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This is a book full of ideas for introducing real world problems into mathematics 
classrooms and assisting teachers and students to benefi t from the experience. Taken 
as a whole these contributions provide a rich resource for mathematics teachers and 
their students that is readily available in a single volume.

Nowadays there is a universal emphasis on teaching for understanding, motivating 
students to learn mathematics and using real world problems to improve the mathematics 
experience of school students. However, using real world problems in mathematics 
classrooms places extra demands on teachers in terms of extra-mathematical knowledge 
e.g. knowledge of the area of applications, and pedagogical knowledge. Care must also 
be taken to avoid overly complex situations and applications. Papers in this collection 
offer a practical perspective on these issues, and more.

While many papers offer specifi c well worked out lesson type ideas, others concentrate 
on the teacher knowledge needed to introduce real world applications of mathematics 
into the classroom. We are confi dent that mathematics teachers who read the book will 
fi nd a myriad of ways to introduce the material into their classrooms whether in ways 
suggested by the contributing authors or in their own ways, perhaps through mini-
projects or extended projects or practical sessions or enquiry based learning. We are 
happy if they do!

This book is written for mathematics classroom teachers and their students, mathematics 
teacher educators, and mathematics teachers in training at pre-service and in-service 
phases of their careers.
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PREFACE 

We should start by pointing out that this is not a mathematics text book – this is an 
ideas book. This is a book full of ideas for teaching real world problems to older 
students (15 years and older, Upper Secondary level). These contributions by no 
means exhaust all the possibilities for working with real world problems in mathe-
matics classrooms but taken as a whole they do provide a rich resource for mathe-
matics teachers that is readily available in a single volume. While many papers 
offer specific well worked out lesson type ideas, others concentrate on the teacher 
knowledge needed to introduce real world applications of mathematics into the 
classroom. We are confident that mathematics teachers who read the book will find 
a myriad of ways to introduce the material into their classrooms whether in ways 
suggested by the contributing authors or in their own ways, perhaps through mini-
projects or extended projects or practical sessions or enquiry based learning. We 
are happy if they do! 

Why did we collect and edit them for you, the mathematics teachers? In fact we 
did not collect them for you but rather for your students! They will enjoy working 
with them at school. Having fun learning mathematics is a novel idea for many 
students. Since many students do not enjoy mathematics at school, students often 
ask: “Why should we learn mathematics?” Solving real world problems is one (and 
not the only one!) good answer to this question. If your students enjoy learning 
mathematics by solving real world problems you will enjoy your job as a mathe-
matics teacher more. So in a real sense the collection of examples in this book is 
for you too. 

Using real world problems in mathematics classrooms places extra demands on 
teachers and students that need to be addressed. We need to consider at least two 
dimensions related to classroom teaching when we teach real world problems. One 
is the complexity (intensity or grade) of reality teachers think is appropriate to import 
into the classroom and the other is about the methods used to learn and work with real 
problems. Papers in this collection offer a practical perspective on each dimension, 
and more. 

Solving real world problems often leads to a typical decision situation where 
you (we hope together with your students) will ask: Should we stop working on our 
problem now? Do we have enough information to solve the real world problem? 
These are not typical questions asked in mathematics lessons. What students should 
learn when they solve real world problems is that an exact calculation is not enough 
for a good solution. They should learn the whole process of modelling from the first 
step abstracting important information from the complex real world situation, to 
the next steps of the mathematical modelling process. For example, they should 
learn to write down equations to describe the situation; do calculations; interpret the 
results of calculation; improve the quality of the model; calculate again (several times 
if needed); and discuss the results with others. Last but not least, they should reflect 
on the solution process in order to learn for the future.  
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How real should real world problems be? More realistic problems are generally 
more complex and more complex problems demand more time to work them out. 
On the other hand a very simplified reality will not motivate students intrinsically 
to work for a solution (which is much better for a sustaining learning). Experience 
suggests starting with simple problems and simple open questions and moving 
to more complex problems. We think it is an impossible task for students without 
any experience of solving complex real problems to start by solving difficult real 
problems. It is better if you start with a simpler question and add complexity step 
by step. 

The second dimension of classroom teaching is concerned with methods of 
teaching real world problems. We are convinced that learning and teaching is 
more successful if you use open methods like group work, project planning, 
enquiry learning, practical work, and reflection. A lot of real world problems have 
more than one correct solution, and may in fact have several that are good from 
different points of view. The different solutions need to be discussed and con-
sidered carefully and this is good for achieving general education aims like “Students 
should become critical citizens”. Students are better prepared for life if they learn 
how to decide which solution is better in relation to the question and the people 
who are concerned.  

Finally we would like to counter a typical “No, thank you” argument against 
teaching real world problems. Yes, you will need more time for this kind of teach-
ing than you need for a typical lesson training students in mathematical skills and 
operations. Yes, you will need to prepare more intensively for these lessons and be 
prepared for lot of activity in your classroom. You will need to change your role 
from a typical teacher in the centre of the classroom knowing and telling everything 
to that of manager of the learning process who knows how to solve the problem. 
But you need help to get started! We hope you will use this book as your starter 
pack 

We don’t expect you to teach like this every day but only on occasions during 
the year. It should be one of your teaching approaches but not the only one. Try 
it and you will be happy because the results will be great for the students and 
for you! 
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MANFRED BOROVCNIK AND RAMESH KAPADIA 

1. MODELLING IN PROBABILITY AND STATISTICS 

Key Ideas and Innovative Examples 

This chapter explains why modelling in probability is a worthwhile goal to follow 
in teaching statistics. The approach will depend on the stage one aims at: secondary 
schools or introductory courses at university level in various applied disciplines which 
cover substantial content in probability and statistics as this field of mathematics is 
the key to understanding empirical research. It also depends on the depth to which 
one wants to explore the mathematical details. Such details may be handled more 
informally, supported by simulation of properties and animated visualizations to 
convey the concepts involved. In such a way, teaching can focus on the underlying 
ideas rather than technicalities and focus on applications. 
 There are various uses of probability. One is to model random phenomena. Such 
models have become more and more important as, for example, modern physicists 
build their theory completely on randomness; risk also occurs everywhere not only 
since the financial crisis of 2008. It is thus important to understand what probabilities 
really do mean and the assumptions behind the various distributions – the following 
sections deal with genuine probabilistic modelling.  
 Another use of probability is to prepare for statistical inference, which has become 
the standard method of generalising conclusions from limited data; the whole area 
of empirical research builds on a sound understanding of statistical conclusions 
going beyond the simple representation of data – sections 6 and 7 will cover ideas 
behind statistical inference and the role, probability plays therein. 
 We start with innovative examples of probabilistic modelling to whet the appetite 
of the reader. Several examples are analysed to illustrate the value of probabilistic 
models; the models are used to choose between several actions to improve the situa-
tion according to a goal criterion (eg., reduce cost). Part of this modelling approach is 
to search for crucial parameters, which strongly influence the result. 
 We then explain the usual approach towards probability – and the sparse role 
that modelling plays therein by typical examples, ending with a famous and rather 
controversial example which led to some heated exchanges between professionals. 
Indeed we look at this example (Nowitzki) in some depth as a leitmotiv for the whole 
chapter: readers may wish to focus on some aspects or omit sections which deal 
with technical details such as the complete solution. 
 In the third and fourth sections, basic properties of Bernoulli experiments are 
discussed in order to model and solve the Nowitzki task from the context of sports. 
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The approach uses fundamental properties of the models, which are not always 
highlighted as they should be in teaching probability.  
 In the fifth section, the fundamental underlying ideas for a number of probability 
distributions are developed; this stresses the crucial assumptions for any situation, 
in which the distribution might be applied. A key property is discussed for some 
important distributions: waiting times, for example, may or may not be dependent 
on time already spent waiting. If independent, this sheds a special light on the pheno-
menon, which is to be modelled. In a modelling approach, more concepts than 
usual have to be developed (with the focus on informal mathematical treatment) 
but the effort is worthwhile as these concepts allow students to gain a more direct 
insight to understand the inherent assumptions, which are required from the situation 
to be modelled. 
 In the sixth section, the statistical question – (is Nowitzki weaker in away than 
in home matches?) – is dealt with thoroughly. This gives rise to various ways to 
tackle this question within an inferential framework. We deal informally with the 
methods that comprise much of what students should know about the statistical 
comparison of two groups, which forms the core of any introductory course at 
university for all fields, in which data is used to enrich research.  
 While the assumptions should be checked in any case of application, such a crucial 
test for the assumptions might be difficult. It will be argued that the perspective of 
probabilistic and statistical applications is different and linking heuristic arguments 
might be more attractive in the case of statistical inference.  
 Probabilistic distributions are used to make a probability statement about an event, 
or to calculate expected values to make a decision between different options. Or, 
they may be used to describe the ‘internal structure’ of a situation by the model’s 
inherent structure and assumptions. Statistical applications focus on generalizing facts 
beyond available data. For that purpose they interpret the given data by probabilistic 
models. A typical question is whether the data is compatible with a specific hypo-
thesized model. This model as well as the answer is interpreted within the context. 
For example, can we assume that a medical treatment is – according to some rules – 
better than a placebo treatment? 
 The final two sections resume the discussion of teaching probability and statistics, 
some inherent difficulties, and the significance of modelling. Conclusions are drawn 
and pedagogical suggestions are made. 

INNOVATIVE EXAMPLES OF PROBABILISTIC MODELLING 

As we shall see in a later section, a key assumption of independence is not justified 
in many exercises set in probability. Indeed the key question in any modelling is 
the extent to which underlying assumptions are or are not justified. Rather than 
the usual approach of mechanistic applications of probability, a more realistic picture of 
potential applications will be developed in this section by some selected innovative 
examples. They describe a situation from the ‘real world’ and state a target to improve 
or optimize. A spectrum of actions or interventions is open for use to improve a 
criterion such as reduction of costs. A probability distribution is chosen to model 
the situation, even though the inherent assumptions might not be perfectly fulfilled. 



MODELLING IN PROBABILITY AND STATISTICS 

3 

A solution is derived and analysed: how does it change due to changes in parameters 
involved in the model, how does it change due to violations of assumptions? Sensitive 
parameters are identified; this approach offers ways of making the best use of the 
derived solutions and corroborating the best actions to initiate further investigations to 
improve the available information. The examples deal with novel applications – blood 
samples, twin light bulbs, telephone call times, and spam mail. Simulation, spread-
sheets and other methods are used and illustrate the wide range of ideas where 
probability helps to model and understand a wide and diverse range of situations. 

Blood Samples Modelled with Binomial Probabilities 

The following example uses the binomial model for answering a typical question, 
which might be studied. The ‘outcome’ might be improved even if the model has 
some drawbacks: the cost situation is improved and hints for action are drawn from 
the model used though the actual cost improvement cannot be directly read off the 
solution. Crucial parameters that strongly influence the solution are identified, for 
which one may strive to get more information in the future. 

Example 1. Donations of blood have to be examined as to whether they are suitable 
for further processing or not. This is done in a special laboratory after the simple 
determination of the blood groups. Each donation is judged – independently of 
each other – ‘contaminated’ with a probability p = 0.1 and suitable with the 
complementary probability of q = 0.9. 
a. Determine the distribution of the number of non-suitable donations if 3 are drawn 

at random. 
b. 3 units of different donations are taken and mixed. Only then are they examined 

jointly as to whether they are suitable or not. If one of those mixed was already 
contaminated then the others will be contaminated and become useless. One unit 
has a value of € 50.-. Determine the loss for the various numbers of non-suitable 
units among those which are drawn and mixed. 

 Remember: If exactly one is non-suitable then the two others are ‘destroyed’. 
c. Determine the distribution of the loss as a random variable. 
d. Calculate the expected loss if 3 units of blood are mixed in a ‘pool’. 
e. Testing of blood for suitability costs of € 25.- per unit tested; the price is 

independent of the quantity tested. By mixing 3 units in a pool, a sum of € 50.- 
is saved. With the expected loss from d., does it pay to mix 3 different units, or 
should one apply the test for suitability separately to each of the blood units? 

 A solution to this example is presented in a spreadsheet (Figure 1); the criterion 
for decision is based on the comparison of potential loss and benefit by pooling; 
pooling is favourable if and only if: 

 Expected loss by pooling  <  Reduction of cost of lab testing (1) 

All blood donations are assumed to be contaminated with a probability of 0.1, 
independently of each other. That means we model the selection of blood donations, 
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which should be combined in a pool and analysed in the laboratory jointly, as if it 
were ‘coin tossing with a success probability of p = 0.1’. While the benefit is a 
fixed number, loss has to be modelled by expected values. Comparison (1) yields 
25.65 < 50, hence mixing 3 blood units and testing jointly, saves costs. 
 

Modelling of pooling and calculation of expected cost

0 / 1 Coding: Single unit is suitable = 0, is NOT suitable = 1

n 3 Number of blood units to combine to a pool 

1 - p 0.9 Probability  that a single unit is suitable for further processing

p 0.1 Probability  that a single unit is NOT suitable for further processing

a. X ~ Bin(n, p) Model for number X of NOT suitable single units in the pool: Draw with replacement

b. Y Loss as a function of the number of not suitable units in the pool

50 Cost of units destroyed by pool = loss
c. Distribution of Y P(Y = yi)  - has to be determined

d. E(Y) Average cost of units destroyed by pooling = loss

e. Comparison To compare reduction of cost in testing pooled units and expected loss by pooling

25 Cost of testing a unit in the laboratory

d.

Not suitable Probability Destroyed Loss Y Expected loss Cost of testing
X = i P(X = i) by pool Y = yi P(Y = yi) yi *  pi Single 25

0 0.729 0 0 0 0.730 0 Size of pool 3

1 0.243 2 100 50 0.027 1.35 separate 75

2 0.027 1 50 100 0.243 24.3 pooled 25

3 0.001 0 0 25.65 Reduction 50

These figures have to be compared.

Distribution of loss

e.a. c.b.

 

Figure 1. Spreadsheet with a solution to Example 1. 

Example 2. Explore the parameters in Example 1.  
a. For a probability of p = 0.1 of being contaminated what is a sensible recommend-

ation for the number of blood units being mixed? 
b. How does the recommendation in a. depend on the probability of suitable blood 

donations?  
 While a spreadsheet is effective in assisting to solve Example 1, it becomes vital 
for tackling the open questions in Example 2. Such an analysis of input parameters 
gives much more rationale to the questions posed. Of course, there are doubts on 
whether the suitability of blood donations might be modelled by a Bernoulli process. 
Even if so, how is one to get trustworthy information about the ‘success’ probability 
for suitable blood units? As this is a crucial input, it should be varied and the conse-
quences studied. Also, just to mix a fixed number of blood units gives no clue why 
such a size of a pool should be chosen. It also gives no feeling about how the size 
makes sense relative to the expected monetary gain or loss connected to the size of 
a pool, which is examined jointly. In a spreadsheet, a slide control for the input 
parameters p and size n is easily constructed and allows an effective interactive 
investigation of the consequences (or the laboratory cost and the value of a unit). 
From a spreadsheet as in Figure 2, one may read off (q = 1 – p): 

 Expected net saving (q = 0.9, n = 4) = 26.22 (2) 
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This yields an even better expected net saving as in (1). Interactively changing the 
size n of the pool shows that n = 4 yields the highest expected value in (2) so that 
to combine 4 is ‘optimal’ if the proportion of suitable blood units is as high as 
q = 0.9. With a smaller probability of good blood units, the best size of the pool 
drastically declines; with q = 0.8, size 2 is the most favourable in cost reduction; 
the cost reduction is as low as 9 € per pool of 2 as compared to 26.22 € per each 4 
units combined to a pool. Reduction of cost per unit is 4.5 with q = 0.8 and 6.6 € 
with q = 0.9. There is much more to explore, which will be left to the reader.  
 

Modelling of pooling - exploring the effect of parameter changes

25 50 0.90 4
70

0 0.0001 75 0 75 0.0075

1 0.0036 75 -50 25 0.0900

2 0.0486 75 -100 -25 -1.2150

3 0.2916 75 -150 -75 -21.8700

4 0.6561 75 0 75 49.2075

5 #ZAHL! 75 0 75 0.0000 lines

10 #ZAHL! 75 0 75 0.0000 hidden

26.22

Size of pool nLab cost of testing Value of a unit
Proportion q of     
suitable units

net saving xi * pi Expected net savingk suitable P(k)
reduction of test 
cost by pooling

cost of destroyed 
units by pooling

 

Figure 2. Spreadsheet to Example 2 – with slide controls for an interactive search. 

 It is merely an assumption that the units are independent and have the same 
probability of being contaminated. Nevertheless, the crucial parameter is still the size 
of such a probability as other measurements (of success) are highly sensitive to it. 
If it were a bit higher than given in the details of the example, pooling would not 
lead to decreasing cost of testing. If it were considerably smaller, then pools of even 
bigger size than suggested would lead to considerable saving of money. The mono-
tonic influence becomes clear even if the exact size of decreasing cost cannot be 
given. Closer monitoring of the quality of the incoming blood donations is wise to 
clarify circumstances under which the required assumptions are less justified than 
usual. 

Lifetime of Bulbs Modelled with Normal Distribution 

Example 3. Bulbs are used in a tunnel to brighten it and increase the security of 
traffic; the bulbs have to be replaced from time to time. The first question is when a 
single bulb has to be replaced. The second is, whether it is possible to find a time 
when all bulbs may be replaced jointly. The reason for such an action is that one has 
to send a special repair team into the tunnel and block traffic for the time of replace-
ment. While cost maybe reduced by a complete replacement, the lifetime of the still 
functioning lamps is lost. The time for replacement is, however, mainly determined 
by security arguments: with what percentage of bulbs still working is the tunnel 
still sufficiently lit? Here we assume that the tunnel is no longer secure if over two 
thirds of the bulbs have failed. 



BOROVCNIK AND KAPADIA 

6 

 Two systems are compared for their relative costs: Single bulbs and twin bulbs, 
which consist of two single bulbs – the second is switched on when the first fails. 
Which system is less costly to install? Lifetime of bulbs in hours is modelled by a 
normal distribution with mean lifetime μ =1900 and standard deviation σ =200. 
a. What is the probability that a single bulb fails within the 2300 hours in service?  
b. Determine the time when two thirds of single bulbs have failed. 
c. Determine an adequate model for the lifetime of twin bulbs and – based upon it – 

the time when two thirds of the twin bulbs have failed.  
Remark. If independence of failure is assumed then lifetime of twin bulbs is also 
normally distributed with parameters: mean = sum of single means, variance = 
sum of single variances.  

d. Assume that at least one third of the lamps in the system have to function for 
security reasons. The cost of one twin bulb is 2.5 €, a single lamp costs 1 €. The 
cost of replacing all lamps in the tunnel is 1000 €. For the whole tunnel, 2000 
units have to be used to light it sufficiently at the beginning. Relative to such 
conditions, is it cheaper to install single or twin bulbs? 
The solution can be read-off from a spreadsheet like Figure 3. The probability in a. 

to fail before 2300 hours may be found by standardizing this value by the parameters 
to (2300–1900)/200 = 2 and calculating the value of the standard normal Φ (2). 
Parts b. and c. require us to calculate the ⅔ quantile of the normal distribution, which 
traditionally is done by using probability tables, or which may be directly solved by a 
standard function. As a feature of spreadsheets, such a quantile may be determined 
by a sliding control, which allows us to control x in the formula P(X ≤ x) = ∞ until 
the probability  ⅔  is reached in the box.  
 For twin bulbs, first the parameters have to be calculated: μT = 1900 + 1900 and 
σT = √(2002+2002). Such a relation between parameters of single and twin bulbs 
may be corroborated by simulation – a proof is quite complex.  
 For the final comparison of costs in d., the calculation yields that single bulbs 
will be exchanged after 1986.1, twin bulbs after 3921.8 hours. The overall costs of 
the two systems have to be related to unit time. 
 Of course, the lifetime of the bulbs is not really normally distributed. The estima-
tion of the parameters (mean and standard deviation of lifetime) is surrounded with 
imprecision. As a perfect model, normal distribution might not serve. However, 
perceived as a scenario in order to investigate “what happens if …?” it helps to 
analyse the situation and detect crucial parameters. Thus, it might yield clues for 
the decision on which system to install. On the basis of such a scenario, we have a 
clear goal, namely to compare the expected costs per unit time E[C] /h of the two 
systems (see Figure 3): 

 E[C] /h (single bulbs) – E[C] /h (twin bulbs)  =  1.51 – 1.53  <  0 (3) 

 The comparison of expected costs gives 1.51 € per unit time for single as 
opposed to 1.53 € for twin bulbs. A crucial component is the price of twin bulbs: a 
reduction from 2.5 to 2.4 € per twin bulb (which amounts to a reduction of 4%) 
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changes the decision in favour of twin bulbs. Hence this approach allows students 
to investigate assumptions, the actual situation and relative costs. It encourages them 
to use their own prior knowledge in the situation by varying parameters and costs. 
This gives practice in applying the normal distribution and then investigating conse-
quences from the situation, some of which may be hard to quantify. 
 

Single bulbs

μ σ x z  = (x  - μ)/σ Φ  (z)

1900 200 2300 2 0.9772 a.

p z p x p  = μ  + z p  * σ

0.6667 0.4307 1986.1 b.

Twin bulbs

μ T σ T x z  = (x  - μ)/σ Φ  (z)

3800 282.84 4600 2.83 0.9977

p z p x p  = μ  + z p  * σ

0.6667 0.4307 3921.8 c.

Comparison of cost per unit time

T  i  m  e Cost per

 € per unit Number Light system Exchange total working unit time

Single 1.0 2000 2000 1000 3000 1986.1 1.51

Twin bulbs 2.5 2000 5000 1000 6000 3921.8 1.53

Variant 2.4 2000 4800 1000 5800 3921.8 1.48

}   d.

D    e    v    i    c    e    s C          o          s          t

Lifetime of a single bulb

0.000

0.001

0.002

0 500 1000 1500 2000 2500 3000

 x 

f(x)

2/3 fail 
until then

survive 
2300 
hours

Lifetime of single bulbs - - and twin bulbs ___

0.000

0.001

0.002

0 1000 2000 3000 4000 5000

 x 

 

Figure 3. Spreadsheet with a solution to Example 3. 

 In fact, there is a systematic error in the normal distribution as for a lifetime no 
negative values are possible. However, for the model used, the probability for 
values less than 0 amounts to 10-21, which is negligible for all practical purposes.  
 We will illustrate key ideas behind distributions in section 5; hazard rate is one 
of them, which does not belong to the standard repertoire of concepts in probability 
at lower levels. Hazard is a tendency to fail. However, it is different from propensity 
(to fail), which relates the tendency to fail for new items only. To look at an analogy: it 
is folklore that the tendency to fail (die) for human beings differs with age. The 
older we get, the higher the age-related tendency to die.  
 Again, such a relation is complex to prove. However, a simulation study should 
be analysed accordingly and the percentage of failures can be calculated in two ways: 
one based on all items in the experiment, the other based only on those, which are 
still in function at a specific point of time. This enhances the idea of an age-related 
(conditional) risk to fail as compared to a general risk to fail, which implicitly is 
related to all items, which are exposed to failure in the experiment. 
 The normal distribution may be shown to follow an increasing hazard. Such an 
increasing risk to fail with increasing age is reasonable with lifetime of bulbs – as 
engineers know. Thus, even if the normal model may not be interpreted directly by 
relative frequencies of failures, it may count as a reasonable model for the situation. 
The exact amount of net saving by installing the optimal system cannot be quantified 
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but the size of it may well be read from the scenario. These are the sort of modelling 
issues to discuss with students in order to enhance their understanding and interest. 

Call Times and Cost – the Exponential and Poisson Distributions Combined 

Example 4. The length Y of a telephone call is a random variable and can be 
modelled as exponentially distributed with parameter λ = 0.5, which corresponds to 
a mean duration of a call of 1/λ = 2. The cost k of a call is a function of its duration 
y and is given by a fixed amount of 10 for y ≤ 5 and amounts to 2y for y > 5.  
a. Determine the expected cost of a telephone call. 
b. Calculate the standard deviation (s.d.) of the cost of a telephone call. 
c. Determine an interval for the cost of a single call with probability of 99%. 

The number of calls during a month will be modelled by a Poisson distribution 
with μ = 100; this coincides with an expected count of calls of 100. Determine 

d. the probability that the number of phone calls does not exceed 130 per month; 
e. a reasonable upper constraint for the maximum cost per month and a reasonable 

number depicting the risk that such a constraint does not hold – describe how 
you would proceed to determine such a limit more accurately. 

 
Cost of single calls and bills of 130 calls - a simulation study

λ = 0.5

Z i X i c(X i ) 1329.84 0

1 0.525 1.487 10.00 240.69 1329.84 1329.86 0

2 0.233 0.530 10.00 1325.67 0 lines

713 0.419 1.086 10.00 1337.23 0 hidden

714 0.202 0.452 10.00 1307.75 0

a. E  = Expected cost of single call 10.25 mean 

b. σ  = S.d. 1.41 s.d.

Risk is 0.010 that single call cost more than: 18.25 cost

c. Risk is 0.010 that length of call longer than: 9.13 length

Risk is 0.020 that bill (with 130 calls) costs more: 1387.50 percentage rank in simulated bills

Risk is 0.010 that bill for the period is higher than 1393.78 99% quantile of simulated bills.

     *   data tables in 
EXCEL

Nr.
Bill for period 
with 130 calls

Many bills 
simulated *

empty 
column!

Bill > 
1387.5 ?

Random numbers 
from (0, 1)

Exponential - length 
of call

Cost of 
call

Length of 130 
calls

e.

Si
ng

le
 c

al
ls

Bi
ll

99% quantile of simulated 
data

of simulated data on cost}

}

 
The simulation study is based on only 714 random numbers. 

It fluctuates still, but would stabilize if more data were generated.

d. Risk that number of calls > 130: 0.002 Risk seems 'negligible'

While for the single calls the cost cannot be approximated by a normal

(as exponential distributions are heavily skewed), the cost of 130 calls (as a sum)

 may be approximated by the normal distribution, though it still is slightly skewed 

(CLT!)

single call ** 130 calls 130

expected cost E 10.3283 E n  = n  * E 1342.68

s.d. σ 1.5871 σ n  = √n  * σ 18.10

** tricky integrals or simulation

p  quantile 0.99

standard normal z p 2.326

e. cost of 130 calls x p  = E 130 + z p  * σ 130 1384.78 99% of 130 calls cost less 

Bills: Cost of 130 calls - artificial data

0.00

0.05

0.10

0.15

1250 1300 1350 1400 1450

1387.5

Calls in a period - Poisson with μ  = 100

130

0.00

0.05

0 50 100 150

 

Figure 4. Spreadsheet with a solution to Example 4. 
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The models suggested are quite reasonable. However, the analytic difficulties are 
considerable – even at university level. A solution to part e. may be found from a 
simulation scenario of the assumptions. The message of such examples is that not all 
models can be handled rigorously. The key idea here is to understand the assumptions 
implicit in the model and judge whether they form a plausible framework for the 
real situation to be modelled and interpret the result accordingly. 
 In section 5, the model of the exponential distribution will be related to the idea 
of ‘pure’ random length and to the memory-less property according to which the 
further duration of a call has the same distribution regardless how long it already 
goes on. If such a condition is rejected for the phoning behaviour of a person the result 
derived here would not be relevant. The number of phone calls is modelled here by 
a Poisson distribution. The key idea behind this model is that events (phone calls) 
occur completely randomly in time with a specific rate per unit time; see section 5 
for more details. The simulation is based on the following mathematical relation 
between distributions (which itself may be investigated by simulation): 

 If Z is a random number in the interval (0, 1) then   
Y = – ln(1–Z)/λ is exponentially distributed with parameter λ (4) 

A further key idea used in this example is the normal approximation for the cost of 
the bill of 130 calls for a period as it is the sum of the ‘independent’ single call 
cost. The histogram of simulated bills ‘confirms’ that to some extent but shows still 
some skewness, which originates from the highly skewed exponential distribution. 
To apply the approximation, mean and s.d. of the sum of independent and identically 
distributed (called iid, a property analogue to (9) later) variables has to be known. 
An estimate of single-call cost may again be gained from a simulation study as the 
integrals here are not easy to solve. From single calls Xi to bills of n calls, the 
following mathematical relation is needed: 

 XX
iid

i ~ , nn XXT ++= ...: 1 , then )()( XEnTE n ⋅= , )()( XnTn σσ ⋅= . (5) 

The first part is intuitive – if E(X) is interpreted as fair prize of a game, then Tn 
describes the win of n repetitions of it; the fair prize of it should be n times the 
prize of a single game. The second part is harder and has to be investigated further. 
As it is fundamental, a simulation study can be used to clarify matters. 

Spam Mail – Revising Probabilities with Bayes’ Formula 

Example 5. Mails may be ‘ham’ or ‘spam’. To recognize this and build a filter 
into the mail system, one might scan for words that are contained in hams and in 
spams; e.g., 30% of all spams contain the word ‘free’, which occurs in hams with a 
frequency of only 1%. Such a word might therefore be used to discriminate between 
ham and spam mails. Assume that the basic frequency of spams in a specific 
mailbox is 10 (30)% 
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a. If a mail arrives with the word ‘free’ in it, what is the probability that it is spam?  
b. If a message passes such a mail filter, what is its probability that it is actually 

spam? 
c. Suggest improvements of such a simple spam filter. 

The easiest way to find the solution is to re-read all the probabilities as expected 
frequencies of a suitable number of mails. If we base our thought on 1000 mails, we 
expect 100 (300) to be spam. Of these, we expect 30 (90) to contain the word ‘free’. 
The imaginary data – natural frequencies in the jargon of Gigerenzer (2002) are in 
Table 1, from which it is easy to derive answers to the questions: 
 If the mail contains ‘free’, its conditional probability to be spam is 0.7692 (30/39 
with 10% spam overall) and 0.9278 (90/97 with 30% spam). The filter, however, 
has limited power to discriminate between spam and ham as a mail, which does not 
contain the word ‘free’ still has a probability to be spam of 0.0728 (70/961) or 
0.2326 (210/903) depending on the overall rate of spam mails. 

Table 1. Probabilities derived from fictional numbers – natural frequencies 

Spam overall 10%    30%  
 ‘free’ ‘free’ all  ‘free’ ‘free’ all 
Ham 9 891 900  7 693 700 
Spam  30 70 100  90 210 300 
all 39 961 1000  97 903 1000 

 
 This shows that the filter is not suitable for practical use. Furthermore, the 
conditional probabilities are different for each person. The direction for further 
investigation seems clear: to find more words that separate between ham and spam 
mails and let the filter learn from the user who classifies several mails into these 
categories. The table with natural (expected) frequencies – sometimes also called 
the statistical village behaviour – delivers the same probabilities as the Bayesian 
formula but is easier to understand and is accepted much better by laypeople.  
 For further development, the inherent key concept of conditional probability 
should be made explicit. Updating of probabilities according to new incoming 
information is a basic activity. It has a wide-spread range of application such as in 
medical diagnoses or before court when indicative knowledge has to be evaluated. 
The Bayesian formula to solve this example is 

 
)|'(')()|'(')(

)|'(')()'|'(
hamfreePhamPspamfreePspamP

spamfreePspamPfreespamP
⋅+⋅

⋅
=  (6) 

Gigerenzer (2002) gives several examples how badly that formula is used by 
practitioners who apply it quite frequently (not knowing the details, of course). There 
are many issues to clarify, amongst them the tendency to confuse P(spam|'free') 
and P('free'|spam). Starting with two-way tables is advisable, as advocated by 
Gigerenzer (2002); later the structure of the process should be made explicit to 
promote the idea of continuously updating knowledge by new evidence. 
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Summary 

Overall, these four examples show the interplay between modelling and probability 
distributions, with simplifying assumptions made but then analysed in order for 
students to develop deeper understanding of the role, probability may play to make 
decisions more transparent. Probability models are not only part of glass bead games 
but may partially model situations from reality and contribute to compare alternatives 
for action rationally. In each case, there is an interesting and key question to explore 
within a real-life context. Simplifying assumptions are made in order to apply a 
probability distribution. The results are then explored in order to check the validity of 
the assumptions and find out the sensitivity of the parameters used. We have only 
given an outline of the process in each example; a longer time would be needed 
with students in the classroom or lecture hall. 

THE USUAL APPROACH TOWARDS TEACHING PROBABILITY 

The usual approach towards probability is dominated by games of chance, which 
per se is not wrong as the concepts stem from such a context, or from early insurance 
agreements, which are essentially loaded games of chance with the notable exception 
of symmetry arguments; probabilities that would otherwise arise from symmetry con-
siderations in games are replaced by estimates for the basic (subjective) probabilities.  
 The axiomatic rules of probabilities are usually discussed cursorily and merely 
used as basic rules to obey when dealing with probabilities. Thus, no detailed proofs 
of simple properties are done and if done are simplified and backed up by didactical 
methods like tree diagrams, which may be applied as one deals primarily with finite 
or countably infinite probability spaces. The link from an axiomatically ‘determined’ 
probability to distributions is not really established1 – so the many probability 
distributions develop their own ‘life’. Part of their complexity arises from their multi-
tude. Normally, only a few are dealt with in teaching ‘paradigmatically’. At the 
secondary stage this is mainly the binomial and normal distributions; in introductory 
courses at universities hypergeometric, Poisson, or exponential distributions are also 
added. 
 The various distributions are dealt with rather mechanistically. A short description 
of an artificial problem is followed by the question for the probability of an event 
like ‘the number of successes (in a binomial situation) does not exceed a specified 
value’. Hereby, the context plays a shallow role. Questions of modelling, e.g., what 
assumptions are necessary to apply the distribution in question, or, in what respect 
are such requirements fulfilled in the context, are rarely addressed. The following 
examples illustrate the usual ‘approach’. Example 6 illustrates an attitude towards 
modelling, which is not rare. 

Example 6. For the production of specific screws, it is known that ‘on average’ 
5% are defective. If 10 screws are packed in a box, what is the probability that one 
finds two (or, not more than two) defective pieces in a box?  
 The screws could be electric bulbs, or electronic devices, etc; defective may be 
defined as ‘lasting less than 2000 hours’. The silent assumption in all these examples 
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is: ‘model’ the selected items as a random sample from the production. Sometimes 
the model is embodied by the paradigmatic situation of random selection from an 
urn with two sorts of marbles – marked 1 and 0 – predominantly with (sometimes 
without) replacement of the drawn marbles. The context is used as a fig leaf to 
tell the different stories for very similar tasks, namely to drill skills in calculating 
probabilities from the right distribution. Neither a true question to solve, nor alter-
native models, nor a discussion of validity of assumptions is involved. No clear 
view is given of why probabilistic modelling helps to improve one’s understanding 
of the context. The full potential of probability to serve as a means of modelling is 
missed by such an attitude; see Borovcnik (2011).  

Modelling from a Sporting Context – the Nowitzki Task 

The following example shows that such restricted views on probability modelling 
are not bound to single teachers, textbooks, or researchers in educational statistics. 
The example is taken from a centrally organized final exam in a federal state in 
Germany but could be taken from anywhere else. The required assumptions to solve 
the problems posed are clarified. This is – at the same time – a fundamental topic 
in modelling. The question, as we shall see later, aroused fierce controversy. 

Example 7 (Nowitzki task). The German professional basketball player Dirk 
Nowitzki plays in the American professional league NBC. In the season 2006–07 
he achieves a success rate of 90.4% in free throws. (For the original task, which 
was administered in 2008, see Schulministerium NRW, n.d.2) 

Probabilistic part. Calculate the probability that he 
a. scores exactly 8 points with 10 trials;  
b. scores at the most 8 points with 10 trials;  
c. is successful in free throws at the most 4 times in a series.  

Statistical part. In home matches he scored 267 points with 288 free throws, in away 
matches the success rate was 231/263. A sports reporter [claimed that] Nowitzki 
has a considerably lower success rate away. At a significance level of 5%, analyse 
whether the number of scores in free throws away  
a. lies significantly below the ‘expected value’ for home and away matches; 
b. lies significantly below the ‘expected value’3 for home matches.  

 This example will be referred to as the Nowitzki task and will be used extensively 
below to illustrate the various modelling aspects both in probability and statistics. 
From the discussion it will become clearer what assumptions we have to rely on 
and how these are ‘fulfilled’ differently in probabilistic and statistical applications. 

MODELLING THE NOWITZKI TASK 

The Nowitzki task (Example 7) has a special history in Germany as it was an item 
for a centrally administered exam. The public debate provoked a harsh critique: its 
probabilistic part was criticized as unsolvable in the form it was posed; its statistical 
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part was disputed as difficult and the ministerial solution was ‘attacked’ for blurring 
the fundamental difference between ‘true’ values of parameters of models and estima-
tes thereof. The probabilistic task shows essentially the same features as Example 6; 
the context could be taken from anywhere, it is arbitrary. The statistical part, however, 
allows for more discussion on the fundamental problem of empirical research 
which has to deal with generalizing results from samples to populations. Various 
models are compared with respect to their quality to model the situation. Here we 
focus on modelling and then solving the probability part. 

Basic Assumptions of Bernoulli Processes 

This task is designed to be an exemplar of an application of the binomial distribution. 
It is worthwhile to repeat the basic features of the model involved. This distribution 
allows one to model experiments, with a fixed number of trials with two outcomes 
for each repetition of the experiment (trial); one is typically named ‘success’ and 
the other ‘failure’. The basic assumption is that 
– the probability p of success is the same for all trials, and 
– single trials do not ‘influence’ each other, which means – probabilistically 

speaking – the trials are independent.  
 Such assumptions are usually subsumed under the name of Bernoulli experiments 
(Bernoulli process of experiments). If the results of the single trials are denoted by 
random variables nXX ,...,1  with 

 1=iX  (success) or 0=iX  (failure) (7) 

the random variables have to be independent, ie., 

 )()(),( jjiijjii xXPxXPxXxXP =====  if ji ≠ .  (8) 

Such a product rule holds also for more than two variables iX  of the process. The 
assumption usually is denoted by: 

 ),1(~~ pBXX
iid

i
, (9)  

where the ‘iid ’ refers to independent, identically distributed random variables Xi. 
The model, however, is not uniquely determined by such a Bernoulli process. Still 
missing is information about the value of p. 
 From the perspective of modelling, the decision on which distribution to apply 
is only one step towards a model for the situation in question. Usually, the model 
consists of a family of distributions, which differ by the values of one (or more) 
parameters. The next step is to find values for the parameters to fix one of the distri-
butions as the model to use for further consideration. How to support the modeller 
to choose such a family like the binomial or normal distributions is discussed from 
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a modelling perspective in section 5. The step of modelling to get values for the 
parameters of an already chosen model is outlined here.  
 The process to get numbers for the parameters (p here) is quite similar for all 
models. In this section matters are discussed for Bernoulli processes. Some features 
arise from the possibility to model the data to come from a finite or an infinite 
population. The parameter p will be called the ‘strength’ of Nowitzki. 
 The Nowitzki task was meant to go beyond an application within games of 
chance. The probability of success of a single trial of Nowitzki is not determined 
by a combinatorial consideration (justified by the symmetry of an experiment). The 
key idea to get numbers for the parameters is to incorporate some ‘knowledge’ or 
information. The reader is reminded that the problem involves 10 trials and the task 
will be treated as an open task to explore rather than just an examination question. 
So one might form a hypothesis on the success rate subjectively, for example. 

Model 1. The probability p could be determined by a hypothesis like Nowitzki is 
equally good as in the last two years when his success rate has been (e.g.) 0.910. 
Supposed that such a value holds also for the present season, the model is fixed. 
This value could well be a mere fiction – just to ‘develop a scenario’ and determine 
what would be its consequences. On the basis of this model, the random variable  

 )910.0,10(~...1 ==++= pnBXXT nn , (10) 

ie., the (overall) number of successes follows a binomial distribution with para-
meters 10 and 0.910. 

Model 2. The probability p is estimated from the given data, i.e., 904.0ˆ =p . In 
this case, the further calculations usually are based on  

 )904.0,10(~ == pnBTn .  (11) 

This is somehow the ‘best’ model as the estimation procedure leading to 904.0ˆ =p  
fulfils certain optimality criteria like unbiasedness, minimum variance, efficiency, 
and asymptotic normality. 

Model 2 (variant). The approach in model 2 misses the fact that the estimate p̂  
is not identical to the ‘true’4 value of p. There is some inaccuracy attached to the 
estimation of p. Thus, it might be better to derive a (95%) confidence interval for 
the unknown parameter p in a first approach leading to an interval  

 ]9284.0,8792.0[],[ =UL pp   (12) 

and only then calculate the required probabilities in Example 7 with the worst case 
pL and the best case pU. This procedure leads to a confidence interval for the required 
probability reflecting the inaccuracy of the estimate p̂ . 
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Model 3. The value of p is equated (not estimated) to the success rate of the 
whole season, i.e., p:=0.904. This leads to the same model as in (11) but with a 
complete different connotation. The probability of success in a free throw may be – 
after the end of the season – viewed as factually known as the number of successes 
(498) divided by the number of trials (551). There is no need to view it any longer 
as unknown and treat the success rate of 0.904 as an estimate p̂  of an unknown p, 
which results from an imagined infinite series of Bernoulli trials. 

Investigating and Modelling the Unknown Value of p 

Three different ways may be pursued to provide the required information for the 
unknown parameter. With the binomial distribution, one needs to have information 
about the value of p, which may be interpreted as success rate in the Bernoulli 
process in the background. The information to fix the parameter has different 
connotation as described here. In due consequence, the models applied inherit part 
of this meaning. The cases to differentiate are: 
i. p is known 
ii. p is estimated from data  
iii. p is hypothesized from similar situations 
 With games of chance, symmetries of the involved random experiment allow 
one to derive a value for p; eg., ½ for head in tossing a ‘fair’ coin – case i. Most 
applications, however, lack such considerations and one has to evoke ii. or iii. 

i. The assumption of equiprobability for all possible cases (of which one is called 
‘success’) is – beyond games of chance – sometimes more a way of putting it, just 
to fix a model to work with. For coin tossing, this paves the way to avoid tedious 
data production (actually tossing the coin quite often) and work with such a model 
to derive some consequences on the basis ‘what would be if we suppose the coin to 
be fair (symmetric)’. Normally, for coins, a closer scrutiny would not deviate too 
much from the presupposition of p = ½ and yield quite similar results. 
 With the basketball task, the value of p could be known from the past (model 1), 
which also refers to the further assumption that ‘things remain the same’5, i.e., there 
was no change from past to present. This is an assumption for which usually a sub-
stantial justification is lacking – those who do not rely too heavily on the information 
of the past might react more intelligently in the present.6 

ii. Closer to the present situation in Example 7 is to use the latest data available 
(from the present season). The disadvantage of such a procedure is that the difference 
between the ‘true’ value of p and an estimate p̂  might be blurred, and thereby 
forgetting that the estimate is inaccurate. One possibility to deal with this is the variant 
of model 2. The inaccuracy of estimates is best illustrated by confidence intervals. 
To vary the size of underlying samples where the data stem from, gives a clearer 
picture of the influence of this lack of information.  
 An important assumption for the data base from which the estimate is calculated, 
is: it has to be a random sample of the underlying Bernoulli process, which is 
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essentially the same as the parent Bernoulli process. Clearly, the assumption of a 
sample to be random is rarely fulfilled and often is beyond scrutiny. Usually there are 
qualitative arguments to back up such an assumption. It is to be noted that the estima-
tion of the probability is interwoven with the two key assumptions of Bernoulli 
experiments – the same success probability, and occurring independently in all trials. 
Otherwise, probabilities, such as a probability of success with a free throw, have no 
meaning.  

iii. A hypothesis about the success probability could be corroborated by knowledge 
about the past as in i. However, the season is completed and as a matter of fact, the 
success rate of Nowitzki was 0.904. To apply the factual knowledge about all 
games yields a value for the unknown parameter as 

 p: = 0.904,  (13) 

which amounts to much more concrete information than the estimation procedure 
leading to 904.0ˆ =≈ pp . The success probability in (13) may be justified and 
clarified by the following: As the season is completed, one knows all data. There will 
be no more. A new season will have irretrievably different constellations. The 
success rate in 2006–07 is – as a matter of fact – 0.904. There could well be the 
question as to how to interpret this number and whether it is possible to interpret it 
as a success probability.  
 The key question is whether it makes sense to interpret this 0.904 as a success 
probability. This interpretation is bound to the assumption that the data stem from 
an independent repetition of the same Bernoulli experiment. This requires – taken 
literally – that for each free throw of Nowitzki the conditions have been exactly the 
same, independently of each other and independent of the actual score and the 
previous course of the match, etc. With this point of view one might question whether 
the data really are compatible with the pre-requisites of a Bernoulli process. One 
could, e.g., inspect the number of ‘runs’ (points or failures in a series) and evaluate 
whether they are above or below the expected value for a Bernoulli process or not 
in order to check for the plausibility of its underlying assumptions. 
 The way in which information is used to get numerical values for the unknown 
parameter influences the character of the model, which is fixed by it. From a 
modelling perspective, this has deep consequences as any interpretation of results 
from the model has to take such ‘restrictions’ into consideration. 
 If the value of p is thought to be known – either by reference to a symmetric 
experiment, or by an unambiguous statement like ‘from long-standing experience 
from the past we know p to be 0.910’ in the wording of Example 7, the probabilistic 
part of it becomes trivial from a modelling perspective and a direct application of 
binomial probabilities is required. The solution may be found either by means of a 
hand-held calculator or a spreadsheet, or even by old-fashioned probability tables – 
the answer is straightforward and undisputed. 
 The discussion about the various ways to deal with information about the 
success rate p might lead to the didactical conclusion that such questions have to be 
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excluded from a final exam, especially if it is put forward centrally. The information 
in such tasks has to be conveyed clearly, the models have to be precisely and 
explicitly determined by the very text (not the context) of the task. The question 
remains – under such circumstances – would it still be worthwhile to teach probability 
as it would be reduced to a mere mechanistic application of the formulae in such 
exams? What is interesting is how the process of modelling used allows for an 
answer of the problem and in what respect such a model misses important features 
of the situation involved. 
 To choose between various possible models and to critically appreciate the model 
finally chosen is a worthwhile standard to reach in studying about probability. In 
only rare cases is there one distinct answer to a problem in question.  
 The assumptions of a Bernoulli process are not well fulfilled in sports and in many 
other areas where such methods are ‘blindly’ applied. Such assumptions establish 
(more or less well) a scenario (as opposed to a model that fits very well to the real 
situation), which allows an inspection of the situation on the basis of an ‘what 
would be – if we assume …’ Then of course, situations have to be set out where 
such scenarios may deliver suitable orientations despite their lack of fit to the situation 
(for the idea of a scenario instead of a model, see Borovcnik, 2006). 
 If p is not known directly, there are various ways to fill in the gap of information – 
the scale ranges from hypotheses of differing credibility to estimates from statistical 
data of differing relevance (depending on the ‘grade of randomness’ of the sample). 
Clearly, a true value of p has to be distinguished from an estimate p̂  of p. The whole 
of inferential statistics is based on a careful discrimination between true parameters 
and estimations thereof. However, again, issues are not as easy and clear-cut. What 
may be viewed as a true parameter in one model may be viewed as an estimate in 
another model – see the ideas developed subsequently. 
 If the option of a statistical estimate of the unknown parameter is chosen as in (11), 
then the data has to fulfil the assumption of a random sample – an independent 
repetition of the same basic experiment yielding each item of data. The accuracy 
linked to a specific sample may be best judged by a confidence interval as in (12). 
It might be tempting to reduce the length of such a confidence interval and to 
increase the precision of information about the unknown parameter by increasing 
the sample size. However, in practice, to obtain more data usually means a lower 
quality of data; ie., the data no longer fulfil their fundamental property of being a 
random sample, which involves a bias in the data with no obvious way to repair it. 
 If the option of hypothesizing values for the unknown parameter is chosen as in 
(10), or in (13), one might have trouble in justifying such a hypothesis. In some 
cases, however, good arguments might be given. For the statistical part of Example 
7 when it comes to an evaluation whether Nowitzki is better in home than in away 
matches, a natural hypothesis emerges from the following modelling. Split the 
Bernoulli process for home and away matches by a different value for p as pH and 
pA. The assumption of equal strength (home and away) leads to the hypothesis  

 HA pp = , or 0=− HA pp . (14) 
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Analysis of the data is then done under the auspices ‘as if the difference of the 
success probabilities home and away were zero’. However, it is not straightforward 
to derive the distribution for the test statistic HA pp ˆˆ − . 

More about Assumptions – A Homogenizing Idea ‘Behind’  
the Binomial Distribution 

In the context of sports, it is dubious to interpret relative frequencies as a probability 
and – vice versa – it is difficult to justify estimating an unknown probability by 
relative frequencies. What is different in the sports context from games of chance 
where the idea of relative frequencies has emerged? It is the comparability of single 
trials, the non-dependence of single trials – that is the hinge for transferring the ideas 
from games to other contexts. For probabilistic considerations such a transfer seems to 
be more crucial than for a statistical purpose, which focuses on a summary viewpoint. 
 In theory, the estimation of the success parameter p improves by increasing 
the sample size. Here, this requires combining several seasons together. However, 
the longer the series – especially in sports – the less plausible the assumptions for a 
Bernoulli process. And, if relative frequencies are used to estimate the underlying 
probabilities, condition (9) of a Bernoulli process has to be met. Only then do the 
estimates gain in precision by increasing the sample size. 
 However, for Nowitzki’s scores, the assumptions have to be questioned. People 
and the sport change over time, making assumptions of random, independent trials 
as the basic modelling approach less tenable. Take the value of 0.904 as an estimate 
for his current competency to make a point with a free throw – formalized as a 
probability p. This requires an unrealistic assumption of ‘homogenizing’: Nowitzki’s 
capacity was constant for the whole season and independent of any accompanying 
circumstances, not even influenced by the fact that in one game everything is 
virtually decided with his team leading or trailing by a big gap close to the end of 
the match, or there is a draw in the match and this free throw – the last event in the 
match – will decide about winning or not. 
 For statements related to the whole entity of free throws, such a homogenization 
might be a suitable working hypothesis. Perhaps the deviations from the assumptions 
balance for a longer series. To apply results derived on such a basis for the whole 
entity to a sequence of 10 specific throws and calculate the probability of 8 points 
at the most, however, makes hardly any sense, and even less so if it deals with the 
last 10 of an all-deciding match. 
 To imbue p with a probabilistic sense, to apply the binomial distribution sensibly, 
one has to invent a scenario like the following: All free throws of the whole season 
have been recorded by video cameras. Now we randomly select 10 clips and ask: 
How often does Nowitzki make the point? 

‘SOLUTION’ OF THE PROBABILISTIC PART OF THE NOWITZKI TASK 

In this section, the solutions are derived from the various models and critically 
appraised. As the choice of model depends not only on assumptions but also on an 
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estimation of unknown parameters, the question arises, which of the available models 
to choose – a fundamental issue in modelling. Several models are dealt with in the 
Nowitzki task and their relative merits are made clear. The methods of determining 
a good choice for the parameters also convey key features of pedagogy – some 
knowledge is taken from the context, some will be added by statistical estimation.  
 While for parts a. and b. the results seem straightforward, part c. gives ‘new’ 
insights. This task was fiercely rejected by some experts as unsolvable. However, 
by highlighting a fundamental property of Bernoulli series a solution of part c. is 
easier. If the chosen model is taken seriously, then the modeller is in the same situa-
tion as in any game of chance. In such games, the player can start at any time – it 
does not matter. The player can also eliminate any randomly chosen games without 
a general change in the result. That is the key idea involved. 

Calculation of the Probability of Simple Events – Parts a. and b. 

With model 1 and the assumption that p = 0.910, the distribution is given in (10). 
Using a spreadsheet gives the solution with this specific binomial distribution as 
set out in Table 2. Model 3 is handled in the same way.  
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Figure 5. Probability distributions for the number of hits under the various models. 

 With model 2 and the estimate p = 0.904, the distribution is fixed in (11). Using 
model 2 (variant), one derives the confidence interval (12) for Nowitzki’s ‘strength’ 
and uses the binomial distribution with parameters corresponding to worst and best 
cases for the playing strength. The distributions for the number of hits in 10 trials 
are depicted in Figure 5. While models 1 and 2 are similar, there is a huge difference 
between best and worst case in model 2 (variant).  

Table 2. Probabilities calculated under the various models 

 Model 1 Model 2 (3)7 Model 2 (variant) 
 910.0=p  904.0ˆ =p  Worst case pL Best case pU 

)8( 10 =TP  0.1714 0.1854 0.2345 0.1273 
)8( 10 ≤TP  0.2254 0.2492 0.3449 0.1573 
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 It is remarkable, and worthy of pedagogical discussion in the classroom, that the 
solutions differ so much when the assumptions seem to be very similar. The in-
accuracy as conveyed by the confidence interval (12) on p only reflects a margin of 
just under 5 percentage points. Nevertheless the variant of model 2 gives a margin 
of 0.1573 to 0.3449 for the probability in question b.8 Thus, it is crucial to remember 
that one has only estimates of the unknown parameter and imperfect knowledge.  

The Question ‘Nowitzki Scores at Most Four Times in a Series’ 

Task c. was disputed in a public discussion, in which statisticians were also involved. 
It was claimed that it can not be solved without an explicit number of observations 
given. Suggestions to fix the task are reported and a correct solution using a key 
property of Bernoulli processes is given below. The following passage is taken from 
an open letter to the ministry of education (Davies et al, 2008): 

“The media reported that one part of the [Nowitzki task] was not solvable 
because the number of trials is missing. This – in fact – is true and therefore 
several interpretations of the task are admissible, which lead to differing 
solutions.” 

Davies (2009, p. 4) illustrates three ways to cope with the missing number of trials:  
 The first is to take n = 10 as it was used in the first part of the task. This 
suggestion comes out of ‘student logic’ but leads into an almost intractable combi-
natorial problem. One has to inspect all the 210 = 1024 series of 0’s and 1’s (for 
failures and successes) whether they have a single segment of five or more 1’s in it 
(indicating the complement of the event in question), or not.  
 A second possibility is to take n = 5, which makes the problem very simple: The 
only sequence not favourable to the event in question is 1 1 1 1 1. Thus the prob-
ability for the complementary series, for which one is looking for here, equals  

 1 – p5  (15) 

and the result is dependent on the chosen model (see Table 3). 
 Again it is surprising that the change from model 2 to its variant reveals such a 
high degree of imprecision implicit in the task as the required probability is known 
only within a range of 0.31 to 0.47, if one refers to an estimate of the unknown 
probability of Nowitzki’s strength. But the reader is reminded that model 3 does 
not have this problem. Its result coincides with model 2 (without the variant) as the 
parameter is set to be known by (13). 

Table 3. Probabilities of the series ‘less than 5’ with n = 5 under the various models 

 Model 1 Model 2 (3) Model 2 (variant) 
 910.0=p  904.0ˆ =p  Worst case pL Best case pU 
 p5 0.6240 0.6031 0.5253 0.6898 
 1 – p5 0.3760 0.3969 0.4747 0.3102 
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 The third and final remedy to fill in for the gap of the missing number of trials, 
which Davies (2009) offers, refers to an artificial new gaming situation. 

“We imagine a game where two players perform free throws. One of the players 
begins and continues to throw as long as his ball passes correctly through the 
basket and he scores. If Nowitzki starts this game what is his probability that 
he scores at the most four times in a series in his first try?”  

Now, the possible sequences of this game are 

 0        1 0        1 1 0        1 1 1 0        1 1 1 1 0 (16) 

The solution emerging from (16) coincides exactly with that where the number of 
trials is fixed by 5, which numerically was the officially accepted solution (though it 
was derived without the assumption of n = 5 trials). Regarding the common factor 
1 – p in the single probabilities involved in (16), we get the solution by: 

 5432 1)1)(1( pppppp −=−++++ . (17) 

The third attempt to solve task c. without the missing number of trials yields the 
solution. However, it implies an artificial new gaming situation, which makes things 
unnecessarily complicated. In fact, the task is solvable without supplementing the 
missing number of trials and without this artificial game. One only has to remind 
oneself of what really amounts to a Bernoulli process, what properties are funda-
mental to such processes. The property in question will – once recalled – lead to 
a deeper understanding of what Bernoulli processes are. The next section will 
illustrate this idea. If one agrees with the assumption (9) of a Bernoulli process for 
the trials of Nowitzki then part c. of the probabilistic task is trivial.  

If the conditions are always the same throughout then it does not matter when 
one starts to collect the data. Mathematically speaking: If ...,, 21 XX  is a Ber-
noulli process with relation (9), then the following two sub processes have 
essentially the same probabilistic features, i.e., they also follow property (9): 

– random start of data collection i0: 

 ),1(~~...,, 100
pBXXX

iid

ii + ; (18a)  

– random selection i0, i1, … of all data:  

 ),1(~~...,,
10

pBXXX
iid

ii  (18b) 

This is a fundamental property of Bernoulli processes in particular and of random 
samples in general. One may start with the data collection whenever one chooses, 
therefore, (18a) applies. One can also eliminate some data if the elimination is 
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undertaken randomly as in (18b). While this key property of Bernoulli processes 
should be explained intuitively to students, it could also be supported by simulation 
studies to address ‘intuitive resistance’ from students. 
 Statisticians coin the term iid variables. One needs to explain to students that 
each single reading comes from a process that – at each stage (for each single 
reading) – has a distribution independent of the other stages and which follows an 
identical (i.e., the same) distribution throughout (hence iid); this deceptively complex 
idea takes time for students to absorb. It has already been mentioned that in sports 
such an assumption is doubtful but the example was put forward with this assumption 
for modelling, which therefore will not be challenged at this stage. 
 If it does not matter when we (randomly) start the data collection, we just go to 
the sports hall and wait for the next free throws. We note whether  
– Nowitzki does not score a point more than four times in a series – event A, or, 
– he succeeds in scoring more than four times in a series – event A  

Clearly it holds:  1)( 5 ⋅= pAP  and 51)( pAP −= . (19) 

 The term p5 in (19) stands for the first five 1’s in the complementary event; this 
probability has to be multiplied by 1 as from the sixth trial onwards the outcome 
does not matter (and therefore is the certain event). The result coincides with 
solution (16). However, there is no need to develop this imaginary game with an 
opponent as Davies (2009) does in his attempt to ‘fix’ the task. The task is easily 
solved using the fundamental property (18a) of Bernoulli processes. 
 If one just goes to a match (maybe one is late, it would not matter!) and 
observes whether Nowitzki scores more than four times in a series right from the 
start, then everything beyond the fifth trial is redundant and the solution coincides 
with solution (15) where the number of observations is fixed with n = 5. 

The Solution is Dependent on the Number of Trials Observed! 

If the number n of trials is pre-determined, the probability to have at the most four 
successes in a series changes. If one observes the player only up to four times, he 
cannot have more than four successes, whence it holds: P(A) = 1. The longer one 
observes the player, the more is the chance to finally see him score more than four 
times in a series. It holds: 

 ∞→→ nnAP ,0)|( . (20) 

KEY IDEA BEHIND VARIOUS DISTRIBUTIONS 

In this section, we explain the underlying key pedagogical ideas of the following 
seven distributions. 
a. Binomial distribution: repeated, independent trials, called Bernoulli process; 
b. Hypergeometric distribution: repeated dependent trials; 
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c. Poisson distribution: completely random events in time – Poisson process; 
d. Geometric distribution: waiting times in the Bernoulli process; 
e. Exponential distribution: Poisson and memory-less waiting; 
f. Weibull distribution: conditional failure rates or hazards; 
g. Normal distribution: the hypothesis of independent elementary errors; 
 For students’ understanding and also for good modelling reasons it is of advantage 
to have a key idea behind each of the distributions. Otherwise, it is hard to justify a 
specific distribution as a suitable model for the phenomenon under scrutiny. Why a 
Poisson distribution, or why a normal? The key idea of a distribution should convey 
a direct way of judging whether such a distribution could model the phenomenon 
in question. It allows one to check the necessary assumptions in the data generating 
process and whether they are plausible.  
 Such a fundamental idea behind a specific distribution is sometimes hidden; it is 
difficult to recognise it from discrete probabilities or density functions, which might 
also have complicated mathematical terms. Other concepts related to a random 
variable might help to reveal to students ‘the’ idea behind a distribution.  
 For example, a feature like a memory-less property is important for the pheno-
menon, which is described by a distribution. However, this property is a mathematical 
consequence of the distribution but cannot directly be recognized from its shape 
or mathematical term. In the context of waiting time, the memory-less property 
means that the ongoing waiting time until the ‘event’ occurs, has the same distribution 
throughout – regardless of the time already waiting for this event. 
 Or, technical units might show (as human beings do) a phenomenon of wearing-
out, i.e., the future lifetime has, amongst others, an expected value decreasing by the 
age of the unit (or, the human being). To describe such behaviour, further mathe-
matical concepts have to be introduced like the so-called hazard (see below). In 
technical applications continuous service of units might postpone wearing-out. For 
human beings, insurance companies charge higher premiums for a life insurance 
policy to older people. 
 While further mathematical concepts might be – at first sight – an obstacle for 
teaching, they help to shed light on key ideas for a distribution that enhance ‘internal 
mechanisms’ lurking in the background, and also help to understand the phenomena 
better. On the contrary, the usual examination as to whether a specific distribution 
is an adequate model for a situation is performed by a statistical test on whether the 
data is compatible with what is to be ‘expected’ from a random sample of this model 
or not. Such tests focus on the ‘external’ phenomenon of frequencies as observed 
in data. 

a. Binomial Distribution – Repeated Independent Trials 

A Bernoulli process may be represented by drawing balls from an urn where there 
is a fixed proportion p of balls marked by a 1 (success) and the rest marked by a 
0 (failure). If one draws a ball repeatedly from that urn n times always replacing 
the drawn ball, the number of successes follows a binomial distribution with para-
meters n and p. 
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 There are characteristic features inherent to the depicted situation: repeated experi-
ments with the same success probability p, independent trials (mixing the balls before 
each draw), so that the success probability remains the same throughout. One could 
spin a wheel repeatedly with a sector marked as 1 and another marked as 0. This 
distribution was discussed at length with the Nowitzki task. The binomial distribution 
is intimately related to the Bernoulli process (9), which may also be analysed from 
the perspective of continuously observing its outcomes, until the first event occurs – 
see the geometric distribution below. 

b. Hypergeometric Distribution – Repeated Dependent Trials 

This distribution, too, is best explained by the artificial but paradigmatic context of 
drawing balls from an urn with a fixed number of marked (by 1’s) and non-marked 
(the 0’s) balls as in the binomial situation; however, now the drawn balls are not 
replaced. Under this assumption, the number of marked balls among the n drawn 
follows a hypergeometric distribution. 
 The characteristics are repeated experiments with the same success prob-
ability p, but dependent trials, so that the success probability remains the same 
only if one does not know the history of the process, otherwise there is a distinct 
dependence. 
 The context of drawing balls explains also that – under special circumstances – 
the hypergeometric may be well approximated by the binomial distribution: if the 
number n of balls drawn from the urn is small compared to the number N of all 
balls in the urn, then the dependence between successive draws is weaker and the 
conditions (9) of a Bernoulli process are nearly met. 

c. Poisson Distribution – Pure Random Events in Time 

It is customary to introduce the Poisson distribution as the – approximate – distribu-
tion of rare events in a Bernoulli process (p small); it is also advantageous to refer 
this distribution to the Poisson process even if this is lengthy and more complex. 
The process of generating ‘events’ (e.g., emitted radioactive particles), which occur in 
the course of time (or in space), should intuitively obey some laws that may compare 
to the Bernoulli process:  
– The start of the observations is not relevant for the probability to observe any 

event; see the fundamental property (18a) – this leads to A1 in (21) below.  
– If one observes the process in non-overlapping intervals, the pertinent random 

variables have to be independent, which corresponds to the independence of the 
single observations Xi in the Bernoulli process – this leads to A4. 

– The main difference in the processes lies in the fundamental frequency 
pulsing: in the Bernoulli process, there is definitely a new experiment Xi at 
‘time’ i whereas in the Poisson process time is continuously flowing with no 
apparent performing of an experiment (leading to an event or not) – events 
just occur. 
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– It remains to fix the probability of an event. As there is no distinct experiment 
with the outcome of the event (or its non-occurrence), we can speak only of an 
intensity λ of the process to bear events. This intensity has to be related to unit 
time; its mathematical treatment in A2 involves infinitesimal concepts.  

– Paradoxically, a further requirement has to be demanded: even if two or more 
events may occur in an interval of time, which is not too small, such a probability 
of coincidences should become negligible if the length of the observation interval 
becomes small – that leads to A3 below. 

 Mathematically speaking (compare, e.g., the classic text of Meyer, 1970, p. 166), 
a Poisson process has to meet the following conditions (the random variable Xt 
counts the number of events in the interval ),0( t ): 

A1 If Yt counts the events in )0,0( ttt +  then Yt ~ Xt 

A2 )()1( totXP t Δ+Δ⋅==Δ λ  (21) 
A3 )()2( toXP t Δ=≥Δ  
A4 Xt and Yt are independent random variables  
 if they count events in non-overlapping time intervals. 

Assumptions (21) represent pure randomness; they imply that such a process has no 
preference for any time sequence, has no coincidences as they would occur by 
‘intention’, and shows no dependencies on other events observed. The assumptions 
may also be represented locally by a grid square as is done in Example 8. 
 The main difference of the Poisson to the Bernoulli process lies in the fact that 
there is no definite unit of time, linked to trials 1, 2, 3, etc., which may lead to the 
event (1) or not. Here, the events just occur at a specific point of time but one cannot 
trace when an ‘experiment’ is performed. The success probability p of the Bernoulli 
process associated with single experiments becomes an intensity λ per unit time. 
The independence of trials becomes now an independence of counting events in 
mutually exclusive intervals in the sense of A4.  
 The Poisson process will have a further analogue to the Bernoulli process in 
terms of waiting for the first event – the Geometric and the Exponential distribution 
(which describe waiting times in pertinent situations) both have similar properties 
(see below). We present one example here to illustrate a modelling approach to the 
Poisson. This shows how discussions can be initiated with students on the theoretical 
ideas presented above, and help students to understand how and when to apply the 
Poisson distribution. 

Example 8. Are the bomb attacks of London during World War II the result of 
a planned bombardment, or may they be explained by pure random hitting? To 
compare the data to the scenario of a Poisson process, the area of South London is 
divided into square grids of ¼ square kilometres each. The statistics in Table 4 shows 
e.g., 93 squares with 2 impacts each, which amounts to 186 bomb hits. In sum, 537 
impacts have been observed. 
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Table 4. Number of squares in South London with various numbers of bomb hits – 
Comparison to the frequencies under the assumption of a Poisson process with λ = 0.9323 

No. of hits 
in a square 0 1 2 3 4 5 and 

more all 

No. of grid squares with 
such a no. of hits 229.     211.     93.     35.     7.     1.     576. 

Expected numbers 
under Poisson process  226.74 211.39 98.54 30.62 7.14 1.57  

 
 If targeting is completely random, it follows the rules of a Poisson process (21) 
and the number of ‘events’ per grid square follows then a Poisson distribution. The 
parameter λ is estimated from the data to fix the model by 

 9323.0576
537 ==λ  hits per grid square.  (22) 

As seen from Table 4, the fit of the Poisson distribution to the data is extremely 
good. Feller (1968, pp 161) highlights the basic property of the Poisson distribution 
as modelling pure randomness and contrasts it to wide-spread misconceptions: 

“[The outcome] indicates perfect randomness and homogeneity of the area; 
we have here an instructive illustration of the established fact that to the un-
trained eye randomness appears as regularity or tendency to cluster.” 

In any case of an application, one might inspect whether the process of data gene-
ration fulfils such conditions – which could justify or rule out this distribution as a 
candidate for modelling. The set of conditions, however, also structures thinking 
about phenomena, which may be modelled by a Poisson distribution. All phenomena 
following internal rules, which come close to the basic requirements of a Poisson 
process, are open to such a modelling. 

d. Geometric Distribution – Memory-Less Waiting for an Event 

Here, a Bernoulli process with success parameter p is observed. In contrast to the 
binomial distribution, the number of trials is not fixed. Instead, one counts the 
number of trials until the first event (which corresponds to the event ‘marked’ by a 1) 
occurs. The resulting distribution ‘obeys’ the following ‘memory-less’ property: 

 ) () | ( 00 kTPkTkkTP >=>+> . (23) 

This feature implies that the remaining waiting time for the first event is inde-
pendent of the time k0 one has already waited for it – waiting gives no bonus. Such 
a characterization of the Bernoulli process helps in clarifying some basic miscon-
ceptions. The following example can be used to motivate students on the underlying 
features. 
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Example 9. Young children remember long waiting times for the six on a die to 
come. As waiting times of 12 and longer still have a probability of 0.1346, see also 
Figure 6, this induces them to ‘think’ that a six has less probability than the other 
numbers on the die for which such a ‘painful’ experience is not internalised.  
 

Geometric distribution - waiting times for the first 6 of a die

0.00

0.10

0.20

0 10 20 30

Exponential distribution - with λ  = 6

0.00

0.10

0.20

0 10 20 30  

Figure 6. Waiting for the first six of a die – 
Bernoulli process with p = 1/6. 

Figure 7. Exponential distribution has the 
same shape as the geometric distribution. 

e. Exponential Distribution – Memory-Less Waiting for Events in Time 

The exponential distribution is connected to two key ideas: one links it to the 
Poisson process; the other uses the concept of conditional failure rate. In a Poisson 
process, if one is waiting for the next event to occur and the data are subsequent 
waiting times between the events, then the exponential distribution is the model of 
choice. This is due to a mathematical theorem (see Meyer 1970, p. 191). It can also 
be illustrated by simulation studies. An important feature of the exponential distri-
bution is its memory-less property: 

 ) 0() | ( ) (
) (

0

00
000 tTPtTttTtP tTP

ttTtP Δ≤<==>Δ+≤< >
Δ+≤< . (24) 

Due to the memory-less property, the conditional probability to fail within Δt units of 
time for a device that has reached age t0 is the same as within the first Δt units for a 
new device. This implies that the future lifetime (or, waiting time) is independent 
of age reached (or, the time already spent in waiting), i.e., t0, which amounts to a 
further characterization of ‘pure’ randomness. Exponential and geometric distri-
butions share the memory-less property. This explains why the models have the 
same shape. If this conditional failure probability is calculated per unit time and the 
time length Δt is made smaller, one gets the conditional failure rate, or hazard h(t): 

 
t

tTttTtP
t

th
Δ

>Δ+≤<

→Δ
=

) | ( 000

0
lim)( . (25) 

 A hazard (rate) is just a different description of a distribution. Now it is possible 
to express the other key idea behind the exponential distribution, namely that its 
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related conditional failure rate (or, hazard) is constant over the lifetime. If a 
(technical) unit’s lifetime is analysed and the internal structure supports that the 
remaining lifetime is independent of the unit’s age, then it may be argued that an 
exponential distribution is the model of choice. While such a property might seem 
paradoxal (old units are equally good as new units), it is in fact well fulfilled for 
electronic devices for a long part of their ordinary lifetime. Mechanical units, on the 
contrary, do show a wearing effect, so that their conditional lifetime gets worse with 
age. Similarly with human beings, with the exception of infant mortality when – in 
youngest ages – humans’ lifetime as a probability distribution improves. 

f. Weibull Distribution – Age-Related Hazards 

Lifetimes are an important issue in technical applications (reliability issues and quality 
assurance), waiting times are important in describing the behaviour of systems. There 
are some families of distributions, which may serve as suitable models. The draw-
back with these is that they require more mathematics to describe their density 
functions. Furthermore, the shape of their density gives no clue why they should 
yield a good model for a problem to be analysed. 
 To view lifetimes (or waiting times) from the perspective of units that have reached 
some specific age already (have waited some specific time) sheds much more light 
on such phenomena than to analyse the behaviour of new items (with no time spent 
in waiting in the system). One would, of course, simulate such models first, explore 
the simulated data, and draw preliminary conclusions before one starts to delve deeper 
into mathematical issues. It may pay to learn – informally – about hazards and use 
this concept instead of probability densities to study probability models. Hazards will 
directly enhance the basic assumptions, which have to be fulfilled in case of 
applications. 
 With the key idea of hazard or conditional failure rate, the discussion can relate 
to infant mortality (decreasing), purely random failures due to exponential lifetime 
(constant) and wearing-out effects (increasing). The power function is the simplest 
model to describe all these different types of hazard: 

 1)()( −= β
αβ tth , 0, >βα . (26) 

The parameter α is interpreted as the scale of time while β influences the shape and 
thus the quality of the change of hazard over lifetime.  

g. Normal Distribution – the Hypothesis of Independent Elementary Errors 

Any random variable that might be split into a sum of other (hidden) variables is – 
according to the central limit theorem (CLT) – approximately normally distributed. 
This explains the key underlying idea and ubiquity of the normal distribution. In 
the history of probability, the CLT prompted the ‘hypothesis of elementary errors’ 
(Gauss and earlier) where any measurement error was hypothesized to be the result 
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(sum) of other, elementary errors. This supported the use of the normal distribution 
for modelling measurement errors in astronomy and geodesy.  
 A generalization to the normal ‘law’ of distribution by Quételet and Galton is 
straightforward: it is an expression of God’s will (or Nature) that any biometric 
measurement of human beings and animals is normally distributed as it emerges 
from a superposition of elementary ‘errors of nature’ (Borovcnik, 2006)9. An in-
teresting article about the history and myth of the normal law is Goertzel (n.d.). 
 The mathematics was first proved by de Moivre and Laplace; the single summands 
Xi had then been restricted to a Bernoulli process (9). In this way, the binomial 
distribution is approximately normally distributed and the approximation is good 
enough if there are enough elements in the sum: 

 nn XXXT +++= ...21 . (27) 

To illustrate matters, the Galton board or an electronic quincunx (see, e.g., Pierce, 
R., n.d.) may be used in teaching. Such a board has several rows of pegs arranged 
in a shape similar to Pascal’s triangle. Marbles are dropped from the top and then 
bounce their way down. At the bottom they are collected in little bins. Each time the 
marble hits one of the pegs, it may bounce either left or right. If the board is set up 
symmetrically the chances of bouncing either way are equal and the marbles in the 
bins follow the ‘bell shaped’ curve of the normal distribution. If it is inclined, a 
skewed distribution emerges, which normalizes, too, if enough rows are taken. 
 Theoretically, one has to standardize the value of the sum Tn according to  

 
)var(
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n
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n
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TETU −

=  (28) 

and the CLT in its crudest form becomes: 

 If XX
iid

i ~  are an iid process with finite variance ∞<)(Xvar ,  
 then it holds )()(lim uuUP Φnn

=≤
∞→

  (29) 

Here Φ (u) stands for the cumulative distribution function of the standard normal 
distribution, i.e., with parameters 0 and 1. 
 Despite such mathematical intricacies, the result is so important that is has to be 
motivated in teaching. The method of simulation again is suitable not only to 
clarify the limiting behaviour of the sum (the distribution of its standardized form 
converges to the normal distribution), but also to get an orientation about the speed 
of convergence. Furthermore, this convergence behaviour is highly influenced by 
the shape of the distribution of the single Xi’s.  
 A scenario of simulating 1000 different samples of size n = 20 and then n = 40 
from two different distributions (see Figure 8) may be seen from Figure 9. The 
graph shows the frequency distributions of the mean of the single items of data  
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Figure 8. A symmetric and a skewed distribution for the single summands in the scenario. 
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Figure 9. Scenario of 1000 samples: distribution of the mean compared to the normal curve – 
left drawing from an equi-distribution, right drawing from a skewed distribution. 

instead of the sum (27) – this is necessary to preserve scales as the sums are simply 
diverging. For the limit, the calculation of the mean still does not suffice as the 
mean converges weakly to one number (the expected value of Xi if all have the 
same distribution) – thus in the limit there would be no distribution at all.  
 The simulation scenarios in Figure 9 illustrate that the calculated means of the 
repeated samples have a frequency distribution, which comes quite close to a normal 
distribution for only 20 summands. If the items of data are skewed, the approximation 
is slightly worse but with calculated means of 40 items of data in each sample the 
fit is sufficiently good again.  
 The influence of the single summands (like those in Figure 8) on the convergence 
behaviour of the sum may be studied interactively: With a spreadsheet with slide 
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controls for the number of values in the equi-distribution for the single data one could 
easily see that more values give a faster convergence to the fit. With a slide control 
for the skewness, e.g., to move the two highest values further away from the bulk of 
the data, one may illustrate a negative effect on convergence as the fit would become 
worse this way. By changes of the slide controls the effect on the distribution for 
an item of data Xi is seen from the bar graphs in Figure 8 and the effect on the 
‘normalizing’ of the distribution of the mean of the repeatedly drawn samples may 
be studied from Figure 9 interactively. 

Distributions Connected to the Normal Distribution  

There are quite a few distributions, which are intimately connected to the normal 
distribution. The main usage of these is to describe the theoretical behaviour of 
certain test statistics based on a sample from a normal distribution. Amongst them 
are the t, the χ2 and F distribution. They are mainly used for coping with the mathe-
matical problems of statistical inference and not for modelling phenomena. The χ2 
distribution is somehow an exception to this, as the so-called Maxwell and Rayleigh 
distribution (the square root of a χ2) are also used by physicists to model velocity 
of particles (like molecules) in two or three dimensional space (with 2 or 3 degrees 
of freedom), see also Meyer (1970, pp. 220). 

SOLUTIONS TO THE STATISTICAL PART OF THE NOWITZKI TASK 

This section returns to the statistical questions of the Nowitzki task. Is Nowitzki 
weaker away than home? The usual way to answer such questions is a statistical test 
of significance. Such a modelling approach includes several steps to transfer the 
question from the context into a statistical framework, in which a null hypothesis 
reflects the situation of ‘no differences’ and alternative distributions depict situations 
of various degree of difference. As always in empirical research, there is no unique 
way to arrive at a conclusion.  
 The chosen model might fit more for the one expert, and less for another one. 
Already the two questions posed in the formulation of the example (away weaker 
than home, or, away weaker than in all matches) give rise to disputes. The logic 
of a statistical test makes things not easier as one always has to refer to fictional 
situations in the sense ‘what would be if …’ Errors of type I and II, or p values give 
rise to many misinterpretations by students. And there are many different test statistics 
which use information, which could discriminate between the null and alternative 
hypotheses differently (not only in the sense of less precise and more precise but 
simply different with no direct way for a comparison). Moreover, one has to estimate 
parameters, or use other information to fix the hypotheses. 
 If a Bernoulli process with success probability p is observed n times, then for 
the expected value of the number of successes Tn it holds: 

 nn XXT ++= ...1 :       pnTE n =)( . (30) 
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Here, the value of p usually is not known and is called the true value for the (success) 
probability.  

Solutions to the First Statistical Part – Nowitzki Away Weaker than  
Home & Away? 

Part a. of the statistical questions in Example 7 is ill-posed10 insofar as the comparison 
of away matches against all matches does not reflect what one really should be 
interested in. Is Nowitzki away weaker than in home matches? A reference to 
comparison including all matches blurs the differences. Therefore, this question is 
omitted here. We will only discuss the inherent problems. With the three different 
success probabilities for home, away and all matches, it holds: 

 A
A

H
H p

n
np

n
np ⋅+⋅=0  (31) 

If the season is regarded as a self-contained entity, all success rates are known. If 
they are perceived as probabilities, the next question to discuss is whether there is 
one common process or two or more with different probabilities; a covariate like 
‘location’ of the free throw (home, away) would explain the differences. If p0 is set 
as known, the problem may be handled in this way: ‘May the away free throws be 
modelled by a Bernoulli process with p0 from the overall strength?’  
 If the data is seen as a sample from an infinite (Bernoulli) process, p0 has to 
estimated from it, however, there are drawbacks in question a. and its modelling. 
Firstly, by common sense, no one would compare away scores to all scores in order 
to find differences between the two groups of trials away and home. Secondly, as 
the overall strength is estimated, it could also be estimated by the separate scores 
of away and home matches using equation (31): Ap̂  and Hp̂  are combined to an 
estimate 0p̂  of p0. And the test would be performed by the data on away matches, 
which coincide with AA pn ˆ231 ⋅= .  
 Confusing here is that pA is dealt with as unknown (a test is performed whether 
it is lower than the overall strength), an estimate of it is used to get an estimate of 
the overall strength, and it is used as known data to perform the test.  

Solution to the Second Statistical Part – Nowitzki Weaker Away Than at Home? 

In this subsection, the away scores are compared to the home matches only (part b). 
Various steps are required to transform a question from the context to the statistical 
level. It is illustrated how these steps lead to hypotheses at the theoretical level, 
which correspond and ‘answer’ the question at the level of context. 
 Three different Bernoulli processes are considered: home, away, and all (home and 
away combined). After the end of the season, the related success probabilities are 
(factually) known from the statistics (see Table 5). Or, one could at least estimate 
some of these probabilities from the data. 



MODELLING IN PROBABILITY AND STATISTICS 

33 

Table 5. Playing strength as success probabilities from hits and trials of the season 

Matches Hits Trials Strength ‘known’ or estimated 

Home TH = 267 nH = 288 pH = 
288

267  = 0.927 

Away TA = 231 nA = 263 pA  = 
263

231  = 0.878 

All T = 498 n = 551 p0  = 
551

498  = 0.904 

 
 The basis for reference to compare the away results is the success in home 
matches. For home matches the success probability is estimated as in model 2 or 
‘known’ from the completed season as in model 3  

 pH = 0.927. (32) 

Formally, the question from the context can be transferred to a (statistical) test 
problem in several steps of choosing the statistical model and hypotheses: 

 ),(B~ πAA nT , (33) 

ie., the number of hits (successes) in away matches is binomially distributed with 
unknown parameter π (despite reservations, this model is used subsequently). As 
null hypothesis 

  :0H Hp=π ,  (34) 

will be chosen. This corresponds to ‘no difference of away to home matches’ from 
the context with pH designating the success probability in home matches. For the 
alternative, a one-sided hypothesis 

 :1H Hp<π   (35) 

is suggested. As in sports in general, the advantage of the home team is strong 
folklore, a one-sided11 hypotheses makes more sense than a two-sided alternative 
of π ≠ pH. The information about pH comes from the data, therefore it will be 
estimated by 0.927 to form the basis of the ‘model’ for the away matches. No other 
information about the ‘strength’ in home matches is available. Thus, the reference 
distribution for the number of successes in away matches is the following: 

 )927.0,(B~
0

AHA nT . (36) 

Relation (36) corresponds to the probabilistic modelling of the null effect that 
‘away matches do not differ from home matches’. The alternative is chosen to be 
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one-sided as in (35). The question is whether the observed score of TA = 231 in 
away matches amounts to an event, which is significantly too low for a Bernoulli 
process with 0.927 as success probability, which is in the background of (36). 
Under this assumption, the expected value of successes in away matches is 

8.243927.0263 =⋅ . The p value of the observed number of 231 successes is now 
as small as 0.0033! Consistently, away matches differ significantly from home 
matches (at the 5% level of significance).  
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Figure 10. Results of 2000 fictitious seasons with nA = 263 trials – based on an assumed 
strength of p = 0.927 (corresponding to home matches). 

 In Figure 10, the scores of Nowitzki in 2000 fictitious seasons are analysed. The 
scenario is based on his home strength with 263 free throws (the number of trials in 
away matches in the season 2006–07) ie., on the distribution of the null hypothesis 
in (36). From the bar chart it is easily seen that the observed score of 231 is far out 
in the distribution; it belongs to the smallest results of these fictitious seasons. In 
fact, the p value of the observation is 0.3%. 
 A simulation study gives concrete data; the lower 5% quantile of the artificial 
data separates the 5% extremely low values from the rest. It is easy to understand 
that if actual scores are smaller than this threshold, they may be judged as not 
‘compatible’ with the underlying assumptions (of the simulated data, especially the 
strength of 0.927). To handle a rejection limit (‘critical value’) from simulated data 
is easier than to derive a 5% quantile from an ‘abstract’ probability distribution. 

Validity of Assumptions – Contrasting Probabilistic and Statistical Point of Views 

The scenario of a Bernoulli process is more compelling for evaluating the question 
of whether Nowitzki is weaker in away matches than for the calculation of single 
probabilities of specific short sequences. In fact, whole blocks of trials are compared. 
This is not to ask for the probability for a number of successes in short periods of 
the process but to ask whether there are differences in large blocks on the whole. 
Homogenization means a balancing-out of short-term dependencies, or of fluctuation 
of the scoring probability over the season due to changes in the form of the player, 
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or due to social conditions like quarrels in the team over an unlucky loss. In this 
way, the homogenization idea seems more convincing. 

The compensation of effects across single elements of a universe is essentially 
a fundamental constituent of a statistical point of view. 

For a statistical evaluation of the problem from the context, the scenario of a Bernoulli 
process – even though it does not apply really well – might allow for relevant results. 
For whole blocks of data, which are to be compared against each other, a homo-
genization argument is much more compelling as the violations of the assumptions 
might balance out ‘equally’. The situation seems to be different from the probabilistic 
part of the Nowitzki problem where it was doomed to failure to find suitable situa-
tions for which this scenario could reasonably be applied. 

Alternative Solutions to – Nowitzki Weaker Away than at Home? 

Some alternatives to deal with this question are discussed; they avoid the ‘confusion’ 
arising from the different treatment of the parameters (some are estimated from the 
data and some are not). Not all of them are in the school curricula.  

Table 6. Number of hits and trials 

Matches Hits Failures Trials 
Home  267  21  288 
Away  231  32  263 
All matches  498  53  551 

Fisher’s exact test. is based on the hypergeometric distribution. It is remarkable 
that it relies on less assumptions than the Bernoulli series and it uses nearly all 
information about the difference between away and home matches. The (one-sided) 
test problem is now depicted by the pair of hypotheses: 

 H0: 0=− HA pp  against H1: 0<− HA pp   (37) 

‘No difference’ between away and home matches is modelled by an urn problem 
relative to the data in Table 6: All N = 551 trials are represented by balls in an urn; 
A = 498 are white and depict the hits, 53 are black and model the failures. The balls 
are well mixed and then one draws n = 263 balls for the away matches (without 
replacement). The test is based on the number of white balls NW among the drawn 
balls. Here, a hypergeometric distribution serves as reference distribution: 

 )263,498,551(~
0

=== nANHypN
HW , (38) 

Small values of NW indicate that the alternative hypothesis H1 might hold. The 
observation of 231 white balls has a p value of 3.6%. Therefore, at a level of 5% 
(one-sided), Nowitzki is significantly weaker away than in home matches. 
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 With this approach neither the success probability for away nor for home matches 
were estimated. The hypergeometric distribution needs not to be tackled with all 
the mathematical details. It is sufficient to describe the situation structurally and 
get (estimations of ) the probabilities by a simulation study. 

Test for the difference of two proportions. This test treats the two proportions for 
the success in away and home matches in the same manner as both are estimated 
from the data, which are modelled as separate Bernoulli processes according to (9): 

 Ap̂  estimates the away strength Ap ; Hp̂  the home strength Hp  (39) 

The (one-sided) test problem is again depicted by (37). However, the test statistic 
now is directly based on the estimated difference in success rates HA pp ˆˆ − . By the 
central limit theorem, this difference (as a random variable) – normalized by its 
standard error – is approximately normally distributed; it holds: 

 )1,0(
ˆˆ

: ~
)ˆ1(ˆ)ˆ1(ˆ

NppU
approx

n
pp

n
pp

HA

H

HH

A

AA −⋅−⋅ +

−
= . (40) 

There is now a direct way to derive rejection values to decide whether the observed 
difference between the success rates of the two Bernoulli processes is significant or 
not: The estimated value of the difference of the success rates of – 0.04876 gives 
rise to an U of –1.9257 which amounts to a p value of 2.7%. In this setting a 
simulation of the conditions under the null hypothesis is not straightforward.  
 If one tests mean values from two different samples for difference then one can 
use the so-called Welch test. Both situations – testing two proportions or two means 
for significant differences – are too complex for introductory probability courses at 
the university. One could motivate the distributions and focus on the problem of 
judging the difference between the two samples. However, the simpler Fisher test 
may be seen as the better alternative for proportions. 

Some Conclusions on the Statistical Modelling of the Nowitzki Task 

Inferential statistics means evaluating hypotheses by data (and mathematical tech-
niques). Is the strength of Nowitzki away equal to p = 0.927? An answer to this 
question depends on whether we search for deviations from this hypothesized value 
in both directions (two-tailed) or only in the direction of lower values (one-tailed). 
From the context, the focus may well be on lower values of p for the alternative as 
the advantage of the home team is a well-known matter in sport. 
 The null hypothesis forms the reference basis for the given data. For its formula-
tion, further knowledge is required, either from the context, or from the data. Such 
knowledge should never be mixed with data, which is used in the subsequent test 
procedure; this is a crucial problem of task a., which asks to compare the away 
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scores to the score in all matches. A value for all matches – if estimated from the 
data – also contains the away matches. However, this should be avoided, not only 
for methodological reasons but by common sense too. 
 If the season is seen as self-contained, the value of p = 0.927 is known. A test of 
0.927 against alternative values of the strength less than 0.927 corresponds to the 
question ‘Is Nowitzki away weaker than home?’ 0.927 might as well be seen as an 
estimate of a larger imaginary season. An evaluation of its accuracy (as in section 3) 
is usually not pursued. A drawback might be seen in the unequal treatment of the 
scores: home scores are used to estimate a parameter pH while the away scores are 
treated as random variable. Note that in this test situation no ‘overlap’ occurs 
between data used to fix the null hypothesis and data used to perform the test. 
 The alternative tests discussed here treat the home and away probabilities in a 
symmetric manner: both are assumed as unknown; either both are estimated from 
the data, or estimation is avoided for both. These tests express a correspondence 
between the question from the context and their test statistics differently. They view 
the situation as a two-way-sample. Such a view paves the way to more general 
types of questions in empirical research, which will be dealt with below. 

STATISTICAL ASPECTS OF PROBABILITY MODELLING 

Data have to be seen in a setting of model and context. If two groups are compared – 
be it a treatment group receiving some medical treatment and a control group 
receiving only placebo (a pretended treatment), two success rates might be judged 
for difference as in the Nowitzki task. Is treatment more effective than placebo? 
The assumption of Bernoulli processes ‘remains’ in the background (at least if we 
measure success only on a 0–1 scale). However, such an assumption requires a 
heuristic argument like the homogenization of data in larger blocks.  
 The independence assumption for the Bernoulli model is not really open to scrutiny 
as it leads to methodological problems (a null hypothesis can not be statistically 
confirmed). The idea of searching for covariates serves as a strategy to make the 
two groups as equal as they could be. Data may be interpreted sensibly and used 
for statistical inference – in order to generalize findings from the concrete data – 
only by carefully checking whether the groups are homogenous. Only then, do the 
models lead to relevant conclusions beyond concrete data. If success is measured 
on a continuous scale, the mathematics becomes more complicated but the general 
gist of this heuristic still applies. 

Dealing with the Inherent Assumptions 

A further example illustrates the role of confounders. 

Example 10. Table 7 shows the proportions of girl births in three hospitals. Can 
they be interpreted as estimates of the same probability for a female birth? Assume 
such a proportion equals 0.489 worldwide; with hospital B (and 358 births) the 
proportion of girls would lie between 0.437 and 0.541 (with a probability of  
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Table 7. Proportion of girls among new-borns 

Hospital Births Proportion of girl births 
A 514 0.492 
B 358 0.450 
C  0.508 
‘World stats’  0.489 

 
approximately 95%). The observed value of 0.450 is quite close to the lower end of 
this interval. This consideration sheds some doubt on it that the data have been 
‘produced’ by mere randomness, ie., by a Bernoulli process with p = 0.489.  
 It may well be that there are three different processes hidden in the background 
and the data do not emerge from one and the same source. Such ‘phenomena’ are 
quite frequent in practice. However, it is not as simple as that one could go to 
hospital B if one wants to give birth to a boy? One may explain the big variation of 
girl births between hospitals by reference to a so-called covariate: one speculation 
refers to location; hospital A in Germany, C in Turkey, and B in China. In cases where 
covariates are not open to scrutiny as information is missing about them, they 
might blur the results – in such cases these variables are called confounders.  
 For the probabilistic part of Nowitzki, it might be better to search for confounders 
(whether he is in good form, or had a quarrel with his trainer or with his partner) in 
order to derive at a probability that he will at the most score 8 times out of 10 trials 
instead of modelling the problem by a Bernoulli process with the seasonal strength 
as success probability. Such an approach cannot be part of a formal examination 
but should feature in classroom discussion. 

Empirical Research – Generalizing Results from Limited Data 

Data always has to be interpreted by the use of models and by the knowledge of 
context, which influences not only the thinking about potential confounders but 
also guides the evaluation of the practical relevance of conclusions drawn.  
 A homogenization idea was used to support a probabilistic model. For the 
Bernoulli process the differing success probabilities should ease out, the afflictions 
of independency should play less of a role when series of data are observed, which 
form a greater entity – as is done from a statistical perspective. This may be the case 
for the series of away matches as a block and – in comparison to it – for the home 
matches as a block. One might also be tempted to reject such a homogenization idea 
for the statistical part of the Nowitzki task. However, a slight twist of the context, 
leaving the data unchanged, brings us in the midst of empirical research; see the 
data in Table 8, which are identical to Table 5. 

Table 8. Success probabilities for treatment and control group 

Group Success Size Success probability 
Treatment 267 nT = 288 pT = 0.927 
Control 231 nC = 263 pC = 0.878 
All 498 N = 551 p0 = 0.904 
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 This is a two-sample problem, we are faced with judging a (medical) treatment 
for effectiveness (only with a 0, 1 outcome, not with a continuous response). The 
Nowitzki question reads now as: Was the actual treatment more effective than the 
placebo treatment applied to the persons in the control group? 
 How can we justify the statistical inference point of view here? We have to 
model success in the two groups by a different Bernoulli process. This modelling 
includes the same success probability throughout, for all people included in the 
treatment group as well the independence of success between different people. 
 Usually, such a random model is introduced by the design of the study. Of course, 
the people are not selected randomly from a larger population but are chosen by 
convenience – they are primarily patients of the doctors who are involved in the 
study. However, they are randomly attributed to one of the groups, i.e., a random 
experiment like coin tossing decides whether they are treated by the medical treat-
ment under scrutiny or they receive a placebo, which looks the same from outside 
but has no expected treatment effect – except the person’s psychological expectation 
that it could affect. Neither the patient, nor the doctors, nor persons who measure 
the effect of the treatment, should know to which group a person is attributed – the 
golden standard of empirical research is the so-called double-blind randomized 
treatment and control group design. The random attribution of persons to either group 
should make the two groups as comparable as they could be – it should balance all 
known covariates and all unknown confounders, which might interfere with the 
effect of treatment.  
 Despite all precautions, patients would differ by age, gender, stage of the disease, 
etc. Thus, they do not have a common success probability that the treatment is 
effective. All what one can say is that one has undertaken the usual precautions and 
one hopes that the groups are now homogenous enough to apply the model in a 
manner of a scenario: ‘what does the data tell us if we think that the groups meet 
a ceteris paribus condition’. A homogenization argument is generally applied to 
justify drawing conclusions out of empirical data. It is backed by random attribution 
of persons to the groups, which are to be compared. The goal of randomizing is to 
get two homogenous groups that differ only with respect to what has really been 
administered to them: medication or placebo. 

CONCLUSIONS 

The two main roles for probability are to serve as a genuine tool for modelling and 
to prepare and understand statistical inference. 
– Probability provides an important set of concepts in modelling phenomena from 

the real world. Uncertainty or risk, which combines uncertainty with impact (win 
or loss, as measured by utility) is either implicitly inherent to reality or emerges 
of our partial knowledge about it. 

– Probability is the key to understand much empirical research and how to generalize 
findings from samples to populations. Random samples play an eminent role in 
that process. The Bernoulli process is a special case of random sampling. More-
over, inferential statistical methods draw heavily on a sound understanding of 
conditional probabilities.  
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 The present trend in teaching is towards simpler concepts focusing on a (barely) 
adequate understanding thereof. In line with this, a problem posed to the students 
has to be clear-cut, with no ambiguities involved – neither about the context nor 
about the questions. Such a trend runs counter to any sensible modelling approach.  
 The discussion about the huge role intuitions play in the perception of randomness 
was initiated by Fischbein (1975). Kapadia and Borovcnik (1991) focused their 
deliberations on ‘chance encounters’ towards the interplay between intuitions and 
mathematical concepts, which might influence and enhance mutually. Various, 
psychologically impregnated approaches have been seen in the pertinent research. 
Kahneman and Tversky (1972) showed the persistent bias of popular heuristics people 
use in random situations; Falk and Konold (1992) entangle with causal strategies 
and the so-called outcome approach, a tendency to re-formulate probability statements 
into a direct, clear prediction. Borovcnik and Peard (1996) have described some 
specifities, which are peculiar to probability and not to other mathematical con-
cepts, which might account for the special position of probability within the historic 
development of mathematics. The research on understanding probability is still 
ongoing, as may be seen from Borovcnik and Kapadia (2009). Lysø (2008) makes 
some suggestions to take up the challenge of intuitions right from the beginning of 
teaching.  
 All these endeavours to understand probability more deeply, however, seem to 
have had limited success. On the contrary, the more the educational community 
became aware about the difficulties, the more it tried to suggest cutting out critical 
passages, which means that probability is slowly but silently disappearing from the 
content being taught. It is somehow a solution that resembles that of the mathe-
maticians when they teach probability courses at university: they hurry to reach 
sound mathematical concepts and leave all ambiguities behind. The approach of 
modelling offers a striking opportunity to counterbalance the trend. 
 Arguments that probability should be reduced in curricula at schools and at 
universities in favour of more data-handling and statistical inference might be met by 
the examples of this chapter; they connect approaches towards context and applica-
tions like that of Kapadia and Andersson (1987). Probability serves to model reality, 
to impose a specific structure upon it. In such an approach, key ideas to understand 
probability distributions turn out to be a fundamental tool to convey the implicit 
specific thinking about the models used and the reality modelled hereby. Contrary 
to the current trend, the position of probability within mathematics curricula should 
be reinforced instead of being reduced. 
 We may have to develop innovative ways to deal with the mathematics involved. 
To learn more about the mathematics of probability might not serve the purpose 
as we may see from studies in understanding probabilistic concepts by Díaz and 
Batanero (2009). The perspective of modelling seems more promising: a modeller 
never understands all mathematical relations between the concepts. However, a 
modeller ‘knows’ about the inherent assumptions of the models and the restrictions 
they impose upon a real situation. 
 Indirectly, modelling was also supported by Chaput, Girard, and Henry (2008, 
p. 6). They suggest the use of simulation to construct mental images of randomness. 
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Real applications are suggested by various authors to overcome the magic ingredients 
in randomness, e.g. Garuti, Orlandoni, and Ricci (2008, p. 5). 
 Personal conceptions about probability are characterized by an overlap between 
objective and subjective conceptions. In teaching, subjective views are usually 
precluded; Carranza and Kuzniak (2008, p. 3) note the resulting consequences:  

“Thus the concept […] is truncated: the frequentist definition is the only 
one approach taught, while the students are confronted with frequentist and 
Bayesian problem situations.”  

In modelling real problems, the two aspects of probability are always present; it 
is not possible to reduce to one of these aspects as the situation might lose sense. 
Modelling thus might lead to a more balanced way in teaching probability. From 
the perspective of modelling, the overlap between probabilistic and deterministic 
reasoning is a further source of complications as Ottaviani (2008, p. 1) stresses that 
probability and statistics belong to a line of thought which is essentially different 
from deterministic reasoning:  

“It is not enough to show random phenomena. […] it is necessary to draw the 
distinction between what is random and what is chaos.”  

Simulation or interactive animations may be used to reduce the need for mathe-
matical sophistication. The idea of a scenario helps to explore a real situation as 
shown in section 1. The case of taking out an insurance policy for a car is analysed 
to some detail in Borovcnik (2006). There is a need for a reference concept wider 
than the frequentist approach. The perspective of modelling will help to explore 
issues. 
 In modelling, it is rarely the case that one already knows all relevant facts from 
the context. Several models have to be used in parallel until one may compare the 
results and their inherent assumptions. A final overview of the results might help to 
solve some of the questions posed but raises some new questions. Modelling is an 
iterative cycle, which leads to more insights step by step. Of course, such a modelling 
approach is not easy to teach, and it is not easy for the students to acquire the 
flexibility in applying the basic concepts to explore various contexts. 
 Examinations are a further hindrance. What can and should be examined and 
how should the results of such an exam be marked? Problems are multiplied by the 
need for centrally set examinations. Such examination procedures are intended to 
solve the goal of comparability of results of final exams throughout a country. They 
also form the basis for interventions in the school system: if a high percentage fail 
such an exam in a class, the teacher might be blamed, while if such a low achieve-
ment is found in a greater region, the exam papers have to be revised etc. However, 
higher-order attainment is hard to assess. 
 While control over the result of schooling via central examinations ‘guarantees’ 
standards, such a procedure also has a levelling effect in the end. The difficult 
questions about a comparison of different probability models and evaluating the 
relative advantages of these models, and giving justifications for the choice of one 
or two of these models – genuine modelling aspects involve ambiguity – might not 
leave enough scope in the future classroom of probability. 
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 As a consequence of such trends, teaching will focus even more on developing 
basic competencies. From applying probabilistic models in the sense of modelling 
contextual problems, only remnants may remain – mainly in the sense of mecha-
nistic ‘application’ of rules or ready-made models. 
 To use one single model at a time does not clarify what a modelling approach 
can achieve. When one model is used finally, there is still much room for further 
modelling activities like tuning the model’s parameters to improve a specific out-
come, which corresponds to one’s benefit in the context. A wider perspective on 
modelling presents much more potential for students to really understand probability. 

NOTES 
1  Kolmogorov’s axioms are rarely well-connected to the concept of distribution functions.  
2  All texts from German are translated by the authors. 
3  ’What is to be expected?’ would be less misleading than ‘significantly below the expected value’. 
4  A ‘true’ value is nothing more than a façon de parler. 
5  This is quite similiar to the ‘ceteris paribus’ condition in economic models. 
6  In fact, the challenge is to detect a break between past and present; see the recent financial crisis.  
7  Model 3 yields identical solutions to model 2. However, its connotation is completely different.  
8  The final probability needs not be monotonically related to the input probability p as in this case. 
9  Quetelet coined the idea of ‘l’homme moyen’. Small errors superimposing to the (ideal value of) 

l’homme moyen ‘lead directly’ to the normal distribution.  
10  Beyond common sense issues, the ill-posed comparison of scores in away matches against all matches 

has several – statistical and methodological drawbacks.  
11  The use of a one-sided alternative has to be considered very carefully. An unjustified use could lead 

to a rejection of the null hypothesis and to a statistical ‘proof ’ of this pre-assumption. 
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ASTRID BRINKMANN AND KLAUS BRINKMANN 

2. PROBLEMS FOR THE SECONDARY 
MATHEMATICS CLASSROOMS ON THE TOPIC  

OF FUTURE ENERGY ISSUES 

INTRODUCTION 

The students’ interest and motivation in mathematics classroom towards the subject as 
a whole may be increased by using and applying mathematics. “The application of 
mathematics in contexts which have relevance and interest is an important means 
of developing students’ understanding and appreciation of the subject and of those 
contexts.” (National Curriculum Council 1989, para. F1.4). Such contexts might 
be, for example, environmental issues that are of general interest to everyone. 
Hudson (1995) states “it seems quite clear that the consideration of environmental 
issues is desirable, necessary and also very relevant to the motivation of effective 
learning in the mathematics classroom”. One of the most important environmental 
impacts is that of energy conversion systems. Unfortunately this theme is hardly 
treated in mathematics education. 
 Dealing with this subject may not only offer advantages for the mathematics 
classroom, but also provide a valuable contribution to the education of our children. 
The younger generation especially, would be more conflicted with the environmental 
consequences of the extensive usage of fossil fuels, and thus a sustainable change 
from our momentary existing power supply system to a system based on renewable 
energy conversion has to be achieved. The decentralised character of this future kind 
of energy supply surely requires more personal effort of everyone and thus it is 
indispensable for young people to become familiar with renewable energies. 
 However, at the beginning of the 21th century there was a great lack of suitable 
school mathematical problems concerning environmental issues, especially strongly 
connected with future energy issues. An added problem is that the development of 
such mathematical problems requires the co-operation of experts in future energy 
matters, with their specialist knowledge, and mathematics educators with their 
pedagogical content knowledge. 
 The authors working in such a collaboration have developed a special didactical 
concept to open the field of future energy issues for students, as well as for their 
teachers, and this is presented below. On the basis of this didactical concept we have 
created several series of problems for the secondary mathematics classroom on the 
topics of rational usage of energy, photovoltaic, thermal solar energy, biomass, traffic, 
transport, wind energy and hydro power. The collection of worked out problems, 
with an extensive solution to each problem, has been published in a book in the 
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German language (Brinkmann & Brinkmann, 2005). Further problems dealing with 
so-called energy hybrid systems i.e., combinations of several energy types, will be 
developed (see Brinkmann & Brinkmann, 2009). 
 Some problem examples are presented in paragraph 3 of this article. 

DIDACTICAL CONCEPT 

The cornerstones of the didactical concept developed by the authors in order to 
promote renewable energy issues in mathematics classrooms are: 
 
– The problems are chosen in such a way that the mathematical contents needed to 

solve them are part of mathematics school curricula. 
– Ideally every problem should concentrate on a special mathematical topic such 

that it can be integrated into an existing teaching unit; as project-oriented problems 
referring to several mathematical topics are seldom picked up by teachers. 

– The problems should be of a greater extent than usual text problems, in order to 
enable the students and also their teachers to concern themselves in a more 
intensive way with the subject. 

– The problems should not require special knowledge of teachers concerning future 
energy issues and especially physical matters. For this reason all nonmathematical 
information and explanations concerning the problem’s foundations are included 
in separate text frames. 

– In this way information about future energy issues is provided for both teachers 
and students, helping them to concentrate on the topic. Thus, a basis for inter-
disciplinary discussion, argumentation and interpretation is given. 

EXAMPLES OF MATHEMATICAL PROBLEMS 

The Problem of CO2 Emission 

This is an inter-disciplinary problem linked to the subjects of mathematics as well 
as chemistry, physics, biology, geography, and social sciences. Nevertheless, it 
may be treated in lower secondary classrooms. With respect to mathematics the 
conversion of quantities is practised, knowledge of rule of three and percentage 
calculation is required. The amount of CO2 produced annually in Germany 
especially by transport and traffic is illustrated vividly so that students become 
aware of it. 

Information: 
In Germany, each inhabitant produces an annual average of nearly 13 t of CO2 
(Carbon dioxide). Combustion processes (for example from power plants or vehicle 
combustion motors) are responsible for this emission into the atmosphere. 
 Assume now that this CO2 would build up a gaseous layer which stays directly 
above the ground. 
a) What height would this CO2-layer reach in Germany after one year? 
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Hints: 
– Knowledge from chemical lessons is 

helpful for your calculations. There you 
learned that amounts of material could 
be measured with the help of the unit 
‘mole’. 1 mole of CO2 weighs 44 g and 
takes a volume of 22.4 l, under normal 
standard conditions (pressure 1013 hPa 
and temperature 0°C). With these values 
you can calculate approximately. 

– You will find the surface area and the 
number of inhabitants of Germany in a 
lexicon. 

Help: Find the answers of the following partial questions in the given order. 
i) How many tons of CO2 are produced in total in Germany every year? 
ii) What volume in l (litres) takes this amount of CO2? (Regard the Hint!) 
iii) How many m3 of CO2 are therefore produced annually in Germany? Express this 

in km3! 
iv) Assume, the CO2 produced annually in Germany forms a low layer of gas directly 

above the ground, what height would it have? 

Information: 
– In Germany the amount of waste is nearly 1 t for each inhabitant (private house-

holds as well as industry) every year, the average amount of CO2 produced per 
inhabitant is therefore 13 times of this. 

– The CO2, which is produced during combustion processes and emitted into the 
atmosphere, distributes itself in the air. One part will be absorbed by the plants 
with the help of the photosynthesis, a much greater part goes into solution in the 
oceans’ waters. But the potential for CO2 absorption is limited. 

– In the 1990s, 20% of the total CO2-emissions in Germany came from the 
combustion engines engaged in traffic activities alone. 

b) What height would the CO2-layer over Germany have, if this layer results only 
from the annual emissions from individual vehicles? How many km3 of CO2 is this? 

Usable Solar Energy 

This problem deals with the heating of water in private households using solar 
energy. It can be treated in lessons involving the topic of percent calculation and the 
rule of three. It requires the understanding and usage of data representations. 

Information: 
In private households the warm water required can be partly heated up by solar 
thermal collectors. They convert the solar radiation energy in thermal energy. This 
helps us to decrease the usage of fossil fuels which leads to environmental problems. 

CO2 

How long can 
I breathe? 
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Private households need heated water preferably in the temperature region 45°–55°C. 
Permanently in our region, the usable thermal energy from the sun is not sufficient 
to bring water to this temperature because of seasonal behavior. Thus, an input of 
supplementary energy is necessary. 
 

 
Figure 1. A solar thermal energy plant (source: DGS LV Berlin BRB). 

 The following figure (Figure 2) shows how much of the needed energy for heating 
up water to a temperature of 45°C in private households can be covered respectively 
by solar thermal energy and how much supplementary energy is needed. 
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Figure 2. Usable solar energy and additional energy. 
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 The following problems refer to the values shown by Figure 2. 
a) What percent of the thermal energy needed for one year can be provided by solar 

thermal energy? 

Information: 
– Energy is measured by the unit kWh. An average household in central Europe 

consumes nearly 4000 kWh energy for the heating of water per year. 
– 1 l fossil oil provides approximately 10 kWh thermal energy. The combustion of 

1 l oil produces nearly 68 l CO2. 
– The great amount of CO2 worldwide produced at present by the combustion of 

fossil fuels damages the environment. 
b) How many kWh may be provided in one year by solar thermal energy? 
c) How many litres of oil have to be bought to supply the supplementary thermal 

energy needed for one year for a private household? 
d) How many litres of oil would be needed without solar thermal energy? 
e) How many litres of CO2 could be saved by an average household in Germany 

during one year by using Solar Collectors? 

The Problem of Planning Solar Collector Systems 

This problem deals with calculations for planning solar collector systems by using 
linear functions. The understanding and usage of graphical representations is 
performed. 

Information: 
– In private households, the heating of warm water can partly be done by solar 

collector systems. Solar collector systems convert radiation energy in thermal 
energy. This process is called solar heat. 

– The usage of solar heat helps to save fossil fuels like natural gas, fuel oil or coal 
that damages the environment. 

– Energy is measured by the unit kWh. An average household in central Europe 
consumes nearly 4000 kWh thermal energy per year for the heating warm water. 

– Private households need heated water preferably in the temperature region 
45°–55°C. Permanently at our latitude, the usable thermal energy from the sun 
is not sufficient to bring water to this temperature because of the seasonal behavior. 
Thus, an input of supplementary energy is necessary. 

– The warm water requirement per day per person can be reckoned at about 50 l. By 
energy-conscious living this value can be easily reduced to 30 l per person and day. 

– 1 l of fossil oil provides approximately 10 kWh of thermal energy. The combustion 
of 1 l of oil produces nearly 68 l of CO2. 

 The diagram in Figure 3 provides data for planning a solar collector system for a 
private household. It shows the dependence of the collector area needed, for example 
on the part of Germany where the house is situated, on the number of persons living 
in the respective household, on the desired amount of warm water per day per person, 
as well as the desired output of thermal energy needed by solar thermal energy (in 
per cents). 
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Figure 3. Dimensioning diagram. 

 Example: In a household in central Germany with 4 persons and a consumption 
of 50 l of warm water per day for each one, a collector area of 4 m2 is needed for a 
reservoir of 300 l and an energy coverage of 50%. 
a) What would be the collector area needed for the household you are living in? 

What assumptions do you need to make first? What would be the minimal possible 
collector area, what the maximal one? 

b) A collector area of 6 m2 that provides 50% of the produced thermal energy is 
installed on a house in southern Germany. How many persons could be supplied 
with warm water in this household? 

c) Describe using a linear function the dependence of the storage capacity on the 
number of persons in a private household. Assume first a consumption of 50 l of 
warm water per day per person, and second a consumption of 30 l. Compare the 
two function terms and their graphical representation. 

d) Show a graphical representation of the dependence of the collector area on a 
chosen storage capacity assuming a thermal energy output of 50% for a house in 
central Germany. 

Sun Collectors 

This problem can be integrated in lessons about quadratic parabola and uses their 
focus property as application in the field of sun collectors. 
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Information: 
– Direct solar radiation may be concentrated in a focus by means of parabolic sun 

collectors (Figure 4). These use the focus property of quadratic parabola. 
– sun collectors are figures with rotational symmetry, they evolve by rotation of a 

quadratic parabola. Their inner surface is covered with a reflective mirror 
surface; that is why they are named parabolic mirrors. 

– Sun beams may be assumed to be parallel. Thus, if they fall on such a collector, 
parallel to its axis of rotation, the beams are reflected so that they all cross the 
focus of the parabola. The thermal energy radiation may be focused this way in 
one point. 

– The temperature of a heating medium, which is lead through this point, becomes 
very high, relative to the environment. This is used for heating purposes, but 
also for the production of electric energy. 

 

 

Figure 4. Parabolic sun collectors (source: DLR). 

a) A parabolic mirror was constructed by rotation of the parabola 20.125y x= . 
Determine its focal length (x and y are measured in meters). 

b) A parabolic mirror has a focal length of 8 m. Which quadratic parabola was used 
for its construction? 

c) Has the parabolic mirror with 20.0625y x=  a greater or a smaller focal length 
than that one in b)? Generalize your result. 

d) A parabolic mirror shall be constructed with a width of 2.40 m and a focal length 
of 1.25 m. How great is its arch, i.e., how much does the vertex lay deeper than 
the border? 

e) In Figure 5 you see a parabolic mirror, the EuroDish with a diameter of 8.5 m. 
Determine from the figure, neglecting errors resulting from projection sight, its 
approximate focal length and the associated quadratic parabola. 
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Figure 5. EuroDish system (source: Wikimedia Commons). 

Information: 
Other focussing sun collectors are figures with length-symmetry, they evolve by shift-
ing a quadratic parabola along the direction of one axis. They are named parabolic 
trough solar collectors (Figure 6). 

 

 
 

 
Figure 6. Parabolic trough solar collectors in Almería, Spain and California, USA  

(source: DLR and FVEE/PSA/DLR). 



PROBLEMS FOR THE SECONDARY MATHEMATICS 

53 

f) The underlying function of a parabolic trough solar collector is given by 
20.35y x=  (1 unit  1 m). Where has the heating pipe to be installed? 

Photovoltaic Plant and Series Connected Efficiencies 

The aim of this problem is to make students familiar with the principle of series 
connected efficiencies, as they occur in complex energy conversion devices. As an 
example, an off-grid photovoltaic plant for the conversion of solar energy to AC-
current as a self-sufficient energy supply is considered. The problem can be treated 
in a teaching unit on the topic of fractions. 
 Figure 7 shows the components of an interconnected energy conversion system 
to build up a self-sufficient electrical energy supply. This kind of supply system is 
of special interest for developing countries, and also for buildings in rural off-grid 
areas (Figure 8). 
 Figure 7 shows in schematic form the production of electrical energy from solar 
radiation with the help of a solar generator for off-grid applications. In order to 
guarantee a gap-free energy supply for times without sufficient solar radiation, a 
battery as an additional storage device is included. 
 

 
Figure 7. Off-Grid photovoltaic plant. 

 
Figure 8. Illustration of an off-grid photovoltaic plant on the mountain hut  

“Starkenburger Hütte” (Source: Wikipedia). 
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Information: 
The components of an off-grid photovoltaic (PV) plant are 1) a solar generator,  
2) a charge control, 3) an accumulator and 4) an inverter (optional for AC-applica-
tions). 
The solar generator converts the energy of the solar radiation into electrical energy 
as direct current (DC). The electricity is passed to a battery via a charge control. 
From there it can be transformed directly, or later after storage in the battery, to 
alternating current (AC), when it is needed by most of the electric devices. 
Unfortunately, it is not possible to use the radiation energy without losses. Every 
component of the conversion chain produces losses, so only a fraction of the 
energy input for each component would be the energy input for the following 

component. The efficiency η  of a component is defined by Power going out
Power coming in

η = . 

Power is the energy converted in 1 second. It is measured by the unit W or kW 
(1 kW = 1000 W). For comparison standard electric bulbs need a power of 40 W, 
60 W or 100 W, a hair blower consumes up to 2 kW. 
 Assume in the tasks a), b) and c) that all the electric current is first stored in the 
battery before it reaches the consumer. 
a) Consider that the momentary radiation on the solar generator would be 20 kW. 

Calculate the out going power for every component of the chain, if: 

3
25PVη = , 19

20CCη = , 4
5Bη =  and 23

25Iη = . 

b) What is the total system efficiency gained power for the consumer
insolated power 

η =total ? 

How can you calculate totalη  by using only the values PVη , CCη , Bη  and Iη ? 
Give a formula for this calculation. 

c) Transform the efficiency values given in a) into decimal numbers and percents. 
Check your result obtained in a) with these numbers. 

d) How do the battery efficiency and the total system efficiency change, if only 
1 / 3  of the electric power delivered by the charge control would be stored in the 
battery and the rest of 2 / 3  goes directly to the inverter? What is your conclusion 
from this? 

Wind Energy Converter 

This problem deals with wind energy converters. It can be treated in lessons on 
geometry, especially calculations of circles or in lessons on quadratic parabola. 
The conversion of quantities is practised. 

Information: 
The nominal power of a wind energy converter depends upon the rotor area A with 
the diameter D as shown in Figure 9 below. 
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Figure 9. Nominal power related to the rotor area. 

a) Interpret the meaning of Figure 9. 
b) Show the dependence of the nominal power of the wind energy converter on the 

rotor diameter D and respectively on the rotor area A by graphs in co-ordinate 
systems. 

c) Find the formula which gives the nominal power of the wind energy converter 
as a function of the rotor area and of the rotor diameter respectively. 

d) What rotor area would you expect to need for a wind energy converter with a 
nominal power of 3 MW? Give reason for your answer. (Note: 1 MW = 
1000 kW.) 
What length should the rotor blades have for this case? 

Information: 
– The energy that is converted in one hour [h] by the power of one kilowatt [kW] 

is 1 kWh. 
– In central Europe, wind energy converters produce their nominal power on 

average for 2000 hours a year when wind energy conditions are sufficient. 
e) Calculate the average amount of energy in kWh, which would be produced by a 

wind energy converter with a nominal power of 1.5 MW during one year in 
middle Europe. 

Information: 
– An average household in central Europe consumes nearly 4000 kWh electrical 

energy per year. 
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f) In theory, how many average private households in central Europe could be 
supplied with electrical energy by a 1.5 MW wind energy converter? Why do 
you think, that this could only be a theoretical calculation? 

g) Assume the nominal power of a 600 kW energy converter would be reached at a 
wind speed of 15 m/s, measured at the hub height. How many km/h is this? How 
fast are the movements of the tips of the blades, if the rotation speed is 15/min. 
Give the solutions in m/s and km/h, respectively. Compare the result with the 
wind speed. 

Wind Energy Development 

This problem requires the usage and interpretation of data and statistics which is 
done in the context of wind energy development in Germany. 

Information: 
At the end of 1990 the installed wind energy converters in Germany had a total 
nominal power of 56 MW. At the end of 2000 this amount increased to a total of 
6113 MW. 
Power is the energy converted in a time unit; it is measured by the unit Watt [W]. 
106 W are one Megawatt [MW]. 
 The following table shows the development of the new installed wind power in 
Germany in the years 1991–2000. 

Table 1. Development of new installed wind energy in Germany 

Year Number of 
new installed 
wind energy 
converters 

Total of new 
installed 
nominal 
power 

Total of 
nominal 
power 

1991 300 48  

1992 405 74  

1993 608 155  

1994 834 309  

1995 911 505  

1996 804 426  

1997 849 534  

1998 1010 733  

1999 1676 1568  

2000 1495 1665  
 
a) Fill in the missing data in the 4th column. 
b) Show the development of the annual new installed nominal power and of the 

total annual nominal power in graphical representations. 
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c) Considering only the data of the years 1991–1998, what development in respect 
to the installation of new wind power in Germany could be expected in your 
opinion? Give a well-founded answer! 
Compare your answer with the real data given for 1999 and 2000 and comment 
on it. 
What is your projection for 2005? Why? 

d) Calculate using the data in Table 1 for each of the years 1991–2000, the 
average size of new installed wind energy converters in kW. (Note: 1 MW = 
1000 kW.) 
Show the respective development graphically and comment on it. 
Can you offer a projection for the average size of a wind energy converter that 
will be installed 2010? 

e) Comment on the graphical representation in Figure 10. 
Also take into account political and economical statements and possible argu-
ments. 
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Figure 10. Development of wind energy use in Europe. 

Betz’ Law and Differentiation 

This problem deals with the efficiency of a wind energy converter; it can be treated in 
lessons on differentiation and the determination of local extreme values. 
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Information: 
2% of the radiated solar energy is converted to kinetic energy of air molecules. In 
combination with the earth’s rotation, this results in a wind production. The kinetic 
energy of an air mass mΔ  is 21 2E m v= ⋅ Δ ⋅ , in which v  denotes the velocity of 
the air mass. The kinetic energy can be written as 21 2E V vρ= ⋅ ⋅ Δ ⋅  given the 
density of air 1, 2g/lρ =  and the relation m VρΔ = ⋅ Δ  with the volume element 

VΔ . The power is defined as the ratio of energy to time as P E t= Δ . 
a) A wind volume VΔ  flows through a rotor area A  and needs the time tΔ  to 

travel the distance sΔ . Therefore the speed is v s t= Δ Δ . Determine the general 
formula for the volume element which passes the rotor area A  during the time 
interval tΔ  as a function of the wind speed. 

b) Give the formula for the amount of wind power windP , which passes through the 
rotor area A  as a function of the wind velocity. 
Show that the power increases with the third power of the wind velocity. 

Information: 
A rotor of a wind energy converter with area A  slows down the incoming wind 
speed from 1v  in front of the rotor to the lower speed 2v  behind the rotor (Figure 11). 
The wind speed in the rotor area itself can be shown to be the average of 1v  and 2v  

i.e., ( )1 2 2v v v= + . The converted power is then given by: 

( )2 2
1 2 1 2

1 .
2c

VP P P v v
t

ρ Δ
= − = ⋅ ⋅ ⋅ −

Δ
 

 

 

Figure 11. Wind flow through the rotor area. 

c) Express the formula for the determination of cP  as a function of A , 1v  and 2v . 
d) Describe the converted power cP  in c) as a function of the variable 2 1x v v=  

and 1v . 

A 

A1 
A2 

1v  v 2v
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Information: 
The efficiency of a wind energy converter (power coefficient) is defined as the ratio of 
the converted power to the wind power input as P c windc P P= . 

e) Express the power coefficient as a function of the variable 2 1x v v= . Draw the 
graph of this function as a function of x . Note that [ ]0,1x ∈ , why? 

f) Determine the value maxx  which corresponds to the maximum value of the 
power coefficient, the so-called Betz’ efficiency. This is the value for 2 1x v v=  
which gives the best energy conversion. 

Biomass and Reduction of CO2 Emissions 

This problem deals with fossil fuels and biomass, especially with the production of 
CO2 emissions and possibilities for their reduction. The conversion of quantities is 
practised, and knowledge of rule of three and percentage calculation is required. 

Information: 
In Germany for example, an average private household consumes nearly 18000 kWh 
of energy annually. 80% of this amount is for heating purposes and 20% for electrical 
energy. 
The energy demand for heating and hot water is mainly covered by the use of fossil 
fuels like natural gas, fuel oil or coal. 
 Assume that the calorific values of gas, oil and coal can be converted to useable 
heating energy with a boiler efficiency of 85%. This means that 15% is lost in each 
case. 

a) The following typical specific calorific values are given 

Natural gas: 9.8 kWh/m³ 
Fuel oil: 11.7 kWh/kg 
Coal:  8.25 kWh/kg 
(That is, the combustion of 1 m3 natural gas supplies 9.8 kWh, 1 kg fuel oil 
supplies 11.7 kWh and 1 kg coal supplies 8.25 kWh.) 
What amount of these fuels annually is necessary for a private household in 
each case? 

b) The specific CO2-emissions are approximately: 

Natural gas: 2.38 kg CO2/kg 
Fuel oil: 3.18 kg CO2/kg 
Coal:  2.90 kg CO2/kg 
The density of natural gas is nearly 0.77 kg/m³. 
How many m³ of CO2 each year for a private household in Germany does it take 
in each case? 
Hint: Amounts of material could be measured with the help of the unit ‘mole’. 
1 mole of CO2 weights 44 g and has a volume of approximately 22.4 l. 
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Information: 
Wood is essentially made with CO2 taken from the atmosphere and water. The 
bound CO2 is discharged by burning the wood and is used again in the building of 
plants. This is the so-called CO2-circuit. 
Spruce wood has a specific calorific value of nearly 5.61 kWh/kg. The specific 
CO2-emissions are approximately 1.73 kg CO2/kg. 
c) How many kg of spruce wood would be needed annually for a private household 

instead of gas, oil or coal? (Assume again a boiler efficiency of 85%). 
How many m³ of fossil CO2-emissions could be saved in this case? 

Information: 
Spruce wood as piled up split firewood has a storage density of 310 kg/m³. 
d) How much space has to be set aside in an average household for a fuel storage 

room, which contains a whole year’s supply of wood? 
Compare this with your own room! 

e) Discuss the need for saving heat energy with the help of heat reduction. 

Automobile Energy Consumption 

This problem can be treated in lessons on trigonometry. Its solution requires 
knowledge of the rule of three. The problem makes clear the dependence of an 
automobile’s energy consumption on the distance-height-profile, the moved mass and 
the velocity. 
 Tim and Lisa make a journey through Europe. Just before the frontier to 
Luxembourg their fuel tank is empty. Fortunately they have a reserve tank filled with 
5 l fuel. “Let’s hope it will be enough to reach the first filling station in Luxembourg. 
There, the fuel is cheaper than here” Tim says. “It would be good if we had an exact 
description of the route, than we would be able to calculate our range”, answers Lisa. 

Information: 
– In order to drive, the resisting forces have to be overcome. Therefore a sufficient 

driving force driveF  is needed. For an average standard car, the law for this force 
(in N) is given by the following formula: 

 2(0.2 9.81 sin ) 0.3driveF m vα= + ⋅ ⋅ + ⋅  for 0driveF ≥ , 
 where m the moving mass (in kg) is the mass of the vehicle, passengers and 

packages; v  is the velocity (in m/s), and α  is the angle relative to the horizontal 
line. α  is positive for uphill direction and negative in the downhill case (Figure 12). 

– The energy E  (in Nm) which is necessary for driving, can be calculated in cases 
of a constant driving force by: driveE F s= ⋅ , with s  as the actual distance driven 
(in m). 

– The primary energy consisting of the fuel amounts to about 9 kWh for each l l 
of fuel. (kWh is the symbol for the energy unit ‘kilowatt-hours’; it is 1 kWh = 
3600000 Nm). 
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– The efficiency of standard combustion engines in cars for average driving con-
ditions is between 10% and 20% nowadays; this means only 10%–20% of the 
primary energy in the fuel is available to generate the driving forces. 

 

 

Figure 12. Definition of the angle α . 

 The distance which Tim and Lisa have to drive to the first filling station in 
Luxembourg can be approximately given by a graphical representation like that 
one given in Figure 13. (Attention: think of the different scaling of the co-ordinate 
axis). The technical data sheet of their vehicle gives the unladen weight of their car 
as about 950 kg. Tim and Lisa together weigh c. 130 kg, and their packages nearly 
170 kg. The efficiency of the engine can be assumed to be c. 16%. 
 

 

Figure 13. Distance-Height-Diagram to the next filling station  
(h is the height above mean sea level). 

a) Can Tim and Lisa take the risk of not searching for a filling station before the 
frontier? Assume at first, the speed they drive is 100 km/h. 

b) Would Tim and Lisa have less trouble, if they had only 50 kg packages instead 
of 170 kg? 

c) Would the answer to a) change if Tim and Lisa chose their speed to be only 
50 km/h? 

Help for a): 
i) Note, the speed in the formula for driveF  has to be measured in m/s. 
ii) The value for sinα  can be calculated with the information given in Figure 13. 
iii) Determine for each section the force driveF  and the energy needed. The distance 

s  has to be measured in m. Convert the energy from Nm in kWh. 

α

α  
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iv) Determine the total energy which is needed for the whole distance as a sum 
over the three different sections. 

v) How many kWh of energy to drive are given by the 5 l reserve fuel? Consider 
the efficiency of the motor. 

Automobiles: Forces, Energy and Power 

This is a problem that can be treated in higher secondary mathematics education, in 
the context of differential and integral calculus. This problem shows the dependence 
of an automobile’s power and energy consumption on the distance-height-profile, 
the moved mass and the velocity. 
 Kay has a new electric vehicle, of which he is very proud. He wants to drive his 
girlfriend Ann from the disco to her home. Ann jokes: “You will never get over the 
hill to my home with this car!” “I bet that I will”, says Kay. 
 The distance-height-characteristic of the street from the Disco (D) to the house (H), 
in which Ann lives, is shown in Figure 14, and it can be described by the following 
function: 

21( ) ( 4 104 300)
1 000

h x x x= ⋅ − + +  for [ ]0;  20x ∈ , 

where x  and h  are measured in kilometres (km). 
 

 

Figure 14. Distance-Height-Diagram between D and H. 

a) Show, that it is possible to calculate the real distance s  depending of a given 
height function h  over the interval 1 2[ , ]x x  with the help of the following formula: 

2

1

21 ( ( ))
x

x

s h x dx′= +∫ . 

h [km]

x [km] 

D 

H 
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 Help: Consider the right angle triangle as shown in Figure 15. 
 

 

Figure 15. Geometrical representation. 

b) How long is the real distance which Kay has to drive from the Disco to the house 
where Ann is living? 

 Help: Show that 

 2 2 211 ( 1 ln( 1 )) const.
2

x dx x x x x+ = + + + + +∫
 

 
with the help of the derivative of 2 21 ( 1 ln( 1 ))

2
x x x x+ + + + . 

 (Hint: This partial result is helpful for solving the problem f ).) 
c) α  means the angle of the tangent to the curve h  at the point 0x  on the x -axis. 

Prove that 

 0

2
0

( )
sin

1 ( ( ))

h x

h x
α

′
=

′+
. 

 (Note that 0( ) tanh x α′ = .) 
d) Assume Kay wants to drive at a constant speed of 110  km

h
. 

 Determine the driving power necessary at the top of the hill (maximum of h ) and 
at the points with ( ) 0.4h x =  and ( ) 0.8h x = . 

 For this purpose you need the following data: Kay’s electric vehicle has an 
empty weight of 620 kg, Kay and Ann together weigh nearly 130 kg. 

Information: 
– In order to drive, the resisting forces have to be overcome. Therefore a sufficient 

driving force driveF  is needed. For an average standard car, the law for this force 
(in N) is given by the following formula: 

 
2(0.2 9.81 sin ) 0.3driveF m vα= + ⋅ ⋅ + ⋅  for 0driveF ≥ , 

 where m  the moving mass (in kg), is the mass of the vehicle, passengers and 
packages, v  is the velocity (in m

s
), and α  is the angle relative to the hori-

zontal line. α  is positive for uphill direction and negative in the downhill case 
(Figure 16). 

Δx

Δh
Δs
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– The driving power P  (in Nm
s

), which is needed to hold the constant speed, can 

be calculated using the product of the driving force (in N) and the velocity (in m
s

): 

driveP F v= ⋅ . 

 The power P  is measured with the unit [kW], with: Nm1 kW = 1 000 
s

. 

 

 
Figure 16. Angle α  dependant on the function of ( )h x . 

e) Kay’s electric vehicle has a nominal power of 25 kW. Is it possible for him to 
bring Ann home? 

f) Determine the driving energy which has to be consumed for the route from the 
disco to Ann’s home. Assume that Kay drives uphill with a speed of 80 km

h
 and 

downhill with a speed of 110 km
h

. (Attention: Because ( )h x  as well as x  are 

expressed in km in the function equation of h , the resulting energy in the 
following equation is obtained in N km = 1 000 Nm⋅ .) 

Information: 
– The pure driving energy E  (in Nm), which is necessary for driving, can be 

calculated as: 

 

0 0
2

0 0

1 ( ( ))
s x

drive driveE F ds F h x dx′= = +∫ ∫ , where s  is the actual distance (in m) driven. 

– The energy E  is usually measured in kilowatt-hour [kWh]. 1  kWh 3 600 000 Nm= . 
g) The actual charged electrical energy in the batteries of Kay’s vehicle is 6 kWh. 

The driving efficiency of his electrical vehicle is nearly 70%; this means only 
70% of the stored energy can be used for driving. 

 Is the charging status of Kay’s batteries sufficient to bring Ann to her home, 
under the assumptions in f )? 
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CLASSROOM IMPLEMENTATION 

The problems on environmental issues developed by the authors must be seen as an 
offer for teaching material. In each case, the students’ abilities have to be considered. 
In lower achieving classes it might be advisable not to present every problem in 
full length. In addition, lower achievers need a lot of help for solving complex 
problems that require several calculation steps. The help given in some problems, 
like in example 1 above, addresses such students. 
 The problems should be presented to higher achievers without much help included. 
It might even be of benefit not to present the given hints from the beginning. Students 
would thus have to find out, which quantities are yet needed in order to solve the 
problem. The problem would become more open and the students would be more 
involved in modelling processes. 
 As the intention of the authors is also an informal one, in order to give more 
insight in the field of future energy issues, the mathematical models/formulas are 
mostly given in the problem texts. Students are generally not expected to find out by 
themselves the often complex contexts; these are already presented, thus guaranteeing 
realistic situation descriptions. The emphasis in the modelling activities lies rather in 
the argumentation and interpretation processes demanded, recognising that mathe-
matical solutions lead to a deeper understanding of the studied contents. 
 In the context of an evaluation of lessons dealing with problems like those 
presented in this paper, students amongst others were asked to express what they 
have mainly learned. The given answers can be divided in three groups: mathematical 
concepts, contents concerning renewable energy topics, as well as convenient problem 
solving strategies. As regards the last point, students stressed especially that they 
had learned that it is necessary to read the texts very carefully, and also to consider 
the figures and tables very carefully. Almost all students expressed, that they would 
like to work on much more problems of this kind in mathematical classes, as the 
problems are interesting, relevant for life, and are more fun than pure mathematics. 
 Classroom experiences show that students react in different ways to the problem 
topics. While some are horrified by recognizing for example that the worldwide oil 
reserves are already running low during their life time, others are unmoved by this 
fact, as twenty or forty years in the future is not a time they worry about. In school 
lessons there are again and again situations in where students drift away in political 
and social discussions related to the problem contexts. Although desirable, this would 
sometimes lead to too much time loss for mathematical education itself. Cooperation 
with teachers of other school subjects would be profitable if possible. 

OUTLOOK AND FINAL REMARKS 

In order to integrate future energy issues into curricula of public schools, several 
initiatives have already been started in Germany, supported and in co-operation 
with the ‘Deutsche Gesellschaft für Sonnenergie e.V. (DGS)’, the German section 
of the ISES (International Solar Energy Society). 
 There exists a European project, named “SolarSchools Forum”, that aims to 
integrate future energy issues into curricula of public schools. In the context of this 
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project the German society for solar energy DGS highlights the teaching material 
the authors created (http://www.dgs.de/747.0.html). Most of this material is only 
available in German language. This article is a contribution towards making these 
materials accessible in English also. (The English publications up to now (see 
e.g. Brinkmann & Brinkmann, 2007) present only edited versions of some of the 
problems.) 
 Although the education in the field of future energy issues is of general interest, 
the project that we presented in this paper seems to be the only major activity 
focusing especially on mathematics lessons. The amount of problems should thus be 
increased, especially with problems which deal with a combination of different re-
newable energy converters, like hybrid systems, to give an insight into the complexity 
of system technology. 
 Additionally, the sample mathematical problems on renewable energy conversion 
and usage have to be permanently adjusted to actual and new developments because 
of the dynamic evolution of the technology in this field. 
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