x. Such judgments we will call general judgments.

It is evident (as explained above) that the definition of truth. is different

in the case of general judgments from what it was in the case of elementary

judgments. Let us call the meaning of truth which we gave for elementary

judgments "elementary truth." Then when we assert that it is true that all

men are mortal, we shall mean that all judgments of the form "x is mortal,"

where x is a man, have elementary truth. We may define this as "truth of

the second order" or "second-order truth." Then if we express the proposition

"airmen are mortal" in the form

"(x) . x is mortal, where a? is a man,"

and call this judgment p, then "p is true" must be taken to mean "p has

second-order truth," which in turn means

"(x) . 'x is mortal' has elementary truth, where a; is a man."

In order to avoid the necessity for stating explicitly the limitation to

which our variable is subject, it is convenient to replace the above interpre-

tation of "all men are mortal" by a slightly different interpretation. The
proposition "all men are mortal" is equivalent to "'x is a man' implies 'x is

mortal,' with all possible values of #." Here x is not restricted to such values

as are men, but may have any value with which "'x is a man' implies 'a; is

mortal' " is significant, i.e. either true or false. Such a proposition is called a
" formal implication." The advantage of this form is that the values which the

variable may take are given by the function to which it is the argument: the
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values which the variable may take are all those with which the function is

significant.

We use the symbol "(x).<f>x" to express the general judgment which

asserts all judgments of the form "<f>x." Then the judgment "all men are

mortal" is equivalent to

"(x) . \x is a man' implies 'x is a mortal,'"

i.e. (in virtue of the definition of implication) to

"(x) . x is not a man or x is mortal."

As we have just seen, the meaning of truth which is applicable to this pro-

position is not the same as the meaning of truth which is applicable to "# is a

man" or to "x is mortal." And generally, in any judgment (x) . <f>x, the sense

in which this judgment is or may be true is not the same as that in which <f>x

is or may be true. If <f>x is an elementary judgment, it is true when it points

to a corresponding complex. But (x) . <f>x does not point to a single corre-

sponding complex : the corresponding complexes are as numerous as the possible

values of x.

It follows from the above that such a proposition as "all the judgments

made by Epimenides are true" will only be prima facie capable of truth if all

his judgments are of the same order. If they are of varying orders, of which

the nth is the highest, we may make n assertions of the form "all the judg-

ments of order m made by Epimenides are true," where m has all values up

to n. But no such judgment can include itself in its own scope, since such a

judgment is always of higher order than the judgments to which it refers.

Let us consider next what is meant by the negation of a proposition of

the form "(a?) . $x." We observe, to begin with, that "<f>x in some cases," or

"<f>x sometimes," is a judgment which is on a par with "<f>x in all cases," or

"<f>x always." The judgment "<f>x sometimes" is true if one or more values of

x exist for which <f>x is true. We will express the proposition "<f>x sometimes"

by the notation "(qx) .<f>x," where "g" stands for "there exists," and the

whole symbol may be read "there exists an x such that <f>x." We take the

two kinds of judgment expressed by "(x) . <j>x" and "(g#) . <f>x" as primitive

ideas. We also take as a primitive idea the negation of "an elementary pro-

position. We can then define the negations of (x) . (f>x and (gp) . <f>x. The

negation of any proposition p will be denoted by the symbol "~p." Then the

negation of (x) . <f>x will be defined as meaning

"(a#).~<K'
and the negation of (gp?) . <f>x will be defined as meaning "(x) . ~ <f>x." Thus,

in the traditional language of formal logic, the negation of a universal affir-

mative is to be defined as the particular negative, and the negation of the

particular affirmative is to be defined as the universal negative. Hence the

meaning of negation for such propositions is different from the meaning of

negation for elementary propositions.
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An analogous explanation will apply to disjunction. Consider the state-

ment "either p, or <f>x always." We will denote the disjunction of two

propositions p, q by "p v q." Then our statement is "p . v . (x) . <j>x." We will

suppose that p is an elementary proposition, and that $x is always an elemen-

tary proposition. We take the disjunction of two elementary propositions as

a primitive idea, and we wish to define the disjunction

"p . v . (x) . <f)X."

This may be defined as "(x) .pv <j>x" i.e. "either p is true, or <f>x is always true"

is to mean " 'p or <f>x' is always true." Similarly we will define

"P • v • (3^) $x
"

as meaning "(g#) .p v <f>x," i.e. we define "either p is true or there is an x
for which <f>x is true" as meaning "there is an x for which either p or (f>x is

true." Similarly we can define a disjunction of two universal propositions:

"(x) • $x v . (y) . yfry" will be defined as meaning "(x,y) . <f>x v-tyy," i.e.

"either <f>x is always true or yfry is always true" is to mean '"<f)X or tyy' is

always true." By this method we obtain definitions of disjunctions con-

taining propositions of the form (x) . (f>x or (ftx) . <j>x in terms of disjunctions

of elementary propositions; but the meaning of "disjunction" is not the same
for propositions of the forms (x) . <f>x. (qx) . <f>x, as it was for elementary pro-

positions.

Similar explanations could be given for implication and conjunction, but
this is unnecessary, since these can be defined in terms of negation and
disjunction.

IV. Why a Given Function requires Arguments of a Certain Type.

The considerations so far adduced in favour of the view that a function

cannot significantly have as argument anything defined in terms of the

function itself have been more or less indirect. But a direct consideration

of the kinds of functions which have functions as arguments and the kinds

of functions which have arguments other than functions will show, if we are

not mistaken, that not only is it impossible for a function <f>z to have itself

or anything derived from it as argument; but that, if yjr^ is another function

such that there are arguments a with which both "<f>a" and "yfra" are sig-

nificant, then yfr$ and anything derived from it cannot significantly be
argument to $z. This arises from the fact that a function is essentially

an ambiguity, and that, if it is to occur in a definite proposition, it must
occur in such a way that the ambiguity has disappeared, and a wholly

unambiguous statement has resulted. A few illustrations will make this clear.

Thus "(x) . <f)x," which we have already considered, is a function of <j>£; as soon
as <£& is assigned, we have a definite proposition, wholly free from ambiguity.

But it is obvious that we cannot substitute for the function something which
is not a function: "(x).<f)x" means "<£# in all cases," and depends for its

significance upon the fact that there are "cases" of
<f>%,

i.e. upon the
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ambiguity which is characteristic of a function. This instance illustrates

the fact that, when a function can occur significantly as argument, something

which is not a function cannot occur significantly as argument. But con-

versely, when something which is not a function can occur significantly

as argument, a function cannot occur significantly. Take, e.g. "x is a man,"

and consider "
<f>$

is a man," Here there is nothing to eliminate the

ambiguity which constitutes* <f>x; there is thus nothing definite which is

said to be a man. A function, in fact, is not a definite object, which could

be or not be a man; it is a mere ambiguity awaiting determination, and

in order that it may occur significantly it must receive the necessary deter-

mination, which it obviously does not receive if it is merely substituted

for something determinate in a proposition*. This argument does not, how-

ever, apply directly as against such a statement as "{(x). <f>x] is a man."

Common sense would pronounce such a statement to be meaningless, but it

cannot be condemned on the ground of ambiguity in its subject. We need

here a new objection, namely the following: A proposition is not a single entity,

but a relation of several; hence a statement in which a proposition appears

as subject will only be significant if it can be reduced to a statement about

the terms which appear in the proposition. A proposition, like such phrases

as "the so-and-so," where grammatically it appears as subject, must be broken

up into its constituents if we are to find the true subject or subjects f. But

in such a statement as "p is a man," where p is a proposition, this is not

possible. Hence "{(x) . <£#} is a man" is meaningless.

V. The Hierarchy of Functions and Propositions.

We are thus led to the conclusion, both from the vicious-circle principle

and from direct inspection, that the functions to which a given object a can

be an argument are incapable of being arguments to each other, and that they

have no term in common with the functions to which they can be arguments.

We are thus led to construct a hierarchy. Beginning with a and the other

terms which can be arguments to the same functions to which a can be argu-

ment, we come next to functions to which a is a possible argument, and then

to functions to which such functions are possible arguments, and so on. But

the hierarchy which has to be constructed is not so simple as might at first

appear. The functions which can take a as argument form an illegitimate

totality, and themselves require division into a hierarchy of functions. This

is easily seen as follows. Let f (<j>z, x) be a function of the two variables $z

and x. Theii if, keeping x fixed for the moment, we assert this with all possible

values of
<f>,

we obtain a proposition

:

(<f>).f(^,x).
* Note that statements concerning the significance of a phrase containing "02" concern the

symbol "<p2," and therefore do not fall under the rule that the elimination of the functional

ambiguity is necessary to significance. Significance is a property of signs. Cf. pp. 40, 41.

t Cf . Chapter III.
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Here, if x is variable, we have a function of x; but as this function involves

a totality of values of <pz*, it cannot itself be one of the values included in

the totality, by the vicious-circle principle. It follows that the totality ofvalues
of 02 concerned in

(<f>) .f (<f>2, x) is not the totality of all functions in which
x can occur as argument, and that there is no such totality as that of all func-
tions in which x can occur as argument.

It follows from the above that a function in which
<f>2 appears as argument

requires that "$$" should not stand for any function which is capable of a
given argument, but must be restricted in such a way that none of the
functions which are possible values of "<f>2" should involve any reference to

the totality of such functions. Let us take as an illustration the definition

of identity. We might attempt to define "x is identical with y" as meaning
"whatever is true of x is true of y," i.e. "<f>x always implies

(f>y." But here,

since we are concerned to assert all values of "<j>x implies
<f>y

" regarded as a
function of

<f>,
we shall be compelled to impose upon <j> some limitation which

will prevent us from including among values of
<f>

values in which "all possible

values of cf>" are referred to. Thus for example "x is identical with a" is a
function of x; hence, if it is a legitimate value of

<f>
in "<f>x always implies

<f>y" we shall be able to infer, by means of the above definition, that if x is

identical with a, and x is identical with y, then y is identical with a.

Although the conclusion is sound, the reasoning embodies a vicious-circle

fallacy, since we have taken
"(<f>)

. <f>x implies <f>a" as a possible value of <f>x,

which it cannot be. If, however, we impose any limitation upon
<f>,

it may
happen, so far as appears at present, that with other values of $ we might
have <f>x true and

<f>y false, so that our proposed definition of identity would
plainly be wrong. This difficulty is avoided by the "axiom of reducibility,"

to be explained later. For the present, it is only mentioned in order to

illustrate the necessity and the relevance of the hierarchy of functions of a
given argument.

Let us give the name "a-functions" to functions that are significant for a
given argument a. Then suppose we take any selection of a-functions, and
consider the proposition "a satisfies all the functions belonging to the selection

in question." If we here replace a by a variable, we obtain an a-function; but
by the vicious-circle principle this a-function cannot be a member of our
selection, since it refers to the whole of the selection. Let the selection consist

of all those functions which satisfy/ (<f>z). Then our new function is

((f)) . {f(<fiz) implies <f>x},

where x is the argument. It thus appears that, whatever selection of

a-functions we may make, there will be other a-functions that lie outside our

* When we speak of "values of <p$" it is <p, not z, that is to be assigned. This follows from
the explanation in the note on p. 40. When the function itself is the variable, it is possible and
simpler to write <j> rather than <f>z, except in positions where it is necessary to emphasize that an
argument must be supplied to secure significance.

R&W I 4
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selection. Such <z-functions, as the above instance illustrates, will always

arise through taking a function of two arguments, <j>% and x, and asserting all

or some of the values resulting from varying
<f>.

What is necessary, therefore,

in order to avoid vicious-circle fallacies, is to divide our a-functions into

"types," each of which contains no functions which refer to the whole of that

type.

When something is asserted or denied about all possible values or about

some (undetermined) possible, values of a variable, that variable is called

apparent, after Peano. The presence of the words all or some in a proposition

indicates the presence of an apparent variable ; but often an apparent variable

is really present where language does not at once indicate its presence. Thus

for example "A is mortal" means "there is a time at which A will die," Thus

a variable time occurs as apparent variable.

The clearest instances of propositions not containing apparent variables

are such as express immediate judgments of perception, such as "this is red"

or "this is painful," where "this" is something immediately given. In other

judgments, even where at first sight no variable appears to be present, it

often happens that there really is one. Take (say) "Socrates is human." To

Socrates himself, the word "Socrates" no doubt stood for an object of which

he was immediately aware, and the judgment "Socrates is human" contained

no apparent variable. But to us, who only know Socrates by description, the

word "Socrates" cannot mean what it meant to him; it means rather "the

person having such-and-such properties," (say) " the Athenian philosopher who

drank the hemlock." Now in all propositions about "the so-and-so" there is

an apparent variable, as will be shown in Chapter III. Thus in what we have

in mind when we say "Socrates is human" there is an apparent variable,

though there was no apparent variable in the corresponding judgment as

made by Socrates, provided we assume that there is such a thing as immediate

awareness of oneself.

Whatever may be the instances of propositions not containing apparent

variables, it is obvious that propositional functions whose values do not contain

apparent variables are the source of propositions containing apparent variables,

in the sense in which the function <f>£ is the source of the proposition (x) . $oc.

For the values for
<f>^

do not contain the apparent variable x, which appears

in (x).<j>x; if they contain an apparent variable y, this can be similarly

eliminated, and so on. This process must come to an end, since no proposition

which we can apprehend can contain more than a finite number of apparent

variables, on the ground that whatever we can apprehend must be of finite

complexity. Thus we must arrive at last at a function of as many variables

as there have been stages in reaching it from our original proposition, and

this function will be such that its values contain no apparent variables. We
may call this function the matrix of our original proposition and of any other
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propositions and functions to be obtained by turning some of the arguments

to the function into apparent variables. Thus for example, if we have a matrix-

function whose values are ^> (x, y), we shall derive from it

(y) .
<f>

(x, y), which is a function of x,

(x) . <]> (x,y), which is a function of y,

(x, y) . <£ (x, y), meaning "<f> (x, y) is true with all possible values of x and y."

This last is a proposition containing no real variable, i.e. no variable except

apparent variables.

It is thus plain that all possible propositions and functions are obtainable

from matrices by the process of turning the arguments to the matrices into

apparent variables. In order to divide our propositions and functions into types,

we shall, therefore, start from matrices, and consider how they are to be divided

with a view to the avoidance of vicious-circle fallacies in the definitions of the

functions concerned. For this purpose, we will use such letters as a, b, c, x, y, z, w,

to denote objects which are neither propositions nor functions. Such objects

we shall call individuals. Such objects will be constituents of propositions or

functions, and will be genuine constituents, in the sense that they do not

disappear on analysis, as (for example) classes do, or phrases of the form "the

so-and-so."

The first matrices that occur are those whose values are of the forms

4>Xy^{x,y\x{oD,y,z...),

i.e. where the arguments, however many there may be, are all individuals.

The functions
<f),

tjr, %..., since (by definition) they contain no apparent

variables, and have no arguments except individuals, do not presuppose any

totality of 'functions. From the functions ^r, ^ ... we may proceed to form

other functions of x, such as (y) . yjr (x, y), (gy) . ty (x, y), (y, z) . % {«>, y, z),

(y) '• (3^) X (x> V> ?)> an(^ so on- -^^ these presuppose no totality except that

of individuals. We thus arrive at a certain collection of functions of x,

characterized by the fact that they involve no variables except individuals.

Such functions we will call "first-order functions."

We may now introduce a notation to express "any first-order function."

We will denote any first-order function by "<f>\&" and any value for such a

function by
"<f>

! x." Thus "<f> I x" stands for any value for any function which

involves no variables except individuals. It will be seen that
"<f>

I x" is itself

a function of two variables, namely <£ Vz and x. Thus
<f>

I x involves a variable

which is not an individual, namely <£ ! z. Similarly "(x) .
<f>

! x" is a function

of the variable <j> 1 1, and thus involves a variable other than an individual.

Again, if a is a given individual,

"<f>lx implies
(f>

! a with all possible values of
<f>"

is a function of x, but it is not a function of the form ^> ! x, because it involves

an (apparent) variable
<f>
which is not an individual. Let us give the name

"predicate" to any first-order function
<f>

I tb. (This use of the word "predicate"

4—2
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is only proposed for the purposes of the present discussion.) Then the state-

ment "<f>lx implies
<f)

I a with all possible values of
<f>"

may be read "all the

predicates of x are predicates of a." This makes a statement about #,but does

not attribute to # a predicate in the special sense just defined.

Owing to the introduction of the variable first-order function 0!.t, we

now have a new set of matrices. Thus "^> ! x" is a function which contains no

apparent variables, but contains the two real variables cf> ! z and x. (It should

be observed that when
<f>

is assigned, we may obtain a function whose values do

involve individuals as apparent variables, for example if
<f>

I x is (y) . yfr (x, y).

But so long as <£ is variable,
<f)

! x contains no apparent variables.) Again,

if a is a definite individual, <j> ! a is a function of the one variable
<f>

! 2.

If a and b are definite individuals, "<]>la implies yfr ! b" is a function of the

two variables
<f>

! 2, yfr ! t, and so on. We are thus led to a whole set of new

matrices,

/ (<j> ! z), g (<t>
I % "f ! 2), F{<f> I % x), and so on.

These matrices contain individuals and first-order functions as arguments, but

(like all matrices) they contain no apparent variables. Any such matrix, if it

contains more than one variable, gives rise to new functions of one variable

by turning all its arguments except one into apparent variables. Thus we

obtain the functions

(<f>)
.g(<$>\z, ">jrlz), which is a function of yjr I z.

(x) ,F(<j>lz, x\ which is a function of <£ ! z.

(0) .F((f>lz, x), which is a function of x.

We will give the name of second-order matrices to such matrices as have

first-order functions among their arguments, and have no arguments except

first-order functions and individuals. (It is not necessary that they should

have individuals among their arguments.) We will give the name of second-

order functions to such as either are second-order matrices or are derived from

such matrices by turning some of the arguments into apparent variables. It

will be seen that either an individual or a first-order function may appear as

argument to a second-order function. Second-order functions are such as con-

tain variables which are first-order functions, but contain no other variables

except (possibly) individuals.

We now have various new classes of functions at our command. In the first

place, we have second-order functions which have one argument which is a

first-order function. We will denote a variable function of this kind by the

notation f\ (<£ ! z), and any value of such a function by f\ (<£ ! z). Like

<j> ! x, fl(tf>l z) is a function of two variables, namely f\ (<£ ! z) and <j> I z. Among
possible values of /!(</>!£) will be

<f>
! a (where a is constant), (x).<j>lx,

(3#) .<j>lx, and so on. (These result from assigning a value to /, leaving

$ to be assigned.) We will call such functions "predicative functions of

first-order functions."
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In the second place, we have second-order functions of two arguments, one

of which is a first-order function while the other is an individual. Let us denote

undetermined values of such functions by the notation

As soon as x is assigned, we shall have a predicative function of <j> ! z. If our

function contains no first-order function as apparent variable, we shall obtain

a predicative function of x if we assign a value to
<f>

1 2. Thus, to take the

simplest possible case, if/!
(<f>

! z, x) is
<f>

! #,the assignment of a value to
<f>
gives

us a predicative function of x, in virtue of the definition of "
<f>

! x. " But if

f\ (<f>
1 2, x) contains a first-order function as apparent variable, the assignment

of a value to <£ ! z gives us a second-order function of x.

In the third place, we have second-order functions of individuals. These

will all be derived from functions of the form/! (</> ! z, x) by turning
<f>

into an

apparent variable. We do not, therefore, need a new notation for them.

We have also second-order functions of two first-order functions, or of two

such functions and an individual, and so on.

We may now proceed in exactly the same way to third-order matrices,

which will be functions containing second-order functions as arguments, and

containing no apparent variables, and no arguments except individuals and

first-order functions and second-order functions. Thence we shall proceed, as

before, to third-order functions; and so we can proceed indefinitely. If the

highest order of variable occurring in a function, whether as argument or as

apparent variable, is a function of the nth order, then the function in which

it occurs is of the n + 1th order. We do not arrive at functions of an infinite

order, because the number of arguments and of apparent variables in a function

must tye finite, and therefore every function must be of a finite order. Since

the orders of functions are only defined step by step, there can be no process

of " proceeding to the limit," and functions of an infinite order cannot occur.

We will define a function of one variable as predicative when it is of the

next order above that of its argument,, i.e. of the lowest order compatible with

its having that argument. If a function has several arguments, and the highest

order of function occurring among the arguments is the nth, we call the function

predicative if it is of the n -f- 1th order, i.e. again, if it is of the lowest order

compatible with its having the arguments it has. A function of several

arguments is predicative if there is one of its arguments such that, when the

other arguments have values assigned to them, we obtain a predicative function

of the one undetermined argument.

It is important to observe that all possible functions in the above hierarchy

can be obtained by means of predicative functions and apparent variables. Thus,

as we saw, second-order functions of an individual x are of the form

(<f>) ./! (<f>
! z,x) or (gtf>) . /! (<f>

! % x) or
(<f>, f) ./! (<f>

! z, -f ! % x) or etc.,

where f is a second-order predicative function. And speaking generally, a
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non-predicative function of the nth order is obtained from a predicative function

of the nth order by turning all the arguments of the n — 1th order into apparent

variables. (Other arguments also may be turned into apparent variables.) Thus

we need not introduce as variables any functions except predicative functions.

Moreover, to obtain any function of one variable x, we need not go beyond

predicative functions of two variables. For the function (yjr) ./! (<£> ! 2, ty !

/
z, x),

where / is given, is a function of <j> 1 1z and x, and is predicative. Thus it is of

the form F ! (cf> I z, x), and therefore
(<f>, ty) ./! (<f>

! £, yfr I z, x) is of the form

(<£) . F ! (</> ! £, x). Thus speaking generally, by a succession of steps we find that,

if $ ! u is a predicative function of a sufficiently high order, any assigned non-

predicative function of x will be of one of the two forms

where F is a predicative function of
<f>

I u and x.

The nature of the above hierarchy of functions may be restated as follows.

A function, as we saw at an earlier stage, presupposes as part of its meaning

the totality of its values, or, what comes to the same thing, the totality of

its possible arguments. The arguments to a function may be functions or

propositions or individuals. (It will be remembered that individuals were

defined as whatever is neither a proposition nor a function.) For the present

we neglect the case in which the argument to a function is a proposition.

Consider a function whose argument is an individual. This function pre-

supposes the totality of individuals; but unless it contains functions as

apparent variables, it does not presuppose any totality of functions. If,

however, it does contain a function as apparent variable, then it cannot

be defined until some totality of functions has been defined. It follows that

we must first define the totality of those functions that have individuals

as arguments and contain no functions as apparent variables. These are

the predicative functions of individuals. Generally, a predicative function

of a variable argument is one which involves no totality except that of

the possible values of the argument, and those that are presupposed by any

one of the possible arguments. Thus a predicative function of a variable

argument is any function which can be specified without introducing new
kinds of variables not necessarily presupposed by the variable which: is the

argument.

A closely analogous treatment can be developed for propositions. Pro-

positions which contain no functions and no apparent variables may be called

elementary propositions. Propositions which are not elementary, which contain

no functions, and no apparent variables except individuals, may be called

first-order propositions. (It should be observed that no variables except

apparent variables can occur in a proposition, since whatever contains a real

variable is a function, not a proposition.) Thus elementary and first-order

propositions will be values of first-order functions. (It should be remembered



n] THE AXIOM OF REDUCIBILITY 55

that a function is not a constituent in one of its values : thus for example

the function " £ is human " is not a constituent of the proposition' " Socrates

is human.") Elementary and first-order propositions presuppose no totality

except (at most) the totality of individuals. They are of one or other of the

three forms , , , x , , . x , .

<j>lx; (x).<f>lx; {Qx).<p\x,

where
<f>

I x is a predicative function of an individual. If follows that, if p
represents a variable elementary proposition or a variable first-order propo-

sition, a function^ is either/(<£ ! x) orf{(x) .<f>lx] or/{(g#) .<f>lx}. Thus

a function of an elementary or a first-order proposition may always be reduced

to a function of a first-order function. It follows that a proposition involving

the totality .of first-order propositions may be reduced to one involving the

totality of first-order functions ; and this obviously applies equally to higher

orders. The propositional hierarchy can, therefore, be derived from the

functional hierarchy, and we may define a proposition of the nth order as

one which involves an apparent variable of the n — 1th order in the functional

hierarchy. The propositional hierarchy is never required in practice, and is

only relevant for the solution of paradoxes ; hence it is unnecessary to go into

further detail as to the types of propositions.

VI. The Axiom of Reductibility.

It remains to consider the " axiom of reducibility." It will be seen that,

according to the above hierarchy, no statement can be made significantly

about " all a-functions," where a is some given object. Thus such a notion

as " all properties of a," meaning " all functions which are true with the

argument a" will be illegitimate. We shall have to distinguish the order

of function concerned. We can speak of " all predicative properties of a/**" all

second-order properties of a," and so on. (If a is not an individual, but an

object of order w, " second-order properties of a" will mean " functions of

order n + 2 satisfied by a") But we cannot speak of " all properties of a."

In some cases, we can see that some statement will hold of " all wth-order

properties of a," whatever value n may have. In such cases, no practical

harm results from regarding the statement as being about " all properties of

a" provided we remember that it is really a number of statements, and not

a single statement which could be regarded as assigning another property to

a, over and above all properties. Such cases will always involve some syste-

matic ambiguity, such as that involved in the meaning of the word "truth,"

as explained above. Owing to this systematic ambiguity, it will be possible,

sometimes, to combine into a single verbal statement what are really a number

of different statements, corresponding to different orders in the hierarchy.

This is illustrated in the case of the liar, where the statement "all A's

statements are false " should be broken up into different statements referring

to his statements of various orders, and attributing to each the appropriate

kind of falsehood.
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The axiom of reducibility is introduced in order to legitimate a great

mass of reasoning, in which, prima facie, we are concerned with such notions

as "all properties of a" or "all a-functions," and in which, nevertheless, it

seems scarcely possible to suspect any substantial error. In order to state

the axiom, we must first define what is meant by " formal equivalence." Two
functions </>&, -*}/£ are said to be "formally equivalent" when, with every possible

argument x, <f>x is equivalent to tyx, i.e. <j>x and yjrx are either both true or

both false. Thus two functions are formally equivalent when they are satisfied

by the same set of arguments. The axiom of reducibility is the assumption

that, given any function <f)fc, there is a formally equivalent predicative function,

i.e. there is a predicative function which is true when <j>x is true and false

when <f>x is false. In symbols, the axiom is

:

h : (^) : (f>x . =x . yjrl x.

For two variables, we require a similar axiom, namely: Given any function

<j> (&, p), there is a formally equivalent predicative function, i.e.

\-
: (a^r) :

<f>
(x, y) . =x>y . yfr I (x, y).

In order to explain the purposes of the axiom of reducibility, and the nature

of the grounds for supposing it true, we shall first illustrate it by applying it

to some particular cases.

If we call a predicate of an object a predicative function which is true of

that object, then the predicates of an object are only some among its properties.

Take for example such a proposition as " Napoleon had all the qualities that

make a great general." We may interpret this as meaning "Napoleon had all

the predicates that make a great general." Here there is a predicate which is

an apparent variable. If we put "f(<j> I z)" for
"<f> I % is a predicate required

in a great general," our proposition is

(<£) :/(</> ! z) implies <j> ! (Napoleon).

Since this refers to a totality of predicates, it is not itself a predicate of

Napoleon. It by no means follows, however, that there is not some one predicate

common and peculiar to great generals. In fact, it is certain that there is such
a predicate. For the number of great generals is finite, and each of them
certainly possessed some predicate not possessed by any other human being
—for example, the exact instant of his birth. The disjunction ofsuch predicates

will constitute a predicate common and peculiar to great generals*. If we
call this predicate yfr ! z, the statement we made about Napoleon was equi-

valent to yfr I (Napoleon). And this equivalence holds equally if we substitute

any other individual for Napoleon. Thus we have arrived at a predicate which
is always equivalent to the property we ascribed to Napoleon, i.e. it belongs
to those objects which have this property, and to no others. The axiom of

reducibility states that such a predicate always exists, i.e. that any property

* When a (finite) set of predicates is given by actual enumeration, their disjunction is a
predicate, because no predicate occurs as apparent variable in the disjunction.
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of an object belongs to the same collection of objects as those that possess

some predicate.

We may next illustrate our principle by its application to identity. In

this connection, it has a certain affinity with Leibniz's identity of indiscernibles.

It is plain that, if x and y are identical, and <f>cc is true, then $y is true. Here

it cannot matter what sort of function $5b may be : the statement must hold

for any function. But we cannot say, conversely :
" If, with all values of <£,

<j>x implies <j>y, then x and y are identical " ; because "all values of
<f>

" is

inadmissible. If we wish to speak of "all values of
<f>,"

we must confine

ourselves to functions of one order. We may confine
<f>

to predicates, or to

second-order functions, or to functions of any order we please. But we must
necessarily leave out functions of all but one order. Thus we shall obtain, so

to speak, a hierarchy of different degrees of identity. We may say " all the

predicates of x belong to y," " all second-order properties of x belong to y,"

and so on. Each of these statements implies all its predecessors : for

example, if all second-order properties of x belong to y, then all predicates

of x belong to y, for to have all the predicates of a; is a second-order property,

and this property belongs to x. But we cannot, without the help of an axiom,

argue conversely that if all the predicates of # belong to y, all the second-order

properties of x must also belong to y. Thus we cannot, without the help of

an axiom, be sure that x and y are identical if they have the same predicates.

Leibniz's identity of indiscernibles supplied this axiom. It should be observed

that by " indiscernibles " he cannot have meant two objects which agree as to

all their properties, for one of the properties of x is to be identical with x,

and therefore this property would necessarily belong to y if x and y agreed

in all their properties. Some limitation of the common properties necessary

to make things indiscernible is therefore implied by the necessity of an axiom.

For purposes of illustration (not of interpreting Leibniz) we may suppose the

common properties required for indiscernibility to be limited to predicates.

Then the identity of indiscernibles will state that if x and y agree as to

all their predicates, they are identical. This can be proved if we assume the
axiom of reducibility. For, in that case, every property belongs to the same
collection of objects as is defined by some predicate. Hence there is some
predicate common and peculiar to the objects which are identical with x.

This predicate belongs to x, since x is identical with itself; hence it belongs
to y, since y has all the predicates of x ; hence y is identical with x. It

follows that we may define x and y as identical when all the predicates of x
belong to y, i.e. when

(<f>)
:

<f>
! x . D .

<f>
! y. We therefore adopt the following

definition of identity*:

x=y. = :(<f>):<f>lx.D.<f>ly Df.

* Note that in this definition the second sign of equality is to be regarded as combining with
"T>( " to form one symbol; what is defined is the sign of equality not followed by the letters "Df."
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But apart from the axiom of reducibility, or some axiom equivalent in this

connection, we should be compelled to regard identity as indefinable, and to

admit (what seems impossible) that two objects may agree in all their pre-

dicates without being identical.

The axiom of reducibility is even more essential in the theory of classes.

It should be observed, in the first place, that if we assume the existence of

classes, the axiom of reducibility can be proved. For in that case, given any

function $z of whatever order, there is a class a consisting of just those

objects which satisfy $z. Hence "<£#" is equivalent to "x belongs to or."

But " x belongs to a " is a statement containing no apparent variable, and is

therefore a predicative function of x. Hence if we assume the existence of

classes, the axiom of reducibility becomes unnecessary. The assumption of

the axiom of reducibility is therefore a smaller assumption than the assump-

tion that there are classes. This latter assumption has hitherto been made

unhesitatingly. However, both on the ground of the contradictions, which

require a more complicated treatment if classes are assumed, and on the ground

that it is always well to make the smallest assumption required for proving

our theorems, we prefer to assume the axiom of reducibility rather than the

existence of classes. But in order to explain the use of the axiom in dealing

with classes, it is necessary first to explain the theory of classes, which is a

topic belonging to Chapter III. We therefore postpone to that Chapter the

explanation of the use of our axiom in dealing with classes.

It is worth while to note that all the purposes served by the axiom of

reducibility are equally well served if we assume that there is always a function

of the nth order (where n is fixed) which is formally equivalent to <f>x, what-

ever may be the order of <£&. Here we shall mean by "a function of the nth

order" a function of the nth order relative to the arguments to <££ ; thus if

these arguments are absolutely of the rath order, we assume the existence of

a function formally equivalent to <f>&
whose absolute order is the m + nth. The

axiom of reducibility in the form assumed above takes n = 1, but this is not

necessary to the use of the axiom. It is also unnecessary that n should be the

same for different values of ra; what is necessary is that n should be constant

so long as m is constant. What is needed is that, where extensional functions

of functions are concerned, we should be able to deal with any a-function by

means of some formally equivalent function of a given type, so as to be able

to obtain results which would otherwise require the illegitimate notion of

" all a-functions " ; but it does not matter what the given type is. It does

not appear, however, that the axiom of reducibility is rendered appreciably

more plausible by being put in the above more general but more complicated

form.

The axiom of reducibility is equivalent to the assumption that "any



II] THE AXIOM OF REDUCIBILITY 59

combination or disjunction of predicates* is equivalent to a single predicate,"

i.e. to the assumption that, if we assert that x has all the predicates that

satisfy a function f {<f>
I z), there is some one predicate which x will have

whenever our assertion is true, and will not have whenever it is false, and

similarly ifwe assert that x has some one of the predicates that satisfy a function

f(<f>lz). For by means of this assumption, the order of a non-predicative function

can be lowered by one; hence, after some finite number of steps, we shall be able

to get from any non-predicative function to a formally equivalent predicative

function. It does not seem probable that the above assumption could be

substituted for the axiom of reducibility in symbolic deductions, since its use

would require the explicit introduction of the further assumption that by a

finite number of downward steps we can pass from any function to a predicative

function, and this assumption -could not well be made without developments

that are scarcely possible at an early stage. But on the above grounds it seems

plain that in fact, if the above alternative axiom is true, so is the axiom of

reducibility. The converse, which completes the proof of equivalence, is of

course evident.

VII. Reasons for Accepting the Axiom of Reducibility.

That the axiom of reducibility is self-evident is a proposition which can

hardly be maintained. But in fact self-evidence is never more than a part of

the reason for accepting an axiom, and is never indispensable. The reason

for accepting an axiom, as for accepting any other proposition, is always

largely inductive, namely that many propositions which are nearly indubitable

can be deduced from it, and that no equally plausible way is known by which

these propositions could be true if the axiom were false, and nothing which is

probably false can be deduced from it. If the axiom is apparently self-evident,

that only means, practically, that it is nearly indubitable; for things have

been thought to be self-evident and have yet turned out to be false. And if

the axiom itself is nearly indubitable, that merely adds to the inductive

evidence derived from the fact that its consequences are nearly indubitable

:

it does not provide new evidence of a radically different kind. Infallibility is

never attainable, and therefore some element of doubt should always attach

to every axiom and to all its consequences. In formal logic, the element of

doubt is less than in most sciences, but it is not absent, as appears from the

fact that the "paradoxes followed from premisses which were not previously

known to require limitations. In the case of the axiom of reducibility, the

inductive evidence in its favour is very strong, since the reasonings which it

permits and the results to which it leads are all such as appear valid. But

although it seems very improbable that the axiom should turn out to be false,

* Here the combination or disjunction is supposed to be given intensionally. If given exten-

sionally (i.e. by enumeration), no assumption is required ; but in this case the number of

predicates concerned must be finite.
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it is by no means improbable that it should be found to be deducibie from

some other more fundamental and more evident axiom. It is possible that the

use of the vicious-circle principle, as embodied in the above hierarchy of types,

is more drastic than it need be, and that by a less drastic use the necessity

for the axiom might be avoided. Such changes, however, would not render

anything false which had been asserted on the basis of the principles explained

above : they would merely provide easier proofs of the same theorems. There

would seem, therefore, to be but the slenderest ground for fearing that the

use of the axiom of reducibility may lead us into error.

VIII. The Contradictions.

We are now in a position to show how the theory of types affects the

solution of the contradictions which have beset mathematical logic. For this

purpose, we shall begin by an enumeration of some of the more important and

illustrative of these contradictions, and shall then show how they all embody

vicious-circle fallacies, and are therefore all avoided by the theory of types. It

will be noticed that these paradoxes do not relate exclusively to the ideas of

number and quantity. Accordingly no solution can be adequate which seeks

to explain them merely as the result of some illegitimate use of these ideas.

The solution must be sought in some such scrutiny of fundamental logical

ideas as has been attempted in the foregoing pages.

(1) The oldest contradiction of the kind in question is the Epimenides.

Epimenides the Cretan said that all Cretans were liars, and all other state-

ments made by Cretans were certainly lies. Was this a lie ? The simplest form

of this contradiction is afforded by the man who says "I am lying"; if he is

lying, he is speaking the truth, and vice versa.

(2) Let w be the class of all those classes which are not members of

themselves. Then, whatever class x may be, "« is a w" is equivalent to "oc is

not an w." Hence, giving to w the value w, "w is a w" is equivalent to

"w is not a w."

(3) Let T be the relation which subsists between two relations R and 8
whenever R does not have the relation R to S. Then, whatever relations

R and S may be, "R has the relation T to S" is equivalent to "R does not

have the relation R to S." Hence, giving the value T to both R and 8,

"T has the relation T to T" is equivalent to "T does not have the relation

T to T."

(4) Burali-Forti's contradiction* may be stated as follows : It can be

shown that every well-ordered series has an ordinal number, that the series of

ordinals up to and including any given ordinal exceeds the given ordinal by

one, and (on certain very natural assumptions) that the series of all ordinals

(in order of magnitude) is well-ordered. It follows that the series of .all

* "Una questione sui numeri transfiniti," Rendiconti del circolo matematico di Palermo, Vol.

xi. (1897). See *256.
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ordinals has an ordinal number, X2 say. But in that case the series of all

ordinals including X2 has the ordinal number O + 1, which must be greater

than .XI. Hence XI is not the ordinal number of all ordinals.

(5) The number of syllables in the English names of finite integers

tends to increase as the integers grow larger, and must gradually increase

indefinitely, since only a finite number of names can be made with a given

finite number of syllables. Hence the names of some integers must consist of

at least nineteen syllables, and among these there must be a least. Hence "the

least integer not nameable in fewer than nineteen syllables" must denote a

definite integer; in fact, it denotes 111,777. But "the least integer not

nameable in fewer than nineteen syllables " is itself a name consisting of

eighteen syllables; hence the least integer Ikot nameable in fewer than nine-

teen syllables can be named in eighteen syllables, which is a contradiction*.

(6) Among transfinite ordinals some can be defined, while others can not;

for the total number of possible definitions is K f, while the number of trans-

finite ordinals exceeds K . Hence there must be indefinable ordinals, and
among these there must be a least. But this is defined as " the least indefinable

ordinal," which is a contradiction
J.

(7) Richard's paradox § is akin to that of the least indefinable ordinal. It

is as follows : Consider all decimals that can be defined by means of a finite

number of words ; let E be the class of such decimals. Then E has tf terms;

hence its members can be ordered as the 1st, 2nd, 3rd, .... Let N be a number
defined as follows: If the nth figure in the nth decimal is p, let the nth

figure in N be p + 1 (or 0, if p = 9). Then N is different from all the members
of E, since, whatever finite value n may have, the nth figure in N is different

from the nth.figure in the nth of the decimals composing E, and therefore N
is different from the nth decimal. Nevertheless we have defined N in a finite

number of words, and therefore N ought to be a member of E. Thus N both

is and is not a member of E.

In all the above contradictions (which are merely selections from an

indefinite number) there is a common characteristic, which we may describe

as self-reference or reflexiveness. The remark of Epimenides must include

itself in its own scope. If all classes, provided they are not members of them-

selves, are members of w, this must also apply to w ; and similarly for the
* This contradiction was suggested to us by Mr G. G. Berry of the Bodleian Library.

f N is the number of finite integers. See *123.

X Cf. Konig, "Ueber die Grundlagen der Mengenlehre und das Kontinuumproblem," Math.

Annalen, Vol. lxi. (1905); A. C. Dixon, "On 'well-ordered' aggregates," Proc. London Math.
Soc, Series 2, Vol. iv. Part i. (1906); and E. W. Hobson, "On the Arithmetic Continuum," ibid.

The solution offered in the last of these papers depends upon the variation of the "apparatus of

definition," and is thus in outline in agreement with the solution adopted here. But it does not

invalidate the statement in the text, if "definition" is given a constant meaning.

§ Cf. Poincare, "Les mathematiques et la logique," Revue de Metaphysiqve et de Morale,

Mai 1906, especially sections vn. and ix.; also Peano, Revista de Mathematiea, Vol. vm. No. 5

(1906), p. 149 fit.
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analogous relational contradiction. In the cases of names and definitions, the

paradoxes result from considering non-nameability and indefinability as ele-

ments in names and definitions. In the case of Burali-Forti's paradox, the

series whose ordinal number causes the difficulty is the series of all ordinal

numbers. In each contradiction something is said about all cases of some kind,

and from what is said a new case seems to be generated, which both is and is not

of the same kind as-the cases of which all were concerned in what was said.

But this is the characteristic of illegitimate totalities, as we defined them in

stating the vicious-circle principle. Hence all our contradictions are illustra-

tions of vicious-circle fallacies. It only remains to show, therefore, that the

illegitimate totalities involved are excluded by the hierarchy of types which

we have constructed.

(1) When a man says "I am lying," we may interpret his statement as:

"There is a proposition which I am affirming and which is false." That is to

say, he is asserting the truth of -some value of the function "I assert p, and p
is false." But we saw that the word "false" is ambiguous, and that, in order

to make it unambiguous, we must specify the order of falsehood, or, what comes

to the same thing, the order of the proposition to which falsehood is ascribed.

We saw also that, ifp is a proposition of the nth order, a proposition in which

p occurs as an apparent variable is not of the nth order, but of a higher order.

Hence the kind of truth or falsehood which can belong to the statement "there

is a proposition p which I am affirming and which has falsehood of the nth

order" is truth or falsehood of a higher order than the nth. Hence the state-

ment of Epimenides does not fall within its own scope, and therefore no

contradiction emerges.

If we regard the-statement "I am lying " as a compact way of simultaneously

making all the following statements: teI am asserting a false proposition of the

first order," "I am asserting a false proposition of the second order," and so on,

we find the following curious state of things: As no proposition of the first

order is being asserted, the statement "I am asserting a false proposition of

the first order" is False. This statement is of the second order/hence the

statement "I am making a false statement Of the second order" is true. This

is a statement of the third order,-and is the only statement of the third order

which is being made. Hence the statement "I am making a false statement

of the third order" is false. Thus we see that the statement "I am making a

false statement of order 2n + 1" is false, while the statement "I am making

a false statement of order 2n" is true. But in this state of things there is no

contradiction.

(2) In order to solve the contradiction about the class of classes which are

not members of themselves, we shall assume, what will be explained in the

next Chapter, that a proposition about a class is always to be reduced to a

statement about a function which defines the class, i.e. about a function which
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is satisfied by the members of the class and by no other arguments. Thus a

class is an object derived from a function and presupposing the function, just

as, for example, (x) . <j>x presupposes the function <p£. Hence a class cannot,

by the vicious-circle principle, significantly be the argument to its defining

function, that is to say, if we denote by u
z(<f)z)" the class defined by $%, the

symbol "<£ [z (fa)}" must be meaningless. Hence a class neither satisfies nor

does not satisfy its defining function, and therefore (as will appear more fully

in Chapter III) is neither a member of itself nor not a member of itself. This

is an immediate consequence of the limitation to the possible arguments to a
function which was explained at the beginning of the present Chapter. Thus

if a is a class, the statement "a is not a member of a" is always meaningless,

and there is therefore ho sense in the phrase "the class of those classes which

are not members of themselves." Hence the contradiction which results from

supposing that there is such a class disappears.

(3) Exactly similar remarks apply to "the relation which holds between

R and S whenever R does not have the relation R to S." Suppose the

relation R is defined by a function <j> (#, y), i.e. R holds between x and y
whenever

<f>
(x, y) is true, but not otherwise. Then in order to interpret

"R has the relation R to S," we shall have to suppose that R and S can

significantly be the arguments to 4>. But (assuming, as will appear in

Chapter HI, that R presupposes its defining function) this would require

that </> should be able to take as argument ,an object which is defined in

terms of ^>, and this no function can do, as we saw at the beginning of this

Chapter. Hence "R has the relation R to S" is meaningless, and the contra-

diction ceases.

(4) The solution of Burali-FortTs contradiction requires some further

developments for its solution. At this stage, it must suffice to observe that

a series is a relation, and an ordinal number is a class of series. (These state-

ments are justified in the body of the-work.) Hence a series of ordinal numbers

is a relation between classes of relations, and is of higher type than any of the

series which are members of the ordinal numbers in question. Burali-Forti's

"ordinal number of all ordinals" must be the ordinal number of all ordinals of

a given type, and must therefore be of higher type than any of these ordinals.

Hence it is not one of these ordinals, and there is no contradiction in its being

greater than any of them *.

(5) The paradox about "the least integer not nameabJe in fewer than

nineteen syllables" embodies, as is at once obvious, a vicious-circle fallacy.

For the word " nameable" refers to the totality of names, and yet is allowed

to occur in what professes to be one among names. Hence there can be no

such thing as a totality of names, in the sense in which the paradox speaks

* The solution of Burali-Forti's paradox by means of the theory of types is given in detail ia

*256.
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of "names." It is easy to see that, in virtue of the hierarchy of functions;

the theory of types renders a totality of "names" impossible. We may, in

fact, distinguish names of different orders as follows: (a) Elementary names

will be such as are true "proper names," i.e. conventional appellations not

involving any description, (b) First-order names will be such as involve a

description by means of a first-order function; that is to say, if <j> I & is a first-

order function, "the term which satisfies <j>\£" will be a first-order name,

though there will not always be an object named by this name, (c) Second-

order names will be such as involve a description by means of a second-order

function; among such names will be those involving a reference to the totality

of first-order names. And so we can proceed through a whole hierarchy. But

at no stage can we give a meaning to the word "nameable" unless we specify

the order of names to be employed; and any name in which the phrase "name-

able by names of order n " occurs is necessarily of a higher order than the nth.

Thus the paradox disappears.

The solutions of the paradox about the least indefinable ordinal and

of Richard's paradox are closely analogous to the above. The notion of

"definable," which occurs in both, is nearly the same as "nameable," which

occurs in our fifth paradox: "definable" is what "nameable" becomes

when elementary names are excluded, i.e. "definable" means "nameable by

a name which is not elementary." But here there is the same ambiguity

as to type as there was before, and the same need for the addition of words

which specify the type to which the definition is to belong. And however

the type may be specified, "the least ordinal not definable by definitions of

this type" is a definition of a higher type; and in Richard's paradox, when

we confine ourselves, as we must, to decimals that have a definition of a given

type, the number N, which causes the paradox, is found to have a definition

which belongs to a higher type, and thus not to come within the scope of our

previous definitions.

An indefinite number of other contradictions, of similar nature to the

above seven, can easily be manufactured. In all of them, the solution is

of the same kind. ,In all of them, the appearance of contradiction is pro-

duced by the presence of some word which has systematic ambiguity of

type, such as truth, falsehood, function, property, class, relation, cardinal,

ordinal, name, definition. Any such word, if its typical ambiguity is over-

looked, will apparently generate a totality containing members defined in

terms of itself; and will thus give rise to vicious-circle fallacies. In most

cases, the conclusions of arguments which involve vicious-circle fallacies

will not be self-contradictory, but wherever we have an illegitimate totality,

a little ingenuity will enable us to construct a vicious-circle fallacy leading

to a contradiction, which disappears as soon as the typically ambiguous words

are rendered typically definite, i.e. are determined as belonging to this or that

type.
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Thus the appearance of contradiction is always due to the presence of words
embodying a concealed typical ambiguity, and the solution of the apparent
contradiction lies in bringing the concealed ambiguity to light.

In spite of the contradictions which result from unnoticed typical

ambiguity, it is not desirable to avoid words and symbols which have
typical ambiguity. Such words and symbols embrace practically all the
ideas with which mathematics and mathematical logic are concerned: the

systematic ambiguity is the result of a systematic analogy. That is to say, in

almost all the reasonings which constitute mathematics and mathematical
logic, we are using ideas which may receive any one of an infinite number of

different typical determinations, any one of which leaves the reasoning valid.

Thus by employing typically ambiguous words and symbols, we are able to make
one chain of reasoning applicable to any one of an infinite number of different

cases, which would not be possible if we were to forego the use of typically

ambiguous words and symbols.

Among propositions wholly expressed in terms of typically ambiguous
notions practically the only ones which may differ, in respect of truth or false-

hood, according to the typical determination which they receive, are existence-

theorems. If we assume that the total number of individuals is n/then the

total number of classes of individuals is 2n, the total number of classes of classes

of individuals is 22 , and so on. Here n may be either finite or infinite, and in

either case 2n > n. Thus cardinals greater than n but not greater than 2n exist

as applied to classes of classes, but not as applied to classes of individuals, so

that whatever may be supposed to be the number of individuals, there will be
existence-theorems which, hold for higher types but not for lower types. Even
here, however, so long as the number of individuals is not asserted, but is

merely assumed hypothetical^, we may replace the type of individuals by any
other type, provided we make a corresponding change in all the other types

occurring in the same context. That is, we may give the name "relative in-

dividuals" to the members of an arbitrarily chosen type t, and the name
"relative classes of individuals" to classes of "relative individuals," and so on.

Thus so long as only hypothetical are concerned, in which existence-theorems

for one type are shown to be implied by existence-theorems for another, only

relative types are relevant even in existence-theorems. This applies also to cases

where the hypothesis (and therefore the conclusion) is asserted, provided the

assertion holds for any type, however chosen. For example, any type has at

least one member; hence any type which consists of classes, of whatever order,

has at least two members. But the further pursuit of these topics must be left

to the body of the work.

R&W I



CHAPTER III

INCOMPLETE SYMBOLS

(1) Descriptions.. By an "incomplete" symbol we mean a symbol which

is not supposed to have any meaning in isolation, but is only defined in

d f
b

'certain contexts. In ordinary mathematics, for example, ^ and
J^

are in-

complete symbols: something has to be supplied before we have anything

significant. Such symbols have what may be called a "definition in use."

Thus if we put
22 3* &

V! = £_+-£- + ;?- Df,y
da? df dz*

we define the use of V2
, but V 2 by itself remains without meaning. This dis-

tinguishes such symbols from what (in a generalized sense) we may call proper

names: "Socrates," for example, stands for a certain man, and therefore has

a meaning by itself, without the need of any context. If we supply a context,

as in "Socrates is mortal," these words express a fact of which Socrates him-

self is a constituent: there is a certain object, namely Socrates, which does

have the property of mortality, and this object is a constituent of the complex

fact which we assert when we say "Socrates is mortal." But in other cases,

this simple analysis fails us. Suppose we say: "The round square does not

exist." It seems plain that this is a true proposition, yet we cannot regard it

as denying the existence of a certain object called " the round square." For

if there were such an object, it would exist: we cannot first assume that there

is a certain object, and then proceed to deny that there is such an object.

Whenever the grammatical subject of a proposition can be supposed not to

exist without rendering the proposition meaningless, it is plain that the

grammatical subject is not a proper name, i.e. not a name directly representing

some object. Thus in all such cases, the proposition must be capable of being

so analysed that what was the grammatical subject shall have disappeared.

Thus when we say " the round square does not exist," we may, as a first

attempt at such analysis, substitute " it is false that there is an object as which

is both round and square." Generally, when "the so-and-so" is said not to

exist, we have a proposition of the form*

"~E l(ix)(<f>x)"

i.e. ~{(ac):^c.=*.0 = c},

or some equivalent. Here the apparent grammatical subject (ix)(<f>x) has

completely, disappeared; thus in "~E!(?#)(<M," (»*)(**) is an ^complete

symbol.
* Cf. pp. 30, 31.
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By an extension of the above argument, it can easily be shown that

(ix) (<f>x) is always an incomplete symbol. Take, for example, the following

proposition: "Scott is the author of Waverley." [Here "the author of

Waverley" is (ix) (x wrote Waverley).] This proposition expresses an identity;

thus if " the author of Waverley " could be taken as a proper name, and sup-

posed to stand for some object c, the proposition would be " Scott is c." But
if c is any one except Scott, this proposition is false; while if c is Scott, the

proposition is "Scott is Scott," which is trivial, and plainly different from
" Scott is the author of Waverley." Generalizing, we see that the proposition

a= (ix)(<f>x)

is one which may be true or may be false, but is never merely trivial, like

a = a; whereas, if (ix) ($x) were a proper name, a = {ix) (<f>x) would necessarily

be either false or the same as the trivial proposition a = a. We may express

this by saying that a = (ix)(<f>x) is not a value of the propositional function

a = y, from which it follows that (ix) (<f>x) is not a value of y. But since y
may be anything, it follows that (ix) (<f>x) is nothing. Hence, since in use it

has meaning, it must be an incomplete symbol.

It might be suggested that " Scott is the author of Waverley " asserts that

"Scott" and "the author of Waverley" are two names for the same object.

But a little reflection will show that this would be a mistake. For if that

were the meaning of " Scott is the author of Waverley," what would be required

for its truth would be that Scott should have been called the author of

Waverley: if he had been so called, the proposition would be true, even if

some one else had written Waverley; while if no one called him so, the pro-

position-would be false, even if he had written Waverley. But in fact he was

the author of Waverley at a time when no one called him so, and he would

not have been the author if every one had called him so but some one else

had written Waverley. Thus the proposition "Scott is the author of Waverley"

is not a proposition about names, like "Napoleon is Bonaparte"; and this

illustrates the sense in which "the author of Waverley " differs from a true

proper name.

Thus all phrases (other than propositions) containing the word the (in the

singular) are incomplete symbols: they have a meaning in use, but not in

isolation. For " the author of Waverley " cannot mean the same as " Scott,"

or " Scott is the author of Waverley " would mean the same as " Scott is

Scott," which it plainly does not; nor can "the author of Waverley" mean
anything other than " Scott," or " Scott is the author of Waverley " would be

false. Hence "the author of Waverley" means nothing.

It follows from the above that we must not attempt to define " {ix) (<£#),"

but must define the uses of this symbol, i.e. the propositions in whose symbolic

expression it occurs. Now in seeking to define the uses of this symbol, it is

important to observe the import of propositions in which it occurs. Take as

5—2
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an illustration: "The author of Waverley was a poet." This implies (1) that

Waverley was written, (2) that it was written by one man, and not in collabora-

tion, (3) that the one man who wrote it was a poet. If any one of these fails,

the proposition is false. Thus " the author of « Slawkenburgius on Noses '
was

a poet " is false, because no such book was ever written; " the author of '
The

Maid's Tragedy' was a poet" is false, because this play was written by

Beaumont and Fletcher jointly. These two possibilities of falsehood do not

arise if we say " Scott was a poet." Thus our interpretation of the uses of

(ix)(<f>x) must be such as to allow for them. Now taking §x to replace

" x wrote Waverley," it is plain that any statement apparently about (ix) {<bx)

requires (1) (gar) . (<f>x) and (2) </>x . 4>y . DXtV . x = y; here (1) states that at

least one object satisfies <f>x, while (2) states that at most one object satisfies

<f>x. The two together are equivalent to

(ftc):<f>x.=x .x=c,

which we defined as E ! (ix) (<f>x).

Thus "El(ix)(<f>x)" must be part of what is affirmed by any proposition

about (ix)(<f>x). If our proposition is/ [(ix)(<f>x)}, what is further affirmed is

fc, if <f>x . =x . x= c. Thus we have

f{(ix) (4>x)}. = :(Rc):<j>x.=x .x= c:fc Df,

i.e. "the x satisfying <f>x satisfies /#" is to mean: "There is an object c such

that <fix is true when, and only when, x is c, and/c is true," or, more exactly:

" There is a c such that '<j>x' is always equivalent to
( x is c,' and/c." In this,

"(w) (<px)" has completely disappeared; thus "(ix)(<f>x)" is merely symbolic,

and does not directly represent an object, as single small Latin letters are

assumed to do*.

The proposition " a = (ix)(<f>x)" is easily shown to be equivalent to

"<f>x . =x ,x=a." For, by the definition, it is

(gc) z<j)x.=x .x=c:a = c }

i.e. " there is a c for which <f>x.=x . x = c, and this c is a," which is equivalent

to " <px . =x . x = a." Thus " Scott is the author of Waverley " is equivalent to

:

"'x wrote Waverley' is always equivalent to ' x is Scott,'"

i.e.
" x wrote Waverley " is true when x is Scott and false when x is not Scott.

Thus although "(ix)((f)x)" has no meaning by itself, it may be substituted

for y in any propositional function/?/, and we get a significant proposition,

though not a value offy.

When /{(?#) (<£#)}, as above defined, forms part of some other proposition,

we shall say that (ix) (<f)x) has a secondary occurrence. When (ix) (<)>x) has

a secondary occurrence, a proposition in which it occurs may be true even

when (ix)(<f>x) does not exist. This applies, e.g. to the proposition: "There

* We shall generally write "/('*) (0X)" ra*ner than "/{('*) (<PX)}" in future.
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is no such person as the King of France." We may interpret this as

~{El(ix)(<l>x)},

or as <^» {(gc) . c = (ix) (<j>x)},

if "
<f>x" stands for " x is King of France." In either case, what is asserted is

that a proposition p in which (ix) (<f>x) occurs is false, and this proposition p
is thus part of a larger proposition. The same applies to such a proposition

as the following: " If France were a monarchy, the King of France would be

of the House of Orleans."

It should be observed that such a proposition as

is ambiguous; it may deny f{(ix)(<f>x)}, in which case it will be true if

(ix) (<fix) does not exist, or it may mean

(gc) :(f>x.==x .x = c: ~/c,

in which case it can only be true if (ix) (<f>x) exists. In ordinary language,

the latter interpretation would usually be adopted. For example, the propo-

sition " the King of France is not bald " would usually be rejected as false,

being held to mean "the King of France exists and is not bald," rather than

"it is false that the King of France exists and is bald." When (ix)((f>x)

exists, the two interpretations of the ambiguity give equivalent results; but

when (ix) (<f>x) does not exist, one interpretation is true and one is false. It

is necessary to be able to distinguish these in our notation; and generally, if

we have such propositions as

^(ix)(<f>x).D.p,

p.^.^(ix)(^>x),

•>/r (ix) (<f>x) . D . x 0#) (<H>

and so on, we must be able by our notation to distinguish whether the whole

or only part of the proposition concerned is to be treated as the "f(ix) (<f>x)"

of our definition. For this purpose, we will put " [(ix) (<f>x)]" followed by dots

at the beginning of the part (or whole) which is to be taken as f(ix) (<f>x), the

dots being sufficiently numerous to bracket off the f(ix)(<f>x); i.e. f(ix)(<f>x)

is to be everything following the dots until we reach an equal number of dots

not signifying a logical product, or a greater number signifying a logical pro-

duct, or the end of the sentence, or the end of a bracket enclosing "[(ix) (</>#)]."

Thus
[(ix) (</>#)] "f 0*0 (0*0 D P

will mean (gc) : <f>x . =x . x = c : -tyc : D . p,

but [(ix) (<f>x)] : ^ ( ix) (<f>x) . D .p
will mean (gc) : <j>x .

=x . x = c : tyc . D . p.

It is important to distinguish these two, for if (ix)(<f>x) does not exist, the

first is true and the second false. Again

[(ix) (<f>x)] . ~ yjr (ix) ((f>x)
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will mean (gc) : <frx .=x .x= c : ~ yjrc,

while ~ {[(ix) ((fix)] . \jr (ix) (<f>x)}

will mean ~ {(3C) :<j>x ,=x .x = c: yjrc}.

Here again, when (7a?) (cfrx) does not exist, the first is false and the second true.

In order to avoid this ambiguity in propositions containing (ix)(<f>x), we
amend our definition, or rather our notation, putting

[(lx)((f>x)],f(ix)((j)x). = :('gLc):<f>x.=x .x=:c:/c Df.

By means of this definition, we avoid any doubt as to the portion of our

whole asserted proposition which is to be treated as the "f(ix)(^>x)" of the

definition. This portion will be called the scope of (ix) (<f>x). Thus in

[(ix) (<f>x)] .f{ix) (<f>x) . D .p
the scope of (ix)(<j>x) i$f(ix)(<f>x); but in

[(ix) (<j>x)] :f(ix) (<)>x) .D.p
the scope is f(i%) (##)• ^ -P'>

in ~ {[(ix) (<f>x)] ./(ix) (4>x)}

the scope is

/

(ix) (<f>x); but in

[(ix)(<t>x)-].~f(ix)(4>x)

the scope is ~y(?#) (<f>x).

It will be seen that when (ix) (<px) has the whole of the proposition

concerned for its scope, the proposition concerned cannot be true unless

E ! (ix)(<jix); but when' (ix) ($x) has only part of the proposition concerned

for its scope, it may often be true even when (ix) (cf>x) does not exist. It will

be seen further that when E ! (ix) (<f>x), we may enlarge or diminish the scope

of (ix)(if>x) as much as we please without altering the truth-value of any

proposition in which it occurs.

If a proposition contains two descriptions, say (ix) (<px) and (ix)(yjrx),

we have to distinguish which of them has the larger scope, i.e. we have to

distinguish

(1) [(ix) (<H] : [(**) (yjrx)].f{(ix) (<f>x), (ix) (fx)},

(2) [(ix) (yfrx)] : [(ix) (<f>x)] . f {(ix) (<j>x), (ix) (yjrx)}.

The first of these, eliminating (ix)(<f>x), becomes

(3) (gc) : <f>x.=x .x = c: [(ix) (fx)] .f {c, (ix) (fx)},

which, eliminating (ix) (yjrx), becomes

(4) (gc) :.<j>x.=x . x = c:.(<zd):fx.=x .x=c :f(c, d),

and the same proposition results if, in (1), we eliminate first (ix)(yjrx) and

then (ix)(<f)x). Similarly (2) becomes, when (ix)(<f>x)< and (ix)(yjrx) are

eliminated,

(5) fad) :. yfrx . = x . x = d :. (gc) :<}>x.= x .x = c :/(c, d).

(4) and (5) are equivalent, so that the truth-value of a proposition contain-

ing two descriptions is independent of the question which has the larger scope.
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It will be found that, in most cases in which descriptions occur, their

scope is, in practice, the smallest proposition enclosed in dots or other brackets

in which they are contained. Thus for example

[(**) (**)] 1 0*) (</>*) D [(wO (W] X (w)(W
will occur much more frequently than

[(M>) (£a?)] :. -^ ( *»). (W 3 X O) (**)•

For this reason it is convenient to decide that, when the scope of an occurrence

of (ix) (<f>x) is the smallest proposition, enclosed in dots or other brackets, in

which the occurrence in question is contained, ,the scope need not be indicated

hy"[(ix)(<f>x)l" Thus e.g.

p . D . a = (ix) (<£#)

will mean p . D . [(ix) (4>x)~\ • a = (Jx) (W '>

and p.D. (ga) . a = (?#) (0a;)

will mean p.D. (g«) . [(?&•) (<f>x)] . a = (ix) (<f>x) ;

and p.D.a^ (ix) (<f>x)

will mean p.D. [(ix) (<f>x)] . ~ [a = (ia>) (<£#)}

;

but ^.D.^{a = (?*)(^r)}

will mean p . D . ~ {[(?#) (</>#)] . a = (ix) (<f>x)}.

This convention enables us, in the vast majority of cases that actually

occur, to dispense with the explicit indication of the scope of a descriptive

symbol; and it will be found that the convention agrees very closely with the

tacit conventions of ordinary language on this subject. Thus for example, if

"0)(W is " the so-and-so," "a ^ (ix) (fa)" is to be read "a is not the

so-and-so," which would ordinarily be regarded as implying that " the so-and-

so" exists; but "~ {a = (ix) (<}>x)} " is to be read "it is not true that a is the

so-and-so," which would generally be allowed to hold if " the so-and-so " Hoes

not exist. Ordinary language is, of course, rather loose and fluctuating in its

implications on this matter; but subject to the requirement of definiteness,

our convention seems to keep as near to ordinary language as possible.

In the case when the smallest proposition enclosed in dots or other

brackets contains two or more descriptions, we shall assume, in the absence

of any indication to the contrary, that one which typographically occurs

earlier has a larger scope than one which typographically occurs later. Thus

(ix) (<\>x) = (ix) (yfrx)

will mean (gc) : (f>x . =x . x= c i [(ix) (yfrx)'] . c = (ix) (tyx),

while (ix) (yjrx) =* (ix) (<f>x)

will mean (gd) : yjrx .
=
x . x = d : [(ix) (<f>x)~\ . (ix) (<f>x) = d.

These two propositions are easily shown to be equivalent.

(2) Classes. The symbols for classes, like those for descriptions, are, in

our system, incomplete symbols : their uses are defined, but they themselves

are not assumed to mean anything at all. That is to say, the uses of such
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symbols are so defined that,when the definienste substituted for the definimdum,
there no longer remains any symbol which could be supposed to represent

a class. Thus classes, so far as we introduce them, are merely symbolic or

linguistic conveniences, not genuine objects as their members are if they are

individuals.

It is an old dispute whether formal logic should concern itself mainly with

intensions or with extensions. In general, logicians whose training was mainly
philosophical have decided for intensions, while those whose training was
mainly mathematical have decided for extensions. The facts seem to be that,

while mathematical logic requires extensions, philosophical logic refuses to

supply anything except intensions. Our theory of classes recognizes and
reconciles these two apparently opposite facts, by showing that an extension

(which is the same as a class) is an incomplete symbol, whose use always
acquires its meaning through a reference to intension.

In the case of descriptions, it was possible to prove that they are in-

complete symbols. In the case of classes, we" do not know of any equally

definite proof, though arguments of more or less cogency can be elicited from
the ancient problem of the One and the Many* It is not necessary for our

purposes, however, to assert dogmatically that there are no such things as

classes. It is only necessary for us to show that the incomplete symbols
which we introduce as representatives of classes yield all the propositions for

the sake of which classes might be thought essential. When this has been
shown, the mere principle of economy of primitive ideas leads to the non-

introduction of classes except as incomplete symbols,-

,To explain the theory of classes, it is necessary first to explain the dis-

tinction between extensional and intensional functions. This is effected by
the following definitions

:

The truth-value of a proposition is truth if it is true, and falsehood if it is

false. (This expression is due to Frege.)

Two propositions are said to be equivalent when they have the same truth-

value, i.e. when they are both true or both false.

Two propositional functions, are said to he formally equivalent when they
are equivalent with every possible argument, i.e. when any argument which
satisfies the one satisfies the other, and vice versa. Thus "ob is a man "

is

formally equivalent to "x is a featherless biped"; "£ is an even prime" is

formally equivalent to "ob is identical with 2."

A function of a function is called extensional when its truth-value with any
argument is the same as with any formally equivalent argument. That is to

* Briefly, these arguments reduce to the following : If there is such an object as a class, it

must be in some sense one object. Yet it is only of classes that many can be predicated. Hence,
if we admit classes as objects, we must suppose that the same object can be both one and many,
which seems impossible.
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say, f(<f>z) is an extensional function of <f>z if, provided yfrz is formally equiva-

lent to <f&, f(<f>z) is equivalent to f($$). Here the apparent variables
<f>
and

ijr are necessarily of the type from which arguments can significantly be

supplied to/. We find no need to use as apparent variables any functions

of non-predicative types; accordingly in the sequel all extensional functions

considered are in fact functions of predicative functions*.

A function of a function is called intensional when it is not extensional.

(
The nature and importance of the distinction between intensional and

extensional functions will be made clearer by some illustrations. The pro-

position "'as is a man' always implies 'or is a mortal'" is an extensional function

of the function "& is a man," because we may substitute, for "x is a man,"

"# is a featherless biped," or any other statement which applies to the same

objects to which "a? is a man " applies, and to no others. But the proposition

"A believes that 'x is a man' always implies lx is a mortal'" is an intensional

function of "& is a man," because A may never have considered the question

whether featherless bipeds are mortal, or may believe wrongly that there are

featherless bipeds which are not mortal. Thus even if "x is a featherless

biped" is formally equivalent to "x is a man," it by no means follows that a

person who believes that all men are mortal must believe that all featherless

bipeds are mortal, since he may have never thought about featherless bipeds,

or have supposed that featherless bipeds were not always men. Again the

proposition " the number of arguments that satisfy the function
<f>

! z is n " is

an extensional function of
<f>

! z, because its truth or falsehood is unchanged if

we substitute for <£!§ any other function which is true whenever tj>lz is true,

and false whenever <f>\z is false. But the proposition "A asserts that the

number of arguments satisfying
<f>

I z is n" is an intensional function of $ ! 2,

since, if A asserts this concerning <p I $, he certainly cannot assert it concerning

all predicative functions that are equivalent to
<f>

! z, because life is too short.

Again, consider the proposition " two white men claim to have reached the

North Pole." This proposition states "two arguments satisfy the function

'a? is a white man who claims to have reached the North Pole.'" The truth or

falsehood of this proposition is unaffected if we substitute for "& is a white

man who claims to have reached the North Pole " any other statement which

holds of the same arguments, and of no others. Hence it is an extensional

function. But the proposition "it is a strange coincidence that two white

men should claim to have reached the North Pole," which states "it is a

strange coincidence that two arguments should satisfy the function '& is a

white man who claims to have reached the North Pole,'" is not equivalent to

"it is a strange coincidence that two arguments should satisfy the function

'ab is Dr Cook or Commander Peary.'" Thus "it is a strange coincidence that

<f*t tb should be satisfied by two arguments" is an intensional function of <f>lx.

* Cf. p. 53.
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The above instances illustrate the fact that the functions of functions with

which mathematics is specially concerned are extensional, and that intensional

functions of functions only occur where non-mathematical ideas are introduced,

such as what somebody believes or affirms, or the emotions aroused by some

fact. Hence it is natural, in a mathematical logic, to lay special stress on

extensional functions of functions.

When two functions are formally equivalent, we may say that they have

the same extension. In this definition, we are in close agreement with usage.

We do not assume that there is such a thing as an extension: we merely

define the whole phrase " having the same extension." We may now say that

an extensional function of a function is one whose truth or falsehood depends

only upon the extension of its argument. In such a case, it is convenient to

regard the statement concerned as being about the extension. Since exten-

sional functions are many and important, it is natural to regard the extension

as an object, called a class, which is supposed to be the subject of all the

equivalent statements about various formally equivalent functions. Thus

e.g. if we say " there were twelve Apostles," it is natural to regard this state-

ment as attributing the property of being twelve to a certain collection of

men, namely those who were Apostles, rather than as attributing the property

of being satisfied by twelve arguments to the function "& was an Apostle."

This view is encouraged by the feeling that there is something which is

identical in the case of two functions which " have the same extension." And
if we take such simple problems as " how many combinations can be made of

n things ? " it seems at first sight necessary that each " combination " should

be a single object which can be counted as one. This, however, is certainly

not necessary technically, and we see no reason to suppose that it is true

philosophically. The technical procedure by which the apparent difficulty is

overcome is as follows.

We have seen that an extensional function of a function may be regarded

as a function of the class determined by the argument-function, but that an

intensional function cannot be so regarded. In order to obviate the necessity

of giving different treatment to intensional and extensional functions of

functions, we construct an extensional function derived from any function of

a predicative function yfr ! z , and having the property of being equivalent to

the function from which it is derived, provided this function is extensional,

as well as the property of being significant (by the help of the systematic

ambiguity of equivalence) with any argument d>z whose arguments are of the

same type as those of yjr I z. The derived function, written "f {z(<f>z)} ," is de-

fined as follows: Given a function /(^ ! z), our derived function is to be "there

is a predicative function which is formally equivalent to <f>z and satisfies/."

If <f)Z is a predicative function, our derived function will be true whenever

f{4>z) is true. If f(<j>z) is an extensional function, and <j>z is a predicative
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function, our derived function will not be true unless f(<f>z) is true; thus in

this case, our derived function is equivalent to /(<££). Iff(<f>2) is not an ex-

tensional function, and if <f& is a predicative function, our derived function

may sometimes be true when the original function is false. But in any case the

derived function is always extensional.

In order that the derived function should be significant for any function

<f>z, of whatever order, provided it takes arguments of the right type, it is

necessary and sufficient that/(^ \T) should be significant, where i/r ! £ is any

predicative function. The reason of this is that we only require, concerning

an argument <f>z, the hypothesis that it is formally equivalent to some predi-

cative function yfrlz, and formal equivalence has/^he same kind of systematic

ambiguity as to type that belongs to truth and falsehood, and can therefore

hold between functions of any two different orders, provided the functions

take arguments of the same type. Thus by means of our derived function we

have not merely provided extensional functions everywhere in place of in-

tensional functions, but we have practically removed the necessity for con-

sidering differences of type among functions whose arguments are of the same

type. This effects the same kind of simplification in our hierarchy as would

result from never considering any but predicative functions.

Iff(yfr I z) can be built up by means of the primitive ideas of disjunction,

negation, (#).<£#, and (g#) . <£#, as is the case with all the functions of

functions that explicitly occur in the present work, it will be found that, in

virtue of the systematic ambiguity of the above primitive ideas, any function

<f>z whose arguments are of the same type as those of f !| can significantly

be substituted for -yfr I z in / without any other symbolic change. Thus in

such a case what is symbolically, though not really, the same functionf can

receive as arguments functions of various different types. If, with a given

argument <f>z, the function f(<f>z), so interpreted, is equivalent to f(yfr ! z)

whenever yjr I z~ is formally equivalent to <f>z, then/ (2 ($2)} is equivalent to

f(<j>z) provided there is any predicative function formally equivalent to <f>z.

At this point, we make use of the axiom of reducibility, according to which

there always is a predicative function formally equivalent to
<f>%.

As was explained above, it is convenient to regard an extensional function

of a function as having for its argument not the function, but the class de-

termined by the function. Now we have seen that our derived function is

always extensional. Hence if our original function was f(yfr I z), we write the

derived functiorr/{^(^)}, where "z(<f>z)" may be read " the class of arguments

which satisfy <f>z," or more simply "the class determined by <f>z." Thus

"f{2 (4>z)}" will mean: " There is a predicative function yjr ! z which is formally

equivalent to <j>% and is such that/(i/r \z) is true." This is in reality a function

of
<f>%, but we treat it symbolically as if it had an argument z (<f>z). By the

help of the axiom of reducibility, we find that the usual properties of classes
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result. For example, two formally equivalent functions determine the same
class, and conversely, two functions which determine the same class are formally

equivalent. Also to say that x is a member of 2 (<f>z), i.e. of the class determined

by $%, is true when $% is true, and false when <f>a; is false. Thus all the

mathematical purposes for which classes might seem to be required are fulfilled

by the purely symbolic objects 2(<fnz), provided we assume the axiom of

reducibility.

In virtue of the axiom of reducibility, if <j>2 is any function, there is

a formally equivalent predicative function -tyllz', then the class z~(<f>z) is

identical with the class 2 (^ ! 2), so that every class can be defined by a

predicative function. Hence the totality of the classes to which a given term

can be significantly said to belong or not to belong is a legitimate totality,

although the totality of functions which a given term can be significantly

said to satisfy or not to satisfy is not a legitimate totality. The classes to

which a given term a belongs or does not belong are the classes defined by

a-functions; they are also the classes defined by predicative a-functions. Let

us call them a-classes. Then "a-classes " form a legitimate totality, derived

from that of predicative a-functions. Hence many kinds of general state-

ments become possible which would otherwise involve vicious-circle paradoxes.

These general statements are none of them such as lead to contradictions, and

many of them such as it is very hard to suppose illegitimate. The fact that

they are rendered possible by the axiom of reducibility, and that they would

otherwise be excluded by the vicious-circle principle, is to be regarded as an

argument in iavour of the axiom of reducibility.

The above definition of " the class defined by the function cf>z," or rather,

of any proposition in which this phrase occurs, is, in symbols, as follows:

/{S^}.-:^):^.^.^!*:/^*}. Df.

In order to recommend this definition, we shall enumerate five requisites

which a definition of classes must satisfy, and we shall then show that the

above definition satisfies these five requisites.

We require of classes, if they are to serve the purposes for which they are

commonly employed, that they shall have certain properties, which may be

enumerated as follows. (1) Every prepositional function must determine a

class, which may be regarded as the collection of all the arguments satisfying

the function in question. This principle must hold when the function is

satisfied by an infinite number of arguments as well as when it is satisfied by
a finite number. It must hold also when no arguments satisfy the function

;

i.e. the "null-class " must be just as good a class as any other. (2) Two pro-

positional functions which are formally equivalent, i.e. such that any argument
which satisfies either satisfies the other, must determine the same class; that

is to say, a class must be something wholly determined by its membership, so

that e.g. the class "featherless bipeds " is identical with the class M men," and
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the class " even primes " is identical with the class " numbers identical with 2."

(3) Conversely, two propositional functions which determine the same class

must be formally equivalent; in other words, when the class is given, the

membership is determinate : two different sets of objects cannot yield the same

class. (4) In the same sense in which there are classes (whatever this sense

may be), or in some closely analogous sense, there must also be classes of

classes. Thus for example " the combinations of n things m at a time," where

the n things form a given class, is a class of classes; each combination of

m things is a class, and each such class is a member of the specified set of

combinations, which set is therefore a class whose members are classes. Again,

the class of unit classes, or of couples, is absolutely indispensable; the former

is the number 1, the latter the number 2. Thus without classes of classes,

arithmetic becomes' impossible. (5) It must under all circumstances be

meaningless to suppose a class identical with one of its own members. For if

such a supposition had any meaning "a e a" would be a significant propositional

function*, and so would "a~^ot." Hence, by (1) and (4), there would be a

class of all classes satisfying the function "a ~ e a." If we call this class k, we
shall have

a e k . =a a~ e- a.

Since, by our hypothesis, "k e k" is supposed significant, the above equivalence,

which holds with all possible values of a, holds with the value k, i.e.

K € K . ~ . K ~> 6 K.

But this is a contradiction f. Hence "aea" and "a~ea" must always be

meaningless. In general, there is nothing surprising about this conclusion,

but it has two consequences which deserve special notice. In the first place,

a class consisting of only one member must not be identical with that one

member, i.e. we must not have i
ix = x. For we have #ei'#,„an4 therefore, if

x = i
lx, we have i'x e i'x, which, we saw, must be meaningless. It follows that

"x=v lx" must be absolutely meaningless, not simply false. In the second

place, it might appear as if the class of all classes were a class, i.e. as if

(writing "Cls" for " class") "Cls e Cls" were a true 'proposition. But this com-

bination of symbols must be meaningless; unless, indeed, an ambiguity exists

in the meaning of "Cls," so that, in "Cls e Cls," the first "Cls" can be supposed

to have a different meaning from the second.

As regards the above requisites, it is plain, to begin with, that, in accordance

with our definition, every propositional function <j>z determines a class, ff^).
Assuming the axiom of reducibility, there must always be true propositions

about 1z(4>z), i.e. true propositions of the form / {2 (<£.?)}, For suppose (f>z is

formally equivalent to tyl z, and suppose yfrlz satisfies some function /. Then

* As explained in Chapter I (p. 25), "area" means "x is a member of the class a*" or,

more shortly, "a; is an a." The definition of this expression in terms of our theosy of classes

will be given shortly.

f This is the second of the contradictions discussed at the end o£ Chapter II.
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2 (<f>z) also satisfies/. Hence, given any function $% there are true propositions

of the form/ {2 (<£>£)}, i.e. true propositions in which "the class determined by

<j>z" is grammatically the subject. This shows that our definition fulfils the

first of our five requisites.

The second and third requisites together demand that the classes z(<f>z) and

z tyz) should be identical when, and only when, their defining functions are

formally equivalent, i.e. that we should have

Here the meaning of
u
^(<f>z)-^(^z)" is to be derived, by means of a two-

fold application of the definition of/{$ (<f>z)}, from the definition of

"
x lz = 6lX"

whichis x !a = 6?!t. = :(/):/!%!^.D./!6'!^ Df

by the general definition of identity.

In interpreting. "^ (<f>z) = ^ (yjrz)," we will adopt the convention which we

adopted in regard to (ix)(<j>x) and (ix)(^rx), namely that the incomplete symbol

which occurs first is to have the larger scope. Thus £ (<f>z) — z (tyz) becomes,

by our definition,

(ax) :
<l>
x =* • X ! x '• X 1 * =*%WZ)>

which, by eliminating 2 (yjrz), becomes

(ax) = </>«•=*• %'• ® - (a#) '• fx • =x 01 x : x ! £= 0l£,

which is equivalent to

(3%. 0) : <f>x .
=
x . X l x : fx .

=
x . 6\ x : x ! z = 6\ z,

which, again, is equivalent to

(ax

)

' 4>x = x • x ! x'
'• ^rx - * x ! x>

which, in virtue of the axiom of reducibility, is equivalent to

<f>x .
=
x . tyx.

Thus our definition of the use of z (<j>z) is such as to satisfy the conditions (2)

and (3) which we laid down for classes, i.e. we have

h :. 2 ((f>z) = z (yjrz) . = : <£# . = x . fx.

Before considering classes of classes, it will be well to define membership

of a class, i.e. to define the symbol "xe%{<t>z)" which may be read "# is a

member of the class determined by <f>z." Since this is a function of the form

f\z (<f>z)}, it must be derived, by means of our general definition of such func-

tions, from the corresponding function f{f\1t). We therefore put

x ef ! z . = . ^ ! x Df.

This definition is only needed in order to give a meaning to "xezitfrz)"; the

meaning it gives is, in virtue of the definition of/ \z (<f>z)},

(>&<f):<t>y.=y.1rly:ylrlx.

It thus appears that "xez(<j>z)" implies <f>x, since it implies fix, and fix
is equivalent to <j>x; also, in virtue of the axiom of reducibility, <f>x implies

"xez(<f>z)}

" since there is a predicative function f formally equivalent to
<f>,
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and x must satisfy i^>, since x {ex hypothesi) satisfies <£. Thus in virtue of the

axiom of reducibility we have

I-
m
. x ez (<f>z) . = . <f)X,

i.e. # is a member of the class z (<f>z) when, and only when, x satisfies the

function <j> which defines the class.

We have next to consider how to interpret a class of classes. As we have

defined f{z(<f>z)}, we shall naturally regard a class of classes as consisting of

those values of %(<f>z) which satisfy f{z(<f>z)}. Let us write a for z (<f>z)\ then

we may write a (fa) for the class of values of a which satisfy fa*. We shall

apply the same definition, and put

F{&(fa)}. = -.(<&g):fp.^ fi
.g\p-F{g\a) Df,

where "/3" stands for any expression of the form z (yfrl z).

Let us take "76 a (fa)" as an instance of F{a(fa)}. Then

\-:.rye&(fa). = :(zg):f/3.= fi .gl/3:yefflZ.

Just as we put xe-^Mz . = .ty\x Df,

so we put 7 eg\ a . = . g\ 7 Df.

Thus we find

H :. 7 ea(/a) . = : (^) ://3 . =0 . #! £ :5r! 7.

If we now extend the axiom of reducibility so as to apply to functions of

functions, i.e. if we assume

(30) :/Wr!S).s,.0l (*!*),
we easily deduce

» = (30) = /{*(*' *)} ^ • 5". {*(*« *)},

i.e. H:to)://3.=0.<7!/3.

Thus I- : 7 e a (fa) . = .fy.

Thus every function which can take classes as arguments, i.e. every function

of functions, determines a class of classes, whose members are those classes*

which satisfy the determining function. Thus the theory of classes of classes

offers no difficulty.

We have next to consider our fifth requisite, namely that "z(<f>z)ez($z)"

is to be meaningless. Applying our definition of/{£ ($z)\, we find that if this

collection of symbols had a meaning, it would mean

(a^) : $x ' —* • ^ • x ' ^ • ^ e ty • ^>

i.e. in virtue of the definition

x e yjrl z . = . yfrl x Df,

it would mean (g>/r) : <f>x . = x . yfr I x : yfr ! (yjr ! 2).
g

But here the symbol "tyl (i/r! z)" occurs, which assigns a function as argument

to itself. Such a symbol is always meaningless, for the reasons explained at

the beginning of Chapter II (pp. 38—41). Hence "z (<f>z) e z (<ftz)" is meaning-

less, and our fifth and last requisite is fulfilled.

* The use of a single letter, such as a or |3, to represent a variable class, will be further

explained shortly.
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As in the case of f(ix)(<f>x), so in that of f{z(<f>z)}, there is an ambiguity

as to the scope of 2 (<j>z) if it occurs in a proposition which itself is part Of a

larger proposition. But in the case of classes, since we always have the axiom

of reducibility, namely . , s .
, ,

which takes the place of El(ix)(<f>x), it follows that the truth-value of any

proposition in which "z{^>z) occurs is the same whatever scope we may give to

z (<f>z), provided the proposition is an extensional function of whatever functions

it may contain. Hence we may adopt the convention that the scope is to be

always the smallest proposition enclosed in dots or brackets in which z (<f>z)

occurs. If at any time a larger scope is required, we may indicate it by " [z(<f)z)]
"

followed by dots, in the same way as we did for [(?#)($#)]•

Similarly when two class symbols occur, e.g. in a proposition of the form

/ {z (cf)z), 1z (tyz)}, we need not remember rules for the scopes of the two symbols,

since all choices give equivalent results, as it is easy to prove. For the pre-

liminary propositions a rule is desirable, so we can decide that the class symbol

which occurs first in the order of writing is to have the larger scope.

The representation of a class by a single letter a can now be understood.

For the denotation of a is ambiguous, in so far as it is undecided as to which

of the symbols z ((f>z), z (^z), z (xz)> etc- i* is to stand for, where $z, -fz, xz,

etc. are the various determining functions of the class. According to the choice

made, different propositions result. But all the resulting propositions are equi-

valent by virtue of the easily proved proposition:

"r :$*=.**. D ./{£ (<f>z)} =/{3 (**)}."

Hence unless we wish to discuss the determining function itself, so that the

notion of a class is really not properly present, the ambiguity in the denotation

of a is entirely immaterial, though, as we shall see immediately, we are led to

limit ourselves to predicative determining functions. Thus "/(a)," where a is a

variable class, is really "f{$(4>z)\," where <j> is a variable function, that is, it is

"(af1

) .(f>x= x flx.f{yjrl z},"

where
<f>

is a variable function. But here a difficulty arises which is removed

by a limitation to our practice and by the axiom of reducibility. For the deter-

mining functions <f>z, tyz, etc. will be of different types, though the axiom of

reducibility secures that some are predicative functions. Then, in interpreting

a as a variable in terms of the variation of any determining function, we shall

be led into errors unless we confine ourselves to predicative determining func-

tions. These errors
%
especially arise in the transition to total variation (cf.

pp. 15, 16). Accordingly

/a-.(a^). *!*=.*!*. /{*!*} Df-

It is the peculiarity of a definition of the use of a single letter [viz. a] for a

variable incomplete symbol that it, though in a sense a real variable, occurs

only in the definiendum, while "<}>," though a real variable, occurs only in the

definiens.
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Thus «f&" stands for

and "(a) ./a" stands for
yiT

'

if

(*):(a*).*l*s.^!«./ftr!3}.
w

Accordingly, in mathematical reasoning, we can dismiss the whole apparatus
of functions and think only of classes as "quasi-things," capable of immediate
representation by a single name. The advantages are two-fold: (1) classes are
determined by their membership, so that to one set of members there is one
class, (2) the "type" of a class is entirely defined by the type of its members.

Also a predicative function of a class can be defined thus

fla=.(^).<f,lx= x ^lx.fl{^l^} Df.

Thus a predicative function of a class is always a predicative function of any
predicative determining function of the class, though the converse does not hold.

(3) Relations. With regard to relations, we have a theory strictly analogous
to that which we have just explained as regards classes. Relations in extension,
like classes, are incomplete symbols, We require a division of functions of two
variables into predicative and non-predicative functions, again for reasons which
have been explained in Chapter II. We use the notation "<f>l(x,y)" for a
predicative function of x and y.

We use "<£!(£, y)" for the function as opposed to its values; and we use
"xp<j>(x,y)" for the relation (in extension) determined by (f>(x,y). We put

f{$y<f>(x,y)} . = : (at) x4>{x,y): = x>y . yfrl (x,y) :f^l(x,p)} Df.

Thus even when/ty ! (x, §)} is not an extensional function of y\r,f{ot§<f> (x, y)}
is an extensional function of <£. Hence, just as in the case of classes, we deduce

^''%H{x,y) = x§^(x,y). = -.<f>{x,y).= x>y .^(x,y),
i.e. a relation is determined by its extension, and vice versa.

On the analogy of the definition of "x e t I z" we put

x{+l($,y)}y. = .-fl(x,y) Df*.

This definition, like that of "«ef! z" is not introduced for its own sake,
but in order to give a meaning to

oo{xg<j>{x,y)}y.

This meaning, in virtue of our definitions, is

Ot) : 4>(*>y) • =x,y .y\r\{x,y)ix {irl(x,y)} y,

le- i^)-<i>{^y)-=x,y.^\(^y):^\{x,y),
and this, in virtue of the axiom of reducibility

"(at) = <f> (*, y) • =x, y t J to y)>"

is equivalent to <f>(x,y).

Thus we have always

I- :z {$§4>(x,y)} y . = . <f>(x,y).

This definition raises certain questions as to the two senses of a relation, which are dealt
with in *21.

R&w I n
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Whenever the determining function of a relation is not relevant, we may

replace xp4> (x, y) by a single capital letter. In virtue of the propositions given

above,
r- :. R — S . = : xRy .= x , y . xSy,

h \.R = &§4>(x,y).= : xRy . = x>y .4>(x,y),

and \-.R = $$(xRy),

Classes of relations, and relations of relations, can be dealt with as classes

of classes were dealt with above.

Just as a class must not be capable of being or not being a member of itself,

so a relation must neither be nor not be referent or relatum with respect to

itself. This turns out to be equivalent to the assertion that 4> ! (x, fi)
cannot

significantly be either of the arguments x or y in <£ ! (as, y). This principle, again,

results from the limitation to the possible arguments to a function explained

at the beginning of Chapter II.

We may sum up this whole discussion on incomplete symbols as follows.

The use of the symbol "(ix)(4>x)" as if in "f(ix)(4>x)" it directly represented

an argument to the function /2 is rendered possible by the theorems

b:.El(ix)(4>x).D:(x).fx.D.f(lx)(4>x),

b : (ix) (<f>x) = (ix) tyx) . D .f(ix) ((fas) =f(ix) (-fx),

h : E ! (ix) (4>x) . D . (ix) (4>x) = (ix) (<j>x),

b : (ix) (4>x) = (ix) (yfrx) . = . (ix) (ifrx) = (ix) (<f>x),

b : (ix) (4>x) = (ix) (tyx) . (ix) (fx) = (ix) (Xx). D . (ix) (4>x) = (ix) (%«).

The use of the symbol "x (4>x)" (or of a single letter, such as a, to represent

such a symbol) as if, in "f{x (4>x)}," it directly represented an argument a to a

function f% is rendered possible by the theorems

b:(a).fa.D.f{x(4>x)},

b : x(4>x) = x(^x) . D .f{x(4>x)} =/{^(^x)}

b . x (4>x) = x (4>x),

b : x (<j>x) = £ (yfrx). = . & (tyx) = x (4>x),

\-:x(4>x) = x(yfrx).x(yJrx) = x(Xx).^.x(4>x)=:x(xx).

Throughout these propositions the types must be supposed to be properly

adjusted, where ambiguity is possible.

The use of the symbol "£$ {<£ (x, y)}
" (or of a single letter, such as R, to

represent such a symbol) as if, in "f{xg<f>(x,y)}," it directly represented an

argument R to a function fR, is rendered possible by the theorems

\-:(R).fR.D.f{x§4>(x,y)},

b:tif/4> (x, y)^x§^ (x, y) . D ./{$$ 4> 0> y)) =ffi§ t 0> V))>

\-.Zp4>(x,y) = x§4>(x,y),

\-:x§4> (x, y) = xp yjr(x,y). = .x§ir (x, y) = xy 4>(x, y),

b:$§<f> (x, y) = x$ ^ (x, y).xy^ (x, y) = %<y X 0> V)

0..x§4>(x,y) = xpx(®>y)'
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Throughout these propositions the types must be supposed to be properly

adjusted where ambiguity is possible.

It follows from these three groups of theorems that these incomplete

symbols are obedient to the same formal rules of identity as symbols which

directly represent objects, so long as we only consider the equivalence of the

resulting variable (or constant) values of propositional functions and not their

identity. This consideration of the identity of propositions never enters into

our formal reasoning.

Similarly the limitations to the use of these symbols can be summed up

as follows. In the case of (ix) (<f>x), the chief way in which its incompleteness

is relevant is that we do not always have

(x).fx.3 .f(ix)(<f>x),

i.e. a function which is always true may nevertheless not be true of (ix) (<f>x).

This is possible because f(ix) (<j>x) is not a value of fx, so that even when all

values offx are true, f(ix) (<f)x) may not be true. This happens when (ix) ((f>x)

does not exist. Thus for example we have (x) .x = x, but we do not have

the round square = the round square.

The inference (x) .fx . D .f{ix) (<f)x)

is only valid when E ! (ix) (4>x). As soon as we know E I (ix) (<f>x), the fact that

(ix)(<px) is an incomplete symbol becomes irrelevant so long as we confine

ourselves to truth-functions* of whatever proposition is its scope. But even

when E ! (ix) (<f>x), the incompleteness of (fx) (<f>x) may be relevant when we
pass outside truth -functions. For example, George IV wished to know whether

Scott was the author of Waverley, i.e. he wished to know whether a proposition

of the form "c — (ix) (<f>x)" was true. But there was no proposition of the form

"c = y" concerning which he wished to know if it was true.

In regard to classes, the relevance of their incompleteness is somewhat
different. It may be illustrated by the fact that we may have

z(tf>z) = ty !-£ . z (<f>z) = x ! z

without having yfr ! z — % ! z.

For, by a direct application of the definitions, we find that

h : z (<f>z) = yfr ! z . = - (f>x = x \fr ! x.

Thus we shall have

h :<f>x= x ^\x.<px~ x xl^.D.2 (<f>z) = yfrlz .z (<j>z) = % ! f

,

but we shall not necessarily have tylz^xlz under these circumstances, for

two functions may well be formally equivalent without being identical; for

example,

x = Scott .
'=

x . x = the author of Waverley,

but the function "2 = the author of Waverley" has the property that George IV
wished to know whether its value with the argument "Scott" was true, whereas

* Cf. p. 8.

6—2
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the function " 2 = Scott " has no such property, and therefore the two functions

are not identical. Hence there is a propositional function, namely

x = y.x = z."D.y = z,

which holds without any exception, and yet does not hold when for x we

substitute a class, and for y and z we substitute functions. This is only

possible because a class is an incomplete symbol, and therefore "£(<£.?)=^S 2"

is not a value of " x = y"

It will be observed that "Olz — ^lz" is not an extensional function of

i/r ! z. Thus the scope of 2 (<f>z) is relevant in interpreting the product

2(<f>z) = y}rlz.z(<f>z) = x l Z'

If we take the whole of the product as the scope of z(<f>z), the product is

equivalent to

(a#) : <f>x
=
xe ! x . e i>

=

^ i % . e \ z

=

x ' %
and this does imply yjr I z = % ! 2.

We may say generally that the fact that z (<f>z) is an incomplete symbol

is not relevant so long as we confine ourselves to extensional functions of

functions, but is apt to become relevant for other functions of functions.
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SUMMARY OF PART I

In this Part, we shall deal with such topics as belong traditionally to

symbolic logic, or deserve to belong to it in virtue of their generality. We
shall, that is to say, establish such properties of propositions, propositional

functions, classes and relations as are likely to be required in any mathematical

reasoning, and not merely in this or that branch of mathematics.

The subjects treated in Part I may be viewed in two aspects: (1) as a

deductive chain depending on the primitive propositions, (2) as a formal calculus.

Taking the first view first: We begin, in *1, with certain axioms as to deduction

of one proposition or asserted propositional function from another. From these

primitive propositions, in Section A, we deduce various propositions which are

all concerned with four ways of obtaining new propositions from given proposi-

tions, namely negation, disjunction, joint assertion and implication, of which

the last two can be defined in terms of the first two. Throughout this first

section, although, as will-be shown at the beginning of Section B, our proposi-

tions, symbolically unchanged, will apply to any propositions as values of our

variables, yet it will be supposed that our variable propositions are all what

we shall call elementary propositions, i.e. such as contain no reference, explicit

or implicit, to any totality. This restriction is imposed on account of the

distinction between different types of propositions, explained in Chapter II of

the Introduction. Its importance and purpose, however, are purely philosophical,

and so long as only mathematical purposes are considered, it is unnecessary to

remember this preliminary restriction to elementary propositions, which is

symbolically removed at the beginning of the next section.

Section B deals, to begin with, with the relations of propositions containing

apparent variables {i.e. involving the notions of "all" or "some") to each other

and to propositions not containing apparent variables. We show that, where

propositions containing apparent variables are . concerned, we can define

negation, disjunction, joint assertion and implication in such a way that their

properties shall be exactly analogous to the properties of the corresponding

ideas as applied to elementary propositions. We show also that formal im~

'plication, i.e. "(#). (fxcDyfrx" considered as a relation of $oc to -\Jr£, has many

properties analogous to those of material implication, i.e. "p D q" considered as

a relation of p and q. We then consider predicative functions and the axiom

of reducibility, which are vital in the employment of functions as apparent

variables. An example of such employment is afforded by identity, which

is the next topic considered in Section B. Finally, this section deals with

descriptions, i.e. phrases of the form "the so-and-so" (in the singular). It is

shown that the appearance ofa grammatical subject "the so-and-so "isdeceptive,
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and that such propositions, fully stated, contain no such subject, but contain
instead an apparent variable.

Section C deals with classes, andwith relations in so far as they are analogous
to classes. Classes and relations, like descriptions, are shown to be "incomplete
symbols" (cf. Introduction, Chapter III), and it is shown that a proposition
which is grammatically about a class is to be regarded as really concerned with
a prepositional function and an apparent variable whose values are predicative
propositional functions (with a similar result for relations). The remainder of
Section C deals with the calculus of classes, and with the calculus of relations
in so far as it is analogous to that of classes.

Section D deals with those properties of relations which have no analogues
for classes. In this section, a number of ideas and notations are introduced
which are constantly needed throughout the rest of the work. Most of the
properties ofrelations which have analogues in the theory of classes are compara-
tively unimportant, while those that have no such analogues are of the very
greatest utility. It is partly for this reason that emphasis on the calculus-
aspect of symbolic logic has proved a hindrance, hitherto, to the proper develop-
ment of the theory of relations.

Section E, finally, extends the notions of the addition and multiplication of
classes or relations to cases where the summands or factors are not individually
given, but are given as the members of some class. The advantage obtained
by this extension is that it enables us to deal with an infinite number of
summands or factors.

Considered as a formal calculus, mathematical logic has three analogous
branches, namely (1) the calculus of propositions, (2) the calculus of classes,

(3) the calculus of relations. Of these, (1) is dealt with in Section A, while

(2) and (3), in so far as they are analogous, are dealt with in Section C. We
have, for each of the three, the four analogous ideas of negation, addition,
multiplication, and implication or inclusion. Of these, negation is analogous
to the negative in ordinary algebra, and implication or inclusion is analogous
to the relation " less than or equal to " in ordinary algebra. But the analogy
must not be pressed, as it has important limitations. The sum of two pro-
positions is their disjunction, the sum of two classes is the class of terms
belonging to one or other, the sum of two relations is the relation consisting
in the fact that one or other of the two relations holds. The sum of a class
of classes is the class of all terms belonging to some one or other of the
classes, and the sum of a class of relations is the relation consisting in the
fact that some one relation of the class holds. The product of two pro-
positions is their joint assertion, the product of two classes is their common
part, the product of two relations is the relation consisting in the fact that
both the relations hold. The product of a class of classes is the part common
to all of them, and the product of a class of relations is the relation consisting
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in the fact that all relations of the class in question -hold. The inclusion of

one class in another consists in the fact that all members of the one are

members of the other, while the inclusion of one relation in another consists

in the fact that every pair of terms which has the one relation also has the

other relation. It is then shown that the properties of negation, addition,

multiplication and inclusion are exactly analogous for classes and relations,

and are, with certain exceptions, analogous to the properties of negation, ad-

dition, multiplication and implication for propositions. (The exceptions arise

chiefly from the fact that "p implies q" is itself a proposition, and can there-

fore imply and be implied, while "a is contained in 0," where a and # are

classes, is not a class, and can therefore neither contain nor be contained in

another class 7.) But classes have certain properties not possessed by pro-

positions: these arise from the fact that classes have not a two-fold division

corresponding to the division of propositions into true and false, but a three-

fold division, namely into (1) the universal class, which contains the whole of

a certain type, (2) the null-class, which has no members, (3) all other classes,

which neither contain nothing nor contain everything of the appropriate type.

The resulting properties of classes, which are not analogous to properties of

propositions, are dealt with in *24. And just as classes have properties not
analogous to any properties of propositions, so relations have properties not
analogous to any properties of classes, though all the properties of classes have
analogues among relations. The special properties of relations are much more
numerous and important than the properties belonging to classes but not to

propositions. These special properties of relations therefore occupy a whole
section, namely Section D.



SECTION A

THE THEORY OF DEDUCTION

The purpose of the present section is to set forth the first stage of the

deduction of pure mathematics from its logical foundations. This first stage

is necessarily concerned with deduction itself, i.e. with the principles by which

conclusions are inferred from premisses. If it is our purpose to make all our

assumptions explicit, and to effect the deduction of all our other propositions

from these assumptions, it is obvious that the first assumptions we need are

those that are required to make deduction possible. Symbolic logic is often

regarded as consisting of two coordinate parts, the theory of classes and the

theory of propositions. But from our point of view these two parts are not

coordinate ; for in the theory of classes we deduce one proposition from another

by means of principles belonging to the theory of propositions, whereas in the

theory of propositions we nowhere require the theory of classes. Hence, in a

deductive system, the theory of propositions necessarily precedes the theory

of classes.

But the subject to be treated in what follows is not quite properly described

as the theory of propositions. It is in fact the theory of how one proposition

can be inferred from another. Now in order that one proposition may be

inferred from another, it is necessary that the two should have that relation

which makes the one a consequence of the other. When a proposition q is a

consequence of a proposition p, we say that p implies q. Thus deduction

depends upon the relation of implication, and every deductive system must

contain among its premisses as many of the properties of implication as are

necessary to legitimate the ordinary procedure of deduction. In the present

section, certain propositions will be stated as premisses, and it will be shown

that they are sufficient for all common forms of inference. It will not be shown

that they are all necessary, and it is possible that the number of them might

be diminished. All that is affirmed concerning the premisses is (1) that they

are true, (2) that they are sufficient for the theory of deduction, (3) that we

do not know how to diminish their number. But with regard to (2), there

must always be some element of doubt, since it is hard to be sure that one

never uses some principle unconsciously. The habit of being rigidly guided

by formal symbolic rules is a safeguard against unconscious assumptions; but

even this safeguard is not always adequate.



*1. PRIMITIVE IDEAS AND PROPOSITIONS

Since all definitions of terms are effected by means of other terms, every

system of definitions which is not circular must start from a certain apparatus

of undefined terms. It is to some extent optional what ideas we take as

undefined in mathematics; the motives guiding our choice will be (1) to

make the number of undefined ideas as small as possible, (2) as between two

systems in which the number is equal, to choose the one which seems the

simpler and easier. We know no way of proving that such and such a system

of undefined ideas contains as few as will give such and such results*. Hence

we can only say that, such and such ideas are undefined in such and such

a system, not that they are indefinable. Following Peano, we shall call the

undefined ideas and the undemonstrated propositions primitive ideas and

primitive propositions respectively. The primitive ideas are explained by means

of descriptions intended to point out to the reader what is meant; but the.

explanations do not constitute definitions, because they really involve the ideas

they explain.

In the present number, we shall first enumerate the primitive ideas

required in this section; then we shall define implication; and then we

shall enunciate the primitive propositions required in this section. Every

definition or proposition in the work has a number, for purposes of reference.

Following Peano, we use numbers having a decimal as well as an integral

part, in order to be able to insert new propositions between any two. A change

in the integral part of the number will be used to correspond to a new

chapter. Definitions will generally have numbers whose decimal part is less

than '1, and will be usually put at the beginning of chapters. In references,

the integral parts of the numbers of propositions will be distinguished by

being preceded by a star; thus "fcl/Ol " will mean the definition or proposition

so numbered, and " #1 " will mean the chapter in which propositions have

numbers whose integral part is 1, i.e. the present chapter. Chapters will

generally be called " numbers."

Primitive Ideas.

(1) Elementary propositions. By an "elementary " proposition we mean

one which does not involve any variables, or, in other language, one which

does not involve such words as " all," " some," " the " or equivalents for such

words. A proposition such as " this is red," where " this " is something given

in sensation, will be elementary. Any • combination of given elementary

propositions by means of negation, disjunction or conjunction (see below) will

* The recognized methods of proving independence are not applicable, without reserve, to

fundamentals. Cf. Principles of Mathematics, % 17. What is there said concerning primitive

propositions applies with even greater force to primitive ideas.
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be elementary. In the primitive propositions of the present number, and
therefore in the deductions from these primitive propositions in #2—*5, the
letters p, q, r, s will be used to denote elementary propositions.

(2) Elementary propositional functions. By an " elementary propositional

function" we shall mean an expression containing an undetermined consti-

tuent, i.e. a variable, or several such constituents, and such that, when the

undetermined constituent or constituents are determined, i.e. when values are

assigned to the variable or variables, the resulting value of the expression
in question is an elementary proposition. Thus if p is an undetermined
elementary proposition, " not-p " is an elementary propositional function.

We shall show in *9 how to extend the results of this and the following

numbers (#1—#5) to propositions which are not elementary.

(3) Assertion. Any proposition may be either asserted or merely con-

sidered. If I say " Caesar died," I assert the proposition " Caesar died,"

if I say "
« Caesar died ' is a proposition," I make a different assertion, and

" Caesar died '' is no longer asserted, but merely considered. Similarly in a
hypothetical proposition, e.g. " if a = b, then b = a" we have two unasserted

propositions, namely "a = b" and "b=a," while what is asserted is that the
first of these implies the second. In language, we indicate when a proposition

is merely considered by " if so-and-so " or " that so-and-so " or merely by
inverted commas. In symbols, if p is a proposition, p by itself will stand
for the unasserted proposition, while the asserted proposition will be de-

signated by
"\-.p."

The sign "h" is called the assertion-sign*; it may be read "it is true that"

(although philosophically this is not exactly what it means). The dots after

the assertion-sign indicate its range ; 'that is to say, everything following is

asserted until we reach either an equal number of dots preceding a sign

of implication or the end of the sentence. Thus " h : p . D . a " means " it is

true that p implies q" whereas " I- .p . D h . q " means "p is true ; therefore

q is truef." The first of these does not necessarily involve the truth either

ofp or of q, while the second involves the truth of both.

(4) Assertion of a propositional function. Besides the assertion of

definite propositions, we need what we shall call "assertion of a propositional

function." The general notion of asserting any propositional function is

not used until #9, but we use at once the notion of asserting various special

elementary propositional functions. Let <£# be a propositional function whose
argument is w; then we may assert </>«? without assigning a value to as.

This is done, for example, when the law of identity is asserted in the form

"A is A ." Here A is left undetermined, because, however A may be deter-

* We have adopted both the idea and the symbol of assertion from Frege.

t Cf. Principles of Mathematics, § 38.
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mined, the result will be true. Thus when we assert <f>x, leaving x undetermined,

we are asserting an ambiguous value of our function. This is only legitimate

if, however the ambiguity may be determined, the result will be true. Thus
take, as an illustration, the primitive proposition #1*2 below, namely

" V :pvp . D .p,"

i.e.
" (p or p' implies p." Here p may be any elementary proposition: by

leaving p undetermined, we obtain an assertion which can be applied to any
particular elementary proposition. Such assertions are like the particular

enunciations in Euclid: when it is said "let ABG be an isosceles triangle;

then the angles at the base will be equal," what is said applies to any isosceles

triangle; it is stated concerning one triangle, but not concerning a definite

one. All the assertions in the present work, with a very few exceptions, assert

propositional functions, not definite propositions.

As a matter of fact, no constant elementary proposition will occur in the
present work, or can occur in any work which employs only logical ideas.

The ideas and propositions of logic are all general : an assertion (for example)
which is true of Socrates but not of Plato, will not belong to logic*, and if an
assertion which is true of both is to occur in logic, it must not be made
concerning either, but concerning a variable x. In order to obtain, in logic,

a definite proposition instead of a propositional function, it is necessary to

take some propositional function and assert that it is true always or some-
times, i.e. with all possible values of the variable or with some possible value.

Thus, giving the name "individual" to whatever there is that is neither

a proposition nor a function, the proposition " every individual is identical

with itself" or the proposition " there are individuals " will be a proposition

belonging to logic. But these propositions are not elementary.

(5) Negation. If p is any proposition, the proposition "not-p," or "p is

false," will be represented by "~p." For the present,/) must be an elementary
proposition.

(6) Disjunction. Ifp and q are any propositions, the proposition "p orq,"

i.e. "either p is true or q is true," where the alternatives are to be not
mutually exclusive, will be represented by

"PVq "

This is called the disjunction or the logical sum of p and q. Thus " ~pvq"
will mean u

p is false or q is true"; "~ (pvq)" will mean "it is false that

either p or q is true," which is equivalent to "p and q are both false";
" ~ (~ p v ~ q)" will mean "it is false that either p is false or q is false," which
is equivalent to "p and q are both true "

; and so on. For the present, p and

q must be elementary propositions.

* When we say that a proposition "belongs to logic," we mean that it can be expressed in

terms of the primitive ideas of logic. We do not mean that logic applies to it, for that would of

course be true of any proposition.
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The above are all the primitive ideas required in the theory of deduction.

Other primitive ideas will be introduced in Section B.

Definition of Implication. When a proposition q follows from a proposition

p, sp that, if p is true, q must also be true, we say that p implies q. The idea

of implication, in the form in which we require it, can be defined. The mean-
ing to be given to implication in what follows may at first sight appear some-

what artificial; but although there are other legitimate meanings, the one here

adopted is very much more convenient for Our purposes than any of its rivals.

The essential property that we require of implication is this : "What is

implied by a true proposition is true." It is in virtue of this property that

implication yields proofs. But this property by no means determines whether

anything, and if so what, is implied by a false proposition. What it does

determine is that, if p implies q, then it cannot be the case that p is true and

q is false, i.e. it must be the case that either p is false or q is true. The most
convenient interpretation of implication is to say, conversely, that if either p
is false or q is true, then "p implies q " is to be true. Hence "p implies q

"

is to be defined to mean :
" Either p is false or q is true." Hence we put

:

*1'01. pDq. = . ~ pvq Df.

Here the letters " Df " stand for " definition." They and the sign of equality

together are to be regarded as forming one symbol, standing for " is defined

to mean*." Whatever comes to the left of the sign of equality is defined to

mean the same as what comes to the right of it. Definition is not among the

primitive ideas, because definitions are concerned solely with the symbolism,

not with what is symbolised ; they are introduced for practical convenience,

and are theoretically unnecessary.

In virtue of the above definition, when "p^q" holds, then either p is false

or q is true ; hence if p is true, q must be true. Thus the above definition

preserves the essential characteristic of implication ; it gives, in fact, the most
general meaning compatible with the preservation of this characteristic.

Primitive Propositions.

#11. Anything implied by a true elementary proposition is true. Ppf.
The above principle will be extended in #9 to propositions which are not

elementary. It is not the same as "if
'

p is true, then ifp implies q, q is true."

This is a true proposition, but it holds equally when p is not true and when p
does not imply q. It does not, like the principle we are concerned with, enable

us to assert q simply, without any hypothesis. We cannot express the principle

symbolically, partly because any symbolism in which p is variable only gives

the hypothesis that p is true, not the fact that it is true]:.

* The sign of equality not followed by the letters "Df " will have a different meaning, to be
denned later.

t The letters "Pp" stand for "primitive proposition," as with Peano.

t For further remarks on this principle, cf. Principles of Mathematics, § 38.
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The above principle is used whenever we have to deduce a proposition

from a proposition. But the immense majority of the assertions in the

present work are assertions of propositional functions, i.e. they contain an

undetermined variable. Since the assertion of a propositional function is a

different primitive idea from the assertion of a proposition, we require a

primitive proposition different from *11, though allied to it, to enable us to

deduce, the assertion of a propositional function " yfrx
" from the assertions of

the two propositional functions " (f>x" and "<f>xDyfrx" This primitive pro-

position is as follows

:

*1'11. When <f>x can be asserted, where x is a real variable, and <f>x D yfrx can

be asserted, where a; is a real variable, then yfrx can be asserted, where x is a

real variable. Pp.

This principle is also to be assumed for functions of several variables.

Part of the importance of the above primitive proposition is due to the

fact that it expresses in the symbolism a result following from the theory of

types, which requires symbolic recognition. Suppose we have the two assertions

of propositional functions " r- . <f>x
" and " h . <j>x D yfrx "

; then the " x " in <f>x is

not absolutely anything, but anything for which as argument the function "<j>x"

is significant ; similarly in "
<f>x D yfrx " the x is anything for which "

<f>x D yfrx
"

is significant. Apart from some axiom, we do not know that the x's for which

" <px D yfrx" is significant are the same as those for which "
<f>x " is significant.

The primitive proposition #111, by securing that, as the result of the assertions

of the propositional functions "<f>x" and "<f>xDyfrx," the propositional function

"yfrx" can also be asserted, secures partial symbolic recognition, in the form most

useful in actual deductions, of an important principle which follows from the

theory of types, namely that, if there is any one argument a for which both

"
(fta

" and "
yfra

" are significant, then the range of arguments for which "<f>x
"

is significant is the same as the range of arguments for which " yfrx " is sig-

nificant. It is obvious that, if the propositional function "
<f)X D yfrx " can be

asserted, there must be arguments a for which "
<f>a D yfra " is significant, and

for which, therefore, "<j>a" and "yfra" must be significant. Hence, by our

principle, the values of x for which "
<f>x

" is significant are the same as those

for which "
yfrx

" is significant, i.e. the type of possible arguments for <f>x (cf.

p. 15) is the same as that of possible arguments for yfrx. The primitive pro-

position #1'11, since it states a practically important consequence of this fact,

is called the "axiom of identification of type."

Another consequence of the principle that, if there is an argument a for

which both <f>a and yfra are significant, then (px is significant whenever yfrx is

significant, and vice versa, will be given in the " axiom of identification of real

variables," introduced in #l -72. These two propositions, #111 and #172, give

what is symbolically essential to the conduct of demonstrations in accordance

with the theory of types.
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The above proposition #1*11 is used in every inference from one asserted

propositional function to another. We will illustrate the use of this proposition
by setting forth at length the way in which it is first used, in the proof of

#2 06. That proposition is

"hz.pDq.D-.qDr .D.pDr."
We have already proved, in #2 -

05, the proposition

H :. q D r . D : p D q . D .p D r.

It is obvious that #2'06 results from #205 by means of *204, which is

\- :.p.D .qDr:D:q.D .pDr.

For if, in this proposition, we replace p by q D>, q by p D q, and r by p D r,

we obtain, as an instance of #204, the proposition

\- "qO r .D :pD q .D .pDr :.D :.pD q .5 : q3 r .3 .pD r (1),

and here the hypothesis is asserted by #2-05. Thus our primitive proposition

#111 enables us to assert the conclusion.

*1'2. h-.pvp.D.p Pp.

This proposition states :
" If either p is true or p is true, then p is true."

It is called the "principle of tautology," and will be quoted by the abbreviated

title of " Taut." It is convenient, for purposes .of reference, to give names to

a few of the more important propositions; in general, propositions will be
referred to by their numbers.

#13. h : q . D . p v q Pp.

This principle -states : "If q is true, then 'p or q is true." Thus e.g. if q is

"•to-day is Wednesday" and p is "to-day is Tuesday," the principle states:

" If to-day is Wednesday, then to-day is either Tuesday or Wednesday." It

is called the " principle of addition," because it states that if a proposition is

true, any alternative may be added without making it false. The principle

will be referred to as "Add."

*14. h:pvq.D.qvp Pp.

This principle states that "p or q" implies "q or p." It states the

permutative law for logical addition of propositions, and will be called the
" principle of permutation." It will be referred to as " Perm."

#15. h :pv(qvr). D .qv(pvr) Pp.

This principle states :
" If either p is true, or ' q or r ' is true, then either

q is true, or 'p or r' is true." It is a form of the associative law for logical

addition, and will be called the " associative principle." It will be referred to

as "Assoc." The proposition

pv(qvr) ,D .(pv q)vr,

which would-be the natural form for the associative law, has less deductive

power, and is therefore not taken as a primitive proposition.
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*1'6. \-: Kq'2r.'5:pvq.'2.pvr Pp.

This principle states :
" If q implies r, then 'p or q ' implies 'p or r' " In

other words, in an implication, an alternative may be added to both premiss

and conclusion without impairing the truth of the implication. The principle

will be called the "principle of summation," and will be referred to as "Sum."

*1'7. Ifp is an elementary proposition, ~p is an elementary proposition. Pp.

#1*71. If p and q are elementary propositions, p v q is an elementary pro-

position. Pp.

*1*72. If
<f>p and yjrp are elementary propositional functions which take

elementary propositions as arguments, <f>pvyfrp is an elementary propositional

function. Pp.

This axiom is to apply also to functions of two or more variables. It is

called the " axiom of identification of real variables." It will be observed that

if <£ and ^ are functions which take arguments of different types, there is no

such function as "
<f>a: v -tyx" because <j> and yjr cannot significantly have the

same argument. A more general form of the above axiom will be given in #9.

The use of the above axioms *l ,

7
,7l ,72 will generally be tacit. It is only

through them and the axioms of #9 that the theory of types explained in the

Introduction becomes relevant, and any view of logic which justifies these

axioms justifies such subsequent reasoning as employs the theory of types.

This completes the list of primitive propositions required for the theory

of deduction as applied to elementary propositions.

R&W I



*2. IMMEDIATE CONSEQUENCES OF THE
PRIMITIVE PROPOSITIONS

Summary o/#2.

The proofs of the earlier of the propositions of this number consist simply

in noticing that they are instances of the general rules given in #1. In such

cases,.these rules are not premisses, since they assert any instance of them-

selves, not something other than their instances. Hence when a general rule

is adduced in early proofs, it will be adduced in brackets*, with indications,

when required, as to the changes of letters from those given in the rule to

IV])
those in the case considered. Thus " Taut—— " will mean what " Taut " becomes

P
when <>jp is written in place of p. If " Taut—- " is enclosed in square brackets

before an asserted proposition, that means that, in accordance with " Taut,"

we are asserting what "Taut" becomes when ~p is written in place of p.

The recognition that a certain proposition is an instance of some general

proposition previously proved or assumed is essential to the process of de-

duction from general rules, but cannot itself be erected into a general rule,

since the application required is particular, and no general rule can explicitly

include a particular application.

Again, when two different sets of symbols express the same proposition in

virtue of a definition, say #1*01, and one of these, which we will call (1), has

been asserted, the assertion of the other is made by writing "[(1).(*1*01)]"

before it, meaning that, in virtue of *101, the new set of symbols asserts the

same proposition as was asserted in (1). A reference to a definition is dis-

tinguished from a reference to a previous proposition by being enclosed in

round brackets.

The propositions in this number are all, or nearly all, actually needed in

deducing mathematics from our primitive propositions.. Although certain

abbreviating processes will be gradually introduced, proofs will be given very

fully, because the importance of the present subject lies, not in the propo-

sitions themselves, but (1) in the fact that they follow from the primitive

propositions, (2) in the fact that the subject is the easiest, simplest, and most
elementary example of the symbolic method of dealing with the principles of

mathematics generally. Later portions—the theories of classes, relations,

cardinal numbers, series, ordinal numbers, geometry, etc.—all employ the

same method, but with an increasing complexity in the entities and functions

considered.

* Later on we shall cease to mark the distinction between a premiss and a rule according to
which an inference is conducted. It is only in early proofs that this distinction is important.
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The most important propositions proved in the present number are the

following

:

*202. h-.q.l.plq

I.e. q implies that p implies q, i.e. a true proposition is implied by any
proposition. This proposition is called the " principle of simplification " (re-

ferred to as " Simp "), because, as will appear later, it enables us to pass from

the joint assertion of q and p to the assertion of q simply. When the special

meaning which we have given to implication is remembered, it will be seen

that this proposition is obvious.

*203. b'.pZ^q.Z.qD^p
*215. h: ~p"5q m 3. ~qOp
*216. h zpDq.D. ~gO ~p
*217. h: ~gO -^p.D.p'Dq.

These four analogous propositions constitute the "principle oftransposition,"

referred to as " Transp." They lead to the rule that in an implication the two

sides may be interchanged by turning negative into positive and positive into

negative. They are thus analogous to the algebraical rule that the two sides

of an equation may be interchanged by changing the signs.

*204. \-:.p.0.q^r:D:q.0.pDr

This is called the " commutative principle " and referred to as " Comm."
It states that, if r follows from q provided p is true, then r follows from p
provided q is true.

*205. H:.gOr.D:jpDg.D.jOr
*2;06. \-:.p3q.D:qDr.3.p3r

These -two propositions are the source of the syllogism in Barbara (as will

be shown later) and are therefore called the "principle of the syllogism"

(referred to as " Syll "). The first states that, if r follows from q, then if q
follows from p, r follows from p. The second states the same thing with the

premisses interchanged.

*208. b.pDp

I.e. any proposition implies itself. This is called the " principle of identity
"

and referred to as " Id." It is not the same as the " law of identity " (" x is

identical with x"), but the law of identity is inferred from it (cf. #1315).

*2'21. h: ~p.O .pDq

I.e. a false proposition implies any proposition.

The later propositions of the present number are mostly subsumed under

propositions in #3 or #4, which give the same results in more compendious

forms. We now proceed to formal deductions.

7—2
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h :. q D r . D : ~p v q . D . ~p v r

(1)

(1)

*201. \-:pD ~p.D . ~p
This proposition states that, ifp implies its own falsehood, then p is false* It

is called the "principle of the reductio ad absurdum," and will be referred to as

' Abs."* The proof is as follows (where "Bern" is short for " demonstration"):

Dem.

Taut ^±- V : ~£> v ~jp . D . ~p

[(l).(*r01)] .
h : p D ~p . D . ~.p

*202. i-:g.3.;Og

Dem.

Add ^- H : q . D . ~p v a
L i> J

[(1).(*1-01)] V-.q.D.pDq

#203. h :/0~</. D.qO~p
Dem.

Perm ———- H : ~r> v ~g . D . ~ov ~»
L 2>» 2 J

[(l).(*r01)] \-:pD~q.D.qD~p

#204. h:.p.D.^Dr:D:^.D.pDr

Dem.

Assoc 21Pl2^3 h:.~i)v(~ovr).D.~ov(~»vr)
P. ? J

[(1).(*1-01)] h:.p.D.^Dr:D:g.D.^Dr

(1)

(1)

(1)

#205. b

Dem.

[Sum-P
L p J

[(l).(*r01)] h :. ? D r . D :pD # . 3 .p D

r

#206. hz.^O^.DigOr.D.pDr

Dem.

Comm<L
:>r

'
pDq

'
p:>r

~\ br.qDr.D-.pDq.D.pDr:.
p, q, r J

D :.pDq'.D:qDr .D .pDr (1)

[#2*05] F:.gDr.D:pD5.D.|)Dr (2)

[(1).(2).*111] h:.pD^.D:^Dr.D.joDr

In the last line of this proof, "(1) . (2) . #111" means that we are

inferring in accordance with *ril, having before us a proposition, namely

pDq.D-.qOr . Z> .pDr, which, by (1), is implied by q Dr. D :pDq . D .p Dr,

which,, by (2), is true. In general, in such cases, we shall omit the reference

to *rn.
* There is an interesting historical article on this principle by Vailati, "A proposito d' un

passo del Teeteto e di una dimostrazione di Euclide," Rivista di Filosofia e scienze affine, 1904.
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The above two propositions will both be referred to as the " principle of

the syllogism " (shortened to " Syll "), because, as will appear later, the syllo-

gism in Barbara is derived from them.

*207. bzp.O.pvp *l-3

2

Here we put nothing beyond "*1%3-," because the proposition to be

proved is what #1*3 becomes when p is written in place of q.

*208. h.jOp

Dem.

py*205 -^M H ::p vp- 3 -p : 3 :. p O.pvp: D •p'Sp

h :pvp. D .p

h :.p. "S.pvp : D -p^p
\- m.p. D .pvp

V .p^p

[Taut]

[(1).(2).*1-11]

[*2-07]

[(3).(4).*1-11]

*21. b.~pvp [*2-08 . (*1-01)]

*211. b.pv^p

Dem.

(1)

(2)

(3)

(4)

Perm >p,p

[(1).*2-1.*1-11] \-.pv~p

This is the law of excluded middle.

*212. h.jO<^(~p)

Dem.

h : ~p vp . D ,p v*>p (1)

r*2-n^
L p .

(i)

[(1).(*101)] h.pD~(~p)

*213. Kjov~{~(~p)}

This proposition is a lemma for *2'14, which, with #2*12, constitutes the

principle of double negation.

Dem.

Sum '(~P)}

[*2-12^]

[(1).(2).*1'11]

[(3).*2-n.*rii]

1
r- :. ~p . D . ~ (~(~p)} . D :

I" : ~jp . D . ~{no(f^p)}

h :p vr^p . D . p v~ (~(~jp)}

(1)

(2)

(3)
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*214. K~(~p)3j?

Bern.

L q

[(i).*2-i3.*rii]

[(2).(*1-01)] \-.~(~p)Dp

*215. b :~pDq .2 .cvq'Sp

Dem.

h :p v~{»j(~p)\ . D. ~{^(<^)} yp (l)

K~{~(~/>)} Vp (2)

h:.gD~(~g).D: ^jO^. D . ~pD~(~q) (1)
^2-05^~ (

~
g)1

_ P> r J

*212 5] -

Xl).(2).*lll]

L2-03-^^1
L P> 9. J

j"
cK2*05 ~g»~<~P>>P~| h .. ~(~p) Dp . D : ~ g D ~(~p) . D . ~g Dp

r*2-05
^^g'^P^^gX^g 3"^^)"! h: .

I- :™p"Dq . D . ™p 3~(~o/)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

p> g

[(5).*2-14.*l-ll]

*2'05
~P D

q

'

~P 3~(~g)> ~g 3~(~p)
i>> g>

»•

~pD~(~g). D . ~gO~(~p) : D :.

ojpDg'. D . ~/>D~(i~g') : D : r^pOq . D . <*-jqDe**>(~p)

[(4).(7).*ril] h :. ~p Z> ? . D . ~p D ~(~?) : D :

^jp D <7 . D . ~g D ~(~^>)

[(3).(8).*111] I- : ~p D q . D . ~? D~(~p)

#2*05—*-—^—* -———-—£ h ::~a D~(~») . D . ~qDp :

I 2>, g> »" J

D :.~pDq. D . <^gOoo(<->^p) : D :~pDq. D . ~gOp (10)

[(6).(10).*1'11] h :. ~p D g . D . ~? 3 ~(~p) : D :

~^0<7.D.~gOp (11)
[(9).(11).*1-11] H ~_p D g . D . ~g Dp

iV^ote on ^e proof of #2'15. In the above proof, it will be seen that (3),

(4), (6) are respectively of the forms p^p2 , p2 DpS) p^Pi, where j?iDp4 is

the proposition to be proved. From piOp2 , p2 "2p$, Ps^Pi the proposition

pz yp4 results by repeated applications of #2*05 or #2*06 (both of which are

called " Syll "). It is tedious and unnecessary to repeat this process every

time it is used ; it will therefore be abbreviated into

«[Syll]h.(a).(6).(o).Dh.(d),
M

where (a) is of the form p1 Dp2 , (b) of the form p2 Op3 , (c) of the form p3 Dp4 ,

and (d) of the form px "Dp4 . The same abbreviation will be applied to a sorites

of any length.
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Also where we have "b .p" and "b . pyDpz," and j»2 is the proposition to

be proved, it is convenient to write simply

[etc.] K^,"

where " etc." will be a reference to the previous propositions in virtue of which

the implication "pi^pa" holds. This form embodies the use of #1\L1 or #1*1,

and makes many proofs at once shorter and easier to follow. It is used in the

first two lines of the following proof

*216. bip^q. D.~gO~p
Dem.

[*2\L2] f-.?D~(~?).D

[*2-05] ' b:p5q.3.pD~(~q) (1)

b :j?D~(~<7). D ,~qD~p (2)

[Syll] b.(l).(2).Db:pDq.D.~qD~p

Note. The proposition to be proved will be called "Prop," and when

a proof ends, like that of *2'16, by an implication between asserted propo-

sitions, of which the consequent is the proposition to be proved, we shall

write " b . etc. D h . Prop". Thus 'OH. Prop " ends a proof, and more or less

corresponds to "Q.E.D."

*217. b i^q'Dr^p . D .p"5q

Dem.

r*2-03^^| b:~q 3~p.3.p5~(~ q) (l)

[*214] b:~(~q)3q:3
[*2-05] b:pD~(~q).O.pDq (2)

[Syll] r.(l).(2).3h.Prop

#2*15, *2'16 and #2*17 are forms of the principle of transposition, and will

be all referred to as " Transp."

*218. h:~pDp.D.p

Dem.
[*2-12] h.jO~(~p).D
[*2-05] r-.~jpDp.D.~jO~(~p) (1)

I- :~pD~(~p). D . ~(~|j) (2)[«*=*]
[Syll] I- . (1) . (2) . D I- : ~p Dp . D . ~(~p) (3)

[*2-14] b.~(~p)Dp (4)

[Syll] K(3).(4).DKProp

This is the complement of the principle of the reductio ad absurdum. It
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states that a proposition which follows from the hypothesis of its own false-

hood is true.

*2'2. hzp.D.pvq
Dem.

r- . Add . D h : p ... D . q vp
[Perm] r- : q vp . D . p v q
[Syll] H . (1) . (2) . D h . Prop

(1)

(2)

*221. h:~p.3.pl q
|~*2-2^1

The above two propositions are very frequently used.

*2*24. h : p . D . ~p D q [*2*21 . Comm]
*2'25. \~ z.pzv zpvq.D .q

Dem.
f- . *21 . D 1- : ~(p v q) . v . (p v q) :

[Assoc] D 1- :^> . v . {~(p v q) . v . q) : D h . Prop

*2-26. H:.~p:v:^D ? .D.g |*2-25^
*2-27. H.p.D:pOg.D.? [*2'26]

*2'3. V : » v (o v r) . D . p v (r v o)

Perm

Dem.

l^— H:<7vr.D.rv<7:

Sum——' D I- : p v (q v r) . D . p v (r v q)

*2'31. H : p v (g v r) . D . (p v q) v r

This proposition and *2*32 together constitute the associative law for

logical addition of propositions. In the proof, the following "abbreviation,

(constantly used hereafter) will be employed*: When we have a series of

propositions of the form aD6, 6 3c, cOd, all asserted, and "aDd" is the

proposition to be proved, the proof in full is as follows

:

(- :. a D b . D : b D c . D . a D c

h:a.D.&
h : bDc. D .aDc
H&.D.c
bza.O.c
:.aDc.D:cDrf.D.a!>^

:cDd. D . aDd
:c.O .d

:a .D .d

[Syii]

[(1).(2).*111]

[(3).(4).*1'11]

[Syll]

[(5).(6).*111]

[(7).(8).*111]

(1)

(2)

(3)

(4)

(5)

(6)

(?)

(8)

* This abbreviation applies to the same type of cases as those concerned in the note to *2-15,

but is often more convenient than the abbreviation explained in that note.
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It is tedious to write out this process in full.; we therefore write simply

h:a.DJ.
[etc.] D . c

.

[etc.] D.dzOh. Prop,

where "aDd" is the proposition to be proved. We indicate on the left by

references in square brackets the propositions in virtue of which the successive

implications hold. We put one dot (not two) after " 6," to show that it is b,

not " a D b," that implies c. But we put two dots after d, to show that now

the whole proposition " a "2d" is concerned. If "a D d " is not the proposition

to be proved, but is to be used subsequently in the proof, we put

h za.D .b

.

[etc.] D .c

.

[etc.] D . d

and then " (1) " means " a D d." The proof of *2*31 is as follows

:

Dem.
[*2'3] h : p v (q v r) . D . p v (r v q) .

Assoc—

(1).

i_ 9> rJ

fperm^^"

D . r v (p v q) .

D . (p v q) v r : D I- . Prop

I- : (p v <?) v r . D . r v (p v 9)

D .p v (g v r) : D I- . Prop

L P> 2

*2'32. I- :(pv^)vr.D.pv(q'vr)

Dem.

Perm-——

—

# 9.

Assoc ' ^' ^

p, q, r

[*2-3]

*2'33. pvqvr. = . (pvq)vr Df

This definition serves only for the avoidance of brackets.

#236. \- z.qDr .D zpw q .D .rvp

Dem.

[Perm] Vzpvr.D.rvpz

\sy\\
pVq,pVr

'

r * P~\Dh:.pvq.D.pvr:D:pvq.3.rvp (1)

[Sum] hz.qOr. "2 zpvq ."2 .pvr (2)

h.(l).(2).Syll.Dh.Prop

#237. h z.qOr .0 zqvp .0 .pvr
[Syll . Perm . Sum]

*2'38. hz.qOr.Dzqvp.O.rvp
[Syll . Perm . Sum]
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The proofs of #2*37 -38 are exactly analogous to that of #2*36. (We use
" *2'37'38 " as an abbreviation for " *2*37 and *2"38." Such abbreviations will

be used throughout.)

The use of a general principle of deduction, such as either form of " Syll,"

in a proof, is different from the use of the particular premisses to which the

principle of deduction is applied. The principle of deduction gives the general

rule according to which the inference . is made, but is not itself a premiss in

the inference. If we treated it as a premiss, we should need either it or some

other general rule to enable us to infer the desired conclusion, and thus we
should gradually acquire an increasing accumulation of premisses without

ever being able to make any inference. Thus when a general rule is adduced

in drawing an inference, as when we write " [Syll] h . (1) . (2) . D I- . Prop," the

mention of " Syll " is only required in order to remind the reader how the

inference is drawn.

The rule of inference may, however, also occur as one of the ordinary

premisses, that is . to say, in the case of " Syll " for example, the proposition

"p D q . D : q D r . D .p D r " may be one of those to which our rules of deduction

are applied, and it is then an ordinary premiss. The distinction between the

two uses of principles of deduction is of some philosophical importance, and

in the above proofs we have indicated it by putting the rule of inference in

square brackets. It is, however, practically inconvenient to continue to dis-

tinguish in the manner of the reference. We shall therefore henceforth both

adduce ordinary premisses in square brackets where convenient, and adduce

rules of inference, along with other propositions, in asserted premisses, i.e. we
shall write e.g.

"h.(l).(2).Syll.Db.Prop"

rather than " [Syll] h . (1) . (2) . D h . Prop
"

*2*4. H :.p. v .pyq ' D -pvq

Dem.
h .#231 . D h \.p. v\.p v q : D :pvp . v . q :

[Taut.*2-38] D:pvq:.Dh. Prop

*2'41. \-:.q.v.pvq:'D.pvq

Dem.

Assoc "tliA
p, q, r

[Taut.Sum] D : p v.q :. D h . Prop

*2'42. f- :. ~p .w .pDq:D . pOg #2-4—

-

*2-43. b:.p.D.pDq:0.pDq [*2"42]

*2"45. h:~(pvq).D. ~p [*2'2 . Transp]

*2'46. h : ~ (p v q) . D . ~ q [*1 -3 . Transp]

b:.q.v.pvq:0:p.v.qvq:
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*2-45.*2'2-^.Sylf|

*2'46 . *l-3

*2'45 . *22

•2-47
^£'

PA

<**>p, <~

p> <1

Syll]

Syll]

*2-48 P
P

SECTION A]

#247. \-:~(pvq).0.<s>pvq

*2*48. f-:~(pvg).D.pv~#

*2*49. H:~(pv<7).0.~pv<>^

*2'5. I- :«^(pDgr). D.«yp>gr

*2'51. r-:«%»(jOg).D.|0«^g'

*2'52. >:~(^02).D.~pO~2 *2'49 -^

*2 521. h:~(jOg)'.D.gOj>' [*2'5217]

*2'53. hzpv^.D.^^Og'

h .*2-12-38 . D I- :pv^ . D . ~(~jp) vg : D h .Prop

H^jO^.D.jovg [*214-38]

h:.~j». Drjjvg.D .g [#2*53 . Comm]

h:.~g . D zjjvg.D.jp #2*55 ^: . Perm

h :.~p D g . D :p D q . D . q

107

*254.

*255.

*256.

*26.

Bern.

[*2'38] h:.~pDg'.D:~pvg'.D.g'V(/

[Taut . Syll] r :.~p v g . 3 . q v g : D :~p v # . D . <?

H . (1) . (2) . Syll . D h :.~p D g . D :~p v g . D . q :. D H . Prop

(1)

(2)

*2'61. h

*262. h

*2621. 1-

*2-63. h

*264. H

.p"Dq.D: ~p D ^ . D .q

• pvq- D:p^q.O .q

.pOq.D :pvq. D .q

. p v ^ . D : ~jp v ^ . D . ^

.^} v q. D :pv~^. D .^)

*2*65. \-:.pDq.D:pD~q.D.r*>p

*2 67. h:.|)Vf.D.jf':D.|)D9

[*2-6 . Comm]

[*2-53-6 . Syll]

[*2'62 . Comm]

[*2-62]

T*2-63 &-? . Perm
L P>2

[*2-64^]

Bern.

[*2
-54.Syll] h z.pvq.D ,q:D : ~j? D q . D . q

[*2'24.Syll] \-:.~pDq.D.q:D.pDq

1- . (1) . (2) . Syll . D h . Prop

(1)

(2)
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*2'68. \r:.p2q.2.q:D.pvq

Bern.

1*2-67 ^2] hz.pOq.O.q-.^.^pOq

h . (1) . *2*54 . D h . Prop

*2-69. \-:.pOq.^.q:0'.qDp.^.p [*2-68 . Perm . *2'62^1

*2'73. \-:.p3q.0:pvqvr.3.qvr [*2-621'38]

*274. H.^Dp.D^vgvr.D.^vr *2'73 ?L& . Assoc . Syll

*2*75. h::pvg.D:._p.v.?Dr:D.|)vr *2'74^ . *2'53'31

(1)

*2-74^2

*276. h.p.v.prOspv^.D.pvr [*2'75 . Comm]

*2-76
2> J

*277. hz.p.O.qlr-.lipDq.O.p'Dr

*2'8. r- :.gvr .D :~rvs. D.^vs

h . *2 -53 . Perm . D f- :. q v r . : ~r D g

:

[*2'38] D : ~r vs.D.gvsr.DH. Prop

*2'81. I- :: q.D.rOszDz.pvq.Dzpvr.'S.pvs

Bern.

h.Sum . Obizq. D.rDs: D :.jpvg.D :p. v .Os
> . *2-76 . Syll .Dhzzpvq.lzp.v.r'Ssz.Dz.

K(l).(2).Dh.Prop
*2'82. H.pvgvr .D:^v~rv$.D.jjvgvs

(1)

(2)

*2'8 . *2-81
o, r, s

*2'83. H- :: jp . D . <j D r : D :. jp . D . r D * : D: ^> . D . gO

s

L2 .82jm^l
L p> ? J

*285. l-:.f v^.3.|rvr : D :p. v.gOr

[Add.Syll] K:.pvg.D.r:D.gDr (1)

H . *2'55 . 3 H :: ~jp . D :.^> v r . D . r :.

[Syll] Or.^vg. D.pvrz D :^vg .D. r:.

[(1).*2'83] Oi.pyq.D.pvr'.OzqDr (2)

H . (2) . Comm . D I- :. _pvg. D .pvr : D :~p. D .gOr

:

[#2'54] Oip.v.gOr:. Dh. Prop

*2'86. :f:.j)Dg.>..|)Dr:3 : jp . 3 . 5 D r *2'85-^ 1



*3. THE LOGICAL PRODUCT OF TWO PROPOSITIONS

Summary q/"#3.

The logical product of two propositions p and q is practically the pro-

position "p and q are both true." But this as it stands would have to be a

new primitive idea. We therefore take as the logical product the proposition

~(~^v~j), i.e. "it is false that either p is false or q is false," which is

obviously true when and only when p and q are both true. Thus we put

*301. p.q. = .~(~^v~g) Df

where "p . q " is the logical product ofp and q.

*302. pDqDr. = .pDq.qDr Df

This definition serves merely to abbreviate proofs.

When we are given two asserted propositional functions " H . <f>x " and
" H . •fyx" we shall have " L. <f>x . yjrx " whenever

<f>
and \fr take arguments of

the same type. This will be proved for any functions in #9 ; for the present,

we are confined to elementary propositional functions of elementary pro-

positions. In this case, the result is proved as follows

:

By *1'7, ~(j>p and ~yjrp are elementary propositional functions, and there-

fore, by #1*72, ~<|)pv~ yjrp is an elementary propositional function. Hence

by #2-11,

h:~^pv~i^p.v.<,v(~<^pv~^fp).

Hence by #2-32 and *r01,

h :.
<f>p

. D : yjrp . D . ~(~^,jo v o->yJfp),

i.e. by *3'01,

I- :.
<f>p

. D : i|rjp .D ,<j)p . typ.

Hence by #1'11, when we have "h. <\>p" and "V .typ" we have "V .fyp.-typ."

This proposition is #3*03. It is to be understood, like *1'72, as applying "also

to functions of two or more variables.

The above is the practically most useful form of the axiom of identification

of real variables (cf. *1'72). In practice, when the restriction to elementary

propositions and propositional functions has been removed, a convenient means

by which two functions can often be recognized as taking arguments of the

same type is the following

:

If <f)X contains, in any way, a constituent %(#, y, z, ...) and yjrx contains,

in any way, a constituent %(#, u,v, ...), then both <f>x and yjrx take arguments

of the type of the argument x in ^ (x, y,z, .. .), and therefore both <}>x and yjrx

take arguments of the same type. Hence, in such a case, if both <j>x and yjrx

can be asserted, so can <f>x . yfrx.
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As an example of the use of this proposition, take the proof of #3 "47. We
there prove

h z.p^r .qDs. D :p-q* D.g-.r (1)

and b:.pDr.q'Ds. D:q.r. 3 .r'. s (2)

and what we wish to prove is

p'Dr.qOs.Ozp.q.O.r.s,

which is #3*47. Now in (1) and (2), p, q, r, s are elementary propositions

(as everywhere in Section A); hence by #l'7"7l, applied repeatedly,

"p D r . q D s . D :p . q . D . q . r" and "p 3 r . q D s . D : q . r . D . r . s" are ele-

mentary propositional functions. Hence by *3'03, we have

\
m ::pDr.q'Ds.D:p.q.D.q.r:.pDr.qDs.D:q.r.D.r.s,

whence the result follows by #3'43 and *3*33.

The principal propositions of the present number are the following

:

*3'2. bz.p.D-.q.D.p.q

I.e. "p implies that q implies p . q," i.e. if each of two propositions is true,

so is their logical product.

*3-26. V-.p.q.l.p

*3'27. bip.q.D.q

I.e. if the logical product of two propositions is true, then each of the two
propositions severally is true.

*3'3. \-:.p.q.D .r:D:p.D.q^r
I.e. if p and q jointly imply r, then p implies that q implies r. This

principle (following Peano) will be called "exportation," because q is "exported"
from the hypothesis. It will be referred to as " Exp."

*3'31. \-:.p.D.qDr:D:p.q.'D.r

This is the correlative of the above, and will be called (following Peano)
" importation " (referred to as " Imp ").

*3-35. b-.p.p^q.D.q

I.e. "ifp is true, and q follows from it, then q is true." This will be called

the "principle of assertion" (referred to as "Ass"). It differs from #11 by
the fact that it does not apply only when p really is true, but requires merely
the hypothesis that p is true.

*3'43. I- z.pDq.pDr . D :p . D .q.r

I.e. if a proposition implies each of two propositions, then it implies their

logical product. This is called by Peano the " principle of composition." It

will be referred to as " Comp."

*3*45. b z.pDq.^zp .r .D .q.r

I.e. both sides of an implication may be multiplied by a common factor.

This is called by Peano the " principle of the factor." It will be referred to

as " Fact."
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347. Hr.pDr.gOff.Drp.g.D.r.f

I.e. if p implies q and r implies s, then p and q jointly imply r and s

jointly. The law of contradiction, " h . ~ (p . ~p)," is proved in this number
(3*24); but in spite of its fame we have found few occasions for its use.

301. p,q. = .~(<^>pvn*>q) Df

302. p3q0r. = .pDq.q0r Df
3*03. Given two asserted elementary prepositional functions "\-

.<f>p
" and

" h . yfrp" whose arguments are elementary propositions, Ave have h .
<f>p

. yfrp.

Bern.

V . *l'7-72 . *211 .DH:~$pv~<^- v -~(~# v ~ typ) (1)

I- . (1) . #2*32 . (*1'01) . D h :. <j>p . D : yfrp . D . ~ (~
<f,p

v ~ yjrp) (2)

I- . (2) . (*3'01) .Dh:.^).D:^).D.#.^) (3)

r . (3) . *1\L1 . D h . Prop

hip.q.3.~(~pv~q) [Id . (3 ,

01)]*31.

3*11. h :~(~pv~^). D -p-q Id . (*3-01)]

211 ~*> v ~g
"

311 . Transp]

312. h : <>jp. v . "*>q . v .p . g

3*13. H : <^ (^> . q) . D . ~p v~ <?

314. h : ~p v~q.D.~(p.q) [#3l . Transp]

3 2. hz.p.l-.q.O.p.q [*3'12]

3-21. h:.gr.D:^.D.p. ? [*3'2 . Comm]
3-22. h'.p.q.D.q.p

This is one form of the commutative law for logical multiplication. A
more complete form is given in *4 3.

Bern:

V : ~ (q . p) . D . ~ q v ~p .Ls-13££
L i>> ?J

[Perm] D.~pv~g.
[#314] 2.~(p.q)
h . (1) . Transp . D h . Prop

Note that, in the above proof, " (1)
" stands for the proposition

w
~(3.p).3.-(p.j),

M

as was explained in the proof of *2-31.

3'24. h.~(p.~p)
Dem.

r^p'

(1)

2-11
P J

3-14 --£
I

-
. <—'

( JO . <^p)

The above is the law of contradiction.
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*3*26. bip.q.l.p
Bern.

*202

[(1).(*1-01)J

*2-31]

*253 p q>p

p>

[(2).(*3-01)]

*327. bzp.q.l.q

Dem.
[*3-22]

H :p.D *q"2p

p . v . ~qvp;
pv~q . v .p:

3 h ;<^>(~pv<^>q). D ,p

h zp.q.O .p

r:

(1)

(2)

\- zp.q.'D.q.p.

#3-26 2l21- D.grDKProp
L . # SJ

#3'26*27 will both be called the "principle of simplification," like *2*02,

from which they are deduced. They will be referred to as " Simp."

#33. h :.p .q ,D .r:D :p .D .qOr

Dem.
[Id.(*301)] \-:.p.q.O

[Transp]

[Id.(*l-01)]

[Comm]

[Transp.Syll]

*331. hz.p.D.qDr-.'D-.p.q.D,

D : ~ (™p v ~ q) . D . r :

D : ~r . D .p D^g :

D:j?.D.~rD~g':
D :p . . q D r :. D h . Prop

•Dem.
Id.(*101)] h r.jp.D.^Dr :D:~^.v.~^vr :

#2*31] D :~j3V~^. v.r :

pv ~q
*2-53

2>>

P : ~(~j9 v oj<2) . D . r

:

D:j).g.D.r:.DK Prop[Id.(*3'01)]

*3 33. hzpDq.qDr.D .p Dr [Syll . Imp]

*3-34. \-:qDr.pDq.D.pDr [Syll . Imp]

These two propositions will .hereafter be referred to as "Syll"; they are

usually more convenient than either #2'05 or #2*06.

*335. hzp.pDq.l.q [*2"27 . Imp]

#337. h :.p. q. D . r : D :p,<*>>r . D .~q
Dem.

h . Transp .OhiqDr.D.^rD^q:
[Syll] D h :.p. D\ qDr : D : p . D . ~r D ~^
h.Exp. D r- z.p.q. D .r : D :^>. D . # Dr
h .Imp . DF:.^).D.'>JrD~g, :^:p.~r.D.~g,

h . (2) . (1) . (3) . Syll . D K Prop

(1)

(2)

(3)



SECTION A] THE LOGICAL PEOGDUCT OF TWO PROPOSITIONS 113

This is another form of transposition.

*3*4. H :p .

q

. D .p D q [*251 . Transp . (*1'01 . *301)]

*3'41. bz.pDr.Dzp.q.O.r [*3-26.Syll]

*342. \-z.q3r.Dzp.q.D.r [*327.Syll]

*343. t-z.pDq.pDr.Dzp.O.q.r

Dem.
K*3 >2.DH:.?.D:r.D.g.r (1)

\-.(l).Syll.D\-zzpDq.Dz.p.Dzr.D.q.rz.

[*2-77] Oz.pDr.Dzp.D.q.r (2)

f- . (2) . Imp . 3> . Prop

*344. b z.qDp.rDp.Dzqvr .D .p

This principle is analogous to #343. The analogy between *3'43 and
#3*44 is of a sort which generally subsists between formulae concerning

products and formulae concerning sums.

Dem.
h . Syll . 3 H :. ~ q 3 r . r Dp . 3 : ~ q 3p z

[*2*6] DzqDp.D.p (1)

I- . (1) . Exp . 3 f- :: ~ q 3 r . 3 :. r 3p . 3 : <j 3p . 3 . p :.

[Comm.Imp] 3 :. # Dp . r 3 p . 3 . p (2)

I- . (2) . Comm . 3 h :. q Dp . r 3 p . 3 : ~ q 3 r . 3 .p :.

[*2'53.Syll] 3 h . Prop

#3*45. I- :.p3<j.3 :p.r .3.g.r

This principle shows that we may multiply both sides of an implication

by a common factor; hence it is called by Peano the "principle of the factor."

We shall refer to it as " Fact." It is the analogue, for multiplication, of the

primitive proposition #1*6.

Dem.

I- .Syll . 3 h z.pDq. 3:gO~r.3.p3~r:
[Transp] 3 : ~(p 3~r) . 3 . ~(gO~r) :.

[Id.(*l-01.*3-01)] 3 h . Prop

*3"47. b z.pDr . qDs. 3 \p .q. 3.r .s

This proposition, or rather its analogue for classes, was proved by Leibniz,

and evidently pleased him, since he calls it "praeclarum theorema*."

Dem.

K*3-26.3h:.p3r.£3s.3:p3r:
[Fact] Dzp.q-.D.r.qz

[*3-22] Dzp.q.D.q.r (1)

* Philosophical works, Gerhardt's edition, Vol. vii. p. 223.

R&w I 8
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K #3-27. D \-:.p Dr. q Ds.DzqOs:
[Fact] D:g.r.O.*.r:

[*3'22] D-.q.r.O.r.s (2)

K(1).(2).*303.*2-83.D

I- :.p D r . ? D s . D :p . q ..? . r . s :. D H . Prop

*348. h:.^Dr.grDs.D:j>v^.D.rvs

This theorem is the analogue of *3'47.

Bern.

V . #3-26 . D f- :.p D r . q D s, D : p 3 r

:

[Sum] Dipvg.D.rv^:
[Perm] Ozpvq.O.qvr (1)

I- . *3-27 . D I- :.£> Dr

.

q D « . D : q Ds

:

[Sum] Dztjvr.D.svr:

[Perm] Dr^vr.D.rvs (2)

H.(1).(2).*2-83.D

I- :. p D r . # D s . D :p v <f
. D . r v s :. D h . Prop



*4. EQUIVALENCE AND FORMAL RULES

Summary of #4.

In this number, we shall be concerned with rules analogous, more or less,

to those of ordinary algebra. It is from these rules that the usual " calculus

of formal logic " starts. Treated as a " calculus," the rules of deduction are

capable of many other interpretations. But all other interpretations depend

upon the one here considered, since in all of them we deduce consequences

from our rules, and thus presuppose the theory of deduction. One very

simple interpretation of the " calculus " is as follows : The entities considered

are to be numbers which are all either or 1 ;

"p D q" is to have the value

if p is 1 and q is ; otherwise it is to have the value 1 ; ~p is to be 1 if p
is 0, and if p is 1 ; p . q is to be 1 if p and q are both 1, and is to be in

any other case
; p v q is to be if p and q are both 0, and is to be 1 in any

other case; and the assertion-sign is to mean that what follows has the

value 1. Symbolic logic considered as a calculus has undoubtedly much

interest on its own account ; but in our opinion this aspect has hitherto been

too much emphasized, at the expense of the aspect in which symbolic logic

is merely the most elementary part of mathematics, and the logical pre-

requisite of all the rest. For this reason, we shall only deal briefly with what

is required for the algebra of symbolic logic.

When each of two propositions implies the other, we say that the two are

equivalent, which we write " p = q." We put

*401. p=q. = .pDq.q0p Df

It is obvious that two propositions are equivalent when, and only when,

both are true or both are false. Following Frege, we shall call the truth-

value of a proposition truth if it is true, and falsehood if it is false. Thus two

propositions are equivalent when they have the same truth-value.

It should be observed that, if p = q, q may be substituted for p without

altering the truth-value of any function of p which involves no primitive

ideas except those enumerated in *1. This can be proved in each separate

case, but not generally, because we have no means of specifying (with our

apparatus of primitive ideas) that a function is one which can be built up out

of these ideas alone. We shall give the name of a truth-function to a function

f(p) whose argument is a proposition, and whose truth-value depends only

upon the truth-value of its argument. All the functions of propositions with

which we shall be specially concerned will be truth-functions, i.e. we shall

have

P = <1- 3-/(P) =/(<!)
8—2
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The reason of this is, that the functions of propositions with which we deal

are all built up by means of the primitive ideas of #1. But it is not a universal

characteristic of functions of propositions to be truth-functions. For example,

"A believes p* may be true for one true value ofp and false for another.

The principal propositions of this number are the following:

*4"1. h zp'Dq. = . ~gD~p
#4*11. I- :p = q. = .<>jp = ~q

These are both forms of the " principle of transposition."

#4:13. h.^ = ~(~#)
This is the principle of double negation, i.e. a proposition is equivalent to

the falsehood of its negation.

#42. \-.p=p

*421. h :p = q.=.q=p
#422. H :p~q.q = r . D .p = r

These propositions assert that equivalence is reflexive, symmetrical and

transitive.

#424. h :p.= .p .p

#425. h:p. = .pvp

I.e. p is equivalent to "p and p" and to " p or p" which* are two forms of

the law of tautology, and are the source of the principal differences between

the algebra of symbolic logic and ordinary algebra.

#4'3. h:p.q.=.q.p
This is the commutative law for the product of propositions.

#431. h:pvq. = .qvp
This is the commutative law for the sum of propositions.

The associative laws for multiplication and addition of propositions, namely

#4 -

32. h : (p . q) . r . = .p . (q . r)

#433. h :(p vq) vr . = .p v(g-vr)

The distributive law in the two forms

#44. \-:.p.qvr. = :p.q.v.p.r

#441. h :.p . v.q . r : = .p vq .pvr

The second of these forms has no analogue in ordinary algebra.

#4*71. h :.pDq.~:p . = .p .q

I.e. p implies q when, and only when, p is equivalent to p . q. This pro-

position is used constantly; it enables us to replace any implication by an

equivalence.

#4'73. h :. q . D :p . = .p . q

I.e. a true factor may be dropped from or added to a proposition without

altering the truth-value of the proposition.
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#401. p = q* = .pOq.q Op Df

*402. p = q = r.=z.p = q.q = r Df

This definition serves merely to provide a convenient abbreviation.

117

•41. H :^>Dg. = m ojqD~p [•2-16-17]

•411. \- :p = q. = .f*p = ~q [•216-1 7. •3-47-22]

•412. h zp = ~q m = ,q = r*>p [•20315]

•413. \r .p = <v* (~jp) [•2-12-14]

•414. h i.p.q. D.r : = :_p.~r< >. ~g [*337. *413]

•415. h z.p.g.D.^r: = :g.r 3. <vj) [#3-22 . •41314]

•4*2. H.^)=^ [Id.*32]

•4*21. h:p = ?. = .?=;> [*322]

•4*22. |-:^ = gf.g = r.D.p = r

(1)

(2)

(3)

(4)

(5)

(6)

Dem.
h.*3*26. ~2t-:p = q.q = r.'D.p = q.

[•3-26] i-piq
K*3*27. 2\-:p = q.q = r.'2.q==r.

[•3-26] D.gDr
h . (1) . (2) . #2*83 .3\-:p = q.q = r.3.pDr
h . *3'27 . Db:p-=q.q = r.0.q = r.

[*3'27] D.rOq
K*326. 3bip = q .q = r.0.p = q.

[•3-27] 3-qOp
b . (4) . (5) . *2'83 .0\-:p = q.q = r.0.rOp
K(3).(6).Comp.Dh.Prop

Note. The above three propositions show that the relation of equivalence

is reflexive (•4*2), symmetrical (•4*21), and transitive (•4*22). Implication

is reflexive and transitive, but not symmetrical. The properties of being

symmetrical, transitive, and (at least within a certain field) reflexive are

essential to any relation which is to have the formal characters of equality.

*4'24. \-:p. = .p.p

Bern.

\-.*B-26.Db:p.p.D.p (1)

h.*3-2. DH.jp. D zp.D.p.p:.

[•2-43] Db-.p.O.p.p (2)

I- . (1) . (2) . *3-2 . K Prop

*4 25. h:p.z=.pvp Taut . Add ^

Note. *4'24'25 are two forms of the law of tautology, which is what chiefly

distinguishes the algebra of symbolic logic from ordinary algebra.
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*4-3. \-:p.q. = .q.p [*3'22]

Note. Whenever we have, whatever values p and q may have,

<f>(p,q).y.<f>(q,p),
we have also

<f>(p,q).= .<f>(q,p).

For {* (p,q).D.<f> (q,p)} %* . D : <j> (q,p) . D .
tf> (p, <?).

*431. H i^vg . = . qvp [Perm]

*4'32. H : (p . g) . r . = .p . (# . r)

Dem.

K#4#15. D\-:.p.q.D.~r: = :q.r.'2.~p:

[*4-12] =:2>.D.~(gr.r) (1)

h . (1) . *4'11 . D h : ~ (p . 5 . D . ~ r) . = . ~
(
j) . D . ~ (^ . r)}

:

[(*r01.*301)] D h . Prop

jVofe. Here "(1)" stands for " H :.p . q. D . ~r : = :jp . 3 . ~ (<? . r)," which

is obtained from the above steps by #4*22. The use of #4*22 will often be

tacit, as above. The principle is the same as that explained in respect of

implication in #231.

*4-33. \-:(pvq)yr. = .pv(qvr) [*231'32]

The above are the associative laws for multiplication and addition. To

avoid brackets, we introduce the following definition

:

*4*34. p.q.r . = .(p.q).r Df

*4'36. h:.p = q.D:p . r.=.q.r [Faet.*3-47]

*437. \-:.p = q.D:pvr. = .qvr [Sum.*3-47]

*438. \-:.p=r.q=s.D:p.q. = .r.s [*3'47 . *432 . *3-22]

*4-39. V'..p = r.q=s.^:p\q. = .rys [*3*48-47 . *432 . *3'22]

*4*4. h z.p.qvr . = :p.q . v .p .r

This is the first form of the distributive law.

Bern.

K*3'2. 0\-::p.D:q.'2.p.qz.p.'2:r

[Comp] 0\-::p.D:.q.y.p.q:r.D.p,

[*3'48] Dz.qvr. D-.p.q.v.p.

f-.(l).Imp. 0\-:.p.qvr.D:p.q. v,p.r

K#3"26. D\-:.p.q.D.p:p.r.D.p:.

[*3'44] Dhz.p.q. v .p.r-.D.p (3)

h.*3'27. D\-:.p.q.y.q:p.r.'D.r:.

[*3-48] yli.p.q.v .p.r-'.y.qvr (4)

h . (3) . (4) . Comp . Df :.p.q. v .p.rzD.p. qvr (5)

r.(2).(5). DKProp

D,P-, r ::.

r :,

r (1)

(2)
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*4'41. \-:.p.v .q.r:= .pvq.pvr

This is the second form of the distributive law—a form to which there

is nothing analogous in ordinary algebra. By the conventions as to dots,

"p . v . q . r
n means "p v (q . r)."

Dem.

h . *3'26 . Sum . D h :.p. v. q.r : D .p vq (1)

I- . *3'27 . Sum . D r- up . v . q . r : D .p v r (2)

K(l).(2).Conip.Dh:.jp.v.g.r:D._pvgr.jpvr (3)

h . *2*53 . *3*47 . DH:._pvg'.^vr.3:~|)Dg'.~i)3r:

[Comp] D:~p.D.q.r:
[*2'54] D:p.v.g.r (4)

K(3).(4). DKProp

*4*42. f- :.^>. = zjj.g. v.^.^^

Ztewi.

K*3'21 ... Dh:.5V~g.D:^.3.j5.^v~g:.

[*211] Or-rp.D.^.grv^ (1)

h.*3-26. Dh:j).grv~g. j|.|> (2)

H . (1 ) . (2) .O I- : .p . = :p . q v~ q

:

[*4*4] =:p.q.v .p.~q:.Dh . Prop

*4'43. h:.p. = :pvq.pv~q

Dem.
t-.*2*2. Dhip.D .pvqzp.D.pv^q:
[Comp] Dbip.'Z.pvq.pv^q (1)

b . *265^ . D I- :. ~p D g . D : ~p 3 ~» o . D .p :.

[Imp] Dh :.~j)Dgf.~^D~gr .D.p:.

[*2-53.*3*47] Dhz.pv^.pv^^.D.^ (2)

K(l).(2). Oh. Prop

#444. \-:.p. = :p.v.p.q

Dem.
h . *2'2

.

^Vi.p.^-.p.y.p.q (1)

h . Id . *3'26 . D V :.p "Dp :p'. q

.

O .p :.

[*3'44] Dbt.p.v.p.qiD.p (2)

K(l).(2). DKProp

*445. I-

:

p . = .p .
J?

v

q [*3'26 . *2*2]

The following formulae are due to De Morgan, or rather, are the propo-

sitional analogues of formulae given by De Morgan for classes. The first

of them, it will be observed, merely embodies our definition of the logical

product.
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*4'5.

*451.

h

*452. > ! p . <**>q

.

*453. f- : *^» (p . <^» q)

.

*454. r. ~p. q.

*4-55; h: o->(cvp . £).

*456. I-:
<^J£>

.<vj.

*457. h :^>(<^>jp.no«).

= .~(^v<v ?) [*4-2
. (*3-01)]

= .<^>j)V~g' [*4*512]

= .~(~pvq)

= . ^ (p v «m q)

= . p v «v» q

= .~(pvq)

= .pvq

The following formulae are obtained immediately from the above. They
are important as showing how to transform implications into sums or into

denials of products, and vice versa. It will be observed that the first of them
merely embodies the definition *l a

01.

r*4.5^.*4.i3"|

04-52-12]

f*4-5^.*413]

[*4'5412]

[*4-5612]

*4'6. 1-

:

p3q.= . r^pwq [*4-2 . (*1-01)]

*461. h: ~(pDq).=.p.~q [«4'6'll-52]

*4'62. H p D~ q . =. ~|)v<v q H t]
*463. r: ~(pD~q) , = .p.q [4-6211-5]

*464. h: r^pDq . = .pv q [*2'53'54]

*4/65. h: (**>
(<~J3 D q) . = . r*>p . <>>> q [*4-6411-56]

*466. h: o->p^e>jq. = .pvt**>q [•4-64 ^2]
*467. h: <**> (~p 3 ~ q) . = . ~p • 9 [*4-66-ll'54]

*47. h

:

.pDq.= :p .0 .p.q

Bern.

h.*3-21.Sy\l.D\-:.p.D.p.q:0.p3q

KComp. O^z.pOp.pOq.Dzp.'D.p.q:,.
[Exp] D\-::pDp.D:.pOq.D:p.D.p.q::
[Id] Dh i.pDq.'Dzp.D .p.q
h.(l).(2). DKProp

pDq.

(1)

(2)

:p.=.p.q*471. >

Dew.

K*3-21. Dhi-.p.q.D.p-.D

[*3'26] Dh:.p.D.jp. ? :D
K*3'26.. 3h:.p. = .p.q:3
K(l).(2). 3r-:.f».D..p.g:»

K (3) . *4-7-22 . D h . Prop

p. = .p.q (1)

p.Z.p.q (2)

P- = -2>-3 (3)
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The above proposition is constantly used. It enables us to transform

every implication into an equivalence, which is an advantage if we wish to

assimilate symbolic logic as far as possible to ordinary algebra. But when

symbolic logic is regarded as an instrument of proof, we need implications,

and it is usually inconvenient to substitute equivalences. Similar remarks

apply to the following proposition.

*4'72. \-:.pOq.= :q. = .pvq

Dem.
\- . #41 . D b :. p D q . = : ~ q D ~p :

#4*71 "^-'-"^l =:~o. = .~g.~p:
1 P> <l J

[*4'12] =:q. = .~>(~q m r»p):

[*4'57] = : q . = . q Vp :

[#4*31] ==:q. = .pvq:.D\-. Prop

#473. \-:.q.'5ip. = .p.q [Simp. #4-71]

This proposition is very useful, since it shows that a true factor may be

omitted from a product without altering its truth or falsehood, just as a true

hypothesis may be omitted from an implication.

#474. \-:.~p.Dzq. = .pvq [#2-21 . #472]

#441 ^.(#101)1#476. \-:.pDq.p'2r.= :p.'D.q.r

#477. b:.qOp.rOp. = :qyr.0.p [*344 . Add . *2'2]

#478. \-:.pOq.v .pOr: = :p.D .qvr

Dem.

\- .#4*2 .(#101). Dr-:.jOgr.v.jOr: = :<>->pvq.v .~pvr;
[#4*33] = . <^jp . v . q v^p vr

:

[#4'31*37] = : e>jp. v . ^p vq vr

:

[#4*33] =:<v^v~j).v.g, vr:
[*4*25'37] = : ~p . v . q v r :

[*4-2.(*101)] =:p.D.gvr:.DI-.Prop

#479. bz.q'Dp. v.r'Dp: = :q.r . D.p

Dem.

K*4 ,

l*39. D h i.qDp.v .r"2p : = : ~pD~q . v.~pD~r

:

[#4*78] E:~j).0.~5v~r:
[#2

-

15] = z™(<*^qv ™r) .D .p:

[*4'2.(#301)] =:q.r.D.p:.D\-.?rov

Note. The analogues, for classes, of #47879 are false. Take, e.g. #4-78,

and put p = English people, q — men, r — women. Then p is contained in q
or r, but is not contained in q and is not contained in r.
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*4r*8. l-:pD~p. = .~|> [*2'01 . Simp]

#481. \-:^pDp. = .p [*2'18.Simp]

*4 82. h rp D-g . p 3~ q .;
= . ~p [*2'65 . Imp . *2'21 . Comp]

*483L \-:pOq.r^p~yq. = .q [#2'61 . Imp . Simp . Comp]

Note. *4'82*83 may also be obtained from *4-43, of Tyhich they are virtu-

ally other forma

*4'84 \-'..p=q.^:pyr. = .qDr [*2*()6 . *3'47]

*485. h:.p = q.yzrDp.= .rOq [*205 . *3'47]

*486. \-up=q.^:p = r. = .q = r [*4'21-22]

*487. I" up . q . D . r :, = : p .3 .qD r : = : q . 3 . jO r:s: £ .p . D . r

[Exp . Comm . Imp]

#4*87 embodies in one proposition the principles of exportation and im-

portation and the commutative principle.



*5. MISCELLANEOUS PROPOSITIONS

Summary of #5.

The present number consists chiefly of propositions of two sorts: (1) those

which will be required as lemmas in one or more subsequent proofs, (2) those

which are on their own account illustrative, or would be important in other

developments than those that we wish to make. A few of the propositions of

this number, however, will be used very frequently. These are

:

*5*1* I- : p . q . D . p = q

I.e. two propositions are equivalent if they are both true. (The statement

that two propositions are equivalent if.they are both false is #5'21.)

*5*32. I- :.p . D . q = r := : p.q. = .p.r

I.e. to say that, on the hypothesis p, grand r are equivalent, is equivalent

to saying that the joint assertion ofp and q is equivalent to the joint assertion

of p and r. This is a very useful rule in inference.

#56. hz.p.f^q.D .r : = :p. >.#vr

I.e. "p and not-q imply r" is equivalent to "p implies q or r."

Among propositions never subsequently referred to, but inserted for their

intrinsic interest, are. the following: #5*1I ,12 ,13*I4, which state that, given

any two propositions p, q, either p or ™>p must imply q, and p must imply

either q or not-*?, and either p implies g or q implies p; and given any third

proposition r, either p implies q or q implies r*.

Other propositions not subsequently referred to are *5*22*23'24; in these

it is shown that two propositions are not equivalent when, and only when,

one is true and the other false, and that two propositions are equivalent

when, and only when, both are true or both false. It follows (#5*24) that the

negation of "p . q . v . ~p . ~ q" is equivalent to "p .^q.v.q. <^p." #5"54'55

state that both the product and the sum ofp and q are equivalent, respectively,

either to p or to q.

The proofs of the following propositions are all easy, and we shall therefore

often merely indicate the propositions used in the proofs.

#6'1. H : p. q, D . p= q JW4-22]

#511. h zpOq.v .r-^pDq [*2-5'54]

#512. \-zpDq.v .pD~q [*2-51*54]

#513. h-.p^q.v.qDp [*2'521]

#514. H : p Dq . v . qDr [Simp . Transp . #2*21]

* Cf. Schroder, Vorlesungen liber Algebra der Logik, Zweiter Band (Leipzig, 1891), pp. 270—

271, where the apparent oddity of the above proposition is explained.
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#5*15. h:p = q.v.p = ~q

Bern.

V . *4'61 . D H : ~ (p D q) . D .p . ~ q

.

[*51] D.p = ~q:
[*2-54] Dh:jpDgr.v.p = ~5 (1)

h , #461 . D h : ~ (y D j>) . D . q . ~p

.

[#51] D . 9 = ~p

.

[#412] 0.p=~r>jq;

[*2 54] Dhs^Dp.v.jpi^g' (2)

h.(I).(2).#4'41.DKProp

#516. h . ~ (p = q . p = ~ q)

Bern.

b .*326. Oh zp = q.pD~q.O .pOq.pO ~q-
[*4'82] D.~p (1)

I- . *3'27 . D h :p = q .p D~ q . D . q Op . /> D ~ q .

[Syll] D. 3 D~0.
[Abs] D.~? (2)

I- . (1) . (2) . Comp . D \- : p = q . p D ~ q . 3 . ~p . ~<?

.

f*4-65^ D.~(~2 :>p) (3)

K (3) . Exp . D h :. p = q . D : p D ~? . D . ~(~2 Dp)

:

[Id.(*101)] 3:~(/0~g).v.~(~2:>2>):

[*4'51 .(#401)] D : ~ {p = ~ q) : . D h . Prop

#517. H : jpvgr. ~(jp . g) . = ,p = ~q
Dem.

K*4'64'21. Ohipvq . = .~qOp (1)

h . #463 . Transp . }\- ;~(p .q). = .pO~q (2)

h . (1) . (2) . *4-38-21 . D H . Prop

#518. h:p = q. = . ~ (p = ~ q) [51516 «6iy p5g' 1,5 "' g
l

|*518 ^.*4-#519. K~(p = ~p)

*5'21. \-:~p.~q.0.p = q [*51 . #411]

#522. h:.~(p = q). = :p.~q.v.q.~p [#4'61-51'39]

#5-23. \-:.p = q. = :p.q.v.~p.~q |*518 .*5'22^ .*413-36

#5'24. h:.~(p.q.v m ~>p.~q). = :p.~q.v.q.~p [#5'22-23]

#5-25. b:.pvq. = :pOq.D.q [*2-62'68]
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From *5*25 it appears that we might have taken implication, instead of

disjunction, as a primitive idea, and have defined "pvq" as meaning
"pDq.D

.
q." This course, however, requires more primitive propositions

than are required by the method we have adopted.

*53. \-:.p.q.0.r: = :p.q.'2.p.r [Simp*Comp»Sy)l]

*5'31. b:.r.p^q'.0:p.D.q.r [Simp.Comp]

*5-32. b:.p.3.q = r: = :p.q. = .p.r [*4'76 . *3331 . *53]

This proposition is constantly required in subsequent proofs.

*533. b ;*p . qD r . = : p : p . q . D .

r

[*4-73-84 . *5-32]

*535. b:.pDq.pDr.^:p.D.q = r [Comp . *5*1]

*5 36. b:p.p=q. = .q.p = q [Ass . *4-38]

*54. b:.p.D.pDq: = .pDq [Simp.*2-43]

*541. bz.pDq.D ,p'Dr:=ip.7J.q'2r [*2-77-8G]

*542. b ::p . D . q"5r: = :,p . D :q.O .p .r [*5-3 . *4-87]

*544 b ::p D q . D :,p D r . = :p . D . q . r [*4-76 . *53-32]

*5*5. b :.p. D :jOg. = .q [Ass . Exp . Simp]

*5 501.h:.p\3:q. = .p = q [*5*1 . Exp . Ass]

*5'53. b:.pvqvr.'2.s: = :p'Ds.q'2s. rDi• [*4-77]

*5 54. b :. p . q . = .p : v : p . q . = . q [*4-73 . *444 . Transp . *51]

*5 55. b: mpvq. = .p;v:pvq. = .q [*1*3 . *51 . *4-74]

*56. b:.p.~q.D.rz = :p.'5.qvr 1*4-87 -^ . *4-648ol

*561. b : p v q . <^q . = ,p . ~q [*4*74.*532]

*5 62. b :.p .q.v .~q : = .pv~q f*4-7
^~

*563. b \.pv q. = ip .v .cop . q [*5-62~^1
L q> p\

*57. b :.pv7' . = .qvr : = ir.v.p^q [*4 74.*l-3.*51.*4-37]

*571. b :. qD~r.'D:pyrq.r. = .p.r

In the following proof, as always henceforth, "Hp" means the hypothesis

of the proposition to be proved.

Dem.

h.*4-4. Db:.pvq.r.= :p.r.v.q.r (1)

V . *4-62ol .O b :: Hp . D :. ~ (q . r) :.

[*4'74] D:.p.r.v.q.r: = :p.r (2)

b .(1) . (2) . *4-22 . D b . Prop
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*5*74. f :. p . y.q~=r :=^j)3 j...~ . j)D r

Dem.

b . #5*41 . D h r:j> D q . D .£> D r : = :p . >. g D r :.

pDr.D.pDg1

: = :p. D.rOg (1)

r- . (1) . *4'38 . D h ::p D g . s .jO r . .= :..p . D .ql>r:p. D . rO^ :.

[#4"76] = :. jp . D . 3 = r :: D I- .Prop

*5'75. b:.r'D<^>qip. = .qvr:D:p.<^q.= .r

Dem.

h.*5-6. Df-:.Hp.D:p.~^.D.r (1)

I- . *327 . D h :. Hp . D : g- v r . D .p

:

[*4-77] D:rDp (2)

h.*3-26.Dh:.Hp.D:rD~2 (3)

f- . (2) . (3) . Comp . D h :. Hp . D : r Dp . r D ~ q :

[Comp] 3 : r . D . jp . ~ q (4)

H . (1) . (4) . Camp . D b :. Hp .D:|).~g. = .r:.Dh. Prop



SECTION B

THEORY OF APPARENT VARIABLES

*9. EXTENSION OF THE THEORY OF DEDUCTION FROM
LOWER TO HIGHER TYPES OF PROPOSITIONS

Swnmary of*9.

In the present number, we introduce two new primitive ideas, which may-
be expressed as "<f>x is always* true" and "<f>x is sometimes* true," or, more
correctly, as "<j>x always" and "<fix sometimes." When we assert "0# always,"

we are asserting all values of <£&, where "<p$" means the function itself, as

opposed to an ambiguous value of the function (cf. pp. 15, 40); we are not
asserting that <f>x is true for all values of x, because, in accordance with the
theory of types, there are values of x for which "<f>x" is meaningless; for ex-

ample, the function $& itself must be such a value. We shall denote "$x
always" by the notation

(x) . $x,

where the "(x)" will be followed by a sufficiently large number of dots to

cover the function of which "all values" are concerned. The form in which
such propositions most frequently occur is the "formal implication," i.e. such
a proposition as

(x) : <f>Xm y.tyx,

i.e. "<f>x always implies yfrx." This is the form in which we express the
universal affirmative "all objects having the property £ have the propertyi/r."

We shall denote "<f>x sometimes" by the notation

fax).<f>x.

Here "g" stands for "there exists," and the whole symbol may be read
"there exists an x such that <j>x."

In a proposition of either of the two forms (x) . fa, fax) . fyx, the x is

called an apparent variable. A proposition which contains no apparent
variables is called "elementary," and a function, all whose values are elemen-
tary propositions, is called an elementary function. For reasons explained in
Chapter II of the Introduction, it would seem that negation and disjunction
and their derivatives must have a different meaning when applied to elemen-
tary propositions from that which they have when applied to such propositions
as (x) . <j>x or fax) . $x. If $x is an elementary function, we will in this number
call (x) . <f>x and fax) . <f>x "first-order propositions." Then in virtue of the fact

* We use "always" as meaning "in all eases," not "at all times." A similar remark applies
to "sometimes."
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that disjunction and negation do not have the same meanings as applied to

elementary or to first-order propositions, it follows that, in asserting the

primitive propositions of #1, we must either confine them, in their application,

to propositions of a single type, or we must regard them as the simultaneous

assertion of a number of different primitive propositions, corresponding to the

different meanings of "disjunction" and "negation." Likewise in regard to

the primitive ideas of disjunction and negation, we must either, in the primi-

tive propositions of*1, confine them to disjunctions and negations ofelementary

propositions, or we must regard them as really each multiple, so that in regard

to each type of propositions we shall need a new primitive idea of negation

and a new primitive idea of disjunction. In the present number, we shall

show how, when the primitive ideas of negation and disjunction are restricted

to elementary propositions, and the p, q, r of *1—*5 are therefore necessarily

elementary propositions, it is possible to obtain definitions of the negation and

disjunction of first-order propositions, and proofs of the analogues, for first-

order propositions, of the primitive propositions *1*2— 6. (*11 and #1*11

have to be assumed afresh for first-order propositions, and the analogues of

*l-7-71
i72 require a fresh treatment.) It follows that the analogues of the

propositions of *2—*5 follow by merely repeating previous proofs. It follows

also that the theory of deduction can be extended from first-order propositions

to such as contain two apparent variables, by merely repeating the process

which extends the theory of deduction from elementary to first-order pro-

positions. Thus by merely repeating the process set forth in the present

number, propositions of any order can be reached. Hence negation and

disjunction may be treated in practice as if there were no difference in these

ideas as applied to different types^Nthat is to say, when " ~ p" or "pvq"

occurs, it is unnecessary in practice to know what is the type of p or q, since

the properties of negation and disjunction assumed in *1 (which are alone used

in proving other properties) can be asserted, without formal change, of pro-

positions of any order or, in the case of p v q, of any two orders. The limitation,

in practice, to the treatment of negation or disjunction as single ideas, the

same in all types, would only arise if we ever wished to assume that there is

some one function ofp whose value is always ~ p, whatever may be the order

of p, or that there is some one function of p and q whose value is always p vq,

whatever may be the orders of p and q. Such an assumption is not involved

so long as p (and q) remain real variables, since, in that case, there is no need

to give the same meaning to negation and disjunction for different values of

p (and q), when these different values are of different types. But if p (or q)

is going to be turned into an apparent variable, then since our two primitive

ideas (x) . 4>x and (g#) . <f>x both demand some definite function
<f>,

and restrict

the apparent variable to possible arguments for </>, it follows that negation

and disjunction must, wherever they occur in the expression in which p (or q)

is an apparent variable, be restricted to the kind of negation or disjunction
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appropriate to a given type or pair of types. Thus, to take an instance, if we
assert the law of excluded middle in the form.

"\-.pv~p"
there is no need to place any restriction upon p: we may give to p a value

of any order, and then give to the negation and disjunction involved those

meanings which are appropriate to that order. But if we assert

" ^ • (p) -pv ^p"
it is necessary, if our symbol is to be significant; that "p v ~ p" should be the

value, for the argument p, of a function <fyp\ and this is only possible if the

negation and disjunction involved have meanings fixed in advance, and if, there-

fore, p is limited to one type. Thus the assertion of the law of excluded middle

in the form involving a real variable is more general than in the form involving

an apparent variable. Similar remarks apply generally where the variable is

the argument to a typically ambiguous function.

In what follows the single letters p and q will represent elementary pro-

positions, and so will "<£#," "yfrx," etc. We shall show how, assuming the

primitive ideas and propositions of #1 as applied to elementary propositions,

we can define and prove analogous ideas and propositions as applied to pro-

positions ofthe forms (x) . <f>x and (<^x).<f>x. By mere repetition ofthe analogous

process, it will then follow that analogous ideas and propositions can be defined

and proved for propositions of any order; whence, further, it follows that, in

all that concerns disjunction and negation, so long as propositions do not

appear as apparent variables, we may wholly ignore the distinction between

different types of propositions and between different meanings of negation

and disjunction. Since we never have occasion, in practice, to consider pro-

positions as apparent variables, it follows that the hierarchy of propositions

(as opposed to the hierarchy of functions) will never be relevant in practice

after the present number.

The purpose and interest of the present number are purely philosophical,

namely to show how, by means of certain primitive propositions, we can

deduce the theory of deduction for propositions containing apparent variables

from the theory of deduction for elementary propositions. From the purely

technical point of view, the distinction between elementary and other propo-

sitions may be ignored, so long as propositions do not appear as apparent

variables; we may then regard the primitive propositions of #1 as applying

to propositions of any type, and proceed as in #10, where the purely technical

development is resumed.

It should be observed that although, in the present number, we prove

that the analogues of the primitive propositions of #1, if they hold for propo-

sitions containing n apparent variables, also hold for such as contain n + 1,

yet we must not suppose that mathematical induction may be used to infer

that the analogues of the primitive propositions of #1 hold for propositions

r& w i 9
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containing any number of apparent variables. Mathematical induction is a

method of proof which is not yet applicable, and is (as will appear) incapable

of being used freely until the theory of propositions containing apparent

variables has been established. What we are enabled to do, by means of the

propositions in the present number, is to prove our desired result for any as-

signed number ofapparent variables—say ten^—by ten applications of the same

proof. Thus we can prove, concerning any assigned proposition, that it obeys

the analogues of the primitive propositions of #1, but we can only do this by

proceeding step by step, not by any such compendious method as mathematical

induction would' afford. The fact that higher types can only be reached step

by step is essential, since to proceed otherwise we should need an apparent

variable which would wander from type to type, which would contradict the

principle upon which types are built up.

Definition of Negation. We have first to define the negations of (x) . <j>x

and (go?) . <f>x. We define the negation of (x) .
<f>%

as fax) . ~ 4>x, i.e. "it is

not the case that <f>x is always true" is to mean "it is the case that not-$#

is sometimes true." Similarly the negation of (gar) . <f>x is to be defined as

{x) . ~ <j>x. Thus we put

*901. ~ {(x) . <f>x} . = . (gar) . ~ <f>x Df

*902. ~> {fax) . <f>x} . = .(#). ~ <f>x Df

To avoid brackets, we shall write ~ (x) . <f>x in place of ~ {(x) . <f>x} y
and

-v fax) . <px in place of ~ {(3#) 4*®]- Thus

:

*9011. ~ (x) . <\>x . = . ~ {(x) . (f>x} Df

*9 021. ~ fax) . <f>x . = . ~ {fax) . <f>x\ Df

Definition of Disjunction. To define disjunction when one or both of the

propositions concerned is of the first order, we have to distinguish six cases,

as follows:

*903. (x). <f>x . v . j> :=.(#) . <f>x vp Df

#904. p . v . (x) . <£# : = . (x)
.
p v <f>x Df

#9*05. fax) -. (j>x . v . p : = . fax) . <f>x vp Df
*9*06. p . v . fax) ,<f)xz = . fax) .pv<px Df
*9'07. (x) . <f>x . v . fay) . yfry: = : (x) : fay) .fyxytyy Df

*908. fay) . yjry . v . (a?) . <f>x : = : (x) : fay) . yfry v <f>x Df

(The definitions #907'08 are to apply also when
<f>

and i/r are not both

elementary functions.)

In virtue of these definitions, the true scope of an apparent variable is

always the whole of the asserted proposition in which it occurs, even when,

typographically, its scope appears to be only part of the asserted proposition.

Thus when fax) . <f>x or (x) . <f>x appears as part of an asserted proposition, it

does not really occur, since the scope of the apparent variable really extends
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to the whole asserted proposition. It will be shown, however, that, so far as the

theory of deduction is concerned, (gar) . $x and (a?) . <f)X behave like propositions

not containing apparent variables.

The definitions of implication, the logical product, and equivalence are to

be transferred unchanged to (x) . <f>x and (g#) . <f>x.

The above definitions can be repeated for successive types, and thus reach

propositions of any type.

Primitive Propositions. The primitive propositions required are six in

number, and may be divided into three sets of two. We have first two
propositions, which effect the passage from elementary to first-order proposi-

tions, namely

*91. b-.(f>x.D.(^z).<f>z Pp

*911. b : <j>x v
<f>y . D . (rz) . <f>z Pp

Of these, the first states that, if <f>x is true, then there is a value of <f>z~

which is true; i.e. if we can find an instance of a function which is true, then
the function is "sometimes true." (When we speak of a function as "some-
times" true, we do not mean to assert that there is more than one argument
for which it is true, but only that there is at least one.) Practically, the above
primitive proposition gives the only method of proving "existence-theorems":

in order to prove such theorems, it is necessary (and sufficient) to find some
instance in which an object possesses the property in question. If we were to

assume what maybe called "existence-axioms," i.e. axioms stating (qz) . <j>z for

some particular $, these axioms would give other methods of proving existence.

Instances of such axioms are the multiplicative axiom (#88) and the axiom of

infinity (defined in #120-03). But we have not assumed any such axioms in

the present work.

The second of the above primitive propositions is only used once, in

proving (rz) .<f>z.v. (rz) .<f>z:5. (qz) . <f>z, which is the analogue of #12
(namely pvp.O .p) when p is replaced by faz). <f>z. The effect of this

primitive proposition is to emphasize the ambiguity of the z required in order

to secure (rz) . $z. We have, of course, in virtue of #9-1,

<f>x . D . (a^) . <|z and
<f>y . D . faz) . <f>z.

But if we try to infer from these that <f>x v <£y . D . faz) . <f>z, we must use the

proposition qDp .rOp .3 .qv rDp, where p is (gs) . <£z. Now it will be
found, on referring to *4'77 and the propositions used in its proof, that this

proposition depends upon #12, i.e. pvp.D .p. Hence it cannot be used by
us to prove (ga?) . <f>x . v . (ga?) . ^x : D . (ga;) . <j>x, and thus we are compelled
to assume the primitive proposition *9'11.

We have next two propositions concerned with inference to or from propo-
sitions containing apparent variables, as opposed to implication. First, we have,

9—2



132 MATHEMATICAL LOGIC [PART I

for the new meaning of implication resulting from the above definitions of

negation and disjunction, the analogue of *1'1, namely

*9'12. What is implied by a true premiss is true. Pp.

That is to say, given "h .p" and "\-.pDq" we may proceed to "h . q"

even when the propositions p and q are not elementary. Also, as in I'll, we

may proceed from "H . <f>x" and " h . <f>x D ^x" to " h . tyx" where a; is a real

variable, and
<f>
and ^ are not necessarily elementary functions. It is in this

latter form that the axiom is usually needed. It is to be assumed for functions

of several variables as well as for functions of one variable.

We have next the primitive proposition which permits the passage from a

real to an apparent variable, namely "when
<f>y

may be asserted, where y may

be any possible argument, then (x) . <f>x may be asserted." In other words, when

<f>y
is true however y may be chosen among possible arguments, then (x) . <j>x

is true, i.e. all values of
<f>

are true. That is to say, if we can assert a wholly

ambiguous value $y, that must be because all values are true. We may express

this primitive proposition by the words :
" What is true in any case, however

the case may be selected, is true in all cases." We cannot symbolise this pro-

position, because if we put
"\-:<f>y.3.(x).<l>x"

that means: "However y may be chosen,
<f>y

implies (x) . <f>x," which is in

general false. What we mean is: "If <f>y is true however y may be chosen, then

(x) . <f>x is true." But we have not supplied a symbol for the mere hypothesis

of what is asserted in " r . 4>y" where y is a real variable, and it is not worth

while to supply such a symbol, because it would be very rarely required. If,

for the moment, we use the symbol [<f>y] to express this hypothesis, then our

primitive proposition is

H : [<f>y]
. D . (x) . (f>x Pp.

In practice, this primitive proposition is only used for inference, not for impli-

cation; that is to say, when we actually have an assertion containing a real

variable, it enables us to turn this real variable into an apparent variable by

placing it in brackets immediately after the assertion-sign, followed by enough

dots to reach to the end of the assertion. This process will be called "turning,

a real variable into an apparent variable." Thus we may assert our primitive

proposition, for technical use, in the form:

*913. In any assertion containing a real variable, this real variable may be

turned into an apparent variable of which all possible values are asserted to

satisfy the function in question. Pp.

We have next two primitive propositions concerned with types. These

require some preliminary explanations.

Primitive Idea: Individual. We say that x is "individual" if a; is neither

a proposition nor a function (cf. p. 51).
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*9 131. Definition of "being of the same type." The following is a step-by-step

definition, the definition for higher types presupposing that for lower types.

We say that u and v "are of the same type" if (1) both are individuals, (2) both

are elementary functions taking arguments of the same type, (3) u is a function

and v is its negation, (4) u is <f>x or ^Sb, and v is $c v tylb, where <pfc and tyx

are elementary functions, (5) u is (y) . <£ (&, y) and v is (z) . ty (x, z), where

4* (P* P)> ^ (^» 9) are °f tne same type, (6) both are elementary propositions,

(7) u is a proposition and v is ~w, or (8) u is (#) . <f>x and v is (y) . ^ry, where

<£a\and ^& are of the same type.

Our primitive propositions are:

*9'14. If "<f>x" is significant, then if x is of the same type as a, "<j>a" is

significant, and vice versa. Pp. (Cf. note on *10*121, p. 140.)

*915. If, for some a, there is a proposition <f>a, then there is a function $&,

and vice versa. Pp.

It will be seen that, in virtue of the definitions,

(x) . §x . "D . p means ~(a?) .<f>x.v.p, i.e. (gar) .~<f>x . v . p,

i.e. (gyi?) .<^<f>xvp, i.e. (gai) . <$>x Op
(ga?) *<f>x .0 .p means ~(a#) .<f>x.v.p, i.e. (x) .~<f>x . v . p,

i.e. (x).<*j<f)xvp, i.e. (x) . <f>x D p
In order to prove that (x) . $x and (ga;) . <fyx obey the same rules of deduction

as (ftx, we have to prove that propositions of the forms (x) . §x and (ga;) . <f>x

may replace one or more of the propositions p, q, r in #1'2—*6. When this has

been proved, the previous proofs of subsequent propositions in #2—#5 become

applicable. These proofs are given below. Certain other propositions, required

in the proofs, are also proved.

*9'2. h : (a?) - ^wzr - D -

The above proposition states the principle of deduction from the general

to the particular, i.e. "what holds in all cases, holds in any one case."

Dem.

h.*2-1.0h.~<£yv<f>y (1)

H.*9*l ^Dhr«v>0yv^y.D.(aa?).~^»v^ (2)

h.(l).(2).*l-ll.Dl-.(aa;).~^v^ (3)
1

[(3).(*9-05)] r- : (a«) .~ <f>x . v . <f>y (4)

[(4).(*9-01.*r01)] \-:(x).<f>x.0.<l>y

In the second line of the above proof, " <^> ^>y v <j>y" is taken as the value,

for the argument y, of the function "~ <f>x v <f>y," where x is the argument.

A similar method of using #91 is employed in most of the following proofs.

•'I'll is used, as in the third line of the above proof, in almost all steps

except such as are mere applications of definitions. Hence it will not be
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further referred to, unless in oases where its employment is obscure or specially

important.

*9'21. I- :.(x) .<f>x"Dyfrx . D :(#) 4>x . ^ •(&)' Vra?

J.e. if <f>x always implies yjrx, then "<f>x always" implies "yfrx always." The
use of this proposition is constant throughout the remainder of this work.

Dem.

h.*2-08. Db:<f>zD^z,D.<f>z^^rz (1)

h . (1) . *91

.

Db:fay):<f>zDylrz.D.<f>yDyfrz (2)

K(2).*9'l. Dh:.fax):.(^y):4>xDyjrx.D.<f>yDiJrz (3)

h.(3).*913. Dh::(z)::fax):.fay)-.(l>x^yjrx.D.(f>yD^z (4)

[(4).(*9'06)] \-::(z)::fax):.<f>xDylrx.D:fay).<f)yD^z (5)

[(5).(*r01 .*9-08)] h : . fax) . ~ (<f>x D yjrx) : v : (z) : fay) .^^yvyfrz (6)

[(6).(*9'08)] h :. fax) . ~ (<f>x D yjrx) : v : fay) . ~
<f>y . v . (s) .^ (7)

[(7).(*1'01)] Y:.(x).<\>x^^x.^'.(y).4>y.^.(z).y\rz

This is the proposition to be proved, since "(y) . <f>y" is the same propo-

sition as "(as) . <f)X," and "(z) . tyz" is the same proposition as "(x) . yjrx."

*9'22. t-:.(x).<f)xDylrx. D:fax).<f>x. D.fax).tyx

I.e. if <f>x always implies tyx, then if <f>x is sometimes true, so is tyx. This

proposition, like #921, is constantly used in the sequel.

Dem.

K*2'08. D H : 0jO fy . D . <£y D^ (1)

K(l).*91. Db:faz):<f>yDfy.D.<f>yDfz ,(2)

h.(2).*91. D\-:.fax):.faz):<f>xDfx.D.<l}y^fz (3)

I- . (3) . *913 . D\-::(y)::fax)'..faz):<j>x^yfrx.D.<f)yDylrz (4)

[(4).(*9'06)] h :: (y) :: fax) :.<f>xD+x.D : faz) .cfyyO^z (5)

[(5).(*r01.*9-08)] \-::fax).~(<f>xDylrx):v:(y):faz).<l>yDylnz (6)

[(6).(*101.*9'07)] I" " (3«) •~(^ D ^-a?) : v : (y) . ~<£y . v . (gs> . ^* (7)

[(7).(*101.^9-0V02)]b:.(x).<f>xDy{rx.D:fay).<f>y.O.faz).yJrz

This is the proposition to be proved, because fay) . <j>y is the same pro-

position as fax) . <f>x, and faz) . -tyz is the same proposition as fax) . yfrx.

*923. H:(ar).^B.D.(*).^c [Id . *913-21]

*9 24. h : fax) .<f>x.^. fax) . <f>x [Id . *9\L3-22]

*925. \-:.(x).pv<f>x.D:p.v.(x).<j>x [*9"23 . (*9 04)]

We* are now in a position to prove the analogues of #1*2—"6, replacing

one of the letters p, q, r in those propositions by (x) . <j>x or fax). <f>x. The
proofs are given below.
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#9'3. H :.(«?). <f>x. v.(x).<f>xi 3. (a;). 0a*

Bern.

h.*l'2. Dh.^v^.D.^ (1)

K(l).#91. Dh:(gy):<£a*v0y.3.<£a; (2)

K(2).*913. D>:.(a-):.(gy):<£a*v</>y.D.</>a- (3)

[(3).(*9-05-01-04)] V :. (a*) : . <f>x . v . (y) . <£y : D . <j>x (4)

h . (4) . #9*21 . y\-:.(x):<f>x.v.(y).<l>y:D.(x).<f)x (5)

[(5).(*9-03)] h :. (a?) . <£a? . v.(y).<f>y: D ..(a?) . <£a- :. D H . Prop

#9*31. h :. (gar) . <*Sa* . v . (ga*) . <£a* : D . (gas) . <f>x

This is the only proposition which employs #9*11.

Dem.

h. #9*1113. Db:(y):<f>xv<l>y.D.(^).<f>z (1)

[(l).(*9-03-02)] h : (gy) .<f>xv<l>y.D. (gs) . <f>z (2)

h.(2).*9-13.DH:(a;):(a2/).«/>a;v^.D.(^).^ (3)

[(3).(*90302)] r :. (ga*) : (gy) ^ v <£y : D . (gs) . £* (4)

[(4).(*905*06)] 1- :. (ga*) . <f>x . v . (gy) . </>y : D . (g*) . </>*

#9*32. h:.^.D:(a?).^>a?.v.^

Dem.

K*l*3. 3h:.q.D:<l>x.v.q (1)

h . (1) . #913 . D h :. (x) :. ? . D : fs . v . q

[*925] Dr:.g.D:(a*):<£a*.v.2 (2)

[(2).(*903)] h:.q.O:(x).<f)X.y.q

#9*33. r- :. g- . D : (ga*) ,<f>x.v.q [Proof as above]

#9*34. h :. (a?) . <j&a- . D : /> . v . (x) . </>a*

Dem.

h.*l-3. 3\-:4>x.D.pv<f>x (1)

1- . (1) . #913 . D\-i(x):(f>x.D.pv<f>x (2)

K(2).*9*21. D\-:(x).(f>x.D.(x).pv<f>x (3)

I- . (3) . (#904) . D r . Prop

#9*35. h : . (ga;) . <f>x . D : p . v . (ga:) . <£a* [Proof as above]

#9*36. \".. p . v . (x) . <j>x : : (x) . <f>x . v . p
Dem.

H.*l-4. D\- :pv <f>x."D .<j>xvp (1)

H . (1) . #913*21 . D\-:(x).pv<f>x.D.(x).<l>xvp (2)

I-
. (2) .

(#903*04) . D h . Prop

#9*361. I- :. (x) . <j>x . v . p : D : p . v . (a;) . cf>x [Similar proof]

*9'37. h :.^>. v.(ga?). <£a*: D :(ga*). <f>x . v.p [Similar proof]

#9*371. r- :. (ga?) .<f>x.v ,p:D:p .v . (ga;) . <px [Similar proof]
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*9'4. I- ::p : v : q . v . (x) . <f>x :. D :. q : v :p . v . (x) .<f>x

Dem.

r-.*l'5.*9'21 . Dh.(*):j).v.gv^s 3; (a;) :q . v .pv<f>x

l-.(l).(*9-04).DH.Prop

*9'401. I- :: p : v : q . v . fax) . <f>x :. >:. q:v:p.v . fax) . <£a;

r- :: p : v : (x) . <f>x . v . r :. D :. (x) . <$>x : v : p v

r

H :: p : v : fax) . <£a? . v

.

r :. D :. fax) . <£# : v : p v r

I- :: (x) . <}>x : v : qv r z. D :. q : v : (x) . <f>x . v . r

\- :: fax) . §x : v : q v r :. D :. g : v : (ga?) . <j>x . v . r

h ::p D q . D :. p . v . (x) . (fix : D : q . v . (x) . <$>x

(1)

*941.

*9'411

*942.

*9421

*95.

Dem.

r . #1-6 . D h

H.(l).*9-l.(*9-06). Dh
K(2).*913.(*904).Dr

[(3).(*9-08)] r

[(4).(*9'01)] J-

[(5).(*904)] I-

[As above]

[As above]

[As above]

[As above]

[As above]

:.pDq.D:py<j>y.D.qv<f>y (1)

:.pD q. D :fax)zpv<f>x. D .qv<f>y (2)

::p D 9 . D :. (y) :. (ga;) :p v <£#, 0.qv<j>y (3)

::p D g . D :. (g#).~(p v <fcc) . v . (y) . q v <f>y <4)

r.pDq. D :.(x). pv <f>x . D. (y)-qv <]>y (5)

:: p 3 <? . 3 :. p • v . («) . <f>x : D : q . v . (i/) . <py

[As above]*9501. h ::p >g . D :.p . v . (ga?) . <£a; : D : g . v . (ga;) . $a;

$9*51. f- ::p . D . (x). <j)x: "Dt.pvr. 3 : (x).<f>x. v.r

Dem.

K#r6. D I- :.pD"<j>x. D :pvr. D. ^rvr (1)

h . (1) . *913-21 . Db:'.(x).pD<f>x.3:.(x):pvr.D.tf>xvr (2)

H . (2) . (*90304) . D h . Prop

*9'511. h :: p . D . fax) . <£# : D :. p v r . D : (ga?) . <f>x . v . r [As above]

#952. h ::'(«) . <f>x . D . q : "D :. (x) . <}>x .V . r : 2 . qv r
~

Dem.

K#r6. D H:.^a?D^.D :<£a?vr . D.gvr (1)

H . (1) . *91322 . 3b::fax).4>xDq.O:.fax)z<l>xvr.D.qvr (2)

K (2) . (*9-05-01) . D H :: (a;) . <j>x . D . g : D :. («).^vr.D . q vr (3)

I- . (3) . (*903) . DH.Prop

*9 521. \- :: fax) . <f>x . D . q : D :. (ga;) . ^>ar . v . r : D . g v r [As above]

*9"6. (a;) . <j>x, ~(a?) . ^>a;, fax) . $x and ~(ga;) . <j>x are of the same tjpe.

[*9*131,(7)and(8)]

*9"61. If $e and tyic are elementary functions of the same type, there is a

function ^vi|r^.

Dem.

By *9'14*15, there is an a for which "^ra," and therefore "<f>a," are

significant, and therefore so is "<j>a v tya," by the primitive idea of disjunction.

Hence the result by *915.

The same proof holds for functions of any number of variables.
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*9 62. If <£(£, §) and <fz are elementary functions, and the ^-argument to

^> is of the same type as the argument to yjr, there are functions

iy) .<}>($,y).v. ^a, (a^)

.

<t> (^» y)

-

v • ^>
Dem.

By #9*15, there are propositions <f>(x, b) and tya, where by hypothesis %

and a are of the same type. Hence by #9*14 there is a proposition
<f>

(a, b),

and therefore, by the primitive idea of disjunction, there is a proposition

<[>(a,b)v >jra, and therefore, by *9'lo and #9'03, there is a proposition

(y) .
<f>

(a, y) . v . yfra. Similarly there is a proposition (;jy) .
<f>

(a, y) . v . ifra.

Hence the result, by *9*15.

*9'63. If $ (&, $), i/r (&, P) are elementary functions of the same type, there

are functions (y) .
<f> ($, y) . v . (*) . yfr (&, z), etc. [Proof as above]

We have now completed the proof that, in the primitive propositions of

*1, any one of the propositions that occur may be replaced by (x) . <j>x or

(a#) . <f>x. It follows that, by merely repeating the proofs, we can show that

any other of the propositions that occur in these propositions can be simul-

taneously replaced by (#) .-tyx or (g#)

.

ifrx. Thus all the primitive propositions

of *1, and therefore all the propositions of *2—*5, hold equally when some

or &\l of the propositions concerned are of one of the forms (%) . <f>oc, "(ga?) . <£#,

which was to be proved.

It follows, by mere repetition of the proofs, that the propositions of #1—*5

hold when p, q, r ape replaced by propositions containing any number of

apparent variables.



*10. THEORY OF PROPOSITIONS CONTAINING
ONE APPARENT VARIABLE

Summary of *10.

The chief purpose of the propositions of this number is to extend to

formal implications (i.e. to propositions of the form (x) . §x D yjrx) as many as

possible of the propositions proved previously for material implications, i.e.

for propositions of the form pDq. Thus e.g. we have proved in *3*33 that

pOq.qDr.D.p'Dr.

Put p = Socrates is a Greek,

q = Socrates is a man,

r = Socrates is a mortal.

Then we have " if ' Socrates is a Greek ' implies ' Socrates is a man,' and
' Socrates is a man ' implies ' Socrates is a mortal,' it follows that ' Socrates is

a Greek ' implies ' Socrates is a mortal.' " But this does not of itself prove

that if all Greeks are men, and all men are mortals, then all Greeks are

mortals.

Putting <fcx . = . x is a Greek,

sjrx . — . x is a man,

XX . = . x is a mortal,

we have to prove

(x) . <$>x D yfrx : (x) . yfrx D %x : D : (x) . <f>x D %x.

It is such propositions that have to be proved in the present number. It will

be seen that formal implication ((x) . <f>x D ^x) is a relation of two functions

0& and -tytb. Many of the formal properties of this relation are analogous to

properties of the relation "p D q " which expresses material implication ; it is

such analogues that are to be proved in this number.

We shall assume in this number, what has been proved in #9, that the

propositions of *1—*5 can be applied to such propositions as (x) . <px and

(gaj) . <f>x. Instead of the method adopted in *9, it is possible to take negation

and disjunction as new primitive ideas, as applied to propositions containing

apparent variables, and to assume that, with the new meanings of negation

and disjunction, the primitive propositions of #1 still hold. If this method is

adopted, we need not take fax) . <f>x as a primitive idea, but may put

*1001. (
l3/c).<f)x. = .'^(x).^>^x Df

In order to make it clear how this alternative method can be developed,

we shall, in the present number, assume nothing of what has been proved in

*9 except certain propositions which, in the alternative method, will be

primitive propositions, and (what in part characterizes the alternative method)
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the applicability to propositions containing apparent variables of analogues

of the primitive ideas and propositions of #1, and therefore of their conse-

quences as set forth in #2—#5.

The two following definitions merely serve to introduce a notation which

is often more convenient than the notation (x) . $x D tyx or (x).<px = yfrx.

*1002. <f>xDx -^x. = .(x).<f>xDylrx Df

*10 03. <f>x
=
x tyx . — . (x) . <f>x = yfrx. Df

The first of these notations is due to Peano, who/however, has no notation

for (x) . $x except in the special case of a formal implication.

The following propositions (*10ri 1/1 2'1 21122) have already been given

in *9. *101 is *9'2, *1011 is *913, *1012 is *925, *10121 is *914, and

*10*122 is *9"15. These five propositions must all be taken as primitive

propositions in the alternative method; on the other hand, #91 and #9 ,11 are

not required as primitive propositions in the alternative method.

The propositions of the present number are very much used throughout

the rest of the work. The propositions most used are the following:

*101. h : (a;) . <£# . D . <£y

I.e. what is true in all cases is true in any one case.

¥1011. If
<f>y

is true whatever possible argument y may be, then (x) .
<f>%

is

true. In other words, whenever the propositional function <py can be asserted,

so can the proposition (x) . <f>x.

*10'21. h :. (x) . p D <f>x . = : p . D . {as) . <f>x

*10'22. h :. (x) . <f>x . yfrx . = :(x). <f>x: (x).tyx

The conditions of significance in this proposition demand that <j> and yfr

should take arguments of the same type.

*1023. b:.(x).<f>x'2p. = :('2Lx).<j)x.D.p

I.e. if <f>x always implies p, then if <f>x is ever true, p is true.

*10-24. h : <j>y . D . (roc) . <f>x

I.e. if $y is true, then there is an x for which <f>x is true. This is the sole

method of proving existence-theorems.

*10 27. H :. (z) . <f>z D tyz . D : (z) . <f>z . D . (z) . tyz

I.e. if <j>z always implies -tyz, then "
<f>z always " implies " yjrz always." The

three following propositions, which are equally useful, are analogous to *10"27.

*10-271. f- :. (z) . 4>z ~ fz . D :(z) .<f>z . = .{z).tyz

*10'28. V :.(x). <f>x'2i{rx. D : fax). <f>x . D . fax).yjrx

*10'281. H :. (x) . (f>x = yfrx . D : fax) ,<f>x. = . fax) . ijrx

#1035. h :. fax). p. <j>x. = :p : fax) . <f>x

*10'42. h :. fax) .<f>x.v. fax) . -fx : = . fax) .<f>xvyfrx

#10 -

5. h : . fax) . <j>x . fa . D : fax) . <f>x : fax) . yfrx
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It should be noticed that whereas #10'42 expresses an equivalence, #10*5

only expresses an implication. This is the source of many subsequent

differences between formulae concerning addition and formulae concerning

multiplication.

#10*51. h :.. ~ {(gas) • <f>x • tyx) • = : </># .
'3*

. ~ tyx

This proposition is analogous to

h s~(p . q) i = . p 3 <>*q

which results from *4*63 by transposition.

Of the remaining propositions of this number, some are employed fairly

often, while others are lemmas which are used only once or twice, sometimes

at a much later stage.

#1001. (ga*).<j!>#. = .~(ai).~<£a* Df

This definition is only to be used when we discard the method of *9 in

favour of the alternative method already explained. In either case we have

h : (ga;) .<f>x. = . ~(a*) . ™$tx.

#1002. ^>xDxyjrx,.= .{x) m ^D^rx Df

#10*03. <j>x=x '\Jrx. — .(x).<f>x = $'X Df

#10*1. h : (x) . <f>x .3 .$y [*9*2]

#10*11. If 4>y is true whatever possible argument y may be, then (x).<f>x is

true. ^*9-l3]

This proposition is, in a sense, the converse of #10*1. #101 may be stated

:

" What is true of all is .true of any," while #10:11 may be stated :
" What is

true of any, however chosen, is true of all."

#1012. h :

.

\x) . p v <f>x, 3.: p . v . (a?) . tf>x [#9*25]

According to the definitions in *9, this proposition is a mere example

of "qSq," since tby definition the two sides of the implication are different

symbols for the same proposition. According to the alternative method, on

the contrary, #10*12 is a substantial proposition.

#10*121. If " ifxc" is significant, then if a is of the same type as x, '*#«" is

significant, and vice versa. •[#D:14]

It follows from this proposition that two arguments to the same function

must be df the same type; for if a? and a are arguments to $£, "(j>x" and "<f>d"

are significant, ^and therefore a; "and a are of the same type. Thus.the above

primitive proposition embodies the outcome of our discussion of the vicious-

circle paradoxes in Chapter II of the Introduction.

#10122. If, for some a, there is a proposition <fm,then there is a function ^c,

And vice versa. [*9'I5J

#1013. If $& and^ take arguments.of the-same type, arid we have "'kJ$x"
and " H .tyx? we shall have * kvxf>x . yfrx."
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Bern,.

By repeated use of *96r62-63131 (3), there is a function ~^v~^.
Hence by *211 and *301,

h : <^<f>xv<^y^x. v . <f>x.tyx (1)

h.(l).*2-32.(*l-01).Dh:.^.D:'«/ra;.3.^,^ (2)

h . (2) . *912 . D K Prop

*1014 h :.(#).<£#: (a?). ^arO .<f>y.yjry

This proposition is true whenever it is significant, but it' is not always

significant when its hypothesis is significant. For the thesis demands that

<f>
and -\fr should take arguments of the same type, while the hypothesis does

not demand this. Hence, if it is to be applied when <£ and -^ are given, or

when yfr is given as a function of or vice versa, we must not argue from the

hypothesis to the thesis unless, in the supposed case, # and ty take arguments

of the same type.

Dem.

K*10-l. D\-z(x.).<f>x.y.<l>y (I)

K*10\L. Dhr^.^.D.-ifry (2)

H . (1) . (2) . *1013 . D h : (x) . <jxc . D . fyy z (x)'. -far . D . yfry z

[*3*47] ^ D\-i.{x).<f)x:(x).'fx:'2>.<f}y.'^y
m
.. DKProp

*102. \-:.(x).pv $x.= :p.v .(x).<l>x

Dem.
h . *10'1 . *l-6 . D H :. p . v . (x) . <f>x : D . p v <f>y :.

[*1011] D f :-;.(y) :.p . v .
(a?)

.
0a? :0.pv<f>y z.

[*1012] yh:.p.v.(x).<j>x:D.(y).pv<l>y (1)

K*1012. 3>:.(y)._pv^y.3:p.v.(a?).^aj (2)

K(l),(2). Dr.. Prop

*1021. h :..(#) 2> ^ </>*• = =2>- 3- (*0-<^ [*10-2^1

This proposition is much more used than #10'2.

*10'22. H :. (x) . <f>x . yjrx . = :(#).<£#:(#) yjcx

Dem.

h . *10'1

.

D H : (x) . $x . ^rx . D . ^y . yfry . (1)

[*3-26] D.^y:
[*1011] DI-:.(y):(ar).^.^.D.^:.
[*10-21] >.h:.(#)/^.^.D.(y).<£y (2).

h.(l).*3'27. y\-i.\x).<\>x.^x.^.^zi.

[*1011] D I- : . (z) z (x) . $x . yjrx . D . -fz z .

[*10'21] D\-:.(x).sf>x.ylrx.D.(z).fz (3)

t- . (2) . (3) . Comp .y\-:.(x).(f>x.ylrx.D: (y) . <f>y
z (z) .^ (4)

h . *1014-11

.

Dhz. (y) :. (#) .<f>xz(x) .yjtxzD .<f>y .yfryz.

[*1Q-21] D\-:.(x).^xz(x).^x:D.(y).4>y.iry (5)

K(4).(5). Dh.Prop
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The above proposition is true whenever it is significant; but, as was
pointed out in connexion with #1014, it is not always significant when
" (#).<£#: (x) . yjrx " is significant.

#10*221. If <fxc contains a constituent %(#, y, z, ...) and yjrx contains a con-

stituent x

(

x> u> v> ...), where x ia an elementary function and y, z, ... w, t>, ...

are either constants or apparent variables, then
<f>£

and tyS; take arguments

of the same type. This can be proved in each particular case, though not

generally, provided that, in obtaining
<f>

and yfr from x> X *s onty submitted

to negations, disjunctions and generalizations. The process may be illustrated

by an example. Suppose <f>x is (y) .x (x, y) . D . 0x, and yfrx isfx . D . (y) . x (®> y)-

By the definitions of #9, <j>se is fay) •~% (x, y) v 0x, and yfrx is (y) . ~y<r v ^ (#, y)>

Hence since the primitive ideas (x) . Fx and fax) . Fx only apply to functions,

there are functions ~#(&, p)v0$, ~/^v^(^, $). Hence there is a proposi-

tion ~%(a, b)v 0a. Hence, since "pvq" and "f^p" are only significant

when p and q are propositions, there is a proposition x (a> &)• Similarly, for

some u and v, there are propositions ~/w v x (u, v) and x (u> v)- Hence by
#9*14, ii and a, v and b are respectively of the same type, and (again by #9*14)

there is a proposition ~/jv^(a, b). Hence (#9'15) there are functions

~X (a> 9) v &a> ~/a v X (a> P)> a11^ therefore there are propositions

(wf) • ~x (a> y) v 0a
> (y) ~fa v x (a> y)>

i.e. there are propositions <f>a, yfra, which was to be proved. This process can

be applied similarly in any other instance.

#10*23. b:.(x).<f>x^p. = :fax).<f>x.D.p

Dem.

h . #4-2 . (#9'03) . D h :. (x) . ~<£a; v p . = : (x) . ~<f>x . v . p :

[(*902)] s.(a*).^.D-i> (1)

h . (1) . (#1-01) . DKProp

In the above proof, we employ the definitions of #9. In the alternative

method, in which fax) . <f>x is defined in accordance with #10-01, the proof

proceeds as follows.

#10*23. \-:.(x).(f>xDp. = : fax) . <f>x . D. . p

Dem.

b . Transp . (#10-01) . D I- :. fax) . <f>x . D . p : = : ~p . D . (x) . ~<f>x :

[#10-21] =:(a;):~jj.D.~^r: (1)

[#101] D:~p.D.~<j)x:

[Transp] D :<f>x .D .p :.

[#10-11] D I- :. (x) :. fax) .<f>x. D . p .O : <f>x . D . p :.
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[*10'21] DH:.(g^).^c.D.j?0:(a;):f».D.p (2)

b . #10'1

.

Dh:.(jr):^.O.p:D:^ Dp :

[Transp] D:~j3.D.^^a;i.

[*10'11'21] 3b:.(x):<f>x.D.p:'2:(x)z~p.
,

2.~<f>x:

[(!)] D:(a^).^.D.p (3)

K(2).(3). DKProp

Whenever we have an asserted proposition of the form p D <f>x, we can

pass by *10*11'21 to an asserted proposition p . D . (x) . <£wc. This passage is

constantly required, as in the last line but one of the above proof. It will

be indicated merely by the reference " #10*1 1 '21/' and the two steps which it

requires will not be separately put down.

1024. f- : <j>y . D . fax) . <f>x

This is *9'1. In the alternative method, the proof is as follows.

Dem.
K*101 .Oh:(a;).~^.D.~^:

[Transp] D h : <f>y . D . ~(#)

.

~<f>x :

[(*10-01)] D I- . Prop

1025. b:(x).<f>x.D.fax).<j>x [*10-124]

*10 251. b : (x) .~ <f>x . D .~ {(x) . <£#} [*1025 . Transp]

10252. h :~{fax) . <£#} . = . (x).~<f>x [*4«2 . (*9'02)]

10 253. h :~ \{x) . <f>x] . = . fax) .~<j>x [*4"2 . (*901)]

In the alternative method, in which fax). <f>x is defined as in fclO'01, the

proofs of *10'252-253 are as follows.

*10-252. b :

~

[fax) . <f>x} . == . (x) .

~

<f>x [*413 . (*1001)]

10 253. b :~ {(x) .<f>x}. = . fax) .~ <f>x

Dem.
K*10'l. Dh:(a?).^c,D,^y.

[*2-12] D.~(~0y):

[101121] D h : (x) . <f>x . D . (3/) .~(~tf>*/) :

[Transp] D h :~ {(y) .~ ( <-o ^>y)} . D .~ {(#) . <£#}

:

[(10-01)] D I- : (ay) .~*y . D .~{(*) . <M (1)

K*101. DH:(y).~(~03/). D.~(~<£#)»

[2-14] 2.<j>x:

[*1011-21] 3 h : (y) -~(~#) . D . (x) . <f>x

:

[Transp] D b :~ {(#) . <f>x}

.

D .~ {(3/) .~ (~ $3/)}

.

[(1001)] D.(ay).~*y (2)

K(l).(2).Dh.Prop
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*1026. b:.(z).<f>zyyjrz:<f)xiy.fa; [*101 . Imp]

This is one form of the syllogism in Barbara. E.g. put <f>z . = . z is a man,

tyz . = . z is mortal, x = Socrates. Then the proposition becomes:

"If all men are mortal, and Socrates is a man, then Socrates is mortal."

Another form of the syllogism in Barbara is given in *10*3. The two

forms, formerly wrongly identified, were first distinguished by Peano and

Frege.

*10-27. h:.(
<
z).<f>zyylrz.D:(z).<f>z.D.(z).yfrz

This is *9*21. In the alternative method, the proof is as follows.

Dem.
b . #10-14 . D h :. (z) . <f>z D yjrz : (z) * <f>z : D . 4>y D ijry • <f>y

•

[Ass] D . tyy :.

[#10-1] D h :. (y) :. (z) . cf>z D yjrz : (z) . <j>z : D . yjry :.

[*10'21] D h :. {z) . 0* D <fz : (*) . 0* : D . (y) . ^2/ C1 )

I- . (1) . Exp . y r . Prop

*10-271. h :. 0) . 0z =^ . D :.(*) . 0* .
= . (z) . ^z

Dem.
K*10'22. > h:.Hp. :>:(*). 0*3-0^ :

[*1027] >:(z).<f>z.D.(z).yfrz (1)

K*1022. ' DJ-:.Hp.D:(*).^eO0s:

[*10'27] D:(s).^s.>.(.!r).0* (2)

H . (1) . (2) . Comp . y h . Prop

#10*28. h : . (x) . 0a; !> -0-a; . D : (ga;) . 0a; . D . (ga?) . ^a;

This is #9-22. In the alternative method, the proof is as follows.

Dem.

h . *ioi . y\- :
.
(x) . <f)xy^-x .y.<f>y y^-y •

[Transp] D .~ tyy D~ <f>y
:

.

[*10\L1~21]3> :. {x).<f>x y tyx . y : (y) .~-fyy~<f>y :

[*10-27] y:(y).~ylry.y.(y).~<f>y:

[Transp] D : (ay) . 0y • 3 . (ay) , ^y « 3 r- . Prop

*10 28L h : . (a;) .<j>x= tyx .O : (rx) . 0a; . = . (a«) . ^ra? [*10-22"28 . Comp]

*1029. h :. (x) .<f>xy-fx :(x) . <f>x D %x : = : (x) : <f>x . D . yfrx . xx-

Dem.

h . *lQ-22 . D h :. (x) . 0a? D tyx : (a;) . 0a; D %a;

:

= : (ar) : 0a; D -^a; . 0# D ^a; (1)

t- . #4*76 . D"r- :. 0a; D^ar* 0a; D ;•£*?. = : 0a; . D . tyx •XXZm

[#1011] D K :. (a;) :. 0a; 3'i^tt'. 0a; D %a? . = : 0a; . D . -tyx . ^a; :.

[#10'27l] y b :. (a?) : 0a;O ^ar. 0a; D %a? : = : (x) : 0a; . D . -^ra? . xx (2)

r- . (1) . (2) .>+ . Prop

This is an extension of the principle of composition.



SECTION B] THEORY OF ONE APPARENT VARIABLE 145

#10*3. h :. (x) . <f>x D yfrx : (x) . ^ra; D ^« : D . (#) . <£a" D xx

This is the second form of the syllogism in Barbara.

Dem.
\-

. #10*22*221 . D r : Hp . D . (x). <f>x D yfrx . yfrx D xx •

[Syll .#1027] D . (x) .<f>xO Xx;Oh. Prop

#10*301. H :. (x) . <f>x = i/ra; : (a*) . i/ra? = %x : D . (a;) . <f>x = ^«

I- . #1 0*22*221 . D I- :. Hp . D : (x) . <f>x = yfrx . yfrx = xx :

[*4*22.*10*27] D : (a*) . 0a; = Xa? :. D h . Prop

In the second line of the proofs of #10*3 and #10*301, we abbreviate the

process of proof in a way which is often convenient. In #10*3, the full process

would be as follows:

h . Syll . D r- : <f>x"D yfrx . yfrx D xx . D . <f>x D xx :

[#10*11] D I- : (x) : <f>x D yfrx . yfrx D xx • ^ • $x -^ X-^ :

[#10*27] Dh(«).^Dfx,fa;D^.D. (a?) . <£# D %#

The above two propositions show that formal implication and formal

equivalence are transitive relations between functions.

#10*31. V :. (x) . <f>x D yfrx . D : (x) : <f>x . xx . D . ^ra; . xx

Dem.

K Fact. #10* 11 . Dh :.(x):. <f>x^yfrx. D:<f>x.xx. ^.yfrx.xx (1)

K(l). #10*27. Dr. Prop

#10*311. I- :. (x) . <f>x = yfrx . D : (x) : <f>x . xx • = • tyx • Xx

Dem.

r . #4*36 . #10*11 . D I- :. (x) :. $x = yfrx . 3 : <£a? . xx • = "f® . xx (1)

K(l). #10*27. Dr. Prop

The above two propositions are extensions of the principle of the factor.

#10*32. h : <f>x =x yfrx . = . yfrx =x §x

Dem.
V . #10*22 . D I- : <f>x

=
x yfrx . = . <f>x Dx yfrx . yfrx D* <f)x .

[*43] = . yfrx Dx <f>X . <f>X Da, yfrx .

[#10*22] = . yfrx =, ^v : D h . Prop

This proposition shows that formal equivalence is symmetrical.

#10*321. H : <f>x
=
x yfrx .<f>x=x xx '^- tyx -%XX

Dem.
V . #10*32 . Fact . D h : Hp . D . yfrx =x <f>x . <f>x =x xx

.

[#10301] D . yfrx =x

X

x : D h . Prop

#10*322. I- : i/r# =x <f>a: . xx =x <f>x . D . \frx ==
xxx

Dem.
V . #1032 . D h : Hp . D . yfrx =x <j>x . <f>x =x xx

.

[#10*301 ] D . yfrx =x Xx : D h . Prop

R&W I 10
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*10 33. I- :. (x) : <f>x .p : = : (x) .<l>x:p

Dem.
h.*10'l. Dh:.(x):<f>x.p:D.<f>y.p.

[*3-27] D.p
I- . (1) . *3'26 . D h :. (#):<£#. p :D . <£y

:

[*10-11-21] D I- :.(#): <f>x .p : D . (y) . <f>y

(1)

(2)

(3)

(4)

(5)

In the alternative

K(2).(3). D\-:.(x):<f>x.piD:(y).<l>y:p

K*101. D\-:.(y).<f>y. D.<jk»:.

[Fact] Dh:.(y).^:p:D.fB.p:.
[1011-21] 0\-'..(y).<f>y:p:0:(x):<f>x.p

I- . (4) . (5) . D h . Prop

*10-34. I- :. (g«) . <£aOp . = : (<c) . <j>x. D .p

This follows immediately from *90501 and *1*01.

method, the proof is as follows.

Dem.
K*4-2.(*10-01).D

H:.(a#).<£aOjp. = :~{(x) .~(<f>xDp)}

:

[*461.*10'271] =:~{(a?):^r.~p|:

[*1033] = :~ {(«) • <j># : ~/>}

:

[*4-53] = :~ {(*) ty] v .p '.

[*46] s :(x).<f>x.D.p

*10 35. H : . (ga;) .p.<f>x. = :p: (a#) .<£#

H.*326. Dh:p.</>a:.D..p:

[*1011] Dh:(#):p.<^.O.p:

[*1023] D h : (a*) . p . <£a? . D . p (1)

r- . *3-27 . Db-.p.Qx.D.fa:
[*1011] D\-:(x):p.4>x.D.<f>x:

[*10'28] Dh:(ga;).p.^c.D.(aa!).^ (2)

K*3'2. "D\-:.p.Di<f>x.D.p.<f>x.

[*1011-21] D t- :.p . D : (x) : <£#. D .p . <£# :

[*10'28] D:(ga;).<^.3.(aa;).p.^B (3)

|-.(1).(2).(3). Imp. Dh. Prop

*1036. h:.(a«).«/>«vp. = :(a«).^.v.p

This follows immediately from #905. In the alternative method, the

proof is as follows.

Dem.

h . *4-64

.

[*1011]

[*10'281]

[*1034]

[*4'6.(*10-01)]

D I- : <j>xvp . = ,~<j>x'Dp:

D I- : (x) : <j>x vp . = .~ <f>x Dp :

D 1- :. (a«) .^vj). = : (ga?) .~<£# Dp :

= : (x) ,f^><j)X. D .p :

= : (3^) .f».v.])!.3
:

K Prop
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The above proposition is only required in order to lead to the following:

*10 37. I- :. (gar)

.

p3 <f>x . = :p . 3 . (gar) . <j>a *1036
P J

#1039. h :. <f>x Dx -x-x :^ ^* 8x ' ^ : <fc» tyx • ^x • Xx • ®x

Dem.

r- . *10-22 . 3 f :. Hp . 3 : (a?) : <f>x 3 %« . -^ 3 0# :

[*3-47.*10-27] D : (a) : cf>x . fco .0 .xx • Occ :.D b . Prop

This proposition is only true when the conclusion is significant; the

significance of the hypothesis does not insure that of the conclusion. On the

conditions of significance, see the remarks on *10'4, below.

#104. h :. <f>x
=
x xx .tyx =v 0x .D : <f>x . yfrx . =x . xx • @x

Dem.

h . *10-22 . 3 1- : . Hp . 3 : <f>x 3* xx • "f* 3* Gx '

[*10-39] D:<f)X.yfrx.Dx . xx -Ox (1)

Similarly h :. Hp . 3 : xx • &x • ^x- <f>
x • tyx (2)

I-
. (1) . (2) . Comp . 3 h :, Hp . 3 : <f>x . tyx . Dx . xx • @x s Xx • ®x • ^* • fa • "¥x '•

[*10-22] 3 : <\>x . yfrx .
=
x . xx Bat :. 3 H . Prop

In #10*4 and many later propositions, as in *10"39, the conclusion may be not

significant when the hypothesis is true. Hence, in order that it may be legiti-

mate to use #10*4 in inference, i.e. to pass from the assertion of the hypothesis

to the assertion of the conclusion, the functions
<f>,

yjr, x* must be such as to

have overlapping ranges of significance. In virtue of *1'0*221, this is secured if

they are of the forms F{x, x (x,p,%...)}J{x,xM,%...)},0{x, X (x,'PX---)},

9 \
x

> X (x> §> $> •••)}• It is also secured if ^ and yfr or
<f>

and or x an(^ ^
or x ar)d are of such forms, for $ and x must have overlapping ranges of

significance if the hypothesis is to be significant, and so must -^ and 0.

*10"41. h :.{x).$x. v .(x).yjrx: 3 . (#) . favyfrx

Dem.

h . *101

.

3 I- :(x).<f>x. 3 .
<f>y .

[*2-2] ^.cj>yvfy (1)

r- . *101 . Dh:(*).^.D.^.
[*l-3] D.^yv^y (2)

h . (1) . (2) . *10 13 . 3 I- :. (a?) . <£# . 3 . <£y v yfry : (a-) . i/r# . 3 .^ v yjry :.

[#3'44] 3 h :. (.*) . $a . v . (x) . ^x : 3 .
<f>y v ^y

[*101121] 3 1- :. (a?) . <f>x . v . (a?) . yjrx : 3 . (y) .
<jty

v ^y :. 3 r- . Prop

Observe that in the above proof the uses of #2*2 and *1*3 are only legitimate

if
<f>y and ^ry have overlapping ranges of significance, for otherwise, if y is such

that there is a proposition
<f>y,

it is such that there is no proposition yfry, and
conversely.

10-.2
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*10"411. h :. <f>x
=
x j(x . yfros =x 0x . "D : <f>x v yjrx . =z . x® v Ox

Dem.

h . *10*14 . D h :. Hp . D : <£# = %x . yfrx = 0x :

[*4'39] ^:<t>xvtyx. = .xxvdx (1)

h.(l).*10-ir21.DKP.rop

*10412. H- : ^c=, -fa; . = .r^^x=x<^^x [*4-ll . *1011271]

#10-413. H :. <£# =xxx •^ -«^ ^ :^ 3 ^x • =x • X00 ^ ^x

Dem.

r . *10-411-412 . 3 I- .-. Hp . D : ~$x v yjrx . =x . ~%# v 0x

[(*1-01)] D:<f>xDylrx.=x . xxD6x:.Dh.T?rov

*10414. h :. <f>x
=
x %x . tyx =x 0x . D : <f>x

= i/r# . =3 .^ = 6x

Dem.

H .*10413^|^|.*10-32 .Dr :.Hp .D : i/raO <£# .=.. $xD Xx CO

r . *10-413 . (1) . *10-4

.

DKProp

The propositions fclO'413414 are chiefly used in cases where either x is

replaced by <£ or is replaced by yjr, in which case half the hypothesis becomes
superfluous, being true by #4*2.

*1042. H :. fax) . <f>x . v . fax) . yjrx : = . fax) .Qxvfx
Dem.

h .*10"22 . D h :.(x).<»j<j)xz (x) .o^yfrx: = .(x) .~(])X .<^>yfrx :.

[*4'11] D I- :.<>*>{(#) .<^><f>x: (x) .^yfrx] . = .~{(#) .<~<£#.~^r#} :.

[*4'51'56.*10-271] D h :.~{(«) .~<^} . v .~{(» ,~^;}

:

= .~ {(x) .~ (<f>x v i|ra?)} :.

[*10
#

253] D h :. (a#) . <px . v . (ga?) . i|ra? : = . fax) . <£# v yjrx :.

D I- . Prop

This proposition is very frequently used. It should be contrasted with

#10*5, in which we have only an implication, not an equivalence.

*10"43. h : <f)Z
=

z <fyz ,(f>x. = .<f>z=z yjrz . yfrx

Dem.
K*10\L. ^h:<f)Z=z yjrz.D.<f,x=yfrx (1)

h . (1) . *5-32 . D H . Prop

*105. b :. fax) . <f>x . yfrx . D:fax).<f>x: fax).\jrx

Dem.
b . *326 . #10-11 . D h : (x) : <j>x . -fx . D ,<f>x :

[*10'28] Db:fax).(f>x.ylrx.D.fax).(l>x (1)

h . *3'27 . *10'11 . D h :. (x) : <f>x . yjrx . D . tyx:

[*10*28] Db:fax).<f>x.fx.D.fax).yJrx (2)

h.(l).(2).Comp.Dl-:.Prop



SECTION B] THEORY OP ONE APPARENT VARIABLE 149

The converse of the above proposition is false. The fact that this

proposition states an implication, while #10*42 states an equivalence, is the

source of many subsequent differences between formulae concerning logical

addition and formulae concerning logical multiplication.

#10*51. h :-~{fax) . <f>x . yfrx] . = :<f>x. Dx .~yfrx

Bern.

h . #10-252 . D h :.~ {fax) . </># . yfrx] . = :(x) .~(<f>x . yfrx) :

[#4*51*62.*10*271] = :(x):<f)X.D.^yfrx:.Dh.Yrop

#10*52. b :. fax) . (f>x . D : (x) . <f>x Dp . = .p

Dem.

h . #5*5 . D H :: Hp . D :.p . = : fax) .<f>x.D.p:

[#10*23] = : (x) . <f>x Dp : : } h . Prop

#10*53. I- :. ~fax) . <j>x . D : <f>x . Dx . yfrx

Dem.

h. #2*21. #10*11.3

h :. (x) :. o-xfrx . D : <f>x . D . yfrx :.

[#10*27] Dh:.(x).^<f>x.D:(x):<f>x.D.yfrxi.

[#10*252] D h :.~(aa;) . <f>x . D : (x) : <f>x . D . yfr

x

:. D h . Prop

#10*541.
\-:.<f>y . Dy .pvyfry : = :p. v ,<f>yDy yfry

Dem.

h . #4*2 . (#101) .Db:.<f>y.Dy .pvyfry:
=

[Assoc.*10*27l] =

[#10*2] =

[(#1*01)]

(y).~<f>yvpvyfry:

(y).pv~<f>yvyfry:

p.v.(y).~<f>yvyfry:

p. v. <f>yDy yfry:.Db. Fro?

The above proposition is only needed in order to lead to the following:

10*542. b:.<l>y.Dy .pDyfry: = :p.D.<f>yDy yfry f*10*541-^l

This proposition is a lemma for #84*43.

*10'55. h :. fax) .<f>x.yfrx:<j>xDx yfrx: = : fax) .<f>x:<f>xDx yfrx

Dem.

I- . #4*71 . D I- :. <•&# D yfrx . D : <f>x . yfrx . = . <f>x

h.(l).*1011'27.D

I- :. $x Dx yfrx .D:(x):<f)X .yfrx . = . <f>x

:

[#10*281] D : fax) . <fix . yfrx . = . fax) . <f>x

b. (2). #5*32. Dr. Prop

This proposition is a lemma for #117 ,12 ,121.

(1)

(2)
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#10'56. I- :. <j)x . Dx . yjrx: (g#). $x . Xx: ^ -(3^) • tyx 'Xx

Dem.

h . #10'31 . D h :. <f>x . Dx . yfrx : D : cf>x . yx . Dx . -tyx . yx :

[#10*28] D : (ga;) . <£# . %a; . D . (gar) . fa; . ^a; (1)

h . (1) . Imp . D h . Prop

This proposition and #1057 are used in the theory of series (Part V).

#1057. \- :.<f>x .Dx . yjrx v yx : D : <f>x Z>x y\rx . v . (g#) . fac . yx

Dem.

h . *10-51 . Fact . D

I- :. <f>x . Da, . fa; v ^a; : ~(g#) . <f>x . yx : "D : <f>x . Dx . yjrx v yx : <f>x . Dx . <^yx '•

[*10*29] D :<f>x .Dx . fa; v yx .~ yx :

[*5'61] D : <£a; . D* . fa; (1)

h.(l).*5-6.Dh.Prop



#11. THEORY OF TWO APPARENT VARIABLES

Summary of #11.

In this number, the propositions proved for one variable in *10 are to be

extended to two variables, with the addition of a few propositions having no

analogues for one variable, such as *ll'2-21-23-24 and *ll-53-55'6-7. "<f> (x, y)

stands for a proposition containing x and containing y\ when x and y are un-

assigned,
<f>

{x, y) is a prepositional function of x and y. The definition #1101

shows that " the truth of all values of
<f>

(x, y)" does not need to be taken as a

new primitive idea, but is definable in terms of " the truth of all values of yfrx."

The reason is that, when x is assigned, <f>(x,y) becomes a function of one

variable, namely. y, whence it follows that, for every possible value of x,

"(y).4>(x,y)" embodies merely the primitive idea introduced in *9. But

"(y) .
<f>

(x
y
y)" is again only a function of one variable, namely x, since y has

here become an apparent variable. Hence the definition #1101 below il-

legitimate. We put:

#1101. (x,y).<j>(x,y). = \(x):(y).<i>(x,y) Df

#1102. (x, y, z). <J>
Qc, y, z) . = : (x) : (y, z) . <f> (*, y, z) Df

*n-03. (aa?,y).^(a?,y). = :(a*):(ay)-^(^y). Df

*ll-04. (^x,y,z).<f>(x,y,z).^:(^x):('3_y,z).<f>(x,y,z) Df

*ll-05. <j>(x
>
y).Dx>y .1r(x,y)i = i(x,y):<j>{x,y).3.+(x,y) Df

*ll-06. ^(a?,y).s,, y .^(«,y): = :(«.y)!*(aj.y)-=-^ ,

(aj'y) Df

All the above definitions are supposed extended to any number of variables

that may occur.

The propositions of this section can all be extended to any finite number

of variables; as the analogy is exact, it is not necessary to carry the process

beyond two variables in our proofs.

In addition to the definition #11-01, we need the primitive proposition

that "whatever possible argument x may be,
<f>

(x, y) is true whatever possible

argument y may be" implies the corresponding statement with x and y inter-

changed except in "<f>(x,y)". Either may be taken as the meaning of

"<£0, y) is true whatever possible arguments x and y may be."

The propositions of the present number are somewhat less used than those

of #10, but some of them are used frequently. Such are the following:

#111. \-:(x,y).(f>(x,y).D.<f>(z,w)

#11-11. If
<f>

(z, w) is true whatever possible arguments z and w may be, then

(x, y) . <j> (x, y) is true

These two propositions are the analogues of #10111.
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*ll-2. H:tey).*tey). = .(yf *).$(*,y)
I.e. to say that "for all possible values of x, <j>(x, y) is true for ail possible

values of y" is equivalent to saying "for all possible values of y,<f>(x,y) is

true for all possible values of x."

*11'3. f- : .p . D . (x, y) .
<f>

(x, y) :=:(x, y) :p . D .
<f>

(x, y)
This is the analogue of *1021.

*1132. \-:.(x, y) :
<f>

(x, y>. D . ^ (x, y) :O : (x, y) .
<f>
{x,y) . D .,(*, y) . ^ (x, y)

I.e. "if <f>(x,y) always implies y{r(x,y), then '<f>(x, y) always' implies

'f (®> y) always.'" This is the analogue of *1027. *ll-33-34341 are respec-

tively the analogues of *10-27r28'281, and are also much used.

*ll-35. r :.(x,y) : <f>(x, y) . D .p : = : fax, y) .
<f>
(x,y) .D.p

I.e. if
<f>

(x, y) always implies p, then if
<f>

(x, y) is ever true, p is true, and
vice versa. This is the analogue of *1023.

*ll-46. t-:.(&x,y):p.<t>(x,y): = :p:(>&x,y).<f>(x,y)

This is the analogue of *1 0'35.

*H54. ^:.faso,y).<f>x.ylry.^:fax).<f>x:fay).yfry

This proposition is useful because it analyses a proposition containing
two apparent variables into two propositions which each contain only one.

"<j>x.y]ry" is a function of two variables, but is compounded of two functions

of one variable each. Such a function is like a conic which is two straight

lines: it may be called an "analysable" function.

*11'55. r- : . fax, y) . $x . -f (x, y) . = : fax) : <f>x : (ay) . yjr (x, y)

I.e. to say " there are values of x and y for which <f>x . yjr(x, y) is true "
is

equivalent to saying " there is a value of x for which (f>x is true and for which
there is a value of y such that yfr (x, y) is true."

*ll-6. h :: fax) :. fay) .
<f>

(x, y) . yjry : Xx :. = :. fay) :. fax) .
<f>

(x, y) . Xx : ^y
This gives a transformation which is useful in many proofs.

*ll-62. h :: <f>x .f(x,y) . 3x>y . X (x,y): = :. $x . D,

:

<f>(x, y) . Dy . x (x, y)
This transformation also is often useful.

*1101. (cc,y).<t>(x,y). = ;{x);{y).<l>{x,y) Df
*1102. (x,y,z).<\>tx,y,z). = :{x)i{y

y z).<\>{x,y,z) Df
*ll-03. (^,y).<f,(xy y). = :fax):fay).<f>(x,y) Df
*1104. (^,y,z).<f>{x,y,z). = :fax):fay,z).(f>{x,y,z) Df
*1105. <l>(x,y),DXty.yfr(x> y): = :(x,y):<f>(x,y).^.^(x,y) Df
*H-06. <f>(x,y).=x,y.ylr(x,y)t = :(x,y):<f>(x,y). = .,jr(x,y) Df
with similar definitions for any number of variables.

*1107. "Whatever possible argument # may be, <f>(x,y) is true whatever
possible argument y may be " implies the corresponding statement with x and
y interchanged except in "<f>(x, y)". Pp.
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*H1. h : (x, y) . $ (x, y) . D . (2, w)

Dem.
h.*101.DI-:Hp.D.<y).*(*,y).

OlO'l] O. <£(>,«/) .OK Prop

*11'11. If </> (z, w) is true whatever possible arguments z and w may be, then

(x, y) .
<f>

(x, y) is true.

Dem.

By #1011, the hypothesis implies that (y).(f>(z,y) is true whatever

possible argument z may be; and this, by #101 1, implies (x, y) .
<f>

(x, y).

#1112. h :. (x, y) .p v
<f>

(x, y) . D :p . v . (x, y) .
<f>

(x, y)

Dem.

H.*10'12.Dh:.(y) vpv$tey). Z>:p .v .(y) .<f>{x,y):.

[*10'll-27]Db:.(x,y).pv<f>(x,y).D:(x):p.v.(y).<l>(x,y):

[*1012] D : p . v . {x, y) .
<f>

(x, y) :. D h . Prop

This proposition is only used for proving #11*2.

#1113. If
<f> (&, y), yfr (&, §) take their first and second arguments respectively

of the same type, and we have "f- . <j> (x, y)" and "h . \Jr (x, y)" we shall have
" b .<f>(x, y) . jr (x, yy [Proof as in #1013]

#1114. Y : . (x, y) . <j> (x, y) : (x, y) . i|r (x, y) : D : <j> (z, w) . yjr (z, w)

Dem.
h.*1014.DH.Hp.D:(y).^(^,y):(y).^(^y)

[#1014] D : </> (z, w) . yfr (z, w) :. D h . Prop

This proposition, like #1014, is not always significant when its hypothesis

is true. *1113, on the contrary, is always significant when its hypothesis is

true. For this reason. #1113 may always be safely used in inference, whereas
#1114 can only be used in inference {i.e. for the actual assertion of the con-

clusion when the hypothesis is asserted) if it is known that the conclusion is

significant.

#11-2. I- : (as, y) .
<f>

(x, y) . = . (y, x) .
<fj

(x, y)

Dem.

V . #11-1

.

D h : {x, y) .
<f>

(x, y).D.<f>(z, w) (I)

V . (1) . #11-0711 . D r :. (w, z) : (x, y) . <j> (x, y) . D .
<f>

(z, w) (2)

V
h :. (x, y).(f>(x,y).D. (w, z) ,<f>(z, w) (3)

Similarly I- : . (w, z) .
<f>

(z, w) . D . (x, y) .
<f>

(x, y) (4)

I- . (3) . (4) . D H . Prop

Note that "(w, z) .
<f>

(z, w)" is the same proposition as "
(y, x) .

<f>
(x, y)";

a proposition is not a function of any apparent variable which occurs in it.
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1121. I- : (x, y, z) .(f>(x,y,z). = . (y,

z

3 x).$ (x, y, z)

Dem.

.(x):.(y):(z).<f>(x,y,z):.

.(y):.(x):(z).<f>(x,y,z):.

.(jj)i.(z)\(x).4>(x;y,z)u

. (y, z, x) .
<f>

(x, y, z) :: D b . Prop

[(11-01-02)] I- :: (*, yr z) . $ (x, y,z).=

[*ll-2]

[*11-2.*10*271] =

[(H'01-02)] =

1122. b:(<Rx,y).<f>(x,y). = .~{(x,y).~(f>(x,y)}

Dem.

b . 10252 . Transp .
(*ir03) . D

b:(^x,y).<f>(x,y). =.~i(*):~(ay).^(a?,2/)}

[10252-271] s . ~ {(x) : (y) . ~ <£ (x, y)\ .

[(11-01)] = • ~ {(*, y) • ~ (*. y)) • 3 *" • Prop

H'23. b:(^x
i y). <f>(x,y). = .( l3_y,x).<j>(x,y)

Dem.

b . *11'22 .Db: K-£<c, y) . <j>{x, y) . = . ~ {(#, y) . ~ <*> (x, y)} .

[*ll-2.Transp] = • ~ {(y, #) ~ <j> (x, y)} •

[11-22] = • (a#> x) ><f>(x,y):3b. Prop

11-24. i-:(a«,y,^).^(^y,^). = .(a2/,^«).^(^y./)

Dem.

[(11-03-04)] b :: (gar, y,z).<f> (x, y,z). = :. (a*) :. (ay) : (a*) .<£(#, y, *) :.

[ii-23] = - (ay) ». (a*7) • (a*) • 4> (®> &>*)'••

[*ii-23.^io-28i] =:-(ay):.(a^):(a*)-^(«,y,«)»

[(11-03-04)] = :. (ay, *,«).£(*,&*):: 3 K Prop

11-25. b:~{(<&x,y).<l>(x,y)}. = .(x,y).~<l>(x,y) [*1122 .Transp]

11-26. r- : . (a«) : (y) . £ (a?, y) : 3 : (y) : (a»> • 4> (*» 2/)

b . 101-28 . D b :.-(a*) : (y) . <£ (a?, y) : > : (a*) <£ 0*. ^) C1 )

I- . (1) . 10-11-21 . D b . Prop

Note that the converse of this proposition is false.. E.g. let <j>(x,y) be the

propositional function " if y is a proper fraction, then x is a proper fraction

greater than y." Then for all values of y we have (a#) • <£ («, yX s0 tnafc

(y) : (3*) 4*

(

x
> V) is sati8ned - In fact ' (y) '• (ft®) • <t> (x>

$)" expresses the

proposition: " If y is a proper fraction, then there is always a proper fraction

greater than y." But "(&x) : (y) . <£ (x, y)" expresses the proposition: " There

is a proper fraction which is greater than any proper fraction," which is

false.

11-27. b :.(a*,y) •{ TKz)-^(x,y;z)' s?
: (a*) *to *) ^ (*>& *> =

= '{'&x
>
y,z).<$>(x,y,z)
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Bern.

K #4*2. (#11*03). 3
i- - (a*> y) = (a^) • 4>ix> y> z) • = • (a#> -(ay) : (a*) 4> {*> y> *> (*)

K*4*2.(#ll*03).O

h

:

• (ay) = (a-2) <f> («*> y> z)- = - (ay* *) • #(^ u> z) (2)

f-r.,(2) . *10*11-281 . y
h ::-(a») :. (ay) : (a?y.. <£ o», y^-- = "---(a*) r (ay> *) • f(*>y»*) (3)

H . (1);..(3) . (#11*04) . D h . Prop

All the propositions of #10 have analogues whichi hold for two or more

variables. The more important of these are proved in what follows.

*ll-3, bz.p.O. (x,y) .
<fi (x, y) r= : (x,y) : p *D-4> (x, y)

Dem.

b . #10-21. >h :.p . D . (ayy) . 4>{x,y) : = i(x) :p~D .(y) . ^(«, y)

:

[#1 0-21-271] = : (x, y) :p . D . <£ (*,.y>:.. > I" Prop

*11'31. I- : . (x, y) . <j> (a;
, y) : (a>, y) . f (x, y) : = : (x, y) : $ (xx y) . ty (#, y)

Here the conditions of significance on the right-hand side require that

<f>
and ^should take arguments of the same types.

Dem. -

h.*l0'22.Dh::(x,y).<]>(x,yy.(x,y).ylr(x,y):

= :..
• («) : (y) *<£ (*, y)r(y) ."f (*, y) i.

[*10*22*271] = :. (*, y) :</>(*, y>.*foy) K D b . Prop

The proofs of most of the following propositions are conducted exactly as

those of #11*3*31 are conducted: the analogous proposition in #10 is used

twice, together with #10"27 or #1 0*271 or #10*28 or #10*281 as the case may
be. When proofs conform to this pattern we shall merely give references to

the propositions used.

#11*3.11. If
<f> (£,§), \jr(^,p) take arguments of the same type, and we have

" b .
<f>

(x, y)" and " b . yfr (x, y)," we shall have " b . $ (x, y) . f (x, y)." [Proof

as in #10*13.]

#11*32. b:.(x,y):<f)(x>
y).D.^ (x, y) : D : (x, y). <f>(x,y).D. (x, y) . yjr (x, y)

[#10-27]

*11*33. b :.(x, y) :
<f>

{x, y). = .ty (x,y) z D : (x, y) .
<f>

(x, y) . = . (x, y) . -f (xt y)

[#10*271]
#11*34: b :. (x,y) :

<f>
(x, y) . 3 . ^ («, y) : 3 =

(^x,y).4>(x,y).D.(^xr y)..f(x,y) [*10^7*28],<

#11*341. h :. (x, y) :
<f>

{x, y) . = . ^ (x, y) : D :

(rx, y).<f>(x,y). = . (rx, y)

.

^ (xyy) [*10-27l*281]

#11*35. b:.(x, y) : <j> (x, y) . D .p : = : (rx, y) . cf> (x, y) . 3

.

p [*10*23*271]

#11*36. b :
<f>

(z, w) . D . (rx, y) . (x, y)

Dem.
b . #1 1*1 . D h : (x, y) . ~>

<f>
(x, y) . D\ ~

<f>
(z, w) (1

)

|-.(l).Transp.DI-.Prop
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*11'37. ^•.•(x,y):(f>(x,y).D.yJr(x,y):.(x,y):yJr(x,y).D. x (x
) y):.

3:(x,y):<f>(x,y).3. x (x,y)
Dem.

In the following demonstration, " Hp" means the hypothesis of the propo-
sition to be proved. We shall employ this abbreviation, whenever convenient,

in all cases where the proposition to be proved is a hypothetical, i.e. is of the

form "p3q." Similarly "Hp (1)" will mean "the hypothesis of (1)," and
so on.

H.*ll'Sl.Dh::Hp.D:.(*,y):.^(«,y).D.^(*,y):^(^y).D. X (*f y) (1)

»--Syll.*ll-ll.Dh:'.(«
> y):.^(«,y).D.^(*;y).:Vr(*,y).D.x(*.y):

2:<f>(x,y).D. x (x,y):.

[*ll-32] D\-:.(x,y):<f>(x,y).D.\jr(x,y):^(x,y).D. x (x,y):

l /n /ox a „M „
^:(x,y):<f>(x,y).D. X (x,y) (2)K (1) . (2) . Syll . D h . Prop

The above is a type of proof which recurs frequently in what follows.

Proofs conforming to this pattern will be indicated only by the numbers of

the propositions used.

*11'371. I- :: (a?, y): ^(x,y). = .^ (x, y) :. (x, y) : -f (x, y) . = . x (as, y) :.

3:.(x,y):<f>(x,y). = . x (x,y) [*U-3111-33]

*1138. \-::(x,y):<f>(x,y).D.ylr(x,y):.l:.

(x,y):<f)(x,y). X (x
>
y).^.y(r(x,y). X (x,y) [Fact .*1111 "32]

*11'39. h::(x,y):<)>(x
> y).^.yJr(xi

y):.(x,y)i X (x
) y).^.0(x,y):.D:.

(x, y) : $ (x, y) . X (x, y) . D . -f (x, y) . (x, y) [*3'47 . *1111'32]

*11391. h :: {x, y) : <f>(x, y) . D . ^ (x, y) :. {x, y) z <)> (x, y) . D . x (x, y) :.

= :(x
>
y):<f>(x,y).D.yjr(x,y). x (x,y)

Dem.

H.*4-76. 3h:.<j>(x,y).0.+(x,y):<f>(x
t
y).D. x (x,y):

= :<t>(x,y).D.yfr(x,y).x (x, y) :.

[11-11-33] •Dh:.(x
y y):<f>(x,y).D.yJr(x,y):<l>(xi y).D. x (x,y):

= ' &> V) :<}>(x
> y).O.yfr (x, y) . X {x,y)::

[*11-31] ^^:-(x
) y):<j>(x,y).D.f(x,y):.(x) y):(f>{x> y).D. x (x,y):.

= i(x,y):<f>(x,y).D.'f(x> y). x (x,y)::
D h . Prop

*ll-4. > :: (x, y) :
<f>

(x, y) . = . yfr (x,y) :. (x, y) i X (x, y). = .0(x, y) :. D :.

(x,y):<f>(x,y). x (x,y). = .yjr(x
> y).0(x,y)

Dem.

^.^llSl.Dh::Hi? .D:.(x> y):.<f>(x> y). = ^(x) y): X (x
) y). = :0(x,y):.

[*4-38.*ll-ll-32] 3:.(x,y):<f>(x,y). x (x
y y). = .ylr(x,y).e(x,y)::

I- . Prop
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#11401. b::(x,y):<f>(x,y). = .yjr(x,y):-D:.

(x, y) : 4> (x, y) . x (#, y) = • -f («, y) • X (x> V)

*11'41. I- :. fax, y).<j>(x,y):w: fax, y) . ^ (x, y) :

= :fax,y):<f>(x,y).v.yjr(x,y) [*10-42'281]

*11'42. b :. fax, y) .
<f>

(x, y) . yjr (x, y) . D : fax, y) .
<f>

(x, y) : fax, y) . yfr (x, y)

[*10-5]

#11-421. h :. (x, y) .<f>(x,y).v. (x, y) .yjr(x,y):0 : (x, y) :
<f>

(x, y) . v . yjr (x, y)

*ll-42 ^J*'^ • Transp . #456]

*11'43. h : . fax, y):<f>(x,y).D.p: = :(x,y).<f>(x,y).D.p [#10'34-281]

#11-44. h : . (x, y) :
<f>

(x, y) . v . p : = : (x, y) .
<f>

(x, y) . v .p [*10-2271]

*11'45. H :. fax, y):p.4>{x,y): = :pifax,y).<\> (x, y) [*10-35281]

#11-46. H :. fax, y):p.3.<t>(x,y): = :p.D. fax, y) . <j> (x,y) [*10-37'281]

*11'47. h :. (x, y) :p .
<f>

(x, y) : = : p : (x, y) .
<f>

(x, y) [*1033-27l]

*ll-5. V :. fax) :~{(y) . <f>(x,y)} : = :~{(x,y) . (f>(x,y)} : = : fax,y) .~<f>(x,y)

Bern.

h.*lO-2o2.D)-:.fax):~{(y).<l>(x,y)}:=:~{(x):(y):<l>(x,y)}:

[(*n-oi)] = :-{(*, y)-*(*,y)} (i)

I- .#10-253 . D I- :~{(y) . <f>(x, y)} . = . fay).~<f>(x, y) :

[(#11-03)] ='-fax>y)-~4>(%,y) (2)
K(l).(2). DKProp

#11-51. h : . fax) :(y).(f>(x,y): = :~ {(x) : fay) .

~

<f>
(x, y)}

Dem.

V . #10-252 . Transp . D V : . fax) : (y) .
<f>

(x, y) : = :~ [(x) :~ (y) .
<f>

(x, y)] (1

)

I- . #10253 .Dh:.~(y).<f>(x,y). = : fay) .

~

<f>
(x, y) :.

[#10-11-271] D h :. (x) :~(y) . (#, y) : = : (a;) : fay) .~<f> (x, y) :.

[Transp] D h :.~[(*) :~{(y)- ^(^y)0- = =~{(«) = (3y).~0(*,y)} (2)
h . (1) . (2) . D h . Prop

#11-52. H :. fax, y) .
<f>

(x, y) . yfr (x, y) . = .~{(#, y) :<j>(x,y).D .~yjr (x, y)}

Dem.

h . *4-51-62 . D

h:.~\<f>(x,y).\lr(x,y)}. = :<f>(x,y) .D .~yjr(x,y) (1)

H.(l). #1111-33. D
l-:.(^,y)

—

{<f>(x,y).yJr(x,y)}: = :(x,y):<f>(x,y).D.~y}r(x,y) (2)

I- : (2) . Transp . *1122 . D h . Prop

#11*521. H :. ~fax, y) . $ (x, y) .~f (x, y) . = : (x, y) :
<f>

(x, y) . D . ^ (x, y)
>^r(x,y)

#11 -52. Transp.
yjr(x,y)
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#11*53. 4-:. t>, y). 0aO<fy. =?:(!«#. 0a? . ^ -%) "^
Dem.

1- . *10-21-271 . D1-*.(sg, if}*if><v3fy ..= : (a?) : 0a?. D . (y).. -^t/.:

[#1023] =r(a«).<^.D.(2/).^:.DH.Prop

*11'54. I- :. <ga?, y).. 0a; . i/ry . = : (ga;) . 0a? : (gy) . fy
Dem.

t- . #1035. 3 h :. (33/) . 0a; . ijry . ==:: 0a? : (gy) ^y :

1*1011 -281 ] 3 h : . (ga>, y) . jfxc . -^y .. = : (gar) : 0a; : (gy) .. ^y :

f*10-35] =.: (gar) .0a?: (gy) . -fy :.3> .Prop

This proposition is very often used.

#11-55. h :. (gas, y) • 0a? • ^(a?, #)- = : (g«?) : 0a; : (gy) . ijr (a;, y)

Dem.

f- . #1035 . D V : . (gy) . 0a; . yjr (w,, y) . = : $x : (gy) . f (a?, y) :

.

£#1011] D h :. (a?) 1. (gy) .-.0a; . fix, y) . = : (f>x : (gy) . ^ (a?, y) :.

£#10-281] D f- :.<gaj) : (gy),. 0a? . *jr (x, y).= : (ga?)i 0a? : (gy) . f(x,y) :. D h . Prop

This proposition is very often used.

#11 56. H :. (x)~<j>x : (y) . tyy-.
s- : .(*, y) . *0a? . -»|ry

Dera.

> .#10-33 . D H :: (a?) .-. 0a; : (y) . ^y : = :. (a?) :. 0a; : (y) . fy (1)

K'*10'38.D.r-:. <j>x :(y) . fy : = : (y). <f>x.fy :.

[*10'113 D h :. (a;) :.0a; : (y) . ip»y : = : (y) .<f>x.fy:.

[#10-271] > h::(x) :.xf>x: (y) . -0-y :. = : (a?) : (y) . <f>x . yfry :

.[(#11-01)]' = :(x,y).<f>x.fy (2)

h . (1) . (2) . D H . Prop

#11-57. H : (x) . 0a; . = . (x, y) . 0a>-^y £*T1S6 . #4-24]

The use of *4'24 here depends upon the fact that (a;) . 0a; and (y) . 0y are

the same proposition.

#11-58. r- : (ga;) . 0a--, = . (ga>, y) . 0a; .0y £#11 -54. #4-24]

*ll-59. > : . 0a; . Dx . sfrx : = z (f>x . 0y . D*, y .^x.y\ry

Bern.

h .#11*57 . D f:s. 0a; . 3^ • ty® ' = ' (a?, y) : (f>x . D . yjrx : (f>y . D . yjry :

[*3-47.*ll-32] 3 r <a?, y) : 0a; . 0y . D .^x.tyy (1)

1- . #11-1 . D> :. {x, y) : <f>x . (f>y
. D . tyx ..

-ty-y
:D : $x . 0y . D . i/ra; . -^-y (2)

[- . (2) - . *4-24 . 3 h :. Hp (2) . D : 0a; . D. . y}rx (3)

f. (3) . #1011-21 . D

h :. (x, y) : 0a; . 0y . D - -frx . -^ry : D : 0a; . D^ . ^|ra; (4)

l-.(l).(4).Dh.Prop
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*ll-6. I- :: (g«) :. (ay) . <f>(x, y)-^y- XXi - s : * (32/) '• (3*) • $(*• V) • Xx • t$
This proposition is very frequently employed in subsequent proofe.

Dem.

h.*10*35. D hi. (%y). fix, y).ylry:xx'. = :(fty) -.fix* V)-.+y •%*'••

[*10-11-281] D I- :: (a«) : (32/) •
<f> («, 3/) -*y-Xxi

= :. (a«) :. (ay) . £ (#, y) . yjry . Xx '..

[*n-23] = :. (ay) '• (a*) 4> (x> y) • -irv x* : -

[*1 1 '341.Perm] = : . (ay) : • (a*7) $ (*. y)'Xx -^ry-
[fcio-35-2813 = :. (ay) *- (a#) ^ (** y)'Xx - "fyw3+- -Rop

•11-61. I- i. (ay) :<f>x.Dx .-4r (x, y) : D : <f>x . Dx . (ay) - "f («vy)

Dem.

h . *ll-26 . D r :.: Hp . D :. (a?) :. (ay) : ty.O . + (x, y) (1)

V . *1037 . D r- :. (ay) : <£* . D . ^-(a;, y) : D : <fce . 3 . (3y) lK*» y) »

[*10-11'27]D I- ::.<«) :.<ay) :^ • ^ * <*. y) :.:>:.(*):**. 3. (ay). *(*,y) (2)

h.(l).(2)OI-.Prop

*11;62. I- :: <f>x . ^ (x, y) . x>y . % (a?, y) : = :. <f>x . D* : yjr (x, y) . 3y . x(a?,y)

h.*4-87.*llll-33.D
I- :: <£# . yfr (x, y) . DXiV . x (x, y) : = :• (#, y) :. £# . D : ^r(^, y) . D . # (#, y)
[*10-21'11-271] s:.(*)r.^O:(y)*f («f y).3.*(«vy*«

DKProp
•1163. h : .~(a«, y) . £(*, y).Oi<f>(x, y) - D., „ .

^

(x, y)
Dem.

r- . *2-21 . *1111 . D I- :. (x, y) i.~<f>(x,y) . D : <f>(x, y) . >,^r(x, y)u
[*1I'32] D I- :. (x, y) ~<*»<f>(x, y) . D : (a?, y) : <£ (x, y).1.^{x,y) :.

[•11-25] 3^:-~(a«»y)-*<*,y)-3s-<*,y)«^<*,y).3.^(*,yM-
Dh.Prqp

•11-7. J- : . (a«, y) :
<f>
(ayy) .v . £ (y, ar) : = . (a#, y) . $ (x, y)

Dem.

V . *1 1 41 . 3 h :. (a*, y) : ^ (^, y) • v . #<y, ar)

:

= : (3*>y) • $ (*, y) • v . (a*,.y>. ^><y, x) :

C*11
'23] =:(a^y)-<^(^y)-v.(ay,^).0(y,a;):

[*4'25] 5:(30,y)*^-(*>y):-3Kfrop

In the last line of the above proo^ use is made of the fact that

(a«» y) • 4> (*» y) a1"1 <ay» *) • i> (y, ®)

are the same proposition.

The first use of the following proposition occurs in the proof of *234'12.

Its utility lies in its enabling us to pass from a hypothesis

containing two apparent variables, to the product of two hypotheses each

containing only one.
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#11-71. h :: (qz) . fa : (aw) . %w : D :.

fa . Dz . -\Jrz
:
%w . Dw . 6w : = : fa . xw . Dz>w .yfrz.Bw

Dem.

V . #101 . #347 . D b :. fa . Dz . yfrz : %w • X • Bw :

D : fa . yw . D . yjrz . &w (1)

h . (1) . #1111-3 . "D\-:.fa.Dz .fz: Xw.Dw .0w:

3 : fa . "XW . ZtW . yfrz . 6w (2)

V . #101 .Dhr.fa. xw • "^z, w •^z Bw : D :. fa . %«/ .Dw .yfrz ,0w:.

[#10-28] D :. (gw) .fa.xw.D. (gw) . ^vs . #w :.

[#1035] D :.fa:(ftw).xw:D lylrzifawy.Bw

(3)

h . (3) . Coram . #3*26 . D h :: (gtt>) . xw '^ '•
<l>
z • Xw }*,» • tyz .0w:

Dzfa .0 .yfrz (4)

I- . (4) . #10-11-21 . D I- :: (gw) . %w . D :.^ . %w . DZ)W
l

.^ . 0w

:

2 : fa . Dz . tyz (5)

Similarly h :: (qz) .fa.Di.fa. \w . D2)W .^ . Ow :

D : %?# .Dw .0w (6)

H . (5) . (6) . #3-47 . Comp . D
h :: Hp . D :'. fa . %w . Dz>w . ^ . 0w : D : <£z . Dz . \|r^ : ^ty ,"2>w .0w (7)

h.(2).(7).DKProp



*12. THE HIERARCHY OF TYPES AND THE AXIOM
OF REDUCTIBILITY

The primitive idea "(x) . <$>x" has been explained to mean "<f>x is always

true," i.e. "all values of <j>x are true." But whatever function
<f>
may be, there

will be arguments x with which <f>x is meaningless, i.e. with which as argu-

ments $ does not have any value. The arguments with which <\>x has values

form what we will call the "range of significance" of cf>x. A "type" is defined

as the range of significance of some function. In virtue of *9*14, if <j>x, <f>y,

and yjrx are significant, i.e. either true or false, so is yfry. From this it follows

that two types which have a common member coincide, and that two different

types are mutually exclusive. Any proposition of the form (x) . cf>x, i.e. any
proposition containing an apparent variable, determines some type as the
range of the apparent variable, the type being fixed by the function <j>.

The division of objects into, types is necessitated by the vicious-circle

fallacies which otherwise arise*. These fallacies show that there must be
no totalities which, if legitimate, would contain members defined in terms of
themselves. Hence any expression containing an apparent variable must not
be in the range of that variable, i.e. must belong to a different type. Thus
the apparent variables contained or presupposed in an expression are what
determines its type. This is the guiding principle in what follows.

As explained in #9, propositions containing variables are generated from
propositional functions which do not contain these apparent variables, by the
process of asserting all or some values of such functions. Suppose <f>a is a
proposition containing a; we will give the name of generalization to the
process which turns <f>a into (x) . <j>x or (ga?) . <f>x, and we will give the name
of generalized propositions to all such as contain apparent variables. . It is

plain that propositions containing apparent variables presuppose others not
containing apparent variables, from which they can be derived by generaliza-
tion. Propositions which contain no apparent variables we call elementary
propositions^, and the terms of such propositions, other than functions, we call

individuals. Then individuals form the first type.

It is unnecessary, in practice, to know what objects belong to the lowest
type, or even whether the lowest type of variable occurring in a.given context
is that of individuals or some other. For in practice only the relative types
of variables are relevant; thus the lowest type occurring in a given context
may be called that of individuals, so far as that context is concerned. Accord-
ingly the above account of individuals is not essential to the truth of what

* Cf. Introduction, Chapter II.

t Cf. pp. 91, 92.

R&W I 11
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follows; all that is essential is the way in which other types are generated

from individuals, however the type of individuals may be constituted.

By applying the process of generalization to individuals occurring in

elementary propositions, we obtain new propositions. The legitimacy of this

process requires only that no individuals should be propositions. That this is

so, is to be secured by the meaning we give to the word individual. We may

explain an individual as something which exists on its own account; it is then

obviously not a proposition, since propositions, as explained in Chapter II of

the Introduction (p. 43), are incomplete symbols, having no meaning except

in use. Hence in applying the process of generalization to individuals we run

no risk of incurring reflexive fallacies. We will give the name of first-order

propositions to such as contain one or more apparent variables whose possible

values are individuals, but contain no other apparent variables. First-order

propositions are not all of the same type, since, as was explained in *9, two

propositions which do not contain the same number of apparent variables

cannot be of the same type. But owing to the systematic ambiguity of nega-

tion and disjunction, their differences of type may usually be ignored in practice.

No reflexive fallacies will result, since no first-order proposition involves any

totality except that of individuals.

Let us denote by "<f>
! x" or "<f> ! (&, §)" or etc. an elementary function whose

argument or arguments are individual. We will call such a function a, predi-

cative function of an individual. Such functions, together with those derived

from them by generalization, will be called first-order functions. In practice

we may without risk of reflexive fallacies treat first-order functions as a type,

since the only totality they involve is that of individuals, and, by means of the

systematic ambiguity of negation and disjunction, any function of a first-order

function which will concern us will be significant whatever first-order function

is taken as argument, provided the right meanings are given to the negations

and disjunctions involved.

For the sake of clearness, we will repeat in somewhat different terms our

account of what is meant by a first-order function. Let us give the name of

matrix to any function, of however many variables, which does not involve any

apparent variables. Then any possible function other than a matrix is derived

from a matrix by means of generalization, i.e. by considering the proposition

which asserts that the function in question is true with all possible values or

with some value of one of the arguments, the other argument or arguments

remaining undetermined. Thus e.g. from the function
<f>

(x, y) we shall be able

to derive the four functions

(x).<f>(x,y), (a#).<£0, y)> {y)>4>(x>y)> (ay)-<M^y)>

of which the two first are functions of y, while the two last are functions of x.

(All propositions, with the exception of such as are values of matrices, are also

derived from matrices by the above process of generalization. In order to obtain
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a proposition from a matrix containing n variables, without assigning values

to any of the variables, it is necessary to turn all the variables into apparent

variables. Thus if <j> (x, y) is a matrix, (x, y) .
<f>

(x, y) is a proposition.) We
will give the name first-order matrices to such as have only individuals for

their arguments, and we will give the name of first-order functions (of any
number of variables) to such as either are first-order matrices or are derived

from first-order matrices by generalization applied to some (not all) of the

arguments to such matrices. First-order propositions will be such as result

from applying generalization to all the arguments to a first-order matrix.

As we have already stated, the notation "<j> ! z" is used for any elementary
function of one variable. Thus

"(f) ! x" represents any value of any elementary
function of one variable. It will be seen that "<j)lx" is a function of two
variables, namely <j> ! z and x. Since it contains no apparent variable, it is

a matrix, but since it contains a variable (namely
(f>

I z) which is not an in-

dividual, it is not a first-order matrix. The same applies to ! a, where a is

some definite constant. We can build up a number of new matrices, such as

~<jE>!a, ~<f>lx, (fylxv (f>ly, fylxvtylx, (f>lxvyfrly,

<f>lx . D .y\r\x, Qlx.-^rlx, <|)!a;vf !yv^!0, and so on.

All these are matrices which involve first-order functions among their argu-
ments. Such matrices we will call second-order matrices. From these matrices,
by applying generalization to their arguments, whether to such as are functions
or to such (if any) as are individuals, we obtain new functions and propositions.

Such functions (together with second-order matrices) will be called second-
order functions, and such propositions will be called second-order propositions.

Thus we are led to the following definitions:

A second-ord&r matrix is one which has at least one first-order matrix
among its arguments, but has no arguments other than first-order matrices
and individuals.

A second-order function is one which either is a second-order matrix or

results from one by applying generalization to some (not all) of the arguments
to a second-order matrix.

A second-order proposition is one which results from a second-order matrix

°y aPPlymg generalization to all its arguments.

In addition to the above illustrations of second-order matrices, we may
give the following examples of second-order functions

:

(1) Functions in which the argument is $ ! z : (x) . <£ ! x, (g#) .
<f>

! x,

<f>la.D.<f>lb, where a and b are constants,
<f>

I x .

D

x . g ! x, where g ! z is a
constant function, and so on.

(2) Functions in which the arguments are ! z and yjrlz:

<f>lx.Dx .yfrlx, <f)lx.=x .ylrlx, (ga?) .<j>x.-fx,
<f>

! a . D .
-f ! b,

where a and b are constants, and so on

11—2
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(3) Functions in which the argument is an individual x :
(<f>)

.<j>loc,

(3$) •<£!#,<£!#• 3$ <M a, where a is constant, and so on.

(4) Functions in which the arguments are
<f>

I z and x: $!#,<£!#. D .<£! a,

where a is constant, (g/»/r) : <£ ! x . = . yjr ! x, and so on.

Examples of second-order functions might, of course, be multiplied in-

definitely, but the above seem sufficient for purposes of illustration.

A second-order matrix of one variable will be called a predicative second-

order function ofone variable or a, predicative function of a first-order matrix.

Thus ! a, ~
<f>

! a and
<f>

! a D <j> ! b are predicative functions of
(f>

! z . Similarly

a function of several variables of which at least one is a first-order matrix,

while the rest are either individuals or first-order matrices, will be called

predicative if it is a matrix.

It will be seen, however, that a second-order function may have only

individuals for its arguments; instances were given just now under the

heading (3). Such functions we shall not call predicative, since predicative

functions of individuals have already been defined as being such as are of the

first order. Thus the order of a function is not determined by the order of its

argument or arguments; indeed, the function may be of any order superior to

the order or orders of its arguments.

A variable matrix whose argument is
<f>

I z will be denoted by fl<f>lz, and

generally, a matrix whose arguments are
<f>

I z, yjr I z, ... x, y, ... (where there is

at least one function among the arguments) will be denoted by

f\(4>\%^\%...SD,y,...).

Such a matrix is not of the first or second order, since it contains the new

variable /, whose values are second-order matrices. We proceed to construct

new matrices as we did with the matrix
<f>

! ot ; these constitute third-order

matrices. These together with the functions derived from them by generali-

zation are called third-order functions, and the propositions derived from third-

order matrices by generalization are called third-order propositions.

In this way we can proceed indefinitely to matrices, functions and propo-

sitions of higher and higher orders. We introduce the following definition:

A function is said to be predicative when it is a matrix. It will be

observed that, in a hierarchy in which all the variables are individuals or

matrices, a matrix is the same thing as an elementary function (cf. pp.

127, 128).

"Matrix" or "predicative function" is a primitive idea.

The fact that a function is predicative is indicated, as above, by a note of

exclamation after the functional letter.

The variables occurring in the present work, from this point onwards, will

all be either individuals or matrices of some order in the above hierarchy.

Propositions, which have occurred hitherto as variables, will no longer do so
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except in a few isolated cases of which no subsequent use is made. In practice,

for the reasons explained on p. 162, a function of a matrix may be regarded

as capable of any argument which is a function of the same order and takes

arguments of the same type.

In practice, we never need to know the absolute types of our variables, but

only their relative types. That is to say, if we prove any proposition on the

assumption that one of our variables is an individual, and another is a function

of order n, the proof will still hold if, in place of an individual, we take a

function of order m, and in place of our function of order n we take a function

of order n + m, with corresponding changes for any other variables that may
be involved. This results from the assumption that our primitive propositions

are to apply to variables of any order.

We shall use small Latin letters (other than p, q, r, s) for variables of the

lowest type concerned in any context. For functions, we shall use the letters

<f>, ^ X> @>f> 9> ^(except that, at a later stage, F will be defined as a constant

relation, and 6 will be defined as the order-type of the continuum).

We shall explain later a different hierarchy, that of classes and relations,

which is derived from the functional hierarchy explained above, but is more
convenient in practice.

When any predicative function, say <£ ! z , occurs as apparent variable, it

would be strictly more correct to indicate the fact by placing "
(<£ ! z) " before

what follows, as thus: "
(<f>

I z) . f (<f>
1 z).'

1

But for the sake of brevity we
write simply " (<£)

" instead of "(<£ ! £)." Since what follows the
<f>

in brackets

must always contain
<f>

with arguments supplied, no confusion can result from

this practice.

It should be observed that, in virtue of the manner in which our hierarchy

of functions was generated, non-predicative functions always result from such

as are predicative by means of generalization. Hence it is unnecessary to

introduce a special notation for non-predicative functions of a given order and
taking arguments of a given order. For example, second-order functions of an

individual x are always derived by generalization from a matrix

fl((f>lz, yfrlz, ... x, y, z, ...),

where the functions/ <£, 1/r, . . . are predicative. It is possible, therefore, without

loss of generality, to use no apparent variables except such as are predicative.

We require, however, a means of symbolizing a function whose order is not

assigned. We sjiall use "<f>x" or "/(% ! z)" or etc. to express a function
(<f>

or/)

whose order, relatively to its argument, is not given. Such a function cannot

be made into an apparent variable, unless we suppose its order previously fixed.

As the only purpose of the notation is to avoid the necessity of fixing the order,

such a function will not be used as an apparent variable; the only functions

which will be so used will be predicative functions, because, as we have just

seen, this restriction involves no loss of generality.
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We have now to state and explain the axiom of reducibility.

It is important to observe that, since there are various types of propositions

and functions, and since generalization can only be applied within some one
type (or, by means of systematic ambiguity, within some well-defined and
completed set of types), all phrases referring to "all propositions" or "all

functions," or to "some (undetermined) proposition " or " some (undetermined)
function," are prima facie meaningless, though in certain cases they are capable
of an unobjectionable interpretation. Contradictions arise from the use of

such phrases in cases where no innocent meaning can be found.

If mathematics is to be possible, it is absolutely necessary (as explained
in the Introduction, Chapter II) that we should have some method of making
statements which will usually be equivalent to what we have in mind when
we (inaccurately) speak of "all properties of x." (A "property of x" may be
defined as a prepositional function satisfied by x.) Hence we must find, if

possible, some method of reducing the order of a propositional function without
affecting the truth or falsehood of its values. This seems to be what common-
sense effects by the admission of classes. Given any propositional function -frx,

of whatever order, this is assumed to be equivalent, for all values of x, to a

statement of the form "x belongs to the class a." Now assuming that there

is such an entity as the class a, this statement is of the first order, since it

involves no allusion to a variable function. Indeed its only practical advantage
over the original statement yfrx is that it is of the first order. There is no
advantage in assuming that there really are such things as classes, and the

contradiction about the classes which are not members of themselves shows
that, if there are classes, they must be something radically different from in-

dividuals. It would seem that the sole purpose which classes serve, and one
main reason which makes them linguistically convenient, is that they provide

a method of reducing the order of a propositional function. We shall, therefore,

not assume anything of what may seem to be involved in the common-sense
admission of classes, except this, that every propositional function is equivalent,

for all its values, to some predicative function of the same argument or argu-

ments.

This assumption with regard to functions is to be made whatever may be

the type of their arguments. Letfu be a function, of any order, of an argument
u, which may itself be either an individual or a function of any order. If / is

a matrix, we write the function in the form flu; in such a case we call / a

predicative function. Thus a predicative function of an individual is a first-

order function; and for higher types of arguments, predicative functions take

the place that first-order functions take in respect of individuals. We assume,

then, that every function of one variable .is equivalent, for all its values, to

some predicative function of the same argument. This assumption seems to

be the essence of the usual assumption of classes; at any rate, it retains as muoh
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of classes as we have any use for, and little enough to avoid the contradictions

which a less grudging admission of classes is apt to entail. We will call this

assumption the axiom of classes, or the axiom of reductibility.

We shall assume similarly that every function of two variables is equivalent,

for all its values, to a predicative function of those variables, i.e. to a matrix.

This assumption is what seems to be meant by saying that any statement about

two variables defines a relation between them. We will call this assumption

the axiom of relations or (like the previous axiom) the axiom of reducibility.

In dealing with relations between more than two terms, similar assumptions

would be needed for three, four, . . . variables. But these assumptions are not

indispensable for our purpose, and are therefore not made in this work.

Stated in symbols, the two forms of the axiom of reducibility are as follows:

*121. h: (a/) :^t. =,./!* Pp

*1211. h:(zf):<l>(x,y).=x>y .fl(x,y) Pp

We call two functions <f>%, ty& formally equivalent when <f>x.^.x . yfrx, and

similarly we call <£ (oc, §) and yfr {x, §) formally equivalent when

<f>(x} y).=x>y .yjr(x
) y).

Thus the above axioms state that any function of one or two variables is

formally equivalent to some predicative function of one or two variables, as

the case may be.

Of the above two axioms, the first is chiefly needed in the theory of classes

(*20), and the second in the theory of relations (#21). But the first is also

essential to the theory of identity, if identity is to be defined (as we have done,

in #13'01); its use in the theory of identity is embodied in the proof of #13101,

below.

We may sum up what has been said in the present number as follows:

(1) A function of the first order is one which involves no. variables except

individuals, whether as apparent variables or as arguments.

(2) A function of the (n + l)th order is one which has at least one argument

or apparent variable of order n, and contains no argument or apparent variable

which is not either an individual or a first-order function or a second-order

function or ... or a function of order n.

(3) A predicative function is one which contains no apparent variables,

i.e. is a matrix. It is possible, without loss of generality, to use no variables

except matrices and individuals, so long as variable propositions are not

required.

(4) Any function of one argument or of two is formally equivalent to a

predicative function of the same argument or arguments.



*13. IDENTITY

Summary q/"#13.

The prepositional function "x is identical with y" will be written "x — y."

We shall find that this use of the sign of equality covers all the common uses

of equality that occur in mathematics. The definition is as follows:

1301. #=y. = :(<£):0!#.D.<£!> Df

This definition states that x and y are to be called identical when every

predicative function satisfied by x is also satisfied by y. We cannot state that

every function satisfied by # is to be satisfied by y, because x satisfies functions

of various orders, and these cannot all be covered by one apparent variable.

But in virtue of the axiom of reducibility it follows that, ifx = y and x satisfies

tyx, where yjr is any function, predicative or non-predicative, then y also satisfies

i]ry (cf. 13101, below). Hence in effect the definition is as powerful as it

would be if it could be extended to cover all functions of x.

Note that the second sign of equality in the above definition is combined

with "Df," and thus is not really the same symbol as the sign of equality

which is defined. Thus the definition is not circular, although at first sight

it appears so.

The propositions of the present number are constantly referred to. Most
of them are self-evident, and the proofs offer no difficulty. The most important

of the propositions of this number are the following:

13101. \-\x = y."^.^rxZ>^y

I.e. if x and y are identical, any property of x is a property of y.

1312. )r:x^y.D.ylrx = yfry

This includes 13101 together with the fact that if x and y are identical

any property of y is a property of x.

13151617, which state that identity is reflexive, symmetrical and transitive.

13191. h :.y = x.Dy .(f>y : = .<f>x

I.e. to state that everything that is identical with x has a certain property

is equivalent to stating that x has that property.

13195. h : (gy) .y = x.<f>y . = .<f>x

I.e. to state that something identical with x has a certain property is

equivalent to saying that x has that property.

13*22. h : (32, w).z — x.w = y.<li(z,w).= .<f>(x,y)

This is the analogue of 13*195 for two variables.
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*1301. x= y. = :(<f>):<f>lx.'2.<f>ly Df

The following definitions embody abbreviations which are often convenient.

*1302. x^y. = .~(x= y) Df

#1303. x= y = z. = .x = y.y = z T)f

*131. \-:.a} = y. = :<f>l£c.3t.<l>ly [*4'2 . (*13-01) . (*10'02)]

*13'101. h : x = y . D . yjrx D <^y

Bern.

V . #121 . D h :. (a<£) :. yfrx . = .</>! # : fy . = .
<f>

I y (1)

J- . *131 . D r :: Hp . D :.
<f>

! x . D* . <£ ! y :.

[*4'84-85.*10-27] D :. tyx . = . cf> ! x : ^y . = .
<f>

! y : D* : ^a; . 3 . i/ry :.

[*10-23] D:.('g
i(f)):-^x.

= .<f>lxiylry. = .<f>ly:D:yfrx.D.'s{ry (2)

H.(l).(2).Dh.Pro.p

In virtue of this proposition, if x = y, y satisfies any function, whether

predicative or non-predicative, which is satisfied by x. It will be observed

that the proof uses the axiom of reducibility (#12'1). But for this axiom, two

terms x and y might agree in respect of all predicative functions, but not in

respect of all non-predicative functions. We should thus be led to identities

of different degrees, according to the degree of the functions in respect of

which x and y agreed. Strict identity would, in this case, have to be taken as

a primitive idea, and #13101 would have to be a primitive proposition, as would

also *13151617.

#1311. \--.:x= y. = i<l>lx.=4> .<l>ly

Bern.

h . #1022 . 3\-:.<f>lx.=4> .<f>ly:0:<f>lx.1 <i,.<l>ly:

[*13-1] D:x= y (1)

K #13101. 3\-:.x= y.3.<l>lx3<f>ly (2)

I- . *13'101 . #1-7 . D\-:.x = y.D.~<j>lx1~<f>ly.

[Transp] D .<j>lyD<j>lx (3)

h.(2).(3).Comp.Dh:a; = y. D .<f>lx=<j>ly:

[*10'ir21] DH:.# = 2/*D:<£!#.=*.0!y (4)

K (1) . (4)

.

D h . Prop

$1312. H : x = y . D . <*}rx = ijry

Bern.

Y . #13'101 . Comp .Dha! = jf.D. tyx D ifry . ~yfrx D r^yfry

.

[Transp] D . yfrx = yjry : D H . Prop

#1313. V : yjrx . x= y .O . yfry [#13101 . Comm. Imp]

*1314. b : yfrx. f^yfry . D . x^y [#13-13. #414]

#1315. )r ,x = x [Id. #1011. #131]

#1316. Y \x — y. =.y — x [#1311. #1032]
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#1317. Y:x = y.y = z.D.x — z

Dem.
V . #131 . D h :: Hp . D :.

<f>
! x . D* . <j> ! y : ! y . D$ .

<f>
! z.\.

[*103] D :. <£ ! # . D^ . ! * :: D h . Prop

In the above use of #103,
<f>

! x, <£ ! y, <j> ! z are regarded as three different

functions of <£, and
<f>

replaces the x of #10-3.

The above three propositions show that identity is reflexive (#1315),

symmetrical (#1316), and transitive (#13-17). These are the three marks of

relations having the formal properties which we associate commonly with the

sign of equality.

*13171. h:x = y.x = z.D.y = z [*13-16\l7]

*13172. Y:y = x.z = x.0.y = z [*131617]

#1318. h:x = y.x^z.D.y^z [#13-17 .#414]

*13181. h:x = y.y^z.D.x^z [#13-171 . #414]

#13182. \-:.x = y.D:z = x. = .z = y [#1317172 . Exp. Comp]
#13183. h :. x = y . = ; z = x .

=
z . z ~ y

Dem.
h. #13182. #1011-21.3 1- :.#=?/. Z> :z = x.=z .z = y (1)

h . #10'1 . Dh:. z = x.=g.z = y:D: x = x.D.x = y:

[*13*15] 3:x = y (2)

h . (1) .
(2) . D K Prop

#1319. r-.(ay).y = a> [*13'15 . #10-24]

#13-191. h:.y = x.Dy .(f>y: = .<j)x

Dem.
r- . #10'1 . D b :. y = x . Dy . tf>y : D : x = x i D . <f>x :

[#13-15] D : <f>x (1)

h.*1312. Db:.y = x.D:<f)x. ^.<f>y:.

[Comm] D h :. <f>x . D : y = x. D.<f>y:.

[#10-11-21] D\-:.<j>x.D:y = x. Dy .<f>y (2)

h . (1) . (2) . D H . Prop

This proposition is constantly used in subsequent proofs.

#13-192. h :. (gc) : x = b . =x . x = c : sjrc : = . yjrb

Dem.

f- . #4-2 . #3-2 .D\-::fb.D:.x=b.=x .x = b:^b:.

[#1024] " D:.(^c):x=b.=x .x = c:yfrc (1)

f- .#101 .0\- :.x = b .=x .x — c zyjrc :"D :b = b . = ,b = c:\lrc:

[*5-501.*13-15] D:6 = c.^c:

[#13-13] D:^/r& (2)

h . (2) . #10-11-23 . D h :. (gc) : x= b .
=
x . x = c : ^c : D . yfrb (3)

K(l).(3).Dh.Prop
This proposition is useful in the theory of descriptions (#14).



SECTION B] IDENTITY 171

#13193. h : <f>x . x\
= y . = .

<f>y
. x = y

Dem.
h . Simp . Dh:(f}x.x = y.D.x = y
K #13*13. 3\-:<f>x.x = y.1.<f>y
h . (1) . (2) . Comp .D\- m.<j>x.x = y.'D.<l>y.x = y
h . #1316 . Fact . Dh : (j>y .x = y .D . <f>y .y = x .

(3) |^1. D.<f>x.y = x.

*1316.Fact] D.<f>x.x = y
h . (3) . (4) . D h . Prop

This proposition is very often used.

#13194. h :(f>x. x - y . = .<f>x. (f>y .x = y [#13*13 . #4*71]

This proposition is used in #37*65 and #101*14.

#13*195. b : (ay) .y = x .
<f>y

. = ,<f>x

Dem.
h . #3*2 . #13*15 . D\-:<f>x.D.x = x.<j)X.

[#10*24] D.(ny).y = x.<f>y

\-
. #1313 . #1011 . D h :. (y) : y = as . <\>y . D . <f>x :

[#10*23] D H :. (ay) . r/ = * . cf>y . D . <\>x

h . (1) . (2) . D h . Prop

The use of this proposition in subsequent proofs is very frequent.

#13*196. h :. ~(f>x . = i(f>y.
,

Dy.y^x [#13*195 . Transp . #10*51]

#13*21. h :.z = x .w = y .DZiW .<j>(z,w): = .<f>(x,y)

Dem.

h. #11*62.3

(1)

(2)

(3)

(4)

(1)

(2)

. z = x . Dz : w = y . Ow . <\> (z, w) :.

.w = y.Dw .<f>(x,tv):.

. <f>(x,y)::D\- .Prop

h :: z = x . w = y . DZjW . <£ (z, w) :
=

[#13*191] =

[#13*191] =

This proposition is the analogue, for two variables, of #13*191.

#13*22. h : (a^, w) . z = x . w = y . <£ (z, w) . = .
(f>

(x, y)

Dem.

h . #11 *55 . D h : . (a^, w) . z = x . w = y .
<f>

(z, w)

.

(a-^) : z = x : (aw) .w = y .<f>(z, iv) :

[#13*195]

[#13*195]

(aw) .iv = y.<f>(x,w):

4>(x, y) :. D I- . Prop

This proposition is the analogue, for two variables, of #13195. It is fre-

quently used, especially in the theory of couples (#54, #55, #56).

The following proposition is useful in the theory of types. Its purpose is

to show that, if a is any argument for which "
<f>a

" is significant, i.e. for which

we have <f>avo*><f>a, then "<f>x" is significant when, and only when, x is either
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identical with a or not identical with a. It follows (as will be proved in #20*81)

that, if "<j>a" and "tya" are both significant, the class of values of # for which

"<f>x" is significant is the same as the class of those for which "yfrx" is signi-

ficant, i.e. two types which have a common member are identical.

In the following proof, the chief point to observe is the use of #10*221.

There are two variables, a and x, to be identified. In the first use, we depend

upon the fact that. $a and x = a both occur in both (4) and (5) : the occurrence

of <f>a in both justifies the identification of the two a's, and when these have

been identified, the occurrence of x = a in both justifies the identification of

the two x's. (Unless the a's had been already identified, this would not be

legitimate, because "x = a" is typically ambiguous if neither x nor a is of

given type.) The second use of #10*221 is justified by the fact that both <f>a

and (f>x occur in both (2) and (6).

#13*3. h ::<f>av <**><f>a .D :.<f>xv ™<f>x . = :x — a.v .x^a
Dem.

h.*2*ll. Dh.^v-v^B (1)

h.(l).Simp. D I- : <£av~<£a. D .<j>xv~<f)x (2)

f-.*211. Dhzx = a.v.x^a (3)

H. (3). Simp. D I- :. </»av~^a, D :x = a. v.x^a (4)

r-. #13*101 . Comm . Dh :. <£av~0a . D :x= a . D . <f>xv<^><f>x (5)

I- . (4) . (5) . *1013*221 . D
J*::^av~^a.D:a; = a.v.a!^a:. ^av<vfi . D : x = a. D . <j>xv ™$x (6)

h . (2) . (6) . #1013*221*. D
h :: ^av~^a.D . (f>xv™<f>x:.<l>av<^<f>a . D :# = a. v ,x=\=a:.

d>avr^d>a.^>:x = a.D.6xvr^(bx (7)
K (7). Simp.}
I-:: <j>av oj(jxi . D . <f>x v~<jkc :.^v~^a. D : # = a . v . a?4=a (8)

t- i (8). #6*35 . D f- :: <f>av<^^>a . D :. <f)xv™<fix . -=:# = ». v. #={= a::

D h . Prop



*14. DESCRIPTIONS

Summary of #14.

A description is a phrase- of the form " the term which etc.," or, more
explicitly, " the term x which satisfies

<f>&,"
where <£& is some function satisfied

by one and only one argument. For reasons explained in the Introduction

(Chapter III), we do not define " the x which satisfies <f>$," but we define any
proposition in which this phrase occurs. Thus when, we say :

" The term x
which satisfies <f>x satisfies yjrx," we shall mean :

" There is a term b such that

<f>x is true when, and only when, x is b, and tyb is true." That is, writing
" (ix) (cf>x)

" for " the term x which satisfies <f>x," yjr (ix) (<f>x) is to mean

(a&) : <f>x .
=
x . x = b : yfrb.

This, however, is not yet quite adequate as a definition, for when (ix) (<f>x)

occurs in a proposition which is 'part of a larger proposition, there is doubt
whether the smaller or the larger proposition is to be taken as the "^(ix)(<f>x).'

K

Take, for example, ty(ix) (<f>x) . D . p. This may be either

(a&) : <px .
=
x . x == b : yjrb : D .p

or {'&b):.<f>x.=x .x = b:'fb.Z).p.

If " (a&) : <f>x .
=
x . x = b " is false, the first of these must be true, while the

second must be false. Thus it is very necessary to distinguish them.

The proposition which is to be treated as the " yjr (ix) (<f>x)
" will be called

the scope of (ix)(<f>x). Thus in the first of the above two propositions, the

scope of (ix) (<f>x) is yfr (ix) (<f>x), while in the second it is yjr (ix) (<£#) . D . p.
In order to avoid ambiguities as to seope, we shall indicate the scope by
writing " [(w)(<f>x)]" at the beginning of the scope, followed by enough "dots

to extend to the end of the scope. Thus of the above two propositions the

first is

[(ix) (<f>x)] . f (ix) (<j>x).D.p,

while the second is

[(ix) (<f>x)] : i/r (ix) (<f>x) .D.p.

Thus we arrive at the following definition

:

*1401. [(ix)(<\>x^\.^(ix)(4>x) . = :(a&):<^ .=x .x = b:yfrb Df

It will be found in practice that the scope usually required is the smallest

proposition enclosed in dots or brackets in which " (ix) (<f>x)
" occurs. Hence

when this scope is to be given to (ix) ($x), we shall usually omit explicit

mention of the scope. Thus e.g. we shall have

aJr(ix)(<f>x) . = : (a&) : fa .=x . x = b : a^b,
~ [a = (ix) (<f)x)} . = . ~ {(g6) : $sc . =x . x = b : a = b).
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Of these the first necessarily implies fab) : <f>x .=x .x = b, while the second

does not. We put

*1402. El(ix)(<f>x).^:fab):<f>x.= x .x = b Df

This defines :
" The x satisfying <f>£

exists," which holds when, and only

when, <f>ai is satisfied by one value of x and by no other value.

When two or more descriptions occur in the same proposition, there is

need of avoiding ambiguity as to which has the larger scope. For this purpose,

we put

*1403. [(ix) (<j>x), (ix) (yfrx)] ./{(ix) (<f>x), (ix) (yjrx)} . = :

[(ix)(<f>x)] : [(ix) (fx)] ./{(ix) (<j>x), (ix) (fx)} Df

It will be shown (#141 13) that the truth-value of a proposition containing

two descriptions is unaffected by the question which has the larger scope.

Hence we shall in general adopt the convention that the description occurring

first typographically is to have the larger scope, unless the contrary is expressly

indicated. Thus e.g.

(lx)(<f>x) = (lx)(yfrx)

will mean fab) : <f>x .= x .x = b:b = (ix) (yfrx),

i.e. fab) :. <\>x .
=
x . x = b :. fac) : tyx .= x .x = c:b = c.

By this convention we are able almost always to avoid explicit indication of

the order of elimination of two or more descriptions. If, however, we require

a larger scope for the later description, we put

*1404. [(ix) (fx)] ./{(ix) (cf>x), (ix) (+x)} . = .

[(ix)(^x)
}
(ix) (<f>x)] ./{(ix) (#;), (i*) drx)} Df

Whenever we have E

!

(ix)((f>x), (ix)($x) behaves, formally, like an ordinary

argument to any function in which it may occur. This fact is embodied in

the following proposition

:

*1418. h : . E ! (ix) (<f>x) . D : (x) . fx . D . f (ix) (<j>x)

That is to say, when (ix) (<f>x) exists, it has any property which belongs to

everything. This does not hold when (ix) (<f>x) does not exist ; for example,

the present King of France does not have the property of being either bald

or not bald.

If (ix) (<f>x) has any property whatever, it must exist. This fact is stated

in the proposition

:

*14'21. h:^(ix)(<f>x).D.El(ix)((f>x)

This proposition is obvious, since " E ! (ix) (<px) " is, by the definitions, part

of " yjr (ix) (4>x)." When, in ordinary language or in philosophy, something is

said to "exist," it is always something described, i.e. it is not something

immediately presented, like a taste or a patch of colour, but something like

" matter " or " mind " or " Homer " (meaning " the author of the Homeric
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poems "), which is known by description as " the so-and-so," and is thus of

the form (ix) (<f>x). Thus in all such cases, the existence of the (grammatical)

subject (ix) (<f>x) can be analytically inferred from any true proposition having

this grammatical subject. It would seem that the word " existence " cannot

be significantly applied to subjects immediately given ; i.e. not only does our

definition give no meaning to " E ! x," but there is no reason, in philosophy, to

suppose that a meaning of existence could be found which would be applicable

to immediately given subjects.

Besides the above, the following are among the more useful propositions

of the present number.

*14 202. h :. <f>oc .
=
x . x = b : = : (ix) (cf>x) = b : = : (f>x . =x . b = x : = : b — (ix) (<f>x)

From the first equivalence in the above, it follows that

*14-204. r : E ! (ix) (<j>x). = . (a6) . (ix) (<f>x) = b

I.e. (ix) (<f>x) exists when there is something which (ix) (<f>x) is.

We have

*14 205. r- : yjr (ix) (<j>x) . = . (36) . b = (ix) (<f>x) . tyb

I.e. (ix) (<f)x) has the property yfr when there is something which is (ix) (<f>x)

and which has the property yjr.

We have to prove that such symbols as " (ix) (<j>x) " obey the same rules

with regard to identity as symbols which directly represent objects. To this,

however, there is one partial exception, for instead of having

(ix) ((f>x) = (ix) (<ja),

we only have

*14-28. r- : E ! (ix) ($x) . = . (ix) (<f>x) = (ix) ($x)

I.e. " (ix) (4>x) " only satisfies the reflexive property of identity if (ix) (<f>x)

exists.

The symmetrical property of identity holds for such symbols as (7#) (<f>x),

without the need of assuming existence, i.e. we have

#1413. h : a = (ix) (<j>x) . = . (ix) (<px) = a

*14'131. I" : (ix) (<f>x) = (ix) (tyx) . = . (ix) (yjrx) = (ix) (<f>x)

Similarly the transitive property of identity holds without the need of

assuming existence. This is proved in #1414'142144.

*14-01. [(ix)(<f>x)].f(ix)(<l>x). = :(Rb):<l>x.=x .x = b:fb Df

*1402. E\(ix)((f>x). = :('gib):<j>x.=x .x = b Df

*14-03. [(ix) (4>x), (ix) tfx)] .f{(ix) (cf>x), (ix) (yjrx)} . = :

[(ix) (4>x)] : [(ix) (W] ./{(ix) ($x), (ix) (yjrx)} Df

*14"04. [(ix) (fx)] ./{(las) (<f)x), (ix) (yjrx)} . = .

[(lx)(y\rx), (ix)(<f>x)] ./{(ix)(cj>x), (lx)(yfrx)} Df
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#141. b :. [{ix) {<f>x)] . yjr (ix) (<f>x) . = : (36) : <f>x . =x . x= b : yjrb

[*4-2.(*1401)]

In virtue of our conventions as to the scope intended when no scope is

explicitly indicated, the above proposition is the same as the following

:

#14101. I- :. -f (ix) (<f>x) . = : (36) : (f>x . =x . x = b : tyb [#141]

#1411. H :. E ! (ix) (<f>x) . = : (36) :<f>x.=x .x = b [*4-2 . (*14'02)]

#14111. V :. i(w) (yfrx)] ./{(ix) (<f>x), {ix) (fx)} . = :

(36, c) : <f>x .
=
x . x = b : yfrx .

=
x . x = c :/(&, c)

Dem.

h . #4-2 . (*14'04-03) . D

h :: [(ix) (+x)] ./{(?*) ($*), (1*) (**)} . = :.

{{ix) (yfrx)] : [{ix) (**)] ./{(**) (**), (w) (^)j :.

[#141] = :. [(M)ty*)] » (a6 ) : ** • =*^ = b:f{b, (ix)(^x)} :.

[#141] = :. (3c) :.tyx.=x .x = ci. (36) : <£# . =x .x = b:f{b, c) :.

[#11-55] = :. (36, c) : <j>x .=x .x= c : yjrx .
=
x .x= b :/(&, c) :: D h . Prop

#14112. H :./{(?«>) (<H> (w)(^)} = :

(36, c) : <£# . =x . x = b : yfrx .
=
x . x = c :/{b, c)

[Proof as in #14111]

In the above proposition, we assume the convention explained on p. 174,

after the statement of #14 -

03.

#14113. h : [{ix) (fx)] ./{{ix) (<f>x), (ix) (fx)} . = ./{(«) (<f>x), (ix) (f*)}

[#14111112]

This proposition shows that when two descriptions occur in the same pro-

position, the truth-value of the proposition is unaffected by the question which

has the larger scope.

#1412. H :. E ! {ix) {<f>x) . D : <f>x .<f>y . Dx>y .x = y

Dem.

K*1411 Dl-:.Hp.D:(a6):^aJ.s«.a? = 6 (1)

K #438. #101. #1111-3. D

V :. (}>x .
=
x .x= b : D : <$>x . $y .

=
x>y .x = b .y=b.

[#13172] Dx,y .x = y (2)

h . (2) . #10-11-23 . 3 h :. (36) : <f>x . s. . x= b : D : $x .
<f>y . DXtV . x= y (3)

K(l).(3). Dh.Prop

#14-121. h :. 4>x . =x . x = b : $0 . =a . oc- c : D . b = c

Bern.

h . #101 .Dhz.Hp.D: <£&. = .& = &:#>. = .6 = c:

[#1315] Di<f>b:<f>b. = .b = o:

[Ass] D : 6 = c:.DH.Prop

#14*122. \- :. (frx . =x . x=b : = : <j>x .Ox . x = b : <f>b :

= :<f>x .Dx .x = b: (30) . <£#
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Bern.

V . #10'22 . D h :. <j>x .
=
x . x = b : = : <f>x .

"2
X . x= b : x = b . D«, . <f>x :

[*13'191] = : <j>x . Z>* . x = b : <£& (1)

K*4-7l. DK :.<£#. D .x-b: D:<j>x.= .<f>x, x = b:.

[*1011-27] 2 \- ;. <]>x .2X . x = b :D : <f>x . =x . <f>x . x = b :

[*10-281] D : fax) .<f>x. = . fax) . <f>x . x = b .

[#13195] - = .</>& (2)

h . (2) .#532 . 3 h :. <f>x . Dx . x= b : fax) .<f>x: = : <f>x . Dx . x = b : <j>b (3)

K(l).(3). DKProp
The two following propositions (#14123-124) are placed here because of

the analogy with #14122, but they are not used until we come to the theory

of couples (#55 and #56).

*14'123. H :. <£ (z, w) .
=

z>w . z = x . w = y :

= :<f>(z,w). Dz>w .z = x.w = y:<f>(x,y):

= :<f>(z,w). DZiW .z = x.w = y: faz, w) . <j> (z, w)
Bern.

Y .#11-31 . D Y :.<f>(z, w) .=ZyW . z = x .w = y :

= :<f>(z,w). ZiW .z = x.w = y:z = x.w = y. DZtW . $ (z, w) :

[*13-21] = : <f>(z, w) . X,w • z = x . w = y : <f>(x, y) (1)

K*4-71. 3\-:.<f>(z,w).'5.z = x.w = y:

D :
<f>

{z, w) . = .
<f>

(z, w) . z = x . w — y :.

[#1111-32] D h :. <£ (z, w) . DZtW .z = x.w = y:

D:<f>(z, w).=ZtW .<f>(z,w).z = x.w = y:

[#11-341] D : faz, tv) .
<f>

(z, w). = . faz, iv) .<f>(z, w) .z = x .w = y .

013-22] =.<f>(x,y) (2)

I-
. (2) . #5-32 . D h :. (z, w) . 5Z>W .z = x.tv = y :faz, w) .<f>(z, w) :

I- n\ /ox ^ L x>
='<Kz,w).1z,v,.z = x.w = y.<l>{x} y) (3)

r .(l).{6) . Jb. Prop

#14124. h :. fax, y) \<\>{z, w) .
=
ZyW .z = x.w = y:

= '• (a*» y) -4>(x> y) -<f>(^, w) .<f>(u, v) . DZtW>u>v .z= u .w=v
Dem.

V. #14123. #327.D
•" '•{'Spc, y) :

(f>
(z, w) .

=
ZjW .z = x.w = y:D. fax, y) .

<f>
(x, y) (1)

h . #11-1 . #3-47 . D h :. $ (z, w) .
=
z>w .z = x.w = y:

D : <p (z, tv) .
<f>

(u, v) . D . z = x . w = y . u = x . v = y

.

[#13-172] D.z = u.w = v (2)
K (2). #1111-35. D
r- :. fax, y) : <j> (z, w) . =ZtW .z = x.w = y:

D:<f>(z) w).<f)(u,v).D ,z = u.w = v (3)
R&W I 12
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h.(3).*ll'll-3.D

\-'..(^x,y)i^(z
i
w).=ZtW .z = x.w = y:

D : <j> (z, w) .
<f>

(u, v) . Oz,
w,u,v .z = u.w = v (4)

h . #11-1 . 3 H :.
<f>

(x, y) : <j> (z, w) . <j> (it, v) . z>Wl u, v .z = u.w = v:

0:<f>(x, y) :
<f>

(z, w) . <£ (x, y) . DZtw . z = x . w = y :

[*5-33] D :
(f>

(x, y) : <j> (z, w) . Dz> w . z = x . w = y:

[*14-123] D-.(j>(z
>
w).=z>w ..z = x.w= y (5)

h.(5).*iril'34-45.D

I" = (a#> y) >4>(x,y):4> 0, w) .
<f>

(u, v) . Oz, w> u,v .z = u.w = v:

D:(Rx,y):<l>(z,w).=z>w .z = x.w = y (6)

h . (1) . (4) . (6) . D K Prop

*1413. h : a = (ix) (<j>x) . = . (ix) (<f>x) = a

Dem.

h.*14-l. D\-:.a-=(ix)(<f)x). = :('3b):<f)X.=x .x = b:a = b (1)

h . *1316 . *436 .1 \- :. <f>x . =x . x=b :a = b : = : <f>x .=x . x=b :b = a :

[*10'11-281] D I- :. (a&) :(f>x.=x .x = b:a = b:

— '
i'Sfi)

'• <f>x * =z • ® — b : b = a :

[*14-1] = :(ix)(<fix) = a (2)

h . (1) . (2) . D h . Prop

This proposition is not an immediate consequence of #13 16, because

"a = (ix)(<j>x)" is not a value of the function "x = y." Similar remarks

apply to the following propositions.

*14131. r : (ix) (<j>x) = (ix) (yfrx) . = . (ix) (yfrx) = (ix) (<f>x)

Dem.
\-

. *14-1 . D h :: (ix) (<j)x) = (ix) (yfrx) . = :. (a&) : <f>x . =^ . x = b : b = (ix) (fx) :.

[*14'1] = :. (g» :. 4>x .=x .x = b :. (gc) :^x.=x . x=c : 6 = c :.

[*H-6] = :. (ac) :. -fx .
=
x . x = c :. (g6) :<f>x .=x .x = b:b = c :.

[*141] = :. (gc) :.yfrx.=x .x = c: (ix) (<f>x) = c :.

[*1413] = :. (gc) :. -fx .=x .x = c : c = (?#) (</>«) :.

[*14'1] = :. (?#) (^#) = (ix) (<f>x) :: D h . Prop

In the above proposition, in accordance with our convention, the descriptive

expression (ix) ($x) is eliminated before (ix) (yfrx), because it occurs first in

"(ix)(<f>x) = (ix)(yjrxy'; but in " (ix) tyx) = (ix) ((f>x)," (ix)(-*jrx) is to be first

eliminated. The order of elimination makes no difference to the truth-value,

as was proved in #14113.

The above proposition may also be proved as follows:

H . #141 11 . D t- i. (ix) (cf>x) = (ix) (yfrx) .

- : (3^' c): <f>x .
=
x .x = b: yfrx .=x .x=cib = c:

[#4-3.*13-16.*l11 1341] = :(Qb,c):fx.= x .x = c: <f>x .
=
x .x = b : c = b :

[*11-2.*14111] = : (ix) (yfrx) = (ix) (<^») :. D V . Prop
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#1414. h : a = b . b = (ix) (<f>x) .D.a = (ix) (<f>x) [*1313]

#14142. Via — (ix) (<f>x) . (ix) (<f>x) = (ix) (yjrx) .D.a = (ix) (sjtx)

Bern.

V . #141 . D H : : Hp . D : . (g&) :'<f>x.=x .x = b:a = b:.

(gc) : <px . =x ~x = c : c = (ix) (\Jrx) :.

[#13'195] D :.<f>x ,=x .x = a:. (gc) :<f>x.=x .x=czc = (ix) (tyx) :.

[#10-35] D :. (gc) ;. <f>x .
=
x . x = a : <}>x . =x . x = c : c = (ix)(yfrx):.

[#14121] D :.(gc) :.<£#. =x .a; = a. : a = c : c= (ix) (yjrx) :

.

[*3-27.*13195] D :. a = (ix) (yfrx) :: D H . Prop

#14144. h : (ix) (<j>x) = (ix)(yfrx) . (ix) (yjrx) = (ix) (xx) . D . (ix) (<f>x) = (ix) ()(x)

Dem.
\- . #14111 . D I- :: Hp . D :. (ga, b) : <j)x ,=x .x = a: yfrx .

=
x .x = b :a = b :.

(gc, d) : ^c .
=
x . x = c : xx • -x • x = d : c = d :.

[#13195] D :. (ga) : 4>x . =x . x = a : yjrx. =x .x = a :.

(gc) ityx ,=x .
x= c \ xx •-*' x ~ c '"

[#11-54] D :. (ga, c) : <f)X . =x . x = a : yfrx .=x ,x = a:

yjrx .=x .x=c: ^x .
=
x .x = c :.

[#14-121.#11*42] D :.(ga,e): <£# . =x .x = a : x# .
=
x .x — c : a = c :.

[#14111] D:.(ix)(4>x) = (ix)(xx)::1\-.~Proy

#14145. h : a = (•?#) (<f>x) . a = (?#) (yfrx) . D . (ix) (<f>x) = (ix) (yjrx)

Dem.

V . #141

.

D I- :. a = (ix) (<f>x) . = : (g&) : <£# . =3 . x = 6 : a = 6 :

[#13195]. =:<f>x.=x .x = a (1)

H . (1) . #14-1 . D I- :: Hp . = :. ipx . =x . x = a :. (gi) : ^a; . -a, . x = 6 : a = 6 :.

[#10-35] = :. (g&) :.<f>x.=x .x = a: -yjrx .=x .x = b:a = b:.

[#14-111] D :. (?#) (<f>x) = (?#) (^) :: D I- . Prop

#1415. r- :. (ix) (<j>x) = b.D:yfr {(ix) (<f>x)} . = :fb

Dem.
h.*141.0
h::Hp. D :. (gc) : <j>x .

=
x .x = c:c = b :.

[*13-195]D:.^.=x .a; = 6 (1)

K (1) . #141 . D

I- :: Hp . D:.yjr {(ix) (<f>x)} . = : (gc) :x = b.=x . x = c : y]rc :

[#13-192] =:-^6::Dh.Prop

#14-16. h :. (ix) (cf>x) = (ix) (tyx) . D : x {(ix) (</>#)} . = . x {(»«) (^)}
Dem.

\- . #14-1 . D h :. Hp . D : (g&) : (f>x . =x . x = b : b = (ix) (yjrx) (1)

h . #14 -

1 . D h :: fyx .
=
x . x = b : D :.

X (O) (Wl • = : (ac) : x = & =* * = c : %c :

[#13-192] =
: Xl> (2)

12—2
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r . *14\L315 . D r :.b = (w) (fa?) .3: xb. = . x ((**) (fx)} (3)

K(2).(3). 0\-:.<f>x.=x .x = b:b = (ix)(yftx):

D : X {(in) (<f>x)} . = . X {(*#) (^)l (4)
H.(l).(4).*10-l-23.DKProp

*1417. I" : . (ix) (0a?) = b . = : yfr I (ix) (0a?) .^.yjrlb

Bern.

K*1415.*10ir21.D

H:.(?a?)(0a?)-&.D:^!(?a?)(0a?).=*.^!& (1)

\- . *101 . *422 .Db::xlx.=x .x=b:ylrl (ix)(<f>x) . =* . -0- ! & :

D:(?a?)(0a?) = 6. = .& = &:

[*13'15] D:(?a?)(0a?) = 6 (2)

h.(2).Exp.*1011'23.D

b::(^X):x^-=x-^ = b:D:.yjrl(ix)(<l>x).=
ri/
.ylrlb:^.(ix)( (

fix) = b (3)

K*12-l. D\-:(<Kx): X lx.=x .x = b (4)

h . (3) . (4) . 3 H :. yfr I (?a?)(0a?) . =* . -0- ! & : D . (ix)(<f>x) = b (5)

h . (1) . (5) . D h . Prop

It should be observed that we do not have

(ix) (0a?) = 6 . = : -0 ! (ix) (<£#), D+.yjrlb

for, if ~ E ! (ix) (<f>x), -0 ! (ix) (<f>x) is always false, and therefore

-0 ! (ix) (<f>x) . D^ . 0- ! b

holds for all values of b. But we do have

*14171. I- :. (ix) (<f>x) = 6 . = : 0> ! 6 . D* . -0 ! (?a?) (<f>x)

Bern.

K*14\L7. 3 I- :. (ix) (0a?) = 6. D :-0!& . D^,. -0 ! (?a?)(0a?) (1)

I- . #101 . *121 . D h :. f ! b . D,,, . 0< ! (?a?) (0a?) : D : 6 = 6 . D . (m?) (0a?) = 6

:

[*1315] D:(?a?)(0a?) = & (2)

h . (1) . (2) . D h . Prop

*1418. H : . E ! (?a?) (0a?) . D : (a?) . -0a; . D . -0 (ix) (0a?)

h . *101 . D H : (a?) . 0-a; . D . yfrb :

[Fact] D I- :. 0a? . =3 . x = b : (x) . -0a? :D:<f>x.=x .x = b:yJrb:

[*10-ll-28]D\-:.('3b):<j)X.=x .x = b: (a?).<0a?: D :(>&b) : <f>x .=x .x = b : yjrb:.

[*10'35] DH ::(a&): <f)x.=x .x = b :.(x) . yfrxz.D : (g;6) : 0a? .=„ . x = b : yfrb :.

[*14'1-11] D h :. E ! (?a?)(0a?) : (a?) . 0>a? : D : -0 (?a?) (0a?) :. D h . Prop

The above proposition shows that, provided (ix) (0a?) exists, it has (speaking

formally) all the logical properties of symbols which directly represent objects.

Hence when (ix) (<f>x) exists, the fact that it is an incomplete symbol becomes

irrelevant to the truth-values of logical propositions in which it occurs.
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#14*2. H . (ix) (x-a) = a

Dem.

h . #14-101 .
"5 h :. (ix) (x = a) = a. = : (g&) :x=*a.=x .x= b:b = a:

[*13*195] =: x = a. =x .x = a (1)

h . (1) . Id . Dh.Prop

*14'201. H:E!(?a;)(^).D.(aar).^
Dem.

h . #1411 . D h :. Hp . D : (g6) :<j>x.=x .x = b:

[*10\L] D:(g&):#>. = .& = &:

[*1315] D : (a&) . £6 : . D h . Prop

#14 202. h :. <f>x .
=
x . x = 6 : = : (ix) (<f>x) = b : = : <f>x , =bx . b *= a? : = : b = (?a?) (<£#)

h . #14"1 . D h :. (ix) (<j>x) = 6 . = : (gc) : (px . =« . ar = c : c = b :

[*13195] = :<£#.=,,..#=&:. Dh.Prop

[The second half is proved in the same way as the first half.]

#14*203. h :. E ! (ix) (<f>x) . = : (ga?) . <f>x : <f>x .
<f>y

. DXt y . x = y
Dem.

h . #14-12-201 . 3b:.El(ix)(<f>x).D:('zx).<f>x:<l>x.<f>y.3Xty .x = y (1)

h . #10'1

.

D I- :. <f>b : <f>x . <f>y . x>y .x = y:D:<l>b:<f>x.<f>b.Dx .x = b:

[#533] 0:<j>b:<f>x.Dx .x = b:

[#13191] Di^&.D*.^:
(f>%

.Dx .x = b:

0:<f>x.=x .x = b (2)[#1022]

I- . (2) . #10-1-28 . D h :. (g&):<£6 :<j>x.<f>y. Dx>y .x= y:0
[#10-35] Dh:.(a&).<£&:<^.<^. D„.*= y:D
[#14-11] 3
K(l).(3). Dh.Prop

#14-204. h :. E ! (ix) (<f>x) . = : (g&) . (w) (0a>) = 6

Z)em.

h. #14-202. #10-11 . D
h :. (6) :. <]>x .

=
x . x = b : = : (ix) (<f>x) = b :. D

[*10-281] h :. (36) : <f>x .
=
x . x= b : = : (g&) . (?#) (^) = b

h.(l).*14\Ll. Dh.Prop

#14-205. h : yjr (ix) (<f>x) . = . (36) . b = (ix) ($x) . ^b [*14-202'1]

#14-21. b:ylr(ix)(<f>x).O.El(ix)(<f>x)

Dem.
h . #14-1 . D
h :. yfr {(ix) (<f>x)} . D : (36) : <f>x

.==x .x = b:yfrb:

[#10-5] D : (gi) :<l>x.=x .x= b:

[#14-11] D : E ! (?#) (<£#) :. D h . Prop

(fib) : <f>x .
=
x . x = b :.

(Kb):<l>x.=x .x = b:

El(ix)(<f>x) (3)

(1)
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This proposition shows that if any true statement can be made about

(ix) (fa), then (ix) (<f>x) must exist. Its use throughout the remainder of the

work will be very frequent.

When (ix) (<f>x) does not exist, there are still true propositions in which

"(ix)(fa)" occurs, but it has, in such propositions, a secondary occurrence,

in the sense explained in Chapter III of the Introduction, i.e. the asserted

proposition concerned is not of the form yjr (ix) (fa), but of the form

f\-ty (ix) (fa)}, in other words, the proposition which is the scope of (ix) (fa)

is only part of the whole asserted proposition.

#14-22. I- : E ! (ix) (fa) . = .<(> (ix) (fa)

Dem.

K #14122. D\-:.fa.=x .x = b:D.cf>b (1)

1- . (1) . #4-71 . D b :. fa . =x . x — b : = : <j>x . =x . x = b : <f>b :.

[*1011-281] D I- :. (g&) : fa .
=
x . x = b : = : (g&) : <f>x .=x .x= b : (f>b :.

[*1411\L01] D h : E l(ix) (<}>x) . = .</> (ix) (fa)OK Prop

As an instance of the above proposition, we may take the following: "The

proposition ' the author of Waverley existed' is equivalent to 'the man who

wrote Waverley wrote Waverley.'" Thus such a proposition as "the man
who wrote Waverley wrote Waverley " does not embody a logically necessary

truth, since it would be false if Waverley had not been written, or had been

written by two men in collaboration. For example, " the man who squared

the circle squared the circle" is a false proposition.

*1423. V : E ! (ix) (fa . tyx) . = . <£ {(ix) (fa . tyx))

Dem.

J- . #14-22 . D h :. E ! (ix) (<f>x . ^rx) .

= : [(ix) (<f)X . yjrx)] : (f>{(ix) (<j>x . yjrx)} . sjr {(ix) (fa . -^rx))

[*10'5.*3-26] 3:<f>{(ix)(<f>x.yjrx)} (1)

h . #14-21 O K </> {(ix) (<f>x . yfrx)] O . E ! (ix) (fa . ^x) (2)

K (1) . (2)O K Prop

Note that in the second line of the above proof #10-5, not only #3*26, is

required. For the scope of the descriptive symbol (ix) (fa . tyx) is the whole

product <£ [(ix) (<f>x . -yjrx)} . i/r {(ix) (fa . -fx)}, so that, applying #14*1, the

proposition on the right in the first line becomes

(g&) : fa . tyx .= x .x = b:<f>b. >Jrb

which, by #10-5 and #326, implies

(g&) : fa . yjrx .
~
x . x=b : <f>b,

i.e. <j>{(ix)(fa.yjrx)}.

#14-24. K . E ! (ix) (fa). = : [(ix) (fa)] = <t>V =y V =O) (fa)

Dem.

h . #141 . D I- : . [(ix) (fa)] :fa.=y .y = (ix) (fa) :

= : (a6) '.$y.=y .y = bi$y.=y .y = b:
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[*4-24.*10'281] s : (36) :<f>y
.=

y .y = b:

[*14'11] = E ! (?a?) (<M :• 3 K Prop

This proposition should be compared with #14-241, where, in virtue of the

smaller scope of (ix) (<f>x), we get an implication instead of an equivalence.

#14-241. I- : . E ! (ix) (<f>x) . 3 : <f>y
=y • y = O) (<M

Dem.

K #14-203. 3h::Hp.3
[Exp] 3
[#1011-21] 3H::Hp.3
[#471] 3
[#13191]

[#10-22]

[#14-202]

.<f>y.<f>x.D.y=x:.

. (j>y . 3 : <j>x . 3 . y = a;
"

. (j>y . D : <f>x . "Dx . y = x :.

.
<jty

. = : <f>y:<]>x.Dx .y = x:

= :y = x.Dx .<}>x:<f>x.'2x .y = x:

= :<f>x.=x .y = x:

= :y= (ix) (<f>x) :: 3 K Prop

#14-242. H :.<£#.=*.# = &: 3 :i|r&. = .^^)(<M [*14202-1 5]

#14-25. H : . E ! (?a?) (<£#) . 3 : <]>x 3* yjrx . = . ifr (?#) (</>#)

Dem.

h . #4-84 . *10-27'271 . 3 H :: <j>x .
=x . x = b : 3 :. <f>x 3* tyx . = : a? = 6 >* ^ :

[#13-191] =.:^r6:

[#14-242] =. -^(?a?) (</>«) (1)

H . (1) . #1011-23 . 3 h :. (36) : <Jxb . =* . a? = b :

3 : <£# Dx -fx . = . i|r (?#) (<£#) (2)

H. (2). #14-11. 31-. Prop

#14-26. H : . E ! (ix) (<f>x) . 3 : (ga?) . <£# .^ . = . -f {(m?) (<£#)} .~.<f>xDx fx

Dem.

K #1411. 3
H:.Hp.D:(a6):^B.=x .af = 6 CO
I- . #10-311 . 3 I- :: <j>x . = x . x = b : 3 :. <f>x . yjrx .

~
x . x = b . tyx :.

[#10-281] 3 :. (gar) . 4>x . yjrx . = . (ga;) . a? = 6 . fx .

[#13-195] =.yjrb.

[#14-242] = ^ {O) (<HJ (2 >

I- . (2) . #10-11-23 . D
I- :. (36) : <£# . =» . x = 6 : 3 : (g#) . <£# . \}rx . = . yjr {(?#) (<£#)} (3)

1- . (1) . (3) . #1425 . 3 h . Prop

#14-27. h :. E ! (ix) (4>x) . 3 : <f>x
=
x ^x. = . (ix) (<j>x) = (ix) (fx)

Dem.

J- . #4-86-21 . 3 b ::<£#. = . x = b : 3 :. <f>x . = . yjrx : = : -fx . = . x = b (1)

h . (1) . #1011-27 . 3 I- :: </>*; .=x . x = 6 : D :. (*) :. <px . = . -fa; : = :^ . = . as= b :.

[#10-271] D-..(f>x.=x .ylrx: = :yfrx.=x .x = b:

[#14-202] = : b = (ia?) (far) :

[#14-242] =:(?a;)(<^) = (?«)(^) (2)

I- . (2) . #1011-23 . #1411OK Prop
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#14-271. b :. fa .
=
x ,yfrx : D : E ! (ix) (fa) . = . E ! (ix) (fx)

Dem.

b. #4*86. D b :: fa~ ^a?. D :. fa. = ,x = b : = : ^a;. = .# = & ::

[#10-11-27] D H :: Hp . D :.(«):.</>«.= . a; = & : = :^ . = . a?= 6 :.

[*10'271] D : . («) : fa . = . # = 6 : = : (x) : ^a? . = . x= b ::

[*1011-21] D h :: Hp . D :.(b) :. fa . =x . x = b : = : fx .=x . x = b :.

[*10-281] 3:.fab):fa.=x .x = b: = :fab):+x.=x .x=bz:
Dh.Prop

#14272. b -.. fa .
=x . yjrx :D : x (w)(fa) . = . xO) (^)

Dem.

h.*4'86. D h ::<£# = yfrx.D

[*10ir414]Dh::Hp. D
[Fact] D
[#1011-21] Dh::Hp. D
[#10-281] D

: . fa ,=.x=bi=: yjrx . = . x=b :

.

:. <£a;. =^.a;=6 : = : -^ra;. =x .x = b :.

:.fa.=x .x=b:x^>- = ' ^x . =* . a; = 6 : ^6 :.

: . (b) : . 0a; .
=
x . a; = b : ^6 : =

:

yjrx .=x .x=b:xb:.
:. fab) : fa . =x . x = b : xb : =

: fab) :-<lrx.=x .x = b:xb:.
[*14'101] D : . x (ix) (fa) . = . x (ix) (fx) ::Db. Prop «

The above two propositions show that E ! (?#) (<£a;) and x(lx)(fa) are

" extensional" properties of fa, i.e. their truth-value is unchanged by the

substitution, for fa, of any formally equivalent function yfrft.

*14'28. b:El(ix)(fa).~.(ix)(fa) = (ix)(fa)

Dem.

b . #1315 . #4-73 . D b :. fa .
=
x . x= b : = : fa .

=
x . x = 6 : b = 6 (1)

K(i).*ioir28i.:>

r-:.(g6):<^a;.=a..a;=6: = :(a6):0a;.=a;.a:=6:6=6 (2)

l-.(2).*14-lll.Dh.Prop

This proposition states that (ix) (fa) is identical with itself whenever it

exists, but not otherwise. Thus for example the proposition "the present

King of France is the present King of France " is false.

'

The purpose of the following propositions is to show that, when El(ix)(fa),
the scope of (ix) (fa) does not matter to the truth-value of any proposition

in which (ix) (fa) occurs. This proposition cannot be proved generally, but
it can be proved in each particular case. The following propositions show
the method, which proceeds always by means of #14-242, #10-23 and #14*11.

The proposition can be proved generally when (ix)(fa) occurs in the form

X (lx) (fa)* and x (qx) (fa) occurs in what we may call a " truth-function," i.e.

a function whose truth or falsehood depends only upon the truth or falsehood
of its argument or arguments. This covers all the cases with which we are

ever concerned. That is to say, if x (ix) (fa) occurs in any of the ways which
can be generated by the processes of #1—#11, then, provided E ! (ix) (fa),
the truth-value of/ {[(ix) (fa)] >x(ix)(fa)} is the same as that of

[(ix)(fa)].f{x (ix)(fa)}.
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This is proved in the following proposition. In this proposition, however, the

use of propositions as apparent variables involves an apparatus not required

elsewhere, and we have therefore not used this proposition in subsequent

proofs.

*W3. \-z.p = q . Dp, q .f(p) =f(q) : E ! (70) (00) : 3 :

f{\(ix) (00)] . x (70) (00)} . = . [(ix) (*»)] .f{x (ix) (00)}
Dem.

h . *14'242 . D
r- : . <f>x . =x . x = b : : [(70) (00)] . % (70) (00) . = . X6 (1)

h.(l).DH:.p S 5.DM ./(p)=/(j):^c.5..«6:D:.

/{[(w)(Ml -xO*)(M • = •/(%*) (2)
h . *14-242 . 3
h :. 00 .

=
x . x = b : D : [(10) (0*)] ./{% (w) <**)} - s ./(*&) (3)

r.(2).(3).Z>

I- :.p = ? . DP)9 ./(^)=/(^) : 00 . =0, . = 6O :

/{[(**) (00)] . x (m) (**)} s . [(10) (00)] .f\x (w) (**)} (4)

I- . (4) . *10'23 . *14 11 . D h . Prop

The following propositions are immediate applications of the above. They

are, however, independently proved, because *14 -3 introduces propositions

(p, q namely) as apparent variables, which we have not done elsewhere, and

cannot do legitimately without the explicit introduction of the hierarchy of

propositions with a reducibility-axiom such as *121.

*14'31. H : : E ! (70) (00) . D : . [(?0) (00)] . p v x (*#) (<H •

= : p . v . [(?0) (00)] . x (™) (<H
Dem.

h .*14-242 . D h i.<f>x ._=x .x = b: D :[(70)(00)]./>v%(70)(00). = .pvx& (1)

I- . *14'242 . D H :. 00 . =x . x = b .O : [{ix) (00)] . x i™) (<K> = Xb '•

[*4'37] D :p v [(70) (00)] X («0 (<H • s . ;> v xh (2)

h . (1) . (2) . D I- :. 00. =x .x = b : Z> : [(70) (00)] . p v * (70) (00)

.

= . p v [(70) (00)] X (70) (00) (3)
h . (3) . *10-23 . *1411 .Dh. Prop

The following propositions are proved in precisely the same way as *14'31

;

hence we shall merely give references to the propositions used in the proofs.

*14-32. h : . E ! (70) (00) . = : [(70) (00)] . ~ X (lx) (<K>
= .~ {[(70) (00)] . X (M?) (<f>®)}

[*14242 . *411 . *1023 . *14'11]

The equivalence asserted here fails when ~E ! (70) (00). Thus, for example,

let <f>y be
" y is King of France." Then (70) (00) = the King of France. Let

XV be "y is bald." Then [(70) (00)] .~%(70)(00) . = . the King of France

exists and is not bald ; but ~ {[(70) (0#)] • X (lx) (4*°°)} = it is false that the

King of France exists and is bald. Of these the first is false, the second true.
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Either might be meant by " the King of France is not bald," which is am-

biguous ; but it would be more natural to take the first (false) interpretation

as the meaning of the words. If the King of France existed, the two would be

equivalent ; thus as applied to the King of England, both are true or both false.

*14-33. h : : E ! (ix) (fa) . D : . [(?*) (fa)] .p0% (lcc) (<H -

=:p.D. [(ix) (fa)] X (lx) (4>x)

[*14242 . *4-85 . *1023 . *14-11]

*14-331. V :: E ! (ix) (fa) . D :. [(ix) (fa)] . % (ix) (fa) Op .

= : [(ix) ((fix)] . x X) (<\>x) -3-P
[*4-84 . *14'242 . *1023 . *1411]

*14 332. h :: E ! (ix) (fa) . D :. [(ix) (fa)] .p = % (™) (4*) =

: p . = . [(ix) (fa)] . x (ix) (fa)
[*4-86 . *14-242 . *1023 . *1411]

*14'34, t- : .p : [(ix) (fa)] . X (™) (fa) = = [(**) (fa)] -P-X (»*) (4>x)

This proposition does not require the hypothesis E ! (ix) (fa).

Devi.

V . *14 1 . D
I- :.p : [(ix)(fa)] .x(w)(fa) : = :p: (a&) : fa.=x .x = b : %& :

[*10'35] = : (g&) : p : fa .=x .x = b : %6 :

[*14*1] = : [(7«) (fa)] :p.x (ix) (<t>
x) '-Oh . Prop

Propositions of the above type might be continued indefinitely, but as they

are proved on a uniform plan, it is unnecessary to go beyond the fundamental

cases of p v q, ~p, p D q and p . q.

It should be observed that the proposition in which (ix) (fa) has the

larger scope always implies the corresponding one in which it has the smaller

scope, but the converse implication only holds if either (a) we have E ! (ix) (fa)
or (b) the proposition in which (ix) (fa) has the smaller scope implies

E ! (ix) (fa). The second case occurs in #14'34, and is the reason why we

get an equivalence without the hypothesis E I (ix) (fa)-. The proposition in

which (ix) (fa) has the larger scope always implies E ! (ix) (fa), in virtue of

14-21.
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CLASSES AND RELATIONS

*20. GENERAL THEORY OF CLASSES

Summary o/#20.

The following theory of classes, although it provides a notation to represent

them, avoids the assumption that there are such things as classes. This it does

by merely defining propositions in whose expression the symbols representing

classes occur, just as, in #14, we defined propositions containing descriptions.

The characteristics of a class are that it consists of all the terms satisfying

some propositional function, so that every propositional function determines a

class, and two functions which are formally equivalent {i.e. such that whenever

either is true, the other is true also) determine the same class, while conversely

two functions which determine the same class are formally equivalent. When

two functions are formally equivalent, we shall say that they have the same

extension. The incomplete symbols which take the place of classes serve the

purpose oftechnically providing something identical in the case oftwo functions

having the same extension ; without something to represent classes, we cannot,

for example, count the combinations that can be formed out of a given set of

objects.

Propositions in which a function <£ occurs may depend, for their truth-

value, upon the particular function ^, or they may depend only upon the

extension of
<f>.

In the former case, we will call the proposition concerned an

intensional function of </>; in the latter case, an extensional function of <£.

Thus, for example, (x) . <f>x or (g<c) . <f>x is an extensional function of
<fy,

because, if
<f>

is formally equivalent to yjr, i.e. if (fix . =x . yfrx, we have

(x) . (fix . = . (x) . tyx and (g#) . <f>x . = . (go?) . tyx. But on the other hand

" I believe (x) . <f>x " is an intensional function, because, even if <f>x.=x . yfrx,

it by no means follows that I believe (#) . ^rx provided I believe (x) . <f*x: The

mark of an extensional function/ of a function <j> ! 2 is

<f>
\x .=x .^lx: DM :/(<£ ! 3) . = ./(^ ! S).

(We write "<f> ! £" when we wish to speak of the function itself as opposed to

its argument.) The functions of functions with which mathematics is specially

concerned are all extensional.

When a function of <$> ! z is extensional, it may be regarded as being

about the class determined by
<f>
1% since its truth-value remains unchanged

so long as the class is unchanged. Hence we require, for the theory of classes,

a method of obtaining an extensional function from any given function of a

function. This is effected by the following definition:
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#20-01. f fi^z)}. = :(<&<!>): <f>lx.=x .fx:f{<f>l$} Df
Here / {£ ($z)) is in reality a function of yfrz, which is defined whenever

/ {<£ ! z) is significant for predicative functions
<f>

! t. But it is convenient to

regard / {£ (yfrz)} as though it had an argument £ (yfrz), which we will call

"the class determined by the function yfrz." It will be proved shortly that

/ {z (yfrz)} is always an extensional function of yfr%, and that, applying the

definition of identity (*13-01) to the fictitious objects z (<f>z) and z (yfrz), we
have

z ((f>z) = z (yfrz) . = : (x) : <$>x . = . yfrx.

This last is the distinguishing characteristic of classes, and justifies us in

treating z (yfrz) as the class determined by yfr%.

With regard to the scope of 2 (yfrz), and to the order of elimination of two
such expressions, we shall adopt the same conventions as were explained in

#14 for (ix) (<f>x). The condition corresponding to

E ! (ix) (yfrx) is (a<£) :
<f>

I x .
=
x . yfrx,

which is always satisfied because of #12*1.

Following Peano, we shall use the notation

x e z (^frz)

to express "x is a member of the class determined by yfrz." We therefore

introduce the following definition:

#2002. x e (0 ! 2) . = .
<f>

! x Df
In this form, the definition is never used ; it is introduced for the sake of the

proposition

H :. x e 2 (yfrz) . = : (g<£) : ^y . =y .
<f>

! y : <\> ! x

which results from #20'02 and #20-01, and leads to

h : x e z (yfrz) . = . yfrx

by the help of #1 2*1.

We shall use small Greek letters (other than e, i, it,
(f>,

yjr, %, 6) to represent

classes, i.e. to stand for symbols of the form 2 (<f>z) or z
(<f>

! z). When a small

Greek letter occurs as apparent variable, it is to be understood to stand for a

symbol of the form £
(<f>

! z), where <j> is properly the apparent variable con-

cerned. The use of single letters in place of such symbols as z (<f>z) or z
(<f>

! z)

is practically almost indispensable, since otherwise the notation rapidly becomes
intolerably cumbrous. Thus "x e a" will mean "x is a member of the class a,"

and may be used wherever no special defining function of the class a is in

question.

The following definition defines what is meant by a class.

#20-03. Cls = o {(a<£). a = z(<f> ! z)} Df
Note that the expression "a {(g<£). a = 2(0 ! z)}" has no meaning in

isolation: we have merely defined (in #20*01) certain uses of such expressions.

What the above definition decides is that the symbol "Cls" may replace the

symbol "a {(g<£) . a = z
(<f>

! *)}," wherever the latter occurs, and that the
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meaning of the combination of symbols concerned is to be unchanged thereby.

Thus "Cls," also, has no meaning in isolation, but merely in certain uses.

The above definition, like many future definitions, is ambiguous as to

type. The Latin letter z, according to our conventions, is to represent the

lowest type concerned ; thus
<f>

is of the type next above this. It is convenient

to speak of a class as being of the same type as its defining function ; thus a

is of the type next above that of z, and "Cls " is of the type next above that

of a. Thus the type of " Cls " is fixed relatively to the lowest type concerned

;

but if, in two different contexts, different types are the lowest concerned, the

meaning of "Cls" will be different in these two contexts. The meaning of " Cls"

only becomes definite when the lowest type concerned is specified.

Equality between classes is defined by applying #13*01, symbolically un-

changed, to their defining functions, and then using #20*01.

The propositions of the present number may be divided into three sets.

First, we have those that deal with the fundamental properties of classes

;

these end with #20-43. Then we have a set of propositions dealing with both

classes and descriptions; these extend from #20*5 to #20*59 (with the ex-

ception of #20-53 54). Lastly, we have a set of propositions designed to prove

that classes of classes have all the same formal properties as classes of in-

dividuals.

In the first set, the principal propositions are the following.

#2015. h :. yjrx .
=
x . %? : = . z ($>z) = z (xz)

I.e. two classes are identical when, and only when, their defining functions

are formally equivalent. This is the principal property of classes.

#20-31. H : . z (^z) = z (xz) .=:xez (yjrz) .=x .xez (Xz)

1.0. two classes are identical when, and only when, they have the same
members.

#20-43. \-:.a = p. = :x6a.=x .x€@
This is the same proposition as #20*31, merely employing Greek letters

in place of z (\Jrz) and z (xz).

#20-18. h :. 2 (<f>z) = 2 (fz) .D:f{z (<j>z)} . = ./{z (yjrz)}

I.e. if two classes are identical, any property of either belongs also to the

other. This is the analogue of #13 -12.

#202 2122, which prove that identity between classes is reflexive, symmetrical

and transitive.

#20-3. h:xez (fz) . = .^x

I.e. a term belongs to a class when, and only when, it satisfies the defining

function of the class.

In the second set of propositions (#20-5—'59), we show that, under suitable

circumstances, expressions such as (ix) (<j>x) may be substituted for x in #20 #3
.
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and various other propositions of the first set, and we prove a few properties

of such expressions as "(?a) (fa)," i.e. " the class which satisfies the function/."

Here it is to be remembered that "a" stands for "2(<f>2)" and that "fa"

therefore stands for "f {2 (<f>e)\." This is, in reality, a function of <pz, namely

the extensiOnal function associated with f(yjrlz) by means of #2001. Thus

an expression containing a variable class is always an abbreviation for an

expression containing a variable function.

In the third set of propositions, we prove that variable classes satisfy all

the primitive propositions assumed for variable individuals or functions, whence

it follows, by merely repeating the proofs of the first set of propositions (#20'1

-43), that classes of classes have all the formal properties of classes of in-

dividuals or functions. We shall never have occasion explicitly to consider

classes of functions, but classes of classes will occur constantly—for example,

every cardinal number will be defined as a class of classes. Classes of relations,

which will also -frequently occur, will be considered in #21.

#2001. f{z(^z)}. = :(^)'.^\x.=x .^rx'.f{j>\z} Df

#20*02. x e
(<f>

I z) . = . ! x Df

#2003. Ob = 3.{<a0).
a •=*($!*)} Df

The three following definitions serve merely for purposes of abbreviation.

*20'04. x,yea. = .x€a.yea Df

#2005. x, y,zea. = .x, yea.zea Df

#2006. x~ea . = . ~(xea) Df

The following definitions merely extend to symbols representing classes

the definitions which have already been given for other symbols, with the

smallest possible modifications.

#20-07. (a).fa. = .(<j>).f{z(<t>lz)} Df

#20-071. (go) ./«. = . (30) •/(* (0 ! *)} Df

#20-072. [(?a) (<£«)] /<» <0«) = : (a*/) : 0« =• • « = 7 :fj Df

#2008. f{ot (<fa)l . = : (30) : fa . =. . <f> ! a :/(0 I &) Df

#20081. ae i|r ! & . = . -«|r ! a Df

The propositions which follow give the most general properties of classes.

#20-1. r :./{$(**)} • s : <30) :<\>\x .=x .tyx:f{4>\$] [*4-2
. (#20-01)]

#20-11. I" : . fx . =x . xx ' D :/ (2 (Wl = •/ I* (X*))

Dem.
\-

. #4-86 . h :: Hp . D :. I as .
=
x . fx : =+ :

<f>
! x .

=
x . x® '-

[#4-36] D:.<f>lx.= x .fx :/{0 ! z] : =* :
<f>

! as .
=
x . Xx = /{0 }

- *} '••

[#10-281] 3 :. (g0) : lx.=x ,. -fx :/{<f>.l z) :

= : (g0) :</>! x. =.. Xx :/[0 lz}:.

[#20-11 O :.f{z(irz)\ . ee .f{z(Xz)} -=>- ^op
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This proves that every proposition about a class expresses an extensional

property of the determining function of the class, and therefore does not

depend for its truth or falsehood upon the particular function selected for

determining the class, but only upon the extension of the determining function.

*20-lll.hi.f($l2).=t.g(<f>l2):3:f{2(<j>lz)}.=t.g{2($lz)}

Dem.

KFact. Dbi:np.D:.<f>lx.=x .^lx:f(^lz): = :<f>lx.=x .ylrlx:g(yfrlz):i

[*10281] D:.(a^)r^!«.= jB
^!*:/(^!t): = :(a^r):^t*.s«.^!a?:flr(^!S):,

[#201] D :./{*(* !*)} - = -9 {z(<f> I *)} (1)

r- . (1) . *1011-21 . D h . Prop

20112. r :. to) v.f{2 (<£ ! *)} •^ - g I {z
(<f>

I *)}

Dem.

h . #121 . 3 h :. (a5r) :/(<£ ! 2) . =* . £ ! (<f>
I *) (1)

K (1) . #20111 . 3 1-
. Prop

Thus the axiom of reducibility still holds for classes as arguments.

#2012. I- : (g<£) : <£

!

x . =x . ^x :f{z (-fz)} . = ./{z (<f>l z)} [#2011 . #121]

#2013. f- : . -fyx . =a, . %ar : 3 . 2 (^) = 2 fo*)

The meaning of " z (^jrz) — z (xz) " is obtained by a double application of

#2001 to #1301, remembering the convention that 2(tyz) is to have a, larger

scope than 2 (%z) because it occurs first.

Dem.
H . #20 1 . 3 h ; : 2 (yjrz) = 2 (Xz) . s : . (g<£) : ^a; . =« . £ ! a; : <£ ! 2 = 5 (^^) :

.

[#201] = :.(^4>,0);^x.=x .<f>\x:xx^x .nx:<f>l2 = 0l2 (1)

I- . #121 . #10-321 . 3
h :: Hp . 3 :. (g$>) : -^a- . =x . <f> l& : yx .=x .$>\x\.

[#13195] 3 :. (a0, 0) :. tyx. =x .<j>lx: xx .=x .0lx:<j>l2 = 0l2 (2)

f- . (1) . (2) . 3 h . Prop

#2014. h : . 2 (ifrs) = £(^) . 3 : tyx . =x . xx
Dem.

h . #201 . 3 h :: 2(^s)«2(#er) . = :. (g£) : ^a?. =,..^ ! a?: <f>l2 = 2(Xz) :.

[*20l] = :. (a<£, 0):.^x.=x .<f>lxzxx.=x . 01x: $12=0 ! 5 :.

[#13195] = :. (g</>) :, yjrx . =x . <£ ! x : xx • =* • <£ ! * : -

[#10322] 3 .:. i^a; .
=
x .^" ">*" • Prop

This proposition is the eouverse of #2013.

#2015. \-:.fx.=x .xxz = .z(^z) = z(xz) [#20-1314]

This proposition states that two functions determine the same class when,

and only when, they are formally equivalent, i.e. are satisfied by the same set

of values. This is the essential property of classes, and gives the justification

of the definition #2001.
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#20151. h . (g<£) . 2 (^z) = £ (0 ! z)

Bern.

>.*2015. 3h:.ylrx.= x .<f>lix::D.'z*(ylrz) = 2(<f>lz):.

[*10-ll-28] Db :.(%<!>): fx.=x .<f>lx:D.(K<f>).2(yfrz) = 'z(<f>lz) (1)

J-. (1).*1 2-1. Dh. Prop

In virtue of this proposition, all classes can be obtained from predicative

functions. This fact is especially important when classes are used as apparent

variables. For in that case, according to the definitions #2007071, the ap-

parent variable really involved is a predicative function. In virtue of #20 -

151,

this places no limitation upon the classes concerned, except the limitation

which inevitably results from the nature of their membership. A class, there-

fore, unlike a function, has its order completely determined by the order of

its possible members, i.e. of the arguments which render its defining function

significant.

*2016. h : (a</>) iff (irz)} . = ./{2 (<f>
! z)) [*20'12]

*2017. h : (<£) .f{H<f> ! *)} 3 ./{2 (yfrz)} [*20'16 . #101]

#2018. h:.2(<K> = *0K>-3:/WM "• s ./{*(*«)} [*201115]

*2019. h :. $ {&£) = z {Xz) . = :(/) if I 2 (**) . D ./! S (%*)

Dem.
\- .#2018 .*1011'21 . D h :.$We) = 2(x*) • ? :

(/):/!*(**). D./!*(x*) (1)

h .*2018\L5 .Db::<j>lw.= x .yfra;:0la;.=x .x^ :f\%(y\rz).D .f\z\xz) • D :

/!*(*!*). D./!*<0!*) (2)

I- . (2) . *10-ll-27-33 . D

h::^!a;.s..^:^!*.s,. X*-:.(/):/Ii(^).D./!^(x*):-3»

[*20-112.*10-l] D :.<£!#.=*.<£! a : D :<£!#.=*. !« :•

D :.<£!#. =*.#!#:.

D :. 2 (>K> = *(%*) (3)

l-.(3).*10-ll-23-35.D

h::(a^,^:^!*.s..^:^!*.s..X*:.(/):/^(^)-3-/^(X*)»
D.*'W*)-S(X*) (4)

h.(4).*12-l.Dh:.(/):/!^(^).D./!t(^):3.t(^) = a(^) (5)

h . (1) . (5) . DH.Prop

#20 191. h :. 2(^) = * O) • = :(/) :/! £ ty*) . s ./! 2(X*)
[#20-18-19 . #10-22]

#20-2. h . 5 (<f>z) = 2 (<£*)

h . #20-15 . D H :. 2 (<f>z) = z((f>z) . = z <f>x . =„ . <f>x (1)

K (1) . #42 . #10-11 . D r- . Prop

[#4-2]

[#10301-32.Hp]

[#2015]
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#2021. h :2(^)-=2(^s). = . 2 (^*) = $(£*) [#2015 . #1032]

#2022. h : z (<f>z) - 2 (^) . 2 (<fz) = 2 (%*) . D . 2 (£*) = a (%*)

[*2015 . #10-301]

The above propositions are not immediate consequences of *13-151617,
for a reason analogous to that explained in the note to #14*13, namely because

f{z (<f>z)} is not a value of fx, and therefore in particular " z {<\>z) - z (^rz) " is

not a value of " x = y"

#20-23. \-:z(<f>z)^^(^z).^(<f>z) = ^(Xz).D.z(yfrz) = ^(Xz) [#20-21-22]

#20-24. b:2(ylrz) = z-(<j>z).z'(Xz) = %(<l>z).D.
/

z(^z) = 2(Xz) [*20'21-22]

#20-25. h :.a = z((j)z).=a . ct = 2tyg) : = .z(cf>z) = z(fz)
Dem.

h . #10-1 . D h :. a = z(<f>z) .=a .a = 2(yjrz) : D :

z(<j>z) = 'z((f>z). = .^(<j>z) = ^(fz):
[*20'2] D:^(<f>z) = ^(yjrz) (1)

b . #20-22 . D \- : a = £ (<£*) . £-(<^) = £ (^) . D . a = £ (yfrz) :

[Exp.Comm]Dh:.a(^) = a(^).D:a = ^(^).D.a = t(^). (2)
h. #20-24. 3 h :.$ (<}>z) = z (yfrz) . a = z (yjrz) .D . a = 2 (cf>z) :.

[Exp] D h :. %{<j>z) = 2{fz) . D : a = £(^) . D . a = £ (£?) (3)

h.(2).(3). Dh:J(^) = ^(^).D:a= t(^). = .a = J(^) : .

[*10-11-21] Dl-:.f(^) = t(^).D:a=f(^).=„.a = t(^) (4)

l-.(l).(4). Dh.Prop

#20-3. \-;xe%{tyz). = .tyx

Dem.
h. #201.3
r- : : x e z {*\rz) . =

[(#20-02)] =

[#10-43] =

[#10-35] .=

[#121] =

• (a</>) -iry .=y .<\>\y.^x -..

.(a<^>): -sjry.^y.^ly^yjrx:.

:. yjrx:: D b . Prop

This proposition shows that x is a member of the class determined by yjr

when, and only when, x satisfies yjr.

#20-31. h :. z (yjrz) = 2 (Xz) .= :xez (fz) .=x .xez (Xz) [#20-15-3]

#20-32. \-.x~{x6z-(<!>z)}=$(<l>z) [#20-3-15]

#20-33. b:.a = 2(<f>z). = :x€a.= x .(l>x

Dem.
h. #20-31. ^\-:.a = ^(<f)z). = :x6a.=x .X€^(cf>z) (1)
h. (1). #20-3. DK Prop

Here a is written in place of some expression of the form z tyz). The
use of the single Greek letter is more convenient whenever the determining
function is irrelevant.

R&W I jo
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#20*34. [~:.cc — y.='.x€a.Da-yea
Dem.

h . #4*2 . (#20-07) . D I- : . x e a . Da . y e a : = : x e Z
(<f> ! z) . D* . y e 2 (<f>

I z) :

[#20*3] =:</>!#. D^.^ly:

[#13*1] =:x = y:.Db.Frop

The above proposition and #20*25 illustrate the use of Greek letters as

apparent variables.

#2035. \-:.x = y. = :xea.= a .yea [#20*3 .#13-11]

#20 4. h : a e Cls . = . (30) . a = %(<]> 1 z) [*20"3 . (#20-03)]

*2041. h.f(^)eCls [*20'4-151]

#2042. H . z (z e a) = a

A Greek letter, such as a, is merely an abbreviation for an expression of

the form 2 (<f>z) ; thus this proposition is #20*32 repeated.

Dem.
h . #20-3 . #10-11 . D I- :x eztyz) .

~
x . fx :

[#20-1 5] D h . £ [x e z tyz)} = £ (^#) . D h . Prop

#20-43. h :. a = /3. = :#€«.=*. #e/3 [#2031]

The following propositions deal with cases in which both classes and

descriptions occur. In such cases, we shall, in the absence of any indication

to the contrary, adopt the convention that the descriptions are to have a

larger scope than the classes, in applying the definitions #14-01 and #2001.

#20-5. h : (ix) (<f>x) e z (^z) . = .^{(ix) (<*«)}

Dem.

(ac ) '• 4>x .=x .x = c:cez (yjrz) :.

. (go) : <f>x .
=
x . x = c : tyc :.

.yfr{(ix)(<f)x)} ::DK Prop

h . #14-1 . D h :: (iae) (<f>x) e z (tyz) . =

[#203] =

[#14-1] =

#20-51. r- :. (7a?) (<jix) = b. = : (ix) (<f>x) ea.=..6ea

Dem.

h . #20-5-3 . D

h :. (ix)(<j>x) ez(yfr I z) . = .b ez(yfrl z) : = : ^jrl (ix) (<j>x) . = . <f ! b :. D

[#10-11] h :. (las) (<j>x) e a . =« . & e a : = : f ! (far) (<K> .
=
+ . -f ! 6 :

[#14-17] = : ('«) (£*) = & : 3 r-
.
Prop

*2052. h : . E ! (i«) (</>#) . = : (a&) : O) (<H e a
.
=« . 6 e

a

K #20 51. #1011-281.3

h :. (g&) . (ix) (<\>x) = b . = : (a&) : (ix) ($x) e a . =a . & e a (1)

h.(l). #14-204. Dh. Prop

#20-53. l-:./3 = a.D0.</>/3: = .</>a

This is the analogue of #13191.
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Dem.
K*101. Dh:./3 = a.D0.0/3:D:a = a.O.0a:
[*20-2] D:0a (1)

h . *2()-18-21 . D h :. /3 = a . D : 0a . D . 0/3 :.

[Comm] DH:.0a.:>:/3 = a.D.0/3:.

[*1011-21] D\-:.(f>a.D:/3^a.D
fi .(f>^ (2)

h . (1) . (2) . DKProp
#2054. h : {ft/3) . /3 = a. . 0/3 . = . 0a

This proposition is the analogue of #13195.

Dem.
h . #2018 . #1011 . D I- : /3 = a . 0/3 . Dp. 0a :

[#10-23] Dh:(g/3)./3 = a.0/3.D.0a (1)

K #20'2 . #32 . D I- : 0a . D , a = a . 0a .

[*10-24] D.(a/3)./3 = a.0/3 (2)

K(l).(2). Dh.Prop

#20 55. I- . z (0*) = (?a) (xea.=x . <f>x)

Dem.

h . #2033 . D h :: x e a . =* . <f>x :
=

a . a = z (j>z) :.

[*20-54] Dh:.(Rl3)i.X6a.=x .cj>x:= a .a = l3:.z(<l>z) = {3:.

[*14-1] D h . £ (00) = (7«) (x e a .
=
x . <f>x) . D h . Prop

*20'56. h . E ! (?a) (^o.e,. 0a;) [#2055 . *14*21]

*2057. h :. 2 (00) = (7
a) (fa) . D : g {z (00)} . = .g {(»«) (/a)}

.Dem.

h . #141 . D h :: Hp . = :. (a/3) : /a .
=

a . a = /3 : (00) = £ :.

[*20-54] = :./a.=a .a = £(00) (1)

K*141. 0\-:.g{(ia)(fa)\.^:(^):fa.=a .a = /3:g^ (2)

h.(l).(2).3H::Hp.D:.
fi
r{(ia)C/a)}.=

[*13183] =

[#2054] =

#2058. K 2(00) = (7a) [a = £(00)}

Dem.

h . *4-2 . #10-11 . D h : a = f(00) .
=

a .a = z(<j,z) :

[#20-54] D I- :. (a/3) : . a = £ (0*) . = a . a = £ : 2 (0s) = /3 :.

[#141] D h . $ (0^) = (?a) {« = 2 (0*)} . D h . Prop

#20-59. h : 2 (0^) = (id) (fa) . = . (la) (fa) = z(cf>z)

Dem.

(>&&):a = z((j>z).= ll .a = {3:g/3:

(3/3).£(00) = /3.#/3:

g{z(<f>z)} ::Dh. Prop

f- . #20-1 . D h :. z (00) = (?a) (/«) . =

[#1413] =

[#201] =

(ftyjr) :^>x.=x ^lx:yjrlz=: (7a) (fa) :

(g^r) : 0a; . =, . i/r ! # : (7a) (fa) = i/r ! 2 :

(7a)(/a) = 2(00):.Dh.Prop

13—2
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In the following propositions, we shall prove that classes have all the

formal properties of individuals, and have the same relations to classes of

classes as individuals have to classes of individuals. It is only necessary to

prove the analogues of our primitive propositions, and of our definitions in

cases where their analogues are not themselves definitions. We shall take

the propositions #10 Iiri212ri22, rather than those of #9, and we shall

prove the analogue of #10-01. As was pointed out in #10, we shall thus have

proved everything upon which subsequent proofs depend. The analogues of

#200102 and of #14-01 remain definitions, but those of #1001 and #13-01

become propositions to be proved. #9'131 must be extended by the definition:

Two classes are "of the same type" when they have predicative defining

functions of the same type. In addition to these, we have to prove the

analogues of #10 riri2121122, #1107 and #12-1-11. When these have been

proved, the analogues of other propositions follow by merely repeating previous

proofs. These analogues will, therefore, be quoted by the numbers of the

original propositions whose analogues they are.

#20-6. h:(aa)./a. = .~{(a).~/a}

Dem.
h . #4-2 . (#20-071) . 3

h:(aa)./a. = .(a0)./{3(0!*)}.

[(#10-01)] = -~[(*).~/{*(* **)}].

[(#20-07 )] = . ~ {(a) . <-/«} OK Prop

This is the analogue of #10-01.

#20-61. h :(«)./«. D.//3

Dem.
h . #10-1 . (#20-07)O I- : (a) ./a . D ./{z

(<f>
I z)) : D h . Prop

This is the analogue of #10*1.

In practice we also need

r:(«)./«.D./{£0K>}.
This is #20-17.

We need further h . (got) . z (yfrz) = a.

This is #2041.

#2062. When //3 is true, whatever possible argument of the form z(<j>lz)

/3 may be, then (a) ./a is true.

This is the analogue of #1011.

Dem.

h . #10-11 . D . when f[z (<j> ! z)) is true, whatever possible argument <j> may
be, then (cf>) ./{z((f> ! z)} is true, i.e. (by *20'07), (a) ./a is true.

#20-63. \-:.(a).pvfa.D:p.v .(a).fa

This is the analogue of #10-12.
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Dem.
h . #4*2 . (#20*07) . D

h:.(a).j>v/«. = :($).pv/{*(*!*)}:

[#1012] = : p. v. (£)./{$ (*!*)}:

[(#20*07)] = : p . v . (a) ./a : . D H . Prop

#20*631. If "fa." is significant, then if /3 is of the same type as a, " fft" is

significant, and vice versa.

This is the analogue of #10121.

Dem.

By #20151, a is of the form z {$\z), and therefore, by #20*01, fa is a

function of $ ! 2. Similarly /3 is of the form z (yjr ! z), and ffi is a function of

«/r ! z. Hence by applying #10121 to </> ! z and t/r ! 2 the result follows.

#20*632. If, for some a, there is a proposition fa, then there is a function fa,

and vice versa.

Dern.

By the definition in #20*01, f{z (yjr ! ^)] is a function of i/r ! z . Hence the

proposition follows from #10*122.

#20*633. "Whatever possible class a may be, /(a, /3) is true whatever possible

class /3 may be" implies the corresponding statement with a and /3 inter-

changed except in "/(a, fi)."

This is the analogue of #11*07, and follows at once from #11*07 because

/(a, /3) is a function of the defining functions of a and /3.

#20*64. \-:.(a).fa:(a).ga:D.f/3.g/3

Dem.

H . #4*2 . (#2007) . D

h :. (a) ./a : (a) . ga : ^ : (<j>) .f{z (<& ! *)) : (<£) . ^{S (<£ ! *)} =

[#10*14] D :/{2 (yfr \z)}.g {2(yjr !*)}:. D h . Prop

Observe that "/3" is merely an abbreviation for any symbol of the form

£ (i|r ! z). This is why nothing further is required in the above proof.

The above proposition is the analogue of #10*14. Like that proposition,

it requires, for the significance of the conclusion, that / and g should be

functions which take arguments of the same type. This is not required for

the significance of the hypothesis. Hence, though the above proposition is

true whenever it is significant, it is not true whenever its hypothesis is

significant.

#20*7. H:(asr):/a.=B .$r!a [#20112]

This is the analogue of #12*1.

#20*701. V : (a <7) :/ [z
(<f>

! z), x}.=^ x .g ! [z (</> ! *), x\

[The proof proceeds as in #20112, using #1211 instead of #12*1.]
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#20 702. r : (a <jr) :/{x, H (<j> I z)} . ~^ x . g ! {*, 2 (<£ ! *)}

[Proofasin*20'701.]

#20 703. r : (gp) :/{$ (<j> ! *), a (* ! z)} . =*,* . g ! {2 (<£ ! z), 2 (yfr I z)}

Dent.

\-.*lO-3ll.D\-:.f{x l%dl2}.=Xt6 .gl{x l%dl1z}:Dz

<j>lx=xX lx. + lx=x eix.f{X l%d\2}.=x>9 .

^\x=xX \x.^\x=x e\x.g\{X \%d\^) (1)

h.(l).*ll-n-3-341.D

h:.Hp(l). ^:(^x,e).^\x^xX \x.f\x=x d\x.f{X n,d\^}.^^.

{^x,e).<i>\x=xX \x.^\x=x e\x.g\{X \%d\^}:

[*20-l.*10-35]D:/{a(</)!^),^(t^)}-=*^..9J{^!^^^} (2)

h.(2).*10-ll-281.D

Yi.{^g):f{X \%e\z].^ 6 .g\{X \%e\^}:^i

(W) -f{* (<t>
! •*)• * (* *)} =** 9 {* (0 *)» * (* *)} (3)

K (3). #1211. DK Prop

*20'701'702-703 give the analogues, for classes, of #12*11.

#2071. h:.a = /3. = :gla.D
g
.glj3 [#2019]

This is the analogue of #13 01,

This completes the proof that all propositions hitherto given apply to

classes as well as to individuals. Precisely similar reasoning extends this result

to classes of classes, classes of classes of classes, etc.

From the above propositions it appears that, although expressions such as

z (<f)z) have no meaning in isolation, yet those of their formal properties with

which we have been hitherto concerned are the same as the corresponding

properties of symbols which have a meaning in isolation. Hence nothing in

the apparatus hitherto introduced requires us to determine whether a given

symbol stands for a class or not, unless the symbol occurs in a way in which

only a class can occur significantly. This is an important result, which enables

us to give much greater generality to our propositions than would otherwise

be possible.

The two following propositions (#20-8'81) are consequences of #133. The

"type" of any object x will be defined in #63 as the class of terms either

identical with x or not identical with x. We may define the "type of the

arguments to <f>z" as the class of arguments x for which "<f>x" is significant,

i.e. the class &(</>&• v~ </>#). Then the first of the following propositions shows

that if "(f)(i" is significant, the type of the arguments to <j& is the type of a;

the second proposition shows that, if "<£a" and "yjra" are both significant,

the type of the arguments to <££ is the same as the type of the arguments to

yjrz, because each is the type of a. #20*8 will be used in #63'11, which is a

fundamental proposition in the theory of relative types.
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*20 -

8. h : <f>av<>-><f>a . D .

&

(<f>xv~<f>x) — ob{x = a.y/.x^a)

Bern.

K*13-3.*10-11-21.D

I- :: Hp. D :.(f)x v~<£#. =x :x = a.v .x^a:.

[*20'15] D :. £ (<f>xv~<f>x) = x~(x=a .v .x^a)::D\- . Prop

*2081. H :</>av~^>a.T^av~i/ra.D.^(^>a?v~</>a?) = ^(i|ra;v~'^ra;)

l-.*20'8.D!-:Hp.D.^(^v~^)=^(aj = a.v.a;4=a) (1)

I- . *20*8 . D h : Hp . D . $ (yfrxv~y}rx) = cb (x = a . v . x =)= a) (2)

h . (1) . (2) . *10\L2M3 . Comp . D
I- : Hp . D.£(<j>xv~<fix) = $(x = a.v.x^a).$(ylrxV'>>ylrx) = $(x=a.v.x^a).

[*20-24]D . &(</>#v~</>#) ==£(-^r v~i/r#) : D H . Prop

In the third line of the above proof, the use of #10121 depends upon the

fact that the "a" in both (1) and (2) must be such as to render the hypothesis

significant, i.e. such as to render

significant. Hence the "a" in (1) and the "a" in (2) must be of the same

type, by *10"121, and hence by *1013 we can assert the product of (1) and

(2), identifying the two "as."

Since a type is the range of significance of a function, if <f>x is a function

which is always true, z (<f>z) must be a type. For if a function is always true,

the arguments for which it is true are the same as the arguments for which

it is significant; hence z (<j>z) is the range of significance of $x, if (x) . <f>x holds.

Thus any class a is a t}^pe if (x) . x e a. It follows that, whatever function
<f>

may be, x (cj>x v~ <£#) is a type ; and in particular, fc(x = a . v .x^a)is& type.

Since a is a member of this class, this class is the type to which a belongs.

In virtue of #20 -

8, if <f>a is significant, the type to which a belongs is the class

of arguments for which <f>x is significant, i.e. oH {<$>x v~ (f>x). And if there is any

argument a for which <fca and yfra are both significant, then <\>ot and yfra: have

the same range of significance, in virtue of *20'S1.



*21. GENERAL THEORY OF RELATIONS

Summary q/"#2I.

The definitions and propositions of this number are exactly analogous to

those of *20, from which they differ by being concerned with functions of two
variables instead of one. A relation, as we shall use the word, will be under-
stood in extension: it may be regarded as the class of couples (x, y) for which
some given function ty (x, y) is true. Its relation to the function ^ (&, {/) is

just like that of the class to its determining function. We put

*21*01. f{M}1r (x, y)}. = : (a$) : ! (*, y) . =x<y . + (x, y) :/{<£ \ (fi
f $)} Df

Here "$yyjr(x, y)" has no meaning in isolation, but only in certain of its uses.

In #21-01 the alphabetical order of u and v corresponds to the typographical
order of lb and $ in f{x§y]r (x, y)}, so that

f{§H(x>y)}- = :(R<f>):<t>l(x,y).=x, v .ylr(x,y):f{<l>l(!)>
ti)} Df

This is important in relation to the substitution-convention below.

It will be shown that

i.e. that two relations, as above defined, are identical when, and only when,
they are satisfied by the same pair of arguments.

For substitution in
<f>

! (oc, §) and cf> ! ($, Sb), we adopt the convention that
when a function (as opposed to its values) is represented in a form involving
x and

{/, or any other two letters of the alphabet, the value of this function
for the arguments a and b is to be found by substituting a for £ and b for #,
while the value for the arguments b and a is to be found by substituting b
for £ and a for y. That is, the argument mentioned first is to be substituted
for the letter which comes first in the alphabet, and the argument mentioned
second for the later letter; thus the mode of substitution depends upon the
alphabetical order of the letters which have circumflexes and the typographical
order of the other letters.

The above convention as to order is presupposed in the following definition,

where a is the first argument mentioned and b the second:

#21-02. a
{<f>

! (&, §)) &. = .</> ! (a, b) Df
Hence, following the convention,

b {<j> ! (x, £)} a . = . <£ ! (b, a) Df
a{4>l($,x)}b. = .<}>l(b,a) Df
b {tf> ! (£, tb)}a. = .<f>l (a, b) Df

This definition is not used as it stands, but is introduced for the sake of

a {tyf {x, y)}b. = : (a0) : ! (x, y) . =x> y .^(x} y): <f>l (a, b)
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which results from #21 01 02. We shall use capital Latin letters to represent

variable expressions of the form &y<\> ! (x, y), just as we used Greek letters for

variable expressions of the form-£(<£ ! z). If a capital Latin letter, say R, is

used as an apparent variable, it is supposed that the R which occurs in the

form "(R)" or "(giZ)" is to be replaced by "(<f>)" or "(a<£)," while the R which

occurs later is to be replaced by "£$<£ ! {x, y)." In fact we put

(22)./R. = .(*)./{^!(*f y)} Df.

The use of single letters for such expressions as xy<f>(x,y) is a practically

indispensable convenience.

The following is the definition of the class of relations

:

#2103. Rel = 5{(a0).i2 = ^!(a?,y)} Df
Similar remarks apply to it as to the definition of "Cls" (#20*03).

In virtue of the definitions #210102 and the convention as to capital

Latin letters, the notation
t(xRy" will mean "x has the relation R to y." This

notation is practically convenient, and will, after the preliminaries, wholly

replace the cumbrous notation x {scp<f>(x, y)} y.

The proofs of the propositions of this number are usually omitted, since

they are exactly analogous to those of #20, merely substituting #1211 for

#12-1, and propositions in #11 for propositions in #10.

The propositions of this number, like those of #20, fall into three sections.

Those of the second section are seldom referred to. Those of the third section,

extending to relations the formal properties hitherto assumed or proved for

individuals and functions, are not explicitly referred to in the sequel, but are

constantly relevant, namely whenever a proposition which has been assumed
or proved for individuals and functions is applied to relations. The principal

propositions of the first section are the following.

#2115. h i. + ix, y) . =*,„.*(*, y) : = . x$^(x, y) = $$X (x, y)

I.e. two relations are identical when, and only when, their defining functions

are formally equivalent.

#21-31. h :. xfiyjr (x, y) = xyX {oo,y). = '.x {xyyjr (x, y)} y.=x>y .x {xyX (a?, y)} y

I.e. two relations are identical when, and only when, they hold between
the same pairs of terms. The same fact is expressed by the following

proposition:

#21-43. \-:.R = S. = :xRy.=x>y .xSy

#212 21 22 show that identity of relations is reflexive, symmetrical and
transitive.

#21-3. r- : x {xy-+ (x, y)}y. = .+ (x, y)

I.e. two terms have a given relation when, and only when, they satisfy its

defining function.
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*21151. V .(>&$). &§y\r(x,y) = x$<j>\{x,y)

I.e. every relation can be denned by a predicative function. Hence when,

using #21 "07 or #21*071, we have a relation as apparent variable, and are there-

fore confined to predicative defining functions, there is no loss of generality.

*2i-oi. /{^^(^y)}.«:(a0)":0K^y)-^ir-^(^y)=/{0K^«)} Df

On the convention as to order in #21 01 '02, cf. p. 200, and thus relate u, v

to &, § so that

fm^(x> y)}. = :('K <f>): (f>l(x,y).=x>v .ylr(x,y):f{<f>l(v,^} Df

#21-02. a{<f>l(x, £)}&. = .<£! (a, b) Df

#21-03. B,e\ = B{(>a<l>).R = $g<f>l(x, y)} Df

The following definitions merely extend to relations, with as little modifi-

cation as possible, the definitions already given for other symbols.

#21-07. (R) ./R . = .(<]>) .f{x§<j>l(x, y)} Df

#21071. (a«) ./R . = . (atf>) ./{xp<t> l(x, y)} Df

#21072. [(iR) (<f>R)] .f{iR) (<f>R) . = : (a#) : <\>R .
=R . R = 8 :/S Df

#21-08. /{££> (R, 8)} . = : (3<£) : f (R, S) .=R
,
s .<j>l (R, 8) :/{<j> ! (R,H Df

#21-081. P {<j> I (R, S)}Q. = .<f>l (P, Q) Df

The convention as to typographic and alphabetic order is here retained.

#21082. f{R(fR)} . = : (a<£) :fR.=R .<j>lR :/(f ! R) Df

#21 083. R e
<f>

! R . = .<£! R Df

#21-1. h :./{xpf (x, y)}. = : (a0) :
<f>

I (x, y) .=,,„. * (x, y) :/{</> ! (fi, v)}

[*4-2.(*21-01)]

#21-11. r :. ir (x, y) .=*,„. X (x, y) : D :f{%H (x, y)} . = ./(££% (*. V))

[#4-86-36. #10-281. #211]

This proposition proves that every proposition about a relation expresses

an extensional property of the determining function.

#21111. b :.f{<j>l(x,y)} . ^.g{<f>l(x,y)} : D :/{*#$ l(<c, y)\ . =* .g{%$<j>\(x,y)}

[Fact . #11-11-3 . #10-281 . #211]

#21-112. h :. (^) :./{££</> ! (x, y)}.=*.gl [%H ! (a, y)} [*121 . #21-111]

It is #12-1, not #1211, which is required in this proposition, because we

are concerned with a function (/) of one variable, namely
(f>,

although that

one variable is itself a function of two variables.

#2112. h :. (a </>) :. <£ ! (x, y) .=x>y . ^ (x, y) \f[M}+ (<c, y)} . s ./{££</> ! (x, y)}

[#2111. #1211]

This is the first use of the primitive proposition #12-11, except in

*20701-702-703.

#21-13. \-:.y}r(x,y).=Xty.x(^y)--^- $®t 0> y) = *§X 0> V)

[#211. #12-11. #13-195]
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*2114. r :. £$f (x, y) = $$x (*• V) • D : ^ 0> 2/) =*,j/ • % 0*» 2/)

[Proof as in #2014]

#2115. h:.^(*,y).s(M,.x(*.y):s-^^(*»y)-^X(fl?»y) [*2H314]

This proposition states that two double functions determine the same

relation when, and only when, they are formally equivalent, i.e. are satisfied

by the same pairs of arguments. This is a fundamental property of relations

as defined above (#21-01).

#21151. V . (a<^>) . $§f (x, y) =m ! (x,y) [#2115 . #1211]

#2116. l-:(a*):/{^(*,y)}.s./{^!(*,y)} [#2112]

#2117. h :(<}>).fm<l>l(x,y)}.1-fl$H(x,y)} [#2116. #10-1]

#2118. h :. a$4> (x, y) - £y> {x, y) . D :/{£y> (*, y)} . = ./ {£y> (*, y)}

[#211115]

#2119. V :. £y> (*, y) = £y% («, y) . = : (/) :/! £y> (*, 2/) => -/J ^% (*. y)

[#2118 . #1011-21 . #211 . #10-35 . (#1301) . #21112 . #10301]

*2ii9i. v -.. a^r (x, y) = $px (*. y) • = = (/) -f
1
- *Q* (*, y) = •/'• %vx (*. y)

[#211819]

#21-2. r . &y> {x, y) = ££<£ (a;, y) [#21-15 . #4 2]

#21-21. r : £y> (a?, y) = &y> (a?, y) . = .%^,y)=££<£(#,y) [#21-15 . *10'32]

#21-22. h: £>£<£ (a?, y) = £y>(#, y) . £y> (*> y) =^X (*, y) • =>

%<^(^y) = ^x(^y) [#2115. #10-301]

#21-23. r : ^y <£ (x, y) = £y> (a?, y) . £y </> (ar, y) = ££X (#, y) . D .

%f(^y) =^X (^,y) [#21-21-22]

#21-24. H
: £y^ (a, y) = £y </> («, y) . M)x (x> y) = $00 (*> y) • D

&9lr(w,y) = &9x(*'y) [*21-21-22]

#21-3. h:x{xyyjr(x,y)}y. = .^(x,y) [#21102 .*10-4335 .#121 1]_

This shows that x has to y the relation determined by i/r when, and only

when, x and y satisfy yfr (x, y).

Note that the primitive proposition #12-11 is again required here.

#21-31. r :. M)^{x, y) = ££%(*, y) . = :oc {$pyjr(x,y)} y . =,,„ . x [$$X (X>V)) V
[#21-15-3]

#21-32. h . £y [# {&y^ (#, y)} y] = &y> (#, y) [#21-315]

#21-33. Vz.R = ^<f>{x>
y).^:xRy.=Xt y.<\>{x,y) [#21-31-3]

Here R is written for some expression of the form xfity (x, y). The use

of a single capital letter for a relation is convenient whenever the determining

function is irrelevant.

#21-4. H : R

e

Rel . = . (g<£) .R = $g<f>l (x, y) [#203 . (#2103)]

#21-41. r . $$<t> (x, y) e Rel [*21-4'15.1]

#21-42. h.$P(xRy) = R - [#21-315]

#2143. \-:.R = S. = :xRy.=x, y .xSy [*21'15-3]

#20-5*51'52 have no analogues in the theory of relations.
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*21-53. b:.S=R.Ds .(f>S: = .(t>R [*101 .*21*2-18*21 . Coram .*10'ir21]

*21'54. h:.(^S).S = R.<f>S. = .<l>R [#21*18. #10*1 1*23 .#21*2 .#10*24]

*21*55. I- . $y<j> (x, y) = (1R) [xRy .=x, y .<j> (cc, y)) [*21*33*54 . #141]

#21*56. h . E ! (iR) {xRy .=x , y .cf> {x, y)} [#21*55 . #14*21]

#21*57. r :. $$<!> (x, y) = {iR)(fR) .D:g [%§<f> (x, y)j . = . g {(iR) (fR)}

[#14*1. #21*54. #13*183]

#21*58. Vixy<j>(x,y) = (iR){R = $cy$(x,y)} [#4*2 .#10-11 .*2154 . #14*1]

The following propositions are the analogues of#206 ff., and have a similar

purpose.

#21 6. h : (aJ?) mfR. = m~ {(R)

.

~/R] [Proof as in #20*6]

#21*61. h : (R) .fR .D.fS [Proof as in #20*61]

#21 '62. When/i? is true, whatever possible argument of the form ctycj) ! (x, y)
R may be, (R) .fR is true. [Proof as in #20-62]

#21-63. \-:.(R).p v/R .Dzp.v. (R) .fR [Proof as in #20-63]

#21-631. If "fR" is significant, then if # is of the same type as R, "fS" is

significant, and vice versa. [Proof as in #20*631]

#21 632. If, for some R, there is a proposition fR, then there is a function

fR, and vice versa. [Proof as in #20*632]

#21*633. "Whatever possible relation R may be, f(R, S) is true whatever

possible relation S may be" implies "whatever possible relation S may be,

f{R, S) is true whatever possible relation R may be."

[Proof as in #20*633]

#21*64. \-:.(R).fR:(R).gR:D.fS.gS [Proof as in #20*64]

#21*7. h : (g#) :/R . =R . g ! R - [Proof as in #20*7]

#21701. \-:(Rg),:f(R,x).=B, x .gl(R,x) [Proof as in #20*701]

#21*702. h : fag) :f(x, R) .
=
BjX .gl(R, x) [Proof as in #20*702]

#21*703. r : (Rg)':f(R, S).=R>s .gl (R, S) [Proof as in #20*703]

#21*704. I- : (g#) :f(R, a) .
=
Rt

a

. g ! (R, a) [Proof as in #20*703]

#21-705. h : (a#) :/(a, R).= a
,
A .g ! (a, R) [Proof as in #20-703]

#21*71. h:.R = S. = :g\R.D
g
.glS [Proof as in #20*71]

From the above propositions it appears that relations, like classes, have

all the formal properties which they would have if they were symbols having

a meaning in isolation. Hence unless a symbol occurs in a way in which only

a relation can occur significantly, we do not need to decide whether it stands

for a relation or not. This result, like the corresponding result for classes

mentioned at the end of #20, is important as giving greater generality to our

propositions than they would otherwise possess. The results obtained in #20

and #21 for classes and relations whose members or terms are neither classes

nor relations can be extended, by mere repetition of the proofs, to classes of

classes, classes of relations, relations of classes, relations of relations, and so on.



*22. CALCULUS OF CLASSES

Summary o/*22.

In this number we reach what was historically the starting-point of

symbolic logic. The Greek letters used (except </>, yfr, %, 0) are always to

stand for expressions of the form cb
(<f>

I x), or, where the Greek letters are
not apparent variables, ik (<j>x). The small Latin letters may either be such as
have a meaning in isolation, or may represent classes or relations; this is

possible in virtue of the notes at the ends of #20 and *21. We put

:

*22-01. aCl3. = :xea.Dx .xe@ Df
This defines " the class a is contained in the class /3," or " all a's are /S's."

#22-02. ar\P=*&(xea.xe&) Df

This defines the logical product or common part of two classes a and /3.

#2203. avj/3 = $i(a:ea.v.xel3) Df

This defines the logical sum of two classes ; it is the class consisting of all

the members of one together with all the members of the other.

#2204. -a = x(x~ € a) Df

This defines the negation of a class. It is read "not-a." It does not
contain every object x concerning which " x e a " is not true, but only those
objects concerning which " xea" is false ; i.e. it excludes those objects for

which " x e a " is meaningless. Thus it consists of all objects, df the type next
below a, which are not members of a ; but it does not contain objects of any
other type but this.

#2205. a-/3 = an~j3 Df
This definition gives an abbreviation which is often convenient.

The postulates required for the algebra of logic have been enumerated by
Huntington*. In our notation, they are as follows.

We assume a class K, with two rules of combination, namely u and n
;

and we then require the following ten postulates

:

la. a v b is in the class whenever a and b are in -the class.

16. a n b is in the class whenever a and b are in the class.

II a. There is an element A such that a u A = a for every element a.

II 6. There is an element V such that a r\ V = a for every element a.

Ill a. avb = bva whenever a,b, avb and b u a are in the class.

Ill b. ar\b = b r\a whenever a, b, ar\b and b n a are in the class.

* Trans. Amer. Math. Soc. Vol. 5, July 1904, p. 292.
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IV a. a\j(br\c) = (avb)r\(av c) whenever a, b, c, a u b, a u c, b n c, a u (b r\ c),

and (av b) r\(au c) are in the class.

IV b. a c\ (b u c) = (a r\b) \j (a r\ c) whenever a, b, c, a r\ b, a r\ c, b u c, an (6 u c),

and (anb)yj (a n c) are in the class.

V. If the elements A and V in postulates II a and 116 exist and are

unique, then for every element a there is an element — a such that

a\j — a = V and ar\ —a = A.

VI. There are at least two elements, x and y, in the class, such that x =)= y.

The form of the above postulates is such that they are mutually inde-

pendent, i.e. any nine of them are satisfied by interpretations of the symbols

which do not satisfy the remaining one.

For our purposes, "K " must be replaced by " Cls." A and V will be the

null-class and the universal class, which are defined in *24. Then the above

ten postulates are proved below, as follows

:

I a, in *22-37, namely " h . a u /3 e Cls
"

I b, in *22-36, namely " h . a n /3 e Cls
"

II a, in #24*24, namely "KowA = a"

II b, in *24-26, namely " h . a n V = a
"

III a, in *22-57, namely "Kowj3 = j8ua"

III b, in *22-51, namely "h .ar\ fi = fi n a"

IV a, in #22-69, namely " h . (a u yS) n (a w y) = a w (/3 n 7)
"

IV b, in #22-68, namely " h . (o o /3) u (a n 7) = a n (^ u 7)
"

V, in #24-21-22, namely "h.an-o = A" and "r. aw _a = V"
VI, in #24-1, namely " r . A + V "

Hence, assuming Huntington's analysis of the postulates for the formal

algebra of logic, the propositions proved in what follows suffice to establish

that this algebra holds for classes. The corresponding propositions of #23

and #25 prove that it holds for relations", substituting Rel, o, r\, A, V for

Cls, u, n, A, V.

The principal propositions of the present number are the following

:

(1) Those embodying the formal rules:

#2251. Kar»£ = y8na

#22-57. h-.au/8rs0ua

These embody the commutative law.

#22-52. h . (a n /3) n 7 = a r\ (/3 n 7)

#22-7. h . (a u /3) u 7 = a u (/? u 7)

These embody the associative law.

#22*5. h . a r\ a = a

*2256. h . a u a = a

These embody the law of tautology.
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#2268. h . (a n £) u (a n 7) = a n (# u 7)

#22 69. K(«u
j
8)n(au 7) = ou(^n 7)

These embody the distributive law. It will be seen that the second

results from the first by everywhere interchanging the signs of addition and
multiplication.

#22 8. I- . - (- a) = a

This is the principle of double negation.

#22 81. h:aC/3. = .-/3C-a
This is the principle of transposition.

(2) Other useful propositions :

#2244. h:aC/3./3C 7 .D.aC7
*22441. h : a C ft. xea.D.xeft

These embody the two forms of the syllogism in Barbara.

#22 62. \-:aCft. = .auft = ft

#22621. h:aC/3. = .an/3 = a

These two propositions enable us to transform any inclusion (a C ft) into

an equation.

#22-91. h.au/3 = au(/3-«)

I.e. " a or ft " is identical with " a or the part of ft which is excluded

from a."

*22-01. aCft. = :xea.Dx .xeft Df
#2202. anft = x(xea.xeft) Df
#22 03. auft = x(xea.v.xeft) Df
#2204. -a --=x(x~ea) Df
#2205. a-ft =an~ft Df
#221. \-:.aCft. = :x € a.Dx .xeft [*4-2 . (#22-01)]

#22-2. I- . a n ft = % (x € a . x e ft) [*20'2 . (*22'02)]

#22-3. y-.avft = x(xea.v.xeft) [#20*2 . (#22*03)]

#22-31. K-« = ^(^ e o) [#20*2 . (#22-04)]

#22-32. h.a-ft = $(xea.x~€ft) [#20*2 . (#22-05) . *22'2 . *20"32]

#22-33. \-:x€ar\ft. = .xea.xeft [#203 . *22'2]

#22-34. \-:.xea\jft. = :xea.v.wep [#203 . *22'3]

#22-35. \-:xe-a. = .x~ea [#203 . #22*31]

#22-351. K-a=f=a

Dem.
h.*22-35.*5-19.Dt-:~{a;e-a. = .a;ea}:

[#10-11] Db:(x):~{xe-a. = .xea}:

[#10251] 0\-:~{(x):xe-a. = .xea}:

[*20-43.Transp] Dh:~(-o = a):3h. Prop
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This proposition is used in proving that the null-class is not identical

with the class containing everything (#24
-

l), which is used to show that at

least two classes exist. Our axioms do not suffice to prove that more than

one individual exists, but they prove the existence of at least two classes and

at least two relations.

#22*36. Kan/3eCls [#20-41]

#22-37. KauygeCls [#2041]

#22-38. h . - a e Cls [#20-41]

#22-39. h . z (<f>z) n % (yftz) = z(<f>z. yfrz)

Dem.

h . #22-33 . D h : x e z (<f>z) n 2 {y\rz) .=.xez (<f>z) .xez (yfrz) .

[#20-3] = .<f>x.^x (1)

h . (1) . #20-33 . D h . Prop

#22-391. h .z{<f>z)\j^ (yjrz) = /

z{<t>zv ^z) [Similar proof]

#22-392. \-.-z (<f>z) = z(~<f)z) [Similar proof]

*22'4. H :.aC/3./3Ca. =:xea. =x . x eft

Dem.

h.*22-l . D b :: aC ft . ~ : x e a . Dx . x e ft :. ft C a . = : x e ft . Dx . x e a :.

[#4
-

38] D b :: a C ft . ft C a . = :. x e a . Dx . x e ft : x e ft . "Dx . x e a :.

[#10-22] =:.xea.=x .X€ft::D\-.Frop

#22-41. b:aCft.ftCa. = .a = ft [#22'4 . #20-43]

#22-42. h.aCa [Id. #10-11]

#22-43. H:a^/3Ca [#3-26 .#1011]

#22-44. r-:aC/3./3C 7 .D.aC 7 [*10%3]

This is one form of the syllogism in Barbara. Another form is the following

:

#22-441. bzaCft.xea.D.xeft [#101 . Imp]

#22-45. t- : a C £ . a C 7 . = . a C£ n 7

Dem.

b . #22"1 .Db:.aCft.aCy. = :xea.Dx .xeft:xea.Dx .x€y:

[#10*29] =:xea.Dx .xeft.X€<y:

[*22-33.*10-413] =:xea.Dx .X€&ny:.Dh. Prop

#22-46. bzxea.aCft.D.xeft [#22-441 . Perm]

#22-47. l-:aC 7 .D. anftCy [2243;44]

#22-48. h-.aCft.D.anyCftny [#10-31]

#22-481. \-:a = ft.D.any = ftny

Dem.
b . #22-41 . D :. Hp . D : a Cft . ft C a :

[#22*48] DianyCftny.ftnyCany:
[#22-41] D:an7 = /3n 7 :.DKProp



SECTION C] CALCULUS OF CLASSES 209

*2249. \-:aC0.yC8.D.anyC/3n8 [*1039]

$22*5. h . a n a = a.

Dem.
V . $22*33 . D h :. x e a c\ a . = : x e a . x e a :

[*4-24] = :#ea (1)

h . (1) . *10'11 . *2043 . D H . Prop

The above is the law of tautology for the logical multiplication of classes.

*22 51. Kan£ = /3na [*22'33 . *43 . *1011 . *20'43]

*22 52. h . (a n /3) n 7 = n (0 n 7) [*2233 . *4'32 . *1011 . *2(V43]

Thus logical multiplication of classes obeys the commutative and associative

laws. References to *2233-34-35 and to *2043 will in. future often be omitted.

*22 53. onj3n 7 = (ani3)ft7 Df

This definition serves merely for the avoidance of brackets.

*22-54. h:.a = /3.D:aC7. = .y9C 7 [*20'18]

*22-55. \-z.a = /3.D:yCa. = .y.C/3 [*2018]

*22551.\-;a = /3.D.auy = /3uy [*10-411]

*22 56. Kaua= « [*4-25 .*10'11]

The above is the law of tautology for the logical addition of classes.

*22 57. Kau£=£ua [*4\31 . *10-11]

*2258. \-.aCav/3./3Ca\jj3 [*l'3.*2-2]

*2259. h:aCy.0Cy. = . a yjj3Cy

Dem.

K*221 .D h :z Hy . = :. x e a . Dx . x e y : x e fi . % . x e y 1.

[*10-22] ^z.(x}z.X€a.D.xeyzxe/3.D.x€yz.
[*4*77.*10-271] = :. (x) :. x e a . v . x e/3 : D . x ey :.

[*22-34.*10-413] =:.(x):x6ayj/3.D.xey::3\-. Prop"

The analogue of *4*78, i.e.

aCfi.v.aCy. = .aCl3yjy
is false. We have only

aC0.v.uQy:D.aCfi\jy.
A similar remark applies to the analogue of *4'79. Cf. *22'64'65.

*22*6. \-:.xea\J@. = :aCy.@Cy.Dy .x€y

Dem.

h .*22-59.DH:.aC7.y3C7.D:a;6auy8.D.a;e7:.
[Comm] Dhz.xeav fi.DzaCy.ftCy. D .xey:.

[*10-1121] D h :. x e a u /3 . D : a C 7 . /3 C 7 . Dv . x e 7 (1)

h . *101 . D h :. 0C7 . C7 . Dy . x e 7 : D : aC a u /S . £ C a u£ . D . # e

a

v,£ :

[*2258] D:xea\j/3 (2)

r . (1) . (2) . D H . Prop

R&W I 14
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*22-61. \-:ctCj3.D.aCl3uy [#22-44-58]

#2262. h:aCj8. = ,auj8 = j8

Bern.

Y . #472 . D Y ;: x e oc . D . x e ft : = :. x e a .v . x e @ : = . x e ft :.

[*22-34] =i.x<-a\j/3. = .a;e/3 (1)

f-.(l).*10-271.Dr:.: «C/3. = i.xea v £ . -^.ae/S :.

[#20-43] = :.au£ = £::DI-.Prop

#22 621. h:aC/3. = .an^ = « .[#4-71]

The proof proceeds as in #22*62. The proposition #22*621 is one of the

most useful propositions in the present number.

#2263. h:au(an
J8) = a [#4*44]

The process of obtaining #22*63 from #4*44 is of the same kind as the

process employed in the proofs that have been written out in this number.

Hence only #4*44 is referred to. We shall similarly restrict references for

later propositions in this number. The process is always roughly as follows

:

p, q, r are replaced by sea, xefi, xey; then #10-11 is applied, and such

further propositions of #10 as may be required, together with #2233 34*35.

*22'631. Kfln(au/3) = o [#22*58*621]

#22*632. h:a = /S.D.a = ar.
/
S [#22*42*621]

#22 633. H:aC
i
8.D.au7 = (an/3)u 7 [#22*551*621]

#22*64. h:.aC7.v./3C 7 :D.arv/3C7

Dem.
h . *22*47*51 . D h ; a C 7 . D . a n /3 C 7: /3 C 7 . D . a n /3 C 7 (1)

K (1). #4*77. DK Prop

The converse of this proposition does not hold, because the converse of

#10*41 does not hold.

#22 65. h:.aCy3.v.aC 7 :D.aC/3u7 [*22*61*57 .#477]

Here again the converse is untrue.

#22-66. h:aC
i
8.D.«u 7 C i

8u 7 [#238]

#2268. h ^ (a n 0) u (a n 7) = a n (£ v 7)

Dem.

f- .#22*34. D V :: xe [(« n ^) u (a r\ 7)} . = :. ocean @. v .xeOLr><y\.

[#22*33] = :.xea.xe/3.v.xea.xey:.

[#4*4] = :. xea: xe (3 .v ,xe<y :.

[#22*34] = :.xea.xe/3 U7 :.

[#22-33] =:.xean(/3vry) (1)

r- . (1) . #1011 . #2043 . D r- . Prop
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#22*69. K(«uj3)ft(au7) = au(j3ft7) [Similar proof, by #4-41]

The above propositions #22-68"69 are the two forms of the distributive

law. Note that either results from the other by interchanging the signs of

addition and multiplication.

*227. K(auj3)u 7 = ou(i3u7) [#4-33]

#22 71. «uj3u7=(ou^)u7 Df

#2272. h:aC 7 ./3CS.D.au/3C 7 uS [*3'48]

#2273. h:a = 7 .j8 = S.D.av,/3 = 7 uS [#10-411]

#2274. h:on
i
8C7.aft7C

i
8. = .ani3 = aft7

Dem.

b . #22*43 . #473 . Db:ar\/3Cy. = .an/3Ca.an/3Cy.

[#2245] =.an|9Can7 (1)

h .(l)X'
/3

- Dh:an 7 C/3. = .an 7 Can /
6f (2)

P> 7
h . (1) . (2) . *4-38 .DI-:an/SC 7 .an 7 C/3. = .an/3Can 7 .ar. 7 Can y

g.

[#22-41] = .an£ = an 7 :Dh. Prop

#228. h.-(-a) = a [#413]

#22-81. H:aC/3. = .-/3C-a [#4"1]

*22811. h:aC-^.E.^C-a [#41.*22-8]

#22-82. h:anySC 7 . = .a- 7 C-/3 [#414]

#22-83. H:a = /3. = .-a = -/3 [#4-11]

#22-831. l-:o = -/3.E./3 = -a [#412]

#22-84. K-(an/3) = -av-/3 [#4-51]

#22-85. Kan£ = -(-av-£) [#22-84-831]

#22-86. K-(-an-£) = au/8 [#4-57]

#22-87. h.-aft-j8 = -(«u|8) [*22'86831]

*22-8485-86-87 are De Morgan's formulae.

#22-88. h. (a?), are (aw -a) [#2-11]

This is a form of the law of excluded middle.

#22-89. b . (a?) . *~ e (a - a) [*3'24]

This is a form of the law of contradiction.

#229. K(av/3)-/3 = a-/3 [#5-61]

#22-91. r-.au/3 = au(£-a)

Dem.

b . #5 -63 . DH:.#ea.v.#e/S:E:#ea.v .xe/3 . ar~ea :.

[*22-33-34-35] Dh :. areau/3.s:area. v. are (£-<*):

[#22-34] =:ar€Ou(/9-o) (1)

h . (1) . #10-11 . #20-43 .Db. Prop

14—2
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*2292. H:aC£.D./3 = av(/3-a) [#22'91*62]

*22-93. r-.a-/9 = a-(an/3)

Dem.

I- . #4*73 . Transp . D I- :.#ea. D :#~e/3.= .^(aiea.xe ft).

[*22-33] E.^e^n^):.
[#5'32] D I- ;.3cea.x~el3 . = .xea.x~e(an ft) :.

[*22'35-33] :>r:#ea-£. = .a e a-(an/3):

[*10-11.*2043] Dh.a-/3 = a-(an/9).Dh.Prop

*22'94. r:(a)./a.= .(a)./(-a)

Dem.
K*10\L. Dh:Ya)./a.D./(-a):

[*1 0-11-21] Dh:(a)./«.D.(a)./(-a) (1)

h . *101

.

D h : (a) ./(- a) . D ./{_ (- «)}

.

[*22'8.*20\L8] 3-/«:
[10-11-21] Dh: (a) ./(-a). >.(«)./a (2)

h . (1) . (2) . D h . Prop

This proposition is used in connection with mathematical induction, in

*90-102, which is required for the proof of *90132, which is one of the

fundamental propositions in the theory of mathematical induction.

*22-95. H:(aa)./a.s.(aa)./(-a)

Dem.
K*22-94.Dh:(a).~/a. = .(a).~/(-a) (1)

H . (1) . Transp . *20'6 . D I- . Prop



#23. CALCULUS OF RELATIONS

Summary of #23.

The definitions and propositions of this number are to be exact analogues

of those of #22. Properties of relations which have no analogues for classes

will not be dealt with till Section D. Proofs will be omitted in the present

number, as they are precisely analogous to those of analogous propositions in

#22. In this number, as always in future, capital Latin letters stand for

expressions of the form ob§<f> ! (x, y), or, where they are not being used as

apparent variables, for &$<£(#, y). The principal propositions of this number
are the analogues of those of #22.

#2301. RG.S. = zxRy.3x>y .xSy Df
#2302. Rf>S= $§(xRy.xSy) Df
#2303. RvS = ob§ (xRy . v . xSy) Df
#23-04. ±R = $p{~ (xRy)} Df
#2305. R^-S=Rn^S Df

Similar remarks apply to these definitions as to those of #22.

#23-1. h :. R Q S . = : xRy . Dx>y . xSy

#23-2. \-.RnS = x-$ {xRy . xSy)

#23-3. \-.RuS= x~§ (xRy . v . xSy)

#23-31. h . -^R = ty {
co (xRy)\

#23-32. I- . R-^S= x§ [xRy . ~(xSy)}

#23-33. \-:x(RnS)y. = .xRy.x8y
#23-34. f- :. x (R \j 8)

y

. = : xRy .v.xSy
#23 35. h : x-^Ry . = .~(xRy)
#23-351. h.-R^R
#23-36. KiZntfeRel
#23-37. KiZotfeRel
#23-38. h.^-ReUel

#2339. h . $$4> {x, y) n $$+ (x, y) - £$ {£ (*, y) . + (x, y)}

#23-391. r . x$<f> (x, y) c; xpyjr (x, y) = $$ {<f> (x,y).v.yfr (x, y)}

#23-392. V . - x$<f> (x, y) = $$ {
~ $ (x, y)}

#23-4. V \.R QS.SQR. = :xRy. =*,„ . xSy

#23-41. \-:RGS.SGR.= .R = S
#23-42. b.RGR
#23-43. \-.RnSdR
#23-44. \-'.RGS.SGT.D.RGT
#23441. b-.RQS.xRy.O.xSy
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*2345. biRQS.RQT.D.RQSnT
*23'46. H : xRy .RdS.D.xSy
*2347. \-:RGT.D.R*SGT
*2348. \-:RGS.D.RnTGSnT
*23481. ^:R = S.D.RnT=SnT
*2349. \-:PGQ.RGS.D.PnRGQr*S
*23-5. \-.RnR = R
*2351. \-.RnS=SnR
*23 52. K(EnS)nT=En(/SnT)
*2353. RnSnT=(RnS)nT Df

*2354. h:.P = £.D:PGr. = .#GT
*2355. h:.# = £.:>:rGP.==.TG£
*23551. h:P = S.:>.PiyT=#vyr
*23 56. \-.RvR = R
*23 57. \-.RvS = SvR
*2358. V.RZRvS.SGRvS
*23'59. \-:R<iT.S(iT. = .RvSGT
*236. \-:.x(RvS)y.= :RGT.S<iT.3T .xTy

*23 61. hiPGS.D.PGSc/T
*23 62. H:PG,Sf. = ..Rvy,Sf=£

*23621. h:PG£. = .Pn£ = £
*23'63. h.Rv(RnS) = R
*23631. h.E/S(Ea>Sf) = E
*23632. \-:R = S.D.R = RnS
*23 633. h: JRG*S.D.^c/T= ( JRniSf)oT

*2364. \-:.RGT.v.SGT:D.RnS<iT
*2365. hr.EG^.v.EGTzD.i^G^vyr
*23 66. \-:RdS.D.RvT<iSvT
*23'68. h.(R*S)v(RnT) = Rn(SvT)
*2369. h .(Rv S) * (Rv T) = R v (S n T)

*237. b.(RvS)vT=Rv(SvT)
*2371. RvSvT=(RvS)vT Df

*2372. h-.PGE.QGS.D.PvyQGEc/S
*23 73. h:P = P.Q = >Sf.D.PvyQ = Pvy^
*2374. \-:PnQGR.PnR<lQ. = .PnQ =PnR
*23& h.-(-P) = P
*2381. hziZGS.EE.-SG^-iZ

*23811. h:PG-#. = .£G^J2
*2382. h^nSGr.^.P-TG^S
*2383. h:P = £. = .-^-E=-£
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*23 831. h:R = -S. = .S =-R
*2384. b.-(RnS) =-R^-S
*23-85. \-.RnS =-(-^Rv-S)

*2386. \-.^(-R^^8) = RvfS

*2387. \-.-Rn-L.S =-(RvS)
*2388. \-.(x,y).oc(Rv-^R)y

*23 89. \-.{x,y).~\x(R-R)y]

*23 9. \-.(RvS)-S=R-S
*23 91. \-.R\jS = Rv(S^-R)
*2392. b:RGS.D.S = Rv(S-R)
*23 93. h . R-S = R-(R * #)

*2394. \-:(R).fR.==.{R).f(-R)

*23 95. Ma^./tf.EE.^)./^!?)



*24. THE UNIVERSAL CLASS, THE NULL-CLASS, AND THE
EXISTENCE OF CLASSES

Summary q/"#24.

The universal class, denoted by V, is the class of all objects of the type
which, in the given context, is being denoted by small Latin letters, i.e. of

the lowest type concerned. Thus V, like " Cls," is ambiguous as to type. Its

definition is as follows :

*2401. V = &(# = «) Df

Any other property possessed by everything would do as well as " x — x,"

but this is the only such property which we have hitherto studied.

The null- class, denoted by A, is the class which has no members. Like

V, it is ambiguous as to type. We use the same symbol, A, for null-classes

of various types ; but these null-classes differ. The type of A is determined

by that of the terms x concerning which "aseA" is false : whatever x may be,

" xeA." will not represent a true proposition, but unless x is of the appropriate

type, " x e A" will be meaningless, not false. Thus A is of the type next above

that of an x concerning which "x e A" is significant and false. The definition

of A is

*2402. A = -V Df

When a class a is not null, so that it has one or more members, it is said

to exist. (This sense of "existence" must not be confused with that defined

in *1402.) WT
e write " g ! a " for

" a exists." The definition is

*2403. a!a. = .(ga;).#ea Df

In the present number, we shall deal first with the properties of A and V,

then with those of existence. In comparing the algebra of symbolic logic with

ordinary algebra, A takes the place of 0, while V combines the properties of

1 and of oo .

Among the more important properties of A and V which are proved in

this number are the following

:

*241. h.A+V

I.e. " nothing is not everything." This is useful as giving us the existence

of at least two classes. If the monistic philosophers were right in maintaining

that only one individual exists, there would be only two classes, A and V,

V being (in that case) the class whose only member is the one individual. Our
primitive propositions do not require the existence of more than one individual.
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*24102103 show that any function which is always true determines the

universal class, and any function which is always false determines the null-

class.

*24 2122 give forms of the laws of contradiction and excluded middle, namely
" nothing is both a and not-a " (a r» — a = A) and " everything is either a or

not-a "(au-« = V).

#242324 2627 give the properties of A and V with respect to addition and

multiplication, namely : multiplication by V and addition ofA make no change

in a class (#24-2624) ; addition of V gives V, and multiplication by A gives A
(#24-27-23). It will be observed that the properties of A and V. result from

each other by interchanging addition and multiplication.

#243. h:aC/9. = .a-/3 =A
I.e. " a is contained in /S " is equivalent to " nothing is a but not j3"

*24311. h:«C-/3. = .an/3 = A
I.e. " no a is a /3

" is equivalent to " nothing is both a and ft."

*24'411. h:j8C«.D.B= )8u(a-j8)

#24 43. h:a-/3Cy. = .aC#v 7

As a rule, propositions concerning V are much less used than the corre-

lative propositions concerning A.

The properties of the existence of classes result from those of A, owing to

the fact that a ! a is the contradictory of a= A, as is proved in #24-54. Thus
we have, in virtue of #243,

#2455. h~(aCi8). = .a!a-i3
I.e. " not all a's are /9's " is equivalent to " there are «'s which are not /3's."

This is the familiar proposition of formal logic, that the contradictory of the

universal affirmative is the particular negative.

We have

#24 56. h:.a!(ouj8). = :a!o.v.a!j8-

#24 561. H:a!(an/3).D.g!a.a!/3
I.e. if a sum exists, then one of the summands exists, and vice versa ; and

if a product exists, both the factors exist (but not vice versa).

The proofs of propositions in the present number offer no difficulty.

#24-01. V = £(a> = a?) Df

#2402. A = -V Df

*2403. a !a. = .(a*).

#

6 a Df

#241. b . A + V [*22-351 . (*24'02)]

*24-101. h . V = - A 022-831 . (*24*02)]
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*24102. I- : (x) . (f>cc . = . 2 (<f>z) = V
Dem.

t- . #1315 . #5501 . D h :. (fyx . = : (fix . = . x = x :.

[#1011-271] D h :.(x). <j>x . = : (x) : (j>x . = . x = x :

[*20- 15] = : 2 (<£*) = S (ar = a;) :

[(#24-01)] = : $ (</>*) = V :. D h . Prop

Thus any function which is always true determines the universal class,

and vice versa.

#24103. h : (x) .~ <j>x . = . 2 (<f>z)
=-- A

Devi.

V . #24102 . D h :. <» -~</># = : 2(~£s) = V
[*22-392] = :-2(^) = V
[#22-831] =:t(0s) = -V:
[(#24-02)] = : £ (</>*) = A : . D I- . Prop

#24104. h.(ar).ajeV

Dem.
\-.^20S.D\-:xeY . = .x^x (1)

1- .(1) . *13'15 . #1011-271 .31-. Prop

*24105. h .(x).x~eA

Dem.
h. #22-35. Dh:a;€A. = .a5~eV:

[#412] DH:«;~eA. = .tfeV (1)

K (1) . *1011-271 . *24-104< . D h . Prop

#2411. K(o).oCV
Dem.

h . #24-104 . #101 . DKareV.
[Simp] "Dh : xea.D .xeY :

[*10-11.*22-1] Dh:aCV:
[#10-11] D h : (a) . a C V : D I- . Prop

#2412. K(a).ACa
Dem.

V . #24105 . #10-1 . DK«~eA.
[#2-21] Dr-:a?eA.D.a?ea (1)

h . (1) . #1011 , #22-1 . D t- . Prop

#2413. h:a=A. = .aCA
Dem.

V . #2412 . #473 .Dh:aCA. = .aCA.ACa.
[#22-41] = . a = A : D h . Prop

#24-14. r- : (a?) . x e a . = . a = V

h. #24-102. D [-:(*). are a. = J(ajeo) = V.
[#20-32] = . a = V : D r- . Prop
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#24141. hVCa. = .V = a

Bern.

Y . #2411 . #4-73 .Dh:VCa. = .aCV.VCa.
[#2241] = . a = V : D h . Prop

#2415. V ;(x).x~ea.= . a = A
Bern.

V . #24103 vDh:(*).^efl. = J(*ea) = A.
[#20-32] =.a = A:Dh. Prop

#2417. r:a = V.=s.-a = A [#22-83 . (#24-02)]

#24-21. h.an-a = A [#24103 . *22\89]

#24-22. Kav,-a = V [*22'88 . #24102]

#24-23. KanA = A [#2412 . #22621]

#24-24. h.auA = a [#2412 . #2262]

The above two propositions (#24-23-24) exhibit the algebraical analogy of

A to zero.

#24-26. K«nV = « [#22-621. #2411]

This exhibits the analogy of V to 1.

#24-27. h.awV = V [#22-62 .#2411]

This exhibits the analogy of V to oo .

#24-3. h:aC/3. = .a-/3 = A
Bern.

V . #4-53-6 . D
h : . x e a . D . x e ft : = : ~ (x e a . x<^> e ft) :

[#22-35] = :~(xea.xe-ft):

[#22-33] = :~(xea-ft)
h.(l).*1011-27l.D

h : a C ft . = . (x) .~ (x e a — ft) .

[#2415] =.a-/3 = A.OKProp
The above proposition is very frequently used.

#24-31. h:aC/3. = .-av/3 = V
Bern.

r- .#4*6 .
~2>\- •..xeoL.'S ,xe ft : = zx^€a..v .xe ft i.

(1)

[#1011-271] Dh:. a C/S.=
[#22-35] =
[#22-34] =
[#24-14] =

(x) : x~ea . v .xe ft :

{x) zxe — a.v.xeft:
(x) . x e (— a u ft) :

-au/3=V:.Dh.Prop
This proposition is the correlative of #24-3, but, unlike that proposition,

it is not useful in the sequel. Every proposition concerning A has a corre-

lative concerning V, but we shall often not give these correlatives, since they
are seldom required for subsequent proofs.
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*24311. f-:aC-/3. = .an/3= A
Bern.

h . *22-35 .Dh:.xea.D.X€-l3: = :x€a.D.x^e0:
[*4"51-62] = :~(xea.xe0):
[*22-33] =:~(* € ar>/3) (1)

> . (1) . *10 11271 . D h : a C - /3 . = . (x) . #~e a n .

[*24-15] = .an/3 = A:Dh.Prop
*24312. H : -a C/3 . = . a u /3 = V

h . *22-35 . D H :. - a C /S . = : a?~e a . D, . a? e £ :

[*4*64] = :(#):#ea.v.tf;e/3:

[*22:34] = :(x).xeav/3:

[*24-14] =:aw/3 = V:.DH.Prop

*24 313. h:an/3 = A. = .a = a-/3 [*24-311 . *22"621]

*2432. H:.oui9 = A. = .a =A.^ = A
Dem.

V . *2413 .Dh:.«u
J
8 =A.= :au

i
9CA:

[*22-59] =:aCA./3CA:
[*24'13] =:a=A./3 = A:.D!-.Prop

*2433. h:a = V.D.aw/3 = V

I- . *22551 .Dh:Hp.D.av£ = Vu/3
[*24-27.*22-57] = V:Dh.Prop

*24'34. h:a = A.D.an/3 = A [*22-481 . *24-23]

*2435. H:a = V.D.an/9»/S [*22481 . *24"26]

*2436. h:o = A.D.au/3 = /9 [*22551 . *2424]

*24 37. \-:.ar\/3 = A. = :ocea.y€/3.DXty.a:^y

Dem.

h.*2415 .Dh:.an/9 = A.== : (x) . x~e(a r\ /3) :

[*22-33] =:(*).~(a;e«.*6/9):

[*13- 191] = :(x,y):x = y.D.~(x€a.ye/3):
[Transp] = : (x, y) : x e a . y e @ . D . x j= y :. "D \- . Prop

*2438. h:.an/3 = A.D:a4=yS.v.a = A.y8=A
Dem.

h . *22481 .Dh:ar>£ = A.a = /3.D.ar>a = A.
[*22-5] D.a = A.
[*20-23] Z>.a = A./3 = A (1)

h . (1 ) . Exp . D h : . a n /3 = A . D : a = . D . a = A . £= A :

[*4-6] Z>:a + /3.v.a = A./3 = A:.DKProp
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*2439. H.an/8 = A. = :#ea.Da..a:~e£ [*24'311 .*2235]

*244. h:an/3 = A. = .(au/3)-a = /3. = .(au£)-£ = a

Dem.
\-

. *24-31l.Dh:an0 = A. = .0C-a.
[*22 621] s./3-a= /3.

[*22-9] =.(au
/
8)-a =

/
S (1>

k(l)^. Dh:/3na = A. = .08u«)-/3 = «:

[*22-51-57] Dh:an/3 = A. = .(au/3)-/3 = o (2)

h . (1) . (2) . D h . Prop

*24401. h : #C a . D . (£ u 7) - a = 7 - a

Dem.
K*2268. DI-.(^u 7)-a = (/3-a)u(7 -a) (1)

K*243. DH:Hp.D.
/8-a = A (2)

h . (1) . (2) . D h : Hp . D . 08 u 7) - a = A w
(7 - a)

[*2424] = 7 -a:DKProp
*24402. \-:an0=A..t-Ca.r}C0.D.%r\ v = A

Dew.
h . *22'49 . D h : Hp . D . £ n 77 C a n /3 .

[*22-55] D.^n^CA.
[*24-13] D.^ V = A:D\-. Prop

*2441. h . a =* (a n 0) w (a - /S)

Dem.
K *22-68. D K (a n £)«(«-£) = an OS u-,8)

[*24-22] =«nV
[*24-26] = a.DKProp

*24411. h:/3Ca.D.a=
i
8u(fl- J8)

Dem.

H..*22-633^|^-^.DI-:y8Ca.D./3w(a-
/8) = (an/3}u(a-/3)

[*24-41] '
' = a: Dr. Prop

*24412. h:y8Ca. 7 C/3.D.(a-/8)u(/3- 7) = a- 7
Dem.

h.*24-41.DH:Hp.D.(a~
/
3)w(y8- 7) = (a-^n 7)w(a-/3- 7)u(i

8- 7)

[*24-3-23] = (a- - 7) u (0 - 7)
[*22-68] =={(a-/3)u/3}-7
[*24-411] =a-7:DI-.Prop
This proposition is used in *234*181, in the theory of continuous functions.

*24'42. h:an/8C7.a-/3C7. = .aC7
Dem.

r . *22-59 .3\-:an0Cv.a-0Cry.==.(cLr\0)v(a-0)Cy.
[*24-41] =.oC7:Dh.Prop
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#2443. h:«-/3C7. = .aC/3w 7

Dem.

h . #5'6 . "D h :: x e a . x<^> e /3 . "D . x e y : = :. x e a. D : x e ft . v . % e y :.

[#22-35*33] D h :: x e a — ft . D . x e y : = :. x e a . D : x e /3 . v . x e y :.

[*22-34] =.:.««.D.«e(/3u 7) (1)

h.(l).*10-ll-271.Dh.Prop

*24431. \-.(cHJy)o(/3v-y) = (anj3)u(<x-y)v(/3ny)

This and the following proposition are lemmas for #24"44.

Dem.

V . #22-68 . D V . (a v y) n (/3 u - 7) = {(a u 7) n £} v, {(a u 7) r\ - y]

[*22-68] =(an/3)u(7 n/3)vj(a - 7)u(7 - 7)

[#24r21] =• (a n /3) v (y n /3) u (a - 7) u A
[*24-24] =(an/3)v,(7 n£)u(a- 7)

[#22-51-57] = (a n £) u (a - 7) u (£ n 7) . D H . Prop

#24432. h.(a-7)u(j8n7) = (on
i

8)u(a-7)u(
J

8n 7)

h . *24-22-35 . D h . a n /3 = (a n /3) n (7 u - 7)

[#22-68] -(an
J
8n 7)u(an/3- 7)

[#22-51] =(ar\fir\y) u (a n -70 /3) .

[#22-551] D K (a n /3) u (a — 7) = (a r> /? n 7) v (an — 7 n /3) u (a - 7)

[#22-63] =(any3r>7)o(a-7)

[#22-57] =(a-7)u(an/8r»7).

[#22-551] D h . (a r> /3) u (a - 7) u (/3 n 7) = (a- 7) u (on /3 r> 7) w (/3 n 7)

[#22-63] = (a - 7) v (£ n 7) . D r- . Prop

#24-44. I- . (a u 7) n (/3 u - 7) = (a n - 7) u (/3 n 7) [#24-431 -432]

#24*45. I- : (a n 7) u (/3 - 7) = A . = . /3 C 7 . 7 C - a

Dem.

h . #24-32 . D I- : (a n 7) v (/3 - 7) = A . = . a n 7 = A . /3 - 7 = A .

[#24-3-311] =. 7 C-a>./3C7:Dh.Prop

#24-46. f- : (a n 7) u (/3 - 7) = A . D . a n /3 = A

Dem.
h . #24-45 . #2244 . D H : Hp . D . /3 C - a .

[#22811] D.aC-/3.

[#24-311] D.an/3 = A:DKProp

The following propositions, down to #24'495 inclusive, are lemmas inserted

for use in much later propositions, most of them being only used a few times.
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*2447. !-:ar»/3 = A.au/3 = 7. = .aCy./3 = 7-a
Dem.

K*24-311.DI-:an/3=:A. = ./3C-a (1)

h . *2241 . DF:au,8=7. = .au/3C7.7Cav;/3.

[*22-59.*24-43] =.aC7.^C 7 . 7 -aCi3 (2)

K(l).(2)Oh:a«£ = A.au/8 = y.=s.£C-a.aC7.
/
8C7.y-aC£.

[#4'3] =.aCy.^Cy.y8C-a.y-aC/9.
[#22-45] = .aCy./8Cy-a.y-aC£.
[#22-41] =.aCy.

/
S = y-a:Dh.Prop

#24-48. h:.|: Ca.fCa.77C/3.7/'C/S.an/3 = A.D:
|wi7 = fwV = ? = !'.

17 = V
Dem.

K #22-73. Dh:f = f .i7 = V.3>.|w^ = f «V (1)

F . #22-481

.

Dh:.£v V = £'v V'.D:(£v v)na = (£'v v')na:

[#22-68] D:(|na)w(i
7
na)=(fn«)u(Vna) (2)

h. #22-621. DH:fCa.D.fna=s f:|'Ca.D.fna=f:
[#347] Dh:fCa.fCa.D.fna = f.fno = f (3)

h . #22-48 . Dh:,Cj8.D.j?naConj8:
[#22-55] Dh:97C/3.an^=A.D.^naCA.
[#24-13] D.7;na = A (4)

Similarly h:i/'C^.an/8 = A.D.V«a = A (5)

I- . (3) . (4) . Dh:.Hp.D:(^a)u(}/ na) =^A
[#24-24] = £ (6)

r . (3) . (5)

.

D h :. Hp . D : (£'^ju^aj^'uA
[#2424] =|' (7)

H.(2).(6).(7).Dh:.Hp.D:fu7; = f uV.D.^^r (8)

Similarly f- :. Hp . D : £v 1; = £' w 77' . D -v^v' (9)

h.(l).(8).(9).Dr.Prop

The above proposition, besides being used in the next two, is used in the

theory of couples (*54
-

6), in the theory of greater and less (#117-632), and in

the chapter on the ordering of classes by the principle of first differences

(#170-68).

#24481. r:.an/3 = A.any = A.D:au/3 = auy. = ./3 = y

Dem.

h . #24-48 -L~^--rJ^-l . D

h :.aC a .aC a. ft C - a .yC~ a. a — a = A . D :

a w/3 = a w 7 . = . a = a ./3 = y (1)
h . #22-42 . #24-21 . D

h:.aCa.aCa./3C — K.^C-a.a- a = A . = . /3 C — a^C- a .
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[*24-311] = .an£ = A.an 7=A (2)

K*20'2.*4-73.DH:a = a./?=7. = .£ = 7 (3)

K(l).(2).(3).Dh.Prop

The above proposition is used in the theory of selections (#83*74), in the

theory of greater and less (#ll7 -

582), and in the theory of transfinite induction

(*257).

*24482. h:.£Ca.77C£.a«/3 = A.D:£u^ = au/3. = .£=a.77=/3

#24-48 t^4 - #22-42]
$>y J

The above proposition is used in the theory of convergence (#232-34).

#2449. h:.ar»£==A.D:aC/3u 7 . = .aC 7

Dem.
b . *22621 .Dl-:oCj9w7. = .o=an(^u 7)

022/68] = (an£)u(an 7) (1)

K #24*24 . Dh:an/3=A.D.(an^)u(an 7) = on 7 (2)

I- . (1) . (2) . D h :. Hp . D : a C £ v 7 . = . a = a n 7 .

[*22621] = .aC 7 :DKProp

*24491. hj3n7 = A.«Cj3u7.
D . a— fi = a.r\ 7 .a — y = an j3 .a = (a — /3) u (a — 7)

2)em.

K*22'621. DhHp.D.o = an(/3u 7).

[*22-481] D.o-7 = «n(^y 7)- 7
024-4] = an/3 (1)

Similarly h : Hp . D . a-£=ar» 7 (2)

h.(l).(2). Dh:Hp.D.(a-/3)v(a- 7) = (an 7)u(an£)

022-68] = a n (7 v £)

022-621] =a (3)

I- . (1) . (2) . (3) . D b . Prop

The above proposition is used in the theory of selections (*8363-65) and

in the theory of segments of a series (#211-84).

#24-492. h.)3Ca.a-i3 = 7.D.a-7 = j8

Dem.
K #22-481 . D h : Hp . D . a- 7 = a- (a-/3)

O22 '8 '86]
=an(-au£)

O22 *8 '9]
= «'>£

22-621] =/3:Dh.Prop

The above proposition is used fairly frequently, especially in the theory of

series. It is first used in *93'273, in the theory of "generations."
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#24493. h:/Sn 7 = A.D.«= («-/9)u(«-7)

Dem.
\- . #22-84 . #2417 . 3 h : Hp . 3 . - /3 w - 7 = V .

[#24*26] 3.a = an(-£u- 7)

[*22'68] = (a-/3)u(a- 7):3r .Prop

#24494. K-fCa.i7C£.an£ = A.D.(f ui7)-a = i7.(£ui7)-£ = f

K#24-3. 3h:Hp.3.£-a = A (1)

K#24-31I. 3h:Hp.3./3C-a.
[#22-44] 3 . v C - a .

[#22-621]' .3.17-0 = 17 (2)

K #22-68. 3K(£ui7)-a = (£-a)v(i7-a) (3)

h.(l).(2).(3).*24-24.3l-:Hp.3.(^ui7)-a = i7 (4)

Similarly h : Hp . 3 .(%v v)-0= £ (5)

h . (4) . (5) . 3 I- . Prop

This proposition is used in the theory of selections (#83'63 and #88'45).

#24-495. h:ar» 7 = A.3.(au 7)-( /
3u 7) = a-/3

Dem,
h . #22-87-68 . 3
H . (a u 7) - (£ v 7) = (a - £ - 7) u (7 - £ - 7)

[#24-21] = a _ /
3- 7 (1)

K*24-311.#22-621.3H:Hp.3.a-7=a (2)

h.(l).(2). 3 K Prop

The above proposition is used in the theory of minimum points

(*205-83-832-84).

In the remainder of this number we shall be concerned with the existence

of classes. Many of the properties of the existence of classes follow from the

fact that to say a class exists is equivalent to saying that the class is not equal

to the null-class. This is proved in #24-54.

#24-5. b-.ftla. =2. fax). <cea [*42 . (#24-03)]

#24 51. h :~g ! a . = . a = A
Dem.

I- . #24-5 . 3 I- : ~jj ! a . = . ~ {(g.r) . x e a] .

[#10-252] =.(«).aj~ea.

[#24-15] = .a = A:3b.Prop

#24-52. h . g ! V [#24-51-1 . Transp]

This proposition states that the class of all objects of the type in question

is not null, but has at least one member. The assumption that there is some-

it &w 1 15
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thing, which is equivalent to this proposition, is implicit in the proposition

#10*1, that what is true always is true in any instance. This would not hold

if there were no instances of anything; hence it implies the existence of

something. It will be observed that the above proposition (#24*52) depends

on #24*1, which depends on #22*351, which depends on #10*251, which depends

on #10*24, which depends on #10*1 or on #9*1. The assumption that there is

something is involved in the use of the real variable, which would otherwise

be meaningless. This is made explicit in #9*1, and in the proof of #9*2, which

is the same proposition as #10*1.

#24*53. K~g!A [#24*51 . #20*2]

#24-54. h:g!a.= .a=|=A [#24*51 . Transp]

#24*55. *-:~(aC/3). = .a!a-£ [#24*3 . Transp . #24*54]

#24*56. h.a!(auj3). = :a!a.v.a!/3 [#10*42 . #22*34]

#24*561. h : g ! (a n £) . D . a ! a . a ! /3 [#10*5 . #22*33]

#24*57, l-:.ar>£ = A.D:g;!a.D.a=f£
Bern.

h . #22*481 .DI-:an/3 = A.a-=/S.D.ar»a = A.
[#22*5] D . a = A .

[#24*51] 3..~3!a (1)

h . (1) . Exp . Transp . D h . Prop

#24*571. H: a !a.a =
/
8.D.a!(artyS)

Dem.
V . #24 *57 . Comm . D h : . a ! a . D : a n j3 = A . D . a + /3 :

[Transp] D :« = £. D .ar\j3$ A .

[#24*54]
' D.g!(an/3) (1)

K (1) . Imp . D H . Prop

#24*58. h:.aC/3.0:a!a.D.a!/9 [#10*28]

#246. l-:.aC/3D:a+ /3.= .a'-/3-a

Dem.

h . #22*41 . Transp . O h :. Hp . D : a+ £ . D .~(/3 C a) .

[#24*55] D.a!/3-a (1)

h. #24*21. Oh:a = /3.D./3-a=-A (2)

K (2) . Transp . #24*54 .31- : a * £ -a.D . a + /3 (3)

K(l).(3)'. Dh.Prop

#24*61. H:~a !£.D.av/8 = a [*24*51*24]

#24*62. h:~a!£.D.an£ = A [*24'51-23]
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#2463. I- :. A~€K . = zae/e.D*. g!a
In this proposition, the conditions of significance require that k should

be a class of classes. The condition "a e k . Dtt • 3 J a" is one required as

hypothesis in many propositions. In virtue of the above proposition, this

hypothesis may be replaced by "A~e/c."

Bern.

V . *13191 .Dh:.A~e/c. = :a = A.Da .a~e«:

[Transp] =:ae/c.D .a4=A:

[*24-54] s : a e k . Da . 3 ! a :. D h . Prop

This proposition is frequently used in later par^ts of the work. We often

have to deal with classes of existent classes, and the most convenient form in

which to state that all the members of a class of classes exist is "A~e/c."

15—2



#25. THE UNIVERSAL RELATION, THE NULL RELATION, AND
THE EXISTENCE OF RELATIONS

Summary q/"#25.

This number contains the analogues, for relations, of the definitions and

propositions of #24. Proofs will not be given, as they proceed precisely as

in #24.

The universal relation, denoted by V, is the relation which holds between

any two terms whatever of the appropriate types, whatever these may be in

the given context. The null relation, A, is the relation which does not hold

between any pair of terms whatever, its type being fixed by the types of the

terms concerning which the denial that it holds is significant. A relation R
is said to exist when there is at least one pair of terms between which it holds

;

"R exists" is written "g ! R."

The propositions of this number are much less often referred to than those

of #24, but for the sake of uniformity we have given the analogues of all

propositions in #24, with the same numeration (except for the integral part).

All the remarks made in #24 apply, mutatis mutandis, in the present

number.

#25-01. V = $p(x = x.y = y) Df

#2502. A =-V Df

#2503. a ! R . = . (ga?, y) . xRy Df

#251. KA +V
#25101. r.V=^-A
#25-102. r : (x, y) . <j> (x, y) . = . 5$ <f>

(x, y) = V
#25-103. \-:(x,y).~<f> (x, y) > = . &§<j> (x, y) = k
#25-104. h . (x, y) . xYy

#25-105. h . (x, y) .~(xAy)

#2511. \-.(R).RQV

#2512. \- . (R) . A G R
#2513. \-:R = A. = .RCA
#25-14. h:(x,y).xRy. = .R = Y
#25141. \-:YQR. = .Y = R
#25-15. I- : (x, y) .~ (xRy) . = .R = A
#2517. \-:R = Y. = .-^R = A
*25-21. \-.Rn^-R = A
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*25-22. \-.Rv-^R = Y
#2£23. h.RnA = A
*25-24. KPoA=P
*25 26. I- . R A V = R
*2527. KPvyV = t
*25*3. \-:R<ZS. = .R-^S = A
*2531. h:PG#. = .-uPiy,Sf= V
*25-311. \-:RQ^-S.~.RnS = A
*25312. h:^-PG£. = .Pc/#= t
*25 313. h:RnS = A. = .R-8 = R
*2532. K:Pvy£= A.2.P = A.# = A
*2533. h:P = V.D.Pc/#=V
*2534. H:P = A.:>.Pn,Sf=A

*25 35. l-:P = V.D.Pn£ = £

*2536. \-:R = A.D.RvS= S
*2537. H :: R r\ S= A . = \.xRy . zSw . ^x , y, z,

w :oc^z.v .y^w

*2538. h.EA^=A.D:E^.v.ii = A.-Sf = A
*25 39. b:.Rr\S = A.= : xRy . Dx>y ,~(a:Sy)

*254. h:Pn(3 = A.= .(PoQ)-P=Q. = .(Pc;Q)^Q = P
*25401. \-:QGP.D.(QvR)-P =R-P
*25402. \-:PnQ =A.RQP.SdQ.D.RnS = A
*2541. \-.R = (RnS)v(R^S)

*25411. !-:>8'G JR.D.i2 = 5c/(iB^^)

*25-412. h:QGP.£GQ.D.(P-Q)vy(Q^S) = P-,S
*2542. h:PnQGR.P-^Q(iR. = .PG.R
*25'43. \-:P^.QGR. = .P(lQvR
*25'431. h.(PvyJS)n(Qvy^i2) = (PnQ)vy(P- JR)a(QnE)

*25432. \-.(P^R)v(QnR)=(PnQ)v(P^.R)v(QnR)
*25'44. I- . (P vy 22) A (Qv-R) = (P fy^-R) c/(QnP)

*25-45. h : (P n P) o (Q-P) = A . = . Q G P . P G^P
*25 46. h:(PniJ)a(Q^) =A.D.PnQ = A
*25 47. h:PAQ = A.PiyQ = P. = .PGP.Q=P^-P
*2548. h :: K GP . P' GP . £ G Q .

£' G Q . P n Q = A . D :

Pc/£=P/

c;,Sf
, .= .P = P'.,Sf=,Sf'

*25'481. f-:.PnQ = A.PnP = A.D:Pe/Q = Pe/P. = .Q = P
*25 482. h:.RGP.SGQ.PnQ = A.D:RvS= PvQ.==.R = P.S=Q
*2549. h:.PnQ = A.D:PGQvyP. = .PGP
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25-491. \-:Q*R = A.PGQvR.3.
P^Q =PnR.P±R =PnQ.p = (P±Q)v(P^R)

*25-492. \-:QGP.P^Q =R.D.P^R = Q
*25493. f-:QnP =A.D.P = (P^Q)ei(P-^P)
*25494. t".RGP.SGQ.P*Q-A.^ m (RvS)±P-S.(RvS)±Q = R
*25495. H:PAP = AO.(Pc/P)^(^c/P) = P-i.Q

*25 5. f- : g ! R . =
.

(

a#, y) .

^

*25'51. H:~g!P. = .P = A
*2552. Kg!V
*2553. K~g!A
*25'54. h:g!P. = .P^A
*25 55. h~(iJGS). = .a!iJ^
*2556. h:.g!(Bvy£). = :a!E.v.a!£
*25561. h:a!(JJnS.).D.a!iJ.a!^
*2557. f-:.Pn-Sf= A.D:g!P.D.P4=^
*25-571.. I- : a ! R . R = £ . D . a ! (R n S)

*2558. H.PGS.DrgliZ.D.alS
*25-6. \-:.RGS.D:R$S. = .rIS-R
*2561. h :~a ! £ . D . P vy £= #
*2562. h:~a!£.:>.Pn,Sf= A
*2563. l-:.A~6«. = :22eff. Dje.gl.fi.



SECTION D

LOGIC OF RELATIONS

Id the present section we shall be concerned with such of the general

properties of relations as have no analogues in the theory of classes. The

notations introduced in this section will be used constantly throughout the

rest of the work, and the ideas expressed in the definitions will be found to

be of fundamental importance.



*30. DESCRIPTIVE FUNCTIONS

Summary o/*30.

The functions hitherto considered, with the exception of a few particular
functions such as a n /3, have been propositional, i.e. have had propositions for

their values. But the ordinary functions of mathematics, such as x*, sirxx,

log as, are not propositional. Functions of this kind always mean "the term
having such and such a relation to x." For this reason they may be called

descriptive functions, because they describe a certain term by means of its

relation to their argument. Thus " sin 7r/2 " describes the number 1 ;
yet

propositions in which sin tt/2 occurs are not the same as they would be
if 1 were substituted for sin w/2. This appears e.g. from the proposition
" sin tt/2 = 1," which conveys valuable information, whereas " 1 = 1 "

is trivial.

Descriptive functions, like descriptions in general, have no meaning by them-
selves, but only as constituents of propositions*.

The general definition of a descriptive function is

:

#30-01. R'y = (ix)(xRy) Df

That is, " R'y " is to mean " the term x which has the relation R to y."

If there are several terms or none having the relation R to y, all propositions

about R (
y, i.e. all propositions of the form "<f>(R'y)," will be false. The

apostrophe in "R'y" may be read "of." Thus if R is the relation of father

to son, " R'y " means " the father of y." If R is the relation of son to father,

"R'y" means "the son of y"; in this case, all propositions of the form
" $ (R'y) " will be false unless y has one son and no more.

All the functions that occur in ordinary mathematics are instances of the

above definition ; all are obtained in the above manner from some relation.

Thus in our notation "R'y" takes the place of what would commonly be

"fy" tn *s latter notation being reserved for propositional functions. We
should write "sin 'y" in place of "siny," using "sin" to' express the relation

of x to y when x = sin y.

A definition such as R'y = (ix)(xRy), where the meaning given to the

term defined is a description, must be understood to mean that the term
defined (in this case R'y) and the description assigned as its meaning (in this

case (ix) (xRy)) are to be interchangeable in use : the definition is, in a sense,

more purely symbolic than other definitions, since the description assigned as

the meaning has itself no meaning except in use. It would perhaps be more
formally correct to write

f(R'y). = .f{(ix)(xRy)) Df.

* Cf. *14, above.
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But even this definition would not be quite complete, because it omits

mention of the scope of the two descriptions. R'y and (7a?) (xRy). Thus the

complete form would be

[R'y-].J(R'y). = .\(ix){xRy)-\.f{{ix)(xRy)) Df.

But it is unnecessary to adopt this form of definition, provided it is under-

stood that the definition #30-01 means that "R'y" may be written for

" (ix) (xRy) " everywhere, i.e. in indications of scope as well as elsewhere. The

use of the definition occurs always in accordance with the proposition

:

r : [R'y] .f(R'y) . =s . [(ix) (xRy)] .f(ix)(xRy),

which is #301, below.

It is to be observed that #30*01 does not necessarily involve

R'y = (ix)(xRy).

For this, by the definition, is equivalent to

(ix) (xRy) = (ix) (xRy),

which, by #14-28, only holds when El(ix)(xRy),i.e. when there is one term,

and no more, which has the relation R to y.

All the conventions as to scope explained in #14 are to be transferred to

R'x, i.e., in the absence of any contrary indication, the scope of R'x is to be

the smallest proposition, enclosed in dots or other brackets, in which the R'x

in question occurs.

We put

#3002. RtS'y=R'(S'y) Df

This definition serves merely for the avoidance of brackets. It is to be in-

terpreted as meaning

[R<S'y].f(R'S<v). = .[R<(S<y)-].f{R<(S<y)} Df.

In future, we shall often define a new expression as having a descriptive phrase

for its meaning ; in such a case, the definition is always to be interpreted as

above. That is, any proposition in which the new expression occurs is to be

the proposition which is obtained by substituting the old expression for the

new one wherever the latter occurs.

R'(S'y), in the above, is to be interpreted by first treating S'y as if it

were not a descriptive symbol, and applying #3001 and #1401 or #1402 to

R'(S'y), and by then applying #30*01 and #1401 or #14*02 to S'y.

The majority of the propositions of the present number are immediate

consequences of the corresponding propositions in #14. Thus #14-31

—

-34 and
#14*113 lead immediately to #3012—*16, which show that, either always or

when R'y exists, the "' scope " of R'y or of R'y and S'y makes no difference

to the truth-values of such propositions as we are concerned with. We have

#30-18. h :, E ! R'y : (z) . <f>z : Z> .
<f>
(R'y)
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so that what holds of everything holds of R'y, provided R'y exists. This
results immediately from #1418, and shows that, provided R'y exists, the fact

that " R'y " is an incomplete symbol does not prevent its being substituted

as a value of z whenever we have (z) . (f>z, or an assertion of the propositional

function <f>z.

One of the most used propositions of this number is

:

#303. h:.x=R'y. = :zRy.=~z .z = x

which results immediately from #14202. The following analogous proposition

results from the above by means of #14122 :

#3031. h :. x= R'y . = : xRy : zRy .Dz .z = x

I.e. "x = R'y" involves, in addition to " xRy," the statement that what-

ever has the relation R to y is identical with x.

A proposition constantly referred to is

:

#3037. b:ElR'y.y = z.D.R'y = R'z

In the hypothesis, E ! R'y might be replaced by E ! R l
z, but one or other

of them is essential. For, by #1421, " R'y = R'z " implies E ! R'y and E ! R'z

(these are equivalent when y = z), and therefore cannot be true when R'y and

R'z do not exist.

The use of #3037 is chiefly in cases where y or z or both are replaced by

descriptive functions. Suppose, for example, that z is replaced by S'w. By
#3018, we may substitute S'w for z if S'w exists. By #14*21, both sides of

the implication in #30*37 will become false if S'w does not exist, and there-

fore the implication will still hold. Hence whether S'iv exists or not, we may
substitute it for z and obtain

h : E ! R'y
.
y = S'w .D.R'y = R'S'w.

In like manner, if we replace y by T'v, we obtain

V : E ! R'T'v . T'v = S'w . D . R'T'v = R'S'w.

A very important proposition is

:

#304. b:.RlR'y.D:a = R'y. = .aRy

This proposition states that, provided R'y exists, to say that a is the term

which has the relation R to y is equivalent to saying that a has the relation

R to y. Thus for example " a is the occupier of the house y " is equivalent

to " a occupies the house y," " a is the writer of Waverley " is equivalent to

" a wrote Waverley," " a is the father of y " is equivalent to " a begot y." But

we cannot argue from " John Smith inhabits London " to " John Smith is the

inhabitant of London."

We shall introduce in this and subsequent sections many constant relations

for which E ! R'y is always true. When R is such that E ! R'y is always true,

we have, in virtue of #30*4.

a — R'y . = . aRy
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for every possible value of y. The following proposition is useful in cases where

both R and S are such that R'y and S'y always exist

:

#3041. h\.(y).R'y= S'y.= :(y).ElR'yzR = S

. Thus if we know that R'y and S'y are always identical, we know not only

that R and S are identical, but also that R'y (and therefore S'y) always exists.

#3001. R'y = (ix)(xRy) Df

#3002. R'S'y = R'(S'y) Df

In interpreting R'(S'y), S'y is to be treated as an ordinary symbol until

Rl(S'y) has been eliminated by #3001 and #1401 or #1402, and then the

above definitions are to be applied to S'y.

#301. h : [R'y] ./(R'y) -s . [(ix) (xRy)]./(ix) {xRy) [*4-2 . (#30-01)]

#3011. h :. [R'y] ./(R'y) . = z (a&) : xRy .=x .x=bz/b [#301 . #141]

The following propositions are immediate applications of #14*31 ff., made

in accordance with #30'1.

#3012. \-zzElR'y.3z.[R'y],pv X (R'y). = zp.v.[R'y]. X (R'y)

[*14'31]

#3013. \- zzEl R'y. Dz.[R'y].~x (R'y). = .~{[R'y]. X (R'y)}[*U-m

#30-14. b :: E

!

R'y . D :. [R'y] .pl X {R'y) • = -P 3 {R'y] . % (12'y)

[#14-33]

#30-141. h :: E ! R'y . D :. [fi*y] . x (2ty) D^ . = : [ity] . X (R'y) . D . p
[#14-331]

#30142. h :: E ! R'y . D :. [R'y] .p= X (R'y) . = :p.= . [R'y]

.

X (R'y)

[#14-332]

#30-15. \-z.pz [R'y]

.

X (R'y) z = : [R'y] .p. X (R'y) [*14'34]

The following two propositions are immediate consequences of #14-113'112.

#3016. b:[R'y]./(R'y,S'z). = .[S'z]./(R%S'z)[*U-113]

#3017. \-:.[R'y]./(R'y,S'z). = z

(g;6, c) : xRy .=x .x = bz xSz .=x .x = c :/(b, c) [#14-112]

#3018. Yz.E\R'y\(z).$z:1.4>(R'y) [#14-18]

#3019. h:.R'y = b.D:yjr(R'y). = .y}rb [#1415]

#30-2. fz. E

!

R'y . = : (a&) : xRy .=x .x^b [*4-2 . #14-11 . (#3001)]

In proving #30*2, we have to use the definition #3001, not #30'1, because

E ! (ix) (<f>x) is not of the form /(ix) ($x). This appears if we attempt to apply

the definition #14'01 to E ! (ix) (<f>x), which leads to an expression containing

the meaningless constituent E ! b. But by the definition #3001, every typo-

graphical occurrence of the symbol "R'y" means what results when this

symbol is replaced by "
(ix) (xRy)," hence " E ! R'y " means " E ! (ix) (xRy)"
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#30-21. H : : E ! R'y . = :. (aa>)

.

xRy : xRy . zRy .Dx>z .x = z

[#14203 . (#3001)]

#3022. f- : E ! R'y . = . R'y *= (ix) {xRy) [*14'28 . (#30-01)]

Note that we do not necessarily have

R'y = (ix)(xRy%

which is only true when E ! R'y.

#303. h:.x = R'y. = :zRy.= z .z = x [#14-202]

#30 31. h :. x = R'y . = : xRy :zRy .Dz .z = x [#14-122 . #30-3]

#3032. b : El R'y. = . (R'y) Ry [#14'22]

#3033. H :: E ! R'y . D :.y(R'y) : = : (ga?) . «.% . f# : = : xRy .Dx .fx
[#1426]

#3034. f- :. «£y .=x .xSy: D : E ! i2'y . = . E I S'y [#14-271]

*30341. I- :. xRy . =x . xSy : D : E ! R'y . = . E'y = S'y

I- . #14-21

.

3 k: R'y = S'y . D . E ! E'y (1)

f- . #1427 . Comm ,D I- :. Hp . I) : E ! £'y . O . £'y = #'2/ (2)

K(l).(2). Dh.Prop

#3035. b :. R = S. 0:EI R'y. = . El S'y [*30'34 . #21-43]

#3036. h : E ! R'y . R = S . D . R'y = S'y [#14-27 . Imp . *21'43]

#3037. \-:ElR'y.y = z.D.R'y=R'z
Bern.

h. #14-28. D h :El R'y. 3. R'y = R'y (1)

(-. #1312. Dh,:.y = z.D:R'y = R'y. = .R'y = R'z (2)

h.(l). (2). Ass. Dh.Prop

This proposition is .very frequently used.

#30-4. h:.ElR'y.D:a = R'y. = .aRy [#14-241]

This is a very important proposition, of which the use is constant.

#30-41. h :. (y) . R'y~ S'y . = : (y) . E -! i^'y : R = S

Dew.

I- . #14-21 . #1011-27 . D h : (y) . R'y = S'y.O. (y) . El R'y (1)

I- . #1 4-13-1 42 . D t- :. (y).R'y= S'y.O:(x,y):x = R'y. = .x = S'y :

f(l).#30-4] D : (x, y) : #% . = . xSy :

[#21-43] D:R=S (2)

h . #30-36 . D h : Ea 22'y . R = S.D.R'y^S'y:
[#1011-27-35] D h :. (y) . E ! R'y: R = S:0. (y) . R'y = S'y (3)

h.(l).(2).(3). Dh.Prop



SECTION D] DESCRIPTIVE FUNCTIONS 237

#3042. \-:.(y).KlR'y.O:(y).R'y = S'y. = .R = S [#3041]

The hypothesis (y) .El R'y is fulfilled by a number of important special

relations, of which examples will occur in the subsequent numbers of the

present section.

#305. I- : E ! P'Q'z . D . EX Q'z

Dem.
K #302 . DH.E! P'Q'z. =

[#101] D

[*13-15] D

[*14'21] D

*30501. I- :<f).(P'Q'z) . = .

(

a6, c) .c=Q'z .b = P'c . cf>b

On the meaning of "
<j> (P'Q'z)" see note to the definition #30*02.

Dem.

{^b)zxP(Q'z).^x .x = b:

(>&b):bP(Q'z). = .b = b:

(<ab).-bP(Q't):

El Q'z:. Dh.Prop

:.(g&) : bP (Q'z) : xP (Q'z) . yx . x = b : <j>b :.

: : . (g&) : . (gc) : c= Q'z : &Pc : #Pc . D^ . x= 6 : <£& :

.

; :."(a&, c) . c = Q'z . 6 = P'e. $& :: D I- . Prop

#30 51. I- : b = P'Q'.z . = . (3c) . b = P*e . c = Q'z [#30-501 . *13'195]

#3052. 1- : E ! P'Q'z . = .

(

a6, c) . 6 = P'c . c = Q'z [#30-51 . #14204]

H . #14-1 122 . D I- ::xf> (P'Q'z) . =

:

[#14-205]

[#14T22'202]



*31. CONVERSES OF RELATIONS

Summary o/#31.

If R is a relation, the relation which y has to oc when xRy is called the

converse of R. Thus greater is the converse of less, before of after, husband of

wife. The converse of identity is identity, and the converse of diversity is

diversity. The converse of R is written R (read "P-converse"). When
,\j

.

•

R = R, R is called a symmetrical relation, otherwise it is called not-symmetrical.
<*/

When R is incompatible with R, R is called asymmetrical. Thus "cousin" is

symmetrical, "brother" is not-symmetrical (because when x is the brother of

y, y may be either the brother or the sister of x), and "husband" is asym-

metrical.

The relation of R to R is called "Cnv." It will be shown that every

relation has one, and only one, converse; hence, applying the notation of #30,

that one is Cnv'P. Thus R = Cnv'P. We have thus two notations for the

converse of R; the second is more convenient for the converse of a relation

not denoted by a single letter.

The more important propositions of the present number are the following:

#3113. h.E!Cnv'P

I.e. any relation P has a converse. Hence the relation "Cnv" verifies the

hypothesis (y) . E ! R'y, i.e. we have (P) . E ! Cnv'P.

#3132. r:P = Q. = .P = Q

I.e. two relations are identical when, and ODly when, their converses are

identical.

#3133. H . Cnv'Cnv'P = P

I.e. any relation is the converse of its converse.

Very many of the subsequent uses of the notion of the converse of a

relation require only the propositions which embody the definitions ofP and

Cnv, namely

#3111. h : xPy . = . yPx

and

#31-131. \-;x{Cnv'P)y. = .yPx
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#3101. Cnv = §P{xQy.=x>y .yPx), Df

#3102. P = %$(yPx) Df

#311. \-:.QCnvP.E=:xQy.=XtV .yPx [#213 . (#3101)]

#31101. \-:QCnvP.RCnvP.D.Q= R
Dem.

V . *31'1 . D H : . Hp . D : xQy .
=
XtV . yPx : xRy .=XiV . yPx

:

[*ll-37l] D : xQy .
=
x>y . xRy :

[*21'43] D : Q =R : . D h . Prop

*31*11. \-:xPy. = .yPx [*21"3 . (#31*02)]

#31111. h.PCnvP [#31111]

#3112. KP = Cnv'P

Dem.

K #31101. Dr:QCnvP.PCnvP.D.Q = P:
[#31-111] Dh:QCnvP.D.Q =P (1)

K(l). #1011. #31111. D

H:PCnvP:gCnvP.DQ.Q=P:

[#30-31] Dh.P = Cnv'P

#3113. KE! Cnv'P [#14-21. #3112]

#31131. h:x(Cnv'P)y.=i.yPx [#3111-12 .#21-43]

#31132. h : Q Cnv P . = . Q = Cnv'P . = . Q = P [*304 . *311312]

#3114. KCnv'(PnQ) = Cnv'Pr»Cnv'Q

I- . #31-131 . D H : # (Cnv'(P nQ)}y . = .y(P nQ)x.
[#21-33] =.yPx.yQx.
[#31-131] ~. x (Cnv<P)y.x (Cnv'Q)y.
[#21-33] = . x {Cnv'P n Cnv'Q} y (1)
h . (1) . #1111 . *21-43 . D I- . Prop

#3115. K Cnv'(Pc/#) = Cnv'P c/Cnv'Q [Similar proof]

#3116. KCnv'^-P = -i- (Cnv'P)

Dem.
H . #31131 . D f- : #(Cnv<-^P)y . = . y^-Px

.

[#23-35] = .~(yPa:).

[#31-131] = .~ {# (Cnv'P) y) .

[*23'35] =. a{^_ (Cnv'P)} y (1)
r

. (1) . *1111 . *21-43 . D h . Prop
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*3ri7. b :. y = P'x . = : xPz .
=

z . * = y [*30"3 . #31-11]

#3118. b'..KlP<x. = :(<&y)ixPz.= z .z = y [*30"2 . #31-11]

#31-21. KCnv'A = A
Dew.

h . #31-131 .Db:x (Cnv'A) y. = . yAx :

[#25-105] Db.~x(Cw'A)y (1)

I- . (1) . #11-11 . #25-15 . D b . Prop

#31-22. h . Cnv'V = V [Similar proof]

#3123. h:P = V. = .P = V

Demi.

b.*25U.Db:P = V . = .(x,y).xPy.

[#31-11 .#1 1-33] = . (x, y) . yPx .

[#11-2] =.(y,x). yPx .

[#25-14] = . P = V : D h . Prop

#31-24: b:P = A. = .P = A [Similar proof]

#31-32. h:P = Q. = .P = Q

Dem.
b . #21-43 .Db:.P = Q. = : xPy .=x<y . xQy :

[#4-86-21.#31 11] = : yPx . =t , v - vQ®'-

[*ll-2] = : yPx -=y,x- yQ%

[#21-43] = : P = Q : . D K Prop

*31;
33. KCav'Cnv'P = P
Dem.

b . #31-131 .Db:x (Cnv'Cnv'P)y . = . y (Cnv'P) a:

.

[#31-131] =.xPy (1)

1- . (1) . #11-11 . #21-43 . D I- . Prop

#31-34. r-:P=Q. = .0 = P
Dem.

h. #31-32.3 I- :P = Q.= .P = Cnv'Q

[#31-12-32] = Cnv'Cnv'Q

[#31-33] =Q:OKProp

#314. h:PGQ.= .PGQ [#3111 .#11-33]

#31-41. b:PQQ. = .PGQ [*314-3312]

#315. h:a!P. = .g[!P [*3124 . Transp .*25'54]
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#31-51. H:(P)./P. = .(P)./P

Dem. „
h.*101. Dh:(P)./P.D./P:

[*10 1121] D H : (P) ./P . D . (P) ./P (1)

K*101.*3ri2.D

H:(P)./P.D./(Cnv'P).

[*31'33-12] 3./P:

[*1011-21] Dh:(P)./P. D.(P)./P (2)

h.(l).(2).DI-.Prop

*31'52. ^:(aP)./P.s.(aP)./P [*31'51.Transp]

e &wi
l6



*32. REFERENTS AND RELATA OF A GIVEN TERM WITH
RESPECT TO A GIVEN RELATION

Summary o/#32.

Given any relation R, the class of terms which have the relation R to a

given term y are called the referents of y, and the class of terms to which a

given term # has the relation R are called the relata of x. We shall denote by
-* 4-

'

'

.

'

R the relation of the class of referents of y to y, and by R the relation of the

class of relata of x to x. It is convenient also to have a notation for the rela-
—

>

4- —
tions of R and R to R. We shall denote the relation of R to R by "sg," where

"sg" stands for "sagitta." Similarly we shall denote by "gs" the relation of R
to R, to suggest an arrow running from right to left instead of from left to right.

R and R are chiefly useful for the sake of the descriptive functions to which
—

>

4—
they give rise ; thus R ly = x (xRy) and R'x= § (xRy). Thus e.g. if R is the

—

>

4-
relation of parent to son, R'y = the parents of y, R'x = the sons of x. If R is

—
the relation of less to greater among numbers of any kind, R'y = numbers less

4- —*
than y, and R'x = flumbers greater than x. When R'y exists, R'y is the class

whose only member is R'y. But when there are many terms having the

relation R to y, R'y, which is the class of those terms, supplies a notation

which cannot be supplied by R'y. And similarly if there are many terms to
4-

which x has the relation R, R'x supplies the notation for, these terms. Thus

for example let R be the relation "sin," i.e. the relation which x has to y when
4—

x= sin y. Then "sin'x" represents all values of y such that x — s,my, i.e. all

values of sin
-1 x or arcsin x. Unlike the usual symbol, it is not ambiguous,

since instead of representing some one of these values, it represents the class

of them.
—» 4-

The definitions of R, R, sg, gs are as follows:

*3201. JR = ay {« = x (xRy)} Df

*32-02. *R = /3${/3= P(wRy)} Df

*3203. sg = AR(A=R) Df

*32-04. gs =AR(A=% Df

In virtue of the above definitions, we shall have sg'.R = R, gs'R — R. This

gives an alternative notation which is convenient in dealing with a relation

not represented by a single letter.
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It should be observed that if R is a homogeneous relation (i.e. one in

which referents and relata are of the same type), then R and R are not

homogeneous, but relate a class to objects of the type of its members.

In virtue of the definitions of R and R, we shall have

#3213. V.~R'y = tc(xRy)

*32131. \-.R'x = §(xRy)
—> «-

Thus by #14*21, we always have E ! R l
y and E ! Rl

x. Thus whatever
—

>

«—
relation R may be, we have (y) . E ! R'y and (#) . E ! R l

x. We do not in
—

>

«—
general have (y) . g ! R'y or (x) . g ! R'x. Thus taking R to be the relation

-** *—
of parent .and ehild, R'y = the parents of y and Rlx = the children of x.

<— <— —

*

—
Thus R'x = A, i.e ~$lR'x, when # is childless, and R'y = A, i.e. ~g ! -R'y,

—

>

—>
when y is Adam or Eve. The two sorts of existence, E ! R'y and g ! R'y,

can both'-.be significantly predicated of R'y, because "R'y" is a descriptive

. #
«—

function whose value is a class; and the same applies to R'x. It will be seen
_> _,

that (by #1421) -j ! jft'y . Du E ! R'y, but the converse implication does not

hold in general.

We have

*3fcl6. ±Cr=1$. = .*rJs. = .R = S

Aso by #3218181,

V ;x eR'y . = . xRy . — .ye R'x.

Thus by the use of R'y or R'x, every statement of the form "xRy" can
be reduced to a statement asserting membership of a class. Since, however,

the class in question is given by a descriptive function, and descriptive

functions are defined by means of. relations, we do not thus obtain a method
of reducing the theory of relations to the theory of classes.

#32 01. R = &p {a •= x (xRy)} Df

#3202. *R = /3x{/3 = y(xRy)} Df

#32 03. sg = AR(A = R) Df

#3204. •ga-=.AR(A~=m) Df
—>

#321. 1- : aRy .= .a=$ (xRy) [*21-3 . (#32-01)]

#32101. I- : /3Rx . = ./3 = y (xRy) [*21"3 . (#3202)]
—

>

#3211. h . £ (xRy) —R'y [#321 . #30'3]

16—2
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#32111. h . § (xRy)= R'x [*32'101 . #30*3]

#3212. KElflty [#32-11. #14*21]

#32121. I- . E ! R'x [#32111 . #1421]
—* —->

" E ! R'y " must not be confounded with " g ! R'y." The former means

that there is such a class as R'y, which, as we have just seen, is always true;
—

>

the latter means that R'y is not null, which is only true if y is a term to

which some other term has the relation R. Note that, by #14-21, both g ! R'y

and ~g ! R'y imply E ! R'y. The contradictory ofg ! R'y is not ~a ! R'y,
^ —

>

—

>

but ~{[R'y] a I -R'y}. This last would not imply E ! R'y, but for the fact

—>

that E ! R'y is always true.

#3213. \-.R'y = x(xRy) [*32'11 . #2059]

#32131. r

.

R'x= § (xRy) [#32-111 . #2059]

#32132. h : CLRy . = . a = R'y . s . a = £ (*%) [#321-13 . #20*57]

#32-133. r : /3Rx . = . £ - R'x . = . /3 = £ (*%) [#32-101-131 .
#20-57]

The use of #20*57 will in general be tacit. It happens constantly that we

have propositions such as #32*13, in which a descriptive expression is shown

to be identical with a class. In such cases, whenever the properties of the

class are asserted of the descriptive expression, #20*57 is relevant.

#32*14. *-:£= £*.=-.£ = £

Bern.

K #21*43. Dh::R = S.=
[#32*1] s

[#11*2] =

[#20*25] =

[#2015] =

[#11*2] =

[#21*43] =

aRy.=a , y .aSy:.

a= x (xRy) . =., „ . a = & (xSy) :.

(y):.a = x(xRy).= aL .a= ^(xSy)i.

(y):fc(xRy) = x'(xSy):.

(y) :. (sc) : xRy . = . xSy :.

(x, y) : xRy. = . xSy :.

J2 = £:rOKProp

[Similar proof]#32*15. !-:£ = £. = .E = £

#32*16. h : R = S. = •
$"-#"• = -R = 8 [#32*14*15]

#3218. \-:xeR'y. = .xRy [#32*13 . #2033]

#32*181. r- : y eB'« . = .xRy [#32*131 . #20*33]

#32*182. h : x e~R'y . = .yeR'x [#32*18*181]
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The transformation from " xRy " to " x e R'y " is one commonly effected in

language. E.g. suppose " xRy " is " x loves y," then " x e R'y " is " x is a lover

ofy."

#3219. \-'.RGS.O.R'yClS'y.%xCS<x

Bern.

K#32*18. Dt-:.Kv.3:xeR<y.Dx .xeS'y:

[#221] DzR'yCS'y (1)

b . #32181 . D b :. Hp . D : y e R'x . Dy . y eS'x

:

[*22\L] Drl^CS'* (2)

I- . (1) . (2) . D I- . Prop

#32 2. H : 4 sg R . = . A =E [#21-3 . (#32-03)]

*32'201. b:AgsR. = .A=R [*213 . (*32'04)]

*32'21. b.R = ag'R [#32-2. #303]

#32-211. b .5= gs'iS [*32201 . #30-3]

#3222. h.E!sg'i2 [*32'21 . *1421]

*32221. h . E
!
gs'JR [#32-211 . #14-21]

#3223. b.8g'R=~R [#32-21 . *21-257]

#32231. b
.
gs'R =R [#32-211 . #21-2-57]

#3224. h.sg'5 = gs'i2

Bern.

b . #3223 . (#3201)

.

D b . sg'R = ty{a = % (xRy)}

.

[#21-33] Dha (sg<i?) y. = .a = x (xRy)

.

[*3111.*20'15] = . a = x (yRx)

.

[#32-101] = .aSi.

[#32-211] = .a(gs'R)x (1)

b . (1) . #11-11 . #21-43

.

D b . Prop

#32-241. h.gs'ii = sg<E [Similar proof]

#3225. b : A sgR . = . A = 8g
fR [#304 . #3222]

#32-251. b:AgsR.~.A=gs tR [#304 . #32221]

#32-3. b . {sg'(i2 A S)} (y =~R'y n~S'y

Note that we do not have

8g'(R*S)=sg<Rnsg'S.
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Dem.

h . *322313 . D h . {sg'(R n S)}'y = x{x(RnS)y]
[*2333] = x~(xRy.xSy)

[*22-39] = £> (arjRy) n £ (xSy)

[*32-13] = £<y n"s<y . D I- . Prop

*32 31. h . {gs'(12 n £)}<# = *R'x n S*ar

*3232. l-.{sg'(i2wi8f)}'y=sS'ywii^

*3233. \-.{gs'(RvS)}'x = R'xvS'x

*3234. r.{sg'(^#)}<2/ = -i?y

*32'35. h . {gs'(- R)}'x = - S*«

The proofs of the above propositions are similar to that of *32"3.

*324. \-'..ElR'2. = :<
3L lR'z:x,yeR'z.'>Xiy .x = y [*30-21 .*3218]

*32 41. h:.ElS'y.D:^'y =^y. = .R(
y = S'y

Dem.

h.*4-86. Dh::xSy.=x .x = b:D:.
xRy . =x . xSy : = vxRy .

=
x »x—b (1)

h . (1) . #5*32 . D h :. xSy .=x .x = b: xRy .
=
x . xSy : = :

xSy .=x .x—b:a>Ry .^x .x = b (2)
V . (2) . *10'11-281 . *3218-181 . D

—> —
H :.(a&) :xSy. =x .x = b :R (y= S'yz = : (g;&) : #$y

.

~
x . x= b : xRy .

=
x . x = b :

[#30'3.*14-13] = : (36) : a% . e=x . a; = 6 : R'y = 6 :

[*14-101] = :R'y = S'y (3)

!-
. (3) . *30-2 . D V :. E ! S'y . R'y =~8'y

. = . R'y = S'y :. D> . Prop

*3242. I- : . R'y = £<y . D : E ! R'y . = . E ! /S'y [*30-34 . *3218]



*33. DOMAINS, CONVERSE DOMAINS, AND FIELDS

OF RELATIONS

Summary o/*33.

If R is any relation, the domain of R, which we denote by T>'B, is the

class of terms which have the relation R to something or other; the converse

domain, d'R, is the class of terms to which something or other has the

relation R; and the field, C'B, is the sum of the domain and the converse

domain. (Note that the field is only significant when B is a homogeneous

relation.)

The above notations D'.R, d'B, C'B are derivative from the notations

D, a, C for the relations, to a relation, of its domain, converse domain, and

field respectively. We are to have

C'B = £ {(ay) • ®Ry • v »-yRx)

;

hence we define D, Q, C as follows:

*33"01. T> = aR[u = ti{(ny).a;Ry\] Df

*3302. a = £R[£=£{(a#).#%l] Df

*33 03. C= yR [7 = & {(ay) : xRy . v . yRx}] Df

The letter C is chosen as the initial of the word " campus." We require

one other definition, namely of the relation of x to R when a? is a member of

the field of R. This relation, which we will call F, is defined as follows:

*33 04. F= $R {(ay) : xRy . v . yRx] Df

We shall find that C= F. D will be the relation of a relation to its domain*

D'a will be the class of relations having a for their domain. Similar remarks

apply to Q. and C. The field of a relation is specially important in connection

with series.

The propositions of this number are constantly used throughout the

remainder of the work. The ideas of the domain, converse domain, and field

are very general, and have somewhat different uses for relations of different

kinds. Consider first the sort of relation that gives rise to a descriptive

function R'y. For this we require that R'y should exist whenever there is

anything having the relation R to y, i.e. that there should never be more

than one term having the relation R to a given term y. In this case, the

values of y for which R'y exists will constitute the " converse domain " of R,

i.e. <l fR, and the values which R'y assumes for various values of y will
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constitute the "domain" of R, i.e. D'R. Thus the converse domain is the
class of possible arguments for the descriptive function R'y, and the domain
is the class of all values of the function. Thus, for example, ifR is the relation
of the square of an integer y to y, then R'y = the square of y, provided y is an
integer. In this case, d'R is the class of integers, and D'R is the class of
perfect squares. Or again, suppose R is the relation of wife to husband; then
R'y = the wife of y, d'R = married men, T)'R = married women. In such
cases, the field usually has little importance; and if the values of the function
R'y are not of the same type as its arguments, i.e. if the relation R is not
homogeneous, the field is meaningless. Thus, for example, if»R is a homo-

geneous relation,R and R are not homogeneous,and therefore "C'R" and "C'R"
are meaningless.

Let us next suppose that R is the sort of relation that generates a series,

say the relation of less to greater among integers. Then D'R = all integers
that are less than some other integer = all integers, d'R = all integers that
are greater than some other integer= all integers except 0. In this case,

C'R = all integers that are either greater or less than some other integer
= all integers. Generally, if R generates a series, D'R = all members of the
series except the last (if any), d'R = all members of the series except the first

(if any), and C'R — all members of the series. In this case, "xFR " expresses

the fact that # is a member of the series. Thus when R generates a series,

C'R becomes important, and the relation F is likely to be useful.

We shall have occasion to deal with many relations having some of the
properties of series, and with many propositions which, though only important
in connection with serial relations, hold much more generally. In such cases,

the field of a relation is likely to be important. Thus in the section on
Induction (Part II, Section E), where we are preparing the way for the con-

struction of serial relations by means of a certain kind Of non-serial relation,

and throughout relation-arithmetic (Part IV), the fields of relations will occur

constantly. But in the earlier parts of the work, it is chiefly domains and
converse domains that occur.

Among the more important^ properties of domains, converse domains and
fields, which are proved in the present number, are the following.

We have always E ! D'R, E ! d'R, E ! C'R (*3312121122). (The last of

these, however, is only significant when R is homogeneous.)

*33 13. h : x e D'R . = . (gy) . xRy

*33 131. I- : y e d'R . = . (ga?) . xRy

*33 132. h:.xeC'R. = : (32/) : xRy . v . yRx

*3314. hixRy.D.xeD'R.yed'R

*3316. h . C'R = D'R v d'R
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$33*2*21'22. The converse domain of a relation is the domain of its converse,

the domain of a relation is the converse domain of its converse, and the field

of a relation is the field of its converse.

#33*24 \-:RlI)'Il. = .nl<I'K. = .'g
L
lC'R. = .'£lR

33-4. b.T>'R = x{ftlR'x}

with corresponding propositions (#33-41-42) for d'R and C'R.

*33'43. b:El R'y.D.yea'R.R'yeV'R

#33-431. h:(y).E!.R<y.D.09).£C(I'22

#335. Y..C=~F

#33'51. h : x e C'R . = , xFR

The proofs of propositions concerning Q and G are usually similar to those

for D, and are therefore often omitted.

#3301. D~&R[a = x{(>xy).xRy}] Df

#3302. a = /3jR[p=§{(<3a;).xRy}] Df

#3303. C = yR[y = x {(ay) : xRy . v . yRx}] Df

«33*04 F= xR {(ay) : xRy . v . yRx) Df

•83-1. V : ciDR . = . a = x {(ay) • xRy] [#213 . (#3301)]

#33101. \-:/3<IR.=:.l3= g{(ftx).xRy}

#33-102. h : yCR . = . 7 = x {(ay) : #-% • v . yRx]

#33103. YuxFR.^-.i^-.xRy.y.yRx
#33-11. b,. D'R = x {(ay) . *-%} [#33-1 . #30-3 . #20-59]

#33-111. b.a'R = §{fax).xRy}

#33-112. h . CJR = x {(ay) : ff-Ry . v . yRx]

#3312. H.EID'jR [#3311 . #14-21]

#33121. V.Eld'R

#33122. H.E!(7'ie

#33123. \-:aDR. = .a = T>'R [#304 . #3312]

#33124 h:/3(LR. = .£==(KR [#304 . #33121]

#33125. biyCR. = .y = C'R [*30\4 . #32123]

#33-13. b:x€ D'R . = . (ay) • xRy [#3311 . *203-57]

#33131. V :y ed'R . = .fax) .xRy

#33132. V :. x e C'R . = : (ay) : xRy . v . yRx

#3314 b-.xRy.D.xeD'R.yed'R
Dem.

h . #10-24 . D h :, Hp . D : (ay) xRy : fax) xRy :

[#3313-131] D : x e D'i* . y e CPE :. D h . Prop
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*3315. b.~R'y CD'

R

Dem.

b . *3218 . >H -.xeR'y rD,. xRy .

[*10-24] Dx .fay).xRy.
[*3313] D*. * e D'iS: 3 I- . Prop

*33151. b.R'xCd'R

*33152. b.~R'xv%xCC'R

*33 16. I- . C<22 = D'R u O'E

K*33'132.*10'42.D

b ux e C'R . = : (gy) . xRy . v . (gy) . yRx :

[*33'13~I31] = : x e D'R . v *a? ea'iJ :

[*2234] =:x € I)<Rva'R (1)

I- . (1) . *1011 . *20'43 . 3 f- . Prop

*33f61. b.D'RCG'R.a'RCCR [*3316 . *2258]

*3317. b:xRy.D.x,yeC'R [*33I4rl61]

*33 18. f- : IXR= d'R . D . D'i2 = C'R

Dem.
b . *22*56 .5 b : D'R = d<fi . D . D<£ = D'R vd'R
[*33 16] = C'R : Z> r . Prop

*33*181. I- : df# C D'R . = . D'.R = (?i2

Dem.
I- . *22-62 . 31- :d'R C D'R . = . D*R = D'R u <Pi2

[*33*16] =C"i2:DKProp

*33182. r:D*I£Ca<i2. = .(I<B = C?< JR [fimilar proof]

If R is the sort of relation which generates a series, so that "xRy" may

be read "x precedes y" then G'R G D'R is the condition that the series may

have no last term; since it states that every term which follows some term

precedes some other term, and is therefore not the last of the series.

*33-2. b.d'R = D'R

Bern.

b . #31-11 . #1011 . D b :xRy .
=
x . yRx :

£*10-281] D I- : fax) . xRy . = . fax) . yRx :

[*3313131] >H : y e d'R . = .ye D'R (1

)

I- . (1) .*1011 . #2043 . 5 b . Prop

*B3VL b„D'R=<l?R [Similar proof]
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*33'22. h.G'R^&R
J}em.

h . *33'16-2*21 .Oh. GtR=*Q*R\*'D,R
[*33'16] = C'R . > I- . Prop

*3324. ¥:^lT> lR. = .^iatR. = .^lCtR. = .^lR

Dem.

V . *3313 . D H :. a rD<B . = r(a«) ::(&y)~*%

:

[*25-5.(*ll-G3)} = :#!£ (I)

K . *33131 . D F u3 ! <FI2 . = : (fty> : <g*?) .*% r

X*lI.-2] =:(aar,y)v«ftsf,:

[*25'5] .ssfcT-R (2)

H . *33-132. D h s: a lC'R.= :w(gr)s;<Ey)r-*jRy- v . yi^ :.

h.(l).(2),(3),:>4-.Prop

*33 241. h: D'lf=A . = ~OiR= A .3.^1.= A.,= . 12=

A

[*3324 . Transp . *2^51 . *25ol3

*3325. KB^fn^CFEnM

r- . *3313 . Oh :.. ic e ©*(#n S) . = : (gy> . at (R A-.S) y

:

[*21-33.*10-281] =z{*ay).xRy.xSyi

[*I05] 3:toy.^^:(gy).a%:
[*33'13] .- a e D'i? . a eD'fi

:

[*21-33] D^elKKnB'S (1)

P.(l).*10sll. >f.-Prop

*33'25i; h.af(jrn£)C..(P:Bn(FS [Similar proof]

*33 252. h . C'(i2 n 8) C CjR rv £<£ [Similar proof]

*33*26. h . D'(i2 vtS) = D'jB v-M

h .*331&0 K :-. a?*©<(2£a £) .-= i<g^v«{#«r3)#

:

[*23-3*.*10-281] ^'im} :*%..-»•.*%

:

[*H**2] = : <ay) «% 1 v : (ay) . ofify

:

[*3313] = t£e.]}fA.*i..*«£> f£?

[*22-S4J =::-areEKK'uJ}?S ^>
I- . (1} . *10I1 .^2043 JSr ..Prop

*33<2G1. h . 0<(Ro jSf)= GfJ2:"w G<$ [Similar proof]

#33-262. h.0f(i2crvS)W^^ w^^ [*3S*2S-a61 i
I'6}
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•33263. b-.RGS.l.D'RCD'S
Dem.

h . *23*1 . D h :. Hp . D : xRy . Dx%y . xSy :

[•10-28-27] D:(«):(aaf).«%.3-(ay).«flfy:

[•3313] D:(x):xeDiR.D.X€Dt8:

[•231] D:D'i2CD^:.3h.Prop

•33-264. h-.RGS.l.a'RCa'S [Similar proof]

•33-265. t-'.RGS.O.C'RCC'S [*33-263-26416 . •2272]

•33-27. \-.C'R= D'(RvR)
Dem.

r . *3316-2 . D h . C'R = D'l* w D'12

[•33-26] « D<(22 c»i).DI-. Prop

•33-271. h . C'R = (!<(£ a E) [Similar proof]

•33-272. H.D'(/2u5)= a'(EciS) = 0'(Ec»S) = 0'i2 [*33*27-271'16]

•3328. KD'V= <I<V = (7'V = V
Dew.

h . *10'25 . •25-104 .Dh:.(«): (gy)

.

xYy :. (a;)
: (gy) .

yVa? :.

[•33-13131] D h :. (*) . x e D'V : (#) . x ed't :.

[•24-14] Dh:D<V = V.<I<V = V (1)

[•33-16] 3l-.(7<t =VuV
[•22-56] =V (2)

h.(l).(2).Dh.Prop

•33-29. r.D'A = (I'A = C"A =A [*33'241 . #21-2]

•333. b:.aCT><R. = :xea.Ox .>&lR<x

Bern.

h . *32-181 . D H :. x e* . Dx . a ! i2'# : = : x ea . D. . (#y) . #ify

:

[•3313] = :xea.Dx .xeD'R:.Db.¥rop

•33-31. r:./3C(KR. = :ye/3.:>
2,.g! JK'y [Proof as in *33 3]

The three following propositions are used in the theory of selections (*80,

•83 and *85). The second of them is also used in the theory of greater and

less (*117) and in the theory of transitive relations (*201).

•3332. \-:D tRnT>'S=A.0.R*S= A
The converse of this proposition is not true.

Dem.

h.*23'33. D\-:x(RnS)y.D.xRy.xSy.
[*33-14.*22-33] D.xe D'R r> V<S

.
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[#1024] O.RlD'RrsD'S (1)

K(l).Transp. D H:D'i2nD'^=A.D .~~{x(RKS)y} (2)

\-.(2).*ll-ll'3.3b:WRrxI)'S=A.'}.(x,y).~{x(RnS)y}.

, [#25-15] D.22n£=A:3KProp

#33 33. I- : Q<R n a'-Sf=A.D.iJ^=A [Proof as in #33*32]

#3334. h:C'i2nC'£=A.:>..RA£=A

Dem.

r . #33161 . #2249 . D K D'E n D'S C C'R nC'S.

[#2413] Df-:(7'i2n(7^= A.D.D'i2nD'5f= A.
[#3332] D . i* n £= A : D h . Prop

#3335. \-:.& tRCa. = :xRy.'2X)y.xea

Dem.
h.*33'13.Db:.DtRCa. = :(^y).xRy.Dx .xea;

[#1023] = : xRy . D., y . x e

a

: . D h . Prop

#33-351. >:. CI'E C a. = :xRy.Dx, y .yea [Proof as in #3335]

#33352. Yi.C'RCa.^ixRy. Dx>y .x,yea

Dem.
K #33-16. #22-59. D
r:.(7'.RCa.= :D<.RCa.(I'i2Ca:

[#33'35'351] = : xRy .D,ir *ea: #.% .0XiV .yea:

[#11-391] = :xRy.Dx>y .x, i/ea:.D h . Prop

The two following propositions (#33-4*41) are very frequently used.

#33-4. h.T>'R = x\Rl%x}
Dem.

h . #33-13 . D h : « eD'lS . = . (ay) .«%

.

[#32181] =.(>&y).yeR'x.

[#24-5] ' s.alS"'*
"

<1)

I- . (1) . #10-11 . #20-33 . D h . Prop

#33-41. \-.(I'R = §falR'y} [Similar proof]

#33-42. \-.C'R=x{'&l(R'xvR'x)}

Dem.

\- . *33'4-41-16 > D I- . C'R = & {a ! i2^} w % {a I .#•#}

[#22-391] = & [a J -R'* v . a * R'x
)

[#24-56.*20'15] = & {3 ! (2S<# u £<#)}. DK Prop



254 MATHEMAKOAL LOGIC [PART I

*3343. t-iElR'y.D.yna'R.M'yeD'R

Bern.

. r . *S0-32 ,0 r : E I R'y . D . (R'y) Ry .

[*3314] O.yea'R.R'yi-D'RzDb.Prov

*33431. H : (y) . E tjBty.O . (#) . C d<R

Dem.
r . *3343 . D h :. Hp .O zyed'R .

[Simp] Oiyep.O.yed'R (1)

h . (1) . *10-1 1-21 .O f : Hp . 3 . £ C d'R (2)

K(2).*10ir21.3f.Prop

*33-432.h:(^).E!i^.3.<Pi2 = V
Pew.

f- . *3343 . *1011-27 . 3 h : Hp .3 . (y) .ye d'R-

[*2414] 3 . <PI2 = -Y .:O h . Prop

*3344. H^l^.D.^eD'E.^ca^
Dew.

\j \j

f . *3343^ . 3 4- r: .Hp . 3 . # e (I'^R . 22<a>

e

T)<R

.

[#33'2-21] 3 . x e D'R . R'x e d'R : 3 K Prop

*33 45. buy e d*R vd'S .Dy . R'y = S'y:5 ,R = S

Note that by our conventions as to denoting expressions, the scope of

both R'y and S'y in the above is "Rf
y = S'y" and I2'y is to be first

eliminated.

Z)em.

I- . *3011 .Of ::R'y = S'y . = :- (g6) : xRy.=x .x = b:b'=8i
y :.

[#30*11] = :. (g6):.« JBy.= a; .a/=5;.(?3c):^|/«= a.,. x = c : 6 = c:.

[#131 95] = :

.

{fib) : xRy, =x .x — b: xSy . =3.". x = b :

.

[*10322] 3 :. xRy .
~
x . <cSy (1)

I-
. (1) . 3 I- ::Hp . 3 :. y e d'R vd'S.D: xRy . = . xSy :.

[*532] 3 :. y e <1'R v d'S . xRy.=. yed'Rvm® . xSy*..

[*3314.*4'7l] 5:.xRy. = .xSy (2)

H . (2) . *llll-3 . 3 J- :. Hp . 3 : (x, y) : xRy .= .xSy.

[*2143] 3:.K = £:.3f-.Prop

*33 46. f :. x e D'R u D'S .3*. R'x = S'x:D.R = S [Proof as in *33i

*3347. f i.yed'R u d'S .Dy .R'y = ~S'y : 3 . R = S
Dem.

b . *33"41 . Transp .Db:y~e d'R v d'S . 3 . Tl'y = A . &y = A
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f-.(l).*13172.*4'83.Df-:Hp.D.(y).^="^y.

[#30-41] D.R=!s.

[#3214] D.J? =£OKProp

#3348. Vi.xe D'R u T>'S . D*

.

R'x= S'x : D . R = £ [Proof as in #33-47]

#33 5. r.C=2?
Bern.

h . #321 . •> h :. o?i? . = ,a= $(xFR)
[#33103] = % {(&y) : xRy . v . yRx)

.

[#33-102] = . aCR (1)

h . (1) .#11-11 ... #2143 . D H . Prop

*3351. b ix €&£.. = . xFR [*33132103}

F is useful in ordinal arithmetic, where we are concerned with a series

generated by a relation P, and " xFP " expresses the fact that a; is a member
of this series. The above two propositions (*33'5 -

51) will be much used in

Part IV, where we deal with the foundations of ordinal arithmetic, but will

not often be referred to elsewhere.

#33-6. r : R e%a. = .a = B'R
Bern.

V , #32-181 .0 I- : ReD'a. = . aDR .

[#33123] = .« = D'jR:>KProp

#33-61. f- : R e CT<a . = . a = d'R

*33 62. r : R e ^a . = . a = O'tf



*34. THE RELATIVE PRODUCT OF TWO RELATIONS

Summary q/**34.

The relative product of two relations R and 8 is the relation which holds

between x and z when there is an intermediate term y such that x has the

relation R to y and y has the relation 8 to z. Thus e.g. the relative product

of brother and father is paternal uncle; the relative product of father and

father is paternal grandfather ; and so on. The relative product of jR and #
is denoted by " i2 1 S " ; the definition is :

*3401. R\S= tcz{(>g
L
y).xRy.ySz} Df

This definition is only significant when Q'R and D'# belong to the same

type.

The relative product of R and R is called the square of R ; we put

*3402. £2 = £|.R Df

*3403. RS = R2 \R Df

The most useful propositions in the present number are the following

:

*34-2. t-.Cm'(R\S) = S\R

I.e. the converse of a relative product is obtained by turning each factor

into its converse and reversing the order of the factors.

*3421. h.(P\Q)\R = P\(Q\R)

I.e. the relative product obeys the associative law.

*3425. b.P\(QvR) = (P\Q)v(P\R)

*34'26. r.(PvQ)\R = (P\R)v(Q\R)

I.e. the relative product obeys the distributive law with respect to the

logical addition of relations. (For logical multiplication instead of logical

addition, we only get inclusion instead of identity; cf. *34 #

23'24.)

*3434. \-:RGP.SGQ.3.R\S<ZP\Q

*34 36. h . D'(P
|
Q) C D'P . d'(P

j
Q) C ti'Q

*34'41. r : E ! P'Q'z . D . P'Q'z = (P
|

Q)'z

*3401. R\8 = xz{{^y).xRy.y8z} Df

*3402. R*= R\R Df

*3403., RS= R2 \R Df

#341. \-:x(R\S)z. = .(Ry).xRy.ySz [*21-3 . (#3401)]



SECTION D] THE RELATIVE PRODUCT OF TWO RELATIONS 257

#3411. h:x(R\S)z.= .Rl(R<xnS<z)

Bern.

h . #341 . #32-18181 . D

t-:x(R\S)z. = .(Ky).y € R<x.yeS<z.

[#2233] = .(Ry).ye*R'x*~S'z.

[*24-5] = . a ! (R'x * ~S'z) : D h . Prop

*3412. \-.R\S= a&fal(R<xrs~S<x)} [#21-33 . *3411]

#34-2. \-.Cnv'(R[S) = S\R
Bern.

r . #31131 . D h : x [Gnv'{R
\
S)} z . = . z (R

\

S) x

.

[*34i] =-(wy)- zRy-ySx-

[«31'll] =-(ay)-y^.a?Sy.

: I*34
*

1 ] s.ar(S|^)« (1)
r . (1) . #1111 . #21-43 . D r . Prop

#34-202. \-.R\S= (Cnv'R) \S

Bern.

\-.*3ll31.Dh:x(Cnv'R)y.ySz. = .yRx.ySz.
[*31H] =.xRy.ySz (1)

H . (1) . #10-11-281 . #34-1 . D h : * {(Cnv'i) \S} z . = .x(R\8)z (2)
f- . (2) . #1111 . #21-43 . D h . Prop

#34-203. h.R\S = R\ (Cnv'S) [Similar proof]

#34-21. \-.(P\Q)\R = P\(Q\R)
Bem.

(a*) : (ay) • a^y yQz • zRw

(ay)- ®Py ' (a*) • yQz.zRw

-('3.y).xPy.y(Q\R)w (1)

H^S^l^lO^l.DI-r^a^.^PIQ^.^^.^
[#11-6] =
[*34-l.*10-281] =
h . (1) . #11-1 . #341 . #21-43 . D h . Prop

#34-22. P1Q\R = (P\Q)\R Df

This definition serves merely for the avoidance of brackets

#34-23. \-.P\(Q*R)G(P\Q)n(P\R)
Bern.

h . #341 . D
V:.x{P\(Q«R)}y.=
[#23-33] =

[#10-5] D
R&W I

(Rz).xPz.z(Q*R)y:

(3^) • asPz . sQy . zRy :

(3^) • #P* . zQy : (jj*) . xPz . zRy:

17
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[#341] 3:x(P\Q)y.x(P\R)y:
[*23-33] D:x{(P\Q)r*(P\R)}y (1)

h. (1). #1111. 3 h. Prop

The converse of the above is not true.

#3424. b.(PnQ)\RG(P\R)n(Q\R) [Similar proof]

#3425. H .P
|

(Qw _R) = (P
|

Q)w(P
|

i2)

Dem.

h . #2334 . *10-281 . D

f- :. (as) . aPs . « (Q v R) y . = : (gs) : aPs : zQy . v . zRy :

[*4-4.*10*281] = : (gs) : xPz .zQy.v. xPz . zRy :

[#10-42] = : (g^) . xPz . zQy : v : (g*) . xPz . zRy :

[#341] = : x(P
j Q)y . v . x{P

\
R)y

:

[*23-34] =:x(P\QvP\R)y (1)

H '. (1) . #1111 . #341 . D h . Prop

#3426. h . (P a Q) |

R = (P
|
R) v (Q \

R) [Similar proof]

The above two forms of the distributive law, and the associative law

(#34*21), are the only ones of the usual formal laws that hold for the relative

product. The commutative law, in particular, does not hold in general.

#3427. h:i2 = P'.D.P|P = P'|P
Dem.

h . #21*43 . D h :. Hp . D : (x, y) : xRy . = . xR'y

:

[*1 1*401] D : (x, y) : xRy . yPz .
=

z . xR'y . yPz :

[#10*281] D : (x) : (gy) . xRy . yPz .
=

z . (gy) . xR'y . yPz

:

[#21*15] D: JR|P = E'|P:.DI-.Prop

#3428. h:R = R'.3.P\R = P\R' [Similar proof]

#34*29. h:R = R'.D.P\R\Q = P\R,

\Q

Dem.
h .#34*27 . D h : Hp . D . R

\
Q = R'

\
Q.

[#34*28] D.P\R\Q = P\R'\Q:1\-. Prop

In proving the equality of two relations, say R and S, we usually establish

first an asserted proposition of the form

xRy . = . xSy

or Hp . D : xRy . = . xSy.

We then proceed by #1111 (together with #11*3 in the second case) to

(x, y) : xRy . = . xSy or Hp . D : (x, y) : xRy . = . xSy,

whence the result follows by #21 43. We shall in future omit these steps,

and write " D h . Prop " after we have established

xRy . = . xSy or Hp . D : xRy . = . xSy.

A similar ellipsis will be made in proving the equality of classes.
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#34 3. h : a ! (P
I
Q) . = . a ! (Q'P n D'Q)

Dem.
h.*25-5.D

F::a!(P|Q).=

[#341] =

259

[#11-27]

[#11-24]

[#11-27]

[#11-54]

[*3313131]

[#22-33]

[#24-5]

•(a«»y)-*(-P|Q)y!-

-('&x>y)'('&z)>xPz.zQy;.

.(Rx,y,z).xPz.zQy:.

.(Qz,x,y).xPz.zQy:.

(a*) : - (a#> y) • xPz • zQy ••

(3*) : - (a«) • <*>Pz : (gy) . sQy :.

:(Kz):.ze<I<P.zeI>'Q:.

.(Sz):.zea<PnT>'Q:.

.3 !((TPn D'Q) :::>!-. Prop

#34 301. h : CFP n D'Q = A . = . P
|

Q = A [#343 . Transp]

#34302. h : C'P n C'Q = A. D .P
|
Q = A . Q |

P = A
Dem.

!-.*3316.DI-:Hp.D.<I'PnD'Q = A.a'QnD'P = A
[#34-301] D . P

|

Q = A . Q I
P = A : D K Prop

^ar(P|Q).:>.3!P.a!Q#3431.

Dem

#34-32.

#3433.

Dem.

#34-34.

Dem.

h . #34-3 . D h : Hp . D . a ! (d'P r> D'Q)

.

[#24-561] D.Ria'P.RlD'Q.
[#33-24] D.a!P.a!Q:DI-. Prop

l-:.P = A.V.Q = A:D.P| Q = A [#3431 . Transp . #2551]

V:xe\) iR.~.x{R\R)x

h . #3313 . D h : a; e D'# . = . (ay) . #%

.

[#4*24] = . (ay) . xRy . xRy .

[#31-11] =.(^y).xRy.yRx.

[#34-1] = .tfCK|.R)*;:DI-.Prop

h:i2GP.£GQ.D.i2|£GP|Q

H.*23-l.Dh:.Hp.D:a?JRy i DB,„.a;Py:y&.DytI .yQ«:
[*11-2.#10-1-41] D : «% . D . #Pt, -.ySz.D. yQz :

[#3-47] D-.xRy.ySz.D.xPy.yQz (1)

h.(l).*10-ll-21-28.D

l-:.Hp.D:(ay).^%.2/^.D.(ay).^Py.^:
[#34-1] D:*(i2|fl)^.D.a?(P|Q)« (2)

h.(2).*llll-3.Dh.Prop

17—2
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#34 35. h : a ! R . d'R C D'P . D . a ! R
\

P
Bern.

h. #33-24. DHHp.D.ald'iZ (1)

1-
. #22621 . D h : Hp . D . d'R = d'R n D'P (2)

b . (1) . (2) . D h : Hp . D . a ! d'R n D'P .

[#34-3] D . a ! E
j
P : D I- . Prop

*34351. h-.alP.D^Ca^P.D.aSPjP [Proof as in *34'35]

#34 36. h . D'(P
|
Q) C D'P . <J'(P

j
Q) C d'Q

Bern.

b . #3313 . D H :. «eD'(P
|
Q) . Z> : (a*) . #(P

|

Q)z :

[#341] D:(a*,y).*Py.yQ*:
[#11-23] D:(W,z).xPy.yQz:

[*ll-55.*10-5] D : (ay) . #Py :

[#3313] Dr^eD'P (1)

Similarly I- :.se(I'(P
j Q) . D : zed'P (2)

h . (1) . (2) . #1011 . D H . Prop

The following proposition is a lemma for #95'31.

#34*361. h : a ! R . D'P C d (P . d'R C D'Q . D . a I P
|
P

| Q
Dew.

h.*34-35.DI-:Hp.D.a!PiQ (1)

K*34-36.Dh:Hp.D.D'(P|Q)C<I'P (2)

K (1). (2). #34-351. DK Prop

#34-37. h . C'(P
| Q) C D'P v d'Q [#34-36 . #33161 . #2272]

#34-38. h . C'(P
|
Q) C C"P u CQ [#3437 .#33161 . #2272]

#34-4. b:b = P'c.c = Q'z.D.b = (P\ Q)'z

Bern.

b . #3031 . D I- : Hp . D . bPc . cQz .

[#34-1] D.b(P\Q)z (1)

K #30-31 . Dh:.Hp.D: yQz.Dy .y = c:

[Fact] D : #Py . yQz . D«, y . #Py .y=c.

[#1313] Da.y.tfPc (2)

h . #30-31 . >h :. Hp. D : a;Pc . Dx . cc= b (3)

b.(2).(3).Db:.H.p.D:ccPy.yQz>Dx>y .w = b:

[#10-23] D : (ay) • xPy . y0* =>. »= 6 :

[#341] D:a?(P|Q)^.D
a;
.«=6 (4)

h . (1) . (4) . #30-31 . D b . Prop

#34-41. r : E ! P'Q'z . D . P'Q's=<P
|

Q)'z

Bern.

b . #30-52 . D h : Hp . D . (a6, c) . 6 = P'c . c = Q'z

.

[*30-51.*34-4] D . (a&) • 6 = P'Q'* • b = (P
|

Q)'s

.

[#14145] D . P'Q'z={P
|
Q)'* : ,3 h . Prop
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The above proposition is no longer true if we change the hypothesis into

E ! (P
|

Q)*z, since (P
|

Q)'z may exist when P'Qcz does not. Suppose, e.g.,

that Q is the relation of child to father, and P the relation of daughter to

father. Then (P
|

Q)'z = the granddaughter of z, but P'Q'z = the daughter of

the child of z. The first exists whenever z has only one granddaughter,

while the second requires further that z should have only one child.

For the same reason we do not have

b = (P\Qyz.D.(Rc).b = P'c.c = Q'z.

This will hold if P,Q are one-many relations (cf. *71), but not in general

otherwise.

*34-42;

Dem.

*34-5.

*34-51.

Dem.

\-:(z).R'z = P'Q'z.D.R = P\Q

h . *14-21 . D h :. Hp . D : (z) . E ! R'z : (z) . E ! P'Q'z

h . (1) .*3441 . D h :. Hp . D : (z) . R iz = (P
\

Q)'z

:

[*30-42.(l)] D:P = P|Q:.Dh. Prop

h : xR?y . = . (<&z) . xRz . zRy [*34-l . (*3402)]

V : xR3y . = . (qz, w) . xRz . zRw . wRy

h . *341 . (*34-03) . D

(1)

I- :.xR3y . =

[*34-5] =

[*ll-55] =

[*ll-2] =

b.Rs = R\R*

k : a ! r? .
=

. a ! d<p n <pp

*3452.

*3453.

*34531

*3464. h : xRx . D . #P2#

Dem.

(gw) . #jR2m/ . wRy :

(gw) : (a^) . xRz . zRw : wRy :

(g[w, #) . xRz . zRw . wRy :

(a^, w) . #jR.z . zRw . wRy :. D H . Prop

[*34'21]

[*34-3]

[*3453 . Transp]

*3455.

*3456.

*346.

Dem.

h . *4'24 .Oh: xRx . D . xRx . xRx

.

[*10-24] D . (ay) • xRy . yRx

.

[*34-5] D . xR?x : Z> h . Prop

h : . P2 C S . = : #Py . yRz . D*,
j,,

, . xSz [*34'5 . *10-23]

h . D'P2 CD'iJ . (I'P2 C d'R . GlR? C C'R [*343638]

I- . (R rx Sf G P2 n £ 2

h . *34-5 . D h:.a!(iJn%.=
[*23-33.*10-281] =

[*4-3.*10'281] =

(rz) .x(RnS)z.z(RnS)y:

(a^) • xRz . xSz . zRy . zSy :

(a^) • xRz . zRy . xSz . zSy :
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[*10"5] D : faz) . xRz . zRy : (ftz) . xSz . zSy

:

[*34-5] D : xB?y . xS*y :

[*23-33] 1:x(R*-nS*)y (1)

K (1). #11-11. DH. Prop

#3462. \-.(RvSf = R*\jR\SvS\RvS*
Dem.

h . #34-26 .3b.(RvSY = R\(RvS)vS\(RuS)
[#34-25] = R*vR\SvS\RvS2 .D\-. Prop

The above proposition is a lemma for #160 -

51, as is also #34*73, which

employs the above proposition.

#34-63. h . Cnv'(l^) = (Cnv'E)2

Dem.
K #31-131. D

I- :. x {Cnv'(R2

)} y . = : yR*x :

[#34'5] = : (gz) * y^ . sifo;

:

[#31-131.*10-281] = : (rz) . xRz . zRy:

[#31-131.#34-5] =:^(Cnv fE)2 2/:Dh.Prop

#34-7. h.Cnv'OSf|£) = £jS

Dem.

H . #34-2 . D I- . Cnv<(£
|

S) = (Cnv'S)
1

8

[#34-202] = £|£.Dh.Prop

Thus S
|
# is always a symmetrical relation, i.e. one which is equal to its

converse.

#34-701. h.Cnv<(£|£) = &|# [#34-2-203]

#34-702. h.C"(£|£) = D<>Sf

Dem.

h . #34-37 . D h . C"(£
j
5) C D<£ u (I'S

[#33-21] C D<£ (1)

h . #33-13 . D h : * e D'S . D . (gy) . xSy .

[#31-11] D.(a2/).^.^.
[#34-1] 3.a?(£|#)«.

[#33-17] D.*e(7'(/8f|5) (2)

l-.(l).(2).*10-ll .Dh.Prop

#34-703. \-.C'(S\S) = a (S [Similar proof]
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*3473. H : C'P n O'Q = A . D . (P <y Qf = P2
c; Q2

Dm.
f-.*34'302.3h:Hp.D.P|Q = A.Q|P= A.
[*25'24] D.P2 oQ2 = P2 uP|QvyQ|PuQ2

[#34-62] = (P o Qf : D H . Prop

#348. \-:R = R.R><ZR.O.R = R* = R\R
Dem.

H. #34-28. Dh: R = R. 3.R? = R
1

5

(1)

I- . #3433 . #3314 . D h :a%. D.x(R\R)x (2)

h.(l).(2). DH.iZ^.Dna-ity.D.tfifr** (3)

h . (3) . #231

.

D\-:.R = R.R*GR.D: xRy . 3 . #ifa

:

[#4*7] D : #ity . D . #.&« . #ify

.

[*10-24.*34-5] 2.xR2

y (4)

r.(4).*llll'3. DH:Hp.D.#G£2
(5)

h.*327. Dh:Hp. D.i^Gfl (6)

l-.(5).(6).*23-41.D!-:Hp.D. JB=i22
(7)

l-.(l).(7). DKProp

The hypothesis of the above proposition is the hypothesis that R is

symmetrical (R = R) and transitive (R2 G R). These are the formal properties

of those relations which can suitably be regarded as expressing equality in

some respect.

#3481. \-:R = R.R2 GR. = .R = R.R? = R [#34-8 . #4-71]

The following propositions are lemmas for #34'85, which is used in #72*64,

#3482. h :. R = R.

R

2 GR.O: x € D'R. = .xRx

Dem.

K #3433. 3\-:x€D'R. = .x(R\R)x [1)

K*34-8. D\-:.TIp.D:x(R\R)x. = .xRx (2)

h.(l).(2).Dr.Prop

*3483. \-:R = R.R?GR. xRy .D.R'x = R'y

Bern.

K #31-11. 0\-:.Kp.D:yRx:

[#3'2] D : xRz . D . yRx . xRz

.

[*34-55.Hp] l.yRz (1)

h.*3-2. ^[•..H^.^-.yRz.'D.xRy.yRz.

[*34-55.Hp] D.xRz (2)

h . (1) . (2) . D h :. Hp . D : xRz . = .yRz :

[*1011-21.*2015.*32111] D : R'x = R'y :. D h . Prop
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*3484. b:R = R.R*GR.y € B<R.R<x==R'y.'2.xRy

Bern.

K #34-82. Dh:Hp.D.y% (1)

K #32181 . #20-31 . D h :. Hp . D : xRz . =, . yRz :

[#10-1]

.

D : xRy . = . yRy (2)

h.(l).(2). Dt-.Prop

#34-841. h:R = R. R? G J? . xeD<R .%x =%y . D . xRy
Bern.

h . #34-84 ^^ . D h : Hp-. D . v^

.

xv '
'

[*31-ll.Hp] D.xRy.Dh. Prop

#34-85. h:.R= R.R*GR.3:xRy. = .xeD'R ."R'x^&y
[#34-83-841 . #33-14]



*35. RELATIONS WITH LIMITED DOMAINS AND
CONVERSE DOMAINS

Nummary o/#35.

In this section, we have to consider the relation derived from a given

relation R by limiting either its domain or its converse domain to members

of some assigned class. A relation R with its domain limited to members of

a is written "a^R"; with its converse domain limited to members of /3, it

is written "R[fi"; with both limitations/it is written "a ^R^fi." Thus

e.g. "brother" and "sister" express the same relation (that of a common

parentage), with the domain limited in the first case to males, in the second

to females. "The relation of white employers to coloured employees" is a

relation limited both as to its domain and as to its converse domain. We put

*3501. a *\R =% (x e a . xRy) Df

with similar definitions for R\ a and a ^ R[ /3.

A particularly important case is the case in which the same limitation is

imposed on the domain and on the converse domain, i.e. where we have a

relation of the form "a
'J
22 fa." In this case, the limitation to members of a

may be more briefly stated as being imposed on the field. ITor this case, it is

convenient to adopt "R£a" as an alternative notation. This case will be

considered in #36.

It is convenient to consider in the present connection the relation between

x and y which is constituted by x being a member of a and y being a member
of £. This relation will be denoted by "a f .£." Thus we put

*3504. af p = x~§{xea.ye&) Df

The chief importance of relations with limited fields arises in the theory of

series. Given a series generated by a relation R, let a be a class consisting

of part of this series. Then a is the field of the relation a "\ R fa or K£ a, and
it is this relation which is the generating relation of the series of members of

a in the same order which they have as parts of the original series. Thus parts

of a series, considered not merely as classes but as series, are dealt with by
means of serial relations with limited fields.

Relations with limited domains are not nearly so much used as relations

with limited converse domains. Relations with limited converse domains play

a great part in arithmetic, especially in establishing the formal laws. What
is wanted in such cases is a one-one relation correlating two classes or two
series. That is, we want a relation such that not only does R'y exist whenever

yi-U'R, but also R'x exists whenever x € D'jK. The kind of relation which is

most frequently found to effect such a correlation is some such relation as D
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or G. or G, or some other constant relation for which we always have E ! R'y,

with its converse domain so limited that, subject to the limitation, only one

•value of y gives any given value of R l
y. Thus for example let X be a class of

relations no two of which have the same domain; then DfA, will give a one-

one correlation of these relations with their domains: if R, Se\, we shall have

T>'R = D'S.D.R = S.

We shall also have D<R = (D[ \)'R and B'S = (D f \)'S. Moreover the con-

verse domain of D [\\ is \, and the domain of D f X is the class of domains of

members of \. Thus D[\ gives a one-one correlation of \ with the domains

of members of X. It is chiefly in such ways that relations with limited converse

domains are useful.

For purposes of reference, a great many propositions are given in the

present number, but the propositions that will be used frequently are com-

paratively few. Among these are the following:

*35-21. \-. a ^\R[0 = (a
J
\R)\-0 = a

J\(R[0)

#35-31. h.(R[a)[0 = R[(an0)
#35354. r.(£ra)|£=.R|a1#

I.e. in a relative- product it makes no difference whether we limit, the

converse domain of the first factor, or the domain of the second.

#35412. \-.R\-(0v0') = R\-0vRt0'
#35452. b-.a (RC0.D.R[0 = R
#35 48. b:a<PCa.D.P\(a1R) = P\R

#35 52. r . Cnv'(R f 0) = 1 R
#35 61. h . D'(a 1 R) = a n D'R

#3564. r . a<(R [ 0) = n d'R

#35 65. V : 0Q(1<R .1 .<1'(R\ 0) =

The hypothesis C d'R is fulfilled in the great majority of cases in which

we have occasion to use R[ 0.

#35 66. \-:<I<RC0. = .R\-0 = R
#357. \-:^{(R[0Yy}. = .ye0.cf>(R t

y)

This proposition is used very frequently, owing to the fact that limitation

of the converse domain is chiefly applied to such relations as give rise to

descriptive functions (e.g. D, Q, G).

*35-71. r :.ye0.3y .R'y = S'y :3 . R[ = S[

This proposition is useful for a reason similar to that which makes #35*7

useful.

#3582. \-.a'[0=a J\Y[0
Owing to this proposition, the properties of a \ can be deduced from the

already proved properties of a "\ R \ 0, by putting R = V.
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The relation "a f @" is what may be called an "analysable" relation, i.e. it

holds between x and y when xea and ye^, i.e. when x has a property inde-

pendent of y, and y has a property independent of #.

#35 85. I- : a ! £. D . D'(af £) = a

#3586. h : g ! a . D . (I<(a T £) = £
If either a or fi is null, so is a f /3 (#35-88).

#3501. a1-R = $0(a?ea.fl!JRy) Df

#35-02. R\ft = mxRy.yeP) Df

#35-03. a
J
\R\-/3 = x§(xea.xRy.y € 0) Df

#35-04. a\P = %$(xea.ye&) Df

#3505. £<# t /3 = (fl'a>) t £ Df

The last definition serves merely for the avoidance of brackets.

#35-1. V:x(a J\R)y. = .xea. xRy [#21 3 . (#35 01)]

#35101. h:x(R\-j3)y. = .xRy.ye/3

#35102. V-.xia^R^^y.^.xea.xRy . y e /3

#35103. \-:x(a^ 0)y. = .xea.yej3

#3511. Ka'|.R|k £ = (a1jR)«(.R|
k

/8)

Dem.

h . #35-102 . D h : x(a] R\P)y . = . xea .xRy. y e/3 .

[#424] = .xea. xRy . xRy . y e y8 .

[*35-l-101] -.^(al^y.afCief^y.
[#23-33] = . x {(a 1 22) r>

(R f £)} y : D J- . Prop

#3512. \-.(a
J
\R)n(S\'/3) = a'\(RnS)tl3

Dem.

>.#23-33.Dr-:a;{(a1i2)n(^f/5)}y.s.«(a1i2)y.a?(^f ;

/3)y.

[#35-1-101] = .xea.xRy.xSy.ye/3.
[#23-33] = .xea.x(R*S)y.ye0.
[#35-102] =.a?{a1(i2is»i8f)|

k )8}y:Dh.Prop

#35-13. \-.(a
J\R)n(/3 J

\S) = (an/3)
J\(R*S)

Dem:

\-.*23-33.O\-:x{(a
J\R)*(0 J

\S)}y. = .x(a
J
\R)y.x(/3

J
\S)y.

[#35'1] = .xea. xRy . x

e

/3 . &v% .

[*22-33.*23-33] = .xe(a n /3) ..*(# A £)y

.

[#35-1] = . a {(a n £)1 (R n S)} y : D h . Prop

#3514. h.(R\-a)n(St/3) = (RnS)t(a*l3) [Similar proof to #3513]
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*3515. ^.(«\Rt/3)n(c(1Stl3') = (anay'\(RAS)t(l3rsl3')

Bern.

K*3511.0
* .(alRlJ3)*Xa'lSt0') = (a '\B) n(R{ /3)n(a'

J S)n(Sf f3')

03513-14] ={(anaf)
J\(RnS)}n{(RnS)[^nP)}

[*35'11] ={(a«a,

)'J( JRn>Sf)f(/3n
/
S')}.Dl-.Prop

*3516. . h . (a 1 R) n S= a \ (Rn 8) ^Rna^S [Similar proof to *351 3]

*3517. b.tR\-/3)AS**(R*S)t/3 = Rn8f.l3 [Similar proof to *35-l 3]

*3518. +.(cL
J

\Rfl3)*S= a
J
\(RnS)tl3-=Rn<z'\Stl3

[Similar proof to #351 5]
*3521. h.«1£r0=(a1#)f£ =«1W£)

Dem.
Y . *35-102 . D Y : x (a'1 JRf j8) y.=.xea. xRy . y e £

.

[*351] = . « (a 1 E) y . y € /3 .

1*35-101] =..»{(*.1J2)r/8)y (1)

h- . *35102 . D J- : x {a\ R\:@)y . = . x ea . xRy . y e j3

.

[*35101] =.j.e«. x(R 1/3) y

.

j>35-l] =.x{aMRtl3)}y (2)

H,(l).(2).Dh.Prop

*3S22. h.(a^)|^ = a |(S|fi')

Dem.

r- . *34.l . D h :, x {(a 1 i2)
|
S] y . = : <gs) . .a? (a 1 i2) z . s% :

[*35'1] = : faz) .x e a .xRz . zSy:

[#10*35] = : area r(gs) .xRz .zSy .

[*34-l] = :xea.x(R\S)y.:

[¥351] = : :a?{«1 (R \ S)\y:. >f .Prop

*35 23. I-. . flf
|
(Rf &y=.{S[.££, [Similar proof to *35-22]

*3524 a
4\R\S^(<i J\R)\8 Df

*35^25. S\Rl@=(S\M)fP Df

*35'26. >-.(o1^)|(«f/9>*o1(fi|i8)f: i
8.= ^1(i2|S)^/8 = o'1{(Sfi8f)^}

H(*1*)W£««0'fSW£)}
= (a]R

j £)f £ -^l (R \.S [-ft
Dem.

K*341 . Dfer :. « {(ali2) |,(flr#)}.y . = : (a*) . »<p%R)z .z(S[0)y :

[*35'1101] = : (g*) .xea. xRz . z8y . y e/3 :

'{#10*35] = : x ea.y e./3•: (g^) . a?jRs .zSy :

1*34-1] => : a; e a . x (R
j

S)y .ye/3:

[*35102] =:x\a\(R\£}fft\y (1)

h . (1) . *36-21-22-23 .{#35 24-25) .O h .Prop
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#3527. a.TJ2|#r£-=(«1.R|j8f)r£ Df

#35 31. h.(R[a)[0 = Rf(otn0)

Bern.

r . #35101 . 3

h

: x {(R^a) t P) V • = ^W«)y -V eft •

[#35-101] =.xRy.yea.ye0.
[#22-33] = . xRy .yearxft.

[#35-101] = .x{Rf (a n &)} y : 3> . Prop

#35-32. \-.a'\(/3
J
\R) = (ar\l3)

J\R [Proof similar to that of #35-31]

#35-33. \-.(a
J\R[0)[y^{a d

\R[(J3ny)} [Proof similar to that of #3531]

#35-34. \-.a
J
\(/3

J\R[y)~{(an/3) J\R[y} [Proof similar to that of #35-31]

#35-35. k . «\R = (an

D

fE) 1 22

Z)em.

h . #35-1 .3r-:#(a1.ft)2/. = .#ea. ^ify .

[#33-14] = .#ea.a:eD<i2.a;%.

[*2£-33k*35'l J =,*{(an D'R) J\R}y:Db. Prop

#35-351. f . R T /3 = R [ (0 n (F.K) [Proof as in #35-35]

#35-352. h . a 1 E f £ = (an B'R) 1 R [ (J3 n d'R) [Proof as in #3535]

#35-354. \-.(R[a)\8 = R\a J
\S

Dem.
Y . #341 . #35101 . 3
V : x {(R f a) 1

8} z . - . fay) . xRy .yea.ySz..

[#35-1] = .(<&y).xRy.y(a
J
\S)z.

[#341} = . x \R\ (a 1 £)} z : 3 r . Prop

#35-41. K(auo01.R = a1.R»a'122 [#35'1 . #2234]

#35412. \-.R[(0yj0') = R[0KjR[0' [#35-101 . *22;34]

#35-413. h.(«u a')1 £ £(0 u £') = (« 1 £.££) .o(a1.i2 f^')
u (a 1 i2 f /3) (a |-JB f £*) [#35102 . *22'34]

#3542. r-.«1(iJafif) = (o1i2)c»(a1flf) [#351 . #23-34,]

#35-421. h . (R a £) f/3 = (R f/S) o (£ f£) [#35-101 . #23*34]

#35-422: b .n^Rv S)f/3 = (aj R\-/3)w(a1 S {&) [#35102 . #2334]

#35-43. J-:a<:^.D.«1i2G/31i2

Dem.

r . #35-1 . 3 h :. a C /3 . 3 : #(a1 R) y . = . x e a . #ity .

[#22-1] y.xe/3.xRy.
[*35-l] D.^(/S1i2)2/:.Dr.Prop

#35-431. Y-.ftCy.l.RTPQRty [Proof similar to that of #35-43]

#35-432. r-:aC 7 ./3CS. 3. a1i2^G y^M^S
[Proof similar to that of #3543]
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*3544. \-.a1RGR

Dem.
h . *35*1 . D I- : x (a ^ R) y . D . x e a . xRy .

[#3*27] D . xRy : D K. Prop

*35 441. h.RffiCZR [Proof similar to that of *35'44]

*35442. h.alRfflGR [Proof similar to that of *3544]

*35451. bzV'RCa.D.alR^R
Dem.

h . *47l . D I- :. Hp . D : xeV'R . = . xeD'R . xe

a

:

[*4-36] D-.xeWR.xRy.^.xelf'R.xRy.xea (1)

h . *3314 . *471 , Db:xRy. = .xeD'R.xRy (2)

h.(l).(2).Dh :.Hp. D:xRy. = .xRy.xea.

[*3&-l] =.ar(o1i2)y:.DI-.Prop

*35-452. \-:a<RC/3.D.R\-/3 = R [Similar proof]

*35 453. h : D'R C a . D . a 1 12 T £=P T/3 [Similar proof]

*35'454. h : <I<12 C £ . D . «1 12 f/3 = a 1 12 [Similar proof]

*3546. h:£Gi8f.D.-alJBGo1S

Dem.

h . *231 . D h :. Hp, D : xRy . D . xSy :

[Fact] D : # e a . #12y . D . a? e a . #$y

:

[*351] D :x{a
J\R)y. 1 .x(a

J
[S)y ;.1Y . Prop

*35-461. hrJBGflf.D.-BriSGiS^ [Similar proof]

*35'462. b-.RGS.D.alRt&GaYStfl [Similar proof ]

*35471. I- : <FP n a= A . D . P |

(a^j 12) = A
Dem.

l-.*34-l.Dh:a;{P|(a
>
|l2)}^.D.(ay).a;Py.2/(a1l2)^.

[*35-l] 3 . (gy) , xPy .yea. yRz

.

[*33'14 . *10\5] D.(>&y).y€<I'P.yea.

[*22'33 . *24'5] D.g!<PPr>a (1)

I- . (1) . Transp . *24-51 . D
I- : a'P n a = A . D . ~ {P

|

(a 1 12)} z :

[*ll*ll-3] Dr:a'Pna = A.D.(«, ^).~«{P
|

(a1 12)}^.

[*2515] D.P|(a1l2) = A:Dr.Prop

*35'472. h:D fPna = A.D.(12I
k a)|P = A

*35'473. h:afPno=A.D.P|(a1l2^) = A

*35'474, r:D'Pn/3 = A.D.(a1l2r/3)|P = A
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*35'48. \-:a<PCa.-}.P\(a J
\R) = P\R

Dem.

K*221. Z>r:.Hp.D:ye(I<P.:Vyea:
[*4'71] liyea'P.yea.^y.yed'P:
[*10-311] D:aPy.ye(FP.yea.=,,.a:Py.ye<3'P (1)

b . *3314 . *4'7l . D h : xPy . y <• <PP . = . xPy (2)

b. (1) . (2) . D h :. Hp . D : #Py . y e a . =„ . a^Py :

[*10311] D:xPy.yea.yRz.=y .xPy.yRz:

[*351] D : xPy .y(a
J]R)z.=v . xPy . yRz :

[10-281] D : (ay) . *Py . y (« 1 P) * . = . (gy) . *Py . yP* :

[*341] D -. x (P
|
a |P) *

.

"= . x (P
|
P) * :. D I- . Prop

*35-481. K : D'P C /3 . D . (P f/3) |
P = P

|
P [Similar proof]

*35'51. h.Cnv'(a'jP)=P(k
a

Dem.
b . *31131 . D H : a; {Cnv'fa 1 P)} y . = . y (a 1 P) #

.

[*351] =.yea.yRx.

[*3111] =.xRy.yea.

[*35101] ^.^(Pp^yOh.Prop

*35 52. I- . Cnv'(P f/3) = £1

P

[Proof similar to that of *35'51]

*35 53. b . Cnv'(a 1 P f /3) = 1 R [ a [Proof similar to that of *35'51]

*35 61. r . D'(a1 P) = a n D'P
Dem.

b.*3S-lB.3b:.x € T>'(a'\R). = :(Ry).x(ci
J\R)y:

[*35 -

l] = : (gy) . x e a . #Py

:

[*1035] =:a?ea:(gy).a;Py:

[*3313] =:xea.xeV<R:
[*2233] =:«(on D'P) :.0b. Prop

*35 62. h:aCD fP.D.D f(a1P) = a [*3561 . *22621]

*3563. h:D (PCa. = .a
>|P = P

h . *35-61 .Dh:a^|P = P.D.an D'P = D'P .

[*22621] D.D'PCa (1)

h.(l).*35-451.Dh.Prop

*35'64. r.a'(Pf/3) = £n(I'P [Proof as in *35"61]

*35641. h : a n D'P = A . D . a 1 P = A [*3561 . *33241]

*35 642. h : a n d'P = A . D . P fa = A [*3564 . *33241]

*35 643. r : a n D'P = A.D.a1(Pc//S) = a1S [*3564142]
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#35 644. r : a r> d'R « A . D . (R v S) f a = S f a [*35'642-421]

#3565. r : C a*!? . D . <P(.R fyS) = £ [#35-64 . #22-621]

#35 66. h:(I<RC/3. = .R[/3= R [Proof as in #35-63]

#35 671. h . D<(R
|
S) = D'CR fD'tf)

Dew.

\-.*33'l3. 3h:.a;€'D'(R\S). = :(<giy).a;(R\S)y:

[#341] = : (ay, z) . tfifo . .zSy

:

[#11-23] = : (a*, y) #ik *>% :

[#1035] =:(a*):adk:(ay).*,Sfy:

[#3313] =:(a^).«^.^6D f
/Sf:

[*35'101] • = :(a«).a ! (E|
k
D'i8f)^:

[#3313] = : m e &'(R [T>'S) :. D H . Prop

#35-672. h . <T(E
|

S) = d'((FJR1 £) [Similar proof]

#35-68. H:an
/
8 = A.D.(a >

l
JR|

<

/3)
2 = A

Dew.

h . #35-61 64-21 . D r . D'(a^ f0) C a . <P(a1# [/3) C £

.

[*22-49.*24-13] DH:an/3 = A.D. D'(a1 22 f£) n d'H R[0) = A.
[#34-531] D.^iJfjS^AOl-. Prop

#35-7. H:^{(^r/3yy}. = .y6/9.</»(i2'y)

This proposition is very often used in the later parts of the work.

Bern.

h . #14-21 . D h : <j> {(£ f£)'y} . D . E ! (R [/3)'y

.

[#33-43] D.ye<3'0Rf/3).

[#35-64] 3.ye/3 (1)

h.(l).«4-7l.DI-:0{(i2r/8)*y}. = ..ye/8-^{(i2r /8)'y} (2)

h . #4-73 . *35-101 . D h :. y 6/3 . 3 : a; (.R ftf) y . =x .xRy:

[#14-272] D : <£{(£ r£)<y} • s . * (*'y) (3)

h . (3) . #5-32 . D r : y« £ . </> {(UWy} = . y « £ . $ (R'y) (4)

K'(2).(4). DKProp
#35-71. \-:.yel3.Dy .R

t

y = S<y:D.R |\8 = #f£
Dew.

f .#4-7 . D h :. Hp .D : y e . Dy .y e . R'y = S'y :

[#35-7] D:y«i3.Df.(Wy-(Sf%:
[#35-64] D : y e (I'(i*t0) v, <!<(£ f/3) . D* . (JB f£)«y = (S r/9)<y

:

[#33-45] Dri^^^^t/S^DI-.Prop
#35-75. h.Ali2 = i2|

kA = A'Jief i
8 =o^pA = A

Dem.
h. #35-61. Dh.B ((A J\R) = A.

[#33-241] Dr-.A1E = A (1)
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K*35-64. 0\-.a<(R[A) = A.
[*33-241] Dh.i2fA = A (2)

I- . *35-44121 . D h . A^R [fi G A^| R .

[(1).*25-13] D\-.a\r[I3 = A (3)

h . *35-44-21 . D\-.a1R[AdR[A.
[(2).*2513] DKa1£fA = A (4)

h.(l).(2).(3).(4).DKProp

*3576. h.Y^\R = RfY = Y]R[Y = R
Dem.

h.*351. 3\-:x(V\R)y. = .xeY.xRy.
[*24104.*473] = . xRy (1)

j- . *35101 . D h : x (R [ V) y . ° = . xRy .yeY.
[*24-104.*4-73] = .xRy (2)

H . *35102 .3h:x(Y]R\-Y)y. = .x€Y .xRy.yeY.
[*24104.*4-73] = . xRy (3)

K(l).(2).(3).DKProp

The rest of this number, down to *35*93 exclusive, is concerned with af/3,

except *35-81812.

*35 81. b:x(a J
[Y)y. = .xea [*3ol . *25'104]

*35-812. \-:x(Y [fi) y. = .y e/3 [*35101 . *25104]

*35*82. h.at/3 = a-JVp/9

Bern.

I- . *35 •103 . D I- : # (a f £) y . = . # e a . y e£

.

[*25'104] = . x € a . xYy . y e # .

[*35-102] =.tf(a1Vf/3)y:Dh.Prop

*35822. \-.a
J
\R\-/3 = Rn(a^l3)

Bern.

h . *35102 . D h : a?(o^ 12 f £)y . = . x e a . xRy . y e/3 .

[*4'3] = . xRy . x e a . y e y8 .

[*35103] = . xRy . « (a f £) y

.

[*23-33] = . x {R n (a f £)} y : h . Prop

*3583. b:T><RCa.a'RC0. = .RGatl3
Dem.

H.*3314. D\-:.xRy.'^:xe'D iR.y€a tR:
[*22-46]

. D:I><RCa.a<RCj3.3.xea.y<:/3 (1)

h . (1) . Comm . D h :. D'ECa . d'R C£ . D : xRy . D . aea .y e/3 .

[*35-103] D.#(af/3)y (2)

K #35-103. Db:.RGa /t/3.D:xRy.DXty .xea.ye0:
[*33-35351] D:I>'RCa.a*RCl3 (3)

h.(2).(3). DKProp
R&W I lg
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#35-831. K Mat£) = (-at£)o(af--£)ci(-at-/8)
Dem.

K #23*35.3 J- ::a>{i(at/8)}y.=

[#35-103] =

[*45i] =

M«t£)y}»
(xea.y e ft) :.

\. x^ ea.v .y~ e ft :.

[#4*42] = :.#~ea:ye/3.v.y~e/8:.v:.#ea.v.a;~ea:y~e/S:.

[#4
-

4] = z.x<*->ea.yeft . v .xcsjeCL.y~eft.v.xea.y~eft.v.x~eci.y~eft:.

[#4-25-31-37]

= :. x »•> ea . y eft . v . xea. . ys eft . v . x~ ea . y~ e/3 :.

[#22*35] =:.xe — a.yeft.v.xett.y€ — ft.v.xe — a.ye — ft:.

[#35-103] = :. «(- a t ft)y • v . «(« T -£)y . v . x{- a | - ft)y :.

[#23-34] = :. x {(-a ^ ft) u (a f - £) vy (- a | -/3)} y :: D h . Prop

#35-832. h.-^(a'| JK^) = (-at/3)c;(at-/3)a(-at-/3)*y-i- JR

[#35822-831 . Transp . *23'84]

#35-834. h.(at/3)n(7 tS) = (an 7)t(/SnS)

Dew.
h . #35-103 . D

h :a;{(at ft)^(y^ S)}y . = .xea.yeft.xey.ye8.

[*22-33.*35-103] = . a {(a n 7) | (£ n S)} y : D h . Prop

h.Cnv<(«t/3) = /3t« [#35-103 . #31-131]

h:a!/8.D.D'(at/8) = «

#35 84.

#35 85.

Dem

#3586.

#3587

Dem.

K #35-103. #10281. D

I- :. (ay) . a; (a *|*
/8) y . = : (ay) . xea . ye ft :

[#10*35] = :xea:{^y).yeft:

[*24'5] =;xea.Q\ft

h . (1) . #33 13 . #10-35 . D h . Prop

h : a ! a . D . (F(a ^ft) = ft [Similar proof]

h:a!(aT/3). = .a!«-3!£

(1)

h . #35-103 . D r- :. a ! (a t /8) • = : (3*. y) -ocea.yeft:

[#1154] = :(a^).«ea:(ay).ye^:

[#24-5] =:a'.«.a'-/3:.DI-.Prop

#35-88. h:.at/3 = A. = :a = A.v.£ = A
[#35-87 . Transp . #2451 . *25'51]

#35-881. h:<I< JftCa.D.#|(at£) = D<#t/3

Dem.

V . #341 . #35103 . D
h : # {J2

|

(a f £)} y . == . (a*) #-R* • ^ea . yeft (1)
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K*3314. 3\-:.a<RQoL.D:xRz.D.zea:

[*4-73] D:xRz. = .xRz'.z€a (2)

\-.(l).(2).D\-::RV .D:.x{R\(a ^/3)}y. = :('Kz).xRz.ye0:
[10'35] = : (rz) . xRz : ye/3

:

[3313] = :xeT>'R.yej3:

[35103] = : x (D'R J/3)y::D\-. Prop

35 882. h : T>'R C £ . D . (a \ /3) \

R == a f <3<£ [Similar proof]

3589. f-:a!/3.D.(at/3)|(/8t7) = («t7):~a!^-3.(«T/3)!(^t7) = A
Dew.

I- . *34-l . D h :. x {(a | /3)
| (£ f 7) } *.

[35*103] = : (gy) .xect.yefi. ye ft . ,Z€7 :

[4*24] = :(-jy).#ea. ye/3 . se7 :

[1035] = : g !/3: xea.zey :

[35'103] = : a !/3:#(at 7)z (1)

h.(l).Dh:: a i^.D:*{(ati8)|(/8T7)}'. = -*(at7)*»
->(a!/3).D:~[^{(at y8);( /St7)l^"^l-.Prop

35891. H:. a !y8.v.~ a !a: D.(«t/S)!(^ta) = (ata)

Dem.
V . #35-88 .Dh:~a!a-^-aT« = A.ati8 = A.
[34-32] D . a

*f
a = A . (a | £)

|
(£ t «) = A .

[21-24] D. (a T«) = («t £)!(£?«) (1)

H.(l).*35-89.Dh.Prop

a
35-892. h : (a I a)2 = (a I a) 35-891

£
35-895. ,f : a n £ = A . D . (a t /3)

2 = A [35-68-82]

359. KD'(ata) = <I<(af a) = C'(af a) = a

Dem.

r . 35-85-86 . D t- : 3 I a • 3 D'(a| a) = a . <P(a f a) = a (1)

K*35'88. DH:~a!a.D.~a!(afa).
[3329] D . D<(a | a) = A . <I'(a f a) = A .

[24-51] D . D'(a j a) = a . d<(a f a) = a (2)

I- . (1) . (2) . *4-83 . D r- . D'(a f a) = <P(a f a) = a . D h . Prop

35-91. hzRGafa.^.C'RCa
Dem.

r . 35103 .Dh:.22Gafa.=: zrEy . D^j, .x,yea;

[33-352] =:C'RCa:.3h.Yrop

35-92. h :. (ga) . P = f a . D : R G P . = . C'R C CP [*35 9 91]

18-2
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*35 93. h : (R) .
<f>
(D'R) . = . (a) . <£a

Dem.
h . *3312 . *1418 . 3 h : (a) . if>a . D .

<f>
(D'R) :

[10-11-21] Dt-:(a).<f>z.D.(R).<f> (D'R) (1)

h . *101

.

D h : (22) . (D'i2) . D .
<f>

{D'(a f a)}

.

[*35-9] D.<^a:

[10-11-21] Dh:(iJ).^(D'i2).D.(o).^a (2)

K(l).(2). DKProp
*35 931. b:(R).<f>(<I'R). = .(a).<]>a [Proof as in *35'93]

*35 932. b:(R).<f>(C'R). = .(a).<f>a [Proof as in *35"93]

*35-94. h:('3_R).<f>(D'R). = .(^a).<f>a [*3593 . Transp]

*35'941. h : (&R) .
<f>
(d'R) . = . (ga) . <£a [*35931 . Transp]

*35-942. r : (gi2) . (CiZ) . = . (get) . <£a [*35"932 . Transp]



*36. RELATIONS WITH LIMITED FIELDS

Summary o/#36.

In this number we are concerned with the special case in which the same

limitation is imposed \ipon the domain and the converse domain of a relation.

In this case, the same result is achieved by imposing the limitation on the

field. It is convenient to be able to regard a
"J
P[a as a descriptive function

of a or of P, which we secure by the notation P £ a, whence, as will be ex-

plained in #38, P fa and £VP will both mean P £ a. If P is a serial relation,

and aCC'P, "P£a" will stand for "the terms of a arranged in the order

determined by P," or, as we may call it briefly, "a in the P-order." P £ a is

defined as follows:

#3601. Pta = a
J\P[a Df

We thus have

#3613. h : x (P I a) y . = . x, y e a . xPy

Most of the propositions concerning P £ a demand that P should have

some at least of the characteristics of a serial relation. Hence the propositions

concerning P £ a which can be given in the present number are, for the most

part, not the most useful propositions concerning P £ a. The most useful

propositions in the present number are the following:

#3625. r:C"PCa.= .Pta= P
#3629. KP£« =Pnata
#363. b.Pta = Pt(anC'P)

#3633. KPtC'P =P

#3601. P£a = a1Pr« Df

#3611. h.Pta= a
J\P[a [(#36*01)]

#3613. h:#(Pfc «)#. = .#, yea.xPy [#361 1 . #35102]

The following propositions are obtained from those of #35 by means of

#36-11, which, as it is used in each case, is not referred to again.

#36-2. \-.Pta*Qtft = (P*Q)t(«"/3) [#3515]

#36201. h.Pta*PtP = Pt(anl3) [*36*2]

#36-202. h.PtanQta = (PAQ)ta [#362]

#36203. \-.PtarxQ = (P*Q)ta [#3518]

#36-21. r . (P I a) £ £ = P fc
(a n 0) [*35-33'34]



278 MATHEMATICAL LOGIC [PART I

*36-22. h . (P t a)
j (Q £ a) G (P

| Q) t a

Dem.

V . *36'13 . *341 . D V : x {(P £ a)
j
(Q £ a)} z . = . (gy) .x,y,zea. xPy . yQz .

[*10-5] D . (a2/) .x,zea.xPy. yQz (1)

I- . (1) . *10-35 . *341 . D h . Prop

*3623. V.(PvQ)ta = PtoLvQla [*35"422]

*3624. h«C/3.D.P^«GP^ [*35-432]

*36 241. h-.PdQ.D.PladQta [*35'462]

*3625. h:C"PCa. = .P£a = P
Dem.

h . *3613 . *4*7 . D h :. P £ a = P . = : #Pt/ . Dx<y . x, y e a :

[*33'352] =:(7<PCa:.DKPrjpp

*36 26. h : OP n a= A . D . P
| (Q £ a) = A . (Q fc

a)
|
P = A [*35-473-474]

*3627. h:P£A = A [*3575]

*36-28. h.P£V = P [*3576]

*3629. h.P^a = Pnat« [*35-822]

*36 3. \-.Pta = Pt(anC'P)
Dem.

h . *3317 . *4-71 . D h : xPy . = .x,yeC(P. xPy :

[Fact] D. I- : x, y e a . xPy . = . x, y e a . x, y e (7'P . xPy .

[*22-33] = .x,yeanC'P.xPy.

(1)[*36-13] = . x [P I (a n C'P)}
:

y
h . (1) . *3613 . D h . Prop

*36-31. H:anC<P = A.D.P£a = A [*36-3'27]

*3632. ha rt C'P =
i
8nC"P.D.P^=Pt^ [#36-3]

*3633. Y.PiC'P = P [*36-25]

*3634. 1-
. Cnv'P I a = (P) £ a [*35'53]

*3635. h.(Pta)2 G(P2)£a [*36-22]

*364. 1- : . a n D'P = A . v . a n a*/? = A:D.(Pc/ £)£« = ££«
Dem,

r- . *35-643 . D r : a n D'P = A.."} .a\(Rw 8) = a
J

\S

.

[*35'21] D.(RvS)ta = Sta (1)

Similarly H : an d'R = A . D . (P vy 5) fc
a= 5 £ a (2)

K(1).(2).DI- . Prop



*37. PLURAL DESCRIPTIVE FUNCTIONS

Summary o/*37.

In this number, we introduce what may be regarded as the plural of R'y.

"R'y" was defined to mean "the term which has the relation R to y." We
now introduce the notation "R"ft" to mean "the terms which have the

relation R to members of ft." Thus if ft is the class of great men, and R is

the relation of wife to husband, R"ft will mean "wives of great men." If

ft is the class of fractions of the form 1 — 1/2
n for integral values of n, and R

is the relation "less than," R"ft will be the class of fractions each of which is

less than some member of this class of fractions, i.e. R"ft will be the class of

proper fractions. Generally, R"ft is the class of those referents which have

relata that are members of ft.

We require also a notation for the relation of R"ft to ft. This relation

we will call Re . Thus Rt is the relation which holds between two classes

a and ft when a consists of all terms which have the relation R to some

member of ft.

A specially important case arises when R'y always exists if y e ft. In this

case, R"ft is the class of all terms of the form R'y when ye ft. We will

denote the hypothesis that R'y always exists if y e ft by the notation E !! R"ft,

meaning "the R's of ft's exist."

The definitions are as follows:

*3701. R«ft=&{{'&y).yeft.xRy} Df

*3702. Re = aft(a = R"ft) Df

*3703. Re = Cnw'(Re) Df

This definition serves merely for the avoidance of brackets. Without it,

"Re
" would be ambiguous as between (R)e and Cnv'(.Re), which are not equal.

In all cases in which a suffix occurs, we shall adopt the same convention, i.e.

we shall always put

^suffix = Cnv'(i28uffix).

*3704. R'"k = Re"K Df

Thus R'"k consists of all classes which have the relation Re to some

member of k. R"'k is only significant when k is a class of classes relatively

to members of the converse domain of R ; in this case, R'"k is a class of classes

relatively to members of the domain of R.

*37'05. Ell R"ft. = :y e ft.

3

y . El R'y Df

Here the symbol "E !! R"ft" must be treated as a whole, i.e. we must not

regard it as making an assertion about R"ft. If R"ft = a, we must not suppose
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that we shall be able to put "E !! a," which would be nonsense, just as "E ! x"
is nonsense even when x = R'y and E ! R'y.

The notation R"a, introduced in the present number, is extremely useful,

and embodies a very important idea. Its use is somewhat different according

to the kind of relation concerned. Consider first the kind of relation which
leads to a descriptive function, say D. If \ is a class of relations, D"\ is the

class of the domains of these relations. In this case, D"\ is a class each of

whose members is of the form D'jR, where R e X. Again, let us denote by
"xn" the relation of m to mxn; then if we denote by "NG" the class or

cardinal numbers, xn"JSfC will denote all numbers that result from multi-

plying a cardinal number by n, i.e. all multiples of n. Thus e.g. x2"NC will

be the class of even numbers. If R is a correlation between two classes a and

fi, i.e. a relation such that, if yefi, R'y exists and is a member of a, while

conversely, if x e a, R'x exists and is a member of 0, then a = R"/3, and we
may regard R as a transformation applied to each member of /3 and giving

rise to a member of a. It is by means of such transformations that two classes

are shown to be similar, i.e. to have the same (cardinal) number of terms.

In the case of serial relations, the utility of the notation R"fi is somewhat
different. Suppose, for example, that R is the relation of less to greater among
real numbers. Then if is any class of real numbers, R"/3 will be the segment
of real numbers determined by /3, i.e. the class of real numbers which are less

than the limit or maximum of /3. In any series, if is a class contained in

the series and R is the generating relation of the series, R"@ is the segment
determined by 0. If has either a limit or a maximum, say x, R"fi will be

R'x. But if has neither a limit nor a maximum, R"/3 will be what we may
call an "irrational" segment of the series. We shall see at a later stage that
the real numbers may be identified with the segments of the series of rationals,

i.e. if R is the relation of less to greater among rationals, the real numbers
will be all classes such as R"/3, for different values of /3. The real numbers
which correspond to rationals will be those resulting from a ft which has a
limit or maximum; the irrationals will be those resulting from a /3 which has
no limit or maximum.

The present number may be divided into various sections, as follows:

(1) First, we have various elementary properties of the terms defined at the
beginning of the number; this section ends with *37'29. (2) We have next
a set of propositions dealing with relative products, and with such symbols as
P"Q"y, P"Q'"K, and so on. The central proposition here is

*37'33. h . (P
|

Q)«ry = P"Q"y

By the definition, Q'"k = Qe
"K. Thus P"Q'"K = (P

j

Q,)«*. This connects
propositions concerning such symbols as P"Q'"K with propositions concerning
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relative products. This second section consists of the propositions from #37*3

to #37 39. (3) We have next a set of propositions on relations with limited

domains and converse domains. The chief of these are

*37'401. h.D'(R\-/3) = R"/3

*37412. h.(R\-a)"l3 = R"(aK/3)

#3741. I- . T>'(R I a) = a « R"a . <I'(R £ a) = a n R«a
These propositions on relations with limited domains and converse domains,

together with certain others naturally connected with them, extend from #37*4

to #37*52. (4) We next have a number of very important propositions on the

consequences of the hypothesis E!!i?"/3, i.e. the hypothesis that, for any

argument which is a member of /3, R gives rise to & descriptive function R l
y.

The chief proposition in this section is

#37-6. h : E !! R"$ . D , E"£ = x {(gy) .yeP.tc** R'y]

Propositions with the hypothesis E \l.R"fi are applied to the cases of R
and R, in which the hypothesis is verified. This section extends from #37*6

to #37*791. (5) Finally, we have three propositions on the relative product

of a
"f

jS with other relations. These propositions are useful in relation-

arithmetic (Part IV).

The propositions of the present number which are most used in the sequel,

apart from those already mentioned, are the following (omitting such as merely

embody definitions):

#3715. I- . R"a C D'R

#3716. h.R"aCa'R

#372. r:aC/3.D.P"aCP"/3

#3722. h.P"(au/3) = P"avP"£

#3725. I- . D'R = R«a<R . d'R = R"I><R

#37-26. h . R"/3 = R"(/3 n d'R)

#37-265. h . R"a = R"(a n C'R) . R"a = R"(a n C'R)

#3729. h.E"A = A.P"A = A

#3732. \-.~D<(P\Q) = P"D<Q.a'(P\Q) = Q"(l<P

#3745. I- :. (y) . E ! R'y . D : g ! R"/3 . = . 3 ! £

#37 46. Yixe R"a . = . g ! a n R'x

#3761. h ::Ell R"t3 .0 :. R"j3 Ca . = :y e j3 .1y . R'y ea

For example, let R be the relation of father to son, /3 the class of Etonians,

a the class of rich men; then "R"@Ca" states "all fathers of Etonians are

rich," while "yefi.Dy.R'yea" states "if a boy is an Etonian, his father
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must be rich." In virtue of the above proposition, these two statements are

equivalent.

#3762. h:E! R'y .y ea.D .R'ye R"a

#3763. b::EV.R"a.D:.xeR"a.Dx .>lrx: = :y€a.Dy .yJr(R'y)

#3701. R"8 = x{(>&y).ye8.xRy} Df

#3702. Re = aP(a = R"/3) Df

#3703. ^e = Cnv'(i2.) Df

#3704. R<"K = Re"K Df

#3705. EUR"8. = :y€8.Dy
.ElR'y Df

#371. I- : x eR"8 . = . (ay) .yeS.xRy [#203 . (#37-01)]

#37101. b:aRe8. = .a= R"8 [#213 . (#37-02)]

#37102. h : a (R)e 8 . = . a = R"0 [*37'101]

#37-103. b : a e R"'k . = . (g£) . 8 e k . a = R"8 . = . a e Re"ic

[#371-101 . (#37-04)]

#37-104. I- :. E !! R"S . = : y e £ . D„. E ! R'y [*4-2 . (#37-05)]

#37-105. b-.xe R"8 . = . (ay) . y e /3 . yito [#37-1 . #31-11]

#37106. \-:.ElR'x.D:xeR"8. = .R'x€8

Dem.

b . #37-105 . #30-4 . D I- :. Hp . D : x e P"/3 . = . (gy) .ye8.y = Rtx.

[#14205] = • R'x e

8

:. D h . Prop

#3711. h . Pe
</3 = R"8 [#37-101 . #303]

#37111. K E! 22/0 [#37-11. #1421]

#3712. b:(8).R"8 = Q'8. = .R e = Q [#30-42 .#37-11111]

#3713. \-:P = Q.0.P"8=Q"8
Dem.

b . #21-43 . D r- :. Hp . D : #Py .=«,„. a% :

[Fact] 0:ye8.xPy.=Xi
y.ye8.xQy:

[*10281] 0:(^y).ye8.xPy.^x .(^y).ye^.xQy:

[#37-1] D:#6P"£. =s.#eQ"/3:.DKProp

#37131. h:P = Q.D.Pe = <?«

Dew.
1- . #37-13 . D h : . Hp . D : a = P"£ . =„(/3 . a = Q"# :

[#37-101] D:aPf8.=a^.aQf8:.Db.Prop
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*3714. \-:P=Q. = .P( = Qe

Dem.

h. #87101. *21 15. D
\-:.Pe

= Qe . =:a = P"(3.

=

a>fi . a = Q"/3:

[*13183] = : (£) . P"/3 = Q«&. :

[*371.*20-15] = : (fr *) : (ay) .ye^.xPy.=. (gy) .yeJB.xQy:

[#101] D : (a;) : (gy) . y e2(* = w) . #Py . = . (gy) . y ez(z = w) . xQy :

[*20-3] D : (a;) : (gy) . y = w . aPy . = . (gy) .y = w.xQy:

[#13-195] D : 0) : xPw . = . xQw (1)

K(l). #1011-21. #11-2. 1)

h :. Pe = Q€ . D : (a?, w) : xPw . .= . «Qw :

[#2143] D:P=Q (2)

I- . (2) . #37131 . D h . Prop

#3715. k.P"aCD'P
Pew.

h „*371 . D K : a; e 2^'a . D . (gy) -yea. xRy .

[*10-5] D.(gy).aPy.

[#3313] D . a e D'P*OK Prop

#3716. \-.R"aCa (B [*3715 ^ . #332]

#3717. \-:.R"0Ca. = :y€&.xRy.DXiy .xea

Dem.

r- . #371 . D h :. P"/3 C a . = : (gy) . y e /3 . xRy . Dx . a; e a

:

[*10-23] =:yeJ3 . xRy .
"5
x>y . x e a :. D h . Prop

#37171. H.P^CjS.^tfea.^Py.D^.ye/S
Pew.

h . #37105 . D I- :. P"a C £ . = : (gar) .««. aPty . 3, . y e £ :

[#10-23] = : a? e a . a;Py . D,,,, . y e £ :. D r- . Prop

#3718. H:ye£.D.P'yCP"/3
Pew.

h . #32-18 . D h : . Hp . D : a; e R'y . D . a;Py . y € £

.

[#37-1] D.a;eP"/3:.DKProp

#37181. \-:xea.D.R'xCR"a [Proof as in #3718]

#372. h : a C £ . D . P"« C P"/3

Pew.

h . #22-1 . 3 h : . Hp . D : y e a . Dy . y e £ :

[#10-31] Diyea.xPy.Dy.yefi.xPy:

[#10-28] D:(gy).yea.a;Py.D.(gy).ye/3.a;Py:

[#37-1] D : a? eP"a.D. x eP"/3:.Dh. Prop
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The above proposition (#37-2) is one of the forms of asyllogistic inference

due to Leibniz's teacher Jungius. The instance given by Jungius is: " Circulus

est figura; ergo qui circulum describit, is figuram describit*." Here the class

of circles is our a, the class of figures is our £, and the relation of describing

is our P.

*37-201. \-:PGQ.D.P"aCQ"a [Similar proof]

*37202. h:aCyQ.PGQ.D.P"aCQ"/3 [*37-2201]

*37'21. I- . P"(a n/3)C P"a n P"£
Dem.

b . #371 . D f- :.xeP"(a r\&). = : (33/) . y ea r» £ . xPy :

[*22-88] = : (3y) . yea . ye/3 . *Py :

[*10*5] D:(ay>.yea.arPy:(ay).ye£.a>Py:

[#371] D:#eP"a.#eP",3:
[#2233] D : x e P"a n P"/3 :. D h . Prop

#37211. K(PA0"«CP"anQ"o [Similar proof]

*37212. \-.(PnQ)"(an/3)CP"anP"/3nQ"anQ"l3 [#37-21-211]

#37*22. KP"(au/3) = P"auP"/3
This proposition is very frequently used. The fact that here we have

identity, while in #37*21 we only have inclusion, is due to the fact that

#1042 states an equivalence, while #10*5 only states an implication.

Dem.

b . #37-1 . D h :. x e P"(a «£). = : (ay) .yeaufi. xPy :

[#22-34] = : (ay) :yea.v.ye/3:xPy:

[*4-4] = : (ay) : y e a . xPy . v . y e /9 . #Py

:

[#10-42] = :(ay).yea.#Py:v:(ay).ye£.aPy:
[#37-1] =:*6P"a.v.^P"i9:
[#22-34] =:#eP"auP"

/
8:.DK. Prop

*37'221. K(PoQ)"a = P"ac-Q"a [Similar proof

]

#37222. I- . (P a Q)"(a v £) = P"a w P"£ u Q"a u Q"/3 [#37-22-221]

#37-23. b . D'Pe = a {(a/9) . a = P"/3} [*37'101 . #33-1 1]

#37231. KCFPe = Cls

The type of "Cls" here is that type whose members are of the same type

as Q'R. In the proof, use is made of the convention that a Greek letter

always stands for an expression of the form 2
(<f>

! z).

Dem.

b. #37-101 . Db:aRe$(<f>lz). = .a=R"/

z(<l>lz):

[#10-11-281] Db : (a«) . aRJ (cf>lz). = . (aa) . a = P"2 (4>l*)'.

[#33131] . Ob:2(<f>lz)ea<Re . = .(>&a).a=:R"2(<f>lz) (1)

* We quote from Couturat, La Logique de Leibniz, Chapter in, § 15 (p. 75 n.).
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h . *20-2 . (*3701) . D r : x {fay) .ye$(<j>lz). xRy) = R"z
(<f>

! *) :

,

[*1011-24] Dh:(<£):(aa).a = £"£(<£!*) (2)

K(l).(2).*2'02. Dr:2(<£!*)eCls.D.2(<£!s)e(RRe (3)

h . *2041 . *2'02 . D\-:2(<f>lz)e<I<Rl .D.2(<f>lz)eCte (4)

h . (3) . (4) . D h . Prop

As appears in the above proof, it is necessary, when a proposition con-

taining "Cls" is to be proved, to abandon the notation with Greek letters, and

revert to the explicit functional notation.

*37-24. K-aeD'i^.D.oCD'iZ

Bern.

f- . *33;13 . *37101 . D I- :: a e D'Rt . = :. (ft/3) . a = R"j3 :.

[*2033.*371] = :.fa/3):xea.=x .fay).ye/3.xRy:.

[*1161] D:.X€a.Dx :fa0,y).yel3.xRy:
[•11-23] Ox :fay^).ye^.xRy:
[*H-55] 3.:(ay):*i2y:(a^)-y«/8:
[•10-5] D* : (33/) . ar% :

[*3313] ZX, : e D'R :.0 K Prop

*3725. h.D<£ = i^<a<i2.a<# = E"D'i2

h.*3313. DH:#eD'.R. = .(ay).#.£y.

[*3314.*4-71] = . (3y) . y e d'R . xRy .

[#37-1] =.ar CjR"a'iJ (1)

r . *33131 . D h : ye d'R . = . (gar) .«%

.

[*33-14.*4-7l] = .fax).xeD (R.xRy.

[*37;105] = .yeS"D'i2 (2)

K(l).(2).I>r.Prop

*3726. \-.R"l3 = R"(/3na<R)

Dem.
h . *371 . D 1- :. x e R"j3 . = : (ay) . y e£ . xRy :

[*33'14.*4'71] = : (ay) .ye/3.ye d'R . ar% :

[*22-33] = : (ay) .ye/8n d'fl . #.%

:

[*37'1] = :#ei2"OSr»(FJ2):.DI-.Prop

*37261. h . R"$ = R"(0 n D'R) [*3726 . *3321]

*37 262. h : a n (Pi* = /9n d'ii . D . i2"a = #"/3 [*3726]

*37 263. h : a n D'i2 = £ n D'E . D . R"a = E"/3 [*37261]

*37'264. h : 3 ! a n fl"/3 . = . fax, y).xea.yej3. xRy . = . E ! j3 n R"a
Dem.

b.*22-33.*37-l.D\-:.RlanR"l3. = :fax):xe(i: fay). ye/3. xRy: (1)
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(5F> y)-xea.yefi.xRy (2)

(ay) : y e & - (a*)«<« #-%

:

('Ky)-y€0-yeR"a;

a!/3nK (3)

[#11-55] =
I- . (1) . #11-6 . 3 h :. g ! a n £"£ .

=

[#37-105] =

[#22-33] =

r . (2) . (3) . D h . Prop

#37265. I- . i2"a = P"(a n C'P) . R"a = P"(a n C'P)

Dem.
H . #33-161 . #22621 . D I- . d'R = C'P n d'P

.

[#22-481] D K a n <J'i? = a n C'B n CPE
[#37-262] D h . R"a = P"(a n (T'iJ)

h . (1) . #33-22 . Dh.Prop

#37-27. h : <PP C /3 . D . D'P = R"$ [#22621 . #37-25-26]

#37 271. 1- : D'P C a . D . d'P = R"a [#22-621. *37-25261]

#37-28. h.R"V = I)<R.R"V = a<R [#37-27-271 .#2411]

#37 29. I- . P"A = A . P"A = A
Dem.

h . #10-5 . D h : (33/) .yeA. xRy . D . (gy) .ye A
h

. (1) . Transp . #24-53 . D h . ~(gy) .yeA. xRy .

[#371]

[#24-51]

R
h.(2) R

Dh.~a !£"A.
Dh.#"A = A

D I- . P"A = A

h . (2) . (3) .31-. Prop

#37-3. I- . {sg'(P
i
Q)} <z = P"Q^r

Dem.
h . *32-2313 . D
h.{sg<(P|Q)}<z = £{*(PjQ)s}

[#34-1] = & {(33/) . aPty . 2/^}

[*32-i8] =&{(w!j)-*Py.y&*)

[(#37-01 )]
= P"Q'z . D h . Prop

#37*301. h . {gs'(P
j
Q)]^ = Q"P~'x [Similar proof]

#37-302. h : R = P
|

Q . 3 . ~R'z =P"^ . P<# = Q"P<tf

[*373 301 .#3223 23116]

#37-31. Ksg<(PjQ) = P€
j"Q

Pern.

t- . #37-11-3 . D h . (z) . {sg'(P
I

Q)}'« = Pe'Q<s

h.(l). #34-42. Dh.Prop

(1)

(1)

(2)

(3)

(1)
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*37-311. I- . gs'(P
|
Q) = (Q)e |

P [Similar proof]

#3732. I- . D'(P
J
Q) = P"D'Q . d'(P

j
Q) = Q"(I<P

Dem.
K #3313. #341. D
l-:.*eD'(P|Q)- = :(a*):(ay).*Py.yQ*:
[#11-23] = : (gy) : (a*) . «?Py yQ^ :

[#11-55] = : (ay) : ncPy : (a*) . yQz :

[#33-13] =:(ay).^Py.yeD^:
[#371] =:a?eP"D'Q
h.(l). #10-11. #2043. D

I- . D'(P
|
Q) = P"D'Q

H.*33-2. Dh.<J'(PjQ) = D<Cnv<(P|Q)

[#34-2] = D'(Q|P)

[(2)] = Q"D'P

[#33-2] = Q"<FP
V . (2) . (3) . D I- . Prop

*37-321. H : d'P C D'Q . D . D'(P
j
Q) = D'P

#37-322. H : D'Q C d'P . D . d'(P
|
Q) = d'Q

#37323. r- : d'P = D'Q . D . D'(P
|
Q) = D'P . d'(P

|
Q) = d'Q

#37-33. H . (P
|

Q)"7 = P"Q"7

•r-.*37\L.Dh:.a?e(P|Q)"7 .=

[#34-1 .#11 -55] =

(1)

(2)

(3)

[#37-32-27]

[#37-32-271]

[#37-321-322]

(g«) . * e 7 . a; (P
|
Q) z :

(3^ y) • * e 7 . aPy . yQ* :

(ay, z) . xPy .yQz.zey:

(ay) : xPy : (g«) .yQz.zey.

(ay) #Py y e Q"7 :

#<rP"Q"7:.DKProp

[#11-23]

[#11-55]

[#37-1]

[#37-1]

#37-34. K(P|Q)6
= Pe |Qe

Dem.
h . #37-11 . D H . (P

|
Q)/7 = (P

|
Q)"7

[#37-33] = P"Q"7
[#37-11] =P.'Q.'y

h . (1) . #10-11 . #34-42 . D K Prop

#37-341. h . {Cnv'(P
| Q)} e = (Q). |

(P). [#34-2 . #37*34]

#37-35. \-:(z). R'z = P'Q'z . D . (7) . P"7 = P"Q"7
i)ew.

h . #34-42 .D(-:Hp.D.^ = P|Q.
[#3713] D . £"7 = (P

I

Q)"7
[#37-33] = P"Q"7 : D h . Prop

(1)
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#37 351. h : (a) . R'a = P'Q"a . D
.
(*) . R"k = P"Q'"k

L37-35Q . #3711 . (#3704)1

#37 352. h : (a) . P"a = P'Q"a . D . (*) . R'"k = P"Q'"k

T*37-351 ^ . #3711 . (*37-04)l

#37 353. h : (z) . P'S'* = P'Q<* . D . (7) . #"#"7 = P"Q"7
Dem.

h . *1*21 . D r- : Hp . D . (*) . E ! -R'S'*

.

[*34-41] D . (*) . P'S'* = (P I
£)<*

.

[*14131144] D.(z).(R\ S)<z = P'Q<2

.

[*37-35] D . (7) • (R
I

S)"7 = P"Q"7
[*37-33] D . (7) . R"S"y = P"Q"7OK Prop

#37354. I- : (a) . P'S'a = P'Q"a . D . (*) . P"S"k = P"Q'"/c

*37-355. V:{z). R'S'z = P"Q<* . D . (7) . P",S"<7 - P'"Q"y

#37353 ^*

#37 353 ~

#37 36. h . D'P2 = P"D'P . (FP2 = P"d'P [#37-32]

#37-37. H . (R% = (Pe )
2 .[#37-34]

#37-371. Pe
2 = (P«)2 Df

This definition serves merely for the avoidance of brackets. Like #37 03,

this definition will be extended to all suffixes.

#37-38. H . R2'x= R"R lx [*37 -3]

#37-39. KP2"a= P"P"a [#37 33]

#37-4. Kd'(a >
|P) = P"a

Dem.

V . #33-131 . #35-1 . b : y e d'(a1 P) . = . (gar) . a? e a . arPy .

[#37-105] = • y e P"a : D h . Prop

#37-401. H.Df(PP/S) = P"/3 [Similar proof]

#37-402. KD'(a1 Pf/3) = a a P"/S . (T(a 1 P T /3) = £ n P"a

Pew.
h. #3313. #35-102.3

h i.iceD^a^Pt/S) . = : (ay) .xea.xRy .yep :

[#10-35] = :xea:('3y).xRy .ye fiz

[#37-1] =:xea.xeR"/3:
[#22-33] ee :#ear»P"/3 (1)

Similarly

h : y e (I'(a 1 P f £) = . y e /3 n'P"a (2)

K(l).(2).DKProp
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*3741. KD'(i£ta) = anfl"a.a<(E£a) = ani£"a [#37-402. #36-11]

#37-411. h . (a.1 R)"0 = D'(a 1 R \ 0) = a n £"£

H . #37-401 . D H . (a 1.R)"£ = D'(a 1 R) [

[#35-21] =D'(a^| JR|k

/3) (1)

K(l). #37-402. DK Prop

#37-412. \-.(R[a)"0 = R"(an0)
Dem.

l-.*37-401.Df-.(i2|k

a)"/8 = D'(i2|
k

a)f
k

/8

[#35-31] "D'JK^on/S)
[#37-401] «JR"(an£).DKProp

#37413. KtBfca)"£ = a«.R"(on£)
Item.

1- . #37-411 . #35-21 . D r . (JR £ a)"£ = a n (£ f a)"0

[#37-412] =«n £"(a n^.Dh. Prop

#37-42. H:#"£Ca.D.Hi2)"£ = i2"£ [#37-411 . #22621]

#37-421. H:£Ca.D.(i*ra)"£ = i2"£ [#37-412 . #22-621]

#37 43. H :. C (I'i£ . D : a ! #"£ . = . a !

Dem.

b . *37-401 .#35-65 . D H :. Hp . D : R"0 = I)'(R [0) .0 = a'(R[0) (1)

r . (1) . #33-24

.

Dh.Prop

#37-431. h.aCD^.DialK.E.g.'a [Proof as in #37-43]

#37-44. l-:.a^ = V.D: 3 ! JR"^. = . a !/9 [#37-43 .#2411]

#37-441 J- :. D'i* = V . D : a ! £"« . = . g ! a [Proof as in #3744]

#37-45. r :

.

(y) . E I R'y . D : a ! ]?«£ . = . g ! y9 [#33431 . #3743]

#37-451. h:.(x).ElR<x.OinlR«a . = .nla [Proof as in #37-45]

#37-46. h : a e £"«. = . a !«*£<# [#371 . #32181]

#37461. \-:x~6R«a.= .anR'x = A.. = .

4

R<a;C-a [#3746. #24-311]

#37-462. f : *~« ^"« . = . « n R'x= A . = . Rlx C - « [#37 461 . #32-241]

#37-47. H : a ! o . = . a ! R«<a . = . a I R'"a
Dem.

h . #37-45-111 .Dh:a!«. = .a! R<"* .

[(#37-04)] =.a!i2'"a (1)

h.(l)5 . Dh: a !«. = . a!« (2)

I- . (1) . (2) . D h . Prop

r&w r 29
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*37-5. H : 08) . P"/3 = Q'/3 . D . (*) . P"'* ~ Q"/c

Dew.

h.*3712.DH:Hp.D.Pe = Q.

[*8713] Z).Pe
"* = Q"*;.

[(*37-04)] D . P"<* = Q"k : D h . Prop

*37'501. > . /8 a d'P C R"R"$
Bern.

V . #371 . *10-24 . D h : y e/8 . tfPy . D . #eP"/3 :

[Exp.*1011-21] D I- :. y e £ . D :#% . D* : x e P"£ :

[#4-7] D:wRy."yx .xRy.xeR"0:

[*10-28] D:(^x).xRy.D.(^x).xRy.xeR(t^:

[*33131.*37105] D : y e d'R .D.ye R"R"j3 (1)

K (1) . Imp . *2233 . D

h : ye& a (FP . D .yeR"R"POK Prop

*37502. h.aAD'PCP"P"a [Similar proof]

*37 51. f- : /3 C (FP . = . £

C

R"R"p
Dem.

b . *37501 . *22621 O H : £ C (I'P . D . /3 C R"R"p (1)

K*3716. Dh:/3CP"P"#0./3C(I<P (2)

h.(l).(2). Dh.Prop

*37'52. h : a C D'R . = . a C P"P"a [Similar proof]

The following propositions, down to *37*7 exclusive, are concerned with

the special properties of R"/3 which result from the hypothesis E !! P"/S, de-

fined in #37 05. The hypothesis E !! P"£ is important, because it has many

consequences and is satisfied in many cases with which we wish to deal.

*37-6. h:E!!jB"/8.D.i2"/8 = ^{(ay).ye/8.« = i2'yj

This proposition is very important, and is used constantly.

Bern.

h . *37104 . D f- :: Hp . D :. y e £ . D„ : E ! R (

y :

[*30-4] ?y :x = R ly. = .xRy:.

[*5-32] li.ye&.x^R'y.^y.yep.xRy:.

[*10281] D:.(ay).ye/3.^P'y. = .(ay).ye/3.*Py.
[*37\L] = .areP"/3 (1)

I- . (1) . *1011-21 . *2033 . D h . Prop

*37-601. h : (*) . E ! R'x . D . P"V = £ {(ay) . x = P'y}

Dewi.

I- . *202 . *10 1127 . Z> I- :. Hp . D : x e V . Dx . E ! R'x :
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[*37\L04] >: E !! R"Y :

[«37'6] 3 : R"Y = x {(ay) .y €Y.x= R'y} (1)

H .*24104 . *4'73 . D h :y e V . x= R'y . = . # = i2'y

:

[*10-11-281] D I- : (gy) m yeY.x= R'y. = . (ay) .x = R'y:

[•20-15] Dh^{(ay).F V., = ^}=^{(at/). a; =%j (2)

K(l).(2). DKProp

*3761. h::E!!l^</3-3"£"£Ca. = :ye/3.D
1
,.i2<yea

h.*37l7. 3\-::R"0Ca. = :.ye/3.xRy.Dx>y .xea:.

[*ll-2'62] = :. y e-fi . Dy : xRy . i.^ea (1)

h . *37104 . D h ::. Hp . D :: y e/3 . Dv :. E ! R'y :.

[*30'33] Dy :.R'yea. = :xRy.Ox .xea (2)

h.(L).(2).Dh::Hp.D:. JR'«/3Ca. = :ye/3.D
1
,.i2'yea::Dh.Prop

*37*62. h:E!E'y.yea.D. JR'yei2"a

Dem.
h . *3033 . D

I- :: E ! i2'y . D :. R'yeR"a . = : xRy .Dx .x € R"a (1)

r-.*3'2. Dh -..yeot.D :xRy .D .yea.xRy

.

[*10-24.*371] D.xeR"a (2)

h.(2).*1011-21.D\~:.yea.D:xRy.3x .xeR"a (3)

K(l).(3). DKProp
The above is the type of inference concerning which Jevons says*:

" I remember the late Prof. De Morgan remarking that all Aristotle's logic

could not prove that •' Because a horse is an animal, the head of a horse is

the head of an animal.'" It must be confessed that this was a merit in

Aristotle's logic, since the proposed inference is fallacious without the added
premiss " E ! the head of the horse in question." E.g. it does not hold for an

oyster or a hydra. But with the addition E ! R'y, the above proposition gives

an important and common type of asyllogistic inference.

*37 63. h : : E ! ! R"a .Dz.xe R"a . D* . ->/r# : = : y e a . Dy . i/r (R'y)

Dem.

K*371 . DH ::xeR"a.1>x .ylrx: = :.(^y) .yea.xRy . Dx .yjrx:.

[#1023] =:.yea.xRy.Dxy .ylrx:.

[*ll-2-62] =:.y€a.Dy :xRy.Dx .yjrx (1)

f- . *37104 . D I- ::. Hp . D :: y e a . Dy :. E ! R'y :.

[*30-33] y : . yjr (R'y) . = : xRy .3x .yjrx (2)

h . (1) . (2) . D h . Prop

This proposition is very frequently used.

* Principles of Science, chap. i. (p. 18 of edition of 1887).

19—2
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*3764. h :. E !! R"a . D : (ay) .yea.yjr {R'y) . = . (ga?) . x e R"a . yfrx

Bern.

h . #3033 . D I- :: Hp . D :. y e a . D : yjr (R'y) . s . (ga?) . ccRy .^x:.

[#5
-

32] D:.yea.ylr(Rt
y). = :yea:(Rx).xRy.'tyx (1)

K(l).*1011-2r.281.D

(32/) = y e a = (a#) o'Ry • irx '•

(a*) s (ay) -yea- «Jty : i** -

(qx) . x € R"a . yjrx :: D h . Prop

h : : Hp . D : . (gy) .yea.yjr (R'y) . =

[*11'6] =

[#37-1] =

#3765. h:E!!i^'£.aCi2"/3.D.a = P"(#"an/3)

Dem.

h . #30-21 . #3-27 . D K :: Hp . D :. y e /3 . D„ : sPy .#% . D . * = as (1)

K*37l.Dh:. Hp.D:

x € R"(R"a n £) . = . (ay) .yeR"a n £ . #Py .

(ay, #) • z € a . zRy .yefi. xRy

.

(ay, z). z ea. zRy . y e /3 . xRy ,z = x

(ay, z) . zea.y e ft . xRy . z = x .

(ay).a?.ea.ye£.a?2fy.

xea.xe R"/3 .

#ea:. D K Prop

[*37105.*ll-55]

[(1).*4-71]

[#13-194]

[#13-195]

[*10'35.*37-1J

[*47l.Hp]

#37-66. H:.E!!E"/3.D:aCi?"/3. = .(a7).7C/3.a = ie"7

Dem.

I- . #37-65 . fexp . #13195 . #22-43 . D
h:.Hp.D;aCJ?"/3.D.(a7).7C/3.a= JK"7 (1)

h. #37-2 . #1313 . D I- : 7 C /3 . a = P"7 . D . a C P"/3 :

[#10-11-23] Dh:(<av).yCl3.a = R"y.D.aCR"/3 (2)

K(l).(2). Dh.Prop

#37-67. h :. * e 7 . D* . E ! P'S'^ : D . R"S"y = & {(a*) .zey.x = R'S'z]

Dem.

h. #34-41. D\-:H.p.zey.Dz .R'S'z = (R\S)'z (1)

h . (1) . #14-21 . D h : Hp . zey . Dz . E ! (R
\
S)'z (2)

K(2).*37-6. 0\-:U^.O.(R\S)"y = x{(^z).Z€y.x^(R\S)'y}

[(1)] -ft{(a5).ire 7 .«-iJ'S'7 } (3)

h. #37-33. D\-.R"S"y = (R\S)"y (4)

K(3).(4). DKProp

#3768. hz.zey.D,. P'Q'z =R'z:D. P"Q"y = R"y
Dem.

V . #14-21 . D h : Hp . z e 7 . D . E ! P<Q's . E ! R lz .

[#34-41] D . P'Q'z = (P I

Q)'« . E ! R'z . (1)

[*14-21-131144.Hp] D.E!(P|Q)'*.(P|Q)'s = P's (2)
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f-.*37-33.Dh.P"Q"7 = (P|Q)"7 (3)

K(2).(3).*37'6.D

l-:Hp.D.P"Q"7«a{(a*).*€ 7 .a>«(P|Q)<*}

[(2)] = x{(nz).zey.x = R<z\

[#37-6.(1)] = R"z : D H . Prop

#3769. h :. y € 13 . Dy . R'y = S'y : D . R"$ = £"/9

Dem.
h. #14-21. Dh::Hp.D:.yei8.D.E!i2'y.E!S'y:. (1)

[#30-4] 3:.ye@.D:xRy. = .x = R'y.

[#14-142] = .x = S'y.

[#30-4.(1)] = .xSy:.

[#5-32] D:.ye/3.xRy. = .yel3.xSy (2)

H . (2) . #1011-21-281 . D
I- :. Hp . D : (ay) . y € £ . a;% . = . (gy) .yefi.xSy:

[#37-1] D:a:eP"/3.= .#e£"£:.DI-.Prop
—

>

«—
A specially important case of iJ"/3 is i2"y8 or R"f3. This case will be

further studied later (in #70); for the present, we shall only give a few

preliminary propositions about it. It will be observed that the hypothesis

E !! P"£ or E !! P"£ is always verified, in virtue of #3212121. Hence the

following applications of #376 ff.:

#377. KJR"£ = a
{(ay).y ej3.a = Rf

y) [#376 . #3212]

#37-701. \-.*R"a = l3{(>&x).x€a./3 = R'x} [#37-6 . #32-121]

#37-702. t-:.R"j3CK. = :ye/3.3y .R'yeK [#37-61]

#37703. Y'..

<

R"PQic. = ixeft>'}x .R lxeK [#3761]

#37704. h:yea.:>.P<yeP"a [#37 62 .#3212]

#37-705. \-:xea.D.*R'x€*R"a [#3762 .#32121]

#37-706. h : .

a

e~R"& .Da .fa: = :ye^.Dy .^ {R'y) [#37-63]

#37707. h : . /3 e*R"a . D
fi

. yjr& : = : x e a . Dx . yfr (R'x) [*37 63]

#37-708. h : . (got) . a e £"/3 .yfra. = . (ay) -yefi.ty (R'y) [*37'64]

#37-709. h :

.

(go) . a

e

R"p . i/r« . = . (g*) .xe$.y\r (%'x) [*37 64]

#37-71. H : * C 5"/9 . D . « = R«{(Gnv*R)"K « £} [*37'65]

#37-711. h:ArCP"/9.D.A; = ir"{(Cnv'S)"/cn
/8} [*37'65]

#37712. f-:«CP"/3. = .(a7).7C^.«: = i2"7 [#3766]

#37-713. \-zkC P"/3 . = . (37) . 7 C £ . * = R*'y [#37-66]
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#3772. h:£ = PjQ.D.?"7 = P"<"<2"7
Dem.

h . #37-1 1-302 . D h : Hp . D . (z) . Pe

<~Q(z = R'z .

[*37'68] D . P€
"Q"7 = P"7 .

[(37-04)] D . P'"~Q"y =^fl"7 : O h . Prop

37721. h : R = P
|

Q . D . P"7 = Q'"P"7 [Proof as in 3772]

37-73. h:^l/3. = .'3_lR tt
/3. = .'^lR(t

/3 [3745 .3212121]

37-731. H:y9 = A. = .P"
y
S = A. = .P"/

8 = A [37 73 . Transp]

Observe that the A's which occur in this proposition will not be all of the

same type. E.g. if R relates individuals to individuals, the first A will be

the class of no individuals, while the second and third will be the class of

no classes. Thus the ambiguity which attaches to the type of A must be

differently determined for different occurrences of A in this proposition. In

general, when this is the case with our ambiguous symbols, we shall adopt a

notation which indicates the fact. But when the ambiguous symbol is A, it

seems hardly worth while.

3774. \-:./3Ca'R.= :aeM"/3.Da .'3_lcL

Dem.

h . 37-706 . D h '..aeR"P . Da • 3 ! « : = : ye& . D„ a \R'y :

[3331] = : C d'R :. D h . Prop

37-75. \-:.aCT>'R. = :/3eR"a.'Dfi .<&l/3 [Proof as in #37 -74]

#37-76. KP'MSCCls
Dem.

h . #37-7 . D h :. a e R"& . D : (ay) .yefi.ct = R'y:

[10-5] D: (3y). a = £<</:

[32-13] D : (gy) . a = & (xRy) :

[20-16] D:(a<£). « = £(</>!#):

[20-4] D : a e Cls : . >h . Prop

37-761. h.^'aCCls [Proof as in 37 76]

37-77. h : a e R"<I'R . Dtt . a ! « [#3774 . #22 42]

37771. h : /3 e K"D<£ . Dp . a ! /8 [Proof as in #37-77]

37-772. KA~eP"(TP [3777 . 2463]

37*773. h.A~eP"D'P [*37'771 . #2463]

#37-78. r . D'~R =~ft"V [#3728]
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*37'781. )r,D'R = R"Y [*3728]

*37 79. h . E"V = o {(gy) . a = R'y} [*37601 . *3212]

*37791. H . R"V = $ {(ga?) . £ = jR'a?} [*37-601 . *32 121]

*37'8. h.(at/3)|/S= atS"^
Dera.

h . *35103 . *341 .3\r:x{(a\0)\S}e.=>. (gy) .xea.yefi.ySz.

[*10-35.*37-105] =.xea.z e 5"£

.

[*35103] = .#(af S"/8)*:DI-.Prop

*37 81. I- . i2
1

(a t £) = (#"a) t £ [
Proof as in *37"8]

*37 82. h . iZ
|
(d t £) |

iS= (#"a) t (#"£) [*37'8-81]



*38. RELATIONS AND CLASSES DERIVED FROM A DOUBLE
DESCRIPTIVE FUNCTION

Summary of #38.

A double descriptive function is a non-propositional function of two

arguments, such as ar\/3,ayj fi, RnS, Rv S, R\S, a 1 12, R [a, 12 £ a. The

propositions of the present number apply to all such functions, assuming the

notation to be (as in the above instances) a functional sign placed between the

two arguments. In order to deal with all analogous cases at once, we shall in

this number adopt the notation

where "?" stands for any such sign as n, v, f\, vy,
|, \, \, £, or any functional

sign to be hereafter defined and satisfying the condition

(x,y).Kl(x%y).

The derived relations and classes with which we shall be concerned may be

illustrated by taking the case of a r\ jS. The relation of a r\ yS to /3 will be

written a n, and the relation of a n fi to a will be written n ft. Thus we

shall have
Kan/3 = ar>'£ = n£'a.

The utility of this notation is chiefly due to the possibility of such notations

as a.t\
ifK and n /3"/e. For example, take such a phrase as "the foreign

members of English Clubs." Then if we put a = foreigners, k = English Clubs,

we have

«rt"« = the classes of foreign members of the various English Clubs.

Or again, let o be a conic, and k a pencil of lines; then

a n"« = the various pairs of points in which members of k meet a.

In this case, since a n /3 = ft c\ a, we have a n = n a. But when the function

concerned is not commutative, this does not hold. Thus for example we do

not have R\ = \R.

The notations of this number will be frequently applied hereafter to R
|
S.

In accordance with what was said above, we write R
\

for the relation of R
j

S

to S, and
|
S for the relation of R

|
S to R. Hence we have

12
1

'£ =
1

£'12 = 5
1

&
Hence

|
S"\ will be the class of relations obtained by taking members of \

and relatively multiplying them by S. Thus if X were the class of relations

first cousin, second cousin, etc., and S were the relation of parent to child,

|
S"\ would be the class of relations first cousin once removed, second cousin

once removed, etc., taken in the sense which goes from the older to the younger

generation.
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It is often convenient to be able to exhibit
|
S"\ and kindred expressions

as descriptive functions of the first argument instead of the second. For this

purpose we put
\\S=\S"\

with similar notations for other descriptive double functions. We then have,

just as in the case of R I $,

\\<S=\S'\ = \\S.
>> >> ft

This enables us to form the class \|"/t. This class is chiefly useful because
jj

the members of its members (i.e. s'\|"/a, as we shall define it in *40) con-

stitute the class of all products R
\
S that can be formed of a member of X and

a member of fi.

Thus we are led to three general definitions for descriptive double functions,

namely (if x ? y be any such function)

a; $ is the relation of x % y to y for any y,

-$ y „ » « »> » x » x
>

a ? y is the class of values of x % y when x is an a.

Since a % y is again a descriptive double function, the first two of the above

definitions can be applied to it. The third definition, for typographical reasons,

cannot be applied conveniently, though theoretically it is of course applicable.

The relations x % and $ y represent the general idea contained in some of the

uses in mathematics of the term "operation," e.g. + 1 is the operation of

adding 1.

The uses of the notations introduced in the present number occur chiefly

in arithmetic (Parts III and IV). Few propositions can be given at this stage,

since most of the important uses of the notation here introduced depend upon

the substitution of some special function for the general function " °. " here

used. In the present number, the propositions given are all immediate con-

sequences of the definitions.

*38-01. x% = uy(u = x%y) Df

*38-02. %y = ti&{u, = x%y) Df

*3803. a?2/ = ?2/"a Df

*381. Y:u{x%)y. = .u = x%y [(*38-01)]

*38101. V:u{%y)x. = .u = x%y [(*38'02)]

*3811. Y .x%'y = %y'x = x%y [*38T101 . *30"3]

*3812. KE!a>?'y.E!?3f'a? [*3811 .*1421]

*3813. \--.uex%"a. = .{'&y).yea.u = x%y [*381 .*37l]

*38131. r- : u e $ y«a . = . (&x) .xea.u=x%y [*38-K)l . *371]
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*38'2. h.a%y = %y"a. [(*38'03)]

*38'21. V.a%y = u{('$x).xecL.u = x%y) [*38-2131]

*38-22. h.a?'y = ?y'« = «¥y [*38-ll]
a >> it

*38 23. h . E ! a % 'y . E ! ? y'a [*38'22 . *14*21]
tt >)

*38'24. h:a!a?y. = .a!a

Bern.

h.*38-2.*37-29.Transp.Dh: a !a$2/.D.a!o (1)

b.*38-21. H-:x € a.D.(x$y)ea$y.

[*10-24] D.g!a?y (2)

I- . (1) . (2) . D h . Prop

*38'3. Ka?"/3==^{(ay).2/e/3.7 = a?2/}=7{(ay)-2/ e ^. 7 = ?2/"«}

[*38-13'2]

*3831. h.?/^ = ^{(aa).ae/C .7 = a?
2/}
= 7{(aa).a € ^. 7 ==?y"a}==?/"/c

[*38-131-2.*37103]



NOTE TO SECTION D

General Observations on Relations. The notion of "relation" is so general

that it is important to realize the different sorts of relations to which the

notations denned in the preceding section may be applied. It often happens

that a proposition which holds for any relation is only important for relations

of certain kinds; hence it is desirable that the reader should have in mind

some of the principal kinds of relations. Of the various uses to which different

sorts of relations may be put, there are three which are specially important,

namely (I) to give rise to descriptive functions, (2) to establish correlations

between different classes, (3) to generate series. Let us consider these in

succession.

(1) In order that a relation R may give rise to a descriptive function,

it must be such that the referent is unique when the relatum is given.
— 4—

Thus, for example, the relations Cnv, R, R, D, Q, C, Re , defined above,

all give rise to descriptive functions. In general, if R gives rise to a

descriptive function, there will be a certain class, namely d'R, to which

the argument of the function must belong in order that the function may
have a value for that argument. For example, taking the sine as an illustra-

tion, and writing "sin';?/" instead of "sin y," y must be a number in order

that sin's/ may exist. Then sin is the relation of y to a; when # = sin'y. If

we put a = numbers between — 7r/2 and 7r/2, both included, sin f a will be the

relation of x to y when x = sin';?/ and — 7r/2 ^?/$7r/2. The converse of this

relation, which is a "] sin, will also give rise to a descriptive function; thus

(a
"J
sin)'# = that value of sin

-1 x which lies between — tt/2 and 7r/2. This

illustrates a case which arises very frequently, namely, that a relation R
does not, as it stands, give rise to a descriptive function, but does do so

when its domain or converse domain is suitably limited. Thus for example

the relation "parent" does not give rise to a descriptive function, but does

do so when its domain is limited to males or limited to females. The relation

"square root," similarly, gives rise to a descriptive function when its domain
is limited to positive numbers, or limited to negative numbers. The relation

"wife" gives rise to a descriptive function when its converse domain is limited

to Christian men, but not when Mohammedans are included. The domain
of a relation which gives rise to a descriptive function without limiting its

domain or converse domain consists of all possible values of the function; the

converse domain consists of all possible arguments to the function. Again, if

R gives rise to a descriptive function, R'x will be the class of those arguments

for which the value of the function is x. Thus sin'# consists of all numbers
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whose sine is x, i.e. all values of sin
-1

x. Again, sin"a will "be the sines of the

various members of a. If a is a class of numbers, then, by the notation of #38,

2 x "a will be the doubles of those numbers, 3 x "a the trebles of them, and
so on. To take another illustration, let o be a pencil of lines, and let R'oc be

the intersection of a line x with a given transversal. Then R"a. will be the

intersections of lines belonging to the pencil with the transversal.

(2) Relations which establish a correlation between two classes are really

a particular case of relations giving rise to descriptive functions, namely the

case in which the converse relation also gives rise to a descriptive function.

In this case, the relation is "one-one," i.e. given the referent, the relatum is

determinate, and vice versa. A relation which is to be conceived as a correla-

tion will generally be denoted by S or T. In such cases, we are as a rule less

interested in the particular terms x and if for which xRy, than in classes of

such terms. We generally, in such cases, have some class /3 contained in the

converse domain of our relation S, and we have a class a such that a = S"ft.

In this case, the relation S correlates the members of a and the members of
\y>;..-'

/3. We shall have also ft = $"a, so that, for such a relation, the correlation is

reciprocal. Such relations are fundamental in arithmetic, since they are used

in denning what is meant by saying that two classes (or series) have the same
cardinal (or ordinal) number of terms.

(3) Relations which give rise to series will in general be denoted by P
or Q, and in propositions whose chief importance lies in their application to

series we shall also, as a rule, denote a variable relation by P or Q. When

P is used, it may be read as "precedes." Then P may be read "follows,"

P'x may be read " predecessors of x," P'x may be read " followers of x."

D'P will be all members of the series generated by P except the last (if any),

d'P will be all members of the series except the first (if any), GfP will be

all the members of the series. P"a will consist of all terms preceding some
member of a. Suppose, for example, that our series is the series of real numbers,

and that a is the class of members of an ascending series xx , x2 , x3 , ... xvy ....

Then P"a will be the segment of the real numbers defined by this series, i.e.

it will be all the predecessors of the limit of the series. (In the event of the

series ajj, x2 , x3 , .... xv , ... growing without limit, P"a will be the whole series

of real numbers.)

It very often happens that a relation has more or less of a serial character,

without having all the characteristics necessary for generating series. Take,

for example, the relation of son to father. It is obvious that by means of

this relation series can be generated which start from any man and end with
Adam, But these series are not the field of the relation in question ; more-
over this relation is not transitive, i.e. & son of a son of x is not a son of x.

If, however, we substitute for " son " the relation " descendant in the direct
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male line " (which can be defined in terms of " son " by the method explained

in #90 and #91), and if we limit the converse domain of this relation to

ancestors of x in the direct male line, we obtain a new relation which is

serial, and has for its field x and all his ancestors in the direct male line.

Again, one relation may generate a number of series, as for example the

relation " x is east of y." If x and y are points on the earth's surface, and in

the eastern hemisphere, this relation generates one series for every parallel

of latitude. By confining the field of the relation further to one parallel of

latitude, we obtain a relation which generates a series. (The reason for

confining x and y to one hemisphere is to insure that the relation shall be

transitive, since otherwise we might have x east of y and y east of z, but x
west of z.)

A relation may have the characteristics of all the three kinds of relations,

provided we include in the third kind all those which lead to series by some

such limitations as those just described. For example, the relation + 1,

i.e. (in virtue of the notation of #38) the relation of x + 1 to x, where x is

supposed to be a finite cardinal integer, has the characteristics of all three

kinds of relations. In the first place, it leads to the descriptive function

(+ !)'#, i.e. x + 1. In the second place, it correlates with any class a of

numbers the class obtained by adding 1 to each member of a, i.e. (+ l)"a.

This correlation may be used to prove that the number of finite integers is

infinite (in one of the two senses of the word "infinite"); for if we take as

our class a all the natural numbers including 0, the class (+ l)"a consists of

all the natural numbers except 0, so that the natural numbers can be corre-

lated with a proper part* of themselves. Again, the relation + 1 may be used,

like that of father to son, to generate a series, namely the usual series of the

natural numbers in order of magnitude, in which each has to its immediate

predecessor the relation +1. Thus this relation partakes of the characteristics

of all three "kinds of relations.

* I.e. a part not the whole. On this definition of infinity, see *124.



SECTION E

PRODUCTS AND SUMS OF CLASSES

Summary of Section E.

In the present section, we make an extension of o r» 0, a w ft, R n S, R \y S.

Given a class of classes, say k, the product of k (which is denoted by p
(
tc) is

the common part of all the members of k, i.e. the class consisting of those

terms which belong to every member of k. The definition is

p
lK — ft (a e k . Dtt . x € a) Df.

If k has only two members, a and (3 say, p
f
/c = a r\ y& If k has three members,

o, /3, 7, then p'tc — a n /9 n 7 ; and so on. But this process can only be continued

to a finite number of terms, whereas the definition of p'tc does not require

that k should be finite. This notion is chiefly important in connection with

the lower limits of series. For example, let \ be the class of rational numbers

whose square is greater than 2, and let " xMy " mean "x<y, where x and y

are rationals." Then if xeXrM'x will be the class of rationals less than x.

—

>

—

*

Thus M"\ will be the class of such classes as Ml
x, where xe\. Thus the

—

>

—>

product of M"\, which we call p
lM"\, will be the class of rationals which

are less than every member of X, i.e. the class of rationals whose squares are

less than 2. Each member of M"\ is a segment of the series of rationals, and

p
lM"\ is the lower limit of these segments. It is thus that we prove the

existence of lower limits of series of segments.

Similarly the sum of a class of classes k is defined as the class., consisting

of all terms belonging to some member of k ; i.e.

s
i
/c = ft {(ga) Ka e k . x e a] Df,

i.e. x belongs to the sum of k if x belongs to some k. This notion plays the

same part for upper limits of series of segments as p'tc plays for lower limits.

It has, however, many more other uses than p
f
K, and is altogether a more im-

portant conception. Thus in cardinal arithmetic, if no two members of k have

any term in common, the arithmetical sum.of the numbers ofmembers possessed

by the various members of k is the number of members possessed by s'/c.

The product of a class of relations (X say) is the relation which holds

between x and y when x and y have every relation of the class \. The

definition is

p'\ = xy-(Re\.DB . xRy) Df.

The properties of p'\ are analogous to those of p'tc, but its uses are fewer.



SECTION El PRODUCTS AND SUMS OF CLASSES 303

The sum of a class of relations (X say) is the relation which holds between

x and y whenever there is a relation of the class X which holds between x

and y. The definition is

*«X = a0{(afl).22eX.fl?2fy} Df.

This conception, though less important than s'/c, is more important than p'\.

The summation of series and ordinal numbers depends upon it, though the

connection is less immediate than that of the summation of cardinal numbers

with s'k.

Instead of defining p'ic, s'k, p'X, s'\, it would be formally more correct to

define p, s, p and s, which are the relations giving rise to the above descriptive

functions. Thus we should have

p = J3ic{l3 = £(aeic.Da .xea)\ Df,

whence we should proceed to

h : @p/c . = . # = £ (a e k . Da . x e a),

I- .piK = f&(a.€K .Da .xea),

and h . E ! p'/c.

But in cases where the relation, as opposed to the descriptive function, is

very seldom required, it is simpler and easier to give the definition of the

descriptive function in the first instance. In such cases, the relation is always

tacitly assumed to be also defined ; i.e. when we give a definition of the form

R'x = S'x Df,

where S is some previously defined relation, we always assume that this

definition is to be regarded as derived from

R = ti&(u = S'a:) Df.

In addition to products and sums, we deal, in the present section, with

certain properties of the- relations R
|
and

|

S, the meanings of which result

from the notation introduced in #38. Such relations are very useful in

arithmetic. The reason for dealing with them in the present section is that

a large proportion of the propositions to be proved involve sums of classes of

classes or relations.



*40. PRODUCTS AND SUMS OF CLASSES OF CLASSES

Summary o/#40.

In this number, we introduce the two notations (explained above)

p'tc = & (a e k . Da . x e a) Df

s'k — ft {(ga) . a e k . x e a} Df

Both these notations will be found increasingly useful as we proceed, but s'k

remains more useful than p'ic throughout. It is required for the significance

of p'tc and s'k that k should be a class of classes.

In the present number, the most useful propositions are the following

:

*40'12. V : a e k . D .p
lK C a

I.e. the product of k is contained in every member of k.

*4013. h : a e k . D . a C s'k

I.e. every member of k is contained in the sum of k.

*4015. h:./3C
j
p'K. = :7e«.:V/3C7

I.e. /3 is contained in the product of k if /8 is contained in every member

of k, and vice versa.

*40151. ht.s'KCfl.s'.yeic.Dy.yCp

I.e. the sum of k is contained in yS if every member of k is contained in ft,

and vice versa.

*40'2. I" :* = A.D.p'/e = V
I.e. the product of the null-class of classes is the universal class. This may

seem paradoxical at first sight, but it is really not so. The fewer members k

has, the larger, speaking generally, p
lK becomes. If k has no members, then

k has no members to which a given term x does not belong, and therefore x

belongs to p
l
tc.

#40-23. I- : a ! * . D . p'tc C s'k

I.e. unless * is null, its product is contained in its sum.

*40-3& h . B"8'k = s'R'"*

This proposition is very often used in arithmetic. What it states is as

follows : Given a class of classes k, take its sum, s'k, and then consider all the

terms that have the relation R to some member of s'k ; this gives the class

R"s'k', next, take each separate member of k> say a, and form the class R"a,

consisting of all terms having the relation R to some member of a. The class

of all such classes as R"a, for various a's which are members of k, is R"'k
;

the sum of this class, by the above proposition, is the same as R"s'k.

*40'4> b -..Ell R"0.1.s<R"@ = ${('Ry).yej3.x€R'y}

This proposition requires, for significance, that R'y should always be a
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class. The proposition states that, if Ri
y always exists when y e /3, then the

sum of all classes which have the relation R to some member of j3 consists of

all members of such classes as R'y, where ye/3.

*40 5. h . s'R"/3 = R"0
This proposition results from #40'4 by substituting R for R in that

proposition.

*40 51. I- .p'R"P = x [y e . Dy . xRy)

In virtue of *40"5, p'R"j3 is correlative to R"ft. Thus if R is a serial

relation, p'Rt'ft consists of terms preceding the whole of /3, and Rlt
f3 consists

of terms preceding part of j3. If has a lower limit, it will be the upper limit or

maximum ofp'R"@; if y3 has an upper limit, it will be the upper limit ofR"@.

#40-61. I- : a ! /3 . D . p<R"/3 C R"p . p'R"/3 C R"/3

In this proposition the hypothesis is essential, since, if = A, p'R'^ = V
andi2"£ = A.

#4001. j»'*=:S(ae«.Da .*««) Df

#40 02. s'/c = % {(go) .aex.xea} Df

#401. \-:.xepiK.= :cL€K^a .xea [*20-3 . (*40'01)]

«4011. H : x e s'/c . = . (ga) . a e tf . a; e a [*20'3 . (#40'02)]

#4012. hae*.Dy«Ca

h.*401 . *101 . Dh:.a;ej//t.D:ae*:.D.a?ea:.

[Comm] "Zhz.aeic.D-.xep'ic .D.xea (1)

h . (1) . #1011 21 . *22-l . D r . Prop

#4013. H:ae*.D.aCs'*
Z>em.

h . #4011 . *10-24 .^h-.ae/c.xea.D.xes'ic:
[Exp] DH :.ae«. D:#ea. "D.xes*/c (1)
h . (1) . #10-1 1-21 . #221 .0 h . Prop

#4014. bzaeie.xep'/c.y.xea [*4012 . Imp]

#40141. tzaeK.xea.D.xes'/c [#4011 . #1024]

#4015. h:./3Cp'Ar. = : 7 6/c.D7 .^C7
Dem.

h.*4>Ol.D\-::0CptKi = :.xe0.Dx :y€K.Dy .X€y:.
[*11"62] = :. (x, y) : x e f3 . y e k . 2 . x e y :.

[*4-3'84.*ll-33] =:.(x,y):yeie.xej3.D.X€y:.
[*ll-2-62] =:.y€K.Dy :xe/3.Dx .xey:.
[*22-l] =:.7e*.Dy .

/
SC 7 ::Dh.Prop

R&w i 20
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*40151. V;.s(K C&. = :yeK.Oy .yQP
Bern.

h . *4011 . D h iis'k C /9 . s :. (37) . 7 e « . x e 7 . Dx . x e /3 :.

[*10*23] = :.(7, x):.y€K.xey.0.xe@:.

[*ll-62] = :. (7) :.«7 e k . D : (#) : x e 7 . D . a? e /3 :.

[*22-l] =:.7e/c.Dy
.7C^::DI-.Prop

This proposition is frequently used.

*4016. \-:/cC\.O.pf\Cp'ic

Dem.

H . *10*1 . D b :: Hp . D :. 7 e k . D . 7 e \ :.

[Syll] 0:.7e\.D.a?67:D:76/c.D.a?e7 (1)

h.(l).*101121.D

h :: Hp . D :. (y) :. y e\ . "2 . x e y : D z y e k . D . x ey 1.

[*10-27] D:.(y):ye\.0 .X€y:D:(y):yeK.O .xey:.

[*40'1] ^-..xep'X.l.xep'ic (2)

l-.(2).*10-ll-21.DH.Prop

*40161. h:«C\.3.s'*Cs'X

Dem.

\-.*10'l.Db:.B.p.D:y€K.D.yeX:

[Fact] Ozye/c.scey.'y.'yeX.aey:

[*10'11 -28] D : (37) . 7 e * . x e 7 . D . (37) . 7 e"X . a; e 7 :

[*4<011] D-.xes'ie.D.xes'X (I)

h.(l).*1011'21.Dt-.Prop

*4017. I-./kup'X C jp'(/c n \)

Dem.

H j*2234.Dh :: x e
p*k vp'\ . = :. a?ej9*« . v .xep'X U

[#401] =:.76«iDY .a;67:v:7eX.Dt .a!67:.

[*1041] D :. (7) :. 7 e /c . D . a; € 7 : v : 7 e X - D . x e 7 :•

[*4-79] D:.(y):y€K.ye\.D.xeyi.

[*2233] D:.(y):y€Kn\.O.xey:.

[*40-l] D-.-aj^ftX) (1)

h.(l).*1011.DI-.Prop

*40171. h.s'«us'X=s'(« uX)

Dew.

I- .*22*34.D h ::«es'« us'\. = wares'*. v.a:es'X. :.

[*40-ll]

[*10-42]

[*4-4]

• (37) •yeK.xey.M: (37) . 7 e X . x

e

7 :.

. (37) : 7 e /c . x e 7 . v . 7 e \ . x e 7 :.

(27) : * 7€K..v > 7«\:a!€7:.
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[#22*34] = :.('Ry).y€Ku\.X€y:.

[#4011] =:.a;e5'(/cw\)::DH.Prop

#4018. H.jp'(/cw\) = p'/cn^\

Dem.

Y .#401 . D h iixep'iic v \) . = :. y e k v \ . Dy . x e y :.

.(7) z.ye/c .v .y €\:D .xey :.

. (7) i.ye/c.D.xeyzyeX.D.xeyz.

• (7) tyeic.D.xey:. (7) iye\ . D . xey :.

. xep'ic .xep'X :.

,xepiKr\p l\ :: D V . Prop

[#22*34]

[#4*77]

[#10*22*221]

[#401]

[#22*33]

#40181. H . s'(/e <\ \) C«"«n«'\

Dem.
h .#40*11 .0 H ::a"€s'(/enX). = :. (g/y) . yexr\ \. xey :.

[#22*33] =:.(37).7€/e.7e\.a;e7:.

[#10*5] D :. (*37) iyeK.xey. (37) . 7 e X,

.

x e y :.

[#40*11.#22*33]O :. x e s'k n s'\ :: D h . Prop

#4019. H :: x

e

«'«.= :.

7

e k . Dy .

7

C /3 : Dp . x e

£

This proposition is the. extension of #22*6.

Dem.

K #40151. D
b ::y ex .Dy .yC -.Dp . x e :. = i.s'tcC .0? .x e (1)

h . #10*1 . 3 h :.V* C £ . D* . e £ : D : «'* C 0'* . D . e «'« :

[#22*42] O:0€0'a:

I- . #22*46 . h :. x e s'* . s'k C £ . D . x e £ :.

[Exp] >h :.a; e 0'* » D : 0</e C £ . D . a; e :.

[#10*11*21] D h :.^e0'/c . D : s
r/eCi3 .Dp.xe/S

I- . (2) . (3) . D H :. 0*« C # . D„ . a* e £ : = . e s'* •

1- . (1) . (4) . D h . Prop

#40*2. H:k = A.D^'* = V

h . #24*5*51

.

D I- :. Hp . D : ~ (get) . a € k :

[#10-53] D:(a):ae«.D.«ea:

[#401] D'.xep'/c

h. (1). #1011*21. DHHp. D .{x).xep'K .

[#24*14] D.^«=V:Dh.Prop

#40*21. h : * = A . D . *'* = A
i)em.

h. #24*51. Dh:Hp.D.~(a«).ae«.
[#10*5.Transp] D . ~(ga) . a etc . xea .

(2)

(3)

(4)

(1)

20—2
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[*40'll.Transp] D . x ~ e s'k (1)

V . (1) . *1011'21 . D h : Hp . D . (x) . x~ gs'k .

[*24'15] D . s'k = A : D h . Prop

In the above proposition, the two A's are of different types, since k is of

the type next above that of s'k. Thus it would be more correct to write

F:« = AnCls.D.s'«=AnV.
But in the case of A it is not very important to keep the types distinct.

#4022. h: A € K.D.p lK = A

Y . #40-12 . D h : Hp . D . p'k C A .

[#24-13] D.^'« = A:DI-.Prop

In this proposition, the two A's are of the same type.

*40221. H:Ve/e.D.s'*: = V
Bern.

\- . #40-13 . D h : Hp . D . V C s'k .

[*24'141] D.s'* = V:DI-.Prop

#4023. hgl/c.D.^Cs'K

I- . #4012-13 .Dh:aeK.D.p'*Co.«C*'«.
[*22'44] D.p'/cCs'/c:

[#10-11-23] Dh:(aa).ae/c.D.^«Cs'/c:DI-.Prop

Observe that the hypothesis g ! /c is essential to this proposition, since

when k = A, p'k = V and s'k — A. Thus

I- : g ! k. = . p'k C s'/e.

#4024. f-:. a !/c:76/c.Dy .y3C7:D./3C5^

K*4015. Dl-i^e/t.Dy./SCvrD./SC^A: (1)

K #40-23. Dh-.RlK.D.p'/cCs'K (2)

h . (1) . (2) . D h : Hp . D . /3 Cy* ,jp'« C s'k .

[#22-44] D . /3 C s'k : D h . Prop

The above proposition is used in the proof of #215-25.

#40 25. H : x e s'k . = . g ! k « a (x e a)

Dem.
h . #22-33 .DF:g!Kn«(«e«). = . (37) .7e/c.7ea(a-ga).

[#20*3] s . (37) .yeic.xey.

[#40-11] = 00 e s'k : D f- . Prop

#40*26. h : g ! s'/c . = . (ga) . a e k . g ! a

Dem.
K #40-11 . D h:.g !«'*.= :(g#) :(ga).ae/c . #ea :

[#11-23-55] = : (ga):a€* :(g#).a;ea:

[#24-5] = : (ga) .ae/c.g!a:.Dh. Prop
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The following proposition is used in the proof of #216-51.

$40*27. \-:.ar\stK = A. = :y€K.Dy .ar\y = A
Bern.

K #24-311.3

I- :: a. r\ s'/c = A . = :. s'k C - a :.

[#22'l -

35] =:.a.es'K.Dx .cc~ea:.

[#40*1] = :. (37) • 7 e k . x ey ."Dx .x~ea.:.

[#10*23] = :. ye k .xey. Dx
, y . #~ea:.

[#11-2-62] = :. 7 e k . Dy : x e 7 . Dx . x~ e a :.

[#24'39] =:.7e/c.D7 .an7 = A::Dh. Prop

The following propositions are only significant when R is a relation whose

domain consists of classes, for they concern p
iR"a or s'i£"a, and therefore

require that R"a should be a class of classes.

#403. h.p'R"(a\j'/3)=p'R"af\p'R«0 [#37-22 . #40-18]

#40-31. I- . s'R"(a u 0) = s'R"a u s'R"0 [#3722 .#40-171]

#40-32. h .p'R"a yjp'R"p Cp'R"(a n £)

Bern.

Y . #37-21 . D K R"(a n £) C R"a n £"£

.

[#40-16] D H .p'(i2"a n 22"£) C p'R"(a n £) (1)

h . #40-17 . D r .p'R"a up'R"P Cp'(R«a n i2"/9) (2)

h . (1) . (2) . #22-44 . D h . Prop

#40-33. h . s'E"(a n/3)C s'R"a n «<£"£ [*37'21 . #40161 . #40-181]

The following propositions no longer require that the domain of R should

be composed of classes.

#40-35. h .p
lRiliK ~x-iPeic.Dfi.xe R"$)

Bern. ^
h.*401 .Dh:.xep'R'"K.= :yeR'"fe.

i5y .X€y:

[#37-103] = : (3/8) . /3e * . 7 = £"/3 .Dy .xey:

[#10-23] =:$eic.y = R"p.'}fit
y.xey:

[#13191] =iPeK.?
fi
.xeR"P (1)

h . (1) . #10-11 . #20-3 . D h . Prop

#40-36. \-.s'R'"/c=$\(ft0).l3€K.xeR"/3} [Similar proof]

#40-37. 1- . R"p'k Cp'R'"*;

Dem.
b . #37-1 . D I- :: x e R'tp'/e . = :. (g#) . y ep lK . xRy :.

(33/) : e k . 3? . y e : xRy :.

.(>&y):.(0) : e * .D .y e /3 : xRy :.

• (0) > to) :0€K .D.yefS: xRy :.

• (0) '- to) :0eK.D.yep. xRy :.

[#40-1] =

[#10-33] =

[#11-26] D

[#5-31] D
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D :. (0) :. e k . D . (ay) . y e . xRy :.

3:.(0):0eK.1.xeR"0z.
D -..xep'R"'*:: D > . Prop

[#10-37]

[#37-1]

[#4035]

#40 38. h . i£'V« = s'R'"k

Dem.
V . *37'1 . D h :: a; e R"s'k . = :. (33/) .yes'ic. xRy :.

[#40-11] = :. (ay) :. (ga) . a e /c . y e a : flj.By :.

[*ll-6] = :.(aa):.ae/c:(ay).yea.a:%:.

[*37l] =:.(aa).ae/c.a?ei2"a:.

[#40-36] = :.xe s'R'"k ::Dh. Prop

This proposition is frequently used in the proofs of arithmetical pro-

positions.

#40-4. \-:EllR«0.D.s'R"0 = x~{(Ry). ye0.xeR'y}

This proposition is only significant when D'iJCCls.

Dem.
\-.*S1'Q.^V:B.V .O.R"0 = a{(^y).y € 0.a = R'y} (1)

h.(l). #40-11. D

(a*) : (32/) -ye0 •« = R(y : a? e a :

to) : y € & '• (a?) «•= R'y -*««:

(ay) •ye/3.xe R'y : : D h . Prop

H : E ! ! i2"£ . D . p'i2"£ = £ {y e £ . D„ . a? e 22'y
}

[Similar proof]

H : (a?) . E'a; = P'x vQ'x.D .s'R"a = s'(P"a v, Q"a) = s'P"a w s'Q"a

(1)

h::Hp.D:.tfes<£"/3.=

[#11-6] =

[#14-205] =

#40-41.

#40-42.

Dem.
\- . #14-21 . D h : Hp . D . (x) . E ! R'x . E I P (x . E ! Q'a;

h.(l).*40-4.Dh :H.v.D.s'R"a = ${(ny).y€a.xeR'y}
[Hp] = & '{(ay) .yea.xe P'yv Q'y]

[#22*34] = x {(ay) lyeOLzxe Pl
y . v . x e Q'y}

[*4*4.#10-42] — ^{(ay) .yeu.xeP'y . v .(^y) .yea.xeQ'y]

[U).*40-4] = a jar e s'P"a . v . ar e s'Q"a]

[*20-42.*22-34] =s'P"au*'Q"a
[#40-171] = s'(P"a u Q"a) : D h . Prop

This proposition is used in #40*57, where we take R — C, P = T>, Q = CL

#40-43. b :: E !! R"0 . D :. s'i2"/8 Co. = :y e £ . Dv .R'y Cot

Dem.

h . #37-63 . 3 h :: Hp . D : . y e . Dy . R'y C a :=: 7 e R"0 . DY . 7 C a :

[#40-151] = :s'i2"/3Ca::DKProp

#40-44. I- :: E !! R"0 . D :. a C J9^"^ . = :y e .Dy .aCR'y

Dem.

I- . #37-63 . D h :: Hp . D :. y e/3 . Dy . a C R'y : = :-feR"0 . Dy . a C 7 :

[#40-15] = : a Cp'R"0 : : D K Prop
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The following proposition is used in the proof of #84-44.

*4045. Vi.ye$.?y.RtyCSty:?.stR"pCs tS< tP

Dem.
t x

b . #1421 . D h :. Hp .O : E !! S"$ . E !! R"/3 : (1)

[*37-62.*40'13] D-.yeP.Oy.S'yC s'S"/3 :

[Hp] D:ye
/
8.D

J
,.i2'yO<S"/3:

[#40-43.(1)] 3 : s'R"/3 C s'S"j3 :. D h . Prop

The following proposition is used in the proof of #94*402.

#40-451. h :. y e . Dy . «'y C flf'y : 3 . p'£"£ Cp'flf"j8

Dem.

b . #14-21 . #37-62 . #40-12 . D b :. Hp . D : y e . D .^>'J2">S C E'y

.

[Hp] y.p'R"l3CS<y.

[#40-44] 3 : j»*28"j8 C j»'iS"0 :. D h . Prop

#40-5. \-.s'R"P = R"i3

Dem.
—

*

—

>

h . #3212 . #40-4 . D> . *'!*"£ = & {(ay) .yefi.xe R'y)

[#32-18] = £ {(ay) - y e £ - *%}
[(#37-01)] =i2"£.DKProp

#40-51. H .^R"£ = £ {y e /3 . Dj, . #%} [#32-12 . #4041 . #32-18]

—f

p'R"& .is the class of terms each of which has the relation R to . every

member of /3, just as R"fi is the class of terms each of which has the relation

R to some member of /3. In the theory of series, p
fRlt plays an important

part, correlative to that played by R"fi (which is s'R"0, by #405). If is

a class contained in a series whose generating relation is R, p'R"ft will be

the predecessors of all members of j3, while R"j3 will be the predecessors of

some /3.

#40-52. b . s'£"/3 = R"fi [Proof as in #405]

#40-53. > .p'R"^ = p{x€/3.Dz . xRy\ [Proof as in #40-51]

*4054. h . j/~K"£ = x (/3 C%x) [#4051 . #32-181]

#40-55. b.p'
4
R"a = §(aCR<y) [*40'53 . #32-18]

From this point onwards to *40'69, the propositions are inserted on

account of their use in the theory of series.

#40-56. h . 8
(C"\ = F"\ [#33-5 . #405]

In the above proposition, the conditions of significance require that X.

should be a class of relations.

#40 57. b . s'G"\ = s'(D"\ v d"\) = s'D"\ w s'CF'X [#4042 . #3316]
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#406. b . p'R"A = V .yS"A = V [*37'29 . *40'2

j

#4061. b : a ! £ . D .p*R"$ C R"/3
. p'R"f3 C R"/3

Dem.

b. #37-73. D h : Hp.D. a !if"£.

[#40-23] D . j9<~R"£ C s'l?"/3

.

[*40-5] D .y£"/3 C R"/3 (1

)

Similarly H : Hp . D . p
lR"$ C £"£ (2)

h . (1) . (2) . D b . Prop

#40*62. h : 3 ! yg . D . p'R«/3 C C'22 . p'R"/3 C C"i2

[#40-61 . #37-1516 . #33161]

The two following propositions (#40-63*64) are used in proving #40-65,

which is used in #204'63.

#4063. b-.Rip-a'R.D.pW'fi-A
Dem.

b. #3341. Transp. Db:x~ €a eR. D.R'x = A (1)

b. #37-704. 2b:xe^. D.R'xell"/3 (2)

b.(l). (2). *22'32. 2b iwe/3-a'R. 2. R'a:e'R"0.'R'a: = A.

[*20'57] D.Aell"/3.

[#40-22] D.p'£"/3 = A (3)

I-. (3). #101 1-23. DKProp

#40-64. h : a ! j3 - D'R . D . />'£"£ = A [Proof as in #4063]

#40-65. h : a ! £ - C'22 . D .^^"^ = A .p'R"l3 = A [*40-6364 . #33-16]

#40-66. I- :. a Cp<R"/3 . = :xea .ye /3 .Dx, y . xRy
Dem.

b . #40-51 . D I- :: a Qp<R"l3 . = :. a C fc(y e/3 . Dy . xRy) :.

[*20'3] = :.x € a.2x :ye^.Dy .xRy:.

[*ll-62] = :.(x,y):.xea.ye@.D. xRy :: D h . Prop
<— —

>

#40-67. b:.@Cp'R"a.= : x € a .y e @ .2x>y . xRy : = . uCp<R"/3
[Proof as in #40*66]

#40*68. I- . a rsp'P«a C P"j»'P"a

Dem.

b . #40-53 . Z> h :. x e a n p'P"a . D : x e a : y e a . Dy . yPx :

[*10-26] D : xPx :yea.Dy . yPx :
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[*10'24] D:(^z):zPx'.yea.Dy .yPz:

[*40-53.*37l05] D : x e P'yP"a :. D h . Prop

This proposition is used in the theory of series (#206'2).

#40-681. I- . a np'P"a C P"jt>'P"a [Proof as in #40-68]

The following proposition is used in #211-56.

#40682. h : a ! a n p<P"/3 . D . C P"a
Dem.

V . #4053 . D h :. Hp . D : (roc) '.xea:ye0.Z>y . yPx :

[*5'31] O:(^x)iy€0.Dy.xea.yPx:
[#11-61] O:ye0.^y .{%x).xea.yPx.

[#37-1] Dy.yeP^i.Dh.Prop

#40 69. r : 3 ! C'P r» p'P"a . = . 3 ! P . 3 ! p'P"a

Ztera.

I- . #3324 . *24561 . D h : g ! C'P n p'P"a . D . 3 ! P . g ! #'P"a (1)

K #40-62. Dh: 3[!o.ayP"o.D.a!CfiJ n/P"a (2)

r- . #406 . D I- :. a = A . D : C'P « p'P"a = C'P :

[#33-24] D:a!P.D. a !C'Pn i>'P"a (3)

I-
. (2) . (3) . #483 . Dh:a!P. a !p<P"a.D. a !C'Pnp<P"« (4)

H.(l).(4). DKProp
—

>

«—
The above propositions concerning p'jR"£ and p'R"0 of course have

analogues for *'J2"£ and *'22"£. But owing to #40-5, these analogues are

more simply stated as properties of P"# and 22"£. Thus, for example,
#37-264 is the analogue of *40'67. The above propositions concerning

p'R"0 and p'R"0 will be used in the theory of series, but until we reach
that stage they will seldom be referred to.

#40-7. h . s'a % "0 = z {{rx, y).xecL.ye0.z = x%y)

Dem.
h. #40-11 .#38-3. D
h.6-'a?"/3 = t{(a7,2/).ye/3.7 = ?2/"a .^e 7}

[#38-131] = z {(37, x,y).ye0.y = $ y"a .xea.z = x%y)
[#13-19] =z\(<&x,y).xea.y€/3.z = x$y}.Db.Fr(yp

This proposition is of considerable importance, since it gives a compact
form for the class of all values of the function x%y obtained by taking x in

the class a and y in the class 0. Thus, for example, suppose a is the class

of numbers which are multiples of 3, and is the class of numbers which
are multiples of 5, and xxy represents the arithmetical product of x and y,
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then s'ax"^ will be the class of products of multiples of 3 and multiples

of 5, i.e. the class of multiples of 15. Again suppose o and y8 are both classes

of relations; then s'a|"/S will be all relative products R\8 obtained by
it

choosing R in the class a and S in the class /S.

*40-71. V .st %y"K = (s
iK)%y = %y"s'K

Dem.
H . *40-38 . *38-31 . > I- .V ? y«K = ? y"s'K

tt

[*38- 2] = (s'k) ? y . D r- . Prop

The hypothesis JB"aC«, which appears in *40-&-81, is one which plays

an important part at a later stage. In the theory of induction (Part II,

Section E) it characterizes a hereditary class, and in the theory of series it

characterizes an upper section (when combined with a C C eR).

*40-8. r :. a e k .

O

a . R"a C a : D . R"s'k C s'k

Bern.

h . *37'17l . D r- :: Hp . D :. a

e

k . 3a : x e a . #lty . DX)!/ .yea:.

[#11-62] ^:.aeK.xea.xRy .Da)Xty.yea:.

[*40-13] Da>Xjy .yes<K:.

[#40'11 .*10'23] D :. x e s'k . xRy .Dx>y .ye s'k :.

[*37'l7l] 0:.R"s'KCs iK::D\-.
:

Prop

«40'81. h :. a e k . Da . R"a C a : 3 . R"v'k C p'k

Dem,

h . *37*171 . Dh::.Hp. D::ae*. D ixea.xRy . D .^/ea::

[Exp.Comm] D ::#.% . D :. a eye . D : xea. D .y ea:.

[*2'77] Oz.aeK.'y.xea-.Ozae/e.D.yea (1)

h*.(l).*1011-21-27.D

h ::. Hp . D :: #lfo/ . D :. a e /e . 3a # e a : D:ae/e.Da .;yea:.

D z.xep'tc. D .yep'x ::

[Imp] O : : a? ep'/e . a?ify .0 .ye p'k (2)

h . (2) . *37-171 . D r . Prop



#41? THE PRODUCT AND SUM OF A GLASS OF RELATIONS

Summary, of *4il.

The propositions to be given in this number, down to #41*3 exclusive, are

the analogues of those of #40, excluding those from #403 onwards, which

have no analogues. Proofs will not be given, in this number, when they are

exactly analogous to those of propositions with the same decimal part in #40.

The smaller importance of p'\ and s'X, as compared with p'X and s'X, is

illustrated by the smaller number of propositions in #41 as compared with

*40.

Our definitions are

#4101. p'X = $g(ReX.DR .xRy) Df

#4102. s'X=^{(^R).ReX.xRy) Df

Of the propositions preceding *41'3, which are analogues of propositions

in #40, the only two that are frequently used are

#4113. h-.ReX. y.RGs'X

#41151. h : . s'X G S .= : R e-\ . Dr.RGS
Of the remaining propositions of this number, which have no analogues

in #40, the most important are #41'43-44*45, namely

B's'X = s'D"\, d's'X = s'<I"X, C's'X = s'C'X

These propositions are constantly required in the theory of selections (Part II,

Section D) and in relation-arithmetic. Most of the other propositions of this

number are used only once or not at all.

#41

#41

#41

#41

#41

#41

#41

#41

#41

#41

#41

#41

#41

01. p'X = $y(ReX.yR *xRy) Df

02. s'\ = %§{(RR).Re\.xRy} Df

I. b :.x(p (X)y .= '.ReX.Dit.xRy

II. h : a; (s'X) y. = . (gfi) .ReX. xRy

12. \-:ReX.y.p'\GR

13. t-zReX.D.RGs'X

14. \-:ReX.x(p'X)y.D.xRy

141. \-iReX.xRy.D.x(s'\)y

15. \-:.SGp'X.= :ReX.DR .S(ZR
151. h:.s<XGS. = :ReX.yR .RGS
16. b-.XCfx.D.p'fiGp'X

161. h zXCp.y.s'XGs'fjL

17. h.p'Xv p'fi Gp'(Xn fi)
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RQS:Os .xSy

#41171. h . s'\ v s'/x = s'(\ u p)

#4118. h .p'{\ u p) =p<\ f\p'ft

#41 181. h . s'(X r\fj,)G s'\ n i'/i

*4119. h::x(s {
X)'t/. = :.R€\.Ojt

*412. h:X.= A.D.p'X.= V
*41'21. h : X = A . D . s'\ = A
#4122. h:Ae\.D.^=A
#41-221. hV6\.D.a = V
#4123. I- : a ! \ . D .£'\ G s'X

h:.a!X:i2eX.D£ .i8fG22 : D.tfGs'X

I- : x (s'\)y . = . 3 ! X. n 22 (o%)

I- : a ! s<\ . = . (gR) .ReX.RlR
\-:.P*s'\ = A. = :Re\.DB .PnR = A
b.Gnv'p'^=P'Cnv"\

#41-24.

*41-25.

#41-26.

#41-27.

#413.

Bern.

K #31-13] . D
I- :. y (Cnv'jo'X) x .= :x (p'X) y :

[*41'1]

[#31131]

[*37-63.*3113]

[*41-1]

l-.Cnv'*'X.= *'Cnv"\

b.Cnv"p"/c=p"Cnv'"/c

h . Cnv"s"/c = s"Cnx'"tc

\-.s'a
J\"\=a J

\s'X

= : R e \ . Dr . xRy :

= :Re\.DB .y(Cnv'R)x:

= :PeCnv"\.DP .yPx:
= : y (p'Cnv"\) x :. D h . Prop

[Proof as in #41-3]

[#413 . #37-354]

[#41-31 . #37-354]

#41-31.

#4132.

#41-33.

#41-34.

Dem.

V . #4111 . #38-13 . #13-195 .Dbt.x (s'a \ "A.) y .
=

[#35-1] =

[#10-35] =

[*4111.*35-1] =

#41-341. h . s'f a"\ = (s'\) fa [Proof as in *41'34]

#41-342. h.s'ta"A. = (s<A.)£a

Dem.
h . #361 1 . #35-21 .Dh.s't a"\ = s'a 1 "

T
«"*

[#41-34] =a1(s<ra"X)
[#41-341] =0^1(5^)^
[*36'11] = (s'\) I a . D h . Prop

(nP).Pe\.x(a1P)y:

(ftP) . P e X . x e a . xPy :

xea: (a-P) • P e \ . #Py :

x(a
J

] s'\) y:.Dh. Prop
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The following proposition is used in #85*22.

#4135. r . s'M
I*
"k =M \ s'k

Dem.

h . *4M1 . #3813 . D I- : x (s'Mf'/e) y. = . (get) . a e k . x (M [ a) y

.

[#35101] =.(Qa).a€/c.yea.xMy.

[#4011.*35101] = . x (M\s'k) y : D h . Prop

*41'351. \-.s"\M"k = {s'k)
j\M [Proof as in *41'35]

*414. h.D'_p*XC^'D"X

Dem.
V . #3313 . D
V :: x eT>'p'X . = :. (gy) .x(p'X)y :.

[#41-1] = :.(^y):ReX.DR .xRy:.

[#11-61] D:.i2e\.D«.(ay).*%_:.

[#3313] D:.R€\.DB .xeT>'R:.

[*40'41.#331 2] D :. #ejt>'D"\ :: D h . Prop

#4141. h.a'p<kCp f(I"\ [Proof as in #41-4]

#41-42. h . C'p'X Cp'C'X

Dem.

h . #33132 . D h ::. x e C^<\ . = :: (gy) :x{p'\)y. v . y (£<\.)# ::

[#411] = :: (gy) :: Re\ . DR .xRy : v : ReX. Ds .yRx ::

[#10-41-221] D::(^y)::(R)i.R€X.D.xRy.}f:Re\.D m yRx::

[#4-78] D :: (gy) ::(R)z. ReX.D : xRy . v . yRx ::

[#11-61] D::(R)::R€\.D: (gy) : a-ity . v . yRx :

[#33132] DzxeC'Rz:

[*40-41.*33122] O :: x ep'C'X ::. D h . Prop

#41-43. h . D'a'X = .s'D"\

Dem.
I- . #3313 .Dhz.xe T>'s'\ . = : (gy) . #(s'X)y :

[#4111] =:(gy):(gi2). JK € X. a;JKy:

[#1 1 -23-55] = : (gJ?) : 22 e \ : (gy) . arity :

[#3313] =z(>giR).Re\.xeB<R:

[*40-4.*33-12] = : x es'D"\ :. D r . Prop

#41-44. K(T«'\ = *'<I"X [Proof as in #41-43]

#41-45. r.(7<«'\. = s'C"\.

Dew.
b . #3316 . D h . CVA. = D's'X u d's'X

[#41-43-44] = s'D"\ u s<<3"\

[#40-57] = s'C'X . D H . Prop
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#41-5. \-.$P\\f
t/**ip&\\Mp

Dem.

h.*34\L.3

V x:x(p'\\p'fjL)z* = :.('&y) . x.(p'\)y.y(p'fi>)z :.

[*41'1] =:.(<3.y):.P€\.Dp.<vPy:Q€p.DQ .yQz:.

[#11-561 = :. (ay) :• (P> Q):PtX.D.xPy:Qep.O. y.Q* :.

[11-87-39] D :. (ay) :• (P, : P«X. Qep.D.xPy *yQz :.

[#11-61] D :. (P, Q) :.P« \ ..Q e ^ . D . (gy)

.

xPy .yQz.

.

[*34M] ,D.a:(P|Q).*:.

[#13191] O :-.(P.Q, P) :.Pe\.Qep.R^P\Q.D.xRz :.

[#11-21-35] D :. (P) :
(gP, Q).Pe\. Q$p .R = P\Q. 3 . xRz :

[#40*7] D :. (R) : Pes'X |'V- -> •^^ : -

[*4ri] O :. a; (#s'X J"/*).* i:..D H . Prop

51(41 -51. K*'\|*V=:*VX|"/*

H #34-1 .3

I-mx (s'\
|
*'/*>* . = :. (gy). . a?(s'X) y . y (#/*)* :.

[#41-11] s :. (gy) :- (3P) ~PeX . aPy : (aQ) .Qep.yQz :.

[#11-54] = :..(ay) :• (HP, Q) = #«* ^2/ .Qep.yQz :.

[#ll-24-27] = :. (gP, Q) - (ay).P-«X .*Py - Qep.yQz:.

[#1035] = :. (aP, Q) - P eX . Q ep.:
; (gy) . aPy, yQ* :.

[#341] =:.(aP,Q):P€X.Q eAt ./r(P|Q)^:.

[#13195] = :. (aP, Q,R) .Pe\.Qep.R = P \Q.xRz :.

[#U-24.*40-7] = :. (gP) • #« **X j'V* •^ : -

<
[#41*11] = :.x (s's'X

| "a*) * " 3 •"' -Prop

The above proposition, which is used in #92-31, states that, if X and /a are

classes of relations/the relative product of the relational sum of X and the

relational sum of p is the relational sum of all the relative products formed

of a member of X and a member of p.

The following proposition is used in #96-111.

#41-52. h:.o1*'VCQ.= :.Pe\.Dp..dTP'CQ

Dem.
K*35'l..*4i'11.3

l- sra.|^X G Q . =u x..*« : (aP) • P e X . aPy : D^ . a% :.

[#10-35-23] = :. x e a . P e X . aPy . Op,*,, . a% :.

[#35-1] = :. P e\.x(a^P)y .^£fmu..xQy:.

£#11-62] = :. P e X . Dp . a]P G Q :: D h . Prop
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The following proposition is used in *162'32 and in *166461.

*41-6. H : . y e£ .V P'y = Q'# o B'yi O - *'P"£ =W£ cPR"?

Dem.

K *376 . *1421 . *41-11 . *13195 .

3

319

h::Hp.D:.w(sfP"
i
8)v.=

[Hp]

[*23-34.*10-42] •=

[*3r-6.*4111] =

(&y)'ye0~u(Q'yK>R'y)v:

(ay) y € £ • «-(Q'y>» • v (ay) - y e £ . « (£'y) »-.

w (s'Q"A)» v • M (*'-R"j8) v : : D+ . Prop



#42. MISCELLANEOUS PROPOSITIONS

Summary q/"#42.

The present number contains various propositions concerning products and

sums of classes. They are concerned chiefly with classes of classes of classes,

or with relations of relations of relations. These are required respectively in

cardinal and in ordinal arithmetic. Thus #421 is used in #112 and #113,

which are concerned with cardinal addition and multiplication, while #4212"2

are used in #160 and #162, which are concerned with ordinal addition. #42*22,

though not explicitly referred to, is useful in facilitating the comprehension of

propositions on series of series of series, or rather on relations between relations

between relations, which are required in connection with the associative law

of multiplication in relation-arithmetic.

#421. H . s's"k = s's'k

Here k must, for significance, be a class of classes of classes. The proposi-

tion states that if we take each member, a, of k, and form s'a, and then form

the sum of all the classes so obtained, the result is the same as if we form the

sum of the sum of k. This is the associative law for s, and is (as will appear

later) the source of the associative law of addition in cardinal arithmetic. The

way in which this proposition comes to be the associative law for s may be

seen as follows: Suppose k consists of two classes, a and /3; suppose a in turn

consists of the two classes £ and rj, and fi of the two classes £' and ij . Then

s<a = | u v *'/3 = I' w y> (This will be proved later.) Thus s"k has two

members, one of which is ^uij, while the other is f' «-> rj '. Thus

s's"k = (^w)j)u (£' u v').

But s'k has four members, namely £, 77, £', rf. Thus s's'k = f w 17 u f u 1/

.

Thus our proposition leads to

(£ « V) w (£' w V)= £ w V w f w ri,

which is obviously a case of the associative law.

Our proposition states the associative law generally, including the case

where the number of brackets, or of summands in any bracket, is infinite.

The proof is as follows.

Dem.

b . #404 . D h : : x e s's"tc . =

[#4011]

[#11-6]

[#4011]

[#4011]

. (get) . ae/c .xes'a :.

(aa):ae«:(a£).£ea.ae£:.

• (a£) =• (3«) a e K • f e a

:

x € f '•

.(a£).fe*'iie.a-ef :.

. x e s's'k :: D r- . Prop
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#4211. V,.'p
i

p
i'tK—p ts

tK

Dem.

b . #40'41 . D I- :. x ep'p"ic . = : P e k , Dp . x ep*p :

[*40-l.*ll-62] = : P € k . y e p . D^ .#67:

[*ll-2.*10-23] = : (ftp) .pete. yep. Dy.xey:

[#4011] =:yes {K .Dy.xey:

[#401] = : x ep's'ic :. D h . Prop

This is the associative law for products. Supposing again, for illustration,

that k consists of the two classes a, P, while a consists of the two classes £, rj

and P of the two classes f, rj', then p"ic consists of the two classes £ r\ rj and

f' r\ rj, so that p
l

p
liK = (£ c\ rj) n (f r» 17'), while pV/e = f r\ rj r\% r\ rj. Thus

our proposition becomes

(%r\rj)r*(? r\rj')=%r\rjc\g r\rj.

A descriptive function R'k whose arguments are classes or classes of classes

may be said to obey the associative law provided

R'R"k = R's'k.

This equation may be interpreted as follows: Given a class a, divide it

into any number of subordinate classes, so that no member is left out, though

one member may belong to two or more classes. Let the classes into which

a is divided make up the class k, so that k is a class of classes,- and s*k = a.

Then the above equation asserts that if we first form the R's of the various

sub-classes of a, and then the R of the resulting class, the result is the same

as if we formed the R of a directly.

In some cases—for example, that of arithmetical addition of cardinals

—

the above equation holds only when no two members of k have a common
term, i.e. when the parts into which a is divided are mutually exclusive.

For a descriptive function whose arguments are relations of relations, we

shall find another form for the associative law; this form plays in ordinal

arithmetic a part analogous to that played by the above form in cardinal

arithmetic.

#4212. Ks's"X.= sV\
Devn.

K*41~ll .DF:«(«'«"X)j/.= . (g>) . fi e\ . x (s*fi) y

.

[*41'11] =.(ftfi,P). lie\.Pe fi.xPy.

[#40-11] = . (aP) .Pes'X. xPy .

[#41-11] = . x (sV\) y : D 1- . Prop

#4213. H .p'p"\=p<s'\

Dem.
K*41'l .Dh :.x(p'p"\)y . = :/j.e\. DIIL

.x(p t
fi)y.

[#41*1] =: fieX.Re/x.D^s.xRy:

b&w i 21
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[*ll-2.*10-23] =:(Rfi).tJL€\.Refi.DB .a;Ry:

[*40'11] = : R e s'X . D^ . xRy

:

[*41 1]
= : x (p's'X) y : . D H . Prop

*42 2. I- . C's'C'P = s'C"C'P =F"CP = F*'P

This proposition assumes that P is a relation between relations. For

example, .suppose we have a series of series, whose generating relations are

ordered by the relation P. Then CP is the class of these generating relations

;

s'C'P is the relation "one or other of the generating relations which compose

C'P" and C's'C'P is the class of all the terms occurring in any of the series.

C'C'P is the fields of the various series, and s'C'C'P is again all the terms

occurring in any of the series. F"C'P is all the terms belonging to fields of

series which are members of C'P, and F2 'P is all members of fields ofmembers

of the field of P; each of these again is all the terms occurring in any of the

series. The proof is as follows:

Dem.
V . *41'45 . D h . C's'C'P = s'C'C'P (1)

h . *40-56 . D h . s'C'C'P = F"C'P (2)

K*33-5. Dh.F"C'P =F<7F'P

[*37'38] =~F*<P (3)

K(l).(2).(3).DKProp

The following propositions apply to a relation of relations of relations.

These propositions are useful for proving associative laws in ordinal arith-

metic, since these laws deal with series of series of series, and series of series

of series are most simply constituted by supposing the generating relations of

the constituent series to be ordered by relations which are themselves ordered

by a relation P.

*42-21. K s'C'"C"CP = C"s'C'C'P = C'Cs'CP = C'F'.'C'P = C"~F* 'P

Dem.
h . *4038 . D H . s'C'C'CP = C's'C'CP (1)

K (1) . *42-2 . D r . Prop

*42 22. h . s's'C'C'C'P = s'C's'C'C'P= s'C'C's'CP

= C's'C's'C'P = s'C"F"CP
—» —

>

_ jpajptiQip _ ]?«]?* tp = jps tp

[*42-21 . *41-45 . *40-56 . *42'2 . *37'3]

If P, in the above proposition, is a relation which generates a series of

series of series, the above gives various forms for the class of ultimate terms

of these series. Thus suppose Q eC'P; then Q is a relation between generating
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relations of series. If now R eC'Q, R is the generating relation of a series

which we may regard as composed of individuals. The class of individuals so

obtainable may be expressed in any of the above forms, as well as in others

which are not given above.

*42 3. V . sV'i2"a= s'R"ol

Dem.

h . *421 . D h . s's"R"a= s's'R"a

[*40-5] =s'E"a.Dh.Prop

*42-31. h . s's"R"a= s*R"a [Proof as in *42'3]

21—2



#43. THE RELATIONS OF A RELATIVE PRODUCT
TO ITS FACTORS

Summary q/'#43.

The purpose of the present number is to give certain propositions on the

relation which holds between P and Q whenever P — Q |
R, or whenever

P = R\Q, or whenever P= R
| Q \

S, where R and S are fixed. In virtue of

the general definitions of #38, these relations are respectively
j
R, R\, and

(R |) | ( j S). Such relations are of great utility both in cardinal and in ordinal

arithmetic; they are also much used in the theory of induction (Part II,

Section E). In place of the notation (R
\
) | ( | S), which is cumbrous, we adopt

the more compact notation R\\S. If X is a class of relations, R
|

"A, will be the

class of relations R
\
P where P e \ |

R"\ will be the class of relations P
\

R
where Pe\, and (R

||
S)"\ will be the class of relations R

|
P

\
S where Pe\.

These classes of relations are often required in subsequent work.

In virtue of our definitions, we have

*43112. \-.(R\\S)'Q = R\Q\S

The propositions most used in the present number (except such as merely

embody definitions) are the following:

*43'302. h.(P).Pe<I<(R\\S)

*43-411. K.R'"a"\ = a"|JR"\

*43'421. h.s'\ R"\ = (s<\)
|
R

The remaining propositions are used seldom, but their uses, when they are

used, are important.

*4301. R\\S = (R\)\(\S) Df

At a later stage (in #150) we shall introduce a simpler notation for the

special case of R\\R. The following propositions are for the most part.

immediate consequences of the definitions, and proofs are therefore usually

omitted.

#431. \-:P(R\)Q. = .P = R\Q
#43101. \-:P(\R)Q. = .P = Q\R
#43102. \-:P(R\\S)Q. = .P = R\Q\S

#4311. \-.R\'Q = R\Q
#43111. h .

|
JK'Q = Q |

JB

#43112. h.(R\\SyQ = R\Q\S

#4312. h.E!E|'Q
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#43121. KEIJJR'Q

#43122. b.E I (R\\S)'Q

*43'2. b.(R\)\(S\) = (R\8)\

Bern.

h.*4!^l.D\-:L{(<R\)\(8\)}N. = .(^M).L =R\M.M= S\N,

[*13195.*34-21] = .L = R\S\N.

[#43-1] ^.L{(R\S)\}N:Db.¥voV

#43-201. I- . (| R)
|
(| S) = |

(8
1

R) [Proof as in #43-2]

#43-202. \-.(\R)\(8\) = (S\)\(\R) = 8\\R [Proof as in *43"2]

#43-21. b.(P\\Q)\(R\) = (P\R)\\Q

#43-211. b.(R\)\(P\\Q) = (R\P)\\Q

#43-212. b.(P\\Q)\(\R) = P\\(R\Q)-

#43-213. \-.(\R)\(P\\Q) = P\\(Q\R)

#43-22. H.(P||Q)|(i2||fl)-(P|B)||(^|Q)

#43-3. K(P).Pe<Pi2| [#4312. #33-43]

#43301. h.(P).P€a <

|

JR
(

#43-302. \-.(P).Pe<I'(R\\S)

#43-31. KPf(RR| = PrC'i2| = P
Dem.

h . #4312 . #33-431 . D I- . d'P C a f
,K

|

[#33-161] DK(I<PCC<i*|

I- . (1) . (2) . #35-452 . D h . Prop

#43311. H.Pr(F|£ = PrC'|£ = P

#43-312. b.P[a((R\\S) =P[Ct(R\\8) = P

(1)

(2)

#43-34. [-.^1^ = 1^^ =^
#434. h.iJ"D'P = D'i2|'P

#43-401. H . R"(I<P =a 4
1
J?'P

#43-41. h . 22<"D"\ = T>«R
\

"\

#43-411. h . iz'"<I"\= a"
|
R"\

#43-42. Ks<.R|"\ = 22|s fX

Dem.

[*4311111]

[#37-32. #43-1]

[#37-32 . #43101]

[#43-4 . #37-355]

[#43-401 . #37-355]

I- . #4111 . #371 . #431 . D

h:.a;(s'E|"\)2.=

[#34-1] =

[#11-6] =

[#41-11. #341] =

{^T).Te\.x{R\T)z:
{^T):Te\:(^y).wRy.yTz:

(^-.xRyz^Ty.TeX.yTz:
^ORIi'X^r.DKProp
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#43421. r- . s<
j
R«\ = (i*\) j R [Proof as in #43-42]

#4343. h.s<(R\\S)"\ = (R\\Sys<\

Dem.
H . #37-33 . D K «<(£

||
£)"\ = s'R

|

"
|
S"X

[*43'42] =5|(8'ifif"X)

[#43-421] = i2j£'A,|,Sf

[#43112] =(R\\Sys tX. Dh.Frop

#4348. l-:D fPC a .D.Q|'P=.(Q^ a)|'P [*35'481]

#43-481. H : (I'P C . D .
1
22'P =

1

08 1 P)'P [*35'48]

#43-49. l-:s'D"\Ca.D.(Q|)[k

\={(Q|
k
a)|}|

k \

.Dew.

K #40-43. Dhr.Hp.DrPeX.D.D'PCa.
[*43-48] 3-Q|'-P={(Qr«)|}'P (1)

h . (1) . #35-71 . D h . Prop

#43-491. \-:s<a"\C/3.D.QR)t\={\(l3'\R)}r\ [Proof as in #43-49]

#43-5. l-:iyPCa.a<PC0.3.(Q\\RyP={(Q\- a)\\(i31R)yp
[#35-48-481. #43-1 12]

#43-51. t-:s<D«\Ca.s<a"\C/3.D.(Q\\R)r\ = {(Qra)\\(/3'\R)}\>\

Dem.

h . #40-43 .DI-:.Hp.D:PeX.D. D'P C a . d'P C £

.

i*43-5] 3-(Qii^)^={(Qr«)iK/8ii2)}'p a)
f- . (1) . #35-71 . D h . Prop

The above proposition is used in the proof of #74-773.



PART II

PROLEGOMENA TO CARDINAL ARITHMETIC



SUMMARY OF PART II

The objects to be studied in this Part are not sharply distinguished from

those studied in Part I. The difference is one of degree, the objects in this

Part being of somewhat less general importance than those of Part I, and

being studied more on account of their bearing on cardinal arithmetic than

on their own account. Although cardinal arithmetic is the goal which

determines our course in Part II, all the objects studied will be found to be

also required in ordinal arithmetic and the theory of series. As this Part

advances, the approach to cardinal arithmetic becomes gradually more marked,

until at last nothing is lacking except the definition of cardinal numbers, with

which Part III opens.

Section A of this Part deals with unit classes and couples. A unit class

is the class of terms identical with a given term, i.e. the class whose only

member is the given term. (As explained in the Introduction, Chapter III,

pp. 76 to 79, the class whose only member is x is not identical with x.) We
define 1 as the class of all unit classes, leaving it to Part III to show that 1,

so defined, is a cardinal number. In like manner, we define a (cardinal or

ordinal) couple, and then define 2 as the class of all couples. The propositions

on couples will not be much referred to in the remainder of the present Part,

since their use belongs chiefly to arithmetic (Parts III and IV). On the other

hand, the properties of unit classes are constantly required in Sections C, D, E
of this Part.

Section B deals, first, with the class of sub-classes of a given class, i.e. of

classes contained in a given class. The sub-classes of a given class are often

important in arithmetic. Next we consider the class of sub-relations of a

given relation, i.e. relations contained in a given relation. The propositions

on this subject are analogous to those on sub-classes, but less important.

Next we consider the question of "relative types," i.e. taking any object x, and

calling its type t'x, we give a notation for expressing in terms of t'x the type

of classes of which a; is a member, or of relations in which x may be either

referent or relatum, and so on. The notations introduced in this connection

are very useful in arithmetic, especially in connection with existence-theorems.

But the propositions of Section B are very seldom required in the later sections

of the present Part.

Section C, which deals with one-many, many-one and one-one relations,

is very important, and is constantly relevant in the sequel. A relation is

one-many when no term has more than one referent, many-one if no term has

more than one relatum, and one-one if it is both one-many and many-one.
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In this section, we define the notion of similarity, upon which all cardinal

arithmetic is based: two classes are said to be similar when there is a one-one

relation whose domain is the one and whose converse domain is the other.

We prove the elementary properties of similarity, including the Schroder-

Bernstein theorem, namely: If a is similar to part of j3, and yS is similar to

part of a, then a is similar to fB.

Section D deals with the notion of selections, upon which both cardinal

and ordinal multiplication are based. A selection from a set of classes is

a class consisting of one member from each class of the set. Thus a selective

relation R may be defined as one which, for a given class of classes k, makes
R'a. a member of o whenever a is a member of tc. More exactly, a selective

relation for a class of classes k is one which is one-many, which has k for its

converse domain, and is such that, if ocMa, then x e a. Such a relation may
be called an e-selector from k. More generally, we may define a P-selector

from «asa relation which is one-many, which has k for its converse domain,

and which is contained in P. The theory of selectors is very important in

arithmetic. But until we come to cardinal multiplication in Part III, Section B,

the propositions of this fourth section will seldom be relevant.

Section E deals with mathematical induction, not in the special form in

which it applies to finite integers (this is considered in Part III, Section G),

but in a general form in which it applies to air relations. The propositions

of this section are of very great importance, primarily in the theory of finite

and infinite (Part III, Section C, and Part V, Section E), but also in many
other subjects, and especially in the derivation of series from one-many,

many-one or one-one relations—for example, in ordering the "rational" points

of a projective space by means of successive constructions of harmonic points.

The ideas involved in this section are somewhat complicated, and we must
refer the reader to the section itself for an account of them.



SECTION A

UNIT CLASSES AND COUPLES

Summary of Section A.

In this section we begin (#50) by introducing a notation for the relation

of identity, as opposed to the function "x= y"; that is, calling the relation of

identity /, we put
I == $§(x= y) Df.

The purpose of this definition is chiefly convenience of notation. The

definition enables us to speak of/, D'Z", I\B,a^I, I"a, etc., which we could

not otherwise do.

At the same time we introduce diversity, which is defined as the negation

of identity, and denoted by the letter J. The properties of / and J result

immediately from #13, since

xly . = . x = y.

We next introduce a very important notation, due to Peano, for the class

whose only member is x. If we took a strictly and purely extensional view of

classes, we should naturally suppose this class to be identical with x. But in

view of the theory of classes explained in #20, it is plain that x can never be

identical with a class of which it is a member, even when it is the only member
of that class. Peano uses the notation "ix" for the class whose only member
is x; we shall alter this to "i'x," following our general notation for descriptive

functions. Thus we are to have

l'x= $(y = x) = $ (ylx) = I'x.

Hence we take as our definition

t=7 Df,

since this definition gives the desired value of i'x. The properties of i are

many and important.

It is important to observe that "i'a" means "the only member of a." Thus
it exists when, and only when, a has one member and no more, in which case

a is of the form i'x, if x is its only member. Thus "I'a" means the same as
»»»

"(ix)(x €<*)," and "i lz{$z)" means the same as " (ix) (<bx\" What we call

"i'a" is denoted, in Peano's notation, by "7a."

Classes of the form i'x are called unit classes, and the class of all such
classes is called 1. This is the cardinal number 1, according to the definition

of cardinal numbers which will be given in #100. The properties of 1, so far

as they do not depend upon other cardinals, or upon the fact that 1 is a
cardinal, will be studied in #52.
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After -a number (#53) containing various propositions involving 1 or i, we
pass to the consideration of cardinal couples (#54) and ordinal couples (#55).

A cardinal couple is a class i
lx u i'y, where x

=J= y. The class of such couples

is defined as 2, and will be shown at a later stage (#101) to be a cardinal

number. An ordinal couple, which, unlike a cardinal couple, involves an order

as between its members, is defined as a relation i'x j" i'y (cf. #35*04), where

we may either add x =f y or not. The properties of ordinal couples are in part

analogous to those of unit classes, in part to those of cardinal couples. In #56,

we define the ordinal number 2 (which we denote by 2r , to distinguish it from

the cardinal 2) as the class of all ordinal couples t'x f i'y, where x ={= V- It will

be shown at a later stage that this is an ordinal number according to our

definition of ordinal numbers (#153 and #251).



*50. IDENTITY AND DIVERSITY AS RELATIONS

Summary o/*50.

The purpose of the present number is primarily notational. For notational

reasons, we must be able to express identity and diversity as relations, and not

merely as propositional functions, i.e. we require a notation for &$ (x = y) and

£§(x^y). We therefore put
/ = ^(tf =2/) Df,

J=^I Df.

In spite of the fact that diversity is merely the negation of identity, the

kinds of propositions that employ diversity are quite different from the kinds

that employ identity. Identity as a relation is required, to begin with, in the

theory of unit classes, which is our reason for treating of it at this stage. It

is next required, constantly, in the theory of mathematical induction (Part II,

Section E). It is required also in showing that cardinal and ordinal similarity

are reflexive. These are its principal uses.

Diversity, on the other hand, is required almost exclusively in the theory

of series (Part V), and the first number in that theory will be devoted to

diversity. Until that stage, diversity will seldom be referred to, with one

important exception, namely in proving the associative law of multiplication

in relation-arithmetic (#174).

The most important propositions on identity in the present number are the

following:

*5016. h . I"a = a

*504. b.R\I = I\R = R
*50'5. \-.a

J
\I= I[a = a

J\I[a

*50-51. KCnv'telJ^a-J/

*5052. \-.T><(a'\I) = a<(a'\I) = C'(a'\I) = GL

*50*62. hid'RCa. 2. R\(I\-a) = R
*5063. hD'EC a. D.Ila\R = R

The most important propositions on diversity in the present number are

the following:

*5023. \-:RGJ. = .RGJ
*50-24. h:EG/. = .(a;).~ (xRx)

*50-43. \-:R*aj. = .RfsR = k
*50'45. h-.R^dJ.D.RdJ

*S0*47. h :. iJ2 G R . D : i£ G J . = . R? G J . = .RnR=A



334 PROLEGOMENA TO CARDINAL ARITHMETIC [PART II

It will be observed that all these propositions are concerned with R G J or

R*Q,J, both of which are satisfied if 22 is a serial relation. The hypothesis

R*(ZJ or Rr\R = A characterizes an asymmetrical relation, i.e. one which, if

it holds between x and y, cannot hold between y and x.

*5001. I= x§(x = y) Df

*5002. J=-^I Df

Most of the propositions of this number are obvious, and call for no

comment.

*501. Y:xly.= .x = y [*213 .(*50-01)]

*5011. Y-.xJy.-.x^y [*23'35 . *501 . (*5002)]

*5012. h. J=w§(x$y) [*5011 . *21'33]

*50 13. h . a ! I [*13-19 . *10'24-281 . *50-l]

*5014. \-.I'y = y [*30-3 . *50 1 . *1011]

*5015. r . (y) . E ! I'y [*50'14 . *1421 . *1011]

*5016. KJ"a=a
Bern.

V . *37l .D\- :xe J"a . = . (g#) .yea. xly .

[*50-l] = .(^y).yea.x = y.

[*13195] =.« € a:Df-.Prop

*5017. \-:.xea.Ox .R'x= x:D.R"a= a

Bern.

h . *1421 . D V : Hp . Z> . E !! R"a (1)

h . *5014 . D h :. Hp . D : xea . Dx . R'x^I'x :

[*37'69.(1)] D :JB"a= /"a:

[*5016] D : R"a= a :. D h . Prop

*502. h.I=I
Bern.

r . #50*1 . D r : xly . = ,x = y

.

[*13'16] =.y = x.

[*50-l] =.ylx.

[*31'11] = . xly : D h . Prop

*5021. h.J=J

I- . *21-2 . (*50-02) . D h . «/= ^- 7 (1)

[*50'2.*23-83] =-i-7

[*31
:

16] =Cnv'-r-7

[(l).*31-32] = ,7.3 K Prop
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#5022. \-:RQI. = .RQI [*314 . *502]

#5023. \-:RGJ. = .RGJ [*314 . *50 :
21]

*5024. hi?GJ.H.(*).~ (xRx)

Dem.
V . #5011 . D I- : . R G / . = : xRy .DXty .x^y:
[Transp] = : x = y . Dx> y . ~ (xRy) :

[#13191] = : (a?) . ~ (xRx) :. D h . Prop

#503. V.{x).xlx [*50\L . *1315]

#50 31. h . B fI= V . d'l = V
Bern.

h . #50-3 . *1024 .Dh:.(«): (gy) . xly :. (a?) : (gy) . y/a; :.

[#3313131] Dh(a;).iceD'/:(^).«6a'/:

[#24-14] Oh.D'/=V.(F/=V.DKProp

*5032. h . CI= V [*50-31 . *3316 . #24-27]

#50-33. H : g ! J. D . D'J= V . (1'/= V . CV= V
Dew.

h.*13171 .Transp.Dbz.y^z.D-.x^y.v.x^z:.
[*50'11] Dbz.yJz .DzxJy.v ,xJz\

[*33'14] DzxeD'J (1)

K (1) . *llll-35 . D I- : g ! J. D . « e D'/:

[#1011-21] DhglJ.D.^.^eD'/.
'[#24-14] D.D'«/=V (2)

h.(2).*50-21 ; DI-.Prop

In the above proposition (#50-33), the hypothesis g ! J is equivalent to

the hypothesis that more than one object exists of the type in question. This
can be proved for all except the lowest type. For the lowest type, we can
only prove the existence of at least one object: thi3 is proved in #24-52. For
the next type, we can prove the existence of at least two objects, namely A
and V; these are distinct, by #24-1. For the next type, we can prove the
existence of 22 objects ; for the next, 24

, etc. But for the class of individuals

we cannot prove, from our primitive propositions, that there is more than
one object in the universe, and therefore we cannot prove g ! J. We might,
of course, have included among our primitive propositions the assumption
that more than one individual exists, or some assumption from which this

would follow, such as

(3<£> x,y).<l>\x.~$\y.

But very few of the propositions which we might wish to prove depend upon
this assumption, and we have therefore excluded it. It should be observed
that many philosophers, being monists, deny this assumption.
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#5034. h.g!/£Cls

Dem.
h . #2041 . #2238 . (#24-01 02) . D h . A, V e Cls .

[*24'1] DKA + V.A, VeCls.

[*36-13.*5011] 3 H A
{
J £ Cls] V .

[#1024] 3 h Prop

#50 35. h . g ! / 1 Rel [Proof as in *50'34]

#504. \-.R\I= I\R =R
Dem.

\- . #341 . D b : x(R
\

I)z . = . (gt/)

.

xRy . ylz

.

[#50-1] =

[*13'195] =

K*34-1.DH:#(J|P)*.=
[*50-l] s

[#13195] s

K (1) . (2) . D H . Prop .

*50'41. h:P|PGJ.5.P|PG,7. = .P*P =A
Pew.

h . #341 . #5011 .Dh:.P|PGJ.= : (gy) ®Ry • V?* .^x,z
.x^z:

[#13-196] = :(x): ~ (gy) . xRy .yPx :

[#10'252] =:~(>&x,y).xRy.yPx:

[*31-11] = :~(<&x,y).xRy.xPy:

[*23-33.*2551] = :2*AP = A: (1)

[#31*14-24] ==:jR*HP= A:

p,p

(>&y).xRy.y = z.

xRz

(32/) • aTy
' yRz m

(fty).x = y.yRz.
xRz

(1)

(2)

(1) R,P
= iR\Cnv<PGJ:

= iR\PdJ[*34-203]

V . (1) . (2) . D h . Prop

#50-42. KZ2= I

Pew.
I- . #34-5 . D h : #J 2

.z . = . (gy) . a?iy . ylz .

[*5o-i] =.(w)' xIy-y= z -

[#13-195] s.s/stDKProp

(2)

#50*43. h:222 GJ'.= ..K«jR = A f*50-41 11

This proposition is useful in the theory of series. "Rr\R = k" is the

characteristic of an asymmetrical relation.
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#5044. h:a!(JKA/).D.a!(i?n/)
Dem.

h . #2333 . #501 . D H : 3 ! (R r» I) . = . fax, y) . xRy .x = y.

[#13195] = . fax) . xRx

.

[#34-54] D.fax).xR*x.

[*13'195] D . fax, y) . xR?y . x = y .

[*2333.*50-l] D . a ! (J?
2 *I) : D h . Prop

#5045. !- : i22 G «/ . D . R GJ [*5044 . Transp . *25'311]

#5046. (-:i2n JR = A.D.i2G/ [#50-43-45]

#5047. h:. JR2 G JR.D: JKGJ. = ..R2 GJr

. = .iJn JR = A

r . #2344 . D h : . Hp . D : R G / . D . E2 G J (1)

I- . (1) . *50-45-43 . D H . Prop

This proposition is used in the theory of series. If R is a serial relation,

we shall have JR2 G R and RQ.J.

#505. h.a1/=/ra = a1/r«
Dem.

V .#351 .Oh :x(a
J

]I)y . = . xea.xly

.

[#50
- l] = ,xea.x = y

.

[#13193] =.yea.x = y.

[*50"1] = .xly.yea.

[#35-101] =.x(I[a)y (1)

K(l).*23-5.DI-.a1/ ^In/fa
[*35'11] =a >

|/[
k
a (2)

f-.(l).(2).Dh.Prop

#50-51. h.Cnv'(a
>

I/) = a1J [#35-51 .#50-2-5]

#50-52. h . D'(a 1 /) = <3'(a 1 /) = C"(a 1 /) = a

i)em.

I- . #35-61 .Dr. D'Cal I) = a a D'l

[#50-31] = a n V
[#24-26] =a (1)

Similarly \- .a t(a
J
\I) = a (2)

r . (1) . (2) . #33-18 .Dr. Prop

#50-53. h.a >|/^ = (an/3)T/ = /p(an
/g)

I- . #35-21 . #50-5 .D\-.a J
\I\-/3 = a

J
\(/3

J
\I)

[#35-32] =(an
j8)

>

|/ (1)

r . (1) . #50-5 .Dr. Prop

R&w I 22



338 PROLEGOMENA TO CARDINAL ARITHMETIC [PART II

#5054. h.(«1/)2 = a1/

Dem.
h.*50-5.DK(a1/)2 ==(a1/)|(ir«)

[#35-12] =o1/ 2

r«
[#50-42] =aVr«
[#50-5] =a >

|/.p h.Prop

#5055. h:an/3=A. = .at^GJ
Dem.

V . #2437 . #5011 . D

h :. a n /3 = A . = : x e a . y e /9 . D*, y . #Jy :

[#35-103] =:at/SG/:.Dh. Prop

#50-56. Ha!(an£). = .a!{(at£)Al}

r . #50-55 . Transp . #24-54 . D

h: a !(an/3). = . ~ {a | £ CJ}

.

[#25-55] = .g(af /9)-«7.

[#23-831.(#50-02)] = . & ! {(a | £) A 1} : D h . Prop

#50-57. \-.Ina1R = l f\R[a = Ina J
\R\'a

Bern.

V . #3516 .Dh./na1^ = a1InE
[#50-5] =IfarsR
[#35-17] =/ni2|^a (1)

[#50-5] =aVr«^^
[#35-16-17-21] =/'HflP|k

a (2)

I- . (1) . (2) . D h . Prop

#50-58. H:a >|J?G/. = . JR|
k aG/. = .a

>

l
JRpaGJ

Dew.

h.*50-57.Dh:/na >

l
JR = A. = ./nZ2|k

a = A. = ./n«1 JRra = A C1 )

h . (1) . #50-41 . D h . Prop

#50-59. h.(/r-o)"/8 = an/8

Dew.
I- . #37-412 . D h . (/fa)"/3 = /"(an /3)

[#50-16] = a n £ . D h . Prop

#50-6. K.R|(/ra) = i?ra

Dew.
I- . #35-23 . D h . i2

1

(I r«) = (^
I
i")T«

[#50-4] = i£ f a. Z) h.Prop

#50-61. h.7"fa|i2 = a1i2

Dew.
h.*35-354.0K/raj JR = /!(a1 R)

[#50-4] =a^.D h.Prop
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#5062. h : (I'M C a . D .,R
\

(I [ a) = R [*50*6 . #35-452]'

#5063. \-iT><RCa.O.I[a\R =R [#5061 .#35-451]

#5064. t-.R\(Ita iR) = R\mC'R) = R [#5062 .#22-42. #33161]

#50-65. \-.I\-(D'R)\R = I\-(C'R)\R = R [#50-63. #22-42. #33-161]

#507. h-.a'RCa.D.Rl'Il-a^R [#50-62. #43-11]

#50-71. h:D^Ca.D.| JK <7pa = i2 [#50-63 .#43-1 11]

#50-72. \-.R\<(I\-C'R) = \R'(IfC'R) = R [#50-7-71]

#50 73. r . R
|

</ =
j
R'I= R [#50-4 . *4311-111]

#50-74. \-.R\\I = R\

Bern.

b.*43-112.D\-.(R\\iyQ = R\Q\I
[#50-4] =R\Q
[#43-11] =R\'Q (1)

h . (1) . #30-41 . D h . Prop

#50-75. h.I'\\R=\R [Proof as in #50-74]

#5076. b:P\=R\. = .P = R
Dem.

h . #34-27 . #30-41 .Db : P= R.D . P\ = R\ (1)

b . #50-73 . #30-36 . D H : P\ = R\.D . P = i* (2)

h . (1) . (2) . D h . Prop

#50-761. h:|P = |^. = .P = iJ [Proof as in *50'76]

22—2



*51. UNIT CLASSES

Summary o/*#51.

In this number we introduce a new descriptive function i
l
x, meaning

"the class of terms which are identical with x," which is the same thing as

"the class whose only member is x." We are thus to have

t'x = §{y = x).

But y(y = x) = I'x. Hence we secure what we require by the following

definition:

#61-01. i=~I Df
—

>

As a matter of notation, it might be thought that I would do as well as i, and

that this definition is superfluous. But we need also the converse of this

relation, and "Cnv'7 " is not a sufficiently convenient symbol.

The propositions of this number are constantly used in what follows. It

should be observed that the class whose members are x and y is i'x u t'y, the
,

class whose members are x, y, z is i'x u t'y u l'z, the class formed by adding

x to a is a v i'x, and the class formed by taking x away from a is a — i'x. (If

x is not a member of a, this is equal to a.)

The distinction between x and i'x is one of the merits of Peano's symbolic

logic, as well as of Frege's. On the basis of our theory of classes, the necessity

for the distinction is of course obvious. But apart from this, the following

consideration makes the necessity apparent. Let a be a class ; then the class

whose only member is a has only one member, namely «, while a may have

many members. Hence the class whose only member is a cannot be identical

with a*.

The propositions of the present number which are most used are the

following:

#5115. \-:y€i'x. = .y = x

#5116. h.xet'x

#512. h : x ea . = . t'xCa

This proposition is useful because it enables us to replace membership of

a class (x e a) by inclusion in the class (i'x C a).

#51'211. h:iK~ea.E.i^fta = A
#51221. V ;xea..=.(a.— i

{x)\j i'x = ol

* This argument is due to Frege. See his article "Kritische Beleuchtung einiger Punkte in

E. Schroder's Vorlesungen iiber die Algebra der Logik," Archiv fur Syst: Phil., vol. I. p. 444

(1895).
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*51'222. I- : x~ e a . = . a — I'x = a

#51*23. \- : i*x = i'y . = . y e i'x . = . x e i'y . = . x *= y

#51-4. h:3!o.aCi'iK.E.a = fc'#

/.& an existent class contained in a unit class must be identical with the

unit class. From this proposition it will follow that is the only cardinal

which is less than 1.

#51*51. f- : a = t'x . = . x = i'a . = . x i a

For classes, t'a has the same uses that (ix) (<f>x) has for functions; "iV
means "the only member of a." We have

*51-59. h : ^ fa (<f>z)} . = . -^ (ix) (<j>x)

#5101. i = I Df

#51*1. H : oxx . = . a= $ (y = x)

Dem.

b . #4*2 . (#51-01) . D I- : aix . = . alx

.

[#321] = .a = §(ylx).

[#501] =.a = ^(2/ = «):Dl-.Prop

#51*11. \-.i'x = §(y = x) [#30*3 . #51-1]

#5112. h . E ! i'x [#5111 . *1421]

#5113. h:o = t'a?. = .o = P(y = a?) [*2057-2 .#51*11]

#51 131.' V : ai# . = . a = t'# [#51-113]

#5114. h :. a = t^ . = :\y e a .
=
y . y = x [#5113 . *20'33]

#51141. \-:.a=i'x.= :'&la:y€a.Dy.y = x:=:x€a:yea.Dy.y = x

[#51-14. #14-122]

#5115. H2/ei<#. = .2/ = # [#51-11 . #2033]

#5116. I- . a; e i'x [#51-15 . #13-15]

#51161. Y.Rli'x [#51-16 . #10-24]

#5117. V.<l<i = Y
Dem.

h . # 51-1 . #20-2 . D h . {Q(y = x)} i x

.

[#10-24] D V . (ga) . aix

.

[#33131] Db.xed'i.

[#1011] Dh.(x).x€<I'i.

[*24-i4] d i- . an = v

The above proposition is used in the theory of selections (#83-71).
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*51"2. b : x e a . = . i'x C a

Dem.
h . #13191 . D H :. x e « . = : y — x . Dy . y e a :

[#5115] = :yei'x.Dy ..yea:

[*22-l] = :t'#Ca:.Dr.Prop

The above proposition shows how to replace membership of a class by
inclusion in a class; thus for example it gives:

Socrates is a man . = . the class of terms identical with Socrates is included

in the class of men.

Before Peano and Frege, the relation of membership (e) was regarded as

merely a particular case of the relation of inclusion (C). For this reason, the

traditional formal logic treated such propositions as "Socrates is a man" as

instances of the universal affirmative A, "All 8 is P," which is what we
express by "aC/3." This involved a confusion of fundamentally different

kinds of propositions, which greatly hindered the development and usefulness

of symbolic logic. But by means of the above proposition (#51*2), we can

always obtain a proposition stating an inclusion (namely "('«C«") which is

equivalent to a given proposition stating membership of a class (namely

"xea").

#51*21. \-.x~ea — i'x

Dem.

h . #22*33 -35 .Db: xea — I'x.-.xea. x~e i'x

.

[#3-27] D.x~ei'x (1)

h . (1) . Transp . *5116 . D h . Prop

$51*211-. h : a;~e« . = . i'x r\ « = A
Dem.

H . #24*39 . D h :. i'x r\ a = A . = : y e i'x . Dy . y r>j e a :

[#5115] = :y = x .Dy.yr^ea:

[#13191] =:^~ea:.DI-.Prop

#51-22. \-:ar\i (x = A.CLui'x~/3. = .xej3.ci=/3-i'x

Dem.
\- i #24-47 . D
I- : a r» i'x = A . a vi'x = /3 . = . i'x C /3 . a = ft

— i'x .

[#51-2] =.xe/3.a = /3-i'x:D\-.Froi>

#51-221. h : x e a . = . (a - i
lx) u i'x — a

Dem.
V . #51-2 . D h : x e a . = . i 'x C a

.

[*22-G2] =.i'xvci=a.

[#22 91] = . (a - i'x) w^ = «:Dh. Prop
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#51222. b:x^ € a.=.a-L lx = a [*51'211 .*24313]

#51*23. I- : i'x = i'y . = . y e i'x . = . x e i'y . = . x — y

Dem.
b . #20*31 . #51*15 . D
I- :. i'x = i

l
y . = : z = x .

=
z . z = y :

[#13183] =:x = y. (1)

[#51*15] = :xei'y: (2)

[(1).*1316] = :yei'x (3)

h
. (1) . (2) . (3) . D h . Prop

#51*231. V ;i
lxr\i i

y = &. = .x^y

Dem.
V . #24-311 . D h :. i'x c\ i'y = A . = : i'x C - i'y :

[#51*15] =:z = x.Oz .z^y:

[#13*191] = :x$y:. D H . Prop

#51*232. Yi.zf-{i<x\jyy). = '.z = x.v .z = y [#22*34 . #51-15]

This proposition states that a member of i'x u i'y must be either x or y,

and vice versa, t.e. that i>'x u i'y is the class whose only members are x and 'y.

#51*233. \-::a = i'xyji'y.O:.(z):.zea. = :z = x.v.z = y
[#51*232 . #10*11 . #20*18]

#51 234. h::a = i
ix\Ji iy.D:.zea. Dz . <f>z : = . cf>x . <f>y

Dem.

h . #51*233 .Dh ::.B.^ .0 :: z ea .Dz . <j>z : = :. z = x .v . z = y :DZ . <j>z :.

[#4-77] = :.(z):. z = x ."D .<f>z : z = y . D. <f>z:.

[#1022] =:.z = x.Dz .(j)z:z = y.Dz .(f)z:.

[#13191] = :.<^.<£y::.:>l-.Prop

#51*235. h ::a = i'x\Ji'y.D :. (qz). z e a . <f>z . = :<)>x. v.#y

Dem.

h. #51*233.3

h :: Hp . D :. (g.z) . z e a . $z . = : (qz) : z = x . v . z = y : §z :

[#4-4] = : (qz) :z = x. <f>z. v.z = y.<f>z:

[#10*42] =:(^z).z = x.^>z.v.('^z).z.= y.<f>z:

[#13*195] =:^a?.v.0y::DI-.Prop

#51*236. hz.zei'xv @.= :z = x.v.ze/3 [#2234 . #51*15]

*51'237. H ::a= i'xv /3 . D :.(*):.*€a. = :z = x. v . .ze/3

[#51-236 . #10-11 . #2018]

#51*238. I- :: a = i'x v ft . D :. z e a . D2 . $z : = : <£# : z e B . Dz . <f>z

Dem.

h. #51*237 . D h ::. Hp . D :: zea. Z>z .$z: = :.z = x. v .zefi: Dz .<f>z:.

[#4
-

77] = :.(z):.z — x . D . (pzzzefi. D.<f>z:.

[#10-22] = :. z = x . Dz . <J>z : z e /3 . Dz . <\>z :.

[#13-191] =:.<f>x:zep.3z .<f>z::.Dh. Prop
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*51-239. h::o=t^w/3.D:. (32) . z e a . <f>z . = : <f>x . v . (gs) .ze/3.<f>z

Dem.

h. #51-237.3

H : : Hp . D : . (gz) . z e a . <£* . = : (rz) :z = x . v .z e/3 : <f>z

:

[*4
'4] s : (a*) :z=x.<f>z.v .ze@.<l>z:

[#10-42] =:(a^).^ = «.^.v.ia^).0eyS.^:
[*13'195] = :<£#. v. (a*).* e /3.<^ -Oh. Prop

#51*24. h:. L'yCi'xv fi . = ;y = x.v.ye/3
Dem.

I-.*51-236.D

I- :: t*y C t<# w /3 . = :. z e i
l
y . D* : z = x . v . z e £ :.

05115] =:.z = y.Dz :z = x.v.zefi:.

[#13*191] =:.y = x.v.yej3::D\-.Prop

#51*25. l-:aCt^u/9.a;~ea.D.aC/3 [#51*211 . #2449]

#51*3. h:yea.y^«. = .yea-t^ [#51*15 .#22*33*35]

#51*31. t~
: ftl a r\ i

(x . = . i'x C a . = . a r\ i'x = i'x . = . x e a

Dem.
V . #2233 . #5115 .DhiQlanii'x .==. (gy) .yea.y = x.

[#13*195] =.*ea. (1)

[*51'2] =.^Ca. (2)

[#22*621] = .i'x = i'xrMx (3)

r.(l).(2).(3).DKProp

#51*34. h:««o.E.-aC-( f
«; [#51*2 . #22*81]

*5135. r:se~ea.s.t-#C-a [#51*2 . #22-3,5]

#51-36. h:a;~ea. = .«C-(-a! [#51-35 .#22-811]

#51*36 is frequently used.

#51-37. V.a = x (t'x C a) [#51-2 . #20-33]

*514. h:g!a.«Ct-a!. = .a = t-«

Dem.

h . #24*5 . #51*15 . D h :. a ! a . aOV. = : (gy) .y ea:y ea.Dy .y = x :

[#14'122] = :y ea. =y .y = x:

[*51-ll.*20-33] =:a=i^:.Dh.Prop
*51401. I- :.aCt^. = :a = A. v.a= i'x

Dem.
h . #51*4 . #5*6 . 3h:.aCi'x.D:cL = A.v .a = i'x (1)

h . #2412 . #22-42 . D h :. a = A . v . a = i
lx : Z> . a C t"# (2)

l-.(l).(2).DI-.Prop

This proposition shows that unit classes are the smallest existent classes.
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#51*41. h : i'x «-» i'y = i'x\j l
1z ,=.y=z

Bern.

Y . #202 . #1313 . D I- : y = z . D . i'x u i'y = i'x u t<* (1)

I- . #22-58 . D h :. i'x v i'y — i'x «-• i'z . D : i'y C t'# «-» i's . t'-z G fc'a? w i'y :

[#5116-232] "D:y = x.v.y=z:z = x.v.z = y:

[*1316.*4-41] "D:y — x.z = x.\f.y = z:

[#13*172.*2*621] D:y = z (2)

I- . (1) . (2) . D r . Prop

The two following propositions are lemmas for #51 43.

#51-42. h :. i
lx u i'y = t'z u t'w .D:x = z.y = w.v.x = w.y — z

Dem.

h . #51232 . D
H :: t'# v i'y — i

lzv i
lw .= :.a = x .v ,a = y:=a ia = z .v .a = w :.

[#101] D:.x = x.v.x = y: = ix = z.v.x = w:.

[#13-15] D:.x= z.v.x = w (1)

h . #202 . #1313 .Db : l'xv i'y= i
lz u i*w . x — z . D . t'x \j i'y = i

lx w i
lw

.

[#51-41] D.y = w (2)

Similarly H : i
lx \j i'y = t'.z u t

f
w; .x = w .D .y = z (3)

K (1) . (2) . (3) . D I- . Prop

#51*421. h :. x = s . y = w . v . x = to . y = s : D . i
ex *-> t'y = i

lz w t'w [#51'41]

*51'43. h :. t'# u i'i/ = t'^ u t'«/ . = :x = z.y = w.v.x = tu.y = z

[#51-42-421]

The following propositions are concerned with i, i.e. with the relation of

the only member of a unit class to that class. If a is a unit class, i'a is its

only member, (ix) (<f>x) and i'z ((f>z) are equal whenever either exists, and

any proposition about the one is equivalent to the same proposition about the

other.

#51 '51. I- : a= i'x . = . x= t'a. = . xia

Dem.

h. #51-131. #31-11. D\-:a=i'x. = .x
y

t a (1)

h . (1) . D h : x i a . y t a . D . a = i'x . a = i'y .

[*51-23.*20-57-2] D.x = y (2)

I- .(2). Exp. #10-11 .#471 .Dh:.xLa. = :xia:yia.Dy .x = y:

[#30-31] = : x = T'a (3)

1- . (1) . (3) . D h . Prop
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#51-511. I- . iH'x = x

PROLEGOMENA TO CARDINAL ARITHMETIC

[#51-51— .*20-2~|

[PART II

x
#51-51 — ,*14-2M8#51-52. h : E ! I'a . = . a = c'l'a

#51-53. h:E!t'(a. = .i'aea [#51'5216 . *14'2ri8]

#51-54. h : E ! T'a . = . (gar) . a = i'x [#51-51 . #14-204]

#51-55. h:EU (a. = .El(ix)(xea)

Dem.

h . *51'54-14 .Dh:.E!('a. = : (g#) : y e a .
=
y . y = x :

[#14-11] = : E ! (ix) (x e a) :. D I- . Prop

#51-56. h : b = ?$ (<£?/) . = . £ (<£y) = i'b . = . 6 = (ix) (<f>x)

Dem.

h . #51:51 . D h :. b = t<y (<&/) . = : p (<&/) = i'& : (1)

[*20-15.*51-ll] =:cj>y.=y .y^b:

[#14-202] = : b = (ix) (<j>x) (2)

1- . (1) . (2) . D h . Prop

#51-57. I- : E ! ^y (<f>y) . = . t'y (<f>y)
= (ix) (<f>x) . = . E ! (ix) (<j>x)

Dem.

h . #14-204 . #51-56 . D 1- : E ! 7'0 (<&/) . s . E ! O) (<£#) (1)

H . #14 205 . D h : (ix) (<f>x) = i<# (£y) . = .(g6) . 6 = (ix) (<j>x) . b = Zp (<f>y) .

[*51-56.*4-7l] = .(>&b).b = (ix)(<f>x)

.

[#14-20413] = . E ! (ix) (<f>x) (2)

h . (1) . (2) . D K Prop

#51-58. \-:En<a. = .

y

i'a = (ix)(x€a) [#51-57 . #203 .#14272]

#51-59. I- : yjr fa (<j>z)) . = .yjr (ix) (<f>x) [#51-56 . #14*205]



#52. THE CARDINAL NUMBER 1

Summary of #52.

In this number, we introduce the cardinal number 1, defined as the class

of all unit classes. The fact that 1 so defined is a cardinal number is not

relevant at present, and cannot of course be proved until "cardinal number''

has been defined. For the present, therefore, 1 is to be regarded simply as

the class of all unit classes, unit classes being such classes as are of the form

i'x for some x.

Like A and V, 1 is ambiguous as to type; it means "all unit classes of

the type in question." The symbol "1 (a)," where a is a type, will mean "all

unit classes whose sole members belong to the type a" (cf. #65). Thus e.g.

"£ e 1 (Indiv)" will mean "'£ is a class consisting of one individual," if "Indiv"

stands for the class of individuals.

The properties of 1 to be proved in the present number are what we may

call logical as opposed to arithmetical properties, i.e. they are not concerned

with the arithmetical operations (addition, etc.) which can be performed with

1, but with the relations of 1 to unit classes. The arithmetical properties of

1 will be considered later, in Part III.

The propositions of the present number which are most used are the

following:

#5216. h :.ae 1 . = : 3 ! a : x,y ea. Dx>y . x = y

I.e. a is a unit class if, and only if, it is not null, and all its members are

identical.

#5222. f- . i'x e 1

#524. f- :.ael v i'A . = :x, yea. "5
x>y .x= y

We shall define as t'A. Thus the above proposition states that a class

has one member or none when, and only when, all its members are identical.

#52-41. h : 3 ! a . a»->6 1 . = . fax, y).x,yea.x^y

This proposition is obtainable from #52-4 by transposition, i.e. by negating

each side- of the equivalence.

#52-46. h:.a,/3el.D:aC/3. = .a = /3.= .3!(an/3)

I.e. two unit classes are identical when, and only when, one is contained

in the other, and when and only when they have a common part.

#52-01. 1 = a {fax) . a = i'x) Df

#521. h:ael. = .fax).a = i'x [#20-3 . (#52-01)]
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#5211. h:.a€l. = :(^w):.yea.=y.y = x [#521 . #5114]

#5212. h:2(<^)el. = .E !(?*)(<£«)

Dem.
h . #5211 . D I- :. %(4>z)e 1 . = : (g«) :yez(<f>z) .=v .y = x:

[*20'3] s:(3«): <f>y.=y .y = x:

[#1411] = : E ! (7*) (<£#) :. D h . Prop

#5213. Kl = D'i

Bern.

h . #51131 . D h : a = t'x . = . uix :

[10-11-281] D I- : (ga?) . a = i'x . = . (-#r) . aix :

[#521] D h : a e 1 . = . (ftx) . aix

[#3313] = . a e ~D'i : D H . Prop

#5214. r- . 1 = t"V [#5213 . #37-28]

#5215. h : a e 1 . = . E ! t'a [*51'54 . #521]

#5216. \-:.ael. = :Rla:x,y€a.'Dx>y .x = y [#52*15 . #51-55 . #14*203]

*5217. b:ael. = .~i'a = {ix)(xea) [#51-58. #52-15]

#52171. h : a e 1 . = . E I (ix) (x e a) [#51 -55 . #52-15]

#52172. h:ael. = .i-T'a = a [#51-52. #5215]

#52173. h:ael.= .r-aea [#5153 .#5215]

#5218. bz.ael .= :(Qx):xea:y€Ci.Dy.y = x

Dem.

h .#51-141 . D I- :.(g#).a= i'x . = : (a#):a-ea:yea . Dy .y — x (1)

h . (1) . #52-1 . D I- . Prop

#52181. H:.a~el . = :a?6a.Da..(33/).2/ea.y4: « [#5218 .#1-0-51]

#52-2. h.lCCls

Bern.

\~
. #52-1 . D h : a e 1 . D . (gar) ,a = l'x.

[#51-11] D.(aa?).o = $(*•=*).

[#20-54] D.(a^<£).2(<£!£) = 2(* = #)-« = 2(<M*)-

[#10-5] D.(a<£).a = £(£!*).

[*20'4] D.aeClsOI-.Prop

#5221. h.A^el
Dem.

K*5216.Dh:ael.Da .g!a:

[#2463] Dh:A~el

#5222. h.t'ael [#51-12 . #14-28 . #10-24 . #52-1]
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#5223. V au.ai-i
Bern.

h . *52-22

.

#10-24 . Dh (a*) . l
lx e 1 .

[*20'54] Dh (a*, ot) . a = fc'# ael.

[*10'5] Dh (a«) .ael (1)

V . *52'21 . #2235 . Dh Ae- 1.

[*10'24] Dh • (a«)- ae-1 (2)

K.(l).(2) • Dh . Prop

#5224. h 1 + A n Cls . 1 4= V n Cls [*52-23 . #24-54 . #2417 Transp]

#523. h . i"a C 1

Bern.
1- . #5222 . #2-02 . D h : y e a . D . i

l

y si :

[#5M2.*1011.*37-61] D h . t"a CI

*5231. h : k C 1 . = . (got) . k = i"a

Dem.

h

V . *52\L4 . D f- : k C 1 . = . k C t"V .

[*37-66.*51-12] =.(aa).aCV.« = i"a.

[#24-11] = . (ga) . « = t"a : D r . Prop

aelw t'A . = :x,yea.. Dx>y -x — y

(1)

(2)

#52-4.

Dem.

h . #52-16 . #24-54 . D

h :. a e. 1 . = : a
=f=
A : x, y e a . DX)J/ . x = y:.

[#4*37] Dh::ael.v.a = A: = :.a = A:.v:.a=i=A:a?,yea-. Dx>y .x = y:.

[#5*63] = :. a = A : v :x, yea, DXtV .x = y
h . #24*51 . #10-53 . #1162 . D I- :. a = A . D : x, y e a . Dx, y . x — y
V . (1) '. (2) . #4-72 . Dh::oL€l.v.a = A: = :.x,yea. 3x>y .x = y(S)

r- . (3) . #51-236 . DKProp

This proposition is frequently useful. We shall define the number as

t'A ; thus the above proposition states that a class has one member or none

when, and only when, all its members are identical. It will be seen that

x, y e a .
"5
x>y . x = y does not imply g ! a, and therefore allows the possibility of

a having no members.

#52'41. I- : g ! a . a~ e 1 . = . (g#, y).x,yea.x^y

Dem.

h . #24-54 .Dh:.g!a.o~el.=
[#4-56] =

[#51-236] =

[#52 4.Transp] =

[#11-52] =

a 4= A . a~e 1 :

~{ael.v.a = A}:

~(ael u t'A):

~{x,yea.Dx, y .x = y]

(3^> y) ' x, y e a . x =^ y : . "D h . Prop
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#5242. h:.ael.:>:g!an/3. = .an/3el

Bern.

h.*5131. Dh:.a!i'a?n£. = .t'a?n/8 = i'a?:.

[*20'53] Dh:.a = t'#.D:g!an£.= .an/3=i'#:.

[*10-11*28] D h :. (gar) . a = t'# . D : (ga?) :a!an y
g. = .an

y
g = (^:

[#10-37] D:a!ort
/
8.D.(aa?).an/8 = t'ar (1)

K(1).*52\L .Dh:.ael.D: a !an/3.D.an/3el (2)

h. #52-16. Dh:an/3el.D.a!an/3 (3)

h.(2).(3). I) K Prop

#5243. h:ael.a!an/3.= .a€l.a«/Sel [#62'42 . *5'32]

#52-44. h:.«el.D:a!any8. = .aC/8. = .an/9 = a

Dew.

H. #51-31. Dha!i'«nj8. = .i'*Ci9:

[*13-13.Exp] Dh:.«=t'*.3:g!oftj8.= .oCj8:.

[#10-11-23] Dh:. fax) .a = ^.D:g!an/3. = .aC/3:.

[#52-1] Dh:. ael.D:g!an£.= .aC/3 (1)

h.(l).#22621.Dh.Prop

#52-45. h::a,y8el.D:.aC/3u7. = :a = /9.v.aC7
Dem.

K#51-236^^.D
.Z, #, /3

\- :. x e l'y u ry .= ; x = y .v . oc €<y :.

[#51-2-23] D h :. i
lx C t'y w 7 . = : t'cc = i

l
y . v . t<# C y :.

[#13-21] Dh:a = ^./3 = t'y.D:.aC
i
8u 7 . = :« = ^.v.aC7::

[#11-11-35] DH::(aaj,2/).a=i^.y8=i <y.D:.aC^w 7.=:a= y
8.v.aC7 (1)

K (1). #521. Dr. Prop

#52-46. h:.a,/3el.D:aC/3. = .a = /3. = .g!(an/3)

Dem.

h . #51-2-23 . Z> f- : i<x C i'y . = . i'x = i
f

y (1)

h.(l). #13-21. DI-:.a=t'a>.£ = i'y.D:aC/8.=5.a = £ (2)

b . (2) . #11-11-35 . #52-1 .DI-:.a,£el.D:aC£. = .a=»/S (3)

I- . (3) . #52-44 . D K Prop

#526. I- :. a e 1 . D : # e a . = . i'x — a . = . # = t'a

Dem.
H. #51-23. Dl-:a?€t'y. = .t'aj = i'y:

[*13-13.Exp] D I- :. a = t'y . D : a? e a . = . i'x = a :.

[*1011-23.#521]D(-:.ael. D : xe a . = . i'x = a . (1)

[#51-51] = .#=T'a (2)

h.(l).(2).DKProp
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#52*601. I- :: a e 1 . D :.
<f>

(i'a) . = : x e a . Dx . <j>x : = : (g#) .xea.<j>x

Dem.

b . #5215 . D h :. Hp . D : E ! T'a

:

(1)

[*30 4] D : x i a . = . a? = i'a

.

[*52-6] = .xea (2)

h.(l).*30-33.D

h :: Hp . D :. </> (t'a) . = : x

i

a . D^ . <f>x : = : fax) ,xia.<j>x (3)

I- . (2) . (3) . D h . Prop

#52*602. H :. 2 (^) e 1 . D : >|r (7#) (<f>x) . = . <f>x"Dx yjrx . = . fax) . <f>x . yfrx

[#5212 . #14-26]

#52-61. h^ael.Dr^ae^.s.aC/S.^.glCan/S) [#52-601 ^?
L Vx -

#5262. h:,«,£el.D :«=£. = . *'«=*'£

V . #52*601 . D I- :: Hp . D :. 7'a= ?£ . = : xea . Dz .x = ~i<$

:

[#52 -

6] = :x€a.Dx .X€/3 :

[#52*46] = : a = : : D I- . Prop

#5263. h:a,/Sel.o + /9.D.an/8 = A [*52'46 . Transp]

#52*64. h:ael.D.ar»/3elut«A

Dem.
h . #52*43 . DhrHp-glan^.D-anySel:
[*5*6.*24*54] D h :. Hp . D : a n /3 =A . v .'a n # e 1 :

[#51-236] D : a n £ e 1 u t'A :. D h . Prop

#527. h:./3-a6l.aCf.fC/3.D:^=a.v.| = ^
Dem.

K #22-41

.

DH:Hp.fCa.D.| = a (1)

K #24*55. Dh:~(fCa).D.a!^-a (2)

K #22-48. Dh:Hp. D.f-aC/S-a (3)

K(2).(3). Dh:Hp.~(£Ca).I>.a!£-a.£- a C/3-a (4)

I- . #52-1

.

D I- : Hp . D . fax) .0-a = i*x (5)

K(4).(5).*51-4.Dr:Hp.~(fCa).:).f-a=/3-a.
[#24-411] 3-f = £ (6)

+ .(l).(6).Dh.Prop



*53. MISCELLANEOUS PROPOSITIONS
INVOLVING UNIT CLASSES

Summary o/#53.

The propositions to be given in this number are mostly such as would

have come more naturally at an earlier stage, but could not be given sooner

because they involved unit classes. It is to be observed that i'x \j I'y is the

class consisting of the members x and y, while i'x f i'y is the relation which

holds only between x and y. If a and (3 are classes, t'a u t'/3 is a class of

classes, its members being a and #. If R and S are relations, i'R 7 l'S is a

relation of relations; and so on.

The present number begins by connecting products and sums p'te, s'k,

p'X, s'\, in cases where the members of k or A. are specified, with the products

or sums a n /3, a u /3. R n 8, R vy S. We have

*53'01. \- • p'i'a = a

#631. K|)'(i'«w^)=oft
j
8

#5314. H . p'(/c v 1*0) = p'k r\ a

with similar propositions for s, p and s.

We have next a set of propositions on sums and products of classes of unit

classes. The most important of these is

#53 22. h . s'i"a = a

We have next a proposition showing that the sum of k is null when, and

only when, k is either null or has the null-class for its only member, i.e.

#5324. 1- :. s'k = A . = : « = A n Cis . v . k = t'A

(Here we write "A r\ Cls," to show that the "A" in question is of the next

type above that of the other two A's.)

We have next various propositions on the relations of R lx and R'x and

R"a in various cases, first for a general relation R, and then for the particular

relation s defined in *4<0. Three of these propositions are very frequently

used, namely:

#533. I- : E ! R'x . = . R'x e 1

#53 301. h . R"i'x = R'x —

>

#5331. h : E ! R'x . D . R"i'x = t'R'x = R'x

The remaining propositions of this number are of less importance, and are

seldom referred to.
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#5301. \-.p'i tz = a

Dem.
h . #401 . D I- :. x ep'i'a . = : fi e t'a . Dp . x e £ :

[*51-15] =:j3 = a.D
fi
.xe]3:

[#13191] = :xea:. D h . Prop

#5302. h.sV«=a
Dem.

h . #4011 . D h : x e s't'a . = . (ftp) . £ e i'o. . x e /3 .

[*51'15] =.(a/3).£ = a.#e/3.

[#13*195] = . x e a : D h . Prop

#6303. H . p'i'R = R [Proof as in #5301]

#5304. h . s'l'R - 22 [Proof as in *53'02]

#631. Kp'(t<«ut'
i8) = fln

J
8

I- . #4018 . D ' h . p.'(t'a w t<£) = j/t'a n p'i<£

[#53-01] =any8.Dh.Prop
This proposition can be extended to t'a v t'yg u I'y, etc. It shows the

connection (for finite classes of classes) between the product p
l
ic and the

product of the members a r\ (3 r\ 7 n ....

#5311. h.s'(i'aot</3) = a v£
Dem.

h . #40171 . D H . s'0'a u t<£) = sVa u s't'0

[#5302] =au/3.Dh.Prop
Similar remarks apply to this proposition as to #53*1.

#5312. h . p'{i'R \Ji'S) =RhS [#41-18 . #5303]

This proposition shows the connection between the product p*/c for a class

k consisting of two relations R and 8, and the product Rf\S. The proposition

can be extended to the product of any given finite class of relations.

#6313. \-.s'(i'Rvji'S) =RvS [#41-171 .#5304]

Similar remarks apply to this proposition as to #53'12.

#6314. h . p'{ic v 1*0) =p*K na
Dem.

F- . #40-18 . D h . p'(K v 1'a) =p'K n p'l'a

[#5301] =p<K n a

#5315. l-.*'(Kui'«) =^ua [Proof as in #5314]

#5316. h . p'(\ v i'R) =p'\nR [Proof as in #5314]

#5317. f . s'(\ v i'R) = s'\ c/ R [Proof as in #5314]

The above proposition and the next are both used in connection with
mathematical induction (#91*55 and #97'46 respectively).

R&W I 23
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#5318. h.s<(a-t<A) = s'a

Dem.
h . #51-221 . D H : A e a . D . (a - t'A) u t'A = a

.

[#5315] D.s'(a-i'A)vA = s'a.

[#24-24] 3 . s'(a - i
lA) = s'a (1)

h . *51 222 . D h : A~ea. D. a-f/A=a.

[#30-37] D.*'(a-i'A) = *'a (2)

h.(l).(2).D>.Prop

*53181. I" . s'(\ - t'A) = s'X [Proof as in #53-18]

#532. I- : /eel .D. t
iK=p iK = s

tK

This proposition requires, for significance, that k should be a class of

classes. It is used in #88*47, in the number on the existence of selections

and the multiplicative axiom.

Dem.

V . #52-601 . D H :: Hp . D :. # e t '* : = : a e * . D tt . «e«: = : (go) . a e /c . x e a (1)

h . (1) . #40Ml

.

D h . Prop

*5321. h : X e 1 . D . T'X = jp'\ = s'\ [Similar proof]

This proposition requires, for significance, that X should be a class of

relations.

#5322. h . s'i"a = a

Dem.
H . #4011 . D h : x e s'l"a . = . (37) . 7 e i"a .#67.

[*37-64.*5112] = . (33/) .yea.xei'y.

[*5115] = .(^y).yea.x = y.

[#13-195] =.^ea:Dh.Prop

#53221. \-.i"(i'xyJL'y) = i
ti'xvL'i'y

Dem.

K #371 . D f- :. a e t"(i'# u i'y) . = : (g^) . z e (t'x v i
l
y) .aiz:

[#51131] = : (a*) • z e (t'« w t'y) . a = i'z :

[*51'235] = :a = i'x.v.a=i'y:

[#51-232] =:ae (t'l'x u tVt/) :. D h . Prop

#53 222. \-:k = i"a . D . a = fc
"*

Dem.

h . #13-12 . #202 . D r : Hp . D . t "« = t "i"a

[#51-511.*14-21.*37-67] = £ {(32/) .yeci.x^i H
l

y\

[#51-511] = & {(32/) V € a .
x = y]

[#13195] = a:DKProp
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*53'23. h:/eCl.D.s'« = t"K

Dem.
b . *52-31 . D b : Hp . = . (ga) . « = t"a

b . *53-22 . D b : k = i"a . D . s'/c = a

(1)

(2)j>53'222] = i"*

r- . (1) . (2) . *10-ll-23 . D f- . Prop

$53*231. h :. # e a . D,,, . # = ;?/ : = : a = A . v . a = t'y

Dem.
b . *51141 . D I- :. g ! a : x e a . Dx . x = t/ : = : a = t'y (1)

I- . *10'53 . D b :.~g I a . D : x € a . Dx . x = y :.

[*4'71] D b :.~g !a:#ea. D^ . # = ?/: = .~[>{ ! a .

[*24-51] = .a=A (2)

b . (1) . (2) . *4-42'39 . D h . Prop

*53 24. h :. s'k = A . = : k = A n Cls . v . * = t'A

Dem.
b . *2415 . *4011 . D
b :.s'k = A . = : (x) :~{(aa) . ae k . xea] :

[#10-51] =:(«,a):«e«.D.a~eK:
[*112.*10-23] = : (g#) .#ea.Da .a~e«:
[*24-54] =:a4=A.Da .a~e«:
[Transp] = : a. e k . Da . a = A :

[*53231] = : * = A n Cls . v . K = t'A :. D b . Prop

In the enunciation and the last line of the proof of the above proposition,

we write "k — A n Cls" rather than "k = A," because this A must be of the type

next above that of the A in "k = t'A."

The following proposition is used in the theory of selections (#83 -

731).

*53 25. I- :. s'k n s'\ = A . D : k r\ A. = A n Cls . v . k n \ = t'A

Dem.

b . *40 181 . D I- :. Hp . D : s'(k n X) = A :

[*53 24] D : k r> \ = A n Cls . v . k n \ = t'A :. D b . Prop

*53 3. H:E!i2^. = . JR^el
Dem.

(%b):yRx.=y.y = b:b

.

*302 . D I- :. E ! R (x .
=

[*32-18.*5115] ee

[*2031] =

[*52-l] =

fab)iyeR'x.=y .yel'b

(Rb).R'x = i'b:

i2^el:.Dh.Prop

The above proposition is very frequently used.

23—2
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*53301. \-.R«i ix = R'x

Dem.
V . #371 . #5115 . D r : y e R'H'x . = . (g«) .z = as. yRz .

[#13-195] = .yRx.

[#32-18] = . y eR'x : D h . Prop

#53302. h.R"(i'xvi'y)=~R'xvR'y [#37-22 .#53301]

The above proposition is used in the cardinal theory of exponentiation

(#116-71).

#53-31. h: El R'x.D.R"i'x = t'R'x = R'x

The above proposition is one of which the subsequent use is frequent.

Dem.
h . #51-11 . #1418 . D h : Hp . D . i'R'x = §(y = R (x)

[#30-4] =§(yRx)

[#32-13] = R'x (1)

h . (1) . #53-301 . D r- . Prop

#53-32. I- : E ! E'a: . E ! R'y . D . R"(i'x w I'y) = i'R'x u t'iZ'y

r . #37-22 . D H . E"(t'a: v, t'</) = U"t'a? u R"i'y (1)

h. (1). #5331. Dr. Prop

#53-33. h . s"l'k = tV/e #53-31

#5334. h . s"{i'k u i'X) = t's'/c v

i

VX #53-32

i2

ij

#53-35. h . a'*"(i'« w t'X) = s'* « s'X = s'(k \j \)

Dem.
r- . #53-34 . D I- . sV'(i'« w i'X) = s'(t's'fc vj l's'X)

[#53-11] =«'«us'X

[#40-171] = s'(k u X) . D I- . Prop

The above proposition may also be proved as folloAVs:

h . #42-1 . D h . s's"(i'ic v t'X) = *V(t'«c v i'*.)

[#53-11] = s<O w >-)

[#40-171] =*'«u*'\.Dh. Prop
—- —

»

— ^ —

>

#53-4. H : a? = iZ'y . = . R'y e 1 . a; e J2'y . = . t'a; = fi'y . = . x = t'B'y

h . #14-21 . #4-71 . D I- : a; = R'y . = , E ! R'y . a? = R'y .

[*30-4.*5-32] = . E! R'y. xRy

.

[*53-3.*32-18] = . R'y e 1 . x e R'y .

[*52-6.#532] = . R'y el.i'x = R'y .

(1)



SECTION A] MISCELLANEOUS PROPOSITIONS INVOLVING UNIT CLASSES 357

—
[*52-22] = . v'x = R'y . (2)

[*51-51] =.x=SR'y (3)

I- . (1) . (2) . (3) .. Dr. Prop

*53*5. I- : a ! a . = . a e Cls - fc'A

Dem.
h . *20-41 . D h : a ! z (<j>z) . = .z (<f>z) e Cls . a ! 2 (<^) .

[*24-54] = . z (<j>z) eCls.z (<f>z) + A .

[*51-3] =. 2 (<j>z) e Cls -i'A:DK Prop

In the above proof, as usually where "Cls" or other type-symbols occur,

it is necessary to abandon the notation by Greek letters and revert to the

explicit notation.

*53 51. I- : a ! R . = . R e Rel - i'A [Proof as in *53"5]

*53 52. \- :aefc .Rla. = .a€ tc- i'A

Dem.
h . *2454 . D r : a e k . a ! a . = . a e k . a 4= A .

[*51'3] = .ae«-i'A: DH . Prop

*53 53. V-.ReX.&XR.^.RizX-i'h [Proof as in *53'52]

The following propositions are inserted because of their connection with

the definition of a -* /3 in *70. R"G.'R and iJ"V are both important classes.

*536. \-:R = A.Rla.'}.~R"a=i iA.R"a = i'A

Dem.

h . *33*1 5241 . *2413 . D r : Hp . D . R'x = A (1)

h . (1) . *37-7 . D r : Hp . D . #"a = £ {(gar) . a? e a . £ = A}

[*10'35] = /§ {g ! a . £ = A}

[*4'73] =i§(/3 = A)

[*51-11] = t'A (2)

Similarly r : Hp . D .#"« = t'A (3)

h . (2) . (3) . D h . Prop

*53'601. h : a ! a . a n a'.R = A . D . jR"a= t'A

h . *3341 . D h : Hp . x e a . D . i2'a>
= A (1)

h . (1) . *37-7 . D h : Hp . D . R"a = § {(ga?) . a? e a . /3 = A}

[*10-35] = /§ (a ! « . £ = A}

[*4-73.*5111] = l'A : D h . Prop

*53 602. h:g!a.an D<12 = A . D . i2"a = t'A [Proof as in *53601]

*53 603. \-:'&l-a<R.D.ll"(-a'R) = i'A [*24'21 . #53-601]
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#53 604. r : a ! - D'R . D . R"(- D'R) = i'A [#2421 . #53-602]

#53 61. r : CL'R C a . d'R =f a . D . ~R"a = #"(I<# u i'A

Dew.

h.#22'92. D\-:Hp.D.a = a<Rvj(a-(I'R) (1)

K#24-6. . DHHp.D.gla-CKR.
[#24-21.#53-601] D.~R"(a-d'R) = t'A (2)

K (1) . #3722 . D I- : Hp. D . R"<i=~R''d'R v R"{a-d'R)

[(2)] = £"(KR ui'A-.Dl-. Prop

#53-611. h : D'i2 C a . D'R + a . D . S"a = E"D'ir: u t<A [Proof as in #53-61]

#53612. h-.d'R^V .D.R"V = R'"a (RuL'A [#53-61 .#2411]

#53 613. r : D'R
=J=
V . D . S~"V = S"D<£ u t'A [#53'611 . #2411]

#53-614. \-.ll"d'R = R"V-i'A
Dem.

V . #53-612 . #22-68 . #24*21 . D

V : d'R 4= V . D . J?"V - ('A = Jfi?<<Pis: - t'A (1)

f- . #22-481 . D f- : <!<£ = V . D . £"V - i'A = R"d(R - i'A (2)

h . #37-772 . #51-36 . #22-621 . D I- . R"d'R - i'A = R"d'R (3)

h
. (1) . (2) . (3) . D V . Prop

#53-615. I- . R"D'R = R"V - i'A [Proof as in *53'614]

The two following propositions are used in #70"12.

#53 62. h : Riia iR C y . = . ll"Y C y u i<

A

Dem.

\- . #53-614 .Dh 2S"(I«fl C 7 . = . R"V - i'A C 7 .

[#24-43] = . Rt(V C 7 v i'A : D h . Prop

#53621. h : £"D'i2 C 7 . = . i£"V C 7 w('A [Proof as in #53-62]

#5363. h :<1'R$V .3 .D'R = R*'<l<Ryj i'A [#3778 .#53-612]

#53-631. h :D'R$V .0 .D'R =%'D'Rv i'A [#37781 .*53'613]

#53-64. h : d'R = V . D . D'j?= 5"<2<£ [#37-78]

#53641. r : D'i2 = V . D . D^ =*R"D'R [#37-781]



*54. CARDINAL COUPLES

Summary o/#54.

Couples are of two kinds, namely (1) i'x w t% in which there is no order

as between x and y, and (2) i'x f *>% ™ which there is an order. We may

distinguish these two kinds of couples as cardinal and ordinal respectively,

since (as will be shown hereafter) the class of all couples of the form i'x u i'y

(where x 4= y) is the cardinal number 2, while the class of all couples of the

form i'x t i'y (where x^y) is the ordinal number 2, to which, for the sake of

distinction, we assign the symbol "2
r ," where the suffix "r" stands for

"relational," because the ordinal 2 is a class of relations. In the present and

the following numbers, we shall define 2 and 2r as the classes of cardinal and

ordinal couples respectively, leaving.it to a later stage to show that 2 and %,

so defined, are respectively a cardinal and an ordinal number. An ordinal

couple will also be called an ordered couple or a couple with sense. Thus a

couple with sense is a couple of which one comes first and the other second.

We introduce here the cardinal number 0, defined as i'A. That so

defined is a cardinal number, will be proved at a later stage ;
for the present,

we postpone the proof that so defined has the arithmetical properties of

zero.

Cardinal couples are much less important, even in cardinal arithmetic,

than ordinal couples, which will be considered in the two following numbers

(*55 and'*56). It is necessary, however, to prove some of the properties of

cardinal couples, and this will be done in the present number. Some properties

of cardinal couples which have been already proved are here repeated for

convenience of reference. The definitions of and 2 are:

*54 01. = i'A Df

*5402. 2 = oi{(>&x,y).x$y.a=i'xyJL'y} Df

Most of the propositions of the present number, except those that merely

embody the definitions (*541-10ri02), are used very seldom. The following

are among the most important.

*5426. ^ : i'x «-» i'y e 2 . = . x^y

*54'3. h .2 = a{('&x).xea.a-i tx6l}

*54-4. \-:./3Ct'xvJt'y.= :p = A.v.j3 = i
tx.v.j3=i'y.v.8 = t'xyji,'y

*54*53. h : a e 2 . x, y e a . x ^ y . D . a = i'x u i'y

*54-56. h:«~e0ulw2. = . (g#, y,z) .x,y,zea.x^y .x^z .y^ z
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#54-01. = i'A Df

#5402. 2 = o {(ga>, y).x^y.a = i'x\j i'y) Df

#541. h . = i'A [(#64-01)]

#54101. h s a e 2 . = . (gar, y) .x^y .u= i'x\j i'y [(#5402)]

#54102. l-:aeO. = .a = A [#541]

The two following propositions have already occurred in #51, but are here
repeated, because they belong to the subject of the present number.

#54-21. h : i
lx u i

l
y = i'x\j i'z . = .y = z [#51-41]

#54*22. \*:.i'xv i'y=i'z\j i'w. = :x = z .y = w.v ,x = w.y = z [#51-43]

*5425. h : i'x u i'y e 1 . = . x = y

Bern,

b . #52-461 . #22-58 . D I- : i'x u i'y e 1 . D . i'x w i'y = i'x . i'x w i
ly = i'y .

[#20-23] D. i'x = i'y (1)
r- . #22-56 . Dh:i'x = i'y.D.i'x\j i'y = i'x

.

[#52-22] D . i'x u t'y e 1 (2)
I- . (1) . (2) . D h : i'x u i'y el . = .l'x = i'y .

[#51-23] = .ar= y: Dr. Prop

#54-26. I- : i'x v i'y e 2 . s . a; =j=y

Dew.

I- . #54-101 . D h :: t'a; v i'y e 2 .

= :. (gz, w) . z 4= w . t'# u t'y = 1*2 u i'w :.

[#54 -

22] = :.(g2, w) :z^w:x = z.y = w. v .x = w.y = z:.

[*4-4.#ll-41] = :. (gs, w).2r + w.a; = ^.3/ = M;.v. (gs, w) . z=^w ,x = w ,y= z :.

[#13-22] =:.a? + y.v.y + a?:.

[#1316] = :.#=|=y:OI-.Prop

#5427. r . t<# w^elu2 [#54-25-26]

#54-271. h . 1 w 2 = a {(gar, y).a = i'x\j i'y]

Dem.

K*4-42.D
^•••ct=l'xyji'y. = :x = y.a=i'xvi'y.v.x^y.a=i'x\Ji'y (1)
I- . (1) . *1111'341-41 . D h :. (aaJ> y) . a= l<* u i'y

.

= : (a«» y).* = y.o = t'awt'y.v. (gas, y) . «+y . a = t<# v t'y :

[#13195] = : (ga?) . = t'a; u t'a; . v . (g#, y) . a- 4= y . a = t'# w i<y :

[#22-56] = : (ga;) . a = i'x . v . (ga;, y) . x^y .a= i'xu i'y :

[*52-l.*54101] =:ael.v.ae2:
[#22-34] = : a e 1 w 2 :. D h . Prop
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*543. f- . 2 = a {(ga?) . x e a . a - i'x e 1}

.Dew..

I- . *52 1 . *1035 . D

h : (g#) .xea.a-i'xel. = . (g«, y) • # e a . a - i'x= i'y .

*51-22 ^l?1 = . (3«, y) • i'x rs i'y=A . i
lx v i'y = a

.

«,0]

[*51-231.*54*101] = . a e 2 : D h . Prop

*544. \- :. C i'x v i'y . = : = A .v . = i'x . v . = i'y .v . = i'x u i'y

Dem.

h.*51-2. D\-:x,ye0.D.i'xyJl'yC0:

[Fact] D \- : 0C i'x v i'y . x,y e .D . C i'x \j i'y . i'x v i'y C .

[*2241] D.@=i'xsji'y (1)

h . *51'25 .3\-:.0Ci'x\Ji'y.y~€0.O:0Ci'x:

[*51'401] D : /3 = A . v . £ = i'# (2)

Similarly h :.0Ci'x \j i'y .x~e .2 : = A.v . = i'y (3)

h . (2) . (3) . *3-48 . D

I- :. C i'a? u i'y . ~(x,y € 0) . D : = A . v . = i'x . v . = i'y (4)

I- . (1) . (4) . *34-8 . D

\-:.0Ci'xvi'y.O:0 = A.v.0 = i'x.v.0=l'y.v.0 = l'xyJi'y (5)

I- . *2412 . *22-58-42 . D

h :. = A . v . = i'x . v . = i'y . v . = i'x u i'y : D . C I'a? w> i'y (6)

K (5). (6). Dr. Prop

This proposition shows that a class contained in a couple is either the

null-class or a unit class or the couple itself, whence it will follow that and

1 are the only numbers which are less than 2.

*54'41. r-::cte2.D:.£Ca.3:£=A.v'./9el.v.£62

Dem.

h.*52\L. D\-:.0 = i'x.v.0=i'y:D.0el (1)

V . *54-26 . D h :. x + y . D : = i'x u i'y . D . £ e 2 (2)

K (1) . (2) . *54-4 . D

H : : x 4= y . D : . £ C I'# w i'y . D : /9 = A . v . e 1 . v . e 2 :

:

[*13-12] 3 h :: a = i'x v i'y . x^y .0 :. C a .D : = A .v . el .v . e2 ::

[1111-35] D

h :. (g#,y) . a = i'# v i'y. x^y.D:.0Ca:0 = A.v.0el.v.0e2 (3)

h . (3) . *54101 . D h . Prop

*54-411. h:.ae2.D:/3Ca.D./9e0wlw2 [*5441102]
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#5442. K::ae2.D:./3Ca.g!/8./34=a. = ./3et"a

Dem.

K*54-4. Dh:« = i^ut^.D:.

/3 C a . g ! /3 . = : £ = A . v . £ = t<# . v . £ = ty. v . £ = a : 3 ! /3 :

[*24-53-56.*51-161] = :/3=t f#. v ./3= i'y . v .£ = « (1)

f- . #5425 . Transp . #5222 . D h : a? + y . D . l'a> u t'y + t'a> . t'a; v t'y + t
'y :

[#13-12] Dh:a = t'aut'y.a!^.D.a + t
(a!.a + t'y (2)

J- . (1) . (2) . D h :: o = t'« u t'y . a; + y . D :.

/3 = i'x . v . ft = i'y

(gf) . z ea.fi = i'z

6 t"a (3)

£ C « . g ! . £ 4= a .

[#51-235]

[#37-6]

I- . (3) . *ll-ll-35 . #54101 . D h . Prop

#5443. H:.a,/3el.D:an/3 = A. = .aw
/
Se2

Dem.

h . #54-26 . D r :. a = i'/c . £ = i'y . D : o w /3 e 2 . = . a- =|= y .

[#51-231] =.t'*nt'y = A.
[#1312] =.on/3 = A (1)

r.(l).*llll-35.D

r-:.(g#,y).a = t<tf./3=t'y.D:av/3e2. = .an/3=A (2)

h . (2) . #11-54 . #52-1 .Dr. Prop

From this proposition it will follow, when arithmetical addition has been

defined, that 1 + 1 = 2.

#5444. r- : . z, w e i
lx v i'y . DztW . <j> (z, w) : = . (x, x) . cf> (x, y) . <j> (y, x) .

<f> (y, y)

Dem.

V .#51-234. #11-62. Dr :.z, we i'x u t'y .
"5
ZtW .$(z,w): = :

zei'xv i'y . Dz . <j> (z, x) .
<f>

(z, y) :

[*51'234.*10-29] = :<f,(x,x).<f> (x, y>. (j> (y, x) .
<f> (y, y) :. D I- . Prop

#54-441. h ::z,w ei'xv i'y .z^iu . Dz
,w . <f>(z, w) :=:.x — y : v : <f>(x,y) . <£(y, x)

Dem.

V . *5'6 . D b :: z, w e i'x \j i'y . z =f w . Dz>w .
<f>

(z, w) :
=

z,we t'x u i'y . D2>w : z = w . v .<\>(z,w)

[#5444] = : x = x . v .
<f>

(x, x) : x = y . v .
<f>
(x,y)

y = x.v.<f>(y,x):y = y.v.<f>(y f
ij):

[#13'15] = :x = y.v.<f>(x,y):y = x.v.<f>(y,x):

[*13-16.*4-41] = : x = y . v .
<f>

(x, y) .
<f> (y, x)

This proposition is used in #16342, in the theory of relations of mutually

exclusive relations.

#54*442. t- : : x^y ,D:.z,w e i
lxu i

l
y. z^tv .Dz>w . <f>(z,w): = ,<f)(x,y) .

<f> (y, x)

[#54-441]
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*54443. \- :: x =|= y :
<f>

(x, y) . = .
<f> (y, x) : D :.

z, w e i'x yj I'y . z =f w . Dz,
w . <j> (z, w) : = . 4> (as, y) [#54-442]

#54*45. h :. (32, w).z,we

i

lx v i'y
.<f>

(z, w) .

= :<f>(x,x).v.<f>(x,y).v.<f>(y,x).v.<f>(y,y) [#51-235]

*54451. h :: ~ </> (x, x) . ~ </> (y, y) . D :. (a*, ti/) .^roet'au i'y . </> (*, w) .

= :(f>(x,y).v.<f>(y,x) [#54-45]

#54 452. h :: ~ <$> (x, x) . ~ <£ (y, y) : <£ (x, y) . = .
<f> (y, x) : D :

(Rz,w).z,we i'xv I'y .(f>(z,w). = .<p(x,y) [#54-451]

#5446. V:{<&z,w).z
i
wei ixvi iy.z^w. = .x^y [*54'452 . #13-1516]

#545. h :.ae2 . D :aC6 w i'w . = . a^i'zu i'iv

Dem.

h . *54-4 . D
\- i.aCi'z v i'w . D : a — A . v . a = t'z . v . a == t'w . v . = i'z\j i'w (1)

I- . *54'3 . #2454 . DHHp.D.a + A (2)

h. #54-26— .#1315. Dh-Hp.D.a + i'* (3)
x,y

K(3)-. Dh:Hp.D.o + t'w (4)

h . (1) . (2) . (3) . (4) . *2-53 . D V :. Hp . D : a C t's u i'w . D . a = i'z u i'w (5)

I- . #22-42

.

D\-:a = i'zu L'w.D.aCi'zv i'w (6)

h . (5) . (6) . D t- . Prop

*5451. l-:.ae2./3elv,2.D:aC/3. = .a = /3

Devi.

h.*54-5.DI-:.ae2./3=i^ut <w.D:aC/3. = .a = /8 (1)

h.(l).*ll-ll-35-45.D

h :. a e 2 : (3*, w).^=i'2ut'w:D:«C^.E.a =
1
8 (2)

h. (2). #54-27l.DK Prop

#5452. h:.a,/3e2.D:aC/3. = .a = /3. = ./3Ca [#54-51]

*54'53. h : a e 2 . a;, y e o . &•
=f= 2/ 3 a = i'# *»» t'y

Dem.
h.*51-2. Dh:Hp.D.^Co.i'!/Ca.
[#22-59] D . i'x yj i'y C a (1)

K #54-26. Dh:Hp. D.t'aut'ye2 (2)

h . (1) . (2) . #54-52 . D f- . Prop

#54-531. h :. a e 2 . D : x, y e a . x =|= y . = . a = t'# w i'y

Dem.
h . #54*53 . Exp . D H :. a e 2 . D : #, y e a . a; =j= y . D . a = i'# «-» i'y (1)

I-. #54-26. D\-:.ae2.D:a=i fxuL'y.D.x^y (2)

h. #5116. D \- : a = i'xv i'y .D . x,y ea (3)

h.(2).(3). Dh:.ae2.D:a = t^wi <y.D.^yea. ;r=fy (4)

K(l).(4). Dh.Prop
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#54'54. h :.ae2. = :x, yea.x^y, x
, y .a = i

ix\j t'y : fax, y).x,yea.x^y

Dem.

K #54-531. #11-11-3. Dh:.ae2.0:x,yea.x^y.0Xty .a=i t
xyj(, t

y (1)

K*5ri6.*54-101 . Dh:ae2.D.fax,y).x,yea.x^y (2)

1-
. #5-3 . #3*27 . Dh:.x,yea.x^y.D.a = i'xvi'y: D :

x,y ea . x^y .^) .x^y .a — t'x\j ^y x.

[*1 1-1 1-32-34] D h :. x, y e a . x^y . Dx>y . a = t'x u t'y : D :

fax,y).x,yea.x^y.D..fax,y).x$y.CL=i'xvi'y (3)

H . (3) . Imp . #54-101 .OV :.x,y eu.x^y . DXjV . a = i'xv t'y :

(ftx,y).x) y€CC.xJry:D.ae2 (4)
h.(l).(2).(4). Dh.Prop

In the above proposition, " x, y e a . x 4= y • Ox, y a = ^x w t'y" secures that

a has not more than two members, while "fax, y) . x, y e a . x^y" secures

that a has not fewer than two members.

*5455. \- . u I v 2 = & {x, y e a . x ^ y . Dx , y . a = i'x v t'y}

Dem.

I- . #4*42 . D h ::#, yea.x^y. Dx<y . a = l'x v i'y : = :.

x, y € a . x ={= y • Ox, y • a = i'® « t'y : ~ fax, y) . x, y e a . x + y :.

v:.a;,y€0.a;+ y.D(8,y.o = i'a?ut'y:(aaf,y).a?,yeo.a? + y (1)

h. #11-63. D f- :. ~fax,y).x,yea .x^y.D :x,yeot .x^y. "5
x

, y . a = i
lx\j t'y :.

[#4-71] D h :.x,yea .x^y. DXiV . a = t'# v i
fy\ ~fax,y) .x,y€a.x^y: = :

~fax,y)-x,ye*-n :¥y'

[#11-521] =:x,y ea.DXty.x = y

:

[#52-4] =:ae0wl (2)

h . (1) . (2) . #54-54 . D
h :.x,yea..x^y . Dx>y . a = t'x u t'y : = : a € w 1 . v . a e 2 :

[#22-34] =:ae0ulu2:. Dh.Prop

#54'56. H:a~e0ulv2. = . fax, y,z) .x,y,zea.x^y .x^z .y^z

Dem.

K #54-55. #11 -52. D
l-:.o~€0ulw2. = : (g#, y) . #, yea.a;^^' 01 ^ l<iZ! w l<2/ :

[*51-2.*22-59] = : fax, y) . t'x \j t'y C a . x =f= y . a 4= t'# « t'y :

[#24 -

6] = : fax, y) . t'x u t'y C a . x =f y . g ! a — (t'# o t'y) :

[#51232.Transp] = : fax, y) : i
lx kj I'y C a . x ^ y : faz) .zea.z^x.z^y:

[#51-2.#22"59] = : fax, y,z) .x, y, zea.x^y.x^Ziy^zz.Oh. Prop

In virtue of this proposition, a class which is neither null nor a unit class

nor a couple contains at least three distinct members. Hence it will follow

that any cardinal number other than or 1 or 2 is equal to or greater than 3.

The above proposition is used in #10443, which is an existence-theorem of

considerable importance in cardinal arithmetic.
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*54'6. I" :.a n ft
= A.x,x ea .y,y' eft . D:

i'x \j i'y = i'x u i
fy' . = .x = x'.y = y'

Dem.

\-
. *51-2 . D h :. Hp . D : i'x C a . tV C a . ,i'y C ft . i

ly' Cft.ar\ft = &:

[*24*48] D : i'x u t'y = t 'a?' u t'*/' . = . i'x = tV . t'y = I'tf

.

[*51*23] =.x= x'.y = y':.1\-.Froip

The above proposition is useful in dealing with sets of couples formed of

one member of a class a and one member of a class ft, where a and ft have no

members in common. It is used in the theory of cardinal multiplication

(*113148).



*55. ORDINAL COUPLES

Summary q/"#55.

Ordinal couples, which are now to be considered, are much more important,

even in cardinal arithmetic, than cardinal couples. Their properties are in

part analogous to those of cardinal couples, but in part also to those of unit

classes; for they are the smallest existent relations, just as unit classes are the

smallest existent classes. The properties which are analogous to those of unit

classes do not demand that the two terms of the couple should be distinct,

i.e. they hold for i'x f i'x as well as for i'x j" i'y (where #=|=y); on the other

hand, the properties which are analogous to those of cardinal couples do in

general demand that the two terms of the ordinal couple should be distinct.

The notation i
lx \ i

c
y is cumbrous, and does not readily enable us to

exhibit the couple as a descriptive function of x for the argument y, or vice

versa. We therefore introduce a new symbol, "x^y," for the couple. In a

couple x |, y, we shall call x the referent of the couple, and y the relatum. In

virtue of the definitions in #38, this gives rise to two relations x j, and \,y;

hence we obtain the notations x 1 "/3, i y"a, a l y, a I "/3 and so on, which

will be much used in the sequel. It should be observed that x \,
"# means

the class of ordinal couples in which x is referent and a member of # is relatum,

while 4 2/"a or a I V denotes the class of couples having y as relatum and a
f>

member of a as referent; a l "/9 denotes all such classes of couples as I y
i{
a,

where y is any member of /3; and in virtue of #40*7, s'a I "/? denotes all

ordinal couples of which the referent is a member of a, while the relatum is

a member of /3. This is a very important class, which will be used to define

the product of two cardinal numbers; for it is evident that the number of

members of s'a ], "/3 is the product of the number of members of a and the

number of members of /?.

The firstfew propositions of the present number are immediate consequences

of the definition of x I y and the notations introduced in #38. We then pro-

ceed to various elementary properties of the relation x 4 y, of which the most

used are the following:

#55"13. V: z{x]
f y)w. = .z=x.w = y

#5515. I- . D'(x ly) = i'x . d'{x I y) — i'y . 0\x ly) = i
lx v i'y

#5516. h : D<£= i'x . d'R^i'y . = .B = xly

#55*202. Yix^y — zlw. = .x — z.y = w.=^.yix = w]f
z
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This proposition should be contrasted with #54-22, as giving one reason

why ordinal couples are more useful in arithmetic than cardinal couples. In

virtue of the above proposition, when two ordinal couples are identical, their

referents are identical, and their relata are identical.

We proceed next to various properties of the relations x ^ and ^ x- These

relations play a great part in arithmetic. It will be observed that if two terms

have the relation x \, the referent is a couple whose relatum is the relatum

in the relation x I, i.e. when we have R (x \) y, we have R = x I y (cf. #55*122).

Similar remarks apply to the relation ^ x. The class 4 x*

'

a > consisting of all

couples whose referent is a member of a, while the relatum is x, is important.

We have

#55232. h : a ! 4, x"a n | y"/3 . = .# = y.a!ar»/3

This proposition is frequently useful.

We proceed next (#553—'51) to give various properties of x\y which

are analogous to the properties of unit classes. Among the more important

of these properties are the following:

#55-3. \-:xRy. = .xlydR.^.^l(xly)nR
This is the analogue of #51*31.

#55-34. h:^lR.RClxXy. = .R = xly
This is the analogue of #514.

#55*5. h:. RGxlywzlw. = z

R = h.v.R = x\
f
y.v.R = z^w.v.R = x\

f
yKtz\,w

This is the analogue of #544.

We then proceed to such properties of ordinal couples as are not analogous

to those of unit classes. For connecting the cardinal number 2 with the

ordinal number 2r , we have the proposition

#55-54. h :: x
=f= y . D :. C'R = i'x w i'y . R n R = A . = : R = x

J, y . v .R=y I x

This proposition shows that the only asymmetrical relations which have a

given cardinal couple i'x u i
l
y for their field are the two corresponding ordinal

couples x \ y and y \ x. We have next a set of propositions on the relative

products of couples and other relations, i.e. on R\{x\ y), (x \. y) |
S, and

-^
I (x I V) I

& These propositions are very useful in arithmetic. The chief of

them is

#55-61. r : E ! R'z . E ! S'w . D . (R
\\
S)'(* I w) = (R'z) I (S'w)

Finally we have four propositions which belong, by their subject, to #43,

but could not be given there, because the proofs make use of ordinal couples.
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#55*01. x^y^i'xfi'y Df

#55 02. R'x I y = R'(x I y) Df

This definition serves merely for the avoidance of brackets.

[(55-01)]

[#38*11. #551]

[#55-11. #14-21]

[#55-11]

[#55-11]

#55-1. h . x I y = (i*x) | (t'y)

#55*11. I- . x I
l
y = I y

lx = x \,y=i lx'\ i'y

#5512. h.Elxl'y

#55-121. l-.E!4y'fl?

#55122. h:R(xl)y. = .R = xiy
#55123. b:R(ly)x. = .R = xly
#55*13. V x z{x

\

f
y)w .= .z — x ,w = y

Dem.

I- . #35*103 . #55-1 . 3 h : z (x I y) w . = . z e i
lx . w e i

l
y

.

[*51'15] =.z = x. w = y : D h . Prop

#55*132. Y.x{x\,y)y [*55\L3]

#55134. b.Rl(xXy) [#55-132]

#5514. \-.xly = Cnv'ylx [*55-13.*31-131]

#55*15. I- . D'# 4 y = i'x . d l
x iy = i'y- C'x 4 y — i'x u i'y

[#35*85*86. #51 *161]

#5516. V : IYR = i
lx . d'R = i'y. = .R =xly

Dem.

h. #3313*131. #51*15. D

h :: D'R = i'x . d lR = i'y . = :. (gw) . zRw .=z .z = x: (32) . zRw .=w .w = y:.

[#14*122] = :. (gs, w) . zRw : (gw) . zRw .Dz .z = xx

(gw, z) . zRw : (g\z) . s-Kw . Dw . w = y :.

[*11*23.*4*71] =

[#10*23] =

[#11*391] =
[#14*123] =

[#55-13] =

[#21-43] =

:. (g.z, w) . zRw : (gw)

.

zRw ,Dz .z=xx (gs)

.

zRw.Dw.w= y:.

:. (gs, w) . zRw : zRw . Dz>w . z = a; : ^i2w .Dz>w .w = y:.

:. (gz, w) . zRw : -eifo* . DZ)M, . z = x . w — y :.

:. zRw . =Z(W ,z = x.w = yx.

:. zRw . =ZtW .z{x\,y)wx.

:.R = xly::2b.Prop
The above proposition is important, and will be frequently used.

#55-161. \-.xly=*i'll(D tR=i ,a:.<I'R=*i f
-y)

Dem.
h . #55-16 . #20*15 . D

h . R (D'R = i'x . d'R = I'y) = R (R = x I y)

[#5i-ii] -*'(*4y) (i)

I- . (1) . #51-51 . P I- . Prop



SECTION a] ordinal couples 369

#5517. r- • x I y = ^(DH'x na'i'y) [#55'161 . *33'6'61]

#55*2. \-:x^y — x\
f
z. = .y = z

Dem.
\- . #30*37 . #551112 .D\-:y= z.D.xly = xl2 (1)

h . #30*37 . #33121 . D

bzxly = xlz.D. G'# 4 y — (I'x 4 z .

[#55-15] D . t'y = <'* .

[#51-23] 0.y = z (2)

h.(l).(2).DKProp

#55201. H:ic^^=2/^5. = ..« = y/

#55*202. I- : .t 4 y = .* 4 w . = . .r = £ . ;y = ?« . = . y 4 # = w 4 *

Dew.
h . #55-2-201 . D
\- m

. x-=z.y=w.0.x^y = z^y.z\y = z^w.
[#13-17] D.ar4y = *4w (1)

H. #30-37. #3312121. 3
\- 1 x\,y = z lw .1 .T>'x ly = V>'z \,w .<±'x I y = d'z ±w

.

[#55-15] D ,i
ix = i'z. i

(
y = i

fw.

[#51-23] D.x = z.y = w (2)

h.(l).(2).D

V:x^y = z^w.~.j; = z.y—w (3)

Similarly

I" :
?/ 4 x = w 4 ^ • = • x ~ z • V — w W

F.(3).(4).DK Prop

The above proposition is important.

#55-21. r . <P# 4 =V . d' 4 x = V [#33-432 . #55'12121^

#55-22. h.D'a?4=£{(ay) i2 = «4y} [*55'122]

#55-221. h.D'4"a- = .R{(ay).jR = y4a-} [*55"123]

#55222. h : i2 e D^4 . = . D'# =Va> . d'R € 1

I- . #55-2216 . D h :. R e D'x 4 .= : (gy) . D'R = t'# . G.'R = t'y :

[#10-35]
' = : WR = i'x : {%y) . <I'R = t<// :

[#521] = : D'R = i'a? . d'R e 1 :. D h . Prop

#55223. H : 72 e D< 4 x . = . (T:K = i<*' . D^ e 1 [Proof as in #55222]

#55-224. h.D'xlnD' ly=i'(xly)

Bent.

\-
. #55-222-223 .3

h : i2 e D'# 4 n D'4'y . = . D'# = t'# . (I'R e I . (!<£ = i'y . V'R e 1 .

K&w I 24
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[*52-22.*4-71] = . D'R = i'x . d'R = i*y.

[#5516] = .R = x\,y.

[#5115] = . R e i'{ac X y) : D I- . Prop

#5523. \-.xl"a=R{(&y).yea.R = xly} [#38-13]

#55 231. > . I x"a = R {(ay) • y * « • R = y 4 *} [*38-131]

*55232. H : g ! j x"a n 4 y"$ . = .#*=?/ 3 ! « n £
Bern.

K #55-231. #1155. D
H :. g ! \ xfta r\ 4 y"fi . = : (qR) : (g.z, w) . z e a . R = z 4 x . w e /3 . R = w 4 y :

[#13'195] = : {$z, w).zea.wefi.zlx = wly:
[#55

-

202] = : (32, w).zeoi.we^.x = y.z = w.

[#13195] =: (a*), z eon £ . x = y:

[#10-35] =:Rlar\0.x = y:. D H . Prop

#55 233. r : x + y . 34 a"a n 4 y"£ = A [#55232 . Transp]

The above two propositions are frequently useful in arithmetic.

*5524. 1- . s'x I "a = i
lx f a

Bern.

h . *4M1 •. D
1- :.#(«'# 4 "a)w .= .(aJ2).JRea?4"a.*22«/.

[*55'23] = (g.fl,y).y€a..R««4y. zRw

.

[*13'195] = (3y). y ««*(* 4 y)-w.

[#55-13] = (Ry).yea.z = x.w = y.

[#13-195] = z = x . wea.

[*51-15.#35-103] = z (i'x f a) w :. D h . Prop

*55241. h . s'4 #"« = a f t'# [Proof as in #55 -24]

(1)

*55'25. h : a ! a => D"#
J,
"a = i

lOx

Dem.

K #37-67. *33'12. #55-12.3

h : yS e T>"x 4 "a . = . (32/) - 2/ e a • £ = D'# 4 2/ •

[#55-15] =.(a2/).2/ea./3 = i'#.

[*10-35] = . a '• « • £ = i'a

h . (1) . D h :. Hp . D : £ e D'%4 "a . = . /3 = t'# .

[#51-15] = ./3etV#:.Dh.Prop

#55 251. h : a I a • P • d" 4 x"a = tVa [Proof as in #55-25]

This proposition is used in the theory of cardinal multiplication (#1131 42).

#5526. h . d"x 4 "a = /"a [#5515 . *37'35]

#55-261. H . D" 4 x"a = i"a [#5515 . *37'35]

#55-262. h : 4 x"a = 4 y"/3 . D . a = £ [*55'261 . #53-22]
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#55*27. h.C"laJtta = C"a;l"a = J3{(sy).y€Ci./3*i tx\Ji*y} [#55*15]

#55*28. r- :Q.'x

I

y = d'x \z . = .y = z . = ,xly = x\,z

[#55*15. #51*23. #55*2]

#55*281. H : D'y lx = D'z

\

f
x. = .y = z. = .y\f x = z]f x

#55*282. \-:C'xly = C'xlz. = .y=z. = .xly = xlz
[#55*15*2. #54*21]

#55*283. \-:C'ylx=C'zlx. = .y = z. = .ylx = zlx

#5529. I- . a
j

(at I) = i [#55*15 . #34*42]

#55 291. h . D
|
(4 a?) = e [#55*15 . #34*42]

#55 292. h .
j
(x i) = 6'

| (J,
a*) = a£ (a = i'x o t'y) [#55*15 . #34*41]

The following propositions, down to #55*51 inclusive, give properties of

ordinal couples which are analogous to the properties of unit classes.

#55 3. 1- : xRy . = .xlydli. = .'gil(x]
r
y)nR [#13*21*22 . #55*13]

The first half of this proposition is the analogue of #51*2; like that

proposition, it gives a means of reducing propositions to the form. of inclusions.

For the second half, compare #51*31.

#55*31. l-:xly = zliv. = .z(xly)w. = .x(zlw)y. = .x = z.y = w
This proposition is the analogue of #51*23.

Dem.

b . #55*16 .Dbzxly = zlw.~. D'x ly = t'z . (I'x ly=i'w.
[#55*15] = . i'x = i'z . t'y = t'tv

.

[#51*23] = .x = z.y = w. (1)

[#55*13] = . x (z I iv) y

.

(2)

[(1).*I3*16] ~.z = x.w = y.
[#55*13] =.z(xly)w (3)

K(l).(2).(3).DKProp

#55*32. b:.xlyf\z^w = A. = : x^z.v.y^w
Dem.

' 1- . #55*3 . D I- : g! x | y n z \, w . = . x (z I w) y .

[#55*13] =.x = z.y = w (1)

h.(l).Transp.Dh.Prop

#55*33. \-:xRy. = .xlynR = xly [#55*3 . #23*621]

#55*34. \-:^lR.RQxiy. = .R = xly
Dem.

h . #55*13 . D h :. ftl R.RGx ly .=: (j-js, w) . zRw : zRw . Dz>w .z = x.w = y:
[#14*123] =xzRiv.=ttUl .z = x.v) = y\
[*5513] =:zRw.=z>w .z(xly)w:.Dh.?rov

24—2
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#55 341. f- :. RQx I y . = : R = A . v . R = x
J, y

Dem.

K*4*42.DI-:.EGa-4y.=
[*25-54]

[#55*34]

[#25*12]

:RGxly.R =k.v.RGxly.R$A:
:Rdxly.R = k.v.RQxly.±lR:
: R G x I y . R =A . v . R = x I y :

: R = A . v . R= x I y :. D I- . Prop

#55 35. h:72n ;r4,
?/ = A.i2c/a;

>lr 3/ = ^. = .^y. JR = /Sf-^a;4,y

h . #25*47 . D

H:22n#,J,y==A.J?vy#4,y — S. = .xlyGS.R =S~ x\y

.

[*55"3] = .#% . R = 8 ± x\,y :D f- . Prop

#55*36. b : xRy . = .{R^-x\,y)Kisc\,y = R
Dem.

h . #55*3 . D h : a-ity . = . x I y G R

.

[#23*62] =.xlyuR = R.
[*23-91] =.(R^xly)vxly = R:2V.¥rop

#55 37. \-:xea.ye/3. = .xly(ia'lfi

Dem.
h . *35103 . D I- : icea . t/ e/3 . = . «(a | /3)2/

.

[#55*3] s.«iyG«t/8:3l". Prop

The following proposition is the analogue of #51*232.

#55 "4. h:.a{aj
<lr
i/c;24?0}&. = :a = aj.&==;y.v.a = .3:.& =w

[#55*13 . #23*34]

#55*41. h a R^= as I y vt z I w.D:. aRb . Da,& . <-& (a, 6) : = .
<f>

(x, y) .
<f>

{z, w)

Dem.

h . #55*4 . D h ::. Hp . D :: aRb . Da
,
b .

<f>
(a, b) : = :.

a — x . b — y . v . a = z . b = w : Da>& . <& (a, 6) :.

[#4*77] = :.(a,b):.a = x ,b = y .D ,<f>(a,b):a = z .b = w .D ,<f>(a,b):.

[#11*31] = :.(a, b):a = x.b = y . D . $(a, 6):. (a, 6) : a = 2 . & = w . D .<f>(a, b):.

[#13*21] = :.
<f>

(x, y) .
(f>

(z, w) ::. D h . Prop

The above proposition is the analogue of #51*234. The following pro-

position (#55*42) is the analogue of #51*235.

#55*42. V ::R = x]
f
yvz\,w. D :.(g;a, 6)

.

aRb . <f>(a,b) . = : <f>(x,y).v . <j>(z,w)

Dem.
\-

. #55*4 . D I- ::. Hp . D :: (ga,&) . aRb . 0(a, 6) . = :.

(ga, 6) :. a = x . b = y . v . a = s . 6 = w : <-& (a, 6) :.

[*4*4] =

[#11*41] =

[#13*22] =

• (*RCf>, b) : a = x . b = y .
<f>

(a, b) : v : a = z . b = w .
<f>

(a, b) :.

• (att» b) . a = x . b = y . (a, 6) . v . (ga, b) . a = z . b = w .
<f>

(a,b) :.

.<f>(x,y).v.<f>(z,iv)::.D\-. Prop
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#65*43. \-:a:lywzlw = a:lywcld. = .z='C.w= d. = .zXw = cld

This proposition is the analogue of #51*41.

Dem.

H . #55*202 .Dhiz = c.w = d.y.ziw = cld.
[#23*551] D.a;lyvzlw = xlyvcld (1)

h . #23*58 . Dt-:.xlyK/zlw = ieXywcld.D:
z I w G x I y w c I d . c I d G x I y o z ^ w :

[#55*3*13.*23*34] D :z=x . w=y . v .z = c ,w = d: c=x .d = y.v.c=z.d = w:

[#13*16] D :z=x . w—y . v ,z = c ,w = d: c=x .d = y . v .z=c.w=d:

[#4*41] D :z=x.w—y ,c=x .d = y

.

v.z = c.w= d:

[#13*172] D:z=c.w=d (2)

\-.(l).(2).Dt-:xlywzlw = xlyvicld. = .z = c.w = d. (3)

K(3).*55-202.Dh.Prop

#55*431. H :. a; ^ y «* « 4 w = « i & w c X d . D :

Dem.

h . #554 . D h :: Hp . = :.M = #.t> = y.v.w = ,s;.i> = «;:

=u,»: w = a.» = 6 . v . u = c. v= d :.

[#11*1] D:.x = x.y — y.yf.x= z.y — w:
= '.x = a.y — b.^.x = c.y — d:.

[#13*15] 5:.x = a.y = b.v.x = c.y = d (1)

(- . #55*43 .D\- m..x=a.y = b.D:xlywzlw = albwzlw:
[#13*171] "D :Uip.D .albvt z lw = albv c Id .

[#55'43] D.z = c.w = d (2)

H.(2).Comm.#4'7.DH:.Hp.D:a;=«a.y = 6 . D .x = a.y=b.z = c.w = d (3)

Similarly h:.Hp.D: a?= c .y — d. D ,x = c .y — d.z = a . w — b (4)

H . (1) . (3) . (4) . D r . Prop

*55*44. h:.a?^yc/^4«/ = a4r
^ i:,c 4^-

= :x = a.y = b.z = c.w=d.v.x = c.y = d.z = a.w = b:

= :a;4y=a4 6.^4 W==C 4^' V - ^ 4 2/
= c 4 d 'Z ]e w = a \,b

Dem.

h . *55'43 . 7>h:x = a.y = b.D.xXy\yz^w = a\bwzlw:
z = c.iv = d.D.albwzlw = albwcld:

[#3*47 .*13'17] "5b:x=a.y = b.z = c.w = d.

D.wlywz^w = albvcXd (1)

Similarly \-;x — c-y = d.z = a.w = b.

D.xlywzltv = alb\ycld (2)
I- . (1) . (2) . #55-431-202 . D \- . Prop

The above proposition is the analogue of #51 "43
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*55-5. \-:.Rdxlywzlw.
= : R=A.v.R = ply.v.R = zlw.v.R = %lyvzlw

Dem.

h.*2512.*2358-42.D

h :*R = A.v .R = xly . v .R = z \,w . v .R = a>lyvz \,w:

D .RQ.x lyvz lw (1)

K*2549. 3\-:.R<l%ly\Jzlw.Rna:ly = A.D:R<lzlw:
[*55'341] 3:R = A.v.R = zltv (2)

K*25'43. D\-:.RGxlyvzlw.3:R-xlyGzlw:
[*55-341] 3:U-xly =A.v.R^-wly=zlw:
[*25'24.*23-551] D :(R -xly)vxly = x ly .v .

(R-xly)vxly =xlyvzlw (3)

r .*D5-3-36.D\-:Rl(Rna:ly).D.(R -xly)vxly =R (4)

h.(3).(4). D\-:.RGwlyvzlw.'&l(Rnwly).y:
R = x\ly. v . R = xLy vjzI w (5)

h.(2).(5). -Dhz.RGxlyvzlw.y:
R = A.v.R—x\,y.v.R = z^w.v.R = xlywz]f

w (6)

K(l).(6). Dh.Prop

The above proposition is the analogue of #544.

*5551. \-:.RGxlyx>S.D:xRy.v.RGS
Dem.

K*55'3. 3\-:Kl(Rnxly).y.xRy (1)

K*25-49. 3\-:Hy.^^l(Rrsxiy).D.RdS (2)

h.(l).(2).DKProp

In the remainder of the present number, we are concerned with properties

of ordinal couples which have no analogues for unit classes.

*55 52. h . (i'x v i
l

y) | (i'z u i
lw) = x Izvx ^wwy ^zvy' \,w [#35'82-413]

*55-521. h:x$y. = .xlyGJ [*55*3 . *5011]

*55 53. h :. x^y .O : GlR=iix u i'y .RQ.J . = . g ! R.RGxlyvy \, x

Dem.

h .*55-5.'2\-i.'&lR.RG.xlyvylx. = :

R = x ^y .v . R = y Ix.v .R = x lyvy lx (1)

h . *5515 . D K . C# 1 1/ = i'x u t'y ,.(7'y
J,
x= i

fx u t'y (2)

h . (2) . *33'262 . D h . C"(# 4, y c; y \, x) = i'x w i'y (3)

f-.*55*521. Dh-.x^y.D.xiyQJ.yixQJ. (4)

[*2359] D.^lyuylaGJ (5)

h.(l).(2).(3).(4).(5).Dh:.

x^y.D-.RlR.RGxlyvylx.'D. C'R = i'x vi'y.RGJ (6)

h . *35'91 .Dhz&R^i'x.sji'y.O.RG (i'x u i'y) f ( t
'« u i<y) .

[#55'52] 3 . R G # 4 x ° * 4 2/
w 2/ 4 # ° y 1 2/ CO
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I- . #50-24 . D h : RXZ J. D . ~ (xRx) . ~ (yRy)

.

[*55'3.Transp] D . i2n*|«= A . R nyl y = A (8)

t- . (7) . (8) . #2549 . D h : C'R = i'x w t't/ . R G J". D . R <Zx I yv y I x (9)

I- . *33-24.*5M61 . D I- : C'R = i
lx u i*y . D . g ! R (10)

h . (9) . (10) . D h : <7<i2= i
lx yj t'y . R G J . D . a ! i2 . R G

J, 3/ c; y \,x (11)

I- . (6) . (11) .31-. Prop

#5554. \-::x$y.D:.C'R=i'xvi'y.Rr\R = A. = :R = xly.v.R =yXx
Dem.

K #50-46. #471 . D\-:RnR = A. = .RGJ.RnR = A (1)

I- . (1) . #5553 . D I- :: as + 2/ • 3 : C"# = i^ w t'y . E A R = A .

EEia'.iZ.jKGajlyc/yJptf-l^i^A:

[*55'5'134] =:R = xly.v.R = ylx.v.R =xlyvylx:RnR = A (2)

I- . #55 -32 .0\-:.x^y.Dzxly.oylx = A:

[*55'14] D:R = xly.3.RfxR = A:

R =ylx.D.RnR = A (3)

h . #5514 . #3115-33 .2\- :R = x lyvylx .D . R = R.

[#23"5] 5.Rnil = R.

[55-134] 3.<&lR*R (4)

K(3).(4).*4-7l.*5-7l.D

= \R = x\,y . v.R = y ^x (5)

h . (2) . (5) . D r . Prop

5557. V.R\(x^y) = R'x^i'y [3781 . #551 . #53301]

55571. r . (a?

|

y) \ S= i'0 f S7
^

55-572. r- . ^K^ | y)|fl«"5'a? f Sty [#55-571 . #37-81]

55-573. h . ii|(0 4 y)\S=R'x \~S'y [#55-572 |~|

#55-58. H:E!E£0.D.ie|(0 42/) = (i2^)4y [#55-57 . #53-31 .
#55-1]

#55-581. h:E!Stt/.D.(0 4,3/)|^= 4(S'y)

#55-582. I- : E ! Rlx . E ! S'y . D . R
j
(x I y) \

S= (R'x) X (S'y) [#55-58-581]

#55-583. h:El R'x. El S'y. D.R\(xly)\S= (R'x)l(S'y) [~*55-582 ^1

The above propositions are frequently useful in arithmetic. Their use

arises as follows. Let a, ft 7, B be classes of which a is correlated with 7 by

the relation R, and £ with 8 by the relation S. Then if x e 7 . y e B, the
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couple consisting of the correlate of x and the correlate of y is (R'x) \ (S'y),

i.e., by the above, R
|

(x
J, y) \ 8, i.e. (R\\S)<(xly). Thus the relation R\\8

correlates the couples, in a and /3, composed of the correlates of terms in

7 and 8. The most useful form, in practice, of #55583, is that given below
in *55'61.

*556. h.(R\\S)'(zlw) = R'zfs<w [#55-573 .#43-112]

#55-61. h : E ! R'z . E ! &'w . D .
(R \\

S)<(z I w) = (R'z) j (S'w)

[#55-583. #43-1 12]

#55-62. \-:2$iv.8 =xlzvylw.D. S'z = x.S'w = y
Dem.

f- . #5513 . D h :: Hp . D :. u8z . = : u — x . z = z . v: . u = y . z = w (1)
h

.
(1) . #13-15 . D V :. Hp . D : uSz . = . u = x (2)

Similarly I- :. Hp . D : uSw .=*u = y (3)
r . (2) . (3) . #30-3 . D r- . Prop

#55-621. I- :x^y.S = xlzvylw.D.S'x= z.S'y =w
[Proof as in #55*62]

The four following propositions belong to #43, but are inserted here because
the proof uses #55- 13.

#55-63. r :g! Q *S . P\\Q = R\\S .D . P = R
Bern.

\-.*4,3'm.D\-::Uv.D:.P\(ylz)\Q = R\(ylz)\S:.
[*34-l] D :. (gw, v) . xPu .u(y\z)v. vQw . =XiW .

(aw, v) . xRu -u(y ],z)v . vSw :.

[*5513.*13*22] D :. xPy . zQw . =x>w . xRy . zSw :.

[#4-73] D:.zQw.z8w.0w :xPy.=x .xRy (1)
h . (1) . #1011 . #11-35 . D h :. Hp . D : xPy .

=
x .#% (2)

K (2). #1011-21. Dh. Prop

#55-631. \-:&lPnR.P\\Q = R\\S.D.Q = S [Proof as in #55 63]

#55-632. h : P\\Q = R\\S .Rl P .Rl Q .3 .Rl P * R . Rl Q n S
Dem.

K*5513. D\-:xPy.zQw.D.x{P\(ylz)\Q}w.
[#43-112] D.x{(P\\Q)<(ylz)}w (1)

h .(1) .Dh :.RV .D :xPy . zQw .D . x {(R
|| £)<(?, j s)j w

.

[#43-112] D.*{i2|(y4*)ii8}«;.

[#34-1] D . (gw, t>) . xRu ,u(ylz)v. vSw .

[*55-13.*13-22] D . xRy . *#w

.

[*4-7] D.x(PnR)y.z(QnS)w:.Dh. Prop

#5564. H:.a!P.a!Q.v.a!i*.a!£:D:P||Q = i2||#. ==.P = R.Q = S
[#55-63-631 -632]



*56. THE ORDINAL NUMBER 2,..

Summary of #56.

In this 'number, we have to consider the class of those relations which are

each constituted by a single couple. In case the two members of this couple

are not identical, the class of such relations is (as will be shown later) the

ordinal number 2, which, to distinguish it from the cardinal number 2, we
denote by "2

r
." (Here the suffix is intended to suggest "relational") The

class of all relations consisting of a single couple, without the restriction that

the two members of the couple are to be distinct, will be denoted by "2\"

This is not an ordinal number. It will be observed that there is no ordinal

number 1, because ordinal numbers apply to series, and series must have

more than one member if they have any members. This will appear more
fully when we come to deal with series.

The properties of 2 are largely analogous to those of 1, while the properties

of 2r are more analogous to those of 2.

Most of the propositions of the present number are seldom referred to

in the sequel, but such references as occur are important. The most useful

propositions in the present number are the following:

*56111. \-:Re2r . = .D<R
>
<I'Rel.I>'Rr>a'R = A

#56112. \-:Re2r . = . D'ftd'Rel .C'Re2

#56113. K2r=2n5"2

Observe that "V"2" means "relations whose fields have two terms."

*5613. b.2-2r = R {(aa) . R = a I a}

*56'37. r:i2e2r . = . C'Re2.RnR = A
I.e. 2r is the class of asymmetrical relations whose fields have two terms.

#56381. \-:C'R=i'x. = .R = xlx

#5639. K2-2r=C"l
I.e. the relations which are couples whose referent and relatum are

identical are the relations whose fields consist of a single term.

#5601. 2 =R {fax, y) . R *» x | y\ Df

*56'02. 2r = R{(Rx, y).x$y.R = xly] Df

*5603. r =*'A Df

#661. \-:Re2. = .(Rx, y) . R = x± y [*20'3 . (#5601)]
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*56 101. h : R e 2 . = . D'R, d'R e 1

Bern.

f .*5516.*11 11-341. D

•""•(a^ y).R = x\,y % =
[*ll-54] =

[#52-1] =

V . (1) . #56-1 . D V . Prop

(gar, y) . D<£ = t'a? . d'R = t'y :

(gar) . D'R = t'ar : (gy) . (I<12 = t'y :

D'iz, a-j? 6 i (i)

*56102. h.2 = D"ln<I"l
Bern,

h . *56-101 . *37106 . D

\-:Re2. = .ReD"l.R€d"l.

02233] =.JKeD"ln5"l:DI-.Prop

*56103. l-:12e2.D.g!l2

Dem.
h . *56101 . D H : 12 e 2 . D . D<12 e 1

.

[#5216] D.g!D<12.
[*33-24] D . 3 ! R : D h . Prop

*56104. \-:R € r . = .R = A [(*5603)]

«66'11. H : 12 e 2r . = . (ftw, y).a-+ y.l2:=a4y [*20'3 . (*5602)]

*56111. h : R e 2r . = . D'12, CF12 e 1 . D'R rx d'R = A
Dem.

K*51-231.*55\L6.D
I- : x'+ y . 12 = x | y . = . t'x r\ t'y = A . D'12 = t'a; . d'R = i'y .

[*13*193] = . D'R n d'R = A . D<12 = t'x . d'R = t'y (1)

h.(l).*5611.*ll-ll-341.3

I

1
:. 12 e 2r . = : (gar, y) . D<12 n (F12 « A . D'R = t'a; . <P12 = t'y :

01145] = : D'R n d'R = A : (rx, y) . D'12 = i'x . d'R = t'y :

011-54] = : D<12 n d'12 = A : (gar) . D'12 = t'x : (gy) . d'12 = t'y :

[*521] = : D'R a d'12 = A . D'R, d'R e 1 :. D h . Prop

*56 112. I- : R e 2r . = . D'12, d'R el.C'Re2

Bern.

h.*56111.*54-43.3

r- : R e 2r . = . D'R, d'R el . D'12 v d'12 e 2 .

03316] = . D'12, d'R e 1 . C'R e 2 : D t- . Prop

*56113. K2r = 2nC"2
Dem.

H . *56112K)1 . D f- : R e 2r . = . R e 2 . C'R e 2 .

[«37*106.«33-122] =.ReZ.ReC"2.

022-33] .
= . R e 2 n C"2 : D I- . Prop
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*56114. h.2r = £"ln<I"lnO"2 [*56-113102]

*56'12. \-:Re2r . = .R € 2.RQJ
Dem.

h.*55-3.*5011. >Y:x^y. = .xiyQ.J:

[Fact] "5\-:R = xly.x^y f = .R = xly.xlyGJ.
[*13193] = .R = x\y.R<iJ (1)

K(l).*lll 1-341. D
I- :. (a#, y) . R = x I y . x^y . = : (a#, y) . R = x I y . R G J:

[*1145] =i{^x,y).R = x\fyiRdJ:
[56-1] = :Re2.RGJ (2)

h . (2) . *5611 . D t- . Prop

*56121. K2r Gi [*56113]

*56122. H: JRe2r .D.a!i2 [*56121103]

*5613. h. 2-

2

r = R{(<&a).R = a 4 a}

I- . *5611 . *1152 . Transp . D

H:.R~e2r . = :R=sx^y . DXty .x = y (1)

f- . (1) . *561 . 3

h : . jB e 2 — 2r . = : (ga, 6) . i2 = a ^ & : R = « 4 y - ^*,» • #= y s

[#11 45] = : (ga, &):U = a4&:-S = #4y- 3<r,jf >x—y.
[*13'193] =:(<^a> b):R = aib:alb =xly.Dx>y .x= y:

[*55202] = :(ga,&): R-albza = x.b = y .DXt
y.x = y:

[*13'21] =i(fta,b).R = alb.a = b:

[*13-195] = : (ga) . £ = a I a :. D h . Prop

2 — 2r might be defined as the ordinal number 1, sinee it is what we shall

call a relation number (cf. #153). But we wish bur ordinal numbers to be

classes of serial relations, and such relations have the property of being con-

tained in diversity. Hence if we were to define 2 — 2r as the ordinal number

1, we should introduce a tiresome exception, from which trivial complications

would be introduced into ordinal arithmetic. We have, therefore, not adopted

this course.

#5614. r . D f(x 4>= 2 rs Ib'i'x

Dem.

f- . *33-6 .31-: D'R = t
fx. = .Re T>H'x (1)

h.(l).*561.D

h :. R e 2 n D'i'x . = : (%z,y) .R = ziy: D'R = i'x i

[#55*16] == :(Rz,y) rT>'R=: i'z .d'R = t'y :D'R=i'x i

[*ll-45] = : (a*, y) . D'R = i<z . d'R = i*y . D'R = t'x

:



380 PROLEGOMENA TO CARDINAL ARITHMETIC [PART II

[*13-193]

[*51-23]

[*13-195]

[*5516]

[*55-22]

(g«, y) . T>'R - i'z . d'R = i'y . i'z = t'x :

(g*,y) . D'i2 = t'.s. (Pi? = i'y.z = x:

(gy) . D<fl = i
lx . (F22 = t'y

:

i?€DV|):.Dh.Prop

«66'141. h . D'| x= 2 n d'l'ff [Proof as in *5614]

*5615. I- . D'(* I) - i\x 4, x) = %WV'i'x

Dem.

b . *5522 16 . D r :. R e {D<(# |)j - t'(a?
J,

a?)

.

(gy) .WR = t'x . d'R i'y:~(D'R= i'x.<l'R=i,'x)

(32/) . D'i2 = t'x . d'R = t'y . ~ (CI'12 = t'a?) :

(%y) . D'i* = i
lx . G'R = i

l

y . ~ (i'y = l'#) :

(gy> • P'-R = i'tc . d'R = i'y . « + y

:

(a*, y) • * + y D'^ = «'* • a'^ = t'y • D'.R = 1<X '•

(a*» y)- z *y- V'R = *'*
. <i'# = i<y : d^ = i<x -.

<—

JSe2r nD ft^:.Dh.Prop

h . D'(4 #) - i\x I x) = 2r ntl'i'tf [Proof as in *56*15]

f- .x^ye2

[*10-35.*4-51.*5-61]=

[*13193] =

[*51'23] =

[*13195.*5123] =

[*13-193] =

[*ll-45] =

[*55-16.*336] =

[*5611.*2233] =

*56151.

*5616.

Dem

*5617.

Dem.

*5618. b

Dem.

b . *21*2 .Oh .xly = xly .

[*11'36] Db .(^z,w).xly-zl w.

[*561] Dr.a^ye^.Dr.Prop

xly€2r . = .ylx€2r . = .x^y

K*5611.D
b :. x ^ y e 2r . = : (gz, w).^4:W ' ;:c 4y = '

2r 4 w:

[*55"202] = : (rz, w) .z^w .x = z .y —w:
[*13-22] =:x^y
Similarly

b:ylxe2r . = .x^y
K(l).(2).DKProp

x~e a . = . x
J,
"a C 2, . = . j x"a C 2r

h . *13'196. D h :.a;~e« .siyea.D^.yfa?:
[*56"17] =:yea.Dy .xlye2r

[*37-61.*38-1211] = : x I "a C 2,.

Similarly I- : x ~ e a . = . I x"a C 2r

b . (1) . (2) . D b . Prop

(1)

(2)

(1)

(2)
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*5619. V:Re%..xe
1D tR. = .{'gLy).x$y.R = xiy. = .Rex\

f
"-i (x

Bern.

\- .*5frll .*11 4,5 .Dt- :.

R

€ 2r .xeD'R . =:(Ry,z).yJrZ . R = y I z .xeV'R:

[*55'15] = :('^y,z).y^z.R = yiz.X€ity:

[#51-23] =:(fty,z).y$z.R = ylz.x= y:

[#13195] = :(%z).x±z.R = xiz: (1)

[#5115] ^-.(^.ze — l'x.R^x^z;
[*38-13] =-.RexX tf -i (x (2)

K(l).(2).Dr.Prop

#56191. h:Re2r .xe<I'R. = .(Ry).x$y.R = ylx. = .Relx"-<,tx

[Proof as in #5619]

#56*2. b:.Re2.=a:('&x
)
y):zRw.=ZtW .z = x.w= y [#55*13 . *56'1]

#56.21. \-:.Re2. = :^lR:xRy.zRw.DXtViZ>w .x= z.y=:w [#56'2.#14'124]

*5622. h . A ~e

2

[#56103 . #2553]

*56'24. h.a!2. a !-2 [#56-22-16 . *10'24]

*56'25. h.24=AnRel.2 + VnRel [#56-24 . #24-54-17]

#56-26. 1- :. Ret u t'A. = :xRy . zRw . D x,y,z,w x = z.y = w
This proposition is the analogue of #52-4.

Bern.

K #51236. DK::#e2vi'A.
= :.Re2.v.R = A:.

[*25'51] =:.Re2.v.~±lR:.
[*56'21] = :. a ! R : xRy . zRw .

~5
x

, y,z,v> -x = z

[#562] = :.xRy.zRw.'DXt yiZyW .x = z.y — w
h . #11-36 . Transp . D h :. ~ g ! R . D : ~{xRy) . ~ (*ftw) :

[#2'2-l] D : #JRt/ . D . a; = z : zRw .3 .y = w :

[*3-47] "2:xRy.zRw.D.x = z.y = w (2)

h. (2). #1111-3. Dh:.~a!i2.D:«%.^tf;.DariyiZ(W .^ = ^.y = w (3)

h . (1) . (3) . #4-72 . DKProp

#56261. h::Re2.D:.SGR. = :S = A.v.S = R
Bern.

h. #55-341.3 I- ::£=#
J,
yD:. SGR . = : S = A.v . S=R (1)

h . (1) . #1111:35 . #561 . D K Prop

#56262. \-:.Re2.-D:SGR.<&lS. = .S = R
Bern.

\-.*56-22.Db:.Re2.D:S=R.3.S$A (1)

l-.(l). #5-75. #56-261. D
h:.Re2.3:SGR.S^A. = .S=R (2)

I- . (2) . #2554 . D h . Prop

y=w:. vz.^qIR:.

v.^rIR (1)



382 PROLEGOMENA TO CARDINAL ARITHMETIC [EART II

#5627. h:.Re2.y-.<gilRnS. = >RnSe2
Dem.

h . #5534 . #2343 . D

\-:.B = xly.O:<&lRrxS. =.RnS=R.
[#56-16] D.RnSe2 (1)

h. #56-103. Dh:RnSe2. D.RlRnS (2)

l-.(l).(2). DI-:.^ = A-
>|,y.D:a!i2n.<?. = .i2n/Se2 (3)

h. (3). #1 111-35. #561. >r. Prop

*56'28. \-:.Re2.D:RlRnS. = .RGS. = .RfsS = R
Dem.

\-.*b5-3.1\-:.R = xly.D:<zlRnS. = .R<iS. (1)

[*23'621] =.RnS= R (2)

h . (1) . (2) . #1111-35 . #561 . D K . Prop

#56281. \-:.Re2r .D:'&lRnS. = .R<iS.~.RnS = R* = .RnS€2r

Dem.

I- . *56121 . D I- :. Hp . D : JR e 2 :

[#56-28] D:^lRnS. = .RQS. = .RnS^R (1)

K #1313 .31-:. Hp . 0:RnS = R.D.Rn8e2r :

[(1)] D:g!linS.D.JJnSe2r (2)

»-. #66-122. DH:JBA/8fe2r .D-a!Bnflf (3)

K(2).(3).DI-:.Hp.D:a!i2nS. = .i2ASe2r (4)

K(l).(4).DKProp

#56-29. h::P, Qe2.D:.PGQc/P. = :P = Q.v.PGi*

Dem.

K. #55-51. D
V :.x ^yQ.z Iwv R ."5:x{z ^w)y .v .x ),yQ.Ri

[#55*31] "D:xly =zlw.v.xly<ZR (1)

K(l). #1312.3

\-::.P = xly.3::Q = zlw.3:.PGQvR.0:P = Q.v.PGR (2)

K (2). #11-11-35. #561. D

H::.P € 2.D::Q = ^4w.D:.PGQc; JR.D:P = Q.v.PCi2 (3)

K (3). #11-1 1-3-35. #561.

l-::.P€2.D::Qe2.D:.PGQc; JR.D:P = Q.v.PGE (4)

h.*23-58-61.3l-:.P = Q.v.PG72:D.PGQc;i2 (5)

h . (4) . Imp . (5) . D H . Prop

#56-3. H:.P,Qe^.D:PGQ.= .P = Q. = .g[!PnQ

I- . *55-3-31 . D
h : x I y G z

J,
w . = . x I y = z \ w . = . g ! (# J, y) f\ (z I w) (!)
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K(1).*13'12.D

\-:.P = xly.Q = zlw.D:P(ZQ. = ;P = Q. = .zlPnQ (2)

r
. (2) . *11 1135 . *561 . 3 h . Prop

The steps from (2) to the conclusion are analogous to those from (2) of

#56*29 to the conclusion of #56*29. Analogous steps in succeeding proofs

will be merely indicated as above.

*56'31. b:.P, Qe2.D:P=j=Q. = .PnQ = A [*56*3 . Transp]

*56*32. h:Pe2.D.PnQ e2wM
Bern.

h .*56-27 . D h :. Hp. D : g ! Pn Q. D . PnQe2 :

[*2*54.*25*54] D : Pn Q= A. v.PnQ e 2 :

[*51*236] 3 : P n Q e 2 u t'A :. D h . Prop

*5633. \-::P,Qe2.D:.R(ZPuQ. = :R = A.v.R=P.v.R=Q.v.R=PuQ
Dew.

h . *55*5 . *1312 . D h :: P = # I y . Q= *
J,
w . D :.

-RGPeiQ. = :£ = A.v.P = P.v.# = Q.v.i2 =PoQ (1)

I- . (1) . *1111*35 . *561 . D I- . Prop

*56*34. H::P,Q 6 2.P=f=Q.D:.JSGPc;Q.a!E. JB4=Pc/Q.=: JR=P.v.i2 = Q

I- . *56*33 103 . *575 . *25*54 . D
h::P, Q 6 2.D:.i2GPc;Q.a!i?. = :P = P.v.i2 = Q.v.i? = PoQ (1)
K*23*62. Df-:P= PiyQ. = .QGP:
[*56*3] Dh:.P, Qe2.D:P= PvQ. = .P = Q:
[Transp] D : P+Q . D . P + Pc» Q:.

[*13*181] Dh:.P, Qe2.P$Q.3:R =P.3.R$PvQ (2)

f--(2)^|.3l-:.P,Q62.P=|=Q.D: JB = Q.D.i2 + Pc;Q (3)

H.(2).(3). D\-::P,Qe2.P$Q.D:.lt =P.v.R=Q:D.R$PvQ (4)
K(l).(4).*5*75.DKProp

*56 35. I- : C'R e 2 . R n 5 = A . D . # e 2,

H . *55*54 . D

r- :. «+ y .
C'P = i'xv I'y . R* R = A .2 : R = xly .v . R = y lx:

[*56*17] D:jRe2, (1)
I- . (1) . #11-1 1-35 . *54101 . D h . Prop
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#5636. \-:Re2r .D.C'Re2.RnR = k
Dem.

K*55-54.D

\-:x$y.R = xly.D.x$y.C'R = L'xvi<y.RnR = A (1)

K(l). #111134. #5611.:)

I- :. Re 2r . D : (rx, y) . x^y . C'R = i'x v t'y . R « R = A :

[#54101.#1 145] D : C'R e 2 . R n R = A :. D I- . Prop

The following proposition, in addition to being used in #56*38, is used in

the elementary theory of series (#204-463).

#5637. \-:R € 2r . = .C'Re2.RnR = A [*563536]

*5638. \-.2r = C"2rsR(RnR = A)

Dem.

K #37106.#33122. DHC'Ee 2. s.EeC"2 (1)

K#20'3. 3\-:RnR = A. = .ReR(Rf>R = A) (2)

h.(l).(2).*56-37. Dh:Re2r . = .ReC"2.ReR(RnR = A)

.

[*22'33] = . R eC"2 nli(RrxR = A): D KProp

This proposition is important as establishing the connection between the

cardinal and ordinal 2. It shows that the ordinal 2 consists of those asym-

metrical relations whose fields have (cardinal) 2 terms. It is used in the

theory of well-ordered series (#250-44).

The following proposition, in addition to being used in #5639, is used in

relation-arithmetic (#165 -

38) and in the theory of series (#205
-

4).

#56381. \-:C'R = i
tx. = .R^xlx

Dem.
I- . *3324161 . #51161 . D h : C'R = i'x . D . a ! D'R . D'R C i'x .

[*51-4] D. D'R ^ i'x (1)

Similarly h:C'R = i'x . D . d'R = i'x (2)

K(l).(2).*5516. Dh:C'R=L'x.D.R = xlx (3)

h . *55'15 . D I- : R = x I x . D . C'R = i'x (4)

h . (3) . (4) . D h . Prop

#56 39. V . 2 - 2r = C"\

h . *56'381 .Oh C" ft e I . = . (&x) . K = a;
J,

a;

.

[#56-13] =.i2e2-2, (1)

K (I). #37-106. DK Prop
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This proposition establishes the connection between 2 — 2r and 1, showing

that 2 — 2r is the class of those relations whose fields consist of a single term.

It is used in the discussion of r and 2r and 2 —

2

r as relation-numbers

(#153-301).

#56*4. h:./iCi.D:a!Jye/t.= .a!(s'/i)y

Dem.

h . #41-11 . D h :. Hp . D : a-(s*>) y . = . (&R) .ReZ.Rep. xRy .

[#56'1] = .(qz, w).z I W€fi.x{z^ w)y

.

[#55*13] = .(qz,w).zX we fi.z = x . w = y

.

[#13-22] =.xly € fi:.Dh.Prop

This proposition is the analogue of #53*23. It is used in the number on

exponentiation in relation-arithmetic (#176-19).

e&w i 25



SECTION B

SUB-CLASSES, SUB-RELATIONS, AND RELATIVE TYPES

Summary of Section B.

In this section, we consider first the classes contained in a given class and

the relations contained in a given relation. If a is any class, the classes con-

tained in a are the members of /8(/3 Ca); these are also called the sub-classes

of a, or (sometimes) the " parts " of a. In this last usage, they are called

"proper parts" when they are not coextensive with a, this phrase being formed

on the analogy of "proper fractions." The sub-classes of a are all the classes

that can be formed from members of a; they are the same thing as the

"combinations" of members of a taken any number at a time. If n is the

number of members of o, 2n is the number of sub-classes of a, whether n be

finite or infinite. The number of sub-classes of a is always greater than the

number of members of a. On account of these and other propositions, the

class of sub-classes of a given class is an important function of the class. If

the class is a, we denote the class of its sub-classes by "Cl'a." This is a

descriptive function, derived from the relation "CI," defined as follows:

Cl = £a{* = /§08Ca)} Df.

The sub-relations of a given relation are all the relations contained in the

given relation, i.e. all relations which imply the given relation for all possible

arguments. That is, if P is the given relation, R is a .sub-relation of P if

RdP. Thus denoting the class of sub-relations of P by "Rl'P," we are to

have

m<P = R(RGP);
hence we take as the definition of "Rl" the following:

m = \P{\ = R(RGP)} Df.

Sub-relations have properties analogous to those of sub-classes, but they are

of somewhat less importance. It should, however, be observed that when one

series is contained in another, i.e. is obtained by selecting some of the terms

of the other series without changing their order, then the generating relation

of the one series is a sub-relation of the generating relation of the other series.

(It is not the case that a sub-relation of the generating relation of a series

must generate a contained series, for its field may fall apart into detached

portions, or otherwise fail of being serial.)



SECTION B] SUB-CLASSES, SUB-BELATIONS, AND RELATIVE TYPES 387

We shall also consider in this section (#62) the relation of membership of

a class, i.e. the relation which x has to a when x e a. This relation bears the

same relation to "xea" as "7" bears to "x — y." Strictly speaking, we ought

to introduce a new notation for it, putting (say)

A=xa(xea) Df.

But as e, unlike "=," is a letter, and capable of being conveniently used

alone, it seems more desirable, from the point of view of avoiding unnecessary

duplication of symbols, to put

e — xa(xea) Df.

Strictly speaking, this definition is faulty, since it gives two different meanings

to "e." But practically this does not matter, since the above definition gives

h: xea. = . xea,

where the first e has the meaning just defined, while the second has the old

meaning. Thus all that is really required of the above definition, namely to

give a meaning to formulae in which e occurs without referent or relatum, is

effected without the danger of any confusion that could lead to errors.

The chief importance of e as a relation arises from the fact that relations

contained in e play a very important part in arithmetic. Take, for example,

the problem of selecting one term out of each member of a class of classes:

in this case we require a selecting relation R which is such that whenever

xRa, # is a member of a, i.e. such that R G e. (This condition is only part of

the definition of a selecting relation; the complete definition is given in #80.)

Three numbers in this section (#63, #64, #65) are devoted to the discussion

of relative types. Given a variable x, we often want to define the relative

types of other variables, or of ambiguous symbols, occurring in the same con-

text; that is, we wish to express the types of these other symbols in terms of

that of x. We use "t'x" for the type of x, "t £a" for the type in which a is con-

tained. Then t<fa = a u — a, t'x = i'x u — l'x = tji'x, and t
la = t

'Cl'a = Cl%'a.

Also we introduce a notation (#65) for giving typical definiteness, relatively

to x, to typically ambiguous symbols. This notation is very useful in cardinal

and ordinal arithmetic, since numbers are typically ambiguous, and the failure

to take account of this fact has led to the contradictions concerning the greatest

cardinal and the greatest ordinal.

25—2



*60. THE SUB-CLASSES OF A GIVEN CLASS

Summary of #60.

Our definitions in this number are as follows:

*6001. Cl = £a{/e = /9(/3Ca)} Df

This defines the relation to a class a of the class of all its sub-classes.

*6002. Clex = £«{*: = £09Ca.a!/3)} Df

This defines the relation to a class a of the class of all its existent sub-

classes, i.e. of all its sub-classes except A. This is often required, as, for

example^ in the statement of Zermelo's axiom: "Given any class a, there is

a relation R such that, if y8 is any existent sub-class of a, R'ft is a member

of /3," i.e.

"(rR) : /3 e CI ex'a , D
fi

.;R</3 e /3."

This axiom, or its equivalent the multiplicative axiom, plays (as will appear

hereafter) an important part as the hypothesis to many propositions in

cardinal arithmetic.

*6003. Cls2 = Cl'Cls Df

A Cls2
is a class whose members are classes.

*6004. Cls8 = Cl'Cls2 Df

A Cls3 is a class whose members are classes whose members are classes,

i.e. a Cls3 is a class of classes of classes.

Apart from propositions which merely embody the definitions, the most

useful propositions in this number are the following:

*60-3. KAeGFa
*60-32. h.Cl'A=VA

*60-34. h . a e Cl'a

*60-362. h.Cl'i'x^t'AvL'L'x

I.e. A and i'x are the only sub-classes of a unit class i'x,

*60-5. h.s'Cl'a = a

*60-57. K«CC1V*
*60*6. \-:xea.D.i'xeC\ex'a

The propositions of this number are chiefly useful in cardinal and ordinal

arithmetic, but uses also occur in the theory of series; hardly any uses occur

before cardinal arithmetic.
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#6001. Cl = £a{/e = £(/3Ca)} Df

#6002. Clex = £a{/e = /§08Ca.a!/3)} Df

#6003. Cls* = Cl<Cls Df

#6004. Cls3 = Cl'Cls2 Df

#601. I- :* CI a. = .* = /§ (£ C a) [#21-3 . (#60-01)]

#6011. h:/C Clexa. = ./c=/3(y3Ca.a! y8) [*2 1-3 .(#60-02)]

#6012. KCl'a = £(/3Ca) [*30'3 . #601]

#6013. K.Clex'a = /§09Ca.a!/3) [#30*3 . #6011]

#6014. KElCl'a [#6012 . #14-21]

#6015. KElClex'a [*60'13 . #14-21]

#60-2. H:/9eCl'a. = ./3Ca [#6012 . #20-33]

#60-21. h:/3eClex<a. = ./3Ca.a!/3 [*6013 . #20-33]

#60-22. h:/3eClex'a. = .#eCl<a.a!y8 [*60-2'21]

#60-23. h:/3eClex'a. = .y8eCl'a-t'A [#60-22 . #53*52]

#60-24. KClex'a=Cl'a-t'A [#6023 . #20-43]

#60-3. KAeCl'a [*2412 . #60-2]

#60-31. h.glCPa [#60*3 . #10*24]

#6032. h.Cl'A = t'A

Bern.

V . #60-2 . #2413 . D V : aeCl'A . = . a = A .

[#5115] H.aet'AOh.Prop

#60321. H:a = A. = .Cl'a = t'a

Dem.
H.*60-32. DI-:a = A.D.Cl'a = t<a (1)

H.*60-2.*5115.D

H:.Cl'a=i'a. = :£Ca.=0.£ = a:

[#101] D:ACa. = .A = a:

[#2412] D:A = a (2)

K (1) . (2) . D K Prop

#60-33. KClex'A = AnCls
We Avrite "An Cls" on the right, to indicate that the A concerned is of

higher type than the A on the left.

Dem.
h . #60-22-32 . D h : /3eCl ex'A . = . 0e l'A . g ! /3

.

[*51-15.*24-54] = ,£ =A.£+A (1)

K(l).*3-24.DK/3~eClex'A (2)

I- . (2) . #1011 . *2415 . D h . Prop
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*60-34. KaeCl'a [*22'42 . *60'2]

*60'35. l-:g!a.D.aeClex'a [*6022-34]

*60-36. hrgSa.D.glClex'a [*60"35 . *10"24]

*60361. h:a!a. = .g!Clex'a [*60-3633]

*60362. b.Cl'i'x^i'Ayji'i'x [*51-401 . *60'2]

*60'37. h.C\ex'i'x = i<i'x

Dem.
h . *60'21 . D h : /3 e CI ex'i'x .

~
. C i

lx . g; ! .

[*51-4] =.j3=i'x.

[*51-15] =
. /3 e t'i'tf : D h . Prop

*60371. Hael.D.Cl'aCOul
Dem.

\-
. *51'401 . D h : : a = i*x . D :. C a . = : = A . v . = i

lx :

[*54-102.*52-22] D : e . v . e 1 :

.

[*60-2.*22-34] D:.0€ Cl'a . D . e u 1 (1)

I- . (1) . #10-1 1-23'
. *52 1 . D h . Prop

*60 38, I- : a e 1 . = . CI ex'a = t'a

.Detw.

h . *60-37 . Dh:a = i*w.D.C\ ex'a = i'a

:

[*1011-23] D h : (gp) . a = i'x . 3 . CI ex'a = i'a :

[*521] DH:ael.D.Clex'a = .i'a (1)

h . *60'361 . *51161 . D f- : CI ex'a = i'a . D . g ! a (2)

h . *60-21 . *10'1 . D h :. CI ex'a = t'a . D : t'# C a . g ! i'x . = . t'# = a :

[*5M61] Du'aCo. = .i'tf= o:

[*51'2] D:#ea. = .t'#=a (3)

t- . (3) . *10 11-21281 . Dh:.Cl ex'a = t'a . D : g! a . = . (a*) . t'ar = a .

[*52-l] = . a e 1 :

[(2)] D:ael (4)

I- . (1) . (4) . D h . Prop

*60 39. \-
. Cl'(i'x u t'y) = t'A u i'i'x yj t'l'y v i'(t'# v t'y) [*54-4 . *602]

*60'391. h:ae2.D.Cl'aC0v,lu2 [*54-411 . *60'2]

This proposition is used in the theory of the continuity of functions

(*234-202).

*604. H:/3eCl'a.7C/3.D. 7 eCl'a [*60-2 . *22"44]

*60'41. V : e Cl'a .D.0nye Cl'a [*604 . *22'43]

The following proposition is used in the theory of well-ordered series

(*250'14).

*6042. l-:/3 6Cl<a.7C/3. a !7.D.7eC]ex'a [*604'22]
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*6043. H:& 7 eCl'a. = ./S^eCl'a [*22"59 . *60'2]

*60 44. I" : e Cl'a . 7 e CI ex'a . D . £ u 7 e CI ex'a [#60-43 . *24'56 . *60'22]

The following proposition is required in the theory of "first differences"

(#170-65).

#6045. H:peCl'(au£). = .(a7> 8).yeC\'a.&eC\'P .p = yv&

Dem.

V . #602 . #22-621-68 . D

r-:peCl'(av/3).D.p = (pna)u(pn/3) (!)

H . #602 . #2243 . D h . p n ae Cl'a . p n £ e Cl'/3 (2)

h.(l).(2).*10-24.D

h:peCl'(au/3).D.(a7 ,
S).7eCl'a.SeCl'/3.p = 7uS (3)

H.*60'2.D

l-:(a7^)-7eCl f«.S6Cl'/3.p = 7 w S.D.(a7;S).7Ca.8C^.p = 7wS.

[#2272] D.pCav£.

[•60-2] D.peCl'(au/3) (4)

I- . (3) . (4) .O H . Prop

#605. Ks'Cl'a = a

Dew.
l-.#4011.#60-2.Dh:a?ea'Cl'o. = .(a^)./8Ca.a?e/8. (1)

[#22-441] D.aea (2)

K*22'42. Oh:a?ea. D.aCa. a?ea.

[#10-24] D.(a£).£Ca.#e£.

[(1)] D.a?6«'Cl'a (3)

h.(2).(3).DH.Prop

#60501. Ks'Clex'a = a

Dew.

K*40-ll.*60-21.Dh:#es'Clex'a. = .(a/3).£Ca«l!/3.*e#~- (1)

[*22'441] O.aea (2)

h . #22-42 . Df-:#ea.D.aCa.#ea.
[*10'24.*24-5.*4-7] D .aCcc&la.xea.

[*10'24] D . (a/8) . /3 C a . a ! /3 . a e £ .

[(1)] D . a; e s'Cl ex'a (3)

r- . (2) . (3) . D h . Prop

The above proposition is used in the theory of cardinal multiplication

(#11517).

#6051. h.p'Cl'a= A [#40-22 . *60'3]

The following proposition is used in the cardinal theory of finite and

infinite (#124'541).

#60 52. r-:s'*C/3. = ./tCCl'/3 [#40-151 .*60'2]
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#60*53. h : £ Cp'x . = . £ e p'Cl"/c

Dem.
h. #40*15. #60*2. Dh ;. £ Cp'*. = : 7 e*.Dy . £ eCl'7 :

[*40;41.#6014] = :£e;>'Cl"A::. D I- . Prop

#6054. \-.C\'p'K=p'C\"le [#60*53-2]

#6055. H:Cl?a = Cl'£. = .a = £

K #30*37. #6014. D I- :a = £.D.Cl-a = Cl'# (l)

h . #3037 . D r : Cl'o = Cl'/3 . D . a'Cl'a= s'Cl'fi .

[*60-5] D.a= £ (2)

K(l).(2).DKProp

#60*56. H:Clex'a = Clex f
i
S. = .a = ^ [Proof as in #60*55]

The following proposition is used frequently.

#60*57. H . * C CIV*

Dem.
K #4013. #60*2. Dh:ae«.D.oeClV* (1)

I- . (1) . #10*11 . #22*1 . D I- . Prop

#60*6. \-:xea.D.i'a;eC\ex'a [#51*2*161 . #60*21]

The following proposition is used in connection with cardinal multiplication

and with greater and less (#1 15*17 and #117*66).

#60*61. (-
. t"a C CI ex'a [#37*61 . #51*12 .#60*6]

*60*62. h:x,yea.'D.i'a;vi'yeC\exla [*60*6*44]

#60*7. KCl'aeCls2

Dem.

>.#60^.DH:/8eCl'a. = .i8Ca.

[*22*l.*20*l-3] =.(&<!>,+). ci = z(<l>l2). = 2 (f I z).y}rla;Dx <l>la;.

[#105] D.(af).£ = 2(^!*).
[#20*4] D./3eCls (1)

r . (1 ) . #60*2 . (#60*03) . Z> H . Prop

#60-71. KCls3 = Cl'Cls [(#60-03)]

#60-72. h.Cls8 = Cl'Cls2 [(#60*04)]



*61. THE SUB-RELATIONS OF A GIVEN RELATION

Summary 0/46I.

The propositions of this number (except that *6r371'372'373 imperfectly

correspond to 46037 1) are the analogues of those with the same decimal part

in #60. Proofs are omitted, as they are exactly analogous to those in 460.

There are very few subsequent references to ^he propositions of this number.

*6101. R1 = AP{\ = P(PGP)} Df

46102. Rlex = AP{\ = #(PGP.a!P)} Df

46103. Rel2 = Rl'(Rel f Rel) Df

46104. Rel3 = Rl'(Rel2 tRel2
) Df

4611. r:XRlP. = .\ = P(J2GP)

46111. r : \R1 ex P. = .\ = P(PGP. a l.R)

46112. h.Rl'P = P(PGP)

46113. \-.mex'P = R(RGP.KlR)
46114. r . E ! Rl'P

46115. KESRI ex'P

4612. r:PeRl'P. = .PGP
46121. h : i2eRl ex'P.^.RGP. a !P
461-22. H : R eRlex'P . = . R eRl'P . a ! R
46123. h : R e Rl ex'P . .= . R e Rl'P - t'A

46124. h . Rl ex'P = Rl'P - t'A

4613. r. A e Rl'P

46131. H . a ! Rl'P

461-32. I- . Rl'A = t'A

461-321. h:P = A. = .Rl'P = t'P

461-33^. KRlex'A = AnRel
46134. KPeRl'P
46135. HgjlP.D.P eRlex'P

46136. r : a ! P . D . a ! Rl ex'P

461361. I- : a ! P . = . a ! Rl ex'P

461-362. KRl'(>4,y) = fc'A w'^y)
461*37. r . Rl ex'O I y) = i'{x I y)

461371. I- : R e 2 . D . Rl'P = t'A u t'JZ
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*61-372. h:#62.D.RKRC0r w2

*61373. r : R e 2r . D . UVR COr u 2,.

*61-38. H : R e 2 . = . Rl ex'E = t'E

*6139. V . Rl'O ^ y vy s
J,
w) = t'A u i'(a; I y) \j i\z |w)u i

l(x ^ y w z I w)

*61'391. h : P, Q e 2 . D . R1'(P vQ) = l'A w t'P u i'Q sj t'(P c; Q)

*61-4. \-:Q e m'P.RGQ.D.Ren\'P
*61-41. h-QeRl'P.D.Q/SiZeRl'P

*61'42. h-.Qe Rl'P .RGQ.ftlR.'D.Remex'P
*61'43. h:Q, JReRl'P. = .Qe/E e Rl'P

*61-44. h:QeRl'P.12eRlex<P.D.Qc/i2eRlex<P

*61-5. h . s'Rl'P = P
«61-601. H . s'Rl ex'P = P
*61-51. h.p'Rl'P = A
*61-52. hs'XGQ.E.XC Rl'Q

*6153. h : Q G p'\ . == . Q e jp'Rl"\.

*61-54. l-.Rl*p'X=jp'Rl"\

*61'55. H.R1'P = R1'Q. = .P = Q
*61-56. H . Rl ex'P = Rl ex'Q . = . P = Q
*61'6. h : «Py . D . a? 4 y e Rl ex'P

The analogue of #60*61 is not given, because we have no suitable notation

for expressing it.

*61'62. I- : xPy . zPw . D .ac \,y vy z ^w e Rl ex'P

*617. h . Rl'P e Cl'Rel



*62. THE RELATION OF MEMBERSHIP OF A CLASS

Suminary o/#62.

When "x e a" was denned, in #20, it was defined as a propositional

function; and this mode of definition was necessary, because we had to treat

of this function before treating of relations. But for many purposes it is

desirable to regard e as a relation, so that "x e a" becomes an instance of the

notation "uRv." This requires, strictly speaking, a change in the meaning of

"x e a," but it is a change which does not falsify any of the previous propositions

in which "x e a" occurs ; for if we call the new meaning "x e' a," i.e. if we put

e'=xa{xea) Df,

we have V : x e a . = . x e a.

Hence it is unnecessary in practice to have a new notation for the new

meaning, and we put simply
e=<Kci(x e a.) Df.

This definition, though strictly incorrect, is recommended by its convenience,

and by the fact that it cannot lead to any harmful confusions. The new

meaning of e may be taken as replacing the old throughout the remainder of

this work.

The uses of the propositions of the present number occur almost ex-

clusively in the theory of selections from a class of classes (#83, #84, #85 and

#88). Such selections are effected by means of selective relations, part of

whose definition is that they are contained in e. Hence the uses of the present

number. If tc is the class of classes from which a selection is to be made, a

selective relation will in fact be contained in e f k; hence the properties of e [ k

become important. Some of these properties are given in *62*4 ff.

The most important propositions of the present number are the following:

—

*

*62-2. h . e 'a = a

*62'231...h :KCa'6. = .A~e«

*62'26. \-.R = e\~R

*62'3. h . e"/c = s'k

*62*42. b: A^e k .D .d'e[K = k

*62'43. \-.~D'e\-K = s'/c

#62-55. r-:/cCl.D.ef*=iP*
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*6201. e= Zca(ccea) Df

.$621. \--.xea. = .x € a [*213 . (*62 01)]

In the above proposition, the first e has the newly-defined meaning, while

the second has the old meaning. In virtue of the above proposition, the new
meaning may be substituted for the old in all propositions hitherto proved

concerning e, and may take the place of the old meaning in all that follows.

—

>

*62'2. Ke'a = a

Dem.

K*32-13.DKe'a = £(>ea)

[*20-42] = a.Dh.Prop

*6221. h.V^ = a(«ea) [*32131]

Thus e'sc consists of tb.e classes of which # is a member.

*6222. h.D'e = V

Dem.
K*24\L04.Dh.(».#eV.
[*10-24] 0\-:(x):(^a).xea:

[*33-13] Dh.(».#eD'e:

[*2414] Dh.D f
e = V

*6223. K(Fe = Cls-t<A

Dem.
H . *53'5 . D h : aeCls- t'A . = . g ! a

.

[*33'131] = .aeCFe:DKProp

*62231. h:/cCa'6. = .A~e« [*24'63 . *33'131]

$62-24. k e|e=V

Dem.
h . *24104 . *ll-57 . D h . {x, y) . x e V . y e V .

03111] D 1- . (x, y) . x eV . V e y .

010-24] D h : (x, y) : (ga) . x e a . a e y :

034-1] D h : (x, y) : x e
|
e y :

025-14] DKe|e=t

*6225. h («"/?)}

Dem.

I- . *341 . *31 -11 . D I- : a (e
|
e) /3 . = . (ftx) .xea.xefi.

022-33] = . a ! (a n £) : D I- . Prop
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#6226. h . R = e
|
R

Dem.

h . #3218 . D h : xRy . = .xeR'y.

[*30-33.*321 2]
= . (g«) . x e a . <xRy .

[#341] = . x(e \R)

y

: D h . Prop

#623. \-.€ ((k = s'k

Dem.
H . #371 . D h . e"« = £ {(go) .06«.«eo}

[(*40'02)] = s<« . D H . Prop

#6231. > . e
2 '* = s'/e

Note that, since e is not a homogeneous relation, i.e. not one in which
referent and relatum belgng to the same type, e

2
is strictly meaningless.

For if we have x e a . a e k, the two e's have different meanings, and do not

therefore properly give xe^K-. But it is convenient to allow e2, on the under-

standing that the ambiguity of e is to be differently determined for the two
factors in the product e| e, namely the second e must make both referent and
relatum belong to the next type above that to which they respectively belong

for the first e.

Dem.

h . #3213 . h . €
ztK = x(xe2

/c)

[#345] =£{(aa).#ea.ae#}

[(*40'02)] = s'k

#6232. Ks = ee = e
2 [*30'41 .*62-3-31 . #37 1.1 J

#6233. r-.T^JfCls

Dem.

h . #62-2 . #30-3 . D V : £ e a .
=

fi
. = a .

[#20-41] =p.,8 = a.aeCh.
[#501.#35101] =

p . (If Cls) a : D r- . Prop

The use of #20-41 in the above proof depends upon the fact that a is

merely an abbreviation for an expression of the form ^(^z).

#62-34. KPe = sg'(P|e)

Dem.

h . #37-101 . (#37-01) .31-:. aPe /3 .=:«=£ {(ay) . y ej3 . xPy)

[#341] =%{x(P\e)/3}:

[#321-23] =:a{sg'(P|e)}/3:.DI-.Prop
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#624. b.efic = xa(xea.aetc) [#21*2 . (#35-02)]

The relation ef k is very important in cardinal arithmetic, in connection

with the problem of selection from the members of k, i.e. of extracting one

term out of each of the members of tc. A relation which is to effect this

selection must be contained in e [ k.

*6241. Y.a<e\K = K-i<A
" Dem.

\- . #35101 . D h : x(e[ k) a . = . x e o . a e k :

[#1011-281] D H :. fax) . x (e \ tc) a . = : fax) . x e a . a e k :

[#10-35] = : fax) .xeaiaetc:

[#24*5] = : 3 ! a . a e /c

:

[#53*52] =:ae/c-i'A (1)

K(l). #33-131. Dh. Prop

*62'42. h:A~6/e.D.a'e !"«; = «

Dew.
h . #51-36 . D H : Hp . D .«: C - t'A

.

[#22-621] D.* = /e-fc'A.

[#62-41] D . d'e T « = k : D H . Prop

#6243. KD'e fK = sSe

Dem.
h .#3311 .Dr- .D'ef ,c = ti{faa) .x(€ [ *)a}

[#35-101] = x{faa).xea.ae/c}

[(#40-02)] = s'k . D H . Prop

#62-44. I- : R G e . = . (a) . R'a C a

Dew.
H . #231 . D H :. jB G e . = : #lta . D^ a . x e a :

—

>

[#32-18] =:iB6iJ (a.D,]e .a;e«:

[*ll-2.*22-l] =:(a).^oCo:.Dh. Prop

#62-45. h :. R G e . E !! R"<I<R . = : a e CPtf . Da . #<a e a

Dem.

h. #14-21. #4-71. Dh:.i2<a€a. = :E!i2<a.l2<aea:

[*30-33.*5-32] = :E!.R'a:a:.Ka.Da;
.tfea (1)

I- . (1) . #10-413 . D I- : : « e d'R . Da . R'a e a : = :.

a e a'ii . Da : E ! i£<a : #ifa .D.^eo:.

[*10-29.*ll-62] = :. a e d'R . Da . E I R'a : a e CPE . a£a . D«, * . * e a :

.

[*33-14.*4-7l] =:.ae(I'R.Da .ElR<a:xRa.DatX .xea:.

[*37-104.*ll-2] = :. E !! R«a'R .Rde-.zDb. Prop

This proposition is useful in the theory of selections. It is used in the

proof of #83-27, and thence of #83-28.
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#625. I- . i G e

Bern. Y . #33 21 . #62-13 .OH. (Tt = 1

.

[#52-1 73] 3 h : a e d'i\ 3« . t'a e a :

[#62-45] D h . Tg e

#6251. h:E!7'a.3.t'a = e'a

Dm. H .#5215-172 . 3 H :. Hp . 3 : t't^a:

[#51-15] D:«=t'a.=a..fl5ea:

[#303] 3 : T'a = e'a : . 3 K Prop

#6252. h:E!e'a. = .ael. = .E!tV
Dem. h. #30-2. 3 h:.E!e'a. = :(g&):#ea. =*.# = &:

[#5211] =:ael:

[#52-15] = :E!t'a:.3KProp

#62-53. HESe'aO.e'a^'a [#62-51-52]

#6254. h : a e 1 . 3 . e'a =^'a [*62*51*52]

#62-55. h:/e.C1.3'.ef
k

ic= 7f
k

*

Dem. V . #6254 . 3 V :. Hp . 3 : a e/c . 3a . e'a = t'a :

[#35-71] 3:ef/c=Tr*:3KProp

#62-56. h.e|
k
t"a = i'|

k
t"a = a1t

.Dew.

I- . #52-3 . #62-55 . 3 b . e f i"a = If t"a

I- . #35-101 . #37-6 . 3 I- :. x (t \ t"a) /8 .
=

[#51-51] =

[#10-35] =

[#13193] =

[#51-23] =

[#13195] =

[#51-51] =

[#351] =

r.(l).(2).3h.Prop

#62-57. h . T= € |" 1

Dem. h. #62-55. 3 h. 6^1=^1

[#5213] =1\QH

[#35-452] =t.3h.Prop

(1)

xip'-(w) -v,ea £=*'»'••

= i
tx:(>&y).yea.p = i<y:

(3#) • = i
tx.yea.i tx=t ty:

(fty).& = i'x.yea.x = y:

j3 = i
lx . x e a :

xifi .xea:

as (ail) (2)



*63. RELATIVE TYPES OF CLASSES

Summary of #63.

The notations introduced in this and the two following numbers serve to

express the type of one variable in terms of the type of another. They are

very useful in arithmetic, where it is necessary to take account of types in

order to avoid contradictions. The two chief notations are "t 'a," for the

type in which a is contained, and "t'x" for the type of which a; is a member.

We put

#6302. <o
(a = au-« Df

This defines "the type of members of a," or "the type which is of the

same type as a." The characteristic of^ a type is that if t is a type, we have

(a?) .xer,

and conversely, if (x) . x e t, then r is a type. For in that case, "x e t" is true

whenever it is significant, i.e. whenever x belongs to the type which is the

range of significance of a; in "xer." Consequently t is this range of signifi-

cance, i.e. is a type.

Since we have (x) . x e (a u — a), it follows that a u —'a is a type. It is

not "the type of a" but "the type of the members of a." (In case a is null,

"the type of the members of a" may be interpreted as meaning "the type to

which x belongs when *xe a' is significant.") "The type of a?," i.e. the type of

which a; is a member, is defined as follows:

#6301. t'x = v'x w - i
lx Df

By what was said above, "t 'i'x" is the type of the members of t'x, i.e. the

type of x. By combining the definitions of t'x and t 'a, we obtain

h . t'x = to'i'x.

Thus H . x € t'x and h : y =f=
x . D . y e t'x.

In short, t'x consists of everything either identical or not identical with x>

that is, every y for which there is such a proposition, whether true or false,

as "y = x." We put "t'x" here instead of "t'a," because x need not be a class,

and is in fact subject to no limitation whatever, whereas "t 'x" is not signi-

ficant unless a? is a class, and therefore we write "t 'ot" rather than %'«?."

We put also

*63011. t
1'x = t'x Df

This definition serves merely to bring t'x notationally into line with t 'x

and the types P'x, t
3tx,

.

. . t2'x, t3'x, . . . defined below.

In virtue of #20*8, we have

h:^)«v~^a.D.^ (<£# v ~ <j>x) = t'a,
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i.e. if "<f>a" is significant, then the range of significance of the function <f>z is

the type of a. It follows that two ranges of significance which overlap are

identical, and two different ranges of significance have no member in common.

It will be seen that i
lx is always of the next type above that of x, and s

1k

(if k is a class of classes) is of the next type below that of k. We put

*6303. tfic^to's'K Df

so that t^K is the type next below that in which k is contained. Thus if k is

a class of classes of individuals, t^x is the class of individuals. We put also

*6304. t*'x = t<t'x Df

*63041. V'x = t'P'x Df and so on

*6305. U'k^Wk Df

*63 051. t3
lK = tftfic Df and so on

Thus given any two objects which are members of any one of the follow-

ing: the type of x, the type of the classes to which x belongs, the type of the

classes to which these classes belong, and so on, we can express the type of

either of our two objects by means of its relation to the other object.

The propositions of this and the two following numbers will hardly ever

be used until we come to cardinal arithmetic. They are used constantly in

the first section on cardinal arithmetic, and they are constantly relevant in

the first section on relation-arithmetic. Moreover they are usually required for

cardinal and ordinal existence-theorems.

Among the most useful propositions of the present number are the

following:

*63 103. h . x e t'x

*63105. h.aO 'a

*6311. \-:xet 'a.D.ttx = a\J-a = t 'ct

I.e. if x either is or is not a member of a, then the type of x is the type
which contains a. This proposition uses *20-8.

*6313. h : <f>x .
(f>y

. D . y e t
lx

I.e. if there is any function satisfied by both x and y, then y is of the type
of x. It is necessary to the use of this proposition that, if <j>z is a typically

ambiguous function, it should receive the same typical determination for x and
for y. For example, we have always x = x and y = y; but we must not regard

these as values of one function 2 = 2, because such a function is typically

ambiguous. On the other hand, x = a and y = a are values of one function

z= a, because here the presence of a renders the function typically determinate.

*6315. \-.t 't'x= t'x

*6319. I- . t'to'a = t'a

B&w I 26
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#6316. b:xet'y. = .yet'x. = .Rlt'xr\t'y. = .t'x= t'y

This proposition, which depends upon #63*11, and thence upon #20*8 and

*13'3, and thence upon #91415, is vital to the whole theory of types.

#63*32. \-.t1
fK = s%'/c

#63-371. b:/3Ct <a. = .l3et'a

#63383. b . t%'/c = to
fK

We shall have generally t»*V"ic — t
m+n(K, where we may count suffixes as

^negative indices, so that t
m%'ic = t"^niK or t^mfK according as m or n is the

greater.

#63-5. b : x € t 'ct . = . a e t*'x . = . a C t'x . = . t'oc = t 'a

This proposition is used constantly.

#63-51. I- : a e

t

'/e . = . aCtfie . = . tcCt'a .= . t'a = t '/c

#63-52. b : aetfX . = . aC ta
'\ . = . \Ct*'a. = . t'a^t^'X . = . V'a^U'X

#63*53. H : * € t 'a = *
2'# = #<*.= . t'x = V«

The above fourpropositions, togetherwith four similarones(*63-54-55-56-57),

give transformations which enable us to express any relation of type, as be-

tween class and members or members of members or etc., that is likely to

occur in practice.

#63-64. b.t'p = t 'i"$

This proposition is often used in the first section on cardinal arithmetic.

#63-66. b.C\'t'x = t*x

#6301. t'x = i'xv- t'x Df

#63-011. t
ux= t'x Df

#63*02. Ca = aw-« Df

#6303. Kk^Ws'k Df

#63-04. t*'x = t't'x Df

#63041. t
3'x= t't*'x Df

#63-05. U'ic = tx%'K Df

#63051. U'k^W* Df

#631. b.(x).xet 'a [#22-88]

#63101. b . t'x = to'i'x = i'xv- i'x [#20-2
.
(#6301-02)]

#63102. b.{y).yet'x [#63-1101]

#63103. b.xet'x [#63101 . #51-16]

#63104. b:<f>x.~<f>y.0.yet'x [#63101 . #1314]

#63105. h.aC^a [#2258]

#63106. b.t 'a = t '-a [#228]
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*63107. h :.(*). 4>x :f(<f>y) : D . <j>y

Bern.

h . *2 11 . *1011 . OK <y) ./(&/) v ~/(<^) (1)

*- . (1) . *10'13-221 . D I- :.<*) .^ . D : $y ./(&,) v ~/(<fa)

:

[*51] D : *y . = ./(^) v -/(&,)

:

[*2'2] D :/(</,y) . D .
<f>y

:. D h . Prop

*63 108. I- :/(y e t
lx) .D.yet'x [*63-107102]

*63 109. I- :/(y e C«) .3.yet 'a [*631071]

*6311. bzxet6'a.'2.t'x = a\J-a = t 'a

Dem.

h . *2234 .<*63'02) .D I- :. Hp . D : #ea . v . sc~ea :

[*20'8] D :§(y€a. v .y ~ea) = #(y— #. v . y=|=^) :

[*22-331.*5115] D:ou-«=((«u>6 (1)

> . (1) . (*63'0102) .31-. Prop

*63"12. H :. ^>a? v ~ fyx , 3 :
<f>y

v **>
(f>y

.
=
y . y e t'x

Dem.

1-
. *631 1 . *20-8 . D h :. Hp . D : t

(x= 2 (0s) u - £ (£*) :

[*20-31.*22-391'392] D : y e *<# . =
, . 0y v ~

<f>y :. D H . Prop

*6313. hifa.fy.O.yet'x [*6M2 . Imp . Add]

*63 14. I- : («) . x e a .D . *„<« = a [*2414\L7-24 . (*63"02)]

*6315. I- . %Hlx = t'x [*6314102]

*63151. K* %'* = V« [*63*141]

*63152. V.xetfVx [*6310315]

*6316. V M.xe?y m = .ye#a!. = .'£\tfixf\1?y. = .t
,
a: = t

t

y
Dem.

i-.*63-101.*51'23.3hzxet<y. = .yet'x (1)

K*63\L3. Oh-.i^.zet'x.zet'y.D.yet'x (2)

H . *63103 .Ohzyet'x.'D.yet'x.yet'y.

[*10'24] "D.ftlt'xnt'y (3)

K(2).(3). Dhzyet'x.E-.nlt'xnt'y (4)

\-.*63'103.'2t-:ttx = t
cy.D.yetfx (5)

h.*6313. DH:yd'a;.^e^.D^€^ (6)

h.*63-13. ^hzxefy.zet'y.D.zet'x:

[(1)] DH :#€*'#. seJ'y.D.seJ'a; (7)

K(6).(7). DI-:.ye^a;.D:^€i'a;. = .^e^2/ (8)
K(o).(8). 2\-:.y € t'x. = .tix = t'y (9)

K(l).(4).(9).DKProp

26—2
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*6317. h-.yet'x.zet'y.D.zet'x [#63*16]

#6318. h . a ! t 'a [#1025 . #631]

#63181. h : a C U'P .s.j8C £„'« • = 3 ' *«>'« « <o'/9 .
= . * <a = V£

Dem.

I- . #63-105 . Dh:4'a= C/3 . D . a C C/3 (1)

h.*24-6. Dh:.«CC/3.3:a = i„')8.v.a!^-a ( 2)

1-. #63151. Dh:a = V/8.D.C« =W (3)

h . #63-11 . D I- : a? e C/9 . * e - a . D . *'ar = t '/3 . t'x = tQ'-a.

[#63106] D.t 'a = t '/3 (4)

I- . (2) . (3) . (4) . D h : a C * </3 . D . C« = t '/3 (5)

K (1)
.
(5) . D h : aCto',8 . = . U'* = U'P (6)

K(6)^|. D\-i0Cto
ta. = .t,'a = to

t
/3 (7)

K #6311. D\-:x€t 'ccnt '/3.D.t'x = t 'cc.t'x = t '/3.

[#13171] D.* 'a = C/3 (8)

h. #63-18. Dh:Va = C/3.D.a!« '««C^ (9)

K (8) . (9) . D h : g ! C« « * '/8 . = . to'a = t '/3 (10)

K(6).(7).(10).DKProp

#63-182. H : a C C/3 • P C C7 3 • « C C7 [*63'181]

#6319. I- . t%'a = t'a

Dem.
V . #63-105 . #22-42 . D I- . a C *„'« . C« C Ca .

[#63-13] D\-.ocet't 'a.

[#63-16] D I- . Prop

#63-191. V.to'aet'a [#63-103-19]

#63-2. H : x e t 'a . a e t 'ie . D . t
2tx = t'a = U'k

Bern.

h. #63-11. Dh:Hp.D.t'«=<o'a.«'o = C* (1)

V . (1) . #6319 . (#63-04) . D H : Hp . D . V'x = £'a = *V* : D h . Prop

#6321. H : a C t'x . = . C« = t'x

Dem.
V . #63-181-15 . D I- : a G t'x . = . t 'a = t 't'x

[*63'1 5

J

= $'<•;: D K Prop

#63*22. h:«C^. = .aeC«. = .«'« = * '«

h. #63-103. D\-:t'x = t 'a.D.xet 'a (1)

h.(l).#63 ,11.3l-:a;€<o'o. = .*'aj = e 'o (2)

h . (2) . #63-21 . D h . Prop
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*6323. t-:aCt'x.KCt'a.D.t2
'a; = t<a = t 'K [*63-2'22]

Propositions of the same kind as the above can obviously be extended to

t
3
'x, etc.

*633. H : (a) . a e k . D . (x) . x e s'k

Dem.
h . *101 .DHrHp.D.Ve*.
[*40'221] D.s'k=V.

[*24'14] D .(x). x e s'k : D h . Prop

*63 31. H . s'(k v-k) = s'k\j- s'k

Dem.

K#40-171. D\-:.xes l(Kyj-K). = :xes lK.y .xes* -k (1)

h . (1) . *22-88 . *63-3 . D h : xcs'k . v .xes' -k (2)

h.*22-88. 1\-:xes'K.v .xe- s'k (3)

h.(2).(3).*10-221'13.D

h :. xcs'k .v .xes' — k zxcs'k . v .xe — s'k :.

[(1).*5\L] Dh:.a?e*'(*w-*). = :a?e*'#c. v.*e-s'*:. 3 h . Prop

Note that the use of #10-221 in the above proof depends upon the fact

that x € s'k occurs both in (2) and in (3), so that these are both of the form

f(x € S'k).

*63 32. h . U'k = s%'k [*63-31 . (*63-02'03)]

*63-321. I- . tx'K = UX'k = t %'K

Dem.
h . *2 0-2 . (*63-03) . D h . ^%'k = t 's% lK

[*63-32] =U%'k (1)

[*20-2.(*63'03)] = t %'s'K

[*63-151] =t 's'K

[*20-2.(*63-03)] =t1'K (2)

I- . (1) . (2) . D h . Prop

*63 33. h : t 'K = t 'X . D . U'k = tx
'\ [*30*37 . *G3-:32]

*63 34. V . U't'a = t 'a = s't'a

Dem.
h . *63-32 . D h . tft'a = s'tQ't'a

[*63-15] = s't'a (1)

[*63-101] = s'(i'a u - I'd)

[*63-31] =s'i'ayj-s'i'a

[*53-02] = a u - a

[(*63-02)] = * 'a (2)

K(l).(2).DKProp
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#6335. h:t'a = t'j3.y.t
(j'oL = ti)'l3 [#30*37 . #63-34]

#6336. h:t'K = t'\.3.t1 <K = t1
'\ [*63'35-33]

#63-361. \-:t 'a=t '/3.
,

5.t<a = t</3 [*30-37 . #63-19]

#6337. H:Ca=W. = .«'a =^ [#63-35-361]

#63 371. V:pQt<<OL. = .$et'a

Dem.
V . #63181 . D I- : /3 C t 'a . s . t 'a = t '/3

.

[#63-37] =.t'a = t'l3.

[#63-16] s./SeJ'aOh.Prop

#6338. hiae^.ic^/a.D. t'a? = £ <a = */*

.Dem.

K. #63-11. Dh:Hp.D.^ = Ca.^a = V/f (1)

I- . (1) . #63-34 . D b : Hp . 3 . t 'a = ^V*
[#63-151-33] =t1 'te (2)

r.(l).(2).>KProp

#63-381. \-:x€t1

'K .D.t'x=t1 'K

Dern.

r- . #63-38-105 . 3h:aet '/e.xea.D~. t'x =^ :

[*10-ll-23.*40-ll] D h : xes%<K . D . *'# = */* (1)

H . (1) . #63-32 . D h. Prop

#63-382. Kg!*/* [#63-18 ; (#63-03)]

#63-383. KiV* = C*
Dem.

h . #63-38-18 . #10-11-23-35 . D H : a e C* 3 . t%'K = *%<«

[#63-19] =t'a

[*63-ll] = *„<* (1)

h . (1) . #10-11-23 . #63-18 . D h . Prop

#63-384. \-:t1

'K = t1
(\.3.t 'fc = t '\.t'K = t'\ [*63'383-37]

#63-39. r- : tSic = t.'X . = . t
fK = U'X . = .t'tc = t'X [*63-33-384-37]

#63-391. I- : t'x = t'y . = . t
2'x = t

2'y

Dem.
I- . #63-39 . D h : t

2'x = t*'y . = . U't'x = ftt'y .

[#63-1 5] = . t'x == t'y : D I- . Prop

*63-392. h : tftc = t2'\ . = . t*K = t.'X . = . t '/c = t 'X

Dem.
\-

. #63-39 . D I- : t2'/c = t2'X . = . t % (
tc = t %'X .

[#63-321] =.t1

'K = t1 'X (1)

h . (1) . #63-39 . D h . Prop
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*63'4. \-:aetQ
tK.ic6t '\.'2.to

ta = t1'K = t2
'\

Dem.
b . *63-38-18 . D b : Hp . D . t 'a = t^x . t 'fc = tfX

.

[*30-37.(*63-05)] D . t 'a = tx'ic . ^%'k = t2
'\

.

[*63-321] D . t 'a = t^tc . tfic = tf\ : D b . Prop

*6341. b.t%'\ = t1
<\

Dem.
b . *63-4-18 . *10-11'23'35 . D I- : k e t '\ . D . t%'\ = t% fK

[*63'383] =to'K

[*63'38-18.*10-ll-23-35] = */X (1)

h . (1) . *63 18 .Db. Prop

*6342. \-.t*%'\ = t<<\ [*30-37 . *63*41-383]

*6343. b .tfV'x^Vx [*63'3415]

*6344. h.^'a = <o'« [*63-43'34]

It is obvious that the analogues of the above propositions will hold for

t
3 and ts, V and ti} etc. We shall not prove these analogues, but if occasion

arises we shall assume them, referring to the corresponding propositions for

& and t2 .

*63 5, I- : x e t 'a . = . a e t*'x . = . a C t
lx . = . t'x = t 'a.

Dem.
b . *63-15 .Dh:aC^. = .aC %'t'x

.

[*63-371] =.aet*(x (1)

b . (1) . *63*22 . D b . Prop

*63'51. b'.d€t 'K. = .a.Ct1'K. = .KCtla. = '.t
ia=zth

tK

Dem.
b . *4-2 . (*6303.) . D b : a C V* - s . a C £ V*

.

[*63'371-19] =.aet%<s'K.

[*4'2.(*63-03)] =.aet%'K.

[*63'383] =.aetQ
'K (1)

b . (1) . *63-5-22 . D b . Prop

*63'52. Hioe^.s.aC^.s.XC *
2'a . = . *'a= */X . = .f'a = t '\

Dem.

b . *63-51— . (*63-03) . D

bzaet^X. E.aC^'s'X.

[*63-321] = . a C ^%'**>< •

[(*63-03'05)] =.aC*2
'\ (1)
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r . #63321 . D
h : a e tx

'\ . = . a e t %'\ .

[#63*22] =.tla = t % f\

[#63-321] =^'\. (2)

[*63-391-41-42] = . Vol = V* (3)

[*6315-181] =.\Ci '«w«.

[#631 5] = .\02<a (4)

r
.
(1) . (2) . (3) . (4) . D r . Prop

#6353. h : x e tfa . = . t
2'x = t'a. = . t'x = £ '«

Dem.
\- . #3037 . D h : t*'x = tf'a . D . tx't

2'x = tx 't'a .

[*63-43'34] ?.t'x= t 'a (.1)

h . #6319 .DF:^ = C«.3- *
2'# = *'a (2)

h . (1) . (2) . *63-5 . D H . Prop

#6354. h : a e «/* . = . tja = tx'/c . = .t'a = U'k . = . t
ila = t'tc

Dem.
f- . #30-37 . D h : £'a = £ '* • 3 tft'a =Wk .

[#63-34-321] . D.to'a-^h'K (1)

H . *30'37 . D I- : t
la = tx

lK . D . W« = t%*K

.

[#63-19-383] D . t'a = t
'K (2)

r
.
(1) . (2) . #63-51-53 . D h . Prop

#63 55. h : « e £ '\ . = . */* = t2
'\ . = . U(k = tx

'\ . = . t
l
ic = t '\ . = . V'k = t'X

[Proof as in #63'54]

#63 56. \-:xet1'/c.
= .t (x = t1'K. = .t2'x = t 'K

Dem.
b . #63-321 . D h : x e tx

lK .= .xe t 'tx '/c .

[#63*53] =.f- tx=t% iK (1)

[#63-383] = V« (2)

h . (1) . #6353 . D I- : x e tx
lK . = . t'x = «/*/*

[#63-321] = tfK (3)

h . (2) . (3) . D h . Prop

#63-57. I- : a e tx
'\

. = . * 'a = ^A • = . *'a = *A - = t*'a = <o*X

[Proof as in #63-56]

#63-61. h . £
2<# = t'i'ac [#63-19-101]

#63-62. h:xe t 'a . D . t'x e £'a . £*Va; = £'a

Dem.
K #63-53.3 hiHp.D.*2'^ =t (a.

[#63-61] 3.t'i'x = t
ta.

[#63-16] D.i'xet'a-.Dh. Prop
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#63621. r- :xea .D .I'xet'a .t
li'x = t'a [*63'62 . #63105]

#63 63. I-

:

x e to'a . D . 1'1'x e t*'a . t'i'i'x = t
2ta

Bern.
\- . *63-101 . D I- . tH'x = tji'i'x .

[*63-62] D h : Hp . D . *'a = Vi'i'a; •

[#63-19] D.t2'a = t'L'i'x (1)

I- . (1) . #63103 . D h . Prop

#63-64. I- . t'/3 = t <i"0

Dem.
h. #51 -16. #37-62.

h : a? e /3 . 7> .xei'x ,i lxe t"#

.

[#63-105-38] D . a; e tji'x . U'l'x = V*"£

.

[#13-13] O.xet^l"^ (1)

h. (1). #63-51. Dh. Prop

#63-65. I- . Cl%'a = fa [*63'371 . #60-2]

#63-66. h . CI'*'* = t*'x [#63-5 . #602]

#63-661. h . tf'Cl'a = «
2<a [#60-34 . #63105-53]

#63-67. I- . C\%'k = Wk [#63-51 . #60-2]

#63-68. I- . C\%'k = tx

lK [#63-52 . #60-2]



*64. RELATIVE TYPES OF RELATIONS

Summary o/*64.

In the present number, we introduce notations defining the type of a

relation relatively to the types of its domain and converse domain, when

these types are given relatively to some fixed class a. If R is any relation,

it is of the same type as t 'T>'R t Wd'B. If T)'R and d'R are both of the

same type as a, R is of the same type as t 'a f t 'a, which is of the same type

as a f a. The type of t 'a T ^a we cal1 *«>'«» and the type of t
m'a f t

nla we call

t
mn

'a, and the type of tm'a f tn'a we call tmn'a, and the type of tm'a f t
n'a we

call tmn'a, and the type of t
mia f tn'a we call mtn'a. We thus have a means of

expressing the type of any relation R in terms of the type Of a, provided the

types of the domain and converse domain of R are given relatively to a.

The most useful propositions of the present number are the following

:

*64 16. bzRGto'afto'p.s.Re t'(t 'a t U'P)

*64'201. h:RGS.O.Ret'S.t'R = t'S

#64-231. r : R e t'Q . D . D'R « t'D'Q . d'R e t'd'Q . C'R e t'C'Q

Here "C'R e t'C'Q" will only be significant if R and Q are homogeneous

relations, which is not required by the rest of the proposition. When R and

Q are homogeneous relations we have

*64-24. \-:R€t'Q. = .C'Re t'C'Q . = . t 'C'R = t 'C'Q

This proposition is useful in connecting ordinal and cardinal existence-

theorems.

*64-312. b . t™
(x = t

u 't'x - tn'V'x

*64-5. r-.Rl'(< 'ot«o'/8) = <W«T*o'/8) = *'(at/9)

This proposition is frequently used. It states that the class of relations

whose referents are of the type of members of a while their relata are of the

type of members of /3 (i.e. the class of all relations contained in t 'a f t '/3) is

the type of tQ'a \ U'$ and is also the type of a f (5.

*64-55. \-:C'PCt 'a. = .Pe t^'a

*6457. hzC'PCt'x . = .Pe

t

n'x

The propositions of the present number are mostly obvious, though formal

proofs are sometimes not very easily found. The use of the propositions of this

number occurs chiefly in the first section on relation-arithmetic and in the

proofs of existence-theorems in ordinal arithmetic and the theory of ratio.
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#6401. *oo'* = *W«H'«) Df

#64011. P'x=*1?(t'x1#x) Df

#64012. fl*'x = t
t(t'x^ts'x) Df

#64013. t
2Ux = t'(t*x | t'x) Df

#64014. *»'* = *'(«'« ft"*) Df
etc.

#6402. ^'a = t'(t 'a f ^'a) Df

#64021. tw'a = i'^'a t A>'a) Df

#64022. tn'a = t'(t1'0L\t1 'aL) Df
etc.

#6403. V'a-^'a.tt'a) Df

#64-031. ^»'a = ^'o t «'a) Df
etc.

#6404. V«= *'(*'« H'«) Df

#64041. V« = «'(«*« T*i'«) ^
etc.

#641. Kafaetfoo'a

Dem.

K#212. Dh:o = «,'a.D.«t« = «o'«t«»'a W
H . #35-9 . D h : a f a = £ 'a T V« • 3 • a = Ca :

[Transp] D h : a=K'a . D. a f a=K'a f *>'« (2)

I- . (1) . (2) . D H :.a=Ca .v . a$t 'a:D: afa=C« t *<,'«• v. a f a+<„'« t *o'a (3)

h . (3) . #5115 . #63101191 . I> h : a f a = * 'a H'a v . a | a 4= C« t C« (4)

1- . (4) . #5115 . #63101 . (#64-01) . D h . Prop

#6411. h . too'ct = Z'(a T a) [*641 . *63'16]

#6412. b.alflet'ito'alto'P)

Dem.

r . #35-85-86 . #63-18 . D r : a \ /8 = C« ? V£ . = . a = V« . £-= V/3 (1)

K (1) . Transp

.

Dh« = * <a . /3 = t 'j3 . D . a f /3 = Ca f to'0 :

[*63101.*5115] D r : a = t 'a . D . a f e t'(to'a f to'0) (2)

K, (1) . Transp . Dh:oH'«-3.«ti8 +(^«tW-
[*63-101.*51'15.Transp] D.«ti8e<U'«tW) (3 )

h.(2).(3).DK.Prop

#6413. l-.*WatW) = ^(at/S) [#6412 .#63-16]

#6414. I- . (a?, y) . x {t 'a f «/£) y [#631 . #35-103]

#6415. r- . (E) . R G <b'o | $,'£ [#64-14 .#25-14-11]
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#6416. h:22GVa?'o'£. = .-Re<W«TV£)
Dem.

h . *2'11 . D I- : R = C« t C/3 v . E=K'« f V£

:

[#23-42] D h : £ = V« ? C/3 # G t 'a | C/3 . v . R 4= £ 'a t C£ (1)

I- . (1) . #6415 . #10-22113 . D

(-:i2G^at^/3:i2 = CatW.EGC«TW.v.iS: +C«tW (2)

h . (2) . *5-l . D

k:.EC^aTC/3. = :^ =^atW.^GCaTW.v. JR4=CatW:
[*23'42] = : R = t <a fW • v . R + A>'« TW : • ^ h Pr0P

By putting V"'« (where i and s are some index and suffix which have been

defined) for a and t/'a for /3, the above propositions give results applicable

to any of the types defined at the beginning of this number, because of

Wet = tj'a.

#64-2. \-:<&lRnS.D.S € t'R.t'R = t'S [#63-13-16]

#64-201. \-:RQS.D.Ret'S.t'R = t'S

Bern.

h . *25-6 . D h :. Hp . D : R = S . v . 3 ! £-^.R :

[*13\L4] D:,R = ^.v.i2 + 5:.DI-.Prop

*6421. I- : xRy . D . R e *<(<<* t *'3/)

Dem.
r . #63-103 . #35103 .Dh.« (t'a> t *'y) y i1 )

K(l). DI-rHp.D-alJBA^t^y) (2 )

b . (2) . *64'2 . D K Prop

#64 22. r . R e t'(t 'D'R | CO'jB) [#64*16 . #63-105 . *35'83]

#6423. V.t'R = t's't'R

Dem.
h. #63-103. #41 -13. DI-.i2Gs^jB (1)

h . (1) . #64-201 . D I- . Prop

#64-231. h : £ e t'Q . D . V'R e t'D'Q . d'tf e t'd'Q . C'jR e t'G'Q

Dem.

\-
. #63-12 . D h ::. Hp . D :: a?i2y . x , y :. a% . v .~{xQy) ::

[#10-28] D : : (ay) .xRy.Dx :. (ay) .xQy.v. (ay) - (*%) =

• [#5-63] 3X : • (33/) • a% : . v : . ~ (ay) .*% : (32/) • ~*% :

[#3-26] Da : (33/) «% v • ~ (33/) *% 0-)

h.(l).#33-13.Dh:.Hp.D:a;eD' JR.Da;
.^eD <Qw-D <Q:

[(#63-02)] D:D'i2C«o'D'Q:

[#63-371] D-.D'Re t'D'Q (2)

Similarly h : Hp . ^ .d'Ret'd'Q .C'Ret'C'Q (3)

h . (2) . (3) . D h . Prop
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#6424. \-:Ret'Q. = .C'Re t'C'Q . = . to'C'R = t 'C'Q

This proposition is only significant when R and Q are homogeneous

relations.

Dem.

V . #6422 . #63181 . D h . R e t'(t 'C'R f to'C'R) .

[#13-12] D h : V^-B = ^C'Q .D.Re t'(t 'C'Q | VC'Q) (1)

h . #64-22 . #63-181 .Dh.Qe t'&'C'Q T */C'Q) (2)

h.(l).(2).*63-16. D\-:t 'C'R = to'C'Q.D.Ret'Q (3)

I- . (3) . #64-231 . #63-16-37 . D

\-:Ret'Q. = . t 'C'R = CC'Q . = . C'R e t'C'Q : D h . Prop

#64-3. h : *</« = C/3 . = . a e t'fi . = . t'a = *</9 . = .t 'a = C/3

h . #30-37 . (#64-01) . DH:C«==C/3.3.«oo'a = *oo'/3 (1)

h.*64-l. Dh:Ctf=C/3.D.af aeCyS-

[#64-16] D.at«G*o'/9?V/3-

[#35-9-91] D.aCto'13.

[#63-181] D.t 'a=t '/3 (2)

1- . (1) . (2) . #63-16-37 . D h . Prop

#64-31. r . «»'a? =C^ [#63-15 . (#64-01-011)]

#64-311. 1- . tn'a = too%'a [#63-321 . (*64'022-01)]

#64-312. r . t™x = t
n 't'x = C*2'« [#63-15 . (*63'04) . (#64-01 4-011 -01)]

#64-313. > . 4/« = «n%'a = 4o%'« [#63-321 . (#63-05)]

#64-32. h : <«'a = k'£ . s . *u'a = *„'£ , = . tw'a = tM'P . = . *
ma = *»'£ .

= . «»*a = «»'/8 . = .a€t'/3. = .t'a = t'@

Dem.
\- . #64-313-3 .Dh:^o = V/8 = • «%'« =WP •

[#63-41-39] = .t'a = t'/3

Similarly the other equivalences are proved.

#64-33. \-:ae

t

'fi . = . tn'a = t^'/i . = . tw'a = tn'/i . = . t
n'a = t^'/i .

= .tw'a = t
u
'ix. = .t'ct = t 'fi

Dem.
h . #64-311-313 . D h : ta'a = t^'/x . = . tw%'a = C^V .

[#64-3] =.t%'a = t%'fi.

[*63-383-41-55] = . t'a = tQ'fi (1)

Similarly the other equivalences are proved.

#64-34. I- : a e «//* . = . tw'a = <22> • = • *
1U« = *uV = *"'«=

*««V = *
2 'a= *o'/*

[Proof as in *64'33]
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*64'5. h . R1'(V« f V£)= t'(t 'a f tffi)= t'(ct f 0) [*64-13'16 . #61-2]

#64-51. V.cclye t\t'x f «fy) [*64'21 . #55132]

*6452. tixeU'a.yeU&.^.xiyet'ittta^ts'ft) [#6311 .#64-51]

#6453. h : a? 6 Vff - 8 C * '£ . D . (fc'#)
J,
8 e *'(*'a t *'£)

Dm.
I- . #6451

.

D h . (e'fl?) 4 S € f(«'*'« f *<8) (1)

K #63-62. DHHp.D.£Va; = i<a (2)

K*63\L81;37. Dr : Hp. D .i'S = *<£ (3)

K(l).(2).(3).DKProp
This proposition is used in connection with cardinal addition (#110 -

18).

#64-54. I- . m<(t 'a t U'ol) =C« = t\a f a) = </Rl'(a t a)

,

[*64'5 . #61-34 . *63105-11
. (#6401)]

*6455. \-iClPCt«<0L. = .Petm'a
Bern.

h . #35-91 . D H : C'P C ^'a . = . PCC« t *<>'« •

[#64-54] = . P €y« : D 1- . Prop

#64-56. h . Rl'(tti> t *'«) = *"'*

Dem.
H . #64-5 . #63-15 . 3 r- . Rl'(*'a; f t

lx) = *<(*'# | t'x)

[(#64-011)] = *"<#. 3 r . Prop

#64-57. hrCPC^.E.Pef'a! [#64-56 . *35'91 .#61-2]

#646. I- . t'P=m t(t^DtP t tfd'P)

Bern.

Y . #35-83 . #63105 . DK PC fo'D'P f */<I<P

.

[#64-201] Dr.*'P = *'(*/D<Pf V^'P)
[#64-5] =Rl<(<o'I>'PT4'<I'P).:DKProp

#64-61. Y : D'P e t'a . d'P.e t'fr. D . t'P=t'(a f 0)

Dem.
Y . #6316-35 . D f- : Hp . :> . %T>4P= */« .Vd'P = U'P •

[#646] D . t'P = ffo'a t V/8)

[#64-5] = t'(a t /3) : D h . Prop

#64-62. Y : D'P € t'TPQ . d'P e t'd'Q . = . P e *'Q . = . i'P = t'Q

Dem.
Y . #64-61 . D r : Hp . D . #<P= *<(D'Q f d<#)
[*64-5-22.#63-16] =t'Q (1)

h . (1) . #64-231 . 3 Y . Prop

#64-63. I- : D'P et'u . d'Pet'ft . = . t<P = t'(a f j3) . = .Pet\a \ 0)
Dem.

Y . #64-5 . D 1-
: *<P = t'{a f £) . D . *'P = *<(* <a t U'&) •

[*64-231.*35-85-86] D . D'P e t%'a . d'P € t%l$

.

[#63-19] D.D'Pet'a.a'Pet'fl (1)

h . (1) . #64-61 . #6316 . D h . Prop



*65. ON THE TYPICAL DEFINITION OF AMBIGUOUS SYMBOLS

Summary o/*65.

In this number we are concerned with definitions and propositions in

which an ambiguous symbol is determined as belonging to some assigned

type. If "a" is an ambiguous symbol representing a class (such as A or V
for example), "ax" is to denote what a becomes when its members are deter-

mined as belonging to the type of x, while "a(x)" denotes what a becomes

when its members are determined as belonging to the type of t'x. Thus

e.g. "Yx
" will be everything of the same type as x, i.e. t'x; V (x) will be t't'x.

Similarly if "R" stands for a relation of ambiguous type, such as A or V,

Rx will denote what R becomes when its domain is confined within the type

of x; R{x,y) will denote what R becomes when its domain and converse domain

are confined respectively within the types of x and y; R{x,y) will have the

domain and converse domain confined respectively to the types of t'x and t
l

y ;

with analogous meanings for R (x) and jB (xv). Throughout this number,

R and a do not stand for proper variables, but for typically ambiguous symbols.

The notations of the present number are used in the elementary parts of

the theory of cardinals and ordinals, i.e. in Part III, Section A, and in Part IV,

Section A. The only proposition, however, which is much used, is

*65 13. r : a = fix . = . a = t'x a /S . = . a C t'x . a = ft

Here ft is supposed to be a typically ambiguous symbol. The first

equivalence, "a = ftx .= . a = t'xnft" merely embodies the definition of ftx

(#65 '01). It is the second equivalence that is important. Let us, for the

sake of illustration, put 1 in place of ft. Then we are to have

a — t'x r\ 1 . = . a C t'x . a = 1.

(Since 1 is a class of classes, we shall have to suppose that x is a class.)

Consider yea. If a = t'xr\ 1, yea. = .yet'x.yel. But we have (y) . y e t'x.

Hence yeo.s.yel, whence a = 1. Also if a = t'x r\ 1, of course a C t'x.

Thus a — t'xr\ l.D.aC<'a;.a = l. The converse implication follows from

#22*621. The reason for the proposition is that a symbol such as "1," if it

occurs in such a proposition as a = t'xr\l, must, for significance, be deter-

mined as meaning that 1 which is of the same type as a, i.e. the class of all

unit classes which are of the same type as members of a. And similarly,

when we put a = 1, that does not mean that a is the class of all unit classes,

but only that it is the class of all unit classes of the appropriate type, which
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if a C ('«, will be t'xnl. The proposition "^nl=l" is true whenevei it

is significant, but t'x n 1 is typically definite when x is given, whereas 1 is

typically ambiguous. The use of the above proposition lies in its enabling us

to substitute typically definite symbols for such as are typically ambiguous.

Another useful proposition is

#652. h.sg'{R {x>y) }
= R(xy)

Here R is supposed to be a typically ambiguous symbol; the proposition

states that if R is typically defined as going from objects of type x to objects

of type y, then R must go from objects of type t'x to objects of type y. This

proposition is only used twice (*102'3 and #154-2), but both uses are of great

importance, the one in cardinal and the other in ordinal arithmetic.

The only other proposition of this number which is subsequently used is

#65 3. h . Rp"fi = (R"fi)fi = R"h> n t'0

This proposition is used in *102'84.

#6501. ax = ar\ t'x Df

#65 02. a O) = a n t't'x Df

#6503. Rx = (t'x)
J
\R Df

*6504. R{x)^{ti'x)
J\R Df

#651. R {x
,
„> = {t'x) 1 R \ (t'y) Df

#6511. R{xy)
= {P'x)

J
[R\{t'y) Df

#6512. R(x,y) = {V'x)
J
\RX(ti'y) Df

#6513. h : a = /3X . = . a = t'xr* /3 . = . a C t'x . a = j3

Bern.

h . #4-2 . (#6501) . Dh:a = /3iC . = .a = ^n/3 (1)

K #22-621. #1313. Db:aCt'x.a = /3.D.a = t'xnf3 (2).

H. #22-43. Dh : a = t'xn/3. D. «C^.«C . (3)

[#63-13] D.&e t't'x.

[#63-371-15] D.&Ct'x.

[#22-621] O.fl^t'xnP (4)

"h.(3).(4). Dh:a = ^ft
j
8.D.aC^.a = /3 (5)

h
. (1) .

(2)
.
(5)

.

D h . Prop

#6514. \-:xet 'a.D.y(x) = ya [*63'53 . (*65-01-02)]

#6515. h :xet 'a . D . R(x) = Ra . iJ (*?„) = £<.,„, [#6353. (*65-03'04-111)]

#6516. b:xet 'a.y€t '/3.O.R(x,y)=R(xp)=R {a^ [*63'53 .(#651-1112)]
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*65-2. Ksg'fE,*,,,,} = £(*,,)

Bern.

K*32\L-23.(*65-l).D

I- : a j>g'{jB(a
.

( y)}]
w . = . a = 2 {z e t'x . w e t'y . zRw}

.

[*22-39.*20-42] =.o = ^ftt(we t'y . zRw) .

[*6513] = .aCt'x.a = ^{wet'y.zRw) (1)

H . *20*33 . D h :: a = £ (w e t'y . zRw) . = :. z e a . =z . w e t'y . zRw :.

[*63'108] = :.wet'y:zea.=z .wet'y,zRw:.

[*4'73] = :. wet'y :zea .
=

z .zRw\.

[*2033.*321] =:.W€t'y.aRw (2)

K. (1) . (2) . *63-5 . D I- : a [sg'{i2
(a!, „,}] w.^.aeV'x.wet'y . aRw

.

[*35'102.(*65-11)] = . a \R{xy)) «;Oh. Prop

*65'21. b.R
(Zty)

= {R {x> y) } te> y)

Bern.

K . *21-2 . (*65'1) . D r . {E^}
te> „ = p« 1 [t'x 1 1* f *<</} \ t'y

[*35-3334] ^t'x^R^t'y

[(•651)] =2^.31-. Prop

*65-22. H.-B(*y)«{-»(«.y)K«W)
This and the following three propositions are proved as *65'21 is proved.

*6523. *--R(xy)={R(xy)}(xy)
*6524. \-.Rx = (Rx)x
*6525. h.R(x)={R(x)}(x)

*653. h . ^"/a= {R"p)ft = 22"/*

«

t'P

Bern.

h.*37-l.(*6503).Dh.W = ^{(ay).y €At . a;%. a; € ^}
[*22-39.(*37'01)] =R"v,*t'& (1)

[(•65-01)] = (£"/*)/» (2)

h.(l).(2).Dh.Prop

B&w i 27



SECTION C

ONE-MANY, MANY-ONE, AND ONE-ONE RELATIONS

Summary of Section C.

In the present section we have to consider three very important classes of

relations, of which the use in arithmetic is constant. A one-many relation is

a relation R such that, if y is any member of d'R, there is one, and only one,

term x which has the relation R to y, i.e. R'y e 1. Thus the relation of father

to son is one-many, because every son has one father and no more. The

relation of husband to wife is one-many except in countries which practise

polyandry. (It is one-many in monogamous as well as in polygamous countries,

because, according to the definition, nothing is fixed as to the number of relata

for a given referent, and there may be only one relatum for each given referent

without the relation ceasing to be one-many according to the definition.) The

relation in algebra of x2 to x is one-many, but that of x to a? is not, because

there are two different values of a? that give the same value of a?.

When a relation R is one-many, Rly exists whenever y e G.'R, and vice

versa; i.e. we have

R e one-many . = : y e d'R . D„ . E ! R'y.

Thus relations which give descriptive functions that are existent whenever

their arguments belong to the converse domains of the relations in question

are one-many relations. Hence Cnv, D, d, C, R, R, sg, gs, Re ,p, s, p, s, I, i, i,

CI, Rl are all of them one-many relations.

When R is a one-many relation, R'y is a one-valued function-; conversely,

every one-valued function is derivable from a one-many relation. A many-

valued function of y is a member of R'y, where R'y is not a unit class, and

any one of its members is regarded as a value of the function for the argu-

ment y\ but a one-valued function of y is the single term R'y which is

obtained when R is one-many. Thus for example the sine would, in our

notation, appear as a relation, i.e. we should put

sm = ^{x^y-f/S\ + y
s

l5\-...} Df,

whence sm'y =y-y3/S \+y6
/5 !- ...,

so that "sin'y" has the usual meaning of sin?/. Then instead of sin
-1

#, we

should have sin'#, which would be the class of values of sin
-1 x; and instead

of "y = sin
-1

a;," which is a misleading notation because y = sm~ 1 x and

2 = sin-1 a: do not imply y = z, we should have ye sin 'a;. Similar remarks

would apply to any of the other functions that occur in analysis.
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A relation R is called many-one when, if x is any member of D'i2, there

is one, and only one, term y to which x has the relation R, i.e. R'xel. Thus

many-one relations are the converses of one-many relations. When a relation

R is many-one, R'x exists whenever x e D'R.

A relation is called one-one when it is both one-many and many-one, or,

what comes to the same, when both it and its converse are one-many. Of the

one-many relations above enumerated, Cnv, sg, gs, I, i, i, CI, Rl are one-one.

Two classes a, ft are said to be similar when there is a one-one relation R
such that T>

lR = a . Q'R = (3, i.e. when their terms can be connected one to

one, so that no term of either is omitted or repeated. We write "asm/3" for

" a is similar to yS." When two classes are similar, the cardinal numbers of

their terms are the same; it is this fact chiefly that makes one-one relations

of fundamental importance in cardinal arithmetic.

According to the above, a relation is one-many when

yed'R.Dy.R'yel,

i.e. when R"(I<R C 1.

Similarly a relation is many-one when

^"D'E G 1,

and a relation is one-one when both conditions are fulfilled. The classes

R eed'R, R'tD'R, which appear here, are often important; some of their

properties have already been given in *37-77*77r772-773 and in #5361 to

*53-641.

It is convenient to regard one-many, many-one and one-one relations as

particular cases of relations which, for some given a and /3, have

R"<1'R C a .%'D'R C fi.

We put a-+l3 = R{R"a'RCa.
4

R"D<RCl3} Df.

Hence, without a new definition, " 1 — 1 " becomes the class of one-one

relations; also, as will be shown, "1—»Cls" becomes the class of one-many

relations, and "Cls—>1" becomes the class of many-one relations. Although

it is chiefly these three special values of a—>/3 that are important, we shall

begin by a general study of classes of relations of the form a —> /3.

27—2



*70. RELATIONS WHOSE CLASSES OF REFERENTS AND OF
RELATA BELONG TO GIVEN CLASSES

Summary of #70.

If a and /8 are two given classes of classes, a relation R is said to belong

to the class a—> $ if R'y e a whenever y e (I'R, and R'x e fi whenever x e T>'R.

If only one of these conditions is to be imposed, this result is secured by re-

placing the class involved in the other condition by "Cls," since "R'y eCls"
<

—

always holds, and so does "i2'#eCls," and therefore neither imposes any

limitation on R. In the most important cases, a and /S are either both cardinal

numbers, or one is a cardinal number while the other is Cls.

In virtue of *37*702'703, the conditions above mentioned as imposed upon

R by membership of a—> (3 are equivalent to

~R"<1'RQol.'R"T><RCP.

This form is used in the definition (#70-01).

The propositions of the present number are hardly ever used except in #71,

where a and /3 are both replaced by 1 or Cls. The most useful propositions are

#701. \-:R6CL-*p. = .R"a<RCa.R"WRQ(3

(This merely embodies the definition.)

— <—

#7013. h:.jRea-*£.= :(y). R'y eau i'A:(x).R lx €0u i'A

#7022. K£->a = Cnv"(a->£)

#70-4. \-.a-+Cte = R(R"a<RCa)

#70-41. KCls->£ = £CR"D'JRC/9)

#70-42. h . a -> /3 = (a -> Cls) n (Cls- £)

#70-54. h : d'R n a<S= A . R, S e a -* Cls . D . R vy 8 e a -> Cls

with similar propositions for Cls —> £S and a —* /3.

#7062. \-:Rea-*C\s.3.Rtvea^>C\s

with a similar proposition for Cls —> fi.

#7001. a-+{3 = R(R"a<RCa.
4
R"I)<RC/3) Df

#701. r- : R € a- /3 . s .l!"(I<i2 C a . ^"D'E C £ [#203 . (#7001)]
—

>

«—

#7011. h:.i2ea->£. = :ye d'R .2y .R'yea:x€D'R.Dx-R'xeP
[#37-702-703 . #701]
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y € V . Dj, . R'y e a w l'A :

{y)~R'yeayJi'A (1)

{x).*R'xe$vJi'A (2)

SECTION C]

*7012. \-:Rea->/3. = .R"VCavi'A.R"VC0yJi'A [*701 . *5362-621]

— «—
*7013. \-:.Rea-+0. = :(y).R'yeavi'A:(x).R'xePsJL'A

Dem.

b . *37*702 . D h :. E"V C a v fc'A . =

[*24-104.*5-5] s

Similarly 1- :. R"Y C^ut fA.=
h . (1) . (2) . *7012 . D h . Prop

—> —

>

*— tr
*7014. b :: Rea->0 . = :.(y):R'yea.v.R'y = A:.(x):R'xe .v.R'x= A

[*7013 . *51'236]

*70 15. h :. R e a -> /9 . = : a ! R'y . Dy . R'y e a : g ! R'x . D* . R'x e

[*2451 . *4-6 . *7014]

*7016. h : R e a ->£ . = . D<ft C a u t'A.D-^RC/Sut'A [*3778'781 . *7012]

*7017. b :: Ae a. D :. Re a-* /3. = :(y). R'y eazftl R'x.

3

x .R'xe 8

Dem.

h . *51-2 . *22'62 .Dh:Hp.D.a = aui'A (1)

h . (1) . *7013 . D

H-.zHp.Dz.Eea-^iS.siC^.^i/eazC^.^e/gut'A (2)

H . *51*236 . D h :. S~'#e/3 u t'A . = : R'xefi . v . R'x = A

:

[*24-51.*4-6] = :^\R'x.O.R'xe0 (3)

h . (2) . (3) . D h . Prop

*70171. h :: A e/3 . D :. E e a ->£ . = : 3 ! 5*y . D„ . R'y e a : (x) . R'xe

[Proof as in *7017]

*7018. h: ! Ae«.Aei9.D:.Be«->i9.5:(y).5'y€a:(*).Si
*€i8

[Proof as in #70*17]

*70'2. 1- . a ->£ = (« w i'A)-»/3 = a - (/8 w //A) = (a w t'A) ->(£ v t'A)

Dem.

h . *22-58-62 . DK(ou t'A) ui'A = aw l'A . (/3 w t'A) wt'A =
j
8w i'A (1)

h . *70i2 .(1) . Dh:.Bea->£. = . E"V C (a w t'A) u l'A . R"V C /3 u l'A .

[*70-12] =.iie(owi'A)-»3. (2)

[*70\L2.(1)] = .~R"VC(clvjl'A)vl'A.'r"VC(I3vi'A)vi'A.

[*7012] =.E€(owi'A)->()9wt'A). (3)

[*70\L2.(1)] = . ~R"V Cawi'A. *R"V C (£ u i'A) w t'A

.

[*70'12] =.R€a-*(/3yJi'A) (4)

K(2).(3).(4).DKProp
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*70-21. b.a-+@ = (a-i'A)-+/3=a-^(/3-i'A) = (a-i<A)-*(l3-i<A)

Dem.

h . #51222 . D h : A~e a . D . a - t'A = a : A~e . D . £ - i'A = /3 (1)

I-. #51-221. Dh: A ea.D. (a- t'A)w'A = a: A e/3. D .(/3- t'A)u/3 = /3 (2)

K(1).D
h:A~ea.3.(cL-i<A)^>/3 = a-+/3.(a-i'A)^>(/3-i<A) = ci-+(j3-i<A) (3)

I- . (2) . #70-2 . D

h:Aea.D.(a-t'A)^/3 = a^/Ma-t'A)^(/3-t'A) = a-*03-t'A) (4)

I- . (3) . (4) . #4-83 . D

h.(a-t'A)^/3 = a^/M«-''A)-*0S-t'A)=a->(/3-i'A) (5)

Similarly h . a -» (£ - t'A) = a -»/3 . (a - t'A) -+(/3 - t'A) = (a - t'A) -*£ (6)

I- . (5) . (6) . D r . Prop

#7022. h . /3 -> a = Cnv"(a -> £)

Z)era.

h. #376. #3113. D
I- :.QeCnv"(a -»£).=

[#70-12]

[#32-24-241]

[#13-193]

: (gi2) .Rea-+fi.Q = Cnv'R :

= : (gJB) . i?"V Caw t'A .5"V C £ u t'A . Q = Cnv'i? :

= : (a-8) (gs'Cnv'i2)"V Caut'A.
(sg'Cnv'22)"V C £ u t'A . Q = Cnv'iZ

:

s:(aJR).(gs'Q)"VCav,t'A.

(sg'Q)"V C /3 u t'A . Q = Cnv'E

:

[#32-23-231 .#10-35] = rV"V C a v t'A . Q"V C /3 u t'A : (gi2) . Q = Cnv'i? :

[*31-33.*10-24] =
:
V"V C a u t'A . #"V C u t'A :

[#70-12] =:Qe/3-*a:. D h . Prop

#70-3. h.aCY.^CS.D.a-^^Cv-^S
Dem.

h . #701 .Dh:Hp.i2ea->/3.D .~R"<I'R C a . S"D'i2 Cj3.oiCy.j3C8.

[#2244] D . i2"CI'i2 C 7 . J2"D'12 C S .

[#701] D.^e 7 -»S (1)

K (1) . Exp . #10-11-21 . D h . Prop

#70-31. b.(a-*P).r\(y-*S) = (ar\y)-*(J3f\8)

Dem.

h.*70-l.DI-:i2e(a-*/8)n(7-»8). = .

^"d'iZ C a . if''d'iZ C 7 . S"D'7£ C /3 . £"D'iZ C £ .

[#22-45] = . ^"a'.R C a n 7 . i2"D'i£ C /3 n 8 .

[#701] =. JKe(«n7)-»(/3nS):Dl-.Prop
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#7032. K(a->/3)u(7->8)C(au7)->(£u8)

Dera.

I-. #70-1. DI-:.-Re(«-* J
8)

w (7 ->£) = _^ <_

R«a<R C a .^"D'iZ C . v . E"(I<.R C 7 . IF'D'i* C 8 :

[*3-26 2748] D :~R"(I<R C a . v . E"d<.R C 7 : ie"D<E C /3 . v . R«D'RC 8 :

[#22*65j D : JR"<I'.R Cau 7 . E"D<£ C /3 u 8 :

[#701] D : R e (a u 7) -* (£ u 8) :. D K Prop

#704. H . a -* Cls = R (£"<!'

R

C a)

K*701OH:i2ea^Cls. = .^"a<iSCa.iJ"D'i2CCls.

[87-761] =.WiJCo:DKProp

#7041. h.Cls^£ = £(S"''D-\RC£) [Proof as in #70'4]

#7042. K«->/3 = («-»Cls)«(Cls->£) [#70-4-41]

*70'43. \-:.Rea-+Cte. = :yea<R.Dy .R'yea [As in #7011]

#70 431. h :. R e Cls -> £ . = : x e D'R . D* . R'x e £ [As in *70-ll]

#7044. I- : ie e a -> Cls . = . jR"V Cawt'A [As in #7012]

#70441. h : .R e Cls -> £ . = . £"V C w t'A [As in #7012]

#7045. H-Eea^Cls.EE.^.Jfyeaut'A [As in #70-13]

#70 451. H : E e Cls -> £ . s . (*) .%* e£ u t'A {As in #7013]

#7046. \-i.Rea-+Cte.= :(y):R'yea.v.R'y= A [As in #701 4]

#70-461. H :. R e Cls -*£. = : (a) : £'# e £ . v . £<# = A [As in #7014]

#7047. \-:.R € a->C\s. = :Kl~R'y.3y .'R'y€« [As in #70-15]

#70471. \-:.ReC]B->0. = '.nlR'*.'}x'*R
txeP [As in #7015]

#70 48. H : R e

a

-» Cls . = . D'EC a w t'A [As in #7016]

*7(H81. H : R e Cls -» £ . s . D'E C £ u t'A [As in #70*16]

#70-5. H Cls -> a = Cnv"(a -* Cls) . a- Cls = Cnv"(Cls -> a) [#70*22]

#7051. I- :. f, 17 e a . 3f,, . £ n 17 e a *-» t'A : D : .R, £ e a-*Cls . D . i2 n £ e a->Cls

Dem.

h. #32*3.3 \-:.Hv.3:R'yea.S'yea.'3.{sg'(R*S)}'yeavi'A (1)

K #32*3. #51*1 5. #24*34.3

h:^ea.^6t fA.D.{sg <

( JRn^)} t
2/ = A.

[#51-236] D.{sg'(i2nS)} 42/e««t'A (2)
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H.(l).(2).*4-4.DI-:.Hp.D:i2Va-'S'y€« wt'A.D.{sg'(En>S')}Vavt fA (3)

H . *32-3 . *5l 15 . *24'34 . *51236 . D

I- : R'y e t'A . /Sty e a u t'A . 3 . {sg<(22 n ,Sf)}'y e a u i<A (4)

h.(3).(4).*4-4.3h:.Hp.D:i2'y,^eout'A.D.{sg'(i2n <Sf)}'y€aut'A:

[*10ir2P27.*7(H5] D:i2,£€a->Cls.D.(y). {sg*CR AS)}'yea ui'A .

[*70-45.*32-23] D .£ r» £ e a -> Cls :. D h . Prop

*70*52. H :. £ V€ p . Df„ . |« v e£ v *<A : I>:i2,£eCls->/3.D. J? A SeCla->/3

[Proof as in *70'51]

*7053. H. $, i;eaOf,,.£n 17 eavi'A: £176/8. D^.fniye/Svi'AO:

Dem.

V .*70-5-51
. D h :. Hp . D : R, Sea-+Ch . R,SeCte->/3 . Z> .

EnSea-»Cls..Rn£eCls^i8 (1)
K(l).*70-42.DKProp

*7054 h:a^naSS= A.J?,#ea^Cls.D.i?<y#ea-*Cls

h . *24'15 . *22-33 . D
\-:.a.'Rn(I'S=AiD:(y):~{ye<I'R.yea<&r.

[*3341] D

[*4'51.*24-51] D

[*24-36] D
h.*70-45.D

h : . R,

S

e a- Cls . D : (y) . R'y eaui'A: (y) .^eawt'A
I- . (1) . (2) . D h : . Hp . D : (y) .~R'y w 5*y e a u t'A :

[*32-32] D:(y).{sg'CKe/S)}<yeaw'A:

[*70-45] D:Eiy£ea-»Cls:.DI-.Prop

*7055. \-:T>'RrxD<S = A.R,SeC\s->l3.D.RvSeCh->/3
[Proof as in *70'54]

*70*56. h:D<R*T) tS=A.a'R*a iS=A.R
) S€a-+0.3.RK>S € a->i3

[*70-54-55'42]

*7057. \-:C<RnC'S = A.R,Sea-+/3.1.RvSea-+/3

Bern.

F . *33161 . D h . D<£ n D'S C C"i2 n C'S . d'R n a<S C C'R r» C'S

.

[*2413] D I- : C'RnC'S=A . D . D'i£nD<£= A . (Pi? n a<£ = A (1)

K(l).*70-56.Dh.Prop

(y):~{a !i2'y. a !>Sf'y}:

(y):~&y = A.v.~S'y= A:

(y) : i2'y u S'y = S<y . v . R'y v&y = R<y (1)

(2)
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*70'6. \-:Sea-*C\s.R"<aCayji'A:'}.R\Sea-+Cte

Bern,

h . *37-31 . D H . {sg'CR

i

S)]"V = (Re \S)"V

[•87-33] = Re<<8"V (1)

h.(l).*70-44.DI-:iSeo-*Cls.D.{sg'(12|S)}"VCJBe"(awt'A) (2)

h . *3722 . Dh.

R

€"(a u t'A) = Re"a u jRe'VA
[*5331] = Re"a « t'Ik'A

[(*37-04).*3Ml-29] =R«'ayJi'A (3)

h . (3) . *22-66 . D h : R"'a Caui'A.D. i2e"(a w t'A) Caui'Ay t'A .

[*22-56] D . Re"{* u t'A) C a w t'A (4)

h . (2) . (4) . D h : Hp . D . {sg'(i2 1 £)}"V Coyi'A.

[*70'44] D.i^l^ea-^ClsOI-.Prop

*7061. h:J2eCls-»/8.jS"'/8CiSwi'A.D.^|flf€Gl8-»/8 [As in *70'6]

*7062. f-:i2€a-^Cls.D.i2p 7 ea^Cls
Dem.

V . *35-64 . Transp .3h:y~ey.D.y~e a'(R [ y) .

[*33-41.*24'51] D . {sg'(JS [ y)}'y = A .

[*51'236] D.{8g'(Rty)}'yeavi'A (1)

I- . *35101 . *4-73 .D\-:.yey.D:x(R[y)y.=x . xRy :

[*2015.*3213'23] D : {sg'(i2 f y)}'y = R'y (2)

K*7045. DhiHp.D.jK'yeaut'A (3)

K(2).(3). D\-:.Kp.O:yey.D.{sg'(R\-y)}<yeavi<A (4)

H . (1) . (4) . *4'83 . D h : Hp . D . {sg'(R [ y))'y eaut'A (5)

K (5) . *101121 . *70'45 . D h . Prop

*7063. \-:ReCte->0.-D.81ReCte-*j3 [As iiMfc70-62]



*71. ONE-MANY, MANY-ONE, AND ONE-ONE RELATIONS

Summary o/"*7l.

In this number we shall be concerned with the more elementary properties

of one-many, many-one, and one-one relations. These properties are very

numerous and very important. The properties of many-one relations (i.e. of

relations belonging to the class Cls-*1) result from those of one-many rela-

tions by means of *70'5, whence it follows that many-one relations are the

converses of one-many relations. It is thus only necessary to interchange

R and R, D and CE, R and R in order to obtain a property of a many-one

relation from a property of a one-many relation. Or we may repeat the

various steps of any proof, making the above interchanges at every step, and

the analogous proposition will result. For this reason, in what follows, we

shall omit all proofs of properties of many-one relations, confining ourselves to

proving the analogous properties of one-many relations.

In virtue of #70 -

42, one-one relations (i.e. relations belonging to the class

1 —> 1) are the relations which are both one-many and many-one; hence their

properties result from combining the properties of one-many and many-one

relations. We shall omit the proofs when they consist merely in such

combinations.

A one-many relation gives rise to a descriptive function which is existent

whenever its argument belongs to the converse domain of the relation. That

is, ifR e 1 —> Cls, we have E ! Rly whenever y e Q.'R. Conversely, if a descrip-

tive function R'y exists for the argument y, then R- is one-many so far' as that
—

>

argument is concerned, i.e. R'y e 1. Thus we find

R e 1 -> Cls . = . E !! R^a'R.

The descriptive function R(y derived from a one-many relation R has thus

a definite value whenever yeQ'R, and not otherwise. Thus the class of

arguments for which such a function exists is the converse domain of the

relation which gives rise to the function, i.e.

Ee 1 -* Cls. D.£{E! 22<y} = <!<£,

and the converse implication also holds.

.It often happens that a relation which is not in general one-many becomes

so when its domain, converse domain, or field is subjected to some limitation.

For example, let R be the relation of parent to child, a the class of males, and

/3 the class of females. Then R is not one-many, but a^| R and /?1 R are one-

many, and in fact (a 1 R)'y = the father of y, (fi 1 R)'y = the mother of y. We
shall often have occasion to deal with relations obtained by limitations imposed

onDorQ; thus a (D f X) R . = . R belongs to the class X, and has a for its
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domain. The class \ may be so constituted that only one relation R fulfils

this condition; in that case, DTXeCls^l. Since Del->Cls, we find

DrA.eCls-»l.= .D|k \el-+l. This type of condition, D|"\el->1 or

<ir\el->l or CfXel-frl, is one which frequently occurs in subsequent

work. Another condition which often occurs is JPf\eCls-»l. When this

condition is realized, a term x which belongs to the field of one relation of the

class \ does not belong to the field of any other relation of this class, i.e. the

fields of relations of this class are mutually exclusive.

For purposes of realizing imaginatively the properties of one-many

relations, it is often convenient to picture their structure as in the accom-

panying figure. Here x, y,z, ... form the domain of R, and all the points

R y

z •

in the oval marked R'x are such that x has the relation R to each of them,

with similar conditions for y and z. What characterizes R as a 1 -* Cls

is the absence of overlapping in the ovals. For if R'x and R'y had a point

in common, this would be a relatum both to x and y, and both x and y

would be referents to it; whereas in a 1 ->Cls, no term has more than one

referent.

The above figure illustrates a very important property of one-many rela-

tions, namely

Rel->Ch. = .R\R = I[T> (R.
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In the above figure, / f D'R is the relation of identity confined to x, y,z,....

If R were not a 1—>Cls, we could sometimes go from a? to some term of

R'x r\ R'y by the relation R, and thence back to y by the relation R. But

when .Kel-^Cls, R\R must bring us back to the point from which we
started.

4— 4— 4—
When J? el ->1, each of the ovals R'x, R'y, R% ... in the above figure

4— v
shrinks to a single point, so that R'x = t'R'x. Thus when R is given as a

l-»Cls, it will be a 1->1 if R'y = R'z .3y>z .y = z. This proposition is

constantly used, and so is the consequence that R[ fi is a 1 —> 1 if

y,zefi. R'y = R'z.Dy>z .y = z. (These propositions are *7l-54"55 below.)

The hypothesis R e 1 -» Gls is equivalent to the hypothesis

xRz . yRz . DXi ytZ • ® = y
(cf. *71'17, below), and the hypothesis ReCls—> 1 is equivalent to

xRy . xRz . ^x,v,z >y= z.

These are for many purposes the most convenient hypotheses to use.

The most useful propositions in the present number are the following.

(We omit here propositions concerning Cls —> 1 or 1 —> 1 which are mere
analogues of propositions concerning 1 —> Cls.)

*7116. r : R e 1 -> Cls . = . E !! R"<1'R

This gives the connection of one-many relations with descriptive functions.

We have also

*71163. f :. R e 1 ->Cls . = : y € (I'R .=y . El R'y

For many of the constant relations defined from time to time, such as Cnv
or D, the following proposition is useful:

*71166. r- : (y) . E ! R'y . D . R e 1 -> Cls

*7117. \- :. R e 1 -> Cls . = : xRz . yRz . DXi y>z .x = y

This might have been taken as the definition of one-many relations, if we
had not wished to derive them from the more general notion of a—> /S. In

proving that a relation is one-many, *7l*17 is more often employed than any
other proposition.

*71'22. b:Rel^>Cls.S<ZR.3.S6l-*Cls

*7125. h . R, S e 1 -» Cls . D . R
1

8 e 1 -> Cls

*71-36. h:.Rel-+Ch.Dzx = R'y. = .xRy

*71-381. I- : R e Cls -+ 1 . D . R"(a -0) = R"a - R"/3

(This proposition is more useful than the corresponding property of

l->Cls.)
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*71-55. \-i:Rel->Cls.D:.Rtp6l->l. = iy,Z€0.R<y= R tz.'2y, z .y = z

This proposition is constantly used. For example, putting Q. for R, it

gives

h:.ar/3el-+l.= :P,Qe£.(I<P = <3'Q.Dp,
<2
.P=Q.

Most of the relations used to establish correlations in arithmetic are

obtained from a one-many relation, such as G, by imposing some limitation

on the converse domain which makes the relation one-one.

71-671. H :.y e .Oy .E! R'y :s. R\ /3 el-»Cls . £ Cd'R
Here "ye/S.Dy.E IR'y" is E !! R"@, which has already played a large

part as a hypothesis, e.g. in #376 ff.

*71-7. h :. Qe 1 -* Cls . D : xP
\

Qz . = . xP{Q?z)

Thus for example we shall have x (P
|
Cnv) R . = . xP (Cnv'JK).

*71 01. V . 1 -> Cls = R {R"d'R C 1) [*70'4]

*7102. \-.Cls-*l = R(R"D7RCl) [*7041]

*7103. t-.l-*l = R(R«<I<RCl.R"I)'RCl) [*202 . (*70'01)]

*7104. r . 1 -* 1 = (1 -> Cls) n (Cls- 1) [*70-42]

*711. \-:Rel-+Ck.= .~R"a'RCl [*2033 . *7101]

*71101. l-:.ReCls-»l. = .jR"D'2SCl [*2033 . *7l02]

*71102. I- : R e 1 -> 1 . = .^B"a'jB C 1 . £"D<£ C 1 [*20'33 . *71'03]

*71103. h:i2el->l. = .i2el-^Cls.i?€Cls-»l [*2233 . *7104]

*7111. H : £ e 1 -> Cls . = .^K"V Clui'A [*7044]

*71111. r : £ e Cls -> 1 . = . jR"V Clut'A [*70441]

*71112. h:im^l. = .jR"VClvt'A.S"VClut<A [*70\L2]

*7112. H:Eel->Cls. = .(2/).i2'y€lut'A t*70'45]

*71121. \- : R€C\s-+l .= .(x) . R'xel v I'A [*70'451]

*71122. h:.Rcl^>l.= :(y).R'yelvi'A:(x).R'xelvi,'A [*7013]

*7113. \-:.Rel-*Cla. = :(y):R'yel.v.R'y=A [*70'46]

*71131. h : . R e Cls -* 1 . = : (x) : R(x e 1 . v . E'# = A [*70'461]

*71132. h :: R e 1 -> 1 . = :. (y) : R'y el . v . R'y=A :. (#) : R lxe 1 . v . R'x=A
[*7(M4]

*7114. Ki.lSel-^Cls.^altf'y.iV-R'yel [*7047]

*71141. t-i.ReCte-tl.zz-.RlR'x.yx.R'xel [*70471]
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#71142. b :. R el ^1. = -.%! R'y. Dy . R'y el :rI R'x. Dx .*R'x el [#7015]

#7115. b : R e 1 -> Cls . = . B'RC 1 u i'A [#7048]

#71151. Hi2eCls-*l. = .D'jRClut<A [#70481]

#71152. f- : -B e 1 -> 1 . = . D'.R Clwi'A. D<# C 1 w t'A [#7016]

#7116. H : R e 1 -* Cls . = . E !! R"<1'R

Dem.
b . #37702 . #711 . D

h :. R e 1 -»Cls . = : y*d'R . Dy .~R*y e 1 :

[#533] = : y e d'R .Dy .ElR'y:

[#37104] = :EllR"d'R:.Db.Tvop

This proposition is very important; it exhibits the connection of descriptive

functions with one-many relations.

#71161. b:ReC\s->l. = . Ell R"T>'R

#71162. b:Rel-+l. = .Ell R"<1<R . E !! R"T>'R

#71163. b :. .Re 1 -> Cls . = -.yed'R . =y . E ! R'y

Dem.

b . #3343 . D b : E ! R'y . D . y e (F£ :

[#4-73] D h -..yed'R .O.ElR'y: = -.yed'R . ~. El R'y :.

[#1011-271.#37104] D h :. E !! R"d'R .= :ye d'R . =v . E ! R'y (1)

h. (1). #7116. DK Prop

#71164. I- :. R e Cls -> 1 . = : xe D'R .
=
x . E I R'x

#71165. b:.Rel-+l.= -.yed'R . =y . E ! R'y zxeD'R .
=
x . E ! R'x

#71166. h:(y).ElR'y.D.Rel-^Ch

Dem.
b . #202 . #10-1 . DH:.Hp.D -.yed'R. 3. E! R'y:.

[*1011-21.*37104] D I- : Hp . D . E !! R"d'R

.

[#71-16] D . i2 e 1 -> Cls : D f- . Prop

#71167. !-:(*). ElR'x.D.ReCte-+l

#71-168. b :. (y) . E ! R'y : (x) . E ! R'x : D . £ e 1 -> 1

*71'17. h :..R el -* Cls. = : xRz .yRz ,"Dx, y>z .x = y

This proposition is constantly used in the sequel.

Dem.
—

>

—*
K#52-4. D h -..R'zel ui'A. = : x,yeR'z. Dx>y .x = y :

[#32-18] =:xRz.yRz.DXty .x = y:.

[*10-11-271.*11-21] D H :. (*) . iZ's e 1 w i'A . s : xRz . yRz . DXtVjZ . x = y (1)

K(1).*7112. Dh.Prop
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#71171. I- :. R e Cls -* 1 . = : xRy . xRz . Dx>y)Z .y = z

#71172. V : . R e 1 -> 1 . = : xRz
.
yRz .1Xty ,

z .x = y. xRy . xRz .^XiVtZ .y = z

4— 4—
#7118. h :. R e 1 -> Cls . = : a ! R'x n R'y . Ox<y .x= y

Dem.

V . #32181 . #22-33 . D

h :. g ! R'x r\ R'y . x>y .x = y: =

[*10'23] =

[*7l'l7] =

(3,2) . xRz . yRz . DXt y .x = y\

xRz . yRz . DXj y, z . x = y :

E e 1- Cls :.DI-. Prop

#71181. h :. # e Cls- 1 . = : a ! E'y n R'z . Dy>z .y = z

#71182. I- :: R e 1->1 . = :. a ! R'x n E'y . v . a ! E'# n R'y : Dx>y . x = y

#7119. h:JKel-»Cls. = .i2!-R = iTD<E
Dem.

h . #341 . #31-11 . D V . x (R
|
R)y . = . (a*) . #i^ . yRz

\-.*501.*3510l.1\-.x(I\-I)'R)y. = .x = y.yeI)'R

K (1) . (2) . #21-43 . D

H::i2| JR = /tD' JR.= :.(a^).«^.y^-^,y :a; = 2/-y eI) 'jB:

[*3313,*10'35] =*,„ : (a*) .x=y.yRz:

[#13194] =x, y : (a*) .x= y.xRz.yRz:

[#10-35] =*
ty

:a> = y:(a*).atffe.y.Rs:.

(1)

(2)

[#4-71]

[#10-23]

[#71-17]

. (a*) xRz . yRz .0Xt
y.x = y..

. xRz ^yRz . ^>x,y,z .x = y :.

. R e 1 -* Cls ::DK Prop

#71191. l-:iJeCls->l. = .i2|J2 = /r a '-B

#71192. \-:Rel->l. = .R\R = ItD'R.R\R = It<I'R

#71-2. t- . Cls -» 1 = Cnv"(l -> Cls) .

1 _» Cls = Cqv"(C1s_ 1) . 1- 1 = Cnv"(l- 1) [*70"22]

#71-21. h:J2el->Cls. = .JReCls->l

Dem.

h . #37-62 . #31-13 . D b : R e 1- Cls . D . Cnv'iZ e Cnv"(l -> Cls)

.

[*31-12.*7l-2] D.SeCls-*l (1)

h . #37-62 . #3113 . D h : £ e Cls -> 1 . D . Cnv'R e Cnv"(Cls -> 1) .

[*31-33.*7l-2] D. Eel-* Cls (2)

h . (1) . (2) . D h . Prop
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#71-211. \-:ReCls->l. = .R € l-+Cte

#71-212. h:Rel-+l. = .Rel^>l

*7122. \-;Rel-+C\8.S(ZR.D.g€l-

Bern.

Cls

*71221. h

*71'222. Y

*71223. h

*71224. Y

#71-225. h

*71*23. Y

#71-231. h

*71232. Y

#71233. Y

Dern.

K*23'1.3
I- :. 8 GR . 3 : xSz . ySz . 3«, tf, z • #-&z • yRz
Y . #71-17 .3
h :. i2 e 1 — Cls . 3 : xRz .yRz . D^j/.z •® = y
K(l).(2).*ll-37.3

Y :. Hp . 3 : #$? . ySz . 3a.

>t,>z .x = y:
[#7117] 3 : S € 1 -> Cls :. 3 I- . Prop

JKeCls-^l.SGiSO.SeCls-^l

Rel-*l.S<ZR.D.Sel-*l

Re 1 ->Cls . 3 . RKRC 1 -»Cls [#71*22 .#61-2]

EeCls-»1.3.Rl'#CCls-»l

R e 1 -> 1 . 3 . R1«R C 1 -* 1

12 e 1 -> Cls . 3 . 12 n £ e 1 -> Cls [#71-22 . #2343]

.ReCls->1.3.irA£<:Cls-+l

Rel-+1 .D.RnSel-*l

R,S€l-+Cte.3.RnSel->l

(1)

(2)

(1)

(2)

Y . #71-23 . 3 H : Hp . 3 . R n S e 1 -* Cls

H . #71-21 . 3 h : Hp . 3 . S e Cls -* 1 .

[*71231] 3.JSn£eCls-»l
K (1). (2). #71-103. 3 K Prop

#71234. \-:R,SeC\8-*l.-}.RnSel^>l

#71-235. h:126l-»Cls.£eCls-»1.3.12n,Sfel-»l

#7124. \-:R,Sel-*Cte.<I'Rr*a'S= A.3.RvSel-+Cte
#71-241. h : R,S eCls-> 1 . D'i2 n D'£= A . 3 . R vSeC\s-+ 1

#71-242. I- : R, Se 1 -> 1 . D'iJ n D'£ = A . d'12 n<P£ = A.3.Ec/£el-*l
[#70-56]

#71-243. l-:l£,£el->l.C"12nC"£=A. 3. RvSel-^1 [#7057]

*71-244 K:12,£el^Cls.l2r<P,SfGS.3.12c-£el-»Cls

Dem.

Y . #23-34 . #4-4 . 3
Y :.x(RwS)z .y(RwS)z.= :xRz .yRz .v .xRz .ySz .v .xSz .yRz .v .xSz.ySz (1)

[#70-54]

[#70-55]
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h. *71 17 . D h :. R,S el-*C\s .1:xRz .yRz . D . x=y z xSz . ySz.1.x=y (2)

h . #3314 . #4*7 . D h : xRz
.
ySz . D . #£* .ySz.zed'S.

[#35101] D.x(R\><l'S)z.ySz (3)

K(3). DI-r.iJ^a'SG^f.D^^.^.D.^^.^ (4)

h.(4)^. Dhi.JR^a^G^.D^&.^.D.^^.^ (5)

K(2).(4).(5). D h :.B.p .D : xRz . ySz ."D . x = y : xSz . yRz . D .x = y (6)

I- . (1) . (2) . (6) . #4-77 . D I- :. Hp . D : x (R c; £) * . y (R vy fif) z . D . a = y (7)

I- . (7) . #1011-21 . #7117 . D I- . Prop

*71245. \-:R,SeC\s-^l.(I> tS)
J\RQS.O.R^SeC\s-*l

#7125. h:i*,Sel-*Cls.D.2£|£el->Cls

h . #7117 .Dh:.K-p.D:ySx.zSx.D.y = z:

[Fact] D : uRy . ySx . vRz . zSx . D .y = z . «Ry . vifo

.

[#1313] D . wity . vRy

.

[#71-17] D.w = t> (1)

h.(l).*llll-3-54.D

I- :: Hp . D :. (gy) . wJBy . ySx : (g\2) . wifc . zSx : D . u = v :.

[*34'1] D:.w(i2|#)a-.v(i<:|£)a-.D.w = v (2)

h.(2).*7l-17.Dh.Prop

#71-251. H: JR,£eCls->l.D. JR|£eCls->l

*71-252. h:i2,£el-»l.D.i2|£el->l

#7125 maey also be deduced from #70-6, as follows:

Alternative Dem. o/*71*25.

h . #53301 . #7112 . D I- : R e 1 -* Cls . D . 22"t<# e 1 u i'A :

[*52-l] Dh-.Rel^Cls.ael.D. R"a e 1 u t'A :

[#37-6111103] Dh:.Rel-»Cls.D.i2'"lClw<A (1)

h. (1). #706. Dh. Prop

Similarly #71-251 may be deduced from #7061.

*7126. h:i2el-*Cls.D.Er7€l->Cls [*7062]

#71-261. h : 22 e Cls -> 1 . D . £ 1 R e Cls- 1 [#70-63]

#7127. h:i2el->Cls.D./3 >

|
JBel-*Cls [#35*44 .#71-22]

#71-271. h:i2eCls-*l.D.Ep7eCls->l

#7128. Hriiel-^Cls.D.yS^^el-^Cls [*35'442 .#71-22]

#71-281. h-iZeCls-^l.D.ySli^eCts-*!

#71-29. h:i2el-^l.D.^1 JR, JRr7^1-R r7 €l -> 1

#71-31. I- : R e 1 -» Cls . y e <I<i2 . D . (ify)% [*30'32 . #71163]

K&W I 28
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*71-311. \-:ReCte->l.xeD'R.D.xR(R'x)

*71312. H : R e 1 -* 1

.

x e D'R .y e d'R . 3 . xR(R'x) . (R'y) Ry

*71'32. b::R€l-^Cl8.y€a'R.^:.^(R'y).= z(^.x).xRy.^x- = zxRy.^x .yfrx

[*30-33.*7M63]

*71'321. \-i:ReC\a^l.xeJ)'R.>:.1r(R'x). = z(fty).xRy.^i = :xRy.3y.ylry

*71'33. ViiRel^Q\s.^u^(R'y)i = i(Rx).xRy.^xi = :yea'RixRy.?x .tyx

Bern.

K*71-32.*532.D
h :: Hp . D :. y e Q.'R . yjt (R'y) . s : y e G.'R : (g#) . xRy . i/r# c=

^zyed'R-.xRy.^.^x (1)

H . *1#21 . D I- : ^ (2fy) . D . E ! R'y .

[*33'43] D.yed'R:

[*471] DI-:.y€(I'.R.^(.R'y). = .'^(.R'y) (2)

>.*105. D I- : (g#) . xRy . ^r# . 3 . (g#) . a?.%

.

[*33131] D.yeCKR:
[*4-71] DHi.yeGL'E^a^.ajEy.^rs.^^.ajJSy.^ (3)

K(l).(2).(3).DKProp

*71'331. h :: i2eCls-> 1 . D :. f (R'x) . = : (ay) .xRy.fy: = :

x e D'R : xRy . Dy . ^y

*71'332. I- :. Eel ->Cls . D : R'y ea. = . g ! i2'y r> a . = .yed'R.R'yCa

*71*333. I- :. i2 eCls -> 1 . 3 : i?'a?ea . = . a ! R'x rs a . = .xeI>'R . RcxC a

*71'34. h : £ e 1 -* Cls . R = 8 . y e (KB . D . J2'y = S'y [*3036 . *7ll63]

*71'341. \-:ReC\s^l.R = S.x€D'R.D.R'x = S'x

*71'35. H:: JB e l->Cls.D:.yea'i2ua'/Sf.D1,.KV=^: = -^ = 'Sf

Dera.

h.*2118. D\-:.R = S.D:yea<R»a'S. = .ye(I'Ryja'R.

[*22-56] =.yea'i2 (1)

h.(l).*71'34.3h::Hp.E = ^.D:y€a'i2ua t>Sf.Dy . JB^ = /Sf'y (2)

I- . (2) . *3345 .OH. Prop

*71351. \-::R € Ch^l.D:.xeJ)'Ryj D'S.3x .R'x= S'x: = . R = S

*71352. b::R€l^l.D:.yea'Ryja'S.Dy .R'y = 8'y: = :R = S:

= :xeI><Rv*D'S.Ox .R'x = S'x
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#7136. h :. Re 1 -> Cls . D :x =Rty.= .xRy

Bern.

K*30-4.*7 1163. D

\-:.HV.ye<I'M.D:x = R'y. = .xRy (1)

h.*7l!63. Transp. D
I- : . Hp . y~ e (Fi2 . D . ~ E ! Rly

.

[*14'21 .Transp] D . ~ (# ** .R'y) (2)

I- . *3314 . Transp . D H : y ~ e d<22 . D . ~ (#%) (3)

I- . (2) . (3) . #521 . D
H.Hp.y~e(I'.#.D:a; = JK'y. = .a?JRy (4)

K (1) . (4) . *4'83 . D V . Prop

*71'361. I- :. R e Cls -* 1 . >: y = R'x. = . xRy

*71362. \-:.Rel-*l.D:x = R'y. = . xRy . = .y = R'x

*7137. \-:.Rel-+Ch.D:yeR"a. = .R'yea

Dem.
h . #71*33 . D h :. Hp . D : R'y e a . = . (ga?) . a?i2y . x e a

.

[#37105] = .ye£"a:.:>KProp

#71-371. h:.ReCls->l.D:x€R"a. = .R<x€a

#71-38. h : # € 1 -* Cls . D . 5"(a - /3) = E"a - R"P
Dem.

K*7l-37.Dh:.Hp.D:yeE%x-/3). = .i2'yea-/3.

[*22-32.*14-21] =.R'yea.~(R'yel3).

[*7137] =.yeR"a.~(yeR"l3).

[*22-32J = . t/ e .R"a - R"& :. D h . Prop

*71381. h : R e Cls -* 1 . D . iZ"(a - /3) = i2"a - R"p

*714. H : i2 e 1 -> Cls . D . i2"/3 = x {(ay) .yefi.x = R'y} [*37l . *71'36]

#71-401. h : J? e Cls-> 1 . D . 11"$ = $ \{^x) .xe&.y = R<x}

*71'41. h : 22 e 1 -»Cls.D.D'JR = £ {(ay). a> = .R'y} [#3311 .#71-36]

#71-411. H : R e Cls -* 1 . D . (F12 = {(a*) . y = R'x)

#7142. r : : R e 1 -» Cls . /3 C CI<.K . D :. R"$ Qa. = :y e $ .^y.R'yea
[*37-61 . *7116]

#71-421. h::R€Cte-+l.aCT>'R.3-..R"ciCj3. = :xea.Dx .R'xe{3

#71-43. h:.Rel-»Cls.yean(F Jft.D. JR<yei2"a [#3762 . #7116]

#71-431. t-:ReC\s-*l.xear\D fR.3.R<cceR"a.
28—2
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*71'44. h :: Re 1 -> Cls . a C (Pi? . D :.xeR"a .1x .^x; = :yea. Dy .yfr(R'y)

[#37-63 . *71\L6]

*71441. V :: i2eCls-»l . aCB'R . D :. y e R"a.Dy .tyy : = : x ea .Ox . ^r(R'x)

#7145. H :. R e 1 -» Cls . D : (g#) . a; e E"a . yfrx . = . (gy) . yea.f {R'y)

Dem.

V . *37'64 . #71-16 . D
h :. Hp . D : (>&x) .xeR"(a n d'R) . yjrx . = . (<&y) .yean d'R .^(R'y) (1)

h.*37-26. D h . R"(a n d'R) = R"ol (2)

l-.*14-21. Db :y ea. yjr(R'y). 5. El R'y.

[*33-43] D.ye d'R :

[*4-71.*22'33] D h : y e a . -f (R'y) . = .yean d'R . yfr (R'y) :

[#1011-281] D I- : (gy) . y e a . ^ (JB'y) . = . (gy) .j/ea^'iJ.f (fl'y) (3)

h.(l).(2).(3).DI-.Prop

#71451. h:.ReC\s-+l .3 :(^y) .y eR"a.^y . = .(^x) .xea^(R'x)

#7146. 1- : i? e 1 -* Cls . a C #"/3 . D . a = R"(R"a n 0)

Dem.

r . #37-26 . D H : R"/3 = R"(/3rxd'R) . R"(R"anj3) = R"(R"an/3nd'R) (1)

I- . #37-65 . *71-16 . D

h : # e 1 -» Cls . a C iZ"(/3 n d'i2) . D . a = R"(R"a n £ n <P#) (2)

K(l).(2).DKProp

#71-461. H : 22 e Cls -> 1 . /3 C ii"a . D . /3 = R"(R«/3 n a)

*71-47. h :. R e 1 -> Cls . D : a C R"/3 . = . (g7) . 7 C /3 . a = #"7

I- . *7146. #10-24. #22-43 . D I- :. Hp . D : a C R"f3 . D . (37). 7 C /3 . a=B"7 (1)

K #37-2. #10-11-23. 3\-:(>&v).yC/3.a=R"y.D.aCR"j3 (2)

h.(l).(2).Dh.Prop

*71471. H :. R eCls-» 1 . D : /3 C #"a . = . (37) . 7 C a ./3 = R"y

#7148. > : i£ e 1 -» Cls . D . D'i?e = CPD'iJ

Dem.

r . #37-24 . #60-2 . Dr. D'i2f C CI 'T>'R (1)

1-
. #37-25 . #71-47 . *60'2 . D I- : Hp . a e C\'T>'R . D . (37) . 7 C <J'i£ . a = R"y .

[*10-5.*37-23] D.aeD'i2 £ :

[Exp.*1011-21] DhiHp.D.Cl'D'iZCD'ik (2)

h . (1) . (2) . D H . Prop

#71-481. f-: JReCls-»l.D.D<(JR)6 = CKF£
The following proposition is used in the theory of derivatives of a series

(#216-411).
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*7149. r : Rel->Ch.aCa'R.3.R"<C\'a=C\<R"a.R"'C\ex<a=C\ex'R"a

Dem.

h.*71-47.*60-2.Dh:.Hp.D: 7 eCl^"a. = .(a)S).^Ca.7 = i2")S.

[#37103] = . 7 ei2"'Cl'a (1)

h . #3743

.

D h :. Hp
.
/3 e Cl'a . D : 3 ! £ . = . 3

!

R"$ (2)

h.(l).(2).DKProp

#71*491. h: JR€Cls^l.aCD <
JR.D.5 t"Cl <a=Cl <^"a.5" <Clex'o=Clex'^"a

This proposition is used in the theory of derivatives of a series (#216-4)

and in the theory of ordinal numbers (#251-11).

#71-5. h :.i2el-*Cls.D :xRy. = . x=u'R'y

Dem.

V . #71-36 . #30-1 . D h :. Hp . D : xRy . = .x = (ix) {xRy)

.

[*51-56.*32-13] = . x = I'R'y :. D I- . Prop

#71-501. h :. ReC\s^>l .3 ixRy .-= .y ^'R'x

#71-51. h : R e 1 -* Cls . y e d'iS .D.R'y = l'R{

y

Dem.

h . #5331 . #71163 . D h : Hp . D . t'R'y = B'y

.

[#51-51] D.R'y = ^'R'y : D H . Prop

#71511. h : -R e Cls -> 1 . x e D'R .D.R'x = \lR'x

#71-52. r- : JB e 1 -* Cls . D . R"a =7"E"a
Dem.

h.*37\L. DKt"i£"a = &{(3/3)./3eI2"a.#i/3}

[#51-51] =^Ka^).y8e JB"a.«=t <
)S}

[#37-7] = d {(^8, y).yea. $ = ~R'y . x =>/3}

[*11-23.*1 3-195] =a{(ay).yeo.fl?=^'22'y} (1)

I- . (1) . #71-5 . D h : Hp . D . \"R"* = x {(%y) . 3/ ea . xRy)

[#37-1] = R"a Oh. Prop

#71521. h : R e Cls -* 1 . D . X"a ="i'?R"ci

#71-53. h:Eel-^Cls.^ = JR <
2/- :) - a; = y

r- . #14-21 . D r- : Hp . D . E ! R'x . E ! R'y .

[#30-32] D . xR (R'x) . yR (R'y) .

[#14-16] D . xR (M'y) . yR (R'y) .

[#71-17] D.a = 2/:DKProp
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*71531. b:ReC\s-+l.R'y = R'z.D.y = z

*71532. b:.Rel->l.3:R'y = R'z.D.y = z:R'x = R'y.'2.x = y

*7154. b ::R el ->Cls . D :. i2 e 1 -> 1 . = :R'y = R'z. DytZ .y = z

This proposition and the next (#71/55) are very often used.

Dem.

b . *71'36 . D h :. Hp . D : (g«) . xRy . xRz . =y , z . (%x) .x = R'y .x = R'z.

[*14-205] =ytZ .R'y = R'z (1)

b . (1) . D b :: Hp . D :. R'y = R'z . Dy>z .y = z: = : (g#) . xRy . xRz . Dy>z . y=z :

[*10-23] = : xRy . xRz . Xty>z .y = z:

[*71-171] =:ReC\s-+l (2)

b . *71103 . *473 . D b :. Hp . D :R e Cls-* 1 . = . R e 1 -* 1 (3)

H . (2) . (3) . D I- . Prop

*71-55. \-::Rel-+C\s.D:.Rtl3el^>l. = :y,z€l3.R'y = R'z.DytZ .y = z

Dem.

b . *71'26 . D h :: Hp . D :. R f /3 e 1 - Cls :.

[*71'54] Dr.^r/Sel-^l.s:^^ /8)'y = {R[ j3)'z .Oy>z .y = z:

[*35-7] =:y,zel3.R'y = R'z .0y ,
t .y = z::Db. Prop

*7156. r-:.2Sel^l.ye(KR.D:.R'y = 22's.=E.y = s

Dem.
h.*71-532. Db:Up.R'y = R'z.D.y = z (1)

h.*71165.*30-37.Dl-:Hp.2/ = 2.D.i2 f2/=E^ (2)

K(l).(2).DKProp

*71561. b:.Rel-*l.xeD'R.D:R'x = R'y. = .x = y

*71-57. b :. R'y = R'z .= y>z .y = z : = : R el ^>1 : (y) .El R'y

Dem.
b . *10-1 .Ob:.R'y = R'z.= y>z .y = z:D:R'y = R'y.= y .y = y:

[*1315] D:(y).R'y = R'y:

[*1428] D:(y).ElR'y (1)

[*71166] D:Rel-*C\s (2)

I- . (2) . D r :. Hp (2) . D : R e 1 -» Cls : R'y = R'z .Dy , z .y = z :

[*71'54] D:Rel-*l (3)

l-.(l).(3).*7l-56. Dh.Prop

*71571. b :. y e £ . Dy . E ! R'y : = . R \- /3 e 1 -> Cls . /3 C a'JB

Z)ew.

h. *71-16. D h :. R\-/3e 1 -> Cls. = : y ed'(Rt /3) .Dy .E l(R\-/3)'y:

[*35-64'7] =:ye/3na'R.Dy .ye0.ElR'y:
[*22'33.*5-3] =:ye/3n d'R . Dy . E ! R'y (1)
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K(l). #22-621. Z>

\-:.Rt/3el-*Cte.!3Ca<R. = :yel3r>a<R.Oy.ElR'y.j3*a'R= P:

[•18193] = :ye/3.Dy .ElR'y:f3«a<R = l3 (2)

H.*33-43\DI-:.ye/8.Dy .B!i2'y:D./8Ca'i2.

[*22'621] D.0na'R-0 (3)

K(2).(3).*4'7l.DKProp

#71-572. \-:.yc0na'R.'Dy.'&lRiy. = .RtPel-*Cia

[#71-571 . #35-351 . #22-43]

#71-68.' \-ny,gefi.Dv, s
iRty = Rtz. = .y = zz.D.R[fi€l^l.fiCatR

Dem.
\-.*101.0\-::H.v.3:.yel3.Dy:R'y = Riy.= .y = y:

[*13-15.*14'28] lyiElR'ys.

[#71-571] D:..R| k£el-*Cl8.0C<rJR (1)

h . #3-26 . Imp . #1111-32 . D
I- :.Hp.D:y,**e£..B'y = £'*.:>„,,.? = *:

[#35-7] 0:(R^yy = (R[^)(z^y>z .y = zz

[#71-54.(1)] D:Rt/3el-+l (2)

K(l).(2).DKProp

#71-59. h::y^6/3.Dy>z :i2<
y= i2^.= .2/ = ^:. = .-Rr/9el -» 1 -^ C(Ifi2 J

Dem.

H. #71-56. DH::i2f-^el-»l. D:.yea'(i2 1^/3).D:(i2Wy=(-RW^.= .y=^:.

[#35-64-7] ^i.ye^^a'R.^:y
y
z^.R ly^Rlz.=.y^z (1)

h. (1). #22-621. Dh::J2r/8 e l->l./3Ca'E.D:.

2/ e£ . D : y, z e £ . R*y = -R's . = . y — z :.

[#4-73] D:.y
y
zep.D:R'y = R lz. = .y = z (2)

F.(2).*llir3.Dl-:: JRr/3el->l./3Ca<
JR.D:.

y, s 6/3 . D,,,

:

Rl
y = R tz.= .y = z (3)

K (3). #7 1-58. DK Prop

The following proposition is used in the theory of selections (#80"91).

#71-6. - \-:R e l-*C\8.0.R = s<P\(ny).ye<I<R.P = (R<y)ly}

Dem.
\- . #41-11 . #13195 . D

\-:x[stP{('3_y).yea
tR.P = (Rty)iy}liz. = .

(<Ky).ye<I<R.x{(R<y)ly}z.

[#5513] =.(ny).yea<R.x = R<y.z = y.

[*13195] = .ze(I'R.a; = Rtz (1)

I- . #71-36 . #33-43 . D H :. Hp . D : zed'R .x = R'z . = .xRz (2)

b.(l).(2).DKProp
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*71-61. h:T € l^Cte.O.Q<"T''(<l<TKa)^~Q«T"a

Dem.

b . #37 -103-67111 . #32-12 . D

bz/3e Q"'T"(<I<Tn a) . = . (ga?) . a? e (IT n a . £ = Q"~T'x (1

)

b . #53-31 . #71 16 . D h : Hp . a; e d'T n a . D . Q"?<# = (?T<# (2)

I-
. (1) . (2) . D h :. Hp . D : /3 e Q"T'(<Prn a) . = . {^.xed'TKOi.p^Q'T'cc.

[*37-67.*7l-16] E.^eQ'T^rna).
[#37-26] = . £ 6"Q«r"a : . D h . Prop

#71-611. I- : Te Cls -» 1 . D . Q"T"(D'T n a) ="Q"T"a

#71-612. b : Te 1 -* Cls . D . Q'"T"(<3<T « a) =V"^"a

#71-613. b : Te Cls -* 1 . D . Q"'S*'(DTn a) = Q"?"«

#71-613 is used in the theory of series (#206-6), and in the theory of

"similarity of position" (#272-131).

#71-7. r-:.Qel->Cls.D:«P|Q*. = .a?P(Q'*)

Dem.

b . #7136 . D h :. Hp . D : yQz . = . y = Q'z :

[Fact] D : xPy . yQz . = . xPy . y = Q fz :

[*10281] D : (gy) . ipy . yQar . = . (gy) .xPy.y = Q'z :

[*34'1.*13-195] D : xP
\

Qz . = . aP(Q'*) :. D I- . Prop

#71-701. b:.QeCls->l.-D:xQ\Pz.= .(Q<x)Pz



*72. MISCELLANEOUS PROPOSITIONS CONCERNING
ONE-MANY, MANY-ONE, AND ONE-ONE RELATIONS

Summary q/"#72.

In this number we shall prove various propositions involving 1 —> Cls,

Cls—> 1, or 1 —> 1, but not embodying fundamental properties of these classes

of relations.

The present number begins with various propositions (#72*1—'191) show-

ing that various special relations are one-many or one-one. The most useful

of these are

*72182. Ka4yel-*1
*72184. h.#4,,4,a:el-*l

We have next a set of propositions concerning R iSiz when R and 8 are

one-many, or RlRlz when R is one-one, and kindred matters. The most

useful of these is

*72241. h:.Rel-*l .2 :ye<I<R. = .!/ = R<R'y

We have next a set of propositions (*72'3—*341) concerning products and

sums of classes of relations; of these the one most used is

*7232. h:.\Cl->Cls:P, QeA-.g ! (I'Pnd'Q.^Q .P=QO.s<\el-*Cls

which is an extension of #71 '24.

We have next a set of propositions (*724—'481) giving various relations

of R"a and R"j3 when Pel->Cls, or of R"a and P"/3 when Re Cls ->1.

The more useful propositions of this set are those that have the hypothesis

R e Cls —> 1 ; these are occasionally useful in arithmetic. We have

*72-401. r : R e Cls -> 1 . D . R"a * R"/3 = R"(a n £)

*72-411. \-:R€Ch-+l.anj3 = A.D.R"anR"l3 = A

For example, the relation of son to father is many-one. Let a = Cabinet

Ministers, = fools; then assuming an/3 = A, it will follow that the sons of

Cabinet Ministers and the sons of (male) fools have no common member.

If we make R the relation of son to parent (which is not many-one), it no

longer follows that the sons of Cabinet Ministers and the sons of fools have

no common member.

We have

*72451. \-:ReCls->l.D.Re tCl'a<Rel-+l

The effect of this proposition is that if a and /3 are both contained in

a (R, and R"a = #"/3, then a = (using Re'a = R"a).
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We next have a set of propositions concerned with the relations of

Re and (R)e , or, what comes to the same thing, with the circumstances under

which a = R"fi . = . £ = R"a and under which R"R"a= «. We have

*72502. h : R € 1 -* Cls . a C D'R . D . R"R"a = a

Thus for example the fathers of the children of wise fathers are the class

of wise fathers; but the fathers of the children of wise parents are not all

wise, and the parents of the children of wise parents are not all wise—the

first because " a C D'R" fails, the second because "R e
1

'
—> Cls" fails.

We have also

#7252. h :. R e 1 -* 1 . a C D'R . /3 C d'R . D : a = i2"/3 . = . £ =*R"a

We have next a set of propositions (#72'59—"66) in which the relative

product R
|
R occurs if R e 1 —* Cls, or R

|
R if R e Cls —> 1. The most useful

propositions in this set are

#72-591. H:i2eCls->l. D . S\R\R = S[<1<R

*72-601. h:ReC\a-+l. d'SCWR .D.S\R\R = S

*7266. \-:&GS.8 = S. = .(RR).ReCte-*l.S=R\R
This is the "principle of abstraction." It shows that every relation which

has the formal properties of equality, i.e. which is transitive and symmetrical,

is equal to the relative product of a many-one relation into its converse ; i.e.

whenever the relation S holds between a; and y, there is a term a such that

xRa . yRa, where R is a many-one relation; and #72 -64 shows that this term

a may be taken to be S'cc, which is equal to Sl
y. This principle embodies

a great part of the reasons for our definitions of the various kinds of numbers

;

in seeking these definitions, we always have, to begin with, some transitive

symmetrical relation which we regard as sameness of number; thus by #72*64,

the desired properties of the numbers of the kind in question are secured by

taking the number of an object to be the class of objects to which the said

object has the transitive symmetrical relation in question. It is in this way

that we are led to define cardinal numbers as classes of classes, and ordinal

numbers as classes of relations.

The remaining propositions of this number are of less importance, with

the exception of

#72-92. \-:Rel-+Cte.SGR.1.S = Rt<l'S

This proposition shows that every relation contained in a one-many

relation is obtainable by a limitation of the converse domain. Thus e.g. every

relation contained in that of father to son can be specified by specifying the

class of sons who are to be its converse domain; for then all the fathers of

these sons must be included to provide referents. But if we take the relation
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of parent and child, which is not one-many or many-one, a contained relation

is not determinate even when both its domain and its converse domain are

givea; for the relation may relate some of the children in any one family to

the father and some to the mother, and so long as all the children and both

parents are each related to some one by the relation, the domain and converse

domain remain unchanged by permutations within the family.

#721. r.Ael-»l
Bern.

K #25105. Oh.~(a:Az.yAz).

[*2'21] D h : xkz . ykz . D . cc = y :

[*iril.*7l-l7]DI-.A e l->Cls (1)

Similarly KAeCls->l (2)

h. (1). (2). #71103. >K Prop

*7211. h . Cnv e 1 -+ 1

Dem.
r- . #3113 . #71166

,

DKCnvel-*Cls (1)

h . (1) . #7154 . #31-3212 . D h . Prop

*7212. KJ2,S"el-»Cls. [#3212121 . #71166]

*72'121. h.sg,gsel-»l

Dem.
K #32-22-221 . #71166 . D h. sg, gsel ->Cls (1)

f . (1) . *3214-15-21-211 . #7154 . D K . Prop

#7213. KDel-»Cls [#3312 . #71166]

#72131. K(Iel->Cls [#33121 . #71166]

#72132. (-:(7el-»Cls [#33122. #71166]

#7214. Ka>$,$fl?el-»C1: [#3812 . #71166]

This proposition applies to a great many of the relations we have to deal

with, for example \P\ P\, Pfc, P\, \P, cc
J,., I x, etc.

#7215. KPe el-*Gls [#37-111 .#71166]

In #7216 below, p has the meaning defined in #40-01, and does not

represent a variable proposition. Similarly s in #72161 has the meaning

denned in #40-02.

#7216. Kpel->Cls

Dem.
h . #20-2 . (#40*01) . D I- .p'K = S(ae*.D«.«ea).

[#14-21] Dh.Klp'tc (1)

K(l). #71-166. DK Prop
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*72'161. Ksel-»Cls [Proof as in *72'16]

#72162. h.p € l-+Cte [Proof as in *72'16]

#72163. Ksel->Cls [Proofas in #72-16]

#7217. h.Jel->l

Bern.

K#52'22.(*51-01). Dh.(x).~?xel.
[#71-12] DH./6l->Cls (1)

H.(l). #71-21. #50-2. Dr. JeCls^l (2)

h.(l).(2).DI-.Prop

#7218. h.tel-»l [#51-23. #71-57]

#72181. h.tel-*l [#7218. #71-212]

#72182. \-.xlyel->l

Bern,.

K#55'13. D h : z(x\y)w. = .z — x. w = y : (1)

[#3*47] D H : z (x ^ y) w . z (x 4, y) w . D . z — x . z' = x

.

[#13-172] 0.z = z (2)

I- . (1) . #3'47 . D h : z (x I y) w . z (x \ y) w' . D .w — y .w'' = y

.

[#13-172] 0.w = w' (3)

K (2). (3). #71172. Dh. Prop

#72184. r . # j , J,
# e 1- 1 [#55-2 . #71-57]

#72185. h . ( I x)€ e 1 -* 1 [#55-262 . #37-11 . #72-15 . #71-54]

#72-19. KClel-»l [#6055 . #71*57]

#72191. KRlel-»l [#61-55. #71-57]

#72192. h.Clexel->l [#6056 .#71-57]

#72193. KRlexel->l [#61-56 . #71-57]

#72-2. t-:.B,Sel-+Cls.D:x = R<S<z. = .x(R\S)z.= .x= (R\S)'z

Bern.

K #71-36 . D I- :. Hp . D : a? = R'S'z . = . xR(S'z) .

[#71-7] =.x(R\S)z (1)

h . #71-36-25 . D I- :. Hp . D : x (R
j
8)

z

. = . x = (R
|
S)'z (2)

K(l).(2).Dh.Prop

#72-201. r :. JS, £ e Cls -* 1 . D : z = S'R'x . = .x(R\S)z . = .z = (S\R)'x

#72-202. h:.R,Sel->l.D :x= R'S'z . = . #(i2|£)*. = .2=3<5<a;[*72-2-201]

#72-21. h:.R,Sel->Cls.D:ze S"d'R . = . E ! #<£<* . = . E ! (jK
|
£)'*

Dera.

h. #71-25-163. Dr-:.Hp.D:*e(I'CR|j8f). = .E!(.R|£)'s (1)

r- . (1) . #37-32 . D h :. Hp . D :zeS"<I'R . = . E ! (22
|

S)'z (2)
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b. #722. *10\L 1-21-281. 3
h :. Hp . D : (gar) . x^R'S'z . = . ($x) . x = (R\8)'z :

[#14-204] DtElR'S'z. = .El(R\S)'z (3)

h . (2) . (3) . D I- . Prop

#72-211. b :. R, S e Cls ->l.D:x € R"B'S . = . E ! S'R'x . = . E ! (S

|

R)'oc

#7222. H : R, 8 e 1 -> Cls . * e S"(I'R . D . iW* = (R
\
8)'z

Dem.
h . #72-21 . D r : Hp . D . E ! R'S'z .

[*34'41] D . JW* = (R\S)'z:Ob. Prop

*72221. h : R, S e Cls -> 1 . x e iS"D<,Sf . D . S'^'a = (5 \R)'x

#7223. H : R, 8 e 1 -> Cls . D . iZ"£"7 = £ {(a*) . * e 7 . a; = R'S'y}

Dem.

r.*3733. D\-.R"S"y = (R\S)"y (1)

\- .*11'25-4 .Db -.Up .3 .(R\S)"y = & {faz).zey .x= (R\S)'v}

[*72'2] = a>{(g.2).se 7 .a;= i2<,Sf'7} (2)

h . (1) . (2) . D h . Prop

#7224. r-:.i2el~>l.D:a?e D'iJ . = . a; = iWa;
Dem.

h . #72-202 . *7 1212 . D I- : . Hp . D : x = i^'5'a; . = . x (R
| 5) a:

.

[*71-192] = .ar(iTD'i2)a:.

[#35101 .#60-1] = .x = x.x € T>'R.

[*1315.*4-73] = . xeD'R :. D K Prop

#72241. h :. Re 1 -* 1 . D : y e d'R . = .y = R'R'y

#72-242. h:.Rel^l.O:<f>(R'R'z). = .zeT>'R.<f>z:<t>(R'R'z). = .zea'R.<f>z

Dem.

V . #30-501-51 . D h : <£ (R'R'z) . = . (ga?) . x = R'R'z .<f>x (1

)

I- . (1) . #72-2 . D h :. Hp . D : (£'.R's) . = . (gar) . a; (E
j
E) s . <£a:

.

[#71-192] = .(^x).x = z.zeD'R.<f>x.

[#13-195] = .zeD'R.<j>z (2)

h . (2) ^ . #71-212 . D h :. Hp . D :
<f>
(R'R'z) , = .ze d'R . <f>z (3)

h . (2) . (3) . D H . Prop

#72-243. h::i2el-*l.D:.^eD'i2.02r.=r .^(JB'«): = :^(i2'w).sw.wea'i2.^w

Dem.

\-
. #72-242 . D r : : Hp .O : . z e D'i2 .^>z.=z .^ (R'z) : D :

<f>(R'R'z).=e .yfr(R'z):
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[Fact] D:$(R'R'z) rw = R'z.=z,w .ylr(R<z).w = R'z:

[*1415] 3 : </> (R'w) .w=R'z .
=

z>

w

. i^w .w = R'z :

[*10-281] O : (gs) .
<f>
(R'w) ,w=R'z . =w . (>&z) . «fw . w= R'z:

[*71411] ^:<f>(R
tw).wea tR.=w .y}rw.wea tRz

[*14-21.*71'163] D:<j>(R<w).=w .Tlrw.W€a<R (1)

K(l)J?OH::Hp.D:.wea^.^^ (2)

h.(l).(2).DK.Prop

The above proposition is used in #272*4'41, which are used in the theory

of "rational series," i.e. series ordinally similar to the series of rationale.

*72-25. r :. R el -* 1 : (y) . E ! R l

y : D . {y) . y =R{Rl

y
Dent,

h .*7l\L65 . D h :.i2c 1 -> 1 . D :(y) . E ! J2'y . = . (y) .yed'R (1)

I- . *72'241 . D K:..J2 e 1 -» 1 .0 : (y) . y ed'E . = . (y).y = RlR'y (2)

K(l).(2).Imp.Dr,Prop

The propositions Cnv'Cnv'P= P and t'l'x= a;, which have been previously

proved, are particular cases of the above; the former is a particular case

because Cnv = Cnv'Cnv.

*72'26. H : (y) . E iR'y . D . R = ejS"

In this propositioD, the conditions of significance require that the domain

ofR should consist of classes. This proposition is used in *72'27.

Dem.

h.*37-31.DK e]R-= €e \R

[*62'32] =s|E (1)

1-
. *5331 .D h : Hp . D . (y) . s'R'y = s l

i
lRl

y
[*53'02] = R'y.

[*34-42] 0.s\R =R (2)

h . (1) . (2) . D h . Prop

*7227. h.D = 7jl).a = eT2 [*72 26 .*3312121]

*72:27 is used in *7463'631 and again in *16315.

*72& h : a ! X r> (1- Cls) . D .p'X e 1 -> Cls

f- . *4M2 . Fact . D h : i2 e X . R e 1 -» Cls . D . p'X G J2 . 22 e 1 -> Cls

.

[*71'22] D.ji><\el-*Cls (1)

\-.(l).*10-ll'2S.3\-.:(<&R).ReX.Rel^>C\8.3.p'Xel^Cte (2)

h.(2).*22-33.0KProp
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*72301. h: a !\n(Cls-»l).>.^\€Cls->l

*72302. H:a!\n(l-*l).D.p'\el->l

*72303. h:a!\n(l^Cls).a!\A(Cls-»l).D.y'X.€l-*l [*72'3-301]

*72'31. I- : s'\ e 1 -* Cls . D ..X C 1 -* Cls

Dem.
\- . *41 13 . D I- : s'\ e 1 -* Cls . PeX . D . s'\e 1 ->Cls .PGs'X.

[*71'22] D. Pel-* Cls (1)

I- . (1) . Exp . *10 1121 . D r . Prop

*72311. l-:s'XeCls-»l.D.XCCls-»l

*72312. h : s'X e 1- 1 . D . X C 1- 1

*72'32. h:.\Cl-»Cls:P,QeX.a!a'Pna'Q.DP, Q .P = Q:D.sa€l^Cfe

Dem.

I- . *41-11, *ll-54 . D h : ar(^X)* . yisl\.)z . = .

(&P,Q).P,Qe\.xPz.yQz.

[*33'14.*4'71] = . (3P, Q)>P,Qe\.xPz.yQz.ze d'P a d'Q (1)

h . (1) . *4-71 . D h :. Hp .O : # (s'X) 2 . # (s'X)s . = .

(gP, Q) . P, Q e X . xPz . yQz . z e d'P a <PQ . P - Q .

[*13195] ^.{^P).Pe\.xPz.yPz.
[*7117.Hp] 2.oc= y (2)

I- . (2) . *iril-3 . *7117 . D H . Prop

*72'321. l-z.XCCIs-^lzP.QeX.alD'PnD'Q.Dp.e.P-QO.s'XeCls-*!

[Proof as in *7232]

*72'322. h:.\Cl-+liP,Qe\.<a.ia<Pna'Q.OPtQ .P = Q:

P, QeX . a ! D'P o D'Q . Dp c . P = Q : D . s'X€ 1 -* 1

[*72-32-321]

*72323. h:.XCl-^l:P,Q6X.a!C"PnC'<Q.Dp, e .P=Q:0.s<Xel->l

Dem.

H . *33161 . *2249 . D f- . d'P a CFQ C tf'P a CQ . D'P a D<Q C C^P a C'Q

.

[*2458] DI-:^!a'PAa'Q.D.a»C"PA(7'Q:
H'.D'PAD'Q.O.aJC'PAC'Q (1)

K(l).Syll. Dh:.Hp.D:P,Q€X.a!a'PAa'Q.Dp, e .P = Q:

P,Q €X.^!D'PADfQ.Dp
j<?
.P = Q (2)

h . (2) . *72-322 . D h . Prop

*72*34. \-:Rel-+Ch.>&lK.'2.p fR"'K = R"p'K

Dem.

h.*40'35. Dbi.y€ptRt"K. = :0eK.Dfi .yeR"0 (1)

K(l).*7l-37. DI-::Hp.D:.y€p'5'"/c. = :^€/c.Ds .E'y€)8 (2)
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h.*14'21. D I- :. /3 e k .D . R'y e :D : /3 e k .D .E! R'y :.

[#10*52] Dh ::Kp. D :. ex. Dp. R'y ej3:3. El R'y (3)

I- . #14*28 . #401 . D h : : E ! R'y . D : . /3 e k . D^ . J2'y e /3 : = . R'y ep'/e : :

[(2).(3).*5*32.*14*21] D h :. Hp . D : *y e jo'.ft"'*: . = .R'yep'K .

[*71 -37] = . 2/ e #>'* : . D I- . Prop

#72*341. \-:ReC\s-+l.<&lK.D.p'R"'K = R"p' fc

This proposition should be compared with #40*37 and #40*38.

#724. \-:Rel-+C\s.D.R"anR"/3 = R"(an/3)

Dem.

\-.*nB7.3h:.Hp.3:yeR''anR''/3. = .R'yea.R'y € /3.

[#22*33] =.R'year\@.

[#71*37] =.y€R"(a*/3):.D\-.¥rop

When R is not a 1 -» Cls, we only have in general (cf. #37 "21)

R"(an0)CR"anR"/3.

#72 401. h : R e Cls- 1 . D . E"« n 12"/3 = #".(« r* /3)

#7241. h:jRel->Cls.an/3 = A.D. 12"a n #"£ = A [#72*4 . #3729]

#72-411. H12eCls->l.an£=-A.D. R"a n 12"/3 = A

#7242. 1- : R e 1 -> Cls . g ! E"a n £"£ . D . a ! a n /3 [#7241 . Transp]

#72-421. h : 12 c Cls -» 1 . 3 ! R"a * R"0 . D . 3 ! a n £

#72-43. l-:Eel-*Cls..2"a = E"y3. D.anD'E =^D'R

K #71*37. D:.Hp.D :£'?/€«. =,.1^6/3:
[Fact] 0:z = R'y.R'yea.=y .z = R'y.R'yep:
[#14*15] D :z = R'y . Z€Ct.=v .z = R'y. z efi :

[#10-281] D : (as/) .z = R'y.zea. = . (>&y).z = R'y . z e {3 :

[#71-41.#1035] D:ze B'R .zea.=.ze B'R .ze@:

[#22-33] D:zeB'Rr\a.=z.zeB'Rn/3:.Dh.Frop

#72-431. H : R e Cls -» 1 . £"« = 12"/3 . D . a n (F.R = £ n d'12

#7244. I- : R e 1 -> Cls . a C D'12 . /3 C D'l* . R"a = #"/3 . D . a = /3

[#72-43 . #22-621]

#72-441. h:ReCh-+l.aCa'R./3Ca'R.R"a = R"]3.3.a = /3

#72-441 is used in the theory of cardinal exponentiation (#11 6*659).
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*72-45. h : R e 1 -» Cls . D . (R)e [ Cl'D'R e 1 -> 1

K*602. DHaCD'.R.yeCD'E.ss.a^eCl'D'E (1)

I- . *37-ll . D H : 5"a = R"ft . = . (5)e'o= (R)e'ft (2)

I- . (1) . (2) . *7244 . D

l-:. JBel->Cls.D:a,
)
8eCl <D'i2.(5)e'a = (S)e

<y8.D„^.a =
y
8:

[*71'55.*7215] D : (R)e [ Cl'D'R e 1- 1 :. D H . Prop

*72'451. h: JReCls-»l.D..RerCl'CI'i2el->l

*72'46. H:.i?6l->Cls.D:^"a= JB"yS. = .anD'i2 = /3nD^
[*72-43.*37-263]

*72*461. h :. R e Cls- 1 . D : i2"a = R"ft . = . a n d'.R = ft n d'jR

*7247. h :. R e 1 -*Cls . D :.#"«= <Pi2 . = . D'iZ C a

Dern.

h . *37-25 . *72-46 . D

K :. Hp . D : E"a = d'R . = . a n D'i2 = D'R n T>'R

.

[*22-5'621] = . D'R C a : D h . Prop

*72'471. h :. R e Cls -» 1 . D : E"a= D'E . = . d'R C «

*7248. \-:.Rel-+C\s.a,fteC\'D'R.3:R"a = R"ft. = .a = ft

Dem.
h . *22-621 .Dh:.Hp.D:a = ^. = .an D'i2 = £ n D'J2

.

[*72-46] = . R"a = R"ft:.3h. Prop

*72'481. h :. R e Cls -> 1 . a, £ e Cl'd'E . D : i2"a = £"£ . = .« = £

*7249. H:.Qel-»Cls.D:d<(P|Q) = d<Q. = .D'QCa<P
Dew.

h . *72-47 . D h :. Hp . D : Q"d'P= d'Q . = . D'Q C d'P (1)

I- . (1) . *37-32 . D K Prop

*72491. H:.PeCls->l.D:D<(P|Q)^D<P. = .(FPCD<Q

*72492. r:.PeCls->l.Qel-*Cls.D:
D<(P|Q) = D'P.d<(P|Q) = d<Q. = .d<P = D<Q [*72-49'491]

*72-5. > : E e 1 -> Cls . D . E"i?"a = a n D'R

Dem.

h.*3733. D\-.R"R"a = (R\R)"a (1)

1- . (1) . *71-19 . D h : Hp . D . R"R"a = (I[ D'R)"a.

[*5059] =«n D'R : D I- . Prop

R&w I 29
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*72'501. I- : R e Cls -> 1 . D . R"R"a = a n d'R

*72502. h : R e 1 -» Cls .

a

C D'i2 . Z> . i2".K"a = a [*725 . *22"621]

*72'503. I- : R e Cls- 1 . a C d'R . D . R"R"a = a

*72-504. h : X C D'lk . D . Re"Re"\= X [*72'50215]

Note "that ifc means Cnv'J?e , not (i2)e. *72*504 is used in the theory of

segments of a series (#21 1*64).

*72-51. h : R e 1 -> Cls . a C D'iS . £ = E"a . D . a = R"j3 [*72'502 . *2018]

*72511. H : R e Cls -» 1 . £ C (TE . a = i2"/3 . D . /3 = £"a [*72503 . *2018]

*72512. \-;.Rel-+l./3Ca (R.D:yel3. = .R'yeR"/3

Bern.

f-.*71-37. 3\-:.R e l->Ch.D:yeR"R"j3. = .R'yeR"/3 (1)

H . *72-503 . D h : . 12 e Cls -> 1 . £ C d'R .D:ye R"R«/3 . = .ye/3 (2)

K(l).(2).DKProp

*72'513. t-:.Rel-*l:(y).ElR'y:D:yel3.==.R'y€R"l3 [*72512.*33-431]

*7252. \-:.Rel-+l.aCD'R.pca<R.3:a=R"/3. = .l3=R"cL [*7251-511]

*72-53. b:.Rel^>l.D:j3C<I<R.a= R"j3. = .aCI>'R.l3 = R«a

Bern.

Y . *72-52 . *532 . Z>

\-:.Rel^l.D:aCD<R./3Ca<R.a = R"/3. = .cLCI>'R.l3C<I'R./3 = R"ci (1)

I- . *3715 . D I- : a = R"/3 . D . a C D'i2

:

[*4-7l] DHaCD^R./3Ca^.a= i^'/3. = //3Ca^R.a = J2"/3 (2)

h . *3716 . D h : /3 = S"a . D . /3 C d'iZ :

[*4-7l] 3\-:aCD'R.j3Cd<R.l3 = R"a. = .aC.~D'R./3 = R"a (3)

1- . (1) . (2) . (3) . D h . Prop

*72'54. > : R e 1 -» 1 . D . Cnv'^e f Cl'd'E) = (^)e f Cl'D'iZ

Dem.
h.*31131.D

h : /3 {Cnv'CRe f Cl'd'R)} a . = . a (ik T d'CM) .

[*37l01.*35101.*60-2] =.a= iJ^.i3Ca'i? (1)

h . *37-102 . *35101 . *60'2 . D

I- : {{R)e T Cl'D'12} a . = . /3 = 5"a . a C D'R (2)

I- . (1) . (2) . *72-53 . D h . Prop

#72-641. h:.#el-*l. £ = £.:>. Cnv'(i2e
I

s D'&) = & f D'J?e

[*71-48-481 . *72'54]
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#72 55. h:Rel-+Ch.3.alR = RtR"a = a
J\RtR"a

Dem.

h . *35-l . #7136 . D I- :. Hp . D : x{a^ R) y . = . xea . x = R l

y .

[*14'15] = .R'yea.x = R f
y.

[*7l-37] = .yeR"a.x = R<y.

[*71-36.*35-101] =.x(R\-R"a)y (1)

K (1). #35-1l.DK Prop

#72551. \-iReC\B-*l.D.Rt/3 = (R"l3)'\R = (R"l3)'\Rt/3

#7257. h: Q\-\el -*Cls. \ = Q"/m. D . finD'Q = Q"\

Dem.

h. #37-42. D\-:\ = Q"fi.D.(\1Q)"f
jL=Q"fA, (1)

h. #37-421. Dh:^=Q"/i-:D-(Qr*)"Q'V=Q"^ (2)

K (1) . (2) . D 1- : X = Q<> . D . (Q r X)"(X 1 Q)»V = Q"X" (3)

h. #72-5. #35-52. DhiQ^X e l-*Cls.D.(Q|< X)"(X
>

lQ)"/
Lt = /i nD <

Q (4)

H . (3) . (4) . D I- . Prop

#72-59. b:Rel-*Ch.3.S\R\R = S\- V'R

Dem.

\- .#71-19 . D H : Hp . D . S
|
R

\

R = S
j

(/ fD'iZ)

[#50-6] = S T D<£ : D I- . Prop

#72591. h-.ReCh^l. D.S\R\R = S[a (R
#72-6. h :£ e 1 -> Cls. (FtfCD'ii.D. #!#!# = £ [#72-59 . #35452]

#72-601. b:R € Cls.- 1 . (FS C d'iZ . D . S
j S J R = £

#72-61. h : i2 e 1 -» Cls . G.'S C D'E .0 . S\R\R\S= S\S [#72-6 . *34'27]

#72611. h : £ e Cls -> 1 . d'S CWR .0 . S\R\R\S = S\S

The following propositions lead up to the " principle of abstraction

"

(#72-66), which, though not explicitly referred to in the sequel, has a certain

intrinsic interest, and generalizes a type of reasoning frequently employed

by us.

#72-62. \-:Rel->C\s.S = R\R.3.S* = S.S = S
Dem.

h . #34-21

.

D h : 8= R
j
R . D . S* = R

j

(R
j
22

j
R

)

(!)

h . #72-6 . #33-21 . D h : i2 e 1 - Cls . D . R
\

R
\

R = R (2)

K(l).(2). DhiHp.D.S^iZ ! S
[Hp] = S (3)

K (3) . #347 . D h . Prop

29—2
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#72-621. h:.Eel-»Cls. ^'.y{R\R)z . = .R'y = Rlz

Bern.

\-
. #7133 . Z> h :. Hp . D : R'y = R'z . == . (gar) . aity . a? = i2'«

.

[*71'36] = . (ga?) . a?i2y . #ifc>

.

[#31-11] = .(^x).yRx.xRz.

[#34-1] =.3/(E|i2)^:.DH.Prop

#72-622. \-;.ReC\s-+l.D:y(R\R)z.==.R'y = R'z

#7263. H:#€Cls-*l.fl= i2|.R.D.i8f» = /8.,S = £
Dem.

K #34-21. Dh:S= R\R.D. S* = (R\R\R)\R (1)

h . #72-601 . D h : R e Cls -> 1 . D . R
|
£

|

£ = R (2)

h . (1) . (2) . D h : Hp .O . S> = R
\
R

[Hp] =S (3)

K (3) . #34-7 . D r . Prop

#72-64. h : #2 = 8. S=S .R = Cnv'(St'D tS).D.Re Cls -»l.£ = .Rj.R

Dem.

b . #72-12 . #71-26 . D h . flf B'S e 1 -> Cls

.

[#71-21] Dh:Hp.D. JReCls-»l (1)

h . (1) . #72-622 . D

I- :. Hp . D : y(R
\
R) z . = . R'y = R'z .

[#31-34.Hp] = . (S[ B'8)'y = {8[ ~D<S)'z .

[#35-7] =.y,z €\D'S .*S'y Js*z .

[#34-85] = . z € B'S . ySz (2)

I- . #31-11 . D I- :. Hp . D : ySz . D . zSy

.

[#33-14] D.zeB'S:

[#4-71] D:y8z. = .zeB'8.ySz. (3)

K(l).(2).(3).DKProp

#72-65. \-:S* = S.S = S. = .{>&R).ReCte^>l.S=R\R [#72-63-64]

#72-66. \-:S*GS.S=S. = . (gi?) .ReC\s-+1 .8 = R\R [*72'65 . #34-81]

*72'7. l-i.Rel-^Cls.D.^rD'jBel-^l

Dem.

b.*33-4s .*22-5.D\-zy,zeT)'R.'R'y = R'z.'}.<&lR'ynR'z (1)

h.(l). #71-18. Dh:y,zeD'R.R'y = R'z.D.y = z (2)

I- . (2) . #72-12 . #71-55 . D I- . Prop
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#7271. hiEeCls-frl.D.EfCKRel-frl

#7272. \-:Rel^>l.D.~Rta'R,RtT>'Rel-*l

#728. hiXCD'H.D.ar*^ 1 -* 1 E*55
*28 '22 *71"58]

The above proposition is used in #73'62.

#72 81. H:\CD* ^.D.DTXel-^l [*55'281'221 . #71-58]

#729. \-:.Rel-^C\s.SGR.D:l&lS'y. = .R'y = S<y. = .yea (S

Dem.
K*71-22. Dh:.Hp.D:#el-»Cls:

[#71-163] 3:E!i8f'y. = .yca'iS (1)

K. #14-21. Dh:R'y = S'y.D.ElS<y (2)

h . #30-32 . (1) . D h :. Hp . D : y e d'S . D . (S'y) Sy

.

[Hp] D.(S'y)Ry.

[#71-36] D.S'y = R'y (3)

h . (1) . (2) . (3) . D I- . Prop

#72-91. \-:Rel->C\s.SGR.3.a<(R-S) = a<R-a<S

Dem.

h . #33131 . #23-33-35 . D

h : y e d'CR-#) . = . (a*) .xRy.~ (xSy) (1)

h
. (1) . #71-36 . D

\-:.-RV .D:ye(I'(R^S). = .('ax).% = R'y.~(a:=Si
y).

[*1415.*5-32] = . (gar) .x = R'y.~ (R'y = /Sty) .

[*10-35.*14-204.*72-9] s . E ! R'y . ~ (y e d'S)

.

[#71163] = • y e d'R - d'S :. D H . Prop

#72-911. h : £ e Cls -> 1 . £ G E . D . D'(JR^£) = D'E - D'S

#72-92. h:Rel->C\s.S<iR.O.S=R\-a'S

Dem..

Y . #231 . #33-14 . Dh:.B.p.D:xSy. Dx, y . xRy .yed'S.

[#35-101] DXiy .x(R[(I<S)y:

[#231] DiSGRfa'S (1)

h. #35-101. #71-36. Dhz.K^.DzxiR^a'S) y. = .x = R'y .yed<S

.

[#72-9] =.x = R'y.R'y = S'y.

[#14-142] D.x = S'y.

[#30-31] D.xSy (2)

h . (2) . *ll'll-3 . O I- : Hp . D . R [ d'S Q.S (3)

h . (1) . (3) . D h . Prop

#72-921. b:ReC\s-+l.SGR D.S = (D'S)
J[R
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#7293. t-i.Rel-*C]a.R<ZS. = :yea'R.Dy .(R'y)Sy

Bern.

\-
. #14-21 . #4-71 .Dh:ye d'R . Dy . (R'y) Sy: = :.

ye<l<R.Dy .ElR<y.(R<y)Sy:.
[#14-25]

[*10-29.*ll-62]

[*71-16.#3314]

. y e d'R .Dy .E\R<y : xRy . Dx . xSy :.

.y ed'R .?y .E\R'y :y ed'R .xRy .-}
x>y .xSy :.

.Rel->Ch.RCLS::Oh. Prop

#72931. \-:.ReCh->l.RGS. = :xe~D'R.-}x .xS(R'x)

#7294. I- : . R., 8 e 1 -* Cls . D : g ! R n S . = . (gy) . R'y = S'y

Dem.

h . #71-36 .D\-:.Kp.D:^lRnS. = . (ga-'.y) . a = i£'y .x=S'y.
[#14-205] = . (gy) .R'y = S'y:.^Y. Prop



*73. SIMILARITY OF CLASSES

Summary of #73.

Two classes a and @ are said to be similar when there is a one-one relation

whose domain is a and whose converse domain is @. We express "a is similar

to 0" by the notation "asm/3." When two classes are similar, they have

the same cardinal number of terms: it is this fact which gives importance to

the relation of similarity.

We have
a sm /3 . = . (gi2) . R e 1 -> 1 . a = D'R . £ = <FR.

The relation of similarity is that of the domain of a 1 — 1 to the converse

domain, i.e. it is the relative product of D f (1 -> 1) and (1 -> 1) 1 d, or, what

comes to the same thing, it is the relative product of D [ (1 — 1) and G.

Most of the properties of similarity result immediately from those of

one-one relations and offer no difficulty of any kind.

When there are relations which correlate as with /3's so as to make

a similar to /3, we denote the class of such relations by "asmyS." Thus

we have

asm/3 = (l->l)nI)<an(r/3 Df

and sm = «y§ (g; ! a sm #) Df

When, as in this case, we have a descriptive double function closely

connected with a relation, we shall make it a practice to distinguish the

descriptive double function by a bar.

It is to be observed that "sm," like A and V and 1 and 1 —> 1, is ambiguous

as to type, and only acquires a definite meaning when the types of its domain

and converse domain are specified. The domain and the converse domain

may or may not be of the same type, i.e. "sm" may or may not be a homo-

geneous relation. This enables us to speak of two classes of different types

as having the same number of terms. We shall return to this point in

connection with cardinal numbers (cf. especially #102—#106).

The propositions of the present number are important, and are very

frequently referred to throughout cardinal arithmetic. In order to prove

that two classes a and # have the same cardinal number of terms, it is

generally necessary, in the fundamental arithmetical propositions with which

we are concerned, actually to construct a relation R such that Reasmft.

Such a relation will be called a correlator of a and /3. It will usually be

obtained by taking some relation S for which we have (y) . E ! S'y, and
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limiting the converse domain to /3, so that Sffiis the required correlator.

Very frequently we shall have Se 1 -> Cls, not Se 1 -> 1, but /3 will be such
that#r/3el-»l.

Among the more important propositions of the present number are the
following:

*73142. h:Rt/3ea$ml3. = .RlP€\-+l.l3Ca<R.a = R"P
I.e Rffi is a correlator of a and /3 if (I) R[ fi is one-one, (2) /9 is con-

tained in the converse domain of R, (3) a is the class of those terms which
have the relation R to members of y8.

*73 2. h : R € 1 -* 1 . D . D'R sm &<R. d'R smV'R
This results immediately from the definition.

*7322. h:£el->l.£C d'R . D . R"& sm 0.R[/3e (E"/3) sm £
#733. I- . asm a. /face a sma
*73-31. h : a sm /3 . = . /3 sm a

#7332. I- : a sm /? . $ sm 7 . D . a sm 7
The above three propositions show that similarity is reflexive, symmetrical,

and transitive.

#7336. l-:.asm/3.D:a!a. = .a!/3

#73-41. I- . i"a sma.ifae (t"a) sm a

Thus every class a is similar to a class L
(ia of higher type, and consisting

wholly of unit classes.

#7345. Kl=/3(/3smt<#)

Thus 1 is the class of all classes similar to any unit class.

#7348. K0 = /§(/3smA)

Thus is the class of all classes similar to the null-class.

#73-611. Kl^asma.^^fae^^'eOsma
This proposition is very often useful. For arithmetical purposes, we often

wish to obtain mutually exclusive classes. Now whether or not a and /3 be

mutually exclusive, \ x"ol and ^ y"fi are mutually exclusive provided x^y.
Thus by means of the above proposition we can always construct mutually

exclusive classes each similar to a given class, i.e. each having some assigned

number of members.

*7371. V : a sm /3 . 7 sm 8 . a o 7 = A . /3 n 8 = A . D . (a \j 7) sm (£ u 8)

This proposition is fundamental in the theory of addition.

#73 88. h:asm7./3smS.7C/3.SCa.:>.asm/3

I.e. "if a is similar to a part of /8, and /S is similar to a part of a, then

a is similar to /3." This is the Schroder-Bernstein theorem. The proof given

below is due to Zermelo.
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#7301. asm/9 = (l-*l)«D<an(F/3 Df

#7302. sm = 30(a !asm/3) Df

#7303. b:Ream/3. = ,Rel->l. a=V'R . P=d'R [#33-6-61 . (#73-01)]

#73-04. h:asm/3. = .a!osm/3 [(#73-02)]

#731. h:a8m/3. = .(<3L
R).Rel^>l.a=T>'R./3=a iR [#730304]

#7311. b : asm /3 . = .(&R) .Rel^l.aC D'R . = R"a

Dem.

b . #22-42 . #37-25 . D

I- : R e 1 -> 1 . a = T> (R . /3 = d'R . D . R e 1 - 1 . a C D<R . /3 = #"a

:

[#1011-28] D h : (g22) . i2 e 1- 1 . a = D'iJ . £ = (I<# . D .

(aE). JB6l^l.aCD'JK.^ = ^"a:

[#731] DI-:asm/3.D.(ai2).im-^l.aCD'i2./3 = .R"a (1)

h. #71-29. #37-4. #35-62. D

h: JRel->l.aCD <i2./3 = -R"a.D.a1 JRel-*l.a = D f
(a

>

|iO-^=^(a1 JR).

[#10-24] D.(aS).Sel->l.a=D<£./3 = (F,S.

[#73-1] D.asm/3 (2)

h. (2). #10-11-23.3

h:(3#).i2el-*l.aCD'iJ.£ = i£"a.D.asaiy8 (3)

H.(l).t3).3h.Prop

#7312. t-:asm/8-. = .(a22).22el-»l . /3 C <PE . a = £"£
[Proof as in #7311]

#7313. h:o8m/9. = .(aJK).fiel->Cls.i2ri8 6Cl8->l.i8Ca'i2.o=12")3

Dem.

I- . *71103-271 . D b : R el -* 1 .3 . 12 el -> Cls . R[ /8 e Cls -* 1 :

[Fact] 3h:12el-»l./3C(I< JR.a = 12"£.3.

12el^Cls.J2r/3eCls->l./3CCKR. «==£"£:

[*10-11'28.*73-12] 3 b : asrn/3 . 3 .

(rR) . Rel ^>C\s . R[ /3 eC\s-*l . /3 Ca<R . a= R«j3 (1)

h . #71-26 . 3 h : R e l-»Cls . #r/3 eCls-*l. 3 . i2^el->Cls.72^eCls-^l.

[#71103] D.R[j3el-^l (2)

1- . #35-65 . #37-401 . 3
b:/3Ca<R.a = R"f3.D./3 = a<(Rt/3).a = 'D<(R\-f3) (3)

|-.(2).(3).DI-:i?el->Cls. JKr/3eCls-*l.^Ca'JS.a = i2"y8.D.

,R|/3el-*l.a = D <(Ep/8).
/
8 = a <

( JB|
k

/3).

[*10-24.*73-l] 3 . a sm £ (4)

b. (4). #1011-23.3

h:(aJR).Eel->Cls. JKr y
8eCls->l.

/
SCa fE.a= JB"

y
8.D.asm

/
e (5)

h.(l).(5).3h.Prop
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#73131. \-'.a8mp. = .(%R).ReCte-*l.a J\R6l-»Cte.aCD<R.0 = R"a
[Proof as in #7313]

#7314. \-:.asm0.==:(RR):Rel-*C\s.0Ca<R.a= R"0:
y,ze0.R'y = R'z.Dy>z .y = z

Dem.

K #7155. #532. D
I- : . R e 1 -» CIs . R [0 e 1 -+ 1 . = :

Rel^>C\s:y,ze0.R'y =Rlz.5ytZ .y = z (1)

K*7l-26. DH:..Rel-»Cls.D:.Rr/8el-»Cls:
[*4-73.*7ll03] D:J?r/3el->l. = .J?^eCls->l:.
[*5-32] Dh:.22el^Cls.i2r/8el^l. = .J2el^Cls.i*r£eCls-»l (2)

\--.(l).(2).D\-:.(^R).Rel-^C\s.R[0el-*1.0Ca iR.a = Rtt0. = :

(ai2):12el->Cls./8Ca'J8.o = i2"/S:

y,ze0.R'y = R<z.Dv>z .y = z (3)
K(3).*7313.DKProp

The use of this proposition in proving similarity is very frequent.

#73141. h:.osm/9. = :(ai2):i2eCIs->l.oCD'JB.
/
8=5"o:

y,z4a.R'y = R'z.DytZ .y = z
[Proof as in #7314]

#73142. b : R[ eam/3 . = . R[ el-+l . PCQ'R .a = R"/3

Dem.

h . #7303 . D
h:i?^6asm

y
g. = .i2^el-*l.a = D f

(JR^).
y
8=a f

( JK^).
[#37-401.#35-64] = . R[ £el-»l .a = R"0 .0 = nd'R.
[#22-621] =.Rt0el-+l.a = R«0.0Ca'R:D\-.Frov

#7315. H:asm/8-. = .(ai2).i2|
k /8el->l./8Ca'i2.o = i2"/S

\-.*73-12.*n-29.D\-:asm0.D.(RR).Rt0el^>1.0Ca<R.a=R"0 (1)

K #7314204. Dh:(al2).E|k /8el-»l./8Ca'E.a = iJ"i8.D. asm/3 (2)

h.(l).(2).Df-.Prop

#732. h : R e 1 -» 1 . D . D'.fl sm d'E . <Pi2 sm D'iZ

Dem.
h . #20-2 . #3-21 . D
h:jRel->l.D.i2el->l. D'i2 = I>'R . d'R = (Pit! .

[#10-24] D . (a£) . S e 1 -* 1 . D'iZ = D<£ . d'R = d'S

.

[#731] 3. D'R sm d'R (1)

I- . (1) . *71-212 .Dh:J?el-»l.D. D'R sm CPE
[#33-2-21] D . (Fi2 sm D'i2 (2)

h.(l).(2).Dh.Prop
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The following propositions, down to *73"241, are deduced from preceding

propositions of this number just as "T>'RsmO.'R" was deduced in *73'2

from #731. The proofs are therefore merely indicated by references to the

previous propositions of this number which are used.

#7321. \-:Rel^>l.aCD'R.D.asmR"a.a J\Reasm(R"a) [#7311]

#7322. \--.Rel-*1.0Ca'R.D.R"0sm0.Rt0e(R"0)m0[*7&12]

#73 23. h : R e 1 -> Cls . C d'R . R [ e Cls- 1 . D .

R"0sm0.R[06(R"0)m0 [#7313]

#73-231. h : .R e Cls -» 1 . a C D'i2 . a 1 i2 e 1 -> Cls . D .

asmR"a.a J\R€am(R"a) [#73131]

#73-24. h :. i£ c 1 -> Cls . C (F.R : y, * e /3 . R'y = R lz . Dy, z . y = z : D .

Rt'0sm0.R[0e(R"0)sm0 [#7314142]

#73-241. I- :. R e Cls -> 1 . a C D'P :y,zea. R'y = R'z .DVtZ .y =z :D .

asm R"a. a] Re asm (R"a) [#73141-03]

#7325. \-:.(y).ElR'y:y,ze0.R'y=R'z.DyyZ .y = z:D.R"0sm0

Dem.

r.*71166.Dh:Hp.D.flel->Cls (1)

h. #33-431. D I- zHp.D.ySCCKR (2)

r . (1) . (2) . D h :. Hp . D : Re 1 ->Cls . /3 C (Pi? : y,ze0.R'y=R'z.Dy>z . y=z:

[#73-24] D : i£"/3 smjSs.DK Prop

This proposition will be convenient in such cases as the following : Let

be a class of relations whose domains are mutually exclusive, i.e. such that

no two members of have domains which have a member in common, and

suppose we wish to prove that the class of these domains is similar to 0.

The class of domains is ~D"0, and we have (P) . E ! D'P. Hence Ave have

only to prove (putting D in place of the R of #73'25)

P,Qe0.B'P=D'Q.DP
, Q .P=Q,

which, in the case supposed, is proved immediately.

#73-26. V :. (y) . E ! R'y : R e 1 - 1 : D . R"0sm0. R [ e (R"0) sm

Dem.

V . #33-431 .DhiHp.D.i^el^l./SC G.'R .

[#73-22] D.R"0sm0.R\-0e(R"0)sm0:D\-.FTOv

#73-27. \-:.R'y = R'z.= y>z .y = z:D. R"0 sm0.R[0e (R"0) sm

[#73-26 . #71-57]

#73-28. r- :: y, z e0 . Dy>z :R'y = R'z. = .y = z:.D.

R ('0sm0.R[0e(R"0)sm0
Dem.

H . #71-58 . #73-03 . #37-421 .DHHp.D.JRT/Se (R"0) sm : D h . Prop
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#73'3. H.asma./faeasma
Bern.

>.*50-31.*24-ll. DKoCa'/ (1)

H.(l).*72-l7.*5016.Dh.7el-^l.aCa'/./"a= a (2)

I- . (2) . *7314204 . D h . Prop

This is the reflexive property of similarity. The conditions of significance

require that a should be a class of some type, but impose no restriction as to

the type of class.

*73'301. b:Rea$mfi. = .Re@sma
Bern,.

Y . *73-03 . *7r212 . *33-221 . 3

h : .Keasm/3. = . Bel -* 1 . D'R = j3 . <I'R = ol .

[*73-03] =. Re j3 sma: D h . Prop

*73-31. r-:asm/3.EE.£sma [*7330104.*3r52]

This proposition shows that similarity is a symmetrical relation.

#73-311. \-:Reasm@ .Se&smy. D. R\8easmy
Dem.

h . *7303 . *71252 .DH:Hp.D.i2|#el-»l (1)

h . *7303 . *3732 . D h : Hp . D . T>'(R
|

S) = R«$

.

<I<(.R

|

S) = S"/9 .

a = D'R ./3 = d<R ./3 = D'S.ry= d'S.

[*37'25] D . T>'(R \S) = a. d'(R \S)=y (2)

h . (1) . (2) . *73-03 . D h . Prop

*7332. h:asm/9.^sm7.D.osm7 [*73'311'04]

This proposition shows that similarity is a transitive relation. Thus we

have now proved that similarity is reflexive, symmetrical, and transitive.

*73'33. I- . Cnv'sm = sm [*7331 . *31131]

*73'34. h . sm2 = sm

Dem,
h . *34-55 . *73-32 . Dh.sm2 Gsm (1)

h . (1) . *7333 . *348 . D b . Prop

*73 35. K D'sm = <Psm = Cls

Dem.

K*73-3. D\-.z((f>lz)smz(<piz).

[*20'18] Ob :a = 2 (<f>l z).0 .asma:

[*1011-23] b : (g<£) . a= £ (0 ! s) . D . a sm a

.

[*33*14] D.aeD'sm.aea'sm:

[*20-4] DI-:aeCls.D.aeD'sm.ae(I<sm (1)
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h . *731 . *10-5 . D
h :. asm/3. D : faR) . a = D'R ./3 = <I<R:

[*10-5.*3311-111] D : (g#) . a = &{{<&y).xRy) :(3-R)./8 = §\(^x).a;Ry} :

[20-41-18] 3:aeCls./9eCls (2)

h.(2).*1011-23.D

I- : . (g/8) . a sm /3 . D . a e Cls : (ga) . a sm j3 . D . /3 e Cls :

.

[*3313131] D h :. a e D'sm . D . a e Cls : /3 e (Fsm . D . /3 e Cls (3)

h.(l).(3). Dr. Prop

*73 36. l-i.asmyg.Drala.s.a!^

Dem.

h . *33-24 . D h : . a = D'R . /3 = <PE . D : a ! a . = . a ! :.

[#3-42] Dr:..Rel-*l.a = D<i2./3 = CFiZ .D:a!a. = .a!/3:.

[*10ir23]Dh:.(ai2).22el->l.a = D'i2./8=a'i2.D:a!o. = .a!/8 (1)

I- . (1) . #73-1 . D r . Prop

*73'37. h :.asmy8.D :7sma. = .7sm/S

Dem.
f-.*7332.DI-:asm/3.7sma. D.7sm/3 (1)

I- . #7331 .DH:asm/S.7smy8.D./Ssma.7smyS.

[*73-32] D. 7 sma (2)

I- . (1) . (2) . D h . Prop

*73'4. h.Cnv"Xsm\.Cnv|< X.€(Cnv"X)smX [*73'26.*7211 .*3113]

*73*41. \-.i"asma.itae(i"a)sma [*73'26 .*7218 .*5112]

This proposition is useful, because it gives a class (fc"a) similar to a but

of higher type. Thus if /j, is a cardinal number, and it is known that in a

certain type there are classes having /j, terms, it follows that there will be

classes having //, terms in the next higher type, and therefore in the next

type above that, and so on. No corresponding means exist for lowering the

type.

*73'42. r : a C 1 . D . asm t"a

Dem.
r.*5213.Dh:Hp.D.aCD'i (1)

r
.
(1) . *73-21 . *7218 .Dr. Prop

This proposition gives a means of lowering the type without altering the

cardinal number, provided our class a is composed wholly of unit classes; for

i"a is of the type next below the type of a. But when a is not composed

wholly of unit classes, this construction fails.

*73*43. \-.i (xsmi'y.a;lye(i lx)sm(i'y) [*55'15 .*72'182 .*73-2]
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#7344. \-:.ael.D:0sma. = .0el

Dem.

V . *73'43 . D I- :. a = i'y . D : = i'x , D . sm a :.

[#1011-23] D\-:.(>&y).a = i'y.D:0=i<x.D.0sma:.
[*10-ll-2l-23] D H :. (gy) . a= t'y . D : (ga>) . £ = i'# . D . /9 sm a :.

[*52'1] Z>H:.ael.D:£«?l.D.£sma (1)

b . #37-25 . D h :. i2 e 1 -> 1 . D'22 = i'a . D . <3<iZ = R"i'x

[*53-31.#7l-165] = i'R'x.

[#52-22] D.d'Rel:.
[#20-18] Dh:..Rel-*l. D'jR=i'«.<I'B = £.D.,Sel:.

[*1011-23.*73-l] D H : i'x sm /8 . 3 . /3 € 1

:

[#20-18] Dh:.a = t'a7.D:asm£.D./3el :.

[#10-ll-23] D \-:.(^cc).a = l'x.D: asm 0.D./3 el:.

[*73-31.#52-l] DH.ael.D:/3sma.D.£el (2)

h . (1) . (2) . D I- . Prop

#73-45. h.l=0(0smi<x)

Dem.
h . #52-22 . #73-44 . D h : sm i'x . = . e 1 (1)

I- . (1) . #2033 . D H . Prop

#73-46. KAsmA [#721 . #33-29 . #73-2]

#73-47. \-:0smA. = .0-=A

Dem.
K*73-46.Dh:/3=A.D./3smA (1)

K #731 2. #10-5. D
H : sm A . D . (g£) . /3 = R"A .

[#37-29] D./3 = A (2)

r.(l).(2).DKProp

#73-48. KO = y§0SsmA) [#73-46 .#5111 .(*54'01)]

The following proposition is used in the theory of double similarity

(#111-111).

#73-5. h:R € l-^l.=.Re\- Cl'd'R G sm

Dem.
\- . #35101 . #37-101 . #60-2 . D
\- :. Re [ Cl'CL'R (Ism . = : Cd'R . a = R"0 .X,p . asm (1)

I- . #73-22 .Exp.Dh:.i2el-»l.D:/3C d'R . a = R"0 . D . a sm /3 :

[(l).*ll-ll-3] D.-iierCl'a^Gsm (2)

h. #3018. #51-12.3

\-:.0C d'R .a = R e(
. D a> ^ . asm 0:D:i'yC d'R .a = R"i'y . Da . asm t'y :

[*51-2.*53-301] D : y e d'R . a = R'y . Da . a sm i'y :

[*20-53.*73-44] D : y e (Pi? . D . ~R'y e 1 :

[*10-11-21.*37-702.#711] D:i£el-»Cls: (3)
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(5)

(6)

[*72 51.*37'16] D : a C D'R . /3 = R'?a . Da^ . /3 C d'i2 . a = R"$ (4)

r . (4) . *4'7 . #11-37 . D r :. Hp(4) . D : a C D'R . £ = E"a . Da>fi . asm/3 :

r(3)^.*7l-211.*73'3ll D:i2eCls->l

r . (1) . (3) . (5) .*7ri03 . D h : £e f Cl'd'R G sm . D . Re 1 -> 1

K (2) . (6) . D r- . Prop

#73-501. I-

:

R e 1 -> 1 . = . (R)e f Cl'D'R G sm

Z)era.

h . #71-212 . D h : R e 1 -> 1 . = . R e 1- 1

.

[*73-5] s.^rCKTEGsm.
[*33-21] = . (R)e r Cl'D'E G sm : D r . Prop

#73-51. b : E e 1 -* Cls . a C D'R . D . R"a sm a

Z)em.

K*72-7. DI-:Hp.:>.S}D<i2el-*l.

[#35-431.#71-222] D.jRfael-»l (1)

K *33431. #32-121. DK a CCPE (2)

h . (1) . (2) . #7212 . D I- : Hp . D .*Re 1 -* Cls . £ fae 1 -> 1 . a C (I'E .

[*73-23] D . E"a sm a : D I- . Prop

*73-511. H:EeCls->l.aCa'E.D.E"asma

#7351 ~ . *71211 . #332 . #32241
It

#7352. h : R e 1 -» Cls . a C Cl'D'tf . D . (,R)e"a sm a

Dem.

b . *72'45 . D K :. Hp . D : (^eTCl'D^R e 1 - 1

:

[*7l-55.*72-15] D : |, -7 e Cl'D'JK . (Byf = (£y*? . Df> , . | = v

[Hp] D : f

,

r, e a . (£)«'£= (Byv . D*,, . £ = t; :

[*73-25.*37-lll] D : (£>"asm a :. D h . Prop

*73521. b : B e Cls -» 1 . /3 C Cl'd'iZ . D . i2e"/3 sm £

#7353. h : R e 1- Cls . a C Cl'D'E . D . i£"<a sm a

*73'531. b : 12 e Cls -> 1 . /3 C Cl'd'iZ . D . £<"£ sm £
*7361. h . x 4, "a sm a . (# 4 ) f a e (a? | "«) sm o

#73 611. h . I x"a smo.(4*)r« e (4 ^"°0^ a

#7362. H:XCD^|.D.a"XsmX.a|k \e(a"\)sm\ [*73'23 . *72-131'8]

*73*621. h:XCD <
>|,«.D.D"\smX.DfX€(D"X)sm\ [#73*23 . *72\L3-81]

[Proof as in #73*52]

[*73'52\ (#37-04)]

[*73'521 . (#37-04)]

[#7327 . #55-2]

[#73-27 . #55-201]
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*7363. b:Seamj3.Tta,TtJ3el^l.av/3Ca<T.3.T\S\T€(T"a)m(T"j3)

Dem.

Y . *73-03 . *35'452453 .DY :Hp .D . T\S\T=T\a1S\- 0\T

[*35-354] =T[a\S\fi^T.

[*35-52.*71252.*7303] y,T\S\Tel-*l (1)

h.*37-32. 3Y.~D'(T\S\T)=T"S"<I<T (2)

h . (2) . *37-27 . *7303 . D I- : Hp . D . D'(T
\
S

|
T) = T"a (3)

Similarly Y : Hp. D . (T(T| S\ T)= T"/3 (4)

Y . (1) . (3) . (4) . *7303 . D Y . Prop

The above proposition is used once in connection with cardinal addition

(*112231), and once in connection with cardinal multiplication (*114"561).

The following proposition (*73"69) is a lemma for #737.

#7369. Y : Reasmfi.ar\y = A .@r\y= A.D. Rulfyeiavy) sm (£ W7)

Dem.

h.*33'26-261.*505-52.D

Y:T><R = a.a<R = /3.S= RvItv.'}.I)'S = CLyjy:a<S = l3vv (1)

K #7 1-242. #50-5-52. 1)

l-:Hp(l).Eel->l.an 7 = A.)8n 7 = A.D.EvyI(
k

7 el^l (2)

h . (1) . (2) . #7303 . Y . Prop

#737. h«smj3.aft7= A.j3A 7 = A.D.(ou7)sm(/3u7) [*7369'04]

#73701. r- :Eeasm/3.5e7sm8.an7=A./8nS=A.D.^vy>Sfe(au7)sm(/3u5)

Dem.

Y . *73'03 . D h : Hp . D . D'.R n D<£= A . (KB n d'S= A . R,

8

e 1 -»• 1

.

[*71242] D..Rc/,Sfel-»l (1)

h .#33-26-261 .#73-03. D I- : Hp. D . D <(i2c/6*) = a«7.a'( JRc;^)=
/
8ug (2)

Y . (1) . (2) . #7303 . D Y . Prop

#7371. h:asm^.7smS.an7=A.ySng=A.D.(aw 7)sm(y8wS) [*73701'04]

#7372. h:aut'a!smj8uif2/.a:'^€a.2/~ej8.D.«sm/3

Dew.

h.*731.D
YiH.v.D.('&R).Rel->l.'D'R= a\Ji tx.(I'R=@vJi'y.x~ea.y~€0 (1)

I- . #71-381 .Dh£el->1.«6 D'i* . 1/ € a'jR . D . #"(<!<£ - i'R'x - t'y)

= R"<I'R - R"i lR'x - R"i'y

[*37-25.*53'31] = D'R - i'R'R'x - I'R'y

[#72-24] = T>'R-i'x-i'R (
y.

[#73'22] 3.(D'R-i<x-i'R'y)sm(a'R-i'y-i'R'x) (2)
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H . *71-362 . *22-5 . D h : Hp (2) . a?= R'y . D

.

D'fi - t'# - I'R'y = D'i2 - t'# . a*R - t'y - t'R'x - (FJ2 - t'y

.

[(2)] D . (D'iS - i<#) sm (CFR - *'y) (3)

r . *22'92 . *33'43 . D h : Hp(2) . #+ i2'y . D .

(D^R-t<#-i^ft<y)ut^R<y = D'i2-fcV (4)

h.*71362. Dh:Hp(4).D.y + JK'«.

[*22-92.*3344] O .(a'R-i'y-i'R(x)vi<R'x=(l'R-i'y (5)

H . (4) . (5) . *73-7l-43 . (2) . Z> I- : Hp (4) . D . (D'R - i'x) sm ((Fit- fc'y) (6)

H . (3) . (6) . D j- : Hp (2) . D . (D'R - i'x) sm (O*^ - t'y) (7)

I- .*51-2H-22 . D h : D'i2 = a w t'ar. (Fi2 = £ u t'y ,x~ea . y ~e/9

.

3.D'R-i<x = a.atR-i'y= /3 (8)

r.(7).(8). Z>r:i2el->l.Hp(8).O.asm£ (9)

K(l).(9). Dh.Propi

The following propositions give the proof of the Schroder-Bernstein

theorem, namely: If one class is similar to part of another, and the other is

similar to part of the one, then the two classes are similar. The proof here

given is due to Zermelo*. An explanation of the following proof is given in

connection with another proof in the summary of *94.

*738. )-:(I'RCl3.l3CD'R.K = &(aCD'R.p-<I<RCa.R"aCa).3.
D'ReK.p'tcCD'R

Dern.

r . *224243 44 . D h : Hp . 3 . D'R C D'R . £ - (Fi2 C D'R (1)

r . *22-44 . *37-25 . D I- : Hp . D . R"D'R C D'R (2)

K(l).(2). >h:Hp.D.D'i2e* (3)

h . (3) . *4012 . DKProp

*73801. K:Hp*73-8.D.£-(Fi2C;>'«:

Here " Hp *73*8" means "the hypothesis of *73'8."

Dem.

h .*20'33 . 3 H :. Hp. 3 :aeK. DB ./3-CFRCa:. D h . Prop

*73802. H:Hp*73-8.D.,R'V/«:Cy/c

Dem.

h.*20-33.Or:.Hp.D:a€>c.Do . JR"aCa (1)

l-.(l).*40-81.DI-.Prop

*7381. h:Hp*73-8. >.p'K ck

Dem.

\-.*7S-8801802.Dh:Kp.-}.p'KQD'R.l3-a'RCp'K . R"p'kCP'k:D\- . Prop
* Math. Annalen, vol. lxv. Heft 2, February 1908.

R&w i 30
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*73'811. h :Hp*73-8 .3 . R"p<KQ<p {K-(&-<liR)

Dem.

h . *37 16 . D h . R"p'ic C d'R

[*22'8] C-(-a<R)
[*22-81'43] C-(/3-<3<#) (1)

h 5 (1) . *73'802 . D h . Prop

*73'812. H : Hp *73"8

.

x~e{&- d'R) w £>'* .O . E"(p'/e - i'x) C p'* - i'x

Dem.

h . *22-87 . D h : Hp . D . #~e .R"p'*c .

[*51-36] 3.R"P'kC-l'x (1)

h . (I) . ,*73'802 . D h : Hp . D . R"p'k Cp'/e - l'x

.

[#37-2] D . R"(p'fc - l'x) Cp'ic -i'«:Dh. Prop

*73-82. h : Hp*73812 . D .p
lK - L'x=p'/e . x~ep'ie

Dem.

K*22-87.*5V36. D 1- : Hp. D. £-<I<i*C- i<« .

[*73-801] D.j3-a'RCp<K-L<x (1)

h.*738. DHHp.D.jp'tf-fc'aCD'iZ (2)

h . (1) . (2) . *73812 . D h : Hp . D . p'*r - l'x e k .

[*40'12] D.p'tcCp'ic-l'x.

[*51*36.*22-43] a?~ej/« .p'ic - i<<» =p'/c : D V . Prop

*73-821. h : Hp *73'8 .xep<K-(p- d'R) .l.xe R"p<K

Dem.

h . *7382 . Transp . D h : Hp *738 . x ep'/c . D . x

e

(/3 - (I'£) u #<y« (1)

h . (1) . *5-6 . D V . Prop

*7383. h : Hp *738 . D .p<k - (/3 - d'iS) = fl<y« !><* = (/3

-

CFiZ) u ii<y*

Dem.

h . *73821

.

3 H : Hp . D .&k - (fi
- d'R) C R"p<K (1)

K(l).*73811. D\-:Kv.l.p<K-{/3-d'R) = R"p'/c (2)

I- . (2) . *2447 . *73-801 . D H : Hp . D .^* = (/3 - <I<i2) w 5<y* (3)

h . (2) . (3) . D I- . Prop

*73'84. h:Hp*73-8.D./3=^Vu((KR- JR"p'*)

Dew.

h.*22-92.Dh :Hp.:)./3 = (/3-a<E)u(I<i2

[*22-92.*3716] - 09 - (1*22) u Ry<K u (<!<£ - £"p'*)

[*73-83] -p'xvia'R-R'Y^-.^h.Vrov
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#73 841. r : Hp*738 . R e 1- 1 . D . sm d'R . am D'R

Dem.

f- . #73*8-21 . D r : Hp . D . p<* sm E"/* (1)

h. #24-21. Dh.fi"p'*n(a'i2-B'y*) = A (2)

h . #7383 . #24*492 . #73-801 . D

h:Hp. 3.p'K-R"p'ie=0-<I'R.

[#24-21] D . jo'/c n (d'i? - £"><*) = A (3)

r.(l).(2).(3).*737.D

h : Hp . D . p<K w (d'i2- #";><*) sm £<y« v, (d'JR - R"p<k) .

[#73-84] D . sm £"p<* u (WR - R"p'K)

[*22-92.*37-16]D . sm (Pi? (4)

h . (4) . #73-2 . D h . Prop

#7385. h : R e 1 -* 1 . d'.R C0.0Q D'R . D . ^sma'iJ.^smD'JS [#73-841]

#73-86. hja'ECD'/S.a'/SfCD'iJ.D.

D'(i2
|
S) = D'i2 . d'(i£

1

S) C d'£ . d'S C D'(i2 1 £)
Dem.

K #37-321. Dh:Hp.D. D'(i2 1 S) = D'iJ (1)

K #3436. Dh:d'(E|#)Cd<£ (2)

K(l). Dh:Hp.D.a^CD f(J?|^) (3)

K(l).(2).(3).DKProp

#7387. \-:R,Sel->l.a<RCI><S.a'SCI)<R.D.-D<Rsm-D<S

Dem.
r . #7 1-252 . D 1- : Hp . D . R

j
S e 1 -> 1

.

[#73-86-85] D . d<£ sm D'U

.

[#73-2] D . D<£sm D'R : D h . Prop

#73-88. h:asm7./3smS.7C£.SCa.:>.asmye

Dem.

h . #731 . D h : Hp . D . (gE, 8) . R, 8 e 1 -* 1 . D'i2 = a . d'i? = 7 .

D<£ = /3.dSS=S. 7 C/3.8Ctt.

[#73-87] D . (g.R, £) . D'R = a.D'8 = 0. D'R sm D<£

.

[#13-22] D . a sm : D h . Prop

This is the Schroder-Bernstein theorem.

30—2



*74. ON ONE-MANY AND MANY-ONE RELATIONS
WITH LIMITED FIELDS

Summary o/#74.

The purpose of the present number is to collect together various propo-

sitions in which we have such hypotheses as

R \ X € 1- Cls, k 1 R e 1 -> Cls, etc.

or in which such hypotheses are shown to be deducible from others. Hypo-
theses of this kind occur very frequently, and it is important to be able to

deal with them easily. For the sake of completeness, we shall here repeat

propositions previously proved on this subject.

The propositions of this number are mostly of the nature of lemmas, to be
used in the theory of selections (Part II, Section D), and in cardinal and
ordinal arithmetic. The most useful of them are #74*772-773-774'775. These

propositions are concerned with circumstances under which Q\\R or
|
R, with

or without some limitation of the converse domain, is a one-one relation. The
reason they are important is that the correlators by means of which many of

the fundamental theorems of cardinal and ordinal arithmetic are proved are

such relations as Q\\R (with the converse domain limited) for suitable values

of Q and R. The above-mentioned propositions are as follows:

*74772. h :. (as) . E ! Q'x : (y) . E ! R'y : Q, R e Cls -> 1 : D . Q j|
R € 1 _» 1

The hypothesis of this proposition will be verified if we put, for example,

Q = Rr=las. Thus ( J,
#)||(Cnv< I as) e 1 - 1. This proposition is used in

*116-531, which is used in proving one of the formal laws of exponentiation,

namely /a™ xi/w = (/j, x v)m .

*74-773. HrQ^a^^eCls-^l.aCa^.^Ca^.^D^Ca.^a^CyS.D.

(Q ||
R)[X e 1 -> 1 . (Q ||

R)[X e {{Q ||
R)"X} sm X

This proposition is used in connection with both cardinal and ordinal

multiplication and exponentiation. If Q f a and R f /3 correlate y with a

and 8 with /9, then if we take for X the class of all ordinal couples that

can be formed of an a and a /3, (Q jj
R)"X will be the class of all couples

that can be formed of a 7 and a 8. Thus in virtue of the above proposition,

if 7 is similar to a and 8 is similar to @, the class of ordinal couples formed
of a 7 and a 8 is similar to the class of ordinal couples formed of an a and
a /3. This result is useful because we define the product of the number of

members of a and the number of members of /3 as the number of ordinal

couples formed of an a and a /?.
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#74774. \-:.ReC\s-*l:(y).ElR<y:0.\Rel-*l

This proposition is useful when, for example, R is \, %.

#74775. b : Q [ s'D"X, R [ s'd"\ e Cls -* 1 . s'D"X C <I<Q . s'd"X C d'R . D .

(Q||5)I'Xel-»l.(.Q|i5)rXe{(Q|(.S)"X}^X

This is a particular case of #74-773, and has similar uses.

*741. b t:R[/3€ l-»Cls. D :. JRf/Se 1 -*1 .=:y,ze/3.R'y=R'z.DytZ.y=z

Dem.

K #71/55. Dh::Hp.
O:.(Rtl3)Wel^l- = :y,*et3.(Rll3)<y=(Rr0yz.Dv, z .y=z:.

[#35-31-7] D :. R[/3e 1 .-» 1 . = :y,ze ,R'y = R'z . Dy, z .y = zz: D I- . Prop

*7411. b :. R lp e 1 -* Cls . fi C d'R . = : E !! #"£ [#71-571
.
(#3705)]

#7412. h::i2^€l->l.
/
8Ca <ie. = :.y,^e/3.D

J/>2
:jR <

y = JR^. = .y = ^

. [#71-59]

#7413. b : £ e 1 -> Cls . D . (E)€ f Cl'D'tf <r 1 -* 1 [#72-45]

#74131. f:i?e Cls-* 1 . D . ik f C1'(F.R e 1-»1 [#72-451]

#7414. b:R € l->C\8.l3 = R"a.D.a J
\R=:Rt{3 = a1Rtl3 [#7255]

#74141. l-:^€Cls->l.a= iJ"
/
5.D.a1i2 = ^ryS = a

>

|
JRr /

S [*72-551]

#7415. b : Q f X e 1 -> Cls . X = Q"* . D . * n D'Q = Q"X [*72'57]

#74151. \-ZKlQ€C\s^>l./c~Q"\.5.\na'Q = Q"K

#7416. h:QrXel->Cls.*CD<Q.X = Q"*:.D.*: = Q"\ [*7415. #22621]

#74161. h:K J\QeCte->l.\Ca<Q.K = Q"\.
m}.\=Q«K

#7417. h : Q [Q"k e 1 -» Cls . k C D'Q . D . * = Q"Q"* [#7416]

#74171. I- : (Q"\) 1 Q e Cls -> 1 . X C <PQ . D . X, = Q"Q"\

#74-2. r-:Q"aC/8.D.a1Q = a1Qr/8

Dew.
h . #37-4 . D I- : Hp . D . <P(a 1 Q) C £

.

[#35-454] D.a1Q = a1Qr/3:DKProp

#74-201. h : Q"/3 Ca.3.Qf£ = a1Qr/3 [Similar proof]

#74-21. h..o1Q s=«1QI
k Q"d [#742]

#74-211. h . Q |^ /3 = (Q"/3) 1 Q I" >S [#74-201]

#74-22. r- : D'Q Ca. 3. Q = a
J

\Q [#35-451]

#74-221. h:(L<Q C/3 .3 .Q = Q[ [*35'452]
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#7423. h:a=Q"Q«a.D.«1Q = QtQ"cL = a'\Q\-Q"a [*74-21211]

#74231. h : = Q"Q"/3 . D . Q [ = (Q"0) 1 Q = (Q"0) 1 Q [ [#74-21-211]

#7424. b:a = Q"0.0 = Q"a.3.a'\Q = Q\-/3 = a
J

\Qt0 [#74-23]

#7425. \-:Qt/3el->C\s.aCT>'Q.l3 = Q"cL.D.ci'\Q = Q\-/3 = a
J
\Q\-/3

[*7416-24]

*74251. \-:a
J\QeCte-+1.0Ca<Q.a=Q"0.3.a J

\Q=Qf/3 = a'\Qt0
[#74-161-24]

#74 26. h:Q\-/3 € l->l.aCD'Q./3 = Q"a . = . a^ Q e 1 -»1 .fiCd'Q.a = Q"/3

h . #74-25 .Dh:Qr/3el-»l.aCD'Q./3 = $"a .D.a1Q = Qf/3.
[#1312] D.a1Qel-»l (1)

h . #3716 . D I-
: /3 = <$"a . D . £ C d'Q (2)

I- . #74-16 .3\-:Q\-0el->l.aC D'Q . /3 = Q"a . Z> . a = Q"£ (3)

K(1).(2).(3).D

\-:Qf/3el^>l.cLC~D'Q./3 = Q"a.3.a'\Qel->l./3Ca'Q.ci=Q"0(4l)

Similarly

h:a1Qel->l.ySCa^.a = Q"/3.D.Qry8el-»l.aCD^.^ = Q"a(5)

h . (4) . (5) . D h . Prop

#74-27. \-
: Qf el-+l

.
= Q"Q«0 . = .(Q"0)1Q el->l

.
pCd'Q

h . #74-26^ . D
a

\-:Qt06l-+l.Q"0CI)<Q.0 = Q"Q"0. = .

(Q"0)
/\Qel^>l.0C<I<Q.Q«0 = Q«0 (1)

I- . (1) . #37-15 . #20-2 . D h . Prop

#74-271. \-:a
J\Q6l->l.a = Q"Q"a. = .QtQ"ael^>l.aCB'Q

#74-26

#743. r :. Q f e 1 -> Cls : (3o) . /3 = Q"a : D . Q"Q"£ =
Dem.

V . #74-15 . D h : Q [ e 1 -* Cls . /3 = $"a . D . Q"Q"/S = Q"(a n D'Q)

[#37-261] = Q"a

[Hp] = /3 (1)

h . (1) . *10-ll-23-35 . D h . Prop
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*74-301. h : . o 1 Q e Cls -> 1 : (g/3) . a = Q"/3 : D . Q"Q"a = a [Similar proof]

*74'31. h:Q|^/3 e l->Cls./3eD'(Q)e.D.

Dem.

h.*74-3.*37-23.DI-:Hp.D./3 = Q"Q"y8 (1)

h.*37-23-16. DhrHp.D./SCd'Q (2)

h.(l).*74-231. DI-:Hp.D.Qr/3 = (Q"/3)1Q (3)

[*13-12] D . (Q"£) 1 Q e 1 -> Cls (4)

K(l).(2).(3).(4).Dh.Prop

*74'311. h:a1QeCls-*l.aeD'Qe.3.

a = Q"Q"a.aCD'Q.o1Q=Qr§"«-^r5"«^Cls-^l
[Similar proof]

*7432. Y'.KCa.'R.R\iceC\8->l.?.R\Kel-*\

Dem.

V . *3341 . D I- :. Hp . D : 2/,*e« . R'y = R'z . D . (g«0 . «ity • «!& •

[*35-101] 3 • (3*) - a? (-R T *) y * C8 T *)*
[*71171.Hp] 3-2/ = * (!)

h.(l).*71'55.Dh.Prop

*744. h:P|(Qr^) = ^iQ- = -Q"afpc ^

Dem.

b. *S523. lb :P\(Qt\) = P\Q. = .(P\Q)t*=P\Q-

[*35'66] =.a'(P|Q)CX.

[*3732] =.Q"(I<PC\:.Dh.Prop

*74'41. H:a'PnD'QCA:.D.P|/c1Q = P|Q

I- . *3313131 . *10*23 . D

H:.Hp. =:xPy.yQz.DXt ytZ
.yeic:

[*4-7l] = : xPy . yQz . =x,
y>z . #Py .yQz.yeic:

[*10-281J D : (gy) . #Py . yQz .
=

X)Z . (33/) . xPy .yQz.yeici

[*34-l.*351] 0:x(P\Q)z.=XtZ .x(P\K
J\Q)z:.D\-.Vroy

*7442. h:a'PCQ"X.D.D'(P|QrM = D'-P [*37-821-401]

*74'43. h : Q"X Ca'P.D. <I<(P
| Q f X) = d'Q o X [*37322401 . *3564]

*74-44. h:a'P= Q"\.D.D'(P|Qr^) = r)
'
i> - (I'(P IQr x) !=(I^ nA'

[*74-42'43]
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*74'5. K : E ! (P [ £)<y . = . y e /3 . E ! P'y . = . (P\fi)'y
= P*y

Bern.

K*35-7. DK-#==(P|^)<y. = .y e /9.tf==P<y (1)

K (1) . *10'11-281 . D K:V(a«) .*= (P r 0)'y . = : y e : (a*) . x « P'y :.

[*14-204j 3l-:.E!(P|k

y9yy. = .ye
/
S.E!P^ (2)

h.*35-7. 3>^(Pr^)^ = P^. = .ye/3.PV=P*y.
[*14'28] = .ye/3.E!P'y (3)

h. (2). (3) .Oh. Prop.

*74'51. H:.PVCa.D:E!(a1P)'y. = .E!PV.= .P't/ = («^P)^

h . #32-18 .#351 . 3 h :. Hp. D : a?Py . s. .w(a
J\P)y

:

[#30-34] D : E ! (a 1 P)'y . = . E ! P(

y
h.(l). #30341 . Z>h:.Hp.D:E! P'y. =E.P'y = (a1P)<y

h.(2).(3).3h.Prop

(1)

(2)

(3)

#74-511. H:.P^C^.D:E!(/3|P)^. = .E!P'a;. = .P'a; = (yS1P)^
[Proof as in #74-51]

#74-52. H:($"£)1i8fel^Cb/£Ca^

h.#37-18.3h:Hp0.l£yCS"£ (1)

h.*37-l. 3l-:Hp.D.(aa;).aj%.a;6^")S.
[#33-131] O.yea'P"^)^},
[#71-16] D t El{(8"/3) J

\8}'y (2)

h. (1). (2). #74-51. Dh. Prop

#74-521. h : S[S«J3 e Cls -> 1, £ G D'S . y e£ . D . {<§"£) 1 2}<y = #<y . E ! S'y

.8'
#74-52

£

#74-53. \-:(S«/3)
J
\Sel->l.l3C(I'S.yej3.D.S<S<y=y

Dem.
h . #371 . #33131 . 3 h : Hp . D . y e <I<{(S"0) j 8 }

.

[*72-241.*35-51] D •(^r^"W('Sf"yS)^}'y = y (1)
h . #74-52 . D h : Hp . D . {(£"£) 1 £}<y = S'y (2)

h.(l).(2). yb:E.V .D.(S\>S«py8*y = y.

[*35-7] 'O.fl'fl'y-yOh.Prop.

#74-531. b:StJS<</3el-+i:/3CI)<S.ye/3.D.8<8*y=:y

.Si
#74-53

£
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*74 6. I- .:. Te 1 -» 1 . \ C Cl'd'T . k C Cl'DT . D : k = Te
"\ . s . \ = (?) e

"«

Dew.

h . *37421 . D h : Hp . 3 . Te"\ = (Te p Cl'a'r)"\

.

(?)e"* = {(?)erCl'D<r}"* (1)
l-.*72-451-52.D

h :. Hp . D : * = (Te [ C\'(I'T)"\ . = . \ = {Onv«(ye T Cl'd'T)}"*

.

[*72-54] =.X = {(?)c |

k Cl'DT}"/c (2)

h . (1) . (2) . D h . Prop

*74 61. h :. rel-»l.D:\C Cl'd'T . k = 2*'«\'
. = a * C Cl'D'!1

. \ = ?"<«

Dem.

f- . *74'6 . *37-103 . D V :. Hp . D : * C C1'D<T . \ C Cl'dT. « = T"'\ . = .

KCC\'T><T.\CC\'a<T.\ = T"<K (1)

h.M7-1516.3\-: K = T"<\.3. K CCl (I)<T:\ = T«'K.2.\QC[<<l<T (2)

H.(l).(2).*4'71.DKProp

*74 62. I- :. yt z e £ . y =f * . DVtZ 7s<y cJS'z = A : = . £| £ e Cls -»

1

Dem.

KTransp.Dh:.y,2re/3.y=}=2.3yz .,Sf<yr»#'.2= A : = :

—* '—>

y^eP.ftlS'ynS'z.Dy^.y^z:
[*3218] =:y,zefi . scSy . xSz .

"5
x,y,z •y = z m

'

[*35101] =:x(S^)y.x(S\-/3)z',^>y>z :y^z:
[*7M71] =:St/3€C\s->l:.0b.Prov

*7463. H:.PrQ6\.P + Q.Dpi<2
.D'PnDfQ = A: = .6|Dr\6Cl8->l

[*74-62 . *7227]

*74631. t-:.P,Qe\.P$Q.DPtQ .(I<Pna'Q = A: = .€\a\-\eCh-+l
[*74-62 . *72-27]

*74632. \-:.P,Qe\.P^Q.DI,iQ .C<PnC<Q = A: = .Ff\€C\s-+l
[*74-62 . *33-5]

*747. H:Q 6 l->Cls.P|Q = P'|Q.D.P|kD <Q= P,

|

k D <

Q
Ztem.

h . *34-27 . D h : Hp . D . P I Q |
Q = P'

[ Q |
Q

.

[*72-59] D.PrD <Q =P/ rD^:DKProp
*74701. h:Q6Cls-^l.Q|P = Q|P, .D.(a'Q)1P = (a^)1P'

*7471. H : . Q e 1 -* Cls

.

Q'P CD'Q . CFP'C D'Q . D : P
|
Q = P'

I

Q . ~ .p = p>

[*74-7 . *35-66 . *34'28]

*74711. h :. Q eCls->l . D'P C d'Q . D'P'C d'Q . D iQ\P=Q\P'. = .P = P'
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#7472. \-:.Qel-*Cte:Pe\.DP .a<PCI)<Q:D.(\Q)?*e(\Q"X)sm\

Dem.

K*74'71.DH::Hp.D:.P,P'e\.Dp
j
p,:P|Q = P'|Q. = .P = P' (1)

h . (1) . #73-28 . D H . Prop

#74 721. h :. Q e Cls -> 1 : P e X . DP . D'P C <PQ : D . (Q | ) f X e (Q |

"X) sm X

#7473. h : Q e 1 -> Cls . s'd"X C D'Q .D.(\ Q)[\e(\ Q"X)sm X

[*74-72 . #40-43]

*74731. r : Q e Cls -> 1 . s'D"X C d'Q . D . (Q |)f X e (Q |

"X) sm X

#7474. h:Qel^Cls.a<s'XCD<QO.(|Q)rXe(|Q"X)smX
[*7473 . #41-44]

#74741. H:QeCls->l.DVXCa'Q.D.(Q|)|\e(Q|"\)smX

#7475. I- : a^Qe 1 -> Cls . a C B'Q . s'd"X C a . D . (| Q) fX e (| Q"X)smX

Dem.

l-.*40-43. Dhr.Hp.DtPeX.Dp.CFPCa.
[#43-481] Dp .

|

Q'P =
1

(a 1 Q)<P :

[#37-69] D :
j

Q"X =
|
(« 1 Q)"\ (1)

H.*43-491. Dh:Hp.D.(]Q)rx = {|(a1Q)}rx (2)

I- . #74-73 . #35-62 . D h : Hp . D .
{
|(«-| Q)} [ X €{\{a\Q)"\] sm X (3)

h . (1) . (2) . (3) . Dh.Prop

#74-751. h:Qf«6Cls-*l.aCa^.s fD"XCa.D.(Q|)Ik X6(Qj"X)smX

[Proof as in #74-75, using #74-731, *4348-49]

*747&. HQeCls-*l.Pel-+Cls.Q|P|12 = Q|P'|fl.D.

(d'Q) 1 P f T>'R = (d'Q) 1 P' \ D'R [#74-7-701]

#74-761. h:.Hp #74-76.D'PCa'Q.a'PCD^.D'P'Ca'Q.d'P'CD^.D:
Q|PjP = Q!P,

ji2. = .P = P' [*7471-711]

#74-77. I- : Q, R e 1 -* Cls . «<D"X C D'Q . s<a«\ C D'R . D .

(Q|]P)I
k X€l-»l.(§||i2)fXe{($||i2)"X}smX

Dem.

I- . #74-761 ^ . #40-43 . D

f ::Hp.D:.P,P' e X.D:Q|P|jR=QiP'|jR. = .P = P':

[#43-112] D:(Q||E)'P = (Q||P)'P'.= .P= P' (1)

h . (1) . #73-28 . D I- . Prop

#74-771. I- : Q, R e Cls -+ 1 . s'D"X C (I'Q . s'<I"X C <I<i2 . D .

(Q||#)rXel^l.(Q||i)fXe{(Q||ib"X}smX

Q,R~
#74-77

Q,P
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#74772 and its immediate successors are of very great use in cardinal and

ordinal arithmetic.

*74772. l-:.(^).E!Q^:(y).E!i2'2/:Q,i26€ls-»l:D.Q||E€l->l

[*74-771 . *33431]

*74773. biQfa,Rtl3eCte->l.aCd<Q.l3Cd'R.s'D"\Ca.s'd«\Cl3.0.

(Q || ^) [^ X e 1 — 1 . (Q y ^) r X e {(Q i|
.R)"X} sm X

Bern.

Y . *35-64 . D h : Hp . D . s'D"X C d'(Q [ a) . s'<l"\ C d'(R [ /3) (1)

h.*43-51.Dr-:Hp.O.{(Q|k
a)||Olie)}|

k X = (Qj|i)rx (2)

h , (1) . (2) . *74'771 . D h . Prop

*74774. h:.ReCte-*l:(y).ElR'y:D.\Rel-+l

Dem.

K*7ri66. ^H:Hp.D. JR6Cls-»l (1)

I- . *33431

.

D I- : Hp . D . (P) . <PP C T><R (2)

h.(l).(2).*74-7l^.>h:.Hp.D:P|^ = P'|i.=p)1v.P=P'(3)

K (3). *71 -57.DK. Prop

*74775. b:Q[ s'D"X,R [ s'<I"\ e Cls -» 1 . s'D"\ C d'Q . s'<J"\ C d'R . D .

(Q||#)r\ e l^l.(Q||P)r\e{(Q||P)"\}sm\ >[*74'773]

*74-8. I- : Er(/3 u 7) e 1 ->Cls . = . R{ 0, R[ye 1 -+ Cls

Dem.

H.*71-572.Dr:i2J
k
(ySu 7) € l->Cls. = :

2
/€a <

JR.n(/3w 7).D3/
.E! JB't/:

[*22-68.*1041] = : y e (F2S n £ . Dy . E ! R'y : ye d^R n 7 . Dy . E ! Rl
y :

[*71-572] = : £ f ft' 22 f 7 e 1 -> Cls :. D I- . Prop

*74*801. h:(y8u 7)

>

|
JBeCls-*l.= .y3

>
|i2,7lJ?eCls-*l

*74-81. H:E|V* e l-*Cls. = .Er"«Cl->Cls

h . *7 1-572 . D I- :. R \ s'tc e 1 -* Cls . = : y e d'R n s'k . Dy . E ! R'y :

[*4011.*10-35-23] =: a etc. ye d'R n a . Da> j,
. E ! 22'y :

[*ll-62.*7l-572] = : a e« . Da . iJ T a e 1 -> Cls

:

[*3761J .

= :J2r««Cl->Cls:.>l-.Prop

*74-81l: h : («'*) 1 R e Cls -* 1 . = . 1 P"* C Cls -> 1

*74-82. h:(
i
Su7)-|E6l-*Cls. = .^E,7 >lEel-*Cls.E"(

i
S- 7)A^"7 = A

Dem.

h.*35-l.*7ri7.D

I- ::((9u7)|E6l->Cls. = :.x,y e^yjy.ocRz .yRz .0Xy y, z
.x = yi.

[*13-12]
w

3:.xefi.yey.a;Rz.yRz.'>Xt y, z .xery:.
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[Transp] D :. x e - y . xRz . XiViZ . ~(y e

y

. yRz) :.

O10-21-252] D :. x e/3-y . xRz . 3^ . ~(gy) . y ey . yRz :.

[*10-28.*37-105] 0:.^6E"(yS-7).D2 .^~€E"7 :-

[#24-39] 2:.R"(l3-y)nR"v = A (1)

l-.(l). #71-22. D

h : (/3 u 7)1 i? e 1 -> Cls . 3 . £1 #, 7I R e 1 -> Cls . R"(0- 7) n i*"7 = A (2)

h. #71-22. D H : #1 .K el-+ Cls. D. (£-7)1 # 6 l-» Cls (3)

K#37'4. Df-:^"(yS-7)nE"7 = A.D.a f
(/3-7)1 JBna <

(7 1i2) = A (4)

f-.(3).(4).*7l-24.DI-':/3l JB,7ll2el-^Cls. JB"(/8-7)ftB"7-A.D.
08-7)1U» 7 1l2el->Cls.

[#35-41] 0.(/8w7)1Bel->Cls (5)

h . (2) . (5) . D f- . Prop

#74-821. \-:R\-(/3vy)eCh-*l. = .

R [ 0, R T 7 e Cls -* 1 . i2"(£ - 7) n #"7 = A

#74-822. h : (/3v 7) 1 2? e 1 -> 1 . = . £ 1 i2,

7

1 E e 1 -* 1 . 5"(/9 - 7) n R«y = A
[#74-82-801]

#74-823. VzR\{0xjy)e\-^l.s.R\0,R\yel-¥l. #"(£ - 7) « -^"7 = A
[#74-8-821]

#74-83. \-:.R"0*R«y = A.D:(0sj y)'\R € l-+C\s. = .0
J
\R,y'[R € l->Cte

[#74-82]

#74-831. h:.jR"
)
8ni2"7=A.D: JB^u7)eCls->l. = .i2J

k

/9,ii5J
fc 7eCls-»l

#74-832. l-:.^"/Sn5"7 = A.D:C8w7)1l2el-*l. = .>1i2,7lUel-»l
[#74-83-801]

#74-833. V : . R"l3 n £"7 = A.D:i2Iv
(/3u 7)el-*l. = . JR^,i2|v 7el->l

[*74-8-831]

#74-84. H :.(*'*) 1 i2el--» Cls. = :

1'i2"/c C 1 -> Cls : y8,76/c . D„fY . S"(j8- 7) r> £"7 = A
Dm.

h . #40-13 . #35-43 . D h :£ e * . D . /3 1 i2 G (sV) 1 72 :

[#71-22] Dh:.(a'ic)1i2el->Cl8.D:/8e/B.D.^1B€l-»Cls:'

[#37-61] D:^"a:C1-*C1s (1)

I- . #72-41 . #37-421 . D t- :. (*<*) 1 R e 1 -> Cls . D :

/9,7e*.DftY .5"(^-7)n5"7=A (2)
h . #37-105 . #24-39 . D

\-:.j3,veic.Dfity .R"(!3-y)nR«y = A: = :

/3,yeK.xefi-ry. xRz . D^y . ~ (33/) .3/67. yRz :
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[Transp] 3 : ft,ye/e .xe ft .yey . xRz . yRz . Dp>7 . x

e

7

.

[*4*7] D^)V
. x, yey. xRz . yRz

.

[«35-l]
^

D
/,,y.a;(7li2)«.y(7 1i2)« (3)

h . (3).*7M7 . D I- :. ft, 7 €k . DPiy . R"(& - 7)n^"7 = A : 1 i2"/eCl-» ClsO:

ft,ye/c .xeft .yey . xRz . yRz . Dp, y ,
x, v, z .x= y:

[*10-23.*40-ll.*37-l] D : x {(*'*) ^R}z.y {{s
1k) 1 R\

z

%. 3Xt>JtZ .x = y:

[*7117] Drs^lEel-^Cls (4)

h.(l).(2).(4).3h.Prop

*74 841. V :. R

[

s'k e Cls -* 1 . = :

i2 1^"* C Cls- 1 : £, 7 e * . D,, y . R"{ft - y) n R"y = A
*74'842. h :. (a'*) "| i2 € 1 —> 1 . = :

>
|ii!"/«:Cl^.l:/3

)
7e«.D^ Y .5"( /

8-7)n JR"7 = A [*7484'811]

*74843. t-r.iJ^s^el-^l.s:

i2|
k"«:Cl->l:/8,7eV.Dj8j7

.i2"(^-7)n JR"7 = A [*74-8I841]



SECTION D

SELECTIONS

Summary of Section D.

The subject to be considered in this section is important chiefly in

connection with multiplication, both cardinal and ordinal. In .order to get

a definition of multiplication which is not confined to the case where the

number of factors is finite, we have to seek a construction by which, from

a given class of classes, k say, we construct another class which, when k is

finite, has that number of terms which, in the usual elementary sense, is

the product of the numbers of terms in the various classes which are members

of k, and which, whether k is finite or not, obeys as many as possible of the

formal laws of multiplication. The usual elementary sense of multiplication

is derived from addition; that is to say, [x x v is to be the number of terms

in s
{
k, where k is a class of /* mutually exclusive classes each having v members,

or vice versa. This sense can be extended to any finite number of factors,

but not to an infinite number of factors; hence for a number of factors which

may be infinite we require a different definition, and this is derived from the

theory of selections.

Selections are of two kinds, selections from classes of classes, and selections

from relations. The latter is the more general notion, from which the former

is derived. But as the former is an easier notion, we will begin by explaining

selections from classes of classes.

Given a class of classes k, a class fi is called a selected class of k when

fi is formed by choosing one term out of each member of k. For example, if

k consists of two members, a and fi, and if so e a and y e fi, then i
lx w h

l
y is

a selected class of k. If every constituency elects a local man, Parliament

is a selected class of the constituencies. If k is a class of mutually exclusive

classes, i.e. a class no two of whose members have any member in common,
then a selected class consists of only one term from each member of k; i.e. fi

is a selected class if

fj,
C s'k : ae k ,Da . firk ael.

But if k is not a class of mutually exclusive classes, this does not hold

necessarily; for a term x which is a member of both a and fi (where a, fie k)

may be chosen as the representative of a, while some other term may be

chosen as the representative of fi, so that two members of fi may belong

to the selected class. Again, if k is a class of mutually exclusive classes, the

relation of the representative to its class must be one-one, because, since no

term belongs to two classes which are members of k, no term can be the
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representative of two classes. But when k is not a class of mutually exclusive

classes, a term which belongs to two classes a and f3 may be chosen as the

representative of both. Thus the relation of the representative to its class

may be only one-many, not one-one.

The relation of the representative to its class may be called a selective

relation. A selective relation of k is one which selects, from every class

a which is a member of k, a certain member x as the representative of a;

that is, we have, if R is the selective relation,

aeK .Da - R {
ol e a : (Pi2 = k.

This condition is equivalent to

Rel^C\s.RGe.a fR = K.

If R is a selective relation, D'R is a selected class; and if fi is a selected

class, there is a selective relation R such that /x, = D'R. Thus the study of

selections from classes of classes is wholly contained in the study of selective

relations.

The class of selective relations from a class k is called eA '/c. Thus

R e e^K . = . R € 1 -* Cls . R G e . d'R = tc,

and €&'k = (1 -> Cls) n Kl'e n <3</t.

Then D"eASe is the class of selected classes.

It will be seen that, if o e k, R'a may be any member of a, and we get

a different R for each different member of o. Thus if we keep the repre-

sentatives of all the other members of k unchanged, the number of selective

relations to be obtained by varying the representative of a is the number of

members of a. Hence the number of selective relations altogether may
be fitly defined as the product of the numbers of terms possessed by the

various members of k. In case k is finite, this agrees with the usual definition

of multiplication; and whether k is finite or infinite, the product so defined

obeys all the formal laws of multiplication.

To illustrate the notion of selective relations, let us take a very simple

case, the case where k consists of two classes a and fi, each of which has two

members. Let x and y be the members of a, z and w the members of /3. We
assume a=|=/3, x^y, z^w. Then the selective relations of k are the following:

x ^ a vy z ^ /8,

x I a vy w l /3,

y I a c; z
J, /3,

y X a a w ^ /3.

Thus they are four in number, i.e. the number of members of e^'ic is the

product of the number of members of a and the number of members of ft.

A similar process would show that our definition of the product agrees with

the usual definition in any case in which all the numbers concerned are finite.
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Selections from relations are an obvious generalization of selections from

classes of classes. We had above

eA 'tc = (1 -> Cls) r» Rl'e n <P*.
We put, generally,

Pa<k « ( 1 -* Cls) n Rl'P ftO'*,

which we derive from the definition

PA = \£{\ = (l->Cls)nRl'Pnt[<«} Df.

This is the fundamental definition in the subject of selections. We have, in

virtue of this definition,

I- : BeP^K. = . Re 1 -> Cls . R (LP . a<# = k.

When k = (PP, we may call PASe the class of selections from P. Thus
generally, PA'« is the class of selections from P\ k provided kCQ'P; and if

this condition is not fulfilled, P* t
/c = A. We may call the class P&k the

class of " P-selections from «." The class of "e-selections from k" will be

what we previously called the class of " selective relations of k."

It will be observed that we have

RePt'K.yeic.D.R'yeP'y.

Thus if P"k is a class of mutually exclusive classes, D'JR selects one from

each of these classes, and is therefore a selective class of P"«; hence in this

case

D"PA<* = D"eA'P"«.

In Cardinal Arithmetic, e^K is the important notion, and the more general

notion P^k is seldom required. In Ordinal Arithmetic, F^k is the important

notion. It will be seen that

R eFS* . = .Re 1 -»Cls . RQF. a<R = K .

Thus Fxk is only significant when k is a class of relations; in this case we
have

ReFt'K.QeK.D.R'QeC'Q.

Thus jR chooses a representative member of the field of every member of k.

The most important case is when k is of the form CiP
i where P is a serial

relation whose field consists of serial relations. Then F^&P becomes the

field of a relation which may be defined as the ordinal product of the relations

composing QlP\ in this way we get an infinite ordinal product analogous to

the infinite cardinal product. This will be explained at a later stage (*I72).

Although it is chiefly e\K and F^k that will be required in the sequel,

we shall treat P&'/c generally, because this introduces little extra complication,

and most of the theorems which hold for e^'ic or F±k have exact analogues

for Pa<k,
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P±k, as above cjefined, is the class of one-many relations contained in P
and having tc for their converse domain. We know of no proof that there

always are such relations when tc C (I'P. In fact, the proposition

«Ca<P.DP)(t . a !PA<*

is equivalent to the " multiplicative axiom/' i.e. to the axiom that, given any
class of mutually exclusive classes, none of which is null, there is at least one

class formed of one member from each of these classes. (This equivalence is

proved in #88"36, below.) It is also equivalent to Zermelo's axiom*, which is

(a)-a!eA'Clex'a;

hence also it is equivalent to the proposition that every class can be well-

ordered. In the absence of evidence as to the truth or falsehood of these

various propositions, we shall not assume their truth, but shall explicitly

introduce them as hypotheses wherever they are relevant.

In the present section, we shall begin (#80) by considering such properties

of P^k as do not depend upon any hypothesis as to P. We shall then

(#81) proceed to consider such further properties of PA'« as result from the

hypothesis P \ tc e Cls —* 1. This hypothesis is important, because it is verified

in many of the applications we wish to make, and because it leads to important

properties of P&'tc which are not true in general when P is not subject to

any hypothesis. These special properties are mostly due to the fact that

whenP \k is a many-one relation, P^k consists of one-one relations (not merely

of one-many relations, as it does in the general case). This is proved in #81'1.

We then (#82) proceed to consider the case of relative products, i.e. (P|QV\.
It will appear that, with a suitable hypothesis, (P

|
Q)^\ =

|
Q"Pa'Q"\ and

D"(P|Q)a^ = D"Pa'Q"\. In the following number (#83) we apply the

results of #80 to the particular case where P is replaced by e, which is the

important case for cardinal arithmetic. In #84 we apply the propositions of

#81 to the case where P is replaced by e, and where, therefore, we have the

hypothesis ef'/ceCls—>1. This hypothesis is equivalent to the hypothesis

that no two members of tc have any members in common, i.e. that

a, y3 e /c . a 4= ^ • 3a> . a ft yS = A.

When tc fulfils this hypothesis, it is a class of mutually exclusive classes.

For classes of mutually exclusive classes we adopt the notation "Cls2 excl."

It is shown in #84*14 that a Cls2 excl is one for which we have e[ tee Cls — 1.

When tc is a Cls2 excl, D f P^k is a one-one relation, and D"eA'« sm e&'te.

Also in this case T> tl
€^

tK consists of all classes formed of one member from

each member of tc, i.e. all classes //. such that

fi C s'k : a e k . Da . fM n a e 1.

* See his "Beweis, class jede Menge wohlgeordnet werden kann," Math. Annalen, Vol. lix.

pp. 514—516.

R&W l 31
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In *85, we prove various important propositions, of which the chief is a form

of the associative law*, namely

h : k e Clsa excl . D . €AV* sm e±extf
K.

Finally, in *88, we consider the question of the existence of selections. This

cannot in general be proved when k is an infinite class. The assumption that

eA'« is never null unless one member of k is null is equivalent to various other

assumptions, for example to the assumption that every class can be well-

ordered. One of these equivalent assumptions is called the " multiplicative

axiom." This axiom is equivalent to the assumption that an arithmetical

product cannot be zero unless one of its factors is zero, and is regarded by

some mathematicians as a self-evident truth. This can be proved when the

number of factors is finite, ie. when k is a finite class, but not when the

number of factors is infinite. We have not assumed its truth in the general

case where it cannot be proved, but have included it in the hypotheses of all

propositions which depend upon it.

* Of. notes to *42111.



*80. ELEMENTARY PROPERTIES OF SELECTIONS

Summary q/*#80.

In this number, we shall give such properties ofPA as follow most directly

from the definition, without any restrictive hypothesis as to P.

If R e Pl'k, R selects one member of P'y, whenever yeic, as the selected

referent of y. For, since R e 1 -> Cls . d'R = k, we have y e tc . D . E ! R'y ; and

since RQP,we have ye/cD. (R'y) Py, i.e. ye/c.D. R'y e P'y. Calling R'y
the selected referent of y, it is evident that we may replace R'y by any other

member of P'y, and still have a member of Pa'k. (This is proved in *804.)
Thus if P&'k has any members at all, we can get as many members as there

are members of P'y by merely altering the selected referent of y, leaving the

other selected referents unchanged.

In the present section, we first prove various simple properties of P±'k.

Most of these are almost immediate consequences of

*8014. h : R € PSk . = . R e 1 -» Cls . R C P . d'R = k

The most useful of them are

*80 2. h : a ! PA
'K .D.kC d'P

*80'291. bzRePSK.D.RGPt*
*803. \-:RePt'K.yeic.D.ElR'y

*80 33. h : R e Pa 'k . D . D'R C P"k

We then have various propositions (#80 -4—*46) concerned with x
\, y when

xPy. Of these the most important are the following :

*80'41. h : R € PSk .ye K . x'Py . D . [\R^(R'y) j y) u x'
J, y] e

P

4<*

Z.e. given a selective relation R, the selected referent of y (where y e d'P)
may be replaced by any other term having the relation P to y, and we shall

still have a selective relation.

*80 45. h . PA'i'y = 4,
y' 'P'y

We then have a set of propositions (*80'5—*54) connecting (P c; Q)*'(k w X)

with PASe and Q*'\. These are chiefly useful as leading to the next set

(#80-6—-69), connecting P&'(« w \) with Pa'k and P±'\. The most useful of

these are the following

:

*80 6. h : R e PA'« .XCk.D.R^Xc Pa'\

*80 65. H:«nX = A. JRe Pa'k . S e P*'\ . D . R vy S e P*'(k u \)

*8066. H:./CnX=A.D:M€PA
f(/«:u\). = .(a[iJ,^). JRePA 'A:./Sf ePA

<\.iJ/=i2c/^

31—2
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We have next a set of propositions (#80*7—'78) dealing with the relations

of M and M-^-R when {e.g.) M e Pa'(* u X) and R e P^k. These propositions

are seldom used, but they would be useful in considering division.

We next have a set of propositions (#80-8—*84) dealing with the relations

of PA'a and P\j3. The most useful are

#8081. h: a !PA'a.PA'a= PA'/3.:>.a = i8

#8082. h:a=i=y3.D.PA fanPA
f
/3 = A

Finally, we have four propositions (#809—'93) on P\\i l
y w i'z) and one

on P&'(P «-» t'z). The most useful of these is

#809. I- :. y^ z . D : M e P<S(i'y v i'z) . = . (^u,v).uPy .vPz .M=u],yvv \z

#80 01. PA = X k {\ = (1 -* Cls) n m<p n a**} Df

#801. h : \ P*k. = . \ = (l-» Cls) n Rl'P n cF/c [*21'3 . (#80-01)]

*80li. H . Pa 'a: = (1 -> Cls) n Rl'P a §"«* [#801 . #303]

#8012. r.E!PA<* [#8011 .*14'21]

#8013. \-:\P*k. = .X = PSk [#8012 . *30'4]

#8014. \-zRePSK. = .Rel-*C\a.RGP.a'R = K'

[#8011 . #20-43 . #22-33 . #61*2 . #33*61]

'

#8015. h:PGQ.D.PA-*CQ4'* [#8014]

#8016. \-:ReP*<K.R(LQ.D.ReQSK

Dem.

h . #80-14 . D h : R e Pa<« . D . P e l-> Cls . <PP = * :

[Fact] Dr:PePA'*.PG().D.Pel->Cls.a<P = A:.PGQ.

[*80'14] D.Re Q±'/c : D h . Prop

#8017. h:QGP.D.QA<* = PA'*nRl<Q

Dem.
(-.#8015. DHrHp.D.QA'/cCP^A: (1)

K*8011. DKQ4-*CR1<Q (2)

I- . (1) . (2) . D h : Hp . D . Qa'k C Pa *k n Rl'Q (3)

H.*8016. D I- . PA'* n Rl'Q C QA '/e (4)

h . (3) . (4) . D h . Prop

This proposition is used in the theory of ordinal multiplication (#172162).

#80-2. I- : a ! PSk . D . k C Q'P

Dem.
h . #8014 . D h : R ePA 'k . D . P G P . a'P = k .

[#33-264] D.a tRca tP.a tR = K.

[#1313] D.kCCI'P (1)

K(l). #1011-23. DK Prop
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*8021. H:~(/cC(FP).D.PA'tf = A [*80*2 . Transp]

*8022. b:Pt K = QtK.3.P*'ic = Qs'K

Dem.

b . *33 14 . D h :: <I'P= k . D :. xRy .D.ye*:.

[#5*44] D :. xRy . D . xPy : = : xRy . D . xPy .yeic:

[*35-101] =:xRy.0.x(P[K)y (1)

h.(l).*llll-3-33.D

b:.<J<R = /c.O:R<ZP. = .RGPtK (2)

h.(2)S.Dh:.a'22 = /e.3:iJGQ. = .i2€Qf* (3)

r.(2).(3).*1312.0h:.a^R = K.Pr/c = Qr*0:PGP. = .PG^ (4)

h . (4) . Coram . *532 . D
K:. Hp.D: PGP. <J<P = k. = .PGQ.(I<P = *:

[*8014] D : R ePA<* . = .'R e QA'« :. D H . Prop

*8023. \-.P^K = (P[ KyK
Dem,

h.*35-31.*22-5.Dh.Pp«: = (Pr«)^ (1)

I- . (1) . *80*22 . D h . Prop

*8024. \-ZKCa<P.Q = PlK.1.PStc = Q*'a<Q [*35-65 . *80-23]

*8025. h: a !PA<*.Q =Pr*.D.PA'« = QA'a<Q [*80-2-24]

*8026. KPA'A = t'A

K*80a4.DH:PePA'A. = .Pel->Cls. PGP. (FP = A.

[*33'24I] = .Pel-*Cls.PGP.P = A.
[*13'193] = .Ael->Cls.AGP.P = A.
[*72-l.*25-12] = .P = A.
[*51'15] = .Pet'A:DI-.Prop

Note that Pa'A is a unit class, not the null-class. It is owing to this fact

(as will appear later) that, if /i is any cardinal, fi° = 1. See the note to *83*15.

*80-27. l-:g!*.:>.AA'* =A
Dem.

h . *80'14 . D h : .fie AA<* . D . P G A . CPP = «

.

[*2513] D.P=A.a tP = /c.

[*33'241] :>.* = A (1)

I- . (1) . Transp . *1011*21 . D

\- : <&1 k .3 . (R) . R~ e A^'/c .

[*24-15] D.AA'* = A:Dh.Prop
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*80*28. h : g ! k . D . A~ePa'k

Dem.
h . *8014 . D I- :. a ! k . D : ReP*'K . DR . g ! d'R :

[*33'241] DzReP*'K.DR .<zlR:
[*25'63] Z> : A~ e P*'k : . D h . Prop

*8029. \-:ReP*<K .D.R = R\- K

Dem.
h . *80'14 . D I- : Hp .O . <3<P = k .

[*35'452] D.R = R\-k:D\-. Prop

*80'291. HPeP^.D.PGPf*:

K*80-14.*33-14.D

I- :. Hp . D : xRy . x>y . xPy .y ex .

[*35-101] DX!y .x(P[ K)y:.^b.Prop

*80'3. b-.ReP^K.yeK.D. E! R'y

Dem.
h . *8014 . D r : Hp . D . R e 1 -> Cls . y e d'R .

[*71-163] D.ESP'yOKProp

*80'31. V-.ReP^K.yeK.O.R'yeP'y
Dem.

h . *8014 .DHHp.D.Pel-^Cls.PGP.ye d'R .

[*7T31] D.RdP. {R'y) Ry

.

[*23'441] 3.(R'y)Py.

[*32-18] D . R'y e~P'y : D h . Prop

*80 32. h :. Re P*'/c. D :ye K . = . E! R'y. = . R'y eP'y

Dem.
r . *80-14 . D r :. Hp . D : d'R = k :

[*33'43] D-.ElR'y.D.yeK (1)

\-.*U2l.DI-: R'y eP'y.D. El R'y:

[(1)] Dr:.Hp.D:E<yeP<2/.D.2/e« (2)
h . (1) . (2) . *80-3-31 . D h . Prop

*8033. b:RePA'K.D.-D'RCP"K

Dem.
b . *80'14 . *3725 . D h : Hp . D . D'R = R"K .RGP.
[*37-201] D.D<PCP»/e:DI-.Prop

*80-34. h : R e P^'k . D . E !! R"k . R"k = D'R
Dem.

h . *8<H4 . D I- : Hp . D . P e 1 -* Cls . d'R = k .

[*7ri6.*37-25] D . E !! R"K . R"K = D'R : D h . Prop
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#80-35. I- : R e P<,'k . D . V'R = fb {(gy) .yeK.x = Rl

y\ [*37'6 . *80*S4]

#80*36. \-iR,SePL'ic.y.R\aLvS\-oiePSic

Dem.

K*71'26. Dh:Hp.D.Era,/Sr-ael-^Cls (1)

I-. #85-64. Dh.af(iJra)na^r-o) = A (2)

K(l).(2).*71-240H:Hp.D.22|k

aoj8|
k -ael-»Cls (3)

I- . #3564 . #80-14 . DH:Hp.D.a'(E|k
a) = A:rta.a'(^|k -a)=/c-a.

[#24-41] 0.a<(R\-avSt-a) = K (4)

h. #35-441. #80-14. Dh:Hp.D.i2faGP.«r-aG P.

[#23-59] D.EfaoSr-aGP .(5)

I- . (3) . (4) . (5) . *80'14 . D h . Prop

This proposition is used in dealing with greater and less among cardinals

(#117-68).

#80*4. h : R e P^k .y eic. xRy . xPy . D . {(R — x I y) v) x \ y) e P^k
This proposition is important. It shows that, if ReP^K and x is the

selected referent of y (i.e. is R'y), then x may be replaced by any other
—

>

member of P'y without our ceasing to have a member of P^k.

Dem.

h.#55-3. D\-:.H.ip.D:xlyGR:

[#72-91] 2:a<(R-^xly) = <l'R-(l<(xly)

[*80-14.*55-15] =K-i'y (1)

h . (1) . #33-261 . Dh-.Hp.D . a i{(R-^xl y)vx' 4 y) = (k- i
l
y) w (Pa/ I y

[#55'15] = (ie — i
f
y)yj t'y

[#51-221] =* (2)

h . (1) . #55-15 . D> : Hp . D . a<(R^x iy)n <I<(x' I y)= (K - t'y) n t'y

[#24-21] =A.
[*7l-24.*80-14] D.(P-a4y)c>a;',|,yel-»Cls (3)

h.#8014 . #55-3. Dh : Hp . D . R-^x I y dP .x I y QP

.

[#23-59] D.(R^-xly)vx'ly<iP (4)

h . (2) . (3) . (4)

.

#80-14 . D I- . Prop

#80-41. \-:Re P^k .ye*. x'Py . D *. [{R -^ (R'y)
J, y) a x'

J, y] e

P

A<*

Dem.
h . #80-3 . #30-32 . D I- : Hp . D . (R'y) Ry (1)

h . (1) . #80-4 . D h . Prop

#80-42. h:a!PA'/e.D.s'PA'* = Pr*

I- . #4111 . D h : # (s'PSk) y . = . (rR) . R e P^k . xRy .

[#80-14] D.xPy.ye/c.

[#35-101] D.x(P[K)y (1)
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h . #8041 . #35101 . D
\-:RePA tK.w(Ptic)y.D.[{R±(R'y)ly}vxly']ePAt

ic.

[*oo-l32]D.[{RMR'y)ly}vxly]ePSK.a:[{R^(R<y)ly}va; ly]y.
[#41-141] D . x (s'P*<k) y (2)

K(2).Exp.**llll-3.DI-:P ePA</e.D.Pr*Gs'PA <A; (3)

h, (3). #10*11-23. DhralPA^.D-Pf^G^P^A: (4)

h.(l).(4).Dh.Prop

*80'43. H : xPy . = .xlye P*'i'y

Bern.

h. #72182. #5515. D V.x I y e 1 -> Cls .d'x ly = i'y (1)

K*55'3. D\-:xPy. = .xiyQP (2)

I- . (1) . (2) . #4-73 . D H : a?Py . = .a>4,yGP.a;4,yel-»Cls. (F(a? j y) = *'y •

[#8014] = .a?4,yePAVy:DKProp

#80-44. h:RePSi'y.3.R = (R'y)ly

Dem.

r- . #8014 . D h : Hp . 3 . P e 1 -» Cls . d'P = i'y .

[#37-25] D.Pel-»Cls.<I<P = t<y.D<P = P"fc<y

[#53-31.#7 1-163] = t'P'y

.

[#55-16] D . P = (R'y) I y : D h . Prop

#8045. \-.P*'i'y = ly"P'y

Pern.

\-
. #38-131 . D h : P e

J,
y"P'y . = . (g#) .xeP'y . R = x ly

.

[#32-18] = .(;ja?).a;Py.JR=-»4y.

[#80-43] I).PePAVy (1)

h . #80-44-31 . D h : R e PAVy . D . P = (JR'y) \,y.R'ye P'y .

[#14-205] D.(aaf).JB=:a;4y.fflreP'y.

[#38131] D.Pe,|,y"P<y (2)

I- . (1) . (2) . D h . Prop

#80-46. h : g ! PA't^ . = . a ! P'y - = . y « CI'P [*80'45 . #3745 . #3341]

#805. b : k n\ = A . R e P*'k . S e Qt<\ .3 . Ru S € (Pu Q)t<(,c v\)

Pern.

H. #80-14. Dh:Hp. D . R,Se 1 -»Cls . (I'P = k . d'S= A. . R GP. SG Q.
[Hp.*33-261.#23-72] D.R

)
Sel->Cte.a<Rrsa<S= A.a<(RvS) = ,cv\.

RvSGPvQ.
[#71-24] D . P a £e 1 ->Cls . <1<(P u S) = kv\. Rv S G P v Q

.

[#80-14] D.RvSe(Pv Q)a '(k w X) : D I- . Prop
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Dem.
h . *1024 . D h : Hp . D . a * P^k .

[*80-2] D . k C dlP

.

[*22'48] D.«nXC d'P n X .

[Hp.*24 13] D . k « X = A (1

)

K(l).*80-5.DKProp

*80511. \-'./cn d<Q= A . X n d'P = A . Me(Pv Q)S(k w\).D.

Jtfr*: = ifr»P.i/rX = ilfAQ
Dem.

h . *8014 . *23621 . D h : Hp . D .M = Mrs(PvQ)

.

[*35\L7] D.i/^ = ifn(Pc»Q)r«

[*35-644] =ifnP|k
/c

[*35-642.*25'24] =In(Pf«oPfX)
[*3541217] =JJ/|

k («:uX)nP

[*80-29] =M*P (1)

1".(1)-|^T- Dh:Hp.>.Jfrx-JfAg (2)

h . (1) . (2) . D H . Prop

*8052. h:*na<Q = A.Xna<P = A.Jlfe(PvyQV(* w?0-3-
iff/fePA^.iJfrXe^X

Dem.

r .*80\L4 .*7l-26 . Dl- : Hp .D. iff k,.M"fXe l->CIs (1)

H.*80-511. Dh:Hp.3.ifr« = ifnP.if{k X= JJf«Q.

[*23*43] D.Jlff*:GP.ifr^ G Q ( 2)

V . *80 14 . *22-58 . h : Hp . D . « C (I'M . X C (I'M

.

[*35-65] D.a'Jlf(
k
/c = «.a <

ilfJ
k X = X (3)

I- . (1) . (2) . (3) . *8014 . D H . Prop

*8053. b:.Kfsa<Q=A.\n(I'P = A.D:
Me{PvQ)S(Kv\).= .('sR,S).R€P*'K.SeQS\.M = RvS

Dem.

*80-52. 3h:Hp.ilf€(PvyQV(«wX).>.JIff KeP^K.M^XeQ^X (1)

*80-29 . D h : Hp (1) . D . M=M\{k w X)

[*35'412] =M\kkiM\\ (2)

r.(l).(2).DI-:.Hp.D.iife(Pc;QV(«uX).D.

{^R,S).ReP^K.SeQik
t\.M=RKiS (3)

K*8051. DK-.Hp.D:i2ePa'/e.Se<k<X.ilf=i2oS.D.
ilfe(PoQV(«^):

[*llll-3-35] D:(RR> S).R € P*'K.S€QA<\.M=RvS.y.
M€(PvQy(Ku\) (4)

K(3).(4>.DKProp
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#8054. l-:.Kn<I'Q = A.X.A(rP = A.D:
ie ePA '/«;. )S e Q4'\. = .(ai/). J¥6(Pc»QV(«uX). JR = if|

k
/C ./Sf = ilf|

k \

Dem.

h. #80-51. ^ b:Hp. Re P^K.SeQ^X.D.Rvf 8 €(PvjQ)a((k\jX) (1)

h.*8014. DI-:Hp(l).D./en(I<£ = A.A.nCr.R = A.
[#35-644] D.(RvjS)^ = R[k.(RvjS)[X = 8[X.
[#80-29] 2.(RwS)tK=*R.(Rw/$)[\ = S (2)

h . (1) . (2) . D I- : Hp .ReP*<K . SeQ*'X . D .

RvSe(PwQ)A'(icsj\).(RvS)tK=*R.(R*S)t\ = S.

[#10-24] 3.('&M).Me(PvQ)x'( lcv\).MtK = R.Mt\ = S (3)

h. #80-52. DH:.Hp.D:il/e(Pc;QV(/cuX).ie = if['/C .^ = JfI
k \.3.

ReP*'fc.SeQS\:
[#1011-21-23] D:(ai/).J/€(Pc/QV(A:^>-).^ = ^r«-'Sf=^r^-^-

ReP*'K.SeQA'\ (4)
h . (3) . (4) . D I- . Prop

#80-6. h:PePA<*.\C*.:>.Pr\eP4'\
Dem.

b . #80-14 . #71-26 . DhiHp.D.PfXel-^eis (1)

h. #8014. #35-441. D h:Hp. D.i^rxGP (2)

I- . #8014 . #35-65 . Db:E.p.D.a tR[X = X (3)

h . (1) . (2) . (3) . #8014 . D r . Prop

#80-61. b-.MtKePSK.MtXePSX.D.Mfi/cvj^ePt'i/cyjX)
Dem.

b . #80-6 . D I- : M \ X ePA'X . D . M \ (X - K) ePA '(X - k) :

[Fact] DH:Hp.D.J/r*ePA^.i¥r(X-«)ePA'(A.-*).
[*80-5.*24-21] D.JIf|

h
/ecilf|

k

(\-iiC)ePA'{/Bw(X-/t)}.
[*35-412.*22-91] D . M $ (* w \)ePA'(« u X) : D I- . Prop

#8062. r:^ePAV w ^-3-^r* eiV/e.ifrXePA<X [#80-6 . #22-58]

#80621. b:M[(KvX)ePS(K yjX).1.M\-KePSK .MtXePSX
Dem.

b . #35-31 . D h . {M [ (k u X)} T * = if [{(k v, X) n a:}

[#22631] =J/f« (1)

Similarly h . [M\{k uX)} fX = if[X (2)

H. (1). (2). #80-62. Db. Prop

#80-63. f-:iif|
k«ePA'«.ilf|

kX6PA
fX. = .i/|

k(KwX)ePA f(>cwX) [*8061-621]

#80-64. h : . (I'M = k v X . D : M\ k eP*'K . M^Xf-P^X . = . if e

P

4<(« w X)

I- . #35-452 . D H : Hp . D . i¥= ifro w X) (1)

I- . (1) . #8063 .Db. Prop
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#8065. \- : k n\ =A . Re P&'k . S ePA'\ .3 . Rv S e P*'(kv\)

1*80-5 ^ . #23*56

#80-651. I- : R e P*'k . SeP*'X . D . R ty Sf (X - k) e PS(k u X)

Bern.

I- . #806 . D h : Hp . D . £ f (X - *) ePA<(\ - *)

.

[*80-65] D.JBBiiS|
k (\-iB)ePA'{iru(X-*)}.

'[#22-91] D.RvS\-(\-K)ePS(KvX):D\-.¥TOV

#80*66. l-:.«n\= A.D:
ikT eP4'(* u X) . = . (aP, £) . ReP^K .SePA'X .M=RvS

Dem.

(1)h . #80-62 . D I- :MePS(ie u X) . D .M f « e

P

A<* . if f X e

P

4'X

I- . #35-452 . D h : MeP*'(K vj\).3 .M= M[ (kvj\)

[#35-412] = M[kvM[X (2)

K(l).(2). DH:J/ePA <(«ru\).D.il/rA:€P4'/c.ifi
kXePA tX.ilf=i¥^c;if|k

\.

[#11-36] D.(RR,S).RePSK.S€PS\.M=RvS (3)

h . #80-65 . D h :. Hp . D : RePS/c .SeP^'X .M=RvS.3 .JfePA'(*uX):

[*llll-3-35] D : (g;P, 8). RePA '/e . S ePA'X .M = RoS.D.
MePA'(,cyjX) (4)

h. (3). (4). Dr. Prop

#80-661. h : * n X = A . ReP&'ic .SePA'X . D . R = (Rv S)[ k . S=(Rv S)[X

Dem.

H. #80*14.

.

DH:Hp.D.a <P = «r.a^nA: = A. (1)

[#35-452] D.R[ K = R (2)

H . (1) . (2) . #35-644 . D r : Hp . D . (P a flf) |* « = R (3)

Similarly h : Hp . D . (Pc/^)[^\= (S (4)

I- . (3) . (4) . D> . Prop

*8067. H:.tfnX = A.D:PePA<*.£ePA'X. = .

(gitf)

.

MePA'(K vX) . R = M[ k . S= M[X
Dem.

h . #80-65-661 . D 1- :. Hp . D : R ePA<* . SePA'X . D .

RvSePA<(,cyjX).R = (RvS)tK.S=(RvS)tX.
[#10-24] D.(RM).MePA <(K vX).R = MtK.S = M\'X (1)

K #80-62. D h : M e P*'(tc vX) . R = M[ k . S= M[X .2 . R e P*'k . S eP*'X:

[#10-11-23] D h : (aJf) .M ePA <(* u X) . P == ilf f « . £= if f X . D .

ReP*'/c.SeP*'X (2)
»

. (1) . (2) . D r . Prop
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*80-68. \-
: Re P^K-l'y) . y e k . xPy .3 . Rw x \y ePA '/t

Bern.

K*80'43. Oh:Hp.D.xlyePA'i<y (1)

h . *24-21

.

D I- . (k - i'y)o^= A (2)

I- . (1) . (2) . *80-65 . D r : Hp . D . R u x\ y ePA<{(* - i'y) v/ i'y}

.

[*51221] D. RvxlyePS/c: D h . Prop

*80'69. I- : g ! PA '(/c u X.) . = . a ! PA '/c . a ! PA'\

h . *80-62 .Ob: a ! P*'(* u X) . D . a *IV* . a I Pa'* (1)

K*80'6. Ob:%lPS\.0.'&lPS(\-K):
[Fact] DK:a!:PA^.a!'PA'X.D. a !.i>A'ie.a!PA'(X-*) (2)

f- . *8065 . 3 I- : R ePAV. 8 e

P

A'(X - *) . D . R v S

e

PA<(* u X) :

[*10ai^3]D>:a!PASe.a!PA'(\-*).D.g;!PAV v *) (3)

V . (2) . (3) . D h : a ! iV* H * iV* -O a ' iV(* w X) (4)

K(l).(4).DKProp

*807. >ia'P«a'Q=A.icCa'P.XCa'Q.ife(PcfQV(*u\).D.
M^QePSK.M^PeQSX

Dem.

>.*33-33.*8014.DH:Hp.D.PnQ = A.Jf<-Pc;Q.
[*25'491] D.if-^Q = JfnP.if^P = ifnQ (1)

h . *2248 . *2413 . D h : Hp . D . k n <I'0=A . X n (I<P = A

.

[*80-5ir52] .M rsP eP*<K .MnQeQSX (2)

K(l).(2).DKProp

*8071. t-:a'PnafQ = A.if-^Q6PA'*.^-^PeQA'X.D.if6(PaQV(/cwX)

Dew.

K*33-33.3h:Hp.3.PnQ= A.
[*25493] >.ilf=(i/-P)o(Jlf-i.Q) (1)

K*80'2. 3r:Hp.D.XC(TQ.
[*2248.*2413] D.Xna'P=A.
|*80ol] D.(¥-())a(JlfiP)6(Pc»(2)4'(/cu\) (2)

I- . (1) . (2) . D V . Prop

*80*72. I- :. <FP nd'Q^A.tcC d'P

.

X C CFQ .O :

ife(P»yQV(«u\). = .iIf-i.QePA^.Jf^PeaA
fX [*807-71]

*8Cm. h : Q=P[k . R = Pf X . D .PA <(«: u X) = (Q kiR)S(k u X)

Dem.
H . *35'412 . D h : Hp .3 . Q c; # = Pf (* u X)

.

[*80-23J D . (Q ci R)*\k u X) = PA'(* w X) : D h . Prop

*80731. t-:Q=P^.i2 = P|k X./CvXCa <P.D./«:=a«Q.X=a <
i2

Dm.
k.*22-59.DHHp.D.*C(I'P.XC<T<P.

[*3565] D . « = (TQ » X = d'R : D f . Prop
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*80732. \-:Q= P[K.R = P\-\.Kr>\=:A.L(I'Qn<l'R = A
Bern.

K*35-64.:>l-:Hp.D.CFQC«.<I<JRC\.

[*2249] D . d'Q n a'R C«r\\.

[*24 13] D . d'Q n a'R = A : DK Prop

*80'74. \-:/erk\ =A.M €PA
<(fev\).D.

M\-k= M[-\ = M^-P[\.M[\^M\'-k = M^P[h:

Bern.

h . *24-4

.

O I- : Hp . D .M \k =M \{{k u X) - X}

[*35-31] = {Mf(*uX)}f-X
[*80-29] =M[-\ (1)

h.*80-732. Dh:Hp.D.af(P|
k *)na'(P|k

X) = A.
[*33'33] D.P^nPfX^A (2)

h.*80-291. Dh:Hp.D.ifGPr(*u\).
[*35'412] D.^GPf/tvyPfX (3)

h . (2) . (3) . *25'491 . D H : Hp . D .M^-P\ X = Jlf n Pf

*

[*3517] = (JfA'P)f*

[*8014.*23-621] = Jff* • . (4)

h.(l).(4). Dl-:Hp.D.ilf(k
/c = J¥|

< -\ = Jf^P^\ (5)

Similarly I- : Hp. D . M[\ =M[-k = M^P\- ic (6)

h . (5) . (6) . D I- . Prop

*80'75. > : k n X = A . ilfeP4'(« u X) . D . Jlf-i-PfXePA'* . ilf-Pf *<?PA'X

[*80-6274]

*8076. h : M e

P

A> . R e P*'k .RGM.^. M^Re P4V - *)

Dew.
h.*8014. Dh:Hp.D.(FJS = *:.(r4f = /* (1)

I- . *8014 . *7291 . D 1- : Hp . D . Q.<(M^R) = d'J/

-

d'R

[(1)] = ,*-* (2)

h.*8014.*71'22.Dh:Hp.3. J¥-^-i2 6l-*Cls (3)

K*8014.*23'47.D h:Hp.D. .M-^jRGP (4)

I- . (2) . (3) . (4) . *8014 . D H . Prop

*80761. V : k nX = A .M ePA'(* uX) . R e PA<* .RdM .D . M-^RePA'X

Dem.
K*80-76. Ob:Hv.y.M-^R € P*'{(icv\)-K} (1)

h.^24-4. Dh:Hp.D.(*uX)-« = \ (2)

l-.(l).(2).Dr.Prop

*80'77. h : MePA 'fi . M^ReP^ix- k) . RdM. icCfi . D .RePA ',c

Dem.

K*80-76. DHHP :>.ilf^(ilf^.R)ePA<{/*-(/*-*)}(l)

h.*25-411. DHHp.O. M=Rv(M^-R) (2)
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K #25*21

.

3b.Rn(M-^R) = A (3)

K(2).(3).*25*4.Dr:Hp.D.ilf^(i»f-i.i2)=-=P (4)

h.*24-411-21-4 Dh:Hp.D./tt-(^-/c) = « (5)

h.(l).(4).(5). DH.Prop

#80*771. H : k n X = A .M e P*'{k vj\).M-^R € PA'\ .RGM.D.Re P^k
Dem.

h.*24-4.DI-:Hp.D.\ = (/c v\)-tc (1)

h . (1) . #80*77 . D h .Prop

#80*78. h : M e P^'fi . ccMy . D . M^x I y e PA '(/i - i'y)

Dem.
l-.*55*3. DK:Hp.D.a?4yGJIf (1)

I- . #80*14 . 3 V : Hp . ? . xPy .

[*80'43] 3 . x I y e PSi'y (2)

h . (1) . (2) . #80*76 . D h . Prop

#80*8. H : a ! PA<* . D . H's'PSk = a:

Dem.
K*80-42.DI-:Hp.D.s'PA'tf = PrK (1)

H . (1) . #80*2 . #35*65 . D f- . Prop

#80*81. h : a ! PA'a . PA'a = PA</3 . D . a = /3

Dew.
I- . #30*37 . D h : Hp . D . a's<PA'a = d's'PSP .

[#80*8] D.a«j8:DK Prop

#80*82. hjo^.D.Pi'anP/^A
Dem.

r.#8014.Dh:i2ePA'a.£ePA^O.(FE = a.<I<£ = /3:

[#13*13] D h :. Hp . D : iJI ePA'a . £ e

P

A<£ . D . d'R
=f=
d'S .

[#30*37.#33121.Transp] O.R^S (1)

h. (1). #24*37. DK Prop

The following proposition is used in #80*84 and in' the theory of double

similarity (#111*3).

#80*83. h.(-t'A)1P4 el-»l

Dew.
I- . #80*12 . #71166 . D h . PA e 1 -> Cls .

[#71*27] Dr.(-t'A)1PA el->Cls (1)

h . #35*1 . #5115 . D
h:X{(-i'A)1PA}a.X{(-i«A)1PA}£.

= .X=t=A.XPAa.APA/3.
[*24*54.*80*13] =.a!X.X =PA'a.X =PA

'

/
g.

[#80*81] D.a = /3 (2)

K (2). #71*171. Dh.(-t<A)1PA eCls-»l (3)

I- . (1) . (3) . D b . Prop
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#8084. h:A~ePA"*.:>.PA"*smA:
Dem.

h.*51'36. Dh:Hp.D.PA"*C-t'A. (1)

[*37'42] D.P4"* = {(-i'A)1?A}"/c (2)

b . #8012 . #33431 . D b . k C d'PA .

[*37'51] DK*CPA"PA"* (3)

b . (1) . #37*2

.

D h : Hp . D .PA"PA"/t C PA"(- t'A)

[*37-4] C <!<{(- i'A)1PA ] (4)

K(3).(4). Dh:Hp.:>.KC(I'{(-t<A)1PA } (5)

h
. (5) . #80-83 . #7322 . D I- : Hp . D . {(- 1<A) 1 PA |"« sm * (6)

h.(2).(6).Dh.Prop

The three following propositions are useful both in cardinal and in ordinal

multiplication (#113 and #172).

#80 9. 1- : . y 4= z . D :M ePA '(t
l
y w t's) . = . (g«, v) . uPy . t;Pz.M=u\,yw \,z

Dem.

b . #80-45-66 . D b :. Hp . D : M<-PS{i'y w t's) . = .

(aE,fif).^6 4r
y"^.^6 4r

^"P^.if = jBc;^.

[#38-131.*32-18] = . (ru, v) . uPy .vPz .M= u\,yKtv
J,
* :. D H . Prop

#80-91. I- : if ePA'(t'y vi'z) . D . M= (ilf'y) J, y a (if**) | s

Dem.

b . #71-6 . #8014 . y
b : Hp . D . if= s'Q {(gw) . w e fc'y vi fz.Q = {M'w) I w)

[#51-235] = s'Q {Q = (if<y) J, y . v . Q= (if'*) I z\

[#51-232] =si[i\Mly)\,y\Ji\Mlz)\f z)

[#53-13] = (M'y) I y o (if<*) 4 * : D h . Prop

#80*9-91 can be extended, by precisely similar proofs, to any finite number
of variables y, z, They will, on occasion, be assumed for three or four

variables, without fresh proofs.

#80-92. b : y =f z . D . D"PA'(i'y u i'z) = £{(gu, v) . uPy .vPz.%= i
fu w t'v)

Dem.

h. #55-15. #33-26. D b .D'(«4,y vv\ z) = i'u w i<v (1)

h . (1) . #80-9 . #37-6 . D I- :. Hp . D : £ e D"PA'(t'y y t*z) . = .

(aw> v> ^O . wPy . vPz .M=u^yv/v^z.^ = i
lu v i

f
v .

[#1319] = . (gw, v) . uPy . vPs .f=i'Mwi^:'DK Prop

#80-93. h : a ! PA'(i'y « t'z) . = .y,ze d'P [*8046-69]

#80-94. b : g ! PA<(£ u t'z) . = . g ! PA<£ . i € d'P [#80-46 69]

From this proposition, together with #80'26 (which gives g ! Pa'A), we

shall obtain an inductive proof that Pa'/3 exists whenever /3 is a finite class

contained in d'P (cf. *120'611).



#81. SELECTIONS FROM MANY-ONE RELATIONS

Summary q/"#81.

When P f k is a many-one relation, P±'k has many important properties

which do not hold in the general case. In the first place, P^k consists wholly

of one-one relations. In the second place, if R e P^k, D'R takes one term

and no more out of each member of P"k. Again, if R e P^k, R is determinate

when D'R is given ; i.e. R, S e P^k . D'R = D<# . D . R = S. It follows that

D"Pa'k is similar to P*/c ; hence the number of members of P±k is the

number of ways of choosing one member out of each class belbnging to P"k.

It should be remembered that when P[k is many-one, P"/c is a class of

mutually exclusive classes, i.e. no two different members of P"k have any

common member. This follows immediately from #71181.

As explained in the introduction to this section, the propositions of this

number are chiefly useful on account of their application to the case of e.

This application is made in #84. The most important propositions in this

number are

:

#811. r-:Pr*eCls-*1.3.PA'*Cl-->l

#8114. H:Pr*eCls-^l.EePA^.D.22 = (D^R)1Pr* = PAD^RT*
This proposition, by exhibiting R as a function ofD'R, leads immediately

to

*81'21. h:P| fc /ceCls->l.D.DfPA'*el-»l.D"PA**8mPA '/c

This is the principal proposition of this number. The following also is

important

:

*81-22. \-:PtKeC\s->l.D.D"PS/c = p.{ye >c.Dy .iinP'yel:fiCP" le}-

#811. l-:Pr*eCls-*l.D.PA'*Cl-*l

Dem.

K*8014. Dr-:i2ePA'*.D.i2€l->Cls (1)

1- . #80 •291 . D H : . R ePA'k . D : R G P [* k :

[#71*221] D:P|k *eCls-»l,D..ReCls->l (2)

Y . (1) . (2) . D h . Prop

#8111. \- 1 P[ KeC\s->l . RePA'K .xe~D'R.3 .~E1 R'x .a;(Pt k)R'o;

Dem.

K #71165. #811. DH:Hp.D.E!£<#. (1)

[*30-32.*3111] D . xR (R'x) .

[#80291] D.x(P$k)R'x (2)

h . (1) . (2) . D h . Prop
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*8112. hiPtKeCte-tl.ReP&'K.xeD'R.D.

R'x — (iy) (ye/c. xPy) = (* 1 P)fx
Dem.

\-.m-S6l.3\-:.H.v.D:x(PtK)R'x. = .R'a;={Cnv'(PtK)}'x:

[*8111] D : R'x= [Cnv'(I>tK)Ya:

[*3552J =(*1P)'a?- (1)

[«85-l] = (iy)(y etc.xPy) (2)

h.(l).(2).Dh.Prop

*8113. h :.Pf k eCls->l .RePA'* .D: xRy< . = .x eD'R . xPy . y e k

Dem.

V . *81 •12 . D I- : : Hp . D : . x eD'R . D : y = R'x . = . y = (* 1 P)«a?

:

[*7l-361] D:#2fy.= .#(Pr*)y.
[*35101] =,xPy.yeic (1)

r . (I) . *5'32 . Z>

I- :. Hp . D : #eD'P .#% . = . xeD'R . xPy . y ex :

[*331#.*4-71] D : xRy , = .xe D'P . xPy . y e k :. D H . Prop

*8ri4. h:P|k «eCls-»l.P6PA^.D.P = (D<P)1P^= PnD'i2t/c
[«81-1.3.«35-102*822]..

This proposition, by exhibiting R as a function of D'P, shows that

a member of P&'k is determinate when its domain is given, provided

Pf*eCls-»l.

*8115. \-:P\-KeCl8~+l.RePA'K.y€K.'2.i'Rty = I)'RnI><y

Dem.
K*81'13. 0\-:.Kv.D:xRy.=x .xeD'R.xPyz

[*3218] 3:x€R'y.=x :xeI><R.X€
r

P'y:

[*2043.*22-33] D : li'y = D'P h P'y :

[*53-31.*7l-163.*8014] D : t'^=D'iJnP'y :. D I- . Prop

*812. l-:.PF*e-Cls-»l.jR,#ePA'ie. D:D'P= D<#. = .R = S
Dem.

h.*30-37.*3312.Oh:P = #.>.D<P = DS$f (1)

I- . *8114 .*1312 . I> h :. Hp . D : D'P = D<£. D . P = P n D'£ | *

[*8M4] ==£ (2)

K(l).(2).Dr.Prop

*81'21. h:P(k /ceCls-^l.D.DrPA^el->i.D"PA'«smPA^
[*812 . *7l-59 . *73-28]

B & W I 32
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This proposition is very important. The class D"Pa'#, when P [ k eCls— 1,

is formed, as we shall prove later, by making every possible selection of one

term out of each member of P"/c, each such selection giving us one member

of D"PA '/e. The fact that, with the above hypothesis, the class of classes

D"P*'/t has the same number of terms as PA'« (which results from the above

proposition), is of great utility in the theory of cardinal multiplication and

exponentiation.

*81'2li. h:P^eCls-*l.D.D"PA
<«C^fy€/c.Dv ./*nP^el:^CP"/C

}

Dem.

h . #81-15 . #521 . D f- :. Hp . R e PA'« . 7*= D'E . D : y e k . D„ . /* n P'y e 1 :.

[#101 1-2335] Ohi.Hp:(^R).RePAt
ic.fjL^I)

tB:D:y€fc.Dy ./j,nP
tyel:.

[*37-6.*3312] OH:.Hp./i6D"PA'/c.D:2/e«:.Dy ./*r»P'y6l (1)

h . #80-291 . #33263 . D

\-:R€P^K.fi, = D (R.^.fjuCI> t(P[K).

[#37-401] D./xCP"*:

[*1011-23-35] D h : (giJ) . R e P*'te . fi = D'R . D . /* C P"k :

[*37 6.*3312] Dh:/*eD"PA<*:.D. /
uCP"* (2)

h.(l).(2).DKProp

*81212. h:.
2
/e^.Dj

/
. At nPty€l:/iCP"«:D.^eD"Pd^.^1Pr«ePA^

Dem.

V . #35*442 . #37402 . D

t-:i2 = /
*1P^.3.i2GP.a'i2=«nP>.D' JK = At nP"« (1)

h. #52-16. Dh:.Hp.D:y.€*.O
l,.a!/*oP'y.

[*37-46.*32-241] Dy . y e P"/u

:

[*221] D:«CP> (2)

h.(l).(2).*22-62l.Dh:Hp. JB = /*1Pr>c.D. JKGP.a f
JB = «.D tP =

/i (3)

I- . #32-18 . #35 102 . D H :. Hp (3) . D : y e k . Dy . R'y = /* n P'y

.

[Hp]
_^

V^B'yel:

[#37-702] D:22"*C1:

[(3).*71-1] D:Rel-*Ch (4)

I- . (3) . (4) . #8014 . Dh:Hp.D. At
>
|P(k *ePA'«.DV1^r*) = /*- (5)

[#376] 0.fi€D"PA <te (6)

f- - (5) . (6) . D K Prop

#81-22. h : P\- k €C\s^>l .D .*D"P*'/c = fi{y e k . Dy . finlP'y el : fiC P"k]

[#81-211-212]
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«81-221. h : P T k e Cls -* 1 . D . PA '*r = \{P \ /e)"D"PA'*

Dem.
K*8M4.*37-62.D
\-:.KV .D:RePA

'K .3Ii
.Il = (D<R)

J\P\-K.I><ReT>"PS fc.

[*10-24] DR . (a^i) . P = fi 1 P f a: . n e D"PA'« .

[*38131] Dit . JR€l(P|k *)"D"PA'* (1)

r- . *81-22212 . D h :. Hp . D : ytt e D"P4<* . DM . fi *\ P[ k e Pa'k :

[*37-61] D:'|(P|
k *)"D"PA'ieCPA 'ie (2)

h.(l).(2).Dh.Prop

*81'23. b:Pt K eC\s-+l.RePSK.yetc.D.I>'R-P'y = I) tR-i'R t

y

Dem.

h . #22-93 .OK D'P - ~P'y = D'P - (D'P n P'y) (1

)

t-.*8115.DH:Hp.D.D <P-(D'PnP'y) = D tR-i tR i

y (2)

I- . (1) . (2) . D h . Prop

#8124. H : P [k e Cls -» 1 . /» e D"P4 '« .ye./c.O.ft -~P(
y e D"PA<(* - i'y)

Dem.

I- . #80-78 . D r : R e Pa'k . y e /c . D . R-(R'y) I V e iV(* - *'#)

[*37-62.*3312j D . V>
l{R-(R l

y)\,y\ e D"Pa<(* - i'y) (1)

h . #811 . #80-14 . D

K-Pr*:eCls^l.PeP4'«.yetf.D.Pel-*l.yeCI<P.
[*72-911.*7l-31.*55-3] D . D<{P^(£'y)

J, y} = D'iZ - t'R'y

[#81-23] = D'P - P'y (2)

K (1) . (2) . 3 H : Hp (2) . D'P = ft.D. fi-P'ye D"PA'(* - i'y) (3)

h . (3) . *10-ll'23-35 . *37-6 . *33\l 2 . D h . Prop

#81 25. h:yeK. xPy . ft e D"P/(* - i'y) O./iui^e D"PA'«

Dem.

h . #8068 .Dh:ye/c. xPy . R e P*'(k - i'y) . D . R a x
J, y e Pa'k .

[#3762] D . D'(R vxly)e D"P±'k .

[*3326.*5515] D . V'R v l'x e D"Pa 'a: (1)

I- . (1) . D h : y e « . xPy . R e P*'(k - i'y) . y = D'P .D.fivi'xe D"P4'* (2)

h . (2) . *1011 -23-35 . #376 . D h . Prop

*81-26. b :. P[ k eQh-+ 1 . y e k. p n~P'y el .3 :

H-~P'ye D"Pa '(k - i'y) . = . ^ e T>"PA <K
Dem.

h . #81-24 . D h :. Hp . D : y, e D"PA '*r .D.y-P'ye D"Pa'(* - i'y) (1)

r- . #81-25 . D h :. Hp . D : /x n ~P<y=i<u' . y -~P<y eD"P*'(K - I'y) . D .

' (ji - P'y) v, i^; e D"P4'k (2)

32—2
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I- . *22'551 . Dh/inP'^t'ic.D.dn- P'y) v i
lx = (ji - P'y) u(/in P'y)

[*24'41] =ft (3)

K*521. Dh:Hp.D.(a«).
/
ttnPr3/=t'a; (4)

h . (2) . (3) . (4) . D H :. Hp . D : //, - P'y e D"PA'(* - t'y) . Z> . /* e D"PA'* (5)

h.(l).(5). Dh.Prop

*81-3. h:P^eCls^l.X=P"«:.D.D"P4 '/c= jS{ae\.Da ./Anael:AtC:s'X}

Dem.

V . *37-706 . 3 I- : . y e * . Dy . ji n P'y e 1 : = : a e P"k .Da . fin a el (1

)

K*405. Dh:/*CP"«. = ./iO'P"*: (2)

K(1).(2).*81-22.D

h:Pt K eCh^l.D.D"PSK = ti{aeP"K.Oa .fj<,nael:fj.Cs<
r

P"K} (3)

h . (3) . *1312 . D h . Prop

«81'S1. H : P |*
*, Q [ k e Cls -» 1 . P"k = ~Q"k . D . D"PA'* = D"QSk

Bern.

h . *81 3 . D H : Hp . D . D«P*<k = £ {a e Q"« . Da . /* n ere 1 : /* C «'^"*}

[*81'3] = D"Q*'k : D r- . Prop



*82. SELECTIONS FROM RELATIVE PRODUCTS

Summary o/*82.

The propositions contained in this number are not much used except in

connection with the associative law for cardinal multiplication, but they have

a certain intrinsic interest.- We prove in this number that, with a suitable

hypothesis, (PjQVA- results from P±'Q"\ by multiplying each member by

Q, i.e.

#82272. V : Q f X € 1 -> 1 . X e D'(Q)e . D . (P
| Q)A*\= |

Q"Pa'Q«\

Also under a suitable hypothesis the domains\of (P
|
Q)d

fX are the domains

ofPA'Q"\,i.e.

#82 32. \-:Q\-Xel^l.\Ca(Q.D. D"(P
{ Q)A<\ = D"PA'Q"\

In the applications of propositions of the present number in #85, P and Q

are replaced by e and Q. By #62*26, e\Q = Q; thus we obtain relations

between Qa'X and €a'Q"X.

#822. K: ifePA . Ne Q*<\ . Q"\ C k . D . M |
Ne(P

j Q)A<\

Dew.
H. #80-14. Oh:Hp.D.JIf,jyel-»Cls.

[#71-25]
,

2.M\Nel-+C\B (1)

h .80-14. DrrHp.D.ilfGP.iVGQ.
[34-34] D.ilf|JV"GP|Q (2)

r.*80\l4. DI-:Hp.D.a <M=/c.

[#37-32] . D.a'(M\N) = N"tc (3)

H.*8014. Dh:Hp.D.^GQ.a'iV=X. (4)

[*37-201-25] D.N"\CQ"\.N"\**'DtN.
[Hp] D.D'iV~C«:.

[#37-271] D.N"K = a<]y (5)

r.(3).(4).(5).Dr:Hp.I>.<P(il/|iV0 = \
(6)

I- . (1) . (2) . (6) . #80-14 .31-. Prop

#82-21. b:Q\-\el->Cte.\Ca tQ.O.QS\ = i<Q\'\

Dem.

h .*80-29114 . D I- :. Hp . D :ReQ*'\ .l.RGQfX. d'R = \.

[#72-92] o.R=(Qt\rta<R.a<R=\.
[#35-31] D.R = Qf\ (1)

H. #35-441-65. Dr:Hp.O.QrXel->Cls.QrxGQ.a f(Qpx) = A..

[#80-14] D.Q[\eQ*'\ (2)

h . (1) . (2) . #51-141 . D H . Prop
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#82 22. h : Qt Xe 1 -> Cls . X = Q"k . MeP* (K .^.M\Q € (P\ Q)s'X

Dem.

V . #80 14 . #3732 . D h : Hp . D . Q'(M
j
Q) = Q"k .

[Hp] D.(I'(Jtf|Q) = X (1)

[#35-452-23] D .M\Q = M\(Q[X)

.

[*71-25.*8014] D.M Qel-*G\s (2)

h. #3434. #8014. D>:Hp.D.if|QGP|Q (3)

I- . (1) . (2) . (3) . #80-14 . D h . Prop

#82221. hiQtXel-tCis.XCCL'Q. MeP*<Q"X . D . M\ Q\X e(P| Q)A'X

Dem.

K #71-25. #8014. Dh:Hp.D.i/iQr\el-*Cls (1)

h . #34-34 . #80-14

.

Dh:Up.D.M\Q[XdP\Q (2)

1- . #37-32 . #35-64 . #80-14 . D I- : Hp . D . (P(J/
1 Q [ X) = X n Q"Q"X

[#37-51.*22-621] =X (3)

I- . (1) . (2) . (3) . D h . Prop

#82-23. \-:QtXel->l.K = Q"X.Re.(P\Q)SX.O.R\Q €PA<K

Dem.
h. #80-14. Z>h:Hp.D.(I'P = X. . (1)

[#35-48] D.R\Q = R\(X J

\Q)

[#35-51] = P|Cnv'(QfX). (2)

[#71-25] D.R\Qel-*Cls (3)

h. #37-32. Dh:Hp.D.CT(P;Q) = Q"(I<P

[(i)] =Q"*>

[Hp] * -« (4)

I- . #80-291 . D h : Hp . D . R G (P
| Q) [ X

.

[#35-23] D.PGPj(QI^X).
[#34-34] D . P

j

Cnv'(Q f X) G P j Q f X |

Cnv'(Q r X)

.

[(2).*72-59] D . P
j
Q G P f D'(Q [ X)

.

[#35441] D.PjQGP (5)

I- . (3) . (4) . (5) . #80-14 . D h . Prop

#82-231. h:QfXel-*l . Re{P \Q)*'X .3 . RQe PA'Q«X. R = R\Q\Q[X
Dem.

K*8014. Z>h:Hp.D.<J'P = \. (1)

[#74-41] D.R\Q = R\X^\Q

[#35-51] = R
|
Cnv'(Q f X)

.

[#34-27] 3.P £:Qrx = P!Cnv'((>rx)jQrx

[#72-591] =P^a*(QpX) (2)
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h.*80'2. Dh:Hp.D.\Ca'(P|Q),
[*34'36] D.XCa'Q.
[*3565] D.atQ[\=\.
[(1).*74-221] O.R[a\Q[X) = R (3)

K(2).(3).DH:Hp.D.iZ==12|Q|Qr x <4>

H . (4) . *82-23 . D h . Prop

*8224. \-:Qt\el-+l.KCT>'Q.\ = Q">c.Rf:(P\Q)A'\.D.

Bern.

h.*74-16.DI-:Hp.D.A: = Q"\. (1)

[*82'23] D.#|QePA<*. (2)

[*80\L4] D.a f(R\Q)=K.

[Hp] O.Q"<I<(#|Q) = \.

[*74-4].. O.R\Q\Q[\= R\Q\Q-

[*82-231] D.Rr=R\Q\Q (3)

K(l).(2).(3).3KProp

*82241. \-:Qt\€l->l.\eT>'(Q)e .R€(P\Q)±'\..D.R = R\Q\Q

Bern.

h . *7431 . D h : Hp . D . \ = Q"Q"\

[*80-14] = Q"Q"a'R

[*3732] = Q"(F(P
j
Q)

.

[*74-4] D.jKIQjQpX = J2|Q|Q (1)

I- . (1) . *82-231 .Dr. Prop

*8225. H:Qr\el->l.*CD'Q.\ = $'V..Re(PiQyx.D.

(RM).MePSK.R = M\Q [*8224 . *10'24]

*82-251. \-:Qf\el^>l.R6(P\Q)A'\.D.(RM).MePA<Q"\.R = M\Qt\
[*82-231 . *10-24]

*8226. h:.Qf\el->l.*CD'Q.\=Q"*.D:
R € (P

| Q)A*X . = . (gi/) . if e P*<* .R = M\Q 082-22-25]

*82'261. \-:.Q\-\el-*l.\C(I'Q.D:

P e (P
| Q)A <X . = . (&M) .MeP*'Q"\.R = M\Qt\

[*82-221-251]

*82'27. ^iQI\ € 1->1.kCI)'Q.\ = Q"k.D.(P\Q)a'\ = \Q"P*'k

[*82-26 . *43-121 . *37-6]
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*82-271. h : Q f X e 1 .-> 1 . x C d'QO . (P
|
Q)S\ -

1 (Qf X)"PA'Q"X

[*82-261.*43-121.*37-6]

*82 272. I- : Q

[

X € 1 -» 1 .

x

€ V\Q)e . D . (P
| Q)4 <X =

|
Q"PSQ"\

Bern.

K *37-23 . D h : Hp . D . (a/*) . \ = 5"/*

[*37-261] 3.(a/^) f X=§"(/irtD'Q).

[*22-43] :>.(a«).X = <2"*.*CD<Q (1)

I- . *82-27 . *74-16 . D

\-:QfKel-+l.KCD<Q.\ = Q"K.O.(P\Qy\ = \Q«PA<Q"\ (2)

h . (1) . (2) . *10-ll-23'35OK Prop

*82'28. >:.*1Qel->l.\C d*Q . k= Q"\ . D :

Re(P\Q)S\. = .(nM).M€Pt<K.Il = M\Q
[*82-26 . *74-26]

*8229. \-:KlQ € l->l.\Ca<Q.K = Q«\.5.(P\Q)S\ = \Q«PSK
[*82-27 . *7426]

*8229X. h:*1Qel-*l.*e D'Qe . D . (P
| QVQ"* = |

Q"PA<«

[Proofasin*82-272]

*823. f-:it/ePA'Q"XO.D'(il/jQ|s
X)= D<4f

Dm.
I- . *8014O I- : HpO . (I'M = Q"\

.

[*7442] D . D'(4f
| Q f X) = D'ilf Oh. Prop

*82-31. r : P e (P
| Q)A'X . D . D'(P

|
Q) = D'P

Pern.

h . *801 42O h : HpO . <PP = \.\C d'(P
|
Q)

.

[*3436] D.a«pca'Q.

[*37-321
J D . D'(P

|
Q) = D'PO h . Prop

*82 32. h : Q f X e 1 -» 1 . X C d'QO . D"(P
j Q)A'X = D"PA'Q"X

Bern.

V . *82-27l O
.

I- :. HpO : D"(P
| Q)A'x = D"| (Q f \)"PA'Q«\ :

[*37-67] D : a e D"(P
| Q)A'\ . = . (gilf) . ^ ePA'Q"X . a = D'(itf

| Q f X)

.

[*82-3] D.(g4/).ilfePA<Q"X.a=Mf,
[*37-6] D.aeD"PA'Q"X (1)
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r . *82-3-221 . D h :. Hp . D : MeP*'Q"\ . D . D'if=D'(if
|
QfX) .

M|(Qrx)e(P|QVX.
[*37'62] D.D'ifeD"(P|QyX:

[#37-61] D:D"PA'Q"XCD"(P|Qyx (2)

K(l).(2).Dh.Prop

#82 33. 'r:*1Qel->l.*e D*Qe - D . D"(P
| QVQ"* = D"PSk

Dem.

l-.*37-23'26.DV:/e eD<Qe .D.(aX).XCa<Q..« = Q"X (1)

K #74-26O \

h : « 1 Q e 1^ 1 . X C a'Q . * = Q"X . D . Q f X e 1- 1 . * C D'Q . X = Q"* . (2)

[#82:32] D.D"(P|QVX = D"PA'Q"\.

[(2).Hp(2)] D.D"(Pj#yQ<>* = D"PA<* (3)

K (3). #10-1 1-23-35. D

h:.*1Qel-»l: (gX) . X C (I'Q . * = Q"X : D . D"(P
|
Q)Jq* 1k = D"P4<* (4)

h.(l).(4).DKProp

The following propositions (#82'4-41 -411-42) are lemmas for #82*43, which

is used in the proof of #114*5, in the theory of cardinal multiplication.

#82-4. V : T e 1- Cls . P"X C d'T . D . T
\
"P/X C (T

|
P)A'X

Dem.
\-

. #80-14 . #71-25

.

DhiHp.iZePa'X.D.TIEel-frCls (1)

h . #8014 . #34-34

.

Dh:Hv.ReP*'\.3.T\R(ZT\P (2)

h . #80 33 . D> : Hp . R eP4'X . D . D'iJ C Q.'T .

[#37-322] 3.<I'(T\R) = a'R.
[#8014] D.at(T\R) = \ (3)

h . (1) . (2) . (3) . #8014 .O I- :. Hp.D:£ePA'X.D.T| Re(T\ P)A'X :. Dh . Prop

#8241. h : Te Cls-> 1 . if e(T
j
P)/X . D . T| ifePA'X . M= T| f| M

K #80-14. *71-250 H Hp. D. I"! ifel-» Cls (1)

I- . #8014 . #34-34 . D h : Hp . D . T\M G ?| T\ P .

[*7l-191.#34-2] GP (2)

h . #8014 . #34-36 . D h : Hp . D . D'if C D'T.

[#37-322] D. a'(?| if)=<I'if.

[#80-14] D.<P(?jif) = X (3)

I- . (1) . (2) . (3) . #80-14 . D h . Prop

#82-411. h:TeCls-».l.D.(2TiPVXC27 |"PA
<X [#8241]
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#8242. h : T e 1 -* 1 . P"X C (FT . D . (T | PVX = T \ "PA'X [*82-4'411]

#8243. I- : T, Q[\ e 1 -» 1 . P"x C <PT .

X

C <PQ

.

k = Q"X . D .

Dew.

f-.*8227^.DI-:Q6l-^l.XCD'Q./«: = $"X.D.(P|QV« = |Q"P^X (1)
Ky A

(P!MQy* = |(MQ)"PA<\ (
2 )

f-
. (2) . #35-61-354 . #37412 . #43481 . #80-14 . D

> : QfXel -> 1 . XC d'Q. * = Q"X . D . (Pf X
j
Q)l

1k=
|

Q"PA'\ (3)

K(3)?j^. DI-:Q|k Xel->l.XCa <Q.« = Q"X.D.

^(?
T

iPfX!$V/. = |Q"(2
?|PVX (4)

K (4). #82-42. Dh:Hp.D.(T|Prx|QV* = |Q"^|"PA <X

[#43'202.*37-33] =(r|| Q)"PA'X: D K. Prop

#82-45. !-:QrXel^l.XC<P#.D.(P|Q)A'XsmPA<Q"^

Dem.

V . #80-14 . #3715 . D I- : R e A'Q"X . DB . d'R = #"X . Q"X C D«Q

.

[#1415] Or. d'R CV'Q:

[#74-72] Dh:Hp.3.|(arx)"PA<Q"XsmPA^"X.

[#82271] D.(PjQVXsmPA'Q"X:OH.Prop

#82 5. H:P|Q"XeCls-»l.Q| fc Xel-»l.XCa'Q.D'.
(P

|
QVX sra D"Pa'Q"X [*8245 . #81-21]

*8251. \-:PtKeCh->l.K J\Qel-*l.\Ca<Q.K = Q"\.D.

(P
I

Qyx sm D"PA<* [#82'5 . #74251]

#8252. h :P

T

a; e Cls -* 1 . « 1 Q € 1 -* 1

.

k e D'Qe . 3
.
(P

|

Q)±'Q"tc sm D"PA<*

Dera.

K*37-23. Dh:Hp.D.(a^).*r = Q"/* (!)

H . #37-26 . #2243 . D
K:«= (2>.X= /iAa'Q.3.K = Q"XACa'Q (2)

K #74161. D I- : Hp . * = Q"X . X C d'Q . D . X = Q"*

.

[#8251] D.(P|QV<2"*smD"PA<*:

[*1011-23-35]Dh:.Hp:(a\).«r= Q"X.XCa'Q:D.(P!Q)A <Q"«smD"P^A:(3)

I- . ( 1) . ( 2) . D h : Hp . D . (3X) . k = Q"X . X C <TQ (4)

h.(3).(4). DKProp
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*82-53. \-:P[K,R\'KeC\8^1.KlQ<:l-+l. K e'DfQ.lP"K = li"K.'2.

(P\Q)*'Q"«sm(R\Q)A<Q"K .

V'%P\Q)s'Q"« = I>"(R\Q)i'Q"« =

/* {««?"« . X . fi n ae 1 : p CP"*}

= ~D"PSk * D"RSK
Dem.

\- .*82'52 . D"H : Hp. D , (P
j Q)d <Q"* am D"PA<*

.

[#81-31] D . (P
| QVQ"* sm D"ik'/e

.

[#82-52.*73 32] D . (P
| QV§"* erai (U

|
QWQ%- (1)

K.*82-33.Dh:Hp.D.D"(P|QVQ"/e =D"P^ (2)

[#81-31] = D"ik<* (3)

[*81-3.*4G-5] =/*{aeP"«.D . M na€l:AiCP"*r} (4)

r . #82-33 . D H : Hp . D . D"(R
| QVQ"« = D"R*<K (5)

I- . (1) . (2) . (3) . (4) , (5)..O h . Prop



*83. SELECTIONS FROM CLASSES OF CLASSES

Summary o/#83.

In this number, the general propositions which have been proved for Pa'k

are to be applied to the important special case where P is e. In this case, we

have selections from classes of classes: if Rcca'k, R picks out a representative

Rfa from each class a which is a member of k; i.e. we have

a e k. "Da. • R'a e a.

The propositions of this number result from those of previous numbers

either immediately, by the substitution of e for P, or by the use of proposi-
—>

tions of #62, notably e 'a = a (#62*2), and e"* = s'k (#62-3).

The .propositions of the present number follow, in the main, the same

course as those of *80, with e substituted for P (except that the special forms

of propositions before #802 are not given). We have first a set of propositions

resulting immediately from early propositions of #80. Of these the most used

are

:

#8311. r: Ae/f. D.eA'* = A
This leads to the proposition that an arithmetical product is null if one

of its factors is null. (We cannot prove the converse universally without

assuming the multiplicative axiom.)

#8315. I- . eSA = t'A

Thus ca'A is a unit class. This is the source of the proposition /u.°=l,

where /x is a cardinal (cf. note to #83 -

15).

*83-2. h:. JReeA'*.D:ae/c. = .E! JK'a. = .i2'aea

Here Rla is the " representative " of a.

*83-21. Y-.ReeSK.'Z.WRCs'K

We have next a set of propositions (*83'4

—

-

44) on selections from unit

classes and classes of unit classes. We have

#83*41. r . e^H'a sm a

This leads to the proposition that a product of one factor is equal to that

factor.

#83-43. \-:KCI.D.eStc = i<(itK) = i'(€t/c)

This leads to

*83-44. h : k C 1

.

. €±'k e 1

whence it follows that a product of factors, each of which is one, is one. This

holds even if the number of factors is infinite or zero.
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We have next a set of propositions (#835—-58) on changing the repre-

sentative of a class, and on selections from a class of classes some of which are

unit classes. These propositions are seldom referred to in the sequel.

We have next (#83-6—*74) a set of propositions on the domains of selec-

tions, i.e. on the class D"eA '/e. We have

#83 66. h : a ! 6A'* . D . s'D"eA<* = s'k

(The hypothesis here cannot be dispensed with unless we assume the
multiplicative axiom.)

#83 7. r.D"eAVa = i"a

#83-71. l-.D"eA't"a = fc'a.D'a1t = a

We have next two propositions (*83'8-81) on the types of €*'k and D"eA*«.
The type of D"eA'* is the same as that of k (#83-81).

The last set of propositions in this number (#83*9

—

-

904) deals with the
existence of selections. We have

#83 9. I- . a ! eA'A

#83901. h:a!eA't'a. = .a!a
#83-904. l-:a!eA'(*ui'£). = .a!«A'*. a !£

From these propositions we shall deduce by mathematical induction that
whenever k is a finite class, €&'k exists unless Ae/c (cf. *120'62). Thus a
product consisting of a finite number of factors (which may themselves be
either finite or infinite) can only vanish if one of the factors vanishes.

#831. r: a !eA'/e.D.A~e«:

Bern.

r , #80 2 . D I- : Hp . D . K C d'e

.

[#62-231] D.A~e*.OKProp
#8311. h:Ae«.D.eA = A [#831 . Transp]

#8312. r.eA'K = (ef/tV/e [#80-23]

*8313. t-:A~eK.Q=€\>K.D.€*'K=Qsa<Q [#80-24 . #62231]

#8314. \-:^UA tK.Q=€[K.D.es tK = Q^a tQ [*831-13]

#8315. h.e4/A =M [#8026]

In virtue of this proposition, the product of cardinal numbers is 1 a
proposition of which a particular case, namely //= 1, is familiar. This arith-

metical proposition results from the above as follows. We shall define the
product of the numbers of members of k as the number of members of eA'#.

Thus when k = A, the number of members of eA '/e is a product of factors.

Now by the above proposition, eA'A has one member, namely A. Hence a
product of factors is 1.

#8316. l-:a!*:.D.A~eeA<* [#80*28]
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#832. \-:.ReeSK.D:aeK.=L.ElR'a. = .R'aea [#8032 . #62-2]

#8321. h:BeeA
tK..D.D'RC8'K [*80"33 . *62'3]

#8322. \-'.ReeSic.O.EllR«ie.R"ic = T>'R [#80-34]

*83'23. h:ReeSK.D.D'R = ${(Ka).aeK.a;= R'cL} [#8035]

#83-24. H : R e eA '*r .oe*.*ea.D. [{iZ-OR'a)
J,

a} vy x
J, a] e eA<* [#80-41]

#83-25. H : g ! e^K . . s'ej* = ef « [*80'42]

#83-26. H:Q = e
|

k *.a!Q^.D.5<QdV=Q [#8312-25]

#83-27. K^i2Ge.i2el^Cls.=/:ae<I< JR.0o .i2<aea [#62-45 .#7116]

#83-271. r :. -Re

e

A'<P£ . = : a

e

(TjR . o . R'a e

a

[*83 27 . #8014]

#8328. hz.Re €*'k . = : a

e

k . Oa . #'« e a : (P.R = k

[#83-27. #8014. #1415]

#83-29. h:.Re€*'K. = :u€/c.=a .R'a€a:a'R = K [#83-2 28]

#83-3. \-:. K r\\ = A.D:M€€*'(Kyj\).= .

(RR,S).Re6A'K.SeeS\.M = RvS [#8066]

#83*31. K.*n\. = A.O:i2e e±'tc . S e e±
f\ . =..

(%M) .

M

e €A'(* u\) . R = M[ k . S = M[X [*80'67]

#83-4. I- . €AVa = 4, a"a [#80-45 . #62-2]

*8341. h.e4Vasma [#834 . #73-611]

This proposition shows that a cardinal product of one factor is equal to

that one factor. For the number of members of e\H (
a. is the product of the

numbers of members of members of i'ol, i.e. it is a product whose only factor

is the number of members of a. By the above proposition, this product is

equal to the number of members of a.

#83-42. r- . e*'i"a = i'(a 1 1) = i\i f t"a)

Bern.

V . #83-12 . V . e*'i"a = (e[ i"a)*'i"cc

[#62-56] =(i|
ki"a)i'i"a (1)

h.*72-181.*7L-26.DH.rrt"ael->Cls (2)

h . #3715 . #33-21 .OK t"a C (Ft

.

[#35-65] DK["a = a'(i^"o) (3)

I- . (2) . (3) . #82-21 .OK (if i"«)AV'.a-=V{(fcY i"a) f i"o}

[#35-31] =i'(T|
k
£"o) (4)

[#62-56] =t'(ol0 (5)

K(l).(4).(5).OKProp

This proposition shows that a cardinal product whose factors are all 1 is 1.

For t"a is a class whose members are :all unit classes, and thus the number
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of members of e^Va is the product of a number of l's; and by the above

proposition, eAVa is a unit class, its sole member being a"] t. This result is

rendered more explicit by #83*4344.

*83'43. \-
: k C 1 . D . eA'* = i'(i [ k) = t'(e [ k)

Dem.

V . *83'42 . D I- : k = i"a . D . eA<* = t«(t f k) (1)

h.(l).*10-ll-23.D

f- : (go) . * = t"a . D . €A '/t= i*(i \ k) :

[*5231] D H : * C 1 . D . e*<* = fc<(fc f *)

[*62-55] = t'(e I"*:) : D H . Prop

*83;44 r : * C 1 . D . e4'« e 1 [*83'43 . *5222]

*835. h : JB e

e

A'« . o~e

«

.xea. D . 22 ci # |a6

€

4 '(«: u t'a)

K*80-43. DI-rHp.D.^^aeeAVa (1)

K*51-211.Dh:Hp.D.*ru<a = A (2)

r . (1) . (2) . *80-65 . D h . Prop

It follows from this proposition that if k is a class of classes for which

there are selections, and if one member (not null) be added to k, there are still

selections from the resulting class of classes.

*83 51. h : R

e

eA'« . a

e

k . D . R- (R'a)
J,
a e eA'(* - fc'a) [*80*78]

*83 52. \-:Re6*'K.aeic.a;€a.D.{R-^(R'a)la}vxlae€A'K [*80'41J

*8354. h«ft\ = A.\Cl.Ee eA'« . D . # c; i fX e 6a'(* v X)

Dem.
K*80-65.DH:.Hp.D:£€eA'\.D.i2tySee4'(/eu\) (1)

K*83'43.:>f-:Hp.D.7rXeeA'X (2)

K(l).(2).DKProp

*83 55. hun\ = A.XCl.iS6 e4'(* w X) . D . S— I [ X e e^K

Dem.

h . *80'66 . D h : Hp . D . {^M, N) .MeeA'« . N e<-±'\.S =MvN

.

[*83'43.*5115] D.(g JM).Jfee4'*.#= Jlfe/t'r\ (1)

I- . *8014 . *3564 . D V :. Hp . D : Mee^K . D . d'if n <l<(i [ X) = A .

[*33'33] O.Mni[X = A.

[*25-4] D.(Jftyirx)-^iVx = itf.

[*1312] D :Mee*'K.8=Mv"i\-\.D.S^t\eeA<K (2)

h . (2) . *1011-21-23 . Z>

l-:.Hp.D:(ailf).ife€Ai
/e./»= ilfc;i'|

< X.D.5-trXe€A 'A: (3)

K(l).(3).DH.Prop
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*8356. h:/tnX = A.\.£l.

D . e*'(/c u X) =M [(&R) .R e eSic .M «R u\ [ X}

Dem.

h.*8066Oh:.HpO:
M € eA'(* u X) . = . (gjR, 8) . R e eA'* . S e eA'\ .M = R v S

.

t*83'43] = . (gj?) . R e eA'#.M =R u iL[ X :. D h . Prop

The following proposition is used in the theory of cardinal multiplication

(*114-41).

*83-57. h:/en\ = A.XCl.D.64'(*u\)8in64'«

Dem.

h . *83-56 . *38131 . D h : Hp.D . eA'(* v \) = (iy 7r\.)"€A '/e (1)

h . *8014 . *3564 . DI-:Hp.i2€6^.D.a'i2r.a'(t[k
\) = A.

[*33'33] O.R^i[\ = A.
[*25-4] D.i2 = ( JRc;

V

t|
k X)^i|k \ (2)

h . (2) . *23481 . *13172 . D

h : Hp . R.See^K .R c/7f\ = Sv^ifX . D . 12 = S:

[Exp.*llll-3.*3811] D h :. Hp . D :

R,SeeSK.(\j
y

itxyR = (v^txy8.6RtS .R = S:

[*38-12.*73'25] D:(v7tX)"e*'K8me*'ie (3)

h . (1) . (3) . D h . Prop

*8358. I- . ca'k sm eA'(* - 1)

Dem.

h.*24-41'21.*22-43.D

,H.*-=(*-l)w(*n.l).(*-l)n(/enl)=A.*ftlCl (1)

h . (1) . *83'57 Oh. Prop

This proposition shows that in a product any number of factors each equal

to 1 may be omitted without altering the value of the product.

The following propositions, down to *83"74, are concerned with the domains

of selective relations, i.e. with the selected classes.

*83'6. \-:ReeA tK.a€K.'D..^lan'D tR
Dem.

h.*8320h:HpO..R<aea.

[*3343] I.R'aeaKD'R.

[*10'24] D . 3 ! a n I)<R Oh. Prop
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#8361. hiJ6€i'*.a6/c.afts'(«-i'a) = A.D.«ftD'E = i'J?
<o

Dem. '

, .

I- . #4027 .Dh:.an s'(k - t'a) = A . = : * k - t'a . D^ . a n £ = A :

[Transp.*5115] =:/Se/c.g!«ny8.D^.^=a
I- . *83'23 . D h :. Hp . D : #eD<22 . = . (a£) . /3 e* .x = R<& . .

[*10-35.*1415] D:#earrD'i*. = .(a/3)./3e*.# = i2'/3.12</3ea.

(1)

.('Kj3).0ex.a!=*R'/3.R'l3eanl3.

= -('3./3).l3eK.x=R</3.R'/3i:ant3.a=/3.

= . a e «; . a; = i2'a . 22'a e a

.

= .a?= i2'a (2)

[*83'2]

[(1).*471]

[*13-195.*22-5]

[Hp.*4-73.#83-2]

K(2).*51'15.Df-.Prop

#83-62. h^eD^A-D./iCs'/c [#8321 . #37-63]

#8363. h : s'^s'\=A. /ieD"e4'(«uX) . D . /tn^eD'^'* . ^ns'XeD"eA'X

h. #80-62. 3l~:JfeeA'(*uX).D.ifr*€eA '/r.if|
k

\6eA'\. (1)

[*8321] ^.MtKC^.D'IfxCA (2)

K (2). #24-494. D h :. Hp. D : M eeA'(* u X) .O.
D'irr/e = (D'ilfp* u D'if [X) - s'X . D'Jf [X = (Mff*: uD^X) - 8'ic

.

[*33-26.#35-412.*80'29] D . D'M [k = D'M - s'X . D'MfX= D'if - s'k .

[#24-491] D . D'M\-K = D'ilfn s<* . D'M fX = D'Jlfr> s'X (3)

h.(l).(3).*37-6.DH:.Hp.D:

- if e eS{K u X) . D . V'M n s<* e T>"€*<k . D'if n s'X e D"eA'X :

[*3763] D : /x e D"eA <(* u \) . D . ^ r>s<* e D"^'* . fi n s'X eD"<*'X :. D h . Prop

#83*64. H:.«nX = A.D:
/x e D"eA'(* u X) . = . (gp, <r).pe D"eA '/c . <r e D"eA'X .

/* = p u <r

Observe that the hypothesis required here is «n\ = A, not s'a: n s'X = A
as in #83-63.

Dem.

> . #80-66 . D H :. Hp . D :M e €*<(* u X) . p = D'if . = .

(giZ, 5) . R e eA 'tf . £e eA'X . ilf= i2 o S . fi = T>*M

.

[*l*193.*3S-26]=.(<
3iR,S).R € €A<K.S e €*<X.M=RuS.fi=l)<Ryjn'S (1)

h . (1) . *1011-21-281 . #37 6 . D
I- :: Hp . D :.ji e D"eA<(* v X) . = :

(ftM, R, S) . R e e^K . S € eSX . M= R v S . yu,= D'R u D<£

:

[#10-35] =:(KR,S):ReeA'K.SeeA<X.fi=D<RvD'S'.(>&M).M=RvS:
[#212] = : (rR, S).Re e**K . S e e*'X . fi = B'R u D'^f

:

[#1322] =:(a-R,-S, /3,a).jSeeA^. />
= D'jR. (Sreea fX. -==D'/S. At = puo-:

[*ll-24o4] = : (a/0 , a) : (3jR) . R e €*<k . P = D'R: (aS) . >S e eA'X . a = D^

.

/j, = p \j <r:

[*37-6.*10-35] = : (gp, o-) . p e D"eA<* . o- e D"€a'X.^pu^.DK Prop
R&w i 33
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The following proposition is used in connection with cardinal multiplication

(*11514).

*83641. \-:.s'/c n s'X = A . D :

fj.
e D"eA<(« v X) . = . (gp, <r).pe D"eA<* . a e D"eA'X ./t= /)W(r

Dew.

f- . *5325O H :. Hp . D : k r\ X = A n Cls . v . * o X = t'A (1)

K*83'64.Dh:.tfnX = AnCls.D:^eD"eA<(*vX). = .

(gp, cr) . /) e D"e4'/c . <r e D"e4'V . /i = p u ff (2)

I- .*51'16 . D h :.«;nX = t'A. D : Aex. Ae\:
[*83'11] D : eA'« = A . eA'X.-A . eA'(« v X) = A :

[*37'29] . . D : D"eA'« = A . D"eA'X = A .D"eA'(* " X) =A :

[*24'15] D:/i~6DV(*wX):(p)./)~6DV«:
[*1 l-55.Transp.*10-252] D : /*~ e D"e4<(* u X) :

~(a/3, <r) . /> cD"€a'/c . <r eD"e,i'X . fi = pv a:

[*5-21] }:i*eD"eA'(*v.X). = .

(gp, <r) . p € D"eA'« . o- e D"e4'X ./i = /)u<r (3)

K(l).(2).(3).DKProp

*8365. h:«'«fts'\ = A./i€DV(«wX).D.

Dew.

h.*8362. Dh:Hp.D./*Cs'(*vX).

[*40'171] D./iCs'ycus'X (1)

H.(l).*24-491.3f-:Hp.3./A-s'/e = /*ns'X./A-s'X = ^r>s <
/c (2)

K(2).*83-63. Dh.Prop

*8366. H : a ! €*'k . D . s'D"eA'* = s'k

Dem.
h . *41-43 . D h . s'D"eA<*= D's'ca'k (1)

I- . *8325 . D h : Hp . 3 . D's'e*'* = D'« [ k

[*6243] = s'k (2)

K(l).(2).DKProp

*837. KDVi'a = i"a [*834 . *55261]

*8371. h.D"ea'i"a=i'a.D ia1i = a

Dew.

h . *8342 . D K D"eA'fc"a = D"i'(a 1 T)

[*5331] =t'D'(o10 (1)

[*35-61] = t'(anD't)

[*33'2] «i'(on-a*0

[*51'l7.*24-26] =t'a (2)

h.(l).(2).DKProp
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#8372. K:«C1.3..D"€A'« = tVff

Dem.

h . *83'43 . D H : Hp . D . D"eA<* = D"t'(€^)

[#53-31] -t'D'CeT*)

[#62-43] =tV/c:Dh.Prop

*83-73731 are lemmas for *83*74.

*8373. h:*/v\~A.XCl..D.

Dem.

K*83-56.#37-6.Dh:.Hp.D:

[#13193] s

[*62'43-55] =

[*10-35.*21'2] =

[*37'64] =

. (3#, S) . £ e eA'« . <S= i2 v i T \ . a- = D'(22 c; t \\)

.

,(RR,S).Ree*'K.S=Rv
S

L\'\.<r=V'Rvs<\.

(ftR).ReeA'/c.<r = l><Ryjs'\.

(g/>) . p eD (te^K . <r = pu s'X :. D h . Prop

*83'731. h:.\Cl.D:^ns'\ =A.D.*nX = A
Dem.

I- . #5325 . #5116 . 3 I- :. s'tc n s'\ = A . D : k r\ X = A . v . A e X (1)

h. #52-16. Dh:.\Cl.D:ae\.D..g!a:
[*2463] D:A~eX (2)

h.(l).(2).3h.Prop

#8374. F:s'«nsa= A.\Cl.D. D"e4'(* v X) sm D"eA'*

Dem.

J- . #83-73-731 . #38131 . D h : Hp . D . D"eA'0 u X) = (v «'\)"D"e4'* (1)

I- . #83-62 . #24-13 . D
h ::Hp. D:./*, j/eD'V«. D:/ins'\ = A.i/ft«'\=A:

[#24-481] }:/iw«'\ = i'uA. = ./i=K
[#38-11] D:(ws ,

\)V = («A)S. = ./i = p (2)

h . (2) . #73-28 . D \- : Hp . D . (w **X)"D"eA 'iB sm D"eA<« (3)

H . (1) . (3) . D h . Prop

*838. h . e^K C V* . f4'«e *%„'*

Dem.

V . #80-14 . #83-21 . #3583 . Z> h : 12 e eA<* . D . .8 G «'* f « -

[*63105.(#63-03)] D . 22 G */* H'* •

[#64-201] D.^6%4^).
[(#64-021)] O.Ret10

'K (1)

h. (1). #63-371. DK Prop

33—2
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*83-81. h . D"eA'K C U
1k . D"eA'« € Vk

Dem.
V . *83-62 . D h : /* e D"eA '* .D.fiCs'K.

[*63-105.(#63-03)] D . fi C t*K

.

[*63-51] D./xeV* (1)

I- . (1) . *63-37l . D h . Prop

*839 h. 3 !eA'A [*8315]

«83-901. t-:a!€4Va.= .g!« j>80'46 . *62'2]

*83 902. hat€4VuX).E.g!€A.a!«A [*80-69]

*83 903. h: a !eAVav;^).= . a !«. a !/9 [*83901*902]

*83904. h : g ! eA<(* w t</3) . = . g ! <*<*: . a ! # [*83-90r902]

*83 ,9
,904 lead to an inductive proof (to be given later) of g ! e^'ic when-

ever k is a finite class of classes none of which is A.



*84. CLASSES OF MUTUALLY EXCLUSIVE CLASSES

Summary q/*#84.

A class k of mutually exclusive classes is one such that, if a and $ are

two different members of k, a and /S have no common members; i.e. it is

a class composed of non-overlapping classes. Classes of mutually exclusive

classes have many important properties. They are important in cardinal

arithmetic, among other reasons, because if k is a class of mutually exclusive

classes, the cardinal number of s
1k is the sum of the cardinal numbers of the

members of k. Also if k is a class of mutually exclusive classes, the number

of selected classes of * {i.e.We*'*:) is the same as the number of selective

relations (i.e. e^ic).

"k is a class of mutually exclusive classes" is written "k e Cls2 excl."

An important case is when no member of k is null ; in this case we write

k e Cls ex2 excl.

For a Cls2 excl which is contained in a class of classes 7, we write

Clexcl<7,

on the analogy of the notation Cl'7.

The definitions are as follows:

#8401. Cls2 excl = £(a,
/
ee*.a + /3.D

, i3
.<*n/3 = A) Df

#8402. CI excl<7 = Cls2 excl n C1'7 Df

#84 03. Cls ex2 excl = Cls2 excl - e 'A Df

The propositions of this number begin (#84*1— 14) with various equivalent

forms for the definitions. Of these the most useful are

:

#8411. h :. k e Cls9 excl . = :a,/3e/e.g!ar»/3. a>p . a = £

*8413. h : k e Cls ex2 excl . = . k e Cls2 excl . A~ e k

*8414. \-:k€ Cls2 excl . = . e f * e Cls- 1

The last of these is specially important, because it renders the propositions

of #81 applicable to eA '/c when k e Cls2 excl.

We have next (#84 #2—'28) a set of propositions dealing with various

special cases, such as A and 1. The most useful of these are

#84*23. h.i'ae Cls2 excl

#84*241. h . t"« e Cls ex2 excl

#8425. r : k e Cls2 excl . \ C k . D . X e Cls2 excl
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We next have a set of propositions (#84'3—*37) which are immediate

consequences of propositions in #81, by means of *84 -

14. The most useful

of these is

#843. r :*e Cls2 excl. D.eA<*C:i-»l

We next have a set of propositions (#84*4—-43) dealing with the domains
of selections from a Cls2 excl. These are for the most part still immediate

consequences of propositions in #81, in virtue of #84-14. The most useful are

#84*41. f- : k e Cls2 excl . D . D fe^* e 1 -* 1 . WcSk sm e^K

#84-412. h : k e Cls2 excl . D . D"eA'« = £ {a e k . Da . fi r» a e 1 : /x C s'k}

#84-43. h:.a,/9 6 Cl82 excl.^a = ^/3.D:aCD"ei
<

)
S. = .ySCD"eA <a

This proposition applies to such cases as the relations of rows and columns.

Imagine any set of terms arranged in rows and columns so as to form a
rectangle. Then each column is a selection from the rows, and each row is a

selection from the columns. This is a particular case of the above proposition.

We next have a set of propositions on R"k, Rili
K, and PA"/c (#84

-5—-55).

The most important of these are

#84-51. V : R \k e Cls -» 1 . D . R"k e Cls2 excl

#8453. h : R e Cls -* 1 . k e Cls2 excl . D . R<"K e Cls2 excl

Finally we have a set of propositions (#84*59—*62) showing circumstances

under which k w A. is a Cls2 excl. The only one of these which is used sub-

sequently is

#84-62. h:.a=t=/3.D:t'avi<£eCls2 excl.s.an# = A

#84-01. Cls2 excl=/Ha,/3e*.a4=/3.DO)0.an/3 = A) Df

#84-02. Clexcl'7 = Cls2 exclnCl'7 Df

#84-03. Cls ex2 excl = Cls2 excl -e 'A Df

#84-1. h :. k e Cls2 excl . = : a, e k . a =j= /3 . Da>> . a n = A
[#20-3 . (#84-01)]

#84-11. hi.Ke Cls2 excl . = : a,/3 e k . g ! a n £ . D.t3 . a = /9

[#84-1 . Transp]

#8412. h :. k e CI excl'7 . = :a,/3e/c.a4=/3. D„,p .«njS = A:«C7: = :

k e Cls2 excl . k C 7 [#20*3 . (#84-02) . *22'33 . #84*1]

#84-121. I- :. k e CI excl'7 . = : a, £ etc . g ! a n . D a>/J . a = /3 : * C

7

[#20-3 . (#84-02) . #22-33 . #84-11]
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#8413. h : k e Cls ex2 excl . = . k e Cls2 excl . A~e ic

Dem.
h . *22-33-35 . (*84-03) . D

h : k e Cls ex2 excl . = . k e Cls2 excl . *<*•>€ e'A .

[*62'21] =.K€ Cls2 excl . A^e *:DF. Prop

*84 131. I- :. k € Cls ex2 excl . = :a,#€*.a=}=/3. D„,0 . a n # = A : A~e k

[*84'13-1]

«84'132. h :. k e Cls ex2 excl. . = :a,/9e/c.g!an/3. Z>a,/j . a = /3 : A~e /c

[*841311]

#84*133. h :. * e Cls ex2 excl . = : a, £ e k . a ! a n /3 . Da>jS .a = /3:ae/c.3a .a!a

[*84-132 . *24-63]

*84134. h : : k e Cls ex2 excl . = : . a, £ e /c . Da
,
^ : a ! a . a ! £ : a ! a n£ . D . a = /3

Item.

K*11'59. DI-:.ae«:.Da .a!a: = :a,y86«;.Da^.a!a.a!^ (1)

h . *4-87 . *ll-33 . Dh::a,/3€«.a!ark y3.Da) p.a = ^:=:.
a,^€«.D„)3 :a!any3.D.a = /3 (.2)

I- . (1) . (2) . *84-133 . D I- :: k e Cls ex2 excl . = :.

a,j3€K. D«,0 .<&la.ftl&:.a,0e/c. D«,e :a'.an/3.D.a = /3:.

[*11-391] = :. a,&€K . Da
, 3

: a ! a . a ! £ : a ! an £ . D . a = £ :: D H . Prop

*84135. h::«reClsex2 excl. = :.a,^e/e.Da^:a!« ft /3- = -a = /3

Dem.

r . *84133 . *225 . *13191 . D
\-::k e Cls ex2 excl. = :. a,/3e/c . a • a*"*jS . Da,^ • a= /3 :

a,/3e*.a = /3.Da,0.a !an /3: -

[*11-31] = :. («,£) :. a,/9c « . 3 ! a n £ . 3 . a» £ :

a,£e*.a = £.D.a ! « n £ : -

[*4-87.Comp.*ll-33] = :. (a, /3) :. a, £ e * . D : a ! a « £ = a = £ :: D h . Prop

*84-14. H : * e Cls2 excl . = . e [k e Cls -> 1

Dem.

h . *10'23 . *8411 . D h :. k e Cls2 excl . = : a, £ e * . x e a . x e /3 . Dx>a^ . a = £ :

[*35101] =:x(€tK)a.x(e[K)0.
,

DXtatli .a = fi:

[*71-171] =:er*€Cls-»l:. D h . Prop

This proposition is important, since it enables us to apply the propositions

of #81 to €\
{k when k e Cls2 excl.

*84-2. I- . A n Cls e Cls ex2 excl

Dem.

h . *24105 . *ll-57 . D h . (a, /3) . a, yS~e A n Cls .

[*ll-25-63] D H :. a, /3 e A n Cls . Da,„ : a ' a rt £ . = . a = /3 :.

[*84-135] D 1- . A n Cls e Cls ex2 excl
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*84'21. r.l cl8 C Cls2 excl

Note. l ChJ is the class of all unit classes whose members are classes;

this results from #6501. Thus "ael cls

"
is equivalent to "a consists of

one class."

Dem.

K. #2233 . (#6501) .DK-.ae l CIg

[#52-16]

[#3-41]

[#84-11]

#84-22.

Dem.

= :«6l.«CCls:
D:&7ea. D^ . /9 - 7 :

D:/3,Yea.a!£n7. D^, Y . /3 = 7
D : a e Cls2 excl :.Dh . Prop

\-
. 1 e Cls ex2 excl

#84-23,

#8424.

Bern.

h. #52-46 .>h:.o,£el.D:a!an£. = .« = £
I- . (1) . #84135 . D H . Prop

t'a e Cls2 excl [#84-21 . #52-22]

3 ! a . D . t'a e Cls ex2 excl

(1)

#84241.

Dem.

h . #13-191 . 3 h :. Hp . D
[#5115] D
[#24-63] D
I- . (1) . *842313 . D K Prop

t"a e Cls ex2 excl

/3=a.D0. a !/9:

/3 e t'a . D, . 3 ! @ :

(1)

h . #52-3 . D h :. /3, 7 e t"a . D^ : £, 7 e 1 :

[#52-46] D^' r : g ! i8 n 7 .

h . (1) . #84-135 . D I- . Prop

* C 1 . D . * € Cls ex2 excl [#52*46 . *84'135]

.£ = 7 (1)

H : k e Cls2 excl . X C * . 3 . X 6 Cls2 excl

#84242.

#84-25.

I- . #221 . #11-59 .Dh:.XC*.D:a,/3eX. Do
,

. a, /3 e * :

D:a,/3eX.a4/3.Da>/J .a,£e*.a=}=£ (1)

(2)

[#11-38]

1- . #84-1

h . (1) . (2) . #11-37 . D h :. Hp . D : a, £ e X . a =}= /3 . Da^ .«^ = A
D h :. * e Cls2 excl .D:a,/3e*.a + /3. D0(j3 . a n /S = A

[#84-1]

#8426. h

Dem.

D : X e Cls2 excl :. D h . Prop

/c e Cls ex 2 excl . X C k . D . X e Cls ex2 excl

I- . #84-13-25 . D r : Hp . D . X e Cls2 excl

K. #221 . #101 . D h :. Hp . D : A e X . D . A e k :

[Transp] D : A~e k . D . A~e X
h.*8413. Dr-:Hp.D.A~ e *
K(2).(3). DH:Hp.D.A~€X
I- . (1) . (4) . #84-13 . D h . Prop

(1)

(2)

(3)

(4)
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#8428. I- : k e CI excl<7 . X. C k . 7 C 8 . D . X € CI excl'8

Dem.

V . #8412-25 . D h : Hp . D . X e Cls2 excl (1)

h . #8412 . DH:Hp.D.*C7.XC«.7C8.
[#22-44] D.XC8 (2)

h . (1) . (2) . #8412 . D h . Prop

The following propositions are concerned with selections from a Cls2 excl.

In virtue of #84*14, the propositions of #81 which have the hypothesis

i2f/eeCls—> 1 become applicable when R is e and k is a Cls2 excl. Thus

ca'k has many important properties when k is a Cls2 excl which it does not

have in the general case.

#843. r:«eCls2 excl.D.e4'KCl-+l [#8414 .#81-1]

#84 31. h : k e Cls2 excl . R e €*<k . x e D'R .D.ElR'x [#84-14 . #81 11]

#84*32. I- : k eCls2 excl . R e e^x .

x

e T>'R . D . see R'x . R'ocetc

[#8414. #81-11. #35101]

#84*33. r : x e Cls2 excl . R e e^tc . x e T> lR . D . R'x= (7a) (a e k . x e a)= (k "\ e)'#

[#84-14 . #81-12]

#84 34. h :. k e Cls2 excl . R e toftc . D : #ifa . = . x e a . x e

D

CR .aetc

[#81-13 . #8414]

#84-341. r : k e Cls2 excl . R e eA<* . D . R = D'R <]
e f* = € « D'lS | *

[#81-14. #84-14]

#84342. I- : tc e Cls2 excl .iJ«64
f«.aa.D. i'22'a = a n D<B

[#81-15. #8414. #62-2]

#84-35. r :. /c e Cls ex2 excl . D : R « eA**. = . jR*1 ->1 .RG€[ie.<I<R = CPef*

I- .#8413 . D r- : Hp . D . A~ e x

.

[#62*42] D.a <€^ = «: (1)

h . (1) . #71103 . #8014 . D

\-:.Hp.O:Rel-+l.R<l6tK.a'R = <I
t€lx.3.Re*t<K (2)

I-
. (1). #8014 .3+ :. Hp . 3: Re*-*'* . D

.

<I'R= d'e f * (3)

K (3). #80-291. #843,3

b :.Hp .0 z ReeSx .2 .Rel->1 .RGet x.a'R^d'i-tx (4)

I- . (2) . (4) . 3 r- . Prop

#84-37. h : k e Cls2 excl . a ! eA'« . D . * e Cls ex» excl [#831 . #8413]

#84-4. r :.*eCls2 excl. R^ee^x. D:T> (R=V'S .= .R=S [*81*2.*84-14]
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*84'41. h : k e Cls9 excl . D . D f eA<* e 1 -> 1 . D"eA<« sm €A<* [*81'21 . #8414]

This is an important proposition, since it shows that, when a: is a Cls2 excl,

the number of classes that can be selected from k is the product of the numbers
of the various classes that are members of k.

#84411. h :. a

e

k . Da . fi n a e 1 : fi C s'k : D . p e D"eA<« [*81'212 . #62-2-3]

*84412. I- : k e Cls2 excl . D . D"eA'« = £ {ae« . Da ./* n ae 1 : /tCs**{

081-22 . #8414 . *62-2-3]

This proposition gives what might be taken as the definition of the class

of selected classes, namely

/£{ae/e.Da ./Artael : At C s'k}.

We might, starting with this as our definition, deal with the class of

selected classes without first considering selective relations. The disadvantages

of this method would be, first, that it requires that k should be a Cls2 excl if

it is to give the results desired in arithmetic; secondly, that it is much more
cumbrous technically than the method which proceeds by selective relations;

thirdly, that it does not enable us to deal with selection from a class of classes

as a particular case of selection from a relation (namely from e f k), and there-

fore does not yield theorems of such generality as those obtained by the

method adopted above.

#84 42. h-.Ke Cls2 excl .aex.fie T>"eA
fK .D.fx-ae D"e*<0 - I'd)

[*81-24.*84\L4.*62-2]

#84 421. \-:aeic.xea.fj,€ D"eA'(* - i
l
a) . D . /* v t'xe D'V* [#81*25]

#84-422. h :. «eCls2 excl .ae* . /tnael .D : /*- aeD"eA*'(* - t,

(a). = .fj.e~D"e±<K

[#81-26 . #8414 . #62-2]

#84-43. h :. a, £ e Cls2 excl . s'a = s'0 . 3 : a C D"e./£ . = . £ C D'^'a

Bern.

K #84-412. Dh::.Hp.D::

[#40-13.Hp] =

[#10-542-21] =

[*4013.Hp] =

[#84-412] =

. f ea . D( : v e/3 . D, . £r> V e 1 : gCs'P :.

. f e a . D| : rj e /S . 3, . f r> 17 e 1 :.

. i?e/3.D, :£ea.Df . f nijel :.

. 77 e y8 . Dr/ : £ e a . D^ . f n 7; e 1 : rj C s'a :.

. v e £ . D, : 7; e D"e*'a :: . D h . Prop

#845. I- : R e Cls -> 1 . D . £"<I<.R e Cls ex2 excl

2)em.

K #71-181. 5\-:.Hv.
,

D:<&lR txnR'y.DXiy .x = y.

[#30-37] ^x>y .R'x = R<y (1)

I- . #33-41 . #11-59 . 3 h : x, y e d'R .D^.rIR'x.rI R'y (2)
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K(l).(2).Dr::Hp.D:.#,y€<I<12.Da, J,:

3 ! R'x . a ! R'y : g ! R'x n R'y. D . R'x= R'y :.

[#37-63] D:.a,/9e^"a'i2.D0>/3:a!a.a!/3:a!anyS.3.a = ^:.

[*84'134] D :.R"(I'R e Cls ex2 excl :: D r . Prop

It might be supposed that the converse of the above would also hold.
—

*

But this is not the case; for although R"d'R e Cls ex2 excl secures that
— —

*

R'x and R'y cannot overlap when they are unequal, yet we may have—* —

>

— —

>

R'x = R'y without having x = y, so that if R'x = a = R'y, we shall have

z € a . D . zRx . zRyy
whence, if a • « #

=f" y, it follows that i£ is not a Cls -+ 1

even if R"d'R e Cls ex2 excl.

#8451. h:R\-KeCh-*l.D.R"K€Ch2 excl

Dem.

K #71171. #35101.3

h :. Hp . D : xRy .yete. xRz .zeK."5x>y<z .y = z.

[80-37] DXjy, z .R'y = R'z:

[*32'18] D:y,Z€K.xeR'yrsR'z.Dx>ytZ . R'y = i£<*

:

[#10-23] D : y, z e * . a •' R'y « R'z . D„, * . #'# = R'z :

[#37-63] D : a, e £"* . 3 !oft/3.Da)ft .«= /9:

[*84'11] D : £"« e Cls2 excl :. D h . Prop

#8452. r:i2r*eCls->l.*Ca'E.D.^"«6Clsex2 excl

Dem.

h . #372 . D h :. Hp . D : cteE"*> D . oeJB"a^B .

[*37'77] 3-3 ! « (1)

h . (1) . #84-5113 . *24'63 . D I- . Prop

*84521. h:i^/3el^l.^R"/3eCls2 excl.D..Rr/SeCls->l

Dem.

K #7 1-55. #84-11.3

r : . £ T £ e 1 -* 1 . i2"/3 e Cls2 excl .1:y)
zep.R'y = R'z.1y>z .y^z:

y,z € /9.KlR'ynR'z.Dy!Z .R'y=R'z:

[#11-37] }:y,ze/3.<3_\R'ynR'z.1y , z .y = z:

[*74-62.Transp] Z> : ISf/SeCte-H :. D h . Prop

The above proposition is a lemma for #84*522, which is used in an

important proposition on relations of mutually exclusive relations (#163*17).
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#84522. hz.fi Cd'R . D : RtfteCte-* 1 . = . R[/3e 1 '-* 1 . R"/3 e Cls2 excl

Dem.

y,ze/3.D.nlR<y.>zlR<z:

y,z e & . R'y = R'z .3 .<&! R'y n R'z :

Rf eCls^>l .y,z e /3 . R'y = R'z .D .y = z :

R[/3eC\s-+l.D.~Rll3el-*l

l-.*3B-31.Df-:.Hp.D

[#225] D

[*74-62J D

[#71-55] D
h. (1). #84-51 -D

l-z.Hp.DrEr/eeCls^l.D.^r^el^l.E^eCls^xcl
>. (2) . #84-521 . D h . Prop

#84-53. h:Re Cls- 1

.

k e Cls2 excl . D . E"'/c e Cls2 excl

Dem.

h , #72-421 . D
h : R e C 1s -> 1 . a, £ e * . 3 ! #"a n .ft"£ . 3 . g ! a n £
h . (1) . Syll . D H :. R eCls-* 1 : «,#€* . g !« n /3 . Da^ . a = /3: D :

a, /3 e * . g ! R"a n R"& . Da),. a = /3

.

[*30-37.*3711111] D^ . 22"a = i2"£ :

[*37-63.(*37-04)] D : p, a e 2Z"** . 3 ! /> n a- . D
p> ff . /> = <r

K (2). #84-11.31-. Prop

(1)

(2)

(1)

(2)

#84-53
R

>80-82]

#84-54. f : R e 1 -* Cls . k e Cls2 exeL. D . 22"'* e Cls2 excl

#84-55. I- . P^c e Cls8 excl

#84*59. h«w\6 Cls8 excl . = . k, \ e Cls2 excl . s'(k -X)n s'X = A
Dem.

r . #84-14 . 3 f : * v \ e Cls2 excl . = . e T (* u X>* Cls- 1

.

[#74:821] = . € T k, e f X e Cls -> 1 . e"(* - X) n e"X = A
[#84-14.*62-3] = . k, X e Cls2 excl . s'{k -\)n s'X « A

#84'6. f :./cftX = A.>:xu\ eCls2 excl* = . k, X e Cls2 excl . s'k r\ s'X = A
[#84-59 . #24-313]

#8461. h :.0~em . 3 : *w t'/Se Cls^excl . =,. * e Cls2 excl .0 ns'« = A
[*51-21 1 . *5302.#84-23-6]

#84-62. I- :.«+£,. Sii'aw t'/3 e€Is2 exei . =- a n # = A

f*84-61 . #5115 . *53Q2,*84-23]



*85. MISCELLANEOUS PROPOSITIONS

Summary of #85.

In this number certain important propositions are proved, and the other

propositions of this number are mainly lemmas. The most important propo-

sitions are the following:

#85*1 and #85*14, which show that if* Q [X is a Cls— 1, then the domains—> —>

of Q±'\ are the same as the domains of 6d'Q"\, and Qa'A. is similar to e^'Q^A-,

thus reducing the problem of selections from many-one relations to that of

selections from classes of classes.

#85*27 and #85*43, which show that if k e Cls2 excl, P^V* consists of the

relational sums of the domains of e^Pa"** and is similar to ex
tP\ (iK\ i.e. the

class of P-selections from s'k is similar to the class obtained as follows: take

the members of k one by one, and form the P-selections of each; we* thus

obtain a class of classes, each class being of the form Pa 'a, where a e k; we
then make a selection from this class of classes ; this selection is a member
of ca'Pa"*; the number of such selections is the same as the number of

Pa's'k.

#85*28 and #85*44, which are special cases of#85*27 and #85*43, but more
useful than these. #85*44 is the source of the associative law in cardinal

multiplication; it states that, if k is a Cls2 excl, eAV/c has the samenumber
of members as e* e*"k. (On associative laws in general,, see the notes to

#42 1*11.) That is to say, if we form the class of selective relations (e^'a) for

every o which is a member of k, and then form the class of selective relations

for ca"k, we get the same number of terms as if we proceeded to form the

class of selective relations for es's'/c. The way in which this proposition

yields the associative law of multiplication may be explained as follows. We
shall define the product of the numbers of members of a as the number of

e±
f
a. Thus e.g. if the numbers of the members of a are /jbal , /*a2 , fiaZ , the

number of €a'cl is' fial x fia2 x fiaS . Suppose the other members of k are y9 and

7, and that /3 and y again have three members each. Then the number of

es'eS'ic is the product of the numbers of e±'a, e&'$, e&'y, i.e. it is the product

of jj,al x /ia2 x pas, ftp! x fLp2 x ftps and fiyl x /x^ x /*y3 .

But the numbers of the members of s'/c are

/*al, f*az, f*a3, Ppl, Pfr, /*03> /*yl > /*y2> /*y3«

Thus the number of e^'s'ic is

/*«] X /*a2 X /*a3 X Pfil X (Ifo X fJLp3 X flyl X fly^X flyZ .
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Hence #85*44 enables us to conclude that

(Pal X /Xa2 X flas) X (flfr X flfr X fJ,p3) X (fAyl X fjyz x /Ay3)

= /*« X /Lta2 X fJLas X ^x X {ift X /Lt0s X /Ayl X fly2 X /Lty8 ,

which is a case of the associative law. In fact #85*44 gives us this law in its

general form, when the number of brackets, and of factors in each bracket,

may be infinite or finite indifferently.

Another important pair of propositions is #85*53*54. These enable us to

reduce the problem of selections for any relation to the problem of selections

from a class of classes. The method is as follows: Given any term x, form

the class of ordered couples of which x is relatum while the referent is a

term having the relation P to x. Call this class of couples P\x. Form
this class for every x which is a member of a; we thus obtain a class of

classes, namely P J "a. Then the number of selections from this class of

classes is the same as the number of P^a.

We have one other important pair of propositions in this number, namely

#85*61*63. These show that what is called "Zermelo's axiom" is equivalent

to what is called the "multiplicative axiom." Zermelo's axiom* is to the

effect that if a is any class, e^'Cl ex'a is never null, i.e. (a) . g ! e^'Cl ex'a.

The "multiplicative axiom" is to the effect that if k e Cls ex2 excl, there is at

least one class formed by taking one representative from each member of k,

which is equivalent to

k e Cls ex2 excl . DK . g ! e&'tc.

In #85*63, these two axioms are shown to be equivalent. From Zermelo's

theorem -J* it follows that both are equivalent to the assumption that every

class can be well-ordered. This will be proved later (#258).

The above-mentioned propositions, stated symbolically, are as follows

:

#851. \-:Q\-\eCte-+l.D.D"QA'\ = D«e*<~Q"\

#85*14. h:Qt\eC\s-+1.3.QS\smejQ"\

#85*27. h : k e Cls2 excl . D . PAV* = s"D"eSPS<K

#85*28. f- : k e Cls2 excl . D . eAV* = s'WtSeS'K
#85*43. I- : k e Cls2 excl . D . P^s'k sm eA'PA"«

#85*44. h : k e Cls2 excl . D . e&'s'ic sm e^e^'ic

The following propositions depend upon the definition

#85-5. PJy=4y"P'y Df

I.e. P J y is the class of all couples whose relatum is y while the referent

has the relation P to y. We then have

#85*53. h.Pi
,« = s"DVPI"a

giving a construction for P^a. by means of e*, and

* See Math. Annalen, Vol. lix. t loc. cit.
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*8554. h . PSa sm €*<P l"a

which reduces the question of the existence of P-selections to that of the

existence of e-selections.

*85'61. r . e X"* e Cls8 excl . e/* = *"D"ed'e J"* . e±'K sm eS? J"*

This proposition gives a construction for any e-selection in terms of an

e-selection from a Cls2 excl, and reduces the question of the existence of the

former to that of the existence of the latter. A particularly important case

is when tc=*C\ ex'o. This is considered in

*85-63. b ; e J"CI ex'a e Cls ex2 excl : g ! eA'Cl ex'a . = . g ! eA'e- J"C1 ex'a

*851. b : Q} X e Cls -* 1 . . D"QA'X = D"eA'Q"X

Dem. >

h.*813. 3b:Kp.D.D"QS\ = fi{a € Q''\.'}a .tina e l:pCs<Q"X} (1)

b . *84'51 . D b : Hp . D . Q"X e Cls8 excl

.

[*84412] D.D"-6A'Q"\ = ^{aeQ"X.Da ./*na€l:^Cs'Q"X} (2)

K(l).(2).>KProp

*8511. h:"Qr\6l-*l.D.D"(P|Q)^\= D"jPA^'\
Dem.

h.*33-431.*3212.Dr:Hp.D.XC<I'Q (1)

h . (1) . *82-32 . O b : Hp . D . D"(P
| Q)A'X = D"PA^"X :O r . Prop

*85111. H:ifeeA'Q'^.D.D'(3/iQf
k

\) = D'ilf [*823]
—

>

*85112. H:Jfee^''X.D.ilfj^rXeQ/X |~*82-221 J^ . *62'26

*8512. h:"Qr\el->l.D.D"QA'\ = D"e^'\
Dewi. _

>

I- . *6226 . D h . D"QA'X = D"(e
| QVX (1)

h.*82-32.Df-:Hp.D.D"(e|0i'\ = D"e4'Q"\ (2)

h.(l).(2).Dh.Prop

This proposition is used in connection with ordinal multiplication (#173*14).

*8613. b-~Q[\el-*l.Re QA'X . D . R
|
Cnv'Q e ei'Q"X

Dem. _> _>
I- . *6226 . D b : Hp . D . QTX e 1 -* 1 . Be(e

\

Q)±'\

.

[*82'231] D . R
|

Cnv'^e e*<Q"X : D r . Prop

The above proposition is used in connection with " families " (#97*31).
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*8514. h:Q|k XeCls->10.QA'XsmeA'Q"X

Dem.
h . #81-21 . D h : Hp . D . Q±

(\ sm D"Q4'X

.

[#85-1] D.^'XsmDV^'X (1)

h . *84'51 . D h : Hp . D . Q"X e Cls2 excl

.

[#84-41] D.D"eA«Q"Xsme./Q"X (2)

h.(l).(2)Oh.Prop

#8521*22 are lemmas for #85'24, which; with #85 #

26, is required for

#85-27.

#85-21. h:ae*. M eP*'s'tc.D.M[a

e

PA'a [#806 . #40-13]

#8522. hi Me Pa's'k . D . M \ \
k 1 P\ e e±'P±"K . s'D'(M [ j

k <\ PA) =M

Here M [ |
k *] P* e e*'P*"ic can also be written \{M [)] (* 1 P*)} e(ed'Pd"«).

The brackets are omitted because no other meaning is possible.

Dem.

h. #85-21. Dh:.Hp.D:ae*.D .a!P4'a:

[#80-81] Z>:a,£e*:.PA'a =PA'/3.D a)0.a = /3:

[*8012.*7ll66-55] D rP^f/tel - 1

:

[#35-52] D:*1PA el-»l (1)

h.(l). #721 4. #71-25. D h : Hp. D . Mri*1P* el -Cls (2)

h . #34-1 . #30-4 . DhtR{M[\K']PA}-\,^._

(aa). JK = i/ra.«€/c.X = PA'a (3)

h'. (3). #85-21. DI-:Hp.D.i/ri«1P^Ge (4)

h . #37-322 . #33-431 . D h . dl{M W^P*) = d<(*1Pi)

[#37-4] =Pa"/c (5)

h
. (2) . (4) . (5) . #80-14 . D h : Hp . D . {if f |

k \ PA } e €4<Pa"a: (6)

h . #37-32 . #35-62 . D h . ~D'{MW^P^^M [*"*'.

[#41-35] Dh.*«D'(Jfr|*1P.i)»if|V*- (7)

h . (7) . #8029 . Dh:Hp.D.s'D'(ifjk
|A;1Pli ) = ilf (8)

h . (6) . (8) . D h . Prop

#8524. h . PSs'k C s"D"€^Pa"«

Dem.
h. #85-22. D

h:MePak <s' /c.'}.(ftX).XeeSPs" /e.M = s''D'X.

[#37-67] 3. Me s"T>"eSP&"K Oh. Prop
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The following propositions are lemmas for #85*26.

#85-241. h-.XeeSPS'K.aeK.D.X'PSaePSa

Bern.

r . #832 . D h :. X e eA'PA "/<r . Z> : \ e PJ'k . DK . X'X e X.

:

[*37'63] D:ae*.Da .X'Pd'aePA<a:.:>l-.Prop

#85243. r : k e Cls2 excl . X e eJPJ'/c . D . s'D'X e 1 -* Cls

Dem.

K #83-21. DHHp.D.D'XCs'P*"*: (1)

K #40151. #8011. D I- . s'PS'k C 1 -> Cls (2)

h.(l).(2). Dh:Hp.D.D'XCl->Cls (3)

r . *80 35 . *ll-45-55 . D I- :. Hp . D : M,N e D'X . a ! d'M n d'N . 3 .

(ga, /3).a,/3€K.M= X'PA'a . N= X<PA </3 . a

!

d'M n d'N .

[*85-241.*8014] D . (a«, /3) . a, £ e * . M= X'PJa . N= X'PA'/3 .

a i a<M n <pjvr . « = ci'iif . #= a*iv.

[#13-22] D . (I'M, d'N eK.M = X'PJd'M . N= X'P^d'N

.

[*84ii] D.a<M=a<]sr.M=x<Psa<M.N=x (p±<a<N.

[#30-37] D.M=N (4)

h. (3). (4). #72-32.3}-. Prop

#85-244. F:Ie eA'PA"*: . D . s'D'X G P
Dem.

K #83-21. #40-4. Dr:.Hp.D:P e D'X . D^ . (3a) . a e * . .R e P^'a .

[#80-14] D^.iZGP:
[#41151] D : s'D'X QP:.D\-. Prop

#85245. h : X e e^'P*"* . D . d's'D'X = s'k

Dem.
r . #85-241 . #8014 . D h :. Hp . D : a e « . Da . (1'X'P.i'a = a :

[#5017] 0:d''X"P±"K =Ki
[#80-34] D:d"D'X = K:

[*41 -44] D : CE's'D'X = s'«:.Dh. Prop

#85-25. h : * e Cls2 excl . X <• e^'P*"* . D . s'D'X e PJs'k
[*85-243-244-245 . #80-14]

#85-26. h : k e Cls2 exel . D . ^'D'^'Pa"* C PJs'k

Dem.
h . #8525 . D r :. Hp . D : X e sJPJ'k . Dx . s'D'X e PJs'k :

[#37-61-33] D : s"D"€JPJ'k C PJs'k :. D h . Prop

#85-27. h : « e Cls
2
excl . D . PAV* = s"D"(?a'Pa"a- [*85-24-26]

6
*8528. f- : k e Cls2 excl . D . €Js'k = ^'D'^'e^'*

R&W I

#85-27

34
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The following proposition is a lemma for #85'31.

*85 3. h : M ePd'a . z e a . D . M'z G s'B'M . M'z G s'P'z

The ponditions of significance here and in *85*31 ,32*33 ,34 require

D'PCRel.

Bern.

V . *80-32 . *33*43 . D h : Hp . D . M'z e D'M . M'z e P'z

.

041-13] D . M'zQs'D'M . M'zQs'P'z: D h . Prop

The following propositions, down to *8'5'42 inclusive, deal with circum-

stances under which we can infer M=N from s'I>'M= s'D'N *85-32*33'34

are not subsequently used; the remainder are used in proving $85*43.

*85'31. h :. z, w e a . z
=f=
w . D

Zi w . s'P'z n s'P'w = A : 3 :

M,N€PSa . s'T>'M= s'T>'N.2.M=N
Bern.

—> —

>

I- . #25*54 . D V : Hp .^wfa.g! s'P'z n s'P'w .~5
z%w .z — w:

—

»

—

>

[#11*35] D h : Hp.^wea. u(s'P'z)v. u(s'P'w)v .0z>w>UtV .z =w (1)

K*85'3. DK::Hp.^ea.if,iV6Pd <a.s <D tif=s'D fiV.D:.

w (M'z) v . D : z e a . w (s'P'z) v . w (s'D'iV) w :

[#80 -

35] D : z

e

a

.

u (s'P'z)

v

: (gw) .wea.u (iV'w) v :

—

*

—

»

[*85-3 .*10*35] D : ($w) .z,wea.u (s'P'z) v . u (s'P'w) v . i* (N'w) v :

[(1). #10-28] D : (g«/) . 5 = w . u (N'w) v

:

[#13195] D:u(N'z)v (2)

I- . (2) . Exp . *10- 1 1 21 . D r : . Hp (2-) . D : * e a . Z . M'z G N'z (3)

Similarly H :. Hp (2). D :^« . Dz . N'z Q M'z (4)

h
. (3) .

(4)

.

D h : . Hp (2) . D : z e a . Z .M'z = N'z :

[*33-45.*80'14] D:if=iV:.Dh.Prop
__^ \

#8532. h:.2,M;ea.^w.^ M . s'C"P<* a s'C'P'w = A : D :

^iVeP^a.sWifr^^D^.D.ilf^iV"

K #41-45. D

h:.Kv.O:z,wea.z^w.0z, w .C's'P'zrxC's'P'w = A.

[#33*34] Dz>w . s'P'z n s'P'w = A (1)

K (1). #85-31. DK Prop

#8533. l-i.^w/ett.z^.:^. s'D"P'.z r» s'D"P'w = A : D :

Jtf,2V"eP*'a.sa)<k=s'D^.D.if= if [#41-43. #33-32. #85-31]

The proof proceeds exactly as in #85-32.

*85'34. \-:.z,wea.z^w.3ZtW . s'd"P'z n s'a"P'w = A : D :

M, NePSa . s'WM=s'I)'N.D .M=N [#4144. #33*33. #85-31]
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The following propositions, #85'4-41-42, are lemmas for #85-43-44, which

latter are of fundamental importance, since they are the source of the

associative law in cardinal arithmetic.

#85*4. h :.\fieK.\=^fi. DAfl . s'X r\s'/j,= A : D :

M,Ne €a 'k . s'D'J/= s'D'N.D.M=N [#85-31 ~ . #622

#8541. h : . k e Cls2 excl . D ': a, /3 e « . a
=t= /3 . D . s'P^'a n s'P*'j3 = A

Dem.
Y . #8014 . D h :x(s'P*'a)y.x(s'PA'/3)y. DXiV .yea.yefi.
[*22-33.*10-24] D^ . a ! a « £ :

[Transp] Dh:an/3 = A.D. s'Pd'a n i'P^/3 = A (1

)

I- . (1) . #84-1 . D V . Prop

#85 42. h : k e Cls2 excl . M,

N

e e^'Pa"* . s'D'M = s'D'N .D.M=N~
Dem.

h .#30-37 .Transp . D h : P±'a^P±'8 . Da>3 . a4=/3 :

[Fact] Dh«6 Cls2 excl .a,/3eic. PA'a + Pd'/3 . D„
>/5

.

/c e Cls2 excl . a, /3 e /e . a =j= £ .

[#85-41] Da ,
p . s'PA'a n s'PA<£ = A :

[#37-63] D I- : k e Cls2 excl . X, fieP^'fc . \± ^ . DA^ . s<\ ns'/i = A (1)

K (1). #85-4. DH. Prop

#85-43. H : k e Cls2 excl . D . P^V* sin e.'Pi"*

Dem.

b . #34-41 . D h . (J/) . s'D'M= (s
j
D)'M

.

[#13-12] D f- :. M,NeeJPA"*. s'D'M = s'~D'N.DM>N .M=N:0 :

M,Nee±'P*"K . (s
\

D)'M= (s D)'N. D,lN . M=N (1)
K(l). #85-42. D
I- :. * e Cls2 excl . D : M,Nee±'PA

"K . (s
;
D)'J/= (* , D)'iV . DM N . M=N :

[*7325] 3:(s\D)"e±'P±"Ksm€i'Pl
,"K :

[#3733] D : s"D"e*'PA"K sm e^P^"* :

[#85-27] D : Pa <s<k sm e±'P±«K :. D h . Prop

#85-44. I- : « e Cls2 excl . D . ^V* sm e±'eJ<K #85-43 ^
The following proposition is used in connection with cardinal multiplication

(#114-301).

#85-45. I- : k n \ = A . D . eA '(/t u X) sm e./O'e./*: u i'e^'V)

Pern.,

h . #85-44 . D
h : l'k u l'X e Cls2 excl . D . e.iV(i'tf v t«\) sm eA<eA "(i</t u t'X) (1)
I- . #24-57 . DF-:.Hp.D:*=|=X.v.A: = A.X = A:
[#84-62-23] D-.i'kv i'X e Cls2 excl (2)
h . #5311-32 . Z> h . s'(i<* w i<\) = K u \ . 6^"(t'ie u t'X) = i'€jk'« w i'eA'X (3)
h.(l).(2).(3).Dh.Prop

34—2
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The purpose of the following propositions, down to #85*55, is to show how

to get from a class of classes a class of selections having the same number of

terms as P^k. For this purpose we introduce a new notation, representing

a rather important analysis of the couples contained in a given relation.

A couple x\,y is contained in a relation P when xPy; thus if, keeping y
-->

fixed, we form the class of couples X y
iiP i

y, all these couples are contained

in P. We put

#855. PJy = 4y"P'y Df

Then PJ"(I<PeClsex2 excl. Also s'PJ"<I'P is the class of all

couples contained in P, and sVPJ"G*P = P. We shall now prove that

PA -ra = s"D"eA ,fPJ"o, so that every member of P_/a can be derived from

a member of eA*PJ"a, and the problem of the existence of Pa'a is reduced

to that of the existence of selections from a class of mutually exclusive

existent classes.

[*80-45 . (#85-5)]

[*37\35. #85*51]

t"a e Cls2 excl . s
fi"a = a .

= s"D"eA'P I "a . D I- . Prop

Dem.
b . #84-241 . #53-22 . D I- . t"a e Cls2 excl . s'l"u = a

.

[#85-43] D b . Pa'cc sra eA-7V't"a

.

[#85-52] D h . P*'a sm eA'P I "a . D b . Prop

The following proposition is frequently useful.

#85-55. b . PSa sm D"e±'P J"a . P J"a e Cls2 excl

Dem.

b . #85-51 .#8014 . D b : R e P J *• . D . <I'R = t'^ : RePly.D. d'R= i
l
y :

[#347] Dh-JSePJa-nPJy.D. d'P = i'x . d'P = t'y

.

[*13-l7l.*51-23] D.x=y.
[#3037] D.P]> = PJi/:
[#10-11-23] 3 b : %1 P I x n P I y .D . P I x = P I y :

[*3-42.*llll] Db z x,y e a .Rl P l® n P ly .Ox<y . P Z x = PI y :

[#37-63] Db-.XfjieP J"a .-jlXn/i. DA)M . \ = jj, :

[#84-11] D h . P J"a e Cls2 excl

.

(1)

[*8441] D b . I)"^'P l"a sm e*'P J "a .

[#85-54] D I- . Pa'« sm D"eA'P J"a (2)

K(l).(2).DKProp

#85-51. h . Pa'i'x = I x"P<x =P J «

#8552. KPA"t"a= PJ"a
#85-53. 1- . Pd'a = s"D"e4'P J "a

Dem
H . #84-241 . #53-22 . D b . i"t

[#85-27] D b . Pa

[#85-52]

#85-54. h.PA
'J 8raeA'PJ'"o
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h.*85-51.*62-2.

[*73-611]

K #38*12

.

[*71*166]

h . (2) . *73'47 .

[*73'47.(2)]

K(l). #38-131.

[#38-131]

[#55-202]

#8556. h : P [ ot e Cls- 1 . D . e±'P"a sm e^P J"a [*85-14'54]

#856. V . e±"i"K = £ {(g/9) . £ e * . /* = 4 /3"/3| = e J"*
Dem.

h . #37-67 . D H . €A"t"« = £ {(g/3) .0e K .fi = eSi'P]

[#83-4] »fM(a0).0e*./* = 4/8"/8} (1)

K (1). #85-52. Dh. Prop

The following proposition is frequently employed.

#85-601. h . e J a= 4 a"a . e J asm a . e |"/esm «.eJel-*l.E!e4'a

Dem.

Dl-.eja = 4a"a (1)

Dh.ejasma (2)

D h . E ! e J 'a (3)

D h . e I e 1 -+ Cls (4)

DI-:a = A.eJa = eJ/3.D.eJ/3=A.
D./3 = A (5)

D h : #ea . e J a = e J /3 . I> . #4 a e 4 £"£ .

^ (33/) • x I a = V i P •

D.a = /3 (6)

K (6) . *10-ll-23-35 .3l-:a!a.€la==eJ/8.D.a = /8 (7)

h.(5).(7). DI-: € Ja = eJ/3.:>.a=/3 (8)

h. (4). (8). #71-54. Dh.ejel->1 (9)

h . (9) . (3) . #73-26 . Dh.eJ"*sm« (10)

I- . (1) . (2) . (3) . (9) . (10) . D h . Prop

#85-61. h . € Z"te e Cls2 excl . eA '* = s"D"eA 'e J"k . eA'* sm e4 'e J"*

*85-53*54-55|
i

#85-62. h:a!eA 'iic. = .a!eA'eI"ie [#85-61 . *73'36]

#85-63. h : e |"C1 ex'a e Cls ex2 exel : a ' <*'C1 ex'a . = . a ! eA 'e J"CI ex'a

Dem.
h . #85 6 . #60-21 . D
h:\eeI"Clex'a. = .(a£)-£Ca.a!j8.\=4j8"£ (1)

h . #73-611-36 . D I- : a J y8 . X = 4 £"/8 . D . a ! ^ :

[#3-42] Dr:^Ca.aJ^.^=4/3"/3.D.a'-^ :

[#10-11-23] Dh:(a^)./3Ca.aJ^-^=4^"/8.3.a!^ (2)

h . (1) . (2) . Dh\e(e J"CI ex'a) . D . a ! * =

[#10-11.#24-63] D h . A ~ e (e J"C1 ex'a) (3)

I- . (3) . #85-61 . #84-13 . D I- . e J"CI ex'a e Cls ex2 excl (4)

1- . (4) . #85-62 . D 1- . Prop

Note, (a) . a e^'Cl ex'a is"Zermelo's axiom." The above proposition shows

that this is true if

k e Cls ex2 excl . D* . a • e±'K>
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which- again is true if

k e Cls ex2 excl . D : (g>t) :ae/c.Da .^,r%a€l

in virtue of #84*41 2. The last of these is the "multiplicative axiom," which
is thus shown to imply "Zermelo's axiom."

The following propositions lead up to #85*72, which is used in the theory

of double similarity (#111-3).

#857. h :. j3 e X . Dp . R'/3 C £ : Me e±'R"X : D .

M\R \\eeS\.T) l{M\R [X) = D(M
Dem.

V . *14"21 . D I- :. Hp . D : /3 eX . Dp . E ! R'p :

[#7411] D : # [ X e 1 - Cls . X C d'R (1)

[*8<H4.*7l-25] D : if
;
R f X e 1 -> Cls (2)

I- . (1) . *71-7.*35-7 . D h :. Hp . D : a-(if
|

R f X)/3 . D . /3<=X . xM{R<$) .

[*80-14.Hp] D./3€\.xeR'/3.

[Hp] D.ae/S (3)

I- . #80-14 . #74-44 . D
h:H.V .D.T>'(M R f X) = D'M . <J<{M \ R fX) = X«(TvR

[(1)]

'

=X (4)

I- . (2) . (3) . (4) . #80-14 . D V . Prop

*85'701. r :. £ e X . Dp . tf'/S C /3 : D . D"eSR"\ C D"eA'X [*85'7]

*85702. I- :. ,3 e X . Dp . iZ'Cl<£ e Cl'£ : D . D"erf"Cl"X C D"€A'X

£ 1 cr
#85-701 R

*85'71. r : R e eA'Cl"X . D . D"e±<D'R C D"e A'X [*85'702 . *83'2]

This proposition asserts that if we can select one sub-class out of each

member of X (where X is a class of classes), then selections from the sub-classes

so obtained are selections from X.

#8572. r:.(,S"/3)1Sel->l:/3eX.Dp.i2<
/
SC:,S

r<

)
8:D.
T>'WR"\ C T>"e±'S"X

Dem.

h . *14-21 . #3343 . D h :. Hp . D : £ e X . D . /3 e d'S (1)

r- . #85-701 - J^--— . D
it, X

r :. 7 e £"x . DY . (i2
|
S)'y C 7 : D . D"ex'R"$«S"\ C D"eA<£"\ (2)

h . #37-63 . #14-21 . D

h::Hp.D:.7eS"\.Dy .(i2iS)'7C7: = :/8eX.D
/
,.(/2'!(g)'S'/SCiS'/8:

[#74-53.(1)] mpeX.Dfi.R'fiCS'fl (3)

I-. #74-171. Dh:Hp.D.S"S"X=X (4)

r . (2) . (3) . (4) . D h . Prop
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The following proposition is a lemma employed in the theory of double

similarity (111-313).

8581. r :. \ € Cls* exci : /3 e X . D8 . 8<<I"T<I3 C £ : -R e €aT"X : D :

0€\.Dfi
.(s<D'R) t/3 = R'T<l3

Dem.

h.*1421. Dr:.Hp.D:j8eX.D..E!T*£: (1)

[*83-2.*37'6] D:0e\.D.R'T'j36T</3. (2)

[*35-452.Hp] D.R'T</3 = (R'T</3)tj3 (3)

r
. (1) . *8322 . D r :. Hp . D : £ e\ . I) . E ! R'T'fi

.

[*33*43.*41-13] D . R'T'/3 G s'D'R .

[35-461] D . (R'T'p) \ £ G (s'D'iZ) |* ,5

.

[(3)] D . -R'T</3 G (s'D'E) f /9 (4)

H.(l).*37-6.*83-23.DH:.Hp.D:D'E = #{(a7).7e\..¥= JR'T<

7}:

[*41-11.*13-195] D : a; {s'H
lR)y . = (37) • 7 * * -x{RtT'i)y :

[35-101] D : a? {(s'D'R) ^ ^8} y . = - (37) -7^-« (-B'^7) y y « /8 (5)

|-.(2).*3314.DI-:.Hp.-76\.D:a; (i2
f2

1'7)2/.D.yea^*Tf7.i2^7 6.2
rv
7.

[40-4] D.2/6S*a"T'7.

[Hp] O.yey (6)

h.(5).(6). Dh::Hp.D:.y8 € \.D:

x{(8eD tR)[/3}y. = :(^r).fi,y€\.x(R tTty)y.yel3.yey.

[8411.Hp] D . (37) & 7 «A . * CR'Z*7) y . £ = 7

[13195] l.xiR'T'fty (7)

h . (4) . (7) . D h . Prop



*88. CONDITIONS FOR THE EXISTENCE OF SELECTIONS

Summary of #88,

The existence of selections cannot, so far as is known at present, be proved

in general. That is, we cannot prove any of the following:

(P, *) : k C d'P . D . a ! Ps'k

(P, «) : Pe Cls-> 1 . k Cd'P . D . a ! Pd<*

(P). a !Pd<a<P

(*) : A~e k . D . g ! 6a'«

(/c) : /c e Cls ex 2 excl . D . g ! e^'/c

(a).a!e^Clex'a

(/c) :. k e Cls ex2 excl . D : (g>) : a e/c . Da . /* n a e 1

These various propositions can be shown to be all equivalent inter se ; and

in virtue of Zermelo's theorem (cf. #258), they are equivalent to the proposition

"every class can be well-ordered." In the present number we have to prove

the above equivalences, as well as certain propositions giving the existence of

selections in various particular cases.

The most apparently obvious of the above propositions is the last, namely:
" If * is a class of mutually exclusive classes, no one of which is null, there is

at least one class fi which takes one and only one member from each member
of k." This we shall define as the "multiplicative axiom."

We will call P a multipliable relation (denoted by " Rel Mult ") if

Pa'G'P exists, or, what is equivalent, if k C CPP . DK . g ! P^k. Thus we put

RelMult = P{a!PA'(FP} Df.

We will call k a multipliable class of classes if e±'/e exists, i.e. we put

Cls2 Mult = £ {g le:/*} Df.

The multiplicative axiom will be denoted by "Mult ax." Thus we put

Mult ax . = :. tc e Cls ex2 excl . DK : (g>t) :«6K.Da .//,riael Df.

In the present number, we shall first give various equivalent forms of the

assumption that P is a multipliable relation (*88'1— 15) ; we shall then do

the same for multipliable classes of"classes (#88 -2—"26); next we shall give

various equivalent forms of the multiplicative axiom (#88*3—'39). (Some
important equivalent forms cannot be given at this stage, as they depend

upon definitions not yet given, such as the definitions of cardinal multiplica-

tion and of well-ordered series. Cf. #114-26 and #25837.) Finally we shall

give propositions showing that various special classes of classes are multipliable.

Most of these propositions will not be used in the sequel, but they illustrate
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the nature of the difficulties involved in proving that a class of classes is

multipliable, and some of them show that mere size does not prevent a class

from being multipliable. For example, #88*48 shows that, given any class of

classes k, if each member a is replaced by t"a u t'a, the result is a multipliable

class of classes ; but the only effect of this change is to increase the number

of members of each member of our class of classes by one.

The chief propositions in this number which are afterwards referred to

are the following

:

#8822. h :* e Cls2 Mult. XC*.D.XeCls2 Mult

*8832. V : . Mult ax . = : k e Cls ex2 excl . D* . a ! e4'«

#8833. h: Mult ax. = .(«). a led'Clex'a

#88361. \-i.Mu\ta,x. = : K Ca'R.=R,
lc .'&lRA'K

*88'37. h:.Multax.= : A~e« . D, . g! e4 '/e

The above is usually the most convenient form of the multiplicative axiom.

*88372. h :.Multax.= : Ae/c .= K .e±'/c = A
This proposition is used in #114, to prove that the multiplicative axiom

is equivalent to the proposition that a cardinal product vanishes when, and

only when, one of its factors vanishes.

#8801. RelMult = P{a!Pa'CFP} Df

#88-02. Cls2 Mult = * [a !<*<*} Df

#88*03. Mult ax. = :. « e Cls ex2 excl . DK : (g/-t) zaeic. Da ./in ael Df

#881. r : P e Rel Mult . = . a ! P±'(I'P [#20*3 . (#88-01)]

#8811. h : P e Rel Mult . X C CFP . D . a ! PA'\

Dem.

h.*80 6. Db:ReP*'a<P.\C<I'P.3.Rt\€P±'\.
[#1024] D . 3 ! P*'\

:

[#1011-23-35] D H : a ! P^d'P . X C d'P . D . a ! Pa'X (1)

K(l). #88-1OK Prop

#8812. r :. P e Rel Mult . = : X C <PP . D„ a ' iVX
Dem.

h . #8811 . Exp . #1011-21 . D

r:.P e RelMultO:XC(PPO A .a!PA'X (1)

b . #101 . #22-42 . D
i- :. \ c a<p . DA . a ! iVX : d . a I Pa'Cfp .

[#88-1] D.Pe Rel Mult (2)

h. (1). (2). DK Prop

#8813. r:P e RelMult. = . a !eA'PJ"<FP [#85-54. #73*36 .*88'1]



538 PROLEGOMENA TO CARDINAL ARITHMETIC [PART II

#8814. h :. k CCFP. D : P f * e Rel Mult . = . g !PA<«

Dem.
(-.#80-23. :>i-:a!P4<*. = .g!(Pr*;y* (i)

\-.*35G5.0\-: K Ca<P.3.a'(PtK) = K (2)

K(l).(2).Dh:.Hp.D: a !P/«. = . a !(Pr«Va'(Pr/c).
[*88-l] = . P f K € Rel Mult :. D h . Prop

#8815. h :. d'P = V. DiP^e Rel Mult. = .g!PA <A: [#8814 . #2411]

*882. I- : k e Cls2 Mult . = . g ! e^* [#20'3 . (#88-02)]

*88:21. h : P e Rel Mult . = . PJ"(TP e Cls2 Mult [#88-13-2]

#8822. h:*eCls2 Mult.\C*.D.\eCls2 Mult

Dem.

K*80'6. Dh:Ree±'K.\C/c.D.R\-\ € eS\.

[*10'24] D . g ! eA<\ :

[*10\Ll-23-35pi-:g!eA'K.\Ctf.D.g!eA'A. (1)

h . (1) . *88'2 . D h . Prop

#88 23. h : k e Cls2 Mult . D . CI'tc C Cls2 Mult [*88'22 . #60*2]

#8824. h : . P e Cls -» 1 . D : P e Rel Mult . = . P"<J'P e Cls2 Mult

Dem.

b . *85'14 . *73-36 . D H :. Hp . D : g ! P/d'P . = . g ! €±<P«a<P (1)

h.(l).*881-2.Dh.Prop

#8825. >- :. P[k eCls-» 1 . k Cd'P . D : Pf «eRelMult . = . P'Ve Cls2Mult

Dem.

r- . *85'14 . #7336 . D

h:.Hp. Z>:g!PA<*. = .g!eA'P^A::

[#88-14-2] D : P f a: 6 Rel Mult . = . P*<* e Cls2 Mult :. D h . Prop

#8826. \-::k€ Cls2 excl . D :. /c e Cls2 Mult . = : (g/*) :ae«.Da ./tft«el

H . *88-2 . *3745 . D I- : « e Cls2 Mult . = . g ! D"W* (1)

h.(l). #84-412.3

I- :: Hp . D :. * e Cls2 Mult . = : (g//,) :aeK.Da ./inael:/tCs'K: (2)

[#10-5] D : (g^) :ae/c.Da .^nael (3)

•h . #40-13 . #22-621 . D h : a e /c . Da . s'/c n a = a

.

[#22*481] Da .jun8'/cn« = /tno:

[*2-77.*10-27] Dh.06«.D../inael:D:«€K.D4 ./ins
,Kftafl (4)

I- . (4) . #22-43 . Dh:.ae*.D..^ftael:D:
a e k . Da .

fj.
r» s'/e n a e 1 : /* r» s'« C s'/c

:

[#10-24] D : (g*>) : a e k . Da . v n a e 1 : v C s<* (5)
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I- . (5) . *10-1123 . D
I- :. (a/^) :ae*.Dt ./in«fl:D: (gV) : a e k . Da • v r\ a e 1 : v C s'k (6)

K(6).(2).Dr::Hp.D:.(a/*):ae*.Da ./Ana t l:D.KeCls2 Mult (7)

I- . (3) . (7) . D h . Prop

*88"3. h :: Mult ax . = :. k e Cls ex2 excl . D* : (g/i.) : a e k . Da . fi r\ a e 1

[*4-2 . (*88-03)]

*88 31. r : Mult ax .,= . Cls ex2 excl C Cls2 Mult

Dem.

V . *88-26 . *5'74 . D h : : K e Cls ex2 excl . DK . k e Cls2 Mult : = :.

k e Cls ex2 excl . DK : (a/*) :ae#.Da ./zr\ael:.

[#88-3] = : . Mult ax : : D 1- . Prop

*88 32. H:.Multax. = :/«;eClsex2 excl.D je .a!ea f
/c [*88-31'2]

*88'33. I- : Mult ax . = . (a) . g ! e4'Cl ex'a

Note that (a) . a ! e^'Cl ex'a is Zermelo's axiom.

Dem.

h . *88'32 . *85'63 . D I- : Mult ax . D . a ! e4 'e J "CI ex'a

.

[*85'63] D . 3 ! eA'Cl ex'a (1)

I- . *60-57 . D I- . k C CIV* .

[*60-24] D V . K - i
lA C CI exV*

.

[*84-13] Dl-:«eClsex2 excl.D.«:CClexVA: (2)

h . (2) . *80-6 . D I- : k e Cls ex2 excl . R e e*'Cl exV/e . Z> . R \ k e eA'* (3)

1- . (3) . *10-1128-35 . D H : * e Cls ex 2 excl . a I eA'Cl exV* . DK . a ! €*'* :

[*101] Dh :. (a) . a ! <*<C1 ex'a . D : * e Cls exlexcl . DK . a ! e4 '« :

[*88-32] D: Mult ax (4)

h . (1) . (4) . D h . Prop

*88-34. H : Mult ax . = . Cls -> 1 C Rel Mult

Dem.

h . *84-5 . *88-32 . D h :. Mult ax . D : i2 e Cls -> 1 . D . a ! e±'R"a<R

.

[*8514.*73-36] D . a J #*'C['£ •

[*88-l] D. 22 e Rel Mult (1)

f-.*8414. D H :. Cls ->1C Rel Mult. D:

k e Cls ex2 excl . D . e [ k e Rel Mult

.

[#881] D.a!(er«)^a'er«.
[*84-13.*b'2'42] D.^l(e[ k)^ (k.

[*80-23] 3
.
3 ! <*'* (2)

h . (2) . *10-11'21 . *88-32 . D t- : Cls -> 1 C Rel Mult . D . Mult ax (3)

I- . (1) . (3) . D h . Prop
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#8835. I- : Mult ax . s . (P) . R e Rel Mult

Dem.

b . #3745 . #55121 . (*85'5) . D b : g ! P J a? . = . g I P'a .

[#33-41] s.^ed'P (1)

K (1) . *10'11 . #3763 . D H : a e P J"d'P . D tt . g ! a :

[#24-63] DKA~ePJ"<J'P (2)

I- . (2) . *84-l-3 . #85-55 . } h . P I"CFP e Cls ex2 excl

.

[#88-32] D f- : Mult ax . D . g ! e^P J"d'P

.

[#85-54.*73-36] D . g ! Pd'CFP .

[#88-1] O.Pe Rel Mult (3)

b . #101 , #88- 1 . D h : (P) . R e Rel Mult . D . g ! (e [ CI ex'aV<I<(e f CI ex fo) .

[#62-42] D.g^efClex'aVClex'a.
[#80-23] D . g ! e^'Cl ex'a (4)

I- . (4) . #10-11-21 . #8833 . D I- : (R) . P e Rel Mult . D . Mult ax (5)

b . (3) . (5) . D b . Prop

#8836. b : . Mult ax . = : * C <3'P . Du, « . g ! Pa'k [#88-35-12]

#88-361. h :. Mult ax . = : k C (PP .
=

R> K . g ! P*'* [#88-36.. *80"2]

#88-37. I-:. Mult ax. = : A~e«. DK . g ! eA '«

Pern.

h . #88-36 . #62-231 . D h :. Mult ax . D : A~e « . DK . g ! eS/c (1)

b . #84-13 . #88-32 . D h :. A~e* . DK . g! 6a'k : D . Mult ax (2)

h . (1) . (2) . D h . Prop

#88371. I- :. Malt ax . = : A~e k . = K . g ! eA*K [*88'37 . #83*1]

#88-372. b :. Mult ax. = :Ae*.s». eA '* = A [#88'37l . Transp]

This proposition shows that the multiplicative axiom is equivalent to

the assumption that a cardinal product is zero when, and only when, one

of its factors is zero.

#88-373. b : Mult ax . = . Cl'(Cls - t'A) C Cls2 Mult

Dem.

b . #24*63 . #53-5 . D b :. A~e#. = :ae*.Da . aeCls — l'A:

[#221] = :/eCCls-t'A:

[#60-2] =:«e Cl'(Cls - t'A) (1)

h . (1) . #88-37 . D b :. Mult ax . = : * e Cl'(Cls - t'A) . D„ . g ! eAV :

[#88-2] = : Cl'(Cls - i<A) C Cls2 Mult :. D h . Prop

#88-38. h : Mult ax . = . Cls - t'A e Cls2 Mult [#88-23-373]

#88-39. b : Mult ax . = . (gP) . P e 1 -» Cls . P G e . D'P=V . <PP= Cls - t'A

Pew.

h . #88-38-2 . #80-14 . D
I- : Mult ax . = . (gP) . P « 1 -» Cls . P G e . d'P = Cls - i

lA (1)

I- . #51161 . #53-5 . D h : (I'P = Cls - l'A . D . t<# e <J'P (2)
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H .*23-621 .Dh-.Rde.D.R^ Rne (3)

h . (2) . (3) . D H : R G e . Q.'R = Cls - t'A . D . i'# e d'(R n e) .

[*33131] ^.{mD.yRi'x.yel'x.

[*51-15] D . (33/) . yRi'x .y = x.

[*13195] D.xRi'x.

[*33'14] O.xeD'R (4)

K (4) . *10-11*21 . *2414 . D I- : R G e . (Fii = Cls - t'A . D . D'R = V (5)

h . (1) . (5) . D I- . Prop

The following propositions are concerned with certain cases in which a

construction exists by which the existence of selections can be proved.

*88'4. K*1Cl€e*'Cl"«:

Dem.

K*72-19.*71-27.Dh.* >|ciel-+Cls (1)

r . *35-52-101 . D h : a(/t1Cl)\. = .«e« .\ = Cl'a .

[*60'34] D.aeX (2)

h.(2).*llll. Dh.K^Clde (3)

K*35-52. Dr-.a^^CO^D'CCirA:)
[*37'401] = C1"* (4)

I- . (1) . (3) . (4) . *80'14 . D h , Prop

*8841. r.Cl"/ee Cls2 Mult [*88-4-2]

*88411. \-.k6T>«6A<CI"k

Dem.

K*35'52. DKD'(*1ci) = <I'(CirK)

[*3565.*33-431] = * (1)

h . (1) . *88-4 . D H . (a#) . R e ed'Cl"/e . D'.R = k .

[*376] D h . * e D"e*'Cl"* . D H . Prop

*8842. r :« e Cls2 Mult.a!«. = -*^'«e Cls2 Mult [*83904 . *88'2]

In virtue of this proposition, as will be proved later, every finite class

of existent classes is a Cls2 Mult. For we have Aee^'A; and, by the above,

a Cls2 Mult remains a Cls2 Mult when one existent class is added as an

additional member; hence the result follows by induction.

*88 43. h : s'k e Cls2 Mult . D . g±"k e Cls2 Mult

Dem.
h . *88-2 . D h : Hp . D . a ! es's'x .

[*8o-24] 3 . a ! s"T>"eJei"tc

.

[*37-45] D . a ! eSeJ'ic .

|>88-2] D . eA"K e Cls2 Mult : D h . Prop

*88431. K :. k e Cls2 excl . D : e^'ic e Cls2 Mult . = . s'/e e Cls2 Mult

[*88'2 . *85-28 . *37'45]
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*8844. H:ClexV/ceCls2 Mult.D.*-t'AeCls2 Mult [*6057 . *88-22]

*88441. h : A ~ e tc . CI exV* e Cls2 Mult . D . k e Cls2 Mult [*88-44]

*8845. h : D'R n d'R = A . P = &a \x e d'R . a = R'x u t'a?} .D.Pe eA'd'P

Dem.

\-.*n3.'D\-:.H.ip.3:xPci.=x>a .x6d'R.a=R'x\Ji'x. (1)

[*5116J D^.xea (2)

H.(1).*33-15.*51-2.D

I- :. Hp . D : .zPa . Dx . a = R'x w *<# . P<# C D'P .
{<# C d'R .

[*24494] D* . a - D'R = i'x (3)

I- . (3) . *ll-59 . D I- :. Hp . D : xPa. . yPa . DXtV . a- D'R = i
lx .a-D'R = i'y .

[*20-23.*51-23] Dx>y .x = y:

[*71-17] D:Pel-»Cls (4)

I- . (2) . (4) . *8014 . D h . Prop

*88 46. h : D'R n d'R = A.X = a {(rx) . xe d'R . a = R'x w i'x} . D .

Xe Cls2 Mult
Dem.

V . *21-3 . *10-281 . *33131 . D h :. P = xol [x e d'R . a = R'x u i'x} . D :

aed'P .=a .{>3x) . x ed'

R

.ol = R'xv i'x (1)

h . (1 ) . *88-45 . D r : Hp . D . £a [x e d'R . a =#W i'x] e e*'\

.

[*10-24] D . g ! eSX .

[#88-2] D. X e Cls2 Mult Oh. Prop

*8847. h : P = a/3 {a e « . j3 - i"a w t'a} . D . P e e^'d'P

Dem.

l-.*21-3. Dh:.Hp.D:aP/3.= o>0.ae*:./3=t"avfc'a. (1)

[*5I\L6] D^.aejS (2)

h . (1) . *ll-59 . Z) I- :. Hp . D : aP/3 . 7P/3 . Da
, p , y . /3 = i"a u t'a . £ = t"7 u t<7 .

[*40171.*53-2202] D0)PiY . s</3 = a . s<£ = 7 .

[*20-23] Da^>7 .a = 7
[*71-17] D:Pel-»Cls (3)

K(2).(3).*80-14.DKProp

*8848. I- . $ {(ga) . a e « . = i"a o t'a} e Cls2 Mult [*88-47]

The proof proceeds as in *88"46.

*88'5. h . A n Cls e Cls2 Mult [*83'9 . *88"2]

*88 51. h : a ! a . D . t'a e Cls2 Mult [*83'901 . *88"2]

*88 52. r . i"a

e

Cls2 Mult [*83"42]

*88 53. h : k C 1 . D . k e Cls2 Mult [*83'44]



SECTION E

INDUCTIVE RELATIONS

Summary of Section E.

The subjects to be treated in this section are certain general ideas of which
a particular instance is afforded by mathematical induction. Mathematical
induction is, in fact, the application to the number-series of a conception which
is applicable to all relations, and is often very important. The conception in

question is that which we shall call the ancestral relation with respect to a given

relation. If R is the given relation, we denote the corresponding ancestral

relation by "R%'\ the name is chosen because, if R is the relation of parent

and child, R% will be the relation of ancestor and descendant—where, for

convenience of language, we include a; among his own ancestors if # is a parent
or a child of anything.

It would commonly be said that a has to z the relation of ancestor to

descendant if there are a certain number of intermediate people b, c, d, ...

such that in the series a,b,c,d,...z each term has to the next the relation

of parent and child. But this is not an adequate definition, because the

dots in

"a, b,c,d, ... z"

represent an unanalysed idea. We may then try to amend this definition by
saying that there is a finite class a of intermediate terms such that one member
(b) of a is a child of a, one (y) is a parent of z, every member of a except b is

a child of one (and only one) member of a, and every member of a except y
is a parent of one (and only one) member of a. This definition is open to

several objections. In the first place, it is very complicated; in the second
place, there will, in regard to a general relation, be difficulty in securing the

uniqueness of the member of a which is to be a parent (or a child) of a given

member of a; in the third place (and this is the really fatal objection) the

proposed definition states that a is to be a finite class, and we shall find that

finitude, in the relevant sense, is only defined by means of the very conception

of the ancestral relation which we are here engaged in defining. In fact, if iV

denotes the relation of v to v + 1, where v is a cardinal number, then a finite

cardinal (in the sense we require) is one to which has the relation N%., i.e.

one of which is an ancestor with respect to the relation

vp, {fl = v + 1).
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Hence we must not use the notion of finitude in defining the ancestral

relation. In fact, the ancestral relation is defined as follows.

Let us call fi a hereditary class with respect to R if Rfi
ti C /a, i.e. if successors

of fis (with respect to R) are fis. Thus, for example, if fi is the class of persons

named Smith, /* is hereditary with respect to the relation of father to son. If

/j, is the Peerage, /x is hereditary with respect to the relation of father to sur-

viving eldest son. If /* is numbers greater than 100, /j. is hereditary with

respect to the relation of v to v + 1 ; and so on. If now a is an ancestor of z,

and fi is a hereditary class to which a belongs, then z also belongs to this class.

Conversely, if z belongs to every hereditary class to which a belongs, then (in

the sense in which a is one of his own ancestors if a is anybody's parent or

child) a must be an ancestor of z. For to have a for one's ancestor is a

hereditary property which belongs to a, and therefore, by hypothesis, to z.

Hence a is an ancestor of z when, and only when, a belongs to the field of the

relation in question and z belongs to every hereditary class to which a belongs.

This property may be used to define the ancestral relation; i.e. since we have
<-/

aR$z . = : a e GlR : R"n C fi.ae /a.Dm .z e /j,

we put

R% = tt£{aeCiR:R"i*Qfi.a6fi.Dr.ze t
it] Df.

We then have

h : a e C'R . D . R%'a = z {R"p C fi . a e fi . DM . z e /j].

Here R^a may be called "the descendants of a." It is the class of terms of

which a is an ancestor.

To make plain the relation of the above to mathematical induction, put

for a, and a/3 (/3 = a + 1) for R. Then, since 1 = + 1, we have e C'R.

Again

R"/a C fi . = :«€//.. Da . a+le/t.
Thus we find

R^'O = fi {
a e /x . D« . a + 1 e p : e fi : DM . fi e (x).

Thus if /3 is a descendant of 0, fi belongs to every class to which belongs

and to which a + 1 belongs whenever a belongs. Hence mathematical

induction, starting from 0, will prove properties of fi. In elementary mathe-

matics it is customary to speak as if this held of all integers, i.e. as if R*'0

(as above defined) included all integers; but in fact only finite integers (in

one of the two senses which the word finite may have) belong to the class

<

—

R%'0, and they belong to it by definition, being defined as the class

fi {a e fi . Da • a + 1 e /* : e /x : D^ . fi e /*},

i.e. as R%'0 in the above sense. To infinite numbers, inductive proofs of this

kind starting from cannot be applied.
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The study of R% will occupy #90. The relation R% holds between x and y
if x(I [ C{R)y or xRy or xR?y or etc. The study of this "etc." occupies #91,

"on the powers of a relation." We may, for many technical purposes, regard

/ f C'R as the 0th power of R\ the other powers are R, R?, etc. If$ is a power

of R, so is 8
1

R. Now <S
|
R is

|
R'S, according to the definitioD in *38. Thus

if we have

RefizSe/Jk.Dg.SlRe/juDn.Pefi,
,

P must be a power of R, because the class of powers ofR is a value of fi which

satisfies the hypothesis

R e fi : S e /i . Ds . S
j
R e fi.

Conversely, ifP is a power of R, then P is reached by repetitions of the pro^

cess of turning 8 into 8
j
R, starting this process with R. Hence ifP is a power

of R, we shall have

R e /j, '. S e fi . Ds . S
\
R e fi : ^^ . P e fi.

Consequently, if we denote the class of powers ofR by Fot'R, we have

P e Pot'-R . = :. R€ fj.:Sefi.^s .8\Ji€fi:^ l/
,.P€fi.

We might use this as the definition of Pot'22; but we can get a somewhat
simpler form. For the above is shown, without much difficulty, to be equi-

valent to

Pe¥ot'R. = .P(\R)*R,

that is, P belongs to the ancestry ofR with respect to
|
R, in otjier words, P

is reached from R by proceeding along the series

R, \R'R, \R'\R'R, etc.

which is the same as the series

R, R\ R\ etc.

The relation (| R)% is important on its own account. We put

^ = (122)* Df,

and then we put

Pot'-ft = rJr Df.

We often want to include I f C
lR among the powers of R\ the class con-

sisting of Pot'JS together with I[ C'R we call Potid'JR. The definition is

Potid'E = RteV{C'R),
whence we easily prove

Potid'iZ * Pot'iZ m i'(I[ C'R).

The relation of being related by some power of R (other than I f C'R) is a

very important one. We denote it by R^, and put

Epo = s'Pot'R Df.

Thus when xR^y, we have one of xRy, xR?y, xR?y, etc. It is easy to prove

that

R^^R^vI^CR.
R&w i 35
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In a series in which every term (except the first, if there is a first) has an

immediate predecessor, and every term (except the last, if there is a last) has

an immediate successor, if R is the relation of a term to its immediate

successor, Rvo is the relation of any earlier term to any later one.

The next number (#92) concerns itself with some special properties of the

powers of one-many, many-one and one-one relations.

The next number (#93) analyses the field of a relation into successive

generations; e.g. if the relation is that of parent and child, the first generation

will consist of Adam and Eve, the second of their children, the third of their

grandchildren, and so on, taking always the longest route from Adam and Eve

when there have been intermarriages between generations. That is, taking

any relation P, the first generation is D'P — G'P, the second is <PP — (F(P2
)

the third is (I'(P2) - G^P3
), and so on. Generally, if T is a power of P (in-

cluding / \ C'P), the corresponding generation is

a<T-a'(T\P),

i.e. a<T-P"<I<T.

In order to express this more conveniently, we introduce a new symbol

minp, which is required also on other grounds, especially in series. "minp"

may be read "minimum with respect to P." We regard "xPy" as "a;

precedes y"; then in a class a, the "minima of a" will be those members of

a which belong to C'P and are not preceded by any other members of a,

i.e. a r\C'P— P"a. We put therefore
\<<

x minp a . = . x e a r\ C'P — P"a,

i.e. mmP = &a(ffea«0'P~P"a) Df.

Hence we have ~f , mr> tmminp'a = ar\ C'P — P"a,
—

i.e. minp'a consists of those members of a n C'P which are not preceded by any

other members of a. (If a has a single first term, this term is min/a.) Thus

we have, when T is a power of P,

rmnP<a<T= d'T- P«<l lT.

Thus minp'CIT, where T is any power of P (including / f C'P), is the

generation of P corresponding to T\ thus the whole class of generations is

—
minp'fQ"Potid'P. Henee we put

gen'P = rnhip"(I"Potid'P Df,

where " gen " stands for " generation."

The notation " minp" will not be much used until we come to series, but

then it will be constantly used. At present, we shall only give such properties

of minp as are necessary for our immediate purposes, but in Part V (on series)

we shall devote a number (#205) to its properties.
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In this number we also introduce the notation "xBP" for "x e D'P — Q'P."

"xBP" may be read "x begins P." If there is a single beginning of P, this

is B'P; otherwise the class of beginnings is B'P, which = D'P — Q.'P.

Thus if P is the relation of father and son, B'P = Adam; if P is the relation
—

+

«
of parent and child, B'P = Adam and Eve. B'P will be the end of P, if

—> ^
there is one; generally, B'P will be the class of ends, i.e. Q'P — D'P. The

—

>

^ —

>

first generation of P is B'P. If P e 1 —> Cls, any generation of P is T"B'P,

where T is the corresponding power of P.

The field of a relation consists, in general, not only of the generations of

P, but also of another part, the part in which, however far we go backwards,

we never reach a beginning. This part is jo'G"Pot'P. The two parts

s'gen'P and p'G"Pot'P are mutually exclusive, and together exhaust C'P.

The two next numbers, #94 and #95, are hardly ever relevant in subsequent

propositions, and may therefore be omitted by any reader who is not interested

in their subject-matter. #94 deals with powers of relative products. It is

only used in the following number (#95), on "equi-factor relations." The

matter to be dealt with in this number (#95) may be explained as follows.

In dealing with correlations and similar topics, we often wish to consider

the series of relations

R, P
j
R

j
Q, P2

1

R
j Q2

, Ps
!

R
j Q3

, etc.

Now we have not yet at our command a definition of P", where v is any finite

number; thus we cannot define a general term of this series as P"
j
R

j Qv
.

We need therefore a different method of definition. We have

P\R\Q = (P\\Q)'R, I*\R\Q' = (P\\QYtR,

and so on. Thus if T is any power of (P j) j

(' Q), a general term of our series

is T'R. For convenience of notation, we put

P*Q = sg'(P]|Q)* Dft.

Then our series consists of (P#Q)'P. The sum of all relations of this class

is considered in this number.

The principal propositions proved in #94 and #95 are two which have the

same hypothesis as the Schroder-Bernstein theorem, namely

R, S e 1 -> 1 . d'S C D'P . d'R C D'&

These two propositions state that, with the above hypothesis,

s'gen'(R i S) sm s'gen'(S
j
R)

and p
ia"Yot'(R

j
8) sm p<a ('Pot'(S

j

R).

The two combined reconstitute the Schroder-Bernstein theorem, since

s'gen'(R
|
S) u p'd"Pot'(P

j 8) = D'P
and s'gen'OSf \R) vp'(I"Pot'(S

\

R) = D'S.

Thus they present, so to speak, an itemized account of the equality proved by

the Schroder-Bernstein theorem.

35—2
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#96, on the posterity of a term, is concerned with the properties of R%x,

chiefly when R e Cls —* 1. In this case, in general, R^x consists of two parts,

first an open series and then a cyclic series. Either of these may vanish, or*

may reduce to a single term. If we call the two parts ft and y, the whole of

ft precedes the whole of y, and ft^R, y^Rel—>1. Thus if either ft or y<—
vanishes, R%% J

\
R e 1 —* 1. If 7 vanishes, the series never returns into itself,

4—
that is, R%'x 1 Rp0 QJ. If y exists, there is a definite power of R, say T,

such that y e 7 . Dj, . yTy. If ft and 7 both exist, there is one term, namely

the successor of the last term of ft, which has just two immediate predecessors,
4—

one in ft and one in 7; every other term of Rpo'x has only one immediate
*- *—

.

predecessor in R%.'x. Thus R%x is shaped like a Q, with x at the tip of the tail.

#97 deals with the analysis of the field of a relation into families. Taking

any member x of C'R, the family of x with respect to R is R*.'x \j R&x, which
«-» ...<->

we write R#x. Thus the class of families is R%"G'R. Those families which
— «— —

>

^ —>
contain a member of B'R are R^'B'R. If we regard R%"B'R as arranged

in a rectangle, in which the generations are the successive rows, then R^'B'R
*— —

*

will be the columns. Thus the relation of gen'jR to R%"B'R may be regarded

as a generalized form of the relation of rows and columns. Under a suitable

hypothesis, each row is a selection from the columns, and each column a

selection from the rows. This is expressed in the following proposition

:

r- : R € 1 -> 1 . B'R e gen'R ui'A.D.

R%"BlR C D"eA'(gen'R - i'A) . gen'R - i'A C D'^Jr^'^'R

whence we derive existence-theorems for selections in the cases concerned.

The importance of the ideas dealt with in the present section is very great.

These ideas dominate the treatment of finite and infinite, the theory of pro-

gressions and K , and the transition from series generated by one-one or many-

one relations of consecutive terms to series generated by transitive relations

of before and after. Wherever, in short, mathematical induction is used the

ideas treated in this section are required. The portions of our subsequent

work in which this section is most referred to are the two sections on finite and

infinite cardinals and ordinals (Part III, Section C and Part V, Section E).

In the general theory of cardinals, i.e. in Part III, Sections A and B, before

. the distinction of finite and infinite has been introduced, the present section

will be seldom if ever referred to*

* The present section is based on the work of Frege, who first defined the ancestral relation.

See his Begrifixschrift (Halle, 1879) Part in., pp. 55—87. Cf. also his Grundgesetze der Arith-

metik, Vol. i. (Jena, 1893), §§ 45, 46 (pp. 59, 60). In this work the ancestral relation is used to

prove the properties of finite cardinals and No-



*90. ON THE ANCESTRAL RELATION

Summary o/#90.

If R is any relation, " xR%y" is to mean "x is an ancestor of y with

respect to R" where a term counts as its own ancestor provided it belongs

to the field of R. The definition of R% is as follows:

*90Ol. R# = tcP{a;€C'R:R"fiCfJi..a;efjL.Ofi .y€ fi} Df

That is, xR$.y is to hold when x belongs to the field of R, and y belongs to

every hereditary class to which x belongs; a hereditary class being a class /j,

such that Rlt
fA,Cfi, i.e. such that all successors of /t's are fi's.

*9002. 5*= Cnv'E* Df

This definition serves merely to decide the ambiguity between (R)% and

Cnv'-R^, either of which might be meant of R%. It will be shown, however,

that the two are equal (#90"132).

The most important propositions of this number are the following:

*90112. H :. xR%y : <f>z . zRw . D2>w . <f>w : <j>x : D .
<f>y

I.e. if xR$y and if (f>z is a hereditary property belonging to x, then it

belongs to y.

*90 12. h : x e C'R . = . xR%x

I.e. R% is reflexive throughout the field of R, but not elsewhere.

*90 14 I- . B'R*= CI'jR* = C'R* = C'R

*9015. V.l\C'RdR*
*90151. Y.RQ.R*

*90 16. I- . R*
j

R G R*

*90163. b.R"R*'xCR%'x

I.e. R%'x is a hereditary class.

*9017. \-.Rl = R*

*90 21. \-:aLCC'R. = .CLCR*"a. = .aCR*"a

*90 22. h : 5"a C a . = . i?*"a C a

/.e. the classes that are hereditary with respect to R are the same as those

that are hereditary with respect to R%.

*9031. \-.R* = ItC'RvR*\R
*9032. \-.R\R* = Rv R\R*\R = R% R
*90 33. h . R*"a -(an C'R) u R*"R"a = (a n C'R) u R"R%"a

*904. h.(^*)* = #*



550 PROLEGOMENA TO CARDINAL ARITHMETIC [PART II

*90'01. R* = %y{xeC'R:R"/xCfi.xefx.Dfl .yefx} Df

#9002. i^ = Cnv'i^ Df

*901. \-:.a;R#y.s:a:eC'RiB"ftCft.xeft.5
lt .yep [*21'3 . (*90'01)]

#90101. \-:R"fJ,Cfx. = .R"- fxC-fx

Dem.

h. #37-171. Dhi.^'VC/A.S'
[Transp] =

[#37-17]

#90-102 is a lemma for #90-11.

xefx.xRy. Dx>y .yefx:

ye- /x. xRy . DXi y . x e - fx

(1)

#90102. h :.

R

<(fxC fx . x e /x . D„ . y e /i : = : R (i
fx C fx . y e /x . ^ . x e it

Dem.

r . #90-101 . D

H :. R"/x Cfx.xefx.D.ye/x: = : R" — /xC — /x.xe/x .D .ye /x:

.

[Transp] = : R"-fxC- fx . y e-fx . D . xe-fx

l-.(l).*10-ll-27l.D

h : R"jxC/x.xefi.DM..yefx: = : R" — fx C — /x . y e — }x . 'D^.xe — /x:

[#2294] ^iZ'VC/^e/i.D^e^i.DI-.Prop

#9011. \-:.xR*y. = :xeC'R:R"fiCfx.ye fx.\.x€ f
x [*90'M02]

#90-111. h ::xR%y .= :.xe C'R :.ze/x.zRw . Dz>w .w e fx: xe fx: D^.yejx

[#90-1. #37 171]

#90112. h :. xR%y : ^ . .zifoy . D?)W . <^ :
<f)%

: D .
<f>y

Dem.

K #90111 *<**->. D

I- : : #i2#y . D : . z e 2 (^) . zRw .DZiW .wez (<f>z) :xez (<f>z) : D : y ez (fa). :

.

[#20-3] D :. <j>z . zRw . DZ; w . <f>w : <j)X : D .
<f>y (1

)

h . (1) . Imp . D h . Prop

#9012. h : x e C'R . = . xR^x

Dem.

h.#90-l. D\-:xR*x.D.xeC'R (1)

F . #3*27 . #10-11 . D I- : R (> C/i.tfeyLi.DM .#e/*:

[#3-21] Dh:.»f C'i2 . D : x e C"E : R"fx C fx . xe ^,.X . x e fx:

[#90-1] D : xR%x (2^

K(l).(2).DKProp
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#9013. I- : xR*y . 3 . oc, y e C'R . xR*x . yR*y

Bern.

r .*3716.*33161.Dr.i?"C'\RCC< JK (1)

K*90-l. D\-:xR*y.D.x € C'R (2)

K*90'l—

.

Dh:.xR*y.D:R"C'RCC'R.xeC'R.O.yeC'R:

[(1).(2)]
** IzyeC'R (3)

I- . (2) . (3) . *90'12 . D h : xR*y . D . xR#x . yR*y (4)

I- . (2) . (3) . (4) . D i- . Prop

The following proposition is a lemma for #90 132.

#90131. V :. xR*y = : y e C'R : R"fi C fi.y efi.^^.xe /ul

Dem.

h. #9011 13. D
f- :. #-K#y . D : i/ e C"i2 : i2"/u, Cfi.yefi.D^.xefM (1)

I- . #3715 . #33-161 . D 1- . £"0*72 C O'ii (2)

I- . #10-1 .Dhz.yeC'R: R"fi C /j, . y efi . DM . x e^ : D :

yeC'R: R"C'R CC'R.y eC'R.D .xeC'R :

[*533] D : ^"C^ C C<E . D . x e C'R :

[(2)] D-.xeC'R (3)

h . (3) .#5-3 . D h :. y eC'R : R")i C fi . y e n . DM . #e/* : D :

x e C'R : R"f& C fi.y e fi . D^.xe /x :

[#9011] 3--ccR*y (4)

K(l).(4.).DKProp

#90132. b.(R)*=R*

Dem.
h . #31-33 . #3322 . #901 . 3

h :. y (i2)# x. = iye C'R : i?"//. Cp .y e /a .D*. xe /j.:

[#90131] = : xR*y :

[#31-11] =:yR%z :.3\-. Prop

In accordance with our general convention as regards suffixes, and with

the definition #90*02, R* means Cnv'i?^, not (R)%-

#90.14. h . D'R* = d<R* = C'R* = C'R

Dem.

b . #90-12 . *3314'17 . D h : x e C'R . D . x e D'R* . x e (I'R* . x e C'R* (1)

K #3313. Dh»eD%. = .(a!/).a;%.

[#90-13] D.xeC'R (2)

Similarly V : xed'R*.^ .x eC'R (3)

h. (2). (3). #33*1 6. DF^eC'^.D.^eC^ (4)

r . (1) . (2) . (3) . (4) . D H . Prop
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*90141. h:^lR^. = .^lR [*90-14 . *33'24]

*9015. \-.I\-CRGR*

Bern.

r . *501 . *35101 . D r : x (I [ C'R)y . = .x = y .yeC'R.
[*90'12] = .x = y.yR*y.
[*1313] D . xR^yOK Prop

Note that / [ C*R may be conveniently regarded as the Oth power of R.

By *50*64-65, when multiplied by R it gives R; also it is contained in R I R,

R?
|
JK3, etc. J has properties, as regards relational multiplication, analogous

to those of 1 in ordinary multiplication; thus to regard I\C'R as the Oth
power of R is analogous to regarding 1 as the Oth power of n, where n is a
number.

*90151. h.RGR*
Dem.

K*H*1 .Dh :: z e fjb . zRw . Dz>w .W€/m:D z.xefju.xRy.'S.yejj,:.

[Exp.Comm] D:.xRy.D;x € fi.D.yefi (1)

I- . (1) . Comm . Imp . D
I- ::xRy .3 z.zefi.zRw. DZiW . wefi: xe fi:D .y e /x (2)

h.(2).*10-ll-21.D

f- :: xRy . D :. z e fi . zRw . DZjW . w e yu, : x e fi : DM . y e /i :.

[*90'111.*3317] D :. xR*y :: D h . Prop

*9016. \-.R#\RGR*
Dem.

h . #11-1 .D(-:.«e/*. s.Rw . DZ)W .wen-.D-.yefi. yRv .D.vefi (1)
k*90*l 11. #10-1. Fact. D
t-::xR#.y.yRv.'D:.z€fj,.zRw.'DZ!W .W€fjL:x€fji,:D.yefA.yRv (2)

f-.(l).(2).D

\- :: xR#y . yRv .D :. z € fi . zRw .DZtW . w e n : x e p: D.vefi (3)

h.(3).*1011-21.*90111.D

I- : #.##2/ . ylfo . D . xR%v (4)
h . (4) . *10'll-23 . *341 . D h . Prop

*90161. hr/SfG^.D./Sfl^G^
-Dem.

\-.*34,-34.D\-:Hp.D.S\R(ZRx\R (i)

h.(l).*9016.DI-.Prop

*90162. Ki22 Gi2* [*90-15M61]

*90163. I- . R"R%*x Q*R^x [*37-301 . *32-19 . *90!6]

This proposition is important, since it proves that R% (x is a hereditary class.
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#90 164. h . R"R#"a C P*"a [*37-33:201 . #9016]

This proposition shows that -B*"a is a hereditary class.

#9017. h.P| = i2*

Note that R^ means (R%y, not (i22
)#.

Dem.
h . #9013

.

D h : xR%y . D . xR^y . yR*y

[*34-5.*10-24] O-ocRly (1)
«—

h . #901631— . D h :. t/P*s . D iyeR^lx . D .^^« :

[*32181] >;#i^.D.a?JV (2)

h . (2) . Imp . D h : #i2#y . yi2#£ • 3 . xR^z :

[#1111.#34*55] DI-:i^GjR* (3)

I- . (1) . (3) . D r . Prop

#90171. b.R*«R*"a=R*"a [#9017 . #37 33]

#90172. \-.R\R#GR#

Dem.
K #90151. Oh.R

|

R*GR& (1)

h . (1) . #9017 . D h . Prop

#9018. H : P G Q . D . P* G Q*
Dem.

K #33265. Dh:.Hp.D:a;eC"P.D.#eC<Q (1)

h . #37-201 . D h :: Hp . D :. P"fi C Q"/* :.

[#22-44] D:.Q'VC/i.^.P> c /i "

[Fact] D :. Q"fj, C/t.xefi.D. P"/a Cfju.xefi:.

[Syll] "D:.PttfjLCfi.x€f4.D.y€fjL:D:Qti
fj,C/j,.xefi.0.yeij, (2)

h.(2).*1011-21-27.D

h :: Hp . D :. P"/tC/t .xe/M.D^.yefi'.O: QttfiC fju.x e fi ."D^.ye/i (3)

h . (1) . (3) . *90'1 . D r :. Hp . D : #P*y 3 . xQ*y :. D h . Prop

#90-21. h : a C G".R . = . a C R*"a . = . a C £*"«

Dem.
r . #4-7 . D h : . a C C'R . D : x e a . D . x e a . x eCE .

[#9012] D . a; e a . xR%x

.

[*10-24.*37-1105] D.a'J/a.»eE/n (1)

h . #3716 . D h : a C R*"a . D . a C d'P* .

[*9014] D.aCC'R (2)

h . #3715 . #90-14 . D I- : a C £*"« .D.aCC'R (3)

h . (1) . (2) . (3) . D h . Prop
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#90 22. h : R"a C a . = . R*"a C «

Dem.

\- . #90*1 . D H :. xR%y . "Dx , tl
: R"a Ca.xea.D.yea:.

[Comra] D b :. R"a C a . D : %R%.y .xeot. DXt
y^yea:

[*37l7l] D:i?*"aCa (1)

h . #90-151 . #37-201 .Oh. R"a C R*«a .

[#22-44] D I- : R*"a Ca.D. R"a C a (2)

h.(l).(2).DKProp

#90 23. b-.aCC'R. R"a C a . = . a = E*"a [#90-2.1 22]

#90'23 is useful in the theory of sections of a series (#211). A section of

the series generated by R is defined as a class a satisfying

aCC'R. R"a C a.

#90 24. h:5'VC/*.«C/t.D. R*"a C /i

Dem. ^ w
'

I- . #37-2 . D h: Hp . D . R*"a C E*> (1)

H. #90-22. I) h : Hp . D . £*<V C /* (2)

K(l).(2).DKProp

This proposition shows that if fx is a hereditary class which contains a, then

ft contains all the descendants of oc's.

#90-25. \-:aCC'R.Rx"etQp.D.aCii
IjBTYl

f-. #9021 .DH:Hp.D.«C^"a.
[Hp] D. a C/*OK Prop

#90-26. h.aCC'B. .R"/* C ^ . D : a C /* . = . R*"a C fi

Dem. ^
h. #90-24. >l-:.Hp.D:aC/A.D.i2#"aC/i. (1)

h. #90-25. DK.HpO:iV'aC/*0.aC/i. (2)

K(l).(2)OKProp

#90-27. r uolCC'RO : a u .R"^ C /*..=. . #*"« u j?*yC /*

H . #90-26 . Exp . #5-32 . D

h:.aCC<R.D:R"f*Cp.aCfi. = .R"v,Cti.R*"aCfj,:

[*22-59] D : a u .R'V C fi . = . R*"a w R"ftC ft :O h . Prop

#90 31. Ki^/t^o^lE
Dew.

r . *90-15-ie . D r . / T C
f

'i2 vR* RGR* (1

)
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[Fact] D I- : x (I \ C'R vy R% \R)z. zRiu . 3 . xR*z . zRw .

[*10-24.*34-l] D . x (R%
|

R) w

.

[*23-58] D

.

x (I
I

s
- C'R vR*\R)w (2)

I- . #90-13 . #503 . D h : xR*y . D . xlx.xe C'R.

[#35101] ^.x(I[C'R)x.
[#23-58] D. x (I I C'R vy -R#\ R) x .

[*4-7] D . «i2*y . a; (/ [ C'R c; i£*
|

R) x (3)

k . (2) . (3) . *9o-ii2?m**2**\*y* . D
<pz

\-:xR*y.>.x(ItC'RvR*\R)y (4)

K.(l).(4).Dh.Prop

In the last line of the above proof, the process is as follows. Writing <j>z

for x(I\ C'Rv R#\R)z, (2) becomes <j>z . zRw . D . (f*w, while (3) becomes

xR^y . D . xR^y . (f>x. Hence, by (2) and (3),

xR%.y . D : xR%.y : fa-. zRw . ZX?)W • <j>w : tf>x.

Hence, by #901 12, xR^y . D . fyy, which is the proposition to be proved.

#90311. Y.R* = I\C<RvR\R*
Dem. ^

H. #9031-. #90132. >
Jx

Y.R* = I\C'Rv\\R
[*3322.*34-2] =-/

f C'R vy Cnv'(R
\
R*)

[*50-5-51] = Cnv'(I [ C'R) u Cnv'(i2 ! R*)

[*3M5] = Cnv'(i" f C'R vy R
\

R*) (1)

h . (1) . #3132 . D h . Prop

#9032. \-.R\R#=-Rw.R\R#\R-=-R# \R- (2)

Dem.
r . #9031 .DY.R R% = R\I I C'R vy R\ R*

j

R
[#50-64] =RvR\R* R (1>

[#50-65] =(ItC'R)\RvR\R*\R
[#90-31 1.*34'26] =R*\R (2)

h . (1) . (2) . D h . Prop

#90 33. h . R^'a -(an C'R) u R*«R"a = (a n C'R) v R"R*"a

Dem.
I- . #9031 . #37221 . D
r . R*"u = (1 T C'R)"a v (R*

J

R)"a

[#37-412-33] = I"(C'Rn a) u R*"R"cl

[#50-16] = (C'Rn-a). w R*"R"a (1)

Similarly, by #9031 1,

h . iV'a = (C"i£ «va) »R"R*"a (2)

r- . (1) . (2) . D h . Prop
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*90 331. p . iV'a = (« n C'R) v R#"R"a = («n C'R) v R"R#"a
[Proof as in *90*33]

*9034. \- :aC C'R. 5. R#"a = a yjR*"R"a=: a uR"R*"a
[*90'33 . *22-621]

*90 341. b : aC C'R. 0. R#«a = a v R*"R"a = a u £"i?*"a

[*90331 . *22-621]

*90 35. h :. xR \ R*z . D : R"nCix .*R'x C /* . DM . * e//,

H . *32181 . D p :. aity . D : y e *R'x :

[*22-46] D:*R'xCft.0.y € p:

[Fact] 3:^C^.^C/i.Dj'VC/*.y€/* (1)

K*90\L. Dt-:.yR#z.D:R"fiCfi.ye/j,.D.Z€ti (2)

H.(l).(2).Dh:.aj5y.yi2^.D:5"/*C/*.S'arC
A*.D. (»e

/
A:.

[*1011-23.*341] D I- :. #i2 1 i£*s . D : R"fiC fi.%xCfi .D.zefi (3)

h.(3).*1011'21.Dh.Prop

*90 351. p :. E"/i C fi .*R'x Cfi.^.z e fi:3 .xR\R%z

Dem.

r . *90172 . Fact . D h : xR
|
i2#s . ^Em; . D . xR%z . zRw .

[*341] D . #12* |
Rw .

[*90-32] D.*22J1^«; (1)

h . (1) . *37l7l . D r . R"2 (xR \ R*z) Q%(wR\ R*z) (2)

r . *90-32 . D r : xRy .3.xR\ R%y :

[#32-181.*20-3] ^b:y € %x.D.ye^(xR\R^z):

[*1011.*221] D I-

.

%x C 2 (*•#
|

i^) (3)

p. (2). (3). #10-1 ;D

I- : . E"/x C ^ . #<# C ^ . DM . * e /it : D . * e % (xR
| 22^)

.

[*20-3] D.xR\R%z:.Db. Prop

*9036. p :. ^22 i 22*2. = :5"/aC/"-^Cai- 3* *<?/* [*9035351]

*90'4. I- . (R%)* = R%
Dem.

p.*90\L51\L8.Dp.2^G(2^)* (1)

h. ^90-112^^^ .3
R, <f>z

V :. x (R%)% y : xR%z . zR#w .DZtW . xR%w : xR^c : D . xR%y (2)
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h . *9013 . D H :x(R*)*y. D .xeC'R* .

[*90'14] S.xeC'R.
[*90-12] D.xR^x (3)

h . *9017 . D h : #P#£ . .zP^w . DZ)W . xR*w (4)

h . (2) . (3) . (4) . D h : * (P*)**, => • *^*2/ (5)

r . (1) . (5) . D I- . Prop

*90'41. h.C'P^« = anC'P
Dem.

h.*37-41. Dr.C'P*£a = an(P*"auP*"a) (1)

h . (1) . *37 1516 . *9014 . D h . OP* £ a C a r> O'P (2)

h . *90-33:331

.

Dh.anC"PCP*"auP*"a (3)

h.<3).(l). Dh.anC"PCC"P*ta (4)

r.(2).(4). DKProp

*9042. K(Q*D«)* = Q*D«

r.*9018. Dh.(Q# ^ a)* Q(Q*)*

[*904] GQ* (1)

h.*90-13. Dh:x(Q*tct)*y.D.x,y e C<Q*ta.

[*9041] D.#,yea (2)

r.(l).(2).Dr.(<k£«)*GQ*t« (3)

I- . (3) . *90151 . D h . Prop



*91. ON POWERS OF A RELATION

Summiwy o/#91.

In the present number, we consider the class of relations

R,R\R\ ....

Each of these has to its predecessor the relation
j

R; we have

R2 = \R'R, R*=\R'R\ etc.

Thus every term of the series has to R the relation (\R)%; hence the powers

of R may be defined as those relations which have to R the relation (| R)%.

The series of powers starting with If C'R instead of with R is similarly

composed of those relations which -have to I [C'R the relation (\R)%. (This

class consists of the previous class together with / [ O'R.) To say that the

relation R% holds between x- and y turns out to be equivalent to saying that

one of the relations

I\C'R,R,R\R\ ...

holds between x and y; and to say that the relation R
\
R%. holds between

x and y turns out to be equivalent to saying that one of the relations

R, R\E\ ...

holds between x and y. Thus we migfot have begun by defining powers of R,

and proceeded to define R%. as their sum.

For notational convenience we put

i*u »(!«)* Df.

Then the definition of powers of R excluding / '[ C'R is

Pot'R = Rts'R Df,

and the definition of powers of R including I [ C'R is

Totid'R =^'(1 [C'R) Df.

(Here the letters "id" are added to suggest that identity is to be added to

Pot'R.)

We put also

R^ = s'Vot'R Df.

Many of the propositions in this number are very often used. Among the

more important propositions are the following:

*9117. H :• P ePotid'22 : <f>S.Ds .
<f>
(S \R) : (I [ C'R) :D.<f>P

*91 171. f :. PeYotfR :<f>S.Ds . <f>(S\ R) : <}>R : D . <f>P

*91 373. Yi.Pe Pot'JK . DP . <f>P : = z(f>R : S e Yot'R. . xf>S .Ds .<j>(S\ R)
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These are formulae of induction. The first two state that" if" the property

<f>
is hereditary with respect to

j
R, then if

<f>
belongs to / [ C lR it belongs to

any member of Potid'J?, while if <£ belongs to R it belongs to any member of

Pot'R. The third gives a form of induction which is sometimes more powerful

than the second. It states that if
<f>

is hereditary provided its argument is a

power of R, and if <pR, then every power of R satisfies 0, and vice versa.

*91 23. r . Potid'i? = l<(1 f C'R) vj Tot'R

*91 24. r . Pot'R =
|

R"Potid'R

These two propositions are very useful as giving gelations of Pot'R and

Potid'iZ.

*91-27. biPePotid'R.D.C'PCC'R

*91 27L r : P ePot'12 . D . D'P C B'R . <I<P C d'R

We do not have in general Pe Pot'R. D . D'P= D'R . <I'P=a'R. If

R is the sort of relation which generates a series (i^e. is either itself serial, or

such that Rpo is serial), the above would characterize a series without a first

or last term. To illustrate the matter, consider a series of four terms, x, y, z, w,

and let R be the relation of immediately preceding in this series. Thus R
holds between x and y, y and z, z and w. Then R2 holds between x and z, y
and w; thus z, which belongs to D'R, does not belong to D'i22

. R3 holds only

between x and w; thus neither y nor z belongs to D'R3
. All powers of R

beyond the third are null. On the other hand, if we take a cyclic relation,

such as that of left-hand neighbour at a dinner-table, we shall always have

D<P= D'.R . (FP =(I*R, whatever power of RP may be.

*91*282. h : P 6 Pot'R . 3 .P } R e Pot'iS

This proposition shows that Pot'JR is a hereditary class with respect to
j

it!.

*91 34. * : P, Q e Potid'2* . D . P
) Q = Q \

P
This proposition states that the relative product is commutative when

each factor is / [ C'R or a power of R.

We come next to propositions concerning R^. We have

*91502. V.RQR^
*9i-504. r . D'ijpo = t>'r . a'R^ = a'R . cr^ = cr
*91*511. V.R^IRGR^
*91-52. KJ?po= P* !£ = #,&*

*91-54 h-R^^IfC'RuR^
*91*5254 are fundamental in the theory of inductive relations.

*91542. b z xR^y .x$y. = . xR^. x ^y
This proposition is particularly useful when (as often happens) we have

iJpo G J. In that case, it gives R^ — R# f\ J.

\
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#91-55. h . R% = s'Votid'R

#9156. r.i^Gi2P0

Thus -Rpo is always transitive, which is one of the three characteristics

of serial relations (cf. #204). We shall find that Rw is often serial when R is

not so.

#91'574. h.^|iJpo = Epo |E* = jBpo = ii|^ =^|B
#91-602. h.CRpok-i**

#9101. At = (-R j)*

#9102. As = (1
-K)*

#9103. Pot'i? = R^'R

#9104. Potid^ = i?t/(/rC"i2)

#9105. Ppo = s'Pot'.R

Df

Df

Df

Df

Df

The first two of the above definitions are introduced merely for notational

convenience. The other three represent ideas of great importance. The last

is especially useful when a series is given as the field of a one-one relation

between consecutive terms—as, e.g., when the series of natural numbers is

given as the field of the relation of n to n+l. Then jRpo is the relation of

any earlier term to any later term

—

e.g., in the above case of the natural

numbers, the relation of a less integer to a greater.

#011. h::PRetQ. = :.S€fjt .Ds .R\Sefi:Qe/ii:^.P€fA

Dem.

I- . #4 -2 . (#9101) . D
\-::PR8tQ.m.P(R\)*Q:.

[#9011] = :.PeCt(R\):(R\y tfiCfi.Qep.Oli .Pefi'..

[*43-3.*33161] = :. (R j)"/* Cfi . Qefi.D^.P e/*z.

[*37'61] =:.Sep.Ds .R\<Sefi:QefM:X-Pep m"

[#43-11] = :. Sep . Ds .R\Sep :Qeft : DM . Pefi :: D I- . Prop

#9111. b::PRtsQ. = :.S€fi.Ds .S\R € fi.:Q€i<L:D„.P€ji

#9112. \-:PeYot'R. = .PRtgR [#3218 . (#91-03)]

#9113. b-.-.PeFot'R.zEZ.Sen.Ds.SlRefi-.Renz^.Pe/j,

[#91-11-12]

#9114. h:Pe Potid'iZ . = . PR^ (I T C'R) [#32-18 . (#91-04)]

#9115. h :: P eFotid'R . = :. S e p .3S . S\Re fi: If C'Rep:^ . P e ft

[#9111-14]

#9116. h :: xR^y . = :. (gP) :. Sep . Ds . S
|
R efi : R €fi : DM . Pe/t :. xPy

[#4111. (#91-05). #91-13]
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*9117. r :. P e Potid'R : QS . 3S .
<f>
(S

\
R) :

<f> (J tC'R):D.<f>P

[
.S(<t>S)l9115

91171. r :.PePot'R:<f>S. Ds .<f>(S\R):<j>R:D.<l>P

[,9113^]
These propositions are of great importance, because they enable us to

prove that a property
<f>

belongs to every power of R if it belongs to R
(or I[ C'R) and also belongs to S

\
R whenever it belongs to S.

912. \-:QRtsP.^.(Q\R)RUsP
Dem.

l-.*43-101.(*91-02).DI-:Hp.D.(Q|i2)(| JB)Q.9(| JR)^p.
[90-172] 3.(Q\R)(\R)*P.
[Id.(*9102)] l.(Q\R)R

t8P:3b.FroV
91201. f- : QRBtP . D . (R

| Q) jR8tP [Proof as in *912]

91204. \-iP{R*\(\-R)}Q.s.PB
tM (Q\R)

Dem.

t.*Mfl.Zh'.PlR*\{\R)}Q.s.(aT).PBjr.T{\R)Q.
[*«-101] ='(^T).PR^T.T=Q\R.
[*1319o] = . PR^ (Q\R).0\. m Prop

91205. *-:P{Rat \(B\)}Q- = .PRat (R\Q)

9121. K22te
= 70^1(1^)

Dem.

h.*90-31.(*91-02).Dh. JRt8 = /^'(|iJ!)c;i2tB J(| JB)

[43311] =/ci^
ts j(| JR).DI-.Prop

91 ?H. b.R
st
=IvR

Bt \(R\)

91212. t-:.PRuQ. = :P = Q.v.PRts (Q\R)

Dem.

F.*91-21.*50-l.DK-.Pi2
t8Q. = :P=Q.v.P{ JRte |(| JR)}Q:

E*91
'204] =:iD =Q.v.Pi2ts (QjiJ):.DI--.Prop

91213. h :. PRatQ . = : P= Q . v . PU8t (.R | Q)

9122. h.X'<? = ^v.^(Q !jK) [*91212.*32-18.*5115]

91-221. \-.R8t
'Q = L'QvRat'(R\Q)

9123. I- . Potid'iZ = i'(I \ C'R) u Pot'i2

Dem.

h . 91-22 . (91-04) . D r . Potid'7* = i\I f C'R) u ^'{(/f C'R)
j
i£}

[50-65.(^91-03)] = t<(/f tf'iZ) u Pot'i* . D h . Prop
R&W I

36
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*91'231. Kit//=t'i vPot'jR [*9122 . (*91-03) . *504]

*91'24. r . Pot'iJ =
|
J£"Potid'i2

Bern.

Y . *9112 . D r : P e Pot'iZ . s . PRiaR

.

[*5065] =.PRts (ItC'R\R).

[#91-204] = . P {R*
| (| £)} (/? -CJB)

.

[*90-32.(*9r02)] =.P{QR)\RtM\(l[C'R).

[«87-8] = • P ^
|

R"Rt8'm &R)

[*42.(*9104)] = • P

e

J
i£"Poti(KR : D I- . Prop

*91241. H : T£tsP . D . (Q \
T) #te (Q |

P)

Dew.

K*9r212.DH.(Q|P) JKtB (Q|P) (1)

K*91-2. DhcCQI^BtsCQIJ ).^.^ \S\R)Rta (Q\P) (2)

K(1) . (2Mmiii(Mpz)}. DF .prop

The last line of the above proof is obtained as follows: writing fi for

S{(QI<Sf)A8
(Q|P)Ul)beeomes

Pe/A (1),

while (2) becomes Sefi.O.S\Refi (2).

But by *9111, writing T for the P of *91*11, and P for the Q, we have

TRtsP.D:.S € fi.Ds .S\Reft:PefjL:D.T€fi.

Hence, by (1) and (2), TRtsP .D.Tefi, i.e.

TRt8
P.D.(Q\T)Rts (Q\P),

which is the proposition to be proved.

*91-242. r : SRts
(Q\P).D.Se Q\"Rts'P

Dem.

|-.*91-22.*43-ll.DI-.Q|PeQ|"Pts^ (!)

K*371.*431.D

h:SeQ\'^JP^.(nT).TeRta<P.S=Q\T.

[*91-2] D.i^.TlReRts'P.SlR^QlTiR.

[*37'1.*431] D.S\ReQ\"Rts'P <2)

b . (1) . (2) . *91 11 ^L_^--i:
. D K Prop

*91-25. KJV(#jP) = Q!"it8'P

Dew.

r . *91242 . D r . 2C(Q I P) C Q ["JS^'P (!)
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h. #91-241. D\-:TeRt8'P.S=Q\T.D.SeRts<(Q\P)z

[#10-11-23] D h : (aT) . TeRta'P .S=Q\T.D .Se~R
ts'(Q |

P) :

[*37-l.*43'l]O h : S e-Q
j

"RJP .D.Se Rts'(Q\ P)
h.(l).(2). Oh. Prop

(2)

#01*51. \-.Rst'(Q\P) = \P"Rst
'Q

#91-26, K£t8
'Q = gj"Ptg

</

#91261. \-.Jtat
fQ = \Q"Rst'I

[Proof as in #91-25]

#91*25 ~

*91-251
Q,r]

#91262. V : d'Q C C'R . D . Rta
'Q = Q j

"Potid'P

#9125 '

C
p
R

.. *5062 • (#91-04)

#91-263. K. Rta<(Q \R) = Q j"Pot'P

#91264. h . Pot'P = i'R\jR \"Fot'R

R
P

*91-22263

*91-25-^.(*91-03)

K

#9127. h : P e Potid'P .D.CPC C'R

Dem.

h . #50-5-52 . D I- . C'(I [ C'R)= C'R .

[#22-42] D I- . C'(I f C'R) C C'P
I- . #34-38 . D K : C"£ C C'P . D . C'(S

j
P>C C'P

OSCC'P

(1)

(2)

h . (1) . (2) . #91-17-
(j>ti

. D h . Prop

#91-271. H : P e Pot'P . D . D'P C D'P . d'P C d'R

Dem.

h . *2242 .OK. D'R C D'P . d'P C (I'P (1)

K
.
#34-36 . O K :D'S C D'P . D . D'(S

\
P) C D'R . <1'(S

j
R) C d'R (2)

y. n\ /o\ ^n , mD'SCD'R.a'SCG'R ^ . ^h . (1) . (2) . #91-171 -~ - . D I- . Prop

#9128. HPePotid'P.O.PjPePot'P [#9124]

*91-281. I- : Pot'P C Potid'P .
j
P"Potid'P C Potid'P [#91-23-24]

#91-282. h : P e Pot'P . D . P
j

R € Pot'P [#91-28-281]

#91-283. r;iP"Pot'PCPot'P [#91282]

The following propositions show that the relative product of two power;
of R is commutative, i.e. (of. #91-34)

P,Q € Potid<P .O. . P ! Q=Q\P.
We also have (cf. #91-341)

P, Q e Potid'P .D.P Qe Potid'P.

3(j- 2
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It is these propositions (as will appear in the sequel) which are the source

of the commutative law for the addition of finite ordinals. Ordinals in general

are not commutative, just as relative products in general are not commutative

;

but owing to the fact that relative products whose factors are powers of a

given relation are commutative, finite ordinals are commutative.

*913. h:P € Yotid'R.3.R\P = P\R
Dem.

\-.*$0<MQo.-}\-.R\l\CtR = I\C'R\R (1)

K #34-21. Db.R\(S\R) = (R\S)\R (2)

K #34-27. 1b:R\S= S\R.3.(R\S)\R = (S\R)\R.
[(2)] l.R\{S\R)-{S\R)\R (3)

<t>>S

b:.PePotid iR:R\S^S\R.Os .R\(S\R)=(S\R)\R:R\I[CtR = I[CtR\R:
D.R\P = P\R (4)

K(l).(3).(4).Dh.Prop

*91-301. r : P eEst
'(7 f C'R) .D.R\P = P\R [Proof as in *913]

#91-302. h.|i2"Potidfi2 = i2|"Potid'JR

Dem.

h . #91*3 . #13182 . D r :. P e Potid'iS .D :S= R\P . = .S=P\R:
[#431101] D:8(R\)P. = .S(\R)P (1)

\-.(l).*o32.D\-:P € Yotia<R.S(R\)P. = .P€?otid<R.S(\R)P:

[#1011-281] ^\-:(^P).P € Potid (R.8(R\)P. = .

(3P) . P e Potid'E .S(\R)P:

[*37*1] OhzSeR |"Potid'i2 . = . S e
|

^"Potid^ : D h . Prop

#91 303. I- .
|
R"liat

f(I T C'R) = R |"JRst<(7 [ C'R) [Proof as in #91302]

#91304. h .
j
R"Pot'R = R |"Pot'.R [Proof as in #91302]

#91-31. r- . Pot'i2 = R |"Potid<i2 [#91-24-301]

#91 33. h . Potid'R = Rst'(I [ C'R)

Dem.

H.*91-23.Dh./|< C<i2ePotid^ (1)

h.*913. Dh:PePotid'R.D.R\P = P\R.
[#91-281] D . R I P e Potid'iZ (2)

h
. (1) . (2) . #911 ?°-— . D h : PRst (I T C'R) . D . P e Potid'E (3)

/A

H.*91-301.Dh:PJRst
(/pOf

JR).D.P|i2 = i2|P.

[#91-201] D.(P\R)R8t (ItC'R) (4)

h . *91 213 . 3 I-
. (/ T G

'R )R^T T C
'R) (5 )

h
. (4) . (5) . #9117 . D H : P e Potid'P . D . P#

8fc (/ f C'R) (6)

h . (3) . (6) . D K Prop
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#91331. l-.Pot'.R = jR8t<12

Dem. _^
r . *9124-33 . D V . Fot'R =

|
i2"i2st

'(7 |* C*i2)

[*91-251.*50-65] =~Rat'R . D h . Prop

#91-34. H:P,QePotid'P.D.P|Q=QjP
Dem.

#5062 . #91-27 . D h : P e Potid'iZ . D . P j (7 f C"i2) =P
[*50-63.*91-27] =(/rC^)iP (1)
K #34-27. DI-:P€Potid'i2.PJ^= ^|P.D.P| (S|ie = ^|P|i2
[*91 '3] = S|i2|P(2)

r
. (1) . (2) . *91'17

P
\

S
7

:

/ lP K Prop

This is the commutative law for the relative product of two powers of R.

*91341. IrP^ePofcid'iZ.D.PIQePotid'iZ

Dem.

h . #50-62 . #91-27 . D h : P e Potid'22 . D . P

|

(I f C'R) = P .

[*1312] D . P
j

(i f C'i2) e Potid'P (1)
K*91'281. Dh-.PI/SfePotid'ie.D.PI^IiJePotid'i? (2)

h.(l).(2).#9ri7
P^ g

<g
tid^

.Dh.Prop

#91 342. h : P e Potid'P . Q e Pot'iZ . D . P
|
Q e Vot'R

Dem.
h.*91-28. D^PePotid'iS.D.PjPePot'P (1)

h.*91'282.Dh:P!Q e Pot'£.D.P|Q|i£ e Pot'P (2)

K (1). (2). #91*171. DK Prop

#91343. h : P, Q e Pot'i* . D . P
|
Q e Pot'^R [#91-342-23]

#9135. I- . / |* C'R € Potid'fl [#91-23]

#91-351. KPePot'P [*91'264]

*91-352. KP2 ePot'P [#91-282-351]

#91-36. hPe Pot'P .D.P\R,R\Pe Pot'P [*91 343351]

*9137. h :. Potid'jR C^.= '.I[ C'Refi: SeVotid'R .8ep.Ds .S\R€/i

Dem.

f- . #91-281-35 . D
h :. I f C'Refi-.SeVotid'R . Se /j, .Ds . S\Re fi: = :

IfC'Re Potid'P . 1 \ C'Re p : SeVotid'R.S e fi.Ds .S\Re Potid'ii .S\R efi:

[*9ri7]D:P«Potid'i2.D.PeA* (1)

K #91-35. DhzPotid^C/i.D./pC'Pe/i (2)
h . #91-281 . D h :. Potid-\R C/z . D : SePotid'P . D& . /S|iZe/i :

[*3"41] DzSeFotid'R.SefjL.Dg.SlRefj. (3)
h

. (1) . (2) . (3) . D h . Prop
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#91-251^. *91'331

#91-371. I" :. P e Potid'P . DP . <j>P : = :

^(Zf C'R) : S e Potid'P .<f>iS.Ds .<f>(S\R) [*91 -37]

#91372. H:.Pot^RC/*. = :i2e/A:iSePot'12.£e/*.Ds .i8f[22e/A

[Proof as in #91 -37]

#91373. r :. 'P e Pot'P . DP . <£P : = : <£P : S e Pot'P .(J>S.Ds .<f> (S |
P)

[#91-372]

#91-41. b.P
ts'(P|P) = P|"Pot'P #91 -25 ^p. (#91-03)

#91-411. r . Pst'(P 1 P)= | P"Pot'P '
-

—
--
^

#91-42. r . ^/P = i'P u P |"Pot'P [#91-22-41]

#91-421. h . Rst'P = i'P u
|
P"Pot'P [#91-221-411]

#91-43. r : P e Pot'P . QPt8P . D . Q e Pot'P

Dem.

r . #91 -42 . D r : . Hp . D : Q = P . v . Q e P |"Pot'P :

[*37-l.*43-l] D : Q = P . v . (gF) . Te Pot'P . Q = P\T:
[*13-12.*91:343] D : Q e Pot'P :. D r . Prop

#91-431. \-:Pe Potid'P . QRtsP . D . Q e Potid'P [Proof as in #91-43]

#91-44. r :. P, Q e Potid'P . D : QRtsP . v . PRisQ
Dem.

K #91-14. Dh:Pe Potid'P. D.PPts (/TC<P) (1)

h.*91-2. Dr:QPts
P.D.(Q|P)P

fcs
P (2)

h . #91-212. D r :. PPteQ . D : P= Q . v . PRts (Q\R) (3)

h . #91212 . D 1- : P=Q . D. QJ?tsP .

[#91-2] D.(Q|P)PtsP (4)

r . (3) . (4) . D r :. PP
tsQ . D : (Q j

P) PtsP . v . PRts (Q j

R) (5)

h.(2).(5).Dh:.QPtsP.v.PPtsQ:D:(Q|P)PtsP.v.PPts (QiP) (6)

K (1). (6). #91-17. DK Prop

#91-45. r :. P, QePotid'P . D : (g^) : r e Potid'P : Q,= P\T.v .P=Q\T
Dem. _^

I- . #91-262-27 . D h :. Hp . D : Pts*P = P "Potid'P . Rts'Q=Q j"Potid'P :

[#37-1 .#43-1] 3 : QRt8P . = . faT) . T e Potid'P .Q = P\T:
PRtaQ . = . (aT) . ^6 Potid'P .P=Q\T (1)

K (1) . #91-44 .#10-42 . D K Prop

#91-46. I- :. P, Q e Potid'P . D : (>&T) : Te Potid'P : # = T j

P.v.P=T\Q
[*91 -45-34]

The remainder of this number is concerned with P,
)0
and its relations

to P^.

#91502. h . R G P
1)0 [#91-351 . (#91 05) . #41-13]

#91-503. h . P 2 G Ppo [#91-352 . (#91 05) . *41'13]
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504.

Dem.

#91 504. I- .D^ = D<22 . <I'22po = <P22 . C'R^ = C'R

b . #91-502

.

D h . D<22 C D'22^ (1)

I- . #91-271 . #4043 . D b . s'D"Pot'22 C D<22

.

[#41-43] DKD'i^CD'Ji (2)

K(l).(2). DKD'/2-D«.Rpo (3)

Similarly r . CP22 = d'R^ . C'R = C'22po (4)

H - (3) . (4) - D h . Prop

The following propositions are concerned mainly with the relations of R
v

and 22*. These relations are embodied in the propositions

i^po = 22* \
R = R

|
R# (*9152)

22* = / f C"22 o 22,*, (#9154)
and 22* =s'Potid<22 (#91-55)

#91-51. h.22po j22=22J22po

Dem.
b . #43-421 . (#91-05) . D K 22^ 1

22 = £<
:

22"Pot<22

[#91-304] = £<22j"Pot'22

[*43-42.(*91-05)] = 22 j 22^.31-. Prop

#91-511. r . 221)0 i 22 G22po [*43'421 . #91-283 . #41-161]

#91-512. K221MJ G22*|22

Dem.

h.*90-32.DK22G22*j22 (1)

K #9016. D r:£G22*l 22. D.*$fG 22*.

[#34-34] D.S|22G22*|22 (2)

K(l).(2),*91l71
>SrG

^^.Dh:PePot'22.D.PG22
5i
,|22:

[*41151.(*9105)] I> h . 221X) G 22* 1
22 . D f- . Prop

#91-513. K22*Gs'Potid«22

Dem.

K #90-112 *<*'?f**>?. D
<pz

b :.scR*y : x (s'Potid'22) z . zRw . DZtW . x (i'Potid'22) w :

x (^Potid'22) x :.D . x (s'Potid'22) y (1)

b . #43421 . D h . (s'Potid'22) 1 22 = s' \ R"Potid'R
[*91-281.*41-161] Gs<Potid<22.

[#34-1.#10-23] D b : x (s'Voti&'R) z . *22w . DZjW . x (s'Potid'R) w (2)

b. #90-13. Db-.xR^y.D.xeC'R.
[*50-3.*35-101] 1.x(I[ C'R) x

.

[#91-35.*41-13] D.s(*'Potid'22U- (3)
1- . (2) . (3) . #4-71-73 . D r : Hp (1) . = . xR^ij (4)

b . (1) . (4) . D I- : xR*y . D . x (s'Potid'22) y : D h . Prop
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#91-514. h.R^RdR^
Dem.

b . *91*513 . D h . R#
|
R G (s'Potid'72)

|
R

[#43421] Gs'|P"Potid'P
[#91-24] Gs'Pot'P

[(#91-05)] Gi2po.Dh.Prop

#9152. f-.i2po = ^|JB = JRfi2# [91-512-514 . #90-32]

#91521. \-:Pe Potid'iS . = .

P

e Foiid'R

Dem.

H . *9ii5 ^ELJf:
. 3 h :: P e Potid'P . D :.

/r^i^eCnv'Vr^eCnv'V.Ds.^l^eCnv^O.PeCnv"^ (1)

I- . #72-51311 . D h : P e Cnv'*
M . = . P e /* (2)

K (2). #50-5-51.3 hz/fO'EeCnv"^.^/^'.^/*, (3)

h.*31-51. Dr:.SeCnv>.Ds.,SqPeCnv>: =
:

3 e Cnv'> . Ds . 3
i

R e Cnv"/* :

[(2).*34-2] =:Sefi.Ds .R\Sen (4)
h.(l),(2).(8)-(4).D

hirPePotid'E.D.-./pe^e/Ar^e^.Ds.iei^e/i-.D.Pe/A (5)
K (5). #10-11-21. #91 133. D

h : P e Potid'P . D . P e Potid'P (6)v »-»

""
" (6)F^I " *31

'33 ' Dh:Pe Potid'iZ • D • P e Potid'P (7)

K(6).(7).Dr-.Prop

*91'522. hPe Pot'P . = . P e Pot'P [Proof as in #91-521]

*9153. h.Ppo = (JR)po

Dem,.

h.*91'52.Dh.Ppo = ^jP5(e

[#90132] = .R
j

(P)*

[*91-52] = (P)po .DKProp
*9154. h . P*= I \ C'R v P^ [#90-31 . #91 -52]

*91'541. \-.R#nJ=Rvo nJ [*25-401 . (*50'02) . #35-441 . #91-54]

#91-542. J- : xR#y . x
=f= y . = . xR^y .x^y [#91-541 . #50-11]

#91-543. h . P*"/3 = 09 « C'P) u P^/3
Dem.

h . #91-54 . #37-221 .Dr. P*"£ = (7 \ ClR)"j3 u Ppo"/3

[*50'59] =(j8n C'P) u Ppo"/3 . D h . Prop
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#91544. Y.R
ili
"p = (pnCiR)yjR

x>0
"p

*91'545. \-
:
/3CCR .3 . R#"/3 = v R^'P [#91-543 .#22-621]

#91546. \".fiC.C'R.'Z.R*"fi = 0yjRvo"p
#9155. KB* = s'Potid<i2

Dem.
V . #91-23 . D I- . s'Potid'E = ^[I'il^CR) u Pot'i?!}

[*53-l7.(*91-05)] ^If&RvR^
[#91-54] = i2* . 3 f- . Prop

#9156. l-.iy,e.B
P0

Dem.
I- .#91-52 . D h . ££ = i2*| £

|
R*\ R

[#90-16] Gi^ji^jiZ
[#9017] GjR*|#

[#91-52] Gi2po .Dh.Prop

#91-561. \-:SQRpo .TQRpo .D.SiTQRpo [#3434 . #9156]

#91-562. [:SQRpo .O.S\RQRpo .R\SQRpo [#91-561-502]

#91-57. \-.Rpo =RvRpo \R = RvR\Rpo [#9032 . #9152]

#91-571. \-.Rpo \R = R\Rpo [#91-52]

#91-572. H . 22po -^ (22po |
JB) G i2 [*91'57 . *22-9'43]

#91-573. h . i*po-CR |
£po) G £ [*91-57l-572]

#91-574 V . i?*| JBpo^Upol i** = Ep0 = jR| U* = E*| £
Dem.

K*91-52 . D h . 2^1 22^

«

R* \R*\ R
[#90-17] = i2*|£ (1)

K #91-52. DKJRpo |.R# = .R |£*| R%
[#90-17] = £|^* (2)

h. (1). (2). #91-52. Dh. Prop

#91-575. \-.Rp
2 = R\Rpo = Rpo \R = R*\R* = R*\R* = R\Rx\R

Dem.
\- .*9l-o7k52.3\- .RPl = R\Rpo = Rpo \R (1)

I- . (1) . #91-52 . D I- . Prop

#91-58. I- : P e Potid'E . D . P G P* [#9155 .#4113]

#91-581. hzPeFot'R.D.PGR^ [#4113 . (#9105)]

#91-59. h:RdS.0.Rpo QSvo

Dem.
V . #9018 . D V : Hp . D . P* G S* .

[#34-34] D . P*
{
R G ## |

S

.

[#91-52] D.Ppo G£po :DI-.Prop
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*916. h :-Qe Pot'R. D. Pot'Q C Pot*R^Q^GR^
Bern.

My (fib

h:.Pe Pat'Q : S e Vot'R .Ds .8\Qe Fot'R : Q e Pot'E :O . P e Pot'P (1)

f . *91-343 . Dh:.Qe Pot'R . 3 : £ e Yat'R ,Os .S\Qe Pot'iZ (2)

K (1) . (2) . Dh-.Pe Pot'Q . Q e Yot'K. D.Pe Vot'R :

[Exp.*1011-21] D r : Q e ¥&t'R . D . Pot'QC Pot'P . (3)

E*41-161] l.Q^GR^ (4>

K(3).<4).Dh.Prop

*91-601. \-.(Rva)m = Rt>0

Demi.

K*91-5020Ki£po G(i*pJpo (1)

I-
. *91171

~

^>°
,S

£$
m

• 3

H:--PePot'J^:i8Gl^,^.<Srii^Gi2po :igIlo
e«po :>.PGJ8 lltt (2>

h.«34-34.*91-56. I>> zSGR^. Ds . SiP^QR^ (3)

fr . (2) . (3) . *2342 .3+ : P « Pot'J2po . 3 . P G i£po,

:

[*41-151] Dh.(i2p0\)0
G.#po (4)

K(l).(4).:>|-.Prop

*916G2. r.(i^)* = .%
Bern.

h . *91-54 .. D f . (fipok* / r C^po o (12po)po

[*#I-504-601}- ^IfC'Rv Ryyo

[*91-54] = R* . :> h . Prop

*91603. K.(£*W=--B*

Dew.
r . *M«52 . Z> i- . (i2*)po = (%)* |

P*

f*90*4] = P*
|%

[*00rl7] = R* . D h . Prop

#91*62. h i.xRmy.==z.R"pQn~ R'xCjm. ^.ye/i [*91-52 . *90"36}

This formula should be compared with *901, in which an analogous

formula is given for R^. It will be observed that here we do not require to

add x e C'R, for if Rix = A, the above formula leads t& xR^y .D.yeA, i.e. to

^(xR^y). Hence a?^ ^rv>.g'lRlx, ix. xR^ .D .xeD'R. It will be ob-

served that xR^y holds whenever y belongs to every hereditary class which

contains the immediate successors of x, whereas xR%y holds whenever y belongs

to every hereditary class to which x itself belongs.

*91T. t- . P^CFP = D'P . Bp "D'i2 = <I<R [*91504 . *3725)
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*91-71. I- : R"p C p. = . R^")*. C fi . = . P*"/<, C /*

Dem.
h . *90'22132 . 3 h : P<>C /*. = . P#"/iC /z

.

[*91'602] ^.(^"/tC/i.

K } R
=- -Sr

(1)

(2)

(1)

r.(l).<2).>h.Prop

*91 711. I- : R"ii Cfi.D. R^'/x = R"p
Dem.

h . *917l-52 ..:. *372 . D h : Hp . D . R^'vuC R?'p

b . *91'502

.

D h . P<V C i^po'V (2)

K(l).(2).DKProp

The above proposition is used in the theory of minimum points in a

series (#205-68).

*91'72. hJ"(««%"a)=%"a;
Dem.

H . *3722-33 . D h . P"(a uR^'a.) = R"a v (p \ R^cc
[*37-221] = (Rx/R

|
R^y'a

[*91-57]

,

=P
iK
,"a . >H . Prop

*91721. h . R"(a» Rpo"a) = Rlw"a *9r>72^.*9153
Jtt

*91 73. h :.P, QrPotid'P.P^Q.D:^) : 2VPot'P:Q = Pj T.m.P= Q\ T

Dem.

h.*91-45.D

h :. Hp. D:(ar):rePotid fP:g=Pl T.Pj ^+P, v.P = Q\T. Q'] T^Q: (1),

H . *91-27 . *5062 . D,h : P ePotid'P . D . P) I^C(R = P:
[Transp] D> : P, T e Potid'P . P

|
P+P . D . T+ I f C'R (2)

K(1).(2).D

1- :. Hp . D
:
<gT) : Te Potid^P . T^^P^P : Q= P]T. v .P = Q"| T (3)

I- . *91<23 . Dr : Pe Potid'P . T^ IfO'R. >. P e Pot'P (4)

K(3).(4).Of .Prop

*91 731. r : . P, & e Potid'P . P
=f*
& 3

:

(

aP) :P e Pot'P : Q.= P] P . v . P = 71
1 Q

[*91-73-34]

By means of *91 '73 or *91*731, the powers of R can often be arranged in

a series, the rule of; arrangement being that P comes earlier, than Q if

Q = P ]
T, and later in the converse case. But we shall only get an open series,

from this arrangement if Pe Potid'P. PePot'P . 3j> r . P I T=%?Bi otherwise

the powers from a certain point onwards form a cyclic series.
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#91732. h :. P, Q e Potid'U . P+ Q . D :

(aS):SePotid'jR:Q = £|22jP..v.P = ,S!JS|Q
Dew.

K #91-731-24.3

h:.Hp. 3:(<&S,T):Se?otid'R.T=S\R:Q = T\P.v.P = T\Q:
[#13-195] D : (a#) : SePotid'R : Q=S

|
R j P . v . P= S

|
i*

1 Q :. D H . Prop

#9174. H . R"R^x = JSpo'tf • U'^'a? =^po'« [#91-52 ..#37-302]

#9175. ¥.R*w%-B*w\a-Rvo *Bi=Rvo K»I\C'R*Rvo

.Dem.

h.#50o-51. Dh.Cnv<(IfC'<K) = JrC<i2.

[#9154] Dh.^ =/fC'Baipo . (1)

[*91-54.*23-56]Dh.P^vy^ = i2po a/|
k
C'

<i2iyEpo (2)

[#91-54] =R*vR»o (3)

[(1)] = Ax>^# (4)

K (2) . (3) . (4) . D H . Prop



#92. POWERS OF ONE-MA^Y AND MANY-ONE RELATIONS

Summary q/"#92.

If .Re Cls-* 1, it follows that, starting from a given term x, there is only
one series of terms x1} x2 , x3 , ... such that

xRxx . x1Rx2 . x2Rxs

Thus for example the relation of son to father is a Cls-* 1; and starting
from a given man, the series of ancestors in the direct male line (which is the
above series x1} x2 , x3 , ...) is unique and determinate. A result of this property
of many-one relations is that if, starting from a term y, we go backwards a
certain number of steps to a term x, and then forward a greater number of
steps to a term z, we must pass through y in going -from x to z; while if the
number of steps from x to z is less than that from a; to y, z must lie on the
road from x to y. These facts are expressed by the proposition:

R e Cls- 1 . D . R#
|
R# G R* c; R#.

In the present number, we have to establish various propositions of this
kind.

We prove in this number various propositions which are used in the dis-
cussion of "families" in *96 and *97, and some which are used in the theory
of finite and infinite. But on the whole the propositions of this number are
not much used. The most important of them are the following:

*9211. h:Rel->C\s.D.Rpo \R<lR#.Rpo \R =R^D<R
with a similar proposition (#92111) for Gls -> 1.

*92132. r : Rel -»Cls . Q, TePotid'R .D.Q\T\QQT
with a similar proposition (#92133) for Cls -* 1.

#9214. r : a<R C T>'R . Q € Pot'R . D . D'Q = D'i2

On this proposition, compare the remarks on *91-271 in the introduction
to #91. If R is a serial relation, (I'RCD'R is the condition that the series
may have no last term.

#9231. \-:Rel-+Cte.D.R*\R#= RxvRx
#92311. \- : ReCh-+l .3 .R#\R# = Rt.vRx

#921. l-:iZel-»Cls.D.Potid<ieCl-»Cls

Dem.

K #7217. #71-26. D\- .1 { C'R el -+Cls 0)
K #71-25. Db:.Kv.D:Sel-+C\s.D.S\Rel-*Ch (2)
K (1). (2). *9M7. DK Prop
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#92101. r : SeCls-* 1 . D .Potid^C CIs-* 1 [Proof as in #921]

#92102. h : R e 1 -* 1 .3 . PofcidfB C 1 -* 1 [Proof as in .#921]

#9211. r : .Re 1- Cte . 3 . i?p0 1

S G% . J2{po J

5 ** 12* f D'iJ

Dewi.

f. #91-52. Dh.i2
1)0 |^ = ^|i2|E (1)

h . #7119 . O r : Hp . 3 . J2

1

R =JfD'iZ (2)

K (1) .(2) .#50-6 .O h : Hp . D . #po | #=%f D'R (3)

I- . (3) . *35-4*l . Df-.Prop

#92111. r : 12 6 CIs -» 1 . O..J£
|
i^ G>:B^..J2

j

^ = (d'Rfl R*
[Proof as in #9211]

#92112. f : jBe.l- CU . D . B
|
Rvo \

R = 2^1)522 [#92-11 . #91-52]

#92113. hz ReOs^l .0 . RiR^lR^iWR^R^ ,[#92111 . #9152]

#9212. h: Rel -» CIs . d'12 C D'fi . D . R^ \ R = 22* [#92-11 . #35-66]

#92121. r : 12 e Gls- 1 . D<22 C CF22 . D . #
|
22po = 22* [#92111 .#3563]

#9213. h : 22 e 1 -*Cls .,Q, re'Potid<22 . D . TJ Q j
Q = TfT)<Q

Dem.

h .#921.3 h ::Hp .3 .Q el->Ck.

[#71-19] D.Q|$ = 7fD'Q.

[#50-6] D.T\Q\Q = T[X*Q : 3f .Prop

#92131. I- : 22 e CIs- 1 . Q,T e Potid<22 . D . Q
| Q \

T=(<I'Q) 1 T

In this number, when proofs have been given for R e 1 —> CIs, we shall omit

the proofs of corresponding .propositions for 22eCls—»1, as these" are always

exactly analogous to the proofs for R e 1 —> CIs.

#92132. h: R e 1 -» CIs . Q,Te PotM'22 . D.Q\T\QdT [#9213 . #91 -34]

#92:133. K: 22eCls--» 1 . Q,T € Potic^S .3,.rS],2T

|

:#G T

#9214. k:<CP22CD'22.Q€Pot<22.3.D<Q = D<22

I- . #91*271 . D h :. Hp . D : (I'Q C D'R :

[#37-321] >:D'(^
|
22)=©<#

:

[#13182] D : D'Q = D<22 . D .. D'(Q
j
22) = IH22 (1)

h.*1315. DKD'22 = D<22 (2)

TVtf = Ty7?
K(l).<2). #91171 ^, .Df . Prop

#92141. r : D«22 Cd'22 . Q.eYot'R... 3 .(!'#= CI<22
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*92 142. * : deR C TYR . Q e Potid'E . 3 . D'Q = D*R
Dent.

b.*oO-5-52.3h:Q = ItC<R.D.iyQ = C<B <1)

b . #33181 . 3 1- : Hp . 3 . C'R = D'i2 (2)

K(l).(2). 3HHp.Q=/rO*fl.3.D'Q = D<12 (3)

b . #9123 . 3 I- :. Hp . 3 : Q = J f C'R . v . Q e Pot'R <4>

t- . (3) . (4) . *92-14 . 3 b , Prop

#92 143. f : B'B C (P/2 .Q e Potid'i* . 3 . d'Q = <I*i?

#92144. btd'RCD'R.QePotid'R.O.a'QQD'R.Q'QCD'Q
Dent.

h .#91271

.

3!- : Up. Qe Pot'R. 3. U'Q4ZD'R 0)
b . *50<5-52

.

3 t- : #=/ f C'R . 3 . U'Q =CM (2)

b . #3318 1

.

3 b : Hp - 3 .CR = D*i2 (3)

b . (2) . (3) . #2342 . 3 h : Hp . Q = / f CIS . 3

.

Q*QC D^JB (4)

b . *9123 . D b :. Hp.. 3 : # = J f C'R.v .Qe Pot'R (5)

1-
. (1) . (4) . (5) . *92'142 . 3 I- . Prop

#92145. b : T>'R C (I'M . Q e Potid'/Z . 3 . D<# Cd'R . D'Q C (FQ

#92146. I- : d'R C D'R . Q, Te Potid'i? . 3 . TfD'Q =T

J- . *92142144 . 3 b : Hp .3 . I>'Q=D<£ . a'KD'JJ

.

[#13-13] ^.d'TCB'Q.
[#35-66] 3. T[B'Q= T: 3KProp

#92 147. b : D*JR C d'fl . <>, Te Potid'R .3 . (d'Q) 1 T ~ T
#92 15. f- : R e 1 -> Cls .a<R C D'12 . Q, Te Potid'P . 3 . J7

| Q j
Q = T

[#9213146]

#92151. biReCte-tl.iyRCd'R.Q^ePotid'R.Z.QiQlT^T

#92152. F : P e 1 - Cls . (PP CD<12 . Q, Te Potid'M . 3 . Q \

T\ Q = T
[#92-15. #9 1-34]

#92153. b: R eOte-> 1 . D*P C d'R . Q, TePotid'R. 3 . $; 3H Q= 2
T

*9216. 1- :. R e 1 -> Qs . P, Q cPotid'J? . 3 :

(3r) : Te Potid'R : P
|

§= ^f D*<^ . v . P ,' ^ = Cnv'(r f D'P>

I- . *91-46 . 3 h :. Hp .3 : (gT) : Te Potid'.K : Q= T\P.v.P=T\Q (1)

I-
.
#92-13 . 3 I- : Hp . Te Potid'iZ . P=T| Q . 3.P

j
$ = T [D'Q (2)

f- . #9213 . 3 H : Hp . Te Potid'B..-^ = T ' P . 3 . Q |
P = T |^ ]>P

.

[*34-£l 3.P!§= €nv'(?7|D <P) (3)

l-.(l).(2).(3).3t-.Prop
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*92 161. h :. R e Cls -> 1 . P, Q e Potid'P . D :

(rT) : T e Potid'P : Q |
P = (d'Q) 1 T . v . Q |

P = Cnv<{(d'P) 1 T]

*9217. I- : Pe 1 ->Cls . P, Q e Potid'P . D . (rT) . TePotid'P . P| Q G To ?
Dem.

K*35441. D\-:P\Q= TfD'Q.3.P\QGT.

[*23'58] D.PIQG2W (1)

h . *355244 . D h : P
|
§ = Cnv'(r [ D'P) . D . P

|
Q G £

.

[*23-58] D.P|QG2W (2)

h.(l).(2).*92'16.Dr.Prop

*92171. b:ReC\s-+l.P,Q<:*Potid<R.D.(RT).TeFotid'R.Q\P<iTvT

*9218. I- : R e 1 -» Cls . (FP C T>'R . P, Q e Potid'P . D .

PjQePotid'PvPotid'P
Dew.

r . *9216146 . D

H.Hp. DrCa^rTePotid'ErPl^r.v.PIQrr?:

[*1042] D : (gT) .Te Potid'P . P
| Q = T. v

.

faT) . T € Potid'P . P
|
Q = T

:

[*91-521] D : (3T) . Te Potid'P . P
|
Q = Z

7
. v . (gT) . Te Potid'P . P

|

Q = T :

[*13'195] D : P
|
§ e Potid'P . v . P

|
Q e Potid'P :. D h . Prop

*92181. h:PeCls-*l.D<PCa<P.P,QePotid'P.O.

Q |
P e Potid'P u Potid'P

*9219. H:Pel->Cls.<I<PCD<P.P,QePotid<P.D:

P
|
§ e Potid'P . v . Q |

P e Potid'P

Dem.

h.*9218. Dr:.HpO:P[QePotid'P.v.P|QePotid'P (1)

h . *91-521 . *342 . D H : P J

Q

e

Potid'P . = . Q | P e Potid'P (2)

h.(l).(2).DKProp

*92 191.> : P e Cls -> 1 . D'P C <PP . P, Q e Potid'P . D :

P
|
Q e Potid'P . v . Q |

P € Potid'P

*92 3. h :?P e 1 -» Cls . P, Q e Potid'P . D . P
|
Q G P* ci P*

Dem.

h .*91o8 . D \- : TeVotid'R .D . Tv TG R^uR*:
[*2344] Dh:Te Potid'P .P|QGraT.D.Pj§GP*aP^:

[*1011'23]Di-:(ar).T€Potid'P.PiQGrc;?.D.Pi$GP*c;P^ (1)

I- . (1) . *92-17 . D h . Prop
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*92301. Hi2eCls^l.P,QePotid<#O.P|QG2**«JR#

*9231. h :R el -+G\s. 2. Rx\R% = R%vR%
Dem.

h . *9014 . *5064 . D V . R%= R% \ I \

G

lR (1)

I- . *9Q15132 . *33«22 . D h . / f C'R G R* .

[*3434] D h . R# \I[ C'R G R*\R*.

[(»)] DK^GJ2*|i** (2)

Similarly h . 12* G i2*
|
P# (3)

H . *9155 . *90132 . > h . R#
\
R#= s'Potid'R

j
i'Potid'.R

[*41*51] = i'T {(aP, Q) . P e Potid'iS . Q e Potid'^R . T= P
| Q}

[*91'521] = s't j(aP, Q).P,Qe Potid'fl . T=P I §} (4)

H.*92-3.Dh:.Hp.D:(a[P,Q).P,Q € Potid'i2.r=P|Q.Dr.TGP^o^:
[*41151] D:*'T{(aP,Q).P,Q6Potid'E.r=P|Q}G JB# c;^(5)

K(4).(5).Dh:Hp.D.i2*|.R*G JR*ei JR
3|e (6)

K(2).(3).(6).DKProp

*92-311. t-zReC\8-*l.D.R#\R% = R#vRx

*92 312. f- : R e 1 -> 1 . Z> . R%
\
R*= .fi*

|
R# = .% a R% [*92 31311]

*9232. h : R e 1 -> 1 . >.(%cf #*) |(E vy R)G.R# y .%

K*34-2526 . D h . (R# o P*)|(12 u £)=JK*ji2 c; i2*|E o iyitoj^ |# (1)

I- . *9016-132 . H-.R*\R<ZR*.Rz.\RGRx (2)

K*90151. 3\-.R*\RGR*\R*.Rx\RGRt.\R* (3)

1-
. (3) . *92312 . D h : Hp . D . R#

j
5 G i^ c; R* . £*

j

R G 22* u %* (4)

K(I).(2).(4).>KProp

*9233. b:Rel-+l.D.(RvR)x=RxKjRx
Dem.

K*9018. 5t-.R*G(RvR)%.RxG(RvR)x.

[*2359] D }-

.

R% a if*

G

(R ci 5)# (1

)

K*33-272. DK/f £'(#1*5) = I^C'R.

[*9015.*23'58] Db.It&iRvRyGRxuRx (2)

F.*92-32.*34-34.Dh:.Hp.D:^G^a^.D.^!(i2a5)GjB^c;P* (3)
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r . (2) . (3) . *9117 ^M^k!^* .

h :. Hp . D : P

e

Fotid'(RvR) .0P .P<ZR*vR*:

[*41'151] D:sTotid<(fro.R)G £*«##:

[*9155] 0:(RvR)*<ZR*vR* (4)

I- . (1) . (4) . D h . Prop

*9234. \-:Rel^l.D.(Rx/R)po =R^R^
Dem.

K*92-33.*91-52.D

h:Hp.D.

(Rv R)V0
= (R^ R*)\(RvR)

[*34-2526] =R*\RvR#\Rk>R*\RvR*\R

[*91'52-54-57] = R^viltC'RvRvRxlRyiRvilfC'RvRvR^RyRvR^
[*5065.*7l-192.*72-59-591]

^R^vRvIta'RvRxta'RvRvItB'RvR^iy'RvRw
[*35-412.*91-502]

^R^vIfC'RvRxta'RvRxtV'RvRw

[*91'75] ^RxuRxvRxta'RvRxfWR
[*35'441] = R% u R* : D H . Prop



*93. INDUCTIVE ANALYSIS OF THE FIELD OF A RELATION

Summary of*93.

For this number, we introduce three new notations, of which the first two

will be used constantly, especially in the theory of series, while the third will

be seldom used except in the present section. The two which are constantly

used are

xBP, meaning x e D'P - <PP

and x minp a, meaning x e a r\ C'P — P"a,

i.e. # is a member of a and of O'P, and no member of a precedes x in O'P.

The letter B may be regarded as standing for "begins." Thus if we take

any member y of CfP, and proceed backwards and forwards as far as possible

by P-steps, we obtain a series which may be called the "family" of y: this

series, if it has a first term, has one which is a member of D'P — G'P; thus

the members of D'P — G'P are the beginners of families. For example, if P
is the relation of a peer to his heir, "xBP" will mean "a; is a peer who is not

the heir of a peer"; thus x is the first of his family. If P is the relation of

parent and child, "xBP" will be satisfied only by Adam and Eve; and so for

other relations.

The definition of B is

£ = &P(a?€D'P-(I'P) Df.
—¥

Hence B'P = D'P — G'P. If P is the generating relation of a series which

has a first term, that first term is B'P; if there is a last term it is B'P.

If a is any class, we may call a term x a minimum of a with respect to P
if it is a member of a and of ClP, but does not follow any member of a, i.e. is

not a member of P"a. We denote this relation of a? to a by " minp"; thus

we have

x minP a . = . x e a r\ C'P — P"a,

and the definition of minp is

minp= £a(a?eanC'<P-P"a) Df.

We shall also, when convenient, write " min (P)" in place of " minp."

We have mhip'a= a n C'P - P"a.
—

*

If P is serial, minp'a reduces to a single term if it is not null; thus if a

class a has a first term, this term is minp'a. We also put

maxp= min (P) Df,

and then maxp'o, if it exists, is the last term of a in the P-series. Thus if a

37—2
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is the class of peers, and P is the relation of father to son, minP'a consists of

those peers who are the first of their line, while maxp'a consists of those

peers who are the last of their line. If a is a class of numbers, and P is

the relation of less to greater, minp'a is the smallest member of a (if it exists),

and maxp'a is the largest (if it exists).

B and "maxp" and "rhinp" will be used constantly in connection with

series, where the two latter will be considered in detail, but the present number

is more specially concerned with a less general idea, namely that of genera-

tions. Take, e.g., the relation of parent and child; let us call it P. Then

the first generation consists of those who are parents but not children,

i.e. B (P; the second consists of those who are children but not grandchildren,

i.e. G'P- d'P2
, i.e. d'P-P"d'P, i.e. minp'd'P; the third consists of those

who are grandchildren but not great-grandchildren, i.e. (I'P2 — G'P8
, i.e.

d'P2 - P"d'P2
, i.e. minp'd'P2

; and so on. Also we have

~B'P = m?np'<P(/ f C'P) ;

hence the generations of P are minp"d"Potid'P. Thus we put

gen'P = inTnp"(3"Potid<P Df,

where "gen" stands for "generation."

When P is a one-many relation, such as that of father and son, every
v —>

generation is of the form T"BlP, where T is a power of P (including I\ C'P).

When P is not a one-many relation, this is not in general the case.

The generations of P do not in general exhaust the field of P. For x will

only belong to a generation of P if ' x can be reached by successive P-steps

starting from a member of B'P. If some of the families constituting the

field of P have no beginning, the members of these families will not belong

to any generation of P. Such terms together constitute the class

2><d"Pot<P,

or j9'(I"Potid'P,

which is the same class.

Thus the field of P may be divided into two mutually exclusive portions,

s'gen'P and p'd"Pot'P.

The present number begins witv . some elementary properties of B and

minp and maxP . We then (*932— 275) consider such properties of genera-

tions as do not demand any hypothesis as to P. We prove

*93-25. V . gen'P e Cls2 excl

#93-261. r- . #<(I"Pot?P = 2><<J«Potid<P . p'd"Fot'P C G*P
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and we prove (*93'274-275) that s'gen'Pand^'CF'Pot'P are mutually exclu-

sive, and together constitute C'P. We then proceed to a set of propositions

(#93-3—'41) demanding that P should be one-many or many-one or one-one.

We prove

#93 32. h : . P e 1- Cls . D : a

e

gen'P . = . (gT) . T e Potid'P . o = T"~B'P

#9336. H:Pel^Cls.D.s'gen'P = P#"il<P

*93381. I- :. P e Cls- 1 . D : x e;/(I"Pot'P . = . P*<# C D'P .xeC'P

and various other properties of gen'P and ^>'G"Pot'P when Pel—* Cls.

The propositions of this number are used throughout the rest of this

section; they are also used in the cardinal theory of finite and infinite. The

early propositions, down to #93*12 inclusive, are also used in the theory of

series.

#93 01. B = $P(xeI>'P-a'P) Df

#93 02. minP= min (P) = £a (# e a n C"P - P"a) Df

#93021. maxp = max (P) = min (P) Df

#93 03. gen'P = minP"<I"Potid'P Df

#931. r-:a-PP. = .#eD'P-(rP [#21*3 . (#93-01)]

#93101. H.2*'P = D'P-<I'P [#931 . #3218]

#93102. h : as= B'P .= .x =^'(D'P - d'P) . = . D'P -d'P e 1 . x e D'P - <3'P

[*93101 . #534]

#93103. f .1?'P = C'P - <3'P

Dem.
h . #22-9 . #331 6 . D h . C'P - d'P = D'P - d'P (1>

h . (1) . #93-101 . DKProp

#93104. h : xBR . D . R%'x = i
lx. R^'x = A

Bern.

h.*93-l. DhiHp.D.tfeCK.

[#90-12] 1.xeR*'x (1)

H. #91504. Dh:g!P
p(
>.:>.#ed'.R:

[Transp.*93-1] D h : xBR . D . ~Rvo'x = A (2)

h . #91-542 . D h : yR%x . y 4= x . D . yRvox :

[#32-18] Db:.yR*x.3;y = x.v .y.eRV0
'x (3)

h.(2).(3). DH.Hp. D:yR*x.?.y = x (4)

K(l).(4). D h : Hp . D . P*'a- = t'# (5)

h . (2) . (5) . D r- . Prop
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*9311. f- :ia;minp a. = .xe a nC'P-P"a [(*93'02)]
—

*

^
*93111. Kminp'a = a«C"P-P"a [*9311 .*32-18]

*93112. h.B'P= rrinP<D<P=rMnp'C'P

Bern.

h . *93111 . D h . minp'D'P = D'P - P"D'P
[*3725] =D fP-a*P
[*93101] = i?<P (1)

Similarly h . minp'C'P^.B'P (2)

K(l).(2).DKProp
—

>

*93113. h . minp'o C a n C'P [*93111]

*93114. V . maxp= min (P) [(*93021)]

*93115. f-:#maxpa. = .a;eanC<P-P"a [*9311114]

*93116. h.m&xP<a = anC'P-P"a [*93'115 .*3218]

*93117. h . B'P = maxp'd'P = max/C'P [*93'1 121 14]

*93118. h.maxp'aCanO'P [*93116]

*9312. h.2?<P= a<P-D<P=C"P-D'P [*93101103 . *33-2-2122]

*9313. h.minp<a<(J fC<P) = if<P [*505'52 .*93'112]

*93131. h.minp'CFP = <PP-(I<P2

h . *93111 . D F . imp'a'P = d'P - P"a fP
[*3736] = <3<P - d'P2

. D h . Prop

*93132. h.minP'(I'T=C'Pna'T-a'(T\P)

Bern.

V . *93111 . D H . minp<<PT= C'P n a^-P'^T
[*37«32] = C'P n d'T - a<(T

|
P) . D h . Prop

*93-2. h : a e gen'P . = . (aT) . Te Potid'P . a = mTnp'aT
[*37'67 . (*93-03)]

*93 21. l-:a6gen'P. = .(a2T).TePotid'P.a = aT-a'(r|P)
[*93-2-132 . *91-27]

*9322. h. B'P e gen'P [*932-13 . *9135]

*93221. K (FP- d'P2
e gen'P [*932131 .*91'35123]
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*93-23. h.gen'P = t'J3'Pvminp"(I"Pot'P

Bern.

b . *91-23 . *3722 . 3

h . gen'P = mTnp"<I"fc'(/ |* OP) u mmp"<I"Pot'P

[*53-31] =iWi>
<a<

(/|
k O<P)u^inP"a"Pot<P

[*9313] = i<B'P u miiip"(I"Pot'P

*93231. V :. S, Te Potid'P .S^T.D-.d'SC P"<1<T . v .a^CWS
Dew.

K*9r732.D
\-:.H.v.D:(rM):S=M\P\T.v.T=M\P\S:
[*91-3] D:(ailf):£= .M|2

T |P.v.r=itfj#|P (1)

h.*3436. 3h:S= itf|r|P.D.a'£C(I'(T|P).

[*37-32] D.a^CP"aT (2)

Similarly hr=I|S|P.D.(I7CP"a^ (3)

h.(l).(2).(3).DKProp

*93'24. \-:S,Te Potid'P . 5 + T . D . mTnp'd'S * minp'd'r= A

Bern.

h . *243 . D V : d'S C P"aT . Z> . d'tf- P"d'T= A

.

[*2434] D.d'Sn d'T- P"d'T=A .

024-34] d . (d'£- P"a</S) n ((pir - P"d'T) = a .

093-111] D.^inP<a'Snminp<a'T=A (1)

h . (1) J-l . D h : d'T C P"d'S . D . nrinp'd'S n rmnp'dT- A (2)
o, i

h . (1) . (2) . *93'231 . D I- . Prop

*93'25. h. gen'P eCls2 excl

Bern.

V . *30'37 . Transp . D

H:.iS,7
T 6Potid'P.a = imnp<a^.^= mmp<a fT.a4=

/
8.D:

S^Te Potid'P. £=j=T:

[*93-24]D:on
/
9 = A (1)

l-.(l).*llir35-54.D

h :. (<&S) . S e Potid'P . a = minp'd'S : (rT) . Te Potid'P . £ = imtip'd'T

:

a + £:D.an/3 = A (2)

I- . (2) . *93-2 . D I- : a, £ e gen'P . a * £ . D . a n /3 = A (3)

K (3) . *84-l . D I- . Prop
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#93 26. I" : S, Te Potid'P , Te\ £"Pot'P . D . mrnP'<I'S « muip'(P2V A
Dem.

r . #91'24 . D h : Hp . D . Te
|
S"

j
P"Potid'P

.

[*43111.*37-67] D . (gjl/) ,T«*M\P\S.
[#91-3] D.(ailf).r=Ar|/S|P.

[*34'36.#37-32] D .<I'TCP"a<S.

[#24-3] D.a'27 -jP"a'5 = A.

[*24'34] ? . (d'tf - P"CI'£) n (a'T-P"(I'-T)= A .

[*93-l 11.#91*27] D . min/d'S r» minP'd'T= A : D I- . Prop

#93-261. H . ;)'d"Pot'P= p'd"Potid'P . j/d"Pot'P C d'P

Dem.

h . #91-23

.

D r- . d"Potid'P = d"Pot'P w t'd'(7 f C'P)

[#50-5-52] = d"Pot'P u t'C'P (1)

I- . (1) . #531 4

.

D h . p'd"Potid'P =^'d"Pot'P n C'P (2)

r . #4012 . #91-351 . D r- . jo'd"Pot'P C d'P (3)

I- . (2) . (3) . #22-621 . D h . Prop

#93-27. r- :. as e C'P . D : x~ e s'gen'P . = . a? ej/d"Pot'P

Dem.

h. #40-11. #10-51. D
I- :. x <^> e s'gen'P . = : a e gen'P . Da . # <~ e a :

[#93-21] = : ^ Potid'P . Dr^^eOT- d'(T|P) :

[*4-53.*5-6] = :Te Potid'P. £ed'2\Dr . a ed'(r|P) (1)

h . #50-5-52 . D H : x e C'P . D . x e d'(7 f C'P) (2)

F.(l).(2).Dh::»e(7'P.D :. «~e s'gen'P . = :

£ed'(iT C'P):Te Potid'P . aedT. Dr . xe(I<(T\ P) :

[#91-371] = : T e Potid'P . Dr a? e d'T

:

[#40-41] = : x < />'d"Potid'P :

[#93261] s : x e^'d"Pot'P :: D r . Prop

#93-271. V.C'P- s'gen'P =p'd"Pot'P
Dem.

r . #532 . #9327 . D h : x e C'P - s'gen'P . = . a; e C'P . £ ep'(I"Pot'P .

[#93-261.#4-71] = . a; e#'d"Pot'P : D r . Prop

#93272. 1- . s'gen'P C C'P

Pern.

h . #93-2-113 . D r : a e gen'P . D . (^T) . T e Potid'P . a C d'T

.

[#91-27] D.aCC'P (1)

I- . (1) . #40151 . D r . Prop
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*93273. \-.CtP-p ta"¥ottP= stgenfP {*93-27l'272 . #24492]

#93-274. K<7<P = s<gen<Pvy(I"Pot<P [#24411 .#93-271-272]

#93275. Ks'gen'PAp'(I"Pot'i> =A [#93*271 . #24-21]

#93& I- : P e 1 -> Cls . Te Potid'P . 3 . wm^a'T^ T'*B'P

Dem.

b . #71-38 . #93-101 . 3 H : Hp . D . T"5*P= ?"D'P - T"<1<P

[#37-25] = r**D'P-T"P"D'P

[*37-33.*91-3] =?"D'P-P"2'"D'P

[*93-lll.*91-27] =mmP'T"D'P (1)

H . #91-271 , #37271 . D \- : T e Pot'P . D . ?"D'P = CI'T (2)

I- . *50-5-51-59

.

D f : T= Jf C'P . O . ?"D'P = D'P

.

[#93-1 12] D . imni/T"D'P=~B'P

[#9313] = i^fn/<I<:r (3)

I- . (2) . (3) . #91-23 . D I- : T e Potid'P . D . minP'r"D*P = imnp'(If21

(4)

K(l).(4).DKProp

#93-31. I- : P e 1 -> Cls . D . P'Wp'dT= mmP'<I'(T |
P)

K #71-38 . #93111 . #37-265 . D

t- : Hp . D ..P«nmii.'(FZ
T= P"<J'T-P"P"aT

[#37:32] =a <(T|P)-P"a f(riP)

[#931 1 1 .#3436] = min/d^Z7

j
P) Of. Prop

#93-32. h :. P e 1 -*Cls . D : a e gen*P . = . (gZ7

) . Te Potid'P . a = T"B*P
[*93-2-3]

#93-33. b : P e 1 -» Cls . a e gen'P, D - P"a e gen'P

[#93-2-31 . #91-28-281]

#93-34. l-:Pel-»Cls.D.P"I?'Pegen'P [*93'22-33]

#93-35. 1- : P £ 1 -> Cls . a egen'P . T e Potid'P . D . ?"a egen'P

Dem.

b . #91-341 . #37-33 . #342 . D

b : S, Te Potid'P. a = S"B'P . D . SjTePotid'P. T"a = '{Cnv«(JS|^}"JJ'P (I)

b . (1) . #9332 . Df : Hp<l) . Pel-*Cls . D . T"a egen'P (2)

b . (2) . #101 1-23-35 . #93-32 . D b . Prop
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#9336. H:P € l-+Cls.D.s'gen'P = P*"i?P

Dem.

K*93-32.Dh::Hp.D:.

y e s'gen'P . = : (gT) . T e Potid'P . y e T"B'P :

[#37-105] = : (&T, x) . T e Potid'P . x e~B'P . xTy

:

[#11-55] =:(Rx):x €~B'P:(nT).T e Fotid'P. xTy:

[#41-11] = : (a#) . x eB'P . x (s'Potid'P) y :

[#91 -55] = : (ga?) . x eB'P . xP*y :

[#37-105] stye P*"B<P : : D I" .Prop

#93-37. h : P e 1 - Cls . D . C'P = P^'B'P u 2>'a"Pot'P [#93-27436]

#93-38. h : . P e 1 -> Cls . D : a; €p'd"Vot'P . = . ~P#'x C <I'P .xeC'P

Dem.

h . #93-271-36 . D

h :: Hp . D :. x e p'a"Pot'P . = : x e C'P . x~eP%"~B<P :

[#37 -10o.*10-51] = zxeC'P: yP*x . D„ . y~elf'P :

[#93101.#22-84-8] = :xeC'P: yP*x .Dy .ye G'P u - D'P :

[*9013.*3316] = :xeG'P: yP^c . Dy .

y e (d'P w - D'P) n (a'P w D'P) :

[*22-69.*24-21] = :xeC'P: yP#x . Oy . y e d'P : : D h . Prop

#93-381. h : . P e Cls -* 1 . D : x ep'd"Pot'P . = . P*'a: C D'P .xeC'P

#93-382. K :. P e 1 -» 1 . D : a; e^'a"Pot'P n j9'a"Pot'P . = .

P*'x yj P*'x C D'P n a'P .xeC'P [#93-38-381 -261 . #90-31-311]

#93-4. h : P e 1 -* Cls . a'P C D'P .^IB'P. Te Potid'P . D . g ! mn^OT

1-
. #9313 . D I- : Hp . D . a ! rrinP'<l'(I f OP) (1)

h . #93113 . #33181 . D I- :. Hp . D : rSnP'a'TC D'P :

[#37-431] D : 3 ! mmP'(I'T . Z> . a ! P"nrniP'a'T

.

[#93-31] D.a*minp'(I'(r|P) (2)

h. (1). (2). #91-17. Dh. Prop

#93-41. h : P e 1 -> Cls . a'P C D'P . a ! B'P . D . gen'P e Cls ex2 excl

[*93-2-4-25 . #84-13 . #24-63]
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*93412. KP<y(I"Pot'PCp'(I"Pot'P

Dem.

I- . *93261 . D H . P"p<a"Pot'P = P"p'd"Potid'P

[*4037] C^'P"'(I"Potid<P

[*43411] C^a"|P"Potid'P
[*91'24] C^CF'Pot'P.DKProp

*9342. l-:Pcl->Cls.D.P'ya"Pot'P=^a"Pot'P
Dem.

h . *93'261 . D h . P"/>'(I"Pot<P = P"p'<I"Potid<P (1)

h . (1) . *72'34 . *91-35 . *1024 . D
\-

: Hp . D . P"p<a"Pot'P=^'P"<a"Potid'P

[*43411] =ya"|P"Potid fP
[*9124] =ya"Pot'P : D h . Prop

*93431. h.p'<3"Pot'P = ^'CI"|P"Pot'P

Dem.

H.*91 -264-304. D b . Pot'P = i'P u
j
P"Pot'P

.

[*5314] D I- .ya'Tot'P = d'P n p'd"
|
P"Pot'P .

[*91-271-283.*40-151-23] D I- .p'a"Pot'P=2>'(I"| P"Pot'P . D> . Prop

The following propositions, not being needed in subsequent propositions,

are here inserted without proof, merely for the sake of their intrinsic interest.

*93-5. h : Te Potid'P . D .~Pt8<T=~PBt'T= T\ "Potid'P =
|
^"Potid'P

*93-51. V : T e Pot'P . D . PotT C Pts'TC Pot'P

*93 52. V : T e Pot'P . D . j9'<I"Pot'T =p'<l""p
tl,

tT= />'d"Pot'P

*9353. \-
: S,T € ¥ot<P .xSx.D .fay) .y(S\T)x

*93 54. \-:Se Pot'P

.

xSx . D .

x

ej/d"Pot'P

*9355. KC''(Ppo n/)C:p'(I''Pot'P

*9356. \-:'&l(Ppo nI).D.<K lp<<I"Fot'P



#94. ON POWERS OF RELATIVE PRODUCTS

Summary of #94.

In this number we shall be: chiefly concerned A^ith propositions connecting

powers of R
\
S with powers of S\R. If P is a power of R

\
S, 8

|
P

j

\R will be
a power of 8

|
R. If 1* is a power of R

|
#, it is a product of the form

(R\®)\(R\S)\:.\(R\S).

If we transfer the initial R to the end, we get a power ofS
|
R. Thus there

is a power of #
|
R, say T, such that

P\m = R\T.

If jR e l--» Cls . (P(S
j
S)-C D<#, we find

i2|(&|fi)1(flf|12)i...|;(-8f|i2)|-B*(J2|i8f)|(i2}flf)...(JK|v8)

by rearranging and observing that R
\
R = I [D'R. Thus

Eel-* Cls . Q<(R\8) CD'.R .P

e

Pot'iZfS .D.(^T).Te Pot'Sfi? .P = R \T\ R.

Expressions of the form R\T\R are constantly needed. They will be
specially dealt with in #150, and will occur constantly in the sequel.

The above connections of Pot'f-R \S) and Pot'($
j
R) are embodied in the

following propositions:

#94 14. V .
J

R"Yot'(R
1

S) = R
j

"Pot<(&
j
R)

*94*21. h . Vot'(S
|
R) = (£ || i2)"{Pot'(i2

1

8) O i'I}

*94*31. \-:Re 1-* Cls . a<(i2 1 £) C D'iLO. Pot'CR

1

S) = (i* || B)"Pot'(i8 J J2).

From #94*4 to #94*34, the propositions are all concerned with p
td"{R\ 8)

tmdp'G'^SlR). We prove

#945. '\-..p*a^<ti t($\*R)=ptq"R\"Voif.(S\.R)

*94*51. h: Rel -Cls .3 . p'(I"Pot'(S I £>= J?'V(I"Pot'(i2
| £)

Finally we prove (*94-53*54) thatif either 12 is one-one and <L*(R \8) C D'R,
or # is one-one and (F(S

|
R) C D<£, then p'a"Potf('JR

| £) is similar to

p»(I"Pot'(iSf|J2).

The only proposition of this number which is ever subsequently referred

to is the last, #94*64, which, owing to the fact that the Schroder-Bernstein
theorem has been already proved (#73*88), is only used in #95*23. But #95*23

itself is never referred to again. The reader may therefore omit the reading
of the propositions of this number (as also of #95) without detriment to the

understanding of what follows; he should, however, read the summaries.
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The chief importance of the propositions in the present number is when

R and 8 fulfil the hypothesis of the Schroder-Bernstein theorem, i.e.

R, Sel->1. d'R C D'S . a (S C D<R.

In this case, R\ S gives what we may call a "reflexion" of D'jB into part

of itself ; this part may be again reflected by R\ <Sf into a part of itself, and so

on. The terms in D'R which are eliminated sooner or later by this process of

reflexion constitute s'gen'(JR
|
S), since any one reflexion eliminates terms which

constitute one generation of R
\
S. The terms not eliminated by any number

of reflexions constitute p'Q."Ftot'(R
|
S). These two sets of terms together

constitute D f
(i2|<S), i.e. D'R. In this number and #95 we shall prove that,

with the Schroder-Bernstein hypothesis,

s
(gen'(R

1
S) sm s'gen<(S

|
R) . p'(I"Foi'(R

|
S) smp'a'W&tfi&l R).

These two propositions together yield a proof of the Schroder-Bernstein

theorem, in virtue of #93274*275. This proof is essentially thws same as

Bernstein's published originally by Borel*.

The nature of the two proofs of the Schroder-Bernstein theorem, namely

Zermelo's (that given in #73) and .Bernstein's (that to be given in this number

and #95) will be best apprehended by means of figures.

In Zermelo's proof, we first prove that if R is one-one, and /3 is a class

contained in D'R and containing d'jR, then fi is similar both to D'R and to

d'R. In the figure, the points of the outer rectangle form D'R, those of the

D'R

inner rectangle form Q.'R, and those of the outer oval form ff. Thus the shaded

portion of the figure is /8 — (L'R. We now define a class, of classes *: by the

fallowing characteristics: o is a member of it if (1) a is contained in D'R,

(2) a contains the whole of the shaded area, (3) -E"«Ca, i&- if ® is a member
of «, so is any term to which x has the relation R. Our proposition is obtained

by considering p'X) i.e. the area common to all the members of k. We prove

* Lemons sur la theorie des fonctions (Paris, 1898), Note I (pp. 102—7).
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(*73*81) that p'/ceic, and (*73*811) that R (tp'K does not contain any of the

shaded area. In the figure, R"pe
/c is the smaller oval. We then prove (#73*83)

that p'/c consists entirely of the shaded portion and the smaller oval. Hence

ft (the larger oval) consists of two mutually exclusive parts, namely p'ic and

Q-'R — Ifp'/c, the latter being that part of the inner rectangle which lies

outside the inner oval. Assuming now that R is one-one, p'ic is similar to

R'^'/c; hence, adding Q.'R — R"p'fc, it follows that $ is similar to Q'R, and

therefore to "D'R.

In order to obtain hence the Schroder-Bernstein theorem, it is only

necessary to replace R by R\S and # by <I'S, and to assume further that

S is a one-one whose domain contains Q.'R. Then D'R = D'(R
J
8), and we

obtain (*73*87) Q.'SsmD'R, and therefore D'SsmD'R, which was to be

proved.

In Bernstein's proof, we have the two relations R and S from the beginning.

In the left-hand part of the figure, the outer rectangle is D'R, which = D'(R
1

S),

D'R D'S

S^cfs^^

//

-§—

i

"~R~~~

/

»—• /^^a^^N

a'(Ris)

T '

**•

m
a'(siR)

* *^—

'

the oval is d'S, and the second rectangle is df(R
1

8). Thus the points of the

outer but not the second rectangle form the first generation of.R \ S. Within

a'(R\S) we can form a third rectangle, which will be S"R"<1<(R | S),

i.e. G.f(R\Sy. The points belonging to the second rectangle but not to the

third form the second generation of R
|
S. We can proceed in this way to

continually smaller rectangles. The points which sooner or later are left outside

some rectangle form s'gen'(JR
|
S); those which are common to all the rectangles

form jt)'0["Pot'(jB | S). A similar analysis, exhibited in the right-hand part of

the figure, may be applied to D'#, which is thus divided into s'gen'($| R)
and ^'(I"Pot'(#

|
R). We prove . in this number (*94'53) that, with a

hypothesis which is part of the hypothesis of the Schroder-Bernstein

theorem, p<(I"?ot t(R\S)8mp'a"Fot'(S\R); in the next number (*95'7i)

we prove that with the hypothesis of the Schroder-Bernstein theorem,

s'gen*(R
|
S) sm s'gen'(£

|
R). Hence by addition, D'R sm D'S.
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*9412. h:Pe 1

Pot t(R\S).D.(^T).TePotl(S\R).P\R = R\T
Bern.

K #34-21. 0\-.(R\S)\R = R\(S\R) (1)
I- . *91 36 . *34'27 . D H : T e Pot'(£

|
R) . P

|
R = R

| T . D .

T\S\R € -Pot'(S\R).P\R\S\R = R\T\S\R.
[#10-24] D . (ar) . T e Pot<(£

|
P) . P

|
£

| 8 1
P = P

|
T (2)

l-.(2).*10-ll-23.DI-:(ar).T6pot'( <S|i2).P|i2 = JB|r.D.

(ar).T'ePot'(,S|P).P|P|,Sf|P =P|r (3)
H . (1) . (3) . *9rm . D h . Prop

#9413. H:27
6Pot'(fif|i2).D.(aP).P e Pot t(i2|/Sf)'.P|22 = i2ir

[Proof as in #94-12]

#9414. I- . | P"Pot'(P

1

S)=R | "Pot<(£ j 22)

Dem.

h . #9412 . *431111 . #371 . D H : P e Pot'(P \S).5.\ R'P eR |"Pot<(£
|
R) :

[#37-61] Dh.
|
P"Pot'(P

|

S) C i^'Pot'OS | P) (1)
h . #9413 . *4311101 . #371 . D

I- : Te Pot'(S
|
P) . D . P

|
<Te

j P"Pot'(P

1

S) :

037-61] D H . R
|
"Pot'(#

|
R) C

j
P"Pot'(P

|
S) (2)

h.(l).(2).Dh.Prop

*94-2. H:PePot'(P|>Sf)ut'/.D.AS'|P|P e Pot'(>S|P)

Bern.

\-.*S4,-2l.D\-.S\(R\S)\R = (S\Ry.
[*91'352] Dlv.£|(P»|,S)|PePot'(S|P)

(1)
h.*34-21.*91-282.D

t-:S\P\R € -Pot<(S\R).O.S\(P\R\S)\R = (S\P\R)\S\R.
(S\P\R)\S\R € Vot'(S\R) (2)

k (i) . (2) . *9i-msin^'WR) . D

(-:P e Pot'(P|^).D.^|P|P e Pot'(^|P)
(3)

h . #504 . #91-351 .D\-.S\I\Re ¥ot<(8
\ R) (4)

H . (3) . (4) . 3 I- . Prop

*94-201. t-:TeVot<(S\R).D.(<KP).PePot'(R\S)vi<I.T= S\P\R
Bern.

h . #504 . #5116 . Dh. (Sf|P = <Sf|/|P./ 6 Pot <(P|^)wt'/.
[#1024] D h . (gP) . P 6 Pot'(P \S)vt<I.S\R = S\P\R (1)

l-.*91-282.*34-21.DI-:P€Pot'(P| <S).r = <Sf|P|P.D.
P|P|^ e Pot'(P|^).r| <s|p=>sf|(P|B| <s)|p.

[#10-24] 3-(nQ).QePot'(R\S).T\S\R = S\Q\R (2)
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K*50-4.*34-21.D

\-:P = I.T=8\P\R.O.T\S\R= 8\(R\S)\R.
[*91*351] 3.(&Q).Q€?ot'(R\S).T{S\R = S\Q\R (3)

K(2)
. (3) . *1011*23 .O h :

(

aP) . PePot<(22 (S)u *'/. !T=S j P
|
22 . D .

(aQ)vQePot%2fr|S).r|Sj.R-£|G|JK.

E*22-58] y.faQy.Q.e?ot*(R\S)s*t tI>T\S\R = S\Q\R (4)

Ml).C4).*9ri7l*l*^^

*®4'21. h . Pot'(£ | 22) = (S
|l
R)"{Pot<(22

|
S) u i'l)

Dem.

r . *9*2 . *43<112 . *37*61 . D t- . (£ ||
22)"{Pot<(22

f #) w t<2] C Pofc'(S { 22) (I)

t- . *94-201 .*43102 . •37-1 . D f- . Pot^S
[ 22) C (£ (|-22)"{Pot<(22 [ 8) u t<2] (2)

K(l).(2).OKProp

*9*22. h :. (P22 C D'/Sf . v . D'-S C ®<R ; D

.

Pot'(S
| 22) = OS ||

22)"Potid<(22 1 S)
Dem.

h

.

*94-21 . *43 112 .*504 . *53 31 . D
r . Pot<(£

|
R) = (S |[

22)"Pot<(i2

1

S) \ji'(8\ R) (1

)

H . *37321 . 3 h : d'22 CIPS . O . D'22 = B<(22
\ 8)

.

[*33I6I] D . WR C 0<(22 \S).

[*50-63] D.I[Ct(R\S)\R = R.
[*34-28] 3.#|2"rC%K|£)|22 = £|22.

[*43112] 3.(S\\RyifC'(R\S) =8\R (2)

Similarly h :D*#C(I'22. D . (,S|| 22)'/ [C(R\S)^8\ R (3)

K(1).(2).(3).D

r : Hp . 3 . Pofc<C£ |
R) =(511 -K)"Pot<(22 1 S) w *<(£ 1[

22)'/ f C<(22 1 5)

[*91'23] = (S ||
22)"Potid<(22

j 8) : D h . Prop

*94 3. h :. 22 e I -» Ols . <F(22 j S) C D<22 .O

:

P e Pot'(22 } £) . = . (gT) . T e Pot'(/Sf
j 22) . P = 22 1 T

|
R

K*94*12. >l-:PePot'(£|S).D.(ar).l, fPbt <
(5|22).Pf22{22 = 22|2

7

[22 (1)

h . *91271 .D 1- „ Hp . D : P e Pat*(22 j 5) . D . (I'P C D<22

.

[*72-6] D.P|22|22 =P (2)

I- . (I) . (2) . D I- :. Hp . >: P e Pot<(22

1

8) . D .

(a2
T).TePot'( )St2f).P= 22|r| JR (3)

K*9413. DK-ITePot'OS^).}.

(aP).PePotf(2215).P|PtE = 22|T|5 (4)
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M2) . (4) .
D h :. Hp . D : r e Pot<(£| E) . D .

(RP).PePot'(R\S).P= R\T\R.
[*13-195] D.R\T\ReYot*(R\S):

[*1312] D : Te Pot'(flf \R).P = R\T\R . D . Pe Fot'(R
| 8) (5)

K(5),*1011-21-23.D

t-:-nV.3:(nT).T e J?ot<(S\R).P=R\T\R.3.P € Yot'(R\S) (6)

K(3).(6).Dh.Prop

*94 31. I- : R e 1 -+ Cls . d'(i2

1

S) C D'i2 . D . ?ot'(R \S) = (R
||
JR)"Pot'(£| R)

[*94'3]

The following series of propositions lead up to the proof that when
Rel-*1.<I<(R\S)CI><R, or Sel ->1 . (F(£ |i2) C D'S, we have

y(I"Pot<CR
I
£) smp'<I"Pot<(S

|
R).

*044. t-.p'a"Pot<(R\S)=p<a«\S"\R"]?ot<(R\S)

=p'£"'(I"| 22"Pot'(.R
|
S)

=2>SS"'J?"'<I"Pot'(i2

1

S)

Bern.

I-
.
*93-431

. D f- .^'(F'Pot'CR
1
8) =;><(I"

|
(E

| S)"Pot'(JR
1
8)

[*43'201.*3733] =p'a«'|i8f"|i2"Pot'(i2|S) (1)

[*43411] =p*8'"a«\Il''Pot'(R\S) (2)

[*43411] =j»'S"'J?'"<I"Pot<CR|,Sf) (3)
r.(l).(2).(3).DKProp

*94 401. h ..p'(F'Pot'(JR
I
-8) =j/CT"i?

|

"£ | "Pot<(£
1 5)

Bern.

h . *93431 . *91'304 . D
H . j>'d"Pot'(fl

|
S) =p<d"(R

1 5) | "Pot'CR |
S)

[*43-2.*3733] =p<a«R
|
"S | "Pot'(i2 | S) . D h . Prop

*94402. Kjt><d".R|"\Cjt>'d"A,

Ztem.

h /*4311 . *3436 . D I- . (P) . d'R | <P C d'P (1)
K(l).*40-451. DKProp

*9441. I-

:

8 e 1 -> Cls . d'(# | 22) CD'jS.D.

S«p'(I"Fot<(R
| 5)=^a" | R«Pot'(R I fi)

Item.

h . *4012 . *91351 . D h .p'd"| 22"Pot'(i2
|
S) C a' | 22'(JS

| S)
[*43'111] Ca*(i2|S|i2)
[*34-36] Ca'(S\R) (!)

R&W I 38
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h . (1) . D h : Hp . D . p'd"
I

R"¥ot'(R
j 8) C D'S .

[#72*502] D . p'd"
|
R"Fot'(R

\
S)- S«S«p<a" 1

12"Pot«(12
| 5)

[#72-34] = £"/>'iS*"(I"| 12"Pot'(12
1 5)

[*94'4] = £"jp'(I"Pot'(12 1 S) : D r . Prop

#9442. h : 12 e 1 -» Cls . D . i2"j)'<I"Pot'(12 |
S) =p<d"

|
12"Pot'(12

1 £)

Dera.

I- . #7234 . D h : Hp . D . 12"p'(I"Pot'(12 | 8) =p'R"<a"Fot'(R | £)

[#43-411] =p'<I"| JR"Pot'(22|Sf):D h . Prop

#9443. H:i2,&'el->Cls.a'(S|22)CD'flf.D.

£"j9<a«Pot<(12
|
.£) = £"p<a"Pot'(22 1 #) [*94-4l-42]

#94441. h : 8 e 1 -» Cls . a<(S 1 12) C D'S . D .

#<VCI"Pot<(12
|
5) =p'<I"R j

"Pot<(#
| 12) [*94-14-41]

#94442. h : 12 e 1- Cls . Z> . £<y<I"Pot<(12
| £) =j>'d"12 |»Pot'(S

|

R)

[*94-14-42]

#945. h . p*a"Pot'(S | 12) =p'(I"J&
|
"Pot'(S

|
12)

Dew.

h . #94402 . D h ./<I"12 | "Pot<(£
|
R) C j>'d"Pot'0S | 12) (1)

h . #94-402 . Z> K p<a«S
\
"R

j

"Pot*(i8f
|
R) C p'd"12

|
"Pot<(#

|

R) .

[#94-401] D r .yd"Pot<(£ | 12) Cp<a«R |

"Pot<(#
1 12) (2)

K(l).(2). DKProp

#94-51. r : R € 1 -> Cls . D . p<d"Pot<(S
j

JB) = R"p<a«Vot<(R
|
S)

[#94-5-442]

#94-52. r : S e 1 - Cls . d'(S 1 12) C D'S . D .

p'd"Pot'0Sf
|
R) = £'yd"Pot'(*12

| 8) [#94-5-441]

#94-53. h : 12 e 1 -> 1 . d'(12 \S)CD'R.D.
p'd"Pot'(12

| 8) sm^'d"Pot'(# 1 12)

Devi.

(1)

(2)

h . #93-261 . D H . ?
/d"Pot'(12 1 S) C d'(12

|
S)

(- . (1)

.

D h : Hp . D .^'d"Pot'(12 1 S) C D'12

K (2) . #94-51 . #73-21 . D H . Prop

#94-54. h : £ e 1 -* 1 . d'(£ 1 12) C D'S . D . p'd"Pot'(12

1

8) sm 2>'d"Pot'(S 1 12)

*94o3 -J- d

[Or, #94-52 . #93261 . #7322]
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#946. t-:.R\S= S\R.3:Me?ot<R.]Sr €F6t'8.D.M\]ST =N\M
Dem. 4

H. #34-27-28. Dh:Hp.J»f| (8f = /S|if.D. JafjJ2| lSf= i8f|Jf|JB (1)

K (1).#91-171^^. Dv '
<j>M

b:.Hv.MePot'M.D:M\S= S\M:
S,M,N1

(2)

(2) R,S,M D : N e Pot'S . D . M
|
JV=N

\
M :. D h . Prop

(2)

(3)

#94-61. F-:.JB|flf = iS|12.D:ifePot'22-.D.if|^po *=i8fpo |Jf:

# ePot'S. D . iV| Bpo = jRpo
J

iV

Dem.

K #43-42. Dh.ilf|#po = s<itf|"Pot<,Sf (1)

I- . (1) . *94-6 . D r : Hp . ilf e Pot<£ . D . M
|
S^ = s<

|
M"Pot<£

[#43-421] =Svo \M

«-.(2)|J.
Df-:Hp.^ e Pot^.D.^| JRpo = i2po |iV

K(2).(3). DKProp

#94-62. h:E|S = £f|i2.D.i2po |^po = <Sfpo |

JRpo

Dew.

I- . #43-42 . #94-61 . D b : Hp . D . jRP0 | &„ = s'
|
i^'Pot'S

[#43-421] ^^lEpoOKProp
#94-63. b-.RlS-SlR.D.iRlS^CZR^S^

Dem.

K #91-502. Db.RlSQR^lS^ (1)

h. #94-61. Ih-.Kv.MQRnlS^.D.MlRlSGR^lRlS^lSi
[#91-511] GtfpJ^ (2)

l-.(l).(2).*91-l71.3H:.Hp.D:Jlf6Pott(i2|«S).D.ifGJKro |/Sfpo :

[#41-151] D : (R ) fl^ GRm | Sp0 :. D h . Prop

#94-64. \-:R\S=S\R.D.(R\S)*GRk\S*
Dem.

K #34-36. Df-.D'(iZ|£)CD<i2.<P(/S'|22)C(I' JR.

[#33-16] 3\-:Kv.D.C'{R\S)CC'R
Similarly h : Hp . D . C'(R

;| 8) C O'iSf

I- . (1) . (2) . #50-6 . #35-31 . D h : Hp . D . If C'(/2 1 S) G If C"i2 1 Jf C<£ (3)

h . (3) . #94-63 . #91-54 . D I- . Prop

(1)

(2)

38—2



*95. ON THE EQUI-FACTOR RELATION

Summary o/'#95.

The purpose of this number may be explained as follows. Consider the

series of relations

R,P\R\Q,P*\R\Q>,Pi \R\Q*,...;

it is required to find a means of defining this series without the use of numbers.
If we used numbers, and had the definition given later (#301) of P", where v is

any finite integer, the general term of the series would be P"
|
R

|
Q". But we

have not yet defined numbers, and we therefore desire some means, not
involving numbers, of expressing what is intended when we say that, in

a given term of the series, the same power of P and of Q is to be involved.

This we do as follows. Using the definition of P
||
Q in #43, we have

P\R\Q = (P\\QyR.P>\R\Q* = (P\\QyR.P*\R\Qs = (P\\QY<It....

Thus the general term of our series is got by taking any power S of

(P
II Q), and forming S'R. The whole of the terms of the series are therefore

constituted by the terms which have to R the relation (P
|| Q)%; i.e. they are

{sg'iPWQ^yR. For convenience of notation we put*

(P*<2) = sg<{(P||Q)*} Dft[*95]

Thus the class of relations we wish to consider is (P*Q) (R.

To illustrate the nature of (P*Q)'R, suppose R is the relation "first

cousin," while P is the relation of child to parent and Q is the relation of

parent to child. Then P
|
R

\
Q is the relation "second cousin," P2

1
R

| Q2

is the relation " third cousin," and so on. Thus (P*Q)'R is the class of all

relations of cousinship which do not involve a difference of generation; and
"x {s'(P*QyR} y" will mean "x is a cousin of y in the same generation."

Most of the propositions in this number are inserted because they are

required in the proof of #9552, which states that, under suitable circum-

stances, s'(P*Q) eR e 1 —> 1. This proposition itself is proved mainly because

it is required in the proof of #95-63, which states that, if P, Q are one-one's

each of which has its converse domain contained in its domain, and if the

first generation of P is similar to the first generation of Q, then the sum
of the generations of P is similar to the sum of the generations of Q. This

leads immediately to a proposition (#9571) which is half of the Schroder-

Bernstein theorem (the other half being #9453 or #94 -

54), namely: "If

* This notation is used in the present number only. In *257, we shall introduce a different

and wholly unconnected meaning for (P»Q). A temporary definition is indicated by the letters

"Dft" followed by a reference in square brackets to the number or numbers in which the

definition is used.
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R and S are one-one's each of which has its converse domain contained in the
domain of the other, then the sum of the generations of R

|
S is similar to

the sum of the generations of S
|
R."

*9501. (P*Q) = sg'{(P|jQ)*} Dft[*95]

*961. \-::Me(P*QyR. = :.Refj.:NefjL.DN .P\N\Qefi:0».MetjL
Dem.

r . *32-18 . (*95-01) . D

h :: Me(P*Q)'R . = :.M (P\\ Q)#R :.

[*90-ll] =:.M€C\P\\Q):.Ne^.T(P\\Q)N.^ T .Te^:

Re/jbi^n.MefjL:.

[*43-302-102] =:.N6 fj,.T=P\N\Q.DTN .Te fJL:Ren:^.Men:.
[*13191] =:.^e fi.DN .P\M\Qefj.:R€^:Dli .Me fi::Ob.Prop

*9511. h :. <f>R : <f>N . DN . <f>(P\N\Q) z D : Me(P*QYR.DM .cf>M

Dem.

1- :: Me(P*Q)'R .3:.<f>R: <f>N . D^. <f>(P\N\Q) :D.<f>M (1)

h . (I) . Comm . *10'11-21 . D h . Prop

*9512. H:.ilf6(P*Q)^.D>/ .</,(P|ilf|Q):D:^ e (P*Qy jK-^ JB.^.^
Dem.

h . *43112 . D

hr.Hp.^tilfeCP^r.R.D^.^KPIIQ)^}:

[*37-63] = : We(P|| Q)"(P*Q)'P . DA. . <£iV (1)

p\\Qh.*90-311 R .D

h : N~e(P*Q)'R - i'R . D . Ar e (P
||
Q)"(P*Q)'P

h . (1) . (2) . D h . Prop

*9513. h . P e (P*Q)<R [*95-l j

*95131. h.P|P|Qe(P*Q)'P

Pern.

h . *9(H51 ^|# . D I- : £(P
|| Q) R . D . S (P |l Q)*P

I- . (1) . *43-102 . (*95-01) . D f- . Prop

*95132. V'.Me{P*Q)<R.^.P\M\Qe{P*QyR

*90172^|?.*43-102

(2)

(1)
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*9514. r :. <f>R : N € (P*Q)'R . <f,N.ON .(f>(P\N\Q):D: Me(P*QyR.3M .<j>M

Dem.

h.*95-13132.Dh:.Hp.D:
4>R .Re{P*Q)'R : N e (P*Q)'R . <j>N . DN . P\N\Qe(P*Q)<R .<f>(P\N\Q) :

[*9511] D :M e (P*Q)'R .DM .Me (P*Q)'R .<f>M:.Dh. Prop

The use of *95*11 in the last line of the above proof proceeds by sub-

stituting M e (P*Q)'R . <f>M for <j>M

.

*9521. \-:Me(P*Q)<R.y.(<zS,T).S6¥ot'Pvi<I.T€ ?ot'Qv i'I.M=S\R\ T
Dem.

K*5(H.Dr.P = 1\R\I.

[*5116] D\-.(KS,T).Se¥ot'Pyji'I.TePot<Qvi'I.R = S\R\T (1)

h . *91-36-351 . *50-4 . *34'2728 . D
I- : 8 e Pot*P v i'I . T e Pot'Qv i'I . M= S\R\T .3 .

P\Sel?ot<PyJi<I.T\Q€PotlQvi<I.P\M\Q = (P\S)\R\(T\Q).

[*ll"S6]D.(RS',T').S'eFot'PvL'I.T'eTot'Qv i<I . P\M\Q = S'\R\T' (2)

K(2).*irir35.D
h :(rS,T) .SeFot'P v i'I . T ePot'Qv I'l . M = 8\R\T.D.

(RS,T).SeFot'Pvi'I.Te?ot<Qyji'I.P\M\Q = S\R\T (3)

h . (1) . (3) . *95-ll . D r . Prop

*95 211. \-:a<RCC'Q.Me(P*Q)<R.D.

faS, T).Se Pot'P ui'I.Te Potid'Q ,M = S\R\T

Dem.

r . *50-62-4 . D h :. Hp . D : S\R\I rC"Q = S\R\I:

[*51-239.*91-23] D : (rS, T) . S eYot'PvJL<I.Te¥otid'Q.M=S\R\T. = .

(RS,T).S€Yot<PyJt<I.TeFot'Qvi'I.M=S\R\Ti

[*95"21] D : (a#, T) . SeYot'Pui'I.TeVotid'Q .M=S\R[T:.
DKProp

*95-212. \- -.D'RCC'P . M e(P*Q)'R .D .

(rS,T) . S eVotid'P . TeVot'Qv i'I .M= S\R\T
[Proofasin*95-211]

*95'22. h:T><RCC<P.a<RCC<Q.Me(P*Q)<R.O.

(3S, T) . S e Potid'P . Te Potid'Q . M= S\ R\ T
[Proof as in *95*211]

*95 221. h : T e Vot'Q . D . (rS) . S

e

Pot'P . 8 \R \ T e (P*Q)'R

Dem.
\- . *95131 . *91351 . D h . (a flf) . S e Pot'P . S

|
R\ Q e (P*Q)'R (1)

h . *95-132 . D
f- : Se Pot'P . Te Pot'Q . 8 \

R

|

T e (P*Q)'R . D . P\ 8\R
\
T\ Qe(P*Q)'R .

[*91-36] D .(g£')!. S' ePot'P . 8' \R\T\Q e(P*Q)<R (2)

K (1) . (2) . *91'373 . D I- . Prop
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#95 222. h :>Sre Pot'P . D . (%T) . Te Pot'Q . S
\
R

|
T e (P*Q)<R

[Proof as in #95-221]

#95 23. h : M e (P*Q)'R .D,M(Pst Qts) R
Dem.

H . #3218 . (#95-01) . D H : Hp . D . 1/ {(P
jj Q)*} P .

[#43-202] D.M{(P\) (jQ)}*P.

[*43-202.*94-64] D . J/ {(P )* | (| Q)*} R .

[(#910r02)] D.Jf(Pst Qts)P.Dh.Prop

#9524. h:Me (P*Q)'R .O.M (Qts j

Pst) P [Proof as in #9523]

#953. I- :. g ! P . Ct'Q C D'Q . <I'R CD'^.D: T e Potid'Q . D . g ! P
j
T

Dem.

H. #50-62. DH:HpO.P|/rC*Q = P.
[#1312] D.a!JK|(/rCQ) (1)

h . #91-27 . #33181 . D H :. Hp . Te Potid'Q . D : aTCD'Q :

[#34-35] D:a!r.D.a!(T|Q) (2)

H . (1) . (2) . #91-371 . D H . Prop

#95-301. f- :. g ! P . D'P C d'P . D'P C (VP .D:Se Potid'P . D . g ! S
j
P

[Proof as in ¥95*3]

#95302. h :. Q'Q C D'Q . d'P CD'Q.D : Te Potid'Q . D . (I'(P | T) C D'Q

Dem.

H . #91-271 . #34-36 . D H : T e Potid'Q . D . CI<(P
|
T) C (I'Q (1

)

H. (1). #22-44. DH. Prop

#95-303. H :. D'P C <J'P . D'P C d'P .DzSe Potid'P . D . D'(S| P) C (I'P

[Proof as in #95-302]

#95-304. H .:. (I'Q C D'Q . <J'P C D'Q . D'P C (I'P . D'P C O'P . D :

aS' e Potid'P . Te Potid'Q . D . D'(S | P
|
2

T

) C CI'P . (I'(£| R\T)C D'Q
[#95-302-303 . #34-36]

#95-305. H :. Hp *95'304 . D : if e (P*Q)'R . D . D'iV C (I'P . (Til/ C D'Q
[#95-304-22]

#9531. I- :. Hp #95-304 . g ! P . D : S e Potid'P . T e Potid'Q . D . g ! £ | P | T
Dem.

H . #92142143 . D H :. Hp . D : ^e Potid'P . Te Potid'Q . D .

D'PCCI'S.a'PCD'T.
[#34-361] D.gJSjPlT7

:. I> H . Prop

#95-32. H:.Hp*95-310:J/e(P*Q)'PO.g! M [#95-31-22]

#95-33. I- : a'P C B'Q .. D . CI'OS
|
P

|
2
1

) C P'B'Q

Dem.

H . #34-36O H : Hp . I) . <J'(S
|
P) C i?Q .

[#37-32-2] D . (T(& \R\T)C T«~B'Q OH. Prop
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*9534. I- : <1<R CB'Q . Me(P*Q)'R . 3 . (aT) . Te Potid'Q . d'M C ?"1?Q
E*95-33-211]

*95;35. ^zQel^Cte.a'MC&Q.MeiPxQyR.D.^.aegen'Q.Q'MCa
[*95-34 . *93-32]

*95351. I- :. Q € 1 -> Cls . d'RQB'Q . D :

T,r e Potid'Q. a !a'(^|E|T)na^'|E|r).D.7T=r

I- . #95'33 . D h :. Hp . D

:

t, r e Potid'Q . a ! <p(£
I

i?
I

T) n (p^sr
|
r

\
r> . d . a ! ?"?<q n ?'"^q .

[*93-3] D.gl^'aTniie'a'f.
[*93'24.Transp] D.T=T':.Dh. Prop

*95352. H :. P e Cls -> 1 . D'R C P<P . D :

S,S ,

e¥otid'P.&lD'(S\R\T)r\lL>'(S'\R\T').
,D.S = S'

fProof as in *95351]

#9536. \-:.Qel-+Cte.d'RCB<Q.<&lR.I)<RCd<P.
D'P C d'P . d'Q CD'Q.D:

<S,^
,

6Potid fP.2T,T /

ePotid'Q.>S'| JR|r=5f'| JR|r.D.T = 2
7/

Dem.

H . #9531 . *93101 . D h :. Hp . D :

S, S' ePotid'P . T, T' eVotid'Q . S\R\T=S'\R\T' .D .

RlS\R\T.S\R\T=S'\R\r.
[*225.*33-24] D . a ! d^S \R\T)k 0.'(S' \R\T').
[*95-351] D . T= r :. D h . Prop

#95-361. f- :. P e Cls -> 1 . D'# C5'P . a ! P . D'P C d'P

.

d'RCD'Q.d'QCD'Q.D:
8,S'ePotid'P.T,reFotid<Q.S\R\T=S'\R\T.D.S = S'

[Proof as in *95'36]

#9537. l-z.PeCls-^l.Qel^Cls.D^C^P.a'PC^Q.aSE
D'P C d'P. d'Q C D'Q. D:

8, S'ePotid'P . T, T ePotid'Q . S\R\ T= 8'
\
R

|
T . D . S= S' . T=T'

[*95-36-361]

*9538. \-:.nlB(Qna<R.D:TePot'Q.D.R\T=tR
Dem.

h . *91-271 . D I- : TePot'Q . D . d'(P
|
T) C d'Q

.

[#93-101] D.d'(R\T)nlB<Q = A (1)

h.*24-54. DI-:Hp. :.~{a^n?Q = A} (2)

I-. (!)• (2). #13-14. DK Prop
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*95381. h:. a !£'Pn D'P . D : SePot'P .D.S\R*R
[Proof as in *95'38]

*95382. h:.RlB'PnI><Il.v.ftl~B<Qna<R:D:

S € Fot'P.TeYot'Q.1.S\R\T$R
Deni.

K*9r271.*931010h:TePot'QO.a<(S|P|T)ni?<Q = A (1)

h.*2454. 3\-:<&l~B<Qr*<I<R.D.~{a<Rn~B<Q = A} (2)

K(1).(2).*13\L4. 3\-:.nlB'Qna<R.3:T<!?ot<Q.D.S\R\T$R (3)

h . *91271 . *9312 . Dh-.Se Pot'P . D . D'(#
|
R

|
T) nB'P = A (4)

b . *2454

.

3 H : g ! B'P r> T>'R . D . ~ {D'R
n
~B'P= A} (5)

K(4).(5).*1314. D\-:.KlB<PnT><R.D>Se¥ot<P.O.S\R\T$R (6)

K(3).(6).DKProp

*95383. b:.RlR:D<RCB<P.v.a'RCB'Q:Di
8

e

Pot'P . Te Pot'Q .D.S\R\T$R [*95382 . *3324 . *22'621]

*954. b:Me(P*QyR.SeFot<P.T e ?ot<Q.S\R\T e (P*Q)<R.D.

S\M\Te(P*Q)'R
Dem.

KSimpOh:Hp.D.£|P|re(P*Q)'^ (1)

I- . *9134 . *95132 . D

b:Hp. 8\M\Te(P*QyR.D.'S\P\M\Q\T=-P\S\M\T\Q.

P\S\M\T\Qe(P*Q)'R.
[*13'13] 3.S\(P\M\Q)\ Te(P*Q)'R (2)

K(l).(2).*95-14.DKProp

*9541. f- :. P e Cls- 1 . Q e 1- Cls . D'P C d'P . d'Q C D'Q . D :

S,S'6¥otid'P.T,T'eFotid<Q.D.ls\S\S'\N\T, \T\T=S, \N\T'
[*92-15-151]

*95411. r :. Hp *95-41 . D'P C C'P . d'R C C'Q . D :

£ e Potid'P . T e Potid'Q . M e (P*Q)'P . D . M = S
|
£

| Jkf |
T

\
T

[*95-41-22]

*95'42. h :. Hp*95-411 . D : M e(P*Q)'P- t'P. D . P | jtf
j Q 6 (P*Q)'P

Z)em.

K*95-411.*91-351-281.D

h:.Hp.D:Jlfe(P*Q)'P.D.P|(P|if|Q)|Q 6 (P*Qy jR (l)

I- . (1) . *95-12 . D h . Prop
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#9543. h :. Hp #95-411 . Hp*95382 . D : 8 e Potid'P . Te Potid'Q •

P\S\R\T\Qe (P#Q)'R .D.S\R\Te (P*Q)'R

Dem.

h . *95'42-382 . *91'28'3 . D h :. Hp, D : Se Potid'P . TeFotid'Q .

P\S\R\T\Qe(P*Q)'R.D.P\P\S\R\T\Q\Qe(P#QyR (1)

I- . #95-41 . D 1- :. Hp . D : 8 e Potid'P . Te Potid'Q . D .

P|P|flf|i2|T|Q|Q-iSf|i2|r (2)

h . (1) . (2) . D h . Prop

#95431. I- : Hp #95-43 . 8 e Potid'P . Te Potid'Q . M e (P*Q)'R .

p|^|i/|r|Qe(P*Q)'P.D.s|i/|r6(P*Qyp

h . #95-22 . 3 h : Hp . D . faS', T) . S'e Potid'P . T'e Potid'Q . if = 8'
\
R

|

r

.

P\S\M\T\Qe(P*Q)'R.

[#91-341] D . (>&8', T) . S'e Potid'P . T'e Potid'Q . if = 8'
\
R

|
T' .

S\S'e?oti&'P.T'\Te¥o\1

:i&<Q.P\S\&\R\T'\T\Qe(P*Q)lR-

[#95-43] D . (gfl', 2") . iSf'e Potid'P . T'e Potid'Q . M= £'
|
P

|
T .

S\S'\R\T'\Te(.P*QyR.

[#13-195] D.S\M\ Te(P*Q)'R Oh. Prop

#95-44. h :. Hp #95-43 . 8 e Potid'P . T e Potid'Q • 3 :

Me(P*Q)'R. S\ M\ Te(P*Q)'R.D .8\R\ Te(P*Q)'R

Dem.

h. Id. D^::<f>M.=M :S\M\Te(P*Q)<R.D.S\R\Te(P*QyR:.0-<i>R (1).

h. #95-431. #91 3O
h ::. HpO :: S

|
P

|
if

| Q | Te(P*Q)'RO :. £ | M \
Te(P*Q)'R :•

[#2-27] D :. S| if
|
Te(P*Q)'R .D.S\R\ Te(P*Q)'R : D .

S\R\Te(P*Q)'R (2)

h. (2). Coram O
h :: HpO :. £

|
Jf

|
Z

7
e (P*Q)'P . D . £

j

R
|
T e (P*Q)'P : D :

Sj(Pjif Q)|Te(P*Q)'PO.>S
l

P|-r6(P*Q) <P (3)

h . (3)O h :. Hp . Hp (1)O : <f>MO . <j> (P
|

if
| Q) (4)

h . (1) . (4) . #95:14O h : Hp . Hp (1) . M e (P*Q)'PO . <(>MO h . Prop

#95*45. h :. Hp *95'43 . 8, S' e Potid'P . T, T'e Potid'Q

.

S\S'\R\T'\T€(P*QyR.D:S\R\Te(P*QyR. = .S'\R\T'e(P*Q)<R

Dem.

h . #95-44O h : Hp .
8'

\
R

|
T'e (P*Q)'PO . S

\
R

!
T e (P*Q)'P ( 1

)

h . #91-34O h :. HpO : 8'
\
S

|
P

j

T \
T e (P*Q)'R :

[*9544] D : 8
\
R

\
T e (P*Q)<R .D.8'\R\ T'e (P*Q)'R (2)

h . (1) . (2)O h . Prop
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*95'46. h : . Hp *95'41 . g ! R . D'P

C

~B'P . (I'P C1?<Q . D :

Te Pot'Q . D . P
|
T~ e(P*Q)'*12

Dem.

H . *95'38 . D I- :. Hp . TeYot'Q . D : R
\
T^R :

[*95-42] D:R\Te (P*Q)'R .D.P\R\T\ Qe(P*Q)'R

.

[*9532] D.rIP\R\T\Q.
[*343i] D.g!P|P.
[*34-3] D.glD'PnD'P (1)

l-.*9312.:>!-:Hp.D.D<PnD<P = A (2)

K (2) . (1) . Transp . D I- : Hp . Te Pot'Q . D . R
|
T~ e (P*Q)'R :Dh. Prop

*95-47. h : Hp *9546 . S e Potid'P . T, T

e

Potid'Q

.

S\R\T,S\R\T'e (P*Q)'R .D.T=T'
Dem.

V . *91-46 . D h :. Hp . >: (g?7) : tfePotid'Q : T= U\T .v.T'=U\T (1)

h . *50-62 . *91-35 . D r- : Hp . D . £= £| Zf OP . Zf OPePotid'P (2)

H . *95-45 . *33'24 . *22-621 . (2) . D
h:Hp.CT€Potid<Q.T=Dr

|T'.D.7pC"P!Pi?7e(P*Q)'P.Z7ePotid'Q.
[*50'63] D . P : Ue (P*Q)'R . *7 e Potid*Q

.

[*95-46.Transp] D.lT~e Fot'Q . U

e

Potid'Q

.

[*91-23] D.U=I\>C'Q.
[*91-27.*50-63] D . U\ T' = T .

[*1312] D.r=Z" (3)

Similarly h : Hp . Ue Potid'Q . Z" = £T
j
T . D . T= T' (4)

r.(l).(3).(4).DKProp

*95-471. I- : Hp *95'46 . S, S' e Potid'P . Te Potid'Q .

S\R\T,S'\R\Te(P*Q)<R.LS = S'

[Proof as in #95*47]

*9551. h : Hp *9546

.

M, M'e (P*Q)'R . g ! d'if n d'if ' . 3 . Jf= if

'

Z)em.

h . *95-22 . D h ^ Hp . D . (aS, S', T, T) .$,S'e Potid'P . I
7

,T e Potid'Q

.

if=^|pjr. J¥, =^'|p|r.
S\R\T,S'}R\T' e(P*Q)'R.

Kia'isiRi^nd'iS'iRir).
[*95-351]D . (>3[S,S', T) . S, S'

e

Potid'P,. Z7
e Potid'Q. if=£]P|T. if' ^Pjr.

/SfPir^'IPireCP^'P.
[*95-471}P

.

(rS, T) . SePotid'P . Te Potid'Q . if = £j R\ T. M' =*S\R\ T.

[*13'172] D .M=M ': D h . Prop
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#95-511. h : Hp #95-46 . M,M'e(P*Q)'R . a ! D'M n D'M' .D.M=M'
[Proof as in #95 -

51]

#9552. h : P, Q, R e 1-*1 . V'PC a'P.a'QCD'Q.D'RCB'P.a'RCB'Q.D.
s<(P*Q)<Rel-+l

Dem.
\-

. #95-21 . #3432 . D t- : R = A . D . (P*Q)'R C t'A

.

[*53'04] D.s'(P*Q)'R = A.
[*72-l] D.s'(P*Q)'Pel->l (1)

t- . *92-102 . #9521 . #71252 . D h : Hp . Me(P*Q)'R . D . Me 1 -> 1 (2)

I- . #4111 .}(-:# {s'(P*Q)'R} y . x {s'(P*Q)'R} z.D.
(gif, M') .M,M'e (P*Q)'R . xMy . xM'z

.

033-14] D . faM, M') . M, M'e (P*Q)'R . xMy.xM'z.ftlD'Mn D'M' (3)

h. (3). #95-511. D

H : Hp . a ! R . Hp (3) . D . ($M ) . if e (P*Q)'R . xMy . a?M* .

[(2)] D.y = z (4)

Similarly

h : Hp . g ! P . x {s'(P*Q)'R} z . y {s'(P*Q)'R} z.D.x = y (5)

h.(4).(5).*7l-172.Dh:Hp. a !i2.D.a'(P*Q)'22el-»l (6)

h . (1) . (6) . D h . Prop

#956. h-.D'RC <J'P . D'P C CI'P . (I'P = ~B<Q . Q e 1 -> Cls . D .

a"(P*QyR = gen'Q
Dem.

r . #92143 . D h : Hp . S e Potid'P . D . <J<£ = <PP

.

[Hp] D.D'PCdSSf.
[#37-322] D . d<(S

|

P) = <PP

.

[#37-32] D.<P(S|P| 2*)= ?"<!<£ (1)

h.(l).Dh:Kv .S6Potid<P.TeFotid<Q.D.a%S\R\T)=T"~B<Q. (2)

[#93-32] D.a'(>Sf|P|T)6gen fQ (3)

r . (3) . #95-22 . D h : Hp . D . a"(P*Q)'P C gen'Q (4)

h . (2) . #95-221 . #93-32 . D h : Hp . D . gen'Q C d"(P*Q)<P (5)

I- . (4) . (5) . D \-
. Prop

#95-601. h:a'22CD'Q.a'QCD'Q.D'# = fi'P.PeCls->l.D.

D"(P*Q)'P = gen'P
[Proof as in #95*6]

#95-61. h:P,Q,Rel^l.I)<PCa<P.a'QCD<Q.B<R=B'P.<l<R=~B<Q.3.

s'(P*Q)'R € 1 -* 1 . D's'(P*Q)<P = s'gen'P . <J's'(P*Q)<P = s'gen'Q
[*95-526-601 . #41-43-44]
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#9562. r : Hp #9561 . D . s'gen'P sm s'gen'Q [#95-61 . *73'2]

#9563. \-:P,Q€l-+l.a<PCD'P.a'QCI><Q.~B<Psm'B(Q.3.
s'gen'P sm s'gen'Q

Dem.

r.*95-62p.Dr:P,Q,i2 6 l-»l.a'PCD'P.<J'QCD'Q.

D'i2=£'P.(I<jR=l^.D.s'gen'Psms'gen'Q (1)
r

. (1) . *101 1-23-35 . #731 .DI-. Prop

*95-64. r : P,Q e 1-*1 . <I'P C D'P . d'Q C D'Q . iT'P sm 2?Q

.

p'd"Pot'P = A . p<a«Pot'Q = A . D . D'P sm D'Q
[#95-63 . #93-274 . #33-181]

*95-65. r:P,Qel^l.d'PCD'P.d'QCD'Q.ii£Psmi?Q.

C'P = P*"2?'P . C'Q = Q*"^# . D . O'P sm C'Q
[#95-63 . #93-36]

The following example may illustrate the scope of #95*65. Let R, S be
the generating relations of two well-ordered series, neither of which has a last

term. Put P = R -^ Br . Q = S -^ S\ Then P is the relation of immediately
preceding in the .R-series, and Q is the relation of immediately preceding in

the $-series. We shall have

P.Qel-^l.d'PCD'P.d'QCD'Q.

Also, except in certain exceptional cases, BlP, B'Q are the first derivatives

of the two series (including the first terms of the two series).

"C'P^P^'B'P"
states that, starting from any term of the series and going backwards, a finite

number of steps will bring us to a member of the first derivative, which is

true. Hence, by #95-65, neglecting certain exceptional cases, we arrive at the
result that if the first derivatives of two well-ordered series have the same
cardinal number of terms, then the series themselves have the same cardinal

number of terms. This proposition can of course be proved otherwise ; the
above is merely mentioned as an illustration of the results of #95'65.

#95-7. ±iR,Sel^l.a<RQI)<S.a<SCT)<R.^.l3\R\S)sm'B\S\R)
Dem.

V . #93101 . #24-412 . #37-16-321 . D

r : Hp . D . 1}<(R
I

S) = (D'jR - d'£) u (d'S- S"(I<R) .

~B'(S
|
R) = (D'S- d'i2) u (d'R - R«a<S) (1)

K #71-38. #37 32. D h : Hp . D . R«(I)<R - d'S) = d'P

-

R«a<S (2)

H . #71-381 . #37-32 . D I- : Hp . D . £"(d<£ - S"d'jR) = T>'S- £"3"d'li
[#72-502] =D'S-a<R (3)
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h . (2) . (3) . *73-21-22 . D I- : Hp . D . D'.R T d<8 sm d'R - R"G.<S..

d'8-8"d'RamD<S-d'R (4)

r- . *2421

.

D h : Hp . D . (D'R - d'8) rs (d'S- S"d'R) = A

.

(d'R - R"d'S) n (B'S- d'R) = A (5)

h . (1) . (4) . (5) . *73-71 . >K Prop

*9571. \-:R,Sel-+l.d'RCT>'8.d'SCI) (R.D.s'gen'(R\S)8ms'gen'(S\R)

Bern.

h.*34'36.*37'321. DhiHp.D.a^EI^CD^I^.a^l^CD^I R) (1)

K*71'252. Oh:Hp.D.i2|,S',S|£el-»l (2)

K . (1) . (2) . *95T-63 . D I- . Prop

This proposition and #94*53 or #94*54 together reconstitute the Schroder-

Bernstein theorem (*73*88). For, in virtue of *93'274'275 and #7371, they

together give

R,Sel->l.d'RCI>'8.d'SCD'R.D.C'(R\8)8mC'(S\R),

and with this hypothesis

G'(R
1

8) = D'R . C'(8
|
R) = D'S.



*96. ON THE POSTERITY OF A TERM

Summary q/"#96.

By the "posterity" of a term with respect to a relation R we mean the

class R%x. In the present number, we shall be chiefly concerned with the
4—

relation (R^x)'] R, i.e. the relation R confined to the posterity of x. We shall

also be concerned with (R^x) 4

] R% and (R
t̂

tx)
J

\ Rpo , which, as is proved in

*96*13, are respectively

KS"*'*)1 K}* and {(#*<*) 1 £} p0 .

4—
The most interesting case is when .ReCls—>1. In this case, R%x is in

general shaped like a Q, with x at the tip of the tail; that is, R%x may be

divided into two parts, the first an open series, the second a closed series. If

y is the junction of the two, we shall have

xR%z . zR^y . D . ~ (zRxtoz)}

yR^z.D.zR^z;

in fact, (gP) : P e Fot'R : yR#z . Dz . zPz.

We have also, when JReCls—>1,

y,ze R*'x . D : yR#z . v . zR^y.

It thus appears that R%x is divided into two parts, the first consisting of

those terms z for which ~ (zR^z), the second of those for which zRpo z. The

first wholly precedes the second ; the first exists if ~ {xR^x), the second if

g! {(R%.ix)
J]Rvo f\I}. Every term in R^x has one and only one immediate

predecessor, except the term (if it exists) at the junction of the tail and circle

of the Q; this term has just two immediate predecessors, one in the tail and

one in the circle. But if either the tail or the circle is null, then every term

in R^x has only one immediate predecessor, and therefore

(JVa01-Rel-»l.

Put IR'x= R*'x n 2 (zRpeZ) Dft

Jjfw^Rtfanli^isRrf)} Dft

(these definitions being only to apply within #96). Then JR'x is the open
«—

part of the series R%x, and IR
fx is the circular part. The open part wholly

precedes the circular part, provided i^eCls—>1; i.e.

R e Cls-* 1 . D . JRtxCp'Rvo"IB
t
x.
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If JR x and IR x both exist, JR x has a last term, say y. The successor of

this term, Rl
y, is the only term in R%x which has two immediate predecessors

in R%x, namely y and i'(lR x r\ R'R'y).

The most important applications of the propositions of the present number
are in the theory of finite and infinite, both cardinal and ordinal. When R
is many-one, then if IR'x exists, or, more generally, if JR*x has a last term,

R%x is a finite class, i.e. what we shall call a "Cls induct" (cf. #120). That is,

we have «_
f- : R e Cls— 1 . E ! m&Xjt'Jjfx . D . R%x e Cls induct.

<—
If JR x exists, but has no last term, R#'x is a progression (cf. #122) when

its terms are arranged in the order generated by R. That is, giving to N„

and a) the meanings given by Cantor (cf. #123 and #263), and using "Prog"
for the class of one-one relations which generate progressions, we have

r : R e Cls-*>1 . ~ E ! ma,xR'JR'x . g ! JR'x . D .

%<x e No (S*'tf) 1 R € Prog . (%<x) 1 Rpo e *,.

Another very important proposition in the proof of which the present

number is useful is #121*47, which proves that if R is either one-many or

many-one, and a and z are any two terms whatever, then R#a n R%z (which

we call the " interval " from a to z) is always a finite class. The proof that

progressions are well-ordered series depends upon the propositions of this

number, since it uses #1 22*23, which depends upon #9652.

The present number begins with a series of propositions (ending with

#9616) on a^ 22po and a.
1

] R%, both in general and when a = R%'x. We then

proceed to a few propositions (#962—*25) on (R%'x)
J]R when R el—Cls;

with the exception of #96*24, these propositions are all used in the cardinal

theory of finite and infinite. They are, however, less important than the

subsequent propositions, which are concerned with R%x when .Re Cls—>1.

If R is a many-one relation, and x is a member of D'R, the relation R in

general arranges R^x (i.e. the posterity of x) in a

figure such as is here given. The relation R holds

between each dot and the next, starting from x, and

travelling round the circle in the sense indicated by R

the arrow. The dots from x to y constitute JR x, and t
*

the dots in the circle constitute IR x. y is the last \ • f
*y

term of JR x, i.e. vaaxR JR x; w is R'y, and z is x. y,

i'(R lw dl^x), or, what comes to the same thing, V
{(IR

ix)'\Ryw. w is the only term which has more
4

—

*"

than one immediate predecessor in R^.fx\ w always
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exists if neither JR'x nor IR'x is null, and conversely, if w exists, neither

JR'x nor IR'x is null. The proof of these propositions is long; the following

are useful stages in the proof.

If xRx, the whole posterity of x is x itself (*96'33); if xRy and yRx,
x and y constitute the whole posterity of x (*96331), and so on. The
successors of members of IR'x belong to IR'x (*96'341), and the predecessors

of members of JRl
x, if they belong to R^x, belong to JR'x (*96351). (It

should be observed that, since R is only assumed to be many-one, not one-

one, every member of R%.'x may have any number of predecessors which do

not belong to R*x.) We have a series of propositions, beginning with
*96'4, which deal with the hypothesis yRw . zRw. We prove (*9642) that
if yRw.zRw and yRpoz, then zR^z, i.e. z belongs to IR'x. We prove
(*96'431) that JR'x wholly precedes IR<x; that (JR'x)1 R and (IR'x)

J\R are

both one-one (*9645), so that if yRw . zRw .y^z, one of y and z must belong
to JR'x and the other to iy#(*96'441). Hence it follows (*96*453) that if

either xRpox (in which case JR'x=A) or {R^ix)\Rvo QJ (in which case

IR x= A\ then {R^x^R is a one-one relation. (This proposition is used
twice in the cardinal theory of finite and infinite, namely in *121'43 and
*122*17.) Hence we arrive at the proposition (#96-47) that if two different

members y and z of R^x both immediately precede a term w, then one of

y and z (say y) is the last term of JR x, w is its immediate successor and z is

the immediate predecessor of w in IR x, i.e. we have

y = maxR'JR'a; . w = R'm&x^J^x . z = \(IR'x) 1 R}<R'm&xR'JR
t
x.

Thus y, z, w are unique if they exist. We prove next (*96'475) that y, z, w
exist when, and only when, neither IR

lx nor JRlx is null.

It follows from the above propositions that if R is one-one^ either IR'x or

JR lx must be null (*96*491), i.e. the posterity of a term is either an open
series or a cycle, and cannot have the Q-shape.

*96 01. IR'x = R^x n % (zRpoz) Dlt [*96]

*96 02. JR'x= R#'x - IR'x Dft [*96]

#9ftl. \-:z€lR^x. = .xR^z.zRpoz j>20'3 . *32\L81 . (*96-01)]

*96101. r- : zeJR'x . = . xR*z .^(zR^z) [*961 . *22*93 . (*96"02)]

*96102. t-.R%<x = JR'xyjIR'x.JR<xr\IR<x^A [*244121 .(*96 01'02)]

*9610& t-.WxyiR^GJ
Dem.

r . *96101 . D r :. y {{JR<x) 1 Rm ] z.^: xR*y . -(yR^y) . yR^z

:

[*13'14] D:y**:.Dr.Prop
B&w I 39
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#96104 r : IR'x= A . = . (R#'x) ^R^CJ.^. JR'x* R#'x

Dew.

V . *96'1 . D h :. IR'x— A . = : xR#y . Dv •~(yRpoy) :

[#.13-196] 5:«£«y. ?£,,*. 3K,.y*':

[*35'1] =:(K^)1^poGJ (1)

K (1). #96102. DK Prop

#9611. K^^Cal-R^
Dew.

K #91502. #35-46. Oh .a^RQa^R^ (1)

K*351.D
h i.PGa^Rpo. D :«Py.y(«1JB)^. D . x e

a

.xR^
.
yRz .

[*91-511.*351] D.*(a1iQ*.
[•84-1] D:P\(« J\R)Ga'\R

I)0 (2)

>.(1). (2). *91-17l.Dl-:PePot <
(a

>

l
JR).D.P Gal^:

[#41151] Dh.^^^Gal^.DH.Prop

«96111. r:P"«Ca.D.(a1P)po= a'|Ppo

Dew.

H. #91-502. Dh.tt'J JBG(a1i2)P0 (1)

I- . #9022 . #9154 . D H : . Hp . D : P e Pot'P

.

x e a . xPy . D . y e a

:

[*35'l.Fact] D : PePot'P . #(«1 P)y . yP* . D
. y («1 P)s

:

[#91-511] D:PePot'i2.o1PG(a1i2)po .D.(o1P)|i2G(o
>
|i2)po (2)

h.(l).(2). #91-373. DHr.Hp.DrPePofc'iJ.D.alPGColJ?),,,:

[#41-52] Dral^GCaliJ)^:
[#96-11] DralJBpo^Cal^por.Dh.Prop

#96112. \-:aCT>'R.R"aCa.3.(a J\R)^* J\R*

Dem.

h . #35-62 . #37-4 . D h : Hp. D. C'(a1P) = avP"d
[#22-62] = a

.

[#50-5] D./|k C<(a
>
jE) = al/ (1)

K #50-53. Dh.a1/^C"i2 = (anO'i2)17 (2)

H. (2). #22-621. Dh:Hp. 3 .a'\I\-C<R = a
J
\I (3)

h. #91-54. Dh:(a1^= (a1 JR)po c;/rC"(a 1 JR) (4)

K #91-54. *35-4,2.0\-:a
J\R* = a

J\Rvo va'[lic'R (5)

r . (1) . (3) . (4) .(5) . #96-111 .Dr. Prop

#96-121. I- : R"a Ca.D .(R[a)po = R^a [Proof as in #96111]

#96122. h«C d'R . R"a C a . D . (R [ a)#= P* [ a [Proof as in #96'112]

#96-13. h . (P*'#)1 Ppo = {(P*'«) 1 P}po [#96-111 . #90163]
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*96131. b zxeD'R. D. (#*<#) 11** = {(iVa?)1.R}* [#96112 .#90163]

#9614. I- : x e C'R . D .%£x = i'x u%^'x [#91 '54 . #32 33]

#96141. h . C'(a 1 12*) = R*"a
Dem.

b . #35-6 1 . #374 . #9014 . D I- . C'(a ] R#) = (a n C'R) u \"a
[#90-331] = R*"a .Db. Prop

#96142. b . C'(a 1 i2po) = (a n D'R) u ^"a [#3561 . #374 . #91504]

#96143. H . C'(a 1 Rvo)
= £*"(« n D'.R)

r . #37-261 . #91-504 . D b . R^'a = R^'ia n D'R) (1)

h . (1) .#91-546 . #96-142 . D b . Prop

#96144. b : a n <J< K C £*"(« n D'l*) . D . C'(a ^ R^) = 5*"a
Dem.

I- . #2262 . D r : Hp . D . R*"(a « D'R) = (a n CP12) u lV'(a n D<12)

[#91-546] = (a « CPE) v, (a n D'iZ) u ^"(a n D'12)

[#37-261.#91 -504] = (« fl C'iZ) u

5

1M)"a

[#91-544] =ii*"a (1)

r
. (1) . #96-143 .Ob. Prop

#9615. r . D'{(R*'x) 1 R) =*R*'x n D'R . a'{(S#'a;) 1 E} ^R^'x
Dem.

b . #35-61 .Ob. D'{(jR*'#)1 12) = Si** n D'12 (1)

r . #37-4 . D h . <J'{(X'a0 1 -R} = R"*R*x

[#91-74] = £,*> (2)

I- . (1) . (2) . D b . Prop

#96151. h : a> e D<12 . D . C'{(R*'x) -\ R] Jr^'x
Dem.

b . #9614 . D b : Hp . D .^K*'* n D'22 = i'x u (j£p(> r> D^) .

[#22-63] D . (S*'a rx D'R) ^Rvo'x = t'ar u #"
p<
>-

[#96-14] = 1?*'* (1)

b. (1). #9615. Dh. Prop

#96152. b.Rx"Rx'x = R*'x [#9017]

#96153. b . R^'R^'x =^"S^ = R^'x [#91'574]

#96-154. I- . C'{(R*'x) \ R#] = R*'x [#96141-152]

39—2
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*96155. h . D'{(iV*) 1 Bvo] =%<x n T><R . (I'{(1V*) \ R^} -%o'*
Dew.

h . *3561 . *91-504 . D K . D'{(#*V) 'J i?p0} = JS*'a; « D'i2 (1)

h . *374 . D H . <!<{(£*'*) 1 Epo }
= ^"JV*

[*96153] =S"Po^ (2)

h . (1) . (2) . D h . Prop

*96156. H.(7'{(S#'ar)1--Bpo}=(t'«AD'i2)uS^ 'a?

Dem.
K*96155.D

h . 0*1(5*'*) 1 1k) = (V« « B'R) w S"p>
[*9 1 54] = 0<# n CE n D'E) u (R^ n D'iZ) u^'a;

[*22-62.*33'161] = (i
lx r> V'R) u i2

p(> . D f- . Prop

*96157. h: a? eD'!2.D.0'{(lV#)1^po} = #*'* [*9615614]

*96158. bzas^eB'R.D.iR^'x^R^'^A
Bern.

\-
. *91-504 . D H : Hp . D . «~eD% .

[*33-4] D.-22P0'a;=A (1)

K(l).*96-155.DKProp

*96159. h : g ! (£*<#) 1 i2po 3 • C"{(S*'aO 1 #po} = S*<# [*96'15M 58]

*9616. H . (S"#'a?)jR^R tRm'x
Dem. «_ «_

I- . *351 . D I- : y \(R*'x)
J\R}z. = .ye R^x.yRz.

[*9016.*4'71] = . t/ ei^ . yRz . z e i?*'a; :

[*3613] = . 3/ (R I %t'x) z:Db. Prop

*962. h : £ e 1 -> Cls . D . (£*<*•) 1 J? = R f £p<>
Dem.

h . *7255 . D H : Hp . D . (R^'x)^ R = R\- R"*R%<x

[*91:74] = i2 f S"po^ : D h . Prop

*96-21. h : R e 1 -> Cls . a-#R . D . (5*'<c)'1 £ = R [*R*'x

Dem.

h.*9614. D> : Hp>D. iff j?*<# = E ^ i'x u jRp i£p(> (1)

h . *35'64 . *93-l . O I- : Hp . D . <J'(i2 |* i'x) = A .

[*33-241] D.i2fi'a; = A (2)

K(l).(2). D(-:Hp.D.i2|k<ft^ = JR.fXo<*

[*96'2] = (R*'x) -] R :O H . Prop
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#9622. h:R € l-*Cls.~(xRx).3.(R x)
J\RQJ'

Dem.

K.*3ril. O K : xQy . yRy . D . xQy . yRy . yQx

.

[*10-24.*34-l] 0.xQ\R\Qx (1)

K . (1) . #92132 . D I- : R e 1- Cls . D : Q e Fotid'R . xQy . yRy . D . xRx :

[*10ir21-23'35.*91-55] D : xR%y . yRy . D . xRx :

[Transp] D : ~ (xRx) . ###*/ . D . ~ (ylty) :

[#13196] D : ~ (a^Ra;) . #i2*?/ . yifc . I) . y =f * :

[*32'181.*35-1] D : ~ (>£#) . D . (R*'x) 1 EG J :. D h . Prop

#96 23. h : E e 1- Cls . a&ft . D . //a? = A . (JV«) 1 £po G ,/

Dem.

V.&Vll.yVxxQy.yTy.^.xQy.yTy.yQx.

.1*3*1] D.*Q|T|Q* (1)

K . (1) . #92132 . D

K :. 5 e 1 -> Cls . D : Q, Te Potid'E . xQy . yTy.D. xTx :

[#91-271] DzQeFotid'R.TeFot'R.xQy.yTy.D.xed'R

{*llllB-S5H.*91-55.(*9l-05)]D:y€
<

R^a;.yRpoy.D.xea tR:

[Transp.*931] D : XBR . D . ~ (y e^'x . yRwy) :

[*96-l.*10-ll-21] DixBR.D.I^x^A (2)

I- . (2) . #96104 . D h . Prop

#9624. K .Rel->C\s.C'R = R*"~B'R.D.R
l ,
GJ

Bern..

K . *37-105 . D I- :. Hp . D : y e C'R . D . (g#) , ar e\B'i2 . xR%y :

[#91-504] D : yjR
110
« . D . (g«) . xe~B'R . <d?#y :

[*4-7.*32-18-181] D : yi?,^ . 3 . (a*) .xBR.ye %{x . ^.^ .

[*96'23] D.yJsr.DK.Prop

#96-25. H :. E el -> Cls . xBR . #i^?/ : yjR#s . v . zR*y : D . xR*z

Devi.

K . #90-17 .OK: xR^y . yR^z . D . xR%z (1

)

h. #92-31 . #91-75 .

D

K :. Hp . D : xR^y . zR^y . D : a-i^ . v . zR
ll0

.r (2)

K . #91 -504 . #931 . D K : a#E . D . ~.<^B )10
.-») (3)

K . (2) . (3) .O I- : . Hp . D : xR%y .zR^y.D. ccR* z (4)

K . (1) . (4) .O K . Prop
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The following propositions lead up to #96*32, i.e.

—

>

«— —

>

4—
I- : R e 1 —» 1 . xR%y . D . i?#'# «-» -R^'a*= -B*'^ u R*y,

which is a proposition used in the following number (#97).

#96'3'30r302'303 are also frequently used elsewhere.

#96 3. I- : xR%y . D . R%'y C R^x [#90-1 7]

*96301. b:xR^y.~D.~R^xCR^y [#90-17]

#96 302. I- :. R e Cls -» 1 . xR#y . xR#z . D : yR%z . v . zR#y [#92-311]

#96303. \-:.ReCls-+l.xR*y.xRxZ.y$z.'}:yRvoz.v.zRvoy
[#96302 . #91542]

#96 31. b : R e Cls -* 1 . xR%y . D . R*'x C ##'# w R^y [#96*302]

#96 311. b : R e 1 -* Cls . a-j^y . D . R*'y C #*<*• v, #**<# [#92-31 ]

#9632. H : E e 1 -> 1 . #.R^ . D . jR^^ u £*<«• = R^'y u iJ^'y

Dem.

I- .
*96'301*31'. D I- : R e Cls -> 1 . /zi^ . D . R*'x Jr^x C lZ*<y vR*y (1)

I- . *96-3'31 1 . D h : i2 e 1 - Cls . #i2*y . D . R^y u i^'y C R^x \j R^x (2)

K(l).(2).Dr.Prop

#9633. I- : R e Cls -> 1 . ##.r . D . #*<* = i'x

Dem.
b . #71171 . D h :. Hp . D : s = x . zRw .3ZiW .w = x (1)

r-.(l). #1315. #90112*^. 3b:xR*y.D.y = x (2)

K*9012. Dr:Hp.D.a-i2*# (3)

I- . (2) . (3) . D h :. Hp . D : xR#y . = .y = x:.Ob. Prop

#96331. \-:ReC\s-*l. xRy . yRx . D . R#'x = i'x u i
l

y

Dem.

b . *9015M62

.

DbzHp.D.i'xvi'yC R*'x (1)

I- . #71-171 . 3 b :. Hp . D : z = # . sJ?w . DAW, .w= y .

[*51'232] Dz>w .tvei'xvi'y (2)

K #71171. Dr:.Hp.D:0 = 2/.^w. DZ)W . w = «.

[#ol-232] DZ!W .tvei
(xvi'y (3)

K(2).(3). 3 b :.Hp. D:set'#v t'y . zRw . 2ZtW .wei'x w t'y (4)

h. #51-16. D I- . a? e i'x u t'y (5)

K (4). (5). #90112. Dr:.Hp.D :*#**.:>.*€*'#•-*<*/ (6)

K(l).(6).DKProp

This process of proof can obviously be extended to any finite cycle of

terms.
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•34. h : R e Cls -» 1 . 3 . R^'3 {zR^z) C 2 (zR^z)

Bern.

K *311 1. *341. Dh-.zR^z.zRw.^.wR \R^ \
Rw (1)

f-.(l).*92113. 3h:. Kp^zzR^z.zRw .D .wR^w:
[*203] '5iZ€

/Z(zRvoz).zRw.'5.Wf:${zRvoz):

[*37l71] 3:iS"2(2i2pos)C2(s#pos):

[*91-71-53J 3 : R^'Z (zR^z) C 2 (*£„<>*) :- 3 H . Prop

*96341. I- : # e Cls -> 1 . 3 . R^'Ir* C /*'#

Dem.

f- . *37'21 . (#9601) . 3 K R^'I^x C R^^R^x n R^'5 (zR^z)

[*90163.*91'G02] C R^x nR^ (zR^z) (1)

h
. (1) . *9634

.

3 I- : Hp . 3 . R^'In'x CR^x « 2 (*#,**)

[(*9601)] C

/

B'« : 3 r . Prop

*96 342. h : # e Cls -* 1 1 3 . R*"IR'x CV* [*96'341 . *91'7l]

*96 35. I- : . 22 e Cls -* 1 . 3 : ~ (w-Rpow) . s-Rpow . 3 . ~ (zR^z)

[*96'34 . Transp]

*96 351. I- : R e Cls -> 1 . 3 . R^'Jr'x r» #*'* C J/*

h . *9635 . Fact . *96'101 .

3

I- :. Hp . 3 : w e JRlx . zR^w . s e -R*f# . 3 . z e JRlx :. 3 h . Prop

*96'352. H : R e Cls -> 1 . 3 . R#"JR'x n i2*'a? C «/*'# [*91*543 . *96'351 ]

The following propositions are lemmas for #96'45*47.

*96'4. I" : R

e

Cls -* 1

.

S, T e Pot'22 . ySy .yTz.^. zSz

Dem. ^
r.. *3111 . 3 1- : Hp . 3 . zT\

S

|

Tz

.

[*92'133] 3 . zSz : 3 I- . Prop

*96 401. h : R e Cls -> 1

.

8, T e Pot'i* . ySy . yTz . yi*w . zRw . 3 . wSw . wTw

Dem.

K.«31-ll. ZhzKp.'Z.wRz.zTy.ySy.yTz.zRw.
[*3412] 3 . w {Cnv'(T| R)

\ 8\ (T\ R)} w (1)

h.*91282. 3H:Hp.3.r|E6Pot'JR (2)

K(l).(2).*92-133,3l-:Hp.3.tt/Sw (3)

K*31'll. 3 h:Hp. 3. wRy.yTz.zRw.

[*34-l] 3.wR\T\Rw.
[*91351.*92-133] D.wTw (4)

I- . (3) . (4) . 3 h . Prop
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*96'402. H : R e Cls -> 1 . Te Fot'R , yRy . yTz . yRw . zRw .O.y = w.y = z

Dem.
K #71-171. Dh:Hp.D.2/ = w (1)

h . #96 4 . #91-351 . D h : Hp , D . sifcr

.

[#71-171]
. D.* = w (2)

K(l).(2).Df-.Prop

#96403. I- : i? e Cls -> 1 . fif, T e Pot'i? .yS\Ry. yTz . yRw . zRw . D .

w$y . wSz .y = z
Dem.

H • #31-11

.

D\-:B.p.D.wR\S\Ry.
[#92-133] D.wSy (1)

h .#96-4 . #91343 . D H : Hp . D . *S| ife

.

[#31-11] D.wR\8\Rz.
[#92133] D . wSz (2)

f- . (1) . (2) . #92101 . #71-171 . D h : Hp . D . y = z (3)

f-.(l).(2).(3).Dh.Prop

#9641. \-:R € Cls->l.S,Te?ot<R.ySy.yTz.yRw.zRw.D.y = z

Dem.

h . #91-264-304 . D h . Pot'iZ = i'R u
|
i2"Pot<#

.

[#51-236] D\-:.S€Pot'R. = :S=R.v.{nS ,

).S'€Pot<R.S = S'\R (1)

h . #96-402 . D

h:.^= i2.D:^eCls->l.ye Pot'iZ . ySy . yTz . yRw . zRw .D.y=z (2)

h . #96-403 . D
\- :.(rS') . S' eVot'R . S = S' \R .D :

ReCh^l.TePot'R.ySy.yTz.yRw.zRw.D.y^z (3)

K(l).(2).(3).DI-:.iSfePot'fi.D:

# € Cls->1 . TeVot'R.ySy.yTz.yRiv.zRw.3.y=z :, DKProp
*96-42. h : R e Cls- 1 . y#w . 2#w . yi^s . D . *£po*

h . #31-11 . D h : Hp . D . wRy . yRvoz .

[#92-111] D.wi?**.

[Hp.*34'l] 3.zR\R%z.
[#91-52] D.^

110
*:Dh.Prop

#96-421. h :. R e Cls -> 1 . y, z e R^x . yRw . zRiu .y^z.D: yRvoy . v . zRvoz

Dem.
h . #96-303 . D h :. Hp . D : yR

ll0
z . v . zR

l30y (1)

h . #96-42 . D I- : Hp . yRmz . D . zRvoz (2 )

F . #96-42 . D K: Hp .^po2/ . D . yi^ (3)

K(l).(2).(3).DKProp
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#96431. b-.ReCls^l.yeJ^x.zel^x.y.yR^z
Dem.

l-.*96-102.Df-:.Hp.D:3/4=^:

[*96'303] DiyR^z.v.zR^y (1)

I- . #96341 . D r :. Hp . D : zR^y . D .yeIR'x :

[Transp.*96102] D : y eJR lx . D .~(zRlwy) (2)

K(2). >h:Hp.D.~(^) (3)

\-
. (1) . (3) . D I- . Prop

#96432. \-
: Re Cls —> 1 .y,ze

I

R x
.
yRw . zRw . D -y = z

Dem.

K*96-l. Dh:Hp. D. (rS,T). S,Te Pot'R.ySy .zTz (1)

H . *96303 . D h :. Hp .O : y = z : v : (gTT) : £7 e Pot'^ : yUz .v.z Uy (2)

K(l).(2).D!-:.Hp.:>:

y = z:v: (gS, T, (7) : #, T, CTe Pot'72 . ySy .zTz zyUz . v . zUy (3)

K #96-41. Df :.Hp.D:(g£, #).£, U ePot'R .ySy.yUz .2 .y = z (4)
1-

.
#96-41 . D h :. Hp . D : (gT, U).T,Ue Pot'R . zTz .zUy .D.y-=z (5)

K(4).(o). Dh::Hp.D:.

(g# T, 10 : S, T
y
Ue Pot'R . ySy .zTz zyUz.v . zUy : D . y = z (6)

f- . (3) . (6) . D h . Prop

#96*44. f- : . R e Cls -* 1 . y, z e i2*% . yjRw . ^i2w . y 4= 2 . D : y e /R'# .v.ze IR'cc

[#96421 -1]

#96441. Y:.Re Cls -> 1 . y, * e R*'x . yKw . zRw .y^z.D:
w e IR'x : y e JR x . z e IK'x . v .ye IR x . z e JR x

Bern.

h . #96-432 . Transp . (#96-02) . D
h :. Hp . D : z e IR x . D . y e JRlx : y e IR x . D . z eJR x (I)

b . (1) . *9644 . D \r :. Hp . D :yeJR'x .zeiR'x .v .y*I R'x. zeJR'x (2)

K #91 -502. #96-341. D
h :. Hp ,D:ze IR'x .D .we lR'x : y e Is'x .D .we IR'x :

[#96 44] Diwe

I

n'x (3)

K(2;.(3).DKProp

*96442. Y-.Re Cls -*l,y,z € Jn'x . yRw . zRw .D.y = z

[#96 44 . Transp]

The following proposition (#96-45) is important.

#96 45. I- : R e Cls -> 1 . D . (JR'x) 1 R, (IR'x) -j R e 1 -> 1

[#96-442432]

#96-451. h :. R eCls -» 1 :</,.<&• = A . v . IH<x = A : D . (/*#'#) 1 £ e 1- 1

[*.«)6-45-102]
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96452. H :. R

e

Cls-> 1 . 1) : g ! JR'x . = .xeJR'x
Dem.

H.*1024. DhzxeJx'co.D.QlJgta: (1)

K 96342. 3h -.H? .xeIR'x.3 .*R*'xCIR'x

.

[96102] D.JR'x= A (2)

h . *96*101

.

Z> I- : g ! jy# . D . g ! iZ*'#

.

[*90'13] D . #2^ (3)

H . (3) . (2) . Transp . D I- : Hp . g ! JR'x . D . * e^'x- IR'x .

[(9602)] 3.xeJR'x (4)

I- . (1) . (4) . D h . Prop

96453. f- :. R eCls-> 1

:

xR^ . v . (S*'«) 12^ G J : D . {R^tx)
J\R € 1 -> 1

Dem.

K *96'452 . Transp . D h : 22 e Cls^ 1 . #22^ . D . Jjj'a; = A . (1)

K*96-104. Dh:22eCls^l..(S*'«)'|22po GJ'O.JJI
'a>=A (2)

H.(l).(2).#96-451.DKProp

96'46. f- : 22 e Cls -» 1 . y, y' e Jr'# . 22<y, .By e IR'x ,3.y = y'

Dem.

H.*92111.D

I-
: R € Cls -» 1 . y eJR'x . 5<y c //a; . yRwy .O.R'ye IR'x . R'yR*y' .

[96'342] >.y'eIR'x (l)

t- . (1) . Transp . 3 h : 22 e Cls -* 1 . yt
y' e JR'x . R'y e IR'x . D .~(yiW) (2)

^-W^.DH^eCls^l.y.^eJ^.BVe/^.D.^^l^) (3)

h
. (2) . (3) . D h : Hp . D .-(yR^') ."(y'R^) .

[*96'303.Transp] D . y = y' : D I- . Prop

96 461. b:ReCh-+l.ye JR'x . R'y e IR'x . D . y = mwLR'JR'x
Dem.

h . *1421 . D I- :. Hp . D : E ! R'y :

[30-13] D : J2'y~ eJ^ . = .~(R'y eJR*X) .

[7 1-371.Transp] =.y~eR"JIt'x (1)

I- . (1) . *93-115 . 96102 . D I- : Hp . D . y maXji(/^) (2)

I- . #96-431 . D K :. Hp . y' €JRlx . D : y'R^R'y :

[91-504] Diy'eD'R:

[71-164] y-.ElR'y'i

[3013] 0:R<y'~eJR'x. = .~(R<y' €JR'x).
[7 1-371.Transp] = .y'~eR"JR'x (3)
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h . (3) . *93115 . D I- :. Hp . D : y max*

(

JRlx) . D . y' eJR'x . R'y'~ €JR*x

.

[*96102] D . ye JR'x . R'y e IR'x

.

[*96-46J D.y = y' (4)

K (2) . (4) . *30'31 OK Prop

#96 462. h : R e Cls -* 1 . y e JR'x . z e lR
lx . yRw . zRw . D .

y — m&xR JR x . w = R'mdLXR'JR'x . z= \fJ.R*x) \ R\ tRl
xx\a^R JR x

Bern.

h.*96-441102.*71361.D

h : HpO . w e /#'# . «> = R'y .

[#96*461] D . y = ma,xR'JR'x . w = R'ma,xR'JR'x (1)

I- . #96*45 . D r : Hp . D . z = {(/*'*) 1 #}'w (2)

b . (1) . (2) . D h . Prop

The above proposition, since it exhibits y, z, w as functions of x and R,

shows that there is at most one w in R^'x having more than one immediate

predecessor, and that this one has exactly one immediate predecessor in JR x
and one in IB'x. (These results require #96*441, in addition to #96*462.)

Thus we arrive at the following proposition

:

#96*47. I- :. R e Cls —*l.y,ze R*x . yRw . zRw .y^zO : w=R'ma.xR'JR'x

:

y = msLXR JR'x . z = {(IR'x)']R}'R'imxR'JR'x . v

.

z = m&Xjt'Jjt'x . y = {(IR x) **] R}'R'ma,xR
tJR'x

[*96*441*462]

We still have to prove
4-

R € Cls — 1 . a ! JR'x . a ! IR'x . D . (ay, z, iv) . y, z e -R^'a* . yRw . sJBtt/ . y =f*
z,

or, what comes to the same thing because of #96*441,

Re Cls-* 1 .3 \JR fx. 3! IrX."^ . (fty,z,w).yeJR'x. z e

I

R'x .yRw .zRw.

This is effected in the following propositions.

#96 472. I- : R e Cls- 1 . a Jr'x • 3 '• ^V# • 3 • (32/) • V e <V# • ^'y * i*'*

Dem.

H . #90*1 . D h :. x e JR x . R"JR'x C Jr'a? . D : xR#y . D . y e JV#

:

[#96*104] D:IR'x=A (1)

> . (1) . Transp . #96*452 . D I- : Hp . D . a ! R"JR'x - JR lx

.

[#7 1-401] d . (ay. ^) • 2/
e /«'* • * = R'y -z^e JrX .

[*13'195] D . (ay) . y e JR'x . E fy~e/^

.

[*96-l 02] D . (ay) . y € JR'x . R'y e IR'x OK. Prop
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*96473. f- : R e Cls -> 1 .g ! JB'x .g ! IR'x . 3 . E ! max/J"/*; . E lR<ma,xB'JR<x

[*96'461-472]

*96474. I- : R e Gls- 1 . w = E'maxVJ^'a? . 3 .

E ! {{Ijfx)] R}'w.E I maxjt'Jj,,'* . {(J/*) -|. £}'«, = ma.xB*JB'v

h.*7l-361. 3 I- : Hp . 3 . (max/J/a;) Rw . (I)

[*14-21] 3 . E ! max/J lx . (2)

[*9311] 3 . max/Jj/a: e .//&• .

[(l).*96-45] 3. {(J
r

2j*a?).|i2}'w = maxB'«/'^a; (3)

r- . (2) . *9311 . 3 h : Hp . 3 . niax/J^'a^e R"JR'x .

[*71371.*3013] D . ^max/J^^e J^'a?

.

[Hp.*96102] D.Me//«.
[*9frl .*9 1 -52] 3 . WjRpow . W22# \Rw .

[*341] 3 . (g^) . wR^w . wR%z . zRw .

[*96-342] 1 . (&z) . z e IR'x . zRw .

[*96-45] >.'E !{(/*<«;) 1 22} 'w W
h. (2). (3). (4). 3 h. Prop

*96'475. I- :. i£ e Cls-»1 . 3 : E ! '.R'niax/jya? . ~ . g ! J/a; . g ! //a;

j>96-473-474]

This proposition and *96'45 -47 embody the main results of this number.

*96-48. hi.ReCh^l,S= (R^x) J\R.W€Rvo
tx.D:

w —> w _

»

~(w = RimsixR
iJRtx) . = . S'w e 1 : w = R'ma,xR'JB'x . = . #'w e 2

K*96-15.*33-41.3r:Hp.3.g!^w (1)

h . #96*47 . 3 h : . Hp . 3 : (gy, z) . ySw . zSw .y^z.D.w = R ima,x
li

iJRtx :

[(1).*52-4I] 3:£<w~el.3.w = .# <maxP//i,^ (2)

h . *9G-474-I02

.

3 I- : . Hp . 3 : t<;= ^'max/J^'a; . 3 . S'w-~ el (3)

I- . (3) . (3) . Transp . 31- :. Hp . 3 : ~(w = iz'max/./j/a;) . = J3'w el (4)

h . (2) . *52-4 . *54101 . 3 b :. Hp . D.z~S<w e 2 . 3 . w = #<maxK<JP> (5)

h . *96474-102 . 3f :. Hp . 3 : w = iS'max/JVa- . 3 .

E !.((/*'ar) 1 R\'w . E ! {(2^)1 22}

'

w . t'{(jy#) 122]<w u £'{(7/;^)^Hv -=J3'w .

[*96102.*54-101] 3 .~S'w,e2
"

(6)

t-.(5)-.-.(6)..3r-:.'Hp>.3:«y = ^maxJ?
fjr

K'a;. = ."3'
M/ e 2 (7)

h. (4). (7)-. 3 K Prop

In the above proposition we write "~(w=-R'ma,x R
tJR tx)" rather than

" ?u =|= R irrmxH
tJ1,'x," because the latter implies the existence of R lma,xR

lJR x.
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#96 49. I- :: R e Cls -* 1 . D :. (R*'x) 1 R e 1- 1. = :IR'x = A . v . JR'x = A
Dem.

V . *9648 . Transp . D h :. Hp . S = (#*<#) 1 i£ . D :

w e Rpo'x . w = R'm&XjfJjfx . = . w € i^po'a; . <S'w~ e 1 :

[*96-15.*91-52] D : w = R lmaxR'JR'x . = .wea(S.~S'w~ e 1 :

[#14-204] D : E I R'maxR'JR'x . = . (gwj . w e <P# .~£<w~ e 1 :

[*96-475.*7l-l]O : g ! J2
,<# . g ! IR'x ..= . £~ € l-*Cls

.

[#71-261-103] =.£~el-»l (1)

h . (I) . Transp . D h . Prop

*96 491. I- :. R e 1 ->1 .. D : lR'w = A . v . JR lx = A
Dem.

h. #96-49'. D\-:.Hy.xeI)'R.D:IR'x = A.v.J:R'x =A (1)

K #91-54-504 . D I- : Hp . x~ e D'R . D . S^'a; = i'x nC'R.~ (xR^x)

.

[#96-1] D.IR'x = A (2)

h . (1) . (2) . D h . Prop

#96492. \-:.Rel-+l.xeD'R.D:

~ (#72 „#) . = . IR'x = A : xR^x ."s . J^'a? == A
Dew.

r.*96T101.D

I- : IR'x = A . D . ~(#i2po#) : x e D'R . ^(xR^x) . D . g !J^ (1)

I- . (1) . #96-401 . 3 h :. Hp . D : ^(xR^x) . = . IR'x = A (2)

Similarly h : . Hp . D : xR
lH)
x . = . JR'x= A (3)

r.(2).(3).Dr.Prop

The above proposition is used in #122\52.

The following propositions, not being needed in the sequel, are merely

stated:

b :R e Cls-* 1 . g I JRlx . gUR'x . D . IR
lx n R"JR'x el . JR'x n R"IRlx e 1

I- : R e Cls-> 1 . JRfx = A . D . (JR*'x)\I e Pot'{{R*<x) j i?}

#96-5. h : Ae 1 -> 1 . a? e D'JK . D . .Bpo'.K'a;= iya:=R^x u *<#

h . #71-7 -.Dt h :. Hp , D* r# e^•ifcfcv =^R^
j
i£r

.

[#9211

J

=.yR#x.xeI><R.

[Hp.*4-71] =.yR#x:

R
*3218.*96-14 ~ D : R^Rfx^Myfr^ R^'vv **« r. D h . Prop

#96-501. h i .B e 1 -*1

.

x ed'R . 3 ^R^'R'x= R*'x^R^x vVx
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—

>

—

>

•96502. \-:Rel->Ch.xRy.'2.R#'y = R*'xyji (
y

Dem.

•9661. > : R e 1->1 .

a

C R%"B'R . a C Epo"a . D . a =A

Dew.

I- . *37'105 . D h : . Hp . D : y e a . Dj, . (g«) . # e a . tfEpoy •

[•32-18] Dy . g ! a n R^y :

[•1418-21] D : i2'« c a . D . a ! a n R^'R'x

.

[*96'5] D.glani^'a;:

[ Transp] D:«n tf*'^ = A . xRy . D . y ~> e a

.

[•51-211] D.on(iJ#'a?wi'y)=:A.

[•96-502] D.anR*'y = A (1)

K*9r504.Dh:.aCEpo"a.3:aCCFE:—

>

—
[*93'104] 3 : « e 5*12 . D . a r» #*<* = A (2)

I- . (1) . (2) . *90112 . D h :. Hp . -.xeB'R . «fl*y .D.an R*'y = A .

[•9013] D.y~ea:

[•37-105] D:5»""3'J2na-A (3)

h.*22621. Dh:Hp.D.a = 5*"i?^na (4)

I- . (3) . (4) . D h . Prop

•9652. V:Rel-*l.aCR*"BtR.'&la.3.'a.\mm(RPoy*

Dem.

K#96-51.Transp.3l-:Hp.D.a!a-.Ro"« (*)

K(l).*93111. DKProp

This proposition is used in *122*23.



*97. ANALYSIS OF THE FIELD OF A RELATION INTO FAMILIES

Summary o/#97.

In this number, we consider not only the posterity of a term, but the

ancestry and posterity together, i.e. R*'x u R%(
x. We put

R'x= R'x w (i'x n C'R) u R'x Df.

Thus the whole family of a term, i.e. its ancestry and posterity together,

is R^'x. The most important case here is when R e 1 -*1 ; in this case families
are mutually exclusive, i.e. we have

f- : Rtl-^l . D .S^"(7'i2eClsex8 excl.

In case Rel-+1 and y belongs to a family which has a beginning, i.e.

in case g ! R%'y r\ B'R, the whole family of y consists of the posterity of the
beginning, i.e. we have

h : R e 1-*1 . xBR . xR#y . D . 2^'y = R^'x,
whence

*97 21. 1- : R e 1 -» 1 . D . i4"*'gen'iS = R*"B*R

When -Rel-*1, the relation of gen'tf to R*"B<R may be pictured as
the relation of rows to columns. #.#. let the field of i2 consist of the dots

R
I / !

R

• • / • • • •
T

R
! ** i

R

• • l • - - _ T

1 J"

in the accompanying rectangle, and let each dot have the relation R to the

dot below it. Then the top row is B'R, the second row is <I<R - d'R?, the
third is <I'R?-<1<R3

, and so on; thus the rows are the generations of R.

Again, if x is any dot in the top row, the column beginning with x is S*<#,

and if y is any member of this column, the column is %fy. Thus the columns
are the families of R. It will be seen that in the case represented by the
above figure, every family consists of a selection from the generations, and
every generation consists of a selection from the families, i.e.

R*"B'R C D"e*'gen'R . gen'R C D"6A'R#''1b<R.
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The circumstances under which this occurs will be considered in the

present number (*97\3—'47). The results are summed up in #97*47.

The remaining propositions (#97*5—-58) are concerned with circular

families of one-one relations. If Rel-tl, R^'x is a circular family if

xRpoX. In that case, we have xR^y. D.yi^, ««; moreover there is a definite

power of R, say P, such that every member of the family of a? has the relation

P to itself (#97'54). (The same will hold, of course, of all powers of P.) The

families of a 1.—» 1 are all either circular or open, i.e. we have (#97'55) either

y eR#'x . Dy . yR^y, or ye R%'x . D„ .~{yRvoy). The Q-shaped families con-

sidered in #96 are not possible for a 1 —> 1, since in such families the term at

the junction of the tail and the circle has two predecessors. The family of

any member of s'gen'JR must be open (#97 -57). The family of a member of

/>'<I"Pot'i2 need not be closed, but cannot have a beginning; if open, it

forms a series of type *g> or *« + o», according as it has or has not an

end*. Finite open families are contained in s'gen'R n s'geu'R ; families

of type w are contained in s'gen'i? «#'<3"Pot<.R; those of type *&>, in

s'gen'B r\ p'Q."Pot'R ; those of type *<o+ &> and circular families are contained

in p'CF'Pofc'E n p'Q."Fot'M. Those of type *<» + &> are distinguished from

circular families by the fact that in the former we do not have xRpox, Avhile

in the latter we do have this.

In addition to the propositions already mentioned, the most useful pro-

positions of the present number are the following:

#9713. h . R*'x = R*'x yj R^x

#9717. I- . i2#'a? = i2po'* = R*'x » Rvo
1*= -Rp> vR*lx

*97*5. \-:Re Cls -* 1. . xR^x .xR^ . D . yR^x

*97501. f- : R e 1 -* Cls . xR^x . yR^x . D . #22po#

#9701. R'x = R'xv(i'xnC'R)vR'x Df

Observe that "t<# n (7*5" means that a; is to be included if it is a member

of O'jR, but not otherwise; for i*xf\&R=i'x if xeC'R, and otherwise

i'xnC'R=A.

* Here the type "*w" is the type of converses of relations of type w, i.e. the type of the

negative integers in order of magnitude, ending with - 1, « being the type of the positive

integers in order of magnitude, and therefore *w+« being the type of negative and positive

integers in order of magnitude.
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«->

971. \-'..yeRix. = zyRx.v.y = x.xeC'R m y m xRy
Dem.

J- . #3218181 . #5115 . (*97*01) . D

f- :. y eR'x . = : yRx . v . y = x . y e CjR . v . a?ify :

[13-193] = : yRx . v .y = x.xeC'R . v . xRy :. D h . Prop

97101. \-:yeR'x. = .x€R'y
Dem.

r . 32-18-181 . #5115 . (97-01) . D
*->

h :. x e .R'y . = : #ify . v . x = y . x e C'12 . v . yRx :

( y

[97-1] = : y ei^ :. D h . Prop

9711. H . s'R"C'R = C"£

.Dem.

I-.*971.#4011.D
<->

h :. y e s'R"C'R . == : (3a?)
.
yifo . v . (<&x) .y = x.xeC'R.v. (a#) . xRy :

[3313131.*13195] = : y e TXR . v . y e C'R . v . y e (KB :

[33-16] = : y € C'R :. D f- . Prop

( ) ( V

97111. I- : x e C'R .~.xeR'x. = .R\R<x
Dem.

I- . 971 . 3 h :. a; e iZ'a: . = : xRx . v .xeC'R :

[3317] =:«(?iJ (!)

h. 971. DI-:.a! JB^. = :(a[y):y^.v.a!%:v:(ay). xeC'R.y = x:
[*33132.*1319] =:xeC'R (2)
h.(l).(2).Dh.Prop

9712. h-A^ei^'C'E
Dem.

I- . 97-111 . *3763 .Oh: a e*R*"C'R . Da . g ! a (1)
I- . (1) . 24-63 . D f- . Prop

9713. K^=^u4'«
iVote. .ft* is to mean (i?*), not (R)#. The latter is unmeaning, since R is

never a homogeneous relation, and therefore its square and higher powers
are unmeaning.

Dem.
h . #90 •12 . D h : y = x . y e C'R . D . yR#c

:

[5115] D h . i'x n C'R C S#'a?

.

[9014] Dh.^nC%C^'
(1)

h.(l).(*97-01).DH.Prop

R&W I 40
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/ v i y

#97 14. b : R e 1 -> 1

.

xR*y . D . R^x^R^y [#9632 . #9713]
< y J y ( )

#9715. h : 12 el-»l. a? eR^y .y.R^x^R^y
Dem.

K #9713. Dh:.Hp.D:a;.R*y. v. y!2*a: (1)

h. (1). #9714. 3 K Prop

#9716. I- : 1* e 1 -> 1 . D r R^'C'R e Cls ex2 excl

Dem.
S y / \ f \ S y ^_4 y \

I- . #9715 .31-:. Hp . D : a? e iJ^'y . x e R^z . 2X . R^'x = R^'y . R^'x= R^z .

4 y d y

[#13171] 3x .R*'y = R*'z:

[*10'23] D : a \R*'y txR^'g. Z> .R*'y = R*'z (1)

K(l). #1111-3. #37-63. D

h:.Hp.D:a,j3eR*"C'R.Klanj3.Date.a = p (2)

H . (2) . #9712 . *84132 . D K Prop

{ y ( y _^ ^_ _

^

4

#9717. F- . R^x = Epo'a; == R^x v iJ^'a;= .Rpo'a; \j R^x
Dem.

b . #9713 . #9154 . D H . 2^'a?= R^'x u (t'a; « C'R) u i^'a? (1)

[*91'504.(*97-01)] =Spo'# (2)

h.(l).*9154. Dh.^a? = i2po'a;ui2^ar = JR
3|e
'a;w Jftpo'aj (3)

h . (2) . (3) . D I- . Prop

#9718. b . C'(R t Wx) =S'»

Dem.

h.*S74l1.0b.Gt(RtR'x)CR tx (1)

h . #971 . #36-13 . D

b : . a; e C.R . y € E'a: u JS'a: . D : x (jR fc
E'a:) y.v.y{Rt R'x) x :

[#3317] D:x,ye C\R IR'x) (2)

I- . (2), #97-1

.

^b:xeGlR.^.%xQGl{RlRlx) (3)

h .#97111 .Transp. D r : x~e C'R . D .£<* C G\R t*R'x) (4)

h.(l).(3).(4).DKProp

#97-2. b : xBR . D .%{x= #*'*

Dem.

h .#93104 . #97-13 . D H : Hp . D . £*'#

»

i'x u %<a> (1)

I- . #93-101 . #9012 . D b : Hp . D . a; e jR/a? (2)

K(l).(2).Dh.Prop
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#9721. I- : R e 1 -> 1 . D . R%"s'gen<R =^"5i2 ?
Bern.

h . #9714-2 . D h :. Hp . D * xBR . xR*y . D . R%'x = R*'y

.

[*37 62] D . %<y e R*"~B'R :

[*93'36] D : y e s'gen'22 . D . i2*'y e^'B'R :

[*37-61] D : i2#"«'gen'i2 C R^'B'R (1)

h . *97-2 . #9322 . D K S*"2?# CR*"s'gen'R (2)

h . (1) . (2) . D h . Prop

#9722. h : R e 1 -> 1 . D . R%"B'R u ^"p'O'TofiK = R*"C'R
[*97-21 . #9337]

#9723. \-::R"C'ReOsjl. = :.x,y€C<R.Dx, y :x=y.v.xRy.v.yRx
Dem.

\-
. #524 . (*54'01) . D

h ::. i2"C'E eO u 1 . = :: a,Pe*R"C'R . Dtt>/} . « = £ ::

j>37'63] = ::x,yeC'R. Ox>y . *R'x =*R'y ::

[*97l] = ::x,ye C'R . DXiV :. zRx .v.xe C'R .z = x.v.xRz . =z :

zRy .v .ye C'R .z — y.y. yRz :.

[*4'71] =::x,ye C'R .Dx>y :. zRx .v.z = x.v. xRz : =z :

zRy . v . z — y . v .yRz:. (1)

[#101] D::x,ye C'R . DXiV :. xRx . v . x — x . v . xRx : = :

xRy . v . x = y . v . yifo :.

[*1315] Dxv : . a;ity . v . x= y . v . yito (2)

f-
. #101 .D\-::x,y € C'R:z€C'R:.x,ye C'R . D^ :xRy.v.x=y.v.yRx:.D:.

xRz ,y .x — z .y . zRx : yi2^ . v . y = z . v . zify :

.

[*51] "Di.xRz.v .x = z.v ,zRx:~:yRz.v .y — z . v . zRy (3)

h . #33132 . Transp . #1314 . 3
V : : x, y e Cft : ^~ e (?'# : D : . ~(xRz . v . .zifa:) .x^z :~(yRz . v . zRy) .y^zi.

[*521] Dt.xRz. v.x = z. v.zRx: = :

yRz . v . y = z . v . ^ity (4)

K (3) . (4) . D h : : . #, y e C"i2 . Dx> y : #£y . v .x = y . v .yRxz.D :

:

#, y e C*.R . Da;
i2/

:. #ifo . v . a; = z . v . zRx : =2 : yite . v . y = z . v . ^ity (5)

h.(l).(2).(5).Dh.Prop

#97231. h :. R"C'R e u 1 . = : x e C'R . Ox . C'R = R'x o t^u^
Dem.

H . #97-23 . #3218181 . #51-15 . D

h :. i2"C"iJ eQ v I . = : x e C'R .D . C'B CR'x v l'x v%x (1

)

h . #33152 .*5V2 .D \-
: x e C'R .3 .ll'x v t'x v%x C Cf^ (2)

b . (1) . (2) . D h . Prop

40—2
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#9724. h :. R*"C'R e w 1 . = : x e C'R , Dx . C'R= ~R^x w R^x
Bern.

k.*97'231. #9014.3

h :. R*"C'R eQyjl. = :xeC'R.Dx .C'R = R%'x u i'x u jR^'a? (1)

K*9012. DhzxeC'R.D.t'xCRx'x (2)

h.(l).(2).*22-62. Dh.Prop

*97'241. h :: R*"ClR e u 1 . = :. as, y e C'R . D
8f „ : ari^s/ . v . */.#*#

l-.*97-24.*32-18181.D

\-::.Rx"C'ReOyjl . = zzxeC'R . Dx z.y eC'R . =„ : xR*y . v . yR*x (1)

h.*90-13.DI-:.<r##y. v.yR^xzD.yeC'R (2)

I- . (1) . (2) . #4-73 . D h . Prop

#97242. h :: R*"C'ReOvl . = z.x, yeC'R.^y zx = y.v. xR^y . v . yRpoxz.

= :.Epo"C"i?60ul

[#91-542 . #97-23 . #91-504]

The remaining propositions of this number (except #97 '5 f£) are concerned

with proving that, under certain hypotheses,

^"B'R C D"eA'gen<12, i.e. R%"s'gen'R C D"e*'gen<R,

and gen^R-t'ACD"eA<E*"2?<i2.

These propositions have the merit of proving the existence of selections

in the cases to which they apply.

#97 3. h.1fi*t~B'Rel-*l

Dem.
h.*9012.D

bz.x,y €~B'R.%'x = R*<y.Dzy€R*<xz

[#91-54] D : y = x . v . xRmy (1)

I- . #91-504 . D h : ##p0 .y . D . y e (Ftf :

[Transp.*93-101] D h : y e £<i2 . D . ~ (xR^y) (2)

K(l).(2). DI-:^ye]fo.!^c=K'y-3-* = y (3)

K (3) . *71'55 . *72\L2 . D h . Prop

#97 301. H . / T&R e (R*)s'li<R

Dem.

h. #72-17. D\-.I[B<Rel-+C\s (1)

K #90-15. Dh.Ifli'RGR* (2)

h . #50-5-52 . D r . a'J [&R = B<R (3)

1- . (1) . (2) . (3) . #80-14 . D h . Prop
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*9731. h . (B'R) 1 Cnv'E* e eM*"~BtR . ^'{{B'R) 1 Cnv<£*] =~B'R

Dem.
\^

h. #973. #85-13^.3

h:Se (R*)Jb<R . D .£ | Cnv<S* e e^^'R (1)

h . (1) . #97-301 . OK/ rl?'i2| Cnv'£* e ejRtf'B'R

.

[*50-61] D h . ("B'72) 1 Cnv'E* e efR*"B'R (2)

K #3562 . #33431 . D h . D'{(3*i2) 1 CnvS*} =^E (3)

h.(2).(3).Dh.Prop

#97 32. I- . D<iJ!

e

T>"ejR*<<B'R [#97-31]

#9733. h : R e 1 -> 1

.

a

C

s'^#"/8 . # C s'jR*"a . D .S^"a = 5^"/3
Dew.

I- . #97 • 15 . Fact . D h : . Hp . D : y e £ . a; e #*'*/ . D . iV# =R*tsc • 2/ e £

[#37-62] D.jR*'a>e5^"£ (1)

I- . (1) . *1011-21-23 . #404 . D h :. Hp . D : a;

e

s'R#"0 . D* . iJ^ar

e

R^'fi :

[Hp.Syll] D : x e a . 3X . R^x e R^'fi :

[*37'61] D : R«a C R*"/3 (2)

I- . #404 .Dh:.Hp.D:ye/8.D. (ga?) .xea.ye RJx

.

[*97'1 5] D . (ga?) . a; e a . iJ*'* = £*'#

.

[*37'62] D . i^'y e i^"« (3)

l-.(3).*37-61.DF-:Hp.D.
<

^le

"
/
SC

<

R^"a (4)

K(2).(4).Dh.Prop

#97 34. h : R e 1 -+ 1

.

e D"eA'i2*"a . D . 22*"a= £*"£
Dem.

K #83 6-62. DI-i.Hp.Di^ea.D^.aS/SnE^i^Cs^L^a (1)

h.*40-4.*97l01. D\-:.xea.3x .'gill3rsRx'x.= .aCs'Rx"/3 (2)

K (1). (2). #97-33. DK Prop

#97341. I- : 22 e 1 -> 1 . £ e T>"eSR#"B'R . D .JV'/3 ^R^'Ib'R

[#97-34
jB
^.*97-21
a J

#9735. h:i2eCl8->l.TePotid<#.i?l£CD<r.D.

Dem.

h . #97-3 . #92-101 . D h : Hp . D . Cnv<{(£* f D'E) |
T} e 1 - Cls (1)



630 PROLEGOMENA TO CARDINAL ARITHMETIC [PART II

h . #35101 . *30'4 . D

^•ci{{R^iR)\T) y . = .{^x).xe~B iR.a=
4

R^x.xTy (2)

K*91-58. Db:.'Ky.3:xTy.'D.y€*R%tx:

[*13'12] D:a = R*'x.xTy.D.yea (3)

K(2).(3). Dh:.HpO:a{(^5^|T}
2/ .Da>2/ .yea:

[*231.*31131] D : Cnv'JCft* f ifo) |
T} G e (4)

F- . #37321 . #35-65 . D I- : Hp . D . D'{(S* f2^) I

^} = £#"2?^ (5)

K (1) . (4) . (5) . #8014 . D h : Hp . D . Cnv'{(S* ^i?)
|
T) e ejR*"~B'R (6)

V . #35-65 . D !- . a'(S# T 5*i2) = £<£

.

[#37-32] ?V.a'{tR*^'R)\T) = Tt<B'R (7)

h.(6).(7).Dh.Prop

#97-36. h:ReCh^l.Te?otid<R.B'RQI><T.D.T"B*'ReB"eS%*"B*<R
[*97'35]

#9737. h : R e 1 -> 1 . d'R C D'22 . D . gen'22 C T)"eA?R*'<B<R

Dem.

h . #9214 . D h :. Hp . D : Te Potid'E . D . if'JR CDT (1)

h . #93-32 . D h :. Hp . D : a e gen'iZ . = . ($T) . TeYotid'R . a = T't&R (2)

h. (1). (2). #97-36. DK Prop

#97-38. h : 22 e 1 -» 1 . d'R C D<22 . D . JV'iJ^R C D"e4'gen<22

Dem.

I- . #93-36 . #40-52 . D I- : Hp . D . s'R*"B'R = s'gen'R (1)

K . (1) . #84-43 . #97-37 . #93-25 . *97-16*21 . D h . Prop

#974. h:SeFot'R.D.S""B'R = A
Dem.

h . #91-31 . D h : Hp . D . (%T) . Te Potid<22 . #= 22
|
T.

[#37-341] D . (gT) . T e Potid'22 . S"B'R = T"R"~B'R
[#37261-2'9.*93-101] =A.

[#10-35] D . 5"£<i? = A : D h . Prop

#97401. h :. #e D'E : SePot'R . xSy . DSttf . yeD'RzD-.SePot'R. Ds .xeD'S

Dem.

h . #33-13 . D I- :. Hp . D : S e Pot'E . xSy .Ds>y . (g«) . y2*s . a%

.

[#341.#33-13] DSiy .xeI>'(S\R):

[*10-28.*33-13] 3:SeVot'R.xeD<S.Ds .xe'D'(S\R) (1)

K(l).*91-373.DKProp
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*97402. b:.ReC\s^>l.X€l)'R:('&S).Se¥ot'R.xr»e.I><S:D.

faS) . 8 e Pot'i* . S'x eB'R
Dem.

b . *97'401 . Transp . D b : Hp . D . (&S, y).St> Vot'R .xSy.y~e D'R .

[*91-271.*33-14.*93101] D . faS, y) . S e Pot'22 .xSy.ye B'R .

[*71'321] D . (gtf )

.

S

e

Pot'iZ

.

S'x e B'R :3 b. Prop

*97'403. H:i2e Cls-*1 . x e B'R . Te Vot'R .~B'R = T"B'R . D .

(nS).SeFot'R.x~e'DtS
Dem. b . *92131 . D h :. Hp . D : xTy . xTz . zRw . D . yRw .

[*3314] D.y~e~B'R (1)

I- . (1) . *llll-3'35 . D
—> ^

h :: Hp . D- :. a?Ty : (g\z, w) . a;!'? . zRw : D . y~ e -B'JR :.

[*341.*3313] Dz.xTy.xe D'(T \R).O.y~e B'R :.

[Transp] D :. arlty ..y e B'.R . D . x~ e D'(r | R) (2)

H.*10-24. DhiHp-^^eDT.D.Ca^.iSePot'fi.^^eD^ (3)

b .*37'105 . D b : Hp.aTy . D .y e 5'E *

[(2)] D.a~eD'(r|JK) (4)

h . (4) . *1011'23-35 . *33 13 . 3
b : Hp . are T>'T. D . a?~ e B'(T\ R) .

[*91282] D.(aS).SePot'12.a;~eD'£ (5)

f-.(3).(5).Dh.Prop

*9741. h : Re Cls-*1 . a? e^'ii . T e Pot'JR . Ib'R = ?"5i2 . D .

(<&S).Se¥ot'R.S'xe~B'R
[*97-402-403]

*9742. H:22el^l.a!€^i2.^rePot'i2.^ = T"?i2./S:fa;e"B^.D. <S=r
Bern, b . *376 . D I- : Hp . D . (gy) . y el?<# . S'x= T'y (1>

h . *37'62 . (1) . D h : Hp . D . S'a: e S'<B'R n T'^'R

.

[*93-3] D . S'x e mhV<PS n nm^'CIT

.

[*9324.Transp] D.S=T:Db. Prop

*9743. I- : R e 1->1 . Te Pot'E . £<# = T"~B'R . D .^B'-R C D'T

Dew. I- . *97'42 . D

h :. Hp .x€~B'R . D t SePot'.R . S'xeB'R . D . T'xe~B'R :

[*101 1-21-23] D : (gS) . £ e Pot'iZ . S'a? e £'£ . D . ?'a? e~B'R :

[*97'41] Oz^are^JR:

[*14-21] D-.ElT'x:

[*33*44] D:xe V'T : . D h . Prop
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Dem.

H.*91-45.DI-:.Hp.D:(a ?7):^ePotid'JR:>Sf=irjr.v.T=0r

|^ (1)

K*97-4. Drz.Hp.D: UePot'R .S^U\T.D .S"~B<R = A:
[*91-23] D:U€Votid<R.S = U\T.nlS«~B<R.y. U^IfCR.
[*50-63.*91-271] D.S=T.
[*97-43] D.&RCD'S (2)
h .*91-34. D I- :. Hp. D : UeFotid'R. T= U\8l 3 . T=S\ U.
[*34'36] D.DTCD'5.
[*97'43] Z.ll'MCD'S (3)

h.(l).(2).(3).Dh.Prop

*97*45. h : i2 € 1 -> 1 . £<j? 6 gen'lS . D . gen'i? - i'A C D"eA'iV<2?<£
Dew.

h . *97*44 . *10-ll-23-35 . *9332 . D

h : i2 e 1 -> 1 . £<JR e gen'i2 . 5 e PofiZ . g ! S'<B<R . D . 2?'.fl CD'^.

[*97-36] D . £"]?<£ e D"€a'j?*"2?12 (1)
K(1).*1312.D

f- : R e 1-*1 . B(R egen'R .SeFot'R .a = S*'B<R . g ! a

.

D.a € D"eA<R#"~B'R (2)
h . (2) . *10-1 1-23-35 . *93-32 . D—> v *— —

>

I-

:

Re 1-+1 . 5'iZ e gen'iZ . a e gen'R . g ! a . D . a e T>"€s<R*"B<R (3)
h . (3) . *53-52 . D h . Prop

*97*46. f- : i? e 1 -> 1 . B'R e gen'iZ . D . S*"I?.K C D"eA f(gen fi2 - t'A)

H . *93-36 . *40-52 . D h : Hp . D . s'R^'B'R = s'gen'R

[*53-18] = ^(gen'i* - i'A) (1)
h . (1) . *84-43 . *97-45'16'21 . *93'25 . D h . Prop

*97'47. I- : R e 1-+ 1 . £<£ e gen'R ut'A.D.

gen'iZ - t'A C T>"eM*''BtR .\"~B'R C D'^gen'tf - t'A)

Dem.

r- . *93-32 . D I- : B'R = A. D . gen'i2 = t'A (1)

}-. (1).*37'29. 3 b:~B<R= A. D. gen'R- 1'A== A.
<
R#"~B<R = A.

[*24-12] D . gen'i? - i
lA C T>"€M*'<B'R

.

R*"B<RCI>«€A<(gen<R-L<A) (2)
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h . *24'3 . Fact . D

h : R € 1^1 . ftl^R .~B'R = A .0 . Rel->1 .<&l~B'R . (I<RCI)'R

.

(3)

[*9341] D.A^egen'ii.
[*51 222] D . gen'R - l'A = gen'R

.

[(3).*9737-38] D . gen'R - l'A C D"et'*R%"lB'R .

E*"lf<22CD"e4<(gen<JR-t<A) (4)

h . (2) . (4) . D I- : R e 1 -*1 . 5*5 = A . D . gen<i2 - l'A C D"eA'JV<i?<2Z

.

\"~B'R C D"6A r(gen^ - l'A) (5)
h.*97-45-46.D

H : £ e 1-+1 . B'R e gen'R . D . gen'!? - t'A C D'^jR*'*^ •

*R*"B<R C D'^'teen^R - t'A) (6)
K(5).(6).DKProp

*97 5. h : R

e

Cls-* 1 . xRpox . xRpoy . D

.

yRpox
Dem.

V . *92\L11

.

Dhz.Re Cls-»1 . xRmx . #% . D : yR^o :

[*91-54] O-.y^x.v.yR^x:
tHP] D:yJ2po* (1)

h . *10-1 . *341 . D h :. R e Cls->1 . #Ep0# . P e Pot'£ :

xPy . Dy.yR^x :xP\Rz:D: (ay) . r/iJ^a; . yP* :

[*92111] 0:zR*x:
[*91-54] D:z= x.v.zRpox:

[
HP] 0:zRpox (2)
h . (1) . (2) . *91 171 . D h : B e Cls->1 . xR^x . P e Pot'P .xPy.1. yRpox :

[(*91 05)] D h : B e Cls-> 1 . aPpo a; . xR^y . D . yB^x : D h . Prop

*97 501. h : B e 1 -> Cls . xR^x . yB^x . D . xRpoy [Proof as in *97"5]
f \ y j { y

*97'51. I- : B e 1 -> 1 . #Ppo« . D . R%'x = R%'x = R#'x = P*'a? n P*<«

[*97-5501-17]

*9752. l-:i2el->l.a;JRpoa;.a!i2po 2/
.D.^^ = JB^ njR^ [*97o501-51-14]

*97'53. l~:Pel->l.PePot'P.a:P#.yeP*<#.D.yPy [*92132133]

*9754. h:Bel^l.xBpox.D.(nP).Pe¥ot<B.P\-*B*<x = ir*B*<x
[*97-53]

*

*97-55. l-HJKel-^l.Dr.yeJR^^.Dy.yi^yrvryel^^.Dy.-^l^y)
Dem.

H. #97-53. ^K-.Hp.tfP^.DryeP^.^.yP^y (1)

K (1)
ty~

•
TransP DhHP-~ (*Bpo*) • * « ^*'y - 3 .

~ (ylZpoy) (2)

h . (2) . *97-101 . D I- :. Hp . ~ (xBpox) . D : y € B*'x . Dy . ~ (yj^y) (3)
K(l).(3).DKProp



634 PROLEGOMENA TO CARDINAL ARITHMETIC [PART II

*97'56. h :. Re 1->1 .xeB'R . D :yeR*'x . D„ .^(yR^y)

[*96"23-l.*97-55]

*97'57. h:.22el->l.#e s'gen'iZ . D : 1/ e ii^'a; . Dy . ~ (yR^y)

[*97-21'56]

*9758. h : . R e 1 -> Cls . Z> : a;

e

s'gen'R . D . £#<#

C

s'gen'R :

« e^a"Pot^ . D . JV<t> Cjj'<I"Pot'i2

h.*93-412. D\-.R"p'<l"Yot'RCp'a"?ot'R (1)

[*90-101.*93-273.*37-265] D I- . R"s'gen'R C s'gen'12 (2)

h . *93-33 . *40'13-38-43 . 2\- :Rel^>C\a.D .R"s'gen'RC s'gen'R. (3)

[*90101.*93'271.*37*265] D.R"p'a"Vot'RCp'<I"1

Pot'R (4)

I- . (1) . (2) . (3) . (4) . *90-22 . *40-5*52 . D

b : R e 1 -> Cls . D . s'E*"sfgen'E C s'gen'E

.

s'lVp'CF'Pot'E Cp'a«Fot'R : D I- . Prop

It follows from this proposition that every family is either wholly contained

in the generations of R or wholly contained in p'd"Vot'R, which may be

called the residue of the field of R.



APPENDIX A

*8. THE THEORY OF DEDUCTION FOR PROPOSITIONS
CONTAINING APPARENT VARIABLES*

All propositions, of whatever order, are derived from a matrix composed of

elementary propositions combined by means of the stroke. Given such a

matrix, any constituent may be left constant or turned into an apparent

variable; the latter may be done in two ways, by taking "all values" or

" some values." Thus, if p and q are elementary propositions, giving rise to

p\q, we may replace p by (f>x or q by tyy or both, where <px, yjry are pro-

positional functions whose values are elementary propositions. We thus

arrive, to begin with, at four new propositions

:

(%).(<f>w\q)r (a*). (<£<%), (y)-(p\yjry\ iw)-{p\^y)-
By means of definitions, we can separate out the constant and the variable

part in these expressions; we put

*801. {(#).<HI?- = -(a«0-(<M?) Df

*8011. {{>3oc).<l>x)\q. = .{x).(4>x\q) Df

*8 012. p | [(y) . iry\ . = . (3y) . (p\ yfry) Df

*8-oi3. j>|{(ay)-*y}---(y)-(!>)*y) Df

These definitions define the meaning of the stroke when it occurs between

two propositions of which one is elementary while the other is of the first

order.

When the stroke occurs between two propositions which are both of the

first order, we shall adopt the rule that the above definitions are to be applied

first to the one on the left, treating the one on the right as if it were ele-

mentary, and are then to be applied to the one on the right. Thus

[(x) . <f>x] | {(y) .^y}. = : (a#) : <fus \{(y). fy} :

= :(aa;) : (a2/)-(^l^)-
The same rule can be applied to n propositions ; they are to be eliminated

from, left to right. If a proposition occurs more than once, its occurrences

must be eliminated successively as if they were different propositions. These

rules are only required for the sake of definiteness, as different orders of

elimination give equivalent results. This is only true because we are dealing

with various functions each containing one variable, and no variable occurs on

both sides of the stroke ; it would not be true if we were dealing with func-

tions of several variables. We have e.g.

(a*) = (y) (4& \^y)- = - (y) • (a^) > (<l>® I "W-
* This chapter is to replace *9 of the text.
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But we do not have in general

(a*) • (y) • x 0> y) '• = ' (y)
<:

(a*) • x (*. u) ;

here the right-hand side is more likely to be true than the left-hand side.

For the present, however, we are not concerned with variable functions of two

variables.

It should be observed that this possibility of changing the order of the

variables is a merit of the stroke. We have

(a*) ! (y) • <M iry • = • (y) (a^) ^\fy = = (a«) • ~ 4>x v
* (y) • ~ ^y-

That is, these equivalent propositions are true when, and only when, either
<f>

is sometimes false or yfr is always false. But if we take e.g.

<f>x v yjry . <>•> <f>x v <^ yjry

we shall not get the same result. For

(a#) : (y) • 4>xvtyy . ~ <f>x v ~yfry : D : (y) . y(ry . v . (y) . ~ -fy,

whereas (y) : (g#) . <f>x v yjry . ~ <$>x v ~ y{ry does not imply this.

Written in stroke notation, after some reduction, the above matrix is

{<t>x\{y\ry\tyy))\{tyy\(4>x\4>x)).

Here both x and y occur on both sides of the principal matrix. Thus in order

to be able to change the order of "
(ftx)

" and " (y)," it is sufficient (though

not always necessary) that the matrix should contain some part of the form

<f)X | yfry, and that x and y should not occur in any other part of the matrix.

(This part may of course be the whole matrix.) We assume the legitimacy ol

this interchange by a primitive proposition, and in practice arrange to have

all the [[[-prefixes as far to the right as possible, because this facilitates proofs.

Our primitive propositions are the following

:

#81. h . (a«, y).<f>a\ (<f>x \ <j>y) Pp

On applying the definitions, this is seen to be

h : $a . D . (ftx) . <f>x.

#811. h . (a«) . <j>x
I
(<f>a

|
#>) Pp

On applying the definitions, this becomes

I- : (x) . <j>x . D . <f>a . <j>b.

We have <f>a
\
(<f>a | <f>b) . v . <f>b

j

(<f>a \ <f>b)

and by #81 H : <f>a
|
(<f>a \ (f>b) . D . (ga?) . <\>x

\
(<f>a \

</>&) :

<f>b
|

(<j>a \<f>b).D. (a«) . $x
|
(<f>a

j

4>b),

but we cannot deduce (ftx) . <f>x
j

(</>a
j <f>b) without #811 or an equivalent.

#812. From " (x) . <f>x
" and " (x) . <}>x D ->Jrx

" we can infer " (x) . yjrx," even

when
<f>
and yjr are not elementary. Pp

#813. If all occurrences of x are separated from all occurrences of y by a

certain stroke, we can change the order of x and y in the prefix, i.e. we can

replace "
(y) : (a#) . <f>x

J
yfry

" by " (a#) : (y) . <f>x \

yjry " and vice versa. Pp
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The above primitive propositions are to be assumed, not only for one or

two variables, but for any number. Thus e.g. *8*1 allows us to assert

V :<f>(a1} Oa, ... an) . D.faxu x2 , ... xn).(f>(x1 , x,, ... xn).

*8'2. I- : (x) . <\>x . D . 0a
f
*811^]

In what follows, the method of proof is invariably the same. We first

apply the definitions until the whole asserted proposition is brought into the

form of a matrix with a prefix. If necessary, we apply #8*13 to change the

order of the variables in the prefix. When the proposition to be proved has

been brought into this form, we deduce it by means of #8111, using #812 in

the deduction if necessary. It will be observed that #8*1 is h:<j>a.D.fax).<f>x.

Hence, by #8-12, whenever we know 0a, we can assert fax).^x; #8*1 is often

used in this way.

*821. H :(#) . 0aO yjrx . D : fax) .<f>x. D . fax).yfrx

Dem.

Applying the definitions, and using #81 3, the proposition to be proved
becomes

(y> y) • (a#> *» w>
z'> «0 {<£«

I (^ I ifX)} I U<t>y I (fz I
$*>)}

I

{4*y'
I (->K I

W)}\
Putting z = w = z =w =x, the above becomes

(y> y) ' (a^) • {ty I W* i V™)} ! l{<f>y I (^ I ^x)\ IM j
(^* |

^x)\\.

By #8*1, the proposition to be proved is true if this is true. But this is true

by #8*1 1, putting y, y' for a, b and
<f>y |

(yjrx
| yfrx) for 0a. Hence the proposition

is true.

#822. r- : 0a v 06 . D . fax) . <f>x

Dem.

K*8\Ll.Dh.(as).(~0*)j(~0aj~0&) (1)

Transp. D h :(~<l>2)\(~<j>a\~<f>b).'D .(<f>av <pb)\(<f)z\(f)z) (2)

r . (1) . (2) . *8-21 . D h . faz) . (0a v 06)
|

(0s
|
0*) (3)

K (3) . *8121 . D h . (a*, «/) . (0a v <f>b)
|
(0*

|

0w)

.

[(*8-01 2-013)] D r : 0a v 06 . D . (gar) . 0# : D \- . Prop

These propositions, as well as all the others in #8, apply to any number of

variables, since the primitive propositions do so.

#8*23. r- : fax) . <f>x v 0c . D . fax) . <f)x

Dem.

Applying the definitions, this proposition is

(«) : (a^ *) • (<t>* v 0c)
| (<f>y |

0s),

t.e. (x) : <j>x v <j>c . D . fax) . 0#,

which follows from #8*22.
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The following propositions are concerned with forms of the syllogism.

*8'24. h:pDg.D:.g.D. fax) . <f>x : D :p . D . fax) . $%
Dem.

Applying the definitions, we obtain a matrix

ipiq)\[{(q\(<t>x\<t>y))\(p\(<l>z\<l>«>)\p\(<l>u\<l>v))\\

l (the same with accented letters}]

with a prefix

{%, y, x\ y') • (a*, w>
u

>
v

>
z'> w'> u'> «0-

By *8*1, this will be true if it is true for chosen values of z, w, u, v, z\ w', u', v'.

Put z = u — x.w = v — y.z' = u' = x'.w' = v' = y. Then what has to be proved

becomes

p Oq. D :. q . D . <f>x.<f>y : D : p . D . <f>x .
<f>y

:. q . D . <f>x' .
<f>y : D : p . D . <£a/ . <£y',

which is true by Syll. Hence the proposition follows.

*8'241. h :: (x) . <f>x .D .p :D :.p"D q .D : (x) . <f>x .D . q

Putting f(y, z). = .{p\(q\q)}\ [{<f>y \ (q | q)} \

[<j>z
\ (q \ q)}],

the matrix of the proposition to be proved is

{**\(p\p)\\lf(!/>*)\W)}
and' the prefix is (x) : fay, z, y', z'\ Putting y = z = y'

'
— z =x, the matrix

reduces to <j>x"2p . D : p"5q . 3 . <f}x"Dq, which is true by Syll. Hence the

proposition is true by #8*1

.

*8'25. h ::p . D . fax) . <£# : D :. (ga;) . <f)X . D . (ga?) . i/ra; : D : p . D . (ga;) . ^a?

Put f(x, y, z, u, v,m,n). = . {^x\{-^y\^rz))
\ [{p j

(yjrii
|
i/ry))

| [p |

(^m
| ^fm)}].

Then the proposition to be proved, on applying the definitions, is found to

have a matrix

{p |

(<\>a
| (fib)}

|
{f(x, y, z, u, v, m, n) \f{x', y ', z , u, v', m, n')}

with the prefix

(a, b, y, z, y, z) : (ga;, u,v,m, n, x', u', v, mf, n).

Put x = a . x' = b .u = v = y . m =n = z .u' = v' = y .m =n' = z

.

Then the matrix reduces to

p . D . <f>a . <f>b : D :. <f>a . D . yjry . yjrz :D:p.D. yfry . -\jrz :.

4>b . D . yjry' . yjrz' : D :p . D . yfry' . -^rz',

which is true by Syll. Hence our proposition results by repeated applications

of*8\L-13.

Analogous proofs apply to other forms of the syllogism.

*826. h :<j>av<f>bv (j>c .0 . fax) ,<j>xv(f>c

Dem.

h : <f>a v 4>b v <f>c . D . (<j>a v fa) v (<[>b v ^c) (1)

I- . *8-22 . D h : (<f>a v <j>c) v (<^>6 v </)c) . D . (ga;) .<f>xv<f>c (2)

h . (1) . (2) . *8-24 . D h . Prop
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*8*261. h^av^6v^c.D. (ga?) . 0a?

[*8-25-26-23]

It is obvious that we can prove in like manner

0a v 06 v 0c v <f>d . D . (ga?) . 0a?

and so on.

*827. I- :: q . D . (ga?) . 0a? : D :.p D g . D :p . D . (ga?) . 0a;

Dew.

Put /(«, y, s*, v) . = . {p |

(0a;
| 0y)} | {p |

(0w
|

0i/)}.

Then the matrix is

[q |
(<f>a

j 06)} | [{(p D j) |/(a?, y, «, *)} |
{(p D q) |/(rf, y', „', „')}]

and the prefix is (a, b) : (ga;, y, w, i>, a;', y', w', «').

Putting x — u = x' = w' = a . y = t> = y' = v' = 6, the matrix becomes

5 . D . 0a . 06 : D :. p 3 q . D :p . D . 0a . 06,

which is true. Hence the proposition.

*8'271. V :: q . D . (ga?, y) . (^ y) : D :.p D 5 . D : p . D . (ga?, y) . (a?, y)
[Proof as in *8"27]

It is obvious that we can prove similarly the analogous proposition with
(a?x , a?2 , . . . xn) in place of (x, y).

*8'272. H ::.p . 3 : a . D . (ga?) . 0a; :. D :: r Dp . D :. r . D : q . D . (aa.) . ^
Dew.

g . D . (ga?) . 0a; is (ga;, y) . a
|

(0a?
|
0y). Hence the proposition results from

*8'27l by the substitution ofp for q, r for p, and q j

(0a?
| 0y) for (a?, y).

*828. r :: p .O . (ga?) . <f>x : D :. q . D . (ga;) . 0a? : D :p v q . D . (ga;) . 0a?

Derw.

Put f(x, y,z,w). = .{(pvq)\ (0a?
| 0y)} | {(p v g) |

(0*
|

W)}.

Then the matrix is

{p |

(0a
| 06)} | [{(j j (0C 1

0d» |/(a?, y, z, w)}
\ {{q |

(0c'
1

0a")) j/« y', 2
>

y
w>)}]

and the prefix is

(a, 6, c, d, c', a") : (ga?, y, z, w, a?', y', *', w').

The matrix is

p . D . 0a . 06 : D :. a . D . 0c . <fxi : D .f(x, y, z, w) :.

g.D.0c'.0d'.D./(a?',y',*', W'),

while f(x,y,z,w). = :pvq.D.<f>x.<l>y.<fiz. <f>w.

Call the matrix JP(a;, y, 2;, w, a.', y', z, w').

Then I- : p . D . F(a, b, a, b, a, b, a, b),

\-:~'p.O.F(c, d, c, d, c, d', c, d').

Hence h:F(a, b, a, 6, a, b, ay b).v.F (c, d, c, d, c', a", c', d').
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Hence, by the extension of #8 -261 to eight variables,

•" • (a«, y> *, w, x'> y'> *', «0 F(®> y, *, w, x\ y, z', w\
which was to be proved.

*8'29. h :.{x). (fyxDyfrx. D : (x) . <f>x . D . (a?), yjrx

Dem.

Applying the definitions, our proposition is found to have a matrix

{$x Dfx)
| [{(f>y |

(fu
|
fv))

| {<f>y' j
(yfru'

|
fv')}]

with a prefix (after using *8'13)

(«, », u', i/) : (ga>, 3/, 2/').

The matrix is equivalent to

<f>x D yfrx .O : <f>y . D . -^rw . i|rv : <^>2/' . 3 . ^rit' . T^ry'.

Calling this M(x, y, y), we have to prove

('&x,y>y').M(x
) y,y).

If fu . fv . fv! . fv', M (x, y, y') is always true. (1)

If r^yfru, put x = y = y' = u. Then if <f>u is true, $uZ> fu is false and

M{u, %, u) is true. But if <£w is false, tf>u . D . i/rw . fv and (f>u.D . fu' . yjrv' are

true, so that M (u, u, w) is true. Hence

~fu . D .M(u, u, u) . D . (gar, y, ?/') . M (at, y, y). (2)

Similarly if ~f«v~ i/rw' v ~ fv'. (3)

(1), (2), and (8) exhaust possible cases. Hence the result by #8*28.

We are now in a position to prove that all the propositions of *1—#5
remain true when one or more of the propositions p, q,r, ... are first-order

propositions instead of being elementary propositions. For this purpose, we

take, not the one primitive proposition which Nicod has shown to be sufficient,

but the two which he has shown to be equivalent to it, namely

:

pD p and pD q . D .s\q"D p\s.

We show that these are true when one, or two, or three, of the propositions

p, q, s are first-order propositions. From this, the rest follows. The first

of these primitive propositions, pDp, gives rise to two cases, according as we

substitute (x) . $x or (g#) . <f>x for p ; the second primitive proposition gives

rise to 26 cases. These have to be considered one by one.

*8 3. r : (x) . cf>x . D . (x) . <\>x

Applying the definitions, this is (ga?) : (y, z). <f>x\ (<f>y \ <f>z), which follows

from *811 by *8'13.

#8*31. h : (gar) .<f>x.D . (ga;) . <f>x

Applying the definitions, this is (x) : (g#, z) . <\>x
\ ((f>y j <f>z). This is *8*1.

This completes the proof of p D p.



By the definitions,

p\~q .

P\ 8m

~(p\s).

(s\q)\ ~(p\s).

Put f&y)-
Then ~{<«|«)Mp|«)}-
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*8'32. h :. (x) ,.<f>x . D . q : D : s
\ q . D . {(«) - <#»«;} |

s

Putting p. = .(x). <j>cc, the proposition to be proved is

(p\~q)\~\(s\q)\~(p\s)}.

= .(aa).<M(g| ?), (!)

= • (a#) ^ I

*.

= • (*, y) • (& I
*)

I
(4>y

I

s),

= • (a^y) (*
I 2) 1

1(<^
I
*)

I
(<£y

I
«)}.

.(*l9)|{(**|*)l(*y|«)}.

= .{x,y,a<,y').f{a;,y)\f{x',y'). (2)

By (1) and (2), the proposition to be proved is

(a) : fa*, y, «', y') . faa
| (<? | q)) \

[f{x, y) \f(x',y%
Putting x = y = x' = y' = a, the matrix of this proposition reduces to

<f>a D q . D . s
j
q D <j>a

\
s,

which is our primitive proposition with <f>a substituted for p, and is therefore

true. Hence the proposition follows by #81.

In what follows, the reduction of the proposition to be proved to a matrix

and prefix, by means of the definitions, proceeds always by the same method,

and the steps will usually be omitted.

#8-321. V :. fax) .<f>x.D.q:D:s\q.5. {fax) .<f>x}\s

We obtain the same matrix as in #832, but the opposite prefix, i.e. the

prefix is

.... '(«,y,*',y'):(aa).
lne matrix is equivalent to

(f>aDq.D :qO<vs. D . <f>x"D~s . $y D~s.<£a?'D<^>s. $y' 3~s.

Calling this fa, we have to prove faa) .fa, for any x,y,x',y'. We have

<f>a.~q .D .fa.

Also <f>a.q . D :.fa.= :~«. D.^>a?D~s. <j>yO~s . <f>x'D~s. <f>y'D~s:.

D:./a.
Hence <£a . D .fa.

Hence by #8-1-24 $x . D . (ga) ./a,

and similarly for
<f>y, <f>x', <f>y\

Hence by #8261

^sv^v <f>x'v tyf . D . (ga) ./a.

Also o->(f>x.
<>-><f>y .f^><f>x' .o-><£y'. D .fa.

08-1-24] 3. faa).fa.
Hence by *8'28

<f>x v <£y v <f)x
f
v ^y' v~ <f>x .~ <£y .~ <}>x' .^

<f>y'
: D . (ga) ./a.

Hence, by #812, (ga) ./a, which was to be proved.

r&w i 41
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*8 322. h :. p . 3 . (a?) . yfrx : D : s
|

{(a?) . ^a;} . 3 .^>
|
s

Dem.

Put
<
#--B -(«l*y)IKf>l«)l(pl«)}-

Then the proposition to be proved is

<y. 2/') « (#> o) . {P |
(^6 1

ire)}
I (/y |/y').

The matrix here is equivalent to

p . D . yfrb . tyc : D : s. \ yfry . D . p |

s : s
\

tyy* . D .p \s.

Putting b = y.c=*y', this follows at once from the primitive proposition, which

gives
pDyJry.D:s\ylry.D.p\s,

pD^jry' .D:s|^' . D -p\s.

Hence the proposition.

*8 323. b i.p . D . (gar) . sfrx : D : s
|

{(ga?) . i/ra,-} .D.p\s

We have tjie same matrix as in *8'322, but the opposite prefix, i.e.

Q>,c):{&y,y').

Putting y^b.y' — c, the matrix is satisfied, as in #8-322.

*8324. r-:.i>D?.3:{(*).xaf}|fl
f - D 'Pl{(a?)'Xa?

}

Dem.

Put f(x, y, *) . = . (x* | ?) | {(p | xy)\ (P I
%*)}• Then the matrix is

and the prefix is (x, x') : (gy, 2, y', /). Putting

y = £ = x . y' = / = x,

the matrix is equivalent to

p D q . D : %®
I ? ^ -2>

I

X* : Xx'
I ? 3 -P I

X^
which follows from our primitive proposition by Comp.

*8-325. hz.pDq.D: {fate) . %x) 1
2 • D P I Ka«) X^l

Dem.

The matrix is the same as in *8324, but the prefix is the opposite, i.e.

(y, *,tf,*f) ''(wo**')-

Calling the matrix M{x, x), we have, if 0w .
=w .~xw>

M(x,x) . = ::p D q . D :. q D Ox . D :p • D .% • 0* :. q D 0a;' . D :# . D . Oy' . 0s'.

Hence 0y .0z .0y' .0J .D .M {x, x) . D . (ga;, a;') . ilf (a?, a/) (1)

But ~0x.~0x' .2 .M(x, of). Hence

~0#.D.if(a;,a;).D.(3a;,a/).^(tf,a;') (2)

Similarly with 0y,0x', 0y. Hence the result follows as in *8*321.

This ends the cases in which only one of p, q, r in

p"^q> 3 -s\q . 3 .p|*

is of the first order instead of being elementary. We have now to deal with

the cases in which two, but not three, are of the first order.
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*8 33. h :.(x). <f>x . D .(x). yjrx : D : s
\

{(x) .yjrx}.D. {(x) .<f>x}\s

Putting /(a?, y, z) . = . (s
|
tyx)

\ {(<f>y |
s)

|
(<f>z \

s)}, the matrix is

{<f>a | (^6 1 yjrc)}
| {/(*, y, *) \f(x, y' , z')}

and the prefix is {a, x, x
1

) : fab, c, y, z, y' , z'). The matrix is satisfied by

b = x . c = x'
.
y = z = y' = z' = a,

in which case it is equivalent to

<f>a.D . yfrx . -^vr" : D :. yjrx D<^s.D.<f>aD<^s: yfrx' D ~ s . D . <f>a D ~ s.

Hence Prop.

We have the same matrix in the three following propositions, only with
different prefixes.

*8 331. h :. (x) .<f>x.^. fax) . yjrx : D : s
|

{(gar) . ^} . D . {(a?) . 0ar}
|
s

Here the prefix to the matrix is (a, 6, c) : (a«, y, s, x', y', z'). The matrix
is satisfied by x = b . x''

= c . y — z = y' = z''
= a. Hence Prop.

*8'332. h :. fax) . £ar . D . (x) . yjrx : D : *
|

{(x) . yjrxj.D. {fax) .<f>x}\s

The prefix here is (x, y, z, x, y, z') : faa, b, c). Writing r for ~s, matrix
becomes

<f>a.D .yjrb .yjrc:D:. yjrx D r . D . <j>y v <£s

D

r : yjrx D r . D . <£y' v ^s' D r.

(Here only a, 6, c can be chosen arbitrarily.) This is true if
<f>y, <f>z, <f>y', fa'

are all false. Suppose <f>y is true. Put a = y. Then if yjrb or yfrc is false,

<f>a . D . yjrb * yjrc is false, and the matrix is true. Therefore if yjrx is false, put
b = c = x ; if •tjra/ is false, put b = c == x'. If ^a: and yjrx' are both true, putting
a — y.b = c~x, the matrix becomes equivalent to

r . .
<f>y

v <fyz D r ; r ."D . <f>y v 0/ D r,

which is true. Hence if
<f>y

is true, the matrix can be made true. Similarly
for z, y', z. This exhausts possible cases. Hence Prop, by #8-28.

*8 333. h :. fax) . <£a? . D . fax) . yjrx : D : s
\
{fax) . yjrx] . D . {fax) . <j>x} \

s

Dein.

The matrix is as before, and the prefix (after using *813) is

(b, c, y, z, y, z) : faa, x, x').

Call the matrix M (a, x, x'). Then

V : yjrb . D .M (a, b, b) . D . faa, x, x') .M(a, x, x') (1)

I- : yjrc . D . M (a, c, c) . D . faa, x, x') .M (a, x, x) (2)

h : ~ -fb . ~ yjrc . <j>y . D . M (y, b, c) . D . faa, x, x') . M (a, x, x') (3)

(1) . (2) . (3) . D h : <f>y . D . faa, x, x) . M (a, x, x) [using *8"28] (4)
Similarly for jty', <f)Z, <f>z'. Hence by *8'28

h : <f>y v <f>y'
v <f>z v <f>z' . D . faa, x, x) . M(a, x, x) (5)

But I- :. ~
<f>y

. ~ <fiy' . <—> <^^r . <—. <f)z' . 3 : fyy v <f>z D r . <f>y'v $>z' D r :

D: M{a,.x, x)

[*8*1] Oifaa,x,x').M(a, x, x') (6)
h . (5) . (6) . *8'28 . D I- . (3a, «, x') . M(a, x, x') . O I- . Prop

41—2
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This ends the cases in which p and q but not s contain apparent variables.

We take next the four cases in which p and s, but not q, contain apparent

variables.

*8'34. I- : . (x) . <f>x . . q : D : {(*) - Xx) 1 9 • D • Kx) <M I K*) X*}

Putting /(#, 2/, 2,m,»). = . (%« 1 7) | {(<f>y !
%s)

j

{<\>u
\ Xv)}, the matrix is

(<j>a |
~ 9) |

{/(a?, y, s, m, «) |/(a/, y', z\ u, «')}.

(This is also the matrix of the three following propositions.)

The prefix is (a, x, x') : (33/, z, u, v, y', z
1

, u', v').

The matrix is equivalent to

cf)aDq.^ .f(x, y, z, u, v) .f(x, y', z, u', v')

and f(x,y,z,u,v). = :xx \<l-'}-4>y\Xz -4>u \Xv -

= : q D ~ xx m ^ * QV -^ ~ Xz • $u "^ ro Xv-

Putting y = u = y' = u'=a.z = v = x.z'=v' = x, the matrix is satisfied. Hence

Prop.

*8 341. r :.(x). <f>x . D . q : D : {(a*) . %x\
\ q . D . {(a?) <M |

{(3*0 • X*l

Matrix as in *8'34. Prefix (a, s, v, z, v') : (3a1

, y, u, at', y ,
it).

Matrix is equivalent to

<f>a D q . D :. q D ~ xx • ^ 4% 3 ~ Xz • $u 3 ~-

X

w :

g D ~ %«' . D . <£y' D~ %z' . </>u' D ~ %?/.

If <£a is false, this becomes true by putting y = u = y' = u' = a. If <f>a is true,

the matrix is true if q is false. Suppose q true. Then the matrix is

equivalent to

~ xm • 3 • <l>y 3 ~ xz • $u ^ ~ xv ' ~ xx • ^ • <&/' ^ ~ x^' • <£u' ^ ~ xv -

This is true if x*> Xv > Xz'» Xw' are false -
If one of tnera

»
say X*» is true

> Put

Xssa.'

s=Zi and the matrix is true. This exhausts possible cases. Hence Prop,

by *8;28.

*8342. H :. (a*) .<j>x.D.q:D: {(x) . Xx) I ? • 3 • 1(3*) <M i
((*) X*}

Matrix as before. Prefix (after using *8-13) (x, y, u, x, y', u') : (ga, z, v, z', v').

Call the matrix M (a, z, v, z, v'). Then

I- : ~ yx . D .M (a, x, x,x,x) (1)

I-
:
~ xx • ^ ' M(a '

*'' ^'^

^

^2 ^

h r^.^-xa;'. D .~(g D~%a;) .~(g-D~%a;
/

)

D.if(a,^-y,0',y') (3)

\-:~q.<l>y. D.~(<j>y3q).

}.M{y,z
y
v,z',v') (4)

Similarly if ~q . <f>u or ~q.$y' or ~q. <f>u'. Hence by #8*1 -28

\-:~q.<f>yv <f>u v^ v<j>u .3. (ga, ^, w, /, t>') . i/ (a, «, w, ^, «') (5)

|-:~</>y.~</)u.~^^/'.^</>w
,

. D . 0y 3~%^. <fa D~xv 4>y"5~Xz • <fa"D~x?'-

O.M(a,z,v,z',v') (6)

(5).(6).DH:~g. •}.(r£a, ZiVyZ\ v').M{a
>
z

y
v,z',v') (7)

r- . (1) . (2) . (3) . (7) . D h . Prop
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*8 343. r :. (ga;) . $x . D . q : D : {(ga) . X*} |
g . D . {(a*) . <M |

{(gar) . Xx)

Prefix to matrix is (y, s, w, i>, y', z
1

, u, v
r

) : (ga, a?, a/).

Call the matrix f(a,x,x).

It is true if 00%3
,

-~Xv-r'

X's/ • (>JXV
'

(1)

Also Xz '9.' ^ '/(a* 2
'
z)' ^ • (Wl> x> x ) 'f(a >

x
>
x ) (^)

Similarly if we have Xv . 5 or ;j£z' . <j or %v .q (3)

From (1) . (2) . (3), by *8'28, q . D . (ga, «?, a/) ./(a, a?, a/) (4)

Now <£a .~ q *D . /(a, #, a;'). Hence

<f>y.~q.3 .f{y, x, x) . 3 . (ga, a>, a?') ./ (a, x, x)

Similarly for <j>z .~q, fyy
1
,~>q, <f>z . ~q. Hence

<f>y v<f)Z v <jf>y' v <f>z'
.~q . D . (ga, x, x) ./(a, x, x) (5)

But ™<f>y ,n*j(j>z .r*><f)y' ,r^(f>z' .D .f(a,x,x') (6)

By (5) and (6), ~a . D . (ga, *, a/) ./(a, *, a/> (7)

K(4).(7).*8'28.DKProp

In the next four propositions, q and r are replaced by propositions con-

taining apparent variables, while p remains elementary.

*8'35. H :.p . D . (x) . yfrx : D : {{x) . xx] |
{(«) • ^x] . D .p

\

{(a?) . #»}

Putting 5 . = . (x) . yfrx, s . = . (x) . -tyx, the proposition is

(p\~q)\~{(s\q)\~(p\s)}.

We have by the definitions

~^. = .(g6,c).i/r6|^rc,

p\~q. = .(b,c).p\(-ylrb\ip>c),

s\q. = .('S_x,y).xy\'fx,

p\s. = .{^z).p\ Xz,

~(p\s) . = .(z,w) .(p\x*)\(p\XP>)>
(s\q)\~(p\s) . = : (x,y) : (rz,w) .(xy\^x)\{(p\xz)\(p\xw)\-

Put f{x, y, z, w). = . (xy \iras)\{(p\ Xz) I (P I
X™)}-

Then ~{0k)l~Ol s)} • ^i{^tyy
x\y')i(z

t
w

t
^tw').f{x,y^w)\f{x',y'^i

w'\

(p I
~q)

I

~ {(« I ?) i ~(p I *)}
=

: (*» y»< y') : (a&>
c, ^, w, /, w) .

Writing deb for ~xx> the niatrix is equivalent to

p .D . yfrb . yfrc : D :. yfrxD 0y . D : p . . 0z . 0w :. yjrx "D 8y .0 :p .0 . dz' . 0w.

This is satisfied by putting 6 = x . c = x . z = w = y . z' = w' — y'. Hence Prop.

The same matrix appears in the next three propositions; only the prefix

changes.

*8-351. H :.p . D . (x) . yjrx : D : {(ga:) . Xx\ I
{(«) W ^ -P I {(a*) • X«}

Same matrix as in *8'35, but prefix (x, z, w, x , z ', w') : (g&, c, y, y'\

Matrix is true if Qz ,6w . 6z . 6w.

Assume ~ Qz, and put y = y' = z .b — x . c = x''.
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We now have yfrx D By . = . ~>frx and p.D.Bz.Bwi = . ~p. Hence matrix
is equivalent to

p . D . yfrx . yfrx : D z.^yjra; . D .~p :. ™yfrx .D:p .D .Bz . Bw'',

which is true. Similarly if ~fev~tf/¥~fe'. Hence Prop, by *8'1 28.

*8'352. b :.p . D . (ga?) . i/ra; : I> : {(«) . ^a;}
| {(g#) . ^} • D p |

{(«) x^l

Same matrix, but prefix (6, c, #, y') : (ga;, z, w, x , z, w').

Satisfied by x= b . x' — c . z = w = y . z = w' = y . Hence Prop.

*8'353. I- :.p . D . (ga;) . yfrx : D : {(gar) . Xar)
|
{(ga;) . ^} . D . p |

{(gar) . x«}

Same matrix, with prefix (b, c, z, w, z', w') : (gar, y, x\ y).

If i^r6 is true and 6z false, matrix is satisfied by a? — x = 6 . y = y — z, be-

cause these values make yfrx D By and i/ra;' 5 By' false. Smilarly if yfrb is true

and 0w or Bz or 0io' is false, and if yfrc is true and Bz, Bw, Bz' or Bw is false.

It remains to consider ~yfrb ,~^c : v : Bz . Bw . Bz' . Bw'.

The second alternative makes the matrix true, because it gives

p.O.Bz.Bw-.p.^.Bz'.Bw'.

The first alternative gives

p . 3 . yfrb . yfrc : D :~p :

D :p . D . Bz . Bw : p . D . Bz" . Bw',

so that again the matrix is true. Hence Prop.

This finishes the cases in which one or two of the three constituents of

p^q .3 ,s\qDp\s remain elementary. It remains to consider the eight cases

in which none remains elementary. These all have the same matrix.

*8 36. H :. (x) . (f>x . D . (x) . yfrx : D : {(x) . x#} |

{(a?)-, *frx} . D . {(a?)

.

<f>x]
|
{(«)

.

Xa;}

Putting ^> . = . (a?) . <£#, q . — .(x) . yfrx, s . = . (a;) . ^a;, we have

~^. = .(g6,c).^|^c,

^| ~^ . = : (ga) : (6, c) . </>a((^r6fi/rc),

s\q. = .(^x,jy).xyWoc,

p|s. = .(g^,w).^|xw,

~(|>l«) = (*» w» u, v) . (4>z\xw)\(<l>u\xv),

(s\q)\ ~(p\s). = : (x, y) : (gs, w, u, v) . (xy\-ifrv)\{(<f>z\xw)\(<t>
u \Xv)}-

Fntf(x,y,z,w,u,v). = .(xy\^x)\{(<f)z\xw)\(<f>u\xv)}. Then

~ {(*
I q ) I

~ (p I
*)} • = : (a«> y, ®'> y') (*, w, u, v, z', w\ < »')

.

/(a?, y, z, w, u, v) \f(x', y', z', w', u', v'),

(p I
~ q) I

~ {(« I ?) I
~(p I «)}

= : («» *» y> x'> y') • (a6>
c> ^ ». «*, » .

z', w\ u, v') .

{<f>a
|

(^r6
1

^rc)}
I
{/(a-, y, 2, w, u, v)

\
f(x', y', z', w', ii, v')}-

Writing B& for <^x^> ^ne matrix is equivalent to

<f>a.D .
-\jrb . ^c : D :. i]rx D By . 5 . <f>z D Bw . <f>uD Bv

:

yjrx DBy' . D . $z' D Bw' . <j>u' D Bv\

This is satisfied by b = x . c = x . z — u = z' — u' — a . w = v = y . w' = v' = y .

Hence Prop.
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*8 361. I" :.(*)- <j>x . D . (x) . y\rx : D : {(a*) .xx\ I
{(*) •W D K*) <M I 1(3*0 X*l

Same matrix, but " all " and " some " are interchanged in arguments to x>

i.e. in y, w, v, y', w', v'. The g-variables are therefore b, c, y, y, z, z
1

, u, u'.

If ~ 0a, put s = u = / = m' = a, and matrix is satisfied.

If 0a is true, matrix is true if ~yjrb v ~yfrc, i.e. if r^ylrxv^yfrx', since 6, c

are arbitrary. Assume ^ra? . yjrx'. Then matrix reduces to^

0y . D . 0* D 0w . 0w D 0v: dy' . D . 0s' D 0w/' . 0w' D 0«'.

If #«/, 0v, #w', #«' are all true, this is true.

If ~ 0w, put y = y' = w, and matrix is satisfied.

Similarly if ~0t>, ~>0w' or ~0/. Hence Prop.

*8'362. I- :. (x) . <j>x . D. fax).yjrx:D: {(x). Xx\ |
{(ftx).ylrx}.D.{(x).<f>x}\ {(aO-tf*}

Matrix as in *8'36. Prefix results from *8*36 by interchanging " all " and

"some" among -^-arguments, i.e. b, c, x, x . Hence Prop results from same

substitutions as in *8*36.

*8 363. r : . (x) . <f>x . D . fax) . yjrx : D : {fax) . Xx] |
{fax) . yjrx} .

3.{(x).<f>x}\{fax).xx}

Results from interchanging " all " and " some," in *8"361, in the yfr-

arguments, viz. b, c, x, x. The g-variables are therefore x, x, y, y, z, z', u, u,

and the proof proceeds exactly as in #8361, interchanging x, x and b, c.

*8 364. h : . fax) . <f>x . D . (x) .fx : D : {(a?) . x<c}
|

{(a?) . -fa?} . D . {(ga?) . 0*} |

{(a?) . X®)

The proposition is what results from .*8*36 by interchanging "all" and
" some " in the 0-arguments, viz. a, z, u, z, u'. Hence the g-arguments are

a, b, c, w, v, w, v'. If dy is true, put w = v = w' =v' = y, and the matrix is

satisfied. If By' is true, put w = v = w' = v = y', and the matrix is satisfied.

Assume ~0y . ^0y'. The matrix is true if yjrx D 0y and tyx' D 0y' are false,

i.e., since 0y, 0y' are false, if yjrx and yjrx' are true. If yjrx is false, put b = c = x

arid a = y; then 0a . D . i|r6 . -»/rc is false, and the matrix is true. If yjrx' is

false, similarly. Hence Prop.

*8 365. h :. fax) . <f>x . D . (x) . yfrx : D : {(ga?) . xx) I
{(«) •W •

Prop is what results from #8*364 by interchanging " all " and " some " in

the %-arguments, viz. y, w, v, y', w', v'. Hence the g-arguments are a, b, c, y, y.

Matrix is true if 0w . 0v . 0w . 0v'. Assume ro0w, and put y = y'—w. Matrix

is true if yfrx D By and yfrx D 0y' are false, i.e., in the present case, if yjrx and

yjrx' are true. Suppose one of them false, and put b = x ,c = x. Then yfrb . yfrc

is false. Therefore <j>a.D . yjrb . yfrc is false if 0a is true ; therefore the matrix

is true if <f>a is true. Therefore if <f>z is true, the matrix is true for a = z-

Similarly if <j>u, <f>z' or <pu' is true. But if all are false, matrix is also true.

Hence matrix is true when we have ~0w and r^yjrxv ~yp-x. Similarly for

co0v, ~0w' or ro0y with ~yfrxv <^>\\rx'. We saw that matrix can be satisfied
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for ~6w, ~6v, ~dwf

or ~6v' with ty-x.tyx'. Hence it can be satisfied for

~^/v<v^v~^'v ~6v. And we saw that it is true for dw.Ov. 0w' . 6v'.

This completes the cases. Hence Prop.

*8'366. I- :. fax) . <f>x . D . fax) .yjrx-.D : {(x) . x«} | {fax) . yfrx}

.

^ • {(a*) -Wl {(*)•%«}
Prop is what results from #8 364 by interchanging "all" and "some"

among ^r-arguments, viz. b, c, x, x'. Hence g-arguments are a, x,
x'

t
w, v, w', v.

The proof proceeds as in *8364, interchanging b, c and x, x'.

*8-367. V :. fax) . <f>x . D . fax) . fx : D : {fax) . Xx\ \ {fax) . tyx]

.

D . {fax) . <f>x}
| {fax) . Xa}

Prop is what results from *8365 by interchanging "all" and "some"
among -^-arguments, viz. b, c, x, x'. Hence the g-arguments are a, x, x', y, y

.

The proof proceeds as in *8'365, interchanging b, c and x, x'.

This completes the 26 cases of pD q .3 .s\qDp\s. Hence in all the pro-

positions of #1—*5 we can substitute propositions containing one variable.

The proofs for propositions containing 2 or 3 or 4 or .. . variables are step-by-step
the same. Hence the propositions of *1—*5 hold of all first-order propositions.

The extension to second-order propositions, and thence to third-order

propositions, and so on, is made by exactly analogous steps. Hence all stroke-

functions which can be demonstrated for elementary propositions can be
demonstrated for propositions of any order.

It remains to prove ~{(x) . <f)x} . = . fax) . ~<£# and similar propositions.

*84. h : ~ {(x) . <f>x} . = . fax) . ~<f>x

Dem.
K*8\L. D\-:(f>x\<f>x.D .fay).<f>x\(f>y (1)
H . (1) . *8-21 . D h : fax) . <f>x\$x . D . fax, y) . <f>x\<f>y

:

[(*8-0r012)] Dh:(g#).~<^.D. <-{(#).<£#} (2)
We have h : p\q . = . p\p v q\q (3)
•"•(3). Dh :<l>x\<l>y. = .<f}x\^>xy<f>y\<f>y (4)
H . (4) . *8-22-24 . D h : (f>x\<j>y . D . fax) . <f>x\<f>x (5)

[(*8-011)] I- :. fax, y) .f(x,y) .D.p: = : (x,y) .f(x,y) Op (6)
h (5) . (6) . D I- : fax, y) .'

<f>x\<f>y . D . fax) . 4>x\<f>x

:

[(*801'012)] Dh: ~{(x).<f>x}.D.fax).~<f>x (7)
h..(2).(7). Dh.Prop

*8'41. h : ~ {fax) . <f>x} . = . (x) . ~<f>x

[Similar proof]

*842. V :.p . D . fax) ,<f>x:==z fax) .pD<f>x
Dem.

t- i.p.D .fax). <f>x: =

[*8-41] =

[(*8-011)] =

[*8-21] =

p\{~fax).<l>x}:

p\\(x).~<f>x} :

fax).p\~<j>x:

fax) . p D cf>x :. D I- . Prop
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*8 43. H :.p . D . (x) . <fue : = : (x) . p D <f>x

[Similar proof]

Other propositions of this type may be taken for granted.

#844. H :. (x) . <f>x . D : (x) . yfrx . D . (x) . <f>x . i/r#

Dew.

I- :. 0?. Z): -^r#.. D. 0?. ^r* (1)

h . (1) . *8-l . D h ::. (ga?) ::. (gy) :: (2) :. 0# . D : yjry . D . 02 . yfrz (2)

K (2) . *8-42-43 . D h . Prop

#8*5. If .^(.p, q, r, ...) is a stroke-function of elementary propositions, and

p, q,r, ... are replaced by first-order propositions p1} qlt r1} ..., we shall have

p = p1 .q = q1 .r=r1,...D:F(p,q,r, ...).~ .F^q,, r1} ...).

This follows from

# . = . (a?) . 0<c : 0:p = p1 .D.p1 \q = p\q.q\p1 = q\p,

Pi • = • (a#) • 0* : 3 :# =pi • ^ -pi\q = p\q • ?bi = q\p>

both of which are very easily proved.



APPENDIX B

*89. MATHEMATICAL INDUCTION

The difficulties which arise in connection with mathematical inductionwhen
the axiom of reducibility is rejected have been explained in the Introduction

to the present edition. Retaining the definition of R% (#90
-

01), we have

I- :. xR%y . = :xe C'R : R"fi C fi.xe fi . DM . ye fx.

The "
fi " which occurs here as apparent variable must be of some definite

order. If k is a class of classes, and the members of k are of the order con-

templated in the definition of R%, we cannot infer

xR%y . D : R"p tK C p'tc . x ep'ic . D . y ep'/c

nor yet ®R*y D : R"s1k C s'k .xes'x.O.ye s'k.

It is necessary, primd fade, to have

a e k . Da • R"a C a

in order to be able to argue from xep lK to y ep'/c or from xcs'k to ye s'k.

In the following pages, we shall show how to avoid the resulting complications.

Let us denote by "
fim " a variable class of the wtth order, and put

#8901. xRxmy. = :xeC'RzR"/j,m C./jLm .xefim .DIILm .y€ixm,
Df

Since every class of a lower order is equal to some class of any given higher

order, R%m Q R^ if m > n. We shall show that

m > 5 . D . R^m = R#s .

Hence we take R^ as R%, and the complications disappear.

In #90, substituting R%m for R% and /nm for /j, and
<f>mz for <f>z, the first

proposition involving an invalid induction is #90*17, where we use the fact

that R%x is hereditary. It is obvious that R%m'x is a class of order m + 1,

and therefore, although
^ *— *—
R"R*m'x C Rxm'w,

we cannot infer

y e Rxm'x . yR*mz . D . z e R%m'x.

In this case, however, as in many others, there is no difficulty in substituting

a valid induction. Put

K = %n {R"ftm Cflm .Xe flm).

Then R%mix=p'ic. Now we have not merely R^p'tcCp'/c but also

flyf,, €'K • J • JX /J,m \m flm .

Hence the induction is valid.
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The proofs of R£<ZR# and analogous propositions are easily re-written

so as to be valid.

The next difficulty—and this one is more serious—arises in connection

with #90 -

31. The present proof uses the fact that

x(I[C'RvR*\R)z
is a hereditary property of z. But it is a property of a higher order than those

by which R% is defined ; i.e. if R* is R^, then x(I [ C'R v R%m\ R) z is of

order m + 1. Let us prove first

R w R#\RGR%,
where

*89'02. R = ItC'R Df

The proof is as follows

:

#891. \-.R vRx\RGRx
Bern.

\- :zx€/j.. R"/j,Q fi ."5:.% = z .v .U€(i. uRz:D ,ze fi (1)

H .(l).Comm.D> :.x= z .v .ue/j,. uRz : D : x e p . R"/j, C ft . D .zefi :.

31- ;ix = z i.v :.xe/ii.R t
'fjbCfjb. D .ueji: uRz:. 3 :

xefi. R"/j,Cfi. O.ze/Mi:

D I- ::x = z :.v \.xe fi .R"fiCfi .0M .ue/i: uRz:.

Dixefi.R"(iCfi. D^.ze/j,::

D h :. xR z . v . xR%u . uRz : D . xR#z :. D V . Prop

*89101. f-.^oC/iJl^G.R* [Proofasin*90'311]

*89102. h:JSeCls-»l.D'.i^«=22e oi2|22«

Bern.

h:.Rv.R<xe/3.R"l3C0.3:xei'xvl3.R"(i'xvj/3)Cl3:
D : #JR#y . D . y e i

lx v j8 (1)

K (1) . Coram . D H :. Hp . y $x . xR*y .D-.R'xeQ. R"p Cfi.O.ye/3 (2)

K(2). DhzHp. xR*y.x$y.D.x(R\R*)y (3)

h . (3) . *89101 .DKProp

*89103. h:R€l->Cte.D.R# = R vR*\R f*89'102^1

*89104. \-:.K = a(x € a. R"aCa) . D : x (R \R#) z . Z> . zep'R'"*:

Dem.

\-:JlV.xRy.D.yep'R'"K (1)

h:Hv.a€K.yeR"a.yR#z.D.zeR"a (2)

h . (2) . Coram . D h : Hp . y ep'R"fK . yR*z .D.z ep'R'"ic (3)

r . (1) . (3) . D V . Prop
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*89 105. h :. Hp *89104 . R e Cls -* 1 . D : x (R
\ R%) z . = . z e p<R'"K

Bern.

hz.Kip.R'xefi.

R

(f
fju CfjL./3 = i'R'x u R"ft

.

3:yeR"j3v-T><R.ElR'y.D.R'yeR"l3yj-D<R:

D:R"(R"j3sj-l>'R)CR"j3v-I)<R (l)

h:Hp(l).D.^ei2"^
(2)

H . (1) . (2) . D h :. Hp (1) . z ep<R<"K . D . zeR«(R«l3 u - D'R)

3.Z€0 (3)
h:Hp(l).D./3C/*

(4)

^-(S).(4,).Dt-:.Kv .zeP<R"U.D:R'xev..R"fjLCfi.D.zeii:
D:x(R\R*)z (5)

r.(5).*89vL04.Dr.Prop

*89106. r : R e Cls-> 1 . D . R%\ R G R\ R*
Bern.

\-:x(R%\R)z. = .zeR"plK (1)

h . (1) . *89105 . *40'37 . D h . Prop

It is now necessary to take up the subject of intervals (cf. *121). Our
further progress depends upon the fact that in suitable circumstances the R-

4— —

»

interval between x and y, i.e. R^'x n R%'y, is an inductive class.

*8911. I- : Re Cls -> 1 . xRz . zR%y . D .R(x\-ty) = i'x v R (z^y)
Bern.

h . *89102 . D h :: Hp . D :. xR*u . = :x = u.v. zR%u (1)
t-:H.p.x = u.'D .ueR(xt-ty) (2)
h :. Hp . ^i2^w . D : «i2^y . D . w e i2 (xn y) (3)
H . (2) . (3) . D f- : Hp . 3 . t<# u #(* H y) C R(x^y) (4)
f-.(l). DhiHp.D.i^i-i^Ct'tfvlZ^i-Hi/) (5)

h.(4).(5).Dh.Prop

*89111. H:~(sjR*3,).D.£(*i-Hy) = A
*89112. h : iZ e Cls -» 1 . atfk . a?l^y . ~(zR*y) ,3.x = y.R (x^-ty) = i2 («i-Ha\

[*89-102]

*89113. t-:ReCh->l.x € C'R.~(xR\R*x).3.R(Xi-{x)=:L<x
Dem.

\-:.Hv.D:yRxx.D.~(xR\R%y)
D : xR#y . yR#x . D . xR*y . ~(xR

\
R*y) .

[*89'102] 0.a? = y:.Dh.Prop

*89114. h : R € Cls -> 1 . if"a C a . # e a - R"a .D.~(xR\ R*x) [*89-105]

*89115. h : . R e Cls- 1 , R"a Ca.xea- R"a .D.R (««) = i'x

[*89-113-114]
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We now take as the definition of an inductive class the property proved in

#121*24, i.e. we put

Cls induct = p {t} e fi . D^y . v\ w i*y e ft : A e ft : DM . p e p] Df.

That is to say, if M= ft {(ay) . £= y « i*y],

we put Cls induct = M^'A Df.

There will be different orders of inductive classes according to the order of /*.

p. must be at least of the second order, since i
l
y is of the second order; at

least, not much could be proved if we took /x to be of the first order. We put

Cls induct™ — i/#m*A Df.

We have (3/^2) . A = p, : (a/4,) . v =H • 3 • (a/^) . *?Wy = ^.

Now (a/^s) *? = A^ is a third-order property. Hence

#8912. \- : pe Cls induct3 . D . (3^*2) P = P*

This proposition is fundamental.

#8913. \-'..ReCh-^l:v€fi.'^n,yV yj f'

iyep,:A€fi:^(a:R\R^x).a;Rz:D:

R(zt-iy)ep..'2 . R(x\-*y)e p.

[*8911111112113]
Put

«— —

»

#89131. Rm (x>-iy) = R*m'v n R*m'y Df

Then

a; = am (^"«m C «m . x e am) • X= Pm (R"Pm C@m .y e m) .3

.

Rm {®*-*y) =*p'« ^p£
\.

Thus Rm (n^y) is a class of order m + 1. Moreover we have

#89132. \- :. Re Cls -+ 1. xRy.1:~(yR\R*y). 3-. ~(xR\R*oc)

Dem.

\- :~(yR\R*y) . xRy . D . (a«) • R"*Ca.yea-R"a.xRy (1)

1- : Hp . R"u Ca.yea- R"a . xRy . y = i
lx u i

l
y w #"a .

D . E"7 = t'y w i2'y w ^".R"a . (2)

2.R"yCy (3)

H:.~(y22|i2*y).:>:~(yfly):

D:#ity.D.a?={=y (4)

b '.yea. — R"a.xRy . D . «~ea (5)

h:-^(yJR|i2*y).:>:~(y2ty): ^_

D:xRy.3.x~eR'y (6)

h . (2) . (4) . (5) . (6) . D H : Hp(2) .~{yR
\

R*y) P .xey-R"y (7)

K(3).(7).DH:Hp(2).D.~(#2S|fl*aO (8)

I- . (1) . (8) . D K Prop
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*89133. H :. J3 e Cls -> 1 : 17 e //. * D,,
j,

. ?; v i'y e ft : A e fi : #2fc : D :

~(zR
1 22*2) . i2 (z*-\y) e/M.D . ~(#12

|
i2##) . R (aa-iy) e fi

[*89'13132]

*8914. h :. ReCh^>l .~(yR\R*my) .3 : xRmm+1) y .0

.

Rm (x*-*y) € Cls inductm+,

Dem.

By *89"133, co(zR
|
R^jz) . Rm (zt-*y) e /n^+n is a hereditary property of ^ if

t) efim+i. D,, y . rj v t'y e /Am+J : A e yum+1 .

Moreover this property is of order m + 1. And by #89' 113, y has this property

if o->(yR\R%my). Hence x has this property if £oR^ im+1) y. Hence with this

hypothesis we have

t] e fim+1 . D,,„ .Tjvi'ye p,m+1 : A e /tm+1 : DMw+1 . Rm (aa-ty) e /*m+1 ,

i.e. Rm (sa-ty) e Cls induct™^

,

which was to be proved.

*8916. H : R e Cls -» 1 . R"am C «m . y e am - R"*,* . D :

xR% (m+1) y.2.Rm (j»Hy) e Cls inductm+1 [*89*1 14*14]

We have Rm+i («hj/) C Rm (x*-\y),

Cls inductTO+i C Cls inductm .

The next point is to prove

p e Cls inductTO . 7 C p . D . 7 e Cls inductm .

This can be proved for Cls induct 3 , and extended to any other order of inductive

classes. The proof is as follows.

#89'16. h : a~ e Cls induct3 . 7 e Cls induct3 . D . g ! a — 7
Dem.

K?-3 m
-(RPs)'-AeH* m-fi€fH-3p,y-&vi'yeii3 :yejj,3 .a~e'iis (1)

A e /*8 : fi € fH . PjV . fi v i'y e p.3 : y e

p

3 . a ~ e p*: D : a^ A . A e& :

D-ala-A.Ae^ (2)

Kla-fi.aCfiui'y.0.a = fivi,'y (3)

(3).D:.Hp(2).D:/3e/^.o~efi
1( .a!a-/3.D.

0yji'yefia .a$/3vJl
ty.Rla-(/3yJi<y) (4)

(4).D:.Hp(2).D:^e/x3 .a!a-/3.D. y
8--'t^ e/43. a ! a -(^u^3/) (5)

(2).(5).Dh:.Hp(2).D:/3eClsinduct3 .D./3e At3 . a !a-
y
S (6)

(l).(6).Dh.Prop

*8917. H : 7 e Cls induct3 . a C 7 . 3 . a e Cls inducts [*89*16 . Transp]

It follows that, with the hypothesis of *89*15, Rm (wt-<y), Rm+1 (xb-iy), etc.

are all of them inductive classes of the (m + l)th or any lower order.
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4—
*8918. I- :. R e Cls- 1 . y, zeR^'x .~{yR \

R#&) . D : yR^s . v . zR^y
Dem.

Put (• = Rs (a}*-iy)n jRg (# i-h 2).

H . *89'1214'17O H : HpO . f <? 01%, i.e. f is a class of the second order (1)

H :. Hp

.

~(yR#sz) ,<^>{zR^y) . D : u

e

£ . D . uR^jy . uR#sz .u^y .u^z

.

[*89\L02] D . R'uRmy . R'uRmz

.

[Hp] D.£'ue£ (2)

H.(l).(2)OH:Hp(2)0.yef (3)

H:Hp(2)0.y~ef (4)

H . (3) . (4)O H :. HpO : yR^ . v . *£*# :0 H . Prop

*8919. H: ReC\s->l .R"fii Cfi2 .\=Rxa'xr\fi2 -R"fjh .

,2.\e0vl
Bern.

H :Hp .y,z e\ . y^z . £ = E2 (a?hny) <S R^(x^z) .D . i2"£C £ .xe £ [as above]

[*8912-1517] 1.y,zeS (1)

H:Hp(l).D.y,s~ef (2)

H.(l).(2)OH.Prop

*89 2. H :# e Cls-> 1 . a?.R*sy • R% (y*-*y) e Cls inducts . D . J?2 (xMy) e Cls induct3

Dem.

As in *89iriiril2,

H:._R€Cls->l.a;ik.:>:

R (xt-iy) = t'a? u R (z\r-*y) .v .R (xt-ty) = i'x.v . R (xt-iy) = A (1)

H.(1).3H :. Hp(l): Ae/t: oc/x,. D^w aw t'ue/iO:
i2 (^Hy)ep.D.R (xt-*y) e ft (2)

H . (2) . D I- : R € Cls -» 1 . adZ^ . R2 (yt-\y) e Cls inducts . D .

•#2 (#»-»y) c Cls inducts OH. Prop

To deal further with the case in which y (R |
R^) y, proceed as follows

:

Having proved

R e Cls — 1 . xR&y . Ri (yt-*y)e Cls inductsO . 222 («Hy) e Cls induct3 ,

we have to prove ^(yi-i^e Cls inducts; for this purpose, put

fl-<-i'jf)lJR.

Then SeCls-*l . £G J?.

Observe that yRy .D.R (y\-*y) = i'y,

yR?y .3.R (y^y) = i
l
y w t'ify.

Assume, therefore, ~ (yRy) . ~{yRy).

We have 8"ft, = .£"(//. - 1'y) . S"n = R"ft - i'y. Hence

S"fiCf*.R'yeij.. = .R"/jLCfA.R'yeti,,

#"/* C fi.ye /j, . = . R"/xC jjl .y e fi.
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Hence %'R'y- R^R'y 7s*<y = R*'y.

Hence S2 (R'y*-*y) = R^ (R'yt-ty) = R2 (y^y)

because y (R |
R^) y.

Moreover we have ~(yS\S%y) because y~e D'S.

Hence by #89*14, R^ (y y-\y) e Cls induct,. Hence generally

:

#89*201. h : R e Cls —

»

1 . ocR^y . D .Ra (oe*-*y) e Cls induct3

We have R3 (x\r-ty) C i^ («—iy).

Hence by #89*17, R^ (%i-iy) e Cls induct3 .D . R3 (xwy) e Cls induct3 . Hence

#89*21. h : R e Cls -> 1 . D . i23 («i-*y) e Cls induct3

because ^(aiR^) . D . i^ («i-«y) = A.
4—

#89*22. I- :. R e Cls -» 1 . y, z e i2#3'a- . D : yJX*^ . v . zR%zy
[Proof as in #89*18, using #89*21 instead of #89*14]

#89*221. Potidm'jB = (Et8)m'i2 Df

Cnv'liJ
#89*23. V :. 8, T e Potid3'i2 . D : 8RmT . v . TRtsj3 #89*22

R

#89*24. I- :i2eCls->l .R"XCX .xeX.3 . R&'xCX

Here \ is assumed to be of more than the third order.

Bern.

f- :. Hp . y € Rjf&x — X.D:zeXr\R3 (%*-<y) . D . z =|= y

.

D . i2'# e X n J?3 (a?t

—

\y) (1)

h . #89*21*17*12 . D H : Hp . D . (g 2̂) . A. n £3 («hi/) = fi2 (2)

H . (1) . (2) . 3 h : Hp (1) . D . (g/^) . X « 1^ (a-i-ny) =^ . R"(x2 C^ . a; e&

.

D . ii^'a* C X n jR^ 0**i-Hy) (3)

H . (3) . D I- : . Hp . D : y e R*s*x -X.D.yeXz

D : Rj&cc C X :. D H . Prop

Hence if X is an inductive class, it can be used in an induction no matter

what its order may be, ifR e Cls —> 1.

#89*25. H:i2el-»Cls.D.i23 (a*i-Hy)eClsinduct3 [#89*21 ^1

#89*26. h:.i2el-»Cls.y, zeR^x.DzyR^z .v . zR^y #89*22 p

#89*27. h:22el-+Cls.i2"\C\.a*€\.D.iV#(:\ |*89*24^1
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*89-28. b:R € (l-+C\8)yj(Cte->l).3.Rm = stFotid3'R

Dem.
b:Te Potid3'.ft .xTy .yRz .3 .T\Re Potid3

<22 . x{T\ R)

z

Hence r : s'Potids'tf = 8 . 3 . R l*S'x C8*x (1)

K(l).*89-24.3H:i2eCls^l.Hp(l).D.^
3'tfC^» (2)

b:.Rp(l).R"fJll Cfi.DiT*xCfi.D.R*'T*xCfi:

Ozxe/jL.O.S'xCft (3)

h.(3).Dr:Hp(l)0 jF^CE^'ff (4)

r.(2).(4)/Dr:Hp(2)0.s"'# = JVtf (5)

h.(5).Dh:2J e Cls -*1 . D . 22^ = £<Potid3
'22 (6)

Similarly I- : R e 1 -* Cls . D . R& = s<Potid3
<# (7)

r.(6).(7).DKProp

*89'29. h:i26(l-»Cls)u(Cls-»l).D.jR*<3+m) =^ [*89'24'27]

We have now to obtain an analogous result when R is not one-many or

many-one. For this purpose, we use R€) which is one-many.

We prove ^(^'^s'^yi'a;,
whence, since (ik)#(3+w) = (Re)^,

it follows that R*Ht+m) = R*s,

so that for a relation which is not one-many or many-one we obtain the ad-

vantages of unlimited induction by proceeding to R*g. The proof is as follows.

*89'3. \-:Re=S.3.siS#m'i'xCR#m'x

Dem.

b ::.B.p.D::aS^L fx. = i.L'x€fi:^€fi. D| . R"^€fi: 3M .cce/t:.

Di.i tSBeC\ (yiZeC\ty.Dt.R"geC\'yi3y .aeC\
t
y:.

D :. x e 7 . R"y C 7 . Dy . a C 7 :

.

D :. a C #*<#::. 3 h. Prop

*89*31. b : Re = 8 . D . JR^(nJ^ '* C s'^'t'as

Dem.
K*89-10l.Dr-.£|S# G£# .

D h . £"Vi'a? C V*'*

.

D b . *'S"S#Va> C s'^'i^ ( 1

)

I- . (1) . *4038 . D h : Hp . D . R"8*8**1'a: C s*8*'i'x (2)

b : X = £ (i'x e fi . S"ia C^)..D. s'S^'i'x = s'p*X (3)

I- . (2) . D b : *'Vt'a? e Clsw . D . fl^ C s*S*'i 'x (4)

K(3).Dh. S^/^6Clsm+, (5)

I- . (4) . (5) . D H . Prop

R & w 1 42
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*89-32. H . R&'x = s'(ikV*?
Dem.

K*89-3-29. D I- . *'(£<)*/» C R^(x (1)

K(l).*89-31.DKProp

*89'33. H . Rms+m) — R%5

Dem.

As in *89'32, h . R% i6+nVl 'x = s'jRe^+^'x

[*89-29] = s'iRe^x

[*89-32] = ^/# . D I- . Prop

*8934. \-:yR%sx.xe\.R"\C\.3.y€\ [*89-33]

Here \ is supposed to be of any order, however high. Hence, so far as

mathematical induction is concerned, all proofs remain valid without the

axiom of reducibility provided " R% " is understood to mean " i2#5
."



APPENDIX C

TRUTH-FUNCTIONS AND OTHERS

In the Introduction to the present edition we have assumed that a function

can only enter into a proposition through its values. We have in fact

assumed that a matrix/! (ff> I 2) always arises through some stroke-function

F(p,q,r,...)

by substituting <f> I a, $ I b,
<f>

I c, ... for some or all of p, q, r, ..., and that all

other functions of functions are derivable from such matrices by generalization

—i.e. by replacing some or all of a, 6, c, . . . by variables, and taking " all

values" or "some value."

The uses which we have made of this assumption can be validated by

definition, even if the assumption is not universally true. That is to say, we

can decide that mathematics is to confine itself to functions of functions which

obey the above assumption. This amounts to saying that mathematics is

essentially extensional rather than intensional. We might, on this ground,

abstain from the inquiry whether our assumption is universally true or not.

The inquiry, however, is important on its own account, and we shall, in what

follows, suggest certain considerations without arriving at a dogmatic con-

clusion.

There is a prior question, which is simpler, and that is the question

whether all functions of propositions are truth-functions. Or, more precisely,

can all propositions which do not contain apparent variables be built up from

atomic propositions by means of the stroke ? If this were the case, we should

have, if ffi is any function of propositions,

p = q m ^.fp~fq.
Consequently, according to the definition *13'01,

p = q.0.p = q.

There will thus be only two propositions, one true and one false. This was

Frege's point of view, but it is one which cannot easily be accepted. Frege

maintained that every proposition is a proper name, either for the true or for

the false. On grounds not connected with our present question, we cannot

regard propositions as names ; but that does not decide the question whether

equivalent propositions are identical. It is this latter question that concerns

us. That is to say, we have to consider whether, or in what sense, there are

functions fp which are true for some true values of p and false for other true

values of p.

Two obvious primdfacie instances are " A believes p " and " p is/about .4."

We may take these instances as crucial. If A believes p and p is true, it does

42—2
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not follow that A believes every other true proposition q; nor, if A believes p,

and p is false, does it follow that A believes every other false proposition q.

Again, the proposition "A is mortal" is about A ; but the proposition "B is

mortal," which is equally true, is not about A. Thus the function "p is about

A" is not a truth-function of p. This instance is important, because the

notation "<f>x" is used to denote a proposition about x, and thus the conception

involved seems to be presupposed in the whole procedure of propositional

functions.

We must, to begin with, distinguish between a proposition as a fact and
a proposition as a vehicle of truth or falsehood. The following series of black

marks: " Socrates is mortal," is a fact of geography. The noise which I should

make if I were to say " Socrates is mortal " would be a fact of acoustics. The
mental occurrence when I entertain the belief " Socrates is mortal " is a fact

of psychology. None of these introduces the notion of truth or falsehood,

which is, for logic, the essential characteristic of propositions. We shall return

in a moment to the consideration of propositions as facts.

When we say that truth or falsehood is, for logic, the essential characteristic

of propositions, we must not be misunderstood. It does not matter, for mathe-

matical logic, what constitutes truth or falsehood ; all that matters is that

they divide propositions into two classes according to certain rules. Let us

take a set of marks
xlt a?2 > ••• xvn—i> x<w

Let us put, as unexplained assertions,

Let us further introduce the symbol xr \xg , and assume

T(xr \xg)ifF(xr)orF(xg);

F(xr
I

xs) if T(xr) and T{xg).

Assume further that, if p, q, s are any one of the x's or any combination of

them by means of the stroke, the above rules are to apply to p\q, etc., and

further we are to have:

T{P\(P\P)},

T{pDq.D.s\q3p\s},

where "pDq " means "p
\ (q \

q)." Further: given T [p\{q\ r)\ and T(p), we
are to have T{r).

Taking the above as mere conventional rules, all the logic of molecular

propositions follows, replacing " V . p " by "T (p)."

Thus from the formal point of view it is irrelevant what constitutes truth

or falsehood : all that matters is that propositions are divided into two classes

according to certain rules. It does not matter what propositions are, so long

as we are content to regard our primitive propositions as denning hypotheses,
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not as truths. (From a philosophical point of view, this formal procedure may

be shown to presuppose the non-formal interpretation of our primitive pro-

positions; but that does not matter for our present purpose.)

Throughout the logic of molecular propositions, we do not want to know

anything about propositions except whether they are true or false. Further,

we are concerned only with those combinations of propositions which are true

in virtue of the rules, whether their constituent propositions are true or false.

That is—to take the simplest illustration—we assert p \(p\p), but we never

assert any proposition p that has not some suitable molecular structure,

although we believe that half of such propositions are true. Our assertions

depend always upon structure, never upon the mere fact that some proposition

is true.

A new situation arises, however, when we replace p by </> ! x. For example,

we have V -p\(p\p)

and we infer h .
<f>

I x
| (<f>

I x
\ <f>

I x).

We cannot explain the notation
<f>

! x without introducing characteristics of

propositions other than their truth or falsehood. Take for example the

primitive proposition (*8*11)

\-.(^x).<f>lx\(<l>la\<f>lb).

The truth of this proposition depends upon the form of the constituent pro-

positions <j> ! x, <f>la, <f>lb, riot simply upon their truth or falsehood. It cannot

be replaced by

which is true but does not have the desired consequences. We are therefore

compelled to consider what is meant by saying that a proposition is of the

form <f>la (where a is some constant). This brings us back to "A occurs in p"

which we gave above as an example of a function which is not a truth-function.

And this, we shall find, brings us back to the proposition as fact, in opposition

to the proposition as true or false.

Let us revert to our two instances: "A believes/)" and "p is about A."

We shall avoid certain psychological difficulties if we take, to begin with,

"A asserts p " instead of "A believes p." Suppose "p " is " Socrates is Greek."

A word is a class of similar noises. Thus a person who asserts " Socrates is

Greek " is a person who makes, in rapid succession, three noises, of which the

first is a member of the class " Socrates," the second a member of the class

" is," and the third a member of the class " Greek." This series of events is

part of the series of events which constitutes the person. If A is the series of

events constituting the person, o is the class of noises " Socrates," /S the class

"is," and 7 the class "Greek," then "A asserts that Socrates is Greek" is

(omitting the rapidity of the succession)

(a«, y,z).x€a.y€fi.zey.xlywxlzwylzG.A.
It is obvious that this is not a function of/) as p occurs in a truth-function.

42—3
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If we now take up "A believes p," we find the matter rather more com-

plicated, owing to doubt as to what constitutes belief. Some people maintain

that a proposition must be expressed in words before we can believe it ; if

that were so, there would not, from our point of view, be any vital difference

between believing and asserting. But if we adopt a less unorthodox stand-

point, we shall say that when a man believes "Socrates is Greek" he has

simultaneously two thoughts, one of which " means " Socrates while the other

"means" Greek, and these two thoughts are related in the way we call

" predication." It is not necessary for our purposes to define " meaning,"

beyond noticing that two different thoughts may " have the same meaning."

The relation " having the same meaning " is symmetrical and transitive

;

moreover, if two thoughts "have the same meaning," either can replace the

other in any belief without altering its truth-value. Thus we have one class

of thoughts, called " Socrates," which all " have the same meaning "
; call this

class a. We have another class of thoughts, called " Greek," which all " have

the same meaning "
; call this class y9. Call the relation of predication between

two thoughts P. (This is the relation which holds between our thought of

the subject and our thought of the predicate when we believe that the subject

has the predicate. It is wholly different from the relatidn which holds between

the subject and the predicate when our belief is true.) Then "A believes

that Socrates is Greek "is

(
l^x,y).xea.y€^.xPy.x,yeC(A.

Here, again, the proposition as it occurs in truth-functions has disappeared.

It is not necessary to lay any stress upon the above analysis of belief,

which may be completely mistaken. All that is intended is to show that

"A believes p" may very well not be a function of p, in the sense in which

p occurs in truth-functions.

We have now to consider "p is about A," e.g. " ' Socrates is Greek ' is about

Socrates." Here we have to distinguish (1) the fact, (2) the belief, (3) the

verbal proposition. The fact and the belief, however, do not raise separate

problems, since it is fairly clear that Socrates is a constituent of the fact in

the same sense in which the thought of Socrates is a constituent of the belief.

And the verbal proposition raises no difficulty, since each instance of the

verbal proposition is a series containing a part which is an instance of

" Socrates." That is to say, " Socrates " (the word) is a class of series of noises,

say \ ; and " Socrates is Greek " is another class of series, say /a ; and the fact

that " Socrates " occurs in " Socrates is Greek " is

Pe /i .D.(aQ).Q e X.QGP.

Thus we are left with the question : What do we mean by saying that Socrates

is a constituent of the fact that Socrates is Greek ? This raises the whole

problem of analysis. But we do not need an ultimate answer ; we only need
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an answer sufficient to throw light on the question whether there are functions

of propositions which are not truth-functions.

There are those who deny the legitimacy of analysis. Without admitting

that they are in the right, we can frame a theory which they need not reject.

Let us assume that facts are capable of various kinds of resemblances and

differences. Two facts may have particular-resemblance ; then we shall say

that they are about the same particular. Again they may have predicate-

resemblance, or dyadic-relation-resemblance, or etc. We shall say that a fact

is about only one particular if any two facts which have particular-resemblance

to the given fact have particular-resemblance to each other. Given such a

fact, we may define its one particular as the class of al^ facts having particular-

resemblance to the given fact. In that case, to say that Socrates is a con-

stituent of the fact that Socrates is Greek (assuming conventionally that

Socrates is a particular) is to say that the fact is a member of the class of

facts which is Socrates. In the case of a belief about Socrates, which is itself

a fact composed of thoughts, we shall say that a belief is about Socrates if it

is one of the class of facts constituting a certain idea which " means " Socrates

in whatever sense we may give to " meaning." Here an " idea " is taken to be

a class of psychical facts, say all the beliefs which " refer to " Socrates.

We can define predicates by a similar procedure. Take a fact which is

only capable of two kinds of resemblance such as we are considering, namely

particular-resemblance and predicate-resemblance ; such a fact will be a

subject-predicate fact. The predicate involved in it is the class of facts to

which it has predicate-resemblance.

We shall assume also various kinds of difference : particular-difference,

predicate-difference, etc. These are not necessarily incompatible with the

corresponding kind of resemblance ; e.g. R (x, x) and R (x, y) have both

particular-resemblance in respect of x and particular-difference in respect of

y. This enables us to define what is meant by saying that a particular occurs

twice in a fact, as x occurs twice in R (x, x). First : R (x, x) is a dyadic-

relation-fact because it is capable of dyadic-relation-resemblance to other facts;

second : any two facts having particular-resemblance to R (x, x) have particular-

resemblance to each other. This is what we mean by saying that R(x, x) is a

dyadic-relation-fact in which x occurs twice, not a subject-predicate fact. Take

next a triadic-relation-fact R (x, x, z). This is, by definition, a triadic-relation-

fact because it is capable of triadic-relation-resemblance. The facts having

particular-resemblance to R (x, x, z) can be divided into two groups (not three)

such that any two members of one group have particular-resemblance to each

other. This shows that there is repetition, but not whether it is x or z that

is repeated. The facts of the one group are R (x, x, c) for varying c ; the facts

of the other are R (a, b, z) for varying a and b. Each fact of the group R (x, x, c)

belongs to only two groups constituted by particular-resemblance, whereas
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the facts of the group R(a,b,z), except when it happens that a= 6, belong
to three groups constituted by particular-resemblance. This defines what is

meant by saying that x occurs twice and z once in the fact R (x, x, z). It is

obvious that we can deal with tetradic etc. relations in the same way.

According to the above, when we say that Socrates is a constituent of the
fact that Socrates is Greek, we mean that this fact is a member of the class

of facts which is Socrates.

When we use the notation "
<f>

! x " to denote a proposition in which " x "

occurs, it is a fact that " x" occurs in "<j>lx," but we do not need to assert

the fact ; the fact does its work without having to be asserted. It is also a
fact that, if " x " occurs in a proposition p, and p asserts a fact, then # is a
constituent of that fact. This is not a law of logic, but a law of language. It

might be false in some languages. For instance, in former days, when a crime
was committed in India, the indictment stated that it was committed " in the
manor of East Greenwich." These words did not denote any constituents of
the fact. But a logical language avoids fictions of this kind.

The notation for functions is an illustration of Wittgenstein's principle,

that a logical symbol must, in certain formal respects, resemble what it sym-
bolizes. All the facts of which a? is a constituent, according to the above,
constitute a certain class defined by particulars-resemblance. The various

symbols <f>x, tyx, %#,... also all resemble each other in a certain respect, namely
that their right-hand halves are very similar (not exactly similar, because no
two xs are exactly alike). The symbols R (x, x), R (x, x, z), etc. are appropriate

to their meanings for similar reasons. The symbols are used before their

suitability can be explained. To explain why " <j>x " is a suitable symbol for a

proposition about x is, as we have seen, a complicated matter. But to use the

symbol is not a complicated matter. Our symbolism, as a set of facts, resembles,

in certain logical respects, the facts which it is to symbolize. This makes it

a good symbolism. But in using it we do not presuppose the explanation of

why it is good, which belongs to a later stage. And so the notation "
<f>x

" can

be used without first explaining what we mean by " a proposition about x"

We are now in a position to deal with the difference between propositions

considered factually and propositions as vehicles of truth and falsehood. When
we say "

' Socrates ' occurs in the proposition ' Socrates is Greek,' " we are

taking the proposition factually. Taken in this way, it is a class of series, and
' Socrates ' is another class of series. Our statement is only true when we take

the proposition and the name as classes. The particular ' Socrates ' that occurs
at the beginning of our sentence does not occur in the proposition ' Socrates

is Greek'; what is true is that another particular closely resembling it occurs

in the proposition. It is therefore absolutely essential to all such statements

to take words and propositions as classes of similar occurrences, not as single

occurrences. But when we assert a proposition, the single occurrence is all
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that is relevant. When I assert " Socrates is Greek," the particular occurrences

of the words have meaning, and the assertion is made by the particular oc-

currence of that sentence. And to say of that sentence "'Socrates' occurs in

it" is simply false, if I mean the ' Socrates ' that I have just written down,

since it was a different ' Socrates' that occurred in it. Thus we conclude

:

A proposition as the vehicle of truth or falsehood is a particular occurrence,

while a proposition considered factually is a class of similar occurrences. It is

the proposition considered factually that occurs in such statements as "A

believes p " and "p is about A."

Of course it is possible to make statements about the particular fact

" Socrates is Greek." We may say how many centimetres long it is
;
we may

say it is black ; and so on. But these are not the statements that a philosopher

or logician is tempted to make.

When an assertion occurs, it is made by means of a particular fact, which

is an instance of the proposition asserted. But this particular fact is, so to

speak, "transparent"; nothing is said about it, but by means of it something

is said about something else. It is this " transparent " quality which belongs

to propositions as they occur in truth-functions. This belongs to p when p is

asserted, but not when we say "p is true." Thus suppose we say: "All that

Xenophon said about Socrates is true." Put

X (p) . = . Xenophon asserted p,

S (p) . = . p is about Socrates.

Then our statement is

X (p).S (p) .Dp . pis true.

Here the occurrence ofp is not " transparent." But if we say

x e « . Da; <f>
• x

we are asserting <*> ! x for a whole class of values of x, and yet " <j>lx "still has

a "transparent" occurrence. The essential difference is that in the former

case we speak about the symbol or belief, whereas in the latter we merely use

it to speak about something else. This is the point which distinguishes the

occurrences of propositions in mathematical logic from their occurrences in

non-truth-functions.

Let us endeavour to give greater definiteness to this point. Take the

statement " Socrates had all the predicates that Xenophon said he had." Let

the series of events which was Xenophon be called X. Then if Xenophon

attributed the predicate a to Socrates, we might appear to have (writing

x i y I z i w f°r tne series x
> y> z

>
w)

Socrates J,
had

\,
predicate ^aQX.

Thus our assertion would be

Socrates I had | predicate ± a G X . Da . Socrates had predicate a.

Here, however, there is an ambiguity. On the left, " Socrates," " had," " pre-

dicate," and " a " occur as noises ; on the right they occur as symbols. This
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ambiguity amounts to a fallacy. For, in fact, what I write on paper is not the

noise that Xenophon made, but a symbol for that noise. Thus I am using

one symbol " Socrates " in two senses : (a) to mean the noise that Xenophon
made on a certain occasion, (b) to mean a certain man. We must say

:

IfXenophon made a series of noises which mean what is meant by " Socrates

had the predicate a" then what this means is true.

For example: If Xenophon said "Socrates was wise," then what is meant
by " Socrates was wise " is true.

But this does not assert that Socrates was wise. When I actually assert

that Socrates was wise, I say something which cannot be said by talking about

the words I use in saying it ; and when I assert that Socrates was wise, although

an instance of the proposition occurs, yet I do not say anything whatever about

the proposition—in particular I do not say that it is true. This is an inference,

not logical, but linguistic.

If the above considerations in any way approximate to the truth, we see

that there is an absolute gulf between the assertion of a proposition and an

assertion about the proposition. The p that occurs when we assert p and the

p that occurs in "A asserts p " are by no means identical. The occurrence of

propositions as asserted is simpler than their occurrence as something spoken

about. In the assertion of a proposition, and in the assertion of any molecular

function of a proposition, the proposition does not occur, if we mean by the

proposition the p that occurs in such propositions as "A asserts/)" or "p is

about A." When these latter are analysed, they are found not to conflict with

the view that propositions, in the sense in which they occur when they are

asserted, only occur in truth-functions.

When p is asserted,p does not really occur, but the constituents oip occur,

or an instance of p occurs. The same is true when a molecular proposition

containing p is asserted. Thus we cannot infer p = q, because here p and q
occur in a sense in which they do not occur when molecular propositions con-

taining them are asserted.

Similar considerations apply to propositional functions. Suppose there are

two predicates a and /8 which are always found together ; we may still say

that they are two, on the ground that a (%) and /S (#) are facts which do not

have predicate-resemblance. But the propositional function a (jb) is solely to

be used in building up matrices by means of the stroke. The predicate a is

a class of facts, whereas the propositional function a (&) is merely a symbolic

convenience in speaking about certain propositions. Thus we may have

a (ft) — yS (#) without having a — y8. In this way we escape the primd facie

paradoxes of the theory that propositions only occur in truth-functions and

propositional functions only occur through their values. The paradoxes rest

on the confusion between factual and assertive propositions.
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