
Chapter 5

COMPLEX NUMBERS

5.1 Constructing the complex numbers

One way of introducing the field C of complex numbers is via the arithmetic
of 2 × 2 matrices.

DEFINITION 5.1.1 A complex number is a matrix of the form

[

x −y
y x

]

,

where x and y are real numbers.

Complex numbers of the form

[

x 0
0 x

]

are scalar matrices and are called

real complex numbers and are denoted by the symbol {x}.
The real complex numbers {x} and {y} are respectively called the real

part and imaginary part of the complex number

[

x −y
y x

]

.

The complex number

[

0 −1
1 0

]

is denoted by the symbol i.

We have the identities
[

x −y
y x

]

=

[

x 0
0 x

]

+

[

0 −y
y 0

]

=

[

x 0
0 x

]

+

[

0 −1
1 0

] [

y 0
0 y

]

= {x} + i{y},

i2 =

[

0 −1
1 0

] [

0 −1
1 0

]

=

[

−1 0
0 −1

]

= {−1}.

89



90 CHAPTER 5. COMPLEX NUMBERS

Complex numbers of the form i{y}, where y is a non–zero real number, are
called imaginary numbers.

If two complex numbers are equal, we can equate their real and imaginary
parts:

{x1} + i{y1} = {x2} + i{y2} ⇒ x1 = x2 and y1 = y2,

if x1, x2, y1, y2 are real numbers. Noting that {0} + i{0} = {0}, gives the
useful special case is

{x} + i{y} = {0} ⇒ x = 0 and y = 0,

if x and y are real numbers.
The sum and product of two real complex numbers are also real complex

numbers:
{x} + {y} = {x + y}, {x}{y} = {xy}.

Also, as real complex numbers are scalar matrices, their arithmetic is very
simple. They form a field under the operations of matrix addition and
multiplication. The additive identity is {0}, the additive inverse of {x} is
{−x}, the multiplicative identity is {1} and the multiplicative inverse of {x}
is {x−1}. Consequently

{x} − {y} = {x} + (−{y}) = {x} + {−y} = {x − y},

{x}
{y} = {x}{y}−1 = {x}{y−1} = {xy−1} =

{

x

y

}

.

It is customary to blur the distinction between the real complex number
{x} and the real number x and write {x} as x. Thus we write the complex
number {x} + i{y} simply as x + iy.

More generally, the sum of two complex numbers is a complex number:

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2); (5.1)

and (using the fact that scalar matrices commute with all matrices under
matrix multiplication and {−1}A = −A if A is a matrix), the product of
two complex numbers is a complex number:

(x1 + iy1)(x2 + iy2) = x1(x2 + iy2) + (iy1)(x2 + iy2)

= x1x2 + x1(iy2) + (iy1)x2 + (iy1)(iy2)

= x1x2 + ix1y2 + iy1x2 + i2y1y2

= (x1x2 + {−1}y1y2) + i(x1y2 + y1x2)

= (x1x2 − y1y2) + i(x1y2 + y1x2), (5.2)
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The set C of complex numbers forms a field under the operations of
matrix addition and multiplication. The additive identity is 0, the additive
inverse of x + iy is the complex number (−x) + i(−y), the multiplicative
identity is 1 and the multiplicative inverse of the non–zero complex number
x + iy is the complex number u + iv, where

u =
x

x2 + y2
and v =

−y

x2 + y2
.

(If x + iy 6= 0, then x 6= 0 or y 6= 0, so x2 + y2 6= 0.)

From equations 5.1 and 5.2, we observe that addition and multiplication
of complex numbers is performed just as for real numbers, replacing i2 by
−1, whenever it occurs.

A useful identity satisfied by complex numbers is

r2 + s2 = (r + is)(r − is).

This leads to a method of expressing the ratio of two complex numbers in
the form x + iy, where x and y are real complex numbers.

x1 + iy1

x2 + iy2
=

(x1 + iy1)(x2 − iy2)

(x2 + iy2)(x2 − iy2)

=
(x1x2 + y1y2) + i(−x1y2 + y1x2)

x2
2 + y2

2

.

The process is known as rationalization of the denominator.

5.2 Calculating with complex numbers

We can now do all the standard linear algebra calculations over the field of
complex numbers – find the reduced row–echelon form of an matrix whose el-
ements are complex numbers, solve systems of linear equations, find inverses
and calculate determinants.

For example, solve the system

(1 + i)z + (2 − i)w = 2 + 7i

7z + (8 − 2i)w = 4 − 9i.

The coefficient determinant is
∣

∣

∣

∣

1 + i 2 − i
7 8 − 2i

∣

∣

∣

∣

= (1 + i)(8 − 2i) − 7(2 − i)

= (8 − 2i) + i(8 − 2i) − 14 + 7i

= −4 + 13i 6= 0.
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Hence by Cramer’s rule, there is a unique solution:

z =

∣

∣

∣

∣

2 + 7i 2 − i
4 − 9i 8 − 2i

∣

∣

∣

∣

−4 + 13i

=
(2 + 7i)(8 − 2i) − (4 − 9i)(2 − i)

−4 + 13i

=
2(8 − 2i) + (7i)(8 − 2i) − {(4(2 − i) − 9i(2 − i)}

−4 + 13i

=
16 − 4i + 56i − 14i2 − {8 − 4i − 18i + 9i2}

−4 + 13i

=
31 + 74i

−4 + 13i

=
(31 + 74i)(−4 − 13i)

(−4)2 + 132

=
838 − 699i

(−4)2 + 132

=
838

185
− 699

185
i

and similarly w =
−698

185
+

229

185
i.

An important property enjoyed by complex numbers is that every com-
plex number has a square root:

THEOREM 5.2.1
If w is a non–zero complex number, then the equation z2 = w has a so-
lution z ∈ C.

Proof. Let w = a + ib, a, b ∈ R.

Case 1. Suppose b = 0. Then if a > 0, z =
√

a is a solution, while if
a < 0, i

√
−a is a solution.

Case 2. Suppose b 6= 0. Let z = x + iy, x, y ∈ R. Then the equation
z2 = w becomes

(x + iy)2 = x2 − y2 + 2xyi = a + ib,

so equating real and imaginary parts gives

x2 − y2 = a and 2xy = b.
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Hence x 6= 0 and y = b/(2x). Consequently

x2 −
(

b

2x

)

2 = a,

so 4x4 − 4ax2 − b2 = 0 and 4(x2)2 − 4a(x2) − b2 = 0. Hence

x2 =
4a ±

√
16a2 + 16b2

8
=

a ±
√

a2 + b2

2
.

However x2 > 0, so we must take the + sign, as a −
√

a2 + b2 < 0. Hence

x2 =
a +

√
a2 + b2

2
, x = ±

√

a +
√

a2 + b2

2
.

Then y is determined by y = b/(2x).

EXAMPLE 5.2.1 Solve the equation z2 = 1 + i.

Solution. Put z = x + iy. Then the equation becomes

(x + iy)2 = x2 − y2 + 2xyi = 1 + i,

so equating real and imaginary parts gives

x2 − y2 = 1 and 2xy = 1.

Hence x 6= 0 and y = 1/(2x). Consequently

x2 −
(

1

2x

)

2 = 1,

so 4x4 − 4x2 − 1 = 0. Hence

x2 =
4 ±

√
16 + 16

8
=

1 ±
√

2

2
.

Hence

x2 =
1 +

√
2

2
and x = ±

√

1 +
√

2

2
.

Then

y =
1

2x
= ± 1

√
2
√

1 +
√

2
.

Hence the solutions are

z = ±





√

1 +
√

2

2
+

i
√

2
√

1 +
√

2



 .
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EXAMPLE 5.2.2 Solve the equation z2 + (
√

3 + i)z + 1 = 0.

Solution. Because every complex number has a square root, the familiar
formula

z =
−b ±

√
b2 − 4ac

2a

for the solution of the general quadratic equation az2 + bz + c = 0 can be
used, where now a(6= 0), b, c ∈ C. Hence

z =
−(

√
3 + i) ±

√

(
√

3 + i)2 − 4

2

=
−(

√
3 + i) ±

√

(3 + 2
√

3i − 1) − 4

2

=
−(

√
3 + i) ±

√

−2 + 2
√

3i

2
.

Now we have to solve w2 = −2 + 2
√

3i. Put w = x + iy. Then w2 =
x2 − y2 + 2xyi = −2 + 2

√
3i and equating real and imaginary parts gives

x2 − y2 = −2 and 2xy = 2
√

3. Hence y =
√

3/x and so x2 − 3/x2 = −2. So
x4 + 2x2 − 3 = 0 and (x2 + 3)(x2 − 1) = 0. Hence x2 − 1 = 0 and x = ±1.
Then y = ±

√
3. Hence (1 +

√
3i)2 = −2 + 2

√
3i and the formula for z now

becomes

z =
−
√

3 − i ± (1 +
√

3i)

2

=
1 −

√
3 + (1 +

√
3)i

2
or

−1 −
√

3 − (1 +
√

3)i

2
.

EXAMPLE 5.2.3 Find the cube roots of 1.

Solution. We have to solve the equation z3 = 1, or z3 − 1 = 0. Now
z3 − 1 = (z − 1)(z2 + z + 1). So z3 − 1 = 0 ⇒ z − 1 = 0 or z2 + z + 1 = 0.
But

z2 + z + 1 = 0 ⇒ z =
−1 ±

√
12 − 4

2
=

−1 ±
√

3i

2
.

So there are 3 cube roots of 1, namely 1 and (−1 ±
√

3i)/2.

We state the next theorem without proof. It states that every non–
constant polynomial with complex number coefficients has a root in the
field of complex numbers.
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THEOREM 5.2.2 (Gauss) If f(z) = anzn + an−1z
n−1 + · · · + a1z + a0,

where an 6= 0 and n ≥ 1, then f(z) = 0 for some z ∈ C.

It follows that in view of the factor theorem, which states that if a ∈ F is
a root of a polynomial f(z) with coefficients from a field F , then z − a is a
factor of f(z), that is f(z) = (z − a)g(z), where the coefficients of g(z) also
belong to F . By repeated application of this result, we can factorize any
polynomial with complex coefficients into a product of linear factors with
complex coefficients:

f(z) = an(z − z1)(z − z2) · · · (z − zn).

There are available a number of computational algorithms for finding good
approximations to the roots of a polynomial with complex coefficients.

5.3 Geometric representation of C

Complex numbers can be represented as points in the plane, using the cor-
respondence x + iy ↔ (x, y). The representation is known as the Argand

diagram or complex plane. The real complex numbers lie on the x–axis,
which is then called the real axis, while the imaginary numbers lie on the
y–axis, which is known as the imaginary axis. The complex numbers with
positive imaginary part lie in the upper half plane, while those with negative
imaginary part lie in the lower half plane.

Because of the equation

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2),

complex numbers add vectorially, using the parallellogram law. Similarly,
the complex number z1 − z2 can be represented by the vector from (x2, y2)
to (x1, y1), where z1 = x1 + iy1 and z2 = x2 + iy2. (See Figure 5.1.)

The geometrical representation of complex numbers can be very useful
when complex number methods are used to investigate properties of triangles
and circles. It is very important in the branch of calculus known as Complex
Function theory, where geometric methods play an important role.

We mention that the line through two distinct points P1 = (x1, y1) and
P2 = (x2, y2) has the form z = (1 − t)z1 + tz2, t ∈ R, where z = x + iy is
any point on the line and zi = xi + iyi, i = 1, 2. For the line has parametric
equations

x = (1 − t)x1 + tx2, y = (1 − t)y1 + ty2

and these can be combined into a single equation z = (1 − t)z1 + tz2.
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Figure 5.1: Complex addition and subraction.

Circles have various equation representations in terms of complex num-
bers, as will be seen later.

5.4 Complex conjugate

DEFINITION 5.4.1 (Complex conjugate) If z = x + iy, the complex

conjugate of z is the complex number defined by z = x− iy. Geometrically,
the complex conjugate of z is obtained by reflecting z in the real axis (see
Figure 5.2).

The following properties of the complex conjugate are easy to verify:

1. z1 + z2 = z1 + z2;

2. −z = − z.

3. z1 − z2 = z1 − z2;

4. z1z2 = z1 z2;

5. (1/z) = 1/z;

6. (z1/z2) = z1/z2;



5.4. COMPLEX CONJUGATE 97

-�

6

?

x
y

z

z

�
�

�
�>

Z
Z

Z
Z~

Figure 5.2: The complex conjugate of z: z.

7. z is real if and only if z = z;

8. With the standard convention that the real and imaginary parts are
denoted by Re z and Im z, we have

Re z =
z + z

2
, Im z =

z − z

2i
;

9. If z = x + iy, then zz = x2 + y2.

THEOREM 5.4.1 If f(z) is a polynomial with real coefficients, then its
non–real roots occur in complex–conjugate pairs, i.e. if f(z) = 0, then
f(z) = 0.

Proof. Suppose f(z) = anzn + an−1z
n−1 + · · · + a1z + a0 = 0, where

an, . . . , a0 are real. Then

0 = 0 = f(z) = anzn + an−1zn−1 + · · · + a1z + a0

= an zn + an−1 zn−1 + · · · + a1 z + a0

= anzn + an−1z
n−1 + · · · + a1z + a0

= f(z).

EXAMPLE 5.4.1 Discuss the position of the roots of the equation

z4 = −1

in the complex plane.

Solution. The equation z4 = −1 has real coefficients and so its roots come
in complex conjugate pairs. Also if z is a root, so is −z. Also there are
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clearly no real roots and no imaginary roots. So there must be one root w
in the first quadrant, with all remaining roots being given by w, −w and
−w. In fact, as we shall soon see, the roots lie evenly spaced on the unit
circle.

The following theorem is useful in deciding if a polynomial f(z) has a
multiple root a; that is if (z − a)m divides f(z) for some m ≥ 2. (The proof
is left as an exercise.)

THEOREM 5.4.2 If f(z) = (z − a)mg(z), where m ≥ 2 and g(z) is a
polynomial, then f ′(a) = 0 and the polynomial and its derivative have a
common root.

From theorem 5.4.1 we obtain a result which is very useful in the explicit
integration of rational functions (i.e. ratios of polynomials) with real coeffi-
cients.

THEOREM 5.4.3 If f(z) is a non–constant polynomial with real coeffi-
cients, then f(z) can be factorized as a product of real linear factors and
real quadratic factors.

Proof. In general f(z) will have r real roots z1, . . . , zr and 2s non–real
roots zr+1, zr+1, . . . , zr+s, zr+s, occurring in complex–conjugate pairs by
theorem 5.4.1. Then if an is the coefficient of highest degree in f(z), we
have the factorization

f(z) = an(z − z1) · · · (z − zr) ×
×(z − zr+1)(z − zr+1) · · · (z − zr+s)(z − zr+s).

We then use the following identity for j = r + 1, . . . , r + s which in turn
shows that paired terms give rise to real quadratic factors:

(z − zj)(z − zj) = z2 − (zj + zj)z + zjzj

= z2 − 2Re zj + (x2
j + y2

j ),

where zj = xj + iyj .

A well–known example of such a factorization is the following:

EXAMPLE 5.4.2 Find a factorization of z4+1 into real linear and quadratic
factors.
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Figure 5.3: The modulus of z: |z|.

Solution. Clearly there are no real roots. Also we have the preliminary
factorization z4 + 1 = (z2 − i)(z2 + i). Now the roots of z2 − i are easily
verified to be ±(1 + i)/

√
2, so the roots of z2 + i must be ±(1 − i)/

√
2.

In other words the roots are w = (1 + i)/
√

2 and w, −w, −w. Grouping
conjugate–complex terms gives the factorization

z4 + 1 = (z − w)(z − w)(z + w)(z + w)

= (z2 − 2zRe w + ww)(z2 + 2zRe w + ww)

= (z2 −
√

2z + 1)(z2 +
√

2z + 1).

5.5 Modulus of a complex number

DEFINITION 5.5.1 (Modulus) If z = x + iy, the modulus of z is the
non–negative real number |z| defined by |z| =

√

x2 + y2. Geometrically, the
modulus of z is the distance from z to 0 (see Figure 5.3).

More generally, |z1−z2| is the distance between z1 and z2 in the complex
plane. For

|z1 − z2| = |(x1 + iy1) − (x2 + iy2)| = |(x1 − x2) + i(y1 − y2)|
=

√

(x1 − x2)2 + (y1 − y2)2.

The following properties of the modulus are easy to verify, using the identity
|z|2 = zz:

(i) |z1z2| = |z1||z2|;

(ii) |z−1| = |z|−1;
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(iii)

∣

∣

∣

∣

z1

z2

∣

∣

∣

∣

=
|z1|
|z2|

.

For example, to prove (i):

|z1z2|2 = (z1z2)z1z2 = (z1z2)z1 z2

= (z1z1)(z2z2) = |z1|2|z2|2 = (|z1||z2|)2.

Hence |z1z2| = |z1||z2|.

EXAMPLE 5.5.1 Find |z| when z =
(1 + i)4

(1 + 6i)(2 − 7i)
.

Solution.

|z| =
|1 + i|4

|1 + 6i||2 − 7i|

=
(
√

12 + 12)4√
12 + 62

√

22 + (−7)2

=
4√

37
√

53
.

THEOREM 5.5.1 (Ratio formulae) If z lies on the line through z1 and
z2:

z = (1 − t)z1 + tz2, t ∈ R,

we have the useful ratio formulae:

(i)

∣

∣

∣

∣

z − z1

z − z2

∣

∣

∣

∣

=

∣

∣

∣

∣

t

1 − t

∣

∣

∣

∣

if z 6= z2,

(ii)

∣

∣

∣

∣

z − z1

z1 − z2

∣

∣

∣

∣

= |t|.

Circle equations. The equation |z − z0| = r, where z0 ∈ C and r >
0, represents the circle centre z0 and radius r. For example the equation
|z − (1 + 2i)| = 3 represents the circle (x − 1)2 + (y − 2)2 = 9.

Another useful circle equation is the circle of Apollonius :
∣

∣

∣

∣

z − a

z − b

∣

∣

∣

∣

= λ,

where a and b are distinct complex numbers and λ is a positive real number,
λ 6= 1. (If λ = 1, the above equation represents the perpendicular bisector
of the segment joining a and b.)
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An algebraic proof that the above equation represents a circle, runs as
follows. We use the following identities:

(i) |z − a|2 = |z|2 − 2Re (za) + |a|2
(ii) Re (z1 ± z2) = Re z1 ± Re z2

(iii) Re (tz) = tRe z if t ∈ R.

We have
∣

∣

∣

∣

z − a

z − b

∣

∣

∣

∣

= λ ⇔ |z − a|2 = λ2|z − b|2

⇔ |z|2 − 2Re {za} + |a|2 = λ2(|z|2 − 2Re {zb} + |b|2)
⇔ (1 − λ2)|z|2 − 2Re {z(a − λ2b)} = λ2|b|2 − |a|2

⇔ |z|2 − 2Re

{

z

(

a − λ2b

1 − λ2

)}

=
λ2|b|2 − |a|2

1 − λ2

⇔ |z|2 − 2Re

{

z

(

a − λ2b

1 − λ2

)}

+

∣

∣

∣

∣

a − λ2b

1 − λ2

∣

∣

∣

∣

2

=
λ2|b|2 − |a|2

1 − λ2
+

∣

∣

∣

∣

a − λ2b

1 − λ2

∣

∣

∣

∣

2

.

Now it is easily verified that

|a − λ2b|2 + (1 − λ2)(λ2|b|2 − |a|2) = λ2|a − b|2.
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So we obtain
∣

∣

∣

∣

z − a

z − b

∣

∣

∣

∣

= λ ⇔
∣

∣

∣

∣

z −
(

a − λ2b

1 − λ2

)∣

∣

∣

∣

2

=
λ2|a − b|2
|1 − λ2|2

⇔
∣

∣

∣

∣

z −
(

a − λ2b

1 − λ2

)∣

∣

∣

∣

=
λ|a − b|
|1 − λ2| .

The last equation represents a circle centre z0, radius r, where

z0 =
a − λ2b

1 − λ2
and r =

λ|a − b|
|1 − λ2| .

There are two special points on the circle of Apollonius, the points z1 and
z2 defined by

z1 − a

z1 − b
= λ and

z2 − a

z2 − b
= −λ,

or

z1 =
a − λb

1 − λ
and z2 =

a + λb

1 + λ
. (5.3)

It is easy to verify that z1 and z2 are distinct points on the line through a
and b and that z0 = z1+z2

2 . Hence the circle of Apollonius is the circle based
on the segment z1, z2 as diameter.

EXAMPLE 5.5.2 Find the centre and radius of the circle

|z − 1 − i| = 2|z − 5 − 2i|.

Solution. Method 1. Proceed algebraically and simplify the equation

|x + iy − 1 − i| = 2|x + iy − 5 − 2i|

or
|x − 1 + i(y − 1)| = 2|x − 5 + i(y − 2)|.

Squaring both sides gives

(x − 1)2 + (y − 1)2 = 4((x − 5)2 + (y − 2)2),

which reduces to the circle equation

x2 + y2 − 38

3
x − 14

3
y + 38 = 0.

Completing the square gives

(x − 19

3
)2 + (y − 7

3
)2 =

(

19

3

)2

+

(

7

3

)2

− 38 =
68

9
,
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so the centre is (19
3 , 7

3) and the radius is
√

68
9 .

Method 2. Calculate the diametrical points z1 and z2 defined above by
equations 5.3:

z1 − 1 − i = 2(z1 − 5 − 2i)

z2 − 1 − i = −2(z2 − 5 − 2i).

We find z1 = 9 + 3i and z2 = (11 + 5i)/3. Hence the centre z0 is given by

z0 =
z1 + z2

2
=

19

3
+

7

3
i

and the radius r is given by

r = |z1 − z0| =

∣

∣

∣

∣

(

19

3
+

7

3
i

)

− (9 + 3i)

∣

∣

∣

∣

=

∣

∣

∣

∣

−8

3
− 2

3
i

∣

∣

∣

∣

=

√
68

3
.

5.6 Argument of a complex number

Let z = x + iy be a non–zero complex number, r = |z| =
√

x2 + y2. Then
we have x = r cos θ, y = r sin θ, where θ is the angle made by z with the
positive x–axis. So θ is unique up to addition of a multiple of 2π radians.

DEFINITION 5.6.1 (Argument) Any number θ satisfying the above
pair of equations is called an argument of z and is denoted by arg z. The
particular argument of z lying in the range −π < θ ≤ π is called the principal

argument of z and is denoted by Arg z (see Figure 5.5).

We have z = r cos θ + ir sin θ = r(cos θ + i sin θ) and this representation
of z is called the polar representation or modulus–argument form of z.
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EXAMPLE 5.6.1 Arg 1 = 0, Arg (−1) = π, Arg i = π
2 , Arg (−i) = −π

2 .

We note that y/x = tan θ if x 6= 0, so θ is determined by this equation up
to a multiple of π. In fact

Arg z = tan−1 y

x
+ kπ,

where k = 0 if x > 0; k = 1 if x < 0, y > 0; k = −1 if x < 0, y < 0.

To determine Arg z graphically, it is simplest to draw the triangle formed
by the points 0, x, z on the complex plane, mark in the positive acute angle
α between the rays 0, x and 0, z and determine Arg z geometrically, using
the fact that α = tan−1(|y|/|x|), as in the following examples:

EXAMPLE 5.6.2 Determine the principal argument of z for the followig
complex numbers:

z = 4 + 3i, −4 + 3i, −4 − 3i, 4 − 3i.

Solution. Referring to Figure 5.6, we see that Arg z has the values

α, π − α, −π + α, −α,

where α = tan−1 3
4 .

An important property of the argument of a complex number states that
the sum of the arguments of two non–zero complex numbers is an argument
of their product:

THEOREM 5.6.1 If θ1 and θ2 are arguments of z1 and z2, then θ1 + θ2

is an argument of z1z2.

Proof. Let z1 and z2 have polar representations z1 = r1(cos θ1 + i sin θ1)
and z2 = r2(cos θ2 + i sin θ2). Then

z1z2 = r1(cos θ1 + i sin θ1)r2(cos θ2 + i sin θ2)

= r1r2(cos θ1 cos θ2 − sin θ1 sin θ2 + i(cos θ1 sin θ2 + sin θ1 cos θ2))

= r1r2(cos (θ1 + θ2) + i sin (θ1 + θ2)),

which is the polar representation of z1z2, as r1r2 = |z1||z2| = |z1z2|. Hence
θ1 + θ2 is an argument of z1z2.

An easy induction gives the following generalization to a product of n
complex numbers:
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Figure 5.6: Argument examples.

COROLLARY 5.6.1 If θ1, . . . , θn are arguments for z1, . . . , zn respectively,
then θ1 + · · · + θn is an argument for z1 · · · zn.

Taking θ1 = · · · = θn = θ in the previous corollary gives

COROLLARY 5.6.2 If θ is an argument of z, then nθ is an argument for
zn.

THEOREM 5.6.2 If θ is an argument of the non–zero complex number
z, then −θ is an argument of z−1.

Proof. Let θ be an argument of z. Then z = r(cos θ+i sin θ), where r = |z|.
Hence

z−1 = r−1(cos θ + i sin θ)−1

= r−1(cos θ − i sin θ)

= r−1(cos(−θ) + i sin(−θ)).

Now r−1 = |z|−1 = |z−1|, so −θ is an argument of z−1.

COROLLARY 5.6.3 If θ1 and θ2 are arguments of z1 and z2, then θ1−θ2

is an argument of z1/z2.
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In terms of principal arguments, we have the following equations:

(i) Arg (z1z2) = Arg z1+Arg z2 + 2k1π,
(ii) Arg (z−1) = −Arg z + 2k2π,
(iii) Arg (z1/z2) = Arg z1−Arg z2 + 2k3π,
(iv) Arg (z1 · · · zn) = Arg z1 + · · ·+Arg zn + 2k4π,
(v) Arg (zn) = nArg z + 2k5π,

where k1, k2, k3, k4, k5 are integers.

In numerical examples, we can write (i), for example, as

Arg (z1z2) ≡ Arg z1 + Arg z2.

EXAMPLE 5.6.3 Find the modulus and principal argument of

z =

(√
3 + i

1 + i

)17

and hence express z in modulus–argument form.

Solution. |z| =
|
√

3 + i|17
|1 + i|17 =

217

(
√

2)17
= 217/2.

Arg z ≡ 17Arg

(√
3 + i

1 + i

)

= 17(Arg (
√

3 + i) − Arg (1 + i))

= 17
(π

6
− π

4

)

=
−17π

12
.

Hence Arg z =
(−17π

12

)

+ 2kπ, where k is an integer. We see that k = 1 and

hence Arg z = 7π
12 . Consequently z = 217/2

(

cos 7π
12 + i sin 7π

12

)

.

DEFINITION 5.6.2 If θ is a real number, then we define eiθ by

eiθ = cos θ + i sin θ.

More generally, if z = x + iy, then we define ez by

ez = exeiy.

For example,

e
iπ

2 = i, eiπ = −1, e−
iπ

2 = −i.

The following properties of the complex exponential function are left as

exercises:
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THEOREM 5.6.3 (i) ez1ez2 = ez1+z2 ,
(ii) ez1 · · · ezn = ez1+···+zn ,
(iii) ez 6= 0,

(iv) (ez)−1 = e−z,
(v) ez1/ez2 = ez1−z2 ,
(vi) ez = ez.

THEOREM 5.6.4 The equation

ez = 1

has the complete solution z = 2kπi, k ∈Z.

Proof. First we observe that

e2kπi = cos (2kπ) + i sin (2kπ) = 1.

Conversely, suppose ez = 1, z = x + iy. Then ex(cos y + i sin y) = 1. Hence
ex cos y = 1 and ex sin y = 0. Hence sin y = 0 and so y = nπ, n ∈Z. Then
ex cos (nπ) = 1, so ex(−1)n = 1, from which follows (−1)n = 1 as ex > 0.
Hence n = 2k, k ∈Z and ex = 1. Hence x = 0 and z = 2kπi.

5.7 De Moivre’s theorem

The next theorem has many uses and is a special case of theorem 5.6.3(ii).
Alternatively it can be proved directly by induction on n.

THEOREM 5.7.1 (De Moivre) If n is a positive integer, then

(cos θ + i sin θ)n = cos nθ + i sin nθ.

As a first application, we consider the equation zn = 1.

THEOREM 5.7.2 The equation zn = 1 has n distinct solutions, namely

the complex numbers ζk = e
2kπi

n , k = 0, 1, . . . , n − 1. These lie equally
spaced on the unit circle |z| = 1 and are obtained by starting at 1, moving
round the circle anti–clockwise, incrementing the argument in steps of 2π

n .
(See Figure 5.7)

We notice that the roots are the powers of the special root ζ = e
2πi

n .
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Figure 5.7: The nth roots of unity.

Proof. With ζk defined as above,

ζn
k =

(

e
2kπi

n

)n
= e

2kπi

n
n = 1,

by De Moivre’s theorem. However |ζk| = 1 and arg ζk = 2kπ
n , so the com-

plex numbers ζk, k = 0, 1, . . . , n − 1, lie equally spaced on the unit circle.
Consequently these numbers must be precisely all the roots of zn − 1. For
the polynomial zn − 1, being of degree n over a field, can have at most n
distinct roots in that field.

The more general equation zn = a, where a ∈, C, a 6= 0, can be reduced
to the previous case:

Let α be argument of z, so that a = |a|eiα. Then if w = |a|1/ne
iα

n , we
have

wn =
(

|a|1/ne
iα

n

)n

= (|a|1/n)n
(

e
iα

n

)n

= |a|eiα = a.

So w is a particular solution. Substituting for a in the original equation,
we get zn = wn, or (z/w)n = 1. Hence the complete solution is z/w =
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Figure 5.8: The roots of zn = a.

e
2kπi

n , k = 0, 1, . . . , n − 1, or

zk = |a|1/ne
iα

n e
2kπi

n = |a|1/ne
i(α+2kπ)

n , (5.4)

k = 0, 1, . . . , n − 1. So the roots are equally spaced on the circle

|z| = |a|1/n

and are generated from the special solution having argument equal to (arg a)/n,
by incrementing the argument in steps of 2π/n. (See Figure 5.8.)

EXAMPLE 5.7.1 Factorize the polynomial z5 − 1 as a product of real
linear and quadratic factors.

Solution. The roots are 1, e
2πi

5 , e
−2πi

5 , e
4πi

5 , e
−4πi

5 , using the fact that non–
real roots come in conjugate–complex pairs. Hence

z5 − 1 = (z − 1)(z − e
2πi

5 )(z − e
−2πi

5 )(z − e
4πi

5 )(z − e
−4πi

5 ).

Now

(z − e
2πi

5 )(z − e
−2πi

5 ) = z2 − z(e
2πi

5 + e
−2πi

5 ) + 1

= z2 − 2z cos 2π
5 + 1.
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Similarly

(z − e
4πi

5 )(z − e
−4πi

5 ) = z2 − 2z cos 4π
5 + 1.

This gives the desired factorization.

EXAMPLE 5.7.2 Solve z3 = i.

Solution. |i| = 1 and Arg i = π
2 = α. So by equation 5.4, the solutions are

zk = |i|1/3e
i(α+2kπ)

3 , k = 0, 1, 2.

First, k = 0 gives

z0 = e
iπ

6 = cos
π

6
+ i sin

π

6
=

√
3

2
+

i

2
.

Next, k = 1 gives

z1 = e
5πi

6 = cos
5π

6
+ i sin

5π

6
=

−
√

3

2
+

i

2
.

Finally, k = 2 gives

z1 = e
9πi

6 = cos
9π

6
+ i sin

9π

6
= −i.

We finish this chapter with two more examples of De Moivre’s theorem.

EXAMPLE 5.7.3 If

C = 1 + cos θ + · · · + cos (n − 1)θ,

S = sin θ + · · · + sin (n − 1)θ,

prove that

C =
sin nθ

2

sin θ
2

cos (n−1)θ
2 and S =

sin nθ
2

sin θ
2

sin (n−1)θ
2 ,

if θ 6= 2kπ, k ∈Z.
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Solution.

C + iS = 1 + (cos θ + i sin θ) + · · · + (cos (n − 1)θ + i sin (n − 1)θ)

= 1 + eiθ + · · · + ei(n−1)θ

= 1 + z + · · · + zn−1, where z = eiθ

=
1 − zn

1 − z
, if z 6= 1, i.e. θ 6= 2kπ,

=
1 − einθ

1 − eiθ
=

e
inθ

2 (e
−inθ

2 − e
inθ

2 )

e
iθ

2 (e
−iθ

2 − e
iθ

2 )

= ei(n−1) θ

2
sin nθ

2

sin θ
2

= (cos (n − 1) θ
2 + i sin (n − 1) θ

2)
sin nθ

2

sin θ
2

.

The result follows by equating real and imaginary parts.

EXAMPLE 5.7.4 Express cos nθ and sin nθ in terms of cos θ and sin θ,
using the equation cos nθ + sin nθ = (cos θ + i sin θ)n.

Solution. The binomial theorem gives

(cos θ + i sin θ)n = cosn θ +
(

n
1

)

cosn−1 θ(i sin θ) +
(

n
2

)

cosn−2 θ(i sin θ)2 + · · ·

+ (i sin θ)n.

Equating real and imaginary parts gives

cos nθ = cosn θ −
(

n
2

)

cosn−2 θ sin2 θ + · · ·

sin nθ =
(

n
1

)

cosn−1 θ sin θ −
(

n
3

)

cosn−3 θ sin3 θ + · · · .

5.8 PROBLEMS

1. Express the following complex numbers in the form x + iy, x, y real:

(i) (−3 + i)(14 − 2i); (ii)
2 + 3i

1 − 4i
; (iii)

(1 + 2i)2

1 − i
.

[Answers: (i) −40 + 20i; (ii) −10
17 + 11

17 i; (iii) −7
2 + i

2 .]

2. Solve the following equations:
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(i) iz + (2 − 10i)z = 3z + 2i,

(ii) (1 + i)z + (2 − i)w = −3i
(1 + 2i)z + (3 + i)w = 2 + 2i.

[Answers:(i) z = − 9
41 − i

41 ; (ii) z = −1 + 5i, w = 19
5 − 8i

5 .]

3. Express 1 + (1 + i) + (1 + i)2 + . . . + (1 + i)99 in the form x + iy, x, y
real. [Answer: (1 + 250)i.]

4. Solve the equations: (i) z2 = −8− 6i; (ii) z2 − (3 + i)z + 4 + 3i = 0.

[Answers: (i) z = ±(1 − 3i); (ii) z = 2 − i, 1 + 2i.]

5. Find the modulus and principal argument of each of the following
complex numbers:

(i) 4 + i; (ii) −3
2 − i

2 ; (iii) −1 + 2i; (iv) 1
2(−1 + i

√
3).

[Answers: (i)
√

17, tan−1 1
4 ; (ii)

√
10
2 , −π + tan−1 1

3 ; (iii)
√

5, π −
tan−1 2.]

6. Express the following complex numbers in modulus-argument form:

(i) z = (1 + i)(1 + i
√

3)(
√

3 − i).

(ii) z =
(1 + i)5(1 − i

√
3)5

(
√

3 + i)4
.

[Answers:

(i) z = 4
√

2(cos 5π
12 + i sin 5π

12 ); (ii) z = 27/2(cos 11π
12 + i sin 11π

12 ).]

7. (i) If z = 2(cos π
4 +i sin π

4 ) and w = 3(cos π
6 +i sin π

6 ), find the polar
form of

(a) zw; (b) z
w ; (c) w

z ; (d) z5

w2 .

(ii) Express the following complex numbers in the form x + iy:

(a) (1 + i)12; (b)
(

1−i√
2

)−6
.

[Answers: (i): (a) 6(cos 5π
12 + i sin 5π

12 ); (b) 2
3(cos π

12 + i sin π
12);

(c) 3
2(cos − π

12 + i sin − π
12); (d) 32

9 (cos 11π
12 + i sin 11π

12 );

(ii): (a) −64; (b) −i.]
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8. Solve the equations:

(i) z2 = 1 + i
√

3; (ii) z4 = i; (iii) z3 = −8i; (iv) z4 = 2 − 2i.

[Answers: (i) z = ± (
√

3+i)√
2

; (ii) ik(cos π
8 + i sin π

8 ), k = 0, 1, 2, 3; (iii)

z = 2i, −
√

3− i,
√

3− i; (iv) z = ik2
3
8 (cos π

16 − i sin π
16), k = 0, 1, 2, 3.]

9. Find the reduced row–echelon form of the complex matrix





2 + i −1 + 2i 2
1 + i −1 + i 1
1 + 2i −2 + i 1 + i



 .

[Answer:





1 i 0
0 0 1
0 0 0



.]

10. (i) Prove that the line equation lx + my = n is equivalent to

pz + pz = 2n,

where p = l + im.

(ii) Use (ii) to deduce that reflection in the straight line

pz + pz = n

is described by the equation

pw + pz = n.

[Hint: The complex number l + im is perpendicular to the given
line.]

(iii) Prove that the line |z−a| = |z−b| may be written as pz+pz = n,
where p = b − a and n = |b|2 − |a|2. Deduce that if z lies on the

Apollonius circle |z−a|
|z−b| = λ, then w, the reflection of z in the line

|z − a| = |z − b|, lies on the Apollonius circle |z−a|
|z−b| = 1

λ .

11. Let a and b be distinct complex numbers and 0 < α < π.

(i) Prove that each of the following sets in the complex plane rep-
resents a circular arc and sketch the circular arcs on the same
diagram:
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Arg
z − a

z − b
= α, −α, π − α, α − π.

Also show that Arg
z − a

z − b
= π represents the line segment joining

a and b, while Arg
z − a

z − b
= 0 represents the remaining portion of

the line through a and b.

(ii) Use (i) to prove that four distinct points z1, z2, z3, z4 are con-
cyclic or collinear, if and only if the cross–ratio

z4 − z1

z4 − z2
/
z3 − z1

z3 − z2

is real.

(iii) Use (ii) to derive Ptolemy’s Theorem: Four distinct points A, B, C, D
are concyclic or collinear, if and only if one of the following holds:

AB · CD + BC · AD = AC · BD

BD · AC + AD · BC = AB · CD

BD · AC + AB · CD = AD · BC.


