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xv

Preface

With the development of computer technology, there are many applications 
benefiting industry and real life gained from studying image processing. 
These applications include, for example, digital TV, medical images, remote 
sensing, automatic surveillance, traffic surveillance, industry product 
detecting, etc. Modern life benefits from understanding some of the basic 
concepts and fundamental processing tools of images. In general, digital 
imaging technology can be divided into three categories: image processing, 
image analysis, and image understanding. The output of image processing 
is also expressed as images, such as results produced by image smoothing  
or image enhancement. On the other hand, the output of image analysis 
and image understanding provides description about images, such as edge 
detection, image recognition of image analysis, and machine vision of 
image understanding.

This book covers the fundamental concepts of image processing and 
some of the related mathematical tools. The main aim of this book is to 
provide clear concepts and algorithms for image preprocessing, including 
image smoothing, image enhancement, and image restoration, instead 
of the mathematical rigor of the subject. Some related topics, includ-
ing image segmentation and image compression, are also introduced in 
the book. A touch of mathematical morphology is also included in the 
book as a new image processing tool. In addition, this book includes 
state-of-the-art methodologies, such as fractal and wavelet compression 
algorithms, and an image restoration method based on PDE.

This book may be used as a textbook for a term course suitable for senior 
undergraduate or junior graduate students. The mathematical concepts intro-
duced in the book are made to an appropriate level as well. All algorithms 
described in the book are illustrated with code implementation. There are 
many images in the book used to compare the results of different methods. 
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In addition, many examples are used to illustrate the mathematical concepts 
in image processing, which are made easy to understand.

This text also aims to provide a shortcut, do-it-yourself text at a suit-
able mathematical rigor with plenty of code implementation. Students 
may modify codes to build their own image analysis tool. The book suits 
students at the level described above and researchers who need to have  
a concise and clear view of state-of-the-art image processing methodol-
ogy, as well as coding examples.

The book has been completed with the help of many colleagues and 
graduate students. Chen Fei provided partial materials of image restoration 
methods based on PDE; Cheng Hang collected important materials  
of the chapter on image compression; Zhuang Zhijun supplied the code 
implementation. We would also like to extend our appreciation for the 
help given by Lin Jin and Liu Rong, Huang Chensi, Chen Yanjia, Liu 
Xiaoyang, and Guo Shumin for their efforts in editing various parts of 
this book.
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1

1C h a p t e r  

Basic Concepts of Images

An image may be considered as a two-dimensional signal function 
defining the  brightness or hue or both at the real coordinates (x, y). 

Brightness and hue may be represented by means of a real number or an 
integer, depending on the formation process of an image from the signal 
emitted from the object. Several important concepts and tools related to 
images and signals are briefly introduced in this chapter.

1.1  Analogue Signals
An analogue signal is a continuous variation of certain intensity informa-
tion with respect to time and can be used to show the time variation of the 
information. There are simple signals and composite signals that are made 
up by superimposing simple signals.

A sine wave is a typical example of simple signals and depends on three 
parameters: amplitude, frequency, and phase angle. The definitions of 
these three parameters are listed here:

	 1.	Amplitude: The amplitude refers to the maximum intensity of a wave. 
It is denoted as A.

	 2.	Period and frequency: The period of a wave is the time for it to travel 
one complete wave cycle. It is denoted as T and measured in units 
of seconds. The number of cycles per second (cps) is the wave’s fre-
quency, which is denoted as f and measured in the interchangeable 
unit hertz (Hz). Period is the reciprocal of frequency, that is, T = 1/f, 
and vice versa.

C8970_C001.indd   1 10/18/08   11:04:21 AM
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	 3.	Phase: The phase denotes the position that a wave offsets at the origin 
of the temporal axis. It is usually denoted as an angle φ .

Figure 1.1a shows the intensity and time variation of a single sine pulse 
represented by I A ft= +sin( )2π φ , where A is the amplitude, f is the 
frequency, t is time, and φ is a certain phase angle. It is also known as 
the time-domain representation of the signal. The temporal domain 
given in Figure  1.1a only illustrates the relation between the amplitude 
and time, but the phase and frequency are not presented in the figure. 
To show the relationship of amplitude, frequency, and phase, one can use 
a frequency-domain plot [1]. There are two kinds of frequency-domain 
plots: amplitude–frequency-domain plots and phase–frequency-domain 
plots. The former is more frequently used. Figure 1.1b shows the frequency- 
domain plot with respect to the sine wave.

Any composite analogue signal may be represented as a combination 
of simple sine/cosine waves with different frequencies, phases, and ampli-
tudes. Figure 1.2 shows a composite analogue signal that is a combination 
of three simple sine waves.

(a) A sine wave in the time-domain (peak value: 6V, frequency: 8Hz). 

(b) The same sine wave in the frequency domain (peak value: 6V, frequency: 8Hz). 

In
te

ns
ity 6

Frequency: 8Hz

Time (s)

…

Peak Value: 6V

Figure 1.1  A simple analogue signal of a sine wave (peak value: 6 V,  
frequency: 8 Hz) in (a) time domain and (b) frequency domain.
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1.2  Digital Signals
Signals that can be processed by a computer are known as digital signals. 
Analogue signals move back and forth between two peaks in a continu-
ous form. Digital signals maintain a fixed value for a short period of time 
before changing to another value. The main characteristic of a digital sig-
nal is that the intensity is restricted within a limited number of defined 
values, that is, it is discrete rather than continuous. Figure 1.3 depicts a 
typical digital signal showing a fixed value within a short period of time.

In order to store and process analogue signals, one can use digital signals 
to approximate them. For example, to create digital music from analogue  
music on a cassette tape to play or save on a computer, one needs to convert 
the analogue signals into digital signals, which involves two processes: 
sampling and quantisation.

(a) Time-domain representation of three sine waves with frequency 0, 6, and 11.

(b) Frequency-domain representation of the same three signals

In
te

ns
ity

A
m

pl
itu

de

…

Time

1s

12

8

4

12

8

4

0
6 11

Frequency

Figure 1.2  The combination of three signals (sine waves with frequency 
0, 6, and 11) in (a) time domain and (b) frequency domain.
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1.2.1  Sampling

Sampling is the process of measuring and preserving the signal intensity at 
a given time. When analogue signals are being converted into digital sig-
nals, suitable intervals should be chosen on the discrete space to which the 
signal function defined in the continuous space is converted. Figure 1.4 

Va
lu

e

Time

Figure 1.3  A digital signal.

(c) Sampling result 

y

1
0.8
0.6
0.4
0.2

0
–0.2
–0.4
–0.6
–0.8

–1 0 1 2 3 4 5 6 7

x

(a) �e Original wave (b) Sampling process 

y y

1
0.8
0.6
0.4
0.2

0
–0.2
–0.4
–0.6
–0.8

–1
0 1 2 3 4 5 6 7

1
0.8
0.6
0.4
0.2

0
–0.2
–0.4
–0.6
–0.8

–1 0 1 2 3 4 5 6 7

xx

Figure 1.4  A typical sampling process: (a) the original wave, (b) sam-
pling process, and (c) sampling result.
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illustrates the idea of discrete spatial coordinates and the corresponding 
signal intensity after a sampling process.

1.2.2  Quantisation

Quantisation replaces a range of values to a single quantum value in order 
to save storage space. After sampling, the function value at each of the dis-
crete points is a real number. However, only a finite number of quantum 
values are used to represent the samples. It is possible to use a 2-bit, 4-bit, 
8-bit, 16-bit, or 24-bit memory to store these quantum values, depend-
ing on the capacity of the chip. For example, a 2-bit memory can store 
2 42 =  integers, and an 8-bit memory can store 2 2568 =  integers. Given 
the number of bits, the signal intensity in real number at a particular set 
of coordinates is mapped to the corresponding quantum value fitted into 
the available storage space. This process is known as quantisation. There 
are two types of quantisation, namely, uniform and nonuniform.

The process of uniform quantization is described as follows. Suppose 
the amplitude of a signal is A and the corresponding storage is b bits, then 
[ , ]0 A  is divided into 2b  intervals of uniform length. Each interval is called 
a level, and the length of an interval is called the quantisation step. There 
are 2b  quantum values to be stored by using b bits of memory represent-
ing the 2b  intervals. The signal intensity at a given coordinate that falls 
into a particular interval can be approximated by using the corresponding 
quantum value in the interval. Figure 1.5 shows an example of a uniform 
quantisation process.

In nonuniform quantisation, the length of one interval, that is, the 
quantisation step, is not necessarily equal to that of another interval.

Quantization Process
(a) (b)

Quantization Result

y

1
0.8
0.6
0.4
0.2

0
–0.2
–0.4
–0.6
–0.8

–1 0 1 2 3 4 5 6 7

x y

1
0.8
0.6
0.4
0.2

0
–0.2
–0.4
–0.6
–0.8

–1 0 1 2 3 4 5 6 7

x

Figure 1.5  The uniform quantization process: (a) quantization process, 
(b) quantization result.
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1.3 G rey-Scale Images
Image formation using sensors and other image acquisition equipment 
denote the brightness or intensity I of the light of an image as a two-
dimensional continuous function f (x, y), where (x, y) denotes the spatial 
coordinates when only the brightness of light is considered. Sometimes 
three-dimensional spatial coordinates are used. Images involving only 
intensity are called grey-scale images.

1.3.1 R esolution

Similar to one-dimensional time signals, sampling for images is done in 
the spatial domain, and quantization is done for the brightness value.

In the sampling process, the domain of an image is divided into N rows 
and M columns. The region of intersection of a row and a column is known 
as a pixel. The value assigned to each pixel is the average brightness of the 
region. The position of each pixel is described by a pair of coordinates 
( , )x yi j  and may be denoted by means of the indices ( , )i j , where i and j are 
integers. For simplicity, g x yi j( , )  is denoted as g i j( , ), where g is a certain 
property of the region. A grey-scale image, after sampling, is described by 
an intensity matrix. Throughout this chapter, the simplified notation is 
used to convey these concepts.

The resolution of a digital signal is the number of pixels presented in 
the form of number of columns ×  number of rows. For example, an image 
with a resolution of 640 480×  means that it displays 640 pixels on each 
of the 480 rows. Some other common resolutions used are 800 600×  and 
1024 768× , among others.

Resolution is one of the most commonly used ways to describe the image 
quality of a digital camera or other optical equipment. The resolution of a 
display system or printing equipment is often expressed in number of dots 
per inch. For example, the resolution of a display system is 72 dots per inch 
(dpi) or 28 dots per cm.

1.3.2 G rey Levels

Grey levels represent the interval number of quantization in grey-scale 
image processing. At present, the most commonly used storage method 
is 8-bit storage. There are 256 grey levels in an 8-bit grey-scale image, and 
the intensity of each pixel can have a value from 0 to 255, with 0 being 
black and 255 being white. Another commonly used storage method is 
1-bit storage. There are two grey levels, with 0 being black and 1 being 
white when a binary image, which is frequently used in medical images, 
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is being referred to. As binary images are easy to operate, other storage-
format images are often converted into binary images when they are used 
for image enhancement or edge detection. Figures 1.6 and 1.7 show a typi-
cal grey-scale image and a binary image, respectively.

1.4  Colour Images
The scenery and objects of nature have very rich colour information. 
Colours are illumination effects caused by light waves having different 
wavelengths. If a continuous function is used to show a colour image, 
it may be represented in the form I f x y z t= ( , , , , )λ , where I is the light 

Figure 1.6  A grey-scale image.

Figure 1.7  A binary image.
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intensity, ( , , )x y z  are spatial coordinates, λ is the optical wavelength, and 
t is time. Continuous change in t produces video images, and different 
wavelengths cause different colours in different pixels.

In general, three characteristics distinguish one colour from another. They 
are intensity, hue, and saturation. Intensity is used to express the brightness 
of a colour as discussed previously. Hue is used to describe the colour of 
a light, identified by its wavelength. For instance, light with a wavelength 
ranging between 620 and 760 nm is perceived as red, and its wavelength 
is the largest within the visible light spectrum. On the other hand, light 
waves with wavelength ranging between 400 and 430 nm are perceived as 
violet, and its wavelength is the smallest within the visible light spectrum. 
Figure 1.8 shows the visible spectrum and the colour distribution [2]. Note 
that the boundaries between different colours in the visible wavelength 
range are not defined sharply. In essence, each of the seven colours in nature 
corresponds to a different hue, and each hue corresponds to a different 
wavelength of light. Saturation is used to describe the strength or freshness 
of a colour, and it depends on the ratio of white light to colour. The higher 
the proportion of white light, that is, the lower the proportion of coloured 
light, the lower the saturation, and vice versa. The value of saturation is 
expressed as a percentage, and it varies from 0 to 100%. The saturation of 
pure white light is 0%, and that of a pure colour light is 100%.

It is well known from optical theory [2,3] that each colour with its 
background in black is considered a combination of red, green, and blue 
lights. On the other hand, each colour with its background in white can  
be produced by a certain combination of yellow, cyan, and purple. 

Shorter wavelength Visible spectrum
(380nm – 780nm)

Longer wavelength

Blue
(436nm)

Green
(546nm)

Red
(700nm)

400nm 500nm 600nm 700nm

Figure 1.8  Visible light spectrum.
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Black means there is no colour information. However, pure white light 
actually contains all colours of the visible spectrum. In the former case of 
the complete absence of colour, colour is due to additive colour mixing  
of the three additive primary colours, red, green, and blue. In the latter 
case of complete colours, colour is due to subtractive colour mixing of the 
three subtractive primary colours: yellow, cyan, and purple.

1.4.1  The RGB Colour Model

In the RGB colour model, each colour appears in its primary spectral com-
ponents of red, green, and blue. The colour of a pixel is made up of three 
components: red, green, and blue (RGB), described by their correspond-
ing intensities. Colour components are also known as colour channels or 
colour planes. In the RGB colour model, a colour image can be represented 
by the intensity function

	 IRGB R G Bf f f= ( , , ) 	 (1.1)

where f x yR( , )  is the intensity of the pixel (x, y) in the red channel, f x yG ( , )  
is the intensity of the pixel (x, y) in the green channel, and f x yB( , )  is the 
intensity of the pixel (x, y) in the blue channel.

The intensity of each colour channel is usually stored using eight bits, 
which indicates that the quantization level is 256. That is, a pixel in a colour 
image requires a total storage of 24 bits. A 24-bit memory can express as 
2 256 256 256 1677721624 = × × =  distinct colours. The number of colours 
should adequately meet the display effect of most images. Such images 
may be called true colour images, where information of each pixel is kept 
by using a 24-bit memory.

Due to computer hardware constraints in the early days, display mem-
ory did not meet the requirements of 24-bit storage described here. As a 
result, the information of each pixel of a colour image could only be stored 
and displayed by a smaller-size memory, such as an 8-bit or 6-bit memory. 
Under these circumstances, the palette technology [4] was used. An 8-bit 
palette technology consists of an RGB colour table with 256 items, each 
of which is a 24-bit colour information. When the palette technology is 
used, the storage memory of a pixel is an 8-bit index of palette rather than 
the 24-bit colour information. The table is stored with pixel indices of the 
image. If one wishes to use the colour information of a pixel, the index of the 
pixel is first found from the memory, followed by the colour information 
corresponding to this index being determined from the palette.

Figure 1.9 shows the images of a 24-bit colour RGB and its three channels.
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If only the brightness information is needed, colour images can be trans-
formed to grey-scale images. The transformation [5] can be made by using

	 I f f fy R G B= + +0 30 0 59 0 11. . . 	 (1.2)

1.4.2 T he YIQ Colour Model

The YIQ colour model is often used in colour television (TV) broadcast 
systems. In this model, a colour image is represented by three compo-
nents, namely, Y, I, and Q. The Y-channel contains intensity information, 
whereas the I and Q channels carry colour information. The advantage of 
this model is that it removes the correlation between intensity Y and the 
colour information I and Q. The human visual system is more sensitive to 
changes in intensity than to changes in hue or saturation. One can tolerate 
lower resolution in the components of I and Q than in Y without perceiv-
able degradation of image quality.

Similar to the RGB model, an image defined in the YIQ model, IYIQ, can 
be expressed as

	 IYIQ Y I Qg g g= ( , , ) 	 (1.3)

Figure 1.9  The images of a 24-bit colour RGB and its three channels.
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by using three functions: g x yY ( , ), the intensity at the pixel (x, y); and 
g x yI ( , )  and g x yQ ( , ), the colour information of the pixel (x, y) in the  
I and Q channels, respectively.

The conversion of an image from the RGB model to the YIQ model is 
performed through the following matrix vector multiplication [5] of RGB 
components of each pixel in the RGB model:

	

g x y

g x y

g x y

Y

I

Q

( , )

( , )

( , )

. .

















=
0 30 0 59 0..

. . .

. . .

11
0 60 0 27 0 32
0 21 0 52 0 31

− −
−

















fR(( , )

( , )

( , )

x y

f x y

f x y

G

B



















	 (1.4)

The result contains YIQ components of the same pixel.

1.4.3 T he YUV Model

One model commonly used in video encoding and transmission is the  
YUV model. It has one luminance component Y and two chrominance 
components U (the difference between the intensity at blue channel and 
the luminance) and V (the difference between the intensity at red channel 
and the luminance).

The importance of using the YUV colour system is that the luminance 
and the colour information are independent. Images having only Y sig-
nal components without any U and V components are grey-scale images 
varying from black to white. The purpose of using the YUV model in 
colour TV is to take advantage of the luminance signal Y in resolving  
the compatibility problems of colour and a black-and-white TV set. Thus, 
the black-and-white TV set can also receive colour signals.

Similar to the YIQ model, the YUV model is also a good representa-
tion of images for compression. The reason is that the YUV model uses 
less memory for U and V component storage and encoding than for the 
Y component. Similarly, an image defined in the YUV model IYUV  can be 
expressed as

	 IYUV Y U Vh h h= ( , , ) 	 (1.5)

by using the three functions: h x yY ( , ), the intensity at the pixel ( , )x y ; and 
h x yU ( , )  and h x yV ( , ), the chrominance information of the pixel ( , )x y  in 
the U and V channels, respectively.
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The conversion of an image from the RGB model with an 8-bit storage 
for each colour component to the YUV model [5] can be obtained by using 
the following matrix vector multiplication:

	

h x y

h x y

h x y

Y

U

V

( , )

( , )

( , )

−

−
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− 00
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

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
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








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
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

f x y

f x y

R

G

( , )

( , )

ff x yB( , )






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








	 (1.6)

Note that the second and third components of the right-hand-side vector 
of Equation 1.6 are often negative values, so the second and third chromi-
nance components of the left-hand side are subtracted by 128 in order to 
ensure positive numbers, which facilitates encoding.

1.4.4 T he HSI Model

As mentioned earlier, colour may be specified by the three quantities hue, 
saturation, and intensity. The HSI model [6] describes the colour of each 
pixel using the three components: H, the hue; S, the saturation; and I, the 
intensity or brightness of light. As the I component is independent of image 
colour information, it is possible to avoid the interference of light-and-
shade conditions during the analysis of colour. For an image-processing 
system that requires an estimation of colour characteristics such as colour 
clustering, etc., one can use the HSI model to implement the processing 
easily.

As discussed above, every colour can be viewed as an additive colour 
mixing based on the three primary colours (red, green, and blue), and can 
be described visually using a colour triangle as shown in Figure 1.10a. This 
colour triangle is an equilateral triangle with three vertices R, G, and B, 
respectively, representing red, green, and blue. The centre point W of the 
triangle represents white colour. All points along the line PW joining any 
point P in the triangle to W have the same colour (hue), which is defined by 
the angle generated by the two vectors PW and RW. Points along PW have 
different saturations. The nearer to W a point is, the lower its saturation.

As the colour triangle is planar, it only reflects the concepts of hue and 
saturation, but not the concept of intensity. The intensity measurement 
correlates to the line that goes through the centre of the solid, as shown 
in Figure  1.10b, and perpendicular to the colour triangle. H, S, and I 
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components can be defined using the colour solid. The intensity of a point 
gradually diminishes to black along the line at the bottom of the solid. On 
the contrary, the intensity of a point gradually brightens to white along the 
line to the top of the triangle.

The intensities of the three colour components R, G, and B may be nor-
malised to the range [0,1] as follows:

	 r x y
f x y

f x y f x y f x y
R

R G B

( , )
( , )

( , ) ( , ) ( , )
=

+ +
	 (1.7a)

	 g x y
f x y

f x y f x y f x y
G

R G B

( , )
( , )

( , ) ( , ) ( , )
=

+ +
	 (1.7b)

	 b x y
f x y

f x y f x y f x y
B

R G B

( , )
( , )

( , ) ( , ) ( , )
=

+ +
	 (1.7c)

Notice that r x y g x y b x y( , ), ( , ), ( , ) [ , ]∈ 0 1 , and r x y g x y b x y( , ) ( , ) ( , )+ + =1. 
Hence, the preceding transformation actually determines the location of 
the colour of the pixel at ( , )x y  in the corresponding colour triangle in 
Figure 1.10a.

A colour image IHSI  in the HSI model can be expressed as

	 IHSI H S I= ( , , )ϕ ϕ ϕ 	  (1.8)

(b) The HSI solid model.  (a) The HSI triangle model.  

Magenta 

B

GR

Cyan 
W 

Hue Saturation 
P 

White 

Blue 

Green Intensity Red 

Black 

Figure 1.10  The HSI model depicted by triangle and by solid: (a) the HSI 
triangle model, and (b) the HSI solid model.
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by using three functions: ϕH x y( , ), the hue of the pixel located at (x, y); 
ϕS x y( , ), the saturation of the pixel located at (x, y); and ϕ I x y( , ), the 
intensity of the pixel located at (x, y).

1.4.4.1	 Conversion from the RGB Model to the HSI Model
The formulae used to convert an image from the RGB model to the HSI 
model are presented here [7]. The hue function is given by

ϕ
H

R G R

x y
f x y f x y f x y

( , ) cos
[( ( , ) ( , )) ( ( , )

=
− + −

−1

1
2 ff x y

f x y f x y f x y f x

B

R G R B

( , ))]

[( ( , ) ( , )) ( ( , ) (− + −2 ,, ))( ( , ) ( , ))] /y f x y f x y
G B

− 1 2

	 (1.9)

the intensity function is

	 ϕ I R G Bx y f x y f x y f x y( , ) [ ( , ) ( , ) ( , )]= + +1
3

	 (1.10)

and the saturation function is

	 ϕS
R G B

R

x y
f x y f x y f x y

f
( , )

min{ ( , ), ( , ), ( , )}
(

= − ×1 3
xx y f x y f x yG B, ) ( , ) ( , )+ +

	 (1.11)

The hue value found by using Equation 1.9 lies in the interval [ , ]0 π . 
However, in the colour triangle, the angle of a colour P with respect to red 
colour (the angle between PW and RW) can be found as an arbitrary value 
in the interval [ , ]0 2π . In practice, the size of the angle is determined by 
the proportion of each colour in its intensity, that is, b b

I
g

g

I0 0= =ϕ ϕ, . When 
b g0 0≤ , the angle lies in the interval [ , ]0 π , and ϕH x y( , ) can be calculated 
by using Equation 1.9. When b g0 0> , the angle lies in the interval [ , ]π π2 , 
leading to ϕ π ϕH Hx y x y( , ) ( , )= −2 .

Note that when the intensity is zero, that is, f x y f x y f x yR G B( , ) ( , ) ( , )+ + = 0, 
saturation does not make any sense. On the other hand, when the saturation 
is zero (the white point), the hue does not make any sense. When the hue is 
zero, it represents red, and 2

3
π  represents green and 2π  represents blue.

1.4.4.2  Conversion from the HSI Model to the RGB Model
Conversion of a colour image from the HSI model to the RGB model is car-
ried out in the colour triangle first. The coordinates of a point in the colour 
triangle can be expressed in HSI values or in normalised R, G, and B values 
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denoted as r, g, and b, respectively. This conversion is achieved simply by 
computing the r, g, and b values of the colour of the pixel located at (x, y) 
from its HSI values. These formulae of conversion are related to the position 
of the colour of the pixel (x, y) in the colour triangle.

When •	 0
2
3< <ϕ πH x y( , ) , which means the colour of the pixel (x, y) lies 

in the area enclosed by the red vertex R, the green vertex G, and the 
white centre W of the colour triangle, the formulae of conversion are 
as follows:

	

b x y

r
x y x y

S

S H

= −

= +
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1

1
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1
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g b r
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( )1

	 (1.12)

When •	 2
3

4
3

π ϕ π< <H x y( , ) , which means the colour of the pixel (x, y) lies 
in the area enclosed by the green vertex G, the blue vertex B, and the 
white centre W of the colour triangle, the formulae of conversion are 
as follows:
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ϕ ϕ

H H
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S H
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
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

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= − ++ g )

	 (1.13)

When •	 4

3
2π ϕ π< <H

, which means the colour of the pixel (x, y) lies in 
the area enclosed by the blue vertex B, the red vertex R, and the white 
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centre W of the colour triangle, the formulae of conversion are as 
follows:

	

ϕ ϕ π
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ϕ ϕ

H H
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	 (1.14)

The conversion from the r, g, and b values at the pixel (x, y) to the actual 
intensities of the pixel (x, y) of the R, G, and B channels is done as 
follows:

	
f x y r x y

f x y g x y

f x y

R I

G I

B

( , ) ( , )

( , ) ( , )

( , )

=

=

=

3

3

3

ϕ

ϕ

bb x yIϕ ( , )

	 (1.15)

1.4.5 T he CMY Model

During the printing of output from a printing device, coloured pigments are 
deposited on paper, and require employing the subtractive mix-colours the-
ory using the three alternative primary colours: cyan, magenta, and yellow. 
The CMY space is complementary to the RGB space because red subtracted 
from white gives cyan, green subtracted from white gives magenta, and blue 
subtracted from white gives yellow. Colour images in the CMY model may 
be described as follows [5]:

	 ICMY C M Yl l l= ( , , ) 	 (1.16)

where l x y l x y l x yC M Y( , ), ( , ), ( , )and  are defined as follows:

	 l x y
f x y

f x y f x y f x yC
R

R G B
( , )

( , )
( , ) ( , ) ( , )= − + +1 	 (1.17a)
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	 l x y
f x y

f x y f x y f x yM
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R G B

( , )
( , )

( , ) ( , ) ( , )
= −

+ +
1 	 (1.17b)

	 l x y
f x y

f x y f x y f x yY
B

R G B

( , )
( , )

( , ) ( , ) ( , )
= −

+ +
1 	 (1.17c)

This colour model is used in generating the hardcopy output of colour 
images, and hence, the inverse conversion from CMY to RGB is of little 
practical interest.

1.5 I mage Storage Formats
Digital images are generally stored using the bitmap format. Bitmap, also 
known as a bit-mapped image, describes the colour or intensity of pixels 
of an image one by one and stores the information in a computer using 
binary bits. It is different from vector graphics, which is described by using 
points, lines, and planes in graph processing. Bitmap is appropriate in rep-
resenting many features of image details, and it can reflect effectively the 
changes of brightness and darkness, complicated scenes, and colour. Its 
aim is to show vivid images. Unfortunately, bitmap files are usually large. 
Another disadvantage of bitmap storage is that fidelity may be reduced 
and sawtooth may appear when zooming images in or out.

On the other hand, a vector graph consists of some graphic elements 
such as points, lines, rectangles, polygons, circles, arcs, etc. These elements 
are obtained by using certain geometrical formulae. As a result, vector 
drawings are usually of small files. Another advantage of vector graphics 
is that images will not be distorted during zooming in or out, or during 
rotation. Their disadvantage is that it is difficult to show the living image 
effect of rich colour levels. Note that showing vector graphics costs time. 
Images made up of shapes such as line drawings and illustrations, and free 
zoom logos and words, are often well suited for vector formats.

Some commonly used image storage formats [8] are discussed in the 
following sections.

1.5.1 T he BMP Format

BMP is the abbreviation of bitmap, and the file storing an image in bit-
map format has the suffix .bmp. The BMP file is a bit-mapped image 
format developed by Microsoft and is the standard image format set by 
Microsoft for Windows. All image-processing software packages running 
in the Windows operating system normally support this format.
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A BMP file consists of three parts: a bitmap-file header, bitmap infor-
mation, and a bitmap array. The bitmap-file header explains the storage 
format and the size of the bitmap. Information such as the width and 
height of the image, the tag indicating whether or not the image data is 
compressed, etc., is kept in the bitmap-information part. The bitmap array 
records the colour values in the RGB model at each pixel of the image. 
Moreover, if the image is not of true colour, then palette is to be used.

1.5.2 T he RAW Format

A file with the suffix .raw is usually used to keep records of electronic level 
produced when image sensors (charge-coupled device [CCD] or comple-
mentary metal-oxide semiconductor [CMOS]) transform light signals into 
electric signals. The image data stored in the RAW file is just the digitised 
electric signals captured by a camera image sensor such as CCD. A typical 
RAW file contains uncompressed or unprocessed pixel data.

RAW format files save the information regarding the best-quality 
images captured by a CCD that is rich enough for processing later. Different 
manufacturers produce different permutations and conversion methods 
for CCD/CMOS and RAW records. Before being processed by common 
image-processing software, the image in the RAW format needs to be 
converted into the common image format by using conversion software 
provided by manufacturers.

RAW format files only record the information of each pixel of an image 
without a header containing information such as the size of the image. It 
is easy for the researcher to read the file into an array or some other data 
structure for processing and then store the data structure to a RAW format 
file. Therefore, many researchers like to process images in the RAW format. 
One can use the software tool Photoshop or other image-processing tools 
to convert images in RAW format to other common formats.

1.5.3 T he JPEG format

Another popular format used in image storage and display is the JPEG 
format, in which files have the suffix .jpg. JPEG is the abbreviation for 
Joint Photographic Experts Group. JPEG image files use the JPEG stan-
dard for image encoding. This compression algorithm is different from 
that of BMP files. The BMP format uses run-length encoding, which leads 
to a lossless compression algorithm. However, JPEG is a lossy compression 
algorithm that will lose some information after decoding. JPEG encod-
ing uses the discrete cosine transform (DCT) technology. These will be 
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introduced in the following chapters. Here, lossless and lossy are related to 
compression algorithms, and their technical details are further explained 
in Chapter 6.

1.5.4 T he GIF Format

GIF is the abbreviation for graphics interchange format. A GIF format file 
has the suffix .gif. The format includes some key features that make it a 
common and valuable format for the Internet. Such features include the 
high compression ratio and storage of multiple images within a single file 
allowing a primitive form of animation. However, the maximum storage 
capacity of each pixel is 8-bit, that is, only a maximum of 256 colours can 
be referenced within a single GIF image. Hence, GIF format should com-
monly be used for graphics and images with a few colours such as buttons 
or black-and-white photos.

1.6  Video
A sequence of continuously varying pictures is known as a video. Each 
picture in the sequence is known as a frame. In order for human eyes to see 
the pictures moving continuously without feeling them to be intermittent, 
25 or more frames per second must be displayed.

A video signal is usually created by a video source (e.g., vidicon, VCR, 
or TV Tuner). To transmit an image, a vertical-synchronous (VSYNC) 
signal must be generated from the video source first. This signal can be 
used to reset receiver equipment (e.g., a television set), and guarantees that 
the display of the new image starts from the top of the screen. After gener-
ating the VSYNC signal, the first line of the image from the video source 
is scanned. When these two steps are completed, a level-synchronisation 
signal is generated from the video source, and the receiver is reset in order 
to display the next line from the left of the screen. For each line of the 
image, a scanning beam and a level-synchronisation pulse signal are emit-
ted from the video source.

Different standards or formats have been established for TV signal trans-
mission and broadcast using different technical parameters. Currently, there 
are three different formats [9], including NTSC, PAL, and SECAM formats. 
NTSC (National Television Standard Committee) uses a 525-line standard 
with 30 frames per second and a pixel aspect ratio of 4:3 as the technical 
parameters. The technical parameters of PAL (Phase Alternate Line) and 
SECAM (SEquential Couleur Avec Memoire) standards are 25 frames per 
second, 625 lines in each frame, and a pixel aspect ratio of 4:3.
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Earlier TV receivers could not display at the speed of 25 or 30 frames 
per second, and flicker could be noticed. In order to resolve this problem, 
these three standards all employ the interlaced scanning (display) technol-
ogy. In other words,a screen is partitioned into two fields: the first field con-
tains odd lines of the image, and the second field contains even lines of the 
image. Odd lines are first scanned and displayed, and then even lines are 
scanned and displayed. This method improved the stability of image display 
and reduced flicker. Nowadays, equipment is available that is able to achieve 
progressive scan and that do not require the interlaced display technology.

1.7 E xercises

Q.1	� Find out the resolution of your computer monitor, digital camera, 
or laptop screen.

Q.2	� Calculate the number of pixels of an image having a resolution 
of 1024 768× .

Q.3	� How many grey levels are there in a grey-scale image stored using 
a 16-bit memory?

Q.4	� Using an image-processing tool, such as Photoshop, convert an 
image with .bmp format to .raw format. Write a program using 
C++ to implement this function.

Q.5	� A true colour image has the resolution of 800 600× . Calculate the 
sizes of the image files when the image is stored using .bmp format 
and .raw format.

Q.6	� The number of photographs a digital camera can store depends on 
the storage capacity of the camera, fidelity, and resolution of each 
photograph. Find the relations among them for your camera.
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1.9  Partial Code Examples
Project 1-1: Convert an 8-bit grey-scale image to a binary image

(These codes can be found in CD: Project1-1\ source code\ project1-1View 
.cpp)

#include "stdafx.h"
#include "project1_1.h"
#include "project1_1Doc.h"
#include "project1_1View.h"
void CProject1_1View::OnBinarization()
{
int i,j;
 	 unsigned char *lpSrc;
	 CProject1_1Doc* pDoc = GetDocument();
	 ASSERT_VALID(pDoc);
	 if (pDoc->m_hDIB == NULL)
		  return ;
	 LPSTR lpDIB = (LPSTR) ::GlobalLock((HGLOBAL) 
pDoc->m_hDIB);
	 LPSTR lpDIBBits=::FindDIBBits (lpDIB);
	 int cxDIB = (int) ::DIBWidth(lpDIB);				  
// Size of DIB - x
	 int cyDIB = (int) ::DIBHeight(lpDIB);				 
// Size of DIB - y
long lLineBytes = WIDTHBYTES(cxDIB * 8);		  // 
count the number of
// bytes of the image per line
	 for (i = 0; i < cyDIB; i++)
	 {
		  // per column
		  for (j = 0; j < cxDIB; j++)
		  {
			   // the pointer pointing to the i-th 
line and j-th picture element
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			   lpSrc = (unsigned char*)lpDIBBits + 
lLineBytes * (cyDIB - 1 - i) + j;
			 
			   // computing the value of gradation
			   if(*lpSrc<122) *lpSrc=BYTE(0);
			   else *lpSrc = BYTE(255);
		  }
	 }
	 ::GlobalUnlock((HGLOBAL) pDoc->m_hDIB);
 Invalidate(TRUE);	
}

Project 1-2: Convert a 24-bit colour image to its red channel image

(These codes can be found in CD: Project1-2 directory\source code\ proj-
ect1-2View.cpp)
include "stdafx.h"
#include "project1_2.h"
#include "project1_2Doc.h"
#include "project1_2View.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
/*******************************************************
*********
* Function name:
* Redchannel()
*
* Parameter:
* HDIB hDIB —the handle of the image
*
* Return Value:
* None
*
* Description:
* Get the red’s component of the given image
*
********************************************************
*******/
void Redchannel(HDIB hDIB)
{
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	 LPSTR	 lpDIB;
	
	 // Get and lock the DIB pointer by the DIB’s handle
	 lpDIB = (LPSTR) ::GlobalLock((HGLOBAL)hDIB);
	
	 // the pointer pointing to the data area of 
DIB’s pixel
	 LPSTR lpDIBBits;	
	
	 // the pointer pointing to the DIB’s pixel
	 BYTE *	lpSrc;	
	
	 // the width of image
	 LONG	 lWidth;	
	 // the height of image
	 LONG 	 lHeight;	
	
	 // the number of byte of image per line
	 LONG	 lLineBytes;	
	
	 // the pointer pointing to the structure body of 
BITMAPINFO (Win 3.0)
	 LPBITMAPINFO lpbmi;	
	
	 // the pointer pointing to the structure body of 
BITMAPCOREINFO (Win 3.0)
	 LPBITMAPCOREINFO lpbmc;
	
	 // Get the pointer pointing to the structure body 
of BITMAPINFO (Win 3.0)
	 lpbmi = (LPBITMAPINFO)lpDIB;	
	
	 // Get the pointer pointing to the structure body of
// BITMAPCOREINFO (Win 3.0)
	 lpbmc = (LPBITMAPCOREINFO)lpDIB;	
	
	 // the map table of gradation
	 BYTE bMap[256];
	
	 // Compute the map table of gradation
// (save the value of gradation of each colour) and 
update the DIB’s palette
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	 int	 i,j;
	 for (i = 0; i < 256; i ++)
	 {
		  // Compute the value of this colour’s  
gradation
		  bMap[i] = (BYTE)(lpbmi->bmiColours[i].
rgbRed);
		  // Update the red component of DIB’s palette
		  lpbmi->bmiColours[i].rgbRed = i;	
		
		  // Update the green component of DIB’s 
palette
		  lpbmi->bmiColours[i].rgbGreen = i;	
		
		  // Update the blue component of DIB’s palette
		  lpbmi->bmiColours[i].rgbBlue = i;
		
		  // Update the reserve of DIB’s palette
		  lpbmi->bmiColours[i].rgbReserved = 0;
		
	 }
	 // Find the outset position of the DIB’s image pixel
	 lpDIBBits = ::FindDIBBits(lpDIB);
	
	 // Get the width of the image
	 lWidth = ::DIBWidth(lpDIB);	
	
	 // Get the height of the image
	 lHeight = ::DIBHeight(lpDIB);	
	
	 // count the number of byte of the image per line
	 lLineBytes = WIDTHBYTES(lWidth * 8);	
	
	 // Replace the colour index of each pixel (change 
into the value of gradation
	 // according to the map table of gradation)
	
	 // Scan by line
	 for(i = 0; i < lHeight; i++)
	 {
		
		  // Scan by column
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		  for(j = 0; j < lWidth; j++)
		  {
			   // the pointer pointing to the i-th 
line and j-th picture pixel
			   lpSrc = (unsigned char*)lpDIBBits + 
lLineBytes * (lHeight - 1 - i) + j;
			 
			   // Transformation
			   *lpSrc = bMap[*lpSrc];
		  }
	 }
	
	 // Unlocking
	 ::GlobalUnlock ((HGLOBAL)hDIB);
}

Project 1-3: Convert an 8-bit colour image to a grey-scale image

(These codes can be found in CD: Project1-3 directory\source code\proj-
ect1-3View.cpp)

#include "stdafx.h"
#include "project1_3.h"
#include "project1_3Doc.h"
#include "project1_3View.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
/*******************************************************
*********
* Function:
* Convert256toGray()
*
* Parameter:
* HDIB hDIB —the picture’s handle
*
* Return value:
* None			
*
* Description:
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* Transform the 8 bits colour picture into gradation 
picture
*
********************************************************
*******/
void Convert256toGrey(HDIB hDIB)
{
	 LPSTR	 lpDIB;
	
	 // Get and lock the DIB pointer by the DIB’s handle
	 lpDIB = (LPSTR) ::GlobalLock((HGLOBAL)hDIB);
	
	 // the pointer pointing to the data area of 
DIB’s pixel
	 LPSTR lpDIBBits;	
	
	 // the pointer pointing to the DIB’s pixel
	 BYTE *	lpSrc;	
	 // the width of image
	 LONG	 lWidth;	
	 // the height of image
	 LONG 	 lHeight;	
	
	 // the number of byte of image per line
	 LONG	 lLineBytes;	
	
	 // the pointer pointing to the structure body of 
BITMAPINFO (Win 3.0)
	 LPBITMAPINFO lpbmi;	
	
	 // the pointer pointing to the structure body of 
BITMAPCOREINFO (Win 3.0)
	 LPBITMAPCOREINFO lpbmc;
	
	 // Get the pointer pointing to the structure body 
of BITMAPINFO (Win 3.0)
	 lpbmi = (LPBITMAPINFO)lpDIB;	
	
	 // Get the pointer pointing to the structure body 
of BITMAPCOREINFO
// (Win 3.0)
	 lpbmc = (LPBITMAPCOREINFO)lpDIB;	
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	 // the map table of gradation
	 BYTE bMap[256];
	
// Compute the map table of gradation (save the value of 
gradation of each colour)
// and update the DIB’s palette
	 int	 i,j;
	 for (i = 0; i < 256; i ++)
	 {
	  // Compute the value of this colour’s gradation
		  bMap[i] = (BYTE)(0.299 * lpbmi-
>bmiColours[i].rgbRed +
			 
			   0.587 * lpbmi->bmiColours[i].rgbGreen +
			 
			   0.114 * lpbmi->bmiColours[i].rgbBlue 
+ 0.5);
		  // Update the red component of DIB’s palette
		  lpbmi->bmiColours[i].rgbRed = i;	
		
		  // Update the green component of DIB’s 
palette
		  lpbmi->bmiColours[i].rgbGreen = i;	
		
		  // Update the blue component of DIB’s palette
		  lpbmi->bmiColours[i].rgbBlue = i;
		
		  // Update the reserve of DIB’s palette
		  lpbmi->bmiColours[i].rgbReserved = 0;
		
	 }
	 // Find the outset position of the DIB’s image pixel
	 lpDIBBits = ::FindDIBBits(lpDIB);
	
	 // Get the width of the image
	 lWidth = ::DIBWidth(lpDIB);
	
	 // Get the height of the image
	 lHeight = ::DIBHeight(lpDIB);	
	
	 // count the number of bit of the image per line
	 lLineBytes = WIDTHBYTES(lWidth * 8);
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	 // Replace the colour index of each pixel 
(Transform into the value of gradation
// according to the map table of gradation)
	
	 // Scan by line
	 for(i = 0; i < lHeight; i++)
	 {
		
		  // Scan by column
		  for(j = 0; j < lWidth; j++)
		  {
			   // the pointer pointing to the i-th 
line and j-th picture pixel
			   lpSrc = (unsigned char*)lpDIBBits + 
lLineBytes * (lHeight - 1 - i) + j;
			 
			   // Transformation
			   *lpSrc = bMap[*lpSrc];
		  }
	 }
	
	 // Unlocking
	 ::GlobalUnlock ((HGLOBAL)hDIB);
}
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 2C H A P T E R

Basic Image 
Processing Tools

As discussed in Chapter 1, a colour image constitutes the three mono-
chromatic components: R, G, and B, each of which may be consid-

ered as a grey-scale image as far as processing is concerned. Mathematical 
tools for grey-scale images can be applied separately to each of the mono-
chromatic components in order to handle colour images, using the 
same notation as in Chapter 1, where I = f (x, y) denotes the light inten-
sity function of a pixel defined at the coordinates (x, y). Here f(x, y) is a 
function in the spatial domain. Methods of image processing in spatial 
domain contain point operations, local (neighbourhood) operations, and 
global operations. The result of a point operation is only related to a sin-
gle pixel. For example, threshold processing for the intensity of a pixel is  
a point operation. The result of a local operation is related to the neigh-
bouring pixels of a given pixel. In another example, a median filtering 
has the outcome of a pixel, depending on the intensities of its surround-
ing neighbouring pixels. A global operation is related to the entire image 
such as the discrete Fourier transform. A usual neighbourhood includes 
four or eight neighbouring pixels, as shown in Figure 2.1.

Similar to one-dimensional signals where several properties of images 
may be easily displayed in the frequency domain, a two-dimensional 
signal f (x, y) can be broken down into a number of simple signals and 
expressed as a relation between frequency and amplitude. This decom-
position requires the use of Fourier transform, and in image processing, 
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discrete Fourier transform is commonly used. In addition to the discrete 
Fourier transform, in some cases discrete cosine transform is also used.

This chapter begins with introduction of the concepts of the correla-
tion operation and the convolution operation. The Fourier transform, 
fast Fourier transform, and the discrete cosine transform are intro-
duced, followed by the Gabor transform and wavelet transform as the 
basic tools for image processing. In the section on further reading, the 
concept of orthogonality and completeness of a function set is briefly 
introduced.

2.1  Correlation operation and 
Convolution operation
Correlation and convolution operations are common image-processing 
tools. These operations are described now.

2.1.1  Correlation Operations

A correlation operation [1] reflects the synchronism or comparability of 
two signals.

Let f(t) and g(t) be one-dimensional functions in continuous time 
domain; the correlation Rfg between f and g is given by

	 R t f t g t f g t dfg ( ) ( ) ( ) ( ) ( )= = +
-∞

+∞

∫o α α α 	 (2.1)

Its discrete equivalent operation may be described as follows. Suppose 
a(m) and b(m) are the corresponding one-dimensional discrete signal 

Figure 2.1  Two examples of pixel neighbourhoods.
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sequences, where m is an integer. The correlation between a and b is 
given by

	 r m a b m a h b h mab
h

( ) ( ) ( ) ( )= = +
=-∞

+∞

∑o 	 (2.2)

where h is an integer.
Similarly, the correlation between the two-dimensional functions f(x, y) 

and g(x, y) is given by

  R x y f x y g x y f g x y d dfg ( , ) ( , ) ( , ) ( , ) ( , )= = + +o α β α β α β
--∞

+∞

-∞

+∞

∫∫ 	 (2.3)

Suppose the corresponding discretised form for the two-dimensional sig-
nals are denoted as a(m, n) and b(m, n), where m  and n  are integers. The 
correlation between a  and b  is given by

	 r m n a m n b m n a h l b m h n lab
l

( , ) ( , ) ( , ) ( , ) ( , )= = + +
=-∞

o

++∞

=-∞

+∞

∑∑
h

	 (2.4)

where h  and l  are integers.

Example 2.1  Suppose a(n) and b(n) are two discrete signal sequences in 
the temporal dimension and are as follows:

a(0) = 1, a(1) = 0.4, a(2) = -1, a(3) = 0.4, and all other values of the signal 
a  are zeros.

b(0) = 0.4, b(1) = 1, b(2) = 0.4, b(3) = -1, and all other values of the signal 
b are zeros.

Correlate the two discrete signals.
Solution: Using Equation 2.2, one obtains

	 r m a b m a h b h m
a h b h m

ab
h

( ) ( ) ( ) ( )
( ) ( ),

= = + =
+

=-∞

+∞

∑o
hh

m
=

∑ - ≤ ≤






 0

3

3 3

0 otherwise
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For m = - - -3 2 1 0 1 2 3, , , , , , , one obtains

r a b a b a b a bab( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )- = - + - + - +3 0 3 1 2 2 1 3 (( )

( ) ( ) . . .

0

3 0 0 4 0 4 0 16= = × =a b

r a b a b a b a bab( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (- = - + - + +2 0 2 1 1 2 0 3 11

2 0 3 1 1 0 4 0 4 1 0

)

( ) ( ) ( ) ( ) . .= + = - × + × =a b a b

r a b a b a b a bab( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (- = - + + +1 0 1 1 0 2 1 3 2)) ( ) ( )

( ) ( ) ( ) ( ) . .

=

+ + = × - × +

a b

a b a b

1 0

2 1 3 2 0 4 0 4 1 1 0.. . .4 0 4 0 68× = -

r a b a b a b a bab( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 1 1 2 2 3 3= + + +

=11 0 4 0 4 1 1 0 4 0 4 1 0× + × - × + × - =. . . . ( )

r a b a b a b a bab( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 1 1 2 2 3 3 4= + + + = aa b a b a b( ) ( ) ( ) ( ) ( ) ( )

. . (

0 1 1 2 2 3

1 1 0 4 0 4 1

+ +

= × + × - × -- =1 2 16) .

r a b a b a b a bab( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 0 2 1 3 2 4 3 5= + + +

= aa b a b( ) ( ) ( ) ( ) . . ( )0 2 1 3 1 0 4 0 4 1 0+ = × + × - =

r a b a b a b a bab( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 0 3 1 4 2 5 3 6= + + + = aa b( ) ( ) ( )0 3 1 1 1= × - = -

Note that rab(1) = 2.16 is the maximum value obtained in the correlation, 
and this maximum occurs when m = 1. From Figure 2.2 one can see the 
highest comparability; as the sequence b(n) is shifted left for one unit, the 
result coincides with the sequence a(n) at most of the points for the case 
when m = 1.  <

2.1.2  Convolution Operations

Let f(t) and g(t) be one-dimensional functions in continuous time domain; 
the convolution Cfg of the two functions is given by

	 C t f t g t f g t dfg ( ) ( ) ( ) ( ) ( )= ∗ = -
-∞

+∞

∫ α α α 	 (2.5)
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Its discrete form may be described by two discrete signal sequences, a(m) 
and b(m), where m is an integer. The convolution of a  and b  is given by

	 c m a m b m a h b m hab
h

( ) ( ) ( ) ( ) ( )= ∗ = -
=-∞

+∞

∑ 	 (2.6)

where h  is an integer.

a(n)

b(n)

b(n + 1)

b(n – 1)

1

0
–1

–4 –3 –2 –1 1 2 3 4 n

1

0
–1

–4 –3 –2 –1 1 2 3 4 n

1

0
–1

–4 –3 –2 –1 1 2 3 4 n

1

0
–1

–4 –3 –2 –1 1 2 3 4 n

m = 0

m = 1

m = –1

rab(m)

1

2

0
–1

–4 –3 –2 –1 1 2 3 4 m

Figure 2.2  Results of a correlation operation.
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Similarly, the definition of convolution operations between two- 
dimensional continuous functions f(x, y) and g(x, y) with their corre-
sponding discrete equivalents a(m, n) and b(m, n) is given by

	

C f x y g x y f g x y d dfg = ∗ = - -
-∞

+∞

∫( , ) ( , ) ( , ) ( , )α β α β α β
--∞

+∞

-∞

+∞

-∞

+∞

∫
∫∫= - -f x y g d d( , ) ( , )α β α β α β 	 (2.7)

	

c m n a m n b m n a h l b m h y lab
l

( , ) ( , ) ( , ) ( , ) ( , )= ∗ = - -
=-∞

++∞

=-∞

+∞

=-∞

+∞

=-∞

+∞

∑∑

∑∑= - -

h

lh

a m h y l b h l( , ) ( , ) 	 (2.8)

where h and l are integers.

Example 2.2  Calculate the convolution of the two discrete signals as 
given in Example 2.1.

a(0) = 1, a(1) = 0.4, a(2) = -1, a(3) = 0.4, and all other values of the signal 
a are zeros.

b(0) = 0.4, b(1) = 1, b(2) = 0.4, b(3) = -1, and all other values of the signal 
b are zeros.

Solution: Using Equation 2.6, one obtains

	 c m a m b m a h b m h
a h b m

ab
h

( ) ( ) ( ) ( ) ( )
( ) (

= ∗ = - =
-

=-∞

+∞

∑ hh m
h

),
=

∑ ≤ ≤






 0

3

0 6

0 otherwise

For m = 0, 1, 2, 3, 4, 5, 6, one obtains

	
c a b a b a b a bab( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (0 0 0 1 1 2 2 3= + - + - + -33 0 0 1 0 4 0 4) ( ) ( ) . .= = × =a b

	

c a b a b a b a bab( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (1 0 1 1 0 2 1 3 2= + + - + - ))

( ) ( ) ( ) ( ) . . .= + = × + × =a b a b0 1 1 0 1 1 0 4 0 4 1 16  
c a b a b a bab( ) ( ) ( ) ( ) ( ) ( ) ( ) . .2 0 2 1 1 2 0 1 0 4 0 4= + + = × + ×× - × =1 1 0 4 0 4. .
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c a b a b a b a bab( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 0 3 1 2 2 1 3 0= + + +

=11 1 0 4 0 4 1 1 0 4 0 4 1 68× - + × - × + × = -( ) . . . . .  

c a b a b a bab( ) ( ) ( ) ( ) ( ) ( ) ( ) . ( )4 1 3 2 2 3 1 0 4 1= + + = × - -11 0 4 0 4 1 0 4× + × = -. . .

	 c a b a bab( ) ( ) ( ) ( ) ( ) ( ) . . .5 2 3 3 2 1 1 0 4 0 4 1= + = - × - + × = 116

	 c a bab( ) ( ) ( ) . ( ) .6 3 3 0 4 1 0 4= = × - = -

Figure  2.3 depicts the corresponding relation of the terms of the two 
sequences used for computing cab(3).  <

In an image formation system, the process of converting a physical sig-
nal a(m, n) into an electrical signal c(m, n) is usually expressed as a con-
volution of the input signal and the pulse response of the sensor system. 
The system may include optical and electronic systems. If each system is 
linear and shift-invariant (LSI), a convolution model is appropriate. The 
concepts of linear and LSI systems will be given in the follow-up chapter.

For image processing, the convolution operation is a local operation. 
The basic idea is to use a window with a given size and shape, known as the 
supporting window, to scan the entire image. The result is equivalent to 
the weighted sum of the intensities of the pixels in the window. The weight 
of each pixel is defined by assigning a value h(i, j) to the location (i, j) in 
the window. The window with its weights is called the convolution kernel 
or convolution mask. The matrix h is called a filter and generally defined 
as 0 outside the window.

The convolution of a filter h(m, n) and an image a(m, n) generates a new 
image c(m, n), which can be written as follows in terms of the finite sum:

	 c m n a m n h m n h j k a m j n k
k

s

j

( , ) ( , ) ( , ) ( , ) ( , )= ∗ = - -
=

∑
0==

∑
0

r

	 (2.9)

a(0) a(1) a(2) a(3)

b(0) b(1) b(2) b(3)

Figure 2.3  The corresponding relation used for computing convolution.
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In general, the coordinates at the centre of the convolution kernel h(i, j) are 
set as (0, 0), and hence Equation 2.9 is usually written in the form

	 c m n a m n h m n h j k a m j n k
k s

s

( , ) ( , ) ( , ) ( , ) ( , )= ∗ = - -
=-
∑

jj r

r

=-
∑ 	 (2.10)

If the convolution kernel is a symmetric matrix, that is, h j k h j k( , ) ( , )- - = , 
then Equation 2.10 becomes

   

c m n a m n h m n h j k a m j n k
k s

s

( , ) ( , ) ( , ) ( , ) ( , )= ∗ = - -
=-
∑

jj r

r

h j k a m j n k h j k a m j n k

=-
∑

= - - - - = + +( , ) ( , ) ( , ) ( , )
kk s

s

j r

r

k s

s

j r

r

=-=-=-=-
∑∑∑∑

	

(2.11)
However, there are many asymmetric convolution kernels, in which case 
Equation 2.11 does not work.

For example, the following discrete convolution kernel is often used to 
sharpen a given image:

	 h
h h h
h h h=

- - - -
-

( , ) ( , ) ( , )
( , ) ( , ) ( , )

1 1 1 0 1 1
0 1 0 0 0 1

hh h h( , ) ( , ) ( , )1 1 1 0 1 1

0 1 0
1 5 1

0 1-

















=
-

- -
- 00

















	 (2.12)

Example 2.3  Suppose there is an 8 × 8 grey-scale image, the intensity 
matrix of which is given as follows:

	

a =

200 201 202 202
202 203 205 204
205 210 211 212
205 2088 210 212

203 202 200 198
204 202 200 197
210 209 208 2055
214 210 211 208

210 212 215 218
212 214 218 220
210 2122 213 215
208 208 210 211

217 219 220 218
220 219 218 2188
216 216 210 212
212 214 210 210































 	
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With a supporting window of size 3 × 3, this example shows the calculation 
of the intensity of the pixel located at (2, 3), assuming the position of the top 
left pixel is (1, 1). The convolution of the image a(m, n) and the convolution 
kernel h(m, n) defined in Equation 2.12 leads to the following result:

	

c h j k a j k
kj

( , ) ( , ) ( , )

(

2 3 2 3

0 201

1

1

1

1

= + +

= × +

=-=-
∑∑

-- × + × + - × + ×

+ - × + ×

1 202 0 202 1 203 5 205

1 204 0 21

) ( )

( ) 00 1 211 0 212

202 203 5 205 204 211 20

+ - × + ×

= - - + × - - =

( )

55

	

in which the intensities of the neighbouring pixels of the pixel located at 
(2, 3) in the original image are used in the calculation.  <

2.2  Fourier transform
There are many applications of Fourier transform in image processing, 
for example, determining the high frequency components of an image 
function during edge detection and serving as an inverse filter in image 
restoration.

2.2.1  Continuous Fourier Transform

2.2.1.1  One-Dimensional Continuous Fourier Transform
Suppose f(t) is a function of t, contains only a finite number of discontinu-
ous and extremal points, and is absolute integrable; then the following two 
integration formulae exist:

	

F u f t e dt

f t F u e du

i ut

i ut

( ) ( )

( ) ( )

=

=

-

-∞

+∞

-∞

+

∫ 2

2

π

π
∞∞

∫
	 (2.13)

F(u) is known as the Fourier transform of f(t), and f(t) is known as the 
inverse Fourier transform of F(u).
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Let w u= 2π , then the Fourier transform in Equation 2.13 can be  
rewritten as

	
F w f t e dt

f t F w e d

iwt

iwt

( ) ( )

( ) ( )

=

=

-

-∞

+∞

-∞

+∞

∫

∫1
2π

ww

	 (2.14)

2.2.1.2  Two-Dimensional Continuous Fourier Transform
The Fourier transform of a two-dimensional function f (x, y ) in the spatial 
domain is defined as

	
F u v f x y e dx dy

f x

i ux vy( , ) ( , )

( ,

( )= - +

-∞

+∞

-∞

+∞

∫∫ 2π

yy F u v e dudvi ux vy) ( , ) ( )= +

-∞

+∞

-∞

+∞

∫∫ 2π

	 (2.15)

Similar to one-dimensional cases, F(u, v) is known as the Fourier trans-
form of f (x, y), and f (x, y) is known as the inverse Fourier transform  
of F(u, v).

2.2.2 T he Discrete Fourier Transform

In digital image processing, an image function is often a discretized func-
tion leading to a matrix in which each element of the matrix is the inten-
sity of a pixel. Hence, the discrete Fourier transform (DFT) is preferred.

Suppose a m m M( ), , , , ...,= -0 1 2 1, where M denotes the number of dis-
crete points, is a one-dimensional discrete signal. The discrete Fourier 
transform is defined as

	 A u a m e
i um

M

m

M

( ) ( )=
-







=

-

∑ 2

0

1
π 	 (2.16)

For a two-dimensional discrete signal with M × N discrete points

	 a m n m M n N( , ), , , , ..., ; , , , ...,= - = -0 1 2 1 0 1 2 1
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its discrete Fourier transform is given as follows:

	

A u v a m n e
i um

M
vn
N

n

N

m

M

( , ) ( , )=
- +







=

-

=

-

∑ 2

0

1

0

π
11

2

0

1
2

0

∑

∑=










-

=

-
-

=

a m n e ei vn
N

n

N
i um

M

m

M

( , ) π π
--

∑
=

1

Γ Γm n a m n{ [ ( , )]} 	 (2.17)

where u M= -0 1 2 1, , , ..., , v N= -0 1 2 1, , , ..., , and Γ Γm n,  denote one- 
dimensional Fourier transforms in the indices of m and n, respectively. 
Equation 2.17 shows that the two-dimensional Fourier transform can be 
split into two one-dimensional Fourier transforms.

The inverse discrete Fourier transforms of the preceding two cases are 
defined as

	
a m A u e

i um
M

u

M

( ) ( )=






=

-

∑ 2

0

1
π

	
a m n

MN
A u v e

i um
M

vn
N

v

N

u

( , ) ( , )=
+







=

-

=
∑1 2

0

1

0

π
MM -

∑
1

	 m M n N= - = -0 1 2 1 0 1 2 1, , , ..., ; , , , ..., 	

(2.18)

If the shape of the image is a square, that is, M = N, the following symme-
try transformation formulae are used:

	 A u v
N

a m n e
i um vn

N

n

N

m

N

( , ) ( , )=
- +





=

-

=
∑1 2

0

1

0

π
--

∑
1

	 (2.19)

	 a m n
N

A u v e
i um vn

N

v

N

u

N

( , ) ( , )=
+





=

-

=

-

∑1 2

0

1

0

π
11

∑ 	 (2.20)

2.2.3  Properties of the Discrete Fourier Transform

The discrete Fourier transform has many properties. Some of these prop-
erties, which are interesting from an image processing point of view, are 
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listed here. For the sake of simplicity, the operator Γ  is used to denote the 
Fourier transform operation, namely,

	 Γ( ( , )) ( , )a m n A u v=

Let a m n a m n1 2( , ), ( , )  be two discrete image functions, and A u v A u v1 2( , ), ( , )  
be the corresponding Fourier transforms of a m n a m n1 2( , ), ( , )  according to 
the definition of Equation 2.19.

	 1.	Linearity:

	

Γ Γ Γ{ ( , ) ( , )} ( ( , )) ( ( , )α β α βa m n a m n a m n a m n1 2 1 2+ = + ))

( , ) ( , )= +α βA u v A u v1 2 	 (2.21)

	 where a and b are constants.

	 2.	Separability:

	 Γ Γ Γ{ ( , )} { { ( , )}}a m n
N

a m nm n= 1 	 (2.22)

	 3.	Shift in the spatial domain:

	 Γ{ ( , )} ( , ) ( )a m n A u v e i u v- - = - +α β π α β2 	 (2.23)

	 4.	Shift in the frequency domain:

	 Γ{ ( , ) } ( , )( )a m n e A u u v vi u m v n2
0 0

0 0π + = - -

	 5.	The energy conservation theorem (Plancherel theorem, Parseval’s 
theorem):

	 The discrete Fourier transform according to the definitions of Equations 
2.19 and 2.20 satisfies the following energy conservation theorem:

	 | ( , )| | ( , )|a m n A u v
n

N

v

N

u

N

m

2

0

1
2

0

1

0

1

0 =

-

=

-

=

-

=
∑ ∑∑=

NN -

∑
1

	 (2.24)

	 6.	The convolution theorem:
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Let H(u, v) be the Fourier transform of h(m, n); then the following 
convolution theorem holds:

	 Γ{ ( , ) ( , )} ( , ) ( , )h m n a m n H u v A u v∗ = 	 (2.25)

2.2.4 T he Fast Fourier Transform

The Fourier transform is a time-consuming computation. For example, the 
Fourier transform of an original sequence with N points has the compu-
tational complexity O(N2). When N is large, the computing time becomes 
very high. The Fast Fourier Transform (FFT) [2,3] requires the computa-
tional complexity O N N( log )2 , which significantly reduces the comput-
ing time when N is large. For two-dimensional signals such as those in 
image processing, one-dimensional FFT is required to be applied twice, 
one in the horizontal direction and the other in the vertical direction. The 
main idea of the FFT algorithm is to split the original signal sequence with 
N points into two shorter sequences each with 1

2 N  points that may reduce 
the number of multiplications in the algorithm. This step may be required 
to be repeated several times. There are many algorithms for FFT, and each 
may be achieved by a different butterfly flowchart. For example, the FFT 
algorithm [4,5] applied to an original sequence with N = 8 points using 
decimation-in-time Radix-2 algorithm can be achieved from the butterfly 
flowchart shown in Figure 2.4 by taking W N

i
=

-e
2π

.

Example 2.4  Let x(n) be the original sequence of a signal with 8 points, 
and X(m) the Fourier transform of x(n). Use the butterfly flowchart as 
shown in Figure 2.4 to compute X(3).
Solution:

	

X x x W

x x W x x

( ) ( ) ( )

[ ( ) ( ) ] [ ( )

3 6 7

4 6 5

2 2
3

1 1
6

1

= +

= + + + 11
6 3

4 4 6

7

0 4 2 6

( ) ]

{[ ( ) ( ) ] [ ( ) ( ) ] }

W W

x x W x x W W= + + +

+ {{[ ( ) ( ) ] [ ( ) ( ) ] }

( ) (

x x W x x W W W

x x

1 5 3 7

0 1

4 4 6 3+ + +

= + )) ( ) ( ) ( )

( ) ( ) (

W x W x W x W

x W x W x

3 6 1 4

7 2

2 3 4

5 6 7

+ + +

+ + + ))W 5

The correction can be examined by using DFT as defined in Equation 2.16.  <
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2.3 T he Discrete Cosine Transform
The discrete cosine transform (DCT) [6,7] is frequently used in image coding 
because it involves operations with real numbers in the transform process.

Suppose f(m, n),m N n N= - = -0 1 1 0 1 1, , ..., ; , , ..., , is a discrete two-
dimensional function. The discrete cosine transform of f(m, n) is

	

F
N

f m n

F v
N

f m n

n

N

m

N

( , ) ( , )

( , ) ( ,

0 0 1

0 2

0

1

0

1

=

=

=

-

=

-

∑∑

)) cos ( )

( , ) ( ,

⋅ +

=

=

-

=

-

∑∑ 2 1
2

0 2

0

1

0

1 n v
N

F u
N

f m

n

N

m

N π

nn m u
N

F u v
N

f m

n

N

m

N

) cos ( )

( , ) (

⋅ +

=

=

-

=

-

∑∑ 2 1
2

2

0

1

0

1 π

,, ) cos ( ) cos ( )n m u
N

n v
N

n

N

m

N

⋅ + ⋅ +

=

-

=
∑ 2 1

2
2 1

2
0

1

0

π π--

∑
1

	 (2.26)
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Figure 2.4  The eight-point decimation-in-time FFT butterfly flowchart.
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The formula for the discrete cosine inverse transform is

	

f m n
N

F
N

F v n v
N

v

N

( , ) ( , ) ( , )cos ( )= + +

=

-1 0 0 2 0 2 1
2

1

1 π∑∑

∑+ +

+

=

-2 0 2 1
2

2

1

1

N
F u m u

N

N
F u v

u

N

( , )cos ( )

( , )cos

π

(( ) cos ( )2 1
2

2 1
2

1

1

1

1 m u
N

n v
N

v

N

u

N + +

=

-

=

-

∑∑ π π 	 (2.27)

2.4 T he Gabor Transform
Fourier transform is a global transformation. Any typical value of F(u) in 
the frequency domain is related to all values of f(t) in the time domain. 
Similarly, each f(t) in the time domain is the direct sum of each component 
of F(u) in the frequency domain. This global distribution cannot reflect 
the local influence. In 1946 Gabor brought forward a windowed Fourier 
transform [8], which maintains any local influences without losing them. 
The windowed Fourier transform is now known as the Gabor transform, 
and it has many similarities with the wavelet transform. The Gabor trans-
form plays an important role in the analysis of nonstationary signals. It is 
mainly used in character analysis and detection in image processing. The 
Gabor transform is also known as a short-time Fourier transform.

The Gabor transform of an original signal f(t) related to a given window 
function g(t) is defined as

	 Gf w f t g t e dtiwt( , ) ( ) ( )τ τ= - -

-∞

+∞

∫ 	 (2.28)

When the window function is chosen as the Gaussian function, that is,

	 g t g t
a

ea
t a( ) ( ) /( )= = -1

2
2 4

π
	 (2.29)

it can be shown that the integral of Gf w( , )τ  with τ  from -∞  to +∞  is the 
Fourier transform of f (t):

	 Gf w d f t e dtiwt( , ) ( )τ τ
-∞

+∞
-

-∞

+∞

∫ ∫= 	 (2.30)

C8970_C002.indd   43 9/29/08   5:49:43 PM

  



© 2009 by Taylor & Francis Group, LLC

44 <  A Concise Introduction to Image Processing Using C++﻿

The proof is left as an exercise (see Section 2.7, Q.4) at the end of this 
chapter for the readers.

One can see that, from the above formula, the instantaneous value F(w) 
of the signal f (t) in the frequency domain can be decomposed into the 
superposition of the Gabor transform component Gf w( , )τ . One can now 
study the influence of local characteristics in the time domain to F(w) by 
setting the time τ  to a specific value.

2.5 T he Wavelet Transform
The Gabor transform involves a window function that takes into account 
the influence of a short time interval of the frequency content of the Fourier 
transform of a given signal. However, in the window function ga(t) given 
by Equation 2.29, the size of the window a is a constant for all frequency, 
which is itself a limitation [9]. When a is small, the higher pitches in the 
frequency domain are clearer, but the lower pitches are a blur. When a is 
large, the lower pitches in the frequency domain are better received, but 
the higher pitches in the time domain from the inverse transform are a 
blur. Such limitations may be overcome by the use of wavelet transforms.

2.5.1 T he Continuous Wavelet Transform

The continuous wavelet transform (CWT) was introduced by Morlet 
and Grossmann [10] in the early 1980s to overcome the limitation just 
described. The definition of applying such a transform to the signal f(t) is 
given by

	 Wf a b f t t dt f t
a

t b
aa b( , ) ( ) ( ) ( ),= = -



-∞

+∞

∫ ψ ψ1


-∞

+∞

∫ dt 	 (2.31)

where a > 0  is the scale parameter, b is the shift parameter, and ψ  is a 
“mother” wavelet. The constant

	 C dψ
ζ
ζ

ζ=
-∞

+∞

∫ | ( )|
| |

Ψ 2

is called the admissibility constant, where Ψ is the Fourier transform  
of ψ . When the admissibility condition 0 < < +∞CΨ  is satisfied, the origi-
nal signal f(t) can be restored by using the formula

	 f t
C a a

Wf a b x b
a

da db( ) ( , )= -



-∞

+∞+∞

∫∫1 1
20ψ

ψ 	 (2.32)
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The admissibility condition implies Ψ( )0 0= , that is,

	 ψ ( )t dt
-∞

+∞

∫ = 0

2.5.2 T he Discrete Wavelet Transform

As images are discretised data and are stored as matrices, a discrete wave-
let transform [2] is needed in image processing.

In general a and b of Equation 2.31 are discretised as a bj
k
j= =1

2 2
, , 

where j, k are integers and the equation itself is discretised as

	 Wf k f t t dt f t
j j k

j j

1
2 2 1

2 2

, ( ) ( ) ( )
,







= =
-∞

+∞

∫ ψ 22 22
j

j t k dtψ ( )-
-∞

+∞

∫ 	 (2.33)

The notation in Equation 2.33 is simplified as the following:

	 Wf j k f t t dt f t t k dj k

j
j( , ) ( ) ( ) ( ) ( ),= = -

-∞

+∞

∫ ψ ψ2 22 tt
-∞

+∞

∫ 	 (2.34)

The signal f(t) can be constructed by means of

	 f t Wf j k t
kj

j k( ) ( ( , )) ( ),=
=-∞

+∞

=-∞

+∞

∑∑ ψ 	 (2.35)

where ψ ψj k

j
jt t k, ( ) ( )= -2 22  are orthonormal functions and are called 

wavelet basis functions obtained by shifting and stretching a mother 
wavelet ψ ( )t .

For example, the Harr wavelet function defined as follows can be used 
as a mother wavelet:

	 ψ H t

t

t

else

( )

,

,

,

=

≤ <

- ≤ <
















1 0 1
2

1 1
2

1

0

C8970_C002.indd   45 9/29/08   5:49:56 PM

  



© 2009 by Taylor & Francis Group, LLC

46 <  A Concise Introduction to Image Processing Using C++﻿

Some wavelet basis functions with their shifted and stretched forms are 
listed here:

	 ψ ψ ψ ψψ ψ0 0 2 01 0
2 2 2 4, ,( ) ( ), , ( ) (

,
( ) ( )t t tH Ht t

H
= == tt)

	 ψ ψ ψ ψ ψ0 1 1 1 2 11 2 2 1 2, , ,( ) ( ), ( ) ( ), ( )t t t t tH H= - = - = ψψ H t( )4 1-

	 ψ ψ ψ ψ ψ ψ0 2 1 2 2 22 2 2 2 2, , ,( ) ( ) ( ) ( ), ( )t t t t tH H= - = - = HH t( )4 2-

A few of these wavelet basis functions are illustrated in Figure 2.5.

2.6  Further Reading: Orthogonality 
and Completeness
The essence of image transform is to decompose an image function into a 
weighted sum of a set of basis functions. In order to keep the properties of 
an image, such as its energy among others, and to ensure that each image 
function can be decomposed, the function basis must be orthogonal and 
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Figure 2.5  Some of the Harr wavelet basis functions.
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complete [11,12]. This chapter ends with a revision on the definition of 
these two important properties.

2.6.1 O rthogonality

Suppose there is a set of real functions ϕ = { ( ), ( ), ..., ( )}f t f t f tr1 2 , which sat-
isfies the following orthogonal property in the interval (t1, t2):

	 f t f t dt
i j

k i ji j
t

t

( ) ( )
;
;

,=
≠
=



∫ 0

1

2

 i j r, , , ...,=1 2 	 (2.36)

The function set ϕ  is said to be orthogonal in the interval (t1, t2). If k = 1, it 
is known as orthonormal.

In the s-dimensional vector space ℜs ,  the inner product is used to sub-
stitute the integral of Equation 2.36. A set of vectors ψ = ⊂ ℜ{ , ,..., }V V Vr

s
1 2  

is said to be orthogonal if

	 < >=
≠
=





V V
i j

k i ji j,
;
;

0
, i j r, , ,...,=1 2 	 (2.37)

where V Vi j
s, ∈ℜ .

2.6.2  Completeness

The completeness of the orthogonal function set ϕ  means that, for any real 
function, g t( ) = 0 if g t( ) is orthogonal to every function in ϕ . That is,

g(t) = 0 iff  f t g t dti
t

t

( ) ( )
1

2

0∫ =  for each i r=1 2, , ..., and g t f ti( ) ( )≠ 	 (2.38)

As for the s-dimensional vector space ℜs , the vector set ψ is complete if 
for any vector V s∈ℜ , V = 0 if V is orthogonal to every vector in y , that is

	 V = 0 iff  < > =V Vi, 0 for each i r=1 2, ,...,  and V Vi≠ 	 (2.39)

If the set of vectors ψ is orthonormal and complete, it is easy to show that 
r = s. In this case, ψ  is called an orthonormal basis.

The property of completeness ensures that any real function can be writ-
ten as the weighted sum of the functions in ϕ , and any s-dimensional vec-
tor can be written as the weighted sum of the vectors in ψ .
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2.7 E xercises

Q.1	� The following convolution kernel is often used for smoothing 
images:

	 h =

























1
8

1
8

1
8

1
8

0 1
8

1
8

1
8

1
8

Given the 8 8×  grey-scale image with the intensity matrix given as 
below, compute the smoothing result of a  by using the convolu-
tion kernel h.

	 a =

200 201 202 202
202 203 205 204
205 210 211 212
205 2088 210 212

203 202 200 198
204 202 200 197
210 209 208 2055
214 210 211 208

210 212 215 218
212 214 218 220
210 2122 213 215
208 208 210 211

217 219 220 218
220 219 218 2188
216 216 210 212
212 214 210 210

































Q. 2	� Using Equation 2.26 perform DCT for the image a in Q.1.

Q. 3	� Write a program implementing these functions: (i) input of a 
square image, (ii) output of its Fourier transform coefficients to a 
file or on screen, and (iii) compare the run times of the standard 
Fourier transform by using Equation 2.19 and FFT.

Q. 4	� Starting from the Gabor transform of a given signal f(t) as shown in 
Equation 2.28, show that the integration of the l.h.s with τ  from -∞ 
to +∞ is equivalent to the Fourier transform of the same signal.

Q. 5	� Show that the Fourier transform and the discrete cosine trans-
form defined in the main text are orthogonal transformations.
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2.9  Partial Code Examples
Project 2-1: Fourier Transformation

(These codes can be found in CD: Project2-1\source code\project2-1 View 
.cpp)

#include "stdafx.h"
#include "project2_1.h"
#include "project2_1Doc.h"
#include "project2_1View.h"
#include "math.h"
/*******************************************************
******************
 *
 * Function name:
 * FFT()
 *
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 * Parameter:
 * complex<double> * TD	 - the pointer pointing the 
array of time domain
 * complex<double> * FD	 - the pointer pointing the 
array of frequency range
 * r						      - the power of 2 
,which is the times of iteration
 *
 * Return Value:
 * None
 *
 * Description:
 * this function is used to make Fast Fourier Transform
 *
 *******************************************************
*****************/
VOID WINAPI FFT(complex<double> * TD, complex<double> * 
FD, int r)
{
	 // the number of transformed dot of Fourier  
transform
	 LONG	 count;
	
	 // Loop variables
	 int		  i,j,k;
	
	 // Intermediate variable
	 int		  bfsize,p;
	
	 // the angle
	 double	angle;
	
	 complex<double> *W,*X1,*X2,*X;
	
	 // compute the number of transformed dot of 
Fourier transform
	 count = 1 << r;
	
	 // allocate the storage for computing
 	 W = new complex<double>[count / 2];
	 X1 = new complex<double>[count];
	 X2 = new complex<double>[count];
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	 // calculate the weighting coefficient
	 for(i = 0; i < count / 2; i++)
	 {
		  angle = -i * PI * 2 / count;
		  W[i] = complex<double> (cos(angle), 
sin(angle));
	 }
	
	 // Write the dot of time domain to X1
	 memcpy(X1, TD, sizeof(complex<double>) * count);
	
	 // Use the butterfly algorithm for FFT
	 for(k = 0; k < r; k++)
	 {
		  for(j = 0; j < 1 << k; j++)
		  {
			   bfsize = 1 << (r-k);
			   for(i = 0; i < bfsize / 2; i++)
			   {
				    p = j * bfsize;
				    X2[i + p] = X1[i + p] + X1[i + 
p + bfsize / 2];
				    X2[i + p + bfsize / 2] = (X1[i 
+ p] - X1[i + p + bfsize / 2]) * W[i * (1<<k)];
			   }
		  }
		  X = X1;
		  X1 = X2;
		  X2 = X;
	 }
	
	 // Reordering
	 for(j = 0; j < count; j++)
	 {
		  p = 0;
		  for(i = 0; i < r; i++)
		  {
			   if (j&(1<<i))
			   {
				    p+=1<<(r-i-1);
			   }
		  }
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		  FD[j]=X1[p];
	 }
	
	 // Freeing
	 delete W;
	 delete X1;
	 delete X2;
}
/*******************************************************
******************
 *
 * Function name:
 * Fourier()
 *
 * Parameter:
 * LPSTR lpDIBBits - the pointer pointing to the source 
of DIB's image
 * LONG lWidth - the width of the source image (the 
number of pixel)
 * LONG lHeight - the height of the source image (the 
number of pixel)
 *
 * Return value:
 * BOOL - If succeeded return TRUE else return FALSE
 *
 * Description:
 * Using for making Fourier transform
 *
 *******************************************************
*****************/
BOOL WINAPI Fourier(LPSTR lpDIBBits, LONG lWidth, LONG 
lHeight)
{
	
	 // the pointer pointing to the source of DIB's image
	 unsigned char*	 lpSrc;
	
	 // Intermediate variable
	 double	dTemp;
	
	 // Cyclic variable
	 LONG	 i;
	 LONG	 j;
	

C8970_C002.indd   52 9/29/08   5:50:19 PM

  



© 2009 by Taylor & Francis Group, LLC

Basic Image Processing Tools <  53

	 // the width and height of Fourier transformation 
(integral power set of 2)
	 LONG	 w;

	 LONG	 h;

	

	 int		  wp;

	 int		  hp;

	

	 // the number of byte per line

	 LONG	 lLineBytes;

	

	 // Compute the number of byte per line

	 lLineBytes = WIDTHBYTES(lWidth * 8);

	

	 // Initialization

	 w = 1;

	 h = 1;

	 wp = 0;

	 hp = 0;

	

	 // Compute the width and height of Fourier trans-

formation

// (integral power set of 2)

	 while(w * 2 <= lWidth)

	 {

		  w *= 2;

		  wp++;

	 }

	

	 while(h * 2 <= lHeight)

	 {

		  h *= 2;

		  hp++;

	 }

	

	 // Allocation

	 complex<double> *TD = new complex<double>[w * h];

	 complex<double> *FD = new complex<double>[w * h];

	

	 // Line

	 for(i = 0; i < h; i++)
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	 {
		  // Column
		  for(j = 0; j < w; j++)
		  {
			   // the pointer pointing to the i-th 
line and j-th column of DIB's pixel
			   lpSrc = (unsigned char*)lpDIBBits + 
lLineBytes * (lHeight - 1 - i) + j;
			 
			   // assign the value of time domain
			   TD[j + w * i] = 
complex<double>(*(lpSrc), 0);
		  }
	 }
	
	 for(i = 0; i < h; i++)
	 {
		  // FFT in y's direction
		  FFT(&TD[w * i], &FD[w * i], wp);
	 }
	
	 // Save the results
	 for(i = 0; i < h; i++)
	 {
		  for(j = 0; j < w; j++)
		  {
			   TD[i + h * j] = FD[j + w * i];
		  }
	 }
	
	 for(i = 0; i < w; i++)
	 {
		  // FFT in x's direction
		  FFT(&TD[i * h], &FD[i * h], hp);
	 }
	
	 // Line
	 for(i = 0; i < h; i++)
	 {
		  // Column
		  for(j = 0; j < w; j++)
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		  {

			   // Compute the spectra

			   dTemp = sqrt(FD[j * h + i].real() * 

FD[j * h + i].real() +

				     FD[j * h + i].imag() * FD[j * 

h + i].imag()) / 100;

			 

			   // Judge whether the dTemp is bigger 

than 255

			   if (dTemp > 255)

			   {

				    // Set 255 to dTemp if it is 

bigger than 255

				    dTemp = 255;
			   }
		

// the pointer pointing the(i<h/2 ? i+h/2 : i-h/2)-th 

line and (j<w/2 ? j+w/2 : j-w/2)-th column of DIB's pixel

			   // Avoid getting the i and j 

directly,for moving the origin to the centre

			   //lpSrc = (unsigned char*)lpDIBBits + 

lLineBytes * (lHeight - 1 - i) + j;

			   lpSrc = (unsigned char*)lpDIBBits + 

lLineBytes *

				    (lHeight - 1 - (i<h/2 ? i+h/2 : 

i-h/2)) + (j<w/2 ? j+w/2 : j-w/2);

			 

			   // Update the source image

			   * (lpSrc) = (BYTE)(dTemp);

		  }

	 }

	

	 // Delete the temporary variables

	 delete TD;

	 delete FD;

	

	 // return

	 return TRUE;
}
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/*******************************************************
*********
* Function name:
* OnFourierTransformation()
*
* Parameter:
* HDIB hDIB - the handle of the image
*
* Return Value:
* None
*
* Description:
* Fourier transform
*
********************************************************
*******/
void CProject2_1View::OnFourierTransformation()
{
	 // Fourier transformation
	
	 // Get the document
	 CProject2_1Doc* pDoc = GetDocument();
	
	 // the pointer pointing to DIB's pixel
	 LPSTR	 lpDIB;
	
	 // the pointer pointing to the DIB's pixel
	 LPSTR lpDIBBits;
	
	 // Lock DIB
	 lpDIB = (LPSTR) ::GlobalLock((HGLOBAL) pDoc-
>GetHDIB());
	
 // Find the outset position of the DIB's image pixel
	 lpDIBBits = ::FindDIBBits(lpDIB);
	
	 // Judge whether the picture is 8-bpp bits 
image(Only deal with the Fourier transformation of 8-bpp 
bits image, for the way deal with other types can be 
derived from this method)
	 if (::DIBNumColours(lpDIB) != 256)
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	 {
		  // Hint to the user
		  MessageBox("It only support Fourier trans-
formation of 8 bits colour picture now!", "Hint from the 
system" ,
			   MB_ICONINFORMATION | MB_OK);
		
		  // Unlocking
		  ::GlobalUnlock((HGLOBAL) pDoc->GetHDIB());
		
		  // Return
		  return;
	 }
	
	 // Change the shape of the cursor
	 BeginWaitCursor();
	
	 // Invoke the function of Fourier and make FT
	 if (::Fourier(lpDIBBits, ::DIBWidth(lpDIB), 
::DIBHeight(lpDIB)))
	 {
		
		  // Set the flag
		  pDoc->SetModifiedFlag(TRUE);
		
		  // Update the views
		  pDoc->UpdateAllViews(NULL);
	 }
	 else
	 {
		  // Hint for the user
		  MessageBox("Allocation is failed!", " Hint 
from the system", MB_ICONINFORMATION | MB_OK);
	 }
	
	 // Unlocking
	 ::GlobalUnlock((HGLOBAL) pDoc->GetHDIB());
	
	 // Reset the shape of the cursor
	 EndWaitCursor();	
}
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Project 2-2: DCT Transformation

(These codes can be found in CD: Project2-2\source code\project2-2 View 
.cpp)

#include "stdafx.h"

#include "project2_2.h"

#include "project2_2Doc.h"

#include "project2_2View.h"

#include "math.h"

/*******************************************************
******************

 *Function Name:

 * DCT()

 *

 * Parameters:

 * double * f				    - the pointer 
pointing to time domain

 * double * F				    - the pointer 
pointing to frequency range

 * r						      - the power of 2

 *

 * Return Value:

 * None

 *

 * Description:

 *

 * Use for DCT by the FFT of 2N dots

 *

 *******************************************************
*****************/

VOID WINAPI DCT(double *f, double *F, int r)

{

	 // the number of transformed dots of DCT

	 LONG	 count;

	

	 // Loop variables

	 int		  i;

	

	 // Intermediate variable

	 double	dTemp;
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	 complex<double> *X;

	

	 // Compute the number of transformed dots of DCT

	 count = 1<<r;

	

	 // Allocation

	 X = new complex<double>[count*2];

	

	 // Initialisation

	 memset(X, 0, sizeof(complex<double>) * count * 2);

	

	 // Write the dot of time domain to X

	 for(i=0;i<count;i++)

	 {

		  X[i] = complex<double> (f[i], 0);

	 }

	

	 // Invoke the FFT

	 FFT(X,X,r+1);

	

	 // Adjust coefficient

	 dTemp = 1/sqrt(count);

	

	 // F[0]

	 F[0] = X[0].real() * dTemp;

	

	 dTemp *= sqrt(2);

	

	 // F[u]	

	 for(i = 1; i < count; i++)

	 {

		  F[i]=(X[i].real() * cos(i*PI/(count*2)) + 

X[i].imag() * sin(i*PI/(count*2))) * dTemp;

	 }

	

	 // Freeing

	 delete X;

}
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Project 2-3: Wavelet Transformation and the 
inverse wavelet transformation

(These codes can be found in CD: Project2-3 directory\source code\  
project2-3View.cpp)

#include "stdafx.h"
#include "project2_3.h"
#include "GlobalApi.h"
#include "project2_3Doc.h"
#include "project2_3View.h"
/*******************************************************
*********
* Function name:
* OnWaveletTransform()
*
* Parameter:
* HDIB hDIB - the handle of the image
*
* Return Value:
* None
*
* Description:
* Wavelet Transform
*
********************************************************
*******/
void CProject2_3View::OnWaveletTransform()
{
	 // Get the document pointer
	 CProject2_3Doc * pDoc = (CProject2_3Doc *)this-
>GetDocument();
	 // change the shape of cursor
	 BeginWaitCursor();
	 // wavelet transformation
	 int rsl = DIBDWTStep(0);
	 // reset the shape of cursor
	 EndWaitCursor();
	 // if the wavelet transformation doesn't work, 
return directly
	 if (!rsl)			 
		  return;
	 // set the flag
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	 pDoc->SetModifiedFlag(TRUE);
	 // update views
	 pDoc->UpdateAllViews(FALSE);
}
void CProject2_3View::OnInverseWaveletTransform()
{
	 // Get the document pointer
	 CProject2_3Doc * pDoc = (CProject2_3Doc *)this-
>GetDocument();
	 // change the shape of cursor
	 BeginWaitCursor();
	 // wavelet transformation
	 int rsl = DIBDWTStep(1);
	 // reset the shape of cursor
	 EndWaitCursor();
	 // if the wavelet transformation doesn't work, 
return directly
	 if (!rsl)			 
		  return;
	 // set the flag
	 pDoc->SetModifiedFlag(TRUE);
	 // update views
	 pDoc->UpdateAllViews(FALSE);
}
BOOL CProject2_3View::DIBDWTStep(int nInv)
{
 // loop variables
	 int i,j;
 unsigned char *lpSrc;
	 CProject2_3Doc* pDoc = GetDocument();
	 LPSTR lpDIB = (LPSTR) ::GlobalLock((HGLOBAL) 
pDoc->m_hDIB);
	 LPSTR lpDIBBits=::FindDIBBits (lpDIB);
	 int cxDIB = (int) ::DIBWidth(lpDIB); // Size of 
DIB - x
	 int cyDIB = (int) ::DIBHeight(lpDIB); // Size of 
DIB - y
	 long lLineBytes = WIDTHBYTES(cxDIB * 8); // count 
the the number of byte of the image per line
	 // Get the length and width of image
	 int nWidth = cxDIB;
	 int nHeight = cyDIB;
		

C8970_C002.indd   61 9/29/08   5:50:21 PM

  



© 2009 by Taylor & Francis Group, LLC

62 <  A Concise Introduction to Image Processing Using C++﻿

	 // Get the biggest number of layers
	 int nMaxWLevel = Log2(nWidth);
	 int nMaxHLevel = Log2(nHeight);
	 int nMaxLevel;
	 if (nWidth == 1<<nMaxWLevel && nHeight == 
1<<nMaxHLevel)
		  nMaxLevel = min(nMaxWLevel, nMaxHLevel);
	 // temporary variables
	 double	*pDbTemp;
	 BYTE	 *pBits;
	
	 // if the memory of wavelet transformation wasn't 
assigned, allocte it.
	 if(!m_pDbImage){			 
		  m_pDbImage = new double[nWidth*nHeight];
		  if (!m_pDbImage)	 return FALSE;
		  // put the image data to m_pDbImage
		  for (j=0; j<cyDIB; j++)
		  {
			   pDbTemp = m_pDbImage + j*cxDIB;
			   for (i=0; i<cxDIB; i++)
			   {
				    // the pointer pointing to the 
i-th line and j-th picture element
			    lpSrc = (unsigned char*)lpDIBBits + 
lLineBytes * (cyDIB - 1 - j) + i;
				    pDbTemp[i] = *lpSrc;
			   }
		  }
	 }
	
	 // wavelet transformation(or inverse wavelet 
transformation)
	 if (!DWTStep_2D(m_pDbImage, nMaxWLevel-m_nDWTCur-
Depth, nMaxHLevel-m_nDWTCurDepth,
						      nMaxWLevel, nMax-
HLevel, nInv, 1, m_nSupp))
		  return FALSE;
	 // if it's inverse transformation ,the number of 
layers minus 1
	 if (nInv)
		  m_nDWTCurDepth --;
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	 // else adds 1
	 else
		  m_nDWTCurDepth ++;
	
	 // copy the data to the former CDib and transform 
into the right type
	 int lfw = nWidth>>m_nDWTCurDepth, lfh = 
nHeight>>m_nDWTCurDepth;
	 for (j=0; j<nHeight; j++)
	 {
		  pDbTemp = m_pDbImage + j*cxDIB;
		  pBits = (unsigned char*)lpDIBBits + lLine-
Bytes * (nHeight - 1 - j);
		  for (i=0; i<nWidth; i++)
		  {
			   if (j<lfh && i<lfw)
				    pBits[i] = 
FloatToByte(pDbTemp[i]);
			   else
				    pBits[i] = 
BYTE(FloatToChar(pDbTemp[i])^ 0x80); 	
		  }
	 }
	 // Return
	 return TRUE;
}

C8970_C002.indd   63 9/29/08   5:50:21 PM

  



© 2009 by Taylor & Francis Group, LLC

65

 3C H A P T E R

Preprocessing 
Techniques for Images

When an image is received or transmitted, a variety of factors will 
inevitably affect it or interfer with it so that the original specifica-

tion of the image cannot be retained. As a result, image preprocessing, 
which includes smoothing, enhancement, and restoration, is needed 
before one can use the image. The main objective of enhancement is to 
process an image in such a way that the resulting image becomes more 
suitable for research purposes and other applications than the original. 
However, the goal of restoration is to reconstruct or recover an image 
or part of an image that has been degraded or distorted compared to 
the original.

This chapter begins with an introduction to pixel brightness and cer-
tain transformations related to the analysis of images. Concepts and 
models of image processing are introduced in Section 3.2. These con-
cepts lead to various image-processing techniques, including image 
smoothing, enhancement, and restoration, which are introduced in 
Sections 3.3, 3.4, and 3.5, respectively. Finally, a discussion on the use 
of partial differential equations in image processing is provided in  
Section 3.6.
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3.1  Pixel Brightness (Grey-Level) Transformations

3.1.1  Image Enhancement Based on Histogram

A picture becomes dim without enough brightness or exposure to light in 
the photographing procedure. Brightness can be observed by means of the 
histogram of an image with a grey level, and the distribution of brightness 
can be improved by using histogram equalisation.

3.1.1.1  Histogram
A histogram may be used to show the probability of the occurrence of cer-
tain grey levels [1,2]. Let r be the normalised grey level, that is, 0 1≤ ≤r , such 
that r = 0  and r =1 represents the darkest and brightest points, respectively. 
Let p rr ( )  be the probability density function with respect to r. A typical 
probability density function p rr ( )  is depicted in Figure 3.1.

The probability density function should be discretised because the grey 
levels in an image are discrete. Suppose that the number of pixels and grey 
levels in an image are N and L, respectively. Let rk denote the discrete nor-
malised grey levels of an image such that 0 1≤ ≤rk , k = 0, 1, ..., L-1, nk is the 
number of pixels in the image that has the grey level rk, and nk N

k
L

=
=
-
∑

0
1 . The 

probability density when r rk=  can be estimated by

	 p r
n
Nr k

k( ) = 	 (3.1)

The histogram of the 8-bit image of Lena obtained by using Equation 3.1 
is shown in Figure 3.2.

3.1.1.2  Histogram Equalisation
Histogram equalisation ensures that the original probability density function 
p rr k( )  has the same value for each of the single grey levels rk , that is, the 

image has the same number of pixels at every grey level. Such a method 
can be used to compare different images from different environments.

Figure 3.1  A probability density sketch map.

Pr (r)

0 1 r
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Let s  be the variable denoting the grey level after equalisation, and its 
probability density is p ss ( ) =1. The transformation from the variable r  to 
s is obtained by using s T r= ( ) and is based on the concept that the same 
probability distribution holds, that is,

	 p s ds p r drs r

rT r

( ) ( )
( )

= ∫∫ 00

	 (3.2)

After equalisation, that is, p ss ( ) =1, the integral on the left-hand side 
of Equation 3.2 is equal to T r( ). Hence, the transformation T  can be 
obtained as

	 T r p r drr

r

( ) ( )= ∫0

	 (3.3)

The discretised formula is given by

	 s T r p r
n
N

k Lk k r j
j

k
j

j

k

= = = = -
= =

∑ ∑( ) ( ) , , ,...,
0 0

0 1 1 	 (3.4)

Example 3.1  A grey-scale image has 16 × 16 pixels. Assuming that the 
intensity of each pixel in the image requires three bits of storage, the grey 
levels are 0, 1, 2, 3, 4, 5, 6, and 7. Normalising the grey levels leads to

	 r r r r r r r r0 1 2 3 4 5 6 70 1
7

2
7

3
7

4
7

5
7

6
7

= = = = = = =, , , , , , , ==1	

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 r

Pr(r)

Figure 3.2  The source 8-bit image of Lena and its histogram map after 
normalisation.
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The distribution of pixels at each of the preceding grey levels and their cor-
responding probability densities are given as follows:

	 n n n n n n n n0 1 2 3 4 5 610 30 50 40 60 30 20= = = = = = =, , , , , , , 77 16= 	

	
p r p r p r p rr r r r( ) , ( ) , ( ) , (0 1 2

10
256

30
256

50
256

= = = 33

4 5 6

40
256

60
256

30
256

2

)

( ) , ( ) , ( )

=

= = =p r p r p rr r r
00

256
16
2567, ( )p rr =

	

Obtain the grey levels after equalisation.
Solution: Using Equation 3.4, rk  can be converted into the new grey level 
sk, and k = 0 1 7, ,..., , listed as follows:

	 s p rr0 0
10
256

0 039= = ≈( ) . 	

	 s p r p rr r1 0 1
10
256

30
256

40
256

0 156= + = + = ≈( ) ( ) . 	

	 s p r p r p rr r r2 0 1 2
10
256

30
256

50
256

9= + + = + + =( ) ( ) ( ) 00
256

0 352≈ . 	

	 s p r p r p r p rr r r r3 0 1 2 3
10
256

30
256

= + + + = + +( ) ( ) ( ) ( ) 550
256

40
256

130
256

0 508+ = ≈ . 	

Similarly, one obtains

	 s s s4 5 6
190
256

0 742 220
256

0 859 240
256

0= ≈ = ≈ = ≈. , . , .. ,938 256
256

17s = = 	

If sk  is stored by means of a 3-bit storage, these values need to be further 
approximated as

	 s s s s s s s s0 1 2 3 4 5 6 70 1
7

2
7

4
7

5
7

6
7

1≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈; ; ; ; ; ; ; 11 	

Then the new grey levels are

	 t t t t t t t0 1 2 3 4 5 60 1
7

2
7

4
7

5
7

6
7

1= = = = = = =; ; ; ; ; ; 	
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A new image is obtained after converting the original grey levels, according 
to the following mapping:

	 r t r t r t r t r t r t r t r0 0 1 1 2 2 3 3 4 4 5 5 6 6→ → → → → → →, , , , , , , 77 6→ t 	

The effect of this transformation is summarised here. If the intensity of the 
pixel (x, y) of the original image is the grey level 1

7, the intensity of the same 
pixel of the new image is still the grey level 1

7 . If the intensity of the pixel (x, y) 
of the original image is the grey level 3

7 , the intensity of the same pixel in the 
new image is the grey level 4

7 . Figure 3.3 shows the histogram before and after 
equalisation of the image of Lena depicted in Figure 3.2.  <

3.1.2	 Contrast Stretching

Very often one needs to enhance the contrast of an image. Consider an 
8-bit grey-scale image such that the intensity of the pixels can be any grey 
level of the image and is an integer between 0 and 255. If the maximum 
intensity value in it is only 150, the image has low contrast and can be 
observed from the histogram. In order to enhance the contrast of the 
image, one can directly perform transformations of the intensities of the 
pixels. Methods often used in such transformations are the linear trans-
form and the limiting linear transform.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 r 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 t

Pr(r) Pr(t)

(a) (b)

Figure 3.3  The histograms before and after equalisation of the image 
of Lena: (a) the original histogram of Lena, and (b) the histogram after 
equalisation.
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3.1.2.1  Linear Transform
Suppose the maximum and minimum intensities in an image are bmax  and 
bmin, respectively, and the intensity of each pixel requires B bits of storage, 
which means that the maximum grey level (intensity) may reach 2 1B - . If 
0 2 1< < < -b b B

min max , one can stretch the pixel intensity as follows:

	 g x y
f x y b
b b

B( , ) ( )
( , ) min

max min

= -
-

-
2 1 	 (3.5)

where f x y( , )  is the original intensity of the pixel point ( , )x y , and g x y( , )  
is the new intensity value after stretching.

3.1.2.2  The Limiting Linear Transform
More generally, one might perform stretching only at the centre of the grey 
levels, and keep both sides at the given lowest or highest levels. This way, some 
sensitivity may be reduced. Let τ1  and τ 2  represent the minimum and max-
imum thresholds to constrain the stretching part. Assuming that s and s1 2  
are the possible minimum and maximum intensity values after stretching, 
respectively, the limiting linear transform can be obtained as follows:

	 g x y

s if f x y
s s

f x y
s

( , )

, ( , )

( , )=

≤
-
-

⋅ +

1 1

2 1

2 1

1 2

τ

τ τ
τ --

-
< <

≥






s
if f x y

s if f x y

2 1

2 1
1 2

2 2

τ
τ τ

τ τ

τ

, ( , )

, ( , )







	(3.6)

where f x y( , )  is the original intensity of the pixel point ( , )x y , and g x y( , )  
is the new intensity value after stretching. Figure  3.4 shows the typical 
inputs and outputs of the preceding two transformations.

(b) (a) 
Input 

O
ut

pu
t 

Input 

O
ut

pu
t 

Figure 3.4  Typical input and output of (a) a linear transform and (b) a 
limiting linear transform.

C8970_C003.indd   70 9/29/08   5:52:48 PM

  



© 2009 by Taylor & Francis Group, LLC

Preprocessing Techniques for Images  <  71

3.2  Concepts and Models of Image Preprocessing
Image processing may be considered as a process of obtaining an output 
image g x y( , )  from a certain input image f x y( , )  after a black box opera-
tion P, that is,

	 g x y f x y( , ) [ ( , )]= P 	 (3.7)

This model [3,4] is depicted in Figure 3.5. It is hoped that, from the input 
image f x y( , ), one can construct and use a system, such as one for image 
smoothing or image enhancement, to produce the output image g x y( , ), 
which is more suitable for further image processing work and applications. 
Image smoothing is used to remove any noise, whereas image enhance-
ment is used to enhance certain interesting features in the input image, 
such as edges, etc.

A clean image f x y( , )  may be affected or polluted, and thus it becomes 
a degraded image in the course of capture, transmission, and storage. As a 
result, only the degraded image g x y( , )  is to be handled, and the original 
undistorted image f x y( , )  is not being dealt with. The degradation may 
be due to diffraction and image differences in the optics systems, the sen-
sor’s nonlinear aberration, the film’s nonlinearity, the disturbances due 
to air turbulences, the spur due to motion of the object, geometric aber-
ration, etc. Using the concept in Equation 3.7, image degrading may also 
be regarded as applying an unknown system to the original undistorted 
image. Therefore, the model shown in Figure 3.5 is also applicable to an 
image-degrading process.

It is often practical to apply, in these processing models, the linear sys-
tem and the shift-invariant system:

	 1.	The linear system: Given two original images f x y and f x y1 2( , ) ( , ), the 
corresponding transformed results g x y1( , ) and g x y2( , ) are obtained 
by applying a system P, that is,

	
g x y f x y

g x y f x y

1 1

2 2

( , ) [ ( , )]

( , ) [ ( , )]

=

=

P

P
	 (3.8)

Figure 3.5  An image-processing model.

g(x, y)f (x, y)
P 
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If P satisfies

	 P P P[ ( , ) ( , )] [ ( , )] [ ( , )a β a βf x y f x y f x y f x y
1 2 1 2

+ = + ]] ( , ) ( , )= +a βg x y g x y
1 2

	(3.9)

where a  and β  are constants, P is known as a linear system.

	 2.	The shift invariant system: Suppose g x y( , )  is the transformed result 
of f x y( , )  after applying the process P. If P satisfies

	 P[ ( , )] ( , )f x y g x y- - = - -a β a β 	 (3.10)

P is known as a shift-invariant system, where a βand  are the amount of 
shifts along the spatial directions. In a shift-invariant system, the trans-
formed result has the same amount of shift as that in the input.

If an image-processing system P is a linear shift-invariant (LSI) system, 
it can be expressed by means of the convolution operation as

  g x y f x y h x y f x y h f x( , ) [ ( , )] ( , ) ( , ) ( , ) ( ,= = * = -P a β a yy d d-
-∞

+∞

-∞

+∞

∫∫ β a β) 	 (3.11)

where h(x, y) is known as an impulse response function or a point-spread 
function.

As mentioned in Chapter 2, Section 2.1.2, the convolution kernel h(x, y) 
is usually a symmetric matrix, which is used as a template in the context 
of image processing. The corresponding discrete convolution formula of 
Equation 3.11 is given by

	 g m n h m n f m n h j k f m j n k
k s

s

( , ) ( , ) ( , ) ( , ) ( , )= * = + +
=-
∑

jj r

r

=-
∑ 	 (3.12)

The convolution operation in Equation 3.11 is relatively complex. One 
applies the Fourier transform to images in order to convert the convolu-
tion operation in the spatial domain to multiplicative operations in the 
frequency domain. Let G(u, v), H(u, v), and F(u, v) represent the Fourier 
transforms of g(x, y), h(x, y), and f(x, y), respectively. The convolution

	 g x y h x y f x y( , ) ( , ) ( , )= * 	 (3.13)

can be written as the convolution model in the frequency domain as

	 G u v H u v F u v( , ) ( , ) ( , )= ⋅ 	 (3.14)

where H(u, v) is known as the transfer function.
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3.3  Image Smoothing
Noise may be introduced into an image in the process of its construction 
or transmission. This section is not concerned with how noise is produced; 
instead, the aim here is to construct systems in order to deal with polluted 
images, that is, to remove noise to form a smooth image. The main idea of 
image smoothing is to replace the intensity of every pixel p in an image by 
a weighted average of the intensities of its neighbouring pixels.

The system used in image smoothing can be either linear or nonlinear. 
If it is a linear shift-invariant system, one can use convolution to denote 
it, that is,

  g x y h x y f x y h f x y d d( , ) ( , ) ( , ) ( , ) ( , )= * = - -
-∞

a β a β a β
++∞

-∞

+∞

∫∫ 	 (3.15)

In essence, constructing a processing system is equivalent to constructing 
the impulse response function h(x, y) or the convolution kernel h(m, n) for 
discrete image functions.

3.3.1 S patial-Domain Methods

Methods applied in the spatial domain include neighbourhood-averaging 
method, Gaussian filtering, and median filtering. The former two are linear, 
and hence h(m, n) may be constructed by means of Equation 3.15, followed 
by convolution.

3.3.1.1  Neighbourhood-Averaging Methods
In neighbourhood-averaging methods, the concept of a processing window 
is used to define the neighbourhood. The size of a processing window is 
often chosen as 3 × 3 or 5 × 5, which contains the neighbouring pixels sur-
rounding a given pixel. For a 3 × 3 window, the templates commonly used 
as the convolution kernel h(m, n) include
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1
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1
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1
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1
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1
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1
9

1
9 

	

The first one is known as the 4-neighbourhood average, and the remaining 
two are 8-neighbourhood averages. The first two templates do not involve 
contribution of the intensity of the central pixel, but the third one does. 
Figure 3.6b depicts the result of a neighbourhood-averaging method.

C8970_C003.indd   73 9/29/08   5:53:08 PM

  



© 2009 by Taylor & Francis Group, LLC

74  <  A Concise Introduction to Image Processing Using C++﻿

Take the 4-neighbourhood average as an example, and consider the pixel 
located at (i, j). Suppose f (i, j) denotes the original intensity of the pixel 
located at (i, j), and g (i, j) represents the value after it has been operated on 
by the first template, one obtains

	 g i j f i j f i j f i j f i j( , ) [ ( , ) ( , ) ( , ) ( ,= - + + + - + +1
4

1 1 1 11)] 	 (3.16)

(a) 

(b) (c) 

Figure 3.6  Images after applying neighbourhood-averaging and median 
filtering methods: (a) the original image, (b) the resulting image after 
applying the neighbourhood-averaging method, and (c) the image after 
median filtering.
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3.3.1.2  Threshold-Averaging Methods
The neighbourhood-averaging method is simple and effective but usually 
leads to image blurring. This is particularly true when the neighbouring 
pixels are chosen from farther away. To overcome this drawback, a thresh-
old to dispose the averaging result can be adopted. A specific threshold 
value is chosen in advance and is used to compare with the difference 
between the resulting intensity and the original intensity. If the difference 
is greater than the threshold, the original value is replaced by the averag-
ing result; otherwise, the original value is retained.

Consider again the 4-neighbourhood-averaging template, and given 
the threshold τ , the threshold-averaging result is obtained as follows:

	
a f i j f i j f i j f i j

g

= - + + + - + +1
4

1 1 1 1[ ( , ) ( , ) ( , ) ( , )]

(ii j
a if a f i j

f i j else
, )

, | ( , )| ;
( , ),

=
- >




τ
	 (3.17)

3.3.1.3  Gaussian Filtering
Gaussian smoothing filtering [3] is another linear filtering method used in 
the spatial domain. Its convolution kernel is

	
h i j e

i j
( , )= - +2 2

22σ
	 (3.18)

where σ is a smoothing parameter used to control the extent of smoothing. 
The larger the value of σ, the greater is the extent of smoothing. Gaussian 
filtering has many good features, such as rotational symmetry and separa-
bility, and has the same smoothing effect in every direction.

In image processing, the Gaussian convolution kernel needs to be trans-
formed to a discrete convolution template. A template with a 7 × 7 window 
and σ = 2  is given as follows:
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For ease of storage and calculation, this template can be converted into an 
integer form by magnifying each element of the template 91 times, leading to

	

1 4 7 10 7 4 1

4 12 26 33 26 12 4

7 26 55 71 55 26 7

10 33 71 91 71 333 10

7 26 55 71 55 26 7

4 12 26 33 26 12 1

1 4 7 10 7 4 1


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


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
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






	

The sum of the weighted coefficient of the template is h i j
i j

( , )
,

=∑ 1115. For practi-
cal applications, the results should then be divided by 1115.

3.3.1.4  Median Filtering
Median filtering is a nonlinear smoothing method. It sorts the intensi-
ties in the neighbourhood window of the reference pixel and calculates 
the median value of the sorted data. The original value at the reference 
pixel is then replaced by the median value. Figure 3.6c depicts the result 
of median filtering.

For simplicity, a one-dimensional signal is used as an example. 
Suppose the datum at the point i to be dealt with is ai, and the size of 
the window is 2k + 1, where k is an integer. The data in the window is 
W a a a a a ai i k i k i i i i k= - - + - + + -( , ,..., , , ,...,1 1 1 1 ,, }ai k+ , which is sorted in ascending 
order as a a a a ai i i i ik k k1 2 1 2 1

≤ ≤ ≤ ≤ ≤ ≤
+ +

... ... . The median value, which is also 
the new value to be used at point i, is found to be aik+1

.
Example 3.2 Assuming that the one-dimensional discrete signal to be 
dealt with is given by

	 {0 0 0 9 0 0 3 4 3 0 2 3 2 0 4 6 4 0 4 7 4 0 0 3 4 5 6 6 6 6 6 0 0}	

let the size of the processing window be 3. Consider the fourth number 
that has the value 9, which exhibits an impulse noise. The data set in the 
neighbourhood window is (0,9,0). After sorting, the new data set is (0,0,9). 
Hence, 0 is used to replace 9. The new signal after processing is

	 {0 0 0 0 0 0 3 3 3 2 2 2 2 2 4 4 4 4 4 4 4 0 0 3 4 5 6 6 6 6 6 0 0}  <	
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In two-dimensional image processing, the size of a processing window 
is usually chosen as 3 × 3 or 5 × 5. The two-dimensional data is written 
in a one-dimensional form according to a row-by-row order. The same 
method described previously may be used to deal with the resulting one-
dimensional data.
Example 3.3  The intensities of an image block f are given as

	 f =

200 201 202 202
202 203 205 204
205 210 211 212
205 2088 21 212

203 202 200 198
204 202 200 197
210 209 208 20

3
55

214 210 211 208
210 212 215 218
212 214 218 220
210 2122 213 215
208 208 210 211

217 219 220 218
220 219 218 2188
216 216 210 212
212 214 210 210


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






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

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
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









	

Consider the pixel point in row three and column three where the inten-
sity is f(3, 3) = 211. Its 3 × 3 neighbourhood window is

	
203 205 204
210 211 212
208 213 212

















	

Rearranging it as one-dimensional data gives

	 {203 205 204 210 211 212 208 213 212}	

After sorting the one-dimensional data, it becomes

	 {203 204 205 208 210 211 212 212 213}	

where the median number is 210. Thus, the new value of the processed image 
g using median filtering at the position (3, 3) is 210, that is, g(3, 3) = 210.  <

3.3.1.5  Weighted Median Filtering
In median filtering methods, the intensity of each pixel in a window 
contributes equally to the result. If the intensities of some pixels have more 
influence to the result, then weighted median filtering [5] should be adopted. 
Here, “weighted” means increasing the contribution of intensities of some 
neighbouring pixels, leading to a different median value.
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Consider a two-dimensional window of size 3 × 3 and assume that the 
original intensity of the pixel located at the point (i, j) is f(i, j). The data in 
its neighbourhood is given by

	
f i j f i j f i j

f i j f i j f
( , ) ( , ) ( , )

( , ) ( , )
- - - - +

-
1 1 1 1 1

1 (( , )
( , ) ( , ) ( , )

i j
f i j f i j f i j

+
+ - + + +













1
1 1 1 1 1





	

A template of size 3 × 3 containing weighted values is assigned. The elements 
of the window are rearranged as a one-dimensional array, following a row–
column order in such a way that the intensities in the array repeat accord-
ing to the corresponding weighting values in the template. The array is then 
sorted in ascending order, and the median value is used to substitute f(i, j). As 
an example, suppose the template with the weighted values is given by

	
1 2 1
2 3 2
1 2 1

















	

Data in the neighbourhood of the pixel (3 × 3) of Example 3.3 now becomes 
{203, 205, 205, 204, 210, 210, 211, 211, 211, 212, 212, 208, 213, 213, 212}. The 
series in ascending order becomes {203, 204, 205, 205, 208, 210, 210, 211, 
211, 211, 212, 212, 212, 213, 213}, and the median is 211.

3.3.2 F requency-Domain Methods

By analysing image signals in the frequency domain, one can deal with 
those high frequencies consisting of components with fast-changing inten-
sities in an image, such as edges, jumps, and grain noise. On the other hand, 
low frequencies correspond to the slowly varying components of an image, 
for instance, the background area of the image. Hence, image smoothing 
is done to filter the high-frequency components and preserve the low-fre-
quency components, which is usually known as low-pass filtering [3].

3.3.2.1  Ideal Low-Pass Filtering
According to the image-processing model given in Equation 3.14, image 
filtering in the frequency domain is completed by constructing the image 
transfer function H(u, v). The main idea of an ideal low-pass filtering is 
to preserve the signal with low frequency and cut off the high-frequency 
signal whose frequency is greater than a preassigned value. Such filtering 
has the transfer function
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	 H u v
D u v D
D u v D

( , )
, ( , )
, ( , )

=
≤
>







1
0

0

0

	 (3.19)

where D u v( , )  is the distance between the point ( , )u v  and the origin of 
the frequency domain:

	 D u v u v( , ) = +2 2

and D0  is a specified nonnegative threshold given in advance, called the 
cut-off frequency.

From Equation 3.19, it is found that H u v( , )  contains a jump when 
D u v D( , ) = 0 . This means that its inverse Fourier transform, h x y( , ), will 
be companioned with ringing and blurring phenomena; the result of 
Equation 3.13, g x y( , ), has the same problem. Some improved low-pass 
filtering methods are introduced to overcome this drawback, such as trap-
ezoidal low-pass filtering and Butterworth low-pass filtering.

3.3.2.2  Trapezoidal Low-Pass Filtering
Trapezoidal low-pass filtering may be used to eliminate the jump men-
tioned in Section 3.3.2.1. Its transfer function is defined by

	 H u v

D u v D
D u v D

D D
D D u v( , )

, ( , )
( , )

, ( , )=

≤
-

-
< <

1 0

1

0 1
0 DD

D u v D

1

10, ( , ) ≥











	 (3.20)

The meaning of D(u, v) and D0 is the same as that mentioned in Section 
3.3.2.1, and D1 is a constant satisfying D1 > D0.

3.3.2.3  Butterworth Low-Pass Filtering
Unlike ideal low-pass filtering, in which the signal is band limited to have 
only two states, that is, pass or stop, according to the cut-off frequency, 
Butterworth low-pass filtering makes a slow transition between pass and 
stop with the transfer function given as follows:

	
H u v

D u v
D

n( , )
( , )

=

+










1

1
0

2

	 (3.21)

where n  is the order of filtering, and D0 represents the cut-off frequency.
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3.4  Image Enhancement
The image-smoothing methods described in the preceding sections are 
used to remove noise effects in images. In many situations, it is also 
important to sharpen some special points and characters of an image, for 
example, edges and so on, in order to make segmentation and recognition 
easier. The image-processing model discussed in this section employs dif-
ferent transfer functions to enhance the edges of an image. Such technol-
ogy is known as the image-sharpening process or as image enhancement.

The edge of an image represents the fastest varying components of the 
intensities of an image. It is well known that the gradient operation in cal-
culus may be used to calculate the magnitude and direction of a function 
in which its function value changes fast. It is possible, in an image func-
tion, to make use of the gradient value instead of the original intensity at 
every pixel in order to preserve the edges of the image.

3.4.1 G radient

Let f(x, y) denote a grey-scale image function; the gradient at the pixel 
point (x, y) is defined as the vector

	 ∇ = ∂
∂

∂
∂







f f
x

f
y

, 	 (3.22)

and the direction of the gradient is defined as

	 θ( , ) arctanx y f
y

f
x

f
x

= ∂
∂

∂
∂

∂
∂







	 (3.23)

where θ(x, y) denotes the angle between the gradient direction and the 
x-coordinate. The gradient value, or magnitude of the gradient, for different 
requirements may be defined by means of the Euclidean norm or l2-norm:

	 || ||∇ = ∂
∂







+ ∂
∂







f f
x

f
y

2 2

	 (3.24)

l1-norm:

	 || ||∇ = ∂
∂

+ ∂
∂

f f
x

f
y

	 (3.25)

or l∞-norm:

	 || || max ,∇ = ∂
∂

∂
∂







f f

x
f
y 	 (3.26)
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3.4.2 G radient Image

The gradient image g(x, y) is obtained by replacing the original intensity 
at every pixel point by its gradient value, that is,

	 g x y f x y( , ) || ( , )||= ∇ 	 (3.27)

In practice, some modifications can be applied. For instance, in order to 
sharpen the edge, it is possible to assign a larger value of intensity nearer to 
the white colour to the pixel point where its gradient value is greater than 
a certain threshold, keeping all other points unchanged, that is,

	 g x y
b f x y

f x y
h( , )
, || ( , )||

( , ),
=

∇ ≥



if
else

τ
	 (3.28)

where τ  is a preassigned threshold, and bh is a constant intensity nearer to 
white. On the other hand, if the location of an edge is of interest, the image 
may be made as a binary-value image by the use of a certain threshold:

	 g x y
b if f x y
b else

h

l

( , )
, || ( , )||
,

=
∇ ≥




τ
	 (3.29)

where τ  and bh  are defined as in Equation 3.28, and bl  is a constant 
intensity nearer to black, which satisfies b bh l> .

3.4.3 G radient Operators

Because digital images are defined by means of discrete functions, differ-
ent methods may be applied to approximate partial derivatives. Various 
different formulae lead to different possible gradient operators. As an 
example, consider the locations of the pixels as given in Figure 3.7; one 
can use the first-order forward difference to approximate the gradient as

	

∂
∂

≈ + -

∂
∂

≈ +

f
x

i j f i j f i j

f
y

i j f i j

( , ) ( , ) ( , )

( , ) ( , )

1

1 -- f i j( , )

	 (3.30)

or use the central difference to approximate the gradient as

	

∂
∂

≈ + - -

∂
∂

≈

f
x

i j f i j f i j

f
y

i j

( , ) [ ( , ) ( , )]

( , )

1
2

1 1

1
2

[[ ( , ) ( , )]f i j f i j+ - -1 1

	 (3.31)
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Using the image-processing model, Equations 3.30 and 3.31 can be rewrit-
ten as convolutions of the image function f(x, y) with the convolution ker-
nels hx and hy. In one-dimensional cases, vertical templates representing 
the processing in the x-coordinate, and horizontal templates representing 
the processing in y-coordinate are used, and the convolution templates 
used in the first-order forward difference are

	
h

h

x
T

y

= -

= -

[ , ] ;

[ , ]

1 1

1 1
	 (3.32)

whereas those used in the central difference are

	
h

h

x
T

y

= -

= -

1
2

1 0 1

1
2

1 0 1

[ , , ] ;

[ , , ]

	 (3.33)

Thus, Equations 3.30 and 3.31 can be rewritten in a consistent form using 
convolution as

	
∂
∂

= * ∂
∂

= *f
x

h f f
y

h fx y; 	 (3.34)

The aforementioned difference formulae may introduce large errors 
because they take into account the intensity of the reference pixel and that 
of two of its neighbouring pixels only. In fact, the gradient of a pixel ought 
to be related to every pixel point in its neighbourhood. Some frequently 
used gradient operators [6] are listed in the following sections.

x

y

(i – 1, j – 1)

(i + 1, j – 1) (i + 1, j)

(i, j – 1) (i, j)

(i – 1, j + 1)

(i + 1, j + 1)

(i, j + 1)

(i – 1, j)

Figure 3.7  The position of neighbouring pixels.
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3.4.3.1  Roberts Operator
The Roberts operator uses l1-norm to calculate the magnitude of the gradi-
ent and adopts the following templates to the partial derivatives ∂

∂
f
x , ∂

∂
f
y :

	

h

h

x

y

=
-











=
-









1 0
0 1

0 1
1 0

	 (3.35)

In other words, partial derivatives are calculated using the pixels in the diag-
onal instead of the pixels in the same row or column. Therefore, one obtains

	 || ( , )|| || ( , ) ( , )|| | ( , )∇ = + + - + +f i j f i j f i j f i j1 1 1 -- +f i j( , )|1 	 (3.36)

3.4.3.2  Prewitt Operator
The Prewitt operator adopts Euclidean l1-norm to compute the gradient 
values, and ∂

∂
f
x  and ∂

∂
f
y  are computed by using the following templates:

	

h

h

x

y

=
- - -

















=
-
-
-

1
6

1 1 1
0 0 0
1 1 1

1
6

1 0 1
1 0 1
1 0 11

















	 (3.37)

This operator requires six pixel points in the neighbourhood of the reference 
pixel point. It is in fact using the average of three central differences to 
approximate the gradient. The effect is better than that of using one central 
difference formula.

3.4.3.3  Sobel Operator
Similar to the Prewitt operator, the Sobel operator also computes the 
magnitude of the gradient by using the Euclidean l2 -norm. The differ-
ence between these two operators is that, in computing partial derivatives, 
Sobel considers a higher weighting along the same row or column of the 
reference pixel point.
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h

h

x

y

=
-

















=
-
-
-



1
8

1 2 1
0 0 0
1 2 1

1
8

1 0 1
2 0 2
1 0 1













	 (3.38)

3.4.3.4  Laplacian Operator
As discussed at the beginning of Section 3.4, an edge has the fastest-chang-
ing intensities in an image. By comparing only the gradient value with a 
preassigned threshold, there may be confusion in identifying the edges. 
For example, noisy pixel points and nonedge pixel points lying next to an 
edge can be easily mistaken as edge pixel points. This drawback becomes 
a disadvantage at the next stage of processing, such as image segmentation 
and object recognition.

As pointed out by Marr and Hildreth [7], the rapid variation of intensi-
ties along an edge corresponds to the local maximum of the derivative at 
that point. For the second derivative, there are zero-crossing points. It is 
easier to find the zeros of the second derivative than to calculate the local 
maximum of the derivative. Hence, using second derivatives, that is, the 
Laplacian operator,

	 ∇ = ∂
∂

+ ∂
∂

2
2

2

2

2
f f

x
f

y
	 (3.39)

plays an important role because it provides the increment of the gradient 
directly. The following discretised form is often used to calculate the sec-
ond derivative:

	

∂
∂

= ∂
∂

∂
∂







≈ ∂
∂

+

2

2

1

f
x

i j f
x

f
x

i j

f
x

i j

( , ) ( , )

( , )-- ∂
∂

≈ + - - - -

f
x

i j

f i j f i j f i j f i

( , )

[ ( , ) ( , )] [ ( , ) (1 1,, )]

( , ) ( , ) ( , )

j

f i j f i j f i j= + - + -1 2 1

	 (3.40)
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Similarly, one obtains

	 ∂
∂

≈ + - + -
2

2
1 2 1f

y
i j f i j f i j f i j( , ) ( , ) ( , ) ( , ) 	 (3.41)

Substituting Equations 3.40 and 3.41 in Equation 3.39, one can obtain the 
convolution template of the Laplacian operator as follows:

	 ∇ = -
















2

0 1 0
1 4 1
0 1 0

	 (3.42)

After processing by means of the Laplacian template, one obtains a func-
tion that indicates the edge pixel point when it crosses zero.

Figure 3.8 shows the results obtained by using different gradient operators 
for the same image.

3.4.4 H igh-Pass Filtering

The methods of image enhancement that use gradient and second deriva-
tives are all convolution-based operations in the spatial domain. Similar 
to image smoothing, image enhancement can be implemented in the fre-
quency domain. Because the edges of an image usually exhibit high-fre-
quency components in the frequency domain, image enhancement needs 
to keep the high frequencies and filter the low frequencies. This process is 
also known as high-pass filtering [4].

Ideal  high-pass filtering, trapezoidal  high-pass filtering, and Butterworth 
high-pass filtering are commonly used high-pass filtering methods.

3.4.4.1  Ideal High-Pass Filtering
The transfer function of an ideal high-pass filtering is given by

	 H u v
D u v D
D u v D

( , )
, ( , )
, ( , )

=
≤
>





0
1

0

0
	 (3.43)

where D u v( , )  denotes the distance between the point ( , )u v  and the 
origin of frequency domain, and D0  is the cut-off frequency. Here the 
distance can be calculated as

	 D u v u v( , ) = +2 2 	
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(a) (b)

(c) (d)

(e)

Figure 3.8  Results obtained by using different gradient operators: (a) the 
original image, (b) Roberts operator, (c) Prewitt operator, (d) Sobel opera-
tor, and (e) Laplacian operator.

C8970_C003.indd   86 9/29/08   5:54:00 PM

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b15848-4&iName=master.img-008.jpg&w=146&h=147
http://www.crcnetbase.com/action/showImage?doi=10.1201/b15848-4&iName=master.img-009.jpg&w=148&h=148
http://www.crcnetbase.com/action/showImage?doi=10.1201/b15848-4&iName=master.img-010.jpg&w=146&h=147
http://www.crcnetbase.com/action/showImage?doi=10.1201/b15848-4&iName=master.img-011.jpg&w=148&h=147
http://www.crcnetbase.com/action/showImage?doi=10.1201/b15848-4&iName=master.img-012.jpg&w=147&h=147


© 2009 by Taylor & Francis Group, LLC

Preprocessing Techniques for Images  <  87

3.4.4.2  Trapezoidal High-Pass Filtering
The trapezoidal high-pass filtering method may be used to eliminate 
jumps, and the transfer function is given by

	 H u v

D u v D
D u v D

D D
D D u v( , )

, ( , )
( , )

, ( , )=

≤
-

-
< <

0 1

1

0 1
1 DD

D u v D

0

01, ( , ) ≥











	 (3.44)

where D(u, v) and D0 are defined as earlier, and D1 is a constant satisfying 
the inequality D1 < D0.

3.4.4.3  Butterworth High-Pass Filtering
The Butterworth high-pass filtering method makes a slow transition 
between the pass and the stop. The transfer function is given by

	
H u v

D
D u v

n( , )

( , )

=

+










1

1 0
2

	 (3.45)

where n is the order of filtering, and D0 is the cut-off frequency.

3.5  Image Restoration
3.5.1  Image Degradation Model

Image restoration is the process of recovering an image from its degraded 
version. A typical restoration method is to construct a degradation model 
according to prior knowledge of the degradation phenomena. Based on 
this model, a restoration technique is equivalent to applying an inverse 
process to the model for restoring the image by satisfying certain criteria.

As described earlier, an image-processing model expressed in Equation 3.7 
may be used as a degradation model:

	 g x y f x y( , ) [ ( , )]= P 	 (3.46)

where the input f x y( , )  is a clean image, and the output g x y( , )  is the 
degraded image. The operation P  is the degradation system, which may 
be caused by diffraction and image differences in optics systems, the sen-
sor’s nonlinear aberration, the film’s nonlinearity, the disturbance due to 
air turbulence, the spur due to the motion of the object, geometric aber-
ration, etc.
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Noise is a common problem in degraded images. Usually, additive noise 
is preassumed, which is irrelevant to the intensities of images. Gaussian 
noise and impulse noise are two typical noises. The probability density 
function PG(z) of the Gaussian noise is a normal distribution function:

	 p z eG
z u( ) ( )/= - -1

2
2 2

πσ
σ 	 (3.47)

where the variable z represents the grey level of a noisy pixel, u is the math-
ematical expectation of z, and σ  is the standard deviation. The probabil-
ity density function PI(z) of the impulse noise has the form

	 p z
p z a
p z b

else
I

a

b( ) =
=
=







 0

	 (3.48)

where the definition of z is the same as earlier, a and b are two constant 
grey levels, and pa and pb are two constant probability density values. 
If a = maximum grey level , b = minimum grey level , and p pa b ≠ 0, the 
impulse noise is also called salt and pepper noise [19].

Let n(x, y) denote the noise at the coordinates (x, y). In general, noise 
may be processed independently by using the degradation system P, and 
the degradation model can be expressed as

	 g x y f x y n x y( , ) [ ( , )] ( , )= +P 	 (3.49)

Figure 3.9 depicts the image degradation model expressed in this equa-
tion. In line with image-processing systems, the image degradation sys-
tem P is also assumed to be a linear shift-invariant (LSI) system. By using 
the convolution operation and the concept of the point-spread function, 
Equation 3.49 can be expressed as

	
g x y P f x y n x y

h f x y d d

( , ) [ ( , )] ( , )

( , ) ( , )

= +

= - -a β a β a ββ
-∞

+∞

-∞

+∞

∫∫ +n x y( , )
	

(3.50)

Figure 3.9  The image degradation model.

g(x, y)f(x, y) P 

n(x, y)

C8970_C003.indd   88 9/29/08   5:54:11 PM

  



© 2009 by Taylor & Francis Group, LLC

Preprocessing Techniques for Images  <  89

where f x y( , )  is the original clean image, g x y( , )  is the degraded image, 
h x y( , )  is a point-spread function, and n x y( , )  is a certain additive noise 
function. In discrete notation, the degradation model can be expressed by 
the discrete convolution

	
g i j h i j f i j n i j

h k l f i k j l

( , ) ( , ) ( , ) ( , )

( , ) ( ,

= * +

= + + )) ( , )
l s

s

k r

r
n i j

=-=- ∑∑ +
	

where the convolution kernel h j k( , )  is assumed to be symmetric with a 
window size of ( )2 1r +  by ( )2 1s + . Equation 3.49 can also be written in the 
matrix form

	 g Pf n= + 	 (3.51)

where g, f, and n are vectors corresponding to image functions g and f and 
the noise function n, and P is a block circulate matrix.

3.5.2  Image Restoration Based on the Degradation Model

Based on the degradation model mentioned in Section 3.5.1, image res-
toration can be divided into unconstrained conditional restoration and 
constrained conditional restoration.

3.5.2.1  Unconstrained Conditional Restoration
The image degradation model expressed in Equation 3.46 does not con-
sider additive noise n x y( , ). In this case, according to Equation 3.51, a 
common restoration method is to choose an approximation vector f  of 
f  and to ensure that the magnitude of g Pf-  is minimised. An objective 
function can be defined as follows for this purpose:

	 J T

T T T T

( ) || || ( ) ( )f g Pf g Pf g Pf

g g f P g g Pf

= - = - -

= - -

2

++ f P PfT T

	 (3.52)

In order to minimise J( )f , the derivative of J  with respect to f  is required 
to be zero, leading to

	 ∂
∂

= - - + =J T T T T

f
P g g P P Pf( ) 2 0 	 (3.53)

	 f P P P g= -( )T T1 	 (3.54)
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When P is a square matrix, Equation 3.54 can be simplified as follows:

	 f P P g P g= =- -( )T T1 1P 	 (3.55)

3.5.2.2  Constrained Conditional Restoration
In practice, additive noise is an important component in degraded images 
and may be predicted a priori. In this situation, a constrained conditional 
restoration may be used to obtain a reasonable solution. Suppose Q is a 
linear operator operating on an image vector f. The problem is to find an 
optimal image vector f

–
 that minimises

	 || || ( )Qf Qf Qf f Q Qf2 = =T T T 	 (3.56)

subject to the constraint

	 || || || ||g Pf n- =2 2 	 (3.57)

where g is the degraded image vector, and n is a given noise vector.
The Lagrange multiplier method may be used to solve this problem. 

The objective function based on the Lagrange multiplier method is 
defined as follows:

	 J( ) || || || || || ||f Qf g Pf n= + - -( )2 2 2a 	 (3.58)

where a is the Lagrange multiplier. By putting the derivative of J to zero, 
that is,

	 ∂
∂

= - - =J T T

f
Q Qf P g Pf2 2 0a ( ) 	 (3.59)

leads to the solution

	 f P P Q Q P g= +






-

T T T1
1

a 	 (3.60)

Both constrained and unconstrained restorations discussed in this section 
assume that the degradation matrix P is known. In practice, P is difficult 
to obtain.
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3.5.3  Inverse Filtering

Taking the Fourier transform on both sides of Equation 3.50 leads to

	 G u v H u v F u v N u v( , ) ( , ) ( , ) ( , )= + 	 (3.61)

where G(u, v), H(u, v), F(u, v), and N(u, v) represent the Fourier transforms 
of g(x, y), h(x, y), f(x, y), and n(x, y), respectively. In the absence of noise, 
Equation 3.61 can be written as

	 G u v H u v F u v( , ) ( , ) ( , )= 	 (3.62)

If H u v( , ) ≠ 0, Equation 3.62 can be rewritten as

	 F u v G u v
H u v

( , ) ( , )
( , )

= 	 (3.63)

In other words, if the transfer function H(u, v) is known, one can obtain 
F(u,v) by using Equation 3.63. The original image function can be expressed 
by means of the inverse Fourier transform

	 f x y G u v
H u v

( , ) ( , )
( , )

=








-Γ 1 	 (3.64)

where the symbol Γ  denotes the Fourier transform.
Equation 3.64 does not work in the neighbourhoods of the zeros of 

H u v( , ). Therefore, a processing transfer function M(u, v), defined as fol-
lows, is used to avoid this problem [1]:

	 M u v H u v
u v

u v
( , ) ( , )=

+ ≤

+ >









1

1

2 2
0

2 2
0

τ

τ
	 (3.65)

where τ0  is a specified threshold that satisfies H u v( , ) ≠ 0, when u v2 2
0

+ ≤ τ . 
An approximate function ˆ( , )F u v  of F u v( , )  may be obtained by using the 
following relation:

	 ˆ( , ) ( , ) ( , )F u v M u v G u v= 	 (3.66)
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Using Equation 3.66, an approximate image function ˆ( , )f x y  can be 
obtained as

	 ˆ( , ) ( ( , ) ( , ))f x y M u v G u v= -Γ 1 	 (3.67)

This method is known as inverse filtering.
When noise exists, in the case of H u v( , ) ≠ 0, Equation 3.61 may be 

used, leading to

	 F u v G u v
H u v

N u v
H u v

( , ) ( , )
( , )

( , )
( , )

= - 	 (3.68)

and

	 f x y G u v
H u v

N u v
H u v

( , ) ( , )
( , )

( , )
( , )

= -








-Γ 1 	 (3.69)

The experimental result shown in Figure 3.10 is obtained when the image 
has a high value of signal-to-noise ratio (SNR). Note that an inverse res-
toration cannot produce good results in the case of strong noise. In such 
situations, one can consider using Wiener filtering.

3.5.4  Wiener Filtering

Consider again the degradation system having noise, expressed in 
Equation 3.50:

	 g x y h f x y d d n x y( , ) ( , ) ( , ) ( ,= - - +
-∞

+∞

-∞

+∞

∫∫ a β a β a β )) 	

Figure 3.10  Inverse restoration to the cat image, which shows blurring 
by convolution.
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Functions g(x, y), f (x, y), and n(x, y) can be regarded as stable random 
variables, and h(x, y) is known a priori. The aim of image restoration is to 
find the best estimation f

∧
(x, y) of f (x, y) with the minimal mean square 

error:

	 e E f x y f x y2 2= -{[ ( , ) ˆ( , )] } 	 (3.70)

where E is the mean operator.
Suppose the approximation ˆ( , )f x y  is written as

	 ˆ( , ) ( , ) ( , )f x y m x y g d d= - -
-∞

+∞

-∞

+∞

∫∫ a β a β a β 	 (3.71)

Then the problem of finding f
∧
(x, y) is converted into the process of finding 

m(x, y), which minimises the error function defined by Equation 3.70.
Let F u v G u v H u v M u v( , ), ( , ), ( , ), ( , )and be the Fourier transforms of 

f x y g x y h x y m x y( , ), ( , ), ( , ), ( , )and , respectively. Let F
∧
(u, v) be the Fourier 

transform of the approximation f
∧
(x, y); then M(u, v) and F(u, v) are com-

puted as follows:

	 ˆ( , ) ( , ) ( , )F u v M u v G u v= 	 (3.72)

	 M u v H u v
H u v P u v P u vn f

( , ) ( , )
| ( , )| ( , ) ( , )

=
+

*

2
	 (3.73)

where Pn(u, v) and Pf (u, v) represent the power spectra of the noisy image 
and original image, respectively, and H*(u, v)  is the conjugate complex of 
H(u, v). A detailed discussion may be found in References 3, 8, and 9.

In general, it is very difficult to estimate the power spectra Pn(u, v) and 
Pf (u, v) accurately. A suitable constant K may be used to approximate 
Pn(u, v)/Pf (u, v). In the case without noise, that is, Pn(u, v) = 0, M(u, v) 
defined by Equation 3.73 is equivalent to the processing transfer function 
given by Equation 3.65 in inverse filtering. Figure 3.11 demonstrates the 
results of an image restoration using Wiener filtering.

3.5.5 G eometric Rectification

As an imaging system itself is nonlinear, or the visual angle is different, 
geometric distortion may be brought into the image in the process of 
image shaping. Figure 3.12 depicts several simple examples of geometric 
distortion.
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To obtain correct images, one should rectify the image having geo-
metric distortion by using geometric transforms. Geometric rectification 
involves two steps: the spatial geometric transform of an image, and con-
firmation of pixel intensities in the rectification space.

3.5.5.1  Spatial Geometric Transforms
A spatial geometric transform rectifies an image f x y( , )  having geomet-
ric distortion by using the undistorted image g u v( , )  or a group of datum 
marks at which coordinates are known a priori. Figure 3.13 is used to dem-
onstrate a geometric tranform. Using certain reference points known to 
the two images, one can construct a geometric transform φ , describing 
the relationship between the coordinates ( , )x y  of the distorted image and 
the coordinates ( , )u v  of the undistorted image:

	

φ φ φ

φ

φ

= →

=

=

( , ) : ( , ) ( , )

( , )

( , )

1 2

1

2

u v x y

x u v

y u v

	 (3.74)

Bivariant polynomials may be used to express the geometric transform. Both 
quadratic and cubic polynomials are able to provide satisfactory results.  

Figure 3.11  Using Wiener filtering to restore the cat image with random 
noise.
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Take quadratic polynomials, for example, the geometric transform 
φ φ φ= ( , )1 2  is given by

	 x u v a a u a v a u a uv a v
y u v

= = + + + + +
=

φ
φ

1 1 2 3 4
2

5 6
2

2

( , )
( , )) = + + + + +



 b b u b v b u b uv b v1 2 3 4

2
5 6

2
	 (3.75)

where ai  and bi, 1 6≤ ≤i , are coefficients to be determined by choosing the 
corresponding reference points P j Mj , 0 ≤ ≤ , with the coordinates ( , )x yj j  
in the distorted system and the coordinates ( , )u vj j  in the undistorted sys-
tem. In order to solve the parameters a ii , 1 6≤ ≤ , M should be no less than 6. 
Using the first part of Equation 3.75, one can obtain the following system of 
equations for M = 6:

	

x
x

x

u v u u v v
u v u

1

2

6

1 1 1
2

1 1 1
2

2 2

1
1





















= 22
2

2 2 2
2

6 6 6
2

6 6 6
21

u v v

u v u u v v















































a
a
a
a
a
a

1

2

3

4

5

6

	 (3.76 a)

(a) (b) (c) (d)

Figure 3.12  (a) The original image, (b) the perspective distortion, (c) the 
pincushion distortion, and (d) the barrel distortion.

0 y 

x u

0 v 

(a) �e distorted image f (b) �e undistorted image g

Figure 3.13  Spatial geometric transform: (a) the distorted image f, and 
(b) the undistorted image g.
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The coefficients a a a1 2 6, ,...,  can be obtained by solving the preceding sys-
tem of equations. Similarly the coefficients b b b1 2 6, , ...,  can be obtained by 
solving the following system of equations:

	

y
y

y

u v u u v v
u v u

1

2

6

1 1 1
2

1 1 1
2

2 2

1
1





















= 22
2

2 2 2
2

6 6 6
2

6 6 6
21

u v v

u v u u v v















































b
b
b
b
b
b

1

2

3

4

5

6

	 (3.76 b)

In some situations, M  may be chosen to be a larger value in order to 
achieve better rectification. In this case, the least square method may be 
used to obtain the coefficients a a a1 2 6, , ...,  and b b b1 2 6, , ..., .

3.5.5.2  Confirmation of Pixel Intensities
If the geometric transform maps ( , )u v0 0  in the undistorted image to ( , )x y0 0  
in the distorted image, that is,

	 φ( , ) ( , )u v x y0 0 0 0= 	 (3.77)

the intensity of the pixel located at ( , )u v0 0  in the undistorted image must 
be equal to the intensity of the pixel located at ( , )x y0 0  in the distorted 
image, that is,

	 g u v f x y( , ) ( , )0 0 0 0= 	 (3.78)

However, the values of x0 and y0 computed by Equation 3.75 are not neces-
sarily integers. This means that the coordinates ( , )x y0 0  might not be pixel 
coordinates in the distorted image. In this case, f x y( , )0 0  is not defined, 
and interpolation is required to calculate a value of f x y( , )0 0 . There are two 
methods frequently used in the industry for such interpolation, and are 
discussed below.

(1)  Nearest Interpolation  Find a pixel point ( , )x y0 0  in the dis-
torted image, which is the best approximation of ( , )x y0 0 , and set 
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f x y f x y( , ) ( , )0 0 0 0= . Substitute this value in Equation 3.78, which leads 
to the following:

	 g u v f x y( , ) ( , )0 0 0 0= 	 (3.79)

(2)  Bilinear Interpolation  This method performs linear interpola-
tion in the two spatial directions by using the intensities of four neigh-
bouring pixels where the coordinates are approximations of (x0, y0). 
Suppose a x b y=   =  0 0and , and the four neighbouring pixels are 
( , ), ( , ), ( , ), ( , )a b a b a b a b+ + + +1 1 1 1and . The mathematical expression for 
calculating f(x0, y0) by using a bilinear interpolation may be written as

	
f x y f a b f a b( , ) ( )( ) ( , ) ( ) ( , )

(

0 0 1 1 1 1= - - + - +

+

a β a β

a 11 1 1 1- + + + +β aβ) ( , ) ( , )f a b f a b
	 (3.80)

where a β= - = -x a y b0 0and .

3.6  Processing Methods Using 
Partial Differential Equations
From some of the filters discussed in the previous sections, it is natural 
to link these filters to the finite difference replacement of certain partial 
differential equations. Hence, it is possible to treat images in a continu-
ous domain that satisfies certain partial differential equations (PDE). In 
its simplest form, such as Equation 3.42, one can immediately replace the 
discrete form by means of the Laplace equation in the continuous form. 
It is then natural to extend and use some of the theories and numerical 
methods related to solutions of the Laplace equation to produce further 
convolution templates in handling image processing. On the other hand, 
it is also natural to extend the use of the Laplace equation to incorporate 
certain peculiar properties of images.

This chapter describes only two classes of PDE-based image-process-
ing methods: diffusion-based models and total-variation-based models. 
Readers who are interested in other mathematical models in fluid dynam-
ics should consult References 10 and 11.
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3.6.1 D iffusion-Based Models

3.6.1.1  The Heat Conduction Model
In the early part of this chapter, a discrete Gaussian smoothing convolu-
tion kernel is given in Equation 3.18. The continuous Gaussian function is 
defined as follows

	 G x y at x y tt ( , ) exp[ ( )/ ]= - +-1 2 2 4 	 (3.81)

where a is a constant, and t represents the scale parameter. It is possible to 
show that the convolution of an image function g(x, y) with the Gaussian 
function

	 I x y t G x y g x yt( , , ) ( , ) ( , )= * 	 (3.82)

is equivalent to the steady-state solution of the diffusion equation in two 
dimensions [12,13]:

	

∂
∂

= = ∂
∂

+ ∂
∂

∈I x y t
t

I x y t I
x

I
y

I x y

( , , ) ( , , )

( , ,

∆ Ω
2

2

2

2

00) ( , )=







 g x y

	 (3.83)

subject to suitable boundary conditions along ∂Ω. Here, Ω  denotes the 
region containing the image, and ∂Ω  its boundary. Equation 3.83 is known 
as the isotropic heat conduction model representing a diffusion process. If the 
initial image function g x y( , )  is noisy, the steady-state solution of this model 
in Equation 3.83 is a Gaussian smoothing process. Note that edge blurring 
occurs after the application of Gaussian smoothing as discussed previously.

3.6.1.2  The Anisotropic Diffusion Model
In the isotropic heat conduction model described in Section 3.6.1.1, the 
diffusion process takes place in the same speed along each direction at a 
given pixel point of the image, which leads to edge blurring and does not 
preserve edges during the process of diffusion. It is possible to introduce 
a nonlinear anisotropic diffusion process [12] governed by the distribu-
tion function c I(|| ||)∇  into the heat conduction model in order to allow 
the diffusion process to exhibit a maximal speed along the edge direc-
tion and to ensure that diffusion terminates along the gradient direction. 
Taking this discussion into consideration, the mathematical model given 
by Equation 3.83 may be modified as follows:
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∂
∂

= ∇ ∇ ∈

=









I
t

div c I I

I x y g x y

( (|| ||) )

( , , ) ( , )

Ω

0

	 (3.84)

where || ||∇ = ∂
∂







+ ∂
∂







I I
x

I
y

2 2

 is the magnitude of the gradient, and div
x y

= ∂
∂

+ ∂
∂






  
represents the divergence of vector. The nonlinear coefficient distribution 
function c(x) should be designed to preserve the edge, which is also known 
as the edge-stopping function. On the other hand, c(x) needs to be a non-
negative monotonically decreasing function such that lim ( )

x
c x

→∞
= 0. With 

these concepts in mind, Perona and Malik [12] suggested the coefficient 
distribution function

	
c x

x
k

( ) =

+






1

1
2 	 (3.85)

where k is a positive constant. It is possible to show that the model (P–M 
model) obtains better effect only when xc x( )  is a nondecreasing function.

The model given by Equation 3.84 is a second-order PDE. Although it 
can remove noise effectively, experiences of many researchers show that 
it causes blocky effect [12,14]. The reason is that the second-order model 
replaces the intensities of the neighbourhood of a pixel with a constant 
intensity, which forms a level horizontal to the x–y plane during an itera-
tive process, leading to the steady-state solution.

To overcome this drawback, fourth-order PDEs are proposed. One 
common fourth-order PDE model is the Y–K model proposed by You and 
Kaveh [14], shown as follows:

	 ∂
∂

= -∇ ∇ ∇I
t

c I I2 2 2
[ (| |) ] 	 (3.86)

where c s( )  is a positive monotonically decreasing function. You and 
Kaveh [14] take c s( )  as

	 c s
s

k

( ) =
+( )

1
1

2 	 (3.87)

where k  is a constant.
Figure 3.14 shows the original Lena image and its version having 10 dB 

Gaussian noise. Figures 3.15–3.17 show the resulting images obtained by 
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using different diffusion models. In particular, Figure 3.15 is obtained using 
the isotropic diffusion model. Although noise has been smoothed to some 
extent, the edges of the image become blurry, and this destroys the key 
features of the original image. From Figure 3.16, one can see that the edges 

(b) Lena image with 10 dB Gaussian noise(a) The original Lena image

Figure 3.14  The original Lena image and its version with 10 dB Gaussian 
noise: (a) the original Lena image, and (b) Lena image with 10 dB Gaussian 
noise.

(a) The restored image by using
isotropic diffusion

(b) The top left part of (a)

Figure 3.15  Restored images obtained by using isotropic diffusion: (a) the 
restored image by using isotropic diffusion, and (b) the top left part of (a).
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of the image obtained by using the second-order nonlinear diffusion model 
are preserved. However, the blocky effect is quite obvious. Figure 3.17 illus-
trates the results obtained by using the fourth-order PDE in overcoming 
the blocky effect introduced by second-order nonlinear diffusion models.

(a) The restored image by using
P-M diffusion model

(b) The top left part of (a)

Figure 3.16  Restored images obtained by using the P–M diffusion model: 
(a) the restored image using the P–M diffusion model, and (b) the top left 
part of (a).

(a) The restored image by using
Y-K diffusion model

(b) The top left part of (a)

Figure 3.17  Restored images obtained by using isotropic diffusion: (a) the 
restored image using the Y–K diffusion model, and (b) the top left part of (a).

C8970_C003.indd   101 9/29/08   5:55:43 PM

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b15848-4&iName=master.img-020.jpg&w=143&h=144
http://www.crcnetbase.com/action/showImage?doi=10.1201/b15848-4&iName=master.img-021.jpg&w=144&h=144
http://www.crcnetbase.com/action/showImage?doi=10.1201/b15848-4&iName=master.img-022.jpg&w=291&h=144
http://www.crcnetbase.com/action/showImage?doi=10.1201/b15848-4&iName=master.img-022.jpg&w=291&h=144


© 2009 by Taylor & Francis Group, LLC

102  <  A Concise Introduction to Image Processing Using C++﻿

3.6.2 TV -Based Models

As described in Section 3.5.2, image restoration can be expressed as a con-
strained conditional restoration in the continuous domain, with the gen-
eral image degradation model given by Equation 3.49:

	 g x y f x y n x y( , ) [ ( , )] ( , )= +P

where g is the initial noisy image, and f is the final clean image. Image res-
toration is used to find an optimal image function f, which makes || ||QI  
minimum under the constrained condition || || || ||g I n- =P , where Q is a 
linear operator, and I is the intensity function of an image.

If only noise is considered, the operation P can be set as an identity 
operator, that is,

	 P[ ( , )] ( , )f x y f x y= 	

In a continuous domain, the linear operator Q can be chosen as a func-
tional of gradient [15]:

	 Q I I dxdy( ) (| |)= ∇∫ϕ
Ω

	 (3.88)

where Ω  is the domain of the image I.
Here, a simple case is to choose ϕ  as an identity operator, leading to the 

total variation (TV) model [16]:

	 Minimise ∂
∂







+ ∂
∂





∫ I

x
I
y

dxdy
2 2

Ω

	 (3.89)

subject to the constraint

	
1
2

2 2( ( , ) ( , ))I x y g x y dxdy- =∫
Ω

σ 	 (3.90)

where σ > 0  is a priori information, representing the standard deviation 
of the noise function n x y( , ). Using the Lagrange multiplier method, the 
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aforementioned TV model can be described as the minimisation of the 
function J(I) such that

	 J I I
x

I I
y

dxdy Ix( ) (= ∂
∂







+ ∂
∂







+ -∫ 2

2
1
2

Ω

λ
ΩΩ
∫ g dxdy)2 	 (3.91)

where λ  is the Lagrange multiplier. The solution of the aforementioned 
minimisation problem can be expressed as a parabolic equation with time 
as an evolution parameter [16]:
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	 (3.92)

where I x y t( , , )  is the image at time t, and n  is the outward normal of ∂Ω. 
When t → ∞, I x y t( , , ) approaches a denoised version of g x y( , ).

It is easy to find that, when λ = 0, Equation 3.92 is reduced to a nonlinear 
diffusion model. In fact, the fourth-order Y–K model given by Equation 
3.86 is first expressed as minimising the energy functional [14]:

	 E I I dxdy( ) (| |)= ∇∫ϕ 2

Ω

	 (3.93)

where the functional ϕ  satisfies

	 c s s s( ) '( )/= ϕ 	 (3.94)

3.6.3	D iscrete Formats of PDE Models

The PDEs described in the previous sections are expressed in continuous 
models. Numerical methods require discretisation along the horizontal, 
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vertical, and temporal axes. Suppose the size of a given image is N N× . 
Let

	

t k t n

x ih i N

y jh j

= ∆ =

= = -

= =

, , , ,

, , , , ,

, ,

0 1 2

0 1 2 1

0 1,, , ,2 1N -

	 (3.95)

where h  denotes the spatial mesh size, which is usually chosen to be 1, 
representing the unit distance between two neighbouring pixels, and ∆t  
denotes the temporal step length. In general, an image-processing model 
based on PDE can always be written as:

	 ∂
∂

=I x y t
t

I x y t( , , ) ( ( , , ))φ 	 (3.96)

and in a semidiscretised form

	
I x y t t I x y t

t
I x y t( , , ) ( , , ) ( ( , , ))+ ∆ -

∆
≈ φ 	 (3.97)

Using the mesh defined in Equation 3.95, it can easily be written in an 
iterative form

	 I i j I i j I i j tk k k+ = + ⋅∆1( , ) ( , ) ( ( , ))φ 	 (3.98)

where I i j I i j k tk ( , ) ( , , )= ∆ , and I i j I i j0 0( , ) ( , , )=  is the initial noisy image.

3.7 Fu rther reading
Image preprocessing is an important process because the quality of pre-
processing will affect the subsequent processing of images, such as image 
segmentation or image recognition. It is also a difficult task because it 
needs a trade-off between noise smoothing and edge preservation. In many 
cases, different types of noise may occur simultaneously in an image. As 
a result, numerous works focusing on the study of image preprocessing 
are currently being carried out. For example, improvements to classi-
cal median filtering were proposed, including adaptive median filtering 
[17,18] and the two-phase denoising method [19]. With the development 
of the wavelet theory, there are many applications of this theory in image 
smoothing, and readers may find more details in References 20–22. On 
the other hand, in recent years, PDE-based image-processing technology is 
developing rapidly, and applications of the PDE model in image processing 
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have been extended from early image denoising to image segmentation 
[23,24] and image inpainting [25–28], as well as efficiency improvements 
in image processing.

3.8 E xercises

Q.1	� A 3-bit grey-scale image with a size 8 8×  is given here. Obtain its 
grey-scale histogram.

	
f =

0 2 2 2
2 3 5 4
5 6 6 7
5 6 7 7

3 2 0 0
4 2 2 1
6 7 6 5
6 4 4 4

3 3 5 7
2 4 5 6
1 11 2 5
0 2 2 3

7 6 4 3
7 7 6 5
6 6 2 2
4 4 2 0

































	

Q.2	� Using Equation 3.5, stretch the image given in Q.1 to 4-bit grey-
scale image (the intensity of each pixel in the image is stored in a 
4-bit memory).

Q.3	� Using the 8-neighbourhood-averaging method (consider the 
contribution of the intensity of the central pixel) and the 3 × 3 median 
filtering method, smooth the image block given in Q1 and compare 
the results.

Q.4	� Add certain amount of Gaussian noise and salt-and-pepper noise 
to a grey-scale image. Remove the noise using median filtering 
method, and compare the effects of the two types of noises.

Q.5	� Obtain gradient images of the binary image given in Figure 3.18 by 
using the Prewitt operator and Sobel operator.

Q.6	� Assume that an image f(x,y) is the distorted version of a standard 
image g(u,v). The distortion is the linear transform φ, which maps 
the pixels (2, 0), (0, 3), and (4, 3) in the standard image g(u,v) to the 
pixels (2, 3), (3, 6), and (4, 4) in the distorted image f(x,y), respec-
tively. Which pixel in the distorted image f(x,y) corresponds to the 
pixel (1, 5) in the standard image g(u,v), if the nearest neighbouring 
interpolation is used?
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Q.7	� Prove that the function given by Equation 3.87 is a positive mono-
tonically decreasing function.

Q.8	� Write iterative formulae for the heat conduction model given by 
Equation 3.83 and the P–M model given by Equation 3.84.
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3.10  Partial Code Examples
Project 3-1: Show the Grey-Scale Histogram 
of an 8-Bit Grey-Scale Image

(These codes can be found in CD: Project3-1\source code\DlgHistShow.cpp)
#include "stdafx.h"

#include "project3_1.h"

#include "DlgHistShow.h"

#include "project3_1Doc.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif

BOOL CDlgHistShow::OnInitDialog()

{

	 CDialog::OnInitDialog();

	

	 // TODO: Add extra initialization here

	

	 // Set the pointer pointing to the pixel intensity 

of original image

	 unsigned char * lpSrc;

	 // cyclic variable

	 int i,j;
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	 // get the histogram-show dialogue item

	 CWnd* pWnd = GetDlgItem(IDC_DLG_HIST_SHOW);

	 int cxDIB = (int) ::DIBWidth(lpDIB); // Size of 

DIB - x

	 int cyDIB = (int) ::DIBHeight(lpDIB); // Size of 

DIB - y

	 LPSTR lpDIBBits=::FindDIBBits (lpDIB);

	 // count the number of byte of the image per line

	 long lLineBytes = WIDTHBYTES(cxDIB * 8);

	 // reset the counter to 0

	 for (i = 0; i < 256; i ++)

	 {

		  //

		  m_nHist[i] = 0;

	 }

	

	 // compute the pixel number of each grey scale and 

get the histogram

	 for (i = 0; i < cyDIB; i ++)

	 {

		  for (j = 0; j < cxDIB; j ++)

		  {

			   // the pointer pointing to the i-th 

line and j-th column picture pixel

			   lpSrc = (unsigned char*)lpDIBBits + 

lLineBytes * (cyDIB - 1 - i) + j;

			 

			   // add 1 to the counter

			   m_nHist[*(lpSrc)]++;

		  }

	 }

	 return TRUE; // return TRUE unless you set the 

focus to a control

	  // EXCEPTION: OCX Property Pages should return 

FALSE

}

void CDlgHistShow::OnPaint()

{

	 CPaintDC dc(this); // device context for painting
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	 // TODO: Add your message handler code here

	 // cyclic variable

	 int i;

	 // get the histogram-show dialogue item

	 CWnd* pWnd = GetDlgItem(IDC_DLG_HIST_SHOW);

	 // get the context of the DIB

	 CDC* pDC = pWnd->GetDC();

	 pWnd->Invalidate();

	 pWnd->UpdateWindow();

	 pDC->Rectangle(0, 0, 330, 300);

	 // create the object of the Pen

	 CPen* pPenRed = new CPen;

	 // create red pen (draw the axis of the coordinates)

	 pPenRed->CreatePen(PS_SOLID, 1, RGB(255,0,0));

	 // select the red pen and save the previous pen

	 CPen* pOldPen = pDC->SelectObject(pPenRed);

	 // draw the axis

	 pDC->MoveTo(10,10);

	

	 // draw the Y-axis

	 pDC->LineTo(10, 280);

	 // draw the X-axis

	 pDC->LineTo(320, 280);

	 // draw the scales in X-axis

	 CString strTemp;

	 strTemp.Format("0");

	 pDC->TextOut(10, 283, strTemp);

	 strTemp.Format("50");

	 pDC->TextOut(60, 283, strTemp);

	 strTemp.Format("100");

	 pDC->TextOut(110, 283, strTemp);

	 strTemp.Format("150");

	 pDC->TextOut(160, 283, strTemp);

	 strTemp.Format("200");

	 pDC->TextOut(210, 283, strTemp);

	 strTemp.Format("255");

	 pDC->TextOut(265, 283, strTemp);

	

	 //
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	 for (i = 0; i < 256; i += 5)

	 {

		  if ((i & 1) == 0)

		  {

			   // the times of 10

			   pDC->MoveTo(i + 10, 280);

			   pDC->LineTo(i + 10, 284);

		  }

		  else

		  {

			   // the times of 5

			   pDC->MoveTo(i + 10, 280);

			   pDC->LineTo(i + 10, 282);

		  }

	 }

	

	 // draw the arrowhead of the X-axis

	 pDC->MoveTo(315,275);

	 pDC->LineTo(320,280);

	 pDC->LineTo(315,285);

	

	 // draw the arrowhead of the Y-axis

	 pDC->MoveTo(10,10);

	 pDC->LineTo(5,15);

	 pDC->MoveTo(10,10);

	 pDC->LineTo(15,15);

	 // the maximum counter in the histogram

	 LONG lMaxCount = 0;

	 // compute the maximum counter

	 for (i = 0; i <= 255; i ++)

	 {

		  //

		  if (m_nHist[i] > lMaxCount)

		  {

			   // update the maximum counter

			   lMaxCount = m_nHist[i];

		  }

	 }
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	 // output the maximum counter

	 pDC->MoveTo(10, 25);

	 pDC->LineTo(14, 25);

	 strTemp.Format("%d", lMaxCount);

	 pDC->TextOut(11, 26, strTemp);

	

	 // create a new pen object

	 CPen* pPenBlue = new CPen;

	 // create a blue pen (draw the histogram)

	 pPenBlue->CreatePen(PS_SOLID, 1, RGB(0,0,255));

	 // select the blue pen

	 pDC->SelectObject(pPenBlue);

	 // decide whether the maximum counter exist

	 if(lMaxCount > 0){

		  // draw the histogram

		  for (i = 0; i <= 255; i ++)

		  {

			   pDC->MoveTo(i + 10, 280);

			   pDC->LineTo(i + 10, 281 - (int) (m_

nHist[i] * 256 / lMaxCount));

		  }

	 }

	 // restore the previous pen

	 pDC->SelectObject(pOldPen);	

	

	 // delete the red pen and the blue pen

	 delete pPenRed;

	 delete pPenBlue;

}

Project 3-2: Median Filtering

(These codes can be found in CD: Project3-2\source code\project3_2View 
.cpp)
#include "stdafx.h"

#include "project3_2.h"

#include "math.h"

#include "project3_2Doc.h"

#include "project3_2View.h"

#ifdef _DEBUG
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#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif

/*******************************************************

******************

 *

 * Function name:

 * GetMedianValue()

 *

 * parameters:

 * unsigned char * pUnchFltValue	 - the pointer 

pointing to the array which needs to decide the median

 * int iFilterLen			   - the length of the array

 *

 * return value:

 * unsigned char			   - return the median of 

the array
°

 *

 * Description:

 * The function uses bubble sort method to rearrange the 

array data in order and

* return the median value.

 *

 *******************************************************

*****************/

unsigned char GetMedianValue(unsigned char * pUnchFlt-

Value, int iFilterLen)

{

	 // cyclic variables

	 int		  i;

	 int		  j;

	

	 // temp variable

	 unsigned char bTemp;

	

	 // rearrange the data in the array in order using 

the bubble sort method

	 for (j = 0; j < iFilterLen - 1; j ++)
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	 {

		  for (i = 0; i < iFilterLen - j - 1; i ++)

		  {

			   if (pUnchFltValue[i] > pUnchFltValue[i 

+ 1])

			   {

				    // swap

				    bTemp = pUnchFltValue[i];

				    pUnchFltValue[i] = 

pUnchFltValue[i + 1];

				    pUnchFltValue[i + 1] = bTemp;

			   }

		  }

	 }

	

	 // compute the median

	 if ((iFilterLen & 1) > 0)

	 {

		  // return the median value if the number of 

the array is odd

		  bTemp = pUnchFltValue[(iFilterLen + 1) / 2];

	 }

	 else

	 {

	 // return the average of the two median values if 

the number of the array is even

		  bTemp = (pUnchFltValue[iFilterLen / 2] + 

pUnchFltValue[iFilterLen / 2 + 1]) / 2;

	 }

	

	 // return the median

	 return bTemp;

}

/*******************************************************

******************

 *

 * function name:

 * MedianFilter()
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 *

 * \input parameters:

 * LPSTR lpDIB		  - information of the original 

image

 * int nTempWidth		  - the width of the template

 * int nTempHeight		 - the height of the template

 * int nTempCenX		  - the X-coordinate of the cen-

tre of the template

 * int nTempCenY		  - the Y-coordinate of the cen-

tre of the template

 *

 * \ return value:

 * BOOL			   - return TRUE if success other-

wise return FALSE

 *

 * Description:

 * The function performs the median filtering for the 

given image.

 *

 *******************************************************

*****************/

BOOL MedianFilter(LPSTR lpDIB,int nTempWidth, int nTem-

pHeight,

					      int nTempCenX, int 

nTempCenY)

{	

	 // the pointer pointing to the temporary image data

	 LPBYTE lpImage;

	

	 // cyclic variables

	 int i, j, k, l;

	

	 // the pointer pointing to the original image

	 unsigned char*	 lpSrc;

	

	 // the pointer pointing to the region which will 

be copied

	 unsigned char*	 lpDst;
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	 LPSTR lpDIBBits=::FindDIBBits (lpDIB);

	 int cxDIB = (int) ::DIBWidth(lpDIB); // Size of 

DIB - x

	 int cyDIB = (int) ::DIBHeight(lpDIB); // Size of 

DIB - y

	 long lLineBytes = WIDTHBYTES(cxDIB * 8); // count 

the the number of byte of the image per line

	 // the pointer pointing to the filter array

	 unsigned char* pUnchFltValue;

	 // allocate the memory for the temp data

	 lpImage = (LPBYTE) new char[cxDIB*cyDIB];

	 // decide success or not

	 if (lpImage == NULL)

	 {

		  // return

		  return FALSE;

	 }

	

	 // copy the original image data to the temp data 

memory

	 memcpy(lpImage, lpDIBBits, cxDIB*cyDIB);

	

	 // allocate temp memory to save the filter array

	 pUnchFltValue = new unsigned char[nTempHeight * 

nTempWidth];

	

	 // decide success or not

	 if (pUnchFltValue == NULL)

	 {

		  // release the allocated memory

		  delete[]lpImage;

		

		  // return

		  return FALSE;

	 }

	

	 // median filtering

	 // row
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	 for(i = nTempCenY; i < cyDIB - nTempHeight + 

nTempCenY + 1; i++)

	 {

		  // column

		  for(j = nTempCenX; j < cxDIB - nTempWidth + 

nTempCenX + 1; j++)

		  {

			   // points to the data of the ith row, 

jth column of the new DIB

			   lpDst = (unsigned char*)lpImage + 

cxDIB * (cyDIB - 1 - i) + j;

			 

			   // read the filter array

			   for (k = 0; k < nTempHeight; k++)

			   {

				    for (l = 0; l < nTempWidth; l++)

				    {

					     // points to the data of 

the (i - nTempCenY + k) row,

// (j - nTempCenX + l) column of DIB

					     lpSrc = (unsigned char*)

lpDIBBits + cxDIB * (cyDIB - 1 - i + nTempCenY - k) + j 

- nTempCenX + l;

					   

					     // save the intensity of 

the pixel

					     pUnchFltValue[k * nTemp-

Width + l] = *lpSrc;

				    }

			   }

			 

			   // get the median

			   * lpDst = 

GetMedianValue(pUnchFltValue, nTempHeight * nTempWidth);

		  }

	 }

	

	 // copy the result image
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	 memcpy(lpDIBBits, lpImage, cxDIB*cyDIB);

	

	 // release the memory

	 delete[]lpImage;

	 delete[]pUnchFltValue;

	 // return

	 return TRUE;

}

/*****************

Project 3-3: Gradient Image Obtained by Using Sobel Operator

(These codes can be found in CD: Project3-3\source code\project3_3View 
.cpp)
#include "stdafx.h"

#include "project3_3.h"

#include "math.h"

#include "project3_3Doc.h"

#include "project3_3View.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif

/*******************************************************

******************

 *

 * \function name:

 * SobelOperator()

 *

 * \input parameters:

 * LPSTR lpDIB		  - information of the original 

image

 * double * pdGrad	 - the pointer pointing to the infor-

mation of the gradient

* image

 *

 * \return value:

 * null

 *
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 * \Description:

 * Sobel operator

 *

 *

 *******************************************************

******************

 */

void SobelOperator(LPSTR lpDIB, double * pdGrad)

{

		  // go through the y-coordinate of the pixel 

of the original image

	 int y;

	

	 // go through the x-coordinate of the pixel of the 

original image

	 int x;

	

 // the pointer pointing to the data of the original image

	 unsigned char *lpSrc;

	 LPSTR lpDIBBits=::FindDIBBits (lpDIB);

	 int cxDIB = (int) ::DIBWidth(lpDIB); // Size of 

DIB - x

	 int cyDIB = (int) ::DIBHeight(lpDIB); // Size of 

DIB - y

	 long lLineBytes = WIDTHBYTES(cxDIB * 8); // count 

the the number of byte of the image per line

	 // the width and the height of the image

	 int nWidth			   = cxDIB		  ;

	 int nHeight			   = cyDIB		  ;

	

	 // initialisation

	 for(y=0; y<nHeight ; y++)

		  for(x=0 ; x<nWidth ; x++)

		  {

			   *(pdGrad+y*nWidth+x)=0;

		  }

		

		  // set the weights of the template

		  static int nWeight[2][3][3] ;
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		  nWeight[0][0][0] = -1 ;

		  nWeight[0][0][1] = 0 ;

		  nWeight[0][0][2] = 1 ;

		  nWeight[0][1][0] = -2 ;

		  nWeight[0][1][1] = 0 ;

		  nWeight[0][1][2] = 2 ;

		  nWeight[0][2][0] = -1 ;

		  nWeight[0][2][1] = 0 ;

		  nWeight[0][2][2] = 1 ;

		

		  nWeight[1][0][0] = 1 ;

		  nWeight[1][0][1] = 2 ;

		  nWeight[1][0][2] = 1 ;

		  nWeight[1][1][0] = 0 ;

		  nWeight[1][1][1] = 0 ;

		  nWeight[1][1][2] = 0 ;

		  nWeight[1][2][0] = -1 ;

		  nWeight[1][2][1] = -2 ;

		  nWeight[1][2][2] = -1 ;

		

		

		

		  //supporting window

		  int nTmp[3][3];

		

		  // temp variables

		  double dGrad ;

		  double dGradOne;

		  double dGradTwo;

		

		  // cyclic variables for the template

		  int yy ;

		  int xx ;

		

		

		  // compute the gradient magnitude of each 

pixel in the original image

// by using Sobel operator

		  //
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		  for (y=1; y < nHeight-1; y++)

			   for (x=1; x < nWidth-1; x++)

			   {

				    lpSrc = (unsigned char*)lpDIB-

Bits;

				    dGrad = 0 ;

				    dGradOne = 0 ;

				    dGradTwo = 0 ;

				    // the intensities of the sup-

porting window

				  

				    // the first row

				    nTmp[0][0] = lpSrc[(y-1)*cxDIB 

+ x - 1 ] ;

				    nTmp[0][1] = lpSrc[(y-1)*cxDIB 

+ x ] ;

				    nTmp[0][2] = lpSrc[(y-1)*cxDIB 

+ x + 1 ] ;

				  

				    // the second row

				    nTmp[1][0] = lpSrc[y*cxDIB + x 

- 1 ] ;

				    nTmp[1][1] = lpSrc[y*cxDIB + x 

] ;

				    nTmp[1][2] = lpSrc[y*cxDIB + x 

+ 1 ] ;

				  

				    // the third row

				    nTmp[2][0] = lpSrc[(y+1)*cxDIB 

+ x - 1 ] ;

				    nTmp[2][1] = lpSrc[(y+1)*cxDIB 

+ x ] ;

				    nTmp[2][2] = lpSrc[(y+1)*cxDIB 

+ x + 1 ] ;

				  

				    // gradient magnitude

				    for(yy=0; yy<3; yy++)

					     for(xx=0; xx<3; xx++)

					     {
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						      dGradOne += 

nTmp[yy][xx] * nWeight[0][yy][xx] ;

						      dGradTwo += 

nTmp[yy][xx] * nWeight[1][yy][xx] ;

					     }

					     dGrad = dGradOne*dGradOne 

+ dGradTwo*dGradTwo ;

					     dGrad = sqrt(dGrad) ;

					     // save the gradient 

magnitude to the memory

					   

*(pdGrad+y*nWidth+x)=dGrad;

			   }

}

/*******************************************************

******************

*

* \ function name:

* OnEdgeSobel()

*

* \ input parameter:

* null

*

* \ return value:

* null

*

* \ Description:

* image segmentation using Sobel operator

*

********************************************************

****************

*/

void CProject3_3View::OnEdgeSobel()

{

	 // change the style of the cursor

	 BeginWaitCursor();

	 // cyclic variables

	 int x;

	 int y;
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	 CProject3_3Doc * pDoc = (CProject3_3Doc *)this-

>GetDocument();

	 ASSERT_VALID(pDoc);

	 if(pDoc->m_hDIB == NULL)

		  return ;

	 LPSTR lpDIB = (LPSTR) ::GlobalLock((HGLOBAL) 

pDoc->m_hDIB);

	 LPSTR lpDIBBits=::FindDIBBits (lpDIB);

	 int cxDIB = (int) ::DIBWidth(lpDIB); // Size of 

DIB - x

	 int cyDIB = (int) ::DIBHeight(lpDIB); // Size of 

DIB - y

	 long lLineBytes = WIDTHBYTES(cxDIB * 8);

 // count the number of byte of the image per line

	 // the pointer pointing to the gradient data

	 double * pdGrad;

	

	 // allocate the memory for the gradient image data

	 pdGrad=new double[cxDIB*cyDIB];

	

	 //the pointer pointing to the image data

	 unsigned char *lpSrc;

	

	 // apply Sobel operator to compute the gradient 

magnitude for each pixel

	 SobelOperator(lpDIB, pdGrad);

	

 //thresholding the gradient image

	 for(y=0; y<cyDIB ; y++)

		  for(x=0 ; x<cxDIB ; x++)

		  {

			   lpSrc = (unsigned char*)lpDIBBits;

			   if(*(pdGrad+y*cxDIB+x)>50)

				    *(	 lpSrc+y*cxDIB+x	

)=BYTE(0);

			   else

				    *(	 lpSrc+y*cxDIB+x	

)=BYTE(255);			

		  }
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 // release the memory

	 delete pdGrad;

	 pdGrad=NULL;

	 // restore the style of the cursor

	 EndWaitCursor();

	

	 // set the modification flag

	 pDoc->SetModifiedFlag(TRUE);

	

	 // update the view

	 pDoc->UpdateAllViews(NULL);

}

/

********************************************************

*****************

Project 3-4: Image Restoration Using the Second- and 
Fourth-Order Partial Differential Equations

(These codes can be found in CD: Project3-4\source code\imageprocess-
Dlg.cpp)
#include "stdafx.h"

#include "project3_4.h"

#include "imageprocessDlg.h"

#include "io.h"

#include "math.h"

#include "stdlib.h"

#include "stdio.h"

#include <fcntl.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/stat.h>

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif

void CimageprocessDlg::OnProcess()

{

if(b) // use the second-order PDE model
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	 {

		  int i,j;

		  int count=0, t; //iteration times

	 CString msg;

		  double k;

		  double l=0.25;

		

		  UpdateData(true);

		  if (m_done)

		  {

			   CDialog::OnOK();

			   return;

		  }

		

		  // the noisy image

		  m_noise_image = (unsigned char **) 

malloc((m_height)

* sizeof (unsigned char *));

row_image = (unsigned char *)malloc((long)(m_

width)*(long)(m_height)*sizeof(unsigned char));

		  if (row_image == NULL)

		  {

			   Message("Error: Out of memory from 

image buffer");

			   return;

		  }

		  for (i = 0; i<m_height; ++i, row_image += 

m_width)

			   m_noise_image[i] = row_image;

		

		  // read the noisy image

		  if(!ReadNoiseImage(m_width, m_height))

			   return;

		

		  // the smoothing image, the initial value is 

the same as the noisy image

		  m_smooth_image = (double **)malloc((m_

height)*sizeof(double *));
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		  smooth_row_image = (double *)malloc((long)

(m_width)*(long)(m_height)*sizeof(double));

		  if (smooth_row_image == NULL)

		  {

			   Message("Error: Out of memory from 

image buffer");

			   return;

		  }

		  for (i = 0; i<m_height; ++i, smooth_row_

image += m_width)

			   m_smooth_image[i] = smooth_row_image;

		

		  for( i=0; i<m_height; ++i)

			   for(j=0; j<m_width; ++j)

				    m_smooth_image[i][j] = (double)

m_noise_image[i][j];

			 

			   // temporary image

			   m_temp_image = (double **)malloc( 

(m_height+2)*sizeof(double *));

temp_row_image = (double *)malloc((long)(m_

width+2)*(long)(m_height+2)*sizeof(double));

			   if(temp_row_image == NULL)

			   {

				    Message("Error: Out of memory 

from image buffer");

				    return;

			   }

			   for(i=0; i<m_height+2; ++i,temp_row_

image += (m_width+2))

				    m_temp_image[i] = temp_row_

image;

			 

			   for(i=0;i<m_height+2;++i)

				    for(j=0;j<m_width+2;j++)

					     m_temp_image[i][j] = 0;

				  

				    for(i=1; i<m_height+1; ++i)

					     for(j=1; j<m_width+1; ++j)
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					     {

						      m_temp_image[i][j] 

= (double) m_noise_image[i-1][j-1];

					     }

					     // perform the process 

iteratively

					     for (t=0; t < m_itera-

tions; t++)

					     {

						      ++count;

						      //m_temp_image for 

the temporary image

						      for (j=1; j<m_

width+1; j++)

						      {

							       m_temp_

image[m_height+1][j]

= (double) m_temp_image[m_height][j];

							       m_temp_

image[0][j] = (double) m_temp_image[1][j];

						      }

						      for(i=1;i<m_

height+1;i++)

						      {

							       m_temp_

image[i][m_width+1] =

(double) m_temp_image[i][m_width];

							       m_temp_

image[i][0] = (double) m_temp_image[i][1];

						      }

						      // maximum itera-

tion times

						      k = 10;

						      //p-m, isotropic 

diffusion, minimum surfaces

						      for(i=0;i<m_

height;i++)

							       for(j=0;j<m_

width;j++)

C8970_C003.indd   127 9/29/08   5:56:12 PM

  



© 2009 by Taylor & Francis Group, LLC

128  <  A Concise Introduction to Image Processing Using C++﻿

								        m_

smooth_image[i][j] = m_temp_image[i+1][j+1]

								        +l*( 

gg(m_temp_image[i+2][j+1]-m_temp_image[i+1][j+1],k)*(m_

temp_image[i+2][j+1]-m_temp_image[i+1][j+1])

								        +gg(m_

temp_image[i][j+1]-m_temp_image[i+1][j+1],k)*(m_temp_

image[i][j+1]-m_temp_image[i+1][j+1])

								        +gg(m_

temp_image[i+1][j+2]-m_temp_image[i+1][j+1],k)*(m_temp_

image[i+1][j+2]-m_temp_image[i+1][j+1])

								        +gg(m_

temp_image[i+1][j]-m_temp_image[i+1][j+1],k)*(m_temp_

image[i+1][j]-m_temp_image[i+1][j+1]));

							     

							       for(i=1;i<m_

height+1;i++)

								      

for(j=1;j<m_width+1;j++)

									       

m_temp_image[i][j] = m_smooth_image[i-1][j-1];

								      

								      

								        msg.

Format("interations %d.", count);

								      

Message(msg);

					     }

					   

					     msg.Format("interations 

%d.", count);

					     Message(msg);

					     // Write smooth image to 

file

					     if(!WriteSmoothImage(m_

width, m_height))

						      return;

					   

					     // release memory

					     free(m_noise_image[0]);
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					     free(m_temp_image[0]);

					     free(m_smooth_image[0]);		

			 

					     m_ProcessButton.

SetWindowText("Close");

					     m_done=true;	

				    }

	 else // use the fourth-order PDE model

	 {

		  int i,j;

		  int count=0, k; // iteration times

		  CString msg;

					   

		  UpdateData(true);

		  if (m_done)

			   {

				    CDialog::OnOK();

				    return;

			    }		

			   // the noisy image

m_noise_image = (unsigned char **)malloc((m_height)*

size of (unsigned char *));

		  row_image = (unsigned char *)malloc((long)

(m_width)*

(long)(m_height)*size of(unsigned char));

			   if (row_image == NULL)

					     {

						      Message("Error: 

Out of memory from image buffer");

						      return;

					     }

			   for (i = 0; i<m_height; ++i, row_

image += m_width)

						      m_noise_image[i] = 

row_image;

					   

			   // read the noisy image

			   if(!ReadNoiseImage(m_width, m_height))

						      return;
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	 / the smoothed image, the initial value is the 

same as the noisy image

			   m_smooth_image = (double **)

malloc((m_height)*size of(double *));

			   smooth_row_image = (double *)

malloc((long)(m_width)*

(long)(m_height)*size of(double));

			   if (smooth_row_image == NULL)

					     {

						      Message("Error: 

Out of memory from image buffer");

						      return;

					     }

			   for (i = 0; i<m_height; ++i, smooth_

row_image += m_width)

						      m_smooth_image[i] 

= smooth_row_image;

					   

			   for(i=0; i<m_height; ++i)

				    for(j=0; j<m_width; ++j)

							       m_smooth_

image[i][j] = (double)m_noise_image[i][j];

						    

			   // temporary image u

			   m_u_image = (double **)malloc((m_

height+2)*size of(double *));

			   u_row_image = (double *)malloc((long)

(m_width+2)*

(long)(m_height+2)*sizeof(double));

			   if (u_row_image == NULL)

				    {

					     Message("Error: Out of 

memory from image buffer");

					     return;

				    }

			   for (i = 0; i<m_height+2; ++i, u_row_

image += (m_width+2))

							       m_u_image[i] 

= u_row_image;
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			   for (i = 1; i<=m_height; ++i)

					     for (j=1;j<=m_width;j++)

						      m_u_image[i][j] = 

(double)m_noise_image[i-1][j-1];

							     

			   //the divergence of u

			   m_grads_u = (double **)malloc((m_

height)*sizeof(double *));

			   grads_u_row_image = (double *)

malloc((long)(m_width)*

(long)(m_height)*sizeof(double));

			   if (grads_u_row_image == NULL)

				    {

					     Message("Error: Out of 

memory from image buffer");

								      

return;

				    }

			   for (i = 0; i<m_height; ++i, grads_u_

row_image += m_width)

								        m_

grads_u[i] = grads_u_row_image;

							     

			   //the coefficient function g

			   g = (double **)malloc((m_

height+2)*sizeof(double *));

			   g_row_image = (double 

*)malloc((long)(m_width+2)*

(long)(m_height+2)*sizeof(double));

			   if (g_row_image == NULL)

				    {

					     Message("Error: Out of 

memory from image buffer");

					     return;

					     }

			   for (i = 0; i<m_height+2; ++i, g_row_

image += (m_width+2))

								        g[i] = 

g_row_image;
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			   // the divergence of the function g

			   m_grads_g = (double **)malloc((m_

height)*size of(double *));

			   grads_g_row_image = (double *)

malloc((long)(m_width)*

(long)(m_height)*size of(double));

			   if (grads_g_row_image == NULL)

					     {

					      Message("Error: Out of 

memory from image buffer");

					      return;

					     }

			   for (i = 0; i<m_height; ++i, grads_g_

row_image += m_width)

								        m_

grads_g[i] = grads_g_row_image;

							     

			   //perform the process iteratively

			   for (k=0; k<m_iterations; k++)

				    {

					     ++count;	

					     //initialize the border 

of u

					     for (i=1; i<=m_height; 

i++)

							       m_u_image[i]

[0] = m_u_image[i][1];

					     for (i=1; i<=m_height; 

i++)

m_u_image[i][m_width+1] = m_u_image[i][m_width];

					     for (j=1;j<=m_width;j++)

							       m_u_image[0]

[j] = m_u_image[1][j];

					     for (j=1;j<=m_width;j++)

m_u_image[m_height+1][j] = m_u_image[m_height][j];

								      

					     // divergence of u

					     for (i=0; i<m_height; i++)

						      for(j=0; j<m_

width; j++)
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							       m_grads_u[i]

[j] = grads_u_function(i,j);

									       

									       

					     // g (div (u))

					     for (i=1; i<=m_height; 

i++)

					     for (j=1; j<=m_width; j++)

								        g[i]

[j]= g_function(i,j);

										        

					     // the border

					     for (i=1; i<=m_height; 

i++)

							       g[i][0] = 

g[i][1];

					     for (i=1; i<=m_height; 

i++)

						       g[i][m_width+1] = 

g[i][m_width];

					     for (j=1; j<=m_width; j++)

							       g[0][j] = 

g[1][j];

					     for (j=1; j<=m_width; j++)

							       g[m_

height+1][j] = g[m_height][j];

										        

									       

					     // divergence of g

					     for (i=0; i<m_height; i++)

					     for (j=0; j<m_width; j++)

m_grads_g[i][j] = grads_g_function(i,j);

										        

	

					     // the result image of 

iteration

					     for (i=0; i<m_height; i++)

					      for(j=0; j<m_width; j++)

		  m_smooth_image[i][j] =
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(-m_t_step)*m_grads_g[i][j]+m_u_image[i+1][j+1];

										        

		

					     for(i=1; i<=m_height; i++)

						      for(j=1; j<=m_

width; j++)

								        m_u_

image[i][j] = m_smooth_image[i-1][j-1];

										        

			 

					     msg.Format("interations 

%d.", count);

					     Message(msg);

			   }

			   msg.Format("interations %d.", count);

			   Message(msg);

							     

			   // Write the smoothed image to a file

			   if (!WriteSmoothImage(m_width, m_

height))

								      

return;

							     

			   // release memory

			   free(m_noise_image[0]);

			   free(m_u_image[0]);

			   free(m_grads_u[0]);

			   free(g[0]);

			   free(m_grads_g[0]);

			   free(m_smooth_image[0]);

							     

			   m_ProcessButton.

SetWindowText("Close");

			   m_done=true;		

		  }

}
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 4C H A P T E R

Image Segmentation

Image segmentation is used to distinguish interesting objects from an 
image. Objects are considered to be basic elements used in image analy-

sis and image understanding. For the convenience of description, several 
important concepts related to images are briefly described here [1]. A region 
Ω of an image is a set of pixels adjacent to each other. Any two pixel points 
in the region are connected by a path that itself consists of a number of pixels. 
An object of interest may be embedded in a region. Some such objects of 
interest may be considered as foreground, whereas others are considered 
as background of the image. The border îΩ is a set of pixels forming the 
boundary of Ω. For any pixel on îΩ, there is at least one neighbouring 
pixel that is outside the region Ω. The concepts of regions, objects, and 
borders concern the positions of pixels. An edge e(i, j) at the pixel point 
(i, j) of an image with the image function f(x, y) is defined by means of 
a vector with two components, the magnitude M(i, j), and the direction  
q (i, j), as follows:
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The edge magnitude M(i, j) is the magnitude of the gradient, and the 
edge direction q (i, j) is rotated 90° clockwise with respect to the gradient 
direction. Edges are very useful in finding the border of a region.
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Thresholding, edge-based segmentation, and region-based segmentation 
are common segmentation technologies. The first section of this chapter is 
devoted to a discussion on thresholding using a number of different con-
cepts, leading to an optimal thresholding algorithm, followed by a section 
on edge-based segmentation, and another on region-based segmentation.

4.1  Thresholding
A simple method of segmentation is to use a threshold to partition an 
image into two parts, namely, foreground and background. The threshold 
t  is used to check against the intensity f(i, j) of a pixel at point (i, j) of the 
image. If the background of the image is dark, then the foreground con-
sists of bright objects:

	 g i j
f i j
f i j

( , )
, ( , )

( , )
=

≥
<





1
0

τ
τ

	 (4.1)

In other words, the pixel at (i, j) of the image f  belongs to the foreground 
if g(i, j) = 1; otherwise, it belongs to the background. If one is interested in 
dark objects with a light background, Equation 4.1 is rewritten as

	 g i j
f i j
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0
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τ

	 (4.2)

This thresholding method is used to partition an image according to the 
intensities at different pixels of the image. In practice, thresholding can 
also be applied to other properties of images, such as colour, texture, 
gradient, etc.

4.1.1 S emi-Thresholding and Band–Thresholding

There are many modifications [1] to the basic thresholding based on 
Equations 4.1. and 4.2. Semithresholding and band thresholding are two 
typical modifications based on Equation 4.1, and their definitions are 
given here. Figure 4.1 depicts the results of four basic methods of thresh-
olding segmentation.

4.1.1.1  Semi-Thresholding

	 g i j
f i j f i j

f i j
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τ
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	 (4.3)
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This modification of thresholding is called semi-thresholding; it keeps the 
foreground unchanged and puts the background as black.

4.1.1.2  Band-Thresholding
In this modification of thresholding, a threshold interval U defined by two 
thresholding values is used instead of a single value t .

	 g i j
f i j U
f i j U

( , )
, ( , )

( , )
=

∈
∉





1
0

	 (4.4)

A pixel (i, j) belongs to the foreground if its intensity belongs to U.

4.1.2 H istogram-Based Thresholding

The crucial problem of thresholding is how to choose a proper threshold t 
for an image. In most cases, the choice of thresholds is based on grey-level 
histograms of images, as introduced in Chapter 3.

Figure 4.1  Basic thresholding segmentation: (a) original image, (b) basic 
thresholding, (c) semi-thresholding, and (d) band-thresholding.
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4.1.2.1  The Mode Method
If an image contains similar grey-level objects that vary from the grey lev-
els of the background, its grey-level histogram consists of two peaks [1,2], 
one belonging to the objects and the other belonging to the background. 
Such a histogram is called a bi-model. Usually, the valley between the two 
peaks—a minimum histogram value that corresponds to the minimal 
number of pixels in the grey level—is selected as a threshold. Figure 4.2 
shows the result of the mode-histogram-based thresholding.

4.1.2.2  Adaptive (Local) Method
In some images, brightness may be nonuniform over the whole image, 
or the distribution of grey levels of the background may be nonuniform. 
These situations lead to grey-level histograms with more than two peaks, 
and the mode method does not work. A better way to handle such situations 
is to partition the image into several subimages and obtain a threshold for 
each subimage using the mode method [3].

4.1.3 O ptimal (Iterative) Thresholding

An alternative method to the histogram-based method is optimal thresh-
olding, which is obtained by means of an iterative process. For a simple 
version of this method [4], an initial threshold is set to roughly partition 
the image into foreground and background. The mean value of the average 
intensity of the foreground and the average intensity of the background is 
calculated and used as a better approximate threshold. The iteration con-
tinues until no new values of the threshold can be obtained. Figure 4.3 
shows a typical example of applying optimal thresholding segmentation. 
It can be described using the following algorithm:

Figure 4.2  The mode-histogram-based thresholding: (a) original image, 
(b) its grey-level histogram with threshold = 120, and (c) histogram-based 
thresholding.
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Algorithm 4.1: Optimal thresholding segmentation
For the given image f(i, j): 0 ≤ i ≤ m - 1, 0 ≤ j ≤ n - 1

Set an initial threshold t (0), e.g., τ ( )

,

( , )0 1= × ∑n m f i j
i j

;

Set k = 0; d = 0.0001;
Do
{

Partition the pixels of f into two sets:

Ω

Ω

1

2

= ≥

= <

{( , ) : ( , ) }

{( , ) : ( , )

( )

( )

i j f i j

i j f i j

k

k

τ

τ }}

;

Compute the average intensities of two sets:
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where |Ω 1| and |Ω 2| denote the number of pixels in Ω 1 and Ω 2, respectively.

Compute the new threshold:

τ µ µ( ) ( )k+ = +1
1 2

1
2 ;

k := k + 1;
} until { τ τ δ( ) ( )k k- <-1  }
End-Algorithm

Figure 4.3  optimal thresholding: (a) original image, and (b) optimal 
thresholding segmentation (optimal threshold = 115).
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4.2 E dge-Based Segmentation
This section introduces methods of finding the border of an object and 
identifying the object or the foreground of an image. These methods are 
usually referred to as edge-based segmentation, and include gradient pro-
cessing and border tracing.

4.2.1 E dge Image Thresholding

In Chapter 3, gradient operators, such as those introduced by Roberts, 
Prewitt, and Sobel, were discussed with applications for edge enhance-
ment of an image. The application of thresholding to the results obtained 
by means of a gradient operator may be used to identify the border of an 
image (See Chapter 3, Sections 3.4.2 and 3.4.3). However, such methods, 
which calculate the gradient magnitude image with thresholding, will 
broaden the edge of the image, and hence, will affect the accurate location 
of the edge. On the other hand, any edges retrieved can be easily corrupted 
by noise. Canny [5, 6] proposed a multiple detection method that avoids 
these two shortcomings. It involves two steps. First, the image is smoothed 
by means of a Gaussian filter in order to reduce the effect of noise. Second, 
the gradient direction of the gradient image is processed with the non-
maximal suppression method and is used for edge thinning.

Given the original image f(i, j), 0 ≤ i ≤ m - 1, 0 ≤ j ≤ n - 1, and by using 
the notation for neighbouring pixels shown in Figure 4.4, the process of 
Canny’s edge detection algorithm consists of the following four steps:

	 1.	Use a Gaussian filter h to smooth the image f leading to the 
smoothed result S = h * f. The template of the Gaussian smoothing 
function h can be found in Chapter 3, Section 3.3.1.3.

	 2.	Compute the gradient magnitude G(i, j) and the gradient direction 
q (i, j) of the pixel at point (i, j) of the image function S by using the 
formulae
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where the approximate discrete formulae of the two partial derivatives 
are given by
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	 (4.6)

	 3.	Determine the edge pixel using nonmaximal suppression. The char-
acteristic of an edge pixel is that its gradient magnitude is the local 
maximal in the gradient direction. To determine whether the gra-
dient magnitude of the pixel at (i, j) is a local maximal or not, one 
needs to locate the two neighbouring pixels p1 and p2 of the pixel at 
point (i, j) and calculate the gradient magnitudes of the three pixels. 
Suppose pixels p1 and p2 are located at positions (i1, j1) and (i2, j2),  
respectively. If the gradient magnitude of the pixel at position (i, j) is 
maximum, it is an edge point, and the gradient magnitude is used as 
its intensity; otherwise, the pixel is not an edge point, and its inten-
sity is set to 0. The resulting image j can be described as follows:
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(i + 1, j – 1) (i + 1, j)

(i, j – 1) (i, j)

(i – 1, j + 1)

(i + 1, j + 1)

(i, j + 1)

(i – 1, j)

Figure 4.4  The neighbourhood of the pixel at point and the gradient 
directions.
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Because the locations of pixels are discrete, gradient directions also 
need to be quantized. Take the 8-neighbouring domain, as shown 
in Figure 4.4, with the pixel at position (i, j) as an example. The posi-
tions (i1, j1) and (i2, j2) of the neighbouring pixels p1 and p2 in the 
gradient direction can be computed as follows:

	 a.	 If - < ≤1
8

1
8

π θ π( , )i j , q (i, j) is quantized as 0, and

	 ( , ) ( , ),( , ) ( , )i j i j i j i j1 1 2 21 1= - = + ;

	 b.	 If 
1
8

3
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, and

	 ( , ) ( , ),( , ) ( , )i j i j i j i j1 1 2 21 1= - = + .

	 4.	Thresholding with hysteresis. Non-maximal suppression reduces the 
border of an object to the width of just one pixel. Due to the existence 
of noise and thin texture, this process may result in spurious responses, 
which lead to streaking problem. Streaking means the breaking up of 
an edge contour caused by the operator fluctuating above and below 
the threshold. Hysteresis using two thresholds t1 < t2 can eliminate 
streaking. If the value j(i, j) of the pixel at position (i, j) in the resulting 
image is larger than t2, the pixel is definitely an edge pixel, and all such 
edge pixels constitute the edge output. Any pixel connected to this edge 
pixel and has its value larger than t1 is selected as an edge pixel. The 
following algorithm details the thresholding with hysteresis.

Algorithm 4.2: Thresholding with hysteresis

	Let W(i, j) denote the 8-neighbourhood of the pixel at (i, j).
	For the given image ϕ( , ) : ,i j i m j n0 1 0 1≤ ≤ - ≤ ≤ -
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		 Prepare two thresholds: t1 < t2;
		 Initialize the resulting edge image E i j i m j n( , ) : ,= ≤ ≤ - ≤ ≤ -0 0 1 0 1;
		 Repeat
		 {	 count = 0;
			  For i = 0 to m - 1
			  For j = 0 to n - 1
			  Do
				   If (j (i, j) ≥ t2) then { E(i, j) = 1; count = count +1}
				   else if (j (i, j) ≥ t1) then for each (k, 1) ∈ W(i, j)
				       if E(k, l) = 1 then { E(i, j) = 1; count = count +1}
			  End-Do
		 } until (count = 0)
		 Output the resulting edge image: E(i, j).
End-Algorithm.
Figure 4.5 shows the result of an edge image detected by the Canny method.

4.2.2 E dge Relaxation

Certain parts of the border resulting from previous processing are often 
missed due to noise. The missing parts lead to disconnected borders. Edge 
relaxation is a processing method similar to thresholding with hysteresis. 
The pixels between two sets of border pixels are considered border pix-
els only if their neighbouring pixels are taken into account and criteria is 
used to determine whether border pixels are relaxed [7,8].

(b) Edge image detected by
Canny method

(a) Original Lena image

Figure 4.5  Edge detection using the Canny method: (a) Original Lena 
image, and (b) Edge image detected by Canny method.
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A classic edge relaxation method is based on the concept of crack 
edges [9]. There are four crack edges attached to the pixel at (i, j) that are 
defined by its relation to its 4-neighbours:

e i j→( , ):
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The directions of the four crack edges are depicted in Figure 4.6. The pixel 
positions related to the crack edges are called end vertices. For example, 
the end vertices of the crack edge e i j→( , ) are (i, j) and (i, j + 1), and the end 
vertices of the crack edge e i j↑( , ) are (i, j) and (i - 1, j).

The main idea of edge relaxation is to decide whether a crack edge 
can be used to extend a continuous border based on the properties of 
its neighbours. Each crack edge e is assigned a confidence, represent-
ing its strength of being a border part. The initial confidence c(0)(e) 
may be taken as its normalised magnitude, with normalisation based 
on either the global maximum of the crack edges in the entire image 
or on a local maximum in some large neighbourhood of the edge. It 
is modified according to the properties of its neighbours. This modi-
fication may be repeated until all the crack edges of the given image 
are reviewed to be a part of the border or not. The main steps are 
described here.

	 1.	Crack edges are partitioned into different patterns according to the 
types of their two end vertices. The type of a vertex is the number 
of crack edges that emanate from it. The type of an edge is repre-
sented by a pair of numbers consisting of the types of its vertices. 
For example, in Figure 4.4, the pixel vertices (i, j) and (i, j + 1) are 
the vertices of the crack edge e→ ,  and if the types of vertices (i, j) 
and (i, j + 1) are k and l, respectively, the pattern of the edge e→  is 
(k - 1).

The type of a vertex u is computed according to its other three crack 
edges, excluding the one currently being dealt with. Let (a, b, c) be 
the current confidences of the three crack edges and, without loss of 
generality, assume that a ≥ b ≥ c. Let q be a constant usually chosen 

(i, j) e

e

e

e

Figure 4.6  Directions of the four crack edges attached to a pixel.
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as 0.1, and m = max(a, b, c, q). Four types of confidences can be com-
puted in association with the vertex u:

	

conf m a m b m c

conf a m b m c
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( ) ( )( )( )

( ) ( )( )

0

1

= - - -

= - -

oonf ab m c
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= -

=

	 (4.8)

Then the type of the vertex u is defined as

	 type u j conf j conf k
k

( ) ( ) max ( )= =such that 	 (4.9)

The parameter m adjusts the vertex classification so that it is relative 
to the local maximum, and the parameter q forces weak vertices to 
type zero.

Example 4.1  Assuming u and v are two pixel vertices of the crack edge e, 
the confidences for u and v are given by (au, bu, cu) = (0.9, 0.9, 0.01) and  
(av, bv, cv) = (0.01, 0.01, 0.01), respectively. Check the type of the crack edge e.
Solution: First determine the type of the vertex u. Using Equation 4.8, conf (2) 
has the largest value. Therefore, type(u) = 2, that is, u is a type 2 vertex.

Secondly, determine the type of the vertex v. Similarly, using Equation 
4.8, conf (0) shows the largest value. Therefore type(v) = 0, that is, v is a 
type 0 vertex.

Hence, the type of the edge e is 2-0. By symmetry, type 2-0 is consid-
ered the same as type 0-2.  <

	 2.	Every crack edge is assigned with a confidence value as a part of the 
border, and the edge types are used to modify this confidence. By 
symmetry, only the following edge types need to be considered:

0-0: Isolated edge; the edge confidence needs to be decreased.
0-1: Uncertain; no influence on the edge confidence.
0-2, 0-3: Dead end; the edge confidence needs to be decreased.
1-1: Continuation; the edge confidence needs to be increased.
1-2, 1-3: Continuation; the edge confidence needs to be increased.
2-2, 2-3, 3-3: Bridge between borders; no influence on the edge 
confidence.
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	 3.	For each crack edge e, an iterative update may be applied to obtain its 
confidence, denoted as c(e). Superscript (k) is used to denote the k-th 
iterative update. The (k + 1)-th iterative update of edge confidence is 
based on the edge type and the previous confidence c(k)(e) according 
to the following choices:

Confidence increases (according to the edge type):
c(k+1)(e) = min {1, c(k)(e) + d }
Confidence decreases (according to the edge type):
c(k+1)(e) = max {0, c(k) (e) - d }
No influence (according to the edge type): 
c(k + 1) (e) = c(k)(e)

Here d  denotes a constant chosen in the range from 0.1 to 0.3 [1], which 
stands for the influence on the edge confidence.

As a summary, the edge relaxation algorithm based on crack edges is given 
as Algorithm 4.3.

Algorithm 4.3: Edge relaxation based on crack edges

For the given image f i j i m j n( , ) : ,0 1 0 1≤ ≤ - ≤ ≤ -

	Preparing two thresholds τ τ1 2<  for convergence estimation;
Computing all crack edges for all pixels and initialize edge confidence:
c e M e( )( ) ( ( ))0 = normalize  for every crack edge e;
k = 0;
Repeat
{ count=0;
 	 For each crack edge e:-
 	 If (c ek( )( ) ≠ 0) and c ek( )( ) ≠1 then
 	 { count=count + 1;
 	   �Find the edge type according to the confidences of its  

neighbouring crack edges;
 	   Update the confidence c(k+1) (e) according to the edge type and c(k) (e);
 	   If c(k+1) (e) > t2 then c(k+1) (e) = 1;

 	   If c ek( )( )+ <1
1τ  then c(k+1) (e) = 0;

 	   k = k + 1;
 	 }
} Until (count =0)
End-Algorithm
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4.2.3  Border Tracing

As described in section 4.2.1, processing the gradient image with thresh-
olding usually results in images with wider borders. Canny detector, as 
discussed in Section 4.2.1, is a method of thinning the border. In this sec-
tion, another method of obtaining borders with one pixel width through 
border tracing is discussed. The gradient image with thresholding may be 
presented as a binary image. The first step in the border tracing method is 
to select an initial border point from the object of a binary image, followed 
by a search of its 4-neighbouring or 8-neighbouring pixels, and finally out-
put the next border point. To avoid deadlock, a variable is used to record 
the search direction. Take the 8-neighbourhood shown in Figure 4.7 as an 
example, integers from 0 to 7 are used to record the different directions of 
the neighbourhood of the pixel. The search direction is indexed as 0 when 
the current point is the pixel at (i, j) and the pixel to be searched is (i, j +1). 
On the other hand, when the next pixel to be searched is located at (i -1, 
j +1), the search direction is indexed as 1.

Using the image shown in Figure 4.8 as an example, the object point p0 
at the top left corner of the object is selected as the initial border point. In 
order to describe the process, the variable dir is used to record the search 
direction. The initial search direction is 7, that is, dir = 7. The next border 
point is selected from the 3 × 3-neighbourhood of p0. The search direction 
begins with an odd number less than the previous direction 7. Hence, the 
search starts from direction 5 in an anticlockwise direction. The first object 
point p1 found is selected as the new border point, followed by the update 
dir = 5. The next search is in the neighbourhood of p1. The search begins 
from direction 3 in an anticlockwise direction to direction 6 where another 
border point p2 is obtained. This search process may be repeated until the 
closed border p0 p1 p2 … p9 p10 p0  is constructed. The tracing algorithm just 
discussed is summarized in Algorithm 4.4. Note that the border of the k-th 
region is denoted by p(k, s), s = 0, 1, 2, . . ., l, and the output of the algorithm 
is the sets of pixels that consist of borders of objects.

7

3
2

1

04

5 6

Figure 4.7  Directions of search in an 8-neighbourhood.
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Algorithm 4.4: Border tracing detection in 8-neighbourhood
For the given binary image f i j i m j n( , ): ;0 1 0 1≤ ≤ - ≤ ≤ - ;
k = 0 denotes the number of the borders;
qk = f ; //the set of the pixel points on the border of the object k;
sik = 0; sjk = 0; // the search beginning point of the k-th region;
do while (true)
{	 For i = sik to m - 1 // find a starting border pixel of a new region;
		 For j = sjk  to n - 1
		     if (f(i, j) = 1) and ((i, j) ∉ qs, s = 0, …, k - 1) then
		     {p(k, 0) = (i, j); // the first border pixel of the k-th region;
		  �   sik+1 = i; sjk+1 = j + 1 // the search of next region will begin from 

this pixel;
		     exit;
		     }
		     else halt;
		 End-For
		 End-For;
		 Initialize the search direction variable dir = 7;
		 s = 0; 		  // the current border pixel;
		 Repeat // search border pixels;
		 {   If (dir is odd) then dir = (dir + 6) / mod 8
		     else dir = (dir + 7) / mod 8; // the beginning direction of search;
		  �   while (dir < 8) and (the corresponding neighbouring pixel is 

not a border pixel)
		     do {dir = (dir + 1) / mod 8;}
		     s = s + 1;
		     p(k, s) = the corresponding neighbouring pixel; qk = qk ∪ {p(k, s)}
		 } until p(k, s) = p(k, 1) and p(k, s - 1) = p(k, 0);
		 k = k + 1;

p0 

p1 

p2 

p3 

p4 p5 

p6

p7 

p8 p9 

p10 

Figure 4.8  Border tracing.
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	}
End-Algorithm

Note that when p(k, l) = p(k, 0), the border is closed. Figure 4.9 depicts the 
resulting edge image detected by edge tracing method.

4.2.4  The Hough Transform

Given the shape and size of an edge, the edge point might be obtained 
more easily by transferring the initial image space to a new space through 
some kind of transformation. The Hough transform [1,10] is an effective 
method based on this idea.

It assumes that the image to be processed is a binary image that has 
been processed using a threshold. Straight lines passing through the point 
(x, y) can be expressed in form y = kx + b, where k denotes the slope, and 
b the intercept. Different values of k and b govern different lines, that is, 
any straight line in x–y space is represented by a single point in the k–b 
parameter space. This single point is relative to the original coordinates  
(x, y) of any point in the line:

	 b kx y= - + 	 (4.10)

Note that the slope k of a vertical line is infinite, which creates some dif-
ficulties in practice. The following polar coordinates transformation may 
overcome this problem:

	 ρ θ θ= +x ycos sin 	 (4.11)

(a) Original image (b) �e result edge image detected
by edge tracing method

Figure 4.9  Edge detection by the edge-tracing method. (a) Original image, 
and (b) the resulting edge image detected by edge-tracing method.
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By using Equation 4.11, a straight line L in x–y space is transformed to the 
point (r, q) in the polar coordinates space. As illustrated in Figure 4.10, 
any point (xt, yt) on L is transformed to the same point (r0, q 0):

	 ρ θ θ0 0 0= +x yt tcos sin 	 (4.12)

If there are n pixel points in the original image that are transformed to the 
same point (r0, q 0) in the polar coordinates space, these n pixel points could 
be a straight line in the original image. The larger the value of n, the more 
points on the line and the more the possibility that it is the border of a given 
region of the original image. In the polar coordinate space, an accumula-
tor A(r, q) is set to count the number of pixel points in the original image 
that has been transformed to the point (r, q) in polar coordinates space. If  
A(r, q) achieves its maximum at a certain point (r1, q 1), all the pixel points 
in the original image that have been transformed to (r1, q 1) make up the 
line border. The Hough transform is presented in Algorithm 4.5.
Algorithm 4.5: Line detection using the Hough transform
	Given the binary image f(i, j): 0 ≤ i ≤ m - 1, 0 ≤ j ≤ n - 1
Quantize the parameter space (r, q ): rmin ≤ r ≤ rmax, 0 ≤ q  ≤ 180 where 
r and q are intergers;
	Initialize the accumulator A(r, q) = 0 for all
(r, q ): rmin ≤ r ≤ rmax, 0 ≤ q  ≤ 180.
	For i = 0 to m - 1
	For j = 0 to n - 1
	{{
		 For q = 0 to 180
		 { ρ θ θ= +i jcos sin
		 quantize r to the quantisation value r ';
		 A A( ', ) ( ', )ρ θ ρ θ= +1;
		 }
}}

L 

x 

y 

(ρ0, θ0) 
(xt, yt)

ρ 

θ 

ρ 

ρ0 

θ 

θ0 

(ρ0, θ0) 

Figure 4.10  An illustration of the Hough transform.
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Obtain the maximal value of the accumulator:

A A p( *, *) max{ ( , ) : , }min maxρ θ ρ θ ρ ρ θ= ≤ ≤ ≤ ≤0 180 ;
For i = 0 to m - 1
For j = 0 to n - 1
{{
If ( ρ θ θ* cos * sin *= +i j ) then mark (i, j) as a pixel of the line border.
}}
End-Algorithm

4.3 R egion-Based Segmentation
Region-based segmentation is different from edge-based segmentation, 
which extracts the edge of the region before constructing the region. It is a 
method that directly constructs the region applying a certain homogene-
ity principle [11,12]. Methods include the region-growing method, image-
merging method, and region split-and-merge method.

4.3.1  The Region-Growing Method

Region growing picks up one pixel of the image as a seed to start with. 
The initial region contains only the seed, which is then compared with its 
neighbouring pixels according to a certain homogeneity principle before 
adding any analogical pixels to the initial region. The same process is 
repeated until the region stops growing.

The homogeneity principle may be based on grey level, colour, texture, 
shape, model, etc. For example, the magnitude of crack edges may be used 
as a suitable metric. Suppose v is the current point in the region, and u is 
a pixel point in its 4-neighbourhood to be compared; a homogeneity crite-
rion for the given image function f can be defined as

	 s
f u f v

f u f v
=

- <

- ≥







1

0

, | ( ) ( )|

, | ( ) ( )|

if

if

τ

τ
	 (4.13)

where t  is a preassigned threshold. The case s = 1 means u and v are simi-
lar and may be put in the same region; otherwise, u and v belong to differ-
ent regions. The following algorithm shows the computational steps of the 
region-growing method.
Algorithm 4.6: The region-growing method
	For the given image f i j i m j n( , ): ,0 1 0 1≤ ≤ - ≤ ≤ -
	Preassign a seed pixel v0 and a threshold t ;
Initialize the current region R: = {v0}; The set of candidate seeds C: = {v0};
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While (C ≠ ∅) do
{

select a seed pixel v from C;
C: = C \ {v}; // delete the seed pixel v from the candidate seed set;
N(v) := the set containing 4-neighbouring pixels of v;
For each u N v∈ ( ): if (u R∉ ) and (s = 1) // From Equation 4.13
{

R R u
C C u

: { };
: { }
= ∪
= ∪

 // u is added to the region and is a candidate seed

}
	}
End-Algorithm

4.3.2  The Region-Merging Method

Region merging begins with partitioning the original image into small 
regions, followed by the combination of similar adjacent regions into a 
bigger region according to a given homogeneity principle. The process of 
merging is repeated until each region is the largest and does not grow any 
more in accordance with the homogeneity principle. Furthermore, either 
the mean grey-level value or some other statistical characteristic of each 
adjacent region is to be used to establish comparability between regions. 
The difference between this method and the method of region growing 
lies in the use of comparability. Statistical measures such as variance, grey-
level histogram, etc., can be used in establishing comparability.

The following algorithm shows the computational steps involved in the 
method of region merging, in which the homogeneity principle for regions 
is based on the difference between the mean grey-levels of two regions.
Algorithm 4.7: Region merging
	Given the image f i j i m j n( , ): ,0 1 0 1≤ ≤ - ≤ ≤ -
	k = 0; // current number of regions;
	initialize all pixels as unmarked;
	For i = 0 to m - 1
	For j = 0 to n - 1
	 // Partition the original image into regions of constant grey-level.
	{{ if (pixel (i, j) is unmarked) then
		  mark (i, j);

for each 8-neighbouring pixel u:
 case ( f(u) = f(i, j)) and (u is marked):
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 (i, j) belongs to the region which u belongs to;
 case (f(u) = f(i, j)) and (u is unmarked):

 (i, j) and u belong to the same region Rk;
 k: = k + 1; mark u;

 case (f(u) ≠ f(i, j)):
 (i, j) belongs to the region Rk; k: = k + 1;

		  end-for;
	}}
	n_merge = 0; // tag of merges;
	Repeat
	{ For all region Rs, compute rs  = the mean grey level of Rs;
		 For each region Rs, compare Rs  with its neighbour region Rt:
				   if | |r r Ts t- <  then
				          combine Rs, Rt to form a new region;
				          n_merge = n_merge + 1;
				   endif
	} until (n_merge: = 0)
End-Algorithm

4.3.3  The Region Split-and-Merge Method

Region split-and-merge is also used in image segmentation. First, an image is 
treated as a bigger region, which is divided into smaller regions according to 
homogeneity principles such as variance, grey-scale histogram etc. Second, 
similar adjacent smaller regions are merged by checking the comparability 
of these regions. Repeat the merging process until the region cannot grow 
any more. Particular attention should be paid to different homogeneity 
principles of split and merge.

4.4  Further Reading
Several basic image segmentation methods are introduced in this chapter. 
Thresholding methods rely on the intensities of the pixels only and neglect the 
variation along spatial positions. These methods are particularly suitable for 
images with distinguishable background and foreground. They do not work 
when the edges are blurry. In other words, threshold techniques are effec-
tive only if all pixels that belong to the objects have brightness levels within 
a certain range that can be distinguished from those of the background. 
Edge-based segmentation depends on edge detection and edge acquisition. 
However, it is difficult to detect a continuous closed curve that encircles  
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a region. Region-based segmentation depends on region comparability and 
the choice of a homogeneity criterion. Larger regions are segmented into 
smaller ones if the criterion is too strong, whereas different regions are com-
bined to form a larger region if the criterion is too weak [13].

The results of image segmentation are mainly used in image recogni-
tion and image understanding. It is not enough to process only low-level 
data such as intensities or spatial locations. Prior and professional knowl-
edge of images (such as medical images) is helpful in obtaining a precise 
segmentation. Most of the algorithms for image segmentation depend 
on searching methods. There are many search algorithms that use the 
graph-based approach [14,15], multiscale approach [16,17], neural network 
approach [18], dynamic programming approach [19], genetic algorithm 
approach [20], etc. Apart from searching methods, readers may wish to 
read more about contemporary methods in image segmentation that use 
the clustering method [21] and matching method [22].

4.5 E xercises

Q.1	� The histogram of a 4-bit grey-scale image having a size 16 × 16 is 
described as the following array. Select a threshold to segment the 
foreground from the background.

	 ( )0 5 5101610 510 20 35 55 35 251510 0

Q.2	� Detect the border of the picture given in Figure  4.11 using 
Algorithm 4.4 ( “Border tracing detection in 8-neighbourhood”).

Figure 4.11  Q.2.
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Q.3	� Using different grey-scale images, compare the Canny edge detec-
tion method with other edge image thresholding detection methods 
with which edge images may be obtained by the Roberts operator, 
Prewitt operator, Sobel operator, or Laplacian operator, as defined 
in Chapter 3, Section 3.4.3.

Q.4	� Find the Hough transform of the shaded region given in 
Figure 4.12.

Q.5	� Apply the region-growing method described in Algorithm 4.6 to 
find the objects in Figure 4.13.

Figure 4.12  Q.4.

Figure 4.13  Q.5.
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4.7  Partial Code Examples
Project 4-1: Optimal Thresholding Segmentation

(These codes can be found in CD: Project4-1\source code\project4-1 
View.cpp)

#include "stdafx.h"
#include "project4_1.h"
#include "project4_1Doc.h"
#include "project4_1View.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
/*******************************************************
*********
* Function name:
* OnOptimalthresholding()
*
* Parameter:
* HDIB hDIB - the handle of the image
*
* Return Value:
* None
*
* Description:
* Optimal thresholding
*
********************************************************
*******/
void CProject4_1View::OnOptimalthresholding()
{
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	 int i,j,T0=0,T1=0,u1,u2,tmp1,tmp2;

 unsigned char *lpSrc;

	 CProject4_1Doc* pDoc = GetDocument();
	 ASSERT_VALID(pDoc);

	 if(pDoc->m_hDIB == NULL)
		  return ;
	 LPSTR lpDIB = (LPSTR) ::GlobalLock((HGLOBAL) 
pDoc->m_hDIB);

	 LPSTR lpDIBBits=::FindDIBBits (lpDIB);
	 int cxDIB = (int) ::DIBWidth(lpDIB); // Size of 
DIB - x
	 int cyDIB = (int) ::DIBHeight(lpDIB); // Size of 
DIB - y

	 long lLineBytes = WIDTHBYTES(cxDIB * 8); // count 
the number of byte of the image per line

	 // per line
	 for(i = 0; i < cyDIB; i++)
	 {

		  // per column
		  for(j = 0; j < cxDIB; j++)
		  {
			   // the pointer pointing to the i-th 
line and j-th picture element
			   lpSrc = (unsigned char*)lpDIBBits + 
lLineBytes * (cyDIB - 1 - i) + j;
			 

			   // computing the value of gradation
			   T0=T0+*lpSrc;

		  }

	 }
	 T0=T0/(cyDIB*cxDIB);
	 while(1)
	 {
		  u1=0;u2=0;
		  tmp1=0;tmp2=0;
		  // per line
		  for(i = 0; i < cyDIB; i++)
		  {
			   // per column
			   for(j = 0; j < cxDIB; j++)
			   {
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				    // the pointer pointing to the 
i-th line and j-th picture element
				    lpSrc = (unsigned char*)lpDIB-
Bits + lLineBytes * (cyDIB - 1 - i) + j;
				    if (*lpSrc>=T0)
				    {
					     u1=u1+*lpSrc;
					     tmp1=tmp1+1;
				    }
				    else
				    {
					     u2=u2+*lpSrc;
					     tmp2=tmp2+1;
				    }
			   }
		  }
		  u1=u1/tmp1;
		  u2=u2/tmp2;
		  T1=(u1+u2)/2;
		  if (T0==T1)
			   break;
		  T0=T1;
	 }
	 // per line
	 for(i = 0; i < cyDIB; i++)
	 {
		  // per column
		  for(j = 0; j < cxDIB; j++)
		  {
			   // the pointer pointing to the i-th 
line and j-th picture element
			   lpSrc = (unsigned char*)lpDIBBits + 
lLineBytes * (cyDIB - 1 - i) + j;
			 
			   // computing the value of gradation
			   if(*lpSrc<=T0) *lpSrc=BYTE(0);
			   else *lpSrc = BYTE(255);
		  }
	 }
	 ::GlobalUnlock((HGLOBAL) pDoc->m_hDIB);
 Invalidate(TRUE);
}
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Project 4-2: The Border-Tracing Method

(These codes can be found in CD: Project4-2\source code\project4-2 
View.cpp)

#include "stdafx.h"
#include "project4_2.h"
#include "GlobalApi.h"
#include "project4_2Doc.h"
#include "project4_2View.h"
#include "math.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
/*******************************************************
*********
* Function name:
* OnBorderTracing()
*
* Parameter:
* None
*
* Return Value:
* None
*
* Description:
* Border tracing
*
********************************************************
*******/
void CProject4_2View::OnBorderTracing()
{
	 //change the style of cursor
	 BeginWaitCursor();
 // unsigned char *lpSrc;
	 CProject4_2Doc* pDoc = GetDocument();
	 ASSERT_VALID(pDoc);
	 if(pDoc->m_hDIB == NULL)
		  return ;
	 LPSTR lpDIB = (LPSTR) ::GlobalLock((HGLOBAL) 
pDoc->m_hDIB);
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	 LPSTR lpDIBBits=::FindDIBBits (lpDIB);
	 int cxDIB = (int) ::DIBWidth(lpDIB); // Size of 
DIB - x
	 int cyDIB = (int) ::DIBHeight(lpDIB); // Size of 
DIB - y
	 long lLineBytes = WIDTHBYTES(cxDIB * 8); // count 
the number of byte of the image per line
	 // the pointer pointing to the source image
	 LPSTR	 lpSrc;
	
	 // the pointer pointing to the buffer image
	 LPSTR	 lpDst;
	
	 // the pointer pointing to the buffer DIB image
	 LPSTR	 lpNewDIBBits;
	 HLOCAL	hNewDIBBits;
	
	 // cycle variants
	 long i;
	 long j;
	 int lWidth = cxDIB ;
	 int lHeight= cyDIB ;
	 // intensity of a pixel
	 unsigned char pixel;
	 // the tag used for marking the start point
	 bool bFindStartPoint;
	 //the tag used for marking a border point
	 bool bFindPoint;
	 //the start border point and the current border 
point
	 Point StartPoint,CurrentPoint;
	 // eight directions and the initial scanning 
direction
	 int Direction[8][2]={{-1,1},{0,1},{1,1},{1,0}, 
{1,-1},{0,-1},{-1,-1},{-1,0}};
	 int BeginDirect;
	 // allocate memory for the new image
	 hNewDIBBits = LocalAlloc(LHND, lLineBytes * 
lHeight);
	
	 // lock memory
	 lpNewDIBBits = (char * )LocalLock(hNewDIBBits);
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	 // initialise the allocated memory with the  
constant 255
	 lpDst = (char *)lpNewDIBBits;
	 memset(lpDst, (BYTE)255, lLineBytes * lHeight);
	 //first find the border point in the top left
	 bFindStartPoint = false;
	 for (j = 0;j < lHeight && !bFindStartPoint;j++)
	 {
		  for(i = 0;i < lWidth && !bFindStartPoint;i++)
		  {
	 // the pointer pointing to the i-th line and j-th 
column picture pixel
 // from the bottom 			 
			   lpSrc = (char *)lpDIBBits + lLine-
Bytes * j + i;
			 
			   // get the intensity of the current 
pointer and convert it to unsigned char
			   pixel = (unsigned char)*lpSrc;
			 
			   if(pixel == 0)
			   {
				    bFindStartPoint = true;
				    StartPoint.Height = j;
				    StartPoint.Width = i;
// the pointer pointing to the i-th line and j-th column 
pixel of the // destination image from the bottom
				    lpDst = (char *)lpNewDIBBits + 
lLineBytes * j + i;	
				    *lpDst = (unsigned char)0;
			   }		
		  }
	 }
	 // initial scanning direction
	 BeginDirect = 0;
	 //trace the border
	 bFindStartPoint = false;
	 // begin to scan from the initial scanning  
direction in the start point
	 CurrentPoint.Height = StartPoint.Height;
	 CurrentPoint.Width = StartPoint.Width;
	 while(!bFindStartPoint)
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	 {
		  bFindPoint = false;
		  while(!bFindPoint)
		  {
			   //check a pixel along the scanning 
direction
			   lpSrc = (char *)lpDIBBits + lLineBytes 
* (CurrentPoint.Height + Direction[BeginDirect][1])
				    + (CurrentPoint.Width + 
Direction[BeginDirect][0]);
			   pixel = (unsigned char)*lpSrc;
			   if(pixel == 0)
			   {
				    bFindPoint = true;
				    CurrentPoint.Height = 
CurrentPoint.Height + Direction[BeginDirect][1];
				    CurrentPoint.Width = 
CurrentPoint.Width + Direction[BeginDirect][0];
				    if(CurrentPoint.Height == 
StartPoint.Height && CurrentPoint.Width == StartPoint.
Width)
				    {
					     bFindStartPoint = true;
				    }
				    lpDst = (char *)lpNewDIBBits + 
lLineBytes * CurrentPoint.Height + CurrentPoint.Width;
				    *lpDst = (unsigned char)0;
				    // rotate the scanning  
direction two steps along anti-clock direction
				    BeginDirect--;
				    if(BeginDirect == -1)
					     BeginDirect = 7;
				    BeginDirect--;
				    if(BeginDirect == -1)
					     BeginDirect = 7;
			   }
			   else
			   {
				    // rotate the scanning  
direction one step along the clock direction
				    BeginDirect++;
				    if(BeginDirect == 8)
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					     BeginDirect = 0;
			   }
		  }
	 }
	 // copy the new image
	 memcpy(lpDIBBits, lpNewDIBBits, lWidth * lHeight);
	 // free memory
	 LocalUnlock(hNewDIBBits);
	 LocalFree(hNewDIBBits);	
	 // restore the style of the cursor
	 EndWaitCursor();
	
	 // set modified flag
	 pDoc->SetModifiedFlag(TRUE);
	
	 // update all views
	 pDoc->UpdateAllViews(NULL);
}

C8970_C004.indd   165 9/29/08   6:01:18 PM

  



© 2009 by Taylor & Francis Group, LLC

167

 5C h a p t e r

Mathematical 
Morphology

Mathematical morphology was initially developed to analyse the 
shape and structure of objects [1] in binary images. In particular, 

it is a useful tool for extracting important components of a binary image, 
leading to easier image representation and description. Its concepts and 
mathematical operations, which come through from the set theory, are 
quite different from the treatises in Chapters 3 and 4. In these chapters, 
the methods of image processing focus on the intensity functions of 
the images. Concepts and processing techniques used in mathematical 
morphology in this chapter are aimed at the use of set operations. Note 
that these concepts can be extended to handle image preprocessing and 
image segmentation as described in Chapters 3 and 4. In summary, tech-
niques employed in Chapters 3 and 4 are based on point-spread function 
and linear transformations such as convolution [2], whereas the basic 
ingredient in mathematical morphology is set theory.

In this chapter, basic concepts and operations of mathematical morphol-
ogy for binary and grey-scale images are given. Examples of handling binary 
images and elementary operations used in mathematical morphology are 
included. Rigorous mathematics has been avoided in this chapter. However 
important algorithms are presented for binary images with extensions to 
grey-scale images. Details of set operations and their equivalent computer 
implementations are also presented. Images resulting from the applications 
of mathematical morphology are included in this chapter.
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5.1  Some Basic Concepts of Set Theory
The concepts and operations involved in mathematical morphology come 
from the set theory. In this section, some basic concepts of the set theory 
[3] are briefly overviewed.

5.1.1  Sets and Elements

A set A is a collection of elements having the same property. An element 
a of A is denoted as a∈A. If an element x does not belong to the set A, it is 
denoted as x∉A. An empty set ∅ is a set that contains null element.

Example 5.1  Let Z be the set of all integers, then 5 ∈ Z, but 2.5 ∉ Z.
Example 5.2  The object of a binary image can be considered as a set con-
sisting of the coordinates of pixels with the intensity 0 (i.e., the background 
is white).

5.1.2 R elationships between Two Sets

A set A is equal to another set B if A and B consist of exactly the same  
elements. This relationship is written as A = B; otherwise, A ≠ B.

A is known as a subset of B if for all a ∈ A, a ∈ B. A is said to be 
contained in B and is denoted as A ⊆ B or B contains A and is denoted 
as B ⊇ A. Suppose A ⊆ B and A ≠ B, A is called a proper subset of B and is 
denoted as A ⊂ B or B ⊃ A.

5.1.3 O perations Involving Sets

Given two sets A and B, which are contained in the universal set S:

	 (a)	 A ∪ B, the union of A and B, is a new set defined as follows:

	 A B x x A x B∪ = ∈ ∈{ | }or 	 (5.1)

	 (b)	 A ∩ B, the intersection of A and B, is a new set given by

	 A B x x A x B∩ = ∈ ∈{ | }and 	 (5.2)

	 (c)	 A - B, the difference of A and B, is defined as

	 A B x x A x B- = ∈ ∉{ | }and 	 (5.3)

	 (d)	 Ac, the complement of A, is defined as	

	

A x x S x A

S A

c = ∈ ∉

= -

{ | }and

	
(5.4)
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5.2 M orphology for Binary Images
Mathematical morphology was initially used to process binary images, 
and results were promising. In mathematical morphology, a binary image 
is treated as a set consisting of the ordered pairs of coordinates of pixel 
points in that image.

In Figure  5.1, the top left pixel point is the origin, and its coordi-
nates are given as (0,0). The coordinates of the pixel points in the first 
row from left to right are (0,0), (0,1), ..., (0,7). Similarly, the coordinates 
of the bottom right pixel point are (7,7). In essence, the given image in 
Figure 5.1 is considered as a set of ordered pairs of coordinates denoted 
as S i j i j= ≤ ≤ ≤ ≤{( , )| , }0 7 0 7 . The object in the image consists of black 
points whose corresponding coordinates are

	  

( , ),( , );

( , ),( , ),( , ),( , ),( , );

(

1 2 1 3

2 1 2 2 2 3 2 4 2 5

33 1 3 2 3 3 3 4

4 2 4 3 4 4

, ),( , ),( , ),( , );

( , ),( , ),( , );

(55 2 5 3, ),( , )

	

The set of coordinates corresponding to the object is

	
A = {( , ),( , ),( , ),( , ),( , ),( , ),( ,1 2 1 3 2 1 2 2 2 3 2 4 2 5)),

( , ),( , ),( , ),( , ),( , ),( , ),( ,3 1 3 2 3 3 3 4 4 2 4 3 4 4)),( , ),( , )}5 2 5 3
	

y

x

0, 0

Figure 5.1  A binary image as a set.
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Suppose the whole image is considered as a universal set, then the back-
ground is the complement of A:

	 Ac = S - A	

Based on the addition of coordinates, the translation Ah of the set A by the 
point h ∈ s is defined as

	 A A h x h S x Ah = + = + ∈ ∈{ | } 	 (5.5)

Example 5.3  Figure 5.2 shows the universal set S i j i j= ≤ ≤ ≤ ≤{( , )| , }0 7 0 7  
and an object C = {( , ),( , )}1 2 1 3 . The translation of C by h S= ∈( , )3 2  can be 
calculated as

	 Ch={(1,2)+(3,2),(1,3)+(3,2)}={(4,4),(4,5)}    <	

Another important concept is the structuring element. A structuring 
element E is a set consisting of a local origin o, known as the representative 
point, and its neighbouring points. Figure 5.3 shows some typical struc-
turing elements [2] given by

	 (1)	 E1 0 1 0 0 0 1= -{( , ),( , ),( , )} 	

	 (2)	 E2 0 1 0 1= -{( , ),( , )} 	

y

x

0, 0

Figure 5.2  A set and its translation.
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	 (3)	 E3 1 0 0 0 1 0= -{( , ),( , ),( , )} 	

	 (4)	 E4 1 0 0 1 0 0 0 1 1 0= - -{( , ),( , ,),( , ),( , ),( , )} 	

In these structuring elements, the representative point is (0,0).

5.2.1  Binary Morphological Operation

The two basic mathematical morphology operations for binary images 
are dilation and erosion, from which other complex operations can be 
defined.

5.2.1.1  Dilation Operation
The dilation of two sets A and B denoted by A⊕B is defined as

	 A B A
b B

b⊕ =
∈

∪ 	 (5.6)

It is easy to prove that the dilation operation is commutative and associa-
tive, that is,

	
A B B A

A B C A B C

⊕ = ⊕

⊕ ⊕ = ⊕ ⊕( ) ( )
	 (5.7)

The dilation operation is often used to process an image with a structur-
ing element. Take Equation 5.6 as an example; A is an image and B is a 
structuring element. The purpose of performing dilation is to enlarge a 
given object. Through this process, some unfilled parts within objects may 
be filled in.

Example 5.4  Figure 5.4 shows an object defined by the set

	 A = {( , ),( , ),( , ),( , ),( , ),( , ),( ,1 2 1 3 2 1 2 2 2 3 3 1 3 2)),( , )}3 3

y

x

y

x

y

x

y

x
(1) (2) (4)(3)

Figure 5.3  Some typical structuring elements.
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The structuring element E2 0 1 0 1= -{( , ),( , )} shown in Figure 5.3 is adopted 
here. The dilation of the set A and E2 can be computed as follows:

	

A E A A A

b B

b
⊕ = = ∪

= + -

∈

-∪2 0 1 0 1

1 2 0 1 1

( , ) ( , )

{( , ) ( , ), ( ,, ) ( , ), ( , ) ( , ), ( , ) ( , ), ( , )3 0 1 2 1 0 1 2 2 0 1 2 3+ - + - + - ++ -

+ - + - +

( , ),

( , ) ( , ), ( , ) ( , ), ( , ) (

0 1

3 1 0 1 3 2 0 1 3 3 0,, )} {( , ) ( , ), ( , ) ( , ),

( , ) ( , )

- ∪ + +

+

1 1 2 0 1 1 3 0 1

2 1 0 1 ,, ( , ) ( , ), ( , ) ( , ), ( , ) ( , ), ( , )2 2 0 1 2 3 0 1 3 1 0 1 3 2+ + + ++ +

=

( , ), ( , ) ( , )}

{( , ), ( , ), ( , ), ( ,

0 1 3 3 0 1

1 1 1 2 1 3 1 44 2 0 2 1 2 2 2 3 2 4 3 0 3), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( ,11 3 2 3 3 3 4), ( , ), ( , ), ( , )}

	

The dilated image is the union of black pixels and grey pixels, as shown in 
Figure 5.4. The result shows an expansion of A to the left [translation by 
(0,-1)] and to the right [translation by (0, 1)].   <

Let f i j i j n( , ), ,0 1≤ ≤ - , be a binary image with white background such 
that the object set is defined as A i j f i j= ={( , )| ( , ) }0 . Let e s t m s t m( , ), ,- ≤ ≤ ,  
be a structure element matrix that defines the structure element set 
E s t e s t m s t m= = - ≤ ≤{( , )| ( , ) , , }1 . The dilation operation can be imple-
mented by using Algorithm 5.1, in which the resulting image is denoted 
by the image function g i j i j n( , ), ,0 1≤ ≤ - .

Algorithm 5.1: Dilation algorithm
For the given binary image f i j i j n( , ), ,0 1≤ ≤ -  with
the given structure element array e s t s t m( , ), ,0 1≤ ≤ - :-
For i = 0 to n = 1
	    For j = 0 to n = 1 do
		 g(i, j) = 1;
		 For s = -m to m

Figure 5.4  A dilation example A ⊕ E2.
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			  For t = -m to m do
				   If ((e(s, t) = = 1) and (f(i + s, j+ t) = = 0)) then
				     g(i, j) = 0;
				     exit;
				   End-If
			  End-For
			  If (g(i, j) = = 0) exit;
		 End-For
	    End-For
End-For

Output of the resulting image: g i j i j n( , ), ,0 1≤ ≤ -
End-Algorithm

5.2.1.2  Erosion Operation
The erosion of two sets A and B is denoted by AΘB, and is defined as

	 A B A
b B

bΘ =
∈

-∩ 	 (5.8)

The effect of erosion is shrinking of an object, and the amount of shrink-
age depends on the structuring element.
Example 5.5  Use the object set A as defined in Example 5.3, and assume 
the structuring element to be E2  = {(0,-1)(0,1)}. The result of erosion of A 
and E2 is the following set:
	

A E A A A
b B

b
Θ

2 0 1 0 1

1 2 0 1 1

= = ∩

= +

∈

- -∩ ( , ) ( , )

{( , ) ( , ),( ,, ) ( , ),( , ) ( , ),( , ) ( , ),( , ) (3 0 1 2 1 0 1 2 2 0 1 2 3 0+ + + + ,, ),( , ) ( , ),( , )

( , ),( , ) ( , )} {

1 3 1 0 1 3 2

0 1 3 3 0 1

+

+ + ∩ (( , ) ( , ),( , ) ( , ),( , ) ( , ),( ,1 2 0 1 1 3 0 1 2 1 0 1 2+ - + - + - 22

0 1 2 3 0 1 3 1 0 1 3 2

)

( , ),( , ) ( , ),( , ) ( , ),( , )+ - + - + - + (( , ),( , ) ( , )}

{( , ),( , ),( , ),(

0 1 3 3 0 1

1 3 1 4 2 2 2

- + -

= ,, ),( , ),( , ),( , ),( , )}

{( , ),( , ),

3 2 4 3 2 3 3 3 4

1 1 1 2∩ (( , ),( , ),( , ),( , ),( , ),( , )}

{( ,

2 0 2 1 2 2 3 0 3 1 3 2

2 2= )),( , )}3 2

	

Figure 5.5 depicts the erosion of A and E2. The object consisting of only 
grey pixel points is the result of AΘE2.   <
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The erosion operation can be implemented by the following algorithm, 
in which the definitions of f(i, j), 0 ≤ i, j ≤ n-1 and e(s, t), -m ≤ s, t ≤ m are 
the same as in Algorithm 5.1, and g(i, j), 0 ≤ i, j ≤ n-1 is the resulting image 
of the erosion operation. Figure 5.6 depicts the results of dilation and 
erosion operations of a binary image.
Algorithm 5.2: Erosion algorithm
For the given binary image f i j i j n( , ), ,0 1≤ ≤ -  with
the given structure element array e s t s t m( , ), ,0 1≤ ≤ - :-
For i = 0 to n-1
	    For j = 0 to n-1 do
		 g(i,j) = 0;
		 For s = -m to m
			  For t = -m to m do
				   If (( ( , ) )e s t ==1  and f i s j t( , )+ + ==1) then
				     g(i,j) = 1;
				     exit;
				   End-If
			  End-For
			  If (g(i,j) == 1) exit;
		 End-For
	    End-For
End-For

Output of the resulting image: g i j i j n( , ), ,0 1≤ ≤ -
End-Algorithm

Figure 5.5  Example of an erosion operation.
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5.2.1.3  Opening and Closing Operations
Opening and closing operations are based on dilation and erosion. The 
opening of a binary image A by the structuring element E is denoted by 
A°E and is defined as

	 A°E = (AΘE)⊕E	 (5.9)

The closing of A by the structuring element E is denoted by A • E and is 
defined as

	 A • E = (A⊕E)ΘE	 (5.10)

It should be noted that dilation is not an inverse transformation of 
erosion and vice versa. A ° E is not the same as A • E. Both these operations 
are often used to smooth the contours of objects. In general, the opening 
operation weakens the narrow isthmuses and eliminates thin protrusions 
in images, whereas the closing operation tends to fuse narrow breaks and 
fill gaps in contours [4]. Figure 5.7 depicts the results of the opening and 
the closing operations of a binary image.

5.2.1.4  Hit-or-Miss Transformation
The operators defined in the previous sections are used to handle objects 
with single structuring elements. The hit-or-miss transformation uses 
two structuring elements simultaneously, one for the object of the given 
image and the other for the background. Based on this idea, a composite 

(b) Dilation result of (a) (c) Erosion result of (a)

(a) Original image

Figure 5.6  The results of binary dilation and erosion operations: (a) the 
original image, (b) dilation result of (a), and (c) erosion result of (a).
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structuring element E is required, and it may be defined as a pair of dis-
joint structuring elements [2] such as the following one:

	 E = (E1, E2)	 (5.11)

The hit-or-miss transformation of an image A with the composite struc-
turing element E is defined as

	 A E A E A E A Ac

e B e e B

c
e⊗ = ∩ = ∩ ∩ ∩

∈ - ∈ -( ) ( ) ( ) ( )Θ Θ1 2
1 2

	 (5.12)

Equation 5.12 is equivalent to

	 A E A E A E⊗ = - ⊕( ) ( )Θ 1 2
	 (5.13)

5.2.2  Applications of Binary Morphological Operations

Binary morphology can be used to extract the borders of an object in 
binary images. Thinning, thickening, and skeleton methods described 
in following sections are commonly used. Code implementations can be 
found in Section 5.7 at the end of this chapter.

5.2.2.1  Thinning and Thickening
Thinning operation is often used to make lines in images having more 
than one-pixel width thinner, whereas thickening operation is used to 
broaden the lines that may connect broken borders.

(a) Original image (c) Closing result of (a)(b) Opening result of (a)

Figure 5.7  The results of binary opening and closing operations: (a) the 
original image, (b) opening result of (a), and (c) closing result of (a).
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The thinning and thickening operations of an image A with the composite 
structuring element E can be described by the following set of operations: 

	 Thinning:  /= − ⊗A A E( ) 	 (5.14)

	 Thickening: ×= ∪ ⊗A A E( ) 	 (5.15)

For a given binary image, a thinning or thickening operation may be 
repeated several times in order to obtain a good result. The typical result 
of a binary thinning operation is shown in Figure 5.8.

5.2.2.2  Skeleton Method
A skeleton is known as the medial axis of an object, and is a one-pixel thick 
line through the middle of the object, preserving the topology of the object 
[5, 6, 7]. A skeleton can represent the shape of an object, and is commonly 
used as a feature of objects in image analysis and image recognition.

Denote AΘkE as the result of an image A eroded by the structuring 
element E, k times, that is,

	 A kE A k E E k KΘ Θ Θ= − =( ( ) ) , , , ...,1 2 3 	 (5.16)

where K satisfies the condition.

(a) Original image (b) Thinning result of (a)

Figure 5.8  The result of a binary thinning operation: (a) the original 
image, and (b) the result after thinning.
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	 K A kE
k

= ≠ ∅max{ }Θ 	 (5.17)

The skeleton of an image A created by a structuring element E can be 
defined by means of the set operations:

	 S A A kE A kE E
k

K

( ) {( ) (( ) )}= -
=

Θ Θ oU
0

	 (5.18)

where K is given by Equation 5.17. Figure 5.9 shows the typical result of a 
binary skeleton operation.

5.3 M orphology for Grey-Scale Images
Binary morphology can be extended to grey-scale images. In mathematical 
morphological methods, the difference between a binary image and a 
grey-scale image is that the former is described by its object set and its corre-
sponding background set, and the latter is defined by the intensity f(i, j) of 
each pixel point (i, j). Thus, the result of applying a morphological opera-
tion to a grey-scale image is a new image in which the intensity of each 
pixel is computed by using the respective morphological formulas.

5.3.1  Basic Grey-Scale Morphological Operations
5.3.1.1  Dilation Operation
The dilation of a grey-scale image f i j i n j m( , ), ,0 1 0 10 0≤ ≤ - ≤ ≤ - , and 
the structuring element h s t m s m n t n( , ), ,1 2 1 2≤ ≤ ≤ ≤ , denoted by f ⊕ h is 
defined [7] as

(a) Original image (b) Skeleton result of (a)

Figure 5.9  The result of a binary skeleton operation: (a) the original 
image, and (b) its skeleton result.
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f h i j f i s j t h s t n s n i⊕ = - - + ≤ ≤ ≤( , ) max{ ( , ) ( , )| , (1 2 0 -- ≤ -

≤ ≤ ≤ - ≤ -

s n

m t m j t m

) ,

, ( ) }

0

1 2 0

1

0 1 	
(5.19)

where 0 1 0 10 0≤ ≤ - ≤ ≤ -i n j m, .
The structuring element in grey-scale morphology is similar to the con-

volution kernel in the convolution described in Chapter 2, Section 2.1.2. 
The following example uses the dilation of a one-dimensional signal to 
illustrate the operations involved in grey-scale dilation.
Example 5.6  f(t) is a one-dimensional signal defined as follows:

	
f t f f f f f f f f( ) { ( ), ( ), ( ), ( ), ( ), ( ), ( ), (= 0 1 2 3 4 5 6 77 8 9

3 5 8 4 2 6 8 10 5 4

), ( ), ( )}

{ , , , , , , , , , }

f f

=
	

The following short signal is used as a structuring element:

	 h t h h h( ) { ( ), ( ), ( )} { , , }= - =1 0 1 1 1 1 	

Compute the new signal generated by the dilation f ⊕h.
Solution: The first two values of the new signal generated by the dilation 
f⊕h are computed as follows:

	

f h h f h f h f⊕ = - + + + + -( ) max{ ( ) ( ), ( ) ( ), ( ) (0 1 0 1 0 0 1 1))}

max{ ( ) ( ), ( ) ( )}= - + +

=

h f h f1 1 0 0

6

	

	

f h h f h f h f⊕ = - + + + + -( ) max{ ( ) ( ), ( ) ( ), ( ) (1 1 1 1 0 1 1 1 11

1 2 0 1 1 0

9

)}

max{ ( ) ( ), ( ) ( ), ( ) ( )}= - + + +

=

h f h f h f 	

Similarly, the other values can be computed as follows:

	
f h f h f h f h

f h

⊕ = ⊕ = ⊕ = ⊕ =

⊕ =

( ) , ( ) , ( ) , ( ) ,

( )

2 9 3 9 4 7 5 9

6 111 7 11 8 11 9 6, ( ) , ( ) , ( )f h f h f h⊕ = ⊕ = ⊕ =
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Figure 5.10 shows the relation between the given signal f, and its dila-
tion by h.   <
Example 5.7  The following matrix defines an 8-bit grey-scale image with 
the size 8 × 8.

	

f

f f f
f f f

=

( , ) ( , ) ( , )
( , ) ( , ) ( , )
0 0 0 1 0 7
1 0 1 1 1 7

L

L

L L L LL

Lf f f( , ) ( , ) ( , )7 0 7 1 7 7

200 201 2





















=

002 202
202 203 205 204
205 210 211 212
205 208 210 212

2003 202 200 198
204 202 200 197
210 209 208 205
214 210 2111 208

210 212 215 218
212 214 218 220
210 212 213 215
2008 208 210 211

217 219 220 218
220 219 218 218
216 216 2110 212
212 214 210 210

































	

The following 3 × 3 matrix is used to construct a structuring element:

	 h
h h h
h h h=

- - - -
-

( , ) ( , ) ( , )
( , ) ( , ) ( , )

1 1 1 0 1 1
0 1 0 0 0 1

hh h h( , ) ( , ) ( , )1 1 1 0 1 1

0 1 0
1 1 1
0 1 0-

















=
















	

f + h(t)

f (t)

t

f (t)

Figure 5.10  An illustration of f ⊕ h(t).
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Compute the intensities of the pixels located at (0,0) and (3,2) in the result-
ing image after performing the dilation f ⊕h.
Solution: The intensity of the pixel located at (0,0) in the image resulting 
from the dilation f ⊕h is computed as follows:

	

f h

f s t h s t s

⊕

= - - + ∈ - ∩

( , )

max{ ( , ) ( , )| ( , , ) (

0 0

0 0 1 0 1 ii s t j t

h f

- ≥ ∈ - ∩ - ≥

= - - +

) ; ( , , ) ( ) }

max{ ( , ) (

0 1 0 1 0

1 1 11 1 1 0 1 0 0 1 0 1 0 0, ), ( , ) ( , ), ( , ) ( , ), ( , )h f h f h- + - + + ff ( , )}

max{ , , , }

0 0

203 203 202 201

203

=

=

	

The intensity of the pixel located at (3,2) in the image resulting from the 
dilation f ⊕h is computed as follows:

	

f h

h f h f

⊕ =

- - + + + - +

( , ) max

( , ) ( , ), ( , ) (

3 2

1 1 3 1 2 1 1 0 3 ++ - + + -

- + +

1 2 1 1 3 1 2 1

0 1 3 2 1

, ), ( , ) ( , ),

( , ) ( , ),

h f

h f hh f h f

h f

( , ) ( , ), ( , ) ( , ),

( , ) (

0 0 3 2 0 1 3 2 1

1 1 3

+ + -

- + - 11 2 1 1 0 3 1 2 1 1 3 1 2 1, ), ( , ) ( , ), ( , ) ( , )+ + - + - -




h f h f











= max

, , ,

, , ,

,

218 216 212

213 211 209

212 2122 210

218

,












=

		
	         

  <

Algorithm 5.3: Grey-scale dilation algorithm
For the given 8-bit grey-scale image f(i, j) 0 ≤ i, j ≤ n -1 with
the given structure element matrix e(s, t) 0 ≤ s, t ≤ m -1:-
For i = 0 to n-1 
For j = 0  to n-1 
		 g(i, j) = f(i, j); // initialise the result image;
End-for
For i = m to n - m - 1
		 For j = m to n - m - 1 do //exclude border rows and columns;
			  g(i, j) = 255; max = f (i, j);
			  For s = -m to m
			  For t = -m to m do
				   temp = f (i - s, j - t) + e (s, t);
				   If (temp > max) then max = temp; End-If
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			  End-For
			  g(i, j) = max;
			  If ((g (i, j) > 255)) then g(i, j) = 255; End-If
End-For
Output of the resulting image: g(i, j), 0 ≤ i, j ≤ n-1 
End-Algorithm

5.3.1.2	 Erosion Operation
The erosion of a grey-scale image f(i, j), 0 ≤ i ≤ n0-1, 0 ≤ j ≤ m0-1, and the 
structuring element h(s, t), m1 ≤ s ≤ m2, n1 ≤ t ≤ n2, defined by the set opera-
tion fΘh can be obtained by the following formula:

	

f h i j f i s j t h s t n s n iΘ ( , ) min{ ( , ) ( , )| , (= + + - ≤ ≤ ≤1 2 0 ++ ≤ -

≤ ≤ ≤ + ≤ -

s n

m t m j t m

) ,

, ( ) }

0

1 2 0

1

0 1 	
(5.20)

where 0 ≤ i ≤ n0-1, 0 ≤ j ≤ m0-1.
The grey-scale dilation is similar to the convolution operation, whereas 

the grey-scale erosion is similar to the correlation operation defined in 
Chapter 2, Section 2.1.

Example 5.8  The one-dimensional signal f and the structuring element h 
as given in Example 5.6 are used here. Compute the new signal generated 
by the erosion fΘh.
Solution: The first two values of the new signal generated by the erosion 
fΘh are computed as follows:
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0 0 1 1
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Similarly, the other values can be computed as follows:
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Figure 5.11 shows the given signal f and its erosion result obtained by 
fΘh.
Algorithm 5.4: Grey-scale erosion algorithm
For a given 8-bit grey-scale image f(i, j), 0 ≤ i, j ≤ n - 1
and a given structure element array e(s, t), 0 ≤ s, t ≤ m - 1:-
For i = 0 to n - 1
For j = 0 to n - 1 do {{g (i, j) = f (i, j)}}; // initialise the result image;
For i = m to n - m - 1
For j = m to n - m - 1 do
			  min = 255;
			  For s = -m to m
			  For t = m to m do
				   temp = f (i + s, j + t) - e (s, t);
				   If (temp < min) then min = temp; End-If
			  End-for
			  End-For
			  g(i, j) = min; If (g(i, j) < 0) then g(i, j) = 0;
End-For
End-For
Output of the resulting image: g(i, j), 0 ≤ i, j ≤ n - 1
End-Algorithm

Figure 5.12 shows the typical result of grey-scale dilation and erosion 
operations.

5.3.2  Applications of Grey-Scale Morphological Operations

Although the formulas for grey-scale dilation and erosion provided by 
Equations 5.19 and 5.20 are different from that for binary images, the defi-
nitions of other grey-scale morphological operations are similar to binary 

f Θ h(t)

f (t)

f (t)

t

Figure 5.11  An illustration of f Θ h(t).
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morphological operations. For example, the grey-scale opening and clos-
ing operations are similar to the binary opening and closing ones defined in 
Equations 5.9 and 5.10. The opening f°h and closing f•h of a grey-scale image 
f by a structuring element h are defined as follows:

	 f ° h = (f Θ h)⊕ h	 (5.21)

	 f • h = (f ⊕ h)Θ h	 (5.22)

5.4 Fu rther Reading
Mathematical morphology was proposed by Matheron and Serra in the late 
1960s [1]. It is an efficient mathematical tool in image processing, especially 
in processing binary images. It can be used in edge detection and segmenta-
tion [8,9], shape recognition [10–12], texture analysis, and feature extraction 
[13–15]. In recent years, mathematical morphology has developed with more 
sophisticated methods, such as adaptive morphology [16,17], hierarchical 
morphology [8,18], and heterogeneous morphological granulometries [19].

Figure 5.12  An example of grey-scale dilation and erosion.
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5.5 E xercises

Q.1	 Prove that binary dilation operation is commutative and associative.

Q.2	� Perform opening and closing operations to the binary image given in 
Figure 5.13 with the structuring element E3 = {(-1,0), (0, 0), (1, 0)}.

Q.3	� Prove that binary opening and closing operations are idempotent, 
that is,

	 (A°E)°E = A°E	

	 (A•E)•E = A•E	

Q.4	� Perform grey-scale opening using the signal and the structuring 
element defined in Example 5.6.
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5.7  Partial Code Examples
Project 5-1: Binary Erosion

(These codes can be found in CD: Project5-1\source code\project5-1View 
.cpp and morph.cpp)
#include "stdafx.h"
#include "project5_1.h"
#include "DlgMorph.h"
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#include "morph.h"
#include "project5_1Doc.h"
#include "project5_1View.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
/*******************************************************
*********
* Function name:
* OnErosion()
*
* Parameter:
* None
*
* Return Value:
* None
*
* Description:
* Erosion
*
********************************************************
*******/
void CProject5_1View::OnErosion()
{
	 // Get the document
	 CProject5_1Doc* pDoc = GetDocument();
	 ASSERT_VALID(pDoc);
	 if(pDoc->m_hDIB == NULL)
		  return ;
	 LPSTR lpDIB = (LPSTR) ::GlobalLock((HGLOBAL) 
pDoc->m_hDIB);
	 LPSTR lpDIBBits=::FindDIBBits (lpDIB);
	 int cxDIB = (int) ::DIBWidth(lpDIB); // Size of 
DIB - x
	 int cyDIB = (int) ::DIBHeight(lpDIB); // Size of 
DIB - y
	 long lLineBytes = WIDTHBYTES(cxDIB * 8);
 // count the the number of byte of the image per line
	
	 int nMode;
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	 // create the dialogue box
	 DlgMorph dlgPara;
	
	 // initialise the variable
	 dlgPara.m_nMode = 0;
	
	 // show the dialogue box to set the erosion direc-
tion
	 if (dlgPara.DoModal() != IDOK)
	 {
		  return;
	 }
	
	 // get the erosion direction defined by the user
	 nMode = dlgPara.m_nMode;
	 int structure[3][3];
	 if (nMode == 2)
	 {
		  structure[0][0]=dlgPara.m_nStructure1;
		  structure[0][1]=dlgPara.m_nStructure2;
		  structure[0][2]=dlgPara.m_nStructure3;
		  structure[1][0]=dlgPara.m_nStructure4;
		  structure[1][1]=dlgPara.m_nStructure5;
		  structure[1][2]=dlgPara.m_nStructure6;
		  structure[2][0]=dlgPara.m_nStructure7;
		  structure[2][1]=dlgPara.m_nStructure8;
		  structure[2][2]=dlgPara.m_nStructure9;
	 }
	
	 // delete the dialogue box
	 delete dlgPara;	
	
	 // change the style of the cursor
	 BeginWaitCursor();
	
	 // call the function ErosionDIB()
	 if (ErosionDIB(lpDIBBits, 
WIDTHBYTES(::DIBWidth(lpDIB) * 8), ::DIBHeight(lpDIB), 
nMode , structure))
	 {
		
		  // set the modification tag
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		  pDoc->SetModifiedFlag(TRUE);
		  // update the view
		  pDoc->UpdateAllViews(NULL);
	 }
	 else
	 {
		  // show the message to the user
		  MessageBox(" failure to allocate the memory 
or the intensity is not equal to 0 or 255!", "the system 
show" , MB_ICONINFORMATION | MB_OK);
	 }
	
	 // unlock
	 ::GlobalUnlock((HGLOBAL) pDoc->GetHDIB());
	 // restore the style of the cursor
	 EndWaitCursor();	
}
#include "stdafx.h"
#include "morph.h"
#include "DIBAPI.h"
#include <math.h>
#include <direct.h>
/*******************************************************
******************
 *
 * function name:
 * ErosiontionDIB()
 *
 * parameters:
 * LPSTR lpDIBBits - the pointer pointing to the origi-
nal image DIB
 * LONG lWidth - the width of the original image
* (number of the pixels, 4 times)
 * LONG lHeight - the height of the original image 
(pixel numbers)
 * int nMode		 - erosion direction,0- horizontal 
direction,
* 1- vertical direction, 2- user defined direction
 *	  int structure[3][3]
						      - user defined 3×3 
structuring element matrix
 *
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 * return value:
 * BOOL - return TRUE if success or return FALSE°
 *
 * Description:
 * Used to perform the erosion for the image. The struc-
turing element matrix is
* 3 pixel points in the horizontal direction, vertical 
direction or 3 by 3 points
* defined by user
 *
 * the intensity of the pixel in the image should be 0 
or 255.
 *******************************************************
*****************/
BOOL WINAPI ErosionDIB(LPSTR lpDIBBits, LONG lWidth, 
LONG lHeight, int nMode , int structure[3][3])
{
	
	 // the pointer pointing to the original image
	 LPSTR	 lpSrc;
	
	 // the pointer pointing to buffer image
	 LPSTR	 lpDst;
	
	 // the pointer pointing to the buffer DIB image
	 LPSTR	 lpNewDIBBits;
	 HLOCAL	hNewDIBBits;
	 // cyclic variables
	 long i;
	 long j;
	 int n;
	 int m;
	 // pixel intensity
	 unsigned char pixel;
	 // allocate the memory to save the new image tem-
porary
	 hNewDIBBits = LocalAlloc(LHND, lWidth * lHeight);
	 if (hNewDIBBits == NULL)
	 {
		  // failure to allocate the memory
		  return FALSE;
	 }
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	 // lock the memory
	 lpNewDIBBits = (char * )LocalLock(hNewDIBBits);
	 // initialise the new memory to 255
	 lpDst = (char *)lpNewDIBBits;
	 memset(lpDst, (BYTE)255, lWidth * lHeight);
	 if (nMode == 0)
	 {
		  // erosion in horizontal direction
		  for(j = 0; j <lHeight; j++)
		  {
			   for(i = 1;i <lWidth-1; i++)
			   {
				     // don’t process the left and 
right border pixels
// in order not to over the borders
				    // the pointer pointing to the 
ith pixel of the jth row
//of the original image from the bottom			 
				    lpSrc = (char *)lpDIBBits + 
lWidth * j + i;
// the pointer pointing to the ith pixel of the jth row
//of the destination image from the bottom
				    lpDst = (char *)lpNewDIBBits + 
lWidth * j + i;
				    //get the pixel intensity of 
the pointer
				    pixel = (unsigned char)*lpSrc;
				    // the pixel intensity is not 
equal to 0 or 255
				    if (pixel != 255 && *lpSrc != 0)
					     return FALSE;
				  
				    // initialise the destination 
image to black
				    *lpDst = (unsigned char)0;
				    // if the current point or 
either of its horizontal neighbours in the
// original image is white,
				    // set the current point in the 
destination as white
				    for (n = 0;n < 3;n++ )
				    {
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					     pixel = *(lpSrc+n-1);
					     if (pixel == 255 )
					     {
						      *lpDst = (unsigned 
char)255;
						      break;
					     }
				    }
				  
			   }
		  }
	 }
	 else if (nMode == 1)
	 {
		  // erosion in vertical direction
		  for (j = 1; j <lHeight-1; j++)
		  {
			   for (i = 0;i <lWidth; i++)
			   {
				     // don’t process the top and 
bottom border pixels
// in order not to over the borders
				    // the pointer pointing to the 
ith pixel of the jth row
//of the original image from the bottom
				    lpSrc = (char *)lpDIBBits + 
lWidth * j + i;
// the pointer pointing to the ith pixel of the jth row
//of the destination image from the bottom
				    lpDst = (char *)lpNewDIBBits + 
lWidth * j + i;
				    //get the intensity of the 
current pointer
				    pixel = (unsigned char)*lpSrc;
				    // the pixel intensity is not 
equal to 0 or 255
				    if (pixel != 255 && *lpSrc != 0)
					     return FALSE;
				    //initialise the destination 
image to black
				    *lpDst = (unsigned char)0;
				    // if the current point or 
either of its vertical neighbours in the
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// original image is white,
				    // set the current point in the 
destination as white
				    for (n = 0;n < 3;n++ )
				    {
					     pixel = *(lpSrc+(n-
1)*lWidth);
					     if (pixel == 255 )
					     {
						      *lpDst = (unsigned 
char)255;
						      break;
					     }
				    }
				  
			   }
		  }
	 }
	 else
	 {
		  // erosion with user defined structuring 
element matrix
		  for ( j = 1; j <lHeight-1; j++)
		  {
			   for(i = 0;i <lWidth; i++)
			   {
	 // don’t process the border pixels
// in order not to over the borders
				    // the pointer pointing to the 
ith pixel of the jth row
//of the original image from the bottom
				    lpSrc = (char *)lpDIBBits + 
lWidth * j + i;
				    // the pointer pointing to the 
ith pixel of the jth row
//of the destination image from the bottom
				    lpDst = (char *)lpNewDIBBits + 
lWidth * j + i;
				    // get the intensity of the 
current pointer
				    pixel = (unsigned char)*lpSrc;
				    // the intensity is not equal 
to 0 or 255

C8970_C005.indd   193 9/29/08   6:35:37 PM

  



© 2009 by Taylor & Francis Group, LLC

194  <  A Concise Introduction to Image Processing Using C++﻿

				    if(pixel != 255 && *lpSrc != 0)
					     return FALSE;
				    // initialise the destination 
image to black
				    *lpDst = (unsigned char)0;
				    // if one of the neighbours of 
the current pixel corresponding
//to the structuring element in the original image is 
white,
				    // set the current point in the 
destination as white
				    // note that the content in the 
DIB image is from bottom to top
				    for (m = 0;m < 3;m++ )
				    {
					     for (n = 0;n < 3;n++)
					     {
						      if(structure[m] 
[n] == -1)
							       continue;
						      pixel = *(lpSrc + 
((2-m)-1)*lWidth + (n-1));
						      if (pixel == 255 )
						      {	
							       *lpDst = 
(unsigned char)255;
							       break;
						      }
					     }
				    }
				  
			   }
		  }
	 }
	 // copy the result image of erosion
	 memcpy(lpDIBBits, lpNewDIBBits, lWidth * lHeight);
	 // release the memory
	 LocalUnlock(hNewDIBBits);
	 LocalFree(hNewDIBBits);
	 // return
	 return TRUE;
}
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Project 5-2: Binary Skeleton

(These codes can be found in CD: Project5-1\source code\project5-2 
View.cpp)
#include "stdafx.h"
#include "project5_2.h"
#include "morph.h"
#include "project5_2Doc.h"
#include "project5_2View.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

/*******************************************************
*********

* Function name:
* Onskeletonisation()
*
* Parameter:
* None
*
* Return Value:
* None
*
* Description:
* skeletonisation
*

********************************************************
*******/

void CProject5_2View::Onskeletonisation()
{
	 // get the document
	 CProject5_2Doc* pDoc = GetDocument();
	 ASSERT_VALID(pDoc);
	 if(pDoc->m_hDIB == NULL)
		  return ;
	 LPSTR lpDIB = (LPSTR) ::GlobalLock((HGLOBAL) 
pDoc->m_hDIB);
	 LPSTR lpDIBBits=::FindDIBBits (lpDIB);
	 int cxDIB = (int) ::DIBWidth(lpDIB); // Size of 
DIB - x
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	 int cyDIB = (int) ::DIBHeight(lpDIB); // Size of 
DIB - y
	 long lLineBytes = WIDTHBYTES(cxDIB * 8);
// count the the number of bytes of the image per line
	 // change the style of the cursor
	 BeginWaitCursor();
	 // cyclic variables
	 int i;
	 int j;
	 int k;
	 int lWidth = cxDIB;
	 int lHeight = cyDIB;
	 // the pointer pointing to the buffer image
	 unsigned char *lpSrc;
	 unsigned char *lpDst;
	 // the pointer pointing to the buffer DIB image
	 LPSTR	 lpNewDIBBits1,lpNewDIBBits2;
	 HLOCAL	hNewDIBBits1,hNewDIBBits2;
	 // allocate the memory to save the new image tem-
porary
	 hNewDIBBits1 = LocalAlloc(LHND, lWidth * lHeight);
	 hNewDIBBits2 = LocalAlloc(LHND, lWidth * lHeight);
	
	 // lock the memory
	 lpNewDIBBits1 = (char * )LocalLock(hNewDIBBits1);
	 lpNewDIBBits2 = (char * )LocalLock(hNewDIBBits2);
	 // initialise the new memory to 0
	 lpSrc = (unsigned char *)lpNewDIBBits1;
	 memset(lpSrc, (BYTE)0, lWidth * lHeight);
	 lpDst = (unsigned char *)lpNewDIBBits2;
	 memset(lpDst, (BYTE)0, lWidth * lHeight);
	 int nCount=0,m_nSEWidth=4;
	 unsigned char** pBufSK=new unsigned char*[m_
nSEWidth];		  for(j=0;j<m_nSEWidth;j++)
	 {
		  pBufSK[j]=new unsigned char [lWidth*lHeight];
		  memset (pBufSK[j],0,lWidth*lHeight);
	 }
	 unsigned char* pDest=new unsigned 
char[lWidth*lHeight];	
	 memset(pDest,0,lWidth*lHeight);
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	 while(nCount<m_nSEWidth)
	 {
		  nCount++;
		  i=0;
		  memcpy(lpNewDIBBits1, lpDIBBits, lWidth * 
lHeight);
		  while(i++<nCount)
		  {
			   ErosionDIB(lpNewDIBBits1, lWidth, 
lHeight);
		  }
		  memcpy(lpNewDIBBits2, lpNewDIBBits1, lWidth 
* lHeight);
		  OpenDIB(lpNewDIBBits2, lWidth, lHeight);
		
 for(i=0;i<lHeight;i++)
		  {
			   for(j=0;j<lWidth;j++)
			   {
		   	 lpSrc = (unsigned char*)lpNewDIBBits1 
+ lWidth * i + j;
		   	 lpDst = (unsigned char*)lpNewDIBBits2 
+ lWidth * i + j;
				    if((*lpSrc==0)&&(*lpDst==255))
					     pBufSK[nCount-1]
[i*lWidth+j]=0;
				    else 
if((*lpSrc==255)&&(*lpDst==0))
					     pBufSK[nCount-1]
[i*lWidth+j]=0;
				    else
					     pBufSK[nCount-1]
[i*lWidth+j]=255;
			   }
		  }
	 }
 for(k=0;k<m_nSEWidth-1;k++)
	 {
		  for(i=0;i<lHeight;i++)
		  {
			   for(j=0;j<lWidth;j++)
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			   {
				    if((pBufSK[k][i*lWidth+j]==0) 
||(pBufSK[k+1][i*lWidth+j]==0))
					     pBufSK[k+1]
[i*lWidth+j]=0;
				    else
					     pBufSK[k+1]
[i*lWidth+j]=255;
			   }
		  }
	 }
	 memcpy(lpDIBBits,pBufSK[k],lWidth*lHeight);
	 // release the memory
	 LocalUnlock(hNewDIBBits1);
	 LocalFree(hNewDIBBits1);
	 LocalUnlock(hNewDIBBits2);
	 LocalFree(hNewDIBBits2);
	 delete[] pDest;
	 for(j=0;j<m_nSEWidth;j++)
	 {
		  delete[] pBufSK[j];
	 }	
	 delete[] pBufSK;
	 // set the modification tag
	 pDoc->SetModifiedFlag(TRUE);
	
	 // update the view
	 pDoc->UpdateAllViews(NULL);
	
	 // unlock
	 ::GlobalUnlock((HGLOBAL) pDoc->GetHDIB());
	 // restore the style of the cursor
	 EndWaitCursor();
}
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6C h a p t e r  

Image Compression

Storage and transmission are essential processes in image processing. As 
discussed in Chapter 1, images are generally stored in the bitmap for-

mat, and the memory in spatial dimensions could be very large if images 
are stored directly without preprocessing. For example, the data of an 8-bit 
grey-scale image with the resolution 256 × 256 requires a total memory of 
65536 bytes (or 64 kilobytes). The memory required for a true colour image 
increases to 64 kilobytes × 3 = 192 kilobytes. Under the National Television 
Standard Committee (NTSC) standard, 30 frames of images are played in 
one second to ensure continuous vision effect. Suppose the images are true 
colour having a resolution of 720 × 576, the images played in one second 
would require the storage size of 720 × 576 × 3 × 30 = 37324800 bytes =  
36 megabytes. Such a huge amount of data would cause enormous diffi-
culties during storage or transmission. Therefore, compression of original 
images is inevitable to facilitate transmission or other processes.

The essence of compression is to use a compressed file with smaller 
storage size requirements to replace the original one. The compressed file 
can be reverted to the original file through decompression. If the decom-
pressed image is identical to the original image, the corresponding com-
pression method is called lossless compression; otherwise, it is called lossy 
compression. Common lossy compression methods include predictive 
compression, vector quantisation, transform encoding, wavelet compres-
sion, and fractal compression. The last two methods are considered as 
state-of-the-art transform compression techniques.

Compression rate can be used to assess the efficiency of a compres-
sion method. It is defined as the ratio of the size of the original file to the 
compressed file. If the size of the original file and the compressed file are  
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a bytes and b bytes, respectively, the compression rate is calculated as a/b. 
Another common method of calculating the compression rate is by count-
ing the number of bits in the compressed file needed to represent a pixel 
in the original file, and it is written using the unit bpp (bits per pixel). For 
example, suppose the size of the original image is m × n and that of the 
compressed file is b bytes, the compression rate is 8b/(m × n) bpp.

The difference between the decompressed and the original images in 
the case of lossy compression needs to be evaluated. The smaller the dif-
ference, the higher the quality of compression. Obviously, lossless com-
pression has the best quality of compression. On the other hand, the 
compression rate of a lossy compression method is certainly related to the 
difference between the decompressed and the original images. In general, 
the higher the compression rate, the larger such difference would be.

In this chapter, some standards of image quality measurement are intro-
duced first. Huffman encoding and runlength encoding are discussed 
in Sections 6.2.1 and 6.2.2. Prediction compression, vector quantisation 
along with wavelet compression and fractal compression in transform 
encoding are discussed in Section 6.3. Two common standards of image 
compression—Joint Photographic Experts Group (JPEG) and Moving 
Pictures Experts Group (MPEG)—are also introduced. The last section 
contains further readings and future research directions.

6.1  Image Fidelity Metrics
Although subjective assessment may be used to observe the extent of dif-
ference between a decompressed image and its original image, it is impor-
tant to have objective measurements in order to quantify image fidelity. 
The root-mean-square (rms) error and peak-to-peak signal-to-noise ratio 
(PSNR) [1], among others, are two commonly used metrics.

Suppose, the intensity matrix of the original m × n image is f(i, j), i = 0, 
1, …, m − 1;  j = 0, 1, …, n − 1 and that of the decompressed m × n image is 
g(i, j), i = 0, 1, …, m − 1; j = 0, 1, …, n − 1, then the two metrics are defined 
as follows.

	 1.	Root-mean-square (rms) error: The rms error of the decompressed 
image g(i, j) and the original image f(i, j) is defined as

	
rms

g i j f i j

m n
j

n

i

m

=

−

×
=

−

=

−

∑∑ ( ( , ) ( , ))2

0

1

0

1

	 (6.1)
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	 2.	Peak-to-peak signal-to-noise ratio (PSNR): PSNR represents the 
ratio of the maximum possible power of a signal and the possible 
power of the error. It is also called the quantisation noise ratio with 
the unit db (decibel). In the case of an 8-bit grey-scale image, PSNR 
of g(i, j) and f (i, j) is defined as

	
PSNR

m n
f i j g i j

j

n= ×

×
−

=

−10 255

1
10

2

2

0

1log

( ( , ) ( , ))∑∑∑
=

−

i

m

0

1 	 (6.2)

Here, the denominator reflects the mean square error due to the difference 
between the original and decompressed images. There are other forms of 
PSNR where the denominator uses rms, and in this case, the leading con-
stant is therefore 20. Some examples showing decompressed results with 
their corresponding PSNR values are shown in Figure 6.1.

6.2 L ossless Compression
In Chapter 1, it is pointed out that .bmp file format uses runlength encod-
ing. The JPEG compression standard requires the use of Huffman encod-
ing or runlength encoding to process the resulting coefficients through 
transformations. The Huffman and runlength encodings are typical loss-
less compression methods, and are described in the following sections.

6.2.1  Huffman Encoding

Huffman encoding [2] is a statistical-theory-based encoding. Its main idea 
is to construct a shorter codeword for the source symbol with a higher 
occurring frequency, and a longer codeword for the source symbol with a 

Figure 6.1  Images with different PSNR values.
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lower occurring frequency. The Huffman encoding forms a codeword for 
each source symbol by constructing a binary Huffman tree.

A source symbol is used to refer to a certain intensity of a pixel that 
occurs in a given image. The first step of the Huffman encoding is to cal-
culate the occurring probability of each source symbol. The source sym-
bols are then arranged according to the decreasing order of probability. 
Assuming these source symbols as the leaves of a tree, the probability 
of every source symbol is considered as the weight of the corresponding 
node. A parent node is generated for the two least weighted nodes and has 
a weight equal to the sum of the weights of the two children. The process 
is repeated until the root of the tree occurs. Starting from the root, the 
code 0 or 1 is assigned to the two branches of each node of the tree. The 
codes from the root to every leaf source symbol forms a binary string 
that is the codeword of the corresponding source symbol. All codewords 
together form the code table.

The compression process uses codewords to replace the corresponding 
intensities of pixels (source symbol) in order to form a compressed file. To 
facilitate the decoding process, the code table should be included as part 
of the compressed file.
Example 6.1 Suppose f (i, j) denotes the intensity matrix of a 6-bit 8 × 8 
grey-scale image as given by the following matrix:

	

15 20
30 25

15
25

15
30

35 30
40 35

35
40

40
50

40 40 50 45

20
200

25
20

15 20
30 30

40
50

30
40

25 30
35 35

45 55 50 40
45 50 555 50
40 45 40 45
30 35 25 25

55 60 55 45
50 60 45 40
30 35 30 200

































Construct the Huffman codeword.
Solution: The source symbols in this case are

	

s s s s s s s

s

1 2 3 4 5 6 715 20 25 30 35 40 45= = = = = = =, , , , , , ,

88 9 1050 55 60= = =, ,s s
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Using the intensity matrix, one can find the number of occurrences of 
each source symbol. Let ci be the number of occurrences of si, i = 1, 2, …, 10.  
The values of ci are

	 c c c c c c c c c1 2 3 4 5 6 7 84 6 6 10 7 11 7 7= = = = = = = =, , , , , , , , 99 104 2= =,c

The probability pi of the source symbol si, i = 1, 2, …, 10, is given as follows:

	
p p p p p p1 2 3 4 5 6

4
64

6
64

6
64

10
64

7
64

11
64

= = = = = =, , , , , ,,

, , ,p p p p7 8 9 10

7
64

7
64

4
64

2
64

= = = =

Now, the Huffman tree is ready to be constructed, and the process is 
described as follows:

	 1.	Rearrange source symbols according to the descending order of 
probability:

	 p p p p p p p p p p6 4 5 7 8 2 3 1 9 10> > = = > = > = >

	 s s s s s s s s s s6 4 5 7 8 2 3 1 9 10, , , , , , , , ,

Let these source symbols be the leaves of the Huffman tree, and their 
corresponding probabilities be the weights of the leaves.

6 4 5 7 8 2 3 1 9 10

	 2.	Generate a new node 11, which is the parent node of the two least 
weighted nodes 9 and 10. The weight p11 of the new node 11 is the sum 
of the weights of the two child nodes, that is, p p p11 9 10

6
64= + = .

6 4 5 7 8 2 3 1 9 10

11

	 3.	Arrange the new nodes according to the descending order of weights:

	 p p p p p p p p p6 4 5 7 8 2 3 11 1> > = = > = > =

	 4.	Repeat steps 2 and 3 until the root of the tree occurs. Figure  6.2 
depicts the tree.
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	 5.	Assign the code 0 or 1 to the two branches of every node of the tree. 
Figure 6.3 depicts the result.

	 6.	The codeword for each source symbol is formed by taking the binary 
string from the root to the corresponding leaf:

	

s

s s s s

s s

6

7 8 4 5

2 3

00

010 011 100 101

1100

: ;

: ; : ; : ; :

: ; :: ; :

: ; :

1101 1110

11110 11111

1

9 10

s

s s

		
	     

<

Note that the codeword obtained from Huffman encoding has this 
unique prefix property—no codeword is a prefix to any other codewords, 
and each codeword is unambiguous. The Huffman encoding algorithm 
for a grey-scale image is described here.
Algorithm 6.1: The Huffman coding algorithm
Given the image f i j i m j n( , ) : ,0 1 0 1≤ ≤ − ≤ ≤ − ;
Let L be the grey levels of the image.
Initialise L word_nodes each representing a grey level:

word_node (l). word := l;

6 7 8 4 5 2 3 1 9 10

11

19

17 18

15 16 14

13 12

Figure 6.2  Huffman tree of Example 6.1.
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word_node (l).weight := the number of occurrences of l as the pixel 
values in the image;

Define a node of Huffmantree H_node with five components:
H_node.word, H_node.weight, H_node.parent, H_node.lchild, H_
node.rchild;

Initialise a Huffman tree T with K = 2L - 1 H_nodes: // construct Huffman 
Tree
For j = 1 to L do

T(j).word = word_node (j). word;
T(j).weight = word_node (j). p;
T(j).parent = 0;
T(j).lchild= 0;
T(j).rchild = 0;

End-For
For j = L + 1 to K do
			  Find two H_nodes with minimal weights in T:

		        T( j1), j1 < j; and T( j2), j2 < j
			  Assign component values for the new H_node T( j):
			        T( j).word = 0;

1

1

1

1

11

1

0

00

0

00

01
0

10

6 7 8 4 5 2 3 1 9 10

11

19

17 18

15 16 14

13 12

Figure 6.3  Assign a binary number to every branch of the Huffman tree 
given in Figure 6.2.
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			        T( j).weight = T( j1).weight + T( j2).weight;
			        T( j).parent = 0;
			        T( j).lchild = j1;
			        T( j).rchild = j2;
			  Change the parent of two child H_nodes:
			        T( j1).parent = j; T( j2).parent = j;
End-For // End of Tree Construction
For i = 1 to L do // assign a binary string for each word
		 c = i; code_word(code_word(i)):= ‘’; //empty string
		 while c ≠ 0 do
		 { 	 c_parent = T(c).parent;
			  if (T[c_parent].lchild==c)
				   code_word(i) = ‘0’ + code_word(i)
			  else
				   code_word(i) = ‘1’ + code_word(i)
			  endif
			  c = T(c).parent
		 }	
	End-For
	Create the compression file comp_ file;
// generate a compression file for the image
// Store the codeword table comp_word to comp_ file;
	For i = 0 to n - 1
	For j = 0 to m - 1
			  Store comp_word ( f(i, j)) to comp_ file;
End-For
End-Algorithm

6.2.2  Runlength Encoding

Runlength encoding is an easy-to-use coding method. Its main idea is to 
use a source symbol and its respective number of consecutive occurrences, 
instead of listing every occurrence of the same source symbol. For exam-
ple, if the source file has the following data:

a a a a a a a a a a a a a a a b b b b a a a a a a a a c c c c c c c

The encoded file by using the runlength method becomes

a 15 b 4 a 8 c 7

C8970_C006.indd   206 9/29/08   6:15:54 PM

  



© 2009 by Taylor & Francis Group, LLC

Image Compression <  207

6.3 L ossy compression
Image data exhibits certain redundancy as far as human vision of the data 
is concerned. In other words, the removal of certain parts of the data infor-
mation might not affect the overall effect of vision. For this reason, lossy 
compression is more commonly used in image compression. Nowadays, 
lossy compression methods are loosely classified as predictive encoding, 
vector quantisation, and transform encoding.

6.3.1  Predictive Compression Methods

In the frame of an image, the intensities of neighbouring pixels often have 
relatively close correlation. Therefore, the intensity of a pixel can be pre-
dicted by the one that occurs previously, and the predictive error is the 
removal of the actual intensity from the predicted intensity. Thus, the pre-
dictive error may be used to substitute the original intensity to be encoded 
and transmitted [3,4]. Usually, the range of the predictive error is much 
smaller than that of the original intensity of a pixel, which leads to shorter 
codewords and a higher compression ratio.

The most commonly used predictive compression method is differential 
pulse code modulation (DPCM), which is based on pulse code modula-
tion (PCM) which converts analogue signals to digital signals through the 
processing steps of low-pass filtering, signal sampling, quantisation, and 
encoding into binary numbers, etc. [5]. Instead of processing analogue 
signals, in DPCM, the predictive error (i.e., the input signal of DPCM) is 
processed by using PCM. Figure 6.4 depicts the encoding and decoding 
principles of DPCM.

In the encoding process, let f (i, j) be the original intensity of the pixel at 
location (i, j), and f̂ (i, j) be an estimation of f (i, j) according to the intensi-
ties of the neighbouring pixels of (i, j). The difference e(i, j) between f (i, j) 
and f̂ (i, j) can be evaluated by

	 e i j f i j f i j( , ) ( , ) ˆ( , )= − 	 (6.3)

This error is sent to the encoder and predictor after quantisation. The out-
put from the encoder forms the compressed file, and the output from the 
predictor is the intensity used in the prediction of the next pixel.

In the decoding part, the output e i j′( , ) from the decoder is an approxi-
mation of e(i, j) obtained by quantisation, and an approximation of the 
original value f(i, j) may be computed as f i j f i j e i j′ ′( , ) ˆ( , ) ( , )= + .
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6.3.2  Vector Quantisation

Vector quantisation is the generalisation of scalar quantisation, as intro-
duced in Chapter 1. In scalar quantisation, a range of real numbers are 
represented by a quantum value. Similarly, in vector quantisation, a set of 
vectors are represented by a quantum vector called the code vector.

The vector quantisation method in image compression is based on the 
principle of block coding. In order to describe block coding, the concept of a 
block partition of an image is needed to assist the description, and it is briefly 
described here. For convenience, suppose the given image is a square and 
the intensity matrix is denoted as f i j i jN N( , ), , , ..., ; , , ...,= − = −0 1 2 1 0 1 2 1. 
The image is partitioned into nonoverlapping fixed size blocks [6]. In other 
words, the intensity matrix

	 Pf

Nf f f
f f f

=

−( , ) ( , ) ( , )
( , ) ( , ) ( ,
0 0 0 1 0 2 1
1 0 1 1 1 2

L

L NN

N N N Nf f f

−

− − − −










1

2 1 0 2 1 1 2 1 2 1

)

( , ) ( , ) ( , )
M

L










	 (6.4)

is partitioned into intensity submatrices Rs t
N ns t, , ,0 2 1≤ ≤ −− , each having 

the size 2 2n n× :

Quantizer

(a) Encoding process of DPCM

Encoder

Predictor

f (i, j) e(i, j)

e΄(i, j) f ΄(i, j)
Decoder

Predictor

(b) Decoding process of DPCM

f (i, j)ˆ

f (i, j)ˆ

Figure 6.4  Encoding and decoding principles of DPCM. (a) Encoding 
process of DPCM and (b) decoding process of DPCM.
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

	 (6.5)

where the submatrix Rs t,  has the form

	 Rs t

f s t f s t f s tn n n n n n n

, =

+ + −( , ) ( , ) ( , )2 2 2 2 1 2 2 2 1L

ff s t f s t f s tn n n n n n n( , ) ( , ) ( ,2 1 2 2 1 2 1 2 1 2 2+ + + + + −L 11

2 2 1 2 2 2 1 2 1 2
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( , ) ( , ) (

M

Lf s t f s t f sn n n n n n n+ − + − + + 22 1 2 2 1n n nt− + −



















, )

	

(6.6)

The intensity submatrix Rs,t is collocated using a row-wise data structure 
that leads to the source vector Xs,t. For example, when n is chosen as 2, the 
size of the matrix R0,0 is 4 × 4, and the source vector X0,0 has the form

	
X f f f f f f0 0 0 0 0 1 0 2 0 3 1 0, ( ( , ), ( , ), ( , ), ( , ), ( , ), (= 11 1 1 2 1 3

2 0 2 1 2 2

, ), ( , ), ( , ),

( , ), ( , ), ( , ), (

f f

f f f f 22 3 3 0 3 1 3 2 3 3, ), ( , ), ( , ), ( , ), ( , ))f f f f

with its dimension being 16. In general, an image is represented by the set 
of source vectors ℵ= ≤ ≤ −−{ ; , },X s ts t

N n0 2 1 , each having the dimension 
K n= 22 . ℵ is collocated using a row-wise data structure, which leads to the 
set ℑ= { , , ..., }X X Xv1 2 , where v N n= −22( ).

The main idea of vector quantisation [7] is to construct a partition P of ℑ:

	 P u= ℑ ℑ ℑ{ , ,..., }1 2
	 (6.7)

satisfying the conditions

	 ℑ= ℑ ∪ℑ ∪ ∪ℑ1 2 ... u

and

	 ℑ ∩ℑ = ∅ ≠i j i j,
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All the source vectors in the same subset ℑi  are mapped to the same quan-
tum vector Ci  called a code vector, which has the same dimension K as 
the other source vectors of ℑi. In other words, for any X i∈ℑ , the quantum 
vector is formed as follows:

	 Q X C c c ci i i iK( ) ( , , ..., )= = 1 2 	 (6.8)

where X f f fK= ( , , ..., )1 2  contains elements selected from f i j( , ) using 
Equation 6.6. The code vectors created using Equation 6.8 form the ele-
ments of the codebook C, which is defined as

	 C C C Cu= { , ,..., }1 2
	 (6.9)

During the process of decompression, code vectors can be used to approxi-
mate the original source vectors. The average error Eave  due to quantisation 
can be calculated by using a squared-error distortion:

	

E P C
vK

X Q X

vK
f c

ave
Xi

u

X

i

( , ) || ( )||

(

= −

= −

∈ℑ=
∑∑1

1

2

1

iik
k

K

Xi

u

i

)2

11 =∈ℑ=
∑∑∑

	

(6.10)

The vector quantisation method can now be described as an optimisa-
tion problem:

Given the set of K-dimensional source vectors ℑ= { , , ..., }X X Xv1 2  and the 
number of code vectors u, find a partition P u* { , , ..., }* * *= ℑ ℑ ℑ1 2  and a code-
book C C C Cu* { , , ..., }* * *= 1 2 , which minimises the average error Eave  defined 
by Equation 6.10. Mathematically, this can be written as

	 E P C E P Cave P C ave( *, *) min ( , )
,

= 	 (6.11)

The optimal design ( , )* *P C  should satisfy the following two criteria [8,9]:

	 1.	The nearest neighbour condition:

ℑ = − ≤ − =i i jX X C X C j u{ : || || || || , , ,..., }2 2 1 2 , where i = 1, 2, …, u	 (6.12)
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	 2.	The centroid condition:

	 C

X

i
X

i

i=
ℑ

∈ℑ
∑
| |

	 (6.13)

where | |ℑi  denotes the number of vectors in ℑi and i = 1, 2, …, u.
The above criteria can be used to generate an optimal partition and the 

corresponding codebook by an iterative process. A commonly used iterative 
algorithm known as the (LBG) algorithm is summarised here for reference.
Algorithm 6.2: LBG design algorithm for image vector quantisation
Given the image f i j i j N( , ) : ,0 2 1≤ ≤ − , the tolerance e << 1, and the final 
number of code-vectors 2h;
Prepare the set of source vectors: ℑ= = −{ , ,..., }, ( )X X X vv

N n
1 2

22 , where 
X f f fi i i iK= ( , , ..., )1 2  with K n= 22 .
	u =1; // initial partition;

C c c c
v

XK i

i

v

1
0

11
0

12
0

1
0

1

1( ) ( ) ( ) ( ), , ...,= =( )
=

∑ ; // initial codebook including one code-vector

E
vK

f cave mj j
j

K

m

v
( ) ( )0

1
0

11

1= −( )
==

∑∑ 2
 // average error

j = 0; // iteration times
	Do while (j ≤ h)
			  j = j + 1;
			  For i = 1 to u do 		  // splitting the codebook

					  
C C

C C

i
j

i
j

u i
j

i
j

( ) ( )

( ) ( )

( ) ;

( )

= +

= −

−

+
−

1

1

1

1

ε

ε

			  End-For;
 		   u = 2 × u; initialise partition P i u

u i
= ℑ ℑ ℑ ℑ = ∅ ≤ ≤{ , , ..., | , }

1 2
1

			  Repeat {
				   �      For m = 1 to v // repartition the source 

vectors
						     Solve
						     || || min|| ||*

( ) ( )X C X Cm m
j

i u m i
j− = −

≤ ≤1
2;

						     Let Xm m∈ℑ *, i.e., Q X Cm m( ) *= ;
				   �      End-For;
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				   �      For i = 1 to u do
				   �      // update the code vectors

						   
C Xi

j

i X i

( )

| |
=

ℑ
∈ℑ

∑1

				   �      End-For;
				   �      Calculate current average error:

						   
E

vK
X Q Xave

j
m m

m

v
( ) || ( )||= −

=
∑1 2

1

			  } Until E E Eave
j

ave
j

ave
j( ) ( )− −−( )( )1 1 ≤ ε

End-Do.
Output the partition P u= ℑ ℑ ℑ{ , , ..., }1 2  and the codebook C C Cj j

u
j

1 2
( ) ( ) ( ), , ..., ;

End-Algorithm
Note that in the compression file, the source vector Xm is represented by 

the index of the code vector Q(Xm) in the codebook. In order to perform 
the decompression correctly, the codebook should be included in the com-
pression file.

6.3.3  Wavelet Compression

In image processing, another commonly used lossy compression method is 
transform encoding. It does not work on the intensity of the pixel directly, 
but transforms the intensity of a pixel and encodes the result of the trans-
formation. For example, the JPEG standard adopts the discrete cosine 
transform (DCT) introduced in Chapter 2, Section 2.3, and encodes the 
transformed coefficients afterwards. This section explains a typical trans-
form encoding method—the wavelet image compression.

In Chapter 2, Equation 2.34 defines the wavelet transform of a signal f(t)

	 Wf j k f t t dtj k( , ) ( ) ( ),=
−∞

+∞

∫ ψ 	 (6.14)

where j is a scaling factor, k is a shifting factor, and

	 ψ ψj k

j
jt t k, ( ) ( )= −2 22 	 (6.15)

are the wavelet basis functions obtained by shifting and stretching a 
mother wavelet Y(t). The signal f(t) can be constructed as

	 f t Wf j k t
kj

j k( ) ( ( , )) ( ),=
=−∞

+∞

=−∞

+∞

∑∑ ψ 	 (6.16)
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During encoding, the wavelet transform coefficient Wf(j, k) is used to 
replace the signal f(t). Because Wf(j, k) is an infinite sequence, information 
loss can occur in practice. Scaling functions are introduced to simplify 
Equation 6.16 to only contain a finite number of terms.

The main idea of applying wavelet transform to compress data is 
explained without providing rigorous proofs of the main results. Take the 
Harr wavelet as an example, and define the father of the Harr wavelet as

	 ϕH t
t

( )
,
,

=
≤ <




1 0 1
0 else

	 (6.17)

The Harr scaling functions are obtained by shifting and stretching the 
father wavelet

	 ϕ ϕj k

j

H
jt t k, ( ) ( )= −2 22 	 (6.18)

where j is an integer, and k j= −0 1 2 1, ,..., .
By using the definition of the Harr mother wavelet given in the example 

in Chapter 2, Section 2.5, that is,

	 ψ H t

t

t( )

,

,

,

=

≤ <

− ≤ <
















1 0 1
2

1 1
2

1

0 else

	 (6.19)

it is possible to obtain the Harr wavelet functions as

	 ψ ψj k

j

H
jt t k, ( ) ( )= −2 22 	 (6.20)

Scaling functions and wavelet functions can be shown to satisfy the fol-
lowing two-scale relations [10,11]:

	 ϕ ϕj j j k
k

t h t, ,( ) ( )0 1 1= + +∑ 	 (6.21)

	 ψ ϕj j j k
k

t g t, ,( ) ( )0 1 1= + +∑ 	 (6.22)
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A one-dimensional signal f(t) can be decomposed into the weighted com-
bination of scaling functions in the scale j, that is,

	 f t k tj j k
k

( ) ( ) ( ),=∑λ ϕ 	 (6.23)

Furthermore, f(t) can be decomposed into the weighted combination of 
scaling functions and wavelet functions in the scale j − 1, that is,

	 f t k t k tj j k
k

j j k
k

( ) ( ) ( ) ( ) ( ), ,= +− − − −∑ ∑λ ϕ µ ψ1 1 1 1 	 (6.24)

where

	
λ ϕ

µ ψ

j j k

j j

k f t t

k f t

− −

− −

=< >

=<

1 1

1 1

( ) ( ), ( )

( ) ( ),

,

,kk t( ) >
	 (6.25)

Here, < • • >,  denotes the inner product, and

< >=− −

−∞

+∞

∫f t t f t t dtj k j k( ), ( ) ( ) ( ), ,ϕ ϕ1 1
.

Under the same scale, scaling functions are orthogonal to each other 
and to the wavelet functions. Hence, each of the preceding decomposi-
tions exists and is unique. In other words, signal f(t) can be uniquely fixed 
by using the scaling coefficients

	 λ λ λj j j
j

− − −
− −1 1 1

10 1 2 1( ), ( ),..., ( ) 	 (6.26)

and the wavelet coefficients

	 µ µ µj j j
j

− − −
− −1 1 1

10 1 2 1( ), ( ),..., ( ) 	 (6.27)

Scaling coefficients represent the contour part of the signal, and wavelet 
coefficients represent the detailed part of the signal. In the case of Harr 
wavelet, calculating the coefficients of a discrete signal is an easy task.
Example 6.2: Suppose a signal f(t) in the interval [0, 1] is sampled as

	 ( ( ), ( ),..., ( )) ( , , , , , , ,f f f0 1 7 15 20 25 25 30 35 30= 225)

and f(t) = 0 outside the interval. Compute the Harr scaling coefficients and 
wavelet coefficients.
Solution: f(t) has 8 components in the support [0, 1]. In other words, it can 
be decomposed as the sum of scaling functions in the scale j = 3, that is,
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Furthermore, the decomposition in the scale j = 2 is given by

	
f t k t k tk

k
k

k

( ) ( ) ( ) ( ) ( ), ,= +∑ ∑λ ϕ µ ψ2 2 2 2
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Hence, the signal f(t) is reconstructed using the scaling and wavelet func-
tions as follows:

	

f t t t t( ) ( ) ( ) ( ), , ,= + + +35
2

50
2

65
2

55
4 2 0 4 2 1 4 2 2ϕ ϕ ϕ

22

5
2

0
2

5
2

4 2 3

4 2 0 4 2 1 4 2 2

ϕ

ψ ψ ψ

,

, , ,

( )

( ) ( ) (

t

t t+ − + + − tt t) ( ),+ 5
24 2 3ψ

In practice, the scaling functions and wavelet functions of the Harr wave-
let may be defined as follows:

	

ϕ ϕ

ψ ψ

j k H
j

j k H
j

t t k

t t k

,

,

( ) ( )

( ) ( )

= −

= −

2

2

The scaling coefficients and the wavelet coefficients in the scale j = 2 are 
given as follows:
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The scaling terms of f t k t k t
k

k

k

k

( ) ( ) ( ) ( ) ( )
, ,

= +∑ ∑λ ϕ µ ψ
2 2 2 2  can be decomposed 

in the scale j = 1:
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m
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The decomposition may be carried out until the scale j = 0.
The following algorithm summarises the Harr wavelet encoding for 

one-dimensional signals.
Algorithm 6.3: The Harr wavelet encoding for one-dimensional signals
Given the one-dimensional array f k k n j( ), , ,...,= = −0 1 2 10 :-
	    For j = j0 - 1 to 0
	    For k = 0 to 2 j - 1

		

c k f k f k

c k f k f kj

( ) ( ( ) ( ))

( ) ( ( ) (

= + +

+ = −

1
2

2 2 1

2 1
2

2 2 ++1))

	    End-for (k)
	    Copy array c i i j( ), ,...,= −+0 2 11  to f t t j( ), , ,...,= −+0 1 2 11

End-for (j)
End-Algorithm

Two-dimensional images can be treated by first decomposing each 
row of the given image, followed by decomposing each column using 
Algorithm 6.3.

6.3.4  Fractal Compression

Fractal image compression is yet another kind of transform encoding. The 
word “fractal” is used by Mandelbrot to express the self-similarity property 
of an object, that is, a given geometric shape “can be subdivided in parts 
such that each part is a reduced-size copy of the whole” [12]. The fractal 
theory was first used to simulate natural scenes in the computer graphics 
field, in which self-similarity is described by an iterated functional system 
(IFS) first proposed by Hutchinson in 1981 [13]. Later, IFS was applied in 
image compression. The idea is to find an IFS for a given image whose fixed 
point is the given image. However, using a single IFS to represent the whole 
image is a difficult task. An alternative method is to partition the given 
image into nonoverlapping blocks, and find an IFS for each block [14].

As mentioned in Section 6.3.2, an image f i j i j N( , ), ,0 2 1≤ ≤ −  is par-
titioned into nonoverlapping blocks, that is, the intensity matrix of 
the image Pf defined by Equation 6.4 is partitioned into submatrices, 
Rs t

N ns t, , ,0 2≤ ≤ − , defined by Equation 6.7, known as range blocks, each 
of size 2n × 2n.

Suppose each range block is associated with a set of larger submatrices, 
% LDk Dk n, , , =1 , known as domain blocks of f, and are usually chosen to be 
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of size 2 21 1n n+ +× . Simple neighbouring operations, say A, may be applied 
to the submatrix D∼k by averaging the intensities of pairwise disjoint groups 
of neighbouring pixel intensities. This leads to a 2n × 2n matrix denoted 
symbolically as Dk = AD∼k, which is also known as a codebook block.

The concepts of range blocks and domain blocks are depicted in 
Figure 6.5. The submatrices Rs,t and Dk are collocated using a rowwise data 
structure, which leads to the range intensity vectors Rs,t and the codebook 
intensity vectors Dk. Put the concept into a minimisation problem:

For each Rs,t, find an approximate codebook block D* that satisfies

	 E R D R D Is t k s t k( , *) minmin|| ( )||, , ,= − +
α β

α β 2 	 (6.28)

where Rs,t is the intensity vector with respect to the range block Rs,t, and D* 
is the intensity vector with respect to the codebook block D*.

Suppose m = 2n, Rs t, = ( ,..., )r rm1 , and D d d dk k k km= ( , ,..., )1 2 , it is possible 
to derive the relations for scaling factor α  and offset β  as follows:
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	 (6.29a) 

	 β α= −




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
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	 (6.29b)

A range block. A domain block.

Figure 6.5  The image f is partitioned into range blocks and domain 
blocks.
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The rms error, E R Ds t k( , ), , between α βDk + I and Rs,t is given by

E R D
s t k m

r d d r
i

i

m

ki

i

m

ki i
( , )

,
= + − +

= =

∑ ∑1
2 22
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d m d
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


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1 1 1
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





	  

(6.30)
Algorithm 6.4 presents the fundamental steps in a fractal image com-
pression [15] based on the use of a fixed-size partition. The symbol 
ℵ represents the set of all range vectors with respect to range blocks, 
ℵ= ≤ ≤ −−{ ; , },X s ts t

N n0 2 1 , and Φ denotes the set of all codebook vectors 
with respect to codebook blocks.
Algorithm 6.4: A fractal compression method based on a fixed-size partition
		 Given the image f i j i j N( , ), ,0 2 1≤ ≤ − :- 	
		 Prepare ℵ and Φ;
		 For each R ∈ ℵ do
			  For each Dk ∈ Φ do
			         ( , )α βk k := Solve min || ( )||

,α β
α βR Dk− + 2;

			         Compute E(R, Dk) using equation (6.30);
			  End-For
			  Compute the compression code:

			  
( , ) : min { ( , )}

( , )
α β

α βopt opt k
k k

E R D=

		 End-For
End-Algorithm

When the size of the partition is fixed, that is, the size of all range 
blocks is the same, the algorithm does not adequately reduce spatial 
redundancy in images. In practice, the rate of pixel intensity variation is 
not maintained constant. The compression qualities may not be changed, 
but the compression ratio may be improved if the size of partition varies 
in different regions in a given image. The following adaptive fractal image 
compressing method using quadtree partition encapsulates the concept of 
adaptive partition compression [9,14]. In the algorithm, r_max is used to 
denote the maximal partition, which means the size of the range blocks 
is the biggest among all the partitions. Similarly, r_min is used to denote 
the minimal partition, which means the size of range blocks produced in 
this partition is smallest among all the partitions. Symbols ℵr and Φr are 
used to denote the set of all range vectors and the set of all codebook vectors, 
respectively, according to the given partition r.
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Algorithm 6.5: Adaptive fractal image compression using quadtree partition
Given the image f i j i j N( , ), ,0 2 1≤ ≤ − :-
Prepare the tolerance ε , the maximal partition r_max, and the minimal 
partition r_min;
For every possible partition r, prepare Φr;
For each R ∈ℵρ _ max do
    r = r_max; Rr = R;
    Call Quadtree (r, Rr)
End-For
End-Algorithm
Procedure Quadtree (r, Rr):
eρ =10000;
While (er > e ) and (r ≠ r_min) do

For each Dk ∈Φρ  do
( , )α β := Solve min|| ( )|

,α β
ρ α βR Dk− + I ;

Compute E R Dk( , )ρ ;
End-For;
Compute the minimal rms error:-

e E R D E R D Dopt k k
ρ ρ ρ ρ: ( , ) min{ ( , )| }= = ∈Φ ;

If (eρ ε≤ ) or (ρ ρ= _ min) then
Store tag bit 0;
Store α βopt opt,  and the index of Dopt;

Else
Store tag bit 1;
New Partition %ρ :- Partition Rρ into 4 quadrants;
For each quadrant %R :- Call Quadtree (( % %ρ,R);

End-If
End-While
End-Procedure

6.4  Image Compression Standards: JPEG and MPEG
The two abbreviations—JPEG and MPEG—cannot be avoided in image 
compression. JPEG is the acronym for the Joint Photographic Experts 
Group [16]. The image compression standard coformulated by the JPEG 
committee and ITU-T (the predecessor of International Telegraph and 
Telephone Consultative Committee [CCITT]) also adopts the name JPEG. 
JPEG standard defines the image format file having the suffix .jpg. MPEG 
is the abbreviation of Moving Pictures Experts Group, which is a working 
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group of ISO/IEC. The group aims to develop standards for video and 
audio compression.

In addition to JPEG and MPEG, the following image compression stan-
dards are also well known:

	 1.	 JBIG standard [16]: Designed by Joint Bi-level Image Experts Group 
for binary image compression.

	 2.	H.26X standards [17]: A family of video coding standards, includ-
ing H.261, H.262, H.263, and H.264. These standards, developed by 
ITU-T Video Coding Experts Group, are designed for transmission 
over ISDN lines on which data rates are multiples of 64 kbps.

6.4.1 T he JPEG Standard

One common JPEG standard is ISO/IEC IS 10918-1| ITU-T Recommen-
dation T.81 [16,18,19]. The standard includes two basic compression meth-
ods: the DCT-based method and the predictive method.

6.4.1.1  DCT-Based Method
In DCT-based compression, all input grey-scale images are partitioned 
into nonoverlapped blocks each of size 8 × 8. A stream of 8 × 8 blocks 
of grey-scale images is the input to the encoding system, which includes 
forward DCT (FDCT), quantisation, and entropy encoding, and Huffman 
encoding or arithmetical encoding may be used. Figure  6.6 depicts the 
encoding system. Note that for colour images, DCT-based compression is 
used in every single component of the image.

6.4.1.2  Predictive Method
In practice, DCT-based compression is a lossy compression method because 
of the quantisation process. JPEG uses a simple predictive method to meet 
the requirements of lossless compression. For a given grey-scale image f, 

DCT-based encoder

Compressed 
Data FDCT Quantizer Entropy coder

8×8  blocks

Figure 6.6  DCT-based encoding system.
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the prediction f~(i, j) of the pixel intensity f(i, j) may be formed by combing 
the intensities of neighbouring pixels at positions (i - 1, j - 1), (i - 1, j), and 
(i - 1, j). Figure 6.7 shows the typical neighbouring pixels of the reference 
pixel at (i, j). The difference between f(i, j) and f~(i, j) is encoded by an 
entropy compression method (Huffman method or arithmetic method), 
which produces the corresponding compressed data. Figure  6.8 depicts 
the predictive compression system in JPEG.

6.4.2 T he MPEG Standard

There is a series of MPEG standards: MPEG-1, MPEG-2, MPEG-4, 
MPEG-7, and MPEG-21. MPEG-1 is the initial video and audio compres-
sion standard, and the others are extensions of MPEG-1. The basic MPEG 
standard includes video compression and audio compression. There are 
two encoding methods used for video compression: intraframe encoding 
and interframe encoding [21]. The former is used to reduce spatial redun-
dancy, and the latter is used to reduce temporal redundancy. If the current 
frame is similar to the previous frame, interframe encoding is used; oth-
erwise, intraframe encoding is used.

In the MPEG standard, the frames of a video sequence are partitioned 
into three classes: I-frames (intraframe), P-frames (prediction frame), and 
B-frames (bidirectional interpolated prediction frame).

If the current processing frame is the first frame of the video sequence 
or quite different from the previous frame, it is called an I-frame and is 

(i – 1, j – 1)

(i, j – 1) (i, j)

(i – 1, j)

Figure 6.7  The related neighbourhood of the reference pixel at.

Predictive encoder

Compressed
Data

Predictor Entropy coderSource Image
Data

Figure 6.8  Predictive encoding system.
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encoded by using intraframe encoding, which is similar to JPEG still 
image compression methods. If the current processing frame is similar 
to the previous frame, it is indexed as either a P-frame or a B-frame and 
is encoded by using interframe encoding. A P-frame encoding uses the 
previous I-frame or P-frame as a reference frame. The current P-frame 
being processed is predicted from the reference frame by using motion 
estimation. The difference between the current frame and its prediction is 
encoded by using DCT-based compression. It is not necessary to encode 
a B-frame in the source compressing system; it is reconstructed by inter-
polation using the previous I-frame or P-frame and the successive I-frame 
or P-frame in the end decompression system. The use of B-frames can 
improve the compression ratio effectively. Figure  6.9 depicts the three 
types of frames in a video sequence.

6.5  Further reading
Image compression is a process requiring the use of certain technologies 
relatively independent from other technologies involved in image pro-
cessing. Shannon’s theorem in information theory provides the limit of 
a lossless encoding [22,23]. Among the lossy compression methods, the 
prevalent wavelet and fractal compression methods possess very high 
compression rates. Wavelet image compression possesses a multiresolu-
tion nature, which is advantageous to progressive transmission. The new 
standard, JPEG 2000, defined by the JPEG Committee adopts wavelet 
methods [24]. See References 25 and 26 for more wavelet image compres-
sion technologies. In recent years, fractal image compression technology 
has extended its use in fractal video compression [14]. However, fractal 
compression is nonsymmetric, that is, the compression process has a high 
computational complexity, whereas the decompression process is simple 

  
t  I B P B P B I B B B P P I  

Figure 6.9  Three types of frames in the MPEG standard.
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and fast. The huge amount of calculation in the compression process 
deters its usage in industrial applications.

6.6 E xercises

Q.1	� Construct the Huffman codewords for the source symbols occur-
ring in the following sentence:

This is a textbook for image processing.

Q.2	� A block of the original image is given by the intensity matrix f . Its 
processed version is given by another intensity matrix g. Compare 
the PSNR values of the two versions of image blocks.

	

f =

206 112
192 162

24 18
61 50

50 70
57 40

17 45
33 28

164 1733
174 149

176 39
164 124

66 11
60 53

25 27
38 38

192 164
1777 163

159 207
161 212

107 45
189 73

46 76
24 81

109 170
1200 177

151 186
172 153

186 117
157 199

19 61
83 26

































	

g =

204 112
190 163

22 19
59 51

53 69
54 39

18 45
30 31

168 1700
173 152

173 40
163 124

62 12
59 51

27 28
39 37

189 161
1766 165

161 208
159 210

106 46
188 72

43 76
23 78

110 169
1199 174

154 186
171 155

186 116
156 199

20 60
82 26

































Q.3	� By applying the one-dimensional wavelet image compression 
described in Algorithm 6.3 twice, first along the rowwise direction 
followed by the columnwise direction, to the image block defined 
by the intensity matrix f in Q.2, obtain the resulting intensity 
matrix.
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Q.4	� Partition the image block as defined by the intensity matrix f in 
Q.2 into range blocks each of size 4 × 4. Take the entire 8 × 8 
matrix as the domain block. Compute the scaling a and the offset 
b between the top left range block and the domain block by using 
Equations 6.29a, 6.29b.
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6.8  Partial Code Examples
Project 6-1: Huffman Encoding

(These codes can be found in CD: Project6-1\source code\Project6-1View 
.cpp and DlgHuffman.cpp)

#include "stdafx.h"
#include "project6_1.h"
#include "DlgHuffman.h"
#include "project6_1Doc.h"
#include "project6_1View.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
/********************************************************
********
* Function name:
* OnHuffmanEncoding()
*
* Parameter:
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* None
*
* Return Value:
* None
*
* Description:
* Huffman encoding
*
*********************************************************
******/
void Cproject6_1View::OnHuffmanEncoding()
{
	 // Get the document
	 CProject7_1Doc* pDoc = GetDocument();
	
	 // the pointer pointing to DIB’s pixel
	 LPSTR	 lpDIB;
	
	 // the pointer pointing to the DIB’s pixel
	 LPSTR lpDIBBits;
	
	 // Lock DIB
	 lpDIB = (LPSTR) ::GlobalLock((HGLOBAL)  
pDoc->GetHDIB());
	
 // Find the outset position of the DIB’s image pixel
	 lpDIBBits = ::FindDIBBits(lpDIB);
	 int cxDIB = (int) ::DIBWidth(lpDIB); // Size of 
DIB - x
	 int cyDIB = (int) ::DIBHeight(lpDIB); // Size of 
DIB - y
	 long lLineBytes = WIDTHBYTES(cxDIB * 8);
	 // count the number of bytes of the image per line
	
	 // Change the shape of the cursor
	 BeginWaitCursor();
	 // the pointer pointing to the original image
	 unsigned char *	 lpSrc;
		
	 // the width and the height of the image
	 LONG	 lHeight;
	 LONG	 lWidth;
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	 // total pixel number of the image
	 LONG	 lCountSum;
	
	 // cyclic variables
	 LONG	 i;
	 LONG	 j;
	
	 // array used for saving the probabilities of each 
grey level
	 double * dProba;
	
	 // the colour number of the current image
	 int		  nColourNum;
	
	 // change the style of the cursor
	 BeginWaitCursor();
	
	 /*************************************************
****************
	 * Compute the probabilities of grey levels occur-
ring in the image	
	 *	 ********************************************
**************************
	 */
	
	 // get the store bits per pixel used for colour 
information from the head file
	 nColourNum = ::DIBNumColours(lpDIB);
	 // allocate memory
	 dProba = new double[nColourNum];
	
	 //width and height of the image
lWidth = cxDIB;
	 lHeight = cyDIB;
	 // total pixel number
	 lCountSum = lHeight * lWidth;
		
	 // assign each probability variable to 0
	 for (i = 0; i < nColourNum; i ++)
	 {
		  dProba[i] = 0.0;
	 }
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	 // count the occurring number of each grey level
	 for (i = 0; i < lHeight; i ++)
	 {
		  for (j = 0; j < lWidth; j ++)
		  {
			   // the pointer pointing to the i-th 
line and j-th picture element
			   lpSrc = (unsigned char*)lpDIBBits + 
lLineBytes * (cyDIB - 1 - i) + j;
			 
			   // add a to the count
			   dProba[*(lpSrc)] = dProba[*(lpSrc)] + 
1;
		  }
	 }
		
	
	 // compute the occurring probability of each scale 
level in the image
	 for (i = 0; i < nColourNum; i ++)
	 {
		  dProba[i] = dProba[i] / (FLOAT)lCountSum;
	 }
	
	 /***************************************************
	 * construct the Huffman codeword table and show it 
in a dialogue box
	 ****************************************************/
	
	 // construct the dialogue box
	 CDlgHuffman dlgCoding;
	
	 // initialise the variable
	 dlgCoding.dProba = dProba;
	 dlgCoding.nColourNum = nColourNum;
	
	 // show the dialogue box
	 dlgCoding.DoModal();
		
	 // restore the style of the cursor
	 EndWaitCursor();
}

C8970_C006.indd   229 9/29/08   6:17:27 PM

  



© 2009 by Taylor & Francis Group, LLC

230 <  A Concise Introduction to Image Processing Using C++﻿

/********************************************************
***
* DlgHuffman.cpp : implementation file
*********************************************************
**/
#include "stdafx.h"
#include "project6_1.h"
#include "DlgHuffman.h"
#include <math.h>
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
/////////////////////////////////////////////////////////
////////////////////
// CDlgHuffman dialogue
CDlgHuffman::CDlgHuffman(CWnd* pParent /*=NULL*/)
	 : CDialogue(CDlgHuffman::IDD, pParent)
{
	 //{{AFX_DATA_INIT(CDlgHuffman)
	 m_dEntropy = 0.0;
	 m_dCodLength = 0.0;
	 m_dRatio = 0.0;
	 //}}AFX_DATA_INIT
}
void CDlgHuffman::DoDataExchange(CDataExchange* pDX)
{
	 CDialogue::DoDataExchange(pDX);
	 //{{AFX_DATA_MAP(CDlgHuffman)
	 DDX_Control(pDX, IDC_LIST2, m_lstTable);
	 DDX_Text(pDX, IDC_EDIT1, m_dEntropy);
	 DDX_Text(pDX, IDC_EDIT2, m_dCodLength);
	 DDX_Text(pDX, IDC_EDIT3, m_dRatio);
	 //}}AFX_DATA_MAP
}
BEGIN_MESSAGE_MAP(CDlgHuffman, CDialogue)
	 //{{AFX_MSG_MAP(CDlgHuffman)
	 //}}AFX_MSG_MAP
END_MESSAGE_MAP()
/////////////////////////////////////////////////////////
////////////////////
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// CDlgHuffman message handlers
BOOL CDlgHuffman::OnInitDialog()
{
	 // default OnInitDialogue()
	 CDialog::OnInitDialogue();
	 // cyclic variables
	 LONG	 i;
	 LONG	 j;
	 LONG	 k;
	
	 // temporary variable
	 double	dT;
	
	 // string variable
	 CString	 str2View;
	
	 // the item of the Control ListCtrl
	 LV_ITEM lvItem;
	
	 // used for saving the new item number of the 
control ListCtrl
	 int		  nItem2View;	
	 // array used for saving temporary results
	 double *	 dTemp;
	
	 // array used for saving the mapping between the 
grey level and the position
	 int	 *	 n4Turn;
	
	 // initialise the variables
	 m_dEntropy = 0.0;
	 m_dCodLength = 0.0;
	
	 // allocate the memory
	 m_strCode = new CString[nColourNum];
	 n4Turn = new int[nColourNum];
	 dTemp = new double[nColourNum];
	
	 // assign values to dTemp
	 // arrange the grey level in ascending order
	 for (i = 0; i < nColourNum; i ++)
	 {
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		  dTemp[i] = dProba[i];
		  n4Turn[i] = i;
	 }	
	 // sort the probabilities of grey levels using the 
bubble sort method
	 // and change the position in the mapping
	 for (j = 0; j < nColourNum - 1; j ++)
	 {
		  for (i = 0; i < nColourNum - j - 1; i ++)
		  {
			   if (dTemp[i] > dTemp[i + 1])
			   {
				    dT = dTemp[i];
				    dTemp[i] = dTemp[i + 1];
				    dTemp[i + 1] = dT;
				  
				    // swap the position of the 
grey level i with the one of i+1
				    for (k = 0; k < nColourNum; k 
++)
				    {				  
					     if (n4Turn[k] == i)
						      n4Turn[k] = i + 1;
					     else if (n4Turn[k] == i + 
1)
						      n4Turn[k] = i;
				    }
			   }
		  }
	 }
	
	 /*************************************************
******
	 * construct the Huffman codeword table
	 **************************************************
*****/
	
	 // begin from the probability > 0
	 for (i = 0; i < nColourNum - 1; i ++)
	 {
		  if (dTemp[i] > 0)
			   break;

C8970_C006.indd   232 9/29/08   6:17:27 PM

  



© 2009 by Taylor & Francis Group, LLC

Image Compression <  233

	 }
	
	 for (; i < nColourNum - 1; i ++)
	 {
		  // update m_strCode
		  for (k = 0; k < nColourNum; k ++)
		  {
			   // check the grey level i
			   if (n4Turn[k] == i)
			   {
				    // if the grey level is small, 
the codeword add "1"
				    m_strCode[k] = "1" + m_
strCode[k];
			   }
			   else if (n4Turn[k] == i + 1)
			   {
				    // if the grey level is bigger, 
the codeword add "0"
				    m_strCode[k] = "0" + m_
strCode[k];
			   }
		  }
		
		  // save the sum of two minimum probabilities 
to dTemp[i + 1]
		  dTemp[i + 1] += dTemp[i];
		
		  // change the mapping
		  for (k = 0; k < nColourNum; k ++)
		  {
			   // change the position i of the grey 
level i
// as the position of the grey level i+1
			   if (n4Turn[k] == i)
				    n4Turn[k] = i + 1;
		  }
		
		  // rearrange
		  for (j = i + 1; j < nColourNum - 1; j ++)
		  {
			   if (dTemp[j] > dTemp[j + 1])
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			   {
				    // swap
				    dT = dTemp[j];
				    dTemp[j] = dTemp[j + 1];
				    dTemp[j + 1] = dT;
				  
				    // // swap the positions of the 
grey level i and i+1
				    for (k = 0; k < nColourNum; k 
++)
				    {
					     if (n4Turn[k] == j)
						      n4Turn[k] = j + 1;
					     else if (n4Turn[k] == j + 
1)
						      n4Turn[k] = j;
				    }
			   }
			   else
			   // exit the cycle
				    break;
		  }
	 }
	
	 // compute the entropy of the image
	 for (i = 0; i < nColourNum; i ++)
	 {
		  if (dProba[i] > 0)
		  {
			   m_dEntropy -= dProba[i] * 
log(dProba[i]) / log(2.0);
		  }
	 }
	 // compute the average length of the codewords
	 for (i = 0; i < nColourNum; i ++)
	 {
		  // sum
		  m_dCodLength += dProba[i] * m_strCode[i].
GetLength();
	 }
	
	 // compute the efficiency of the encoding
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	 m_dRatio = m_dEntropy / m_dCodLength;
	
	 // save the change
	 UpdateData(FALSE);
	
	 /*************************************************
	 * output the result
	 *************************************************/
	
	 // set the style of the control CListCtrl
	 m_lstTable.ModifyStyle(LVS_TYPEMASK, LVS_REPORT);
	
	 // add a header to the control List
	 m_lstTable.InsertColumn(0, "Grey level", LVCFMT_
LEFT, 60, 0);
	 m_lstTable.InsertColumn(1, "Probability", LVCFMT_
LEFT, 78, 0);
	 m_lstTable.InsertColumn(2, "Huffman codeword", 
LVCFMT_LEFT, 110, 1);
	 m_lstTable.InsertColumn(3, "length of the code-
word", LVCFMT_LEFT, 78, 2);
	 // set the style of the Control as text
	 lvItem.mask = LVIF_TEXT;
	
	 // add items
	 for (i = 0; i < nColourNum; i ++)
	 {
		  //add the first item
		  lvItem.iItem = m_lstTable.GetItemCount();
		  str2View.Format("%u",i);
		  lvItem.iSubItem = 0;
		  lvItem.pszText= (LPTSTR)(LPCTSTR)str2View;
		  nItem2View = m_lstTable.InsertItem(&lvItem);
		
		  // add the other items
		  lvItem.iItem = nItem2View;
		
		  // add the probability of the grey level
		  lvItem.iSubItem = 1;
		  str2View.Format("%f",dProba[i]);
		  lvItem.pszText = (LPTSTR)(LPCTSTR)str2View;
		  m_lstTable.SetItem(&lvItem);
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		  // add the Huffman codeword
		  lvItem.iSubItem = 2;
		  lvItem.pszText = (LPTSTR)(LPCTSTR)m_
strCode[i];
		  m_lstTable.SetItem(&lvItem);
		
		  // add the length of the codeword
		  lvItem.iSubItem = 3;
		  str2View.Format("%u",m_strCode[i].
GetLength());
		  lvItem.pszText = (LPTSTR)(LPCTSTR)str2View;
		  m_lstTable.SetItem(&lvItem);
	 }	
	 // release memory
	 delete n4Turn;
	 delete dTemp;
	 // return TRUE
	 return TRUE;
}

Project 6-2: Fractal Image Compression
(These codes can be found in CD: Project6-3\source code\
Project6-3View.cpp)
#include "stdafx.h"
#include "project6_3.h"
#include "CMP.h"
#include "math.h"
#include "project6_3Doc.h"
#include "project6_3View.h"
#include "DECMPdlg.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
/*******************************************************
*********
* Function name:
* OnFractalCompress()
*
* Parameter:
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* None
*
* Return Value:
* None
*
* Description:
* Fractal Compress
*
********************************************************
*******/
void CProject6_3View::OnFractalCompress()
{
	 // Change the shape of the cursor
	 BeginWaitCursor();
	 // construct the dialogue box
	 CCMP dlgCmp;
	
	 // show the dialogue box
if (dlgCmp.DoModal() == IDOK && dlgCmp.m_FileIn!=_T("")
&& dlgCmp.m_FileOut!=_T(""))
{
	 unsigned int tmp=0, tj=0, wdata=0;
	 int cxDIB = 256; // Size of DIB - x
	 int cyDIB = 256; // Size of DIB - y
long lLineBytes = 256;
 // count the number of bytes of the image per line
	 unsigned char *lpDIBBits;
 lpDIBBits=(unsigned char *)malloc(sizeof(unsigned char) 
* 256*256);
	 //get the input file and the output file
	 FILE *rFile=fopen(dlgCmp.m_FileIn,"rb");
	 FILE *wFile=fopen(dlgCmp.m_FileOut,"wb");
	 unsigned int Offset;
	 fseek (rFile,10,0);
	 fread (&Offset,4,1,rFile);
	 fseek (rFile,Offset,0);
	 fread (lpDIBBits,cxDIB*cyDIB,1,rFile);
	 fclose (rFile);
	
	 int i, j, i1, j1;
	 int n=2; //the size of the block
	 int m = n*n;
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	 // partition the original image
	 unsigned char*** R=new unsigned char**[cyDIB/n];
	 for (i=0; i<cyDIB/n; i++)
	 {
		  R[i] = new unsigned char* [cxDIB/n];
		  For (int j=0; j<cxDIB/n; j++)
			   R[i][j]=new unsigned char[n*n];
	 }
	 for (i=0; i<cyDIB; i++)
	 {
		  for (j = 0; j<cxDIB; j++)
		  {
			   R[int(i/n)][int(j/n)][(i%n)*n+j%n]=
GetData((unsigned char*)lpDIBBits,j,i,lLineBytes);
		  }
	 }
	 int Dlinenum = cxDIB-2*n+1;// the domain number in 
every line
	 unsigned char** D = new unsigned char* [(cxDIB-2-
*n+1)*(cyDIB-2*n+1)];
	 for (i=0; i<(cxDIB-2*n+1)*(cyDIB-2*n+1); i++)
		  D[i]=new unsigned char [n*n];
	 int index=0;
	 for (i=0; i<cyDIB-2*n; i++)
	 {
		  for (j=0; j<cxDIB-2*n; j++)
		  {
			   for (i1=0; i1<n; i1++)
			   {
				    for (j1=0; j1<n; j1++)
				    {
D[index][i1*n+j1]=
GetData((unsigned char*)lpDIBBits,2*j1,2*i1,lLineBytes)+
					     GetData((unsigned char*)l
pDIBBits,2*j1+1,2*i1,lLineBytes)+
					     GetData((unsigned char*)l
pDIBBits,2*j1,2*i1+1,lLineBytes)+
GetData((unsigned char*) lpDIBBits, 2*j1+1, 2*i1+1, 
lLineBytes) ;
					     D[index][i1*n+j1]/=4;
				    }
			   }
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			   index++;
		  }
	 }
	 //initialise the compression data array
	 int **x=new int* [cyDIB/n];// the initial line 
position of the domain
	 int **y=new int* [cyDIB/n];// the initial column 
position of the domain
	 int	 **ki=new int* [cyDIB/n];//
	 int	 **g=new int* [cyDIB/n];// error
	 for(i=0;i<cyDIB/n;i++)
	 {
		  x[i]=new int [cxDIB/n];
		  y[i]=new int [cxDIB/n];
		  ki[i]=new int [cxDIB/n];
		  g[i]=new int [cxDIB/n];
	 }
	 double rsum, dsum, rdsum, r2sum, d2sum;
	 int trans_x[4]={1,1,-1,-1}; //x-parameters of 
four transforms
	 int trans_y[4]={1,-1,1,-1}; // y-parameters of 
four transforms
	 for (i=0; i<cyDIB/n; i++)
	 {	
		  for (j=0; j<cxDIB/n; j++)
		  {
			   int dg=0; // the average error of the 
block R and the current domain D			    dou-
ble det=9999999999999; // the error of Rand D
			   double alpha, beta;
			   // search the best domain
			   for (int i1=0; i1<index; i1++)
			   {
				    if (i1>600)
					     break;
				    rsum=0; // sum of the intensi-
ties of R
				    dsum=0; //sum of the intensi-
ties of D
				    rdsum=0;
				    r2sum=0;
				    d2sum=0;
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				    for (int j1=0; j1<n*n; j1++)
				    {
					     rsum += R[i][j][j1];
					     dsum += D[i1][j1];
				    }
				    dg = int((rsum-dsum)/(n*n));
				    unsigned char* g1=new unsigned 
char [n*n];
				    for (j1=0; j1<n*n; j1++)
				    {
					     g1[j1] = D[i1][j1]+dg;
					     if (g1[j1] > 255)
						      g1[j1] = 255;
					     else if (g1[j1] < 0)
						      g1[j1] = 0;
				    }
				    for (int t=0; t<4; t++)
				    {
					     Rotate(g1);
					     rsum=0;
					     dsum=0;
					     rdsum=0;
					     r2sum=0;
					     d2sum=0;
					   
					     for (j1=0; j1<n*n; j1++)
					     {
						      rsum += R[i][j]
[j1];
						      dsum += g1[j1];
						      rdsum += R[i][j]
[j1]*g1[j1];
						      r2sum += R[i][j]
[j1]*R[i][j][j1];
						      d2sum += 
g1[j1]*g1[j1];
					     }
					     double temp = (m*d2sum-
dsum*dsum);
					     if (temp != 0)
						      alpha = 
(m*rdsum-dsum*rsum)/temp;
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					     else
						      alpha=0;
					     beta = (rsum-
alpha*dsum)/m;
double detsum = sqrt((r2sum + alpha* (alpha*d2sum 
- 2*rdsum
+ 2*beta*dsum) + beta*(m*beta - 2*rsum))/m);
					     if (detsum < det)
					     {
						      ki[i][j] = (t+1)%4;
						      g[i][j] = dg;
						      x[i][j] = 
i1%Dlinenum;
						      y[i][j] = int(i1/
Dlinenum);
						      det = detsum;
					     }
				    }
				    delete [] g1;
			   }
tmp =(x[i][j]<<19) ^ (y[i][j]<<11) ^ (((((g[i]
[j]>>31)&1)<<8) ^ (abs(g[i][j]))) <<2 ) ^ ( ki[i][j]);
			   tj += 27;
			   if (tj < 32)
			   {
				    wdata ^= tmp<<(32-tj);
			   }
			   else
			   {
				    wdata^=tmp>>(tj-32);
				    fwrite (&wdata,4,1,wFile);
				    tj -= 32;
				    wdata = (tmp&((1<<tj)-1))<<(32-
tj);
			   }
		  }
	 }
	 free (lpDIBBits);
	 fclose (wFile);
	 for (i=0;i<index;i++)
		  delete [] D[i];
	 delete [] D;
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	 for(i=0;i<cyDIB/n;i++){
		  for(int j=0;j<cxDIB/n;j++)
			   delete [] R[i][j];
		  delete [] R[i];
		  delete [] x[i];
		  delete [] y[i];
		  delete [] ki[i];
		  delete [] g[i];
	 }
	 delete [] R;
	 delete [] x;
	 delete [] y;
	 delete [] ki;
	 delete [] g;
}
	 // Reset the shape of the cursor
	 EndWaitCursor();
}
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Index

A

Adaptive method, 138
Adaptive morphology, 184
Amplitude, 1
Analogue signals, 1–2

processing, 3
storing, 3

Anisotropic diffusion models, 98–101

B

Band thresholding, 137
Barrel distortion, 95
B-frames, 222
Bilinear interpolation, 97
Bi-model, 138
Binary erosion, 186–194
Binary images, 7, 150

dilation, 171
erosion, 171
Hough transform, 151
mathematical morphology, 169
objects, 168
object structure, 167
set, 169

Binary morphological operation
applications, 176–177
dilation operation, 171–172
erosion operation, 173–174
grey-scale images, 178
hit-or-miss transformation, 175, 176–177
opening and closing operation, 175
skeleton method, 177
thinning and thickening, 176

Binary scale images, 167
Binary skeleton operation

mathematical morphology, 195–198
results, 178

Binary thinning operation, 177
Bit mapped (BMP) format, 17–18, 201
Bivariant polynomials, 94
Blocky effect, 99
Blur images, 92
BMP. see Bit mapped (BMP) format
Border tracing, 149

detection, 155
edge-based segmentation, 148–149
image segmentation, 161–166

Brightness, 66
Butterworth filtering

high-pass, 87
low-pass, 79

C

Canny method
detector, 148
edge detection, 143
edge image, 143

CCD. see Charge-coupled device (CCD)
CCITT. see International Telegraph 

and Telephone Consultative 
Committee (CCITT)

Charge-coupled device (CCD), 18
Closing operations, 176
CMOS. see Complementary metal-oxide 

semiconductor (CMOS)
CMY model, 16–17
Code book block, 218
Code vectors, 208, 210
Coding method, 206
Colour images, 7–16

channels, 9
CMY model, 16
distinguishing, 8
8-bit, 25–28

C8970_C007.indd   243 10/18/08   11:20:22 AM



© 2009 by Taylor & Francis Group, LLC

244  <  A Concise Introduction to Image Processing Using C++

HSI colour model, 12–16
HSI to RGB model conversion, 14–15
RGB colour model, 9
RGB to HSI model conversion, 14
YIQ colour model, 10
YUV colour model, 11

Colour mixing based, 12
Colour planes, 9
Colour television broadcast, 10
Colour triangle, 12, 15
Complementary metal-oxide 

semiconductor (CMOS), 18
Completeness, 47
Compression methods, 207
Computing convolution, 35
Constrained conditional restoration, 89
Continuous Fourier transform, 37–38

one dimension, 37–38
two dimension, 38

Continuous Gaussian function, 98
Continuous models, 103
Continuous time domain, 32
Continuous wavelet transform, 44
Contrast stretching, 69–70

linear transform, 70
Convolution image functions, 82
Convolution kernel

discrete image functions, 73
image smoothing, 48
symmetric matrix, 36

Convolution operations, 32–36, 182
Correlation operations, 30–31
Crack edges

concept, 144
confidence, 146
directions, 145

Cut-off frequency, 79

D

DCT. see Discrete cosine transform (DCT)
Decoding principles, 208
Decomposition of image functions, 46
Decompression process, 210
Degradation model, 89–90

constrained conditional restoration, 90
noise, 92
unconstrained conditional  

restoration, 89
Degraded recovery images, 87
DFT. see Discrete Fourier transform (DFT)

Differential pulse code modulation 
(DPCM), 207

decoding process, 208
encoding process, 208

Diffusion-based models, 98–101
heat conduction, 98
PDE-based image-processing 

methods, 97
Digital images, 81
Digital signals, 3–5

quantisation, 5
sampling, 4

Dilation
algorithm, 172
binary images, 171
example, 172
grey-scale images, 178–181
operation, 171–172

Discrete cosine transform (DCT), 18
compression, 221, 223
encoding system, 221
image compression, 221
image processing tools, 42, 58–60
inverse, 43
JPEG standards, 221

Discrete Fourier transform (DFT),  
38–40

properties, 39–40
Discrete Gaussian smoothing 

convolution kernel, 98
Discrete image functions, 73
Discrete signal sequences, 33
Disjoint structuring elements, 176
Distorted images, 94
Domain blocks, 217

image, 218
DPCM. see Differential pulse code 

modulation (DPCM)

E

Easy-to-use coding method, 206
Edge-based segmentation,  

140–151, 152
border tracing, 148–149
edge image thresholding, 140–142
edge relaxation, 143–147
Hough transform, 150–151

Edge detection
Canny method, 143
edge-tracing method, 150
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Edge enhancement, 140
Edge image

Canny method, 143
segmentation, 140–142
thresholding, 140–142

Edge magnitude, 135
Edge pixels, 141
Edge relaxation, 145

algorithm, 147
edge-based segmentation, 143–147
method, 144

Edge-stopping function, 99
Edge-tracing method, 150
8-bit colour image, 25–28
8-bit grey-scale image

conversion to red channel  
image, 22

histogram, 108–112
image preprocessing techniques, 

108–112
matrix, 180

8-neighbourhood
border tracing detection, 155
directions of search, 148

Eight-point decimation-in-time FFT 
butterfly flowchart, 42

Encoding principles, 208
End vertices, 145
Energy conversation theorem, 40
Entropy compression method, 222
Erosion

binary images, 171
example, 184
grey-scale image, 182
inverse transformation, 175
results, 173

Erosion operations
binary dilation, 175
binary morphological operation, 

173–174
examples, 174
grey-scale images, 182

F

Fast Fourier transform, 41
4-bit grey-scale image

histogram, 155
Fourier transform, 91

continuous, 37–38
discrete, 38–40

fast, 41
Gabor transform, 43
image processing tools, 37–41,  

49–57
one dimension, 37–38
orthogonal transformations, 48
properties, 39–40
spatial domain definition, 38
two dimension, 38

Fourth-order partial differential 
equations image restoration

image preprocessing techniques, 
114–134

Fractal compression, 217
fixed-size partition, 219
image compression, 217–219, 

236–242
Frequency-domain methods, 78–79

Butterworth low-pass filtering, 79
ideal low-pass filtering, 78
trapezoidal low-pass filtering, 79

G

Gabor transform, 30, 44
Fourier transform, 43
image processing tools, 43

Gaussian convolution kernel, 75
Gaussian filtering

image preprocessing techniques, 75
smoothing, 75
spatial domain methods, 73

Gaussian function, 43
Gaussian noise, 88, 99–100
Gaussian smoothing, 98

linear filtering method, 75
Geometric rectification, 93–96
GIF. see Graphics interchange  

format (GIF)
Global operations, 29
Gradient directions, 141
Gradient operators, 81–85, 140

Laplacian operator, 84
Prewitt operator, 83
Roberts operator, 83
Sobel operator, 83

Graphics interchange format (GIF)
image storage, 19

Grey levels
grey-scale images, 6
homogeneity principle, 152
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Grey level transformation
contrast stretching, 69–70
histogram equalisation, 66–68
histogram image enhancement, 

66–68
Grey-scale dilation

algorithm, 181
convolution operation, 182
example, 184

Grey-scale erosion algorithm, 183
Grey-scale image, 6, 7, 67, 178–198

applications, 183–184
conversion to red channel image, 22
dilation operations, 178–181
8-bit, 108–112
erosion, 182
erosion operations, 182
4-bit histogram, 155
grey levels, 6
histogram, 108–112
image preprocessing techniques, 

108–112
intensity matrix, 36, 48
mathematical morphology, 167
matrix, 180
operations, 178–182
processing, 6
resolution, 6

Grey-scale morphology, 179
definitions, 183

H

Harr mother wavelet, 213
Harr scaling coefficients, 214
Harr scaling functions, 213
Harr wavelet, 213, 216

basis functions, 46
encoding, 217
function, 45

Heat conduction model
anisotropic diffusion models, 98–101
diffusion-based models, 98

High-pass filtering, 85–87
Butterworth, 87
ideal, 85–86
trapezoidal, 87

Histograms
adaptive method, 138
based method, 138

based thresholding, 137–138
4-bit grey-scale image, 155
equalisation, 66, 69
grey-level- transformation, 66–68
image enhancement, 66–68
map, 67
Mode method, 138
pixel brightness, 66–68

Hit-or-miss transformation
binary morphological operation,  

175, 176–177
Homogeneity principle

grey level, 152
mean-grey levels, 153

Hough transform, 156
binary image, 151
edge-based segmentation, 150–151
illustration, 151

HSI. see Hue saturation intensity (HSI)
Hue, 8
Hue saturation intensity (HSI)

colour model, 12–16
to RGB model conversion, 14–15
triangle models, 13

Huffman encoding, 202, 221
algorithm, 204
image compression, 201–205, 

226–235
Huffman method, 221
Huffman tree, 204

binary numbers, 205
Human visual system, 10

I

Ideal high-pass filtering, 85–86
Ideal low-pass filtering, 78
Identity operator, 102
I-frames, 222
IFS. see Iterated functional system (IFS)
Image(s)

blurring, 75
contrast, 69
degradation model, 88
degraded recovery, 87
edge enhancement, 140
fidelity metrics, 200
filtering, 78
intensities, 84
PSNR values, 201
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resolution, 6
restoration, 87–88
sharpening, 80
signals analysis, 78
transform, 46
transmitted, 65
two-dimensional signal function, 1

Image compression, 199–242
DCT-based method, 221
exercises, 224
fractal compression, 217–219
fractal image compression, 236–242
Huffman encoding, 201–205, 

226–235
image fidelity metrics, 200
JPEG standards, 221
lossless compression, 201–206
lossy compression, 207–219
MPEG standards, 222
partial code examples, 226–242
predictive compression  

methods, 207
predictive method, 221
runlength encoding, 206
standards, 220–222
vector quantisation, 208–211
wavelet compression, 212–216

Image enhancement, 71, 80–87
Butterworth high-pass filtering, 87
gradient, 80
gradient image, 81
gradient operators, 81–85
high-pass filtering, 85–87
ideal high-pass filtering, 85–86
Laplacian operator, 84
Prewitt operator, 83
Roberts operator, 83
Sobel operator, 83
trapezoidal high-pass filtering, 87

Image functions
convolution, 82
decomposition, 46

Image preprocessing techniques, 
65–134

anisotropic diffusion models, 98–101
based on degradation model, 89–90
8-bit grey-scale image histogram, 

108–112
Butterworth high-pass filtering, 87
Butterworth low-pass filtering, 79

concepts and models, 71–72
constrained conditional  

restoration, 90
contrast stretching, 69–70
diffusion-based models, 98–101
exercises, 105–107
frequency-domain methods, 78–79
Gaussian filtering, 75
geometric rectification, 93–96
gradient, 80
gradient image, 81
gradient operators, 81–85
grey-level- transformation, 66–70
heat conduction model, 98–101
high-pass filtering, 85–87
histogram equalisation, 66–68
histogram image enhancement, 

66–68
ideal high-pass filtering, 85–86
ideal low-pass filtering, 78
image degradation model, 87–88
image enhancement, 80–87
image restoration, 87–96
image smoothing, 73–79
inverse filtering, 91
limiting linear transform, 70
linear transform, 70
median filtering, 76, 112–117
neighbourhood-averaging methods, 

73–74
partial code examples, 108–134
partial differential equations 

processing methods, 97–134
PDE image restoration, 114–134
PDE model discrete formats, 103
pixel brightness, 66–70
pixel intensity confirmation, 96
Sobel operator gradient image, 

118–123
spatial-domain methods, 73–77
spatial geometric transforms,  

94–95
threshold-averaging methods, 75
trapezoidal high-pass filtering, 87
trapezoidal low-pass filtering, 79
TV-based models, 102
unconstrained conditional  

restoration, 89
weighted median filtering, 77
Wiener filtering, 92
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Image processing, 104, 212
enhancement, 65
PDE, 104
restoration, 65
smoothing, 65
storage, 199
techniques, 65
transmission, 199

Image processing tools, 29–64
completeness, 47
continuous Fourier transform, 37–38
continuous wavelet transform, 44
convolution operation, 30–36
correlation operation, 30–36
DCT transformation, 58–60
discrete cosine transform, 42
discrete Fourier transform, 38–40
discrete wavelet transform, 45
exercises, 48
fast Fourier transform, 41
Fourier transform, 37–41, 49–57
gabor transform, 43
inverse wavelet transformation, 60–64
one-dimensional continuous Fourier 

transform, 37–38
orthogonality, 47
partial code examples, 49–64
two-dimensional continuous Fourier 

transform, 38
wavelet transform, 44–45
wavelet transformation, 60–64

Image restoration, 37, 87–96, 102
based on degradation model, 89–90
constrained conditional  

restoration, 90
geometric rectification, 93–96
image degradation model, 87–88
inverse filtering, 91
pixel intensity confirmation, 96
spatial geometric transforms, 94–95
unconstrained conditional  

restoration, 89
Wiener filtering, 92, 93

Image segmentation, 84, 135–166
adaptive method, 138
band thresholding, 136–137
border tracing, 148–149
border-tracing method, 161–166
edge-based segmentation, 140–151
edge image thresholding, 140–142

edge relaxation, 143–147
exercises, 155–156
histogram-based thresholding, 

137–138
Hough transform, 150–151
image recognition, 155
iterative thresholding, 138–139
Mode method, 138
optimal thresholding, 138–139
optimal thresholding segmentation, 

158–160
partial code examples, 158–166
region-based segmentation, 152–154
region-growing method, 152
region-merging method, 153
region split-and-merge method, 154
semithresholding, 136–137
thresholding, 136–139

Image smoothing, 71, 73–79
Butterworth low-pass filtering, 79
convolution kernel, 48
frequency-domain methods, 78–79
Gaussian filtering, 75
ideal low-pass filtering, 78
linear, 73
median filtering, 76
methods, 80
neighbourhood-averaging methods, 

73–74
nonlinear, 73
spatial-domain methods, 73–77
threshold-averaging methods, 75
trapezoidal low-pass filtering, 79
weighted median filtering, 77

Image storage formats, 17–28
BMP format, 17
GIF format, 19
JPEG format, 18
RAW format, 17

Impulse noise, 88
Impulse-response functions, 72
Information theory, 223
Intensity, 8

function, 14
grey-scale image, 36, 48
images, 84
matrix, 36, 48

International Telegraph and Telephone 
Consultative Committee  
(CCITT), 220
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Inverse discrete Fourier transforms, 39
Inverse filtering, 91

image preprocessing techniques, 91
image results, 92

Inverse Fourier transform, 37
one-dimensional cases, 38

Inverse restoration, 92
Inverse wavelet transformation,  

60–64
Isotropic diffusion, 100
Isotropic heat conduction model, 98
Iterated functional system (IFS), 217
Iterative algorithm, 211

J

Joint Photographic Experts Group 
(JPEG), 200, 212, 220

compression, 201
DCT-based method, 221
image storage formats, 18
predictive method, 221
standards, 221

L

Lagrange multiplier method, 89, 102
Laplace equation, 97
Laplacian operator, 84, 85–86
Laplacian template, 85
Light exposure, 66
Limiting linear transform, 70
Linear filtering method, 75
Linear image smoothing, 73
Linear shift-invariant (LSI),  

35, 72, 88
Linear transformations, 69

limitation, 70
Local operation, 29

histogram-based thresholding, 138
Lossless compression, 199, 201–206

Huffman encoding, 201–205
runlength encoding, 206

Lossy compression, 199, 207–219
fractal compression, 217–219
predictive compression  

methods, 207
vector quantisation, 208–211
wavelet compression, 212–216

Low-pass filtering, 78, 79
LSI. see Linear shift-invariant (LSI)

M

Mathematical morphology,  
167–180, 184

binary erosion, 186–194
binary images morphology, 169–177
binary morphological operation, 

171–175
binary-scale images, 167
binary skeleton, 195–198
dilation operations, 171–172, 178–181
erosion operations, 173–174, 182
exercises, 185
grey-scale images, 178–198
grey-scale images applications, 

183–184
hit-or-miss transformation,  

175, 176–177
opening and closing operation, 175
operations, 178–182
partial code examples, 186–198
sets and elements, 168
sets operations, 168
sets relationships, 168
set theory, 168
skeleton method, 177
thinning and thickening, 176

Median filtering, 77
image application, 74
image preprocessing techniques,  

76, 112–117
spatial domain methods, 73

Mode-histogram-based  
thresholding, 138

Moving Pictures Experts Group  
(MPEG), 200, 220

B-frames, 222
frame types, 223
I-frames, 222
P-frames, 222

N

National Standard Committee (NTSC), 
19

Neighbourhood-averaging method
image application, 74
image blurring, 75
image preprocessing techniques, 

73–74
spatial domain methods, 73
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Neighbourhood operations, 29
histogram-based thresholding, 138

Neighbouring pixels position, 82
Noise

degradation system, 92
Gaussian, 88, 99–100
impulse, 88
ratio, 92, 200

Noisy images, 104
Nonlinear image smoothing, 73, 76
Nonmaximal suppression edge pixels, 141
NTSC. see National Standard 

Committee (NTSC)

O

Object recognition, 84
One-dimensional continuous Fourier 

transform, 37–38
One-dimensional fast Fourier  

transform, 41
One-dimensional Fourier transform, 39
Optic system image differences, 71
Optimal thresholding, 139

image segmentation, 158–160
Orthogonal function, 47
Orthogonality, 47
Orthogonal property, 47
Orthogonal transformations, 48

P

PAL. see Phase Alternate Line (PAL)
Parabolic equation, 103
Parseval’s theorem, 40
Partial code examples, 21–28

24-bit colour image conversion to red 
channel image, 22–24

8-bit colour image to grey-scale 
image conversion, 25–28

8-bit grey-scale image conversion to 
red channel image, 22

border-tracing method, 161–166
image compression, 226–242
image preprocessing techniques, 

108–134
image processing tools, 49–64
image segmentation, 158–166
mathematical morphology, 186–198
optimal thresholding segmentation, 

158–160

Partial differential equations (PDE), 
97–134

8-bit grey-scale image histogram, 
108–112

continuous models, 103
diffusion-based methods, 97
diffusion-based models, 98–101
discrete formats, 103
exercises, 105–107
fourth-order, 114–134
heat conduction model, 98–101
image-processing model, 97, 103, 104
median filtering, 112–117
partial code examples, 108–134
second-order, 114–134
Sobel operator gradient image, 

118–123
total-variation-based models, 97
TV-based models, 102

PCM. see Pulse code modulation (PCM)
PDE. see Partial differential  

equations (PDE)
Peak-to-peak signal-to noise- ratio 

(PSNR), 200
Period frequency, 1
Perspective distortion, 95
P-frames, 222
Phase, 2
Phase Alternate Line (PAL), 19
Photographing procedures

brightness, 66
light exposure, 66

Pincushion distortion, 95
Pixel brightness

contrast stretching, 69–70
histogram equalisation, 66–68
histogram image enhancement, 66–68

Pixel intensity
confirmation, 96
rate, 219

Pixel neighbourhoods, 30
Pixel points, 141
Plancherel theorem, 40
P-M model, 99

diffusion, 101
restored images, 101

Point operations, 29
Point-spread functions, 72
Predictive encoding system, 222
Prewitt operator, 83, 86
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Probability density sketch map, 66
Processing transfer functions, 91
PSNR. see Peak-to-peak signal-to  

noise- ratio (PSNR)
Pulse code modulation (PCM), 207

R

Range blocks, 217
image, 218

RAW format, 18
Red, green, and blue (RGB), 9

channels, 16
colour model, 9
to HSI model conversion, 14
images, 14
space, 16
YUV model, 12

Region-based segmentation, 152–154
growing method, 152
merging method, 153
split-and-merge method, 154

Region-growing method, 152, 156
Region split-and-merge method, 154
Representative point, 170
Resolution

grey-scale images, 6
images, 6

RGB. see Red, green, and blue (RGB)
RMS. see Root-mean-square (RMS)
Roberts operator, 83, 86
Root-mean-square (RMS), 200
Row-by-row order, 77

S

Salt and pepper noise, 88
Sampling process, 4
Saturation, 8

function, 14
Scaling coefficients, 216
Scaling functions, 213, 216
Second-order partial differential equations 

image restoration, 114–134
Segmentation methods, 136. see also 

Image segmentation
edge-based, 140–152
region-based segmentation,  

152–154
thresholding, 137

Semithresholding, 136

Set theory, 168
binary images, 169

Shift-invariant system, 72
Signal combination, 3
Signal-to-noise ratio (SNR), 92
Skeleton method, 177
Smoothing. see also Image smoothing

discrete Gaussian convolution  
kernel, 98

Gaussian, 75, 98
image processing, 65
linear filtering method, 75
linear image, 73
nonlinear image, 73, 76

SNR. see Signal-to-noise ratio (SNR)
Sobel operator, 83, 86

gradient image, 118–123
Spatial domain, 73–77

Fourier transform, 38
Gaussian filtering, 73, 75
median filtering, 76
neighbourhood-averaging  

methods, 73–74
shifts, 40
threshold-averaging methods, 75
weighted median filtering, 77

Spatial geometric transforms, 94–95
Storage. see also Image storage formats

analogue signals, 3
image processing, 199

Streaking, 142
Stretching linear transform, 70
Structuring element, 170
Symmetry transformation formulas, 39

T

Television based models, 102
Thinning operation, 176
Thresholding

averaging methods, 75
hysteresis, 142
image preprocessing techniques, 75
method, 136
segmentation, 137

Total-variation-based models, 97
Transfer functions, 72
Trapezoidal filtering

high-pass, 85, 87
low-pass, 79

True colour images, 9
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24-bit colour image
conversion to red channel  

image, 22–24
RGB, 10

Two-dimensional continuous Fourier 
transform, 38

Two-dimensional Fourier transform, 39
Two-dimensional functions, 34

signal images, 1, 31

U

Unconstrained conditional restoration, 89
Undistorted images, 94
Uniform quantisation process, 5

V

Vector quantisation method, 208
Vertical synchronous (VSYNC), 19
Video, 19
Visible light spectrum, 8
Visual system, 10
VSYNC. see Vertical synchronous 

(VSYNC)

W

Wavelet compression, 212–216
images, 212

Wavelet functions, 214, 216
Wavelet transform, 44–45

continuous wavelet transform, 44
discrete wavelet transform, 45
image processing tools, 60–64

Weighted median filtering, 77
Wiener filtering

image preprocessing techniques, 92
image restoration, 93
random noise, 94

Y

YIQ colour model, 10–11
components, 11

Y-K diffusion model, 99, 101, 103
YUV model, 11–12

colour, 11
RGB model, 12
transmission, 11
video encoding, 11

C8970_C007.indd   252 10/10/08   4:22:17 PM

  


	Cit p_9:1: 
	Cit p_10:1: 
	Cit p_34:1: 
	Cit p_34:2: 
	Cit p_31:1: 
	Cit p_33:1: 
	Cit p_45:1: 
	Cit p_45:2: 
	Cit p_38:1: 
	Cit p_42:1: 
	Cit p_43:1: 
	Cit p_47:1: 
	Cit p_47:2: 
	Cit p_40:1: 
	Cit p_44:1: 
	Cit p_44:2: 
	Cit p_48:1: 
	Cit p_48:2: 
	Cit p_53:1: 
	Cit p_50:1: 
	Cit p_30:1: 
	1: 
	Cit p_45:1: 
	Cit p_38:1: 
	Cit p_42:1: 
	Cit p_31:1: 
	Cit p_43:1: 
	Cit p_40:1: 
	Cit p_44:1: 

	Cit p_38:2: 
	Cit p_42:2: 
	Cit p_31:2: 
	Cit p_35:1: 
	Cit p_29:1: 
	Cit p_41:1: 
	Cit p_41:2: 
	Cit p_13:1: 
	Cit p_22:1: 
	Cit p_23:1: 
	Cit p_15:1: 
	Cit p_24:1: 
	Cit p_25:1: 
	Cit p_17:1: 
	Cit p_26:1: 
	Cit p_19:1: 
	Cit p_19:2: 
	Cit p_20:1: 
	Cit p_32:1: 
	Cit p_32:2: 
	2: 
	Cit p_33:1: 
	Cit p_25:1: 

	Cit p_37:1: 
	Cit p_37:2: 


