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Preface

Game theoretic reasoning pervades economic theory and is used widely in other
social and behavioral sciences. This book presents the main ideas of game theory
and shows how they can be used to understand economic, social, political, and bi-
ological phenomena. It assumes no knowledge of economics, political science, or
any other social or behavioral science. It emphasizes the ideas behind the theory
rather than their mathematical expression, and assumes no specific mathematical
knowledge beyond that typically taught in US and Canadian high schools. (Chap-
ter 17 reviews the mathematical concepts used in the book.) In particular, calculus
is not used, except in the appendix of Chapter 9 (Section 9.7). Nevertheless, all
concepts are defined precisely, and logical reasoning is used extensively. The more
comfortable you are with tight logical analysis, the easier you will find the argu-
ments. In brief, my aim is to explain the main ideas of game theory as simply as
possible while maintaining complete precision.

The only way to appreciate the theory is to see it in action, or better still to put
it into action. So the book includes a wide variety of illustrations from the social
and behavioral sciences, and over 200 exercises.

The structure of the book is illustrated in the figure on the next page. The
gray boxes indicate core chapters (the darker gray, the more important). An black
arrow from Chapter i to Chapter j means that Chapter j depends on Chapter i.
The gray arrow from Chapter 4 to Chapter 9 means that the latter depends weakly
on the former; for all but Section 9.8 only an understanding of expected payoffs
(Section 4.1.3) is required, not a knowledge of mixed strategy Nash equilibrium.
(Two chapters are not included in this figure: Chapter 1 reviews the theory of a
single rational decision-maker, and Chapter 17 reviews the mathematical concepts
used in the book.)

Each topic is presented with the aid of “Examples”, which highlight theoreti-
cal points, and “Illustrations”, which demonstrate how the theory may be used to
understand social, economic, political, and biological phenomena. The “Illustra-
tions” for the key models of strategic and extensive games are grouped in separate
chapters (3 and 6), whereas those for the other models occupy the same chapters
as the theory. The “Illustrations” introduce no new theoretical points, and any or
all of them may be skipped without loss of continuity.

The limited dependencies between chapters mean that several routes may be
taken through the book.

• At a minimum, you should study Chapters 2 (Nash Equilibrium: Theory)
and 5 (Extensive Games with Perfect Information: Theory).

• Optionally you may sample some sections of Chapters 3 (Nash Equilibrium:
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Strategic games

2: Theory

3: Illustrations

4: Mixed strategies

9: Bayesian games

Imperfect information

11: Maxminimization

12: Rationalizability

13: Evolutionary equilibrium

Topics

Extensive games

5: Theory

6: Illustrations

7: Extensions

10: Signaling games

Imperfect information

14, 15: Repeated games (I, II)

Coalitional games

8: Core

16: Bargaining

Topics

xivFigure 0.1 The structure of the book. The area of each box is proportional to the length of the chapter
the box represents. The boxes corresponding to the core chapters are shaded gray; the ones shaded dark
gray are more central that the ones shaded light gray. An arrow from Chapter i to Chapter j means that
Chapter i is a prerequisite for Chapter j. The gray arrow from Chapter 4 to Chapter 9 means that the
latter depends only weakly on the former.
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Illustrations) and 6 (Extensive Games with Perfect Information: Illustrations).

• You may add to this plan any combination of Chapters 4 (Mixed Strategy
Equilibrium), 9 (Bayesian Games, except Section 9.8), 7 (Extensive Games
with Perfect Information: Extensions and Discussion), 8 (Coalitional Games
and the Core), and 16 (Bargaining).

• If you read Chapter 4 (Mixed Strategy Equilibrium) then you may in addition
study any combination of the remaining chapters covering strategic games,
and if you study Chapter 7 (Extensive Games with Perfect Information: Ex-
tensions and Discussion) then you are ready to tackle Chapters 14 and 15
(Repeated Games).

All the material should be accessible to undergraduate students. A one-semester
course for third or fourth year North American economics majors (who have been
exposed to a few of the main ideas in first and second year courses) could cover
up to about half the material in the book in moderate detail.

Personal pronouns

The lack of a sex-neutral third person singular pronoun in English has led many
writers of formal English to use “he” for this purpose. Such usage conflicts with
that of everyday speech. People may say “when an airplane pilot is working, he
needs to concentrate”, but they do not usually say “when a flight attendant is
working, he needs to concentrate” or “when a secretary is working, he needs to
concetrate”. The use of “he” only for roles in which men traditionally predomi-
nate in Western societies suggests that women may not play such roles; I find this
insinuation unacceptable.

To quote the New Oxford Dictionary of English, “[the use of he to refer to refer to
a person of unspecified sex] has become . . . a hallmark of old-fashioned language
or sexism in language.” Writers have become sensitive to this issue in the last half
century, but the lack of a sex-neutral pronoun “has been felt since at least as far
back as Middle English” (Webster’s Dictionary of English Usage, Merriam-Webster
Inc., 1989, p. 499). A common solution has been to use “they”, a usage that the
New Oxford Dictionary of English endorses (and employs). This solution can create
ambiguity when the pronoun follows references to more than one person; it also
does not always sound natural. I choose a different solution: I use “she” exclu-
sively. Obviously this usage, like that of “he”, is not sex-neutral; but its use may
do something to counterbalance the widespread use of “he”, and does not seem
likely to do any harm.
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Example 141.1 All-pay auction with perfect information
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Exercise 175.1 The “rotten kid theorem”

Section 6.2.2 The holdup game

Section 6.3 Stackelberg’s model of duopoly
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Exercise 73.1 Electoral competition between policy-motivated candidates

Exercise 73.2 Electoral competition between citizen-candidates

Exercise 88.3 Lobbying as an auction

Exercise 115.3 Voter participation

Exercise 139.1 Allocating resources in election campaigns

Section 6.4 Buying votes in a legislature

Section 7.4 Committee decision-making

Exercise 224.1 Cohesion of governing coalitions

Games related to biological issues (THROUGH CHAPTER 7)

Exercise 16.1 Hermaphroditic fish

Section 3.4 War of attrition

Typographic conventions, numbering, and nomenclature

In formal definitions, the terms being defined are set in boldface. Terms are set in
italics when they are defined informally.

Definitions, propositions, examples, and exercises are numbered according to
the page on which they appear. If the first such object on page z is an exercise, for
example, it is called Exercise z.1; if the next object on that page is a definition, it is
called Definition z.2. For example, the definition of a strategic game with ordinal
preferences on page 11 is Definition 11.1. This scheme allows numbered items to
found rapidly, and also facilitates precise index entries.

Symbol/term Meaning

? Exercise

?? Hard exercise

� Definition

Proposition

Example: a game that illustrates a game-theoretic point

Illustration A game, or family of games, that shows how the theory can illu-
minate observed phenomena

I maintain a website for the book. The current URL is
http://www.economics.utoronto.ca/osborne/igt/.
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1 Introduction

What is game theory? 1
The theory of rational choice 4

1.1 What is game theory?

GAME THEORY aims to help us understand situations in which decision-makers
interact. A game in the everyday sense—“a competitive activity . . . in which

players contend with each other according to a set of rules”, in the words of my
dictionary—is an example of such a situation, but the scope of game theory is
vastly larger. Indeed, I devote very little space to games in the everyday sense;
my main focus is the use of game theory to illuminate economic, political, and
biological phenomena.

A list of some of the applications I discuss will give you an idea of the range
of situations to which game theory can be applied: firms competing for business,
political candidates competing for votes, jury members deciding on a verdict, ani-
mals fighting over prey, bidders competing in an auction, the evolution of siblings’
behavior towards each other, competing experts’ incentives to provide correct di-
agnoses, legislators’ voting behavior under pressure from interest groups, and the
role of threats and punishment in long-term relationships.

Like other sciences, game theory consists of a collection of models. A model
is an abstraction we use to understand our observations and experiences. What
“understanding” entails is not clear-cut. Partly, at least, it entails our perceiving
relationships between situations, isolating principles that apply to a range of prob-
lems, so that we can fit into our thinking new situations that we encounter. For
example, we may fit our observation of the path taken by a lobbed tennis ball into
a model that assumes the ball moves forward at a constant velocity and is pulled
towards the ground by the constant force of “gravity”. This model enhances our
understanding because it fits well no matter how hard or in which direction the
ball is hit, and applies also to the paths taken by baseballs, cricket balls, and a
wide variety of other missiles, launched in any direction.

A model is unlikely to help us understand a phenomenon if its assumptions are
wildly at odds with our observations. At the same time, a model derives power
from its simplicity; the assumptions upon which it rests should capture the essence

1



2 Chapter 1. Introduction

of the situation, not irrelevant details. For example, when considering the path
taken by a lobbed tennis ball we should ignore the dependence of the force of
gravity on the distance of the ball from the surface of the earth.

Models cannot be judged by an absolute criterion: they are neither “right” nor
“wrong”. Whether a model is useful or not depends, in part, on the purpose for
which we use it. For example, when I determine the shortest route from Florence
to Venice, I do not worry about the projection of the map I am using; I work under
the assumption that the earth is flat. When I determine the shortest route from
Beijing to Havana, however, I pay close attention to the projection—I assume that
the earth is spherical. And were I to climb the Matterhorn I would assume that the
earth is neither flat nor spherical!

One reason for improving our understanding of the world is to enhance our
ability to mold it to our desires. The understanding that game theoretic models
give is particularly relevant in the social, political, and economic arenas. Studying
game theoretic models (or other models that apply to human interaction) may also
suggest ways in which our behavior may be modified to improve our own welfare.
By analyzing the incentives faced by negotiators locked in battle, for example, we
may see the advantages and disadvantages of various strategies.

The models of game theory are precise expressions of ideas that can be pre-
sented verbally. However, verbal descriptions tend to be long and imprecise; in
the interest of conciseness and precision, I frequently use mathematical symbols
when describing models. Although I use the language of mathematics, I use few
of its concepts; the ones I use are described in Chapter 17. My aim is to take ad-
vantage of the precision and conciseness of a mathematical formulation without
losing sight of the underlying ideas.

Game-theoretic modeling starts with an idea related to some aspect of the inter-
action of decision-makers. We express this idea precisely in a model, incorporating
features of the situation that appear to be relevant. This step is an art. We wish to
put enough ingredients into the model to obtain nontrivial insights, but not so
many that we are lead into irrelevant complications; we wish to lay bare the un-
derlying structure of the situation as opposed to describe its every detail. The next
step is to analyze the model—to discover its implications. At this stage we need to
adhere to the rigors of logic; we must not introduce extraneous considerations ab-
sent from the model. Our analysis may yield results that confirm our idea, or that
suggest it is wrong. If it is wrong, the analysis should help us to understand why
it is wrong. We may see that an assumption is inappropriate, or that an important
element is missing from the model; we may conclude that our idea is invalid, or
that we need to investigate it further by studying a different model. Thus, the in-
teraction between our ideas and models designed to shed light on them runs in
two directions: the implications of models help us determine whether our ideas
make sense, and these ideas, in the light of the implications of the models, may
show us how the assumptions of our models are inappropriate. In either case, the
process of formulating and analyzing a model should improve our understanding
of the situation we are considering.
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AN OUTLINE OF THE HISTORY OF GAME THEORY

Some game-theoretic ideas can be traced to the 18th century, but the major de-
velopment of the theory began in the 1920s with the work of the mathematician
Emile Borel (1871–1956) and the polymath John von Neumann (1903–57). A de-
cisive event in the development of the theory was the publication in 1944 of the
book Theory of games and economic behavior by von Neumann and Oskar Morgen-
stern. In the 1950s game-theoretic models began to be used in economic theory
and political science, and psychologists began studying how human subjects be-
have in experimental games. In the 1970s game theory was first used as a tool in
evolutionary biology. Subsequently, game theoretic methods have come to dom-
inate microeconomic theory and are used also in many other fields of economics
and a wide range of other social and behavioral sciences. The 1994 Nobel prize in
economics was awarded to the game theorists John C. Harsanyi (1920–2000), John
F. Nash (1928–), and Reinhard Selten (1930–).

JOHN VON NEUMANN

John von Neumann, the most important figure in the early development of game
theory, was born in Budapest, Hungary, in 1903. He displayed exceptional math-
ematical ability as a child (he had mastered calculus by the age of 8), but his fa-
ther, concerned about his son’s financial prospects, did not want him to become a
mathematician. As a compromise he enrolled in mathematics at the University of
Budapest in 1921, but immediately left to study chemistry, first at the University
of Berlin and subsequently at the Swiss Federal Institute of Technology in Zurich,
from which he earned a degree in chemical engineering in 1925. During his time in
Germany and Switzerland he returned to Budapest to write examinations, and in
1926 obtained a PhD in mathematics from the University of Budapest. He taught
in Berlin and Hamburg, and, from 1930 to 1933, at Princeton University. In 1933 he
became the youngest of the first six professors of the School of Mathematics at the
Institute for Advanced Study in Princeton (Einstein was another).

Von Neumann’s first published scientific paper appeared in 1922, when he was
19 years old. In 1928 he published a paper that establishes a key result on strictly
competitive games (a result that had eluded Borel). He made many major contribu-
tions in pure and applied mathematics and in physics—enough, according to Hal-
mos (1973), “for about three ordinary careers, in pure mathematics alone”. While
at the Institute for Advanced Study he collaborated with the Princeton economist
Oskar Morgenstern in writing Theory of games and economic behavior, the book that
established game theory as a field. In the 1940s he became increasingly involved
in applied work. In 1943 he became a consultant to the Manhattan project, which
was developing an atomic bomb. In 1944 he became involved with the develop-
ment of the first electronic computer, to which he made major contributions. He
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stayed at Princeton until 1954, when he became a member of the US Atomic Energy
Commission. He died in 1957.

1.2 The theory of rational choice

The theory of rational choice is a component of many models in game theory.
Briefly, this theory is that a decision-maker chooses the best action according to
her preferences, among all the actions available to her. No qualitative restriction
is placed on the decision-maker’s preferences; her “rationality” lies in the consis-
tency of her decisions when faced with different sets of available actions, not in the
nature of her likes and dislikes.

1.2.1 Actions

The theory is based on a model with two components: a set A consisting of all
the actions that, under some circumstances, are available to the decision-maker,
and a specification of the decision-maker’s preferences. In any given situation
the decision-maker is faced with a subset1 of A, from which she must choose a
single element. The decision-maker knows this subset of available choices, and
takes it as given; in particular, the subset is not influenced by the decision-maker’s
preferences. The set A could, for example, be the set of bundles of goods that
the decision-maker can possibly consume; given her income at any time, she is
restricted to choose from the subset of A containing the bundles she can afford.

1.2.2 Preferences and payoff functions

As to preferences, we assume that the decision-maker, when presented with any
pair of actions, knows which of the pair she prefers, or knows that she regards
both actions as equally desirable (is “indifferent between the actions”). We assume
further that these preferences are consistent in the sense that if the decision-maker
prefers the action a to the action b, and the action b to the action c, then she prefers
the action a to the action c. No other restriction is imposed on preferences. In par-
ticular, we do not rule out the possibility that a person’s preferences are altruistic
in the sense that how much she likes an outcome depends on some other person’s
welfare. Theories that use the model of rational choice aim to derive implications
that do not depend on any qualitative characteristic of preferences.

How can we describe a decision-maker’s preferences? One way is to specify,
for each possible pair of actions, the action the decision-maker prefers, or to note
that the decision-maker is indifferent between the actions. Alternatively we can
“represent” the preferences by a payoff function, which associates a number with
each action in such a way that actions with higher numbers are preferred. More

1See Chapter 17 for a description of mathematical terminology.
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precisely, the payoff function u represents a decision-maker’s preferences if, for
any actions a in A and b in A,

u(a) > u(b) if and only if the decision-maker prefers a to b. (5.1)

(A better name than payoff function might be “preference indicator function”;
in economic theory a payoff function that represents a consumer’s preferences is
often referred to as a “utility function”.)

EXAMPLE 5.2 (Payoff function representing preferences) A person is faced with
the choice of three vacation packages, to Havana, Paris, and Venice. She prefers
the package to Havana to the other two, which she regards as equivalent. Her
preferences between the three packages are represented by any payoff function
that assigns the same number to both Paris and Venice and a higher number to
Havana. For example, we can set u(Havana) = 1 and u(Paris) = u(Venice) =
0, or u(Havana) = 10 and u(Paris) = u(Venice) = 1, or u(Havana) = 0 and
u(Paris) = u(Venice) = −2.

? EXERCISE 5.3 (Altruistic preferences) Person 1 cares both about her income and
about person 2’s income. Precisely, the value she attaches to each unit of her own
income is the same as the value she attaches to any two units of person 2’s income.
How do her preferences order the outcomes (1, 4), (2, 1), and (3, 0), where the
first component in each case is person 1’s income and the second component is
person 2’s income? Give a payoff function consistent with these preferences.

A decision-maker’s preferences, in the sense used here, convey only ordinal
information. They may tell us that the decision-maker prefers the action a to the
action b to the action c, for example, but they do not tell us “how much” she prefers
a to b, or whether she prefers a to b “more” than she prefers b to c. Consequently
a payoff function that represents a decision-maker’s preferences also conveys only
ordinal information. It may be tempting to think that the payoff numbers attached
to actions by a payoff function convey intensity of preference—that if, for example,
a decision-maker’s preferences are represented by a payoff function u for which
u(a) = 0, u(b) = 1, and u(c) = 100, then the decision-maker likes c a lot more than
b but finds little difference between a and b. But a payoff function contains no such
information! The only conclusion we can draw from the fact that u(a) = 0, u(b) = 1,
and u(c) = 100 is that the decision-maker prefers c to b to a; her preferences are
represented equally well by the payoff function v for which v(a) = 0, v(b) = 100,
and v(c) = 101, for example, or any other function w for which w(a) < w(b) <

w(c).
From this discussion we see that a decision-maker’s preferences are represented

by many different payoff functions. Looking at the condition (5.1) under which the
payoff function u represents a decision-maker’s preferences, we see that if u rep-
resents a decision-maker’s preferences and the payoff function v assigns a higher
number to the action a than to the action b if and only if the payoff function u does
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so, then v also represents these preferences. Stated more compactly, if u represents
a decision-maker’s preferences and v is another payoff function for which

v(a) > v(b) if and only if u(a) > u(b)

then v also represents the decision-maker’s preferences. Or, more succinctly, if u
represents a decision-maker’s preferences then any increasing function of u also
represents these preferences.

? EXERCISE 6.1 (Alternative representations of preferences) A decision-maker’s pref-
erences over the set A = {a, b, c} are represented by the payoff function u for which
u(a) = 0, u(b) = 1, and u(c) = 4. Are they also represented by the function v for
which v(a) = −1, v(b) = 0, and v(c) = 2? How about the function w for which
w(a) = w(b) = 0 and w(c) = 8?

Sometimes it is natural to formulate a model in terms of preferences and then
find payoff functions that represent these preferences. In other cases it is natural
to start with payoff functions, even if the analysis depends only on the underlying
preferences, not on the specific representation we choose.

1.2.3 The theory of rational choice

The theory of rational choice is that in any given situation the decision-maker
chooses the member of the available subset of A that is best according to her pref-
erences. Allowing for the possibility that there are several equally attractive best
actions, the theory of rational choice is:

the action chosen by a decision-maker is at least as good, according to her
preferences, as every other available action.

For any action, we can design preferences with the property that no other action
is preferred. Thus if we have no information about a decision-maker’s preferences,
and make no assumptions about their character, any single action is consistent with
the theory. However, if we assume that a decision-maker who is indifferent be-
tween two actions sometimes chooses one action and sometimes the other, not ev-
ery collection of choices for different sets of available actions is consistent with the
theory. Suppose, for example, we observe that a decision-maker chooses a when-
ever she faces the set {a, b}, but sometimes chooses b when facing the set {a, b, c}.
The fact that she always chooses a when faced with {a, b} means that she prefers
a to b (if she were indifferent then she would sometimes choose b). But then when
she faces the set {a, b, c} she must choose either a or c, never b. Thus her choices
are inconsistent with the theory. (More concretely, if you choose the same dish
from the menu of your favorite lunch spot whenever there are no specials then,
regardless of your preferences, it is inconsistent for you to choose some other item
from the menu on a day when there is an off-menu special.)

If you have studied the standard economic theories of the consumer and the
firm, you have encountered the theory of rational choice before. In the economic
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theory of the consumer, for example, the set of available actions is the set of all
bundles of goods that the consumer can afford. In the theory of the firm, the set of
available actions is the set of all input-output vectors, and the action a is preferred
to the action b if and only if a yields a higher profit than does b.

1.2.4 Discussion

The theory of rational choice is enormously successful; it is a component of count-
less models that enhance our understanding of social phenomena. It pervades
economic theory to such an extent that arguments are classified as “economic” as
much because they apply the theory of rational choice as because they involve
particularly “economic” variables.

Nevertheless, under some circumstances its implications are at variance with
observations of human decision-making. To take a small example, adding an un-
desirable action to a set of actions sometimes significantly changes the action cho-
sen (see Rabin 1998, 38). The significance of such discordance with the theory
depends upon the phenomenon being studied. If we are considering how the
markup of price over cost in an industry depends on the number of firms, for
example, this sort of weakness in the theory may be unimportant. But if we are
studying how advertising, designed specifically to influence peoples’ preferences,
affects consumers’ choices, then the inadequacies of the model of rational choice
may be crucial.

No general theory currently challenges the supremacy of rational choice the-
ory. But you should bear in mind as you read this book that the model of choice
that underlies most of the theories has its limits; some of the phenomena that you
may think of explaining using a game theoretic model may lie beyond these lim-
its. As always, the proof of the pudding is in the eating: if a model enhances our
understanding of the world, then it serves its purpose.

1.3 Coming attractions

Part I presents the main models in game theory: a strategic game, an extensive
game, and a coalitional game. These models differ in two dimensions. A strategic
game and an extensive game focus on the actions of individuals, whereas a coali-
tional game focuses on the outcomes that can be achieved by groups of individ-
uals; a strategic game and a coalitional game consider situations in which actions
are chosen once and for all, whereas an extensive game allows for the possibility
that plans may be revised as they are carried out.

The model, consisting of actions and preferences, to which rational choice the-
ory is applied is tailor-made for the theory; if we want to develop another theory,
we need to add elements to the model in addition to actions and preferences. The
same is not true of most models in game theory: strategic interaction is sufficiently
complex that even a relatively simple model can admit more than one theory of
the outcome. We refer to a theory that specifies a set of outcomes for a model as a
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“solution”. Chapter 2 describes the model of a strategic game and the solution of
Nash equilibrium for such games. The theory of Nash equilibrium in a strategic
game has been applied to a vast variety of situations; a handful of some of the most
significant applications are discussed in Chapter 3.

Chapter 4 extends the notion of Nash equilibrium in a strategic game to al-
low for the possibility that a decision-maker, when indifferent between actions,
may not always choose the same action, or, alternatively, identical decision-makers
facing the same set of actions may choose different actions if more than one is best.

The model of an extensive game, which adds a temporal dimension to the de-
scription of strategic interaction captured by a strategic game, is studied in Chap-
ters 5, 6, and 7. Part I concludes with Chapter 8, which discusses the model of a
coalitional game and a solution concept for such a game, the core.

Part II extends the models of a strategic game and an extensive game to situ-
ations in which the players do not know the other players’ characteristics or past
actions. Chapter 9 extends the model of a strategic game, and Chapter 10 extends
the model of an extensive game.

The chapters in Part III cover topics outside the basic theory. Chapters 11 and
12 examine two theories of the outcome in a strategic game that are alternatives to
the theory of Nash equilibrium. Chapter 13 discusses how a variant of the notion
of Nash equilibrium in a strategic game can be used to model behavior that is the
outcome of evolutionary pressure rather than conscious choice. Chapters 14 and
15 use the model of an extensive game to study long-term relationships, in which
the same group of players repeatedly interact. Finally, Chapter 16 uses strate-
gic, extensive, and coalitional models to gain an understanding of the outcome
of bargaining.

Notes

Von Neumann and Morgenstern (1944) established game theory as a field. The in-
formation about John von Neumann in the box on page 3 is drawn from Ulam (1958),
Halmos (1973), Thompson (1987), Poundstone (1992), and Leonard (1995). Au-
mann (1985), on which I draw in the opening section, contains a very readable
discussion of the aims and achievements of game theory. Two papers that discuss
the limitations of rational choice theory are Rabin (1998) and Elster (1998).
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2.1 Strategic games

ASTRATEGIC GAME is a model of interacting decision-makers. In recognition
of the interaction, we refer to the decision-makers as players. Each player

has a set of possible actions. The model captures interaction between the players
by allowing each player to be affected by the actions of all players, not only her
own action. Specifically, each player has preferences about the action profile—the
list of all the players’ actions. (See Section 17.5, in the mathematical appendix, for
a discussion of profiles.)

More precisely, a strategic game is defined as follows. (The qualification “with
ordinal preferences” distinguishes this notion of a strategic game from a more
general notion studied in Chapter 4.)

� DEFINITION 11.1 (Strategic game with ordinal preferences) A strategic game (with
ordinal preferences) consists of

• a set of players

• for each player, a set of actions

• for each player, preferences over the set of action profiles.

A very wide range of situations may be modeled as strategic games. For exam-
ple, the players may be firms, the actions prices, and the preferences a reflection of
the firms’ profits. Or the players may be candidates for political office, the actions

11
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campaign expenditures, and the preferences a reflection of the candidates’ proba-
bilities of winning. Or the players may be animals fighting over some prey, the ac-
tions concession times, and the preferences a reflection of whether an animal wins
or loses. In this chapter I describe some simple games designed to capture funda-
mental conflicts present in a variety of situations. The next chapter is devoted to
more detailed applications to specific phenomena.

As in the model of rational choice by a single decision-maker (Section 1.2), it is
frequently convenient to specify the players’ preferences by giving payoff functions
that represent them. Bear in mind that these payoffs have only ordinal significance.
If a player’s payoffs to the action profiles a, b, and c are 1, 2, and 10, for example,
the only conclusion we can draw is that the player prefers c to b and b to a; the
numbers do not imply that the player’s preference between c and b is stronger
than her preference between a and b.

Time is absent from the model. The idea is that each player chooses her ac-
tion once and for all, and the players choose their actions “simultaneously” in the
sense that no player is informed, when she chooses her action, of the action chosen
by any other player. (For this reason, a strategic game is sometimes referred to
as a “simultaneous move game”.) Nevertheless, an action may involve activities
that extend over time, and may take into account an unlimited number of contin-
gencies. An action might specify, for example, “if company X’s stock falls below
$10, buy 100 shares; otherwise, do not buy any shares”. (For this reason, an action
is sometimes called a “strategy”.) However, the fact that time is absent from the
model means that when analyzing a situation as a strategic game, we abstract from
the complications that may arise if a player is allowed to change her plan as events
unfold: we assume that actions are chosen once and for all.

2.2 Example: the Prisoner’s Dilemma

One of the most well-known strategic games is the Prisoner’s Dilemma. Its name
comes from a story involving suspects in a crime; its importance comes from the
huge variety of situations in which the participants face incentives similar to those
faced by the suspects in the story.

EXAMPLE 12.1 (Prisoner’s Dilemma) Two suspects in a major crime are held in
separate cells. There is enough evidence to convict each of them of a minor offense,
but not enough evidence to convict either of them of the major crime unless one of
them acts as an informer against the other (finks). If they both stay quiet, each will
be convicted of the minor offense and spend one year in prison. If one and only
one of them finks, she will be freed and used as a witness against the other, who
will spend four years in prison. If they both fink, each will spend three years in
prison.

This situation may be modeled as a strategic game:

Players The two suspects.

Actions Each player’s set of actions is {Quiet, Fink}.
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Preferences Suspect 1’s ordering of the action profiles, from best to worst, is
(Fink, Quiet) (she finks and suspect 2 remains quiet, so she is freed), (Quiet,
Quiet) (she gets one year in prison), (Fink, Fink) (she gets three years in prison),
(Quiet, Fink) (she gets four years in prison). Suspect 2’s ordering is (Quiet, Fink),
(Quiet, Quiet), (Fink, Fink), (Fink, Quiet).

We can represent the game compactly in a table. First choose payoff functions
that represent the suspects’ preference orderings. For suspect 1 we need a function
u1 for which

u1(Fink, Quiet) > u1(Quiet, Quiet) > u1(Fink, Fink) > u1(Quiet, Fink).

A simple specification is u1(Fink, Quiet) = 3, u1(Quiet, Quiet) = 2, u1(Fink, Fink) =
1, and u1(Quiet, Fink) = 0. For suspect 2 we can similarly choose the function
u2 for which u2(Quiet, Fink) = 3, u2(Quiet, Quiet) = 2, u2(Fink, Fink) = 1, and
u2(Fink, Quiet) = 0. Using these representations, the game is illustrated in Fig-
ure 13.1. In this figure the two rows correspond to the two possible actions of
player 1, the two columns correspond to the two possible actions of player 2, and
the numbers in each box are the players’ payoffs to the action profile to which the
box corresponds, with player 1’s payoff listed first.

Suspect 1

Suspect 2
Quiet Fink

Quiet 2, 2 0, 3
Fink 3, 0 1, 1

Figure 13.1 The Prisoner’s Dilemma (Example 12.1).

The Prisoner’s Dilemma models a situation in which there are gains from coop-
eration (each player prefers that both players choose Quiet than they both choose
Fink) but each player has an incentive to “free ride” (choose Fink) whatever the
other player does. The game is important not because we are interested in under-
standing the incentives for prisoners to confess, but because many other situations
have similar structures. Whenever each of two players has two actions, say C
(corresponding to Quiet) and D (corresponding to Fink), player 1 prefers (D, C) to
(C, C) to (D, D) to (C, D), and player 2 prefers (C, D) to (C, C) to (D, D) to (D, C),
the Prisoner’s Dilemma models the situation that the players face. Some examples
follow.

2.2.1 Working on a joint project

You are working with a friend on a joint project. Each of you can either work hard
or goof off. If your friend works hard then you prefer to goof off (the outcome of
the project would be better if you worked hard too, but the increment in its value
to you is not worth the extra effort). You prefer the outcome of your both working
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hard to the outcome of your both goofing off (in which case nothing gets accom-
plished), and the worst outcome for you is that you work hard and your friend
goofs off (you hate to be “exploited”). If your friend has the same preferences then
the game that models the situation you face is given in Figure 14.1, which, as you
can see, differs from the Prisoner’s Dilemma only in the names of the actions.

Work hard Goof off
Work hard 2, 2 0, 3

Goof off 3, 0 1, 1

Figure 14.1 Working on a joint project.

I am not claiming that a situation in which two people pursue a joint project
necessarily has the structure of the Prisoner’s Dilemma, only that the players’ pref-
erences in such a situation may be the same as in the Prisoner’s Dilemma! If, for
example, each person prefers to work hard than to goof off when the other person
works hard, then the Prisoner’s Dilemma does not model the situation: the players’
preferences are different from those given in Figure 14.1.

? EXERCISE 14.1 (Working on a joint project) Formulate a strategic game that models
a situation in which two people work on a joint project in the case that their pref-
erences are the same as those in the game in Figure 14.1 except that each person
prefers to work hard than to goof off when the other person works hard. Present
your game in a table like the one in Figure 14.1.

2.2.2 Duopoly

In a simple model of a duopoly, two firms produce the same good, for which each
firm charges either a low price or a high price. Each firm wants to achieve the
highest possible profit. If both firms choose High then each earns a profit of $1000.
If one firm chooses High and the other chooses Low then the firm choosing High
obtains no customers and makes a loss of $200, whereas the firm choosing Low
earns a profit of $1200 (its unit profit is low, but its volume is high). If both firms
choose Low then each earns a profit of $600. Each firm cares only about its profit,
so we can represent its preferences by the profit it obtains, yielding the game in
Figure 14.2.

High Low
High 1000, 1000 −200, 1200
Low 1200, −200 600, 600

Figure 14.2 A simple model of a price-setting duopoly.

Bearing in mind that what matters are the players’ preferences, not the partic-
ular payoff functions that we use to represent them, we see that this game, like the
previous one, differs from the Prisoner’s Dilemma only in the names of the actions.
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The action High plays the role of Quiet, and the action Low plays the role of Fink;
firm 1 prefers (Low, High) to (High, High) to (Low, Low) to (High, Low), and firm 2
prefers (High, Low) to (High, High) to (Low, Low) to (Low, High).

As in the previous example, I do not claim that the incentives in a duopoly are
necessarily those in the Prisoner’s Dilemma; different assumptions about the relative
sizes of the profits in the four cases generate a different game. Further, in this case
one of the abstractions incorporated into the model—that each firm has only two
prices to choose between—may not be harmless; if the firms may choose among
many prices then the structure of the interaction may change. (A richer model is
studied in Section 3.2.)

2.2.3 The arms race

Under some assumptions about the countries’ preferences, an arms race can be
modeled as the Prisoner’s Dilemma. (Because the Prisoner’s Dilemma was first stud-
ied in the early 1950s, when the USA and USSR were involved in a nuclear arms
race, you might suspect that US nuclear strategy was influenced by game theory;
the evidence suggests that it was not.) Assume that each country can build an
arsenal of nuclear bombs, or can refrain from doing so. Assume also that each
country’s favorite outcome is that it has bombs and the other country does not; the
next best outcome is that neither country has any bombs; the next best outcome is
that both countries have bombs (what matters is relative strength, and bombs are
costly to build); and the worst outcome is that only the other country has bombs.
In this case the situation is modeled by the Prisoner’s Dilemma, in which the action
Don’t build bombs corresponds to Quiet in Figure 13.1 and the action Build bombs
corresponds to Fink. However, once again the assumptions about preferences nec-
essary for the Prisoner’s Dilemma to model the situation may not be satisfied: a
country may prefer not to build bombs if the other country does not, for example
(bomb-building may be very costly), in which case the situation is modeled by a
different game.

2.2.4 Common property

Two farmers are deciding how much to allow their sheep to graze on the village
common. Each farmer prefers that her sheep graze a lot than a little, regardless of
the other farmer’s action, but prefers that both farmers’ sheep graze a little than
both farmers’ sheep graze a lot (in which case the common is ruined for future
use). Under these assumptions the game is the Prisoner’s Dilemma. (A richer model
is studied in Section 3.1.5.)

2.2.5 Other situations modeled as the Prisoner’s Dilemma

A huge number of other situations have been modeled as the Prisoner’s Dilemma,
from mating hermaphroditic fish to tariff wars between countries.
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? EXERCISE 16.1 (Hermaphroditic fish) Members of some species of hermaphroditic
fish choose, in each mating encounter, whether to play the role of a male or a
female. Each fish has a preferred role, which uses up fewer resources and hence
allows more future mating. A fish obtains a payoff of H if it mates in its preferred
role and L if it mates in the other role, where H > L. (Payoffs are measured in
terms of number of offspring, which fish are evolved to maximize.) Consider an
encounter between two fish whose preferred roles are the same. Each fish has two
possible actions: mate in either role, and insist on its preferred role. If both fish
offer to mate in either role, the roles are assigned randomly, and each fish’s payoff
is 1

2 (H + L) (the average of H and L). If each fish insists on its preferred role, the
fish do not mate; each goes off in search of another partner, and obtains the payoff
S. The higher the chance of meeting another partner, the larger is S. Formulate this
situation as a strategic game and determine the range of values of S, for any given
values of H and L, for which the game differs from the Prisoner’s Dilemma only in
the names of the actions.

2.3 Example: Bach or Stravinsky?

In the Prisoner’s Dilemma the main issue is whether or not the players will cooperate
(choose Quiet). In the following game the players agree that it is better to cooperate
than not to cooperate, but disagree about the best outcome.

EXAMPLE 16.2 (Bach or Stravinsky?) Two people wish to go out together. Two con-
certs are available: one of music by Bach, and one of music by Stravinsky. One per-
son prefers Bach and the other prefers Stravinsky. If they go to different concerts,
each of them is equally unhappy listening to the music of either composer.

We can model this situation as the two-player strategic game in Figure 16.1,
in which the person who prefers Bach chooses a row and the person who prefers
Stravinsky chooses a column.

Bach Stravinsky
Bach 2, 1 0, 0

Stravinsky 0, 0 1, 2

Figure 16.1 Bach or Stravinsky? (BoS) (Example 16.2).

This game is also referred to as the “Battle of the Sexes” (though the conflict it
models surely occurs no more frequently between people of the opposite sex than
it does between people of the same sex). I refer to the games as BoS, an acronym
that fits both names. (I assume that each player is indifferent between listening
to Bach and listening to Stravinsky when she is alone only for consistency with
the standard specification of the game. As we shall see, the analysis of the game
remains the same in the absence of this assumption.)

Like the Prisoner’s Dilemma, BoS models a wide variety of situations. Consider,
for example, two officials of a political party deciding the stand to take on an issue.
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Suppose that they disagree about the best stand, but are both better off if they take
the same stand than if they take different stands; both cases in which they take
different stands, in which case voters do not know what to think, are equally bad.
Then BoS captures the situation they face. Or consider two merging firms that
currently use different computer technologies. As two divisions of a single firm
they will both be better off if they both use the same technology; each firm prefers
that the common technology be the one it used in the past. BoS models the choices
the firms face.

2.4 Example: Matching Pennies

Aspects of both conflict and cooperation are present in both the Prisoner’s Dilemma
and BoS. The next game is purely conflictual.

EXAMPLE 17.1 (Matching Pennies) Two people choose, simultaneously, whether
to show the Head or the Tail of a coin. If they show the same side, person 2 pays
person 1 a dollar; if they show different sides, person 1 pays person 2 a dollar. Each
person cares only about the amount of money she receives, and (naturally!) prefers
to receive more than less. A strategic game that models this situation is shown
in Figure 17.1. (In this representation of the players’ preferences, the payoffs are
equal to the amounts of money involved. We could equally well work with another
representation—for example, 2 could replace each 1, and 1 could replace each −1.)

Head Tail
Head 1, −1 −1, 1

Tail −1, 1 1, −1

Figure 17.1 Matching Pennies (Example 17.1).

In this game the players’ interests are diametrically opposed (such a game is
called “strictly competitive”): player 1 wants to take the same action as the other
player, whereas player 2 wants to take the opposite action.

This game may, for example, model the choices of appearances for new prod-
ucts by an established producer and a new firm in a market of fixed size. Suppose
that each firm can choose one of two different appearances for the product. The
established producer prefers the newcomer’s product to look different from its
own (so that its customers will not be tempted to buy the newcomer’s product),
whereas the newcomer prefers that the products look alike. Or the game could
model a relationship between two people in which one person wants to be like the
other, whereas the other wants to be different.

? EXERCISE 17.2 (Games without conflict) Give some examples of two-player strate-
gic games in which each player has two actions and the players have the same pref-
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erences, so that there is no conflict between their interests. (Present your games as
tables like the one in Figure 17.1.)

2.5 Example: the Stag Hunt

A sentence in Discourse on the origin and foundations of inequality among men (1755)
by the philosopher Jean-Jacques Rousseau discusses a group of hunters who wish
to catch a stag. They will succeed if they all remain sufficiently attentive, but each
is tempted to desert her post and catch a hare. One interpretation of the sentence is
that the interaction between the hunters may be modeled as the following strategic
game.

EXAMPLE 18.1 (Stag Hunt) Each of a group of hunters has two options: she may
remain attentive to the pursuit of a stag, or catch a hare. If all hunters pursue the
stag, they catch it and share it equally; if any hunter devotes her energy to catching
a hare, the stag escapes, and the hare belongs to the defecting hunter alone. Each
hunter prefers a share of the stag to a hare.

The strategic game that corresponds to this specification is:

Players The hunters.

Actions Each player’s set of actions is {Stag, Hare}.

Preferences For each player, the action profile in which all players choose Stag
(resulting in her obtaining a share of the stag) is ranked highest, followed
by any profile in which she chooses Hare (resulting in her obtaining a hare),
followed by any profile in which she chooses Stag and one or more of the
other players chooses Hare (resulting in her leaving empty-handed).

Like other games with many players, this game cannot easily be presented in a
table like that in Figure 17.1. For the case in which there are two hunters, the game
is shown in Figure 18.1.

Stag Hare
Stag 2, 2 0, 1
Hare 1, 0 1, 1

Figure 18.1 The Stag Hunt (Example 18.1) for the case of two hunters.

The variant of the two-player Stag Hunt shown in Figure 19.1 has been sug-
gested as an alternative to the Prisoner’s Dilemma as a model of an arms race, or,
more generally, of the “security dilemma” faced by a pair of countries. The game
differs from the Prisoner’s Dilemma in that a country prefers the outcome in which
both countries refrain from arming themselves to the one in which it alone arms
itself: the cost of arming outweighs the benefit if the other country does not arm
itself.
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Refrain Arm
Refrain 3, 3 0, 2

Arm 2, 0 1, 1

Figure 19.1 A variant of the two-player Stag Hunt that models the “security dilemma”.

2.6 Nash equilibrium

What actions will be chosen by the players in a strategic game? We wish to assume,
as in the theory of a rational decision-maker (Section 1.2), that each player chooses
the best available action. In a game, the best action for any given player depends,
in general, on the other players’ actions. So when choosing an action a player must
have in mind the actions the other players will choose. That is, she must form a
belief about the other players’ actions.

On what basis can such a belief be formed? The assumption underlying the
analysis in this chapter and the next two chapters is that each player’s belief is
derived from her past experience playing the game, and that this experience is suf-
ficiently extensive that she knows how her opponents will behave. No one tells her
the actions her opponents will choose, but her previous involvement in the game
leads her to be sure of these actions. (The question of how a player’s experience can
lead her to the correct beliefs about the other players’ actions is addressed briefly
in Section 4.9.)

Although we assume that each player has experience playing the game, we
assume that she views each play of the game in isolation. She does not become
familiar with the behavior of specific opponents and consequently does not condi-
tion her action on the opponent she faces; nor does she expect her current action to
affect the other players’ future behavior.

It is helpful to think of the following idealized circumstances. For each player in
the game there is a population of many decision-makers who may, on any occasion,
take that player’s role. In each play of the game, players are selected randomly, one
from each population. Thus each player engages in the game repeatedly, against
ever-varying opponents. Her experience leads her to beliefs about the actions of
“typical” opponents, not any specific set of opponents.

As an example, think of the interaction between buyers and sellers. Buyers and
sellers repeatedly interact, but to a first approximation many of the pairings may
be modeled as random. In many cases a buyer transacts only once with any given
seller, or interacts repeatedly but anonymously (when the seller is a large store, for
example).

In summary, the solution theory we study has two components. First, each
player chooses her action according to the model of rational choice, given her be-
lief about the other players’ actions. Second, every player’s belief about the other
players’ actions is correct. These two components are embodied in the following
definition.
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JOHN F. NASH, JR.

A few of the ideas of John F. Nash Jr., developed while he was a graduate student
at Princeton from 1948 to 1950, transformed game theory. Nash was born in 1928 in
Bluefield, West Virginia, USA, where he grew up. He was an undergraduate math-
ematics major at Carnegie Institute of Technology from 1945 to 1948. In 1948 he
obtained both a B.S. and an M.S., and began graduate work in the Department of
Mathematics at Princeton University. (One of his letters of recommendation, from
a professor at Carnegie Institute of Technology, was a single sentence: “This man is
a genius” (Kuhn et al. 1995, 282).) A paper containing the main result of his thesis
was submitted to the Proceedings of the National Academy of Sciences in November
1949, fourteen months after he started his graduate work. (“A fine goal to set . . .
graduate students”, to quote Kuhn! (See Kuhn et al. 1995, 282.)) He completed his
PhD the following year, graduating on his 22nd birthday. His thesis, 28 pages in
length, introduces the equilibrium notion now known as “Nash equilibrium” and
delineates a class of strategic games that have Nash equilibria (Proposition 116.1
in this book). The notion of Nash equilibrium vastly expanded the scope of game
theory, which had previously focussed on two-player “strictly competitive” games
(in which the players’ interests are directly opposed). While a graduate student at
Princeton, Nash also wrote the seminal paper in bargaining theory, Nash (1950b)
(the ideas of which originated in an elective class in international economics he
took as an undergraduate). He went on to take an academic position in the Depart-
ment of Mathematics at MIT, where he produced “a remarkable series of papers”
(Milnor 1995, 15); he has been described as “one of the most original mathematical
minds of [the twentieth] century” (Kuhn 1996). He shared the 1994 Nobel prize in
economics with the game theorists John C. Harsanyi and Reinhard Selten.

A Nash equilibrium is an action profile a∗ with the property that no
player i can do better by choosing an action different from a∗i , given
that every other player j adheres to a∗j .

In the idealized setting in which the players in any given play of the game are
drawn randomly from a collection of populations, a Nash equilibrium corresponds
to a steady state. If, whenever the game is played, the action profile is the same Nash
equilibrium a∗, then no player has a reason to choose any action different from her
component of a∗; there is no pressure on the action profile to change. Expressed
differently, a Nash equilibrium embodies a stable “social norm”: if everyone else
adheres to it, no individual wishes to deviate from it.

The second component of the theory of Nash equilibrium—that the players’ be-
liefs about each other’s actions are correct—implies, in particular, that two players’
beliefs about a third player’s action are the same. For this reason, the condition is
sometimes said to be that the players’ “expectations are coordinated”.

The situations to which we wish to apply the theory of Nash equilibrium do
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not in general correspond exactly to the idealized setting described above. For
example, in some cases the players do not have much experience with the game;
in others they do not view each play of the game in isolation. Whether or not
the notion of Nash equilibrium is appropriate in any given situation is a matter of
judgment. In some cases, a poor fit with the idealized setting may be mitigated
by other considerations. For example, inexperienced players may be able to draw
conclusions about their opponents’ likely actions from their experience in other
situations, or from other sources. (One aspect of such reasoning is discussed in the
box on page 30). Ultimately, the test of the appropriateness of the notion of Nash
equilibrium is whether it gives us insights into the problem at hand.

With the aid of an additional piece of notation, we can state the definition of
a Nash equilibrium precisely. Let a be an action profile, in which the action of
each player i is ai. Let a′i be any action of player i (either equal to ai, or different
from it). Then (a′i , a−i) denotes the action profile in which every player j except
i chooses her action aj as specified by a, whereas player i chooses a′i. (The −i
subscript on a stands for “except i”.) That is, (a′i , a−i) is the action profile in which
all the players other than i adhere to a while i “deviates” to a′i. (If a′i = ai then
of course (a′i , a−i) = (ai, a−i) = a.) If there are three players, for example, then
(a′2, a−2) is the action profile in which players 1 and 3 adhere to a (player 1 chooses
a1, player 3 chooses a3) and player 2 deviates to a′2.

Using this notation, we can restate the condition for an action profile a∗ to be a
Nash equilibrium: no player i has any action ai for which she prefers (ai, a∗−i) to a∗.
Equivalently, for every player i and every action ai of player i, the action profile a∗

is at least as good for player i as the action profile (ai , a∗−i).

� DEFINITION 21.1 (Nash equilibrium of strategic game with ordinal preferences) The
action profile a∗ in a strategic game with ordinal preferences is a Nash equilibrium
if, for every player i and every action ai of player i, a∗ is at least as good according
to player i’s preferences as the action profile (ai , a∗−i) in which player i chooses ai
while every other player j chooses a∗j . Equivalently, for every player i,

ui(a∗) ≥ ui(ai , a∗−i) for every action ai of player i, (21.2)

where ui is a payoff function that represents player i’s preferences.

This definition implies neither that a strategic game necessarily has a Nash
equilibrium, nor that it has at most one. Examples in the next section show that
some games have a single Nash equilibrium, some possess no Nash equilibrium,
and others have many Nash equilibria.

The definition of a Nash equilibrium is designed to model a steady state among
experienced players. An alternative approach to understanding players’ actions in
strategic games assumes that the players know each others’ preferences, and con-
siders what each player can deduce about the other players’ actions from their
rationality and their knowledge of each other’s rationality. This approach is stud-
ied in Chapter 12. For many games, it leads to a conclusion different from that of
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Nash equilibrium. For games in which the conclusion is the same the approach
offers us an alternative interpretation of a Nash equilibrium, as the outcome of ra-
tional calculations by players who do not necessarily have any experience playing
the game.

STUDYING NASH EQUILIBRIUM EXPERIMENTALLY

The theory of strategic games lends itself to experimental study: arranging for sub-
jects to play games and observing their choices is relatively straightforward. A few
years after game theory was launched by von Neumann and Morgenstern’s (1944)
book, reports of laboratory experiments began to appear. Subsequently a huge
number of experiments have been conducted, illuminating many issues relevant
to the theory. I discuss selected experimental evidence throughout the book.

The theory of Nash equilibrium, as we have seen, has two components: the
players act in accordance with the theory of rational choice, given their beliefs
about the other players’ actions, and these beliefs are correct. If every subject
understands the game she is playing and faces incentives that correspond to the
preferences of the player whose role she is taking, then a divergence between the
observed outcome and a Nash equilibrium can be blamed on a failure of one or
both of these two components. Experimental evidence has the potential of indi-
cating the types of games for which the theory works well and, for those in which
the theory does not work well, of pointing to the faulty component and giving us
hints about the characteristics of a better theory. In designing an experiment that
cleanly tests the theory, however, we need to confront several issues.

The model of rational choice takes preferences as given. Thus to test the theory
of Nash equilibrium experimentally, we need to ensure that each subject’s prefer-
ences are those of the player whose role she is taking in the game we are exam-
ining. The standard way of inducing the appropriate preferences is to pay each
subject an amount of money directly related to the payoff given by a payoff func-
tion that represents the preferences of the player whose role the subject is taking.
Such remuneration works if each subject likes money and cares only about the
amount of money she receives, ignoring the amounts received by her opponents.
The assumption that people like receiving money is reasonable in many cultures,
but the assumption that people care only about their own monetary rewards—
are “selfish”—may, in some contexts at least, not be reasonable. Unless we check
whether our subjects are selfish in the context of our experiment, we will jointly test
two hypotheses: that humans are selfish—a hypothesis not part of game theory—
and that the notion of Nash equilibrium models their behavior. In some cases we
may indeed wish to test these hypotheses jointly. But in order to test the theory of
Nash equilibrium alone we need to ensure that we induce the preferences we wish
to study.

Assuming that better decisions require more effort, we need also to ensure that
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each subject finds it worthwhile to put in the extra effort required to obtain a higher
payoff. If we rely on monetary payments to provide incentives, the amount of
money a subject can obtain must be sufficiently sensitive to the quality of her deci-
sions to compensate her for the effort she expends (paying a flat fee, for example,
is inappropriate). In some cases, monetary payments may not be necessary: under
some circumstances, subjects drawn from a highly competitive culture like that of
the USA may be sufficiently motivated by the possibility of obtaining a high score,
even if that score does not translate into a monetary payoff.

The notion of Nash equilibrium models action profiles compatible with steady
states. Thus to study the theory experimentally we need to collect observations of
subjects’ behavior when they have experience playing the game. But they should
not have obtained that experience while knowingly facing the same opponents
repeatedly, for the theory assumes that the players consider each play of the game
in isolation, not as part of an ongoing relationship. One option is to have each
subject play the game against many different opponents, gaining experience about
how the other subjects on average play the game, but not about the choices of any
other given player. Another option is to describe the game in terms that relate to
a situation in which the subjects already have experience. A difficulty with this
second approach is that the description we give may connote more than simply
the payoff numbers of our game. If we describe the Prisoner’s Dilemma in terms
of cooperation on a joint project, for example, a subject may be biased toward
choosing the action she has found appropriate when involved in joint projects,
even if the structures of those interactions were significantly different from that of
the Prisoner’s Dilemma. As she plays the experimental game repeatedly she may
come to appreciate how it differs from the games in which she has been involved
previously, but her biases may disappear only slowly.

Whatever route we take to collect data on the choices of subjects experienced
in playing the game, we confront a difficult issue: how do we know when the
outcome has converged? Nash’s theory concerns only equilibria; it has nothing to
say about the path players’ choices will take on the way to an equilibrium, and so
gives us no guide as to whether 10, 100, or 1,000 plays of the game are enough to
give a chance for the subjects’ expectations to become coordinated.

Finally, we can expect the theory of Nash equilibrium to correspond to reality
only approximately: like all useful theories, it definitely is not exactly correct. How
do we tell whether the data are close enough to the theory to support it? One pos-
sibility is to compare the theory of Nash equilibrium with some other theory. But
for many games there is no obvious alternative theory—and certainly not one with
the generality of Nash equilibrium. Statistical tests can sometimes aid in deciding
whether the data is consistent with the theory, though ultimately we remain the
judge of whether or not our observations persuade us that the theory enhances
our understanding of human behavior in the game.
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2.7 Examples of Nash equilibrium

2.7.1 Prisoner’s Dilemma

By examining the four possible pairs of actions in the Prisoner’s Dilemma (repro-
duced in Figure 24.1), we see that (Fink, Fink) is the unique Nash equilibrium.

Quiet Fink
Quiet 2, 2 0, 3
Fink 3, 0 1, 1

Figure 24.1 The Prisoner’s Dilemma.

The action pair (Fink, Fink) is a Nash equilibrium because (i) given that player 2
chooses Fink, player 1 is better off choosing Fink than Quiet (looking at the right
column of the table we see that Fink yields player 1 a payoff of 1 whereas Quiet
yields her a payoff of 0), and (ii) given that player 1 chooses Fink, player 2 is better
off choosing Fink than Quiet (looking at the bottom row of the table we see that
Fink yields player 2 a payoff of 1 whereas Quiet yields her a payoff of 0).

No other action profile is a Nash equilibrium:

• (Quiet, Quiet) does not satisfy (21.2) because when player 2 chooses Quiet,
player 1’s payoff to Fink exceeds her payoff to Quiet (look at the first compo-
nents of the entries in the left column of the table). (Further, when player 1
chooses Quiet, player 2’s payoff to Fink exceeds her payoff to Quiet: player 2,
as well as player 1, wants to deviate. To show that a pair of actions is not a
Nash equilibrium, however, it is not necessary to study player 2’s decision
once we have established that player 1 wants to deviate: it is enough to show
that one player wishes to deviate to show that a pair of actions is not a Nash
equilibrium.)

• (Fink, Quiet) does not satisfy (21.2) because when player 1 chooses Fink, player 2’s
payoff to Fink exceeds her payoff to Quiet (look at the second components of
the entries in the bottom row of the table).

• (Quiet, Fink) does not satisfy (21.2) because when player 2 chooses Fink, player 1’s
payoff to Fink exceeds her payoff to Quiet (look at the first components of the
entries in the right column of the table).

In summary, in the only Nash equilibrium of the Prisoner’s Dilemma both play-
ers choose Fink. In particular, the incentive to free ride eliminates the possibility
that the mutually desirable outcome (Quiet, Quiet) occurs. In the other situations
discussed in Section 2.2 that may be modeled as the Prisoner’s Dilemma, the out-
comes predicted by the notion of Nash equilibrium are thus as follows: both peo-
ple goof off when working on a joint project; both duopolists charge a low price;
both countries build bombs; both farmers graze their sheep a lot. (The overgrazing
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of a common thus predicted is sometimes called the “tragedy of the commons”.
The intuition that some of these dismal outcomes may be avoided if the same pair
of people play the game repeatedly is explored in Chapter 14.)

In the Prisoner’s Dilemma, the Nash equilibrium action of each player (Fink) is
the best action for each player not only if the other player chooses her equilib-
rium action (Fink), but also if she chooses her other action (Quiet). The action pair
(Fink, Fink) is a Nash equilibrium because if a player believes that her opponent
will choose Fink then it is optimal for her to choose Fink. But in fact it is optimal for
a player to choose Fink regardless of the action she expects her opponent to choose.
In most of the games we study, a player’s Nash equilibrium action does not sat-
isfy this condition: the action is optimal if the other players choose their Nash
equilibrium actions, but some other action is optimal if the other players choose
non-equilibrium actions.

? EXERCISE 25.1 (Altruistic players in the Prisoner’s Dilemma) Each of two players
has two possible actions, Quiet and Fink; each action pair results in the players’
receiving amounts of money equal to the numbers corresponding to that action
pair in Figure 24.1. (For example, if player 1 chooses Quiet and player 2 chooses
Fink, then player 1 receives nothing, whereas player 2 receives $3.) The players are
not “selfish”; rather, the preferences of each player i are represented by the payoff
function mi(a) + αmj(a), where mi(a) is the amount of money received by player i
when the action profile is a, j is the other player, and α is a given nonnegative
number. Player 1’s payoff to the action pair (Quiet, Quiet), for example, is 2 + 2α.

a. Formulate a strategic game that models this situation in the case α = 1. Is this
game the Prisoner’s Dilemma?

b. Find the range of values of α for which the resulting game is the Prisoner’s
Dilemma. For values of α for which the game is not the Prisoner’s Dilemma,
find its Nash equilibria.

? EXERCISE 25.2 (Selfish and altruistic social behavior) Two people enter a bus. Two
adjacent cramped seats are free. Each person must decide whether to sit or stand.
Sitting alone is more comfortable than sitting next to the other person, which is
more comfortable than standing.

a. Suppose that each person cares only about her own comfort. Model the situ-
ation as a strategic game. Is this game the Prisoner’s Dilemma? Find its Nash
equilibrium (equilibria?).

b. Suppose that each person is altruistic, ranking the outcomes according to the
other person’s comfort, and, out of politeness, prefers to stand than to sit if the
other person stands. Model the situation as a strategic game. Is this game the
Prisoner’s Dilemma? Find its Nash equilibrium (equilibria?).

c. Compare the people’s comfort in the equilibria of the two games.
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EXPERIMENTAL EVIDENCE ON THE Prisoner’s Dilemma

The Prisoner’s Dilemma has attracted a great deal of attention by economists, psy-
chologists, sociologists, and biologists. A huge number of experiments have been
conducted with the aim of discovering how people behave when playing the game.
Almost all these experiments involve each subject’s playing the game repeatedly
against an unchanging opponent, a situation that calls for an analysis significantly
different from the one in this chapter (see Chapter 14).

The evidence on the outcome of isolated plays of the game is inconclusive. No
experiment of which I am aware carefully induces the appropriate preferences and
is specifically designed to elicit a steady state action profile (see the box on page 22).
Thus in each case the choice of Quiet by a player could indicate that she is not
“selfish” or that she is not experienced in playing the game, rather than providing
evidence against the notion of Nash equilibrium.

In two experiments with very low payoffs, each subject played the game a small
number of times against different opponents; between 50% and 94% of subjects
chose Fink, depending on the relative sizes of the payoffs and some details of
the design (Rapoport, Guyer, and Gordon 1976, 135–137, 211–213, and 223-226).
A more recent experiment finds that in the last 10 of 20 rounds of play against
different opponents, 78% of subjects choose Fink (Cooper, DeJong, Forsythe, and
Ross 1996). In face-to-face games in which communication is allowed, the inci-
dence of the choice of Fink tends to be lower: from 29% to 70% depending on the
nature of the communication allowed (Deutsch 1958, and Frank, Gilovich, and Re-
gan 1993, 163–167). (In all these experiments, the subjects were college students in
the USA or Canada.)

One source of the variation in the results seems to be that some designs in-
duce preferences that differ from those of the Prisoner’s Dilemma; no clear answer
emerges to the question of whether the notion of Nash equilibrium is relevant to
the Prisoner’s Dilemma. If, nevertheless, one interprets the evidence as showing that
some subjects in the Prisoner’s Dilemma systematically choose Quiet rather than
Fink, one must fault the rational choice component of Nash equilibrium, not the
coordinated expectations component. Why? Because, as noted in the text, Fink is
optimal no matter what a player thinks her opponent will choose, so that any model
in which the players act according to the model of rational choice, whether or not
their expectations are coordinated, predicts that each player chooses Fink.

2.7.2 BoS

To find the Nash equilibria of BoS (Figure 16.1), we can examine each pair of actions
in turn:

• (Bach, Bach): If player 1 switches to Stravinsky then her payoff decreases from
2 to 0; if player 2 switches to Stravinsky then her payoff decreases from 1 to 0.
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Thus a deviation by either player decreases her payoff. Thus (Bach, Bach) is
a Nash equilibrium.

• (Bach, Stravinsky): If player 1 switches to Stravinsky then her payoff increases
from 0 to 1. Thus (Bach, Stravinsky) is not a Nash equilibrium. (Player 2
can increase her payoff by deviating, too, but to show the pair is not a Nash
equilibrium it suffices to show that one player can increase her payoff by
deviating.)

• (Stravinsky, Bach): If player 1 switches to Bach then her payoff increases from
0 to 2. Thus (Stravinsky, Bach) is not a Nash equilibrium.

• (Stravinsky, Stravinsky): If player 1 switches to Bach then her payoff decreases
from 1 to 0; if player 2 switches to Bach then her payoff decreases from 2 to 0.
Thus a deviation by either player decreases her payoff. Thus (Stravinsky, Stravinsky)
is a Nash equilibrium.

We conclude that the game has two Nash equilibria: (Bach, Bach) and (Stravinsky,
Stravinsky). That is, both of these outcomes are compatible with a steady state;
both outcomes are stable social norms. If, in every encounter, both players choose
Bach, then no player has an incentive to deviate; if, in every encounter, both play-
ers choose Stravinsky, then no player has an incentive to deviate. If we use the
game to model the choices of men when matched with women, for example, then
the notion of Nash equilibrium shows that two social norms are stable: both play-
ers choose the action associated with the outcome preferred by women, and both
players choose the action associated with the outcome preferred by men.

2.7.3 Matching Pennies

By checking each of the four pairs of actions in Matching Pennies (Figure 17.1) we
see that the game has no Nash equilibrium. For the pairs of actions (Head, Head)
and (Tail, Tail), player 2 is better off deviating; for the pairs of actions (Head, Tail)
and (Tail, Head), player 1 is better off deviating. Thus for this game the notion of
Nash equilibrium isolates no steady state. In Chapter 4 we return to this game;
an extension of the notion of a Nash equilibrium gives us an understanding of the
likely outcome.

2.7.4 The Stag Hunt

Inspection of Figure 18.1 shows that the two-player Stag Hunt has two Nash equi-
libria: (Stag, Stag) and (Hare, Hare). If one player remains attentive to the pursuit
of the stag, then the other player prefers to remain attentive; if one player chases
a hare, the other one prefers to chase a hare (she cannot catch a stag alone). (The
equilibria of the variant of the game in Figure 19.1 are analogous: (Refrain, Refrain)
and (Arm, Arm).)
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Unlike the Nash equilibria of BoS, one of these equilibria is better for both play-
ers than the other: each player prefers (Stag, Stag) to (Hare, Hare). This fact has no
bearing on the equilibrium status of (Hare, Hare), since the condition for an equi-
librium is that a single player cannot gain by deviating, given the other player’s be-
havior. Put differently, an equilibrium is immune to any unilateral deviation; coor-
dinated deviations by groups of players are not contemplated. However, the exis-
tence of two equilibria raises the possibility that one equilibrium might more likely
be the outcome of the game than the other. I return to this issue in Section 2.7.6.

I argue that the many-player Stag Hunt (Example 18.1) also has two Nash equi-
libria: the action profile (Stag, . . . , Stag) in which every players joins in the pursuit
of the stag, and the profile (Hare, . . . , Hare) in which every player catches a hare.

• (Stag, . . . , Stag) is a Nash equilibrium because each player prefers this profile
to that in which she alone chooses Hare. (A player is better off remaining
attentive to the pursuit of the stag than running after a hare if all the other
players remain attentive.)

• (Hare, . . . , Hare) is a Nash equilibrium because each player prefers this profile
to that in which she alone pursues the stag. (A player is better off catching a
hare than pursuing the stag if no one else pursues the stag.)

• No other profile is a Nash equilibrium, because in any other profile at least
one player chooses Stag and at least one player chooses Hare, so that any
player choosing Stag is better off switching to Hare. (A player is better off
catching a hare than pursing the stag if at least one other person chases a
hare, since the stag can be caught only if everyone pursues it.)

? EXERCISE 28.1 (Variants of the Stag Hunt) Consider two variants of the n-hunter
Stag Hunt in which only m hunters, with 2 ≤ m < n, need to pursue the stag in
order to catch it. (Continue to assume that there is a single stag.) Assume that a
captured stag is shared only by the hunters that catch it.

a. Assume, as before, that each hunter prefers the fraction 1/n of the stag to a
hare. Find the Nash equilibria of the strategic game that models this situation.

b. Assume that each hunter prefers the fraction 1/k of the stag to a hare, but
prefers the hare to any smaller fraction of the stag, where k is an integer with
m ≤ k ≤ n. Find the Nash equilibria of the strategic game that models this
situation.

The following more difficult exercise enriches the hunters’ choices in the Stag
Hunt. This extended game has been proposed as a model that captures Keynes’ ba-
sic insight about the possibility of multiple economic equilibria, some undesirable
(Bryant 1983, 1994).

?? EXERCISE 28.2 (Extension of the Stag hunt) Extend the n-hunter Stag Hunt by giv-
ing each hunter K (a positive integer) units of effort, which she can allocate be-
tween pursuing the stag and catching hares. Denote the effort hunter i devotes
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to pursuing the stag by ei, a nonnegative integer equal to at most K. The chance
that the stag is caught depends on the smallest of all the hunters’ efforts, denoted
minj ej. (“A chain is as strong as its weakest link.”) Hunter i’s payoff to the ac-
tion profile (e1, . . . , en) is 2 minj ej − ei. (She is better off the more likely the stag
is caught, and worse off the more effort she devotes to pursuing the stag, which
means she catches fewer hares.) Is the action profile (e, . . . , e), in which every
hunter devotes the same effort to pursuing the stag, a Nash equilibrium for any
value of e? (What is a player’s payoff to this profile? What is her payoff if she
deviates to a lower or higher effort level?) Is any action profile in which not all the
players’ effort levels are the same a Nash equilibrium? (Consider a player whose
effort exceeds the minimum effort level of all players. What happens to her payoff
if she reduces her effort level to the minimum?)

2.7.5 Hawk–Dove

The game in the next exercise captures a basic feature of animal conflict.

? EXERCISE 29.1 (Hawk–Dove) Two animals are fighting over some prey. Each can
be passive or aggressive. Each prefers to be aggressive if its opponent is passive,
and passive if its opponent is aggressive; given its own stance, it prefers the out-
come when its opponent is passive to that in which its opponent is aggressive.
Formulate this situation as a strategic game and find its Nash equilibria.

2.7.6 A coordination game

Consider two people who wish to go out together, but who, unlike the dissidents
in BoS, agree on the more desirable concert—say they both prefer Bach. A strate-
gic game that models this situation is shown in Figure 29.1; it is an example of a
coordination game. By examining the four action pairs, we see that the game has
two Nash equilibria: (Bach, Bach) and (Stravinsky, Stravinsky). In particular, the ac-
tion pair (Stravinsky, Stravinsky) in which both people choose their less-preferred
concert is a Nash equilibrium.

Bach Stravinsky
Bach 2, 2 0, 0

Stravinsky 0, 0 1, 1

Figure 29.1 A coordination game.

Is the equilibrium in which both people choose Stravinsky plausible? People
who argue that the technology of Apple computers originally dominated that of
IBM computers, and that the Beta format for video recording is better than VHS,
would say “yes”. In both cases users had a strong interest in adopting the same
standard, and one standard was better than the other; in the steady state that
emerged in each case, the inferior technology was adopted by a large majority
of users.
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FOCAL POINTS

In games with many Nash equilibria, the theory isolates more than one pattern of
behavior compatible with a steady state. In some games, some of these equilibria
seem more likely to attract the players’ attentions than others. To use the termi-
nology of Schelling (1960), some equilibria are focal. In the coordination game in
Figure 29.1, where the players agree on the more desirable Nash equilibrium and
obtain the same payoff to every nonequilibrium action pair, the preferable equi-
librium seems more likely to be focal (though two examples are given in the text
of steady states involving the inferior equilibrium). In the variant of this game in
which the two equilibria are equally good (i.e. (2, 2) is replaced by (1, 1)), nothing
in the structure of the game gives any clue as to which steady state might occur.
In such a game, the names or nature of the actions, or other information, may
predispose the players to one equilibrium rather than the other.

Consider, for example, voters in an election. Pre-election polls may give them in-
formation about each other’s intended actions, pointing them to one of many Nash
equilibria. Or consider a situation in which two players independently divide $100
into two piles, each receiving $10 if they choose the same divisions and nothing
otherwise. The strategic game that models this situation has many Nash equilib-
ria, in each of which both players choose the same division. But the equilibrium
in which both players choose the ($50, $50) division seems likely to command the
players’ attentions, possibly for esthetic reasons (it is an appealing division), and
possibly because it is a steady state in an unrelated game in which the chosen
division determines the players’ payoffs.

The theory of Nash equilibrium is neutral about the equilibrium that will occur
in a game with many equilibria. If features of the situation not modeled by the
notion of a strategic game make some equilibria focal then those equilibria may
be more likely to emerge as steady states, and the rate at which a steady state is
reached may be higher than it otherwise would have been.

If two people played this game in a laboratory it seems likely that the outcome
would be (Bach, Bach). Nevertheless, (Stravinsky, Stravinsky) also corresponds to a
steady state: if either action pair is reached, there is no reason for either player to
deviate from it.

2.7.7 Provision of a public good

The model in the next exercise captures an aspect of the provision of a “public
good”, like a park or a swimming pool, whose use by one person does not diminish
its value to another person (at least, not until it is overcrowded). (Other aspects of
public good provision are studied in Section 2.8.4.)
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? EXERCISE 31.1 (Contributing to a public good) Each of n people chooses whether
or not to contribute a fixed amount toward the provision of a public good. The
good is provided if and only if at least k people contribute, where 2 ≤ k ≤ n; if
it is not provided, contributions are not refunded. Each person ranks outcomes
from best to worst as follows: (i) any outcome in which the good is provided and
she does not contribute, (ii) any outcome in which the good is provided and she
contributes, (iii) any outcome in which the good is not provided and she does not
contribute, (iv) any outcome in which the good is not provided and she contributes.
Formulate this situation as a strategic game and find its Nash equilibria. (Is there a
Nash equilibrium in which more than k people contribute? One in which k people
contribute? One in which fewer than k people contribute? (Be careful!))

2.7.8 Strict and nonstrict equilibria

In all the Nash equilibria of the games we have studied so far a deviation by a
player leads to an outcome worse for that player than the equilibrium outcome.
The definition of Nash equilibrium (21.1), however, requires only that the outcome
of a deviation be no better for the deviant than the equilibrium outcome. And,
indeed, some games have equilibria in which a player is indifferent between her
equilibrium action and some other action, given the other players’ actions.

Consider the game in Figure 31.1. This game has a unique Nash equilibrium,
namely (T, L). (For every other pair of actions, one of the players is better off
changing her action.) When player 2 chooses L, as she does in this equilibrium,
player 1 is equally happy choosing T or B; if she deviates to B then she is no worse
off than she is in the equilibrium. We say that the Nash equilibrium (T, L) is not a
strict equilibrium.

L M R
T 1, 1 1, 0 0, 1
B 1, 0 0, 1 1, 0

Figure 31.1 A game with a unique Nash equilibrium, which is not a strict equilibrium.

For a general game, an equilibrium is strict if each player’s equilibrium action
is better than all her other actions, given the other players’ actions. Precisely, an
action profile a∗ is a strict Nash equilibrium if for every player i we have ui(a∗) >

ui(ai, a∗−i) for every action ai 	= a∗i of player i. (Contrast the strict inequality in this
definition with the weak inequality in (21.2).)

2.7.9 Additional examples

The following exercises are more difficult than most of the previous ones. In the
first two, the number of actions of each player is arbitrary, so you cannot mechan-
ically examine each action profile individually, as we did for games in which each
player has two actions. Instead, you can consider groups of action profiles that
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have features in common, and show that all action profiles in any given group are
or are not equilibria. Deciding how best to group the profiles into types calls for
some intuition about the character of a likely equilibrium; the exercises contain
suggestions on how to proceed.

?? EXERCISE 32.1 (Guessing two-thirds of the average) Each of three people announces
an integer from 1 to K. If the three integers are different, the person whose integer
is closest to 2

3 of the average of the three integers wins $1. If two or more integers
are the same, $1 is split equally between the people whose integer is closest to 2

3
of the average integer. Is there any integer k such that the action profile (k, k, k), in
which every person announces the same integer k, is a Nash equilibrium? (If k ≥ 2,
what happens if a person announces a smaller number?) Is any other action profile
a Nash equilibrium? (What is the payoff of a person whose number is the highest
of the three? Can she increase this payoff by announcing a different number?)

Game theory is used widely in political science, especially in the study of elec-
tions. The game in the following exercise explores citizens’ costly decisions to
vote.

?? EXERCISE 32.2 (Voter participation) Two candidates, A and B, compete in an elec-
tion. Of the n citizens, k support candidate A and m (= n − k) support candidate B.
Each citizen decides whether to vote, at a cost, for the candidate she supports, or
to abstain. A citizen who abstains receives the payoff of 2 if the candidate she
supports wins, 1 if this candidate ties for first place, and 0 if this candidate loses.
A citizen who votes receives the payoffs 2 − c, 1 − c, and −c in these three cases,
where 0 < c < 1.

a. For k = m = 1, is the game the same (except for the names of the actions) as
any considered so far in this chapter?

b. For k = m, find the set of Nash equilibria. (Is the action profile in which
everyone votes a Nash equilibrium? Is there any Nash equilibrium in which
the candidates tie and not everyone votes? Is there any Nash equilibrium in
which one of the candidates wins by one vote? Is there any Nash equilibrium
in which one of the candidates wins by two or more votes?)

c. What is the set of Nash equilibria for k < m?

If, when sitting in a traffic jam, you have ever thought about the time you might
save if another road were built, the next exercise may lead you to think again.

?? EXERCISE 32.3 (Choosing a route) Four people must drive from A to B at the same
time. Two routes are available, one via X and one via Y. (Refer to the left panel of
Figure 33.1.) The roads from A to X, and from Y to B are both short and narrow;
in each case, one car takes 6 minutes, and each additional car increases the travel
time per car by 3 minutes. (If two cars drive from A to X, for example, each car takes
9 minutes.) The roads from A to Y, and from X to B are long and wide; on A to Y
one car takes 20 minutes, and each additional car increases the travel time per car
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by 1 minute; on X to B one car takes 20 minutes, and each additional car increases
the travel time per car by 0.9 minutes. Formulate this situation as a strategic game
and find the Nash equilibria. (If all four people take one of the routes, can any of
them do better by taking the other route? What if three take one route and one
takes the other route, or if two take each route?)
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Original network.
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A X

BY

Network with new road from X to Y.

Figure 33.1 Getting from A to B: the road networks in Exercise 32.3. The numbers beside each road are
the travel times per car when 1, 2, 3, or 4 cars take that road.

Now suppose that a relatively short, wide road is built from X to Y, giving each
person four options for travel from A to B: A–X–B, A–Y–B, A–X–Y–B, and A–Y–
X–B. Assume that a person who takes A–X–Y–B travels the A–X portion at the
same time as someone who takes A–X–B, and the Y–B portion at the same time as
someone who takes A–Y–B. (Think of there being constant flows of traffic.) On the
road between X and Y, one car takes 7 minutes and each additional car increases
the travel time per car by 1 minute. Find the Nash equilibria in this new situation.
Compare each person’s travel time with her travel time in the equilibrium before
the road from X to Y was built.

2.8 Best response functions

2.8.1 Definition

We can find the Nash equilibria of a game in which each player has only a few
actions by examining each action profile in turn to see if it satisfies the conditions
for equilibrium. In more complicated games, it is often better to work with the
players’ “best response functions”.

Consider a player, say player i. For any given actions of the players other than i,
player i’s actions yield her various payoffs. We are interested in the best actions—
those that yield her the highest payoff. In BoS, for example, Bach is the best action
for player 1 if player 2 chooses Bach; Stravinsky is the best action for player 1 if
player 2 chooses Stravinsky. In particular, in BoS, player 1 has a single best action
for each action of player 2. By contrast, in the game in Figure 31.1, both T and B are
best actions for player 1 if player 2 chooses L: they both yield the payoff of 1, and
player 1 has no action that yields a higher payoff (in fact, she has no other action).
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We denote the set of player i’s best actions when the list of the other players’ ac-
tions is a−i by Bi(a−i). Thus in BoS we have B1(Bach) = {Bach} and B1(Stravinsky) =
{Stravinsky}; in the game in Figure 31.1 we have B1(L) = {T, B}.

Precisely, we define the function Bi by

Bi(a−i) = {ai in Ai : ui(ai , a−i) ≥ ui(a′i , a−i) for all a′i in Ai} :

any action in Bi(a−i) is at least as good for player i as every other action of player i
when the other players’ actions are given by a−i. We call Bi the best response
function of player i.

The function Bi is set-valued: it associates a set of actions with any list of the
other players’ actions. Every member of the set Bi(a−i) is a best response of
player i to a−i: if each of the other players adheres to a−i then player i can do
no better than choose a member of Bi(a−i). In some games, like BoS, the set Bi(a−i)
consists of a single action for every list a−i of actions of the other players: no matter
what the other players do, player i has a single optimal action. In other games, like
the one in Figure 31.1, Bi(a−i) contains more than one action for some lists a−i of
actions of the other players.

2.8.2 Using best response functions to define Nash equilibrium

A Nash equilibrium is an action profile with the property that no player can do bet-
ter by changing her action, given the other players’ actions. Using the terminology
just developed, we can alternatively define a Nash equilibrium to be an action pro-
file for which every player’s action is a best response to the other players’ actions.
That is, we have the following result.

PROPOSITION 34.1 The action profile a∗ is a Nash equilibrium of a strategic game with
ordinal preferences if and only if every player’s action is a best response to the other players’
actions:

a∗i is in Bi(a∗−i) for every player i. (34.2)

If each player i has a single best response to each list a−i of the other players’
actions, we can write the conditions in (34.2) as equations. In this case, for each
player i and each list a−i of the other players’ actions, denote the single member of
Bi(a−i) by bi(a−i) (that is, Bi(a−i) = {bi(a−i)}). Then (34.2) is equivalent to

a∗i = bi(a∗−i) for every player i, (34.3)

a collection of n equations in the n unknowns a∗i , where n is the number of players
in the game. For example, in a game with two players, say 1 and 2, these equations
are

a∗1 = b1(a∗2)
a∗2 = b2(a∗1).
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That is, in a two-player game in which each player has a single best response to ev-
ery action of the other player, (a∗1, a∗2) is a Nash equilibrium if and only if player 1’s
action a∗1 is her best response to player 2’s action a∗2, and player 2’s action a∗2 is her
best response to player 1’s action a∗1.

2.8.3 Using best response functions to find Nash equilibria

The definition of a Nash equilibrium in terms of best response functions suggests
a method for finding Nash equilibria:

• find the best response function of each player

• find the action profiles that satisfy (34.2) (which reduces to (34.3) if each
player has a single best response to each list of the other players’ actions).

To illustrate this method, consider the game in Figure 35.1. First find the best
response of player 1 to each action of player 2. If player 2 chooses L, then player 1’s
best response is M (2 is the highest payoff for player 1 in this column); indicate the
best response by attaching a star to player 1’s payoff to (M, L). If player 2 chooses
C, then player 1’s best response is T, indicated by the star attached to player 1’s
payoff to (T, C). And if player 2 chooses R, then both T and B are best responses
for player 1; both are indicated by stars. Second, find the best response of player 2
to each action of player 1 (for each row, find highest payoff of player 2); these
best responses are indicated by attaching stars to player 2’s payoffs. Finally, find
the boxes in which both players’ payoffs are starred. Each such box is a Nash
equilibrium: the star on player 1’s payoff means that player 1’s action is a best
response to player 2’s action, and the star on player 2’s payoff means that player 2’s
action is a best response to player 1’s action. Thus we conclude that the game has
two Nash equilibria: (M, L) and (B, R).

L C R
T 1 , 2∗ 2∗, 1 1∗ , 0

M 2∗, 1∗ 0 , 1∗ 0 , 0
B 0 , 1 0 , 0 1∗ , 2∗

Figure 35.1 Using best response functions to find Nash equilibria in a two-player game in which each
player has three actions.

? EXERCISE 35.1 (Finding Nash equilibria using best response functions)

a. Find the players’ best response functions in the Prisoner’s Dilemma (Figure 13.1),
BoS (Figure 16.1), Matching Pennies (Figure 17.1), and the two-player Stag Hunt
(Figure 18.1) (and verify the Nash equilibria of these games).

b. Find the Nash equilibria of the game in Figure 36.1 by finding the players’
best response functions.
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L C R
T 2, 2 1, 3 0, 1

M 3, 1 0, 0 0, 0
B 1, 0 0, 0 0, 0

Figure 36.1 The game in Exercise 35.1b.

The players’ best response functions for the game in Figure 35.1 are presented
in a different format in Figure 36.2. In this figure, player 1’s actions are on the hor-
izontal axis and player 2’s are on the vertical axis. (Thus the columns correspond
to choices of player 1, and the rows correspond to choices of player 2, whereas the
reverse is true in Figure 35.1. I choose this orientation for Figure 36.2 for consis-
tency with the convention for figures of this type.) Player 1’s best responses are
indicated by circles, and player 2’s by dots. Thus the circle at (T, C) reflects the
fact that T is player 1’s best response to player 2’s choice of C, and the circles at
(T, R) and (B, R) reflect the fact that T and B are both best responses of player 1 to
player 2’s choice of R. Any action pair marked by both a circle and a dot is a Nash
equilibrium: the circle means that player 1’s action is a best response to player 2’s
action, and the dot indicates that player 2’s action is a best response to player 1’s
action.

A1

︸ ︷︷ ︸T M B

A2




L

C

R

Figure 36.2 The players’ best response functions for the game in Figure 35.1. Player 1’s best responses
are indicated by circles, and player 2’s by dots. The action pairs for which there is both a circle and a
dot are the Nash equilibria.

? EXERCISE 36.1 (Constructing best response functions) Draw the analogue of Fig-
ure 36.2 for the game in Exercise 35.1b.

? EXERCISE 36.2 (Dividing money) Two people have $10 to divide between them-
selves. They use the following process to divide the money. Each person names a
number of dollars (a nonnegative integer), at most equal to 10. If the sum of the
amounts that the people name is at most 10 then each person receives the amount
of money she names (and the remainder is destroyed). If the sum of the amounts
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that the people name exceeds 10 and the amounts named are different then the
person who names the smaller amount receives that amount and the other person
receives the remaining money. If the sum of the amounts that the people name
exceeds 10 and the amounts named are the same then each person receives $5. De-
termine the best response of each player to each of the other player’s actions, plot
them in a diagram like Figure 36.2, and thus find the Nash equilibria of the game.

A diagram like Figure 36.2 is a convenient representation of the players’ best
response functions also in a game in which each player’s set of actions is an interval
of numbers, as the next example illustrates.

EXAMPLE 37.1 (A synergistic relationship) Two individuals are involved in a syn-
ergistic relationship. If both individuals devote more effort to the relationship, they
are both better off. For any given effort of individual j, the return to individual i’s
effort first increases, then decreases. Specifically, an effort level is a nonnegative
number, and individual i’s preferences (for i = 1, 2) are represented by the payoff
function ai(c + aj − ai), where ai is i’s effort level, aj is the other individual’s effort
level, and c > 0 is a constant.

The following strategic game models this situation.

Players The two individuals.

Actions Each player’s set of actions is the set of effort levels (nonnegative
numbers).

Preferences Player i’s preferences are represented by the payoff function ai(c +
aj − ai), for i = 1, 2.

In particular, each player has infinitely many actions, so that we cannot present the
game in a table like those used previously (Figure 36.1, for example).

To find the Nash equilibria of the game, we can construct and analyze the play-
ers’ best response functions. Given aj, individual i’s payoff is a quadratic function
of ai that is zero when ai = 0 and when ai = c + aj, and reaches a maximum in
between. The symmetry of quadratic functions (see Section 17.4) implies that the
best response of each individual i to aj is

bi(aj) = 1
2 (c + aj).

(If you know calculus, you can reach the same conclusion by setting the derivative
of player i’s payoff with respect to ai equal to zero.)

The best response functions are shown in Figure 38.1. Player 1’s actions are
plotted on the horizontal axis and player 2’s actions are plotted on the vertical axis.
Player 1’s best response function associates an action for player 1 with every action
for player 2. Thus to interpret the function b1 in the diagram, take a point a2 on
the vertical axis, and go across to the line labeled b1 (the steeper of the two lines),
then read down to the horizontal axis. The point on the horizontal axis that you
reach is b1(a2), the best action for player 1 when player 2 chooses a2. Player 2’s best
response function, on the other hand, associates an action for player 2 with every
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action of player 1. Thus to interpret this function, take a point a1 on the horizontal
axis, and go up to b2, then across to the vertical axis. The point on the vertical axis
that you reach is b2(a1), the best action for player 2 when player 1 chooses a1.

0 a1 →

↑
a2

1
2 c

1
2 c

c

c
b2(a1)

b1(a2)

Figure 38.1 The players’ best response functions for the game in Example 37.1. The game has a unique
Nash equilibrium, (a∗1, a∗2) = (c, c).

At a point (a1, a2) where the best response functions intersect in the figure, we
have a1 = b1(a2), because (a1, a2) is on the graph of b1, player 1’s best response
function, and a2 = b2(a1), because (a1, a2) is on the graph of b2, player 1’s best
response function. Thus any such point (a1, a2) is a Nash equilibrium. In this
game the best response functions intersect at a single point, so there is one Nash
equilibrium. In general, they may intersect more than once; every point at which
they intersect is a Nash equilibrium.

To find the point of intersection of the best response functions precisely, we can
solve the two equations in (34.3):

a1 = 1
2 (c + a2)

a2 = 1
2 (c + a1).

Substituting the second equation in the first, we get a1 = 1
2 (c + 1

2 (c + a1)) = 3
4 c +

1
4 a1, so that a1 = c. Substituting this value of a1 into the second equation, we get
a2 = c. We conclude that the game has a unique Nash equilibrium (a1, a2) = (c, c).
(To reach this conclusion, it suffices to solve the two equations; we do not have
to draw Figure 38.1. However, the diagram shows us at once that the game has a
unique equilibrium, in which both players’ actions exceed 1

2 c, facts that serve to
check the results of our algebra.)

In the game in this example, each player has a unique best response to every ac-
tion of the other player, so that the best response functions are lines. If a player has
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many best responses to some of the other players’ actions, then her best response
function is “thick” at some points; several examples in the next chapter have this
property (see, for example, Figure 64.1). Example 37.1 is special also because the
game has a unique Nash equilibrium—the best response functions cross once. As
we have seen, some games have more than one equilibrium, and others have no
equilibrium. A pair of best response functions that illustrates some of the possi-
bilities is shown in Figure 39.1. In this figure the shaded area of player 1’s best re-
sponse function indicates that for a2 between a2 and a2, player 1 has a range of best
responses. For example, all actions of player 1 from a∗∗1 to a∗∗∗1 are best responses
to the action a∗∗∗2 of player 2. For a game with these best response functions, the set
of Nash equilibria consists of the pair of actions (a∗1, a∗2) and all the pairs of actions
on player 2’s best response function between (a∗∗1 , a∗∗2 ) and (a∗∗∗1 , a∗∗∗2 ).

a∗1

a∗2

a2

a∗∗1

a∗∗2

a∗∗∗2

a∗∗∗1

a2

B1(a2)

B2(a1)

A1

A2

Figure 39.1 An example of the best response functions of a two-player game in which each player’s
set of actions is an interval of numbers. The set of Nash equilibria of the game consists of the pair of
actions (a∗1, a∗2) and all the pairs of actions on player 2’s best response function between (a∗∗1 , a∗∗2 ) and
(a∗∗∗1 , a∗∗∗2 ).

? EXERCISE 39.1 (Strict and nonstrict Nash equilibria) Which of the Nash equilibria
of the game whose best response functions are given in Figure 39.1 are strict (see
the definition on page 31)?

Another feature that differentiates the best response functions in Figure 39.1
from those in Figure 38.1 is that the best response function b1 of player 1 is not
continuous. When player 2’s action is a2, player 1’s best response is a∗∗1 (indicated
by the small disk at (a∗∗1 , a2)), but when player 2’s action is slightly greater than
a2, player 1’s best response is significantly less than a∗∗1 . (The small circle indicates
a point excluded from the best response function.) Again, several examples in
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the next chapter have this feature. From Figure 39.1 we see that if a player’s best
response function is discontinuous, then depending on where the discontinuity
occurs, the best response functions may not intersect at all—the game may, like
Matching Pennies, have no Nash equilibrium.

? EXERCISE 40.1 (Finding Nash equilibria using best response functions) Find the
Nash equilibria of the two-player strategic game in which each player’s set of
actions is the set of nonnegative numbers and the players’ payoff functions are
u1(a1, a2) = a1(a2 − a1) and u2(a1, a2) = a2(1 − a1 − a2).

? EXERCISE 40.2 (A joint project) Two people are engaged in a joint project. If each
person i puts in the effort xi, a nonnegative number equal to at most 1, which
costs her c(xi), the outcome of the project is worth f (x1, x2). The worth of the
project is split equally between the two people, regardless of their effort levels.
Formulate this situation as a strategic game. Find the Nash equilibria of the game
when (a) f (x1, x2) = 3x1x2 and c(xi) = x2

i for i = 1, 2, and (b) f (x1, x2) = 4x1x2
and c(xi) = xi for i = 1, 2. In each case, is there a pair of effort levels that yields
both players higher payoffs than the Nash equilibrium effort levels?

2.8.4 Illustration: contributing to a public good

Exercise 31.1 models decisions on whether to contribute to the provision of a “pub-
lic good”. We now study a model in which two people decide not only whether to
contribute, but also how much to contribute.

Denote person i’s wealth by wi, and the amount she contributes to the public
good by ci (0 ≤ ci ≤ wi); she spends her remaining wealth wi − ci on “private
goods” (like clothes and food, whose consumption by one person precludes their
consumption by anyone else). The amount of the public good is equal to the sum
of the contributions. Each person cares both about the amount of the public good
and her consumption of private goods.

Suppose that person i’s preferences are represented by the payoff function vi(c1 +
c2) + wi − ci. Because wi is a constant, person i’s preferences are alternatively
represented by the payoff function

ui(c1, c2) = vi(c1 + c2) − ci.

This situation is modeled by the following strategic game.

Players The two people.

Actions Player i’s set of actions is the set of her possible contributions (non-
negative numbers less than or equal to wi), for i = 1, 2.

Preferences Player i’s preferences are represented by the payoff function ui(c1, c2) =
vi(c1 + c2) − ci, for i = 1, 2.
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To find the Nash equilibria of this strategic game, consider the players’ best
response functions. Player 1’s best response to the contribution c2 of player 2 is
the value of c1 that maximizes v1(c1 + c2) − c1. Without specifying the form of
the function v1 we cannot explicitly calculate this optimal value. However, we can
determine how it varies with c2.

First consider player 1’s best response to c2 = 0. Suppose that the form of
the function v1 is such that the function u1(c1, 0) increases up to its maximum,
then decreases (as in Figure 41.1). Then player 1’s best response to c2 = 0, which
I denote b1(0), is unique. This best response is the value of c1 that maximizes
u1(c1, 0) = v1(c1) − c1 subject to 0 ≤ c1 ≤ w1. Assume that 0 < b1(0) < w1:
player 1’s optimal contribution to the public good when player 2 makes no contri-
bution is positive and less than her entire wealth.

Now consider player 1’s best response to c2 = k > 0. This best response is the
value of c1 that maximizes u1(c1, k) = v1(c1 + k) − c1. Now, we have

u1(c1, k) = u1(c1 + k, 0) + k.

That is, the graph of u1(c1, k) as a function of c1 is the translation to the left k units
and up k units of the graph of u1(c1, 0) as a function of c1 (refer to Figure 41.1).
Thus if k ≤ b1(0) then b1(k) = b1(0)− k: if player 2’s contribution increases from 0
to k then player 1’s best response decreases by k. If k > b1(0) then, given the form
of u1(c1, 0), we have b1(k) = 0.

k
k

0 w1b1(0)b1(k) c1 →

u1(c1, k)

u1(c1, 0)

Figure 41.1 The relation between player 1’s best responses b1(0) and b1(k) to c2 = 0 and c2 = k in the
game of contributing to a public good.

We conclude that if player 2 increases her contribution by k then player 1’s best
response is to reduce her contribution by k (or to zero, if k is larger than player 1’s
original contribution)!

The same analysis applies to player 2: for every unit more that player 1 con-
tributes, player 2 contributes a unit less, so long as her contribution is nonnegative.
The function v2 may be different from the function v1, so that player 1’s best contri-
bution b1(0) when c2 = 0 may be different from player 2’s best contribution b2(0)
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0 c1 →

↑
c2

b1(0)

b1(0)

b2(0)

b2(0)

b1(c2)

b2(c1)

Figure 42.1 The best response functions for the game of contributing to a public good in Section 2.8.4
in a case in which b1(0) > b2(0). The best response function of player 1 is the black line; that of player 2
is the gray line.

when c1 = 0. But both best response functions have the same character: the slope
of each function is −1 where the value of the function is positive. They are shown
in Figure 42.1 for a case in which b1(0) > b2(0).

We deduce that if b1(0) > b2(0) then the game has a unique Nash equilibrium,
(b1(0), 0): player 2 contributes nothing. Similarly, if b1(0) < b2(0) then the unique
Nash equilibrium is (0, b2(0)): player 1 contributes nothing. That is, the person
who contributes more when the other person contributes nothing is the only one
to make a contribution in a Nash equilibrium. Only if b1(0) = b2(0), which is not
likely if the functions v1 and v2 differ, is there an equilibrium in which both people
contribute. In this case the downward-sloping parts of the best response functions
coincide, so that any pair of contributions (c1, c2) with c1 + c2 = b1(0) and ci ≥ 0
for i = 1, 2 is a Nash equilibrium.

In summary, the notion of Nash equilibrium predicts that, except in unusual
circumstances, only one person contributes to the provision of the public good
when each person’s payoff function takes the form vi(c1 + c2) + wi − ci, each func-
tion vi(ci)− ci increases to a maximum, then decreases, and each person optimally
contributes less than her entire wealth when the other person does not contribute.
The person who contributes is the one who wishes to contribute more when the
other person does not contribute. In particular, the identity of the person who
contributes does not depend on the distribution of wealth; any distribution in
which each person optimally contributes less than her entire wealth when the other
person does not contribute leads to the same outcome.

The next exercise asks you to consider a case in which the amount of the public
good affects each person’s enjoyment of the private good. (The public good might
be clean air, which improves each person’s enjoyment of her free time.)

? EXERCISE 42.1 (Contributing to a public good) Consider the model in this section
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when ui(c1, c2) is the sum of three parts: the amount c1 + c2 of the public good
provided, the amount wi − ci person i spends on private goods, and a term (wi −
ci)(c1 + c2) that reflects an interaction between the amount of the public good and
her private consumption—the greater the amount of the public good, the more she
values her private consumption. In summary, suppose that person i’s payoff is
c1 + c2 + wi − ci + (wi − ci)(c1 + c2), or

wi + cj + (wi − ci)(c1 + c2),

where j is the other person. Assume that w1 = w2 = w, and that each player i’s
contribution ci may be any number (positive or negative, possibly larger than w).
Find the Nash equilibrium of the game that models this situation. (You can cal-
culate the best responses explicitly. Imposing the sensible restriction that ci lie
between 0 and w complicates the analysis, but does not change the answer.) Show
that in the Nash equilibrium both players are worse off than they are when they
both contribute one half of their wealth to the public good. If you can, extend the
analysis to the case of n people. As the number of people increases, how does the
total amount contributed in a Nash equilibrium change? Compare the players’
equilibrium payoffs with their payoffs when each contributes half her wealth to
the public good, as n increases without bound. (The game is studied further in
Exercise 358.3.)

2.9 Dominated actions

2.9.1 Strict domination

You drive up to a red traffic light. The left lane is free; in the right lane there is a
car that may turn right when the light changes to green, in which case it will have
to wait for a pedestrian to cross the side street. Assuming you wish to progress
as quickly as possible, the action of pulling up in the left lane “strictly dominates”
that of pulling up in the right lane. If the car in the right lane turns right then you
are much better off in the left lane, where your progress will not be impeded; and
even if the car in the right lane does not turn right, you are still better off in the left
lane, rather than behind the other car.

In any game, a player’s action “strictly dominates” another action if it is supe-
rior, no matter what the other players do.

� DEFINITION 43.1 (Strict domination) In a strategic game with ordinal preferences,
player i’s action a′′i strictly dominates her action a′i if

ui(a′′i , a−i) > ui(a′i , a−i) for every list a−i of the other players’ actions,

where ui is a payoff function that represents player i’s preferences.

In the Prisoner’s Dilemma, for example, the action Fink strictly dominates the
action Quiet: regardless of her opponent’s action, a player prefers the outcome
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when she chooses Fink to the outcome when she chooses Quiet. In BoS, on the other
hand, neither action strictly dominates the other: Bach is better than Stravinsky
if the other player chooses Bach, but is worse than Stravinsky if the other player
chooses Stravinsky.

If an action strictly dominates the action ai, we say that ai is strictly dominated.
A strictly dominated action is not a best response to any actions of the other play-
ers: whatever the other players do, some other action is better. Since a player’s
Nash equilibrium action is a best response to the other players’ Nash equilibrium
actions,

a strictly dominated action is not used in any Nash equilibrium.

When looking for the Nash equilibria of a game, we can thus eliminate from con-
sideration all strictly dominated actions. For example, we can eliminate Quiet for
each player in the Prisoner’s Dilemma, leaving (Fink, Fink) as the only candidate for
a Nash equilibrium. (As we know, this action pair is indeed a Nash equilibrium.)

The fact that the action a′′i strictly dominates the action a′i of course does not
imply that a′′i strictly dominates all actions. Indeed, a′′i may itself be strictly dom-
inated. In the left-hand game in Figure 44.1, for example, M strictly dominates T,
but B is better than M if player 2 chooses R. (I give only the payoffs of player 1
in the figure, because those of player 2 are not relevant.) Since T is strictly domi-
nated, the game has no Nash equilibrium in which player 1 uses it; but the game
may also not have any equilibrium in which player 1 uses M. In the right-hand
game, M strictly dominates T, but is itself strictly dominated by B. In this case,
in any Nash equilibrium player 1’s action is B (her only action that is not strictly
dominated).

L R
T 1 0

M 2 1
B 1 3

L R
T 1 0

M 2 1
B 3 2

Figure 44.1 Two games in which player 1’s action T is strictly dominated by M. (Only player 1’s
payoffs are given.) In the left-hand game, B is better than M if player 2 chooses R; in the right-hand
game, M itself is strictly dominated, by B.

A strictly dominated action is incompatible not only with a steady state, but
also with rational behavior by a player who confronts a game for the first time.
This fact is the first step in a theory different from Nash equilibrium, explored in
Chapter 12.

2.9.2 Weak domination

As you approach the red light in the situation at the start of the previous section,
there is a car in each lane. The car in the right lane may, or may not, be turning
right; if it is, it may be delayed by a pedestrian crossing the side street. The car in
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the left lane cannot turn right. In this case your pulling up in the left lane “weakly
dominates”, though does not strictly dominate, your pulling up in the right lane.
If the car in the right lane does not turn right, then both lanes are equally good; if
it does, then the left lane is better.

In any game, a player’s action “weakly dominates” another action if the first
action is at least as good as the second action, no matter what the other players do,
and is better than the second action for some actions of the other players.

� DEFINITION 45.1 (Weak domination) In a strategic game with ordinal preferences,
player i’s action a′′i weakly dominates her action a′i if

ui(a′′i , a−i) ≥ ui(a′i, a−i) for every list a−i of the other players’ actions

and

ui(a′′i , a−i) > ui(a′i , a−i) for some list a−i of the other players’ actions,

where ui is a payoff function that represents player i’s preferences.

For example, in the game in Figure 45.1 (in which, once again, only player 1’s
payoffs are given), M weakly dominates T, and B weakly dominates M; B strictly
dominates T.

L R
T 1 0

M 2 0
B 2 1

Figure 45.1 A game illustrating weak domination. (Only player 1’s payoffs are given.) The action M
weakly dominates T; B weakly dominates M. The action B strictly dominates T.

In a strict Nash equilibrium (Section 2.7.8) no player’s equilibrium action is
weakly dominated: every non-equilibrium action for a player yields her a payoff
less than does her equilibrium action, and hence does not weakly dominate the
equilibrium action.

Can an action be weakly dominated in a nonstrict Nash equilibrium? Defi-
nitely. Consider the games in Figure 46.1. In both games B weakly (but not strictly)
dominates C for both players. But in both games (C, C) is a Nash equilibrium:
given that player 2 chooses C, player 1 cannot do better than choose C, and given
that player 1 chooses C, player 2 cannot do better than choose C. Both games also
have a Nash equilibrium, (B, B), in which neither player’s action is weakly dom-
inated. In the left-hand game this equilibrium is better for both players than the
equilibrium (C, C) in which both players’ actions are weakly dominated, whereas
in the right-hand game it is worse for both players than (C, C).

? EXERCISE 45.2 (Strict equilibria and dominated actions) For the game in Figure 46.2,
determine, for each player, whether any action is strictly dominated or weakly
dominated. Find the Nash equilibria of the game; determine whether any equilib-
rium is strict.
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B C
B 1, 1 0, 0
C 0, 0 0, 0

B C
B 1, 1 2, 0
C 0, 2 2, 2

Figure 46.1 Two strategic games with a Nash equilibrium (C, C) in which both players’ actions are
weakly dominated.

L C R
T 0, 0 1, 0 1, 1

M 1, 1 1, 1 3, 0
B 1, 1 2, 1 2, 2

Figure 46.2 The game in Exercise 45.2.

? EXERCISE 46.1 (Nash equilibrium and weakly dominated actions) Give an exam-
ple of a two-player strategic game in which each player has finitely many actions
and in the only Nash equilibrium both players’ actions are weakly dominated.

2.9.3 Illustration: voting

Two candidates, A and B, vie for office. Each of an odd number of citizens may
vote for either candidate. (Abstention is not possible.) The candidate who obtains
the most votes wins. (Because the number of citizens is odd, a tie is impossible.) A
majority of citizens prefer A to win than B to win.

The following strategic game models the citizens’ voting decisions in this situ-
ation.

Players The citizens.

Actions Each player’s set of actions consists of voting for A and voting for B.

Preferences All players are indifferent between all action profiles in which a
majority of players vote for A and between all action profiles in which a
majority of players vote for B. Some players (a majority) prefer an action
profile of the first type to one of the second type, and the others have the
reverse preference.

I claim that a citizen’s voting for her less preferred candidate is weakly domi-
nated by her voting for her favorite candidate. Suppose that citizen i prefers candi-
date A; fix the votes of all citizens other than i. If citizen i switches from voting for
B to voting for A then, depending on the other citizens’ votes, either the outcome
does not change, or A wins rather than B; such a switch cannot cause the winner
to change from A to B. That is, citizen i’s switching from voting for B to voting for
A either has no effect on the outcome, or makes her better off; it cannot make her
worse off.
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The game has Nash equilibria in which some, or all, citizens’ actions are weakly
dominated. For example, the action profile in which all citizens vote for B is a Nash
equilibrium (no citizen’s switching her vote has any effect on the outcome).

? EXERCISE 47.1 (Voting) Find all the Nash equilibria of the game. (First consider
action profiles in which the winner obtains one more vote than the loser and at least
one citizen who votes for the winner prefers the loser to the winner, then profiles in
which the winner obtains one more vote than the loser and all citizens who vote for
the winner prefer the winner to the loser, and finally profiles in which the winner
obtains three or more votes more than the loser.) Is there any equilibrium in which
no player uses a weakly dominated action?

Consider a variant of the game in which the number of candidates is greater
than two. A variant of the argument above shows that a citizen’s action of voting
for her least preferred candidate is weakly dominated by all her other actions. The
next exercise asks you to show that no other action is weakly dominated.

? EXERCISE 47.2 (Voting between three candidates) Suppose there are three candi-
dates, A, B, and C. A tie for first place is possible in this case; assume that a citizen
who prefers a win by x to a win by y ranks a tie between x and y between an
outright win for x and an outright win for y. Show that a citizen’s only weakly
dominated action is a vote for her least preferred candidate. Find a Nash equilib-
rium in which some citizen does not vote for her favorite candidate, but the action
she takes is not weakly dominated.

? EXERCISE 47.3 (Approval voting) In the system of “approval voting”, a citizen may
vote for as many candidates as she wishes. If there are two candidates, say A and
B, for example, a citizen may vote for neither candidate, for A, for B, or for both
A and B. As before, the candidate who obtains the most votes wins. Show that
any action that includes a vote for a citizen’s least preferred candidate is weakly
dominated, as is any action that does not include a vote for her most preferred
candidate. More difficult: show that if there are k candidates then for a citizen who
prefers candidate 1 to candidate 2 to . . . to candidate k the action that consists of
votes for candidates 1 and k − 1 is not weakly dominated.

2.9.4 Illustration: collective decision-making

The members of a group of people are affected by a policy, modeled as a number.
Each person i has a favorite policy, denoted x∗

i ; she prefers the policy y to the
policy z if and only if y is closer to x∗

i than is z. The number n of people is odd.
The following mechanism is used to choose a policy: each person names a policy,
and the policy chosen is the median of those named. (That is, the policies named
are put in order, and the one in the middle is chosen. If, for example, there are
five people, and they name the policies −2, 0, 0.6, 5, and 10, then the policy 0.6 is
chosen.)
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What outcome does this mechanism induce? Does anyone have an incentive
to name her favorite policy, or are people induced to distort their preferences? We
can answer these questions by studying the following strategic game.

Players The n people.

Actions Each person’s set of actions is the set of policies (numbers).

Preferences Each person i prefers the action profile a to the action profile a′ if
and only if the median policy named in a is closer to x∗

i than is the median
policy named in a′.

I claim that for each player i, the action of naming her favorite policy x∗
i weakly

dominates all her other actions. The reason is that relative to the situation in which
she names x∗

i , she can change the median only by naming a policy further from her
favorite policy than the current median; no change in the policy she names moves
the median closer to her favorite policy.

Precisely, I show that for each action xi 	= x∗
i of player i, (a) for all actions of

the other players, player i is at least as well off naming x∗
i as she is naming xi,

and (b) for some actions of the other players she is better off naming x∗
i than she is

naming xi. Take xi > x∗
i .

a. For any list of actions of the players other than player i, denote the value of
the 1

2 (n − 1)th highest action by a and the value of the 1
2 (n + 1)th highest

action by a (so that half of the remaining players’ actions are at most a and
half of them are at least a).

• If a ≤ x∗
i or a ≥ xi then the median policy is the same whether player i

names x∗
i or xi.

• If a > x∗
i and a < xi then when player i names x∗

i the median policy is
at most the greater of x∗

i and a and when player i names xi the median
policy is at least the lesser of xi and a. Thus player i is worse off naming
xi than she is naming x∗

i .

b. Suppose that half of the remaining players name policies less than x∗
i and

half of them name policies greater than xi. Then the outcome is x∗
i if player i

names x∗
i , and xi if she names xi. Thus she is better off naming x∗

i than she is
naming xi.

A symmetric argument applies when xi < x∗
i .

If we think of the mechanism as asking the players to name their favorite
policies, then the result is that telling the truth weakly dominates all other actions.

An implication of the fact that player i’s naming her favorite policy x∗
i weakly

dominates all her other actions is that the action profile in which every player
names her favorite policy is a Nash equilibrium. That is, truth-telling is a Nash
equilibrium, in the interpretation of the previous paragraph.
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? EXERCISE 49.1 (Other Nash equilibria of the game modeling collective decision-
making) Find two Nash equilibria in which the outcome is the median favorite
policy, and one in which it is not.

? EXERCISE 49.2 (Another mechanism for collective decision-making) Consider the
variant of the mechanism for collective decision-making described above in which
the policy chosen is the mean, rather than the median, of the policies named by the
players. Does a player’s action of naming her favorite policy weakly dominate all
her other actions?

2.10 Equilibrium in a single population: symmetric games and symmetric

equilibria

A Nash equilibrium of a strategic game corresponds to a steady state of an in-
teraction between the members of several populations, one for each player in the
game, each play of the game involving one member of each population. Some-
times we want to model a situation in which the members of a single homogeneous
population are involved anonymously in a symmetric interaction. Consider, for
example, pedestrians approaching each other on a sidewalk or car drivers arriv-
ing simultaneously at an intersection from different directions. In each case, the
members of each encounter are drawn from the same population: pairs from a
single population of pedestrians meet each other, and groups from a single pop-
ulation of car drivers simultaneously approach intersections. And in each case,
every participant’s role is the same.

I restrict attention here to cases in which each interaction involves two partic-
ipants. Define a two-player game to be “symmetric” if each player has the same
set of actions and each player’s evaluation of an outcome depends only on her
action and that of her opponent, not on whether she is player 1 or player 2. That
is, player 1 feels the same way about the outcome (a1, a2), in which her action is
a1 and her opponent’s action is a2, as player 2 feels about the outcome (a2, a1), in
which her action is a1 and her opponent’s action is a2. In particular, the players’
preferences may be represented by payoff functions in which both players’ payoffs
are the same whenever the players choose the same action: u1(a, a) = u2(a, a) for
every action a.

� DEFINITION 49.3 (Symmetric two-player strategic game with ordinal preferences) A
two-player strategic game with ordinal preferences is symmetric if the players’
sets of actions are the same and the players’ preferences are represented by payoff
functions u1 and u2 for which u1(a1, a2) = u2(a2, a1) for every action pair (a1, a2).

A two-player game in which each player has two actions is symmetric if the
players’ preferences are represented by payoff functions that take the form shown
in Figure 50.1, where w, x, y, and z are arbitrary numbers. Several of the two-player
games we have considered are symmetric, including the Prisoner’s Dilemma, the
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two-player Stag Hunt (given again in Figure 50.2), and the game in Exercise 36.2.
BoS (Figure 16.1) and Matching Pennies (Figure 17.1) are not symmetric.

A B
A w, w x, y
B y, x z, z

Figure 50.1 A two-player symmetric game.

Quiet Fink
Quiet 2, 2 0, 3
Fink 3, 0 1, 1

Stag Hare
Stag 2, 2 0, 1
Hare 1, 0 1, 1

Figure 50.2 Two symmetric games: the Prisoner’s Dilemma (left) and the two-player Stag Hunt (right).

? EXERCISE 50.1 (Symmetric strategic games) Which of the games in Exercises 29.1
and 40.1, Example 37.1, Section 2.8.4, and Figure 46.1 are symmetric?

When the players in a symmetric two-player game are drawn from a single
population, nothing distinguishes one of the players in any given encounter from
the other. We may call them “player 1” and “player 2”, but these labels are only
for our convenience. There is only one role in the game, so that a steady state is
characterized by a single action used by every participant whenever playing the
game. An action a∗ corresponds to such a steady state if no player can do better by
using any other action, given that all the other players use a∗. An action a∗ has this
property if and only if (a∗ , a∗) is a Nash equilibrium of the game. In other words,
the solution that corresponds to a steady state of pairwise interactions between the
members of a single population is “symmetric Nash equilibrium”: a Nash equi-
librium in which both players take the same action. The idea of this notion of
equilibrium does not depend on the game’s having only two players, so I give a
definition for a game with any number of players.

� DEFINITION 50.2 (Symmetric Nash equilibrium) An action profile a∗ in a strategic
game with ordinal preferences in which each player has the same set of actions is
a symmetric Nash equilibrium if it is a Nash equilibrium and a∗i is the same for
every player i.

As an example, consider a model of approaching pedestrians. Each participant
in any given encounter has two possible actions—to step to the right, and to step
to the left—and is better off when participants both step in the same direction
than when they step in different directions (in which case a collision occurs). The
resulting symmetric strategic game is given in Figure 51.1. The game has two
symmetric Nash equilibria, namely (Left, Left) and (Right, Right). That is, there
are two steady states, in one of which every pedestrian steps to the left as she



Notes 51

Left Right
Left 1, 1 0, 0

Right 0, 0 1, 1

Figure 51.1 Approaching pedestrians.

approaches another pedestrian, and in another of which both participants step to
the right. (The latter steady state seems to prevail in the USA and Canada.)

A symmetric game may have no symmetric Nash equilibrium. Consider, for
example, the game in Figure 51.2. This game has two Nash equilibria, (X, Y) and
(Y, X), neither of which is symmetric. You may wonder if, in such a situation, there
is a steady state in which each player does not always take the same action in every
interaction. This question is addressed in Section 4.7.

X Y
X 0, 0 1, 1
Y 1, 1 0, 0

Figure 51.2 A symmetric game with no symmetric Nash equilibrium.

? EXERCISE 51.1 (Equilibrium for pairwise interactions in a single population) Find
all the Nash equilibria of the game in Figure 51.3. Which of the equilibria, if any,
correspond to a steady state if the game models pairwise interactions between the
members of a single population?

A B C
A 1, 1 2, 1 4, 1
B 1, 2 5, 5 3, 6
C 1, 4 6, 3 0, 0

Figure 51.3 The game in Exercise 51.1.

Notes

The notion of a strategic game originated in the work of Borel (1921) and von
Neumann (1928). The notion of Nash equilibrium (and its interpretation) is due
to Nash (1950a). (The idea that underlies it goes back at least to Cournot (1838,
Ch. 7).)

The Prisoner’s Dilemma appears to have first been considered by Melvin Dresher
and Merrill Flood, who used it in an experiment at the RAND Corporation in Jan-
uary 1950 (Flood 1958/59, 11–17); it is an example in Nash’s PhD thesis, submit-
ted in May 1950. The story associated with it is due to Tucker (1950) (see Straf-
fin 1980). O’Neill (1994, 1010–1013) argues that there is no evidence that game the-
ory (and in particular the Prisoner’s Dilemma) influenced US nuclear strategists in
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the 1950s. The idea that a common property will be overused is very old (in West-
ern thought, it goes back at least to Aristotle (Ostrom 1990, 2)); a precise modern
analysis was initiated by Gordon (1954). Hardin (1968) coined the phrase “tragedy
of the commons”.

BoS, like the Prisoner’s Dilemma, is an example in Nash’s PhD thesis; Luce and
Raiffa (1957, 90–91) name it and associate a story with it. Matching Pennies was
first considered by von Neumann (1928). Rousseau’s sentence about hunting stags
is interpreted as a description of a game by Ullmann-Margalit (1977, 121) and
Jervis (1977/78), following discussion by Waltz (1959, 167–169) and Lewis (1969, 7,
47).

The information about John Nash in the box on p. 20 comes from Leonard (1994),
Kuhn et al. (1995), Kuhn (1996), Myerson (1996), Nasar (1998), and Nash (1995).
Hawk–Dove is known also as “Chicken” (two drivers approach each other on a
narrow road; the one who pulls over first is “chicken”). It was first suggested
(in a more complicated form) as a model of animal conflict by Maynard Smith
and Price (1973). The discussion of focal points in the box on p. 30 draws on
Schelling (1960, 54–58).

Games modeling voluntary contributions to a public good were first consid-
ered by Olson (1965, Section I.D). The game in Exercise 31.1 is studied in detail by
Palfrey and Rosenthal (1984). The result in Section 2.8.4 is due to Warr (1983) and
Bergstrom, Blume, and Varian (1986).

Game theory was first used to study voting behavior by Farquharson (1969)
(whose book was completed in 1958). The system of “approval voting” in Exer-
cise 47.3 was first studied formally by Brams and Fishburn (1978, 1983).

Exercise 16.1 is based on Leonard (1990). Exercise 25.2 is based on Ullmann-
Margalit (1977, 48). The game in Exercise 28.2 is taken from Van Huyck, Bat-
talio, and Beil (1990). The game in Exercise 32.1 is taken from Moulin (1986, 72).
The game in Exercise 32.2 was first studied by Palfrey and Rosenthal (1983). Ex-
ercise 32.3 is based on Braess (1968); see also Murchland (1970). The game in
Exercise 36.2 is taken from Brams (1993).
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3 Nash Equilibrium: Illustrations
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IN THIS CHAPTER I discuss in detail a few key models that use the notion of Nash
equilibrium to study economic, political, and biological phenomena. The dis-

cussion shows how the notion of Nash equilibrium improves our understanding of
a wide variety of phenomena. It also illustrates some of the many forms strategic
games and their Nash equilibria can take. The models in Sections 3.1 and 3.2 are
related to each other, whereas those in each of the other sections are independent
of each other.

3.1 Cournot’s model of oligopoly

3.1.1 Introduction

How does the outcome of competition among the firms in an industry depend on
the characteristics of the demand for the firms’ output, the nature of the firms’ cost
functions, and the number of firms? Will the benefits of technological improve-
ments be passed on to consumers? Will a reduction in the number of firms gener-
ate a less desirable outcome? To answer these questions we need a model of the
interaction between firms competing for the business of consumers. In this section
and the next I analyze two such models. Economists refer to them as models of
“oligopoly” (competition between a small number of sellers), though they involve
no restriction on the number of firms; the label reflects the strategic interaction
they capture. Both models were studied first in the nineteenth century, before the
notion of Nash equilibrium was formalized for a general strategic game. The first
is due to the economist Cournot (1838).

53
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3.1.2 General model

A single good is produced by n firms. The cost to firm i of producing qi units of
the good is Ci(qi), where Ci is an increasing function (more output is more costly
to produce). All the output is sold at a single price, determined by the demand for
the good and the firms’ total output. Specifically, if the firms’ total output is Q then
the market price is P(Q); P is called the “inverse demand function”. Assume that
P is a decreasing function when it is positive: if the firms’ total output increases,
then the price decreases (unless it is already zero). If the output of each firm i is
qi, then the price is P(q1 + · · · + qn), so that firm i’s revenue is qiP(q1 + · · · + qn).
Thus firm i’s profit, equal to its revenue minus its cost, is

πi(q1, . . . , qn) = qiP(q1 + · · · + qn) − Ci(qi). (54.1)

Cournot suggested that the industry be modeled as the following strategic
game, which I refer to as Cournot’s oligopoly game.

Players The firms.

Actions Each firm’s set of actions is the set of its possible outputs (nonnegative
numbers).

Preferences Each firm’s preferences are represented by its profit, given in (54.1).

3.1.3 Example: duopoly with constant unit cost and linear inverse demand function

For specific forms of the functions Ci and P we can compute a Nash equilibrium
of Cournot’s game. Suppose there are two firms (the industry is a “duopoly”),
each firm’s cost function is the same, given by Ci(qi) = cqi for all qi (“unit cost” is
constant, equal to c), and the inverse demand function is linear where it is positive,
given by

P(Q) =
{

α − Q if Q ≤ α

0 if Q > α,
(54.2)

where α > 0 and c ≥ 0 are constants. This inverse demand function is shown in
Figure 55.1. (Note that the price P(Q) cannot be equal to α − Q for all values of Q,
for then it would be negative for Q > α.) Assume that c < α, so that there is some
value of total output Q for which the market price P(Q) is greater than the firms’
common unit cost c. (If c were to exceed α, there would be no output for the firms
at which they could make any profit, because the market price never exceeds α.)

To find the Nash equilibria in this example, we can use the procedure based on
the firms’ best response functions (Section 2.8.3). First we need to find the firms’
payoffs (profits). If the firms’ outputs are q1 and q2 then the market price P(q1 + q2)
is α − q1 − q2 if q1 + q2 ≤ α and zero if q1 + q2 > α. Thus firm 1’s profit is

π1(q1, q2) = q1(P(q1 + q2) − c)

=
{

q1(α − c − q1 − q2) if q1 + q2 ≤ α

−cq1 if q1 + q2 > α.
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0 Q →

↑
P(Q) α

α

Figure 55.1 The inverse demand function in the example of Cournot’s game studied in Section 3.1.3.

To find firm 1’s best response to any given output q2 of firm 2, we need to study
firm 1’s profit as a function of its output q1 for given values of q2. If q2 = 0 then
firm 1’s profit is π1(q1, 0) = q1(α − c − q1) for q1 ≤ α, a quadratic function that
is zero when q1 = 0 and when q1 = α − c. This function is the black curve in
Figure 56.1. Given the symmetry of quadratic functions (Section 17.4), the output
q1 of firm 1 that maximizes its profit is q1 = 1

2 (α − c). (If you know calculus,
you can reach the same conclusion by setting the derivative of firm 1’s profit with
respect to q1 equal to zero and solving for q1.) Thus firm 1’s best response to an
output of zero for firm 2 is b1(0) = 1

2 (α − c).
As the output q2 of firm 2 increases, the profit firm 1 can obtain at any given

output decreases, because more output of firm 2 means a lower price. The gray
curve in Figure 56.1 is an example of π1(q1, q2) for q2 > 0 and q2 < α − c. Again
this function is a quadratic up to the output q1 = α − q2 that leads to a price of
zero. Specifically, the quadratic is π1(q1, q2) = q1(α − c − q2 − q1), which is zero
when q1 = 0 and when q1 = α − c − q2. From the symmetry of quadratic functions
(or some calculus) we conclude that the output that maximizes π1(q1, q2) is q1 =
1
2 (α− c− q2). (When q2 = 0, this is equal to 1

2 (α− c), the best response to an output
of zero that we found in the previous paragraph.)

When q2 > α − c, the value of α − c − q2 is negative. Thus for such a value of
q2, we have q1(α − c − q2 − q1) < 0 for all positive values of q1: firm 1’s profit is
negative for any positive output, so that its best response is to produce the output
of zero.

We conclude that the best response of firm 1 to the output q2 of firm 2 depends
on the value of q2: if q2 ≤ α− c then firm 1’s best response is 1

2 (α− c− q2), whereas
if q2 > α − c then firm 1’s best response is 0. Or, more compactly,

b1(q2) =
{ 1

2 (α − c − q2) if q2 ≤ α − c
0 if q2 > α − c.

Because firm 2’s cost function is the same as firm 1’s, its best response function
b2 is also the same: for any number q, we have b2(q) = b1(q). Of course, firm 2’s



56 Chapter 3. Nash Equilibrium: Illustrations

0

↑
π1(q1, q2)

q1 →

q2 = 0

q2 > 0

α

α − c
α − c − q2

α−c
2

α−c−q2
2

Figure 56.1 Firm 1’s profit as a function of its output, given firm 2’s output. The black curve shows the
case q2 = 0, whereas the gray curve shows a case in which q2 > 0.

best response function associates a value of firm 2’s output with every output of
firm 1, whereas firm 1’s best response function associates a value of firm 1’s out-
put with every output of firm 2, so we plot them relative to different axes. They
are shown in Figure 56.2 (b1 is black; b2 is gray). As for a general game (see Sec-
tion 2.8.3), b1 associates each point on the vertical axis with a point on the hori-
zontal axis, and b2 associates each point on the horizontal axis with a point on the
vertical axis.

0 α−c
3

α−c
2

α − c

α−c
3

α−c
2

α − c

↑
q2

q1 →

b1(q2)

b2(q1)

(q∗1, q∗2)

Figure 56.2 The best response functions in Cournot’s duopoly game when the inverse demand func-
tion is given by (54.2) and the cost function of each firm is cq. The unique Nash equilibrium is
(q∗1, q∗2) = ( 1

3 (α − c), 1
3 (α − c)).
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A Nash equilibrium is a pair (q∗1, q∗2) of outputs for which q∗1 is a best response
to q∗2, and q∗2 is a best response to q∗1:

q∗1 = b1(q∗2) and q∗2 = b2(q∗1)

(see (34.3)). The set of such pairs is the set of points at which the best response
functions in Figure 56.2 intersect. From the figure we see that there is exactly one
such point, which is given by the solution of the two equations

q1 = 1
2 (α − c − q2)

q2 = 1
2 (α − c − q1).

Solving these two equations (by substituting the second into the first and then
isolating q1, for example) we find that q∗1 = q∗2 = 1

3 (α − c).
In summary, when there are two firms, the inverse demand function is given

by P(Q) = α − Q for Q ≤ α, and the cost function of each firm is Ci(qi) = cqi,
Cournot’s oligopoly game has a unique Nash equilibrium (q∗1, q∗2) = ( 1

3 (α − c),
1
3 (α − c)). The total output in this equilibrium is 2

3 (α− c), so that the price at which
output is sold is P( 2

3 (α − c)) = 1
3 (α + 2c). As α increases (meaning that consumers

are willing to pay more for the good), the equilibrium price and the output of each
firm increases. As c (the unit cost of production) increases, the output of each
firm falls and the price rises; each unit increase in c leads to a two-thirds of a unit
increase in the price.

? EXERCISE 57.1 (Cournot’s duopoly game with linear inverse demand and different
unit costs) Find the Nash equilibrium of Cournot’s game when there are two firms,
the inverse demand function is given by (54.2), the cost function of each firm i is
Ci(qi) = ciqi, where c1 > c2, and c1 < α. (There are two cases, depending on
the size of c1 relative to c2.) Which firm produces more output in an equilibrium?
What is the effect of technical change that lowers firm 2’s unit cost c2 (while not
affecting firm 1’s unit cost c1) on the firms’ equilibrium outputs, the total output,
and the price?

? EXERCISE 57.2 (Cournot’s duopoly game with linear inverse demand and a quadratic
cost function) Find the Nash equilibrium of Cournot’s game when there are two
firms, the inverse demand function is given by (54.2), and the cost function of each
firm i is Ci(qi) = q2

i .

In the next exercise each firm’s cost function has a component that is indepen-
dent of output. You will find in this case that Cournot’s game may have more than
one Nash equilibrium.

? EXERCISE 57.3 (Cournot’s duopoly game with linear inverse demand and a fixed
cost) Find the Nash equilibria of Cournot’s game when there are two firms, the
inverse demand function is given by (54.2), and the cost function of each firm i is
given by

Ci(qi) =
{

0 if qi = 0
f + cqi if qi > 0,



58 Chapter 3. Nash Equilibrium: Illustrations

where c ≥ 0, f > 0, and c < α. (Note that the fixed cost f affects only the firm’s
decision of whether or not to operate; it does not affect the output a firm wishes to
produce if it wishes to operate.)

So far we have assumed that each firm’s objective is to maximize its profit.
The next exercise asks you to consider a case in which one firm’s objective is to
maximize its market share.

? EXERCISE 58.1 (Variant of Cournot’s game, with market-share maximizing firms)
Find the Nash equilibrium (equilibria?) of a variant of the example of Cournot’s
duopoly game that differs from the one in this section (linear inverse demand,
constant unit cost) only in that one of the two firms chooses its output to maximize
its market share subject to not making a loss, rather than to maximize its profit.
What happens if each firm maximizes its market share?

3.1.4 Properties of Nash equilibrium

Two economically interesting properties of a Nash equilibrium of Cournot’s game
concern the relation between the firms’ equilibrium profits and the profits they
could obtain if they acted collusively, and the character of an equilibrium when
the number of firms is large.

Comparison of Nash equilibrium with collusive outcomes In Cournot’s game with two
firms, is there any pair of outputs at which both firms’ profits exceed their levels in
a Nash equilibrium? The next exercise asks you to show that the answer is “yes”
in the example considered in the previous section. Specifically, both firms can
increase their profits relative to their equilibrium levels by reducing their outputs.

? EXERCISE 58.2 (Nash equilibrium of Cournot’s duopoly game and collusive out-
comes) Find the total output (call it Q∗) that maximizes the firms’ total profit in
Cournot’s game when there are two firms and the inverse demand function and
cost functions take the forms assumed Section 3.1.3. Compare 1

2 Q∗ with each firm’s
output in the Nash equilibrium, and show that each firm’s equilibrium profit is less
than its profit in the “collusive” outcome in which each firm produces 1

2 Q∗. Why
is this collusive outcome not a Nash equilibrium?

The same is true more generally. For nonlinear inverse demand functions and
cost functions, the shapes of the firms’ best response functions differ, in general,
from those in the example studied in the previous section. But for many inverse
demand functions and cost functions the game has a Nash equilibrium and, for
any equilibrium, there are pairs of outputs in which each firm’s output is less than
its equilibrium level and each firm’s profit exceeds its equilibrium level.

To see why, suppose that (q∗1, q∗2) is a Nash equilibrium and consider the set of
pairs (q1, q2) of outputs at which firm 1’s profit is at least its equilibrium profit.
The assumption that P is decreasing (higher total output leads to a lower price)
implies that if (q1, q2) is in this set and q′2 < q2 then (q1, q′2) is also in the set. (We
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have q1 + q′2 < q1 + q2, and hence P(q1 + q′2) > P(q1 + q2), so that firm 1’s profit at
(q1, q′2) exceeds its profit at (q1, q2).) Thus in Figure 59.1 the set of pairs of outputs
at which firm 1’s profit is at least its equilibrium profit lies on or below the line
q2 = q∗2; an example of such a set is shaded light gray. Similarly, the set of pairs of
outputs at which firm 2’s profit is at least its equilibrium profit lies on or to the left
of the line q1 = q∗1, and an example is shaded light gray.

Nash equilibrium

q1 →

↑
q2

q∗10

q∗2

Firm 1’s profit exceeds
its equilibrium level

Firm 2’s profit
exceeds its

equilibrium
level

Figure 59.1 The pair (q∗1, q∗2) is a Nash equilibrium; along each gray curve one of the firm’s profits is
constant, equal to its profit at the equilibrium. The area shaded dark gray is the set of pairs of outputs
at which both firms’ profits exceed their equilibrium levels.

We see that if the parts of the boundaries of these sets indicated by the gray
lines in the figure are smooth then the two sets must intersect; in the figure the
intersection is shaded dark gray. At every pair of outputs in this area each firm’s
output is less than its equilibrium level (qi < q∗i for i = 1, 2) and each firm’s profit
is higher than its equilibrium profit. That is, both firms are better off by restricting
their outputs.

Dependence of Nash equilibrium on number of firms How does the equilibrium out-
come in Cournot’s game depend on the number of firms? If each firm’s cost func-
tion has the same constant unit cost c, the best outcome for consumers compatible
with no firm’s making a loss has a price of c and a total output of α− c. The next ex-
ercise asks you to show that if, for this cost function, the inverse demand function
is linear (as in Section 3.1.3), then the price in the Nash equilibrium of Cournot’s
game decreases as the number of firms increases, approaching c. That is, from
the viewpoint of consumers, the outcome is better the larger the number of firms,
and when the number of firms is very large, the outcome is close to the best one
compatible with nonnegative profits for the firms.

? EXERCISE 59.1 (Cournot’s game with many firms) Consider Cournot’s game in
the case of an arbitrary number n of firms; retain the assumptions that the in-
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verse demand function takes the form (54.2) and the cost function of each firm i is
Ci(qi) = cqi for all qi, with c < α. Find the best response function of each firm and
set up the conditions for (q∗1, . . . , q∗n) to be a Nash equilibrium (see (34.3)), assum-
ing that there is a Nash equilibrium in which all firms’ outputs are positive. Solve
these equations to find the Nash equilibrium. (For n = 2 your answer should be
( 1

3 (α − c), 1
3 (α − c)), the equilibrium found in the previous section. First show that

in an equilibrium all firms produce the same output, then solve for that output. If
you cannot show that all firms produce the same output, simply assume that they
do.) Find the price at which output is sold in a Nash equilibrium and show that
this price decreases as n increases, approaching c as the number of firms increases
without bound.

The main idea behind this result does not depend on the assumptions on the
inverse demand function and the firms’ cost functions. Suppose, more generally,
that the inverse demand function is any decreasing function, that each firm’s cost
function is the same, denoted by C, and that there is a single output, say q, at which
the average cost of production C(q)/q is minimal. In this case, any given total
output is produced most efficiently by each firm’s producing q, and the lowest
price compatible with the firms’ not making losses is the minimal value of the
average cost. The next exercise asks you to show that in a Nash equilibrium of
Cournot’s game in which the firms’ total output is large relative to q, this is the
price at which the output is sold.

?? EXERCISE 60.1 (Nash equilibrium of Cournot’s game with small firms) Suppose
that there are infinitely many firms, all of which have the same cost function C.
Assume that C(0) = 0, and for q > 0 the function C(q)/q has a unique minimizer
q; denote the minimum of C(q)/q by p. Assume that the inverse demand function
P is decreasing. Show that in any Nash equilibrium the firms’ total output Q∗

satisfies
P(Q∗ + q) ≤ p ≤ P(Q∗).

(That is, the price is at least the minimal value p of the average cost, but is close
enough to this minimum that increasing the total output of the firms by q would re-
duce the price to at most p.) To establish these inequalities, show that if P(Q∗) < p
or P(Q∗ + q) > p then Q∗ is not the total output of the firms in a Nash equilibrium,
because in each case at least one firm can deviate and increase its profit.

3.1.5 A generalization of Cournot’s game: using common property

In Cournot’s game, the payoff function of each firm i is qiP(q1 + · · · + qn) − Ci(qi).
In particular, each firm’s payoff depends only on its output and the sum of all
the firm’s outputs, not on the distribution of the total output among the firms,
and decreases when this sum increases (given that P is decreasing). That is, the
payoff of each firm i may be written as fi(qi , q1 + · · ·+ qn), where the function fi is
decreasing in its second argument (given the value of its first argument, qi).
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This general payoff function captures many situations in which players com-
pete in using a piece of common property whose value to any one player dimin-
ishes as total use increases. The property might be a village green, for example; the
higher the total number of sheep grazed there, the less valuable the green is to any
given farmer.

The first property of a Nash equilibrium in Cournot’s model discussed in the
previous section applies to this general model: common property is “overused” in
a Nash equilibrium in the sense that every player’s payoff increases when every
player reduces her use of the property from its equilibrium level. For example, all
farmers’ payoffs increase if each farmer reduces her use of the village green from
its equilibrium level: in an equilibrium the green is “overgrazed”. The argument is
the same as the one illustrated in Figure 59.1 in the case of two players, because this
argument depends only on the fact that each player’s payoff function is smooth
and is decreasing in the other player’s action. (In Cournot’s model, the “common
property” that is overused is the demand for the good.)

? EXERCISE 61.1 (Interaction among resource-users) A group of n firms uses a com-
mon resource (a river or a forest, for example) to produce output. As more of the
resource is used, any given firm can produce less output. Denote by xi the amount
of the resource used by firm i (= 1, . . . , n). Assume specifically that firm i’s out-
put is xi(1 − (x1 + · · · + xn)) if x1 + · · · + xn ≤ 1, and zero otherwise. Each firm i
chooses xi to maximize its output. Formulate this situation as a strategic game.
Find values of α and c such that the game is the same as the one studied in Exer-
cise 59.1, and hence find its Nash equilibria. Find an action profile (x1, . . . , xn) at
which each firm’s output is higher than it is at the Nash equilibrium.

3.2 Bertrand’s model of oligopoly

3.2.1 General model

In Cournot’s game, each firm chooses an output; the price is determined by the
demand for the good in relation to the total output produced. In an alternative
model of oligopoly, associated with a review of Cournot’s book by Bertrand (1883),
each firm chooses a price, and produces enough output to meet the demand it
faces, given the prices chosen by all the firms. The model is designed to shed light
on the same questions that Cournot’s game addresses; as we shall see, some of the
answers it gives are different.

The economic setting for the model is similar to that for Cournot’s game. A
single good is produced by n firms; each firm can produce qi units of the good at
a cost of Ci(qi). It is convenient to specify demand by giving a “demand function”
D, rather than an inverse demand function as we did for Cournot’s game. The in-
terpretation of D is that if the good is available at the price p then the total amount
demanded is D(p).

Assume that if the firms set different prices then all consumers purchase the
good from the firm with the lowest price, which produces enough output to meet
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this demand. If more than one firm sets the lowest price, all the firms doing so
share the demand at that price equally. A firm whose price is not the lowest price
receives no demand and produces no output. (Note that a firm does not choose its
output strategically; it simply produces enough to satisfy all the demand it faces,
given the prices, even if its price is below its unit cost, in which case it makes a
loss. This assumption can be modified at the price of complicating the model.)

In summary, Bertrand’s oligopoly game is the following strategic game.

Players The firms.

Actions Each firm’s set of actions is the set of possible prices (nonnegative
numbers).

Preferences Firm i’s preferences are represented by its profit, equal to piD(pi)/m−
Ci(D(pi)/m) if firm i is one of m firms setting the lowest price (m = 1 if
firm i’s price pi is lower than every other price), and equal to zero if some
firm’s price is lower than pi.

3.2.2 Example: duopoly with constant unit cost and linear demand function

Suppose, as in Section 3.1.3, that there are two firms, each of whose cost functions
has constant unit cost c (that is, Ci(qi) = cqi for i = 1, 2). Assume that the demand
function is D(p) = α − p for p ≤ α and D(p) = 0 for p > α, and that c < α.

Because the cost of producing each unit is the same, equal to c, firm i makes the
profit of pi − c on every unit it sells. Thus its profit is

πi(p1, p2) =




(pi − c)(α − pi) if pi < pj
1
2 (pi − c)(α − pi) if pi = pj
0 if pi > pj,

where j is the other firm (j = 2 if i = 1, and j = 1 if i = 2).
As before, we can find the Nash equilibria of the game by finding the firms’

best response functions. If firm j charges pj, what is the best price for firm i to
charge? We can reason informally as follows. If firm i charges pj, it shares the
market with firm j; if it charges slightly less, it sells to the entire market. Thus if pj
exceeds c, so that firm i makes a positive profit selling the good at a price slightly
below pj, firm i is definitely better off serving all the market at such a price than
serving half of the market at the price pj. If pj is very high, however, firm i may be
able to do even better: by reducing its price significantly below pj it may increase
its profit, because the extra demand engendered by the lower price may more than
compensate for the lower revenue per unit sold. Finally, if pj is less than c, then
firm i’s profit is negative if it charges a price less than or equal to pj, whereas this
profit is zero if it charges a higher price. Thus in this case firm i would like to charge
any price greater than pj, to make sure that it gets no customers. (Remember that
if customers arrive at its door it is obliged to serve them, whether or not it makes
a profit by so doing.)
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We can make these arguments precise by studying firm i’s payoff as a function
of its price pi for various values of the price pj of firm j. Denote by pm the value
of p (price) that maximizes (p − c)(α − p). This price would be charged by a firm
with a monopoly of the market (because (p − c)(α − p) is the profit of such a firm).
Three cross-sections of firm i’s payoff function, for different values of pj, are shown
in black in Figure 63.1. (The gray dashed line is the function (pi − c)(α − pi).)

• If pj < c (firm j’s price is below the unit cost) then firm i’s profit is negative
if pi ≤ pj and zero if pi > pj (see the left panel of Figure 63.1). Thus any
price greater than pj is a best response to pj. That is, the set of firm i’s best
responses is Bi(pj) = {pi: pi > pj}.

• If pj = c then the analysis is similar to that of the previous case except that
pj, as well as any price greater than pj, yields a profit of zero, and hence is a
best response to pj: Bi(pj) = {pi: pi ≥ pj}.

• If c < pj ≤ pm then firm i’s profit increases as pi increases to pj, then drops
abruptly at pj (see the middle panel of Figure 63.1). Thus there is no best
response: firm i wants to choose a price less than pj, but is better off the
closer that price is to pj. For any price less than pj there is a higher price that
is also less than pj, so there is no best price. (I have assumed that a firm can
choose any number as its price; in particular, it is not restricted to charge an
integral number of cents.) Thus Bi(pj) is empty (has no members).

• If pj > pm then pm is the unique best response of firm i (see the right panel of
Figure 63.1): Bi(pj) = {pm}.

0

↑
πi

pi →
pj < c

c

pj

pm α
0

↑
πi

pi →
c < pj ≤ pm

c pj pm α
0

↑
πi

pi →
pj > pm

c pjpm α

Figure 63.1 Three cross-sections (in black) of firm i’s payoff function in Bertrand’s duopoly game.
Where the payoff function jumps, its value is given by the small disk; the small circles indicate points
that are excluded as values of the functions.

In summary, firm i’s best response function is given by

Bi(pj) =




{pi: pi > pj} if pj < c
{pi: pi ≥ pj} if pj = c
∅ if c < pj ≤ pm

{pm} if pm < pj,
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where ∅ denotes the set with no members (the “empty set”). Note the respects in
which this best response function differs qualitatively from a firm’s best response
function in Cournot’s game: for some actions of its opponent, a firm has no best
response, and for some actions it has multiple best responses.

The fact that firm i has no best response when c < pj < pm is an artifact of
modeling price as a continuous variable (a firm can choose its price to be any non-
negative number). If instead we assume that each firm’s price must be a multiple of
some indivisible unit ε (e.g. price must be an integral number of cents) then firm i’s
optimal response to a price pj with c < pj < pm is pj − ε. I model price as a con-
tinuous variable because doing so simplifies some of the analysis; in Exercise 65.2
you are asked to study the case of discrete prices.

When pj < c, firm i’s set of best responses is the set of all prices greater than
pj. In particular, prices between pj and c are best responses. You may object that
setting a price less than c is not very sensible. Such a price exposes firm i to the
risk of making a loss (if firm j chooses a higher price) and has no advantage over
the price of c, regardless of firm j’s price. That is, such a price is weakly dominated
(Definition 45.1) by the price c. Nevertheless, such a price is a best response! That
is, it is optimal for firm i to choose such a price, given firm j’s price: there is no price
that yields firm i a higher profit, given firm j’s price. The point is that when asking
if a player’s action is a best response to her opponent’s action, we do not consider
the “risk” that the opponent will take some other action.

Figure 64.1 shows the firms’ best response functions (firm 1’s on the left, firm 2’s
on the right). The shaded gray area in the left panel indicates that for a price p2 less
than c, any price greater than p2 is a best response for firm 1. The absence of a black
line along the sloping left boundary of this area indicates that only prices p1 greater
than (not equal to) p2 are included. The black line along the top of the area indicates
that for p2 = c any price greater than or equal to c is a best response. As before, the
dot indicates a point that is included, whereas the small circle indicates a point that
is excluded. Firm 2’s best response function has a similar interpretation.

c pm

c

pm

0

↑
p2

p1 →

B1(p2)

c pm

c

pm

0

↑
p2

p1 →

B2(p1)

Figure 64.1 The firms’ best response functions in Bertrand’s duopoly game. Firm 1’s best response
function is in the left panel; firm 2’s is in the right panel.
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A Nash equilibrium is a pair (p∗1, p∗2) of prices such that p∗1 is a best response to
p∗2, and p∗2 is a best response to p∗1—that is, p∗1 is in B1(p∗2) and p∗2 is in B2(p∗1) (see
(34.2)). If we superimpose the two best response functions, any such pair is in the
intersection of their graphs. If you do so, you will see that the graphs have a single
point of intersection, namely (p∗1, p∗2) = (c, c). That is, the game has a single Nash
equilibrium, in which each firm charges the price c.

The method of finding the Nash equilibria of a game by constructing the play-
ers’ best response functions is systematic. So long as these functions may be com-
puted, the method straightforwardly leads to the set of Nash equilibria. However,
in some games we can make a direct argument that avoids the need to construct
the entire best response functions. Using a combination of intuition and trial and
error we find the action profiles that seem to be equilibria, then we show precisely
that any such profile is an equilibrium and every other profile is not an equilib-
rium. To show that a pair of actions is not a Nash equilibrium we need only find a
better response for one of the players—not necessarily the best response.

In Bertrand’s game we can argue as follows. (i) First we show that (p1, p2) =
(c, c) is a Nash equilibrium. If one firm charges the price c then the other firm can
do no better than charge the price c also, because if it raises its price it sells no
output, and if it lowers its price it makes a loss. (ii) Next we show that no other
pair (p1, p2) is a Nash equilibrium, as follows.

• If pi < c for either i = 1 or i = 2 then the profit of the firm whose price is
lowest (or the profit of both firms, if the prices are the same) is negative, and
this firm can increase its profit (to zero) by raising its price to c.

• If pi = c and pj > c then firm i is better off increasing its price slightly,
making its profit positive rather than zero.

• If pi > c and pj > c, suppose that pi ≥ pj. Then firm i can increase its profit
by lowering pi to slightly below pj if D(pj) > 0 (i.e. if pj < α) and to pm if
D(pj) = 0 (i.e. if pj ≥ α).

In conclusion, both arguments show that when the unit cost of production is a
constant c, the same for both firms, and demand is linear, Bertrand’s game has a
unique Nash equilibrium, in which each firm’s price is equal to c.

? EXERCISE 65.1 (Bertrand’s duopoly game with constant unit cost) Consider the
extent to which the analysis depends upon the demand function D taking the spe-
cific form D(p) = α − p. Suppose that D is any function for which D(p) ≥ 0 for
all p and there exists p > c such that D(p) > 0 for all p ≤ p. Is (c, c) still a Nash
equilibrium? Is it still the only Nash equilibrium?

? EXERCISE 65.2 (Bertrand’s duopoly game with discrete prices) Consider the vari-
ant of the example of Bertrand’s duopoly game in this section in which each firm
is restricted to choose a price that is an integral number of cents. Assume that c is
an integral number of cents and that α > c + 1. Is (c, c) a Nash equilibrium of this
game? Is there any other Nash equilibrium?
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3.2.3 Discussion

For a duopoly in which both firms have the same constant unit cost and the de-
mand function is linear, the Nash equilibria of Cournot’s and Bertrand’s games
generate different economic outcomes. The equilibrium price in Bertrand’s game
is equal to the common unit cost c, whereas the price associated with the equilib-
rium of Cournot’s game is 1

3 (α + 2c), which exceeds c because c < α. In particular,
the equilibrium price in Bertrand’s game is the lowest price compatible with the
firms’ not making losses, whereas the price at the equilibrium of Cournot’s game
is higher. In Cournot’s game, the price decreases towards c as the number of firms
increases (Exercise 59.1), whereas in Bertrand’s game it is c even if there are only
two firms. In the next exercise you are asked to show that as the number of firms
increases in Bertrand’s game, the price remains c.

? EXERCISE 66.1 (Bertrand’s oligopoly game) Consider Bertrand’s oligopoly game
when the cost and demand functions satisfy the conditions in Section 3.2.2 and
there are n firms, with n ≥ 3. Show that the set of Nash equilibria is the set of
profiles (p1, . . . , pn) of prices for which pi ≥ c for all i and at least two prices are
equal to c. (Show that any such profile is a Nash equilibrium, and that every other
profile is not a Nash equilibrium.)

What accounts for the difference between the Nash equilibria of Cournot’s and
Bertrand’s games? The key point is that different strategic variables (output in
Cournot’s game, price in Bertrand’s game) imply different strategic reasoning by
the firms. In Cournot’s game a firm changes its behavior if it can increase its profit
by changing its output, on the assumption that the other firms’ outputs will re-
main the same and the price will adjust to clear the market. In Bertrand’s game
a firm changes its behavior if it can increase its profit by changing its price, on
the assumption that the other firms’ prices will remain the same and their outputs
will adjust to clear the market. Which assumption makes more sense depends on
the context. For example, the wholesale market for agricultural produce may fit
Cournot’s game better, whereas the retail market for food may fit Bertrand’s game
better.

Under some variants of the assumptions in the previous section, Bertrand’s
game has no Nash equilibrium. In one case the firms’ cost functions have constant
unit costs, and these costs are different; in another case the cost functions have a
fixed component. In both these cases, as well as in some other cases, an equilib-
rium is restored if we modify the way in which consumers are divided between
the firms when the prices are the same, as the following exercises show. (We can
think of the division of consumers between firms charging the same price as being
determined as part of the equilibrium. Note that we retain the assumption that if
the firms charge different prices then the one charging the lower price receives all
the demand.)

? EXERCISE 66.2 (Bertrand’s duopoly game with different unit costs) Consider Ber-
trand’s duopoly game under a variant of the assumptions of Section 3.2.2 in which
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the firms’ unit costs are different, equal to c1 and c2, where c1 < c2. Denote by pm
1

the price that maximizes (p − c1)(α − p), and assume that c2 < pm
1 and that the

function (p − c1)(α − p) is increasing in p up to pm
1 .

a. Suppose that the rule for splitting up consumers when the prices are equal
assigns all consumers to firm 1 when both firms charge the price c2. Show
that (p1, p2) = (c2, c2) is a Nash equilibrium and that no other pair of prices
is a Nash equilibrium.

b. Show that no Nash equilibrium exists if the rule for splitting up consumers
when the prices are equal assigns some consumers to firm 2 when both firms
charge c2.

?? EXERCISE 67.1 (Bertrand’s duopoly game with fixed costs) Consider Bertrand’s
game under a variant of the assumptions of Section 3.2.2 in which the cost function
of each firm i is given by Ci(qi) = f + cqi for qi > 0, and Ci(0) = 0, where f is
positive and less than the maximum of (p − c)(α − p) with respect to p. Denote
by p the price p that satisfies (p − c)(α − p) = f and is less than the maximizer of
(p − c)(α − p) (see Figure 67.1). Show that if firm 1 gets all the demand when both
firms charge the same price then (p, p) is a Nash equilibrium. Show also that no
other pair of prices is a Nash equilibrium. (First consider cases in which the firms
charge the same price, then cases in which they charge different prices.)

0 p →

(p − c)(α − p)f

αc p

Figure 67.1 The determination of the price p in Exercise 67.1.

COURNOT, BERTRAND, AND NASH: SOME HISTORICAL NOTES

Associating the names of Cournot and Bertrand with the strategic games in Sec-
tions 3.1 and 3.2 invites two conclusions. First, that Cournot, writing in the first
half of the nineteenth century, developed the concept of Nash equilibrium in the
context of a model of oligopoly. Second, that Bertrand, dissatisfied with Cournot’s
game, proposed an alternative model in which price rather than output is the
strategic variable. On both points the history is much less straightforward.
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Cournot presented his “equilibrium” as the outcome of a dynamic adjustment
process in which, in the case of two firms, the firms alternately choose best re-
sponses to each other’s outputs. During such an adjustment process, each firm,
when choosing an output, acts on the assumption that the other firm’s output will
remain the same, an assumption shown to be incorrect when the other firm subse-
quently adjusts its output. The fact that the adjustment process rests on the firms’
acting on assumptions constantly shown to be false was the subject of criticism in a
leading presentation of Cournot’s model (Fellner 1949) available at the time Nash
was developing his idea.

Certainly Nash did not literally generalize Cournot’s idea: the evidence sug-
gests that he was completely unaware of Cournot’s work when developing the
notion of Nash equilibrium (Leonard 1994, 502–503). In fact, only gradually, as
Nash’s work was absorbed into mainstream economic theory, was Cournot’s solu-
tion interpreted as a Nash equilibrium (Leonard 1994, 507–509).

The association of the price-setting model with Bertrand (a mathematician)
rests on a paragraph in a review of Cournot’s book written by Bertrand in 1883.
(Cournot’s book, published in 1838, had previously been largely ignored.) The
review is confused. Bertrand is under the impression that in Cournot’s model the
firms compete in prices, undercutting each other to attract more business! He ar-
gues that there is “no solution” because there is no limit to the fall in prices, a
result he says that Cournot’s formulation conceals (Bertrand 1883, 503). In brief,
Bertrand’s understanding of Cournot’s work is flawed; he sees that price competi-
tion leads each firm to undercut the other, but his conclusion about the outcome is
incorrect.

Through the lens of modern game theory we see that the models associated
with Cournot and Bertrand are strategic games that differ only in the strategic
variable, the solution in both cases being a Nash equilibrium. Until Nash’s work,
the picture was much murkier.

3.3 Electoral competition

What factors determine the number of political parties and the policies they pro-
pose? How is the outcome of an election affected by the electoral system and the
voters’ preferences among policies? A model that is the foundation for many the-
ories of political phenomena addresses these questions. In the model, each of sev-
eral candidates chooses a policy; each citizen has preferences over policies and
votes for one of the candidates.

A simple version of this model is a strategic game in which the players are the
candidates and a policy is a number, referred to as a “position”. (The compression
of all policy differences into one dimension is a major abstraction, though politi-
cal positions are often categorized on a left–right axis.) After the candidates have
chosen positions, each of a set of citizens votes (nonstrategically) for the candidate
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whose position she likes best. The candidate who obtains the most votes wins.
Each candidate cares only about winning; no candidate has an ideological attach-
ment to any position. Specifically, each candidate prefers to win than to tie for first
place (in which case perhaps the winner is determined randomly) than to lose,
and if she ties for first place she prefers to do so with as few other candidates as
possible.

There is a continuum of voters, each with a favorite position. The distribution
of these favorite positions over the set of all possible positions is arbitrary. In par-
ticular, this distribution may not be uniform: a large fraction of the voters may
have favorite positions close to one point, while few voters have favorite positions
close to some other point. A position that turns out to have special significance is
the median favorite position: the position m with the property that exactly half of
the voters’ favorite positions are at most m, and half of the voters’ favorite positions
are at least m. (I assume that there is only one such position.)

Each voter’s distaste for any position is given by the distance between that
position and her favorite position. In particular, for any value of k, a voter whose
favorite position is x∗ is indifferent between the positions x∗ − k and x∗ + k. (Refer
to Figure 69.1.)

x∗x∗ − k x∗ + k
x →

Figure 69.1 The payoff of a voter whose favorite position is x∗, as a function of the winning position,
x.

Under this assumption, each candidate attracts the votes of all citizens whose
favorite positions are closer to her position than to the position of any other can-
didate. An example is shown in Figure 70.1. In this example there are three candi-
dates, with positions x1, x2, and x3. Candidate 1 attracts the votes of every citizen
whose favorite position is in the interval, labeled “votes for 1”, up to the midpoint
1
2 (x1 + x2) of the line segment from x1 to x2; candidate 2 attracts the votes of ev-
ery citizen whose favorite position is in the interval from 1

2 (x1 + x2) to 1
2 (x2 + x3);

and candidate 3 attracts the remaining votes. I assume that citizens whose favorite
position is 1

2 (x1 + x2) divide their votes equally between candidates 1 and 2, and
those whose favorite position is 1

2 (x2 + x3) divide their votes equally between can-
didates 2 and 3. If two or more candidates take the same position then they share
equally the votes that the position attracts.

In summary, I consider the following strategic game, which, in honor of its
originator, I call Hotelling’s model of electoral competition.

Players The candidates.
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x1 x2 x3
1
2 (x1 + x2) 1

2 (x2 + x3)

votes for 1 votes for 2 votes for 3

Figure 70.1 The allocation of votes between three candidates, with positions x1, x2, and x3.

Actions Each candidate’s set of actions is the set of positions (numbers).

Preferences Each candidate’s preferences are represented by a payoff function
that assigns n to every terminal history in which she wins outright, k to every
terminal history in which she ties for first place with n − k other candidates
(for 1 ≤ k ≤ n − 1), and 0 to every terminal history in which she loses, where
positions attract votes in the way described in the previous paragraph.

Suppose there are two candidates. We can find a Nash equilibrium of the game
by studying the players’ best response functions. Fix the position x2 of candidate 2
and consider the best position for candidate 1. First suppose that x2 < m. If
candidate 1 takes a position to the left of x2 then candidate 2 attracts the votes of
all citizens whose favorite positions are to the right of 1

2 (x1 + x2), a set that includes
the 50% of citizens whose favorite positions are to the right of m, and more. Thus
candidate 2 wins, and candidate 1 loses. If candidate 1 takes a position to the right
of x2 then she wins so long as the dividing line between her supporters and those
of candidate 2 is less than m (see Figure 70.2). If she is so far to the right that this
dividing line lies to the right of m then she loses. She prefers to win than to lose,
and is indifferent between all the outcomes in which she wins, so her set of best
responses to x2 is the set of positions that causes the midpoint 1

2 (x1 + x2) of the
line segment from x2 to x1 to be less than m. (If this midpoint is equal to m then the
candidates tie.) The condition 1

2 (x1 + x2) < m is equivalent to x1 < 2m − x2, so
candidate 1’s set of best responses to x2 is the set of all positions between x2 and
2m − x2 (excluding the points x2 and 2m − x2).

x2 x1
1
2 (x1 + x2) m

votes for 2 votes for 1

Figure 70.2 An action profile (x1, x2) for which candidate 1 wins.

A symmetric argument applies to the case in which x2 > m. In this case candi-
date 1’s set of best responses to x2 is the set of all positions between 2m − x2 and
x2.

Finally consider the case in which x2 = m. In this case candidate 1’s unique
best response is to choose the same position, m! If she chooses any other position
then she loses, whereas if she chooses m then she ties for first place.
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In summary, candidate 1’s best response function is defined by

B1(x2) =




{x1: x2 < x1 < 2m − x2} if x2 < m
{m} if x2 = m
{x1: 2m − x2 < x1 < x2} if x2 > m.

Candidate 2 faces exactly the same incentives as candidate 1, and hence has the
same best response function. The candidates’ best response functions are shown
in Figure 71.1.

↑
x2

x1 →m

m

B1(x2)
↑
x2

x1 →m

m

B2(x1)

Figure 71.1 The candidates’ best response functions in Hotelling’s model of electoral competition with
two candidates. Candidate 1’s best response function is in the left panel; candidate 2’s is in the right
panel. (The edges of the shaded areas are excluded.)

If you superimpose the two best response functions, you see that the game has
a unique Nash equilibrium, in which both candidates choose the position m, the
voters’ median favorite position. (Remember that the edges of the shaded area,
which correspond to pairs of positions that result in ties, are excluded from the
best response functions.) The outcome is that the election is a tie.

As in the case of Bertrand’s duopoly game in the previous section, we can make
a direct argument that (m, m) is the unique Nash equilibrium of the game, with-
out constructing the best response functions. First, (m, m) is an equilibrium: it
results in a tie, and if either candidate chooses a position different from m then she
loses. Second, no other pair of positions is a Nash equilibrium, by the following
argument.

• If one candidate loses then she can do better by moving to m, where she
either wins outright (if her opponent’s position is different from m) or ties
for first place (if her opponent’s position is m).

• If the candidates tie (because their positions are either the same or symmetric
about m), then either candidate can do better by moving to m, where she wins
outright.

Our conclusion is that the competition between the candidates to secure a ma-
jority of the votes drives them to select the same position, equal to the median of
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the citizens’ favorite positions. Hotelling (1929, 54), the originator of the model,
writes that this outcome is “strikingly exemplified.” He continues, “The compe-
tition for votes between the Republican and Democratic parties [in the USA] does
not lead to a clear drawing of issues, an adoption of two strongly contrasted posi-
tions between which the voter may choose. Instead, each party strives to make its
platform as much like the other’s as possible.”

? EXERCISE 72.1 (Electoral competition with asymmetric voters’ preferences) Con-
sider a variant of Hotelling’s model in which voters’s preferences are asymmetric.
Specifically, suppose that each voter cares twice as much about policy differences
to the left of her favorite position than about policy differences to the right of her
favorite position. How does this affect the Nash equilibrium?

In the model considered so far, no candidate has the option of staying out of the
race. Suppose that we give each candidate this option; assume that it is better than
losing and worse than tying for first place. Then the Nash equilibrium remains as
before: both players enter the race and choose the position m. The direct argument
differs from the one before only in that in addition we need to check that there is
no equilibrium in which one or both of the candidates stays out of the race. If one
candidate stays out then, given the other candidate’s position, she can enter and
either win outright or tie for first place. If both candidates stay out, then either
candidate can enter and win outright.

The next exercise asks you to consider the Nash equilibria of this variant of the
model when there are three candidates.

? EXERCISE 72.2 (Electoral competition with three candidates) Consider a variant of
Hotelling’s model in which there are three candidates and each candidate has the
option of staying out of the race, which she regards as better than losing and worse
than tying for first place. Use the following arguments to show that the game has
no Nash equilibrium. First, show that there is no Nash equilibrium in which a
single candidate enters the race. Second, show that in any Nash equilibrium in
which more than one candidate enters, all candidates that enter tie for first place.
Third, show that there is no Nash equilibrium in which two candidates enter the
race. Fourth, show that there is no Nash equilibrium in which all three candidates
enter the race and choose the same position. Finally, show that there is no Nash
equilibrium in which all three candidates enter the race, and do not all choose the
same position.

?? EXERCISE 72.3 (Electoral competition in two districts) Consider a variant of Hotelling’s
model that captures features of a US presidential election. Voters are divided be-
tween two districts. District 1 is worth more electoral college votes than is dis-
trict 2. The winner is the candidate who obtains the most electoral college votes.
Denote by mi the median favorite position among the citizens of district i, for i = 1,
2; assume that m2 < m1. Each of two candidates chooses a single position. Each
citizen votes (nonstrategically) for the candidate whose position in closest to her
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favorite position. The candidate who wins a majority of the votes in a district ob-
tains all the electoral college votes of that district; if the candidates obtain the same
number of votes in a district, they each obtain half of the electoral college votes
of that district. Find the Nash equilibrium (equilibria?) of the strategic game that
models this situation.

So far we have assumed that the candidates care only about winning; they are
not at all concerned with the winner’s position. The next exercise asks you to
consider the case in which each candidate cares only about the winner’s position,
and not at all about winning. (You may be surprised by the equilibrium.)

?? EXERCISE 73.1 (Electoral competition between candidates who care only about the
winning position) Consider the variant of Hotelling’s model in which the can-
didates (like the citizens) care about the winner’s position, and not at all about
winning per se. There are two candidates. Each candidate has a favorite position;
her dislike for other positions increases with their distance from her favorite po-
sition. Assume that the favorite position of one candidate is less than m and the
favorite position of the other candidate is greater than m. Assume also that if the
candidates tie when they take the positions x1 and x2 then the outcome is the com-
promise policy 1

2 (x1 + x2). Find the set of Nash equilibria of the strategic game
that models this situation. (First consider pairs (x1, x2) of positions for which ei-
ther x1 < m and x2 < m, or x1 > m and x2 > m. Next consider pairs (x1, x2) for
which either x1 < m < x2, or x2 < m < x1, then those for which x1 = m and
x2 �= m, or x1 �= m and x2 = m. Finally consider the pair (m, m).)

The set of candidates in Hotelling’s model is given. The next exercise asks
you to analyze a model in which the set of candidates is generated as part of an
equilibrium.

?? EXERCISE 73.2 (Citizen-candidates) Consider a game in which the players are the
citizens. Any citizen may, at some cost c > 0, become a candidate. Assume that
the only position a citizen can espouse is her favorite position, so that a citizen’s
only decision is whether to stand as a candidate. After all citizens have (simulta-
neously) decided whether to become candidates, each citizen votes for her favorite
candidate, as in Hotelling’s model. Citizens care about the position of the winning
candidate; a citizen whose favorite position is x loses |x − x∗| if the winning candi-
date’s position is x∗. (For any number z, |z| denotes the absolute value of z: |z| = z
if z > 0 and |z| = −z if z < 0.) Winning confers the benefit b. Thus a citizen who
becomes a candidate and ties with k − 1 other candidates for first place obtains the
payoff b/k − c; a citizen with favorite position x who becomes a candidate and is
not one of the candidates tied for first place obtains the payoff −|x − x∗| − c, where
x∗ is the winner’s position; and a citizen with favorite position x who does not
become a candidate obtains the payoff −|x − x∗|, where x∗ is the winner’s posi-
tion. Assume that for every position x there is a citizen for whom x is the favorite
position. Show that if b ≤ 2c then the game has a Nash equilibrium in which one
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citizen becomes a candidate. Is there an equilibrium (for any values of b and c) in
which two citizens, each with favorite position m, become candidates? Is there an
equilibrium in which two citizens with favorite positions different from m become
candidates?

Hotelling’s model assumes a basic agreement among the voters about the or-
dering of the positions. For example, if one voter prefers x to y to z and another
voter prefers y to z to x, no voter prefers z to x to y. The next exercise asks you to
study a model that does not so restrict the voters’ preferences.

? EXERCISE 74.1 (Electoral competition for more general preferences) There is a fi-
nite number of positions and a finite, odd, number of voters. For any positions x
and y, each voter either prefers x to y or prefers y to x. (No voter regards any two
positions as equally desirable.) We say that a position x∗ is a Condorcet winner if for
every position y different from x∗, a majority of voters prefer x∗ to y.

a. Show that for any configuration of preferences there is at most one Condorcet
winner.

b. Give an example in which no Condorcet winner exists. (Suppose there are
three positions (x, y, and z) and three voters. Assume that voter 1 prefers x
to y to z. Construct preferences for the other two voters such that one voter
prefers x to y and the other prefers y to x, one prefers x to z and the other
prefers z to x, and one prefers y to z and the other prefers z to y. The pref-
erences you construct must, of course, satisfy the condition that a voter who
prefers a to b and b to c also prefers a to c, where a, b, and c are any positions.)

c. Consider the strategic game in which two candidates simultaneously choose
positions, as in Hotelling’s model. If the candidates choose different posi-
tions, each voter endorses the candidate whose position she prefers, and the
candidate who receives the most votes wins. If the candidates choose the
same position, they tie. Show that this game has a unique Nash equilibrium
if the voters’ preferences are such that there is a Condorcet winner, and has no
Nash equilibrium if the voters’ preferences are such that there is no Condorcet
winner.

A variant of Hotelling’s model of electoral competition can be used to analyze
the choices of product characteristics by competing firms in situations in which
price is not a significant variable. (Think of radio stations that offer different styles
of music, for example.) The set of positions is the range of possible characteristics
for the product, and the citizens are consumers rather than voters. Consumers’
tastes differ; each consumer buys (at a fixed price, possibly zero) one unit of the
product she likes best. The model differs substantially from Hotelling’s model of
electoral competition in that each firm’s objective is to maximize its market share,
rather than to obtain a market share larger than that of any other firm. In the
next exercise you are asked to show that the Nash equilibria of this game in the
case of two or three firms are the same as those in Hotelling’s model of electoral
competition.
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? EXERCISE 75.1 (Competition in product characteristics) In the variant of Hotelling’s
model that captures competing firms’ choices of product characteristics, show that
when there are two firms the unique Nash equilibrium is (m, m) (both firms offer
the consumers’ median favorite product) and when there are three firms there is no
Nash equilibrium. (Start by arguing that when there are two firms whose products
differ, either firm is better off making its product more similar to that of its rival.)

3.4 The War of Attrition

The game known as the War of Attrition elaborates on the ideas captured by the
game Hawk–Dove (Exercise 29.1). It was originally posed as a model of a conflict
between two animals fighting over prey. Each animal chooses the time at which
it intends to give up. When an animal gives up, its opponent obtains all the prey
(and the time at which the winner intended to give up is irrelevant). If both animals
give up at the same time then they each have an equal chance of obtaining the prey.
Fighting is costly: each animal prefers as short a fight as possible.

The game models not only such a conflict between animals, but also many other
disputes. The “prey” can be any indivisible object, and “fighting” can be any costly
activity—for example, simply waiting.

To define the game precisely, let time be a continuous variable that starts at
0 and runs indefinitely. Assume that the value party i attaches to the object in
dispute is vi > 0 and the value it attaches to a 50% chance of obtaining the object
is vi/2. Each unit of time that passes before the dispute is settled (i.e. one of the
parties concedes) costs each party one unit of payoff. Thus if player i concedes
first, at time ti, her payoff is −ti (she spends ti units of time and does not obtain
the object). If the other player concedes first, at time tj, player i’s payoff is vi − tj
(she obtains the object after tj units of time). If both players concede at the same
time, player i’s payoff is 1

2 vi − ti, where ti is the common concession time. The War
of Attrition is the following strategic game.

Players The two parties to a dispute.

Actions Each player’s set of actions is the set of possible concession times
(nonnegative numbers).

Preferences Player i’s preferences are represented by the payoff function

ui(t1, t2) =




−ti if ti < tj
1
2 vi − ti if ti = tj
vi − tj if ti > tj,

where j is the other player.

To find the Nash equilibria of this game, we start, as before, by finding the
players’ best response functions. Intuitively, if player j’s intended concession time
is early enough (tj is small) then it is optimal for player i to wait for player j to
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concede. That is, in this case player i should choose a concession time later than
tj; any such time is equally good. By contrast, if player j intends to hold out for a
long time (tj is large) then player i should concede immediately. Because player i
values the object at vi, the length of time it is worth her waiting is vi.

To make these ideas precise, we can study player i’s payoff function for various
fixed values of tj, the concession time of player j. The three cases that the intuitive
argument suggests are qualitatively different are shown in Figure 76.1: tj < vi in
the left panel, tj = vi in the middle panel, and tj > vi in the right panel. Player i’s
best responses in each case are her actions for which her payoff is highest: the set
of times after tj if tj < vi, 0 and the set of times after tj if tj = vi, and 0 if tj > vi.

0

↑
ui

ti →
tj < vi

tj vi 0

↑
ui

ti →
tj = vi

tj = vi 0

↑
ui

ti →
tj > vi

tjvi

Figure 76.1 Three cross-sections of player i’s payoff function in the War of Attrition.

In summary, player i’s best response function is given by

Bi(tj) =




{ti: ti > tj} if tj < vi
{ti: ti = 0 or ti > tj} if tj = vi
{0} if tj > vi.

For a case in which v1 > v2, this function is shown in the left panel of Figure 77.1
for i = 1 and j = 2 (player 1’s best response function), and in the right panel for
i = 2 and j = 1 (player 2’s best response function).

Superimposing the players’ best response functions, we see that there are two
areas of intersection: the vertical axis at and above v1 and the horizontal axis at
and to the right of v2. Thus (t1, t2) is a Nash equilibrium of the game if and only if
either

t1 = 0 and t2 ≥ v1

or
t2 = 0 and t1 ≥ v2.

In words, in every equilibrium either player 1 concedes immediately and player 2
concedes at time v1 or later, or player 2 concedes immediately and player 1 con-
cedes at time v2 or later.

? EXERCISE 76.1 (Direct argument for Nash equilibria of War of Attrition) Give a
direct argument, not using information about the entire best response functions,
for the set of Nash equilibria of the War of Attrition. (Argue that if t1 = t2, 0 <
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↑
t2

t1 →

v1

v1

B1(p2)

0

↑
t2

t1 →v2

v2 B2(p1)

0

Figure 77.1 The players’ best response functions in the War of Attrition (for a case in which v1 > v2).
Player 1’s best response function is in the left panel; player 2’s is in the right panel. (The sloping edges
are excluded.)

ti < tj, or 0 = ti < tj < vi (for i = 1 and j = 2, or i = 2 and j = 1) then the pair
(t1, t2) is not a Nash equilibrium. Then argue that any remaining pair is a Nash
equilibrium.)

Three features of the equilibria are notable. First, in no equilibrium is there any
fight: one player always concedes immediately. Second, either player may concede
first, regardless of the players’ valuations. In particular, there are always equilibria
in which the player who values the object more highly concedes first. Third, the
equilibria are asymmetric (the players’ actions are different), even when v1 = v2,
in which case the game is symmetric—the players’ sets of actions are the same
and player 1’s payoff to (t1, t2) is the same as player 2’s payoff to (t2, t1) (Defini-
tion 49.3). Given this asymmetry, the populations from which the two players are
drawn must be distinct in order to interpret the Nash equilibria as action profiles
compatible with steady states. One player might be the current owner of the ob-
ject in dispute, and the other a challenger, for example. In this case the equilibria
correspond to the two conventions that a challenger always gives up immediately,
and that an owner always does so. (Some evidence is discussed in the box on
page 379.) If all players—those in the role of player 1 as well as those in the role of
player 2—are drawn from a single population, then only symmetric equilibria are
relevant (see Section 2.10). The War of Attrition has no such equilibria, so the notion
of Nash equilibrium makes no prediction about the outcome in such a situation.
(A solution that does make a prediction is studied in Example 376.1.)

? EXERCISE 77.1 (Variant of War of Attrition) Consider the variant of the War of Attri-
tion in which each player attaches no value to the time spent waiting for the other
player to concede, but the object in dispute loses value as time passes. (Think of a
rotting animal carcass or a melting ice cream cone.) Assume that the value of the
object to each player i after t units of time is vi − t (and the value of a 50% chance
of obtaining the object is 1

2 (vi − t)). Specify the strategic game that models this sit-
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uation (take care with the payoff functions). Construct the analogue of Figure 76.1,
find the players’ best response functions, and hence find the Nash equilibria of the
game.

The War of Attrition is an example of a “game of timing”, in which each player’s
action is a number and each player’s payoff depends sensitively on whether her
action is greater or less than the other player’s action. In many such games, each
player’s strategic variable is the time at which to act, hence the name “game of
timing”. The next two exercises are further examples of such games. (In the first
the strategic variable is time, whereas in the second it is not.)

? EXERCISE 78.1 (Timing product release) Two firms are developing competing prod-
ucts for a market of fixed size. The longer a firm spends on development, the better
its product. But the first firm to release its product has an advantage: the customers
it obtains will not subsequently switch to its rival. (Once a person starts using a
product, the cost of switching to an alternative, even one significantly better, is too
high to make a switch worthwhile.) A firm that releases its product first, at time t,
captures the share h(t) of the market, where h is a function that increases from
time 0 to time T, with h(0) = 0 and h(T) = 1. The remaining market share is left
for the other firm. If the firms release their products at the same time, each obtains
half of the market. Each firm wishes to obtain the highest possible market share.
Model this situation as a strategic game and find its Nash equilibrium (equilibria?).
(When finding firm i’s best response to firm j’s release time tj, there are three cases:
that in which h(tj) < 1

2 (firm j gets less than half of the market if it is the first to
release its product), that in which h(tj) = 1

2 , and that in which h(tj) > 1
2 .)

? EXERCISE 78.2 (A fight) Each of two people has one unit of a resource. Each person
chooses how much of the resource to use in fighting the other individual and how
much to use productively. If each person i devotes yi to fighting then the total
output is f (y1, y2) ≥ 0 and person i obtains the fraction pi(y1, y2) of the output,
where

pi(y1, y2) =




1 if yi > yj
1
2 if yi = yj
0 if yi < yj.

The function f is continuous (small changes in y1 and y2 cause small changes in
f (y1, y2)), is decreasing in both y1 and y2 (the more each player devotes to fighting,
the less output is produced), and satisfies f (1, 1) = 0 (if each player devotes all her
resource to fighting then no output is produced). (If you prefer to deal with a
specific function f , take f (y1, y2) = 2 − y1 − y2.) Each person cares only about the
amount of output she receives, and prefers to receive as much as possible. Specify
this situation as a strategic game and find its Nash equilibrium (equilibria?). (Use
a direct argument: first consider pairs (y1, y2) with y1 �= y2, then those with y1 =
y2 < 1, then those with y1 = y2 = 1.)
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3.5 Auctions

3.5.1 Introduction

In an “auction”, a good is sold to the party who submits the highest bid. Auctions,
broadly defined, are used to allocate significant economic resources, from works of
art to short-term government bonds to offshore tracts for oil and gas exploration
to the radio spectrum. They take many forms. For example, bids may be called
out sequentially (as in auctions for works of art) or may be submitted in sealed
envelopes; the price paid may be the highest bid, or some other price; if more than
one unit of a good is being sold, bids may be taken on all units simultaneously,
or the units may be sold sequentially. A game-theoretic analysis helps us to un-
derstand the consequences of various auction designs; it suggests, for example,
the design likely to be the most effective at allocating resources, and the one likely
to raise the most revenue. In this section I discuss auctions in which every buyer
knows her own valuation and every other buyer’s valuation of the item being sold.
Chapter 9 develops tools that allow us to study, in Section 9.7, auctions in which
buyers are not perfectly informed of each other’s valuations.

AUCTIONS FROM BABYLONIA TO EBAY

Auctioning has a very long history. Herodotus, a Greek writer of the fifth cen-
tury BC who, together with Thucydides, created the intellectual field of history,
describes auctions in Babylonia. He writes that the Babylonians’ “most sensible”
custom was an annual auction in each village of the women of marriageable age.
The women most attractive to the men were sold first; they commanded positive
prices, whereas men were paid to be matched with the least desirable women. In
each auction, bids appear to have been called out sequentially, the man who bid
the most winning and paying the price he bid.

Auctions were also used in Athens in the fifth and fourth centuries BC to sell
the rights to collect taxes, to dispose of confiscated property, and to lease land and
mines. The evidence on the nature of the auctions is slim, but some interesting
accounts survive. For example, the Athenian politician Andocides (c. 440–391 BC)
reports collusive behavior in an auction of tax-collection rights (see Langdon 1994,
260).

Auctions were frequent in ancient Rome, and continued to be used in medieval
Europe after the end of the Roman empire (tax-collection rights were annually
auctioned by the towns of the medieval and early modern Low Countries, for ex-
ample). The earliest use of the English word “auction” given by the Oxford English
Dictionary dates from 1595, and concerns an auction “when will be sold Slaves,
household goods, etc.”. Rules surviving from the auctions of this era show that in
some cases, at least, bids were called out sequentially, with the bidder remaining
at the end obtaining the object at the price she bid (Cassady 1967, 30–31). A variant
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of this mechanism, in which a time limit is imposed on the bids, is reported by the
English diarist and naval administrator Samuel Pepys (1633–1703). The auction-
eer lit a short candle, and bids were valid only if made before the flame went out.
Pepys reports that a flurry of bidding occurred at the last moment. At an auction
on September 3, 1662, a bidder “cunninger than the rest” told him that just as the
flame goes out, “the smoke descends”, signaling the moment at which one should
bid, an observation Pepys found “very pretty” (Pepys 1970, 185–186).

The auction houses of Sotheby’s and Christie’s were founded in the mid-18th
century. At the beginning of the twenty-first century, they are being eclipsed, at
least in the value of the goods they sell, by online auction companies. For example,
eBay, founded in September 1995, sold US$1.3 billion of merchandise in 62 million
auctions during the second quarter of 2000, roughly double the numbers for the
second quarter of the previous year; Sotheby’s and Christie’s together sell around
US$1 billion of art and antiques each quarter.

The mechanism used by eBay shares a feature with the ones Pepys observed:
all bids must be received before some fixed time. The way in which the price is
determined differs. In an eBay auction, a bidder submits a “proxy bid” that is not
revealed; the prevailing price is a small increment above the second-highest proxy
bid. As in the 17th century auctions Pepys observed, many bidders on eBay act at
the last moment—a practice known as “sniping” in the argot of cyberspace. Other
online auction houses use different termination rules. For example, Amazon waits
ten minutes after a bid before closing an auction. The fact that last-minute bidding
is much less common in Amazon auctions than it is in eBay auctions has attracted
the attention of game theorists, who have begun to explore models that explain
it in terms of the difference in the auctions’ termination rules (see, for example,
Ockenfels and Roth 2000).

In recent years, many countries have auctioned the rights to the radio spec-
trum, used for wireless communication. These auctions have been much studied
by game theorists; they are discussed in the box on page 298.

3.5.2 Second-price sealed-bid auctions

In a common form of auction, people sequentially submit increasing bids for an
object. (The word “auction” comes from the Latin augere, meaning “to increase”.)
When no one wishes to submit a bid higher than the current bid, the person mak-
ing the current bid obtains the object at the price she bid.

Given that every person is certain of her valuation of the object before the bid-
ding begins, during the bidding no one can learn anything relevant to her actions.
Thus we can model the auction by assuming that each person decides, before bid-
ding begins, the most she is willing to bid—her “maximal bid”. When the players
carry out their plans, the winner is the person whose maximal bid is highest. How
much does she need to bid? Eventually only she and the person with the second
highest maximal bid will be left competing against each other. In order to win,
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she therefore needs to bid slightly more than the second highest maximal bid. If the
bidding increment is small, we can take the price the winner pays to be equal to the
second highest maximal bid.

Thus we can model such an auction as a strategic game in which each player
chooses an amount of money, interpreted as the maximal amount she is willing to
bid, and the player who chooses the highest amount obtains the object and pays a
price equal to the second highest amount.

This game models also a situation in which the people simultaneously put bids
in sealed envelopes, and the person who submits the highest bid wins and pays a
price equal to the second highest bid. For this reason the game is called a second-price
sealed-bid auction.

To define the game precisely, denote by vi the value player i attaches to the
object; if she obtains the object at the price p her payoff is vi − p. Assume that
the players’ valuations of the object are all different and all positive; number the
players 1 through n in such a way that v1 > v2 > · · · > vn > 0. Each player i
submits a (sealed) bid bi. If player i’s bid is higher than every other bid, she obtains
the object at a price equal to the second-highest bid, say bj, and hence receives the
payoff vi − bj. If some other bid is higher than player i’s bid, player i does not
obtain the object, and receives the payoff of zero. If player i is in a tie for the highest
bid, her payoff depends on the way in which ties are broken. A simple (though
arbitrary) assumption is that the winner is the player among those submitting the
highest bid whose number is smallest (i.e. whose valuation of the object is highest).
(If the highest bid is submitted by players 2, 5, and 7, for example, the winner is
player 2.) Under this assumption, player i’s payoff when she bids bi and is in a tie
for the highest bid is vi − bi if her number is lower than that of any other player
submitting the bid bi, and 0 otherwise.

In summary, a second-price sealed-bid auction (with perfect information) is
the following strategic game.

Players The n bidders, where n ≥ 2.

Actions The set of actions of each player is the set of possible bids (nonnega-
tive numbers).

Preferences The payoff of any player i is vi − bj, where bj is the highest bid
submitted by a player other than i if either bi is higher than every other bid,
or bi is at least as high as every other bid and the number of every other
player who bids bi is greater than i. Otherwise player i’s payoff is 0.

This game has many Nash equilibria. One equilibrium is (b1, . . . , bn) = (v1, . . . ,
vn): each player’s bid is equal to her valuation of the object. Because v1 > v2 >

· · · > vn, the outcome is that player 1 obtains the object at the price b2; her payoff is
v1 − b2 and every other player’s payoff is zero. This profile is a Nash equilibrium
by the following argument.

• If player 1 changes her bid to some other price at least equal to b2 then the
outcome does not change (recall that she pays the second highest bid, not the
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highest bid). If she changes her bid to a price less than b2 then she loses and
obtains the payoff of zero.

• If some other player lowers her bid or raises it to some price at most equal to
b1 then she remains a loser; if she raises her bid above b1 then she wins but,
in paying the price b1, makes a loss (because her valuation is less than b1).

Another equilibrium is (b1, . . . , bn) = (v1, 0, . . . , 0). In this equilibrium, player 1
obtains the object and pays the price of zero. The profile is an equilibrium because
if player 1 changes her bid then the outcome remains the same, and if any of the
remaining players raises her bid then either the outcome remains the same (if her
new bid is at most v1) or causes her to obtain the object at a price that exceeds her
valuation (if her bid exceeds v1). (The auctioneer obviously has an incentive for
the price to be bid up, but she is not a player in the game!)

In both of these equilibria, player 1 obtains the object. But there are also equilib-
ria in which player 1 does not obtain the object. Consider, for example, the action
profile (v2, v1, 0, . . . , 0), in which player 2 obtains the object at the price v2 and ev-
ery player (including player 2) receives the payoff of zero. This action profile is a
Nash equilibrium by the following argument.

• If player 1 raises her bid to v1 or more, she wins the object but her payoff
remains zero (she pays the price v1, bid by player 2). Any other change in
her bid has no effect on the outcome.

• If player 2 changes her bid to some other price greater than v2, the outcome
does not change. If she changes her bid to v2 or less she loses, and her payoff
remains zero.

• If any other player raises her bid to at most v1, the outcome does not change.
If she raises her bid above v1 then she wins, but in paying the price v1 (bid
by player 2) she obtains a negative payoff.

? EXERCISE 82.1 (Nash equilibrium of second-price sealed-bid auction) Find a Nash
equilibrium of a second-price sealed-bid auction in which player n obtains the
object.

Player 2’s bid in this equilibrium exceeds her valuation, and thus may seem a
little rash: if player 1 were to increase her bid to any value less than v1, player 2’s
payoff would be negative (she would obtain the object at a price greater than
her valuation). This property of the action profile does not affect its status as an
equilibrium, because in a Nash equilibrium a player does not consider the “risk”
that another player will take an action different from her equilibrium action; each
player simply chooses an action that is optimal, given the other players’ actions.
But the property does suggest that the equilibrium is less plausible as the outcome
of the auction than the equilibrium in which every player bids her valuation.

The same point takes a different form when we interpret the strategic game as a
model of events that unfold over time. Under this interpretation, player 2’s action
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v1 means that she will continue bidding until the price reaches v1. If player 1 is sure
that player 2 will continue bidding until the price is v1, then player 1 rationally
stops bidding when the price reaches v2 (or, indeed, when it reaches any other
level at most equal to v1). But there is little reason for player 1 to believe that
player 2 will in fact stay in the bidding if the price exceeds v2: player 2’s action is
not credible, because if the bidding were to go above v2, player 2 would rationally
withdraw.

The weakness of the equilibrium is reflected in the fact that player 2’s bid v1 is
weakly dominated by the bid v2. More generally,

in a second-price sealed-bid auction (with perfect information), a player’s bid
equal to her valuation weakly dominates all her other bids.

That is, for any bid bi �= vi, player i’s bid vi is at least as good as bi, no matter what
the other players bid, and is better than bi for some actions of the other players. (See
Definition 45.1.) A player who bids less than her valuation stands not to win in
some cases in which she could profit by winning (when the highest of the other
bids is between her bid and her valuation), and never stands to gain relative to
the situation in which she bids her valuation; a player who bids more than her
valuation stands to win in some cases in which she obtains a negative payoff by
doing so (when the highest of the remaining bids is between her valuation and
her bid), and never stands to gain relative to the situation in which she bids her
valuation. The key point is that in a second-price auction, a player who changes
her bid does not lower the price she pays, but only possibly changes her status
from that of a winner into that of a loser, or vice versa.

A precise argument is shown in Figure 84.1, which compares player i’s payoffs
to the bid vi with her payoffs to a bid bi < vi (top table), and to a bid bi < vi
(bottom table), as a function of the highest of the other players’ bids, denoted b.
In each case, for all bids of the other players, player i’s payoffs to vi are at least as
large as her payoffs to the other bid, and for bids of the other players such that b
is in the middle column of each table, player i’s payoffs to vi are greater than her
payoffs to the other bid. Thus player i’s bid vi weakly dominates all her other bids.

In summary, a second-price auction has many Nash equilibria, but the equilib-
rium (b1, . . . , bn) = (v1, . . . , vn) in which every player’s bid is equal to her valu-
ation of the object is distinguished by the fact that every player’s action weakly
dominates all her other actions.

? EXERCISE 83.1 (Second-price sealed-bid auction with two bidders) Find all the
Nash equilibria of a second-price sealed-bid auction with two bidders. (Construct
the players’ best response functions. Apart from a difference in the tie-breaking
rule, the game is the same as the one in Exercise 77.1.)
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i’s bid

Highest of other players’ bids, b
b < bi or

b = bi & bi wins
bi < b < vi or

b = bi & bi loses
b > vi

bi < vi vi − b 0 0

vi vi − b vi − b 0

i’s bid

b ≤ vi
vi < b < bi or

b = bi & bi wins
b > bi or

b = bi & bi loses
vi vi − b 0 0

bi > vi vi − b vi − b (< 0) 0

Figure 84.1 Player i’s payoffs in a second-price sealed-bid auction, as a function of the highest of the
other player’s bids, denoted b. The top table gives her payoffs to the bids bi < vi and vi, and the bottom
table gives her payoffs to the bids vi and bi > vi.

3.5.3 First-price sealed-bid auctions

A first-price auction differs from a second-price auction only in that the winner
pays the price she bids, not the second highest bid. Precisely, a first-price sealed-
bid auction (with perfect information) is defined as follows.

Players The n bidders, where n ≥ 2.

Actions The set of actions of each player is the set of possible bids (nonnega-
tive numbers).

Preferences The payoff of any player i is vi − bi if either bi is higher than every
other bid, or bi is at least as high as every other bid and the number of every
other player who bids bi is greater than i. Otherwise player i’s payoff is 0.

This game models an auction in which people submit sealed bids and the high-
est bid wins. (You conduct such an auction when you solicit offers for a car you
wish to sell, or, as a buyer, get estimates from contractors to fix your leaky base-
ment, assuming in both cases that you do not inform potential bidders of existing
bids.) The game models also a dynamic auction in which the auctioneer begins by
announcing a high price, which she gradually lowers until someone indicates her
willingness to buy the object. (Flowers in the Netherlands are sold in this way.) A
bid in the strategic game is interpreted as the price at which the bidder will indicate
her willingness to buy the object in the dynamic auction.

One Nash equilibrium of a first-price sealed-bid auction is (b1, . . . , bn) = (v2,
v2, v3, . . . , vn), in which player 1’s bid is player 2’s valuation v2 and every other
player’s bid is her own valuation. The outcome of this equilibrium is that player 1
obtains the object at the price v2.

? EXERCISE 84.1 (Nash equilibrium of first-price sealed-bid auction) Show that (b1,
. . . , bn) = (v2, v2, v3, . . . , vn) is a Nash equilibrium of a first-price sealed-bid auc-
tion.
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A first-price sealed-bid auction has many other equilibria, but in all equilibria
the winner is the player who values the object most highly (player 1), by the fol-
lowing argument. In any action profile (b1, . . . , bn) in which some player i �= 1
wins, we have bi > b1. If bi > v2 then i’s payoff is negative, so that she can do
better by reducing her bid to 0; if bi ≤ v2 then player 1 can increase her payoff
from 0 to v1 − bi by bidding bi, in which case she wins. Thus no such action profile
is a Nash equilibrium.

? EXERCISE 85.1 (First-price sealed-bid auction) Show that in a Nash equilibrium of
a first-price sealed-bid auction the two highest bids are the same, one of these bids
is submitted by player 1, and the highest bid is at least v2 and at most v1. Show
also that any action profile satisfying these conditions is a Nash equilibrium.

In any equilibrium in which the winning bid exceeds v2, at least one player’s
bid exceeds her valuation. As in a second-price sealed-bid auction, such a bid
seems “risky”, because it would yield the bidder a negative payoff if it were to win.
In the equilibrium there is no risk, because the bid does not win; but, as before, the
fact that the bid has this property reduces the plausibility of the equilibrium.

As in a second-price sealed-bid auction, the potential “riskiness” to player i of
a bid bi > vi is reflected in the fact that it is weakly dominated by the bid vi, as
shown by the following argument.

• If the other players’ bids are such that player i loses when she bids bi, then
the outcome is the same whether she bids bi or vi.

• If the other players’ bids are such that player i wins when she bids bi, then
her payoff is negative when she bids bi and zero when she bids vi (whether
or not this bid wins).

However, in a first-price auction, unlike a second-price auction, a bid bi < vi
of player i is not weakly dominated by the bid vi. If fact, such a bid is not weakly
dominated by any bid. It is not weakly dominated by a bid b′i < bi, because if the
other players’ highest bid is between b′i and bi then b′i loses whereas bi wins and
yields player i a positive payoff. And it is not weakly dominated by a bid b′i > bi,
because if the other players’ highest bid is less than bi then both bi and b′i win and
bi yields a lower price.

Further, even though the bid vi weakly dominates higher bids, this bid is itself
weakly dominated, by a lower bid! If player i bids vi her payoff is 0 regardless of
the other players’ bids, whereas if she bids less than vi her payoff is either 0 (if she
loses) or positive (if she wins).

In summary,

in a first-price sealed-bid auction (with perfect information), a player’s bid of
at least her valuation is weakly dominated, and a bid of less than her valuation
is not weakly dominated.
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An implication of this result is that in every Nash equilibrium of a first-price
sealed-bid auction at least one player’s action is weakly dominated. However,
this property of the equilibria depends on the assumption that a bid may be any
number. In the variant of the game in which bids and valuations are restricted
to be multiples of some discrete monetary unit ε (e.g. a cent), an action profile
(v2 − ε, v2 − ε, b3, . . . , bn) for any bj ≤ vj − ε for j = 3, . . . , n is a Nash equilib-
rium in which no player’s bid is weakly dominated. Further, every equilibrium
in which no player’s bid is weakly dominated takes this form. When ε is small,
each such equilibrium is close to an equilibrium (v2, v2, b3, . . . , bn) (with bj ≤ vj
for j = 3, . . . , n) of the game with unrestricted bids. On this (somewhat ad hoc)
basis, I select action profiles (v2, v2, b3, . . . , bn) with bj ≤ vj for j = 3, . . . , n as
“distinguished” equilibria of a first-price sealed-bid auction.

One conclusion of this analysis is that while both second-price and first-price
auctions have many Nash equilibria, yielding a variety of outcomes, their distin-
guished equilibria yield the same outcome. (Recall that the distinguished equi-
librium of a second-price sealed-bid auction is the action profile in which every
player bids her valuation.) In every distinguished equilibrium of each game, the
object is sold to player 1 at the price v2. In particular, the auctioneer’s revenue is
the same in both cases. Thus if we restrict attention to the distinguished equilibria,
the two auction forms are “revenue equivalent”. The rules are different, but the
players’ equilibrium bids adjust to the difference and lead to the same outcome:

the single Nash equilibrium in which no player’s bid is weakly dominated in
a second-price auction yields the same outcome as the distinguished equilibria
of a first-price auction.

? EXERCISE 86.1 (Third-price auction) Consider a third-price sealed-bid auction, which
differs from a first- and a second-price auction only in that the winner (the person
who submits the highest bid) pays the third highest price. (Assume that there are
at least three bidders.)

a. Show that for any player i the bid of vi weakly dominates any lower bid, but
does not weakly dominate any higher bid. (To show the latter, for any bid
bi > vi find bids for the other players such that player i is better off bidding
bi than bidding vi.)

b. Show that the action profile in which each player bids her valuation is not a
Nash equilibrium.

c. Find a Nash equilibrium. (There are ones in which every player submits the
same bid.)

3.5.4 Variants

Uncertain valuations One respect in which the models in this section depart from
reality is in the assumption that each bidder is certain of both her own valuation
and every other bidder’s valuation. In most, if not all, actual auctions, information
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is surely less perfect. The case in which the players are uncertain about each other’s
valuations has been thoroughly explored, and is discussed in Section 9.7. The re-
sult that a player’s bidding her valuation weakly dominates all her other actions in
a second-price auction survives when players are uncertain about each other’s val-
uations, as does the revenue-equivalence of first- and second-price auctions under
some conditions on the players’ preferences.

Common valuations In some auctions the main difference between the bidders is
not that the value the object differently but that they have different information
about its value. For example, the bidders for an oil tract may put similar values on
any given amount of oil, but have different information about how much oil is in
the tract. Such auctions involve informational considerations that do not arise in
the model we have studied in this section; they are studied in Section 9.7.3.

Multi-unit auctions In some auctions, like those for Treasury Bills (short-term
government bonds) in the USA, many units of an object are available, and each
bidder may value positively more than one unit. In each of the types of auction
described below, each bidder submits a bid for each unit of the good. That is, an
action is a list of bids (b1, . . . , bk), where b1 is the player’s bid for the first unit of
the good, b2 is her bid for the second unit, and so on. The player who submits the
highest bid for any given unit obtains that unit. The auctions differ in the prices
paid by the winners. (The first type of auction generalizes a first-price auction,
whereas the next two generalize a second-price auction.)

Discriminatory auction The price paid for each unit is the winning bid for that
unit.

Uniform-price auction The price paid for each unit is the same, equal to the
highest rejected bid among all the bids for all units.

Vickrey auction A bidder who wins k objects pays the sum of the k highest re-
jected bids submitted by the other bidders.

The next exercise asks you to study these auctions when two units of an object are
available.

?? EXERCISE 87.1 (Multi-unit auctions) Two units of an object are available. There
are n bidders. Bidder i values the first unit that she obtains at vi and the second
unit at wi, where vi > wi > 0. Each bidder submits two bids; the two highest
bids win. Retain the tie-breaking rule in the text. Show that in discriminatory and
uniform-price auctions, player i’s action of bidding vi and wi does not dominate
all her other actions, whereas in a Vickrey auction it does. (In the case of a Vickrey
auction, consider separately the cases in which the other players’ bids are such that
player i wins no units, one unit, and two units when her bids are vi and wi.)

Goods for which the demand exceeds the supply at the going price are some-
times sold to the people who are willing to wait longest in line. We can model such
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situations as multi-unit auctions in which each person’s bid is the amount of time
she is willing to wait.

?? EXERCISE 88.1 (Waiting in line) Two hundred people are willing to wait in line to
see a movie at a theater whose capacity is one hundred. Denote person i’s valu-
ation of the movie in excess of the price of admission, expressed in terms of the
amount of time she is willing to wait, by vi. That is, person i’s payoff if she waits
for ti units of time is vi − ti. Each person attaches no value to a second ticket, and
cannot buy tickets for other people. Assume that v1 > v2 > · · · > v200. Each
person chooses an arrival time. If several people arrive at the same time then their
order in line is determined by their index (lower-numbered people go first). If a
person arrives to find 100 or more people already in line, her payoff is zero. Model
the situation as a variant of a discriminatory multi-unit auction, in which each per-
son submits a bid for only one unit, and find its Nash equilibria. (Look at your
answer to Exercise 85.1 before seeking the Nash equilibria.) Arrival times for peo-
ple at movies do not in general seem to conform with a Nash equilibrium. What
feature missing from the model could explain the pattern of arrivals?

The next exercise is another application of a multi-unit auction. As in the pre-
vious exercise each person wants to buy only one unit, but in this case the price
paid by the winners is the highest losing bid.

? EXERCISE 88.2 (Internet pricing) A proposal to deal with congestion on electronic
message pathways is that each message should include a field stating an amount
of money the sender is willing to pay for the message to be sent. Suppose that
during some time interval, each of n people wants to send one message and the
capacity of the pathway is k messages, with k < n. The k messages whose bids are
highest are the ones sent, and each of the persons sending these messages pays a
price equal to the (k + 1)st highest bid. Model this situation as a multi-unit auction.
(Use the same tie-breaking rule as the one in the text.) Does a person’s action of
bidding the value of her message weakly dominate all her other actions? (Note
that the auction differs from those considered in Exercise 87.1 because each person
submits only one bid. Look at the argument in the text that in a second-price
sealed-bid auction a player’s action of bidding her value weakly dominates all her
other actions.)

Lobbying as an auction Variants of the models in this section can be used to under-
stand some situations that are not explicitly auctions. An example, illustrated in
the next exercise, is the competition between groups pressuring a government to
follow policies they favor. This exercise shows also that the outcome of an auction
may depend significantly (and perhaps counterintuitively) on the form the auction
takes.

? EXERCISE 88.3 (Lobbying as an auction) A government can pursue three poli-
cies, x, y, and z. The monetary values attached to these policies by two interest
groups, A and B, are given in Figure 89.1. The government chooses a policy in
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response to the payments the interest groups make to it. Consider the following
two mechanisms.

First-price auction Each interest group chooses a policy and an amount of money
it is willing to pay. The government chooses the policy proposed by the group
willing to pay the most. This group makes its payment to the government,
and the losing group makes no payment.

Menu auction Each interest group states, for each policy, the amount it is will-
ing to pay to have the government implement that policy. The government
chooses the policy for which the sum of the payments the groups are willing
to make is the highest, and each group pays the government the amount of
money it is willing to pay for that policy.

In each case each interest group’s payoff is the value it attaches to the policy
implemented minus the payment it makes. Assume that a tie is broken by the
government’s choosing the policy, among those tied, whose name is first in the
alphabet.

x y z
Interest group A 0 3 −100
Interest group B 0 −100 3

Figure 89.1 The values of the interest groups for the policies x, y, and z in Exercise 88.3.

Show that the first-price auction has a Nash equilibrium in which lobby A says
it will pay 103 for y, lobby B says it will pay 103 for z, and the government’s rev-
enue is 103. Show that the menu auction has a Nash equilibrium in which lobby A
announces that it will pay 3 for x, 6 for y, and 0 for z, and lobby B announces
that it will pay 3 for x, 0 for y, and 6 for z, and the government chooses x, ob-
taining a revenue of 6. (In each case the pair of actions given is in fact the unique
equilibrium.)

3.6 Accident law

3.6.1 Introduction

In some situations, laws influence the participants’ payoffs and hence their actions.
For example, a law may provide for the victim of an accident to be compensated by
a party who was at fault, and the size of the compensation may affect the care that
each party takes. What laws can we expect to produce socially desirable outcomes?
A game theoretic analysis is useful in addressing this question.

3.6.2 The game

Consider the interaction between an injurer (player 1) and a victim (player 2). The
victim suffers a loss that depends on the amounts of care taken by both her and
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the injurer. (How badly you hurt yourself when you fall down on the sidewalk
in front of my house depends on both how well I have cleared the ice and how
carefully you tread.) Denote by ai the amount of care player i takes, measured
in monetary terms, and by L(a1, a2) the loss, also measured in monetary terms,
suffered by the victim, as a function of the amounts of care. (In many cases the
victim does not suffer a loss with certainty, but only with probability less than
one. In such cases we can interpret L(a1, a2) as the expected loss—the average
loss suffered over many occurrences.) Assume that L(a1, a2) > 0 for all values of
(a1, a2), and that more care taken by either player reduces the loss: L is decreasing
in a1 for any fixed value of a2, and decreasing in a2 for any fixed value of a1.

A legal rule determines the fraction of the loss borne by the injurer, as a function
of the amounts of care taken. Denote this fraction by ρ(a1, a2). If ρ(a1, a2) = 0 for
all (a1, a2), for example, the victim bears the entire loss, regardless of how much
care she takes or how little care the injurer takes. At the other extreme, ρ(a1, a2) = 1
for all (a1, a2) means that the victim is fully compensated by the injurer no matter
how careless she is or how careful the injurer is.

If the amounts of care are (a1, a2) then the injurer bears the cost a1 of taking
care and suffers the loss of L(a1, a2), of which she bears the fraction ρ(a1, a2). Thus
the injurer’s payoff is

−a1 − ρ(a1, a2)L(a1, a2).

Similarly, the victim’s payoff is

−a2 − (1 − ρ(a1, a2))L(a1, a2).

For any given legal rule, embodied in ρ, we can model the interaction between
the injurer and victim as the following strategic game.

Players The injurer and the victim.

Actions The set of actions of each player is the set of possible levels of care
(nonnegative numbers).

Preferences The injurer’s preferences are represented by the payoff function
−a1 − ρ(a1, a2)L(a1, a2) and the victim’s preferences are represented by the
payoff function −a2 − (1 − ρ(a1, a2))L(a1, a2), where a1 is the injurer’s level
of care and a2 is the victim’s level of care.

How do the equilibria of this game depend upon the legal rule? Do any legal
rules lead to socially desirable equilibrium outcomes?

I restrict attention to a class of legal rules known as negligence with contributory
negligence. (This class was established in the USA in the mid-nineteenth century,
and prevailed until the mid-1970s.) Each rule in this class requires the injurer to
compensate the victim for a loss if and only if both the victim is sufficiently careful
and the injurer is sufficiently careless; the required compensation is the total loss.
Rules in the class differ in the standards of care they specify for each party. The
rule that specifies the standards of care X1 for the injurer and X2 for the victim
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requires the injurer to pay the victim the entire loss L(a1, a2) when a1 < X1 (the
injurer is insufficiently careful) and a2 ≥ X2 (the victim is sufficiently careful), and
nothing otherwise. That is, under this rule the fraction ρ(a1, a2) of the loss borne
by the injurer is

ρ(a1, a2) =
{

1 if a1 < X1 and a2 ≥ X2
0 if a1 ≥ X1 or a2 < X2.

Included in this class of rules are those for which X1 is a positive finite number
and X2 = 0 (the injurer has to pay if she is not sufficiently careful, even if the
victim takes no care at all), known as rules of pure negligence, and that for which X1
is infinite and X2 = 0 (the injurer has to pay regardless of how careful she is and
how careless the victim is), known as the rule of strict liability.

3.6.3 Nash equilibrium

Suppose we decide that the pair (â1, â2) of actions is socially desirable. We wish
to answer the question: are there values of X1 and X2 such that the game gen-
erated by the rule of negligence with contributory negligence for (X1, X2) has
(â1, â2) as its unique Nash equilibrium? If the answer is affirmative, then, as-
suming the solution concept of Nash equilibrium is appropriate for the situation
we are considering, we have found a legal rule that induces the socially desirable
outcome.

Specifically, suppose that we select as socially desirable the pair (â1, â2) of
actions that maximizes the sum of the players’ payoffs. That is,

(â1, â2) maximizes −a1 − a2 − L(a1, a2).

(For some functions L, this pair (â1, â2) may be a reasonable candidate for a socially
desirable outcome; in other cases it may induce a very inequitable distribution of
payoff between the players, and thus be an unlikely candidate.)

I claim that the unique Nash equilibrium of the game induced by the legal rule
of negligence with contributory negligence for (X1, X2) = (â1, â2) is (â1, â2). That
is, if the standards of care are equal to their socially desirable levels, then these are
the levels chosen by an injurer and a victim in the only equilibrium of the game.
The outcome is that the injurer pays no compensation: her level of care is â1, just
high enough that ρ(a1, a2) = 0. At the same time the victim’s level of care is â2,
high enough that if the injurer reduces her level of care even slightly then she has
to pay full compensation.

I first argue that (â1, â2) is a Nash equilibrium of the game, then show that it is
the only equilibrium. To show that (â1, â2) is a Nash equilibrium, I need to show
that the injurer’s action â1 is a best response to the victim’s action â2 and vice versa.

Injurer’s action Given that the victim’s action is â2, the injurer has to pay com-
pensation if and only if a1 < â1. Thus the injurer’s payoff is

u1(a1, â2) =
{−a1 − L(a1, â2) if a1 < â1
−a1 if a1 ≥ â1.

(91.1)
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For a1 = â1, this payoff is −â1. If she takes more care than â1, she is worse
off, because care is costly and, beyond â1, does not reduce her liability for
compensation. If she takes less care, then, given the victim’s level of care,
she has to pay compensation, and we need to compare the money saved by
taking less care with the size of the compensation. The argument is a little
tricky. First, by definition,

(â1, â2) maximizes −a1 − a2 − L(a1, a2).

Hence
â1 maximizes −a1 − â2 − L(a1, â2)

(given â2). Because â2 is a constant, it follows that

â1 maximizes −a1 − L(a1, â2).

But from (91.1) we see that −a1 − L(a1, â2) is the injurer’s payoff u1(a1, â2)
when her action is a1 < â1 and the victim’s action is â2. We conclude that
the injurer’s payoff takes a form like that in the left panel of Figure 92.1. In
particular, â1 maximizes u1(a1, â2), so that â1 is a best response to â2.

0 â1 a1 →

−â1

u1(a1, â2)

0 â2 a2 →

u2(â1, a2)

Figure 92.1 Left panel: the injurer’s payoff as a function of her level of care a1 when the victim’s level
of care is a2 = â2 (see (91.1)). Right panel: the victim’s payoff as a function of her level of care a2 when
the injurer’s level of care is a1 = â1 (see (92.1)).

Victim’s action Given that the injurer’s action is â1, the victim never receives
compensation. Thus her payoff is

u2(â1, a2) = −a2 − L(â1, a2). (92.1)

We can argue as we did for the injurer. By definition, (â1, â2) maximizes
−a1 − a2 − L(a1, a2), so

â2 maximizes −â1 − a2 − L(â1, a2)

(given â1). Because â1 is a constant, it follows that

â2 maximizes −a2 − L(â1, a2), (92.2)

which is the victim’s payoff (see (92.1) and the right panel of Figure 92.1).
That is, â2 maximizes u2(â1, a2), so that â2 is a best response to â1.
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We conclude that (â1, â2) is a Nash equilibrium of the game induced by the
legal rule of negligence with contributory negligence when the standards of care
are â1 for the injurer and â2 for the victim.

To show that (â1, â2) is the only Nash equilibrium of the game, first consider
the injurer’s best response function. Her payoff function is

u1(a1, a2) =
{−a1 − L(a1, a2) if a1 < â1 and a2 ≥ â2
−a1 if a1 ≥ â1 or a2 < â2.

We can split the analysis into three cases, according to the victim’s level of care.

a2 < â2: In this case the injurer does not have to pay any compensation, regard-
less of her level of care; her payoff is −a1, so that her best response is a1 = 0.

a2 = â2: In this case the injurer’s best response is â1, as argued when showing
that (â1, â2) is a Nash equilibrium.

a2 > â2: In this case the injurer’s best response is at most â1, because her payoff
for larger values of a1 is equal to −a1, a decreasing function of a1.

We conclude that the injurer’s best response function takes a form like that shown
in the left panel of Figure 93.1.

0

â2

â1 a1 →

↑
a2 b1(a2)

0

â2

â1 a1 →

↑
a2

?b2(a1)

Figure 93.1 The players’ best response functions under the rule of negligence with contributory neg-
ligence when (X1, X2) = (â1, â2). Left panel: the injurer’s best response function b1. Right panel: the
victim’s best response function b2. (The position of the victim’s best response function for a1 > â1 is
not significant, and is not determined in the text.)

Now, given that the injurer’s best response to any value of a2 is never greater
than â1, in any equilibrium we have a1 ≤ â1: any point (a1, a2) at which the vic-
tim’s best response function crosses the injurer’s best response function must have
a1 ≤ â1. (Draw a few possible best response functions for the victim in the left
panel of Figure 93.1.) We know that the victim’s best response to â1 is â2 (because
(â1, â2) is a Nash equilibrium), so we need to worry only about the victim’s best
responses to values of a1 with a1 < â1 (i.e. for cases in which the injurer takes
insufficient care).

Let a1 < â1. Then if the victim takes insufficient care she bears the loss; other-
wise she is compensated for the loss, and hence bears only the cost a2 of her taking
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care. Thus the victim’s payoff is

u2(a1, a2) =
{−a2 − L(a1, a2) if a2 < â2
−a2 if a2 ≥ â2.

(94.1)

Now, by (92.2) the level of care â2 maximizes −a2 − L(â1, a2), so that

−a2 − L(â1, a2) ≤ −â2 − L(â1, â2) for all a2.

Further, the loss is nonnegative, so −â2 − L(â1, â2) ≤ −â2. We conclude that

−a2 − L(â1, a2) ≤ −â2 for all a2. (94.2)

Finally, the loss increases as the injurer takes less care, so that given a1 < â1 we
have L(a1, a2) > L(â1, a2) for all a2. Thus −a2 − L(a1, a2) < −a2 − L(â1, a2) for all
a2, and hence, using (94.2),

−a2 − L(a1, a2) < −â2 for all a2.

From (94.1) it follows that the victim’s best response to any a1 < â1 is â2, as shown
in the right panel of Figure 93.1.

Combining the two best response functions we see that (â1, â2), the pair of lev-
els of care that maximizes the sum of the players’ payoffs, is the unique Nash equi-
librium of the game. That is, the rule of negligence with contributory negligence
for standards of care equal to â1 and â2 induces the players to choose these levels
of care. If legislators can determine the values of â1 and â2 then by writing these
levels into law they will induce a game that has as its unique Nash equilibrium the
socially optimal actions.

Other standards also induce a pair of levels of care equal to (â1, â2), as you are
asked to show in the following exercise.

?? EXERCISE 94.3 (Alternative standards of care under negligence with contributory
negligence) Show that (â1, â2) is the unique Nash equilibrium for the rule of neg-
ligence with contributory negligence for any value of (X1, X2) for which either
X1 = â1 and X2 ≤ â2 (including the pure negligence case of X2 = 0), or X1 ≥ M
and X2 = â2 for sufficiently large M. (Use the lines of argument in the text.)

? EXERCISE 94.4 (Equilibrium under strict liability) Study the Nash equilibrium (equi-
libria?) of the game studied in the text under the rule of strict liability, in which X1
is infinite and X2 = 0 (i.e. the injurer is liable for the loss no matter how careful
she is and how careless the victim is). How are the equilibrium actions related to
â1 and â2?

Notes

The model in Section 3.1 was developed by Cournot (1838). The model in Sec-
tion 3.2 is widely credited to Bertrand (1883). The box on p. 67 is based on Leonard (1994)
and Magnan de Bornier (1992). The models are discussed in more detail by Shapiro (1989).
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The model in Section 3.3 is due to Hotelling (1929) (though the focus of his
paper is a model in which the players are firms that choose not only locations, but
also prices). Downs (1957, especially Ch. 8) popularized Hotelling’s model, using
it to gain insights about electoral competition. Shepsle (1991) and Osborne (1995)
survey work in the field.

The War of Attrition studied in Section 3.4 is due to Maynard Smith (1974); it is
a variant of the Dollar Auction presented by Shubik (1971).

Vickrey (1961) initiated the formal modeling of auctions, as studied in Sec-
tion 3.5. The literature is surveyed by Wilson (1992). The box on page 79 draws
on Herodotus’ Histories (Book 1, paragraph 196; see for example Herodotus 1998,
86), Langdon (1994), Cassady (1967, Ch. 3), Shubik (1983), Andreau (1999, 38–39),
the website www.eBay.com, Ockenfels and Roth (2000), and personal correspon-
dence with Robin G. Osborne (on ancient Greece and Rome) and John H. Munro
(on medieval Europe).

The model of accident law discussed in Section 94.3 originated with Brown (1973)
and Diamond (1974); the result about negligence with contributory negligence is
due to Brown (1973, 340–341). The literature is surveyed by Benoı̂t and Korn-
hauser (1995).

Novshek and Sonnenschein (1978) study, in a general setting, the issue ad-
dressed in Exercise 60.1. A brief summary of the early work on common property
is given in the Notes to Chapter 2. The idea of the tie-breaking rule being deter-
mined by the equilibrium, used in Exercises 66.2 and 67.1, is due to Simon and
Zame (1990). The result in Exercise 73.1 is due to Wittman (1977). Exercise 73.2 is
based on Osborne and Slivinski (1996). The notion of a Condorcet winner defined
in Exercise 74.1 is associated with Marie-Jean-Antoine-Nicolas de Caritat, marquis
de Condorcet (1743–1794), an early student of voting procedures. The game in
Exercise 78.1 is a variant of a game studied by Blackwell and Girschick (1954, Ex-
ample 5 in Ch. 2). It is an example of a noisy duel (which models the situation
of duelists, each of whom chooses when to fire a single bullet, which her oppo-
nent hears, as she gradually approaches her rival). Duels were first modeled as
games in the late 1940s by members of the RAND Corporation in the USA; see Kar-
lin (1959b, Ch. 5). Exercise 88.3 is based on Boylan (1997). The situation considered
in Exercise 88.1, in which people decide when to join a queue, is studied by Holt
and Sherman (1982). Exercise 88.2 is based on MacKie-Mason and Varian (1995).
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4.1 Introduction

4.1.1 Stochastic steady states

ANASH EQUILIBRIUM of a strategic game is an action profile in which every
player’s action is optimal given every other player’s action (Definition 21.1).

Such an action profile corresponds to a steady state of the idealized situation in
which for each player in the game there is a population of individuals, and when-
ever the game is played, one player is drawn randomly from each population (see
Section 2.6). In a steady state, every player’s behavior is the same whenever she
plays the game, and no player wishes to change her behavior, knowing (from her
experience) the other players’ behavior. In a steady state in which each player’s
“behavior” is simply an action and within each population all players choose the
same action, the outcome of every play of the game is the same Nash equilibrium.

More general notions of a steady state allow the players’ choices to vary, as
long as the pattern of choices remains constant. For example, different members
of a given population may choose different actions, each player choosing the same
action whenever she plays the game. Or each individual may, on each occasion
she plays the game, choose her action probabilistically according to the same, un-
changing distribution. These two more general notions of a steady state are equiv-
alent: a steady state of the first type in which the fraction p of the population rep-
resenting player i chooses the action a corresponds to a steady state of the second
type in which each member of the population representing player i chooses a with
probability p. In both cases, in each play of the game the probability that the indi-
vidual in the role of player i chooses a is p. Both these notions of steady state are
modeled by a mixed strategy Nash equilibrium, a generalization of the notion of
Nash equilibrium. For expository convenience, in most of this chapter I interpret
such an equilibrium as a model of the second type of steady state, in which each
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player chooses her actions probabilistically; such a steady state is called stochastic
(“involving probability”).

4.1.2 Example: Matching Pennies

An analysis of the game Matching Pennies (Example 17.1) illustrates the idea of a
stochastic steady state. My discussion focuses on the outcomes of this game, given
in Figure 98.1, rather than payoffs that represent the players’ preferences, as before.

Head Tail
Head $1, −$1 −$1, $1

Tail −$1, $1 $1, −$1

Figure 98.1 The outcomes of Matching Pennies.

As we saw previously, this game has no Nash equilibrium: no pair of actions is
compatible with a steady state in which each player’s action is the same whenever
the game is played. I claim, however, that the game has a stochastic steady state in
which each player chooses each of her actions with probability 1

2 . To establish this
result, I need to argue that if player 2 chooses each of her actions with probability 1

2 ,
then player 1 optimally chooses each of her actions with probability 1

2 , and vice
versa.

Suppose that player 2 chooses each of her actions with probability 1
2 . If player 1

chooses Head with probability p and Tail with probability 1 − p then each out-
come (Head, Head) and (Head, Tail) occurs with probability 1

2 p, and each outcome
(Tail, Head) and (Tail, Tail) occurs with probability 1

2 (1 − p). Thus player 1 gains
$1 with probability 1

2 p + 1
2 (1 − p), which is equal to 1

2 , and loses $1 with proba-
bility 1

2 . In particular, the probability distribution over outcomes is independent
of p! Thus every value of p is optimal. In particular, player 1 can do no better
than choose Head with probability 1

2 and Tail with probability 1
2 . A similar anal-

ysis shows that player 2 optimally chooses each action with probability 1
2 when

player 1 does so. We conclude that the game has a stochastic steady state in which
each player chooses each action with probability 1

2 .
I further claim that, under a reasonable assumption on the players’ preferences,

the game has no other steady state. This assumption is that each player wants the
probability of her gaining $1 to be as large as possible. More precisely, if p > q then
each player prefers to gain $1 with probability p and lose $1 with probability 1 − p
than to gain $1 with probability q and lose $1 with probability 1 − q.

To show that under this assumption there is no steady state in which the prob-
ability of each player’s choosing Head is different from 1

2 , denote the probability
with which player 2 chooses Head by q (so that she chooses Tail with probabil-
ity 1 − q). If player 1 chooses Head with probability p then she gains $1 with prob-
ability pq + (1 − p)(1 − q) (the probability that the outcome is either (Head, Head)
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or (Tail, Tail)) and loses $1 with probability (1 − p)q + p(1 − q). The first probabil-
ity is equal to 1 − q + p(2q − 1) and the second is equal to q + p(1 − 2q). Thus if
q < 1

2 (player 2 chooses Head with probability less than 1
2 ), the first probability is

decreasing in p and the second is increasing in p, so that the lower is p, the better
is the outcome for player 1; the value of p that induces the best probability dis-
tribution over outcomes for player 1 is 0. That is, if player 2 chooses Head with
probability less than 1

2 , then the uniquely best policy for player 1 is to choose Tail
with certainty. A similar argument shows that if player 2 chooses Head with prob-
ability greater than 1

2 , the uniquely best policy for player 1 is to choose Head with
certainty.

Now, if player 1 chooses one of her actions with certainty, an analysis like that in
the previous paragraph leads to the conclusion that the optimal policy of player 2
is to choose one of her actions with certainty (Head if player 1 chooses Tail and Tail
if player 1 chooses Head).

We conclude that there is no steady state in which the probability that player 2
chooses Head is different from 1

2 . A symmetric argument leads to the conclusion
that there is no steady state in which the probability that player 1 chooses Head is
different from 1

2 . Thus the only stochastic steady state is that in which each player
chooses each of her actions with probability 1

2 .
As discussed in the first section, the stable pattern of behavior we have found

can be alternatively interpreted as a steady state in which no player randomizes.
Instead, half the players in the population of individuals who take the role of
player 1 in the game choose Head whenever they play the game and half of them
choose Tail whenever they play the game; similarly half of those who take the
role of player 2 choose Head and half choose Tail. Given that the individuals in-
volved in any given play of the game are chosen randomly from the populations,
in each play of the game each individual faces with probability 1

2 an opponent who
chooses Head, and with probability 1

2 an opponent who chooses Tail.

? EXERCISE 99.1 (Variant of Matching Pennies) Find the steady state(s) of the game
that differs from Matching Pennies only in that the outcomes of (Head,Head) and of
(Tail,Tail) are that player 1 gains $2 and player 2 loses $1.

4.1.3 Generalizing the analysis: expected payoffs

The fact that Matching Pennies has only two outcomes for each player (gain $1, lose
$1) makes the analysis of a stochastic steady state particularly simple, because it
allows us to deduce, under a weak assumption, the players’ preferences regarding
lotteries (probability distributions) over outcomes from their preferences regarding
deterministic outcomes (outcomes that occur with certainty). If a player prefers
the deterministic outcome a to the deterministic outcome b, it is very plausible that
if p > q then she prefers the lottery in which a occurs with probability p (and b
occurs with probability 1 − p) to the lottery in which a occurs with probability q
(and b occurs with probability 1 − q).
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In a game with more than two outcomes for some player, we cannot extrapo-
late in this way from preferences regarding deterministic outcomes to preferences
regarding lotteries over outcomes. Suppose, for example, that a game has three
possible outcomes, a, b, and c, and that a player prefers a to b to c. Does she prefer
the deterministic outcome b to the lottery in which a and c each occur with prob-
ability 1

2 , or vice versa? The information about her preferences over deterministic
outcomes gives us no clue about the answer to this question. She may prefer b
to the lottery in which a and c each occur with probability 1

2 , or she may prefer
this lottery to b; both preferences are consistent with her preferring a to b to c. In
order to study her behavior when she is faced with choices between lotteries, we
need to add to the model a description of her preferences regarding lotteries over
outcomes.

A standard assumption in game theory restricts attention to preferences regard-
ing lotteries over outcomes that may be represented by the expected value of a pay-
off function over deterministic outcomes. (See Section 17.7.3 if you are unfamiliar
with the notion of “expected value”.) That is, for every player i there is a payoff
function ui with the property that player i prefers one lottery over outcomes to an-
other if and only if, according to ui, the expected value of the first lottery exceeds
the expected value of the second lottery.

For example, suppose that there are three outcomes, a, b, and c, and lottery P
yields a with probability pa, b with probability pb, and c with probability pc, whereas
lottery Q yields these three outcomes with probabilities qa, qb, and qc. Then the as-
sumption is that for each player i there are numbers ui(a), ui(b), and ui(c) such that
player i prefers lottery P to lottery Q if and only if paui(a) + pbui(b) + pcui(c) >

qaui(a) + qbui(b) + qcui(c). (I discuss the representation of preferences by the ex-
pected value of a payoff function in more detail in Section 4.12, an appendix to this
chapter.)

The first systematic investigation of preferences regarding lotteries represented
by the expected value of a payoff function over deterministic outcomes was un-
dertaken by von Neumann and Morgenstern (1944). Accordingly such preferences
are called vNM preferences. A payoff function over deterministic outcomes (ui
in the previous paragraph) whose expected value represents such preferences is
called a Bernoulli payoff function (in honor of Daniel Bernoulli (1700–1782), who
appears to have been one of the first persons to use such a function to represent
preferences).

The restrictions on preferences regarding deterministic outcomes required for
them to be represented by a payoff function are relatively innocuous (see Sec-
tion 1.2.2). The same is not true of the restrictions on preferences regarding lot-
teries over outcomes required for them to be represented by the expected value of
a payoff function. (I do not discuss these restrictions, but the box at the end of this
section gives an example of preferences that violate them.) Nevertheless, we ob-
tain many insights from models that assume preferences take this form; following
standard game theory (and standard economic theory), I maintain the assumption
throughout the book.
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The assumption that a player’s preferences be represented by the expected
value of a payoff function does not restrict her attitudes to risk: a person whose
preferences are represented by such a function may have an arbitrarily strong like
or dislike for risk. Suppose, for example, that a, b, and c are three outcomes, and a
person prefers a to b to c. A person who is very averse to risky outcomes prefers to
obtain b for sure rather than to face the lottery in which a occurs with probability p
and c occurs with probability 1 − p, even if p is relatively large. Such preferences
may be represented by the expected value of a payoff function u for which u(a) is
close to u(b), which is much larger than u(c). A person who is not at all averse to
risky outcomes prefers the lottery to the certain outcome b, even if p is relatively
small. Such preferences are represented by the expected value of a payoff function
u for which u(a) is much larger than u(b), which is close to u(c). If u(a) = 10,
u(b) = 9, and u(c) = 0, for example, then the person prefers the certain outcome
b to any lottery between a and c that yields a with probability less than 9

10 . But if
u(a) = 10, u(b) = 1, and u(c) = 0, she prefers any lottery between a and c that
yields a with probability greater than 1

10 to the certain outcome b.
Suppose that the outcomes are amounts of money and a person’s preferences

are represented by the expected value of a payoff function in which the payoff of
each outcome is equal to the amount of money involved. Then we say the person is
risk neutral. Such a person compares lotteries according to the expected amount of
money involved. (For example, she is indifferent between receiving $100 for sure
and the lottery that yields $0 with probability 9

10 and $1000 with probability 1
10 .)

On the one hand, the fact that people buy insurance suggests that in some circum-
stances preferences are risk averse: people prefer to obtain $z with certainty than
to receive the outcome of a lottery that yields $z on average. On the other hand,
the fact that people buy lottery tickets that pay, on average, much less than their
purchase price, suggests that in other circumstances preferences are risk preferring.
In both cases, preferences over lotteries are not represented by expected monetary
values, though they still may be represented by the expected value of a payoff func-
tion (in which the payoffs to outcome are different from the monetary values of the
outcomes).

Any given preferences over deterministic outcomes are represented by many
different payoff functions (see Section 1.2.2). The same is true of preferences over
lotteries; the relation between payoff functions whose expected values represent
the same preferences is discussed in Section 4.12.2 in the appendix to this chap-
ter. In particular, we may choose arbitrary payoffs for the outcomes that are best
and worst according to the preferences, as long as the payoff to the best outcome
exceeds the payoff to the worst outcome. For example, suppose there are three
outcomes, a, b, and c, and a person prefers a to b to c, and is indifferent between b
and the lottery that yields a with probability 1

2 and c with probability 1
2 . Then we

may choose u(a) = 3 and u(c) = 1, in which case u(b) = 2; or, for example, we
may choose u(a) = 10 and u(c) = 0, in which case u(b) = 5.
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SOME EVIDENCE ON EXPECTED PAYOFF FUNCTIONS

Consider the following two lotteries (the first of which is, in fact, deterministic):

Lottery 1 You receive $2 million with certainty

Lottery 2 You receive $10 million with probability 0.1, $2 million with probabil-
ity 0.89, and nothing with probability 0.01.

Which do you prefer? Now consider two more lotteries:

Lottery 3 You receive $2 million with probability 0.11 and nothing with probabil-
ity 0.89

Lottery 4 You receive $10 million with probability 0.1 and nothing with probabil-
ity 0.9.

Which do you prefer? A significant fraction of experimental subjects say they pre-
fer lottery 1 to lottery 2, and lottery 4 to lottery 3. (See, for example, Conlisk (1989)
and Camerer (1995, 622–623).)

These preferences cannot be represented by an expected payoff function! If
they could be, there would exist a payoff function u for which the expected payoff
of lottery 1 exceeds that of lottery 2:

u(2) > 0.1u(10) + 0.89u(2) + 0.01u(0),

where the amounts of money are expressed in millions. Subtracting 0.89u(2) and
adding 0.89u(0) to each side we obtain

0.11u(2) + 0.89u(0) > 0.1u(10) + 0.9u(0).

But this inequality says that the expected payoff of lottery 3 exceeds that of lot-
tery 4! Thus preferences represented by an expected payoff function that yield a
preference for lottery 1 over lottery 2 must also yield a preference for lottery 3 over
lottery 4.

Preferences represented by the expected value of a payoff function are, how-
ever, consistent with a person’s being indifferent between lotteries 1 and 2, and
between lotteries 3 and 4. Suppose we assume that when a person is almost in-
different between two lotteries, she may make a “mistake”. Then a person’s ex-
pressed preference for lottery 1 over lottery 2 and for lottery 4 over lottery 3 is not
directly inconsistent with her preferences being represented by the expected value
of a payoff function in which she is almost indifferent between lotteries 1 and 2 and
between lotteries 3 and 4. If, however, we add the assumption that mistakes are
distributed symmetrically, then the frequency with which people express a prefer-
ence for lottery 2 over lottery 1 and for lottery 4 over lottery 3 (also inconsistent
with preferences represented by the expected value of a payoff function) should be
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similar to that with which people express a preference for lottery 1 over lottery 2
and for lottery 3 over lottery 4. In fact, however, the second pattern is significantly
more common than the first (Conlisk 1989), so that a more significant modification
of the theory is needed to explain the observations.

A limitation of the evidence is that it is based on the preferences expressed
by people faced with hypothetical choices; understandably (given the amounts of
money involved), no experiment has been run in which subjects were paid accord-
ing to the lotteries they chose! Experiments with stakes consistent with normal
research budgets show few choices inconsistent with preferences represented by
the expected value of a payoff function (Conlisk 1989). This evidence, however,
does not contradict the evidence based on hypothetical choices with large stakes:
with larger stakes subjects might make choices in line with the preferences they
express when asked about hypothetical choices.

In summary, the evidence for an inconsistency with preferences compatible
with an expected payoff function is, at a minimum, suggestive. It has spurred
the development of alternative theories. Nevertheless, the vast majority of mod-
els in game theory (and also in economics) that involve choice under uncertainty
currently assume that each decision-maker’s preferences are represented by the
expected value of a payoff function. I maintain this assumption throughout the
book, although many of the ideas I discuss appear not to depend on it.

4.2 Strategic games in which players may randomize

To study stochastic steady states, we extend the notion of a strategic game given
in Definition 11.1 by endowing each player with vNM preferences about lotteries
over the set of action profiles.

� DEFINITION 103.1 A strategic game (with vNM preferences) consists of

• a set of players

• for each player, a set of actions

• for each player, preferences regarding lotteries over action profiles that may
be represented by the expected value of a (“Bernoulli”) payoff function over
action profiles.

A two-player strategic game with vNM preferences in which each player has
finitely many actions may be presented in a table like those in Chapter 2. Such
a table looks exactly the same as it did before, though the interpretation of the
numbers in the boxes is different. In Chapter 2 these numbers are values of payoff
functions that represent the players’ preferences over deterministic outcomes; here
they are the values of (Bernoulli) payoff functions whose expected values represent
the players’ preferences over lotteries.

Given the change in the interpretation of the payoffs, two tables that represent
the same strategic game with ordinal preferences no longer necessarily represent
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the same strategic game with vNM preferences. For example, the two tables in
Figure 104.1 represent the same game with ordinal preferences—namely the Pris-
oner’s Dilemma (Section 2.2). In both cases the best outcome for each player is that
in which she chooses F and the other player chooses Q, the next best outcome
is (Q, Q), then comes (F, F), and the worst outcome is that in which she chooses
Q and the other player chooses F. However, the tables represent different strate-
gic games with vNM preferences. For example, in the left table player 1’s pay-
off to (Q, Q) is the same as her expected payoff to the lottery that yields (F, Q)
with probability 1

2 and (F, F) with probability 1
2 (2 = 1

2 · 3 + 1
2 · 1), whereas in the

right table her payoff to (Q, Q) is greater than her expected payoff to this lottery
(3 > 1

2 · 4 + 1
2 · 1). Thus the left table represents a situation in which player 1 is in-

different between the deterministic outcome (Q, Q) and the lottery in which (F, Q)
occurs with probability 1

2 and (F, F) occurs with probability 1
2 . In the right table,

however, she prefers the deterministic outcome (Q, Q) to the lottery.

Q F
Q 2, 2 0, 3
F 3, 0 1, 1

Q F
Q 3, 3 0, 4
F 4, 0 1, 1

Figure 104.1 Two tables that represent the same strategic game with ordinal preferences but different
strategic games with vNM preferences.

To show, as in this example, that two tables represent different strategic games
with vNM preferences we need only find a pair of lotteries whose expected payoffs
are ordered differently by the two tables. To show that they represent the same
strategic game with vNM preferences is more difficult; see Section 4.12.2.

? EXERCISE 104.1 (Extensions of BoS with vNM preferences) Construct a table of
payoffs for a strategic game with vNM preferences in which the players’ prefer-
ences over deterministic outcomes are the same as they are in BoS (Example 16.2),
and their preferences over lotteries satisfy the following condition: each player
is indifferent between going to her less preferred concert in the company of the
other player and the lottery in which with probability 1

2 she and the other player
go to different concerts and with probability 1

2 they both go to her more preferred
concert. Do the same in the case that each player is indifferent between going
to her less preferred concert in the company of the other player and the lottery
in which with probability 3

4 she and the other player go to different concerts and
with probability 1

4 they both go to her more preferred concert. (In each case set
each player’s payoff to the outcome that she least prefers equal to 0 and her payoff
to the outcome that she most prefers equal to 2.)

Despite the importance of saying how the numbers in a payoff table should
be interpreted, users of game theory sometimes fail to make the interpretation
clear. When interpreting discussions of Nash equilibrium in the literature, a rea-
sonably safe assumption is that if the players are not allowed to choose their ac-
tions randomly then the numbers in payoff tables are payoffs that represent the
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players’ ordinal preferences, whereas if the players are allowed to randomize then
the numbers are payoffs whose expected values represent the players’ preferences
regarding lotteries over outcomes.

4.3 Mixed strategy Nash equilibrium

4.3.1 Mixed strategies

In the generalization of the notion of Nash equilibrium that models a stochastic
steady state of a strategic game with vNM preferences, we allow each player to
choose a probability distribution over her set of actions rather than restricting her
to choose a single deterministic action. We refer to such a probability distribution
as a mixed strategy.

I usually use α to denote a profile of mixed strategies; αi(ai) is the probability
assigned by player i’s mixed strategy αi to her action ai. To specify a mixed strategy
of player i we need to give the probability it assigns to each of player i’s actions.
For example, the strategy of player 1 in Matching Pennies that assigns probability 1

2
to each action is the strategy α1 for which α1(Head) = 1

2 and α1(Tail) = 1
2 . Because

this way of describing a mixed strategy is cumbersome, I often use a shorthand
for a game that is presented in a table like those in Figure 104.1: I write a mixed
strategy as a list of probabilities, one for each action, in the order the actions are given
in the table. For example, the mixed strategy ( 1

3 , 2
3 ) for player 1 in either of the

games in Figure 104.1 assigns probability 1
3 to Q and probability 2

3 to F.
A mixed strategy may assign probability 1 to a single action: by allowing a

player to choose probability distributions, we do not prohibit her from choos-
ing deterministic actions. We refer to such a mixed strategy as a pure strategy.
Player i’s choosing the pure strategy that assigns probability 1 to the action ai is
equivalent to her simply choosing the action ai, and I denote this strategy simply
by ai.

4.3.2 Equilibrium

The notion of equilibrium that we study is called “mixed strategy Nash equilib-
rium”. The idea behind it is the same as the idea behind the notion of Nash equi-
librium for a game with ordinal preferences: a mixed strategy Nash equilibrium is
a mixed strategy profile α∗ with the property that no player i has a mixed strategy
αi such that she prefers the lottery over outcomes generated by the strategy pro-
file (αi, α∗

−i) to the lottery over outcomes generated by the strategy profile α∗. The
following definition gives this condition using payoff functions whose expected
values represent the players’ preferences.

� DEFINITION 105.1 (Mixed strategy Nash equilibrium of strategic game with vNM pref-
erences) The mixed strategy profile α∗ in a strategic game with vNM preferences is
a (mixed strategy) Nash equilibrium if, for each player i and every mixed strategy
αi of player i, the expected payoff to player i of α∗ is at least as large as the expected
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payoff to player i of (αi , α∗
−i) according to a payoff function whose expected value

represents player i’s preferences over lotteries. Equivalently, for each player i,

Ui(α∗) ≥ Ui(αi, α∗
−i) for every mixed strategy αi of player i, (106.1)

where Ui(α) is player i’s expected payoff to the mixed strategy profile α.

4.3.3 Best response functions

When studying mixed strategy Nash equilibria, as when studying Nash equilibria
of strategic games with ordinal preferences, the players’ best response functions
(Section 2.8) are often useful. As before, I denote player i’s best response function
by Bi. For a strategic game with ordinal preferences, Bi(a−i) is the set of player i’s
best actions when the list of the other players’ actions is α−i. For a strategic game
with vNM preferences, Bi(α−i) is the set of player i’s best mixed strategies when
the list of the other players’ mixed strategies is α−i. From the definition of a mixed
strategy equilibrium, a profile α∗ of mixed strategies is a mixed strategy Nash equi-
librium if and only if every player’s mixed strategy is a best response to the other
players’ mixed strategies (cf. Proposition 34.1):

the mixed strategy profile α∗ is a mixed strategy Nash equilibrium if
and only if α∗

i is in Bi(α∗
−i) for every player i.

4.3.4 Best response functions in two-player two-action games

The analysis of Matching Pennies in Section 4.1.2 shows that each player’s set of
best responses to the other player’s mixed strategy is either a single pure strategy
or the set of all mixed strategies. (For example, if player 2’s mixed strategy assigns
probability less than 1

2 to Head then player 1’s unique best response is the pure
strategy Tail, if player 2’s mixed strategy assigns probability greater than 1

2 to Head
then player 1’s unique best response is the pure strategy Head, and if player 2’s
mixed strategy assigns probability 1

2 to Head then all of player 1’s mixed strategies
are best responses.)

In any two-player game in which each player has two actions, the set of each
player’s best responses has a similar character: it consists either of a single pure
strategy, or of all mixed strategies. The reason lies in the form of the payoff func-
tions.

Consider a two-player game in which each player has two actions, T and B for
player 1 and L and R for player 2. Denote by ui, for i = 1, 2, a Bernoulli payoff
function for player i. (That is, ui is a payoff function over action pairs whose ex-
pected value represents player i’s preferences regarding lotteries over action pairs.)
Player 1’s mixed strategy α1 assigns probability α1(T) to her action T and probabil-
ity α1(B) to her action B (with α1(T) + α1(B) = 1). For convenience, let p = α1(T),
so that α1(B) = 1 − p. Similarly, denote the probability α2(L) that player 2’s mixed
strategy assigns to L by q, so that α2(R) = 1 − q.
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We take the players’ choices to be independent, so that when the players use
the mixed strategies α1 and α2, the probability of any action pair (a1, a2) is the
product of the probability player 1’s mixed strategy assigns to a1 and the prob-
ability player 2’s mixed strategy assigns to a2. (See Section 17.7.2 in the mathe-
matical appendix if you are not familiar with the idea of independence.) Thus
the probability distribution generated by the mixed strategy pair (α1, α2) over the
four possible outcomes of the game has the form given in Figure 107.1: (T, L) oc-
curs with probability pq, (T, R) occurs with probability p(1− q), (B, L) occurs with
probability (1 − p)q, and (B, R) occurs with probability (1 − p)(1 − q).

L (q) R (1 − q)
T (p) pq p(1 − q)

B (1 − p) (1 − p)q (1 − p)(1 − q)

Figure 107.1 The probabilities of the four outcomes in a two-player two-action strategic game when
player 1’s mixed strategy is (p, 1 − p) and player 2’s mixed strategy is (q, 1 − q).

From this probability distribution we see that player 1’s expected payoff to the
mixed strategy pair (α1, α2) is

pq · u1(T, L) + p(1 − q) · u1(T, R) + (1 − p)q · u1(B, L) + (1 − p)(1 − q) · u1(B, R),

which we can alternatively write as

p[q · u1(T, L) + (1 − q) · u1(T, R)] + (1 − p)[q · u1(B, L) + (1 − q) · u1(B, R)].

The first term in square brackets is player 1’s expected payoff when she uses a pure
strategy that assigns probability 1 to T and player 2 uses her mixed strategy α2; the
second term in square brackets is player 1’s expected payoff when she uses a pure
strategy that assigns probability 1 to B and player 2 uses her mixed strategy α2. De-
note these two expected payoffs E1(T, α2) and E1(B, α2). Then player 1’s expected
payoff to the mixed strategy pair (α1, α2) is

pE1(T, α2) + (1 − p)E1(B, α2).

That is, player 1’s expected payoff to the mixed strategy pair (α1, α2) is a weighted
average of her expected payoffs to T and B when player 2 uses the mixed strat-
egy α2, with weights equal to the probabilities assigned to T and B by α1.

In particular, player 1’s expected payoff, given player 2’s mixed strategy, is a
linear function of p—when plotted in a graph, it is a straight line. A case in which
E1(T, α2) > E1(B, α2) is illustrated in Figure 108.1.

? EXERCISE 107.1 (Expected payoffs) Construct diagrams like Figure 108.1 for BoS
(Figure 16.1) and the game in Figure 19.1 (in each case treating the numbers in the
tables as Bernoulli payoffs). In each diagram, plot player 1’s expected payoff as a
function of the probability p that she assigns to her top action in three cases: when
the probability q that player 2 assigns to her left action is 0, 1

2 , and 1.
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↑
Player 1’s

expected payoff

E1(B, α2)

E1(T, α2)

0 1p →

pE1(T, α2) + (1 − p)E1(B, α2)

p

Figure 108.1 Player 1’s expected payoff as a function of the probability p she assigns to T in the game
in which her actions are T and B, when player 2’s mixed strategy is α2 and E1(T, α2) > E1(B, α2).

A significant implication of the linearity of player 1’s expected payoff is that
there are three possibilities for her best response to a given mixed strategy of
player 2:

• player 1’s unique best response is the pure strategy T (if E1(T, α2) > E1(B, α2),
as in Figure 108.1)

• player 1’s unique best response is the pure strategy B (if E1(B, α2) > E1(T, α2),
in which case the line representing player 1’s expected payoff as a function
of p in the analogue of Figure 108.1 slopes down)

• all mixed strategies of player 1 yield the same expected payoff, and hence
all are best responses (if E1(T, α2) = E1(B, α2), in which case the line rep-
resenting player 1’s expected payoff as a function of p in the analogue of
Figure 108.1 is horizontal).

In particular, a mixed strategy (p, 1 − p) for which 0 < p < 1 is never the unique
best response; either it is not a best response, or all mixed strategies are best re-
sponses.

? EXERCISE 108.1 (Best responses) For each game and each value of q in Exercise 107.1,
use the graphs you drew in that exercise to find player 1’s set of best responses.

4.3.5 Example: Matching Pennies

The argument in Section 4.1.2 establishes that Matching Pennies has a unique mixed
strategy Nash equilibrium, in which each player’s mixed strategy assigns proba-
bility 1

2 to Head and probability 1
2 to Tail. I now describe an alternative route to this

conclusion that uses the method described in Section 2.8.3, which involves explic-
itly constructing the players’ best response functions; this method may be used in
other games.

Represent each player’s preferences by the expected value of a payoff function
that assigns the payoff 1 to a gain of $1 and the payoff −1 to a loss of $1. The
resulting strategic game with vNM preferences is shown in Figure 109.1.
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Head Tail
Head 1, −1 −1, 1

Tail −1, 1 1, −1

Figure 109.1 Matching Pennies.

Denote by p the probability that player 1’s mixed strategy assigns to Head, and
by q the probability that player 2’s mixed strategy assigns to Head. Then, given
player 2’s mixed strategy, player 1’s expected payoff to the pure strategy Head is

q · 1 + (1 − q) · (−1) = 2q − 1

and her expected payoff to Tail is

q · (−1) + (1 − q) · 1 = 1 − 2q.

Thus if q < 1
2 then player 1’s expected payoff to Tail exceeds her expected payoff

to Head, and hence exceeds also her expected payoff to every mixed strategy that
assigns a positive probability to Head. Similarly, if q > 1

2 then her expected payoff
to Head exceeds her expected payoff to Tail, and hence exceeds her expected payoff
to every mixed strategy that assigns a positive probability to Tail. If q = 1

2 then
both Head and Tail, and hence all her mixed strategies, yield the same expected
payoff. We conclude that player 1’s best responses to player 2’s strategy are her
mixed strategy that assigns probability 0 to Head if q < 1

2 , her mixed strategy that
assigns probability 1 to Head if q > 1

2 , and all her mixed strategies if q = 1
2 . That is,

denoting by B1(q) the set of probabilities player 1 assigns to Head in best responses
to q, we have

B1(q) =




{0} if q < 1
2

{p: 0 ≤ p ≤ 1} if q = 1
2

{1} if q > 1
2 .

The best response function of player 2 is similar: B2(p) = {1} if p < 1
2 , B2(p) =

{q: 0 ≤ q ≤ 1} if p = 1
2 , and B2(p) = {0} if p > 1

2 . Both best response functions are
illustrated in Figure 110.1.

The set of mixed strategy Nash equilibria of the game corresponds (as before)
to the set of intersections of the best response functions in this figure; we see that
there is one intersection, corresponding to the equilibrium we found previously, in
which each player assigns probability 1

2 to Head.
Matching Pennies has no Nash equilibrium if the players are not allowed to

randomize. If a game has a Nash equilibrium when randomization is not allowed,
is it possible that it has additional equilibria when randomization is allowed? The
following example shows that the answer is positive.

4.3.6 Example: BoS

Consider the two-player game with vNM preferences in which the players’ pref-
erences over deterministic action profiles are the same as in BoS and their prefer-
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0 1
2

1
p →

1
2

1↑
q

B1

B2

Figure 110.1 The players’ best response functions in Matching Pennies (Figure 109.1) when randomiza-
tion is allowed. The probabilities assigned by players 1 and 2 to Head are p and q respectively. The best
response function of player 1 is black and that of player 2 is gray. The disk indicates the unique Nash
equilibrium.

ences over lotteries are represented by the expected value of the payoff functions
specified in Figure 110.2. What are the mixed strategy equilibria of this game?

B S
B 2, 1 0, 0
S 0, 0 1, 2

Figure 110.2 A version of the game Bach or Stravinsky? with vNM preferences.

First construct player 1’s best response function. Suppose that player 2 assigns
probability q to B. Then player 1’s expected payoff to B is 2 · q + 0 · (1 − q) = 2q
and her expected payoff to S is 0 · q + 1 · (1 − q) = 1 − q. Thus if 2q > 1 − q, or
q > 1

3 , then her unique best response is B, while if q < 1
3 then her unique best

response is S. If q = 1
3 then both B and S, and hence all player 1’s mixed strategies,

yield the same expected payoffs, so that every mixed strategy is a best response.
In summary, player 1’s best response function is

B1(q) =




{0} if q < 1
3

{p : 0 ≤ p ≤ 1} if q = 1
3

{1} if q > 1
3 .

Similarly we can find player 2’s best response function. The best response func-
tions of both players are shown in Figure 111.1.

We see that the game has three mixed strategy Nash equilibria, in which (p, q) =
(0, 0), ( 2

3 , 1
3 ), and (1, 1). The first and third equilibria correspond to the Nash equi-

libria of the ordinal version of the game when the players were not allowed to
randomize (Section 2.7.2). The second equilibrium is new. In this equilibrium each
player chooses both B and S with positive probability (so that each of the four
outcomes (B, B), (B, S), (S, B), and (S, S) occurs with positive probability).
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0 2
3

1
p →

1
3

1↑
q

B1

B2

Figure 111.1 The players’ best response functions in BoS (Figure 110.2) when randomization is allowed.
The probabilities assigned by players 1 and 2 to B are p and q respectively. The best response function
of player 1 is black and that of player 2 is gray. The disks indicate the Nash equilibria (two pure, one
mixed).

? EXERCISE 111.1 (Mixed strategy equilibria of Hawk–Dove) Consider the two-player
game with vNM preferences in which the players’ preferences over determinis-
tic action profiles are the same as in Hawk–Dove (Exercise 29.1) and their prefer-
ences over lotteries satisfy the following two conditions. Each player is indifferent
between the outcome (Passive, Passive) and the lottery that assigns probability 1

2
to (Aggressive, Aggressive) and probability 1

2 to the outcome in which she is ag-
gressive and the other player is passive, and between the outcome in which she
is passive and the other player is aggressive and the lottery that assigns proba-
bility 2

3 to the outcome (Aggressive, Aggressive) and probability 1
3 to the outcome

(Passive, Passive). Find payoffs whose expected values represent these preferences
(take each player’s payoff to (Aggressive, Aggressive) to be 0 and each player’s pay-
off to the outcome in which she is passive and the other player is aggressive to be
1). Find the mixed strategy Nash equilibrium of the resulting strategic game.

Both Matching Pennies and BoS have finitely many mixed strategy Nash equi-
libria: the players’ best response functions intersect at a finite number of points
(one for Matching Pennies, three for BoS). One of the games in the next exercise has
a continuum of mixed strategy Nash equilibria because segments of the players’
best response functions coincide.

? EXERCISE 111.2 (Games with mixed strategy equilibria) Find all the mixed strategy
Nash equilibria of the strategic games in Figure 111.2.

L R
T 6, 0 0, 6
B 3, 2 6, 0

L R
T 0, 1 0, 2
B 2, 2 0, 1

Figure 111.2 Two strategic games with vNM preferences.
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? EXERCISE 112.1 (A coordination game) Two people can perform a task if, and only
if, they both exert effort. They are both better off if they both exert effort and per-
form the task than if neither exerts effort (and nothing is accomplished); the worst
outcome for each person is that she exerts effort and the other does not (in which
case again nothing is accomplished). Specifically, the players’ preferences are rep-
resented by the expected value of the payoff functions in Figure 112.1, where c is
a positive number less than 1 that can be interpreted as the cost of exerting effort.
Find all the mixed strategy Nash equilibria of this game. How do the equilibria
change as c increases? Explain the reasons for the changes.

No effort Effort
No effort 0, 0 0, −c

Effort −c, 0 1 − c, 1 − c

Figure 112.1 The coordination game in Exercise 112.1.

?? EXERCISE 112.2 (Swimming with sharks) You and a friend are spending two days
at the beach and would like to go for a swim. Each of you believes that with prob-
ability π the water is infested with sharks. If sharks are present, anyone who goes
swimming today will surely be attacked. You each have preferences represented
by the expected value of a payoff function that assigns −c to being attacked by
a shark, 0 to sitting on the beach, and 1 to a day’s worth of undisturbed swim-
ming. If one of you is attacked by sharks on the first day then you both deduce
that a swimmer will surely be attacked the next day, and hence do not go swim-
ming the next day. If no one is attacked on the first day then you both retain the
belief that the probability of the water’s being infested is π, and hence swim on
the second day only if −πc + 1 − π ≥ 0. Model this situation as a strategic game
in which you and your friend each decides whether to go swimming on your first
day at the beach. If, for example, you go swimming on the first day, you (and
your friend, if she goes swimming) are attacked with probability π, in which case
you stay out of the water on the second day; you (and your friend, if she goes
swimming) swim undisturbed with probability 1 − π, in which case you swim
on the second day. Thus your expected payoff if you swim on the first day is
π(−c + 0) + (1 − π)(1 + 1) = −πc + 2(1 − π), independent of your friend’s ac-
tion. Find the mixed strategy Nash equilibria of the game (depending on c and
π). Does the existence of a friend make it more or less likely that you decide to go
swimming on the first day? (Penguins diving into water where seals may lurk are
sometimes said to face the same dilemma, though Court (1996) argues that they do
not.)

4.3.7 A useful characterization of mixed strategy Nash equilibrium

The method we have used so far to study the set of mixed strategy Nash equilibria
of a game involves constructing the players’ best response functions. Other meth-
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ods are sometimes useful. I now present a characterization of mixed strategy Nash
equilibrium that gives us an easy way to check whether a mixed strategy profile
is an equilibrium, and is the basis of a procedure (described in Section 4.10) for
finding all equilibria of a game.

The key point is an observation made in Section 4.3.4 for two-player two-action
games: a player’s expected payoff to a mixed strategy profile is a weighted average
of her expected payoffs to her pure strategies, where the weight attached to each
pure strategy is the probability assigned to that strategy by the player’s mixed
strategy. This property holds for any game (with any number of players) in which
each player has finitely many actions. We can state it more precisely as follows.

A player’s expected payoff to the mixed strategy profile α is a
weighted average of her expected payoffs to all mixed strategy pro-
files of the type (ai , α−i), where the weight attached to (ai , α−i) is the
probability αi(ai) assigned to ai by player i’s mixed strategy αi.

(113.1)

Symbolically we have

Ui(α) = ∑
ai∈Ai

αi(ai)Ui(ai , α−i),

where Ai is player i’s set of actions (pure strategies) and Ui(ai , α−i) is her expected
payoff when she uses the pure strategy that assigns probability 1 to ai and ev-
ery other player j uses her mixed strategy αj. (See the end of Section 17.3 in the
appendix on mathematics for an explanation of the ∑ notation.)

This property leads to a useful characterization of mixed strategy Nash equi-
librium. Let α∗ be a mixed strategy Nash equilibrium and denote by E∗

i player i’s
expected payoff in the equilibrium (i.e. E∗

i = Ui(α∗)). Because α∗ is an equilibrium,
player i’s expected payoff, given α∗

−i, to each of her pure strategies is at most E∗
i .

Now, by (113.1), E∗
i is a weighted average of player i’s expected payoffs to the pure

strategies to which α∗
i assigns positive probability. Thus player i’s expected payoffs

to these pure strategies are all equal to E∗
i . (If any were smaller then the weighted

average would be smaller.) We conclude that the expected payoff to each action to
which α∗

i assigns positive probability is E∗
i and the expected payoff to every other

action is at most E∗
i . Conversely, if these conditions are satisfied for every player i

then α∗ is a mixed strategy Nash equilibrium: the expected payoff to α∗
i is E∗

i , and
the expected payoff to any other mixed strategy is at most E∗

i , because by (113.1) it
is a weighted average of E∗

i and numbers that are at most E∗
i .

This argument establishes the following result.

PROPOSITION 113.2 (Characterization of mixed strategy Nash equilibrium of finite
game) A mixed strategy profile α∗ in a strategic game with vNM preferences in which
each player has finitely many actions is a mixed strategy Nash equilibrium if and only if,
for each player i,

• the expected payoff, given α∗
−i, to every action to which α∗

i assigns positive probability
is the same
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• the expected payoff, given α∗
−i, to every action to which α∗

i assigns zero probability is
at most the expected payoff to any action to which α∗

i assigns positive probability.

Each player’s expected payoff in an equilibrium is her expected payoff to any of her actions
that she uses with positive probability.

The significance of this result is that it gives conditions for a mixed strategy
Nash equilibrium in terms of each player’s expected payoffs only to her pure strate-
gies. For games in which each player has finitely many actions, it allows us easily
to check whether a mixed strategy profile is an equilibrium. For example, in BoS
(Section 4.3.6) the strategy pair (( 2

3 , 1
3 ), ( 1

3 , 2
3 )) is a mixed strategy Nash equilib-

rium because given player 2’s strategy ( 1
3 , 2

3 ), player 1’s expected payoffs to B and
S are both equal to 2

3 , and given player 1’s strategy ( 2
3 , 1

3 ), player 2’s expected
payoffs to B and S are both equal to 2

3 .
The next example is slightly more complicated.

EXAMPLE 114.1 (Checking whether a mixed strategy profile is a mixed strategy
Nash equilibrium) I claim that for the game in Figure 114.1 (in which the dots
indicate irrelevant payoffs), the indicated pair of strategies, ( 3

4 , 0, 1
4 ) for player 1

and (0, 1
3 , 2

3 ) for player 2, is a mixed strategy Nash equilibrium. To verify this
claim, it suffices, by Proposition 113.2, to study each player’s expected payoffs to
her three pure strategies. For player 1 these payoffs are

T: 1
3 · 3 + 2

3 · 1 = 5
3

M: 1
3 · 0 + 2

3 · 2 = 4
3

B: 1
3 · 5 + 2

3 · 0 = 5
3 .

Player 1’s mixed strategy assigns positive probability to T and B and probability
zero to M, so the two conditions in Proposition 113.2 are satisfied for player 1. The
expected payoff to each of player 2’s pure strategies is 5

2 ( 3
4 · 2 + 1

4 · 4 = 3
4 · 3 + 1

4 ·
1 = 3

4 · 1 + 1
4 · 7 = 5

2 ), so the two conditions in Proposition 113.2 are satisfied also
for her.

L (0) C ( 1
3 ) R ( 2

3 )
T ( 3

4 ) ·, 2 3, 3 1, 1
M (0) ·, · 0, · 2, ·
B ( 1

4 ) ·, 4 5, 1 0, 7

Figure 114.1 A partially-specified strategic game, illustrating a method of checking whether a mixed
strategy profile is a mixed strategy Nash equilibrium. The dots indicate irrelevant payoffs.

Note that the expected payoff to player 2’s action L, which she uses with prob-
ability zero, is the same as the expected payoff to her other two actions. This equal-
ity is consistent with Proposition 113.2, the second part of which requires only that
the expected payoffs to actions used with probability zero be no greater than the ex-
pected payoffs to actions used with positive probability (not that they necessarily
be less). Note also that the fact that player 2’s expected payoff to L is the same as
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her expected payoffs to C and R does not imply that the game has a mixed strategy
Nash equilibrium in which player 2 uses L with positive probability—it may, or it
may not, depending on the unspecified payoffs.

? EXERCISE 115.1 (Choosing numbers) Players 1 and 2 each choose a positive integer
up to K. If the players choose the same number then player 2 pays $1 to player 1;
otherwise no payment is made. Each player’s preferences are represented by her
expected monetary payoff.

a. Show that the game has a mixed strategy Nash equilibrium in which each
player chooses each positive integer up to K with probability 1/K.

b. (More difficult.) Show that the game has no other mixed strategy Nash equi-
libria. (Deduce from the fact that player 1 assigns positive probability to
some action k that player 2 must do so; then look at the implied restriction
on player 1’s equilibrium strategy.)

? EXERCISE 115.2 (Silverman’s game) Each of two players chooses a positive inte-
ger. If player i’s integer is greater than player j’s integer and less than three times
this integer then player j pays $1 to player i. If player i’s integer is at least three
times player j’s integer then player i pays $1 to player j. If the integers are equal,
no payment is made. Each player’s preferences are represented by her expected
monetary payoff. Show that the game has no Nash equilibrium in pure strategies,
and that the pair of mixed strategies in which each player chooses 1, 2, and 5 each
with probability 1

3 is a mixed strategy Nash equilibrium. (In fact, this pair of mixed
strategies is the unique mixed strategy Nash equilibrium.)

?? EXERCISE 115.3 (Voter participation) Consider the game of voter participation in
Exercise 32.2. Assume that k ≤ m and that each player’s preferences are repre-
sented by the expectation of her payoffs given in Exercise 32.2. Show that there
is a value of p between 0 and 1 such that the game has a mixed strategy Nash
equilibrium in which every supporter of candidate A votes with probability p, k
supporters of candidate B vote with certainty, and the remaining m − k supporters
of candidate B abstain. How do the probability p that a supporter of candidate A
votes and the expected number of voters (“turnout”) depend upon c? (Note that if
every supporter of candidate A votes with probability p then the probability that
exactly k − 1 of them vote is kpk−1(1 − p).)

?? EXERCISE 115.4 (Defending territory) General A is defending territory accessible
by two mountain passes against an attack by general B. General A has three di-
visions at her disposal, and general B has two divisions. Each general allocates
her divisions between the two passes. General A wins the battle at a pass if and
only if she assigns at least as many divisions to the pass as does general B; she
successfully defends her territory if and only if she wins the battle at both passes.
Formulate this situation as a strategic game and find all its mixed strategy equilib-
ria. (First argue that in every equilibrium B assigns probability zero to the action
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of allocating one division to each pass. Then argue that in any equilibrium she
assigns probability 1

2 to each of her other actions. Finally, find A’s equilibrium
strategies.) In an equilibrium do the generals concentrate all their forces at one
pass, or spread them out?

An implication of Proposition 113.2 is that a nondegenerate mixed strategy
equilibrium (a mixed strategy equilibrium that is not also a pure strategy equi-
librium) is never a strict Nash equilibrium: every player whose mixed strategy
assigns positive probability to more than one action is indifferent between her
equilibrium mixed strategy and every action to which this mixed strategy assigns
positive probability.

Any equilibrium that is not strict, whether in mixed strategies or not, has less
appeal than a strict equilibrium because some (or all) of the players lack a positive
incentive to choose their equilibrium strategies, given the other players’ behavior.
There is no reason for them not to choose their equilibrium strategies, but at the
same time there is no reason for them not to choose another strategy that is equally
good. Many pure strategy equilibria—especially in complex games—are also not
strict, but among mixed strategy equilibria the problem is pervasive.

Given that in a mixed strategy equilibrium no player has a positive incentive to
choose her equilibrium strategy, what determines how she randomizes in equilib-
rium? From the examples above we see that a player’s equilibrium mixed strategy
in a two-player game keeps the other player indifferent between a set of her actions,
so that she is willing to randomize. In the mixed strategy equilibrium of BoS, for
example, player 1 chooses B with probability 2

3 so that player 2 is indifferent be-
tween B and S, and hence is willing to choose each with positive probability. Note,
however, that the theory is not that the players consciously choose their strategies
with this goal in mind! Rather, the conditions for equilibrium are designed to en-
sure that it is consistent with a steady state. In BoS, for example, if player 1 chooses
B with probability 2

3 and player 2 chooses B with probability 1
3 then neither player

has any reason to change her action. We have not yet studied how a steady state
might come about, but have rather simply looked for strategy profiles consistent
with steady states. In Section 4.9 I briefly discuss some theories of how a steady
state might be reached.

4.3.8 Existence of equilibrium in finite games

Every game we have examined has at least one mixed strategy Nash equilibrium.
In fact, every game in which each player has finitely many actions has at least one
such equilibrium.

PROPOSITION 116.1 (Existence of mixed strategy Nash equilibrium in finite games)
Every strategic game with vNM preferences in which each player has finitely many actions
has a mixed strategy Nash equilibrium.

This result is of no help in finding equilibria. But it is a useful fact to know: your
quest for an equilibrium of a game in which each player has finitely many actions
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in principle may succeed! Note that the finiteness of the number of actions of each
player is only sufficient for the existence of an equilibrium, not necessary; many
games in which the players have infinitely many actions possess mixed strategy
Nash equilibria. Note also that a player’s mixed strategy in a mixed strategy Nash
equilibrium may assign probability 1 to a single action; if every player’s strategy
does so then the equilibrium corresponds to a (“pure strategy”) equilibrium of the
associated game with ordinal preferences. Relatively advanced mathematical tools
are needed to prove the result; see, for example, Osborne and Rubinstein (1994,
19–20).

4.4 Dominated actions

In a strategic game with ordinal preferences, one action of a player strictly domi-
nates another action if it is superior, no matter what the other players do (see Def-
inition 43.1). In a game with vNM preferences in which players may randomize,
we extend this definition to allow an action to be dominated by a mixed strategy.

� DEFINITION 117.1 (Strict domination) In a strategic game with vNM preferences,
player i’s mixed strategy αi strictly dominates her action a′i if

Ui(αi, a−i) > ui(a′i , a−i) for every list a−i of the other players’ actions,

where ui is a payoff function whose expected value represents player i’s prefer-
ences over lotteries and Ui(αi, a−i) is player i’s expected payoff under ui when she
uses the mixed strategy αi and the actions chosen by the other players are given by
a−i.

As before, if a mixed strategy strictly dominates an action, we say that the ac-
tion is strictly dominated. Figure 117.1 (in which only player 1’s payoffs are given)
shows that an action that is not strictly dominated by any pure strategy (i.e. is not
strictly dominated in the sense of Definition 43.1) may be strictly dominated by a
mixed strategy. The action T of player 1 is not strictly (or weakly) dominated by
either M or B, but it is strictly dominated by the mixed strategy that assigns prob-
ability 1

2 to M and probability 1
2 to B, because if player 2 chooses L then the mixed

strategy yields player 1 the payoff of 2, whereas the action T yields her the payoff
of 1, and if player 2 chooses R then the mixed strategy yields player 1 the payoff of
3
2 , whereas the action T yields her the payoff of 1.

L R
T 1 1

M 4 0
B 0 3

Figure 117.1 Player 1’s payoffs in a strategic game with vNM preferences. The action T of player 1 is
strictly dominated by the mixed strategy that assigns probability 1

2 to M and probability 1
2 to B.
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? EXERCISE 118.1 (Strictly dominated actions) In Figure 117.1, the mixed strategy
that assigns probability 1

2 to M and probability 1
2 to B is not the only mixed strategy

that strictly dominates T. Find all the mixed strategies that do so.

In a Nash equilibrium of a strategic game with ordinal preferences no player
uses a strictly dominated action (Section 2.9.1). I now argue that the same is true of
a mixed strategy Nash equilibrium of a strategic game with vNM preferences. In
fact, I argue that a strictly dominated action is not a best response to any collection
of mixed strategies of the other players. Suppose that player i’s action a′i is strictly
dominated by her mixed strategy αi, and the other players’ mixed strategies are
given by α−i. Player i’s expected payoff Ui(αi , α−i) when she uses the mixed strat-
egy αi and the other players use the mixed strategies α−i is a weighted average
of her payoffs Ui(αi , a−i) as a−i varies over all the collections of actions for the
other players, with the weight on each a−i equal to the probability with which it
occurs when the other players’ mixed strategies are α−i. Player i’s expected payoff
when she uses the action a′i and the other players use the mixed strategies α−i is
a similar weighted average; the weights are the same, but the terms take the form
ui(a′i, a−i) rather than Ui(αi , a−i). The fact that a′i is strictly dominated by αi means
that Ui(αi, a−i) > ui(a′i , a−i) for every collection a−i of the other players’ actions.
Hence player i’s expected payoff when she uses the mixed strategy αi exceeds her
expected payoff when she uses the action a′i, given α−i. Consequently,

a strictly dominated action is not used with positive probability in any mixed
strategy equilibrium.

Thus when looking for mixed strategy equilibria we can eliminate from consider-
ation every strictly dominated action.

As before, we can define the notion of weak domination (see Definition 45.1).

� DEFINITION 118.2 (Weak domination) In a strategic game with vNM preferences,
player i’s mixed strategy αi weakly dominates her action a′i if

Ui(αi , a−i) ≥ ui(a′i, a−i) for every list a−i of the other players’ actions

and

Ui(αi, a−i) > ui(a′i , a−i) for some list a−i of the other players’ actions,

where ui is a payoff function whose expected value represents player i’s prefer-
ences over lotteries and Ui(αi, a−i) is player i’s expected payoff under ui when she
uses the mixed strategy αi and the actions chosen by the other players are given by
a−i.

We saw that a weakly dominated action may be used in a Nash equilibrium
(see Figure 46.1). Thus a weakly dominated action may be used with positive
probability in a mixed strategy equilibrium, so that we cannot eliminate weakly
dominated actions from consideration when finding mixed strategy equilibria!
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? EXERCISE 119.1 (Eliminating dominated actions when finding equilibria) Find all
the mixed strategy Nash equilibria of the game in Figure 119.1 by first eliminating
any strictly dominated actions and then constructing the players’ best response
functions.

L M R
T 2, 2 0, 3 1, 2
B 3, 1 1, 0 0, 2

Figure 119.1 The strategic game with vNM preferences in Exercise 119.1.

The fact that a player’s strategy in a mixed strategy Nash equilibrium may be
weakly dominated raises the question of whether a game necessarily has a mixed
strategy Nash equilibrium in which no player’s strategy is weakly dominated. The
following result (which is not easy to prove) shows that the answer is affirmative
for a finite game.

PROPOSITION 119.2 (Existence of mixed strategy Nash equilibrium with no weakly
dominated strategies in finite games) Every strategic game with vNM preferences in
which each player has finitely many actions has a mixed strategy Nash equilibrium in
which no player’s strategy is weakly dominated.

4.5 Pure equilibria when randomization is allowed

The analysis in Section 4.3.6 shows that the mixed strategy Nash equilibria of BoS
in which each player’s strategy is pure correspond precisely to the Nash equilibria
of the version of the game (considered in Section 2.3) in which the players are not
allowed to randomize. The same is true for a general game: equilibria when the
players are not allowed to randomize remain equilibria when they are allowed to
randomize, and any pure equilibria that exist when they are allowed to randomize
are equilibria when they are not allowed to randomize.

To establish this claim, let N be a set of players and let Ai, for each player i, be
a set of actions. Consider the following two games.

G: the strategic game with ordinal preferences in which the set of players is N,
the set of actions of each player i is Ai, and the preferences of each player i
are represented by the payoff function ui

G′: the strategic game with vNM preferences in which the set of players is N, the
set of actions of each player i is Ai, and the preferences of each player i are
represented by the expected value of ui.

First I argue that any Nash equilibrium of G corresponds to a mixed strategy
Nash equilibrium (in which each player’s strategy is pure) of G′. Let a∗ be a Nash
equilibrium of G, and for each player i let α∗

i be the mixed strategy that assigns
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probability 1 to a∗i . Since a∗ is a Nash equilibrium of G we know that in G′ no
player i has an action that yields her a payoff higher than does a∗i when all the other
players adhere to α∗

−i. Thus α∗ satisfies the two conditions in Proposition 113.2, so
that it is a mixed strategy equilibrium of G′, establishing the following result.

PROPOSITION 120.1 (Pure strategy equilibria survive when randomization is al-
lowed) Let a∗ be a Nash equilibrium of G and for each player i let α∗

i be the mixed strategy
of player i that assigns probability one to the action a∗i . Then α∗ is a mixed strategy Nash
equilibrium of G′.

Next I argue that any mixed strategy Nash equilibrium of G′ in which each
player’s strategy is pure corresponds to a Nash equilibrium of G. Let α∗ be a mixed
strategy Nash equilibrium of G′ in which every player’s mixed strategy is pure; for
each player i, denote by a∗i the action to which αi assigns probability one. Then no
mixed strategy of player i yields her a payoff higher than does α∗

i when the other
players’ mixed strategies are given by α∗

−i. Hence, in particular, no pure strategy
of player i yields her a payoff higher than does α∗

i . Thus a∗ is a Nash equilibrium
of G. In words, if a pure strategy is optimal for a player when she is allowed
to randomize then it remains optimal when she is prohibited from randomizing.
(More generally, prohibiting a decision-maker from taking an action that is not
optimal does not change the set of actions that are optimal.)

PROPOSITION 120.2 (Pure strategy equilibria survive when randomization is pro-
hibited) Let α∗ be a mixed strategy Nash equilibrium of G′ in which the mixed strategy of
each player i assigns probability one to the single action a∗i . Then a∗ is a Nash equilibrium
of G.

4.6 Illustration: expert diagnosis

I seem to confront the following predicament all too frequently. Something about
which I am relatively ill-informed (my car, my computer, my body) stops working
properly. I consult an expert, who makes a diagnosis and recommends an action.
I am not sure if the diagnosis is correct—the expert, after all, has an interest in
selling her services. I have to decide whether to follow the expert’s advice or to try
to fix the problem myself, put up with it, or consult another expert.

4.6.1 Model

A simple model that captures the main features of this situation starts with the as-
sumption that there are two types of problem, major and minor. Denote the fraction
of problems that are major by r, and assume that 0 < r < 1. An expert knows, on
seeing a problem, whether it is major or minor; a consumer knows only the prob-
ability r. (The diagnosis is costly neither to the expert nor to the consumer.) An
expert may recommend either a major or a minor repair (regardless of the true
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nature of the problem), and a consumer may either accept the expert’s recommen-
dation or seek another remedy. A major repair fixes both a major problem and a
minor one.

Assume that a consumer always accepts an expert’s advice to obtain a minor
repair—there is no reason for her to doubt such a diagnosis—but may either ac-
cept or reject advice to obtain a major repair. Further assume that an expert always
recommends a major repair for a major problem—a minor repair does not fix a
major problem, so there is no point in an expert’s recommending one for a major
problem—but may recommend either repair for a minor problem. Suppose that an
expert obtains the same profit π > 0 (per unit of time) from selling a minor repair
to a consumer with a minor problem as she does from selling a major repair to a
consumer with a major problem, but obtains the profit π′ > π from selling a major
repair to a consumer with a minor problem. (The rationale is that in the last case
the expert does not in fact perform a major repair, at least not in its entirety.) A
consumer pays an expert E for a major repair and I < E for a minor one; the cost
she effectively bears if she chooses some other remedy is E′ > E if her problem
is major and I ′ > I if it is minor. (Perhaps she consults other experts before pro-
ceeding, or works on the problem herself, in either case spending valuable time.) I
assume throughout that E > I ′.

Under these assumptions we can model the situation as a strategic game in
which the expert has two actions (recommend a minor repair for a minor problem;
recommend a major repair for a minor problem), and the consumer has two ac-
tions (accept the recommendation of a major repair; reject the recommendation of
a major repair). I name the actions as follows.

Expert Honest (recommend a minor repair for a minor problem and a major repair
for a major problem) and Dishonest (recommend a major repair for both types
of problem).

Consumer Accept (buy whatever repair the expert recommends) and Reject (buy
a minor repair but seek some other remedy if a major repair is recommended)

Assume that each player’s preferences are represented by her expected mone-
tary payoff. Then the players’ payoffs to the four action pairs are as follows; the
strategic game is given in Figure 122.1.

(H, A): With probability r the consumer’s problem is major, so she pays E, and
with probability 1 − r it is minor, so she pays I. Thus her expected payoff is
−rE − (1 − r)I. The expert’s profit is π.

(D, A): The consumer’s payoff is −E. The consumer’s problem is major with
probability r, yielding the expert π, and minor with probability 1 − r, yield-
ing the expert π′, so that the expert’s expected payoff is rπ + (1 − r)π′.

(H, R): The consumer’s cost is E′ if her problem is major (in which case she rejects
the expert’s advice to get a major repair) and I if her problem is minor, so that
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her expected payoff is −rE′ − (1 − r)I. The expert obtains a payoff only if the
consumer’s problem is minor, in which case she gets π; thus her expected
payoff is (1 − r)π.

(D, R): The consumer never accepts the expert’s advice, and thus obtains the ex-
pected payoff −rE′ − (1 − r)I ′. The expert does not get any business, and
thus obtains the payoff of 0.

Expert

Consumer
Accept (q) Reject (1 − q)

Honest (p) π, −rE − (1 − r)I (1 − r)π, −rE′ − (1 − r)I
Dishonest (1 − p) rπ + (1 − r)π′ , −E 0, −rE′ − (1 − r)I ′

Figure 122.1 A game between an expert and a consumer with a problem.

4.6.2 Nash equilibrium

To find the Nash equilibria of the game we can construct the best response func-
tions, as before. Denote by p the probability the expert assigns to H and by q the
probability the consumer assigns to A.

Expert’s best response function If q = 0 (i.e. the consumer chooses R with proba-
bility one) then the expert’s best response is p = 1 (since (1 − r)π > 0). If q = 1
(i.e. the consumer chooses A with probability one) then the expert’s best response
is p = 0 (since π′ > π, so that rπ + (1 − r)π′ > π). For what value of q is the
expert indifferent between H and D? Given q, the expert’s expected payoff to H
is qπ + (1 − q)(1 − r)π and her expected payoff to D is q[rπ + (1 − r)π′], so she is
indifferent between the two actions if

qπ + (1 − q)(1 − r)π = q[rπ + (1 − r)π′].

Upon simplification, this yields q = π/π′. We conclude that the expert’s best
response function takes the form shown in both panels of Figure 123.1.

Consumer’s best response function If p = 0 (i.e. the expert chooses D with probabil-
ity one) then the consumer’s best response depends on the relative sizes of E and
rE′ + (1 − r)I ′. If E < rE′ + (1 − r)I ′ then the consumer’s best response is q = 1,
whereas if E > rE′ + (1 − r)I ′ then her best response is q = 0; if E = rE′ + (1 − r)I ′

then she is indifferent between R and A.
If p = 1 (i.e. the expert chooses H with probability one) then the consumer’s

best response is q = 1 (given E < E′).
We conclude that if E < rE′ + (1 − r)I ′ then the consumer’s best response to

every value of p is q = 1, as shown in the left panel of Figure 123.1. If E > rE′ +
(1 − r)I ′ then the consumer is indifferent between A and R if

p[rE + (1 − r)I] + (1 − p)E = p[rE′ + (1 − r)I] + (1 − p)[rE′ + (1 − r)I ′],
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which reduces to

p =
E − [rE′ + (1 − r)I ′]

(1 − r)(E − I ′)
.

In this case the consumer’s best response function takes the form shown in the
right panel of Figure 123.1.

0 1
p →

π/π′

1↑
q

Expert

Consumer

E < rE′ + (1 − r)I ′

0 E−[rE′+(1−r)I′]
(1−r)(E−I′)

1
p →

π/π′

1↑
q

Expert

Consumer

E > rE′ + (1 − r)I ′

Figure 123.1 The players’ best response functions in the game of expert diagnosis. The probability
assigned by the expert to H is p and the probability assigned by the consumer to A is q.

Equilibrium Given the best response functions, if E < rE′ + (1 − r)I ′ then the pair
of pure strategies (D, A) is the unique Nash equilibrium. The condition E < rE′ +
(1 − r)I ′ says that the cost of a major repair by an expert is less than the expected
cost of an alternative remedy; the only equilibrium yields the dismal outcome for
the consumer in which the expert is always dishonest and the consumer always
accepts her advice.

If E > rE′ + (1 − r)I ′ then the unique equilibrium of the game is in mixed
strategies, with (p, q) = (p∗, q∗), where

p∗ =
E − [rE′ + (1 − r)I ′]

(1 − r)(E − I ′)
and q∗ =

π

π′ .

In this equilibrium the expert is sometimes honest, sometimes dishonest, and the
consumer sometimes accepts her advice to obtain a major repair, and sometimes
ignores such advice.

As discussed in the introduction to the chapter, a mixed strategy equilibrium
can be given more than one interpretation as a steady state. In the game we are
studying, and the games studied earlier in the chapter, I have focused on the in-
terpretation in which each player chooses her action randomly, with probabilities
given by her equilibrium mixed strategy, every time she plays the game. In the
game of expert diagnosis a different interpretation fits well: among the popula-
tion of individuals who may play the role of each given player, every individual
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chooses the same action whenever she plays the game, but different individuals
choose different actions; the fraction of individuals who choose each action is equal
to the equilibrium probability that that action is used in a mixed strategy equilib-
rium. Specifically, if E > rE′ + (1 − r)I ′ then the fraction p∗ of experts is honest
(recommending minor repairs for minor problems) and the fraction 1 − p∗ is dis-
honest (recommending major repairs for minor problems), while the fraction q∗ of
consumers is credulous (accepting any recommendation) and the fraction 1 − q∗ is
wary (accepting only a recommendation of a minor repair). Honest and dishonest
experts obtain the same expected payoff, as do credulous and wary consumers.

? EXERCISE 124.1 (Equilibrium in the expert diagnosis game) Find the set of mixed
strategy Nash equilibria of the game when E = rE′ + (1 − r)I ′.

4.6.3 Properties of the mixed strategy Nash equilibrium

Studying how the equilibrium is affected by changes in the parameters of the
model helps us understand the nature of the strategic interaction between the
players. I consider the effects of three changes.

Suppose that major problems become less common (cars become more reli-
able, more resources are devoted to preventive healthcare). If we rearrange the
expression for p∗ to

p∗ = 1 − r(E′ − E)
(1 − r)(E − I ′)

,

we see that p∗ increases as r decreases (the numerator of the fraction decreases and
the denominator increases). Thus in a mixed strategy equilibrium, the experts are
more honest when major problems are less common. Intuitively, if a major prob-
lem is less likely then a consumer has less to lose from ignoring an expert’s advice,
so that the probability of an expert’s being honest has to rise in order that her ad-
vice be heeded. The value of q∗ is not affected by the change in r: the probability
of a consumer’s accepting an expert’s advice remains the same when major prob-
lems become less common. Given the expert’s behavior, a decrease in r increases
the consumer’s payoff to rejecting the expert’s advice more than it increases her
payoff to accepting this advice, so that she prefers to reject the advice. But this
partial analysis is misleading: in the equilibrium that exists after r decreases, the
consumer is exactly as likely to accept the expert’s advice as she was before the
change.

Now suppose that major repairs become less expensive relative to minor ones
(technological advances reduce the cost of complex equipment). We see that p∗

decreases as E decreases (with E′ and I ′ constant): when major repairs are less
costly, experts are less honest. As major repairs become less costly, a consumer has
more potentially to lose from ignoring an expert’s advice, so that she heeds the
advice even if experts are less likely to be honest.

Finally, suppose that the profit π′ from an expert’s fixing a minor problem with
an alleged major repair falls (the government requires experts to return replaced
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parts to the consumer, making it more difficult for an expert to fraudulently claim
to have performed a major repair). Then q∗ increases—consumers become less
wary. Experts have less to gain from acting dishonestly, so that consumers can be
more confident of their advice.

? EXERCISE 125.1 (Incompetent experts) Consider a (realistic?) variant of the model,
in which the experts are not entirely competent. Assume that each expert always
correctly recognizes a major problem but correctly recognizes a minor problem
with probability s < 1: with probability 1 − s she mistakenly thinks that a minor
problem is major, and, if the consumer accepts her advice, performs a major repair
and obtains the profit π. Maintain the assumption that each consumer believes
(correctly) that the probability her problem is major is r. As before, a consumer
who does not give the job of fixing her problem to an expert bears the cost E′ if it
is major and I ′ if it is minor.

Suppose, for example, that an expert is honest and a consumer rejects advice to
obtain a major repair. With probability r the consumer’s problem is major, so that
the expert recommends a major repair, which the consumer rejects; the consumer
bears the cost E′. With probability 1 − r the consumer’s problem is minor. In this
case with probability s the expert correctly diagnoses it as minor, and the consumer
accepts her advice and pays I; with probability 1 − s the expert diagnoses it as ma-
jor, and the consumer rejects her advice and bears the cost I ′. Thus the consumer’s
expected payoff in this case is −rE′ − (1 − r)[sI + (1 − s)I ′].

Construct the payoffs for every pair of actions and find the mixed strategy equi-
librium in the case E > rE′ + (1− r)I ′. Does incompetence breed dishonesty? More
wary consumers?

? EXERCISE 125.2 (Choosing a seller) Each of two sellers has available one indivisible
unit of a good. Seller 1 posts the price p1 and seller 2 posts the price p2. Each of
two buyers would like to obtain one unit of the good; they simultaneously decide
which seller to approach. If both buyers approach the same seller, each trades with
probability 1

2 ; the disappointed buyer does not subsequently have the option to
trade with the other seller. (This assumption models the risk faced by a buyer that
a good is sold out when she patronizes a seller with a low price.) Each buyer’s
preferences are represented by the expected value of a payoff function that assigns
the payoff 0 to not trading and the payoff 1 − p to purchasing one unit of the good
at the price p. (Neither buyer values more than one unit.) For any pair (p1, p2) of
prices with 0 ≤ pi ≤ 1 for i = 1, 2, find the Nash equilibria (in pure and in mixed
strategies) of the strategic game that models this situation. (There are three main
cases: p2 < 2p1 − 1, 2p1 − 1 < p2 < 1

2 (1 + p1), and p2 > 1
2 (1 + p1).)

4.7 Equilibrium in a single population

In Section 2.10 I discussed deterministic steady states in situations in which the
members of a single population interact. I now discuss stochastic steady states in
such situations.
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First extend the definitions of a symmetric strategic game and a symmetric
Nash equilibrium (Definitions 49.3 and 50.2) to a game with vNM preferences. Re-
call that a two-player strategic game with ordinal preferences is symmetric if each
player has the same set of actions and each player’s evaluation of an outcome de-
pends only on her action and that of her opponent, not on whether she is player 1
or player 2. A symmetric game with vNM preferences satisfies the same condi-
tions; its definition differs from Definition 49.3 only because a player’s evaluation
of an outcome is given by her expected payoff rather than her ordinal preferences.

� DEFINITION 126.1 (Symmetric two-player strategic game with vNM preferences) A
two-player strategic game with vNM preferences is symmetric if the players’ sets
of actions are the same and the players’ preferences are represented by the ex-
pected values of payoff functions u1 and u2 for which u1(a1, a2) = u2(a2, a1) for
every action pair (a1, a2).

A Nash equilibrium of a strategic game with ordinal preferences in which ev-
ery player’s set of actions is the same is symmetric if all players take the same
action. This notion of equilibrium extends naturally to strategic games with vNM
preferences. (As before, it does not depend on the game’s having only two players,
so I define it for a game with any number of players.)

� DEFINITION 126.2 (Symmetric mixed strategy Nash equilibrium) A profile α∗ of mixed
strategies in a strategic game with vNM preferences in which each player has the
same set of actions is a symmetric mixed strategy Nash equilibrium if it is a mixed
strategy Nash equilibrium and α∗

i is the same for every player i.

Now consider again the game of approaching pedestrians (Figure 51.1, repro-
duced in Figure 126.1), interpreting the payoff numbers as Bernoulli payoffs whose
expected values represent the players’ preferences over lotteries. We found that
this game has two deterministic steady states, corresponding to the two symmet-
ric Nash equilibria in pure strategies, (Left, Left) and (Right, Right). The game also
has a symmetric mixed strategy Nash equilibrium, in which each player assigns
probability 1

2 to Left and probability 1
2 to Right. This equilibrium corresponds to a

steady state in which half of all encounters result in collisions! (With probability 1
4

player 1 chooses Left and player 2 chooses Right, and with probability 1
4 player 1

chooses Right and player 2 chooses Left.)

Left Right
Left 1, 1 0, 0

Right 0, 0 1, 1

Figure 126.1 Approaching pedestrians.

In this example not only is the game symmetric, but the players’ interests coin-
cide. The game in Figure 127.1 is symmetric, but the players prefer to take differ-
ent actions rather than the same actions. This game has no pure symmetric equi-
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librium, but has a symmetric mixed strategy equilibrium, in which each player
chooses each action with probability 1

2 .

X Y
X 0, 0 1, 1
Y 1, 1 0, 0

Figure 127.1 A symmetric game.

These two examples show that a symmetric game may have no symmetric pure
strategy equilibrium. But both games have a symmetric mixed strategy Nash equi-
librium, as does any symmetric game in which each player has finitely many ac-
tions, by the following result. (Relatively advanced mathematical tools are needed
to prove the result.)

PROPOSITION 127.1 (Existence of symmetric mixed strategy Nash equilibrium in
symmetric finite games) Every strategic game with vNM preferences in which each
player has the same finite set of actions has a symmetric mixed strategy Nash equilibrium.

? EXERCISE 127.2 (Approaching cars) Members of a single population of car drivers
are randomly matched in pairs when they simultaneously approach intersections
from different directions. In each interaction, each driver can either stop or con-
tinue. The drivers’ preferences are represented by the expected value of the payoff
functions given in Figure 127.2; the parameter ε, with 0 < ε < 1, reflects the fact
that each driver dislikes being the only one to stop. Find the symmetric Nash
equilibrium (equilibria?) of the game (find both the equilibrium strategies and the
equilibrium payoffs).

Stop Continue
Stop 1, 1 1 − ε, 2

Continue 2, 1 − ε 0, 0

Figure 127.2 The game in Exercise 127.2.

Now suppose that drivers are (re)educated to feel guilty about choosing Con-
tinue, with the consequence that their payoffs when choosing Continue fall by δ >

0. That is, the entry (2, 1 − ε) in Figure 127.2 is replaced by (2 − δ, 1 − ε), the
entry (1 − ε, 2) is replaced by (1 − ε, 2 − δ), and the entry (0, 0) is replaced by
(−δ, −δ). Show that all drivers are better off in the symmetric equilibrium of this
game than they are in the symmetric equilibrium of the original game. Why is
the society better off if everyone feels guilty about being aggressive? (The equilib-
rium of this game, like that of the equilibrium of the game of expert diagnosis in
Section 4.6, may attractively be interpreted as representing a steady state in which
some members of the population always choose one action, and other members
always choose the other action.)
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? EXERCISE 128.1 (Bargaining) Pairs of players from a single population bargain
over the division of a pie of size 10. The members of a pair simultaneously make
demands; the possible demands are the nonnegative even integers up to 10. If the
demands sum to 10 then each player receives her demand; if the demands sum
to less than 10 then each player receives her demand plus half of the pie that re-
mains after both demands have been satisfied; if the demands sum to more than
10 then neither player receives any payoff. Find all the symmetric mixed strategy
Nash equilibria in which each player assigns positive probability to at most two
demands. (Many situations in which each player assigns positive probability to
two actions, say a′ and a′′, can be ruled out as equilibria because when one player
uses such a strategy, some action a′′′ yields the other player a payoff higher than
does a′ and/or a′′.)

4.8 Illustration: reporting a crime

A crime is observed by a group of n people. Each person would like the police
to be informed, but prefers that someone else make the phone call. Specifically,
suppose that each person attaches the value v to the police being informed and
bears the cost c if she makes the phone call, where v > c > 0. Then the situation is
modeled by the following strategic game with vNM preferences.

Players The n people.

Actions Each player’s set of actions is {Call, Don’t call}.

Preferences Each player’s preferences are represented by the expected value
of a payoff function that assigns 0 to the profile in which no one calls, v − c
to any profile in which she calls, and v to any profile in which at least one
person calls, but she does not.

This game is a variant of the one in Exercise 31.1, with k = 1. It has n pure Nash
equilibria, in each of which exactly one person calls. (If that person switches to not
calling, her payoff falls from v − c to 0; if any other person switches to calling, her
payoff falls from v to v− c.) If the members of the group differ in some respect, then
these asymmetric equilibria may be compelling as steady states. For example, the
social norm in which the oldest person in the group makes the phone call is stable.

If the members of the group either do not differ significantly or are not aware
of any differences among themselves—if they are drawn from a single homoge-
neous population—then there is no way for them to coordinate, and a symmetric
equilibrium, in which every player uses the same strategy, is more compelling.

The game has no symmetric pure Nash equilibrium. (If everyone calls, then
any person is better off switching to not calling. If no one calls, then any person is
better off switching to calling.)

However, it has a symmetric mixed strategy equilibrium in which each person
calls with positive probability less than one. In any such equilibrium, each per-
son’s expected payoff to calling is equal to her expected payoff to not calling. Each
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person’s payoff to calling is v − c, and her payoff to not calling is 0 if no one else
calls and v if at least one other person calls, so the equilibrium condition is

v − c = 0 · Pr{no one else calls} + v · Pr{at least one other person calls},

or
v − c = v · (1 − Pr{no one else calls}),

or
c/v = Pr{no one else calls}. (129.1)

Denote by p the probability with which each person calls. The probability that
no one else calls is the probability that every one of the other n − 1 people does not
call, namely (1 − p)n−1. Thus the equilibrium condition is c/v = (1 − p)n−1, or

p = 1 − (c/v)1/(n−1).

This number p is between 0 and 1, so we conclude that the game has a unique
symmetric mixed strategy equilibrium, in which each person calls with probability
1 − (c/v)1/(n−1). That is, there is a steady state in which whenever a person is
in a group of n people facing the situation modeled by the game, she calls with
probability 1 − (c/v)1/(n−1).

How does this equilibrium change as the size of the group increases? We see
that as n increases, the probability p that any given person calls decreases. (As
n increases, 1/(n − 1) decreases, so that (c/v)1/(n−1) increases.) What about the
probability that at least one person calls? Fix any player i. Then the event “no one
calls” is the same as the event “i does not call and no one other than i calls”. Thus

Pr{no one calls} = Pr{i does not call} Pr{no one else calls}. (129.2)

Now, the probability that any given person calls decreases as n increases, or equiv-
alently the probability that she does not call increases as n increases. Further, from
the equilibrium condition (129.1), Pr{no one else calls} is equal to c/v, independent
of n. We conclude that the probability that no one calls increases as n increases.
That is, the larger the group, the less likely the police are informed of the crime!

The condition defining a mixed strategy equilibrium is responsible for this re-
sult. For any given person to be indifferent between calling and not calling this
condition requires that the probability that no one else calls be independent of the
size of the group. Thus each person’s probability of not calling is larger in a larger
group, and hence, by the laws of probability reflected in (129.2), the probability
that no one calls is larger in a larger group.

The result that the larger the group, the less likely any given person calls is not
surprising. The result that the larger the group, the less likely at least one person
calls is a more subtle implication of the notion of equilibrium. In a larger group no
individual is any less concerned that the police should be called, but in a steady
state the behavior of the group drives down the chance that the police are notified
of the crime.
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? EXERCISE 130.1 (Contributing to a public good) Consider an extension of the anal-
ysis above to the game in Exercise 31.1 for k ≥ 2. (In this case a player may con-
tribute even though the good is not provided; the player’s payoff in this case is −c.)
Denote by Qn−1,m(p) the probability that exactly m of a group of n − 1 players con-
tribute when each player contributes with probability p. What condition must be
satisfied by Qn−1,k−1(p) in a symmetric mixed strategy equilibrium (in which each
player contributes with the same probability)? (When does a player’s contribution
make a difference to the outcome?) For the case v = 1, n = 4, k = 2, and c = 3

8 find
the equilibria explicitly. (You need to use the fact that Q3,1(p) = 3p(1 − p)2, and
do a bit of algebra.)

REPORTING A CRIME: SOCIAL PSYCHOLOGY AND GAME THEORY

Thirty-eight people witnessed the brutal murder of Catherine (“Kitty”) Genovese
over a period of half an hour in New York City in March 1964. During this period,
none of them significantly responded to her screams for help; none even called the
police. Journalists, psychiatrists, sociologists, and others subsequently struggled
to understand the witnesses’ inaction. Some ascribed it to apathy engendered by
life in a large city: “Indifference to one’s neighbor and his troubles is a conditioned
reflex of life in New York as it is in other big cities” (Rosenthal 1964, 81–82).

The event particularly interested social psychologists. It led them to try to un-
derstand the circumstances under which a bystander would help someone in trou-
ble. Experiments quickly suggested that, contrary to the popular theory, people—
even those living in large cities—are not in general apathetic to others’ plights. An
experimental subject who is the lone witness of a person in distress is very likely
to try to help. But as the size of the group of witnesses increases, there is a decline
not only in the probability that any given one of them offers assistance, but also
in the probability that at least one of them offers assistance. Social psychologists
hypothesize that three factors explain these experimental findings. First, “diffu-
sion of responsibility”: the larger the group, the lower the psychological cost of
not helping. Second, “audience inhibition”: the larger the group, the greater the
embarrassment suffered by a helper in case the event turns out to be one in which
help is inappropriate (because, for example, it is not in fact an emergency). Third,
“social influence”: a person infers the appropriateness of helping from others’ be-
havior, so that in a large group everyone else’s lack of intervention leads any given
person to think intervention is less likely to be appropriate.

In terms of the model in Section 4.8, these three factors raise the expected cost
and/or reduce the expected benefit of a person’s intervening. They all seem plausi-
ble. However, they are not needed to explain the phenomenon: our game-theoretic
analysis shows that even if the cost and benefit are independent of group size, a
decrease in the probability that at least one person intervenes is an implication
of equilibrium. This game-theoretic analysis has an advantage over the socio-
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psychological one: it derives the conclusion from the same principles that underlie
all the other models studied so far (oligopoly, auctions, voting, and elections, for
example), rather than positing special features of the specific environment in which
a group of bystanders may come to the aid of a person in distress.

The critical element missing from the socio-psychological analysis is the notion
of an equilibrium. Whether any given person intervenes depends on the probability
she assigns to some other person’s intervening. In an equilibrium each person
must be indifferent between intervening and not intervening, and as we have seen
this condition leads inexorably to the conclusion that an increase in group size
reduces the probability that at least one person intervenes.

4.9 The formation of players’ beliefs

In a Nash equilibrium, each player chooses a strategy that maximizes her expected
payoff, knowing the other players’ strategies. So far we have not considered how
players may acquire such information. Informally, the idea underlying the pre-
vious analysis is that the players have learned each other’s strategies from their
experience playing the game. In the idealized situation to which the analysis cor-
responds, for each player in the game there is a large population of individuals
who may take the role of that player; in any play of the game, one participant is
drawn randomly from each population. In this situation, a new individual who
joins a population that is in a steady state (i.e. is using a Nash equilibrium strategy
profile) can learn the other players’ strategies by observing their actions over many
plays of the game. As long as the turnover in players is small enough, existing
players’ encounters with neophytes (who may use nonequilibrium strategies) will
be sufficiently rare that their beliefs about the steady state will not be disturbed, so
that a new player’s problem is simply to learn the other players’ actions.

This analysis leaves open the question of what might happen if new players
simultaneously join more than one population in sufficient numbers that they have
a significant chance of facing opponents who are themselves new. In particular,
can we expect a steady state to be reached when no one has experience playing the
game?

4.9.1 Eliminating dominated actions

In some games the players may reasonably be expected to choose their Nash equi-
librium actions from an introspective analysis of the game. At an extreme, each
player’s best action may be independent of the other players’ actions, as in the
Prisoner’s Dilemma (Example 12.1). In such a game no player needs to worry about
the other players’ actions. In a less extreme case, some player’s best action may
depend on the other players’ actions, but the actions the other players will choose
may be clear because each of these players has an action that strictly dominates
all others. For example, in the game in Figure 132.1, player 2’s action R strictly
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dominates L, so that no matter what player 1 thinks player 1 will do, she should
choose R. Consequently, player 1, who can deduce by this argument that player 2
will choose R, may reason that she should choose B. That is, even inexperienced
players may be led to the unique Nash equilibrium (B, R) in this game.

L R
T 1, 2 0, 3
B 0, 0 1, 1

Figure 132.1 A game in which player 2 has a strictly dominant action whereas player 1 does not.

This line of argument may be extended. For example, in the game in Fig-
ure 132.2 player 1’s action T is strictly dominated, so player 1 may reason that
player 2 will deduce that player 1 will not choose T. Consequently player 1 may
deduce that player 2 will choose R, and hence herself may choose B rather than M.

L R
T 0, 2 0, 0

M 2, 1 1, 2
B 1, 1 2, 2

Figure 132.2 A game in which player 1 may reason that she should choose B because player 2 will
reason that player 1 will not choose T, so that player 2 will choose R.

The set of action profiles that remain at the end of such a reasoning process
contains all Nash equilibria; for many games (unlike these examples) it contains
many other action profiles. In fact, in many games it does not eliminate any action
profile, because no player has a strictly dominated action. Nevertheless, in some
classes of games the process is powerful; its logical consequences are explored in
Chapter 12.

4.9.2 Learning

Another approach to the question of how a steady state might be reached assumes
that each player starts with an unexplained “prior” belief about the other players’
actions, and changes these beliefs—“learns”—in response to information she re-
ceives. She may learn, for example, from observing the fortunes of other players
like herself, from discussing the game with such players, or from her own experi-
ence playing the game. Here I briefly discuss two theories in which the same set of
participants repeatedly play a game, each participant changing her beliefs about
the others’ strategies in response to her observations of their actions.

Best response dynamics A particularly simple theory assumes that in each period
after the first, each player believes that the other players will choose the actions
they chose in the previous period. In the first period, each player chooses a best
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response to an arbitrary deterministic belief about the other players’ actions. In
every subsequent period, each player chooses a best response to the other players’
actions in the previous period. This process is known as best response dynamics. An
action profile that remains the same from period to period is a pure Nash equi-
librium of the game. Further, a pure Nash equilibrium in which each player’s
action is her only best response to the other players’ actions is an action profile
that remains the same from period to period.

In some games the sequence of action profiles generated best response dy-
namics converges to a pure Nash equilibrium, regardless of the players’ initial
beliefs. The example of Cournot’s duopoly game studied in Section 3.1.3 is such
a game. Looking at the best response functions in Figure 56.2, you can convince
yourself that from arbitrary initial actions, the players’ actions approach the Nash
equilibrium (q∗1, q∗2).

? EXERCISE 133.1 (Best response dynamics in Cournot’s duopoly game) Find the
sequence of pairs of outputs chosen by the firms in Cournot’s duopoly game under
the assumptions of Section 3.1.3 if they both initially choose 0. (If you know how
to solve a first-order difference equation, find a formula for the outputs in each
period; if not, find the outputs in the first few periods.)

? EXERCISE 133.2 (Best response dynamics in Bertrand’s duopoly game) Consider
Bertrand’s duopoly game in which the set of possible prices is discrete, under the
assumptions of Exercise 65.2. Does the sequences of prices under best response
dynamics converge to a Nash equilibrium when both prices initially exceed c + 1?
What happens when both prices are initially equal to c?

For other games there are initial beliefs for which the sequence of action profiles
generated by the process does not converge. In BoS (Example 16.2), for example, if
player 1 initially believes that player 2 will choose Stravinsky and player 2 initially
believes that player 1 will choose Bach, then the players’ choices will subsequently
alternate indefinitely between the action pairs (Bach, Stravinsky) and (Stravinsky, Bach).
This example highlights the limited extent to which a player is assumed to reason
in the model, which does not consider the possibility that she cottons on to the fact
that her opponent’s action is always a best response to her own previous action.

Fictitious play Under best response dynamics, the players’ beliefs are continually
revealed to be incorrect unless the starting point is a Nash equilibrium: the players’
actions change from period to period. Further, each player believes that every
other player is using a pure strategy: a player’s belief does not admit the possibility
that her opponents’ actions are realizations of mixed strategies.

Another theory, known as fictitious play, assumes that players consider actions
in all the previous periods when forming a belief about their opponents’ strategies.
They treat these actions as realizations of mixed strategies. Consider a two-player
game. Each player begins with an arbitrary probabilistic belief about the other
player’s action. In the first play of the game she chooses a best response to this
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belief and observes the other player’s action, say A. She then changes her belief
to one that assigns probability one to A; in the second period, she chooses a best
response to this belief and observes the other player’s action, say B. She then
changes her belief to one that assigns probability 1

2 to both A and B, and chooses
a best response to this belief. She continues to change her belief each period; in
any period she adopts the belief that her opponent is using a mixed strategy in
which the probability of each action is proportional to the frequency with which
her opponent chose that action in the previous periods. (If, for example, in the first
six periods player 2 chooses A twice, B three times, and C once, player 1’s belief in
period 7 assigns probability 1

3 to A, probability 1
2 to B, and probability 1

6 to C.)
In the game Matching Pennies (Example 17.1), reproduced in Figure 134.1, this

process works as follows. Suppose that player 1 begins with the belief that player 2’s
action will be Tail, and player 2 begins with the belief that player 1’s action will
be Head. Then in period 1 both players choose Tail. Thus in period 2 both play-
ers believe that their opponent will choose Tail, so that player 1 chooses Tail and
player 2 chooses Head. Consequently in period 3, player 1’s belief is that player 2
will choose Head with probability 1

2 and Tail with probability 1
2 , and player 2’s be-

lief is that player 1 will definitely choose Tail. Thus in period 3, both Head and
Tail are best responses of player 1 to her belief, so that she may take either action;
the unique best response of player 2 is Head. The process continues similarly in
subsequent periods.

Head Tail
Head 1, −1 −1, 1

Tail −1, 1 1, −1

Figure 134.1 Matching Pennies.

In two-player games like Matching Pennies, in which the players’ interests are
directly opposed, and in any two-player game in which each player has two ac-
tions, this process converges to a mixed strategy Nash equilibrium from any initial
beliefs. That is, after a sufficiently large number of periods, the frequencies with
which each player chooses her actions are close to the frequencies induced by her
mixed strategy in the Nash equilibrium. For other games there are initial beliefs
for which the process does not converge. (The simplest example is too complicated
to present compactly.)

People involved in an interaction that we model as a game may form beliefs
about their opponents’ strategies from an analysis of the structure of the players’
payoffs, from their observations of their opponents’ actions, and from information
they obtain from other people involved in similar interactions. The models I have
outlined allow us to explore the logical implications of two ways in which play-
ers may draw inferences from their opponents’ actions. Models that assume the
players to be more sophisticated may give more insights into the types of situation
in which a Nash equilibrium is likely to be attained; this topic is an active area of
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current research.

4.10 Extension: Finding all mixed strategy Nash equilibria

We can find all the mixed strategy Nash equilibria of a two-player game in which
each player has two actions by constructing the players’ best response functions,
as we have seen. In more complicated games, this method is usually not practical.

The following systematic method of finding all mixed strategy Nash equilib-
ria of a game is suggested by the characterization of an equilibrium in Proposi-
tion 113.2.

• For each player i, choose a subset Si of her set Ai of actions.

• Check whether there exists a mixed strategy profile α such that (i) the set of
actions to which each strategy αi assigns positive probability is Si and (ii) α

satisfies the conditions in Proposition 113.2.

• Repeat the analysis for every collection of subsets of the players’ sets of
actions.

The following example illustrates this method for a two-player game in which
each player has two actions.

EXAMPLE 135.1 (Finding all mixed strategy equilibria of a two-player game in
which each player has two actions) Consider a two-player game in which each
player has two actions. Denote the actions and payoffs as in Figure 136.1. Each
player’s set of actions has three nonempty subsets: two each consisting of a sin-
gle action, and one consisting of both actions. Thus there are nine (3 × 3) pairs of
subsets of the players’ action sets. For each pair (S1, S2), we check if there is a pair
(α1, α2) of mixed strategies such that each strategy αi assigns positive probability
only to actions in Si and the conditions in Proposition 113.2 are satisfied.

• Checking the four pairs of subsets in which each player’s subset consists of a
single action amounts to checking whether any of the four pairs of actions is
a pure strategy equilibrium. (For each player, the first condition in Proposi-
tion 113.2 is automatically satisfied, because there is only one action in each
subset.)

• Consider the pair of subsets {T, B} for player 1 and {L} for player 2. The
second condition in Proposition 113.2 is automatically satisfied for player 1,
who has no actions to which she assigns probability 0, and the first condition
is automatically satisfied for player 2, because she assigns positive probability
to only one action. Thus for there to be a mixed strategy equilibrium in which
player 1’s probability of using T is p we need u11 = u21 (player 1’s payoffs to
her two actions must be equal) and

pv11 + (1 − p)v21 ≥ pv12 + (1 − p)v22
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(L must be at least as good as R, given player 1’s mixed strategy). If u11 �=
u21, or if there is no probability p satisfying the inequality, then there is no
equilibrium of this type. A similar argument applies to the three other pairs
of subsets in which one player’s subset consists of both her actions and the
other player’s subset consists of a single action.

• To check whether there is a mixed strategy equilibrium in which the sub-
sets are {T, B} for player 1 and {L, R} for player 2, we need to find a pair of
mixed strategies that satisfies the first condition in Proposition 113.2 (the sec-
ond condition is automatically satisfied because both players assign positive
probability to both their actions). That is, we need to find probabilities p and
q (if any such exist) for which

qu11 + (1− q)u12 = qu21 + (1− q)u22 and pv11 + (1− p)v21 = pv12 + (1− p)v22.

L R
T u11, v11 u12, v12
B u21, v21 u22, v22

Figure 136.1 A two-player strategic game.

For example, in BoS we find the two pure equilibria when we check pairs of
subsets in which each subset consists of a single action, we find no equilibria when
we check pairs in which one subset consists of a single action and the other consists
of both actions, and we find the mixed strategy equilibrium when we check the
pair ({B, S}, {B, S}).

? EXERCISE 136.1 (Finding all mixed strategy equilibria of two-player games) Use
the method described above to find all the mixed strategy equilibria of the games
in Figure 111.2.

In a game in which each player has two actions, for any subset of any player’s
set of actions at most one of the two conditions in Proposition 113.2 is relevant
(the first if the subset contains both actions and the second if it contains only one
action). When a player has three or more actions and we consider a subset of her
set of actions that contains two actions, both conditions are relevant, as the next
example illustrates.

EXAMPLE 136.2 (Finding all mixed strategy equilibria of a variant of BoS) Consider
the variant of BoS given in Figure 137.1. First, by inspection we see that the game
has two pure strategy Nash equilibria, namely (B, B) and (S, S).

Now consider the possibility of an equilibrium in which player 1’s strategy
is pure whereas player 2’s strategy assigns positive probability to two or more ac-
tions. If player 1’s strategy is B then player 2’s payoffs to her three actions (2, 0, and
1) are all different, so the first condition in Proposition 113.2 is not satisfied. Thus
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B S X
B 4, 2 0, 0 0, 1
S 0, 0 2, 4 1, 3

Figure 137.1 A variant of the game BoS.

there is no equilibrium of this type. Similar reasoning rules out an equilibrium in
which player 1’s strategy is S and player 2’s strategy assigns positive probability to
more than one action, and also an equilibrium in which player 2’s strategy is pure
and player 1’s strategy assigns positive probability to both of her actions.

Next consider the possibility of an equilibrium in which player 1’s strategy
assigns positive probability to both her actions and player 2’s strategy assigns pos-
itive probability to two of her three actions. Denote by p the probability player 1’s
strategy assigns to B. There are three possibilities for the pair of player 2’s actions
that have positive probability.

B and S: For the conditions in Proposition 113.2 to be satisfied we need player 2’s
expected payoff to B to be equal to her expected payoff to S and at least her
expected payoff to X. That is, we need

2p = 4(1 − p) ≥ p + 3(1 − p).

The equation implies that p = 2
3 , which does not satisfy the inequality. (That

is, if p is such that B and S yield the same expected payoff, then X yields a
higher expected payoff.) Thus there is no equilibrium of this type.

B and X: For the conditions in Proposition 113.2 to be satisfied we need player 2’s
expected payoff to B to be equal to her expected payoff to X and at least her
expected payoff to S. That is, we need

2p = p + 3(1 − p) ≥ 4(1 − p).

The equation implies that p = 3
4 , which satisfies the inequality. For the first

condition in Proposition 113.2 to be satisfied for player 1 we need player 1’s
expected payoffs to B and S to be equal: 4q = 1 − q, where q is the prob-
ability player 2 assigns to B, or q = 1

5 . Thus the pair of mixed strategies
(( 3

4 , 1
4 ), ( 1

5 , 0, 4
5 )) is a mixed strategy equilibrium.

S and X: For every strategy of player 2 that assigns positive probability only to S
and X, player 1’s expected payoff to S exceeds her expected payoff to B. Thus
there is no equilibrium of this sort.

The final possibility is that there is an equilibrium in which player 1’s strat-
egy assigns positive probability to both her actions and player 2’s strategy assigns
positive probability to all three of her actions. Let p be the probability player 1’s
strategy assigns to B. Then for player 2’s expected payoffs to her three actions to
be equal we need

2p = 4(1 − p) = p + 3(1 − p).
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For the first equality we need p = 2
3 , violating the second equality. That is, there is

no value of p for which player 2’s expected payoffs to her three actions are equal,
and thus no equilibrium in which she chooses each action with positive probability.

We conclude that the game has three mixed strategy equilibria: ((1, 0), (1, 0, 0))
(i.e. the pure strategy equilibrium (B, B)), ((0, 1), (0, 1, 0)) (i.e. the pure strategy
equilibrium (S, S)), and (( 3

4 , 1
4 ), ( 1

5 , 0, 4
5 )).

? EXERCISE 138.1 (Finding all mixed strategy equilibria of a two-player game) Use
the method described above to find all the mixed strategy Nash equilibria of the
strategic game in Figure 138.1.

L M R
T 2, 2 0, 3 1, 3
B 3, 2 1, 1 0, 2

Figure 138.1 The strategic game with vNM preferences in Exercise 138.1.

As you can see from the examples, this method has the disadvantage that for
games in which each player has several strategies, or in which there are several
players, the number of possibilities to examine is huge. Even in a two-player
game in which each player has three actions, each player’s set of actions has seven
nonempty subsets (three each consisting of a single action, three consisting of two
actions, and the entire set of actions), so that there are 49 (7 × 7) possible collec-
tions of subsets to check. In a symmetric game, like the one in the next exercise,
many cases involve the same argument, reducing the number of distinct cases to
be checked.

? EXERCISE 138.2 (Rock, paper, scissors) Each of two players simultaneously an-
nounces either Rock, or Paper, or Scissors. Paper beats (wraps) Rock, Rock beats
(blunts) Scissors, and Scissors beats (cuts) Paper. The player who names the win-
ning object receives $1 from her opponent; if both players make the same choice
then no payment is made. Each player’s preferences are represented by the ex-
pected amount of money she receives. (An example of the variant of Hotelling’s
model of electoral competition considered in Exercise 74.1 has the same payoff
structure. Suppose there are three possible positions, A, B, and C, and three citi-
zens, one of whom prefers A to B to C, one of whom prefers B to C to A, and one of
whom prefers C to A to B. Two candidates simultaneously choose positions. If the
candidates choose different positions each citizen votes for the candidate whose
position she prefers; if both candidates choose the same position they tie for first
place.)

a. Formulate this situation as a strategic game and find all its mixed strategy
equilibria (give both the equilibrium strategies and the equilibrium payoffs).

b. Find all the mixed strategy equilibria of the modified game in which player 1
is prohibited from announcing Scissors.
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?? EXERCISE 139.1 (Election campaigns) A new political party, A, is challenging an
established party, B. The race involves three localities of different sizes. Party A
can wage a strong campaign in only one locality; B must commit resources to de-
fend its position in one of the localities, without knowing which locality A has
targeted. If A targets district i and B devotes its resources to some other district
then A gains ai votes at the expense of B; let a1 > a2 > a3 > 0. If B devotes
resources to the district that A targets then A gains no votes. Each party’s prefer-
ences are represented by the expected number of votes it gains. (Perhaps seats in a
legislature are allocated proportionally to vote shares.) Formulate this situation as
a strategic game and find its mixed strategy equilibria.

Although games with many players cannot in general be conveniently repre-
sented in tables like those we use for two-player games, three-player games can
be accommodated. We construct one table for each of player 3’s actions; player 1
chooses a row, player 2 chooses a column, and player 3 chooses a table. The next
exercise is an example of such a game.

? EXERCISE 139.2 (A three-player game) Find the mixed strategy Nash equilibria of
the three-player game in Figure 139.1, in which each player has two actions.

A B
A 1, 1, 1 0, 0, 0
B 0, 0, 0 0, 0, 0

A

A B
A 0, 0, 0 0, 0, 0
B 0, 0, 0 4, 4, 4

B

Figure 139.1 The three-player game in Exercise 139.2.

4.11 Extension: Mixed strategy Nash equilibria of games in which each

player has a continuum of actions

In all the games studied so far in this chapter each player has finitely many ac-
tions. In the previous chapter we saw that many situations may conveniently be
modeled as games in which each player has a continuum of actions. (For example,
in Cournot’s model the set of possible outputs for a firm is the set of nonnegative
numbers, and in Hotelling’s model the set of possible positions for a candidate is
the set of nonnegative numbers.) The principles involved in finding mixed strat-
egy equilibria of such games are the same as those involved in finding mixed strat-
egy equilibria of games in which each player has finitely many actions, though the
techniques are different.

Proposition 113.2 says that a strategy profile in a game in which each player has
finitely many actions is a mixed strategy Nash equilibrium if and only if, for each
player, (a) every action to which her strategy assigns positive probability yields the
same expected payoff, and (b) no action yields a higher expected payoff. Now, a
mixed strategy of a player who has a continuum of actions is determined by the
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probabilities it assigns to sets of actions, not by the probabilities it assigns to single
actions (all of which may be zero, for example). Thus (a) does not fit such a game.
However, the following restatement of the result, equivalent to Proposition 113.2
for a game in which each player has finitely many actions, does fit.

PROPOSITION 140.1 (Characterization of mixed strategy Nash equilibrium) A mixed
strategy profile α∗ in a strategic game with vNM preferences is a mixed strategy Nash
equilibrium if and only if, for each player i,

• α∗
i assigns probability zero to the set of actions ai for which the action profile (ai, α∗

−i)
yields player i an expected payoff less than her expected payoff to α∗

• for no action ai does the action profile (ai , α∗
−i) yield player i an expected payoff

greater than her expected payoff to α∗.

A significant class of games in which each player has a continuum of actions
consists of games in which each player’s set of actions is a one-dimensional inter-
val of numbers. Consider such a game with two players; let player i’s set of actions
be the interval from ai to ai, for i = 1, 2. Identify each player’s mixed strategy with
a cumulative probability distribution on this interval. (See Section 17.7.4 in the ap-
pendix on mathematics if you are not familiar with this notion.) That is, the mixed
strategy of each player i is a nondecreasing function Fi for which 0 ≤ Fi(ai) ≤ 1 for
every action ai; the number Fi(ai) is the probability that player i’s action is at most
ai.

The form of a mixed strategy Nash equilibrium in such a game may be very
complex. Some such games, however, have equilibria of a particularly simple
form, in which each player’s equilibrium mixed strategy assigns probability zero
except in an interval. Specifically, consider a pair (F1, F2) of mixed strategies that
satisfies the following conditions for i = 1, 2.

• There are numbers xi and yi such that player i’s mixed strategy Fi assigns
probability zero except in the interval from xi to yi: Fi(z) = 0 for z < xi, and
F(z) = 1 for z ≥ yi.

• Player i’s expected payoff when her action is ai and the other player uses her
mixed strategy Fj takes the form

{
= ci for xi ≤ ai ≤ yi
≤ ci for ai < xi and ai > yi

where ci is a constant.

(The second condition is illustrated in Figure 141.1.) By Proposition 140.1, such a
pair of mixed strategies, if it exists, is a mixed strategy Nash equilibrium of the
game, in which player i’s expected payoff is ci, for i = 1, 2.

The next example illustrates how a mixed strategy equilibrium of such a game
may be found. The example is designed to be very simple; be warned that in
most such games an analysis of the equilibria is, at a minimum, somewhat more
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a1 x1 y1 a1
a1 →

c1

Player 1’s expected payoff given F2

a2 x2 y2 a2
a2 →

c2

Player 2’s expected payoff given F1

Figure 141.1 If (i) F1 assigns positive probability only to actions in the interval from x1 to y1, (ii) F2
assigns positive probability only to the actions in the interval from x2 to y2, (iii) given player 2’s mixed
strategy F2, player 1’s expected payoff takes the form shown in the left panel, and (iv) given player 1’s
mixed strategy F1, player 2’s expected payoff takes the form shown in the right panel, then (F1, F2) is a
mixed strategy equilibrium.

complex. Further, my analysis is not complete: I merely find an equilibrium, rather
than studying all equilibria. (In fact, the game has no other equilibria.)

EXAMPLE 141.1 (All-pay auction) Two people submit sealed bids for an object
worth $K to each of them. Each person’s bid may be any nonnegative number
up to $K. The winner is the person whose bid is higher; in the event of a tie each
person receives half of the object, which she values at $K/2. Each person pays
her bid, whether or not she wins, and has preferences represented by the expected
amount of money she receives.

This situation may be modeled by the following strategic game, known as an
all-pay auction.

Players The two bidders.

Actions Each player’s set of actions is the set of possible bids (nonnegative
numbers up to K)

Payoff functions Each player i’s preferences are represented by the expected
value of the payoff function given by

ui(a1, a2) =




−ai if ai < aj
K/2 − ai if ai = aj
K − ai if ai > aj,

where j is the other player.

One situation that may be modeled as such an auction is a lobbying process in
which each of two interest groups spends resources to persuade a government to
carry out the policy it prefers, and the group that spends the most wins. Another
situation that may be modeled as such an auction is the competition between two
firms to develop a new product by some deadline, where the firm that spends the
most develops a better product, which captures the entire market.

An all-pay auction has no pure strategy Nash equilibrium, by the following
argument.
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• No pair of actions (x, x) with x < K is a Nash equilibrium, because either
player can increase her payoff by slightly increasing her bid.

• (K, K) is not a Nash equilibrium, because either player can increase her payoff
from −K/2 to 0 by reducing her bid to 0.

• No pair of actions (a1, a2) with a1 �= a2 is a Nash equilibrium because the
player whose bid is higher can increase her payoff by reducing her bid (and
the player whose bid is lower can, if her bid is positive, increase her payoff by
reducing her bid to 0).

Consider the possibility that the game has a mixed strategy Nash equilibrium.
Denote by Fi the mixed strategy (i.e. cumulative probability distribution over the
interval of possible bids) of player i. I look for an equilibrium in which neither
mixed strategy assigns positive probability to any single bid. (Remember that there
are infinitely many possible bids.) In this case Fi(ai) is both the probability that
player i bids at most ai and the probability that she bids less than ai. I further
restrict attention to strategy pairs (F1, F2) for which, for i = 1, 2, there are numbers
xi and yi such that Fi assigns positive probability only to the interval from xi to yi.

To investigate the possibility of such an equilibrium, consider player 1’s ex-
pected payoff when she uses the action a1, given player 2’s mixed strategy F2.

• If a1 < x2 then a1 is less than player 2’s bid with probability one, so that
player 1’s payoff is −a1.

• If a1 > y2 then a1 exceeds player 2’s bid with probability one, so that player 1’s
payoff is K − a1.

• If x2 ≤ a1 ≤ y2 then player 1’s expected payoff is calculated as follows. With
probability F2(a1) player 2’s bid is less than a1, in which case player 1’s payoff
is K − a1; with probability 1 − F2(a1) player 2’s bid exceeds a1, in which case
player 1’s payoff is −a1; and, by assumption, the probability that player 2’s
bid is exactly equal to a1 is zero. Thus player 1’s expected payoff is

(K − a1)F2(a1) + (−a1)(1 − F2(a1)) = KF2(a1) − a1.

We need to find values of x2 and y2 and a strategy F2 such that player 1’s ex-
pected payoff satisfies the condition illustrated in the left panel of Figure 141.1: it
is constant on the interval from x1 to y1, and less than this constant for a1 < x1 and
a1 > y1. The constancy of the payoff on the interval from x1 to y1 requires that
KF2(a1) − a1 = c1 for x1 ≤ a1 ≤ y1, for some constant c1. We also need F2(x2) = 0
and F2(y2) = 1 (because I am restricting attention to equilibria in which neither
player’s strategy assigns positive probability to any single action), and F2 must
be nondecreasing (so that it is a cumulative probability distribution). Analogous
conditions must be satisfied by x2, y2, and F1.

We see that if x1 = x2 = 0, y1 = y2 = K, and F1(z) = F2(z) = z/K for all z with
0 ≤ z ≤ K then all these conditions are satisfied. Each player’s expected payoff is
constant, equal to 0 for all her actions a1.
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Thus the game has a mixed strategy Nash equilibrium in which each player
randomizes “uniformly” over all her actions. In this equilibrium each player’s
expected payoff is 0: on average, the amount a player spends is exactly equal to
the value of the object. (A more involved argument shows that this equilibrium is
the only mixed strategy Nash equilibrium of the game.)

?? EXERCISE 143.1 (All-pay auction with many bidders) Consider the generalization
of the game considered in the previous example in which there are n ≥ 2 bidders.
Find a mixed strategy Nash equilibrium in which each player uses the same mixed
strategy. (If you know how, find each player’s mean bid in the equilibrium.)

?? EXERCISE 143.2 (Bertrand’s duopoly game) Consider Bertrand’s oligopoly game
(Section 3.2) when there are two firms. Assume that each firm’s preferences are
represented by its expected profit. Show that if the function (p − c)D(p) is increas-
ing in p, and increases without bound as p increases without bound, then for every
p > c, the game has a mixed strategy Nash equilibrium in which each firm uses
the same mixed strategy F, with F(p) = 0 and F(p) > 0 for p > p.

In the games in the example and exercises each player’s payoff depends only
on her action and whether this action is greater than, equal to, or less than the other
players’ actions. The limited dependence of each player’s payoff on the other play-
ers’ actions makes the calculation of a player’s expected payoff straightforward.
In many games, each player’s payoff is affected more substantially by the other
players’ actions, making the calculation of expected payoff more complex; more
sophisticated mathematical tools are required to analyze such games.

4.12 Appendix: Representing preferences over lotteries by the expected value

of a payoff function

4.12.1 Expected payoffs

Suppose that a decision-maker has preferences over a set of deterministic out-
comes, and that each of her actions results in a lottery (probability distribution)
over these outcomes. In order to determine the action she chooses, we need to
know her preferences over these lotteries. As argued in Section 4.1.3, we cannot de-
rive these preferences from her preferences over deterministic outcomes, but have
to specify them as part of the model.

So assume that we are given the decision-maker’s preferences over lotteries.
As in the case of preferences over deterministic outcomes, under some fairly weak
assumptions we can represent these preferences by a payoff function. (Refer to
Section 1.2.2.) That is, when there are K deterministic outcomes we can find a
function, say U, over lotteries such that

U(p1, . . . , pK) > U(p′1, . . . , p′K)
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if and only if the decision-maker prefers the lottery (p1, . . . , pK) to the lottery
(p′1, . . . , p′K) (where (p1, . . . , pK) is the lottery in which outcome 1 occurs with
probability p1, outcome 2 occurs with probability p2, and so on).

For many purposes, however, we need more structure: we cannot get very far
without restricting to preferences for which there is a more specific representation.
The standard approach, developed by von Neumann and Morgenstern (1944), is to
impose an additional assumption—the “independence axiom”—that allows us to
conclude that the decision-maker’s preferences can be represented by an expected
payoff function. More precisely, the independence axiom (which I do not describe)
allows us to conclude that there is a payoff function u over deterministic outcomes
such that the decision-maker’s preference relation over lotteries is represented by
the function U(p1, . . . , pK) = ∑K

k=1 pku(ak), where ak is the kth outcome of the
lottery:

K

∑
k=1

pku(ak) >
K

∑
k=1

p′ku(ak) (144.1)

if and only if the decision-maker prefers the lottery (p1, . . . , pK) to the lottery
(p′1, . . . , p′K). That is, the decision-maker evaluates a lottery by its expected pay-
off according to the function u, which is known as the decision-maker’s Bernoulli
payoff function.

Suppose, for example, that there are three possible deterministic outcomes: the
decision-maker may receive $0, $1, or $5, and naturally prefers $5 to $1 to $0. Sup-
pose that she prefers the lottery ( 1

2 , 0, 1
2 ) to the lottery (0, 3

4 , 1
4 ) (where the first

number in each list is the probability of $0, the second number is the probability
of $1, and the third number is the probability of $5). This preference is consis-
tent with preferences represented by the expected value of a payoff function u for
which u(0) = 0, u(1) = 1, and u(5) = 4, because

1
2 · 0 + 1

2 · 4 > 3
4 · 1 + 1

4 · 4.

(Many other payoff functions are consistent with a preference for ( 1
2 , 0, 1

2 ) over
(0, 3

4 , 1
4 ). Among those in which u(0) = 0 and u(5) = 4, for example, any function

for which u(1) < 4
3 does the job.) Suppose, on the other hand, that the decision-

maker prefers the lottery (0, 3
4 , 1

4 ) to the lottery ( 1
2 , 0, 1

2 ). This preference is consis-
tent with preferences represented by the expected value of a payoff function u for
which u(0) = 0, u(1) = 3, and u(5) = 4, because

1
2 · 0 + 1

2 · 4 < 3
4 · 3 + 1

4 · 4.

? EXERCISE 144.2 (Preferences over lotteries) There are three possible outcomes; in
the outcome ai a decision-maker gains $ai, where a1 < a2 < a3. The decision-
maker prefers a3 to a2 to a1 and she prefers the lottery (0.3, 0, 0.7) to (0.1, 0.4, 0.5)
to (0.3, 0.2, 0.5) to (0.45, 0, 0.55). Is this information consistent with the decision-
maker’s preferences being represented by the expected value of a payoff function?
If so, find a payoff function consistent with the information. If not, show why
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not. Answer the same questions when, alternatively, the decision-maker prefers
the lottery (0.4, 0, 0.6) to (0, 0.5, 0.5) to (0.3, 0.2, 0.5) to (0.45, 0, 0.55).

Preferences represented by the expected value of a (Bernoulli) payoff function
have the great advantage that they are completely specified by that payoff func-
tion. Once we know u(ak) for each possible outcome ak we know the decision-
maker’s preferences among all lotteries. This significant advantage does, how-
ever, carry with it a small price: it is very easy to confuse a Bernoulli payoff func-
tion with a payoff function that represents the decision-maker’s preferences over
deterministic outcomes.

To describe the relation between the two, suppose that a decision-maker’s pref-
erences over lotteries are represented by the expected value of the Bernoulli pay-
off function u. Then certainly u is a payoff function that represents the decision-
maker’s preferences over deterministic outcomes (which are special cases of lotter-
ies, in which a single outcome is assigned probability 1). However, the converse is
not true: if the decision-maker’s preferences over deterministic outcomes are repre-
sented by the payoff function u (i.e. the decision-maker prefers a to a′ if and only if
u(a) > u(a′)), then u is not necessarily a Bernoulli payoff function whose expected
value represents the decision-maker’s preferences over lotteries. For instance, sup-
pose that the decision-maker prefers $5 to $1 to $0, and prefers the lottery ( 1

2 , 0, 1
2 )

to the lottery (0, 3
4 , 1

4 ). Then her preferences over deterministic outcomes are con-
sistent with the payoff function u for which u(0) = 0, u(1) = 3, and u(5) = 4.
However, her preferences over lotteries are not consistent with the expected value
of this function (since 1

2 · 0 + 1
2 · 4 < 3

4 · 3 + 1
4 · 4). The moral is that you should be

careful to determine the type of payoff function you are dealing with.

4.12.2 Equivalent Bernoulli payoff functions

If a decision-maker’s preferences in a deterministic environment are represented
by the payoff function u then they are represented also by any payoff function that
is an increasing function of u (see Section 1.2.2). The analogous property is not
satisfied by Bernoulli payoff functions. Consider the example discussed above. A
Bernoulli payoff function u for which u(0) = 0, u(1) = 1, and u(5) = 4 is consistent
with a preference for the lottery ( 1

2 , 0, 1
2 ) over (0, 3

4 , 1
4 ), but the function

√
u, for

which u(0) = 0, u(1) = 1, and u(5) = 2, is not consistent with such a preference
( 1

2 · 0 + 1
2 · 2 < 3

4 · 1 + 1
4 · 2), though the square root function is increasing (larger

numbers have larger square roots).
Under what circumstances do the expected values of two Bernoulli payoff func-

tions represent the same preferences? The next result shows that they do so if and
only if one payoff function is an increasing linear function of the other.

LEMMA 145.1 (Equivalence of Bernoulli payoff functions) Suppose there are at least
three possible outcomes. The expected values of the Bernoulli payoff functions u and v
represent the same preferences over lotteries if and only if there exist numbers η and θ with
θ > 0 such that u(x) = η + θv(x) for all x.



146 Chapter 4. Mixed Strategy Equilibrium

If the expected value of u represents a decision-maker’s preferences over lot-
teries then so, for example, do the expected values of 2u, 1 + u, and −1 + 4u; but
the expected values of u2 and of

√
u do not.

Part of the lemma is easy to establish. Let u be a Bernoulli payoff function
whose expected value represents a decision-maker’s preferences, and let v(x) =
η + θu(x) for all x, where η and θ are constants with θ > 0. I argue that the expected
values of u and of v represent the same preferences. Suppose that the decision-
maker prefers the lottery (p1, . . . , pK) to the lottery (p′1, . . . , p′K). Then her expected
payoff to (p1, . . . , pK) exceeds her expected payoff to (p′1, . . . , p′K), or

K

∑
k=1

pku(ak) >
K

∑
k=1

p′ku(ak) (146.1)

(see (144.1)). Now,

K

∑
k=1

pkv(ak) =
K

∑
k=1

pkη +
K

∑
k=1

pkθu(ak) = η + θ
K

∑
k=1

pku(ak),

using the fact that the sum of the probabilities pk is 1. Similarly,

K

∑
k=1

p′kv(ak) = η + θ
K

∑
k=1

p′ku(ak).

Substituting for u in (146.1) we obtain
(

K

∑
k=1

pkv(ak) − η

)
/θ >

(
K

∑
k=1

p′kv(ak) − η

)
/θ,

which, given θ > 0, is equivalent to

K

∑
k=1

pkv(ak) >
K

∑
k=1

p′kv(ak) :

according to v, the expected payoff of (p1, . . . , pK) exceeds the expected payoff of
(p′1, . . . , p′K). We conclude that if u represents the decision-maker’s preferences
then so does the function v defined by v(x) = η + θu(x).

I omit the more difficult argument that if the expected values of the Bernoulli
payoff functions u and v represent the same preferences over lotteries then v(x) =
η + θu(x) for some constants η and θ > 0.

? EXERCISE 146.2 (Normalized Bernoulli payoff functions) Suppose that a decision-
maker’s preferences can be represented by the expected value of the Bernoulli pay-
off function u. Find a Bernoulli payoff function whose expected value represents
the decision-maker’s preferences and that assigns a payoff of 1 to the best outcome
and a payoff of 0 to the worst outcome.
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4.12.3 Equivalent strategic games with vNM preferences

Turning to games, consider the three payoff tables in Figure 147.1. All three tables
represent the same strategic game with deterministic preferences: in each case,
player 1 prefers (B, B) to (S, S) to (B, S), which she regards as indifferent to (S, B),
and player 2 prefers (S, S) to (B, B) to (B, S), which she regards as indifferent to
(S, B). However, only the left and middle tables represent the same strategic game
with vNM preferences. The reason is that the payoff functions in the middle ta-
ble are linear functions of the payoff functions in the left table, whereas the pay-
off functions in the right table are not. Specifically, denote the Bernoulli payoff
functions of player i in the three games by ui, vi, and wi. Then

v1(a) = 2u1(a) and v2(a) = −3 + 3u2(a),

so that the left and middle tables represent the same strategic game with vNM
preferences. However, w1 is not a linear function of u1. If it were, there would
exist constants η and θ > 0 such that w1(a) = η + θu1(a) for each action pair a, or

0 = η + θ · 0

1 = η + θ · 1

3 = η + θ · 2,

but these three equations have no solution. Thus the left and right tables represent
different strategic games with vNM preferences. (As you can check, w2 is not a
linear function of u2 either; but for the games not to be equivalent it is sufficient
that one player’s preferences be different.) Another way to see that player 1’s vNM
preferences in the left and right games are different is to note that in the left table
player 1 is indifferent between the certain outcome (S, S) and the lottery in which
(B, B) occurs with probability 1

2 and (S, B) occurs with probability 1
2 (each yields

an expected payoff of 1), whereas in the right table she prefers the latter (since it
yields an expected payoff of 1.5).

B S
B 2, 1 0, 0
S 0, 0 1, 2

B S
B 4, 0 0, −3
S 0, −3 2, 3

B S
B 3, 2 0, 1
S 0, 1 1, 4

Figure 147.1 All three tables represent the same strategic game with ordinal preferences, but only the
left and middle games, not the right one, represent the same strategic game with vNM preferences.

? EXERCISE 147.1 (Games equivalent to the Prisoner’s Dilemma) Which of the tables
in Figure 148.1 represents the same strategic game with vNM preferences as the
Prisoner’s Dilemma as specified in the left panel of Figure 104.1, when the numbers
are interpreted as Bernoulli payoffs?
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C D
C 3, 3 0, 4
D 4, 0 2, 2

C D
C 6, 0 0, 2
D 9, −4 3, −2

Figure 148.1 The payoff tables for Exercise 147.1.

Notes

The ideas behind mixed strategies and preferences represented by expected pay-
offs date back in Western thought at least to the eighteenth century (see Guil-
baud (1961) and Kuhn (1968), and Bernoulli (1738), respectively). The modern for-
mulation of a mixed strategy is due to Borel (1921; 1924, 204–221; 1927); the model
of the representation of preferences by an expected payoff function is due to von
Neumann and Morgenstern (1944). The model of a mixed strategy Nash equilib-
rium and Proposition 116.1 on the existence of a mixed strategy Nash equilibrium
in a finite game are due to Nash (1950a, 1951). Proposition 119.2 is an implication
of the existence of a “trembling hand perfect equilibrium”, due to Selten (1975,
Theorem 5).

The example in the box on page 102 is taken from Allais (1953). Conlisk (1989)
discusses some of the evidence on the theory of expected payoffs; Machina (1987)
and Hey (1997) survey the subject. (The purchasing power of the largest prize in
Allais’ example was roughly US$6.6m in 1989 (the date of Conlisk’s paper, in which
the prize is US$5m) and roughly US$8m in 1999.) The model in Section 4.6 is due to
Pitchik and Schotter (1987). The model in Section 4.8 is a special case of the one in
Palfrey and Rosenthal (1984); the interpretation and analysis that I describe is taken
from an unpublished 1984 paper of William F. Samuelson. The box on page 130
draws upon Rosenthal (1964), Latané and Nida (1981), Brown (1986), and Aron-
son (1995). Best response dynamics were first studied by Cournot (1838, Ch. VII),
in the context of his duopoly game. Fictitious play was suggested by Brown (1951).
Robinson (1951) shows that the process converges to a mixed strategy Nash equi-
librium in any two-player game in which the players’ interests are opposed; Shap-
ley (1964, Section 5) exhibits a game outside this class in which the process does
not converge. Recent work on learning in games is surveyed by Fudenberg and
Levine (1998).

The game in Exercise 115.2 is due to David L. Silverman (see Silverman 1981–82
and Heuer 1995). Exercise 115.3 is based on Palfrey and Rosenthal (1983). Exer-
cise 115.4 is taken from Shubik (1982, 226) (who finds only one of the continuum
of equilibria of the game).

The model in Exercise 125.2 is taken from Peters (1984). Exercise 127.2 is a
variant of an exercise of Moulin (1986, pp. 167, 185). Exercise 130.1 is based on
Palfrey and Rosenthal (1984). The game Rock-Paper-Scissors (Exercise 138.2) was
first studied by Borel (1924) and von Neumann (1928). Exercise 139.1 is based
on Karlin (1959a, 92–94), who attributes the game to an unpublished paper by
Dresher.
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Exercise 143.1 is based on a result in Baye, Kovenock, and de Vries (1996). The
mixed strategy Nash equilibria of Bertrand’s model of duopoly (Exercise 143.2) are
studied in detail by Baye and Morgan (1996).

The method of finding all mixed strategy equilibrium described in Section 4.10
is computationally very intense in all but the simplest games. Some computation-
ally more efficient methods are implemented in the computer program GAMBIT,
located at http://www.hss.caltech.edu/\symbol{126}gambit/Gambit.html.
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5 Extensive Games with Perfect Information:
Theory

Extensive games with perfect information 151
Nash equilibrium 159
Subgame perfect equilibrium 162
Prerequisite: Chapters 1 and 2.

5.1 Introduction

THE model of a strategic game suppresses the sequential structure of decision-
making. When applying the model to situations in which decision-makers

move sequentially, we assume that each decision-maker chooses her plan of action
once and for all; she is committed to this plan, which she cannot modify as events
unfold. The model of an extensive game, by contrast, describes the sequential
structure of decision-making explicitly, allowing us to study situations in which
each decision-maker is free to change her mind as events unfold.

In this chapter and the next two we study a model in which each decision-
maker is always fully informed about all previous actions. In Chapter 10 we study
a more general model, which allows each decision-maker, when taking an action,
to be imperfectly informed about previous actions.

5.2 Extensive games with perfect information

5.2.1 Definition

To describe an extensive game with perfect information, we need to specify the
set of players and their preferences, as for a strategic game (Definition 11.1). In
addition, we need to specify the order of the players’ moves and the actions each
player may take at each point. We do so by specifying the set of all sequences of
actions that can possibly occur, together with the player who moves at each point
in each sequence. We refer to each possible sequence of actions as a terminal history
and to the function that gives the player who moves at each point in each terminal
history as the player function. That is, an extensive game has four components:

• players

• terminal histories

151
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• player function

• preferences for the players.

Before giving precise definitions of these components, I give an example that illus-
trates them informally.

EXAMPLE 152.1 (Entry game) An incumbent faces the possibility of entry by a
challenger. (The challenger may, for example, be a firm considering entry into
an industry currently occupied by a monopolist, a politician competing for the
leadership of a party, or an animal considering competing for the right to mate
with a congener of the opposite sex.) The challenger may enter or not. If it enters,
the incumbent may either acquiesce or fight.

We may model this situation as an extensive game with perfect information in
which the terminal histories are (In, Acquiesce), (In, Fight), and Out, and the player
function assigns the challenger to the start of the game and the incumbent to the
history In.

At the start of an extensive game, and after any sequence of events, a player
chooses an action. The sets of actions available to the players are not, however,
given explicitly in the description of the game. Instead, the description of the game
specifies the set of terminal histories and the player function, from which we can
deduce the available sets of actions.

In the entry game, for example, the actions available to the challenger at the
start of the game are In and Out, because these actions (and no others) begin ter-
minal histories, and the actions available to the incumbent are Acquiesce and Fight,
because these actions (and no others) follow In in terminal histories. More gener-
ally, suppose that (C, D) and (C, E) are terminal histories and the player function
assigns player 1 to the start of the game and player 2 to the history C. Then two
of the actions available to player 2 after player 1 chooses C at the start of the game
are D and E.

The terminal histories of a game are specified as a set of sequences. But not
every set of sequences is a legitimate set of terminal histories. If (C, D) is a terminal
history, for example, there is no sense in specifying C as a terminal history: the fact
that (C, D) is terminal implies that after C is chosen at the start of the game, some
player may choose D, so that the action C does not end the game. More generally,
a sequence that is a proper subhistory of a terminal history cannot itself be a terminal
history. This restriction is the only one we need to impose on a set of sequences in
order that the set be interpretable as a set of terminal histories.

To state the restriction precisely, define the subhistories of a finite sequence
(a1, a2, . . . , ak) of actions to be the empty sequence consisting of no actions, de-
noted ∅ (representing the start of the game), and all sequences of the form (a1, a2, . . . , am)
where 1 ≤ m ≤ k. (In particular, the entire sequence is a subhistory of itself.) Sim-
ilarly, define the subhistories of an infinite sequence (a1, a2, . . .) of actions to be
the empty sequence ∅, every sequence of the form (a1, a2, . . . , am) where m is a
positive integer, and the entire sequence (a1, a2, . . .). A subhistory not equal to
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the entire sequence is called a proper subhistory. A sequence of actions that is a
subhistory of some terminal history is called simply a history.

In the entry game in Example 152.1, the subhistories of (In, Acquiesce) are the
empty history ∅ and the sequences In and (In, Acquiesce); the proper subhistories
are the empty history and the sequence In.

� DEFINITION 153.1 (Extensive game with perfect information) An extensive game
with perfect information consists of

• a set of players

• a set of sequences (terminal histories) with the property that no sequence is
a proper subhistory of any other sequence

• a function (the player function) that assigns a player to every sequence that
is a proper subhistory of some terminal history

• for each player, preferences over the set of terminal histories.

The set of terminal histories is the set of all sequences of actions that may occur;
the player assigned by the player function to any history h is the player who takes
an action after h.

As for a strategic game, we may specify a player’s preferences by giving a pay-
off function that represents them (see Section 1.2.2). In some situations an outcome
is associated with each terminal history, and the players’ preferences are naturally
defined over these outcomes, rather than directly over the terminal histories. For
example, if we are modeling firms choosing prices then we may think in terms of
each firm’s caring about its profit—the outcome of a profile of prices—rather than
directly about the profile of prices. However, any preferences over outcomes (e.g.
profits) may be translated into preferences over terminal histories (e.g. sequences
of prices). In the general definition, outcomes are conveniently identified with ter-
minal histories and preferences are defined directly over these histories, avoiding
the need for an additional element in the specification of the game.

EXAMPLE 153.2 (Entry game) In the situation described in Example 152.1, suppose
that the best outcome for the challenger is that it enters and the incumbent acqui-
esces, and the worst outcome is that it enters and the incumbent fights, whereas
the best outcome for the incumbent is that the challenger stays out, and the worst
outcome is that it enters and there is a fight. Then the situation may be modeled as
the following extensive game with perfect information.

Players The challenger and the incumbent.

Terminal histories (In, Acquiesce), (In, Fight), and Out.

Player function P(∅) = Challenger and P(In) = Incumbent.

Preferences The challenger’s preferences are represented by the payoff func-
tion u1 for which u1(In, Acquiesce) = 2, u1(Out) = 1, and u1(In, Fight) = 0,
and the incumbent’s preferences are represented by the payoff function u2 for
which u2(Out) = 2, u2(In, Acquiesce) = 1, and u2(In, Fight) = 0.
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This game is readily illustrated in a diagram. The small circle at the top of
Figure 154.1 represents the empty history (the start of the game). The label above
this circle indicates that the challenger chooses an action at the start of the game
(P(∅) = Challenger). The two branches labeled In and Out represent the chal-
lenger’s choices. The segment labeled In leads to a small disk, where it is the
incumbent’s turn to choose an action (P(In) = Incumbent) and her choices are Ac-
quiesce and Fight. The pair of numbers beneath each terminal history gives the
players’ payoffs to that history, with the challenger’s payoff listed first. (The play-
ers’ payoffs may be given in any order. For games like this one, in which the
players move in a well-defined order, I generally list the payoffs in that order. For
games in which the players’ names are 1, 2, 3, and so on, I list the payoffs in the
order of their names.)

Challenger

In Out

1, 2

Incumbent
Acquiesce Fight

2, 1 0, 0

Figure 154.1 The entry game of Example 153.2. The challenger’s payoff is the first number in each
pair.

Definition 153.1 does not directly specify the sets of actions available to the
players at their various moves. As I discussed briefly before the definition, we
can deduce these sets from the set of terminal histories and the player function.
If, for some nonterminal history h, the sequence (h, a) is a history, then a is one of
the actions available to the player who moves after h. Thus the set of all actions
available to the player who moves after h is

A(h) = {a: (h, a) is a history}. (154.1)

For example, for the game in Figure 154.1, the histories are ∅, In, Out, (In, Acquiesce),
and (In, Fight). Thus the set of actions available to the player who moves at the
start of the game, namely the challenger, is A(∅) = {In, Out}, and the set of ac-
tions available to the player who moves after the history In, namely the incumbent,
is A(In) = {Acquiesce, Fight}.

? EXERCISE 154.2 (Examples of extensive games with perfect information)

a. Represent in a diagram like Figure 154.1 the two-player extensive game with
perfect information in which the terminal histories are (C, E), (C, F), (D, G),
and (D, H), the player function is given by P(∅) = 1 and P(C) = P(D) =
2, player 1 prefers (C, F) to (D, G) to (C, E) to (D, H), and player 2 prefers
(D, G) to (C, F) to (D, H) to (C, E).
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b. Write down the set of players, set of terminal histories, player function, and
players’ preferences for the game in Figure 158.1.

c. The political figures Rosa and Ernesto each has to take a position on an issue.
The options are Berlin (B) or Havana (H). They choose sequentially. A third
person, Karl, determines who chooses first. Both Rosa and Ernesto care only
about the actions they choose, not about who chooses first. Rosa prefers the
outcome in which both she and Ernesto choose B to that in which they both
choose H, and prefers this outcome to either of the ones in which she and
Ernesto choose different actions; she is indifferent between these last two out-
comes. Ernesto’s preferences differ from Rosa’s in that the roles of B and H
are reversed. Karl’s preferences are the same as Ernesto’s. Model this situa-
tion as an extensive game with perfect information. (Specify the components
of the game and represent the game in a diagram.)

Definition 153.1 allows terminal histories to be infinitely long. Thus we can use
the model of an extensive game to study situations in which the participants do
not consider any particular fixed horizon when making decisions. If the length
of the longest terminal history is in fact finite, we say that the game has a finite
horizon.

Even a game with a finite horizon may have infinitely many terminal histories,
because some player has infinitely many actions after some history. If a game has
a finite horizon and finitely many terminal histories we say it is finite. Note that a
game that is not finite cannot be represented in a diagram like Figure 154.1, because
such a figure allows for only finitely many branches.

An extensive game with perfect information models a situation in which each
player, when choosing an action, knows all actions chosen previously (has per-
fect information), and always moves alone (rather than simultaneously with other
players). Some economic and political situations that the model encompasses are
discussed in the next chapter. The competition between interest groups courting
legislators is one example. This situation may be modeled as an extensive game
in which the groups sequentially offer payments to induce the legislators to vote
for their favorite version of a bill (Section 6.4). A race (between firms developing
a new technology, or between directors making competing movies, for instance),
is another example. This situation is modeled as an extensive game in which the
parties alternately decide how much effort to expend (Section 6.5). Parlor games
such as chess, ticktacktoe, and go, in which there are no random events, the play-
ers move sequentially, and each player always knows all actions taken previously,
may also be modeled as extensive games with perfect information (see the box on
page 176).

In Section 7.1 I discuss a more general notion of an extensive game in which
players may move simultaneously, though each player, when choosing an action,
still knows all previous actions. In Chapter 10 I discuss a much more general no-
tion that allows arbitrary patterns of information. In each case I sometimes refer to
the object under consideration simply as an “extensive game”.
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5.2.2 Solutions

In the entry game in Figure 154.1, it seems clear that the challenger will enter and
the incumbent will subsequently acquiesce. The challenger can reason that if it
enters then the incumbent will acquiesce, because doing so is better for the incum-
bent than fighting. Given that the incumbent will respond to entry in this way, the
challenger is better off entering.

This line of argument is called backward induction. Whenever a player has to
move, she deduces, for each of her possible actions, the actions that the players
(including herself) will subsequently rationally take, and chooses the action that
yields the terminal history she most prefers.

While backward induction may be applied to the game in Figure 154.1, it can-
not be applied to every extensive game with perfect information. Consider, for
example, the variant of this game shown in Figure 156.1, in which the incumbent’s
payoff to the terminal history (In, Fight) is 1 rather than 0. If, in the modified game,
the challenger enters, the incumbent is indifferent between acquiescing and fight-
ing. Backward induction does not tell the challenger what the incumbent will do in
this case, and thus leaves open the question of which action the challenger should
choose. Games with infinitely long histories present another difficulty for back-
ward induction: they have no end from which to start the induction. The gener-
alization of an extensive game with perfect information that allows for simultane-
ous moves (studied in Chapter 7) poses yet another problem: when players move
simultaneously we cannot in general straightforwardly deduce each player’s opti-
mal action. (As in a strategic game, each player’s best action depends on the other
players’ actions.)

Challenger

In Out

1, 2

Incumbent
Acquiesce Fight

2, 1 0, 1

Figure 156.1 A variant of the entry game of Figure 154.1. The challenger’s payoff is the first number
in each pair.

Another approach to defining equilibrium takes off from the notion of Nash
equilibrium. It seeks to model patterns of behavior that can persist in a steady
state. The resulting notion of equilibrium applies to all extensive games with per-
fect information. Because the idea of backward induction is more limited, and
the principles behind the notion of Nash equilibrium have been established in
previous chapters, I begin by discussing the steady state approach. In games in
which backward induction is well-defined, this approach turns out to lead to the
backward induction outcome, so that there is no conflict between the two ideas.
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5.3 Strategies and outcomes

5.3.1 Strategies

A key concept in the study of extensive games is that of a strategy. A player’s
strategy specifies the action the player chooses for every history after which it is
her turn to move.

� DEFINITION 157.1 (Strategy) A strategy of player i in an extensive game with
perfect information is a function that assigns to each history h after which it is
player i’s turn to move (i.e. P(h) = i, where P is the player function) an action in
A(h) (the set of actions available after h).

Consider the game in Figure 157.1.

• Player 1 moves only at the start of the game (i.e. after the empty history),
when the actions available to her are C and D. Thus she has two strategies:
one that assigns C to the empty history, and one that assigns D to the empty
history.

• Player 2 moves after both the history C and the history D. After the history C
the actions available to her are E and F, and after the history D the actions
available to her are G and H. Thus a strategy of player 2 is a function that
assigns either E or F to the history C, and either G or H to the history D. That
is, player 2 has four strategies, which are shown in Figure 157.2.

1
C D

2
E F

2, 1 3, 0

2
G H

0, 2 1, 3

Figure 157.1 An extensive game with perfect information.

Action assigned
to history C

Action assigned
to history D

Strategy 1 E G
Strategy 2 E H
Strategy 3 F G
Strategy 4 F H

Figure 157.2 The four strategies of player 2 in the game in Figure 157.1.

I refer to the strategies of player 1 in this game simply as C and D, and to the
strategies of player 2 simply as EG, EH, FG, and FH. For many other finite games I
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use a similar shorthand: I write a player’s strategy as a list of actions, one for each
history after which it is the player’s turn to move. In general I write the actions in
the order in which they occur in the game, and, if they are available at the same
“stage”, from left to right as they appear in the diagram of the game. When the
meaning of a list of actions is unclear, I explicitly give the history after which each
action is taken.

Each of player 2’s strategies in the game in Figure 157.1 may be interpreted as
a plan of action or contingency plan: it specifies what player 2 does if player 1
chooses C, and what she does if player 1 chooses D. In every game, a player’s
strategy provides sufficient information to determine her plan of action: the actions
she intends to take, whatever the other players do. In particular, if a player appoints
an agent to play the game for her, and tells the agent her strategy, then the agent
has enough information to carry out her wishes, whatever actions the other players
take.

In some games some players’ strategies are more than plans of action. Consider
the game in Figure 158.1. Player 1 moves both at the start of the game and after
the history (C, E). In each case she has two actions, so she has four strategies: CG
(i.e. choose C at the start of the game and G after the history (C, E)), CH, DG, and
DH. In particular, each strategy specifies an action after the history (C, E) even if
it specifies the action D at the beginning of the game, in which case the history (C, E)
does not occur! The point is that Definition 157.1 requires that a strategy of any
player i specify an action for every history after which it is player i’s turn to move,
even for histories that, if the strategy is followed, do not occur.

1
C D

2, 0

2
E F

3, 1

1
G H

1, 2 0, 0

Figure 158.1 An extensive game in which player 1 moves both before and after player 2.

In view of this point and the fact that “strategy” is a synonym for “plan of ac-
tion” in everyday language, you may regard the word “strategy” as inappropriate
for the concept in Definition 157.1. You are right. You may also wonder why we
cannot restrict attention to plans of action.

For the purposes of the notion of Nash equilibrium (discussed in the next sec-
tion), we could in fact work with plans of action rather than strategies. But, as we
shall see, the notion of Nash equilibrium for an extensive game is not satisfactory;
the concept we adopt depends on the players’ full strategies. When discussing
this concept (in Section 5.5.4) I elaborate on the interpretation of a strategy. At the
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moment, you may think of a player’s strategy as a plan of what to do, whatever
the other players do, both if the player carries out her intended actions, and also
if she makes mistakes. For example, we can interpret the strategy DG of player 1
in the game in Figure 158.1 to mean “I intend to choose D, but if I make a mistake
and choose C instead then I will subsequently choose G”. (Because the notion of
Nash equilibrium depends only on plans of action, I could delay the definition of a
strategy to the start of Section 5.5. I do not do so because the notion of a strategy is
central to the study of extensive games, and its precise definition is much simpler
than that of a plan of action.)

? EXERCISE 159.1 (Strategies in extensive games) What are the strategies of the play-
ers in the entry game (Example 153.2)? What are Rosa’s strategies in the game in
Exercise 154.2c?

5.3.2 Outcomes

A strategy profile determines the terminal history that occurs. Denote the strategy
profile by s and the player function by P. At the start of the game player P(∅)
moves. Her strategy is sP(∅), and she chooses the action sP(∅)(∅). Denote this ac-
tion by a1. If the history a1 is not terminal, player P(a1) moves next. Her strategy
is sP(a1), and she chooses the action sP(a1)(a1). Denote this action by a2. If the his-
tory (a1, a2) is not terminal, then again the player function specifies whose turn it
is to move, and that player’s strategy specifies the action she chooses. The process
continues until a terminal history is constructed. We refer to this terminal history
as the outcome of s, and denote it O(s).

In the game in Figure 158.1, for example, the outcome of the strategy pair
(DG, E) is the terminal history D, and the outcome of (CH, E) is the terminal
history (C, E, H).

Note that the outcome O(s) of the strategy profile s depends only on the play-
ers’ plans of action, not their full strategies. That is, to determine O(s) we do not
need to refer to any component of any player’s strategy that specifies her actions
after histories precluded by that strategy.

5.4 Nash equilibrium

As for strategic games, we are interested in notions of equilibrium that model the
players’ behavior in a steady state. That is, we look for patterns of behavior with
the property that if every player knows every other player’s behavior, she has no
reason to change her own behavior. I start by defining a Nash equilibrium: a strat-
egy profile from which no player wishes to deviate, given the other players’ strate-
gies. The definition is an adaptation of that of a Nash equilibrium in a strategic
game (21.1).

� DEFINITION 159.2 (Nash equilibrium of extensive game with perfect information) The
strategy profile s∗ in an extensive game with perfect information is a Nash equi-
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librium if, for every player i and every strategy ri of player i, the terminal history
O(s∗) generated by s∗ is at least as good according to player i’s preferences as
the terminal history O(ri , s∗−i) generated by the strategy profile (ri , s∗−i) in which
player i chooses ri while every other player j chooses s∗j . Equivalently, for each
player i,

ui(O(s∗)) ≥ ui(O(ri , s∗−i)) for every strategy ri of player i,

where ui is a payoff function that represents player i’s preferences and O is the
outcome function of the game.

One way to find the Nash equilibria of an extensive game in which each player
has finitely many strategies is to list each player’s strategies, find the outcome of
each strategy profile, and analyze this information as for a strategic game. That
is, we construct the following strategic game, known as the strategic form of the
extensive game.

Players The set of players in the extensive game.

Actions Each player’s set of actions is her set of strategies in the extensive
game.

Preferences Each player’s payoff to each action profile is her payoff to the
terminal history generated by that action profile in the extensive game.

From Definition 159.2 we see that

the set of Nash equilibria of any extensive game with perfect informa-
tion is the set of Nash equilibria of its strategic form.

EXAMPLE 160.1 (Nash equilibria of the entry game) In the entry game in Fig-
ure 154.1, the challenger has two strategies, In and Out, and the incumbent has
two strategies, Acquiesce and Fight. The strategic form of the game is shown in Fig-
ure 160.1. We see that it has two Nash equilibria: (In, Acquiesce) and (Out, Fight).
The first equilibrium is the pattern of behavior isolated by backward induction,
discussed at the start of Section 5.2.2.

Challenger

Incumbent
Acquiesce Fight

In 2, 1 0, 0
Out 1, 2 1, 2

Figure 160.1 The strategic form of the entry game in Figure 154.1.

In the second equilibrium the challenger always chooses Out. This strategy
is optimal given the incumbent’s strategy to fight in the event of entry. Further,
the incumbent’s strategy Fight is optimal given the challenger’s strategy: the chal-
lenger chooses Out, so whether the incumbent plans to choose Acquiesce or Fight
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makes no difference to its payoff. Thus neither player can increase its payoff by
choosing a different strategy, given the other player’s strategy.

Thinking about the extensive game in this example raises a question about the
Nash equilibrium (Out, Fight) that does not arise when thinking about the strategic
form: how does the challenger know that the incumbent will choose Fight if it en-
ters? We interpret the strategic game to model a situation in which, whenever the
challenger plays the game, it observes the incumbent’s action, even if it chooses
Out. By contrast, we interpret the extensive game to model a situation in which
a challenger that always chooses Out never observes the incumbent’s action, be-
cause the incumbent never moves. In a strategic game, the rationale for the Nash
equilibrium condition that each player’s strategy be optimal given the other play-
ers’ strategies is that in a steady state, each player’s experience playing the game
leads her belief about the other players’ actions to be correct. This rationale does
not apply to the Nash equilibrium (Out, Fight) of the (extensive) entry game, be-
cause a challenger who always chooses Out never observes the incumbent’s action
after the history In.

We can escape from this difficulty in interpreting a Nash equilibrium of an
extensive game by considering a slightly perturbed steady state in which, on rare
occasions, nonequilibrium actions are taken (perhaps players make mistakes, or
deliberately experiment), and the perturbations allow each player eventually to
observe every other player’s action after every history. Given such perturbations,
each player eventually learns the other players’ entire strategies.

Interpreting the Nash equilibrium (Out, Fight) as such a perturbed steady state,
however, we run into another problem. On those (rare) occasions when the chal-
lenger enters, the subsequent behavior of the incumbent to fight is not a steady
state in the remainder of the game: if the challenger enters, the incumbent is better
off acquiescing than fighting. That is, the Nash equilibrium (Out, Fight) does not
correspond to a robust steady state of the extensive game.

Note that the extensive game embodies the assumption that the incumbent can-
not commit, at the beginning of the game, to fight if the challenger enters; it is free
to choose either Acquiesce or Fight in this event. If the incumbent could commit to
fight in the event of entry then the analysis would be different. Such a commitment
would induce the challenger to stay out, an outcome that the incumbent prefers. In
the absence of the possibility of the incumbent’s making a commitment, we might
think of the its announcing at the start of the game that it intends to fight; but such
a threat is not credible, because after the challenger enters the incumbent’s only
incentive is to acquiesce.

? EXERCISE 161.1 (Nash equilibria of extensive games) Find the Nash equilibria of
the games in Exercise 154.2a and Figure 158.1. (When constructing the strategic
form of each game, be sure to include all the strategies of each player.)

? EXERCISE 161.2 (Voting by alternating veto) Two people select a policy that affects
them both by alternately vetoing policies until only one remains. First person 1
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vetoes a policy. If more than one policy remains, person 2 then vetoes a policy.
If more than one policy still remains, person 1 then vetoes another policy. The
process continues until only one policy has not been vetoed. Suppose there are
three possible policies, X, Y, and Z, person 1 prefers X to Y to Z, and person 2
prefers Z to Y to X. Model this situation as an extensive game and find its Nash
equilibria.

5.5 Subgame perfect equilibrium

5.5.1 Definition

The notion of Nash equilibrium ignores the sequential structure of an extensive
game; it treats strategies as choices made once and for all before play begins. Con-
sequently, as we saw in the previous section, the steady state to which a Nash
equilibrium corresponds may not be robust.

I now define a notion of equilibrium that models a robust steady state. This no-
tion requires each player’s strategy to be optimal, given the other players’ strate-
gies, not only at the start of the game, but after every possible history.

To define this concept, I first define the notion of a subgame. For any nontermi-
nal history h, the subgame following h is the part of the game that remains after h
has occurred. For example, the subgame following the history In in the entry game
(Example 152.1) is the game in which the incumbent is the only player, and there
are two terminal histories, Acquiesce and Fight.

� DEFINITION 162.1 (Subgame) Let Γ be an extensive game with perfect information,
with player function P. For any nonterminal history h of Γ, the subgame Γ(h)
following the history h is the following extensive game.

Players The players in Γ.

Terminal histories The set of all sequences h′ of actions such that (h, h′) is a
terminal history of Γ.

Player function The player P(h, h′) is assigned to each proper subhistory h′ of
a terminal history.

Preferences Each player prefers h′ to h′′ if and only if she prefers (h, h′) to
(h, h′′) in Γ.

Note that the subgame following the initial history ∅ is the entire game. Every
other subgame is called a proper subgame. Because there is a subgame for every non-
terminal history, the number of subgames is equal to the number of nonterminal
histories.

As an example, the game in Figure 157.1 has three nonterminal histories (the
initial history, C, and D), and hence three subgames: the whole game (the part
of the game following the initial history), the game following the history C, and
the game following the history D. The two proper subgames are shown in Fig-
ure 163.1.



5.5 Subgame perfect equilibrium 163

2
E F

2, 1 3, 0

2
G H

0, 2 1, 3

Figure 163.1 The two proper subgames of the extensive game in Figure 157.1.

The game in Figure 158.1 also has three nonterminal histories, and hence three
subgames: the whole game, the game following the history C, and the game fol-
lowing the history (C, E). The two proper subgames are shown in Figure 163.2.

2
E F

3, 1

1
G H

1, 2 0, 0

1
G H

1, 2 0, 0

Figure 163.2 The two proper subgames of the extensive game in Figure 158.1.

? EXERCISE 163.1 (Subgames) Find all the subgames of the game in Exercise 154.2c.

In an equilibrium that corresponds to a perturbed steady state in which every
history sometimes occurs, the players’ behavior must correspond to a steady state
in every subgame, not only in the whole game. Interpreting the actions specified
by a player’s strategy in a subgame to give the player’s behavior if, possibly after
a series of mistakes, that subgame is reached, this condition is embodied in the
following informal definition.

A subgame perfect equilibrium is a strategy profile s∗ with the property
that in no subgame can any player i do better by choosing a strategy
different from s∗i , given that every other player j adheres to s∗j .

(Compare this definition with that of a Nash equilibrium of a strategic game, on
page 19.)

For example, the Nash equilibrium (Out, Fight) of the entry game (Example 152.1)
is not a subgame perfect equilibrium because in the subgame following the history
In, the strategy Fight is not optimal for the incumbent: in this subgame, the incum-
bent is better off choosing Acquiesce than it is choosing Fight. The Nash equilibrium
(In, Acquiesce) is a subgame perfect equilibrium: each player’s strategy is optimal,
given the other player’s strategy, both in the whole game, and in the subgame
following the history In.

To define the notion of subgame perfect equilibrium precisely, we need a new
piece of notation. Let h be a history and s a strategy profile. Suppose that h occurs



164 Chapter 5. Extensive Games with Perfect Information: Theory

(even though it is not necessarily consistent with s), and afterwards the players ad-
here to the strategy profile s. Denote the resulting terminal history by Oh(s). That
is, Oh(s) is the terminal history consisting of h followed by the outcome generated
in the subgame following h by the strategy profile induced by s in the subgame.
Note that for any strategy profile s, we have O∅(s) = O(s) (where ∅, as always,
denotes the initial history).

As an example, consider again the entry game. Let s be the strategy profile
(Out, Fight) and let h be the history In. If h occurs, and afterwards the players adhere
to s, the resulting terminal history is Oh(s) = (In, Fight).

� DEFINITION 164.1 (Subgame perfect equilibrium) The strategy profile s∗ in an exten-
sive game with perfect information is a subgame perfect equilibrium if, for every
player i, every history h after which it is player i’s turn to move (i.e. P(h) = i), and
every strategy ri of player i, the terminal history Oh(s∗) generated by s∗ after the
history h is at least as good according to player i’s preferences as the terminal his-
tory Oh(ri , s∗−i) generated by the strategy profile (ri , s∗−i) in which player i chooses
ri while every other player j chooses s∗j . Equivalently, for every player i and every
history h after which it is player i’s turn to move,

ui(Oh(s∗)) ≥ ui(Oh(ri , s∗−i)) for every strategy ri of player i,

where ui is a payoff function that represents player i’s preferences and Oh(s) is the
terminal history consisting of h followed by the sequence of actions generated by
s after h.

The important point in this definition is that each player’s strategy is required
to be optimal for every history after which it is the player’s turn to move, not only
at the start of the game as in the definition of a Nash equilibrium (159.2).

5.5.2 Subgame perfect equilibrium and Nash equilibrium

In a subgame perfect equilibrium every player’s strategy is optimal, in particular,
after the initial history (put h = ∅ in the definition, and remember that O∅(s) =
O(s)). Thus:

Every subgame perfect equilibrium is a Nash equilibrium.

In fact, a subgame perfect equilibrium generates a Nash equilibrium in every
subgame: if s∗ is a subgame perfect equilibrium then, for any history h and player i,
the strategy induced by s∗i in the subgame following h is optimal given the strate-
gies induced by s∗−i in the subgame. Further, any strategy profile that generates a
Nash equilibrium in every subgame is a subgame perfect equilibrium, so that we
can give the following alternative definition.

A subgame perfect equilibrium is a strategy profile that induces a Nash
equilibrium in every subgame.
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In a Nash equilibrium every player’s strategy is optimal, given the other play-
ers’ strategies, in the whole game. As we have seen, it may not be optimal in some
subgames. I claim, however, that it is optimal in any subgame that is reached
when the players follow their strategies. Given this claim, the significance of the
requirement in the definition of a subgame perfect equilibrium that each player’s
strategy be optimal after every history, relative to the requirement in the defini-
tion of a Nash equilibrium, is that each player’s strategy be optimal after histories
that do not occur if the players follow their strategies (like the history In when the
challenger’s action is Out at the beginning of the entry game).

To show my claim, suppose that s∗ is a Nash equilibrium of a game in which
you are player i. Then your strategy s∗i is optimal given the other players’ strategies
s∗−i. When the other players follow their strategies, there comes a point (possibly
the start of the game) when you have to move for the first time. Suppose that at
this point you follow your strategy s∗i ; denote the action you choose by C. Now,
after having chosen C, should you change your strategy in the rest of the game,
given that the other players will continue to adhere to their strategies? No! If you
could do better by changing your strategy after choosing C—say by switching to
the strategy s′i in the subgame—then you could have done better at the start of the
game by choosing the strategy that chooses C and then follows s′i. That is, if your
plan is optimal, given the other players’ strategies, at the start of the game, and
you stick to it, then you never want to change your mind after play begins, as long
as the other players stick to their strategies. (The general principle is known as the
Principle of Optimality in dynamic programming.)

5.5.3 Examples

EXAMPLE 165.1 (Entry game) Consider again the entry game of Example 152.1,
which has two Nash equilibria, (In, Acquiesce) and (Out, Fight). The fact that the
Nash equilibrium (Out, Fight) is not a subgame perfect equilibrium follows from
the formal definition as follows. For s∗ = (Out, Fight), i = Incumbent, ri =
Acquiesce, and h = In, we have Oh(s∗) = (In, Fight) and Oh(ri , s∗−i) = (In, Acquiesce),
so that the inequality in the definition is violated: ui(Oh(s∗)) = 0 and ui(Oh(ri , s∗−i)) =
1.

The Nash equilibrium (In, Acquiesce) is a subgame perfect equilibrium because
(a) it is a Nash equilibrium, so that at the start of the game the challenger’s strategy
In is optimal, given the incumbent’s strategy Acquiesce, and (b) after the history In,
the incumbent’s strategy Acquiesce in the subgame is optimal. In the language of
the formal definition, let s∗ = (In, Acquiesce).

• The challenger moves after one history, namely h = ∅. We have Oh(s∗) =
(In, Acquiesce) and hence for i = challenger we have ui(Oh(s∗)) = 2, whereas
for the only other strategy of the challenger, ri = Out, we have ui(Oh(ri , s∗−i)) =
1.
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• The incumbent moves after one history, namely h = In. We have Oh(s∗) =
(In, Acquiesce) and hence for i = incumbent we have ui(Oh(s∗)) = 1, whereas
for the only other strategy of the incumbent, ri = Fight, we have ui(Oh(ri , s∗−i)) =
0.

Every subgame perfect equilibrium is a Nash equilibrium, so we conclude that
the game has a unique subgame perfect equilibrium, (In, Acquiesce).

EXAMPLE 166.1 (Variant of entry game) Consider the variant of the entry game in
which the incumbent is indifferent between fighting and acquiescing if the chal-
lenger enters (see Figure 156.1). This game, like the original game, has two Nash
equilibria, (In, Acquiesce) and (Out, Fight). But now both of these equilibria are sub-
game perfect equilibria, because after the history In both Fight and Acquiesce are
optimal for the incumbent.

In particular, the game has a steady state in which every challenger always
chooses In and every incumbent always chooses Acquiesce. If you, as the chal-
lenger, were playing the game for the first time, you would probably regard the
action In as “risky”, because after the history In the incumbent is indifferent be-
tween Acquiesce and Fight, and you prefer the terminal history Out to the termi-
nal history (In, Fight). Indeed, as discussed in Section 5.2.2, backward induction
does not yield a clear solution of this game. But the subgame perfect equilibrium
(In, Acquiesce) corresponds to a perfectly reasonable steady state. If you had played
the game hundreds of times against opponents drawn from the same population,
and on every occasion your opponent had chosen Acquiesce, you could reasonably
expect your next opponent to choose Acquiesce, and thus optimally choose In.

? EXERCISE 166.2 (Checking for subgame perfect equilibria) Which of the Nash equi-
libria of the game in Figure 158.1 are subgame perfect?

5.5.4 Interpretation

A Nash equilibrium of a strategic game corresponds to a steady state in an ide-
alized setting in which the participants in each play of the game are drawn ran-
domly from a collection of populations (see Section 2.6). The idea is that each
player’s long experience playing the game leads her to correct beliefs about the
other players’ actions; given these beliefs her equilibrium action is optimal.

A subgame perfect equilibrium of an extensive game corresponds to a slightly
perturbed steady state, in which all players, on rare occasions, take nonequilib-
rium actions, so that after long experience each player forms correct beliefs about
the other players’ entire strategies, and thus knows how the other players will be-
have in every subgame. Given these beliefs, no player wishes to deviate from her
strategy either at the start of the game or after any history.

This interpretation of a subgame perfect equilibrium, like the interpretation
of a Nash equilibrium as a steady state, does not require a player to know the
other players’ preferences, or to think about the other players’ rationality. It en-
tails interpreting a strategy as a plan specifying a player’s actions not only after
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histories consistent with the strategy, but also after histories that result when the
player chooses arbitrary alternative actions, perhaps because she makes mistakes
or deliberately experiments.

The subgame perfect equilibria of some extensive game can be given other in-
terpretations. In some cases, one alternative interpretation is particularly attrac-
tive. Consider an extensive game with perfect information in which each player
has a unique best action at every history after which it is her turn to move, and the
horizon is finite. In such a game, a player who knows the other players’ prefer-
ences and knows that the other players are rational can use backward induction to
deduce her optimal strategy, as discussed in Section 5.2.2. Thus we can interpret
a subgame perfect equilibrium as the outcome of the players’ rational calculations
about each other’s strategies.

This interpretation of a subgame perfect equilibrium entails an interpretation of
a strategy different from the one that fits the steady state interpretation. Consider,
for example, the game in Figure 158.1. When analyzing this game, player 1 must
consider the consequences of choosing C. Thus she must think about player 2’s
action after the history C, and hence must form a belief about what player 2 thinks
she (player 1) will do after the history (C, E). The component of her strategy that
specifies her action after this history reflects this belief. For instance, the strategy
DG means that player 1 chooses D at the start of the game and believes that were
she to choose C, player 2 would believe that after the history (C, E) she would
choose G. In an arbitrary game, the interpretation of a subgame perfect equilib-
rium as the outcome of the players’ rational calculations about each other’s strate-
gies entails interpreting the components of a player’s strategy that assign actions
to histories inconsistent with other parts of the strategy as specifying the player’s
belief about the other players’ beliefs about what the player will do if one of these
histories occurs.

This interpretation of a subgame perfect equilibrium is not free of difficulties,
which are discussed in Section 7.7. Further, the interpretation is not tenable in
games in which some player has more than one optimal action after some history,
or in the more general extensive games considered in Section 7.1 and Chapter 10.
Nevertheless, in some of the games studied in this chapter and the next it is an
appealing alternative to the steady state interpretation. Further, an extension of the
procedure of backward induction can be used to find all subgame perfect equilibria
of finite horizon games, as we shall see in the next section. (This extension cannot
be given an appealing behavioral interpretation in games in which some player
has more than one optimal action after some history.)

5.6 Finding subgame perfect equilibria of finite horizon games: backward

induction

We found the subgame perfect equilibria of the games in Examples 165.1 and 166.1
by finding the Nash equilibria of the games and checking whether each of these
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equilibria is subgame perfect. In a game with a finite horizon the set of sub-
game perfect equilibria may be found more directly by using an extension of the
procedure of backward induction discussed briefly in Section 5.2.2.

Define the length of a subgame to be the length of the longest history in the sub-
game. (The lengths of the subgames in Figure 163.2, for example, are 2 and 1.)
The procedure of backward induction works as follows. We start by finding the
optimal actions of the players who move in the subgames of length 1 (the “last”
subgames). Then, taking these actions as given, we find the optimal actions of the
players who move first in the subgames of length 2. We continue working back to
the beginning of the game, at each stage k finding the optimal actions of the play-
ers who move at the start of the subgames of length k, given the optimal actions
we have found in all shorter subgames.

At each stage k of this procedure, the optimal actions of the players who move
at the start of the subgames of length k are easy to determine: they are simply the
actions that yield the players the highest payoffs, given the optimal actions in all
shorter subgames.

Consider, for example, the game in Figure 168.1.

• First consider subgames of length 1. The game has two such subgames,
in both of which player 2 moves. In the subgame following the history C,
player 2’s optimal action is E, and in the subgame following the history D,
her optimal action is H.

• Now consider subgames of length 2. The game has one such subgame, namely
the entire game, at the start of which player 1 moves. Given the optimal ac-
tions in the subgames of length 1, player 1’s choosing C at the start of the
game yields her a payoff of 2, whereas her choosing D yields her a payoff of
1. Thus player 1’s optimal action at the start of the game is C.

The game has no subgame of length greater than 2, so the procedure of backward
induction yields the strategy pair (C, EH).

1
C D

2
E F

2, 1 3, 0

2
G H

0, 2 1, 3

Figure 168.1 A game illustrating the procedure of backward induction. The actions selected by
backward induction are indicated in black.

As another example, consider the game in Figure 158.1. We first deduce that in
the subgame of length 1 following the history (C, E), player 1 chooses G; then that
at the start of the subgame of length 2 following the history C, player 2 chooses E;
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then that at the start of the whole game, player 1 chooses D. Thus the procedure
of backward induction in this game yields the strategy pair (DG, E).

In any game in which this procedure selects a single action for the player who
moves at the start of each subgame, the strategy profile thus selected is the unique
subgame perfect equilibrium of the game. (You should find this result very plau-
sible, though a complete proof is not trivial.)

What happens in a game in which at the start of some subgames more than
one action is optimal? In such a game an extension of the procedure of backward
induction locates all subgame perfect equilibrium. This extension traces back sep-
arately the implications for behavior in the longer subgames of every combination of
optimal actions in the shorter subgames.

Consider, for example, the game in Figure 170.1.

• The game has three subgames of length one, in each of which player 2 moves.
In the subgames following the histories C and D, player 2 is indifferent be-
tween her two actions. In the subgame following the history E, player 2’s
unique optimal action is K. Thus there are four combinations of player 2’s
optimal actions in the subgames of length 1: FHK, FIK, GHK, and GIK (where
the first component in each case is player 2’s action after the history C, the
second component is her action after the history D, and the third component
is her action after the history E).

• The game has a single subgame of length two, namely the whole game, in
which player 1 moves first. We now consider player 1’s optimal action in this
game for every combination of the optimal actions of player 2 in the subgames
of length 1.

– For the combinations FHK and FIK of optimal actions of player 2, player 1’s
optimal action at the start of the game is C.

– For the combination GHK of optimal actions of player 2, the actions C,
D, and E are all optimal for player 1.

– For the combination GIK of optimal actions of player, player 1’s optimal
action at the start of the game is D.

Thus the strategy pairs isolated by the procedure are (C, FHK), (C, FIK), (C, GHK),
(D, GHK), (E, GHK), and (D, GIK).

The procedure, which for simplicity I refer to simply as backward induction,
may be described compactly for an arbitrary game as follows.

• Find, for each subgame of length 1, the set of optimal actions of the player
who moves first. Index the subgames by j, and denote by S∗

j (1) the set of
optimal actions in subgame j. (If the player who moves first in subgame j
has a unique optimal action, then S∗

j (1) contains a single action.)

• For each combination of actions consisting of one from each set S∗
j (1), find,

for each subgame of length two, the set of optimal actions of the player who
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1
C D E

2
F G

3, 0 1, 0

2
H I

1, 1 2, 1

2
J K

2, 2 1, 3

Figure 170.1 A game in which the first-mover in some subgames has multiple optimal actions.

moves first. The result is a set of strategy profiles for each subgame of length
two. Denote by S∗

� (2) the set of strategy profiles in subgame �.

• Continue by examining successively longer subgames until reaching the start
of the game. At each stage k, for each combination of strategy profiles con-
sisting of one from each set S∗

p(k − 1) constructed in the previous stage, find,
for each subgame of length k, the set of optimal actions of the player who
moves first, and hence a set of strategy profiles for each subgame of length k.

The set of strategy profiles that this procedure yields for the whole game is the
set of subgame perfect equilibria of the game.

PROPOSITION 170.1 (Subgame perfect equilibrium of finite horizon games and
backward induction) The set of subgame perfect equilibria of a finite horizon exten-
sive game with perfect information is equal to the set of strategy profiles isolated by the
procedure of backward induction.

You should find this result, like my claim for games in which the player who moves
at the start of every subgame has a single optimal action, very plausible, though
again a complete proof is not trivial.

In the terminology of my description of the general procedure, the analysis for
the game in Figure 170.1 is as follows. Number the subgames of length one from
left to right. Then we have S∗

1(1) = {F, G}, S∗
2(1) = {H, I}, and S∗

3(1) = {K}.
There are four lists of actions consisting of one action from each set: FHK, FIK,
GHK, and GIK. For FHK and FIK, the action C of player 1 is optimal at the start of
the game; for GHK the actions C, D, and E are all optimal; and for GIK the action
D is optimal. Thus the set S∗(2) of strategy profiles consists of (C, FHK), (C, FIK),
(C, GHK), (D, GHK), (E, GHK), and (D, GIK). There are no longer subgames, so
this set of strategy profiles is the set of subgame perfect equilibria of the game.

Each example I have presented so far in this section is a finite game—that is,
a game that not only has a finite horizon, but also a finite number of terminal
histories. In such a game, the player who moves first in any subgame has finitely
many actions; at least one action is optimal. Thus in such a game the procedure of
backward induction isolates at least one strategy profile. Using Proposition 170.1,
we conclude that every finite game has a subgame perfect equilibrium.
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PROPOSITION 171.1 (Existence of subgame perfect equilibrium) Every finite exten-
sive game with perfect information has a subgame perfect equilibrium.

Note that this result does not claim that a finite extensive game has a single
subgame perfect equilibrium. (As we have seen, the game in Figure 170.1, for
example, has more than one subgame perfect equilibrium.)

A finite horizon game in which some player does not have finitely many ac-
tions after some history may or may not possess a subgame perfect equilibrium.
A simple example of a game that does not have a subgame perfect equilibrium is
the trivial game in which a single player chooses a number less than 1 and receives
a payoff equal to the number she chooses. There is no greatest number less than
one, so the single player has no optimal action, and thus the game has no subgame
perfect equilibrium.

? EXERCISE 171.2 (Finding subgame perfect equilibria) Find the subgame perfect
equilibria of the games in parts a and c of Exercise 154.2, and in Figure 171.1.

1
C D

2
E F

2, 1 1, 1

2
G H

2, 0 1, 0

Figure 171.1 One of the games for Exercise 171.2.

? EXERCISE 171.3 (Voting by alternating veto) Find the subgame perfect equilibria
of the game in Exercise 161.2. Does the game have any Nash equilibrium that is
not a subgame perfect equilibrium? Is any outcome generated by a Nash equilib-
rium not generated by any subgame perfect equilibrium? Consider variants of the
game in which player 2’s preferences may be different from those specified in Ex-
ercise 161.2. Are there any preferences for which the outcome in a subgame perfect
equilibrium of the game in which player 1 moves first differs from the outcome in
a subgame perfect equilibrium of the game in which player 2 moves first?

? EXERCISE 171.4 (Burning a bridge) Army 1, of country 1, must decide whether to
attack army 2, of country 2, which is occupying an island between the two coun-
tries. In the event of an attack, army 2 may fight, or retreat over a bridge to its
mainland. Each army prefers to occupy the island than not to occupy it; a fight is
the worst outcome for both armies. Model this situation as an extensive game with
perfect information and show that army 2 can increase its subgame perfect equi-
librium payoff (and reduce army 1’s payoff) by burning the bridge to its mainland,
eliminating its option to retreat if attacked.
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? EXERCISE 172.1 (Sharing heterogeneous objects) A group of n people have to share
k objects that the value differently. Each person assigns values to the objects; no
one assigns the same value to two different objects. Each person evaluates a set
of objects according to the sum of the values she assigns to the objects in the set.
The following procedure is used to share the objects. The players are ordered 1
through n. Person 1 chooses an object, then person 2 does so, and so on; if k > n,
then after person n chooses an object, person 1 chooses a second object, then per-
son 2 chooses a second object, and so on. Objects are chosen until none remain. (In
Canada and the USA professional sports teams use a similar procedure to choose
new players.) Denote by G(n, k) the extensive game that models this procedure.
If k ≤ n then obviously G(n, k) has a subgame perfect equilibrium in which each
player’s strategy is to choose her favorite object among those remaining when her
turn comes. Show that if k > n then G(n, k) may have no subgame perfect equi-
librium in which person 1 chooses her favorite object on the first round. (You can
give an example in which n = 2 and k = 3.) Now fix n = 2. Define xk to be
the object least preferred by the person who does not choose at stage k (i.e. who
does not choose the last object); define xk−1 to be the object, among all those ex-
cept xk, least preferred by the person who does not choose at stage k − 1. Similarly,
for any j with 2 ≤ j ≤ k, given xj, . . . , xk, define xj−1 to be the object, among all
those excluding {xj, . . . , xk}, least preferred by the person who does not choose
at stage j − 1. Show that the game G(2, 3) has a subgame perfect equilibrium in
which for every j = 1, . . . , k the object xj is chosen at stage j. (This result is true for
G(2, k) for all values of k.) If n ≥ 3 then interestingly a person may be better off in
all subgame perfect equilibria of G(n, k) when she comes later in the ordering of
players. (An example, however, is difficult to construct; one is given in Brams and
Straffin (1979).)

The next exercise shows how backward induction can cause a relatively minor
change in the way in which a game ends to reverberate to the start of the game,
leading to a very different action for the first-mover.

?? EXERCISE 172.2 (An entry game with a financially-constrained firm) An incum-
bent in an industry faces the possibility of entry by a challenger. First the chal-
lenger chooses whether or not to enter. If it does not enter, neither firm has any
further action; the incumbent’s payoff is TM (it obtains the profit M in each of the
following T ≥ 1 periods) and the challenger’s payoff is 0. If the challenger enters,
it pays the entry cost f > 0, and in each of T periods the incumbent first commits
to fight or cooperate with the challenger in that period, then the challenger chooses
whether to stay in the industry or to exit. (Note that the order of the firms’ moves
within a period differs from that in the game in Example 152.1.) If, in any period,
the challenger stays in, each firm obtains in that period the profit −F < 0 if the in-
cumbent fights and C > max{F, f } if it cooperates. If, in any period, the challenger
exits, both firms obtain the profit zero in that period (regardless of the incumbent’s
action); the incumbent obtains the profit M > 2C and the challenger the profit
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0 in every subsequent period. Once the challenger exits, it cannot subsequently
re-enter. Each firm cares about the sum of its profits.

a. Find the subgame perfect equilibria of the extensive game that models this
situation.

b. Consider a variant of the situation, in which the challenger is constrained by
its financial war chest, which allows it to survive at most T − 2 fights. Specif-
ically, consider the game that differs from the one in part a only in that the
history in which the challenger enters, in each of the following T − 2 periods
the incumbent fights and the challenger stays in, and in period T − 1 the in-
cumbent fights, is a terminal history (the challenger has to exit), in which the
incumbent’s payoff is M (it is the only firm in the industry in the last period)
and the challenger’s payoff is − f . Find the subgame perfect equilibria of this
game.

EXAMPLE 173.1 (Dollar auction) Consider an auction in which an object is sold to
the highest bidder, but both the highest bidder and the second highest bidder pay
their bids to the auctioneer. When such an auction is conducted and the object is a
dollar, the outcome is sometimes that the object is sold at a price greater than a dol-
lar. (Shubik writes that “A total of payments between three and five dollars is not
uncommon” (1971, 110).) Obviously such an outcome is inconsistent with a sub-
game perfect equilibrium of an extensive game that models the auction: every par-
ticipant has the option of not bidding, so that in no subgame perfect equilibrium
can anyone’s payoff be negative.

Why, then, do such outcomes occur? Suppose that there are two participants,
and that both start bidding. If the player making the lower bid thinks that making
a bid above the other player’s bid will induce the other player to quit, she may be
better off doing so than stopping bidding. For example, if the bids are currently
$0.50 and $0.51, the player bidding $0.50 is better off bidding $0.52 if doing so
induces the other bidder to quit, because she then wins the dollar and obtains a
payoff of $0.48, rather than losing $0.50. The same logic applies even if the bids are
greater than $1.00, as long as they do not differ by more than $1.00. If, for example,
they are currently $2.00 and $2.01, then the player bidding $2.00 loses only $1.02 if
a bid of $2.02 induces her opponent to quit, whereas she loses $2.00 if she herself
quits. That is, in subgames in which bids have been made, the player making the
second highest bid may optimally beat a bid that exceeds $1.00, depending on the
other players’ strategies and the difference between the top two bids. (When dis-
cussing outcomes in which the total payment to the auctioneer exceeds $1, Shubik
remarks that “In playing this game, a large crowd is desirable . . . the best time is
during a party when spirits are high and the propensity to calculate does not settle
in until at least two bids have been made” (1971, 109).)

In the next exercise you are asked to find the subgame perfect equilibria of an
extensive game that models a simple example of such an auction.

? EXERCISE 173.2 (Dollar auction) An object that two people each value at v (a pos-
itive integer) is sold in an auction. In the auction, the people alternately have
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the opportunity to bid; a bid must be a positive integer greater than the previous
bid. (In the situation that gives the game its name, v is 100 cents.) On her turn, a
player may pass rather than bid, in which case the game ends and the other player
receives the object; both players pay their last bids (if any). (If player 1 passes ini-
tially, for example, player 2 receives the object and makes no payment; if player 1
bids 1, player 2 bids 3, and then player 1 passes, player 2 obtains the object and
pays 3, and player 1 pays 1.) Each person’s wealth is w, which exceeds v; neither
player may bid more than her wealth. For v = 2 and w = 3 model the auction as an
extensive game and find its subgame perfect equilibria. (A much more ambitious
project is to find all subgame perfect equilibria for arbitrary values of v and w.)

In all the extensive games studied so far in this chapter, each player has avail-
able finitely many actions whenever she moves. The next example shows how the
procedure of backward induction may be used to find the subgame perfect equi-
libria of games in which a continuum of actions is available after some histories.

EXAMPLE 174.1 (A synergistic relationship) Consider a variant of the situation in
Example 37.1, in which two individuals are involved in a synergistic relationship.
Suppose that the players choose their effort levels sequentially, rather than simul-
taneously. First individual 1 chooses her effort level a1, then individual 2 chooses
her effort level a2. An effort level is a nonnegative number, and individual i’s pref-
erences (for i = 1, 2) are represented by the payoff function ai(c + aj − ai), where j
is the other individual and c > 0 is a constant.

To find the subgame perfect equilibria, we first consider the subgames of length 1,
in which individual 2 chooses a value of a2. Individual 2’s optimal action after the
history a1 is her best response to a1, which we found to be 1

2 (c + a1) in Exam-
ple 37.1. Thus individual 2’s strategy in any subgame perfect equilibrium is the
function that associates with each history a1 the action 1

2 (c + a1).
Now consider individual 1’s action at the start of the game. Given individ-

ual 2’s strategy, individual 1’s payoff if she chooses a1 is a1(c + 1
2 (c + a1) − a1),

or 1
2 a1(3c − a1). This function is a quadratic that is zero when a1 = 0 and when

a1 = 3c, and reaches a maximum in between. Thus individual 1’s optimal action
at the start of the game is a1 = 3

2 c.
We conclude that the game has a unique subgame perfect equilibrium, in which

individual 1’s strategy is a1 = 3
2 c and individual 2’s strategy is the function that

associates with each history a1 the action 1
2 (c + a1). The outcome of the equilibrium

is that individual 1 chooses a1 = 3
2 c and individual 2 chooses a2 = 5

4 c.

? EXERCISE 174.2 (Firm–union bargaining) A firm’s output is L(100 − L) when it
uses L ≤ 50 units of labor, and 2500 when it uses L > 50 units of labor. The
price of output is 1. A union that represents workers presents a wage demand (a
nonnegative number w), which the firm either accepts or rejects. If the firm accepts
the demand, it chooses the number L of workers to employ (which you should take
to be a continuous variable, not an integer); if it rejects the demand, no production
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takes place (L = 0). The firm’s preferences are represented by its profit; the union’s
preferences are represented by the value of wL.

a. Formulate this situation as an extensive game with perfect information.

b. Find the subgame perfect equilibrium (equilibria?) of the game.

c. Is there an outcome of the game that both parties prefer to any subgame
perfect equilibrium outcome?

d. Find a Nash equilibrium for which the outcome differs from any subgame
perfect equilibrium outcome.

? EXERCISE 175.1 (The “rotten kid theorem”) A child’s action a (a number) affects
both her own private income c(a) and her parent’s income p(a); for all values of
a we have c(a) < p(a). The child is selfish: she cares only about the amount of
money she has. Her loving parent cares both about how much money she has and
how much her child has. Specifically, her preferences are represented by a payoff
equal to the smaller of the amount of money she has and the amount of money her
child has. The parent may transfer money to the child. First the child takes an ac-
tion, then the parent decides how much money to transfer. Model this situation as
an extensive game and show that in a subgame perfect equilibrium the child takes
an action that maximizes the sum of her private income and her parent’s income.
(In particular, the child’s action does not maximize her own private income. The
result is not limited to the specific form of the parent’s preferences, but holds for
any preferences with the property that a parent who is allocating a fixed amount x
of money between herself and her child wishes to give more to the child when x is
larger.)

? EXERCISE 175.2 (Comparing simultaneous and sequential games) The set of ac-
tions available to player 1 is A1; the set available to player 2 is A2. Player 1’s pref-
erences over pairs (a1, a2) are represented by the payoff u1(a1, a2), and player 2’s
preferences are represented by the payoff u2(a1, a2). Compare the Nash equilibria
(in pure strategies) of the strategic game in which the players choose actions si-
multaneously with the subgame perfect equilibria of the extensive game in which
player 1 chooses an action, then player 2 does so. (For each history a1 in the
extensive game, the set of actions available to player 2 is A2.)

a. Show that if, for every value of a1, there is a unique member of A2 that max-
imizes u2(a1, a2), then in every subgame perfect equilibrium of the extensive
game, player 1’s payoff is at least equal to her highest payoff in any Nash
equilibrium of the strategic game.

b. Show that player 2’s payoff in every subgame perfect equilibrium of the ex-
tensive game may be higher than her highest payoff in any Nash equilibrium
of the strategic game.

c. Show that if for some values of a1 more than one member of A2 maximizes
u2(a1, a2), then the extensive game may have a subgame perfect equilibrium
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in which player 1’s payoff is less than her payoff in all Nash equilibria of the
strategic game.

(For parts b and c you can give examples in which both A1 and A2 contain two
actions.)

TICKTACKTOE, CHESS, AND RELATED GAMES

Ticktacktoe, chess, and related games may be modeled as extensive games with
perfect information. (A history is a sequence of moves and each player prefers
to win than to tie than to lose.) Both ticktacktoe and chess may be modeled as
finite games, so by Proposition 171.1 each game has a subgame perfect equilibrium.
(The official rules of chess allow indefinitely long sequences of moves, but the
game seems to be well modeled by an extensive game in which a draw is declared
automatically if a position is repeated three times, rather than a player having the
option of declaring a draw in this case, as in the official rules.) The subgame perfect
equilibria of ticktacktoe are of course known, whereas those of chess are not (yet).

Ticktacktoe and chess are “strictly competitive” games (Definition 339.1): in
every outcome, either one player loses and the other wins, or the players draw.
A result in a later chapter implies that for such a game all Nash equilibria yield
the same outcome (Corollary 342.1). Further, a player’s Nash equilibrium strategy
yields at least her equilibrium payoff, regardless of the other players’ strategies
(Proposition 341.1a). (The same is definitely not true for an arbitrary game that is
not strictly competitive: look, for example, at the game in Figure 29.1.) Because any
subgame perfect equilibrium is a Nash equilibrium, the same is true for subgame
perfect equilibrium strategies.

We conclude that in ticktacktoe and chess, either (a) one of the players has a
strategy that guarantees she wins, or (b) each player has a strategy that guarantees
at worst a draw.

In ticktacktoe, of course, we know that (b) is true. Chess is more subtle. In
particular, it is not known whether White has a strategy that guarantees it wins,
or Black has a strategy that guarantees it wins, or each player has a strategy that
guarantees at worst a draw. The empirical evidence suggests that Black does not
have a winning strategy, but this result has not been proved. When will a sub-
game perfect equilibrium of chess be found? (The answer “never” underestimates
human ingenuity!)

? EXERCISE 176.1 (Subgame perfect equilibria of ticktacktoe) Ticktacktoe has sub-
game perfect equilibria in which the first player puts her first X in a corner. The
second player’s move is the same in all these equilibria. What is it?

? EXERCISE 176.2 (Toetacktick) Toetacktick is a variant of ticktacktoe in which a
player who puts three marks in a line loses (rather than wins). Find a strategy
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of the first-mover that guarantees that she does not lose. (If fact, in all subgame
perfect equilibria the game is a draw.)

? EXERCISE 177.1 (Three Men’s Morris, or Mill) The ancient game of “Three Men’s
Morris” is played on a ticktacktoe board. Each player has three counters. The play-
ers move alternately. On each of her first three turns, a player places a counter on
an unoccupied square. On each subsequent move, a player may move a counter to
an adjacent square (vertically or horizontally, but not diagonally). The first player
whose counters are in a row (vertically, horizontally, or diagonally) wins. Find a
subgame perfect equilibrium strategy of player 1, and the equilibrium outcome.

Notes

The notion of an extensive game is due to von Neumann and Morgenstern (1944).
Kuhn (1950, 1953) suggested the formulation described in this chapter. The de-
scription of an extensive game in terms of histories was suggested by Ariel Rubin-
stein. The notion of subgame perfect equilibrium is due to Selten (1965). Proposi-
tion 171.1 is due to Kuhn (1953). The interpretation of a strategy when a subgame
perfect equilibrium is interpreted as the outcome of the players’ reasoning about
each others’ rational actions is due to Rubinstein (1991). The principle of optimality
in dynamic programming is discussed by Bellman (1957, 83), for example.

The procedure in Exercises 161.2 and 171.3 was first studied by Mueller (1978)
and Moulin (1981). The idea in Exercise 171.4 goes back at least to Sun-tzu, who,
in The art of warfare (probably written between 500BC and 300BC), advises “in sur-
rounding the enemy, leave him a way out; do not press an enemy that is cornered”
(end of Ch. 7; see, for example, Sun-tzu (1993, 132)). (That is, if no bridge exists in
the situation described in the exercise, army 1 should build one.) Schelling (1966,
45) quotes Sun-tzu and gives examples of the strategy’s being used in antiquity.
My formulation of the exercise comes from Tirole (1988, 316). The model in Exer-
cise 172.1 is studied by Kohler and Chandrasekaran (1971) and Brams and Straf-
fin (1979). The game in Exercise 172.2 is based on Benoı̂t (1984, Section 1). The
dollar auction (Exercise 173.2) was introduced into the literature by Shubik (1971).
Some of its subgame perfect equilibria, for arbitrary values of v and w, are studied
by O’Neill (1986) and Leininger (1989); see also Taylor (1995, Chs. 1 and 6). Pound-
stone (1992, 257–272) writes informally about the game and its possible applica-
tions. The result in Exercise 175.1 is due to Becker (1974); see also Bergstrom (1989).
The first formal study of chess is Zermelo (1913); see Schwalbe and Walker (2000)
for a discussion of this paper and related work. Exercises 176.1, 176.2, and 177.1
are taken from Gardner (1959, Ch. 4), which includes several other intriguing
examples.
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6 Extensive Games with Perfect Information:
Illustrations

Ultimatum game and holdup game 179
Stackelberg’s model of duopoly 184
Buying votes 189
A race 194
Prerequisite: Chapter 5.

6.1 Introduction

THE first three sections of this chapter illustrate the notion of subgame per-
fect equilibrium in games in which the longest history has length two or

three. The last section studies a game with an arbitrary finite horizon. Games with
infinite horizons are studied in Chapters 16 and 14.

6.2 The ultimatum game and the holdup game

6.2.1 The ultimatum game

Bargaining over the division of a pie may naturally be modeled as an extensive
game. Chapter 16 studies several such models. Here I analyze a very simple game
that is the basis of one of the richer models studied in the later chapter. The game is
so simple, in fact, that you may not initially think of it as a model of “bargaining”.

Two people use the following procedure to split $c. Person 1 offers person 2
an amount of money up to $c. If 2 accepts this offer then 1 receives the remainder
of the $c. If 2 rejects the offer then neither person receives any payoff. Each per-
son cares only about the amount of money she receives, and (naturally!) prefers to
receive as much as possible.

Assume that the amount person 1 offers can be any number, not necessarily
an integral number of cents. Then the following extensive game, known as the
ultimatum game, models the procedure.

Players The two people.

Terminal histories The set of sequences (x, Z), where x is a number with 0 ≤
x ≤ c (the amount of money that person 1 offers to person 2) and Z is either
Y (“yes, I accept”) or N (“no, I reject”).

179
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Player function P(∅) = 1 and P(x) = 2 for all x.

Preferences Each person’s preferences are represented by payoffs equal to the
amounts of money she receives. For the terminal history (x, Y) person 1
receives c − x and person 2 receives x; for the terminal history (x, N) each
person receives 0.

This game has a finite horizon, so we can use backward induction to find its
subgame perfect equilibria. First consider the subgames of length 1, in which per-
son 2 either accepts or rejects an offer of person 1. For every possible offer of
person 1, there is such a subgame. In the subgame that follows an offer x of per-
son 1 for which x > 0, person 2’s optimal action is to accept (if she rejects, she gets
nothing). In the subgame that follows the offer x = 0, person 2 is indifferent be-
tween accepting and rejecting. Thus in a subgame perfect equilibrium person 2’s
strategy either accepts all offers (including 0), or accepts all offers x > 0 and rejects
the offer x = 0.

Now consider the whole game. For each possible subgame perfect equilibrium
strategy of person 2, we need to find the optimal strategy of person 1.

• If person 2 accepts all offers (including 0), then person 1’s optimal offer is 0
(which yields her the payoff $c).

• If person 2 accepts all offers except zero, then no offer of person 1 is optimal!
No offer x > 0 is optimal, because the offer x/2 (for example) is better, given
that person 2 accept both offers. And an offer of 0 is not optimal because
person 2 rejects it, leading to a payoff of 0 for person 1, who is thus better off
offering any positive amount less than $c.

We conclude that the only subgame perfect equilibrium of the game is the
strategy pair in which person 1 offers 0 and person 2 accepts all offers. In this
equilibrium, person 1’s payoff is $c and person 2’s payoff is zero.

This one-sided outcome is a consequence of the one-sided structure of the game.
If we allow person 2 to make a counteroffer after rejecting person 1’s opening offer
(and possibly allow further responses by both players), so that the model corre-
sponds more closely to a “bargaining” situation, then under some circumstances
the outcome is less one-sided. (An extension of this type is explored in Chapter 16.)

? EXERCISE 180.1 (Nash equilibria of the ultimatum game) Find the values of x
for which there is a Nash equilibrium of the ultimatum game in which person 1
offers x.

? EXERCISE 180.2 (Subgame perfect equilibria of the ultimatum game with indivis-
ible units) Find the subgame perfect equilibria of the variant of the ultimatum
game in which the amount of money is available only in multiples of a cent.

? EXERCISE 180.3 (Dictator game and impunity game) The “dictator game” differs
from the ultimatum game only in that person 2 does not have the option to reject



6.2 The ultimatum game and the holdup game 181

person 1’s offer (and thus has no strategic role in the game). The “impunity game”
differs from the ultimatum game only in that person 1’s payoff when person 2
rejects any offer x is c − x, rather than 0. (The game is named for the fact that
person 2 is unable to “punish” person 1 for making a low offer.) Find the subgame
perfect equilibria of each game.

?? EXERCISE 181.1 (Variants of ultimatum game and impunity game with equity-
conscious players) Consider variants of the ultimatum game and impunity game
in which each person cares not only about the amount of money she receives, but
also about the equity of the allocation. Specifically, suppose that person i’s prefer-
ences are represented by the payoff function given by ui(x1, x2) = xi − βi|x1 − x2|,
where xi is the amount of money person i receives, βi > 0, and, for any number
z, |z| denotes the absolute value of z (i.e. |z| = z if z > 0 and |z| = −z if z < 0).
Find the set of subgame perfect equilibria of each game and compare them. Are
there any values of β1 and β2 for which an offer is rejected in equilibrium? (An
interesting further variant of the ultimatum game in which person 1 is uncertain
about the value of β2 is considered in Exercise 222.2.)

EXPERIMENTS ON THE ULTIMATUM GAME

The sharp prediction of the notion of subgame perfect equilibrium in the ultima-
tum game lends itself to experimental testing. The first test was conducted in the
late 1970s among graduate students of economics in a class at the University of
Cologne (in what was then West Germany). The amount c available varied among
the games played; it ranged from 4 DM to 10 DM (around US$2 to US$5 at the time).
A group of 42 students was split into two groups and seated on different sides of
a room. Each member of one subgroup played the role of player 1 in an ultima-
tum game. She wrote down on a form the amount (up to c) that she demanded.
Her form was then given to a randomly determined member of the other group,
who, playing the role of player 2, either accepted what remained of the amount c
or rejected it (in which case neither player received any payoff). Each player had
10 minutes to make her decision. The entire experiment was repeated a week later.
(Güth, Schmittberger, and Schwarze 1982.)

In the first experiment the average demand by people playing the role of player 1
was 0.65c, and in the second experiment it was 0.69c, much less than the amount
c or c − 0.01 predicted by the notion of subgame perfect equilibrium (0.01DM was
the smallest monetary unit; see Exercise 180.2). Almost 20% of offers were rejected
over the two experiments, including one of 3DM (out of a pie of 7DM) and five
of around 1DM (out of pies of between 4DM and 6DM). Many other experiments,
including one in which the amount of money to be divided was much larger (Hoff-
man, McCabe, and Smith 1996), have produced similar results. In brief, the results
do not accord well with the predictions of subgame perfect equilibrium.
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Or do they? Each player in the ultimatum game cares only about the amount of
money she receives. But an experimental subject may care also about the amount of
money her opponent receives. Further, a variant of the ultimatum game in which
the players are equity-conscious has subgame perfect equilibria in which offers are
significant (as you will have discovered if you did Exercise 181.1).

However, if people are equity-conscious in the strategic environment of the
ultimatum game, they should be equity-conscious also in related environments; an
explanation of the experimental results in the ultimatum game based on the nature
of preferences is not convincing if it applies only to that environment. Several
related games have been studied, among them the dictator game and the impunity
game (Exercise 180.3). In the subgame perfect equilibria of these games, player 1
offers 0; in a variant in which the players are equity-conscious, player 1’s offers
are no higher than they are in the analogous variant of the ultimatum game, and,
for moderate degrees of equity-conscience, are lower (see Exercise 181.1). These
features of the equilibria are broadly consistent with the experimental evidence on
dictator, impunity, and ultimatum games (see, for example, Forsythe, Horowitz,
Savin, and Sefton 1994, Bolton and Zwick 1995, and Güth and Huck 1997).

One feature of the experimental results is inconsistent with subgame perfect
equilibrium even when players are equity-conscious (at least given the form of
the payoff functions in Exercise 181.1): positive offers are sometimes rejected. The
equilibrium strategy of an equity-conscious player 2 in the ultimatum game re-
jects inequitable offers, but, knowing this, player 1 does not, in equilibrium, make
such an offer. To generate rejections in equilibrium we need to further modify
the model by assuming that people differ in their degree of equity-conscience,
and that player 1 does not know the degree of equity-conscience of player 2 (see
Exercise 222.2).

An alternative explanation of the experimental results focuses on player 2’s be-
havior. The evidence is consistent with player 1’s significant offers in the ultima-
tum game being driven by a fear that player 2 will reject small offers—a fear that is
rational, because small offers are often rejected. Why does player 2 behave in this
way? One argument is that in our daily lives, we use “rules of thumb” that work
well in the situations in which we are typically involved; we do not calculate our
rational actions in each situation. Further, we are not typically involved in one-shot
situations with the structure of the ultimatum game. Instead, we usually engage in
repeated interactions, where it is advantageous to “punish” a player who makes a
paltry offer, and to build a reputation for not accepting such offers. Experimental
subjects may apply such rules of thumb rather than carefully thinking through the
logic of the game, and thus reject low offers in an ultimatum game, but accept them
in an impunity game, where rejection does not affect the proposer. The experimen-
tal evidence so far collected is broadly consistent with both this explanation and
the explanation based on the nature of players’ preferences.
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? EXERCISE 183.1 (Bargaining over two indivisible objects) Consider a variant of the
ultimatum game, with indivisible units. Two people use the following procedure
to allocate two desirable identical indivisible objects. One person proposes an al-
location (both objects go to person 1, both go to person 2, one goes to each person),
which the other person then either accepts or rejects. In the event of rejection,
neither person receives either object. Each person cares only about the number
of objects she obtains. Construct an extensive game that models this situation and
find its subgame perfect equilibria. Does the game have any Nash equilibrium that
is not a subgame perfect equilibrium? Is there any outcome that is generated by a
Nash equilibrium but not by any subgame perfect equilibrium?

?? EXERCISE 183.2 (Dividing a cake fairly) Two players use the following procedure
to divide a cake. Player 1 divides the cake into two pieces, and then player 2
chooses one of the pieces; player 1 obtains the remaining piece. The cake is contin-
uously divisible (no lumps!), and each player likes all parts of it.

a. Suppose that the cake is perfectly homogeneous, so that each player cares
only about the size of the piece of cake she obtains. How is the cake divided
in a subgame perfect equilibrium?

b. Suppose that the cake is not homogeneous: the players evaluate different
parts of it differently. Represent the cake by the set C, so that a piece of the
cake is a subset P of C. Assume that if P is a subset of P′ not equal to P′

(smaller than P′) then each player prefers P′ to P. Assume also that the play-
ers’ preferences are continuous: if player i prefers P to P′ then there is a subset
of P not equal to P that player i also prefers to P′. Let (P1, P2) (where P1 and
P2 together constitute the whole cake C) be the division chosen by player 1 in
a subgame perfect equilibrium of the divide-and-choose game, P2 being the
piece chosen by player 2. Show that player 2 is indifferent between P1 and
P2, and player 1 likes P1 at least as much as P2. Give an example in which
player 1 prefers P1 to P2.

6.2.2 The holdup game

Before engaging in an ultimatum game in which she may accept or reject an offer of
person 1, person 2 takes an action that affects the size c of the pie to be divided. She
may exert little effort, resulting in a small pie, of size cL, or great effort, resulting
in a large pie, of size cH. She dislikes exerting effort. Specifically, assume that her
payoff is x − E if her share of the pie is x, where E = L if she exerts little effort and
E = H > L if she exerts great effort. The extensive game that models this situation
is known as the holdup game.

? EXERCISE 183.3 (Holdup game) Formulate the holdup game precisely. (Write
down the set of players, set of terminal histories, player function, and the players’
preferences.)
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What is the subgame perfect equilibrium of the holdup game? Each subgame
that follows person 2’s choice of effort is an ultimatum game, and thus has a unique
subgame perfect equilibrium, in which person 1 offers 0 and person 2 accepts all
offers. Now consider person 2’s choice of effort at the start of the game. If she
chooses L then her payoff, given the outcome in the following subgame, is −L,
whereas if she chooses H then her payoff is −H. Consequently she chooses L. Thus
the game has a unique subgame perfect equilibrium, in which person 2 exerts little
effort and person 1 obtains all of the resulting small pie.

This equilibrium does not depend on the values of cL, cH , L, and H (given that
H > L). In particular, even if cH is much larger than cL, but H is only slightly larger
than L, person 2 exerts little effort in the equilibrium, although both players could
be much better off if person 2 were to exert great effort (which, in this case, is not
very great) and person 2 were to obtain some of the extra pie. No such superior
outcome is sustainable in an equilibrium because person 2, having exerted great
effort, may be “held up” for the entire pie by person 1.

This result does not depend sensitively on the extreme subgame perfect equilib-
rium outcome of the ultimatum game. In Section 16.3 I analyze a model in which
a similar result may emerge when the bargaining following person 2’s choice of
effort generates a more equal division of the pie.

6.3 Stackelberg’s model of duopoly

6.3.1 General model

In the models of oligopoly studied in Sections 3.1 and 3.2, each firm chooses its
action not knowing the other firms’ actions. How do the conclusions change when
the firms move sequentially? Is a firm better off moving before or after the other
firms?

In this section I consider a market in which there are two firms, both producing
the same good. Firm i’s cost of producing qi units of the good is Ci(qi); the price at
which output is sold when the total output is Q is Pd(Q). (In Section 3.1 I denote
this function P; here I add a d subscript to avoid a conflict with the player function
of the extensive game.) Each firm’s strategic variable is output, as in Cournot’s
model (Section 3.1), but the firms make their decisions sequentially, rather than
simultaneously: one firm chooses its output, then the other firm does so, knowing
the output chosen by the first firm.

We can model this situation by the following extensive game, known as Stack-
elberg’s duopoly game (after its originator).

Players The two firms.

Terminal histories The set of all sequences (q1, q2) of outputs for the firms (where
each qi, the output of firm i, is a nonnegative number).

Player function P(∅) = 1 and P(q1) = 2 for all q1.
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Preferences The payoff of firm i to the terminal history (q1, q2) is its profit
qiP(q1 + q2) − Ci(qi), for i = 1, 2.

Firm 1 moves at the start of the game. Thus a strategy of firm 1 is simply an
output. Firm 2 moves after every history in which firm 1 chooses an output. Thus a
strategy of firm 2 is a function that associates an output for firm 2 with each possible
output of firm 1.

The game has a finite horizon, so we may use backward induction to find its
subgame perfect equilibria.

• First, for any output of firm 1, we find the outputs of firm 2 that maximize
its profit. Suppose that for each output q1 of firm 1 there is one such output
of firm 2; denote it b2(q1). Then in any subgame perfect equilibrium, firm 2’s
strategy is b2.

• Next, we find the outputs of firm 1 that maximize its profit, given the strategy
of firm 2. When firm 1 chooses the output q1, firm 2 chooses the output b2(q1),
resulting in a total output of q1 + b2(q1), and hence a price of Pd(q1 + b2(q1)).
Thus firm 1’s output in a subgame perfect equilibrium is a value of q1 that
maximizes

q1Pd(q1 + b2(q1)) − C1(q1). (185.1)

Suppose that there is one such value of q1; denote it q∗1.

We conclude that if firm 2 has a unique best response b2(q1) to each output q1 of
firm 1, and firm 1 has a unique best action q∗1, given firm 2’s best responses, then the
subgame perfect equilibrium of the game is (q∗1, b2): firm 1’s equilibrium strategy
is q∗1 and firm 2’s equilibrium strategy is the function b2. The output chosen by
firm 2, given firm 1’s equilibrium strategy, is b2(q∗1); denote this output q∗2.

When firm 1 chooses any output q1, the outcome, given that firm 2 uses its
equilibrium strategy, is the pair of outputs (q1, b2(q1)). That is, as firm 1 varies
its output, the outcome varies along firm 2’s best response function b2. Thus we
can characterize the subgame perfect equilibrium outcome (q∗1, q∗2) as the point on
firm 2’s best response function that maximizes firm 1’s profit.

6.3.2 Example: constant unit cost and linear inverse demand

Suppose that Ci(qi) = cqi for i = 1, 2, and

Pd(Q) =
{

α − Q if Q ≤ α

0 if Q > α,
(185.2)

where c > 0 and c < α (as in the example of Cournot’s duopoly game in Sec-
tion 3.1.3). We found that under these assumptions firm 2 has a unique best re-
sponse to each output q1 of firm 1, given by

b2(q1) =
{ 1

2 (α − c − q1) if q1 ≤ α − c
0 if q1 > α − c.
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Thus in a subgame perfect equilibrium of Stackelberg’s game firm 2’s strategy is
this function b2 and firm 1’s strategy is the output q1 that maximizes

q1(α − c − (q1 + 1
2 (α − c − q1))) = 1

2 q1(α − c − q1)

(refer to (185.1)). This function is a quadratic in q1 that is zero when q1 = 0 and
when q1 = α − c. Thus its maximizer is q1 = 1

2 (α − c).
We conclude that the game has a unique subgame perfect equilibrium, in which

firm 1’s strategy is the output 1
2 (α − c) and firm 2’s strategy is b2. The outcome of

the equilibrium is that firm 1 produces the output q∗1 = 1
2 (α − c) and firm 2 pro-

duces the output q∗2 = b2(q∗1) = b2( 1
2 (α − c)) = 1

2 (α − c − 1
2 (α − c)) = 1

4 (α − c).
Firm 1’s profit is q∗1(P(q∗1 + q∗2) − c) = 1

8 (α − c)2, and firm 2’s profit is q∗1(P(q∗1 +
q∗2) − c) = 1

16 (α − c)2. By contrast, in the unique Nash equilibrium of Cournot’s
(simultaneous-move) game under the same assumptions, each firm produces 1

3 (α−
c) units of output and obtains the profit 1

9 (α − c)2. Thus under our assumptions
firm 1 produces more output and obtains more profit in the subgame perfect equi-
librium of the sequential game in which it moves first than it does in the Nash
equilibrium of Cournot’s game, and firm 2 produces less output and obtains less
profit.

? EXERCISE 186.1 (Stackelberg’s duopoly game with quadratic costs) Find the sub-
game perfect equilibrium of Stackelberg’s duopoly game when Ci(qi) = q2

i for
i = 1, 2, and Pd(Q) = α − Q for all Q ≤ α (with Pd(Q) = 0 for Q > α). Compare
the equilibrium outcome with the Nash equilibrium of Cournot’s game under the
same assumptions (Exercise 57.2).

6.3.3 Properties of subgame perfect equilibrium

First-mover’s equilibrium profit In the example just studied, the first-mover is bet-
ter off in the subgame perfect equilibrium of Stackelberg’s game than it is in the
Nash equilibrium of Cournot’s game. A weak version of this result holds under
very general conditions: for any cost and inverse demand functions for which
firm 2 has a unique best response to each output of firm 1, firm 1 is at least as
well off in any subgame perfect equilibrium of Stackelberg’s game as it is in any
Nash equilibrium of Cournot’s game. This result follows from the general result
in Exercise 175.2a. The argument is simple. One of firm 1’s options in Stackel-
berg’s game is to choose its output in some Nash equilibrium of Cournot’s game.
If it chooses such an output then firm 2’s best action is to choose its output in the
same Nash equilibrium, given the assumption that it has a unique best response
to each output of firm 1. Thus by choosing such an output, firm 1 obtains its profit
at a Nash equilibrium of Cournot’s game; by choosing a different output it may
possibly obtain a higher payoff.

Equilibrium outputs In the example in the previous section, firm 1 produces more
output in the subgame perfect equilibrium of Stackelberg’s game than it does in
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the Nash equilibrium of Cournot’s game, and firm 2 produces less. A weak form
of this result holds whenever firm 2’s best response function is decreasing where it
is positive (i.e. a higher output for firm 1 implies a lower optimal output for firm 2).

The argument is illustrated in Figure 187.1. The firms’ best response functions
are the curves labeled b1 (dashed) and b2. The Nash equilibrium of Cournot’s game
is the intersection (q1, q2) of these curves. Along each gray curve, firm 1’s profit
is constant; the lower curve corresponds to a higher profit. (For any given value of
firm 1’s output, a reduction in the output of firm 2 increases the price and thus
increases firm 1’s profit.) Each constant-profit curve of firm 1 is horizontal where
it crosses firm 1’s best response function, because the best response is precisely the
output that maximizes firm 1’s profit, given firm 2’s output. (Cf. Figure 59.1.) Thus
the subgame perfect equilibrium outcome—the point on firm 2’s best response
function that yields the highest profit for firm 1—is the point (q∗1, q∗2) in the figure.
In particular, given that the best response function of firm 2 is downward-sloping,
firm 1 produces at least as much, and firm 2 produces at most as much, in the
subgame perfect equilibrium of Stackelberg’s game as in the Nash equilibrium of
Cournot’s game.

q1 →

↑
q2

q∗1q10

q∗2

q2

b1

b2

gray curves:
constant profit curves

of firm 1

Figure 187.1 The subgame perfect equilibrium outcome (q∗1, q∗2) of Stackelberg’s game and the Nash
equilibrium (q1, q2) of Cournot’s game. Along each gray curve, firm 1’s profit is constant; the lower
curve corresponds to higher profit than does the upper curve. Each curve has a slope of zero where it
crosses firm 1’s best response function b1.

For some cost and demand functions, firm 2’s output in a subgame perfect
equilibrium of Stackelberg’s game is zero. An example is shown in Figure 188.1.
The discontinuity in firm 2’s best response function at q∗1 in this example may arise
because firm 2 incurs a “fixed” cost—a cost independent of its output—when it
produces a positive output (see Exercise 57.3). When firm 1’s output is q∗1, firm 2’s



188 Chapter 6. Extensive Games with Perfect Information: Illustrations

maximal profit is zero, which it obtains both when it produces no output (and
does not pay the fixed cost) and when it produces the output q̂2. When firm 1
produces less than q∗1, firm 2’s maximal profit is positive, and firm 2 optimally
produces a positive output; when firm 1 produces more than q∗1, firm 2 optimally
produces no output. Given this form of firm 2’s best response function and the
form of firm 1’s constant profit curves shown in the figure, the point on firm 2’s
best response function that yields firm 1 the highest profit is (q∗1, 0).

I claim that this example has a unique subgame perfect equilibrium, in which
firm 1 produces q∗1 and firm 2’s strategy coincides with its best response function
except at q∗1, where the strategy specifies the output 0. The output firm 2’s equilib-
rium strategy specifies after each history must be a best response to firm 1’s output,
so the only question regarding firm 2’s strategy is whether it specifies an output
of 0 or q̂2 when firm 1’s output is q∗1. The argument that there is no subgame per-
fect equilibrium in which firm 2’s strategy specifies the output q̂2 is similar to the
argument that there is no subgame perfect equilibrium in the ultimatum game in
which person 2 rejects the offer 0. If firm 2 produces the output q̂2 in response to
firm 1’s output q∗1 then firm 1 has no optimal output: it would like to produce a
little more than q∗1, inducing firm 2 to produce zero, but is better off the closer its
output is to q∗1. Because there is no smallest output greater than q∗1, no output is
optimal for firm 1 in this case. Thus the game has no subgame perfect equilibrium
in which firm 2’s strategy specifies the output q̂2 in response to firm 1’s output q∗1.

Note that if firm 2 were entirely absent from the market, firm 1 would pro-
duce q̂1, less than q∗1. Thus firm 2’s presence affects the outcome, even though it
produces no output.

q1 →

↑
q2

q̂2

q∗1q̂10

b2

b1

gray curves:
constant profit curves

of firm 1
(lower curve ⇒
higher profit)

Figure 188.1 The subgame perfect equilibrium output q∗1 of firm 1 in Stackelberg’s sequential game
when firm 2 incurs a fixed cost. Along each gray curve, firm 1’s profit is constant; the lower curve
corresponds to higher profit than does the upper curve.

? EXERCISE 188.1 (Stackelberg’s duopoly game with fixed costs) Suppose that the
inverse demand function is given by (185.2) and the cost function of each firm i is
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given by

Ci(qi) =
{

0 if qi = 0
f + cqi if qi > 0,

where c ≥ 0, f > 0, and c < α, as in Exercise 57.3. Show that if c = 0, α =
12, and f = 4, Stackelberg’s game has a unique subgame perfect equilibrium, in
which firm 1’s output is 8 and firm 2’s output is zero. (Use your results from
Exercise 57.3).

The value of commitment Firm 1’s output in a subgame perfect equilibrium of
Stackelberg’s game is not in general a best response to firm 2’s output: if firm 1
could adjust its output after firm 2 has chosen its output, then it would do so! (In
the case shown in Figure 187.1, it would reduce its output.) However, if firm 1 had
this opportunity, and firm 2 knew that it had the opportunity, then firm 2 would
choose a different output. Indeed, if we simply add a third stage to the game,
in which firm 1 chooses an output, then the first stage is irrelevant, and firm 2 is
effectively the first-mover; in the subgame perfect equilibrium firm 1 is worse off
than it is in the Nash equilibrium of the simultaneous-move game. (In the example
in the previous section, the unique subgame perfect equilibrium has firm 2 choose
the output (α − c)/2 and firm 1 choose the output (α − c)/4.) In summary, even
though firm 1 can increase its profit by changing its output after firm 2 has chosen
its output, in the game in which it has this opportunity it is worse off than it is in
the game in which it must choose its output before firm 2 and cannot subsequently
modify this output. That is, firm 1 prefers to be committed not to change its mind.

? EXERCISE 189.1 (Sequential variant of Bertrand’s duopoly game) Consider the
variant of Bertrand’s duopoly game (Section 3.2) in which first firm 1 chooses a
price, then firm 2 chooses a price. Assume that each firm is restricted to choose a
price that is an integral number of cents (as in Exercise 65.2), that each firm’s unit
cost is constant, equal to c (an integral number of cents), and that the monopoly
profit is positive.

a. Specify an extensive game with perfect information that models this situation.

b. Give an example of a strategy of firm 1 and an example of a strategy of firm 2.

c. Find the subgame perfect equilibria of the game.

6.4 Buying votes

A legislature has k members, where k is an odd number. Two rival bills, X and
Y, are being considered. The bill that attracts the votes of a majority of legislators
will pass. Interest group X favors bill X, whereas interest group Y favors bill Y.
Each group wishes to entice a majority of legislators to vote for its favorite bill.
First interest group X gives an amount of money (possibly zero) to each legislator,
then interest group Y does so. Each interest group wishes to spend as little as
possible. Group X values the passing of bill X at $VX > 0 and the passing of bill Y
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at zero, and group Y values the passing of bill Y at $VY > 0 and the passing of
bill X at zero. (For example, group X is indifferent between an outcome in which
it spends VX and bill X is passed and one in which it spends nothing and bill Y is
passed.) Each legislator votes for the favored bill of the interest group that offers
her the most money; a legislator to whom both groups offer the same amount of
money votes for bill Y (an arbitrary assumption that simplifies the analysis without
qualitatively changing the outcome). For example, if k = 3, the amounts offered to
the legislators by group X are x = (100, 50, 0), and the amounts offered by group Y
are y = (100, 0, 50), then legislators 1 and 3 vote for Y and legislator 2 votes for X,
so that Y passes. (In some legislatures the inducements offered to legislators are
more subtle than cash transfers.)

We can model this situation as the following extensive game.

Players The two interest groups, X and Y.

Terminal histories The set of all sequences (x, y), where x is a list of payments
to legislators made by interest group X and y is a list of payments to legisla-
tors made by interest group Y. (That is, both x and y are lists of k nonnegative
integers.)

Player function P(∅) = X and P(x) = Y for all x.

Preferences The preferences of interest group X are represented by the payoff
function {

VX − (x1 + · · · + xk) if bill X passes
−(x1 + · · · + xk) if bill Y passes,

where bill Y passes after the terminal history (x, y) if and only if the number
of components of y that are at least equal to the corresponding components
of x is at least 1

2 (k + 1) (a bare majority of the k legislators). The prefer-
ences of interest group Y are represented by the analogous function (where
VY replaces VX , y replaces x, and Y replaces X).

Before studying the subgame perfect equilibria of this game for arbitrary values
of the parameters, consider two examples. First suppose that k = 3 and VX =
VY = 300. Under these assumptions, the most group X is willing to pay to get
bill X passed is 300. For any payments it makes to the three legislators that sum to
at most 300, two of the payments sum to at most 200, so that if group Y matches
these payments it spends less than VY (= 300) and gets bill Y passed. Thus in
any subgame perfect equilibrium group X makes no payments, group Y makes no
payments, and (given the tie-breaking rule) bill Y is passed.

Now suppose that k = 3, VX = 300, and VY = 100. In this case by paying
each legislator more than 50, group X makes matching payments by group Y un-
profitable: only by spending more than VY (= 100) can group Y cause bill Y to
be passed. However, there is no subgame perfect equilibrium in which group X
pays each legislator more than 50, because it can always pay a little less (as long
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as the payments still exceed 50) and still prevent group Y from profitably match-
ing. In the only subgame perfect equilibrium group X pays each legislator ex-
actly 50, and group Y makes no payments. Given group X’s action, group Y is
indifferent between matching X’s payments (so that bill Y is passed), and mak-
ing no payments. However, there is no subgame perfect equilibrium in which
group Y matches group X’s payments, because if this were group Y’s response
then group X could increase its payments a little, making matching payments by
group Y unprofitable.

For arbitrary values of the parameters the subgame perfect equilibrium out-
come takes one of the forms in these two examples: either no payments are made
and bill Y is passed, or group X makes payments that group Y does not wish to
match, group Y makes no payments, and bill X is passed.

To find the subgame perfect equilibria in general, we may use backward induc-
tion. First consider group Y’s best response to an arbitrary strategy x of group X.
Let µ = 1

2 (k + 1), a bare majority of k legislators, and denote by mx the sum of the
smallest µ components of x—the total payments Y needs to make to buy off a bare
majority of legislators.

• If mx < VY then group Y can buy off a bare majority of legislators for less
than VY, so that its best response to x is to match group X’s payments to the
µ legislators to whom group X’s payments are smallest; the outcome is that
bill Y is passed.

• If mx > VY then the cost to group Y of buying off any majority of legislators
exceeds VY , so that group Y’s best response to x is to make no payments; the
outcome is that bill X is passed.

• If mx = VY then both the actions in the previous two cases are best responses
by group Y to x.

We conclude that group Y’s strategy in a subgame perfect equilibrium has the
following properties.

• After a history x for which mx < VY , group Y matches group X’s payments
to the µ legislators to whom X’s payments are smallest.

• After a history x for which mx > VY , group Y makes no payments.

• After a history x for which mx = VY , group Y either makes no payments or
matches group X’s payments to the µ legislators to whom X’s payments are
smallest.

Given that group Y’s subgame perfect equilibrium strategy has these proper-
ties, what should group X do? If it chooses a list of payments x for which mx < VY
then group Y matches its payments to a bare majority of legislators, and bill Y
passes. If it reduces all its payments, the same bill is passed. Thus the only list of
payments x with mx < VY that may be optimal is (0, . . . , 0). If it chooses a list of
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payments x with mx > VY then group Y makes no payments, and bill X passes.
If it reduces all its payments a little (keeping the payments to every bare majority
greater than VY), the outcome is the same. Thus no list of payments x for which
mx > VY is optimal.

We conclude that in any subgame perfect equilibrium we have either x =
(0, . . . , 0) (group X makes no payments) or mx = VY (the smallest sum of group X’s
payments to a bare majority of legislators is VY). Under what conditions does each
case occur? If group X needs to spend more than VX to deter group Y from match-
ing its payments to a bare majority of legislators, then its best strategy is to make
no payments (x = (0, . . . , 0)). How much does it need to spend to deter group Y?
It needs to pay more than VY to every bare majority of legislators, so it needs to
pay each legislator more than VY/µ, in which case its total payment is more than
kVY/µ. Thus if VX < kVY/µ, group X is better off making no payments than getting
bill X passed by making payments large enough to deter group Y from matching
its payments to a bare majority of legislators.

If VX > kVY/µ, on the other hand, group X can afford to make payments large
enough to deter group Y from matching. In this case its best strategy is to pay
each legislator VY/µ, so that its total payment to every bare majority of legislators
is VY . Given this strategy, group Y is indifferent between matching group X’s
payments to a bare majority of legislators and making no payments. I claim that
the game has no subgame perfect equilibrium in which group Y matches. The
argument is similar to the argument that the ultimatum game has no subgame
perfect equilibrium in which person 2 rejects the offer 0. Suppose that group Y
matches. Then group X can increase its payoff by increasing its payments a little
(keeping the total less than VX), thereby deterring group Y from matching, and
ensuring that bill X passes. Thus in any subgame perfect equilibrium group Y
makes no payments in response to group X’s strategy.

In conclusion, if VX �= kVY/µ then the game has a unique subgame perfect
equilibrium, in which group Y’s strategy is

• match group X’s payments to the µ legislators to whom X’s payments are
smallest after a history x for which mx < VY

• make no payments after a history x for which mx ≥ VY

and group X’s strategy depends on the relative sizes of VX and VY:

• if VX < kVY/µ then group X makes no payments;

• if VX > kVY/µ then group X pays each legislator VY/µ.

If VX < kVY/µ then the outcome is that neither group makes any payment, and
bill Y is passed; if VX > kVY/µ then the outcome is that group X pays each legisla-
tor VY/µ, group Y makes no payments, and bill X is passed. (If VX = kVY/µ then
the analysis is more complex.)

Three features of the subgame perfect equilibrium are significant. First, the out-
come favors the second-mover in the game (group Y): only if VX > kVY/µ, which
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is close to 2VY when k is large, does group X manage to get bill X passed. Second,
group Y never makes any payments! According to its equilibrium strategy it is
prepared to make payments in response to certain strategies of group X, but given
group X’s equilibrium strategy it spends not a cent. Third, if group X makes any
payments (as it does in the equilibrium for VX > kVY/µ) then it makes a payment
to every legislator. If there were no competing interest group but nonetheless each
legislator would vote for bill X only if she were paid at least some amount, then
group X would make payments to only a bare majority of legislators; if it were to
act in this way in the presence of group Y it would supply group Y with almost a
majority of legislators who could be induced to vote for bill Y at no cost.

? EXERCISE 193.1 (Three interest groups buying votes) Consider a variant of the
model in which there are three bills, X, Y, and Z, and three interest groups, X, Y,
and Z, who choose lists of payments sequentially. Ties are broken in favor of the
group moving later. Find the bill that is passed in any subgame perfect equilibrium
when k = 3 and (a) VX = VY = VZ = 300, (b) VX = 300, VY = VZ = 100, and
(c) VX = 300, VY = 202, VZ = 100. (You may assume that in each case a subgame
perfect equilibrium exists; note that you are not asked to find the subgame perfect
equilibria themselves.)

? EXERCISE 193.2 (Interest groups buying votes under supermajority rule) Consider
an alternative variant of the model in which a supermajority is required to pass a
bill. There are two bills, X and Y, and a “default outcome”. A bill passes if and
only if it receives at least k∗ > 1

2 (k + 1) votes; if neither bill passes the default
outcome occurs. There are two interest groups. Both groups attach value 0 to the
default outcome. Find the bill that is passed in any subgame perfect equilibrium
when k = 7, k∗ = 5, and (a) VX = VY = 700 and (b) VX = 750, VY = 400. In each
case, would the legislators be better off or worse off if a simple majority of votes
were required to pass a bill?

? EXERCISE 193.3 (Sequential positioning by two political candidates) Consider the
variant of Hotelling’s model of electoral competition in Section 3.3 in which the n
candidates choose their positions sequentially, rather than simultaneously. Model
this situation as an extensive game. Find the subgame perfect equilibrium (equi-
libria?) when n = 2.

?? EXERCISE 193.4 (Sequential positioning by three political candidates) Consider a
further variant of Hotelling’s model of electoral competition in which the n can-
didates choose their positions sequentially and each candidate has the option of
staying out of the race. Assume that each candidate prefers to stay out than to
enter and lose, prefers to enter and tie with any number of candidates than to stay
out, and prefers to tie with as few other candidates as possible. Model the situ-
ation as an extensive game and find the subgame perfect equilibrium outcomes
when n = 2 (easy) and when n = 3 and the voters’ favorite positions are dis-
tributed uniformly from 0 to 1 (i.e. the fraction of the voters’ favorite positions less
than x is x) (hard).



194 Chapter 6. Extensive Games with Perfect Information: Illustrations

6.5 A race

6.5.1 General model

Firms compete with each other to develop new technologies; authors compete with
each other to write books and film scripts about momentous current events; scien-
tists compete with each other to make discoveries. In each case the winner enjoys
a significant advantage over the losers, and each competitor can, at a cost, increase
her pace of activity. How do the presence of competitors and size of the prize affect
the pace of activity? How does the identity of the winner of the race depend on
the each competitor’s initial distance from the finish line?

We can model a race as an extensive game with perfect information in which
the players alternately choose how many “steps” to take. Here I study a simple
example of such a game, with two players.

Player i is initially ki > 0 steps from the finish line, for i = 1, 2. On each of her
turns, a player can either not take any steps (at a cost of 0), or can take one step, at
a cost of c(1), or two steps, at a cost of c(2). The first player to reach the finish line
wins a prize, worth vi > 0 to player i; the losing player’s payoff is 0. To make the
game finite, I assume that if, on successive turns, neither player takes any step, the
game ends and neither player obtains the prize.

I denote the game in which player i moves first by Gi(k1, k2). The game G1(k1, k2)
is defined precisely as follows.

Players The two parties.

Terminal histories The set of sequences of the form (x1, y1, x2, y2, . . . , xT) or
(x1, y1, x2, y2, . . . , yT) for some integer T, where each xt (the number of steps
taken by player 1 on her tth turn) and each yt (the number of steps taken
by player 2 on her tth turn) is 0, 1, or 2, there are never two successive 0’s
except possibly at the end of a sequence, and either x1 + · · · + xT = k1 and
y1 + · · ·+ yT < k2 (player 1 reaches the finish line first), or x1 + · · ·+ xT < k1
and y1 + · · · + yT = k2 (player 2 reaches the finish line first).

Player function P(∅) = 1, P(x1) = 2 for all x1, P(x1, y1) = 1 for all (x1, y1),
P(x1, y1, x2) = 2 for all (x1, y1, x2), and so on.

Preferences For a terminal history in which player i loses, her payoff is the
negative of the sum of the costs of all her moves; for a terminal history in
which she wins it is vi minus the sum of these costs.

6.5.2 Subgame perfect equilibria of an example

A simple example illustrates the features of the subgame perfect equilibria of this
game. Suppose that both v1 and v2 are between 6 and 7 (their exact values do not
affect the equilibria), the cost c(1) of a single step is 1, and the cost c(2) of two steps
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is 4. (Given that c(2) > 2c(1), each player, in the absence of a competitor, would
like to take one step at a time.)

The game has a finite horizon, so we may use backward induction to find its
subgame perfect equilibria. Each of its subgames is either a game Gi(m1, m2) with
i = 1 or i = 2 and 0 < m1 ≤ k1 and 0 < m2 ≤ k2, or, if the last player to move
before the subgame took no steps, a game that differs from Gi(m1, m2) only in that
it ends if player i initially takes no steps (i.e. the only terminal history starting with
0 consists only of 0).

First consider the very simplest game, G1(1, 1), in which each player is initially
one step from the finish line. If player 1 takes one step, she wins; if she does not
move then player 2 optimally takes one step (if she does not, the game ends) and
wins. We conclude that the game has a unique subgame perfect equilibrium, in
which player 1 initially takes one step and wins.

A similar argument applies to the game G1(1, 2). If player 1 does not move
then player 2 has the option of taking one or two steps. If she takes one step then
play moves to a subgame identical G1(1, 1), in which we have just concluded that
player 1 wins. Thus player 2 takes two steps, and wins, if player 1 does not move
at the start of G1(1, 2). We conclude that the game has a unique subgame perfect
equilibrium, in which player 1 initially takes one step and wins.

Now consider player 1’s options in the game G1(2, 1).

Player 1 takes two steps: She wins, and obtains a payoff of at least 6 − 4 = 2
(her valuation is more than 6, and the cost of two steps is 4).

Player 1 take one step: Play moves to a subgame identical to G2(1, 1); we know
that in the equilibrium of this subgame player 2 initially takes one step and
wins.

Player 1 does not move: Play moves to a subgame in which player 2 is the first-
mover and is one step from the finish line, and, if player 2 does not move, the
game ends. In an equilibrium of this subgame player 2 takes one step and
wins.

We conclude that the game G1(2, 1) has a unique subgame perfect equilibrium, in
which player 1 initially takes two steps and wins.

I have spelled out the details of the analysis of these cases to show how we
use the result for the game G1(1, 1) to find the equilibria of the games G1(1, 2) and
G1(2, 1). In general, the equilibria of the games Gi(k1, k2) for all values of k1 and k2
up to k tell us the consequences of player 1’s taking one or two steps in the game
G1(k + 1, k).

? EXERCISE 195.1 (The race G1(2, 2)) Show that the game G1(2, 2) has a unique sub-
game perfect equilibrium outcome, in which player 1 initially takes two steps, and
wins.
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So far we have concluded that in any game in which each player is initially at
most two steps from the finish line, the first-mover takes enough steps to reach the
finish line, and wins.

Now suppose that player 1 is at most two steps from the finish line, but player 2
is three steps away. Suppose that player 1 takes only one step (even if she is initially
two steps from the finish line). Then if player 2 takes either one or two steps, play
moves to a subgame in which player 1 (the first-mover) wins. Thus player 2 is
better off not moving (and not incurring any cost), in which case player 1 takes
one step on her next turn, and wins. (Player 1 prefers to move one step at a time
than to move two steps initially, because the former costs her 2 whereas the latter
costs her 4.) We conclude that the outcome of a subgame perfect equilibrium in the
game G1(2, 3) is that player 1 takes one step on her first turn, then player 2 does
not move, and then player 1 takes another step, and wins.

By a similar argument, in a subgame perfect equilibrium of any game in which
player 1 is at most two steps from the finish line and player 2 is three or more steps
away, player 1 moves one step at a time, and player 2 does not move; player 1 wins.
Symmetrically, in a subgame perfect equilibrium of any game in which player 1 is
three or more steps from the finish line and player 2 is at most two steps away,
player 1 does not move, and player 2 moves one step at a time, and wins.

Our conclusions so far are illustrated in Figure 197.1. In this figure, player 1
moves to the left, and player 2 moves down. The values of (k1, k2) for which the
subgame perfect equilibrium outcome has been determined so far are labeled. The
label “1” means that, regardless of who moves first, in a subgame perfect equilib-
rium player 1 moves one step on each turn, and player 2 does not move; player 1
wins. Similarly, the label “2” means that, regardless of who moves first, player 2
moves one step on each turn, and player 1 does not move; player 2 wins. The label
“f” means that the first player to move takes enough steps to reach the finish line,
and wins.

Now consider the game G1(3, 3). If player 1 takes one step, we reach the game
G2(2, 3). From Figure 197.1 we see that in the subgame perfect equilibrium of this
game player 1 wins, and does so by taking one step at a time (the point (2, 3) is
labeled “1”). If player 1 takes two steps, we reach the game G2(1, 3), in which
player 1 also wins. Player 1 prefers not to take two steps unless she has to, so
in the subgame perfect equilibrium of G1(3, 3) she takes one step at a time, and
wins, and player 2 does not move. Similarly, in a subgame perfect equilibrium of
G2(3, 3), player 2 takes one step at a time, and wins, and player 1 does not move.

A similar argument applies to each of the games Gi(3, 4), Gi(4, 3), and Gi(4, 4)
for i = 1, 2. The argument differs only if the first-mover is four steps from the
finish line, in which case she initially takes two steps in order to reach a game in
which she wins. (If she initially takes only one step, the other player wins.)

Now consider the game Gi(3, 5) for i = 1, 2. By taking one step in G1(3, 5),
player 1 reaches a game in which she wins by taking one step at a time. The
cost of her taking three steps is less than v1, so in a subgame perfect equilibrium
of G1(3, 5) she takes one step at a time, and wins, and player 2 does not move.
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Figure 197.1 The subgame perfect equilibrium outcomes of the race Gi(k1, k2). Player 1 moves to
the left, and player 2 moves down. The values of (k1, k2) for which the subgame perfect equilibrium
outcome has been determined so far are labeled; dots represent cases that have not yet been studied.
The labels are explained in the text.

If player 2 takes either one or two steps in G2(3, 5), she reaches a game (either
G1(3, 4) or G1(3, 3)) in which player 1 wins. Thus whatever she does, she loses, so
that in a subgame perfect equilibrium she does not move and player 1 moves one
step at a time. We conclude that in a subgame perfect equilibrium of both G1(3, 5)
and G2(3, 5), player 1 takes one step on each turn and player 2 does not move;
player 1 wins.

A similar argument applies to any game in which one player is initially three or
four steps from the finish line, and the other player is five or more steps from the
finish line. We have now made arguments to justify the labeling in Figure 198.1. In
this figure the labels have the same meaning as in the previous figure, except that
“f” means that the first player to move takes enough steps to reach the finish line
or to reach the closest point labeled with her name, whichever is closer.

A feature of the subgame perfect equilibrium of the game G1(4, 4) is notewor-
thy. Suppose that, as planned, player 1 takes two steps, but then player 2 deviates
from her equilibrium strategy and takes two steps (rather than not moving). Ac-
cording to our analysis, player 1 should take two steps, to reach the finish line. If
she does so, her payoff is negative (less than 7 − 4 − 4 = −1). Nevertheless she
should definitely take the two steps: if she does not, her payoff is even smaller
(−4), because player 2 wins. The point is that the cost of her first move is “sunk”;
her decision after player 2 deviates must be based on her options from that point
on.

The analysis of the games in which each player is initially either 5 or 6 steps
from the finish line involves arguments similar to those used in the previous cases,
with one amendment. A player who is initially 6 steps from the finish line is better
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Figure 198.1 The subgame perfect equilibrium outcomes of the race Gi(k1, k2). Player 1 moves to
the left, and player 2 moves down. The values of (k1, k2) for which the subgame perfect equilibrium
outcome has been determined so far are labeled; dots represent cases that have not yet been studied.
The labels are explained in the text.

off not moving at all (and obtaining the payoff 0) than she is moving two steps
on any turn (and obtaining a negative payoff). An implication is that in the game
G1(6, 5), for example, player 1 does not move: if she takes only one step then
player 2 becomes the first-mover and, by taking a single step, moves the play to a
game that she wins. We conclude that the first-mover wins in the games Gi(5, 5)
and Gi(6, 6), whereas player 2 wins in Gi(6, 5) and player 1 wins in Gi(5, 6), for
i = 1, 2.

A player who is initially more than six steps from the finish line obtains a neg-
ative payoff if she moves, even if she wins, so in any subgame perfect equilibrium
she does not move. Thus our analysis of the game is complete. The subgame
perfect equilibrium outcomes are indicated in Figure 199.1, which shows also the
steps taken in the equilibrium of each game when player 1 is the first-mover.

? EXERCISE 198.1 (A race in which the players’ valuations of the prize differ) Find
the subgame perfect equilibrium outcome of the game in which player 1’s valu-
ation of the prize is between 6 and 7, and player 2’s valuation is between 4 and
5.

In both of the following exercises, inductive arguments on the length of the
game, like the one for Gi(k1, k2), can be used.

? EXERCISE 198.2 (Removing stones) Two people take turns removing stones from
a pile of n stones. Each person may, on each of her turns, remove either one stone
or two stones. The person who takes the last stone is the winner; she gets $1
from her opponent. Find the subgame perfect equilibria of the games that model
this situation for n = 1 and n = 2. Find the winner in each subgame perfect
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equilibrium for n = 3, using the fact that the subgame following player 1’s removal
of one stone is the game for n = 2 in which player 2 is the first-mover, and the
subgame following player 1’s removal of two stones is the game for n = 1 in
which player 2 is the first mover. Use the same technique to find the winner in
each subgame perfect equilibrium for n = 4, and, if you can, for an arbitrary value
of n.

?? EXERCISE 199.1 (Hungry lions) The members of a hierarchical group of hungry
lions face a piece of prey. If lion 1 does not eat the prey, the game ends. If it eats
the prey, it becomes fat and slow, and lion 2 can eat it. If lion 2 does not eat lion 1,
the game ends; if it eats lion 1 then it may be eaten by lion 3, and so on. Each lion
prefers to eat than to be hungry, but prefers to be hungry than to be eaten. Find the
subgame perfect equilibrium (equilibria?) of the extensive game that models this
situation for any number n of lions.

6.5.3 General lessons

Each player’s equilibrium strategy involves a “threat” to speed up if the other
player deviates. Consider, for example, the game G1(3, 3). Player 1’s equilibrium
strategy calls for her to take one step at a time, and player 2’s equilibrium strategy
calls for her not to move. Thus along the equilibrium path player 1’s debt climbs
to 3 (the cost of her three single steps) before she reaches the finish line.

Now suppose that after player 1 takes her first step, player 2 deviates and takes
a step. In this case, player 1’s strategy calls for her to take two steps. If she does so,
her debt climbs to 5. If at no stage can her debt exceed 3 (its maximal level on the
equilibrium path) then her strategy cannot embody such threats.
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The general point is that a limit on the debt a player can accumulate may affect
the outcome even if it exceeds the player’s debt along the equilibrium path in the
absence of any limits. You are asked to study an example in the next exercise.

? EXERCISE 200.1 (A race with a liquidity constraint) Find the subgame perfect equi-
librium of the variant of the game G1(3, 3) in which player 1’s debt may never
exceed 3.

In the subgame perfect equilibrium of every game Gi(k1, k2), only one player
moves; her opponent “gives up”. This property of equilibrium holds in more gen-
eral games. What added ingredient might lead to an equilibrium in which both
players are active? A player’s uncertainty about the other’s characteristics would
seem to be such an ingredient: if a player does not know the cost of its opponent’s
moves, it may assign a positive probability less than one to its winning, at least
until it has accumulated some evidence of its opponent’s behavior, and while it is
optimistic it may be active even though its rival is also active. To build such con-
siderations into the model we need to generalize the model of an extensive game
to encompass imperfect information, as we do in Chapter 10.

Another feature of the subgame perfect equilibrium of Gi(k1, k2) that holds in
more general games is that the presence of a competitor has little effect on the
speed of the player who moves. A lone player would move one step at a time.
When there are two players, for most starting points the one that moves does so at
the same leisurely pace. Only for a small number of starting points, in all of which
the players’ initial distances from the starting line are similar, does the presence of
a competitor induce the active player to hasten its progress, and then only in the
first period.

Notes

The first experiment on the ultimatum game is reported in Güth, Schmittberger,
and Schwarze (1982). Grout (1984) is an early analysis of a holdup game. The
model in Section 6.3 is due to von Stackelberg (1934). The vote-buying game in
Section 6.4 is taken from Groseclose and Snyder (1996). The model of a race in
Section 6.5 is a simplification suggested by Vijay Krishna of a model of Harris and
Vickers (1985).

For more discussion of the experimental evidence on the ultimatum game (dis-
cussed in the box on page 181), see Roth (1995). Bolton and Ockenfels (2000) study
the implications of assuming that players are equity-conscious, and relate these
implications to the experimental outcomes in various games. The explanation of
the experimental results in terms of rules of thumb is discussed by Aumann (1997,
7–8). The problem of fair division, an example of which is given in Exercise 183.2,
is studied in detail by Brams and Taylor (1996), who trace the idea of divide-and-
choose back to antiquity (p. 10). I have been unable to find the origin of the idea in
Exercise 199.1; Barton Lipman suggested the formulation in the exercise.
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7.1 Allowing for simultaneous moves

7.1.1 Definition

THE model of an extensive game with perfect information (Definition 153.1) as-
sumes that after every sequences of events, a single decision-maker takes an

action, knowing every decision-maker’s previous actions. I now describe a more
general model that allows us to study situations in which, after some sequences of
events, the members of a group of decision-makers choose their actions “simulta-
neously”, each member knowing every decision-maker’s previous actions, but not
the contemporaneous actions of the other members of the group.

In the more general model, a terminal history is a sequence of lists of actions,
each list specifying the actions of a set of players. (A game in which each set con-
tains a single player is an extensive game with perfect information as defined pre-
viously.) For example, consider a situation in which player 1 chooses either C or
D, then players 2 and 3 simultaneously take actions, each choosing either E or F.
In the extensive game that models this situation, (C, (E, E)) is a terminal history, in
which first player 1 chooses C, and then players 2 and 3 both choose E. In the gen-
eral model, the player function assigns a set of players to each nonterminal history.
In the example just described, this set consists of the single player 1 for the initial
history, and consists of players 2 and 3 for the history C.

An extensive game with perfect information (Definition 153.1) does not specify
explicitly the sets of actions available to the players. However, we may derive
the set of actions of the player who moves after any nonterminal history from
the set of terminal histories and the player function (see (154.1)). When we allow
simultaneous moves, the players’ sets of actions are conveniently specified in the

201
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definition of a game. In the example of the previous paragraph, for instance, we
specify the game by giving the eight possible terminal histories (C or D followed
by one of the four pairs (E, E), (E, F), (F, E), and (F, F)), the player function defined
by P(∅) = 1 and P(C) = P(D) = {2, 3}, the sets of actions {C, D} for player 1 at
the start of the game and {E, F} for both player 2 and player 3 after the histories C
and D, and each player’s preferences over terminal histories.

In any game, the set of terminal histories, player function, and sets of actions
for the players must be consistent: the list of actions that follows a subhistory of
any terminal history must be a list of actions of the players assigned by the player
function to that subhistory. In the game described above, for example, the list
of actions following the subhistory C of the terminal history (C, (E, E)) is (E, E),
which is a pair of actions for the players (2 and 3) assigned by the player function
to the history C.

Precisely, an extensive game with perfect information and simultaneous moves
is defined as follows.

� DEFINITION 202.1 An extensive game with perfect information and simultane-
ous moves consists of

• a set of players

• a set of sequences (terminal histories) with the property that no sequence is
a proper subhistory of any other sequence

• a function (the player function) that assigns a set of players to every sequence
that is a proper subhistory of some terminal history

• for each proper subhistory h of each terminal history and each player i that
is a member of the set of players assigned to h by the player function, a set
Ai(h) (the set of actions available to player i after the history h)

• for each player, preferences over the set of terminal histories

such that the set of terminal histories, player function, and sets of actions are con-
sistent in the sense that h is a terminal history if and only if either (i) h takes the
form (a1, . . . , ak) for some integer k, the player function is not defined at h, and
for every � = 0, . . . , k − 1, a�+1 is a list of actions of the players assigned by the
player function to (a1, . . . , a�) (the empty history if � = 0), or (ii) h takes the form
(a1, a2, . . .) and for every � = 0, 1, . . ., a�+1 is a list of actions of the players assigned
by the player function to (a1, . . . , a�) (the empty history if � = 0).

This definition encompasses both extensive games with perfect information as
in Definition 153.1 and, in a sense, strategic games. An extensive game with per-
fect information is an extensive game with perfect information and simultaneous
moves in which the set of players assigned to each history consists of exactly one
member. (The definition of an extensive game with perfect information and simul-
taneous moves includes the players’ actions, whereas the definition of an extensive
game with perfect information does not. However, actions may be derived from
the terminal histories and player function of the latter.)
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For any strategic game there is an extensive game with perfect information and
simultaneous moves in which every terminal history has length one that models
the same situation. In this extensive game, the set of terminal histories is the set
of action profiles in the strategic game, the player function assigns the set of all
players to the initial history, and the single set Ai(∅) of actions of each player i is
the set of actions of player i in the strategic game.

EXAMPLE 203.1 (Variant of BoS) First, person 1 decides whether to stay home and
read a book or to attend a concert. If she reads a book, the game ends. If she
decides to attend a concert then, as in BoS, she and person 2 independently choose
whether to sample the aural delights of Bach or Stravinsky, not knowing the other
person’s choice. Both people prefer to attend the concert of their favorite composer
in the company of the other person to the outcome in which person 1 stays home
and reads a book, and prefer this outcome to attending the concert of their less
preferred composer in the company of the other person; the worst outcome for
both people is that they attend different concerts.

The following extensive game with perfect information and simultaneous moves
models this situation.

Players The two people (1 and 2).

Terminal histories Book, (Concert, (B, B)), (Concert, (B, S)), (Concert, (S, B)), (Concert, (S, S)).

Player function P(∅) = 1 and P(Concert) = {1, 2}.

Actions The set of player 1’s actions at the initial history ∅ is A1(∅) = {Concert,
Book} and the set of her actions after the history Concert is A1(Concert) =
{B, S}; the set of player 2’s actions after the history Concert is A2(Concert) =
{B, S}.

Preferences Player 1 prefers (Concert, (B, B)) to Book to (Concert, (S, S)) to (Concert, (B, S)),
which she regards as indifferent to (Concert, (S, B)). Player 2 prefers (Concert, (S, S))
to Book to (Concert, (B, B)) to (Concert, (B, S)), which she regards as indifferent
to (Concert, (S, B)).

This game is illustrated in Figure 204.1, in which I represent the simultaneous
choices between B and S in the way that I previously represented a strategic game.
(Only a game in which all the simultaneous moves occur at the end of terminal
histories may be represented in a diagram like this one. For most other games no
convenient diagrammatic representation exists.)

7.1.2 Strategies and Nash equilibrium

As in a game without simultaneous moves, a player’s strategy specifies the action
she chooses for every history after which it is her turn to move. Definition 157.1
requires only minor rewording to allow for the possibility that players may move
simultaneously.

� DEFINITION 203.2 A strategy of player i in an extensive game with perfect infor-
mation and simultaneous moves is a function that assigns to each history h after
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1
Book Concert

2, 2 B S
B 3, 1 0, 0
S 0, 0 1, 3

Figure 204.1 The variant of BoS described in Example 204.1.

which i is one of the players whose turn it is to move (i.e. i is a member of P(h),
where P is the player function of the game) an action in Ai(h) (the set of actions
available to player i after h).

The definition of a Nash equilibrium of an extensive game with perfect infor-
mation and simultaneous moves is exactly the same as the definition for a game
with no simultaneous moves (Definition 159.2): a Nash equilibrium is a strategy
profile with the property that no player can induce a better outcome for herself
by changing her strategy, given the other players’ strategies. Also as before, the
strategic form of a game is the strategic game in which the players’ actions are their
strategies in the extensive game (see Section 5.4), and a strategy profile is a Nash
equilibrium of the extensive game if and only if it is a Nash equilibrium of the
strategic form of the game.

EXAMPLE 204.1 (Nash equilibria of a variant of BoS) In the game in Example 203.1,
a strategy of player 1 specifies her actions at the start of the game and after the
history Concert; a strategy of player 2 specifies her action after the history Concert.
Thus player 1 has four strategies, (Concert, B), (Concert, S), (Book, B), and (Book, S),
and player 2 has two strategies, B and S. (Remember that a player’s strategy is
more than a plan of action; it specifies an action for every history after which the
player moves, even histories that it precludes. For example, player 1’s strategy
specifies her action after the history Concert even if it specifies that she choose Book
at the beginning of the game.)

The strategic form of the game is given in Figure 204.2. We see that the game
has three pure Nash equilibria: ((Concert, B), B), ((Book, B), S), and ((Book, S), S).

B S
(Concert, B) 3, 1 0, 0
(Concert, S) 0, 0 1, 3

(Book, B) 2, 2 2, 2
(Book, S) 2, 2 2, 2

Figure 204.2 The strategic form of the game in Example 203.1.

Every extensive game has a unique strategic form. However, some strategic
games are the strategic forms of more than one extensive game. Consider, for
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example, the strategic game in Figure 205.1. This game is the strategic form of the
extensive game with perfect information and simultaneous moves in which the
two players choose their actions simultaneously; it is also the strategic form of the
entry game in Figure 154.1.

L R
T 1, 2 1, 2
B 0, 0 2, 0

Figure 205.1 A strategic game that is the strategic form of more than one extensive game.

7.1.3 Subgame perfect equilibrium

As for a game in which one player moves after each history, the subgame follow-
ing the history h of an extensive game with perfect information and simultaneous
moves is the extensive game “starting at h”. (The formal definition is a variant of
Definition 162.1.)

For instance, the game in Example 203.1 has two subgames: the whole game,
and the game in which the players engage after player 1 chooses Concert. In the
second subgame, the terminal histories are (B, B), (B, S), (S, B), and (S, S), the
player function assigns the set {1, 2} consisting of both players to the initial history
(the only nonterminal history), the set of actions of each player at the initial history
is {B, S}, and the players’ preferences are represented by the payoffs in the table
in Figure 204.1. (This subgame models the same situation as BoS.)

A subgame perfect equilibrium is defined as before: a subgame perfect equilib-
rium of an extensive game with perfect information and simultaneous moves is a
strategy profile with the property that in no subgame can any player increase her
payoff by choosing a different strategy, given the other players’ strategies. The
formal definition differs from the definition of a subgame perfect equilibrium of
a game without simultaneous moves (164.1) only in that the meaning of “it is
player i’s turn to move” is that i is a member of P(h), rather than P(h) = i.

To find the set of subgame perfect equilibria of an extensive game with perfect
information and simultaneous moves that has a finite horizon, we can, as before,
use backward induction. The only wrinkle is that some (perhaps all) of the situ-
ations we need to analyze are not single-person decision problems, as they are in
the absence of simultaneous moves, but problems in which several players choose
actions simultaneously. We cannot simply find an optimal action for the player
whose turn it is to move at the start of each subgame, given the players’ behavior
in the remainder of the game. We need to find a list of actions for the players who
move at the start of each subgame, with the property that each player’s action is
optimal given the other players’ simultaneous actions and the players’ behavior
in the remainder of the game. That is, the argument we need to make is the same
as the one we make when finding a Nash equilibrium of a strategic game. This
argument may use any of the techniques discussed in Chapter 2: it may check
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each action profile in turn, it may construct and study the players’ best response
functions, or it may show directly that an action profile we have obtained by a
combination of intuition and trial and error is an equilibrium.

EXAMPLE 206.1 (Subgame perfect equilibria of a variant of BoS) Consider the game
in Figure 204.1. Backward induction proceeds as follows.

• In the subgame that follows the history Concert, there are two Nash equilibria
(in pure strategies), namely (S, S) and (B, B), as we found in Section 2.7.2.

• If the outcome in the subgame that follows Concert is (S, S) then the optimal
choice of player 1 at the start of the game is Book.

• If the outcome in the subgame that follows Concert is (B, B) then the optimal
choice of player 1 at the start of the game is Concert.

We conclude that the game has two subgame perfect equilibria: ((Book, S), S) and
((Concert, B), B).

Every finite extensive game with perfect information has a (pure) subgame per-
fect equilibrium (Proposition 171.1). The same is not true of a finite extensive
game with perfect information and simultaneous moves because, as we know, a
finite strategic game (which corresponds to an extensive game with perfect in-
formation and simultaneous moves of length one) may not possess a pure strat-
egy Nash equilibrium. (Consider Matching pennies (Example 17.1).) If you have
studied Chapter 4, you know that some strategic games that lack a pure strat-
egy Nash equilibrium have a “mixed strategy Nash equilibrium”, in which each
player randomizes. The same is true of extensive games with perfect information
and simultaneous moves. However, in this chapter I restrict attention almost ex-
clusively to pure strategy equilibria; the only occasion on which mixed strategy
Nash equilibrium appears is Exercise 208.1.

? EXERCISE 206.2 (Extensive game with simultaneous moves) Find the subgame
perfect equilibria of the following game. First player 1 chooses either A or B.
After either choice, she and player 2 simultaneously choose actions. If player 1
initially chooses A then she and player 2 subsequently each choose either C or D;
if player 1 chooses B initially then she and player 2 subsequently each choose either
E or F. Among the terminal histories, player 1 prefers (A, (C, C)) to (B, (E, E)) to
(A, (D, D)) to (B, (F, F)), and prefers all these to (A, (C, D)), (A, (D, C)), (B, (E, F)),
and (B, (F, E)), between which she is indifferent. Player 2 prefers (A, (D, D)) to
(B, (F, F)) to (A, (C, C)) to (B, (E, E)), and prefers all these to (A, (C, D)), (A, (D, C)),
(B, (E, F)), and (B, (F, E)), between which she is indifferent.

? EXERCISE 206.3 (Two-period Prisoner’s Dilemma) Two people simultaneously choose
actions; each person chooses either Q or F (as in the Prisoner’s Dilemma). Then
they simultaneously choose actions again, once again each choosing either Q or
F. Each person’s preferences are represented by the payoff function that assigns
to the terminal history ((W, X), (Y, Z)) (where each component is either Q or F)
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a payoff equal to the sum of the person’s payoffs to (W, X) and to (Y, Z) in the
Prisoner’s Dilemma given in Figure 13.1. Specify this situation as an extensive game
with perfect information and simultaneous moves and find its subgame perfect
equilibria.

? EXERCISE 207.1 (Timing claims on an investment) An amount of money is accu-
mulating; in period t (= 1, 2, . . . , T) its size is $2t. In each period two people
simultaneously decide whether to claim the money. If only one person does so,
she gets all the money; if both people do so, they split the money equally; and
if neither person does so, both people have the opportunity to do so in the next
period. If neither person claims the money in period T, each person obtains $T.
Each person cares only about the amount of money she obtains. Formulate this
situation as an extensive game with perfect information and simultaneous moves,
and find its subgame perfect equilibria). (Start by considering the cases T = 1 and
T = 2.)

? EXERCISE 207.2 (A market game) A seller owns one indivisible unit of a good,
which she does not value. Several potential buyers, each of whom attaches the
same positive value v to the good, simultaneously offer prices they are willing to
pay for the good. After receiving the offers, the seller decides which, if any, to
accept. If she does not accept any offer, then no transaction takes place, and all
payoffs are 0. Otherwise, the buyer whose offer the seller accepts pays the amount
p she offered and receives the good; the payoff of the seller is p, the payoff of
the buyer who obtained the good is v − p, and the payoff of every other buyer is 0.
Model this situation as an extensive game with perfect information and simultane-
ous moves and find its subgame perfect equilibria. (Use a combination of intuition
and trial and error to find a strategy profile that appears to be an equilibrium, then
argue directly that it is. The incentives in the game are closely related to those in
Bertrand’s oligopoly game (see Exercise 66.1), with the roles of buyers and sellers
reversed.) Show, in particular, that in every subgame perfect equilibrium every
buyer’s payoff is zero.

MORE EXPERIMENTAL EVIDENCE ON SUBGAME PERFECT EQUILIBRIUM

Experiments conducted in 1989 and 1990 among college students (mainly taking
economics classes) show that the subgame perfect equilibria of the game in Exer-
cise 207.2 correspond closely to experimental outcomes (Roth, Prasnikar, Okuno-
Fujiwara, and Zamir 1991), in contrast to the subgame perfect equilibrium of the
ultimatum game (see the box on page 181).

In experiments conducted at four locations (Jerusalem, Ljubljana, Pittsburgh,
and Tokyo), nine “buyers” simultaneously bid for the rough equivalent (in terms
of local purchasing power) of US$10, held by a “seller”. Each experiment involved
a group of 20 participants, which was divided into two markets, each with one
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seller and nine buyers. Each participant was involved in ten rounds of the market;
in each round the sellers and buyers were assigned anew, and in any given round
no participant knew who, among the other participants, were sellers and buyers,
and who was involved in her market. In every session of the experiment the maxi-
mum proposed price was accepted by the seller, and by the seventh round of every
experiment the highest bid was at least (the equivalent of) US$9.95.

Experiments involving the ultimatum game, run in the same locations using a
similar design, yielded results similar to those of previous experiments (see the box
on page 181): proposers kept considerably less than 100% of the pie, and nontrivial
offers were rejected.

The box on page 181 discusses two explanations for the experimental results in
the ultimatum game. Both explanations are consistent with the results in the mar-
ket game. One explanation is that people are concerned not only with their own
monetary payoffs, but also with other people’s payoffs. At least some specifica-
tions of such preferences do not affect the subgame perfect equilibria of a market
game with many buyers, which still all yield every buyer the payoff of zero. (When
there are many buyers, even a seller who cares about the other players’ payoffs ac-
cepts the highest price offered, because accepting a lower price has little impact on
the distribution of monetary payoffs, all but two of which remain zero.) Thus such
preferences are consistent with both sets of experimental outcomes. Another ex-
planation is that people incorrectly recognize the ultimatum game as one in which
the rule of thumb “don’t be a sucker” is advantageously invoked, and thus reject a
poor offer, “punishing” the person who makes such an offer. In the market game,
the players treated poorly in the subgame perfect equilibrium are the buyers, who
have no opportunity to punish any other player, because they move first. Thus the
rule of thumb is not relevant in this game, so that this explanation is also consistent
with both sets of experimental outcomes.

In the next exercise you are asked to investigate subgame perfect equilibria in
which some players use mixed strategies (discussed in Chapter 4).

?? EXERCISE 208.1 (Price competition) Extend the model in Exercise 125.2 by having
the sellers simultaneously choose their prices before the buyers simultaneously
choose which seller to approach. Assume that each seller’s preferences are repre-
sented by the expected value of a Bernoulli payoff function in which the payoff
to not trading is 0 the payoff to trading at the price p is p. Formulate this model
precisely as an extensive game with perfect information and simultaneous moves.
Show that for every p ≥ 1

2 the game has a subgame perfect equilibrium in which
each seller announces the price p. (You may use the fact that if seller j’s price is
at least 1

2 , seller i’s payoff in the mixed strategy equilibrium of the subgame in
which the buyers choose which seller to approach is decreasing in her price pi
when pi > pj.)
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7.2 Illustration: entry into a monopolized industry

7.2.1 General model

An industry is currently monopolized by a single firm (the “incumbent”). A sec-
ond firm (the “challenger”) is considering entry, which entails a positive cost f
in addition to its production cost. If the challenger stays out then its profit is
zero, whereas if it enters, the firms simultaneously choose outputs (as in Cournot’s
model of duopoly (Section 3.1)). The cost to firm i of producing qi units of output
is Ci(qi). If the firms’ total output is Q then the market price is Pd(Q). (As in
Section 6.3, I add a subscript to P to avoid a clash with the player function of the
game.)

We can model this situation as the following extensive game with perfect infor-
mation and simultaneous moves, illustrated in Figure 209.1.

Players The two firms: the incumbent (firm 1) and the challenger (firm 2).

Terminal histories (In, (q1, q2)) for any pair (q1, q2) of outputs (nonnegative
numbers), and (Out, q1) for any output q1.

Player function P(∅) = {2}, P(In) = {1, 2}, and P(Out) = {1}.

Actions A2(∅) = {In, Out}; A1(In), A1(Out), and A2(In) are all equal to the
set of possible outputs (nonnegative numbers).

Preferences Each firm’s preferences are represented by its profit, which for
a terminal history (In, (q1, q2)) is q1Pd(q1 + q2) − C1(q1) for the incumbent
and q2Pd(q1 + q2) − C2(q2) − f for the challenger, and for a terminal history
(Out, q1) is q1Pd(q1) − C1(q1) for the incumbent and 0 for the challenger.

Challenger

In Out

Cournot’s
duopoly game

Incumbent is
monopolist

Figure 209.1 An entry game.

7.2.2 Example

Suppose that Ci(qi) = cqi for all qi (“unit cost” is constant, equal to c), and the
inverse demand function is linear where it is positive, given by Pd(Q) = α − Q for
Q ≤ α, as in Section 3.1.3. To find the subgame perfect equilibria, first consider
the subgame that follows the history In. The strategic form of this subgame is the
same as the example of Cournot’s duopoly game studied in Section 3.1.3, except
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that the payoff of the challenger is reduced by f (the fixed cost of entry) regardless
of the challenger’s output. Thus the subgame has a unique Nash equilibrium, in
which the output of each firm is 1

3 (α − c); the incumbent’s profit is 1
9 (α − c)2, and

the challenger’s profit is 1
9 (α − c)2 − f .

Now consider the subgame that follows the history Out. In this subgame the
incumbent chooses an output. The incumbent’s profit when it chooses the output
q1 is q1(α − q1) − cq1 = q1(α − c − q1). This function is a quadratic that increases
and then decreases as q1 increases, and is zero when q1 = 0 and when q1 = α − c.
Thus the function is maximized when q1 = 1

2 (α − c). We conclude that in any
subgame perfect equilibrium the incumbent chooses q1 = 1

2 (α − c) in the subgame
following the history Out.

Finally, consider the challenger’s action at the start of the game. If the chal-
lenger stays out then its profit is 0, whereas if it enters then, given the actions
chosen in the resulting subgame, its profit is 1

9 (α − c)2 − f . Thus in any sub-
game perfect equilibrium the challenger enters if 1

9 (α − c)2 > f and stays out if
1
9 (α − c)2 < f . If 1

9 (α − c)2 = f then the game has two subgame perfect equilibria,
in one of which the challenger enters and in the other of which it does not.

In summary, the set of subgame perfect equilibria depend on the value of f . In
all equilibria the incumbent’s strategy is to produce 1

3 (α− c) if the challenger enters
and 1

2 (α − c) if it does not, and the challenger’s strategy involves its producing
1
3 (α − c) if it enters.

• If f < 1
9 (α − c)2 there is a unique subgame perfect equilibrium, in which the

challenger enters. The outcome is that the challenger enters and each firm
produces the output 1

3 (α − c).

• If f > 1
9 (α − c)2 there is a unique subgame perfect equilibrium, in which the

challenger stays out. The outcome is that the challenger stays out and the
incumbent produces 1

2 (α − c).

• If f = 1
9 (α − c)2 the game has two subgame perfect equilibria: the one for the

case f < 1
9 (α − c)2 and the one for the case f > 1

9 (α − c)2.

Why, if f is small, does the game have no subgame perfect equilibrium in which
the incumbent floods the market if the challenger enters, so that the challenger
optimally stays out and the incumbent obtains a profit higher than its profit if the
challenger enters? Because the action this strategy prescribes after the history in
which the challenger enters is not the incumbent’s action in a Nash equilibrium
of the subgame: the subgame has a unique Nash equilibrium, in which each firm
produces 1

3 (α − c). Put differently, the incumbent’s “threat” to flood the market if
the challenger enters is not credible.

? EXERCISE 210.1 (Bertrand’s duopoly game with entry) Find the subgame perfect
equilibria of the variant of the game studied in this section in which the post-entry
competition is a game in which each firm chooses a price, as in the example of
Bertrand’s duopoly game studied in Section 3.2.2, rather than an output.
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7.3 Illustration: electoral competition with strategic voters

The voters in Hotelling’s model of electoral competition (Section 3.3) are not play-
ers in the game: each citizen is assumed simply to vote for the candidate whose
position she most prefers. How do the conclusions of the model change if we
assume that each citizen chooses the candidate for whom to vote?

Consider the extensive game in which the candidates first simultaneously choose
actions, then the citizens simultaneously choose how to vote. As in the variant of
Hotelling’s game considered on page 72, assume that each candidate may either
choose a position (as in Hotelling’s original model) or choose to stay out of the race,
an option she is assumed to rank between losing and tying for first place with all
the other candidates.

Players The candidates and the citizens.

Terminal histories All sequences (x, v) where x is a list of the candidates’ ac-
tions, each component of which is either a position (a number) or Out, and
v is a list of voting decisions for the citizens (i.e. a list of candidates, one for
each citizen).

Player function P(∅) is the set of all the candidates, and P(x), for any list x of
positions for the candidates, is the set of all citizens.

Actions The set of actions available to each candidate at the start of the game
consists of Out and the set of possible positions. The set of actions available
to each citizen after a history x is the set of candidates.

Preferences Each candidate’s preferences are represented by a payoff function
that assigns n to every terminal history in which she wins outright, k to every
terminal history in which she ties for first place with n − k other candidates
(for 1 ≤ k ≤ n − 1), 0 to every terminal history in which she stays out of
the race, and −1 to every terminal history in which she loses, where n is the
number of candidates. Each citizen’s preferences are represented by a payoff
function that assigns to each terminal history the average distance from the
citizen’s favorite position of the set of winning candidates in that history.

First consider the game in which there are two candidates (and an arbitrary
number of citizens). Every subgame following choices of positions by the candi-
dates has many Nash equilibria (as you know if you solved Exercise 47.1). For
example, any action profile in which all citizens vote for the same candidate is
a Nash equilibrium. (A citizen’s switching her vote to another candidate has no
effect on the outcome.)

This plethora of Nash equilibria allows us to construct, for every pair of posi-
tions, a subgame perfect equilibrium in which the candidates choose those posi-
tions! Consider the strategy profile in which the candidates choose the positions
x1 and x2, and
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• all citizens vote for candidate 1 after a history (x′
1, x′

2) in which x′
1 = x1

• all citizens vote for candidate 2 after a history (x′
1, x′

2) in which x′
1 �= x1.

The outcome is that the candidates choose the positions x1 and x2 and candi-
date 1 wins. The strategy profile is a subgame perfect equilibrium because for
every history (x1, x2) the profile of the citizens’ actions is a Nash equilibrium, and
neither candidate can induce an outcome she prefers by deviating: a deviation by
candidate 1 to a position different from x1 leads her to lose, and a deviation by
candidate 2 has no effect on the outcome.

However, most of the Nash equilibria of the voting subgames are fragile (as you
know if you solved Exercise 47.1): a citizen’s voting for her less preferred candidate
is weakly dominated (Definition 45.1) by her voting for her favorite candidate. (A
citizen who switches from voting for her less preferred candidate to voting for her
favorite candidate either does not affect the outcome (if her favorite candidate was
three or more votes behind) or causes her favorite candidate either to tie for first
place rather than lose, or to win rather than tie.) Thus in the only Nash equilibrium
of a voting subgame in which no citizen uses a weakly dominated action, each
citizen votes for the candidate whose position is closest to her favorite position.

Hotelling’s model (Section 3.3) assumes that each citizen votes for the candidate
whose position is closest to her favorite position; in its unique Nash equilibrium,
each candidate’s position is the median of the citizens’ favorite positions. Combin-
ing this result with the result of the previous paragraph, we conclude that the game
we are studying has only one subgame perfect equilibrium in which no player’s
strategy is weakly dominated: each candidate chooses the median of the citizens’
favorite positions, and for every pair of the candidates’ positions, each citizen votes
for her favorite candidate.

In the game with three or more candidates, not only do many of the voting
subgames have many Nash equilibria, with a variety of outcomes, but restricting
to voting strategies that are not weakly dominated does not dramatically affect the
set of equilibria: a citizen’s only weakly dominated strategy is a vote for her least
preferred candidate (see Exercise 47.2).

However, the set of equilibrium outcomes is dramatically restricted by the as-
sumption that each candidate prefers to stay out of the race than to enter and lose,
as the next two exercises show. The result in the first exercise is that the game has
a subgame perfect equilibrium in which no citizen’s strategy is weakly dominated
and every candidate enters and chooses as her position the median of the citizens’
favorite positions. The result in the second exercise is that under an assumption
that makes the citizens averse to ties and an assumption that there exist citizens
with extreme preferences, in every subgame perfect equilibrium all candidates who
enter do so at the median of the citizens’ favorite positions. The additional as-
sumptions about the citizens’ preferences are much stronger that necessary; they
are designed to make the argument relatively easy.

? EXERCISE 212.1 (Electoral competition with strategic voters) Assume that there
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are n ≥ 3 candidates and q citizens, where q ≥ 2n is odd (so that the median of
the voters’ favorite positions is well-defined) and divisible by n. Show that the
game has a subgame perfect equilibrium in which no citizen’s strategy is weakly
dominated and every candidate enters the race and chooses the median of the
citizens’ favorite positions. (You may use the fact that every voting subgame has a
(pure) Nash equilibrium in which no citizen’s action is weakly dominated.)

?? EXERCISE 213.1 (Electoral competition with strategic voters) Consider the variant
of the game in this section in which (i) the set of possible positions is the set of
numbers x with 0 ≤ x ≤ 1, (ii) the favorite position of at least one citizen is 0
and the favorite position of at least one citizen is 1, and (iii) each citizen’s pref-
erences are represented by a payoff function that assigns to each terminal history
the distance from the citizen’s favorite position to the position of the candidate in
the set of winners whose position is furthest from her favorite position. Under the
other assumptions of the previous exercise, show that in every subgame perfect
equilibrium in which no citizen’s action is weakly dominated, the position chosen
by every candidate who enters is the median of the citizens’ favorite positions. To
do so, first show that in any equilibrium each candidate that enters is in the set
of winners. Then show that in any Nash equilibrium of any voting subgame in
which there are more than two candidates and not all candidates’ positions are the
same, some candidate loses. (Argue that if all candidates tie for first place, some
citizen can increase her payoff by changing her vote.) Finally, show that in any
subgame perfect equilibrium in which either only two candidates enter, or all can-
didates who enter choose the same position, every entering candidates chooses the
median of the citizens’ favorite positions.

7.4 Illustration: committee decision-making

How does the procedure used by a committee affect the decision it makes? One ap-
proach to this question models a decision-making procedure as an extensive game
with perfect information and simultaneous moves in which a sequence of ballots
are taken, in each of which the committee members vote simultaneously, and the
result of each ballot determines the choices on the next ballot, or, eventually, the
decision to be made.

Fix a set of committee members and a set of alternatives over which each mem-
ber has strict preferences (no member is indifferent between any two alternatives).
Assume that the number of committee members is odd, to avoid ties in votes. If
there are two alternatives, the simplest committee procedure is that in which the
members vote simultaneously for one of the alternatives. (We may interpret the
game in Section 2.9.3 as a model of this procedure.) In the procedure illustrated
in Figure 214.1, there are three alternatives, x, y, and z. The committee first votes
whether to choose x (option “a”) or to eliminate it from consideration (option “b”).
If it votes to eliminate x, it subsequently votes between y and z.

In these procedures, each vote is between two options. Such procedures are
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vote
a b

x vote
c d

y z

Figure 214.1 A voting procedure, or “binary agenda”.

called binary agendas. We may define a binary agenda with the aid of an auxiliary
one-player extensive game with perfect information in which the set A(h) of ac-
tions following any nonterminal history h contains two elements, and the number
of terminal histories is at least the number of alternatives. We associate with every
terminal history h of this auxiliary game an alternative α(h) in such a way that each
alternative is associated with at least one terminal history.

In the binary agenda associated with the auxiliary game G, all players vote
simultaneously whenever the player in G takes an action. The options on the
ballot following the nonterminal history in which a majority of committee mem-
bers choose option a1 at the start of the game, then option a2, and so on, are
the members of the set A(a1, . . . , ak) of actions of the player in G after the his-
tory (a1, . . . , ak). The alternative selected after the terminal history in which the
majority choices are a1, . . . , ak is the alternative α(a1, . . . , ak) associated with (a1, . . . , ak)
in G. For example, in the auxiliary one-person game that defines the structure of
the agenda in Figure 214.1, the single player first chooses a or b; if she chooses a
the game ends, whereas if she chooses b, she then chooses between c and d. The
alternative x is associated with the terminal history a, y is associated with (b, c),
and z is associated with (b, d).

Precisely, the binary agenda associated with the auxiliary game G is the exten-
sive game with perfect information and simultaneous moves defined as follows.

Players The set of committee members.

Terminal histories A sequence (v1, . . . , vk) of action profiles (in which each vj

is a list of the players’ votes) is a terminal history if and only if there is a
terminal history (a1, . . . , ak) of G such that for every j = 0, . . . , k − 1, every
element of vj+1 is a member of A(a1, . . . , aj) (A(∅) if j = 0) and a majority of
the players’ actions in vj+1 are equal to aj+1.

Player function For every nonterminal history h, P(h) is the set of all players.

Actions For every player i and every nonterminal history (v1, . . . , vj), player i’s
set of actions is A(a1, . . . , aj), where (a1, . . . , aj) is the history of G in which,
for all �, a� is the action chosen by the majority of players in v�.
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Preferences The rank each player assigns to the terminal history (v1, . . . , vk) is
equal to the rank she assigns to the alternative α(a1, . . . , ak) associated with
the terminal history (a1, . . . , ak) of G in which, for all j, aj is the action chosen
by a majority of players in vj.

Every binary agenda, like every voting subgame of the model in the previous
section, has many subgame perfect equilibria. In fact, in any binary agenda, every
alternative is the outcome of some subgame perfect equilibrium, because if, in ev-
ery vote, every player votes for the same option, no player can affect the outcome
by changing her strategy. However, if we restrict attention to weakly undominated
strategies, we greatly reduce the set of equilibria. As we saw before (Section 2.9.3),
in a ballot with two options, a player’s action of voting for the option she prefers
weakly dominates the action of voting for the other option. Thus in a subgame per-
fect equilibrium of a binary agenda in which every player’s vote on every ballot is
weakly undominated, on each ballot every player votes for the option that leads,
ultimately (given the outcomes of the later ballots), to the alternative she prefers.
The alternative associated with the terminal history generated by such a subgame
perfect equilibrium is said to be the outcome of sophisticated voting.

Which alternatives are the outcomes of sophisticated voting in binary agendas?
Say that alternative x beats alternative y if a majority of committee members prefer
x to y. An alternative that beats every other alternative is called a Condorcet winner.
For any preferences, there is either one Condorcet winner or no Condorcet winner
(see Exercise 74.1).

First suppose that the players’ preferences are such that some alternative, say
x∗, is a Condorcet winner. I claim that x∗ is the outcome of sophisticated voting
in every binary agenda. The argument, using backward induction, is simple. First
consider a subgame of length 1 in which one option leads to the alternative x∗. In
this subgame a majority of the players vote for the option that leads to x∗, because
a majority prefers x∗ to every other alternative, and each player’s only weakly un-
dominated strategy is to vote for the option that leads to the alternative she prefers.
Thus in at least one subgame of length 2, at least one option leads ultimately to the
decision x∗ (given the players’ votes in the subgames of length 1). In this subgame,
by the same argument as before, the winning option leads to x∗. Continuing back-
wards, we conclude that at least one option on the first ballot leads ultimately to
x∗, and that consequently the winning option on this ballot leads to x∗.

Thus if the players’ preferences are such that a Condorcet winner exists, the
agenda does not matter: the outcome of sophisticated voting is always the Con-
dorcet winner. If the players’ preferences are such that no alternative is a Con-
dorcet winner, the outcome of sophisticated voting depends on the agenda. Con-
sider, for example, a committee with three members facing three alternatives. Sup-
pose that one member prefers x to y to z, another prefers y to z to x, and the third
prefers z to x to y. For these preferences, no alternative is a Condorcet winner. The
outcome of sophisticated voting in the binary agenda in Figure 214.1 is the alter-
native x. (Use backward induction: y beats z, and x beats y.) If the positions of x
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and y are interchanged then the outcome is y, and if the positions of x and z are
interchanged then the outcome is z. Thus in this case, for every alternative there is
a binary agenda for which that alternative is the outcome of sophisticated voting.

Which alternatives are the outcomes of sophisticated voting in binary agendas
when no alternative is a Condorcet winner? Consider a committee with arbitrary
preferences (not necessarily the ones considered in the previous paragraph), using
the agenda in Figure 214.1. In order for x to be the outcome of sophisticated voting
it must beat the winner of y and z. It may not beat both y and z directly, but it must
beat them both at least “indirectly”: either x beats y beats x, or x beats z beats y.
Similarly, if y or z is the outcome of sophisticated voting then it must beat both of
the other alternatives at least indirectly.

Precisely, say that alternative x indirectly beats alternative y if for some k ≥ 1
there are alternatives u1, . . . , uk such that x beats u1, uj beats uj+1 for j = 1, . . . , k −
1, and uk beats y. The set of alternatives x such that x beats every other alternative
either directly or indirectly is called the top cycle set. (Note that if alternative x
beats any alternative indirectly, it beats at least one alternative directly.) If there is
a Condorcet winner, then the top cycle set consists of this single alternative. If there
is no Condorcet winner, then the top cycle set contains more than one alternative.

? EXERCISE 216.1 (Top cycle set) A committee has three members.

a. Suppose that there are three alternatives, x, y, and z, and that one member
prefers x to y to z, another prefers y to z to x, and the third prefers z to x to y.
Find the top cycle set.

b. Suppose that there are four alternatives, w, x, y, and z, and that one member
prefers w to z to x to y, one member prefers y to w to z to x, and one member
prefers x to y to w to z. Find the top cycle set. Show, in particular, that z is in
the top cycle set even though all committee members prefer w.

Rephrasing my conclusion for the agenda in Figure 214.1, if an alternative is the
outcome of sophisticated voting, then it is in the top cycle set. The argument for
this conclusion extends to any binary agenda. In every subgame, the outcome of
sophisticated voting must beat the alternative that will be selected if it is rejected.
Thus by backward induction, the outcome of sophisticated voting in the whole
game must beat every other alternative either directly or indirectly: the outcome
of sophisticated voting in any binary agenda is in the top cycle set.

Now consider a converse question: for any given alternative x in the top cycle
set, is there a binary agenda for which x is the outcome of sophisticated voting?
The answer is affirmative. The idea behind the construction of an appropriate
agenda is illustrated by a simple example. Suppose that there are three alterna-
tives, x, y, and z, and x beats y beats z. Then the agenda in Figure 214.1 is one
for which x is the outcome of sophisticated voting. Now suppose there are two
additional alternatives, u and w, and x beats u beats w. Then we can construct a
larger agenda in which x is the outcome of sophisticated voting by replacing the
alternative x in Figure 214.1 with a subgame in which a vote is taken for or against
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x, and, if x is rejected, a vote is subsequently taken between u and w. If there are
other chains through which x beats other alternatives, we can similarly add further
subgames.

? EXERCISE 217.1 (Designing agendas) A committee has three members; there are
five alternatives. One member prefers x to y to v to w to z, another prefers z to x to
v to w to y, and the third prefers y to z to w to v to x. Find the top cycle set, and for
each alternative a in the set design a binary agenda for which a is the outcome of
sophisticated voting. Convince yourself that for no binary agenda is the outcome
of sophisticated voting outside the top cycle set.

? EXERCISE 217.2 (An agenda that yields an undesirable outcome) Design a binary
agenda for the committee in Exercise 216.1 for which the outcome of sophisticated
voting is z (which is worse for all committee members than w).

In summary, (i) for any binary agenda, the alternative generated by the sub-
game perfect equilibrium in which no citizen’s action in any ballot is weakly dom-
inated is in the top cycle set, and (ii) for every alternative in the top cycle set, there
is a binary agenda for which that alternative is generated by the subgame perfect
equilibrium in which no citizen’s action in any ballot is weakly dominated. In par-
ticular, the extent to which the procedure used by a committee affects its decision
depends on the nature of the members’ preferences. At one extreme, for prefer-
ences such that some alternative is a Condorcet winner, the agenda is irrelevant.
At another extreme, for preferences for which every alternative is in the top cy-
cle set, the agenda is instrumental in determining the decision. Further, for some
preferences there are agendas for which the subgame perfect equilibrium yields
an alternative that is unambiguously undesirable in the sense that there is another
alternative that all committee members prefer.

7.5 Illustration: exit from a declining industry

An industry currently consists of two firms, one with a large capacity, and one
with a small capacity. Demand for the firms’ output is declining steadily over
time. When will the firms leave the industry? Which firm will leave first? Do the
firms’ financial resources affect the outcome? The analysis of a model that answers
these questions illustrates a use of backward induction more sophisticated than
that in the previous sections of this chapter.

7.5.1 A model

Take time to be a discrete variable, starting in period 1. Denote by Pt(Q) the market
price in period t when the firms’ total output is Q, and assume that this price is
declining over time: for every value of Q, we have Pt+1(Q) < Pt(Q) for all t ≥ 1.
(See Figure 219.1.) We are interested in the firms’ decisions to exit, rather than
their decisions of how much to produce in the event they stay in the market, so
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we assume that firm i’s only decision is whether to produce some fixed output,
denoted ki, or to produce no output. (You may think of ki as firm i’s capacity.)
Once a firm stops production, it cannot start up again. Assume that k2 < k1 (firm 2
is smaller than firm 1) and that each firm’s cost of producing q units of output is
cq.

The following extensive game with simultaneous moves models this situation.

Players The two firms.

Terminal histories All sequences (X1, . . . , Xt) for some t ≥ 1, where Xs =
(Stay, Stay) for 1 ≤ s ≤ t− 1 and Xt = (Exit, Exit) (both firms exit in period t),
or Xs = (Stay, Stay) for all s with 1 ≤ s ≤ r − 1 for some r, Xr = (Stay, Exit)
or (Exit, Stay), Xs = Stay for all s with r + 1 ≤ s ≤ t − 1, and Xt = Exit
(one firm exits in period r and the other exits in period t), and all infinite
sequences (X1, X2, . . .) where Xr = (Stay, Stay) for all r (neither firm ever
exits).

Player function P(h) = {1, 2} after any history h in which neither firm has
exited; P(h) = 1 after any history h in which only firm 2 has exited; and
P(h) = 2 after any history h in which only firm 1 has exited.

Actions Whenever a firm moves, its set of actions is {Stay, Exit).

Preferences Each firm’s preferences are represented by a payoff function that
associates with each terminal history the firm’s total profit, where the profit
of firm i (= 1, 2) in period t is (Pt(ki) − c)ki if the other firm has exited and
(Pt(k1 + k2) − c)ki if the other firm has not exited.

7.5.2 Subgame perfect equilibrium

In a period in which Pt(ki) < c, firm i makes a loss even if it is the only firm
remaining (the market price for its output is less than its unit cost). Denote by ti
the last period in which firm i is profitable if it is the only firm in the market. That
is, ti is the largest value of t for which Pt(ki) ≥ c. (Refer to Figure 219.1.) Because
k1 > k2, we have t1 ≤ t2: the time at which the large firm becomes unprofitable as
a loner is no later than the time at which the small firm becomes unprofitable as a
loner.

The game has an infinite horizon, but after period ti firm i’s profit is negative
even if it is the only firm remaining in the market. Thus if firm i is in the market
in any period after ti, it chooses Exit in that period in every subgame perfect equi-
librium. In particular, both firms choose Exit in every period after t2. We can use
backward induction from period t2 to find the firms’ subgame perfect equilibrium
actions in earlier periods.

If firm 1 (the larger firm) is in the market in any period from t1 on, it should
exit, whether or not firm 2 is still operating. As a consequence, if firm 2 is still
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Figure 219.1 The inverse demand curves in a declining industry. In this example, t1 (the last period in
which firm 1 is profitable if it is the only firm in the market) is 2, and t2 is 4.

operating in any period from t1 + 1 to t2 it should stay: firm 1 will exit in any such
period, and in its absence firm 2’s profit is positive.

So far we have concluded that in every subgame perfect equilibrium, firm 1’s
strategy is to exit in every period from t1 + 1 on if it has not already done so, and
firm 2’s strategy is to exit in every period from t2 + 1 on if it has not already done
so.

Now consider period t1, the last period in which firm 1’s profit is positive if
firm 2 is absent. If firm 2 exits, its profit from then on is zero. If it stays and firm 1
exits then it earns a profit from period t1 to period t2, after which it leaves. If both
firms stay, firm 2 sustains a loss in period t1 but earns a profit in the subsequent
periods up to t2, because in every subgame perfect equilibrium firm 1 exits in
period t1 + 1. Thus if firm 2’s one-period loss in period t1 when firm 1 stays in
that period is less than the sum of its profits from period t1 + 1 on, then regardless
of whether firm 1 stays or exits in period t1, firm 2 stays in every subgame perfect
equilibrium. In period t1 + 1, when firm 1 is absent from the industry, the price is
relatively high, so that the assumption that firm 2’s one-period loss is less than its
subsequent multi-period profit is valid for a significant range of parameters. From
now on, I assume that this condition holds.

We conclude that in every subgame perfect equilibrium firm 2 stays in pe-
riod t1, so that firm 1 optimally exits. (It definitely exits in the next period, and
if it stays in period t1 it makes a loss, because firm 2 stays.)

Now continue to work backwards. If firm 2 stays in period t1 − 1 it earns a
profit in periods t1 through t2, because in every subgame perfect equilibrium firm 1
exits in period t1. It may make a loss in period t1 − 1 (if firm 1 stays in that period),
but this loss is less than the loss it makes in period t1 in the company of firm 1,
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which we have assumed is outweighed by its subsequent profit. Thus regardless
of firm 1’s action in period t1 − 1, firm 2’s best action is to stay in that period. If
t2 < t1 − 1 then firm 1 makes a loss in period t1 − 1 in the company of firm 2, and
so should exit.

The same logic applies to all periods back to the first period in which the firms
cannot profitably co-exist in the industry: in every such period, in every subgame
perfect equilibrium firm 1 exits if it has not already done so. Denote by t0 the last
period in which both firms can profitably co-exist in the industry: that is, t0 is the
largest value of t for which Pt(k1 + k2) ≥ c.

We conclude that if firm 2’s loss in period t1 when both firms are active is less
than the sum of its profits in periods t1 + 1 through t2 when it alone is active, then
the game has a unique subgame perfect equilibrium, in which the large firm exits
in period t0 + 1, the first period in which both firms cannot profitably co-exist in
the industry, and the small firm continues operating until period t2, after which it
alone becomes unprofitable.

? EXERCISE 220.1 (Exit from a declining industry) Assume that c = 10, k1 = 40,
k2 = 20, and Pt(Q) = 100 − t − Q for all values of t and Q for which 100− t − Q >

0, otherwise Pt(Q) = 0. Find the values of t1 and t2 and check whether firm 2’s
loss in period t1 when both firms are active is less than the sum of its profits in
periods t1 + 1 through t2 when it alone is active.

7.5.3 The effect of a constraint on firm 2’s debt

When the firms follow their subgame perfect equilibrium strategies, each firm’s
profit is nonnegative in every period. However, the equilibrium depends on firm 2’s
ability to go into debt. Firm 2’s strategy calls for it to stay in the market if firm 1,
contrary to its strategy, does not exit in the first period in which the market can-
not profitably sustain both firms. This feature of firm 2’s strategy is essential to
the equilibrium. If such a deviation by firm 1 induces firm 2 to exit, then firm 1’s
strategy of exiting may not be optimal, and the equilibrium may consequently fall
apart.

Consider an extreme case, in which firm 2 can never go into debt. We can
incorporate this assumption into the model by making firm 2’s payoff a large neg-
ative number for any terminal history in which its profit in any period is negative.
(The size of firm 2’s profit depends on the contemporaneous action of firm 1, so
we cannot easily incorporate the assumption by modifying the choices available
to firm 2.) Consider a history in which firm 1 stays in the market after the last
period in which the market can profitably sustain both firms. After such a history
firm 2’s best action is no longer to stay: if it does so it profit is negative, whereas if
it exits its profit is zero. Thus if firm 1 deviates from its equilibrium strategy in the
absence of a borrowing constraint for firm 2, and stays in the first period in which
it is supposed to exit, then firm 2 optimally exits, and firm 1 reaps positive profits
for several periods, as the lone firm in the market. Consequently in this case firm 2
exits first; firm 1 stays in the market until period t1.
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How much debt does firm 2 need to be able to bear in order that the game
has a subgame perfect equilibrium in which firm 1 exits in period t0 and firm 2
stays until period t2? Suppose that firm 2 can sustain losses from period t0 + 1
through period t0 + k, but no longer, when both firms stay in the market. In order
for firm 1 to optimally exit in period t0 + 1, the consequence of its staying in the
market must be that firm 2 also stays. Suppose that firm 2’s strategy is to stay
through period t0 + k, but no longer, if firm 1 does so. Which strategy is best for
firm 1 in the subgame starting in period t0 + 1? If it exits, its payoff is zero. If it
stays through period t0 + k, its payoff is negative (it makes a loss in every period).
If it stays beyond period t0 + k (when firm 2 exits), it should stay until period t1,
when its payoff is the sum of profits that are negative from period t0 + 1 through
period t0 + k and then positive through period t1. (See Figure 221.1.) If this payoff
is positive it should stay through period t1; otherwise it should exit immediately.

0
t0 + 1 t0 + k

t1

↑
profit

period →

Figure 221.1 Firm 1’s profits starting in period t0 + 1 when firm 2 stays in the market until period t1 + k
and firm 1 stays until period t1.

We conclude that in order for firm 1 to exit in period t0 + 1, the period t0 + k
until which firm 2 can sustain losses must be large enough that firm 1’s total profit
from period t0 + 1 through period t1 if it shares the market with firm 2 until pe-
riod t0 + k, then has the market to itself, is nonpositive. This value of k deter-
mines the debt that firm 2 must be able to accumulate: the requisite debt equals
its total loss when it remains in the market with firm 1 from period t0 + 1 through
period t0 + k.

? EXERCISE 221.1 (Effect of borrowing constraint of firms’ exit decisions in declining
industry) Under the assumptions of Exercise 220.1, how much debt does firm 2
need to be able to bear in order for the subgame perfect equilibrium outcome in
the absence of a debt constraint to remain a subgame perfect equilibrium outcome?
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7.6 Allowing for exogenous uncertainty

7.6.1 General model

The model of an extensive game with perfect information (with or without simul-
taneous moves) does not allow random events to occur during the course of play.
However, we can easily extend the model to cover such situations. The definition
of an extensive game with perfect information and chance moves is a variant of
the definition of an extensive game with perfect information (153.1) in which

• the player function assigns “chance”, rather than a set of players, to some
histories

• the probabilities that chance uses after any such history are specified

• the players’ preferences are defined over the set of lotteries over terminal
histories (rather than simply over the set of terminal histories).

(We may similarly add chance moves to an extensive game with perfect informa-
tion and simultaneous moves by modifying Definition 202.1.) To keep the analysis
simple, assume that the random event after any given history is independent of
the random event after any other history. (That is, the realization of any random
event is not affected by the realization of any other random event.)

The definition of a player’s strategy remains the same as before. The outcome
of a strategy profile is now a probability distribution over terminal histories. The
definition of subgame perfect equilibrium remains the same as before.

EXAMPLE 222.1 (Extensive game with chance moves) Consider a situation involv-
ing two players in which player 1 first chooses A or B. If she chooses A the game
ends, with (Bernoulli) payoffs (1, 1). If she chooses B then with probability 1

2 the
game ends, with payoffs (3, 0), and with probability 1

2 player 2 gets to choose be-
tween C, which yields payoffs (0, 1) and D, which yields payoffs (1, 0). An exten-
sive game with perfect information and chance moves that models this situation is
shown in Figure 223.1. The label c denotes chance; the number beside each action
of chance is the probability with which that action is chosen.

We may use backward induction to find the subgame perfect equilibria of this
game. In any equilibrium, player 2 chooses C. Now consider the consequences of
player 1’s actions. If she chooses A then she obtains the payoff 1. If she chooses B
then she obtains 3 with probability 1

2 and 0 with probability 1
2 , yielding an expected

payoff of 3
2 . Thus the game has a unique subgame perfect equilibrium, in which

player 1 choose B and player 2 chooses C.

? EXERCISE 222.2 (Variant of ultimatum game with equity-conscious players) Con-
sider a variant of the game in Exercise 181.1 in which β1 = 0, and the person 2
whom person 1 faces is drawn randomly from a population in which the fraction
p have β2 = 0 and the remaining fraction 1 − p have β2 = 1. When making her
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1
A B

1, 1

c
1
2

1
2

3, 0

2
C D

0, 1 1, 0

Figure 223.1 An extensive game with perfect information and chance moves. The label c denotes
chance; the number beside each action of chance is the probability with which that action is chosen.

offer, person 1 knows only that her opponent’s characteristic is β2 = 0 with prob-
ability p and β2 = 1 with probability 1 − p. Model this situation as an extensive
game with perfect information and chance moves in which person 1 makes an of-
fer, then chance determines the type of person 2, and finally person 2 accepts or
rejects person 1’s offer. opponent Find the subgame perfect equilibria of this game.
(Use the fact that if β2 = 0, then in any subgame perfect equilibrium of the game
in Exercise 181.1 person 2 accepts all offers x > 0, rejects all offers x < 0, and may
accept or reject the offer 0, and if β2 = 1 then she accepts all offers x > 1

3 , may
accept or reject the offer 1

3 , and rejects all offers x < 1
3 .) Are there any values of p

for which an offer is rejected in equilibrium?

? EXERCISE 223.1 (Sequential duel) In a sequential duel, two people alternately have
the opportunity to shoot each other; each has an infinite supply of bullets. On each
of her turns, a person may shoot, or refrain from doing so. Each of person i’s shots
hits (and kills) its intended target with probability pi (independently of whether
any other shots hit their targets). (If you prefer to think about a less violent sit-
uation, interpret the players as political candidates who alternately may launch
attacks, which may not be successful, against each other.) Each person cares only
about her probability of survival (not about the other person’s survival). Model
this situation as an extensive game with perfect information and chance moves.
Show that the strategy pairs in which neither person ever shoots and in which
each person always shoots are both subgame perfect equilibria. (Note that the
game does not have a finite horizon, so backward induction cannot be used.)

?? EXERCISE 223.2 (Sequential truel) Each of persons A, B, and C has a gun contain-
ing a single bullet. Each person, as long as she is alive, may shoot at any surviving
person. First A can shoot, then B (if still alive), then C (if still alive). (As in the
previous exercise, you may interpret the players as political candidates. In this
exercise, each candidate has a budget sufficient to launch a negative campaign to
discredit exactly one of its rivals.) Denote by pi the probability that player i hits
her intended target; assume that 0 < pi < 1. Assume that each player wishes
to maximize her probability of survival; among outcomes in which her survival
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probability is the same, she wants the danger posed by any other survivors to be
as small as possible. (The last assumption is intended to capture the idea that there
is some chance that further rounds of shooting may occur, though the possibility of
such rounds is not incorporated explicitly into the game.) Model this situation as
an extensive game with perfect information and chance moves. (Draw a diagram.
Note that the subgames following histories in which A misses her intended target
are the same.) Find the subgame perfect equilibria of the game. (Consider only
cases in which pA, pB, and pC are all different.) Explain the logic behind A’s equi-
librium action. Show that “weakness is strength” for C: she is better off if pC < pB
than if pC > pB.

Now consider the variant in which each player, on her turn, has the additional
option of shooting into the air. Find the subgame perfect equilibria of this game
when pA < pB. Explain the logic behind A’s equilibrium action.

?? EXERCISE 224.1 (Cohesion in legislatures) The following pair of games is designed
to study the implications of different legislative procedures for the cohesion of a
governing coalition. In both games a legislature consists of three members. Ini-
tially a governing coalition, consisting of two of the legislators, is given. There
are two periods. At the start of each period a member of the governing coalition
is randomly chosen (i.e. each legislator is chosen with probability 1

2 ) to propose a
bill, which is a partition of one unit of payoff between the three legislators. Then
the legislators simultaneously cast votes; each legislator votes either for or against
the bill. If two or more legislators vote for the bill, it is accepted. Otherwise the
course of events differs between the two games. In a game that models the cur-
rent US legislature, rejection of a bill in period t leads to a given partition dt of the
pie, where 0 < dt

i < 1
2 for i = 1, 2, 3; the governing coalition (the set from which

the proposer of a bill is drawn) remains the same in period 2 following a rejection
in period 1. In a game that models the current UK legislature, rejection of a bill
brings down the government; a new governing coalition is determined randomly,
and no legislator receives any payoff in that period. Specify each game precisely
and find its subgame perfect equilibrium outcomes. Study the degree to which the
governing coalition is cohesive (i.e. all its members vote in the same way).

7.6.2 Using chance moves to model mistakes

A game with chance moves may be used to model the possibility that players make
mistakes. Suppose, for example, that two people simultaneously choose actions.
Each person may choose either A or B. Absent the possibility of mistakes, suppose
that the situation is modeled by the strategic game in Figure 225.1, in which the
numbers in the boxes are Bernoulli payoffs. This game has two Nash equilibria,
(A, A) and (B, B).

Now suppose that each person may make a mistake. With probability 1 − pi >
1
2 the action chosen by person i is the one she intends, and with probability pi < 1

2
it is her other action. We can model this situation as the following extensive game
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A B
A 1, 1 0, 0
B 0, 0 0, 0

Figure 225.1 The players’ Bernoulli payoffs to the four pairs of actions in the game studied in Sec-
tion 7.6.2.

with perfect information, simultaneous moves, and chance moves.

Players The two people.

Terminal histories All sequences of the form ((W, X), Y, Z), where W, X, Y,
and Z are all either A or B; in the history ((W, X), Y, Z) player 1 chooses
W, player 2 chooses X, and then chance chooses Y for player 1 and Z for
player 2.

Player function P(∅) = {1, 2} (both players move simultaneously at the start
of the game), and P(W, X) = P((W, X), Y) = {c} (chance moves twice after
the players have acted, first selecting player 1’s action and then player 2’s
action).

Actions The set of actions available to each player at the start of the game, and
to chance at each of its moves, is {A, B}.

Chance probabilities After any history (W, X), chance chooses W with proba-
bility 1− p1 and player 1’s other action with probability p1. After any history
((W, X), Y), chance chooses X with probability 1 − p2 and player 2’s other
action with probability p2.

Preferences Each player’s preferences are represented by the expected value
of a Bernoulli payoff function that assigns 1 to any history ((W, X), A, A)
(in which chance chooses the action A for each player), and 0 to any other
history.

The players in this game move simultaneously, so that the subgame perfect
equilibria of the game are its Nash equilibria. To find the Nash equilibria we
construct the strategic form of the game. Suppose that each player chooses the
action A. Then the outcome is (A, A) with probability (1 − p1)(1 − p2) (the prob-
ability that neither player makes a mistake). Thus each player’s expected payoff is
(1 − p1)(1 − p2). Similarly, if player 1 chooses A and player 2 chooses B then the
outcome is (A, A) with probability (1 − p1)p2 (the probability that player 1 does
not make a mistake, whereas player 2 does). Making similar computations for the
other two cases yields the strategic form in Figure 226.1.

For p1 = p2 = 0, this game is the same as the original game (Figure 225.1); it
has two Nash equilibria, (A, A) and (B, B). If at least one of the probabilities is
positive then only (A, A) is a Nash equilibrium: if pi > 0 then (1 − pj)pi > pj pi
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A B
A (1 − p1)(1 − p2), (1 − p1)(1 − p2) (1 − p1)p2, (1 − p1)p2
B p1(1 − p2), p1(1 − p2) p1 p2, p1 p2

Figure 226.1 The strategic form of the extensive game with chance moves that models the situation in
which with probability pi each player i in the game in Figure 225.1 chooses an action different from the
one she intends.

(given that each probability is less than 1
2 ). That is, only the equilibrium (A, A) of

the original game is robust to the possibility that the players make small mistakes.
In the original game each player’s action B is weakly dominated (Definition 45.1).

Introducing the possibility of mistakes captures the fragility of the equilibrium
(B, B): B is optimal for a player only if she is absolutely certain that the other
player will choose B also. The slightest chance that the other player will choose A
is enough to make A unambiguously the best choice.

We may use the idea that an equilibrium should survive when the players may
make small mistakes to discriminate among the Nash equilibria of any strategic
game. For two-player games we are led to the set of Nash equilibria in which no
player’s action is weakly dominated, but for games with more than two players
we are led to a smaller set of equilibria, as the following exercise shows.

? EXERCISE 226.1 (Nash equilibria when players may make mistakes) Consider the
three-player game in Figure 226.2. Show that (A, A, A) is a Nash equilibrium in
which no player’s action is weakly dominated. Now modify the game by assum-
ing that the outcome of any player i’s choosing an action X is that X occurs with
probability 1 − pi and the player’s other action occurs with probability pi > 0.
Show that (A, A, A) is not a Nash equilibrium of the modified game when pi < 1

2
for i = 1, 2, 3.

A B
A 1, 1, 1 0, 0, 1
B 1, 1, 1 1, 0, 1

A

A B
A 0, 1, 0 1, 0, 0
B 1, 1, 0 0, 0, 0

B

Figure 226.2 A three-player strategic game in which each player has two actions. Player 1 chooses a
row, player 2 chooses a column, and player 3 chooses a table.

7.7 Discussion: subgame perfect equilibrium and backward induction

Some of the situations we have studied do not fit well into the idealized setting
for the steady state interpretation of a subgame perfect equilibrium discussed in
Section 5.5.4, in which each player repeatedly engages in the same game with a va-
riety of randomly selected opponents. In some cases an alternative interpretation
fits better: each player deduces her optimal strategy from an analysis of the other
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players’ best actions, given her knowledge of their preferences. Here I discuss a
difficulty with this interpretation.

Consider the game in Figure 227.1, in which player 1 moves both before and
after player 2. This game has a unique subgame perfect equilibrium, in which
player 1’s strategy is (B, F) and player 2’s strategy is C. Consider player 2’s analy-
sis of the game. If she deduces that the only rational action for player 1 at the start
of the game is B, then what should she conclude if player 1 chooses A? It seems
that she must conclude that something has “gone wrong”: perhaps player 1 has
made a “mistake”, or she misunderstands player 1’s preferences, or player 1 is not
rational. If she is convinced that player 1 simply made a mistake, then her analysis
of the rest of the game should not be affected. However, if player 1’s move in-
duces her to doubt player 1’s motivation, she may need to reconsider her analysis
of the rest of the game. Suppose, for example, that A and E model similar actions;
specifically, suppose that they both correspond to player 1’s moving left, whereas
B and F both involve her moving right. Then player 1’s choice of A at the start
of the game may make player 2 wonder whether player 1 confuses left and right,
and therefore may choose E after the history (A, C). If so, player 2 should choose
D rather than C after player 1 chooses A, giving player 1 an incentive to choose A
rather than B at the start of the game.

1
A B

2, 1

2
C D

3, 1

1
E F

0, 0 1, 2

Figure 227.1 An extensive game in which player 1 moves both before and after player 2.

The next two examples are richer games that more strikingly manifest the diffi-
culty with the alternative interpretation of subgame perfect equilibrium. The first
example is an extension of the entry game in Figure 154.1.

EXAMPLE 227.1 (Chain-store game) A chain-store operates in K markets. In each
market a single challenger must decide whether to compete with it. The chal-
lengers make their decisions sequentially. If any challenger enters, the chain-store
may acquiesce to its presence (A) or fight it (F). Thus in each period k the out-
come is either Out (challenger k does not enter), (In, A) (challenger k enters and the
chain-store acquiesces), or (In, F) (challenger k enters and is fought). When taking
an action, any challenger knows all the actions previously chosen. The profits of
challenger k and the chain-store in market k are shown in Figure 228.1 (cf. Fig-
ure 154.1); the chain-store’s profit in the whole game is the sum of its profits in the
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K markets.

Challenger k

In Out

1, 2

Chain-store
Acquiesce Fight

2, 1 0, 0

Figure 228.1 The structure of the players’ choices in market k in the chain-store game. The first number
in each pair is challenger k’s profit and the second number is the chain-store’s profit.

We can model this situation as the following extensive game with perfect infor-
mation.

Players The chain-store and the K challengers.

Terminal histories The set of all sequences (e1, . . . , eK), where each ej is either
Out, (In, A), or (In, F).

Player function The chain-store is assigned to every history that ends with In,
challenger 1 is assigned to the initial history, and challenger k (for k = 2, . . . , K)
is assigned to every history (e1, . . . , ek−1), where each ej is either Out, (In, A),
or (In, F).

Preferences Each player’s preferences are represented by its profits.

This game has a finite horizon, so we may find its subgame perfect equilibria
by using backward induction. Every subgame at the start of which challenger K
moves resembles the game in Figure 228.1 for k = K; it differs only in that the
chain-store’s profit after each of the three terminal histories is greater by an amount
equal to its profit in the previous K − 1 markets. Thus in a subgame perfect equi-
librium challenger K chooses In and the incumbent chooses A in market K.

Now consider the subgame faced by challenger K − 1. We know that the out-
come in market K is independent of the actions of challenger K − 1 and the chain-
store in market K − 1: whatever they do, challenger K enters and the chain-store ac-
quiesces to its entry. Thus the chain-store should choose its action in market K − 1
on the basis of its payoffs in that market alone. We conclude that the chain-store’s
optimal action in market K − 1 is A, and challenger K − 1’s optimal action is In.

We have now concluded that in any subgame perfect equilibrium, the outcome
in each of the last two markets is (In, A), regardless of the history. Continuing
to work backwards to the start of the game we see that the game has a unique
subgame perfect equilibrium, in which every challenger enters and the chain-store
always acquiesces to entry.

? EXERCISE 228.1 (Nash equilibria of chain-store game) Find the set of Nash equilib-
rium outcomes of the game for an arbitrary value of K. (First think about the case
K = 1, then generalize your analysis.)
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? EXERCISE 229.1 (Subgame perfect equilibrium of chain-store game) Consider the
following strategy pair in the game for K = 100. For k = 1, . . . , 90, challenger k
stays out after any history in which every previous challenger that entered was
fought (or no challenger entered), and otherwise enters; challengers 91 through
100 enter. The chain-store fights every challenger up to challenger 90 that enters
after a history in which it fought every challenger that entered (or no challenger
entered), acquiesces to any of these challengers that enters after any other history,
and acquiesces to challengers 91 through 100 regardless of the history. Find the
players’ payoffs in this strategy pair. Show that the strategy pair is not a subgame
perfect equilibrium: find a player who can increase her payoff in some subgame.
How much can the deviant increase its payoff?

Suppose that K = 100. You are in charge of challenger 21. You observe, con-
trary to the subgame perfect equilibrium, that every previous challenger entered
and that the chain-store fought each one. What should you do? According to
the subgame perfect equilibrium, the chain-store will acquiesce to your entry. But
should you really regard the chain-store’s 19 previous decisions as “mistakes”?
You might instead read some logic into the chain-store’s deliberately fighting the
first 20 entrants: if, by doing so, it persuades more than 20 of the remaining chal-
lengers to stay out, then its profit will be higher than it is in the subgame perfect
equilibrium. That is, you may imagine that the chain-store’s aggressive behavior
in the earlier markets is an attempt to establish a reputation for being a fighter,
which, if successful, will make it better off. By such reasoning you may conclude
that your best strategy is to stay out.

Thus, a deviation from the subgame perfect equilibrium by the chain-store in
which it engages in a long series of fights may not be dismissed by challengers as
a series of mistakes, but rather may cause them to doubt the chain-store’s future
behavior. This doubt may lead a challenger who is followed by enough future
challengers to stay out.

EXAMPLE 229.2 (Centipede game) The two-player game in Figure 230.1 is known
as a “centipede game” because of its shape. (The game, like the arthropod, may
have fewer than 100 legs.) The players move alternately; on each move a player
can stop the game (S) or continue (C). On any move, a player is better off stopping
the game than continuing if the other player stops immediately afterwards, but is
worse off stopping than continuing if the other player continues, regardless of the
subsequent actions. After k periods, the game ends.

This game has a finite horizon, so we may find its subgame perfect equilibria
by using backward induction. The last player to move prefers to stop the game
than to continue. Given this player’s action, the player who moves before her
also prefers to stop the game than to continue. Working backwards, we conclude
that the game has a unique subgame perfect equilibrium, in which each player’s
strategy is to stop the game whenever it is her turn to move. The outcome is that
player 1 stops the game immediately.

? EXERCISE 229.3 (Nash equilibria of the centipede game) Show that the outcome
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1

S

C

2, 0
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S

C

1, 3
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4, 2
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S
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3, 5

1
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C

6, 4

2

S

C

5, 7

8, 6

Figure 230.1 A 6-period centipede game.

of every Nash equilibrium of this game is the same as the outcome of the unique
subgame perfect equilibrium (i.e. player 1 stops the game immediately).

The logic that in the only steady state player 1 stops the game immediately is
unassailable. Yet this pattern of behavior is intuitively unappealing, especially if
the number k of periods is large. The optimality of player 1’s choosing to stop
the game depends on her believing that if she continues, then player 2 will stop
the game in period 2. Further, player 2’s decision to stop the game in period 2
depends on her believing that if she continues then player 1 will stop the game
in period 3. Each decision to stop the game is based on similar considerations.
Consider a player who has to choose an action in period 21 of a 100-period game,
after each player has continued in the first 20 periods. Is she likely to consider the
first 20 decisions—half of which were hers—“mistakes”? Or will these decisions
induce her to doubt that the other player will stop the game in the next period?
These questions have no easy answers; some experimental evidence is discussed
in the accompanying box.

EXPERIMENTAL EVIDENCE ON THE CENTIPEDE GAME

In experiments conducted in the USA in 1989, each of 58 student subjects played
a game with the monetary payoffs (in US$) shown in Figure 231.1 (McKelvey and
Palfrey 1992). Each subject played the game 9 or 10 times, facing a different op-
ponent each time; in each play of the game, each subject had previously played
the same number of games. Each subject knew in advance how many times she
would play the game, and knew that she would not play against the same oppo-
nent more than once. If each subject cared only about her own monetary payoff,
the game induced by the experiment was a 6-period centipede.

The fraction of plays of the game that ended in each period is shown in Fig-
ure 231.2. Results are broken down according to the players’ experience (first 5
rounds, last 5 rounds). The game ended earlier when the participants were expe-
rienced, but even among experienced participants the outcomes are far from the
Nash equilibrium outcome, in which the game ends in period 1.

Ten plays of the game may not be enough to achieve convergence to a steady
state. But putting aside this limitation of the data, and supposing that convergence
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1

S

C

$0.40
$0.10
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C

$0.20
$0.80
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S
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$0.40

2

S

C

$0.80
$3.20

1

S

C

$6.40
$1.60

2

S

C

$3.20
$12.80

$25.60
$6.40

Figure 231.1 The game in McKelvey and Palfrey’s (1992) experiment. The payoff of player 1 is written
above the payoff of player 2.

First 5 rounds

Last 5 rounds

period
1 2 3 4 5 6 7

0.1

0.2

0.3

0.4

Figure 231.2 Fraction of games ending in each period of McKelvey and Palfrey’s experiments on the
six-period centipede game. (A game is counted as ending in period 7 if the last player to move chose
C.) Computed from McKelvey and Palfrey (1992, Table IIIA).

was in fact achieved at the end of 10 rounds, how far does the observed behavior
differ from a Nash equilibrium (maintaining the assumption that each player cares
only about her own monetary payoff)?

The theory of Nash equilibrium has two components: each player optimizes,
given her beliefs about the other players, and these beliefs are correct. Some deci-
sions in McKelvey and Palfrey’s experiment were patently suboptimal, regardless
of the subjects’ beliefs: a few subjects in the role of player 2 chose to continue in pe-
riod 6, obtaining $6.40 with certainty instead of $12.80 with certainty. To assess the
departure of the other decisions from optimality we need to assign the subjects be-
liefs (which were not directly observed). An assumption consistent with the steady
state interpretation of Nash equilibrium is that a player’s belief is based on her ob-
servations of the other players’ actions. Even in round 10 of the experiment each
player had only 9 observations on which to base her belief, and could have used
these data in various ways. But suppose that, somehow, at the end of round 4, each
player correctly inferred the distribution of her opponents’ strategies in the next 5
rounds. What strategy should she subsequently have used? From Palfrey and
McKelvey (1992, Table IIIB) we may deduce that the optimal strategy of player 1
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stops in period 5 and that of player 2 stops in period 6. That is, each player’s
best response to the empirical distribution of the other players’ strategies differs
dramatically from her subgame perfect equilibrium strategy. Other assumptions
about the subjects’ beliefs rationalize other strategies; the data seem too limited to
conclude that the subjects were not optimizing given beliefs they might reasonably
have held, given their experience. That is, the experimental data are not strongly
inconsistent with the theory of Nash equilibrium as a steady state.

Are the data inconsistent with the theory that rational players, even those with
no experience playing the game, will deduce their opponents’ rational actions from
an analysis of the game using backward induction? This theory predicts that the
first player immediately stops the game, so certainly the data are inconsistent with
it. How inconsistent? One way to approach this question is to consider the impli-
cations of each player’s thinking that the others are likely to be rational, but are not
certainly so. If, in any period, player 1 thinks that the probability that player 2 will
stop the game in the next period is less than 6

7 , continuing yields a higher expected
payoff than stopping. Given the limited time the subjects had to analyze the game
(and the likelihood that they had never before thought about any related game),
even those who understood the implications of backward induction may reason-
ably have entertained the relatively small doubt about the other players’ cognitive
abilities required to make stopping the game immediately an unattractive option.
Or, alternatively, a player confident of her opponents’ logical abilities may have
doubted her opponents’ assessment of her own analytical skills. If player 1 believes
that player 2 thinks that the probability that player 1 will continue in period 3 is
greater than 1

7 , then she should continue in period 1, because player 2 will continue
in period 2. That is, relatively minor departures from the theory yield outcomes
close to those observed.

Notes

The idea of regarding games with simultaneous moves as games with perfect
information is due to Dubey and Kaneko (1984).

The model in Section 7.3 was first studied by Ledyard (1981, 1984). The ap-
proach to voting in committees in Section 7.4 was initiated by Farquharson (1969).
(The publication of Farquharson’s book was delayed; the book was completed in
1958.) The top cycle set was first defined by Ward (1961) (who called it the “ma-
jority set”). The characterization of the outcomes of sophisticated voting in binary
agendas in terms of the top cycle set is due to Miller (1977) (who calls the top cycle
set the “Condorcet set”) and McKelvey and Niemi (1978). Miller (1995) surveys the
field. The model in Section 7.5 is taken from Nalebuff and Ghemawat (1985); the
idea is closely related to that of Benoı̂t (1984, Section 1) (see Exercise 172.2). My dis-
cussion draws on an unpublished exposition of the model by Vijay Krishna. The
idea of discriminating among Nash equilibria by considering the possibility that
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players make mistakes, briefly discussed in Section 7.6.2, is due to Selten (1975).
The chain-store game in Example 227.1 is due to Selten (1978). The centipede game
in Example 229.2 is due to Rosenthal (1981).

The experimental results discussed in the box on page 207 are due to Roth,
Prasnikar, Okuno-Fujiwara, and Zamir (1991). The subgame perfect equilibria of
a variant of the market game in which each player’s payoff depends on the other
players’ monetary payoffs are analyzed by Bolton and Ockenfels (2000). The model
in Exercise 208.1 is taken from Peters (1984). The results in Exercises 212.1 and
213.1 are due to Feddersen, Sened, and Wright (1990). The game in Exercise 223.2
is a simplification of an example due to Shubik (1954); the main idea appears in
Phillips (1937, 159) and Kinnaird (1946, 246), both of which consist mainly of puz-
zles previously published in newspapers. Exercise 224.1 is based on Diermeier and
Feddersen (1996). The experiment discussed in the box on page 230 is reported in
McKelvey and Palfrey (1992).
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8.1 Coalitional games

ACOALITIONAL GAME is a model of interacting decision-makers that focuses
on the behavior of groups of players. It associates a set of actions with every

group of players, not only with individual players, like the models of a strategic
game (Definition 11.1) and extensive game (Definition 153.1)). We call each group
of players a coalition, and the coalition of all the players the grand coalition.

An outcome of a coalitional game consists of a partition of the set of players into
groups, together with an action for each group in the partition. (See Section 17.3
if you are not familiar with the notion of a “partition” of a set.) At one extreme,
each group in the partition may consist of a single player, who acts on her own;
at another extreme, the partition may consist of a single group containing all the
players. The most general model of a coalitional game allows players to care about
the action chosen by each group in the partition that defines the outcome. I discuss
only the widely-studied class of games in which each player cares only about the
action chosen by the member of the partition to which she belongs. In such games,
each player’s preferences rank the actions of all possible groups of players that
contain her.

� DEFINITION 235.1 (Coalitional game) A coalitional game consists of

• a set of players

• for each coalition, a set of actions

• for each player, preferences over the set of all actions of all coalitions of which
she is a member.

235
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I usually denote the grand coalition (the set of all the players) by N and an arbi-
trary coalition by S. As before, we may conveniently specify a player’s preferences
by giving a payoff function that represents them.

In several of the examples that I present, each coalition controls some quantity
of a good, which may be distributed among its members. Each action of a coalition
S in such a game is a distribution among the members of S of the good that S
controls, which I refer to as an S-allocation of the good. I refer to an N-allocation
simply as an allocation.

Note that the definition of a coalitional game does not relate the actions of a
coalition to the actions of the members of the coalition. The coalition’s actions are
simply taken as given; they are not derived from the individual players’ actions.

A coalitional game is designed to model situations in which players can bene-
ficially form groups, rather than acting individually. Most of the theory is oriented
to situations in which the incentive to coalesce is extreme, in the sense that there
is no disadvantage to the formation of the single group consisting of all the play-
ers. In considering the action that this single group takes in such a situation, we
need to consider the possibility that smaller groups break away on their own; but
when looking for “equilibria” we can restrict attention to outcomes in which all the
players coalesce. Such situations are modeled as games in which the grand coali-
tion can achieve outcomes at least as desirable for every player as those achievable
by any partition of the players into subgroups. We call such games “cohesive”,
defined precisely as follows.

� DEFINITION 236.1 (Cohesive coalitional game) A coalitional game is cohesive if,
for every partition {S1, . . . , Sk} of the set of all players and every combination
(aS1 , . . . , aSk

) of actions, one for every coalition in the partition, the grand coali-
tion N has an action that is at least as desirable for every player i as the action aSj

of the member Sj of the partition to she player i belongs.

The concepts I subsequently describe may be applied to any game, cohesive and
not, but have attractive interpretations only for cohesive games.

EXAMPLE 236.2 (Two-player unanimity game) Two people can together produce
one unit of output, which they may share in any way they wish. Neither person by
herself can produce any output. Each person cares only about the amount of out-
put she receives, and prefers more to less. The following coalitional game models
this situation.

Players The two people (players 1 and 2).

Actions Each player by herself has a single action, which yields her no output.
The set of actions of the coalition {1, 2} of both players is the set of all pairs
(x1, x2) of nonnegative numbers such that x1 + x2 = 1 (the set of divisions of
one unit of output between the two players).

Preferences Each player’s preferences are represented by the amount of output
she obtains.
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The possible partitions of the set of players are {{1, 2}}, consisting of the single
coalition of both players, and {{1}, {2}}, in which each player acts alone. The lat-
ter has only one combination of actions available to it, which produces not output.
Thus the game is cohesive.

In the next example the opportunities for producing output are richer and the
participants are not all symmetric.

EXAMPLE 237.1 (Landowner and workers) A landowner’s estate, when used by
k workers, produces the output f (k + 1) of food, where f is a increasing function
for which f (0) = 0. The total number of workers is m. The landowner and each
worker care only about the amount of output she receives, and prefer more to less.
The following coalitional game models this situation.

Players The landowner and the m workers.

Actions A coalition consisting solely of workers has a single action in which
no member receives any output. The set of actions of a coalition S consisting
of the landowner and k workers is the set of all S-allocations of the output
f (k + 1) among the members of S.

Preferences Each player’s preferences are represented by the amount of output
she obtains.

This game is cohesive because the grand coalition produces more output than
any other coalition, and, for any partition of the set of all the players, only one
coalition produces any output.

EXAMPLE 237.2 (Three-player majority game) Three people have access to one unit
of output. Any majority—two or three people—may control the allocation of this
output. Each person cares only about the amount of output she obtains.

We may model this situation as the following coalitional game.

Players The three people.

Actions Each coalition consisting of a single player has a single action, which
yields the player no output. The set of actions of each coalition S with two or
three players is the set of S-allocations of one unit of output.

Preferences Each player’s preferences are represented by the amount of output
she obtains.

This game is cohesive because every partition of the set of players contains at
most one majority coalition, and for every action of such a coalition there is an
action of the grand coalition that yields each player as least as much output.

In these examples the set of actions of each coalition S is the set of S-allocations
of the output that S can obtain, and each player’s preferences are represented by
the amount of output she obtains. Thus we can summarize each coalition’s set of
actions by a single number, equal to the total output it can obtain, and can interpret
this number as the total “payoff” that may be distributed among the members of
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the coalition. A coalitional game in which the set of payoff distributions result-
ing from each coalition’s actions may be represented in this way is said to have
transferable payoff.

We refer to the total payoff of any coalition S in a game with transferable payoff
as the worth of S, and denote it v(S). Such a game is thus specified by its set of
players N and its worth function.

For the two-player unanimity game, for example, we have N = {1, 2}, v({1}) =
v({2}) = 0, and v({1, 2}) = 1. For the landlord–worker game we have N =
{1, . . . , m + 1} (where 1 is the landowner and 2, . . . , m are the workers) and

v(S) =
{

0 if 1 is not a member of S
f (k) if S consists of 1 and k workers.

For the three-player majority game we have N = {1, 2, 3}, v({i}) = 0 for i = 1, 2,
3, and v(S) = 1 for every other coalition S.

In the next two examples, payoff is not transferable.

EXAMPLE 238.1 (House allocation) Each member of a group of n people has a
single house. Any subgroup may reallocate its members’ houses in any way it
wishes (one house to each person). (Time-sharing and other devices to evade the
indivisibility of a house are prohibited.) The values assigned to houses vary among
the people; each person cares only about the house she obtains. The following
coalitional game models this situation.

Players The n people.

Actions The set of actions of a coalition S is the set of all assignments to mem-
bers of S of the houses originally owned by members of S.

Preferences Each player prefers one outcome to another according to the house
she is assigned.

This game is cohesive because any allocation of the houses that can be achieved
by the coalitions in any partition of the set of players can also be achieved by the
set of all players. It does not have transferable payoff. For example, a coalition of
players 1 and 2 can achieve only the two payoff distributions (v1, w2) and (v2, w1),
where vi is the payoff to player 1 of the house owned by player i and wi is the
payoff to player 2 of the house owned by player i.

EXAMPLE 238.2 (Marriage market) A group of men and a group of women may be
matched in pairs. Each person cares about her partner. A matching of the members
of a coalition S is a partition of the members of S into male-female pairs and singles.
The following coalitional game models this situation.

Players The set of all the men and all the women.

Actions The set of actions of a coalition S is the set of all matchings of the
members of S.

Preferences Each player prefers one outcome to another according to the part-
ner she is assigned.
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This game is cohesive because the matching of the members of the grand coali-
tion induced by any collection of actions of the coalitions in a partition can be
achieved by some action of the grand coalition.

8.2 The core

Which action may we expect the grand coalition to choose? We seek an action com-
patible with the pressures imposed by the opportunities of each coalition, rather
than simply those of individual players as in the models of a strategic game (Chap-
ter 2) and an extensive game (Chapter 5). We define an action of the grand coalition
to be “stable” if no coalition can break away and choose an action that all its mem-
bers prefer. The set of all stable actions of the grand coalition is called the core,
defined precisely as follows.

� DEFINITION 239.1 (Core) The core of a coalitional game is the set of actions aN
of the grand coalition N such that no coalition has an action that all its members
prefer to aN .

If a coalition S has an action that all its members prefer to some action aN of the
grand coalition, we say that S can improve upon aN . Thus we may alternatively
define the core to be the set of all actions of the grand coalition upon which no
coalition can improve.

Note that the core is defined as a set of actions, so it always exists; a game cannot
fail to have a core, though it may be the empty set, in which case no action of the
grand coalition is immune to deviations.

We have restricted attention to games in which, when evaluating an outcome,
each player cares only about the action chosen by the coalition in the partition of
which she is a member. Thus the members of a coalition do not need to specu-
late about the remaining players’ behavior when considering a deviation. Conse-
quently an interpretation of the core does not require us to assume that the players
are experienced; the concept makes sense even for naı̈ve players with no experi-
ence in the game. (By contrast, the main interpretations of Nash equilibrium and
subgame perfect equilibrium require the players to have experience playing the
game.)

In a game with transferable payoff, a coalition S can improve upon an action aN
of the grand coalition if and only if its worth v(S) (i.e. the total payoff it can achieve
by itself) exceeds the total payoff of its members in aN . That is, aN is in the core if
and only if for every coalition S the total payoff xS(aN) it yields the members of S
is at least v(S):

xS(aN) ≥ v(S) for every coalition S.

To find the core of a coalitional game we need to find the set of all actions of
the grand coalition upon which no coalition can improve. In the next example, no
coalition can improve upon any action of the grand coalition, so the core consists
of all actions of the grand coalition.
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EXAMPLE 240.1 (Two-player unanimity game) Consider the two-player unanimity
game in Example 236.2. An action of the grand coalition is a pair (x1, x2) with
x1 + x2 = 1 and xi ≥ 0 for i = 1, 2 (a division of the one unit of output between
the two players). I claim that the core consists of all possible divisions:

{(x1, x2) : x1 + x2 = 1 and xi ≥ 0 for i = 1, 2}.

Any such division is in the core because if a single player deviates she obtains no
output, and if the grand coalition chooses a different division then one player is
worse off.

In this example no coalition has any action that imposes any restriction on the
action of the grand coalition. In most other games the coalitions’ opportunities
constrain the actions of the grand coalition.

One way to find the core is to check each action of the grand coalition in turn.
For each action and each coalition S, we impose the condition that S cannot make
all its members better off; an action is a member of the core if and only if it satisfies
these conditions.

Consider, for example, a variant of the two-player unanimity game in which
player 1, by herself, can obtain p units of output, and player 2, by herself, can
obtain q units of output. Then the condition that the coalition consisting of player 1
not be able to improve upon the action (x1, x2) of the grand coalition is x1 ≥ p, and
the condition that the coalition consisting of player 2 not be able to improve upon
this action is x2 ≥ q. As in the original game, the coalition of both players cannot
improve upon any action (x1, x2), so the core is

{(x1, x2) : x1 + x2 = 1, x1 ≥ p, and x2 ≥ q}.

(An implication is that if p + q > 1—in which case the game is not cohesive—the
core is empty.)

An example of the landowner–worker game further illustrates this method of
finding the core.

EXAMPLE 240.2 (Landowner–worker game with two workers) Consider the game
in Example 237.1 in which there are two workers (k = 2). Let (x1, x2, x3) be an
action of the grand coalition. That is, let (x1, x2, x3) be an allocation of the output
f (3) among the three players. The only coalitions that can obtain a positive amount
of output are that consisting of the landowner (player 1), which can obtain the
output f (1), those consisting of the landowner and a worker, which can obtain
f (2), and the grand coalition. Thus (x1, x2, x3) is in the core if and only if

x1 ≥ f (1)

x2 ≥ 0

x3 ≥ 0

x1 + x2 ≥ f (2)

x1 + x3 ≥ f (2)

x1 + x2 + x3 = f (3),
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where the last condition ensures that (x1, x2, x3) is an allocation of f (3).
From the last condition we have x1 = f (3) − x2 − x3, so that we may rewrite

the conditions as

0 ≤ x2 ≤ f (3) − f (2)

0 ≤ x3 ≤ f (3) − f (2)

x2 + x3 ≤ f (3) − f (1)

x1 + x2 + x3 = f (3).

That is, in an action in the core, each worker obtains at most the extra output f (3)−
f (2) produced by the third player, and the workers together obtain at most the
extra output f (3) − f (1) produced by the second and third players together.

? EXERCISE 241.1 (Three-player majority game) Show that the core of the three-
player majority game (Example 237.2) has an empty core. Find the core of the
variant of this game in which player 1 has three votes (and player 2 and player 3
each has one vote, as in the original game).

The next example introduces a class of games that model the market for an
economic good.

EXAMPLE 241.2 (Market with one owner and two buyers) A person holds one in-
divisible unit of a good and each of two (potential) buyers has a large amount of
money. The owner values money but not the good; each buyer values both money
and the good and regards the good as equivalent to one unit of money. Each coali-
tion may assign the good (if owned by one of its members) to any of its members
and allocate its members’ money in any way it wishes among its members.

We may model this situation as the following coalitional game.

Players The owner and the two buyers.

Actions The set of actions of each coalition S is the set of S-allocations of the
money and good (if any) owned by S.

Preferences The owner’s preferences are represented by the amount of money
she obtains; each buyer’s preferences are represented by the amount of the
good (either 0 or 1) she obtains plus the amount of money she holds.

I claim that for any action in the core, the owner does not keep the good. Let
aN be an action of the grand coalition in which the owner keeps the good, and
let mi be the amount of money transferred from potential buyer i to the owner in
this action. (Transfers of money from the buyers to the owner when the owner
keeps the good may not sound sensible, but they are feasible, so that we need to
consider them.) Consider the alternative action a′N of the grand coalition in which
the good is allocated to buyer 1, who transfers m1 + 2ε money to the owner, and
buyer 2 transfers m2 − ε money to the owner, where 0 < ε < 1

2 . We see that all
the players’ payoffs are higher in a′N than they are in aN . (The owner’s payoff is ε



242 Chapter 8. Coalitional Games and the Core

higher, buyer 1’s payoff is 1 − 2ε higher, and buyer 2’s payoff is ε higher.) Thus aN
is not in the core.

Consider an action aN in the core in which buyer 1 obtains the good. I claim
that in aN buyer 1 pays one unit of money to the owner and buyer 2 pays no money
to the owner. If buyer 2 pays a positive amount she can improve upon aN by acting
by herself (and making no payment). If buyer 1 pays more than one unit of money
to the owner she too can improve upon aN by acting by herself. Finally, suppose
buyer 1 pays m1 < 1 to the owner. Then the owner and buyer 2 can improve
upon aN by allocating the good to buyer 2 and transferring 1

2 (1 + m1) units of
money from buyer 2 to the owner, yielding the owner a payoff greater than m1 and
buyer 2 a positive payoff.

We conclude that the core contains exactly two actions, in each of which the
good is allocated to a buyer and one unit of the buyer’s money is allocated to the
owner. That is, the good is sold to a buyer at the price of 1, yielding the buyer
who obtains the good the same payoff that she obtains if she does not trade. This
extreme outcome is a result of the competition between the buyers for the good:
any outcome in which the owner trades with buyer i at a price less than 1 can be
improved upon by the coalition consisting of the owner and the other buyer, who
is willing to pay a little more for the good than does buyer i.

? EXERCISE 242.1 (Market with one owner and two heterogeneous buyers) Consider
the variant of the game in the previous example in which buyer 1’s valuation of
the good is 1 and buyer 2’s valuation is v < 1 (i.e. buyer 2 is indifferent between
owning the good and owning v units of money). Find the core the game that
models this situation.

In the next exercise, the grand coalition has finitely many actions; one way of
finding the core is to check each one in turn.

? EXERCISE 242.2 (Vote trading) A legislature with three members decides, by ma-
jority vote, the fate of three bills, A, B, and C. Each legislator’s preferences are
represented by the sum of the values she attaches to the bills that pass. The value
attached by each legislator to each bill is indicated in Figure 242.1. For example,
if bills A and B pass and C fails, then the three legislators’ payoffs are 1, 3, and
0 respectively. Each majority coalition can achieve the passage of any set of bills,
whereas each minority is powerless.

A B C
Legislator 1 2 −1 1
Legislator 2 1 2 −1
Legislator 3 −1 1 2

Figure 242.1 The legislators’ payoffs to the three bills in Exercise 242.2.

a. Find the core of the coalitional game that models this situation.
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b. Find the core of the game in which the values the legislators attach to the
payoff of each bill differ from those in Figure 242.1 only in that legislator 3
values the passage of bill C at 0.

c. Find the core of the game in which the values the legislators attach to the pay-
off of each bill differ from those in Figure 242.1 only in that each 1 is replaced
by −1.

8.3 Illustration: ownership and the distribution of wealth

In economies dominated by agriculture, the distribution and institutions of land
ownership differ widely. By studying the cores of coalitional games that model
various institutions, we can gain an understanding of the implications of these
institutions for the distribution of wealth.

A group of n ≥ 3 people may work land to produce food. Denote the output
of food when k people work all the land by f (k). Assume that f is an increasing
function, f (0) = 0, and the output produced by an additional person decreases as
the number of workers increases: f (k) − f (k − 1) is decreasing in k. An example of
such a function f is shown in Figure 243.1. In all the games that I study the set of
players is the set of the n people and each person cares only about the amount of
food she obtains.

0 k →

↑
output f (k)

Figure 243.1 The output of food as a function of the number k of workers, under the assumption that
the output of an additional worker decreases as the number of workers increases.

8.3.1 Single landowner and landless workers

First suppose that the land is owned by a single person, the landowner. I refer to
the other people as workers. In this case we obtain the game in Example 237.1. In
this game the action aN of the grand coalition in which the landowner obtains all
the output f (n) is in the core: all coalitions that can produce any output include
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the landowner, and none of these coalitions has any action that makes her better
off than she is in aN .

Are the workers completely powerless, or does the core contain actions in
which they receive some output? The workers need the landowner to produce
any output, but the landowner also needs the workers to produce more than f (1),
so there is reason to think that stable actions of the grand coalition exist in which
the workers receive some output. Take the landowner to be player 1, and con-
sider the action aN of the grand coalition in which each player i obtains the output
xi, where x1 + · · · + xn = f (n). Under what conditions on (x1, . . . , xn) is aN in the
core? Because of my assumption on the shape of the function f , the coalitions most
capable of profitably deviating from aN consist of the landowner and every worker
but one. Such a coalition can, by itself, produce f (n − 1), and may distribute this
output in any way among its members. Thus for a deviation by such a coalition not
to be profitable, the sum of x1 and any collection of n − 2 other xi’s must be at least
f (n − 1). That is, (x1 + · · · + xn) − xj ≥ f (n − 1) for every j = 2, . . . , n. Because
x1 + · · ·+ xn = f (n), we conclude that xj ≤ f (n)− f (n − 1) for every player j with
j ≥ 2 (i.e. every worker). That is, if aN is in the core then 0 ≤ xj ≤ f (n) − f (n − 1)
for every player j ≥ 2. If fact, every such action is in the core, as you are asked to
verify in the following exercise.

? EXERCISE 244.1 (Core of landowner–worker game) Check that no coalition can
improve upon any action of the grand coalition in which the output received by
every worker is nonnegative and at most f (n) − f (n − 1). (Use the fact that the
form of f implies that f (n) − f (k) ≥ (n − k)( f (n) − f (n − 1)) for every k ≤ n.)

We conclude that the core of the game is the set of all actions of the grand
coalition in which the output xi obtained by each worker i satisfies 0 ≤ xi ≤
f (n) − f (n − 1) and the output obtained by the landowner is the difference be-
tween f (n) and the sum of the workers’ shares. In economic jargon, f (n)− f (n− 1)
is a worker’s “marginal product”. Thus in any action in the core, each worker
obtains at most her marginal product.

The workers’ shares of output are driven down to at most f (n) − f (n − 1) by
competition between coalitions consisting of the landowner and workers. If the
output received by any worker exceeds f (n) − f (n − 1) then the other workers, in
cahoots with the landowner, can deviate and increase their share of output. That
is, each worker’s share of output is limited by her comrades’ attempts to obtain
more output.

The fact that each worker’s share of output is held down by inter-worker com-
petition suggests that if the workers were to agree not to join deviating coalitions
except as a group then they might be better off. You are asked to check this idea in
the following exercise.

? EXERCISE 244.2 (Unionized workers in landowner–worker game) Formulate as a
coalitional game the variant of the landowner–worker game in which any group
of fewer than n − 1 workers refuses to work with the landowner, and find its core.
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The core of the original game is closely related to the outcomes predicted by
the economic notion of “competitive equilibrium”. Suppose that the landowner
believes she can hire any number of workers at the fixed wage w (given as an
amount of output), and every worker believes that she can obtain employment
at this wage. If w ≥ 0 then every worker wishes to work, and if w ≤ f (n) −
f (n− 1) the landowner wishes to employ all n− 1 workers. (Reducing the number
of workers by one reduces the output by f (n) − f (n − 1); further reducing the
number of workers reduces the output by successively larger amounts, given the
shape of f .) If w > f (n) − f (n − 1) then the landowner wishes to employ fewer
than n − 1 workers, because the wage exceeds the increase in the total output that
results when the (n − 1)th worker is employed. Thus the demand for workers is
equal to the supply if and only if 0 ≤ w ≤ f (n) − f (n − 1); every such wage w is a
“competitive equilibrium”.

A different assumption about the form of f yields a different conclusion about
the core. Suppose that each additional worker produces more additional output
than the previous one. An example of a function f with this form is shown in
Figure 245.1. Under this assumption the economy has no competitive equilibrium:
for any wage, the landowner wishes to employ an indefinitely large number of
workers. The next exercise asks you to study the core of the induced coalitional
game.

0 k →

↑
output

f (k)

Figure 245.1 The output of food as a function of the number k of workers, under the assumption that
the output of an additional worker increases as the number of workers increases.

? EXERCISE 245.1 (Landowner–worker game with increasing marginal products) Con-
sider the variant of the landowner–worker game in which each additional worker
produces more additional output than the previous one. (That is, f (k)/k < f (k +
1)/(k + 1) for all k.) Show that the core of this game contains the action of the
grand coalition in which each player obtains an equal share of the total output.
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8.3.2 Small landowners

Suppose that the land is distributed equally between all n people, rather than being
concentrated in the hands of a single landowner. Assume that a group of k people
who pool their land and work together produce (k/n) f (n) units of output. (The
output produced by half the people working half the land, for example, is half the
output produced by all the people working all the land.)

The following specification of the set of actions available to each coalition mod-
els this situation.

Actions The set of actions of a coalition S consisting of k players is the set of
all S-allocations of the output (k/n) f (n) between the members of S.

As you might expect, one action in the core of this game is that in which every
player obtains an equal share of the total output—that is, f (n)/n units. Under this
action, the total amount received by each coalition is precisely the total amount
the coalition produces. In fact, no other action is in the core. In any other action,
some player receives less than f (n)/n, and hence can improve upon the action
alone (obtaining f (n)/n for herself). That is, the core consists of the single action
in which every player obtains f (n)/n units of output.

8.3.3 Collective ownership

Suppose that the land is owned collectively and the distribution of output is deter-
mined by majority voting. Assume that any majority may distribute the output in
any way it wishes; any majority may, in particular, take all the output for itself. In
this case the set of actions available to each coalition are given as follows.

Actions The set of actions of a coalition S consisting of more than n/2 players
is the set of all S-allocations of the output f (n) between the members of S.
The set of actions of a coalition S consisting of at most n/2 players is the
single S-allocation in which no player in S receives any output.

The core of the coalitional game defined by this assumption is empty. For ev-
ery action of the grand coalition, at least one player obtains a positive amount
of output. But if player i obtains a positive amount of output then the coalition
of the remaining players, which is a majority, may improve upon the action, dis-
tributing the output f (n) among its members (so that player i gets nothing). Thus
every action of the grand coalition may be improved upon by some coalition; no
distribution of output is “stable”.

The core of this game is empty because of the extreme power of every majority
coalition. If any majority coalition may control how the land is used, but every
player owns a “share” that entitles her to the fraction 1/n of the output, then a
majority coalition with k members can lay claim to only the fraction k/n of the
total output, and a stable distribution of output may exist. This alternative own-
ership institution, which tempers the power of majority coalitions, does not have
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interesting implications in the model in this section because the control of land use
vested in a majority coalition is inconsequential—only one sensible pattern of use
exists (all the players work!). If choices exist—if, for example, different crops may
be grown, and people differ in their preferences for these crops—then collective
ownership in which each player is entitled to an equal share of the output may
yield a different outcome from individual ownership.

8.4 Illustration: exchanging homogeneous horses

Markets may be modeled as coalitional games in which the set of actions of each
coalition S is the set of S-allocations of the good initially owned by the members
of S. The core of such a game is the set of allocations of the goods available in
the economy that are robust to the trading opportunities of all possible groups
of participants: if aN is in the core then no group of agents can secede from the
economy, trade among themselves, and produce an outcome they all prefer to aN .

In this section I describe a simple example of a market, in which there is money
and a single homogeneous good (all units of which are identical). In the next sec-
tion I describe a market in which there is a single heterogeneous good. In both case
the core makes a very precise prediction about the outcome.

8.4.1 Model

Some people own one unit of an indivisible good, whereas others possess only
money. Some non-owners value a unit of the good more highly than some owners,
so that mutually beneficial trades exist. Which allocation of goods and money will
result?

We may address this question with the help of a coalitional game that gener-
alizes the one in Example 241.2. I refer to the goods as “horses” (following the
literature on the model, which takes off from an analysis by Eugen von Böhm-
Bawerk (1851–1914)). Call each person who owns a horse simply an owner, and ev-
ery other person a nonowner. Assume that all horses are identical, and that no one
wishes to own more than one. People value a horse differently; denote player i’s
valuation by vi. Assume that there are at least two owners and two nonowners,
and that some owner’s valuation is less than some nonowner’s valuation (i.e. for
some owner i and nonowner j have vi < vj), so that some trade is mutually desir-
able. Assume also, to avoid some special cases, that some nonowner’s valuation is
less than some owner’s valuation (i.e. for some nonowner i and owner j we have
vi < vj) and that no two players have the same valuation. Further assume that ev-
ery person has enough money to fully compensate the owner who values a horse
most highly, so that no one’s behavior is constrained by her cash balance.

As to preferences, assume that each person cares only about the amount of
money she has and whether or not she has a horse. (In particular, no one cares
about any other person’s holdings.) Specifically, assume that each player i’s pref-



248 Chapter 8. Coalitional Games and the Core

erences are represented by the payoff function
{

vi + r if she has a horse and $r more money than she had originally
r if she has no horse and $r more money than she had originally.

(This assumption does not mean that people do not value the money they have
initially. Equivalently we could represent player i’s preferences by the functions
vi + r + mi if she has a horse and r + mi if she does not, where mi is the amount of
money she has initially.)

The following coalitional game models, which I call a horse trading game,
models the situation.

Players The group of people (owners and nonowners).

Actions The set of actions of each coalition S is the set of S-allocations of the
horses and the total amount of money owned by S in which each player
obtains at most one horse.

Preferences Each player’s preferences are represented by the payoff function
described above.

This game incorporates no restriction on the way in which a coalition may dis-
tribute its money and horses. In particular, players are not restricted to bilateral
trades of money for horses. A coalition of two owners and two nonowners, for
example, may, if it wishes, allocate each of the owners’ horses to a nonowner and
transfer money from both nonowners to only one owner, or from one nonowner to
the other.

8.4.2 The core

Number the owners in ascending order and the nonowners in descending or-
der of the valuations they attach to a horse. Figure 249.1 illustrates the valua-
tions, ordered in this way. (This diagram should be familiar—perhaps it is a little
too familiar—if you have studied economics.) Denote owner i’s valuation σi and
nonowner i’s valuation βi. Denote by k∗ the largest number i such that βi > σi
(so that among the owners and nonowners whose indices are k∗ or less, every
nonowner’s valuation is greater than every owner’s valuation).

Let aN be an action in the core. Denote by L∗ the set of owners who have no
horse in aN (the set of sellers) and by B∗ the set of nonowners who have a horse in
aN (the set of buyers). These two sets must have the same number of members (by
the law of conservation of horses). Denote by ri the amount of money received by
owner i and by pj the amount paid by nonowner j in aN .

I claim that pj = 0 for every nonowner j not in B∗. (That is, no nonowner who
does not acquire a horse either pays or receives any money.)

• If pj > 0 for some nonowner j not in B∗ then her payoff is negative, and she
can unilaterally improve upon aN by retaining her original money.
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βk∗

βk∗+1
σk∗

σk∗+1range of
values of p∗

k∗ trader number →

↑
valuations

(β j, σj)
nonowners owners

Figure 249.1 An example of the players’ valuations in a market with an indivisible good. The buyers’
valuations are given in black, and the sellers’ in gray.

• If pj < 0 for some nonowner j not in B∗ then the coalition of all players
other than j has pj less money than it owned initially, and the same number
of horses. Thus this coalition can improve upon aN by assigning horses in
the same way as they are assigned in aN and giving each of its members
pj/(n − 1) more units of money than she gets in aN (where n is the total
number of players).

By a similar argument, ri = 0 for every owner not in L∗ (an owner who does
not sell her horse neither pays nor receives any money.)

I now argue that in aN every seller (member of L∗) receives the same amount
of money, every buyer (member of B∗) pays the same amount of money, and these
amounts are equal: ri = pj for every seller i and buyer j. That is, all trades occur at
the same price.

Suppose that ri < pj for seller i and buyer j. I argue that the coalition {i, j} can
improve upon aN : i can sell her horse to j at a price between ri and pj. Under aN ,
seller i’s payoff is ri and buyer j’s payoff is β j − pj. If i sells her horse to j at the price
1
2 (ri + pj) then her payoff is 1

2 (ri + pj) > ri and j’s payoff is β j − 1
2 (ri + pj) > β j − pj,

so that both i and j are better off than they are in aN . Thus ri ≥ pj for every seller i
and every buyer j.

Now, the sum of all the amounts ri received by sellers is equal to the sum of all
the amounts pj paid by buyers (by the law of conservation of money), and L∗ and
B∗ have the same number of members. Thus we have ri = pj for every seller i in
L∗ and buyer j in B∗.

In summary,

for every action aN in the core there exists p∗ such that ri = pi = p∗ for
every owner i in L∗ and every nonowner j in B∗, and ri = pi = 0 for
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every owner not in L∗ and every nonowner j not in B∗.

I now argue that the common price p∗ at which all trades take place lies in a
narrow range.

In aN , every owner i whose valuation of a horse is less than p∗ must sell her
horse: if she did not then the coalition consisting of herself and any nonowner j
who buys a horse in aN could improve upon aN by taking the action in which j
buys i’s horse at a price between the owner’s valuation and p∗. Also, no owner
whose valuation exceeds p∗ trades, because her payoff from doing so is negative.
Similarly, every nonowner whose valuation is greater than p∗ buys a horse, and no
nonowner whose valuation is less than p∗ does so.

? EXERCISE 250.1 (Range of prices in horse market) Show that the requirement that
the number of owners who sell their horses must equal the number of nonowners
who buy horses, together with the arguments above, implies that the common
trading price p∗ is at least σk∗ , at least βk∗+1, at most βk∗ , and at most σk∗+1. That
is, p∗ ≥ max{σk∗ , βk∗+1} and p∗ ≤ min{βk∗ , σk∗+1}.

Finally, I argue that in any action in the core a player whose valuation is equal to
p∗ trades. Suppose nonowner i’s valuation is equal to p∗. Then owner i’s valuation
is less than p∗ and owner i + 1’s valuation is greater than p∗ (given my assumption
that no two players have the same valuation), so that exactly i owners trade. Thus
exactly i nonowners must trade, implying that nonowner i trades. Symmetrically,
a owner whose valuation is equal to p∗ trades.

In summary, in every action in the core of a horse trading game,

• every nonowner pays the same price for a horse

• the common price is at least max{σk∗ , βk∗+1} and at most
min{βk∗ , σk∗+1}

• every owner whose valuation is at most the price trades her horse

• every nonowner whose valuation is at least the price obtains a
horse.

(250.2)

The action satisfying these conditions for the price p∗ yields the payoffs
{

max{vi, p∗} for every owner i
max{vi, p∗} − p∗ for every nonowner i.

The core does not impose any additional restrictions on the actions of the grand
coalition: every action that satisfies these conditions is in the core. To establish this
result, I need to show that for any action aN that satisfies the conditions, no coali-
tion has an action that is better for all its members. When a coalition deviates,
which of its actions has the best chance of improving upon aN? The optimal action
definitely assigns the coalition’s horses to the members who value a horse most
highly. (If vi < vj then the transfer of a horse from i to j, accompanied by the
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transfer from j to i of an amount of money between vi and vj makes both i and j
better off.) No transfer of money makes anyone better off without making some-
one worse off, so in order for a coalition to improve upon aN there must be some
distribution of the total amount of money it owns that, given the optimal distri-
bution of horses, makes all its members better off than they are in aN . For every
distribution of a coalition’s money the total payoff of the members of the coalition
is the same. Thus a coalition can improve upon aN if and only if the total pay-
off of its members under aN is less than its total payoff when it assigns its horses
optimally.

Consider an arbitrary coalition S. Denote by � the total number of owners in S,
by b the total number of nonowners in S, and by S∗ the set of � members of S whose
valuations are highest. Then S’s total payoff when it assigns its horses optimally is

∑
i∈S∗

vi,

whereas its total payoff under aN is

∑
i∈S

max{vi, p∗} − bp∗ = ∑
i∈S∗

max{vi, p∗} + ∑
i∈S\S∗

max{vi, p∗} − bp∗,

where S \ S∗ is the set of members of S not in S∗. The former is never higher than
the latter because S \ S∗ has b members, so that ∑i∈S\S∗ max{vi, p∗} − bp∗ ≥ 0.

In summary, the core of a horse trading game is the set of actions of the grand
coalition that satisfies the four conditions in (250.2).

? EXERCISE 251.1 (Horse trading game with single seller) Find the core of the variant
of the horse trading game in which there is a single owner, whose valuation is less
than the highest valuation of the nonowners.

If you have studied economics you know that this outcome is the same as the
“competitive equilibrium”. The theories differ, however. The theory of competi-
tive equilibrium assumes that all trades take place at the same price. It defines an
equilibrium price to be one at which “demand” (the total number of nonowners
whose valuations exceed the price) is equal to “supply” (the total number of own-
ers whose valuations are less than the price). This equilibrium may be justified by
the argument that if demand exceeds supply then the price will tend to rise, and if
supply exceeds demand it will tend to fall. Thus in this theory, “market pressures”
generate an equilibrium price; no agent in the market chooses a price.

By contrast, the coalitional game we have studied models the players’ actions
explicitly; each group may exchange its horses and money in any way it wishes.
The core is the set of actions of all players that survives the pressures imposed by
the trading opportunities of each possible group of players. A uniform price is not
assumed, but is shown to be a necessary property of any action in the core.

? EXERCISE 251.2 (Horse trading game with large seller) Consider the variant of the
horse trading game in which there is a single owner who has two horses. Assume



252 Chapter 8. Coalitional Games and the Core

that the owner’s payoff is σ1 + r if she keeps one of her horses and 2σ1 + r if she
keeps both of them, where r is the amount of money she receives. Assume that
there are at least two nonowners, both of whose values of a horse exceed σ1. Find
the core of this game. (Do all trades take place at the same price, as they do in a
competitive equilibrium?)

8.5 Illustration: exchanging heterogeneous houses

8.5.1 Model

Each member of a group of n people owns an indivisible good—call it a house.
Houses, unlike the horses of the previous section, differ. Any subgroup may re-
allocate its members’ houses in any way it wishes (one house to each person).
(Time-sharing and other devices to evade the indivisibility of a house are prohib-
ited.) Each person cares only about the house she obtains, and has a strict ranking
of the houses (she is not indifferent between any two houses).

Which assignments of houses to people are stable? You may think that without
imposing any restrictions on the nature or diversity of preferences, this question is
hard to answer, and that for some sufficiently conflicting configurations of prefer-
ences no assignment is stable. If so, you are wrong on both counts, at least as far as
the core is concerned; remarkably, for any preferences, a slight variant of the core
yields a unique stable outcome.

The following coalitional game, which I call a house exchange game, models
the situation.

Players The n people.

Actions The set of actions of a coalition S is the set of all assignments to mem-
bers of S of the houses originally owned by members of S.

Preferences Each player prefers one outcome to another according to the house
she is assigned.

8.5.2 The top trading cycle procedure and the core

One property of an action in the core is immediate: any player who initially owns
her favorite house obtains that house in any assignment in the core, because every
player has the option of simply keeping the house she initially owns.

This property allows us to completely analyze the simplest nontrivial example
of the game, with two people. Denote the person who initially owns player i’s
favorite house by o(i).

• If at least one person initially owns her favorite house (i.e. if o(1) = 1 or
o(2) = 2), then the core contains the single assignment in which each person
keeps the house she owns.
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• If each person prefers the house owned by the other person (i.e. if o(1) = 2
and o(2) = 1), then the core contains the single assignment in which the two
people exchange houses.

In the second case we say that “12 is a 2-cycle”. When there are more players,
longer cycles are possible. For example, if there are three or more players and
o(i) = j, o(j) = k, and o(k) = i, then we say that “ijk is a 3-cycle”. (If o(i) = i, we
can think of i as a “1-cycle”.)

The case in which there are three people raises some new possibilities.

• If at least two people initially own their favorite houses, then the core con-
tains the single assignment in which each person keeps the house she initially
owns.

• If exactly one person, say player i, initially owns her favorite house, then
in any assignment in the core, that person keeps her house. Whether the
other two people exchange their houses depends on their preferences over
these houses, ignoring player i’s house (which has already been assigned);
the analysis is the same as that for the two-player game.

• If no person initially owns her favorite house, there are two cases.

– If there is a 2-cycle (i.e. if there exist persons i and j such that j initially
owns i’s favorite house and i initially owns j’s favorite house), then the
only assignment in the core is that in which i and j swap houses and the
remaining player keeps the house she owns initially.

– Otherwise, suppose that o(i) = j. Then o(j) = k, where k is the third
player (otherwise ij is a 2-cycle), and o(k) = i (otherwise kj is a 2-cycle.)
That is, ijk is a 3-cycle. Consider the assignment in which i gets j’s
house, j gets k’s house, and k gets i’s house. Every player is assigned
her favorite house, so the assignment is in the core. (This argument
does not show that the core contains no other assignments.)

This construction of an assignment in the core can be extended to games with
any number of players. First we look for cycles among the houses at the top of
the players’ rankings, and assign to each member of each cycle her favorite house.
(If there are at most three players, only one cycle containing more than one player
may exist, but if there are more players, many cycles may exist.) Then we eliminate
from consideration the players involved in these cycles and the houses they are
allocated, look for any cycles at the top of the remains of the players’ rankings,
and assign to each member of each of these cycles her favorite house among those
remaining. We continue in the same manner until all players are assigned houses.
This procedure is called the top trading cycle procedure.

To illustrate the procedure, consider the game with four players whose prefer-
ences satisfy the specification in Figure 254.1. In this figure, hi denotes the house
owned by player i and the players’ rankings are listed from best to worst, starting
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at the top (player 3 prefers player 1’s house to player 2’s house to player 4’s house,
for example). Hyphens indicate irrelevant parts of the rankings. We see that 12 is
a 2-cycle, so at the first step players 1 and 2 are assigned their favorite houses (h2
and h1 respectively). After eliminating these players and their houses, 34 becomes
a 2-cycle, so that player 3 is assigned h4 and player 4 is assigned h3. If player 3’s
ranking of h3 and h4 were reversed then at the second stage 3 would be a one-cycle,
so that player 3 would be assigned h3, and then at the third stage player 4 would
be assigned h4.

Player 1 Player 2 Player 3 Player 4

h2 h1 h1 h3

- - h2 h2

- - h4 h4

- - h3 -

Figure 254.1 A partial specification of the players’ preferences in a game with four players, illustrating
the top trading cycle procedure. Each player’s ranking is given from best to worst, reading from top to
bottom. Hyphens indicate irrelevant parts of the rankings.

? EXERCISE 254.1 (House assignment with identical preferences) Find all the assign-
ments in the core of the n-player game in which every player ranks the houses in
the same way.

I now argue that

for any (strict preferences), the core of a house exchange game contains
the assignment induced by the top trading cycle procedure.

The following argument establishes this result. Every player assigned a house in
the first round receives her favorite house, so that no coalition containing such
a player can make all its members better off than they are in aN . Now consider a
coalition that contains players assigned houses in the second round, but no players
assigned houses in the first round. Such a coalition does not own any of the houses
assigned on the first round, so that its members who were assigned in the second
round obtain their favorite houses among the houses it owns. Thus such a coalition
has no action that makes all its members better off than they are in aN . A similar
argument applies to coalitions containing players assigned in later rounds.

8.5.3 The strong core

I remarked that my analysis of a three-player game does not establish the existence
of a unique assignment in the core. Indeed, consider the preferences in Figure 255.1.
We see that 123 is a 3-cycle, so that the top cycle trading procedure generates the
assignment in which each player receives her favorite house.
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Player 1 Player 2 Player 3

h3 h1 h2

h2 h2 h3

h1 h3 h1

Figure 255.1 The players’ preferences in a game with three players. Each player’s ranking is given
from best to worst, reading from top to bottom.

I claim that the alternative assignment a′N , in which player 1 obtains h2, player 2
obtains h1, and player 3 obtains h3 is also in the core. Player 2 obtains her favorite
house, so no coalition containing her can improve upon a′N . Neither player 1 nor
player 3 alone can improve upon a′N because player 1 prefers h2 to h1 and player 3
obtains the house she owns. The only remaining coalition is {1, 3}, which owns h1
and h3. If it deviates and assigns h1 to player 1 then she is worse off than she is in
a′N , and if it deviates and assigns h1 to player 3 then she is worse off than she is in
a′N . Thus no coalition can improve upon a′N .

Although no coalition S can achieve any S-allocation that makes all of its mem-
bers better off than they are in a′N , the coalition N of all three players can make two
of its members (players 1 and 3) better off, while keeping the remaining member
(player 2) with the same house. That is, it can “weakly” improve upon a′N .

This example suggests that if we modify the definition of the core so that actions
upon which any coalition can weakly improve are eliminated, we might reduce the
core to a single assignment.

Define the strong core of any game to be the set of actions aN of the grand coali-
tion N such that no coalition S has an action aS that some of its members prefer to
aN and all of its members regard to be at least as good as aN .

The argument I have given shows that the action a′N is not in the strong core of
the game in which the players’ preferences are given in Figure 255.1, though it is
in the core. In fact,

for any (strict) preferences, the strong core of a house exchange game
consists of the single assignment defined by the top cycle trading pro-
cedure.

I omit details of the argument for this result. The result shows that the (strong)
core is a highly successful solution for house exchange games; for any (strict) pref-
erences, it pinpoints a single stable assignment, which is the outcome of a simple,
intuitively appealing, procedure.

Unfortunately, the strengthening of the definition of the core has a side effect:
if we depart from the assumption that all preferences are strict, and allow players
to be indifferent between houses, then the core may be empty. The next exercise
gives an example.

? EXERCISE 255.1 (Emptiness of the strong core when preferences are not strict) Sup-
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pose that some players are indifferent between some pairs of houses. Specifically,
suppose there are three players, whose preferences are given in Figure 256.1. Find
the core and show that the strong core is empty.

Player 1 Player 2 Player 3

h2 h1, h3 h2

h1, h3 h2 h1, h3

Figure 256.1 The players’ preferences in the game in Exercise 255.1. A cell containing two houses
indicates indifference between these two houses.

8.6 Illustration: voting

A group of people chooses a policy by majority voting. How does the chosen
policy depend on their preferences? In Chapter 2 we studied a strategic game
that models this situation and found that the notion of Nash equilibrium admits
a very wide range of stable outcomes. In a Nash equilibrium no single player, by
changing her vote, can improve the outcome for herself, but a group of players,
by coordinating their votes, may be able to do so. By modeling the situation as
a coalitional game and using the notion of the core to isolate stable outcomes, we
can find the implications of group deviations for the outcome.

To model voting as a coalitional game, the specification I have given of such a
game needs to be slightly modified. Recall that an outcome of a coalitional game
is a partition of the set of players and an aciton for each coalition in the partition.
So far I have assumed that each player cares only about the action chosen by the
coalition in the partition to which she belongs. This assumption means that the
payoff of a coalition that deviates from an outcome is determined independently
of the action of any other coalition; when deviating, a coalition does not have to
consider the action that any other coalition takes. In the situation I now present,
a different constellation of conditions has the same implication: only coalitions
containing a majority of the players have more than one possible action, and every
player cares only about the action chosen by the majority coalition (of which there
is at most one) in the outcome partition. In brief, any majority may choose an
action that affects everyone, and every minority is powerless.

Precisely, assume that there is an odd number of players, each of whom has
preferences over a set of policies and prefers the outcome x to the outcome y if and
only if either there are majority coalitions in the partitions associated with both x
and y and she prefers the action chosen by the majority coalition in x to the action
chosen by the majority coalition in y, or there is a majority coalition in x by not
in y. (If there is a majority coalition in neither x nor y, she is indifferent between
x and y.) The set of actions available to any coalition containing a majority of the
players is the set of all policies; every other coalition has a single action.
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The definition of the core of this variant of a coalitional game is the natural
variant of Definition 239.1: the set of actions aN of the grand coalition N such that
no majority coalition has an action that all its members prefer to aN .

Suppose that the policy x is in the core of this game. Then no policy is preferred
to x by a coalition consisting of a majority of the players. Equivalently, for every
policy y �= x, the set of players who either prefer x to y or regard x and y to be
equally good is a majority. If we assume that every player’s preferences are strict—
no player is indifferent between any two policies—then for every policy y �= x, the
set of players who prefer x to y is a majority. That is, x is a Condorcet winner (see
Exercise 74.1). For any preferences, there is at most one Condorcet winner, so we
have established that

if every player’s preferences are strict, the core of a majority voting
game is empty if there is no Condorcet winner, and otherwise is the set
consisting of the single Condorcet winner.

How does the existence and character of a Condorcet winner depend on the
players’ preferences? First suppose that a policy is a number. Assume that each
player i has a favorite policy x∗

i , and that her preferences are single-peaked: if x and
x′ are policies for which x < x′ < x∗

i or x∗
i < x′ < x then she prefers x′ to x. Then

the median of the players’ favorite positions is the Condorcet winner, as you are
asked to show in the next exercise, and hence the unique member of the core of the
voting game. (The median is well-defined because the number of players is odd.)

? EXERCISE 257.1 (Median voter theorem) Show that when the policy space is one-
dimensional and the players’ preferences are single-peaked the unique Condorcet
winner is the median of the players’ favorite positions. (This result is known as the
median voter theorem.)

A one-dimensional space captures some policy choices, but in other situations
a higher dimensional space is needed. For example, a government has to choose
the amounts to spend on health care and defense, and not all citizens’ preferences
are aligned on these issues. Unfortunately, for most configurations of the players’
preferences, a Condorcet winner does not exist in a policy space of two or more
dimensions, so that the core is empty.

To see why this claim is plausible, suppose the policy space is two-dimensional
and there are three players. Place the players’ favorite positions at three arbitrary
points, like x∗

1, x∗
2, and x∗

3 in Figure 258.1. Assume that each player i’s distaste for a
position x different from her favorite position x∗

i is exactly the distance between x
and x∗

i , so that for any value of r she is indifferent between all policies on the circle
with radius r centered at x∗

i .
Now choose any policy and ask if it is a Condorcet winner. The policy x in the

figure is not, because any policy in the shaded area is preferred to x by players 1
and 2, who constitute a majority. The policy x is also beaten in a majority vote by
any policy in either of the other lens-shaped areas defined by the intersection of the
circles centered at x∗

1, x∗
2, and x∗

3. Is there any policy for which no such lens-shaped
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x∗
1

x∗
2

x∗
3

x

Figure 258.1 A two-dimensional policy space with three players. The point x∗
i is the favorite position

of player i for i = 1, 2, 3. Every policy in the shaded lens is preferred by players 1 and 2 to x.

area is created? By checking a few other policies you can convince yourself that
there is no such policy. That is, no policy is a Condorcet winner, so that the core of
the game is empty.

For some configurations of the players’ favorite positions a Condorcet win-
ner exists. For example, if the positions lie on a straight line then the middle
one is a Condorcet winner. But only very special configurations yield a Con-
dorcet winner—in general there is none, so that the core is empty, and our analy-
sis suggests that no policy is stable under majority rule when the policy space is
multidimensional.

In some situations in which policies are determined by a vote, a decision re-
quires a positive vote by more than a simple majority. For example, some jury
verdicts in the USA require unanimity, and changes in some organizations’ and
countries’ constitutions require a two-thirds majority. To study the implications of
these alternative voting rules, fix q with n/2 ≤ q ≤ n and consider a variant of the
majority-rule game that I call the q-rule game, in which the only coalitions that can
choose policies are those containing at least q players. Roughly, the larger is the
value of q, the larger is the core. You are invited to explore some examples in the
next exercise.

? EXERCISE 258.1 (Cores of q-rule games)

a. Suppose that the set of policies is one-dimensional and that each player’s
preferences are single-peaked. Find the core of the q-rule game for any value
of q with n/2 ≤ q ≤ n.

b. Find the core of the q-rule game when q = 3 in the example in Figure 258.1
(with a two-dimensional policy space and three players).
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8.7 Illustration: matching

Applicants must be matched with universities, workers with firms, and football
players with teams. Do stable matchings exist? If so, what are their properties,
and which institutions generate them?

In this section I analyze a model of two-sided one-to-one matching: each party
on one side must be matched with exactly one party on the other side. Most of the
main ideas that emerge apply also to many-to-one matching problems.

The model I analyze is sometimes referred to as one of “marriage”, though of
course it captures only one dimension of matrimony. Some of the language I use is
taken from this interpretation of the model.

8.7.1 Model

I refer to the two sides as X’s and Y’s. Each X may be matched with at most one
Y, and each Y may be matched with at most one X; staying single is an option for
each individual. A matching of any set of individuals thus splits the set into pairs,
each consisting of an X and a Y, and single individuals. I denote the partner of any
player i under the matching µ by µ(i). If i and j are matched, we thus have µ(i) = j
and µ(j) = i; if i is single then µ(i) = i. Each person cares only about her partner,
not about anyone else’s partner. Assume that every person’s preferences are strict:
no person is indifferent between any two partners. I refer to the set of partners that
i prefers to the option of remaining single as the set of i’s acceptable partners. The
following coalitional game, which I refer to as a two-sided one-to-one matching
game, models this situation.

Players The set of all X’s and all Y’s.

Actions The set of actions of a coalition S is the set of all matchings of the
members of S.

Preferences Each player prefers one outcome to another according to the part-
ner she is assigned.

An example of possible preferences is given in Figure 260.1. For instance,
player x1 ranks y2 first, then y1, and finds y3 unacceptable.

8.7.2 The core and the deferred acceptance procedure

A matching in the core of a two-sided one-to-one matching game has the property
that no group of players may, by rearranging themselves, produce a matching that
they all like better. I claim that when looking for matchings in the core, we may
restrict attention to coalitions consisting either of a single individual or of one X
and one Y. Precisely, a matching is in the core if and only if

a. each player prefers her partner to being single
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X’s Y’s

x1 x2 x3 y1 y2 y3

y2 y1 y1 x1 x2 x1

y1 y2 y2 x3 x1 x3

y3 x2 x3 x2

Figure 260.1 An example of the players’ preferences in a two-sided one-to-one matching game. Each
column gives one player’s ranking (from best to worst) of all the players of the other type that she finds
acceptable.

b. for no pair (i, j) consisting of an X and a Y is it the case that i prefers j to µ(i)
and j prefers i to µ(j).

The following argument establishes this claim. First, any matching µ that does
not satisfy the conditions is not in the core: if (a) is violated then some player can
improve upon µ by staying single, and if (b) is violated then some pair of players
can improve upon µ by matching with each other. Second, suppose that µ is not in
the core. Then for some coalition S there is a matching µ′ of its members for which
every member i prefers µ′(i) to µ(i). If S consists of a single individual, then (a)
is violated. Otherwise suppose that i is a member of S, and let j = µ′(i), so that
i = µ′(j). Then i prefers j to µ(i) and j prefers i to µ(j). Thus (b) is violated.

In the game in which the players’ preferences are those given in Figure 260.1,
for example, the matching µ in which µ(x1) = y1, µ(x2) = y2, µ(x3) = x3, and
µ(y3) = y3 (i.e. x3 and y3 stay single) is in the core, by the following argument.
No single player can improve upon it, because every matched player’s partner is
acceptable to her. Now consider pairs of players. No pair containing x3 or y3 can
improve upon the matching, because x1 and x2 are matched with partners they
prefer to y3, and y1 and y2 are matched with partners they prefer to x3. A matched
pair cannot improve upon the matching either, so the only pairs to consider are
{x1, y2} and {x2, y1}. The first cannot improve upon µ because y2 prefers x2, with
whom she is matched, to x1; the second cannot upon µ because y1 prefers x1, with
whom she is matched, to x2.

How may matchings in the core be found? As in the case of the market for
houses studied in Section 8.5, one member of the core is generated by an intuitively
appealing procedure. (In contrast to the core of the house market, however, the
core of a two-sided one-to-one matching game may contain more than one action,
as we shall see.)

The procedure comes in two flavors, one in which proposals are made by X’s,
and one in which they are made by Y’s. The deferred acceptance procedure with pro-
posals by X’s is defined as follows. Initially, each X proposes to her favorite Y, and
each Y either rejects all the proposals she receives, if none is from an X acceptable
to her, or rejects all but the best proposal (according to her preferences). Each pro-
posal that is not rejected results in a tentative match between an X and a Y. If every
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offer is accepted, the process ends, and the tentative matches become definite. Oth-
erwise, there is a second stage in which each X whose proposal was rejected in the
first stage proposes to the Y she ranks second, and each Y chooses among the set
of X’s who proposed to her and the one with whom she was tentatively matched in
the first stage, rejecting all but her favorite among these X’s. Again, if every offer
is accepted, the process ends, and the tentative matches become definite, whereas
if some offer is rejected, there is another round of proposals.

Precisely, each stage has two steps, as follows.

1. Each X (a) whose offer was rejected at the previous stage and (b) for whom
some Y is acceptable, proposes to her top-ranked Y out of those who have
not previously rejected an offer from her.

2. Each Y rejects the proposal of any X who is unacceptable to her, and is “en-
gaged” to the X she likes best in the set consisting of all those who proposed
to her and the one to whom she was previously engaged.

The procedure stops when the proposal of no X is rejected or when every X whose
offer was rejected has run out of acceptable Y’s.

Consider, for example, the preferences in Figure 260.1. The progress of the
procedure is shown in Figure 261.1, in which “→” stands for “proposes to”. First
x1 proposes to y2 and both x2 and x3 propose to y1; y1 rejects x2’s proposal. Then
x2 proposes to y2, so that y2 may choose between x2 and x1 (with whom she was
tentatively matched at the first stage). Player y2 chooses x2, and rejects x1, who
then proposes to y1. Player y1 now chooses between x1 and x3 (with whom she
was tentatively matched at the first stage), and rejects x3. Finally, x3 proposes to
y2, who rejects her offer. The final matching is thus (x1, y1), (x2, y2), x3 (alone),
and y3 (alone).

Stage 1 Stage 2 Stage 3 Stage 4

x1: → y2 reject → y1

x2: → y1 reject → y2

x3: → y1 reject → y2 reject

Figure 261.1 The progress of the deferred acceptance procedure with proposals by X’s when the
players’ preferences are those given in Figure 260.1. Each row gives the proposals of one X.

For any preferences, the procedure eventually stops, because there are finitely
many players. To show that the matching µ it produces is in the core we need to
consider deviations by coalitions of only one or two players, by an earlier argu-
ment.

• No single player may improve upon µ because no X ever proposes to an
unacceptable Y, and every Y always rejects every unacceptable X.
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• Consider a coalition {i, j} of two players, where i is an X and j is a Y. If
i prefers j to µ(i), she must have proposed to j, and been rejected, before
proposing to µ(i). The fact that j rejected her proposal means that j obtained a
more desirable proposal. Thus j prefers µ(j) to i, so that {i, j} cannot improve
upon µ.

The analogous procedure in which proposals are made by Y’s generates a match-
ing in the core, by the same argument. For some preferences the matchings pro-
duced by the two procedures are the same, whereas for others they are different.

? EXERCISE 262.1 (Deferred acceptance procedure with proposals by Y’s) Find the
matching produced by the deferred acceptance procedure with proposals by Y’s
for the preferences given in Figure 260.1.

In particular, the core may contain more than one matching. It can be shown
that the matching generated by the deferred acceptance procedure with proposals
by X’s yields each X her most preferred partner among all her partners in match-
ings in the core, and yields each Y her least preferred partner among all her part-
ners in matchings in the core. Similarly, the matching generated by the deferred
acceptance procedure with proposals by Y’s yields each Y her most preferred part-
ner among all her partners in matchings in the core, and yields each X her least
preferred partner among all her partners in matchings in the core.

? EXERCISE 262.2 (Example of deferred acceptance procedure) Find the matchings
produced by the deferred acceptance procedure both with proposals by X’s and
with proposals by Y’s for the preferences given in Figure 262.1. Verify the results
in the previous paragraph. (Argue that the only matchings in the core are the two
generated by the procedures.)

x1 x2 x3 y1 y2 y3

y1 y1 y1 x1 x1 x1

y2 y2 y3 x2 x3 x2

y3 y3 y2 x3 x2 x3

Figure 262.1 The players’ preferences in the game in Exercise 262.2.

In summary, every two-sided one-to-one matching game has a nonempty core,
which contains the matching generated by each deferred acceptance procedure.
The matching generated by the procedure is the best one in the core for the side
making proposals, and the worst one in the core for the other side.

8.7.3 Variants

Strategic behavior So far, I have considered the deferred acceptance procedures
only as algorithms that an administrator who knows the participants’ preferences
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may use to find matchings in the core. Suppose the participants’ preferences are
not known. We may use the tools developed in Chapter 2 to study whether the
participants’ interests are served by revealing their true preferences. Consider the
strategic game in which each player names a ranking of her possible partners and
the outcome is the matching produced by the deferred acceptance procedure with
proposals by X’s, given the announced rankings. One can show that in this game
each X’s naming her true ranking is a dominant action, and although the equilib-
rium actions of Y’s may not be their true rankings, the equilibrium of the game is
in the core of the coalitional game defined by the players’ true rankings.

? EXERCISE 263.1 (Strategic behavior under a deferred acceptance procedure) Con-
sider the preferences in Figure 263.1. Find the matchings produced by the deferred
acceptance procedures, and show that the core contains no other matchings. Con-
sider the strategic game described in the previous paragraph that is induced by
the procedure with proposals by X’s. Take as given that each X’s naming her true
ranking is a dominant strategy. Show that the game has a Nash equilibrium in
which y1 names the ranking (x1, x2, x3) and every other player names her true
ranking.

x1 x2 x3 y1 y2 y3

y2 y1 y1 x1 x3 x1

y1 y3 y2 x3 x1 x3

y3 y2 y3 x2 x2 x2

Figure 263.1 The players’ preferences in the game in Exercise 263.1.

Other matching problems I motivated the topic of matching by citing the problems
of matching applicants with universities, workers with firms, and football players
with teams. All these problems are many-to-one rather than one-to-one. Under
mild assumptions about the players’ preferences, the results I have presented for
one-to-one matching games hold, with minor changes, for many-to-one matching
games. In particular, the strong core (defined on page 255) is nonempty, and a
variant of the deferred acceptance procedure generates matchings in it.

At this point you may suspect that the nonemptiness of the core in matching
games is a very general result. If so, the next exercise shows that your suspicion is
incorrect—at least, if “very general” includes the “roommate problem”.

? EXERCISE 263.2 (Empty core in roommate problem) An even number of people
have to be split into pairs; any person may be matched with any other person.
(The matching problem is “one-sided”.) Consider an example in which there are
four people, i, j, k, and �. Show that if the preferences of i, j, and k are those given
in Figure 264.1 then for any preferences of � the core is empty. (Notice that � is the
least favorite roommate of every other player.)
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i j k

j k i

k i j

� � �

Figure 264.1 The preferences of players i, j, and k in the game in Exercise 263.2.

?? EXERCISE 264.1 (Spatial preferences in roommate problem) An even number of
people have to be split into pairs. Each person’s characteristic is a number; no two
characteristics are the same. Each person would like to have a roommate whose
characteristic is as close as possible to her own, and prefers to be matched with the
most remote partner to remaining single. Find the set of matchings in the core.

MATCHING DOCTORS WITH HOSPITALS

Around 1900, newly-trained doctors in the USA were first given the option of work-
ing as “interns” (now called “residents”) in hospitals, where they gain experience
in clinical medicine. Initially, hospitals advertised positions, for which newly-
trained doctors applied. The number of positions exceeded the supply of doctors,
and the competition between hospitals for interns led the date at which agree-
ments were finalized to retreat. By 1944, student doctors were finalizing agree-
ments two full years before their internships were to begin. Making agreements at
such an early date was undesirable for hospitals, who at that point lacked extensive
information about the students.

The American Association of Medical Colleges attempted to solve the problem
by having its members agree not to release any information about students be-
fore the end of their third year (of a four-year program). This change prevented
hospitals from making earlier appointments, but in doing so brought to the fore
the problem of coordinating offers and acceptances. Hospitals wanted their first-
choice students to accept quickly, but students wanted to delay as much as possi-
ble, hoping to receive better offers. In 1945, hospitals agreed to give students 10
days to consider offers. But there was pressure to reduce this period. In 1949 a 12-
hour period was rejected by the American Hospital Association as too long; it was
agreed that all offers be made at 12:01AM on November 15, and hospitals could
insist on a response within any period. Forcing students to make decisions with-
out having a chance to collect offers from hospitals whose first-choice students had
rejected them obviously led to inefficient matches.

These difficulties with efficiently matching doctors with hospitals led to the
design of a centralized matching procedure that combines hospitals’ rankings of
students and students’ rankings of hospitals to produce an assignment of students
to hospitals. It can be shown that this procedure, designed ten years before Gale
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and Shapley’s work on the deferred acceptance procedure, generates a matching
in the core for any stated preferences! It differs from the natural generalization
of Gale and Shapley’s deferred acceptance procedure to a many-to-one matching
problem, but generates precisely the same matching, namely the one in the core
that is best for the hospitals. (Gale and Shapley, and the designers of the student–
hospital matching procedure were not aware of each other’s work until the mid-
1970s, when a physician heard Gale speak on his work.)

In the early years of operation of the procedure, over 95% of students and hos-
pitals participated. In the mid-1970s the participation rate fell to around 85%.
Many nonparticipants were married couples both members of which wished to
obtain positions in the same city. The matching procedure contained a mechanism
for dealing with married couples, but, unlike the mechanism for single students, it
could lead to a matching upon which some couple could improve. The difficulty is
serious: when couples exist who restrict themselves to accept positions in the same
city, for some preferences the core of the resulting game is empty—no matching is
stable.

Further problems arose. In the 1990s, associations of medical students began
to argue that changes were needed because the procedure was favorable to hos-
pitals, and possibilities for strategic behavior on the part of students existed. The
game theorist Alvin E. Roth was retained by the “National Resident Matching Pro-
gram” to design a new procedure to generate stable matchings that are as favor-
able as possible to applicants. The new procedure was first used in 1998; it matches
around 20,000 new doctors with hospitals each year.

8.8 Discussion: other solution concepts

In replacing the requirement of a Nash equilibrium that no individual player may
profitably deviate with the requirement that no group of players may profitably
deviate, the notion of the core makes an assumption that is unnecessary when
interpreting a Nash equilibrium. A single player who deviates from an action
profile in a strategic game can be sure of her deviant action, because she unilaterally
chooses it. But a member of a group of players that chooses a deviant action must
assume that no subgroup of her comrades will deviate further, or, at least, she will
remain better off if they do.

Consider, for example, the three-player majority game (Example 237.2 and Ex-
ercise 241.1). The action ( 1

2 , 1
2 , 0) of the grand coalition in this game is not in the

core because, for example, the coalition consisting of players 1 and 3 can take an
action that gives player 1 an amount x with 1

2 < x < 1 and player 3 the amount
1 − x, which leads to the payoff profile (x, 0, 1 − x). But this profile itself is not
stable—the coalition consisting of players 2 and 3, for example, has an action that
generates the payoff profile (0, y, 1 − y), where 0 < y < x, in which both of them
are better off than they are in (x, 0, 1 − x). The fact that player 3 will be tempted
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by an offer of player 2 to deviate from (x, 0, 1 − x) may dampen player 1’s en-
thusiasm for joining player 3 in the deviation from ( 1

2 , 1
2 , 0). For similar reasons,

player 2 may be reluctant to join in a deviation from this action.
Several solution concepts that take into account these considerations have been

suggested. None has so far had anything like the success of the core in illuminating
social and economic phenomena, however.

Notes

The notion of a coalitional game is due to von Neumann and Morgenstern (1944).
Shapley and Shubik (1953), Luce and Raiffa (1957, 234–235), and Aumann and
Peleg (1960) generalized von Numann and Morgenstern’s notion. The notion of the
core was introduced in the early 1950s by Gillies as a tool to study another solution
concept (his work is published in Gillies 1959); Shapley and Shubik developed it
as a solution concept.

Edgeworth (1881, 35–39) pointed out a connection between the competitive
equilibria of a market model and the set of outcomes we now call the core. von Neu-
mann and Morgensten (1944, 583–584) first suggested modeling markets as coali-
tional games; Shubik (1959a) recognized the game-theoretic content of Edgeworth’s
arguments and, together with Shapley (1959), developed the analysis. Section 8.3
is based on Shapley and Shubik (1967). The core of the market studied in Sec-
tion 8.4 was first studied by Shapley and Shubik (1971/72). My discussion owes a
debt to Moulin (1995, Section 2.3).

Voting behavior in committees was first studied formally by Black (1958) (writ-
ten in the mid-1940s), Black and Newing (1951), and Arrow (1951). Black used
the core as the solution (before it had been defined generally) and established the
median voter theorem (Exercise 257.1). He also noticed that in policy spaces of di-
mension greater than 1 a Condorcet winner is not likely to exist, a result extended
by Plott (1967) and refined by Banks (1995) and others, who find conditions relat-
ing the number of voters, the dimension of the policy space, and the value of q
for which the core of the q-rule game is generally empty; see Austen-Smith and
Banks (1999, Secton 6.1) for details.

The model and result on the nonemptiness of the core in Section 8.5 are due to
Shapley and Scarf (1974), who credit David Gale with the top trading cycle pro-
cedure. The result that the strong core contains a single action is due to Roth and
Postlewaite (1977). The model is discussed in detail by Moulin (1995, Section 3.2).

The model and main results in Section 8.7 are due to Gale and Shapley (1962).
The result about the strategic properties of the deferred acceptance procedures
at the end of the section is a combination of results due to Dubins and Freed-
man (1981) and Roth (1982), and to Roth (1984a). Exercise 263.1 is based on an
example in Moulin (1995, 113 and 116). Exercise 263.2 is taken from Gale and
Shapley (1962, Example 3). For a comprehensive presentation of results on two-
sided matching, see Roth and Sotomayor (1990). The box on page 264 is based



Notes 267

on Roth (1984b), Roth and Sotomayor (1990, Section 5.4), and Roth and Peran-
son (1999).
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9.1 Introduction

AN ASSUMPTION underlying the notion of Nash equilibrium is that each player
holds the correct belief about the other players’ actions. To do so, a player

must know the game she is playing; in particular, she must know the other players’
preferences. In many situations the participants are not perfectly informed about
their opponents’ characteristics: bargainers may not know each others’ valuations
of the object of negotiation, firms may not know each others’ cost functions, com-
batants may not know each others’ strengths, and jurors may not know their col-
leagues’ interpretations of the evidence in a trial. In some situations, a participant
may be well informed about her opponents’ characteristics, but may not know how
well these opponents are informed about her own characteristics. In this chapter I
describe the model of a “Bayesian game”, which generalizes the notion of a strate-
gic game to allows us to analyze any situation in which each player is imperfectly
informed about some aspect of her environment relevant to her choice of an action.

9.2 Motivational examples

I start with two examples that illustrate the main ideas in the model of a Bayesian
game. I define the notion of Nash equilibrium separately for each game. In the
next section I define the general model of a Bayesian game and the notion of Nash
equilibrium for such a game.

EXAMPLE 271.1 (Variant of BoS with imperfect information) Consider a variant of
the situation modeled by BoS (Figure 16.1) in which player 1 is unsure whether

271
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player 2 prefers to go out with her or prefers to avoid her, whereas player 2, as be-
fore, knows player 1’s preferences. Specifically, suppose player 1 thinks that with
probability 1

2 player 2 wants to got out with her, and with probability 1
2 player 2

wants to avoid her. (Presumably this assessment comes from player 1’s experi-
ence: half of the time she is involved in this situation she faces a player who
wants to go out with her, and half of the time she faces a player who wants to
avoid her.) That is, player 1 thinks that with probability 1

2 she is playing the game
on the left of Figure 272.1 and with probability 1

2 she is playing the game on the
right. Because probabilities are involved, an analysis of the situation requires us to
know the players’ preferences over lotteries, even if we are interested only in pure
strategy equilibria; thus the numbers in the tables are Bernoulli payoffs.

B S
B 2, 1 0, 0
S 0, 0 1, 2

2 wishes to meet 1

B S
B 2, 0 0, 2
S 0, 1 1, 0

2 wishes to avoid 1

1
prob. 1

2 prob. 1
2

2 2

Figure 272.1 A variant of BoS in which player 1 is unsure whether player 2 wants to meet her or to
avoid her. The frame labeled 2 enclosing each table indicates that player 2 knows the relevant table.
The frame labeled 1 enclosing both tables indicates that player 1 does not know the relevant table; the
probabilities she assigns to the two tables are printed on the frame.

We can think of there being two states, one in which the players’ Bernoulli pay-
offs are given in the left table and one in which these payoffs are given in the right
table. Player 2 knows the state—she knows whether she wishes to meet or avoid
player 2—whereas player 1 does not; player 1 assigns probability 1

2 to each state.
The notion of Nash equilibrium for a strategic game models a steady state in

which each player’s beliefs about the other players’ actions are correct, and each
player acts optimally, given her beliefs. We wish to generalize this notion to the
current situation.

From player 1’s point of view, player 2 has two possible types, one whose pref-
erences are given in the left table of Figure 272.1, and one whose preferences are
given in the right table. Player 1 does not know player 2’s type, so to choose an
action rationally she needs to form a belief about the action of each type. Given
these beliefs and her belief about the likelihood of each type, she can calculate her
expected payoff to each of her actions. For example, if she thinks that the type who
wishes to meet her will choose B and the type who wishes to avoid her will choose
S, then she thinks that B will yield her a payoff of 2 with probability 1

2 and a payoff
of 0 with probability 1

2 , so that her expected payoff is 1
2 · 2 + 1

2 · 0 = 1, and S will
yield her an expected payoff of 1

2 · 0 + 1
2 · 1 = 1

2 . Similar calculations for the other
combinations of actions for the two types of player 2 yield the expected payoffs
in Figure 273.1. Each column of the table is a pair of actions for the two types of
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player 2, the first member of each pair being the action of the type who wishes to
meet player 1 and the second member being the action of the type who wishes to
avoid player 1.

(B, B) (B, S) (S, B) (S, S)

B 2 1 1 0

S 0 1
2

1
2 1

Figure 273.1 The expected payoffs of player 1 for the four possible pairs of actions of the two types of
player 2 in Example 271.1.

For this situation we define a pure strategy Nash equilibrium to be a triple of
actions, one for player 1 and one for each type of player 2, with the property that

• the action of player 1 is optimal, given the actions of the two types of player 2
(and player 1’s belief about the state)

• the action of each type of player 2 is optimal, given the action of player 1.

That is, we treat the two types of player 2 as separate players, and analyze the
situation as a three-player strategic game in which player 1’s payoffs as a function
of the actions of the two other players (i.e. the two types of player 2) are given in
Figure 273.1, and the payoff of each type of player 2 is independent of the actions
of the other type and depends on the action of player 1 as given in the tables in
Figure 272.1 (the left table for the type who wishes to meet player 1, and the right
table for the type who wishes to avoid player 1). In a Nash equilibrium, player 1’s
action is a best response in Figure 273.1 to the pair of actions of the two types of
player 2, the action of the type of player 2 who wishes to meet player 1 is a best
response in the left table of Figure 272.1 to the action of player 1, and the action
of the type of player 2 who wishes to avoid player 1 is a best response in the right
table of Figure 272.1 to the action of player 1.

Why should player 2, who knows whether she wants to meet or avoid player 1,
have to plan what to do in both cases? She does not have to do so! But we, as
analysts, need to consider what she does in both cases, because player 1, who does
not know player 2’s type, needs to think about the action each type would take; we
would like to impose the condition that player 1’s beliefs are correct, in the sense
that for each type of player 2 they specify a best response to player 1’s equilibrium
action.

I claim that (B, (B, S)), where the first component is the action of player 1 and
the other component is the pair of actions of the two types of player 2, is a Nash
equilibrium. Given that the actions of the two types of player 2 are (B, S), player 1’s
action B is optimal, from Figure 273.1; given that player 1 chooses B, B is optimal
for the type who wishes to meet player 2 and S is optimal for the type who wishes
to avoid player 2, from Figure 272.1. Suppose that in fact player 2 wishes to meet
player 1. Then we interpret the equilibrium as follows. Both player 1 and player 2
chooses B; player 1, who does not know if player 2 wants to meet her or avoid her,
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believes that if player 2 wishes to meet her she will choose B, and if she wishes to
avoid her she will choose S.

? EXERCISE 274.1 (Equilibria of a variant of BoS with imperfect information) Show
that there is no pure strategy Nash equilibrium of this game in which player 1
chooses S. If you have studied mixed strategy Nash equilibrium (Chapter 4),
find the mixed strategy Nash equilibria of the game. (First check whether there
is an equilibrium in which both types of player 2 use pure strategies, then look for
equilibria in which one or both of these types randomize.)

We can interpret the actions of the two types of player 2 to reflect player 2’s
intentions in the hypothetical situation before she knows the state. We can tell the
following story. Initially player 2 does not know the state; she is informed of the
state by a signal that depends on the state. Before receiving this signal, she plans
an action for each possible signal. After receiving the signal she carries out her
planned action for that signal. We can tell a similar story for player 1. To be consis-
tent with her not knowing the state when she takes an action, her signal must be
uninformative: it must be the same in each state. Given her signal, she is unsure
of the state; when choosing an action she takes into account her belief about the
likelihood of each state, given her signal. The framework of states, beliefs, and
signals is unnecessarily baroque in this simple example, but comes into its own in
the analysis of more complex situations.

EXAMPLE 274.2 (Variant of BoS with imperfect information) Consider another vari-
ant of the situation modeled by BoS, in which neither player knows whether the
other wants to go out with her. Specifically, suppose that player 1 thinks that with
probability 1

2 player 2 wants to go out with her, and with probability 1
2 player 2

wants to avoid her, and player 2 thinks that with probability 2
3 player 1 wants to

go out with her and with probability 1
3 player 1 wants to avoid her. As before,

assume that each player knows her own preferences.
We can model this situation by introducing four states, one for each of the pos-

sible configurations of preferences. I refer to these states as yy (each player wants
to go out with the other), yn (player 1 wants to go out with player 2, but player 2
wants to avoid player 1), ny, and nn.

The fact that player 1 does not know player 2’s preferences means that she can-
not distinguish between states yy and yn, or between states ny and nn. Similarly,
player 2 cannot distinguish between states yy and ny, and between states yn and
nn. We can model the players’ information by assuming that each player receives
a signal before choosing an action. Player 1 receives the same signal, say y1, in
states yy and yn, and a different signal, say n1, in states ny and nn; player 2 re-
ceives the same signal, say y2, in states yy and ny, and a different signal, say n2, in
states yn and nn. After player 1 receives the signal y1, she is referred to as type y1
of player 1 (who wishes to go out with player 2); after she receives the signal n1
she is referred to as type n1 of player 1 (who wishes to avoid player 2). Similarly,
player 2 has two types, y2 and n2.
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Type y1 of player 1 believes that the probability of each of the states yy and yn
is 1

2 ; type n1 of player 1 believes that the probability of each of the states ny and nn
is 1

2 . Similarly, type y2 of player 2 believes that the probability of state yy is 2
3 and

that of state ny is 1
3 ; type n2 of player 2 believes that the probability of state yn is 2

3
and that of state nn is 1

3 . This model of the situation is illustrated in Figure 275.1.

B S
B 2, 1 0, 0
S 0, 0 1, 2

State yy

B S
B 2, 0 0, 2
S 0, 1 1, 0

State yn

B S
B 0, 1 2, 0
S 1, 0 0, 2

State ny

B S
B 0, 0 2, 2
S 1, 1 0, 0

State nn

1: n1

1: y1

2: y2 2: n2
1
2

1
2

1
2

1
2

1
3

2
3

1
3

2
3

Figure 275.1 A variant of BoS in which each player is unsure of the other player’s preferences. The
frame labeled i: x encloses the states that generate the signal x for player i; the numbers printed over
this frame next to each table are the probabilities that type x of player i assigns to each state that she
regards to be possible.

As in the previous example, to study the equilibria of this model we consider
the players’ plans of action before they receive their signals. That is, each player
plans an action for each of the two possible signals she may receive. We may think
of there being four players: the two types of player 1 and the two types of player 2.
A Nash equilibrium consists of four actions, one for each of these players, such that
the action of each type of each original player is optimal, given her belief about
the state after observing her signal, and given the actions of each type of the other
original player.

Consider the payoffs of type y1 of player 1. She believes that with probability 1
2

she faces type y2 of player 2, and with probability 1
2 she faces type n2. Suppose that

type y2 of player 2 chooses B and type n2 chooses S. Then if type y1 of player 1
chooses B, her expected payoff is 1

2 · 2 + 1
2 · 0 = 1, and if she chooses S, her expected

payoff is 1
2 · 0 + 1

2 · 1 = 1
2 . Her expected payoffs for all four pairs of actions of the

two types of player 2 are given in Figure 276.1.

? EXERCISE 275.1 (Expected payoffs in a variant of BoS with imperfect information)
Construct tables like the one in Figure 276.1 for type n1 of player 1, and for types y2
and n2 of player 2.

I claim that ((B, B), (B, S)) and ((S, B), (S, S)) are Nash equilibria of the game,
where in each case the first component gives the actions of the two types of player 1
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(B, B) (B, S) (S, B) (S, S)

B 2 1 1 0

S 0 1
2

1
2 1

Figure 276.1 The expected payoffs of type y1 of player 1 in Example 274.2. Each row corresponds to a
pair of actions for the two types of player 2; the action of type y2 is listed first, that of type n2 second.

and the second component gives the actions of the two types of player 2. Using
Figure 276.1 you may verify that B is a best response of type y1 of player 1 to the
pair (B, S) of actions of player 2, and S is a best response to the pair of actions
(S, S). You may use your answer to Exercise 275.1 to verify that in each of the
claimed Nash equilibria the action of type n1 of player 1 and the action of each
type of player 2 is a best response to the other players’ actions.

In each of these examples a Nash equilibrium is a list of actions, one for each
type of each player, such that the action of each type of each player is a best re-
sponse to the actions of all the types of the other player, given the player’s beliefs
about the state after she observes her signal. The actions planned by the various
types of player i are not relevant to the decision problem of any type of player i,
but there is no harm in taking them, as well as the actions of the types of the other
player, as given when player i is choosing an action. Thus we may define a Nash
equilibrium in each example to be a Nash equilibrium of the strategic game in
which the set of players is the set of all types of all players in the original situation.

In the next section I define the general notion of a Bayesian game, and the
notion of Nash equilibrium in such a game. These definitions require significant
theoretical development. If you find the theory in the next section heavy-going,
you may be able to skim the section and then study the subsequent illustrations,
relying on the intuition developed in the examples in this section, and returning to
the theory only as necessary for clarification.

9.3 General definitions

9.3.1 Bayesian games

A strategic game with imperfect information is called a “Bayesian game”. (The
reason for this nomenclature will become apparent.) As in a strategic game, the
decision-makers are called players, and each player is endowed with a set of actions.

A key component in the specification of the imperfect information is the set of
states. Each state is a complete description of one collection of the players’ relevant
characteristics, including both their preferences and their information. For every
collection of characteristics that some player believes to be possible, there must
be a state. For instance, suppose in Example 271.1 that player 2 wishes to meet
player 1. In this case, the reason for including in the model the state in which
player 2 wishes to avoid player 1 is that player 1 believes such a preference to be
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possible.
At the start of the game a state is realized. The players do not observe this state.

Rather, each player receives a signal that may give her some information about the
state. Denote the signal player i receives in state ω by τi(ω). The function τi is
called player i’s signal function. (Note that the signal is a deterministic function of
the state: for each state a definite signal is received.) The states that generate any
given signal ti are said to be consistent with ti. The sizes of the sets of states con-
sistent with each of player i’s signals reflect the quality of player i’s information.
If, for example, τi(ω) is different for each value of ω, then player i knows, given
her signal, the state that has occurred; after receiving her signal, she is perfectly
informed about all the players’ relevant characteristics. At the other extreme, if
τi(ω) is the same for all states, then player i’s signal conveys no information about
the state. If τi(ω) is constant over some subsets of the set of states, but is not the
same for all states, then player i’s signal conveys partial information. For example,
if there are three states, ω1, ω2, and ω3, and τi(ω1) �= τi(ω2) = τi(ω3), then when
the state is ω1 player i knows that it is ω1, whereas when it is either ω2 or ω3 she
knows only that it is one of these two states.

We refer to player i in the event that she receives the signal ti as type ti of
player i. Each type of each player holds a belief about the likelihood of the states
consistent with her signal. If, for example, ti = τi(ω1) = τi(ω2), then type ti
of player i assigns probabilities to ω1 and ω2. (A player who receives a signal
consistent with only one state naturally assigns probability 1 to that state.)

Each player may care about the actions chosen by the other players, as in a
strategic game with perfect information, and also about the state. The players
may be uncertain about the state, so we need to specify their preferences regard-
ing probability distributions over pairs (a, ω) consisting of an action profile a and
a state ω. I assume that each player’s preferences over such probability distribu-
tions are represented by the expected value of a Bernoulli payoff function. Thus I
specify each player i’s preferences by giving a Bernoulli payoff function ui over
pairs (a, ω). (Note that in both Example 271.1 and Example 274.2, both players
care only about the other player’s action, not independently about the state.)

In summary, a Bayesian game is defined as follows.

� DEFINITION 277.1 A Bayesian game consists of

• a set of players

• a set of states

and for each player

• a set of actions

• a set of signals that she may receive and a signal function that associates a
signal with each state
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• for each signal that she may receive, a belief about the states consistent with
the signal (a probability distribution over the set of states with which the
signal is associated)

• a Bernoulli payoff function over pairs (a, ω), where a is an action profile and
ω is a state, the expected value of which represents the player’s preferences
among lotteries over the set of such pairs.

The eponymous Thomas Bayes (1702–61) first showed how probabilities should
be changed in the light of new information. His formula (discussed in Section 17.7.5)
is needed when working with a variant of Definition 277.1 in which each player is
endowed with a “prior” belief about the states, from which the belief of each of her
types is derived. For the purposes of this chapter, the belief of each type of each
player is more conveniently taken as a primitive, rather than being derived from a
prior belief.

The game in Example 271.1 fits into this general definition as follows.

Players The pair of people.

States The set of states is {meet, avoid}.

Actions The set of actions of each player is {B, S}.

Signals Player 1 may receive a single signal, say z; her signal function τ1 satis-
fies τ1(meet) = τ1(avoid) = z. Player 2 receives one of two signals, say m and
v; her signal function τ2 satisfies τ2(meet) = m and τ2(avoid) = v.

Beliefs Player 1 assigns probability 1
2 to each state after receiving the signal z.

Player 2 assigns probability 1 to the state meet after receiving the signal m,
and probability 1 to the state avoid after receiving the signal v.

Payoffs The payoffs ui(a, meet) of each player i for all possible action pairs are
given in the left panel of Figure 272.1, and the payoffs ui(a, avoid) are given
in the right panel.

Similarly, the game in Example 274.2 fits into the definition as follows.

Players The pair of people.

States The set of states is {yy, yn, ny, nn}.

Actions The set of actions of each player is {B, S}.

Signals Player 1 receives one of two signals, y1 and n1; her signal function
τ1 satisfies τ1(yy) = τ1(yn) = y1 and τ1(ny) = τ1(nn) = n1. Player 2 re-
ceives one of two signals, y2 and n2; her signal function τ2 satisfies τ2(yy) =
τ2(ny) = y2 and τ2(yn) = τ2(nn) = n2.
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Beliefs Player 1 assigns probability 1
2 to each of the states yy and yn after re-

ceiving the signal y1 and probability 1
2 to each of the states ny and nn after

receiving the signal n1. Player 2 assigns probability 2
3 to the state yy and

probability 1
3 to the state ny after receiving the signal y2, and probability 2

3 to
the state yn and probability 1

3 to the state nn after receiving the signal n2.

Payoffs The payoffs ui(a, ω) of each player i for all possible action pairs and
states are given in Figure 275.1.

9.3.2 Nash equilibrium

In a strategic game, each player chooses an action. In a Bayesian game, each player
chooses a collection of actions, one for each signal she may receive. That is, in a
Bayesian game each type of each player chooses an action. In a Nash equilibrium
of such a game, the action chosen by each type of each player is optimal, given the
actions chosen by every type of every other player. (In a steady state, each player’s
experience teaches her these actions.) Any given type of player i is not affected by
the actions chosen by the other types of player i, so there is no harm in thinking
that player i takes as given these actions, as well as those of the other players. Thus
we may define a Nash equilibrium of a Bayesian game to be a Nash equilibrium
of a strategic game in which each player is one type of one of the players in the
Bayesian game. What is each player’s payoff function in this strategic game?

Consider type ti of player i. For each state ω she knows every other player’s
type (i.e. she knows the signal received by every other player). This information,
together with her belief about the states, allows her to calculate her expected pay-
off for each of her actions and each collection of actions for the various types of the
other players. For instance, in Example 271.1, player 1’s belief is that the probabil-
ity of each state is 1

2 , and she knows that player 2 is type m in the state meet and
type v in the state avoid. Thus if type m of player 2 chooses B and type v of player 2
chooses S, player 1 thinks that if she chooses B then her expected payoff is

1
2 u1(B, B, meet) + 1

2 u1(B, S, avoid),

where u1 is her payoff function in the Bayesian game. (In general her payoff may
depend on the state, though in this example it does not.) The top box of the second
column in Figure 273.1 gives this payoff; the other boxes give player 1’s payoffs for
her other action and the other combinations of actions for the two types of player 2.

In a general game, denote the probability assigned by the belief of type ti of
player i to state ω by Pr(ω|ti). Denote the action taken by each type tj of each
player j by a(j, tj). Player j’s signal in state ω is τj(ω), so her action in state ω

is a(j, τj(ω)). For each state ω, denote by â(ω) the action profile in which each
player j chooses the action a(j, τj(ω)). Then the expected payoff of type ti of
player i when she chooses the action ai is

∑
ω∈Ω

Pr(ω | ti)ui((ai , â−i(ω)), ω), (279.1)



280 Chapter 9. Bayesian Games

where Ω is the set of states and (ai, â−i(ω)) is the action profile in which player i
chooses the action ai and every other player j chooses âj(ω). (Note that this ex-
pected payoff does not depend on the actions of any other types of player i, but
only on the actions of the various types of the other players.)

We may now define precisely a Nash equilibrium of a Bayesian game.

� DEFINITION 280.1 A Nash equilibrium of a Bayesian game is a Nash equilibrium
of the strategic game (with vNM preferences) defined as follows.

Players The set of all pairs (i, ti) where i is a player in the Bayesian game and ti is
one of the signals that i may receive.

Actions The set of actions of each player (i, ti) is the set of actions of player i in
the Bayesian game.

Preferences The Bernoulli payoff function of each player (i, ti) is given by (279.1).

? EXERCISE 280.2 (A fight with imperfect information about strengths) Two people
are involved in a dispute. Person 1 does not know whether person 2 is strong
or weak; she assigns probability α to person 2’s being strong. Person 2 is fully
informed. Each person can either fight or yield. Each person’s preferences are
represented by the expected value of a Bernoulli payoff function that assigns the
payoff of 0 if she yields (regardless of the other person’s action) and a payoff of
1 if she fights and her opponent yields; if both people fight then their payoffs are
(−1, 1) if person 2 is strong and (1, −1) if person 2 is weak. Formulate this situation
as a Bayesian game and find its Nash equilibria if α < 1

2 and if α > 1
2 .

? EXERCISE 280.3 (An exchange game) Each of two individuals receives a ticket on
which there is an integer from 1 to m indicating the size of a prize she may receive.
The individuals’ tickets are assigned randomly and independently; the probabil-
ity of an individual’s receiving each possible number is positive. Each individ-
ual is given the option to exchange her prize for the other individual’s prize; the
individuals are given this option simultaneously. If both individuals wish to ex-
change then the prizes are exchanged; otherwise each individual receives her own
prize. Each individual’s objective is to maximize her expected monetary payoff.
Model this situation as a Bayesian game and show that in any Nash equilibrium the
highest prize that either individual is willing to exchange is the smallest possible
prize.

? EXERCISE 280.4 (Adverse selection) Firm A (the “acquirer”) is considering taking
over firm T (the “target”). It does not know firm T’s value; it believes that this
value, when firm T is controlled by its own management, is at least $0 and at most
$100, and assigns equal probability to each of the 101 dollar values in this range.
Firm T will be worth 50% more under firm A’s management than it is under its
own management. Suppose that firm A bids y to take over firm T, and firm T is
worth x (under its own management). Then if T accepts A’s offer, A’s payoff is
3
2 x − y and T’s payoff is y; if T rejects A’s offer, A’s payoff is 0 and T’s payoff is
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x. Model this situation as a Bayesian game in which firm A chooses how much
to offer and firm T decides the lowest offer to accept. Find the Nash equilibrium
(equilibria?) of this game. Explain why the logic behind the equilibrium is called
adverse selection.

9.4 Two examples concerning information

The notion of a Bayesian game may be used to study how information patterns
affect the outcome of strategic interaction. Here are two examples.

9.4.1 More information may hurt

A decision-maker in a single-person decision problem cannot be worse off if she
has more information: if she wishes, she can ignore the information. In a game the
same is not true: if a player has more information and the other players know that
she has more information then she may be worse off.

Consider, for example, the two-player Bayesian game in Figure 281.1, where
0 < ε < 1

2 . In this game there are two states, and neither player knows the state.
Player 2’s unique best response to every strategy of player 1 is L (which yields the
expected payoff 2 − 2(1 − ε)p, whereas M and R both yield 3

2 − 3
2 (1 − ε)p, where

p is the probability player 1 assigns to T), and player 1’s unique best response to L
is B. Thus (B, L) is the unique Nash equilibrium of the game, yielding each player
a payoff of 2.

L M R
T 1, 2ε 1, 0 1, 3ε

B 2, 2 0, 0 0, 3

State ω1

L M R
T 1, 2ε 1, 3ε 1, 0
B 2, 2 0, 3 0, 0

State ω2

1

2

1
2

1
2

1
2

1
2

Figure 281.1 The first Bayesian game considered in Section 9.4.1.

Now consider the variant of this game in which player 2 is informed of the state:
player 2’s signal function τ2 satisfies τ2(ω1) �= τ2(ω2). In this game (T, (R, M)) is
the unique Nash equilibrium. (Each type of player 2 has a strictly dominant action,
to which T is player 1’s unique best response.)

Player 2’s payoff in the unique Nash equilibrium of the original game is 2,
whereas her payoff in the unique Nash equilibrium of the game in which she
knows the state is 3ε in each state. Thus she is worse off when she knows the
state than when she does not.

Player 2’s action R is good only in state ω1 whereas her action M is good only
in state ω2. When she does not know the state she optimally chooses L, which is
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better than the average of R and M whatever player 1 does. Her choice induces
player 1 to choose B. When player 2 is fully informed she optimally tailors her
action to the state, which induces player 1 to choose T. There is no steady state in
which she ignores her information and chooses L because this action leads player 1
to choose B, making R better for player 2 in state ω1 and M better in state ω2.

9.4.2 Infection

The notion of a Bayesian game may be used to model not only situations in which
players are uncertain about each others’ preferences, but also situations in which
they are uncertain about each others’ knowledge. Consider, for example, the Bayesian
game in Figure 282.1.

L R
L 2, 2 0, 0
R 3, 0 1, 1

State α

L R
L 2, 2 0, 0
R 0, 0 1, 1

State β

L R
L 2, 2 0, 0
R 0, 0 1, 1

State γ

1
2

3
4

1
4

3
4

1
4

1
2

Figure 282.1 The first Bayesian game in Section 9.4.2. In the unique Nash equilibrium of this game,
each type of each player chooses R.

Notice that player 2’s preferences are the same in all three states, and player 1’s
preferences are the same in states β and γ. In particular, in state γ, each player
knows the other player’s preferences, and player 2 knows that player 1 knows her
preferences. The shortcoming in the players’ information in state γ is that player 1
does not know that player 2 knows her preferences: player 1 knows only that the
state is either β or γ, and in state β player 2 does not know whether the state is α or
β, and hence does not know player 1’s preferences (because player 1’s preferences
in these two states differ).

This imperfection in player 1’s knowledge of player 2’s information signifi-
cantly affects the equilibria of the game. If information were perfect in state γ,
then both (L, L) and (R, R) would be Nash equilibria. However, the whole game
has a unique Nash equilibrium, in which the outcome in state γ is (R, R), as you are
asked to show in the next exercise. The argument shows that the incentives faced
by player 1 in state α “infect” the remainder of the game.

? EXERCISE 282.1 (Infection) Show that the Bayesian game in Figure 282.1 has a
unique Nash equilibrium, in which each player chooses R regardless of her sig-
nal. (Start by considering player 1’s action in state α. Next consider player 2’s
action when she gets the signal that the state is α or β. Then consider player 1’s
action when she gets the signal that the state is β or γ. Finally consider player 2’s
action in state γ.)
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Now extend the game as in Figure 283.1. Consider state δ. In this state, player 2
knows player 1’s preferences (because she knows that the state is either γ or δ, and
in both states player 1’s preferences are the same). What player 2 does not know is
whether player 1 knows that player 2 knows player 1’s preferences. The reason is
that player 2 does not know whether the state is γ or δ; and in state γ player 1 does
not know that player 2 knows her preferences, because she does not know whether
the state is β or γ, and in state β player 2 (who does not know whether the state
is α or β) does not know her preferences. Thus the level of the shortcoming in the
players’ information is higher than it is in the game in Figure 282.1. Nevertheless,
the incentives faced by player 1 in state α again “infect” the remainder of the game,
and in the only Nash equilibrium every type of each player chooses R.

L R
L 2, 2 0, 0
R 3, 0 1, 1

State α

L R
L 2, 2 0, 0
R 0, 0 1, 1

State β

L R
L 2, 2 0, 0
R 0, 0 1, 1

State γ

L R
L 2, 2 0, 0
R 0, 0 1, 1

State δ

3
4

1
4

3
4

1
4

3
4

1
4

1 1 1
2 2

Figure 283.1 The second Bayesian game in Section 9.4.2.

The game may be further extended. As it is extended, the level of the imper-
fection in the players’ information in the last state increases. When the number of
states is large, the players’ information in the last state is only very slightly imper-
fect. Nevertheless, the incentives of player 1 in state α still cause the game to have
a unique Nash equilibrium, in which every type of each player chooses R.

In each of these examples, the equilibrium induces an outcome in every state
that is worse for both players than another outcome (namely (L, L)); in all states
but the first, the alternative outcome is a Nash equilibrium in the game with perfect
information. For some other specifications of the payoffs in state α and the players’
beliefs, the game has a unique equilibrium in which the “good” outcome (L, L)
occurs in every state; the point is only that one of the two Nash equilibria are
selected, not that the “bad” equilibrium is necessarily selected. (Modify the payoffs
of player 1 in state α so that L strictly dominates R, and change the beliefs to assign
probability 1

2 to each state compatible with each signal.)

9.5 Illustration: Cournot’s duopoly game with imperfect information

9.5.1 Imperfect information about cost

Two firms compete in selling a good; one firm does not know the other firm’s cost
function. How does the imperfect information affect the firms’ behavior?

Assume that both firms can produce the good at constant unit cost. Assume
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also that they both know that firm 1’s unit cost is c, but only firm 2 knows its own
unit cost; firm 1 believes that firm 2’s cost is cL with probability θ and cH with
probability 1 − θ, where 0 < θ < 1 and cL < cH .

We may model this situation as a Bayesian game that is a variant of Cournot’s
game (Section 3.1).

Players Firm 1 and firm 2.

States {L, H}.

Actions Each firm’s set of actions is the set of its possible outputs (nonnegative
numbers).

Signals Firm 1’s signal function τ1 satisfies τ1(H) = τ2(L) (its signal is the
same in both states); firm 2’s signal function τ2 satisfies τ2(H) �= τ2(L) (its
signal is perfectly informative of the state).

Beliefs The single type of firm 1 assigns probability θ to state L and probabil-
ity 1 − θ to state H. Each type of firm 2 assigns probability 1 to the single
state consistent with its signal.

Payoff functions The firms’ Bernoulli payoffs are their profits; if the actions
chosen are (q1, q2) and the state is I (either L or H) then firm 1’s profit is
q1(P(q1 + q2) − c) and firm 2’s profit is q2(P(q1 + q2) − cI), where P(q1 + q2)
is the market price when the firms’ outputs are q1 and q2.

The information structure in this game is similar to that in Example 271.1; it is
illustrated in Figure 284.1.

1
θ 1 − θ

L H

2: L 2: H

Figure 284.1 The information structure for the model in the variant of Cournot’s model in Section 9.5.1,
in which firm 1 does not know firm 2’s cost. The frame labeled 2: x , for x = L and x = H, encloses the
state that generates the signal x for firm 2.

A Nash equilibrium of this game is a triple (q∗1, q∗L, q∗H), where q∗1 is the output
of firm 1, q∗L is the output of type L of firm 2 (i.e. firm 2 when it receives the signal
τ2(L)), and q∗H is the output of type H of firm 2 (i.e. firm 2 when it receives the
signal τ2(H)), such that

• q∗1 maximizes firm 1’s profit given the output q∗L of type L of firm 2 and the
output q∗H of type H of firm 2

• q∗L maximizes the profit of type L of firm 2 given the output q∗1 of firm 1
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• q∗H maximizes the profit of type H of firm 2 given the output q∗1 of firm 1.

To find an equilibrium, we first find the firms’ best response functions. Given
firm 1’s posterior beliefs, its best response b1(qL, qH) to (qL, qH) solves

max
q1

[θ(P(q1 + qL) − c)q1 + (1 − θ)(P(q1 + qH) − c)q1] .

Firm 2’s best response bL(q1) to q1 when its cost is cL solves

max
qL

[(P(q1 + qL) − cL)qL] ,

and its best response bH(q1) to q1 when its cost is cH solves

max
qH

[(P(q1 + qH) − cH)qH ] .

A Nash equilibrium is a triple (q∗1, q∗L, q∗H) such that

q∗1 = b1(q∗L, q∗H), q∗L = bL(q∗1), and q∗H = bH(q∗1).

? EXERCISE 285.1 (Cournot’s duopoly game with imperfect information) Consider
the game when the inverse demand function is given by P(Q) = α − Q for Q ≤ α

and P(Q) = 0 for Q > α (see (54.2)). For values of cH and cL close enough that
there is a Nash equilibrium in which all outputs are positive, find this equilibrium.
Compare this equilibrium with the Nash equilibrium of the game in which firm 1
knows that firm 2’s unit cost is cL, and with the Nash equilibrium of the game in
which firm 1 knows that firm 2’s unit cost is cH .

9.5.2 Imperfect information about both cost and information

Now suppose that firm 2 does not know whether firm 1 knows its cost. That is,
suppose that one circumstance that firm 2 believes to be possible is that firm 1
knows it cost (although in fact it does not). Because firm 2 thinks this circumstance
to be possible, we need four states to model the situation, which I call L0, H0, L1,
and H1, with the following interpretations.

L0: firm 2’s cost is low and firm 1 does not know whether it is low or high

H0: firm 2’s cost is high and firm 1 does not know whether it is low or high

L1: firm 2’s cost is low and firm 1 knows it is low

H1: firm 2’s cost is high and firm 1 knows it is high.

Firm 1 receives one of three possible signals, 0, L, and H. The states L0 and H0
generate the signal 0 (firm 1 does not know firm 2’s cost), the state L1 generates
the signal L (firm 1 knows firm 2’s cost is low), and the state H1 generates the
signal H (firm 1 knows firm 2’s cost is high). Firm 2 receives one of two possible
signals, L, in states L0 and L1, and H, in states H0 and H1. Denote by θ (as before)
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the probability assigned by type 0 of firm 1 to firm 2’s cost being cL, and by π the
probability assigned by each type of firm 2 to firm 1’s knowing firm 2’s cost. (The
case π = 0 is equivalent to the one considered in the previous section.) A Bayesian
game that models the situation is defined as follows.

Players Firm 1 and firm 2.

States {L0, L1, H0, H1}, where the first letter in the name of the state indi-
cates firm 2’s cost and the second letter indicates whether (1) or not (0) firm 1
knows firm 2’s cost.

Actions Each firm’s set of actions is the set of its possible outputs (nonnegative
numbers).

Signals Firm 1 gets one of the signals 0, L, and H, and her signal function τ1
satisfies τ1(L0) = τ1(H0) = 0, τ1(L1) = L, and τ1(H1) = H. Firm 2 gets the
signal L or H and her signal function τ2 satisfies τ2(L0) = τ2(L1) = L and
τ2(H0) = τ2(H1) = H.

Beliefs Firm 1: type 0 assigns probability θ to state L0 and probability 1 − θ to
state H0; type L assigns probability 1 to state L1; type H assigns probability 1
to state H. Firm 2: type L assigns probability π to state L1 and probability 1−
π to state L0; type H assigns probability π to state H1 and probability 1 − π

to state H0.

Payoff functions The firms’ Bernoulli payoffs are their profits; if the actions
chosen are (q1, q2), then firm 1’s profit is q1(P(q1 + q2)− c) and firm 2’s profit
is q2(P(q1 + q2)− cL) in states L0 and L1, and q2(P(q1 + q2)− cL) in states H0
and H1.

The information structure in this game is illustrated in Figure 287.1. You are
asked to investigate its Nash equilibria in the following exercise.

? EXERCISE 286.1 (Cournot’s duopoly game with imperfect information) Write down
the maximization problems that determine the best response function each type of
each player. (Denote by q0, q�, and qh the outputs of types 0, �, and h of firm 1,
and by qL and qH the outputs of types L and H of firm 2.) Now suppose that the
inverse demand function is given by P(Q) = α − Q for Q ≤ α and P(Q) = 0 for
Q > α. For values of cH and cL close enough that there is a Nash equilibrium in
which all outputs are positive, find this equilibrium. Check that when π = 0 the
equilibrium output of type 0 of firm 1 is equal to the equilibrium output of firm 1
you found in Exercise 285.1, and that the equilibrium outputs of the two types of
firm 2 are the same as the ones you found in that exercise. Check also that when
π = 1 the equilibrium outputs of type � of firm 1 and type L of firm 2 are the same
as the equilibrium outputs when there is perfect information and the costs are c
and cL, and that the equilibrium outputs of type h of firm 1 and type H of firm 2
are the same as the equilibrium outputs when there is perfect information and the



9.6 Illustration: providing a public good 287

1: 0

2: L 2: H

1: L 1: H

θ 1 − θ

π π

1 − π 1 − π

L1 H1

L0 H0

Figure 287.1 The information structure for the model in Section 9.5.2, in which firm 2 does not know
whether firm 1 knows its cost. The frame labeled i: x encloses the states that generates the signal x for
firm i.

costs are c and cH . Show that for 0 < π < 1, the equilibrium outputs of types L
and H of firm 2 lie between their values when π = 0 and when π = 1.

9.6 Illustration: providing a public good

Suppose that a public good is provided to a group of people if at least one person
is willing to pay the cost of the good (as in the model of crime-reporting in Sec-
tion 4.8). Assume that the people differ in their valuations of the good, and each
person knows only her own valuation. Who, if anyone, will pay the cost?

Denote the number of individuals by n, the cost of the good by c > 0, and
individual i’s payoff if the good is provided by vi. If the good is not provided
then each individual’s payoff is 0. Each individual i knows her own valuation vi.
She does not know anyone else’s valuation, but knows that all valuations are at
least v and at most v, where 0 ≤ v < c < v. She believes that the probability
that any one individual’s valuation is at most v is F(v), independent of all other
individuals’ valuations, where F is a continuous increasing function. The fact that
F is increasing means that the individual does not assign zero probability to any
range of values between v and v; the fact that it is continuous means that she does
not assign positive probability to any single valuation. (An example of the function
F is shown in Figure 288.1.)

The following mechanism determines whether the good is provided. All n in-
dividuals simultaneously submit envelopes; the envelope of any individual i may
contain either a contribution of c or nothing (no intermediate contributions are
allowed). If all individuals submit 0 then the good is not provided and each indi-
vidual’s payoff is 0. If at least one individual submits c then the good is provided,
each individual i who submits c obtains the payoff vi − c, and each individual i
who submits 0 obtains the payoff vi. (The pure strategy Nash equilibria of a vari-
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v

1

F(v)

v →c v

Figure 288.1 An example of the function F for the model in Section 9.6. For each value of v, F(v) is the
probability that any given individual’s valuation is at most v.

ant of this model, in which more than one contribution is needed to provide the
good, are considered in Exercise 31.1.)

We can formulate this situation as a Bayesian game as follows.

Players The set of n individuals.

States The set of all profiles (v1, . . . , vn) of valuations, where 0 ≤ vi ≤ v for
all i.

Actions Each player’s set of actions is {0, c}.

Signals The set of signals that each player may observe is the set of possible
valuations. The signal function τi of each player i is given by τi(v1, . . . , vn) =
vi (each player knows her own valuation).

Beliefs Each type of player i assigns probability F(v1)F(v2) · · · F(vi−1)F(vi+1) · · · F(vn)
to the event that the valuation of every other player j is at most vj.

Payoff functions Player i’s Bernoulli payoff in state (v1, . . . , vn) is



0 if no one contributes
vi if i does not contribute but some other player does
vi − c if i contributes.

? EXERCISE 288.1 (Nash equilibria of game of contributing to a public good) Find
conditions under which for each value of i this game has a pure strategy Nash
equilibrium in which each type vi of player i with vi ≥ c contributes, whereas
every other type of player i, and all types of every other player, do not contribute.

In addition to the Nash equilibria identified in this exercise, the game has a
symmetric Nash equilibrium in which every player contributes if and only if her
valuation exceeds some critical amount v∗. For such a strategy profile to be an
equilibrium, a player whose valuation is less than v∗ must optimally not con-
tribute, and a player whose valuation is at least v∗ must optimally contribute.
Consider player i. Suppose that every other player contributes if and only if her
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valuation is at least v∗. The probability that at least one of the other players con-
tributes is the probability that at least one of the other players’ valuations is at
least v∗, which is 1 − (F(v∗))n−1. (Note that (F(v∗))n−1 is the probability that all
the other valuations are at most v∗.) Thus if player i’s valuation is vi, her expected
payoff is (1 − (F(v∗))n−1)vi if she does not contribute and vi − c if she does con-
tribute. Hence the conditions for player i to optimally not contribute when vi < v∗

and optimally contribute when vi ≥ v∗ are (1 − (F(v∗))n−1)vi ≥ vi − c if vi < v∗,
and (1 − (F(v∗))n−1)vi ≤ vi − c if vi ≥ v∗, or equivalently

vi(F(v∗))n−1 ≤ c if vi < v∗

vi(F(v∗))n−1 ≥ c if vi ≥ v∗.
(289.1)

If these inequalities are satisfied then

v∗(F(v∗))n−1 = c. (289.2)

Conversely, if v∗ satisfies (289.2) then it satisfies the two equations in (289.1). Thus
the game has a Nash equilibrium in which every player contributes whenever her
valuation is at least v∗ if and only if v∗ satisfies (289.2).

Note that because F(v) = 1 only if v ≥ v, and v > c, we have v∗ > c. That is,
every player’s cutoff for contributing exceeds the cost of the public good. When
at least one player’s valuation exceeds c, all players are better off if the public
good is provided and the high-valuation player contributes than if the good is not
provided. But in the equilibrium, the good is provided only if at least one player’s
valuation exceeds v∗, which exceeds c.

As the number of individuals increases, is the good more or less likely to be
provided in this equilibrium? The probability that the good is provided is the
probability that at least one player’s valuation is at least v∗, which is equal to 1 −
(F(v∗))n. (Note that (F(v∗))n is the probability that every player’s valuation is
less than v∗.) From (289.2) this probability is equal to 1 − cF(v∗)/v∗. How does
v∗ vary with n? As n increases, for any given value of v∗ the value of (F(v∗))n−1

decreases, and thus the value of v∗(F(v∗))n−1 decreases. Thus to maintain the
equality (289.2), the value of v∗ must increase as n increases. We conclude that
as n increases the change in the probability that the good is provided depends
on the change in F(v∗)/v∗ as v∗ increases: the probability increases if F(v∗)/v∗ is a
decreasing function of v∗, whereas it decreases if F(v∗)/v∗ is an increasing function
of v∗. If F is uniform and v > 0, for example, F(v∗)/v∗ is a decreasing function of
v∗, so that the probability that the good is provided increases as the population
size increases.

The notion of a Bayesian game may be used to model a situation in which each
player is uncertain of the number of other players. In the next exercise you are
asked to study another variant of the crime-reporting model of Section 4.8 in which
each of the two players does not know whether she is the only witness or whether
there is another witness (in which case she knows that witness’s valuation). (The
exercise requires a knowledge of mixed strategy Nash equilibrium (Chapter 4).)
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? EXERCISE 290.1 (Reporting a crime with an unknown number of witnesses) Con-
sider the variant of the model of Section 4.8 in which each of two players does not
know whether she is the only witness, or whether there is another witness. De-
note by π the probability each player assigns to being the sole witness. Model this
situation as a Bayesian game with three states: one in which player 1 is the only
witness, one in which player 2 is the only witness, and one in which both players
are witnesses. Find a condition on π under which the game has a pure Nash equi-
librium in which each player chooses Call (given the signal that she is a witness).
When the condition is violated, find the symmetric mixed strategy Nash equilib-
rium of the game, and check that when π = 0 this equilibrium coincides with the
one found in Section 4.8 for n = 2.

9.7 Illustration: auctions

9.7.1 Introduction

In the analysis of auctions in Section 3.5, every bidder knows every other bidder’s
valuation of the object for sale. Here I use the notion of a Bayesian game to analyze
auctions in which bidders are not perfectly informed about each others’ valuations.

Assume that a single object is for sale, and that each bidder independently
receives some information—a “signal”—about the value of the object to her. If each
bidder’s signal is simply her valuation of the object, as assumed in Section 3.5, we
say that the bidders’ valuations are private. If each bidder’s valuation depends on
other bidders’ signals as well as her own, we say that the valuations are common.

The assumption of private values is appropriate, for example, for a work of art
whose beauty rather than resale value interests the buyers. Each bidder knows
her valuation of the object, but not that of any other bidder; the other bidders’ val-
uations have no bearing on her valuation. The assumption of common values is
appropriate, for example, for an oil tract containing unknown reserves on which
each bidder has conducted a test. Each bidder i’s test result gives her some infor-
mation about the size of the reserves, and hence her valuation of these reserves,
but the other bidders’ test results, if known to bidder i, would typically improve
this information.

As in the analysis of auctions in which the bidders are perfectly informed about
each others’ valuations, I study models in which bids for a single object are submit-
ted simultaneously (bids are sealed), and the participant who submits the highest
bid obtains the object. As before I consider both first-price auctions, in which the
winner pays the price she bid, and second-price auctions, in which the winner pays
the highest of the remaining bids.

(In Section 3.5 I argue that the first-price rule models an open descending (“Dutch”)
auction, and the second-price rule models an open ascending (“English”) auc-
tion. Note that the argument that the second-price rule corresponds to an open
ascending auction depends upon the bidders’ valuations being private. If a bid-
der is uncertain of her valuation, which is related to that of other bidders, then in



9.7 Illustration: auctions 291

an open ascending auction she may obtain information about her valuation from
other participants’ bids, information not available in a sealed-bid auction.)

I first consider the case in which the bidders’ valuations are private, then the
case in which they are common.

9.7.2 Independent private values

In the case in which the bidders’ valuations are private, the assumptions about
these valuations are similar to those in the previous section (on the provision of
a public good). Each bidder knows that all other bidders’ valuations are at least
v, where v ≥ 0, and at most v. She believes that the probability that any given
bidder’s valuation is at most v is F(v), independent of all other bidders’ valuations,
where F is a continuous increasing function (as in Figure 288.1).

The preferences of a bidder whose valuation is v are represented by the ex-
pected value of the Bernoulli payoff function that assigns 0 to the outcome in which
she does not win the object and v − p to the outcome in which she wins the object
and pays the price p. (That is, each bidder is risk neutral.) I assume that the ex-
pected payoff of a bidder whose bid is tied for first place is (v − p)/m, where m is
the number of tied winning bids. (The assumption about the outcome when bids
are tied for first place has mainly “technical” significance; in Section 3.5, it was
convenient to make an assumption different from the one here.)

Denote by P(b) the price paid by the winner of the auction when the pro-
file of bids is b. For a first-price auction P(b) is the winning bid (the largest bi),
whereas for a second-price auction it is the highest bid made by a bidder dif-
ferent from the winner. Given the appropriate specification of P, the following
Bayesian game models first- and second-price auctions with independent private
valuations (and imperfect information about valuations).

Players The set of bidders, say 1, . . . , n.

States The set of all profiles (v1, . . . , vn) of valuations, where v ≤ vi ≤ v for
all i.

Actions Each player’s set of actions is the set of possible bids (nonnegative
numbers).

Signals The set of signals that each player may observe is the set of possible
valuations. The signal function τi of each player i is given by τi(v1, . . . , vn) =
vi (each player knows her own valuation).

Beliefs Each type of player i assigns probability F(v1)F(v2) · · · F(vi−1)F(vi+1) · · · F(vn)
to the event that the valuation of every other player j is at most vj.

Payoff functions Player i’s Bernoulli payoff in state (v1, . . . , vn) is 0 if her bid
bi is not the highest bid, and (vi − P(b))/m if no bid is higher than bi and m
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bids (including bi) are equal to bi:

ui(b, (v1, . . . , vn)) =




(vi − P(b))/m if bj ≤ bi for all j �= i and
bj = bi for m players

0 if bj > bi for some j �= i.

Nash equilibrium in a second-price sealed-bid auction As in a second-price sealed-bid
auction in which every bidder knows every other bidder’s valuation,

in a second-price sealed-bid auction with imperfect information about valu-
ations, a player’s bid equal to her valuation weakly dominates all her other
bids.

Precisely, consider some type vi of some player i, and let bi be a bid not equal to vi.
Then for all bids by all types of all the other players, the expected payoff of type vi
of player i is at least as high when she bids vi as it is when she bids bi, and for some
bids by the various types of the other players, her expected payoff is greater when
she bids vi than it is when she bids bi.

The argument for this result is similar to the argument in Section 3.5.2 in the
case in which the players know each others’ valuations. The main difference be-
tween the arguments arises because in the case in which the players do not know
each others’ valuations, any given bids for every type of every player but i leave
player i uncertain about the highest of the remaining bids, because she is uncertain
of the other players’ types. (The difference in the tie-breaking rules between the
two cases also necessitates a small change in the argument.) In the next exercise
you are asked to fill in the details.

? EXERCISE 292.1 (Weak domination in second-price sealed-bid action) Show that
for each type vi of each player i in a second-price sealed-bid auction with imperfect
information about valuations the bid vi weakly dominates all other bids.

We conclude, in particular, that a second-price sealed-bid auction with imper-
fect information about valuations has a Nash equilibrium in which every type of
every player bids her valuation. The game has also other equilibria, some of which
you are asked to find in the next exercise.

? EXERCISE 292.2 (Nash equilibria of a second-price sealed-bid auction) For every
player i, find a Nash equilibrium of a second-price sealed-bid auction in which
player i wins. (Think about the Nash equilibria when the players know each
others’ valuations, studied in Section 3.5.)

Nash equilibrium in a first-price sealed-bid auction As when the players are perfectly
informed about each others’ valuations, the bid of vi by type vi of player i weakly
dominates any bid greater than vi, but does not weakly dominate bids less than vi,
and is itself weakly dominated by any such lower bid. (If type vi of player i bids
vi, her payoff is certainly 0 (either she wins and pays her valuation, or she loses),
whereas if she bids less than vi, she may win and obtain a positive payoff.)
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These facts suggest that the game may have a Nash equilibrium in which each
player bids less than her valuation. An analysis of the game for an arbitrary dis-
tribution F of valuations requires calculus, and is relegated to an appendix (Sec-
tion 9.9). Here I consider the case in which there are two bidders and each player’s
valuation is distributed “uniformly” between 0 and 1. This assumption on the dis-
tribution of valuations means that the fraction of valuations less than v is exactly
v, so that F(v) = v for all v with 0 ≤ v ≤ 1.

Denote by βi(v) the bid of type v of player i. I claim that if there are two bid-
ders and the distribution of valuations is uniform between 0 and 1, the game has a
(symmetric) Nash equilibrium in which the function βi is the same for both play-
ers, with βi(v) = 1

2 v for all v. That is, each type of each player bids exactly half her
valuation.

To verify this claim, suppose that each type of player 2 bids in this way. Then
as far as player 1 is concerned, player 2’s bids are distributed uniformly between
0 and 1

2 . Thus if player 1 bids more than 1
2 she surely wins, whereas if she bids

b1 ≤ 1
2 the probability that she wins is the probability that player 2’s valuation is

less than 2b1 (in which case player 2 bids less than b1), which is 2b1. Consequently
her payoff as a function of her bid b1 is

{
2b1(v1 − b1) if 0 ≤ b1 ≤ 1

2
v1 − b1 if b1 > 1

2 .

This function is shown in Figure 293.1. Its maximizer is 1
2 v1 (see Exercise 446.1),

so that player 1’s optimal bid is half her valuation. Both players are identical, so
this argument shows also that given β1(v) = 1

2 v, player 2’s optimal bid is half her
valuation. Thus, as claimed, the game has a Nash equilibrium in which each type
of each player bids half her valuation.

↑
player 1’s
expected

payoff

0 1
2 v1 v1

1
2 b1 →

Figure 293.1 Player 1’s expected payoff as a function of its bid in a first-price sealed-bid auction in
which there are two bidders and the valuations are uniformly distributed from 0 to 1, given that player 2
bids 1

2 v2.

When the number n of bidders exceeds two, a similar analysis shows that the
game has a (symmetric) Nash equilibrium in which every player bids the frac-
tion 1 − 1/n of her valuation: βi(v) = (1 − 1/n)v for every player i and ev-
ery valuation v. (You are asked to verify a claim more general than this one in
Exercise 295.1.)
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In this example—and, it turns out, for any distribution F satisfying the condi-
tions in Section 9.7.2—the players’ common bidding function in a symmetric Nash
equilibrium may be given an illuminating interpretation. Choose n − 1 valuations
randomly and independently, each according to the cumulative distribution func-
tion F. The highest of these n − 1 valuations is a “random variable”: its value
depends on the n − 1 valuations that were chosen. Denote it by X. Fix a valua-
tion v. Some values of X are less than v; others are greater than v. Consider the
distribution of X in those cases in which it is less than v. The expected value of
this distribution is denoted E[X | X < v]: the expected value of X conditional on
X being less than v. We may prove the following result. (A proof is given in the
appendix, Section 9.9.)

For a distribution of valuations satisfying the conditions in Section 9.7.2,
a first-price sealed-bid auction with imperfect information about valuations
has a (symmetric) Nash equilibrium in which each type v of each player bids
E[X | X < v], the expected value of the highest of the other players’ bids con-
ditional on v being higher than all the other valuations.

Put differently, each bidder asks the following question: Over all the cases in
which my valuation is the highest, what is the expectation of the highest of the
other players’ valuations? This expectation is the amount she bids.

In the case considered above in which F is uniform from 0 to 1 and n = 2, we
may verify that indeed the equilibrium we found may be expressed in this way. For
any valuation v of player 1, the cases in which player 2’s valuation is less than v are
distributed uniformly from 0 to v, so that the expected value of player 2’s valuation
conditional on its being less than v is 1

2 v, which is equal to the equilibrium bidding
function that we found.

Comparing equilibria of first- and second-price auctions At the end of Section 3.5.3
we saw that first- and second-price auctions are “revenue equivalent” when the
players know each others’ valuations: their distinguished equilibria yield the same
outcome. The same is true when the players are uncertain of each others’ valua-
tions.

Consider the equilibrium of a second-price auction in which every player bids
her valuation. In this equilibrium, the expected price paid by a bidder with valua-
tion v who wins is the expectation of the highest of the other n − 1 valuations, con-
ditional on this maximum being less than v, or, in the notation above, E[X | X < v].
We have just seen that a first-price auction has a symmetric Nash equilibrium in
which this amount is precisely the bid of a player with valuation v, and hence the
amount paid by such a player. Thus in the equilibria of both auctions the expected
price paid by a winning bidder is the same. In both cases, the player with the high-
est valuation submits the winning bid, so both auctions yield the same revenue for
the auctioneer:

if each bidder is risk neutral and the distribution of valuations satisfies the con-
ditions in Section 9.7.2, then the Nash equilibrium of a second-price sealed-bid
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auction with independent private valuations (and imperfect information about
valuations) in which each player bids her valuation yields the same revenue
as the symmetric Nash equilibrium of the corresponding first-price sealed-bid
auction.

This result depends on the assumption that each player’s preferences are repre-
sented by the expected value of a risk neutral Bernoulli payoff function. The next
exercise asks you to study an example in which each player is risk averse. (See
page 101 for a discussion of risk neutrality and risk aversion.)

?? EXERCISE 295.1 (Auctions with risk averse bidders) Consider a variant of the Bayesian
game defined in Section 9.7.2 in which the players are risk averse. Specifically, sup-
pose each of the n players’ preferences are represented by the expected value of the
Bernoulli payoff function x1/m, where x is the player’s monetary payoff and m > 1.
Suppose also that each player’s valuation is distributed uniformly between 0 and
1, as in the example in Section 9.7.2. Show that the Bayesian game that models
a first-price sealed-bid auction under these assumptions has a (symmetric) Nash
equilibrium in which each type vi of each player i bids (1 − 1/[m(n − 1) + 1])vi.
(You need to use the mathematical fact that the solution of the problem maxb[bk(v−
b)�] is kv/(k + �).) Compare the auctioneer’s revenue in this equilibrium with
her revenue in the symmetric Nash equilibrium of a second-price sealed-bid auc-
tion in which each player bids her valuation. (Note that the equilibrium of the
second-price auction does not depend on the players’ payoff functions.)

9.7.3 Common valuations

In an auction with common valuations, each player’s valuation depends on the
other players’ signals as well as her own. (As before, I assume that the players’
signals are independent.) I denote the function that gives player i’s valuation by
gi, and assume that it is increasing in all the signals. Given the appropriate spec-
ification of the function P that determines the price P(b) paid by the winner as
a function of the profile b of bids, the following Bayesian game models first- and
second-price auctions with common valuations (and imperfect information about
valuations).

Players The set of bidders, say {1, . . . , n}.

States The set of all profiles (t1, . . . , tn) of signals that the players may receive.

Actions Each player’s set of actions is the set of possible bids (nonnegative
numbers).

Signals The signal function τi of each player i is given by τi(t1, . . . , tn) = ti
(each player observes her own signal).

Beliefs Each type of each player believes that the signal of every type of every
other player is independent of all the other players’ signals.
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Payoff functions Player i’s Bernoulli payoff in state (t1, . . . , tn) is 0 if her bid bi
is not the highest bid, and (gi(t1, . . . , tn)− P(b))/m if no bid is higher than bi
and m bids (including bi) are equal to bi:

ui(b, (t1, . . . , tn)) =




(gi(t1, . . . , tn) − P(b))/m if bj ≤ bi for all j �= i and
bj = bi for m players

0 if bj > bi for some j �= i.

Nash equilibrium in a second-price sealed-bid auction The main ideas in the analysis
of sealed-bid common value auctions are illustrated by an example in which there
are two bidders, each bidder’s signal is uniformly distributed from 0 to 1, and the
valuation of each bidder i is given by vi = αti + γtj, where j is the other player
and α ≥ γ ≥ 0. The case in which α = 1 and γ = 0 is exactly the one studied
in Section 9.7.2: in this case, the bidders’ valuations are private. If α = γ then for
any given signals, each bidder’s valuation is the same—a case of “pure common
valuations”. If, for example, the signal ti is the number of barrels of oil in a tract,
then the expected valuation of a bidder i who knows the signals ti and tj is p · 1

2 (ti +
tj), where p is the monetary worth of a barrel of oil. Our assumption, of course,
is that a bidder does not know any other player’s signal. However, a key point in
the analysis of common value auctions is that the other players’ bids contain some
information about the other players’ signals—information that may profitably be
used.

I claim that under these assumptions a second-price sealed-bid auction has a
Nash equilibrium in which each type ti of each player i bids (α + γ)ti.

To verify this claim, suppose that each type of player 2 bids in this way and
type t1 of player 1 bids b1. To determine the expected payoff of type t1 of player 1,
we need to find the probability with which she wins, and both the expected price
she pays and the expected value of player 2’s signal if she wins.

Probability that player 1 wins: Given that player 2’s bidding function is (α + γ)t2,
player 1’s bid of b1 wins only if b1 ≥ (α + γ)t2, or if t2 ≤ b1/(α + γ).
Now, t2 is distributed uniformly from 0 to 1, so the probability that it is
at most b1/(α + γ) is b1/(α + γ). Thus a bid of b1 by player 1 wins with
probability b1/(α + γ).

Expected price player 1 pays if she wins: The price she pays is equal to player 2’s
bid, which, conditional on its being less than b1, is distributed uniformly from 0
to b1. Thus the expected value of player 2’s bid, given that it is less than b1, is
1
2 b1.

Expected value of player 2’s signal if player 1 wins: Player 2’s bid, given her sig-
nal t2, is (α + γ)t2, so that the expected value of signals that yield a bid of less
than b1 is 1

2 b1/(α + γ) (because of the uniformity of the distribution of t2).

Now, player 1’s expected payoff if she bids b1 is the difference between her ex-
pected valuation, given her signal t1 and the fact that she wins, and the expected
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price she pays, multiplied by her probability of winning. Combining the calcula-
tions above, player 1’s expected payoff if she bids b1 is thus (αt1 + 1

2 γb1/(α + γ)−
1
2 b1)b1/(α + γ), or

α

2(α + γ)2 · (2(α + γ)t1 − b1)b1.

This function is maximized at b1 = (α + γ)t1. That is, if each type t2 of player 2 bids
(α + γ)t2, any type t1 of player 1 optimally bids (α + γ)t1. Symmetrically, if each
type t1 of player 1 bids (α + γ)t1, any type t2 of player 2 optimally bids (α + γ)t2.
Hence, as claimed, the game has a Nash equilibrium in which each type ti of each
player i bids (α + γ)ti.

? EXERCISE 297.1 (Asymmetric Nash equilibria of second-price sealed-bid common
value auctions) Show that when α = γ = 1, for any value of λ > 0 the game stud-
ied above has an (asymmetric) Nash equilibrium in which each type t1 of player 1
bids (1 + λ)t1 and each type t2 of player 2 bids (1 + 1/λ)t2.

Note that when player 1 calculates her expected value of the object, she finds
the expected value of player 2’s signal given that her bid wins. If her bid is low then
she is unlikely to be the winner, but if she is the winner, player 2’s signal must be
low, and so she should impute a low value to the object. She should not base her
bid simply on an estimate of the valuation derived from her own signal and the
(unconditional) expectation of the other player’s signal. If she does so, then over
all the cases in which she wins, she more likely than not overvalues the object.
A bidder who incorrectly behaves in this way is said to suffer the winner’s curse.
(Bidders in real auctions know this problem: when a contractor gives you a quo-
tation to renovate your house, she does not base her price simply on an unbiased
estimate out how much it will cost her to do the job, but takes into account that
you will select her only if her competitors’ estimates are all be higher than hers, in
which case her estimate may be suspiciously low.)

Nash equilibrium in a first-price sealed-bid auction I claim that under the assump-
tions on the players’ signals and valuations in the previous section, a first-price
sealed-bid auction has a Nash equilibrium in which each type ti of each player i
bids 1

2 (α + γ)ti. This claim may be verified by arguments like those in the previous
section. In the next exercise, you are asked to supply the details.

? EXERCISE 297.2 (First-price sealed-bid auction with common valuations) Verify
that under the assumptions on signals and valuations in the previous section,
a first-price sealed-bid auction has a Nash equilibrium in which the bid of each
type ti of each player i is 1

2 (α + γ)ti.

Comparing equilibria of first- and second-price auctions We see that the revenue
equivalence of first- and second-price auctions that holds when valuations are pri-
vate hold also for the symmetric equilibria of the examples above in which the
valuations are common. That is, the expected price paid by a player of any given
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type is the same in the symmetric equilibrium of the first-price auction as it is in the
symmetric equilibrium of the second-price auction: in each case type ti of player i
pays 1

2 (α + γ)ti if she wins, and wins with the same probability.
In fact, the revenue equivalence principle holds much more generally. When-

ever each bidder is risk neutral and independently receives a signal that the same
distribution, which satisfies the conditions on the distribution of valuations in Sec-
tion 9.7.2, the expected payment of a bidder of any given type is the same in
the symmetric Nash equilibrium of a second-price sealed-bid auction revenue-
equivalent as it is in the symmetric Nash equilibrium of a first-price sealed-bid
auction. Further, this revenue equivalence is not restricted to first- and second-
price auctions; a general result, encompassing a wider range of auction forms, is
stated at the end of the appendix (Section 9.9).

AUCTIONS OF THE RADIO SPECTRUM

In the 1990s several countries started auctioning the right to use parts of the radio
spectrum used for wireless communication (by mobile telephones, for example).
Spectrum licenses in the USA were originally allocated on the basis of hearings
by the Federal Communications Commission (FCC). This procedure was time-
consuming, and a large backlog developed, prompting a switch to lotteries. Li-
censes awarded by the lotteries could be re-sold at high prices, attracting many
participants. In one case that drew attention, the winner of a license to run cellu-
lar telephones in Cape Cod sold it to Southwestern Bell for US$41.5 million (New
York Times, May 30, 1991, p. A1). In the early 1990s, the US government was per-
suaded that auctioning licenses would allocate them more efficiently and might
raise nontrivial revenue.

For each interval of the spectrum, many licenses were available, each covering
a geographic area. A buyer’s valuation of a license could be expected to depend
on the other licenses it owned, so many interdependent goods were for sale. In
designing an auction mechanism, the FCC had many choices: for example, the bid-
ding could be open, or it could be sealed, with the price equal to either the highest
bid or the second-highest bid; the licenses could be sold sequentially, or simulta-
neously, in which case participants could submit bids for individual licenses, or
for combinations of licenses. Experts in auction theory were consulted on the de-
sign of the mechanism. John McMillan (who advised the FCC), writes that “When
theorists met the policy-makers, concepts like Bayes-Nash equilibrium, incentive-
compatibility constraints, and order-statistic theorems came to be discussed in the
corridors of power” (1994, 146). No theoretical analysis fitted the environment
of the auction well, but the experts appealed to some principles from the existing
theory, the results of laboratory experiments, and experience in auctions held in
New Zealand and Australia in the early 1990s in making their recommendations.
The mechanism adopted in 1994 was an open ascending auction for which bids
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were accepted simultaneously for all licenses in each round. Experts argued that
the open (as opposed to sealed-bid) format and the simultaneity of the auctions
promoted an efficient outcome because at each stage the bidders could see their
rivals’ previous bids for all licenses.

The FCC has conducted several auctions, starting with “narrowband” licenses
(each covering a sliver of the spectrum, used by paging services) and continuing
with “broadband” licenses (used for voice and data communications). These auc-
tions have provided more employment for game theorists, many of whom have
advised the companies bidding for licenses. In response to growing congestion
of the airwaves and the expectation that a significant part of the rapidly growing
Internet traffic will move to wireless devices, in 2000 the US president Bill Clinton
ordered further auctions of large parts of the spectrum (New York Times, October 14,
2000). Whether the auctions that have been held have allocated licenses efficiently
is hard to tell, though it appears that the winners were able to obtain the sets of
licenses they wanted. Certainly the auctions have been successful in generating
revenue: the first four generated over US$18 billion.

9.8 Illustration: juries

9.8.1 Model

In a trial, jurors are presented with evidence concerning the guilt or innocence of a
defendant. They may interpret the evidence differently. On the basis of her inter-
pretation, each juror votes either to convict or acquit the defendant. Assume that
a unanimous verdict is required for conviction: the defendant is convicted if and
only if every juror votes to convict her. (This rule is used in the USA and Canada,
for example.) What can we say about the chances of an innocent defendant’s being
convicted and a guilty defendant’s being acquitted?

In deciding how to vote, each juror must consider the costs of convicting an
innocent person and of acquitting a guilty person. She must consider also the
likely effect of her vote on the outcome, which depends on the other jurors’ votes.
For example, a juror who thinks that at least one of her colleagues is likely to vote
for acquittal may act differently from one who is sure that all her colleagues will
vote for conviction. Thus an answer to the question requires us to consider the
strategic interaction between the jurors, which we may model as a Bayesian game.

Assume that each juror comes to the trial with the belief that the defendant
is guilty with probability π (the same for every juror), a belief modified by the
evidence presented. We model the possibility that jurors interpret the evidence
differently by assuming that for each of the defendant’s true statuses (guilty and
innocent), each juror interprets the evidence to point to guilt with positive prob-
ability, and to innocence with positive probability, and that the jurors’ interpreta-
tions are independent (no juror’s interpretation depends on any other juror’s in-
terpretation). I assume that the probabilities are the same for all jurors, and denote
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the probability of any given juror’s interpreting the evidence to point to guilt when
the defendant is guilty by p, and the probability of her interpreting the evidence to
point to innocence when the defendant is innocent by q. I assume also that a juror
is more likely than not to interpret the evidence correctly, so that p > 1

2 and q > 1
2 ,

and hence in particular p > 1 − q.
Each juror wishes to convict a guilty defendant and acquit an innocent one.

She is indifferent between these two outcomes, and prefers each of them to one
in which an innocent defendant is convicted or a guilty defendant is acquitted.
Assume specifically that each juror’s Bernoulli payoffs are:



0 if guilty defendant convicted or innocent defendant acquitted
−z if innocent defendant convicted
−(1 − z) if guilty defendant acquitted.

(300.1)
The parameter z may be given an appealing interpretation. Denote by r the prob-
ability a juror assigns to the defendant’s being guilty, given all her information.
Then her expected payoff if the defendant is acquitted is −r(1 − z) + (1 − r) · 0 =
−r(1 − z) and her expected payoff if the defendant is convicted is r · 0 − (1 − r)z =
−(1 − r)z. Thus she prefers the defendant to be acquitted if −r(1 − z) > −(1 − r)z,
or r < z, and convicted if r > z. That is, z is equal to the probability of guilt re-
quired for the juror to want the defendant to be convicted. Put differently, for any
juror

acquittal is at least as good as conviction if and only if
Pr(defendant is guilty, given juror’s information) ≤ z.

(300.2)

We may now formulate a Bayesian game that models the situation. The players
are the jurors, and each player’s action is a vote to convict (C) or to acquit (Q). We
need one state for each configuration of the players’ preferences and information.
Each player’s preferences depend on whether the defendant is guilty or innocent,
and each player’s information consists of her interpretation of the evidence. Thus
we define a state to be a list (X, s1, . . . , sn), where X denotes the defendant’s true
status, guilty (G) or innocent (I), and si represents player i’s interpretation of the
evidence, which may point to guilt (g) or innocence (b). (I do not use i for “inno-
cence” because I use it to index the players; b stands for “blameless”.) The signal
that each player i receives is her interpretation of the evidence, si. In any state in
which X = G (i.e. the defendant is guilty), each player assigns the probability p to
any other player’s receiving the signal g, and the probability 1 − p to her receiv-
ing the signal b, independently of all other players’ signals. Similarly, in any state
in which X = I (i.e. the defendant is innocent), each player assigns the probabil-
ity q to any other player’s receiving the signal b, and the probability 1 − q to her
receiving the signal g, independently of all other players’ signals.

Each player cares about the verdict, which depends on the players’ actions, and
the defendant’s true status. Given the assumption that unanimity is required to
convict the defendant, only the action profile (C, . . . , C) leads to conviction. Thus
(300.1) implies that player i’s payoff function in the Bayesian game is defined as
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follows.

ui(a, ω) =




0 if a �= (C, . . . , C) and ω1 = I or
if a = (C, . . . , C) and ω1 = G

−z if a = (C, . . . , C) and ω1 = I
−(1 − z) if a �= (C, . . . , C) and ω1 = G,

(301.1)

where ω1 is the first component of the state, giving the defendant’s true status.
In summary, the following Bayesian game models the situation.

Players A set of n jurors.

States The set of states is the set of all lists (X, s1, . . . , sn) where X ∈ {G, I}
and sj ∈ {g, b} for every juror j, where X = G if the defendant is guilty,
X = I if she is innocent, sj = g if player j receives the signal that she is guilty,
and sj = b if player j receives the signal that she is innocent.

Actions The set of actions of each player is {C, Q}, where C means vote to
convict, and Q means vote to acquit.

Signals The set of signals that each player may receive is {g, b} and player j’s
signal function is defined by τj(X, s1, . . . , sn) = sj (each juror is informed
only of her own signal).

Beliefs Type g of any player i believes that the state is (G, s1, . . . , sn) with
probability πpk−1(1 − p)n−k and (I, s1, . . . , sn) with probability (1 − π)(1 −
q)k−1qn−k, where k is the number of players j (including i) for whom sj = g in
each case. Type b of any player i believes that the state is (G, s1, . . . , sn) with
probability πpk(1 − p)n−k−1 and (I, s1, . . . , sn) with probability (1 − π)(1 −
q)k−1qn−k−1, where k is the number of players j for whom sj = g in each case.

Payoff functions The Bernoulli payoff function of each player i is given in (301.1).

9.8.2 Nash equilibrium

One juror Start by considering the very simplest case, in which there is a single
juror. Suppose that her signal is b. To determine whether she prefers conviction
or acquittal we need to find the probability she assigns to the defendant’s being
guilty, given her signal. We can find this probability, denoted Pr(G | b), by using
Bayes’ Rule (see Section 17.7.5, in particular (454.2)), as follows.

Pr(G | b) =
Pr(b | G) Pr(G)

Pr(b | G) Pr(G) + Pr(b | I) Pr(I)

=
(1 − p)π

(1 − p)π + q(1 − π)

Thus by (300.2), acquittal yields an expected payoff at least as high as does convic-
tion if and only if

z ≥ (1 − p)π

(1 − p)π + q(1 − π)
.
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That is, after getting the signal that the defendant is innocent, the juror chooses
acquittal as long as z is not too small—as long as she is too concerned about ac-
quitting a guilty defendant. If her signal is g then a similar calculation leads to
the conclusion that conviction yields an expected payoff at least as high as does
acquittal if

z ≤ pπ

pπ + (1 − q)(1 − π)
.

Thus if
(1 − p)π

(1 − p)π + q(1 − π)
≤ z ≤ pπ

pπ + (1 − q)(1 − π)
(302.1)

then the juror optimally acts according to her signal, acquitting the defendant
when her signal is b and convicting her when it is g. (A bit of algebra shows that
the term on the left of (302.1) is less than the term on the right, given p > 1 − q.)

Two jurors Now suppose there are two jurors. Are there values for z such that
the game has a Nash equilibrium in which each juror votes according to her sig-
nal? Suppose that juror 2 acts in this way: type b votes to acquit, and type g votes
to convict. Consider type b of juror 1. If juror 2’s signal is b, juror 1’s vote has no
effect on the outcome, because juror 2 votes to acquit and unanimity is required for
conviction. Thus when deciding how to vote, juror 1 should ignore the possibility
that juror 2’s signal is b, and assume it is g. That is, juror 1 should take as evidence
her signal and the fact that juror 2’s signal is g. Hence, given (300.2), for type b of
juror 1 acquittal is at least as good as conviction if the probability that the defen-
dant is guilty, given juror 1’s signal is b and juror 2’s signal is g, is at most z. This
probability is

Pr(G | b, g) =
Pr(b, g | G) Pr(G)

Pr(b, g | G) Pr(G) + Pr(b, g | I) Pr(I)

=
(1 − p)pπ

(1 − p)pπ + q(1 − q)(1 − π)
.

Thus type b of juror 1 optimally votes for acquittal if

z ≥ (1 − p)pπ

(1 − p)pπ + q(1 − q)(1 − π)
.

By a similar argument, for type g of juror 1 conviction is at least as good as acquittal
if

z ≤ p2π

p2π + (1 − q)2(1 − π)
.

Thus when there are two jurors, the game has a Nash equilibrium in which each
juror acts according to her signal, voting to acquit the defendant when her signal
is b and to convict her when it is g, if

(1 − p)pπ

(1 − p)pπ + q(1 − q)(1 − π)
≤ z ≤ p2π

p2π + (1 − q)2(1 − π)
. (302.2)
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Consider the expressions on the left of (302.1) and (302.2). Divide the numer-
ator and denominator of the expression on the left of (302.1) by 1 − p and the nu-
merator and denominator of the expression on the left of (302.2) by (1− p)p. Then,
given p > 1 − q, we see that the expression on the left of (302.2) is greater than
the expression on the left of (302.1). That is, the lowest value of z for which an
equilibrium exists in which each juror votes according to her signal is higher when
there are two jurors than when there is only one juror. Why? Because a juror who
receives the signal b, knowing that her vote makes a difference only if the other
juror votes to convict, makes her decision on the assumption that the other juror’s
signal is g, and so is less worried about convicting an innocent defendant than is a
single juror in isolation.

Many jurors Now suppose the number of jurors is arbitrary, equal to n. Suppose
that every juror other than juror 1 votes to acquit when her signal is b and to convict
when her signal is g. Consider type b of juror 1. As in the case of two jurors,
juror 1’s vote has no effect on the outcome unless every other juror’s signal is g.
Thus when deciding how to vote, juror 1 should assume that all the other signals
are g. Hence, given (300.2), for type b of juror 1 acquittal is at least as good as
conviction if the probability that the defendant is guilty, given juror 1’s signal is b
and every other juror’s signal is g, is at most z. This probability is

Pr(G | b, g, . . . , g) =
Pr(b, g, . . . , g | G) Pr(G)

Pr(b, g, . . . , g | G) Pr(G) + Pr(b, g, . . . , g | I) Pr(I)

=
(1 − p)pn−1π

(1 − p)pn−1π + q(1 − q)n−1(1 − π)
.

Thus type b of juror 1 optimally votes for acquittal if

z ≥ (1 − p)pn−1π

(1 − p)pn−1π + q(1 − q)n−1(1 − π)

=
1

1 +
q

1 − p

(
1 − q

p

)n−1 1 − π

π

.

Now, given that p > 1 − q, the denominator decreases to 1 as n increases. Thus
the lower bound on z for which type b of juror 1 votes for acquittal approaches
1 as n increases. (You may check that if p = q = 0.8, π = 0.5, and n = 12, the
lower bound on z exceeds 0.999999.) In particular, in a large jury, if jurors care
even slightly about acquitting a guilty defendant then a juror who interprets the
evidence to point to innocence will nevertheless vote for conviction. The reason is
that the vote of a juror who interprets the evidence to point to innocence makes a
difference to the outcome only if every other juror interprets the evidence to point
to guilt, in which case the probability that the defendant is in fact guilty is very
high.

We conclude that the model of a large jury in which the jurors are concerned
about acquitting a guilty defendant has no Nash equilibrium in which every juror
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votes according to her signal. What are its equilibria? You are asked to find the
conditions for two equilibria in the next exercise.

? EXERCISE 304.1 (Signal-independent equilibria in a model of a jury) Find con-
ditions under which the game, for an arbitrary number of jurors, has a Nash
equilibrium in which every juror votes for acquittal regardless of her signal, and
conditions under which every juror votes for conviction regardless of her signal.

Under some conditions on z the game has in addition a symmetric mixed strat-
egy Nash equilibrium in which each type g juror votes for conviction, and each
type b juror votes for acquittal and conviction each with positive probability. De-
note by β the mixed strategy of each juror of type b. As before, a juror’s vote affects
the outcome only if all other jurors vote for conviction, so when choosing an action
a juror should assume that all other jurors vote for conviction.

Each type b juror must be indifferent between voting for conviction and voting
for acquittal, because she takes each action with positive probability. By (300.2) we
thus need the mixed strategy β to be such that the probability that the defendant is
guilty, given that all other jurors vote for conviction, is equal to z. Now, the proba-
bility of any given juror’s voting for conviction is p + (1 − p)β(C) if the defendant
is guilty and 1 − q + qβ(C) if she is innocent. Thus

Pr(G | signal b and n − 1 votes for C)

=
Pr(b | G)(Pr(vote for C | G))n−1 Pr(G)

Pr(b | G)(Pr(vote for C | G))n−1 Pr(G) + Pr(b | I)(Pr(vote for C | I))n−1 Pr(I)

=
(1 − p)(p + (1 − p)β(C))n−1π

(1 − p)(p + (1 − p)β(C))n−1π + q(1 − q + qβ(C))n−1(1 − π)
.

The condition that this probability equals z implies

(1 − p)(p + (1 − p)β(C))n−1π(1 − z) = q(1 − q + qβ(C))n−1(1 − π)z (304.2)

and hence

β(C) =
pX − (1 − q)
q − (1 − p)X

,

where X = [π(1 − p)(1 − z)/((1 − π)qz)]1/(n−1). For a range of parameter values,
0 ≤ β(C) ≤ 1, so that β(C) is indeed a probability. Notice that when n is large, X
is close to 1, and hence β(C) is close to 1: a juror who interprets the evidence as
pointing to innocence very likely nonetheless votes for conviction.

Each type g juror votes for conviction, and so must get an expected payoff at
least as high from conviction as from acquittal. From an analysis like that for each
type b juror, this condition is

p(p + (1 − p)β(C))n−1π(1 − z) ≥ (1 − q)(1 − q + qβ(C))n−1(1 − π)z.

Given p > 1
2 and q > 1

2 , this condition follows from (304.2).
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An interesting property of this equilibrium is that the probability that an in-
nocent defendant is convicted increases as n increases: the larger the jury, the more
likely an innocent defendant is to be convicted. (The proof of this result is not
simple.)

Variants The key point behind the results is that under unanimity rule a juror’s
vote makes a difference to the outcome only if every other juror votes for convic-
tion. Consequently, a juror, when deciding how to vote, rationally assesses the
defendant’s probability of guilt under the assumption that every other juror votes
for conviction. The fact that this implication of unanimity rule drives the results
suggests that the Nash equilibria might be quite different if less than unanimity
were required for conviction. The analysis of such rules is difficult, but indeed the
Nash equilibria they generate differ significantly from the Nash equilibria under
unanimity rule. In particular, the analog of the mixed strategy Nash equilibria con-
sidered above generate a probability that an innocent defendant is convicted that
approaches zero as the jury size increases, as Feddersen and Pesendorfer (1998)
show.

The idea behind the equilibria of the model in the next exercise is related to the
ideas in this section, though the model is different.

? EXERCISE 305.1 (Swing voter’s curse) Whether candidate 1 or candidate 2 is elected
depends on the votes of two citizens. The economy may be in one of two states, A
and B. The citizens agree that candidate 1 is best if the state is A and candidate 2
is best if the state is B. Each citizen’s preferences are represented by the expected
value of a Bernoulli payoff function that assigns a payoff of 1 if the best candidate
for the state wins (obtains more votes than the other candidate), a payoff of 0 if the
other candidate wins, and payoff of 1

2 if the candidates tie. Citizen 1 is informed of
the state, whereas citizen 2 believes it is A with probability 0.9 and B with proba-
bility 0.1. Each citizen may either vote for candidate 1, vote for candidate 2, or not
vote.

a. Formulate this situation as a Bayesian game. (Construct the table of payoffs
for each state.)

b. Show that the game has exactly two pure Nash equilibria, in one of which
citizen 2 does not vote and in the other of which she votes for 1.

c. Show that one of the player’s actions in the second of these equilibria is
weakly dominated.

d. Why is the “swing voter’s curse” an appropriate name for the determinant of
citizen 2’s decision in the second equilibrium?



306 Chapter 9. Bayesian Games

9.9 Appendix: Analysis of auctions for an arbitrary distribution of valuations

9.9.1 First-price sealed-bid auctions

In this section I construct a symmetric equilibrium of a first-price sealed-bid auc-
tion for an arbitrary distribution F of valuations that satisfies the assumptions in
Section 9.7.2. (Unlike the remainder of the book, the section uses calculus.)

The method I use to find the equilibrium is the same as the one used previously:
first I find conditions satisfied by the players’ best response functions, then impose
the equilibrium condition that the bid of each type of each player be a best response
to the bids of each type of every other player.

As before, denote the bid of type vi of player i (i.e. player i when her valuation
is vi) by βi(vi). In a symmetric equilibrium we have βi = β for every player i.
A reasonable guess is that in an equilibrium the common bidding function β is
increasing: bidders with higher valuations bid more. I start by making this as-
sumption. After finding a possible equilibrium, I check that in fact the bidding
function has this property.

Each player is uncertain about the other players’ valuations, and hence is uncer-
tain about the bids they will make, even though she knows the bidding function β.
Denote by Gβ(b) the probability that, given β, any given player’s bid is at most b.
Under my assumption that β is increasing, a player’s bid is at most b if and only if
her valuation is at most β−1(b) (where β−1 is the inverse of β). Thus

Gβ(b) = Pr{v ≤ β−1(b)} = F(β−1(b)).

Now, the expected payoff of a player with valuation v who bids b when all other
players act according to the bidding function β is

(v − b) Pr{Highest bid is b}. (306.1)

The probability Pr{Highest bid is b} is equal to the probability that all the valu-
ations of the other n − 1 bidders are less than b, which is (Gβ(b))n−1. Thus the
expected payoff in (306.1) is

(v − b)(Gβ(b))n−1. (306.2)

Consider the best response function of each type of an arbitrary player. Denote
the optimal bid by a player with valuation v, given that all the other players use the
bidding function β, by Bv(β). This bid maximizes the expected payoff in (306.2),
and thus satisfies the condition that the derivative of this payoff with respect to b
is zero:

−(Gβ(Bv(β)))n−1 + (v − Bv(β))(n − 1)(Gβ(Bv(β)))n−2G′
β(Bv(β)) = 0. (306.3)

For (β∗ , . . . , β∗) to be a Nash equilibrium, we need

Bv(β∗) = β∗(v) for all v.
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That is, for every valuation v, the best response of a player with valuation v when
every other player acts according to β∗ must be precisely β∗(v).

Now, from the definition of Gβ we have Gβ∗(Bv(β∗)) = F(β∗−1(β∗(v)) = F(v),
and, for any β,

G′
β(b) = F′(β−1(b))(β−1)′(b) =

F′(β−1(b))
β′(β−1(b))

.

Hence G′
β∗(β∗(v)) = F′(v)/β∗′(v). Thus we deduce from (306.3) that an equilib-

rium bidding function β∗ satisfies

−(F(v))n−1 + (v − β∗(v))(n − 1)(F(v))n−2F′(v)/β∗′(v) = 0,

or

β∗′(v)(F(v))n−1 + (n − 1)β∗(v)(F(v))n−2F′(v) = (n − 1)v(F(v))n−2F′(v).

We may solve this differential equation by noting that the left-hand side is pre-
cisely the derivative with respect to v of β∗(v)(F(v))n−1. Thus integrating both
sides we obtain

β∗(v)(F(v))n−1 =
∫ v

v
(n − 1)x(F(x))n−2F′(x) dx

= v(F(v))n−1 −
∫ v

v
(F(x))n−1 dx

(using integration by parts to obtain the second line). Hence

β∗(v) = v −
∫ v

v (F(x))n−1 dx

(F(v))n−1 . (307.1)

?? EXERCISE 307.2 (Properties of the bidding function in a first-price auction) Show
that the bidding function defined in (307.1) is increasing in v for v > v. Show
also that a bidder with the lowest possible valuation bids her valuation, whereas
a bidder with any other valuation bids less than her valuation: β∗(v) = v and
β∗(v) < v for all v > v (use L’Hôpital’s rule).

? EXERCISE 307.3 (Example of Nash equilibrium in a first-price auction) Verify that
for the distribution F uniform from 0 to 1 the bidding function defined by (307.1)
is (1 − 1/n)v.

The alternative expression for the Nash equilibrium bidding function discussed
in the text may be derived as follows. As before, denote by X the random variable
equal to the highest of n − 1 independent valuations, each with cumulative dis-
tribution function F. The cumulative distribution function of X is H defined by
H(x) = (F(x))n−1. Thus the expected value of X, conditional on its being less than
v, is

E[X | X < v] =

∫ v
v xH′(x) dx

H(v)

=

∫ v
v (n − 1)x(F(x))n−2F′(x) dx

(F(v))n−1 ,
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which is precisely β∗(v). (Integrating the numerator by parts.) That is, β∗(v) =
E[X | X < v].

9.9.2 Revenue equivalence of auctions

I argued in the text that the expected price paid by the winner of a first-price auc-
tion is the same as the expected price paid by the winner of a second-price auction.
A much more general result may be established.

Suppose that n risk neutral bidders are involved in a sealed-bid auction in
which the price is an arbitrary function of the bids (not necessarily the highest, or
second highest). Each player’s bid affects the probability p that she wins and the
expected amount e(p) that she pays. Thus we can think of each bidder’s choosing
a value of p, and can formulate the problem of a bidder with valuation v as

max
p

(p · v − e(p)).

Denote the solution of this problem by p∗(v). Assuming that e is differentiable, the
first-order condition for this problem implies that

v = e′(p∗(v)) for all v.

Integrating both sides of this equation we have

e(p∗(v)) = e(p∗(v)) +
∫ v

v
x dp∗(x). (308.1)

Now consider an equilibrium with the property that the object is sold to the bidder
with the highest valuation, so that p∗(v) = Pr{X < v}, and the expected payoff
e(p∗(v)) = 0 of a bidder with the lowest possible valuation is zero. In any such
equilibrium, (308.1) implies that the expected payment e(p∗(v)) of a bidder with
any given valuation v is independent of the price-determination rule in the auction,
equal to Pr(X < v)E[X | X < v].

This result generalizes the earlier observation that the expected payments of
bidders in the Nash equilibria of first- and second-price auctions in which the bid-
ders’ valuations are independent and private are the same. It is a special case of
the more general revenue equivalence principle, which applies to a class of common
value auctions, as well as private value auctions, and may be stated as follows.

Suppose that each bidder (i) is risk neutral, (ii) independently receives a signal
from the same distribution, which satisfies the conditions on the distribution
of valuations in Section 9.7.2, and (iii) has a valuation that may depend on
all the bidders’ signals. Consider auction mechanisms in the symmetric Nash
equilibria of which the object is sold to the bidder with the highest signal and
the expected payoff of a bidder with the lowest possible valuation is zero. In
the symmetric Nash equilibrium of any such mechanism the expected payment
of a bidder of any given type is the same, and hence the auctioneer’s expected
revenue is the same.
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Notes

The notion of a general Bayesian game was defined and studied by Harsanyi (1967/68).
The formulation I describe here is taken (with a minor change) from Osborne and
Rubinstein (1994, Section 2.6).

The origin of the observation that more information may hurt (Section 9.4.1)
is unclear. The idea of “infection” in Section 9.4.2 was first studied by Rubin-
stein (1989). The game in Figure 282.1 is a variant suggested by Eddie Dekel of
the one analyzed by Morris, Rob, and Shin (1995).

Games modeling voluntary contributions to a public good were first consid-
ered by Olson (1965, Section I.D), and have been subsequently much studied. The
model in Section 9.6 is a variant of one in an unpublished paper of William F.
Samuelson dated 1984.

Vickrey (1961) initiated the study of auctions described in Section 9.7. First-
price common value auctions (Section 9.7.3) were first studied by Wilson (1967,
1969, 1977). The “winner’s curse” appears to have been first articulated by Capen,
Clapp, and Campbell (1971). The general revenue equivalence principle at the end
of Section 9.9.2 is due to Myerson (1981) and Riley and Samuelson (1981); their
results are generalized by Bulow and Klemperer (1996, Lemma 3). The equilibria
in Exercise 297.1 are described by Milgrom (1981, Theorem 6.3). The literature is
surveyed by Klemperer (1999). The box on spectrum auctions on page 298 is based
on McMillan (1994), Cramton (1995, 1997, 1998), and McAfee and McMillan (1996).

Section 9.8 is based on Austen-Smith and Banks (1996) and Feddersen and
Pesendorfer (1996).

Exercise 280.2 was suggested by Ariel Rubinstein. Exercise 280.3 is based on
Brams, Kilgour, and Davis (1993). A model of adverse selection was first stud-
ied by Akerlof (1974); the model in Exercise 280.4 is taken from Samuelson and
Bazerman (1985). Exercise 305.1 is based on Feddersen and Pesendorfer (1996).
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11 Strictly Competitive Games and
Maxminimization

Definitions and examples 335
Strictly competitive games 338
Prerequisite: Chapters 2 and 4.

11.1 Introduction

THE NOTION of Nash equilibrium (studied in Chapters 2, 3, and 4) models a
steady state. The idea is that each player, through her experience playing the

game against various opponents, knows the actions that the other players in the
game will take, and chooses her action in light of this knowledge.

In this chapter and the next, we study the likely outcome of a game from a
different angle. We consider the implications of each player’s forming a belief
about the other players’ actions not from her experience, but from her analysis of
the game.

In this chapter we focus on two-player strictly competitive games, in which
the players’ interests are diametrically opposed. In such games a simple decision-
making procedure leads each player to choose a Nash equilibrium action.

11.2 Definitions and examples

You are confronted with a game for the first time; you have no idea what actions
your opponents will take. How should you choose your action? A conservative
criterion entails your working under the assumption that whatever you do, your
opponents will take the worst possible action for you. For each of your actions,
you look at all the outcomes that can occur, as the other players choose different
actions, and find the one that gives you the lowest payoff. Then you choose the
action for which this lowest payoff is largest. This procedure for choosing an action
is called maxminimization.

Many of the interesting examples of this procedure involve mixed strategies,
so from the beginning I define the concepts for a strategic game with vNM pref-
erences (Definition 103.1), though the ideas do not depend upon the players’ ran-
domizing. Let Ui be an expected payoff function that represents player i’s pref-
erences on lotteries over action profiles in a strategic game. For any given mixed
strategy αi of player i, the lowest payoff that she obtains, for any possible vector α−i

335
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of mixed strategies of the other players, is

min
α−i

Ui(αi, α−i).

A maxminimizing mixed strategy for player i is a mixed strategy that maximizes
this minimal payoff.

� DEFINITION 336.1 A maxminimizing mixed strategy for player i in a strategic
game (with vNM payoffs) is a mixed strategy α∗

i that solves the problem

max
αi

min
α−i

Ui(αi, α−i),

where Ui is player i’s vNM payoff function.

In words, a maxminimizing strategy for player i maximizes her payoff under the
(pessimistic) assumption that whatever she does the other players will act in such
a way as to minimize her expected payoff.

A different way of looking at a maxminimizing strategy is useful. Say that
a mixed strategy αi guarantees player i the payoff ui if, no matter what mixed
strategies α−i the other players use, i’s payoff is at least ui:

ui(αi, α−i) ≥ ui for every list α−i of the other players’ mixed strategies.

A maxminimizing mixed strategy maximizes the payoff that a player can guaran-
tee: if α∗

i is a maxminimizer then

min
α−i

ui(α∗
i , α−i) ≥ min

α−i
ui(αi, α−i) for every mixed strategy αi of player i.

EXAMPLE 336.2 (Maxminimizers in a bargaining game) Consider the game in Ex-
ercise 36.2, restricting attention to pure strategies (actions). If you demand any
amount x up to $5 then your payoff is x regardless of the other player’s action.
If you demand $6 then you may get $6 (if the other player demands $4 or less,
or $7 or more), but you may get only $5 (if the other player demands $5 or $6).
If you demand x ≥ $7 then you may get x (if the other player demands at most
$(10− x)), but you may get only $(11− x) (if the other player demands x − 1). For
each amount that you can demand, the smallest amount that you may get is given
in Figure 337.1. Maxminimization in this game thus leads each player to demand
either $5 or $6 (for both of which the worst possible outcome is that the player
receives $5).

Why should you assume that the other players will take actions that minimize
your payoff? In some games such an assumption is not sensible. But if you have
only one opponent and her interests in the game are diametrically opposed to
yours—in which case we call the game strictly competitive—then the assumption
may be reasonable. In fact, it turns out that in such games there is a very close
relationship between the outcome that occurs if each player maxminimizes and
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Amount demanded 0 1 2 3 4 5 6 7 8 9 10

Smallest amount obtained 0 1 2 3 4 5 5 4 3 2 1

Figure 337.1 The lowest payoffs that a player receives in the game in Exercise 36.2 for each of her
possible actions, as the other player’s action varies.

the Nash equilibrium outcome. Another reason that you may be attracted to a
maxminimizing action is that such an action maximizes the payoff that you can
guarantee: there is no other action that yields a higher payoff no matter what the
other players do.

In the game in Example 336.2 we restricted attention to pure strategies. The
following example shows that a player may be able to guarantee a higher payoff
by using a mixed strategy, and illustrates how a maxminimizing mixed strategy
may be found.

EXAMPLE 337.1 (Example of maxminimizers) Consider the game in Figure 337.2.
If player 1 chooses T then the worse that can happen is that player 2 chooses R; if
player 1 chooses B then the worst that can happen is that player 2 chooses L. In
both cases player 1’s payoff is −1, so that if player 1 is restricted to choose either T
or B then there is nothing to choose between them; both guarantee her a payoff of
−1.

L R
T 2, −2 −1, 1
B −1, 1 1, −1

Figure 337.2 The game in Example 337.1.

However, player 1 can do better if she randomizes between T and B. Let p
be the probability she assigns to T. To find her maxminimizing mixed strategy it
is helpful to refer to Figure 338.1. The upward-sloping line indicates player 1’s
expected payoff, as p varies, if player 2 chooses the action L; the downward-
sloping line indicates player 1’s expected payoff, as p varies, if player 2 chooses
R. Player 1’s expected payoff if player 2 randomizes lies between the two lines; in
particular it lies above the lower line. Thus for each value of p, the lower of the
two lines indicates the lowest payoff that player 1 can obtain if she chooses that
value of p. That is, the lowest payoff that player 1 can obtain for each value of p is
indicated by the heavy inverted V; the maxminimizing mixed strategy of player 1
is thus p = 2

5 , which yields her a payoff of 1
5 .

The maxminimizing mixed strategy of player 1 in this example has the property
that it yields player 1 the same payoff whether player 2 chooses L or R. Note
that the indifference here is different from that in a Nash equilibrium, in which
player 1’s mixed strategy yields player 2 the same payoff to each of her actions.
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↑
payoff of
player 1

0

1

−1

1

2

−1

p →2
5

R

L

Figure 338.1 The expected payoff of player 1 in the game in Figure 337.2 for each of player 2’s actions,
as a function of the probability p that player 1 assigns to T.

What is the relation between Nash equilibrium strategies and maxminimizers?
In the next section I show that for the class of strictly competitive games the re-
lation is very close. In an arbitrary game, whether strictly competitive or not, a
player’s Nash equilibrium payoff is at least her maxminimized payoff.

LEMMA 338.1 The payoff of each player in any Nash equilibrium of a strategic game is at
least equal to her maxminimized payoff.

Proof. Let (α∗
1, α∗

2) be a Nash equilibrium. Consider player 1. First note that by the
definition of a Nash equilibrium,

U1(α∗
1, α∗

2) ≥ U1(α1, α∗
2) for every mixed strategy α1 of player 1,

so that

U1(α∗
1, α∗

2) ≥ min
α2

U1(α1, α2) for every mixed strategy α1 of player 1.

Since the inequality holds for every mixed strategy α1 of player 1, we conclude
that

U1(α∗
1, α∗

2) ≥ max
α1

min
α2

U1(α1, α2),

as required. ✷

? EXERCISE 338.2 (Nash equilibrium payoffs and maxminimized payoffs) Give an
example of a game with a unique Nash equilibrium in which each player’s Nash
equilibrium payoff exceeds her maxminimized payoff.

11.3 Strictly competitive games

A strictly competitive game is a strategic game in which there are two players,
whose preferences are diametrically opposed: whenever one player prefers some
outcome a to another outcome b, the other players prefers b to a. Assume for
convenience that the players’ names are “1” and “2”. If we restrict attention to
pure strategies then we have the following definition.



11.3 Strictly competitive games 339

� DEFINITION 339.1 (Strictly competitive strategic game with ordinal preferences) A strate-
gic game with ordinal preferences is strictly competitive if it has two players
and

(a1, a2) �1 (b1, b2) if and only if (b1, b2) �2 (a1, a2),

where (a1, a2) and (b1, b2) are pairs of actions.

Note that it follows from this definition that in a strictly competitive game we
have (a1, a2) ∼1 (b1, b2) if and only if (a1, a2) ∼2 (b1, b2) (since (a1, a2) ∼2 (b1, b2)
implies both (a1, a2) �1 (b1, b2) and (b1, b2) �1 (a1, a2)) and (a1, a2) �1 (b1, b2) if
and only if (b1, b2) �2 (a1, a2).

Note also that there are payoff functions representing the players’ preferences
in a strictly competitive game with the property that the sum of the players’ pay-
offs is zero for every action profile. (For example, we can assign payoffs as fol-
lows: 0 to both players for the worst outcome for player 1, 1 to player 1 and −1
to player 2 for the next worst outcome for player 1, and so on.) For this reason a
strictly competitive game is sometimes referred to as a zerosum game.

The Prisoner’s Dilemma (Figure 13.1) is not strictly competitive since both play-
ers prefer (Quiet, Quiet) to (Fink, Fink). BoS (Figure 16.1) is not strictly competi-
tive either, since (for example) both players prefer (B, B) to (S, B). Matching Pen-
nies (Figure 17.1), on the other hand, is strictly competitive: player 1’s prefer-
ence ordering over the four outcomes is precisely the reverse of player 2’s. The
game in Figure 339.1 is also strictly competitive: player 1’s preference ordering is
(B, R) �1 (T, L) �1 (B, L) �1 (T, R), the reverse of player 2’s ordering (T, R) �1
(B, L) �1 (T, L) �1 (B, R).

L R
T 2, 1 0, 5
B 1, 3 5, 0

Figure 339.1 A strategic game. If attention is restricted to pure strategies then the game is strictly
competitive. If mixed strategies are considered, however, it is not.

If we consider mixed strategies, then the appropriate definition of a strictly
competitive game is the following.

� DEFINITION 339.2 (Strictly competitive strategic game with vNM preferences) A strate-
gic game with vNM preferences is strictly competitive if it has two players and

U1(α1, α2) ≥ U1(β1, β2) if and only if U2(β1, β2) ≥ U2(α1, α2),

where (α1, α2) and (β1, β2) are pairs of mixed strategies and Ui is player i’s ex-
pected payoff as a function of the pair of mixed strategies (her vNM payoff func-
tion).

As for the case of games in which we restrict attention to pure strategies, there
are payoff functions representing the players’ preferences in a strictly competitive
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game with the property that the sum of the players’ payoffs is zero for every action
profile. To see this, let ui, for each player i, represent i’s preferences in a strictly
competitive game. Denote by a and a the best and worst outcomes respectively for
player 1. Now choose another representation vi with the property that v1(a) = 1
and v1(a) = 0, and v2(a) = −1 and v2(a) = 0. (Why is it possible to do this?) Let a
be any outcome and let p = u1(a). Then u1(a) = pu1(a) + (1 − p)u1(a). But since
the game is strictly competitive we have u2(a) = pu2(a) + (1 − p)u2(a) = −p.
Hence u1(a) + u2(a) = 0. Thus if player 2’s preferences are not represented by the
payoff function −u1 then we know that the game is not strictly competitive.

Any game that is strictly competitive when we allow mixed strategies is clearly
strictly competitive when we restrict attention to pure strategies, but the converse
is not true. Consider, for example, the game in Figure 339.1, interpreting the num-
bers in the boxes as vNM payoffs. In this game player 1 is indifferent between the
outcome (T, L) and the lottery in which (T, R) occurs with probability 3

5 and (B, R)
occurs with probability 2

5 (since 3
5 · 0 + 2

5 · 5 = 2), but player 2 is not indifferent
between these two outcomes (her payoff to (T, L) is 1, while her expected payoff
to the lottery is 3

5 · 5 + 2
5 · 0 = 3).

? EXERCISE 340.1 (Determining strict competitiveness) Are either of the two games
in Figure 340.1 strictly competitive (a) if we restrict attention to pure strategies and
(b) if we allow mixed strategies?

L R
U 1, −1 3, −5
D 2, −3 1, −1

L R
U 1, −1 3, −6
D 2, −3 1, −1

Figure 340.1 The games in Exercise 340.1.

We saw above that in any game a player’s Nash equilibrium payoff is at least
her maxminimized payoff. I now show that for a strictly competitive game that
possesses a Nash equilibrium, the two payoffs are the same: a pair of actions is a
Nash equilibrium if and only if the action of each player is a maxminimizer. Denote
player i’s vNM payoff function by Ui and assume, without loss of generality, that
U2 = −U1.

Though the proof may look complicated, the ideas it entails are very simple;
the arguments involve no more than the manipulation of inequalities. The follow-
ing fact is used in the argument. The maximum of any function f is equal to the
negative of the minimum of − f : maxx f (x) = − minx(− f (x)). It follows that

max
α2

min
α1

U2(α1, α2) = max
α2

min
α1

(−U1(α1, α2))

= max
α2

(− max
α1

U1(α1, α2))

so that
max

α2
min

α1
U2(α1, α2) = − min

α2
max

α1
U1(α1, α2). (340.2)
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PROPOSITION 341.1 (Nash equilibrium strategies and maxminimizers of strictly
competitive games) Consider a strictly competitive strategic game with vNM prefer-
ences. Denote the vNM payoff function of each player i by Ui.

a. If (α∗
1, α∗

2) is a Nash equilibrium then α∗
1 is a maxminimizer for player 1, α∗

2 is a
maxminimizer for player 2, and maxα1 minα2 U1(α1, α2) = minα2 maxα1 U1(α1, α2) =
U1(α∗

1, α∗
2).

b. If α∗
1 is a maxminimizer for player 1, α∗

2 is a maxminimizer for player 2, and maxα1 minα2 U1(α1, α2) =
minα2 maxα1 U1(α1, α2) (and thus, in particular, if the game has a Nash equilibrium
(see part a)), then (α∗

1, α∗
2) is a Nash equilibrium.

Proof. I first prove part a. By the definition of Nash equilibrium we have

U2(α∗
1, α∗

2) ≥ U2(α∗
1, α2) for every mixed strategy α2 of player 2

or, since U2 = −U1,

U1(α∗
1, α∗

2) ≤ U1(α∗
1, α2) for every mixed strategy α2 of player 2 .

Hence
U1(α∗

1, α∗
2) = min

α2
U1(α∗

1, α2).

Now, the function on the right hand side of this equality is evaluated at the specific
strategy α∗

1, so that its value is not more than the maximum as we vary α1, namely
maxα1 minα2 U1(α1, α2). Thus we conclude that

U1(α∗
1, α∗

2) ≤ max
α1

min
α2

U1(α1, α2).

Now, from Lemma 338.1 we have the opposite inequality: a player’s Nash equi-
librium payoff is at least her maxminimized payoff. Thus U1(α∗

1, α∗
2) = maxα1 minα2 U1(α1, α2),

so that α∗
1 is a maxminimizer for player 1.

An analogous argument for player 2 establishes that α∗
2 is a maxminimizer for

player 2 and U2(α∗
1, α∗

2) = maxα2 minα1 U2(α1, α2). From (340.2) we deduce that
U1(α∗

1, α∗
2) = minα2 maxα1 U1(α1, α2), completing the proof of part a.

To prove part b, let

v∗ = max
α1

min
α2

U1(α1, α2) = min
α2

max
α1

U1(α1, α2).

From (340.2) we have maxα2 minα1 U2(α1, α2) = −v∗. Since α∗
1 is a maxminimizer

for player 1 we have U1(α∗
1, α2) ≥ v∗ for every mixed strategy a2 of player 2; since

α∗
2 is a maxminimizer for player 2 we have U2(α1, α∗

2) ≥ −v∗ for every mixed
strategy α1 of player 1. Letting α2 = α∗

2 and α1 = α∗
1 in these two inequalities

we obtain U1(α∗
1, α∗

2) ≥ v∗ and U2(α∗
1, α∗

2) ≥ −v∗, or U1(α∗
1, α∗

2) ≤ v∗, so that
U1(α∗

1, α∗
2) = v∗. Thus

U1(α∗
1, α2) ≥ U1(α∗

1, α∗
2) for every mixed strategy α2 of player 2,



342 Chapter 11. Strictly Competitive Games and Maxminimization

or
U2(α∗

1, α2) ≤ U2(α∗
1, α∗

2) for every mixed strategy α2 of player 2.

Similarly,

U2(α1, α∗
2) ≥ U2(α∗

1, α∗
2) for every mixed strategy α1 of player 1,

or
U1(α1, α∗

2) ≤ U1(α∗
1, α∗

2) for every mixed strategy α1 of player 1,

so that (α∗
1, α∗

2) is a Nash equilibrium of the game. ✷

This result is of interest not only because it shows the close relation between
the Nash equilibria and maxminimizers in a strictly competitive game, but also
because it reveals properties of Nash equilibria in a strictly competitive game that
are independent of the notion of maxminimization.

First, part a of the result implies that the Nash equilibrium payoff of each player
in a strictly competitive game is unique.

COROLLARY 342.1 Every Nash equilibrium of a strictly competitive game yields the
same pair of payoffs.

As we have seen, this property of Nash equilibria is not necessarily satisfied in
games that are not strictly competitive (consider BoS (Figure 16.1), for example).

Second, the result implies that a Nash equilibrium of a strictly competitive
game can be found by solving the problem maxα1 minα2 U1(α1, α2). Further, if we
know player 1’s equilibrium payoff then any mixed strategy that yields this payoff
when player 2 uses any of her pure strategies solves the maxminimization prob-
lem, and hence is an equilibrium mixed strategy of player 1. This fact is sometimes
useful when calculating the mixed strategy equilibria of a game when we know
the equilibrium payoffs before we have found the equilibrium strategies (see, for
example, Exercise 344.2).

Third, suppose that (α1, α2) and (α′
1, α′

2) are Nash equilibria of a strictly com-
petitive game. Then by part a of the result the strategies α1 and α′

1 are maxmin-
imizers for player 1, the strategies α2 and α′

2 are maxminimizers for player 2,
and

max
α1

min
α2

U1(α1, α2) = min
α2

max
α1

U1(α1, α2) = U1(α1, α2) = U1(α′
1, α′

2).

But then by part b of the result both (α1, α′
2) and (α′

1, α2) are Nash equilibria of the
game. That is, the result implies that Nash equilibria of a strictly competitive game
have the following property.

COROLLARY 342.2 The Nash equilibria of a strictly competitive game are interchange-
able: if (α1, α2) and (α′

1, α′
2) are Nash equilibria then so are (α1, α′

2) and (α′
1, α2).
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The game BoS shows that the Nash equilibria of a game that is not strictly compet-
itive are not necessarily interchangeable.

Part a of Proposition 341.1 shows that for any strictly competitive game that
has a Nash equilibrium we have

max
α1

min
α2

U1(α1, α2) = min
α2

max
α1

U1(α1, α2).

Note that the inequality

max
α1

min
α2

U1(α1, α2) ≤ min
α2

max
α1

U1(α1, α2)

holds more generally: for any α′
1 we have U1(α′

1, α2) ≤ maxα1 U1(α1, α2) for all
α2, so that minα2 U1(α′

1, α2) ≤ minα2 maxα1 U1(α1, α2). Thus in any game (whether
or not it is strictly competitive) the payoff that player 1 can guarantee herself is at
most the amount that player 2 can hold her down to.

If maxα1 minα2 U1(α1, α2) = minα2 maxα1 U1(α1, α2) then we say that this pay-
off, the equilibrium payoff of player 1, is the value of the game. An implication
of Proposition 341.1 is that any equilibrium strategy of player 1 guarantees that
her payoff is at least v∗, and any equilibrium strategy of player 2 guarantees that
player 1’s payoff is at most v∗.

COROLLARY 343.1 Any Nash equilibrium strategy of player 1 in a strictly competitive
game guarantees that her payoff is at least the value of the game, and any Nash equilibrium
strategy of player 2 guarantees that player 1’s payoff is at most the value.

Proof. For i = 1, 2, let α∗
i be an equilibrium strategy of player i and let v∗ be

the value of the game. By Proposition 341.1a, α∗
1 is a maxminimizer, so that it

guarantees that player 1’s payoff is at least v∗:

U1(α∗
1, α2) ≥ min

α2
U1(α∗

1, α2) = max
α1

min
α2

U1(α∗
1, α2) = v∗.

Similarly, any equilibrium strategy of player 2 guarantees that her payoff is at least
her equilibrium payoff −v∗; or, equivalently, any equilibrium strategy of player 2
guarantees that player 1’s payoff is at most v∗. ✷

In a game that is not strictly competitive a player’s equilibrium strategy does
not in general have these properties, as the following exercise shows.

? EXERCISE 343.2 (Maxminimizers in BoS) For the game BoS (Figure 16.1) find the
maxminimizer of each player. Show for each equilibrium, the strategy of neither
player guarantees her equilibrium payoff.

? EXERCISE 343.3 (Increasing payoffs and eliminating actions in strictly competitive
games) Let G be a strictly competitive game that has a Nash equilibrium.

a. Show that if some of player 1’s payoffs in G are increased in such a way that
the resulting game G′ is strictly competitive then G′ has no equilibrium in
which player 1 is worse off than she was in an equilibrium of G. (Note that
G′ may have no equilibrium at all.)
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b. Show that the game that results if player 1 is prohibited from using one of her
actions in G does not have an equilibrium in which player 1’s payoff is higher
than it is in an equilibrium of G.

c. Give examples to show that neither of the above properties necessarily holds
for a game that is not strictly competitive.

? EXERCISE 344.1 (Equilibrium in strictly competitive games) Either prove or give a
counterexample to the claim that if the equilibrium payoff of player 1 in a strictly
competitive game is v then any strategy pair that gives player 1 a payoff of v is an
equilibrium.

? EXERCISE 344.2 (Guessing Morra) In the two-player game “Guessing Morra”, each
player simultaneously holds up one or two fingers and also guesses the total shown.
If exactly one player guesses correctly then the other player pays her the amount
of her guess (in $, say). If either both players guess correctly or neither does so
then no payments are made.

a. Specify this situation as a strategic game.

b. Use the symmetry of the game to show that the unique equilibrium payoff of
each player is 0.

c. Find the mixed strategies of player 1 that guarantee that her payoff is at least
0, and hence find all the mixed strategy equilibria of the game.

? EXERCISE 344.3 (O’Neill’s game) Consider the game in Figure 344.1.

a. Find a completely mixed Nash equilibrium in which each player assigns the
same probability to the actions 1, 2, and 3.

b. Use the facts that in a strictly competitive game the players’ equilibrium pay-
offs are unique and each player’s equilibrium strategy guarantees her payoff
is at least her equilibrium payoff to show that the equilibrium you found in
part a is the only equilibrium of the game.

1 2 3 J
1 −1, 1 1, −1 1, −1 −1, 1
2 1, −1 −1, 1 1, −1 −1, 1
3 1, −1 1, −1 −1, 1 −1, 1
J −1, 1 −1, 1 −1, 1 1, −1

Figure 344.1 The game in Exercise 344.3.

MAXMINIMIZATION: SOME HISTORY

The theory of maxminimization in general strictly competitive games was devel-
oped by John von Neumann in the late 1920’s. However, the idea of maxminimiza-
tion in the context of a specific game appeared two centuries earlier. In 1713 or 1714
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Pierre Rémond de Montmort, a Frenchman who “devoted himself to religion, phi-
losophy, and mathematics” (Todhunter (1865, p. 78)) published Essay d’analyse sur
les jeux de hazard (Analytical essay on games of chance), in which he reported cor-
respondence with Nikolaus Bernoulli (a member of the Swiss family of scientists
and mathematicians). Among the correspondence is a letter in which Montmort
describes a letter (dated November 13, 1713) he received from “M. de Waldegrave”
(probably Baron Waldegrave of Chewton, a British noble born and educated in
France). Montmort, Bernoulli, and Waldegrave had been corresponding about the
two-player card game le Her (“the gentleman”).

This two player game uses an ordinary deck of cards. Each player is first dealt
a single card, which she alone sees. The object is to hold a card with a higher
value than your opponent, with the ace counted as 1 and the jack, queen, and king
counted as 11, 12, and 13 respectively. After each player has received her card,
player 1 can, if she wishes, exchange her card with that of player 2, who must
make the exchange unless she holds a king, in which case she is automatically
the winner. Then, whether or not player 1 exchanges her card, player 2 has the
option of exchanging hers for a card randomly selected from the remaining cards
in the deck; if the randomly selected card is a king she automatically loses, and
otherwise she makes the exchange. Finally, the players compare their cards and
the one whose card has the higher value wins; if both cards have the same value
then player 2 wins.

We can view this situation as a strategic game in which an action for player 1 is
a rule that says, for each possible card that she may receive, whether she keeps or
exchanges the card. For example, one possible action is to exchange any card with
value up to 5 and to keep any card with higher value; another possible action is to
exchange any even card and to keep any odd card. Since there are 13 different values
of cards, player 1 has 213 actions. If player 1 exchanges her card then player 2
knows both cards being held, and she should clearly exchange with a random card
from the deck if and only if the card she hold would otherwise lose. If player 1 does
not exchange her card then player 2’s decision of whether to exchange or not is not
as clear. As for player 1 at the start of the game, an action of player 2 is a rule that
says, for each possible card that she holds, whether to keep or exchange the card.
Like player 1, player 2 has 213 actions.

Montmort, Bernoulli, and Waldegrave had argued that the only actions that
could possibly be optimal are “exchange up to 6 and keep 7 and over” or “exchange
up to 7 and keep 8 and over” for player 1, and “exchange up to 7 and keep 8 and
over” or “exchange up to 8 and keep 9 and over” for player 2. When the players are
restricted to use only these actions the game is equivalent to

0, 0 5, −5
3, −3 0, 0

The three scholars had corresponded about which of these actions is best. As you
can see, the best action for each player depends on the other player’s action, and
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the game has no pure strategy Nash equilibrium. Waldegrave made the key con-
ceptual leap of considering the possibility that the players randomize. He observed
that if player 1 uses the mixed strategy ( 3

8 , 5
8 ) then her payoff is the same regardless

of player 2’s action, and guarantees her a payoff of 15
8 , and that if player 2 uses the

mixed strategy ( 5
8 , 3

8 ) then she ensures that player 1’s payoff is no more than 15
8 .

That is, Waldegrave found the maxminimizers for each player and appreciated
their significance; Montmort wrote to Bernoulli that “it seems to me that [Walde-
grave’s letter] exhausts everything that one can say on [the players’ behavior in le
Her]”.

The decision criterion of maxminimization seems to be conservative. In partic-
ular, in any game, a player’s Nash equilibrium payoff is at least her maxminimized
payoff. We have seen that in strictly competitive games the two are equal, and the
notions of Nash equilibrium and maxminimizing yield the same predictions. In
some games that are not strictly competitive the two payoffs are also equal. The
next example gives such an example, in which the notions of Nash equilibrium and
maxminimization do not yield the same outcome and, from a decision-theoretic
viewpoint, a maxminimizer seems preferable to a Nash equilibrium strategy.

EXAMPLE 346.1 (Maxminimizers vs. Nash equilibrium actions) The game in Fig-
ure 346.1 has a unique Nash equilibrium, in which player 1’s strategy is ( 1

4 , 3
4 ) and

player 2’s strategy is ( 2
3 , 1

3 ). In this equilibrium player 1’s payoff is 4.

L R
T 6, 0 0, 6
B 3, 2 6, 0

Figure 346.1 A strategic game.

Now consider the maxminimizer for player 1. Player 1’s payoff as a function
of the probability that she assigns to T is shown in Figure 347.1. We see that the
maxminimizer for player 1 is ( 1

3 , 2
3 ), and this strategy guarantees player 1 a payoff

of 4.
Thus in this game player 1’s maxminimizer guarantees that she obtain her pay-

off in the unique equilibrium, while her equilibrium strategy does not. If player 1
is certain that player 2 will adhere to the equilibrium then her equilibrium strat-
egy yields her equilibrium payoff of 4, but if player 2 chooses a different strategy
then player 1’s payoff may be less than 4 (it also may be greater than 4). Player 1’s
maxminimizer, on the other hand, guarantees a payoff of 4 regardless of player 2’s
behavior.
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1
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Figure 347.1 The expected payoff of player 1 in the game in Figure 346.1 for each of player 2’s actions,
as a function of the probability p that player 1 assigns to T.

TESTING THE THEORY OF NASH EQUILIBRIUM IN STRICTLY COMPETITIVE GAMES

The theory of maxminimization makes a sharp prediction about the outcome of a
strictly competitive game. Does human behavior correspond to this prediction?

In designing an experiment, we face the problem in a general game of inducing
the appropriate preferences. We can avoid this problem by working with games
with only two outcomes. In such games the players’ preferences are represented
by the monetary payoffs of the outcomes, so that we do not need to control for
subjects’ risk attitudes.

O’Neill (1987) conducted an experiment with such a game. He confronted peo-
ple with the game in Exercise 344.3, in which each player’s equilibrium strategy
is (0.2, 0.2, 0.2, 0.4). In order to collect a large amount of data he had each of 25
pairs of people play the game 105 times. This design raises two issues. First, when
players confront each other repeatedly, strategic possibilities that are absent from
a one-shot game emerge: each player may condition her current action on her op-
ponent’s past actions. However, an analysis that takes into account these strategic
options leads to the conclusion that, for the game used in the experiment, the play-
ers will eschew them. Second, in the experiment, each subject faced more than two
possible outcomes. However, under the hypothesis that each player’s preferences
are separable between the different trials, these preferences in any trial are still
represented by the expected monetary payoffs.

Each subject was given US$2.50 in cash at the start of the game, was paid
US$0.05 for every win, and paid her opponent US$0.05 for every loss. On average,
subjects in the role of player 1 chose the actions with probabilities (0.221, 0.215, 0.203, 0.362)
and subjects in the role of player 2 chose them with probabilities (0.226, 0.179, 0.169, 0.426).
These observed frequencies seem fairly close to those predicted by the theory of
maxminimization. But how can we measure closeness? A standard statistical test
(χ2) asks the question: if each player used exactly her equilibrium strategy, what
is the probability of the observed frequencies deviating at least as much from the
predicted ones? Applying this test to the aggregate data on the frequencies of the
16 possible outcomes of the game leads to minmax behavior being decisively re-
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jected (the probability of a deviation from the prediction at least as large as that ob-
served is less than 1 in 1,000). Other tests on O’Neill’s data also reject the minmax
hypothesis (Brown and Rosenthal (1990)).

In a variant of O’Neill’s experiment, with considerably higher stakes and a
somewhat more complicated game, the evidence also does not support maxmini-
mization, although maxminimization explains the data better than two alternative
theories (Rapoport and Boebel (1992)). (Of course, it’s relatively easy to design
a theory that works well in one particular game; in order to “understand” behav-
ior we want a theory that works well in a large class of games.) In summary, the
evidence so far tends not to support the theory of maxminimization, although no
other theory is systematically superior.

Notes

The material in the box on page 344 is based on Todhunter (1865) and Kuhn (1968).
Guilbaud (1961) rediscovered Monmort’s report of Waldegrave’s work.
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Prerequisite: Chapters 2 and 4.

12.1 Introduction

WHAT outcomes in a strategic game are consistent with the players’ analyses
of each others’ rational behavior? The main solution notion we have stud-

ied so far, Nash equilibrium, is not designed to address this question, but rather
models a steady state in which each player has learned the other players’ actions
from her long experience playing the game. In this chapter I discuss an approach
to the question that considers players who carefully study a game, deducing their
opponents’ rational actions from their knowledge of their opponents’ preferences
and analyses of their opponents’ reasoning about their rational actions.

Suppose that we model each player’s decision problem as follows. She forms
a probabilistic belief about the other players’ actions, and chooses her action (or
mixed strategy) to maximize her expected payoff given this probabilistic belief.
We say that a player who behaves in this way is rational. Precisely, suppose that
player i’s preferences are represented by the expected value of the Bernoulli payoff
function ui. Denote by µi her probabilistic belief about the other players’ actions:
µi(a−i) is the probability she assigns to the collection a−i of the other players’ ac-
tions. Denote by Ui(αi, a−i) player i’s expected payoff when she uses the mixed
strategy αi and the other players’ actions are given by a−i.

� DEFINITION 349.1 A belief of player i about the other players’ actions is a proba-
bility distribution over A−i. Player i is rational if she chooses her mixed strategy αi
to solve the problem

max
αi

∑
a−i

µi(a−i)Ui(αi , a−i),

where µi is her belief about the other players’ actions.

Suppose that each player’s belief is correct—that is, the probability that it as-
signs to each collection of actions of the other players is the probability implied
by their mixed strategies. Then a solution of each player’s maximization problem
is her Nash equilibrium strategy. That is, if each player’s belief about the other

349
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players’ behavior is correct then her equilibrium action is optimal for her. (Note,
however, that some nonequilibrium actions may be optimal too.)

The assumption that each player’s belief about the other players is correct is
not very appealing if we imagine a player confronting a game in which she has
little or no experience. In such a case the most that we might reasonably assume
is that she knows (or at least assumes) that the other players are rational—that is,
that the other players, like her, have beliefs and choose their actions to maximize
their expected payoffs given these beliefs.

To think about the consequences of this assumption, consider a variant of the
game in Exercise 36.2.

EXAMPLE 350.1 (Rationalizable actions in a bargaining game) Two players split $4
using the following procedure. Each announces an integral number of dollars. If
the sum of the amounts named is at most $4 then each player receives the amount
she names. If the sum of the amounts named exceeds $4 and both players name
the same amount then each receives $2. If the sum of the amounts named exceeds
$4 and the players name different amounts then the player who names the smaller
amount receives that amount plus a small amount proportional to the difference
between the amounts, and the other player receives the balance of the $4. (That is,
there is a small penalty for making a demand that is “excessive” relative to that of
the other player.) In summary, the payoff of each player i is given by




ai if a1 + a2 ≤ 4
2 if a1 + a2 > 4 and ai = aj
4 − aj − (ai − aj)ε if a1 + a2 > 4 and ai > aj,
ai + (aj − ai)ε if a1 + a2 > 4 and ai < aj,

where ε > 0 is a small amount (less than 30 cents); the payoffs are shown in
Figure 350.1.

0 1 2 3 4
0 0, 0 0, 1 0, 2 0, 3 0, 4
1 1, 0 1, 1 1, 2 1, 3 1 + 3ε, 3 − 3ε

2 2, 0 2, 1 2, 2 2 + ε, 2 − ε 2 + 2ε, 2 − 2ε

3 3, 0 3, 1 2 − ε, 2 + ε 2, 2 3 + ε, 1 − ε

4 4, 0 3 − 3ε, 1 + 3ε 2 − 2ε, 2 + 2ε 1 − ε, 3 + ε 2, 2

Figure 350.1 The players’ payoffs in the game in Example 350.1.

Suppose that you, as a player in this game, hold a probabilistic belief about
your opponent’s action and choose an action that maximizes your expected payoff
given this belief. I claim that, whatever your belief, you will not demand $0. Why?
Because if you do so then you receive $0 whatever amount the other player names,
while if instead you name $1 then you receive at least $1 whatever amount the other
player names. Thus for no belief about the other player’s behavior is it optimal
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for you to demand $0. Without considering whether your belief about the other
player’s behavior is consistent with her being rational, we can conclude that if you
maximize your payoff given some belief about the other player then you will not
demand $0. We say that a demand of $0 is a never best response.

By a similar argument we can conclude that you will not demand $1, whatever
your belief. But you might demand $2. Why? Because you might believe, for
example, that the other player is sure to demand $2 (that is, you might assign
probability 1 to the other player’s demanding $2), in which case your best action
is to demand $2 (if you demand more than $2 then you obtain less than $2, since
you pay a small penalty for making an excessive demand).

Is there any belief under which it is optimal for you to demand $3? Yes: if you
are sure that the other player will demand $1 then it is optimal to demand $3 (if
you demand less then the sum of the demands will be less than $4 and you will
receive what you demand, while if you demand more then the sum of the demands
will exceed $4 and you will receive $3 minus a small penalty). Similarly, if you are
sure that the other player will demand $0 then it is optimal for you to demand $4.

In summary, any demand of at least $2 is consistent with your choosing an
action to maximize your expected payoff given some belief, while any smaller
demand is not. Or, more succinctly,

the only demands consistent with your being rational are $2, $3, and $4.

Now take the argument one step further. Suppose that you work under the
assumption that your adversary is rational. Then you can conclude that she will
not demand less than $2: for any belief that she holds about you, it is not optimal
for her to demand less than $2 (just as it is not optimal for you to demand less than
$2 if you are rational). But if she demands at least $2 then it is not optimal for you
to demand $4, whatever belief you hold about her demand: you are better off de-
manding $2 or $3 than you are demanding $4, whether you think your adversary
will demand $2, $3, or $4. On the other hand, the demands of $2 and $3 are both
optimal for some belief that assigns positive probability only to your adversary
demanding $2, $3, or $4: if you are sure that the other player will demand $4, for
example, it is optimal for you to demand $3.

We have now argued that only the demands $2 and $3 are consistent with your
choosing an action to maximize your expected payoff given some belief about the
other player’s actions that is consistent with her being rational in the sense that
for each action to which it assigns positive probability there is a belief that she can
hold about your behavior that makes that action optimal for her:

only the demands $2 and $3 are consistent with your being rational and your
assuming that the other player is rational.

We can take the argument yet another step. What if you assume not only that
your opponent is rational but that she assumes that you are rational? Then each
of the actions to which each of her beliefs about you assigns positive probability
should in turn be justified by a possible belief of yours about her. The only de-
mands consistent with your rationality are those at least equal to $2, as we saw
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above. Thus if she assumes that you are rational then each of her beliefs about
you must assign positive probability only to demands of at least $2. But then, by
the last argument above, the belief that you hold must assign positive probability
only to demands of $2 or $3. Finally, referring to Figure 350.1 you can see that if
you hold such a belief you will not demand $3: a demand of $2 generates a higher
payoff for you, whether your opponent demands $2 or $3. To summarize:

only the demand of $2 is consistent with your rationality, your assuming that
your opponent is rational, and your assuming that your opponent assumes
that you are rational.

The line of reasoning can be taken further: we can consider the consequence of
your assuming that your opponent assumes that you assume that she is rational.
However, such reasoning eliminates no more actions: a demand of $2 survives
every additional level, since a demand of $2 is optimal for a player who is sure
that her opponent will demand $2. (That is, ($2, $2) is a Nash equilibrium of the
game.)

In summary, in this game we conclude that

• if you are rational you will demand either $2, $3, or $4

• if you assume that your opponent is rational you will demand either $2 or $3

• if you assume that your opponent assumes that you are rational then you will
demand $2.

The general structure of this argument is illustrated in Figure 353.1. (I re-
strict the informal discussion, though not the definitions and results, to two-player
games.) The rectangles represent the sets Ai and Aj of players i and j in the game.
Assume that the action a∗i is consistent with player i’s acting rationally. Then there
is a belief of player i about player j’s actions under which a∗i is optimal. Let µ1

i
be one such belief, and let the set of actions to which this belief assigns positive
probability be the shaded set on the right, which I denote X1

j . In the example, if
a∗1 = $0 or $1 then there is no such belief. If a∗1 = $2, $3, or $4 there are such beliefs;
if a∗1 = $4, for example, then all such beliefs assign relatively high probability to
$0.

Now further assume that a∗i is consistent with player i’s assuming that player j
is rational. Then for some belief of player i about player j’s actions that makes a∗i
optimal—say µ1

i —each action in X1
j (the set of actions to which µ1

i assigns positive
probability) must be optimal for player j under some belief about player i’s action.
For the two actions a′j and a′′j in X1

j the beliefs µ2
j (a′j) and µ2

j (a′′j ) under which the
actions are optimal are indicated in the figure, together with the sets of actions of
player i to which they assign positive probability. The shaded set on the left is the
set of actions of player i to which some belief µ2

j (aj) of player j for aj in X1
j assigns

positive probability. (The action a∗i may or may not be a member of X2
i ; in the

figure it is not.)
Note that we do not require that for every belief of player i under which a∗i is

optimal the actions of player j to which that belief assigns positive probability be
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Figure 353.1 An illustration of the argument that an action is rationalizable.

optimal given some belief of player j about player i; rather, we require only that
there exists a belief of player i under which a∗i is optimal with this property. In the
Prisoner’s Dilemma, for example, the belief of player 1 that assigns probability 1 to
player 2’s choosing Fink has the properties that if player 1 holds this belief then it is
optimal for her to choose Fink, and there is some belief of player 2 under which the
action that player 1’s belief assigns positive probability is optimal for player 2. It
is also optimal for player 1 to choose Fink if she holds a belief that assigns positive
probability to player 2’s choosing Quiet. However, such a belief cannot play the
role of µ1

1 in the argument above, since there is no belief of player 2 under which the
action Quiet of player 2, to which the belief assigns positive probability, is optimal.
That is, if we start off by letting µ1

1 be a belief of player 1 that assigns positive
probability to both Fink and Quiet then we get stuck at the next round: there is no
belief that justifies Quiet. On the other hand, if we start off by letting µ1

1 be the
belief of player 1 that assigns probability 1 to player 2’s choosing Fink then we can
continue the argument.

The next step of the argument requires that every action ai in X2
i be optimal for

player i given some belief µ3
i (ai) about player j; denote the set of actions to which

µ3
i (ai) assigns positive probability for some ai in X2

i by X3
j . Subsequent steps are

similar: at each step every action in Xt
k has to be optimal for some belief about the

other player and the set of actions of the other player (say �) to at least one of these
beliefs in this set assigns positive probability is the new set Xt+1

� .
If we can continue the process indefinitely then we say that the action a∗i is

rationalizable. If we cannot—that is, if there is a stage t at which some action in the
set Xt

k is not justified by any belief of player k—then a∗i is not rationalizable.
Under what circumstances can we continue the argument indefinitely? Cer-

tainly we can do so if there are sets Z1 and Z2 of actions of player 1 and player 2
respectively such that Zi contains a∗i , every action in Z1 is a best response to a belief
of player 1 on Z2 (i.e. a belief that assigns positive probability only to actions in Z2),
and every action in Z2 is a best response to a belief of player 2 on Z1. Conversely,
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suppose that it can be continued indefinitely. For player i let Zi be the union of
{a∗i } with the union of the sets Xt

i for all even values of t and let Zj be the union
of the sets Xt

j for all odd values of t. Then for i = 1, 2, every action in Zi is a best
response to a belief on Zj. Thus we can define an action to be rationalizable as
follows, where Z−i denotes the set of all collections a−i of actions for the players
other than i for which aj ∈ Zj for all j.

� DEFINITION 354.1 The action a∗i of player i in a strategic game is rationalizable if
for each player j there exists a set Zj of actions such that

• Zi contains a∗i
• for every player j, every action aj in Zj is a best response to a belief of player j

on Z−j.

Suppose that a∗ is a pure strategy Nash equilibrium. Then for each player i
the action a∗i is a best response to a belief that assigns probability one to the other
players’ choosing a∗−i. Setting Zi = {a∗i } for each i, we see that a∗ is rationalizable.
In fact, we have the following stronger result.

PROPOSITION 354.2 Every action used with positive probability in some mixed strategy
Nash equilibrium is rationalizable.

Proof. For each player i, let Zi be the set of actions to which player i’s equilibrium
mixed strategy assigns positive probability. Then every action in Zi is a best re-
sponse to the belief of player i that coincides with the probability distribution over
the other players’ actions that is generated by their mixed strategies (which by
definition assigns positive probability only to collections of actions in Z−i). Hence
every action in Zi is rationalizable. ✷

In many games, actions not used with positive probability in some Nash equi-
librium are rationalizable. Consider, for example, the game in Figure 355.1, which
has a unique Nash equilibrium (M, C).

? EXERCISE 354.3 (Mixed strategy equilibrium of game in Figure 355.1) Show that
the game in Figure 355.1 has no nondegenerate mixed strategy equilibrium.

Each action of each player is a best response to some action of the other player (for
example, T is a best response of player 1 to R, M is a best response to C, and B is
a best response to L). Thus, setting Z1 = {T, M, B} and Z2 = {L, C, R} we see that
every action of each player is rationalizable. In particular the actions T and B of
player 1 are rationalizable, even though they are not used with positive probability
in any Nash equilibrium. The argument for player 1’s choosing T, for example, is
that player 2 might choose R, which is rational for her if she thinks player 1 will
choose B, and it is reasonable for player 2 to so think since B is optimal for player 1
if she thinks that player 2 will choose L, which in turn is rational for player 2 if she
thinks that player 1 will choose T, and so on.
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L C R
T 0, 7 2, 5 7, 0

M 5, 2 3, 3 5, 2
B 7, 0 2, 5 0, 7

Figure 355.1 A game in which the actions T and B or player 1 and L and R of player 2 are not used
with positive probability in any Nash equilibrium, but are rationalizable.

Even in games in which every rationalizable action is used with positive prob-
ability in some Nash equilibrium, the predictions of the notion of rationalizability
are weaker than those of Nash equilibrium. The reason is that the notion of Nash
equilibrium makes a prediction about the profile of chosen actions, while the notion
of rationalizability makes a prediction about the actions chosen by each player. In
a game with more than one Nash equilibrium these two predictions may differ.
Consider, for example, the game in Figure 355.2. The notion of Nash equilibrium
predicts that the outcome will be either (T, L) or (B, R) in this game, while the
notion of rationalizability does not restrict the outcome at all: both T and B are
rationalizable for player 1 and both L and R are rationalizable for player 2, so the
outcome could be any of the four possible pairs of actions.

L R
T 2, 2 1, 0
B 0, 1 1, 1

Figure 355.2 A game with two Nash equilibria, (T, L) and (B, R).

12.2 Iterated elimination of strictly dominated actions

The notion of rationalizability, in requiring that a player act rationally, starts by re-
stricting attention to actions that are best responses to some belief. That is, it elimi-
nates from consideration actions that are not best responses to any belief: never best
responses.

� DEFINITION 355.1 A player’s action is a never best response if it is not a best
response to any belief about the other players’ actions.

Another criterion that we might use to eliminate an action from consideration
is domination. Define an action ai of player i to be strictly dominated if there is a
mixed strategy of player i that yields her a higher payoff than does ai regardless of
the other players’ behavior.

� DEFINITION 355.2 An action ai of player i in a strategic game is strictly dominated
if there is a mixed strategy αi of player i for which

Ui(αi , a−i) > ui(ai , a−i) for all a−i .
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(As before, Ui(αi, a−i) is the expected payoff of player i when she uses the mixed
strategy αi and the collection of actions chosen by the other players is a−i.)

In the Prisoner’s Dilemma, for example, the action Quiet is strictly dominated
by the action Fink: whichever action the other player chooses, Fink yields a higher
payoff than does Quiet. In the game in Figure 356.1, no action of either player is
strictly dominated by another action, but the action R of player 2 is strictly dom-
inated by the mixed strategy that assigns probability 1

2 to L and probability 1
2 to

C: the action R yields player 2 a payoff of 1 regardless of how player 1 behaves,
while the mixed strategy yields her a payoff of 3

2 regardless of how player 1 be-
haves. (The action R is dominated by other mixed strategies too: a mixed strategy
that assigns probability q to L and probability 1 − q to C yields the payoff 3q if
player 1 chooses T and 3(1 − q) if player 1 chooses B, and hence strictly dominates
R whenever 3q > 1 and 3(1 − q) > 1, or whenever 1

3 < q < 2
3 .)

L C R
T 1, 3 0, 0 1, 1
B 0, 0 1, 3 0, 1

Figure 356.1 A strategic game in which the action R of player 2 is strictly dominated by the mixed
strategy that assigns probability 1

2 to each of the actions L and C.

If an action is strictly dominated then it is a never best response by the fol-
lowing argument. Suppose that a∗i is strictly dominated by the mixed strategy
αi and let µi be a belief of player i about the other players’ actions. Then since
Ui(αi, a−i) > ui(a∗i , a−i) for all a−i we have

∑
a−i

µi(a−i)Ui(αi , a−i) > ∑
a−i

µi(a−i)ui(a∗i , a−i).

Hence a∗i is not a best response to µi; since µi is arbitrary, a∗i is a never best re-
sponse. In fact, the converse is also true: if an action is a never best response then
it is strictly dominated. Although it is easy to convince oneself that this result is
reasonable, the proof is not trivial. In summary, we have the following.

LEMMA 356.1 A player’s action in a finite strategic game is a never best response if and
only if it is strictly dominated.

Now reconsider the argument behind the rationalizability of an action of player i.
First we argued that player i will not use a never best response, or equivalently, a
strictly dominated action. Then we argued that if she works under the assumption
that her opponent is rational then her belief should not assign positive probability
to any action of her opponent that is a never best response. That is, she should
not choose an action that is strictly dominated in the game that results when we
eliminate all her opponent’s strictly dominated actions. At the next step we argued
that if player i works under the assumption that her opponent assumes that she is
rational then she will assume that the action chosen by her opponent is a best re-
sponse to some belief that assigns positive probability to actions of player i that are
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best responses to beliefs of player i. That is, in this case player i will assume that
her opponent’s action is not strictly dominated in the game that results when all
of player i’s strictly dominated actions are eliminated. Thus player i will choose
an action that is not strictly dominated in the game that results when first all of
player i’s strictly dominated actions are eliminated, then all of player j’s strictly
dominated actions are eliminated.

We see that each step in the argument is equivalent to one more round of elim-
ination of strictly dominated strategies in the game; the actions that remain no
matter how many rounds of elimination we perform are the rationalizable actions.
That is, rationalizability is equivalent to iterative elimination of strictly dominated
actions.

In fact, we do not have to remove all the strictly dominated actions of one of the
players at each stage: the set of action profiles that remain if we keep eliminating
strictly dominated actions until we are left with a game in which no action of any
player is strictly dominated does not depend on the order in which we perform the
elimination or the number of actions that we eliminate at each stage; the surviv-
ing set is always the set of rationalizable action profiles. We now state this result
precisely.

� DEFINITION 357.1 Suppose that for each player i in a strategic game and each
t = 1, . . . , T there is a set Xt

i of actions of player i such that

• X1
i = Ai (we start with the set of all possible actions).

• Xt+1
i is a subset of Xt

i for each t = 1, . . . , T − 1 (at each stage we may eliminate
some actions).

• For each t = 0, . . . , T − 1 every action of player i in Xt
i that is not in Xt+1

i is
strictly dominated in the game in which the set of actions of each player j is
Xt

j (we eliminate only strictly dominated actions)

• No action in XT
i is strictly dominated in the game in which the set of actions of

each player j is XT
j (at the end of the process no action of any player is strictly

dominated).

Then the set of action profiles a such that ai ∈ XT
i for every player i survives

iterated elimination of strictly dominated actions.

Then we can show the following.

PROPOSITION 357.2 For any finite strategic game, there is a unique set of action profiles
that survives iterated elimination of strictly dominated actions, and this set coincides with
the set of profiles of rationalizable actions.

EXAMPLE 357.3 (Rationalizable actions in an extension of BoS) Consider the game
in Figure 358.1. The action B of player 2 is strictly dominated by Book. In the
game obtained by eliminating B for player 2 the action B of player 1 is strictly
dominated. Finally, in the game obtained by eliminating B for player 1 the action
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B S Book
B 3, 1 0, 0 −1, 2
S 0, 0 1, 3 0, 2

Figure 358.1 Bach, Stravinsky, or a book.

Book for player 2 is strictly dominated. We conclude that the only rationalizable
action for each player is S.

? EXERCISE 358.1 (Finding rationalizable actions) Find the set of rationalizable ac-
tions of each player in the game in Figure 358.2.

L C R
T 2, 1 1, 4 0, 3
B 1, 8 0, 2 1, 3

Figure 358.2 The game in Exercise 358.1

? EXERCISE 358.2 (Rationalizable actions in Guessing Morra) Find the rationalizable
actions of each player in the game Guessing Morra (Exercise 344.2).

? EXERCISE 358.3 (Rationalizable actions in a public good game) (More difficult, but
also more interesting.) Show the following results for the variant of the game in
Exercise 42.1in which contributions are restricted to be nonnegative.

a. Any contribution of more than wi/2 is strictly dominated for player i.

b. If n = 3 and w1 = w2 = w3 = w then every contribution of at most w/2
is rationalizable. [Show that every such contribution is a best response to a
belief that assigns probability one to each of the other players’ contributing
some amount at most equal to w/2.]

c. If n = 3 and w1 = w2 < 1
3 w3 then the unique rationalizable contribution

of players 1 and 2 is 0 and the unique rationalizable contribution of player 3
is w3. [Eliminate strictly dominated actions iteratively. After eliminating a
contribution of more than wi/2 for each player i (by part a), you can eliminate
small contributions by player 3; subsequently you can eliminate any positive
contribution by players 1 and 2.]

? EXERCISE 358.4 (Rationalizable actions in Hotelling’s spatial model) Consider a
variant of the game in Section 3.3 in which there are two players, the distribution
of the citizens’ favorite positions is uniform [not needed?, but makes things easier
to talk about?], and each player is restricted to choose a position of the form �/m for
some integer � between 0 and m, where m is even (or to stay out of the competition).
Show that the unique rationalizable action of each player is the position 1

2 .
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12.3 Iterated elimination of weakly dominated actions

A strictly dominated action is clearly unattractive to a rational player. Now con-
sider an action ai that is weakly dominated in the sense that there is another action
that yields at least as high a payoff as does ai whatever the other players choose
and yields a higher payoff than does ai for some choice of the other players. In
the game in Figure 359.1, for example, the action T of player 1 weakly (though not
strictly) dominates B.

L R
T 1, 1 0, 0
B 0, 0 0, 0

Figure 359.1 A game in which the action B for player 1 and the action R for player 2 are weakly, but
not strictly, dominated.

� DEFINITION 359.1 The action ai of player i in a strategic game is weakly domi-
nated if there is a mixed strategy αi of player i such that

Ui(αi, a−i) ≥ ui(ai, a−i) for all a−i ∈ A−i

and
Ui(αi, a−i) > ui(ai , a−i) for some a−i ∈ A−i.

A weakly dominated action that is not strictly dominated, unlike a strictly dom-
inated one, is not an unambiguously poor choice: by Lemma 356.1 such an action is
a best response to some belief. For example, in the game in Figure 359.1, if player 1
is sure that player 2 will choose R then B is an optimal choice for her. However, the
rationale for choosing a weakly dominated action is very weak: there is no advan-
tage to a player’s choosing a weakly dominated action, whatever her belief. For
example, if player 1 in the game in Figure 359.1 has the the slightest suspicion that
player 2 might choose L then T is better than B, and even if player 2 chooses R, T
is no worse than B.

If we argue that it is unreasonable for a player to choose a weakly dominated
action then we can argue also that each player should work under the assump-
tion that her opponents will not choose weakly dominated actions, and they will
assume that she does not do so, and so on. Thus, as in the case of strictly dom-
inated actions, we can argue that weakly dominated actions should be removed
iteratively from the game. That is, first we should mark actions of player 1 that
are weakly dominated; then, without removing these actions of player 1, mark ac-
tions of player 2 that are weakly dominated, and proceed similarly with the other
players. Then we should remove all the marked actions, and again mark weakly
dominated actions for every player. Once again, having marked weakly domi-
nated actions for every player, we should remove all the actions and go through
the process again. We should repeat the process until no more actions can be elimi-
nated for any player. This procedure, however, is less compelling than the iterative



360 Chapter 12. Rationalizability

removal of strictly dominated actions since the set of actions that survive may de-
pend on whether we remove all the weakly dominated actions at each round, or
only some of them, as the two-player game in Figure 360.1 shows. The sequence
in which we first eliminate L (weakly dominated by C) and then T (weakly domi-
nated by B) leads to an outcome in which player 1 chooses B and the payoff profile
is (1, 2). On the other hand, the sequence in which we first eliminate R (weakly
dominated by C) and then B (weakly dominated by T) leads to an outcome in
which player 1 chooses T and the payoff profile is (1, 1).

L C R
T 1, 1 1, 1 0, 0
B 0, 0 1, 2 1, 2

Figure 360.1 A two-player game in which the set of actions that survive iterated elimination of weakly
dominated actions depends on the order in which actions are eliminated.

EXAMPLE 360.1 (A card game) A set of n cards consists of one with “1” on one side
and “2” on the other side, one with “2” on one side and “3” on the other side, and
so on. A card is selected at random; player 1 sees one side (determined randomly)
and player 2 sees the other side. Each player can either veto the card, or accept it. If
at least one player vetoes a card, the players tie; if both players accept it, the one
who sees the higher number wins (and the other player loses).

We can model this situation as a strategic game in which a player’s action is
the set of numbers she accepts. If n = 2, for example, each player has 8 actions: ∅

(accept no number), {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, and {1, 2, 3}. A player’s
payoff is her probability of winning minus her probability of losing. If n = 2 and
player 1’s strategy is {3} and player 2’s action is {2, 3}, for example, then if the
card 1 − −2 is selected one player vetoes it, while if the card 2 − −3 is selected
player 1 vetoes it if she sees “2” and both players accept it if player 1 sees “3”, in
which case player 1 wins. Thus player 1’s payoff is 1

4 and player 2’s payoff is − 1
4 .

I claim that only the pairs of actions in which each player either accepts only n +
1 or does not accept any number survive iterated elimination of weakly dominated
actions.

I first argue that any action ai that accepts 1 is weakly dominated by the action
a′i that differs only in that it vetoes 1. Given any action of the other player, ai
and a′i lead to possibly different outcomes only if the player sees the number 1, in
which case ai either loses (if the other player’s action accepts 2) or ties, while a′i is
guaranteed to tie.

Now eliminate all actions of each player that accept 1. I now argue that any
action ai that accepts 2 is weakly dominated by the action a′i that differs only in
that it vetoes 2. Given any action of the other player, ai and a′i lead to possibly
different outcomes only if the player sees the number 2, in which case ai never
wins, because all remaining actions of the other player veto 1. Thus ai either loses
(if the other player’s action accepts 3) or ties, while a′i is guaranteed to tie.
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Continuing the argument, we eliminate all actions that accept any number up
to n. The only pairs of actions that remain are those in which each player either
accepts only n + 1 or accepts no number. These two actions yield the same payoffs,
given the other player’s remaining actions (all payoffs are 0), so neither action can
be eliminated.

Now consider the special case in which all weakly dominated actions of each
player are eliminated at each step. If all the players are indifferent between all
action profiles that survive when we perform such iterated elimination then we
say that the game is dominance solvable. candidates,

? EXERCISE 361.1 (Dominance solvability) Find the set of Nash equilibria (mixed
as well as pure) of the game in Figure 361.1. Show that the game is dominance
solvable; find the pair of payoffs that survives. Find an order of elimination such
that more than one outcome survives.

L C R
T 2, 2 0, 2 0, 1

M 2, 0 1, 1 0, 2
B 1, 0 2, 0 0, 0

Figure 361.1 The game for Exercise 361.1.

? EXERCISE 361.2 (Dominance solvability) Show that the variant of the game in Ex-
ample 350.1 in which ε = 0 is dominance solvable and find the set of surviving
outcomes.

? EXERCISE 361.3 (Dominance solvability in Bertrand’s duopoly game) Consider
the variant of Bertrand’s duopoly game in Exercise 65.2, in which each firm is
restricted to choose prices that are integral numbers of cents. Assume that the
profit function (p − c)D(p) has a single local maximum. Show that the game is
dominance solvable and find the set of surviving outcomes.

Notes

[Highly incomplete.]
The notion of rationalizability is due to Bernheim (1984) and Pearce (1984). Ex-

ample 360.1 is taken from Littlewood (1953, 4). (Whether Littlewood is the origina-
tor or not is unclear. He presents the situation as a good example of “mathematics
with minimum ‘raw material’ ”.)
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13 Evolutionary equilibrium

Monomorphic pure strategy equilibrium · Mixed strategies and polymor-
phic equilibrium · Asymmetric equilibria · Extensive games · Illustrations:
sibling behavior; nesting behavior of wasps. Prerequisite: Chapters 2, 4,
and 5.

13.1 Introduction

According to the Darwinian theory of evolution the modes of behavior that
survive are those that are most successful in producing offspring. In an envi-

ronment in which organisms interact, the reproductive success of a mode of behavior
may depend on the modes of behavior followed by all the organisms in the popula-
tion. For example, if all organisms act aggressively, then an organism may be able
to survive only if it is aggressive; if all organisms are passive, then an organism’s
reproductive success may be greater if the organism acts passively than if it acts
aggressively. Game theory provides tools with which to study evolution in such an
environment.

In the games studied in this chapter, the players are representatives from an
evolving population of organisms (humans, animals, plants, bacteria, . . . ). Each
player’s payoffs measure the increments in the player’s biological fitness, or repro-
ductive success (e.g. expected number of healthy offspring), associated with the pos-
sible outcomes, rather than indicating the player’s subjective feelings about the out-
comes. Each player’s actions are modes of behavior that the player is programmed
to follow.

The players do not make conscious choices. Rather, each player’s mode of be-
havior comes from one of two sources: with high probability it is inherited from the
player’s parent (or parents), and with low (but positive) probability it is assigned to
the player as the result of a mutation. For most of the models in this chapter, inher-
itance is conceived very simply: each player has a single parent, and, unless it is a
mutant, simply takes the same action as does its parent. This model of inheritance
captures the essential features of both genetic inheritance and social inheritance:
players either follow the programs encoded in their genes, which come from their
parents, or learn how to behave by imitating their parents. The distinction between
genetic and social evolution may be significant if we wish to change society, but is
insignificant for most of the models considered in this chapter.

We choose each player’s set of actions to consist of all the modes of behavior that
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will, eventually, be generated by mutation (that is, we assume that for each action a,
mutation eventually produces an organism that follows a). If, given the modes
of behavior of all other organisms, the increment to biological fitness associated
with the action a exceeds that associated with the action a′ for some player, then
adherents of a reproduce faster than adherents of a′, and hence come to dominate
the population. Very roughly, adherents of actions that are not best responses to
the environment are eventually overwhelmed by adherents of better actions. The
population from which each player in the game is drawn is subject to the same
selective pressure, so this argument suggests that outcomes that are evolutionarily
stable are related to Nash equilibria of the game. In this chapter we study the
relation precisely.

The theory finds many applications in which the organisms are animals or plants.
However, human behavior also can sometimes insightfully be modeled as the out-
come of an evolutionary process: some human action, at least, appear to be more
the result of inherited behavior than the outcome of reasoned choice.

13.2 Monomorphic pure strategy equilibrium

13.2.1 Introduction

Members of a single large population of organisms are repeatedly randomly matched
in pairs. The set of possible modes of behavior of each member of any pair is the
same, and the consequence of an interaction for an organism depends only on the
actions of the organism and its opponent, not on its name. As an example, think of
a population of identical animals, pairs of which periodically are engaged in conflicts
(over prey, for example). The actions available to each animal may correspond to
various degrees of aggression, and the outcome for each animal depends only on its
degree of aggression and that of its opponent. Each organism produces offspring
(reproduction is asexual), to each of whom, with high probability, it passes on its
mode of behavior; with low probability, each offspring is a mutant that adopts some
other mode of behavior.

We can model the interaction between each pair of organisms as a symmetric
strategic game (Definition 48.1) in which the payoff u(a, a′) of an organism that
takes the action a when its opponent takes the action a′ measures its expected
number of offspring. We assume that the adherents of each mode of behavior
multiply at a rate proportional to their payoff, and look for a configuration of
modes of behavior in the population that is stable in the sense that in the event that
the population contains a small fraction of mutants taking the same action, every
mutant obtains an expected payoff lower than that of any nonmutant. (We ignore
the case in which mutants taking different actions are present in the population at
the same time.)

In this section I restrict attention to situations in which all organisms (except
those thrown up by mutation) follow the same mode of behavior, which has no
random component. That is, I consider only monomorphic pure strategy equilibria
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(“monomorphic” = “one form”).

13.2.2 Examples

To get an idea of the implications of evolutionary stability, consider two examples.
First suppose that the game between each pair of organisms is the one in the left
panel of Figure 281.1. Suppose that every organism normally takes the action X . If

X Y

X 2, 2 0, 0
Y 0, 0 1, 1

X Y

X 2, 2 0, 0
Y 0, 0 0, 0

Figure 281.1 Two strategic games, illustrating the idea of an evolutionarily stable strategy.

the population contains the small fraction ε of mutants who take the action Y , then
a normal organism has as its opponent another normal organism with probability
1 − ε and a mutant with probability ε. (The population is large, so that we can
treat the fraction of mutants in the rest of the population as equal to the fraction of
mutants in the entire population.) Thus the expected payoff of a normal organism
is

2 · (1− ε) + 0 · ε = 2(1− ε).

Similarly, the expected payoff of a mutant is

0 · (1− ε) + 1 · ε = ε.

If ε is small enough then the first payoff exceeds the second, so that the entry of a
small fraction of mutants leads to a situation in which the expected payoff (fitness)
of every mutant is lower than the payoff of every normal organism. We conclude
that the action X is evolutionarily stable.

Now suppose that every organism normally takes the action Y . Then, making
a similar calculation, the expected payoff of a normal organism is 1 − ε, while the
expected payoff of a mutant is 2ε. Mutants who meet each other obtain a payoff
higher than that of normal organisms who meet each other. But when ε is small
mutants are usually paired with normal organisms, in which case their expected
payoff is 0 and, as in the previous case, the first payoff exceeds the second, so that
the action Y is evolutionarily stable. The value of ε for which a normal organism
does better than a mutant is smaller in this case than it is in the case that the
normal action is X . However, in both cases, if ε is sufficiently small then mutants
cannot invade. Since we wish to capture the idea that mutation is extremely rare,
relative to normal behavior, we are satisfied with this existence of some value of ε
that prevents invasion by mutants; we do not attach significance to the size of the
critical value of ε.

Now consider the game in the right panel of Figure 281.1. By an argument
like those above, the action X is evolutionarily stable. Is the action Y also evolu-
tionarily stable? In a population containing the fraction ε of mutants choosing X ,
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the expected payoff of a normal organism is 0 (it obtains 0 whether its opponent
is normal or a mutant) while the expected payoff of a mutant is 2ε (it obtains 2
against another mutant and 0 against a normal organism). Thus the action Y is
not evolutionarily stable: for any value of ε the expected payoff of a mutant exceeds
that of a normal organism.

In both games, both (X,X) and (Y, Y ) are Nash equilibria, but while X is an
evolutionarily stable action in both games, Y is evolutionarily stable only in the
left game. What is the essential difference between the games? If the normal action
is Y then in the left game a mutant who chooses X is worse off than a normal
organism in encounters with normal organisms, while in the right game a mutant
that chooses X obtains the same expected payoff as does a normal organism in
encounters with normal organisms. In the left game, there is always a value of ε
small enough that the gain (relative to the payoff of a normal organism) that a
mutant obtains with probability ε when it faces another mutant does not cancel out
the loss it obtains with probability 1 − ε when it faces a normal organism. In the
right game, however, a mutant loses nothing relative to a normal organism, so no
matter how small ε is, a mutant is better off than a normal organism. That is, the
essential difference between the games is that u(X,Y ) < u(Y, Y ) in the left game,
but u(X,Y ) = u(Y, Y ) in the right game.

13.2.3 General definitions

Consider now an arbitrary symmetric strategic game in which each player has
finitely many actions. Under what circumstances is the action a∗ evolutionarily
stable?

Suppose that a small group of mutants choosing the action b different from a∗

enters the population. The notion of stability that we consider requires that each
such mutant obtain an expected payoff less than that of each normal organism, so
that the mutants die out. (If the mutants obtained a payoff higher than that of the
normal organisms then they would eventually come to dominate the population; if
they obtained the same payoff as that of the normal organisms then they would
neither multiply nor decline. Our notion of stability excludes the latter case: it is
a strong notion that requires that mutants be driven out of the population.)

Denote the fraction of mutants in the population by ε. First consider a mutant,
which adopts the action b. In a random encounter, the probability that it faces
an organism that adopts the action a∗ is approximately 1 − ε (the population is
large, so that the fraction in the rest of the population is close to the fraction in
the entire population), while the probability that it faces a mutant, which adopts
b, is approximately ε. Thus its expected payoff is

(1− ε)u(b, a∗) + εu(b, b).

Similarly, the expected payoff of an organism that adopts the action a∗ is

(1 − ε)u(a∗, a∗) + εu(a∗, b).
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In order that any mutation be driven out of the population, we need the expected
payoff of any mutant to be less than the expected payoff of a normal organism:

(1 − ε)u(a∗, a∗) + εu(a∗, b) > (1− ε)u(b, a∗) + εu(b, b) for all b �= a∗. (283.1)

To capture the idea that mutation is extremely rare, the notion of evolutionary
stability requires only that there is some (small) number ε such that the inequality
holds whenever ε < ε. That is, we can make the following definition:

The action a∗ is evolutionarily stable if there exists ε > 0 such that a∗

satisfies (283.1) for all ε < ε.

Intuitively, the larger is ε, the “more stable” is the action a∗, since larger mutations
are resisted. However, in the current discussion we do not attach any significance
to the value of ε; in order that a∗ be evolutionarily stable we require only that there
is some size for ε such that all smaller mutations are resisted.

The condition in this definition of evolutionary stability is a little awkward
to work with, since whenever we apply it we need to check whether we can find a
suitable value of ε. I now reformulate the condition in a way that avoids the variable
ε.

I first claim that

if there exists ε > 0 such that a∗ satisfies (283.1) for all ε < ε then
(a∗, a∗) is a Nash equilibrium.

To reach this conclusion, suppose that (a∗, a∗) is not a Nash equilibrium. Then there
exists an action b such that u(b, a∗) > u(a∗, a∗). Hence (283.1) is strictly violated
when ε = 0, and thus remains violated for all sufficiently small positive values of ε.
(If w < x and y and z are any numbers, then (1− ε)w+ εy < (1− ε)x+ εz whenever
ε is small enough.) Thus there is no ε such that the inequality holds whenever ε < ε.
Our conclusion is that a necessary condition for an action a∗ to be evolutionarily
stable is that (a∗, a∗) be a Nash equilibrium.

Similar considerations lead to the conclusion that

if (a∗, a∗) is a strict Nash equilibrium then there exists ε > 0 such that
a∗ satisfies (283.1) for all ε < ε.

The argument is that if (a∗, a∗) is a strict Nash equilibrium then u(b, a∗) < u(a∗, a∗)
for all b, so that the strict inequality in (283.1) is satisfied for ε = 0; hence it is
also satisfied for sufficiently small positive values of ε. That is, we conclude that
a sufficient condition for a∗ to be evolutionarily stable is that (a∗, a∗) be a strict
Nash equilibrium.

What happens if (a∗, a∗) is a Nash equilibrium, but is not strict? Suppose that
b �= a∗ is a best response to a∗: u(b, a∗) = u(a∗, a∗). Then (283.1) reduces to the
condition u(a∗, b) > u(b, b), so that a∗ is evolutionarily stable if and only if this
condition is satisfied.
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We conclude that necessary and sufficient conditions for the action a∗ to be
evolutionarily stable are that (i) (a∗, a∗) is a Nash equilibrium, and (ii) u(a∗, b) >
u(b, b) for every b �= a∗ that is a best response to a∗. Intuitively, in order that
mutant behavior die out it must be that (i) no mutant does better than a∗ in
encounters with organisms using a∗ and (ii) any mutant that does as well as a∗ in
such encounters must do worse than a∗ in encounters with mutants.

To summarize, the definition of evolutionary stability given above is equivalent
to the following definition (which is much easier to work with).

� Definition 284.1 An action a∗ of a player in a symmetric two-player game is
evolutionarily stable with respect to mutants using pure strategies if

• (a∗, a∗) is a Nash equilibrium, and
• u(b, b) < u(a∗, b) for every best response b to a∗ for which b �= a∗,

where u is each player’s payoff function.

As I argued above, if (a∗, a∗) is a strict Nash equilibrium then a∗ is evolution-
arily stable. This fact follows from the definition, since if (a∗, a∗) is a strict Nash
equilibrium then the only best response to a∗ is a∗, so that the second condition in
the definition is vacuously satisfied.

Note that the inequality in the second condition is strict. If it were an equality
then we would include as stable situations in which mutants neither multiply nor
die out, but reproduce at the same rate as the normal population.

13.2.4 Examples

Both of the symmetric pure Nash equilibria of the left game in Figure 281.1 are
strict, so that both X and Y are evolutionarily stable (confirming our previous
analysis). In the right game in Figure 281.1, (X,X) and (Y, Y ) are symmetric pure
Nash equilibria also. But in this case (X,X) is strict while (Y, Y ) is not. Further,
since u(X,X) > u(Y,X), the second condition in the definition of evolutionary
stability is not satisfied by Y . Thus in this game only X is evolutionarily stable
(again confirming our previous analysis).

The Prisoner’s Dilemma (Figure 13.1) has a unique symmetric Nash equilibrium
(D,D), and this Nash equilibrium is strict. Thus the action D is the only evolu-
tionarily stable action. The game BoS (Figure 16.1) has no symmetric pure Nash
equilibrium, and hence no evolutionarily stable action. (I consider mixed strategies
in the next section.)

The following game, which generalizes the ideas on the game in Exercise 28.3,
presents a richer range of possibilities for evolutionarily stable actions.

Example 284.2 (Hawk–Dove) Two animals of the same species compete for a re-
source (e.g. food, or a good nesting site) whose value (in units of “fitness”) is v > 0.
(That is, v measures the increase in the expected number of offspring brought by
control of the resource.) Each animal can be either aggressive or passive. If both
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Evolutionary game theory: some history

In his book The Descent of Man, Charles Darwin gave a game-theoretic argument
that in sexually-reproducing species, the only evolutionarily stable sex ratio is 50:50
(1871, Vol. I, 316). Darwin’s argument is game-theoretic in appealing to the fact
that the number of an animal’s descendants depends on the “behavior” of the other
members of the population (the sex ratio of their offspring; see Exercise 303.1).
Coming as it did 50 years before the language and methods of game theory began
to develop, however, it is not couched in game-theoretic terms. In the late 1960s, two
decades after the appearance of von Neumann and Morgenstern’s (1944) seminal
book, Hamilton (1967) proposed an explicitly game theoretic model of sex ratio
evolution that applies to situations more general than that considered by Darwin.
But the key figure in the application of game theory to evolutionary biol-

ogy is John Maynard Smith. Maynard Smith (1972a) and Maynard Smith and
Price (1973) propose the notion of an evolutionarily stable strategy, and May-
nard Smith’s subsequent research develops the field in many directions. (Maynard
Smith gives significant credit to Price: he writes that he would probably not have
had the idea of using game theory had he not seen unpublished work by Price;
“[u]nfortunately”, he writes, “Dr. Price is better at having ideas than at publishing
them” (1972b, vii).)
In the last two decades evolutionary game theory has blossomed. Biological

models abound, and the methods of the theory have made their way into economics.

animals are aggressive they fight until one is seriously injured; the winner obtains
the resource without sustaining any injury, while the loser suffers a loss of c. Each
animal is equally likely to win, so each animal’s expected payoff is 1

2v +
1
2 (−c). If

both animals are passive then each obtains the resource with probability 1
2 , with-

out a fight. Finally, if one animal is aggressive while the other is passive then the
aggressor obtains the resource without a fight. The game is shown in Figure 285.1.

A P

A 1
2 (v − c), 1

2 (v − c) v, 0
P 0, v 1

2v,
1
2v

Figure 285.1 The game Hawk–Dove.

If v > c then the game has a unique Nash equilibrium (A,A), which is strict, so
that A is the unique evolutionarily stable action.

If v = c then also the game has a unique Nash equilibrium (A,A). But in this
case the equilibrium is not strict: against an opponent that chooses A, a player
obtains the same payoff whether it chooses A or P . However, the second condition
in Definition 284.1 is satisfied: v/2 = u(P, P ) < u(A,P ) = v. Thus A is the unique
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evolutionarily stable action in this case also.
In both of these cases, a population of passive players can be invaded by ag-

gressive players: an aggressive mutant does better than a passive player when its
opponent is passive, and at least as well as a passive player when its opponent is
aggressive.

If v < c then the game has no symmetric Nash equilibrium in pure strategies:
neither (A,A) nor (P, P ) is a Nash equilibrium. Thus in this case the game has
no evolutionarily stable action. (The game has only asymmetric Nash equilibria in
this case.)

? Exercise 286.1 (Evolutionary stability and weak domination) Let a∗ be an evolu-
tionarily stable action. Does a∗ necessarily weakly dominate every other action? Is
it possible that some other action weakly dominates a∗?

? Exercise 286.2 (Example of evolutionarily stable actions) Pairs of members of
a single population engage in the following game. Each player has three actions,
corresponding to demands of 1, 2, or 3 units of payoff. If both players in a pair
make the same demand, each player obtains her demand. Otherwise the player who
demands less obtains the amount demanded by her opponent, while the player who
demands more obtains aδ, where a is her demand and δ is a number less than 1

3 .
Find the set of pure strategy symmetric Nash equilibria of the game, and the set
of pure evolutionarily stable strategies. What happens if each player has n actions,
corresponding to demands of 1, 2, . . . , n units of payoff (and δ < 1/n)?

To gain an understanding of the outcome that evolutionary pressure might in-
duce in games that have no evolutionarily stable action (e.g. BoS, and Hawk–Dove
when v < c) we can take several routes. One is to consider mixed strategies as well
as pure strategies; another is to allow for the possibility of several types of behavior
coexisting in the population; a third is to consider interpretations of the asymmetric
equilibria. I begin by discussing the first two approaches; in the following section I
consider the third approach.

13.3 Mixed strategies and polymorphic equilibrium

13.3.1 Definition

So far we have considered only situations in which both “normal” organisms and
mutants use pure strategies. If we assume that mixed strategies, as well as pure
strategies, are passed on from parents to offspring, and may be thrown up by mu-
tation, then an argument analogous to the one in the previous section leads to
the conclusion that an evolutionarily stable mixed strategy satisfies conditions like
those in Definition 284.1. Precisely, we can define an evolutionarily stable (mixed)
strategy, known briefly as an ESS, as follows.

� Definition 286.3 An evolutionarily stable strategy (ESS) in a symmetric
two-player game is a mixed strategy α∗ such that
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• (α∗, α∗) is a Nash equilibrium

• U(β, β) < U(α∗, β) for every best response β to α∗ for which β �= α∗,

where U(α, α′) is the expected payoff of a player using the mixed strategy α when
its opponent uses the mixed strategy α′.

(If you do not believe that animals can randomize, you may be persuaded by an
argument of Maynard Smith:

“If it were selectively advantageous, a randomising device could surely
evolve, either as an entirely neuronal process or by dependence on func-
tionally irrelevant external stimuli. Perhaps the one undoubted example
of a mixed ESS is the production of equal numbers of X and Y gametes
by the heterogametic sex: if the gonads can do it, why not the brain?”
(1982, 76).

Or you may be convinced by the evidence presented by Brockman et al. (1979) in-
dicating that certain wasps pursue mixed strategies. (For a discussion of Brockman
et al.’s model, see Section 13.6.))

13.3.2 Pure strategies and mixed strategies

Of course, Definition 286.3 does not preclude the use of pure strategies: every pure
strategy is a special case of a mixed strategy. Suppose that a∗ is an evolutionarily
stable action in the sense of the definition in the previous section (284.1), and let
α∗ be the mixed strategy that assigns probability 1 to the action a∗. Since a∗ is
evolutionarily stable, (a∗, a∗) is a Nash equilibrium, so (α∗, α∗) is a mixed strategy
Nash equilibrium (see Proposition 116.2). Is α∗ necessarily an ESS (in the sense of
the definition just given)? No: the second condition in the definition of an ESS may
be violated. That is, a pure strategy may be immune to invasion by mutants that
follow pure strategies, but may not be immune to invasion by mutants that follow
some mixed strategy. Stated briefly, though a pure strategy Nash equilibrium is a
mixed strategy Nash equilibrium, an action that is evolutionarily stable in the sense
of Definition 284.1 is not necessarily an ESS in the sense of Definition 286.3.

X Y Z
X 2, 2 1, 2 1, 2
Y 2, 1 0, 0 3, 3
Z 2, 1 3, 3 0, 0

Figure 287.1 A game illustrating the difference between Definitions 284.1 and 286.3. The action X
is an evolutionarily stable action in the sense of the first definition, but not in the sense of the
second.

The game in Figure 287.1 illustrates this point. In studying this game, it may
help to think of pairs of players working on a project. Two type X ’s work well
together, and both a type Y and a type Z work well with an X, although the X
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suffers a bit in each case. However, two type Y ’s are a disaster working together,
as are two type Z ’s; but a Y and a Z make a great combination.

The action X is evolutionarily stable in the sense of Definition 284.1: (X,X) is
a Nash equilibrium, and the two actions Y and Z different from X that are best
responses to X satisfy u(Y, Y ) = 0 < 1 = u(X,Y ) and u(Z,Z) = 0 < 1 = u(X,Z).
However, the action X is not an ESS in the sense of Definition 286.3. Precisely, the
mixed strategy α∗ that assigns probability 1 to X is not an ESS. To establish this
claim we need only find a mixed strategy β that is a best response to α∗ and satisfies
U(β, β) ≥ U(α∗, β) (in which case a mutant that uses the mixed strategy β will not
die out of the population). Let β be the mixed strategy that assigns probability 1

2

to Y and probability 1
2 to Z . Since both Y and Z are best responses to X, so is

β. Further, U(α∗, β) = 1 < 3
2 = U(β, β) (when both players use β the outcome

is (Y, Y ) with probability 1
4 , (Y, Z) with probability

1
4 , (Z, Y ) with probability

1
4 ,

and (Z,Z) with probability 1
4 ). Thus α

∗ is not a mixed strategy ESS: even though
a population of adherents to α∗ cannot be invaded by any mutant using a pure
strategy, it can be invaded by mutants using the mixed strategy β. The point is
that Y types do poorly against each other and so do Z types, but the match of
a Y and a Z is very productive. Thus if all mutants either invariantly choose Y
or invariantly choose Z then they fare badly when they meet each other; but if all
mutants follow the mixed strategy that chooses Y and Z with equal probability
then with probability 1

2 two mutants that are matched are of different types, and
are very productive.

13.3.3 Strict equilibria

We saw in the previous section that a strict pure Nash equilibrium is evolutionarily
stable. Any strict Nash equilibrium is also an ESS, since the second condition in
Definition 286.3 is then vacuously satisfied. However, this fact is of no help when
we consider truly mixed strategies, since no mixed strategy Nash equilibrium in
which positive probability is assigned to two or more actions is strict. Why not?
Since if (α∗, α∗) is a mixed strategy equilibrium then, as we saw in Chapter 4, every
action to which α∗ assigns positive probability is a best response to α∗, and so too
is any mixed strategy that assigns positive probability to the same pure strategies
as does α∗ (Proposition 111.1). Thus the second condition in the definition of an
ESS is never vacuously satisfied for any mixed strategy equilibrium (α∗, α∗) that
is not pure: when considering the possibility that a mixed equilibrium strategy is
an ESS, at a minimum we need to check that U(β, β) < U(α∗, β) for every mixed
strategy β that assigns positive probability to the same set of actions as does α∗.

13.3.4 Polymorphic steady states

A mixed strategy ESS corresponds to a monomorphic steady state in which each
organism randomly chooses an action in each play of the game, according to the
probabilities in the mixed strategy. Alternatively, it corresponds to a polymorphic
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steady state, in which a variety of pure strategies is in use in the population, the
fraction of the population using each pure strategy being given by the probability
the mixed strategy assigns to that pure strategy. (Cf. one of the interpretations of a
mixed strategy equilibrium discussed in Section 4.1.) In Section 13.2.3 I argue that,
in the case of a monomorphic steady state in which each player’s strategy is pure,
the two conditions in the definition of an ESS are equivalent to the requirement that
any mutant die out. The same argument applies also to the case of a monomorphic
steady state in which every player’s strategy is mixed, but does not apply directly
to the case of a polymorphic steady state. However, a different argument, based
on similar ideas, shows that in this case too the conditions in the definition of an
ESS are necessary and sufficient for the stability of a steady state (see Hammerstein
and Selten (1994, 948–951)): mutations that change the fractions of the population
using each pure strategy generate changes in payoffs that cause the fractions to
return to their equilibrium values.

13.3.5 Examples

Example 289.1 (Bach or Stravinsky?) The members of a single population are
randomly matched in pairs, and play BoS, with payoffs given in Figure 289.1. This

L D

L 0, 0 2, 1
D 1, 2 0, 0

Figure 289.1 The game BoS .

game has no symmetric pure strategy equilibrium. It has a unique symmetric mixed
strategy equilibrium, in which the strategy α∗ of each player assigns probability 2

3 to
L. As for any mixed strategy equilibrium, any mixed strategy that assigns positive
probabilities to the same pure strategies as does α∗ are best responses to α∗. Let
β = (p, 1 − p) be such a mixed strategy. In order that α∗ be an ESS we need
U(β, β) < U(α∗, β) whenever β �= α∗. The payoffs in the game are low when the
players choose the same action, so it seems possible that this condition is satisfied.
To check the condition precisely, we need to find U(β, β) and U(α∗, β). If both
players use the strategy β then the outcome is (L,L) with probability p2, (L,D)
and (D,L) each with probability p(1 − p), and (D,D) with probability (1 − p)2.
Thus U(β, β) = 3p(1 − p). Similarly, U(α∗, β) = 4

3 − p. Thus for α∗ to be an ESS
we need

3p(1− p) < 4
3 − p

for all p �= 2
3 . This inequality is equivalent to (p− 2

3 )
2 > 0, so the strategy α∗ = (23 ,

1
3 )

is an ESS.

Example 289.2 (A coordination game) The members of a single population are
randomly matched in pairs, and play the game in Figure 290.1. In this game both
(X,X) and (Y, Y ) are strict pure Nash equilibria (as we noted previously), so that
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X Y

X 2, 2 0, 0
Y 0, 0 1, 1

Figure 290.1 The game in Example 289.2.

both X and Y are ESSs. The game also has a symmetric mixed strategy equilibrium
(α∗, α∗), in which α∗ = (13 ,

2
3 ). Since every mixed strategy β = (p, 1 − p) is a best

response to α∗, we need U(β, β) < U(α∗, β) whenever β �= α∗ in order that α∗ be
an ESS. In this game the players are better off choosing the same action as each
other than they are choosing different actions, so it is plausible that this condition
is not satisfied. The β that seems most likely to violate the condition is the pure
strategy X (i.e. β = (1, 0)). In this case we have U(β, β) = 2 and U(α∗, β) = 2

3 , so
indeed the condition is violated. Thus the game has no mixed strategy ESS.

The intuition for this result is that a mutant that uses the pure strategy X is
better off than a normal organism that uses the mixed strategy (13 ,

2
3 ) both when

it encounters a mutant, and when it encounters a normal organism. Thus such
mutants will invade a population of organisms using the mixed strategy (13 ,

2
3 ). (In

fact, a mutant following any strategy different from α∗ invades the population, as
you can easily verify.)

Example 290.1 (Mixed strategies in Hawk–Dove) Consider again the game Hawk–
Dove (Example 284.2). If v > c then the only symmetric Nash equilibrium is the
strict pure equilibrium (A,A), so that the only ESS is A.

If v ≤ c the game has a unique symmetric mixed strategy equilibrium, in which
the strategy of each player is (v/c, 1−v/c). To see whether this strategy is an ESS we
need to check the second condition in the definition of an ESS. Let β = (p, 1−p) be
any mixed strategy. We need to determine whether U(β, β) < U(α∗, β) for β �= α∗,
where α∗ = (v/c, 1 − v/c). If each player uses the strategy β then the outcome is
(A,A) with probability p2, (A,P ) and (P,A) each with probability p(1 − p), and
(P, P ) with probability (1− p)2. Thus

U(β, β) = p2 · 1
2 (v − c) + p(1− p) · v + p(1− p) · 0 + (1− p)2 · 1

2v.

Similarly, if a player uses the strategy α∗ and its opponent uses the strategy β then
its expected payoff is

U(α∗, β) = (v/c)p · 1
2 (v − c) + (v/c)(1− p) · v + (1− v/c)(1− p) · 1

2v.

Upon simplification we find that U(α∗, β)−U(β, β) = 1
2c(v/c−p)2, which is positive

if p �= v/c. Thus U(β, β) < U(α∗, β) for any β �= α∗. We conclude that if v ≤ c

then the game has a unique ESS, namely the mixed strategy α∗ = (v/c, 1− v/c).
To summarize, if injury is not costly (c ≤ v) then only aggression survives. In

this case, a passive mutant is doomed: it is worse off than an aggressive organism
in encounters with other mutants and does no better than an aggressive organism
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in encounters with aggressive organisms. If injury costs more than the value of the
resource (c > v) then aggression is not universal in an ESS. A population contain-
ing exclusively aggressive organisms is not evolutionarily stable in this case, since
passive mutants do better than aggressive organisms against aggressive opponent.
Nor is a population containing exclusively passive organisms evolutionarily stable,
since aggressive pays against a passive opponent. The only ESS is a mixed strategy,
which may be interpreted as corresponding to a situation in which the fraction v/c
of organisms are aggressive and the fraction 1 − v/c are passive. As the cost of
injury increases the fraction of aggressive organisms declines; the incidence of fights
decreases, and an increasing number of encounters end without a fight (the dispute
is settled “conventionally”, in the language of biologists).

? Exercise 291.1 (Hawk–Dove–Retaliator) Consider the variant of Hawk–Dove in
which a third strategy is available: “retaliator”, which fights only if the opponent
does so. Assume that a retaliator has a slight advantage over a passive animal
against a passive opponent. The game is shown in Figure 291.1; assume δ < 1

2v.
Find the ESSs.

A P R

A 1
2 (v − c), 1

2 (v − c) v, 0 1
2 (v − c), 1

2 (v − c)
P 0, v 1

2v,
1
2v

1
2v − δ, 1

2v + δ

R 1
2 (v − c), 1

2 (v − c) 1
2v + δ, 1

2v − δ 1
2v,

1
2v

Figure 291.1 The game Hawk–Dove–Retaliator.

? Exercise 291.2 (Variant of BoS ) Find all the ESSs, in pure and mixed strategies,
of the game

A B C

A 0, 0 3, 1 0, 0
B 1, 3 0, 0 0, 0
C 0, 0 0, 0 1, 1

? Exercise 291.3 (Bargaining) Pairs of players bargain over the division of a pie of
size 10. The members of a pair simultaneously make demands; the possible demands
are the nonnegative even integers up to 10. If the demands sum to 10 then each
player receives her demand; if the demands sum to less than 10 then each player
receives her demand plus half of the pie that remains after both demands have
been satisfied; if the demands sum to more than 10 then no player receives any
payoff. Show that the game has an ESS that assigns positive probability only to
the demands 2 and 8 and also has an ESS that assigns positive probability only to
the demands 4 and 6.

The next example reexamines the War of attrition, studied previously in Sec-
tion 3.4 (pure equilibria). The game entered the literature as a model of animal
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conflicts. The actions of each player are the lengths of time the animal displays;
the animal that displays longest wins.

Example 292.1 (War of attrition) Consider the War of attrition introduced in
Section 3.4. If v1 = v2 then the game is symmetric. We found that even in this
case the game has no symmetric pure strategy equilibrium. The only symmetric
equilibrium is a mixed strategy equilibrium, in which each player’s mixed strategy
has the probability distribution function

F (t) = 1− e−t/v,

where v is the common valuation.
Is this equilibrium strategy an ESS? Since the strategy assigns positive proba-

bility to every interval of actions, every strategy is a best response to it. Thus it is
an ESS if and only if U(G,G) < U(F,G) for every strategy G �= F . To show this
inequality is difficult. Here I show only that the inequality holds whenever G is a
pure strategy. Let G be the pure strategy that assigns probability 1 to the action a.
Then U(G,G) = 1

2v − a and

U(F,G) =
∫ a

0

(−s)F ′(s)ds+ (1− F (a))(v − a) = v(2e−a/v − 1)

(substituting for F and performing the integrations). Thus

U(F,G)− U(G,G) = 2ve−a/v − 3
2v + a,

which is positive for all values of a (find the minimum (by setting the derivative
equal to zero) and show it is positive). Thus no mutant using a pure strategy can
invade a population of players using the strategy F .

13.3.6 Games that have no ESS

Every game we have studied so far possesses an ESS. But there are games that do
not. A very simple example is the trivial game shown in Figure 292.1. Let α be

X Y
X 1, 1 1, 1
Y 1, 1 1, 1

Figure 292.1

any mixed strategy. Then the strategy pair (α, α) is a Nash equilibrium. However,
since U(X,X) = 1 = U(α,X), the mixed strategy α does not satisfy the second
condition in the definition of an ESS. In a population in which all players use α,
a mutant who uses X reproduces at the same rate as the other players (its fitness
is the same), and thus does not die out. At the same time, such a mutant does
not come to dominate the population. Thus, although the game has no ESS, every
mixed strategy is neutrally stable.
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However, we can easily give an example of a game in which there is not even
any mixed strategy that is neutrally stable. Consider, for example, the game in
Figure 293.1 with γ > 0. (If γ were zero then the game would be Rock, paper,
scissors (Exercise 125.2).) This game has a unique symmetric Nash equilibrium, in

A B C

A γ, γ −1, 1 1,−1
B 1,−1 γ, γ −1, 1
C −1, 1 1,−1 γ, γ

Figure 293.1 A game that has no ESS. In the unique symmetric Nash equilibrium of this game
each player’s mixed strategy is ( 1

3
, 1

3
, 1

3
); this strategy is not an ESS.

which each player’s mixed strategy is α∗ = (13 ,
1
3 ,

1
3 ). To see that this strategy is not

an ESS, let a be a pure strategy. Every pure strategy is a best response to α∗ and
U(a, a) = γ > γ/3 = U(α∗, a), strictly violating the second requirement for an ESS.
Thus the game not only lacks an ESS; since the violation of the second requirement
of an ESS is strict, it also lacks a neutrally stable strategy. The only candidate
for a stable strategy is the unique symmetric mixed equilibrium strategy, but if all
members of the population use this strategy then a mutant using any of the three
pure strategy invades the population. Put differently, the notion of evolutionary
stability—even in a weak form—makes no prediction about the outcome of this
game.

13.4 Asymmetric equilibria

13.4.1 Introduction

So far we have studied the case of a homogeneous population, in which all organisms
are identical, so that only symmetric equilibria are relevant: the players’ roles are
the same, so that a player cannot condition its behavior on whether it is player 1 or
player 2. If the population is heterogeneous—if the players differ by size, by weight,
by their current ownership status, or by any other observable characteristic—then
even if the differences among players do not affect the payoffs, asymmetric equilibria
may be relevant. I restrict attention to an example that illustrates some of the main
ideas.

13.4.2 Example: Hawk–Dove

Consider a variant of Hawk–Dove (Example 284.2), in which the resource being
contested is a nesting site, and one animal is the (current) owner while the other
is an intruder. An individual will sometimes be an owner and sometimes be an
intruder; its strategy specifies its action in each case. Thus we can describe the
situation as a (symmetric) strategic game in which each player has four strategies:
AA, AP, PA, and PP, where XY means that the player uses X when it is an owner
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and Y when it is an intruder. Since in each encounter there is one owner and one
intruder, it is natural to assume that the probability that any given animal has each
role is 1

2 .
Assume that the value of the nesting site may be different for the owner and the

intruder; denote it by V for the owner and by v for the intruder. Assume also that
v < c and V < c, where c (as before) measures the loss suffered by a loser. (Recall
that in the case v < c there is no symmetric pure strategy equilibrium in the original
version of the game.) Then in an encounter between an animal using the strategy
AA and an animal using the strategy AP, for example, with probability 1

2 the first
animal is the owner and the second is the intruder, and the owner obtains the payoff
V (the pair of actions chosen in the interaction being (A,P )), and with probability 1

2

the first animal is the intruder and the second is the owner, and the intruder obtains
the payoff 1

2 (v−c) (the pair of actions chosen in the interaction being (A,A)). Thus
in this case the expected payoff of the first animal is 1

2V +
1
4 (v− c) = 1

4 (2V + v− c).
The payoffs to all strategy pairs are given in Figure 294.1; for convenience they are
multiplied by four, and player 1’s payoff is displayed above, not beside, player 2’s.

AA AP PA PP

AA V + v − 2c
V + v − 2c

2V + v − c
V − c

V + 2v − c
v − c

2V + 2v
0

AP V − c
2V + v − c

2V
2V

V + v − c
V + v − c

2V + v
V

PA v − c
V + 2v − c

V + v − c
V + v − c

2v
2v

V + 2v
v

PP 0
2V + 2v

V
2V + v

v
V + 2v

V + v
V + v

Figure 294.1 A variant of Hawk–Dove, in which one player in each encounter is an owner and the
other is an intruder. The payoffs are multiplied by four and player 1’s is shown above, not beside,
player 2’s (for convenience in presentation). The strategy XY means take the action X when an
owner and the action Y when an intruder.

The strategy pairs (AP,AP) and (PA,PA) are symmetric pure strategy equilibria
of the game. Both of these equilibria are strict, so both AP and PA are ESSs
(regardless of the relative sizes of v and V ).

Now consider the possibility that the game has a mixed strategy ESS, say α∗.
Then (α∗, α∗) is a mixed strategy equilibrium. I now argue that α∗ does not assign
positive probability to either of the actions AP or PA. If α∗ assigns positive proba-
bility to AP then AP is a best response to α∗ (since (α∗, α∗) is a Nash equilibrium),
so that for α∗ to be an ESS we need U(AP ,AP) < U(α∗,AP). But this inequality
contradicts the fact that (AP ,AP) is a Nash equilibrium. Hence α∗ does not assign
positive probability to AP . An analogous argument shows that α∗ does not assign
positive probability to PA. In the following exercise you are asked to show that
the game has no symmetric mixed strategy equilibrium (α∗, α∗) in which α∗ assigns
positive probability only to the actions AA and PP . We conclude that the game
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has no mixed ESS.

? Exercise 295.1 (Nash equilibrium in an asymmetric variant of Hawk–Dove) Let
β be a mixed strategy that assigns positive probability only to the actions AA and
PP in the game in Figure 294.1. Show that in order that AA and PP yield a player
the same expected payoff when her opponent uses the strategy β, we need β to
assign probability (V + v)/2c to AA. Show further that when her opponent uses
this strategy β, a player obtains a higher expected payoff from the action AP than
she does from the action AA, so that (β, β) is not a Nash equilibrium.

? Exercise 295.2 (ESSs and mixed strategy equilibria) Generalize the argument that
no ESS in the game in Figure 294.1 assigns positive probability to AP or to PA,
to show the following result. Let (α∗, α∗) be a mixed strategy equilibrium; denote
the set of actions to which α∗ assigns positive probability by A∗. Then the only
strategy assigning positive probability to every action in A∗ that can be an ESS is
α∗.

In summary, this analysis of Hawk–Dove for the case in which v < c and V < c

leads to the conclusion that there are two evolutionarily stable strategies. In one,
a player is aggressive when it is an owner and passive when it is an intruder, and
in the other a player is passive when it is an owner and aggressive when it is an
intruder. In both cases the dispute is resolved without a fight. The first strategy, in
which an intruder concedes to an owner without a fight, is known as the bourgeois
strategy; the second, in which the owner concedes to an intruder, is known as the
paradoxical strategy. There are many examples in nature of the bourgeois strategy.
The paradoxical strategy gets its name from the fact that it leads the members of a
population to constantly change roles: whenever there is an encounter, the intruder
becomes the owner, and the owner becomes a potential intruder. One example of
this convention is described in the box on p. 295.

Explaining the outcomes of contests in nature

[Note: this box is rough.] Hawk–Dove and its variants give us insights into the way
in which animal conflicts are resolved. Before the development of evolutionary game
theory, one explanation of the observation that conflicts are often settled without
a fight was that it is not in the interest of a species for its members to be killed or
injured. This theory is not explicit about how evolution could generate a situation
in which individual members of a species act in a way that benefits the species as
a whole. Further, by no means all animal conflicts are resolved peacefully, and the
theory has nothing to say about the conditions under which peaceful resolution is
likely to be the norm. As we have seen, a game theoretic analysis in which the unit of
analysis is the individual member of the species suggests that in a symmetric contest
the relation between the value of the resource under contention and the cost of an
escalated contest determines the incidence of escalation. In an asymmetric contest
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the theory predicts that no escalation will occur, regardless of the value of the
resource and the cost of injury. In particular, the convention that the owner always
wins (the bourgeois strategy) is evolutionarily stable. (Classical theory appealed to
an unexplained bias towards the owner, or to behavior that, in the context of the
game theoretic models, is not rational.)

Biologists have studied behavior in many species in order to determine whether
the predictions of the theory correspond to observed outcomes. Maynard Smith
motivated his models by facts about conflicts between baboons. An example of more
recent work concerns the behavior of the funnel web spider Agelenopsis aperta in
New Mexico. Spiders differ in weight and web sites differ greatly in their desirability
(some offer much more prey). At an average web site a confrontation usually ends
without a fight. If the weights of the owner and intruder are similar, the dispute
is usually settled in favor of the owner; if the weights are significantly different
then the heavier spider wins. Hammerstein and Riechert (1988) estimate from field
observations the fitness associated with various events and conclude that the ESS
yields good predictions.

? Exercise 296.1 (Variant of BoS ) Members of a population are randomly matched
and play the game BoS . Each player in any given match can condition her action
on whether she was the first to suggest getting together. Assume that for any given
player the probability of being the first is one half. Find the ESSs of this game.

13.5 Variation on a theme: sibling behavior

The models of the previous sections are simple examples illustrating the main ideas
of evolutionary game theory. In this section and the next I describe more detailed
models that illustrate how these ideas may be applied in specific contexts.

Consider the interaction of siblings. The models in the previous sections as-
sume that each player is equally likely to encounter any other player in the popu-
lation. If we wish to study siblings’ behavior toward each other we need to modify
this assumption. I retain the other assumptions made previously: players interact
pairwise, and payoffs measure fitness (reproductive success). I restrict attention
throughout to pure strategies.

13.5.1 Asexual reproduction

The analysis in the previous sections rests on a simple model of reproduction, in
which each organism, on its own, produces offspring. Before elaborating upon this
model, consider its implications for the evolution of intrasibling behavior. Suppose
that every organism in the population originally uses the action a∗ when interacting
with its siblings, obtaining the payoff u(a∗, a∗). If a mutant using the action b

appears, then, assuming that it has some offspring, all these offspring inherit the
same behavior (ignoring further mutations). Thus the payoff (fitness) of each of
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these offspring in its interactions with its siblings is u(b, b). All the descendants
of any of these offspring also obtain the payoff u(b, b) in their interaction with
each other, so that the mutant behavior b invades the population if and only if
u(b, b) > u(a∗, a∗); it is driven out of the population if and only if u(b, b) < u(a∗, a∗).
We conclude that

if an action a∗ is evolutionarily stable then u(a∗, a∗) ≥ u(b, b) for every
action b; if u(a∗, a∗) > u(b, b) for every action b then a∗ is evolutionarily
stable.

When studying the behavior of one member of a population in interactions with
another arbitrary member of the population, we found that a necessary condition
for an action a∗ to be evolutionarily stable is that (a∗, a∗) be a Nash equilibrium of
the game. In intrasibling interaction, however, no such requirement appears: only
actions a∗ for which u(a∗, a∗) is as high as possible can be evolutionarily stable. For
example, if the game the siblings play is the Prisoner’s Dilemma (Figure 297.1),
then the only evolutionarily stable action is C; if this game is played between
unrelated organisms then the only evolutionarily stable action is D.

C D

C 2, 2 0, 3
D 3, 0 1, 1

Figure 297.1 The Prisoner’s Dilemma.

We can think of an evolutionarily stable action as follows. A player assumes
that whatever action it takes, its sibling will take the same action. An action is
evolutionarily stable if, under this assumption, the action maximizes the player’s
payoff. An important assumption in reaching this conclusion is that reproduction
is asexual. As Bergstrom (1995, 61) succinctly puts it, “Careful observers of human
siblings will not be surprised to find that in sexually reproducing species, equilibrium
behavior is not so perfectly cooperative”.

13.5.2 Sexual reproduction

This model, like the ones in the previous sections, incorporates an unrefined model
of reproduction and inheritance. We have assumed that each organism by itself
produces offspring, which inherit their parent’s behavior. For species (like humans)
in which offspring are the result of two animals mating, this assumption is only a
rough approximation. I now describe a model in which each player has two parents.
We need to specify how behavior is inherited: what behavior does the offspring of
parents with different modes of behavior inherit?

The model I describe goes back to the level of individual genes in order to answer
this question. Each animal carries two genes. Each offspring of a pair of animals
inherits one randomly chosen gene from each of its parents; the pair of genes that
it carries is its genotype. Denote by a the action that an animal of genotype xx
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(i.e. with two x genes) is programmed to take and denote by b the action that an
animal of genotype XX is programmed to take. Suppose that a �= b, and that an
animal of genotype xx mates with an animal of genotype XX. All the offspring have
genotype Xx, and there are two possibilities for the action taken by these offspring:
a and b. If the offspring are programmed to take the action b, we say that X is
dominant and x is recessive, and if they are programmed to take the action a then
X is recessive and x is dominant.

Assume that all mating is monogamous: all siblings share the same two parents.
Reproductive success depends on both parents’ characteristics; it simplifies the
discussion to assume that animals differ not in their fecundity, but in their chance
of surviving to adulthood (the age at which they start reproducing).

Under what circumstances is a population of animals of genotype xx, each choos-
ing the action a∗, evolutionarily stable? Genes are now the basic unit of analysis,
from which behavior is derived, so we need to consider whether any mutant gene,
say X , can invade the population. That is, we need to consider the consequences
of an animal of genotype Xx being produced. There are two cases to consider: X
may be dominant or recessive.

Invasion by dominant genes

First consider the case in which X is dominant. Denote the action taken by animals
of genotype XX and Xx by b, and assume that b �= a∗. (If b = a∗ then the mutation
is inconsequential for behavior.) Since almost all animals have genotype xx, almost
every mutant (of genotype Xx ) mates with an animal of genotype xx. Each of the
offspring of such a pair inherits an x gene from her xx parent, and a second gene
from her genotype Xx parent that is x with probability 1

2 and X with probability 1
2 .

Thus each offspring has genotype xx with probability 1
2 and genotype Xx with

probability 1
2 .

We now need to compare the payoffs of mutants and normal animals. We are
assuming that the mutation is rare, so every mutant Xx has one Xx parent and one
xx parent. Thus in its random matchings with its siblings, such a mutant faces an
Xx with probability 1

2 and an xx with probability
1
2 . Hence its expected payoff is

1
2u(b, a

∗) + 1
2u(b, b).

Normal xx animals are present both in (“normal”) families with two xx parents and
in families with one xx parent and one Xx parent; the vast majority are in normal
families. Thus to determine whether Xx ’s come to dominate the population we need
to consider only the payoff (survival probability) of an Xx relative to that of an xx
in a normal family. All the siblings of an xx in a normal family have genotype xx,
and hence obtain the payoff

u(a∗, a∗).

We conclude that no dominant mutant gene can invade the population if

1
2u(b, a

∗) + 1
2u(b, b) < u(a∗, a∗) for every action b.



13.5 Variation on a theme: sibling behavior 299

Conversely, a dominant mutant gene can invade if the inequality is reversed for any
action b.

If we define the function v by

v(b, a) = 1
2u(b, a) +

1
2u(b, b),

then, noting that v(a, a) = u(a, a) for any action a, we can rewrite the sufficient
condition for a∗ to be evolutionarily stable as

v(b, a∗) < v(a∗, a∗) for every action b.

That is, (a∗, a∗) is a strict Nash equilibrium of the game with payoff function v. If
the inequality is reversed for any action b then a∗ is not evolutionarily stable, so
that a necessary condition for a∗ to be evolutionarily stable is that (a∗, a∗) be a
Nash equilibrium of the game with payoff function v.

In summary, a sufficient condition for a∗ to be evolutionarily stable is that
(a∗, a∗) be a strict Nash equilibrium of the game with payoff function v, in which
a player’s payoff is the average of its payoff in the original game and the payoff it
obtains if its sibling mimics its behavior; a necessary condition is that (a∗, a∗) be a
Nash equilibrium of this game.

Invasion by recessive genes

Now consider the case in which X is recessive. An animal of genotype Xx choose
the same action a∗ as does an animal of genotype xx in this case. In a family in
which one parent has genotype xx and the other has genotype Xx, half the offspring
have genotype xx and half have genotype Xx, and hence all take the action a∗ and
receive the payoff u(a∗, a∗) in interactions with each other. Thus on this account
the X gene neither invades the population nor is eliminated from it. To determine
the fate of mutants, we need to consider the outcome of the interaction between
siblings in families that constitute an even smaller fraction of the population.

The next smallest group of families are those in which the genotype of both
parents is Xx, in which case one fourth of the offspring have genotype XX . Suppose
that an animal of genotype XX takes the action b �= a∗. If, in interactions with
its siblings, such an animal is more successful than animals of genotypes xx or Xx
then the mutant gene X , though starting from a very small base, can invade the
population.

In families with two Xx parents, the genotypes of the offspring are distributed
as follows: one fourth are xx, one half are Xx, and one fourth are XX . To find the
expected payoff of an X gene in the offspring of such families, we need to consider
each possible pair of siblings in turn. The analysis is somewhat complicated; I omit
the details. The conclusion is that the expected payoff to an X gene is

1
8u(b, b) +

1
8u(a

∗, b) + 3
8u(b, a

∗) + 3
8u(a

∗, a∗).

The expected payoff of the “normal” gene x (which initially dominates the popu-
lation, in families in which both parents are xx ) is u(a∗, a∗), so the mutant gene
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cannot invade the population if

1
8u(b, b) +

1
8u(a

∗, b) + 3
8u(b, a

∗) + 3
8u(a

∗, a∗) < u(a∗, a∗).

or
1
5u(b, b) +

1
5u(a

∗, b) + 3
5u(b, a

∗) < u(a∗, a∗).

If we define the function w by

w(a, b) = 1
5u(a, a) +

1
5u(b, a) +

3
5u(a, b),

then the sufficient condition for evolutionary stability can be rewritten as

w(b, a∗) < w(a∗, a∗) for every action b.

That is, (a∗, a∗) is a strict Nash equilibrium of the game with payoff function w. As
before, a necessary condition for a∗ to be evolutionarily stable is that (a∗, a∗) be a
Nash equilibrium of this game.

Evolutionary stability

In order that a∗ be evolutionarily stable, it must resist invasion by both dominant
and recessive genes. Thus we have the following conclusion.

If (a∗, a∗) is a strict Nash equilibrium of the game with payoff function v
and a strict Nash equilibrium of the game with payoff function w then
a population of players of genotype xx, choosing a∗, is evolutionarily
stable. If (a∗, a∗) is not a Nash equilibrium of both these games then a∗

is not evolutionarily stable.

Consider the implications for the Prisoner’s Dilemma. The evolutionarily stable
action depends on the relative magnitudes of the payoffs corresponding to each
outcome. First consider the case of the payoff function in the left of Figure 300.1.
In the middle and right figures the games with payoff functions v and w are shown.

C D

C 5, 5 0, 6
D 6, 0 2, 2

u

C D

C 5, 5 5
2 , 4

D 4, 5
2 2, 2

v

C D

C 5, 5 11
5 , 4

D 4, 11
5 2, 2

w

Figure 300.1 A Prisoner’s Dilemma. On the left is the basic game, with payoff function u. In the
middle is the game with payoff function v, and on the right is the game with payoff function w.

We see that (C,C) is a Nash equilibrium for both of the payoff functions v and w,
and (D,D) is not a Nash equilibrium for either one. Hence in this case C is the
only evolutionarily stable strategy in the game between siblings.

Now consider the case of the payoff function in the left of Figure 301.1. We see
that (D,D) is a Nash equilibrium for both of the payoff function v and w, while
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C D

C 3, 3 0, 6
D 6, 0 2, 2

u

C D

C 3, 3 3
2 , 4

D 4, 3
2 2, 2

v

C D

C 3, 3 9
5 , 4

D 4, 9
5 2, 2

w

Figure 301.1 A version of the Prisoner’s Dilemma. On the left is the basic game, with payoff
function u. In the middle is the game with payoff function v, and on the right is the game with
payoff function w.

(C,C) is not a Nash equilibrium of either game. Hence in this case D is the only
evolutionarily stable strategy in the game between siblings.

Thus in the Prisoner’s Dilemma, whether or not siblings in a sexually repro-
ducing species are cooperative or not depends on the gain to be had from being
uncooperative. When this gain is small, the cooperative outcome is evolutionarily
stable. Even though purely selfish behavior fails to sustain cooperation, the ge-
netic similarity of siblings causes cooperative behavior to be evolutionarily stable.
When the gain is large enough, however, the relatedness of siblings is not enough
to overcome the pressure to defect, and the only evolutionarily stable outcome is
joint defection.

? Exercise 301.1 (A coordination game between siblings) Consider the game in
Figure 301.2. For what values of x > 1 is X the unique evolutionarily stable action
when the game is played between siblings?

X Y

X x, x 0, 0
Y 0, 0 1, 1

Figure 301.2 The game in Exercise 301.1.

13.6 Variation on a theme: nesting behavior of wasps

In all the situations I have analyzed so far, the players interact in pairs. In many
situations the result of a player’s action depends on the behavior of all the other
players, not only on the action of one of these players; pairwise interactions cannot
be identified. In this section I consider such a situation; the analysis illustrates how
the methods of the previous sections can be generalized.

Female great golden digger wasps (Sphex ichneumoneus) lay their eggs in bur-
rows, which must be stocked with katydids for the larva to feed on when they hatch.
In a simple model, each wasp decides, when ready to lay an egg, whether to dig a
burrow or to invade an existing burrow. A wasp that invades a burrow fights with
the occupant, losing with probability π. If invading is less prevalent than digging
then not all diggers are invaded, so that while digging takes time, it offers the pos-
sibility of laying an egg without a fight. The higher the proportion of invaders, the
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worse off is a wasp that digs its own burrow, since it is more likely to be invaded.
Each wasp’s fitness is measured by the number of eggs it lays. Assuming that

the length of a wasp’s life is independent of its behavior, we can work with payoffs
equal to the number of eggs laid per unit time. Let Td be the time it takes for a
wasp to build a burrow and stock it with katydids; let Ti be the time spent on a
nest by an invader (Ti is not zero, since fighting takes time) and assume Ti < Td.
Assume that all wasps lay the same number of eggs in a nest, and choose the units
in which eggs are measured so that this number is 1.

Suppose that the fraction of the population that digs is p and the fraction that
invades is 1− p. In order to determine the probability that a digger is invaded, we
need to take into account the fact that since invading takes less time than digging,
an invader can invade more than one nest in the time that it takes a digger to
dig. If invading takes half the time of digging, for example, and there are only half
as many invaders as there are diggers in the population, then all diggers will be
invaded—the probability of a digger being invaded is 1. In general, a digger can
invade Td/Ti burrows during a time period of length Td. For every digger there are
(1−p)/p invaders, so the probability that a digger is invaded is q = [(1−p)/p]Td/Ti,
or q = (1 − p)Td/(pTi), assuming that this number is at most 1.

A wasp that digs its own burrow thus faces the following lottery: with proba-
bility 1 − q it is not invaded, with probability qπ it is invaded and wins the fight,
and with probability q(1−π) it is invaded and loses the fight (in which case assume
that the whole time Td is wasted). Thus the payoff—the expected number of eggs
laid per unit time—of such a wasp is

(1 − q + qπ)/Td.

Similarly the expected number of eggs laid per unit time by an invader is (1−π)/Ti.
If 1/Td ≥ (1 − π)/Ti there is an equilibrium in which every wasp digs its own

burrow: the expected payoff to digging is at least the expected payoff to invading,
given that q = 0. Clearly there is no equilibrium in which all wasps invade—for then
there are no nests to invade! The remaining possibility is that there is an equilibrium
in which diggers and invaders coexist in the population. In such an equilibrium the
expected payoffs to the two activities must be equal, or (1−q+qπ)/Td = (1−π)/Ti.
Substituting (1−p)Td/(pTi) for q we find that p = (1−π)Td/Ti. Looking back at the
definition of q, we find that if the parameters π, Ti, and Td satisfy πTi ≤ (1− π)Td

then q ≤ 1 for this value of p, so that we do indeed have an equilibrium.
Are these equilibria evolutionarily stable? First consider the equilibrium in

which every wasp digs its own burrow. If 1/Td > (1−π)/Ti—that is, if the condition
for the equilibrium to exist is satisfied strictly—then mutants that invade obtain a
smaller payoff than the normal wasps that dig, and hence die out. Thus in this case
the equilibrium is stable. (I do not consider the unlikely case that 1/Td = (1−π)/Ti.)

Now consider the equilibrium in which diggers and invaders coexist in the popu-
lation. Suppose that there is a small mutation that increases slightly the fraction of
diggers in the population. That is, p rises slightly. Then q, the probability of being
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invaded, falls, and the expected payoff to digging increases; the expected payoff
to invading does not change. Thus a slight increase in p leads to an increase in
the relative attractiveness of digging; diggers prosper relative to invaders, further
increasing the value of p. We conclude that the equilibrium is not evolutionarily
stable.

The polymorphic equilibrium I have analyzed can alternatively be interpreted
as a mixed strategy equilibrium, in which each individual wasp randomizes between
digging and invading, choosing to dig with probability p. In the populations that
Brockmann et al. (1979) observe, digging and invading do coexist, and in fact
individual wasps pursue mixed strategies—sometimes they dig and sometimes they
invade. This evidence raises the question of how the model could be modified so that
the mixed strategy equilibrium is evolutionarily stable. Brockman et al. suggest two
such variants. In one case, for example, they assume that a wasp who digs a nest is
better off if she is invaded and wins the fight than she is if she is not invaded (the
invader may have helped to stock the nest with katydids before it got into a fight
with the digger). The data Brockman et al. collected in one site generates a value
of p that fits their observations very well; the data from another site does not fit
well.

The following exercise illustrates another application of the main ideas of evo-
lutionary game theory.

? Exercise 303.1 (Darwin’s theory of the sex ratio) A population of males and fe-
males mate pairwise to produce offspring. Suppose that each offspring is male with
probability p and female with probability 1 − p. Then there is a steady state in
which the fraction p of the population is male and the fraction 1 − p is female. If
p �= 1

2 then males and females have different numbers of offspring (on average). Is
such an equilibrium evolutionarily stable? Denote the number of children born to
each female by n, so that the number of children born to each male is (p/(1− p))n.
Suppose a mutation occurs that produces boys and girls each with probability 1

2 .
Assume for simplicity that the mutant trait is dominant: if one partner in a couple
has it, then all the offspring of the couple have it. Assume also that the number of
children produced by a female with the trait is n, the same as for “normal” mem-
bers of the population. Since both normal and mutant females produce the same
number of children, it might seem that the fitness of a mutant is the same as that
of a normal organism. But compare the number of grandchildren of mutants and
normal organisms. How many female offspring does a normal organism produce?
How many male offspring? Use your answers to find the number of grandchildren
born to each mutant and to each normal organism. Does the mutant invade the
population? Which value (values?) of p is evolutionarily stable?

Notes

[Incomplete.]
The main ideas in this chapter are due to Maynard Smith.



304 Chapter 13. Evolutionary equilibrium

The chapter draws on the expositions of Hammerstein and Selten (1994) and
van Damme (1987, Chapter 9).

Darwin’s theory of sex ratio evolution (see the box on page 285) was indepen-
dently discovered by Ronald A. Fisher (1930, 141–143), and is often referred to as
“Fisher’s theory”. In the second edition of Darwin’s book (1874, 256), he retracted
his theory for reasons that are not apparent, and Fisher appears to have been aware
only of the retraction, not of the original theory. Bulmer (1994, 207–208) appears
to have been the first to notice that “Fisher’s theory” was given by Darwin.

Hawk–Dove (Example 284.2) is due to Maynard Smith and Price (1973).
The discussion in Section 13.4 is based on van Damme (1987, Section 9.5).
Exercise 295.2 is a slightly less general version of Lemma 9.2.4 of van Damme (1987).
The material in Section 13.5 is taken from Bergstrom (1995).
The model in Section 13.6 is taken from Brockmann, Grafen, and Dawkins (1979),

simplified along the lines of Bergstrom and Varian (1987, 324–327).
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14.1 The main idea

MANY of the strategic interactions in which we are involved are ongoing: we
repeatedly interact with the same people. In many such interactions we

have the opportunity to “take advantage” of our co-players, but do not. We look
after our neighbors’ house while they’re away, even if it is time-consuming for us
to do so; we may give money to friends who are temporarily in need. The theory
of repeated games provides a framework that we can use to study such behavior.

The basic idea in the theory is that a player may be deterred from exploiting her
short-term advantage by the “threat” of “punishment” that reduces her long-term
payoff. Suppose, for example, that two people are involved repeatedly in an inter-
action for which the short-term incentives are captured by the Prisoner’s Dilemma
(see Section 2.2), with payoffs as in Figure 389.1. Think of C as “cooperation” and
D as “defection”.

C D
C 2, 2 0, 3
D 3, 0 1, 1

Figure 389.1 The Prisoner’s Dilemma.

As we know, the Prisoner’s Dilemma has a unique Nash equilibrium, in which
each player chooses D. Now suppose that a player adopts the following long-term
strategy: choose C so long as the other player chooses C; if in any period the other
player chooses D, then choose D in every subsequent period. What should the other

389
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player do? If she chooses C in every period then the outcome is (C, C) in every
period and she obtains a payoff of 2 in every period. If she switches to D in some
period then she obtains a payoff of 3 in that period and a payoff of 1 in every
subsequent period. She may value the present more highly than the future—she
may be impatient—but as long as the value she attaches to future payoffs is not
too small compared with the value she attaches to her current payoff, the stream
of payoffs (3, 1, 1, . . .) is worse for her than the stream (2, 2, 2, . . .), so that she is
better off choosing C in every period.

This argument shows that if a player is sufficiently patient, the strategy that
chooses C after every history is a best response to the strategy that starts off choos-
ing C and “punishes” any defection by switching to D. Clearly another best re-
sponse is this same punishment strategy: if your opponent is using this punish-
ment strategy then the outcome is the same if you use the strategy that chooses C
after every history, or the same punishment strategy as your opponent is using. In
both cases, the outcome in every period is (C, C) (the other player never defects,
so if you use the punishment strategy you are never induced to switch to punish-
ment). Thus the strategy pair in which both players use the punishment strategy is
a Nash equilibrium of the game: neither player can do better by adopting another
long-term strategy.

The conclusion that the repeated Prisoner’s Dilemma has a Nash equilibrium
in which the outcome is (C, C) in every period accords with our intuition that in
long-term relationships there is scope for mutually supportive strategies that do
not relentlessly exploit short-term gain. However, this strategy pair is not the only
Nash equilibrium of the game. Another Nash equilibrium is the strategy pair in
which each player chooses D after every history: if one player adopts this strategy
then the other player can do no better than to adopt the strategy herself, regardless
of how she values the future, since whatever she does has no effect on the other
player’s behavior.

This analysis leaves open many questions.

• We have seen that the outcome in which (C, C) occurs in every period is sup-
ported as a Nash equilibrium if the players are sufficiently patient. Exactly
how patient do they have to be?

• We have seen also that the outcome in which (D, D) occurs in every period
is supported as a Nash equilibrium. What other outcomes are supported?

• We saw in Chapter 5 that Nash equilibria of extensive games are not always
intuitively appealing, since the actions they prescribe after histories that re-
sult from deviations may not be optimal. The notion of subgame perfect
equilibrium, which requires actions to be optimal after every possible his-
tory, not only those that are reached if the players adhere to their strategies,
may be more appealing. Is the strategy pair in which each player uses the
punishment strategy I have described a subgame perfect equilibrium? That
is, is it optimal for each player to punish the other player for deviating? If
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not, is there any other strategy pair that supports desirable outcomes and is
a subgame perfect equilibrium?

• The punishment strategy studied above is rather severe; in switching per-
manently to D in response to a deviation it leaves no room for error. Are
there any Nash equilibria or subgame perfect equilibria in which the players’
strategies punish deviations less severely?

• The arguments above are restricted to the Prisoner’s Dilemma. To what other
games do they apply?

I now formulate the model of a repeated game more precisely in order to answer
these questions.

14.2 Preferences

14.2.1 Discounting

The outcome of a repeated game is a sequence of outcomes of a strategic game.
How does each player evaluate such sequences? I assume that she associates a
payoff with each outcome of the strategic game, and evaluates each sequence of
outcomes by the discounted sum of the associated sequence of payoffs. More pre-
cisely, each player i has a payoff function ui for the strategic game and a discount
factor δ between 0 and 1 such that she evaluates the sequence (a1, a2, . . . , aT) of
outcomes of the strategic game by the sum

ui(a1) + δui(a2) + δ2ui(a3) + · · · + δT−1ui(aT) =
T

∑
t=1

δt−1ui(at).

(Note that in this expression superscripts are used for two purposes: at is the ac-
tion profile in period t, while δt is the discount factor δ raised to the power t.)
I assume throughout that all players have the same discount factor δ. A player
whose discount factor is close to zero cares very little about the future—she is very
impatient; a player whose discount factor is close to one is very patient.

Why should a person value future payoffs less than current ones? Possibly she
is simply impatient. Or, possibly, her underlying preferences do not display impa-
tience, but in comparing streams of outcomes she takes into account the positive
probability with which she may die in any given period.1 Or, if the outcome in each
period involves the payment to her of some amount of money, possibly impatience
is induced by the fact that she can borrow and lend at a positive interest rate. For
example, suppose her underlying preferences over streams of monetary payoffs
do not display impatience. Then if she can borrow and lend at the interest rate r
she is indifferent between the sequence ($100, $100, 0, 0, . . .) of amounts of money

1Alternatively, the hazard of death may have favored those who reproduce early, leading to the
evolution of people who are “impatient”.



392 Chapter 14. Repeated games: The Prisoner’s Dilemma

and the sequence ($100 + $100/(1 + r), 0, 0, . . .), since by lending $100/(1 + r) of
the amount she obtains in the first period she obtains $100 in the second period.
In fact, under these assumptions her preferences are represented precisely by the
discounted sum of her payoffs with a discount factor of 1/(1 + r): any stream can
be obtained from any other stream with the same discounted sum by borrowing
and lending. (If you win one of the North American lotteries that promises $1m
you will quickly learn about discounted values: you will receive a stream of 20
yearly payments each of $50,000, which at an interest rate of 7% is equivalent to
receiving about $567,000 as a lump sum.)

Obviously the assumption that everyone’s preferences over sequences of out-
comes are represented by a discounted sum of payoffs is restrictive: people’s pref-
erences do not necessarily take this form. However, a discounted sum captures
simply the idea that people may value the present more highly than the future and
appears not to obscure any other feature of preferences significant to the problem
we are considering.

14.2.2 Equivalent payoff functions

When we considered preferences over atemporal outcomes and atemporal lotter-
ies, we found that many payoff functions represent the same preferences. Specifi-
cally, if u is a payoff function that represents a person’s preferences over determin-
istic outcomes, then any increasing function of u also represents her preferences. If
u is a Bernoulli payoff function whose expected value represents a person’s pref-
erences over lotteries, then the expected value of any increasing affine function of
u also represents her preferences.

Consider the same question for preferences over sequences of outcomes. Sup-
pose that a person’s preferences are represented by the discounted sum of pay-
offs with payoff function u and discount factor δ. Then if the two sequences of
outcomes (x1, x2, . . .) and (y1, y2, . . .) are indifferent, we have

∞

∑
t=0

δt−1u(xt) =
∞

∑
t=0

δt−1u(yt).

Now let v be an increasing affine function of u: v(x) = α + βu(x) with β > 0. Then

∞

∑
t=0

δt−1v(xt) =
∞

∑
t=0

δt−1[α + βu(xt)] =
∞

∑
t=0

δt−1α + β
∞

∑
t=0

δt−1u(xt)

and similarly

∞

∑
t=0

δt−1v(yt) =
∞

∑
t=0

δt−1[α + βu(yt)] =
∞

∑
t=0

δt−1α + β
∞

∑
t=0

δt−1u(yt),

so that
∞

∑
t=0

δt−1v(xt) =
∞

∑
t=0

δt−1v(yt).
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Thus the person’s preferences are represented also by the discounted sum of pay-
offs with payoff function v and discount factor δ. That is, if a person’s preferences
are represented by the discounted sum of payoffs with payoff function u and dis-
count factor δ then they are also represented by the discounted sum of payoffs with
payoff function α + βu and discount factor δ, for any α and any β > 0.

In fact, as in the case of payoff representations of preferences over lotteries (see
Lemma 145.1), the converse is also true: if preferences over a stream of outcomes
are represented by the discounted sum of payoffs with payoff function u and dis-
count factor δ, and also by the discounted sum of payoffs with payoff function v
and discount factor δ, then v must be an increasing affine function of u.

LEMMA 393.1 (Equivalence of payoff functions under discounting) Suppose there
are at least three possible outcomes. The discounted sum of payoffs with the payoff func-
tion u and discount factor δ represents the same preferences over streams of payoffs as the
discounted sum of payoffs with the payoff function v and discount factor δ if and only if
there exist α and β > 0 such that u(x) = α + βv(x) for all x.

The significance of this result is that the payoffs in the strategic games that gen-
erate the repeated games we now study are no longer simply ordinal, even if we
restrict attention to deterministic outcomes. For example, the players’ preferences
in the repeated game based on a Prisoner’s Dilemma with the payoffs given in Fig-
ure 389.1 are different from the players’ preferences in the repeated game based
on the variant of this game in which the payoff pairs (0, 3) and (3, 0) are replaced
by (0, 5) and (5, 0). (When the discount factor is close enough to 1, for instance,
each player prefers the sequence of outcomes ((C, C), (C, C)) to the sequence of
outcomes ((D, C), (C, D)) in the first case, but not in the second case.) Thus I re-
fer to a repeated Prisoner’s Dilemma, rather than the repeated Prisoner’s Dilemma.
More generally, throughout the remainder of this chapter I define strategic games
in terms of payoff functions rather than preferences: a strategic game consists of a
set of players, and, for each player, a set of actions and a payoff function.

If a player’s preferences over streams (w1, w2, . . .) of payoffs are represented
by the discounted sum ∑∞

t=1 δt−1wt of these payoffs, where δ < 1, then they are
also represented by the discounted average (1 − δ) ∑∞

t=1 δt−1wt of these payoffs
(since this discounted average is simply a constant times the discounted sum).
The discounted average has the advantage that its values are directly comparable
to the payoffs in a single period. Specifically, for any discount factor δ between 0
and 1 the constant stream of payoffs (c, c, . . .) has discounted average (1 − δ)(c +
δc + δ2c + · · ·) = c (see (449.2)). For this reason I subsequently work with the
discounted average rather than the discounted sum.

14.3 Infinitely repeated games

I start by studying a model of a repeated interaction in which play may continue
indefinitely—there is no fixed final period. In many situations play cannot con-
tinue indefinitely. But the assumption that it can may nevertheless capture well
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the players’ perceptions. The players may be aware that play cannot go on forever,
but, especially if the termination date is very far in the future, may ignore this fact
in their strategic reasoning. (I consider a model in which there is a definite final
period in Section 15.3.)

A repeated game is an extensive game with perfect information and simultane-
ous moves. A history is a sequence of action profiles in the strategic game. After
every nonterminal history, every player i chooses an action from the set of actions
available to her in the strategic game.

� DEFINITION 394.1 Let G be a strategic game. Denote the set of players by N and
the set of actions and payoff function of each player i by Ai and ui respectively.
The infinitely repeated game of G for the discount factor δ is the extensive game
with perfect information and simultaneous moves in which

• the set of players is N

• the set of terminal histories is the set of infinite sequences (a1, a2, . . .) of action
profiles in G

• the player function assigns the set of all players to every proper subhistory of
every terminal history

• the set of actions available to player i after any history is Ai

• each player i evaluates each terminal history (a1, a2, . . .) according to its dis-
counted average (1 − δ) ∑∞

t=1 δt−1ui(at).

14.4 Strategies

A player’s strategy in an extensive game specifies her action after all possible his-
tories after which it is her turn to move, including histories that are inconsistent
with her strategy (Definition 203.2). Thus a strategy of player i in an infinitely re-
peated game of the strategic game G specifies an action of player i (a member of
Ai) for every sequence (a1, . . . , aT) of outcomes of G.

For example, if player i’s strategy si is the one discussed at the beginning of this
chapter, it is defined as follows: si(∅) = C and

si(a1, . . . , at) =
{

C if aτ
j = C for τ = 1, . . . , t

D otherwise.
(394.2)

That is, player i chooses C at the start of the game (after the initial history ∅) and
after any history in which every previous action of player j was C; she chooses D
after every other history. We refer to this strategy as a grim trigger strategy, since it
is a mode of behavior in which a defection by the other player triggers relentless
(“grim”) punishment.

We can think of the strategy as having two states: one, call it C , in which C is
chosen, and another, call it D, in which D is chosen. Initially the state is C ; if the
other player chooses D in any period then the state changes to D, where it stays
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C : C ✲
(·, D)

D: D

Figure 395.1 A grim trigger strategy for an infinitely repeated Prisoner’s Dilemma.

forever. Figure 395.1 gives a natural representation of the strategy when we think
of it in these terms. The box with a bold outline is the initial state, C , in which
the player chooses the action C. If the other player chooses D (indicated by the
(·, D) under the arrow) then the state changes to D, in which the player chooses
D. If the other player does not choose D (i.e. chooses C) then the state remains C .
(The convention in the diagrams is that the state remains the same unless an event
occurs that is a label for one of the arrows emanating from the state.) Once D is
reached it is never left: there is no arrow leaving the box for state D.

Any strategy can be represented in a diagram like Figure 395.1. In many cases,
such a diagram is easier to interpret than a symbolic specification of the action
taken after each history like (394.2). Note that since a player’s strategy must specify
her action after all histories, including those that do not occur if she follows her
strategy, the diagram that represents a strategy must include, for every state, a
transition for each of the possible outcomes in the game. In particular, if in some
state the strategy calls for the player to choose the action B, then there must be
one transition from the state for each of the cases in which the player chooses an
action different from B. Figure 395.1 obscures this fact, since the event that triggers a
change in the player’s action is an action of her opponent; none of her own actions
trigger a change in the state, so that the (null) transitions that her own actions
induce are not indicated explicitly in the diagram.

A strategy that entails less draconian punishment is shown in Figure 395.2.
This strategy punishes deviations for only three periods: it responds to a deviation
by choosing the action D for three periods, then reverting to C, no matter how the
other player behaved during her punishment.

P0: C ✲
(·, D)

P1: D ✲
all

outcomes

P2: D ✲
all

outcomes

P3: D
❄

☛ ✟

all outcomes

Figure 395.2 A strategy in an infinitely repeated Prisoner’s Dilemma that punishes deviations for three
periods.

In the strategy tit-for-tat the length of the punishment depends on the behavior
of the player being punished. If she continues to choose D then tit-for-tat continues
to do so; if she reverts to C then tit-for-tat reverts to C also. The strategy can be
given a very compact description: do whatever the other player did in the previous
period. It is illustrated in Figure 396.1.

? EXERCISE 395.1 (Strategies in the infinitely repeated Prisoner’s dilemma) Represent
each of the following strategies s in an infinitely repeated Prisoner’s Dilemma in a
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C : C D: D✲
(·, D)

❄
☛ ✟

(·, C)

Figure 396.1 The strategy tit-for-tat in an infinitely repeated Prisoner’s Dilemma.

diagram like Figure 395.1.

a. Choose C in period 1, and after any history in which the other player chose
C in every period except, possibly, the previous period; choose D after any
other history. (That is, punishment is grim, but its initiation is delayed by one
period.)

b. Choose C in period 1 and after any history in which the other player chose D
in at most one period; choose D after any other history. (That is, punishment
is grim, but a single lapse is forgiven.)

c. (Pavlov, or win-stay, lost-shift) Choose C in period 1 and after any history in
which the outcome in the last period is either (C, C) or (D, D); choose D after
any other history. (That is, choose the same action again if the outcome was
relatively good for you, and switch actions if it was not.)

14.5 Some Nash equilibria of the infinitely repeated Prisoner’s Dilemma

If one player chooses D after every history in an infinitely repeated Prisoner’s
Dilemma then it is clearly optimal for the other player to do the same (since (D, D)
is a Nash equilibrium of the Prisoner’s Dilemma). The argument at the start of the
chapter suggests that an infinitely repeated Prisoner’s Dilemma has other, less dis-
mal, equilibria, so long as the players are sufficiently patient—for example, the
strategy pair in which each player uses the grim trigger strategy defined in Fig-
ure 395.1. I now make this argument precise. Throughout I consider the infinitely
repeated Prisoner’s Dilemma in which each player’s discount factor is δ and the
one-shot payoffs are given in Figure 389.1.

14.5.1 Grim trigger strategies

Suppose that player 1 adopts the grim trigger strategy. If player 2 does so then the
outcome is (C, C) in every period and she obtains the stream of payoffs (2, 2, . . .),
whose discounted average is 2. If she adopts a strategy that generates a different
sequence of outcomes then there is one period (at least) in which she chooses D. In
all subsequent periods player 1 chooses D (player 2’s choice of D triggers the grim
punishment), so the best deviation for player 2 chooses D in every subsequent
period (since D is her unique best response to D). Further, if she can increase her
payoff by deviating then she can do so by deviating to D in the first period. If
she does so she obtains the stream of payoffs (3, 1, 1, . . .) (she gains one unit of
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payoff in the first period, then loses one unit in every subsequent period), whose
discounted average is

(1 − δ)[3 + δ + δ2 + δ3 + · · ·] = 3(1 − δ) + δ.

Thus she cannot increase her payoff by deviating if and only if

2 ≥ 3(1 − δ) + δ,

or δ ≥ 1
2 . We conclude that if δ ≥ 1

2 then the strategy pair in which each player’s
strategy is the grim trigger strategy defined in Figure 395.1 is a Nash equilibrium of
the infinitely repeated Prisoner’s Dilemma with one-shot payoffs as in Figure 389.1.

14.5.2 Limited punishment

Now consider a generalization of the limited punishment strategy in Figure 395.2
in which a player who chooses D is punished for k periods. (The strategy in Fig-
ure 395.2 has k = 3; the grim punishment strategy corresponds to k = ∞.) If
one player adopts this strategy, is it optimal for the other to do so? Suppose that
player 1 does so. As in the argument for the grim trigger strategy, if player 2
can increase her payoff by deviating then she can increase her payoff by deviating
in the first period. So suppose she chooses D in the first period. Then player 1
chooses D in each of the next k periods, regardless of player 2’s choices, so player 2
also should choose D in these periods. In the (k + 1)st period after the devia-
tion player 1 switches back to C (regardless of player 2’s behavior in the previous
period), and player 2 faces precisely the same situation that she faced at the begin-
ning of the game. Thus if her deviation increases her payoff, it increases her payoff
during the first k + 1 periods. If she adheres to her strategy then her discounted
average payoff during these periods is

(1 − δ)[2 + 2δ + 2δ2 + · · · + 2δk] = 2(1 − δk+1)

(see (449.1)), whereas if she deviates as described above then her payoff during
these periods is

(1 − δ)[3 + δ + δ2 + · · · + δk] = 3(1 − δ) + δ(1 − δk).

Thus she cannot increase her payoff by deviating if and only if

2(1 − δk+1) ≥ 3(1 − δ) + δ(1 − δk),

or δk+1 − 2δ + 1 ≤ 0. If k = 1 then no value of δ less than 1 satisfies the inequality:
one period of punishment is not severe enough to discourage a deviation, however
patient the players are. If k = 2 then the inequality is satisfied for δ ≥ 0.62, and if
k = 3 it is satisfied for δ ≥ 0.55. As k increases the lower bound on δ approaches
1
2 , the lower bound for the grim strategy.
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We conclude that the strategy pair in which each player punishes the other for k
periods in the event of a deviation is a Nash equilibrium of the infinitely repeated
game so long as k ≥ 2 and δ is large enough; the larger is k, the smaller is the
lower bound on δ. Thus short punishment is effective in sustaining the mutually
desirable outcome (C, C) only if the players are very patient.

14.5.3 Tit-for-tat

Now consider the conditions under which the strategy pair in which each player
uses the strategy tit-for-tat is a Nash equilibrium. Suppose that player 1 adheres
to this strategy. Then, as above, if player 2 can gain by deviating then she can
gain by choosing D in the first period. If she does so, then player 1 chooses D in
the second period, and continues to choose D until player 2 reverts to C. Thus
player 2 has two options: she can revert to C, in which case in the next period she
faces the same situation as she did at the start of the game, or she can continue to
choose D, in which case player 1 will continue to do so too. We conclude that if
player 2 can increase her payoff by deviating then she can do so either by alternat-
ing between D and C or by choosing D in every period. If she alternates between
D and C then her stream of payoffs is (3, 0, 3, 0, . . .), with a discounted average of
(1− δ) · 3/(1− δ2) = 3/(1 + δ), while if she chooses D in every period her stream of
payoffs is (3, 1, 1, . . .), with a discounted average of 3(1− δ) + δ = 3− 2δ. Since her
discounted average payoff to adhering to the strategy tit-for-tat is 2, we conclude
that tit-for-tat is a best response to tit-for-tat if and only if

2 ≥ 3
1 + δ

and 2 ≥ 3 − 2δ.

Both of these conditions are equivalent to δ ≥ 1
2 .

Thus if δ ≥ 1
2 then the strategy pair in which the strategy of each player is

tit-for-tat is a Nash equilibrium of the infinitely repeated Prisoner’s Dilemma with
payoffs as in Figure 389.1.

? EXERCISE 398.1 (Nash equilibria of the infinitely repeated Prisoner’s Dilemma) For
each of the three strategies s in Exercise 395.1 determine the values of δ, if any,
for which the strategy pair (s, s) is a Nash equilibrium of an infinitely repeated
Prisoner’s Dilemma with discount factor δ and the one-shot payoffs given in Fig-
ure 389.1. For each strategy s for which there is no value of δ such that (s, s) is
a Nash equilibrium of this game, determine whether there are any payoffs for the
Prisoner’s Dilemma such that for some δ the strategy pair (s, s) is a Nash equilibrium
of the infinitely repeated game with discount factor δ.

14.6 Nash equilibrium payoffs of the infinitely repeated Prisoner’s Dilemma

when the players are patient

All the Nash equilibria of the infinitely repeated Prisoner’s Dilemma that I have dis-
cussed so far generate either the outcome (C, C) in every period or the outcome
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(D, D) in every period. The first outcome path yields the discounted average pay-
off of 2 to each player, while the second outcome path yields the discounted aver-
age payoff of 1 to each player. What other discounted average payoffs are consis-
tent with Nash equilibrium? It turns out that this question is hard to answer for
an arbitrary discount factor. The question is relatively straightforward to answer,
however, in the case that the discount factor is close to 1 (the players are very pa-
tient). Before tackling it, we need to determine the set of discounted average pairs
of payoffs that are feasible—i.e. can be achieved by outcome paths.

14.6.1 Feasible discounted average payoffs

If the outcome is (X, Y) in every period then the discounted average payoff is
(u1(X, Y), u2(X, Y)), for any X and Y. Thus (2, 2), (3, 0), (0, 3), and (1, 1) can all
be achieved as pairs of discounted average payoffs.

Now consider the path in which the outcome alternates between (C, C) and
(C, D). Along this path player 1’s payoff alternates between 2 and 0 while player 2’s
alternates between 2 and 3. Thus the players’ average payoffs along the path are
1 and 5

2 respectively. Since player 1 receives more of her payoff in the first period
of each two-period cycle than in the second period (in fact, she obtains nothing
in the second period), her discounted average payoff exceeds 1, whatever the dis-
count factor. But if the discount factor is close to 1 then her discounted average
payoff is close to 1: the fact that more payoff is obtained in the first period of each
two-period cycle is insignificant if the discount factor is close to 1. Similarly, since
player 2 receives most of her payoff in the second period of each two-period cycle,
her discounted average payoff is less than 5

2 , whatever the discount factor, but is
close to 5

2 when the discount factor is close to 1. Thus (1, 5
2 ) can approximately be

achieved as a pair of discounted average payoffs when the discount factor is close
to 1.

This argument can be extended to any outcome path in which a sequence of
outcomes is repeated. If the discount factor is close to 1 then a player’s discounted
average payoff on such a path is close to her average payoff in the sequence. For ex-
ample, the outcome path that consists of repetitions of the sequence ((C, C), (D, C), (D, C))
yields player 1 a discounted average payoff close to 1

3 (2 + 3 + 3) = 8
3 and player 2

a discounted average payoff close to 1
3 (2 + 0 + 0) = 2

3 .
We conclude that the average of the payoffs to any sequence of outcomes can

approximately be achieved as the discounted average payoff if the discount factor
is close to 1. Further, if the discount factor is close to 1 then only such discounted
average payoffs can be achieved. Thus if the discount factor is close to 1, the set of
feasible discounted average payoff pairs in the infinitely repeated game is approxi-
mately the set of all pairs of weighted averages of payoffs in the component game.
The same argument applies to any strategic game, and for convenience I make the
following definition.

� DEFINITION 399.1 The set of feasible payoff profiles of a strategic game is the set
of all weighted averages of payoff profiles in the game.
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This definition is standard. Note, however, that the name “feasible” is a little mis-
leading, in the sense that a feasible payoff profile is not in general achievable in
the game, but only (approximately) as a discounted average payoff profile in the
infinitely repeated game.

It is useful to represent the set of feasible payoff pairs in the Prisoner’s Dilemma
geometrically. Suppose that (x1, x2) and (y1, y2) are in the set. Now fix integers k
and m with m > k and consider the outcome path that consists of k repetitions of
the cycle of outcomes that yields (x1, x2) followed by m − k repetitions of the cycle
that yields (y1, y2), and continues indefinitely with repetitions of this whole cycle.
The average payoff pair on this outcome path is (k/m)(x1, x2) + (1 − k/m)(y1, y2).
This point lies on the straight line joining (x1, x2) and (y1, y2). As we vary k and m
essentially all points on this straight line are achieved. (Precisely, every point that is
a weighted average of (x1, x2) and (y1, y2) with rational weights are achieved.) We
conclude that the set of feasible discounted average payoffs is the parallelogram in
Figure 400.1.

0 1 2 3

1

2

3
(0, 3)

(1, 1)

(2, 2)

(3, 0)

1’s payoff →

↑
2’s

payoff

Figure 400.1 The set of feasible payoffs in the Prisoner’s Dilemma with payoffs as in Figure 389.1. Any
pair of payoffs in this set can approximately be achieved as a pair of discounted average payoffs in the
infinitely repeated game when the discount factor is close to 1.

14.6.2 Nash equilibrium discounted average payoffs

We have seen that the feasible payoff pairs (2, 2) and (1, 1) can be achieved as
discounted average payoffs pairs in Nash equilibria. Which other feasible payoff
pairs can be achieved in Nash equilibria? By choosing D in every period, each
player can obtain a payoff of at least 1 in each period, and hence a discounted
average payoff of at least 1. Thus no pair of payoffs in which either player’s payoff
is less than 1 is the discounted average payoff pair of a Nash equilibrium.

I claim further that every feasible pair of payoffs in which each player’s payoff
is greater than 1 is close to a pair of payoffs that is the discounted average payoff
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pair of a Nash equilibrium when the discount factor is close enough to 1. For any
feasible pair (x1, x2) of payoffs there is a finite sequence (a1, . . . , ak) of outcomes
for which each player i’s average payoff is xi, so that her discounted average payoff
can be made as close as we want to xi by taking the discount factor close enough
to 1.

Now consider the outcome path of the infinitely repeated games that consists
of repetitions of the sequence (a1, . . . , ak); denote this outcome path by (b1, b2, . . .).
(That is, b1 = bk+1 = b2k+1 = . . . = a1, b2 = bk+2 = b2k+2 = . . . = a2, and so
on.) I now construct a strategy profile that yields this outcome path and, for a
large enough discount factor, is a Nash equilibrium. In each period, each player’s
strategy chooses the action specified for her by the path so long as the other player
did so in every previous period, and otherwise chooses the “punishment” action
D. Precisely, player i’s strategy si chooses the action b1

i in the first period and the
action

si(h1, . . . , ht−1) =
{

bt
i if hr

j = br
j for r = 1, . . . , t − 1

D otherwise,

after any other history (h1, . . . , ht−1), where j is the other player. If every player
adheres to this strategy then the outcome in each period t is bt, so that the av-
erage payoff of each player i is xi. Thus the discounted average payoff of each
player i can be made arbitrarily close to xi by choosing the discount factor to be
close enough to 1.

If xi > 1 for each player i then the strategy profile is a Nash equilibrium by the
following argument. First note that since for each player i we have xi > 1, for each
player i there is an integer, say ti, for which ui(ati) > 1. Now suppose that one
of the players, say i, deviates from the path (b1, b2, . . .) in some period. In every
subsequent period player j chooses D, so that player i’s payoff is at most 1. In
particular, in every period in which the outcome was supposed to be ati , player i
obtains the payoff 1 rather than ui(ati ) > 1. If the discount factor is close enough
to 1 then the discounted value of these future losses more than outweigh any gain
that player i may have pocketed in the period in which she deviated. Hence for a
discount factor close enough to 1, each player i is better off adhering to the strategy
si than she is deviating, so that (s, s) is a Nash equilibrium. Further, by taking the
discount factor close enough to 1 we can ensure that the discounted average payoff
pair of the outcome path that (s, s) generates is arbitrarily close to (x1, x2).

In summary, we have proved the following result for the infinitely repeated
Prisoner’s Dilemma generated by the one-shot game with payoffs given in Fig-
ure 389.1:

• for any discount factor, each player’s payoff in every discounted average
payoff pair generated by a Nash equilibrium of the infinitely repeated game
is at least 1

• for every feasible pair (x1, x2) of payoffs in the game for which xi > 1 for
each player i, there is a pair (y1, y2) close to (x1, x2) such that for a discount
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factor close enough to 1 there is a Nash equilibrium of the infinitely repeated
game in which the pair of discounted average payoffs is (y1, y2).

(This result is a special case of a result I state, precisely, later; see Proposition 413.1.)
You may wonder why the second part of this statement is not simpler: why do I

not claim that any outcome path in which every player’s discounted average pay-
off exceeds 1 can be generated by a Nash equilibrium? The reason is simple: this
claim is not true! Consider, for example, the outcome path ((C, C), (D, D), (D, D), . . .)
in which the outcome in every period but the first is (D, D). For any discount fac-
tor less than 1 each player’s discounted average payoff exceeds 1 on this path, but
no Nash equilibrium generates the path: a player who deviates to D in the first
period obtains a higher payoff in the first period and at least the same payoff in
every subsequent period, however her opponent behaves.

The set in Figure 402.1 illustrates the set of discounted average payoffs gen-
erated by Nash equilibria. For every point (x1, x2) in the set, by choosing the
discount factor close enough to 1 we can ensure that there is a point (y1, y2) as
close as we want to (x1, x2) that is the pair of discounted average payoffs of the
infinitely repeated game. The diagram makes it clear how large the set of Nash
equilibrium payoffs of the repeated game is: even though the one-shot game has
a unique Nash equilibrium, and hence a unique pair of Nash equilibrium payoffs,
the repeated game has a large set of Nash equilibria, with payoffs that vary from
dismal to jointly maximal.

0 1 2 3

1

2

3

1’s payoff →

↑
2’s

payoff

Figure 402.1 The approximate set of Nash equilibrium discounted average payoffs for the infinitely
repeated Prisoner’s Dilemma with one-shot payoffs as in Figure 389.1 when the discount factor is close
to 1.

14.7 Subgame perfect equilibria and the one-deviation property

We saw in Section ????? that a strategy profile in a finite horizon extensive game is
a subgame perfect equilibrium if and only if it satisfies the one-deviation property: no
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player can increase her payoff by changing her action at the start of any subgame
in which she is the first mover, given the other player’s strategies and the rest of her
own strategy. I now argue that the same is true in an infinitely repeated game, a
fact that can greatly simplify the process of determining whether or not a strategy
profile is a subgame perfect equilibrium.

As in the case of a finite horizon game, if a strategy profile is a subgame perfect
equilibrium then certainly it satisfies the one-deviation property, since no player
must be able to increase her payoff by any change in her strategy. What we need
to show is the converse: if a strategy profile is not a subgame perfect equilibrium
then there is some subgame in which the first-mover can increase her payoff by
changing only her initial action.

Let s be a strategy profile that is not a subgame perfect equilibrium. Specifically,
suppose that in the subgame following the nonterminal history h, player i can
increase her payoff by using the strategy s′i rather than si. Now, since payoffs in the
distant future are worth very little, there is some period T such that any strategy
that coincides with s′i through period T is better than any strategy that coincides
with si through period T: T can be chosen to be sufficiently large that the first
strategy yields a higher discounted average payoff than the second one even if the
first strategy induces the best possible outcome for player i in every period after T,
and the second strategy induces the worst possible outcome in every such period.
In particular, the strategy s′′i that coincides with s′i through period T and with si
after period T is better for player i than si.

But now by the same argument as for finite horizon games (Proposition ????),
we can find a strategy for player i and a subgame such that in the subgame the
strategy differs from si only in its first action and yields a payoff higher than that
yielded by si (given that the other players adhere to s−i). A more precise statement
of the result and proof follows.

PROPOSITION 403.1 (One-deviation property of subgame perfect equilibria of in-
finitely repeated games) A strategy profile in an infinitely repeated game is a subgame
perfect equilibrium if and only if no player can gain by changing her action after any
history, given both the strategies of the other players and the remainder of her own strategy.

Proof. If the strategy profile s is a subgame perfect equilibrium then no player can
gain by any deviation, so that if some player can gain by a one-period deviation
then s is definitely not a subgame perfect equilibrium.

I now need to show that if s is not a subgame perfect equilibrium then in the
subgame that follows some history h, some player, say i, can gain by a one-period
deviation from si. Without loss of generality, assume that h is the initial history.

Now, since payoffs in the sufficiently distant future have an arbitrarily small
value from today’s point of view, there is some period T such that the payoff to
any strategy that follows s′i through period T exceeds the payoff to any strategy
that follows by si through period T (given that the other players adhere to s−i).
(The integer T can be chosen to be sufficiently large that the first strategy yields a
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higher discounted average payoff than the second one even if the first strategy in-
duces the best possible outcome for player i in every period after T, and the second
strategy induces the worst possible outcome in every such period.) In particular,
the strategy s′′i that coincides with s′i through period T and with si subsequently is
better for player i than the strategy si.

Now, si and s′′i differ only in the actions they prescribe after finitely many histo-
ries, so we can apply the argument in the proof of Proposition ??? to find a strategy
of player i and a history such that in the subgame that follows the history, the strat-
egy differs from si only in the action it prescribes initially, and player i is better off
following the strategy than following si.

Thus we have shown that if s is not a subgame perfect equilibrium then some
player can increase her payoff by making a one-period deviation after some history.✷

14.8 Some subgame perfect equilibria of the infinitely repeated Prisoner’s

Dilemma

The notion of Nash equilibrium requires only that each player’s strategy be opti-
mal in the whole game, given the other players’ strategies; after histories that do
not occur if the players follow their strategies, the actions specified by a player’s
Nash equilibrium strategy may not be optimal. In some cases we can think of the
actions prescribed by a strategy for histories that will not occur if the players fol-
low their strategies as “threats”; the notion of Nash equilibrium does not require
that it be optimal for a player to carry out these threats if called upon to do so. In
the previous chapter we studied the notion of subgame perfect equilibrium, which
does impose such a requirement: a strategy profile is a subgame perfect equilib-
rium if every player’s strategy is optimal not only in the whole game, but after
every history (including histories that do not occur if the players adhere to their
strategies).

Are the Nash equilibria we considered in the previous section subgame per-
fect equilibria of the infinitely repeated Prisoner’s Dilemma with payoffs as in Fig-
ure 389.1? Clearly the Nash equilibrium in which each player chooses D after
every history is a subgame perfect equilibrium: whatever happens, each player
chooses D, so it is optimal for the other player to do likewise. Now consider the
other Nash equilibria we studied.

14.8.1 Grim trigger strategies

Suppose that the outcome in the first period is (C, D). Is it optimal for each player
to subsequently adhere to the grim trigger strategy, given that the other player
does so? In particular, is it optimal for player 1 to carry out the punishment that
the grim trigger strategy prescribes? If both players adhere to the strategy then
player 1 chooses D in every subsequent period while player 2 chooses C in period 2
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and then D subsequently, so that the sequence of outcomes in the subgame follow-
ing the history (C, D) is ((D, C), (D, D), (D, D), . . .), yielding player 1 a discounted
average payoff of

3(1 − δ) + δ = 3 − 2δ.

If player 1 refrains from punishing player 2 for her lapse, and simply chooses C in
every subsequent period, then the outcome in period 2 and subsequently is (C, C),
so that the sequence of outcomes in the game yields player 1 a discounted average
payoff of 2. If δ > 1

2 then 2 > 3 − 2δ, so that player 1 prefers not to punish player 2
for a deviation, and hence the strategy pair in which each player uses the grim
trigger strategy is not a subgame perfect equilibrium.

In fact, the strategy pair in which each player uses the grim trigger strategy
is not a subgame perfect equilibrium for any value of δ, for the following reason.
If player 1 adheres to the grim trigger strategy, then in the subgame following
the outcome (C, D), player 2 prefers to choose D in period 2 and subsequently,
regardless of the value of δ (since the outcome is then (D, D) in every period, rather
than (D, C) in the first period of the subgame and (D, D) subsequently).

In summary, the strategy pair in which both players use the grim trigger strat-
egy defined in Figure 395.1 is not a subgame perfect equilibrium of the infinitely
repeated game for any value of the discount factor: after the history (C, D) player 1
has no incentive to punish player 2, and player 2 prefers to choose D in every sub-
sequent period if she is going to be punished, rather than choosing C in the second
period of the game and then D subsequently.

However, a small modification of the grim trigger strategy fixes both of these
problems. Consider the variant of the grim trigger strategy in which a player
chooses D after any history in which either player chose D in some period. This
strategy is illustrated in Figure 405.1. If both players adopt this strategy then in the
subgame following a deviation, the miscreant chooses D in every period, so that
her opponent is better off “punishing” her by choosing D than she is by choosing
C. Further, a player’s behavior during her punishment is optimal—she chooses
D in every period. The point is that (D, D) is a Nash equilibrium of a Prisoner’s
Dilemma, so that neither player has any quarrel with the prescription of the modi-
fied grim trigger strategy that she choose D after any history in which some player
chose D. The fact that the strategy specifies that a player choose D after any his-
tory in which she deviated means that it is optimal for the other player to pun-
ish her, and since she is punished it is optimal for her to choose D. Effectively, a
player’s strategy “punishes” her opponent—by choosing D—if her opponent does
not “punish” her for deviating.

C : C ✲
all outcomes
except (C, C)

D: D

Figure 405.1 A variant of the grim strategy in an infinitely repeated Prisoner’s Dilemma.
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14.8.2 Limited punishment

The pair of strategies (s, s) in which s is the limited punishment strategy studied
in Section 14.5.2 is not a subgame perfect equilibrium of the infinitely repeated
Prisoner’s Dilemma for the same reason that a pair of grim trigger strategies is not
a subgame perfect equilibrium. However, as in the case of grim trigger strategies,
we can modify the limited punishment strategy in order to obtain a subgame per-
fect equilibrium. Specifically, we need the transition from state P0 to state P1 in
Figure 395.2 to occur whenever either player chooses D (not just if the other player
chooses D). A player using this modified strategy chooses D during her punish-
ment, which both is optimal for her and makes the other player’s choice to punish
optimal. When the punishment ends she, like her punisher, reverts to C.

? EXERCISE 406.1 (Lengths of punishment in subgame perfect equilibrium) Is there
any subgame perfect equilibrium of an infinitely repeated Prisoner’s Dilemma (with
payoffs as in Figure 389.1), for any value of δ, in which each player’s strategy
involves limited punishment, but the lengths of the punishment are different for
each player? If so, describe such a subgame perfect equilibrium; if not, argue why
not.

14.8.3 Tit-for-tat

The behavior in a subgame of a player who uses the strategy tit-for-tat depends
only on the last outcome in the history that preceded the subgame. Thus to ex-
amine whether the strategy pair in which both players use the strategy tit-for-
tat is a subgame perfect equilibrium we need to consider four types of subgame,
following histories in which the last outcome is (C, C), (C, D), (D, C), and (D, D).

The optimality of tit-for-tat in a subgame following a history ending in (C, C),
given that the other player uses tit-for-tat, is covered by our analysis of Nash equi-
librium: if δ ≥ 1

2 then tit-for-tat is a best response to tit-for-tat in such a subgame.
In studying subgames following histories ending in other outcomes, I appeal

to the fact that a strategy profile is a subgame perfect equilibrium if and only if it
satisfies the one-deviation property (Propostion ???).

Consider the subgame following a history ending in the outcome (C, D). Sup-
pose that player 2 adheres to tit-for-tat. If player 1 also adheres to tit-for-tat then the
outcome alternates between (D, C) and (C, D), and player 1’s discounted average
payoff in the subgame is

(1 − δ)(3 + 3δ2 + · · ·) =
3

1 + δ
.

If player 1 instead chooses C in the first period of the subgame, and subsequently
adheres to tit-for-tat, then the outcome is (C, C) in every period of the subgame,
so that player 1’s discounted average payoff is 2. Thus in order that tit-for-tat be
optimal in such a subgame we need

3
1 + δ

≥ 2, or δ ≤ 1
2 .
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In the subgame following a history ending with the outcome (D, C), the out-
come alternates between (C, D) and (D, C) if both players adhere to tit-for-tat,
yielding player 1 a discounted average payoff of 3δ/(1 + δ) (the first outcome is
(C, D), rather than (D, C) as in the previous case). If player 1 deviates to D in the
first period, and then adheres to tit-for-tat then the outcome is (D, D) in every pe-
riod, yielding player 1 a discounted average payoff of 1. Thus for tit-for-tat to be
optimal for player 1 we need

3δ

1 + δ
≥ 1, or δ ≥ 1

2 .

Finally, in a subgame following a history ending with the outcome (D, D), the
outcome is (D, D) in every period if both players adhere to tit-for-tat, yielding
player 1 a discounted average payoff of 1. If player 1 deviates to C in the first
period of the subgame, then adheres to tit-for-tat, the outcome alternates between
(C, D) and (D, C), yielding player 1 a discounted average payoff of 3δ/(1 + δ).
Thus tit-for-tat is optimal for player 1 only if δ ≤ 1

2 .
We conclude that (tit-for-tat,tit-for-tat) is a subgame perfect equilibrium of the

infinitely repeated Prisoner’s Dilemma with payoffs as in Figure 389.1 if and only
if δ = 1

2 . In fact, the existence of any value of the discount factor for which (tit-
for-tat,tit-for-tat) is a subgame perfect equilibrium depends on the specific payoffs
I have assumed for the component game: this strategy pair is a subgame perfect
equilibrium of an infinitely repeated Prisoner’s Dilemma only if the payoffs of the
component game are rather special, as you are asked to show in the following
exercise.

? EXERCISE 407.1 (Tit-for-tat as a subgame perfect equilibrium in the infinitely re-
peated Prisoner’s Dilemma) Consider the infinitely repeated Prisoner’s Dilemma in
which the payoffs of the component game are those given in Figure 407.1. Show
that (tit-for-tat,tit-for-tat) is a subgame perfect equilibrium if and only if y − x = 1
and δ = 1/x. (Use the fact that subgame perfect equilibria have the one-deviation
property.)

C D
C x, x 0, y
D y, 0 1, 1

Figure 407.1 The component game for the infinitely repeated Prisoner’s Dilemma considered in Exer-
cise 407.1.

14.8.4 Subgame perfect equilibrium payoffs of the infinitely repeated Prisoner’s

Dilemma when the players are patient

In Section 14.6 we saw that every pair (x1, x2) in which xi > 1 is close to a pair
of discounted average payoffs to some Nash equilibrium of the infinitely repeated
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Prisoner’s Dilemma with payoffs as in Figure 389.1 when the players are sufficiently
patient. Since every subgame perfect equilibrium is a Nash equilibrium, the set of
subgame perfect equilibrium payoff pairs is a subset of the set of Nash equilibrium
payoff pairs. I now argue that, in fact, the two sets are the same. The strategy pair
that I used in the argument of Section 14.6 is not a subgame perfect equilibrium,
but can be modified, along the lines we considered in the previous section, to turn
it into such an equilibrium.

Let (x1, x2) be a pair of feasible payoffs in the Prisoner’s Dilemma for which
xi > 1 for each player i. Let (a1, . . . , ak) be a sequence of outcomes of the game
for which each player i’s average payoff is xi, and let (b1, b2, . . .) be the outcome
path of the infinitely repeated game that consists of repetitions of the sequence
(a1, . . . , ak). I claim that the strategy pair in which each player follows the path
(b1, b2, . . .) so long as both she and the other player have done so in the past, and
otherwise chooses D, is a subgame perfect equilibrium. If one player deviates
then subsequent to her deviation she continues to choose D, making it optimal for
her opponent to “punish” her by choosing D. Precisely, the strategy si of player i
chooses the action b1

i in the first period and the action

si(h1, . . . , ht−1) =
{

bt
i if hr = br for r = 1, . . . , t − 1

D otherwise,

after any other history (h1, . . . , ht−1).
I claim that (s, s) is a subgame perfect equilibrium of the infinitely repeated

game. There are two types of subgame to consider. First, consider a history in
which the outcome was br in every period r. The argument that if one player acts
according to s in the subgame that follows such a history then it is optimal for the
other to do so is the same as the argument that the strategy pair defined in Sec-
tion 14.6 is a Nash equilibrium. Briefly, if both players adhere to the strategy s
in the subgame, the outcome is bt in every period t, yielding each player i a dis-
counted average payoff close to xi when the discount factor is close to 1. If one
player deviates from s, then she may gain in the period in which she deviates, but
her deviation will trigger her opponent to choose D in every subsequent period,
so that given xi > 1 for each i, her deviation makes her worse off if her discount
factor is close enough to 1.

Now consider a history in which the outcome was different from br in some
period r. If, in the subgame following this history, the players both use the strat-
egy s, then they both choose D regardless of the outcomes in the subgame. Since
the strategy pair in which both players always choose D regardless of history is
a Nash equilibrium of the infinitely repeated game, the strategy pair that (s, s)
induces in such a subgame is a Nash equilibrium.

We conclude that the strategy pair (s, s) is a subgame perfect equilibrium. The
point is that after any deviation the players’ strategies lead them to choose Nash
equilibrium actions of the component game in every subsequent period, so that
neither player has any incentive to deviate.
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Since no player’s discounted average payoff can be less than 1 in any Nash
equilibrium of the infinitely repeated game, we conclude that the set of discounted
average payoffs possible in subgame perfect equilibria is exactly the same as the
set of discounted average payoffs possible in Nash equilibria:

• for any discount factor, each player’s payoff in every discounted average
payoff pair generated by a subgame perfect equilibrium of the infinitely re-
peated game is at least 1

• for every pair (x1, x2) of feasible payoffs in the game for which xi > 1 for each
player i, there is a pair (y1, y2) close to (x1, x2) such that for a discount factor
close enough to 1 there is a subgame perfect equilibrium of the infinitely
repeated game in which the pair of discounted average payoffs is (y1, y2).

Notes
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15.1 Nash equilibria of general infinitely repeated games

THE IDEA behind the analysis of an infinitely repeated Prisoner’s Dilemma ap-
plies to any infinitely repeated game: every feasible payoff profile in the one

shot game in which each player’s payoff exceeds some minimum is close (at least)
to the discounted average payoff profile of a Nash equilibrium in which a deviation
triggers each player to begin an indefinite “punishment” of the deviant.

For the Prisoner’s Dilemma the minimum payoff of player i that is supported by
a Nash equilibrium is ui(D, D). The significance of this payoff is that player j can
ensure (by choosing D) that player i’s payoff does not exceed ui(D, D), and there
is no lower payoff with this property. That is, ui(D, D) is the lowest payoff that
player j can force upon player i.

How can we find this minimum payoff in an arbitrary strategic game? Suppose
that the deviant is player i. For any collection a−i of the other players’ actions,
player i’s highest possible payoff is her payoff when she chooses a best response
to a−i, namely

max
ai∈Ai

ui(ai , a−i).

As a−i varies, this maximal payoff varies. We seek a collection a−i of “punishment”
actions that make this maximum as small as possible. That is, we seek a solution
to the problem

min
a−i∈A−i

(
max
ai∈Ai

ui(ai , a−i)
)

.

This payoff is known, not surprisingly, as player i’s minmax payoff.

� DEFINITION 411.1 Player i’s minmax payoff in a strategic game in which the
action set and payoff function of each player i are Ai and ui respectively is

min
a−i∈A−i

(
max
ai∈Ai

ui(ai , a−i)
)

. (411.2)

411
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(Note that I am restricting attention to pure strategies in the strategic game; a
player’s minmax payoff is different if we consider mixed strategies.)

For example, in the Prisoner’s Dilemma with the payoffs in Figure 389.1, each
player’s minmax payoff is 1; in BoS (Example 16.2) each player’s minmax payoff is
also 1.

? EXERCISE 412.1 (Minmax payoffs) Find each player’s minmax payoff in each of
the following games.

a. The game of dividing money in Exercise 36.2.

b. Cournot’s oligopoly game (Section 3.1) when Ci(0) = 0 for each firm i and
P(Q) = 0 for some sufficiently large value of Q.

c. Hotelling’s model of electoral competition (Section 3.3) when (i) there are two
candidates and (ii) there are three candidates, under the assumptions that the
set of possible positions is the interval [0, 1], the distribution of the candidates’
ideal positions has a unique median, a tie results in each candidate’s winning
with probability 1

2 , and each candidate’s payoff is her probability of winning.

Whatever the other players’ strategies, any player can obtain at least her min-
max payoff in every period, and hence a discounted average payoff at least equal
to her minmax payoff, by choosing in each period a best response to the other play-
ers’ actions. More precisely, player i can ensure that her payoff in every period is
at least her minmax payoff by using a strategy that, after every history h, chooses
a best response to s−i(h), the collection of actions prescribed for the other players’
strategies after the history h. Thus in no Nash equilibrium of the infinitely repeated
game is player i’s discounted average payoff less than her minmax payoff.

We saw that in the Prisoner’s Dilemma, a converse of this result holds: for every
feasible payoff profile x in the game in which xi exceeds player i’s minmax payoff
for i = 1, 2, for a discount factor sufficiently close to 1 there is a Nash equilibrium
of the infinitely repeated game in which the discounted average payoff of player i
is close to xi for i = 1, 2.

An analogous result holds in general. The simplest case to consider is that in
which x is a payoff profile of the game. Let x be the payoff profile generated by the
action profile a; assume that each xi exceeds player i’s minmax payoff. For each
player i, let p−i be a collection of actions for the players other than i that holds
player i down to her minmax payoff. (That is, p−i is a solution of the minimization
problem (411.2).) Define a strategy for each player as follows. In each period, the
strategy of each player i chooses ai as long as every other player j chose aj in every
previous period, and otherwise chooses the action (p−j)i, where j is the player who
deviated in the first period in which exactly one player deviated. Precisely, let H∗

be the set of histories in which there is at least one period in which exactly one
player j chose an action different from aj. Refer to such a player as a lone deviant.
The strategy of player i is defined by si(∅) = ai (her action at the start of the game
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is ai) and

si(h) =
{

ai if h is not in H∗

(p−j)i if h ∈ H∗ and j is the first lone deviant in h.

The strategy profile s is a Nash equilibrium by the following argument. If
player i adheres to si then, given that every other player j adheres to sj, her payoff
is xi in every period. If player i deviates from si, while every other player j adheres
to sj, then she may gain in the period in which she deviates, but she loses in every
subsequent period, obtaining at most her minmax payoff, rather than xi. Thus for
a discount factor close enough to 1, si is a best response to s−i for every player i, so
that s is a Nash equilibrium.

(Note that the strategies I have defined do not react when more than one player
deviates in any one period. They do not need to, since the notion of Nash equilib-
rium requires only that no single player has an incentive to deviate.)

This argument can be extended to deal with the case in which x is a feasible pay-
off profile that is not the payoff profile of a single action profile in the component
game, along the same lines as the argument in the case of the Prisoner’s Dilemma in
the previous section. The result we obtain is known as a “folk theorem”, since the
basic form of the result was known long before it was written down precisely.1

PROPOSITION 413.1 (Nash folk theorem) Let G be a strategic game.

• For any discount factor δ with 0 < δ < 1, the discounted average payoff of every
player in any Nash equilibrium of the infinitely repeated game of G is at least her
minmax payoff.

• Let w be a feasible payoff profile of G for which each player’s payoff exceeds her min-
max payoff. Then for all ε > 0 there exists δ < 1 such that if the discount fac-
tor exceeds δ then the infinitely repeated game of G has a Nash equilibrium whose
discounted average payoff profile w′ satisfies|w − w′| < ε.

? EXERCISE 413.2 (Nash equilibrium payoffs in infinitely repeated games) For the
infinitely repeated games for which each of the following strategic games is the
component game, find the set of discounted average payoffs to Nash equilibria of
these infinitely repeated games when the discount factor is close to 1. (Parts b and
c of Exercise 412.1 are relevant to parts b and c.)

a. BoS (Example 16.2).

b. Cournot’s oligopoly game (Section 3.1) when there are two firms, Ci(qi) = qi
for all qi for each firm i, and P(Q) = max{0, α − βQ}.

c. Hotelling’s model of electoral competition (Section 3.3) when there are two
candidates, under the assumptions that the set of possible positions is the
interval [0, 1], the distribution of the citizens’ ideal positions has a unique
median, a tie results in each candidate’s winning with probability 1

2 , and each
candidate’s payoff is her probability of winning.

1If x = (x1, . . . , xn) is a vector then |x| is the norm of x, namely (x2
1 + · · · + x2

n)1/2. If x and y are
vectors and |x − y| is small then the components of x and y are close to each other.
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The strategies in the Nash equilibrium used to prove Proposition 413.1 are grim
trigger strategies: any transgression leads to interminable punishment. As in the
case of the Prisoner’s Dilemma, less draconian punishment is sufficient to deter de-
viations; grim trigger strategies are simply easy to work with. The punishment
embedded in a strategy has only to be severe enough that any deviation ultimately
results in a net loss for its perpetrator.

? EXERCISE 414.1 (Repeated Bertrand duopoly) Consider Bertrand’s model of duopoly
(Section 3.2) in the case that each firm’s unit cost is constant, equal to c. Let
Π(p) = (p − c)D(p) for any price p, and assume that Π is continuous and is
uniquely maximized at the price pm (the “monopoly price”).

a. Let s be the strategy for the infinitely repeated game that charges pm in the
first period and subsequently as long as the other firm continues to charge pm,
and punishes any deviation from pm by the other firm by choosing the price c
for k periods, then reverting to pm. Given any value of δ, for what values of k
is the strategy pair (s, s) a Nash equilibrium of the infinitely repeated game?

b. Let s be the strategy for the infinitely repeated game defined as follows:

• in the first period charge the price pm

• in every subsequent period charge the lowest of all the prices charged by
the other firm in all previous periods.

Is the strategy pair (s, s) a Nash equilibrium of the infinitely repeated game
for any discount factor less than 1?

15.2 Subgame perfect equilibria of general infinitely repeated games

The Prisoner’s Dilemma has a feature that makes it easy to construct a subgame per-
fect equilibrium of the infinitely repeated game to prove the result in the previous
section: it has a Nash equilibrium in which each player’s payoff is her minmax
payoff. In any game, each player’s payoff is at least her minmax payoff, but in
general there is no Nash equilibrium in which the payoffs are exactly the min-
max payoffs. It may be clear how to generalize the arguments above to define a
subgame perfect equilibrium of any infinitely repeated game in which both play-
ers’ discounted average payoffs exceed their payoffs in some Nash equilibrium of
the component game. However, it is not clear whether there are subgame perfect
equilibrium payoff pairs in which the players’ payoffs are between their minmax
payoffs and their payoffs in the worst Nash equilibrium of the component game.

Consider the game in Figure 415.1. Each player’s minmax payoff is 1: by choos-
ing C, each player can ensure that the other player’s payoff does not exceed 1, and
there is no action that ensures that the other player’s payoff is less than 1. In the
unique Nash equilibrium (A, A), on the other hand, each player’s payoff is 4. Pay-
offs between 1 and 4 cannot be achieved by strategies that react to deviations by
choosing A, since one player’s choosing A allows the other to obtain a payoff of 4
(by choosing A also), which exceeds her payoff if she does not deviate.
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A B C
A 4, 4 3, 0 1, 0
B 0, 3 2, 2 1, 0
C 0, 1 0, 1 0, 0

Figure 415.1 A strategic game with a unique Nash equilibrium in which each player’s payoff exceeds
her minmax payoff.

Nevertheless, such payoffs can be achieved in subgame perfect equilibria. The
punishments built into the players’ strategies in these equilibria need to be care-
fully designed. A deviation cannot lead to the indefinite play of (C, C), since each
player has an incentive to deviate from this action pair. In order to make it worth-
while for a player to punish her opponent for deviating, she must be made worse
off if she fails to punish than if she does so. We can achieve this effect by designing
strategies that punish deviations for a limited amount of time—enough to wipe
out the gain from a deviation—so long as both players act as they are supposed to
during the punishment, but are extended whenever one of the players misbehaves.

Specifically, consider the strategy s shown in Figure 415.2 for a player in the
game in Figure 415.1. This strategy starts a two-period punishment after a de-

B: B ✲
not

(B, B)

C1: C ✲
(C, C)

C2: C
❄

☛ ✟

(C, C)

✻
✡ ✠

not (C, C)

Figure 415.2 A subgame perfect equilibrium strategy for a player in the infinitely repeated game for
which the component game is that given in Figure 415.1.

viation from the outcome (B, B). If both players choose the action C during the
punishment phase then after two periods they both revert to choosing B. If, how-
ever, one of them does not choose C in the first period of the punishment then
the punishment starts again: the transition from the first punishment state C1 to
the second punishment state C2 does not occur unless both players choose C after
a deviation from (B, B). Further, if there is a deviation from C in the second pe-
riod of the punishment then there is a transition back to C1: the punishment starts
again. Thus built into the strategy is punishment for a player who does not carry
out a punishment.

I claim that if the discount factor is close enough to 1 then the strategy pair
in which both players use this strategy is a subgame perfect equilibrium of the
infinitely repeated game. The players’ behavior in period t is determined only by
the current state, so we need to consider only three cases. Suppose that player 2
adheres to the strategy, and in each case consider whether player 1 can increase
her payoff by deviating at the start of the subgame, holding the rest of her strategy
fixed.



416 Chapter 15. Repeated games: General Results

State B: If player 1 adheres to the strategy her payoffs in the next three periods
are (2, 2, 2), while if she deviates they are at most (3, 0, 0); in both cases her
payoff is subsequently 2. Thus adhering to the strategy is optimal if 2 + 2δ +
2δ2 ≥ 3, or δ ≥ 1

2 (
√

3 − 1).

State C1: If player 1 adheres to the strategy her payoffs in the next three periods
are (0, 0, 2), while if she deviates they are at most (1, 0, 0); in both cases, her
payoff is subsequently 2. Thus adhering to the strategy is optimal if 2δ2 ≥ 1,
or δ ≥ 1

2

√
2.

State C2: If player 1 adheres to the strategy her payoffs in the next three periods
are (0, 2, 2), while if she deviates they are at most (1, 0, 0); in both cases, her
payoff is subsequently 2. Thus adhering to the strategy is optimal if 2δ +
2δ2 ≥ 1, or certainly if 2δ2 ≥ 1, as required by the previous case.

We conclude, using the fact that a strategy profile is a subgame perfect equilibrium
if and only if it satisfies the one-deviation property, that if δ ≥ 1

2

√
2 then (s, s) is a

subgame perfect equilibrium.
The idea behind this example can be extended to any two-player game. Con-

sider an outcome a of such a game for which both players’ payoffs exceed their
minmax payoffs. I construct a subgame perfect equilibrium in which the outcome
is a in every period. Let pj be an action of player i that holds player j down to her
minmax payoff (a “punishment” for player j), and let p = (p2, p1) (each player
punishes the other). Let si be a strategy of player i of the form shown in Fig-
ure 416.1, for some value of k. This strategy starts off choosing ai, and continues to
choose ai so long as the outcome is a; otherwise, it chooses the action pj that holds
player j to her minmax payoff. Once punishment begins, it continues for k periods
as long as both players choose their punishment actions. If any player deviates
from her assigned punishment action then the punishments are re-started (from
each state P� there is a transition to state P1 if the outcome in the previous period
is not p).

N : ai
✲

not a
P1: pj ✲

p
P2: pj ✲

p
. . . Pk: pj

❄

☛ ✟
p

✻
✡ ✠

not p
✡ ✠

not p

Figure 416.1 A subgame perfect equilibrium strategy for player i in a two-player infinitely repeated
game. The outcome p is that in which each player’s action is one that holds the other player down to
her minmax payoff.

I claim that we can find δ and k(δ) such that if δ > δ then the strategy pair
(s1, s2) is a subgame perfect equilibrium of the infinitely repeated game. Suppose
that player j adheres to sj. If player i adheres to si in state N then her discounted
average payoff is ui(a). If she deviates, she obtains at most her maximal payoff
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in the game, say ui, in the period of her deviation, then ui(p) for k periods, and
subsequently ui(a) in the future. Thus her discounted average payoff from the
deviation is at most

(1 − δ)[ui + δui(p) + · · · + δkui(p)] + δk+1ui(a) =

(1 − δ)ui + δ(1 − δk)ui(p) + δk+1ui(a).

In order for her not to want to deviate it is thus sufficient that

ui(a) ≥ (1 − δ)ui + δ(1 − δk)ui(p) + δk+1ui(a). (417.1)

If player i adheres to si in any state P� then she obtains ui(p) for at most k
periods, then ui(a) in every subsequent period, which yields a discounted average
payoff of at least

(1 − δk)ui(p) + δkui(a)

(since ui(p) is at most player i’s minmax payoff and ui(a) exceeds this minmax
payoff). If she deviates from si, she obtains at most her minmax payoff in the
period of her deviation, then ui(p) for k periods, then ui(a) in the future, which
yields a discounted average payoff of at most

(1 − δ)mi + δ(1 − δk)ui(p) + δk+1ui(a),

where mi is her minmax payoff. Thus in order that she not want to deviate it is
sufficient that

(1 − δk)ui(p) + δkui(a) ≥ (1 − δ)mi + δ(1 − δk)ui(p) + δk+1ui(a)

or
(1 − δk)ui(p) + δkui(a) ≥ mi. (417.2)

Thus if for each value of δ sufficiently close to 1 we can find k(δ) such that
(δ, k(δ)) satisfies (417.1) and (417.2) then the strategy pair (s1, s2) is a subgame
perfect equilibrium. [Need to make this argument.]

This argument shows that for any outcome of the component game in which
each player’s payoff exceeds her minmax payoff there is a subgame perfect equi-
librium that yields this outcome path. More generally, for any two-player strategic
game and any feasible payoff pair (x1, x2) in which each player’s payoff exceeds
her minmax payoff, we can construct a Nash equilibrium strategy pair that gener-
ates an outcome path for which the discounted average payoff of each player i is
xi. A precise statement of this result follows.

PROPOSITION 417.3 (Subgame perfect folk theorem for two-player games) Let G
be a two-player strategic game.

• For any discount factor δ with 0 < δ < 1, the discounted average payoff of every
player in any subgame perfect equilibrium of the infinitely repeated game of G is at
least her minmax payoff.
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• Let w be a feasible payoff profile of G for which each player’s payoff exceeds her min-
max payoff. Then for all ε > 0 there exists δ < 1 such that if the discount factor
exceeds δ then the infinitely repeated game of G has a subgame perfect equilibrium
whose discounted average payoff profile w′ satisfies |w − w′| < ε.

The conclusion of this result does not hold for all multi-player games.

AXELROD’S EXPERIMENTS

In the late 1970s, Robert Axelrod (a political scientist at the University of Michigan)
invited some economists, psychologists, mathematicians, and sociologists famil-
iar with the repeated Prisoner’s Dilemma to submit strategies (written in computer
code) for a finitely repeated Prisoner’s Dilemma with payoffs of (3, 3) for (C, C),
(5, 0) for (D, C), (0, 5) for (C, D), and (1, 1) for (D, D). He received 14 entries,
which he pitted against each other, and against a strategy that randomly chooses
C and D each with probability 1

2 , in 200-fold repetitions of the game. Each strategy
was paired against each other five times. (Strategies could involve random choices,
so a pair of strategies could generate different outcomes when paired repeatedly.)
The strategy with the highest payoff was tit-for-tat (submitted by Anatol Rapoport,
then a member of the Psychology Department of the University of Toronto). (See
Axelrod (1980a, 1984).)

Axelrod, intrigued by the result, subsequently ran a second tournament. He
invited the participants in the first tournament to compete again, and also re-
cruited entrants by advertising in journals read by microcomputer users (a rela-
tively small crowd in the early 1980s); contestants were informed of the results of
the first round. Sixty-two strategies were submitted. The contest was run slightly
differently from the previous one: the length of each game was determined prob-
abilistically. Again tit-for-tat (again submitted by Anatol Rapoport) won. (See
Axelrod (1980b, 1984).

Using the strategies submitted in his second tournament, Axelrod simulated an
environment in which strategies that do well reproduce faster than other strategies.
He repeatedly matched the strategies against each other, increasing the number of
representatives of strategies that achieved high payoffs. A strategy that obtained a
high payoff initially might, under these conditions, obtain a low one later on if the
opponents against which it did well become much less numerous relative to the
others. Axelrod found that after a large number of “generations” tit-for-tat had the
most representatives in the population.

However, tit-for-tat’s supremacy has been subsequently shown to be fragile.
[Discussion to be added.]

Axelrod’s simulations are limited by the set of strategies that were submitted
to him. Other simulations have included all strategies of a particular type. One
type of strategy that has been examined is the class of “reactive strategies”, in
which a player’s action in any period depends only on the other player’s action in
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the previous period (Nowak and Sigmund (1992)). In evolutionary simulations in
which the initial population consists of randomly selected reactive strategies, the
strategy that chooses D in every period, regardless of the history, is found to come
to dominate. However, if tit-for-tat is included in the set of strategies initially in
the population, a strategy known as generous tit-for-tat, which differs from tit-for-
tat only in that after its opponent chooses D it chooses D with probability 1

3 (given
the payoffs for the Prisoner’s Dilemma used by Axelrod), XXXXXXXXXXXXX.

The results are different when the larger class of strategies in which the action
chosen in any period depends on both actions chosen in the previous period is
studied. In this case the strategy Pavlov (also known as win–stay, lose–shift; see
Exercise 398.1), which chooses C when the outcome in the previous period was
either (C, C) or (D, D) and otherwise chooses D, tends to come to dominate the
population.

In summary, simulations show that a variety of strategies may emerge as “win-
ners” in the repeated Prisoner’s Dilemma; Axelrod’s conclusions about the robust-
ness of tit-for-tat appear to have been premature.

Given these results, it is natural to ask if the theory of evolutionary games
(Chapter 13) can offer insights into the strategies that might be expected to survive.
Unfortunately, the existing results are negative: depending on how one defines an
evolutionarily stable strategy (ESS) in an extensive game, an infinitely repeated
Prisoner’s Dilemma either has no ESS, or the only ESS is the strategy that chooses
D in every period regardless of history, or every feasible pair of payoffs can be
sustained by some pair of ESSs (Kim (1994)).

RECIPROCAL ALTRUISM AMONG STICKLEBACKS

The idea that a population of animals repeatedly involved in a conflict with the
structure of a Prisoner’s Dilemma might evolve a mode of behavior involving recip-
rocal altruism (as in the strategy tit-for-tat), was suggested by Trivers (1971) and
led biologists to look for examples of such behavior.

One much-discussed example involves predator inspection by sticklebacks. Stick-
lebacks often approach a predator in pairs, the members of a pair taking turns to
be the first to move forward a few centimeters. (It is advantageous for them to
approach the predator closely, since they thereby obtain more information about
it.) The process can be modeled as a repeated Prisoner’s Dilemma, in which moving
forward is analogous to cooperating and holding back is like defecting. Milin-
ski (1987) reports an experiment in which he put a stickleback into one compart-
ment of a tank and a cichlid, which resembles a perch, a common predator of stick-
lebacks, in another compartment, separated by glass. In one condition he placed
a mirror along one side of the tank (a “cooperating mirror”), so that as the stickle-
back approached the predator is had the impression that there was another stickle-
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back mimicking its actions, as if following the strategy tit-for-tat. In a second con-
dition he placed the mirror at an angle (a “defecting mirror”), so that a stickleback
that approached the cichlid had the impression that there was another stickleback
that was increasingly holding back. He found that the stickleback approached the
cichlid much more closely with a cooperating mirror than with a defecting mirror.
With a defecting mirror, the apparent second stickleback held back when the real
one moved forward, and disappeared entirely when the real stickleback moved
into the front half of the tank—that is, it tended to defect. Milinski interpreted
the behavior of the real stickleback as consistent with its following the strategy tit-
for-tat. (The same behavior was subsequently observed in guppies approaching a
pumpkinseed sunfish (Dugatkin (1988, 1991)).)

Other explanations have been offered for the observed behavior of the fish. For
example, one stickleback might simply be attracted to another, since sticklebacks
shoal, or a stickleback might be bolder if in the company of another one, since its
chances of being captured by the predator are lower (Lazarus and Metcalfe (1990)).
Milinski (1990) argues that neither of these alternative theories fits the evidence; in
Milinski (1993) he suggests that further evidence indicates that the strategy that
his sticklebacks follow may not be tit-for-tat but rather Pavlov (see Exercise 398.1).

15.3 Finitely repeated games

To be written.

Notes

Early discussions of the notion of a repeated game and the ideas behind the Nash
folk theorem (Proposition 413.1) appear in Luce and Raiffa (1957, pp. 97–105 (es-
pecially p. 102) and Appendix 8), Shubik (1959b, Ch. 10 (especially p. 226)), and
Friedman (1971). Proposition 417.3 (a perfect folk theorem) is due to Fudenberg
and Maskin (1986); related results were established earlier (see Aumann and Shap-
ley (1994), Rubinstein (1994), and Rubinstein (1979)).
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17.1 Introduction

THIS CHAPTER presents informal definitions and discussions of the mathemati-
cal concepts used in the text. Much of the material should be familiar to you,

though a few concepts may be new.

17.2 Numbers

I take the concept of a number as basic; 3, −7.4, 1
2 , and

√
2 are all numbers. The

whole numbers . . . , −3, −2, −1, 0, 1, 2, 3, . . . are called integers. Let x be a number.
If x > 0 then x is positive; if x ≥ 0 then x is nonnegative; if x < 0 then x is
negative; and if x ≤ 0 then x is nonpositive. Note that 0 is both nonnegative and
nonpositive, but neither positive nor negative.

When working with sums of numbers, a shorthand that uses the symbol ∑ (a
large uppercase Greek sigma) is handy. Instead of writing x1 + x2 + x3 + x4, for
example, where x1, x2, x3, and x4 are numbers, we can write

4

∑
i=1

xi.

This expression is read as “the sum from i = 1 to i = 4 of xi”. The name we give
the indexing variable is arbitrary; we frequently use i or j, but can alternatively use
any other letter. If the number of items in the sum is a variable, say n, the notation
is even more useful. Instead of writing xk + · · · + xn, which leaves in doubt the

443
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variables indicated by the ellipsis, we can write

n

∑
i=k

xi,

which has a precise meaning: first set i = k and take xi; then increase i by one and
add the new xi; continue increasing i by one at a time and adding xi to the sum at
each step, until i = n.

17.3 Sets

A set is a collection of objects. If we can count the members of a set, and, when
we do so, we eventually exhaust the members of the set, then the set is finite.
We can specify a finite set by listing the names of its members within braces:
{Paris, Venice, Havana} is a set of (beautiful) cities, for example. Neither the order
in which the members of the set are listed nor the number of times each one ap-
pears has any significance: {Paris, Venice, Havana} is the same set as {Venice, Paris, Havana},
which is the same set as {Paris, Venice, Paris, Havana} (and has three members).

The symbol ∈ is used to denote set membership: for example, Havana ∈ {Paris,
Venice, Havana}. We read the statement “a ∈ A” as “a is in A”.

If every member of the set B is a member of the set A, we say that B is a sub-
set of A. For example, the set {Paris} consisting of the single city Paris is a sub-
set of the set {Paris, Venice, Havana}, since Paris is a member of this set. The set
{Paris, Havana} is also a subset of {Paris, Venice, Havana}, since both Paris and
Havana are members of the set. Further, the set {Paris, Venice, Havana} is a subset
of itself: saying that A is a subset of B does not rule out the possibility that A and
B are equal.

A partition of a set A is a collection {A1, . . . , Ak} of subsets of A such that every
member of A is in exactly one of the sets Aj. The set {Paris, Venice, Havana}, for
example, has five partitions: {{Paris}, {Venice}, {Havana}}, {{Paris, Venice}, {Havana}},
{{Paris, Havana}, {Venice}}, {{Paris}, {Venice, Havana}, and {{Paris, Venice, Havana}}.

Some sets are not finite. We can divide such sets into two groups. The mem-
bers of some sets can be counted, but if we count them then we go on counting
forever. The set of positive integers is a set of this type. The members of other sets
cannot be counted. For example, the set of all numbers between 0 and 1 cannot
be counted. (Of course, one can arbitrarily choose one number in this set, then
arbitrarily choose another number, and so on. But there is no systematic way of
counting all the numbers.) We say that both types of sets have infinitely many
members.

A set with infinitely many members obviously cannot be described by listing all
its members! One way to describe such a set is to state a property that characterizes
its members. For example, if a person’s set of actions is a set of numbers A then
we can describe the subset of her actions that exceed 1 as

{a ∈ A: a > 1}.
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We read this as “the set of a in A such that a exceeds 1”. If the set from which the
objects come—in this case, the set A—is the set of all numbers, I do not include it
explicitly. Thus

{p: 0 ≤ p ≤ 1}
is the set of all nonnegative numbers that are at most 1.

Sometimes we wish to calculate the sum of the numbers xi for every i in some
set S. If S is a set of consecutive numbers of the form {1, . . . , k} then we can write
this sum as

k

∑
i=1

xi,

as described at the end of the previous section. If S is not a set of consecutive
numbers then we can use a variant of the previous notation to denote the sum

∑
i∈S

xi,

which means “the sum of all values of xi for i in the set S”.
For example, if S is the set of cities {Paris, Venice, Havana} and the population

of city i is xi then the total population of the cities in S is

∑
i∈S

xi.

17.4 Functions

A function is a rule defining a relationship between two variables. We usually
specify a function by giving the formula that defines it. For example, the function,
say f , that associates with every number twice that number is defined by f (x) = 2x
for each number x; the function, say g, that associates with every number its square
is defined by g(x) = x2.

If the variables that a function relates are both numbers then the function can
be represented in a graph, like the one in Figure 446.1. We usually put the inde-
pendent variable (denoted x in the examples above) on the horizontal axis, and
the value of the function, f (x), on the vertical axis. To read the graph, find a value
of x on the horizontal axis, go vertically up to the graph, then horizontally to the
vertical axis; the number on this axis is the value f (x) of the function at x.

Two classes of functions figure prominently in the examples in this book. A
function f defining a relationship between two numbers is affine if it takes the
form f (x) = ax + b, where a and b are constants. For example, the functions −3x +
1 and 4x are both affine. (Sometimes such functions are called “linear”, rather
than “affine”; I follow the convention that a linear function is an affine function for
which b = 0.) The graph of a general affine function ax + b is a straight line with
slope a that goes through the points (0, b) and (−b/a, 0) (since a · 0 + b = b and
a · (−b/a) + b = 0). In particular, if a > 0 then the slope is positive and if a < 0
then the slope is negative. An example is given in Figure 446.2.
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−3 −2 −1 0 1 2 3

2

4

6

8

x →

f (x)

f (2) = 4

Figure 446.1 The graph of the function f defined by f (x) = x2, for −3 ≤ x ≤ 3.

b

−b/a0

ax + b

x →

Figure 446.2 The graph of the affine function ax + b (with a > 0).

A function f defining a relationship between two numbers is quadratic if it
takes the form f (x) = ax2 + bx + c, where a, b, and c are constants. If a > 0 then the
graph of a quadratic function is U-shaped, as in the left-hand panel of Figure 447.1;
if a < 0 then the shape of the graph is an inverted U, as in the right-hand panel of
Figure 447.1.

In both cases the graph is symmetric about a vertical line through the extremum
of the function (the minimum when the graph of the function is U-shaped and the
maximum when it is an inverted U). Thus if we know the points x0 and x1 at
which the graph of the function intersects some horizontal line (e.g. the horizontal
axis) then we know that its extremum occurs at the midpoint of x0 and x1, namely
1
2 (x0 + x1).

We can write the quadratic function ax2 + bx + c as x(ax + b) + c. Doing so
allows us to see that the value of the function is c when x = 0 and when x = −b/a.
That is, the function crosses the horizontal line of height c when x = 0 and when
x = −b/a, so that its maximum (if a < 0) or minimum (if a > 0) occurs at − 1

2 b/a
(the midpoint of 0 and −b/a).

? EXERCISE 446.1 (Maximizer of quadratic function) Find the maximizer of the func-
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x0 x1
1
2 (x0 + x1)

f (x)

x0 x11
2 (x0 + x1)

f (x)

Figure 447.1 The graphs of two quadratic functions. In both cases the function takes the form
ax2 + bx + c; in the left panel a > 0, while in the right panel a < 0.

tion x(α − x), where α is a constant.

The graphs of the functions in Figures 446.1 and 447.1 do not have any jumps
in them: for every point x, by choosing x′ close enough to x we can ensure that
the values f (x) and f (x′) of the function at x and x′ are as close as we wish. A
function that has this property is continuous. The graph of a continuous function
may be very steep, but does not have any holes in it. For example, the function
whose graph is shown in the left panel of Figure 447.2 is continuous, while the
function whose graph is shown in the right panel is not continuous. In graphs of
discontinuous functions I use the convention that a small disk indicates a point
that is included and a small circle indicates a point that is excluded.

x →

f (x)

f (x0)

x0 x →

f (x)

Figure 447.2 The function in the left panel is continuous, while the function in the right panel is not.
The small disk indicates a point that is included in the graph, while the small circle indicates a point
that is excluded.

For all the functions I have described so far, for each value of x the value f (x)
of the function is a single number. In this book we sometimes need to work with
functions whose values are sets rather than points. Suppose, for example, that we
need a function that assigns to each starting point x in some city the best route
from x to city hall. For some values of x there may be a single best route, but for
other values of x there are quite possibly several routes that are equally good. At
these latter points, the value of our function would be the set of all the optimal
routes. Since we should like our function to assign the same “type” of object to
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every value of x, we would take all the values to be sets; if the single route A is
optimal from the starting point x then we take the value of the function to be the
set {A} consisting of the single route A.

We can specify a set-valued function, like a point-valued function, by giving its
graph. I indicate values of the function that are sets of points by shading in gray; I
indicate boundaries that are included by drawing lines along them. For example,
for the function in Figure 448.1, f (x1) = {y : y2 < y ≤ y3} and f (x2) = {y: y =
y0 or y1 < y ≤ y4}.

f (x)

x0 x1 x2

y0

y1

y2

y3

y4

x →

Figure 448.1 The graph of a set-valued function. For x0 < x ≤ x2 the set f (x) consists of more than
one point. We have f (x1) = {y : y2 < y ≤ y3} and f (x2) = {y: y = y0 or y1 < y ≤ y4}.

17.5 Profiles

Frequently in this book we wish to associate an object with each member of a set
of players. For example, we often need to refer to the action chosen by each player.
We can describe the correspondence between players and actions by specifying
the function that associates each player with the action she takes. For example, if
the players are Ernesto, whose action is R, and Hilda, whose action is S, then the
correspondence between players and actions is described by the function a defined
by a(Ernesto) = R and a(Hilda) = S. We can alternatively present the function a
by writing (aErnesto, aHilda) = (R, S). We call such a function a a profile. The order
in which we write the elements is irrelevant: we can alternatively write the profile
above as (aHilda, aErnesto) = (S, R).

In most of the book I sacrifice color for convenience and name the players 1, 2,
3, and so on. Doing so allows me to write a profile of actions as a list like (R, S),
without saying explicitly which action belongs to which player: the convention is
that the first action is that of player 1, the second is that of player 2, and so on.
When the number of players is arbitrary, equal to say n, I follow convention and
write an action profile as (a1, . . . , an), where the ellipsis stands for the actions of
players 2 through n − 1.

I frequently need to refer to the action profile that differs from (a1, . . . , an) only
in that the action of player i is bi (say) rather than ai. I denote this variant of
(a1, . . . , an) by (bi , a−i). The −i subscript on a stands for “except i”: every player
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except i chooses her component of a. If (a1, a2, a3) = (T, L, M) and b2 = R, for
example, then (b2, a−2) = (T, R, M).

17.6 Sequences

A sequence is an ordered list. In this book the sequences consist of events that
unfold over time; the first element of a sequence is an event that occurs before the
second element of the sequence, and so on. A sequence that continues indefinitely
is infinite; one that ends eventually is finite.

In Chapters 14 and 15 the formula for the sum of a sequence of numbers of the
form a, ar, ar2, ar3, . . . is useful. For a finite sequence we have

a + ar + ar2 + · · · + arT =
a(1 − rT+1)

1 − r
(449.1)

if r �= 1 and r �= −1. (Note that the exponent of r in the numerator of the formula
is the number of terms in the sequence.) For an infinite sequence we have

a + ar + ar2 + · · · =
a

1 − r
(449.2)

if −1 < r < 1.

? EXERCISE 449.3 (Sums of sequences) Find the sums 1 + δ2 + δ4 + · · · and 1 + 2δ +
δ2 + 2δ3 + · · ·, where δ is a constant with 0 < δ < 1. (Split the second sum into two
parts.)

17.7 Probability

17.7.1 Basic concepts

We may sometimes conveniently model events as “random”. Rather than model-
ing the causes of such an event, we assume that if the event occurs many times
then sometimes it takes one value, sometimes another value, in no regular pattern.
We refer to the proportion of times it takes any given value as the probability of
its taking that value.

A simple example is the outcome of a coin toss. We could model this outcome
as depending on the initial position of the coin, the speed and direction in which it
is tossed, the nature of the air currents, and so on. But it is simpler, and for many
purposes satisfactory, to model the outcome as being a head with probability 1

2 and
a tail with probability 1

2 . Given the sensitivity of the outcome to tiny changes in
the initial position of the coin and the speed and direction in which it is tossed, and
the inability of a person to precisely control these factors, the probabilistic theory
is likely to work very well over many tosses: if the coin is tossed a large number n
of times, then the number of heads is likely to be close to n/2.

We refer to an assignment of probabilities to events as a probability distri-
bution. If, for example, there are three possible events, A, B, and C, then one
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probability distribution assigns probability 1
3 to A, probability 1

2 to B, and prob-
ability 1

6 to C. In any probability distribution the sum of the probabilities of all
possible events is 1 (on any given occasion, one of the events must occur), and each
probability is nonnegative and at most 1. Saying that an event occurs with posi-
tive probability is equivalent to saying that there is some chance that it may occur;
saying that an event occurs with probability zero is equivalent to saying that it will
never occur. Similarly, saying that an event occurs with probability less than one is
equivalent to saying that there is some chance that it may not occur; saying that an
event occurs with probability one is equivalent to saying that it is certain to occur.
We sometimes denote the probability of an event E by Pr(E).

If the events E and F cannot both occur, then the probability that either E or F
occurs is the sum Pr(E) + Pr(F). For example, suppose we model the outcome of
the toss of a die as random, with the probability of each side equal to 1

6 . Then the
probability that the side is either 3 or 4 is Pr(3) + Pr(4) = 1

6 + 1
6 = 1

3 .

17.7.2 Independence

Two events E and F are independent if the probability Pr(E and F) that they both
occur is the product Pr(E) Pr(F) of the probabilities that each occurs. Events may
sensibly be modeled as independent if the occurrence of one has no bearing on
the occurrence of the other. For example, the outcome of an election may sensibly
be modeled as independent of the outcome of a coin toss, but not independent
of the weather on the polling day (which may affect the candidates’ supporters
differently). In a strategic game, we model the players’ choices of actions as in-
dependent: the probability that player 1 chooses action a1 and player 2 chooses
action a2 is assumed to be the product of the probability that player 1 chooses a1
and the probability that player 2 chooses a2.

17.7.3 Lotteries and expected values

The material in this section is used only in Chapter 4 (Mixed strategy equilibrium), Sec-
tion 7.6 (Extensive games with perfect information, simultaneous moves, and chance moves),
Chapter 9 (Bayesian Games), Chapter 10 (Extensive games with imperfect information),
Chapter 11 (Strictly competitive games and maxminimization), and Chapter 12 (Rational-
izability).

Consider a decision-maker who faces a situation in which there are probabilistic
elements. Each action that she chooses induces a probability distribution over out-
comes. If you make an offer for an item in a classified advertisement, for example,
then given the behavior of other potential buyers, your offer may be accepted with
probability 1

3 and rejected with probability 2
3 . We refer to a probability distribution

over outcomes as a lottery over outcomes.
If the outcomes of a lottery are numerical (for example, amounts of money), we

may be interested in their average value—the value we should expect to get if we
found the total of the values on a large number n of trials and divided by n. For the
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lottery that yields the amount xi with probability pi, for i = 1, . . . , n, this average
value is

p1x1 + · · · + pnxn

or, more compactly, ∑n
i=1 pnxn. It is called the expected value of the lottery. A

lottery that yields $12 with probability 1
3 , $4 with probability 1

2 , and $6 with prob-
ability 1

6 , for example, has an expected value of 1
3 · 12 + 1

2 · 4 + 1
6 · 6 = 7. On no

single occasion does the lottery yield $7, but over a large number of occasions the
average amount that it yields is likely to be close to $7 (the more likely, the larger
the number of occasions).

17.7.4 Cumulative probability distributions

The material in this section is used only in Section 4.11 (Mixed strategy equilibrium in
games in which each player has a continuum of actions) and Chapter 9 (Bayesian Games).

If the events in our model are associated with numbers, we can describe the
probabilities assigned to them by giving the cumulative probability distribution,
which assigns to each number x the total of the probabilities of all numbers at most
equal to x. The cumulative probability distribution of the number of dots on the
exposed side of a die, for example, is the function F for which F(1) = 1

6 , F(2) = 1
3 ,

F(3) = 1
2 , and so on. Given a cumulative probability distribution we can recover

the probabilities of the events by calculating the differences between values of F:
the probability of x is F(x) − F(x′), where x′ is the next smaller event.

When the number of events is finite, we can represent the assignment of proba-
bilities to events either by a probability distribution or by a cumulative probability
distribution. When the number of events is infinite, we can usefully represent the
probabilities only by a cumulative probability distribution, because the probability
of any single event is typically zero. If the set of events is the set of numbers from
a to a then a cumulative probability distribution is a nondecreasing function, say
F, for which F(x) = 0 if x < a (the probability of a number less than a is 0) and
F(a) = 1 (the probability of a number at most equal to a is 1). The number F(x) is
the probability of an event at most equal to x.

For example, if a = 0 and a = 1 then the function F(x) = x is a cumulative
probability distribution. This distribution represents uniform randomization over
the interval (sets of the same size have the same probability). Another cumulative
probability distribution is given by the function F(x) = x2. In this distribution the
probabilities of sets of numbers close to 0 are lower than the probabilities of sets of
numbers close to 1.

17.7.5 Conditional probability and Bayes’ rule

The material in this section is used only in Section 9.8 (Juries) and Chapter 10 (Extensive
Games with Imperfect Information).
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We sometimes use the notion of probability to refer to the character of a person’s
belief, in a situation in which there is no possibility of an event’s being repeated.
For example, a jury in a civil case is asked to determine whether the probability of
a person’s being guilty is greater than or less than one half; you may form a belief
about the probability of your carrying a particular gene or of your getting into
graduate school. In some cases these beliefs may be tightly linked to numerical
evidence. If, for example, the only information you have about the prevalence of a
particular gene is that it is carried by 10% of the population, then it is reasonable for
you to believe that your probability of carrying the gene is 0.1. In other cases beliefs
may be at most loosely linked to numerical evidence. The evidence presented to a
jury, for example, is likely to be qualitative, and open to alternative interpretations.

Whatever the basis for probabilistic beliefs, however, the theory of probability
gives a specific rule for how they should be modified in the light of new prob-
abilistic evidence. In this context in which a belief is changed by evidence, the
initial belief is called the prior belief and the belief modified by the evidence is
called the posterior belief.

Suppose that 10% of the population carries the gene X, so that in the absence
of any other information your prior belief is that you carry the gene with probabil-
ity 0.1. An imperfect test for the presence of X is available. The test is positive in
90% of subjects who carry X and in 20% of subjects who do not carry X. The test
on you is positive. What should be your posterior belief about your carrying X?
The probabilities are illustrated in Figure 452.1.

Don’t carry X Carry X

+

−
+

−

Figure 452.1 The outer box represents the set of people. People to the right of the vertical line carry
gene X, while people to the left of this line do not. People in the shaded areas test positive for the gene.

Consider a random group of 100 people from the population. Of these, on
average 10 carry X and 90 do not. If all these 100 people were tested, then, on
average, 9 of the 10 (90%) who carry X and 18 of the 90 (20%) who do not carry X
would test positive. These sets are represented by the shaded areas in Figure 452.1.
Of all the people who test positive, what fraction of them carry the gene? That is,
what fraction of the total shaded area in Figure 452.1 is the shaded area to the right
of the vertical line? Of the 100 people, a total of 9 + 18 = 27 test positive, and
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one-third of these (9/27) carry the gene. Thus after testing positive, your posterior
belief that you carry the gene is 1

3 : the positive test raises the probability you assign
to your carrying X from 1

10 to 1
3 .

To generalize the analysis in this example, we introduce the concept of con-
ditional probability. Let E and F be two events that may be related; assume that
Pr(F) > 0. Suppose that F is true. Define the probability Pr(E | F) of E condi-
tional on F by

Pr(E | F) =
Pr(E and F)

Pr(F)
. (453.1)

This number makes sense as the probability that E is true given that F is true. One
way to see that it makes sense is to consider Figure 452.1 again. Let E be the event
that you carry X and let F be the event that you test positive. If you test posi-
tive then we know you lie in the shaded area. Given you lie in this area, what is
the probability Pr(E | F) that you lie to the right of the vertical line? This prob-
ability is the ratio of the shaded area to the right of the vertical line—the proba-
bility Pr(E and F) that you carry the gene and test positive—to the total shaded
area—the probability Pr(F) that you test positive.

If the events E and F are independent then

Pr(E | F) = Pr(E) and Pr(F) > 0

or, alternatively,
Pr(F | E) = Pr(F) and Pr(E) > 0.

These conditions express directly the idea that the occurrence of one event has no
bearing on the occurrence of the other event.

In using the expression for conditional probability to find the posterior belief
in this case, we needed to calculate Pr(E and F) and Pr(F), which were not given
directly as data in the problem. The data we were given were the prior belief Pr(E),
the probability Pr(F | E) of a person who carries the gene testing positive, and the
probability Pr(F | not E) of a person who does not carry the gene testing positive.

Bayes’ rule expresses the conditional probability Pr(E | F) directly in terms of
Pr(E), Pr(F | E), and Pr(F | not E):

Pr(E | F) =
Pr(E) Pr(F | E)

Pr(E) Pr(F | E) + Pr(not E) Pr(F | not E)
. (453.2)

(The probability Pr(not E) is of course equal to 1 − Pr(E); recall that I have as-
sumed that Pr(F) > 0.) This formula follows from the definition of conditional
probability (453.1) and the properties of probabilities. First, interchanging E and F
in (453.1) we deduce Pr(E) Pr(F | E) = Pr(E and F). Thus the numerator of (453.2)
is equal to Pr(E and F). Second, again using (453.1) we see that the denominator of
(453.2) is equal to Pr(E and F) + Pr((not E) and F). Now, either the event E or the
event not E occurs, but not both. Thus Pr(E and F) + Pr((not E) and F) = Pr(F).
(The probability that either “it rains and you carry an umbrella” or “it rains and
you do not carry an umbrella” is equal to the probability that “it rains”!)
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? EXERCISE 454.1 (Bayes’ rule) Consider a generalization of the example of testing
positive for a gene in which the fraction p of the population carry the gene. Ver-
ify that as p decreases, the posterior probability that you carry X given that you
test positive decreases. What value does this posterior probability take when p is
0.001? What value does the posterior probability take when p is 0.001 and the test
is positive for 99% of those who carry X and is negative for 99% of those who do
not carry X? (Are you surprised?)

In the cases I have described so far, the event about which we form a belief takes
two possible values (E, or not E). In a more general setting, this event may take
many values. For example, we may form a belief about the quality of an item—a
variable that may take many values—on its price. In general, let F be an event and
let E1, . . . , En be a collection of events, exactly one of which must occur. (In the
example above, F is the event that you test positive, n = 2, E1 is the event you
carry the gene, and E2 is the event you do not carry the gene.) Then the probability
of Ek conditional on F is

Pr(Ek | F) =
Pr(F | Ek) Pr(Ek)

∑n
j=1 Pr(F | Ej) Pr(Ej)

. (454.2)

This general formula is known as Bayes’ rule, after Thomas Bayes (1702–61). In
the context in which we use this rule in a Bayesian game to find the probability of
a state given the observed signal, the events E1, . . . , En are the states and the event
F is a signal. Thus every probability Pr(F | Ek) is either one or zero, depending on
whether the state Ek generates the signal F or not.

17.8 Proofs

This book focuses on concepts, but contains precise arguments, and, in some cases,
proofs of results. The results are given three names: Lemma, Proposition, and
Corollary. These names have no formal significance—they do not have any impli-
cations for the type of logic used—but are intended to convey the role of the result
in the analysis. Lemmas are results whose importance lies mainly in their being
steps on the way to proving further results. Propositions are the main results.
Corollaries are more or less direct implications of the main results.

A result consists of a series of statements of the form “if A is true then B is
true”. Frequently the series contains only one such statement, which may not be
explicitly rendered as “if A then B”. For example, “all prime numbers are odd” is a
result; it can be transformed into the “if . . . then” form: “if a number is prime then
it is odd”. A result that makes the two claims “if A is true then B is true” and “if B
is true then A is true” is sometimes stated compactly as “A is true if and only if B
is true”.

A proof of the result “if A then B” is a series of arguments that lead from A
to B, each of which follows from a known fact (including an earlier member of
the series). Except for the proofs of very simple results, most proofs are not, and
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should not sensibly be, “complete”. To spell out how each step follows from the
basic principles of mathematics would make a proof extremely long and very dif-
ficult to read. Some facts must be taken for granted; judging which to put in and
which to leave out is an art. A good proof convinces readers that the result is true
and gives them some understanding of why it is true (the features of A that are
significant, and those that are not significant).
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1 Introduction

5.3 Altruistic preferences

Person 1 is indifferent between (1, 4) and (3, 0), and prefers both of these to (2, 1).
Any function that assigns the same number to (1, 4) and to (3, 0), and a lower
number to (2, 1) is a payoff function that represents her preferences.

6.1 Alternative representations of preferences

The function v represents the same preferences as does u (since u(a) < u(b) <

u(c) and v(a) < v(b) < v(c)), but the function w does not represent the same
preferences, since w(a) = w(b) while u(a) < u(b).

1
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2 Nash Equilibrium

14.1 Working on a joint project

The game in Figure 3.1 models this situation (as does any other game with the
same players and actions in which the ordering of the payoffs is the same as the
ordering in Figure 3.1).

Work hard Goof off
Work hard 3, 3 0, 2

Goof off 2, 0 1, 1

Figure 3.1 Working on a joint project (alternative version).

16.1 Hermaphroditic fish

A strategic game that models the situation is shown in Figure 3.2.

Either role Preferred role
Either role 1

2 (H + L), 1
2 (H + L) L, H

Preferred role H, L S, S

Figure 3.2 A model of encounters between pairs of hermaphroditic fish whose preferred roles differ.

In order for this game to differ from the Prisoner’s Dilemma only in the names of
the players’ actions, there must be a way to associate each action with an action in
the Prisoner’s Dilemma so that each player’s preferences over the four outcomes are
the same as they are in the Prisoner’s Dilemma. Thus we need L < S < 1

2 (H + L).
That is, the probability of a fish’s encountering a potential partner must be large
enough that S > L, but small enough that S < 1

2 (H + L).

17.2 Games without conflict

Any two-player game in which each player has two actions and the players have
the same preferences may be represented by a table of the form given in Figure 4.1,
where a, b, c, and d are any numbers.

3
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L R
T a, a b, b
B c, c d, d

Figure 4.1 A strategic game in which conflict is absent.

25.1 Altruistic players in the Prisoner’s Dilemma

a. A game that model the situation is given in Figure 4.2.

Quiet Fink
Quiet 4, 4 3, 3
Fink 3, 3 2, 2

Figure 4.2 The payoffs in a variant of the Prisoner’s Dilemma in which the players are altruistic.

This game is not the Prisoner’s Dilemma because one (in fact both) of the play-
ers’ preferences are not the same as they are in the Prisoner’s Dilemma. Specif-
ically, player 1 prefers (Quiet, Quiet) to (Fink, Quiet), while in the Prisoner’s
Dilemma she prefers (Fink, Quiet) to (Quiet, Quiet). (Alternatively, you may
note that player 1 prefers (Quiet, Fink) to (Fink, Fink), while in the Prisoner’s
Dilemma she prefers (Fink, Fink) to (Quiet, Fink), or that player 2’s preferences
are similarly not the same as they are in the Prisoner’s Dilemma.)

b. For an arbitrary value of α the payoffs are given in Figure 4.3. In order that
the game be the Prisoner’s Dilemma we need 3 > 2(1 + α) (each player prefers
Fink to Quiet when the other player chooses Quiet), 1 + α > 3α (each player
prefers Fink to Quiet when the other player choose Fink), and 2(1 + α) >

1 + α (each player prefers (Quiet, Quiet) to (Fink, Fink)). The last condition
is satisfied for all nonnegative values of α. The first two conditions are both
equivalent to α < 1

2 . Thus the game is the Prisoner’s Dilemma if and only if
α < 1

2 .

If α = 1
2 then all four outcomes (Quiet, Quiet), (Quiet, Fink), (Fink, Quiet), and

(Fink, Fink) are Nash equilibria; if α > 1
2 then only (Quiet, Quiet) is a Nash

equilibrium.

Quiet Fink
Quiet 2(1 + α), 2(1 + α) 3α, 3
Fink 3, 3α 1 + α, 1 + α

Figure 4.3 The payoffs in a variant of the Prisoner’s Dilemma in which the players are altruistic.
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25.2 Selfish and altruistic social behavior

a. A game that model the situation is shown in Figure 5.1.

Sit Stand
Sit 1, 1 2, 0

Stand 0, 2 0, 0

Figure 5.1 Behavior on a bus when the players’ preferences are selfish (Exercise 25.2).

This game is not the Prisoner’s Dilemma. If we identify Sit with Quiet and
Stand with Fink then, for example, (Stand, Sit) is worse for player 1 than
(Sit, Sit), rather than better. If we identify Sit with Fink and Stand with Quiet
then, for example, (Stand, Stand) is worse for player 1 than (Sit, Sit), rather
than better. The game has a unique Nash equilibrium, (Sit, Sit).

b. A game that models the situation is shown in Figure 5.2, where α is some
positive number.

Sit Stand
Sit 1, 1 0, 2

Stand 2, 0 α, α

Figure 5.2 Behavior on a bus when the players’ preferences are selfish (Exercise 25.2).

If α < 1 then this game is the Prisoner’s Dilemma. It has a unique Nash
equilibrium, (Stand, Stand) (regardless of the value of α).

c. Both people are more comfortable in the equilibrium that results when they
act according to their selfish preferences.

28.1 Variants of the Stag Hunt

a. The equilibria of the game are the same as those of the original game: (Stag,
. . . , Stag) and (Hare, . . . , Hare). Any player that deviates from the first pro-
file obtains a hare rather than the fraction 1/n of the stag. Any player that
deviates from the second profile obtains nothing, rather than a hare.

An action profile in which at least 1 and at most m − 1 hunters pursue the
stag is not a Nash equilibrium, since any one of them is better off catching a
hare. An action profile in which at least m and at most n − 1 hunters pursue
the stag is not a Nash equilibrium, since any one of the remaining hunters is
better off joining the pursuit of the stag (thereby earning herself the right to
a share of the stag).
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b. The set of Nash equilibria consists of the action profile (Hare, . . . , Hare) in
which all hunters catch hares, and any action profile in which exactly k hunters
pursue the stag and the remaining hunters catch hares. Any player that de-
viates from the first profile obtains nothing, rather than a hare. A player who
switches from the pursuit of the stag to catching a hare in the second type
of profile is worse off, since she obtains a hare rather than the fraction 1/k of
the stag; a player who switches from catching a hare to pursuing the stag is
also worse off since she obtains the fraction 1/(k + 1) of the stag rather than
a hare, and 1/(k + 1) < 1/k.

No other action profile is a Nash equilibrium, by the following argument.

• If some hunters, but fewer than m, pursue the stag then each of them
obtains nothing, and is better off catching a hare.

• If at least m and fewer than k hunters pursue the stag then each one that
pursues a hare is better off switching to the pursuit of the stag.

• If more than k hunters pursue the stag then the fraction of the stag
that each of them obtains is less than 1/k, so each of them is better off
catching a hare.

28.2 Extension of the Stag Hunt

Every profile (e, . . . , e), where e is an integer from 0 to K, is a Nash equilibrium. In
the equilibrium (e, . . . , e), each player’s payoff is e. The profile (e, . . . , e) is a Nash
equilibrium since if player i chooses ei < e then her payoff is 2ei − ei = ei < e, and
if she chooses ei > e then her payoff is 2e − ei < e.

Consider an action profile (e1, . . . , en) in which not all effort levels are the same.
Suppose that ei is the minimum. Consider some player j whose effort level exceeds
ei. Her payoff is 2ei − ej < ei, while if she deviates to the effort level ei her payoff
is 2ei − ei = ei. Thus she can increase her payoff by deviating, so that (e1, . . . , en) is
not a Nash equilibrium.

(This game is studied experimentally by van Huyck, Battalio, and Beil (1990).
See also Ochs (1995, 209–233).)

29.1 Hawk–Dove

A strategic game that models the situation is shown in Figure 6.1. The game has
two Nash equilibria, (Aggressive, Passive) and (Passive, Aggressive).

Aggressive Passive
Aggressive 0, 0 3, 1

Passive 1, 3 2, 2

Figure 6.1 Hawk–Dove.
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31.1 Contributing to a public good

The following game models the situation.

Players The n people.

Actions Each person’s set of actions is {Contribute, Don’t contribute}.

Preferences Each person’s preferences are those given in the problem.

An action profile in which more than k people contribute is not a Nash equi-
librium: any contributor can induce an outcome she prefers by deviating to not
contributing.

An action profile in which k people contribute is a Nash equilibrium: if any
contributor stops contributing then the good is not provided; if any noncontributor
switches to contributing then she is worse off.

An action profile in which fewer than k people contribute is a Nash equilibrium
only if no one contributes: if someone contributes, she can increase her payoff by
switching to noncontribution.

In summary, the set of Nash equilibria is the set of action profiles in which k
people contribute together with the action profile in which no one contributes.

32.1 Guessing two-thirds of the average

If all three players announce the same integer k ≥ 2 then any one of them can devi-
ate to k − 1 and obtain $1 (since her number is now closer to 2

3 of the average than
the other two) rather than $ 1

3 . Thus no such action profile is a Nash equilibrium.
If all three players announce 1, then no player can deviate and increase her payoff;
thus (1, 1, 1) is a Nash equilibrium.

Now consider an action profile in which not all three integers are the same;
denote the highest by k∗.

• Suppose only one player names k∗; denote the other integers named by k1
and k2, with k1 ≥ k2. The average of the three integers is 1

3 (k∗ + k1 + k2),
so that 2

3 of the average is 2
9 (k∗ + k1 + k2). If k1 ≥ 2

9 (k∗ + k1 + k2) then k∗

is further from 2
3 of the average than is k1, and hence does not win. If k1 <

2
9 (k∗ + k1 + k2) then the difference between k∗ and 2

3 of the average is k∗ −
2
9 (k∗ + k1 + k2) = 7

9 k∗ − 2
9 k1 − 2

9 k2, while the difference between k1 and 2
3

of the average is 2
9 (k∗ + k1 + k2) − k1 = 2

9 k∗ − 7
9 k1 + 2

9 k2. The difference
between the former and the latter is 5

9 k∗ + 5
9 k1 − 4

9 k2 > 0, so k1 is closer to 2
3

of the average than is k∗. Hence the player who names k∗ does not win, and
is better off naming k2, in which case she obtains a share of the prize. Thus
no such action profile is a Nash equilibrium.

• Suppose two players name k∗, and the third player names k < k∗. The
average of the three integers is then 1

3 (2k∗ + k), so that 2
3 of the average is
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4
9 k∗ + 2

9 k. We have 4
9 k∗ + 2

9 k < 1
2 (k∗ + k) (since 4

9 < 1
2 and 2

9 < 1
2 ), so that the

player who names k is the sole winner. Thus either of the other players can
switch to naming k and obtain a share of the prize rather obtaining nothing.
Thus no such action profile is a Nash equilibrium.

We conclude that there is only one Nash equilibrium of this game, in which all
three players announce the number 1.

(This game is studied experimentally by Nagel (1995).)

32.2 Voter participation

a. For k = m = 1 the game is shown in Figure 8.1. It is the same, except for the
names of the actions, as the Prisoner’s Dilemma.

A supporter

B supporter
abstain vote

abstain 1, 1 0, 2 − c
vote 2 − c, 0 1 − c, 1 − c

Figure 8.1 The game of voter participation in Exercise 32.2.

b. For k = m, denote the number of citizens voting for A by nA and the number
voting for B by nB. The cases in which nA ≤ nB are symmetric with those in
which nA ≥ nB; I restrict attention to the latter.

nA = nB = k (all citizens vote): A citizen who switches from voting to ab-
staining causes the candidate she supports to lose rather than tie, re-
ducing her payoff from 1 − c to 0. Since c < 1, this situation is a Nash
equilibrium.

nA = nB < k (not all citizens vote; the candidates tie): A citizen who switches
from abstaining to voting causes the candidate she supports to win
rather than tie, increasing her payoff from 1 to 2 − c. Thus this situation
is not a Nash equilibrium.

nA = nB + 1 or nB = nA + 1 (a candidate wins by one vote): A supporter of
the losing candidate who switches from abstaining to voting causes the
candidate she supports to tie rather than lose, increasing her payoff
from 0 to 1 − c. Thus this situation is not a Nash equilibrium.

nA ≥ nB + 2 or nB ≥ nA + 2 (a candidate wins by two or more votes): A sup-
porter of the winning candidate who switches from voting to abstaining
does not affect the outcome, so such a situation is not a Nash equilib-
rium.

We conclude that the game has a unique Nash equilibrium, in which all
citizens vote.
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c. If k < m then a similar logic shows that there is no Nash equilibrium.

nA = nB ≤ k: A supporter of B who switches from abstaining to voting causes
B to win rather than tie, increasing her payoff from 1 to 2 − c. Thus this
situation is not a Nash equilibrium.

nA = nB + 1 or nB = nA + 1: A supporter of the losing candidate who switches
from abstaining to voting causes the candidates to tie, increasing her
payoff from 0 to 1 − c. Thus this situation is not a Nash equilibrium.

nA ≥ nB + 2 or nB ≥ nA + 2: A supporter of the winning candidate who switches
from voting to abstaining does not affect the outcome, so such a situa-
tion is not a Nash equilibrium.

32.3 Choosing a route

A strategic game that models this situation is:

Players The four people.

Actions The set of actions of each person is {X, Y} (the route via X and the
route via Y).

Preferences Each player’s payoff is the negative of her travel time.

In every Nash equilibrium, two people take each route. (In any other case, a
person taking the more popular route is better off switching to the other route.)
For any such action profile, each person’s travel time is either 29.9 or 30 minutes
(depending on the route they take). If a person taking the route via X switches
to the route via Y her travel time becomes 12 + 21.8 = 33.8 minutes; if a person
taking the route via Y switches to the route via X her travel time becomes 22 + 12 =
34 minutes. For any other allocation of people to routes, at least one person can
decrease her travel time by switching routes. Thus the set of Nash equilibria is the
set of action profiles in which two people take the route via X and two people take
the route via Y.

Now consider the situation after the road from X to Y is built. There is no equi-
librium in which the new road is not used, by the following argument. Because the
only equilibrium before the new road is built has two people taking each route, the
only possibility for an equilibrium in which no one uses the new road is for two
people to take the route A–X–B and two to take A–Y–B, resulting in a total travel
time for each person of either 29.9 or 30 minutes. However, if a person taking A–
X–B switches to the new road at X and then takes Y–B her total travel time becomes
9 + 7 + 12 = 28 minutes.

I claim that in any Nash equilibrium, one person takes A–X–B, two people take
A–X–Y–B, and one person takes A–Y–B. For this assignment, each person’s travel
time is 32 minutes. No person can change her route and decrease her travel time,
by the following argument.
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• If the person taking A–X–B switches to A–X–Y–B, her travel time increases to
12 + 9 + 15 = 36 minutes; if she switches to A–Y–B her travel time increases
to 21 + 15 = 36 minutes.

• If one of the people taking A–X–Y–B switches to A–X–B, her travel time in-
creases to 12 + 20.9 = 32.9 minutes; if she switches to A–Y–B her travel time
increases to 21 + 12 = 33 minutes.

• If the person taking A–Y–B switches to A–X–B, her travel time increases
to 15 + 20.9 = 35.9 minutes; if she switches to A–X–Y–B, her travel time
increases to 15 + 9 + 12 = 36 minutes.

For every other allocation of people to routes at least one person can switch
routes and reduce her travel time. For example, if one person takes A–X–B, one
person takes A–X–Y–B, and two people take A–Y–B, then the travel time of those
taking A–Y–B is 21 + 12 = 33 minutes; if one of them switches to A–X–B then her
travel time falls to 12 + 20.9 = 32.9 minutes. Or if one person takes A–Y–B, one
person takes A–X–Y–B, and two people take A–X–B, then the travel time of those
taking A–X–B is 12 + 20.9 = 32.9 minutes; if one of them switches to A–X–Y–B
then her travel time falls to 12 + 8 + 12 = 32 minutes.

Thus in the equilibrium with the new road every person’s travel time increases,
from either 29.9 or 30 minutes to 32 minutes.

35.1 Finding Nash equilibria using best response functions

a. The Prisoner’s Dilemma and BoS are shown in Figure 10.1; Matching Pennies
and the two-player Stag Hunt are shown in Figure 10.2.

Quiet Fink
Quiet 2 , 2 0 , 3∗

Fink 3∗, 0 1∗, 1∗

Prisoner’s Dilemma

Bach Stravinsky
Bach 2∗, 1∗ 0 , 0

Stravinsky 0 , 0 1∗, 2∗

BoS

Figure 10.1 The best response functions in the Prisoner’s Dilemma (left) and in BoS (right).

Head Tail
Head 1∗, −1 −1 , 1∗

Tail −1 , 1∗ 1∗, −1

Matching Pennies

Stag Hare
Stag 2∗, 2∗ 0 , 1
Hare 1 , 0 1∗, 1∗

Stag Hunt

Figure 10.2 The best response functions in Matching Pennies (left) and the Stag Hunt (right).

b. The best response functions are indicated in Figure 11.1. The Nash equilibria
are (T, C), (M, L), and (B, R).
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L C R
T 2 , 2 1∗, 3∗ 0∗, 1

M 3∗, 1∗ 0 , 0 0∗, 0
B 1 , 0∗ 0 , 0∗ 0∗, 0∗

Figure 11.1 The game in Exercise 35.1.

36.1 Constructing best response functions

The analogue of Figure 36.2 is given in Figure 11.2.

A1

︸ ︷︷ ︸T M B

A2




L

C

R

Figure 11.2 The players’ best response functions for the game in Exercise 36.1b. Player 1’s best re-
sponses are indicated by circles, and player 2’s by dots. The action pairs for which there is both a circle
and a dot are the Nash equilibria.

36.2 Dividing money

For each amount named by one of the players, the other player’s best responses
are given in the following table.

Other player’s action Sets of best responses
0 {10}
1 {9, 10}
2 {8, 9, 10}
3 {7, 8, 9, 10}
4 {6, 7, 8, 9, 10}
5 {5, 6, 7, 8, 9, 10}
6 {5, 6}
7 {6}
8 {7}
9 {8}

10 {9}
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The best response functions are illustrated in Figure 12.1 (circles for player 1,
dots for player 2). From this figure we see that the game has four Nash equilibria:
(5, 5), (5, 6), (6, 5), and (6, 6).

A1

︸ ︷︷ ︸0 1 2 3 4 5 6 7 8 9 10

A2


0

1
2
3
4
5
6
7
8
9
10

Figure 12.1 The players’ best response functions for the game in Exercise 36.2.

39.1 Strict and nonstrict Nash equilibria

Only the Nash equilibrium (a∗1, a∗2) is strict. For each of the other equilibria, player 2’s
action a2 satisfies a∗∗∗2 ≤ a2 ≤ a∗∗2 , and for each such action player 1 has multiple
best responses, so that her payoff is the same for a range of actions, only one of
which is such that (a1, a2) is a Nash equilibrium.

40.1 Finding Nash equilibria using best response functions

First find the best response function of player 1. For any fixed value of a2, player 1’s
payoff function a1(a2 − a1) is a quadratic in a1. The coefficient of a2

1 is negative and
the function is zero at a1 = 0 and at a1 = a2. Thus, using the symmetry of quadratic
functions, b1(a2) = 1

2 a2.
Now find the best response function of player 2. For any fixed value of a1,

player 2’s payoff function a2(1 − a1 − a2) is a quadratic in a2. The coefficient on a2
2

is negative and the function is zero at a2 = 0 and at a2 = 1 − a1. Thus if a1 ≤ 1 we
have b2(a1) = 1

2 (1 − a1) and if a1 > 1 we have b2(a1) = 0.
The best response functions are shown in Figure 13.1.
A Nash equilibrium is a pair (a∗1, a∗2) such that a∗1 = b1(a∗2) and a∗2 = b2(a∗1).

From the figure we see that there is a unique Nash equilibrium, with a∗1 < 1. Thus
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0 a1 →

↑
a2

1a∗1

1
2

a∗2

b1(a2)

b2(a1)

Figure 13.1 The best response functions for the game in Exercise 40.1.

in this equilibrium a∗1 = 1
2 a∗2 and a∗2 = 1

2 (1 − a∗1). Hence a∗1 = 1
4 (1 − a∗1), or 5a∗1 = 1,

or a∗1 = 1
5 . Hence a∗2 = 2

5 . Thus the game has a unique Nash equilibrium, ( 1
5 , 2

5 ).

40.2 A joint project

A strategic game that models this situation is:

Players The two people.

Actions The set of actions of each person i is the set of effort levels (the set of
numbers xi with 0 ≤ xi ≤ 1).

Preferences Person i’s payoff to the action pair (x1, x2) is 1
2 f (x1, x2) − c(xi).

a. Assume that f (x1, x2) = 3x1x2 and c(xi) = x2
i . To find the Nash equilibria of

the game, first find the players’ best response functions. Player 1’s best response
to x2 is the action x1 that maximizes 3

2 x1x2 − x2
1, or x1( 3

2 x2 − x1). This function is
a quadratic that is zero when x1 = 0 and when x1 = 3

2 x2. The coefficient of x2
1 is

negative, so the maximum of the function occurs at x1 = 3
4 x2. Thus player 1’s best

response function is
b1(x2) = 3

4 x2.

Similarly, player 2’s best response function is

b2(x1) = 3
4 x1.

The best response functions are shown in Figure 14.1.
In a Nash equilibrium (x∗

1, x∗
2) we have x∗

1 = b1(x∗
2) and x∗

2 = b2(x∗
1), or x∗

1 =
3
4 x∗

2 and x∗
2 = 3

4 x∗
1. Substituting x∗

2 in the first equation we obtain x∗
1 = 9

16 x∗
1, so

that x∗
1 = 0. Thus x∗

2 = 0.
We conclude that the game has a unique Nash equilibrium, (x∗

1, x∗
2) = (0, 0). In

this equilibrium, both players’ payoffs are zero.
If each player i chooses xi = 1 then the total output is 3, and each player’s

payoff is 3
2 − 1 = 1

2 , rather than 0 as in the Nash equilibrium.
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0 x1 →

↑
x2

1

1

b1(x2)

b2(x1)

Figure 14.1 The best response functions for the game in Exercise 40.2a.

b. When f (x1, x2) = 4x1x2 and c(xi) = xi, player 1’s payoff function is

2x1x2 − x1 = x1(2x2 − 1).

Thus if x2 < 1
2 her best response is x1 = 0, if x2 = 1

2 then all values of x1 are
best responses, and if x2 > 1

2 her best response is x1 = 1. That is, player 1’s best
response function is

b1(x2) =




0 if x2 < 1
2

{x1 : 0 ≤ x1 ≤ 1} if x2 = 1
2

1 if x2 > 1
2 .

Player 2’s best response function is the same. (That is, b2(x) = b1(x) for all x.) The
best response functions are shown in Figure 14.2.

0 x1 →

↑
x2

1

1

b2(x1)

b1(x2)

Figure 14.2 The best response functions for the game in Exercise 40.2b.

We see that the game has three Nash equilibria, (0, 0), ( 1
2 , 1

2 ), and (1, 1).
The players’ payoffs at these equilibria are (0, 0), (0, 0), and (1, 1). There is

no pair of effort levels that yields both players payoffs higher than 1, but there
are pairs of effort levels that yield both players payoffs higher than 0, for example
(1, 1), which yields the payoffs (1, 1).
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42.1 Contributing to a public good

The best response of player 1 to the contribution c2 of player 2 is the value of c1 that
maximizes player 1’s payoff w + c2 + (w − c1)(c1 + c2). This function is a quadratic
in c1 (remember that w + c2 is a constant). The coefficient of c2

1 is negative, and the
value of the function is equal to w + c2 when c1 = w and when c1 = −c2. Thus the
function attains a maximum at c1 = 1

2 (w − c2). We conclude that player 1’s best
response function is

b1(c2) = 1
2 (w − c2).

Player 2’s best response function is similarly

b2(c1) = 1
2 (w − c1).

A Nash equilibrium is a pair (c∗1, c∗2) such that c∗1 = b1(c∗2) and c∗2 = b2(c∗1), so
that

c∗1 = 1
2 (w − c∗2) = 1

2 (w − 1
2 (w − c∗1)) = 1

4 w + 1
4 c∗1

and hence c∗1 = 1
3 w. Substituting this value into player 2’s best response function

we get c∗2 = 1
3 w.

We conclude that the game has a unique Nash equilibrium (c∗1, c∗2) = ( 1
3 w, 1

3 w),
in which each person contributes one third of her wealth to the public good.

In this equilibrium each player’s payoff is 4
3 w + 4

9 w2. If each player contributes
1
2 w to the public good then her payoff is 3

2 w + 1
2 w2, which exceeds 4

3 w + 4
9 w2 for

all w (since 3
2 > 4

3 and 1
2 > 4

9 ).
When there are n players the payoff function of player 1 is

w − c1 + c1 + c2 + · · · + cn + (w − c1)(c1 + c2 + · · · + cn) =

w + c2 + · · · + cn + (w − c1)(c1 + c2 + · · · + cn).

This function is a quadratic in c1. The coefficient of c2
1 is negative, and the value of

the function is equal to w + c2 + · · · + cn when c1 = w and when c1 = −c2 − c3 −
· · · − cn. Thus the function attains a maximum at c1 = 1

2 (w − c2 − c3 − · · · − cn).
We conclude that player 1’s best response function is

b1(c−1) = 1
2 (w − c2 − c3 − · · · − cn)

where c−1 is the list of the contributions of the players other than 1. Similarly, any
player i’s best response function is

bi(c−i) = 1
2 (w − (c1 + c2 + · · · + cn) + ci).

A Nash equilibrium is an action profile (c∗1, . . . , c∗n) such that c∗i = bi(c∗−i) for all
i. We can write the condition c∗1 = b1(c∗−1) as

2c∗1 = w − c∗2 − c∗3 − · · · − c∗n,

or
w = 2c∗1 + c∗2 + c∗3 + · · · + c∗n.
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Writing the other conditions c∗i = bi(c∗−i) similarly, we obtain the system of equa-
tions

w = 2c∗1 + c∗2 + c∗3 + · · · + c∗n
w = c∗1 + 2c∗2 + c∗3 + · · · + c∗n

...

w = c∗1 + c∗2 + c∗3 + · · · + 2c∗n

Subtracting the second equation from the first we conclude that c∗1 = c∗2. Similarly
subtracting each equation from the next we deduce that c∗i is the same for all i.
Denote the common value by c∗. From any of the equations we deduce that w =
(n + 1)c∗. Hence c∗ = w/(n + 1).

In conclusion, when there are n players the game has a unique Nash equilib-
rium (c∗1, . . . , c∗n) = (w/(n + 1), . . . , w/(n + 1)). The total amount contributed in
this equilibrium is nw/(n + 1), which increases as n increases, approaching w as n
increases without bound.

Player 1’s payoff in the equilibrium is w + (n − 1)w/(n + 1)+(nw/(n + 1))2.
As n increases without bound, this payoff increases, approaching 2w + w2. If each
player contributes 1

2 w to the public good, each player’s payoff is w + 1
2 (n − 1)w +

n(w/2)2, which increases without bound as n increases without bound.

45.2 Strict equilibria and dominated actions

For player 1, T is weakly dominated by M, and strictly dominated by B. For
player 2, no action is weakly or strictly dominated. The game has a unique Nash
equilibrium, (M, L). This equilibrium is not strict. (When player 2 choose L, B
yields player 1 the same payoff as does M.)

46.1 Nash equilibrium and weakly dominated actions

The only Nash equilibrium of the game in Figure 16.1 is (T, L). The action T is
weakly dominated by M and the action L is weakly dominated by C. (There are of
course many other games that satisfy the conditions.)

L C R
T 1, 1 0, 1 0, 0

M 1, 0 2, 1 1, 2
B 0, 0 1, 1 2, 0

Figure 16.1 A game with a unique Nash equilibrium, in which both players’ equilibrium actions are
weakly dominated. (The unique Nash equilibrium is (T, L).)
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47.1 Voting

First consider an action profile in which the winner receives one more vote than
the loser and at least one citizen who votes for the winner prefers the loser to the
winner. Any citizen who votes for the winner and prefers the loser to the winner
can, by switching her vote, cause her favorite candidate to win rather than lose.
Thus no such action profile is a Nash equilibrium.

Next consider an action profile in which the winner receives one more vote
than the loser and all citizens who vote for the winner prefer the winner to the
loser. Because a majority of citizens prefer A to B, the winner in any such case must
be A. No citizen who prefers A to B can induce a better outcome by changing her
vote, since her favorite candidate wins. Now consider a citizen who prefers B to A.
By assumption, every such citizen votes for B; a change in her vote has no effect on
the outcome (A still wins). Thus every such action profile is a Nash equilibrium.

Finally consider an action profile in which the winner receives at least three
more votes than the loser. In this case no change in any citizen’s vote has any effect
on the outcome. Thus every such profile is a Nash equilibrium.

In summary, the Nash equilibria are: any action profile in which A receives one
more vote than B and all the citizens who vote for A prefer A to B, and any action
profile in which the winner receives at least three more votes than the loser.

The only equilibrium in which no citizen uses a weakly dominated action is
that in which every citizen votes for her favorite candidate.

47.2 Voting between three candidates

Fix some citizen, say i; suppose she prefers A to B to C. By the argument in the
text, citizen i’s voting for C is weakly dominated by her voting for A (and by her
voting for B). Her voting for B is clearly not weakly dominated by her voting for
C. I now argue that her voting for B is not weakly dominated by her voting for
A. Suppose that the other citizens’ votes are equally divided between B and C; no
one votes for A. Then if citizen i votes for A the outcome is a tie between B and C,
while if she votes for B the outcome is that B wins. Thus for this configuration of
the other citizens’ votes, citizen i is better off voting for B than she is voting for A.
Thus her voting for B is not weakly dominated by her voting for A.

Now fix some citizen, say i, and consider the candidate she ranks in the mid-
dle, say candidate B. The action profile in which all citizens vote for B is a Nash
equilibrium. (No citizen’s changing her vote affects the outcome.) In this equilib-
rium, citizen i does not vote for her favorite candidate, but the action she takes is
not weakly dominated. (Other Nash equilibria also satisfy the conditions in the
exercise.)
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47.3 Approval voting

First I argue that any action ai of player i that includes a vote for i’s least preferred
candidate, say candidate k, is weakly dominated by the action a′i that differs from
ai only in that candidate k does not receive a vote in a′i. For any list a−i of the
other players’ actions, the outcome of (a′i , a−i) differs from that of (ai , a−i) only
in that the total number of votes received by candidate k is one less in (a′i , a−i)
than it is in (ai , a−i). There are two possible implications for the winners of the
election, depending on a−i: either the set of winners is the same in (ai , a−i) as it
is in (a′i , a−i), or candidate k is a winner in (ai , a−i) but not in (a′i , a−i). Because
candidate k is player i’s least preferred candidate, a′i thus weakly dominates ai.

I now argue that any action ai of player i that excludes a vote for i’s most pre-
ferred candidate, say candidate 1, is weakly dominated by the action a′i that differs
from ai only in that candidate 1 receives a vote in a′i. The argument is symmet-
ric with the one in the previous paragraph. For any list a−i of the other players’
actions, the outcome of (a′i, a−i) differs from that of (ai , a−i) only in that the to-
tal number of votes received by candidate 1 is one more in (a′i , a−i) than it is in
(ai , a−i). There are two possible implications for the winners of the election, de-
pending on a−i: either the set of winners is the same in (ai, a−i) as it is in (a′i , a−i),
or candidate 1 is a winner in (a′i , a−i) but not in (ai , a−i). Because candidate 1 is
player i’s most preferred candidate, a′i thus weakly dominates ai.

Finally I argue that if citizen i prefers candidate 1 to candidate 2 to . . . to can-
didate k then the action ai that consists of votes for candidates 1 and k − 1 is not
weakly dominated.

• The action ai is not weakly dominated by any action that excludes votes for
either candidate 1 or candidate k − 1 (or both). Suppose a′i excludes a vote for
candidate 1. Then if the total votes by the other citizens for candidates 1 and
2 are equal, and the total votes for all other candidates are less, then citizen i’s
taking the action ai leads candidate 1 to win, while the action a′i leads to at
best (from the point of view of citizen i) a tie between candidates 1 and 2.
Thus a′i does not weakly dominate ai. Similarly, suppose that a′i excludes
a vote for candidate k − 1. Then if the total votes by the other citizens for
candidates k − 1 and k are equal, while the total votes for all other candidates
are less, then citizen i’s taking the action ai leads candidate k− 1 to win, while
the action a′i leads to at best (from the point of view of citizen i) a tie between
candidates k − 1 and k.

• Now let a′i be an action that includes votes for both candidate 1 and candi-
date k − 1, and also for at least one other candidate, say candidate j. Suppose
that the total votes by the other citizens for candidates 1 and j are equal, and
the total votes for all other candidates are less. Then citizen i’s taking the
action ai leads candidate 1 to win, while the action a′i leads to at best (from
the point of view of citizen i) a tie between candidates 1 and j. Thus a′i does
not weakly dominate ai.
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49.1 Other Nash equilibria of the game modeling collective decision-making

Denote by i the player whose favorite policy is the median favorite policy. The
set of Nash equilibria includes every action profile in which (i) i’s action is her
favorite policy x∗

i , (ii) every player whose favorite policy is less than x∗
i names a

policy equal to at most x∗
i , and (iii) every player whose favorite policy is greater

than x∗
i names a policy equal to at least x∗

i .
To show this, first note that the outcome is x∗

i , so player i cannot induce a bet-
ter outcome for herself by changing her action. Now, if a player whose favorite
position is less than x∗

i changes her action to some x < x∗
i , the outcome does not

change; if such a player changes her action to some x > x∗
i then the outcome either

remains the same (if some player whose favorite position exceeds x∗
i names x∗

i ) or
increases, so that the player is not better off. A similar argument applies to a player
whose favorite position is greater than x∗

i .
The set of Nash equilibria also includes, for any positive integer k ≤ n, every

action profile in which k players name the median favorite policy x∗
i , at most 1

2 (n −
3) players name policies less than x∗

i , and at most 1
2 (n − 3) players name policies

greater than x∗
i . (In these equilibria, the favorite policy of a player who names a

policy less than x∗
i may be greater than x∗

i , and vice versa. The conditions on the
numbers of players who name policies less than x∗

i and greater than x∗
i ensure that

no such player can, by naming instead her favorite policy, move the median policy
closer to her favorite policy.)

Any action profile in which all players name the same, arbitrary, policy is also
a Nash equilibrium; the outcome is the common policy named.

More generally, any profile in which at least three players name the same, ar-
bitrary, policy x, at most (n − 3)/2 players name a policy less than x, and at most
(n − 3)/2 players name a policy greater than x is a Nash equilibrium. (In both
cases, no change in any player’s action has any effect on the outcome.)

49.2 Another mechanism for collective decision-making

When the policy chosen is the mean of the announced policies, player i’s announc-
ing her favorite policy does not weakly dominate all her other actions. For exam-
ple, if there are three players, the favorite policy of player 1 is 0.3, and the other
players both announce the policy 0, then player 1 should announce the policy 0.9,
which leads to the policy 0.3 (= (0 + 0 + 0.9)/3) being chosen, rather than 0.3,
which leads to the policy 0.1.

50.1 Symmetric strategic game

The games in Exercise 29.1, Example 37.1, and Figure 46.1 (both games) are sym-
metric. The game in Exercise 40.1 is not symmetric. The game in Section 2.8.4 is
symmetric if and only if u1 = u2.
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51.1 Equilibrium for pairwise interactions in a single population

The Nash equilibria are (A, A), (A, C), and (C, A). Only the equilibrium (A, A) is
relevant if the game is played between the members of a single population—this
equilibrium is the only symmetric equilibrium.
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3 Nash Equilibrium: Illustrations

57.1 Cournot’s duopoly game with linear inverse demand and different unit costs

Following the analysis in the text, the best response function of firm 1 is

b1(q2) =
{

1
2 (α − c1 − q2) if q2 ≤ α − c1
0 otherwise

while that of firm 2 is

b2(q1) =
{

1
2 (α − c2 − q1) if q1 ≤ α − c2
0 otherwise.

To find the Nash equilibrium, first plot these two functions. Each function has
the same general form as the best response function of either firm in the case stud-
ied in the text. However, the fact that c1 �= c2 leads to two qualitatively different
cases when we combine the two functions to find a Nash equilibrium. If c1 and c2
do not differ very much then the functions in the analogue of Figure 56.2 intersect
at a pair of outputs that are both positive. If c1 and c2 differ a lot, however, the
functions intersect at a pair of outputs in which q1 = 0.

Precisely, if c1 ≤ 1
2 (α + c2) then the downward-sloping parts of the best re-

sponse functions intersect (as in Figure 56.2), and the game has a unique Nash
equilibrium, given by the solution of the two equations

q1 = 1
2 (α − c1 − q2)

q2 = 1
2 (α − c2 − q1).

This solution is

(q∗1, q∗2) =
(

1
3 (α − 2c1 + c2), 1

3 (α − 2c2 + c1)
)

.

If c1 > 1
2 (α + c2) then the downward-sloping part of firm 1’s best response func-

tion lies below the downward-sloping part of firm 2’s best response function (as in
Figure 22.1), and the game has a unique Nash equilibrium, (q∗1, q∗2) = (0, 1

2 (α− c2)).

In summary, the game always has a unique Nash equilibrium, defined as fol-
lows: 



(
1
3 (α − 2c1 + c2), 1

3 (α − 2c2 + c1)
)

if c1 ≤ 1
2 (α + c2)(

0, 1
2 (α − c2)

)
if c1 > 1

2 (α + c2).

21
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0 α−c1
2

α − c2

α−c2
2

α − c1

↑
q2

q1 →

b1(q2)
b2(q1)

(q∗1, q∗2)

Figure 22.1 The best response functions in Cournot’s duopoly game under the assumptions of Exer-
cise 57.1 when α − c1 < 1

2 (α − c2). The unique Nash equilibrium in this case is (q∗1, q∗2) = (0, 1
2 (α − c2)).

The output of firm 2 exceeds that of firm 1 in every equilibrium.
If c2 decreases then firm 2’s output increases and firm 1’s output either falls, if

c1 ≤ 1
2 (α + c2), or remains equal to 0, if c1 > 1

2 (α + c2). The total output increases
and the price falls.

57.2 Cournot’s duopoly game with linear inverse demand and a quadratic cost func-

tion

Firm 1’s profit is

π1(q1, q2) =
{

q1(α − q1 − q2) − q2
1 if q1 + q2 ≤ α

−q2
1 if q1 + q2 > α

or

π1(q1, q2) =
{

q1(α − 2q1 − q2) if q1 + q2 ≤ α

−q2
1 if q1 + q2 > α.

When it is positive, this function is a quadratic in q1 that is zero at q1 = 0 and
at q1 = (α − q2)/2. Thus firm 1’s best response function is

b1(q2) =
{ 1

4 (α − q2) if q2 ≤ α

0 if q2 > α.

Since the firms’ cost functions are the same, firm 2’s best response function is the
same as firm 1’s: b2(q) = b1(q) for all q. The firms’ best response functions are
shown in Figure 23.1.

Solving the two equations q∗1 = b1(q∗2) and q∗2 = b2(q∗1) we find that there is a
unique Nash equilibrium, in which the output of firm i (i = 1, 2) is q∗i = 1

5 α.
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0 1
4 α

1
4 α

α

α

↑
q2

q1 →

b1(q2)

b2(q1)
(q∗1, q∗2)

Figure 23.1 The best response functions in Cournot’s duopoly game with linear inverse demand and
a quadratic cost function, as in Exercise 57.2. The unique Nash equilibrium is (q∗1, q∗2) = ( 1

5 α, 1
5 α).

57.3 Cournot’s duopoly game with linear inverse demand and a fixed cost

Firm i’s payoff function is
{

0 if qi = 0
qi(P(q1 + q2) − c) − f if qi > 0.

As before firm 1’s best response to q2 is (α − c − q2)/2 if firm 1’s profit is non-
negative for this output; otherwise its best response is the output of zero. Firm 1’s
profit when it produces (α − c − q2)/2 and firm 2 produces q2 is

α − c − q2

2

(
α − c − α − c − q2

2
− q2

)
− f =

(
α − c − q2

2

)2
− f ,

which is nonnegative if (
α − c − q2

2

)2
> f ,

or if q2 ≤ α − c − 2
√

f . Let q = α − c − 2
√

f . Then firm 1’s best response function
is

b1(q2) =




1
2 (α − c − q2) if q2 < q
{0, 1

2 (α − c − q2)} if q2 = q
0 if q2 > q.

(If q2 = q then firm 1’s profit is zero whether it produces the output 1
2 (α − c − q2)

or the output 0; both outputs are optimal.)
Thus firm 1’s best response function has a “jump”: for outputs of firm 2 slightly

less than q firm 1 wants to produce a positive output (and earn a small profit),
while for outputs of firm 2 slightly greater than q it wants to produce an output of
zero.



24 Chapter 3. Nash Equilibrium: Illustrations

Firm 2’s cost function is the same as firm 1’s, so its best response function is the
same.

Because of the jumps in the best response functions, there are four qualitatively
different cases, depending on the value of f . If f is small enough that q > 1

2 (α − c)
(or, equivalently, f < (α − c)2/16) then the best response functions take the form
given in Figure 24.1. In this case the existence of the fixed cost has no impact on
the equilibrium, which remains (q∗1, q∗2) = ( 1

3 (α − c), 1
3 (α − c)).

0 α−c
3

α−c
2

q α − c

α−c
3

α−c
2

q

α − c

↑
q2

q1 →

b1(q2)

b2(q1)

(q∗1, q∗2)

Figure 24.1 The best response functions in Cournot’s duopoly game when the inverse demand func-
tion is P(Q) = α − Q (where this is positive) and the cost function of each firm is f + cq, with
f < (α − c)2/16. The unique Nash equilibrium is (q∗1, q∗2) = ( 1

3 (α − c), 1
3 (α − c)) (as in the case in

which f = 0).

As f increases, the point at which the best response functions jump moves
closer to the origin. Eventually q enters the range from 1

3 (α − c) to 1
2 (α − c) (which

implies that (α − c)2/16 < f < (α − c)2/9), in which case the best response func-
tions take the forms shown in the left panel of Figure 25.1. In this case there are
three Nash equilibria: (0, 1

2 (α − c)), ((α − c)/3, (α − c)/3), and ( 1
2 (α − c), 0).

As f increases further, there is a point at which q becomes less than 1
3 (α − c)

but is still positive (implying that (α − c)2/9 < f < (α − c)2/4), so that the best
response functions take the forms shown in the right panel of Figure 25.1. In this
case there are two Nash equilibria: (0, 1

2 (α − c)) and ( 1
2 (α − c), 0).

Finally, if f is extremely large then a firm does not want to produce any output
even if the other firm produces no output. This occurs when f > (α − c)2/4; the
unique Nash equilibrium in this case is (0, 0).
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0 α−c
3

α−c
2

q

α−c
3

α−c
2

q

↑
q2

q1 →

b1(q2)

b2(q1)

( 1
3 (α − c), 1

3 (α − c))

(0, 1
2 (α − c))

( 1
2 (α − c), 0)

0 α−c
3

α−c
2

q

α−c
3

α−c
2

q

↑
q2

q1 →

b1(q2)

b2(q1)

(0, 1
2 (α − c))

( 1
2 (α − c), 0)

Figure 25.1 The best response functions in Cournot’s duopoly game when the inverse demand func-
tion is P(Q) = α − Q (where this is positive) and the cost function of each firm is f + cq, with
(α − c)2/16 < f < (α − c)2/9 (left panel) and f > (α − c)2/9 (right panel). In the first case the game
has three Nash equilibria: (0, 1

2 (α − c)), ( 1
3 (α − c), 1

3 (α − c)), and ( 1
2 (α − c), 0). In the second case it has

two Nash equilibria: (0, 1
2 (α − c)) and ( 1

2 (α − c), 0).

58.2 Nash equilibrium of Cournot’s duopoly game and the collusive outcome

The firms’ total profit is (q1 + q2)(α− c− q1 − q2), or Q(α− c−Q), where Q denotes
total output. This function is a quadratic in Q that is zero when Q = 0 and when
Q = α − c, so that its maximizer is Q∗ = 1

2 (α − c).
If each firm produces 1

4 (α − c) then its profit is 1
8 (α − c)2. This profit exceeds its

Nash equilibrium profit of 1
9 (α − c)2.

If one firm produces Q∗/2, the other firm’s best response is bi(Q∗/2) = 1
2 (α −

c − 1
4 (α − c)) = 3

8 (α − c). That is, if one firm produces Q∗/2, the other firm wants
to produce more than Q∗/2.

58.1 Variant of Cournot’s game, with market-share maximizing firms

Let firm 1 be the market-share maximizing firm. If q2 > α − c, there is no output of
firm 1 for which its profit is nonnegative. Thus its best response to such an output
of firm 2 is q1 = 0. If q2 ≤ α − c then firm 1 wants to choose its output q1 large
enough that the price is c (and hence its profit is zero). Thus firm 1’s best response
to such a value of q2 is q1 = α − c − q2. We conclude that firm 1’s best response
function is

b1(q2) =
{

α − c − q2 if q2 ≤ α − c
0 if q2 > α − c.

Firm 2’s best response function is the same as in Section 3.1.3, namely

b2(q1) =
{

(α − c − q2)/2 if q2 ≤ α − c
0 if q2 > α − c.

These best response functions are shown in Figure 26.1. The game has a unique
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Nash equilibrium, (q∗1, q∗2) = (α− c, 0), in which firm 2 does not operate. (The price
is c, and firm 1’s profit is zero.)

0 α − c

α−c
2

α − c

↑
q2

q1 →

b1(q2)

b2(q1)

Figure 26.1 The best response functions in a variant of Cournot’s duopoly game in which in which the
inverse demand function is P(Q) = α − Q (where this is positive) and the cost function of each firm
is cq, and firm 1 maximizes its market share, rather than its profit. The unique Nash equilibrium is
(q∗1, q∗2) = (α − c, 0).

If both firms maximize their market shares, then the downward-sloping parts
of their best response functions coincide in the analogue of Figure 26.1. Thus every
pair (q1, q2) with q1 + q2 = α − c is a Nash equilibrium.

59.1 Cournot’s game with many firms

Firm 1’s payoff function is
{

q1(α − c − q1 − q2 − · · · − qn) if q1 + q2 + · · · + qn ≤ α

−cq1 if q1 + q2 + · · · + qn > α.

As in the case of two firms, this function is a quadratic in q1 where it is positive,
and is zero when q1 = 0 and when q1 = α − c − q2 − · · · − qn. Thus firm 1’s best
response function is

b1(q−1) =
{

(α − c − q2 − · · · − qn) /2 if q2 + · · · + qn ≤ α − c
0 if q2 + · · · + qn > α − c.

(Recall that q−1 stands for the list of the outputs of all the firms except firm 1.)
The best response functions of every other firm is the same.
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The conditions for (q∗1, . . . , q∗n) to be a Nash equilibrium are

q∗1 = b1(q∗−1)

q∗2 = b2(q∗−2)
...

q∗n = b2(q∗−n)

or, in an equilibrium in which all the firms’ outputs are positive,

q∗1 = 1
2 (α − c − q∗2 − q∗3 − · · · − q∗n)

q∗2 = 1
2 (α − c − q∗1 − q∗3 − · · · − q∗n)

...

q∗n = 1
2 (α − c − q∗1 − q∗2 − · · · − q∗n−1).

We can write these equations as

0 = α − c − 2q∗1 − q∗2 − · · · − q∗n−1 − q∗n
0 = α − c − q∗1 − 2q∗2 − · · · − q∗n−1 − q∗n

...

0 = α − c − q∗1 − q∗2 − · · · − q∗n−1 − 2q∗n.

If we subtract the second equation from the first we obtain 0 = −q∗1 + q∗2, or q∗1 = q∗2.
Similarly subtracting the third equation from the second we conclude that q∗2 = q∗3,
and continuing with all pairs of equations we deduce that q∗1 = q∗2 = · · · = q∗n.
Let the common value of the firms’ outputs be q∗. Then each equation is 0 =
α − c − (n + 1)q∗, so that q∗ = (α − c)/(n + 1).

In summary, the game has a unique Nash equilibrium, in which the output of
every firm i is (α − c)/(n + 1).

The price at this equilibrium is α − n(α − c)/(n + 1), or (α + nc)/(n + 1). As n
increases this price decreases, approaching c as n increases without bound: α/(n +
1) decreases to 0 and nc/(n + 1) decreases to c.

60.1 Nash equilibrium of Cournot’s game with small firms

• If P(Q∗) < p then every firm producing a positive output makes a negative
profit, and can increase its profit (to 0) by deviating and producing zero.

• If P(Q∗ + q) > p, take a firm that is either producing no output, or an ar-
bitrarily small output. (Such a firm exists, since demand is finite.) Such a
firm earns a profit of either zero or arbitrarily close to zero. If it deviates
and chooses the output q then total output changes to at most Q∗ + q, so that
the price still exceeds p (since P(Q∗ + q) > p). Hence the deviant makes a
positive profit.
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61.1 Interaction among resource-users

The game is given as follows.

Players The firms.

Actions Each firm’s set of actions is the set of all nonnegative numbers (repre-
senting the amount of input it uses).

Preferences The payoff of each firm i is
{

xi(1 − (x1 + · · · + xn)) if x1 + · · · + xn ≤ 1
0 if x1 + · · · + xn > 1.

This game is the same as that in Exercise 59.1 for c = 0 and α = 1. Thus it has a
unique Nash equilibrium, (x1, . . . , xn) = (1/(n + 1), . . . , 1/(n + 1)).

In this Nash equilibrium, each firm’s output is (1/(n + 1))(1 − n/(n + 1)) =
1/(n + 1)2. If xi = 1/(2n) for i = 1, . . . , n then each firm’s output is 1/(4n), which
exceeds 1/(n + 1)2 for n ≥ 2. (We have 1/(4n) − 1/(n + 1)2 = (n − 1)2/(4n(n +
1)2) > 0 for n ≥ 2.)

65.1 Bertrand’s duopoly game with constant unit cost

The pair (c, c) of prices remains a Nash equilibrium; the argument is the same
as before. Further, as before, there is no other Nash equilibrium. The argument
needs only very minor modification. For an arbitrary function D there may exist
no monopoly price pm; in this case, if pi > c, pj > c, pi ≥ pj, and D(pj) = 0 then
firm i can increase its profit by reducing its price slightly below p (for example).

65.2 Bertrand’s duopoly game with discrete prices

Yes, (c, c) is still a Nash equilibrium, by the same argument as before.
In addition, (c + 1, c + 1) is a Nash equilibrium (where c is given in cents). In

this equilibrium both firms’ profits are positive. If either firm raises its price or
lowers it to c, its profit becomes zero. If either firm lowers its price below c, its
profit becomes negative.

No other pair of prices is a Nash equilibrium, by the following argument, simi-
lar to the argument in the text for the case in which a price can be any nonnegative
number.

• If pi < c then the firm whose price is lowest (or either firm, if the prices are
the same) can increase its profit (to zero) by raising its price to c.

• If pi = c and pj ≥ c + 1 then firm i can increase its profit from zero to a
positive amount by increasing its price to c + 1.
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• If pi > pj ≥ c + 1 then firm i can increase its profit (from zero) by lowering
its price to c + 1.

• If pi = pj ≥ c + 2 and pj < α then either firm can increase its profit by
lowering its price by one cent. (If firm i does so, its profit changes from
1
2 (pi − c)(α − pi) to (pi − 1 − c)(α − pi + 1) = (pi − 1 − c)(α − pi) + pi − 1 − c.
We have pi − 1 − c ≥ 1

2 (pi − c) and pi − 1 − c > 0, since pi ≥ c + 2.)

• If pi = pj ≥ c + 2 and pj ≥ α then either firm can increase its profit by
lowering its price to pm.

66.1 Bertrand’s oligopoly game

Consider a profile (p1, . . . , pn) of prices in which pi ≥ c for all i and at least two
prices are equal to c. Every firm’s profit is zero. If any firm raises its price its profit
remains zero. If a firm charging more than c lowers its price, but not below c, its
profit also remains zero. If a firm lowers its price below c then its profit is negative.
Thus any such profile is a Nash equilibrium.

To show that no other profile is a Nash equilibrium, we can argue as follows.

• If some price is less than c then the firm charging the lowest price can increase
its profit (to zero) by increasing its price to c.

• If exactly one firm’s price is equal to c then that firm can increase its profit by
raising its price a little (keeping it less than the next highest price).

• If all firms’ prices exceed c then the firm charging the highest price can in-
crease its profit by lowering its price to some price between c and the lowest
price being charged.

66.2 Bertrand’s duopoly game with different unit costs

a. If all consumers buy from firm 1 when both firms charge the price c2, then
(p1, p2) = (c2, c2) is a Nash equilibrium by the following argument. Firm 1’s profit
is positive, while firm 2’s profit is zero (since it serves no customers).

• If firm 1 increases its price, its profit falls to zero.

• If firm 1 reduces its price, say to p, then its profit changes from (c2 − c1)(α −
c2) to (p − c1)(α − p). Since c2 is less than the maximizer of (p − c1)(α − p),
firm 1’s profit falls.

• If firm 2 increases its price, its profit remains zero.

• If firm 2 decreases its price, its profit becomes negative (since its price is less
than its unit cost).
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Under this rule no other pair of prices is a Nash equilibrium, by the following
argument.

• If pi < c1 for i = 1, 2 then the firm with the lower price (or either firm, if the
prices are the same) can increase its profit (to zero) by raising its price above
that of the other firm.

• If p1 > p2 ≥ c2 then firm 2 can increase its profit by raising its price a little.

• If p2 > p1 ≥ c1 then firm 1 can increase its profit by raising its price a little.

• If p2 ≤ p1 and p2 < c2 then firm 2’s profit is negative, so that it can increase
its profit by raising its price.

• If p1 = p2 > c2 then at least one of the firms is not receiving all of the
demand, and that firm can increase its profit by lowering its price a little.

b. Now suppose that the rule for splitting up the customers when the prices are
equal specifies that firm 2 receives some customers when both prices are c2. By the
argument for part a, the only possible Nash equilibrium is (p1, p2) = (c2, c2). (The
argument in part a that every other pair of prices is not a Nash equilibrium does
not use the fact that customers are split equally when (p1, p2) = (c2, c2).) But if
(p1, p2) = (c2, c2) and firm 2 receives some customers, firm 1 can increase its profit
by reducing its price a little and capturing the entire market.

67.1 Bertrand’s duopoly game with fixed costs

At the pair of prices (p, p), both firms’ profits are zero. (Firm 1 receives all the
demand and obtains the profit (p − c)(α − p) − f = 0, and firm 2 receives no
demand.) This pair of prices is a Nash equilibrium by the following argument.

• If either firm raises its price its profit remains zero (it receives no customers).

• If either firm lowers its price then it receives all the demand and earns a
negative profit (since f is less than the maximum of (p − c)(α − p)).

No other pair of prices (p1, p2) is a Nash equilibrium, by the following argu-
ment.

• If p1 = p2 < p then firm 1’s profit is negative; firm 1 can increase its profit by
raising its price.

• If p1 = p2 > p then firm 2’s profit is zero; firm 2 can obtain a positive profit
by lowering its price a little.

• If pi < pj and firm i’s profit is positive then firm j can increase its profit from
zero to almost the current level of i’s profit by changing its price to be slightly
less than pi.
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• If pi < pj and firm i’s profit is zero then firm i can earn a positive profit by
raising its price a little.

• If pi < pj and firm i’s profit is negative then firm i can increase its profit to
zero by raising its price above pj.

72.1 Electoral competition with asymmetric voters’ preferences

The unique Nash equilibrium remains (m, m); the direct argument is exactly the
same as before. (The dividing line between the supporters of two candidates with
different positions changes. If xi < xj, for example, the dividing line is 1

3 xi + 2
3 xj

rather than 1
2 (xi + xj). The resulting change in the best response functions does

not affect the Nash equilibrium.)

72.2 Electoral competition with three candidates

If a single candidate enters, then either of the remaining candidates can enter and
either win outright or tie for first place. Thus there is no Nash equilibrium in which
a single candidate enters.

In any Nash equilibrium in which more than one candidate enters, all the can-
didates that enter tie for first place, since if they do not then some candidate loses,
and hence can do better by staying out of the race.

If two candidates enter, then by the argument in the text for the case in which
there are two candidates, each takes the position m. But then the third candi-
date can enter and win outright. Thus there is no Nash equilibrium in which two
candidates enter.

If all three candidates enter and choose the same position, each candidate re-
ceives one third of the votes. If the common position is equal to m then any candi-
date can win outright (obtaining close to one-half of the votes) by moving slightly
to one side of m. If the common position is different from m then any candidate
can win outright (obtaining more than one-half of the votes) by moving to m. Thus
there is no Nash equilibrium in which all three candidates enter and choose the
same position.

If all three candidates enter and do not all choose the same position then they all
tie for first place, by the second argument. At least one candidate (i) does not share
her position with any other candidate and (ii) is an extremist (her position is not
between the positions of the other candidates). This candidate can move slightly
closer to the other candidates and win outright. Thus there is no Nash equilibrium
in which all three candidates enter and not all of them choose the same position.

We conclude that the game has no Nash equilibrium.
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72.3 Electoral competition in two districts

The game has a unique equilibrium, in which the both candidates choose the posi-
tion m1 (the median favorite position in the district with the most electoral college
votes). The outcome is a tie.

The following argument shows that this pair of positions is a Nash equilibrium.
If a candidate deviates to a position less than m1, she loses in district 1 and wins in
district 2, and thus loses overall. If a candidate deviates to a position greater than
m1, she loses in both districts.

To see that there is no other Nash equilibrium, first consider a pair of positions
for which candidate 1 loses in district 1, and hence loses overall. By deviating to
m1, she either wins in district 1, and hence wins overall, or, if candidate 2’s position
is m1, ties in district 1, and ties overall. Thus her deviation induces an outcome she
prefers. The same argument applies to candidate 2, so that in any equilibrium the
candidates tie in district 1. Now, if the candidates’ positions are either different,
or the same and different from m1, either candidate can win outright rather than
tying for first place by moving to m1. Thus there is a single equilibrium, in which
both candidates’ positions are m1.

73.1 Electoral competition between candidates who care only about the winning

position

First consider a pair (x1, x2) of positions for which either x1 < m and x2 < m, or
x1 > m and x2 > m.

• If x1 �= x2 and the winner’s position is different from her favorite position
then the winner can move slightly closer to her favorite position and still
win.

• If x1 �= x2 and the winner’s position is equal to her favorite position then the
other candidate can move to m, which is closer to her favorite position than
the winner’s position, and win.

• If x1 = x2 < m then the candidate whose favorite position exceeds m can
move to m and cause the winning position to be m rather than x1 = x2.

• If x1 = x2 > m then the candidate whose favorite position is less than m can
move to m and cause the winning position to be m rather than x1 = x2.

Now suppose the candidates’ positions are on opposite sides of m: either x1 <

m < x2, or x2 < m < x1.

• If each candidate’s position is on the same side of m as her favorite position
and one candidate wins outright, then the loser can win outright by moving
to m, which she prefers to the position of the other candidate.
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• If each candidate’s position is on the same side of m as her favorite position
and the candidates tie for first place, then by moving slightly closer to m
either candidate can win. If her movement is small enough she prefers her
new position to the previous compromise 1

2 (x1 + x2) (= m).

• If each candidate’s position is on the opposite side of m to her favorite po-
sition then the winner, or either player in the case of a tie, can move to her
favorite position and either win outright or cause the winning position to be
the other candidate’s position, in both cases improving the outcome from her
point of view.

Now suppose that x1 = m and x2 < m. If x∗
1 < m then candidate 1 is better off

choosing a slightly smaller value of x1 (in which case she still wins). If x∗
1 > m then

candidate 1 is better off choosing a slightly larger value of x1 (in which case she
still wins). Thus (x1, x2) is not a Nash equilibrium. A similar argument applies to
pairs (x1, x2) for which x1 = m and x2 > m, and for which x1 �= m and x2 = m.

Finally, if (x1, x2) = (m, m), then the candidates tie. If either candidate changes
her position then she loses, and the winning position does not change. Thus this
pair of positions is a Nash equilibrium.

73.2 Citizen-candidates

If b ≤ 2c then the game has a Nash equilibrium in which a single citizen, with
favorite position m, stands as a candidate. Another citizen with the same favorite
position who stands obtains the payoff 1

2 b − c, as opposed to the payoff of 0 if she
does not stand. Given b ≤ 2c, it is optimal for any such citizen not to stand. A
citizen with any other favorite position who stands loses, and hence is worse off
than if she does not stand.

If two citizens with favorite position m become candidates, each candidate’s
payoff is 1

2 b − c; if one withdraws then she obtains the payoff of 0, so for equilib-
rium we require b ≥ 2c. Now consider a citizen whose favorite position is close
to m. If she enters she wins outright, obtaining the payoff b − c. Since b ≥ 2c, this
payoff is positive, and hence exceeds her payoff if she does not stand (which is
negative, since the winner’s position is then different from her favorite position).
Thus there is no equilibrium in which two citizens with favorite position m stand
as candidates.

Now consider the possibility of an equilibrium in which two citizens with fa-
vorite positions different from m stand as candidates. For an equilibrium the can-
didates must tie, otherwise one loses, and can do better by withdrawing. Thus the
positions, say x1 and x2, must satisfy 1

2 (x1 + x2) = m. If x1 and x2 are close enough
to m then any other citizen loses if she becomes a candidate. Thus there are equilib-
ria in which two citizens with positions symmetric about m, and sufficiently close
to m, become candidates.
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74.1 Electoral competition for more general preferences

a. If x∗ is a Condorcet winner then for any y �= x∗ a majority of voters prefer
x∗ to y, so y is not a Condorcet winner. Thus there is no more than one
Condorcet winner.

b. Suppose that one of the remaining voters prefers y to z to x, and the other
prefers z to x to y. For each position there is another position preferred by a
majority of voters, so no position is a Condorcet winner.

c. Now suppose that x∗ is a Condorcet winner. Then the strategic game de-
scribed the exercise has a unique Nash equilibrium in which both candidates
choose x∗. This pair of actions is a Nash equilibrium because if either can-
didate chooses a different position she loses. For any other pair of actions
either one candidate loses, in which case that candidate can deviate to the
position x∗ and at least tie, or the candidates tie at a position different from
x∗, in which case either of them can deviate to x∗ and win.

If there is no Condorcet winner then for every position there is another posi-
tion preferred by a majority of voters. Thus for every pair of distinct positions
the loser can deviate and win, and for every pair of identical positions either
candidate can deviate and win. Thus there is no Nash equilibrium.

75.1 Competition in product characteristics

Suppose there are two firms. If the products are different, then either firm increases
its market share by making its product more similar to that of its rival. Thus in
every possible equilibrium the products are the same. But if x1 = x2 �= m then each
firm’s market share is 50%, while if it changes its product to be closer to m then its
market share rises above 50%. Thus the only possible equilibrium is (x1, x2) =
(m, m). This pair of positions is an equilibrium, since each firm’s market share is
50%, and if either firm changes its product its market share falls below 50%.

Now suppose there are three firms. If all firms’ products are the same, each
obtains one-third of the market. If x1 = x2 = x3 = m then any firm, by changing
its product a little, can obtain close to one-half of the market. If x1 = x2 = x3 �= m
then any firm, by changing its product a little, can obtain more than one-half of the
market. If the firms’ products are not all the same, then at least one of the extreme
products is different from the other two products, and the firm that produces it can
increase its market share by making it more similar to the other products. Thus
when there are three firms there is no Nash equilibrium.

76.1 Direct argument for Nash equilibria of War of Attrition

• If t1 = t2 then either player can increase her payoff by conceding slightly
later (in which case she obtains the object for sure, rather than getting it with
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probability 1
2 ).

• If 0 < ti < tj then player i can increase her payoff by conceding at 0.

• If 0 = ti < tj < vi then player i can increase her payoff (from 0 to almost
vi − tj > 0) by conceding slightly after tj.

Thus there is no Nash equilibrium in which t1 = t2, 0 < ti < tj, or 0 = ti <

tj < vi (for i = 1 and j = 2, or i = 2 and j = 1). The remaining possibility is that
0 = ti < tj and tj ≥ vi for i = 1 and j = 2, or i = 2 and j = 1. In this case player i’s
payoff is 0, while if she concedes later her payoff is negative; player j’s payoff is vj,
her highest possible payoff in the game.

77.1 Variant of War of Attrition

The game is

Players The two parties to the dispute.

Actions Each player’s set of actions is the set of possible concession times
(nonnegative numbers).

Preferences Player i’s preferences are represented by the payoff function

ui(t1, t2) =




0 if ti < tj
1
2 (vi − ti) if ti = tj
vi − tj if ti > tj.

where j is the other player.

Three representative cross-sections of player i’s payoff function are shown in
Figure 35.1.

0

↑
ui

ti →
tj < vi

tj vi 0

↑
ui

ti →
tj = vi

tj = vi 0

↑
ui

ti →
tj > vi

tjvi

Figure 35.1 Three cross-sections of player i’s payoff function in the variant of the War of Attrition in
Exercise 77.1.

From this figure we deduce that the best response function of player i is

Bi(tj) =




{ti: ti > tj} if tj < vi
{ti: ti ≥ 0} if tj = vi
{ti: 0 ≤ ti < tj} if tj > vi.
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↑
t2

t1 →

v1

v1

B1(t2)

0

↑
t2

t1 →v2

v2

B2(t1)

0

Figure 36.1 The players’ best response functions in the variant of the War of Attrition in Exercise 77.1
for v1 > v2. Player 1’s best response function is in the left panel; player 2’s is in the right panel. (The
sloping edges are excluded.)

The best response functions are shown in Figure 36.1 for a case in which v1 > v2.
Superimposing the two best response functions, we see that if v1 > v2 then

the set of Nash equilibrium action pairs is the union of the shaded regions in
Figure 36.2, namely the set of all pairs (t1, t2) such that either

t1 ≤ v2 and t2 ≥ v1,

or
t1 ≥ v2, t1 > t2, and t2 ≤ v1.

↑
t2

t1 →

v1

v1

v2

v20

Figure 36.2 The set of Nash equilibria of the variant of the War of Attrition in Exercise 77.1 when
v1 > v2.

78.1 Timing product release

A strategic game that models this situation is:
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Players The two firms

Actions The set of actions of each player is the set of possible release times,
which we can take to be the set of numbers t for which 0 ≤ t ≤ T.

Preferences Each firm’s preferences are represented by its market share; the
market share of firm i when it releases its product at time ti and its rival
releases its product at time tj is




h(ti) if ti < tj
1
2 if ti = tj
1 − h(tj) if ti > tj.

Three representative cross-sections of firm i’s payoff function are shown in
Figure 37.1.

0

↑
ui

ti →
h(tj) < 1

2

tj

1
2

0

↑
ui

ti →
h(tj) = 1

2

1
2

tj 0

↑
ui

ti →
h(tj) > 1

2

1
2

tj

Figure 37.1 Three cross-sections of firm i’s payoff function in the game in Exercise 78.1.

From the payoff function we see that if tj is such that h(tj) < 1
2 then the set of

firm i’s best responses is the set of release times after tj. If tj is such that h(tj) = 1
2

then the set of firm i’s best responses is the set of release times greater than or equal
to tj. If tj is such that h(tj) > 1

2 then firm i wants to release its product just before
tj. Since there is no latest time before tj, firm i has no best response in this case. (It
has good responses, but none is optimal.) Denoting the time t for which h(t) = 1

2
by t∗, the firms’ best response functions are shown in Figure 38.1.

Combining the best response functions we see that the game has a unique
Nash equilibrium, in which both firms release their products at the time t∗ (where
h(t∗) = 1

2 ).

78.2 A fight

The game is defined as follows.

Players The two people.

Actions The set of actions of each player i is the set of amounts of the resource
that player i can devote to fighting (the set of numbers yi with 0 ≤ yi ≤ 1).
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t∗

t∗

0

↑
t2

t1 →

B1(t2)

t∗

t∗

0

↑
t2

t1 →

B2(t1)

Figure 38.1 The firms’ best response functions in the game in Exercise 78.1. Firm 1’s best response
function is in the left panel; firm 2’s is in the right panel.

Preferences The preferences of player i are represented by the payoff function

ui(y1, y2) =




f (y1, y2) if yi > yj
1
2 f (y1, y2) if y1 = y2
0 if yi < yj.

If yi < yj then player j can increase her payoff by reducing yj a little, keeping it
greater than yi (output increases, and she still wins). So no action profile in which
y1 �= y2 is a Nash equilibrium.

If y1 = y2 < 1 then either player i can increase her payoff by increasing yi to
slightly above yj (output falls a little, but i’s share of it increases from 1

2 to 1). So
no action profile in which y1 = y2 < 1 is a Nash equilibrium.

The only action profile that remains is (y1, y2) = (1, 1). This profile is a Nash
equilibrium: each player’s payoff is 0, and remains 0 if she reduces the amount of
the resource she devotes to fighting (given the other player’s action).

82.1 Nash equilibrium of second-price sealed-bid auction

The action profile (vn, 0, . . . , 0, v1) is a Nash equilibrium of a second-price sealed-
bid auction, by the following argument.

• If player 1 increases her bid she wins and obtains the payoff 0, equal to her
current payoff. If she reduces her bid her payoff also remains 0.

• If player n increases her bid or reduces it to a level greater than vn then the
outcome does not change. If she reduces her bid to vn or less then she loses,
and her payoff remains 0.

• If any other player increases her bid, either the outcome remains the same or
the player wins and pays the price v1, thus obtaining a negative payoff.

83.1 Second-price sealed-bid auction with two bidders

If player 2’s bid b2 is less than v1 then any bid of b2 or more is a best response of
player 1 (she wins and pays the price b2). If player 2’s bid is equal to v1 then every
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bid of player 1 yields her the payoff zero (either she wins and pays v1, or she loses),
so every bid is a best response. If player 2’s bid b2 exceeds v1 then any bid of less
than b2 is a best response of player 1. (If she bids b2 or more she wins, but pays the
price b2 > v1, and hence obtains a negative payoff.) In summary, player 1’s best
response function is

B1(b2) =




{b1: b1 ≥ b2} if b2 < v1
{b1 : b1 ≥ 0} if b2 = v1
{b1: 0 ≤ b1 < b2} if b2 > v1.

By similar arguments, player 2’s best response function is

B2(b1) =




{b2: b2 > b1} if b1 < v2
{b2: b2 ≥ 0} if b1 = v2.
{b2: 0 ≤ b2 ≤ b1} if b1 > v2.

These best response functions are shown in Figure 39.1.

↑
b2

b1 →

v1

v2

v1v2

B1(b2)

0

↑
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v2

v1v2

B2(b1)

Figure 39.1 The players’ best response functions in a two-player second-price sealed-bid auction (Ex-
ercise 83.1). Player 1’s best response function is in the left panel; player 2’s is in the right panel. (Only
the edges marked by a black line are included.)

Superimposing the best response functions, we see that the set of Nash equi-
libria is the shaded set in Figure 40.1, namely the set of pairs (b1, b2) such that
either

b1 ≤ v2 and b2 ≥ v1

or
b1 ≥ v2, b1 ≥ b2, and b2 ≤ v1.

84.1 Nash equilibrium of first-price sealed-bid auction

The profile (b1, . . . , bn) = (v2, v2, v3, . . . , vn) is a Nash equilibrium by the following
argument.
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↑
b2

b1 →

v1

v1

v2

v20

Figure 40.1 The set of Nash equilibria of a two-player second-price sealed-bid auction (Exercise 83.1).

• If player 1 raises her bid she still wins, but pays a higher price and hence
obtains a lower payoff. If player 1 lowers her bid then she loses, and obtains
the payoff of 0.

• If any other player changes her bid to any price at most equal to v2 the out-
come does not change. If she raises her bid above v2 she wins, but obtains a
negative payoff.

85.1 First-price sealed-bid auction

A profile of bids in which the two highest bids are not the same is not a Nash
equilibrium because the player naming the highest bid can reduce her bid slightly,
continue to win, and pay a lower price.

By the argument in the text, in any equilibrium player 1 wins the object. Thus
she submits one of the highest bids.

If the highest bid is less than v2, then player 2 can increase her bid to a value
between the highest bid and v2, win, and obtain a positive payoff. Thus in an
equilibrium the highest bid is at least v2.

If the highest bid exceeds v1, player 1’s payoff is negative, and she can increase
this payoff by reducing her bid. Thus in an equilibrium the highest bid is at most
v1.

Finally, any profile (b1, . . . , bn) of bids that satisfies the conditions in the exer-
cise is a Nash equilibrium by the following argument.

• If player 1 increases her bid she continues to win, and reduces her payoff.
If player 1 decreases her bid she loses and obtains the payoff 0, which is at
most her payoff at (b1, . . . , bn).

• If any other player increases her bid she either does not affect the outcome,
or wins and obtains a negative payoff. If any other player decreases her bid
she does not affect the outcome.
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86.1 Third-price auction

a. The argument that a bid of vi weakly dominates any lower bid is the same as
for a second-price auction.

Now compare bids of bi > vi and vi. Suppose that one of the other players’
bids is between vi and bi and all the remaining bids are less than vi. If player i
bids vi she loses, and obtains the payoff of 0. If she bids bi she wins, and pays
the third highest bid, which is less than vi. Thus she is better off bidding bi
than she is bidding vi.

b. Each player’s bidding her valuation is not a Nash equilibrium because player 2
can deviate and bid more than v1 and obtain the object at the price v3 instead
of not obtaining the object.

c. Any action profile in which every player bids b, where v2 ≤ b ≤ v1 is a Nash
equilibrium. (Player 1’s changing her bid has no effect on her payoff. If any
other player raises her bid then she wins and pays b, obtaining a nonpositive
payoff; if any other player lowers her bid the outcome does not change.)

Any action profile in which player 1’s bid b1 satisfies v2 ≤ b1 ≤ v1, every
other player’s bid is at most b1, and at least two other players’ bids are at
least v2 is also a Nash equilibrium.

88.3 Lobbying as an auction

First-price auction In the action pair, each interest group’s payoff is −100. Con-
sider group A. If it raises the price it will pay for y, then the government
still chooses y, and A is worse off. If it lowers the price it will pay for y,
then the government chooses z and A’s payoff remains −100. Now suppose
it changes its bid from y to x and bids p. If p < 103, then the government
chooses z and A’s payoff remains −100. If p ≥ 103, then the government
chooses x and A’s payoff is at most −103. Group A cannot increase its pay-
off by changing its bid from y to z, for similar reasons. A similar argument
applies to group B’s bid.

Menu auction In the action pair, each group’s payoff is −3. Consider group A. If
it changes its bids then either the outcome remains x and it pays at least 3, so
that its payoff is at most −3, or the outcome becomes y and it pays at least 6,
in which case its payoff is at most −3, or the outcome becomes z and it pays
at least 0, in which case its payoff is at most −100. (Note that if it reduces its
bids for both x and y then z is chosen.) Thus no change in its bids increases
its payoff. Similar considerations apply to group B’s bid.
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87.1 Multi-unit auctions

Discriminatory auction To show that the action of bidding vi and wi is not domi-
nant for player i, we need only find actions for the other players and alterna-
tive bids for player i such that player i’s payoff is higher under the alternative
bids than it is under the vi and wi, given the other players’ actions. Suppose
that each of the other players submits two bids of 0. Then if player i submits
one bid between 0 and vi and one bid between 0 and wi she still wins two
units, and pays less than when she bids vi and wi.

Uniform-price auction Suppose that some bidder other than i submits one bid
between wi and vi and one bid of 0, and all the remaining bidders submit
two bids of 0. Then bidder i wins one unit, and pays the price wi. If she
replaces her bid of wi with a bid between 0 and wi then she pays a lower
price, and hence is better off.

Vickrey auction Suppose that player i bids vi and wi. Consider separately the
cases in which the bids of the players other than i are such that player i wins
0, 1, and 2 units.

Player i wins 0 units: In this case the second highest of the other players’
bids is at least vi, so that if player i changes her bids so that she wins
one or more units, for any unit she wins she pays at least vi. Thus no
change in her bids increases her payoff from its current value of 0 (and
some changes lower her payoff).

Player i wins 1 unit: If player i raises her bid of vi then she still wins one unit
and the price remains the same. If she lowers this bid then either she still
wins and pays the same price, or she does not win any units. If she raises
her bid of wi then either the outcome does not change, or she wins a sec-
ond unit. In the latter case the price she pays is the previously-winning
bid she beat, which is at least wi, so that her payoff either remains zero
or becomes negative.

Player i wins 2 units: Player i’s raising either of her bids has no effect on the
outcome; her lowering a bid either has no effect on the outcome or leads
her to lose rather than to win, leading her to obtain the payoff of zero.

88.1 Waiting in line

The situation is modeled by a variant of a discriminatory multi-unit auction in
which 100 units are available, and each person attaches a positive value only to
one unit and submits a bid for only one unit.

We can argue along the lines of Exercise 85.1.

• The first 100 people to arrive must do so at the same time. If not, at least one
of them could arrive a little later and still be in the first 100.
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• The first 100 people to arrive must be persons 1 through 100. Suppose, to the
contrary, that one of these people is person i with i ≥ 101, and person j with
j ≤ 100 is not in the group that arrives first. Then the common waiting time
of the first 100 must be at most v101, otherwise person i obtains a negative
payoff. But then person j can deviate and arrive slightly earlier than the
group of 100, and obtain a positive payoff.

• The common waiting time of the first 100 people must be at least v101. If not,
then person 101 could arrive slightly before the first 100 and obtain a positive
payoff.

• The common waiting time of the first 100 people must be at most v100. If not,
then person 100 obtains a negative payoff, while by arriving later her payoff
is zero.

• At least one person i with i ≥ 101 arrives at the same time as the first 100
people. If not, then any person i with i ≤ 100 can arrive slightly later and
still be one of the first 100 to arrive.

This argument shows that in a Nash equilibrium persons 1 through 100 choose
the same waiting time t∗ with v101 ≤ t∗ ≤ v100, all the remaining people choose
waiting times of at most t∗, and at least one of the remaining people chooses a
waiting time equal to t∗. Any such action profile is a Nash equilibrium: any per-
son i with i ≤ 100 obtains a smaller payoff if she arrives earlier and a payoff of
zero if she arrives later. Any person i with i ≥ 101 obtains a negative payoff if she
arrives before the first 100 people and a payoff of zero if she arrives at or after the
first 100 people.

Thus the set of Nash equilibria is the set of action profiles (t1, . . . , t200) in which
t1 = · · · = t100, this common waiting time, say t∗, satisfies v101 ≤ t∗ ≤ v100, ti ≥ t∗

for all i ≥ 101, and tj = t∗ for some j ≥ 101.
When goods are rationed by line-ups in the world, people in general do not all

arrive at the same time. The feature missing from the model that seems to explain
the dispersion in arrival times is uncertainty on the part of each player about the
other players’ valuations.

88.2 Internet pricing

The situation may be modeled as a multi-unit auction in which k units are avail-
able, and each player attaches a positive value to only one unit and submits a bid
for only one unit. The k highest bids win, and each winner pays the (k + 1)st
highest bid.

By a variant of the argument for a second-price auction, in which “highest of
the other players’ bids” is replaced by “highest rejected bid”, each player’s action
of bidding her value is weakly dominates all her other actions.
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94.3 Alternative standards of care under negligence with contributory negligence

First consider the case in which X1 = â1 and X2 ≤ â2. The pair (â1, â2) is a Nash
equilibrium by the following argument.

If a2 = â2 then the victim’s level of care is sufficient (at least X2), so that the
injurer’s payoff is given by (91.1) in the text. Thus the argument that the injurer’s
action â1 is a best response to â2 is exactly the same as the argument for the case
X2 = â2 in the text.

Since X1 is the same as before, the victim’s payoff is the same also, so that by
the argument in the text the victim’s best response to â1 is â2. Thus (â1, â2) is a
Nash equilibrium.

To show that (â1, â2) is the only Nash equilibrium of the game, we study the
players’ best response functions. First consider the injurer’s best response func-
tion. As in the text, we split the analysis into three cases.

a2 < X2: In this case the injurer does not have to pay any compensation, re-
gardless of her level of care; her payoff is −a1, so that her best response is
a1 = 0.

a2 = X2: In this case the injurer’s best response is â1, as argued when showing
that (â1, â2) is a Nash equilibrium.

a2 > X2: In this case the injurer’s best response is at most â1, since her payoff
is equal to −a1 for larger values of a1.

Thus the injurer’s best response takes a form like that shown in the left panel
of Figure 44.1. (In fact, b1(a2) = â1 for X2 ≤ a2 ≤ â2, but the analysis depends only
on the fact that b1(a2) ≤ â1 for a2 > X2.)

0

â2

X2

â1 a1 →

↑
a2 b1(a2)

0

X2

â1 a1 →

↑
a2

?b2(a1)

Figure 44.1 The players’ best response functions under the rule of negligence with contributory negli-
gence when X1 = â1 and X2 = â2. Left panel: the injurer’s best response function b1. Right panel: the
victim’s best response function b2. (The position of the victim’s best response function for a1 > â1 is
not significant, and is not determined in the solution.)

Now consider the victim’s best response function. The victim’s payoff function
is

u2(a1, a2) =
{−a2 if a1 < â1 and a2 ≥ X2
−a2 − L(a1, a2) if a1 ≥ â1 or a2 < X2.



Chapter 3. Nash Equilibrium: Illustrations 45

As before, for a1 < â1 we have −a2 − L(a1, a2) < −â2 for all a2, so that the victim’s
best response is X2. As in the text, the nature of the victim’s best responses to levels
of care a1 for which a1 > â1 are not significant.

Combining the two best response functions we see that (â1, â2) is the unique
Nash equilibrium of the game.

Now consider the case in which X1 = M and a2 = â2, where M ≥ â1. The
injurer’s payoff is

u1(a1, a2) =
{−a1 − L(a1, a2) if a1 < M and a2 ≥ â2
−a1 if a1 ≥ M or a2 < â2.

Now, the maximizer of −a1 − L(a1, â2) is â1 (see the argument following (91.1) in
the text), so that if M is large enough then the injurer’s best response to â2 is â1.
As before, if a2 < â2 then the injurer’s best response is 0, and if a2 > â2 then the
injurer’s payoff decreases for a1 > M, so that her best response is less than M. The
injurer’s best response function is shown in the left panel of Figure 45.1.

0

â2

â1 M a1 →

↑
a2 b1(a2)

0

â2

â1 M a1 →

↑
a2

?b2(a1)

Figure 45.1 The players’ best response functions under the rule of negligence with contributory negli-
gence when (X1, X2) = (M, â2), with M ≥ â1. Left panel: the injurer’s best response function b1. Right
panel: the victim’s best response function b2. (The position of the victim’s best response function for
a1 > M is not significant, and is not determined in the text.)

The victim’s payoff is

u2(a1, a2) =
{−a2 if a1 < M and a2 ≥ â2
−a2 − L(a1, a2) if a1 ≥ M or a2 < â2.

If a1 ≤ â1 then the victim’s best response is â2 by the same argument as the one in
the text. If a1 is such that â1 < a1 < M then the victim’s best response is at most
â2 (since her payoff is decreasing for larger values of a2). This information about
the victim’s best response function is recorded in the right panel of Figure 45.1; it
is sufficient to deduce that (â1, â2) is the unique Nash equilibrium of the game.

94.4 Equilibrium under strict liability

In this case the injurer’s payoff is −a1 − L(a1, a2) and the victim’s is −a2 for all
(a1, a2). Thus the victim’s optimal action is 0, regardless of the injurer’s action.
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(The victim takes no care, given that, regardless of her level of care, the injurer is
obliged to compensate her for any loss.) Thus in a Nash equilibrium the injurer
chooses the level of care that maximizes −a1 − L(a1, 0) and the victim chooses
a2 = 0.

If the function −a1 − L(a1, 0) has a unique maximizer then the game has a
unique Nash equilibrium; if there are multiple maximizers then the game has
many Nash equilibria, though the players’ payoffs are the same in all the equi-
libria. The relation between â1 and the equilibrium value of a1 depends on the
character of L(a1, a2). If, for example, L decreases more sharply as a1 increases
when a2 = 0 than when a2 is positive, the equilibrium value of a1 exceeds â1.
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4 Mixed strategy equilibrium

99.1 Variant of Matching Pennies

The analysis is the same as for Matching Pennies. There is a unique steady state, in
which each player chooses each action with probability 1

2 .

104.1 Extensions of BoS with vNM preferences

In the first case, when player 1 is indifferent between going to her less preferred
concert in the company of player 2 and the lottery in which with probability 1

2 she
and player 2 go to different concerts and with probability 1

2 they both go to her
more preferred concert, the Bernoulli payoffs that represent her preferences satisfy
the condition

u1(S, S) = 1
2 u1(S, B) + 1

2 u1(B, B).

If we choose u1(S, B) = 0 and u1(B, B) = 2, then u1(S, S) = 1. Similarly, for
player 2 we can set u2(B, S) = 0, u2(S, S) = 2, and u2(B, B) = 1. Thus the Bernoulli
payoffs in the left panel of Figure 47.1 are consistent with the players’ preferences.

In the second case, when player 1 is indifferent between going to her less pre-
ferred concert in the company of player 2 and the lottery in which with probabil-
ity 3

4 she and player 2 go to different concerts and with probability 1
4 they both go

to her more preferred concert, the Bernoulli payoffs that represent her preferences
satisfy the condition

u1(S, S) = 3
4 u1(S, B) + 1

4 u1(B, B).

If we choose u1(S, B) = 0 and u1(B, B) = 2 (as before), then u1(S, S) = 1
2 . Similarly,

for player 2 we can set u2(B, S) = 0, u2(S, S) = 2, and u2(B, B) = 1
2 . Thus the

Bernoulli payoffs in the right panel of Figure 47.1 are consistent with the players’
preferences.

Bach Stravinsky
Bach 2, 1 0, 0

Stravinsky 0, 0 1, 2

Bach Stravinsky
Bach 2, 1

2 0, 0
Stravinsky 0, 0 1

2 , 2

Figure 47.1 The Bernoulli payoffs for two extensions of BoS.

47



48 Chapter 4. Mixed strategy equilibrium

107.1 Expected payoffs

For BoS, player 1’s expected payoff is shown in Figure 48.1.

↑
Player 1’s

expected payoff
2

q = 1

1
2

1
q = 1

2

1

q = 0

0 1p →

Figure 48.1 Player 1’s expected payoff as a function of the probability p that she assigns to B in BoS,
when the probability q that player 2 assigns to B is 0, 1

2 , and 1.

For the game in Figure 19.1 in the book, player 1’s expected payoff is shown in
Figure 48.2.

↑
Player 1’s

expected payoff
3

2
q = 1

3
2 q = 1

21

q = 0
0 1p →

Figure 48.2 Player 1’s expected payoff as a function of the probability p that she assigns to Refrain in
the game in Figure 19.1 in the book, when the probability q that player 2 assigns to Refrain is 0, 1

2 , and
1.

108.1 Examples of best responses

For BoS: for q = 0 player 1’s unique best response is p = 0 and for q = 1
2 and q = 1

her unique best response is p = 1. For the game in Figure 19.1: for q = 0 player 1’s
unique best response is p = 0, for q = 1

2 her set of best responses is the set of all her
mixed strategies (all values of p), and for q = 1 her unique best response is p = 1.
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111.1 Mixed strategy equilibrium of Hawk–Dove

Denote by ui a payoff function whose expected value represents player i’s prefer-
ences. The conditions in the problem imply that for player 1 we have

u1(Passive, Passive) = 1
2 u1(Aggressive, Aggressive) + 1

2 u1(Aggressive, Passive)

and

u1(Passive, Aggressive) = 2
3 u1(Aggressive, Aggressive) + 1

3 u1(Passive, Passive).

Given u1(Aggressive, Aggressive) = 0 and u1(Passive, Aggressive = 1, we have

u1(Passive, Passive) = 1
2 u1(Aggressive, Passive)

and
1 = 1

3 u1(Passive, Passive),

so that
u1(Passive, Passive) = 3 and u1(Aggressive, Passive) = 6.

Similarly,

u2(Passive, Passive) = 3 and u2(Passive, Aggressive) = 6.

Thus the game is given in the left panel of Figure 49.1. The players’ best re-
sponse functions are shown in the right panel. The game has three mixed strategy
Nash equilibria: ((0, 1), (1, 0)), (( 3

4 , 1
4 ), ( 3

4 , 1
4 )), and ((1, 0), (0, 1)).

Aggressive Passive
Aggressive 0, 0 6, 1

Passive 1, 6 3, 3

0 3
4

1
p →

3
4

1↑
q

B1

B2

Figure 49.1 An extension of Hawk–Dove (left panel) and the players’ best response functions when
randomization is allowed in this game (right panel). The probability that player 1 assigns to Aggressive
is p and the probability that player 2 assigns to Aggressive is q. The disks indicate the Nash equilibria
(two pure, one mixed).
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111.2 Games with mixed strategy equilibria

The best response functions for the left game are shown in the left panel of Fig-
ure 50.1. We see that the game has a unique mixed strategy Nash equilibrium
(( 1

4 , 3
4 ), ( 2

3 , 1
3 )). The best response functions for the right game are shown in the

right panel of Figure 50.1. We see that the mixed strategy Nash equilibria are
((0, 1), (1, 0)) and any ((p, 1 − p), (0, 1)) with 1

2 ≤ p ≤ 1.

0 1
4

1
p →

2
3

1↑
q

B1

B2

0 1
2

1
p →

1↑
q

B1 B2

Figure 50.1 The players’ best response functions in the left game (left panel) and right game (right
panel) in Exercise 111.2. The probability that player 1 assigns to T is p and the probability that player 2
assigns to L is q. The disks and the heavy line indicate Nash equilibria.

112.1 A coordination game

The best response functions are shown in Figure 51.1. From the figure we see that
the game has three mixed strategy Nash equilibria, ((1, 0), (1, 0)) (the pure strat-
egy equilibrium (No effort, No effort)), ((0, 1), (0, 1)) (the pure strategy equilibrium
(Effort, Effort)), and ((1 − c, c), (1 − c, c)).

An increase in c has no effect on the pure strategy equilibria, and increases the
probability that each player chooses to exert effort in the mixed strategy equilib-
rium (because this probability is precisely c).

The pure Nash equilibria are not affected by the cost of effort because a change
in c has no effect on the players’ rankings of the four outcomes. An increase in c
reduces a player’s payoff to the action Effort, given the other player’s mixed strat-
egy; the probability the other player assigns to Effort must increase in order to keep
the player indifferent between No effort and Effort, as required in an equilibrium.

112.2 Swimming with sharks

As argued in the question, if you swim today, your expected payoff is −πc + 2(1−
π), regardless of your friend’s action. If you do not swim today and your friend
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0 1 − c 1
p →

1 − c

1↑
q

B1

B2

Figure 51.1 The players’ best response functions in the coordination game in Exercise 112.1. The prob-
ability that player 1 assigns to No effort is p and the probability that player 2 assigns to No effort is q. The
disks indicate the Nash equilibria (two pure, one mixed).

does, then with probability π your friend is attacked and you do not swim to-
morrow, and with probability 1 − π your friend is not attacked and you do swim
tomorrow. Thus your expected payoff in this case is π · 0 + (1 − π) · 1 = 1 − π.
If neither of you swims today then your expected payoff if you swim tomorrow
is π(−c) + (1 − π) · 1 = −πc + 1 − π; if this is negative you prefer to stay on
the beach tomorrow, getting a payoff of 0, and if it is positive you prefer to swim
tomorrow, getting a payoff of −πc + 1 − π. The game is given in Figure 51.2.

Swim today Wait
Swim today −πc + 2(1 − π), −πc + 2(1 − π) −πc + 2(1 − π), 1 − π

Wait 1 − π, −πc + 2(1 − π) max{0, −πc + 1 − π}, max{0, −πc + 1 − π}

Figure 51.2 Swimming with sharks.

To find the mixed strategy Nash equilibria, first note that if −πc + 1 − π > 0, or
c < (1 − π)/π, then Swim today is the best response to both Swim today and Wait.
Thus in this case there is a unique mixed strategy Nash equilibrium, in which both
players choose Swim today.

At the other extreme, if −πc + 2(1 − π) < 0, or c > 2(1 − π)/π, then Wait is the
best response to both Swim today and Wait. Thus in this case there is a unique mixed
strategy Nash equilibrium, in which neither of you swims today, and consequently
neither of you swims tomorrow.

In the intermediate case in which 0 < −πc + 2(1 − π) < 1 − π, or (1 − π)/π <

c < 2(1 − π)/π, the best response to Swim today is Wait and the best response to
Wait is Swim today. Denoting by q the probability that player 2 chooses Swim today,
player 1’s expected payoff to Swim today is −πc + 2(1−π) and her expected payoff
to Wait is q(1 − π). (Because −πc + 2(1 − π) < 1 − π, we have −πc + 1 − π < 0,
so that each player’s payoff if both players Wait is 0.) Thus player 1’s expected
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payoffs to her two actions are equal if and only if

−πc + 2(1 − π) = q(1 − π),

or q = [−πc + 2(1 − π)]/(1 − π). The same calculation implies that player 2’s
expected payoffs to her two actions are equal if and only if the probability that
player 1 assigns to Swim today is [−πc + 2(1 − π)]/(1 − π) = 2 − πc/(1 − π).

We conclude that if (1 − π)/π < c < 2(1 − π)/π then the game has a unique
mixed strategy Nash equilibrium, in which each person swims today with proba-
bility 2 − πc/(1 − π).

If c = (1 − π)/π the payoffs simplify to those given in the left panel of Fig-
ure 52.1. The set of mixed strategy Nash equilibria in this case is the set of all
mixed strategy pairs ((p, 1 − p), (q, 1 − q)) for which either p = 1 or q = 1. If
c = 2(1−π)/π the payoffs simplify to those given in the right panel of Figure 52.1.
The set of mixed strategy Nash equilibria in this case is the set of all mixed strategy
pairs ((p, 1 − p), (q, 1 − q)) for which either p = 0 or q = 0.

Swim Wait
Swim 1 − π, 1 − π 1 − π, 1 − π

Wait 1 − π, 1 − π 0, 0

Swim Wait
Swim 0, 0 0, 1 − π

Wait 1 − π, 0 0, 0

Figure 52.1 The game if Figure 51.2 for c = (1 − π)/π (left panel) and c = 2(1 − π)/π (right panel).

If you were alone your expected payoff to swimming on the first day would
be −πc + 2(1 − π); your expected payoff to staying out of the water on the first
day and acting optimally on the second day would be max{0, −πc + 1 − π}. Thus
if −πc + 2(1 − π) > 0, or c < 2(1 − π)/π, you swim on the first day (and stay
out of the water on the second day if you get attacked on the first day), and if
c > 2(1 − π)/π you stay out of the water on both days. In the presence of your
friend, you also swim on the first day only if c < (1 − π)/π. If (1 − π)/π < c <

2(1 − π)/π you do not swim for sure on the first day as you would if you were
alone, but rather swim with probability less than one. That is, the presence of your
friend decreases the probability of your swimming on the first day when c lies in
this range. (For other values of c your decision is the same whether or not you are
alone.)

115.1 Choosing numbers

a. To show that the pair of mixed strategies in the question is a mixed strategy
equilibrium, it suffices to verify the conditions in Proposition 113.2. Thus,
given that each player’s strategy specifies a positive probability for every
action, it suffices to show that each action of each player yields the same
expected payoff. Player 1’s expected payoff to each pure strategy is 1/K,
because with probability 1/K player 2 chooses the same number, and with
probability 1 − 1/K player 2 chooses a different number. Similarly, player 2’s
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expected payoff to each pure strategy is −1/K, because with probability 1/K
player 1 chooses the same number, and with probability 1 − 1/K player 2
chooses a different number. Thus the pair of strategies is a mixed strategy
Nash equilibrium.

b. Let (p∗, q∗) be a mixed strategy equilibrium, where p∗ and q∗ are vectors,
the jth components of which are the probabilities assigned to the integer j
by each player. Given that player 2 uses the mixed strategy q∗, player 1’s
expected payoff if she chooses the number k is q∗k . Hence if p∗k > 0 then (by
the first condition in Proposition 113.2) we need q∗k ≥ q∗j for all j, so that, in
particular, q∗k > 0 (q∗j cannot be zero for all j!). But player 2’s expected payoff
if she chooses the number k is −pk, so given q∗k > 0 we need p∗k ≤ p∗j for all j
(again by the first condition in Proposition 113.2), and, in particular, p∗k ≤ 1/K
(p∗j cannot exceed 1/K for all j!). We conclude that any probability p∗k that is
positive must be at most 1/K. The only possibility is that p∗k = 1/K for all k.
A similar argument implies that q∗k = 1/K for all k.

115.2 Silverman’s game

The game has no pure strategy Nash equilibrium in which the players’ integers are
the same because either player can increase her payoff from 0 to 1 by naming the
next higher integer. It has no Nash equilibrium in which the players’ integers are
different because the losing player (the player whose payoff is −1) can increase her
payoff to 1 by changing her integer to be one more than the other player’s integer.
Thus the game has no pure strategy Nash equilibrium.

To show that the pair of mixed strategies in the question is a mixed strategy
equilibrium, it suffices to verify the conditions in Proposition 113.2. That is, it suf-
fices to show that for each player, each action to which the player’s mixed strategy
assigns positive probability yields the player the same expected payoff, and every
other action yields her a payoff at most as large. The game is symmetric and the
players’ strategies are the same, so we need to make an argument only for one
player.

Suppose player 2 uses the mixed strategy in the question. Player 1’s expected
payoffs to her actions are as follows:

1: 1
3 · 0 + 1

3 · (−1) + 1
3 · 1 = 0.

2: 1
3 · 1 + 1

3 · 0 + 1
3 · (−1) = 0.

3 or 4: 1
3 · (−1) + 1

3 · 1 + 1
3 · (−1) = − 1

3 .

5: 1
3 · (−1) + 1

3 · 1 + 1
3 · 0 = 0.

6–14: 1
3 · (−1) + 1

3 · (−1) + 1
3 · 1 = − 1

3 .

15 or more: 1
3 · (−1) + 1

3 · (−1) + 1
3 · (−1) = −1.

Thus the pair of strategies is a mixed strategy equilibrium.
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115.3 Voter participation

I verify that the conditions in Proposition 113.2 are satisfied.
First consider a supporter of candidate A. If she votes then candidate A ties

if all k − 1 of her comrades vote, an event with probability pk−1, and otherwise
candidate A loses. Thus her expected payoff is

pk−1 − c.

If she abstains, then candidate A surely loses, so her payoff is 0. Thus in an equi-
librium in which 0 < p < 1 the first condition in Proposition 113.2 implies that
pk−1 = c, or

p = c1/(k−1).

Now consider a supporter of candidate B who votes. With probability pk all of
the supporters of candidate A vote, in which case the election is a tie; with proba-
bility 1 − pk at least one of the supporters of candidate A does not vote, in which
case candidate B wins. Thus the expected payoff of a supporter of candidate B
who votes is

pk + 2(1 − pk) − c.

If the supporter of candidate B switches to abstaining, then

• candidate B loses if all supporters of candidate A vote, an event with proba-
bility pk

• candidate B ties if exactly k− 1 supporters of candidate A vote, an event with
probability kpk−1(1 − p)

• candidate B wins if fewer than k− 1 supporters of candidate A vote, an event
with probability 1 − pk − kpk−1(1 − p).

Thus a supporter of candidate B who switches from voting to abstaining obtains
an expected payoff of

kpk−1(1 − p) + 2(1 − pk − kpk−1(1 − p)) = 2 − (2 − k)pk − kpk−1.

Hence in order for it to be optimal for such a citizen to vote (i.e. in order for the
second condition in Proposition 113.2 to be satisfied), we need

pk + 2(1 − pk) − c ≥ 2 − (2 − k)pk − kpk−1,

or
kpk−1(1 − p) + pk ≥ c.

Finally, consider a supporter of candidate B who abstains. With probability pk

all the supporters of candidate A vote, in which case the candidates tie; with prob-
ability 1 − pk at least one of the supporters of candidate A does not vote, in which
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case candidate B wins. Thus the expected payoff of a supporter of candidate B
who abstains is

pk + 2(1 − pk).

If this citizen instead votes, candidate B surely wins (she gets k + 1 votes, while
candidate A gets at most k). Thus the citizen’s expected payoff is

2 − c.

Hence in order for the citizen to wish to abstain, we need

pk + 2(1 − pk) ≥ 2 − c

or
c ≥ pk.

In summary, for equilibrium we need p = c1/(k−1) and

pk ≤ c ≤ kpk−1(1 − p) + pk.

Given p = c1/(k−1), c = pk−1, so that the two inequalities are satisfied. Thus
p = c1/(k−1) defines an equilibrium.

As c increases, the probability p, and hence the expected number of voters,
increases.

115.4 Defending territory

(The solution to this problem, which corrects an error in Shubik (1982, 226), is due
to Nick Vriend.) The game is shown in Figure 55.1, where each action (x, y) gives
the number x of divisions allocated to the first pass and the number y allocated to
the second pass.

General A

General B
(2, 0) (1, 1) (0, 2)

(3, 0) 1, −1 −1, 1 −1, 1
(2, 1) 1, −1 1, −1 −1, 1
(1, 2) −1, 1 1, −1 1, −1
(0, 3) −1, 1 −1, 1 1, −1

Figure 55.1 The game in Exercise 115.4.

Denote a mixed strategy of A by (p1, p2, p3, p4) and a mixed strategy of B by
(q1, q2, q3).

First I argue that in every equilibrium q2 = 0. If q2 > 0 then A’s expected
payoff to (3, 0) is less than her expected payoff to (2, 1), and her expected payoff
to (0, 3) is less than her expected payoff to (1, 2), so that p1 = p4 = 0. But then B’s
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expected payoff to at least one of her actions (2, 0) and (0, 2) exceeds her expected
payoff to (1, 1), contradicting q2 > 0.

Now I argue that in every equilibrium q1 = q3 = 0. Given q2 = 0 we have
q3 = 1 − q1, and A’s payoffs are 2q1 − 1 to (3, 0) and to (2, 1), and 1 − 2q1 to (1, 2)
and (0, 3). Thus if q1 < 1

2 then in any equilibrium we have p1 = p2 = 0. Then B’s
action (2, 0) yields her a higher payoff than does (0, 2), so that in any equilibrium
q1 = 1. But then A’s actions (3, 0) and (2, 1) both yield higher payoffs than do
(1, 2) and (0, 3), contradicting p1 = p2 = 0. Similarly, q1 > 1

2 is inconsistent with
equilibrium. Hence in any equilibrium q1 = q3 = 1

2 .
Now, given q1 = q3 = 1

2 , A’s payoffs to her four actions are all equal. Thus
((p1, p2, p3, p4), (q1, q2, q3)) is a Nash equilibrium if and only if B’s payoff to (2, 0)
is the same as her payoff to (0, 2), and this payoff is at least her payoff to (1, 1).
The first condition is −p1 − p2 + p3 + p4 = p1 + p2 − p3 − p4, or p1 + p2 = p3 +
p4 = 1

2 . Thus B’s payoff to (2, 0) and to (0, 2) is zero, and the second condition is
p1 − p2 − p3 + p4 ≤ 0, or p1 + p4 ≤ 1

2 (using p1 + p2 + p3 + p4 = 1).
We conclude that the set of mixed strategy Nash equilibria of the game is the

set of strategy pairs ((p1, 1
2 − p1, 1

2 − p4, p4), ( 1
2 , 0, 1

2 )) with p1 + p4 ≤ 1
2 .

In this equilibrium general A splits her resources between the two passes with
probability at least 1

2 (p2 + p3 = 1
2 − p1 + 1

2 − p4 = 1 − (p1 + p4) ≥ 1
2 ) while

general B concentrates all of her resources in one or other of the passes (with equal
probability).

118.1 Strictly dominated actions

Denote the probability that player 1 assigns to T by p and the probability she as-
signs to M by r (so that the probability she assigns to B is 1 − p − r). A mixed
strategy of player 1 strictly dominates T if and only if

p + 4r > 1 and p + 3(1 − p − r) > 1,

or if and only if 1 − 4r < p < 1 − 3
2 r. For example, the mixed strategies ( 1

4 , 1
4 , 1

2 )
and (0, 1

4 , 3
4 ) both strictly dominate T.

119.1 Eliminating dominated actions when finding equilibria

Player 2’s action L is strictly dominated by the mixed strategy that assigns proba-
bility 1

4 to M and probability 3
4 to R (for example), so that we can ignore the action

L. The players’ best response functions in the reduced game in which player 2’s
actions are M and R are shown in Figure 57.1. We see that the game has a single
mixed strategy Nash equilibrium, namely (( 2

3 , 1
3 ), (0, 1

2 , 1
2 )).

124.1 Equilibrium in the expert diagnosis game

When E = rE′ + (1 − r)I ′ the consumer is indifferent between her two actions
when p = 0, so that her best response function has a vertical segment at p = 0.
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0 2
3

1
p →

1
2

1↑
q

B1

B2

Figure 57.1 The players’ best response functions in the game in Figure 119.1 after player 2’s action L
has been eliminated. The probability assigned by player 1 to T is p and the probability assigned by
player 2 to M is q. The best response function of player 1 is black and that of player 2 is gray. The disk
indicates the unique Nash equilibrium.

Referring to Figure 123.1 in the text, we see that the set of mixed strategy Nash
equilibria correspond to p = 0 and π/π′ ≤ q ≤ 1.

125.1 Incompetent experts

The payoffs are given in Figure 57.2. (The actions are the same as those in the game
in which every expert is fully competent.)

A R
H π, −rE − (1 − r)[sI + (1 − s)E] (1 − r)sπ, −rE′ − (1 − r)[sI + (1 − s)I ′]
D rπ + (1 − r)[sπ′ + (1 − s)π], −E 0, −rE′ − (1 − r)I ′

Figure 57.2 A game between a consumer with a problem and a not-fully-competent expert.

Following the method in the text for the case s = 1, we find that in the case
E > rE′ + (1 − r)I ′ there is a unique mixed strategy equilibrium, in which the
probability the expert’s strategy assigns to H is

p∗ =
E − [rE′ + (1 − r)I ′]

(1 − r)s(E − I ′)

and the probability the consumer’s strategy assigns to A is

q∗ =
π

π′ .

We see that q∗ is independent of s. That is, the degree of competence has no
effect on consumer behavior: consumers do not become more, or less, wary. The
fraction of experts who are honest is a decreasing function of s, so that greater
incompetence (smaller s) leads to a higher fraction of honest experts: incompetence
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breeds honesty! The intuition is that when experts become less competent, the
potential gain from ignoring their advice increases (since I ′ < E), so that they need
to be more honest to attract business.

125.2 Choosing a seller

The game is given in Figure 58.1.

Buyer 1

Buyer 2
Seller 1 Seller 2

Seller 1 1
2 (1 − p1), 1

2 (1 − p1) 1 − p1, 1 − p2

Seller 2 1 − p2, 1 − p1
1
2 (1 − p2), 1

2 (1 − p2)

Figure 58.1 The game in Exercise 125.2.

The character of its equilibria depend on the value of (p1, p2). If p1 = p2 = 1
every pair ((π1, 1 − π1), ((π2, 1 − π2)) is a mixed strategy equilibrium (where πi
is the probability of buyer i’s choosing seller 1) is a equilibrium. Now suppose that
at least one price is less than 1.

• If 1
2 (1 − p2) > 1 − p1 (i.e. p2 < 2p1 − 1), each buyer’s action of approaching

seller 2 strictly dominates her action of approaching seller 1. Thus the game
has a unique mixed strategy equilibrium, in which both buyers use a pure
strategy: each approaches seller 2.

• If 1
2 (1 − p2) = 1 − p1 (i.e. p2 = 2p1 − 1), every mixed strategy is a best re-

sponse of a buyer to the other buyer’s approaching seller 2, and the pure
strategy of approaching seller 2 is the unique best response to the other
buyer’s using any other strategy. Thus ((π1, 1−π1), ((π2, 1−π2)) is a mixed
strategy equilibrium if and only if either π1 = 0 or π2 = 0.

• If 1
2 (1− p1) > 1− p2 (i.e. p2 > 1

2 (1 + p1)), each buyer’s action of approaching
seller 1 strictly dominates her action of approaching seller 2. Thus the game
has a unique mixed strategy equilibrium, in which both buyers use a pure
strategy: each approaches seller 1.

• If 1
2 (1 − p1) = 1 − p2 (i.e. p2 = 1

2 (1 + p1)), every mixed strategy is a best
response of a buyer to the other buyer’s strategy of approaching seller 1, and
the pure strategy of approaching seller 1 is the unique best response to any
other strategy of the other buyer. Thus ((π1, 1−π1), ((π2, 1−π2)) is a mixed
strategy equilibrium if and only if either π1 = 1 or π2 = 1.

• For the case 2p1 − 1 < p2 < 1
2 (1 + p1), a buyer’s expected payoff to choosing

each seller is the same when

1
2 (1 − p1)π + (1 − p1)(1 − π) = (1 − p2)π + 1

2 (1 − p2)(1 − π),
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where π is the probability that the other buyer chooses seller 1, or when

π =
1 − 2p1 + p2

2 − p1 − p2
.

The players’ best response functions are shown in Figure 59.1. We see that
the game has three mixed strategy equilibria: two pure equilibria in which
the buyers approach different sellers, and one mixed strategy equilibrium in
which each buyer approaches seller 1 with probability (1 − 2p1 + p2)/(2 −
p1 − p2).

0 1−2p1+p2
2−p1−p2

1
π1 →

1−2p1+p2
2−p1−p2

1↑
π2

Buyer 1

Buyer 2

Figure 59.1 The players’ best response functions in the game in Exercise 125.2. The probability with
which buyer i approaches seller 1 is πi.

The three main cases are illustrated in Figure 60.1. If the prices are relatively
close, there are two pure strategy equilibria, in which the buyers choose differ-
ent sellers, and a symmetric mixed strategy equilibrium in which both buyers
approach seller 1 with the same probability. If seller 2’s price is high relative to
seller 1’s, there is a unique equilibrium, in which both buyers approach seller 1. If
seller 1’s price is high relative to seller 2’s, there is a unique equilibrium, in which
both buyers approach seller 2.

127.2 Approaching cars

The game has three Nash equilibria: (Stop, Continue), (Continue, Stop), and a mixed
strategy equilibrium in which each player chooses Stop with probability

1 − ε

2 − ε
.

Only the mixed strategy equilibrium is symmetric; the expected payoff of each
player in this equilibrium is 2(1 − ε)/(2 − ε).
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0

1

1p1 →

↑
p2

Pure equilibrium:
both buyers approach

seller 1

Pure equilibrium:
both buyers approach

seller 2

Two pure equilibria
(buyers approach different sellers)

and one symmetric
mixed equilibrium

2p
1
−

1

1
2
(1 + p 1)

Figure 60.1 Equilibria of the game in Exercise 125.2 as a function of the sellers’ prices.

The modified game also has a unique symmetric equilibrium. In this equilib-
rium each player chooses Stop with probability

1 − ε + δ

2 − ε

if δ ≤ 1 and chooses Stop with probability 1 if δ ≥ 1. The expected payoff of each
player in this equilibrium is (2(1 − ε) + εδ)/(2 − ε) if δ ≤ 1 and 1 if δ ≥ 1, both of
which are larger than her payoff in the original game (given δ > 0).

After reeducation, each driver’s payoffs to stopping stay the same, while those
to continuing fall. Thus if the behavioral norm (the probability of stopping) were
to remain the same, every driver would find it beneficial to stop. Equilibrium is
restored only if enough drivers switch to Stop, raising everyone’s expected pay-
off. (Each player’s expected payoff in a mixed strategy Nash equilibrium is her
expected payoff to choosing Stop, which is p + (1 − ε)(1 − p), where p is the prob-
ability of a player’s choosing Stop.)

128.1 Bargaining

The game is given in Figure 61.1.
By inspection it has a single symmetric pure strategy Nash equilibrium, (10, 10).
Now consider situations in which the common mixed strategy assigns positive

probability to two actions. Suppose that player 2 assigns positive probability only
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0 2 4 6 8 10
0 5, 5 4, 6 3, 7 2, 8 1, 9 0, 10
2 6, 4 5, 5 4, 6 3, 7 2, 8 0, 0
4 7, 3 6, 4 5, 5 4, 6 0, 0 0, 0
6 8, 2 7, 3 6, 4 0, 0 0, 0 0, 0
8 9, 1 8, 2 0, 0 0, 0 0, 0 0, 0

10 10, 0 0, 0 0, 0 0, 0 0, 0 0, 0

Figure 61.1 A bargaining game.

to 0 and 2. Then player 1’s payoff to her action 4 exceeds her payoff to either 0 or
2. Thus there is no symmetric equilibrium in which the actions assigned positive
probability are 0 and 2. By a similar argument we can rule out equilibria in which
the actions assigned positive probability are any pair except 2 and 8, or 4 and 6.

If the actions to which player 2 assigns positive probability are 2 and 8 then
player 1’s expected payoffs to 2 and 8 are the same if the probability player 2 as-
signs to 2 is 2

5 (and the probability she assigns to 8 is 3
5 ). Given these probabilities,

player 1’s expected payoff to her actions 2 and 8 is 16
5 , and her expected payoff to

every other action is less than 16
5 . Thus the pair of mixed strategies in which every

player assigns probability 2
5 to 2 and 3

5 to 8 is a symmetric mixed strategy Nash
equilibrium.

Similarly, the game has a symmetric mixed strategy equilibrium (α∗, α∗) in
which α∗ assigns probability 4

5 to the demand of 4 and probability 1
5 to the demand

of 6.
In summary, the game has three symmetric mixed strategy Nash equilibria in

which each player’s strategy assigns positive probability to at most two actions:
one in which probability 1 is assigned to 10, one in which probability 2

5 is assigned
to 2 and probability 3

5 is assigned to 8, and one in which probability 4
5 is assigned

to 4 and probability 1
5 is assigned to 6.

130.1 Contributing to a public good

In a mixed strategy equilibrium each player obtains the same expected payoff
whether or not she contributes. A player’s contribution makes a difference to the
outcome only if exactly k − 1 of the other players contribute. Thus the difference
between the expected benefit of contributing and that of not contributing is

vQn−1,k−1(p) − c,

which must be 0 in a mixed strategy equilibrium.
For v = 1, n = 4, k = 2, and c = 3

8 this equilibrium condition is

Q3,1(p) = 3
8 .
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Now, Q3,1(p) = 3p(1 − p)2, so an equilibrium value of p satisfies

3p(1 − p)2 = 3
8 ,

or
p3 − 2p2 + p − 1

8 = 0,

or
(p − 1

2 )(p2 − 3
2 p + 1

4 ) = 0.

Thus p = 1
2 or p = 3

4 − 1
2

√
5
4 ≈ 0.19. (The other root of the quadratic is greater

than one, and thus not meaningful as a solution of the problem.)
We conclude that the game has two symmetric mixed strategy Nash equilibria:

one in which the common probability is 1
2 and one in which this probability is

3
4 − 1

2

√
5
4 .

133.1 Best response dynamics in Cournot’s duopoly game

The best response functions of both firms are the same, so if the firms’ outputs are
initially the same, they are the same in every period: qt

1 = qt
2 for every t. For each

period t, we thus have
qt

i = 1
2 (α − c − qt

i).

Given that q1
i = 0 for i = 1, 2, solving this first-order difference equation we have

qt
i = 1

3 (α − c)[1 − (− 1
2 )t−1]

for each period t. When t is large, qt
i is close to 1

3 (α − c), a firm’s equilibrium
output.

In the first few periods, these outputs are 0, 1
2 (α − c), 1

4 (α − c), 3
8 (α − c), 5

16 (α −
c).

133.2 Best response dynamics in Bertrand’s duopoly game

If pi > c + 1 then firm j has a unique best response, equal to the lesser of pi − 1
and the monopoly price. Thus if both prices initially exceed c + 1 then for every
period t in which at least one price exceeds c + 1 the maximal price in period t + 1
is (i) less than the maximal price in period t and (ii) at least c + 1. Thus the process
converges to the Nash equilibrium (c + 1, c + 1).

If pi = c then all prices pj ≥ c are best responses. Thus if the pair of prices is ini-
tially (c, c), many subsequent sequences of prices are consistent with best response
dynamics. We can divide the sequences into three cases.

• Both prices are equal to c in every subsequent period.

• In some period both prices are at least c + 1, in which case eventually the
Nash equilibrium (c + 1, c + 1) is reached (by the analysis for the first part of
the exercise).
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• In every period one of the prices is equal to c, while the other price is greater
than c; the identity of the firm charging c changes from period to period. The
pairs of prices eventually alternate between (c, c + 1) and (c + 1, c) (neither
of which are Nash equilibria).

136.1 Finding all mixed strategy equilibria of two-player games

Left game:

• There is no equilibrium in which each player’s mixed strategy assigns posi-
tive probability to a single action (i.e. there is no pure equilibrium).

• Consider the possibility of an equilibrium in which one player assigns prob-
ability 1 to a single action while the other player assigns positive probability
to both her actions. For neither action of player 1 is player 2’s payoff the same
for both her actions, and for neither action of player 2 is player 1’s payoff the
same for both her actions, so there is no mixed strategy equilibrium of this
type.

• Consider the possibility of a mixed strategy equilibrium in which each player
assigns positive probability to both her actions. Denote by p the probability
player 1 assigns to T and by q the probability player 2 assigns to L. For
player 1’s expected payoff to her two actions to be the same we need

6q = 3q + 6(1 − q),

or q = 2
3 . For player 2’s expected payoff to her two actions to be the same we

need
2(1 − p) = 6p,

or p = 1
4 . We conclude that the game has a unique mixed strategy equilib-

rium, (( 1
4 , 3

4 ), ( 2
3 , 1

3 )).

Right game:

• By inspection, (T, R) and (B, L) are the pure strategy equilibria.

• Consider the possibility of a mixed strategy equilibrium in which one player
assigns probability 1 to a single action while the other player assigns positive
probability to both her actions.

– {T} for player 1, {L, R} for player 2: no equilibrium, because player 2’s
payoffs to (T, L) and (T, R) are not the same.

– {B} for player 1, {L, R} for player 2: no equilibrium, because player 2’s
payoffs to (B, L) and (B, R) are not the same.

– {T, B} for player 1, {L} for player 2: no equilibrium, because player 1’s
payoffs to (T, L) and (B, L) are not the same.
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– {T, B} for player 1, {R} for player 2: player 1’s payoffs to (T, R) and
(B, R) are the same, so there is an equilibrium in which player 1 uses T
with probability p if player 2’s expected payoff to R, which is 2p + 1− p,
is at least her expected payoff to L, which is p + 2(1 − p). That is, the
game has equilibria in which player 1’s mixed strategy is (p, 1− p), with
p ≥ 1

2 , and player 2 uses R with probability 1.

• Consider the possibility of an equilibrium in which both players assign posi-
tive probability to both their actions. Denote by q the probability that player 2
assigns to L. For player 1’s expected payoffs to T and B to be the same we
need 0 = 2q, or q = 0, so there is no equilibrium in which both players assign
positive probability to both their actions.

In summary, the mixed strategy equilibria of the game are ((0, 1), (1, 0)) (i.e.
the pure equilibrium (B, L)) and ((p, 1 − p), (0, 1)) for 1

2 ≤ p ≤ 1 (of which one
equilibrium is the pure equilibrium (T, R)).

138.1 Finding all mixed strategy equilibria of a two-player game

By inspection, (T, R) and (B, L) are pure strategy equilibria.
Now consider the possibility of an equilibrium in which player 1’s strategy is

pure while player 2’s strategy assigns positive probability to two or more actions.

• If player 1’s strategy is T then player 2’s payoffs to M and R are the same,
and her payoff to L is less, so an equilibrium in which player 2 randomizes
between M and R is possible. In order that T be optimal we need 1− q ≥ q, or
q ≤ 1

2 , where q is the probability player 2’s strategy assigns to M. Thus every
mixed strategy pair ((1, 0), (0, q, 1 − q)) in which q ≤ 1

2 is a mixed strategy
equilibrium.

• If player 1’s strategy is B then player 2’s payoffs to L and R are the same,
and her payoff to M is less, so an equilibrium in which player 2 randomizes
between L and R is possible. In order that B be optimal we need 2q + 1 − q ≤
3q, or q ≥ 1

2 , where q is the probability player 2’s strategy assigns to L. Thus
every mixed strategy pair ((0, 1), (q, 0, 1 − q)) in which q ≥ 1

2 is a mixed
strategy equilibrium.

Now consider the possibility of an equilibrium in which player 2’s strategy is
pure while player 1’s strategy assigns positive probability to both her actions. For
each action of player 2, player 1’s two actions yield her different payoffs, so there
is no equilibrium of this sort.

Next consider the possibility of an equilibrium in which both player 1’s and
player 2’s strategies assign positive probability to two actions. Denote by p the
probability player 1’s strategy assigns to T. There are three possibilities for the
pair of player 2’s actions that have positive probability.
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L and M: For an equilibrium we need player 2’s expected payoff to L to be
equal to her expected payoff to M and at least her expected payoff to R. That
is, we need

2 = 3p + 1 − p ≥ 3p + 2(1 − p).

The inequality implies that p = 1, so that player 1’s strategy assigns proba-
bility zero to B. Thus there is no equilibrium of this type.

L and R: For an equilibrium we need player 2’s expected payoff to L to be
equal to her expected payoff to R and at least her expected payoff to M. That
is, we need

2 = 3p + 2(1 − p) ≥ 3p + 1 − p.

The equation implies that p = 0, so there is no equilibrium of this type.

M and R: For an equilibrium we need player 2’s expected payoff to M to be
equal to her expected payoff to R and at least her expected payoff to L. That
is, we need

3p + 1 − p = 3p + 2(1 − p) ≥ 2.

The equation implies that p = 1, so there is no equilibrium of this type.

The final possibility is that there is an equilibrium in which player 1’s strat-
egy assigns positive probability to both her actions and player 2’s strategy assigns
positive probability to all three of her actions. Let p be the probability player 1’s
strategy assigns to T. Then for player 2’s expected payoffs to her three actions to
be equal we need

2 = 3p + 1 − p = 3p + 2(1 − p).

For the first equality we need p = 1
2 , violating the second equality. That is, there is

no value of p for which player 2’s expected payoffs to her three actions are equal,
and thus no equilibrium in which she chooses each action with positive probability.

We conclude that the mixed strategy equilibria of the game are the strategy
pairs of the forms ((1, 0), (0, q, 1 − q)) for 0 ≤ q ≤ 1

2 (q = 0 is the pure equilibrium
(T, R)) and ((0, 1), (q, 0, 1− q)) for 1

2 ≤ q ≤ 1 (q = 1 is the pure equilibrium (B, L)).

138.2 Rock, paper, scissors

The game is shown in Figure 65.1.

Rock Paper Scissors
Rock 0, 0 −1, 1 1, −1

Paper 1, −1 0, 0 −1, 1
Scissors −1, 1 1, −1 0, 0

Figure 65.1 Rock, paper, scissors
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By inspection the game has no pure strategy equilibrium, and no mixed strat-
egy equilibrium in which one player’s strategy is pure and the other’s is strictly
mixed.

In the remaining possibilities both players use at least two actions with positive
probability. Suppose that player 1’s mixed strategy assigns positive probability to
Rock and to Paper. Then player 2’s expected payoff to Paper exceeds her expected
payoff to Rock, so in any such equilibrium player 2 must assign positive probability
only to Paper and Scissors. Player 1’s expected payoffs to Rock and Paper are equal
only if player 2 assigns probability 2

3 to Paper and probability 1
3 to Scissors. But

then player 1’s expected payoff to Scissors exceeds her expected payoffs to Rock
and Paper. So there is no mixed strategy equilibrium in which player 1 assigns
positive probability only to Rock and to Paper.

Given the symmetry of the game, the same argument implies that there is no
equilibrium in which player 1 assigns positive probability to only two actions, nor
any equilibrium in which player 2 assigns positive probability to only two actions.

The remaining possibility is that each player assigns positive probability to all
three of her actions. Denote the probabilities player 1 assigns to her three actions by
(p1, p2, p3) and the probabilities player 2 assigns to her three actions by (q1, q2, q3).
Player 1’s actions all yield her the same expected payoff if and only if there is a
value of c for which

−q2 + q3 = c

q1 − q3 = c

−q1 + q2 = c.

Adding the three equations we deduce c = 0, and hence q1 = q2 = q3 = 1
3 . A

similar calculation for player 2 yields p1 = p2 = p3 = 1
3 .

In conclusion, the game has a unique mixed strategy equilibrium, in which
each player uses the strategy ( 1

3 , 1
3 , 1

3 ). Each player’s equilibrium payoff is 0.
In the modified game in which player 1 is prohibited from using the action Scis-

sors, player 2’s action Rock is strictly dominated. The remaining game has a unique
mixed strategy equilibrium, in which player 1 chooses Rock with probability 1

3 and
Paper with probability 2

3 , and player 2 chooses Paper with probability 2
3 and Scissors

with probability 1
3 . The equilibrium payoff of player 1 is − 1

3 and that of player 2 is
1
3 .

139.1 Election campaigns

A strategic game that models the situation is shown in Figure 67.1, where action k
means devote resources to locality k.

By inspection the game has no pure strategy equilibrium and no equilibrium in
which one player’s strategy is pure and the other is strictly mixed. (For each action
of each player, the other player has a single best action.)
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Party A

Party B
1 2 3

1 0, 0 a1, −a1 a1, −a1
2 a2, −a2 0, 0 a2, −a2
3 a3, −a3 a3, −a3 0, 0

Figure 67.1 The game in Exercise 139.1.

Now consider the possibility of an equilibrium in which party A assigns pos-
itive probability to exactly two actions. There are three possible pairs of actions.
Throughout the argument I denote the probability party A’s strategy assigns to her
action i by pi, and the probability party B’s strategy assigns to her action i by qi.

1 and 2: Party B’s action 3 is strictly dominated by her mixed strategy that as-
signs probability 1

2 to each of her actions 1 and 2, so that we can eliminate it
from consideration. For party A’s actions 1 and 2 to yield the same expected
payoff we need q2a1 = q1a2, or, given q2 = 1 − q1, q1 = a1/(a1 + a2). For
party B’s actions 1 and 2 to yield the same expected payoff we similarly need
p1 = a2/(a1 + a2). Finally, for party A’s expected payoff to her action 3 to be
no more than her expected payoff to her other two actions, we need

a3 ≤ a1a2

a1 + a2
.

We conclude that if a3 ≤ a1a2/(a1 + a2) (or equivalently a1a3 + a2a3 ≤ a1a2)
then the game has a mixed strategy equilibrium

((
a2

a1 + a2
,

a1

a1 + a2
, 0
)

,
(

a1

a1 + a2
,

a2

a1 + a2
, 0
))

. (67.1)

1 and 3: Party B’s action 2 is strictly dominated her mixed strategy that assigns
probability 1

2 to each of her actions 1 and 3, so that we can eliminate it from
consideration. But then party A’s action 2 strictly dominates her action 3, so
there is no equilibrium in which she assigns positive probability to action 3.
Thus there is no equilibrium of this type.

2 and 3: For similar reasons, there is no equilibrium of this type.

The remaining possibility is that there is an equilibrium in which each player
assigns positive probability to all three of her actions. In order that party A’s
actions yield the same expected payoff we need

a1(q2 + q3) = a2(q1 + q3) = a3(q1 + q2),

or, using q1 + q2 + q3 = 1,

q1 =
a1a2 + a1a3 − a2a3

a1a2 + a1a3 + a2a3
, q2 =

a1a2 − a1a3 + a2a3

a1a2 + a1a3 + a2a3
, q3 =

−a1a2 + a1a3 + a2a3

a1a2 + a1a3 + a2a3
.

(67.2)
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For these three numbers to be positive we need

a1a2 + a1a3 − a2a3 > 0, a1a2 − a1a3 + a2a3 > 0, −a1a2 + a1a3 + a2a3 > 0.

Since a1 > a2 > a3, these inequalities are satisfied if and only if a1a3 + a2a3 > a1a2.
Similarly, in order that party B’s actions yield the same expected payoff we

need

p1 =
a2a3

a1a2 + a1a3 + a2a3
, p2 =

a1a3

a1a2 + a1a3 + a2a3
, p3 =

a1a2

a1a2 + a1a3 + a2a3
.

(68.1)
These three numbers are positive, given ai > 0 for all i.

Thus if a1a3 + a2a3 > a1a2 there is an equilibrium in which player 1’s mixed
strategy is (p1, p2, p3) and player 2’s mixed strategy is (q1, q2, q3).

In summary,

• if (a1 + a2)a3 ≤ a1a2 then the game has a unique mixed strategy equilibrium
given by (67.1)

• if (a1 + a2)a3 > a1a2 then the game has a unique mixed strategy equilibrium
given by (67.2) and (68.1).

That is, if the first two localities are sufficiently more valuable than the third
then both parties concentrate all their efforts on these two localities, while other-
wise they both randomize between all three localities.

139.2 A three-player game

By inspection the game has two pure strategy equilibria, namely (A, A, A) and
(B, B, B).

Now consider the possibility of an equilibrium in which one or more of the
players’ strategies is pure, and at least one is strictly mixed. If player 1 uses the
action A and player 2 uses a strictly mixed strategy then player 3’s uniquely best
action is A, in which case player 2’s uniquely best action is A. Thus there is no
equilibrium in which player 1 uses the action A and at least one of the other play-
ers randomizes. By similar arguments, there is no equilibrium in which player 1
uses the action B and at least one of the other players randomizes, or indeed any
equilibrium in which some player’s strategy is pure while some other player’s
strategy is mixed.

The remaining possibility is that there is an equilibrium in which each player’s
strategy assigns positive probability to each of her actions. Denote the probabili-
ties that players 1, 2, and 3 assign to A by p, q, and r respectively. In order that
player 1’s expected payoffs to her two actions be the same we need

qr = 4(1 − q)(1 − r).
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Similarly, for player 2’s and player 3’s expected payoffs to their two actions to be
the same we need

pr = 4(1 − p)(1 − r) and pq = 4(1 − p)(1 − q).

The unique solution of these three equations is p = q = r = 2
3 (isolate r in the

second equation and q in the third equation, and substitute into the first equation).
We conclude that the game has three mixed strategy equilibria: ((1, 0), (1, 0), (1, 0))

(i.e. the pure strategy equilibrium (A, A, A)), ((0, 1), (0, 1), (0, 1)) (i.e. the pure
strategy equilibrium (B, B, B)), and (( 2

3 , 1
3 ), ( 2

3 , 1
3 ), ( 2

3 , 1
3 )).

143.1 All-pay auction with many bidders

Denote the common mixed strategy by F. Look for an equilibrium in which the
largest value of z for which F(z) = 0 is 0 and the smallest value of z for which
F(z) = 1 is z = K.

A player who bids ai wins if and only if the other n − 1 players all bid less than
she does, an event with probability (F(ai))n−1. Thus, given that the probability
that she ties for the highest bid is zero, her expected payoff is

(K − ai)(F(ai))
n−1 + (−ai)(1 − (F(ai))

n−1).

Given the form of F, for an equilibrium this expected payoff must be constant
for all values of ai with 0 ≤ ai ≤ K. That is, for some value of c we have

K(F(ai))
n−1 − ai = c for all 0 ≤ ai ≤ K.

For F(0) = 0 we need c = 0, so that F(ai) = (ai/K)1/(n−1) is the only candidate for
an equilibrium strategy.

The function F is a cumulative probability distribution on the interval from 0 to
K because F(0) = 0, F(K) = 1, and F is increasing. Thus F is indeed an equilibrium
strategy.

We conclude that the game has a mixed strategy Nash equilibrium in which
each player randomizes over all her actions according to the probability distribu-
tion F(ai) = (ai/K)1/(n−1); each player’s equilibrium expected payoff is 0.

Each player’s mean bid is K/n.

143.2 Bertrand’s duopoly game

Denote the common mixed strategy by F. If firm 1 charges p it earns a profit only
if the price charged by firm 2 exceeds p, an event with probability 1 − F(p). Thus
firm 1’s expected profit is

(1 − F(p))(p − c)D(p).

This profit is constant, equal to B, over some range of prices, if F(p) = 1 − B/((p−
c)D(p)) over this range of prices. Because (p − c)D(p) increases without bound as
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p increases without bound, for any value of B the number F(p) approaches 1 as p
increases without bound. Further, for any B > 0, there exists some p > c such that
(p − c)D(p) = B, so that F(p) = 0. Finally, because (p − c)D(p) is an increasing
function, so is F. Thus F is a cumulative probability distribution function.

We conclude that for any p > c, the game has a mixed strategy equilibrium in
which each firm’s mixed strategy is given by

F(p) =




0 if p < p

1 − (p − c)D(p)
(p − c)D(p) if p ≥ p.

144.2 Preferences over lotteries

The first piece of information about the decision-maker’s preferences among lot-
teries is consistent with her preferences being represented by the expected value
of a payoff function. For example, set u(a1) = 0, u(a2) = 1, and u(a3) = 1

3 (or any
number between 1

2 and 1
4 ).

The second piece of information about the decision-maker’s preferences is not
consistent with these preferences being represented by the expected value of a pay-
off function, by the following argument. For consistency with the information
about the decision-maker’s preferences among the four lotteries, we need

0.4u(a1) + 0.6u(a3) > 0.5u(a2) + 0.5u(a3) >

0.3u(a1) + 0.2u(a2) + 0.5u(a3) > 0.45u(a1) + 0.55u(a3).

The first inequality implies u(a2) < 0.8u(a1) + 0.2u(a3) and the last inequality im-
plies u(a2) > 0.75u(a1) + 0.25u(a3). Because u(a1) < u(a3), we have 0.75u(a1) +
0.25u(a3) > 0.8u(a1) + 0.2u(a3), so that the two inequalities are incompatible.

146.2 Normalized vNM payoff functions

Let a be the best outcome according to her preferences and let a be the worse out-
come. Let η = −u(a)/(u(a) − u(a)) and θ = 1/(u(a) − u(a)) > 0. Lemma 145.1
implies that the function v defined by v(x) = η + θu(x) represents the same pref-
erences as does u; we have v(a) = 0 and v(a) = 1.

147.1 Games equivalent to the Prisoner’s Dilemma

The left-hand game is not equivalent, by the following argument. Using either
player’s payoffs, for equivalence we need η and θ > 0 such that

0 = η + θ · 0, 2 = η + θ · 1, 3 = η + θ · 2, and 4 = η + θ · 3.

From the first equation we have η = 0 and hence from the second we have θ = 2.
But these values do not satisfy the last two equations. (Alternatively, note that in
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the game in the left panel of Figure 104.1, player 1 is indifferent between (D, D)
and the lottery in which (C, D) occurs with probability 1

2 and (D, C) occurs with
probability 1

2 , while in the left-hand game in Figure 148.1 she is not.)
The right-hand game is equivalent, by the following argument. For the equiv-

alence of player 1’s payoffs, we need η and θ > 0 such that

0 = η + θ · 0, 3 = η + θ · 1, 6 = η + θ · 2, and 9 = η + θ · 3.

The first two equations yield η = 0 and θ = 3; these values satisfy the second two
equations. A similar argument for player 2’s payoffs yields η = −4 and θ = 2.
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5 Extensive games with perfect information:
Theory

154.2 Examples of extensive games with perfect information

a. The game is given in Figure 73.1.

1
C D

2
E F

1, 0 3, 2

2
G H

2, 3 0, 1

Figure 73.1 The game in Exercise 154.2a.

b. The game is specified as follows.

Players 1 and 2.

Terminal histories (C, E, G), (C, E, H), (C, F), D.

Player function P(∅) = 1, P(C) = 2, P(C, E) = 1.

Preferences Player 1 prefers (C, F) to D to (C, E, G) to (C, E, H); player 2
prefers (C, E, G) to (C, F) to (C, E, H), and is indifferent between this
outcome and D.

c. The game in shown in Figure 73.2, where the order of the payoffs is Karl,
Rosa, Ernesto.

K
R E

R
B H

E
B H

1, 2, 1 0, 0, 0

E
B H

0, 0, 0 2, 1, 2

E
B H

R
B H

1, 2, 1 0, 0, 0

R
B H

0, 0, 0 2, 1, 2

Figure 73.2 The game in Exercise 154.2c.

73
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159.1 Strategies in extensive games

In the entry game, the challenger moves only at the start of the game, where it has
two actions, In and Out. Thus it has two strategies, In and Out. The incumbent
moves only after the history In, when it has two actions, Acquiesce and Fight. Thus
it also has two strategies, Acquiesce and Fight.

In the game in Exercise 154.2c, Rosa moves after the histories R (Karl chooses
her to move first), (E, B) (Karl chooses Ernesto to move first, and Ernesto chooses
B), and (E, H) (Karl chooses Ernesto to move first, and Ernesto chooses H). In each
case Rosa has two actions, B and H. Thus she has eight strategies. Each strategy
takes the form (x, y, z), where each of x, y, and z are either B or H; the strategy
(x, y, z) means that she chooses x after the history R, y after the history (E, B), and
z after the history (E, H).

161.1 Nash equilibria of extensive games

The strategic form of the game in Exercise 154.2a is given in Figure 74.1.

EG EH FG FH
C 1, 0 1, 0 3, 2 3, 2
D 2, 3 0, 1 2, 3 0, 1

Figure 74.1 The strategic form of the game in Exercise 154.2a.

The Nash equilibria of the game are (C, FG), (C, FH), and (D, EG).
The strategic form of the game in Figure 158.1 is given in Figure 74.2.

E F
CG 1, 2 3, 1
CH 0, 0 3, 1
DG 2, 0 2, 0
DH 2, 0 2, 0

Figure 74.2 The strategic form of the game in Figure 158.1.

The Nash equilibria of the game are (CH, F), (DG, E), and (DH, E).

161.2 Voting by alternating veto

The following extensive game models the situation.

Players The two people.

Terminal histories (X/ , Y/ ), (X/ , Z/ ), (Y/ , X/ ), (Y/ , Z/ ), (Z/ , X/ ), and (Z/ , Y/ ) (where A/ means
veto A).
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Player function P(∅) = 1 and P(X/ ) = P(Y/ ) = P(Z/ ) = 2.

Preferences Person 1’s preferences are represented by the payoff function u1
for which u1(Y/ , Z/ ) = u1(Z/ , Y/ ) = 2 (both of these terminal histories result in
X’s being chosen), u1(X/ , Z/ ) = u1(Z/ , X/ ) = 1, and u1(X/ , Y/ ) = u1(Y/ , X/ ) = 0.
Person 2’s preferences are represented by the payoff function u2 for which
u2(X/ , Y/ ) = u2(Y/ , X/ ) = 2, u2(X/ , Z/ ) = u2(Z/ , X/ ) = 1, and u2(Y/ , Z/ ) = u2(Z/ , Y/ ) =
0.

This game is shown in Figure 75.1.

1
X/

Y/
Z/

2
Y/ Z/

0, 2 1, 1

2
X/ Z/

0, 2 2, 0

2
X/ Y/

1, 1 2, 0

Figure 75.1 An extensive game that models the alternate strikeoff method of selecting an arbitrator, as
specified in Exercise 161.2.

The strategic form of the game is given in Figure 75.2 (where A/ B/ C/ is person 2’s
strategy in which it vetoes A if person 1 vetoes X, B if person 1 vetoes Y, and C if
person 1 vetoes Z). Its Nash equilibria are (Z/ , Y/ X/ X/ ) and (Z/ , Z/ X/ X/ ).

Y/ X/ X/ Y/ X/ Y/ Y/ Z/ X/ Y/ Z/ Y/ Z/ X/ X/ Z/ X/ Y/ Z/ Z/ X/ Z/ Z/ Y/
X/ 0, 2 0, 2 0, 2 0, 2 1, 1 1, 1 1, 1 1, 1
Y/ 0, 2 0, 2 2, 0 2, 0 0, 2 0, 2 2, 0 2, 0
Z/ 1, 1 2, 0 1, 1 2, 0 1, 1 2, 0 1, 1 2, 0

Figure 75.2 The strategic form of the game in Figure 75.1.

163.1 Subgames

The subgames of the game in Exercise 154.2c are the whole game and the six games
in Figure 76.1.

166.2 Checking for subgame perfect equilibria

The Nash equilibria (CH, F) and (DH, E) are not subgame perfect equilibria: in the
subgame following the history (C, E), player 1’s strategies CH and DH induce the
strategy H, which is not optimal.

The Nash equilibrium (DG, E) is a subgame perfect equilibrium: (a) it is a
Nash equilibrium, so player 1’s strategy is optimal at the start of the game, given
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R
B H

E
B H

1, 2, 1 0, 0, 0

E
B H

0, 0, 0 2, 1, 2

E
B H

R
B H

1, 2, 1 0, 0, 0

R
B H

0, 0, 0 2, 1, 2

E
B H

1, 2, 1 0, 0, 0

E
B H

0, 0, 0 2, 1, 2

R
B H

1, 2, 1 0, 0, 0

R
B H

0, 0, 0 2, 1, 2

Figure 76.1 The proper subgames of the game in Exercise 154.2c.

player 2’s strategy, (b) in the subgame following the history C, player 2’s strategy
E induces the strategy E, which is optimal given player 1’s strategy, and (c) in the
subgame following the history (C, E), player 1’s strategy DG induces the strategy
G, which is optimal.

171.2 Finding subgame perfect equilibria

The game in Exercise 154.2a has a unique subgame perfect equilibrium, (C, FG).
The game in Exercise 154.2c has a unique subgame perfect equilibrium in which

Karl’s strategy is E, Rosa’s strategy is to choose B after the history R, B after the
history (E, B), and H after the history (E, H), and Ernesto’s strategy is to chooses B
after the history (R, B), H after the history (R, H), and H after the history E. (The
outcome is that Karl chooses Ernesto to move first, he chooses H, and then Rosa
chooses H.)

The game in Figure 171.1 has six subgame perfect equilibria: (C, EG), (D, EG),
(C, EH), (D, FG), (C, FH), (D, FH).

171.3 Voting by alternating veto

The game has a unique subgame perfect equilibrium (Z/ , Y/ X/ X/ ). The outcome is that
action Y is taken.

Thus the Nash equilibrium (Z/ , Z/ X/ X/ ) (see Exercise 161.2) is not a subgame per-
fect equilibrium. However, this equilibrium generates the same outcome as the
unique subgame perfect equilibrium.

If player 2 prefers Y to X to Z then in the unique subgame perfect equilibrium
of the game in which player 1 moves first the outcome is that X is chosen, while
in the unique subgame perfect equilibrium of the game in which player 2 moves
first the outcome is that Y is chosen. (For all other strict preferences of player 2 (i.e.
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preferences in which player 2 is not indifferent between any pair of policies) the
outcome of the subgame perfect equilibria of the two games are the same.)

171.4 Burning a bridge

An extensive game that models the situation has the same structure as the en-
try game in Figure 154.1 in the book. The challenger is army 1, the incumbent
army 2. The action In corresponds to attacking; Acquiesce corresponds to retreat-
ing. The game has a single subgame perfect equilibrium, in which army 1 attacks,
and army 2 retreats.

If army 2 burns the bridge, the game has a single subgame perfect equilibrium
in which army 1 does not attack.

172.1 Sharing heterogeneous objects

Let n = 2 and k = 3, and call the objects a, b, and c. Suppose that the values
person 1 attaches to the objects are 3, 2, and 1 respectively, while the values player 2
attaches are 1, 3, 2. If player 1 chooses a on the first round, then in any subgame
perfect equilibrium player 2 chooses b, leaving player 1 with c on the second round.
If instead player 1 chooses b on the first round, in any subgame perfect equilibrium
player 2 chooses c, leaving player 1 with a on the second round. Thus in every
subgame perfect equilibrium player 1 chooses b on the first round (though she
values a more highly.)

Now I argue that for any preferences of the players, G(2, 3) has a subgame
perfect equilibrium of the type described in the exercise. For any object chosen
by player 1 in round 1, in any subgame perfect equilibrium player 2 chooses her
favorite among the two objects remaining in round 2. Thus player 2 never obtains
the object she least prefers; in any subgame perfect equilibrium, player 1 obtains
that object. Player 1 can ensure she obtains her more preferred object of the two
remaining by choosing that object on the first round. That is, there is a subgame
perfect equilibrium in which on the first round player 1 chooses her more preferred
object out of the set of objects excluding the object player 2 least prefers, and on
the last round she obtains x3. In this equilibrium, player 2 obtains the object less
preferred by player 1 out of the set of objects excluding the object player 2 least
prefers. That is, player 2 obtains x2. (Depending on the players’ preferences, the
game also may have a subgame perfect equilibrium in which player 1 chooses x3
on the first round.)

172.2 An entry game with a financially-constrained firm

a. Consider the last period, after any history. If the incumbent chooses to fight,
the challenger’s best action is to exit, in which case both firms obtain the
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profit zero. If the incumbent chooses to cooperate, the challenger’s best ac-
tion is to stay in, in which case both firms obtain the profit C > 0. Thus the
incumbent’s best action at the start of the period is to cooperate.

Now consider period T − 1. Regardless of the outcome in this period, the in-
cumbent will cooperate in the last period, and the challenger will stay in (as
we have just argued). Thus each player’s action in the period affects its pay-
off only because it affects its profit in the period. Thus by the same argument
as for the last period, in period T − 1 the incumbent optimally cooperates,
and the challenger optimally stays in if the incumbent cooperates. If, in pe-
riod T − 1, the incumbent fights, then the challenger also optimally stays in,
because in the last period it obtains C > F.

Working back to the start of the game, using the same argument in each pe-
riod, we conclude that in every period before the last the incumbent cooper-
ates and the challenger stays in regardless of the incumbent’s action. Given
C > f , the challenger optimally enters at the start of the game.

That is, the game has a unique subgame perfect equilibrium, in which

• the challenger enters at the start of the game, exits in the last period if
the challenger fights in that period, and stays in after every other history
after which it moves

• the incumbent cooperates after every history after which it moves.

The incumbent’s payoff in this equilibrium is TC and the challenger’s payoff
is TC − f .

b. First consider the incumbent’s action after the history in which the challenger
enters, the incumbent fights in the first T − 2 periods, and in each of these
periods the challenger stays in. Denote this history hT−2. If the incumbent
fights after hT−2, the challenger exits (it has no alternative), and the incum-
bent’s profit in the last period is M. If the incumbent cooperates after hT−2
then by the argument for the game in part a, the challenger stays in, and in the
last period the incumbent also cooperates and the challenger stays in. Thus
the incumbent’s payoff if it cooperates after the history hT−2 is 2C. Because
M > 2C, we conclude that the incumbent fights after the history hT−2.

Now consider the incumbent’s action after the history in which the chal-
lenger enters, the incumbent fights in the first T − 3 periods, and in each
period the challenger stays in. Denote this history hT−3. If the incumbent
fights after hT−3, we know, by the previous paragraph, that if the challenger
stays in then the incumbent will fight in the next period, driving the chal-
lenger out. Thus the challenger will obtain an additional profit of −F if it
stays in and 0 if it exits. Consequently the challenger exits if the incum-
bent fights after hT−3, making a fight by the incumbent optimal (it yields the
incumbent the additional profit 2M).
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Working back to the first period we conclude that the incumbent fights and
the challenger exits. Thus the challenger’s optimal action at the start of the
game is to stay out.

In summary, the game has a unique subgame perfect equilibrium, in which

• the challenger stays out at the start of the game, exits after any history
in which the incumbent fought in every period, exits in the last period
if the incumbent fights in that period, and stays in after every other
history.

• the incumbent fights after the challenger enters and after any history in
which it has fought in every period, and cooperates after every other
history.

The incumbent’s payoff in this equilibrium is TM and the challenger’s payoff
is 0.

173.2 Dollar auction

The game is shown in Figure 80.1. It has four subgame perfect equilibria. In all the
equilibria player 2 passes after player 1 bids $2. After other histories the actions in
the equilibria are as follows.

• Player 1 bids $3 after the history ($1, $2), player 2 passes after the history $1,
and player 1 bids $1 at the start of the game.

• Player 1 passes after the history ($1, $2), player 2 passes after the history $1,
and player 1 bids $1 at the start of the game.

• Player 1 passes after the history ($1, $2), player 2 bids $2 after the history $1,
and player 1 passes at the start of the game.

• Player 1 passes after the history ($1, $2), player 2 bids $2 after the history $1,
and player 1 bids $2 at the start of the game.

There are three subgame perfect equilibrium outcomes: player 1 passes at the
start of the game (player 2 gets the object without making any payment), player 1
bids $1 and then player 2 passes (player 1 gets the object for $1), and player 1 bids
$2 and then player 2 passes (player 1 gets the object for $2).

174.2 Firm–union bargaining

a. The following extensive game models the situation.

Players The firm and the union.

Terminal histories All sequences of the form (w, Y, L) and (w, N) for nonneg-
ative numbers w and L (where w is a wage, Y means accept, N means
reject, and L is the number of workers hired).
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1

$1 $2

p
0, 2 $3 −1, 0

2
$2 $3

−1, −1

p
1, 0

1p−1, 0
$3

−1, −2

2

$3

p

−2, −1

0, 0

Figure 80.1 The extensive form of the dollar auction for w = 3 and v = 2. A pass is denoted p.

Player function P(∅) is the union, and, for any nonnegative number w, P(w)
and P(w, Y) are the firm.

Preferences The firm’s preferences are represented by its profit, and the union’s
preferences are represented by the value of wL (which is zero after any
history (w, N)).

b. First consider the subgame following a history (w, Y), in which the firm
accepts the wage demand w. In a subgame perfect equilibrium, the firm
chooses L to maximize its profit, given w. For L ≤ 50 this profit is L(100 −
L)−wL, or L(100−w− L). This function is a quadratic in L that is zero when
L = 0 and when L = 100 − w and reaches a maximum in between. Thus the
value of L that maximizes the firm’s profit is 1

2 (100 − w) if w ≤ 100, and 0 if
w > 100.

Given the firm’s optimal action in such a subgame, consider the subgame
following a history w, in which the firm has to decide whether to accept or
reject w. For any w the firm’s profit, given its subsequent optimal choice of L,
is nonnegative; if w < 100 this profit is positive, while if w ≥ 100 it is 0. Thus
in a subgame perfect equilibrium, the firm accepts any demand w < 100 and
either accepts or rejects any demand w ≥ 100.

Finally consider the union’s choice at the beginning of the game. If it chooses
w < 100 then the firm accepts and chooses L = (100 − w)/2, yielding the
union a payoff of w(100 − w)/2. If it chooses w > 100 then the firm either
accepts and chooses L = 0 or rejects; in both cases the union’s payoff is 0.
Thus the best value of w for the union is the number that maximizes w(100−
w)/2. This function is a quadratic that is zero when w = 0 and when w = 100
and reaches a maximum in between; thus its maximizer is w = 50.

In summary, in a subgame perfect equilibrium the union’s strategy is w = 50,
and the firm’s strategy accepts any demand w < 100 and chooses L = (100−
w)/2, and either rejects a demand w ≥ 100 or accepts such a demand and
chooses L = 0. The outcome of any equilibrium is that the union demands



Chapter 5. Extensive games with perfect information: Theory 81

w = 50 and the firm chooses L = 25.

c. Yes. In any subgame perfect equilibrium the union’s payoff is (50)(25) =
1250 and the firm’s payoff is (25)(75) − (50)(25) = 625. Thus both par-
ties are better off at the outcome (w, L) than they are in the unique subgame
perfect equilibrium if and only if L ≤ 50 and

wL > 1250

L(100 − L) − wL > 625

or L ≥ 50 and

wL > 1250

2500 − wL > 625.

These conditions are satisfied for a nonempty set of pairs (w, L). For example,
if L = 50 the conditions are satisfied by 25 < w < 37.5; if L = 100 they are
satisfied by 12.5 < w < 18.75.

d. There are many Nash equilibria in which the firm “threatens” to reject high
wage demands. In one such Nash equilibrium the firm threatens to reject
any positive wage demand. In this equilibrium the union’s strategy is w = 0,
and the firm’s strategy rejects any demand w > 0, and accepts the demand
w = 0 and chooses L = 50. (The union’s payoff is 0 no matter what demand
it makes; given w = 0, the firm’s optimal action is L = 50.)

175.1 The “rotten kid theorem”

The situation is modeled by the following extensive game.

Players The parent and the child.

Terminal histories The set of sequences (a, t), where a (an action of the child)
and t (a transfer from the parent to the child) are numbers.

Player function P(∅) is the child, P(a) is the parent for every value of a.

Preferences The child’s preferences are represented by the payoff function c(a)+
t and the parent’s preferences are represented by the payoff function min{p(a)−
t, c(a) + t}.

To find the subgame perfect equilibria of this game, first consider the parent’s
optimal actions in the subgames of length 1. Consider the subgame following the
choice of a by the child. We have p(a) > c(a) (by assumption), so if the parent
makes no transfer her payoff is c(a). If she transfers $1 to the child then her payoff
increases to c(a) + 1. As she increases the transfer her payoff increases until p(a)−
t = c(a) + t; that is, until t = 1

2 (p(a) − c(a)). (If she increases the transfer any
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more, she has less money than her child.) Thus the parent’s optimal action in the
subgame following the choice of a by the child is t = 1

2 (p(a) − c(a)).
Now consider the whole game. Given the parent’s optimal action in each sub-

game, a child who chooses a receives the payoff c(a) + 1
2 (p(a) − c(a)) = 1

2 (p(a) +
c(a)). Thus in a subgame perfect equilibrium the child chooses the action that max-
imizes p(a) + c(a), the sum of her own private income and her parent’s income.

175.2 Comparing simultaneous and sequential games

a. Denote by (a∗1, a∗2) a Nash equilibrium of the strategic game in which player 1’s
payoff is maximal in the set of Nash equilibria. Because (a∗1, a∗2) is a Nash
equilibrium, a∗2 is a best response to a∗1. By assumption, it is the only best
response to a∗1. Thus if player 1 chooses a∗1 in the extensive game, player 2
must choose a∗2 in any subgame perfect equilibrium of the extensive game.
That is, by choosing a∗1, player 1 is assured of a payoff of at least u1(a∗1, a∗2).
Thus in any subgame perfect equilibrium player 1’s payoff must be at least
u1(a∗1, a∗2).

b. Suppose that A1 = {T, B}, A2 = {L, R}, and the payoffs are those given
in Figure 82.1. The strategic game has a unique Nash equilibrium, (T, L),
in which player 2’s payoff is 1. The extensive game has a unique subgame
perfect equilibrium, (B, LR) (where the first component of player 2’s strategy
is her action after the history T and the second component is her action after
the history B). In this subgame perfect equilibrium player 2’s payoff is 2.

L R
T 1, 1 3, 0
B 0, 0 2, 2

Figure 82.1 The payoffs for the example in Exercise 175.2a.

c. Suppose that A1 = {T, B}, A2 = {L, R}, and the payoffs are those given in
Figure 83.1. The strategic game has a unique Nash equilibrium, (T, L), in
which player 2’s payoff is 2. A subgame perfect equilibrium of the exten-
sive game is (B, RL) (where the first component of player 2’s strategy is her
action after the history T and the second component is her action after the
history B). In this subgame perfect equilibrium player 1’s payoff is 1. (If you
read Chapter 4, you can find the mixed strategy Nash equilibria of the strate-
gic game; in all these equilibria, as in the pure strategy Nash equilibrium,
player 1’s expected payoff exceeds 1.)
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L R
T 2, 2 0, 2
B 1, 1 3, 0

Figure 83.1 The payoffs for the example in Exercise 175.2b.

176.1 Subgame perfect equilibria of ticktacktoe

Player 2 puts her O in the center. If she does so, each player has a strategy that
guarantees at least a draw in the subgame. Player 1 guarantees at least a draw by
next marking one of the two squares adjacent to her first X and then subsequently
completing a line of X’s, if possible, or, if not possible, blocking a line of O’s, if
necessary, or, if not necessary, moving arbitrarily. Player 2 guarantees at least a
draw as follows.

• If player 1’s second X is adjacent to her first X or is in a corner not diagonally
opposite player 1’s first X, player 2 should, on each move, either complete a
line of O’s, if possible, or, if not possible, block a line of X’s, if necessary, or, if
not necessary, move arbitrarily.

• If player 1’s second X is in some other square then player 2 should, on her
second move, mark one of the corners not diagonally opposite player 1’s first
X, and then, on each move, either complete a line of O’s, if possible, or, if not
possible, block a line of X’s, if necessary, or, if not necessary, move arbitrarily.

For each of player 2’s other opening moves, player 1 has a strategy in the
subgame that wins, as follows.

• Suppose player 2 marks the corner diagonally opposite player 1’s first X.
If player 1 next marks another corner, player 2 must next mark the square
between player 1’s two X’s; by marking the remaining corner, player 1 wins
on her next move.

• Suppose player 2 marks one of the other corners. If player 1 next marks the
corner diagonally opposite her first X, player 2 must mark the center, then
player 1 must mark the remaining corner, leading her to win on her next
move.

• Suppose player 2 marks one of the two squares adjacent to player 1’s X.
If player 1 next marks the center, player 2 must mark the corner opposite
player 1’s first X, in which case player 1 can mark the other square adjacent
to her first X, leading her to win on her next move.

• Suppose player 2 marks one of the other squares, other than the center. If
player 1 next marks the center, player 2 must mark the corner opposite player 1’s
first X, in which case player 1 can mark the corner that blocks a row of O’s,
leading her to win on her next move.
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176.2 Toetacktick

The following strategy leads to either a draw or a win for player 1: mark the cen-
tral square initially, and on each subsequent move mark the square symmetrically
opposite the one just marked by the second player.

177.1 Three Men’s Morris, or Mill

Number the squares 1 through 9, starting at the top left, working across each row.
The following strategy of player 1 guarantees she wins, so that the subgame perfect
equilibrium outcome is that she wins. First player 1 chooses the central square (5).

• Suppose player 2 then chooses a corner; take it to be square 1. Then player 1
chooses square 6. Now player 2 must choose square 4 to avoid defeat; player 1
must choose square 7 to avoid defeat; and then player 2 must choose square
3 to avoid defeat (otherwise player 1 can move from square 6 to square 3 on
her next turn). If player 1 now moves from square 6 to square 9, then what-
ever player 2 does she can subsequently move her counter from square 5 to
square 8 and win.

• Suppose player 2 then chooses a noncorner; take it to be square 2. Then
player 1 chooses square 7. Now player 2 must choose square 3 to avoid
defeat; player 1 must choose square 1 to avoid defeat; and then player 2 must
choose square 4 to avoid defeat (otherwise player 1 can move from square 5
to square 4 on her next turn). If player 1 now moves from square 7 to square
8, then whatever player 2 does she can subsequently move from square 8 to
square 9 and win.
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6 Extensive Games with Perfect Information:
Illustrations

180.1 Nash equilibria of the ultimatum game

For every amount x there are Nash equilibria in which person 1 offers x. For exam-
ple, for any value of x there is a Nash equilibrium in which person 1’s strategy is
to offer x and person 2’s strategy is to accept x and any offer more favorable, and
reject every other offer. (Given person 2’s strategy, person 1 can do no better than
offer x. Given person 1’s strategy, person 2 should accept x; whether person 2 ac-
cepts or rejects any other offer makes no difference to her payoff, so that rejecting
all less favorable offers is, in particular, optimal.)

180.2 Subgame perfect equilibria of the ultimatum game with indivisible units

In this case each player has finitely many actions, and for both possible subgame
perfect equilibrium strategies of player 2 there is an optimal strategy for player 1.

If player 2 accepts all offers then player 1’s best strategy is to offer 0, as before.
If player 2 accepts all offers except 0 then player 1’s best strategy is to offer one

cent (which player 2 accepts).
Thus the game has two subgame perfect equilibria: one in which player 1 offers

0 and player 2 accepts all offers, and one in which player 1 offers one cent and
player 2 accepts all offers except 0.

180.3 Dictator game and impunity game

Dictator game Person 2 has no choice; person 1 optimally chooses the offer 0.
Impunity game The analysis of the subgames of length one is the same as it is in
the ultimatum game. That is, in any subgame perfect equilibrium person 2 either
accepts all offers, or accepts all positive offers and rejects 0. Now consider the
whole game. Regardless of person 2’s behavior in the subgames, person 1’s best
action is to offer 0.

Thus the game has two subgame perfect equilibria. In both equilibria person 1
offers 0. In one equilibrium person 2 accepts all offers, and in the other equilibrium
she accepts all positive offers and rejects 0. The outcome of the first equilibrium is
that person 1 offers 0, which person 2 accepts; the outcome of the second equilib-
rium is that person 1 offers 0, which person 2 rejects. In both equilibria person 1’s
payoff is c and person 2’s payoff is 0.

85
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181.1 Variant of ultimatum game and impunity game with equity-conscious players

Ultimatum game First consider the optimal response of person 2 to each possible
offer. If person 2 accepts an offer x her payoff is x − β2|(1 − x) − x|, while if she
rejects an offer her payoff is 0. Thus she accepts an offer x if x − β2|(1− x)− x| > 0,
or

x − β2|1 − 2x| > 0, (86.1)

rejects an offer x if x − β2|1 − 2x| < 0, and is indifferent between accepting and
rejecting if x − β2|1 − 2x| = 0.

Which values of x satisfy (86.1)? Because of the absolute value in the expres-
sion, we can conveniently consider the cases x ≤ 1

2 and x > 1
2 separately.

• For x ≤ 1
2 the condition is x − β2(1 − 2x) > 0, or x > β2/(1 + 2β2).

• For x ≥ 1
2 the condition is x + β2(1 − 2x) > 0, or x(1 − 2β2) + β2 > 0. The

values of x that satisfy this inequality depend on whether β2 is greater than
or less than 1

2 .

β2 ≤ 1
2 : All values of x satisfy the inequality.

β2 > 1
2 : The inequality is x < β2/(2β2 − 1) (the right-hand side of which is

less than 1 only if β2 > 1).

In summary, person 2 accepts any offer x with β2/(1 + 2β2) < x < β2/(2β2 −
1), may accept or reject the offers β2/(1 + 2β2) and β2/(2β2 − 1), and rejects any
offer x with x < β2/(1 + 2β2) or x > β2/(2β2 − 1). The shaded region of Fig-
ure 86.1 shows, for each value of β2, the set of offers that person 2 accepts. Note,
in particular, that, for every value of β2, person 2 accepts the offer 1

2 .

1

0 1 2β2 →

↑
x

Offers accepted by person 2

β2/(1 + 2β2)

β2/(2β2 − 1)

Figure 86.1 The set of offers x that person 2 accepts for each value of β2 ≤ 2 in the variant of the
ultimatum game with equity-conscious players studied in Exercise 181.1.



Chapter 6. Extensive Games with Perfect Information: Illustrations 87

Now consider person 1’s decision. Her payoff is 0 if her offer is rejected and
1 − x − β1|(1 − x) − x| = 1 − x − β1|1 − 2x| if it is accepted. We can conveniently
separate the analysis into three cases.

β1 < 1
2 : Person 1’s payoff when her offer x is accepted is positive for 0 ≤ x < 1

and is decreasing in x. Thus person 1’s optimal offer is the smallest one that
person 2 accepts. If person 2’s strategy rejects the offer β2/(1 + 2β2), then
as in the analysis of the original game when person 2’s strategy rejects 0,
person 1 has no optimal response. Thus in any subgame perfect equilibrium
person 2 accepts β2/(1 + 2β2), and person 1 offers this amount.

β1 = 1
2 : Person 1’s payoff to an offer that is accepted is positive and constant

from x = 0 to x = 1
2 , then decreasing. Thus if person 2 accepts the offer

β2/(1 + 2β2) then every offer x with β2/(1 + 2β2) ≤ x ≤ 1
2 is optimal, while if

person 2 rejects the offer β2/(1 + 2β2) then every offer x with β2/(1 + 2β2) <

x ≤ 1
2 is optimal.

β1 > 1
2 : Person 1’s payoff to an offer that is accepted is increasing up to x = 1

2
and then decreasing, and is positive at x = 1

2 , so that her optimal offer is 1
2

(which person 2 accepts).

We conclude that the set of subgame perfect equilibria depends on the values
of β1 and β2, as follows.

β1 < 1
2 : the set of subgame perfect equilibria is the set of all strategy pairs for

which

• person 1 offers β2/(1 + 2β2)

• person 2 accepts all offers x with β2/(1 + 2β2) ≤ x < β2/(2β2 − 1),
rejects all offers x with x < β2/(1 + 2β2) or x > β2/(2β2 − 1), and
either accepts or rejects the offer β2/(2β2 − 1).

β1 = 1
2 : the set of subgame perfect equilibria is the set of all strategy pairs for

which

• person 1’s offer x satisfies β2/(1 + 2β2) ≤ x ≤ 1
2

• person 2 accepts all offers x with β2/(1 + 2β2) < x < β2/(2β2 − 1),
rejects all offers x with x < β2/(1 + 2β2) or x > β2/(2β2 − 1), either
accepts or rejects the offer β2/(2β2 − 1), and either accepts or rejects
the offer β2/(1 + 2β2) unless person 1 makes this offer, in which case
person 2 definitely accepts it.

β1 > 1
2 : the set of subgame perfect equilibria is the set of all strategy pairs for

which

• person 1 offers 1
2
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• person 2 accepts all offers x with β2/(1 + 2β2) < x < β2/(2β2 − 1),
rejects all offers x with x < β2/(1 + 2β2) or x > β2/(2β2 − 1), and either
accepts or rejects the offer β2/(2β2 − 1) and the offer β2/(1 + 2β2).

The subgame perfect equilibrium outcomes are:

β1 < 1
2 : person 1 offers β2/(1 + 2β2), which person 2 accepts

β1 = 1
2 : person 1 makes an offer x that satisfies β2/(1 + 2β2) ≤ x ≤ 1

2 , and
person 2 accepts this offer

β1 > 1
2 : person 1 offers 1

2 , which person 2 accepts.

In particular, in all cases the offer made by person 1 in equilibrium is accepted by
person 2.
Impunity game First consider the optimal response of person 2 to each possible
offer. If person 2 accepts an offer x her payoff is x − β2|(1 − x) − x|, while if she
rejects an offer her payoff is −β2(1 − x). Thus she accepts an offer x if x − β2|(1 −
x) − x| > −β2(1 − x), or

x(1 − β2) + β2(1 − |1 − 2x|) > 0, (88.1)

rejects an offer x if x(1 − β2) + β2(1 − |1 − 2x|) < 0, and is indifferent between
accepting and rejecting if x(1 − β2) + β2(1 − |1 − 2x|) = 0.

As before, we can conveniently consider the cases x ≤ 1
2 and x > 1

2 separately.

• For x ≤ 1
2 the condition is x(1 + β2) > 0, or x > 0.

• For x ≥ 1
2 the condition is x(1 − 3β2) + 2β2 > 0, which is satisfied by all

values of x if β2 ≤ 1
3 , and for all x with x < 2β2/(3β2 − 1) if β2 > 1

3 .

In summary, person 2 accepts any offer x with 0 < x < 2β2/(3β2 − 1), may
accept or reject the offers 0 and 2β2/(3β2 − 1), and rejects any offer x with x >

2β2/(3β2 − 1).
Now consider person 1. If she offers x, her payoff is

{
1 − x − β1|1 − 2x| if person 1 accepts x
1 − x − β1(1 − x) if person 1 rejects x.

If β1 < 1
2 then in both cases person 1’s payoff is decreasing in x; for x = 0 the

payoffs are equal. Thus, given person 2’s optimal strategy, in any subgame perfect
equilibrium person 1’s optimal offer is 0, which person 2 may accept or reject.

If β1 = 1
2 then person 1’s payoff when person 2 accepts x is constant from 0 to

1
2 , then decreases. Her payoff when person 2 rejects x is decreasing in x, and the
two payoffs are equal when x = 0. Thus the optimal offers of person 1 are 0, which
person 2 may accept or reject, and any x with 0 < x ≤ 1

2 , which person 2 accepts.
If β1 > 1

2 then person 1’s highest payoff is obtained when x = 1
2 , which

person 2 accepts. Thus x = 1
2 is her optimal offer.
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In summary, in all subgame perfect equilibria the strategy of person 2 accepts
all offers x with 0 < x < 2β2/(3β2 − 1), rejects all offers x with x > 2β2/(3β2 − 1),
and either accepts or rejects the offer 0 and the offer 2β2/(3β2 − 1). Person 1’s offer
depends on the value of β1 and β2, as follows.

β1 < 1
2 : person 1 offers 0

β1 = 1
2 : person 1’s offer x satisfies 0 ≤ x ≤ 1

2

β1 > 1
2 : person 1 offers x = 1

2 .

The subgame perfect equilibrium outcomes are:

β1 < 1
2 : person 1 offers 0, which person 2 may accept or reject

β1 = 1
2 : person 1 either offers 0, which person 2 either accepts or rejects, or

makes an offer x that satisfies 0 < x ≤ 1
2 , which person 2 accepts

β1 > 1
2 : person 1 offers 1

2 , which person 2 accepts.

In particular, if β1 ≤ 1
2 there are equilibria in which person 1 offers 0, and person 2

rejects this offer.
Comparison of subgame perfect equilibria of ultimatum and impunity games
The equilibrium outcomes of the two games are the same unless 0 < β1 ≤ 1

2 , or
β1 = 0 and β2 > 0, in which case person 1’s offer in the ultimatum game is higher
than her offer in the impunity game.

183.1 Bargaining over two indivisible objects

An extensive game that models the situation is shown in Figure 89.1, where the
action (x, 2 − x) of player 1 means that she keeps x objects and offers 2 − x objects
to player 2.

1
(2, 0)

(1, 1)
(0, 2)

2
yes no

2, 0 0, 0

2
yes no

1, 1 0, 0

2
yes no

0, 2 0, 0

Figure 89.1 An extensive game that models the procedure described in Exercise 183.1 for allocating
two identical indivisible objects between two people.

Denote a strategy of player 2 by a triple abc, where a is the action (y or n, for yes
or no) taken after the offer (2, 0), b is the action taken after the offer (1, 1), and c is
the action taken after the offer (0, 2).

The subgame perfect equilibria of the game are ((2, 0), yyy) (resulting in the
division (2, 0)), and ((1, 1), nyy) (resulting in the division (1, 1)).
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The strategic form of the game is given in Figure 90.1. Its Nash equilibria
are ((2, 0), yyy), ((2, 0), yyn), ((2, 0), yny), ((2, 0), ynn), ((2, 0), nny), ((1, 1), nyy),
((1, 1), nyn), ((0, 2), nny), and ((2, 0), nnn). The first four equilibria result in the
division (2, 0), the next two result in the division (1, 1), and the last two result in
the divisions (0, 2) and (0, 0) respectively.

yyy yyn yny ynn nyy nyn nny nnn
(2, 0) 2, 0 2, 0 2, 0 2, 0 0, 0 0, 0 0, 0 0, 0
(1, 1) 1, 1 1, 1 0, 0 0, 0 1, 1 1, 1 0, 0 0, 0
(0, 2) 0, 2 0, 0 0, 2 0, 0 0, 2 0, 0 0, 2 0, 0

Figure 90.1 The strategic form of the game in Figure 89.1

The outcomes (0, 2) and (0, 0) are generated by Nash equilibria but not by any
subgame perfect equilibria.

183.2 Dividing a cake fairly

a. If player 1 divides the cake unequally then player 2 chooses the larger piece.
Thus in any subgame perfect equilibrium player 1 divides the cake into two
pieces of equal size.

b. In a subgame perfect equilibrium player 2 chooses P2 over P1, so she likes P2
at least as much as P1. To show that in fact she is indifferent between P1 and
P2, suppose to the contrary that she prefers P2 to P1. I argue that in this case
player 1 can slightly increase the size of P1 in such a way that player 2 still
prefers the now-slightly-smaller P2. Precisely, by the continuity of player 2’s
preferences, there is a subset P of P2, not equal to P2, that player 2 prefers
to its complement C \ P (the remainder of the cake). Thus if player 1 makes
the division (C \ P, P), player 2 chooses P. The piece P1 is a subset of C \ P
not equal to C \ P, so player 1 prefers C \ P to P1. Thus player 1 is better
off making the division (C \ P, P) than she is making the division (P1, P2),
contradicting the fact that (P1, P2) is a subgame perfect equilibrium division.
We conclude that in any subgame perfect equilibrium player 2 is indifferent
between the two pieces into which player 1 divides the cake.

I now argue that player 1 likes P1 as least as much as P2. Suppose that, to the
contrary, she prefers P2 to P1. If she deviates and makes a division (P, C \ P)
in which P is slightly bigger than P1 but still such that she prefers C \ P to
P, then player 2, who is indifferent between P1 and P2, chooses P, leaving
C \ P for player 1, who prefers it to P and hence to P1. Thus in any subgame
perfect equilibrium player 1 likes P1 at least as much as P2.

To show that player 1 may strictly prefer P1 to P2, consider a cake that is
perfectly homogeneous except for the presence of a single cherry. Assume
that player 2 values a piece of the cherry in exactly the same way that she
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values a piece of the cake of the same size, while player 1 prefers a piece of
the cherry to a piece of the cake of the same size. Then there is a subgame
perfect equilibrium in which player 1 divides the cake equally, with one piece
containing all of the cherry, and player 2 chooses the piece without the cherry.
(In this equilibrium, as in all equilibria, player 2 is indifferent between the
two pieces—but note that there is no subgame perfect equilibrium in which
she chooses the piece with the cherry in it. A strategy pair in which she acts
in this way is not an equilibrium, because player 1 can deviate and increase
slightly the size of the cherryless piece of cake, inducing player 2 to choose
that piece.)

183.3 Holdup game

The game is defined as follows.

Players Two people, person 1 and person 2.

Terminal histories The set of all sequences (low, x, Z), where x is a number with
0 ≤ x ≤ cL (the amount of money that person 1 offers to person 2 when the
pie is small), and (high, x, Z), where x is a number with 0 ≤ x ≤ cH (the
amount of money that person 1 offers to person 2 when the pie is large) and
Z is either Y (“yes, I accept”) or N (“no, I reject”).

Player function P(∅) = 2, P(low) = P(high) = 1, and P(low, x) = P(high, x) =
2 for all x.

Preferences Person 1’s preferences are represented by payoffs equal to the amounts
of money she receives, equal to cL − x for any terminal history (low, x, Y)
with 0 ≤ x ≤ cL, equal to cH − x for any terminal history (high, x, Y) with
0 ≤ x ≤ cH , and equal to 0 for any terminal history (low, x, N) with 0 ≤
x ≤ cL and for any terminal history (high, x, N) with 0 ≤ x ≤ cH . Person 2’s
preferences are represented by payoffs equal to x − L for the terminal history
(low, x, Y), x − H for the terminal history (high, x, Y), −L for the terminal
history (low, x, N), and −H for the terminal history (high, x, N).

186.1 Stackelberg’s duopoly game with quadratic costs

From Exercise 57.2, the best response function of firm 2 is the function b2 defined
by

b2(q1) =
{ 1

4 (α − q1) if q1 ≤ α

0 if q1 > α.

Firm 1’s subgame perfect equilibrium strategy is the value of q1 that maxi-
mizes q1(α − q1 − b2(q1)) − q2

1, or q1(α − q1 − 1
4 (α − q1)) − q2

1, or 1
4 q1(3α − 7q1).

The maximizer is q1 = 3
14 α.
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We conclude that the game has a unique subgame perfect equilibrium, in which
firm 1’s strategy is the output 3

14 α and firm 2’s strategy is its best response function
b2.

The outcome of the subgame perfect equilibrium is that firm 1 produces q∗1 =
3

14 α units of output and firm 2 produces q∗2 = b2( 3
14 α) = 11

56 α units. In a Nash
equilibrium of Cournot’s (simultaneous-move) game each firm produces 1

5 α (see
Exercise 57.2). Thus firm 1 produces more in the subgame perfect equilibrium of
the sequential game than it does in the Nash equilibrium of Cournot’s game, and
firm 2 produces less.

188.1 Stackelberg’s duopoly game with fixed costs

We have f < (α − c)2/16 ( f = 4; (α − c)2/16 = 9), so the best response function of
firm 2 takes the form shown in Figure 24.1 (in the solution to Exercise 57.3). To de-
termine the subgame perfect equilibrium we need to compare firm 1’s profit when
it produces q = 8 units of output, so that firm 2 produces 0, with its profit when it
produces the output that maximizes its profit on the positive part of firm 2’s best
response function.

If firm 1 produces 8 units of output and firm 2 produces 0, firm 1’s profit is
8(12 − 8) = 32. Firm 1’s best output on the positive part of firm 2’s best response
function is 1

2 (α − c) = 6. If it produces this output then firm 2 produces 1
2 (α − c −

q1) = 1
2 (12 − 6) = 3, and firm 1’s profit is 6(12 − 9) = 18. Thus firm 1’s profit is

higher when it produces enough to induce firm 2 to produce zero. We conclude
that the game has a unique subgame perfect equilibrium, in which firm 1’s strategy
is to produce 8 units, and firm 2’s strategy is to produce 1

2 (α − c − q1) = 1
2 (12− q1)

units if firm 1 produces q1 < 8 and 0 if firm 1 produces q1 ≥ 8 units.

189.1 Sequential variant of Bertrand’s duopoly game

a. Players The two firms.

Terminal histories The set of all sequences (p1, p2) of prices (where each pi
is a nonnegative number).

Player function P(∅) = 1 and P(p1) = 2 for all p1.

Preferences The payoff of each firm i to the terminal history (p1, p2) is its
profit 


(pi − c)D(pi) if pi < pj
1
2 (pi − c)D(pi) if pi = pj
0 if pi > pj,

where j is the other firm.

b. A strategy of firm 1 is a price (e.g. the price c). A strategy of firm 2 is
a function that associates a price with every price chosen by firm 1 (e.g.
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s2(p1) = p1 − 1, the strategy in which firm 2 always charges 1 cent less than
firm 1).

c. First consider firm 2’s best responses to each price p1 chosen by firm 1.

• If p1 < c, any price greater than p1 is a best response for firm 2.

• If p1 = c, any price at least equal to c is a best response for firm 2.

• If p1 = c + 1, firm 2’s unique best response is to set the same price.

• If p1 > c + 1, firm 2’s unique best response is to set the price min{pm, p1 −
1} (where pm is the monopoly price).

Now consider the optimal action of firm 1. Given firm 2’s best responses,

• if p1 < c, firm 1’s profit is positive

• if p1 = c, firm 1’s profit is zero

• if p1 = c + 1, firm 1’s profit is positive

• if p1 > c + 1, firm 1’s profit is zero.

Thus the only price p1 for which there is a best response of firm 2 that leads
to a positive profit for firm 1 is c + 1.

We conclude that in every subgame perfect equilibrium firm 1’s strategy is
p1 = c + 1, and firm 2’s strategy assigns to each price chosen by firm 1 one
of its best responses, so that firm 2’s strategy takes the form

s2(p1) =




k(p1) if p1 < c
k′ if p1 = c
c + 1 if p1 = c + 1
min{pm, p1 − 1} if p1 > c + 1

where k(p1) > p1 for all p1 and k′ ≥ c.

The outcome of every subgame perfect equilibrium is that both firms choose
the price c + 1.

193.1 Three interest groups buying votes

a. Consider the possibility of a subgame perfect equilibrium in which bill X
passes. In any such equilibrium, groups Y and Z make no payments. But
now given that Y makes no payments and that VX = VZ, group Z can match
X’s payments to the two legislators to whom X’s payments are smallest, and
gain the passage of bill Z. Thus there is no subgame perfect equilibrium
in which bill X passes. Similarly there is no subgame perfect equilibrium in
which bill Y passes. Thus in every subgame perfect equilibrium bill Z passes.
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b. By making payments of more than 50 to each legislator, group X ensures that
neither group Y nor group Z can profitably buy the passage of its favorite bill.
(In any subgame perfect equilibrium, group X’s payments to each legislator
are exactly 50.) Thus in every subgame perfect equilibrium the outcome is
that bill X is passed.

c. For any payments of group X that sum to at most 300, group Y can make
payments that are (i) at least as high to at least two legislators and (ii) high
enough that group Z cannot buy off more than one legislator. (Take the
two legislators to whom group X pays the least. Let them be legislators 1
and 2, and denote group X’s payments x1 and x2; suppose that x1 ≥ x2.
Group Y pays x1 + 1 to legislator 1 and 200 − x1 to legislator 2.) Thus in
every subgame perfect equilibrium the outcome is that bill Y is passed.

193.2 Interest groups buying votes under supermajority rule

a. However group X allocates payments summing to 700, group Y can buy off
five legislators for at most 500. Thus in any subgame perfect equilibrium
neither group makes any payment, and bill Y is passed.

b. If group X pays each legislator 80 then group Y is indifferent between buying
off five legislators, in which case bill Y is passed, and in making no payments,
in which case bill X is passed. If group Y makes no payments then X is se-
lected, and group X is better off than it is if it makes no payments. There is
no subgame perfect equilibrium in which group Y buys off five legislators,
because if it were to do so group X could pay each legislator slightly more
than 80 to ensure the passage of bill X. Thus in every subgame perfect equi-
librium group X pays each legislator 80, group Y makes no payments, and
bill X is passed.

c. If only a simple majority is required to pass a bill, in case a the outcome under
majority rule is the same as it is when five votes are required.

In case b, group X needs to pay each legislator 100 in order to prevent group Y
from winning. If it does so, its total payments are less than VX , so doing so
is optimal. Thus in this case the payment to each legislator is higher under
majority rule.

193.3 Sequential positioning by two political candidates

The following extensive game models the situation.

Players The candidates.

Terminal histories The set of all sequences (x1, . . . , xn), where xi is a position
of candidate i (a number) for i = 1, . . . , n.
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Player function P(∅) = 1, P(x1) = 2 for all x1, P(x1, x2) = 3 for all (x1, x2),
. . . , P(x1, . . . , xn−1) = n for all (x1, . . . , xn−1).

Preferences Each candidate’s preferences are represented by a payoff function
that assigns n to every terminal history in which she wins outright, k to ev-
ery terminal history in which she ties for first place with n − k other candi-
dates, for 1 ≤ k ≤ n − 1, and 0 to every terminal history in which she loses,
where positions attract votes as in Hotelling’s model of electoral competition
(Section 3.3).

This game has a finite horizon, so we may use backward induction to find its
subgame perfect equilibria. Suppose there are two candidates. First consider can-
didate 2’s best response to each strategy of candidate 1. Suppose candidate 1’s
strategy is m. Then candidate 2 loses if she chooses any position different from m
and ties with candidate 1 if she chooses m. Thus candidate 2’s best response to m
is m. Now suppose candidate 1’s strategy is x1 
= m. Then candidate 2 wins if she
chooses any position between x1 and 2m − x1; thus every such position is a best
response.

Given candidate 2’s best responses, the best strategy for candidate 1 is m, lead-
ing to a tie. (Every other strategy of candidate 1 leads her to lose.)

We conclude that in every subgame perfect equilibrium candidate 1’s strat-
egy is m; candidate 2’s strategy chooses m after the history m and some position
between x1 and 2m − x1 after any other history x1.

193.4 Sequential positioning by three political candidates

The following extensive game models the situation.

Players The candidates.

Terminal histories The set of all sequences (x1, . . . , xn), where xi is either Out
or a position of candidate i (a number) for i = 1, . . . , n.

Player function P(∅) = 1, P(x1) = 2 for all x1, P(x1, x2) = 3 for all (x1, x2),
. . . , P(x1, . . . , xn−1) = n for all (x1, . . . , xn−1).

Preferences Each candidate’s preferences are represented by a payoff function
that assigns n to every terminal history in which she wins, k to every terminal
history in which she ties for first place with n − k other candidates, for 1 ≤
k ≤ n − 1, 0 to every terminal history in which she stays out, and −1 to
every terminal history in which she loses, where positions attract votes as in
Hotelling’s model of electoral competition (Section 3.3).

When there are two candidates the analysis of the subgame perfect equilibria
is similar to that in the previous exercise. In every subgame perfect equilibrium
candidate 1’s strategy is m; candidate 2’s strategy chooses m after the history m,
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some position between x1 and 2m − x1 after the history x1 for any position x1, and
any position after the history Out.

Now consider the case of three candidates when the voters’ favorite positions
are distributed uniformly from 0 to 1. I claim that every subgame perfect equilib-
rium results in the first candidate’s entering at 1

2 , the second candidate’s staying
out, and the third candidate’s entering at 1

2 .
To show this, first consider the best response of candidate 3 to each possible

pair of actions of candidates 1 and 2. Figure 96.1 illustrates these optimal actions in
every case that candidate 1 enters. (If candidate 1 does not enter then the subgame
is exactly the two-candidate game.)
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Figure 96.1 The outcome of a best response of candidate 3 to each pair of actions by candidates 1 and
2. The best response for any point in the gray shaded area (including the black boundaries of this area,
but excluding the other boundaries) is Out. The outcome at each of the four small disks at the outer
corners of the shaded area is that all three candidates tie. The value of z is 1 − 1

2 (x1 + x2).

Now consider the optimal action of candidate 2, given x1 and the outcome of
candidate 3’s best response, as given in Figure 96.1. In the figure, take a value
of x1 and look at the outcomes as x2 varies; find the value of x2 that induces the
best outcome for candidate 2. For example, for x1 = 0 the only value of x2 for
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which candidate 2 does not lose is 2
3 , at which point she ties with the other two

candidates. Thus when candidate 1’s strategy is x1 = 0, candidate 2’s best action,
given candidate 3’s best response, is x2 = 2

3 , which leads to a three-way tie. We
find that the outcome of the optimal value of x2, for each value of x1, is given as
follows. 



1, 2, and 3 tie (x2 = 2
3 ) if x1 = 0

2 wins if 0 < x1 < 1
2

1 and 3 tie (2 stays out) if x1 = 1
2

2 wins if 1
2 < x1 < 1

1, 2, and 3 tie (x2 = 1
3 ) if x1 = 1.

Finally, consider candidate 1’s best strategy, given the responses of candidates 2
and 3. If she stays out then candidates 2 and 3 enter at m and tie. If she enters then
the best position at which to do so is x1 = 1

2 , where she ties with candidate 3. (For
every other position she either loses or ties with both of the other candidates.)

We conclude that in every subgame perfect equilibrium the outcome is that
candidate 1 enters at 1

2 , candidate 2 stays out, and candidate 3 enters at 1
2 . (There

are many subgame perfect equilibria, because after many histories candidate 3’s
optimal action is not unique.)

(If you’re interested in what may happen when there are many potential candi-
dates, look at http://www.economics.utoronto.ca/osborne/research/CONJECT.
HTM.)

195.1 The race G1(2, 2)

The consequences of player 1’s actions at the start of the game are as follows.

Take two steps: Player 1 wins.

Take one step: Go to the game G2(1, 2), in which player 2 initially takes two
steps and wins.

Do not move: If player 2 does not move, the game ends. If she takes one step
we go to the game G1(2, 1), in which player 1 takes two steps and wins. If she
takes two steps, she wins. Thus in a subgame perfect equilibrium player 2
takes two steps, and wins.

We conclude that in a subgame perfect equilibrium of G1(2, 2) player 1 initially
takes two steps, and wins.

198.1 A race in which the players’ valuations of the prize differ

By the arguments in the text for the case in which both players’ valuations of the
prize are between 6 and 7, the subgame perfect equilibrium outcomes of all games
in which k1 ≤ 2 or k2 ≤ 3 are the same as they are when both players’ valuations of
the prize are between 6 and 7. If k2 ≥ 5 then player 1 is the winner in all subgame
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perfect equilibria, because even if player 2 reaches the finish line after taking one
step at a time, her payoff is negative.

The games Gi(3, 4), Gi(4, 4), Gi(5, 4), and Gi(6, 4) remain. If, in the games
G2(3, 4) and G2(4, 4), player 2 takes a single step then play moves to a game that
player 1 wins. Thus player 2 is better off not moving; the subgame perfect equi-
librium outcome is that player 1 takes one step at a time, and wins. In the game
Gi(5, 4), the player who moves first can, by taking a single step, reach a game in
which she wins regardless of the identity of the first-mover. Thus in this game the
winner is the first-mover. Finally, in the game G1(6, 4) it is not worth player 1’s
while taking two steps, to reach a game in which she wins, because her payoff
would ultimately be negative. And if she takes one step, play moves to a game
in which player 2 is the first-mover, and wins. Thus in this game player 2 wins.
Figure 98.1 shows the subgame perfect equilibrium outcomes.
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1
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↑
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Figure 98.1 The subgame perfect equilibrium outcomes for the race in Exercise 198.1. Player 1 moves
to the left, and player 2 moves down. The labels on the values of (k1, k2) indicate the subgame perfect
equilibrium outcomes, as in the text.

198.2 Removing stones

For n = 1 the game has a unique subgame perfect equilibrium, in which player 1
takes one stone. The outcome is that player 1 wins.

For n = 2 the game has a unique subgame perfect equilibrium in which

• player 1 takes two stones

• after a history in which player 1 takes one stone, player 2 takes one stone.

The outcome is that player 1 wins.
For n = 3, the subgame following the history in which player 1 takes one stone

is the game for n = 2 in which player 2 is the first mover, so player 2 wins. The
subgame following the history in which player 1 takes two stones is the game for
n = 1 in which player 2 is the first mover, so player 2 wins. Thus there is a subgame
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perfect equilibrium in which player 1 takes one stone initially, and one in which
she takes two stones initially. In both subgame perfect equilibria player 2 wins.

For n = 4, the subgame following the history in which player 1 takes one stone
is the game for n = 3 in which player 2 is the first-mover, so player 1 wins. The
subgame following the history in which player 1 takes two stones is the game for
n = 2 in which player 2 is the first-mover, so player 2 wins. Thus in every subgame
perfect equilibrium player 1 takes one stone initially, and wins.

Continuing this argument for larger values of n, we see that if n is a multiple
of 3 then in every subgame perfect equilibrium player 2 wins, while if n is not a
multiple of 3 then in every subgame perfect equilibrium player 1 wins. We can
prove this claim by induction on n. The claim is correct for n = 1, 2, and 3, by the
arguments above. Now suppose it is correct for all integers through n − 1. I will
argue that it is correct for n.

First suppose that n is divisible by 3. The subgames following player 1’s re-
moval of one or two stones are the games for n − 1 and n − 2 in which player 2 is
the first-mover. Neither n − 1 nor n − 2 is divisible by 3, so by hypothesis player 2
is the winner in every subgame perfect equilibrium of both of these subgames.
Thus player 2 is the winner in every subgame perfect equilibrium of the whole
game.

Now suppose that n is not divisible by 3. As before, the subgames following
player 1’s removal of one or two stones are the games for n − 1 and n − 2 in which
player 2 is the first-mover. Either n − 1 or n − 2 is divisible by 3, so in one of
these subgames player 1 is the winner in every subgame perfect equilibrium. Thus
player 1 is the winner in every subgame perfect equilibrium of the whole game.

199.1 Hungry lions

Denote by G(n) the game in which there are n lions.
The game G(1) has a unique subgame perfect equilibrium, in which the single

lion eats the prey.
Consider the game G(2). If lion 1 does not eat, it remains hungry. If it eats, we

reach a subgame identical to G(1), which we know has a unique subgame perfect
equilibrium, in which lion 2 eats lion 1. Thus G(2) has a unique subgame perfect
equilibrium, in which lion 1 does not eat the prey.

In G(3), lion 1’s eating the prey leads to G(2), in which we have just concluded
that the first mover (lion 2) does not eat the prey (lion 1). Thus G(3) has a unique
subgame perfect equilibrium, in which lion 1 eats the prey.

For an arbitrary value of n, lion 1’s eating the prey in G(n) leads to G(n − 1).
If G(n − 1) has a unique subgame perfect equilibrium, in which the prey is eaten,
then G(n) has a unique subgame perfect equilibrium, in which the prey is not
eaten; if G(n − 1) has a unique subgame perfect equilibrium, in which the prey is
not eaten, then G(n) has a unique subgame perfect equilibrium, in which the prey
is eaten. Given that G(1) has a unique subgame perfect equilibrium, in which the
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prey is eaten, we conclude that if n is odd then G(n) has a unique subgame perfect
equilibrium, in which lion 1 eats the prey, and if n is even it has a unique subgame
perfect equilibrium, in which lion 1 does not eat the prey.

200.1 A race with a liquidity constraint

In the absence of the constraint, player 1 initially takes one step. Suppose she does
so in the game with the constraint. Consider player 2’s options after player 1’s
move.

Player 2 takes two steps: Because of the liquidity constraint, player 1 can take
at most one step. If she takes one step, player 2’s optimal action is to take one
step, and win. Thus player 1’s best action is not to move; player 2’s payoff
exceeds 1 (her steps cost 5, and the prize is worth more than 6).

Player 2 moves one step: Again because of the liquidity constraint, player 1
can take at most one step. If she takes one step, player 2 can take two steps
and win, obtaining a payoff of more than 1 (as in the previous case).

Player 2 does not move: Player 1, as before, can take one step on each turn, and
win; player 2’s payoff is 0.

We conclude that after player 1 moves one step, player 2 should take either
one or two steps, and ultimately win; player 1’s payoff is −1. A better option for
player 1 is not to move, in which case player 2 can move one step at a time, and
win; player 1’s payoff is zero.

Thus the subgame perfect equilibrium outcome is that player 1 does not move,
and player 2 takes one step at a time and wins.
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7 Extensive Games with Perfect Information:
Extensions and Discussion

206.2 Extensive game with simultaneous moves

The game is shown in Figure 101.1.

1
A B

C D
C 4, 2 0, 0
D 0, 0 2, 4

E F
E 3, 1 0, 0
F 0, 0 1, 3

Figure 101.1 The game in Exercise 206.2.

The subgame following player 1’s choice of A has two Nash equilibria, (C, C)
and (D, D); the subgame following player 1’s choice of B also has two Nash equi-
libria, (E, E) and (F, F). If the equilibrium reached after player 1 chooses A is
(C, C), then regardless of the equilibrium reached after she chooses (E, E), she
chooses A at the beginning of the game. If the equilibrium reached after player 1
chooses A is (D, D) and the equilibrium reached after she chooses B is (F, F), she
chooses A at the beginning of the game. If the equilibrium reached after player 1
chooses A is (D, D) and the equilibrium reached after she chooses B is (E, E), she
chooses B at the beginning of the game.

Thus the game has four subgame perfect equilibria: (ACE, CE), (ACF, CF),
(ADF, DF), and (BDE, DE) (where the first component of player 1’s strategy is
her choice at the start of the game, the second component is her action after she
chooses A, and the third component is her action after she chooses B, and the first
component of player 2’s strategy is her action after player 1 chooses A at the start
of the game and the second component is her action after player 1 chooses B at the
start of the game).

In the first two equilibria the outcome is that player 1 chooses A and then both
players choose C, in the third equilibrium the outcome is that player 1 chooses A
and then both players choose D, and in the last equilibrium the outcome is that
player 1 chooses B and then both players choose E.

101
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206.3 Two-period Prisoner’s Dilemma

The extensive game is specified as follows.

Players The two people.

Terminal histories The set of pairs ((W, X), (Y, Z)), where each component is
either Q or F.

Player function P(∅) = {1, 2} and P(W, X) = {1, 2} for any pair (W, X) in
which both W and X are either Q or F.

Actions The set Ai(∅) of player i’s actions at the initial history is {Q, F}, for
i = 1, 2; the set Ai(W, X) of player i’s actions after any history (W, X) in
which both W and X are either Q or F is {Q, F}, for i = 1, 2.

Preferences Each player’s preferences are represented by the payoffs described
in the problem.

Consider the subgame following some history (W, X) (where W and X are both
either Q or F). In this subgame each player chooses either Q or F, and her payoff to
each resulting terminal history is the sum of her payoff to (W, X) in the Prisoner’s
Dilemma given in Figure 13.1 and her payoff to the pair of actions chosen in the
subgame, again as in the Prisoner’s Dilemma. Thus the subgame differs from the
Prisoner’s Dilemma given in Figure 13.1 only in that every payoff to a given player
is increased by her payoff to the pair of actions (W, X). Thus the subgame has a
unique Nash equilibrium, in which both players choose F.

Now consider the whole game. Regardless of the actions chosen at the start
of the game, the outcome in the second period is (F, F). Thus the payoffs to the
pairs of actions chosen in the first period are the payoffs in the Prisoner’s Dilemma
plus the payoff to (F, F). We conclude that the game has a unique subgame perfect
equilibrium, in which each player chooses F after every history.

207.1 Timing claims on an investment

The following extensive game models the situation.

Players The two people.

Terminal histories The sequences of the form ((N, N), (N, N), . . . , (N, N), xt),
where 1 ≤ t ≤ T, xt is (C, C), (C, N), or (N, C) if t ≤ T − 1 and (C, C),
(C, N), (N, C), or (N, N) if t = T, C means “claim”, and N means “do not
claim”.

Player function The set of players assigned to every nonterminal history is
{1, 2} (the two people).
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Actions The set of actions of each player after every nonterminal history is
{C, N}.

Preferences Each player’s preferences are represented by a payoff equal to the
amount of money she obtains.

The consequences of the players’ actions in period T are given in Figure 103.1.
We see that the subgame starting in period T has a unique Nash equilibrium,
(C, C), in which each player’s payoff is T.

C N
C T, T 2T, 0
N 0, 2T T, T

Figure 103.1 The consequences of the players’ actions in period T of the game in Exercise 207.1.

Thus if T = 1 the game has a unique subgame perfect equilibrium, in which
both players claim.

Now suppose that T ≥ 2, and consider period T − 1. The consequences of the
players’ actions in this period, given the equilibrium in the subgame starting in
period T, are shown in Figure 103.2. (The entry in the bottom right box, (T, T),
is the pair of equilibrium payoffs in the subgame in period T.) If T > 2 then
2(T − 1) > T, so that the subgame starting in period T − 1 has a unique subgame
perfect equilibrium, (C, C), in which each player’s payoff is T − 1. If T = 2 then
the whole game has two subgame perfect equilibria, in one of which both players
claim in both periods, and another in which neither claims in period 1 and both
claim in period 2.

C N
C T − 1, T − 1 2(T − 1), 0
N 0, 2(T − 1) T, T

Figure 103.2 The consequences of the players’ actions in period T − 1 of the game in Exercise 207.1,
given the equilibrium actions in period T.

For T > 2, working back to period 1 we see that the game has two subgame
perfect equilibria: one in which each player claims in every period, and one in
which neither player claims in period 1 but both players claim in every subsequent
period.

207.2 A market game

The following extensive game models the situation.

Players The seller and m buyers.
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Terminal histories The set of sequences of the form ((p1, . . . , pm), j), where each
pi is a price (nonnegative number) and j is either 0 or one of the sellers (an
integer from 1 to m), with the interpretation that pi is the offer of buyer i,
j = 0 means that the seller accepts no offer, and j ≥ 1 means that the seller
accepts buyer j’s offer.

Player function P(∅) is the set of buyers and P(p1, . . . , pm) is the seller for
every history (p1, . . . , pm).

Actions The set Ai(∅) of actions of buyer i at the start of the game is the set of
prices (nonnegative numbers). The set As(p1, . . . , pm) of actions of the seller
after the buyers have made offers is the set of integers from 0 to m.

Preferences Each player’s preferences are represented by the payoffs given in
the question.

To find the subgame perfect equilibria of the game, first consider the subgame
following a history (p1, . . . , pm) of offers. The seller’s best action is to accept the
highest price, or one of the highest prices in the case of a tie.

I claim that a strategy profile is a subgame perfect equilibrium of the whole
game if and only if the seller’s strategy is the one just described, and among the
buyers’ strategies (p1, . . . , pm), every offer pi is at most v and at least two offers are
equal to v.

Such a strategy profile is a subgame perfect equilibrium by the following ar-
gument. If the buyer with whom the seller trades raises her offer then her payoff
becomes negative, while if she lowers her offer she no longer trades and her payoff
remains zero. If any other buyer raises her offer then either she still does not trade,
or she trades at a price greater than v and hence receives a negative payoff.

No other profile of actions for the buyers at the start of the game is part of a
subgame perfect equilibrium by the following argument.

• If some offer exceeds v then the buyer who submits the highest offer can
induce a better outcome by reducing her offer to a value below v, so that
either the seller does not trade with her, or, if the seller does trade with her,
she trades at a lower price.

• If all offers are at most v and only one is equal to v, the buyer who offers v
can increase her payoff by reducing her offer a little.

• If all offers are less than v then one of the buyers whose offer is not accepted
can increase her offer to some value between the winning offer and v, induce
the seller to trade with her, and obtain a positive payoff.

In any equilibrium the buyer who trades with the seller does so at the price v.
Thus her payoff is zero. The other buyers do not trade, and hence also obtain the
payoff of zero.
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208.1 Price competition

The following game models the situation.

Players The two sellers and the two buyers.

Terminal histories All sequences ((p1, p2), (x1, x2)) where pi (for i = 1, 2) is the
price posted by seller i and xi (for i = 1, 2) is the seller chosen by buyer i
(either seller 1 or seller 2).

Player function P(∅) is the set consisting of the two sellers; P(p1, p2) for any
pair (p1, p2) of prices is the set consisting of the two buyers.

Actions The set of actions of each seller at the start of the game is the set of
prices (nonnegative numbers), and the set of actions of each buyer after any
history (p1, p2) is the set consisting of seller 1 and seller 2.

Preferences Each seller’s preferences on lotteries over the terminal histories
are represented by the expected value of a Bernoulli payoff function that as-
signs the payoff p to a sale at the price p. Each buyers’ preferences on lot-
teries over the terminal histories are represented by the expected value of a
Bernoulli payoff function that assigns the payoff 1 − p to a purchase at the
price p. The payoff of a player who does not trade is 0.

In any subgame perfect equilibrium, the buyers’ strategies in the subgame
following any history (p1, p2) must be a Nash equilibrium of the game in Exer-
cise 125.2. This game has a unique Nash equilibrium unless 1

2 (1 + p1) ≤ p2 ≤
2p1 − 1. If 1

2 (1 + p1) < p2 < 2p1 − 1 the game has three Nash equilibria, two pure
and one mixed.

I claim that for any price p ≥ 1
2 the extensive game in this exercise has a sub-

game perfect equilibrium in which if 1
2 (1 + p1) < p2 < 2p1 − 1 then if either p1 ≤ p

or p2 ≤ p, the equilibrium in the subgame is the pure Nash equilibrium in which
buyer 1 approaches seller 1 and buyer 2 approaches seller 2, while if p1 > p and
p2 > p, the equilibrium in the subgame is the mixed strategy equilibrium.

Precisely, I claim that for any p ≥ 1
2 the following strategy pair is a subgame

perfect equilibrium of the game.

Sellers’ strategies Each seller announces the price p.

Buyers’ strategies

• After a history (p1, p2) in which 2p1 − 1 < p2 < 1
2 (1 + p1) and either

p1 ≤ p or p2 ≤ p (or both), buyer 1 approaches seller 1 and buyer 2
approaches seller 2.

• After a history (p1, p2) in which 2p1 − 1 < p2 < 1
2 (1 + p1), p1 > p,

and p2 > p, each buyer approaches seller 1 with probability (1 − 2p1 +
p2)/(2 − p1 − p2).
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• After a history (p1, p2) in which p2 ≤ 2p1 − 1, both buyers approach
seller 2.

• After a history (p1, p2) in which p2 ≥ 1
2 (1 + p1), both buyers approach

seller 1.

By Exercise 125.2, the buyers’ strategy pair is a Nash equilibrium in every
subgame. The sellers’ payoffs in the pure equilibrium in which one buyer ap-
proaches each seller are (p1, p2); their payoffs in the pure equilibrium in which
both buyers approach seller 1 is (p1, 0); and their payoffs in the pure equilibrium
in which both buyers approach seller 1 is (0, p2). Their payoffs in the mixed strat-
egy equilibrium are more difficult to calculate. They are (π∗

1(p1, p2), π∗
2(p1, p2)) =

((1 − (1 − π)2)p1, (1 − π2)p2), where π = (1 − 2p1 + p2)/(2 − p1 − p2). After
some algebra we obtain

(π∗
1(p1, p2), π∗

2(p1, p2)) =
(

3p1(1 − p2)(1 − 2p1 + p2)
(2 − p1 − p2)2 ,

3p2(1 − p1)(1 − 2p2 + p1)
(2 − p1 − p2)2

)
.

These equilibrium payoffs are illustrated in Figure 106.1.

p

p

0

1

1p1 →

↑
p2

(p1, 0)

(0, p2)

(π∗
1(p1, p2),

π∗
2(p1, p2))

(p1, p2)

p 2
=

2p
1
− 1

p 2
=

1
2
(1 + p 1)

Figure 106.1 The sellers’ payoffs in the game in Exercise 208.1 as a function of their prices, given the
buyers’ equilibrium strategies.

Now consider the sellers’ choices of prices. Given that p2 = p ≥ 1
2 and the

buyers’ strategies are those defined above, seller 1’s payoff when she sets the price
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p1 is 


p1 if p1 ≤ p
π∗

1(p1, p) if p < p1 ≤ 1
2 (1 + p)

0 if p > 1
2 (1 + p).

By the claim in the question (verified at the end of this solution), π∗
1(p1, p2) is

decreasing in p1 for p1 ≥ p2, so that seller 1’s best response to p is p. An analogous
argument shows that seller 2’s best response to p is p.

We conclude that the strategy pair defined above is a subgame perfect equilib-
rium.

The verification of the last claim of the question (not required as part of an
answer) follows. We have

π∗
1(p1, p2) =

3p1(1 − p2)(1 − 2p1 + p2)
(2 − p1 − p2)2 .

The derivative of this function with respect to p1 is

3(1 − p2)
[
(2 − p1 − p2)2(1 − 2p1 + p2 − 2p1) + 2(2 − p1 − p2)p1(1 − 2p1 + p2)

]
(2 − p1 − p2)4

or

3(1 − p2)(2 − p1 − p2) [(2 − p1 − p2)(1 − 4p1 + p2) + 2p1(1 − 2p1 + p2)]
(2 − p1 − p2)4 .

This expression is negative if

(2 − p1 − p2)(1 − 4p1 + p2) + 2p1(1 − 2p1 + p2) < 0,

or

p1 >
(2 − p2)(1 + p2)

7 − 5p2
.

The right-hand side is less than p2 if

(2p2 − 1)(p2 − 1) < 0,

which is true if 1
2 < p2 < 1, so that seller 1’s equilibrium payoff is decreasing in p1

whenever p1 > p2 > 1
2 .

210.1 Bertrand’s duopoly game with entry

The unique Nash equilibrium of the subgame that follows the challenger’s entry
is (c, c), as we found in Section 3.2.2. The challenger’s profit is − f < 0 in this
equilibrium. By choosing to stay out the challenger obtains the profit of 0, so in
any subgame perfect equilibrium the challenger stays out. After the history in
which the challenger stays out, the incumbent chooses its price p1 to maximize its
profit (p1 − c)(α − p1).

Thus for any value of f > 0 the whole game has a unique subgame perfect
equilibrium, in which the strategies are:
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Challenger

• at the start of the game: stay out

• after the history in which the challenger enters: choose the price c

Incumbent

• after the history in which the challenger enters: choose the price c

• after the history in which the challenger stays out: choose the price p1
that maximizes (p1 − c)(α − p1).

212.1 Electoral competition with strategic voters

Consider the strategy profile in which each candidate chooses the median m of the
citizens’ favorite positions and the citizens’ strategies are defined as follows.

• After a history in which every candidate chooses m, each citizen i votes for
candidate j, where j is the smallest integer greater than or equal to in/q. (That
is, the citizens split their votes equally among the n candidates. If there are 3
candidates and 15 citizens, for example, citizens 1 through 5 vote for candi-
date 1, citizens 6 through 10 vote for candidate 2, and citizens 11 through 15
vote for candidate 3.)

• After a history in which all candidates enter and every candidate but j chooses
m, each citizen votes for candidate j if her favorite position is closer to j’s po-
sition than it is to m, and for some candidate � whose position is m otherwise.
(All citizens who do not vote for j vote for the same candidate �.)

• After any other history, the citizens’ action profile is any Nash equilibrium of
the voting subgame in which no citizen’s action is weakly dominated.

The outcome induced by this strategy profile is that all candidates enter and
choose the median of the citizens’ favorite positions, and tie for first place. After
every history of one of the first two types, every citizen votes for one of the candi-
dates who is closest to her favorite position, so no citizen’s strategy is weakly dom-
inated. After a history of the third type, no citizen’s strategy is weakly dominated
by construction.

The strategy profile is a subgame perfect equilibrium by the following argu-
ment.

In each voting subgame the citizens’ strategy profile is a Nash equilibrium:

• after the history in which the candidates’ positions are the same, equal to m,
no citizen’s vote affects the outcome

• after a history in which all candidates enter and every candidate but j chooses
m, a change in any citizen’s vote either has no effect on the outcome or makes
it worse for her
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• after any other history the citizens’ strategy profile is a Nash equilibrium by
construction.

Now consider the candidates’ choices at the start of the game. If any candidate
deviates by choosing a position different from that of the other candidates, she
loses, rather than tying for first place. If any candidate deviates by staying out of
the race, the outcome is worse for her than adhering to the equilibrium, and tying
for first place. Thus each candidate’s strategy is optimal given the other players’
strategies.

[The claim that every voting subgame has a (pure) Nash equilibrium in which
no citizen’s action is weakly dominated, which you are not asked to prove, may be
demonstrated as follows. Given the candidates’ positions, choose the candidate,
say j, ranked last by the smallest number of citizens. Suppose that all citizens
except those who rank j last vote for j; distribute the votes of the citizens who
rank j last as equally as possible among the other candidates. Each citizen’s action
is not weakly dominated (no citizen votes for the candidate she ranks last) and,
given q ≥ 2n, no change in any citizen’s vote affects the outcome, so that the list of
citizens’ actions is a Nash equilibrium of the voting subgame.]

213.1 Electoral competition with strategic voters

I first argue that in any equilibrium each candidate that enters is in the set of win-
ners. If some candidate that enters is not a winner, she can increase her payoff by
deviating to Out.

Now consider the voting subgame in which there are more than two candidates
and not all candidates’ positions are the same. Suppose that the citizens’ votes are
equally divided among the candidates. I argue that this list of citizens’ strategies
is not a Nash equilibrium of the voting subgame.

For either the citizen whose favorite position is 0 or the citizen whose favorite
position is 1 (or both), at least two candidates’ positions are better than the position
of the candidate furthest from the citizen’s favorite position. Denote a citizen for
whom this condition holds by i. (The claim that citizen i exists is immediate if the
candidates occupy at least three distinct positions, or they occupy two distinct po-
sitions and at least two candidates occupy each position. If the candidates occupy
only two positions and one position is occupied by a single candidate, then take
the citizen whose favorite position is 0 if the lone candidate’s position exceeds the
other candidates’ position; otherwise take the citizen whose favorite position is 1.)

Now, given that each candidate obtains the same number of votes, if citizen i
switches her vote to one of the candidates whose position is better for her than
that of the candidate whose position is furthest from her favorite position, then
this candidate wins outright. (If citizen i originally votes for one of these superior
candidates, she can switch her vote to the other superior candidate; if she originally
votes for neither of the superior candidates, she can switch her vote to either one
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of them.) Citizen i’s payoff increases when she thus switches her vote, so that the
list of citizens’ strategies is not a Nash equilibrium of the voting subgame.

We conclude that in every Nash equilibrium of every voting subgame in which
there are more than two candidates and not all candidates’ positions are the same
at least one candidate loses. Because no candidate loses in a subgame perfect equi-
librium (by the first argument in the proof), in any subgame perfect equilibrium
either only two candidates enter, or all candidates’ positions are the same.

If only two candidates enter, then by the argument in the text for the case n = 2,
each candidate’s position is m (the median of the citizens’ favorite positions).

Now suppose that more than two candidates enter, and their common position
is not equal to m. If a candidate deviates to m then in the resulting voting subgame
only two positions are occupied, so that for every citizen, any strategy that is not
weakly dominated votes for a candidate at the position closest to her favorite po-
sition. Thus a candidate who deviates to m wins outright. We conclude that in
any subgame perfect equilibrium in which more than two candidates enter, they
all choose the position m.

216.1 Top cycle set

a. The top cycle set is the set {x, y, z} of all three alternatives because x beats y
beats z beats x.

b. The top cycle set is the set {w, x, y, z} of all four alternatives. As in the
previous case, x beats y beats z beats x; also y beats w.

217.1 Designing agendas

We have: x beats y beats z beats x; x, y, and z all beat v; v beats w; and w does not
beat any alternative. Thus the top cycle set is {x, y, z}.

An agenda that yields x is shown in Figure 111.1. A similar agenda, with y and
x interchanged, yields y, and one with x and z interchanged yields z.

No binary agenda yields w because for every other alternative a, a majority of
committee members prefer a to w. No binary agenda yields v because the only
alternative that v beats is w, which itself is beaten by every other alternative.

217.2 An agenda that yields an undesirable outcome

An agenda for which the outcome of sophisticated voting is z is given in Fig-
ure 111.2.

220.1 Exit from a declining industry

Period t1 is the largest value of t for which Pt(k1) ≥ c, or 60 − t ≥ 10. Thus t1 = 50.
Similarly, t2 = 70.
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vote

vote

x vote

v w

vote

y z

Figure 111.1 A binary agenda for which the alternative x is the outcome of sophisticated voting for
the committee in Exercise 217.1.

vote

z vote

x vote

y w

Figure 111.2 A binary agenda for which the alternative z is the outcome of sophisticated voting for the
committee in Exercise 217.2.

If both firms are active in period t1, then firm 2’s profit in this period is (100 −
t1 − c − k1 − k2)k2 = (−20)(20) = −400. Its profit in any period t in which it is
alone in the market is (100 − t − c − k2)k2 = (70 − t)(20). Thus its profit from
period t1 + 1 through period t2 is

(19 + 18 + . . . + 1)(20) = 3800.

Hence firm 2’s loss in period t1 when both firms are active is (much) less than the
sum of its profits in periods t1 + 1 through t2 when it alone is active.

221.1 Effect of borrowing constraint in declining industry

Period t0 is the largest value of t for which Pt(k1 + k2) ≥ c, or 100 − t − 60 ≥ 10, or
t ≤ 30. Thus t0 = 30. From Exercise 220.1 we have t1 = 50 and t2 = 70.

Suppose that firm 2 stays in the market for k periods after t0, then exits in period
t0 + k + 1. Firm 1’s total profit from period t0 + 1 on if it stays until period t1 is

(Pt0+1(k1 + k2) − c)k1 + . . . + (Pt0+k(k1 + k2) − c)k1 +
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(Pt0+k+1(k1) − c)k1 + . . . + (Pt1(k1) − c)k1,

or

40[(100 − 30 − 1 − 60 − 10) + . . . + (100 − 30 − k − 60 − 10) +

(100 − 30 − k − 1 − 40 − 10) + . . . + (100 − 50 − 40 − 10)],

or
40[−1 − . . . − k + (19 − k) + . . . + 0],

or
40[− 1

2 k(k + 1) + 1
2 (19 − k)(20 − k)]

(using the fact that the sum of the first n positive integers is 1
2 n(n + 1)), or

20(380 − 40k).

In order that this profit be nonpositive we need 40k ≥ 380, or k ≥ 9.5. Thus firm 2
needs to survive until at least period 40 (30 + 10) in order to make firm 1’s exit in
period t0 + 1 optimal.

Firm 2’s total loss from period 31 through period 40 when both firms are in the
market is

(P31(k1 + k2) − c)k2 + . . . + (P40(k1 + k2) − c)k2,

or
20[(100 − 31 − 60 − 10) + . . . + (100 − 40 − 60 − 10)],

or
20(−1 + . . . + −10),

or 1100.
Thus firm 2 needs to be able to bear a debt of at least 1100 in order for there to

be a subgame perfect equilibrium in which firm 1 exits in period t0 + 1.

222.2 Variant of ultimatum game with equity-conscious players

The game is defined as follows.

Players The two people.

Terminal histories The set of sequences (x, β2, Z), where x is a number with
0 ≤ x ≤ c (the amount of money that person 1 offers to person 2), β2 is 0 or 1
(the value of β2 selected by chance), and Z is either Y (“yes, I accept”) or N
(“no, I reject”).

Player function P(∅) = 1, P(x) = c for all x, and P(x, β2) = 2 for all x and all
β2.

Chance probabilities For every history x, chance chooses 0 with probability p
and 1 with probability 1 − p.
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Preferences Each person’s preferences are represented by the expected value
of a payoff equal to the amount of money she receives. For any terminal
history (x, β2, Y) person 1 receives c − x and person 2 receives x; for any
terminal history (x, β2, N) each person receives 0.

Given the result from Exercise 181.1 given in the question, if person 1’s offer x
satisfies 0 < x < 1

3 then the offer is rejected with probability 1 − p, so that per-
son 1’s expected payoff is p(1 − x), while if x > 1

3 the offer is certainly accepted,
independent of the type of person 2. Thus person 1’s optimal offer is

{ 1
3 if p < 2

3
0 if p > 2

3 ;

if p = 2
3 then both offers are optimal.

If p > 2
3 we see that in a subgame perfect equilibrium person 1’s offers are

rejected by every person 2 with whom she is matched for whom β2 = 1 (that is,
with probability 1 − p).

223.1 Sequential duel

The following game models the situation.

Players The two people.

Terminal histories All sequences of the form (X1, X2, . . . , Xk, S, H), where each
Xi is either N (“don’t shoot”) or (S, M) (“shoot”, “miss”), and H means “hit”,
together with the infinite sequence (S, M, S, M, S, M, . . .).

Player function P(h) = 1 for any history h in which the total number of S’s and
N’s is even and P(h) = 2 for any history h in which the total number of S’s
and N’s is odd.

Chance probabilities Whenever chance moves after a move of player 1 it chooses
H with probability p1 and M with probability 1− p1; whenever chance moves
after a move of player 2 it chooses H with probability p2 and M with proba-
bility 1 − p2;

Preferences Each player’s preferences are represented by the expected value of
a Bernoulli payoff function that assigns 1 to any history in which she survives
and 0 to any history in which she is killed.

If neither player ever shoots, both players survive. No outcome is better for
either player, so in particular neither player has a strategy that leads to a better
outcome for her, given the other player’s strategy.

Now suppose that player 2 shoots whenever it is her turn to move. I claim that
a best response for player 1 is to shoot whenever it is her turn to move. Denote
player 1’s probability of survival when she follows this strategy by π1.
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Suppose that player 1 deviates to not shooting at the start of the game (but
does not change the remainder of her strategy). If player 2 hits her in the next
round, she does not survive. If player 2 misses her, an event with probability
1− p2, then we reach a subgame identical to the whole game in which both players
always shoot, so that in this subgame player 1’s survival probability is π1. Thus if
player 1 deviates to not shooting at the start of the game her survival probability
is (1 − p2)π1. We conclude that player 1 is not better off (and worse off if p2 > 0)
by deviating at the start of the game.

The same argument shows that, given player 2’s strategy, player 1 is not better
off deviating after any history that ends with player 2’s shooting and missing, or
after any collection of such histories. A change in player 1’s strategy after a his-
tory that ends with player 2’s not shooting has no effect on the outcome (because
player 2’s is to shoot whenever it is her turn to move). Thus no change in player 1’s
strategy increases her expected payoff.

A symmetric argument shows that player 2 is not better off changing her strat-
egy. Thus the strategy pair in which each player always shoots is a subgame perfect
equilibrium.

223.2 Sequential truel

The games are shown in Figure 115.1. (The action marked “0” is that of shooting
into the air, which is available only in the second version of the game.)

To find the subgame perfect equilibria, first consider the subgame Γ′ in Fig-
ure 115.1. Whomever player C aims at, if she misses then she survives in the com-
pany of both A and B. If she aims at B and hits her, then she survives in the
company of A; if she aims at A and hits her then she survives in the company of
B. Thus C aims at B if pA < pB and at A if pA > pB.

Now consider the subgame Γ. Whomever B aims at, the outcome is the same
if she misses (because Γ′ has a unique subgame perfect equilibrium). If B aims at
A and hits her, then she survives with probability 1 − pC; if she aims at C and hits
her, then she survives with probability 1. Thus (given pC > 0), the subgame Γ thus
has a unique subgame perfect equilibrium, in which B aims at C.

Finally, consider the whole game. Whomever A aims at, the outcome is the
same if she misses (because Γ has a unique subgame perfect equilibrium). If she
aims at B and hits her, then she survives with probability 1 − pC; if she aims at C
and hits her, then she survives with probability 1− pB. Thus A aims at C if pB < pC
and at B if pB > pC.

In summary, the game in which no player has the option of shooting into the
air has the following unique subgame perfect equilibrium.

• At the start of the game, A aims at C if pB < pC and at B if pB > pC.

• After a history in which A misses, B aims at C.
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pC 1 − pC

{C} {A, C}
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pA 1 − pA

Γ

B

A
c

pB 1 − pB

{B} {A, B}

where the game Γ is

0

Γ′

B

A C
c

pB 1 − pB

Γ′
C

B
c

pC 1 − pC

{C} {B, C}

c
pB 1 − pB

{A, B} Γ′

and the game Γ′ is

0

{A, B, C}

C

A B
c

pC 1 − pC

{B, C} {A, B, C}

c
pC 1 − pC

{A, C} {A, B, C}
Figure 115.1 The games in Exercise 223.2. Only the actions indicated by black lines are available when
players do not have the option of shooting into the air (the action “0”). The labels beside the actions of
chance are the probabilities with which the actions are chosen; in each case the left action is “hit” and
the right action is “miss”.

• After a history in which both A and B miss, C aims at B if pA < pB and at A
if pA > pB.

Player A aims the player who is her more dangerous opponent; she is better off
if she eliminates this opponent than if she eliminates her weaker opponent.

Player C’s survival probability is (1 − pA)(1 − pB) = 1 − pA − pB(1 − pA) if
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pC > pB, and 1 − pB(1 − pA) if pC < pB. Thus she is better off if pC < pB than if
pC > pB.

Now consider the game in which each player has the option of shooting into
the air. In the subgame Γ′, player C’s best action is to aim at B (given pA < pB). (If
she shoots into the air then the set of survivors is {A, B, C}; if she aims at B she has
some chance of eliminating her.)

In the subgame Γ we know that if B shoots, her target should be C. If she
does so her probability of survival is 1 − (1 − pB)pC. If she shoots into the air her
probability of survival is 1 − pC. The former exceeds the latter, so in the subgame Γ
player B aims at C.

Finally, given the equilibrium actions in the subgames, at the start of the game
we know that if A fires she aims at C if pB < pC and at B if pB > pC. Given
pA < pB, her shooting into the air results in her certain survival, while her aiming
at B or C results in her surviving with probability less than 1. Thus she shoots into
the air.

We conclude that if pA < pB then the game in which each player has the option
of shooting into the air has a unique subgame perfect equilibrium, which differs
from the subgame perfect equilibrium in which this option is absent only in that A
shoots into the air at the beginning of the game.

Player A fires into the air because when she does so B and C fight between
themselves; if she shoots at one of them she may eliminate her from the game,
giving the remaining player an incentive to shoot at her.

224.1 Cohesion in legislatures

Let the initial governing coalition consist of legislators 1 and 2. The US game is
defined as follows.

Players The three legislators.

Terminal histories All sequences (i, (x1, x2, x3), (A, B, C), j, (y1, y2, y3), (A′ , B′, C′)),
where i and j are members of the governing coalition (possibly i = j), (x1, x2, x3)
and (y1, y2, y3) are partitions of one unit of payoff (x1 + x2 + x3 = y1 + y2 +
y3 = 1, xi ≥ 0, and yi ≥ 0 for i = 1, 2, 3), and A, B, C, A′, B′, and C′ are either
yes (vote for bill) or no (vote against bill).

Player function

• P(∅) = c (chance)

• P(i) = i

• P(i, (x1, x2, x3)) = {1, 2, 3}
• P(i, (x1, x2, x3), (A, B, C)) = c

• P(i, (x1, x2, x3), (A, B, C), j) = j

• P(i, (x1, x2, x3), (A, B, C), j, (y1, y2, y3)) = {1, 2, 3}.
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Chance probabilities Chance assigns probability 1
2 to 1 and probability 1

2 to 2
whenever it moves.

Actions

• A(∅) = {1, 2}
• A(i) = {(x1, x2, x3) : x1 + x2 + x3 = 1, xi ≥ 0 for all i} for i = 1, 2

• Ak(i, (x1, x2, x3)) = {yes, no} for all k, i = 1, 2, and all (x1, x2, x3)

• A(i, (x1, x2, x3), (A, B, C)) = {1, 2} for all i, all (x1, x2, x3), and all triples
(A, B, C) in which A, B, and C are all either yes or no

• A(i, (x1, x2, x3), (A, B, C), j) = {(x1, x2, x3) : x1 + x2 + x3 = 1, xi ≥
0 for all i} for i = 1, 2, all (x1, x2, x3), all triples (A, B, C) in which A,
B, and C are all either yes or no, and j = 1, 2

• Ak(i, (x1, x2, x3), (A, B, C), j, (y1, y2, y3)) = {yes, no} for all k, i = 1, 2, all
(x1, x2, x3), all triples (A, B, C) in which A, B, and C are all either yes or
no, j = 1, 2, and all (y1, y2, y3).

Preferences Each legislator i ranks the terminal histories by the amount of
money she receives: xi + yi if both bills are passed, xi + d2

i if only the first
bill is passed, d1

i + yi if only the second bill is passed, and d1
i + d2

i if neither
bill is passed.

We find a subgame perfect equilibrium as follows. Refer to dt
i as legislator i’s

reservation value in period t. In the second period, denote by k the legislator whose
reservation value is lower between the two who do not propose a bill. Each leg-
islator i gets dt

i if a bill does not pass, and hence votes for a bill only if it gives
her a payoff of at least dt

i . The proposer needs one vote in addition to her own
to pass a bill, and can obtain it most cheaply by proposing a bill that gives k the
payoff d2

k and gives herself the remaining payoff 1 − d2
k (which exceeds her reser-

vation value, because all reservation values are less than 1
2 ). Legislator k and the

proposer vote for the bill, which thus passes. (Legislator k is indifferent between
voting for or against the bill, but there is no subgame perfect equilibrium in which
she votes against the bill, because relative if she uses such a strategy the proposer
can increase her offer to k a little, leading k to strictly prefer voting for the bill.) The
third player may vote for or against the bill (her vote has no effect on the outcome).

In the first period, the pattern of behavior is the same: the bill proposed gives
the non-proposer with the lower reservation value that value.

In summary, in every subgame perfect equilibrium of the US game the strategy
of each member i of the governing coalition has the following properties:

• after the move of chance in either period, propose the bill that gives the leg-
islator with the smallest reservation value in the that period her reservation
value and gives i the remaining payoff
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• after a bill is proposed in either period, vote for the bill if it assigns i a positive
amount.

The equilibrium strategy of the other legislator j satisfies the condition:

• after a bill is proposed in either period, vote for the bill if it assigns j a positive
amount.

(Each legislator’s equilibrium strategy may either vote for or vote against a bill
that gives her a payoff of zero.)

Thus in the US game there is no cohesion: the supporters of a bill may change
from period to period, depending on the values of the reservation values.

The UK game is defined as follows.

Players The three legislators.

Terminal histories All sequences (i, (x1, x2, x3), (A, B, C), j, (y1, y2, y3), (A′ , B′, C′)),
where i is a member of the governing coalition and j is any legislator, (x1, x2, x3)
and (y1, y2, y3) are partitions of one unit of payoff (x1 + x2 + x3 = y1 + y2 +
y3 = 1, xi ≥ 0, and yi ≥ 0 for i = 1, 2, 3), and A, B, C, A′, B′, and C′ are either
yes (vote for bill) or no (vote against bill).

Player function

• P(∅) = c (chance)

• P(i) = i

• P(i, (x1, x2, x3)) = {1, 2, 3}
• P(i, (x1, x2, x3), (A, B, C)) = c

• P(i, (x1, x2, x3), (A, B, C), j) = j

• P(i, (x1, x2, x3), (A, B, C), j, (y1, y2, y3)) = {1, 2, 3}.

Chance probabilities Chance assigns probability 1
2 to 1 and probability 1

2 to 2
at the start of the game and after a history (i, (x1, x2, x3), (A, B, C)) in which
at least two of the votes A, B, and C are yes. Chance assigns probability 1

3 to
each legislator after a history (i, (x1, x2, x3), (A, B, C)) in which at least two
of the votes A, B, and C are no.

Actions

• A(∅) = {1, 2}
• A(i) = {(x1, x2, x3) : x1 + x2 + x3 = 1, xi ≥ 0 for all i} for i = 1, 2

• Ak(i, (x1, x2, x3)) = {yes, no} for all k, i = 1, 2, and all (x1, x2, x3)

• A(i, (x1, x2, x3), (A, B, C)) = {1, 2} for all i, all (x1, x2, x3), and all triples
(A, B, C) in which A, B, and C are all either yes or no and at least two
are yes, and A(i, (x1, x2, x3), (A, B, C)) = {1, 2, 3} for all i, all (x1, x2, x3),
and all triples (A, B, C) in which A, B, and C are all either yes or no and
at most one is yes
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• A(i, (x1, x2, x3), (A, B, C), j) = {(x1, x2, x3) : x1 + x2 + x3 = 1, xi ≥
0 for all i} for i = 1, 2, all (x1, x2, x3), all triples (A, B, C) in which A,
B, and C are all either yes or no, and j = 1, 2, 3

• Ak(i, (x1, x2, x3), (A, B, C), j, (y1, y2, y3)) = {yes, no} for all k, i = 1, 2, all
(x1, x2, x3), all triples (A, B, C) in which A, B, and C are all either yes or
no, j = 1, 2, 3, and all (y1, y2, y3).

Preferences Each legislator i ranks the terminal histories by the amount of
money she receives: xi + yi if both bills are passed, xi if only the first bill
is passed, yi if only the second bill is passed, and 0 if neither bill is passed.

To find the subgame perfect equilibria, start with the second period. The defeat
of a bill leads each legislator to obtain the payoff of 0, so each legislator optimally
votes for every bill. Thus in any subgame perfect equilibrium the proposer’s bill
gives the proposer all the pie, and at least one of the other legislators votes for the
bill. (As before, each of the other legislators is indifferent between voting for and
voting against the bill, but there is no subgame perfect equilibrium in which the
bill is voted down.)

In the first period, the same argument shows that the proposer’s bill gives the
proposer all the pie and that this bill passes. Further, in this period the other mem-
ber of the governing coalition definitely votes for the bill. The reason is that if she
does so, then her chance of being the proposer in the next period is 1

2 , so that her
expected payoff is 1

2 . If she votes against, then the bill fails, so that she obtains a
payoff of 0 in the first period and has a probability of 2

3 of being in the governing
coalition in the second period, so that her expected payoff is 1

3 . Thus she is better
off voting for her comrade’s bill than against it.

In summary, in every subgame perfect equilibrium of the UK game the strategy
of each legislator i has the following properties:

• after the move of chance in either period, propose the bill that gives legisla-
tor i the payoff 1

• after a bill is proposed in the first period, vote for the bill if i is a member of
the governing coalition.

Thus in the UK game the governing coalition is entirely cohesive.

226.1 Nash equilibria when players may make mistakes

The players’ best response functions are indicated in Figure 120.1. We see that the
game has two Nash equilibria, (A, A, A) and (B, A, A).

The action A is not weakly dominated for any player. For player 1, A is better
than B if players 2 and 3 both choose B; for players 2 and 3, A is better than B for
all actions of the other players.

If players 2 and 3 choose A in the modified game, player 1’s expected payoffs
to A and B are
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A B
A 1∗, 1∗, 1∗ 0, 0, 1∗

B 1∗, 1∗, 1∗ 1∗, 0, 1∗

A

A B
A 0, 1∗, 0 1∗, 0, 0
B 1∗, 1∗, 0 0, 0, 0

B

Figure 120.1 The player’s best response functions in the game in Exercise 226.1.

A: (1 − p2)(1 − p3) + p1 p2(1 − p3) + p1(1 − p2)p3 + (1 − p1)p2 p3

B: (1 − p2)(1 − p3) + (1 − p1)p2(1 − p3) + (1 − p1)(1 − p2)p3 + p1 p2 p3.

The difference between the expected payoff to B and the expected payoff to A is

(1 − 2p1)[p2 + p3 − 3p2 p3].

If 0 < pi < 1
2 for i = 1, 2, 3, this difference is positive, so that (A, A, A) is not a

Nash equilibrium of the modified game.

228.1 Nash equilibria of the chain-store game

Any terminal history in which the event in each period is either Out or (In, A) is
the outcome of a Nash equilibrium. In any period in which challenger chooses
Out, the strategy of the chain-store specifies that it choose F in the event that the
challenger chooses In.

229.1 Subgame perfect equilibrium of the chain-store game

The outcome of the strategy pair is that the only the last 10 challengers enter, and
the chain-store acquiesces to their entry. The payoff of each of the first 90 chal-
lengers is 1 and the payoff to the remaining 10 is 2. The chain-store’s payoff is
90 × 2 + 10 × 1 = 190.

No challenger can profitably deviate in any subgame (if one of the first 90 en-
ters it is fought). However, I claim that the chain-store can increase its payoff by
deviating after a history in which the first 89 challengers enter and are fought,
and then challenger 90 enters. The chain-store’s strategy calls for it to fight chal-
lenger 90 and then subsequently acquiesce to any entry, and the remaining chal-
lengers’ strategies call for them to enter. But if instead the chain-store acquiesces
to challenger 90, keeping the rest of its strategy the same, it increases its payoff by
1.

(Note that the chain-store cannot profitably deviate after a history in which
fewer than 89 challengers enter and each of them is fought. Suppose, for example,
that each of the first 88 challengers enters and is fought, and then challenger 89
enters. The chain-store’s strategy calls for it to fight challenger 89, which induces
challenger 90 to stay out; the remaining challengers enter, and the chain-store ac-
quiesces. Its best deviation is to acquiesce to challenger 89’s entry and that of



Chapter 7. Extensive Games with Perfect Information: Extensions and Discussion 121

all subsequent entrants, in which case all remaining challengers, including chal-
lenger 90, enter. The outcomes of the two strategies differ in periods 89 and 90.
If the challenger sticks to its original strategy it obtains 0 in period 89 and 2 in
period 90; if it deviates it obtains 1 in each period.)

229.3 Nash equilibria of the centipede game

Consider a strategy pair that results in an outcome in which player 1 stops the
game in period k ≥ 2. (That is, each player chooses C through period k − 1 and the
player who moves in period k chooses S.) Such a pair is not a Nash equilibrium
because the player who moves in period k− 1 can do better (in the whole game, not
only the subgame) by choosing S rather than C, given the other player’s strategy.
Similarly the strategy pair in which each player always chooses C is not a Nash
equilibrium. Thus in every Nash equilibrium player 1 chooses S at the start of the
game.
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8 Coalitional Games and the Core

241.1 Three-player majority game

Let (x1, x2, x3) be an action of the grand coalition. Every coalition consisting of
two players can obtain one unit of output, so for (x1, x2, x3) to be in the core we
need

x1 + x2 ≥ 1

x1 + x3 ≥ 1

x2 + x3 ≥ 1

x1 + x2 + x3 = 1.

Adding the first three conditions we conclude that

2x1 + 2x2 + 2x3 ≥ 3,

or x1 + x2 + x3 ≥ 3
2 , contradicting the last condition. Thus no action of the grand

coalition satisfies all the conditions, so that the core of the game is empty.
In the variant in which player 1 has three votes, a coalition can obtain one unit

of output if and only if it contains player 1. (Note that players 2 and 3 together do
not have a majority of the votes.) Thus for (x1, x2, x3) to be in the core we need

x1 ≥ 1

x1 + x2 ≥ 1

x1 + x3 ≥ 1

x1 + x2 + x3 = 1.

The first and last conditions (and the restriction that amounts of output must be
nonnegative) imply that (x1, x2, x3) = (1, 0, 0), which satisfies the other two condi-
tions. Thus the core consists of the single action (1, 0, 0) in which player 1 obtains
all the output.

242.1 Market with one owner and two heterogeneous buyers

By the arguments in Example 241.2, in any action in the core the owner does not
keep the good, the buyer who obtains the good pays at most her valuation, and

123
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the other buyer makes no payment. Let aN be an action of the grand coalition
in which buyer 2 obtains the good and pays the owner p, and buyer 1 makes no
payment. Then p ≤ v < 1, so that the coalition consisting of the owner and buyer 1
can improve upon aN : if the owner transfers the good to buyer 1 in exchange for
1
2 (1 + p) units of money, both the owner and buyer 1 are better off than they are
in aN . Thus in any action in the core, buyer 1 obtains the good. The price she
pays is at least v (otherwise the coalition consisting of the owner and buyer 2 can
improve upon the action). No coalition can improve upon any action in which
buyer 1 obtains the good and pays the owner at least v and at most 1 (and buyer 2
makes no payment), so the core consists of all such actions.

242.2 Vote trading

a. The core consists of the single action in which all three bills pass, yielding
each legislator a payoff of 2. This action cannot be improved upon by any
coalition because no single bill or pair of bills gives every member of any
majority coalition a payoff of more than 2.

No other action is in the core, by the following argument.

• The action in which no bill passes (so that each legislator’s payoff is 0)
can be improved upon by the coalition of all three legislators, which by
passing all three bills raises the payoff of each legislator to 2.

• The action in which only A passes can be improved upon by the coali-
tion of legislators 2 and 3, who by passing bills A and B raise both of
their payoffs.

• Similarly the action in which only B passes can be improved upon by
the coalition of legislators 1 and 3, and the action in which only C passes
can be improved upon by the coalition of legislators 1 and 2.

• The action in which bills A and B pass can be improved upon by the
coalition of legislators 1 and 3, who by passing all three bills raise both
their payoffs.

• Similarly the action in which bills A and C pass can be improved upon
by the coalition of legislators 2 and 3, and the action in which bills B and
C pass can be improved upon by the coalition of legislators 1 and 2.

b. The core consists of two actions: all three bills pass, and bills A and B pass.
As in part a, the action in which all three bills pass cannot be improved upon
by any coalition. The action in which bills A and B cannot be improved upon
either: for no other set of bills are at least two legislators better off.

No other action is in the core, by the following argument.

• The action in which A passes can be improved upon by the coalition
consisting of legislators 2 and 3, who can pass B instead.
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• The action in which B passes can be improved upon by the coalition
consisting of legislators 1 and 2, who can pass A and B instead.

• The action in which C passes can be improved upon by the coalition
consisting of legislators 2 and 3, who can pass B instead.

• The action in which A and C pass can be improved upon by the coalition
consisting of legislators 2 and 3, who can pass A and B instead.

• The action in which B and C pass can be improved upon by the coalition
consisting of legislators 1 and 2, who can pass A and B instead.

c. The core is empty.

• The action in which no bill passes can be improved upon by the coalition
consisting of legislators 1 and 2, who can pass A and B instead.

• The action in which any single bill passes can be improved upon by the
coalition consisting of the two legislators whose payoffs are −1 if this
bill passes; this coalition can do better by passing the other two bills.

• The action in which bills A and B pass can be improved upon by the
coalition consisting of legislators 2 and 3, who can pass B instead.

• Similarly the action in which A and C pass can be improved upon by the
coalition consisting of legislators 1 and 2, who can pass A instead, and
the action in which B and C pass can be improved upon by the coalition
consisting of legislators 1 and 2, who can pass B instead.

• The action in which all three bills pass can be improved upon by the
coalition consisting of legislators 1 and 2, who can pass A and B instead.

244.1 Core of landowner–worker game

Let aN be an action of the grand coalition in which the output received by each
worker is at most f (n) − f (n − 1). No coalition consisting solely of workers can
obtain any output, so no such coalition can improve upon aN . Let S be a coalition
of the landowner and k − 1 workers. The total output received by the members of
S in aN is at least

f (n) − (n − k)( f (n) − f (n − 1))

(because the total output is f (n), and every other worker receives at most f (n) −
f (n − 1)). Now, the output that S can obtain is f (k), so for S to improve upon aN
we need

f (k) > f (n) − (n − k)( f (n) − f (n − 1)),

which contradicts the inequality given in the exercise.
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244.2 Unionized workers in landowner–worker game

The following game models the situation.

Players The landowner and the workers.

Actions The set of actions of the grand coalition is the set of all allocations of
the output f (n). Every other coalition has a single action, which yields the
output 0.

Preferences Each player’s preferences are represented by the amount of output
she obtains.

The core of this game consists of every allocation of the output f (n) among
the players. The grand coalition cannot improve upon any allocation x because
for every other allocation x′ there is at least one player whose payoff is lower in
x′ than it is in x. No other coalition can improve upon any allocation because no
other coalition can obtain any output.

245.1 Landowner–worker game with increasing marginal products

We need to show that no coalition can improve upon the action aN of the grand
coalition in which every player receives the output f (n)/n. No coalition of work-
ers can obtain any output, so we need to consider only coalitions containing the
landowner. Consider a coalition consisting of the landowner and k workers, which
can obtain f (k + 1) units of output by itself. Under aN this coalition obtains the out-
put (k + 1) f (n)/n, and we have f (k + 1)/(k + 1) < f (n)/n because k < n. Thus no
coalition can improve upon aN .

250.1 Range of prices in horse market

The equality of the number of owners who sell their horses and the number of
nonowners who buy horses implies that the common trading price p∗

• is not less than σk∗ , otherwise at most k∗ − 1 owners’ valuations would be
less than p∗ and at least k∗ nonowners’ valuations would be greater than p∗,
so that the number of buyers would exceed the number of sellers

• is not less than βk∗+1, otherwise at most k∗ owners’ valuations would be less
than p∗ and at least k∗ + 1 nonowners’ valuations would be greater than p∗,
so that the number of buyers would exceed the number of sellers

• is not greater than βk∗ , otherwise at least k∗ owners’ valuations would be less
than p∗ and at most k∗ − 1 nonowners’ valuations would be greater than p∗,
so that the number of sellers would exceed the number of buyers
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• is not greater than σk∗+1, otherwise at least k∗ + 1 owners’ valuations would
be less than p∗ and at most k∗ nonowners’ valuations would be greater than
p∗, so that the number of sellers would exceed the number of buyers.

That is, p∗ ≥ max{σk∗ , βk∗+1} and p∗ ≤ min{βk∗ , σk∗+1}.

251.1 Horse trading game with single seller

The core consists of the set of actions of the grand coalition in which the owner sells
her horse to the nonowner with the highest valuation (nonowner 1) at a price p∗

for which max{β2, σ1} ≤ p∗ ≤ β1. (The coalition consisting of the owner and non-
woner 2 can improve any action in which the price is less than β2, the owner alone
can improve upon any action in which the price is less than σ1, and nonowner 1
alone can improve upon any action in which the price is greater than β1.)

251.2 Horse trading game with large seller

In every action in the core, the owner sells one horse to buyer 1 and one horse to
buyer 2. The prices at which the trades occur are not necessarily the same. The
price p1 paid by buyer 1 satisfies max{β3, σ1} ≤ p1 ≤ β1 and the price p2 paid by
buyer 2 satisfies max{β3, σ1} ≤ p1 ≤ β2.

254.1 House assignment with identical preferences

Because the players rank the houses in the same way, we can refer to the “best
house”, the “second best house”, and so on. In any assignment in the core, the
player who owns the best house is assigned this house (because she has the option
of keeping it). Among the remaining players, the one who owns the second best
house must be assigned this house (again, because she has the option of keeping
it). Continuing to argue in the same way, we see that there is a single assignment
in the core, in which every player is assigned the house she owns initially.

255.1 Emptiness of the strong core when preferences are not strict

Of the six possible assignments, h1h2h3 (i.e. every player keeps the house she
owns) and h3h2h1 can both be improved upon by {1, 2} (and by {2, 3}). All four of
the other assignments are in the core.

None of the assignments in the core is in the strong core. The assignments
h1h3h2 and h3h1h2 can both be weakly improved upon by {1, 2}, and h2h1h3 and
h2h3h1 can both be weakly improved upon by {2, 3}.
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257.1 Median voter theorem

Denote the median favorite position by m. If x < m then every player whose fa-
vorite position is m or greater—a majority of the players—prefers m to x. Similarly,
if x > m then every player whose favorite position is m or less—a majority of the
players—prefers m to x.

258.1 Cores of q-rule games

a. Denote the favorite policy of player i by x∗
i and number the players so that

x∗
1 ≤ · · · ≤ x∗

n. The q-core is the set of all policies x for which

x∗
n−q+1 ≤ x ≤ x∗

q .

Any such policy x is in the core because every coalition of q players contains
at least one player whose favorite position is less than x and at least one
player whose favorite position is greater than x, so that there is no position
y 
= x that all members of the coalition prefer to x.

Any policy x < x∗
n−q+1 is not in the core because the coalition of players

n − q + 1 through n can improve upon x: this coalition contains q players, all
of whom prefer x∗

n−q+1 to x. Similarly, no policy greater than x∗
q is in the core.

b. The core is the set of policies in the triangle defined by x∗
1, x∗

2, and x∗
3.

Every policy x in this set is in the core because for every other policy y 
= x
at least one player is worse off than she is at x.

No policy x outside the set is in the core because the policy y 
= x closest to x
in the set is preferred by all three players.

262.1 Deferred acceptance procedure with proposals by Y’s

For the preferences given in Figure 260.1, the progress of the procedure when pro-
posals are made by Y’s is given in Figure 128.1. The matching produced is the
same as that produced by the procedure when proposals are made by X’s, namely
(x1, y1), (x2, y2), x3 (alone), and y3 (alone).

Stage 1 Stage 2 Stage 3

y1: → x1

y2: → x2

y3: → x1 reject → x3 reject → x2 reject

Figure 128.1 The progress of the deferred acceptance procedure with proposals by Y’s when the
players’ preferences are those given in Figure 260.1. Each row gives the proposals of one X.
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262.2 Example of deferred acceptance procedure

For the preferences in Figure 262.1, the procedure when proposals are made by
X’s yields the matching (x1, y1), (x2, y2), (x3, y3); the procedure when proposals
are made by Y’s yields the matching (x1, y1), (x2, y3), (x3, y2).

In any matching in the core, x1 and y1 are matched, because each is the other’s
top-ranked partner. Thus the only two possible matchings are those generated by
the two procedures. Player x2 prefers y2 to y3 and player x3 prefers y3 to y2, so
the matching generated by the procedure when proposals are made by X’s yields
each X a better partner than does the matching generated by the procedure when
proposals are made by Y’s. Similarly, player y2 prefers x3 to x2 and player y3
prefers x2 to x3, so the matching generated by the procedure when proposals are
made by Y’s yields each Y a better partner than does the matching generated by
the procedure when proposals are made by X’s.

263.1 Strategic behavior under the deferred acceptance procedure

The matching produced by the deferred acceptance procedure with proposals by
X’s is (x1, y2), (x2, y3), (x3, y1). The matching produced by the deferred accep-
tance procedure with proposals by Y’s is (x1, y1), (x2, y3), (x3, y2). Of the four
other matchings, the coalition {x3, y2} can improve upon (x1, y1), (x2, y2), (x3, y3)
and (x1, y2), (x2, y1), (x3, y3), and the coalition {x1, y1} can improve upon (x1, y3),
(x2, y1), (x3, y2) and (x1, y3), (x2, y2), (x3, y1). Thus the core consists of the two
matchings produced by the deferred acceptance procedures.

If y1 names the ranking (x1, x2, x3) and every other player names her true rank-
ing, the deferred acceptance procedure with proposals by X’s yields the match-
ing (x1, y1), (x2, y3), (x3, y2), as illustrated in Figure 129.1. Players y1 and y2 are
matched with their favorite partners, so cannot profitably deviate by submitting
any other ranking. Player y3’s ranking does not affect the outcome of the proce-
dure. Thus, given that submitting her true ranking is a dominant strategy for every
X, the game thus has a Nash equilibrium in which player y1 submits the ranking
(x1, x2, x3) and every other player submits her true ranking.

Stage 1 Stage 2 Stage 3 Stage 4

x1: → y2 reject → y1

x2: → y1 reject → y3

x3: → y1 reject → y2

Figure 129.1 The progress of the deferred acceptance procedure with proposals by X’s when the play-
ers’ preferences differ from those in Exercise 263.1 only in that y1’s ranking is (x1, x2, x3). Each row
gives the proposals of one X.
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263.2 Empty core in roommate problem

Notice that � is at the bottom of each of the other players’ preferences. Suppose
that she is matched with i. Then j and k are matched, and {i, k} can improve upon
the matching. Similarly, if � is matched with j then {i, j} can improve upon the
matching, and if � is matched with k then {j, k} can improve upon the matching.
Thus the core is empty (� has to be matched with someone!).

264.1 Spatial preferences in roommate problem

The core consists of the single matching µ∗ defined as follows. First match the
pair of players whose characteristics are closest. Then match the pair of players in
the remaining set whose characteristics are closest. Continue until all players are
matched.

Number the matches in the order they are made according to this procedure. If
a coalition can improve upon µ∗, then a coalition consisting of two players can do
so. Now, neither member of match k is better off being matched with a member of
match � for any � > k, so no two-player coalition can improve upon the matching.
Thus µ∗ is in the core.

For any other matching µ′, at least one of the members of some match k defined
by the procedure is matched with a different partner. If she is matched with a
member of some match � < k then the coalition consisting of the two members of
match � can improve µ′; if she is matched with a member of some match � > k then
the coalition consisting of the two member of match k can improve upon µ′. Thus
no matching µ′ 
= µ∗ is in the core.



Draft of solutions to exercises in chapter of An introduction to game theory by Martin J. Osborne
Osborne@chass.utoronto.ca; www.chass.utoronto.ca/~osborne/index.html
Version: 00/11/6.
Copyright c© 1995–2000 by Martin J. Osborne. All rights reserved. No part of this book may be re-
produced in any form by any electronic or mechanical means (including photocopying, recording, or
information storage and retrieval) without permission in writing from Martin J. Osborne. On request,
permission to make one copy for each student will be granted to instructors who wish to use the book
in a course, on condition that copies be sold at a price not more than the cost of duplication.

9 Bayesian games

274.1 Equilibria of a variant of BoS with imperfect information

If player 1 chooses S then type 1 of player 2 chooses S and type 2 chooses B. But
if the two types of player 2 make these choices then player 1 is better off choosing
B (which yields her an expected payoff of 1) than choosing S (which yields her an
expected payoff of 1

2 ). Thus there is no Nash equilibrium in which player 1 chooses
S.

Now consider the mixed strategy Nash equilibria. If both types of player 2 use
a pure strategy then player 1’s two actions yield her different payoffs. Thus there
is no equilibrium in which both types of player 2 use pure strategies and player 1
randomizes.

Now consider an equilibrium in which type 1 of player 2 randomizes. Denote
by p the probability that player 1’s mixed strategy assigns to B. In order for type 1
of player 2 to obtain the same expected payoff to B and S we need p = 2

3 . For this
value of p the best action of type 2 of player 2 is S. Denote by q the probability that
type 1 of player 2 assigns to B. Given these strategies for the two types of player 2,
player 1’s expected payoff if she chooses B is

1
2 · 2q = q

and her expected payoff if she chooses S is

1
2 · (1 − q) + 1

2 · 1 = 1 − 1
2 q.

These expected payoffs are equal if and only if q = 2
3 . Thus the game has a mixed

strategy equilibrium in which the mixed strategy of player 1 is ( 2
3 , 1

3 ), that of type 1
of player 2 is ( 2

3 , 1
3 ), and that of type 2 of player 2 is (0, 1) (that is, type 2 of player 2

uses the pure strategy that assigns probability 1 to S).
Similarly the game has a mixed strategy equilibrium in which the strategy of

player 1 is ( 1
3 , 2

3 ), that of type 1 of player 2 is (0, 1), and that of type 2 of player 2 is
( 2

3 , 1
3 ).
For no mixed strategy of player 1 are both types of player 2 indifferent between

their two actions, so there is no equilibrium in which both types randomize.

275.1 Expected payoffs in a variant of BoS with imperfect information

The expected payoffs are given in Figure 132.1.

131
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(B, B) (B, S) (S, B) (S, S)

B 0 1 1 2

S 1 1
2

1
2 0

Type n1 of player 1

(B, B) (B, S) (S, B) (S, S)

B 1 2
3

1
3 0

S 0 2
3

4
3 2

Type y2 of player 2

(B, B) (B, S) (S, B) (S, S)

B 0 1
3

2
3 1

S 2 4
3

2
3 0

Type n2 of player 2

Figure 132.1 The expected payoffs of type n1 of player 1 and types y2 and n2 of player 2 in Exam-
ple 274.2.

280.2 Fighting an opponent of unknown strength

The following Bayesian game models the situation.

Players The two people.

States The set of states is {strong, weak}.

Actions The set of actions of each player is {fight, yield}.

Signals Player 1 receives the same signal in each state, whereas player 2 re-
ceives different signals in the two states.

Beliefs The single type of player 1 assigns probability α to the state strong and
probability 1 − α to the state weak. Each type of player 2 assigns probability 1
to the single state consistent with her signal.

Payoffs The players’ Bernoulli payoffs are shown in Figure 133.1.

The best responses of each type of player 2 are indicated by asterisks in Fig-
ure 133.1. Thus if α < 1

2 then player 1’s best action is fight, whereas if α > 1
2 her

best action is yield. Thus for α < 1
2 the game has a unique Nash equilibrium, in

which player 1 chooses fight and player 2 chooses fight if she is strong and yield
if she is weak, and if α > 1

2 the game has a unique Nash equilibrium, in which
player 1 chooses yield and player 2 chooses fight whether she is strong or weak.
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F Y
F −1, 1∗ 1, 0
Y 0, 1∗ 0, 0

State: strong

F Y
F 1, −1 1, 0∗

Y 0, 1∗ 0, 0

State: weak

Figure 133.1 The player’s Bernoulli payoff functions in Exercise 280.2. The asterisks indicate the best
responses of each type of player 2.

280.3 An exchange game

The following Bayesian game models the situation.

Players The two individuals.

States The set of all pairs (s1, s2), where si is the number on player i’s ticket
(an integer from 1 to m).

Actions The set of actions of each player is {Exchange, Don’t exchange}.

Signals The signal function of each player i is defined by τi(s1, s2) = si (each
player observes her own ticket, but not that of the other player)

Beliefs Type si of player i assigns the probability Prj(sj) to the state (s1, s2),
where j is the other player and Prj(sj) is the probability with which player j
receives a ticket with the prize sj on it.

Payoffs Player i’s Bernoulli payoff function is given by ui((X, Y), ω) = ωj if
X = Y = Exchange and ui((X, Y), ω) = ωi otherwise.

Let Mi be the highest type of player i that chooses Exchange. If Mi > 1 then
type 1 of player j optimally chooses Exchange: by exchanging her ticket, she cannot
obtain a smaller prize, and may receive a bigger one. Thus if Mi ≥ Mj and Mi > 1,
type Mi of player i optimally chooses Don’t exchange, because the expected value of
the prizes of the types of player j that choose Exchange is less than Mi. Thus in any
possible Nash equilibrium Mi = Mj = 1: the only prizes that may be exchanged
are the smallest.

280.4 Adverse selection

The game is defined as follows.

Players Firms A and T.

States The set of possible values of firm T (the integers from 0 to 100).

Actions Firm A’s set of actions is its set of possible bids (nonnegative num-
bers), and firm T’s set of actions is the set of possible cutoffs (nonnegative
numbers) above which it will accept A’s offer.
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Signals Firm A receives the same signal in every state; firm T receives a differ-
ent signal in every state.

Beliefs The single type of firm A assigns an equal probability to each state;
each type of firm T assigns probability 1 to the single state consistent with its
signal.

Payoff functions If firm A bids y, firm T’s cutoff is at most y, and the state is x,
then A’s payoff is 3

2 x − y and T’s payoff is y. If firm A bids y, firm T’s cutoff
is greater than y, and the state is x, then A’s payoff is 0 and T’s payoff is x.

To find the Nash equilibria of this game, first consider the behavior of each type
of firm T. Type x is at least as well off accepting the offer y than it is rejecting it if
and only if y ≥ x. Thus type x’s optimal cutoff for accepting offers is x, regardless
of firm A’s action.

Now consider firm A. If it bids y then each type x of T with x < y accepts its
offer, and each type x of T with x > y rejects the offer. Thus the expected value of
the type that accepts an offer y ≤ 100 is 1

2 y, and the expected value of the type that
accepts an offer y > 100 is 50. If the offer y is accepted then A’s payoff is 3

2 x − y,
so that its expected payoff is 3

2 ( 1
2 y) − y = − 1

4 y if y ≤ 100 and 3
2 (50) − y = 75 − y

if y > 100. Thus firm A’s optimal bid is 0!
We conclude that the game has a unique Nash equilibrium, in which firm A

bids 0 and the cutoff for accepting an offer for each type x of firm T is x.
Even though firm A can increase firm T’s value, it is not willing to make a

positive bid in equilibrium because firm T’s interest is in accepting only offers that
exceed its value, so that the average type that accepts an offer has a value of only
half the offer. As A decreases its offer, the value of the average firm that accepts the
offer decreases: the selection of firms that accept the offer is adverse to A’s interest.

282.1 Infection argument

In any Nash equilibrium, the action of player 1 when she receives the signal τ1(α)
is R, because R strictly dominates L.

Now suppose that player 2’s signal is τ2(α) = τ2(β). I claim that her best action
is R, regardless of player 1’s action in state β. If player 1 chooses L in state β then
player 2’s expected payoff to L is 3

4 · 0 + 1
4 · 2 = 1

2 , and her expected payoff to R is
3
4 · 1 + 1

4 · 0 = 3
4 . If player 1 chooses R in state β then player 2’s expected payoff to

L is 0, and her expected payoff to R is 1. Thus in any Nash equilibrium player 2’s
action when her signal is τ2(α) = τ2(β) is R.

Now suppose that player 1’s signal is τ1(β) = τ1(γ). By the same argument
as in the previous paragraph, player 1’s best action is R, regardless of player 2’s
action in state γ. Thus in any Nash equilibrium player 1’s action in this case is R.

Finally, given that player 1’s action in state γ is R, player 2’s best action in this
state is also R.
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285.1 Cournot’s duopoly game with imperfect information

We have

b1(qL , qH) =
{

1
2 (α − c − (θqL + (1 − θ)qH)) if θqL + (1 − θ)qH ≤ α − c
0 otherwise.

The best response function of each type of player 2 is similar:

bI(q1) =
{

1
2 (α − cI − q1) if q1 ≤ α − cI
0 otherwise

for I = L, H.
The three equations that define a Nash equilibrium are

q∗1 = b1(q∗L, q∗H), q∗L = bL(q∗1), and q∗H = bH(q∗1).

Solving these equations under the assumption that they have a solution in which
all three outputs are positive, we obtain

q∗1 = 1
3 (α − 2c + θcL + (1 − θ)cH)

q∗L = 1
3 (α − 2cL + c) − 1

6 (1 − θ)(cH − cL)

q∗H = 1
3 (α − 2cH + c) + 1

6 θ(cH − cL)

If both firms know that the unit costs of the two firms are c1 and c2 then in
a Nash equilibrium the output of firm i is 1

3 (α − 2ci + cj) (see Exercise 57.1). In
the case of imperfect information considered here, firm 2’s output is less than
1
3 (α − 2cL + c) if its cost is cL and is greater than 1

3 (α − 2cH + c) if its cost is cH .
Intuitively, the reason is as follows. If firm 1 knew that firm 2’s cost were high
then it would produce a relatively large output; if it knew this cost were low then
it would produce a relatively small output. Given that it does not know whether
the cost is high or low it produces a moderate output, less than it would if it knew
firm 2’s cost were high. Thus if firm 2’s cost is in fact high, firm 2 benefits from
firm 1’s lack of knowledge and optimally produces more than it would if firm 1
knew its cost.

286.1 Cournot’s duopoly game with imperfect information

The best response b0(qL, qH) of type 0 of firm 1 is the solution of

max
q0

[θ(P(q0 + qL) − c)q0 + (1 − θ)(P(q0 + qH) − c)q0].

The best response b�(qL , qH) of type � of firm 1 is the solution of

max
q�

(P(q� + qL) − c)q�
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and the best response bh(qL , qH) of type h of firm 1 is the solution of

max
qh

(P(qh + qH) − c)qh .

The best response bL(q0, q�, qh) of type L of firm 2 is the solution of

max
qL

[(1 − π)(P(q0 + qL) − cL)qL + π(P(q� + qL) − cL)qL]

and the best response bH(q0, q�, qh) of type H of firm 2 is the solution of

max
qH

[(1 − π)(P(q0 + qH) − cH)qH + π(P(qh + qH) − cH)qH ].

A Nash equilibrium is a profile (q∗0, q∗� , q∗h , q∗L, q∗H) for which q∗0, q∗� , and q∗h are
best responses to q∗L and q∗H , and q∗L and q∗H are best responses to q∗0, q∗� , and q∗h.
When P(Q) = α − Q for Q ≤ α and P(Q) = 0 for Q > α we find, after some
exciting algebra, that

q∗0 =
1
3

(α − 2c + cH − θ (cH − cL))

q∗� =
1
3

(
α − 2c + cL +

(1 − θ)(1 − π)(cH − cL)
4 − π

)

q∗H =
1
3

(
α − 2c + cH − θ(1 − π)(cH − cL)

4 − π

)

q∗L =
1
3

(
α − 2cL + c − 2(1 − θ)(1 − π)(cH − cL)

4 − π

)

q∗H =
1
3

(
α − 2cH + c +

2θ(1 − π)(cH − cL)
4 − π

)
.

When π = 0 we have

q∗0 =
1
3

(α − 2c + cH − θ (cH − cL))

q∗� =
1
3

(
α − 2c + cL +

(1 − θ)(cH − cL)
4

)

q∗H =
1
3

(
α − 2c + cH − θ(cH − cL)

4

)

q∗L =
1
3

(
α − 2cL + c − (1 − θ)(cH − cL)

2

)

q∗H =
1
3

(
α − 2cH + c +

θ(cH − cL)
2

)
,

so that q∗0 is equal to the equilibrium output of firm 1 in Exercise 285.1, and q∗L
and q∗H are the same as the equilibrium outputs of the two types of firm 2 in that
exercise.
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When π = 1 we have

q∗0 =
1
3

(α − 2c + cH − θ (cH − cL))

q∗� =
1
3

(α − 2c + cL)

q∗H =
1
3

(α − 2c + cH)

q∗L =
1
3

(α − 2cL + c)

q∗H =
1
3

(α − 2cH + c) ,

so that q∗� and q∗L are the same as the equilibrium outputs when there is perfect
information and the costs are c and cL (see Exercise 57.1), and q∗h and q∗H are the
same as the equilibrium outputs when there is perfect information and the costs
are c and cH .

Now, for an arbitrary value of π we have

q∗L =
1
3

(
α − 2cL + c − 2(1 − θ)(1 − π)(cH − cL)

4 − π

)

q∗H =
1
3

(
α − 2cH + c +

2θ(1 − π)(cH − cL)
4 − π

)
.

To show that for 0 < π < 1 the values of these variables lie between their values
when π = 0 and when π = 1, we need to show that

0 ≤ 2(1 − θ)(1 − π)(cH − cL)
4 − π

≤ (1 − θ)(cL − cH)
2

and

0 ≤ 2θ(1 − π)(cH − cL)
4 − π

≤ θ(cL − cH)
2

.

These inequalities follow from cH ≥ cL, θ ≥ 0, and 0 ≤ π ≤ 1.

288.1 Nash equilibria of game of contributing to a public good

Any type vj of any player j with vj < c obtains a negative payoff if she contributes
and 0 if she does not. Thus she optimally does not contribute.

Any type vi ≥ c of player i obtains the payoff vi − c ≥ 0 if she contributes, and
the payoff 0 if she does not, so she optimally contributes.

Any type vj ≥ c of any player j �= i obtains the payoff vj − c if she contributes,
and the payoff (1 − F(c))vj if she does not. (If she does not contribute, the prob-
ability that player i does so is 1 − F(c), the probability that player i’s valuation
is at least c.) Thus she optimally does not contribute if (1 − F(c))vj ≥ vj − c, or
F(c) ≤ c/vj. This condition must hold for all types of every player j �= i, so we
need F(c) ≤ c/v for the strategy profile to be a Nash equilibrium.
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290.1 Reporting a crime with an unknown number of witnesses

A Bayesian game that models the situation is given in Figure 138.1.

N
C v − c
N 0

State 1

C N
C v − c, v − c v − c, v
N v, v − c 0, 0

State 12

C N
N v − c 0

State 2

1
2

π 1 − π

1 − π π
1

2

Figure 138.1 A Bayesian game that models the situation in Exercise 290.1. The action Call is denoted
C, and the action Don’t call is denoted N. In state 1, only player 1 is active, in state 2, only player 2 is
active, and in state 12, both players are active. In states in which only one players is active, only that
player’s payoff is given.

A player obtains the payoff v − c if she chooses C and the payoff (1 − π)v if
she chooses N. Thus the game has a pure strategy Nash equilibrium in which each
player chooses C if and only if v − c ≥ (1 − π)v, or π ≥ c/v.

For a mixed strategy Nash equilibrium in which each player chooses C (if she
is active) with probability p, where 0 < p < 1, we need each player’s expected
payoffs to C and N to be the same, given that the other player chooses C with
probability p. Thus we need v − c = (1 − π)pv, or

p =
v − c

(1 − π)v
.

If π < c/v, this number is less than 1, so that the game indeed has a mixed strategy
Nash equilibrium in which each player calls with probability p.

When π = 0 we have p = 1 − c/v, as found in Section 4.8.

292.1 Weak domination in second-price sealed-bid action

Fix player i, and choose a bid for every type of every other player. Player i, who
does not know the other players’ types, is uncertain of the highest bid of the other
players. Denote by b this highest bid. Consider a bid bi of type vi of player i for
which bi < vi. The dependence of the payoff of type vi of player i on b is shown in
Figure 139.1.

Player i’s expected payoffs to the bids bi and vi are weighted averages of the
payoffs in the columns; each value of b gets the same weight when calculating the
expected payoff to bi as it does when calculating the expected payoff to vi. The
payoffs in the two rows are the same except when bi ≤ b < vi, in which case vi
yields a payoff higher than does bi. Thus the expected payoff to vi is at least as high
as the expected payoff to bi, and is greater than the expected payoff to bi unless the
other players’ bids lead this range of values of b to get probability 0.
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i’s bid

Highest of other players’ bids

b < bi
bi = b

(m-way tie) bi < b < vi b ≥ vi

bi < vi vi − b (vi − b)/m 0 0

vi vi − b vi − b vi − b 0

Figure 139.1 Player i’s payoffs to her bids bi < vi and vi in a second-price sealed-bid auction as a
function of the highest of the other player’s bids, denoted b.

Now consider a bid bi of type vi of player i for which bi > vi. The dependence
of the payoff of type vi of player i on b is shown in Figure 139.2.

i’s bid

Highest of other players’ bids

b ≤ vi vi < b < bi
bi = b

(m-way tie) b > bi

vi vi − b 0 0 0

bi > vi vi − b vi − b (vi − b)/m 0

Figure 139.2 Player i’s payoffs to her bids vi and bi > vi in a second-price sealed-bid auction as a
function of the highest of the other player’s bids, denoted b.

As before, player i’s expected payoffs to the bids bi and vi are weighted av-
erages of the payoffs in the columns; each value of b gets the same weight when
calculating the expected payoff to vi as it does when calculating the expected pay-
off to bi. The payoffs in the two rows are the same except when vi < b ≤ bi, in
which case vi yields a payoff higher than does bi. (Note that vi − b < 0 for b in this
range.) Thus the expected payoff to vi is at least as high as the expected payoff to
bi, and is greater than the expected payoff to bi unless the other players’ bids lead
this range of values of b to get probability 0.

We conclude that for type vi of player i, every bid bi �= vi is weakly dominated
by the bid vi.

292.2 Nash equilibria of a second-price sealed-bid auction

For any player i, the game has a Nash equilibrium in which player i bids v (the
highest possible valuation) regardless of her valuation and every other player bids
v regardless of her valuation. The outcome is that player i wins and pays v. Player i
can do no better by bidding less; no other player can do better by bidding more,
because unless she bids at least v she does not win, and if she makes such a bid her
payoff is at best zero. (It is zero if her valuation is v, negative otherwise.)
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295.1 Auctions with risk-averse bidders

Consider player i. Suppose that the bid of each type vj of player j is given by
β j(vj) = (1 − 1/[m(n − 1) + 1])vj. Then as far as player i is concerned, the bids of
every other player are distributed uniformly between 0 and 1 − 1/[m(n − 1) + 1].
Thus for 0 ≤ x ≤ 1 − 1/[m(n − 1) + 1], the probability that any given player’s
bid is less than x is (1 + 1/[m(n + 1)])x (1 + 1/[m(n + 1)] being the reciprocal of
1 − 1/[m(n − 1) + 1]), and hence the probability that all the bids of the other n − 1
players are less than x is [(1 + 1/[m(n + 1)])x]n−1. Consequently, if player i bids
more than 1 − 1/[m(n − 1) + 1] then she surely wins, whereas if she bids bi ≤
1 − 1/[m(n − 1) + 1] she wins with probability [(1 + 1/[m(n + 1)])bi]n−1. Thus
player i’s payoff as a function of her bid bi is



(vi − bi)1/m
{(

1 +
1

m(n + 1)

)
bi

}n−1
if 0 ≤ bi ≤ 1 − 1

m(n − 1) + 1

(vi − bi)1/m if bi > 1 − 1
m(n − 1) + 1

.
(140.1)

Now, the value of bi that maximizes the function

(vi − bi)1/m
{(

1 +
1

m(n + 1)

)
bi

}n−1

is the same as the value of bi that maximizes the function

(vi − bi)
1/m(bi)

n−1,

which is (n − 1)vi/(n − 1 + 1/m) (by the mathematical fact stated in the exercise),
or (

1 − 1
m(n − 1) + 1

)
vi.

We have (
1 − 1

m(n − 1) + 1

)
vi ≤ 1 − 1

m(n − 1) + 1

(because vi ≤ 1), and the function in (140.1) is decreasing in bi for bi > 1− 1/[m(n−
1) + 1], so 1− 1/[m(n− 1) + 1] is the bid that maximizes player i’s expected payoff,
given that the bid of each type vj of player j is (1 − 1/[m(n − 1) + 1])vj.

We conclude that, as claimed, the game has a Nash equilibrium in which each
type vi of each player i bids (1 − 1/[m(n − 1) + 1])vi.

In this equilibrium, the price paid by a bidder with valuation v who wins is
(1 − 1/[m(n − 1) + 1])v (the amount she bids). The expected price paid by a bidder
in a second-price auction does not depend on the players’ payoff functions. Thus
this payoff is equal, by the revenue equivalence result, to the expected price paid
by a bidder with valuation v who wins in a first-price auction in which each bidder
is risk-neutral, namely (1 − 1/n)v. We have

(
1 − 1

m(n − 1) + 1

)
−
(

1 − 1
n

)
=

(m − 1)(n − 1)
n(m(n − 1) + 1)

,
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which is positive because m > 1. Thus the expected price paid by a bidder with
valuation v who wins is greater in a first-price auction than it is in a second-price
auction. The probability that a bidder with any given valuation wins is the same
in both auctions, so the auctioneer’s expected revenue is greater in a first-price
auction than it is in a second-price auction.

297.1 Asymmetric Nash equilibria of second-price sealed-bid common value auctions

Suppose that each type t2 of player 2 bids (1 + 1/λ)t2 and that type t1 of player 1
bids b1. Then by the calculations in the text, with α = 1 and γ = 1/λ,

• a bid of b1 by player 1 wins with probability b1/(1 + 1/λ)

• the expected value of player 2’s bid, given that it is less than b1, is 1
2 b1

• the expected value of signals that yield a bid of less than b1 is 1
2 b1/(1 + 1/λ)

(because of the uniformity of the distribution of t2).

Thus player 1’s expected payoff if she bids b1 is (t1 + 1
2 b1/(1 + 1/λ)− 1

2 b1)b1/(1 +
1/λ), or

λ

2(1 + λ)2 · (2(1 + λ)t1 − b1)b1.

This function is maximized at b1 = (1 + λ)t1. That is, if each type t2 of player 2
bids (1 + 1/λ)t2, any type t1 of player 1 optimally bids (1 + λ)t1. Symmetrically,
if each type t1 of player 1 bids (1 + λ)t1, any type t2 of player 2 optimally bids
(1 + 1/λ)t2. Hence the game has the claimed Nash equilibrium.

297.2 First-price sealed-bid auction with common valuations

Suppose that each type t2 of player 2 bids 1
2 (α + γ)t2 and type t1 of player 1 bids

b1. To determine the expected payoff of type t1 of player 1, we need to find the
probability with which she wins, and the expected value of player 2’s signal if
player 1 wins. (The price she pays is her bid, b1.)

Probability of player 1’s winning: Given that player 2’s bidding function is
1
2 (α + γ)t2, player 1’s bid of b1 wins only if b1 ≥ 1

2 (α + γ)t2, or if t2 ≤ 2b1/(α + γ).
Now, t2 is distributed uniformly from 0 to 1, so the probability that it is at most
2b1/(α + γ) is 2b1/(α + γ). Thus a bid of b1 by player 1 wins with probabil-
ity 2b1/(α + γ).

Expected value of player 2’s signal if player 1 wins: Player 2’s bid, given her
signal t2, is 1

2 (α + γ)t2, so that the expected value of signals that yield a bid of less
than b1 is b1/(α + γ) (because of the uniformity of the distribution of t2).

Thus player 1’s expected payoff if she bids b1 is 2(αt1 + γb1/(α + γ)− b1)b1/(α +
γ), or

2α

(α + γ)2 ((α + γ)t1 − b1)b1.
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This function is maximized at b1 = 1
2 (α + γ)t1. That is, if each type t2 of player 2

bids 1
2 (α + γ)t2, any type t1 of player 1 optimally bids 1

2 (α + γ)t1. Hence, as
claimed, the game has a Nash equilibrium in which each type ti of player i bids
1
2 (α + γ)ti.

304.1 Signal-independent equilibria in a model of a jury

If every juror votes for acquittal regardless of her signal then the action of any
single juror has no effect on the outcome. Thus the strategy profile in which every
juror votes for acquittal regardless of her signal is always a Nash equilibrium.

Now consider the possibility of a Nash equilibrium in which every juror votes
for conviction regaredless of her signal. Suppose that every juror other than juror 1
votes for conviction independently of her signal. Then juror 1’s vote determines
the outcome, exactly as in the case in which there is a single juror. Thus from the
calculations in Section 9.8.2, type b of juror 1 optimally votes for conviction if and
only if

z ≤ (1 − p)π

(1 − p)π + q(1 − π)

and type g of juror 1 optimally votes for conviction if and only if

z ≤ pπ

pπ + (1 − q)(1 − π)
.

The assumption that p > 1 − q implies that the term on the right side of the second
inequality is greater than the term on the right side of the first inequality, so that we
conclude that there is a Nash equilibrium in which every juror votes for conviction
regardless of her signal if and only if

(1 − p)π

(1 − p)π + q(1 − π)
≤ z ≤ pπ

pπ + (1 − q)(1 − π)
.

305.1 Swing voter’s curse

a. The Bayesian game is defined as follows.

Players Citizens 1 and 2.

States {A, B}.

Actions The set of actions of each player is {0, 1, 2} (where 0 means do not
vote).

Signals Citizen 1 receives different signals in states A and B, whereas citi-
zen 2 receives the same signal in both states.

Beliefs Each type of citizen 1 assigns probability 1 to the single state consis-
tent with her signal. The single type of citizen 2 assigns probability 0.9
to state A and probability 0.1 to state B.
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Payoffs Both citizens’ Bernoulli payoffs are 1 if either the state is A and can-
didate 1 receives the most votes or the state is B and candidate 2 receives
the most votes; their payoffs are 0 if either the state is B and candidate 1
receives the most votes or the state is A and candidate 2 receives the
most votes; and otherwise their payoffs are 1

2 . (These payoffs are shown
in Figure 143.1.)

0 1 2

0 1
2 , 1

2 1, 1 0, 0

1 1, 1 1, 1 1
2 , 1

2

2 0, 0 1
2 , 1

2 0, 0

State A

0 1 2

0 1
2 , 1

2 0, 0 1, 1

1 0, 0 0, 0 1
2 , 1

2

2 1, 1 1
2 , 1

2 1, 1

State B

Figure 143.1 The payoffs in the Bayesian game for Exercise 305.1.

b. Type A of player 1’s best action depends only on the action of player 2; it is
to vote for 1 if player 2 votes for 2 or does not vote, and either to vote for 1
or not vote if player 2 votes for 1. Similarly, type B of player 1’s best action
is to vote for 2 if player 2 votes for 1 or does not vote, and either to vote for 2
or not vote if player 2 votes for 2.

Player 2’s best action is to vote for 1 if type A of player 1 either does not
vote or votes for 2 (regardless of how type B of player 1 votes), not to vote if
type A of player 1 votes for 1 and type B of player 1 either votes for 2 or does
not vote, and either to vote for 1 or not to vote if both types of player 1 vote
for 1.

Given the best responses of the two types of player 1, their only possible
equilibrium actions are (0, 0) (i.e. both do not vote), (0, 2), (1, 0), and (1, 2).
Checking player 2’s best responses we see that the only equilibria are

• (0, 2, 1) (player 1 does not vote in state A and votes for 2 in state B;
player 2 votes for 1)

• (1, 2, 0) (player 1 votes for 1 in state A and for 2 in state B; player 2 does
not vote).

c. In the equilibrium (0, 2, 1), type A of player 1’s action is weakly dominated
by the action of voting for 1: voting for 1 instead of not voting never makes
her worse off, and makes her better off in the event that player 2 does not
vote.

d. In the equilibrium (1, 2, 0), player 2 does not vote because if she does then
in the only case in which her vote affects the outcome (i.e. the only case in
which she is a “swing voter”), it affects it adversely: if she votes for 1 then
her vote makes no difference in state A, whereas it causes a tie, instead of a
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win for candidate 2 in state B, and if she votes for 2 then her vote causes a
tie, instead of a win for candidate 1 in state A, and makes no difference in
state B.

307.2 Properties of the bidding function in a first-price sealed-bid auction

We have

β∗′(v) = 1 −
(F(v))n−1(F(v))n−1 − (n − 1)(F(v))n−2F′(v)

∫ v
v (F(x))n−1 dx

(F(v))2n−2

= 1 −
(F(v))n − (n − 1)F′(v)

∫ v
v (F(x))n−1 dx

(F(v))n

=
(n − 1)F′(v)

∫ v
v (F(x))n−1 dx

(F(v))n

> 0 if v > v

because F′(v) > 0 (F is increasing). (The first line uses the quotient rule for deriva-
tives and the fact that the derivative of

∫ v f (x)dx with respect to v is f (v) for any
function f .)

If v > v then the integral in (307.1) is positive, so that β∗(v) < v. If v = v
then both the numerator and denominator of the quotient in (307.1) are zero, so
we may use L’Hôpital’s rule to find the value of the quotient as v → v. Taking the
derivatives of the numerator and denominator we obtain

(F(v))n−1

(n − 1)(F(v))n−2F′(v)
=

F(v)
(n − 1)F′(v)

,

the numerator of which is zero and the denominator of which is positive. Thus the
quotient in (307.1) is zero, and hence β∗(v) = v.

307.3 Example of Nash equilibrium in a first-price auction

From (307.1) we have

β∗(v) = v −
∫ v

0 xn−1 dx
vn−1

= v −
∫ v

0 xn−1 dx
vn−1

= v − v/n = (n − 1)v/n.
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11 Strictly competitive games and
maxminimization

338.2 Nash equilibrium payoffs and maxminimized payoffs

In the game in Figure 147.1 each player’s maxminimized payoff is 1, while her
payoff in the unique Nash equilibrium is 2.

L R
T 2, 2 1, 0
B 0, 1 0, 0

Figure 147.1 A game in which each player’s Nash equilibrium payoff exceeds her maxminimized
payoff.

340.1 Strictly competitive games

Left-hand game: Strictly competitive both in pure and in mixed strategies. (Player 2’s
preferences are represented by the vNM payoff function −u1 since −u1(a) = − 1

2 +
1
2 u2(a) for every pure outcome a.)

Right-hand game: Strictly competitive in pure strategies (since player 1’s ranking
of the four outcomes is the reverse of player 2’s ranking). Not strictly competitive
in mixed strategies (there exist no values of α and β > 0 such that −u1(a) = α +
βu2(a) for every outcome a; or, alternatively, player 1 is indifferent between (D, L)
and the lottery that yields (U, L) with probability 1

2 and (U, R) with probability 1
2 ,

while player 2 is not indifferent between these two outcomes).

343.2 Maxminimizing in BoS

The maxminimizer of player 1 is ( 1
3 , 2

3 ) while that of player 2 is ( 2
3 , 1

3 ).
It is clear that neither of the pure equilibrium strategies of either player guar-

antees her equilibrium payoff. In the mixed strategy equilibrium player 1’s ex-
pected payoff is 2

3 ; but if, for example, player 2 choose S instead of her equilibrium
strategy, then player 1’s expected payoff is 1

3 . Similarly for player 2.

343.3 Changing payoffs in strictly competitive game

147
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a. Let ui be player i’s payoff function in the game G, let wi be his payoff function
in G′, and let (x∗ , y∗) be a Nash equilibrium of G′. Then, using part (a) of Proposi-
tion 341.1, we have w1(x∗, y∗) = miny maxx w1(x, y) ≥ miny maxx u1(x, y), which
is the value of G.

b. This follows from part (a) of Proposition 341.1 and the fact that for any
function f we have maxx∈X f (x) ≥ maxx∈Y f (x) if Y ⊆ X.

c. In the unique equilibrium of the game on the left of Figure 148.1 player 1
receives a payoff of 3, while in the unique equilibrium of she receives a payoff of
2. If she is prohibited from using her second action in this second game then she
obtains an equilibrium payoff of 3, however.

3, 3 1, 1
1, 0 0, 1

3, 3 1, 1
4, 0 2, 1

Figure 148.1 The games for part c of Exercise 343.3.

344.1 Equilibrium payoff in strictly competitive game

The claim is false. In the strictly competitive game in Figure 148.2 the action pair
(T, L) is a Nash equilibrium, so that player 1’s unique equilibrium payoff in the
game is 0; but (B, R), which also yields player 1 a payoff of 0, is not a Nash
equilibrium.

L R
T 0, 0 1, −1
B −1, 1 0, 0

Figure 148.2 The game in Exercise 344.1.

344.2 Guessing Morra

In the strategic game there are two players, each of whom has four (relevant) ac-
tions, S1G2, S1G3, S2G3, and S2G4, where SiGj denotes the strategy (Show i, Guess j).
The payoffs in the game are shown in Figure 148.3.

S1G2 S1G3 S2G3 S2G4
S1G2 0, 0 2, −2 −3, 3 0, 0
S1G3 −2, 2 0, 0 0, 0 3, −3
S2G3 3, −3 0, 0 0, 0 −4, 4
S2G4 0, 0 −3, 3 4, −4 0, 0

Figure 148.3 The game in Exercise 344.2.
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Now, if there is a Nash equilibrium in which player 1’s payoff is v then, given
the symmetry of the game, there is a Nash equilibrium in which player 2’s pay-
off is v, so that player 1’s payoff is −v. Since the equilibrium payoff in a strictly
competitive game is unique, we have v = 0.

Let (p1, p2, p3, p4) be the probabilities that player 1 assigns to her four actions.
In order that she obtain a payoff of at least 0 if player 2 uses any of her pure
strategies, we need

− 2p2 + 3p3 ≥ 0

2p1 − 3p4 ≥ 0

−3p1 + 4p4 ≥ 0

3p2 − 4p3 ≥ 0.

The second and third inequalities imply that p1 ≥ 3
2 p4 and p1 ≤ 4

3 p4, so that
p1 = p4 = 0, so that p3 = 1 − p2. The first and fourth inequalities imply that
p2 ≤ 3

2 p3 and p2 ≥ 4
3 p3, or p2 ≤ 3

5 and p2 ≥ 4
7 .

We conclude that any pair of mixed strategies ((0, p2, 1− p2, 0), (0, q2, 1− q2, 0))
with 4

7 ≤ p2 ≤ 3
5 and 4

7 ≤ q2 ≤ 3
5 is an equilibrium.

344.3 Equilibria of a 4 × 4 game

a. Denote the probability with which player 1 chooses each of her actions 1, 2,
and 3, by p and the probability with which player 2 chooses each of these
actions by q. Then all four of player 1’s actions yield the same expected
payoff if and only if 4q − 1 = 1 − 6q, or q = 1

5 , and similarly all four of
player 2’s actions yield the same expected payoff if and only if p = 1

5 . Thus
(( 1

5 , 1
5 , 1

5 , 2
5 ), ( 1

5 , 1
5 , 1

5 , 2
5 )) is a Nash equilibrium of the game. The players’

payoffs in this equilibrium are (− 1
5 , 1

5 ).

b. Let (p1, p2, p3, p4) be an equilibrium strategy of player 1. In order that it
guarantee her the payoff of − 1

5 , we need

−p1 + p2 + p3 − p4 ≥ − 1
5

p1 − p2 + p3 − p4 ≥ − 1
5

p1 + p2 − p3 − p4 ≥ − 1
5

−p1 − p2 − p3 + p4 ≥ − 1
5 .

Adding these four inequalities, we deduce that p4 ≤ 2
5 . Adding each pair

of the first three inequalities, we deduce that p1 ≤ 1
5 , p2 ≤ 1

5 , and p3 ≤ 1
5 .

Since p1 + p2 + p3 + p4 = 1, we deduce that (p1, p2, p3, p4) = ( 1
5 , 1

5 , 1
5 , 2

5 ). A
similar analysis of the conditions for player 2’s strategy to guarantee her the
payoff of 1

5 leads to the conclusion that (q1, q2, q3, q4) = ( 1
5 , 1

5 , 1
5 , 2

5 ).
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12 Rationalizability

354.3 Mixed strategy equilibria of game

There is no equilibrium in which player 2 assigns positive probability only to L
and C, since if she does so then only M and B are possible best responses for
player 1, but if player 1 assigns positive probability only to these actions then L
is not optimal for player 2.

By a similar argument there is no equilibrium in which player 2 assigns positive
probability only to C and R.

Assume that player 2 assigns positive probability only to L and R. There are
no probabilities for L and R under which player 1 is indifferent between all three
of her actions, so player 1 must assign positive probability to at most two actions.
If these two actions are T and M then player 2 prefers L to R, while if the two
actions are M and B then player 2 prefers R to L. The only possibility is thus that
the two actions are T and B. In this case we need player 2 to assign probability 1

2
to L and R (in order that player 1 be indifferent between T and B); but then M is
better for player 1. Thus there is no equilibrium in which player 2 assigns positive
probability only to L and R.

Finally, if player 2 assigns positive probability to all three of her actions then
player 1’s mixed strategy must be such that each of these three actions yields the
same payoff. A calculation shows that there is no mixed strategy of player 1 with
this property.

We conclude that the game has no mixed strategy equilibrium in which either
player assigns positive probability to more than one action.

358.1 Example of rationalizable actions

I claim that the action R of player 2 is strictly dominated by some mixed strategies
that assign positive probability to L and C. Consider such a mixed strategy that
assigns probability p to L. In order for this mixed strategy to strictly dominate R
we need p + 4(1 − p) > 3 and 8p + 2(1 − p) > 3, or 1

6 < p < 1
3 . That is, any

such value of p is associated with a mixed strategy that strictly dominated R. In
the reduced game (i.e. after R is eliminated), B is dominated by T. Finally, L is
dominated by C. Hence the only rationalizable action of player 1 is T and the only
rationalizable action of player 2 is C.

151
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358.2 Guessing Morra

Take Zi to be all the actions of player i, for i = 1, 2. Then (Z1, Z2) satisfies Defini-
tion 354.1. (The action S1G2 is a best response to a belief that assigns probability 1
to S1G3, the action S1G3 is a best response to the belief that assigns probability
one to S2G4, the action S2G3 is a best response to the belief that assigns probabil-
ity one to S1G2, and the action S2G4 is a best response to the belief that assigns
probability one to S2G3.)

358.3 Contributing to a public good

a. The derivative to player i’s payoff with respect to ci is

−2ci − ∑
j �=i

cj + wi,

which, for every possible value of ∑j �=i cj, is negative if ci > 1
2 wi. Thus the

contribution wi/2 yields player i a payoff higher than does any larger contri-
bution, regardless of the other players’ contributions. (Note that this result
depends on the sum of the other players’ contributions being nonnegative.)

b. The best response function of player i is given by

max{0, 1
2 (w − ∑

j �=i
cj)}.

Let c ≤ w/2 and suppose that each of the other players contributes 1
2 w − c

(which is nonnegative). Then the other players’ total contribution is w − 2c,
so that player i’s best response is to contribute c. That is, any contribution c of
at most w/2 is a best response to the belief that assigns probability one to each
of the other player’s contributing 1

2 w − c ≤ 1
2 w. Thus if we set Zi = [0, w/2]

for all i in Definition 354.1 we see that any action of player i in [0, w/2] is
rationalizable for player i. [Note: This argument does not show that actions
outside [0, w/2] are not rationalizable.]

c. Denote w1 = w2 = w. First eliminate contributions of more than wi/2 by
each player i.

In the reduced game the most that players 1 and 2 together contribute is
w (since each contributes at most w/2). Now consider player 3. Given the
derivative of her payoff function found in part a, her payoff is increasing
in her contribution for every remaining possible value of c1 + c2 so long as
c3 < 1

2 (w3 − (c1 + c2)). Since c1 + c2 ≤ w, player 3’s payoff is thus definitely
increasing for c3 < 1

2 (w3 − w). But w3 ≥ 3w, so player 3’s payoff is definitely
increasing for c3 < w. We conclude that in the reduced game every contribu-
tion of player 3 of less than w is strictly dominated. Eliminate all such actions
of player 3.
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In the newly reduced game every contribution of player 3 is in the interval
[w, w3/2]. Now consider player 1. Her payoff is decreasing in her contribu-
tion if c1 > 1

2 (w − (c2 + c3)). We have c2 ≥ 0 and c3 ≥ w, so player 1’s payoff
is decreasing if c1 > 0. Thus every action of player 1 is strictly dominated by
a contribution of 0. The same analysis applies to player 2. Eliminate all such
actions of player 1 and player 2.

Finally, in the game we now have, players 1 and 2 both contribute 0; it follows
that all actions of player 3 are dominated except for a contribution of w3/2,
which is her best response to a total contribution of 0 by players 1 and 2.

We conclude that the unique action profile that survives iterated elimination
of strictly dominated actions is (0, 0, w3/2).

358.4 Iterated elimination in location game

In the first round Out is strictly dominated by the position 1
2 (since the position 1

2
guarantees at least a draw, which each player prefers to staying out of the com-
petition). In the next round the positions 0 and 1 are strictly dominated by the
position 1

2 : a player who chooses 1
2 rather than either 0 or 1 ties rather than loses

if her opponent also chooses 1
2 , and wins outright rather than ties or loses if her

opponent chooses any other position. In every subsequent round the two remain-
ing extreme positions are strictly dominated by 1

2 . The only action that remains
is 1

2 . [Note that under the procedure of iterated elimination of weakly dominated
actions, discussed in the next section of the text, there is only one round of elimina-
tion: all actions other than 1

2 are weakly dominated by 1
2 . (In particular, the game

is dominance solvable.)]

361.1 Example of dominance solvability

The Nash equilibria of the game are (T, L), any ((0, 0, 1), (0, q, 1 − q)) with 0 ≤
q ≤ 1, and any ((0, p, 1 − p), (0, 0, 1)) with 0 ≤ p ≤ 1. The game is dominance
solvable, because T and L are the only weakly dominated actions, and in they are
eliminated the only weakly dominated actions are M and C, leaving (B, R), with
payoffs (0, 0).

If T is eliminated, then L and C, no remaining action is weakly dominated;
(M, R) and (B, R) both remain.

361.2 Dominance solvability in demand game

In the first round the demands 0, 1, and 2 are eliminated for each player and in
the second round the demand 4 is eliminated, leaving the outcome in which each
player demands 3 (and receives 2).
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361.3 Dominance solvability in Bertrand’s duopoly game

In the first round every price in excess of the monopoly price is weakly dominated
by the monopoly price and every price equal to at most c is weakly dominated by
the price c + 0.01. At each subsequent round the highest remaining price is weakly
dominated by the next highest price. (Note that for any p ≥ c + 0.01 it is better
to obtain all the demand at the price p than obtain half of the demand at the price
p + 0.01.) The pair of prices that remains is (c + 0.01, c + 0.01).
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13 Evolutionary equilibrium

370.1 ESSs and weakly dominated actions

The ESS a∗ does not necessarily weakly dominate every other action in the game.
For example, in the game in Figure 155.1, a∗ is an ESS but does not weakly domi-
nate b.

a∗ b
a∗ 1, 1 0, 0
b 0, 0 2, 2

Figure 155.1 A game in which an ESS (a∗) does not weakly dominate another action.

No action can weakly dominate an ESS. To see why, let a∗ be an ESS and let b be
another action. Since a∗ is an ESS, (a∗ , a∗) is a Nash equilibrium, so that u(b, a∗) ≤
u(a∗ , a∗). Now, if u(b, a∗) < u(a∗ , a∗), certainly b does not weakly dominate a∗,
so suppose that u(b, a∗) = u(a∗ , a∗). Then by the second condition for an ESS we
have u(b, b) < u(a∗ , b). We conclude that b does not weakly dominate a∗.

370.2 Pure ESSs

The payoff matrix of the game is given in Figure 155.2. The pure strategy symmet-

1 2 3
1 1, 1 2, 2δ 3, 3δ

2 2δ, 2 2, 2 3, 3δ

3 3δ, 3 3δ, 3 3, 3

Figure 155.2 The game in Exercise 370.2.

ric Nash equilibria are (1, 1), (2, 2), and (3, 3). The only pure evolutionarily stable
strategy is 1, by the following argument. The action 1 is evolutionarily stable since
(1, 1) is a strict Nash equilibrium. The action 2 is not evolutionarily stable, since 1
is a best response to 2 and

u(1, 1) = 1 > 2δ = u(2, 1).

155
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The action 3 is not evolutionarily stable, since 2 is a best response to 3 and

u(2, 2) = 2 > 3δ = u(3, 2).

In the case that each player has n actions, every pair (i, i) is a Nash equilibrium;
only the action 1 is an ESS.

375.1 Hawk–Dove–Retaliator

First suppose that v ≥ c. In this case the game has two pure symmetric Nash
equilibria, (A, A) and (R, R). However, A is not an ESS, since R is a best response
to A and u(R, R) > u(A, R). Since (R, R) is a strict equilibrium, R is an ESS. Now
consider the possibility that the game has a mixed strategy equilibrium (α, α). If α

assigns positive probability to either P or R (or both) then R yields a payoff higher
than does P, so only A and R may be assigned positive probability in a mixed
strategy equilibrium. But if a strategy α assigns positive probability to A and R and
probability 0 to P, then R yields a payoff higher than does A against an opponent
who uses α. Thus the game has no symmetric mixed strategy equilibrium in this
case.

Now suppose that v < c. Then the only symmetric pure strategy equilibrium is
(R, R). This equilibrium is strict, so that R is an ESS. Now consider the possibility
that the game has a mixed strategy equilibrium (α, α). If α assigns probability 0 to
A then R yields a payoff higher than does P against an opponent who uses α; if
α assigns probability 0 to P then R yields a payoff higher than does A against an
opponent who uses α. Thus in any mixed strategy equilibrium (α, α), the strategy α

must assign positive probability to both A and P. If α assigns probability 0 to R
then we need α = (v/c, 1 − v/c) (the calculation is the same as for Hawk–Dove).
Since R yields a lower payoff against this strategy than do A and P, and since the
strategy is an ESS in Hawk–Dove, it is an ESS in the present game. The remaining
possibility is that the game has a mixed strategy equilibrium (α, α) in which α

assigns positive probability to all three actions. If so, then the expected payoff to
this strategy is less than 1

2 v, since the pure strategy P yields an expected payoff less
than 1

2 v against any such strategy. But then U(R, R) = 1
2 v > U(α, R), violating the

second condition in the definition of an ESS.
In summary:

• If v ≥ c then R is the unique ESS of the game.

• If v < c then both R and the mixed strategy that assigns probability v/c to A
and 1 − v/c to P are ESSs.

375.2 Example of pure and mixed ESSs

Since (C, C) is a strict Nash equilibrium, C is an ESS.
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The game also has a symmetric mixed strategy equilibrium in which each player’s
mixed strategy is α∗ = ( 3

4 , 1
4 , 0). Every mixed strategy β = (p, 1 − p, 0) is a best

response to α∗, so in order that α∗ is an ESS we need

U(β, β) < U(α∗, β).

We have U(β, β) = 4p(1 − p) and U(α∗, β) = 9
4 (1 − p) + 1

4 p, so the inequality is
equivalent to

(p − 3
4 )2 > 0,

which is true for all p �= 3
4 . Thus α∗ is an ESS.

The only other symmetric mixed strategy equilibrium is one in which each
player’s strategy is α∗∗ = ( 3

7 , 1
7 , 3

7 ). This strategy is not an ESS, since u(C, C) = 1
while u(α∗∗, C) = 3

7 < 1.

375.3 Bargaining

The game is given in Figure 157.1. Let α be a mixed strategy that assigns positive

0 2 4 6 8 10
0 5, 5 4, 6 3, 7 2, 8 1, 9 0, 10
2 6, 4 5, 5 4, 6 3, 7 2, 8 0, 0
4 7, 3 6, 4 5, 5 4, 6 0, 0 0, 0
6 8, 2 7, 3 6, 4 0, 0 0, 0 0, 0
8 9, 1 8, 2 0, 0 0, 0 0, 0 0, 0

10 10, 0 0, 0 0, 0 0, 0 0, 0 0, 0

Figure 157.1 A bargaining game.

probability only to the demands 2 and 8. For (α, α) to be a Nash equilibrium we
need α = ( 2

5 , 3
5 ). Each player’s payoff at this strategy pair (α∗ , α∗) is 16

5 . Thus the
only actions a that are best responses to α∗ are 2 and 8, so that the only mixed strate-
gies that are best responses assign positive probability only to the actions 2 and 8.
Let β be the mixed strategy that assigns probability p to 2 and probability 1 − p to
8. We have

U(β, β) = 5p(2 − p)

and
U(α∗, β) = 6p + 4

5 .

We find that U(α∗, β) − U(β, β) = 5(p − 2
5 )2, which is positive if p �= 2

5 . Hence α∗

is an ESS.
Now let α be a mixed strategy that assigns positive probability only to the de-

mands 4 and 6. For (α, α) to be a Nash equilibrium we need α = 4
5 . Each player’s

payoff at this strategy pair (α∗, α∗) is 24
5 . Thus the only actions a that are best re-

sponses to α∗ are 4 and 6, so that the only mixed strategies that are best responses
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assign positive probability only to the actions 4 and 6. Let β be the mixed strategy
that assigns probability p to 4 and probability 1 − p to 6. We have

U(β, β) = 5p(2 − p)

and
U(α∗, β) = 2p + 16

5 .

We find that U(α∗, β) − U(β, β) = 5(p − 4
5 )2, which is positive if p �= 4

5 . Hence α∗

is an ESS.

379.1 Mixed strategies in an asymmetric Hawk–Dove

Let p be the probability that β assigns to AA. In order that AA and DD yield a
player the same expected payoff when her opponent uses β, we need

p(V + v − 2c) + (1 − p)(2V + 2v) = (1 − p)(V + v),

or
p =

V + v
2c

.

Now, if player 2 uses the strategy β then the difference between player 1’s expected
payoff to AA and her expected payoff to AP is

p(v − c) + (1 − p)v = v − pc = 1
2 (v − V) < 0.

Thus the strategy pair (β, β) is not a Nash equilibrium.

379.2 Mixed strategy ESSs

Let β be an ESS that assigns positive probability to every action in A∗. Then (β, β)
is a Nash equilibrium (since β is an ESS), so that every mixed strategy that assigns
positive probability only to actions in A∗ is a best response to β. In particular, α∗ is
a best response to β. Thus if β �= α∗ then the second condition in the definition of
an ESS, when applied to β, requires that

U(α∗, α∗) < U(β, α∗).

But this inequality contradicts the fact that (α∗ , α∗) is a Nash equilibrium. Hence
β = α∗.

380.1 Asymmetric ESSs of BoS

The game is shown in Figure 159.1. The strategy pairs (LD,LD) and (DL,DL) are
strict symmetric Nash equilibria. Thus both LD and DL are ESSs. By the same
argument as in the analysis of Hawk–Dove in the text, the only possible mixed ESS
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LL LD DL DD
LL 0, 0 1, 1

2 1, 1
2 2, 1

LD 1
2 , 1 3

2 , 3
2 0, 0 1, 1

2
DL 1

2 , 1 0, 0 3
2 , 3

2 1, 1
2

DD 1, 2 1
2 , 1 1

2 , 1 0, 0

Figure 159.1 The game BoS when the players’ roles may differ.

assigns positive probability only to LL and DD. Let β be such a strategy; let p be
the probability that it assigns to LL. Then for (β, β) to be a Nash equilibrium we
need

2(1 − p) = p,

or p = 2
3 . If one of the players uses such a strategy then the other player obtains

the same expected payoff to all her four actions, namely 2
3 . Thus (β, β) is a Nash

equilibrium. However, since

u(LD, LD) = 3
2 > 5

6 = u(β, LD),

the strategy β is not an ESS.
Thus the game has two ESSs, each of which is a pure strategy: LD and DL.

385.1 A coordination game between siblings

The games with payoff functions v and w are shown in Figure 159.2. If x < 2 then

X Y
X x, x 1

2 x, 1
2

Y 1
2 , 1

2 x 1, 1

v

X Y
X x, x 1

5 x, 1
5

Y 1
5 , 1

5 x 1, 1

w

Figure 159.2 The games with payoff functions v and w derived from the game in Exercise 385.1.

(Y, Y) is a strict Nash equilibrium of both games, so Y is an evolutionarily stable
action in the game between siblings. If x > 2 then the only (pure) Nash equilibrium
of the game is (X, X), and this equilibrium is strict. Thus the range of values of x
for which the only evolutionarily stable action is X is x > 2.

387.1 Darwin’s theory of the sex ratio

A normal organism produces pn female offspring and (1 − p)n male offspring (ig-
noring the small probability that the partner of a normal organism is a mutant).
Thus it has pn · n + (1 − p)n · (p/(1 − p))n = 2pn2 grandchildren.

A mutant has 1
2 n female offspring and 1

2 n male offspring, and hence has 1
2 n ·

n + 1
2 n · (p/(1 − p))n = 1

2 n2/(1 − p) grandchildren.



160 Chapter 13. Evolutionary equilibrium

Thus the difference between the number of grandchildren produced by normal
and mutant organisms is

1
2 n2/(1 − p) − 2pn2 = n2

(
2

1 − p

)
(p − 1

2 )2,

which is positive if p �= 1
2 . (The point is that a higher fraction of the mutant’s

offspring are female, which each bear more offspring than each male.)
Thus the mutant invades the population; only p = 1

2 is evolutionarily stable.
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14 Repeated games: The Prisoner’s Dilemma

395.1 Strategies for an infinitely repeated Prisoner’s Dilemma

a. The strategy is shown in Figure 161.1.

P0: C ✲
(·, D)

P1: C ✲
all

outcomes

D: D

Figure 161.1 The strategy in Exercise 395.1a.

b. The strategy is shown in Figure 161.2.

P0: C ✲
(·, D)

P1: C ✲
(·, D)

D: D

Figure 161.2 The strategy in Exercise 395.1b.

c. The strategy is shown in Figure 161.3.

C : C D: D✲
(D, C) or (C, D)

❄
☛ ✟

(C, C) or (D, D)

Figure 161.3 The strategy in Exercise 395.1c.

398.1 Nash equilibria of the infinitely repeated Prisoner’s Dilemma

a. A player who adheres to the strategy obtains the discounted average payoff
of 2. A player who deviates obtains the stream of payoffs (3, 3, 1, 1, . . .), with
a discounted average of (1 − δ)(3 + 3δ) + δ2. Thus for an equilibrium we
require (1 − δ)(3 + 3δ) + δ2 ≤ 2, or δ ≥ 1

2

√
2.

b. A player who adheres to the strategy obtains the payoff of 2 in every period.
A player who chooses D in the first period and C in every subsequent period
obtains the stream of payoffs (3, 2, 2, . . .). Thus for any value of δ a player can

161
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increase her payoff by deviating, so that the strategy pair is not a Nash equi-
librium. Further, whatever the one-shot payoffs, a player can increase her
payoff by deviating to D in a single period, so that for no payoffs is there any
δ such that the strategy pair is a Nash equilibrium of the infinitely repeated
game.

c. A player who adheres to the strategy obtains the discounted average payoff
of 2 (the outcome is (C, C) in every period). If player 1 deviates to D in every
period then she induces the outcome to alternate between (D, C) and (D, D),
yielding her a discounted average payoff of (1 − δ) · (3 + 3δ2 + 3δ4 + . . .) +
(1− δ)(δ + δ3 + δ5 + . . .) = (1− δ)[3/(1− δ2) + δ/(1− δ2)] = (3 + δ)/(1 + δ).
For all δ < 1 this payoff exceeds 2, so that the strategy pair is not a Nash
equilibrium of the infinitely repeated game.

However, for different payoffs for the one-shot Prisoner’s Dilemma, the strat-
egy pair is a Nash equilibrium of the infinitely repeated game. The point
is that the best deviation leads to the sequence of outcomes that alternates
between (C, D) and (D, D). If the average payoff of player 2 in these two
outcomes is less than her payoff to the outcome (C, C) then the strategy pair
is a Nash equilibrium for some values of δ. (For the payoffs in Figure 389.1
the average payoff of the two outcomes (C, D) and (D, D) is exactly equal to
the payoff to (C, C).) Consider the general payoffs in Figure 162.1. The dis-

C D
C x, x 0, y
D y, 0 1, 1

Figure 162.1 A Prisoner’s Dilemma.

counted average payoff of the sequence of outcomes that alternates between
(C, D) and (D, D) is (y + δ)/(1 + δ), while the discounted average of the con-
stant sequence containing only (C, C) is x. Thus in order for the strategy pair
to be a Nash equilibrium we need

y + δ

1 + δ
≤ x,

or
δ ≥ y − x

x − 1
,

an inequality that is compatible with δ < 1 if x > 1
2 (y + 1)—that is, if x

exceeds the average of 1 and y.

406.1 Different punishment lengths in the infinitely repeated Prisoner’s Dilemma

Yes, there are such subgame perfect equilibria. The only subtlety is that the num-
ber of periods for which a player chooses D after a history in which not all the
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outcomes were (C, C) depends on who first deviated. If, for example, player 1
punishes for two periods while player 2 punishes for three periods, then the out-
come (C, D) induces player 1 to choose D for two periods (to punish player 2 for
her deviation) while the outcome (D, C) induces her to choose D for three periods
(while she is being punished by player 2). The strategy of each player in this case
is shown in Figure 163.1.

P0: C ✟✟✟✟✟✯(·, D) P1: D ✲
all

outcomes

P2: D
❄

☛ ✟

all outcomes

❍❍❍❍❍❥(D, ·) P′
1: D ✲

all
outcomes

P′
2: D ✲

all
outcomes

P′
3: D✻

✡ ✠
all outcomes

Figure 163.1 A strategy in an infinitely repeated Prisoner’s Dilemma that punishes deviations for two
periods and reacts to punishment by choosing D for three periods.

407.1 Tit-for-tat in the infinitely repeated Prisoner’s Dilemma

Suppose that player 2 adheres to tit-for-tat. Consider player 1’s behavior in sub-
games following histories that end in each of the following outcomes.

(C, C) If player 1 adheres to tit-for-tat the outcome is (C, C) in every period, so
that her discounted average payoff in the subgame is x. If she chooses D,
then adheres to tit-for-tat, the outcome alternates between (D, C) and (C, D),
and player 1’s discounted average payoff is y/(1 + δ). Thus we need x ≥
y/(1 + δ), or δ ≥ (y − x)/x, in order that tit-for-tat be optimal for player 1.

(C, D) If player 1 adheres to tit-for-tat the outcome alternates between (D, C) and
(C, D), so that her discounted average payoff is y/(1 + δ). If she deviates
to C, then adheres to tit-for-tat, the outcome is (C, C) in every period, and
her discounted average payoff is x. Thus we need y/(1 + δ) ≥ x, or δ ≤
(y − x)/x, in order that tit-for-tat be optimal for player 1.

(D, C) If player 1 adheres to tit-for-tat the outcome alternates between (C, D) and
(D, C), so that her discounted average payoff is δy/(1 + δ). If she deviates
to D, then adheres to tit-for-tat, the outcome is (D, D) in every period, and
her discounted average payoff is 1. Thus we need δy/(1 + δ) ≥ 1, or δ ≥
1/(y − 1), in order that tit-for-tat be optimal for player 1.

(D, D) If player 1 adheres to tit-for-tat the outcome is (D, D) in every period,
so that her discounted average payoff is 1. If she deviates to C, then ad-
heres to tit-for-tat, the outcome alternates between (C, D) and (D, C), and
her discounted average payoff is δy/(1 + δ). Thus we need 1 ≥ δy/(1 + δ),
or δ ≤ 1/(y − 1), in order that tit-for-tat be optimal for player 1.
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We conclude that for (tit-for-tat,tit-for-tat) to be a subgame perfect equilibrium
we need δ = (y − x)/x and δ = 1/(y − 1). Thus only if (y − x)/x = 1/(y − 1),
or y − x = 1, is the strategy pair a subgame perfect equilibrium. Given that a
subgame perfect equilibrium satisfies the one-deviation property, the strategy pair
is indeed a subgame perfect equilibrium in this case when δ = 1/x.




