

	
		netbsd.org
		 (2025-05-11)
		The NetBSD Guide

		The NetBSD Developers

	

	

Copyright © 1999, 2000, 2001, 2002 Federico Lupi

Copyright © 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025 The NetBSD Foundation

All brand and product names used in this guide are or
	may be trademarks or registered trademarks of their respective
	owners.

NetBSD® is a
	registered trademark of The NetBSD Foundation, Inc.

Published: 2025/01/01 00:54:27

$NetBSD: netbsd.html,v 1.338 2025/03/30 14:57:25 maya Exp $

Table of Contents

	Purpose of this guide

	I. About NetBSD

	
	1. What is NetBSD?

	
	1.1. The story of NetBSD

	1.2. NetBSD features

	1.3. Supported platforms

	1.4. NetBSD's target users

	1.5. Applications for NetBSD

	1.6. How to get NetBSD

	II. System installation and related issues

	
	2. Installing NetBSD: Preliminary considerations and preparations

	
	2.1. Preliminary considerations

	
	2.1.1. Dual booting

	2.1.2. NetBSD on emulation and virtualization

	2.2. Install preparations

	
	2.2.1. The INSTALL document

	2.2.2. Partitions

	2.2.3. Hard disk space requirements

	2.2.4. Network settings

	2.2.5. Backup your data and operating systems!

	2.2.6. Preparing the installation media

	2.3. Checklist

	3. Example installation

	
	3.1. Introduction

	3.2. The installation process

	3.3. Keyboard layout

	3.4. Starting the installation

	3.5. MBR partitions

	3.6. Disklabel partitions

	3.7. Setting the disk name

	3.8. Last chance!

	3.9. The disk preparation process

	3.10. Installation type

	3.11. Choosing the installation medium

	
	3.11.1. Installing from CD-ROM / DVD / install image media

	3.11.2. Installing from an unmounted file system

	3.11.3. Installing via FTP and Network configuration

	3.11.4. Installing via NFS

	3.12. Extracting sets

	3.13. System configuration

	3.14. Finishing the installation

	4. Upgrading NetBSD

	
	4.1. Using sysinst

	
	4.1.1. Overview

	4.1.2. The INSTALL document

	4.1.3. Performing the upgrade

	4.2. Using sysupgrade

	III. System configuration, administration and tuning

	
	5. The first steps on NetBSD

	
	5.1. Troubleshooting

	
	5.1.1. Boot problems

	5.1.2. Misconfiguration of /etc/rc.conf

	5.2. The man command

	5.3. Editing configuration files

	5.4. Login

	5.5. Changing the root password

	5.6. Adding users

	5.7. Shadow passwords

	5.8. Changing the keyboard layout

	5.9. System time

	5.10. Secure Shell (ssh(1))

	5.11. Basic configuration in /etc/rc.conf

	5.12. Basic network settings

	5.13. Mounting a CD-ROM

	5.14. Mounting a floppy

	5.15. Installing additional software

	5.16. Security alerts

	5.17. Stopping and rebooting the system

	6. Editing

	
	6.1. Introducing vi

	
	6.1.1. The vi interface

	6.1.2. Switching to Edit Mode

	6.1.3. Switching Modes & Saving Buffers to Files

	6.1.4. Yanking and Putting

	6.1.5. Navigation in the Buffer

	6.1.6. Searching a File, the Alternate Navigational Aid

	6.1.7. A Sample Session

	6.2. Configuring vi

	
	6.2.1. Extensions to .exrc

	6.2.2. Documentation

	6.3. Using tags with vi

	7. The rc.d System

	
	7.1. Basics

	7.2. The rc.d Scripts

		7.2.1. Packages installing rc.d scripts

	7.3. The Role of rcorder and rc.d Scripts

	7.4. Additional Reading

	8. Console drivers

	
	8.1. wscons

	
	8.1.1. wsdisplay

	8.1.2. wskbd

	8.1.3. wsmouse

	9. The X Window System

	
	9.1. What is X11 / Xorg?

	9.2. Configuration

	9.3. The keyboard

	9.4. The monitor

	9.5. Starting X

	9.6. Customizing X

	9.7. Other window managers or desktop environments

	9.8. Graphical login with xdm

	9.9. Using multiple or remote X servers

	9.10. Further resources

	10. Audio

	
	10.1. Configuring the default audio device

	10.2. Configuring the mixer and volume

		10.2.1. Setting default mixer settings on boot

	10.3. Pseudo audio devices

	10.4. Recording and playback commands

	
	10.4.1. audioplay(1)

	10.4.2. audiorecord(1)

	10.4.3. audioctl(1)

	10.5. MIDI support

	
	10.5.1. midirecord(1)

	10.5.2. midiplay(1)

	10.6. Intel HD Audio devices

		10.6.1. Built-in and jacks: DACs/ADCs

	11. Power management

	
	11.1. Basic power management commands

	
	11.1.1. Powering off or rebooting the system

	11.1.2. Using ACPI sleep states (suspend and resume)

	11.1.3. Suspending and resuming individual devices

	11.1.4. Adjusting CPU frequency at runtime

	11.1.5. Using IEEE 802.11 (Wi-Fi) power saving mode

	11.2. Sensors and monitoring

	11.3. An introduction to powerd

	
	11.3.1. Example: using powerd to suspend on lid close

	11.3.2. Example: reducing CPU frequency when unplugged

	12. Printing

	
	12.1. Enabling the printer daemon

	12.2. Configuring /etc/printcap

	12.3. Configuring Ghostscript

	12.4. Printer management commands

	12.5. Remote printing

	13. Using removable media

	
	13.1. Initializing and using USB flash drives

	13.2. Initializing and using floppy disks

	13.3. How to use a ZIP disk

	13.4. Reading data CDs with NetBSD

	13.5. Reading multi-session CDs with NetBSD

	13.6. Allowing normal users to access CDs

	13.7. Mounting an ISO image

	13.8. Using video CDs with NetBSD

	13.9. Using audio CDs with NetBSD

	13.10. Creating an MP3 (MPEG layer 3) file from an audio CD

	13.11. Using a CD-R writer with data CDs

	13.12. Using a CD-R writer to create audio CDs

	13.13. Creating an audio CD from MP3s

	13.14. Copying an audio CD

	13.15. Copying a data CD with two drives

	13.16. Using CD-RW rewritables

	13.17. DVD support

	13.18. Creating ISO images from a CD

	13.19. Getting volume information from CDs and ISO images

	14. The cryptographic device driver (CGD)

	
	14.1. Overview

	
	14.1.1. Why use disk encryption?

	14.1.2. Logical Disk Drivers

	14.1.3. Availability

	14.2. Components of the Crypto-Graphic Disk system

	
	14.2.1. Kernel driver pseudo-device

	14.2.2. Ciphers

	14.2.3. Obsolete Ciphers

	14.2.4. Verification Methods

	14.3. Example: encrypting your disk

	
	14.3.1. Preparing the disk

	14.3.2. Scrubbing the disk

	14.3.3. Creating the cgd

	14.3.4. Modifying configuration files

	14.3.5. Restoring data

	14.4. Example: encrypted CDs/DVDs

	
	14.4.1. Creating an encrypted CD/DVD

	14.4.2. Using an encrypted CD/DVD

	14.5. Example: encrypted iSCSI devices

	
	14.5.1. Creating an encrypted iSCSI device

	14.5.2. Device Initialisation

	14.5.3. Unmounting the Encrypted Device

	14.5.4. Normal Usage

	14.6. Suggestions and Warnings

	
	14.6.1. Using a random-key cgd for swap

	14.6.2. Warnings

	14.7. Further Reading

	15. Concatenated Disk Device (CCD) configuration

	
	15.1. Install physical media

	15.2. Configure Kernel Support

	15.3. Disklabel each volume member of the CCD

	15.4. Configure the CCD

	15.5. Initialize the CCD device

	15.6. Create a 4.2BSD/UFS filesystem on the new CCD device

	15.7. Mount the filesystem

	16. NetBSD RAIDframe

	
	16.1. RAIDframe Introduction

	
	16.1.1. About RAIDframe

	16.1.2. A warning about Data Integrity, Backups, and High
	Availability

	16.1.3. Getting Help

	16.2. Setup RAIDframe Support

	
	16.2.1. Kernel Support

	16.2.2. Power Redundancy and Disk Caching

	16.3. Example: RAID-1 Root Disk

	
	16.3.1. Pseudo-Process Outline

	16.3.2. Hardware Review

	16.3.3. Initial Install on Disk0/wd0

	16.3.4. Preparing Disk1/wd1

	16.3.5. Initializing the RAID Device

	16.3.6. Setting up Filesystems

	16.3.7. Migrating System to RAID

	16.3.8. The first boot with RAID

	16.3.9. Adding Disk0/wd0 to RAID

	16.3.10. Testing Boot Blocks

	17. NetBSD Logical Volume Manager (LVM) configuration

	
	17.1. Anatomy of NetBSD Logical Volume Manager

	17.2. Install physical media

	17.3. Configure Kernel Support

	17.4. Disklabel each physical volume member of the LVM

	17.5. Create Physical Volumes

	17.6. Create Volume Group

	17.7. Create Logical Volume

	17.8. Example: LVM with Volume groups located on raid1

	
	17.8.1. Loading Device-Mapper driver

	17.8.2. Preparing raid1 installation

	17.8.3. Creating PV, VG on raid disk

	17.8.4. Creating LV's from VG located on raid disk

	17.8.5. Integration of LV's in to the system

	18. Pluggable Authentication Modules (PAM)

	
	18.1. About

	18.2. Introduction

	18.3. Terms and conventions

	
	18.3.1. Definitions

	18.3.2. Usage examples

	18.4. PAM Essentials

	
	18.4.1. Facilities and
	primitives

	18.4.2. Modules

	18.4.3. Chains and
	policies

	18.4.4. Transactions

	18.5. PAM Configuration

	
	18.5.1. PAM policy files

	18.5.2. Breakdown of a
	configuration line

	18.5.3. Policies

	18.6. PAM modules

	
	18.6.1. Common Modules

	18.6.2. NetBSD-specific PAM Modules

	18.7. PAM Application Programming

	18.8. PAM Module Programming

	18.9. Sample PAM Application

	18.10. Sample PAM Module

	18.11. Sample PAM Conversation
 Function

	18.12. Further Reading

	19. Tuning NetBSD

	
	19.1. Introduction

		19.1.1. Overview

	19.2. Tuning Considerations

	
	19.2.1. General System Configuration

	19.2.2. System Services

	19.2.3. The NetBSD Kernel

	19.3. Visual Monitoring Tools

	
	19.3.1. The top Process Monitor

	19.3.2. The sysstat utility

	19.4. Monitoring Tools

	
	19.4.1. fstat

	19.4.2. iostat

	19.4.3. ps

	19.4.4. vmstat

	19.5. Network Tools

	
	19.5.1. ping

	19.5.2. traceroute

	19.5.3. netstat

	19.5.4. tcpdump

	19.6. Accounting

	
	19.6.1. Accounting

	19.6.2. Reading Accounting Information

	19.6.3. How to Put Accounting to Use

	19.7. Kernel Profiling

	
	19.7.1. Getting Started

	19.7.2. Interpretation of kgmon Output

	19.7.3. Putting it to Use

	19.7.4. Summary

	19.8. System Tuning

	
	19.8.1. Using sysctl

	19.8.2. tmpfs & mfs

	19.8.3. Journaling

	19.8.4. LFS

	19.9. Kernel Tuning

	
	19.9.1. Preparing to Recompile a Kernel

	19.9.2. Configuring the Kernel

	19.9.3. Building the New Kernel

	19.9.4. Shrinking the NetBSD kernel

	20. NetBSD Veriexec subsystem

	
	20.1. How it works

	20.2. Signatures file

	20.3. Generating fingerprints

	20.4. Strict levels

	20.5. Veriexec and layered file systems

	20.6. Kernel configuration

	21. Bluetooth on NetBSD

	
	21.1. Introduction

	21.2. Supported Hardware

	21.3. System Configuration

	21.4. Human Interface Devices

	
	21.4.1. Mice

	21.4.2. Keyboards

	21.5. Personal Area Networking

		21.5.1. Personal Area Networking User

	21.6. Serial Connections

	21.7. Audio

	
	21.7.1. SCO Audio Headsets

	21.7.2. SCO Audio Handsfree

	21.8. Object Exchange

	21.9. Troubleshooting

	22. Miscellaneous operations

	
	22.1. Installing the boot manager

	22.2. Deleting the disklabel

	22.3. Speaker

	22.4. Forgot root password?

	22.5. Password file is busy?

	22.6. Adding a new hard disk

	22.7. How to rebuild the devices in /dev

	IV. Networking and related issues

	
	23. Introduction to TCP/IP Networking

	
	23.1. Audience

	23.2. Supported Networking Protocols

	23.3. Supported Media

	
	23.3.1. Ethernet

	23.3.2. IEEE 802.11 (Wi-Fi)

	23.3.3. Serial Line

	23.4. TCP/IP Address Format

	23.5. Subnetting and Routing

	23.6. Name Service Concepts

	
	23.6.1. /etc/hosts

	23.6.2. Domain Name Service (DNS)

	23.6.3. Network Information Service (NIS/YP)

	23.6.4. Other

	23.7. IPv6

	
	23.7.1. What good is IPv6?

	23.7.2. Changes to IPv4

	24. Setting up TCP/IP on NetBSD in practice

	
	24.1. Overview of the network configuration files

	24.2. Connecting to common LAN setups

		24.2.1. Connecting using IEEE 802.11 (Wi-Fi)

	24.3. Manually creating a small LAN

	24.4. Connecting to a home/office ISP with PPPoE

	
	24.4.1. Configuring a VLAN

	24.4.2. Setting up MSS clamping

	24.4.3. Obtaining IPv6 addresses via Prefix Delegation

	24.5. Setting up an Internet gateway with NPF

	24.6. Setting up a network bridge device

		24.6.1. Bridge example

	24.7. Ensuring interfaces are initialized in the correct order

	24.8. Some useful commands

	25. The Internet Super Server inetd

	
	25.1. Overview

	25.2. What is inetd?

	25.3. Configuring inetd - /etc/inetd.conf

	25.4. Services - /etc/services

	25.5. Protocols - /etc/protocols

	25.6. Remote Procedure Calls (RPC) - /etc/rpc

	25.7. Allowing and denying hosts
 - /etc/hosts.{allow,deny}

	25.8. Adding a Service

	25.9. When to use or not to use inetd

	25.10. Other Resources

	26. The Domain Name System

	
	26.1. DNS Background and Concepts

	
	26.1.1. Naming Services

	26.1.2. The DNS namespace

	26.1.3. Resource Records

	26.1.4. Delegation

	26.1.5. Delegation to multiple servers

	26.1.6. Secondaries, Caching, and the SOA record

	26.1.7. Name Resolution

	26.1.8. Reverse Resolution

	26.2. The DNS Files

	
	26.2.1. /etc/named.conf

	26.2.2. /etc/namedb/localhost

	26.2.3. /etc/namedb/zone.127.0.0

	26.2.4. /etc/namedb/diverge.org

	26.2.5. /etc/namedb/1.168.192

	26.2.6. /etc/namedb/root.cache

	26.3. Using DNS

	26.4. Setting up a caching only name server

		26.4.1. Testing the server

	27. Mail and news

	
	27.1. postfix

	
	27.1.1. Configuration of generic mapping

	27.1.2. Testing the configuration

	27.1.3. Using an alternative MTA

	27.2. fetchmail

	27.3. Reading and writing mail with mutt

	27.4. Strategy for receiving mail

	27.5. Strategy for sending mail

	27.6. Advanced mail tools

	27.7. News with tin

	28. Introduction to the Common Address Redundancy Protocol (CARP)

	
	28.1. CARP Operation

	28.2. Configuring CARP

	28.3. Enabling CARP Support

	28.4. CARP Example

	28.5. Advanced CARP configuration

	28.6. Forcing Failover of the Master

	29. Network services

	
	29.1. The Network File System (NFS)

	
	29.1.1. NFS setup example

	29.1.2. Setting up NFS automounting for /net
 with amd(8)

	29.2. The Network Time Protocol (NTP)

	V. Virtualization and emulation

	
	30. Using virtualization: QEMU and NVMM

	
	30.1. Enabling the NetBSD Virtual Machine Monitor

	30.2. Using QEMU with NVMM

	
	30.2.1. Starting QEMU with acceleration

	30.2.2. Creating a virtual disk

	30.2.3. Adding entropy to the guest

	30.2.4. Using networking

	30.2.5. Using audio

	30.2.6. Using graphics (or no graphics)

	30.3. Configuring bridged networking on a NetBSD host

	30.4. Notes on using NetBSD as a guest

	
	30.4.1. Unclean VM shutdown, data recovery, and fsck

	30.4.2. NetBSD VMs lacking IPv6

	30.4.3. Smooth audio playback and latency in VMs

	30.4.4. Changing the console resolution in an x86 VM

	31. Linux emulation

	
	31.1. Emulation setup

	
	31.1.1. Configuring the kernel

	31.1.2. Installing the Linux libraries

	31.1.3. Running Linux programs

	31.2. Directory structure

	31.3. Using Linux browser plugins

	31.4. Further reading

	VI. Building the system

	
	32. Obtaining the sources

	
	32.1. Preparing directories

	32.2. Terminology

	32.3. Downloading tarballs

	
	32.3.1. Downloading sources for a NetBSD release

	32.3.2. Downloading sources for a NetBSD stable branch

	32.3.3. Downloading sources for a NetBSD-current development branch

	32.4. Fetching by CVS

	
	32.4.1. Fetching a NetBSD release

	32.4.2. Fetching a NetBSD stable branch

	32.4.3. Fetching the NetBSD-current development branch

	32.4.4. Saving some cvs(1) options

	33. Crosscompiling NetBSD with build.sh

	
	33.1. Building the toolchain

	33.2. Configuring the kernel manually

	33.3. Building the kernel manually

	33.4. Building the kernel with build.sh

	33.5. Building the userland

	33.6. Building the X Window System

	33.7. Changing build behaviour

	
	33.7.1. Changing the Destination Directory

	33.7.2. Static Builds

	33.7.3. Using build.sh options

	33.7.4. make(1) variables used during build

	34. Compiling the kernel

	
	34.1. Requirements and procedure

	34.2. Installing the kernel sources

	34.3. Creating the kernel configuration file

	34.4. Building the kernel manually

	
	34.4.1. Configuring the kernel manually

	34.4.2. Generating dependencies and recompiling manually

	34.5. Building the kernel using build.sh

	34.6. Installing the new kernel

	34.7. If something went wrong

	35. Updating an existing system from sources

	
	35.1. Manual build and update procedure

	
	35.1.1. Building a new userland

	35.1.2. Building a new kernel

	35.1.3. Installing the kernel and userland

	35.1.4. Updating the system configuration files

	35.1.5. Summary

	35.2. Using sysinst

	35.3. Using sysbuild and sysupgrade

	
	35.3.1. Tweak: Building as non-root

	35.3.2. Tweak: Setting up nightly builds

	35.4. More details about the updating of configuration and startup files

	
	35.4.1. Using etcupdate with source files

	35.4.2. Using etcupdate with binary distribution sets

	35.4.3. Using etcmanage instead of etcupdate

	36. Building NetBSD installation media

	
	36.1. Creating standard installation images with build.sh

	36.2. Creating custom live disk images

	A. Information

	
	A.1. Where to get this document

	A.2. Guide history

	B. Contributing to the NetBSD guide

	
	B.1. Sending contributions

	B.2. XML/DocBook template

	C. Getting started with XML/DocBook

	
	C.1. What is XML/DocBook

	C.2. Installing the necessary tools

	C.3. Using the tools

	C.4. Links

	D. Acknowledgements

	
	D.1. Original acknowledgements

	D.2. Current acknowledgements

	D.3. Licenses

	
	D.3.1. Federico Lupi's original license of this guide

	D.3.2. Networks Associates Technology's license on the PAM article

	D.3.3. Joel Knight's license on the CARP article

	E. Bibliography

		Bibliography

This guide describes the installation and the configuration of the
 NetBSD operating system as well as the setup and administration of some
 of its subsystems.
 It primarily addresses people coming from other Unix-like operating
 systems, and aims to be a useful guide in the face of the many small
 problems one encounters when using a new tool.

This guide is not a Unix tutorial: basic knowledge of some
 concepts and tools is assumed. You should know, for example, what a
 file and a directory are, and how to use an editor. There are plenty
 of books explaining basic Unix and operating system concepts, and you
 should consult one if you need more background information.
 It is better to choose a general book and avoid titles like
 “Learning Unix-XYZ, version 1.2.3.4 in 10 days”, but this
 is a matter of personal taste.

Much work is still required to finish this introduction to
 NetBSD: some chapters are not finished (some are not even started) and
 some subjects need more testing.
 Corrections and additions are most certainly welcome.

This guide is currently maintained by the NetBSD www team
 (<www@NetBSD.org>). Corrections and suggestions
 should be sent to that address. See also Appendix B, Contributing to the NetBSD guide.

Chapter 1. What is NetBSD?

 NetBSD is a free, fast, secure, and highly portable Unix-like Open Source
 operating system. It is available for many platforms, from 64-bit x86
 servers and PC desktop systems to embedded ARM- and MIPS- based devices.
 Its clean design and advanced features make it excellent in both
 production and research environments, and it is user-supported with
 complete source. Many applications are easily available through pkgsrc,
 the NetBSD Packages Collection.

The first version of NetBSD (0.8) dates back to 1993 and
 springs from the 4.3BSD Lite operating system, a version of
 Unix developed at the University of California, Berkeley (BSD
 = Berkeley Software Distribution), and from the 386BSD
 system, the first BSD port to the Intel 386 CPU. In the
 following years, modifications from the 4.4BSD Lite
 release (the last release from the Berkeley group) were integrated
 into the system. The BSD branch of Unix has had a great importance
 and influence on the history of Unix-like operating systems, to which
 it has contributed many tools, ideas and improvements which are now
 standard: the vi editor, the C shell, job control, the Berkeley
 Fast File System, reliable signals, support for virtual memory and
 TCP/IP, just to name a few. This tradition of research and
 development survives today in the BSD systems and, in particular, in
 NetBSD.

NetBSD operates on a vast range of hardware platforms and is very
 portable. The full source to the NetBSD kernel and userland is
 available for all the supported platforms; please see the details on
 the official site of
 the NetBSD Project.

The basic features of NetBSD are:

	Code quality and correctness

	Portability to a wide range of hardware

	Secure defaults

	Adherence to industry standards

	Research and innovation

These characteristics also bring indirect advantages.
 For example, if you work on just one platform you could think that
 you're not interested in portability.
 But portability is tied to code quality; without a well-written and
 well-organized code base it would be impossible to support a large
 number of platforms.
 And code quality is the base of any good and solid software system,
 though surprisingly few people seem to understand it.

One of the key characteristics of NetBSD is that its developers
 are not satisfied with partial implementations.

 Some systems seem to have the philosophy of “If it works, it's
 right”.
 In that light, NetBSD's philosophy could be described as “It
 doesn't work unless it's right”.
 Think about how many overgrown programs are collapsing
 under their own weight and “features” and you'll understand
 why NetBSD tries to avoid this situation at all costs.

NetBSD supports many platforms, including the popular
 i386 and amd64, ARM, SPARC, Alpha, Amiga, Atari, and m68k- and
 PowerPC-based Apple Macintosh machines.
 Technical details for all of them can be found on the NetBSD site.

1.4. NetBSD's target users

The NetBSD site states that: “The NetBSD Project provides a
 freely available and redistributable system that professionals,
 hobbyists, and researchers can use in whatever manner they
 wish”.
 It is also an ideal system if you want to learn Unix,
 mainly because of its adherence to standards (one of the project
 goals) and because it works equally well on the latest PC
 hardware as well as on hardware which is considered obsolete
 by many other operating systems. To learn and use
 Unix you don't need to buy expensive hardware; you can use that old
 PC or Mac in your attic. It is important to note that although NetBSD
 runs on old hardware, modern hardware is well supported and care has
 been taken to ensure that supporting old machines does not inhibit
 performance on modern hardware.
 In addition, if you need a Unix system which runs consistently on a
 variety of platforms, NetBSD is probably your best choice.

1.5. Applications for NetBSD

Aside from the standard Unix productivity tools, editors,
 formatters, C/C++ compilers and debuggers, and so on, that are
 included with the base system, there is a huge collection of
 packages (currently over 20,000) that can be installed as binary
 packages or built from pkgsrc, including popular cross-platform
 software such as Firefox, PostgreSQL, Python, and Xfce.

NetBSD is an Open Source operating system, and as such it is freely
 available for download from
 cdn.NetBSD.org and
 other mirrors.

Chapter 2. Installing NetBSD: Preliminary considerations and preparations

2.1. Preliminary considerations

It is possible to install NetBSD together with other operating
 systems on one hard disk.

If there is already an operating system on the hard disk, think
 about how you can free some space for NetBSD; if NetBSD will share
 the disk with other operating systems you will probably need to
 create a new partition (which you will do with
 sysinst). Oftentimes this will not be
 possible unless you resize an existing partition.

Unfortunately, it is not possible to resize an existing partition
 with sysinst, but there are some
 commercial products (like
 Partition Magic)
 and some free tools (GNU Parted,
 FIPS, pfdisk)
 available for this.

You can also install NetBSD on a separate hard disk.

Advice

Unless you are comfortable with setting up a partitioning
 scheme for two or more operating systems, and unless you
 understand the risk of data loss if you should make a mistake,
 it is recommended that you give NetBSD its own hard disk. This
 removes the risk of damage to the existing operating system.

2.1.2. NetBSD on emulation and virtualization

It is possible to install and run NetBSD on top of other
 operating systems without having to worry about partitioning.
 Emulators or virtualization environments provide a quick and secure
 way to try out NetBSD. The host operating system remains unchanged,
 and the risk of damaging important data is minimized.

 Information about NetBSD as a Xen
 host and guest system is available on the
 NetBSD/xen web
 page.

The
 NetBSD on
 emulated hardware web page provides detailed information
 about various emulators and the supported NetBSD platforms. It
 should also be noted that NetBSD runs as a VMware guest.

2.2. Install preparations

2.2.1. The INSTALL document

The first thing to do before installing NetBSD is to read the
 release information and installation notes in one of the
INSTALL files: this is the official
description of the installation procedure, with platform-specific
information and important details. It is available in HTML, PostScript,
plain text, and an enhanced text format to be used with
more. These
files can be found in the root
directory of the NetBSD release (on the install CD or on the FTP
server). For example, the amd64 install instructions are available at

ftp.NetBSD.org/pub/NetBSD/NetBSD-10.1/amd64/INSTALL.html

The terminology used by NetBSD for partitioning is different
 from the typical DOS/Windows terminology; in fact, there are two
 partitioning schemes involved when running NetBSD on a typical PC.
 NetBSD installs in one of the four primary BIOS partitions (the
 partitions defined in the hard disk partition table).

Within a BIOS partition (also called slice)
 NetBSD defines its BSD partitions using a
 disklabel. These partitions can be seen only by
 NetBSD and are identified by lowercase letters (starting with
 “a”).
 For example, wd0a refers to the “a” partition of the first
 IDE disk (wd0) and sd0a refers to the “a” partition of the
 first SCSI disk. In Figure 2.1, “Partitions” there are two
 primary BIOS partitions, one used by DOS and the other by NetBSD.
	 NetBSD describes the disk layout through the disklabel.

Figure 2.1. Partitions

[image: Partitions]

Note

The meaning of partitions “c” and “d”
	 is typical of the amd64 port.
	 On most other ports, “c” represents the whole disk.

Note

If NetBSD shares the hard disk with another operating system
 (like in the previous example) you will want to install a
 boot manager, i.e., a program which lets you
 choose which OS to start at boot time.
 sysinst can do this for you and
 will ask if you want to install one. Unless you have specific
 reasons not to, you should let sysinst perform this step.

2.2.3. Hard disk space requirements

The exact amount of space required for a given NetBSD installation
 varies depending on the platform being used and which distribution sets
 are selected. Generally speaking, if you have a few GB of free space
 on your hard drive, you will have enough space for a full installation
 of the base system.

If you plan to fetch distribution sets over the network (not
 necessary if you downloaded a full-size install ISO) and do not use
 DHCP, write down your basic network settings. You will need:

	Your IP address (example: 192.168.1.7)

	the netmask (example: 255.255.255.0)

	the IP address of your default gateway
 (example: 192.168.1.1)

	the IP address of the DNS server you use
 (example: 145.253.2.75)

2.2.5. Backup your data and operating systems!

Before you begin the installation, make sure that you have
 a reliable backup of any operating systems and data on the used
 hard disk. Mistakes in partitioning your hard disk can lead to data loss.
 Existing operating systems may become unbootable.
 "Reliable backup" means that the backup and restore procedure is
 tested and works flawlessly!

2.2.6. Preparing the installation media

The NetBSD installation system consists of two parts. The first
 part is the installation kernel. This kernel contains the NetBSD
 install program sysinst and it is booted
 from the install media (e.g, CD/DVD, USB drive, memory card, etc.).
 The sysinst program will
 prepare the disk: it separates the disk space into partitions, makes
 the disk bootable and creates the necessary file systems.

The second part of the install system is made up of the binary
 distribution sets: the files of the NetBSD operating system.
 The installer needs to have access to the distribution sets.
 sysinst will usually fetch these files
 from the install media you booted from, but it can also fetch them
 via FTP, NFS, or a local filesystem.

The NetBSD Project provides

 complete install media for every supported hardware architecture.
 This is usually in the form of bootable CD images (.iso
 files).

2.2.6.1. Booting the install system from USB

To use a bootable USB install image (on amd64, i386),
 download the img.gz file for your hardware
 architecture, decompress and copy the image to a USB. For example
 on a Unix-like system you may use:

gunzip NetBSD-10.1-amd64-install.img.gz
dd if=NetBSD-10.1-amd64-install.img of=/dev/your-usb bs=2m

 Examples of your-usb are
 /dev/rsd0d (NetBSD),
 /dev/sda (Linux).

Caution

Selecting the wrong device in
 dd may destroy your current system.
 Double-check it isn't mounted and is your USB stick. It should
 appear at the bottom of dmesg on connect, for
 example, if you see:

sd0 at scsibus0 target 0 lun 0: [...], disk removable

 on NetBSD, you will want to select
 /dev/rsd0d.

2.2.6.2. Booting the install system from CD

To use a bootable NetBSD install CD,
 download the iso file for your hardware
 architecture and burn it to a CD or DVD. You will need to handle
 this step alone, as burning programs vary widely. Ensure that
 your computer is set up to boot from CD-ROM before hard drives,
 insert the disc, and reboot the computer.

This is the checklist about the things that should be clear
 and on-hand now:

	Available disk space

	Bootable medium with the install system

	CD/DVD or server with the distribution sets

	Your network information (only if you will be fetching
 distribution sets via the network and do not use DHCP)

	A working backup

	A copy of the INSTALL document

Chapter 3. Example installation

This chapter will guide you through the installation process. The
 concepts presented here apply to all installation methods. The only
 difference is in the way the distribution sets are fetched by the
 installer. Some details of the installation differ depending on the
 NetBSD release. The examples from this chapter were created with
 NetBSD 8.0.

Note

The following install screens are just examples. Do not simply
 copy them, as your hardware and configuration details may be
 different!

3.2. The installation process

The installation process is divided logically into two parts.
 In the first part, you create a partition for NetBSD and write the
 disklabel for that partition. In the second part, you decide
 which distribution sets (subsets of the operating system) you want
 to install and then extract the files into the newly created
 partition(s).

The NetBSD install program sysinst
 allows you to change the keyboard layout during the installation. If
 for some reason this does not work for you, you can use the map in the
 following table.

	US
	IT
	DE
	FR

	-
	'
	ß
)

	/
	-
	-
	!

	=
	ì
	'
	-

	:
	ç
	Ö
	M

	;
	ò
	ö
	m

	#
	£
	§
	3

	"
	°
	Ä
	%

	*
	(
	(
	8

	(
)
)
	9

)
	=
	=
	0

	'
	à
	ä
	ù

	`
	\
	^
	@

	\
	ù
	#
	`

3.4. Starting the installation

To start the installation of NetBSD, insert your chosen boot
 medium (CD/DVD, USB drive, floppy, etc.) and reboot the computer.
 The kernel on the installation medium will be booted and it will
 start displaying a lot of messages on the screen about hardware
 being detected.

Figure 3.1. Selecting the language

[image: Selecting the language]

When the kernel has booted, you will find yourself in the NetBSD
 installation program, sysinst, shown in
 Figure 3.1, “Selecting the language”. From here on, you should
 follow the instructions displayed on the screen, using the
 INSTALL document as a companion reference. You
 will find the INSTALL document in various formats in the root
 directory of the NetBSD release. The
 sysinst screens all have more or less the
 same layout: the upper part of the screen shows a short description of
 the current operation or a short help message, and the rest of the
 screen is made up of interactive menus and prompts. To make a choice,
 use the cursor keys, the “Ctrl+N” (next) and
 “Ctrl+P” (previous) keys, or press one of the letters
 displayed left of each choice. Confirm your choice by pressing the
 Return (also known as “Enter”) key.

Start by selecting the language you prefer to use for the
 installation process.

The next screen Figure 3.2, “Selecting a keyboard type” will allow
 you to select a suitable keyboard type.

Figure 3.2. Selecting a keyboard type

[image: Selecting a keyboard type]

This will bring you to the main menu of the installation program
 (Figure 3.3, “The sysinst main menu”).

Figure 3.3. The sysinst main menu

[image: The sysinst main menu]

Choosing the “Install NetBSD to hard disk” option
 brings you to the next screen (Figure 3.4, “Confirming to install NetBSD”),
 where you need to confirm that you want to continue the
 installation.

Figure 3.4. Confirming to install NetBSD

[image: Confirming to install NetBSD]

After choosing “Yes” to continue,
 sysinst displays a list of one or more
 disks and asks which one you want to install NetBSD on. In the
 example of Figure 3.5, “Choosing a hard disk”, two disks are
 listed, and NetBSD will be installed on “wd0”, the first
 SATA or IDE disk found. If you use SCSI or external USB disks, the
 first one will be named “sd0”, the second one
 “sd1” and so on.

Figure 3.5. Choosing a hard disk

[image: Choosing a hard disk]

Then the installer will ask you to confirm the detected disk
 geometry from the information provided by the BIOS, as shown in
 Figure 3.6, “Disk geometry”. It almost always gives
 the right values. Choose “This is the correct
 geometry”, unless you know that the information provided by
 your BIOS is reportedly incorrect.

Figure 3.6. Disk geometry

[image: Disk geometry]

The first important step of the installation has come: the
 partitioning of the hard disk. First, you need to specify whether
 NetBSD will use a partition (suggested choice) or the whole disk. In
 the former case it is still possible to create a partition that uses
 the whole hard disk (Figure 3.7, “Choosing the partitioning scheme”), so we recommend
 that you select this option as it keeps the BIOS partition table in a
 format which is compatible with other operating systems.

Figure 3.7. Choosing the partitioning scheme

[image: Choosing the partitioning scheme]

The next screen shows the current state of the MBR partition table
 on the hard disk before the installation of NetBSD. There are four
 primary partitions, and as you can see, this example disk is currently
 empty. If you do have other partitions you can leave them around and
 install NetBSD on a partition that is currently unused, or you can
 overwrite a partition to use it for NetBSD.

Figure 3.8. fdisk

[image: fdisk]

Deleting a partition is simple: after selecting the partition,
 a menu with options for that partition will appear (Figure 3.9, “Partition options”). Change the partition kind
 to “Delete partition” to remove the partition. Of
 course, if you want to use the partition for NetBSD you can set the
 partition kind to “NetBSD”.

You can create a partition for NetBSD by selecting the partition
 you want to install NetBSD to. The partition names “a”
 to “d” correspond to the four primary partitions on other
 operating systems. After selecting a partition, a menu with options
 for that partition will appear, as shown in Figure 3.9, “Partition options”.

Figure 3.9. Partition options

[image: Partition options]

To create a new partition, the following information must be
 supplied:

	the type (kind) of the new partition

	the first (start) sector of the new partition

	the size of the new partition

Choose the partition type “NetBSD” for the new
 partition (using the “type” option). The installation
 program will try to guess the “start” position based on
 the end of the preceding partition. Change this value if necessary.
 The same thing applies to the “size” option; the
 installation program will try to fill in the space that is available
 until the next partition or the end of the disk (depending on which
 comes first). You can change this value if it is incorrect, or if you
 do not want NetBSD to use all the suggested amount of space.

After you have chosen the partition type, start position, and
 size, it is a good idea to set the name that should be used in the
 boot menu. You can do this by selecting the “bootmenu”
 option and providing a label, e.g., “NetBSD”. Repeat
 this step for other bootable partitions, so you can boot both NetBSD
 and a Windows system (or other operating systems) using the NetBSD
 bootselector. You can also choose one of the labelled partitions as
 default for the boot menu. If you are satisfied with the partition
 options, confirm your choice by selecting “Partition OK”.
 Choose “Partition table OK” to leave the MBR partition
 table editor.

If you have made an error in partitioning (for example you have
 created overlapping partitions) sysinst
 will display a message and suggest to go back to the MBR partition
 editor (but you are also allowed to continue). If the data is correct
 but the NetBSD partition lies outside the range of sectors which is
 bootable by the BIOS, sysinst will warn you
 and ask if you want to proceed anyway. Doing so may lead to problems
 on older PCs.

Note

This is not a limitation of NetBSD. Some old BIOSes cannot boot
 a partition which lies outside the first 1024 cylinders. To fully
 understand the problem, you should study the different types of
 BIOSes and the many addressing schemes that they use
 (physical CHS, logical CHS,
 LBA, ...). These topics are not described in
 this guide.

On modern computers (those with support for int13
 extensions), it is possible to install NetBSD in
 partitions that live outside the first 8 GB of the hard disk,
 provided that the NetBSD boot selector is installed.

Next, sysinst will offer to install a
 boot selector on the hard disk. This screen is shown in Figure 3.10, “Installing the boot selector”.

Figure 3.10. Installing the boot selector

[image: Installing the boot selector]

At this point, the BIOS partitions (called
 slices on BSD systems) have been created. They
 are also called PC BIOS partitions, MBR
 partitions or fdisk
 partitions.

Note

Do not confuse the slices or
 BIOS partitions with the BSD
 partitions, which are different things.

3.6. Disklabel partitions

Some platforms, like PC systems (amd64 and i386), use DOS-style
 MBR partitions to separate file systems. The MBR partition you created
 earlier in the installation process is necessary to make sure that
 other operating systems do not overwrite the diskspace that you
 allocated to NetBSD.

NetBSD uses its own partition scheme, called a
 disklabel, which is stored at the start of the
 MBR partition: for more information, refer to Section 2.2.2, “Partitions”. In the next few steps
 you will create a disklabel(5) and set the sizes of the NetBSD
 partitions, or use existing partition sizes, as shown in Figure 3.11, “Edit partitions?”.

Figure 3.11. Edit partitions?

[image: Edit partitions?]

When you choose to set the sizes of the NetBSD partitions you can
 define the partitions you would like to create. The installation
 program will generate a disklabel based on these settings. This
 installation screen is shown in Figure 3.12, “Setting partition sizes”.

Figure 3.12. Setting partition sizes

[image: Setting partition sizes]

As specified in Figure 3.3, “The sysinst main menu”, the items
 of the installation menus can be selected pressing the letter
 displayed left of them. Be careful that, in these menus, they do not
 always correspond to the BSD disklabel partition letters. For example,
 third line (letter “c”) of
 Figure 3.12, “Setting partition sizes” does not refer to the
 whole NetBSD partition, as well as the fourth line (letter
 “d”) does not correspond to BSD disklabel partition
 “d”.

The default partition scheme of just using a big
 / (root) file system (plus swap) works fine with
 NetBSD, and there is little need to change this. Figure 3.12, “Setting partition sizes” shows how to change the size of the
 swap partition to 4096 MB. Note also that partition
 / is marked with a “+”, so it will
 occupy all the remaining free space (not located for any other
 partition). Changing /tmp to reside on a
 RAM disk (mount_tmpfs(8) or mfs(8)) for
 extra speed may be a good idea. Other partition schemes may use
 separate partitions for /var,
 /usr and/or /home, but you
 should use your own experience to decide if you need this. When you
 completed the definition of all the desired partitions, choose
 “Accept partition sizes”.

The next step is to create the disklabel and edit its partitions,
 if necessary, using the disklabel editor (Figure 3.13, “The disklabel editor”). If you predefined the partition sizes
 in the previous step, the resulting disklabel will probably fit your
 wishes. In that case you can complete the process immediately by
 selecting “Partition sizes ok”.

Figure 3.13. The disklabel editor

[image: The disklabel editor]

Letters in Figure 3.13, “The disklabel editor” are used for line
 selection and to represent the corresponding BSD
 disklabel partitions, with the meaning specified in Section 2.2.2, “Partitions”. In the amd64 port, there
 are two reserved partitions: “c”, representing the NetBSD
 partition, and “d”, representing the whole disk. You can
 edit all the other partitions by using the cursor keys and pressing
 the Return key, or using their corresponding letters. You can add a
 partition by selecting an unused slot and setting parameters for that
 partition. The partition editing screen is shown in Figure 3.14, “Disklabel partition editing”. When you are satisfied with all
 the values, choose “Partition sizes ok”.

Figure 3.14. Disklabel partition editing

[image: Disklabel partition editing]

3.7. Setting the disk name

After defining the partitions in the new disklabel, the last item
 is to enter a name for the NetBSD disk as shown in Figure 3.15, “Naming the NetBSD disk”. This can be used later to distinguish
 between disklabels of otherwise identical disks.

Figure 3.15. Naming the NetBSD disk

[image: Naming the NetBSD disk]

The installer now has all the data it needs to prepare the disk.
 Nothing has been written to the disk at this point but, and now is
 your last chance to abort the installation process before actually
 writing data to the disk. Choose “no” to abort the
 installation process and return to the main menu, or continue by
 selecting “yes”.

Figure 3.16. Last chance to abort

[image: Last chance to abort]

3.9. The disk preparation process

After confirming that sysinst should
 prepare the disk, it will run disklabel(8) to create the NetBSD
 partition layout and newfs(8) to create the file systems on the
 disk.

After preparing the NetBSD partitions and their filesystems, the
 next question (shown in Figure 3.17, “Selecting bootblocks”) is which
 bootblocks to install. Usually you will choose
 the default of BIOS console, i.e., show boot
 messages on your computer's display.

If you run a farm of machines without monitor, it may be more
 convenient to use a serial console running on one of the serial ports.
 The menu also allows changing the serial port's baud rate from the
 default of 9600 baud, 8 data bits, no parity and one stopbit.

Figure 3.17. Selecting bootblocks

[image: Selecting bootblocks]

The installer will then ask whether you want to do a full, minimal
 or custom installation. NetBSD is broken into a collection of
 distributions sets. “Full installation” is the default
 and will install all sets; “Minimal installation” will
 only install a small core set, the minimum of what is needed for a
 working system. If you select “Custom installation” you
 can select which sets you would like to have installed. This step is
 shown in Figure 3.18, “Full or custom installation”.

Figure 3.18. Full or custom installation

[image: Full or custom installation]

If you choose to do a custom installation,
 sysinst will allow you to choose which
 distribution sets to install, as shown in Figure 3.19, “Selecting distribution sets”. At a minimum, you must select a kernel
 and the “Base” and “Configuration files
 (/etc)” sets.

Figure 3.19. Selecting distribution sets

[image: Selecting distribution sets]

3.11. Choosing the installation medium

At this point, you have finished the first and most difficult part
 of the installation!

The second half of the installation process consists in populating
 the file systems by extracting the distribution sets that you selected
 earlier (“Base”, “Compiler tools”,
 “Games”, etc.). Now sysinst
 needs to find the NetBSD sets and you must tell it where to find them:
 it can be the same medium where sysinst
 resides, or a different one, according to your preferences. The menu
 offers several choices, as shown in Figure 3.20, “Installation media”.
 The options are explained in detail in the
 INSTALL documents.

Figure 3.20. Installation media

[image: Installation media]

3.11.1. Installing from CD-ROM / DVD / install image media

Choose this option if you want to install NetBSD from either an
 optic medium (“CD-ROM / DVD”) or another medium, such
 as an USB drive. If the running sysinst
 itself has been loaded from there, the corresponding device will be
 automatically selected and the extraction of the distribution sets
 will begin.

The CD-ROM/DVD or other device name

If sysinst is not able to detect
 the CD-ROM/DVD or the USB flash device, you can gather more
 information about the hardware configuration as follows:

	Press “Ctrl+Z” to pause
 sysinst and go to the shell
 prompt.

	
Type the command:

dmesg

This will show the kernel startup messages, including
 information about not detected or not configured devices.
 When the first CD-ROM or DVD drive in the system is properly
 working, it is usually named cd0,
 regardless of whether it is IDE or SCSI (or even USB or
 FireWire). The first USB flash drive is named
 sd0 when it is correctly
 configured.

	
If the display scrolls too quickly, you can also use
 more:

dmesg | more

	As instructed, you can return to the NetBSD installation
 by typing either “exit” or “^D”
 (“Ctrl+D”).

3.11.2. Installing from an unmounted file system

Figure 3.21, “Mounting a file system” shows the menu to install NetBSD
 from an unmounted file system. It is necessary to specify the
 device (“Device”), its file system type (“File
 system”) and a root directory inside it (“Base
 directory”). The binary installation sets and the source
 sets are .tgz files. The default mountpoint is
 “mnt” in amd64. The path is formed as follows:

/<default mountpoint>/<Base directory>/<Binary set directory> or <Source set directory>/set.tgz

Choose a combination of “Base directory” and
 “Binary set directory” (or “Source set
 directory”) that generates a valid path in your unmounted
 filesystem. If more than one consecutive /
 appear, only the first / will actually be
 considered. You need to specify a “Source set
 directory” only if you previously chose to install some
 sources. Source sets are usually not included in the installation
 images.

In the following example the install sets are stored on a
 MSDOS file system, on partition
 “e” on the device “sd0”.

Figure 3.21. Mounting a file system

[image: Mounting a file system]

Specify the device name and the partition.
 Figure 3.22, “Mounting a partition ” shows how to specify device
 "sd0" with partition "e".

Figure 3.22. Mounting a partition

[image: Mounting a partition]

In Figure 3.23, “Accessing a MSDOS file system” the file system type
 specified is “msdos”. This value is used to form the
 command mount_<File system> to mount the
 volume. Any string (representing a “File system” type)
 which forms a valid command is accepted: for example, the NetBSD
 file system “ffs” or “ext2fs”, a Linux
 file system. In this example, the “Base directory”
 item is left blank and the binary sets are stored under
 /sets, so that the path becomes:

/mnt///sets

Ignoring the multiple /, this is
 equivalent to /mnt/sets and it is a valid one.
 Choosing “Continue” will start the extraction of the
 sets.

Figure 3.23. Accessing a MSDOS file system

[image: Accessing a MSDOS file system]

3.11.3. Installing via FTP and Network configuration

If you choose to install from a local network or the Internet
 via FTP, sysinst must be instructed to
 properly get the distribution sets, as shown in Figure 3.24, “Defining the FTP settings”.

Figure 3.24. Defining the FTP settings

[image: Defining the FTP settings]

The defaults work most of the time. You also need to configure
 your network connection, before proceeding: go to the corresponding
 menu item, pressing letter “j”.

NetBSD currently supports installation via ethernet, USB
 ethernet or wireless, and wireless LAN. Installation via DSL (PPP
 over Ethernet) is not supported during installation.

In the first step, shown in Figure 3.25, “Which network interface to configure”,
 the network card to be configured must be selected.
 sysinst will determine a list of
 available network interfaces, present them and ask which one to
 use.

Figure 3.25. Which network interface to configure

[image: Which network interface to configure]

Note

The exact names of your network interfaces depend on the
 hardware you use. Example interfaces are “wm” for
 Intel Gigabit interfaces, “ne” for NE2000 and
 compatible ethernet cards, and “ath” for Atheros
 based wireless cards. This list is by no means complete, and
 NetBSD supports many more network devices.

If your network device is not listed in Figure 3.25, “Which network interface to configure”, maybe it has not been properly
 detected. To get a list of network interfaces available on your
 system, interrupt the installation process by pressing
 “Ctrl+Z”, then enter

ifconfig -a
wm0: flags=0x8802<BROADCAST,SIMPLEX,MULTICAST> mtu 1500
 capabilities=2bf80<TSO4,IP4CSUM_Rx,IP4CSUM_Tx,TCP4CSUM_Rx>
 capabilities=2bf80<TCP4CSUM_Tx,UDP4CSUM_Rx,UDP4CSUM_Tx,TCP6CSUM_Tx>
 capabilities=2bf80<UDP6CSUM_Tx>
 enabled=0
 ec_capabilities=7<VLAN_MTU,VLAN_HWTAGGING,JUMBO_MTU>
 ec_enabled=0
 address: 08:00:27:7e:85:d7
 media: Ethernet autoselect (1000baseT full-duplex)
 status: active
lo0: flags=0x8048<LOOPBACK,RUNNING,MULTICAST> mtu 33624

If the desired interface has not been shown, get more
 information about all the devices found during system boot.
 Type:

dmesg | more

As instructed, you can return to the NetBSD installation by
 typing either “exit” or “^D”
 (“Ctrl+D”).

Next, you have a chance to set your network medium. Press
 “Enter” to choose the default.

Note

It is unlikely that you will need anything other than the
 default here. If you experience problems like very slow transfers
 or timeouts, you may, for example, force different duplex settings
 for ethernet cards. To get a list of supported media and media
 options for a given network device (“wm0”, for
 example), escape from sysinst by
 pressing “Ctrl+Z”, then enter:

ifconfig -m wm0
wm0: flags=0x8802<BROADCAST,SIMPLEX,MULTICAST> mtu 1500
 capabilities=2bf80<TSO4,IP4CSUM_Rx,IP4CSUM_Tx,TCP4CSUM_Rx>
 capabilities=2bf80<TCP4CSUM_Tx,UDP4CSUM_Rx,UDP4CSUM_Tx,TCP6CSUM_Tx>
 capabilities=2bf80<UDP6CSUM_Tx>
 enabled=0
 ec_capabilities=7<VLAN_MTU,VLAN_HWTAGGING,JUMBO_MTU>
 ec_enabled=0
 address: 08:00:27:7e:85:d7
 media: Ethernet autoselect (1000baseT full-duplex)
 status: active
 supported Ethernet media:
 media none
 media 10baseT
 media 10baseT mediaopt full-duplex
 media 100baseTX
 media 100baseTX mediaopt full-duplex
 media autoselect

The several values printed after “media” may be
 of interest here, including keywords like
 “autoselect” but also including any
 “mediaopt” settings.

Return to the installation by typing “exit” or
 “^D” (“Ctrl+D”).

The next question, shown in
 Figure 3.26, “Using autoconfiguration”, is whether you want to
 perform autoconfiguration. This procedure uses DHCP
 (Dynamic Host Configuration Protocol).
 sysinst will fetch a number of defaults
 from it, giving most likely the correct settings. This procedure is
 recommended, unless you want to set a static IP address, and/or
 specify some custom parameters.

Figure 3.26. Using autoconfiguration

[image: Using autoconfiguration]

You will then be asked for your “DNS domain”; if
 the machine is not in a registered public domain, it can be left
 blank.

At the end of this procedure, a list of all the settings is
 shown, as in Figure 3.27, “Confirm autoconfiguration”. If they are
 correct, choose “Yes”. Otherwise, choosing
 “No”, the network configuration will restart from the
 beginning, giving the opportunity to perform again all the steps
 (and also to perform a manual configuration).

Figure 3.27. Confirm autoconfiguration

[image: Confirm autoconfiguration]

If you chose “No” in
 Figure 3.26, “Using autoconfiguration”, you will be asked several
 questions to manually configure the network. All the parameters are
 presented in the form “Parameter_name
 [default_value]:”. Press “Enter” to use the
 default value. If no default value is provided, the parameter will
 be left blank.

	 Your host name:

	The name by which other machines can usually address your
 computer. Not used during installation.

	 Your DNS Domain:

	This is the name of the domain you are in. You may leave
 it blank if you are not in a public domain.

	 Your IPv4 address:

	Enter your numerical Internet Protocol address in
 “dotted quad” notation here, for example,
 192.168.1.3. It will be used as a static IP for your network
 card.

	 IPv4 Netmask:

	The netmask for your network, either given as a hex value
 (“0xffffff00”) or in dotted-quad notation
 (“255.255.255.0”).

	 IPv4 gateway:

	Your router's (or default gateway's) IP address. Do not
 use a hostname here!

	 Your name server:

	Your (first) DNS server's IP address. Again, don't use a
 hostname.

After answering all of your network configuration info, their
 list is shown as in Figure 3.27, “Confirm autoconfiguration”. You will
 have a chance to go back and make changes. If you are satisfied
 with your settings, choose “Yes”.

sysinst will now run a few commands
 (not displayed in detail here) to configure the network: flushing
 the routing table, setting the default route, and testing if the
 network connection is operational.

Now that you have a functional network connection, the menu in
 Figure 3.24, “Defining the FTP settings” will be shown again. Choose
 “Get Distribution” to continue:
 sysinst will download the selected set
 files to a temporary directory, and then extract them.

3.11.4. Installing via NFS

 If you want to install NetBSD from a server in your local
 network, NFS is an alternative to FTP.

Note

Using this installation method requires the ability to set up
 an NFS server, a topic which is not discussed here.

As shown in Figure 3.28, “NFS install screen”, you must specify: the
 IP address of the NFS server as “Host”; the directory
 exported by the NFS server as “Base
 directory”; the directory containing the install sets as
 “Set directory”.

Figure 3.28. NFS install screen

[image: NFS install screen]

Figure 3.29, “NFS example” shows an example: Host
 “192.168.1.50” is the NFS server which exports the
 directory /home/username/Downloads. The NetBSD
 install sets are stored in
 /home/username/Downloads/sets on the NFS
 server. Choose “Continue” to start the installation of
 the distribution sets.

Figure 3.29. NFS example

[image: NFS example]

After the method to obtain the distribution sets has been chosen,
 and (if applicable) after those sets have been transferred, they will
 be extracted into the new NetBSD file system.

A message (see Figure 3.30, “Extraction of sets completed”) will let
 you know that the set extraction is now completed and that you have
 the opportunity to perform some essential configuration before
 finishing the NetBSD installation.

Figure 3.30. Extraction of sets completed

[image: Extraction of sets completed]

3.13. System configuration

A menu with all the available configuration options is shown
 like in Figure 3.31, “Configuration menu”. After the
 configuration of each item, you will get back to this menu, having
 the chance to select another one.

Figure 3.31. Configuration menu

[image: Configuration menu]

If you have not yet configured Network, you can do it now,
 following the same procedure already presented in Section 3.11.3, “Installing via FTP and Network configuration”.

The timezone can also be configured. It is Universal
 Time Coordinated (UTC) by default. Use the two-level menu
 of Continents/Countries and
 cities shown in Figure 3.32, “Selecting the system's time zone” to select your
 local timezone with the Return key. After a valid selection, the
 cursor will automatically be moved to an “Exit” item.
 Then, simply press Return to exit the timezone selection.

Figure 3.32. Selecting the system's time zone

[image: Selecting the system's time zone]

The next item in Figure 3.31, “Configuration menu” allows you to
 choose which command-line interpreter - also known as
 “shell” - will be used for the root account. The default
 is the Bourne-compatible Almquist shell,
 sh(1). Other choices are the Korn shell
 (ksh(1)) and the C shell (csh(1)). If,
 upon reading this, you don't have some idea on which shell you prefer,
 simply use the default, as this is a highly subjective decision.
 Should you later change your mind, root's shell can always be
 changed.

Figure 3.33. Choosing a shell

[image: Choosing a shell]

The root account still does not have a password. It is
 recommended to set it at this point for security reasons, choosing the
 related item in Figure 3.31, “Configuration menu”.

Figure 3.34. Set a root password?

[image: Set a root password?]

When you agree to set a root password,
 sysinst will run the passwd(1) utility
 for you. Please note that the password is not echoed.

Figure 3.35. Setting root password

[image: Setting root password]

To ease the future installation of binary packages, it is possible
 to make a preliminary configuration of
 pkgin: choose “Enable installation of
 binary packages” in Figure 3.31, “Configuration menu”.
 pkgin will be fetched and installed from an
 FTP server, so be sure that the network configuration has already been
 done. Specify the “Host” name, its “Base
 directory” (where the packages for all the NetBSD ports are
 stored), and the “Package directory”, related to your
 port and your NetBSD version. Usually, the defaults are
 correct.

Figure 3.36. Enabling installation of binary packages

[image: Enabling installation of binary packages]

Choosing “ftp” as “User”, no password
 will be required. As shown in Figure 3.36, “Enabling installation of binary packages”,
 you can also choose to install one or more additional packages, typing
 their names using a space as separator, pressing “Enter”
 at the end. To proceed to the installation, type “x” and
 press “Enter”. A “pkgin update” will be run
 after the installation of pkgin, to let the
 repository be immediately up to date.

Figure 3.37. Additional packages

[image: Additional packages]

After the procedure is completed,
 sysinst will show the command to install
 further packages. Hit “Enter” to go back to the
 configuration menu.

If you need or want to build packages from their source code via
 pkgsrc, choose “Fetch and unpack pkgsrc for building from
 source” in Figure 3.31, “Configuration menu”. As before,
 specify the “Host” name; “pkgsrc directory”
 is the sources base directory. Defaults are usually the best values.
 A single archive file will be downloaded, for example
 pkgsrc.tgz: if you want to automatically remove
 it after the pkgsrc installation, move the cursor on “Delete
 after install” and press “Enter”. To proceed
 with the download, type “x” and then press
 “Enter”.

Figure 3.38. Fetch and unpack pkgsrc

[image: Fetch and unpack pkgsrc]

In the initial configuration menu (Figure 3.31, “Configuration menu”), it is also possible to enable some
 useful services such as the daemon listening for
 ssh. For information about
 ntpd and
 ntpdate, refer to Section 29.2, “The Network Time Protocol (NTP)”. xdm
 handles the authentication and the session of users through an X
 display. Usage of the Cryptographic Device Driver
 (cgd) is shown in Chapter 14, The cryptographic device driver (CGD). Logical Volume Manager (lvm) is documented
 in Chapter 17, NetBSD Logical Volume Manager (LVM) configuration, raidframe in Chapter 16, NetBSD RAIDframe. mdnsd provides a
 Multicast DNS service, and also DNS Service Discovery on NetBSD: check
 mdnsd(8) for more details.

Finally, the menu in Figure 3.31, “Configuration menu” lets you
 add a regular user to the system. For all the base information about
 users and root accounts, as well as the wheel group, refer to Section 5.6, “Adding users”.

When you completed the configuration of all the desired items,
 choose “Finished configuring” in Figure 3.31, “Configuration menu”.

3.14. Finishing the installation

At this point the installation is finished.

Figure 3.39. Installation completed

[image: Installation completed]

After passing the dialog that confirms the installation,
 sysinst will return to the main menu.
 Remove any installation media (CD, floppy, etc.) and choose
 “Reboot the computer” to boot your new NetBSD
 installation.

Figure 3.40. Reboot to finish installation

[image: Reboot to finish installation]

Chapter 4. Upgrading NetBSD

This chapter describes the binary upgrade of a NetBSD system.
There are a variety of alternatives to perform this procedure, and the
following sections will guide you through them:

To do the upgrade, you must have some form of bootable media
 (CD-ROM, USB drive, floppy, etc.) available and at least the base and
 kern distribution sets. Since files already installed on the system
 are overwritten in place, you only need additional free space for
 files which weren't previously installed or to account for growth of
 the sets between releases. Usually this is not more than a few
 megabytes.

Note

Since upgrading involves replacing the kernel, boot blocks, and
 most of the system binaries, it has the potential to cause data loss.
 Before beginning, you are strongly advised to back up any important
 data on the NetBSD partition or on any other partitions on your disk.

The upgrade procedure is similar to an installation, but without
 the hard disk partitioning. sysinst will
 attempt to merge the settings stored in your /etc
 directory with the new version of NetBSD. Also, file systems are checked
 before unpacking the sets. Fetching the binary sets is done in the same
 manner as in the installation procedure.

4.1.2. The INSTALL document

Before doing an upgrade it is essential to read the
 release information and upgrading notes in one of the
 INSTALL files: this is the official
 description of the upgrade procedure, with platform specific
 information and important details. It can be found in the root
 directory of the NetBSD release (on the install CD or on the FTP
 server).

It is advisable to print the INSTALL document out. It is
 available in four formats: .txt, .ps, .more, and .html.

4.1.3. Performing the upgrade

The following section provides an overview of the
 binary upgrade process. Most of the following
 sysinst dialogs
 are similar to those of the installation process. More
 verbose descriptions and explanations of the dialogs are
 available in Chapter 3, Example installation.

After selecting the installation language and the keyboard
 type, the main menu appears. Choosing option
 “b: Upgrade NetBSD on a hard disk” will start the
 the upgrade process.

Figure 4.1. Starting the upgrade

[image: Starting the upgrade]

 The dialog in Figure 4.2, “Continuing the upgrade” will request
 permission to continue with the upgrade. At this point nothing
 has been changed yet and the upgrade can still be cancelled. This is
 a good time to ask yourself whether you have made a backup, and if
 you know for certain that you will be able to restore from it.

Figure 4.2. Continuing the upgrade

[image: Continuing the upgrade]

After choosing to continue with “Yes”, the
 next dialog will ask you to specify the hard disk with the NetBSD
 system that shall be upgraded.

Figure 4.3. Choosing the hard drive

[image: Choosing the hard drive]

The system used for the example has only one hard disk
 available: “wd0”.

At this point, sysinst will perform a
 check of the file system to ensure its integrity.

Figure 4.4. File system check

[image: File system check]

The next step is to choose which type of bootblocks to install.

Figure 4.5. Choosing bootblocks

[image: Choosing bootblocks]

The following dialog provides a menu to choose the installation
 type. The choices are
 “Full installation”,
 “Installation without X11”,
 “Minimal installation”, or
 “Custom installation”.

Figure 4.6. Choosing the distribution filesets

[image: Choosing the distribution filesets]

The following dialog asks for the install method of choice
 and provides a list of possible options. The install medium
 contains the new NetBSD distribution sets. You will be prompted
 for different information depending on which option you choose.
 For example, a CD-ROM or DVD install requires you to specify which
 device to use and which directory the sets are in, while an FTP install
 requires you to configure your network and specify the hostname of an
 FTP server. More details can be found in
 Section 3.11, “Choosing the installation medium”.

Figure 4.7. Install medium

[image: Install medium]

sysinst will now unpack the distribution
 sets, replacing your old binaries. After unpacking these sets, it
 runs the postinstall(8) script to perform various system cleanup
 and configuration update tasks. If
 postinstall produces errors, you will have
 to manually resolve the issues it brings up. See postinstall's man
 page for more information. Even after a successful
 postinstall run, it is advisable to use
 etcupdate(8) to aid in merging any other configuration changes.
 You should also read the remarks in INSTALL about
 upgrading, as specific compatibility issues are documented there.

Figure 4.8. Upgrade complete

[image: Upgrade complete]

When you are back at the main menu, remove the boot medium (if
 applicable) and reboot. Have fun with your new version of NetBSD!

The sysupgrade utility (currently
 found in pkgsrc/sysutils/sysupgrade) allows you
 to upgrade a running system to a newer binary release.

Note

Take care when upgrading across major releases - ensure your
 running kernel is never newer than the userspace.

One of the benefits of sysupgrade is
 that it is an integrated and almost-unattended solution: the tool
 fetches the new kernel and distribution sets from remote sites if you
 desire and performs the upgrade without user intervention until new
 changes to the configuration files need to be merged.

Let's assume you are running NetBSD/amd64 9.1 and you wish to
 upgrade to NetBSD 9.2. The procedure to do so would be to run the
 following command:

sysupgrade auto https://cdn.NetBSD.org/pub/NetBSD/NetBSD-9.2/amd64

And that's all that it takes. This will proceed to download
 the kernel and sets appropriate for your machine, unpack them and
 assist you in merging new configuration changes. Do not forget to
 reboot afterwards.

When upgrading between major releases (e.g. between NetBSD 8.2
 and 9.2), take care to first upgrade the kernel and modules:

sysupgrade fetch https://cdn.NetBSD.org/pub/NetBSD/NetBSD-9.2/amd64
sysupgrade kernel
sysupgrade modules
reboot
sysupgrade sets
sysupgrade etcupdate
sysupgrade postinstall
sysupgrade clean
reboot

For more details, please see the included sysupgrade(8) manual
 page and the /usr/pkg/etc/sysupgrade.conf
 configuration file.

Chapter 5. The first steps on NetBSD

After installing and rebooting, the computer will boot from the
 hard disk. If everything went well you'll be looking at the login
 prompt within a few seconds (or minutes, depending on your hardware).
 The system is not yet fully configured, but basic configuration is
 easy. You will see how to quickly configure some important things, and
 in doing so you will learn some basics about how the system works.

If the system does not boot it could be that the boot manager was
 not installed correctly or that there is a problem with the
 MBR
 (Master Boot Record).
 Boot the machine from your install medium (CD, DVD, floppy, etc.)
 and when you see the boot menu, select the option to drop to the boot
 prompt.

type "?" or "help" for help.
> ?
commands are:
boot [xdNx:][filename] [-12acdqsvxz]
 (ex. "hd0a:netbsd.old -s")
ls [path]
dev xd[N[x]]:
consdev {pc|com[0123]|com[0123]kbd|auto}
modules {enabled|disabled}
load {path_to_module}
multiboot [xdNx:][filename] [<args>]
help|?
quit
> boot hd0a:netbsd

The system should now boot from the hard disk.
 If NetBSD boots correctly from the hard disk, there is probably a
 Master Boot Record problem. You can install the boot manager or modify
 its configuration with the fdisk -B command.
 See Section 22.1, “Installing the boot manager” for a detailed description.

5.1.2. Misconfiguration of /etc/rc.conf

If you or the installation software haven't done any configuration
 of /etc/rc.conf
 (sysinst normally will), the system will
 drop you into single user mode and show the message

/etc/rc.conf is not configured. Multiuser boot aborted

When the system asks you to choose a shell, simply press
RETURN to get to a /bin/sh prompt. If you are
asked for a terminal type, respond with vt220
(or whatever is appropriate for your terminal type) and press RETURN.
You may need to type one of the following commands to get your delete
key to work properly, depending on your keyboard:

stty erase '^h'
stty erase '^?'

At this point, you need to configure at least one file in the
 /etc directory. However, the root file system
 (/) is mounted read-only, so you will first need to
 make it writable with:

/sbin/mount -u -w /

Next, take a look at the /etc/rc.conf file.
Modify it to your tastes, making sure that you set
“rc_configured=YES ” so that you don't end
up in this position again. Default values for the various programs can be
found in /etc/defaults/rc.conf.
More complete documentation can be found in rc.conf(5).

When you have finished, type exit at the prompt to leave the
single-user shell and continue with the multi-user boot.

If you have never used a Unix(-like) operating system before,
 your best friend is now the man command, which
 displays a manual page. The NetBSD manual pages are among the
 best and most detailed you can find, although they are very
 technical.

A good manual to read after booting a new NetBSD system is
 afterboot(8). It contains information about various necessary and
 useful configuration settings.

man name shows the man page of the
 “name”
 command and man -k name shows a list of man pages
 dealing with “name” (you can also use the
 apropos command).

To learn the basics of the man command, type:

man man

Manual pages contain not only information about commands but also
 descriptions of some NetBSD features and structures.
 For example, take a look at the hier(7) man page, which describes in
 detail the layout of the filesystem used by NetBSD.

man hier

Other similar pages are release(7) and pkgsrc(7).

man 8 intro

Manual pages are divided in several sections, depending on what
 they document:

	general commands (tools and utilities), see intro(1)

	system calls and error numbers, see intro(2)

	C libraries, see intro(3)

	special files and hardware support, see intro(4)

	file formats, see intro(5)

	games, see intro(6)

	miscellaneous information pages, see intro(7)

	system maintenance and operation commands, see intro(8)

	kernel internals, see intro(9)

A subject may appear in more than one section of the manual; to
 view a specific page, supply the section number as an argument to
 the man command.
 For example, time appears in section 1 (the
 time user command) and in section 3 (the time function of the C
 library). To see the man page for the time C function, write:

man 3 time

To see all the available pages:

man -w time
man -a time

5.3. Editing configuration files

Other than a shell, a text editor is the most essential tool for
 NetBSD system administration.

There are two provided in the base system

	ed(1), a line orientated text editor.
 ed is a very simplistic text editor.
 It has a command mode (active when first started) and an input mode.
 Its primary advantage is that it will work even without a correct
 terminal type set. In an emergency, ed is
 worth knowing, but note that vi(1) is available in
 /rescue, which brings us to...

	vi(1), a screen orientated text editor.
 vi is the only screen editor available in
 the base install, and requires a valid terminal type to run. Refer
 to Chapter 6, Editing to learn more about NetBSD's
 default editor.

Advice

Before you continue you should know or learn how to open, edit and
 save files within vi. Make sure to read
 Chapter 6, Editing.

For the first login you will use the root
 user, which is the only user defined at the end of the
 installation.
 At the password prompt type the password for root that you
 set during the installation.
 If you didn't set a password, just press Enter.

NetBSD/i386 (Amnesiac) (ttyE0)
login: root
password:
We recommend creating a non-root account and using su(1) for
root access.
#

5.5. Changing the root password

If you did not set a password for root
during the installation, you should use the
/usr/bin/passwd command to do so now.

/usr/bin/passwd
Changing local password for root.
New password:
Retype new password:

Passwords are not displayed on the screen while you type.

Choose a password that has numbers, digits, and special
characters (not space) as well as from the upper and lower case
alphabet. Do not choose any word in any language. It is common for
an intruder to use dictionary attacks.

For security reasons, it is bad practice to login as root during
 regular use and maintenance of the system. Instead, administrators are
 encouraged to add a regular user, add the user to the
 wheel group, then use the su(1) command when
 root privileges are required. NetBSD offers the useradd(8) utility
 to create user accounts. For example, to create a new user:

useradd -m joe

The defaults for the useradd command
can be changed; see the useradd(8) man page.

User accounts that can su to root are
required to be in the "wheel" group. This can be done when the account
is created by specifying a secondary group:

useradd -m -G wheel joe

As an alternative, the usermod(8) command can be used to
add a user to an existing group:

usermod -G wheel joe

In case you just created a user but forgot to set a password,
 you can still do that later using the passwd(1) command.

passwd joe

Note

You can edit /etc/group directly to add
users to groups, but do not edit
the /etc/passwd directly; use vipw(8).

Shadow passwords are enabled by default. What this means is that
 all the passwords in /etc/passwd
 are simply “*”; the encrypted passwords are stored in
 a file that can only be read by root,
 /etc/master.passwd.
 When you start vipw(8) to edit the password file, the program
 opens a copy of /etc/master.passwd; when you exit,
 vipw checks the validity of the copy,
 creates a new /etc/passwd and installs the
 new /etc/master.passwd file.
 Finally, vipw launches
 pwd_mkdb(8), which creates the files
 /etc/pwd.db and
 /etc/spwd.db, two databases which are equivalent to
 /etc/passwd and
 /etc/master.passwd but faster to process.

It is very important to always use
 vipw and the other tools for account
 administration (chfn(1), chsh(1),
 chpass(1), passwd(1)) and to
 never directly modify
 /etc/master.passwd or
 /etc/passwd.

5.8. Changing the keyboard layout

If you do not have a US layout keyboard, you will probably want to
change keymaps. For example, to use an italian keyboard, enter the
following command:

wsconsctl -k -w encoding=it
encoding -> it

To save the keyboard layout permanently, add the following line to the
 /etc/wscons.conf file:

encoding it

See Section 8.1.2.1, “Keyboard mappings” for a list of
 available keymaps.

NetBSD, like all Unix systems, uses a system clock based on
 UTC (Coordinated Universal Time) and this is what you should set your
 system clock to.
 If you want to keep the system clock set to the local time
 (because, for example, you have a dual boot system with Windows
 installed), you must notify NetBSD, adding
 rtclocaltime=YES
 to /etc/rc.conf:

echo rtclocaltime=YES >> /etc/rc.conf
service rtclocaltime restart

Note

Alternatively, it is possible to configure Windows 7 and
 beyond to cope with the RTC being UTC. As alluded to in this Microsoft Knowledge
 Base article, the way to do this is to add a DWORD registry key
 named RealTimeIsUniversal, with a value of 1, to
 HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\TimeZoneInformation.

The number of minutes west of GMT is calculated
 automatically and is set in the kern.rtc_offset
 sysctl variable.

To display the current setting of the
 kern.rtc_offset variable:

sysctl kern.rtc_offset
kern.rtc_offset = -60

This automatic configuration only works if you have set the proper
 time zone with a symbolic link to /etc/localtime.
 Normally this is done as part of the install procedure, but if for some
 reason it wasn't, you can set it by creating a symbolic link from a
 file in the /usr/share/zoneinfo directory to
 /etc/localtime.

The following example sets the time zone to Eastern Europe
 Summer Time:

ln -fs /usr/share/zoneinfo/Europe/Helsinki /etc/localtime

By default, all services are disabled in a fresh NetBSD
 installation, and ssh(1) is no exception.
 You may wish to enable it so you can log in to your system remotely.
 Set sshd=YES in
 /etc/rc.conf and then start the
 server with the command

service sshd start

 The first time the server is started, it will generate a new
 keypair, which will be stored inside the directory
 /etc/ssh.

5.11. Basic configuration in /etc/rc.conf

NetBSD uses /etc/rc.conf to determine what
 will be executed when the system boots. Understanding this file is
 important. The rc.conf(5) manual page contains a
 detailed description of all available options.

The /etc/defaults/rc.conf file
 contains the default values for most settings. To override a default
 value, the new value must be put into /etc/rc.conf.
 The definitions there override the ones in
 /etc/defaults/rc.conf (which you should leave
 unchanged).

man rc.conf

The first modifications are:

	Set “rc_configured=YES”
 (this modification should already have been done by the
 installation software.)

	Set “dhcpcd=YES”
 to configure your system's network using DHCP.

	Define a hostname for your machine
 (use a fully qualified hostname, i.e., one including domain).
 If you have a standalone machine you can use any name (for
 example, vigor3.your.domain).
 If your machine is connected to a network, you should supply
 the correct name.

	If your machine is connected to a local network or the
 Internet through a router, set the defaultroute
 variable to the IP address of your router (sometimes called a
 default gateway). For example,
 “defaultroute=192.168.1.1”.

5.12. Basic network settings

To resolve the names and IP addresses of remote hosts, the system
needs access to a (remote or local) DNS nameserver.
Tell the system which nameserver(s) to use by adding the IP address of one
or more nameservers to the /etc/resolv.conf file,
using the following as an example:

nameserver 145.253.2.75

To set the names of local hosts that are not available through DNS,
edit the /etc/hosts file, which has the form:

IP-address hostname host

For example:

192.168.1.3 vigor3.your.domain vigor3

New users are often surprised by the fact that although the
installation program recognized and mounted their CD-ROM
perfectly, the installed system seems to have
“forgotten” how to use the CD-ROM. There is no
special magic for using a CD-ROM; you can mount it like any other
file system. All you need to know is the device name and some
options to the mount(8) command. You can find the device
name with the aforementioned dmesg(8) command. For
example, if dmesg displays:

dmesg | grep ^cd
cd0 at atapibus0 drive 1: <ASUS CD-S400/A, , V2.1H> type 5 cdrom removable

the device name is cd0, and you can mount the
CD-ROM with the following commands:

mkdir /cdrom
mount -t cd9660 -o ro /dev/cd0a /cdrom

To make things easier, you can add a line to the
/etc/fstab file:

/dev/cd0a /cdrom cd9660 ro,noauto 0 0

Without the need to reboot, you can now mount the CD-ROM with:

mount /cdrom

When the CD-ROM is mounted you can't eject it manually; you will have
 to unmount it before you can do that:

umount /cdrom

There is also a software command which unmounts the CD-ROM and
 ejects it:

eject /dev/cd0a

To mount a floppy you must know the name of the floppy device and
the file system type of the floppy. Read the fdc(4) manpage for
more information about device naming, as this will differ
depending on the exact size and kind of your floppy disk.
For example, to read and write a floppy in MS-DOS format you use
the following command:

mount -t msdos /dev/fd0a /mnt

Instead of /mnt, you can use another
directory of your choice; you could, for example, create a
/floppy directory like you did for the CD-ROM.
If you do a lot of work with MS-DOS floppies, you will want to
install the mtools package, which enables you to
access a MS-DOS floppy (or hard disk partition) without the need
to mount it. It is very handy for quickly copying a file to or from a
floppy:

mcopy foo bar a:
mcopy a:baz.txt baz
mcopy a:*.jpg .

5.15. Installing additional software

Using packages from pkgsrc

If you wish to install any of the software freely available for
UNIX-like systems you are strongly advised to first check the
NetBSD package system, pkgsrc.
pkgsrc automatically handles any changes necessary to make the software
run on NetBSD. This includes the retrieval and installation of any other
packages on which the software may depend.

	 See the

 list of available packages

	
Precompiled binaries are available on the NetBSD FTP server
 for most ports. To install them the PKG_PATH
 variable needs to be adjusted in the following way
 (under the sh(1) shell):

PKG_PATH="https://cdn.NetBSD.org/pub/pkgsrc/packages/NetBSD/$(uname -p)/$(uname -r | cut -d_ -f1)/All"
export PKG_PATH

Applications can now be installed by the superuser
 root with the
 pkg_add command:

pkg_add -v perl
pkg_add -v apache
pkg_add -v firefox

The above commands will install the Perl programming language, Apache
 web server, and the Firefox web browser as well as all the packages they
 depend on.

It is recommended you install and use pkgin for most non-trivial
 binary package management tasks, and managing upgrades. pkgin can be
 installed from the post-installation configuration menu in
 sysinst, or afterwards using pkg_add
 on a live system:

pkg_add -v pkgin

It maintains a local database of packages that are on the remote
 server, you can fetch the database with:

pkgin update

Its usage is oriented on the package tools you have with other
 operating systems. To search the package database for a word `stat`,
 use

pkgin search WORD

To install a package (in this case `fscd`), just type

pkgin install fluxbox

To upgrade installed packages:

pkgin upgrade

You should read the manpage to know about more actions you can do
 with pkgin.

All details about package management can be found in
 The pkgsrc guide

Storing third-party software

On many UNIX-like systems the directory structure under
/usr/local is reserved for applications and
files which are independent of the system's software management.
This convention is the reason why most software developers
expect their software to be installed under
/usr/local. NetBSD has no
/usr/local directory, but it can be
created manually if needed. NetBSD does not care about anything
installed under /usr/local, so this task is left to
you as the system administrator.

By the time that you have installed your system, it is quite
 likely that bugs in the release have been found. All significant and
 easily fixed problems will be reported at
 http://www.NetBSD.org/support/security/.
 It is recommended that you check this page regularly.

5.17. Stopping and rebooting the system

Use one of the following two
 shutdown commands to halt or reboot the
 system:

shutdown -h now
shutdown -r now

Two other commands to perform the same tasks are:

halt
reboot

halt,
 reboot and
 shutdown are not synonyms: the latter is
 more sophisticated. On a multiuser system you should really use
 shutdown, which allows you to
 schedule a shutdown time and notify users. It will also take
 care to stop processes properly. For more information, see the
 shutdown(8), halt(8) and reboot(8) manpages.

It is not like the vi editor needs introducing to seasoned UNIX
 users. The vi editor, originally developed by Bill Joy of Sun
 Microsystems, is an endlessly extensible, easy to use
 light ASCII editor and the bane of the
 newbie existence. This section will introduce the vi editor to
 the newbie and perhaps toss in a few ideas for the seasoned user
 as well.

The first half of this section will overview editing, saving,
 yanking/putting and navigating a file within a vi session. The
 second half will be a step by step sample vi session to help
 get started.

This is intended as a primer for using
 the vi editor, it is not by
 any means a thorough guide. It is meant to get the
 first time user up and using vi with
 enough skills to make changes to and create files.

Using the vi editor really is not much different than any
	other terminal based software with one exception, it does not
	use a tab type (or curses if you will) style interface, although
	many versions of vi do use curses it does
	not give the same look and feel of the typical curses based
	interface. Instead it works in two modes,
	command and edit.
	While this may seem strange, it is not much different than
	windows based editing if you think about it. Take this as an
	example, if you are using say gedit and you take the mouse,
	highlight some text, select cut and then paste, the whole time
	you are using the mouse you are not editing (even though you
	can). In vi, the same action is done by simply deleting the
	whole line with dd in command mode, moving
	to the line you wish to place it below and hitting
	p in command mode. One could almost say
	the analogy is “mouse mode vs. command mode”
	(although they are not exactly identical, conceptually the
	idea is similar).

To start up a vi session, one simply begins the way they might
	with any terminal based software:

$ vi filename

One important note to remember here is that when a file is
	edited, it is loaded into a memory buffer. The rest of the
	text will make reference to the buffer and file in their proper
	context. A file only changes when the
	user has committed changes with one of the write commands.

6.1.2. Switching to Edit Mode

The vi editor sports a range of options one can provide at
	start up, for the time being we will just look at the default
	startup. When invoked as shown above, the editor's default
	startup mode is command mode, so in essence you cannot commence
	to typing into the buffer. Instead you must switch out out of
	command mode to enter text. The following text describes edit
	start modes:

a Append after cursor.

A Append to end of line.

C Change the rest of current line.

cw Change the current word.

i Insert before cursor.

I Insert before first non blank line.

o Open a line below for insert

O Open a line above for insert.

6.1.3. Switching Modes & Saving Buffers to Files

Of course knowing the edit commands does not do much good if
	you can't switch back to command mode and save a file, to
	switch back simply hit the ESC key. To
	enter certain commands, the colon must be used. Write commands
	are one such set of commands. To do this, simply enter
	:.

Hitting the colon then will put the user at the colon (or
	command if you will) prompt at the bottom
	left corner of the screen. Now let us look at the save commands:

:w Write the buffer to file.

:wq Write the buffer to file and quit.

6.1.4. Yanking and Putting

What good is an editor if you cannot manipulate blocks of
	text? Of course vi supports this feature as well and as with
	most of the vi commands it somewhat intuitive. To yank a line
	but not delete it, simply enter
	yy or Y in command mode
	and the current line will be copied into a buffer. To put the
	line somewhere, navigate to the line above where the line is
	to be put and hit the p key for the
	“put” command. To move a line, simply delete the
	whole line with the dd command, navigate
	and put.

6.1.4.1. Oops I Did Not Mean to do that!

Undo is pretty simple, u undoes the last
	 action and U undoes the last line deleted
	 or changes made on the last line.

6.1.5. Navigation in the Buffer

Most vi primers or tutorials start off with navigation, however,
	not unlike most editors in order to navigate a file there must
	be something to navigate to and from (hence why this column
	sort of went in reverse). Depending on your flavor of vi (or
	if it even is vi and not say elvis, nvi
	or vim) you can navigate in both edit and command mode.

For the beginner I feel that switching to command mode and
	then navigating is a bit safer until one has practiced for
	awhile. The navigation keys for terminals that are not recognized
	or do not support the use of arrow keys are the following:

k Moves the cursor up one line.

j Moves the cursor down one line.

l Moves the cursor right one character.

h Moves the cursor left one character.

If the terminal is recognized and supports them, the arrow
	keys can be used to navigate the buffer in command mode.

In addition to simple “one spot navigation” vi
	supports jumping to a line by simply typing in the line number
	at the colon prompt. For example, if you wanted to jump to
	line 223 the keystrokes from editor mode would look like so:

ESC

:223

6.1.6. Searching a File, the Alternate Navigational Aid

The vi editor supports searching using regular expression
	syntax, however, it is slightly different to invoke from
	command mode. One simply hits the / key in
	command mode and enters what they are searching for, as an
	example let us say I am searching for the expression
	foo:

/foo

That is it, to illustrate a slightly different expression,
	let us say I am looking for foo bar:

/foo bar

6.1.6.1. Additional Navigation Commands

Searching and scrolling are not the only ways to navigate
	 a vi buffer. Following is a list of succinct navigation
	 commands available for vi:

0 Move to beginning of line.

$ Move to end of line.

b Back up one word.

w Move forward one word.

G Move to the bottom of the buffer.

H Move to the top line on the screen.

L Move to the last line on the screen.

M Move the cursor to the middle of the screen.

N Scan for next search match but opposite direction.

n Scan for next search match in the same direction.

Now that we have covered the basics, let us run a sample
	session using a couple of the items discussed so far. First,
	we open an empty file into the buffer from the command line
	like so:

vi foo.txt

Next we switch to edit mode and enter two lines separated by
	an empty line, remember our buffer is empty so we hit the
	i key to insert before cursor and enter
	some text:

This is some text

there we skipped a line
~
~
~
~

Now hit the ESC key to switch back into
	command mode.

Now that we are in command mode, let us save the file. First,
	hit the : key, the cursor should be sitting
	in the lower left corner right after a prompt. At the
	: prompt enter w and
	hit the ENTER or RETURN
	key. The file has just been saved. There should have been a
	message to that effect, some vi editors will also tell you
	the name, how many lines and the size of the file as well.

It is time to navigate, the cursor should be sitting wherever
	it was when the file was saved. Try using the arrow keys to
	move around a bit. If they do not work (or you are just plain
	curious) try out the hjkl keys to see
	how they work.

Finally, let us do two more things, first, navigate up to the
	first line and then to the first character. Try out some of
	the other command mode navigation keys on that line, hit the
	following keys a couple of times:

$

0

$

0

The cursor should hop to the end of line, back to the beginning
	and then to the end again.

Next, search for an expression by hitting the
	/ key and an expression like so:

/we

The cursor should jump to the first occurrence
	of we.

Now save the file and exit using write and quit:

:wq

The standard editor supplied with NetBSD is, needless to say,
 vi, the most loved and hated editor in
 the world.
 If you don't use vi, skip this section, otherwise read it before
 installing other versions of vi.
 NetBSD's vi (nvi) was written by Keith
 Bostic of UCB to have a freely redistributable version of this
 editor and has many powerful extensions worth learning while
 being still very compatible with the original vi.
 Nvi has become the standard version of vi for BSD.

Amongst the most interesting extensions are:

	Extended regular expressions (egrep style), enabled with
 option extended.

	Tag stacks.

	Infinite undo (to undo, press u; to
 continue undoing, press .).

	Incremental search, enabled with the option
 searchincr.

	Left-right scrolling of lines, enabled with the option
 leftright; the number of columns to scroll
 is defined by the sidescroll option.

	Command line history editing, enabled with the option
 cedit.

	Filename completion, enabled by the filec option.

	Backgrounded screens and displays.

	Split screen editing.

6.2.1. Extensions to .exrc

The following example shows a .exrc file
 with some extended options enabled.

set showmode ruler
set filec=^[
set cedit=^[

The first line enables the display of the cursor position (row
 and column) and of the current mode (Command, Insert, Append) on
 the status line.
 The second line (where ^[is the ESC character) enables filename
 completion with the ESC character.
 The third line enables command line history editing (also with
 the ESC character.)
 For example, writing “:” and then pressing ESC opens a window
 with a list of the previous commands which can be edited and
 executed (pressing Enter on a command executes it.)

The misc installation set
 (misc.tgz) contains a lot of useful
 documentation on (n)vi and ex, and when installed it is available in
 /usr/share/doc directory.
 For example:

	Edit: A tutorial -
 /usr/share/doc/usd/edit/edit.{ps.gz,txt}

	Ex Reference Manual -
 /usr/share/doc/reference/ref1/ex/reference.{ps.gz,txt}

	Vi man page -
 vi(1)

	An Introduction to Display Editing with Vi by
 William Joy and Mark Horton -
 /usr/share/doc/usd/vi/vitut.{ps.gz,txt}

	Vi/Ex Reference Manual by Keith Bostic -
 /usr/share/doc/reference/ref1/vi/vi.{ps.gz,txt}

	Ex/Vi Quick Reference -
 /usr/share/doc/usd/vi/summary.{ps.gz,txt}

If you have never used vi,
	An Introduction to Display Editing with Vi by
	William Joy and Mark Horton is a very good starting point.

If you want to learn more about vi and the nvi extensions you
	should read the Vi/Ex Reference Manual
	by Keith Bostic which documents all the editor's commands
	and options.

This topic is not directly related to NetBSD but it can be useful,
 for example, for examining the kernel sources.

When you examine a set of sources in a tree of directories and
 subdirectories you can simplify your work using the
 tag feature of vi.
 The method is the following:

	
cd to the base directory of the sources.

$ cd /path

	
Write the following commands:

$ find . -name "*.[ch]" > filelist
$ cat filelist | xargs ctags

	
Add the following line to .exrc

set tags=/path/tags

(substitute the correct path instead of path.)

Chapter 7. The rc.d System

NetBSD uses individual scripts for controlling services, similar to
 what System V does, but without runlevels. This chapter is
 an overview of the rc.d system and its configuration.

The system startup files reside in the /etc
 directory. They are:

	/etc/rc

	/etc/rc.conf

	/etc/rc.d/*

	/etc/rc.local

	/etc/rc.shutdown

	/etc/rc.subr

	/etc/defaults/*

	/etc/rc.conf.d/*

First, an overview of the control and support scripts (also
 documented in rc(8)).

	After the kernel has initialized all devices at
	 startup, it starts init(8), which in turn runs
	 /etc/rc.

	/etc/rc sorts the scripts in
	 /etc/rc.d using rcorder(8) and then
	 runs them in that order. See the rcorder(8)
	 man page for details of how the order of rc.d scripts is
 determined.

	/etc/rc.subr
	 contains common functions used by /etc/rc
	 and various rc.d scripts.

	When shutting down the system with shutdown(8),
	 /etc/rc.shutdown is run, which runs the
	 scripts in /etc/rc.d in reverse
	 order (as defined by rcorder(8)). Note that if you shut
	 down the system using the halt(8) command, these scripts
	 will not be run.

Additional scripts outside of the rc.d
 directory:

	/etc/rc.local is almost the last
	 script called at boot up. This script can be edited by the
	 administrator to start local daemons that don't fit the
	 rc.d model.

rc.d scripts are controlled by a central configuration file,
 /etc/rc.conf, which loads its default settings from
 /etc/defaults/rc.conf. If you want to change a
 default setting, do not edit /etc/defaults/rc.conf;
 instead, apply the setting in /etc/rc.conf.
 This will override the default.

It is a good idea to read the rc.conf(5) man page to learn
 about the services that are available to you.

The following example shows how to enable the SSH daemon,
 which is disabled by default:

cd /etc; grep ssh defaults/rc.conf
sshd=NO sshd_flags=""
echo "sshd=YES" >> rc.conf

Now sshd(8) will be started automatically at system startup.
 The next section describes how to start and stop services at any time.

Last but not least, files can be created in the
 /etc/rc.conf.d/ directory to override the behavior
 of a given rc.d script without editing the script itself.

The actual scripts that control services are in
 /etc/rc.d. These scripts are automatically
 run at boot time, but they can be called manually if necessary,
 either through the service(8) alias or directly.
 The following example shows how to start the SSH daemon
 that we enabled in the previous section:

service sshd start
Starting sshd.

Later, if you wish to stop the SSH daemon, run the following
 command:

service sshd stop
Stopping sshd.
Waiting for PIDS: 123.

The rc.d scripts take one of the following arguments:

	start

	stop

	restart

	status

Some scripts may support other arguments (e.g.,
 “reload”), but every script will support at least the
 above commands.

As an example, after adding a new record to a named(8) database,
 the daemon can be told to reload its configuration files with the
 following command:

service named reload
Reloading named config files.

Note that all of the commands discussed above will only take action
 if the particular service is enabled in
 /etc/rc.conf. It is possible to bypass this
 requirement by prepending “one” to the command, as in:

service httpd onestart
Starting httpd.

The above command will allow you to start the httpd(8) service
 one time. To stop a service that has been started in this manner, pass
 “onestop” to the script.

7.2.1. Packages installing rc.d scripts

Several packages install rc.d scripts. By default package
 rc.d scripts can be found in
 /usr/pkg/share/examples/rc.d and need to be
 manually copied to /etc/rc.d in order to
 be used. Setting PKG_RCD_SCRIPTS=yes
 environment variable prior installing packages enable automatic
 copying rc.d scripts to /etc/rc.d.

7.3. The Role of rcorder and rc.d Scripts

The startup system of every Unix system determines, in one way
 or another, the order in which services are started. On some Unix
 systems this is done by numbering the files and/or putting them in
 separate run level directories. Solaris relies on wildcards like
 /etc/rc[23].d/S* being sorted numerically when
 expanded. Some simply put all the commands that should be started
 into a single monolithic script (this is the traditional BSD method,
 and is what NetBSD did before the rc.d system). On modern NetBSD this
 is done by the rc.d scripts and their contents. Please note that NetBSD
 does not use multiple runlevels.

At the beginning of each rc.d script there is a series of
 commented out lines that have one of the following items in them:

	REQUIRE

	PROVIDE

	BEFORE

	KEYWORD

These describe the dependencies of that particular script and
 allow rcorder to easily work either “up” or
 “down” as the situation requires. As an example, here
 is the ordering information contained in
 /etc/rc.d/nfsd:

...
 PROVIDE: nfsd
 REQUIRE: rpcbind mountd
...

Here we can see that this script provides the
 “nfsd” service and that it requires
 “rpcbind” and “mountd” to be running first.
 The rcorder(8) utility is used at system startup time to read
 through all the rc.d scripts and determine the order in which they
 should be run.

Luke Mewburn, one of the principal designers of the rc.d system,
 gave a presentation on the system at USENIX 2001. It is available in
 PDF
 format.

Chapter 8. Console drivers

Wscons is NetBSD's platform-independent workstation console driver.
 It handles complete abstraction of keyboards and mice. This means that
 you can plug in several keyboards or mice and they will be multiplexed
 onto a single terminal, but also that it can multiplex several
 virtual terminals onto one physical terminal.

Wscons support is enabled by default on most architectures. This
 can be done manually by adding wscons=YES to your
 /etc/rc.conf. Then configure the desired number
 of virtual consoles as described in Section 8.1.1.1, “Virtual consoles”
 and start wscons by entering
 service wscons start followed by
 service ttys restart. You can now switch
 virtual consoles by pressing Ctrl+Alt+Fn or
 similar, depending on the platform.

Wscons comprises three subsystems: wsdisplay, wskbd and wsmouse.
 These subsystems handle abstraction for all display, keyboard and mouse
 devices respectively. The following sections discuss the configuration
 of wscons per subsystem.

This section will explain how to configure display and
 screen-related options.

8.1.1.1. Virtual consoles

The number of pre-allocated virtual console is controlled by the
	following kernel configuration option

options WSDISPLAY_DEFAULTSCREENS=4

Other consoles can be added by enabling the relevant lines in the
	/etc/wscons.conf file: the comment mark (#) must
	be removed from the lines beginning with screen x.
	In the following example a fifth console is added to the four
	pre-allocated ones:

screens to create
idx screen emul
#screen 0 - vt100
screen 1 - vt100
screen 2 - vt100
screen 3 - vt100
screen 4 - -
#screen 4 80x25bf vt100
#screen 5 80x50 vt100

The /etc/rc.d/wscons script transforms each of the non
	commented lines in a call to the wsconscfg command:
	the columns become the parameters of the call. The
	idx column becomes the index
	parameter, the screen column becomes the
	-t type parameter (which defines the type of screen:
	rows and columns, number of colors, ...) and the
	emul column becomes the -e emul
	parameter, which defines the emulation. For example:

screen 3 - vt100

becomes a call to:

wsconscfg -e vt100 3

Please note that it is possible to have a (harmless)
	conflict between the consoles
	pre-allocated by the kernel and the consoles allocated at boot time
	through /etc/wscons.conf.
	If during boot the system tries to allocate an already allocated
	screen, the following message will be displayed:

wsconscfg: WSDISPLAYIO_ADDSCREEN: Device busy

The solution is to comment out the offending lines in
	/etc/wscons.conf.

Note that while it is possible to delete a screen and add it with
	different settings, it is, technically speaking, not possible to
	actually modify the settings of a screen.

screen 0 cannot be deleted if used as system console.
	This implies that the setting of screen 0 cannot be
	changed in a running system, if used as system console.

The virtual console must also be active in
	/etc/ttys, so that NetBSD runs the
	getty(8) program to ask for login. For example:

console "/usr/libexec/getty Pc" pc3 off secure
ttyE0 "/usr/libexec/getty Pc" vt220 on secure
ttyE1 "/usr/libexec/getty Pc" vt220 on secure
ttyE2 "/usr/libexec/getty Pc" vt220 on secure
ttyE3 "/usr/libexec/getty Pc" vt220 off secure
...

When starting up the X server, it will look for a virtual
	console with no getty(8) program running, e.g. one console
	should left as "off" in /etc/ttys. The
	line

ttyE3 "/usr/libexec/getty Pc" vt220 off secure

of /etc/ttys is used by the X server
	for this purpose. To use a screen different from number 4, a
 parameter of the form vtn must be passed to
 the X server, where n is the number of the
 function key used to activate the screen for X.

For example, screen 7 could be enabled in
 /etc/wscons.conf and X could be started with
 vt8. If you use xdm you must
 edit /etc/X11/xdm/Xservers. For
 example:

:0 local /usr/X11R7/bin/X +kb dpms -bpp 16 dpms vt8

8.1.1.1.1. Getting rid of the message WSDISPLAYIO_ADDSCREEN: Device busy

This error message usually occurs when wsconscfg tries
	 to add a screen which already exists. This occurs
	 if you have a screen 0 line in your
	 /etc/wscons.conf file, because the
	 kernel always allocates a screen 0 as the console device.
	 The error message is harmless in this case, and you can get
	 rid of it by deleting (or commenting out) the
	 screen 0 line.

8.1.1.2. 50 lines text mode with wscons

This mode is activated in the
	/etc/wscons.conf. The following line must be
	uncommented:

font ibm - 8 ibm /usr/share/pcvt/fonts/vt220l.808

Then the following lines must be modified:

#screen 0 80x50 vt100
screen 1 80x50 vt100
screen 2 80x50 vt100
screen 3 80x50 vt100
screen 4 80x50 vt100
screen 5 80x50 vt100
screen 6 80x50 vt100
screen 7 80x50 vt100

This configuration enables eight screens, which can be accessed with
	the key combination Ctrl-Alt-Fn (where
	n varies from 1 to 8); the corresponding devices
	are ttyE0..ttyE7. To enable them and get a login prompt,
	/etc/ttys must be modified:

ttyE0 "/usr/libexec/getty Pc" vt220 on secure
ttyE1 "/usr/libexec/getty Pc" vt220 on secure
ttyE2 "/usr/libexec/getty Pc" vt220 on secure
ttyE3 "/usr/libexec/getty Pc" vt220 on secure
ttyE4 "/usr/libexec/getty Pc" vt220 on secure
ttyE5 "/usr/libexec/getty Pc" vt220 on secure
ttyE6 "/usr/libexec/getty Pc" vt220 on secure
ttyE7 "/usr/libexec/getty Pc" vt220 on secure

screen 0 as system console can be set to another
	screen type at boot time on VGA displays. This
	is a kernel configuration option. If a non-80x25 setting
	is selected, it must be made sure that a usable font is
	compiled into the kernel, which would be an 8x8 one
	for 80x50.

There is a problem with many ATI graphics cards which don't
	implement the standard VGA font switching logics: These need another
	kernel option to make a nonstandard console font work.

An example set of kernel configuration options might be:

options VGA_CONSOLE_SCREENTYPE="\"80x50\""
options VGA_CONSOLE_ATI_BROKEN_FONTSEL
options FONT_VT220L8x8

8.1.1.3. Enabling framebuffer console

On many architectures, there is only one type of screen mode:
	a graphical framebuffer mode. On machines with VGA graphics cards,
	there is a second mode: textmode. This is an optimized mode
	specially made for displaying text. Hence, this is the default
	console mode for GENERIC kernels on architectures where the graphics
	card is typically a VGA card (i386, amd64).

However, you can enable a framebuffer on machines with VGA
	cards that support the VESA BIOS extension (VBE).

VESA framebuffer mode is configured during boot(8)
	using the vesa command.

8.1.1.4. Enabling scrollback on the console

You can enable scrolling back on wscons consoles by compiling
	the WSDISPLAY_SCROLLSUPPORT option into your
	kernel. Make sure you don't have option
	VGA_RASTERCONSOLE enabled at the same time
	though! See Chapter 34, Compiling the kernel for instructions on
	building a kernel.

When you have a kernel with options
	WSDISPLAY_SCROLLSUPPORT running, you can
	scroll up on the console by pressing LEFT SHIFT plus PAGE
	UP/DOWN. Please note that this may not work on your system
	console (ttyE0)!

8.1.1.5. Wscons and colors

8.1.1.5.1. Changing the color of kernel messages

It is possible to change the foreground and background
	 color of kernel messages by setting the following options in
	 kernel config files:

options WS_KERNEL_FG=WSCOL_xxx
options WS_KERNEL_BG=WSCOL_xxx

The WSCOL_xxx color constants are defined in
	 src/sys/dev/wscons/wsdisplayvar.h.

You can easily customize many
	 aspects of your display appearance: the colors used to print normal messages, the
	 colors used to print kernel messages and the color used to
	 draw a border around the screen.

All of these details can be changed either from kernel
	 options or through the wsconsctl(8) utility; the latter
	 may be preferable if you don't want to compile your own
	 kernel, as the default options in GENERIC
	 are suitable to get this tip working.

The following options can be set through
	 wsconsctl(8):

	border: The color
	 of the screen border. Its respective kernel
	 option is WSDISPLAY_BORDER_COLOR.
	

	msg.default.attrs: The attributes
	 used to print normal console messages. Its respective
	 kernel options are WS_DEFAULT_COLATTR
	 and WS_DEFAULT_MONOATTR (the former is used
	 in color displays, while the latter is used in monochrome
	 displays).

	msg.default.bg:
	 The background color used to print normal console	
	 messages. Its respective kernel option is
	 WS_DEFAULT_BG.

	msg.default.fg:
	 The foreground color used to print normal console
	 messages. Its respective kernel option is
	 WS_DEFAULT_FG.

	msg.kernel.attrs:
	 The attributes used to print kernel messages and warnings.
	 Its respective kernel options are
	 WS_KERNEL_COLATTR and
	 WS_KERNEL_MONOATTR (the
	 former is used in color displays, while the latter is used
	 in monochrome displays).

	msg.kernel.bg:
	 The background color used to print kernel messages and
	 warnings. Its respective kernel option is
	 WS_KERNEL_BG.

	msg.kernel.fg:
	 The foreground color used to print kernel messages and
	 warnings. Its respective kernel option is
	 WS_KERNEL_FG.

The values accepted as colors are: black, red, green,
	 brown, blue, magenta, cyan and white. The attributes are a
	 comma separated list of one or more flags, which can be:
	 reverse, hilit, blink and/or underline.

For example, to emulate the look of one of those old
	 Amstrad machines:

wsconsctl -d -w border=blue msg.default.bg=blue msg.default.fg=white msg.default.attrs=hilit

Or, to make your kernel messages appear red:

wsconsctl -d -w msg.kernel.fg=red

Note that, in older versions of NetBSD, only a subset of
	 this functionality is available; more specifically, you can
	 only change the kernel colors by changing kernel options, as
	 explained above.
	 Also note that not all drivers support these features, so
	 you may not get correct results on all architectures.

8.1.1.5.2. Getting applications to use colors on the console

NetBSD uses the terminfo database to
	 tell applications what the current terminal's capabilities are.
	 For example, some terminals don't support colors, some don't
	 support underlining (PC VGA terminals don't, for example) etc.
	 The TERM environment variable tells the terminfo
	 library the type of terminal. It then refers to its database
	 for the options.

The default setting for TERM can be
	 inspected by typing echo $TERM
	 on the terminal of interest. Usually this is something	like
	 vt220. This terminal type doesn't support
	 colors. On a typical PC console with 25 lines, you can change
	 this value to wsvt25 instead, to get colors.
	 This is done in the C shell (csh) by entering:
	

setenv TERM wsvt25

	 In a Bourne-compatible shell (sh, ksh), you can enter:
	

export TERM=wsvt25

	 If this does not work for you, you can try the
	 ansi terminal type, which supports
	 ANSI color codes. However, other functionality may be
	 missing with this terminal type. You can have a look
	 at the file /usr/share/misc/terminfo
	 to see if you can find a useful match for your
	 console type.
	

8.1.1.6. Loading alternate fonts

There are several fonts in
	 /usr/share/wscons/fonts
	 that can be loaded as console fonts. This can be done with the
	 wsfontload(8) command, for example:
	 wsfontload -N ibm -h 8 -e ibm /usr/share/wscons/fonts/vt220l.808.
	 This command loads the IBM-encoded (-e ibm)
	 font in the file vt2201.808 which has a height
	 of eight pixels (-h 8). Name it ibm for later
	 reference (-N ibm).

	 To actually display the font on the console, use the command
	 wsconsctl -dw font=ibm.
	

If you want to edit a font, you can use the old pcvt
	 utils that are available in the
	 sysutils/pcvt-utils
	 package.

8.1.2.1. Keyboard mappings

Wscons also allows setting the keymap to map the keys on
	various national keyboards to the right characters. E.g. to
	set the keymap for an Italian keymap, run:

wsconsctl -k -w encoding=it
encoding -> it

This setting will last until the next reboot.
	To make it permanent, add a encoding line to
	/etc/wscons.conf: it will be executed
	automatically the next time you reboot.

cp /etc/wscons.conf /etc/wscons.conf.orig
echo encoding it >>/etc/wscons.conf

Please be careful and type two > characters.
	If you type only one >, you will overwrite
	the file instead of adding a line. But that's why we always
	make backup files before touching critical files!

A full list of keyboard mappings and variants can be found in
	wskbd(4).

You can change the compiled in kernel default by adding
	options PCKBD_LAYOUT=KB_encoding
	where encoding is an uppercase entry
	from the list above
	(e.g.: PCKBD_LAYOUT=KB_FR). Variants can be
	bitwise or'd in
	(e.g.: PCKBD_LAYOUT=KB_US|KB_SWAPCTRLCAPS).

Configuring the keyboard layout under X is described
	elsewhere.
	

8.1.2.1.1. Hacking wscons to add a keymap

If your favourite keymap is not supported, you can start
	 digging in src/sys/dev/wscons/wsksymdef.h
	 and src/sys/dev/pckbport/wskbdmap_mfii.c
	 to make your own. Be sure to send-pr a change-request PR with your work, so others can
	 make use of it!

You can test your keymap by using wsconsctl instead
	 of directly hacking the keymaps into the keyboard mapping file. For example, to
	 say keycode 51 without any modifiers should map to a comma, with shift it should
	 map to a question mark, with alt it should map to a semicolon and with both alt
	 and shift it should map to colon, issue the following
	 command:

wsconsctl -w "map += keycode 51=comma question semicolon colon"

8.1.2.2. Changing the keyboard repeat speed

Keyboard repeat speed can be tuned using the
	wsconsctl(8) utility.
	There are two variables of interest:
	repeat.del1, which specifies the delay before
	character repetition starts, and repeat.deln,
	which sets the delay between each character repetition (once
	started).

Let's see an example, assuming you want to accelerate keyboard
	speed. You could do, from the command line:

wsconsctl -w repeat.del1=300
wsconsctl -w repeat.deln=40

Or, if you want this to happen automatically every time
	you boot up the system, you could add the following lines to
	/etc/wscons.conf:
	

setvar repeat.del1=300
setvar repeat.deln=40

8.1.3.1. Serial mouse support

The wsmouse device (part of wscons) does not directly
	support serial mice. The moused(8) daemon is provided
	to read serial mouse data, convert it into wsmouse events
	and inject them in wscons' event queue, so the mouse can be
	used through the abstraction layer provided by wsmouse.

A typical use can be: moused -p /dev/tty00.
	This will try to determine the type of mouse connected to
	the first serial port and start reading its data. The
	moused(8) man page contains more examples.

8.1.3.2. Cut&paste on the console with wsmoused

It is possible to use the mouse on the wscons console to mark
	(cut) text with one mouse button, and insert (paste) it again
	with another button.

To do this, enable "wsmoused" in
	/etc/rc.conf, and start it:

echo wsmoused=yes >>/etc/rc.conf
service wsmoused start

After that you can use the mouse to mark text with the left
 mouse button, and paste it with the right one. To tune the
	 behaviour of wsmoused(8) see its manpage, which also
	 describes the format of the wsmoused.conf(5) config file,
	 an example of which can be found in
	/usr/share/examples/wsmoused.

Chapter 9. The X Window System

NetBSD uses the X Window System to provide a graphical interface.

Please note that the X Window System is a rather bare bones
 framework. It acts as a base for modern desktop environments like
 MATE, or Xfce, but they are not part of the X Window System.
 NetBSD ships with the X Window System, but it does not include these
 desktop environments; they must be added via pkgsrc.

When you start using X you'll find many new terms which you may
 find confusing at first. The basic elements are:

	An X server running on top of the
	 hardware. The X server provides a standard way to display
 graphics (including fonts for text display) and get
 mouse/keyboard/other input.
 On most NetBSD ports, the
 Xorg(1) display server is used.
 Other X servers included with NetBSD include
 Xnest(1),
 which runs an X server inside another X server as a window,
 and Xvfb(1), which runs an off-screen X server,
 and is typically used to provide a full remote-only desktop with
 x11/x11vnc.

	X clients. These are the programs you
 directly interact with. They run on top of the X server. A web
 browser like Firefox is an example of an X client. X is
 network-transparent, which means that you can run X clients on one
 machine, and the X server (i.e., the display, with video hardware)
 on another machine.
 The X client picks a server to use as a display based on
 the DISPLAY environment variable,
 typically :0 for the first server, and
 :1 for the second.

	A window manager running on top of the X
	 server. The window manager is a special X client that is allowed
 to control the placement of windows. It can also
 “decorate” windows with standard “widgets”
 (usually these provide actions like window motion, resizing,
 iconifying, window killing, etc.).
 ctwm(1) is NetBSD's default window
 manager.

	A desktop environment such as MATE,
 or Xfce. These are suites of integrated software designed to give you
 a well-defined range of software and a more or less common interface
 to each program. These typically include a window manager, file
 manager, web browser, email client, multimedia player, text editor,
 address book, help browser, etc. As you may have guessed, a desktop
 environment is not needed to use X, but many users will want to
 install one.

	A compositor or
 compositing manager runs on the X server and
 redirects rendering to an off-screen buffer, typically using the
 GPU (Graphics Processing Unit) hardware for final rendering.
 It can provide additional eye-candy and often VSync (vertical sync).
 Some window managers, typically those included with large desktop
 environments, include their own compositing managers.
 xcompmgr and
 x11/picom
 are external compositing managers.

The X Window System is included with NetBSD as separate distribution
 sets, see Section 3.10, “Installation type”. It can be added to an
 installed system with sysinst(8).

On NetBSD, X11 lives under the filesystem hierarchy
 /usr/X11R7. Therefore, to use X,
 /usr/X11R7/bin must be in your shell's
 PATH. See ~/.profile.

In most cases, you will be able to start using X without any
 configuration at all, and startx will work just
 fine.

In rare cases, however, configuration of the X
 server is required. This configuration file is located at
 /etc/X11/xorg.conf. The structure of the
 configuration file is described formally in xorg.conf(5).

To generate an initial configuration file for your X server,
 run the command

X -configure

This command should create a configuration file and place it in
 your home directory. To test the generated configuration
 file, run, e.g.,

X -config ~/xorg.conf.new

If this succeeds, you should see a crosshatched background and
 a cursor in the shape of an X. Try moving the cursor around to
 verify that the mouse is functional. You can then switch to another
 virtual terminal (Ctrl-Alt-F#) or log in remotely and kill the X process.

If the above test was successful, move the file into place
 as /etc/X11/xorg.conf and you are ready to go.

Even if you have already configured your keyboard for wscons
 (see Section 8.1, “wscons”), you need to configure it for
 X as well, at least if you want to use a non-US layout.

An easy solution is to use setxkbmap(1) .

Here is an example that shows how to use a Hebrew keyboard, with Ctrl-Alt
 used to switch layouts, and with the position of the Escape and Caps Lock keys swapped
 as an additional option:

setxkbmap -option grp:alt_shift_toggle us,il \
 -option caps:swapescape -option terminate:ctrl_alt_bksp

If you wish to change the repeat rate of your keyboard, you can
 set it with the xset(1) command, which takes two
 arguments: delay and rate, respectively. The following example
 sets the initial delay to 200 milliseconds and the repeat rate to 30
 per second:

$ xset r 200 30

You can also run this command in your .xinitrc
 or .xsession file.
 See below (Section 9.6, “Customizing X”) for more
 information.

If X does not run at the resolution you think it should, first
 run xrandr and see if the resolution you want is
 listed. If your preferred resolution is listed in that command's
 output, you can change resolutions with, e.g.,

$ xrandr -s 1680x1050

 xrandr can also be used to enable output to hot-plugged monitors.

Managing outputs can be done graphically with the
 pkgsrc package x11/arandr.

You can start X with the following command:

$ startx

If your basic X server configuration is correct, you are left in
 the X environment with the default window manager
 (ctwm). If you want a more advanced window
 manager or desktop environment, many are available in pkgsrc. See
 Section 9.7, “Other window managers or desktop environments” for information about
 adding and changing window managers.

One of the first things you will want to do is to change the
 programs that run when X is first started. The easiest way to do this
 is to copy the default .xinitrc file to your home
 directory and modify it, or create a simple new one from scratch.
 For example:

$ cp /etc/X11/xinit/xinitrc ~/.xinitrc
$ chmod u+w ~/.xinitrc
$ vi ~/.xinitrc

If you use xdm(1), ~/.xsession is used
 in place of ~/.xinitrc.

The following example shows how to start the window manager
 (ctwm) and open an instance of the
 xterm and xterm
 programs. The screen background color is set to “bisque4”,
 which is defined in /usr/X11R7/lib/X11/rgb.txt.

...
start some programs - a basic clcok
xclock -geometry 50x50-1-1 &
change the color of the "root window" ("desktop background")
xsetroot -solid bisque4 &
spawn a terminal
uxterm -geometry 80x34-1+1 -bg OldLace &
exec ctwm -W # no '&' here

With this type of setup, to quit X you must exit the window
 manager, which is usually done by selecting "exit" from its
 menu.

The above example is very simple, but illustrates the basics
 of controlling the clients that are run when X is started. You can
 run any number of commands from your .xinitrc,
 including basic X configuration commands like
 xset b off to turn off the bell.

9.7. Other window managers or desktop environments

If you don't like ctwm, which is a very
 simple window manager, you can install another window manager or
 a desktop environment from pkgsrc.
 The following example uses the Openbox window manager, but there are
 many others available in pkgsrc/wm.

Openbox can be installed via binary packages or compiled with
 pkgsrc. As always, assuming a properly set PKG_PATH, the binary package
 method is:

pkgin in openbox

 To build it with pkgsrc, run:

cd /usr/pkgsrc/wm/openbox
make install

Openbox is now installed; to start it you must modify your
 .xinitrc file:
 substitute the line which calls ctwm with
 a line which calls openbox.
 For example:

start some useful programs
xclock -geometry 50x50-1-1 &
start window manager:
exec openbox # no '&' here

The startx command will start the X11 session
 with Openbox. As configured in the example .xinitrc
 file above, choosing “Log Out” from Openbox's
 menu will end the X11 session.

Installing a desktop environment is almost as easy. The following
 example shows how to use the Xfce desktop environment.

pkgin in xfce4

Depending on your requirements, you may wish to enable
 dbus as a system-wide service. The following example
 demonstates how. (If you don't enable dbus to run as a system-wide
 service, startxfce4 will start dbus under your
 user account during initialization.)

cp /usr/pkg/share/examples/rc.d/dbus /etc/rc.d
echo dbus=YES >> /etc/rc.conf
service dbus start

If you wish to be able to control your system's power state from
 within the desktop, the account you intend to run X under must also
 be a member of the “operator” group
 (see Section 5.6, “Adding users”).

After running the above commands, edit your
 .xinitrc as above and change
 “openbox” (or “ctwm”) to
 “startxfce4”. The next time you run
 startx the Xfce desktop environment will be
 started.

9.8. Graphical login with xdm

If you always use X and the first thing you do after you log in
 is run startx, you can set up
 a graphical login to do this automatically. It is very easy:

	
Create the .xsession file in your home
 directory. This file is similar to .xinitrc
 and can, in fact, be a link to it.

$ ln -s .xinitrc ~/.xsession

	
Modify /etc/rc.conf, adding the following
 line:

xdm=YES # x11 display manager

	
Start xdm(1) (or reboot your system, as this will be done
 automatically from now on):

service xdm start

The configuration files for xdm
 are in the /etc/X11/xdm
 directory. The Xservers file specifies the
 virtual console that X is started on. It defaults to
 “vt05”, which is the console you reach via
 “Ctrl+Alt+F5”. If you want to use a different virtual
 console, change vt05 as desired. In order to avoid keyboard contention
 between getty and xdm, be sure to start xdm on a virtual terminal
 where getty is disabled. For example, if in
 Xservers you have:

:0 local /usr/X11R7/bin/X :0 vt04

then in /etc/ttys you should have

ttyE3 "/usr/libexec/getty Pc" wsvt25 off secure

(Please note that vt04 corresponds to ttyE3; in
 /etc/X11/xdm/Xservers, numbering starts at 1,
 but in /etc/ttys, numbering starts at 0.)

If you are using xdm to start various
 modern desktop environments, such as Xfce or MATE, you will need to
 override its default permitted authorization mechanisms, by adding
 the following to /etc/X11/xdm/xdm-config:

DisplayManager*authName: MIT-MAGIC-COOKIE-1

If you want to change the look of your xdm login screen, you can
 modify the xdm configuration file.
 For example, to change the background color you can add the
 following line to the Xsetup_0 file:

xsetroot -solid SeaGreen

9.9. Using multiple or remote X servers

This is intended as a simple example of how to use multiple
 X servers. For illustration purposes, we'll simply use
 Xnest(1), which creates a new X server
 :1 as a window on the existing server
 :0:

$ Xnest :1 &

It's then possible to run programs on the second server,
 or even a different window manager:

$ DISPLAY=:1 uxterm &
$ DISPLAY=:1 ctwm &

Using X11 forwarding, programs
 can run on a remote machine while displaying on the local
 machine. This must typically be enabled in
 /etc/ssh/sshd_config:

X11Forwarding yes

Log in with ssh(1) and run X programs the normal way:

$ ssh -X remote.machine.example.com
$ uxterm &

On a completely headless system (with no monitor),
 Xvfb(1) (X virtual framebuffer)
 can be used in a similar manner. The fully virtual
 screen of the X server can be exported over the network with
 x11/x11vnc:

$ Xvfb :1 &
$ DISPLAY=:1 ctwm &
$ x11vnc -display :1 -localhost -passwdfile /path/to/password &

Notice we use the -localhost option.
 In theory this stops remote connections, however, in practice
 we're using a SSH tunnel to forward the VNC port, adding an extra
 layer of security. To connect to the headless machine:

$ ssh -L 5900:hostname:5900 hostname
$ vncviewer localhost &

	An X Window System Tutorial
 is a video series that attempts to explain basic concepts
 of the X Window System, including the role of the window manager.

	X Window System User's Guide for X11R3 and R4
 (PDF,
 Web)
 by Valerie Quercia and Tim O'Reilley
 is a classic book describing some X features that
 is now available to read for free online.

10.1. Configuring the default audio device

audiocfg(1) can be used to list, test and set default
 audio devices.

All available audio devices can be listed with
 audiocfg list:

$ audiocfg list
0: [*] audio0 @ hdafg0: Realtek ALC292
 playback: 2ch, 48000Hz
 record: 2ch, 48000Hz
 (PR) slinear_le 16/16, 2ch, { 32000, 44100, 48000, 88200, 96000, 192000 }
 (PR) slinear_le 20/32, 2ch, { 32000, 44100, 48000, 88200, 96000, 192000 }
 (PR) slinear_le 24/32, 2ch, { 32000, 44100, 48000, 88200, 96000, 192000 }
 () ac3 16/16, 2ch, { 32000, 44100, 48000, 88200, 96000, 192000 }
1: [] audio1 @ uaudio0: USB audio
 playback: 2ch, 48000Hz
 record: 1ch, 48000Hz
 (P-) slinear_le 16/16, 2ch, { 48000, 44100 }
 (-R) slinear_le 16/16, 1ch, { 48000, 44100 }

The asterisk next to the Realtek ALC292 device
	indicates it is currently the default device, so if any application writes
	or reads to /dev/audio it will play or record from it.
	It is also available as /dev/audio0,
	and for mixer commands, /dev/mixer0.

The other device, USB audio, is a secondary
	device that has been plugged in. Since it isn't the default, it is only
	used if specifically selected in an application. It is available as
	/dev/audio1, and for mixer commands,
	/dev/mixer1.

The playback: and record:
	rows indicate the currently selected hardware audio format.
	Below this, the other supported formats are listed.
	Some devices set the playback and recording formats separately,
	while others set both at the same time. This is indicated by
	PR.

audiocfg test index
	can be used to test playback, and plays a tone of 2 seconds for each
	channel of the index device:

$ audiocfg test 0
0: [*] audio0 @ hdafg0: Realtek ALC292
 testing channel 0... done
 testing channel 1... done

If more than one audio device is available,
	audiocfg default index
	can be used to change the default one. This persists between reboots.
	Please note that unlike other audiocfg(1) commands,
	audiocfg default needs to be run as root.

10.2. Configuring the mixer and volume

In NetBSD, mixerctl(1) is used to adjust audio mixing,
 	e.g. volume for recording and playback, and the sources and sinks
	currently in use.

Set the current playback volume:

$ mixerctl -w outputs.master=50

List the available controls and settings:

$ mixerctl -av
outputs.master=255,255 volume
inputs.dac=255,255 volume
outputs.auto=255,255 volume delta=13
outputs.headphones=0,0 volume delta=13
outputs.hdmi=255,255 volume delta=13
outputs.select=headphones [auto headphones hdmi]

Secondary devices can also be configured using mixerctl(1).
	For example, if you've just plugged in an USB audio device, it
	may have attached as /dev/audio1 and
	/dev/mixer1 - this is visible using
	audiocfg(1).
	You would therefore configure it with
	mixerctl -d /dev/mixer1.

10.2.1. Setting default mixer settings on boot

Default mixer device settings can be applied on boot by setting
	 mixerctl=YES in /etc/rc.conf,
	 then providing arguments in /etc/mixerctl.conf.
	 For example, this /etc/mixerctl.conf
	 sets the playback volume and playback sink:

outputs.master=120,120
outputs.select=headphones

To automatically load and save the settings of mixer devices
	 on boot and shutdown, you can specify each device to save individually
	 in /etc/rc.conf:

mixerctl=YES
mixerctl_mixers="mixer0 mixer1"

10.3. Pseudo audio devices

NetBSD's pad(4) device allows feeding back data from an
	application using a virtual audio device. It can be used to
	redirect playback elsewhere, or record an application's
	playback.

/dev/padN devices produce a raw
	stream of audio in a fixed format when opened for reading.
	At the time of opening, they also create a
	/dev/audioN device for an
	application to use for output. You can observe the device creation
	happening with dmesg(8).

The following example records the output of a game,
	games/jumpnbump,
	using the program
	multimedia/ffmpeg4 for encoding the
	data from the pad device to a file and writing it back to the real
	audio device simultaneously.
	Both are available from the NetBSD Packages Collection.

$ ffmpeg4 -f s16le -ar 44100 -ac 2 -i /dev/pad0 \
 -f wav output.wav -f oss /dev/audio
$ SDL_PATH_DSP=/dev/audio1 jumpnbump

10.4. Recording and playback commands

NetBSD comes with a number of commands that allow users to
 play and record audio from scripts or the command-line interface.

With this command you can play audio files in simple
	formats like ULAW and WAVE. For more
	sophisticated needs you might want to install one of the
	many programs available in the package system which let you
	play audio files in different formats (e.g. MP3, etc.)

Allows recording audio from a microphone or other input to the
 same simple or raw formats that audioplay(1) supports.

The following command records CD quality audio to a WAVE
 file from the default audio device. Recording will stop when the
 process is terminated:

$ audiorecord -d /dev/audio -F wav -e linear -c 2 -P 16 -s 44100 recording.wav

Play the recording back (its format is inferred from the WAVE
 headers):

$ audioplay recording.wav

audioctl(1) is used to
	manually set some variables regarding audio I/O, like the
	frequencies for playing and recording.
	This is useful when writing raw samples to
	/dev/sound without access to the full
	audio(4) API, e.g. from a shell script, but otherwise is not
	used during regular operation.
	

NetBSD includes built-in MIDI support through the machine-independent
 	midi(4) system. This includes support for USB MIDI devices.

Access to MIDI devices is supported through raw access to the
	/dev/rmidiX devices, or through the sequencer
	device, /dev/music.

Digital Audio Workstations and other software with support for
	NetBSD MIDI in the Packages Collection include
	audio/lmms
	and audio/fluidsynth.
	Several MIDI programs are also included with NetBSD:

A program that allows recording MIDI events from a device to
	files in the Standard MIDI (SMF) format. It can also be used to test a
	device and verify it works as expected with the -D
	and -V options.

A program that allows playing Standard MIDI and RMID files
	to the MIDI sequencer device.

10.6. Intel HD Audio devices

Since the 2010s, most x86 machines have hardware compliant with
	the Intel HD Audio specification. These use
	NetBSD's hdaudio(4) driver and require some special consideration.

10.6.1. Built-in and jacks: DACs/ADCs

For hdaudio(4) devices, the currently selected playback
	ports (or, e.g. internal speaker and headphone jack on a laptop) are
	controlled by selecting a DAC/ADC. The available DACs and ADCs can be
	seen in /var/run/dmesg.boot:

hdafg0 at hdaudio1: Realtek ALC292
hdafg0: DAC00 2ch: Speaker [Built-In], HP Out [Jack]
hdafg0: ADC01 2ch: Mic In [Jack]
hdafg0: ADC02 2ch: Mic In [Built-In]

Therefore, to use only the built-in mic for recording:

$ mixerctl -w record.source=ADC02

Use all available sources:

$ mixerctl -w record.source=ADC01,ADC02

Some laptops may need outputs.dacsel
	changed to only play audio from the headphone jack,
	others have hardware speaker mute and there's no need for this.

Chapter 11. Power management

 For power management, NetBSD supports sensor monitoring (including
 battery state, CPU temperature, and so on),
 CPU frequency adjustment, low-power mode for devices, hardware
 poweroff, and sleep (suspend-to-RAM) on some hardware.

 Power management on NetBSD primarily takes the form of acpi(4)
 (Advanced Configuration and Power Interface) support, although
 sensors are also supported on many other types of non-ACPI hardware.

11.1. Basic power management commands

11.1.1. Powering off or rebooting the system

A NetBSD system with ACPI support can be physically powered off
 by running the poweroff(8) and reboot(8) commands, however,
 it is usually best to use shutdown(8) so the system shuts down
 with appropriate warning and has time to properly stop any running
 applications and services.

Shut the system down immediately:

shutdown -p now

Reboot with a 10 minute warning to any users:

shutdown -r +10

11.1.2. Using ACPI sleep states (suspend and resume)

An ACPI system is always in one of any "sleep states":

	S0

	fully running

	S1

	power on suspend (CPU and hard disks are off)

	S2

	similar to S3, usually not implemented

	S3

	suspend-to-RAM ("sleep", most of the system is inactive
 to save power, but can quickly be brought back up)

	S4

	suspend-to-disk ("hibernate", not
 currently supported on NetBSD)

	S5

	powered off

The sleep state can be modified with
 sysctl(8), e.g. to suspend-to-RAM:

sysctl -w hw.acpi.sleep.state=3

The way the system wakes up is dependent on the hardware, and may
 include pressing the power button or lifting the lid.
 If supported, the system can resume from a suspended state much quicker
 than a full reboot.

If you've tested this and verified it works as expected, you may wish
 to trigger it automatically through a powerd(8) event, such as closing
 the lid of a laptop.

11.1.3. Suspending and resuming individual devices

If your machine does not support full ACPI suspend and resume, it
 may still be possible to suspend and resume individual devices to save
 power while they are inactive.
 This can be accomplished with drvctl(8).

For example, /var/run/dmesg.boot
 reports our hardware has a SD card reader, rtsx0.

rtsx0 at pci1 dev 0 function 0: Realtek Semiconductor RTS5227 PCI-E Card Reader (rev. 0x01)
rtsx0: interrupting at msi4 vec 0
sdmmc0 at rtsx0

We can suspend it:

drvctl -S rtsx0

And we can also resume it:

drvctl -R rtsx0

If a specific device is failing to suspend or resume, this
 can also be used for debugging.

11.1.4. Adjusting CPU frequency at runtime

Many modern machines allow the CPU frequency to be dynamically
 adjusted. A higher frequency provides better performance, but increased
 battery usage and generates more heat.
 On NetBSD, CPU frequency can be adjusted at runtime with sysctl(8).

For example, this machine is currently running at 1400 MHz,
 but also supports a 600 MHz low-power mode:

$ sysctl -a | grep freq
machdep.cpu.frequency.target = 1400
machdep.cpu.frequency.current = 1400
machdep.cpu.frequency.min = 600
machdep.cpu.frequency.max = 1400
machdep.cpu.frequency.available = 600 1400

We can enter the low power mode by setting the target frequency:

sysctl -w machdep.cpu.frequency.target=600

Many modern hardware supports an "automatic adjustment" frequency,
 usually this will be a reported frequency that ends in 1.
 On systems without this functionality,
 sysutils/estd can be installed from
 pkgsrc to perform automatic adjustment depending on load in software,
 although it will be less efficient than hardware scaling.

11.1.5. Using IEEE 802.11 (Wi-Fi) power saving mode

 Some IEEE 802.11 (Wi-Fi) networking devices support a low power mode,
 which can be enabled with ifconfig(8):

ifconfig iwm0 powersave

 You may notice an increase in reported latency from ping(8)
 and a decrease in performance.
 However, it may improve your device's battery life, as the radios
 in such devices can consume a lot of energy.
 It can be disabled again with ifconfig:

ifconfig iwm0 -powersave

11.2. Sensors and monitoring

 The primary command-line frontend to NetBSD's sensor monitoring framework
 is envstat(8). Here is a typical example of envstat
 output:

$ envstat
 Current CritMax WarnMax WarnMin CritMin Unit
[acpiacad0]
 connected: FALSE
[acpibat0]
 present: TRUE
 design voltage: 11.100 V
 voltage: 12.270 V
 design cap: 23.200 Wh
 last full cap: 16.940 Wh
 charge: 16.770 5.000% 1.181% Wh (99.00%)
 charge rate: N/A
 discharge rate: N/A
 charging: FALSE
 charge state: NORMAL
[acpitz0]
 temperature: 48.000 128.000

 acpiacad0 is the machine's AC adapter.
 It is not currently connected.

 acpibat0 is the machine's battery, currently 99%
 full. At 5%, a warning will be printed to the console and an event
 sent to powerd(8). At 1%, the system will shut down to prevent
 data loss from loss of power.

 A CPU temperature sensor is also detected, acpitz0.
 It indicates that the CPU's current temperature is 48 degrees Celsius,
 and the critical temperature is 128 degrees Celsius.
 If the critical temperature is reached, the system will shut down
 to prevent damage to hardware.
 powerd(8) can be notified of changes in temperature.

11.3. An introduction to powerd

 powerd(8) is a daemon that allows the system to respond to
 power management events, such as the AC adapter being unplugged,
 battery state changing, a laptop's lid being closed, or a "sleep"
 button being pressed.

As with other services, powerd can be enabled by editing
 /etc/rc.conf:

 powerd=YES

And started with service(8):

service powerd start

 powerd works by executing a named sh(1) script from the
 directory /etc/powerd/scripts whenever a power
 event occurs.
 We can use commands we learned in previous sections of this chapter
 to our advantage in the scripts.

11.3.1. Example: using powerd to suspend on lid close

Example 11.1. /etc/powerd/scripts/lid_switch

#!/bin/sh -
#
Generic script for lid switch events.
#
Arguments passed by powerd(8):
#
#	device event

case "${2}" in
pressed)
	# Lock the X11 display to prevent tampering
	DISPLAY=:0 /usr/pkg/bin/xlock -mode blank &
	# Wait for 1 second
	sleep 1
	# Suspend
	/sbin/sysctl -w hw.acpi.sleep.state=3
	exit 0
	;;

released)
	exit 0
	;;

*)
	logger -p warning "${0}: unsupported event ${2} on device ${1}" >&1
	exit 1
esac

11.3.2. Example: reducing CPU frequency when unplugged

Example 11.2. /etc/powerd/scripts/acadapter

#!/bin/sh -
#
Generic script for acadapter events.
#
Arguments passed by powerd(8):
#
#	device event

case "${2}" in
pressed)
	logger -p info "${0}: Full performance mode" >&1

	# Disable power saving mode on all network interfaces.
	for intf in $(/sbin/ifconfig -l); do
		/sbin/ifconfig $intf -powersave >/dev/null 2>&1
	done

	# Increase CPU frequency
	/sbin/sysctl -w machdep.cpu.frequency.target=2300

	exit 0
	;;

released)
	logger -p info "${0}: Power saving mode" >&1

	# Enable power saving mode on all network interfaces.
	for intf in $(/sbin/ifconfig -l); do
		/sbin/ifconfig $intf powersave >/dev/null 2>&1
	done

	# Reduce CPU frequency
	/sbin/sysctl -w machdep.cpu.frequency.target=1400

	exit 0
	;;

*)
	logger -p warning "${0}: unsupported event ${2} on device ${1}" >&1
	exit 1
	;;
esac

This chapter describes a simple configuration for printing,
 using an HP Deskjet 690C printer connected to the first parallel port
 and the lpd printing system that comes with NetBSD.
 First, the system will be configured to print text documents, and
 next the configuration will be extended to print PostScript
 documents using the Ghostscript program
 (print/ghostscript).
 Please note that there are other, alternative printing systems
 available from the
 packages collection, like LPRng
 (print/LPRng) and the
 Common Unix Printing System (CUPS)
 (print/cups)
 which are not covered here.

12.1. Enabling the printer daemon

After installation it is not yet possible to print, because the
 lpd printer spooler daemon is not enabled.
 To enable lpd, one line in the
 /etc/rc.conf file must be changed from:

lpd=NO

to

lpd=YES

The change will come into effect at the next boot, but the daemon
 can be started manually now:

service lpd start

To check if lpd is active, type the following
 command:

service lpd status

If you don't see an entry for lpd in the output of the previous
 command, the daemon is not active.

The lpd system is configured via
 /etc/printcap. Before configuring
 /etc/printcap it is a good idea
 to make a printer test, to check if the physical connection
 between your computer and the printer is working.
 The test sends out some data directly to the printer
 device. Assuming you use a printer connected to the parallel
 port, this is /dev/lpt0; if you use an USB
 printer try /dev/ulpt0. Please check the
 manpages of these devices (lpt(4), ulpt(4)) for more
 information!

 In our example we have a printer attached to the parallel port,
 so we run this:

lptest 70 5 > /dev/lpt0

To see what the output should look like, try the same command
 without redirecting the output to the printer:

lptest 70 5
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdef
"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefg
#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefgh
$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghi
%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghij

A frequent problem is that the output on the printer is not correctly
 aligned in columns but has a “staircase” configuration.
 This usually means that the printer is configured to begin a new
 line at the left margin after receiving both a <CR>
 (carriage return, ASCII 13) character and a <LF> (line feed,
 ASCII 10) character.
 NetBSD only sends a <LF> character.
 You can fix this problem in two ways:

	by changing the configuration of the printer

	by using a simple printer filter (described later)

Note

In the previous example the lpd
 spooler is not involved because the program output is sent
 directly to the printer device (/dev/lpt0)
 and is not spooled.

12.2. Configuring /etc/printcap

This section explains how to configure the example printer
 to print text documents.

The printer must have an entry in the
 /etc/printcap file; the entry contains the
 printer id (the name of the printer) and the printer
 description. The lp id is the default
 used by many programs. Here is an example entry:

Example 12.1. /etc/printcap

lp|local printer|HP DeskJet 690C:\
 :lp=/dev/lpa0:sd=/var/spool/lpd/lp:lf=/var/log/lpd-errs:\
 :sh:pl#66:pw#80:if=/usr/local/libexec/lpfilter:

The file format and options are described in detail in the
 printcap(5) manpage. Please note that an input
 filter has been specified (with the
 if option) which will take care of
 eliminating the staircase problem:

if=/usr/local/libexec/lpfilter

Printer driver and HP printers

Example 12.1, “/etc/printcap” uses the
 lpa0 device (polled driver) for the
 printer, instead of the lpd0 (interrupt
 driven driver). Using interrupts there is a communication
 problem with some printers, and the HP Deskjet 690C is one of
 them: printing is very slow and one PostScript page can take
 hours. The problem is solved using the
 lpa driver. It is also possible to
 compile a custom kernel where lpt is polled.

The printcap entry for the printer also specifies a spool directory,
 which must be created; this directory will be used by the
 lpd daemon to accumulate the data to be
 printed:

cd /var/spool/lpd
mkdir lp
chown daemon:daemon lp
chmod 770 lp

The only missing part is the
 lpfilter input filter, which must be written.
 The only task performed by this filter is to configure the printer for
 the elimination of the staircase problem before sending the text to be
 printed.
 The printer used in this example requires the following initialization
 string:
 “<ESC>&k2G”.

Example 12.2. /usr/local/libexec/lpfilter

#!/bin/sh
Treat LF as CR+LF
printf "\033&k2G" && cat && exit 0
exit 2

After saving this script into the name you used in
 /etc/printcap, you need to make sure it's
 executable:

chmod 755 /usr/local/libexec/lpfilter*

Note

There is another filter that can be used:

if=/usr/libexec/lpr/lpf:

This filter is much more complex than the one presented before.
 It is written to process the output of nroff
 and handles underline and overprinting, expands tab characters
 and converts LF to CR + LF.
 The source to this filter program can be found in
 /usr/src/usr.sbin/lpr/filters/lpf.c.

After everything is in place now, the
 lptest command can be run again now, this
 time using the lpr command, which will first
 send the data to the lpd spooler, then runs the filter and sends
 the data off to the printer:

lptest 70 5 | lpr -h

The lpr program prints text using the
 spooler to send data to the printer; the -h
 option turns off the printing of a banner page (not really
 necessary, because of the sh option in
 /etc/printcap). Users more familiar with
 the System V printing system can also use the lp(1) command
 that comes as an alternative to lpr(1).

12.3. Configuring Ghostscript

Now that basic printing works, the functionality for
 printing PostScript files can be added. The simple printer used
 in this example does not support native printing of PostScript
 files; a program must be used which is capable of converting a
 PostScript document in a sequence of commands that the printer
 understands. The Ghostscript
 program, which can be found in packages collection, can be used
 to this purpose. This section explains how to configure lpd to use
 Ghostscript to print PostScript files
 on the HP Deskjet 690C.

A second id for the printer will be created in
 /etc/printcap: this new id will use a different
 input filter, which will call Ghostscript to perform the actual print
 of the PostScript document.
 Therefore, text documents will be printed on the
 lp printer and PostScript documents on the
 ps printer: both entries use the same physical
 printer but have different printing filters.

The same result can be achieved using different
 configurations. For example, a single entry with only one
 filter could be used. For this, the filter should be able to
 automatically determine the format of the document being printed,
 and use the appropriate printing program. This approach is
 simpler but leads to a more complex filter; if you like it you
 should consider installing the
 magicfilter program from the packages
 collection: it does this and many other things
 automatically.

For our approach, the new /etc/printcap
 file looks like this:

Example 12.3. /etc/printcap

lp|local printer|HP DeskJet 690C:\
 :lp=/dev/lpa0:sd=/var/spool/lpd/lp:lf=/var/log/lpd-errs:\
 :sh:pl#66:pw#80:if=/usr/local/libexec/lpfilter:

ps|Ghostscript driver:\
 :lp=/dev/lpa0:sd=/var/spool/lpd/ps:lf=/var/log/lpd-errs:\
 :mx#0:sh:if=/usr/local/libexec/lpfilter-ps:

Option mx#0 is very important for printing PostScript
 files because it eliminates size restrictions on the input file;
 PostScript documents tend to be very big.
 The if option points to the new filter.
 There is also a new spool directory.

The next steps are the creation of the new spool directory
 and of the filter program. The procedure for the spool directory
 is the same as above:

cd /var/spool/lpd
mkdir ps
chown daemon:daemon ps
chmod 770 ps

The filter program for PostScript output is more complex than
 the text base one: the file to be printed is fed to the
 interpreter which converts it into a sequence of
 commands in the printer's control language, and then sends that
 off to the printer. We have achieved to
 transform a cheap color printer in a device suitable for
 PostScript output, by virtue of the NetBSD operating system and
 some powerful freeware packages. The options used to configure
 Ghostscript are described in the
 Ghostscript documentation: cdj550 is the
 device used to drive the HP printer.

Example 12.4. /usr/local/libexec/lpfilter-ps

#!/bin/sh
Treat LF as CR+LF
printf "\033&k2G" || exit 2
Print the postscript file
/usr/pkg/bin/gs -dSAFER -dBATCH -dQUIET -dNOPAUSE -q -sDEVICE=cdj550 \
-sOutputFile=- -sPAPERSIZE=a4 - && exit 0
exit 2

To summarize: two different printer names have been created on the
 system, which point to the same physical printer but use different
 options, different filters and different spool directories.
 Text files and PostScript files can be printed.
 To print PostScript files the Ghostscript package must be installed
 on the system.

12.4. Printer management commands

This section lists some useful BSD commands for printer and print
 jobs administration.
 Besides the already mentioned lpr and
 lpd commands, we have:

	lpq

	examine the printer job queue.

	lprm

	delete jobs from the printer's queue.

	lpc

	check the printing system, enable/disable printers and printer
	 features.

It is possible to configure the printing system in order to
 print on a printer connected to a remote host.
 Let's say that, for example, you work on the wotan
 host and you want to print on the printer connected to the
 loge host.
 The /etc/printcap file of loge is the one
 of Example 12.3, “/etc/printcap”.
 From wotan it will be possible to print Postscript files using
 Ghostscript on loge.

The first step is to accept the print jobs submitted
 from the wotan host to the loge host.
 To accomplish this, a line with the wotan host name must be added
 to the /etc/hosts.lpd file on loge:

hostname
loge
cat /etc/hosts.lpd
wotan

The format of this file is very simple: each line contains the
 name of a host which is permitted to print on the local system.
 By default the lpd daemon only listens on UNIX domain sockets
 for local connections, it won't accept any network connects.
 To ensure the daemon also accepts incoming network traffic, the
 following will need to be added to
 /etc/rc.conf:

lpd_flags=""

Next, the /etc/printcap file on wotan
 must be configured in order to send print jobs to loge.
 For example:

lp|line printer on loge:\
	:lp=:sd=/var/spool/lpd/lp:lf=/var/log/lp-errs:\
	:rm=loge:rp=lp

ps|Ghostscript driver on loge:\
	:lp=:sd=/var/spool/lpd/ps:lf=/var/log/lp-errs:\
	:mx#0:\
	:rm=loge:rp=ps

There are four main differences between this configuration and
 the one of Example 12.3, “/etc/printcap”.

	The definition of “lp” is empty.

	The “rm” (remote machine) entry defines the
 name of the host to which the printer is connected.

	The “rp” (remote printer) entry defines the
 name of the printer connected to the remote host.

	It is not necessary to specify input filters because the
	 definitions on the loge host will be used.

	
The spool directories must still be created locally on
 wotan:

cd /var/spool/lpd
mkdir lp
chown daemon:daemon lp
chmod 770 lp
mkdir ps
chown daemon:daemon ps
chmod 770 ps

Now the print jobs for the “lp” and
 “ps” queues on wotan will be sent automatically to
 the printer connected to loge.

Chapter 13. Using removable media

13.1. Initializing and using USB flash drives

USB flash drives can be used to share data among machines.
 After attaching it we can see via dmesg(8) that it is
 recognised as sd0:

dmesg
[...]
sd0 at scsibus0 target 0 lun 0: <Kingston, DataTraveler 3.0, > disk removable
sd0: fabricating a geometry
sd0: 14755 MB, 14755 cyl, 64 head, 32 sec, 512 bytes/sect x 30218842 sectors
sd0: fabricating a geometry
[...]

Warning

Please note that the following commands will erase all the
 previous contents on the USB flash drive!

To initialize it we can write zeros in the first 1MB of the
 USB flash drive:

dd if=/dev/zero of=/dev/rsd0d bs=1m count=1
1+0 records in
1+0 records out
1048576 bytes transferred in 0.118 secs (8886237 bytes/sec)

Via fdisk(8) we can create a partition table. MS-DOS
 partition and filesystem is supported by most operating systems
 and devices that accept an USB disk, so let's update the
 partition table (-u), creating an MS-DOS
 partition and set the new partition as active
 (-a):

fdisk -au sd0
fdisk: primary partition table invalid, no magic in sector 0
fdisk: Cannot determine the number of heads
Disk: /dev/rsd0d
NetBSD disklabel disk geometry:
cylinders: 14755, heads: 64, sectors/track: 32 (2048 sectors/cylinder)
total sectors: 30218842, bytes/sector: 512

BIOS disk geometry:
cylinders: 1023, heads: 255, sectors/track: 63 (16065 sectors/cylinder)
total sectors: 30218842

Partitions aligned to 16065 sector boundaries, offset 63

Do you want to change our idea of what BIOS thinks? [n]

Partition table:
0: <UNUSED>
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>
Bootselector disabled.
No active partition.
Drive serial number: 0 (0x00000000)
Which partition do you want to change?: [none] 0
The data for partition 0 is:
<UNUSED>
sysid: [0..255 default: 169] 11
start: [0..1881cyl default: 63, 0cyl, 0MB]
size: [0..1881cyl default: 30218779, 1881cyl, 14755MB]
bootmenu: [] (space to clear)

Partition table:
0: Primary DOS with 32 bit FAT (sysid 11)
 start 63, size 30218779 (14755 MB, Cyls 0-1881/9/10)
 PBR is not bootable: All bytes are identical (0x00)
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>
Bootselector disabled.
No active partition.
Drive serial number: 0 (0x00000000)
Which partition do you want to change?: [none]
Do you want to change the active partition? [n] y
Choosing 4 will make no partition active.
active partition: [0..4 default: 4] 0
Are you happy with this choice? [n] y

We haven't written the MBR back to disk yet. This is your last chance.
Partition table:
0: Primary DOS with 32 bit FAT (sysid 11)
 start 63, size 30218779 (14755 MB, Cyls 0-1881/9/10), Active
 PBR is not bootable: All bytes are identical (0x00)
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>
Bootselector disabled.
First active partition: 0
Drive serial number: 0 (0x00000000)
Should we write new partition table? [n] y

Then we can see via disklabel(8):

disklabel sd0
/dev/rsd0d:
type: SCSI
disk: DataTraveler 3.0
label: fictitious
flags: removable
bytes/sector: 512
sectors/track: 32
tracks/cylinder: 64
sectors/cylinder: 2048
cylinders: 14755
total sectors: 30218842
rpm: 3600
interleave: 1
trackskew: 0
cylinderskew: 0
headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0

5 partitions:
size offset fstype [fsize bsize cpg/sgs]
 d: 30218842 0 unused 0 0 # (Cyl. 0 - 14755*)
 e: 30218779 63 MSDOS # (Cyl. 0*- 14755*)
disklabel: boot block size 0
disklabel: super block size 0

that an sd0e MSDOS partition is
 present.

We can finally create an MS-DOS filesystem via
 newfs_msdos(8):

newfs_msdos /dev/rsd0e
/dev/rsd0e: 30189264 sectors in 1886829 FAT32 clusters (8192 bytes/cluster)
MBR type: 11
bps=512 spc=16 res=32 nft=2 mid=0xf0 spt=32 hds=64 hid=0 bsec=30218779 bspf=14741 rdcl=2 infs=1 bkbs=2

It is ready to be used and mounted via
 mount_msdos(8).

13.2. Initializing and using floppy disks

PC-style floppy disks work mostly like other disk devices like
 hard disks, except that you need to low-level format them first.
 To use an common 1440 KB floppy in the first floppy drive,
 first (as root) format it:

fdformat -f /dev/rfd0a

Then create a single partition on the disk using
 disklabel(8):

disklabel -rw /dev/rfd0a floppy3

Creating a small filesystem optimized for space:

newfs -m 0 -o space -i 16384 -c 80 /dev/rfd0a

Now the floppy disk can be mounted like any other disk.
 Or if you already have a floppy disk with an MS-DOS filesystem
 on it that you just want to access from NetBSD, you can just
 do something like this:

mount -t msdos /dev/fd0a /mnt

However, rather than using floppies like normal (bigger) disks, it
 is often more convenient to bypass the filesystem altogether and
 just splat an archive of files directly to the raw device. E.g.:

tar cvfz /dev/rfd0a file1 file2 ...

A variation of this can also be done with MS-DOS floppies using
 the sysutils/mtools package which
 has the benefit of not going through the kernel buffer cache
 and thus not being exposed to the danger of the floppy being
 removed while a filesystem is mounted on it.

13.3. How to use a ZIP disk

	
See if your system has a ZIP drive:

dmesg | grep -i zip
sd0 at atapibus0 drive 1: <IOMEGA ZIP 100 ATAPI, , 14.A> type 0 direct removable

Seems it has one, and it's recognized as sd0,
	 just like any SCSI disk.
	 The fact that the ZIP here is an ATAPI one doesn't
	 matter - a SCSI ZIP
	 will show up here, too. The ZIP is marked as "removable",
	 which means
	 you can eject it with:

eject sd0

	Insert ZIP disk

	
Check out what partitions are on the ZIP:

disklabel sd0
/dev/rsd0d:
type: ATAPI
 ...
8 partitions:
size offset fstype [fsize bsize cpg]
 d: 196608 0 unused 0 0 # (Cyl. 0 - 95)
 h: 196576 32 MSDOS # (Cyl. 0*- 95)
disklabel: boot block size 0
disklabel: super block size 0

	Partition d

	is the whole disk, as usual on i386.

	Partition h

	is what you want, and you can see it's a msdos
		filesystem even.

Hence, use /dev/sd0h to access the zip's partition.

	
Mount it:

mount -t msdos /dev/sd0h /mnt

	
Access your files:

ls -la /mnt
total 40809
drwxr-xr-x 1 root wheel 16384 Dec 31 1979 .
drwxr-xr-x 28 root wheel 1024 Aug 2 22:06 ..
-rwxr-xr-x 1 root wheel 1474560 Feb 23 1999 boot1.fs
-rwxr-xr-x 1 root wheel 1474560 Feb 23 1999 boot2.fs
-rwxr-xr-x 1 root wheel 548864 Feb 23 1999 boot3.fs
-rwxr-xr-x 1 root wheel 38271173 Feb 23 1999 netbsd19990223.tar.gz

	
Unmount the ZIP:

umount /mnt
#

	
Eject the ZIP:

eject sd0
#

13.4. Reading data CDs with NetBSD

Data CDs can contain anything from programs, sound files (MP3, wav),
 movies (MP3, QuickTime) to source code, text files, etc. Before
 accessing these files, a CD must be mounted on a directory, much like
 hard disks are. Just as hard disks can use different filesystems (ffs,
 lfs, ext2fs, ...), CDs have their own filesystem, "cd9660". The
 NetBSD cd9660 filesystem can handle filesystems without and with
 Rockridge and Joliet extensions.

CD devices are named /dev/cd0a for both SCSI and IDE (ATAPI).

With this information, we can start:

	
See if your system has some CD drive:

dmesg | grep 'cd[0-9]*:'
 cd0 at atapibus0 drive 0: <CD-R/RW RW8040A, , 1.12> type 5 cdrom removable
 cd0: 32-bit data port
 cd0: drive supports PIO mode 4, DMA mode 0

We have one drive here, "cd0". It is an IDE/ATAPI drive,
	 as it is found
	 on atapibus0. Of course the drive (rather, its medium) is
	 removable, i.e., you can eject it. See below.

	Insert a CD

	
Mount the CD manually:

mount -t cd9660 /dev/cd0a /mnt
#

This command shouldn't print anything.
	 It instructs the system to
	 mount the CD found on /dev/cd0a on /mnt, using the "cd9660"
	 filesystem. The mountpoint "/mnt" must be an existing directory.
	

	
Check the contents of the CD:

ls /mnt
INSTALL.html INSTALL.ps TRANS.TBL boot.catalog
INSTALL.more INSTALL.txt binary installation
#

Everything looks fine! This is a NetBSD CD, of course. :)

	
Unmount the CD:

umount /mnt
#

If the CD is still accessed
	 (e.g. some other shell's still "cd"'d
	 into it), this will not work. If you shut down the system, the CD
	 will be unmounted automatically for you, there's nothing to worry
	 about there.

	
Making an entry in /etc/fstab:

If you don't want to type the full "mount" command
	 each time, you
	 can put most of the values into a line in /etc/fstab:

Device mountpoint filesystem mount options
/dev/cd0a /cdrom cd9660 ro,noauto

Make sure that the mountpoint,
	 /cdrom in our
	 example, exists:

mkdir /cdrom
#

Now you can mount the cd with the following command:

mount /cdrom
#

Access and unmount as before.

The CD is not mounted at boot time due to the "noauto" mount
	 option - this is useful as you'll probably not have a CD in the
	 drive all the time. See mount(8) and
	 mount_cd9660(8) for some
	 other useful options.

	
Eject the CD:

eject cd0
#

If the CD is still mounted, it will be unmounted if possible,
	 before being ejected.

13.5. Reading multi-session CDs with NetBSD

Use mscdlabel(8) to add all sessions to the CDs
 disklabel, and
 then use the appropriate device node to mount the session you want.
 You might have to create the corresponding device nodes in
 /dev manually.
 For example:

mscdlabel cd1
track (ctl=4) at sector 142312
 adding as 'a'
track (ctl=4) at sector 0
 adding as 'b'
ls -l /dev/cd1b
ls: /dev/cd1b: No such file or directory
cd /dev
ls -l cd1*
brw-r----- 1 root operator 6, 8 Mar 18 21:55 cd1a
brw-r----- 1 root operator 6, 11 Mar 18 21:55 cd1d
mknod cd1b b 6 9

to create /dev/cd1b.
 Make sure you fix the permissions of any new device
 nodes you create:

ls -l cd1*
brw-r----- 1 root operator 6, 8 Mar 18 21:55 cd1a
brw-r--r-- 1 root wheel 6, 9 Mar 18 22:23 cd1b
brw-r----- 1 root operator 6, 11 Mar 18 21:55 cd1d
chgrp operator cd1b
chmod 640 cd1b
ls -l cd1*
brw-r----- 1 root operator 6, 8 Mar 18 21:55 cd1a
brw-r----- 1 root operator 6, 9 Mar 18 22:24 cd1b
brw-r----- 1 root operator 6, 11 Mar 18 21:55 cd1d

Now you should be able to mount it.

mount /dev/cd1b /mnt

13.6. Allowing normal users to access CDs

By default, NetBSD only allows "root" to mount
 a filesystem. If you want
 any user to be able to do this, perform the following steps:

	
Give groups and other the access rights to the device.

chmod go+rw /dev/cd0a

	
Ask NetBSD to let users mounting filesystems.

sysctl -w vfs.generic.usermount=1

Note that this works for any filesystem and device,
	 not only
	 for CDs with a ISO 9660 filesystem.

To perform the mount operation after these commands,
 the user must own
 the mount point. So, for example:

$ cd $HOME
$ mkdir cdrom
$ mount -t cd9660 -o nodev,nosuid /dev/cd0a `pwd`/cdrom

Please also see mount(8) and as an alternative the
 auto mount daemon amd(8), for which
 example config files can be found in
 /usr/share/examples/amd.

13.7. Mounting an ISO image

Sometimes, it is interesting to mount an ISO9660 image
 file before you burn the CD; this way, you can examine its
 contents or even copy files
 to the outside. If you are a Linux user, you should know that this is
 done with the special loop filesystem.
 NetBSD does it another
 way, using the vnode pseudo-disk.

We will illustrate how to do this with an example.
 Suppose you have an
 ISO image in your home directory, called "mycd.iso":

	
Start by setting up a new vnode, "pointing" to
	 the ISO file:

vnconfig -c vnd0 ~/mycd.iso

	
Now, mount the vnode:

mount -t cd9660 /dev/vnd0a /mnt

	Yeah, image contents appear under /mnt!
	 Go to that
	 directory and explore the image.

	
When you are happy, you have to umount the image:

umount /mnt

	
And at last, deconfigure the vnode:

vnconfig -u vnd0

Note that these steps can also be used for any kind of file that
 contains a filesystem, not just ISO images.

See the vnd(4) and vnconfig(8) man pages
 for more information.

13.9. Using audio CDs with NetBSD

There are two ways to handle audio CDs:

	
Tell the CD drive to play to the headphone or to a
	 soundcard, to which CDROMs are usually connected
	 internally. Use programs like cdplay(1),
	 audio/xmcd, "kscd"
	 from the
	 multimedia/kdemultimedia3 package, mixer
	 programs like mixerctl(1),
	 audio/xmix,
	 audio/xmmix,
	 the Curses based audio/cam,
	 or kmix, which is part of
	 multimedia/kdemultimedia3.

This usually works well on both SCSI and IDE (ATAPI)
	 CDROMs, CDRW and DVD drives.

	
To read ("rip") audio tracks in binary form
	 without going through digital->analog conversion and back.
	 There are several programs available to do this:

	
For most ATAPI, SCSI and several proprietary
	 CDROM drives, the
	 audio/cdparanoia package can be
	 used. With cdparanoia the data can be saved to a file or
	 directed to standard output in WAV, AIFF, AIFF-C or raw
	 format. Currently the -g option is required by the NetBSD
	 version of cdparanoia. A hypothetical example of how to save
	 track 2 as a WAV file is as follows:

$ cdparanoia -g /dev/rcd0d 2 track-02.wav

If you want to grab all files from a CD,
	 cdparanoia's batch mode
	 is useful:

$ cdparanoia -g /dev/rcd0d -B

	
For ATAPI or SCSI CD-ROMs the
	 audio/cdd package can be
	 used. To extract track 2 with cdd, type:

cdd -t 2 `pwd`

This will put a file called
	 track-02.cda
	 in the current directory.

	
For SCSI CD-ROMS the
	 audio/tosha package can be used.
	 To extract track 2 with tosha, you should be able to type:

tosha -d CD-ROM-device -t 2 -o track-02.cda

The data can then be post-processed e.g. by encoding it into
	 MP3 streams (see Section 13.10, “Creating an MP3 (MPEG layer 3) file from an audio CD”) or by
	 writing them to CD-Rs (see Section 13.12, “Using a CD-R writer to create audio CDs”).

	
To streamline the process, from obtaining audio to populating the
	 metadata for a track to normalising audio and such, the
	 audio/abcde package can be used.

abcde -d /dev/rcd0d -o mp3 -p -P

This will encode the disc track-by-track padding the
	 tracknumbers with a leading 0 and using UNIX pipes to read+encode without
	 leaving the WAV files

13.10. Creating an MP3 (MPEG layer 3) file from an audio CD

The basic steps in creating an MPEG layer 3
 (MP3) file from an audio CD (using software from the
 NetBSD packages collection) are:

	Extract (rip) the audio data
	 of the CD as shown in Section 13.9, “Using audio CDs with NetBSD”.

	
Convert the CD audio format file to WAV format.
	 You only need to
	 perform this job if your ripping program (e.g. tosha, cdd) didn't
	 already do the job for you!

	
Using the audio/sox
	 package, type:

$ sox -s -w -c 2 -r 44100 -t cdr track-02.cda track-02.wav

This will convert track-02.cda
	 in raw CD format to
	 track-02.wav in WAV format,
	 using signed 16-bit
	 words with 2
	 channels at a sampling
	 rate of
	 44100kHz.

	
Encode the WAV file into MP3 format.

	
Using the audio/bladeenc
	 package, type:

$ bladeenc -128 -QUIT track-02.wav

This will encode track-02.wav into
	 track-02.mp3 in
	 MP3 format, using a bit rate if
	 128kBit/sec.
	 The documentation
	 for bladeenc describes bit-rates in more detail.

	
Using the audio/lame
	 package, type:

$ lame -p -o -v -V 5 -h track-02.wav track-02.mp3

You may wish to use a lower quality, depending on your taste
	 and hardware.

The resultant MP3 file can be played with any of the
 audio/gqmpeg,
 audio/maplay,
 audio/mpg123 or
 audio/splay packages.

13.11. Using a CD-R writer with data CDs

The process of writing a CD consists of two steps: First,
 a "image" of
 the data must be generated, which can then be written to CD-R in a
 second step.

	
Reading a pre-existing ISO image

dd if=/dev/rcd0a of=filename.iso bs=2k
#

Alternatively, you can create a new ISO image yourself:

	
Generating the ISO image

Put all the data you want to put on CD into one directory. Next
	 you need to generate a disk-like ISO image of your data. The
	 image stores the data in the same form as they're later put on
	 CD, using the ISO 9660 format. The basic ISO9660 format only
	 understands 8+3 filenames (max. eight letters for filename, plus
	 three more for an extension). As this is not practical for Unix
	 filenames, a so-called "Rockridge Extension" needs to be employed
	 to get longer filenames. (A different set of such extension
	 exists in the Microsoft world, to get their long filenames right;
	 that's what's known as Joliet filesystem).

The ISO image is created using the mkisofs command,
	 which is part
	 of the sysutils/cdrtools
	 package.

Example: if you have your data in /usr/tmp/data, you can generate
	 a ISO image file in /usr/tmp/data.iso with the following
	 command:

$ cd /usr/tmp
$ mkisofs -o data.iso -r data
Using NETBS000.GZ;1 for data/binary/kernel/netbsd.INSTALL.gz (netbsd.INSTALL_TINY.gz)
Using NETBS001.GZ;1 for data/binary/kernel/netbsd.GENERIC.gz (netbsd.GENERIC_TINY.gz)
 5.92% done, estimate finish Wed Sep 13 21:28:11 2000
 11.83% done, estimate finish Wed Sep 13 21:28:03 2000
 17.74% done, estimate finish Wed Sep 13 21:28:00 2000
 23.64% done, estimate finish Wed Sep 13 21:28:03 2000
 ...
 88.64% done, estimate finish Wed Sep 13 21:27:55 2000
 94.53% done, estimate finish Wed Sep 13 21:27:55 2000
Total translation table size: 0
Total rockridge attributes bytes: 5395
Total directory bytes: 16384
Path table size(bytes): 110
Max brk space used 153c4
84625 extents written (165 Mb)
$

Please see the mkisofs(8) man page for other options like noting
	 publisher and preparer. The
	 Bootable CD ROM How-To
	 explains how to
	 generate a bootable CD.

	
Writing the ISO image to CD-R

When you have the ISO image file,
	 you just need to write it on a
	 CD. This is done with the "cdrecord" command from the
	 sysutils/cdrtools package.
	 Insert a blank CD-R, and off we go:

cdrecord -v dev=/dev/rcd0d data.iso
...
#

After starting the command, 'cdrecord' shows you a lot of
	 information about your drive, the disk and the image you're about
	 to write. It then does a 10 seconds countdown, which is your last
	 chance to stop things - type ^C if you want to abort.
	 If you don't abort, the process will write the whole image to the
	 CD and return with a shell prompt.

Note that cdrecord(8) works on both SCSI and
	 IDE (ATAPI) drives.

	
Test

Mount the just-written CD and test it as you would do with any
	 "normal" CD, see Section 13.4, “Reading data CDs with NetBSD”.

13.12. Using a CD-R writer to create audio CDs

If you want to make a backup copy of one of your audio CDs,
 you can do
 so by extracting ("ripping") the audio tracks from the CD, and then
 writing them back to a blank CD. Of course this also works fine if you
 only extract single tracks from various CDs,
 creating your very own mix CD!

The steps involved are:

	Extract ("rip") the audio tracks as described as in Section 13.9, “Using audio CDs with NetBSD” to get a couple of .wav files.

	
Write the .wav files using cdrecord command from the
	 sysutils/cdrtools package:

cdrecord -v dev=/dev/rcd0d -audio -pad *.wav

13.13. Creating an audio CD from MP3s

If you have converted all your audio CDs to MP3 and now want to make
 a mixed CD for your (e.g.) your car, you can do so by first converting
 the .mp3 files back to .wav format, then write them as a normal audio
 CD.

The steps involved here are:

	
Create .wav files from your .mp3 files:

 $ mpg123 -w foo.wav foo.mp3

Do this for all of the MP3 files that you want to have on your
	 audio CD. The .wav filenames you use don't matter.

	Write the .wav files to CD as described under
	 Section 13.12, “Using a CD-R writer to create audio CDs”.

13.14. Copying an audio CD

To copy an audio CD while not introducing any pauses as mandated
 by the CDDA standard, you can use cdrdao for that:

cdrdao read-cd --device /dev/rcd0d data.toc
cdrdao write --device /dev/rcd1d data.toc

13.15. Copying a data CD with two drives

If you have both a CD-R and a CD-ROM drive in your machine,
 you can copy a data CD with the following command:

cdrecord dev=/dev/rcd1d /dev/rcd0d

Here the CD-ROM (cd0) contains the CD you want to copy, and the CD-R
 (cd1) contains the blank disk. Note that this only works with computer
 disks that contain some sort of data, it does
 not work with
 audio CDs! In practice you'll also want to add something like
 "speed=8" to make things a bit
 faster.

13.16. Using CD-RW rewritables

You can treat a CD-RW drive like a CD-R drive (see Section 13.11, “Using a CD-R writer with data CDs”) in NetBSD, creating images with mkisofs(8) and
 writing them on a CD-RW medium with cdrecord(8).

If you want to blank a CD-RW, you can do this with cdrecord's
 "blank" option:

cdrecord dev=/dev/rcd0d blank=fast

There are several other ways to blank the CD-RW,
 call cdrecord(8) with
 "blank=help" for a list. See the cdrecord(8)
 man page for more information.

13.18. Creating ISO images from a CD

To create an ISO image and save the checksum do this:

readcd dev=/dev/cd0d f=/tmp/cd.iso

Here is an alternative using dd(1):

dd if=/dev/cd0d of=/tmp/cd.iso bs=2048

If the CD has errors you can recover the rest with this:

dd if=/dev/cd0d of=/tmp/cd.iso bs=2048 conv=noerror

To create an ISO image from a mounted data CD first, mount the
 CD disk by:

mount -t cd9660 -r /dev/cd0d /mnt/cdrom

Second, get the image:

mkhybrid -v -l -J -R -o /tmp/my_cd.iso /mnt/cdrom/

13.19. Getting volume information from CDs and ISO images

You can read the volume data from an unmounted CD with this command:

file -s /dev/cd0d

You can read the volume data from an ISO image with this command:

isoinfo -d -i /tmp/my_cd.iso

You can get the unique disk number from an unmounted CD with this:

cd-discid /dev/cd0d

You can read the table of contents of an unmounted CD with this command:

cdrecord -v dev=/dev/cd0d -toc

Chapter 14. The cryptographic device driver (CGD)

The cgd driver provides functionality
 which allows you to use disks or partitions for encrypted storage.
 After providing the appropriate key, the encrypted partition is
 accessible using cgd pseudo-devices.

People often store sensitive information on their hard disks and
 are concerned about this information falling into the wrong hands.
 This is particularly relevant to users of laptops and other
 portable devices, or portable media, which might be stolen or
 accidentally misplaced.

14.1.1. Why use disk encryption?

File-oriented encryption tools like
 GnuPG are great for encrypting
 individual files, which can then be sent across untrusted
 networks as well as stored encrypted on disk. But sometimes
 they can be inconvenient, because the file must be decrypted
 each time it is to be used; this is especially cumbersome when
 you have a large collection of files to protect. Any time a
 security tool is cumbersome to use, there's a chance you'll
 forget to use it properly, leaving the files unprotected for
 the sake of convenience.

Worse, readable copies of the encrypted contents might still exist
 on the hard disk. Even if you overwrite these files (using
 rm -P) before unlinking them, your application
 software might make temporary copies you don't know about, or have
 been paged to swapspace—and even your hard disk might have
 silently remapped failing sectors with data still in them.

The solution is to simply never write the information unencrypted
 to the hard disk. Rather than taking a file-oriented approach to
 encryption, consider a block-oriented approach—a virtual hard
 disk, that looks just like a normal hard disk with normal
 filesystems, but which encrypts and decrypts each block on the way
 to and from the real disk.

14.1.2. Logical Disk Drivers

The cgd device looks and behaves to the rest of
 the operating system like any other disk driver. Rather than
 driving real hardware directly, it provides a logical function
 layered on top of another block device. It has a special
 configuration program, cgdconfig, to create and
 configure a cgd device and point it at the
 underlying disk device that will hold the encrypted data.

NetBSD includes several other similar logical block devices, each
 of which provides some other function where cgd
 provides encryption. You can stack several of these logical block
 devices together:
 cgd on top of
 vnd is handy to make an encrypted volume in a
 regular file without repartitioning, or
 you can make an encrypted
 raid to protect your encrypted data against
 hard disk failure as well.

Once you have created a cgd disk, you can
 use disklabel to divide it up into
 partitions, swapctl to enable swapping to
 those partitions or newfs to make
 filesystems, then mount and use those
 filesystems, just like any other new disk.

The cgd driver was written by Roland
 C. Dowdeswell, and introduced in the NetBSD 2.0 release.

14.2. Components of the Crypto-Graphic Disk system

A number of components and tools work together to make the
 cgd system effective.

14.2.1. Kernel driver pseudo-device

To use cgd you need a kernel with support
 for the cgd pseudo-device. Make sure the
 sure the module is loaded:

modload cgd

If the cgd driver was not already
 present/loaded (it is loaded by default in some ports), add
 cgd to
 /etc/modules.conf.

The following ciphers are supported:

	
 adiantum
 (key size: 256 bits)

	

 The Adiantum tweakable wide-block cipher.
 The Adiantum tweak for each disk sector is taken to be the
 little-endian encoding of the disk sector number.

 Adiantum provides the best security by encrypting entire
 disk sectors at a time (512 bytes), and generally
 provides the best performance on machines without CPU
 support for accelerating AES.

	
 aes-cbc
 (key sizes: 128, 192, or 256 bits)

	
 AES in CBC mode.
 The CBC initialization vector for each disk sector is
 chosen to be the encryption under AES of the
 little-endian encoding of the disk sector number.
 The default key length is 128 bits.

	
 aes-xts
 (key sizes: 256 or 512 bits)

	
 AES in XTS mode.
 The XTS tweak for each disk sector is chosen to be the
 little-endian encoding of the disk sector number.
 AES-XTS uses a 256-bit or 512-bit key, composed of a pair
 of AES-128 or AES-256 keys.
 The default key length is 256, meaning AES-128.

 The following obsolete ciphers are supported for compatibility
 with old disks.

 WARNING:
 These obsolete ciphers are implemented without timing side
 channel protection, so, for example, JavaScript code in a web
 browser that can measure the timing of disk activity may be
 able to recover the secret key.
 These are also based on 64-bit block ciphers and are therefore
 unsafe for disks much larger than a gigabyte.
 You should not use these except where compatibility with old
 disks is necessary.

	
 3des-cbc
 (key size: 192 bits)

	

 3DES (Triple DES with EDE3) in CBC mode.
 The CBC initialization vector for each disk sector is
 chosen to be the encryption under 3DES of the
 little-endian encoding of the disk sector number, which
 has no impact on security but reduces performance.

 Note: Internally, the “parity bits” of the
 192-bit key are ignored, so there are only 168 bits of
 key material, and owing to generic attacks on 64-bit
 block ciphers and to meet-in-the-middle attacks on
 compositions of ciphers as in EDE3 the security is much
 lower than one might expect even for a 168-bit key.

	
 blowfish-cbc
 (key sizes: 40, 48, 56, 64, …, 432, 440, or 448 bits)

	
 Blowfish in CBC mode.
 The CBC initialization vector for each disk sector is
 chosen to be the encryption under Blowfish of the
 little-endian encoding of the disk sector number.
 It is strongly encouraged that keys be at least 128 bits
 long.
 There are no performance advantages of using shorter
 keys.
 The default key length is 128 bits.

14.2.4. Verification Methods

 cgdconfig can examine the disk to verify
 that it was decrypted using the correct key.
 The following verification methods are available:

	none

	
 No verification is performed.
 This is dangerous unless you are configuring a new
 cgd device for the first time,
 because the key is not verified at all.
 Entering the wrong passphrase, for example, may destroy
 any data on the volume—any data read will be
 garbage, and any data written will turn into garbage if
 you ever re-open the cgd volume
 with the correct passphrase.

	disklabel

	
 cgdconfig scans for a valid BSD
 disklabel; see disklabel(5) and disklabel(8).

	mbr

	
 cgdconfig scans for a valid Master
 Boot Record, traditionally used on PCs; see fdisk(8).

	gpt

	
 cgdconfig scans for a valid GUID
 partition table; see gpt(8).

	ffs

	
 cgdconfig scans for a valid FFS file
 system, the default file system used in NetBSD; see
 mount_ffs(8).

	re-enter

	
 Rather than scanning anything on disk,
 cgdconfig will compute the key
 twice—for example, by asking the user to enter the
 passphrase twice—and fail if the results are
 different.

14.3. Example: encrypting your disk

This section works through a step-by-step example of converting
 an existing system to use cgd,
 performing the following actions:

	Preparing the disk and partitions

	Scrub off all data

	Create the cgd

	Adjust config-files

	Restoring your backed-up files to the encrypted disk

14.3.1. Preparing the disk

First, decide which filesystems you want to move to an encrypted
 device. You're going to need to leave at least the small root
 (/) filesystem unencrypted, in order to load
 the kernel and run init,
 cgdconfig and the rc.d
 scripts that configure your cgd. In this
 example, we'll encrypt everything except the root
 (/) filesystem.

We are going to delete and re-make partitions and filesystems,
 and will require a backup to restore the data. So make sure
 you have a current, reliable backup stored on a different disk
 or machine. Do your backup in single-user mode, with the
 filesystems unmounted, to ensure you get a clean
 dump. Make sure you back up the disklabel
 of your hard disk as well, so you have a record of the
 partition layout before you started.

With the system at single user, / mounted
 read-write and everything else unmounted, use
 disklabel to delete all the data partitions
 you want to move into cgd.

Then make a single new partition in all the space you just
 freed up, say, wd0e. Set the
 partition type for this partition to cgd
 Though it doesn't really matter what it is, it will help remind
	you that it's not a normal filesystem later. When finished,
	label the disk to save the new partition table.

14.3.2. Scrubbing the disk

We have removed the partition table information, but the
 existing filesystems and data are still on disk. Even after
 we make a cgd device, create filesystems,
 and restore our data, some of these disk blocks might not yet
 be overwritten and still contain our data in plaintext. This
 is especially likely if the filesystems are mostly empty. We
 want to scrub the disk before we go further.

We could use dd to copy
 /dev/zero over the new
 wd0e partition, but this will leave
 our disk full of zeros, except where we've written encrypted
 data later. We might not want to give an attacker any clues
 about which blocks contain real data, and which are free
 space, so we want to write "noise" into all the disk
 blocks. So we'll create a temporary cgd,
 configured with a random, unknown key.

First, we configure a cgd to use a random key:

cgdconfig -s cgd0 /dev/wd0e aes-xts 256 < /dev/urandom

Now we can write zeros into the raw partition of our
 cgd (/dev/rcgd0d on
 NetBSD/i386 and amd64, /dev/rcgd0c on most other
 platforms):

dd if=/dev/zero of=/dev/rcgd0d bs=64k

The encrypted zeros will look like random data on disk. This might
 take a while if you have a large disk. Once finished, unconfigure the
 random-key cgd:

cgdconfig -u cgd0

The cgdconfig program, which manipulates
 cgd devices, uses parameters files to store
 such information as the encryption type, key length, and a
 random password salt for each cgd. These
 files are very important, and need to be kept safe—without
 them, you will not be able to decrypt the data!

We'll generate a parameters file and write it into the default
 location (make sure the directory
 /etc/cgd exists and is mode 700):

cgdconfig -g -V disklabel -o /etc/cgd/wd0e aes-cbc 256

This creates a parameters file
 /etc/cgd/wd0e describing a
 cgd using the
 aes-cbc cipher method, a key
 verification method of disklabel,
 and a key length of 256
 bits. It will look something like this:

algorithm aes-cbc;
iv-method encblkno;
keylength 256;
verify_method disklabel;
keygen pkcs5_pbkdf2/sha1 {
 iterations 6275;
 salt AAAAgHTg/jKCd2ZJiOSGrgnadGw=;
};

Note

Consider this file being SACRED, BACK IT UP
 , and BACK IT UP AGAIN!

Tip

When creating the parameters file,
 cgdconfig reads from
 /dev/random to create the password
 salt. This read may block if there is not enough collected
 entropy in the random pool. This is unlikely, especially if
 you just finished overwriting the disk as in the previous
 step, but if it happens you can press keys on the console
 and/or move your mouse until the
 rnd device gathers enough
 entropy.

Now it's time to create our cgd, for which
 we'll need a passphrase. This passphrase needs to be entered
 every time the cgd is opened, which is
 usually at each reboot. The encryption key is derived from this
 passphrase and the salt. Make sure you choose something you won't
 forget, and others won't guess.

The first time we configure the cgd, there
 is no valid disklabel on the logical device, so the validation
 mechanism we want to use later won't work. We override it this
 one time:

cgdconfig -V re-enter cgd0 /dev/wd0e

This will prompt twice for a matching passphrase, just in case
 you make a typo, which would otherwise leave you with a
 cgd encrypted with a passphrase that's
 different to what you expected.

Now that we have a new cgd, we need to
 partition it and create filesystems. Recreate your previous
 partitions with all the same sizes, with the same letter
 names.

Tip

Remember to use the disklabel -I
 argument, because you're creating an initial label for a new
 disk.

Note

Although you want the sizes of your new partitions to be
 the same as the old, unencrypted ones, the offsets will be
 different because they're starting at the beginning of this
 virtual disk.

Then, use newfs to create filesystems on
 all the relevant partitions. This time your partitions will
 reflect the cgd disk names, for example:

newfs /dev/rcgd0h

14.3.4. Modifying configuration files

We've moved several filesystems to another (logical) disk, and
 we need to update /etc/fstab
 accordingly. Each partition will have the same letter (in this
 example), but will be on cgd0 rather than
 wd0. So you'll have
 /etc/fstab entries something like this:

/dev/wd0a / ffs rw 1 1
/dev/cgd0b none swap sw 0 0
/dev/cgd0b /tmp mfs rw,-s=132m 0 0
/dev/cgd0e /var ffs rw 1 2
/dev/cgd0f /usr ffs rw 1 2
/dev/cgd0h /home ffs rw 1 2

Note

/tmp should be a separate filesystem,
 either mfs or ffs,
 inside the cgd, so that your temporary
 files are not stored in plain text in the
 / filesystem.

Each time you reboot, you're going to need your
 cgd configured early, before
 fsck runs and filesystems are mounted.

Put the following line in
 /etc/cgd/cgd.conf:

cgd0 /dev/wd0e

This will use /etc/cgd/wd0e as config
 file for cgd0.

To finally enable cgd on each boot, put the following line
 into /etc/rc.conf:

cgd=YES

You should now be prompted for
 /dev/cgd0's passphrase whenever
 /etc/rc starts.

Next, mount your new filesystems, and
 restore your data into them. It often helps
 to have /tmp mounted properly first, as
 restore can use a fair amount of temporary
 space when extracting a large dumpfile.

To test your changes to the boot configuration,
 umount the filesystems and unconfigure the
 cgd, so when you exit the single-user
 shell, rc will run like on a clean boot,
 prompting you for the passphrase and mounting your filesystems
 correctly. Now you can bring the system up to multi-user, and
 make sure everything works as before.

14.4. Example: encrypted CDs/DVDs

14.4.1. Creating an encrypted CD/DVD

cgd(4) provides highly secure encryption of whole partitions
 or disks. Unfortunately, creating "normal" CDs is not
 disklabeling something and running newfs on it. Neither can you
 just put a CDR into the drive, configure cgd and assume it to
 write encrypted data when syncing. Standard CDs contain at
 least an ISO-9660 filesystem created with mkisofs(8) from the
 sysutils/cdrtools package.
	ISO images may not contain disklabels or
	cgd partitions.

But of course CD reader/writer hardware doesn't care about
 filesystems at all. You can write raw data to the CD if you
 like—or an encrypted FFS filesystem, which is what we'll do
 here. But be warned, there is NO way to read this CD with any
 OS except NetBSD—not even other BSDs due to the lack of cgd.

The basic steps when creating an encrypted CD are:

	Create an (empty) imagefile

	Register it as a virtual disk using vnd(4)

	Configure cgd inside the vnd disk

	Copy content to the cgd

	Unconfigure all (flush!)

	Write the image on a CD

The first step when creating an encrypted CD is to create a
 single image file with dd. The image may not grow, so make it
 large enough to allow all CD content to fit into. Note that
 the whole image gets written to the CD later, so creating a
 700 MB image for 100 MB content will still require a 700 MB
 write operation to the CD. Some info on DVDs here: DVDs are
 only 4.7 GB in marketing language. 4.7GB = 4.7 x 1024 x 1024 x
 1024 = 5046586573 bytes. In fact, a DVD can only
 approximately hold 4.7 x 1000 x 1000 x 1000 = 4700000000
 bytes, which is about 4482 MB or about 4.37 GB. Keep this in
 mind when creating DVD images. Don't worry for CDs, they hold
 "real" 700 MB (734003200 Bytes).

Invoke all following commands as root!

For a CD:

dd if=/dev/zero of=image.img bs=1m count=700

or, for a DVD:

dd if=/dev/zero of=image.img bs=1m count=4482

Now configure a vnd(4)-pseudo disk with the image:

vnconfig vnd0 image.img

In order to use cgd, a so-called parameter file, describing
 encryption parameters and a containing "password salt" must be
 generated. We'll call it /etc/cgd/image
 here. You can use one parameter file for several encrypted
 partitions (I use one different file for each host and a
 shared file image for all removable
 media, but that's up to you).

AES-CBC with a keylength of 256 bits will be used in this example. Refer to
	cgd(4) and cgdconfig(8) for further details and alternative ciphers.

The following command will create the parameter file as
 /etc/cgd/image. YOU DO NOT WANT
 TO INVOKE THE FOLLOWING COMMAND AGAIN after you
 burnt any CD, since a recreated parameter file is a lost
 parameter file and you'll never access your encrypted CD again
 (the "salt" this file contains will differ among each
 call). Consider this file being SACRED, BACK IT UP
 and BACK IT UP AGAIN! Use
 switch -V to specify verification method "disklabel" for the CD
 (cgd cannot detect whether you entered a valid password for the
 CD later when mounting it otherwise).

cgdconfig -g -V disklabel aes-cbc 256 > /etc/cgd/image

Now it's time to configure a cgd for our vnd drive. (Replace
 slice "d" with "c" for all platforms that use "c" as the whole
 disk (where "sysctl kern.rawpartition"
 prints "2", not "3"); if you're on i386 or amd64, "d" is OK
 for you):

cgdconfig -V re-enter cgd1 /dev/vnd0d /etc/cgd/image

The "-V re-enter" option is necessary
	as long as the
	cgd doesn't have a disklabel yet so we can access and
 configure
	it. This switch asks for a password twice and uses it for
 encryption.

Now it's time to create a disklabel inside the cgd. The
 defaults of the label are ok, so invoking disklabel with

disklabel -e -I cgd1

and leaving vi with ":wq"
	immediately will do.

Let's create a filesystem on the cgd, and finally mount it
 somewhere:

newfs /dev/rcgd1a
mount /dev/cgd1a /mnt

The cgd is alive! Now fill /mnt with
 content. When finished, reverse the configuration process. The
 steps are:

	
Unmounting the cgd1a:

umount /mnt

	
Unconfiguring the cgd:

cgdconfig -u cgd1

	
Unconfiguring the vnd:

vnconfig -u vnd0

The following commands are examples to burn the images on CD
 or DVD. Please adjust the dev= for
 cdrecord or the /dev/rcd0d for
 growisofs. Note the
 "rcd0d"
 is necessary with NetBSD. Growisofs is
 available in the sysutils/dvd+rw-tools
 package. Again, use "c" instead of
 "d" if this is the raw partition on your
 platform.

Finally, write the image file to a CD:

cdrecord dev=/dev/rcd0d -v image.img

...or to a DVD:

growisofs -dvd-compat -Z /dev/rcd0d=image.img

Congratulations! You've just created a really secure CD!

14.4.2. Using an encrypted CD/DVD

After creating an encrypted CD as described above, we're not
 done yet—what about mounting it again? One might guess,
 configuring the cgd on /dev/cd0d is
 enough—no, it is not.

NetBSD cannot access FFS file systems on media that is not 512
 bytes/sector format. It doesn't matter that the cgd on the CD
 is, since the CD's disklabel the cgd resides in has 2048
 bytes/sector.

But the CD driver cd(4) is smart enough to grant "write"
 access to the (emulated) disklabel on the CD. So before
 configuring the cgd, let's have a look at the disklabel and
 modify it a bit:

disklabel -e cd0
/dev/rcd0d:
type: ATAPI
disk: mydisc
label: fictitious
flags: removable
bytes/sector: 2048 # -- Change to 512 (= orig / 4)
sectors/track: 100 # -- Change to 400 (= orig * 4)
tracks/cylinder: 1
sectors/cylinder: 100 # -- Change to 400 (= orig * 4)
cylinders: 164
total sectors: 16386 # -- Change to value of slice "d" (=65544)
rpm: 300
interleave: 1
trackskew: 0
cylinderskew: 0
headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0

4 partitions:
size offset fstype [fsize bsize cpg/sgs]
 a: 65544 0 4.2BSD 0 0 0 # (Cyl. 0 - 655+)
 d: 65544 0 ISO9660 0 0 # (Cyl. 0 - 655+)

If you don't want to do these changes every time by hand, you
 can use Florian Stoehr's tool neb-cd512 which is (at time of writing
 this) in pkgsrc-wip and will move to
 sysutils/neb-cd512 soon.
	You can also download the neb-cd512 source from
	 http://sourceforge.net/projects/neb-stoehr/ (be sure
 to use neb-cd512, not neb-wipe!).

It is invoked with the disk name as parameter, by root:

neb-cd512 cd0

Now as the disklabel is in 512 b/s format, accessing the CD
	is as easy as:

cgdconfig cgd1 /dev/cd0d /etc/cgd/image
mount -o ro /dev/cgd1a /mnt

Note that the cgd MUST be mounted read-only
 or you'll get illegal command errors from the cd(4) driver which
 can in some cases make even mounting a CD-based cgd impossible!

Now we're done! Enjoy your secure CD!

ls /mnt

Remember you have to reverse all steps to remove the CD:

umount /mnt
cgdconfig -u cgd1
eject cd0

14.5. Example: encrypted iSCSI devices

14.5.1. Creating an encrypted iSCSI device

To encrypt the iSCSI device, we use the NetBSD iSCSI initiator,
	available in NetBSD-6 and newer, and the standard cgd device. In all, setting up
	an encrypted device in this manner should take less than 15 minutes, even for
	someone unfamiliar with iSCSI or cgd.

The approach is to layer a vnd on top of the "storage" file
	presented by the iSCSI target. This is exactly the same as normal. On top of
	that vnd, we layer a cgd device, which ensures that all data is encrypted on the
	iSCSI device.

 WARNING:
 cgd only keeps the content of the
 volume secret—it doesn't keep the access patterns
 secret, and it doesn't prevent or even detect a malicious
 network or iSCSI target tampering with the volume.

14.5.2. Device Initialisation

Firstly, the initiator is started, pointing at the machine which is
	presenting the iSCSI storage (i.e. the machine on which the iSCSI target is
	running). In this example, the target is running on the same machine as the
	initiator (a laptop called, in a moment of inspiration, inspiron1300). A 50 MB
	iSCSI target is being presented as target1.

iscsi-initiator -u agc -h inspiron1300.wherever.co.uk /mnt &
[1] 11196

df
Filesystem 1K-blocks Used Avail %Cap Mounted on
/dev/dk0 28101396 20862004 5834324 78% /
kernfs 1 1 0 100% /kern
procfs 4 4 0 100% /proc
ptyfs 1 1 0 100% /dev/pts
/dev/puffs 0 0 0 100% /mnt

Looking at the last line, we can see that the initiator is running
	via the puffs device.

A vnd device is created on top of the storage which the target is
	presenting:

vnconfig vnd0 /mnt/inspiron1300.wherever.co.uk/target1/storage

A disklabel which is offset 63 blocks into the iSCSI device needs to
	be added. This is so that the encrypted device which we shall put on top of the
	vnd does not clash with the vnd's label. The cgd's type should be set to "cgd".

disklabel -e vnd0
/dev/rvnd0d:
type: vnd
disk: vnd
label: fictitious
flags:
bytes/sector: 512
sectors/track: 32
tracks/cylinder: 64
sectors/cylinder: 2048
cylinders: 50
total sectors: 102400
rpm: 3600
interleave: 1
trackskew: 0
cylinderskew: 0
headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0

4 partitions:
size offset fstype [fsize bsize cpg/sgs]
 a: 102336 63 cgd 2048 16384 28360 # (Cyl. 0 - 49)
 d: 102400 0 unused 0 0 # (Cyl. 0 - 49)

The cgd device can now be created on the vnd device

cgdconfig -s cgd0 /dev/vnd0a aes-xts 256 < /dev/urandom

and the cgd device's storage zeroed

dd if=/dev/zero of=/dev/rcgd0d bs=32k
dd: /dev/rcgd0d: Invalid argument
1601+0 records in
1600+0 records out
52428800 bytes transferred in 16.633 secs (3152095 bytes/sec)

Unconfigure the cgd device and write a disklabel using the verification method
	onto the cgd. Note: sometimes, this process does not always complete properly,
	and so it has to be repeated.

cgdconfig -g -V disklabel -o /etc/cgd/vnd0a aes-cbc 256
cgdconfig: could not calibrate pkcs5_pbkdf2
cgdconfig: Failed to generate defaults for keygen
cgdconfig -g -V disklabel -o /etc/cgd/vnd0a aes-cbc 256

A password can then be added to the cgd device

cgdconfig -V re-enter cgd0 /dev/vnd0a
/dev/vnd0a's passphrase:
re-enter device's passphrase:

Then create a disklabel inside the cgd itself

disklabel -I -e cgd0

/dev/rcgd0d:
type: cgd
disk: cgd
label: fictitious
flags:
bytes/sector: 512
sectors/track: 2048
tracks/cylinder: 1
sectors/cylinder: 2048
cylinders: 49
total sectors: 102336
rpm: 3600
interleave: 1
trackskew: 0
cylinderskew: 0
headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0

4 partitions:
size offset fstype [fsize bsize cpg/sgs]
 a: 102336 0 4.2BSD 2048 16384 28360 # (Cyl. 0 - 49*)
 d: 102336 0 unused 0 0 # (Cyl. 0 - 49*)

Having placed a disklabel inside the cgd, we can now make a
	filesystem on there:

newfs /dev/rcgd0a
/dev/rcgd0a: 50.0MB (102336 sectors) block size 8192, fragment size 1024
using 4 cylinder groups of 12.49MB, 1599 blks, 3136 inodes.
super-block backups (for fsck_ffs -b #) at:
32, 25616, 51200, 76784,

the new file system in the cgd can now be mounted

df
Filesystem 1K-blocks Used Avail %Cap Mounted on
/dev/dk0 28101396 20910216 5786112 78% /
kernfs 1 1 0 100% /kern
procfs 4 4 0 100% /proc
ptyfs 1 1 0 100% /dev/pts
/dev/puffs 0 0 0 100% /mnt
mount /dev/cgd0a /iscsi
df
Filesystem 1K-blocks Used Avail %Cap Mounted on
/dev/dk0 28101396 20910216 5786112 78% /
kernfs 1 1 0 100% /kern
procfs 4 4 0 100% /proc
ptyfs 1 1 0 100% /dev/pts
/dev/puffs 0 0 0 100% /mnt
/dev/cgd0a 49519 1 47043 0% /iscsi

The new file system, mounted on /iscsi, can now be used as normal.

14.5.3. Unmounting the Encrypted Device

The device can be freed up using the following commands

umount /iscsi
cgdconfig -u cgd0
vnconfig -u vnd0

In normal usage, the device can be mounted. Firstly, the initiator
	must be configured to connect to the device:

vnconfig vnd0 /mnt/inspiron1300.wherever.co.uk/target1/storage
cgdconfig cgd0 /dev/vnd0a
/dev/vnd0a's passphrase:
mount /dev/cgd0a /iscsi
ls -al /iscsi
total 3
drwxr-xr-x 2 root wheel 512 Jan 1 1970 .
drwxr-xr-x 35 root wheel 1536 Jan 5 08:59 ..
df
Filesystem 1K-blocks Used Avail %Cap Mounted on
/dev/dk0 28101396 20910100 5786228 78% /
kernfs 1 1 0 100% /kern
procfs 4 4 0 100% /proc
ptyfs 1 1 0 100% /dev/pts
/dev/puffs 0 0 0 100% /mnt
/dev/cgd0a 49519 1 47043 0% /iscsi

14.6. Suggestions and Warnings

You now have your filesystems encrypted within a
 cgd. When your machine is shut down, the data
 is protected, and can't be decrypted without the passphrase.
 However, there are still some dangers you should be aware of,
 and more you can do with cgd. This section
 documents several further suggestions and warnings that will
 help you use cgd effectively.

	Use multiple cgd's for different kinds of
 data, one mounted all the time and others mounted only when
 needed.

	Use a cgd configured on top of a
 vnd made from a file on a remote network
 fileserver (NFS, SMBFS, CODA, etc) to safely store private data
 on a shared system. This is similar to the procedure for
 using encrypted CDs and DVDs described in Section 14.4, “Example: encrypted CDs/DVDs”.

14.6.1. Using a random-key cgd for swap

 The following section will be replaced in NetBSD 10 by a
 sysctl knob “vm.swap_encrypt=1”, which provides
 better security and simpler setup.

You may want to use a dedicated random-key
 cgd for swap space, regenerating the key
 each reboot. The advantage of this is that once your machine
 is rebooted, any sensitive program memory contents that may
 have been paged out are permanently unrecoverable, because the
 decryption key is never known to you.

We created a temporary cgd with a random
 key when scrubbing the disk in the example above, using a
 shorthand cgdconfig -s invocation to avoid
 creating a parameters file.

The cgdconfig params file includes a
 “randomkey” keygen method. This is more
 appropriate for "permanent" random-key configurations, and
 facilitates the easy automatic configuration of these volumes
 at boot time.

For example, if you wanted to convert your existing
 /dev/wd0b partition to a dedicated
 random-key cgd1, use the following command to generate
 /etc/cgd/wd0b:

cgdconfig -g -o /etc/cgd/wd0b -V none -k randomkey blowfish-cbc

When using the randomkey keygen method, only verification
 method "none" can be used, because the contents of the new
 cgd are effectively random each time (the
 previous data decrypted with a random key). Likewise, the new
 disk will not have a valid label or partitions, and
 swapctl will complain about configuring
 swap devices not marked as such in a disklabel.

In order to automate the process of labeling the disk,
 prepare an appropriate disklabel and save it to a file, for
 example /etc/cgd/wd0b.disklabel. Please
 refer to disklabel(8) for information about
 how to use disklabel to set up a swap
 partition.

On each reboot, to restore this saved label to the new
 cgd, create the
 /etc/rc.conf.d/cgd file as below:

swap_device="cgd1"
swap_disklabel="/etc/cgd/wd0b.disklabel"
start_postcmd="cgd_swap"

cgd_swap()
{
	if [-f $swap_disklabel]; then
		disklabel -R -r $swap_device $swap_disklabel
	fi
}

The same technique could be extended to encompass using
 newfs to re-create an
 ffs filesystem for
 /tmp if you didn't want to use
 mfs.

Avoid data loss by making sure you can always
 recover your passphrase and parameters file. Protect the
 parameters file from disclosure, perhaps by storing it on
 removable media as above, because the salt it contains helps
 protect against dictionary attacks on the passphrase.

Keeping the data encrypted on your disk is all very well, but
 what about other copies? You already have at least one other
 such copy (the backup we used during this setup), and it's not
 encrypted. Piping dump through file-based
 encryption tools like gpg can be one way of
 addressing this issue, but make sure you have all the keys and
 tools you need to decrypt it to restore
 after a disaster.

Like any form of software encryption, the
 cgd key stays in kernel memory while the
 device is configured, and may be accessible to privileged
 programs and users, such as /dev/kmem
 grovellers. Taking other system security steps, such as
 running with elevated securelevel, is highly recommended.

Once the cgd volumes are mounted as normal
 filesystems, their contents are accessible like any other
 file. Take care of file permissions and ensure your running
 system is protected against application and network security
 attack.

Avoid using suspend/resume, especially for laptops with a BIOS
 suspend-to-disk function. If an attacker can resume your
 laptop with the key still in memory, or read it from the
 suspend-to-disk memory image on the hard disk later, the whole
 point of using cgd is lost.

 The following resources contain more information on CGD and the
 cryptography underlying it:

Chapter 15. Concatenated Disk Device (CCD) configuration

The CCD driver allows the user to
 “concatenate” several physical disks into one pseudo
 volume. While RAIDframe (see Chapter 16, NetBSD RAIDframe) also allows
 doing this to create RAID level 0 sets, it does not allow you
 to do striping across disks of different geometry, which is where
 CCD comes in handy. CCD also allows for an
 “interleave” to improve disk performance with a
 gained space loss. This example will not cover that
 feature.

The steps required to setup a CCD are as follows:

	Install physical media

	Configure kernel support

	Disklabel each volume member of the CCD

	Configure the CCD conf file

	Initialize the CCD device

	Create a filesystem on the new CCD device

	Mount the CCD filesystem

This example features a CCD setup on NetBSD/sparc 1.5.
 The CCD will reside on 4 SCSI disks in a generic external Sun
 disk pack chassis connected to the external 50 pin SCSI port.

15.1. Install physical media

This step is at your own discretion, depending on your platform and the
 hardware at your disposal.

From my DMESG:

Disk #1:
 probe(esp0:0:0): max sync rate 10.00MB/s
 sd0 at scsibus0 target 0 lun 0: <SEAGATE, ST32430N SUN2.1G, 0444> SCSI2 0/direct fixed
 sd0: 2049 MB, 3992 cyl, 9 head, 116 sec, 512 bytes/sect x 4197405 sectors

Disk #2
 probe(esp0:1:0): max sync rate 10.00MB/s
 sd1 at scsibus0 target 1 lun 0: <SEAGATE, ST32430N SUN2.1G, 0444> SCSI2 0/direct fixed
 sd1: 2049 MB, 3992 cyl, 9 head, 116 sec, 512 bytes/sect x 4197405 sectors

Disk #3
 probe(esp0:2:0): max sync rate 10.00MB/s
 sd2 at scsibus0 target 2 lun 0: <SEAGATE, ST11200N SUN1.05, 9500> SCSI2 0/direct fixed
 sd2: 1005 MB, 1872 cyl, 15 head, 73 sec, 512 bytes/sect x 2059140 sectors

Disk #4
 probe(esp0:3:0): max sync rate 10.00MB/s
 sd3 at scsibus0 target 3 lun 0: <SEAGATE, ST11200N SUN1.05, 8808 > SCSI2 0
 sd3: 1005 MB, 1872 cyl, 15 head, 73 sec, 512 bytes/sect x 2059140 sectors

15.2. Configure Kernel Support

The following kernel configuration directive is needed to
 provide CCD device support. It is enabled in the GENERIC
 kernel:

pseudo-device ccd 4 # concatenated disk devices

In my kernel config, I also hard code SCSI ID associations
 to /dev device entries to prevent bad
 things from happening:

sd0 at scsibus0 target 0 lun ?
SCSI disk drives
sd1 at scsibus0 target 1 lun ?
SCSI disk drives
sd2 at scsibus0 target 2 lun ?
SCSI disk drives
sd3 at scsibus0 target 3 lun ?
SCSI disk drives
sd4 at scsibus0 target 4 lun ?
SCSI disk drives
sd5 at scsibus0 target 5 lun ?
SCSI disk drives
sd6 at scsibus0 target 6 lun ?
SCSI disk drives

15.3. Disklabel each volume member of the CCD

Each member disk of the CCD will need a special file system
 established. In this example, I will need to disklabel:

/dev/rsd0c

/dev/rsd1c

/dev/rsd2c

/dev/rsd3c

Note

Always remember to disklabel the character device,
	not the block device, in
	/dev/r{s,w}d*

Note

On all platforms, the c slice is
	symbolic of the entire NetBSD partition and is reserved.

You will probably want to remove any pre-existing disklabels
 on the disks in the CCD. This can be accomplished in one of two ways
 with the dd(1) command:

dd if=/dev/zero of=/dev/rsd0c bs=8k count=1
dd if=/dev/zero of=/dev/rsd1c bs=8k count=1
dd if=/dev/zero of=/dev/rsd2c bs=8k count=1
dd if=/dev/zero of=/dev/rsd3c bs=8k count=1

If your port uses a MBR (Master Boot Record) to partition the disks
 so that the NetBSD partitions are only part of the overall disk,
 and other OSs like Windows or Linux use other parts, you can void the
 MBR and all partitions on disk by using the command:

dd if=/dev/zero of=/dev/rsd0d bs=8k count=1
dd if=/dev/zero of=/dev/rsd1d bs=8k count=1
dd if=/dev/zero of=/dev/rsd2d bs=8k count=1
dd if=/dev/zero of=/dev/rsd3d bs=8k count=1

This will make all data on the entire disk inaccessible. Note
 that the entire disk is slice d on i386
 (and some other ports), and c elsewhere (e.g. on
 sparc). See the “kern.rawpartition” sysctl - "3"
 means "d", "2" means "c".

The default disklabel for the disk will look similar to this:

disklabel -r sd0
[...snip...]
bytes/sector: 512
sectors/track: 116
tracks/cylinder: 9
sectors/cylinder: 1044
cylinders: 3992
total sectors: 4197405
[..snip...]
3 partitions:
size offset fstype [fsize bsize cpg]
 c: 4197405 0 unused 1024 8192 # (Cyl. 0 - 4020*)

You will need to create one “slice” on the
 NetBSD partition of the disk that consumes the entire
 partition. The slice must begin at least one cylinder
 offset from the beginning of the disk/partition to provide
 space for the special CCD disklabel. The offset should be
 1x sectors/cylinder (see following note).
 Therefore, the “size” value should be
 “total sectors” minus 1x
 “sectors/cylinder”. Edit your disklabel
 accordingly:

disklabel -e sd0

Note

The offset of a slice of type “ccd” must be a
	multiple of the “sectors/cylinder” value.

Note

Be sure to export EDITOR=[path to your favorite
	editor] before editing the disklabels.

Note

The slice must be fstype ccd.

Because there will only be one slice on this partition,
 you can recycle the c slice (normally
 reserved for symbolic uses). Change your disklabel to
 the following:

3 partitions:
size offset fstype [fsize bsize cpg]
 c: 4196361 1044 ccd # (Cyl. 1 - 4020*)

Optionally you can setup a slice other than
 c to use, simply adjust accordingly
 below:

3 partitions:
size offset fstype [fsize bsize cpg]
 a: 4196361 1044 ccd # (Cyl. 1 - 4020*)
 c: 4197405 0 unused 1024 8192 # (Cyl. 0 - 4020*)

Be sure to write the label when you have completed.
 Disklabel will object to your disklabel and prompt you to
 re-edit if it does not pass its sanity checks.

Once all disks are properly labeled, you will need to
 generate a configuration file,
 /etc/ccd.conf. The file does not exist by
 default, and you will need to create a new one. The format
 is:

#ccd ileave flags component devices

Note

For the “ileave”, if a value of zero is used
	then the disks are concatenated, but if you use a value
	equal to the “sectors/track” number the disks
	are interleaved.

Example in this case:

more /etc/ccd.conf
ccd0 0 none /dev/sd0c /dev/sd1c /dev/sd2c /dev/sd3c

Note

The CCD driver expects block device files as components.
 Be sure not to use character device files in the configuration.

15.5. Initialize the CCD device

Once you are confident that your CCD configuration is sane,
 you can initialize the device using the
 ccdconfig(8) command:
 Configure:

ccdconfig -C -f /etc/ccd.conf

Unconfigure:

ccdconfig -u -f /etc/ccd.conf

Initializing the CCD device will activate
 /dev entries:
 /dev/{,r}ccd#:

ls -la /dev/{,r}ccd0*
brw-r----- 1 root operator 9, 0 Apr 28 21:35 /dev/ccd0a
brw-r----- 1 root operator 9, 1 Apr 28 21:35 /dev/ccd0b
brw-r----- 1 root operator 9, 2 May 12 00:10 /dev/ccd0c
brw-r----- 1 root operator 9, 3 Apr 28 21:35 /dev/ccd0d
brw-r----- 1 root operator 9, 4 Apr 28 21:35 /dev/ccd0e
brw-r----- 1 root operator 9, 5 Apr 28 21:35 /dev/ccd0f
brw-r----- 1 root operator 9, 6 Apr 28 21:35 /dev/ccd0g
brw-r----- 1 root operator 9, 7 Apr 28 21:35 /dev/ccd0h
crw-r----- 1 root operator 23, 0 Jun 12 20:40 /dev/rccd0a
crw-r----- 1 root operator 23, 1 Apr 28 21:35 /dev/rccd0b
crw-r----- 1 root operator 23, 2 Jun 12 20:58 /dev/rccd0c
crw-r----- 1 root operator 23, 3 Apr 28 21:35 /dev/rccd0d
crw-r----- 1 root operator 23, 4 Apr 28 21:35 /dev/rccd0e
crw-r----- 1 root operator 23, 5 Apr 28 21:35 /dev/rccd0f
crw-r----- 1 root operator 23, 6 Apr 28 21:35 /dev/rccd0g
crw-r----- 1 root operator 23, 7 Apr 28 21:35 /dev/rccd0h

15.6. Create a 4.2BSD/UFS filesystem on the new CCD device

You may now disklabel the new virtual disk device associated
 with your CCD:

disklabel -e ccd0

Once again, there will be only one slice, so you may either
 recycle the c slice or create a separate
 slice for use.

disklabel -r ccd0
/dev/rccd0c:
type: ccd
disk: ccd
label: default label
flags:
bytes/sector: 512
sectors/track: 2048
tracks/cylinder: 1
sectors/cylinder: 2048
cylinders: 6107
total sectors: 12508812
rpm: 3600
interleave: 1
trackskew: 0
cylinderskew: 0
headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0
size offset fstype [fsize bsize cpg]
 c: 12508812 0 4.2BSD 1024 8192 16 # (Cyl. 0 - 6107*)

The filesystem will then need to be formatted:

newfs /dev/rccd0c
Warning: 372 sector(s) in last cylinder unallocated
/dev/rccd0c: 12508812 sectors in 6108 cylinders of 1 tracks, 2048 sectors
 6107.8MB in 382 cyl groups (16 c/g, 16.00MB/g, 3968 i/g)

super-block backups (for fsck -b #) at:
[...]

15.7. Mount the filesystem

Once you have a created a file system on the CCD device,
 you can then mount the file system against a mount point
 on your system. Be sure to mount the slice labeled type
 ffs or 4.2BSD:

mount /dev/ccd0c /mnt

Then:

export BLOCKSIZE=1024; df
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/sd6a 376155 320290 37057 89% /
/dev/ccd0c 6058800 1 5755859 0% /mnt

Congratulations, you now have a working CCD. To configure
 the CCD device at boot time, set
 ccd=yes in
 /etc/rc.conf. You can adjust
 /etc/fstab to get the filesystem mounted at
 boot:

/dev/ccd0c /home ffs rw 1 2

Chapter 16. NetBSD RAIDframe

16.1. RAIDframe Introduction

NetBSD uses the CMU RAIDframe
 software for its RAID subsystem. NetBSD is the primary
 platform for RAIDframe development. NetBSD also has another
 in-kernel RAID level 0 system in its ccd(4) subsystem (see
 Chapter 15, Concatenated Disk Device (CCD) configuration). You should possess some basic knowledge
 about RAID concepts and terminology before continuing. You
 should also be at least familiar with the different levels of
 RAID - Adaptec provides an
 excellent reference, and the raid(4) manpage
 contains a short overview too.

16.1.2. A warning about Data Integrity, Backups, and High
	Availability

RAIDframe is a Software RAID implementation,
	as opposed to Hardware RAID. As such, it does not need special disk
	controllers supported by NetBSD. System
	administrators should give a
	great deal of consideration to whether software RAID or
	hardware RAID is more appropriate for their
	“Mission Critical” applications. For some projects
	you might consider the use of many of the hardware RAID devices
	supported by
	 NetBSD. It is truly at your discretion what type of RAID
	you use, but it is recommend that you consider factors such as:
	manageability, commercial vendor support, load-balancing and
	failover, etc.

Depending on the RAID level used, RAIDframe does provide
	redundancy in the event of a hardware failure. However, it is
	not a replacement for reliable backups!
	Software and user-error can still cause data loss. RAIDframe
	may be used as a mechanism for facilitating backups in systems
	without backup hardware, but this is not an ideal
	configuration. Finally, with regard to "high availability",
	RAID is only a very small component to ensuring data
	availability.

Once more for good measure: Back up your
	 data!

If you encounter problems using RAIDframe, you have several
	options for obtaining help.

	Read the RAIDframe man pages: raid(4) and
	 raidctl(8) thoroughly.

	Search the mailing list archives. Unfortunately,
	 there is no NetBSD list dedicated to RAIDframe support.
	 Depending on the nature of the problem, posts tend to end up in
	 a variety of lists. At a very minimum, search netbsd-users@NetBSD.org,
	 current-users@NetBSD.org.
	 Also search the list for the NetBSD platform on which you are
	 using RAIDframe:
	 port-${ARCH}@NetBSD.org.

	Search the Problem Report
	 database.

	If your problem persists: Post to the mailing list
	 most appropriate (judgment call). Collect as much verbosely
	 detailed information as possible before posting: Include your
	 dmesg(8) output from
	 /var/run/dmesg.boot, your kernel config(5) , your
	 /etc/raid[0-9].conf, any relevant errors on
	 /dev/console,
	 /var/log/messages, or to
	 stdout/stderr of raidctl(8).
	 The output of raidctl -s (if available)
	 will be useful as well. Also
	 include details on the troubleshooting steps you've taken thus
	 far, exactly when the problem started, and any notes on recent
	 changes that may have prompted the problem to develop. Remember
	 to be patient when waiting for a response.

16.2. Setup RAIDframe Support

The use of RAID will require software and hardware
 configuration changes.

The GENERIC kernel already has support for RAIDframe. If you have
 	built a custom kernel for your environment the kernel
	configuration must have the following options:

pseudo-device raid 8 # RAIDframe disk driver
options RAID_AUTOCONFIG # auto-configuration of RAID components

The RAID support must be detected by the NetBSD kernel, which
	can be checked by looking at the output of the dmesg(8)
	command.

dmesg|grep -i raid
Kernelized RAIDframe activated

Historically, the kernel must also contain static mappings between bus
	addresses and device nodes in /dev. This
	used to
	ensure consistency of devices within RAID sets in the event of a
	device failure after reboot. Since NetBSD 1.6, however, using
	the auto-configuration features of RAIDframe has been
	recommended over statically mapping devices. The
	auto-configuration features allow drives to move around on the
	system, and RAIDframe will automatically determine which
	components belong to which RAID sets.

16.2.2. Power Redundancy and Disk Caching

If your system has an Uninterruptible Power Supply (UPS),
	and/or if your system has redundant power supplies, you should
	consider enabling the read and write caches on your drives. On
	systems with redundant power, this will improve drive performance.
	On systems without redundant power, the write cache could endanger
	the integrity of RAID data in the event of a power loss.

The dkctl(8) utility can be used for this on
	 all kinds of disks that support the operation (SCSI, EIDE, SATA,
	 ...):

dkctl wd0 getcache
/dev/rwd0d: read cache enabled
/dev/rwd0d: read cache enable is not changeable
/dev/rwd0d: write cache enable is changeable
/dev/rwd0d: cache parameters are not savable
dkctl wd0 setcache rw
dkctl wd0 getcache
/dev/rwd0d: read cache enabled
/dev/rwd0d: write-back cache enabled
/dev/rwd0d: read cache enable is not changeable
/dev/rwd0d: write cache enable is changeable
/dev/rwd0d: cache parameters are not savable

16.3. Example: RAID-1 Root Disk

This example explains how to setup RAID-1 root disk. With
 RAID-1 components are mirrored and therefore the server can be fully
 functional in the event of a single component failure. The goal is
 to provide a level of redundancy that will allow the system to
 encounter a component failure on either component disk in the RAID
 and:

	Continue normal operations until a maintenance
	 window can be scheduled.

	Or, in the unlikely event that the component
	 failure causes a system reboot, be able to quickly reconfigure the
	 system to boot from the remaining component (platform dependent).
	

Figure 16.1. RAID-1 Disk Logical Layout

[image: RAID-1 Disk Logical Layout]

Because RAID-1 provides both redundancy and performance
 improvements, its most practical application is on critical
 "system" partitions such as /,
 /usr, /var,
 swap, etc., where read operations are more
 frequent than write operations. For other file systems, such as
 /home or
 /var/{application},
 other RAID levels might be considered (see the references above).
 If one were simply creating a generic RAID-1 volume for a non-root
 file system, the cookie-cutter examples from the man page could be
 followed, but because the root volume must be bootable, certain
 special steps must be taken during initial setup.

Note

This example will outline a process that differs only
 slightly between the x86 and sparc64 platforms. In an attempt to
 reduce excessive duplication of content, where differences do exist
 and are cosmetic in nature, they will be pointed out using a section
 such as this. If the process is drastically different, the process
 will branch into separate, platform dependent steps.

16.3.1. Pseudo-Process Outline

Although a much more refined process could be developed
	using a custom copy of NetBSD installed on custom-developed
	removable media, presently the NetBSD install media lacks
	RAIDframe tools and support, so the following pseudo process has
	become the de facto standard for setting up RAID-1 Root.

	
Install a stock NetBSD onto Disk0 of your system.

Figure 16.2. Perform generic install onto Disk0/wd0

[image: Perform generic install onto Disk0/wd0]

	
Use the installed system on Disk0/wd0 to setup
	 a RAID Set composed of Disk1/wd1 only.

Figure 16.3. Setup RAID Set

[image: Setup RAID Set]

	
Reboot the system off the Disk1/wd1 with the newly
	 created RAID volume.

Figure 16.4. Reboot using Disk1/wd1 of RAID

[image: Reboot using Disk1/wd1 of RAID]

	
Add / re-sync Disk0/wd0 back into the RAID set.

Figure 16.5. Mirror Disk1/wd1 back to Disk0/wd0

[image: Mirror Disk1/wd1 back to Disk0/wd0]

At present, the alpha, amd64, i386, pmax, sparc, sparc64, and
	vax NetBSD platforms support booting from RAID-1. Booting is not
	supported from any other RAID level. Booting from a RAID set is
	accomplished by teaching the 1st stage boot loader to understand
	both 4.2BSD/FFS and RAID partitions. The 1st boot block code only
	needs to know enough about the disk partitions and file systems to
	be able to read the 2nd stage boot blocks. Therefore, at any
	time, the system's BIOS / firmware must be able to read a drive
	with 1st stage boot blocks installed. On the x86 platform,
	configuring this is entirely dependent on the vendor of the
	controller card / host bus adapter to which your disks are
	connected. On sparc64 this is controlled by the IEEE 1275 Sun
 OpenBoot Firmware.

This article assumes two identical
	IDE disks (/dev/wd{0,1})
	which we are going to mirror (RAID-1). These disks are identified
	as:

grep ^wd /var/run/dmesg.boot
wd0 at atabus0 drive 0: <WDC WD100BB-75CLB0>
wd0: drive supports 16-sector PIO transfers, LBA addressing
wd0: 9541 MB, 19386 cyl, 16 head, 63 sec, 512 bytes/sect x 19541088 sectors
wd0: drive supports PIO mode 4, DMA mode 2, Ultra-DMA mode 5 (Ultra/100)
wd0(piixide0:0:0): using PIO mode 4, Ultra-DMA mode 2 (Ultra/33) (using DMA data transfers)

wd1 at atabus1 drive 0: <WDC WD100BB-75CLB0>
wd1: drive supports 16-sector PIO transfers, LBA addressing
wd1: 9541 MB, 19386 cyl, 16 head, 63 sec, 512 bytes/sect x 19541088 sectors
wd1: drive supports PIO mode 4, DMA mode 2, Ultra-DMA mode 5 (Ultra/100)
wd1(piixide0:1:0): using PIO mode 4, Ultra-DMA mode 2 (Ultra/33) (using DMA data transfers)

Note

If you are using SCSI, replace
	 /dev/{,r}wd{0,1} with
	 /dev/{,r}sd{0,1}

In this example, both disks are jumpered as Master on
	separate channels on the same controller. You would never want to
	have both disks on the same bus on the same controller; this
	creates a single point of failure. Ideally you would have the
	disks on separate channels on separate controllers. Some SCSI
	controllers have multiple channels on the same controller,
	however, a SCSI bus reset on one channel could adversely affect
	the other channel if the ASIC/IC becomes overloaded. The
	trade-off with two controllers is that twice the bandwidth is used
	on the system bus. For purposes of simplification, this example
	shows two disks on different channels on the same
	controller.

Note

RAIDframe requires that all components be of the same
	 size. Actually, it will use the lowest common denominator among
	 components of dissimilar sizes. For purposes of illustration, the
	 example uses two disks of identical geometries. Also, consider
	 the availability of replacement disks if a component suffers a
	 critical hardware failure.

Tip

Two disks of identical vendor model numbers could have
 different geometries if the drive possesses "grown defects". Use
 a low-level program to examine the grown defects table of the
 disk. These disks are obviously suboptimal candidates for use in
 RAID and should be avoided.

16.3.3. Initial Install on Disk0/wd0

Perform a very generic installation onto your Disk0/wd0.
	Follow the INSTALL instructions for your platform. Install all
	the sets but do not bother customizing anything other than the
	kernel as it will be overwritten. See also
 Chapter 2, Installing NetBSD: Preliminary considerations and preparations.

Tip

On x86, during the sysinst install, when prompted if
	 you want to "use the entire disk for NetBSD", answer
	 "yes".

Once the installation is complete, you should examine the
	disklabel(8) and fdisk(8) / sunlabel(8) outputs on
	the system:

df
Filesystem 1K-blocks Used Avail %Cap Mounted on
/dev/wd0a 9487886 502132 8511360 5% /

On x86:

disklabel -r wd0
type: unknown
disk: Disk00
label:
flags:
bytes/sector: 512
sectors/track: 63
tracks/cylinder: 16
sectors/cylinder: 1008
cylinders: 19386
total sectors: 19541088
rpm: 3600
interleave: 1
trackskew: 0
cylinderskew: 0
headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0

16 partitions:
size offset fstype [fsize bsize cpg/sgs]
 a: 19276992 63 4.2BSD 1024 8192 46568 # (Cyl. 0* - 19124*)
 b: 264033 19277055 swap # (Cyl. 19124* - 19385)
 c: 19541025 63 unused 0 0 # (Cyl. 0* - 19385)
 d: 19541088 0 unused 0 0 # (Cyl. 0 - 19385)

fdisk /dev/rwd0d
Disk: /dev/rwd0d
NetBSD disklabel disk geometry:
cylinders: 19386, heads: 16, sectors/track: 63 (1008 sectors/cylinder)
total sectors: 19541088

BIOS disk geometry:
cylinders: 1023, heads: 255, sectors/track: 63 (16065 sectors/cylinder)
total sectors: 19541088

Partition table:
0: NetBSD (sysid 169)
 start 63, size 19541025 (9542 MB, Cyls 0-1216/96/1), Active
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>
Bootselector disabled.
First active partition: 0

On Sparc64 the command / output differs slightly:

disklabel -r wd0
type: unknown
disk: Disk0
[...snip...]
8 partitions:
size offset fstype [fsize bsize cpg/sgs]
 a: 19278000 0 4.2BSD 1024 8192 46568 # (Cyl. 0 - 19124)
 b: 263088 19278000 swap # (Cyl. 19125 - 19385)
 c: 19541088 0 unused 0 0 # (Cyl. 0 - 19385)

sunlabel /dev/rwd0c
sunlabel> P
a: start cyl = 0, size = 19278000 (19125/0/0 - 9413.09Mb)
b: start cyl = 19125, size = 263088 (261/0/0 - 128.461Mb)
c: start cyl = 0, size = 19541088 (19386/0/0 - 9541.55Mb)

16.3.4. Preparing Disk1/wd1

Once you have a stock install of NetBSD on Disk0/wd0, you
	are ready to begin. Disk1/wd1 will be visible and unused by the
	system. To setup Disk1/wd1, you will use disklabel(8) to
	allocate the entire second disk to the RAID-1 set.

Tip

The best way to ensure that Disk1/wd1 is completely
 empty is to 'zero' out the first few sectors of the disk with
 dd(1) . This will erase the MBR (x86) or Sun disk label
 (sparc64), as well as the NetBSD disk label. If you make a mistake
 at any point during the RAID setup process, you can always refer
 to this process to restore the disk to an empty state.

Note

On sparc64, use /dev/rwd1c instead of
	 /dev/rwd1d!

dd if=/dev/zero of=/dev/rwd1d bs=8k count=1
1+0 records in
1+0 records out
8192 bytes transferred in 0.003 secs (2730666 bytes/sec)

Once this is complete, on x86, verify that both the MBR and
	NetBSD disk labels are gone. On sparc64, verify that the Sun Disk
	label is gone as well.

On x86:

fdisk /dev/rwd1d

fdisk: primary partition table invalid, no magic in sector 0
Disk: /dev/rwd1d
NetBSD disklabel disk geometry:
cylinders: 19386, heads: 16, sectors/track: 63 (1008 sectors/cylinder)
total sectors: 19541088

BIOS disk geometry:
cylinders: 1023, heads: 255, sectors/track: 63 (16065 sectors/cylinder)
total sectors: 19541088

Partition table:
0: <UNUSED>
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>
Bootselector disabled.

disklabel -r wd1

[...snip...]
16 partitions:
size offset fstype [fsize bsize cpg/sgs]
 c: 19541025 63 unused 0 0 # (Cyl. 0* - 19385)
 d: 19541088 0 unused 0 0 # (Cyl. 0 - 19385)

On sparc64:

sunlabel /dev/rwd1c

sunlabel: bogus label on `/dev/wd1c' (bad magic number)

disklabel -r wd1

[...snip...]
3 partitions:
size offset fstype [fsize bsize cpg/sgs]
 c: 19541088 0 unused 0 0 # (Cyl. 0 - 19385)
disklabel: boot block size 0
disklabel: super block size 0

Now that you are certain the second disk is empty, on x86
	you must establish the MBR on the second disk using the values
	obtained from Disk0/wd0 above. We must remember to mark the NetBSD
	partition active or the system will not boot. You must also create
	a NetBSD disklabel on Disk1/wd1 that will enable a RAID volume to
	exist upon it. On sparc64, you will need to simply
	disklabel(8) the second disk which will write the proper Sun
	Disk Label.

Tip

disklabel(8) will use your shell' s environment
	 variable $EDITOR variable to edit the
	 disklabel. The default is vi(1)

On x86:

fdisk -0ua /dev/rwd1d
fdisk: primary partition table invalid, no magic in sector 0
Disk: /dev/rwd1d
NetBSD disklabel disk geometry:
cylinders: 19386, heads: 16, sectors/track: 63 (1008 sectors/cylinder)
total sectors: 19541088

BIOS disk geometry:
cylinders: 1023, heads: 255, sectors/track: 63 (16065 sectors/cylinder)
total sectors: 19541088

Do you want to change our idea of what BIOS thinks? [n]

Partition 0:
<UNUSED>
The data for partition 0 is:
<UNUSED>
sysid: [0..255 default: 169]
start: [0..1216cyl default: 63, 0cyl, 0MB]
size: [0..1216cyl default: 19541025, 1216cyl, 9542MB]
bootmenu: []
Do you want to change the active partition? [n] y
Choosing 4 will make no partition active.
active partition: [0..4 default: 0] 0
Are you happy with this choice? [n] y

We haven't written the MBR back to disk yet. This is your last chance.
Partition table:
0: NetBSD (sysid 169)
 start 63, size 19541025 (9542 MB, Cyls 0-1216/96/1), Active
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>
Bootselector disabled.
Should we write new partition table? [n] y

disklabel -r -e -I wd1
type: unknown
disk: Disk1
label:
flags:
bytes/sector: 512
sectors/track: 63
tracks/cylinder: 16
sectors/cylinder: 1008
cylinders: 19386
total sectors: 19541088
[...snip...]
16 partitions:
size offset fstype [fsize bsize cpg/sgs]
 a: 19541025 63 RAID # (Cyl. 0*-19385)
 c: 19541025 63 unused 0 0 # (Cyl. 0*-19385)
 d: 19541088 0 unused 0 0 # (Cyl. 0 -19385)

On sparc64:

disklabel -r -e -I wd1
type: unknown
disk: Disk1
label:
flags:
bytes/sector: 512
sectors/track: 63
tracks/cylinder: 16
sectors/cylinder: 1008
cylinders: 19386
total sectors: 19541088
[...snip...]
3 partitions:
size offset fstype [fsize bsize cpg/sgs]
 a: 19541088 0 RAID # (Cyl. 0 - 19385)
 c: 19541088 0 unused 0 0 # (Cyl. 0 - 19385)

sunlabel /dev/rwd1c
sunlabel> P
a: start cyl = 0, size = 19541088 (19386/0/0 - 9541.55Mb)
c: start cyl = 0, size = 19541088 (19386/0/0 - 9541.55Mb)

Note

On x86, the c: and
	 d: slices are reserved. c:
	 represents the NetBSD portion of the disk. d:
	 represents the entire disk. Because we want to allocate the
	 entire NetBSD MBR partition to RAID, and because
	 a: resides within the bounds of
	 c:, the a: and
	 c: slices have same size and offset values.
	 The offset must start at a track boundary (an increment of
	 sectors matching the sectors/track value in the disk label). On
	 sparc64 however, c: represents the entire
	 NetBSD partition in the Sun disk label and d:
	 is not reserved. Also note that sparc64's c:
	 and a: require no offset from the beginning of
	 the disk, however if they should need to be, the offset must start
	 at a cylinder boundary (an increment of sectors matching the
	 sectors/cylinder value).

16.3.5. Initializing the RAID Device

Next we create the configuration file for the RAID set /
	volume. Traditionally, RAIDframe configuration files belong in
	/etc and would be read and initialized at
	boot time, however, because we are creating a bootable RAID
	volume, the configuration data will actually be written into the
	RAID volume using the "auto-configure" feature. Therefore, files
	are needed only during the initial setup and should not reside in
	/etc.

vi /var/tmp/raid0.conf
START array
1 2 0

START disks
absent
/dev/wd1a

START layout
128 1 1 1

START queue
fifo 100

Note that absent means a non-existing disk.
 This will allow us to establish the RAID volume with a bogus
 component that we will substitute for Disk0/wd0 at a later
 time.

Next we configure the RAID device and initialize the serial
	number to something unique. In this example we use a
	"YYYYMMDDRevision" scheme. The format
	you choose is entirely at your discretion, however the scheme you
	choose should ensure that no two RAID sets use the same serial
	number at the same time.

After that we initialize the RAID set for the first time,
	safely ignoring the errors regarding the bogus component.

raidctl -v -C /var/tmp/raid0.conf raid0
Ignoring missing component at column 0
raid0: Component absent being configured at col: 0
 Column: 0 Num Columns: 0
 Version: 0 Serial Number: 0 Mod Counter: 0
 Clean: No Status: 0
Number of columns do not match for: absent
absent is not clean!
raid0: Component /dev/wd1a being configured at col: 1
 Column: 0 Num Columns: 0
 Version: 0 Serial Number: 0 Mod Counter: 0
 Clean: No Status: 0
Column out of alignment for: /dev/wd1a
Number of columns do not match for: /dev/wd1a
/dev/wd1a is not clean!
raid0: There were fatal errors
raid0: Fatal errors being ignored.
raid0: RAID Level 1
raid0: Components: component0[**FAILED**] /dev/wd1a
raid0: Total Sectors: 19540864 (9541 MB)
raidctl -v -I 2009122601 raid0
raidctl -v -i raid0
Initiating re-write of parity
raid0: Error re-writing parity!
Parity Re-write status:

tail -1 /var/log/messages
Dec 26 00:00:30 /netbsd: raid0: Error re-writing parity!
raidctl -v -s raid0
Components:
 component0: failed
 /dev/wd1a: optimal
No spares.
component0 status is: failed. Skipping label.
Component label for /dev/wd1a:
 Row: 0, Column: 1, Num Rows: 1, Num Columns: 2
 Version: 2, Serial Number: 2009122601, Mod Counter: 7
 Clean: No, Status: 0
 sectPerSU: 128, SUsPerPU: 1, SUsPerRU: 1
 Queue size: 100, blocksize: 512, numBlocks: 19540864
 RAID Level: 1
 Autoconfig: No
 Root partition: No
 Last configured as: raid0
Parity status: DIRTY
Reconstruction is 100% complete.
Parity Re-write is 100% complete.
Copyback is 100% complete.

16.3.6. Setting up Filesystems

Caution

The root filesystem must begin at sector 0 of the RAID
	 device. Else, the primary boot loader will be unable to find
	 the secondary boot loader.

The RAID device is now configured and available. The RAID
	device is a pseudo disk-device. It will be created with a default
	disk label. You must now determine the proper sizes for disklabel
	slices for your production environment. For purposes of
	simplification in this example, our system will have 8.5 gigabytes
	dedicated to / as
	/dev/raid0a and the rest allocated to
	swap as
	/dev/raid0b.

Caution

This is an unrealistic disk layout for a production
 server; the NetBSD Guide can expand on proper partitioning
 technique. See Chapter 2, Installing NetBSD: Preliminary considerations and preparations

Note

Note that 1 GB is 2*1024*1024=2097152 blocks (1 block
 is 512 bytes, or 0.5 kilobytes). Despite what the
 underlying hardware composing a RAID set is, the RAID pseudo disk
 will always have 512 bytes/sector.

Note

In our example, the space allocated to the underlying
 a: slice composing the RAID set differed
 between x86 and sparc64, therefore the total sectors of the RAID
 volumes differs:

On x86:

 # disklabel -r -e -I raid0
type: RAID
disk: raid
label: fictitious
flags:
bytes/sector: 512
sectors/track: 128
tracks/cylinder: 8
sectors/cylinder: 1024
cylinders: 19082
total sectors: 19540864
rpm: 3600
interleave: 1
trackskew: 0
cylinderskew: 0
headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0

size offset fstype [fsize bsize cpg/sgs]
 a: 19015680 0 4.2BSD 0 0 0 # (Cyl. 0 - 18569)
 b: 525184 19015680 swap # (Cyl. 18570 - 19082*)
 d: 19540864 0 unused 0 0 # (Cyl. 0 - 19082*)

On sparc64:

disklabel -r -e -I raid0
[...snip...]
total sectors: 19539968
[...snip...]
3 partitions:
size offset fstype [fsize bsize cpg/sgs]
 a: 19251200 0 4.2BSD 0 0 0 # (Cyl. 0 - 18799)
 b: 288768 19251200 swap # (Cyl. 18800 - 19081)
 c: 19539968 0 unused 0 0 # (Cyl. 0 - 19081)

Next, format the newly created /
	partition as a 4.2BSD FFSv1 File System:

newfs -O 1 /dev/rraid0a
/dev/rraid0a: 9285.0MB (19015680 sectors) block size 16384, fragment size 2048
 using 51 cylinder groups of 182.06MB, 11652 blks, 23040 inodes.
super-block backups (for fsck -b #) at:
32, 372896, 745760, 1118624, 1491488, 1864352, 2237216, 2610080, 2982944,
...

fsck -fy /dev/rraid0a
** /dev/rraid0a
** File system is already clean
** Last Mounted on
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cyl groups
1 files, 1 used, 4679654 free (14 frags, 584955 blocks, 0.0% fragmentation)

16.3.7. Migrating System to RAID

The new RAID filesystems are now ready for use. We mount
	them under /mnt and copy all files from the
	old system. This can be done using dump(8) or pax(1).

mount /dev/raid0a /mnt
df -h /mnt
Filesystem Size Used Avail %Cap Mounted on
/dev/raid0a 8.9G 2.0K 8.5G 0% /mnt
cd /; pax -v -X -rw -pe . /mnt
[...snip...]

The NetBSD install now exists on the RAID filesystem. We need
	to fix the mount-points in the new copy of
	/etc/fstab or the system will not come up
	correctly. Replace instances of wd0 with
	raid0.

The swap should be unconfigured upon shutdown to avoid
	parity errors on the RAID device. This can be done with a simple,
	one-line setting in /etc/rc.conf.

vi /mnt/etc/rc.conf
swapoff=YES

Next the boot loader must be installed on Disk1/wd1.
	Failure to install the loader on Disk1/wd1 will render the system
	un-bootable if Disk0/wd0 fails making the RAID-1 pointless.

Tip

Because the BIOS/CMOS menus in many x86 based systems
 are misleading with regard to device boot order. I highly
 recommend utilizing the "-o timeout=X" option supported by the
 x86 1st stage boot loader. Setup unique values for each disk as
 a point of reference so that you can easily determine from which
 disk the system is booting.

Caution

Although it may seem logical to install the 1st stage boot block into
 /dev/rwd1{c,d}
 with installboot(8) , this is no longer the case since NetBSD 1.6.x.
 If you make this mistake, the boot sector will become irrecoverably damaged
 and you will need to start the process over again.

On x86, install the boot loader into /dev/rwd1a
	:

/usr/sbin/installboot -o timeout=30 -v /dev/rwd1a /usr/mdec/bootxx_ffsv2
File system: /dev/rwd1a
Primary bootstrap: /usr/mdec/bootxx_ffsv2
Ignoring PBR with invalid magic in sector 0 of `/dev/rwd1a'
Boot options: timeout 30, flags 0, speed 9600, ioaddr 0, console pc

Note

As of NetBSD 6.x, the default filesystem type on x86 platforms
 is FFSv2 instead of FFSv1. Make sure you use the correct 1st stage boot block file
 /usr/mdec/bootxx_ffsv{1,2}
 when running the installboot(8) command.

To find out which filesystem type is currently in use, the
 command file(1) or dumpfs(8) can be used:

/usr/bin/file -s /dev/rwd1a
/usr/bin/file -s /dev/rwd1a
/dev/rwd1a: Unix Fast File system [v2] (little-endian), last mounted on ...

or

/usr/sbin/dumpfs -s /dev/rwd1a
file system: /dev/rwd1a
format FFSv2
endian little-endian
...

On sparc64, install the boot loader into
	/dev/rwd1a as well, however the "-o" flag is
	unsupported (and un-needed thanks to OpenBoot):

/usr/sbin/installboot -v /dev/rwd1a /usr/mdec/bootblk
File system: /dev/rwd1a
Primary bootstrap: /usr/mdec/bootblk
Bootstrap start sector: 1
Bootstrap byte count: 5140
Writing bootstrap

Finally the RAID set must be made auto-configurable and the
	system should be rebooted. After the reboot everything is mounted
	from the RAID devices.

raidctl -v -A root raid0
raid0: Autoconfigure: Yes
raid0: Root: Yes
tail -2 /var/log/messages
raid0: New autoconfig value is: 1
raid0: New rootpartition value is: 1
raidctl -v -s raid0
[...snip...]
 Autoconfig: Yes
 Root partition: Yes
 Last configured as: raid0
[...snip...]
shutdown -r now

Warning

Always use shutdown(8) when shutting
 down. Never simply use reboot(8). reboot(8) will
 not properly run shutdown RC scripts and will not safely disable
 swap. This will cause dirty parity at every
 reboot.

16.3.8. The first boot with RAID

At this point, temporarily configure your system to boot
	Disk1/wd1. See notes in
	Section 16.3.10, “Testing Boot Blocks”
	for details on this process. The system should boot now and
	all filesystems should be on the RAID devices. The RAID will be
	functional with a single component, however the set is not fully
	functional because the bogus drive (wd9) has failed.

egrep -i "raid|root" /var/run/dmesg.boot
raid0: RAID Level 1
raid0: Components: component0[**FAILED**] /dev/wd1a
raid0: Total Sectors: 19540864 (9541 MB)
boot device: raid0
root on raid0a dumps on raid0b
root file system type: ffs

df -h
Filesystem Size Used Avail Capacity Mounted on
/dev/raid0a 8.9G 196M 8.3G 2% /
kernfs 1.0K 1.0K 0B 100% /kern

swapctl -l
Device 1K-blocks Used Avail Capacity Priority
/dev/raid0b 262592 0 262592 0% 0
raidctl -s raid0
Components:
 component0: failed
 /dev/wd1a: optimal
No spares.
component0 status is: failed. Skipping label.
Component label for /dev/wd1a:
 Row: 0, Column: 1, Num Rows: 1, Num Columns: 2
 Version: 2, Serial Number: 2009122601, Mod Counter: 65
 Clean: No, Status: 0
 sectPerSU: 128, SUsPerPU: 1, SUsPerRU: 1
 Queue size: 100, blocksize: 512, numBlocks: 19540864
 RAID Level: 1
 Autoconfig: Yes
 Root partition: Yes
 Last configured as: raid0
Parity status: DIRTY
Reconstruction is 100% complete.
Parity Re-write is 100% complete.
Copyback is 100% complete.

16.3.9. Adding Disk0/wd0 to RAID

We will now add Disk0/wd0 as a component of the RAID. This
	will destroy the original file system structure. On x86, the MBR
	disklabel will be unaffected (remember we copied wd0's label to
	wd1 anyway) , therefore there is no need to "zero"
	Disk0/wd0. However, we need to relabel Disk0/wd0 to have an
	identical NetBSD disklabel layout as Disk1/wd1. Then we add
	Disk0/wd0 as "hot-spare" to the RAID set and initiate the parity
	reconstruction for all RAID devices, effectively bringing
	Disk0/wd0 into the RAID-1 set and "synching up" both disks.

disklabel -r wd1 > /tmp/disklabel.wd1
disklabel -R -r wd0 /tmp/disklabel.wd1

As a last-minute sanity check, you might want to use
	diff(1) to ensure that the disklabels of Disk0/wd0 match
	Disk1/wd1. You should also backup these files for reference in
	the event of an emergency.

disklabel -r wd0 > /tmp/disklabel.wd0
disklabel -r wd1 > /tmp/disklabel.wd1
diff /tmp/disklabel.wd0 /tmp/disklabel.wd1
fdisk /dev/rwd0 > /tmp/fdisk.wd0
fdisk /dev/rwd1 > /tmp/fdisk.wd1
diff /tmp/fdisk.wd0 /tmp/fdisk.wd1
mkdir /root/RFbackup
cp -p /tmp/{disklabel,fdisk}* /root/RFbackup

Once you are certain, add Disk0/wd0 as a spare
	component, and start reconstruction:

raidctl -v -a /dev/wd0a raid0
/netbsd: Warning: truncating spare disk /dev/wd0a to 241254528 blocks
raidctl -v -s raid0
Components:
 component0: failed
 /dev/wd1a: optimal
Spares:
 /dev/wd0a: spare
[...snip...]
raidctl -F component0 raid0
RECON: initiating reconstruction on col 0 -> spare at col 2
 11% |**** | ETA: 04:26 \

Depending on the speed of your hardware, the reconstruction
	time will vary. You may wish to watch it on another
	terminal:

raidctl -S raid0
Reconstruction is 0% complete.
Parity Re-write is 100% complete.
Copyback is 100% complete.
Reconstruction status:
 17% |****** | ETA: 03:08 -

After reconstruction, both disks should be
	“optimal”.

tail -f /var/log/messages
raid0: Reconstruction of disk at col 0 completed
raid0: Recon time was 1290.625033 seconds, accumulated XOR time was 0 us (0.000000)
raid0: (start time 1093407069 sec 145393 usec, end time 1093408359 sec 770426 usec)
raid0: Total head-sep stall count was 0
raid0: 305318 recon event waits, 1 recon delays
raid0: 1093407069060000 max exec ticks

raidctl -v -s raid0
Components:
 component0: spared
 /dev/wd1a: optimal
Spares:
 /dev/wd0a: used_spare
 [...snip...]

When the reconstruction is finished we need to install the
	boot loader on the Disk0/wd0. On x86, install the boot loader
	into /dev/rwd0a:

/usr/sbin/installboot -o timeout=15 -v /dev/rwd0a /usr/mdec/bootxx_ffsv2
File system: /dev/rwd0a
Primary bootstrap: /usr/mdec/bootxx_ffsv2
Boot options: timeout 15, flags 0, speed 9600, ioaddr 0, console pc

On sparc64:

/usr/sbin/installboot -v /dev/rwd0a /usr/mdec/bootblk
File system: /dev/rwd0a
Primary bootstrap: /usr/mdec/bootblk
Bootstrap start sector: 1
Bootstrap byte count: 5140
Writing bootstrap

And finally, reboot the machine one last time before
	proceeding. This is required to migrate Disk0/wd0 from status
	"used_spare" as "Component0" to state "optimal". Refer to notes
	in the next section regarding verification of clean parity after
	each reboot.

shutdown -r now

16.3.10. Testing Boot Blocks

At this point, you need to ensure that your system's
	hardware can properly boot using the boot blocks on either disk.
	On x86, this is a hardware-dependent process that may be done
	via your motherboard CMOS/BIOS menu or your controller card's
	configuration menu.

On x86, use the menu system on your machine to set the boot
	device order / priority to Disk1/wd1 before Disk0/wd0. The
	examples here depict a generic Award BIOS.

Figure 16.6. Award BIOS i386 Boot Disk1/wd1

[image: Award BIOS i386 Boot Disk1/wd1]

Save changes and exit.

>> NetBSD/i386 BIOS Boot, Revision 5.2 (from NetBSD 5.0.2)
>> (builds@b7, Sun Feb 7 00:30:50 UTC 2010)
>> Memory: 639/130048 k
Press return to boot now, any other key for boot menu
booting hd0a:netbsd - starting in 30

You can determine that the BIOS is reading Disk1/wd1 because
	the timeout of the boot loader is 30 seconds instead of 15. After
	the reboot, re-enter the BIOS and configure the drive boot order
	back to the default:

Figure 16.7. Award BIOS i386 Boot Disk0/wd0

[image: Award BIOS i386 Boot Disk0/wd0]

Save changes and exit.

>> NetBSD/x86 BIOS Boot, Revision 5.9 (from NetBSD 6.0)
>> Memory: 640/261120 k

 1. Boot normally
 2. Boot single use
 3. Disable ACPI
 4. Disable ACPI and SMP
 5. Drop to boot prompt

Choose an option; RETURN for default; SPACE to stop countdown.Option 1 will be chosen in 0 seconds.

Notice how your custom kernel detects controller/bus/drive
	assignments independent of what the BIOS assigns as the boot disk.
	This is the expected behavior.

On sparc64, use the Sun OpenBoot devalias
	to confirm that both disks are bootable:

Sun Ultra 5/10 UPA/PCI (UltraSPARC-IIi 400MHz), No Keyboard
OpenBoot 3.15, 128 MB memory installed, Serial #nnnnnnnn.
Ethernet address 8:0:20:a5:d1:3b, Host ID: nnnnnnnn.

ok devalias
[...snip...]
cdrom /pci@1f,0/pci@1,1/ide@3/cdrom@2,0:f
disk /pci@1f,0/pci@1,1/ide@3/disk@0,0
disk3 /pci@1f,0/pci@1,1/ide@3/disk@3,0
disk2 /pci@1f,0/pci@1,1/ide@3/disk@2,0
disk1 /pci@1f,0/pci@1,1/ide@3/disk@1,0
disk0 /pci@1f,0/pci@1,1/ide@3/disk@0,0
[...snip...]

ok boot disk0 netbsd
Initializing Memory [...]
Boot device /pci/pci/ide@3/disk@0,0 File and args: netbsd
NetBSD IEEE 1275 Bootblock
>> NetBSD/sparc64 OpenFirmware Boot, Revision 1.13
>> (builds@b7.netbsd.org, Wed Jul 29 23:43:42 UTC 2009)
loadfile: reading header
elf64_exec: Booting [...]
symbols @ [....]
 Copyright (c) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
 2006, 2007, 2008, 2009
 The NetBSD Foundation, Inc. All rights reserved.
 Copyright (c) 1982, 1986, 1989, 1991, 1993
 The Regents of the University of California. All rights reserved.
[...snip...]

And the second disk:

ok boot disk2 netbsd
Initializing Memory [...]
Boot device /pci/pci/ide@3/disk@2,0: File and args:netbsd
NetBSD IEEE 1275 Bootblock
>> NetBSD/sparc64 OpenFirmware Boot, Revision 1.13
>> (builds@b7.netbsd.org, Wed Jul 29 23:43:42 UTC 2009)
loadfile: reading header
elf64_exec: Booting [...]
symbols @ [....]
 Copyright (c) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
 2006, 2007, 2008, 2009
 The NetBSD Foundation, Inc. All rights reserved.
 Copyright (c) 1982, 1986, 1989, 1991, 1993
 The Regents of the University of California. All rights reserved.
[...snip...]

At each boot, the following should appear in the NetBSD
	kernel dmesg(8) :

Kernelized RAIDframe activated
raid0: RAID Level 1
raid0: Components: /dev/wd0a /dev/wd1a
raid0: Total Sectors: 19540864 (9541 MB)
boot device: raid0
root on raid0a dumps on raid0b
root file system type: ffs

Once you are certain that both disks are bootable, verify
	the RAID parity is clean after each reboot:

raidctl -v -s raid0
Components:
 /dev/wd0a: optimal
 /dev/wd1a: optimal
No spares.
[...snip...]
Component label for /dev/wd0a:
 Row: 0, Column: 0, Num Rows: 1, Num Columns: 2
 Version: 2, Serial Number: 2009122601, Mod Counter: 67
 Clean: No, Status: 0
 sectPerSU: 128, SUsPerPU: 1, SUsPerRU: 1
 Queue size: 100, blocksize: 512, numBlocks: 19540864
 RAID Level: 1
 Autoconfig: Yes
 Root partition: Yes
 Last configured as: raid0
Component label for /dev/wd1a:
 Row: 0, Column: 1, Num Rows: 1, Num Columns: 2
 Version: 2, Serial Number: 2009122601, Mod Counter: 67
 Clean: No, Status: 0
 sectPerSU: 128, SUsPerPU: 1, SUsPerRU: 1
 Queue size: 100, blocksize: 512, numBlocks: 19540864
 RAID Level: 1
 Autoconfig: Yes
 Root partition: Yes
 Last configured as: raid0
Parity status: clean
Reconstruction is 100% complete.
Parity Re-write is 100% complete.
Copyback is 100% complete.

Chapter 17. NetBSD Logical Volume Manager (LVM) configuration

NetBSD LVM allows logical volume management on NetBSD systems,
 with a well known user interface, which is the same as the Linux
 LVM2 tools.

NetBSD LVM is built on Linux lvm2tools and libdevmapper,
 together with a BSD-licensed device-mapper kernel driver
 specially written for NetBSD.

The LVM driver allows the user to manage
 available disk space effectively and efficiently. Disk space from
 several disks, and partitions, known as “Physical Volumes”, can
 be added to “Volume Groups”, which is the pool of available
 disk space for “Logical Partitions”
 aka Logical Volumes.

Logical Volumes can be grown and shrunk at will using the
 LVM utilities.

The basic building block is the Physical Volume. This is a disk,
 or a part of a disk, which is used to store data.

Physical Volumes are aggregated together to make Volume Groups, or
 VGs. Typically, Volume Groups are used to aggregate
 storage for the same functional unit. Typical Volume Groups could thus
 be named “Audio”, “Multimedia” or “Documents”.
 By segregating storage requirements in this functional way, the same type
 of resilience and redundancy is applied to the whole of the functional
 unit.

The steps required to setup a LVM are as follows:

	Install physical media

	Configure kernel support

	Configure system, install tools

	

 Optional step

Disklabel each volume member of the LVM

	Initialize the LVM disk devices

	Create a volume group from initialized disks

	Create Logical volume from created Volume group

	Create a filesystem on the new LV device

	Mount the LV filesystem

This example features a LVM setup on NetBSD/i386.

17.1. Anatomy of NetBSD Logical Volume Manager

Figure 17.1. Anatomy of Logical Volume Management

[image: Anatomy of Logical Volume Management]

	
Volume Group

The Volume Group is a disk space pool from which the user creates Logical Volumes and
 to which Physical Volumes can be added. It is the basic administration unit of the NetBSD
 LVM implementation.

	
Physical Volume

A physical volume is the basic unit in a LVM structure. Every PV consists of small
 disk space chunks called Physical Extends. Every Volume Group must have at least one PV.
 A PV can be created on hard disks or hard disk like devices such as raid, ccd, or cgd device.

	
Logical Volume

The Logical Volume is a logical partition created from disk space assigned to the Volume Group.
 LV can be newfsed and mounted as any other pseudo-disk device. Lvm tools use functionality exported by
 the device-mapper driver in the kernel to create the LV.

	
Physical Extents

Each physical volume is divided chunks of disk space. The default size is 4MB. Every LV
 size is rounded by PE size. The LV is created by mapping Logical Extends in the LV to Physical
 extends in a Volume group.

	
Logical Extents

Each logical volume is split into chunks of disk space, known as logical extents. The extent
 size is the same for all logical volumes in the volume group.

	
Physical Extents mapping

Every LV consists of “LEs” mapped to “PEs” mapped by a target mapping.
 Currently, the following mappings are defined.

	

 Linear Mapping

will linearly assign range of PEs to LEs.

For example it can map 100 PEs from PV 1 to LV 1 and
 another 100 PEs from PV 0.

	

 Stripe Mapping

will interleave the chunks of the logical extents across a number of physical
 volumes.

	
Snapshots

A facility provided by LVM is 'snapshots'. Whilst in standard NetBSD, the “fss”
 driver can be used to provide filesystem snapshots at a filesystem level,
 the snapshot facility in the LVM allows the administrator to
 create a logical block device which presents an exact copy of a logical volume, frozen at some
 point in time. This facility does require that the snapshot be made at a time when the data on
 the logical volume is in a consistent state.

Warning

Snapshot feature is not fully implemented in LVM in NetBSD and should not be used in
 production.

17.2. Install physical media

This step is at your own discretion, depending on your platform and the hardware at your
 disposal. LVM can be used with disklabel partitions or even with standard
 partitions created with fdisk.

From my “dmesg”:

Disk #1:
 probe(esp0:0:0): max sync rate 10.00MB/s
 sd0 at scsibus0 target 0 lun 0: <SEAGATE, ST32430N SUN2.1G, 0444> SCSI2 0/direct fixed
 sd0: 2049 MB, 3992 cyl, 9 head, 116 sec, 512 bytes/sect x 4197405 sectors

 Disk #2
 probe(esp0:1:0): max sync rate 10.00MB/s
 sd1 at scsibus0 target 1 lun 0: <SEAGATE, ST32430N SUN2.1G, 0444> SCSI2 0/direct fixed
 sd1: 2049 MB, 3992 cyl, 9 head, 116 sec, 512 bytes/sect x 4197405 sectors

 Disk #3
 probe(esp0:2:0): max sync rate 10.00MB/s
 sd2 at scsibus0 target 2 lun 0: <SEAGATE, ST11200N SUN1.05, 9500> SCSI2 0/direct fixed
 sd2: 1005 MB, 1872 cyl, 15 head, 73 sec, 512 bytes/sect x 2059140 sectors

 Disk #4
 probe(esp0:3:0): max sync rate 10.00MB/s
 sd3 at scsibus0 target 3 lun 0: <SEAGATE, ST11200N SUN1.05, 8808 > SCSI2 0
 sd3: 1005 MB, 1872 cyl, 15 head, 73 sec, 512 bytes/sect x 2059140 sectors

17.3. Configure Kernel Support

The following kernel configuration directive is needed to provide LVM device support. It
 is provided as a kernel module, so that no extra modifications need be made to a standard
 NetBSD kernel.

 pseudo-device dm

If you do not want to rebuild your kernel only because of LVM support
 you can use dm kernel module. The devmapper kernel module can be loaded on
 your system. To get the current status of modules in the kernel, the
 modstat is used:

vm1# modstat
 NAME CLASS SOURCE REFS SIZE REQUIRES
 cd9660 vfs filesys 0 21442 -
 coredump misc filesys 1 2814 -
 exec_elf32 misc filesys 0 6713 coredump
 exec_script misc filesys 0 1091 -
 ffs vfs boot 0 163040 -
 kernfs vfs filesys 0 10201 -
 ptyfs vfs filesys 0 7852 -

When the modload dm is issued, the dm kernel module
 will be loaded:

vm1# modstat
 NAME CLASS SOURCE REFS SIZE REQUIRES
 cd9660 vfs filesys 0 21442 -
 coredump misc filesys 1 2814 -
 dm misc filesys 0 14448 -
 exec_elf32 misc filesys 0 6713 coredump
 exec_script misc filesys 0 1091 -
 ffs vfs boot 0 163040 -
 kernfs vfs filesys 0 10201 -
 ptyfs vfs filesys 0 7852 -

17.4. Disklabel each physical volume member of the LVM

Each physical volume disk in LVM will need a special filesystem established. In this
 example, I will need to disklabel:

 /dev/rsd0d

 /dev/rsd1d

 /dev/rsd2d

 /dev/rsd3d

It should be borne in mind that it is possible to use the NetBSD vnd driver
 to make standard filesystem space appear in the system as a disk device.

Note

Always remember to disklabel the character device, not the block device, in
 /dev/r{s,w}d*

Note

On all platforms except amd64 and i386 where the d partition is used for this,
 the c slice is symbolic of the entire NetBSD partition and is
 reserved.

You will probably want to remove any pre-existing disklabels on the physical volume disks
 in the LVM. This can be accomplished in one of two ways with the dd(1) command:

dd if=/dev/zero of=/dev/rsd0d bs=8k count=1
 # dd if=/dev/zero of=/dev/rsd1d bs=8k count=1
 # dd if=/dev/zero of=/dev/rsd2d bs=8k count=1
 # dd if=/dev/zero of=/dev/rsd3d bs=8k count=1

If your port uses a MBR (Master Boot Record) to partition the disks so that the NetBSD
 partitions are only part of the overall disk, and other OSs like Windows or Linux use other
 parts, you can void the MBR and all partitions on disk by using the command:

dd if=/dev/zero of=/dev/rsd0d bs=8k count=1
 # dd if=/dev/zero of=/dev/rsd1d bs=8k count=1
 # dd if=/dev/zero of=/dev/rsd2d bs=8k count=1
 # dd if=/dev/zero of=/dev/rsd3d bs=8k count=1

This will make all data on the entire disk inaccessible. Note that the entire disk is
 slice d on i386 (and some other ports), and c
 elsewhere (e.g. on sparc). See the “kern.rawpartition” sysctl - "3" means "d",
 "2" means "c".

The default disklabel for the disk will look similar to this:

disklabel -r sd0
 [...snip...]
 bytes/sector: 512
 sectors/track: 63
 tracks/cylinder: 16
 sectors/cylinder: 1008
 cylinders: 207
 total sectors: 208896
 rpm: 3600
 interleave: 1
 trackskew: 0
 cylinderskew: 0
 headswitch: 0 # microseconds
 track-to-track seek: 0 # microseconds
 drivedata: 0

 4 partitions:
 # size offset fstype [fsize bsize cpg/sgs]
 a: 208896 0 4.2BSD 0 0 0 # (Cyl. 0 - 207*)
 d: 208896 0 unused 0 0 # (Cyl. 0 - 207*)

You will need to create one “slice” on the NetBSD partition of the disk
 that consumes the entire partition. The slice must begin at least two sectors after end of
 disklabel part of disk. On i386 it is sector “63”. Therefore, the
 “size” value should be “total sectors” minus 2x
 “sectors”. Edit your disklabel accordingly:

disklabel -e sd0

Note

The offset of a slice of type “4.2BSD” must be a multiple of the
 “sectors” value.

Note

Be sure to export EDITOR=[path to your favorite editor] before
 editing the disklabels.

Note

The slice must be fstype 4.2BSD.

Because there will only be one slice on this partition, you can recycle the
 d slice (normally reserved for symbolic uses). Change your disklabel to the
 following:

3 partitions:
 # size offset fstype [fsize bsize cpg]
 d: 4197403 65 4.2BSD # (Cyl. 1 - 4020*)

Optionally you can setup a slice other than d to use, simply adjust
 accordingly below:

3 partitions:
 # size offset fstype [fsize bsize cpg]
 a: 4197403 65 4.2BSD # (Cyl. 1 - 4020*)
 c: 4197405 0 unused 1024 8192 # (Cyl. 0 - 4020*)

Be sure to write the label when you have completed. Disklabel will object to your
 disklabel and prompt you to re-edit if it does not pass its sanity checks.

17.5. Create Physical Volumes

Once all disks are properly labeled, you will need to create physical volume on them.
 Every partition/disk added to LVM must have physical volume header on start
 of it. All informations, like Volume group where Physical volume belongs are stored in this
 header.

 # lvm pvcreate /dev/rwd1[ad]

Status of physical volume can be viewed with pvdisplay command.

 # lvm pvdisplay

17.6. Create Volume Group

Once all disks are properly labeled with physical volume header, volume group must be
 created from them. Volume Group is pool of PEs from which administrator can create Logical
 Volumes “partitions”.

 # lvm vgcreate vg0 /dev/rwd1[ad]

	vg0 is name of Volume Group

	/dev/rwd1[ad] is Physical Volume

Volume group can be later extended/reduced with vgextend and vgreduce commands. These
 commands adds physical volumes to VG.

 # lvm vgextend vg0 /dev/rwd1[ad]

 # lvm vgreduce vg0 /dev/rwd1[ad]

Status of Volume group can be viewed with vgdisplay command.

 # lvm vgdisplay vg0

17.7. Create Logical Volume

Once Volume Group was created administrator can create “logical partitions”
 volumes.

 # lvm lvcreate -L 20M -n lv1 vg0

	vg0 is name of Volume Group

	-L 20M is size of Logical Volume

	-n lv1 is name of Logical Volume

Logical Volume can be later extended/reduced with lvextend and lvreduce commands.

 # lvm lvextend -L+20M /dev/vg0/lv1

 # lvm lvreduce -L-20M /dev/vg0/lv1

Note

To shrink the lv partition, you must first shrink the filesystem
 using resize_ffs(8) (which as of NetBSD 9.0 does not support shrinking of FFSv2 yet).

Status of Logical Volume can be viewed with lvdisplay command.

 # lvm lvdisplay lv0/lv1

After reboot all functional LV's in defined Volume group can be activated with command

 # lvm vgchange -a y

17.8. Example: LVM with Volume groups located on raid1

Motivation for using raid 1 disk as physical volume disk for Volume Group is disk reliability.
 With PV on raid 1 disk it is possible to use Logical Volumes even after disk failure.

17.8.1. Loading Device-Mapper driver

Before we can start work with the LVM tools. We have to be sure that
 NetBSD dm driver was properly compiled into the kernel or loaded as a module.
 Easiest way how to find if we have dm driver available is run modstat.
 For more information see
 Configure Kernel Support chapter.

17.8.2. Preparing raid1 installation

Following example raid configuration defined in
 Raid 1 configuration user will set up clean
 raid1 disk device. With 2 disks in a mirror mode.

Figure 17.2. Example raid 1 configuration

vi /var/tmp/raid0.conf
START array
1 2 0

START disks
/dev/wd2a
/dev/wd1a

START layout
128 1 1 1

START queue
fifo 100

raidctl -v -C /var/tmp/raid0.conf raid0
raid0: Component /dev/wd1a being configured at col: 0
Column: 0 Num Columns: 0
Version: 0 Serial Number: 0 Mod Counter: 0
Clean: No Status: 0
Column out of alignment for: /dev/wd2a
Number of columns do not match for: /dev/wd2a
/dev/wd2a is not clean!
raid0: Component /dev/wd1a being configured at col: 1
Column: 0 Num Columns: 0
Version: 0 Serial Number: 0 Mod Counter: 0
Clean: No Status: 0
Column out of alignment for: /dev/wd1a
Number of columns do not match for: /dev/wd1a
/dev/wd1a is not clean!
raid0: There were fatal errors
raid0: Fatal errors being ignored.
raid0: RAID Level 1
raid0: Components: /dev/wd2a /dev/wd1a
raid0: Total Sectors: 19540864 (9541 MB)
raidctl -v -I 2004082401 raid0
raidctl -v -i raid0
Initiating re-write of parity
tail -1 /var/log/messages
raid0: Error re-writing parity!
raidctl -v -s raid0
Components:
/dev/wd2a: optimal
/dev/wd1a: optimal
No spares.
Component label for /dev/wd1a:
Row: 0, Column: 1, Num Rows: 1, Num Columns: 2
Version: 2, Serial Number: 2004082401, Mod Counter: 7
Clean: No, Status: 0
sectPerSU: 128, SUsPerPU: 1, SUsPerRU: 1
Queue size: 100, blocksize: 512, numBlocks: 19540864
RAID Level: 1
Autoconfig: No
Root partition: No
Last configured as: raid0
Parity status: DIRTY
Reconstruction is 100% complete.
Parity Re-write is 100% complete.
Copyback is 100% complete.
Component label for /dev/wd2a:
Row: 0, Column: 1, Num Rows: 1, Num Columns: 2
Version: 2, Serial Number: 2004082401, Mod Counter: 7
Clean: No, Status: 0
sectPerSU: 128, SUsPerPU: 1, SUsPerRU: 1
Queue size: 100, blocksize: 512, numBlocks: 19540864
RAID Level: 1
Autoconfig: No
Root partition: No
Last configured as: raid0
Parity status: DIRTY
Reconstruction is 100% complete.
Parity Re-write is 100% complete.
Copyback is 100% complete.

After setting up raid we need to create disklabel on raid disk.

On i386:

 # disklabel -r -e -I raid0
type: RAID
disk: raid
label: fictitious
flags:
bytes/sector: 512
sectors/track: 128
tracks/cylinder: 8
sectors/cylinder: 1024
cylinders: 19082
total sectors: 19540864
rpm: 3600
interleave: 1
trackskew: 0
cylinderskew: 0
headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0

size offset fstype [fsize bsize cpg/sgs]
a: 19540789 65 4.2BSD 0 0 0 # (Cyl. 0 - 18569)
d: 19540864 0 unused 0 0 # (Cyl. 0 - 19082*)

On sparc64:

disklabel -r -e -I raid0
[...snip...]
total sectors: 19539968
[...snip...]
2 partitions:
size offset fstype [fsize bsize cpg/sgs]
a: 19540793 65 4.2BSD 0 0 0 # (Cyl. 0 - 18799)
c: 19539968 0 unused 0 0 # (Cyl. 0 - 19081)

Partitions should be created with offset 65, because sectors <
 than 65 sector are marked as readonly and therefore can't be rewritten.

17.8.3. Creating PV, VG on raid disk

Physical volumes can be created on any disk like device and on any
 partition on it we can use a or d on sparc64 c partitions. PV will label
 selected partition as LVM used and add needed information to it.

PV is created on char disk device entry. As any other disk operation
 in the NetBSD.

lvm pvcreate /dev/rraid0a

For our example purpose I will create vg00 Volume Group. The first
 parameter of vgcreate command is Volume Group name and second is PV
 created on raid. If you later found that VG size is no sufficient and you
 need more space we will can add it with vgextend
 command.

lvm vgcreate vg00 /dev/rraid0a

lvm vgextend vg00 /dev/rraid1a

Warning

If you add non-raid PV to your Volume Group your data are not safe
 anymore. Therefore you should add raid based PV to VG if you want to
 keep your data safe.

17.8.4. Creating LV's from VG located on raid disk

For our example purpose we will create Logical Volume named lv0. If
 you later found that LV size is not sufficient for you can add it with
 lvresize command.

Note

You must also resize the filesystem, when you resize LV,
 otherwise you will not see any filesystem change when you mount LV.

Warning

 Be aware that to shrink LV you must first shrink the filesystem
 (and shrinking of FFSv2 filesystems is not supported yet as of NetBSD 9.0).

 This means that for FFSv2 filesystems, the -L-* option is not available in NetBSD.

lvm lvcreate -n lv0 -L 2G vg00

lvm lvresize -L+2G vg00/lv0

 All lv device nodes are created in the /dev/vg00/
 directory. File system can be create on LV with this command. After
 filesystem creation LV can be mounted to system.

newfs -O2 /dev/vg00/rlv0

mount /dev/vg00/lv0 /mnt/

17.8.5. Integration of LV's in to the system

For Proper LVM integration you have to enable lvm rc.d script,
 which detect LVs during boot and enables them. You have to add entry
 for Logical Volume to the /etc/fstab file.

cat /etc/rc.conf
[snip]
lvm=yes

cat /etc/fstab
/dev/wd0a / ffs rw 1 1
/dev/vg00/lv0 /lv0/ ffs rw 1 1
[snip]

Chapter 18. Pluggable Authentication Modules (PAM)

This article describes the underlying principles and
	mechanisms of the Pluggable Authentication Modules (PAM)
	library, and explains how to configure PAM, how to integrate
	PAM into applications, and how to write PAM modules.

 See Section D.3.2, “Networks Associates Technology's license on the PAM article” for the license
	of this chapter.

The Pluggable Authentication Modules (PAM) library is a
 generalized API for authentication-related services which allows
 a system administrator to add new authentication methods simply
 by installing new PAM modules, and to modify authentication
 policies by editing configuration files.

PAM was defined and developed in 1995 by Vipin Samar and
 Charlie Lai of Sun Microsystems, and has not changed much since.
 In 1997, the Open Group published the X/Open Single Sign-on
 (XSSO) preliminary specification, which standardized the PAM API
 and added extensions for single (or rather integrated) sign-on.
 At the time of this writing, this specification has not yet been
 adopted as a standard.

Although this article focuses primarily on FreeBSD 5.x and
 NetBSD 3.x, which both use OpenPAM, it should be equally
 applicable to FreeBSD 4.x, which uses Linux-PAM, and other
 operating systems such as Linux and Solaris™.

18.3. Terms and conventions

The terminology surrounding PAM is rather confused.
	Neither Samar and Lai's original paper nor the XSSO
	specification made any attempt at formally defining terms for
	the various actors and entities involved in PAM, and the terms
	that they do use (but do not define) are sometimes misleading
	and ambiguous. The first attempt at establishing a consistent
	and unambiguous terminology was a whitepaper written by Andrew
	G. Morgan (author of Linux-PAM) in 1999. While Morgan's
	choice of terminology was a huge leap forward, it is in this
	author's opinion by no means perfect. What follows is an
	attempt, heavily inspired by Morgan, to define precise and
	unambiguous terms for all actors and entities involved in
	PAM.

	account

	The set of credentials the applicant is requesting
	 from the arbitrator.

	applicant

	The user or entity requesting authentication.

	arbitrator

	The user or entity who has the privileges necessary
	 to verify the applicant's credentials and the authority
	 to grant or deny the request.

	chain

	A sequence of modules that will be invoked in
	 response to a PAM request. The chain includes
	 information about the order in which to invoke the
	 modules, what arguments to pass to them, and how to
	 interpret the results.

	client

	The application responsible for initiating an
	 authentication request on behalf of the applicant and
	 for obtaining the necessary authentication information
	 from him.

	facility

	One of the four basic groups of functionality
	 provided by PAM: authentication, account management,
	 session management and authentication token
	 update.

	module

	A collection of one or more related functions
	 implementing a particular authentication facility,
	 gathered into a single (normally dynamically loadable)
	 binary file and identified by a single name.

	policy

	The complete set of configuration statements
	 describing how to handle PAM requests for a particular
	 service. A policy normally consists of four chains, one
	 for each facility, though some services do not use all
	 four facilities.

	server

	The application acting on behalf of the arbitrator
	 to converse with the client, retrieve authentication
	 information, verify the applicant's credentials and
	 grant or deny requests.

	service

	A class of servers providing similar or related
	 functionality and requiring similar authentication. PAM
	 policies are defined on a per-service basis, so all
	 servers that claim the same service name will be subject
	 to the same policy.

	session

	The context within which service is rendered to the
	 applicant by the server. One of PAM's four facilities,
	 session management, is concerned exclusively with
	 setting up and tearing down this context.

	token

	A chunk of information associated with the account,
	 such as a password or passphrase, which the applicant
	 must provide to prove his identity.

	transaction

	A sequence of requests from the same applicant to
	 the same instance of the same server, beginning with
	 authentication and session set-up and ending with
	 session tear-down.

This section aims to illustrate the meanings of some of
	the terms defined above by way of a handful of simple
	examples.

18.3.2.1. Client and server are one

This simple example shows alice
	 su(1)'ing to root.

$ whoami
alice
$ ls -l `which su`
-r-sr-xr-x 1 root wheel 10744 Dec 6 19:06 /usr/bin/su
$ su -
Password: xi3kiune
whoami
root

	The applicant is alice.

	The account is root.

	The su(1) process is both client and
	 server.

	The authentication token is
	 xi3kiune.

	The arbitrator is root, which is
	 why su(1) is setuid root.

18.3.2.2. Client and server are separate

The example below shows eve try to
	 initiate an ssh(1) connection to
	 login.example.com, ask to log in as
	 bob, and succeed. Bob should have chosen
	 a better password!

$ whoami
eve
$ ssh bob@login.example.com
bob@login.example.com's password: god
Last login: Thu Oct 11 09:52:57 2001 from 192.168.0.1
NetBSD 3.0 (LOGIN) #1: Thu Mar 10 18:22:36 WET 2005

Welcome to NetBSD!
$

	The applicant is eve.

	The client is Eve's ssh(1) process.

	The server is the sshd(8) process on
	 login.example.com

	The account is bob.

	The authentication token is
	 god.

	Although this is not shown in this example, the
	 arbitrator is root.

The following is FreeBSD's default policy for
	 sshd:

sshd	auth		required	pam_nologin.so	no_warn
sshd	auth		required	pam_unix.so	no_warn try_first_pass
sshd	account		required	pam_login_access.so
sshd	account		required	pam_unix.so
sshd	session		required	pam_lastlog.so	no_fail
sshd	password	required	pam_permit.so

	This policy applies to the sshd
	 service (which is not necessarily restricted to the
	 sshd(8) server.)

	auth, account,
	 session and
	 password are facilities.

	pam_nologin.so,
	 pam_unix.so,
	 pam_login_access.so,
	 pam_lastlog.so and
	 pam_permit.so are modules. It is
	 clear from this example that
	 pam_unix.so provides at least two
	 facilities (authentication and account
	 management.)

There are some differences between FreeBSD and NetBSD PAM
	 policies:

	By default, every configuration is done
	 under /etc/pam.d.

	If configuration is non-existent, you will not have access
	 to the system, in contrast with FreeBSD that has a default
	 policy of allowing authentication.

	For authentication, NetBSD forces at least one
	 required, requisite or
	 binding module to be present.

18.4.1. Facilities and
	primitives

The PAM API offers six different authentication primitives
	grouped in four facilities, which are described below.

	auth

	
Authentication. This facility
	 concerns itself with authenticating the applicant and
	 establishing the account credentials. It provides two
	 primitives:

	pam_authenticate(3) authenticates the
		 applicant, usually by requesting an authentication
		 token and comparing it with a value stored in a
		 database or obtained from an authentication
		 server.

	pam_setcred(3) establishes account
		 credentials such as user ID, group membership and
		 resource limits.

	account

	
Account management. This
	 facility handles non-authentication-related issues of
	 account availability, such as access restrictions based
	 on the time of day or the server's work load. It
	 provides a single primitive:

	pam_acct_mgmt(3) verifies that the
		 requested account is available.

	session

	
Session management. This
	 facility handles tasks associated with session set-up
	 and tear-down, such as login accounting. It provides
	 two primitives:

	pam_open_session(3) performs tasks
		 associated with session set-up: add an entry in the
		 utmp and
		 wtmp databases, start an SSH
		 agent, etc.

	pam_close_session(3) performs tasks
		 associated with session tear-down: add an entry in
		 the utmp and
		 wtmp databases, stop the SSH
		 agent, etc.

	password

	
Password management. This
	 facility is used to change the authentication token
	 associated with an account, either because it has
	 expired or because the user wishes to change it. It
	 provides a single primitive:

	pam_chauthtok(3) changes the authentication
		 token, optionally verifying that it is sufficiently
		 hard to guess, has not been used previously,
		 etc.

Modules are a very central concept in PAM; after all,
	they are the “M” in “PAM”. A PAM
	module is a self-contained piece of program code that
	implements the primitives in one or more facilities for one
	particular mechanism; possible mechanisms for the
	authentication facility, for instance, include the UNIX®
	password database, NIS, LDAP and Radius.

FreeBSD and NetBSD implement each mechanism in a single module,
	 named
	 pam_mechanism.so
	 (for instance, pam_unix.so for the UNIX®
	 mechanism.) Other implementations sometimes have separate
	 modules for separate facilities, and include the facility
	 name as well as the mechanism name in the module name. To
	 name one example, Solaris™ has a
	 pam_dial_auth.so.1 module which is
	 commonly used to authenticate dialup users.
	 Also, almost every module has a man page with the same name,
	 i.e.: pam_unix(8) explains how the
	 pam_unix.so module works.

18.4.2.2. Module Versioning

FreeBSD's original PAM implementation, based on
	 Linux-PAM, did not use version numbers for PAM modules.
	 This would commonly cause problems with legacy applications,
	 which might be linked against older versions of the system
	 libraries, as there was no way to load a matching version of
	 the required modules.

OpenPAM, on the other hand, looks for modules that have
	 the same version number as the PAM library (currently 2 in
	 FreeBSD and 0 in NetBSD),
	 and only falls back to an unversioned module if no versioned
	 module could be loaded. Thus legacy modules can be provided
	 for legacy applications, while allowing new (or newly built)
	 applications to take advantage of the most recent
	 modules.

Although Solaris™ PAM modules commonly have a version
	 number, they're not truly versioned, because the number is a
	 part of the module name and must be included in the
	 configuration.

There isn't a common directory for storing PAM modules.
	Under FreeBSD, they are located at /usr/lib
	and, under NetBSD, you can find them in
	/usr/lib/security.	

18.4.3. Chains and
	policies

When a server initiates a PAM transaction, the PAM library
	tries to load a policy for the service specified in the
	pam_start(3) call. The policy specifies how
	authentication requests should be processed, and is defined in
	a configuration file. This is the other central concept in
	PAM: the possibility for the admin to tune the system security
	policy (in the wider sense of the word) simply by editing a
	text file.

A policy consists of four chains, one for each of the four
	PAM facilities. Each chain is a sequence of configuration
	statements, each specifying a module to invoke, some
	(optional) parameters to pass to the module, and a control
	flag that describes how to interpret the return code from the
	module.

Understanding the control flags is essential to
	understanding PAM configuration files. There are a number of
	different control flags:

	binding

	
If the module succeeds and no earlier module in the
	 chain has failed, the chain is immediately terminated
	 and the request is granted. If the module fails, the
	 rest of the chain is executed, but the request is
	 ultimately denied.

This control flag was introduced by Sun in Solaris™ 9
	 (SunOS™ 5.9), and is also supported by OpenPAM.

	required

	If the module succeeds, the rest of the chain is
	 executed, and the request is granted unless some other
	 module fails. If the module fails, the rest of the
	 chain is also executed, but the request is ultimately
	 denied.

	requisite

	If the module succeeds, the rest of the chain is
	 executed, and the request is granted unless some other
	 module fails. If the module fails, the chain is
	 immediately terminated and the request is denied.

	sufficient

	
If the module succeeds and no earlier module in the
	 chain has failed, the chain is immediately terminated
	 and the request is granted. If the module fails, the
	 module is ignored and the rest of the chain is
	 executed.

As the semantics of this flag may be somewhat
	 confusing, especially when it is used for the last
	 module in a chain, it is recommended that the
	 binding control flag be used instead
	 if the implementation supports it.

	optional

	The module is executed, but its result is ignored.
	 If all modules in a chain are marked
	 optional, all requests will always be
	 granted.

When a server invokes one of the six PAM primitives, PAM
	retrieves the chain for the facility the primitive belongs to,
	and invokes each of the modules listed in the chain, in the
	order they are listed, until it reaches the end, or determines
	that no further processing is necessary (either because a
	binding or
	sufficient module succeeded, or because a
	requisite module failed.) The request is
	granted if and only if at least one module was invoked, and
	all non-optional modules succeeded.

Note that it is possible, though not very common, to have
	the same module listed several times in the same chain. For
	instance, a module that looks up user names and passwords in a
	directory server could be invoked multiple times with
	different parameters specifying different directory servers to
	contact. PAM treat different occurrences of the same module
	in the same chain as different, unrelated modules.

The lifecycle of a typical PAM transaction is described
	below. Note that if any of these steps fails, the server
	should report a suitable error message to the client and abort
	the transaction.

	If necessary, the server obtains arbitrator
	 credentials through a mechanism independent of
	 PAM—most commonly by virtue of having been started
	 by root, or of being setuid
	 root.

	The server calls pam_start(3) to initialize the
	 PAM library and specify its service name and the target
	 account, and register a suitable conversation
	 function.

	The server obtains various information relating to the
	 transaction (such as the applicant's user name and the
	 name of the host the client runs on) and submits it to PAM
	 using pam_set_item(3).

	The server calls pam_authenticate(3) to
	 authenticate the applicant.

	The server calls pam_acct_mgmt(3) to verify that the
	 requested account is available and valid. If the password
	 is correct but has expired, pam_acct_mgmt(3) will
	 return PAM_NEW_AUTHTOK_REQD instead of
	 PAM_SUCCESS.

	If the previous step returned
	 PAM_NEW_AUTHTOK_REQD, the server now
	 calls pam_chauthtok(3) to force the client to change
	 the authentication token for the requested account.

	Now that the applicant has been properly
	 authenticated, the server calls pam_setcred(3) to
	 establish the credentials of the requested account. It is
	 able to do this because it acts on behalf of the
	 arbitrator, and holds the arbitrator's credentials.

	Once the correct credentials have been established,
	 the server calls pam_open_session(3) to set up the
	 session.

	The server now performs whatever service the client
	 requested—for instance, provide the applicant with a
	 shell.

	Once the server is done serving the client, it calls
	 pam_close_session(3) to tear down the session.

	Finally, the server calls pam_end(3) to notify
	 the PAM library that it is done and that it can release
	 whatever resources it has allocated in the course of the
	 transaction.

18.5.1.1. The
	 /etc/pam.conf file

The traditional PAM policy file is
	 /etc/pam.conf. This file contains all
	 the PAM policies for your system. Each line of the file
	 describes one step in a chain, as shown below:

login auth required pam_nologin.so no_warn

The fields are, in order: service name, facility name,
	 control flag, module name, and module arguments. Any
	 additional fields are interpreted as additional module
	 arguments.

A separate chain is constructed for each service /
	 facility pair, so while the order in which lines for the
	 same service and facility appear is significant, the order
	 in which the individual services and facilities are listed
	 is not. The examples in the original PAM paper grouped
	 configuration lines by facility, and the Solaris™ stock
	 pam.conf still does that, but FreeBSD's
	 stock configuration groups configuration lines by service.
	 Either way is fine; either way makes equal sense.

18.5.1.2. The
	 /etc/pam.d directory

OpenPAM and Linux-PAM support an alternate configuration
	 mechanism, which is the preferred mechanism in FreeBSD and
	 NetBSD.
	 In this scheme, each policy is contained in a separate file
	 bearing the name of the service it applies to. These files
	 are stored in /etc/pam.d/.

These per-service policy files have only four fields
	 instead of pam.conf's five: the service
	 name field is omitted. Thus, instead of the sample
	 pam.conf line from the previous
	 section, one would have the following line in
	 /etc/pam.d/login:

auth required pam_nologin.so no_warn

As a consequence of this simplified syntax, it is
	 possible to use the same policy for multiple services by
	 linking each service name to a same policy file. For
	 instance, to use the same policy for the
	 su and sudo services,
	 one could do as follows:

cd /etc/pam.d
ln -s su sudo

This works because the service name is determined from
	 the file name rather than specified in the policy file, so
	 the same file can be used for multiple differently-named
	 services.

Since each service's policy is stored in a separate
	 file, the pam.d mechanism also makes it
	 very easy to install additional policies for third-party
	 software packages.

18.5.1.3. The policy search
	 order

As we have seen above, PAM policies can be found in a
	 number of places. If no configuration file is found for a
	 particular service, the /etc/pam.d/other
	 is used instead. If that file does not exist,
	 /etc/pam.conf is searched for entries
	 matching he specified service or, failing that, the "other"
	 service.

It is essential to understand that PAM's configuration
	 system is centered on chains.

18.5.2. Breakdown of a
	configuration line

As explained in the PAM policy files section, each line in
	/etc/pam.conf consists of four or more
	fields: the service name, the facility name, the control flag,
	the module name, and zero or more module arguments.

The service name is generally (though not always) the name
	of the application the statement applies to. If you are
	unsure, refer to the individual application's documentation to
	determine what service name it uses.

Note that if you use /etc/pam.d/
	instead of /etc/pam.conf, the service
	name is specified by the name of the policy file, and omitted
	from the actual configuration lines, which then start with the
	facility name.

The facility is one of the four facility keywords
	described in the Facilities and
	primitives
	section.

Likewise, the control flag is one of the four keywords
	described in the Chains and
	policies section,
	describing how to interpret the return code from the module.
	Linux-PAM supports an alternate syntax that lets you specify
	the action to associate with each possible return code, but
	this should be avoided as it is non-standard and closely tied
	in with the way Linux-PAM dispatches service calls (which
	differs greatly from the way Solaris™ and OpenPAM do it.)
	Unsurprisingly, OpenPAM does not support this syntax.

To configure PAM correctly, it is essential to understand
	how policies are interpreted.

When an application calls pam_start(3), the PAM
	library loads the policy for the specified service and
	constructs four module chains (one for each facility.) If one
	or more of these chains are empty, the corresponding chains
	from the policy for the other service are
	substituted.

When the application later calls one of the six PAM
	primitives, the PAM library retrieves the chain for the
	corresponding facility and calls the appropriate service
	function in each module listed in the chain, in the order in
	which they were listed in the configuration. After each call
	to a service function, the module type and the error code
	returned by the service function are used to determine what
	happens next. With a few exceptions, which we discuss below,
	the following table applies:

Table 18.1. PAM chain execution summary

	
	PAM_SUCCESS
	PAM_IGNORE
	other

	binding
	if (!fail) break;
	-
	fail = true;

	required
	-
	-
	fail = true;

	requisite
	-
	-
	fail = true; break;

	sufficient
	if (!fail) break;
	-
	-

	optional
	-
	-
	-

If fail is true at the end of a chain,
	or when a “break” is reached, the dispatcher
	returns the error code returned by the first module that
	failed. Otherwise, it returns
	PAM_SUCCESS.

The first exception of note is that the error code
	PAM_NEW_AUTHTOK_REQD is treated like a
	success, except that if no module failed, and at least one
	module returned PAM_NEW_AUTHTOK_REQD, the
	dispatcher will return
	PAM_NEW_AUTHTOK_REQD.

The second exception is that pam_setcred(3) treats
	binding and
	sufficient modules as if they were
	required.

The third and final exception is that
	pam_chauthtok(3) runs the entire chain twice (once for
	preliminary checks and once to actually set the password), and
	in the preliminary phase it treats
	binding and
	sufficient modules as if they were
	required.

The pam_deny(8) module is one of the simplest modules
 	 available; it responds to any request with
	 PAM_AUTH_ERR. It is useful for quickly
	 disabling a service (add it to the top of every chain), or for
	 terminating chains of sufficient
	 modules.

The pam_echo(8) module simply passes its arguments to
	 the conversation function as a
	 PAM_TEXT_INFO message. It is mostly useful
	 for debugging, but can also serve to display messages such as
	 “Unauthorized access will be prosecuted” before
	 starting the authentication procedure.

The pam_exec(8) module takes its first argument to be
	 the name of a program to execute, and the remaining arguments
	 are passed to that program as command-line arguments. One
	 possible application is to use it to run a program at login
	 time which mounts the user's home directory.

The pam_ftpusers(8) module successes if and only if
	the user is listed in /etc/ftpusers.
	Currently, in NetBSD, this module doesn't understand the
	extended syntax of ftpd(8), but this will be fixed in
	the future.
	

The pam_group(8) module accepts or rejects applicants
 	 on the basis of their membership in a particular file group
	 (normally wheel for su(1)). It is
	 primarily intended for maintaining the traditional behaviour
	 of BSD su(1), but has many other uses, such as excluding
	 certain groups of users from a particular service.

In NetBSD, there is an argument called
	 authenticate in which the user is asked to
	 authenticate using his own password.

The pam_guest(8) module allows guest logins using
	 fixed login names. Various requirements can be placed on the
	 password, but the default behaviour is to allow any password
	 as long as the login name is that of a guest account. The
	 pam_guest(8) module can easily be used to implement
	 anonymous FTP logins.

The pam_krb5(8) module provides functions to verify the
	 identity of a user and to set user specific credentials using
	 Kerberos 5. It prompts the user for a password and obtains a new
	 Kerberos TGT for the principal. The TGT is verified by obtaining a
	 service ticket for the local host. The newly acquired credentials
	 are stored in a credential cache and the environment variable
	 KRB5CCNAME is set appropriately. The credentials cache should be
	 destroyed by the user at logout with kdestroy(1).

The pam_ksu(8) module provides only authentication
	 services for Kerberos 5 to determine whether or not the
	 applicant is authorized to obtain the privileges of the target
	 account.

The pam_login_access(8) module provides an
	 implementation of the account management primitive which
	 enforces the login restrictions specified in the
	 login.access(5) table.

The pam_nologin(8) module refuses non-root logins
	 when /var/run/nologin exists. This file
	 is normally created by shutdown(8) when less than five
	 minutes remain until the scheduled shutdown time.

The pam_permit(8) module is one of the simplest
	 modules available; it responds to any request with
	 PAM_SUCCESS. It is useful as a placeholder
	 for services where one or more chains would otherwise be
	 empty.

The pam_radius(8) module provides authentication
	 services based upon the RADIUS (Remote Authentication Dial In
	 User Service) protocol.

The pam_rhosts(8) module provides only
	 authentication services. It reports success if and only if the
	 target user's ID is not 0 and the remote host and user are
	 listed in /etc/hosts.equiv or in the
	 target user's ~/.rhosts.

The pam_rootok(8) module reports success if and only
	 if the real user id of the process calling it (which is
	 assumed to be run by the applicant) is 0. This is useful for
	 non-networked services such as su(1) or passwd(1),
	 to which the root should have automatic
	 access.

The pam_securetty(8) module provides only account
	 services. It is used when the applicant is attempting to
	 authenticate as superuser, and the process is attached to an
	 insecure TTY.

The pam_self(8) module reports success if and only if
	 the names of the applicant matches that of the target account.
	 It is most useful for non-networked services such as
	 su(1), where the identity of the applicant can be easily
	 verified.

The pam_ssh(8) module provides both authentication
	 and session services. The authentication service allows users
	 who have passphrase-protected SSH secret keys in their
	 ~/.ssh directory to authenticate
	 themselves by typing their passphrase. The session service
	 starts ssh-agent(1) and preloads it with the keys that
	 were decrypted in the authentication phase. This feature is
	 particularly useful for local logins, whether in X (using
	 xdm(1) or another PAM-aware X login manager) or at the
	 console.

This module implements what is fundamentally a password
	 authentication scheme. Care should be taken to only use this
	 module over a secure session (secure TTY, encrypted session, etc.),
	 otherwise the user's SSH passphrase could be compromised.

Additional consideration should be given to the use of
	 pam_ssh(8). Users often assume that file permissions are
 sufficient to protect their SSH keys, and thus use weak or no
	 passphrases. Since the system administrator has no effective
	 means of enforcing SSH passphrase quality, this has the potential
	 to expose the system to security risks.

The pam_unix(8) module implements traditional UNIX®
 	 password authentication, using getpwnam(3) under FreeBSD
	 or getpwnam_r(3) under NetBSD to obtain the
	 target account's password and compare it with the one provided
	 by the applicant. It also provides account management
	 services (enforcing account and password expiration times) and
	 password-changing services. This is probably the single most
	 useful module, as the great majority of admins will want to
	 maintain historical behaviour for at least some
	 services.

18.6.2. NetBSD-specific PAM Modules

The pam_skey(8) module implements S/Key One Time
	 Password (OTP) authentication methods, using the
	 /etc/skeykeys database.

18.7. PAM Application Programming

This section has not yet been written.

18.8. PAM Module Programming

This section has not yet been written.

18.9. Sample PAM Application

The following is a minimal implementation of su(1)
 using PAM. Note that it uses the OpenPAM-specific
 openpam_ttyconv(3) conversation function, which is
 prototyped in
 security/openpam.h.
 If you wish
 build this application on a system with a different PAM library,
 you will have to provide your own conversation function. A
 robust conversation function is surprisingly difficult to
 implement; the one presented in the
 Sample PAM Conversation
 Function sub-chapter is a good
 starting point, but should not be used in real-world
 applications.

#include <sys/param.h>
#include <sys/wait.h>

#include <err.h>
#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <syslog.h>
#include <unistd.h>

#include <security/pam_appl.h>
#include <security/openpam.h>	/* for openpam_ttyconv() */

extern char **environ;

static pam_handle_t *pamh;
static struct pam_conv pamc;

static void
usage(void)
{

	fprintf(stderr, "Usage: su [login [args]]\n");
	exit(1);
}

int
main(int argc, char *argv[])
{
	char hostname[MAXHOSTNAMELEN];
	const char *user, *tty;
	char **args, **pam_envlist, **pam_env;
	struct passwd *pwd;
	int o, pam_err, status;
	pid_t pid;

	while ((o = getopt(argc, argv, "h")) != -1)
		switch (o) {
		case 'h':
		default:
			usage();
		}

	argc -= optind;
	argv += optind;

	if (argc > 0) {
		user = *argv;
		--argc;
		++argv;
	} else {
		user = "root";
	}

	/* initialize PAM */
	pamc.conv = &openpam_ttyconv;
	pam_start("su", user, &pamc, &pamh);

	/* set some items */
	gethostname(hostname, sizeof(hostname));
	if ((pam_err = pam_set_item(pamh, PAM_RHOST, hostname)) != PAM_SUCCESS)
		goto pamerr;
	user = getlogin();
	if ((pam_err = pam_set_item(pamh, PAM_RUSER, user)) != PAM_SUCCESS)
		goto pamerr;
	tty = ttyname(STDERR_FILENO);
	if ((pam_err = pam_set_item(pamh, PAM_TTY, tty)) != PAM_SUCCESS)
		goto pamerr;

	/* authenticate the applicant */
	if ((pam_err = pam_authenticate(pamh, 0)) != PAM_SUCCESS)
		goto pamerr;
	if ((pam_err = pam_acct_mgmt(pamh, 0)) == PAM_NEW_AUTHTOK_REQD)
		pam_err = pam_chauthtok(pamh, PAM_CHANGE_EXPIRED_AUTHTOK);
	if (pam_err != PAM_SUCCESS)
		goto pamerr;

	/* establish the requested credentials */
	if ((pam_err = pam_setcred(pamh, PAM_ESTABLISH_CRED)) != PAM_SUCCESS)
		goto pamerr;

	/* authentication succeeded; open a session */
	if ((pam_err = pam_open_session(pamh, 0)) != PAM_SUCCESS)
		goto pamerr;

	/* get mapped user name; PAM may have changed it */
	pam_err = pam_get_item(pamh, PAM_USER, (const void **)&user);
	if (pam_err != PAM_SUCCESS || (pwd = getpwnam(user)) == NULL)
		goto pamerr;

	/* export PAM environment */
	if ((pam_envlist = pam_getenvlist(pamh)) != NULL) {
		for (pam_env = pam_envlist; *pam_env != NULL; ++pam_env) {
			putenv(*pam_env);
			free(*pam_env);
		}
		free(pam_envlist);
	}

	/* build argument list */
	if ((args = calloc(argc + 2, sizeof *args)) == NULL) {
		warn("calloc()");
		goto err;
	}
	*args = pwd->pw_shell;
	memcpy(args + 1, argv, argc * sizeof *args);

	/* fork and exec */
	switch ((pid = fork())) {
	case -1:
		warn("fork()");
		goto err;
	case 0:
		/* child: give up privs and start a shell */

		/* set uid and groups */
		if (initgroups(pwd->pw_name, pwd->pw_gid) == -1) {
			warn("initgroups()");
			_exit(1);
		}
		if (setgid(pwd->pw_gid) == -1) {
			warn("setgid()");
			_exit(1);
		}
		if (setuid(pwd->pw_uid) == -1) {
			warn("setuid()");
			_exit(1);
		}
		execve(*args, args, environ);
		warn("execve()");
		_exit(1);
	default:
		/* parent: wait for child to exit */
		waitpid(pid, &status, 0);

		/* close the session and release PAM resources */
		pam_err = pam_close_session(pamh, 0);
		pam_end(pamh, pam_err);

		exit(WEXITSTATUS(status));
	}

pamerr:
	fprintf(stderr, "Sorry\n");
err:
	pam_end(pamh, pam_err);
	exit(1);
}

The following is a minimal implementation of
 pam_unix(8), offering only authentication services. It
 should build and run with most PAM implementations, but takes
 advantage of OpenPAM extensions if available: note the use of
 pam_get_authtok(3), which enormously simplifies prompting
 the user for a password.

#include <sys/param.h>

#include <pwd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

#include <security/pam_modules.h>
#include <security/pam_appl.h>

#ifndef _OPENPAM
static char password_prompt[] = "Password:";
#endif

#ifndef PAM_EXTERN
#define PAM_EXTERN
#endif

PAM_EXTERN int
pam_sm_authenticate(pam_handle_t *pamh, int flags,
	int argc, const char *argv[])
{
#ifndef _OPENPAM
	const void *ptr;
	const struct pam_conv *conv;
	struct pam_message msg;
	const struct pam_message *msgp;
	struct pam_response *resp;
#endif
	struct passwd *pwd;
	const char *user;
	char *crypt_password, *password;
	int pam_err, retry;

	/* identify user */
	if ((pam_err = pam_get_user(pamh, &user, NULL)) != PAM_SUCCESS)
		return (pam_err);
	if ((pwd = getpwnam(user)) == NULL)
		return (PAM_USER_UNKNOWN);

	/* get password */
#ifndef _OPENPAM
	pam_err = pam_get_item(pamh, PAM_CONV, &ptr);
	if (pam_err != PAM_SUCCESS)
		return (PAM_SYSTEM_ERR);
	conv = ptr;
	msg.msg_style = PAM_PROMPT_ECHO_OFF;
	msg.msg = password_prompt;
	msgp = &msg;
#endif
	password = NULL;
	for (retry = 0; retry < 3; ++retry) {
#ifdef _OPENPAM
		pam_err = pam_get_authtok(pamh, PAM_AUTHTOK,
		 (const char **)&password, NULL);
#else
		resp = NULL;
		pam_err = (*conv->conv)(1, &msgp, &resp, conv->appdata_ptr);
		if (resp != NULL) {
			if (pam_err == PAM_SUCCESS)
				password = resp->resp;
			else
				free(resp->resp);
			free(resp);
		}
#endif
		if (pam_err == PAM_SUCCESS)
			break;
	}
	if (pam_err == PAM_CONV_ERR)
		return (pam_err);
	if (pam_err != PAM_SUCCESS)
		return (PAM_AUTH_ERR);

	/* compare passwords */
	if ((!pwd->pw_passwd[0] && (flags & PAM_DISALLOW_NULL_AUTHTOK)) ||
	 (crypt_password = crypt(password, pwd->pw_passwd)) == NULL ||
	 strcmp(crypt_password, pwd->pw_passwd) != 0)
		pam_err = PAM_AUTH_ERR;
	else
		pam_err = PAM_SUCCESS;
#ifndef _OPENPAM
	free(password);
#endif
	return (pam_err);
}

PAM_EXTERN int
pam_sm_setcred(pam_handle_t *pamh, int flags,
	int argc, const char *argv[])
{

	return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_acct_mgmt(pam_handle_t *pamh, int flags,
	int argc, const char *argv[])
{

	return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_open_session(pam_handle_t *pamh, int flags,
	int argc, const char *argv[])
{

	return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_close_session(pam_handle_t *pamh, int flags,
	int argc, const char *argv[])
{

	return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_chauthtok(pam_handle_t *pamh, int flags,
	int argc, const char *argv[])
{

	return (PAM_SERVICE_ERR);
}

#ifdef PAM_MODULE_ENTRY
PAM_MODULE_ENTRY("pam_unix");
#endif

18.11. Sample PAM Conversation
 Function

The conversation function presented below is a greatly
 simplified version of OpenPAM's openpam_ttyconv(3). It is
 fully functional, and should give the reader a good idea of how
 a conversation function should behave, but it is far too simple
 for real-world use. Even if you're not using OpenPAM, feel free
 to download the source code and adapt openpam_ttyconv(3) to
 your uses; we believe it to be as robust as a tty-oriented
 conversation function can reasonably get.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include <security/pam_appl.h>

int
converse(int n, const struct pam_message **msg,
	struct pam_response **resp, void *data)
{
	struct pam_response *aresp;
	char buf[PAM_MAX_RESP_SIZE];
	int i;

	data = data;
	if (n <= 0 || n > PAM_MAX_NUM_MSG)
		return (PAM_CONV_ERR);
	if ((aresp = calloc(n, sizeof *aresp)) == NULL)
		return (PAM_BUF_ERR);
	for (i = 0; i < n; ++i) {
		aresp[i].resp_retcode = 0;
		aresp[i].resp = NULL;
		switch (msg[i]->msg_style) {
		case PAM_PROMPT_ECHO_OFF:
			aresp[i].resp = strdup(getpass(msg[i]->msg));
			if (aresp[i].resp == NULL)
				goto fail;
			break;
		case PAM_PROMPT_ECHO_ON:
			fputs(msg[i]->msg, stderr);
			if (fgets(buf, sizeof buf, stdin) == NULL)
				goto fail;
			aresp[i].resp = strdup(buf);
			if (aresp[i].resp == NULL)
				goto fail;
			break;
		case PAM_ERROR_MSG:
			fputs(msg[i]->msg, stderr);
			if (strlen(msg[i]->msg) > 0 &&
			 msg[i]->msg[strlen(msg[i]->msg) - 1] != '\n')
				fputc('\n', stderr);
			break;
		case PAM_TEXT_INFO:
			fputs(msg[i]->msg, stdout);
			if (strlen(msg[i]->msg) > 0 &&
			 msg[i]->msg[strlen(msg[i]->msg) - 1] != '\n')
				fputc('\n', stdout);
			break;
		default:
			goto fail;
		}
	}
	*resp = aresp;
	return (PAM_SUCCESS);
 fail:
 for (i = 0; i < n; ++i) {
 if (aresp[i].resp != NULL) {
 memset(aresp[i].resp, 0, strlen(aresp[i].resp));
 free(aresp[i].resp);
 }
 }
 memset(aresp, 0, n * sizeof *aresp);
	*resp = NULL;
	return (PAM_CONV_ERR);
}

Chapter 19. Tuning NetBSD

This section covers a variety of performance tuning topics.
 	It attempts to span tuning from the perspective of the system
 administrator to systems programmer. The art of performance
	tuning itself is very old. To tune something means to make
	it operate more efficiently, whether one is referring to
	a NetBSD based technical server or a vacuum cleaner, the goal
	is to improve something, whether that be the way something
	is done, how it works or how it is put together.

19.1.1.1. What is Performance Tuning?

A view from 10,000 feet pretty much dictates that
 everything we do is task oriented, this pertains to a
 NetBSD system as well. When the system boots, it
 automatically begins to perform a variety of tasks.
 When a user logs in, they usually have a wide variety
 of tasks they have to accomplish. In the scope of these
 documents, however, performance tuning strictly means to
 improve how efficient a NetBSD system performs.

The most common thought that crops into someone's mind when
 they think "tuning" is some sort of speed increase or
 decreasing the size of the kernel - while those are ways
 to improve performance, they are not the only ends an
 administrator may have to take for increasing efficiency.
 For our purposes, performance tuning means this:
 To make a NetBSD system operate in an optimum
 state.

Which could mean a variety of things, not necessarily
 speed enhancements. A good example of this is filesystem
 formatting parameters, on a system that has a lot of small
 files (say like a source repository) an administrator may
 need to increase the number of inodes by making their
 size smaller (say down to 1024k) and then increasing the
 amount of inodes. In this case the number of inodes was
 increased, however, it keeps the administrator from
 getting those nasty out of inodes messages, which
 ultimately makes the system more efficient.

Tuning normally revolves around finding and eliminating
 bottlenecks. Most of the time, such bottlenecks are
 spurious, for example, a release of Mozilla that does
 not quite handle java applets too well can cause Mozilla
 to start crunching the CPU, especially applets that are not
 done well. Occasions when processes seem to spin off into
 nowhere and eat CPU are almost always resolved with a kill.
 There are instances, however, when resolving bottlenecks
 takes a lot longer, for example, say an rsynced server
 is just getting larger and larger. Slowly, performance
 begins to fade and the administrator may have to take
 some sort of action to speed things up, however, the
 situation is relative to say an emergency like an
 instantly spiked CPU.

19.1.1.2. When does one tune?

Many NetBSD users rarely have to tune a system. The GENERIC
 kernel may run just fine and the layout/configuration of
 the system may do the job as well. By the same token, as
 a pragma it is always good to know how to tune a system.
 	 Most often tuning comes as a result of a sudden bottleneck
 issue (which may occur randomly) or a gradual loss of
 performance. It does happen in a sense to everyone
 at some point, one process that is eating the CPU is a
 bottleneck as much as a gradual increase in paging. So,
 	 the question should not be when to tune so much as when
 to learn to tune.

One last time to tune is if you can tune in a preventive
 manner (and you think you might need to) then do it.
 One example of this was on a system that needed to be
 able to reboot quickly. Instead of waiting, I did
 everything I could to trim the kernel and make sure
 there was absolutely nothing running that was not needed,
 I even removed drivers that did have devices, but were
 never used (lp). The result was reducing reboot time by
 nearly two-thirds. In the long run, it was a smart move
 to tune it before it became an issue.

19.1.1.3. What these Documents Will Not Cover

Before I wrap up the introduction, I think it is
	 important to note what these documents will not cover.
 This guide will pertain only to the core NetBSD system.
 In other words, it will not cover tuning a web server's
 configuration to make it run better; however,
 it might mention how to tune NetBSD to run better as a web
 server. The logic behind this is simple: web servers,
 database software, etc. are third party and almost
 limitless. I could easily get mired down in details
 that do not apply to the NetBSD system. Almost all third
 party software have their own documentation about tuning
 anyhow.

19.1.1.4. How Examples are Laid Out

Since there is ample man page documentation, only used
 options and arguments with examples are discussed. In
 some cases, material is truncated for brevity and not
 thoroughly discussed because, quite simply, there is
 too much. For example, every single device driver
 entry in the kernel will not be discussed, however,
 an example of determining whether or not a given system
	 needs one will be. Nothing in this Guide is concrete,
 tuning and performance are very subjective, instead, it
	 is a guide for the reader to learn what some of the tools
 available to them can do.

19.2. Tuning Considerations

Tuning a system is not really too difficult when pro-active tuning
 is the approach. This document approaches tuning from a
 “before it comes up” approach. While tuning in spare
 time is considerably easier versus say, a server that is almost
 completely bogged down to 0.1% idle time, there are still a few
 things that should be mulled over about tuning before actually
 doing it, hopefully, before a system is even installed.

19.2.1. General System Configuration

Of course, how the system is setup makes a big difference.
	Sometimes small items can be overlooked which may in fact
	cause some sort of long term performance problem.

19.2.1.1. Filesystems and Disks

How the filesystem is laid out relative to disk drives is
 very important. On hardware RAID systems, it is not such
 a big deal, but, many NetBSD users specifically use NetBSD
 on older hardware where hardware RAID simply is not an
 option. The idea of / being
 close to the first drive is a good one, but for example
 if there are several drives to choose from that will be
 the first one, is the best performing the one that
 / will be on? On a related note,
 is it wise to split off /usr? Will
 the system see heavy usage say in
 /usr/pkgsrc? It might make sense to
 slap a fast drive in and mount it under
 /usr/pkgsrc, or it might not. Like
 all things in performance tuning, this is subjective.

19.2.1.2. Swap Configuration

There are three schools of thought on swap size and about
 fifty on using split swap files with prioritizing and how
 that should be done. In the swap size arena, the vendor
 schools (at least most commercial ones) usually have
 their own formulas per OS. As an example, on a particular
 version of HP-UX with a particular version of Oracle the
 formula was:

2.5 GB * Number_of_processor

Well, that all really depends on what type of usage the
 database is having and how large it is, for instance if it
 is so large that it must be distributed, that formula
 does not fit well.

The next school of thought about swap sizing is sort of
 strange but makes some sense, it says, if possible, get
 a reference amount of memory used by the system. It goes
 something like this:

	Startup a machine and estimate total memory needs
 by running everything that may ever be
 needed at once. Databases, web servers
 whatever. Total up the amount.

	Add a few MB for padding.

	Subtract the amount of physical RAM from this total.

If the amount leftover is 3 times the size of physical RAM,
 consider getting more RAM. The problem, of course, is
 figuring out what is needed and how much space it will take.
 There is also another flaw in this method, some programs
 do not behave well. A glaring example of misbehaved
 software is web browsers.
 On certain versions of Netscape, when something went wrong
 it had a tendency to runaway and eat swap space. So, the
 more spare space available, the more time to kill it.

Last and not least is the tried and true
 PHYSICAL_RAM * 2 method. On modern machines and even
 older ones (with limited purpose of course) this seems to
 work best.

All in all, it is hard to tell when swapping will start.
 Even on small 16MB RAM machines (and less) NetBSD has
 always worked well for most people until misbehaving
 software is running.

On servers, system services have a large impact. Getting
 them to run at their best almost always requires some
 sort of network level change or a fundamental speed
 increase in the underlying system (which of course is
 what this is all about). There are instances when some
 simple solutions can improve services. One example,
 an ftp server is becoming slower and a new release of
 the ftp server that is shipped with the system comes
 out that, just happens to run faster. By upgrading the
 ftp software, a performance boost is accomplished.

Another good example where services are concerned is the
 age old question: “To use inetd or not to
 use inetd?” A great service example is pop3.
 Pop3 connections can conceivably clog up inetd. While
 the pop3 service itself starts to degrade slowly, other
 services that are multiplexed through inetd will also
 degrade (in some case more than pop3).
 Setting up pop3 to run outside of inetd and on its own
 may help.

19.2.3. The NetBSD Kernel

The NetBSD kernel obviously plays a key role in how well a
 system performs, while rebuilding and tuning the kernel is
 covered later in the text, it is worth discussing in the
 local context from a high level.

Tuning the NetBSD kernel really involves three main areas:

	removing unrequired drivers

	configuring options

	system settings

19.2.3.1. Removing Unrequired Drivers

Taking drivers out of the kernel that are not needed
 achieves several results; first, the system boots faster
 since the kernel is smaller, second again since the
 kernel is smaller, more memory is free to users and
 processes and third, the kernel tends to respond quicker.

19.2.3.2. Configuring Options

Configuring options such as enabling/disabling certain
 subsystems, specific hardware and filesystems can also
 improve performance pretty much the same way removing
 unrequired drivers does. A very simple example of this
 is a FTP server that only hosts ftp files - nothing else.
 On this particular server there is no need to have
 anything but native filesystem support and perhaps a
 few options to help speed things along. Why would it
 ever need NTFS support for example? Besides, if it
 did, support for NTFS could be added at some later
 time. In an opposite case, a workstation may need to
 support a lot of different filesystem types to share
 and access files.

19.2.3.3. System Settings

System wide settings are controlled by the kernel, a few
 examples are filesystem settings, network settings and core
 kernel settings such as the maximum number of processes.
 Almost all system settings can be at least looked at or
 modified via the sysctl facility. Examples using the
 sysctl facility are given later on.

19.3. Visual Monitoring Tools

NetBSD ships a variety of performance monitoring tools with the
 system. Most of these tools are common on all UNIX systems. In
 this section some example usage of the tools is given with
 interpretation of the output.

19.3.1. The top Process Monitor

The top monitor does exactly what it says: it displays the CPU
 hogs on the system. To run the monitor, simply type top at the
 prompt. Without any arguments, it should look like:

load averages: 0.09, 0.12, 0.08 20:23:41
21 processes: 20 sleeping, 1 on processor
CPU states: 0.0% user, 0.0% nice, 0.0% system, 0.0% interrupt, 100% idle
Memory: 15M Act, 1104K Inact, 208K Wired, 22M Free, 129M Swap free

 PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND
13663 root 2 0 1552K 1836K sleep 0:08 0.00% 0.00% httpd
 127 root 10 0 129M 4464K sleep 0:01 0.00% 0.00% mount_mfs
22591 root 2 0 388K 1156K sleep 0:01 0.00% 0.00% sshd
 108 root 2 0 132K 472K sleep 0:01 0.00% 0.00% syslogd
22597 jrf 28 0 156K 616K onproc 0:00 0.00% 0.00% top
22592 jrf 18 0 828K 1128K sleep 0:00 0.00% 0.00% tcsh
 203 root 10 0 220K 424K sleep 0:00 0.00% 0.00% cron
 1 root 10 0 312K 192K sleep 0:00 0.00% 0.00% init
 205 root 3 0 48K 432K sleep 0:00 0.00% 0.00% getty
 206 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty
 208 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty
 207 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty
13667 nobody 2 0 1660K 1508K sleep 0:00 0.00% 0.00% httpd
 9926 root 2 0 336K 588K sleep 0:00 0.00% 0.00% sshd
 200 root 2 0 76K 456K sleep 0:00 0.00% 0.00% inetd
 182 root 2 0 92K 436K sleep 0:00 0.00% 0.00% portsentry
 180 root 2 0 92K 436K sleep 0:00 0.00% 0.00% portsentry
13666 nobody -4 0 1600K 1260K sleep 0:00 0.00% 0.00% httpd

The top utility is great for finding CPU hogs, runaway
 processes or groups of processes that may be causing
 problems. The output shown above indicates that this
 particular system is in good health. Now, the next display
 should show some very different results:

load averages: 0.34, 0.16, 0.13 21:13:47
25 processes: 24 sleeping, 1 on processor
CPU states: 0.5% user, 0.0% nice, 9.0% system, 1.0% interrupt, 89.6% idle
Memory: 20M Act, 1712K Inact, 240K Wired, 30M Free, 129M Swap free

 PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND
 5304 jrf -5 0 56K 336K sleep 0:04 66.07% 19.53% bonnie
 5294 root 2 0 412K 1176K sleep 0:02 1.01% 0.93% sshd
 108 root 2 0 132K 472K sleep 1:23 0.00% 0.00% syslogd
 187 root 2 0 1552K 1824K sleep 0:07 0.00% 0.00% httpd
 5288 root 2 0 412K 1176K sleep 0:02 0.00% 0.00% sshd
 5302 jrf 28 0 160K 620K onproc 0:00 0.00% 0.00% top
 5295 jrf 18 0 828K 1116K sleep 0:00 0.00% 0.00% tcsh
 5289 jrf 18 0 828K 1112K sleep 0:00 0.00% 0.00% tcsh
 127 root 10 0 129M 8388K sleep 0:00 0.00% 0.00% mount_mfs
 204 root 10 0 220K 424K sleep 0:00 0.00% 0.00% cron
 1 root 10 0 312K 192K sleep 0:00 0.00% 0.00% init
 208 root 3 0 48K 432K sleep 0:00 0.00% 0.00% getty
 210 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty
 209 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty
 211 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty
 217 nobody 2 0 1616K 1272K sleep 0:00 0.00% 0.00% httpd
 184 root 2 0 336K 580K sleep 0:00 0.00% 0.00% sshd
 201 root 2 0 76K 456K sleep 0:00 0.00% 0.00% inetd

At first, it should seem rather obvious which process is
 hogging the system, however, what is interesting in this
 case is why. The bonnie program is a disk benchmark tool
 which can write large files in a variety of sizes and ways.
 What the previous output indicates is only that the bonnie
 program is a CPU hog, but not why.

19.3.1.1. Other Neat Things About Top

A careful examination of the manual page top(1)
 shows that there is a lot more that can be done with
 top, for example, processes can have their priority
 changed and killed. Additionally, filters can be set
 for looking at processes.

19.3.2. The sysstat utility

As the man page sysstat(1) indicates, the sysstat
 utility shows a variety of system statistics using the
 curses library. While it is running the screen is shown
 in two parts, the upper window shows the current load
 average while the lower screen depends on user commands.
 The exception to the split window view is when vmstat
 display is on which takes up the whole screen. Following
 is what sysstat looks like on a fairly idle system with no
 arguments given when it was invoked:

 /0 /1 /2 /3 /4 /5 /6 /7 /8 /9 /10
 Load Average |

 /0 /10 /20 /30 /40 /50 /60 /70 /80 /90 /100
 <idle> XX

Basically a lot of dead time there, so now have a look with
 some arguments provided, in this case,
 sysstat inet.tcp which looks like this:

 /0 /1 /2 /3 /4 /5 /6 /7 /8 /9 /10
 Load Average |

 0 connections initiated 19 total TCP packets sent
 0 connections accepted 11 data
 0 connections established 0 data (retransmit)
 8 ack-only
 0 connections dropped 0 window probes
 0 in embryonic state 0 window updates
 0 on retransmit timeout 0 urgent data only
 0 by keepalive 0 control
 0 by persist
 29 total TCP packets received
 11 potential rtt updates 17 in sequence
 11 successful rtt updates 0 completely duplicate
 9 delayed acks sent 0 with some duplicate data
 0 retransmit timeouts 4 out of order
 0 persist timeouts 0 duplicate acks
 0 keepalive probes 11 acks
 0 keepalive timeouts 0 window probes
 0 window updates

Now that is informative. The first poll is accumulative, so
 it is possible to see quite a lot of information in the
 output when sysstat is invoked. Now, while that may be
 interesting, how about a look at the buffer cache with
 sysstat bufcache:

 /0 /1 /2 /3 /4 /5 /6 /7 /8 /9 /10
 Load Average

There are 1642 buffers using 6568 kBytes of memory.

File System Bufs used % kB in use % Bufsize kB % Util %
/ 877 53 6171 93 6516 99 94
/var/tmp 5 0 17 0 28 0 60

Total: 882 53 6188 94 6544 99

Again, a pretty boring system, but great information to have
 available. While this is all nice to look at, it is time to
 put a false load on the system to see how sysstat can be
 used as a performance monitoring tool. As with top,
 bonnie++ will be used to put a high load on the I/O
 subsystems and a little on the CPU. The bufcache will be
 looked at again to see of there are any noticeable differences:

 /0 /1 /2 /3 /4 /5 /6 /7 /8 /9 /10
 Load Average |||

There are 1642 buffers using 6568 kBytes of memory.

File System Bufs used % kB in use % Bufsize kB % Util %
/ 811 49 6422 97 6444 98 99

Total: 811 49 6422 97 6444 98

First, notice that the load average shot up, this is to be
 expected of course, then, while most of the numbers are close,
 notice that utilization is at 99%. Throughout the time that
 bonnie++ was running the utilization percentage remained
 at 99, this of course makes sense, however, in a real
	troubleshooting situation, it could be indicative of a
	process doing heavy I/O on one particular file or filesystem.

In addition to screen oriented monitors and tools, the NetBSD
 system also ships with a set of command line oriented tools.
 Many of the tools that ship with a NetBSD system can be found
 on other UNIX and UNIX-like systems.

The fstat(1) utility reports the status of open files on
 the system, while it is not what many administrators
 consider a performance monitor, it can help find out if a
 particular user or process is using an inordinate amount
 of files, generating large files and similar information.

Following is a sample of some fstat output:

USER CMD PID FD MOUNT INUM MODE SZ|DV R/W
jrf tcsh 21607 wd / 29772 drwxr-xr-x 512 r
jrf tcsh 21607 3* unix stream c057acc0<-> c0553280
jrf tcsh 21607 4* unix stream c0553280 <-> c057acc0
root sshd 21597 wd / 2 drwxr-xr-x 512 r
root sshd 21597 0 / 11921 crw-rw-rw- null rw
nobody httpd 5032 wd / 2 drwxr-xr-x 512 r
nobody httpd 5032 0 / 11921 crw-rw-rw- null r
nobody httpd 5032 1 / 11921 crw-rw-rw- null w
nobody httpd 5032 2 / 15890 -rw-r--r-- 353533 rw
...

The fields are pretty self explanatory, again, this tool while
 not as performance oriented as others, can come in handy when
 trying to find out information about file usage.

The iostat(8) command does exactly what it sounds like, it
 reports the status of the I/O subsystems on the system. When
 iostat is employed, the user typically runs it with a certain
 number of counts and an interval between them like so:

$ iostat -c 5 -w 5
 tty wd0 cd0 fd0 md0 cpu
 tin tout KB/t t/s MB/s KB/t t/s MB/s KB/t t/s MB/s KB/t t/s MB/s us ni sy in id
 0 1 5.13 1 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0 0 0 0 100
 0 54 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0 0 0 0 100
 0 18 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0 0 0 0 100
 0 18 8.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0 0 0 0 100
 0 28 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0 0 0 0 100

The above output is from a very quiet ftp server. The fields
 represent the various I/O devices, the tty (which, ironically,
 is the most active because iostat is running), wd0 which is the
 primary IDE disk, cd0, the cdrom drive, fd0, the floppy and the
 memory filesystem.

Now, let's see if we can pummel the system with some heavy
 usage. First, a large ftp transaction consisting of a tarball
 of netbsd-current source along with the bonnie++ disk
 benchmark program running at the same time.

$ iostat -c 5 -w 5
 tty wd0 cd0 fd0 md0 cpu
 tin tout KB/t t/s MB/s KB/t t/s MB/s KB/t t/s MB/s KB/t t/s MB/s us ni sy in id
 0 1 5.68 1 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0 0 0 0 100
 0 54 61.03 150 8.92 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 1 0 18 4 78
 0 26 63.14 157 9.71 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 1 0 20 4 75
 0 20 43.58 26 1.12 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0 0 9 2 88
 0 28 19.49 82 1.55 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 1 0 7 3 89

As can be expected, notice that wd0 is very active, what is
 interesting about this output is how the processor's I/O seems
 to rise in proportion to wd0. This makes perfect sense,
 however, it is worth noting that only because this ftp
 server is hardly being used can that be observed. If, for
 example, the cpu I/O subsystem was already under a moderate
 load and the disk subsystem was under the same load as it
 is now, it could appear that the cpu is bottlenecked when
 in fact it would have been the disk. In such a case, we can
 observe that "one tool" is rarely enough to completely
 analyze a problem. A quick glance at processes probably
 would tell us (after watching iostat) which
 processes were causing problems.

Using the ps(1) command or process status, a great deal of
 information about the system can be discovered. Most of the
 time, the ps command is used to isolate a particular process
 by name, group, owner etc. Invoked with no options or
 arguments, ps simply prints out information about the user
 executing it.

$ ps
 PID TT STAT TIME COMMAND
21560 p0 Is 0:00.04 -tcsh
21564 p0 I+ 0:00.37 ssh jrf.odpn.net
21598 p1 Ss 0:00.12 -tcsh
21673 p1 R+ 0:00.00 ps
21638 p2 Is+ 0:00.06 -tcsh

Not very exciting. The fields are self explanatory with the
 exception of STAT which is actually the state a process is in.
 The flags are all documented in the man page, however, in the
 above example, I is idle, S is sleeping, R is runnable,
 the + means the process is in a foreground state, and the s
 means the process is a session leader. This all makes
 perfect sense when looking at the flags, for example,
 PID 21560 is a shell, it is idle and (as would be expected)
 the shell is the process leader.

In most cases, someone is looking for something very specific
 in the process listing. As an example, looking at all processes
 is specified with -a, to see all processes plus those without
 controlling terminals is -ax and to get a much more verbose
 listing (basically everything plus information about the
 impact processes are having) aux:

ps aux
USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
root 0 0.0 9.6 0 6260 ?? DLs 16Jul02 0:01.00 (swapper)
root 23362 0.0 0.8 144 488 ?? S 12:38PM 0:00.01 ftpd -l
root 23328 0.0 0.4 428 280 p1 S 12:34PM 0:00.04 -csh
jrf 23312 0.0 1.8 828 1132 p1 Is 12:32PM 0:00.06 -tcsh
root 23311 0.0 1.8 388 1156 ?? S 12:32PM 0:01.60 sshd: jrf@ttyp1
jrf 21951 0.0 1.7 244 1124 p0 S+ 4:22PM 0:02.90 ssh jrf.odpn.net
jrf 21947 0.0 1.7 828 1128 p0 Is 4:21PM 0:00.04 -tcsh
root 21946 0.0 1.8 388 1156 ?? S 4:21PM 0:04.94 sshd: jrf@ttyp0
nobody 5032 0.0 2.0 1616 1300 ?? I 19Jul02 0:00.02 /usr/pkg/sbin/httpd
...

Again, most of the fields are self explanatory with the
 exception of VSZ and RSS which can be a little confusing.
 RSS is the real size of a process in 1024 byte units while
 VSZ is the virtual size. This is all great, but again, how
 can ps help? Well, for one, take a look at this modified
 version of the same output:

ps aux
USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
root 0 0.0 9.6 0 6260 ?? DLs 16Jul02 0:01.00 (swapper)
root 23362 0.0 0.8 144 488 ?? S 12:38PM 0:00.01 ftpd -l
root 23328 0.0 0.4 428 280 p1 S 12:34PM 0:00.04 -csh
jrf 23312 0.0 1.8 828 1132 p1 Is 12:32PM 0:00.06 -tcsh
root 23311 0.0 1.8 388 1156 ?? S 12:32PM 0:01.60 sshd: jrf@ttyp1
jrf 21951 0.0 1.7 244 1124 p0 S+ 4:22PM 0:02.90 ssh jrf.odpn.net
jrf 21947 0.0 1.7 828 1128 p0 Is 4:21PM 0:00.04 -tcsh
root 21946 0.0 1.8 388 1156 ?? S 4:21PM 0:04.94 sshd: jrf@ttyp0
nobody 5032 9.0 2.0 1616 1300 ?? I 19Jul02 0:00.02 /usr/pkg/sbin/httpd
...

Given that on this server, our baseline indicates a relatively
 quiet system, the PID 5032 has an unusually large amount of
 %CPU. Sometimes this can also cause high TIME numbers. The
 ps command can be grepped on for PIDs, username and process
 name and hence help track down processes that may be
 experiencing problems.

Using vmstat(1), information pertaining to virtual
 memory can be monitored and measured. Not unlike iostat,
 vmstat can be invoked with a count and interval. Following
 is some sample output using -c 5 -w 5 like the iostat example:

vmstat -c 5 -w 5
 procs memory page disks faults cpu
 r b w avm fre flt re pi po fr sr w0 c0 f0 m0 in sy cs us sy id
 0 7 0 17716 33160 2 0 0 0 0 0 1 0 0 0 105 15 4 0 0 100
 0 7 0 17724 33156 2 0 0 0 0 0 1 0 0 0 109 6 3 0 0 100
 0 7 0 17724 33156 1 0 0 0 0 0 1 0 0 0 105 6 3 0 0 100
 0 7 0 17724 33156 1 0 0 0 0 0 0 0 0 0 107 6 3 0 0 100
 0 7 0 17724 33156 1 0 0 0 0 0 0 0 0 0 105 6 3 0 0 100

Yet again, relatively quiet, for posterity, the exact same load
 that was put on this server in the iostat example will be used.
 The load is a large file transfer and the bonnie benchmark
 program.

vmstat -c 5 -w 5
 procs memory page disks faults cpu
 r b w avm fre flt re pi po fr sr w0 c0 f0 m0 in sy cs us sy id
 1 8 0 18880 31968 2 0 0 0 0 0 1 0 0 0 105 15 4 0 0 100
 0 8 0 18888 31964 2 0 0 0 0 0 130 0 0 0 1804 5539 1094 31 22 47
 1 7 0 18888 31964 1 0 0 0 0 0 130 0 0 0 1802 5500 1060 36 16 49
 1 8 0 18888 31964 1 0 0 0 0 0 160 0 0 0 1849 5905 1107 21 22 57
 1 7 0 18888 31964 1 0 0 0 0 0 175 0 0 0 1893 6167 1082 1 25 75

Just a little different. Notice, since most of the work
 was I/O based, the actual memory used was not very much.
 Since this system uses mfs for /tmp,
	however, it can certainly get beat up. Have a look at this:

vmstat -c 5 -w 5
 procs memory page disks faults cpu
 r b w avm fre flt re pi po fr sr w0 c0 f0 m0 in sy cs us sy id
 0 2 0 99188 500 2 0 0 0 0 0 1 0 0 0 105 16 4 0 0 100
 0 2 0111596 436 592 0 587 624 586 1210 624 0 0 0 741 883 1088 0 11 89
 0 3 0123976 784 666 0 662 643 683 1326 702 0 0 0 828 993 1237 0 12 88
 0 2 0134692 1236 581 0 571 563 595 1158 599 0 0 0 722 863 1066 0 9 90
 2 0 0142860 912 433 0 406 403 405 808 429 0 0 0 552 602 768 0 7 93

Pretty scary stuff. That was created by running bonnie in
 /tmp
 on a memory based filesystem. If it continued for too long,
 it is possible the system could have started thrashing.
 Notice that even though the VM subsystem was taking a beating,
 the processors still were not getting too battered.

Sometimes a performance problem is not a particular machine,
 it is the network or some sort of device on the network such as
 another host, a router etc. What other machines that provide a
 service or some sort of connectivity to a particular NetBSD system
 do and how they act can have a very large impact on performance
 of the NetBSD system itself, or the perception of performance by
 users.
 A really great example of this is when a DNS server that a NetBSD
 machine is using suddenly disappears. Lookups take long and they
 eventually fail. Someone logged into the NetBSD machine who is not
 experienced would undoubtedly (provided they had no other evidence)
 blame the NetBSD system. One of my personal favorites,
 “the Internet is broke” usually means either DNS
 service or a router/gateway has dropped offline. Whatever the
 case may be, a NetBSD system comes adequately armed to deal with
 finding out what network issues may be cropping up whether
 the fault of the local system or some other issue.

The classic ping(8) utility can tell us if there is just
 plain connectivity, it can also tell if host resolution
 (depending on how nsswitch.conf
 dictates) is working. Following is some typical ping
 output on a local network with a count of 3 specified:

ping -c 3 marie
PING marie (172.16.14.12): 56 data bytes
64 bytes from 172.16.14.12: icmp_seq=0 ttl=255 time=0.571 ms
64 bytes from 172.16.14.12: icmp_seq=1 ttl=255 time=0.361 ms
64 bytes from 172.16.14.12: icmp_seq=2 ttl=255 time=0.371 ms

----marie PING Statistics----
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.361/0.434/0.571/0.118 ms

Not only does ping tell us if a host is alive, it tells us how
 long it took and gives some nice details at the very end. If
 a host cannot be resolved, just the IP address can be
 specified as well:

ping -c 1 172.16.20.5
PING ash (172.16.20.5): 56 data bytes
64 bytes from 172.16.20.5: icmp_seq=0 ttl=64 time=0.452 ms

----ash PING Statistics----
1 packets transmitted, 1 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.452/0.452/0.452/0.000 ms

Now, not unlike any other tool, the times are very subjective,
 especially in regards to networking. For example, while the
 times in the examples are good, take a look at the localhost
 ping:

ping -c 4 localhost
PING localhost (127.0.0.1): 56 data bytes
64 bytes from 127.0.0.1: icmp_seq=0 ttl=255 time=0.091 ms
64 bytes from 127.0.0.1: icmp_seq=1 ttl=255 time=0.129 ms
64 bytes from 127.0.0.1: icmp_seq=2 ttl=255 time=0.120 ms
64 bytes from 127.0.0.1: icmp_seq=3 ttl=255 time=0.122 ms

----localhost PING Statistics----
4 packets transmitted, 4 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.091/0.115/0.129/0.017 ms

Much smaller because the request never left the machine. Pings
 can be used to gather information about how well a network
 is performing. It is also good for problem isolation, for
 instance, if there are three relatively close in size NetBSD
 systems on a network and one of them simply has horrible
 ping times, chances are something is wrong on that one
 particular machine.

The traceroute(8) command is great for making sure a
 path is available or detecting problems on a particular
 path. As an example, here is a trace between the example
 ftp server and ftp.NetBSD.org:

traceroute ftp.NetBSD.org
traceroute to ftp.NetBSD.org (204.152.184.75), 30 hops max, 40 byte packets
 1 208.44.95.1 (208.44.95.1) 1.646 ms 1.492 ms 1.456 ms
 2 63.144.65.170 (63.144.65.170) 7.318 ms 3.249 ms 3.854 ms
 3 chcg01-edge18.il.inet.qwest.net (65.113.85.229) 35.982 ms 28.667 ms 21.971 ms
 4 chcg01-core01.il.inet.qwest.net (205.171.20.1) 22.607 ms 26.242 ms 19.631 ms
 5 snva01-core01.ca.inet.qwest.net (205.171.8.50) 78.586 ms 70.585 ms 84.779 ms
 6 snva01-core03.ca.inet.qwest.net (205.171.14.122) 69.222 ms 85.739 ms 75.979 ms
 7 paix01-brdr02.ca.inet.qwest.net (205.171.205.30) 83.882 ms 67.739 ms 69.937 ms
 8 198.32.175.3 (198.32.175.3) 72.782 ms 67.687 ms 73.320 ms
 9 so-1-0-0.orpa8.pf.isc.org (192.5.4.231) 78.007 ms 81.860 ms 77.069 ms
10 tun0.orrc5.pf.isc.org (192.5.4.165) 70.808 ms 75.151 ms 81.485 ms
11 ftp.NetBSD.org (204.152.184.75) 69.700 ms 69.528 ms 77.788 ms

All in all, not bad. The trace went from the host to the local
 router, then out onto the provider network and finally out onto
 the Internet looking for the final destination. How to
 interpret traceroutes, again, are subjective, but
 abnormally high times in portions of a path can indicate a
 bottleneck on a piece of network equipment. Not unlike ping,
 if the host itself is suspect, run traceroute from another
 host to the same destination. Now, for the worst case scenario:

traceroute www.microsoft.com
traceroute: Warning: www.microsoft.com has multiple addresses; using 207.46.230.220
traceroute to www.microsoft.akadns.net (207.46.230.220), 30 hops max, 40 byte packets
 1 208.44.95.1 (208.44.95.1) 2.517 ms 4.922 ms 5.987 ms
 2 63.144.65.170 (63.144.65.170) 10.981 ms 3.374 ms 3.249 ms
 3 chcg01-edge18.il.inet.qwest.net (65.113.85.229) 37.810 ms 37.505 ms 20.795 ms
 4 chcg01-core03.il.inet.qwest.net (205.171.20.21) 36.987 ms 32.320 ms 22.430 ms
 5 chcg01-brdr03.il.inet.qwest.net (205.171.20.142) 33.155 ms 32.859 ms 33.462 ms
 6 205.171.1.162 (205.171.1.162) 39.265 ms 20.482 ms 26.084 ms
 7 sl-bb24-chi-13-0.sprintlink.net (144.232.26.85) 26.681 ms 24.000 ms 28.975 ms
 8 sl-bb21-sea-10-0.sprintlink.net (144.232.20.30) 65.329 ms 69.694 ms 76.704 ms
 9 sl-bb21-tac-9-1.sprintlink.net (144.232.9.221) 65.659 ms 66.797 ms 74.408 ms
10 144.232.187.194 (144.232.187.194) 104.657 ms 89.958 ms 91.754 ms
11 207.46.154.1 (207.46.154.1) 89.197 ms 84.527 ms 81.629 ms
12 207.46.155.10 (207.46.155.10) 78.090 ms 91.550 ms 89.480 ms
13 * * *
.......

In this case, the Microsoft server cannot be found either
 because of multiple addresses or somewhere along the line a
 system or server cannot reply to the information request.
 At that point, one might think to try ping, in the Microsoft
 case, a ping does not reply, that is because somewhere on
 their network ICMP is most likely disabled.

Another problem that can crop up on a NetBSD system is routing
 table issues. These issues are not always the systems fault.
 The route(8) and netstat(1) commands can show
 information about routes and network connections (respectively).

The route command can be used to look at and modify routing
 tables while netstat can display information about network
 connections and routes. First, here is some output from route
 show:

route show
Routing tables

Internet:
Destination Gateway Flags
default 208.44.95.1 UG
loopback 127.0.0.1 UG
localhost 127.0.0.1 UH
172.15.13.0 172.16.14.37 UG
172.16.0.0 link#2 U
172.16.14.8 0:80:d3:cc:2c:0 UH
172.16.14.10 link#2 UH
marie 0:10:83:f9:6f:2c UH
172.16.14.37 0:5:32:8f:d2:35 UH
172.16.16.15 link#2 UH
loghost 8:0:20:a7:f0:75 UH
artemus 8:0:20:a8:d:7e UH
ash 0:b0:d0:de:49:df UH
208.44.95.0 link#1 U
208.44.95.1 0:4:27:3:94:20 UH
208.44.95.2 0:5:32:8f:d2:34 UH
208.44.95.25 0:c0:4f:10:79:92 UH

Internet6:
Destination Gateway Flags
default localhost UG
default localhost UG
localhost localhost UH
::127.0.0.0 localhost UG
::224.0.0.0 localhost UG
::255.0.0.0 localhost UG
::ffff:0.0.0.0 localhost UG
2002:: localhost UG
2002:7f00:: localhost UG
2002:e000:: localhost UG
2002:ff00:: localhost UG
fe80:: localhost UG
fe80::%ex0 link#1 U
fe80::%ex1 link#2 U
fe80::%lo0 fe80::1%lo0 U
fec0:: localhost UG
ff01:: localhost U
ff02::%ex0 link#1 U
ff02::%ex1 link#2 U
ff02::%lo0 fe80::1%lo0 U

The flags section shows the status and whether or not it is a
 gateway. In this case we see U, H and G (U is up, H is host and
 G is gateway, see the man page for additional flags).

Now for some netstat output using the -r (routing) and -n
 (show network numbers) options:

Routing tables

Internet:
Destination Gateway Flags Refs Use Mtu Interface
default 208.44.95.1 UGS 0 330309 1500 ex0
127 127.0.0.1 UGRS 0 0 33228 lo0
127.0.0.1 127.0.0.1 UH 1 1624 33228 lo0
172.15.13/24 172.16.14.37 UGS 0 0 1500 ex1
172.16 link#2 UC 13 0 1500 ex1
...
Internet6:
Destination Gateway Flags Refs Use
 Mtu Interface
::/104 ::1 UGRS 0 0
33228 lo0 =>
::/96 ::1 UGRS 0 0

The above output is a little more verbose. So, how can this
 help? Well, a good example is when routes between networks
 get changed while users are connected. I saw this happen
 several times when someone was rebooting routers all day
 long after each change. Several users called up saying they
 were getting kicked out and it was taking very long to log
 back in. As it turned out, the clients connecting to the
 system were redirected to another router (which took a very
 long route) to reconnect. I observed the M flag or Modified
 dynamically (by redirect) on their connections. I deleted
 the routes, had them reconnect and summarily followed up
 with the offending technician.

Last, and definitely not least is tcpdump(8), the network
	sniffer that can retrieve a lot of information. In this
	discussion, there will be some sample output and an
	explanation of some of the more useful options of tcpdump.

Following is a small snippet of tcpdump in action just as it
 starts:

tcpdump
tcpdump: listening on ex0
14:07:29.920651 mail.ssh > 208.44.95.231.3551: P 2951836801:2951836845(44) ack 2
476972923 win 17520 <nop,nop,timestamp 1219259 128519450> [tos 0x10]
14:07:29.950594 12.125.61.34 > 208.44.95.16: ESP(spi=2548773187,seq=0x3e8c) (DF)
14:07:29.983117 smtp.somecorp.com.smtp > 208.44.95.30.42828: . ack 420285166 win
16500 (DF)
14:07:29.984406 208.44.95.30.42828 > smtp.somecorp.com.smtp: . 1:1376(1375) ack 0
 win 7431 (DF)
...

Given that the particular server is a mail server, what is
 shown makes perfect sense, however, the utility is very
 verbose, I prefer to initially run tcpdump with no options
 and send the text output into a file for later digestion
 like so:

tcpdump > tcpdump.out
tcpdump: listening on ex0

So, what precisely in the mish mosh are we looking for?
 In short, anything that does not seem to fit, for example,
 messed up packet lengths (as in a lot of them) will show
 up as improper lens or malformed packets (basically garbage).
 If, however, we are looking for something specific, tcpdump
 may be able to help depending on the problem.

19.5.4.1. Specific tcpdump Usage

These are just examples of a few things one can do with
 tcpdump.

Look for duplicate IP addresses:

tcpdump -e host ip-address

For example:

tcpdump -e host 192.168.0.2

Routing Problems:

tcpdump icmp

There are plenty of third party tools available, however,
 NetBSD comes shipped with a good tool set for tracking down
 network level performance problems.

The NetBSD system comes equipped with a great deal of performance
 monitors for active monitoring, but what about long term monitoring?
 Well, of course the output of a variety of commands can be sent to
 files and re-parsed later with a meaningful shell script or program.
 NetBSD does, by default, offer some extraordinarily powerful
 low level monitoring tools for the programmer, administrator or
 really astute hobbyist.

While accounting gives system usage at an almost userland level,
 kernel profiling with gprof provides explicit system call usage.

Using the accounting tools can help figure out what possible
 performance problems may be lying in wait, such as increased
 usage of compilers or network services for example.

Starting accounting is actually fairly simple, as root, use the
 accton(8) command. The syntax to start accounting is:
 accton filename

Where accounting information is appended to filename, now,
 strangely enough, the lastcomm command which reads from an
 accounting output file, by default, looks in
 /var/account/acct
 so I tend to just use the default location, however, lastcomm
 can be told to look elsewhere.

To stop accounting, simply type accton with no arguments.

19.6.2. Reading Accounting Information

To read accounting information, there are two tools that can
 be used:

	lastcomm(1)

	sa(8)

The lastcomm command shows the last commands executed in
 order, like all of them. It can, however, select by user,
 here is some sample output:

$ lastcomm jrf
last - jrf ttyp3 0.00 secs Tue Sep 3 14:39 (0:00:00.02)
man - jrf ttyp3 0.00 secs Tue Sep 3 14:38 (0:01:49.03)
sh - jrf ttyp3 0.00 secs Tue Sep 3 14:38 (0:01:49.03)
less - jrf ttyp3 0.00 secs Tue Sep 3 14:38 (0:01:49.03)
lastcomm - jrf ttyp3 0.02 secs Tue Sep 3 14:38 (0:00:00.02)
stty - jrf ttyp3 0.00 secs Tue Sep 3 14:38 (0:00:00.02)
tset - jrf ttyp3 0.00 secs Tue Sep 3 14:38 (0:00:01.05)
hostname - jrf ttyp3 0.00 secs Tue Sep 3 14:38 (0:00:00.02)
ls - jrf ttyp0 0.00 secs Tue Sep 3 14:36 (0:00:00.00)
...

Pretty nice, the lastcomm command gets its information
 from the default location of /var/account/acct, however,
 using the -f option, another file may be specified.

As may seem obvious, the output of lastcomm could get a
 little heavy on large multi user systems. That is where
 sa comes into play.

The sa command (meaning "print system accounting
 statistics") can be used to maintain information. It
 can also be used interactively to create reports.
 Following is the default output of sa:

$ sa
 77 18.62re 0.02cp 8avio 0k
 3 4.27re 0.01cp 45avio 0k ispell
 2 0.68re 0.00cp 33avio 0k mutt
 2 1.09re 0.00cp 23avio 0k vi
 10 0.61re 0.00cp 7avio 0k ***other
 2 0.01re 0.00cp 29avio 0k exim
 4 0.00re 0.00cp 8avio 0k lastcomm
 2 0.00re 0.00cp 3avio 0k atrun
 3 0.03re 0.00cp 1avio 0k cron*
 5 0.02re 0.00cp 10avio 0k exim*
 10 3.98re 0.00cp 2avio 0k less
 11 0.00re 0.00cp 0avio 0k ls
 9 3.95re 0.00cp 12avio 0k man
 2 0.00re 0.00cp 4avio 0k sa
 12 3.97re 0.00cp 1avio 0k sh
...

From left to right, total times called, real time in
 minutes, sum of user and system time, in minutes,
 Average number of I/O operations per execution, size,
 command name.

The sa command can also be used to create summary files
 or reports based on some options, for example, here is
 the output when specifying a sort by CPU-time average
 memory usage:

$ sa -k
 86 30.81re 0.02cp 8avio 0k
 10 0.61re 0.00cp 7avio 0k ***other
 2 0.00re 0.00cp 3avio 0k atrun
 3 0.03re 0.00cp 1avio 0k cron*
 2 0.01re 0.00cp 29avio 0k exim
 5 0.02re 0.00cp 10avio 0k exim*
 3 4.27re 0.01cp 45avio 0k ispell
 4 0.00re 0.00cp 8avio 0k lastcomm
 12 8.04re 0.00cp 2avio 0k less
 13 0.00re 0.00cp 0avio 0k ls
 11 8.01re 0.00cp 12avio 0k man
 2 0.68re 0.00cp 33avio 0k mutt
 3 0.00re 0.00cp 4avio 0k sa
 14 8.03re 0.00cp 1avio 0k sh
 2 1.09re 0.00cp 23avio 0k vi

The sa command is very helpful on larger systems.

19.6.3. How to Put Accounting to Use

Accounting reports, as was mentioned earlier, offer a way to
 help predict trends, for example, on a system that has cc and
 make being used more and more may indicate that in a few months
 some changes will need to be made to keep the system running at
 an optimum level. Another good example is web server usage. If
 it begins to gradually increase, again, some sort of action may
 need to be taken before it becomes a problem. Luckily, with
 accounting tools, said actions can be reasonably predicted and
 planned for ahead of time.

Profiling a kernel is normally employed when the goal is to
 compare the difference of new changes in the kernel to a previous
 one or to track down some sort of low level performance problem.
 Two sets of data about profiled code behavior are recorded
 independently:
 function call frequency and time spent in each function.

First, take a look at both Section 19.9, “Kernel Tuning” and
 Chapter 34, Compiling the kernel.
 The only difference in procedure for setting up a kernel
 with profiling enabled is when you run config add the -p
 option. The build area is
 ../compile/<KERNEL_NAME>.PROF ,
 for example, a GENERIC kernel would be
 ../compile/GENERIC.PROF.

Following is a quick summary of how to compile a kernel
 with profiling enabled on the amd64 port, the assumptions
 are that the appropriate sources are available under
 /usr/src and the GENERIC
 configuration is being used, of course, that may not
 always be the situation:

	cd /usr/src/sys/arch/amd64/conf

	config -p GENERIC

	cd ../compile/GENERIC.PROF

	make depend && make

	cp /netbsd /netbsd.old

	cp netbsd /

	reboot

Once the new kernel is in place and the system has rebooted,
 it is time to turn on the monitoring and start looking at
 results.

To start kgmon:

$ kgmon -b
kgmon: kernel profiling is running.

Next, send the data into the file
 gmon.out:

$ kgmon -p

Now, it is time to make the output readable:

$ gprof /netbsd > gprof.out

Since gmon is looking for gmon.out,
 it should find it in the current working directory.

By just running kgmon alone, you may not get the
 information you need, however, if you are comparing
 the differences between two different
 kernels, then a known good baseline should be used.
 Note that it is generally a good idea to stress the
 subsystem if you know what it is both in the baseline
 and with the newer (or different) kernel.

19.7.2. Interpretation of kgmon Output

Now that kgmon can run, collect and parse information, it is
 time to actually look at some of that information. In this
 particular instance, a GENERIC kernel is running with
 profiling enabled for about an hour with only system
 processes and no adverse load, in the fault insertion
 section, the example will be large enough that even under
 a minimal load detection of the problem should be easy.

The flat profile is a list of functions, the number of
 times they were called and how long it took (in seconds).
 Following is sample output from the quiet system:

Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ns/call ns/call name
 99.77 163.87 163.87 idle
 0.03 163.92 0.05 219 228310.50 228354.34 _wdc_ata_bio_start
 0.02 163.96 0.04 219 182648.40 391184.96 wdc_ata_bio_intr
 0.01 163.98 0.02 3412 5861.66 6463.02 pmap_enter
 0.01 164.00 0.02 548 36496.35 36496.35 pmap_zero_page
 0.01 164.02 0.02 Xspllower
 0.01 164.03 0.01 481968 20.75 20.75 gettick
 0.01 164.04 0.01 6695 1493.65 1493.65 VOP_LOCK
 0.01 164.05 0.01 3251 3075.98 21013.45 syscall_plain
...

As expected, idle was the highest in percentage, however,
 there were still some things going on, for example, a
 little further down there is the
 vn_lock function:

...
 0.00 164.14 0.00 6711 0.00 0.00 VOP_UNLOCK
 0.00 164.14 0.00 6677 0.00 1493.65 vn_lock
 0.00 164.14 0.00 6441 0.00 0.00 genfs_unlock

This is to be expected, since locking still has to take
	 place, regardless.

19.7.2.2. Call Graph Profile

The call graph is an augmented version of the flat profile
 showing subsequent calls from the listed functions.
 First, here is some sample output:

 Call graph (explanation follows)

granularity: each sample hit covers 4 byte(s) for 0.01% of 164.14 seconds

index % time self children called name
 <spontaneous>
[1] 99.8 163.87 0.00 idle [1]

 <spontaneous>
[2] 0.1 0.01 0.08 syscall1 [2]
 0.01 0.06 3251/3251 syscall_plain [7]
 0.00 0.01 414/1660 trap [9]

 0.00 0.09 219/219 Xintr14 [6]
[3] 0.1 0.00 0.09 219 pciide_compat_intr [3]
 0.00 0.09 219/219 wdcintr [5]

...

Now this can be a little confusing. The index number is
 mapped to from the trailing number on the end of the
 line, for example,

...
 0.00 0.01 85/85 dofilewrite [68]
[72] 0.0 0.00 0.01 85 soo_write [72]
 0.00 0.01 85/89 sosend [71]
...

Here we see that dofilewrite was called first, now we can
 look at the index number for 64 and see what was
 happening there:

...
 0.00 0.01 101/103 ffs_full_fsync <cycle 6> [58]
[64] 0.0 0.00 0.01 103 bawrite [64]
 0.00 0.01 103/105 VOP_BWRITE [60]
...

And so on, in this way, a "visual trace" can be established.

At the end of the call graph right after the terms
 section is an index by function name which can help map
 indexes as well.

19.7.3. Putting it to Use

In this example, I have modified an area of the kernel I know
 will create a problem that will be blatantly obvious.

Here is the top portion of the flat profile after running the
 system for about an hour with little interaction from users:

Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls us/call us/call name
 93.97 139.13 139.13 idle
 5.87 147.82 8.69 23 377826.09 377842.52 check_exec
 0.01 147.84 0.02 243 82.30 82.30 pmap_copy_page
 0.01 147.86 0.02 131 152.67 152.67 _wdc_ata_bio_start
 0.01 147.88 0.02 131 152.67 271.85 wdc_ata_bio_intr
 0.01 147.89 0.01 4428 2.26 2.66 uvn_findpage
 0.01 147.90 0.01 4145 2.41 2.41 uvm_pageactivate
 0.01 147.91 0.01 2473 4.04 3532.40 syscall_plain
 0.01 147.92 0.01 1717 5.82 5.82 i486_copyout
 0.01 147.93 0.01 1430 6.99 56.52 uvm_fault
 0.01 147.94 0.01 1309 7.64 7.64 pool_get
 0.01 147.95 0.01 673 14.86 38.43 genfs_getpages
 0.01 147.96 0.01 498 20.08 20.08 pmap_zero_page
 0.01 147.97 0.01 219 45.66 46.28 uvm_unmap_remove
 0.01 147.98 0.01 111 90.09 90.09 selscan
...

As is obvious, there is a large difference in performance.
 Right off the bat the idle time is noticeably less. The main
 difference here is that one particular function has a large
 time across the board with very few calls. That function is
 check_exec. While at first, this may
 not seem strange if a lot of commands had been executed,
 when compared to the flat profile of the first measurement,
 proportionally it does not seem right:

...
 0.00 164.14 0.00 37 0.00 62747.49 check_exec
...

The call in the first measurement is made 37 times and has
 a better performance. Obviously something in or around that
 function is wrong. To eliminate other functions, a look at
	the call graph can help, here is the first instance of
 check_exec

...

 0.00 8.69 23/23 syscall_plain [3]
[4] 5.9 0.00 8.69 23 sys_execve [4]
 8.69 0.00 23/23 check_exec [5]
 0.00 0.00 20/20 elf32_copyargs [67]
...

Notice how the time of 8.69 seems to affect the two previous
 functions. It is possible that there is something wrong with
 them, however, the next instance of
 check_exec seems to prove otherwise:

...

 8.69 0.00 23/23 sys_execve [4]
[5] 5.9 8.69 0.00 23 check_exec [5]
...

Now we can see that the problem, most likely, resides in
 check_exec. Of course, problems
 are not always this simple and in fact, here
 is the simpleton code that was inserted right after
 check_exec
 (the function is in sys/kern/kern_exec.c):

...
 /* A Cheap fault insertion */
 for (x = 0; x < 100000000; x++) {
 y = x;
 }
..

Not exactly glamorous, but enough to register a large change
 with profiling.

Kernel profiling can be enlightening for anyone and provides a
 much more refined method of hunting down performance problems
 that are not as easy to find using conventional means, it is
 also not nearly as hard as most people think, if you can
 compile a kernel, you can get profiling to work.

Now that monitoring and analysis tools have been addressed,
 it is time to look into some actual methods. In this section,
 tools and methods that can affect how the system performs
 that are applied without recompiling the kernel are addressed,
 the next section examines kernel tuning by recompiling.

The sysctl utility can be used to look at and in some cases
 alter system parameters. There are so many parameters that
 can be viewed and changed they cannot all be shown here,
 however, for the first example here is a simple usage of
 sysctl to look at the system PATH environment variable:

$ sysctl user.cs_path
user.cs_path = /usr/bin:/bin:/usr/sbin:/sbin:/usr/pkg/bin:/usr/pkg/sbin:/usr/local/bin:/usr/local/sbin

Fairly simple. Now something that is actually related to
	performance. As an example, let's say a system with many users
	is having file open issues, by examining and perhaps raising
	the kern.maxfiles parameter the problem may be fixed, but
	first, a look:

$ sysctl kern.maxfiles
kern.maxfiles = 1772

Now, to change it, as root with the -w option specified:

sysctl -w kern.maxfiles=1972
kern.maxfiles: 1772 -> 1972

Note, when the system is rebooted, the old value will return,
 there are two cures for this, first, modify that parameter in
 the kernel and recompile, second (and simpler) add this line
 to /etc/sysctl.conf:

kern.maxfiles=1972

	 NetBSD's "ramdisk" implementations cache all data in the
	 RAM, and if that is full, the swap space is used as backing
	 store. NetBSD comes with two implementations, the
	 traditional BSD memory-based file system "mfs" and the more
	 modern "tmpfs". While the former can only grow in size, the
	 latter can also shrink if space is no longer needed.
	

When to use and not to use a memory based filesystem can
 be hard on large multi user systems. In some cases,
 however, it makes pretty good sense, for example, on a
 development machine used by only one developer at a time,
 the obj directory might be a good place, or some of the
 tmp directories for builds. In a case like that, it
 makes sense on machines that have a fair amount of RAM
 on them. On the other side of the coin, if a system
 only has 16MB of RAM and /var/tmp
 is mfs-based, there could be severe applications
 issues that occur.

The GENERIC kernel has both tmpfs and mfs enabled by default. To use
	 it on a particular directory first determine where the
	 swap space is that you wish to use, in the example case,
	 a quick look in /etc/fstab
	 indicates that /dev/wd0b is the
	 swap partition:

mail% cat /etc/fstab
/dev/wd0a / ffs rw 1 1
/dev/wd0b none swap sw 0 0
/kern /kern kernfs rw

This system is a mail server so I only want to use
 /tmp with tmpfs, also on this
 particular system I have linked /tmp
 to /var/tmp to save space
 (they are on the same drive). All I need to do is add the
 following entry:

/dev/wd0b /var/tmp tmpfs rw 0 0

If you want to use "mfs" instead of "tmpfs", put just
 	 that into the above place.

Now, a word of warning: make sure said directories are
 empty and nothing is using them when you mount the memory
 file system! After changing /etc/fstab, you
 can either run mount -a or reboot the
 system.

	Journaling is a mechanism which puts written data in a so-called
	"journal" first, and in a second step the data from the journal is
	written to disk. In the event of a system crash, data that was
	not written to disk but that is in the journal can be replayed, and
	will thus get the disk into a proper state. The main effect of this
	is that no file system check (fsck) is needed after a rough
	reboot.

	 Journaling can be enabled by adding "log" to the filesystem
	 options in /etc/fstab.
	 Here is an example which enables journaling for the root
	 (/), /var, and
 /usr file systems:
	

/dev/wd0a / ffs rw,log 1 1
/dev/wd0e /var ffs rw,log 1 2
/dev/wd0g /usr ffs rw,log 1 2

 LFS, the log structured filesystem, writes data to disk in a
 way that is sometimes too aggressive and leads to congestion.
	To throttle writing, the following sysctls can be used:

vfs.sync.delay
vfs.sync.filedelay
vfs.sync.dirdelay
vfs.sync.metadelay
vfs.lfs.flushindir
vfs.lfs.clean_vnhead
vfs.lfs.dostats
vfs.lfs.pagetrip
vfs.lfs.stats.segsused
vfs.lfs.stats.psegwrites
vfs.lfs.stats.psyncwrites
vfs.lfs.stats.pcleanwrites
vfs.lfs.stats.blocktot
vfs.lfs.stats.cleanblocks
vfs.lfs.stats.ncheckpoints
vfs.lfs.stats.nwrites
vfs.lfs.stats.nsync_writes
vfs.lfs.stats.wait_exceeded
vfs.lfs.stats.write_exceeded
vfs.lfs.stats.flush_invoked
vfs.lfs.stats.vflush_invoked
vfs.lfs.stats.clean_inlocked
vfs.lfs.stats.clean_vnlocked
vfs.lfs.stats.segs_reclaimed
vfs.lfs.ignore_lazy_sync

	 Besides tuning those parameters, disabling write-back caching
	 on wd(4) devices may be beneficial. See the
	 dkctl(8) man page for details.

	 More is available in the NetBSD mailing list archives. See
	this and
	this mail.

While many system parameters can be changed with sysctl, many
 improvements by using enhanced system software, layout of the
 system and managing services (moving them in and out of inetd
 for example) can be achieved as well. Tuning the kernel however
 will provide better performance, even if it appears
 to be marginal.

19.9.1. Preparing to Recompile a Kernel

First, get the kernel sources for the release as described in
 Chapter 32, Obtaining the sources, reading Chapter 34, Compiling the kernel for more information on building
 the kernel is recommended. Note, this document
 can be used for -current tuning, however, a read of the
 Tracking
 -current documentation should be done first,
 much of the information there is repeated here.

19.9.2. Configuring the Kernel

Configuring a kernel in NetBSD can be daunting. This is because of
	multiple line dependencies within the configuration file itself,
	however, there is a benefit to this method and that is, all it really
	takes is an ASCII editor to get a new kernel configured and some
	dmesg output. The kernel configuration file is under
	src/sys/arch/ARCH/conf where ARCH is your
	architecture (for example,
	on a SPARC it would be under
	src/sys/arch/sparc/conf).

After you have located your kernel config file, copy it and remove
	(comment out) all the entries you don't need. This is where
	dmesg(8) becomes your friend. A clean dmesg(8)-output
	will show all of the
	devices detected by the kernel at boot time. Using dmesg(8)
	output, the device options really needed can be determined.

19.9.2.1. Some example Configuration Items

In this example, an ftp server's kernel is being
	 reconfigured to run
	 with the bare minimum drivers and options and any other items that
	 might make it run faster (again, not necessarily smaller, although
	 it will be). The first thing to do is take a look at some of the
	 main configuration items. So, in
	 /usr/src/sys/arch/amd64/conf the
	 GENERIC file is copied to FTP, then the file FTP edited.

At the start of the file there are a bunch of options beginning
	 with maxusers, which will be left alone, however, on larger
	 multi-user systems it might be help to crank that value up a bit.
	 Next is CPU support, looking at the dmesg output this is seen:

cpu0: Intel Pentium II/Celeron (Deschutes) (686-class), 400.93 MHz

Indicating that only the options I686_CPU options
	 needs to be used.
	 In the next section, all options are left alone except the
	 PIC_DELAY which is recommended unless it is an older machine.
	 In this case it is enabled since the 686 is “relatively new.”

Between the last section all the way down to compat options there
	 really was no need to change anything on this particular system.
	 In the compat section, however, there are several options that do
	 not need to be enabled, again this is because this machine is
	 strictly a FTP server, all compat options were turned off.

The next section is File systems, and again,
	 for this server very
	 few need to be on, the following were left on:

File systems
file-system FFS # UFS
file-system LFS # log-structured file system
file-system MFS # memory file system
file-system CD9660 # ISO 9660 + Rock Ridge file system
file-system FDESC # /dev/fd
file-system KERNFS # /kern
file-system NULLFS # loopback file system
file-system PROCFS # /proc
file-system UMAPFS # NULLFS + uid and gid remapping
...
options SOFTDEP # FFS soft updates support.
...

Next comes the network options section.
	 The only options left on were:

options INET # IP + ICMP + TCP + UDP
options INET6 # IPV6
options IPFILTER_LOG # ipmon(8) log support

IPFILTER_LOG is a nice one to have around since the server
	 will be running ipf.

The next section is verbose messages for various subsystems,
	 since this machine is already running and had no major problems,
	 all of them are commented out.

The configurable items in the config file are
	 relatively few and
	 easy to cover, however, device drivers are a different story.
	 In the following examples, two drivers are examined and their
	 associated “areas” in the file trimmed down.
	 First, a small
	 example: the cdrom, in dmesg, is the following lines:

...
cd0 at atapibus0 drive 0: <CD-540E, , 1.0A> type 5 cdrom removable
cd0: 32-bit data port
cd0: drive supports PIO mode 4, DMA mode 2, Ultra-DMA mode 2
pciide0: secondary channel interrupting at irq 15
cd0(pciide0:1:0): using PIO mode 4, Ultra-DMA mode 2 (using DMA data transfer
...

Now, it is time to track that section down in the
	 configuration file.
	 Notice that the "cd"-drive is on an atapibus and requires
	 pciide support.
	 The section that is of interest in this case is the kernel
	 config's "IDE and related devices" section.
	 It is worth noting at this point, in and around
	 the IDE section are
	 also ISA, PCMCIA etc., on this machine in the dmesg(8)
	 output there are
	 no PCMCIA devices, so it stands to reason
	 that all PCMCIA references
	 can be removed. But first, the "cd" drive.

At the start of the IDE section is the following:

...
wd* at atabus? drive ? flags 0x0000
...
atapibus* at atapi?
...

Well, it is pretty obvious that those lines
	 need to be kept. Next is this:

...
ATAPI devices
flags have the same meaning as for IDE drives.
cd* at atapibus? drive ? flags 0x0000 # ATAPI CD-ROM drives
sd* at atapibus? drive ? flags 0x0000 # ATAPI disk drives
st* at atapibus? drive ? flags 0x0000 # ATAPI tape drives
uk* at atapibus? drive ? flags 0x0000 # ATAPI unknown
...

The only device type that was in the dmesg(8)
	 output was the cd,
	 the rest can be commented out.

The next example is slightly more difficult,
	 network interfaces.
	 This machine has two of them:

...
ex0 at pci0 dev 17 function 0: 3Com 3c905B-TX 10/100 Ethernet (rev. 0x64)
ex0: interrupting at irq 10
ex0: MAC address 00:50:04:83:ff:b7
UI 0x001018 model 0x0012 rev 0 at ex0 phy 24 not configured
ex1 at pci0 dev 19 function 0: 3Com 3c905B-TX 10/100 Ethernet (rev. 0x30)
ex1: interrupting at irq 11
ex1: MAC address 00:50:da:63:91:2e
exphy0 at ex1 phy 24: 3Com internal media interface
exphy0: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto
...

At first glance it may appear that there are
	 in fact three devices,
	 however, a closer look at this line:

exphy0 at ex1 phy 24: 3Com internal media interface

Reveals that it is only two physical cards, not unlike the cdrom,
	 simply removing names that are not in dmesg will do the job. In
	 the beginning of the network interfaces section is:

...
Network Interfaces

PCI network interfaces
an* at pci? dev ? function ? # Aironet PC4500/PC4800 (802.11)
bge* at pci? dev ? function ? # Broadcom 570x gigabit Ethernet
en* at pci? dev ? function ? # ENI/Adaptec ATM
ep* at pci? dev ? function ? # 3Com 3c59x
epic* at pci? dev ? function ? # SMC EPIC/100 Ethernet
esh* at pci? dev ? function ? # Essential HIPPI card
ex* at pci? dev ? function ? # 3Com 90x[BC]
...

There is the ex device. So all of the rest under the PCI section
	 can be removed. Additionally, every single line all the way down
	 to this one:

exphy* at mii? phy ? # 3Com internal PHYs

can be commented out as well as the remaining.

When I tune a kernel, I like to do it remotely
	 in an X windows session,
	 in one window the dmesg output, in the other the config file. It
	 can sometimes take a few passes to rebuild a very trimmed kernel
	 since it is easy to accidentally remove dependencies.

19.9.3. Building the New Kernel

Now it is time to build the kernel and put it in place.
	In the
	conf directory on the ftp server, the following command
	prepares the build:

$ config FTP

When it is done a message reminding me to make
	depend will display, next:

$ cd ../compile/FTP
$ make depend && make

When it is done, I backup the old kernel and drop
	the new one in place:

cp /netbsd /netbsd.orig
cp netbsd /

Now reboot. If the kernel cannot boot, stop the boot process
	when prompted and type boot netbsd.orig to
	boot from the previous kernel.

19.9.4. Shrinking the NetBSD kernel

When building a kernel for embedded systems, it's often
 necessary to modify the Kernel binary to reduce space or memory
 footprint.

19.9.4.1. Removing ELF sections and debug information

We already know how to remove Kernel support for drivers
	 and options that you don't need, thus saving memory and
	 space, but you can save some KiloBytes of space by
	 removing debugging symbols and two ELF sections
	 if you don't need them: .comment and
 .ident. They are used for storing RCS
	 strings viewable with ident(1) and a gcc(1)
	 version string. The following examples assume you have
	 your TOOLDIR under
	 /usr/src/tooldir.NetBSD-2.0-i386
	 and the target architecture is i386.

$ /usr/src/tooldir.NetBSD-2.0-i386/bin/i386--netbsdelf-objdump -h /netbsd

/netbsd: file format elf32-i386

Sections:
Idx Name Size VMA LMA File off Algn
 0 .text 0057a374 c0100000 c0100000 00001000 2**4
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 1 .rodata 00131433 c067a380 c067a380 0057b380 2**5
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 2 .rodata.str1.1 00035ea0 c07ab7b3 c07ab7b3 006ac7b3 2**0
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 3 .rodata.str1.32 00059d13 c07e1660 c07e1660 006e2660 2**5
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 4 link_set_malloc_types 00000198 c083b374 c083b374 0073c374 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 5 link_set_domains 00000024 c083b50c c083b50c 0073c50c 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 6 link_set_pools 00000158 c083b530 c083b530 0073c530 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 7 link_set_sysctl_funcs 000000f0 c083b688 c083b688 0073c688 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 8 link_set_vfsops 00000044 c083b778 c083b778 0073c778 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 9 link_set_dkwedge_methods 00000004 c083b7bc c083b7bc 0073c7bc 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 10 link_set_bufq_strats 0000000c c083b7c0 c083b7c0 0073c7c0 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 11 link_set_evcnts 00000030 c083b7cc c083b7cc 0073c7cc 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 12 .data 00048ae4 c083c800 c083c800 0073c800 2**5
 CONTENTS, ALLOC, LOAD, DATA
 13 .bss 00058974 c0885300 c0885300 00785300 2**5
 ALLOC
 14 .comment 0000cda0 00000000 00000000 00785300 2**0
 CONTENTS, READONLY
 15 .ident 000119e4 00000000 00000000 007920a0 2**0
 CONTENTS, READONLY

On the third column we can see the size of the sections
	 in hexadecimal form. By summing
	 .comment and .ident
	 sizes we know how much we're going to save with their
	 removal: around 120KB (= 52640 + 72164 = 0xcda0 + 0x119e4).
	 To remove the sections and debugging symbols that may be
	 present, we're going to use strip(1):

cp /netbsd /netbsd.orig
/usr/src/tooldir.NetBSD-2.0-i386/bin/i386--netbsdelf-strip -S -R .ident -R .comment /netbsd
ls -l /netbsd /netbsd.orig
-rwxr-xr-x 1 root wheel 8590668 Apr 30 15:56 netbsd
-rwxr-xr-x 1 root wheel 8757547 Apr 30 15:56 netbsd.orig

Since we also removed debugging symbols, the total amount
	 of disk space saved is around 160KB.

19.9.4.2. Compressing the Kernel

On some architectures, the bootloader can boot a compressed
	 kernel. You can save several MegaBytes of disk space by
	 using this method, but the bootloader will take longer to
	 load the Kernel.

cp /netbsd /netbsd.plain
gzip -9 /netbsd

To see how much space we've saved:

$ ls -l /netbsd.plain /netbsd.gz
-rwxr-xr-x 1 root wheel 8757547 Apr 29 18:05 /netbsd.plain
-rwxr-xr-x 1 root wheel 3987769 Apr 29 18:05 /netbsd.gz

Note that you can only use gzip coding, by using
	 gzip(1), bzip2 is not supported by the NetBSD
	 bootloaders!

Chapter 20. NetBSD Veriexec subsystem

Veriexec is NetBSD's file integrity subsystem. It's kernel
 based, hence can provide some protection even in the case of a root
 compromise.

Veriexec works by loading a specification file, also called the
 signatures file, to the
 kernel. This file contains information about files Veriexec
 should monitor, as well as their digital fingerprint (along with
 the hashing algorithm used to produce this fingerprint), and
 various flags that will be discussed later.

At the moment, the following hashing algorithms are
 supported by Veriexec:
 MD5,
 SHA1,
 SHA256,
 SHA384,
 SHA512, and
 RMD160.

An entry in the Veriexec signatures file looks like
 this:

	/path/to/file algorithm fingerprint flags

Where the first element, the path, must always be an
 absolute path. The algorithm is one of the algorithms listed
 above, and fingerprint is the ASCII fingerprint.

20.3. Generating fingerprints

You can generate ASCII fingerprints for each
 algorithm using the following tools:

Table 20.1. Veriexec fingerprints tools

	Algorithm
	Tool

	MD5
	/usr/bin/cksum -a md5

	SHA1
	/usr/bin/cksum -a sha1

	SHA256
	/usr/bin/cksum -a sha256

	SHA384
	/usr/bin/cksum -a sha384

	SHA512
	/usr/bin/cksum -a sha512

	RMD160
	/usr/bin/cksum -a rmd160

For example, to generate a MD5 fingerprint for
 /bin/ls:

	% cksum -a md5 < /bin/ls
	a8b525da46e758778564308ed9b1e493

And to generate a SHA512 fingerprint for
 /bin/ps:

	% cksum -a sha512 < /bin/ps
	381d4ad64fd47800897446a2026eca42151e03adeae158db5a34d12c529559113d928a9fef9a7c4615d257688d1da4645db004081030d7f080bb7198067eb890

Each entry may be associated with zero or more flags.
 Currently, these flags indicate how the file the entry is describing
 should be accessed.
 Note that this access type is enforced only in strict level 2 (IPS
 mode) and above.

The access types you can use are “DIRECT”,
 “INDIRECT”, and “FILE”.

	
DIRECT access
	 means that the file is executed directly, and not invoked
	 as an interpreter for some script, or opened with an editor.
	 Usually, most programs you use will be accessed using this
	 mode:

	% ls /tmp
	% cp ~/foo /tmp/bar
	% rm ~/foo

	
INDIRECT
	 access means that the file is executed indirectly, and is
	 invoked to interpret a script. This happens usually when
	 scripts have a #! magic as their first line. For example,
	 if you have a script with the following as its first
	 line:

	#!/bin/sh

And you run it as:

	% ./script.sh

Then /bin/sh will be executed
	 indirectly -- it will be invoked to interpret the
	 script.

	
FILE entries
	 refer to everything which is not (or should not) be
	 an executable. This includes shared libraries,
	 configuration files, etc.

Some examples for Veriexec signature file
	 entries:

	/bin/ls MD5 dc2e14dc84bdefff4bf9777958c1b20b DIRECT
	/usr/bin/perl MD5 914aa8aa47ebd79ccd7909a09ed61f81 INDIRECT
	/etc/pf.conf MD5 950e1dd6fcb3f27df1bf6accf7029f7d FILE

Veriexec allows you to specify more than one way to access a
 file in an entry. For example, even though
 /usr/bin/perl is mostly used as an
 interpreter, it may be desired to be able to execute it
 directly, too:

	/usr/bin/perl MD5 914aa8aa47ebd79ccd7909a09ed61f81 DIRECT, INDIRECT

Shell scripts using #! magic to be “executable”
 also require two access types: We need them to be
 “DIRECT” so we can execute them, and we need them
 to be “FILE” so that the kernel can feed their
 contents to the interpreter they define:

	/usr/src/build.sh MD5 e80dbb4c047ecc1d84053174c1e9264a DIRECT, FILE

To make it easier to create signature files, and to make the
 signature files themselves more readable, Veriexec allows you to use
 the following aliases:

Table 20.2. Veriexec access type aliases

	Alias
	Expansion

	PROGRAM
	DIRECT

	INTERPRETER
	INDIRECT

	SCRIPT
	DIRECT, FILE

	LIBRARY
	FILE

After you have generated a signatures file, you should save it as
 /etc/signatures, and enable Veriexec in
 rc.conf:

	veriexec=YES

Since different people might want to use Veriexec for
 different purposes, we also define four strict levels, ranging
 0-3, and named “learning”, “IDS”,
 “IPS”, and “lockdown” modes.

In strict level 0, learning
 mode, Veriexec will act passively and simply warn about any
 anomalies. Combined with verbose level 1, running the system in
 this mode can help you fine-tune the signatures file. This is
 also the only strict level in which you can load new entries
 to the kernel.

Strict level 1, or IDS
 mode, will deny access to files with a fingerprint
 mismatch. This mode suits mostly to users who simply want to
 prevent access to files which might've been maliciously modified
 by an attacker.

Strict level 2, IPS mode,
 takes a step towards trying to protect the integrity of
 monitored files. In addition to preventing access to files with
 a fingerprint mismatch, it will also deny write access and
 prevent the removal of monitored files, and enforce the way
 monitored files are accessed. (as the signatures file
 specifies).

Lockdown mode (strict level 3)
 can be used in highly critical situations such as custom made
 special-purpose machines, or as a last line of defense after an
 attacker compromised the system and we want to prevent traces
 from being removed, so we can perform post-mortem analysis. It will
 prevent the creation of new files, and deny access to files not
 monitored by Veriexec.

It's recommended to first run Veriexec in strict level 0 and
 verbose level 1 to fine-tune your signatures file, ensuring that
 desired applications run correctly, and only then raise the
 strict level (and lower the verbosity level). You can use
 /etc/sysctl.conf to auto raise the
 strict level to the desired level after a reboot:

	kern.veriexec.strict=1

20.5. Veriexec and layered file systems

Veriexec can be used on NFS file systems on the client side
 and on layered file systems such as the union file system. The
 files residing on these file systems need only be specified in the
 /etc/signatures file and that the file
 systems be mounted prior to the fingerprints being loaded.

If you are going to use layered file systems then you must
 ensure that you include the fingerprint for files you want
 protected at every layer. If you fail to do this someone could
 overwrite a file protected by Veriexec by using a different layer
 in a layered file system stack. This limitation may be removed in
 later versions of NetBSD.

It's recommended that if you are not going to use layered
 file systems nor NFS then these features should be disabled in
 they kernel configuration. If you need to use layered file
 systems then you must follow the instructions in the previous
 paragraph and ensure that the files you want protected have
 fingerprints at all layers. Also you should raise securelevel to
 2 after all mounts are done:

	kern.securelevel=2

To prevent new layers being mounted which could compromise
 Veriexec's protection.

20.6. Kernel configuration

To use Veriexec, aside from creating a signatures file, you
 should enable (uncomment) it in your kernel's config file: (e.g.
 /usr/src/sys/arch/i386/conf/GENERIC):

	pseudo-device veriexec

Then, you need to enable the hashing algorithms you wish to
 support:

	options VERIFIED_EXEC_FP_MD5
	options VERIFIED_EXEC_FP_SHA1
	options VERIFIED_EXEC_FP_RMD160
	options VERIFIED_EXEC_FP_SHA512
	options VERIFIED_EXEC_FP_SHA384
	options VERIFIED_EXEC_FP_SHA256

Depending on your operating system version and platform, these
 may already be enabled. Once done, rebuild and reinstall your kernel,
 see Chapter 34, Compiling the kernel for further instructions.

 If you do not have the Veriexec device
 /dev/veriexec, you can create it manually by
 running the following command:

cd /dev
sh MAKEDEV veriexec

Chapter 21. Bluetooth on NetBSD

 Bluetooth is a digital radio protocol used for short range
 and low power communications. NetBSD includes support
 for the Bluetooth protocol stack, and some integration of
 service profiles into the NetBSD device framework.

 The lower layers of the Bluetooth protocol stack pertaining
 to actual radio links between devices are handled inside the
 Bluetooth Controller, which communicates with the Host computer
 using the “Host Controller Interface” (HCI)
 protocol which can be accessed via a raw packet BTPROTO_HCI
 socket interface.

 Most of the Bluetooth protocols or services layer atop the
 “Link Layer Control and Adaptation Protocol”
 (L2CAP), which can be accessed via a BTPROTO_L2CAP socket
 interface. This provides sequential packet connections to
 remote devices, with up to 64k channels. When an L2CAP
 channel is opened, the protocol or service that is required
 is identified by a “Protocol/Service Multiplexer”
 (PSM) value.

 Service Discovery in the Bluetooth environment is provided for
 by the sdp(3) library functions and the sdpd(8) daemon,
 which keeps a database of locally registered services and makes
 the information available to remote devices performing queries.
 The sdpquery(1) tool can be used to query local and remote
 service databases.

 Security on Bluetooth links can be enabled by encryption and
 authentication options to btconfig(8) which apply to all
 baseband links that a controller makes, or encryption and
 authentication can be enabled for individual RFCOMM and L2CAP
 links as required. When authentication is requested, a PIN is
 presented by each side (generally entered by the operator, some
 limited input devices have a fixed PIN). The controller uses
 this PIN to generate a Link Key and reports this to the Host
 which may be asked to produce it to authenticate subsequent
 connections. On NetBSD, the bthcid(8) daemon is
 responsible for storing link keys and responding to Link Key
 Requests, and also provides an interface to allow unprivileged
 users to specify a PIN with a PIN client, such as
 btpin(1).

 Because Bluetooth controllers normally use the standard
 HCI protocol as specified in the “Bluetooth 2.0
 Core” documentation to communicate with the host,
 the NetBSD Bluetooth stack is compatible with most controllers,
 only requiring an interface driver:

	
 bcsp(4) provides a tty(4) line discipline to send
 and receive BlueCore Serial Protocol packets over a serial
 line as described in the “BlueCore Serial Protocol
 (BCSP)” specification.

	
 bt3c(4) provides an interface to the 3Com
 Bluetooth PC Card, model 3CRWB6096-A.

	
 btbc(4) provides support for the AnyCom BlueCard
 (LSE041, LSE039, LSE139) PCMCIA devices.

	
 btuart(4) provides a tty(4) line discipline to
 send and receive Bluetooth packets over a serial line as
 described in the “Bluetooth Host Controller Interface
 [Transport Layer] specification, Vol 4 part A”.

	
 sbt(4) provides support for Secure Digital IO
	 Bluetooth adapters.

	
 ubt(4) interfaces to all USB Bluetooth
 controllers conforming to the “HCI USB Transport
 Layer” specification.

 If the hardware is supported by the NetBSD Bluetooth stack,
 autoconfiguration messages will show up in the
 dmesg output, for example:

bt3c0 at pcmcia0 function 0: <3COM, 3CRWB60-A, Bluetooth PC Card>

ubt0 at uhub1 port 4 configuration 1 interface 0
ubt0: Cambridge Silicon Radio Bluetooth USB Adapter, rev 2.00/19.58, addr 4

ubt1 at uhub1 port 2 configuration 1 interface 0
ubt1: Broadcom Belkin Bluetooth Device, rev 1.10/0.01, addr 5

 When support is not already compiled in, it can be added to
 the kernel configuration file for any platform that supports
 USB and/or PCMCIA (see Section 19.9, “Kernel Tuning”),
 using the following declarations, as required:

Bluetooth Controller and Device support

pseudo-device bcsp # BlueCore Serial Protocol
pseudo-device btuart # Bluetooth HCI UART

Bluetooth PCMCIA Controllers
bt3c* at pcmcia? function ? # 3Com 3CRWB6096-A
btbc* at pcmcia? function ? # AnyCom BlueCard LSE041/039/139

Bluetooth SDIO Controllers
sbt* at sdmmc?

Bluetooth USB Controllers
ubt* at uhub? port ?

Bluetooth Device Hub
bthub* at bcsp?
bthub* at bt3c?
bthub* at btbc?
bthub* at btuart?
bthub* at sbt?
bthub* at ubt?

Bluetooth HID support
bthidev* at bthub?

Bluetooth Mouse
btms* at bthidev? reportid ?
wsmouse* at btms? mux 0

Bluetooth Keyboard
btkbd* at bthidev? reportid ?
wskbd* at btkbd? console ? mux 1

Bluetooth Audio support
btsco* at bthub?

 Some older USB Bluetooth dongles based on the Broadcom
 BCM2033 chip require firmware to be loaded before they can
 function, and these devices will be attached to ugen(4).
 Use the “sysutils/bcmfw” package from the NetBSD
 Package Collection, to load firmware and enable these.

21.3. System Configuration

 To fully enable Bluetooth services on NetBSD, the following
 line should be added to the /etc/rc.conf
 file.

bluetooth=YES

 and either reboot, or execute the following command:

service bluetooth start

 Configuration of Bluetooth controllers is done with the
 btconfig(8) program, and the above argument enables
 only basic functionality, see the manual page for other
 useful options. The extra options for btconfig on a given device,
 say utb0, can be set by adding a line for it to the
 /etc/rc.conf file.

btconfig_ubt0="name MyComputerName"

Important

	bthcid(8) must be running in order
	to make authenticated connections with remote devices, and
	authentication may be requested by either device.

21.4. Human Interface Devices

 Support for “Human Interface Devices” (HIDs),
 which operate using the USB HID protocol over a pair of L2CAP
 channels is provided by the bthidev(4) driver. Currently,
 keyboards and mice are catered for, and attach to wscons(4)
 as normal.

 Bluetooth Mice can be attached to the system with the
 btms(4) driver, using btdevctl(8).

 First, you must discover the BDADDR of the device. This
 may be printed on the box, but the easiest way is to place
 the device into discoverable mode and perform a device inquiry
 with the appropriate controller:

% btconfig ubt0 inquiry
Device Discovery on ubt0 1 response
 1: bdaddr 00:14:51:c1:b9:2d (unknown)
 : name "Mighty Mouse"
 : class: [0x002580] Peripheral Mouse <Limited Discoverable>
 : page scan rep mode 0x01
 : page scan period mode 0x02
 : page scan mode 0x00
 : clock offset 6944

 For ease of use, you may want to add the address to the
 /etc/bluetooth/hosts file, so that
 you can refer to the mouse by alias:

echo "00:14:51:c1:b9:2d mouse" >>/etc/bluetooth/hosts

 Now, you can query the mouse, which will likely request
 authentication before it accepts connections. The fixed
 PIN should be listed in the documentation, though
 “0000” is often used. Set the PIN first
 using the btpin(1) program:

% btpin -d ubt0 -a mouse -p 0000
btdevctl -d ubt0 -a mouse -s HID
local bdaddr: 00:08:1b:8d:ba:6d
remote bdaddr: 00:14:51:c1:b9:2d
link mode: auth
device type: bthidev
control psm: 0x0011
interrupt psm: 0x0013
Collection page=Generic_Desktop usage=Mouse
 Input id=2 size=1 count=1 page=Button usage=Button_1 Variable, logical range 0..1
 Input id=2 size=1 count=1 page=Button usage=Button_2 Variable, logical range 0..1
 Input id=2 size=1 count=1 page=Button usage=Button_3 Variable, logical range 0..1
 Input id=2 size=1 count=1 page=Button usage=Button_4 Variable, logical range 0..1
 Input id=2 size=4 count=1 page=0x0000 usage=0x0000 Const Variable, logical range 0..1
Collection page=Generic_Desktop usage=Pointer
 Input id=2 size=8 count=1 page=Generic_Desktop usage=X Variable Relative, logical range -127..127
 Input id=2 size=8 count=1 page=Generic_Desktop usage=Y Variable Relative, logical range -127..127
 Input id=2 size=8 count=1 page=Consumer usage=AC_Pan Variable Relative, logical range -127..127
 Input id=2 size=8 count=1 page=Generic_Desktop usage=Wheel Variable Relative, logical range -127..127
End collection
 Input id=2 size=8 count=1 page=0x00ff usage=0x00c0 Variable, logical range -127..127
Feature id=71 size=8 count=1 page=0x0006 usage=0x0020 Variable NoPref Volatile, logical range 0..100
End collection

 This tells you that the mouse has responded to an SDP
 query, and the device capabilities are shown. Note that
	 authentication is enabled by default for Bluetooth mice.
	 You may now attach to the system:

btdevctl -d ubt0 -a mouse -s HID -A

 which should generate some messages on the system console:

bthidev0 at bthub0 remote-bdaddr 00:14:51:c1:b9:2d link-mode auth
btms0 at bthidev1 reportid 2: 4 buttons, W and Z dirs.
wsmouse1 at btms0 mux 0
bthidev1: reportid 71 not configured
bthidev1: connected

 and the mouse should work.

 The device capabilities are cached by btdevctl(8), and
 to reattach the mouse at system startup, place an entry in
 /etc/bluetooth/btdevctl.conf. The
	bthidev(4) driver will attempt to connect once, though
	mice will usually be sleeping and may require a tap on the
	shoulder to awaken, in which case they should initiate the
	connection to the host computer.

 Bluetooth Keyboards can be attached to the system with
 the btkbd(4) driver, using btdevctl(8).

 First, you must discover the BDADDR of the device. This
 may be printed on the box, but the easiest way is to place
 the device into discoverable mode and perform a device
 inquiry with the appropriate controller:

% btconfig ubt0 inquiry
Device Discovery on ubt0 1 response
 1: bdaddr 00:0a:95:45:a4:a0 (unknown)
 : name "Apple Wireless Keyboard"
 : class: [0x002540] Peripheral Keyboard <Limited Discoverable>
 : page scan rep mode 0x01
 : page scan period mode 0x00
 : page scan mode 0x00
 : clock offset 18604

 For ease of use, you may want to add the address to the
 /etc/bluetooth/hosts file, so that
 you can refer to the keyboard by alias:

echo "00:0a:95:45:a4:a0 keyboard" >>/etc/bluetooth/hosts

 Now, you can query the keyboard, which will likely request
 authentication before it accepts connections. The PIN will
 need to be entered on the keyboard, and we can generate a
 random PIN, using the btpin(1) program.

% btpin -d ubt0 -a keyboard -r -l 8
PIN: 18799632
btdevctl -d ubt0 -a keyboard -s HID

 < ENTER PIN ON BLUETOOTH KEYBOARD NOW >

local bdaddr: 00:08:1b:8d:ba:6d
remote bdaddr: 00:0a:95:45:a4:a0
link mode: encrypt
device type: bthidev
control psm: 0x0011
interrupt psm: 0x0013
Collection page=Generic_Desktop usage=Keyboard
 Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_LeftControl Variable, logical range 0..1
 Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_LeftShift Variable, logical range 0..1
 Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_LeftAlt Variable, logical range 0..1
 Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_Left_GUI Variable, logical range 0..1
 Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_RightControl Variable, logical range 0..1
 Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_RightShift Variable, logical range 0..1
 Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_RightAlt Variable, logical range 0..1
 Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_Right_GUI Variable, logical range 0..1
 Input id=1 size=8 count=1 page=0x0000 usage=0x0000 Const, logical range 0..1
 Output id=1 size=1 count=1 page=LEDs usage=Num_Lock Variable, logical range 0..1
 Output id=1 size=1 count=1 page=LEDs usage=Caps_Lock Variable, logical range 0..1
 Output id=1 size=1 count=1 page=LEDs usage=Scroll_Lock Variable, logical range 0..1
 Output id=1 size=1 count=1 page=LEDs usage=Compose Variable, logical range 0..1
 Output id=1 size=1 count=1 page=LEDs usage=Kana Variable, logical range 0..1
 Output id=1 size=3 count=1 page=0x0000 usage=0x0000 Const, logical range 0..1
 Input id=1 size=8 count=6 page=Keyboard usage=No_Event, logical range 0..255
 Input id=1 size=1 count=1 page=Consumer usage=Eject Variable Relative, logical range 0..1
 Input id=1 size=1 count=1 page=Consumer usage=Mute Variable Relative, logical range 0..1
 Input id=1 size=1 count=1 page=Consumer usage=Volume_Up Variable, logical range 0..1
 Input id=1 size=1 count=1 page=Consumer usage=Volume_Down Variable, logical range 0..1
 Input id=1 size=1 count=4 page=0x0000 usage=0x0000 Const, logical range 0..1
End collection

 This tells you that the keyboard has responded to an SDP
 query, and the device capabilities are shown. Note that
	 encryption is enabled by default, since encrypted connection
	 support is mandatory for Bluetooth keyboards. You may now
	 attach to the system:

btdevctl -d ubt0 -a keyboard -s HID -A

 which should generate some messages on the system console:

bthidev1 at bthub0 remote-bdaddr 00:0a:95:45:a4:a0 link-mode encrypt
btkbd0 at bthidev0 reportid 1
wskbd1 at btkbd0 mux 1
wskbd1: connecting to wsdisplay0
bthidev1: connected

 and the keyboard should work.

 The device capabilities are cached by btdevctl(8), and
 to reattach the keyboard at system startup, place an entry in
 /etc/bluetooth/btdevctl.conf. The
	bthidev(4) driver will attempt to connect once when
	attached, but if the keyboard is not available at that time,
	you may find that pressing a key will cause it to wake up and
	initiate a connection to the last paired host.

21.5. Personal Area Networking

 Personal Area Networking services over Bluetooth are provided
 by the btpand(8) daemon which can assume all roles from
 the PAN profile and connects remote devices to the system
 through a tap(4) virtual Ethernet interface.

21.5.1. Personal Area Networking User

 The "Personal Area Networking User" role is the client that
	accesses Network services on another device. For instance,
	in order to connect to the Internet via a smart phone with
	the NAP profile, make sure that the phone is discoverable,
	then:

% btconfig ubt0 inquiry
Device Discovery from device: ubt0 1 response
 1: bdaddr 00:17:83:30:bd:5e (unknown)
 : name "HTC Touch"
 : class: [0x5a020c] Smart Phone <Networking> <Capturing> <Object Transfer>
	<Telephony>
 : page scan rep mode 0x01
 : clock offset 9769
 : rssi -42

echo "00:17:83:30:bd:5e phone" >>/etc/bluetooth/hosts

 You will see that the phone should have the <Networking> flag set
 in the Class of Device. Checking for the NAP service:

% sdpquery -a phone search NAP
ServiceRecordHandle: 0x00010000
ServiceClassIDList:
 Network Access Point
ProtocolDescriptorList:
 L2CAP (PSM 0x000f)
 BNEP (v1.0; IPv4, ARP, IPv6)
LanguageBaseAttributeIDList:
 en.UTF-8 base 0x0100
BluetoothProfileDescriptorList:
 Network Access Point, v1.0
ServiceName: "Network Access Point"
ServiceDescription: "Bluetooth NAP Service"
SecurityDescription: None
NetAccessType: 100Mb Ethernet
MaxNetAccessRate: 100000

 reveals that the NAP service is available and that it
 provides IPv4, ARP and IPv6 protocols.

 Most likely, the phone will request authentication before
 it allows connections to the NAP service, so before you
 make the first connection you may need to provide a PIN,
 which can be randomly generated. Then start btpand(8):

% btpin -d ubt0 -a phone -r -l 6
PIN: 862048
btpand -d ubt0 -a phone -s NAP

 < ENTER PIN ON PHONE NOW >

Searching for NAP service at 00:17:83:30:bd:5e
Found PSM 15 for service NAP
Opening connection to service 0x1116 at 00:17:83:30:bd:5e
Using interface tap0 with addr 00:10:60:e1:50:3d

 Finally, you will need to configure the tap(4) interface,
 but the phone should have a DHCP server so dhcpcd(8)
 will do that for you.

dhcpcd tap0

 Now you can surf the World Wide Web, but watch your data
 usage unless you have a comprehensive data plan.

 Serial connections over Bluetooth are provided for by the
 RFCOMM protocol, which provides up to 30 channels multiplexed
 over a single L2CAP channel. This streamed data protocol can be
 accessed using the BTPROTO_RFCOMM socket interface, or via the
 rfcomm_sppd(1) program.

 For instance, you can make a serial connection to the
 “Dial Up Networking” (DUN) service of a mobile
 phone in order to connect to the Internet with PPP. First you
 should discover the BDADDR of the phone, and add this to your
 /etc/bluetooth/hosts for ease of use.
 Place the phone into Discoverable mode, and perform an inquiry
 from the appropriate controller:

% btconfig ubt0 inquiry
Device Discovery from device: ubt0 1 response
 1: bdaddr 00:16:bc:00:e8:48 (unknown)
 : name "Nokia 6103"
 : class: [0x520204] Cellular Phone <Networking> <Object Transfer> <Telephony>
 : page scan rep mode 0x01
 : page scan period mode 0x02
 : page scan mode 0x00
 : clock offset 30269

echo "00:16:bc:00:e8:48 phone" >>/etc/bluetooth/hosts

 Now, you can query the phone to confirm that it supports
 the DUN profile:

% sdpquery -d ubt0 -a phone search DUN
ServiceRecordHandle: 0x00010003
ServiceClassIDList:
 Dialup Networking
 Generic Networking
ProtocolDescriptorList:
 L2CAP
 RFCOMM (channel 1)
BrowseGroupList:
 Public Browse Root
LanguageBaseAttributeIDList:
 en.UTF-8 base 0x0100
BluetoothProfileDescriptorList:
 Dialup Networking, v1.0
ServiceName: "Dial-up networking"

 Most likely, the phone will request authentication before
 it allows connections to the DUN service, so before you
 make the first connection you may need to provide a PIN,
 which can be randomly generated. You can use
 rfcomm_sppd in stdio mode to check that
 the connection is working ok, press ^C
 to disconnect and return to the shell, for example:

% btpin -d ubt0 -a phone -r -l 6
PIN: 904046
% rfcomm_sppd -d ubt0 -a phone -s DUN

 < ENTER PIN ON PHONE NOW >

rfcomm_sppd[24635]: Starting on stdio...
at
OK
ati
Nokia

OK
ati3
Nokia 6103

OK
at&v
ACTIVE PROFILE:
E1 Q0 V1 X5 &C1 &D2 &S0 &Y0
+CMEE=0 +CSTA=129 +CBST=0,0,1 +CRLP=61,61,48,6 +CR=0 +CRC=0 +CLIP=0,2
+CLIR=0,2 +CSNS=0 +CVHU=1 +DS=0,0,2048,32 +DR=0 +ILRR=0
+CHSN=0,0,0,0 +CHSR=0 +CPBS="SM"
S00:000 S01:000 S02:043 S03:013 S04:010 S05:008 S07:060 S08:002
S10:100 S12:050 S25:000

OK
^C
rfcomm_sppd[24635]: Completed on stdio

 To have pppd(8) connect to the DUN service of your
 phone automatically when making outbound connections, add the
 following line to the /etc/ppp/options
 file in place of the normal tty declaration:

pty "rfcomm_sppd -d ubt0 -a phone -s DUN -m encrypt"

 Isochronous (SCO) Audio connections may be created on a
 baseband radio link using either the BTPROTO_SCO socket
 interface, or the btsco(4) audio device driver. While
 the specification says that up to three such links can be
 made between devices, the current Bluetooth stack can only
 handle one with any dignity.

Important

 When using SCO Audio with USB Bluetooth controllers,
 you will need to enable isochronous data, and calculate
 the MTU that the device will use, see ubt(4) and
 btconfig(8).

Note

 SCO Audio does not work properly with the bt3c(4)
 driver, use a USB controller for best results.

21.7.1. SCO Audio Headsets

 Audio connections to Bluetooth Headsets are possible
 using the btsco(4) audio driver, and the bthset(1)
 program. First, you need to discover the BDADDR of the
 headset, and will probably wish to make an alias in your
 /etc/bluetooth/hosts file for ease
 of use. Place the headset into discoverable mode and
 perform an inquiry with the appropriate controller:

% btconfig ubt0 inquiry
Device Discovery from device: ubt0 1 response
 1: bdaddr 00:07:a4:23:10:83 (unknown)
 : name "JABRA 250"
 : class: [0x200404] Wearable Headset <Audio>
 : page scan rep mode 0x01
 : page scan period mode 0x00
 : page scan mode 0x00
 : clock offset 147

echo "00:07:a4:23:10:83 headset" >>/etc/bluetooth/hosts

 You will need to pair with the headset the first time you
 connect, the fixed PIN should be listed in the manual (often,
 “0000” is used). btdevctl(8) will query the
 device and attach the btsco(4) audio driver.

% btpin -d ubt0 -a headset -p 0000
btdevctl -d ubt0 -a headset -s HSET -A
local bdaddr: 00:08:1b:8d:ba:6d
remote bdaddr: 00:07:a4:23:10:83
link mode: none
device type: btsco
mode: connect
channel: 1

 which should generate some messages on the system console:

btsco0 at bthub0 remote-bdaddr 00:07:a4:23:10:83 channel 1
audio1 at btsco0: full duplex

 In order to use the audio device, you will need to open
 a control connection with bthset(1) which conveys
 volume information to the mixer device.

% bthset -m /dev/mixer1 -v
Headset Info:
 mixer: /dev/mixer1
 laddr: 00:08:1b:8d:ba:6d
 raddr: 00:07:a4:23:10:83
 channel: 1
 vgs.dev: 0, vgm.dev: 1

 and you should now be able to transfer 8khz samples to
 and from /dev/audio1 using any program
 that supports audio, such as audioplay(1) or
 audiorecord(1). Adjusting the mixer values should work
 when playing though you may find that when opening a
 connection, the headset will reset the volume to the last
 known settings.

% audiorecord -d /dev/audio1 voice.au

 < TALK NONSENSE NOW >

^C
% audioplay -d /dev/audio voice.au

 < THATS REALLY WHAT YOU SOUND LIKE >

% audioplay -d /dev/audio1 voice.au

 < IN THE HEADSET >

 The device capabilities are cached by btdevctl(8), and
 to reattach the btsco(4) driver at system startup, add
 an entry to /etc/bluetooth/btdevctl.conf.

21.7.2. SCO Audio Handsfree

 Audio connections to Bluetooth mobile phones using
 the Handsfree profile are possible with the
 “comms/bthfp” program from the NetBSD Package
 Collection.

 First, you need to discover the BDADDR of the phone,
 and will probably wish to make an alias in your
 /etc/bluetooth/hosts file for ease of
 use. Place the phone into discoverable mode and perform
 an inquiry with the appropriate controller:

% btconfig ubt0 inquiry
Device Discovery from device: ubt0 1 response
 1: bdaddr 00:16:bc:00:e8:48 (unknown)
 : name "Nokia 6103"
 : class: [0x520204] Cellular Phone <Networking;gt; <Object Transfer;gt; <Telephony;gt;
 : page scan rep mode 0x01
 : page scan period mode 0x02
 : page scan mode 0x00
 : clock offset 10131

echo "00:16:bc:00:e8:48 phone" >>/etc/bluetooth/hosts

 Now, you should be able to query the phone to confirm that
 it supports the Handsfree profile:

% sdpquery -d ubt0 -a phone search HF
ServiceRecordHandle: 0x00010006
ServiceClassIDList:
 Handsfree Audio Gateway
 Generic Audio
ProtocolDescriptorList:
 L2CAP
 RFCOMM (channel 13)
BrowseGroupList:
 Public Browse Root
LanguageBaseAttributeIDList:
 en.UTF-8 base 0x0100
BluetoothProfileDescriptorList:
 Handsfree, v1.5
ServiceName: "Voice Gateway"
Network: Ability to reject a call
SupportedFeatures:
 3 Way Calling
 Echo Cancellation/Noise Reduction
 Voice Recognition
 In-band Ring Tone

 and you will be able to use the
 bthfp program to access the
 Handsfree profile. The first time you connect, you may
 need to use a PIN to pair with the phone, which can be
 generated randomly by btpin(1):

% btpin -d ubt0 -a phone -r -l 6
PIN: 349163
% bthfp -d ubt0 -a phone -v

 < ENTER PIN ON PHONE NOW >
Handsfree channel: 13
Press ? for commands
Connecting.. ok
< AT+BRSF=20
> +BRSF: 47
Features: [0x002f] <3 way calling> <EC/NR> <Voice Recognition> <In-band ringtone> <reject ability>
> OK
< AT+CIND=?
> +CIND: ("call",(0,1)),("service",(0,1)),("call_setup",(0-3)),("callsetup",(0-3))
> OK
< AT+CIND?
> +CIND: 0,1,0,0
> OK
< AT+CMER=3,0,0,1
> OK
< AT+CLIP=1
> OK
Service Level established

 When the phone rings, just press a
 to answer, and audio should be routed through the
 /dev/audio device. Note that you will
 need a microphone connected in order to speak to the remote
 party.

 NetBSD does not currently have any native OBEX
 capability, see the “comms/obexapp” or
 “comms/obexftp” packages from the NetBSD
 Package Collection.

 When nothing seems to be happening, it may be useful to try
 the hcidump program from the
 “sysutils/netbt-hcidump” package in the NetBSD
 Package Collection. This has the capability to dump packets
 entering and leaving Bluetooth controllers on NetBSD, which
 is greatly helpful in pinpointing problems.

Chapter 22. Miscellaneous operations

This chapter collects various topics, in sparse order

22.1. Installing the boot manager

Sysinst, the NetBSD installation program usually installs the NetBSD
 boot manager on the hard disk.
 The boot manager can also be installed or reconfigured at a later
 time, if needed, with the fdisk command.
 For example:

fdisk -B wd0

If NetBSD doesn't boot from the hard disk, you can boot it from
 the installation floppy and start the kernel on the hard disk.
 Insert the installation disk and, at the boot prompt, give the
 following command:

> boot wd0a:netbsd

This boots the kernel on the hard disk (use the correct device,
 for example sd0a for a SCSI disk).

Note

Sometimes fdisk -B doesn't give the expected
 result (at least it happened to me), probably if you
 install/remove other operating systems.
 In this case, try running fdisk -i and
 then run again fdisk from NetBSD.

22.2. Deleting the disklabel

Though this is not an operation that you need to perform
 frequently, it can be useful to know how to do it in case of
 need.
 Please be sure to know exactly what you are doing before
 performing this kind of operation.
 For example:

dd if=/dev/zero of=/dev/rwd0c bs=8k count=1

The previous command deletes the disklabel (not the MBR partition
 table).
 To completely delete the disk, the whole device rwd0d
 must be used.
 For example:

dd if=/dev/zero of=/dev/rwd0d bs=8k

The commands above will only work as expected on the i386 and amd64 ports
 of NetBSD. On other ports, the whole device will end in c, not d (e.g.
 rwd0c).

To output a sound from the speaker (for example at the end of a
 long script) the spkr driver can be used in
 the kernel config, which is mapped on
 /dev/speaker. For example:

echo 'BPBPBPBPBP' > /dev/speaker

Note

The spkr device is not enabled in the
 generic kernel; a customized kernel is needed.

22.4. Forgot root password?

If you forget root's password, not all is lost and you can still
 recover the system with the following steps: boot
 single user, mount / and change root's password.
 In detail:

	
Boot single user: when the boot prompt appears and the five
	 seconds countdown starts, give the following command:

> boot -s

	
At the following prompt

Enter pathname of shell or RETURN for sh:

press Enter.

	
Write the following commands:

fsck -y /
mount -u /
fsck -y /usr
mount /usr

	
Change root's password:

passwd root
Changing local password for root.
New password: (not echoed)
Retype new password: (not echoed)

	
Exit the shell to go to multiuser
	 mode.

exit

If you get the error “Password file is busy”,
 please see the section below.

22.5. Password file is busy?

If you try to modify a password and you get the mysterious
 message “Password file is busy”, it probably
 means that the file /etc/ptmp has not
 been deleted from the system. This file is a temporary copy
 of the /etc/master.passwd file; check
 that you are not losing important information and then
 delete it:

 # rm /etc/ptmp

Note

If the file /etc/ptmp exists you can
	also receive a warning message at system startup. For
	example:

root: password file may be incorrect - /etc/ptmp exists

22.6. Adding a new hard disk

This section describes how to add a new hard disk to an
 already working NetBSD system. In the following example a
 new SCSI controller and a new hard disk, connected to the
 controller, will be added. If you don't need to add a new
 controller, skip the relevant part and go to the hard disk
 configuration. The installation of an IDE hard disk is
 identical; only the device name will be different
 (wd# instead of
 sd#).

As always, before buying new hardware, consult the hardware
 compatibility list of NetBSD and make sure that the new device
 is supported by the system.

When the SCSI controller has been physically installed in the
 system and the new hard disk has been connected, it's time to
 restart the computer and check that the device is correctly
 detected, using the dmesg command. This
 is the sample output for an NCR-875 controller:

ncr0 at pci0 dev 15 function 0: ncr 53c875 fast20 wide scsi
ncr0: interrupting at irq 10
ncr0: minsync=12, maxsync=137, maxoffs=16, 128 dwords burst, large dma fifo
ncr0: single-ended, open drain IRQ driver, using on-chip SRAM
ncr0: restart (scsi reset).
scsibus0 at ncr0: 16 targets, 8 luns per target
sd0(ncr0:2:0): 20.0 MB/s (50 ns, offset 15)
sd0: 2063MB, 8188 cyl, 3 head, 172 sec, 512 bytes/sect x 4226725 sectors

If the device doesn't appear in the output, check that it is
 supported by the kernel that you are using; if necessary,
 compile a customized kernel (see Chapter 34, Compiling the kernel).

Now the partitions can be created using the fdisk
 command. First, check the current status of the disk:

fdisk sd0
NetBSD disklabel disk geometry:
cylinders: 8188 heads: 3 sectors/track: 172 (516 sectors/cylinder)

BIOS disk geometry:
cylinders: 524 heads: 128 sectors/track: 63 (8064 sectors/cylinder)

Partition table:
0: sysid 6 (Primary 'big' DOS, 16-bit FAT (> 32MB))
 start 63, size 4225473 (2063 MB), flag 0x0
 beg: cylinder 0, head 1, sector 1
 end: cylinder 523, head 127, sector 63
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>

In this example the hard disk already contains a DOS
 partition, which will be deleted and replaced with a native
 NetBSD partition. The command fdisk -u sd0
 allows to modify interactively the partitions. The modified
 data will be written on the disk only before exiting and fdisk
 will request a confirmation before writing, so you can work
 relaxedly.

To create the BIOS partitions the command fdisk -u
 must be used; the result is the following:

Partition table:
0: sysid 169 (NetBSD)
 start 63, size 4225473 (2063 MB), flag 0x0
 beg: cylinder 0, head 1, sector 1
 end: cylinder 523, head 127, sector 63
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>

Now it's time to create the disklabel for the NetBSD
 partition. The correct steps to do this are:

disklabel sd0 > tempfile
vi tempfile
disklabel -R -r sd0 tempfile

Now we create some disklabel partitions, editing the
 tempfile as already explained. The
 result is:

size offset fstype [fsize bsize cpg]
a: 2048004 63 4.2BSD 1024 8192 16 # (Cyl. 0*- 3969*)
c: 4226662 63 unused 0 0 # (Cyl. 0*- 8191*)
d: 4226725 0 unused 0 0 # (Cyl. 0 - 8191*)
e: 2178658 2048067 4.2BSD 1024 8192 16 # (Cyl. 3969*- 8191*)

Note

When the disklabel has been created it is possible to
	optimize it studying the output of the command
	newfs -N /dev/rsd0a, which warns about
	the existence of unallocated sectors at the end of a
	disklabel partition. The values reported by newfs can be
	used to adjust the sizes of the partitions with an
	iterative process.

The final operation is the creation of the file systems for
 the newly defined partitions (a and
 e).

newfs /dev/rsd0a
newfs /dev/rsd0e

The disk is now ready for usage, and the two partitions can
 be mounted. For example:

mount /dev/sd0a /mnt

If this succeeds, you may want to put an entry for the partition
 into /etc/fstab.

22.7. How to rebuild the devices in /dev

First shutdown to single user, partitions still mounted
 “rw”
 (read-write); You can do that by just typing shutdown
 now while you are in multi user mode, or reboot with
 the -s option and make /
 and /dev read-writable by doing.

mount -u /
mount -u /dev

Then:

mkdir /newdev
cd /newdev
cp /dev/MAKEDEV* .
sh ./MAKEDEV all
cd /
mv dev olddev
mv newdev dev
rm -r olddev

Or if you fetched all the sources in
 /usr/src:

mkdir /newdev
cd /newdev
cp /usr/src/etc/MAKEDEV.local .
(cd /usr/src/etc ; make MAKEDEV)
cp /usr/src/etc/obj*/MAKEDEV .
sh ./MAKEDEV all
cd /
mv dev olddev; mv newdev dev
rm -r olddev

You can determine $arch by

uname -m

or

sysctl hw.machine_arch

Chapter 23. Introduction to TCP/IP Networking

This section explains various aspects of networking. It is
 intended to help people with little knowledge about networks
 to get started. It is divided into three big parts.
 We start by giving a general overview of how networking works
 and introduce the basic concepts. Then we go into details for
 setting up various types of networking in the second parts,
 and the third part of the networking section covers a number
 of “advanced” topics that go beyond the
 basic operation as introduced in the first two sections.

The reader is assumed to know about basic system
 administration tasks: how to become root, edit files, change
 permissions, stop processes, etc. See the other chapters of
 this NetBSD guide and, e.g., [AeleenFrisch] for
 further information on this topic. Besides that, you should
 know how to handle the utilities we're going to set up here,
 i.e., you should know how to use telnet, FTP, ... I will not
 explain the basic features of those utilities, please refer to
 the appropriate manual pages, the references listed or, of
 course, the other parts of this document instead.

This introduction to TCP/IP networking was written with the
 intention in mind to give starters a basic knowledge. If you
 really want to know what it's all about, read [CraigHunt]. This
 book does not only cover the basics, but goes on and explains all
 the concepts, services and how to set them up in detail. It's
 great, I love it! :-)

23.2. Supported Networking Protocols

There are several protocol suites supported by NetBSD, most of
 which were inherited from NetBSD's predecessor, 4.4BSD, and
 subsequently enhanced and improved.
 The first and most important one today is
 DARPA's Transmission Control
 Protocol/Internet Protocol (TCP/IP).
 Other protocol suites available
 in NetBSD include the Stream Control Transmission Protocol
 (SCTP), and Apple's AppleTalk protocol suite.
 They are only used in some special applications.

Today, TCP/IP is the most widespread protocol of the ones
 mentioned above. It is implemented on almost every hardware and
 operating system, and it is also the most-used protocol in
 heterogenous environments. So, if you just want to connect your
 computer running NetBSD to some other machine at home or you want
 to integrate it into your company's or university's network,
 TCP/IP is the right choice.

The TCP/IP protocol stack behaves the same regardless of the
 underlying media used, and NetBSD supports a wide range of
 these, among them are Ethernet (10/100Mb/1/10/40/100Gb),
 USB, serial line and FireWire
 (IEEE 1394).

Ethernet is the medium commonly used to build local area
 networks (LANs) of interconnected
 machines within a limited area such as an office, company or
 university campus. Ethernet is based on a bus structure to
 which many
 machines can connect to, and communication always happens
 between two nodes at a time. When two or more nodes want to
 talk at the same time, both will restart communication after
 some timeout. The technical term for this is
 CSMA/CD (Carrier Sense w/ Multiple Access
 and Collision Detection).

Initially, Ethernet hardware consisted of a thick (yellow)
 cable that machines tapped into using special connectors
 that poked through the cable's outer shielding. The
 successor of this was called 10base5, which used BNC-type
 connectors for tapping in special T-connectors and
 terminators on both ends of the bus. Today, ethernet is
 mostly used with twisted pair lines which are used in a
 collapsed bus system that are contained in switches or
 hubs. The twisted pair lines give this type of media its
 name - 10baseT for 10 Mbit/s networks, and 100baseT for 100
 MBit/s ones. In switched environments there's also the
 distinction if communication between the node and the switch
 can happen in half- or in full duplex mode.

23.3.2. IEEE 802.11 (Wi-Fi)

IEEE 802.11 (commonly known as Wi-Fi) is the primary means
 by which mobile devices are connected over a Local Area Network.

IEEE 802.11 primarily operates over two radio bands, 2.4 GHz (modes
 b, g, and n), and 5 GHz (modes a, and ac). The 2.4 GHz band is typically
 more congested, but loses less performance through walls and other
 barriers.

The main protocol used for securing Wi-Fi connections is
 WPA (Wi-Fi Protected Access).
 In a typical configuration, this encrypts the connection between the
 access point and its clients with a password.

The disadvantage of a serial connection is that it's slower
 than other methods. NetBSD can use at most 115200 bit/s, making
 it a lot slower than e.g. Ethernet's minimum 10 Mbit/s.

There are two possible protocols to connect a host running
 NetBSD to another host using a serial line (possibly
 over a phone-line):

	Serial Line IP (SLIP)

	Point to Point Protocol (PPP)

The choice here depends on whether you use a dial-up
 connection through a modem or if you use a static connection
 (null-modem or leased line). If you dial up for your IP
 connection, it's wise to use PPP as it offers some
 possibilities to auto-negotiate IP-addresses and routes, which
 can be quite painful to do by hand. If you want to connect to
 another machine which is directly connected, use SLIP, as this
 is supported by about every operating system and more easy to
 set up with fixed addresses and routes.

PPP on a direct connection is a bit difficult to setup, as
 it's easy to timeout the initial handshake; with SLIP, there's
 no such initial handshake, i.e. you start up one side, and
 when the other site has its first packet, it will send it over
 the line.

[RFC1331] and [RFC1332]
 describe PPP and TCP/IP over PPP. SLIP is defined in [RFC1055].

23.4. TCP/IP Address Format

TCP/IP uses 4-byte (32-bit) addresses in the current
 implementations (IPv4), also called IP-numbers
 (Internet-Protocol numbers), to address hosts.

TCP/IP allows any two machines to communicate directly. To
 permit this all hosts on a given network must have a unique
 IP address. To assure this, IP addresses are administrated
 by one central organisation, the InterNIC. They give
 certain ranges of addresses (network-addresses) directly
 to sites which want to participate in the internet or to
 internet-providers, which give the addresses to their
 customers.

If your university or company is connected to the Internet, it
 has (at least) one such network-address for its own use,
 usually not assigned by the InterNIC directly, but rather
 through an Internet Service Provider (ISP).

If you just want to run your private network at home, see below
 on how to “build” your own IP addresses. However, if
 you want to connect your machine to the (real :-) Internet, you
 should get an IP addresses from your local network-administrator or
 -provider.

IP addresses are usually written in
 “dotted quad”-notation
 - the four bytes are written down in decimal (most significant
 byte first),
 separated by dots. For example, 132.199.15.99 would be a valid
 address. Another way to write down IP-addresses would be as
 one 32-bit hex-word, e.g. 0x84c70f63. This is not as convenient
 as the dotted-quad, but quite useful at times, too. (See
 below!)

Being assigned a network means nothing else but setting some of
 the above-mentioned 32 address-bits to certain values. These
 bits that are used for identifying the network are called
 network-bits. The remaining bits can be used to address hosts
 on that network, therefore they are called host-bits.
 Figure 23.1, “IPv4-addresses are divided into more significant network- and
 less significant hostbits” illustrates the separation.

Figure 23.1. IPv4-addresses are divided into more significant network- and
 less significant hostbits

[image: IPv4-addresses are divided into more significant network- and less significant hostbits]

In the above example, the network-address is 132.199.0.0
 (host-bits are set to 0 in network-addresses) and the host's
 address is 15.99 on that network.

How do you know that the host's address is 16 bit wide? Well,
 this is assigned by the provider from which you get your
 network-addresses. In the classless inter-domain routing
 (CIDR)
 used today, host fields are usually between as little as 2 to
 16 bits wide, and the number of network-bits is written after
 the network address, separated by a “/”, e.g. 132.199.0.0/16
 tells that the network in question has 16 network-bits.
 When talking about the “size” of a network,
 it's usual to only
 talk about it as “/16”, “/24”, etc.

Before CIDR was used, there used to be four classes of
 networks. Each one starts with a certain bit-pattern
 identifying it. Here are the four classes:

	
Class A starts with “0” as most significant bit. The
 next seven bits of a class A address identify the
 network, the remaining 24 bit can be used to address
 hosts. So, within one class A network there can be
 224
 hosts. It's not very likely that you (or your
 university, or company, or whatever) will get a whole
 class A address.

The CIDR notation for a class A network with its eight
 network bits is an “/8”.

	
Class B starts with “10” as most significant
	 bits. The
 next 14 bits are used for the networks address and the
 remaining 16 bits can be used to address more than 65000
 hosts. Class B addresses are very rarely given out today,
 they used to be common for companies and universities
 before IPv4 address space went scarce.

The CIDR notation for a class B network with its 16
 network bits is an “/16”.

Returning to our above example, you can see that
 132.199.15.99 (or 0x84c70f63, which is more appropriate
 here!) is on a class B network, as 0x84... =
 1000... (base 2).

Therefore, the address 132.199.15.99 can be split into
 an network-address of 132.199.0.0 and a host-address of
 15.99.

	
Class C is identified by the MSBs being
 “110”, allowing
 only 256 (actually: only 254, see below) hosts on each
 of the 221 possible class C
 networks. Class C addresses
 are usually found at (small) companies.

The CIDR notation for a class C network with its 24
 network bits is an “/24”.

	There are also other addresses, starting with
 “111”. Those are used for special purposes
 (e. g. multicast-addresses) and are not of interest
 here.

Please note that the bits which are used for identifying the
 network-class are part of the network-address.

When separating host-addresses from network-addresses, the
 “netmask” comes in handy. In this mask, all the network-bits
 are set to “1”, the host-bits are “0”. Thus, putting together
 IP-address and netmask with a logical AND-function, the
 network-address remains.

To continue our example, 255.255.0.0 is a possible netmask for
 132.199.15.99. When applying this mask, the network-address
 132.199.0.0 remains.

For addresses in CIDR notation, the number of network-bits
 given also says how many of the most significant bits of the
 address must be set to “1” to get the netmask for the
 corresponding network. For classful addressing, every
 network-class has a fixed default netmask assigned:

	Class A (/8): default-netmask: 255.0.0.0, first byte of address:
	 1-127

	Class B (/16): default-netmask: 255.255.0.0, first byte of
	 address: 128-191

	Class C (/24): default-netmask: 255.255.255.0, first byte of
	 address: 192-223

Another thing to mention here is the “broadcast-address”. When
 sending to this address, all hosts on the
 corresponding network will receive the message sent. The
 broadcast address is characterized by having all host-bits set
 to “1”.

Taking 132.199.15.99 with its netmask 255.255.0.0 again, the
 broadcast-address would result in 132.199.255.255.

You'll ask now: But what if I want a host's address to be all
 bits “0” or “1”? Well, this doesn't work, as network- and
 broadcast-address must be present! Because of this, a class B
 (/16) network can contain at most
 216-2 hosts, a class C (/24)
 network can hold no more than 28-2
 = 254 hosts.

Besides all those categories of addresses, there's the special
 IP-address 127.0.0.1 which always refers to the “local” host,
 i.e. if you talk to 127.0.0.1 you'll talk to yourself without
 starting any network-activity. This is sometimes useful to use
 services installed on your own machine or to play around if you
 don't have other hosts to put on your network.

Let's put together the things we've introduced in this section:

	IP-address

	32 bit-address, with network- and host-bits.

	Network-address

	IP-address with all host bits set to “0”.

	Netmask

	32-bit mask with “1” for network- and “0” for host-bits.

	Broadcast

	IP-address with all host bits set “1”.

	localhost's address

	The local host's IP address is always 127.0.0.1.

23.5. Subnetting and Routing

After talking so much about netmasks, network-, host- and
 other addresses, I have to admit that this is not the whole
 truth.

Imagine the situation at your university, which usually has a
 class B (/16) address, allowing it to have up to
 216 ~= 65534
 hosts on that net. Maybe it would be a nice thing to have all
 those hosts on one single network, but it's simply not
 possible due to limitations in the transport media commonly
 used today.

For example, when using thinwire ethernet, the maximum length
 of the cable is 185 meters. Even with repeaters in between,
 which refresh the signals, this is not enough to cover all the
 locations where machines are located. Besides that, there is
 a maximum number of 1024 hosts on one ethernet wire, and
 you'll lose quite a bit of performance if you go to this
 limit.

So, are you hosed now? Having an address which allows more
 than 60000 hosts, but being bound to media which allows far
 less than that limit?

Well, of course not! :-)

The idea is to divide the “big” class B net into several
 smaller networks, commonly called sub-networks or simply
 subnets. Those subnets are only allowed to have, say, 254
 hosts on them (i.e. you divide one big class B network into
 several class C networks!).

To do this, you adjust your netmask to have more network- and
 less host-bits on it. This is usually done on a byte-boundary,
 but you're not forced to do it there. So, commonly your
 netmask will not be 255.255.0.0 as supposed by a class B
 network, but it will be set to 255.255.255.0.

In CIDR notation, you now write a “/24” instead of the
 “/16” to show that 24 bits of the address are
 used for identifying the network and subnet, instead of the
 16 that were used before.

This gives you one additional network-byte to assign to each
 (physical!) network. All the 254 hosts on that subnet can now
 talk directly to each other, and you can build 256 such class
 C nets. This should fit your needs.

To explain this better, let's continue our above example. Say
 our host 132.199.15.99 (I'll call him dusk from now; we'll talk
 about assigning hostnames later) has a netmask of
 255.255.255.0 and thus is on the subnet 132.199.15.0/24. Let's
 furthermore introduce some more hosts so we have something to
 play around with, see Figure 23.2, “Our demo-network”.

Figure 23.2. Our demo-network

[image: Our demo-network]

In the above network, dusk can talk directly to
 dawn, as they are
 both on the same subnet. (There are other hosts attached to
 the 132.199.15.0/24-subnet but they are not of importance for
 us now)

But what if dusk
 wants to talk to a host on another subnet?

Well, the traffic will then go through one or more gateways
 (routers), which are attached to two subnets. Because of this,
 a router always has two different addresses, one for each of
 the subnets it is on. The router is functionally transparent,
 i.e. you don't have to address it to reach hosts on the
 “other” side. Instead, you address that host directly and the
 packets will be routed to it correctly.

Example. Let's say dusk wants to get some files
 from the local ftp-server. As dusk can't reach ftp directly (because it's on
 a different subnet), all its packets will be forwarded to its
 "defaultrouter" rzi (132.199.15.1), which
 knows where to forward the packets.

Dusk knows the
 address of its defaultrouter in its network (rzi, 132.199.15.1), and it
 will forward any packets to it which are not on the same
 subnet, i.e. it will forward all IP-packets in which the third
 address-byte isn't 15.

The (default)router then gives the packets to the appropriate
 host, as it's also on the FTP-server's network.

In this example, all packets are
 forwarded to the
 132.199.1.0/24-network, simply because it's the network's
 backbone, the most important part of the network, which
 carries all the traffic that passes between several subnets.
 Almost all other networks besides 132.199.15.0/24 are attached to
 the backbone in a similar manner.

But what if we had hooked up another subnet to 132.199.15.0/24
 instead of 132.199.1.0/24? Maybe something the situation
 displayed in Figure 23.3, “Attaching one subnet to another one”.

Figure 23.3. Attaching one subnet to another one

[image: Attaching one subnet to another one]

When we now want to reach a host which is located in the
 132.199.16.0/24-subnet from dusk, it won't work routing it
 to rzi, but you'll
 have to send it directly to route2
 (132.199.15.2). Dusk will have to know to
 forward those packets to route2 and send all the others
 to rzi.

When configuring dusk, you tell it to forward
 all packets for the 132.199.16.0/24-subnet to route2, and all others to
 rzi. Instead of
 specifying this default as 132.199.1.0/24, 132.199.2.0/24,
 etc., 0.0.0.0 can be used to set the default-route.

Returning to Figure 23.2, “Our demo-network”, there's a similar problem when
 dawn wants to send
 to noon, which is
 connected to dusk
 via a serial line running. When looking at the IP-addresses,
 noon seems to be
 attached to the 132.199.15.0-network, but it isn't
 really. Instead, dusk is used as gateway, and
 dawn will have to
 send its packets to dusk, which will forward them
 to noon then. The
 way dusk is forced
 into accepting packets that aren't destined at it but for a
 different host (noon) instead is called “proxy
 arp”.

The same goes when hosts from other subnets want to send to
 noon. They have to
 send their packets to dusk
 (possibly routed via rzi),

23.6. Name Service Concepts

In the previous sections, when we talked about hosts, we
 referred to them by their IP-addresses. This was necessary to
 introduce the different kinds of addresses. When talking about
 hosts in general, it's more convenient to give them “names”,
 as we did when talking about routing.

Most applications don't care whether you give them an
 IP address or a hostname. However, they'll use IP addresses
 internally, and there are several methods for them to map
 hostnames to IP addresses, each one with its own way of
 configuration. In this section we'll introduce the idea behind
 each method, in the next chapter, we'll talk about the
 configuration-part.

The mapping from hostnames (and domainnames) to IP-addresses
 is done by a piece of software called the “resolver”.
 This is not an extra service, but some library routines which are
 linked to every application using networking-calls. The
 resolver will then try to resolve (hence the name ;-) the
 hostnames you give into IP addresses. See [RFC1034] and [RFC1035] for details on
 the resolver.

Hostnames are usually up to 256 characters long, and contain
 letters, numbers and dashes (“-”); case is
 ignored.

Just as with networks and subnets, it's possible (and
 desirable) to group hosts into domains and subdomains. When
 getting your network-address, you usually also obtain a
 domainname by your provider. As with subnets, it's up to you
 to introduce subdomains. Other as with IP-addresses,
 (sub)domains are not directly related to (sub)nets; for
 example, one domain can contain hosts from several subnets.

Figure 23.2, “Our demo-network” shows this: Both subnets 132.199.1.0/24 and
 132.199.15.0/24 (and others) are part of the subdomain
 “rz.uni-regensburg.de”. The
 domain the University of Regensburg got from its IP-provider
 is “uni-regensburg.de”
 (“.de” is for
 Deutschland, Germany), the subdomain “rz” is for Rechenzentrum,
 computing center.

Hostnames, subdomain- and domainnames are separated by dots
 (“.”). It's also possible to use more than one stage of
 subdomains, although this is not very common. An example would
 be fox_in.socs.uts.edu.au.

A hostname which includes the (sub)domain is also called a
 fully qualified domain name (FQDN). For
 example, the IP-address 132.199.15.99 belongs to the host with
 the FQDN dusk.rz.uni-regensburg.de.

Further above I told you that the IP-address 127.0.0.1 always
 belongs to the local host, regardless what's the “real”
 IP-address of the host. Therefore, 127.0.0.1 is always mapped
 to the name “localhost”.

The three different ways to translate hostnames into
 IP addresses are: /etc/hosts, the Domain
 Name Service (DNS) and the Network
 Information Service (NIS).

The first and simplest way to translate hostnames into
 IP-addresses is by using a table telling which IP address
 belongs to which hostname(s). This table is stored in the
 file /etc/hosts and has the following format:

IP-address hostname [nickname [...]]

Lines starting with a hash mark (“#”) are
 treated as
 comments. The other lines contain one IP-address and the
 corresponding hostname(s).

It's not possible for a hostname to belong to several
 IP addresses, even if I made you think so when talking about
 routing. rzi for
 example has really two distinct names for each of its two
 addresses: rzi
 and rzia (but
 please don't ask me which name belongs to which address!).

Giving a host several nicknames can be convenient if you want
 to specify your favorite host providing a special service
 with that name, as is commonly done with FTP-servers. The
 first (leftmost) name is usually the real (canonical) name of
 the host.

Besides giving nicknames, it's also convenient to give a
 host's full name (including domain) as its canonical name, and
 using only its hostname (without domain) as a nickname.

Important: There
 must be an entry mapping
 localhost to 127.0.0.1 in /etc/hosts!

23.6.2. Domain Name Service (DNS)

/etc/hosts bears an inherent problem,
 especially in big networks: when one host is added or one
 host's address changes, all the
 /etc/hosts files on all machines have to be
 changed! This is not only time-consuming, it's also very
 likely that there will be some errors and inconsistencies,
 leading to problems.

Another approach is to hold only one hostnames-table
 (-database) for a network, and make all the clients query
 that “nameserver”. Updates will be made only on the
 nameserver.

This is the basic idea behind the Domain Name Service (DNS).

Usually, there's one nameserver for each domain (hence
 DNS), and every host (client) in that domain knows which
 domain it is in and which nameserver to query for its domain.

When the DNS gets a query about a host which is not in its
 domain, it will forward the query to a DNS which is either
 the DNS of the domain in question or knows which DNS to ask
 for the specified domain. If the DNS forwarded the query
 doesn't know how to handle it, it will forward that query
 again to a DNS one step higher. This is not ad infinitum,
 there are several “root”-servers, which know about any
 domain.

See Chapter 26, The Domain Name System for details on DNS.

23.6.3. Network Information Service (NIS/YP)

Yellow Pages (YP) was invented by Sun
 Microsystems. The name has been changed into Network
 Information Service (NIS) because YP was
 already a trademark of the British telecom. So, when I'm
 talking about NIS you'll know what I mean. ;-)

There are quite some configuration files on a Unix-system,
 and often it's desired to maintain only one set of those
 files for a couple of hosts. Those hosts are grouped
 together in a NIS-domain (which has nothing to do
 with the domains built by using DNS!) and are usually
 contained in one workstation cluster.

Examples for the config-files shared among those hosts are
 /etc/passwd,
 /etc/group and - last but not least -
 /etc/hosts.

So, you can “abuse” NIS for getting a unique
 name-to-address-translation on all hosts throughout one
 (NIS-)domain.

There's only one drawback, which prevents NIS from actually
 being used for that translation: In contrast to the DNS, NIS
 provides no way to resolve hostnames which are not in the
 hosts-table. There's no hosts “one level up” which the
 NIS-server can query, and so the translation will fail!
 Suns NIS+ takes measures against that problem, but
 as NIS+ is only available on Solaris-systems, this is of
 little use for us now.

Don't get me wrong: NIS is a fine thing for managing
 e.g. user-information (/etc/passwd, ...) in
 workstation-clusters, it's simply not too useful for
 resolving hostnames.

The name resolving methods described above are what's used
 commonly today to resolve hostnames into IP addresses, but
 they aren't the only ones. Basically, every database
 mechanism would do, but none is implemented in NetBSD.
 Let's have a quick look what you may encounter.

With NIS lacking hierarchy in data structures, NIS+ is
 intended to help out in that field. Tables can be setup in a
 way so that if a query cannot be answered by a domain's
 server, there can be another domain “above” that
 might be able to do so. E.g. you could choose to have a domain
 that lists all the hosts (users, groups, ...) that are valid in
 the whole company, one that defines the same for each
 division, etc. NIS+ is not used a lot today, even Sun went
 back to ship back NIS by default.

Last century, the X.500 standard was designed to accommodate
 both simple databases like /etc/hosts
 as well as complex, hierarchical systems as can be found
 e.g. in DNS today. X.500 wasn't really a success, mostly due
 to the fact that it tried to do too much at the same time.
 A cut-down version is available today as the Lightweight
 Directory Access Protocol (LDAP), which is
 becoming popular in the last years to manage data like users
 but also hosts and others in small to medium sized
 organisations.

23.7.1. What good is IPv6?

When telling people to migrate from IPv4 to IPv6, the
 question you usually hear is “why?”. There are actually a
 few good reasons to move to the new version:

	Bigger address space

	Support for mobile devices

	Built-in security

23.7.1.1. Bigger Address Space

The bigger address space that IPv6 offers is the most
 obvious enhancement it has over IPv4. While today's
 internet architecture is based on 32-bit wide addresses,
 the new version has 128 bit available for
 addressing. Thanks to the enlarged address space,
 work-arounds like NAT don't have to be used any more. This
 allows full, unconstrained IP connectivity for today's
 mobile phones and IoT devices.

When mentioning mobile devices and IP, another important
 point to note is that some special protocol is needed to
 support mobility, and implementing this protocol - called
 “Mobile IP” - is one of the requirements for every
 IPv6 stack. Thus, if you have IPv6 going, you have support for
 roaming between different networks, with everyone being
 updated when you leave one network and enter the other
 one. Support for roaming is possible with IPv4 too, but
 there are a number of hoops that need to be jumped in
 order to get things working. With IPv6, there's no need
 for this, as support for mobility was one of the design
 requirements for IPv6. See [RFC3024] for
 some more information on the issues that need to be
 addressed with Mobile IP on IPv4.

Besides support for mobility, security was another
 requirement for the successor to today's Internet Protocol
 version. As a result, IPv6 protocol stacks are required to
 include IPsec. IPsec allows authentication, encryption
 and compression of any IP traffic. Unlike application
 level protocols like SSL or SSH, all IP traffic between
 two nodes can be handled, without adjusting any
 applications. The benefit of this is that all applications
 on a machine can benefit from encryption and
 authentication, and that policies can be set on a per-host
 (or even per-network) base, not per
 application/service. An introduction to IPsec with a
 roadmap to the documentation can be found in [RFC2411], the core protocol is described in
 [RFC2401].

After giving a brief overview of all the important features
 of IPv6, we'll go into the details of the basics of IPv6
 here. A brief understanding of how IPv4 works is assumed,
 and the changes in IPv6 will be highlighted. Starting with
 IPv6 addresses and how they're split up we'll go into the
 various types of addresses there are, what became of
 broadcasts, then after discussing the IP layer go into
 changes for name resolving and what's new in DNS for IPv6.

An IPv4 address is a 32 bit value, that's usually written
 in “dotted quad” representation, where each
 “quad” represents a byte value between 0 and 255,
 for example:

127.0.0.1

This allows a theoretical number of
 232 or ~4 billion
 hosts to be connected on the internet today. Due to
 grouping, not all addresses are available today.

IPv6 addresses use 128 bit, which results in
 2128
 theoretically addressable hosts. This allows for a Really
 Big number of machines to addressed, and it sure fits all
 of today's requirements plus all those nifty PDAs and cell
 phones with IP phones in the near future without any
 sweat. When writing IPv6 addresses, they are usually
 divided into groups of 16 bits written as four hex digits,
 and the groups are separated by colons. An example is:

fe80::2a0:d2ff:fea5:e9f5

This shows a special thing - a number of consecutive zeros
 can be abbreviated by a single “::” once in the IPv6
 address. The above address is thus equivalent to
 fe80:0:00:000:2a0:d2ff:fea5:e9f5 - leading zeros within
 groups can be omitted, and only one “::” can
 be used in an IPv6 address.

To make addresses manageable, they are split in two parts,
 which are the bits identifying the network a machine is
 on, and the bits that identify a machine on a
 (sub)network. The bits are known as netbits and hostbits,
 and in both IPv4 and IPv6, the netbits are the “left”,
 most significant bits of an IP address, and the host bits are
 the “right”, least significant bits, as shown in
 Figure 23.4, “IPv6-addresses are divided into more significant network- and
 less significant hostbits, too”.

Figure 23.4. IPv6-addresses are divided into more significant network- and
 less significant hostbits, too

[image: IPv6-addresses are divided into more significant network- and less significant hostbits, too]

In IPv4, the border is drawn with the aid of the netmask,
 which can be used to mask all net/host bits. Typical
 examples are 255.255.0.0 that uses 16 bit for addressing
 the network, and 16 bit for the machine, or 255.255.255.0
 which takes another 8 bit to allow addressing 256 subnets
 on e.g. a class B net.

When addressing switched from classful addressing to CIDR
 routing, the borders between net and host bits stopped
 being on 8 bit boundaries, and as a result the netmasks
 started looking ugly and not really manageable. As a
 replacement, the number of network bits is used for a
 given address, to denote the border, e.g.

10.0.0.0/24

is the same as a netmask of 255.255.255.0 (24 1-bits). The
 same scheme is used in IPv6:

2001:638:a01:2::/64

tells us that the address used here has the first
 (leftmost) 64 bits used as the network address, and the
 last (rightmost) 64 bits are used to identify the machine
 on the network. The network bits are commonly referred to
 as (network) “prefix”, and the
	 “prefixlen” here would be
 64 bits.

Common addressing schemes found in IPv4 are the (old)
 class B and class C nets. With a class C network (/24),
 you get 24 bits assigned by your provider, and it leaves 8
 bits to be assigned by you. If you want to add any
 subnetting to that, you end up with “uneven” netmasks that
 are a bit nifty to deal with. Easier for such cases are
 class B networks (/16), which only have 16 bits assigned
 by the provider, and that allow subnetting, i.e. splitting
 of the rightmost bits into two parts. One to address the
 on-site subnet, and one to address the hosts on that
 subnet. Usually, this is done on byte (8 bit)
 boundaries. Using a netmask of 255.255.255.0 (or a /24
 prefix) allows flexible management even of bigger networks
 here. Of course there is the upper limit of 254 machines
 per subnet, and 256 subnets.

With 128 bits available for addressing in IPv6, the scheme
 commonly used is the same, only the fields are
 wider. Providers usually assign /48 networks, which leaves
 16 bits for a subnetting and 64 hostbits.

Figure 23.5. IPv6-addresses have a similar structure to
	 class B addresses

[image: IPv6-addresses have a similar structure to class B addresses]

Now while the space for network and subnets here is pretty
 much ok, using 64 bits for addressing hosts seems like a
 waste. It's unlikely that you will want to have several
 billion hosts on a single subnet, so what is the idea
 behind this?

The idea behind fixed width 64 bit wide host
 identifiers is that they aren't assigned manually as it's
 usually done for IPv4 nowadays. Instead, IPv6 host addresses
 are recommended (not mandatory!) to be built from
 so-called EUI64 addresses. EUI64 addresses are - as the
 name says - 64 bit wide, and derived from MAC addresses of
 the underlying network interface. E.g. for ethernet, the 6
 byte (48 bit) MAC address is usually filled with the hex
 bits “fffe” in the middle and a bit is set to mark
 the address as unique (which is true for Ethernet), e.g. the
 MAC address

01:23:45:67:89:ab

results in the EUI64 address

03:23:45:ff:fe:67:89:ab

which again gives the host bits for the IPv6 address as

::0323:45ff:fe67:89ab

These host bits can now be used to automatically assign
 IPv6 addresses to hosts, which supports autoconfiguration
 of IPv6 hosts - all that's needed to get a complete IPv6
 address is the first (net/subnet) bits, and IPv6 also
 offers a solution to assign them automatically.

When on a network of machines speaking IP, there's usually
 one router which acts as the gateway to outside
 networks. In IPv6 land, this router will send “router
 advertisement” information, which clients are expected to
 either receive during operation or to solicit upon
 system startup. The router advertisement information includes
 data on the router's address, and which address prefix it
 routes. With this information and the host-generated EUI64
 address, an IPv6-host can calculate its IP address, and there
 is no need for manual address assignment. Of course
 routers still need some configuration.

The router advertisement information they create are part
 of the Neighbor Discovery Protocol (NDP, see [RFC2461]),
 which is the successor to IPv4's ARP protocol. In contrast
 to ARP, NDP does not only do lookup of IPv6 addresses for
 MAC addresses (the neighbor solicitation/advertisement
 part), but also does a similar service for routers and the
 prefixes they serve, which is used for autoconfiguration
 of IPv6 hosts as described in the previous paragraph.

23.7.2.2. Multiple Addresses

In IPv4, a host usually has one IP address per network
 interface or even per machine if the IP stack supports
 it. Only very rare applications like web servers result in
 machines having more than one IP address. In IPv6, this is
 different. For each interface, there is not only a
 globally unique IP address, but there are two other
 addresses that are of interest: The link local address,
 and the site local address. The link local address has a
 prefix of fe80::/64, and the host bits are built from the
 interface's EUI64 address. The link local address is used
 for contacting hosts and routers on the same network only,
 the addresses are not visible or reachable from different
 subnets. If wanted, there's the choice of either using
 global addresses (as assigned by a provider), or using
 site local addresses. Site local addresses are assigned
 the network address fec0::/10, and subnets and hosts can
 be addressed just as for provider-assigned networks. The
 only difference is, that the addresses will not be visible
 to outside machines, as these are on a different network,
 and their “site local” addresses are in a different
 physical net (if assigned at all). As with the 10/8
 network in IPv4, site local addresses can be used, but
 don't have to. For IPv6 it's most common to have hosts
 assigned a link-local and a global IP address. Site local
 addresses are rather uncommon today, and are no substitute
 for globally unique addresses if global connectivity is
 required.

In IP land, there are three ways to talk to a host:
 unicast, broadcast and multicast. The most common one is
 by talking to it directly, using its unicast address. In
 IPv4, the unicast address is the “normal” IP address
 assigned to a single host, with all address bits
 assigned. The broadcast address used to address all hosts
 in the same IP subnet has the network bits set to the
 network address, and all host bits set to “1” (which can
 be easily done using the netmask and some bit operations).
 Multicast addresses are used to reach a number of hosts in
 the same multicast group, which can be machines spread
 over the whole internet. Machines must join multicast
 groups explicitly to participate, and there are special
 IPv4 addresses used for multicast addresses, allocated from
 the 224/8 subnet. Multicast isn't used very much in IPv4,
 and only few applications like the MBone audio and video
 broadcast utilities use it.

In IPv6, unicast addresses are used the same as in IPv4,
 no surprise there - all the network and host bits are
 assigned to identify the target network and
 machine. Broadcasts are no longer available in IPv6 in the
 way they were in IPv4, this is where multicasting comes
 into play. Addresses in the ff::/8 network are reserved
 for multicast applications, and there are two special
 multicast addresses that supersede the broadcast addresses
 from IPv4. One is the “all routers” multicast address, the
 others is for “all hosts”. The addresses are specific to
 the subnet, i.e. a router connected to two different
 subnets can address all hosts/routers on any of the
 subnets it's connected to. Addresses here are:

	ff0X::1 for all hosts and

	ff0X::2 for all routers,

where “X”
	 is the scope ID of
 the link here, identifying the network. Usually this starts
 from “1” for the “node local” scope,
 “2” for the first
 link, etc. Note that it's perfectly ok for two network
 interfaces to be attached to one link, thus resulting in
 double bandwidth:

Figure 23.6. Several interfaces attached to a link result in only one
 scope ID for the link

[image: Several interfaces attached to a link result in only one scope ID for the link]

One use of the “all hosts” multicast
	 is in the neighbor
 solicitation code of NDP, where any machine that wants to
 communicate with another machine sends out a request to
 the “all hosts” group, and the machine in question is
 expected to respond.

23.7.2.4. Name Resolving in IPv6

After talking a lot about addressing in IPv6, anyone still
 here will hope that there's a proper way to abstract all
 these long & ugly IPv6 addresses with some nice hostnames
 as one can do in IPv4, and of course there is.

Hostname to IP address resolving in IPv4 is usually done in
 one of three ways: using a simple table in
 /etc/hosts, by
 using the Network Information Service (NIS, formerly YP)
 or via the Domain Name System (DNS).

As of this writing, NIS/NIS+ over IPv6 is currently only
 available on Solaris 8, for both database contents and
 transport, using a RPC extension.

Having a simple address<->name map like
 /etc/hosts is
 supported in all IPv6 stacks. With the KAME implementation
 used in NetBSD, /etc/hosts contains
 IPv6 addresses
 as well as IPv4 addresses. A simple example is the
 “localhost” entry in the default NetBSD installation:

127.0.0.1 localhost
::1 localhost

For DNS, there are no fundamentally new concepts. IPv6
 name resolving is done with AAAA records that - as the
 name implies - point to an entity that's four times the
 size of an A record. The AAAA record takes a hostname on
 the left side, just as A does, and on the right side
 there's an IPv6 address, e.g.

noon IN AAAA 3ffe:400:430:2:240:95ff:fe40:4385

For reverse resolving, IPv4 uses the in-addr.arpa zone,
 and below that it writes the bytes (in decimal) in
 reversed order, i.e. more significant bytes are more
 right. For IPv6 this is similar, only that hex digits
 representing 4 bits are used instead of decimal numbers,
 and the resource records are also under a different
 domain, ip6.int.

So to have the reverse resolving for the above host, you
 would put into your /etc/named.conf
 something like:

zone "0.3.4.0.0.0.4.0.e.f.f.3.IP6.INT" {
 type master;
 file "db.reverse";
};

and in the zone file db.reverse you put (besides the usual
 records like SOA and NS):

5.8.3.4.0.4.e.f.f.f.5.9.0.4.2.0.2.0.0.0 IN PTR noon.ipv6.example.com.

The address is reversed here, and written down one hex
 digit after the other, starting with the least significant
 (rightmost) one, separating the hex digits with dots, as
 usual in zone files.

One thing to note when setting up DNS for IPv6 is to take
 care of the DNS software version in use. BIND 8.x does
 understand AAAA records, but it does not offer name
 resolving via IPv6. You need BIND 9.x for that. Beyond
 that, BIND 9.x supports a number of resource records that
 are currently being discussed but not officially
 introduced yet. The most noticeable one here is the A6
 record which allows easier provider/prefix changing.

To sum up, this section talked about the technical
 differences between IPv4 and IPv6 for addressing and name
 resolving. Some details like IP header options, QoS and
 flows were deliberately left out to not make this
 document more complex than necessary.

Chapter 24. Setting up TCP/IP on NetBSD in practice

24.1. Overview of the network configuration files

The following is a list of the files used to configure the
 network. The usage of these files, some of which have already
 been met the first chapters, will be described in the
 following sections.

	/etc/hosts

	Local hosts database file. Each line contains information
	 regarding a known host and contains the internet address,
	 the host's name and the aliases. Small networks can be
	 configured using only the hosts file, without a
	 name server.
	 See hosts(5)

	/etc/resolv.conf

	This file specifies how the routines which provide access
	 to the Internet Domain Name System should operate.
	 Generally it contains the addresses of the DNS servers.
	 See resolv.conf(5)

	/etc/sysctl.conf

	This file is used for configuring kernel settings,
	 e.g. enabling packet forwarding on a gateway. See sysctl.conf(5).

	/etc/ifconfig.xxx

	This file is used for the automatic configuration of the
	 network interfaces at boot, see ifconfig.if(5)

	/etc/npf.conf

	Contains firewall configuration for the NetBSD Packet Filter,
 see npf.conf(5) and
	 /usr/share/examples/npf.

	/etc/dhcpcd.conf

	Contains configuration for a DHCP client. DHCP is used
	 to automatically get IPv4 address assignments over Ethernet,
 but dhcpcd(8) is also used to for IPv6 Prefix
	 Delegation and DHCPv6.
	 See dhcpcd.conf(5) and
	 /usr/share/examples/dhcpcd.

	/etc/dhcpd.conf

	Contains configuration for a DHCP server. DHCP is used
	 to automatically assign IPv4 addresses to clients.
	 See dhcpd.conf(5) and
	 /usr/share/examples/dhcpd.

	/etc/mygate

	Contains the IP address of the IPv4 gateway.
	 Used to configure a default route when not using DHCP.
	 You can also set defaultroute="" in
 /etc/rc.conf.

	/etc/mygate6

	Contains the IP address of the IPv6 gateway.
	 Used to configure a default route when not using autoconfiguration.
	 You can also set defaultroute6="" in
 /etc/rc.conf.

	/etc/nsswitch.conf

	
Name service switch configuration file. It controls how a
	 process looks up various databases containing information
	 regarding hosts, users, groups, etc. Specifically, this
	 file defines the order to look up the databases. For
	 example, the line:

hosts: files dns mdnsd

specifies that the hosts database comes from two
	 sources, files (the local
	 /etc/hosts file) and
	 DNS, (the Internet Domain Name
	 System) and that the local files are searched before
	 the DNS.

It is usually not necessary to modify this file
	 except to enable Multicast DNS.

See nsswitch.conf(5).

	/etc/hostapd.conf

	Used to configure an IEEE 802.11 (Wi-Fi) wireless access
	 point. See hostapd.conf(5) and
	 /usr/share/examples/hostapd.

	/etc/wpa_supplicant.conf

	Used to configure an IEEE 802.11 (Wi-Fi) client.
	 See wpa_supplicant.conf(5) and
	 /usr/share/examples/wpa_supplicant.

24.2. Connecting to common LAN setups

In Local Area Networks that are centrally managed, one can expect
 Internet connectivity being available via some router, a DNS server
 being available, and most important, a DHCP server which hands
 out IP addresses to clients on request. To make a NetBSD client
 run in such an environment, it's usually enough to set

dhcpcd=YES

in /etc/rc.conf, and the IP address will
 be set automatically, /etc/resolv.conf
 will be created and routing setup to the default router.

24.2.1. Connecting using IEEE 802.11 (Wi-Fi)

WPA Supplicant allows connecting to Wi-Fi networks using a password,
	but also provides a consistent interface through which to connect
	to access points.

As well as having dhcpcd(8) running, on a system using
	Wi-Fi to connect to an access point, wpa_supplicant(8) must
	typically be enabled:

ifconfig_iwm0="up"
dhcpcd=YES
wpa_supplicant=YES

At runtime:

ifconfig iwm0 up
service dhcpcd start
service wpa_supplicant start

In this case, our Wi-Fi interface is called iwm0.
	It is set to up with ifconfig(8).
	You can find a list of detected Wi-Fi interfaces with wlanctl(8):

wlanctl -a
iwm0: mac 10:02:xx:xx:xx:xx bss 00:00:00:00:00:00

The following /etc/wpa_supplicant.conf
	configures NetBSD to automatically connect to two access points.
	More can also be added.

Example 24.1. /etc/wpa_supplicant.conf

Allow wpa_cli(8) to configure wpa_supplicant
ctrl_interface=/var/run/wpa_supplicant
ctrl_interface_group=wheel
update_config=1

Automatically connect to the unprotected network "metalab".
network={
	ssid="metalab"
	key_mgmt=NONE
	priority=100
}

Automatically connect to the protected network "discord" using the password "XXX".
network={
 ssid="discord"
 psk="XXX"
}

After adding access points, reload wpa_supplicant(8)'s
	configuration:

service wpa_supplicant reload
service dhcpcd restart

You can use wpa_cli(8) to scan for networks once
	WPA supplicant is running:

wpa_cli scan
wpa_cli scan_results
Selected interface 'iwm0'
16:01:33.578: bssid / frequency / signal level / flags / ssid
xx:xx:xx:xx:xx:xx 5180 91 [WPA2-PSK-CCMP][ESS] FRITZ!Box 1000 EZ

24.3. Manually creating a small LAN

This section describes how to configure a LAN
 manually in order to describe the basics of the
 networking stack.
 Usually, this configuration is automatic through dhcpcd(8),
 see Section 24.2, “Connecting to common LAN setups”

First, the network cards must be installed and connected to a
 switch or directly.

Next, check that the network cards are recognized by the kernel,
 studying the output of the dmesg command.
 In the following example the kernel recognized correctly
 an NE2000 clone:

...
ne0 at isa0 port 0x280-0x29f irq 9
ne0: NE2000 Ethernet
ne0: Ethernet address 00:c2:dd:c1:d1:21
...

The following command shows the network card's
 current configuration:

ifconfig ne0
ne0: flags=8822<BROADCAST,NOTRAILERS,SIMPLEX,MULTICAST> mtu 1500
address: 00:50:ba:aa:a7:7f
media: Ethernet autoselect (10baseT)
inet6 fe80::250:baff:feaa:a77f%ne0 prefixlen 64 scopeid 0x1

The software configuration of the network card is very easy.
 The IP address “192.168.1.1” is assigned to the
 card.

ifconfig ne0 inet 192.168.1.1 netmask 0xffffff00

Note that the networks 10.0.0.0/8 and 192.168.0.0/16 are
 reserved for private networks, which is what we're setting up
 here.

Repeating the previous command now gives a different
 result:

ifconfig ne0
ne0: flags=8863<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST> mtu 1500
address: 00:50:ba:aa:a7:7f
media: Ethernet autoselect (10baseT)
inet 192.168.1.1 netmask 0xffffff00 broadcast 192.168.1.255
inet6 fe80::250:baff:feaa:a77f%ne0 prefixlen 64 scopeid 0x1

The output of ifconfig has now changed: the
 IP address is now printed and there are two new flags,
 “UP” and “RUNNING”
 If the interface isn't “UP”, it will not be used by the
 system to send packets.

The host was given the IP address 192.168.1.1, which belongs to
 the set of addresses reserved for internal networks which are not
 reachable from the Internet.
 The configuration is finished and must now be tested; if
 there is another active host on the network, a
 ping can be tried.
 For example, if 192.168.1.2 is the address of the active host:

ping 192.168.1.2
PING ape (192.168.1.2): 56 data bytes
64 bytes from 192.168.1.2: icmp_seq=0 ttl=255 time=1.286 ms
64 bytes from 192.168.1.2: icmp_seq=1 ttl=255 time=0.649 ms
64 bytes from 192.168.1.2: icmp_seq=2 ttl=255 time=0.681 ms
64 bytes from 192.168.1.2: icmp_seq=3 ttl=255 time=0.656 ms
^C
----ape PING Statistics----
4 packets transmitted, 4 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.649/0.818/1.286/0.312 ms

With the current setup, at the next boot it will be necessary to
 repeat the configuration of the network card.
 In order to avoid repeating the card's configuration at each
 boot, add the following lines to
 /etc/rc.conf:

auto_ifconfig=yes
ifconfig_ne0="inet 192.168.1.1 netmask 0xffffff00"

In this example the variable ifconfig_ne0
 was set because the network card was recognized as
 ne0 by the kernel; if you are using a
 different adapter, substitute the appropriate name in place of
 ne0.

At the next boot the network card will be configured
 automatically.

If you have a router that is connected to the internet, you
 can use it as default router, which will handle all your
 packets. To do so, set defaultroute to the
 router's IP address in /etc/rc.conf:

defaultroute=192.168.0.254

Be sure to use the default router's IP address instead of
 name, in case your DNS server is beyond the default router. In
 that case, the DNS server couldn't be reached to resolve the
 default router's hostname and vice versa, creating a
 chicken-and-egg problem.

To reach hosts on your local network, and assuming you really
 have very few hosts, adjust /etc/hosts to
 contain the addresses of all the hosts belonging to the
 internal network. For example:

Example 24.2. /etc/hosts

#
Host Database
This file should contain the addresses and aliases
for local hosts that share this file.
It is used only for "ifconfig" and other operations
before the nameserver is started.
#
#
127.0.0.1 localhost
::1 localhost
#
RFC 1918 specifies that these networks are "internal".
10.0.0.0 10.255.255.255
172.16.0.0 172.31.255.255
192.168.0.0 192.168.255.255

192.168.1.1 ape.insetti.net ape
192.168.1.2 vespa.insetti.net vespa
192.168.1.0 insetti.net

To configure a machine as DNS client, you need to edit
 /etc/resolv.conf, and enter the DNS
 server's address, in addition to an optional domain name that
 will be appended to hosts with no domain, in order to create a
 FQDN for resolving. Assuming your DNS server's IP address is
 192.168.1.2 and it is setup to serve for "home.net", put the
 following into /etc/resolv.conf:

/etc/resolv.conf
domain home.net
nameserver 192.168.1.2

Summing up, to configure the network the following must be done:
 the network adapters must be installed and physically connected.
 Next they must be configured (with ifconfig)
 and, finally, the file /etc/rc.conf must
 be modified to configure the interface and possibly default
 router, and /etc/resolv.conf and
 /etc/nsswitch.conf should be adjusted if
 DNS should be used.
 This type of network management is sufficient for small
 networks without sophisticated needs.

24.4. Connecting to a home/office ISP with PPPoE

Many home/office ISPs use PPP (point to point protocol)
 to provide Internet access to their clients. NetBSD includes
 pppoe(4) (PPP over Ethernet) functionality that can be
 used to connect to a modem which communicates with the ISP,
 typically not using Ethernet, allowing NetBSD to be used
 as a gateway on small home and office networks.

We start by configuring the kernel for PPPoE use
 by bumping the tty queue size.
 This setting can be made permanent by editing
 /etc/sysctl.conf:

sysctl -w kern.tty.qsize=32768

Now, create the interface with ifconfig(8):

ifconfig pppoe0 create
ifconfig inet 0.0.0.0 0.0.0.1 down
ifconfig re0 up
pppoectl -e re0 pppoe0

We are using our computer's re0
 interface to connect to our DSL modem.

Then, configure the PPPoE connection to use our ISP's provided
 username and password:

pppoectl pppoe0 myauthproto=pap 'myauthname=XXX' 'myauthsecret=YYY' hisauthproto=none

We are now ready to test a first connection. Since something
 may be wrong, we will restrict retries for now:

pppoectl pppoe0 max-auth-failure=1
ifconfig pppoe0 up
pppoectl -d pppoe0
pppoe0: state = session
	Session ID: 0x254f
	PADI retries: 0
	PADR retries: 0

This example output shows a working setup. The PPPoE session has been
 established and is still in use (state = session). We can now check the IP
 negotiation of PPP:

ifconfig pppoe0
pppoe0: flags=8851<UP,POINTOPOINT,RUNNING,SIMPLEX,MULTICAST> mtu 1492
	inet 117.80.111.85 -> 118.5.113.169 netmask 0xff000000

We can make the configuration permanent by creating
 /etc/ifconfig.pppoe0:

Example 24.3. /etc/ifconfig.pppoe0

create
Mark the physical interface used by this PPPoE interface up
! /sbin/ifconfig re0 up
Let $int use re0 as its Ethernet interface
! /sbin/pppoectl -e re0 $int
Configure authentication
! /sbin/pppoectl $int myauthproto=pap 'myauthname=XXX' 'myauthsecret=YYY' hisauthproto=none
Configure the PPPoE interface itself. These addresses are magic
meaning we don't care about either address and let the remote
ppp choose them.
0.0.0.0 0.0.0.1 up

To automatically get a route(8) to the outside world,
 we use ifwatchd(8). Create the following scripts:

Example 24.4. /etc/ppp/ip-up

#!/bin/sh
/sbin/route add default $5

Example 24.5. /etc/ppp/ip-down

#!/bin/sh
/sbin/route delete default $5

And make them executable by root:

chmod +x /etc/ppp/ip-up /etc/ppp/ip-down

Now, edit /etc/rc.conf to enable
 ifwatchd:

ifwatchd=YES
ifwatchd_flags="-u /etc/ppp/ip-up -d /etc/ppp/ip-down pppoe0"

And start the service:

service ifwatchd start

24.4.1. Configuring a VLAN

A typical PPPoE connection requires a VLAN ID to be set
	on the external interface.
	On NetBSD this is accomplished by creating a vlan(4) interface:

ifconfig vlan0 create
ifconfig vlan0 vlan 6 vlanif pppoe0

Example 24.6. /etc/ifconfig.vlan0

create
vlan 6 vlanif pppoe0

To ensure that vlan0 is created at
	the appropriate time, refer to Section 24.7, “Ensuring interfaces are initialized in the correct order”.

24.4.2. Setting up MSS clamping

Some systems behind misconfigured firewalls try to use
	Path-MTU-Discovery, while their firewall blocks all ICMP messages. This is
	an illegal, but not uncommon configuration.
	Typically, remote servers with this configuration are outside of your
	control, but you might still need to connect to them, e.g. to do your
	online banking.

Without special care, such systems will not be able to send larger
	chunks of data to a system connected via PPPoE. But there is a workaround:
	pretend to not be able to handle large packets, by sending a small MSS
	(maximum segment size) option during initial TCP handshake.

For connections originating from your PPPoE connected system, this is
	accomplished by setting the sysctl(8) variable
	net.inet.tcp.mss_ifmtu to 1, i.e. by adding this
	to /etc/sysctl.conf:

Obey interface MTUs when calculating MSS
net.inet.tcp.mss_ifmtu=1

For connections originating from systems behind your PPPoE
	router, you need to configure MSS clamping in your firewall,
	like in this example /etc/npf.conf:

procedure "norm4" {
	normalize: "random-id", "max-mss" 1440
}

procedure "norm6" {
	normalize: "random-id", "max-mss" 1420
}

group "external" on "pppoe0" {
	pass stateful out final family inet4 all apply "norm4"
	pass stateful out final family inet6 all apply "norm6"
}

For more information about configuring NPF, see
	Section 24.5, “Setting up an Internet gateway with NPF”

24.4.3. Obtaining IPv6 addresses via Prefix Delegation

To obtain an IPv6 address, the NetBSD kernel must be configured
	to accept IPv6 router advertisements with sysctl(8):

sysctl -w net.inet6.ip6.accept_rtadv=1

This setting can be made permanent by
	editing /etc/sysctl.conf.

Many ISPs implement IPv6 over PPP via prefix delegation.
	Prefix Delegation can be configured with dhcpcd(8),
	for example with this /etc/dhcpcd.conf:

Example 24.7. /etc/dhcpcd.conf

duid
ipv6only
require dhcp_server_identifier
option interface_mtu
noipv6rs
slaac private
interface pppoe0
 option rapid_commit
 ipv6rs
 iaid 1
 ia_na 1
 ia_pd 2/::/64 re1/1

With this configuration, running rtadvd(8) on the
	re1 interface should be enough to assign IPv6
	addresses to clients.

If you still can't get IPv6 working, other things to try are to
	make sure ipv6-icmpand and
	dhcpv6 can pass through your firewall.

24.5. Setting up an Internet gateway with NPF

npf(7) (NetBSD Packet Filter) is NetBSD's firewall.
 It can be used to protect a local network from the dangers
 of the wider Internet, and can also perform Network Address Translation
 (NAT) in order to make sure IPv4 packets reach the correct
 destination computer.

Some usage examples of NPF can be found in the subdirectory
 /usr/share/examples/npf. Look at the file
 soho_gw-npf.conf for an example of a configuration
 for a small home/office gateway.

In order to use NetBSD as a gateway, the packet forwarding
 sysctl(8) options must be enabled. You can add them to
 /etc/sysctl.conf.

sysctl -w net.inet.ip.forwarding=1
net.inet.ip.forwarding = 1
sysctl -w net.inet6.ip6.forwarding=1
net.inet6.ip6.forwarding = 1

And enable NPF in /etc/rc.conf:

npf=YES

The following configuration performs straightforward NAT, using
 re0 as the external network and re1
 as the internal network interface.
 If you have multiple internal network interfaces, you might want to
 bridge them. See Section 24.6, “Setting up a network bridge device”

Example 24.8. /etc/npf.conf

$ext_if = "re0"
$int_if = "re1"
$ext_addrs = { ifaddrs($ext_if) }
$localnet = { 192.168.0.0/24 }

Allow pings.
alg "icmp"

Perform IPv4 NAT.
map inet4($ext_if) dynamic $localnet -> inet4($ext_if)

group "external" on $ext_if {
	# Allow all outbound traffic
 pass stateful out all
	# Block all incoming traffic
	block in all
}

group "internal" on $int_if {
	# We trust the internal network.
	pass in final all
	pass out final all
}

group default {
	pass final on lo0 all
	block all
}

Usually, you will want to configure dhcpd(8) so clients are
 automatically assigned IP addresses in the correct range:

Example 24.9. /etc/dhcpd.conf

subnet 192.168.0.0 netmask 255.255.255.0 {
 option routers 192.168.0.1;
	option domain-name-servers 9.9.9.9;
 option subnet-mask 192.168.0.0;
 range 192.168.0.100 192.168.0.254;
 default-lease-time 604800; # default lease 7 days
}

24.6. Setting up a network bridge device

A bridge can be used to combine different physical networks
 into one logical network, i.e. connect them at layer 2 of the
 ISO-OSI model, not at layer 3, which is what a router would
 do. It can allow multiple network interfaces to be addressed as
 one. The NetBSD “bridge” driver
 provides bridge functionality on NetBSD systems.

In this example two physical networks are going to be combined
 in one logical network, 192.168.1.0, using a NetBSD bridge. The
 NetBSD machine which is going to act as bridge has two interfaces,
 ne0 and ne1, which are each connected to one physical network.

When the system is ready the bridge can be created, this can
 be done using the brconfig(8) command. First
 of a bridge interface has to be created. With the following
 ifconfig(8) command the bridge0
 interface will be created:

$ ifconfig bridge0 create

Please make sure that at this point both the ne0 and ne1
 interfaces are up. The next step is to add the ne0 and ne1
 interfaces to the bridge.

$ brconfig bridge0 add ne0 add ne1 up

This configuration can be automatically set up by creating
 an /etc/ifconfig.interface file, in
 this case /etc/ifconfig.bridge0,
 with the following contents:

create
!brconfig $int add ne0 add ne1 up

Note

In NetBSD 10.0 and later, it will become necessary to use
 vether instead of tap
 as a bridge endpoint.
 vether is unavailable in previous releases.

After setting up the bridge the bridge configuration can
 be displayed using the brconfig -a command.
 Remember that if you want to give the bridge machine an IP
 address you can only allocate an IP address to one of the
 interfaces which are part of the bridge. A virtual
 tap(4) interface can also be created and configured as a bridge
 endpoint, e.g. in /etc/ifconfig.tap0:

Example 24.10. /etc/ifconfig.tap0

create
inet 192.168.0.1 netmask 255.255.255.0
up
!ifconfig bridge0 create
!brconfig bridge0 add $int add ne0 add ne1 up

24.7. Ensuring interfaces are initialized in the correct order

In our previous example Section 24.6, “Setting up a network bridge device”,
 we created a bridge(4) and tap(4) that are dependent upon other
 networking interfaces to function.
 This can present a problem if rc(8) initializes them before the
 interfaces they depend upon.
 Fortunately, it is possible to force a specific initialization
 order in /etc/rc.conf:

auto_ifconfig=NO
net_interfaces="ne0 ne1 pppoe0 bridge0 tap0"

With these lines, /etc/ifconfig.ne0 will be
 read first, and /etc/ifconfig.tap0 last.
 The same applies if ifconfig_ne0="up" lines are used
 in /etc/rc.conf instead of dedicated configuration
 files.

24.8. Some useful commands

The following commands can be useful for
 diagnosing problems:

	ifconfig(8)

	Displays and can change the configuration of network intefaces.

	ping(8)

	Attempt to reach a host and measure latency.

	netstat(1)

	Displays active connections.

	npfctl(8)

	npfctl show displays the current firewall
	configuration, npfctl validate filename can be
	used to verify a configuration is correct before loading it.

	route(8)

	route show displays the routing tables,
	other commands can be used to manipulate them.

	traceroute(8)

	Shows the route followed by the packets to their destination.

	sysstat(1)

	sysstat ifstat
 can be used to monitor network interfaces.

	tcpdump(8)

	Can be used to monitor TCP/IP traffic.

Chapter 25. The Internet Super Server inetd

The "internet super server", or inetd(8), is available on all
 Unix(like) systems, providing many of the basic network services
 available. This chapter describes the relationship between the
 daemon and several of the config files in the
 /etc/ directory.

In this document we will look at a simple definition of
 inetd(8),
 how several files that relate to inetd(8) work (not that these
 files are not related to other software), how to add a service
 to inetd(8) and some considerations both to use inetd(8) for a
 particular service and times when a service might be better
 off running outside of inetd(8).

In traditional Unix scenarios, one server (daemon) process
 watches for connections on a particular port, and handles
 incoming requests. Now if a machine offers many services, many
 daemon processes would be needed, mostly running idle but still
 wasting resources like memory. The internet super server,
 inetd, is an approach to this problem. It listens on a number of
 ports, and when it receives a request it then determines which
 program to run to handle the request and starts an instance of
 that program.

Following is a very simple diagram to illustrate
 inetd(8):

 pop3 ------ |

 |

 ftpd ------- | INETD | ---- Internet / DMZ / Switch / Whatever . . .

 |

 cvsupserver - |

In the above diagram you can see the general idea. The
 inetd(8) process receives a request and then starts the
 appropriate server process. What inetd(8) is doing is
 software multiplexing. An important note here, regarding
 security: On many other UNIX-like systems, a package called
 tcpwrappers is used as a security enhancement for
 inetd(8). On NetBSD the tcpwrapper functionality is built
 into inetd(8) using libwrap.

25.3. Configuring inetd - /etc/inetd.conf

The operation of inetd(8) is controlled by its own config
 file, surprisingly named /etc/inetd.conf,
 see inetd.conf(5).
 The inetd.conf file basically provides
 enabling and mapping of services the systems administrator
 would like to have multiplexed through inetd(8), indicating
 which program should be started for incoming requests on which
 port.

inetd.conf(5) is an ascii file containing one service per
 line, and several fields per line. The basic field layout is:

service-name socket-type protocol wait/nowait user:group server-program arguments

	service-name:

	The service name indicates the port inetd(8) should
 listen on. It is either a decimal number, or a name
	 matching a service name given in
 /etc/services.

	socket-type:

	The communications socket type, the different types are
 "stream" for a TCP stream, "dgram" for an UDP service,
 "raw" for a raw socket, "rdm" for reliably delivered
 message and "seqpacket" for a sequenced packet socket. The
 most common socket types are "stream" and "dgram".

	protocol

	The protocol used, mostly "tcp", "tcp6", "udp" and "udp6"
 for stream-oriented services via the Transmission Control
 Protocol, or datagram-oriented services via the User
 Datagram Protocol. It is worth noting that "tcp" and
 "udp" mean they use the default (currently IPv4), "tcp4"
 specifically means communication via IPv4 only, and "tcp6"
 and "udp6" are IPv6-only. In addition to those, protocols
 based on Remote Procedure Calls (RPC)
 can be specified as either "rpc/tcp" or "rpc/udp".

	wait/nowait

	This field tells inetd(8) if it should wait for a server
 program to return or to continue processing new connections
 immediately. Many connections to server processes require
 answers after data transfers are complete, where other types
 can keep transmitting on a connection continuously, the
 latter is a "nowait" and the former "wait". In most cases,
 this entry corresponds to the socket-type, for example
 a streaming connection would (most of the time) have a
 "nowait" value in this field.

	user[:group]

	This field gives the user name and optionally a group name
 that the server process which inetd(8) starts up runs
 as.

	server-program

	This field is the full path of the program that gets started.

	program-arguments

	This field contains the argument vector argv[] of the
 program started, including the program name and additional
 arguments the systems administrator may need to specify
 for the server program that is started.

That is all a lot to digest and there are other things the
 systems administrator can do with some of the fields. Here is a
 sample line from an inetd.conf file:

ftp stream tcp nowait root /usr/libexec/ftpd ftpd -ll

From the left, the service-name is "ftp", socket-type is "stream",
 protocol is "tcp", inetd(8) won't wait for the server
 process to terminate ("nowait"), the process runs as user "root",
 path is /usr/libexec/ftpd and program name
 and arguments are "ftpd -ll".
 Notice in the last field, the program name is different
 from the service-name.

25.4. Services - /etc/services

The next file to consider is the service name data base that can
 be found in /etc/services. This file
 basically contains information mapping a service name to a port
 number. The format of the /etc/services
 file is:

service-name port-number/protocol-name [aliases]

"service-name" is the name of the service, "port-number" is the
 port number assigned to the service, "protocol-name" is either
 "tcp" or "udp", and if alias names for a port are needed, they
 can be added as "aliases", separated by white spaces. Comments
 may be added after a hash mark (#).

Let's take a look at the "ssh" entries as an example:

ssh 22/tcp # Secure Shell
ssh 22/udp

As we can see, from the left, the service name is "ssh",
 the port number is "22", the protocols are both "tcp" and "udp".
 Notice that there is a separate entry for every protocol a
 service can use (even on the same port).

25.5. Protocols - /etc/protocols

Another file read by inetd(8) is
 /etc/protocols. This file has the information
 pertaining to DARPA Internet protocols.
 The format of the protocols name data base is:

protocol-name number [aliases]

where "protocol-name" describes the payload of an IP packet,
 e.g. "tcp" or "udp". "number" is the official protocol number
 assigned by IANA, and optional alias names can be added after
 that.

Let's look at the seventh entry in the
 /etc/protocols
 db as an example:

tcp 6 TCP # transmission control protocol

Starting from the left, we see that the protocol name is "tcp",
 the number is "6" and the only aliases listed is "TCP",
 belonging to the Transmission Control Protocol as indicated by
 the comment in that line.

25.6. Remote Procedure Calls (RPC) - /etc/rpc

The rpc program number data base used by services with the "rpc"
 protocol type in inetd.conf(5) is kept in
 /etc/rpc and contains name mappings to rpc
 program numbers. The format of the file is:

server-name program-number aliases

For example, here is the nfs entry:

nfs 100003 nfsprog

25.7. Allowing and denying hosts
 - /etc/hosts.{allow,deny}

As mentioned above, NetBSD's inetd(8) has the tcpwrapper
 package built in via the libwrap library. As such, inetd(8)
 can allow or deny access to each service on a more fine-grained
 base than just allowing a service to everyone, or not enabling
 it at all. The access control is defined in the files
 /etc/hosts.allow and
 /etc/hosts.deny, see the
 hosts_access(5) manpage.

Each of the two files contains several lines that describe
 access restrictions for a certain server. Access is allowed if
 permission is given in /etc/hosts.allow. If
 the service is not listened in
 /etc/hosts.allow but in
 /etc/hosts.deny, it is denied. If a service
 is listed in neither file, it is allowed, giving standard
 inetd(8) behaviour.

Each line in /etc/hosts.allow and
 /etc/hosts.deny contains a service either
 by name (as given in the field for argv[0] in
 /etc/inetd.conf, e.g. "ftpd" instead of
 "ftp"), or the special service "ALL" which obviously applies to
 all services. Following the service name is - separated by a
 colon - a number of access restrictions, which can be hostnames,
 domains, single IP addresses, whole IP subnets or some other
 restrictions, please check hosts_access(5) for all the
 details.

An example configuration that is mostly open but denies access
 to services to a certain host and all machines from a certain
 domain would look like this:

/etc/hostname.deny:
ALL: some.host.name, .some.domain

Another example that would be mostly closed, denying access to
 all but very few machines would need entries in both
 /etc/hosts.allow and
 /etc/hosts.deny. The entry for
 /etc/hosts.deny would be:

/etc/hosts.deny
ALL: ALL

The entry to allow a few hosts would be put into
 /etc/hosts.allow:

/etc/hosts.allow
ALL: friend.host.domain otherfriend.otherhost.otherdomain

Many times a systems administrator will find that they need
 to add a service to their system that is not already in
 inetd(8) or they may wish to move a service to it because it
 does not get very much traffic. This is usually pretty
 simple, so as an example we will look at adding a version
 of POP3 on a NetBSD system.

In this case we have retrieved and installed the "cucipop"
 package, which can be found in
 pkgsrc/mail/cucipop.
 This server is pretty simple to use, the only oddities are
 different path locations. Since it is POP3 we know it is a
 stream oriented connection with "nowait". Running as "root" will
 be fine, the only item that is different is the location of the
 program and the name of the program itself.

So the first half of the new entry in
 /etc/inetd.conf looks like this:

pop3 stream tcp nowait root

After installation, pkgsrc deposited cucipop in
 /usr/pkg/sbin/cucipop.
 So with the next field we have:

pop3 stream tcp nowait root /usr/pkg/sbin/cucipop

Last, we want to use the Berkeley mailbox format,
 so our server program must be called with the
 -Y option.
 This leaves the entire entry looking like so:

pop3 stream tcp nowait root /usr/pkg/sbin/cucipop cucipop -Y

We have added the service named "pop3" to
 /etc/inetd.conf. Next item to check is that
 the system can map the service name to a port number in
 /etc/services:

grep ^pop3 /etc/services
pop3 110/tcp # POP version 3
pop3 110/udp
pop3s 995/tcp # pop3 protocol over TLS/SSL (was spop3)
pop3s 995/udp # pop3 protocol over TLS/SSL (was spop3)

The "pop3" entries here are of interest, i.e. they are already
 contained in the /etc/services file shipped
 with NetBSD.

Now, to have inetd(8) use the new entry, we simply restart
 it using the rc script:

service inetd restart

All done, in most cases, the software you are using has
 documentation that will specify the entry, in the off case
 it does not, sometimes it helps to try and find something
 similar to the server program you will be adding. A
 classic example of this is a MUD server which has built-in telnet.
 You can pretty much borrow the telnet entry and change parts
 where needed.

25.9. When to use or not to use inetd

The decision to add or move a service into or out of inetd(8)
 is usually based on server load. As an example,
 on most systems the telnet daemon does not require as
 many new connections as say a mail server. Most of the
 time the administrator has to feel out if a service should be moved.

A good example I have seen is mail services such as smtp and pop.
 I had setup a mail server in which pop3 was in inetd(8) and
 exim was running in standalone, I mistakenly assumed it
 would run fine since there was a low amount of users,
 namely myself and a diagnostic account. The server was also
 setup to act as a backup MX and relay in case another
 heavily used one went down. When I ran some tests I
 discovered a huge time lag for pop connections remotely.
 This was because of my steady fetching of mail and the
 diagnostic user constantly mailing diagnostics back and forth.
 In the end I had to move the pop3 service out of inetd(8).

The reason for moving the service is actually quite interesting.
 When a particular service becomes heavily used, of course,
 it causes a load on the system. In the case of a service
 that runs within the inetd(8) meta daemon the effects of a heavily
 loaded service can also harm other services that use inetd(8).
 If the multiplexor is getting too many requests for one
 particular service, it will begin to affect the performance of
 other services that use inetd(8). The fix, in a situation like
 that, is to make the offending service run outside of inetd(8)
 so the response time of both the service and inetd(8) will increase.

Chapter 26. The Domain Name System

Use of the Domain Name System has been discussed in previous
 chapters, without going into detail on the setup of the server
 providing the service. This chapter describes setting up a
 simple, small domain with one Domain Name System
 (DNS) nameserver on a NetBSD system. It includes
 a brief explanation and overview of the DNS; further information
 can be obtained from the DNS Resources Directory
 (DNSRD) at http://www.dns.net/dnsrd/.

26.1. DNS Background and Concepts

The DNS is a widely used naming service
 on the Internet and other TCP/IP networks. The network
 protocols, data and file formats, and other aspects of the DNS
 are Internet Standards, specified in a number of RFC documents,
 and described by a number of other reference and tutorial
 works. The DNS has a distributed, client-server
 architecture. There are reference implementations for the server
 and client, but these are not part of the standard. There are a
 number of additional implementations available for many
 platforms.

Naming services are used to provide a mapping between textual
 names and configuration data of some form. A
 nameserver maintains this mapping, and
 clients request the nameserver to
 resolve a name into its attached data.

The reader should have a good understanding of basic hosts to
 IP address mapping and IP address class specifications, see
 Section 23.6, “Name Service Concepts”.

In the case of the DNS, the configuration data bound to a name
 is in the form of standard Resource
	 Records (RR's). These textual names conform to
 certain structural conventions.

26.1.2. The DNS namespace

The DNS presents a hierarchical name space, much like a UNIX
 filesystem, pictured as an inverted tree with the
 root at the top.

TOP-LEVEL .org

 |

MID-LEVEL .diverge.org

 ______________________|________________________

 | | |

BOTTOM-LEVEL strider.diverge.org samwise.diverge.org wormtongue.diverge.org

The system can also be logically divided even further if one
 wishes at different points. The example shown above shows
 three nodes on the diverge.org domain, but we could even
 divide diverge.org into subdomains such as
 "strider.net1.diverge.org", "samwise.net2.diverge.org" and
 "wormtongue.net2.diverge.org"; in this case, 2 nodes reside in
 "net2.diverge.org" and one in "net1.diverge.org".

There are directories of names, some of which may be
 sub-directories of further names. These directories are
 sometimes called zones. There is
 provision for symbolic links, redirecting requests for
 information on one name to the records bound to another
 name. Each name recognised by the DNS is called a
 Domain Name, whether it represents
 information about a specific host, or a directory of
 subordinate Domain Names (or both, or something else).

Unlike most filesystem naming schemes, however, Domain Names
 are written with the innermost name on the left, and
 progressively higher-level domains to the right, all the way
 up to the root directory if necessary. The separator used when
 writing Domain Names is a period, ".".

Like filesystem pathnames, Domain Names can be written in an
 absolute or relative manner, though there are some differences
 in detail. For instance, there is no way to indirectly refer
 to the parent domain like with the UNIX
 .. directory. Many (but not all)
 resolvers offer a search path facility, so that
 partially-specified names can be resolved relative to
 additional listed sub-domains other than the client's own
 domain. Names that are completely specified all the way to the
 root are called Fully Qualified Domain
 Names or FQDNs. A defining
 characteristic of an FQDN is that it is written with a
 terminating period. The same name, without the terminating
 period, may be considered relative to some other
 sub-domain. It is rare for this to occur without malicious
 intent, but in part because of this possibility, FQDNs are
 required as configuration parameters in some circumstances.

On the Internet, there are some established conventions for
 the names of the first few levels of the tree, at which point
 the hierarchy reaches the level of an individual
 organisation. This organisation is responsible for
 establishing and maintaining conventions further down the
 tree, within its own domain.

Resource Records for a domain are stored in a standardised
 format in an ASCII text file, often called a zone
 file. The following Resource Records are commonly
 used (a number of others are defined but not often used, or no
 longer used). In some cases, there may be multiple RR types
 associated with a name, and even multiple records of the same
 type.

Common DNS Resource Records

	A: Address

	This record contains the numerical IP address associated
 with the name.

	CNAME: Canonical Name

	
This record contains the Canonical Name (an FQDN with an
 associated A record) of the host name to which this
 record is bound. This record type is used to provide
 name aliasing, by providing a link to another name with
 which other appropriate RR's are associated. If a name
 has a CNAME record bound to it, it is an alias, and no
 other RR's are permitted to be bound to the same name.

It is common for these records to be used to point to
 hosts providing a particular service, such as an FTP or
 HTTP server. If the service must be moved to another
 host, the alias can be changed, and the same name will
 reach the new host.

	PTR: Pointer

	This record contains a textual name. These records are
 bound to names built in a special way from numerical IP
 addresses, and are used to provide a reverse mapping
 from an IP address to a textual name. This is described
 in more detail in Section 26.1.8, “Reverse Resolution”.

	NS: Name Server

	This record type is used to
 delegate a sub-tree of the Domain
 Name space to another nameserver. The record contains
 the FQDN of a DNS nameserver with information on the
 sub-domain, and is bound to the name of the
 sub-domain. In this manner, the hierarchical structure
 of the DNS is established. Delegation is described in
 more detail in Section 26.1.4, “Delegation”.

	MX: Mail eXchange

	This record contains the FQDN for a host that will
 accept SMTP electronic mail for the named domain,
 together with a priority value used to select an MX host
 when relaying mail. It is used to indicate other servers
 that are willing to receive and spool mail for the
 domain if the primary MX is unreachable for a time. It
 is also used to direct email to a central server, if
 desired, rather than to each and every individual
 workstation.

	HINFO: Host Information

	Contains two strings, intended for use to describe the
 host hardware and operating system platform. There are
 defined strings to use for some systems, but their use
 is not enforced. Some sites, because of security
 considerations, do not publicise this information.

	TXT: Text

	A free-form text field, sometimes used as a comment
 field, sometimes overlaid with site-specific additional
 meaning to be interpreted by local conventions.

	SOA: Start of Authority

	This record is required to appear for each zone file. It
 lists the primary nameserver and the email address of
 the person responsible for the domain, together with
 default values for a number of fields associated with
 maintaining consistency across multiple servers and
 caching of the results of DNS queries.

Using NS records, authority for portions of the DNS namespace
 below a certain point in the tree can be delegated, and
 further sub-parts below that delegated again. It is at this
 point that the distinction between a domain and a zone becomes
 important. Any name in the DNS is called a domain, and the
 term applies to that name and to any subordinate names below
 that one in the tree. The boundaries of a zone are narrower,
 and are defined by delegations. A zone starts with a
 delegation (or at the root), and encompasses all names in the
 domain below that point, excluding names below any subsequent
 delegations.

This distinction is important for implementation - a zone is a
 single administrative entity (with a single SOA record), and
 all data for the zone is referred to by a single file, called
 a zone file. A zone file may contain
 more than one period-separated level of the namespace tree, if
 desired, by including periods in the names in that zone
 file. In order to simplify administration and prevent
 overly-large zone files, it is quite legal for a DNS server to
 delegate to itself, splitting the domain into several zones
 kept on the same server.

26.1.5. Delegation to multiple servers

For redundancy, it is common (and often administratively
 required) that there be more than one nameserver providing
 information on a zone. It is also common that at least one of
 these servers be located at some distance (in terms of network
 topology) from the others, so that knowledge of that zone does
 not become unavailable in case of connectivity failure. Each
 nameserver will be listed in an NS record bound to the name of
 the zone, stored in the parent zone on the server responsible
 for the parent domain. In this way, those searching the name
 hierarchy from the top down can contact any one of the servers
 to continue narrowing their search. This is occasionally
 called walking the tree.

There are a number of nameservers on the Internet which are
 called root nameservers. These servers
 provide information on the very top levels of the domain
 namespace tree. These servers are special in that their
 addresses must be pre-configured into nameservers as a place
 to start finding other servers. Isolated networks that cannot
 access these servers may need to provide their own root
 nameservers.

26.1.6. Secondaries, Caching, and the SOA record

In order to maintain consistency between these servers, one is
 usually configured as the primary
 server, and all administrative changes are made on this
 server. The other servers are configured as
 secondaries, and transfer the contents
 of the zone from the primary. This operational model is not
 required, and if external considerations require it, multiple
 primaries can be used instead, but consistency must then be
 maintained by other means. DNS servers that store Resource
 Records for a zone, whether they be primary or secondary
 servers, are said to be authoritative
 for the zone. A DNS server can be authoritative for several
 zones.

When nameservers receive responses to queries, they can
 cache the results. This has a
 significant beneficial impact on the speed of queries, the
 query load on high-level nameservers, and network
 utilisation. It is also a major contributor to the memory
 usage of the nameserver process.

There are a number of parameters that are important to
 maintaining consistency amongst the secondaries and
 caches. The values for these parameters for a particular
 domain zone file are stored in the SOA record. These fields
 are:

Fields of the SOA Record

	Serial

	A serial number for the zone file. This should be
 incremented any time the data in the domain is changed.
 When a secondary wants to check if its data is
 up-to-date, it checks the serial number on the primary's
 SOA record.

	Refresh

	A time, in seconds, specifying how often the secondary
 should check the serial number on the primary, and start
 a new transfer if the primary has newer data.

	Retry

	If a secondary fails to connect to the primary when the
 refresh time has elapsed (for example, if the host is
 down), this value specifies, in seconds, how often the
 connection should be retried.

	Expire

	If the retries fail to reach the primary within this
 number of seconds, the secondary destroys its copies
 of the zone data file(s), and stops answering requests
 for the domain. This stops very old and potentially
 inaccurate data from remaining in circulation.

	TTL

	This field specifies a time, in seconds, that the
 resource records in this zone should remain valid in
 the caches of other nameservers. If the data is
 volatile, this value should be short. TTL is a
 commonly-used acronym, that stands for "Time To Live".

DNS clients are configured with the addresses of DNS
 servers. Usually, these are servers which are authoritative
 for the domain of which they are a member. All requests for
 name resolution start with a request to one of these local
 servers. DNS queries can be of two forms:

	A recursive query asks the
 nameserver to resolve a name completely, and return the
 result. If the request cannot be satisfied directly, the
 nameserver looks in its configuration and caches for a
 server higher up the domain tree which may have more
 information. In the worst case, this will be a list of
 pre-configured servers for the root domain. These
 addresses are returned in a response called a
 referral. The local nameserver must
 then send its request to one of these servers.

	Normally, this will be an iterative
 query, which asks the second nameserver to either respond
 with an authoritative reply, or with the addresses of
 nameservers (NS records) listed in its tables or caches as
 authoritative for the relevant zone. The local nameserver
 then makes iterative queries, walking the tree downwards
 until an authoritative answer is found (either positive or
 negative) and returned to the client.

In some configurations, such as when firewalls prevent direct
 IP communications between DNS clients and external
 nameservers, or when a site is connected to the rest of the
 world via a slow link, a nameserver can be configured with
 information about a forwarder. This is
 an external nameserver to which the local nameserver should
 make requests as a client would, asking the external
 nameserver to perform the full recursive name lookup, and
 return the result in a single query (which can then be
 cached), rather than reply with referrals.

26.1.8. Reverse Resolution

The DNS provides resolution from a textual name to a resource
 record, such as an A record with an IP address. It does not
 provide a means, other than exhaustive search, to match in the
 opposite direction; there is no mechanism to ask which name is
 bound to a particular RR.

For many RR types, this is of no real consequence, however it
 is often useful to identify by name the host which owns a
 particular IP address. Rather than complicate the design and
 implementation of the DNS database engine by providing
 matching functions in both directions, the DNS utilises the
 existing mechanisms and creates a special namespace, populated
 with PTR records, for IP address to name resolution. Resolving
 in this manner is often called reverse
 resolution, despite the inaccurate implications of
 the term.

The manner in which this is achieved is as follows:

	A normal domain name is reserved and defined to be for the
 purpose of mapping IP addresses. The domain name used is
 "in-addr.arpa." which shows the historical origins of the
 Internet in the US Government's Defence Advanced Research
 Projects Agency's funding program.

	This domain is then subdivided and delegated according to
 the structure of IP addresses. IP addresses are often
 written in decimal dotted quad
 notation, where each octet of the 4-octet long
 address is written in decimal, separated by dots. IP
 address ranges are usually delegated with more and more of
 the left-most parts of the address in common as the
 delegation gets smaller. Thus, to allow delegation of the
 reverse lookup domain to be done easily, this is turned
 around when used with the hierarchical DNS namespace,
 which places higher level domains on the right of the
 name.

	Each byte of the IP address is written, as an ASCII text
 representation of the number expressed in decimal, with
 the octets in reverse order, separated by dots and
 appended with the in-addr.arpa. domain name. For example,
 to determine the hostname of a network device with IP
 address 11.22.33.44, this algorithm would produce the
 string "44.33.22.11.in-addr.arpa." which is a legal,
 structured Domain Name. A normal nameservice query would
 then be sent to the nameserver asking for a PTR record
 bound to the generated name.

	The PTR record, if found, will contain the FQDN
	 of a host.

One consequence of this is that it is possible for mismatch to
 occur. Resolving a name into an A record, and then resolving
 the name built from the address in that A record to a PTR
 record, may not result in a PTR record which contains the
 original name. There is no restriction within the DNS that the
 "reverse" mapping must coincide with the "forward"
 mapping. This is a useful feature in some circumstances,
 particularly when it is required that more than one name has
 an A record bound to it which contains the same IP address.

While there is no such restriction within the DNS, some
 application server programs or network libraries will reject
 connections from hosts that do not satisfy the following test:

	the state information included with an incoming connection
 includes the IP address of the source of the request.

	a PTR lookup is done to obtain an FQDN of the host making
 the connection

	an A lookup is then done on the returned name, and the
 connection rejected if the source IP address is not listed
 amongst the A records that get returned.

This is done as a security precaution, to help detect and
 prevent malicious sites impersonating other sites by
 configuring their own PTR records to return the names of hosts
 belonging to another organisation.

Now let's look at actually setting up a small DNS enabled
 network. We will continue to use the examples mentioned in
 Chapter 24, Setting up TCP/IP on NetBSD in practice, i.e. we assume that:

	Our IP networking is working correctly

	We have IPNAT working correctly

	Currently all hosts use the ISP for DNS

Our Name Server will be the “strider” host which
 also runs IPNAT, and our two clients use "strider" as a gateway.
 It is not really relevant as to what type of interface is on
 "strider", but for argument's sake we will say a 56k dial up
 connection.

So, before going any further, let's look at our
 /etc/hosts file on
 "strider" before we have made the alterations to use DNS.

Example 26.1. strider's /etc/hosts file

127.0.0.1 localhost
192.168.1.1 strider
192.168.1.2 samwise sam
192.168.1.3 wormtongue worm

This is not exactly a huge network, but it is worth noting
 that the same rules apply for larger networks as we discuss in
 the context of this section.

The other assumption we want to make is that the domain we want
 to set up is diverge.org, and that the domain
 is only known on our internal network, and not worldwide. Proper
 registration of the nameserver's IP address as primary would be
 needed in addition to a static IP. These are mostly
 administrative issues which are left out here.

The NetBSD operating system provides a set of config files
 for you to use for setting up DNS. Along with a default
 /etc/named.conf, the following files are
 stored in the /etc/namedb directory:

	localhost

	127

	loopback.v6

	root.cache

You will see modified versions of these files in this
 section, and I strongly suggest making a backup copy of the
 original files for reference purposes.

Note

The examples in this chapter refer to BIND
 major version 8, however, it should be noted that format of
 the name database and other config files are almost 100%
 compatible between version. The only difference I noticed was
 that the “$TTL” information was not
 required.

The first file we want to look at is
	/etc/named.conf. This file is the
	config file for bind (hence the
	catchy name). Setting up system like the one we are doing is
	relatively simple. First, here is what mine looks like:

options {
 directory "/etc/namedb";
 allow-transfer { 192.168.1.0/24; };
 allow-query { 192.168.1.0/24; };
 listen-on port 53 { 192.168.1.1; };
};

zone "localhost" {
 type master;
 notify no;
 file "localhost";
};

zone "127.IN-ADDR.ARPA" {
 type master;
 notify no;
 file "127";
};

zone "0.ip6.int" {
 type master;
 file "loopback.v6";
};

zone "diverge.org" {
 type master;
 notify no;
 file "diverge.org";
};

zone "1.168.192.in-addr.arpa" {
 type master;
 notify no;
 file "1.168.192";
};

zone "." in {
 type hint;
 file "root.cache";
};

Note that in my named.conf the root (".")
 section is last, that is because there is another domain
 called diverge.org on the internet (I happen to own it) so I
 want the resolver to look out on the internet last. This is
 not normally the case on most systems.

Another very important thing to remember here is that if you
 have an internal setup, in other words no live internet
 connection and/or no need to do root server lookups, comment
 out the root (".") zone. It may cause lookup problems if a
 particular client decides it wants to reference a domain on
 the internet, which our server couldn't resolve itself.

Looks like a pretty big mess, upon closer examination it is
 revealed that many of the lines in each section are somewhat
 redundant. So we should only have to explain them a few
	times.

Let's go through the sections of
 named.conf:

This section defines some global parameters, most noticeable
 is the location of the DNS tables, on this particular
 system, they will be put in
 /etc/namedb as indicated by the
 "directory" option.

Following are the rest of the params:

	allow-transfer

	This option lists which remote DNS servers acting
 as secondaries are allowed to do zone transfers,
 i.e. are allowed to read all DNS data at once. For
 privacy reasons, this should be restricted to
 secondary DNS servers only.

	allow-query

	This option defines hosts from what network may
 query this name server at all. Restricting queries
 only to the local network (192.168.1.0/24) prevents
 queries arriving on the DNS server's external
 interface, and prevent possible privacy issues.

	listen-on port

	This option defined the port and associated IP
 addresses this server will run named(8)
	 on. Again, the "external" interface is not listened
	 here, to prevent queries getting received from
	 "outside".

The rest of the named.conf file
	 consists of “zone”s. A zone is an area that can
	 have items to resolve attached, e.g. a domain can have
	 hostnames attached to resolve into IP addresses, and a
	 reverse-zone can have IP addresses attached that get
	 resolved back into hostnames. Each zone has a file
	 associated with it, and a table within that file for
	 resolving that particular zone. As is readily apparent,
	 their format in named.conf is
	 strikingly similar, so I will highlight just one of their
	 records:

26.2.1.2. zone “diverge.org”

	type

	The type of a zone is usually of type
	 "master" in all cases except for the root zone
	 “.” and for zones that a secondary
	 (backup) service is provided - the type obviously is
	 "secondary" in the latter case.

	notify

	Do you want to send out notifications to
	 secondaries when your zone changes? Obviously not in
	 this setup, so this is set to "no".

	file

	This option sets the filename in our
	 /etc/namedb directory
	 where records about this particular zone may be
	 found. For the "diverge.org" zone, the file
	 /etc/namedb/diverge.org is used.

26.2.2. /etc/namedb/localhost

For the most part, the zone files look quite similar, however,
 each one does have some unique properties. Here is what the
 localhost file looks like:

Example 26.2. localhost

 1|$TTL 3600
 2|@ IN SOA strider.diverge.org. root.diverge.org. (
 3| 1 ; Serial
 4| 8H ; Refresh
 5| 2H ; Retry
 6| 1W ; Expire
 7| 1D) ; Minimum TTL
 8| IN NS localhost.
 9|localhost. IN A 127.0.0.1
10| IN AAAA ::1

Line by line:

	Line 1:

	This is the Time To Live for lookups, which defines
	 how long other DNS servers will cache that value
	 before discarding it. This value is generally
	 the same in all the files.

	Line 2:

	This line is generally the same in all zone files except
 root.cache. It defines a so-called
	 "Start Of Authority" (SOA) header, which contains some
	 basic information about a zone. Of specific interest
	 on this line are
 "strider.diverge.org." and "root.diverge.org." (note the
	 trailing dots!). Obviously one
 is the name of this server and the other is the contact
 for this DNS server, in most cases root seems a little
 ambiguous, it is preferred that a regular email account
 be used for the contact information, with the "@"
	 replaced by a "." (for example, mine
 would be "jrf.diverge.org.").

	Line 3:

	This line is the serial number identifying the
 "version" of the zone's data set (file).
	 The serial number should be incremented
 each time there is a change to the file, the usual format
 is to either start with a value of "1" and increase it
 for every change, or use a value of "YYYYMMDDNN" to
 encode year (YYYY), month (MM), day (DD) and change
 within one day (NN) in the serial number.

	Line 4:

	This is the refresh rate of the server, in this file it is
 set to once every 8 hours.

	Line 5:

	The retry rate.

	Line 6:

	Lookup expiry.

	Line 7:

	The minimum Time To Live.

	Line 8:

	This is the Nameserver line, which uses a "NS"
 resource record to show that "localhost" is the only
 DNS server handing out data for this zone (which is "@", which
 indicates the zone name used in the
 named.conf file,
 i.e. "diverge.org") is, well, "localhost".

	Line 9:

	This is the localhost entry, which uses an "A"
 resource record to indicate that the name "localhost"
 should be resolved into the IP-address 127.0.0.1 for
 IPv4 queries (which specifically ask for the "A"
 record).

	Line 10:

	This line is the IPv6 entry, which returns ::1
	 when someone asks for an IPv6-address (by specifically
 asking for the AAAA record) of "localhost.".

26.2.3. /etc/namedb/zone.127.0.0

This is the reverse lookup file (or zone) to resolve the
 special IP address 127.0.0.1 back to "localhost":

 1| $TTL 3600
 2| @ IN SOA strider.diverge.org. root.diverge.org. (
 3| 1 ; Serial
 4| 8H ; Refresh
 5| 2H ; Retry
 6| 1W ; Expire
 7| 1D) ; Minimum TTL
 8| IN NS localhost.
 9| 1.0.0 IN PTR localhost.

In this file, all of the lines are the same as the
 localhost zonefile with exception of line 9, this is the
 reverse lookup (PTR) record. The zone used here is "@" again,
 which got set to the value given in
 named.conf, i.e. "127.in-addr.arpa". This
 is a special "domain" which is used to do reverse-lookup of IP
 addresses back into hostnames. For it to work, the four bytes
 of the IPv4 address are reserved, and the domain
 "in-addr.arpa" attached, so to resolve the IP address
 "127.0.0.1", the PTR record of "1.0.0.127.in-addr.arpa" is
 queried, which is what is defined in that line.

26.2.4. /etc/namedb/diverge.org

This zone file is populated by records for all of our
 hosts. Here is what it looks like:

 1| $TTL 3600
 2| @ IN SOA strider.diverge.org. root.diverge.org. (
 3| 1 ; serial
 4| 8H ; refresh
 5| 2H ; retry
 6| 1W ; expire
 7| 1D) ; minimum seconds
 8| IN NS strider.diverge.org.
 9| IN MX 10 strider.diverge.org. ; primary mail server
10| IN MX 20 samwise.diverge.org. ; secondary mail server
11| strider IN A 192.168.1.1
12| samwise IN A 192.168.1.2
13| www IN CNAME samwise.diverge.org.
14| worm IN A 192.168.1.3

There is a lot of new stuff here, so let's just look over each
 line that is new here:

	Line 9

	This line shows our mail exchanger (MX), in this
 case it is "strider". The number that precedes
 "strider.diverge.org." is the priority number, the lower
 the number their higher the priority. The way we are
 setup here is if "strider" cannot handle the mail, then
 "samwise" will.

	Line 11

	
CNAME stands for canonical name, or an
 alias for an existing hostname, which must have an A
 record. So we have aliased the following:

www.diverge.org to samwise.diverge.org

The rest of the records are simply mappings of IP address to a
 full name (A records).

26.2.5. /etc/namedb/1.168.192

This zone file is the reverse file for all of the host
 records, to map their IP numbers we use on our private network
 back into hostnames. The format is similar to that of the
 "localhost" version with the obvious exception being the
 addresses are different via the different zone given in the
 named.conf file,
 i.e. "0.168.192.in-addr.arpa" here:

 1|$TTL 3600
 2|@ IN SOA strider.diverge.org. root.diverge.org. (
 3| 1 ; serial
 4| 8H ; refresh
 5| 2H ; retry
 6| 1W ; expire
 7| 1D) ; minimum seconds
 8| IN NS strider.diverge.org.
 9|1 IN PTR strider.diverge.org.
10|2 IN PTR samwise.diverge.org.
11|3 IN PTR worm.diverge.org.

26.2.6. /etc/namedb/root.cache

This file contains a list of root name servers for your
 server to query when it gets requests outside of its own
 domain that it cannot answer itself. Here are
 first few lines of a root zone file:

;
; This file holds the information on root name servers needed to
; initialize cache of Internet domain name servers
; (e.g. reference this file in the "cache . <file>"
; configuration file of BIND domain name servers).
;
; This file is made available by InterNIC
; under anonymous FTP as
; file /domain/db.cache
; on server FTP.INTERNIC.NET
; -OR- RS.INTERNIC.NET
;
; last update: Jan 29, 2004
; related version of root zone: 2004012900
;
;
; formerly NS.INTERNIC.NET
;
. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
;
; formerly NS1.ISI.EDU
;
. 3600000 NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 3600000 A 192.228.79.201
;
; formerly C.PSI.NET
;
. 3600000 NS C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12
;
...

This file can be obtained from ISC at http://www.isc.org/ and
 usually comes with a distribution of BIND. A
 root.cache file is included in the NetBSD
 operating system's "etc" set.

This section has described the most important files and settings
 for a DNS server. Please see the BIND documentation in
 /usr/src/dist/bind/doc/bog and
 named.conf(5) for more information.

In this section we will look at how to get DNS going and setup
 "strider" to use its own DNS services.

Setting up named to start automatically is quite simple.
 In /etc/rc.conf simply set
 named=yes. Additional
 options can be specified in named_flags, for
 example, I like to use -g nogroup -u nobody,
 so a non-root account runs the "named" process. You may also
 want to set named_chrootdir=/var/chroot/named
 to ensure bind runs chrooted.
 Upon first start, this will migrate the configuration files and
 cache database into the chroot directory. (Note: If you do this,
 prefix the bind pathnames in the remainder of
 this document with /var/chroot/named.)

In addition to being able to startup "named" at boot time,
 it can also be controlled with the ndc
 command. In a nutshell the ndc command
 can stop, start or restart the named server process. It can also
 do a great many other things. Before use, it has to be setup to
 communicate with the "named" process, see the rndc(8) and
 named.conf(5) man pages for more details on setting up
 communication channels between "ndc" and the "named"
 process.

Next we want to point "strider" to
 itself for lookups. We have two simple steps, first, decide on
 our resolution order. On a network this small, it is likely that
 each host has a copy of the hosts table, so we can get away with
 using /etc/hosts first, and then
 DNS. However, on larger networks it is much
 easier to use DNS. Either way, the file where order of
 name services used for resolution is determined
 is /etc/nsswitch.conf
 Here is part of a typical nsswitch.conf:

. . .
group_compat: nis
hosts: files dns
netgroup: files [notfound=return] nis
. . .

The line we are interested in is the "hosts" line. "files"
 means the system uses the /etc/hosts file
 first to determine ip to name translation, and if it can't find
 an entry, it will try DNS.

The next file to look at is
 /etc/resolv.conf, which is used to
 configure DNS lookups ("resolution") on the client side. The
 format is pretty self explanatory but we will go over it
 anyway:

domain diverge.org
search diverge.org
nameserver 192.168.1.1

In a nutshell this file is telling the resolver that this machine
 belongs to the "diverge.org" domain, which means that lookups
 that contain only a hostname without a "." gets this domain
 appended to build a FQDN. If that lookup doesn't succeed, the
 domains in the "search" line are tried next. Finally, the
 "nameserver" line gives the IP addresses of one or more DNS
 servers that should be used to resolve DNS queries.

To test our nameserver we can use several commands, for
 example:

host sam
sam.diverge.org has address 192.168.1.2

As can be seen, the domain was appended automatically here,
 using the value from /etc/resolv.conf. Here
 is another example, the output of running host
 www.yahoo.com:

$ host www.yahoo.com
www.yahoo.com is an alias for www.yahoo.akadns.net.
www.yahoo.akadns.net has address 68.142.226.38
www.yahoo.akadns.net has address 68.142.226.39
www.yahoo.akadns.net has address 68.142.226.46
www.yahoo.akadns.net has address 68.142.226.50
www.yahoo.akadns.net has address 68.142.226.51
www.yahoo.akadns.net has address 68.142.226.54
www.yahoo.akadns.net has address 68.142.226.55
www.yahoo.akadns.net has address 68.142.226.32

Other commands for debugging DNS besides host(1) are
 nslookup(8) and dig(1). Note that ping(8) is
 not useful for debugging DNS, as it will
 use whatever is configured in
 /etc/nsswitch.conf to do the name-lookup.

At this point the server is configured properly.
 The procedure for setting up the client hosts are easier,
 you only need to setup /etc/nsswitch.conf
 and /etc/resolv.conf to the same values as
 on the server.

26.4. Setting up a caching only name server

A caching only name server has no local zones; all the
 queries it receives are forwarded to the root servers and the
 replies are accumulated in the local cache. The next time the
 query is performed the answer will be faster because the data is
 already in the server's cache. Since this type of server
 doesn't handle local zones, to resolve the names of the local
 hosts it will still be necessary to use the already known
 /etc/hosts file.

Since NetBSD supplies defaults for all the files needed by a
 caching only server, it only needs to be enabled and started and
 is immediately ready for use! To enable named, put
 named=yes into
 /etc/rc.conf, and tell the system to use it
 adding the following line to the
 /etc/resolv.conf file:

cat /etc/resolv.conf
nameserver 127.0.0.1

Now we can start named:

service named restart

26.4.1. Testing the server

Now that the server is running we can test it using the
	nslookup(8) program:

$ nslookup
Default server: localhost
Address: 127.0.0.1

>

Let's try to resolve a host name, for example
	"www.NetBSD.org":

> www.NetBSD.org
Server: localhost
Address: 127.0.0.1

Name: www.NetBSD.org
Address: 204.152.190.12

If you repeat the query a second time, the result is
	slightly different:

> www.NetBSD.org
Server: localhost
Address: 127.0.0.1

Non-authoritative answer:
Name: www.NetBSD.org
Address: 204.152.190.12

As you've probably noticed, the address is the same, but the
	message “Non-authoritative answer” has appeared.
	This message indicates that the answer is not coming from an
	authoritative server for the domain NetBSD.org but from the
	cache of our own server.

The results of this first test confirm that the server is
	working correctly.

We can also try the host(1) and dig(1) commands,
	which give the following result.

$ host www.NetBSD.org
www.NetBSD.org has address 204.152.190.12
$
$ dig www.NetBSD.org

; <<>> DiG 8.3 <<>> www.NetBSD.org
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19409
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 5, ADDITIONAL: 0
;; QUERY SECTION:
;; www.NetBSD.org, type = A, class = IN

;; ANSWER SECTION:
www.NetBSD.org. 23h32m54s IN A 204.152.190.12

;; AUTHORITY SECTION:
NetBSD.org. 23h32m54s IN NS uucp-gw-1.pa.dec.com.
NetBSD.org. 23h32m54s IN NS uucp-gw-2.pa.dec.com.
NetBSD.org. 23h32m54s IN NS ns.NetBSD.org.
NetBSD.org. 23h32m54s IN NS adns1.berkeley.edu.
NetBSD.org. 23h32m54s IN NS adns2.berkeley.edu.

;; Total query time: 14 msec
;; FROM: miyu to SERVER: 127.0.0.1
;; WHEN: Thu Nov 25 22:59:36 2004
;; MSG SIZE sent: 32 rcvd: 175

As you can see dig(1) gives quite a bit of output, the
 expected answer can be found in the "ANSWER SECTION". The
 other data given may be of interest when debugging DNS
 problems.

Chapter 27. Mail and news

This chapter explains how to set up NetBSD to use mail and news.
 Only a simple but very common setup is described: the
 configuration of a host connected to the Internet with a modem
 through a provider. You can think of this chapter as the
 continuation of Chapter 24, Setting up TCP/IP on NetBSD in practice, assuming a
 similar network configuration.
 Even this “simple” setup proves to be difficult if you
 don't know where to start or if you've only read introductory or
 technical documentation.
 A general description of mail and news configuration is beyond
 the scope of this guide; please read a good Unix Administration
 book (some very good ones are listed on the NetBSD site).

This chapter also briefly describes the configuration (but not the
 usage) of two popular applications, mutt
 for mail and tin for news.
 The usage is not described because they are easy to use and well
 documented.
 Obviously, both mutt and tin are not mandatory choices: many
 other similar applications exist but I think that they are a good
 starting point because they are widely used, simple, work well
 and don't use too much disk space and memory.
 Both are console mode programs; if you prefer graphics
 applications there are also many choices for X.

In short, the programs required for the configuration described
 in this chapter are:

	postfix

	fetchmail

	mutt

	tin

Only postfix is installed with the base system; you
 can install the other programs from the NetBSD package collection,
 pkgsrc.

Note

Because sendmail is widely popular
	 and several programs like fetchmail are designed to be used with it,
	 postfix includes a command line wrapper that accepts sendmail's
	 commands line syntax but works with postfix.
	 See sendmail(1) for more details.
	

Before continuing, remember that none of the programs presented
 in this chapter is mandatory: there are other applications
 performing similar tasks and many users prefer them.
 You'll find different opinions reading the mailing lists.
 You can also use different strategies for sending and receiving
 mail: the one explained here is only a starting point; once you
 understand how it works you'll probably want to modify it to suit
 your needs or to adopt a different method altogether.

At the opposite extreme of the example presented here, there is
 the usage of an application like
 Mozilla, which does everything and
 frees you from the need of configuring many components: with
 Mozilla you can browse the Internet, send and receive mail
 and read news. Besides, the setup is very simple. There is a
 price to pay, though: Mozilla is a “closed”
 program that will not cooperate easily with other standard Unix
 utilities.

Another possibility is to use emacs to
 read mail and news. Emacs needs no introduction to Unix users
 but, in case you don't know, it is an extensible editor (although
 calling emacs an editor is somewhat reductive) which becomes a
 complete work environment, and can be used to read mail, news and
 to perform many operations. For many people emacs is the only
 environment that they need and they use it for all their work.
 The configuration of emacs for mail and news is described in the
 emacs manual.

In the rest of this chapter we will deal with a host connected to
 the Internet through a PPP connection via serial modem to a
 provider.

	the local host's name is “ape” and the
 internal network is “insetti.net”, which means that the
 FQDN (Fully Qualified Domain Name) is “ape.insetti.net”.

	the user's login name on ape is “carlo”.

	the provider's name is BigNet.

	the provider's mail server is “mail.bignet.it”.

	the provider's news server is “news.bignet.it”.

	the user's (“carlo”) account at the provider is
 “alan” with the password “pZY9o”.

First some basic terminology:

	MUA (mail user agent)

	a program to read and write mail.
 	For example: mutt,
 	elm and pine
 	but also the simple mail application
 	installed with the base system.

	MTA (mail transfer agent)

	a program that transfers mail between
 	two host but also locally (on the same host).
 	The MTA decides the path that the mail will follow to get to
 	the destination. On other BSD systems (but not only) the
 	standard MTA is
 	sendmail, other examples are
	qmail,
	exim and
	Microsoft Exchange.

	MDA (mail delivery agent)

	a program, usually used by the MTA,
 	that delivers the mail; for example, it physically puts the
 	messages in the recipient's mailbox.
 	For example, postfix uses one or more MDAs to deliver mail,
	and procmail is another well-known
 MDA.

Figure 27.1, “Structure of the mail system” depicts the mail system that we want
 to set up.
 Between the local network (or the single host) and the provider
 there is a modem PPP connection.
 The “bubbles” with the thick border (postfix,
 fetchmail, mutt) are the programs
 launched manually by the user; the remaining bubbles are the
 programs that are launched automatically.
 The circled numbers refer to the logical steps of the mail
 cycle:

	In step (1) mail is downloaded from the provider's
 POP server using fetchmail, which hands
	messages off to postfix's sendmail wrapper to put the
	messages in the user's mailbox.

	In step (2) the user launches mutt (or another MUA) to read
 mail, reply and write new messages.

	In step (3) the user “sends” the mail from within
 mutt. Messages are accumulated in the spool area.

	In step (4) the user calls postfix's sendmail wrapper to transfer
	 	the messages to the provider's SMTP server,
		that will deliver them to the final destination (possibly
		through other mail servers).
 The provider's SMTP server acts as a relay
 for our mail.

The connection with the provider must be up only during steps (1)
 and (4); for the remaining steps it is not needed.

Figure 27.1. Structure of the mail system

[image: Structure of the mail system]

When an MTA must deliver a local message, it is delivered
 directly. If the message is intended for a different domain, the MTA
 must find out the address of the mail server for that domain.
 Postfix uses the DNS service (described in Chapter 26, The Domain Name System) to find a mail exchanger handling mail
 for the given domain, and delivers the message to that
 mail server then.

Postfix is controlled by a set of configuration files and
	 databases, of which /etc/postfix/main.cf
	 and /etc/postfix/master.cf are the most
 important.

The first problem to be solved is that the local network we are
 dealing with is an internal network, i.e. not directly accessible
 from the Internet.
 This means that the names used internally have no meaning on the
 Internet; in short, “ape.insetti.net” cannot be reached by an
 external host: no one will be able to reply to a mail sent with
 this return address (many mail systems will even reject the
 message as spam prevention as it comes from an unknown host).
 The true address, the one visible from everybody, is assigned by
 the provider and, therefore, it is necessary to convert the local
 address “carlo@ape.insetti.net” to the real address
 “alan@bignet.it”.
 Postfix, if correctly configured, will take care of this when it
 transfers the messages.

You'll probably also want to configure
 postfix in order to send the e-mails
 to the provider's mail server, using it as a
 relay. In the configuration described in
 this chapter, postfix does not directly contact the recipient's
 mail server (as previously described) but relays all its mail to
 the provider's mail server.

Note

The provider's mail server acts as a
	relay, which means that it delivers
	mail which is not destined to its own domain, to another mail
	server. It acts as an intermediary between two servers.

Since the connection with the provider is not always active, it
 is not necessary to start postfix as a daemon in
 /etc/rc.conf: you can disable it with the
 line “postfix=NO”.
 As a consequence it will be necessary to
 launch postfix manually when you want to transfer mail to the
 provider. Local mail is delivered correctly even if postfix is
 not active as a daemon.

Let's start configuring postfix.

27.1.1. Configuration of generic mapping

This type of configuration uses a new file
 /etc/postfix/generic which contains the
 hostname mapping used by postfix to rewrite the internal
		hostnames.

The first step is therefore to write the mapping
		file:

carlo@ape.insetti.net			alan@bignet.it
root@ape.insetti.net			alan@bignet.it
news@ape.insetti.net			alan@bignet.it

These entries will map the mail sent from the users given on
 the left side into the globally valid email addresses given on
 the right, making it appear as if the mail was really sent
 from that address.

For the sake of efficiency, generic
 must be transformed into a binary file with the following
 command:

postmap /etc/postfix/generic

Now it's time to create the prototype configuration file which
 we'll use to create the postfix configuration file.

vi /etc/postfix/main.cf

For the sake of simplicity, we'll only show the variables you need
		to change:

relayhost = mail.bignet.it
smtp_generic_maps = hash:/etc/postfix/generic

This configuration tells postfix to rewrite the addresses of
 type “ape.insetti.net” using the real names found in the
 /etc/postfix/generic file.
 It also says that mail should be sent to the
 “mail.bignet.it” server.
 The meaning of the options is described in detail in
 postconf(5).

The last step is to reload the configuration. You can do
		that easily with:

service postfix reload
postfix/postfix-script: refreshing the Postfix mail system

Now everything is ready to start sending mail.

27.1.2. Testing the configuration

Postfix is finally configured and ready to work, but before
	sending real mail it is better to do some simple tests.
	First let's try sending a local e-mail with the following
	command (postfix's sendmail wrapper):

$ sendmail carlo
Subject: test

Hello world
.

Please follow exactly the example above: leave a blank line
	after Subject: and end the message with a line containing
	only one dot.
	Now you should be able to read the message with your mail
	client and verify that the From: field has been correctly
	rewritten.

From: alan@bignet.it

27.1.3. Using an alternative MTA

$ ls -l /usr/sbin/sendmail
lrwxr-xr-x 1 root wheel 21 Nov 1 01:14 /usr/sbin/sendmail@ -> /usr/sbin/mailwrapper

The purpose of mailwrapper is to allow the usage of an
	alternative MTA instead of postfix (for example, sendmail).
	If you plan to use a different mailer I suggest that you
	read the mailwrapper(8) and the mailer.conf(5) manpages,
	which are very clear.

If someone sends me mail, it is received and stored by the
 provider, and not automatically transferred to the local hosts;
 therefore it is necessary to download it.
 Fetchmail is a very popular program
 that downloads mail from a remote mail server (using e.g. the
 Post Office Protocol, POP) and forwards it to
 the local system for delivery (usually using postfix's
 sendmail wrapper).
 It is powerful yet easy to use and configure: after
 installation, the file ~/.fetchmailrc must be
 created and the program is ready to run
 (~/.fetchmailrc contains a password so
 appropriate permissions on the file are required).

This is an example .fetchmailrc:

poll mail.bignet.it
protocol POP3
username alan there with password pZY9o is carlo here
flush
mda "/usr/sbin/sendmail -oem %T"

The last line (“mda ...”) is used only if postfix is
 not active as daemon on the system.
 Please note that the POP-mail server indicated in this file
 (mail.bignet.it) is only used to retrieve mails, and that it
 is not necessary the same as the mail relay used by postfix
 to send out mails.

After setting up the .fetchmailrc file, the
 following command can be used to download and deliver mail
 to the local system:

$ fetchmail

The messages can now be read with mutt.

27.3. Reading and writing mail with mutt

Mutt is one of the most popular mail
 programs: it is “lightweight”, easy to use and has lots
 of features.
 The man page mutt is very bare bones;
 the real documentation is in
 /usr/pkg/share/doc/mutt/, in particular
 manual.txt.

Mutt's configuration is defined by the ~/.muttrc
 file. The easiest way to create it is to copy mutt's example
 muttrc file (usually
 /usr/pkg/share/examples/mutt/sample.muttrc)
 to the home directory and modify it. The following example
 shows how to achieve some results:

	Save a copy of sent mail.

	Define a directory and two files for incoming and outgoing
 mail saved by mutt (in this example the directory is
 ~/Mail and the files are
 incoming and outgoing).

	Define some colors.

	Define an alias.

set copy=yes
set edit_headers
set folder="~/Mail"
unset force_name
set mbox="~/Mail/incoming"
set record="~/Mail/outgoing"
unset save_name

bind pager <up> previous-page
bind pager <down> next-page

color normal white black
color hdrdefault blue black
color indicator white blue
color markers red black
color quoted cyan black
color status white blue
color error red white
color underline yellow black

mono quoted standout
mono hdrdefault underline
mono indicator underline
mono status bold

alias pippo Pippo Verdi <pippo.verdi@pluto.net>

To start mutt:

$ mutt

Please note that mutt supports color, but this depends on the
 terminal settings. Under X you can use "xterm-color", for
 example:

$ env TERM=xterm-color mutt

27.4. Strategy for receiving mail

This section describes a simple method for receiving and reading
 mail.
 The connection to the provider is activated only for the time
 required to download the messages; mail is then read offline.

	Activate the connection to the provider.

	Run fetchmail.

	Deactivate the connection.

	Read mail with mutt.

27.5. Strategy for sending mail

When mail has been written and “sent” with
 mutt, the messages must be transferred
 to the provider with postfix.
 Mail is sent from mutt with the
 y command, but this does not really send it;
 the messages are enqueued in the spool area; if
 postfix is not active as a daemon it
 is necessary to start it manually or the messages will remain on
 the hard disk.
 The necessary steps are:

	Write mail with mutt, send it and exit mutt. You can check
 if and what messages are in the postfix mail queue using
 the mailq(1) program.

	Activate the connection with the provider.

	If your provider requires you to do "SMTP-after-POP",
 i.e. it first wants to make sure to know who you are before
 you are allowed to send mail (and no spam), you need to run
 fetchmail again first.

	Write the command /usr/sbin/postfix flush
 		to transfer the queued messages to the provider.

	Deactivate the connection when the queue is empty.

27.6. Advanced mail tools

When you start using mail, you won't probably have very
 sophisticated requirements and the already described standard
 configuration will satisfy all your needs. But for many users
 the number of daily messages will increase with time and a more
 rational organization of the mail storage will become necessary,
 for example subdividing mail in different mail boxes organized
 by topic. If, for example, you subscribe to a mailing list, you
 will likely receive many messages every day and you will want to
 keep them separate from the rest of your mail. You will soon
 find that you are spending too much time every day repeating the
 same manual operations to organize your mail boxes.

Why repeat the same operations manually when you can have a
 program perform them automatically for you? There are numerous
 tools that you can add to your mail system to increase its
 flexibility and automatically process your messages. Amongst
 the most known and used there are:

	procmail, an advanced mail
	 delivery agent and general purpose mail filter for local
	 mail, which automatically processes incoming mail using user
	 defined rulesets. It integrates smoothly with sendmail/postfix.

	spamassassin or
 spamprobe, to help fight spam.

	metamail, a tool to process
	 attachments.

	formail, a mail formatter.

In the remaining part of this section a sample configuration for
 procmail will be presented for a very common case: delivering
 automatically to a user defined mailbox all the messages coming
 from a mailing list. The configuration of postfix will be
 modified in order to call procmail directly (procmail will be
 the local mailer used by sendmail). and a
 custom configuration file for procmail will be created.

First, procmail must be installed using the package system
 (mail/procmail) or pkg_add.

Next, the configuration of postfix must be changed, in order
 to use procmail as local mailer:

mailbox_command = /usr/pkg/bin/procmail

The line defines the path of the procmail program (you can
 see where procmail is installed with the command which
 procmail).

The last step is the creation of the procmail configuration
 file, containing the recipes for mail delivery.

Let's say that, for example, you subscribed to a mailing list on
 roses whose address is “roses@flowers.org” and that
 every message from the list contains the following line in the
 header:

Delivered-To: roses@flowers.org

Assuming you want to automatically sort all mails going over
 that list into the local mail folder "roses_list", the procmail
 configuration file (.procmailrc) looks like
 this:

PATH=/bin:/usr/bin:/usr/pkg/bin
MAILDIR=$HOME/Mail
LOGFILE=$MAILDIR/from

:0
* ^Delivered-To: roses@flowers.org
roses_list

The previous file contains only one rule, beginning with the
 line containing “:0”. The following line identifies
 all messages containing the string “Delivered-To:
 roses@flowers.org” and the last line says that the selected
 messages must go to the roses_list mailbox
 (which you should have created in $MAILDIR). The remaining
 messages will be delivered to the default mailbox.
 Note that $MAILDIR is the same directory that you have
 configured with mutt:

set folder="~/Mail"

Of course the mailing list is only an example; procmail is a
 very versatile tool which can be used to filter mail based on
 many criteria. As usual, refer to the man pages for more
 details: procmail(1), procmailrc(5), and
 procmailex(5) (this last
 one contains many examples of configuration files).

The word news indicates the set of messages
 posted to the USENET newsgroups, a service available on the Internet.
 Each newsgroup contains articles related to a specific topic.
 Reading a newsgroup is different than reading a mailing list:
 when you subscribe to a mailing list you receive the articles by
 mail and you read them with a standard mail program like mutt,
 which you use also to send replies.
 News, instead, are read directly from a news server with a
 dedicated program called newsreader like,
 for example, tin.
 With tin you can subscribe to the newsgroups that you're
 interested in and follow the threads.
 A thread is a sequence of articles which all derive from an
 article that we could call “original”.
 In short, a message is sent to the group, someone answers, other
 people answer to those who answered in the first place and so
 on, creating a tree like structure of messages and replies:
 without a newsreader it is impossible to understand the correct
 sequence of messages.

After the installation of tin (from the
 package collection as usual) the only thing left to do is to write
 the name of the NNTP server in the file
 /usr/pkg/etc/nntp/server, which you may
 need to create first. For example:

news.bignet.it

Once this has been done, the program can be started with the
 command tin.
 On the screen something similar to the following example will be
 displayed:

$ tin
Connecting to news.bignet.it...
news.bignet.it InterNetNews NNRP server INN 1.7.2 08-Dec-1997 ready (posting ok).
Reading groups from active file...
Checking for new groups...
Reading attributes file...
Reading newsgroups file...
Creating newsrc file...
Autosubscribing groups...
Reading newsrc file...

Be patient when you connect for the first time, because tin
 downloads an immense list of newsgroups to which you can subscribe
 and this takes several minutes.
 When the download is finished, the program's main screen is displayed;
 usually no groups are displayed; to see the list of groups press
 y.
 To subscribe to a group, move on the group's name and press
 y.

Once that you have subscribed to some newsgroups you can start
 tin more quickly with the command tin -Q.
 The search for new groups is disabled
 (-q), only active groups are searched
 (-n) and newsgroup description are not loaded
 (-d): it will not be possible to use the
 y (yank) command in tin.
 When tin is started with this option it can't tell if a
 newsgroup is moderated or not.

Note that if you are connecting from an internal network (like
 in our example), when you send ("post") a message the address at
 the beginning of the message will be wrong (because it is the
 internal address). To solve the problem, use the option
 “mail_address” in the tin configuration file
 (~/.tin/tinrc) or set the REPLYTO
 environment variable.

Chapter 28. Introduction to the Common Address Redundancy Protocol (CARP)

 See Section D.3.3, “Joel Knight's license on the CARP article” for the license
 of this chapter.

CARP is the Common Address Redundancy Protocol. Its primary
 purpose is to allow multiple hosts on the same network segment to
 share an IP address. CARP is a secure, free alternative to the
 Virtual Router
 Redundancy Protocol and the Hot Standby Router
 Protocol.

CARP works by allowing a group of hosts on the same network
 segment to share an IP address. This group of hosts is referred to as
 a "redundancy group". The redundancy group is assigned an IP address
 that is shared amongst the group members. Within the group, one host
 is designated the "master" and the rest as "backups". The master
 host is the one that currently "holds" the shared IP; it responds to
 any traffic or ARP requests directed towards it. Each host may belong
 to more than one redundancy group at a time.

One common use for CARP is to create a group of redundant
 firewalls. The virtual IP that is assigned to the redundancy group is
 configured on client machines as the default gateway. In the event that
 the master firewall suffers a failure or is taken offline, the IP will
 move to one of the backup firewalls and service will continue
 unaffected.

While highly redundant and fault-tolerant hardware minimizes the
 need for CARP, it doesn't erase it. There's no hardware fault tolerance
 that's capable of helping if someone knocks out a power cord, or if
 your system administrator types reboot in the wrong window. CARP also
 makes it easier to make the patch and reboot cycle transparent to
 users, and easier to test a software or hardware upgrade--if it doesn't
 work, you can fall back to your spare until fixed.

There are, however, situations in which CARP won't help. CARP's
 design does require that the members of a group be on the same
 physical subnet with a static IP address, although with the
 introduction of the carpdev directive, there is no more need for IP
 addresses on the physical interfaces. Similarly, services that
 require a constant connection to the server (such as SSH or IRC) will
 not be transparently transferred to the other system--though in this
 case, CARP can help with minimizing downtime. CARP by itself does not
 synchronize data between applications, for example,
 manually duplicating data between boxes with rsync, or whatever is
 appropriate for your application.

CARP supports both IPv4 and IPv6.

The master host in the group sends regular advertisements to
 the local network so that the backup hosts know it's still alive. If
 the backup hosts don't hear an advertisement from the master for a
 set period of time, then one of them will take over the duties of
 master (whichever backup host has the lowest configured advbase and
 advskew values). It's possible for multiple CARP groups to exist on
 the same network segment. CARP advertisements contain the Virtual
 Host ID which allows group members to identify which redundancy group
 the advertisement belongs to.

In order to prevent a malicious user on the network segment
 from spoofing CARP advertisements, each group can be configured with
 a password. Each CARP packet sent to the group is then protected by
 an SHA1 HMAC.

Each redundancy group is represented by a carp(4) virtual
 network interface. As such, CARP is configured using ifconfig(8)
 The follow options are available:

	carpN

	The name of the carp(4) virtual interface where N is a
	 integer that represents the interface's number (e.g.
	 carp0).

	vhid

	The Virtual Host ID. This is a unique number that is used
	 to identify the redundancy group to other nodes on the network.
	 Acceptable values are from 1 to 255. This allows for multiple
	 redundancy groups to exist on the same network.

	password

	The authentication password to use when talking to other
	 CARP-enabled hosts in this redundancy group. This must be the
	 same on all members of the redundancy group.

	carpdev

	This optional parameter specifies the physical network
	 interface that belongs to this redundancy group. By default,
	 CARP will try to determine which interface to use by looking
	 for a physical interface that is in the same subnet as the
	 ipaddress and mask combination given to the carp(4)
	 interface.

	advbase

	This optional parameter specifies how often, in seconds,
	 to advertise that we're a member of the redundancy group. The
	 default is 1 second. Acceptable values are from 1 to
	 255.

	advskew

	This optional parameter specifies how much to skew the
	 advbase when sending CARP advertisements. By manipulating
	 advbase, the master CARP host can be chosen. The higher the
	 number, the less preferred the host will be when choosing a
	 master. The default is 0. Acceptable values are from 1 to
	 254.

	state

	Force a carp(4) interface into a certain state. Valid
	 states are init, backup, and master

	ipaddress

	This is the shared IP address assigned to the redundancy
	 group. This address does not have to be in the same subnet as
	 the IP address on the physical interface (if present). This
	 address needs to be the same on all hosts in the group,
	 however.

	mask

	The subnet mask of the shared IP.

Further CARP behaviour can be controlled via sysctl(8)

	net.inet.carp.allow

	Accept incoming CARP packets or not. Default is 1
	 (yes).

	net.inet.carp.preempt

	Allow hosts within a redundancy group that have a better
 advbase and advskew to preempt the master. In addition, this
	 option also enables failing over all interfaces in the event
	 that one interface goes down. If one physical CARP-enabled
	 interface goes down, CARP will change advskew to 240 on all
	 other CARP-enabled interfaces, in essence, failing itself over.
	 This option is 0 (disabled) by default.

	net.inet.carp.log

	Log bad CARP packets. Default is 0 (disabled).

	net.inet.carp.arpbalance

	Load balance traffic across multiple redundancy group
	 hosts. Default is 0 (disabled). See carp(4) for more
	 information.

28.3. Enabling CARP Support

CARP support is not enabled by default.

To use carp(4) you need a kernel with support for the
 carp pseudo-device. Make sure the following
 line is in your kernel configuration file:

pseudo-device carp		# CARP

After configuring the carp
 pseudo-device in your kernel configuration, you must recompile your
 kernel and reboot to enable carp(4) support.

An example CARP configuration:

sysctl -w net.inet.carp.allow=1
ifconfig carp0 create
ifconfig carp0 vhid 1 pass lanpasswd \
 carpdev em0 advskew 100 10.0.0.1 255.255.255.0

This sets up the following:

	Enables receipt of CARP packets (this is the default
	 setting)

	Creates a carp(4) interface.

	Configures carp0 for virtual host #1, enables a
	 password(lanpasswd), sets em0 as the interface belonging to the
	 group, and makes this host a backup due to the advskew of 100
	 (assuming of course that the master is set up with an advskew
	 less than 100). The shared IP assigned to this group is
	 10.0.0.1/255.255.255.0.

Running ifconfig on carp0 shows the status of the
 interface:

ifconfig carp0
carp0: flags=8802<UP,BROADCAST,SIMPLEX,MULTICAST> mtu 1500
 carp: BACKUP carpdev em0 vhid 1 advbase 1 advskew 100
 inet 10.0.0.1 netmask 0xffffff00 broadcast 10.0.0.255

28.5. Advanced CARP configuration

The following example creates a cluster of two highly-available,
 redundant firewalls. The following diagram presents what we're trying
 to achieve:

 +----| WAN/Internet |----+
 | |
 em1| |em1
 +-----+ +-----+
 | fw1 | | fw2 |
 +-----+ +-----+
 em0| |em0
 | |
 ---+-------Shared LAN-------+---

Both firewalls are connected to the LAN on em0 and to a
 WAN/Internet connection on em1. IP addresses are as follows:

	Firewall 1 (fw1) em0: 172.16.0.1

	Firewall 1 (fw1) em1: 192.0.2.1

	Firewall 2 (fw2) em0: 172.16.0.2

	Firewall 2 (fw2) em1: 192.0.2.2

The IP addresses we wish to share between the redundancy
 groups:

	WAN/Internet Shared IP: 192.0.2.100

	LAN Shared IP: 172.16.0.100

The network policy is that Firewall 1 (fw1) will be the
 preferred master.

The following configuration is for Firewall 1 (fw1):

#Enable preemption and group interface failover
sysctl -w net.inet.carp.preempt=1

#Configure CARP on the LAN side
ifconfig carp0 create
ifconfig carp0 vhid 1 pass lanpasswd carpdev em0 \
 172.16.0.100 255.255.255.0

#Configure CARP on the WAN side
ifconfig carp1 create
ifconfig carp1 vhid 2 pass wanpasswd carpdev em1 \
 192.0.2.100 255.255.255.0

As mentioned before, our policy is for Firewall 1 to be the
 preferred master. When configuring Firewall 2 we make the
 advskew a higher value since it's less
 preferred to be the master.

The following configuration is for Firewall 2 (fw2):

#Enable preemption and group interface failover
sysctl -w net.inet.carp.preempt=1

#Configure CARP on the LAN side
ifconfig carp0 create
ifconfig carp0 vhid 1 pass lanpasswd carpdev em0 \
 advskew 128 172.16.0.100 255.255.255.0

#Configure CARP on the WAN side
ifconfig carp1 create
ifconfig carp1 vhid 2 pass wanpasswd carpdev em1 \
 advskew 128 192.0.2.100 255.255.255.0

28.6. Forcing Failover of the Master

There can be times when it's necessary to failover or demote
 the master node on purpose. Examples include taking the master node
 down for maintenance or when troubleshooting a problem. The objective
 here is to gracefully fail over traffic to one of the backup hosts so
 that users do not notice any impact.

To failover, shut down the carp(4) interface on the master
 node. This will cause the master to advertise itself with an
 "infinite" advbase and advskew. The backup host(s) will see this
 and immediately take over the role of master.

ifconfig carp0 down

Chapter 29. Network services

29.1. The Network File System (NFS)

Now that the network is working it is possible to share files and
 directories over the network using the Network File System
 (NFS).
 From the point of view of file sharing, the computer which gives
 access to its files and directories is called the
 server, and the computer using these files
 and directories is the client.
 A computer can be client and server at the same time.

Warning:
 NFS has no authentication, and access control
 is only by network address.
 NFS should be deployed only on restricted or
 firewalled networks (e.g., with npf(7); see Section 24.5, “Setting up an Internet gateway with NPF”).
 It is not safe to deploy on the open internet.

	
The server must enable the
 rpcbind(8),
 mountd(8),
 lockd(8), and
 statd(8)
 daemons,
 and enable the nfs_server option (which
 enables nfsd(8)), in
 /etc/rc.conf:

rpcbind=yes
mountd=yes
nfs_server=yes
lockd=yes
statd=yes

	
The client must enable the
 rpcbind(8),
 lockd(8), and
 statd(8)
 daemons,
 and enable the nfs_client option,
 /etc/rc.conf:

rpcbind=yes
nfs_client=yes
lockd=yes
statd=yes

	
The server must list the exported file systems in
 /etc/exports (see exports(5)) and
 then run the command
 service mountd reload.

Warning:
 Only entire file systems can be
 exported, not subtrees of file systems.
 You can export subdirectories of a file system as possible
 mount points for clients, but that exposes the
 entire content of the file system they
 live on to clients.
 If you want to export one subtree and prevent access to other
 subtrees, the exported subtree must be on its own
 file system.

A client host can access a remote file system through NFS
 if:

	
The server host exports a mount point in the file system
 to the client.
 The list of mount points a NFS server exports can be
 checked with the showmount -e command
 (see showmount(8)).
 For example:

showmount -e 192.168.1.2
Exports list on 192.168.1.2:
/home host1 host2 host3

	The client host mounts the remote directory in
 fstab(5) or with the command
 mount 192.168.1.2:/home /home
 (see mount_nfs(8)).

29.1.1. NFS setup example

The scenario described here is the following: five client
 machines (cli1, ...,
 cli5) share some directories on a server (buzz.toys.org).
 Some of the directories exported by the server are reserved for a
 specific client, the other directories are common for all client
 machines.
 All the clients boot from the server and must mount the
 directories.

The directories exported from the server are:

	/export/cliX/root

	the five root directories for the five client machines.
 Each client has its own root directory, with
 X = 1, 2, 3, 4, or 5.

	/export/cliX/swap

	Five swap directories for the five swap machines.

	/export/common/usr

	/usr directory; common for all client
 hosts.

	/usr/src

	Common /usr/src directory for all
 client machines.

The following file systems exist on the server:

/dev/ra0a on /
/dev/ra0f on /usr
/dev/ra1a on /usr/src
/dev/ra2a on /export

Each client needs the following file systems:

buzz:/export/cliX/root on /
buzz:/export/common/usr on /usr
buzz:/usr/src on /usr/src

The server configuration is the following:

/etc/exports
/usr/src -network 192.168.1.0 -mask 255.255.255.0
/export -alldirs -maproot=root -network 192.168.1.0 -mask 255.255.255.0

Note that all exported directories are on file systems
 other than / and
 /usr, so that clients can't overwrite
 important files like /bin/sh and
 /usr/bin/less or read from secret files
 like /root/.ssh/id_ed25519 or
 /etc/krb5.keytab on the server.

On the client machines /etc/fstab
	contains:

buzz:/export/cliX/root / nfs rw
buzz:/export/common/usr /usr nfs ro,nodev,nosuid
buzz:/usr/src /usr/src nfs rw,nodev,nosuid

Each client machine has its number substituted to the
 “X” character in the
 first line of the previous example.

29.1.2. Setting up NFS automounting for /net
 with amd(8)

The problem with NFS (and other) mounts is, that you usually
 have to be root to make them, which can be rather
 inconvenient for users. Using amd(8) you can set up a
 certain directory (Commonly /net),
 under which one
 can make any NFS-mount as a normal user, as long as the
 file system about to be accessed is actually exported by the
 NFS server.

To check if a certain server exports a file system, and
 which ones, use the showmount-command with
 the -e
 (export) switch:

$ showmount -e wuarchive.wustl.edu
Exports list on wuarchive.wustl.edu:
/export/home onc.wustl.edu
/export/local onc.wustl.edu
/export/adm/log onc.wustl.edu
/usr onc.wustl.edu
/ onc.wustl.edu
/archive Everyone

If you then want to mount a directory to access anything
 below it (for example
 /archive/systems/unix/NetBSD),
 just change into that directory:

$ cd /net/wuarchive.wustl.edu/archive/systems/unix/NetBSD

The file system will be mounted (by
 amd),
 and you can a
 access any files just as if the directory was mounted by the
 superuser of your system.

You can set up such a /net directory with the
 following steps (including basic amd
	configuration):

	
in /etc/rc.conf, set the following variable:

amd=yes

	mkdir /amd

	mkdir /net

	
Taking /usr/share/examples/amd/amd.conf,
 put the following into /etc/amd.conf:

[/net]
map_name = /etc/amd/net
map_type = file

	
Taking /usr/share/examples/amd/net as example,
 put the following into /etc/amd/net:

/defaults type:=host;rhost:=${key};fs:=${autodir}/${rhost}/root
* host==${key};type:=link;fs:=/ \
 host!=${key};opts:=ro,soft,intr,nodev,nosuid,noconn

	
Reboot, or (re)start amd by hand:

service amd restart

29.2. The Network Time Protocol (NTP)

It is not unusual to find that the system clock is wrong,
 often by several minutes: for some strange reason it seems
 that computer clocks are not very accurate.
 The problem gets worse if you administer many networked hosts:
 keeping the clocks in sync can easily become a nightmare.
 To solve this problem, the NTP protocol
 (version 3) comes to our aid: this protocol can be used to
 synchronize the clocks of a network of workstations using one
 or more NTP servers.

Thanks to the NTP protocol it is possible to adjust the clock
 of a single workstation but also to synchronize an entire
 network.
 The NTP protocol is quite complex, defining a hierarchical
 master-slave structure of servers divided in strata: the top
 of the hierarchy is occupied by stratum 1 servers, connected
 to an external clock (ex. a radio clock) to guarantee a high
 level of accuracy.
 Underneath, stratum 2 servers synchronize their clocks with
 stratum 1, and so on.
 The accuracy decreases as we proceed towards lower levels.
 This hierarchical structure avoids the congestion which could
 be caused by having all hosts refer to the same (few) stratum
 1 servers.
 If, for example, you want to synchronize a network, you don't
 connect all the hosts to the same public stratum 1 server.
 Instead, you create a local server which connects to the main
 server and the remaining hosts synchronize their clocks with
 the local server.

Fortunately, to use the NTP tools you don't need to
 understand the details of the protocol and of its implementation
 (if you are interested, refer to RFC 1305) and you only need
 to know how to configure and start some programs.
 The base system of NetBSD already contains the necessary
 tools to utilize this protocol (and other time related
 protocols, as we'll see), derived from the
 xntp implementation.
 This section describes a simple method to always have a correct
 system time.

First, it is necessary to find the address of the public NTP
 servers to use as a reference; a detailed listing can be found
 at http://support.ntp.org/bin/view/Servers/WebHome.
 As an example, for Italy the three stratum 1 servers
 tempo.cstv.to.cnr.it, ntp1.inrim.it, and ntp2.inrim.it can be used.

Next, to adjust the system clock give the following
 command as root:

ntpdate -b ntp1.inrim.it ntp2.inrim.it

(substitute the names of the servers in the example with the
 ones that you are actually using.
 Option -b tells ntpdate
 to set the system time with the settimeofday system call,
 instead of slewing it with adjtime (the default).
 This option is suggested when the difference between the local
 time and the correct time can be considerable.

As you've seen, ntpdate is not difficult to use.
 The next step is to start it automatically, in order to always
 have the correct system time.
 If you have a permanent connection to the Internet, you can start
 the program at boot with the following line of
 /etc/rc.conf:

ntpdate=YES ntpdate_hosts="ntp1.inrim.it"

The name of the NTP server to use is specified in the
 ntpdate_hosts variable; if you leave this
 field empty, the boot script will try to extract the name from
 the /etc/ntp.conf file.

If you don't have a permanent Internet connection (ex. you
 have a dial-up modem connection through an ISP) you can start
 ntpdate from the ip-up script, as
 explained in Chapter 24, Setting up TCP/IP on NetBSD in practice.
 In this case add the following line to the
 ip-up script:

/usr/sbin/ntpdate -s -b ntp1.inrim.it

(the path is mandatory or the script will probably not find
 the executable).
 Option -s diverts logging output from the
 standard output (this is the default) to the system syslog(3)
 facility, which means that the messages from ntpdate will
 usually end up in /var/log/messages.

Besides ntpdate there are other useful NTP commands.
 It is also possible to turn one of the local hosts into an
 NTP server for the remaining hosts of the network.
 The local server will synchronize its clock with a public
 server.
 For this type of configuration you must use the
 ntpd daemon and create the
 /etc/ntp.conf configuration file.
 For example:

server ntp1.inrim.it
 server ntp2.inrim.it

ntpd can be started too from rc.conf,
 using the relevant option:

ntpd=YES

NTP is not your only option if you want to synchronize your
 network: you can also use the timed
 daemon or the rdate(8) command as well.
 timed was developed for 4.3BSD.

Timed too uses a master-slave hierarchy: when started on a
 host, timed asks the network time to a master and adjusts the
 local clock accordingly. A mixed structure, using both timed
 and ntpd can be used. One of the local hosts gets the correct
 time from a public NTP server and is the timed master for the
 remaining hosts of network, which become its clients and
 synchronize their clocks using timed. This means that the local
 server must run both NTP and timed; care must be taken that they
 don't interfere with each other (timed must be started with the
 -F hostname option so that it doesn't try to
 adjust the local clock).

Finally, rdate(8) can be used to
 synchronize once against a given host, much like
 ntpdate(8). The host in question must have the "time"
 service (port 37) enabled in
 /etc/inetd.conf.

Chapter 30. Using virtualization: QEMU and NVMM

A virtual machine is a virtual computer (the "guest") running inside
another computer (the "host"). Virtual machines are useful for testing,
running different operating systems, isolating parts of a system, and
more.

nvmm(4) (NetBSD Virtual Machine Monitor) is NetBSD's native
hypervisor.
In regular usage, it's used as an "accelerator" for the QEMU
virtual machine software. It will make virtual machines on your
NetBSD host run faster by taking advantage of CPU virtualization
extensions.
Currently, a CPU that supports AMD SVM or Intel VMX is required, but
more backends for other architectures may be added in the future.
QEMU can also be used without an accelerator, with significantly reduced
performance.

Other hypervisors supported by NetBSD include
Intel HAXM
(also used with QEMU), and
Xen,
which has quite a different design.

When running modern operating systems as VM guests,
you will generally want to use para-virtualized I/O, rather than having
QEMU emulate real hardware devices.
On NetBSD, this is supported with the virtio(4) drivers.

30.1. Enabling the NetBSD Virtual Machine Monitor

Note

Many computers (especially laptops) have hardware
virtualization capabilities disabled by default. You may need to enable
the necessary features from the firmware at boot.

Before loading the NVMM module, make sure the modules
in /stand are correct and up-to-date for the version
of the NetBSD kernel you are using.

The NetBSD Virtual Machine Monitor isn't active by default.
It must be activated by loading the nvmm module with
modload(8):

modload nvmm

Verify NVMM is loaded with modstat(8):

modstat | grep nvmm
nvmm misc filesys - 0 - -

You can load the module automatically at boot time by adding this
line to /etc/modules.conf:

nvmm

Loading NVMM at boot time will also allow the system to run with a
secmodel_securelevel(9) of 1, which prevents loading modules
after boot.
However, since NVMM blocks things like suspend, you may wish
to unload it:

modunload nvmm

By default the /dev/nvmm device is owned by the
root user.
You probably want to run virtual machines as a non-root user
for security reasons, so set the owner of the /dev/nvmm
device to something reasonable:

chown nia:wheel /dev/nvmm

On a machine containing lots of untrusted VMs, you may wish
to create a dedicated user or group for them with useradd(8)
and groupadd(8).

You can see NVMM's current status with nvmmctl(8):

$ nvmmctl identify
nvmm: Kernel API version 2
nvmm: State size 1008
nvmm: Max machines 128
nvmm: Max VCPUs per machine 256
nvmm: Max RAM per machine 128G
nvmm: Arch Mach conf 0
nvmm: Arch VCPU conf 0x3<CPUID,TPR>
nvmm: Guest FPU states 0x3<x87,SSE>

30.2. Using QEMU with NVMM

QEMU is a CPU emulator and virtual machine that can use
NVMM as an accelerator. It isn't included with NetBSD by default.
However, it is available in pkgsrc
as emulators/qemu, and can be
installed with pkgin:

pkgin install qemu

30.2.1. Starting QEMU with acceleration

This command starts a VM in an X11 window with NVMM acceleration,
the same CPU type as the host machine, two CPU cores,
and one gigabyte of memory:

$ qemu-system-x86_64 -accel nvmm
 -cpu max -smp cpus=2 -m 1G \
 -display sdl,gl=on \
 -cdrom NetBSD-9.1-amd64.iso

The guest system will be much slower without acceleration
as every CPU instruction will have to be emulated.

You should also be able to see the virtual machine running
with nvmmctl(8):

$ nvmmctl list
Machine ID VCPUs RAM Owner PID Creation Time
---------- ----- ---- --------- ------------------------
0 2 147M 10982 Sat May 8 10:09:59 2021

30.2.2. Creating a virtual disk

Generally, you will want to create a virtual drive to contain your
virtual machine on the host. We’ll want to create a
qcow2 image
because it provides better performance and is more versatile than a
raw image:

$ qemu-img create -f qcow2 netbsd.qcow2 16G

A VirtIO block device provides the best performance.
Add the following arguments to qemu-system-x86_64
to use it:

-drive file=netbsd.qcow2,if=none,id=hd0 \
-device virtio-blk-pci,drive=hd0

Older operating systems may not have VirtIO drivers, in which
case you can use a normal emulated disk:

-hda netbsd.qcow2

30.2.3. Adding entropy to the guest

Operating systems require a good source of randomness for system
security, cryptography, and so on. In a VM, this is ideally
provided by the host machine, which has greater access to the
underlying hardware. You can easily attach a VirtIO random number
generator device with the following arguments to QEMU:

-object rng-random,filename=/dev/urandom,id=viornd0 \
-device virtio-rng-pci,rng=viornd0

This requires no extra configuration on the host machine.

Entropy is generally required for secure communications.
For more information on entropy, refer to entropy(7).

The simplest way to set up networking with QEMU is so-called
"user networking". This will mean raw socket operations like
ping(8) won’t work, but normal TCP/IP protocols
like HTTP/FTP/etc will work. Another way is with bridged
networking, see
Section 30.3, “Configuring bridged networking on a NetBSD host”.

The most performant device type is
virtio-net-pci:

-netdev user,id=vioif0 -device virtio-net-pci,netdev=vioif0

To use older guest operating systems that don’t support VirtIO,
Intel Gigabit Ethernet is a good choice:

-netdev user,id=wm0 -device e1000,netdev=wm0

Or an AMD PCnet card, for very old guest operating systems:

-netdev user,id=pcn0 -device pcnet,netdev=pcn0

On a NetBSD host, the following QEMU arguments may be used
to enable audio:

-audiodev oss,id=oss,out.dev=/dev/audio,in.dev=/dev/audio \
-device ac97,audiodev=oss

ac97 is the classic standardized sound driver
for x86 systems.

You may wish to change the /dev/audioX
device being used, see
Chapter 10, Audio.

You may need to adjust things further to get smooth playback,
see Section 30.4.3, “Smooth audio playback and latency in VMs”.

30.2.6. Using graphics (or no graphics)

These arguments will create an X11 window with OpenGL enabled
(for smooth scaling if the window is resized), using a VMware-compatible
VGA device, and an USB mouse:

-display sdl,gl=on -vga vmware \
-usb -device usb-mouse,bus=usb-bus.0

There is a VMware video driver included with X11 on NetBSD, so
the display will automatically configure when startx(1)
runs and can be adjusted with xrandr(1).

A VNC display will allow remote access from a VNC client like
net/tigervnc, useful when running QEMU
with --daemonize on a server:

-display vnc=unix:/home/nia/.qemu-myvm-vnc -vga vmware
-usb -device usb-mouse,bus=usb-bus.0

A simpler option is a curses display,
preferable for systems that don’t
need more than text output in a terminal:

-display curses

For more information on configuring X11, see
Chapter 9, The X Window System.

For more information on securely configuring VNC, see
QEMU’s online documentation on VNC.

30.3. Configuring bridged networking on a NetBSD host

While QEMU user networking is easy to use and doesn't require root
privileges, it's generally slower than bridged networking using a tap(4)
device, and doesn't allow the use of diagnostic tools like ping(8)
inside the guest.

To configure bridged networking on a NetBSD host, you must first
make note of your host machine’s primary network interace.
Find the one with an address assigned and a route to the outside
world with ifconfig(8).

In this example, the host machine’s primary interface is
wm0. All of these commands run on the host machine.

Create a virtual tap(4) interface:

ifconfig tap0 create
ifconfig tap0 descr "NetBSD VM" up

Create a bridge(4) connecting the actual interface
and the virtual interface:

ifconfig bridge0 create
ifconfig bridge0 descr "LAN VM bridge" up
brconfig bridge0 add tap0 add wm0

Configure NetBSD to do this all at boot time by editing
/etc/ifconfig.tap0:

create
descr "NetBSD VM" up
! ifconfig bridge0 create
! ifconfig bridge0 descr "LAN VM bridge" up
! brconfig bridge0 add tap0 add wm0

You can now pass the arguments to QEMU to run with
bridged networking:

-netdev tap,id=tap0,ifname=tap0,script=no -device virtio-net-pci,netdev=tap0

For more information on NetBSD network configuration,
see Chapter 24, Setting up TCP/IP on NetBSD in practice.

30.4. Notes on using NetBSD as a guest

30.4.1. Unclean VM shutdown, data recovery, and fsck

AVOID UNCLEAN SHUTDOWNS!
This means pressing Ctrl+C or killing the virtual machine.
In QEMU, the disks will rarely be synced, and data loss will
almost certainly occur.

You may wish to add the log,noatime
mount options in /etc/fstab next to
rw to speed up fsck(8).
You can also enable the sync option,
but this will significantly decrease performance.

Always shut down NetBSD safely using the shutdown(8)
command and make backups.

30.4.2. NetBSD VMs lacking IPv6

QEMU's networking will sometimes configure an invalid
IPv6 route on IPv4-only configurations, meaning programs like the
NetBSD packaging tools will prefer IPv6 and spend a long time timing out
before succeeding.

Work around this by editing /etc/rc.conf
to prefer IPv4 addresses:

ip6addrctl=YES
ip6addrctl_policy="ipv4_prefer"

30.4.3. Smooth audio playback and latency in VMs

Virtual machines cannot generally provide the same smooth playback at
low latency that real hardware provides.
For smooth playback, you may need to increase NetBSD's audio latency
inside the VM:

$ sysctl -w hw.audio0.blk_ms=100

To set this automatically automatically at boot time, add it to
/etc/sysctl.conf.

You can test audio output in the VM. Ensure that
audiocfg(1) plays a continuous beep for each channel:

$ audiocfg test 0

30.4.4. Changing the console resolution in an x86 VM

Note

On physical hardware where the display resolution
is already set properly by the kernel, doing this will disable
graphical acceleration.

If you want to increase the size of the x86 console,
enter the following at the NetBSD boot prompt:

> vesa 1024x768x32

This setting can be made permanent in
/boot.cfg.

Chapter 31. Linux emulation

The NetBSD port for amd64, i386, alpha, mac68k, macppc, and many
 others can execute a great number of native
 Linux programs, using the Linux emulation layer.
 Generally, when you think about emulation you imagine something
 slow and inefficient because, often, emulations must reproduce
 hardware instructions and even architectures (usually from old machines)
 in software.
 In the case of the Linux emulation this is radically different:
 it is only a thin software layer, mostly for system calls which
 are already very similar between the two systems.
 The application code itself is processed at the full speed of your
 CPU, so you don't get a degraded performance with the Linux
 emulation and the feeling is exactly the same as for native NetBSD
 applications.

The installation of the Linux emulation is described in the
 compat_linux(8) man page; using the package system only two steps
 are needed.

31.1.1. Configuring the kernel

If you use a GENERIC kernel you don't need to do anything because
 Linux compatibility is already enabled.

If you use a customized kernel, check that the following options
 are enabled:

option COMPAT_LINUX
option EXEC_ELF32

	or the following options if you are going to use 64-bit ELF
	binaries:

option COMPAT_LINUX
option EXEC_ELF64

when you have compiled a kernel with the previous options you can
 start installing the necessary software.

31.1.2. Installing the Linux libraries

Usually, applications are linked against shared libraries, and
 for Linux applications, Linux shared libraries are needed.
 You can get the shared libraries from any Linux distribution,
 provided it's not too old, but the suggested method is to use the
 package system to install the provided libraries from openSUSE.

All Linux binaries exist entirely within the separate root
 directories inside /emul/linux and
 /emul/linux32.
 The kernel will always search these paths first when looking
 for shared objects required by Linux programs.

A number of useful Linux shared object binaries is provided by
 pkgsrc, for running both 64-bit and 32-bit applications. The absolute
 minimum required to run dynamically linked Linux applications are
 are provided by the suse131_base and
 suse131_32_base packages (or, if using binary
 packages suse_base-13 and
 suse32_base-13). Many other libraries are also
 provided as separate packages.

Some packages in pkgsrc are provided as Linux binaries and
 will also install all the required SUSE dependencies when installed.
 However, this is uncommon. One such package is
 adoptopenjdk11-bin.

It is possible to examine which libraries are required by
 a Linux program with readelf(1):

$ readelf -d ./runner
Dynamic section at offset 0x3a2e94 contains 40 entries:
 Tag Type	 Name/Value
 0x00000001 (NEEDED)	Shared library: [libstdc++.so.6]
 0x00000001 (NEEDED)	Shared library: [libz.so.1]
 0x00000001 (NEEDED)	Shared library: [libXxf86vm.so.1]
 0x00000001 (NEEDED)	Shared library: [libGL.so.1]
 0x00000001 (NEEDED)	Shared library: [libopenal.so.1]
 0x00000001 (NEEDED)	Shared library: [libm.so.6]
 0x00000001 (NEEDED)	Shared library: [librt.so.1]
 0x00000001 (NEEDED)	Shared library: [libpthread.so.0]
 0x00000001 (NEEDED)	Shared library: [libdl.so.2]
 0x00000001 (NEEDED)	Shared library: [libcrypto.so.1.0.0]
 0x00000001 (NEEDED)	Shared library: [libXext.so.6]
 0x00000001 (NEEDED)	Shared library: [libX11.so.6]
 0x00000001 (NEEDED)	Shared library: [libXrandr.so.2]
 0x00000001 (NEEDED)	Shared library: [libGLU.so.1]
 0x00000001 (NEEDED)	Shared library: [libssl.so.1.0.0]
 0x00000001 (NEEDED)	Shared library: [libgcc_s.so.1]
 0x00000001 (NEEDED)	Shared library: [libc.so.6]

For example, an application which requires
 libcrypto.so.1.0.0,
 libXext.so.6, and
 libGL.so.1
 will require openssl,
 x11, and glx,
 in addition to the base SUSE package.

31.1.3. Running Linux programs

Once the correct libraries are installed, no special steps
 are required to run a Linux program - simply type the command
 (if you acquired it as a non-pkgsrc download, include the full path
 on the filesystem). The kernel will detect it is a Linux executable
 and run it in the correct translation mode.

31.2. Directory structure

If we examine the outcome of the installation of the Linux
 libraries and programs we find that
 /emul/linux is a symbolic link pointing to
 /usr/pkg/emul/linux, where the following
 directories have been created:

bin/

dev/

etc/

lib/

lib64/

proc/

sbin/

usr/

var/

Note

Please always refer to /emul/linux and not
	to /usr/pkg/emul/linux.
	The latter is an implementation detail and may change in the
	future.

How much space is required for the Linux emulation software?
 On one system we got the following figure:

cd /usr/pkg/emul
du -k /emul/linux/
...
399658 /emul/linux/

31.3. Using Linux browser plugins

 Linux plugins for Mozilla-based browsers can be used on native
 NetBSD Firefox builds through
 nspluginwrapper, a wrapper that
 translates between the native browser and a foreign plugin.
 At the moment, nspluginwrapper only works reliably on Mozilla-based
 browsers that link against GTK2+ (GTK1+ is not supported).
 nspluginwrapper can be installed through pkgsrc:

cd /usr/pkgsrc/www/nspluginwrapper
make install

 Plugins can then be installed in two steps: first, the plugin
 has to be installed on the system (e.g. through pkgsrc). After
 that the plugin should be registered with the
 nspluginwrapper by the users who want to
 use that plugin.

 In this short example we will have a look at installing the
 Macromedia Flash plugin. We can
 fullfill the first step by installing the Flash plugin through
 pkgsrc:

cd /usr/pkgsrc/multimedia/ns-flash
make install

 After that an unprivileged user can register the Flash plugin:

$ nspluginwrapper -i /usr/pkg/lib/netscape/plugins/libflashplayer.so

 The plugin should then be registered correctly. You can check this
 by using the -l option of
 nspluginwrapper
 (nspluginwrapper -l). If the plugin is listed,
 you can restart Firefox, and verify that the plugin was installed
 by entering about:plugins in the location
 bar.

 The following articles may be of interest for further
 understanding Linux (and other) emulation:

Chapter 32. Obtaining the sources

To read the NetBSD sources from your local disk or to build
 the system, you need to download the NetBSD
 sources. This chapter explains a number of different ways to obtain
 the NetBSD sources, although the preferred method is to
 download the tarballs and then update via cvs(1).

32.1. Preparing directories

Traditionally, the NetBSD kernel and userland sources are placed in
 /usr/src. This directory is not present by
 default in the NetBSD installation and you will need to create it
 first. As it is in a system directory, you will need root access
 to create the directory and make sure your normal user account
 can write to it. For demonstration purposes, it is assumed that
 the non-root login is carlo.
 Please replace it with a valid login name on your system:

$ su
Password: ********
mkdir /usr/src
chown <carlo> /usr/src

If you want the sources to the X Window System, you should prepare
 /usr/xsrc as well:

mkdir /usr/xsrc
chown <carlo> /usr/xsrc

Note

Please note that for the subsequent
 steps, root access is neither needed nor recommended, so this
 preparation step should be done first. All CVS operations can
 (and should) be done as normal user, so relinquish your root
 privileges:

exit
$

Before starting to fetch or download
 the required files, you may want to know the definitions of
 “Formal releases”, “Maintenance branches”
 and other related terms. That information is available
 under the NetBSD release glossary and graphs.

32.3. Downloading tarballs

It is sometimes faster to begin by downloading a source tarball.
 You can download tarballs (see tar(1)) from ftp.NetBSD.org
 (or any other mirror) for a number of releases or
 branches. These tarballs include the CVS
 directories, so you can continue to update your source tree using
 cvs(1), as explained in the CVS section.

Note that source tarballs for stable branches are only
 updated every three days.

32.3.1. Downloading sources for a NetBSD release

The source files to a release do not change after the release
 has been made.

The tarballs for the sources of a specific release are
 available under
 /pub/NetBSD/NetBSD-<RELEASE-NUMBER>/source/sets/
 on ftp.NetBSD.org (or a mirror),
 where <RELEASE-NUMBER> is the release you want to
 fetch (for example, 10.1).

To fetch the sources of a NetBSD release using tarballs, simply do:

$ ftp -i ftp://ftp.NetBSD.org/pub/NetBSD/NetBSD-10.1/source/sets/
Trying 2001:470:a085:999::21:21 ...
Connected to ftp.NetBSD.org.
220 ftp.NetBSD.org FTP server (NetBSD-ftpd 20180428) ready.
331 Guest login ok, type your name as password.
[...]
250 CWD command successful.
ftp> mget *.tgz
local: gnusrc.tgz remote: gnusrc.tgz
229 Entering Extended Passive Mode (|||61968|)
150 Opening BINARY mode data connection for 'gnusrc.tgz' (152604808 bytes).
[...]
ftp> quit
221-
221 Thank you for using the FTP service on ftp.NetBSD.org.

You should now have 5 files:

$ ls *.tgz
gnusrc.tgz sharesrc.tgz src.tgz syssrc.tgz xsrc.tgz

You now must extract them all:

$ for file in *.tgz
> do
> tar -xzf $file -C /
> done

32.3.2. Downloading sources for a NetBSD stable branch

$ ftp -i ftp://ftp.NetBSD.org/pub/NetBSD/NetBSD-release-10/tar_files/src/
Trying 2001:470:a085:999::21:21 ...
Connected to ftp.NetBSD.org.
220 ftp.NetBSD.org FTP server (NetBSD-ftpd 20180428) ready.
331 Guest login ok, type your name as password.
[...]
250 CWD command successful.
ftp> mget *.tar.gz
local: bin.tar.gz remote: bin.tar.gz
229 Entering Extended Passive Mode (|||56011|)
150 Opening BINARY mode data connection for 'bin.tar.gz' (996075 bytes).
[...]
ftp> quit
221-
 Data traffic for this session was 429024351 bytes in 25 files.
 Total traffic for this session was 429035139 bytes in 26 transfers.
221 Thank you for using the FTP service on ftp.NetBSD.org.

You should now have 25 files:

$ ls *.tar.gz
bin.tar.gz doc.tar.gz libexec.tar.gz tools.tar.gz
common.tar.gz etc.tar.gz regress.tar.gz top-level.tar.gz
compat.tar.gz external.tar.gz rescue.tar.gz usr.bin.tar.gz
config.tar.gz extsrc.tar.gz sbin.tar.gz usr.sbin.tar.gz
crypto.tar.gz games.tar.gz share.tar.gz
dist.tar.gz include.tar.gz sys.tar.gz
distrib.tar.gz lib.tar.gz tests.tar.gz

You now must extract them all:

$ for file in *.tar.gz
> do
> tar -xzf $file -C /usr
> done

32.3.3. Downloading sources for a NetBSD-current development branch

To download the NetBSD-current tarballs, located under
	/pub/NetBSD/NetBSD-current/tar_files/src,
	just follow the same steps as in
	Section 32.3.2, “Downloading sources for a NetBSD stable branch”, but
	using this path.

You may also want to fetch the X Window System sources, available
 under:
	/pub/NetBSD/NetBSD-current/tar_files/xsrc.

CVS (Concurrent Versions System) can be used
 to fetch the NetBSD source tree or to keep the NetBSD source
 tree up to date with respect to changes made to the NetBSD
 sources. There are two main source modules available through
 cvs(1), “src” and “xsrc”.

The list of currently maintained branches is available under
 src/doc/BRANCHES (see the
 “Status” entry on the “Release branches”
 section).

Caution!

Be sure to take care in selecting the correct and desired branch
 tag so you don't accidentally downgrade your
 source tree.

Before you can do an initial (full) checkout of the NetBSD
 sources via anonymous CVS, you
 must set the CVSROOT environment variable, which
 tells cvs(1) where to fetch the files from:

$ export CVSROOT="anoncvs@anoncvs.NetBSD.org:/cvsroot"

Make sure that the environment variable CVS_RSH
 is set to “ssh”.

$ export CVS_RSH="ssh"

In the examples below, we use the -P option,
 which tells CVS to prune empty directories.

32.4.1. Fetching a NetBSD release

The source files to a release do not change after the release
 has been made.

To get the NetBSD (kernel and userland) sources for a specific
 release, run the following command after setting
 CVSROOT as shown above:

$ cd /usr
$ cvs checkout -r <TAG> -P src

Where <TAG> is the release tag
 to be checked out, e.g., “netbsd-10-1-RELEASE”. If you
 want to fetch a later patchlevel, you would use, e.g.,
	“netbsd-10-1-RELEASE”.

For example, in order to fetch the sources for NetBSD 10.1, you
 would use the “netbsd-10-1-RELEASE” tag:

$ cvs checkout -r netbsd-10-1-RELEASE -P src

To fetch the X Window System source, just “checkout”
 the “xsrc” module. For example:

$ cvs checkout -r netbsd-10-1-RELEASE -P xsrc

32.4.2. Fetching a NetBSD stable branch

NetBSD stable branches are a flavor of “Maintenance
	 branches”. Please consult the
	Section 32.2, “Terminology”.

If you want to follow a stable branch, just pass the
	branch name to the cvs(1) -r
	option.

For example, if you want to fetch the most recent version of
	“netbsd-9”, you just need to use that tag:

$ cd /usr
$ cvs checkout -r netbsd-9 -P src

And for the “xsrc” module:

$ cvs checkout -r netbsd-9 -P xsrc

If you have checked out sources from a stable branch in
	/usr/src and want
	to update them to get the latest security and bug fixes, run:

$ cd /usr/src
$ cvs update -dP

The same applies to the “xsrc” module, but in
	that case you will have to change your working directory to
	/usr/xsrc first.

32.4.3. Fetching the NetBSD-current development branch

To obtain the NetBSD-current source just omit
	“-r <BRANCH>”
	and replace it with “-A”:

$ cd /usr
$ cvs checkout -A -P src

The “xsrc” module is obtained the same way:

$ cd /usr
$ cvs checkout -A -P xsrc

To update your NetBSD-current source tree, add the
	-A flag:
	

$ cd /usr/src
$ cvs update -A -dP

The same applies to the “xsrc” module, but in
 that case you will have to change your working directory to
 /usr/xsrc first.

32.4.4. Saving some cvs(1) options

If you find yourself typing the same options to CVS over and over
	again, you may want to make those options the default by adding them
 to .cvsrc in your home directory.
	In the following example, cvs update will add any
 missing newly-added directories to your tree, as well as delete any
	newly-empty directories. Also shown are examples of how to make
 cvs rdiff and cvs diff use
 the unified diff(1) format. The final line in the example
 causes CVS to be a bit more quiet in its operation.

Example 32.1. .cvsrc

update -dP
rdiff -u
diff -u
cvs -q

Chapter 33. Crosscompiling NetBSD with build.sh

NetBSD uses a framework, build.sh,
 to build both the operating system's kernel and the whole userland
 for either the same platform as the host machine, or for a different
 platform, using cross-compilation.
 build.sh will take care of creating all the
 tools required to build NetBSD for a given platform, and make them
 available ready to use for development work.

In this chapter, we will show how to use
 build.sh to first create a toolchain,
 including compiler, assembler, linker and so on,
 then use it to cross-compile a NetBSD kernel and userspace for
 AArch64 on an AMD64 host machine.
 While native kernel builds are covered in Chapter 34, Compiling the kernel, using the build.sh
 script is generally preferred for building the entire of NetBSD.

Before starting, we have placed the sources in a subdirectory
 of our user's home directory: /home/nia/cvs/src.
 While /usr/src is the traditional location for
 NetBSD sources, as described in
 Chapter 32, Obtaining the sources, we would like to build the operating
 system as an unprivileged (non-root) user.

A more detailed description of the build.sh
 framework can be found in Luke Mewburn and Matthew Green's
 paper
 and their
 presentation
 from BSDCon 2003 as well as in
 /usr/src/BUILDING.

33.1. Building the toolchain

The first step to do cross-development is to get all the
 necessary tools available. In NetBSD terminology, this is called
 the "toolchain", and it includes BSD-compatible make(1), C/C++
 compilers, linker, assembler, config(8), as well as a fair
 number of tools that are only required when crosscompiling a
 full NetBSD release, which we won't cover here.

The command to create the toolchain is quite simple, using
 NetBSD's src/build.sh script. Please note
 that all the commands here can be run as normal (non-root) user:

$ cd /home/nia/cvs/src
$./build.sh -U -O ~/obj -j2 -m evbarm -a aarch64 tools

	The "-U" option indicates we are doing an unprivileged build,
 as a non-root user, typically with the source code located somewhere
 other than /usr/src

	The "-O" option specifies the directory to use for compiled object
 files.

	The "-j2" option specifies the number of parallel builds to run.
 You may wish to set this to the number of CPU cores on your host system.

	
The "-m evbarm -a aarch64" options indicate we are building for a machine type of
 evbarm with a CPU type of aarch64.
 You can list the available machines and CPU types:

$./build.sh list-arch

If the tools have been built previously and they only need to be
 updated, then the update option "-u" can be used to only rebuild
 tools that have changed:

$./build.sh -U -u -O ~/obj -j2 -m evbarm -a aarch64 tools

When the tools are built, information about them
 and several environment variables is printed out:

===> Tools built to /home/nia/obj/tooldir.NetBSD-9.99.81-amd64
===> build.sh ended: Sun Apr 18 12:10:58 CEST 2021
===> Summary of results:
 build.sh command: ./build.sh -U -u -O /home/nia/obj -j2 -m evbarm -a aarch64 tools
 build.sh started: Sun Apr 18 11:17:46 CEST 2021
 NetBSD version: 9.99.81
 MACHINE: evbarm
 MACHINE_ARCH: aarch64
 Build platform: NetBSD 9.99.81 amd64
 HOST_SH: /bin/sh
 No $TOOLDIR/bin/nbmake, needs building.
 Bootstrapping nbmake
 MAKECONF file: /etc/mk.conf
 TOOLDIR path: /home/nia/obj/tooldir.NetBSD-9.99.81-amd64
 DESTDIR path: /home/nia/obj/destdir.evbarm
 RELEASEDIR path: /home/nia/obj/releasedir
 Created /home/nia/obj/tooldir.NetBSD-9.99.81-amd64/bin/nbmake
 Updated makewrapper: /home/nia/obj/tooldir.NetBSD-9.99.81-amd64/bin/nbmake-evbarm
 Tools built to /home/nia/obj/tooldir.NetBSD-9.99.81-amd64
 build.sh ended: Sun Apr 18 12:10:58 CEST 2021

During the build, object directories are used consistently,
 i.e. special directories are kept that keep the
 platform-specific object files and compile results. In our
 example, they will be kept in directories named "obj.evbarm" as
 we build for AArch64 as target platform.

The toolchain itself is part of this, but as it's hosted and
 compiled for an amd64 system, it will get placed in its own
 directory indicating where to cross-build from. Here's where our
 toolchain is located:

$ pwd
/home/nia/cvs/src
$ ls -d ~/obj/tooldir*
/home/nia/obj/tooldir.NetBSD-9.99.81-amd64

So, the general rule of thumb is for a given "host" and "target"
 system combination, the cross-compiler will be placed in the
 "tooldir.host" directory by default. A full
 list of all tools created for cross-compiling the whole NetBSD
 operating system includes:

$ ls ~/obj/tooldir.NetBSD-9.99.81-amd64/bin
aarch64--netbsd-addr2line nbconfig nbmkcsmapper
aarch64--netbsd-ar nbcrunchgen nbmkdep
aarch64--netbsd-as nbctags nbmkesdb
aarch64--netbsd-c++ nbctfconvert nbmklocale
aarch64--netbsd-c++filt nbctfmerge nbmknod
aarch64--netbsd-cpp nbcvslatest nbmktemp
aarch64--netbsd-dbsym nbdb nbmkubootimage
aarch64--netbsd-elfedit nbdisklabel nbmsgc
aarch64--netbsd-fdisk nbdtc nbmtree
aarch64--netbsd-g++ nbeqn nbnroff
aarch64--netbsd-gcc nbfile nbpax
aarch64--netbsd-gcc-9.3.0 nbgenassym nbpaxctl
aarch64--netbsd-gcc-ar nbgencat nbperf
aarch64--netbsd-gcc-nm nbgmake nbpic
aarch64--netbsd-gcc-ranlib nbgpt nbpwd_mkdb
aarch64--netbsd-gcov nbgrep nbrefer
aarch64--netbsd-gcov-dump nbgroff nbrpcgen
aarch64--netbsd-gcov-tool nbhexdump nbsed
aarch64--netbsd-install nbhost-mkdep nbslc
aarch64--netbsd-ld nbindxbib nbsoelim
aarch64--netbsd-ld.bfd nbinstall-info nbsortinfo
aarch64--netbsd-mdsetimage nbinstallboot nbstat
aarch64--netbsd-nm nbjoin nbstrfile
aarch64--netbsd-objcopy nblex nbsunlabel
aarch64--netbsd-objdump nbllvm-tblgen nbtbl
aarch64--netbsd-ranlib nblorder nbtexi2dvi
aarch64--netbsd-readelf nbm4 nbtexi2pdf
aarch64--netbsd-size nbmake nbtexindex
aarch64--netbsd-strings nbmake-evbarm nbtic
aarch64--netbsd-strip nbmakefs nbtsort
nbasn1_compile nbmakeinfo nbuudecode
nbawk nbmakekeys nbxz
nbcap_mkdb nbmakestrs nbyacc
nbcat nbmakewhatis nbzic
nbcksum nbmandoc
nbcompile_et nbmenuc

As you can see, most of the tools that are available native on
 NetBSD are present with some program prefix to identify
 the target platform for tools that are specific to a certain
 target platform.

One important tool that should be pointed out here is
 "nbmake-evbarm". This is a shell wrapper for a BSD compatible
 make(1) command that's setup to use all the right commands from
 the cross-compilation toolchain. Using this wrapper instead of
 /usr/bin/make allows crosscompiling programs that were written
 using the NetBSD Makefile infrastructure (see src/share/mk). We
 will use this make(1) wrapper in a second to cross compile the
 kernel!

33.2. Configuring the kernel manually

Now that we have a working toolchain available, the "usual"
 steps for building a kernel are needed - create a kernel config
 file, run config(1), then build. As
 the config(1) program used to create header files and Makefile
 for a kernel build is platform specific, we need to use the
 "nbconfig" program that's part of our new toolchain. That aside,
 the procedure is just as like compiling a "native" NetBSD
 kernel. Commands involved here are:

$ cd /home/nia/cvs/src/sys/arch/evbarm/conf
$ cp GENERIC64 MYKERNEL
$ vi MYKERNEL
$ /home/nia/obj/tooldir.NetBSD-9.99.81-amd64/bin/nbconfig MYKERNEL

That's all. This command has created a directory
 ../compile/MYKERNEL
 with a number of header files defining information about devices
 to compile into the kernel, a Makefile that is setup to build
 all the needed files for the kernel, and link them together.

33.3. Building the kernel manually

We have all the files and tools available to crosscompile our
 AArch64-based kernel from our Intel-based host system, so
 let's get to it! After changing in the directory created in the
 previous step, we need to use the toolchain's
 nbmake-evbarm shell wrapper, which just
 calls make(1) with all the necessary settings for crosscompiling
 for an AArch64 platform:

$ cd ../compile/MYKERNEL/
$ /home/nia/obj/tooldir.NetBSD-9.99.81-amd64/bin/nbmake-evbarm depend
$ /home/nia/obj/tooldir.NetBSD-9.99.81-amd64/bin/nbmake-evbarm

This will churn away a bit, then spit out a kernel:

...
 text data bss dec hex filename
11131832 3627920 1738912 16498664 fbbfe8 netbsd
...
$ ls -lh netbsd
-rwxr-xr-x 1 nia wheel 16M Apr 18 12:46 netbsd
$ file netbsd
netbsd: ELF 64-bit LSB executable, ARM aarch64, version 1 (SYSV), statically linked, for NetBSD 9.99.81, not stripped

Note

Since we are building for AArch64, a few other kernel images
 in different formats were built, including netbsd.img
 and netbsd.bin for the U-Boot /boot
 partition. On systems with more standard boot procedures, you only need to
 worry about netbsd.

Now the kernel in the file netbsd can
 be transferred to a machine (via scp, rsync, etc.) and booted.

After configuring and crosscompiling the kernel, the next
 logical step is to crosscompile the whole system, and bring it
 into a distribution-ready format. Before doing so, an
 alternative approach to crosscompiling a kernel will be shown
 in the next section, using the build.sh
 script to do configuration and crosscompilation of the kernel
 in one step.

33.4. Building the kernel with build.sh

A cross compiled kernel can be done manually as described in
 the previous sections, or by the easier method of using
 build.sh, which will be shown here.

Preparation of the kernel config file is the same as
 described above:

$ cd /home/nia/cvs/src/sys/arch/evbarm/conf
$ cp GENERIC64 MYKERNEL
$ vi MYKERNEL

Then edit MYKERNEL and once finished,
 all that needs to be done is
 to use build.sh to build the kernel
 (it will also configure it, running the steps shown above):

$ cd /home/nia/cvs/src
$./build.sh -U -u -j2 -O ~/obj -m evbarm -a aarch64 kernel=MYKERNEL

Notice that update ("-u") was specified, the tools are
 already built, there
 is no reason to rebuild all of the tools. Once the kernel is built,
 build.sh will print its location,
 along with other information:

...
===> Summary of results:
 build.sh command: ./build.sh -O /home/nia/obj -U -u -j2 -m evbarm -a aarch64 kernel=MYKERNEL
 build.sh started: Sun Apr 18 12:25:16 CEST 2021
 NetBSD version: 9.99.81
 MACHINE: evbarm
 MACHINE_ARCH: aarch64
 Build platform: NetBSD 9.99.81 amd64
 HOST_SH: /bin/sh
 MAKECONF file: /etc/mk.conf
 TOOLDIR path: /home/nia/obj/tooldir.NetBSD-9.99.81-amd64
 DESTDIR path: /home/nia/obj/destdir.evbarm
 RELEASEDIR path: /home/nia/obj/releasedir
 Updated makewrapper: /home/nia/obj/tooldir.NetBSD-9.99.81-amd64/bin/nbmake-evbarm
 Building kernel without building new tools
 Building kernel: MYKERNEL
 Build directory: /home/nia/obj/sys/arch/evbarm/compile/MYKERNEL
 Kernels built from MYKERNEL:
 /home/nia/obj/sys/arch/evbarm/compile/MYKERNEL/netbsd
 build.sh ended: Sun Apr 18 12:46:26 CEST 2021
===> .

The path to the kernel built is of interest here:
 /home/nia/obj/sys/arch/evbarm/compile/MYKERNEL/netbsd,
 it can be used the same way as described above.

33.5. Building the userland

By now it is probably becoming clear that the toolchain actually
 works in stages. First the toolchain is built, then a
 kernel. Since build.sh will attempt to
 rebuild the tools at every invocation, using “update”
 saves time. It is probably also clear that outside of a few options,
 the build.sh semantics are basically
 build.sh command.
 So, it stands to reason that
 building the whole userland and/or a release is a matter of
 using the right commands.

It should be no surprise that building and creating a release
 would look like the following:

$./build.sh -U -u -j2 -O ~/obj -m evbarm -a aarch64 release

These commands will compile the full NetBSD userland and put it
 into the destination object directory, and then build a release from it
 in a release subdirectory.

33.6. Building the X Window System

The NetBSD project has its own copy of the X Window System's
 which contains changes to make X function well on as many of the
 platforms supported by NetBSD as possible. Due to this, it is
 desirable to use the X Window System version available from
 and for NetBSD, which can also be crosscompiled much like the
 kernel and base system. To do so, the "xsrc" sources
 must be checked out from CVS into just as "src" and "pkgsrc" were
 as described in Chapter 32, Obtaining the sources.

After this, X can be crosscompiled for the target platform by
 adding the -x switch to build.sh, e.g. when creating
 a full release:

$./build.sh -U -u -O ~/obj -j2 -x -X /home/nia/cvs/xsrc -m evbarm -a aarch64 release

The -x option automatically sets
 the variable to build X11, and -X
 points to the directory containing the X11 sources.

33.7. Changing build behaviour

The build system has a lot of variables that can be used to direct
 things like where certain files go, what (if any) tools are used
 and so on. A look in src/BUILDING covers
 most of them. In this section some examples of changing default
 settings are given, each following its own ways.

33.7.1. Changing the Destination Directory

Many people like to track NetBSD-current and perform cross
 compiles of architectures that they use. The logic for this is
 simple, sometimes a new feature or device becomes available
 and someone may wish to use it. By keeping track of changes
 and building every now and again, one can be assured that
 these architectures can build their own release.

It is reasonable to assume that if one is tracking and
 building for more than one architecture, they might want to
 keep the builds in a different location than the
 default. There are two ways to go about this, either use a
 script to set the new DESTDIR, or simply do so
 interactively. In any case, it can be set the same way as any
 other variable (depending on your shell of course).

For sh(1), or ksh(1), this is:

$ export DESTDIR=/usr/builds/evbarm-aarch64

For csh(1), the command is:

$ setenv DESTDIR /usr/builds/evbarm-aarch64

Simple enough. When the build is run, the binaries and
 files will be sent to /usr/builds.

The NetBSD toolchain builds and links against shared libraries
 by default. Many users still prefer to be able to link
 statically. Sometimes a small system can be created without
 having shared libraries, which is a good example of doing a
 full static build. If a particular build machine will always
 need one environment variable set in a particular way, then it
 is easiest to simply add the changed setting to
 /etc/mk.conf.

To make sure a build box always builds statically, simply
 add the following line to
 /etc/mk.conf:

LDSTATIC=-static

33.7.3. Using build.sh options

Besides variables in environment and
 /etc/mk.conf, the build process can be
 influenced by a number of switches to the
 build.sh script itself, as we have
 already seen when forcing unprivileged (non-root) builds,
 selecting the target architecture or preventing deletion of
 old files before the build. All these options can be
 listed by running build.sh -h:

$ cd /home/nia/cvs/src
$ build.sh -h

Usage: build.sh [-EhnoPRrUuxy] [-a arch] [-B buildid] [-C cdextras]
 [-c compiler] [-D dest] [-j njob] [-M obj] [-m mach]
 [-N noisy] [-O obj] [-R release] [-S seed] [-T tools]
 [-V var=[value]] [-w wrapper] [-X x11src] [-Y extsrcsrc]
 [-Z var]
 operation [...]

 Build operations (all imply "obj" and "tools"):
 build Run "make build".
 distribution Run "make distribution" (includes DESTDIR/etc/ files).
 release Run "make release" (includes kernels & distrib media).

 Other operations:
 help Show this message and exit.
 makewrapper Create nbmake-${MACHINE} wrapper and nbmake.
 Always performed.
 cleandir Run "make cleandir". [Default unless -u is used]
 dtb Build devicetree blobs.
 obj Run "make obj". [Default unless -o is used]
 tools Build and install tools.
 install=idir Run "make installworld" to `idir' to install all sets
 except `etc'. Useful after "distribution" or "release"
 kernel=conf Build kernel with config file `conf'
 kernel.gdb=conf Build kernel (including netbsd.gdb) with config
 file `conf'
 releasekernel=conf Install kernel built by kernel=conf to RELEASEDIR.
 kernels Build all kernels
 installmodules=idir Run "make installmodules" to `idir' to install all
 kernel modules.
 modules Build kernel modules.
 rumptest Do a linktest for rump (for developers).
 sets Create binary sets in
 RELEASEDIR/RELEASEMACHINEDIR/binary/sets.
 DESTDIR should be populated beforehand.
 distsets Same as "distribution sets".
 sourcesets Create source sets in RELEASEDIR/source/sets.
 syspkgs Create syspkgs in
 RELEASEDIR/RELEASEMACHINEDIR/binary/syspkgs.
 iso-image Create CD-ROM image in RELEASEDIR/images.
 iso-image-source Create CD-ROM image with source in RELEASEDIR/images.
 live-image Create bootable live image in
 RELEASEDIR/RELEASEMACHINEDIR/installation/liveimage.
 install-image Create bootable installation image in
 RELEASEDIR/RELEASEMACHINEDIR/installation/installimage.
 disk-image=target Create bootable disk image in
 RELEASEDIR/RELEASEMACHINEDIR/binary/gzimg/target.img.gz.
 params Display various make(1) parameters.
 list-arch Display a list of valid MACHINE/MACHINE_ARCH values,
 and exit. The list may be narrowed by passing glob
 patterns or exact values in MACHINE or MACHINE_ARCH.

 Options:
 -a arch Set MACHINE_ARCH to arch. [Default: deduced from MACHINE]
 -B buildid Set BUILDID to buildid.
 -C cdextras Append cdextras to CDEXTRA variable for inclusion on CD-ROM.
 -c compiler Select compiler:
 clang
 gcc
 [Default: gcc]
 -D dest Set DESTDIR to dest. [Default: destdir.MACHINE]
 -E Set "expert" mode; disables various safety checks.
 Should not be used without expert knowledge of the build
 system.
 -h Print this help message.
 -j njob Run up to njob jobs in parallel; see make(1) -j.
 -M obj Set obj root directory to obj; sets MAKEOBJDIRPREFIX.
 Unsets MAKEOBJDIR.
 -m mach Set MACHINE to mach. Some mach values are actually
 aliases that set MACHINE/MACHINE_ARCH pairs.
 [Default: deduced from the host system if the host
 OS is NetBSD]
 -N noisy Set the noisyness (MAKEVERBOSE) level of the build:
 0 Minimal output ("quiet")
 1 Describe what is occurring
 2 Describe what is occurring and echo the actual
 command
 3 Ignore the effect of the "@" prefix in make commands
 4 Trace shell commands using the shell's -x flag
 [Default: 2]
 -n Show commands that would be executed, but do not execute them.
 -O obj Set obj root directory to obj; sets a MAKEOBJDIR pattern.
 Unsets MAKEOBJDIRPREFIX.
 -o Set MKOBJDIRS=no; do not create objdirs at start of build.
 -P Set MKREPRO and MKREPRO_TIMESTAMP to the latest source
 CVS timestamp for reproducible builds.
 -R release Set RELEASEDIR to release. [Default: releasedir]
 -r Remove contents of TOOLDIR and DESTDIR before building.
 -S seed Set BUILDSEED to seed. [Default: NetBSD-majorversion]
 -T tools Set TOOLDIR to tools. If unset, and TOOLDIR is not set in
 the environment, nbmake will be (re)built
 unconditionally.
 -U Set MKUNPRIVED=yes; build without requiring root privileges,
 install from an UNPRIVED build with proper file permissions.
 -u Set MKUPDATE=yes; do not run "make cleandir" first.
 Without this, everything is rebuilt, including the tools.
 -V var=[value] Set variable `var' to `value'.
 -w wrapper Create nbmake script as wrapper.
 [Default: ${TOOLDIR}/bin/nbmake-${MACHINE}]
 -X x11src Set X11SRCDIR to x11src. [Default: /usr/xsrc]
 -x Set MKX11=yes; build X11 from X11SRCDIR
 -Y extsrcsrc Set EXTSRCSRCDIR to extsrcsrc. [Default: /usr/extsrc]
 -y Set MKEXTSRC=yes; build extsrc from EXTSRCSRCDIR
 -Z var Unset ("zap") variable `var'.

As can be seen, a number of switches can be set to change the
 standard build behaviour. A number of them has already been
 introduced, others can be set as appropriate.

33.7.4. make(1) variables used during build

Several variables control the behaviour of NetBSD builds.
	Unless otherwise specified, these variables may be set in
	either the process environment or in the make(1)
	configuration file specified by MAKECONF.
	For a definitive list of these options, see
	BUILDING and
	share/mk/bsd.README files in the
	toplevel source directory.

	BUILDID

	Identifier for the build. The identifier will be appended to
	 object directory names, and can be consulted in the make(1)
	 configuration file in order to set additional build parameters,
	 such as compiler flags.

	DESTDIR

	
Directory to contain the built NetBSD system. If set, special
	 options are passed to the compilation tools to prevent their
	 default use of the host system's
	 /usr/include,
	 /usr/lib, and so forth. This pathname
	 should not end with a slash (/) character (For installation
	 into the system's root directory, set DESTDIR
	 to an empty string). The directory must reside on a filesystem
	 which supports long filenames and hard links.

Defaults to an empty string if USETOOLS is
	 “yes”; unset otherwise. Note:
	 build.sh will provide a default
	 (destdir.MACHINE in the top-level .OBJDIR)
	 unless run in “expert” mode.

	EXTERNAL_TOOLCHAIN

	
If defined by the user, points to the root of an
	 external toolchain (e.g.
	 /usr/local/gnu). This enables
	 the cross-build framework even when default toolchain
	 is not available (see TOOLCHAIN_MISSING
	 below).

Default: Unset

	MAKEVERBOSE

	
The verbosity of build messages. Supported values:

	0
	No descriptive messages are shown.

	1
	Descriptive messages are shown.

	2
	Descriptive messages are shown (prefixed with a
		 '#') and command output is not suppressed.

Default: 2

	MKCATPAGES

	
Can be set to “yes” or “no”. Indicates
	 whether preformatted plaintext manual pages will be created during
	 a build.

Default: “yes”

	MKDOC

	
Can be set to “yes” or “no”. Indicates
	 whether system documentation destined for
	 DESTDIR/usr/share/doc will
	 be installed during a build.

Default: “yes”

	MKHOSTOBJ

	
Can be set to “yes” or “no”. If set to
	 “yes”, then for programs intended to be run on the
	 compile host, the name, release and architecture of the host
	 operating system will be suffixed to the name of the object
	 directory created by “make obj”. This allows for
	 multiple host systems to compile NetBSD for a single target. If
	 set to “no”, then programs built to be run on the
	 compile host will use the same object directory names as programs
	 built to be run on the target.

Default: “no”

	MKINFO

	
Can be set to “yes” or “no”. Indicates
	 whether GNU info files, used for the documentation of most of the
	 compilation tools, will be created and installed during a build.
	

Default: “yes”

	MKLINT

	
Can be set to “yes” or “no”. Indicates
	 whether lint(1) will be run against portions of the NetBSD
	 source code during the build, and whether lint libraries will
	 be installed into
	 DESTDIR/usr/libdata/lint

Default: “yes”

	MKMAN

	
Can be set to “yes” or “no”. Indicates
	 whether manual pages will be installed during a build.

Default: “yes”

	MKNLS

	
Can be set to “yes” or “no”. Indicates
	 whether Native Language System locale zone files will be
	 compiled and installed during a build.

Default: “yes”

	MKOBJ

	
Can be set to “yes” or “no”. Indicates
	 whether object directories will be created when running
	 “make obj”. If set to “no”, then all
	 built files will be located inside the regular source tree.

Default: “yes”

	MKPIC

	
Can be set to “yes” or “no”. Indicates
	 whether shared objects and libraries will be created and
	 installed during a build. If set to “no”, the
	 entire build will be statically linked.

Default: Platform dependent. As of this writing, all
	 platforms except sh3 default to “yes”

	MKPICINSTALL

	
Can be set to “yes” or “no”. Indicates
	 whether the ar(1) format libraries
	 (lib*_pic.a), used to generate shared
	 libraries, are installed during a build.

Default: “yes”

	MKPROFILE

	
Can be set to “yes” or “no”. Indicates
	 whether profiled libraries (lib*_p.a)
	 will be built and installed during a build.

Default: “yes”; however, some platforms turn off
	 MKPROFILE by default at times due to toolchain
	 problems with profiled code.

	MKSHARE

	
Can be set to “yes” or “no”. Indicates
	 whether files destined to reside in
	 DESTDIR/usr/share will be
	 built and installed during a build. If set to “no”,
	 then all of MKCATPAGES,
	 MKDOC, MKINFO,
	 MKMAN and MKNLS will be set
	 to “no” unconditionally.

Default: “yes”

	MKTTINTERP

	
Can be set to “yes” or “no”. For X
	 builds, decides if the TrueType bytecode interpreter is
	 turned on. See
	 freetype.org for details.

Default: “no”

	MKUNPRIVED

	
Can be set to “yes” or “no”. Indicates
	 whether an unprivileged install will occur. The user, group,
	 permissions and file flags will not be set on the installed items;
	 instead the information will be appended to a file called
	 METALOG in DESTDIR. The
	 contents of METALOG are used during the
	 generation of the distribution tar files to ensure that the
	 appropriate file ownership is stored.

Default: “no”

	MKUPDATE

	
Can be set to “yes” or “no”. Indicates
	 whether all install operations intended to write to
	 DESTDIR will compare file timestamps before
	 installing, and skip the install phase if the destination files
	 are up-to-date. This also has implications on full builds (See
	 below).

Default: “no”

	MKLLVM

	
Can be set to “yes” or “no”. Indicates
	 whether Clang should be built and installed as the host compiler.

Default: “no”

	MKX11

	
Can be set to “yes” or “no”. Indicates
	 whether X11 is built from X11SRCDIR.

Default: “yes”

	TOOLDIR

	
Directory to hold the host tools, once built. This directory
	 should be unique to a given host system and NetBSD source tree.
	 (However, multiple targets may share the same
	 TOOLDIR; the target-dependent files have unique
	 names). If unset, a default based on the uname(1) information
	 of the host platform will be created in the
	 .OBJDIR of src.

Default: Unset.

	USETOOLS

	
Indicates whether the tools specified by
	 TOOLDIR should be used as part of a build in
	 progress. Must be set to “yes” if cross-compiling.

	yes
	Use the tools from TOOLDIR.
		

	no
	Do not use the tools from
		 TOOLNAME, but refuse to build native
		 compilation tool components that are version-specific for
		 that tool.

	never
	Do not use the tools from
		 TOOLNAME, even when building native
		 tool components. This is similar to the traditional NetBSD
		 build method, but does not verify that the compilation
		 tools in use are up-to-date enough in order to build the
		 tree successfully. This may cause build or runtime problems
		 when building the whole NetBSD source tree.

Default: “yes” if building all or part of a whole
	 NetBSD source tree (detected automatically); “no”
	 otherwise (to preserve traditional semantics of the
	 bsd.*.mk make(1) include files).

	X11SRCDIR

	
Directory containing the X11 source.

Default: “usr/xsrc”

The following variables only affect the top level
	Makefile and do not affect manually building
	subtrees of the NetBSD source code.

	INSTALLWORLDDIR

	
Location for the “make installworld” target to
	 install to.

Default: “/”

	MKOBJDIRS

	
Can be set to “yes” or “no”. Indicates
	 whether object directories will be created automatically (via a
	 “make obj” pass) at the start of a build.

Default: “no”

	MKUPDATE

	
Can be set to “yes” or “no”. If set,
	 then addition to the effects described for
	 MKUPDATE=yes above, this implies the effect of
	 NOCLEANDIR (i.e., “make cleandir”
	 is avoided).

Default: “no”

	NOCLEANDIR

	
If set, avoids the “make cleandir” phase of a full
	 build. This has the effect of allowing only changed files in a
	 source tree to recompiled. This can speed up builds when updating
	 only a few files in the tree.

Default: Unset

	NODISTRIBDIRS

	
If set, avoids the “make distrib-dirs” of a full
	 build. This skips running mtree(8) on
	 DESTDIR, useful on systems where building as an
	 unprivileged user, or where it is known that the system wide mtree
	 files have not changed.

Default: Unset

	NOINCLUDES

	
If set, avoids the “make includes” phase of a full
	 build. This has the effect of preventing make(1) from
	 thinking that some programs are out-of-date simply because system
	 include files have changed. However, this option should not be
	 trusted when updating the entire NetBSD source tree arbitrarily; it
	 is suggested to use MKUPDATE=yes in that case.

Default: Unset

	RELEASEDIR

	
If set, specifies the directory to which a release(7) layout
	 will be written at the end of a “make release”.

Default: Unset

	TOOLCHAIN_MISSING

	
Set to “yes” on platforms for which
	 there is no working in-tree toolchain, or if you
	 need/wish using native system toolchain (i.e. non-cross
	 tools available via your shell search path).

Default: depends on target platform; on platforms
		with in-tree toolchain is set to “no”.

Chapter 34. Compiling the kernel

There are several reasons you might want to compile a NetBSD
 kernel:

	you can install bug-fixes, security updates, or new
 functionality by rebuilding the kernel from updated
 sources.

	by removing unused device drivers and kernel sub-systems
 from your configuration, you can dramatically reduce kernel size
 and, therefore, memory usage and attack surface. Care must be taken
	when doing this, since it can result in an unusable system.
	Always back up old working kernels.

	you can access additional features by enabling kernel
 options or sub-systems, some of which are experimental or
 disabled by default.

	you can get a deeper knowledge of the system.

34.1. Requirements and procedure

To recompile the kernel you must have installed the compiler set
 (comp.tgz).

The basic steps to an updated or customised kernel then are:

	Install or update the kernel sources

	Create or modify the kernel configuration file

	Building the kernel from the configuration file, either
 manually or using build.sh

	Install the kernel

34.2. Installing the kernel sources

If you chose to use AnonCVS to fetch the entire source tree,
 be patient, the operation can last many minutes, because the
 repository contains thousands of files.

If you have a source tarball, you can extract it as root:

cd /
tar zxf /path/to/syssrc.tgz

Even if you used the tarball from the release, you may wish to
 use AnonCVS to update the sources with changes that have been
 applied since the release.
 This might be especially relevant if you are updating the kernel
 to include the fix for a specific bug, including a vulnerability
 described in a NetBSD Security Advisory.
 You might want to get the latest sources on the relevant release
 or critical updates branch for your version, or Security
 Advisories will usually contain information on the dates or
 revisions of the files containing the specific fixes concerned.
 See Section 32.4, “Fetching by CVS” for more details on the
 CVS commands used to update sources from these branches.

Once you have the sources available, you can create a custom
 kernel: this is not as difficult as you might think.
 In fact, a new kernel can be created in a few steps which will
 be described in the following sections.

34.3. Creating the kernel configuration file

Note

The directories described in this section are amd64
 specific. Users of other architectures must substitute the
 appropriate directories, see the subdirectories of
 src/sys/arch for a list.

The kernel configuration file defines the type, the number and
 the characteristics of the devices supported by the kernel as
 well as several kernel configuration options. For the amd64
 port, kernel configuration files are located in the
 /usr/src/sys/arch/amd64/conf directory.

Please note that the names of the kernel configuration files
 are historically in all uppercase, so they are easy to
 distinguish from other files in that directory:

$ cd /usr/src/sys/arch/amd64/conf/
$ ls
ALL INSTALL XEN3_DOM0 kern.ldscript.kaslr
CVS INSTALL_XEN3_DOMU XEN3_DOMU majors.amd64
GENERIC MODULAR files.amd64 std.amd64
GENERIC_KASLR Makefile.amd64 kern.ldscript std.xen
GENERIC_USERMODE NOCOMPAT kern.ldscript.Xen

The easiest way to create a new file is to copy an existing one
 and modify it. Usually the best choice on most platforms is the
 GENERIC configuration, as it contains most drivers and options.
 In the configuration file there are comments describing the
 options; a more detailed description is found in the
 options(4) man page. So, the usual procedure is:

$ cp GENERIC MYKERNEL
$ vi MYKERNEL

The modification of a kernel configuration file basically
 involves three operations:

	support for hardware devices is included/excluded in the kernel
 (for example, SCSI support can be removed if it is not needed.)

	support for kernel features is enabled/disabled (for example,
 enable NFS client support, enable Linux compatibility, ...)

	tuning kernel parameters.

Lines beginning with “#” are comments; lines are disabled by
 commenting them and enabled by removing the comment character.
 It is better to comment lines instead of deleting them; it is always
 possible uncomment them later.

The output of the dmesg(8) command can be used
 to determine which lines can be disabled.
 For each line of the type:

XXX at YYY

both XXX and
 YYY must be active in the kernel
 configuration file.
 You'll probably have to experiment a bit before achieving a minimal
 configuration but on a desktop system without SCSI and PCMCIA you can
 halve the kernel size.

You could also examine the options in the configuration file and
 disable the ones that you don't need.
 Each option has a short comment describing it, which is normally
 sufficient to understand what the option does.
 Many options have a longer and more detailed description in the
 options(4) man page.

34.4. Building the kernel manually

Based on your kernel configuration file, either one of the
 standard configurations or your customised configuration, a new
 kernel must be built.

These steps can either be performed manually, or using the
 build.sh command that was introduced
 in section Chapter 33, Crosscompiling NetBSD with build.sh.
 This section will give instructions on how to build a native
 kernel using manual steps, the following section Section 34.5, “Building the kernel using build.sh” describes how to use
 build.sh to do the same.

	Configure the kernel

	Generate dependencies

	Compile the kernel

34.4.1. Configuring the kernel manually

When you've finished modifying the kernel configuration file (which
 we'll call MYKERNEL), you should issue the
 following command:

$ config MYKERNEL

If MYKERNEL contains no errors, the
 config(1) program will create the necessary files for
 the compilation of the kernel, otherwise it will be necessary to correct
 the errors before running config(1) again.

Notes for cross-compiling

As the config(1) program used to create header files and Makefile
 for a kernel build is platform specific, it is necessary to use the
 nbconfig program that's part of a newly created
 toolchain (created for example with

/usr/src/build.sh -m sparc64 tools

).
 That aside, the procedure is just as like compiling a "native" NetBSD
 kernel. The command is for example:

% /usr/src/tooldir.NetBSD-9.0-amd64/bin/nbconfig MYKERNEL

This command has created a directory
 ../compile/MYKERNEL
 with a number of header files defining information about devices
 to compile into the kernel, a Makefile that is setup to build
 all the needed files for the kernel, and link them together.

34.4.2. Generating dependencies and recompiling manually

Dependencies generation and kernel compilation is performed by the
 following commands:

$ cd ../compile/MYKERNEL
$ make depend
$ make

It can happen that the compilation stops with errors; there can be
 a variety of reasons but the most common cause is an error in the
 configuration file which didn't get caught by config(1).
 Sometimes the failure is caused by a hardware problem (often faulty RAM
 chips): the compilation puts a higher stress on the system than most
 applications do.
 Another typical error is the following: option B, active, requires
 option A which is not active.
 A full compilation of the kernel can last from some minutes to several
 hours, depending on the hardware.

The result of a successful make command is the
 netbsd file in the compile directory, ready
 to be installed.

Notes for cross-compiling

For crosscompiling a sparc64 kernel, it is necessary to use the
 crosscompiler toolchain's nbmake-sparc64 shell
 wrapper, which calls make(1) with all the necessary settings for
 crosscompiling for a sparc64 platform:

% cd ../compile/MYKERNEL/
% /usr/src/tooldir.NetBSD-9.0-amd64/bin/nbmake-sparc64 depend
% /usr/src/tooldir.NetBSD-9.0-amd64/bin/nbmake-sparc64

This will churn away a bit, then spit out a kernel:

...
text data bss dec hex filename
5016899 163728 628752 5809379 58a4e3 netbsd
% ls -l netbsd
-rwxr-xr-x 1 feyrer 666 5874663 Dec 2 23:17 netbsd
% file netbsd
netbsd: ELF 64-bit MSB executable, SPARC V9, version 1 (SYSV), statically linked, not stripped

Now the kernel in the file netbsd can
 either be transferred to an UltraSPARC machine (via NFS, FTP,
 scp, etc.) and booted from a possible harddisk, or directly from
 the cross-development machine using NFS.

34.5. Building the kernel using build.sh

After creating and possibly editing the kernel config file, the
 manual steps of configuring the kernel, generating dependencies
 and recompiling can also be done using the
 src/build.sh script, all in one go:

$ cd /usr/src
$./build.sh kernel=MYKERNEL

This will perform the same steps as above, with one small
 difference: before compiling, all old object files will be
 removed, to start with a fresh build. This is usually overkill,
 and it's fine to keep the old file and only rebuild the ones
 whose dependencies have changed. To do this, add the
 -u option to build.sh:

$ cd /usr/src
$./build.sh -u kernel=MYKERNEL

At the end of its job, build.sh will print
 out the location where the new compiled kernel can be found. It
 can then be installed.

34.6. Installing the new kernel

Whichever method was used to produce the new kernel file, it
 must now be installed.
 The new kernel file should be copied to the root directory,
 after saving the previous version.

mv /netbsd /netbsd.old
mv netbsd /

Customization can considerably reduce the kernel's size.
 In the following example netbsd.old is the
 install kernel and netbsd is the new kernel.

-rwxr-xr-x 3 root wheel 3523098 Dec 10 00:13 /netbsd
-rwxr-xr-x 3 root wheel 7566271 Dec 10 00:13 /netbsd.old

The new kernel is activated after rebooting:

shutdown -r now

34.7. If something went wrong

When the computer is restarted it can happen that the new
 kernel doesn't work as expected or even doesn't boot at all.
 Don't worry: if this happens, just reboot with the previously
 saved kernel and remove the new one (it is better to reboot
 “single user”):

	Reboot the machine

	
Press the space bar at the boot prompt during the 5 seconds
	 countdown

boot:

	
Type

> boot netbsd.old -s

	
Now issue the following commands to restore the previous version
 of the kernel:

fsck /
mount /
mv netbsd.old netbsd
reboot

This will give you back the working system you started with,
 and you can revise your custom kernel config file to resolve the
 problem. In general, it's wise to start with a GENERIC kernel
 first, and then make gradual changes.

Chapter 35. Updating an existing system from sources

A common mechanism for upgrading a NetBSD system to a newer
 version is by rebuilding the system from sources and installing the
 results. This works both for stable releases such as
 NetBSD 10.1 and for NetBSD-current.
 In particular, if you are running a stable NetBSD release in a
 production environment, you are encouraged to perform this procedure
 regularly in order to incorporate any security fixes that have been
 applied to the branch since its release.

There are a variety of ways of achieving the goal of rebuilding
 NetBSD from source, and this chapter will guide you through the
 variety of options that are available. The chapter starts by showing
 first what the manual procedure looks like, and proceeds to describe
 some of automation tools that simplify the process.

Note

 Please remember to check
 src/UPDATING
 for the latest changes and special instructions that may be involved
 in upgrading the system.

35.1. Manual build and update procedure

Most of the following steps can be done as ordinary user.
 Only the installation of a new kernel and the userland will require
 root privileges.
 Although /usr is choosen as the working
 directory in the following examples, the procedure can also
 take place in a user's home directory. Ordinary users have normally not
 the permissions to make changes in /usr,
 but this can be changed by root.

Having up-to-date sources is a prerequisite for the following steps.
 Section 32.4, “Fetching by CVS” informs about
 the ways to retrieve or update the sources for a release, stable or current
 branch (using CVS).

 Please always refer to the output of build.sh -h
 and the files UPDATING and
 BUILDING for details - it's worth
 it, there are many options that can
 be set on the command line or in
 /etc/mk.conf

35.1.1. Building a new userland

The first step is to build the userland:

$ cd /usr/src
$./build.sh -O ../obj -T ../tools -U distribution

35.1.2. Building a new kernel

The next step will build the kernel:

$ cd /usr/src
$./build.sh -O ../obj -T ../tools -U kernel=<KERNEL>

On ports that support modules, if you use them, the next step
 will build them:

$./build.sh -O ../obj -T ../tools -U modules

35.1.3. Installing the kernel and userland

Installing the new kernel and modules if you need them,
 rebooting (to ensure that the new kernel works) and installing
 the new userland are the final steps of the updating
 procedure:

$ cd /usr/src
$ su
./build.sh -O ../obj -T ../tools -U installmodules=/
mv /netbsd /netbsd.old
mv /usr/obj/sys/arch/<ARCH>/compile/<KERNEL>/netbsd /
shutdown -r now
 ...
$ cd /usr/src
$ su
./build.sh -O ../obj -T ../tools -U install=/

If the new kernel netbsd does not boot
 successfully, you can fall back on booting the
 netbsd.old kernel.

Modules are installed in
 /stand/<ARCH>/<VERSION>/modules,
 where <VERSION> is the major and minor number of the release
 like 7.1 (but not the patch number like 7.1.2, except in
 development versions like 7.99.12).
 Thus, for example, installing modules for 10.1 will not overwrite
 the modules for 10.0 in case something goes wrong and you need to
 revert back to booting the older 10.0 kernel.

35.1.4. Updating the system configuration files

 Updating your system's configuration files is done in two steps. First,
 postinstall(8) is used to check and fix things that can be easily
 automated. Afterwards, etcupdate(8) is used to merge the remaining
 configuration file changes.

/usr/sbin/postinstall -s /usr/src check
/usr/sbin/postinstall -s /usr/src fix
/usr/sbin/etcupdate -s /usr/src

 Optionally reboot to ensure all running services are using the new binaries:

shutdown -r now

	
From the root of the source tree:

$ cd /usr/src

	
Build the userland:

$./build.sh -O ../obj -T ../tools -U -u distribution

	
Build the kernel, and modules if appropriate:

$./build.sh -O ../obj -T ../tools -U -u kernel=GENERIC modules

	
Install the kernel:

$ cd ../obj/sys/arch/<ARCH>/compile/GENERIC
$ su
mv /netbsd /netbsd.old
cp netbsd /netbsd

	
Reboot into the new kernel:

shutdown -r now

	
Install the new userland:

$ cd /usr/src
$ su
./build.sh -O ../obj -T ../tools -U install=/

	
Update the system and configuration files;:

/usr/sbin/etcupdate -s /usr/src

Note

 In the procedure above, the -u option indicates an update process,
 and that a make clean operation should not be run before starting the build. This is
 useful when doing an update from a previous build and/or a fresh build. The
 -U option allows the entire build by a non-root user
 followed with an install by root.

 It is also possible to use sysinst to install a freshly
 built system. The steps are as follows:

	
Build a complete release:

$./build.sh -O ../obj -T ../tools -U -u -x release

	The resulting install sets will be in the
 /usr/obj/releasedir/ directory.

	Copy the install kernel to the root directory of your NetBSD system,
 reboot from it, and upgrade with sysinst
 (see Chapter 4, Upgrading NetBSD).

35.3. Using sysbuild and sysupgrade

The sysbuild and
 sysupgrade tools (currently available in
 pkgsrc/sysutils/sysbuild and
 pkgsrc/sysutils/sysupgrade respectively) automate
 the full process of rebuilding NetBSD from sources
 (including the retrieval of the sources from a CVS
 repository) and installing the results with minimal
 effort.

Both of these tools have configuration files to determine how to
 build a release and how to install it. Among other things, these
 specify the CVS repository to use, what architecture to build for,
 where to place the build files and what steps to perform during an
 upgrade. The files can be found in
 /usr/pkg/etc/sysbuild/default.conf and
 /usr/pkg/etc/sysupgrade.conf. The default
 configuration of both tools should let you get started with minimal
 effort.

In their simplest form, you can do a full NetBSD build and
 upgrade your system to it by running these commands:

sysbuild build
sysupgrade auto ~/sysbuild/release/$(uname -m)

And that's all that it takes. These invocations will do the
 following:

	Download the source trees from CVS into
 /usr/src and /usr/xsrc.
 The latter is only fetched if your system has X11. And, if you
 already have the sources in your system, this will only update
 them to the newest version.

	Build a new release into
 ~/sysbuild/<machine>/. This
 per-machine directory will include subdirectories like
 obj, destdir, etc. The
 build results will be left in
 ~/sysbuild/release/<machine>/.

	Install a new kernel and unpack the new sets using the
 just-built release files.

	Run both etcupdate and
 postinstall to aid you in merging new
 configuration changes into your system.

For more details, please see the included sysbuild(1) and
 sysupgrade(8) manual pages, as well as the comments in the referenced
 configuration files.

35.3.1. Tweak: Building as non-root

The commands above depict the most basic and simple invocation
 of the tools using the default configuration
 files. One drawback is that you require root access
 during the build of the source tree so that
 sysbuild can upgrade the source trees
 under /usr/src and
 /usr/xsrc. It is recommended that you avoid
 building as root once you are familiar with the procedure, and this
 section show what is needed to do so with
 sysbuild.

In order to build as non-root, you can either choose to store
 your source trees out of /usr (easiest) or give
 permissions to your user to modify the trees under
 /usr (good if you want to share the source tree
 with more than one user).

If you want to store the source trees under your home
 directory, which is convenient for development purposes, simply edit
 /usr/pkg/etc/sysbuild.conf and add these
 settings:

SRCDIR="${HOME}/sysbuild/src"
[! -f /etc/mtree/set.xbase] || XSRCDIR="${HOME}/sysbuild/xsrc"

Once this is done, the "sysbuild build" invocation show above
 should just work under your unprivileged user. The upgrade
 procedure then becomes:

$ sysbuild build
... become root ...
sysupgrade auto ~/sysbuild/release/$(uname -m)

The other alternative, in case you want to maintain your
 source trees in the locations described by hier(7), is to do
 the following as root:

mkdir -p /usr/src /usr/xsrc
chown -R <your-user>:wsrc /usr/src /usr/xsrc
... and optionally add <your-user> to wsrc in /etc/group ...

After this, the default configuration file of
 sysbuild will let you place the files in
 these locations and let you do unprivileged builds.

35.3.2. Tweak: Setting up nightly builds

The pkgsrc/sysutils/sysbuild-user package
 can be used to configure and maintain an unprivileged system user to
 perform periodic (e.g. nightly) builds from source. This can come
 in very handy to closely track NetBSD-current.

The installed user is appropriately named sysbuild, and is
 configured by default to run a full system build overnight. The
 results are left in
 /home/sysbuild/release/<machine>/, which
 is the convenient default of sysupgrade's
 release directory. Any build failures will be reported to you by
 email.

The behavior of sysbuild for this
 unprivileged user is configured in
 /home/sysbuild/default.conf.

You can interact with sysbuild
 under this unprivileged user by running commands of the form:

su - sysbuild /usr/pkg/bin/sysbuild ...

35.4. More details about the updating of configuration and startup files

etcupdate is a script to help users compare,
 merge and install new configuration and startup files (files found in the etc.tgz
 distribution set) in /dev, /etc and /root after performing an operating
 system upgrade. The upgrade of the operating system could have
 been performed either by compiling sources or by extracting
 the distribution binaries.

35.4.1. Using etcupdate with source files

 In case where the sources are in /usr/src the following command should be
 enough:

etcupdate

 But what if your NetBSD sources are in an alternative location, such as
 in /home/jdoe/netbsd/src? Don't worry, tell
 etcupdate the location of your source tree with -s srcdir and it will work
 just fine:

etcupdate -s /home/jdoe/netbsd/src

35.4.2. Using etcupdate with binary distribution sets

 Sometimes it's not convenient to have the sources around but you still
 want to update the configuration and startup files.
 The solution is to feed etc.tgz (or xetc.tgz) to etcupdate via
 the -s tgzfile switch.

etcupdate -s /some/where/etc.tgz

35.4.3. Using etcmanage instead of etcupdate

The etcmanage perl script (available from
 pkgsrc/sysutils/etcmanage
 or as binary package) is an alternative to etcupdate.
 It should be used in the following way, in combination with postinstall(8):

/usr/pkg/bin/etcmanage
/usr/sbin/postinstall

Chapter 36. Building NetBSD installation media

36.1. Creating standard installation images with build.sh

For some architectures, you can build a disk or ISO image
 that boots into an installer.
 This is accomplished by running ./build.sh
 with the targets install-image (for an USB stick) or
 iso-image (for a DVD or CD):

$./build.sh -U -u -j2 -m amd64 -O ~/obj tools
$./build.sh -U -u -j2 -m amd64 -O ~/obj release
$./build.sh -U -u -j2 -m amd64 -O ~/obj install-image

Many other ./build.sh targets are available, see
 Chapter 33, Crosscompiling NetBSD with build.sh.

36.2. Creating custom live disk images

Sometimes you may want to create your own customized
 pre-installed ("live") images instead of using the precompiled
 images, for e.g. mass deployment on embedded systems.
 This section outlines the steps to do so.

	You must build a release of NetBSD so there are binaries
 to fill the image.
 See Chapter 33, Crosscompiling NetBSD with build.sh for instructions.

	You must write or pick a sh(1) script from
 src/distrib/utils/embedded/conf.
 Examine the default configurations, and if necessary,
 customize one to your needs.
 The scripts can alter and add to the system configuration files.

	
Run the utility:

$ export MKDTB=no
$./distrib/utils/embedded/mkimage -D obj/destdir.amd64 -K sys/arch/amd64/compile/obj/GENERIC/netbsd -h amd64 -x ./example-amd64-image.img

	In this case, we are building an image for the
 amd64.conf configuration,
 so we specify -h amd64.

	We want to include the X11 sets, so we
 specify -x.

	We need to specify the device type of the root
 filesystem with e.g. -r sd.
 Typically, this is ld(4) for SD/MMC devices, and
 sd(4) for USB sticks.

	We specify MKDTB=no in the environment to avoid
 building device tree blobs, which are only used on ARM and
 MIPS.

	
Make any final additions to the image.
 This can include installing packages with pkg_add(1), etc.
 We mount the image as a virtual disk using vndconfig(8):

vndconfig vnd0 ./example-amd64-image.img
mount /dev/vnd0a /mnt
pkg_add -P /mnt -K /usr/pkg/pkgdb -v darkstat-3.0.719.tgz
umount /mnt

	
Write the image to your live media:

dd if=example-amd64-image.img ibs=1m | progress dd of=/dev/rsd0 obs=1m

A.1. Where to get this document

This document is currently available in the following
 formats:

	HTML

	PDF

	gzip'd PostScript

In addition, this guide is also sold on occasion in printed form at
 tradeshows and exhibitions, with all profits being donated to the NetBSD
 Foundation.
 On demand printing may at some point be available as well.
 If you are interested in obtaining a printed and bound copy of this
 document, please contact <www@NetBSD.org>.

This guide was born as a collection of sparse notes that
 Federico Lupi, the original author of the NetBSD Guide, wrote
 mostly for himself. When he realized that they could be useful
 to other NetBSD users he started collecting them and created the
 first version of the guide using the
 groff formatter. In order to
 “easily” get a wider variety of output formats
 (e.g. HTML and PostScript/PDF), he made the
 “mistake” of moving to SGML/DocBook, which is the
 current format of the sources. Maintainership was picked up by
 the NetBSD project and its developers later, and the format was
 changed to XML/DocBook later due to better tools and slightly
 more knowhow on customisations.

The following open source tools were used to write and format
 the guide:

	the vi editor which ships with
	 NetBSD (nvi).

	the libxslt parser from GNOME for
	 transforming XML/DocBook into HTML.

	the TeX system from the NetBSD
	 packages collection.
	 TeX is used as a backend to produce the PS and PDF
	 formats.

	the tgif program for drawing
	 the figures.

	the gimp and
	 xv programs for converting
	 between image formats and making small modifications to
	 the figures.

Many thanks to all the people involved in the development of
 these great tools.

There is an interest for both introductory and advanced
 documentation on NetBSD:
 this is probably a sign of the increased popularity of this
 operating system and of a growing user base.
 It is therefore important to keep adding new material to this guide
 and improving the existing text.

Whatever your level of expertise with NetBSD, you can contribute
 to the development of this guide. This appendix explains how, and
 what you should know before you start.

If you are a beginner and you found this guide helpful,
 please send your comments and suggestions to <www@NetBSD.org>.
 For example, if you tried something described here and it didn't
 work for you, or if you think that something is not clearly explained, or
 if you have an idea for a new chapter, etc: this type of feedback
 is very useful.

If you are an intermediate or advanced user, please
 consider contributing new material to the guide: you could write
 a new chapter or improve an existing one.

Whatever you choose to do, don't start working before having
 contacted us, in order to avoid duplicating efforts.

B.1. Sending contributions

The sources for the NetBSD guide can be found in CVS under
 htdocs/docs/guide.

If you want to contribute some material to the guide you have
 several options, depending on the amount of text you want to
 write.
 If you just want to send a small fix, the easiest way to get
 it into the guide is to send it as a diff to the existing sources
 to <www@NetBSD.org> via e-mail, although you should
 feel free to send any small changes or suggestions there as well.

 If you plan to write a substantial amount of text, such as a
 section or a chapter, you can choose among many formats:

	XML/DocBook; this is the preferred format.
 If you choose to use this format, please get the guide
 sources and use them as a template for the indentation
 and text layout, in order to keep the formatting
 consistent.

	text; if the formatting is kept simple, it is not
 difficult to convert text to XML format.

	other formats are also accepted if you really can't use
 any of the previous ones.

B.2. XML/DocBook template

For the guide I use a formatting style similar to a program.
 The following is a template:

<chapter id="chap-xxxxx">
 <title>This is the title of the chapter</title>

 <para>
 This is the text of a paragraph. This is the text of a paragraph.
 This is the text of a paragraph. This is the text of a paragraph.
 This is the text of a paragraph.
 </para>

 <!-- === -->

 <sect1>
 <title>This is the title of a sect1</title>

 <para>
 This is the text of a paragraph. This is the text of a paragraph.
 This is the text of a paragraph. This is the text of a paragraph.
 This is the text of a paragraph.
 </para>

 <!-- ... -->

 <sect2>
 <title>This is the title of a sect2</title>

 <para>
	A sect2 is nested inside a sect1.
 </para>
 </sect2>

 </sect1>

 <!-- === -->

 <sect1>
 <title>This is the title of another sect1</title>

 <para>
 An itemized list:
 <itemizedlist>
	<listitem>
	 <para>
	 text
	 </para>
	</listitem>
	<listitem>
	 <para>
	 text
	 </para>
	</listitem>
 </itemizedlist>
 </para>

 </sect1>
</chapter>

The defaults are:

	two spaces for each level of indentation

	lines not longer than 72 characters.

	use separator lines (comments) between sect1/sect2.

This appendix describes the installation of the tools needed to
 produce a formatted version of the NetBSD guide. Besides that
 it contains instructions that describe how to build the guide.

XML (eXtensible Markup Language)
 is a language which is used to define other languages based on
 markups, i.e. with XML you can define the grammar (i.e. the
 valid constructs) of markup languages.
 HTML, for example, can be defined using
 XML. If you are a programmer, think of XML like the
 BNF (Backus-Naur Form): a tool used to
 define grammars.

DocBook is a markup template defined using XML; DocBook
 lists the valid tags that can be used in a DocBook document
 and how they can be combined together.
 If you are a programmer, think of DocBook as the grammar of a
 language specified with the BNF.
 For example, it says that the tags:

<para> ... </para>

define a paragraph, and that a <para> can be inside a
 <sect1> but that a <sect1> cannot be inside a
 <para>.

Therefore, when you write a document, you write a document in
 DocBook and not in XML: in this respect DocBook is the
 counterpart of HTML (although the markup is richer and a few
 concepts are different).

The DocBook specification (i.e. the list of tags and rules)
 is called a DTD (Document Type
 Definition).

In short, a DTD defines how your source documents look like
 but it gives no indication about the format of your final
 (compiled) documents.
 A further step is required: the DocBook sources must be
 converted to some other representation like, for example,
 HTML or PDF.
 This step is performed by a tool like Jade,
 which applies the DSSSL transforms to the source document.
 DSSSL (Document Style Semantics and
 Specification Language) is a format used to define the
 stylesheets necessary to perform the
 conversion from DocBook to other formats. The build structure
 for the guide also supports the XSL
 (Extensible Stylesheet Language) stylesheet language.
 The xsltproc program is used for
 transforming XML with XSL stylesheets.

C.2. Installing the necessary tools

All the tools that are needed to generate the guide in various
 formats can be installed through the netbsd-www,
 netbsd-doc,
 and netbsd-doc-print meta-packages. Together
 the netbsd-doc and netbsd-www
 packages install everything that is
 needed to generate the HTML version of the guide. To be able
 to generate printable formats, such as Postscript and PDF,
 install the netbsd-doc-print meta-package.

Supposing that a current pkgsrc tree is installed at
 /usr/pkgsrc, you can install all these
 meta-packages with:

$ cd /usr/pkgsrc/meta-pkgs/netbsd-www
$ make install
$ cd /usr/pkgsrc/meta-pkgs/netbsd-doc
$ make install
$ cd /usr/pkgsrc/meta-pkgs/netbsd-doc-print
$ make install

This section provides an overview of how the guide can be
 compiled from XML to any of the following target formats:
 html, html-split,
 ascii, ps, and
 pdf. Creating all formats is
 the default. To produce any of the above output formats, run
 make with the format(s) as argument.

Let's look at a few examples.

Before looking at the output generated in any of the
 above-mentioned formats, integrity of the XML structure has to
 be ensured. This can be done by running make
 lint:

$ cd htdocs/docs/guide/en
$ make lint

Fix any errors you may get. When working on the contents of the
 guide, you may want to produce the HTML version to have a look
 at it for proofreading:

$ cd htdocs/docs/guide/en
$ make html-split

After this, please update the Postscript and PDF
 versions of the guide too. The command for this is:

$ cd htdocs/docs/guide/en
$ make pdf

Before you commit the generated files, please make sure
 that you commit the XML files first, then re-generate all
 formats, i.e. the procedure would be something like:

$ cd htdocs/docs/guide/en
$ cvs commit *.xml
$
$ make lint
$ make
$ make install-doc
$
$ cd ..
$ cvs commit en download

When running make with no argument, all
 formats will be re-generated. This is the default way to build
 the guide for the NetBSD.org website.

The NetBSD Guide was originally written by Federico Lupi who managed
 the sources, coordinated updates, and merged all contributions on
 his own. Since then, it has been updated and maintained by the NetBSD
 www team. The Guide has progressed thanks to the contributions of many
 people who have volunteered their time and effort, supplied material
 and sent in suggestions and corrections.

D.1. Original acknowledgements

Federico's original credits are:

	Paulo Aukar

	Grant Beattie, converted to XML DocBook.

	Manolo De Santis, Audio Chapter

	Eric Delcamp, Boot Floppies

	Hubert Feyrer, who contributed the Introduction to TCP/IP
 	Networking in Chapter 23, Introduction to TCP/IP Networking including Next
 	generation Internet protocol - IPv6 and the section on
 	getting IPv6 Connectivity & Transition via 6to4
 	He also helped with the SGML to XML transition.

	Jason R. Fink

	Daniel de Kok, audio and linux chapters fixes.

	Reinoud Koornstra, CVS chapter and rebuilding
	 /dev in the Misc chapter.

	Brian A. Seklecki <lavalamp@burghcom.com> who
 contributed the CCD Chapter.

	Guillain Seuillot

	Martti Kuparinen, RAIDframe documentation.

	David Magda

D.2. Current acknowledgements

This document is currently maintained by the NetBSD www team.
 Thanks to their efforts, the document is kept up to date
 and available online at all times.
 In addition, special thanks go to (in alphabetical order):

	Hubert Feyrer, for getting the guide up to speed for
	 NetBSD 2.0, and for making numerous improvements to all
	 chapters.

	Jason R. Fink, for maintaining this document and integrating
	 changes.

	Joel Knight for the
	 Chapter 28, Introduction to the Common Address Redundancy Protocol (CARP).
	 See Section D.3.3, “Joel Knight's license on the CARP article” for the
	 accompanying license.

	Daniel de Kok, for constant contributions of new chapters,
	 maintenance of existing chapters and his translation work.

	Hiroki Sato, for allowing us to build PDF and PS versions of
	 this document.

	Jan Schaumann, for maintenance work and www/htdocs
	 management.

	Lubomir Sedlacik, for some details on using CGD for
 swap in Section 14.6, “Suggestions and Warnings”.

	
	 Dag-Erling Smørgrav, for the article on
	 Chapter 18, Pluggable Authentication Modules (PAM).
	 See Section D.3.2, “Networks Associates Technology's license on the PAM article” for the
	 accompanying license.
	

	Florian Stöhr, for Section 14.4, “Example: encrypted CDs/DVDs”.

D.3.1. Federico Lupi's original license of this guide

Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:

	Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

	All advertising materials mentioning features or use of this software
 must display the following acknowledgement:
 This product includes software developed by Federico Lupi for
 the NetBSD Project.

	The name of the author may not be used to endorse or promote products
 derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND
 ANY EXPRESS OR
 IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

D.3.2. Networks Associates Technology's license on the PAM article

Copyright (c) 2001-2003 Networks Associates Technology, Inc.

All rights reserved.

This software was developed for the FreeBSD Project by ThinkSec AS and

Network Associates Laboratories, the Security Research Division of

Network Associates, Inc. under DARPA/SPAWAR contract N66001-01-C-8035

("CBOSS"), as part of the DARPA CHATS research program.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

 notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

 notice, this list of conditions and the following disclaimer in the

 documentation and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote

 products derived from this software without specific prior written

 permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

D.3.3. Joel Knight's license on the CARP article

Copyright (c) 2005 Joel Knight <enabled@myrealbox.com>

Permission to use, copy, modify, and distribute this documentation for

any purpose with or without fee is hereby granted, provided that the

above copyright notice and this permission notice appear in all copies.

THE DOCUMENTATION IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL

WARRANTIES WITH REGARD TO THIS DOCUMENTATION INCLUDING ALL IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE

AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL

DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR

PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER

TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR

PERFORMANCE OF THIS DOCUMENTATION

Table of Contents

	Bibliography

[AeleenFrisch] Aeleen Frisch. Copyright © 1991. O'Reilly & Associates. Essential System Administration.

[CraigHunt] Craig Hunt. Copyright © 1993. O'Reilly & Associates. TCP/IP Network Administration.

[RFC1034] P. V. Mockapetris. Copyright © 1987. RFC 1034: Domain names - concepts and facilities.

[RFC1035] P. V. Mockapetris. Copyright © 1987. RFC 1035: Domain names - implementation and specification.

[RFC1055] J. L. Romkey. Copyright © 1988. RFC 1055: Nonstandard for transmission of IP datagrams
 over serial lines: SLIP.

[RFC1331] W. Simpson. Copyright © 1992. RFC 1331: The Point-to-Point Protocol (PPP) for the
 Transmission of Multi-protocol Datagrams over Point-to-Point
 Links.

[RFC1332] G. McGregor. Copyright © 1992. RFC 1332: The PPP Internet Protocol Control Protocol
 (IPCP).

[RFC1933] R. Gilligan and E. Nordmark. Copyright © 1996. RFC 1933: Transition Mechanisms for IPv6 Hosts and Routers.

[RFC2004] C. Perkins. Copyright © 1996. RFC 2003: IP Encapsulation within IP.

[RFC2401] S. Kent and R. Atkinson. Copyright © 1998. RFC 2401: Security Architecture for the Internet Protocol.

[RFC2411] R. Thayer, N. Doraswamy, and R. Glenn. Copyright © 1998. RFC 2411: IP Security Document Roadmap.

[RFC2461] T. Narten, E. Nordmark, and W. Simpson. Copyright © 1998. RFC 2461: Neighbor Discovery for IP Version 6 (IPv6).

[RFC2529] B. Carpenter and C. Jung. Copyright © 1999. RFC 2529: Transmission of IPv6 over IPv4 Domains without Explicit
	 Tunnels.

[RFC3024] G. Montenegro. Copyright © 2001. RFC 3024: Reverse Tunneling for Mobile IP.

[RFC3027] M. Holdrege and P. Srisuresh. Copyright © 2001. RFC 3027: Protocol Complications with the IP Network Address
	 Translator.

[RFC3056] B. Carpenter and K. Moore. Copyright © 2001. RFC 3056: Connection of IPv6 Domains via IPv4 Clouds.

	OEBPS/bf99443ede9b4218ecd461c26680db8f444fe39f/ipv6-en-4scope.gif
node

~<— 200MBps

OEBPS/1dee84a0fd76fc697ab7ffb7d7e31e37dbb7ec39/mail1.gif
POP server SHTP server |

L, - —

ore Link
-——— - = LY
|
fetchmail
|
‘ sendmail

| mailbox: /var/mail spool: /var/spool/mqueue

o

OEBPS/1eda36062083e887fbb99ae1533eea83ae3be2d3/ipv6-en-0bits.gif
n netbits

128-n hostbits

OEBPS/5150e09d1e00e9da6d6aed64edf39694eefd5801/ipv6-en-6adrformats.gif
P | 16kit | sbit [

N T T G

| Provider-assigned network-bits

Self-assigned subnet—bits

Host-bits

OEBPS/6106406eb7db34bb18b016beb78eceab79c83617/inst-mount-partition.png
Enter the unmounted local device and directory on that device where the
distribution is located.
Remember, the directory should contain the .tgz files.

o Device ___________udo]
File system fs
Base directory release
4: Bimary set directory /amd64/binary/sets
Source set directory /source/sets
Exit

x: Continue

device [wd®1: sdOe]

OEBPS/e7a61928e52f3b7435c5ae1823407e8c2cff4d60/inst-mount-msdos.png
Enter the unmounted local device and directory on that device where the
distribution is located.
Remember, the directory should contain the .tgz files.

a: Device sdoe
File system msdos.
Base directory

d: Binary set directory ssets
Source set directory
Exit

b Cont inuel

OEBPS/d64a19bad7efcbf8b424f4a52e8dc36f0ce62b51/inst-medium.png
Your disk is now ready for installing the kernel and the distribution sets.
As noted in your INSTALL notes, you have several options. For ftp or nfs,
you must be conmected to a network with access to the proper machines.

Sets selected 4, processed 0, Next set kern-GENERIC.

Install from

CD-ROM /-
[0

FTP

NFS
Floppy
Unmounted fs

Local directory

Skip set

: Skip set group
Abandon installation

/install image media

Comz@ w0 a0 o

OEBPS/4013389a0d1223a7900ba28ab56afb79aeb68c23/inst-mount.png
Enter the unmounted local device and directory on that device where the
distribution is located.
Remember, the directory should contain the .tgz files.

a: Device ___________udo]
File system fs
Base directory release
4: Bimary set directory /amd64/binary/sets
Source set directory /source/sets
Exit

x: Continue

OEBPS/4df116db9ac299e46a2336f4ba2bf7639ce92a53/inst-ftp-autoconf.png
To be able to use the metwork, we need answers to the following:

Netuork media tuype [autoselectl:

Perform autoconf iguration?

b: No

OEBPS/ecf0af76b0db4bece864826ae571a4818b0a0e6f/inst-ftp-confirm.png
The following are the values you entered.

DNS Domai
Host Name
Nameserver :

Primary Interface:

Media tupe:
Host IP:
Netmask:
IPu4 Gateway:
IPU6 autocont :

my.domain
localhost
192.168.1.1
wn@
autoselect
192.168.1.39
255.255.255.0
192.168.1.1

Are they OK?

OEBPS/98adf47dd5e6f7789632ec0c7885f4a2c20309d6/inst-ftp-src.png
The following are the ftp site, directory, user, and password that will be
used. If “user” is "ftp”, then the password is not needed

Host £tp.NetBSD.org
Base directory pub/NetBSD,/NetBSD-8.0
Binary set directory /amd64/binary/sets
Source set directory /source/sets
User rtp
Passuord
Proxy
Transfer directory /usr/INSTALL
Delete after install No

2j: Configure netuork]

Exit

x: Get Distribution

OEBPS/888040aec1707fbbada082109db85841513316b9/inst-ftp-if.png
Which network device would

you like to use?

Available interfaces

OEBPS/d4d2bae60fa5981d15b575da172bb6642ad4268d/inst-nfs.png
Enter the nfs host and server directory where the distribution is located.
Remember, the directory should contain the .tgz files and must be nfs
mountable.

Base directory /bsd/release
Binary set directory ssets

a: Source set directory
Conf igure network
Exit

x: Get Distribution

OEBPS/19f369084b1b14995e6ae1a6e745cb122dc026b7/inst-nfs-example.png
Enter the nfs host and server directory where the distribution is located.
Remember, the directory should contain the .tgz files and must be nfs
mountable.

a: Host 192.168.1.560
Base directory /home /usernane/Dounloads
Binary set directory sets

a: Source set directory
Conf igure network
Exit

: Get Distribution|

OEBPS/ac84a09f2268cd108e1d4fb911c715f625e41b8b/inst-extraction-complete.png
The extraction of the selected sets for NetBSD-8.0 is complete. The system
is now able to boot from the selected hard disk.

To complete the
installation, sysinst will give you the opportunity to configure some
essential things first.

it enter to continuel

OEBPS/75f1ea6c1e79ca6895726c60aee1140d18b448b5/inst-disk-geometry.png
This disk matches the following BIOS disk:

BIOS # cylinders heads sectors total sectors GB

83886080 42

Note: since sysinst was able to uniguely match the disk you chose with a disk
known to the BIOS, the values displayed above are very likely correct, and
should not be changed (the values for cylinders, heads and sectors are
probably 1023, 255 and 63 - this is correct).

You should only change the geometry if you know the BIOS reports incorrect
values.

This is the correct geometr:

b: Set the geometry by hand

OEBPS/be5b89c5614c797370cc0c4079251cf6f019be14/inst-shell.png
Configure the additional items as needed.

Root shell

/bin/sh

/bin/ksh
c: sbinsesh

OEBPS/f05baf401483e30cff767fd76eb847db5ad32e05/inst-mbr.png
We are now going to install NetBSD on the disk wd®

NetBSD requires a single partition in the disk’s MBR partition table, this is
split further by the NetBSD disklabel. NetBSD can also access file systems
in other MBR partitions.

If you select ’Use the entire disk’ then the previous contents of the disk
will be overuritten and a single MBR partition used to cover the entire disk.
If you want to install more than one operating system then edit the MBR
partition table and create a partition for NetBSD.

A few hundred MB is enough for a basic installation, but you should allow
extra for additional softuare and user files.
Allow at least 56B if you want to build NetBSD itself.

Which would you like to do?

Edit the MBR partition table

OEBPS/354a87e579b4fd8e318d79c3cd0f2017801d4cd9/inst-passwd.png
The root password of the newly installed system has not yet been initialized,
and is thus empty. Do you want to set a root passuord for the system now?

yes or no?

b: No

OEBPS/b6c2d0aefe31f7da7ca0bac3468d827507583f29/inst-fdisk.png
The Current MBR partition table is shoun below
Flgs: a => Active partition, d => bootselect default, I => Install here.
Select the partition you wish to change:

Total disk size 46960 MB.

Start(MB) Size(MB) Flg Kind Bootmenu

unused
unused

unused

: Change input units (sectors/cylinders/MB)
: Partition table OK

OEBPS/7cae3f88a658e2cb3ef36870c17bc603118ee80f/inst-conf-menu.png
Configure the additional items as needed.

Conf igure network
Timezone

Root shell

Change root password

Enable installation of binary packages

: Fetch and unpack pkgsrc for building from source
: Enable sshd

Enable ntpd

Run ntpdate at boot

Enable mdnsd

Enable xdm

Enable cgd

Enable lum

: Enable raidframe

i Add a user

: Finished configuring

UTC
/bin/sh
sesexEMP Ty
install
install

NO

NO

NO

NO

NO

YES

NO

YES

OEBPS/5e2c68bc87fe6d2ac40bc3ef10d8ce65d52d672c/inst-fdisk-type.png
The Current MBR partition table is shoun below
Flgs: a => Active partition, d => bootselect default, I => Install here.
Select the partition you wish to change:

Total disk size 46960 MB.

Start(MB) type: unused
- start: 0 MB
oo size: 0 MB
g B end: © MB
e: active: No
: Change in| a: Don’t change
: Partition| b: Delete partition
Linders/MB)
4: Extended partition, LBA
e: FreeBSD/386BSD
£: OpenBSD
g: Linux native
h: Linux swap
i: DOS FAT1Z
Ji DOS FAT16, <32M
<: page up, >: page doun

OEBPS/21bd84f361305c66ec059429cbe62ad608249f64/inst-timezone.png
Please choose the timezone that fits you best from the list below
Press RETURN to select an entry.

Press ‘x’ followed by RETURN to quit the timezone selection.

Default: uTe
Selected: uTC
Local tim Sat Oct 6 ©9:32:54 2018 UTC

Africa/
Antarcticas
Arctic/
Asias
Atlantic/
Australias
Brazil/
CET
CST6CDT
Canada/
Chiles

<: page up, >: page down

OEBPS/7fc370acb8039b8deac15caaa07c1a0c8d86e7e8/inst-keyboard.png
NetBSD/amd64 8.0

This menu-driven tool is designed to help you install NetBSD to a hard disk,
or upgrade an existing NetBSD system, with a minimum of work.

In the following menus type the reference letter (a, b, c,

...) to select an

item, or type CTRL+N/CTRL+P to select the next/previous item.

The arrow keys and Page-up/Page-down may also work.

Activate the current selection from the menu by typing the enter key.

Keyboard type

unchanged|

US-English
UK-English
Belgian
Czech
Danish

: Dutch
Finnish
French
German
Greek

: page up, >:

page down

OEBPS/a271251ec2ca59135f4734e39484cec3af743162/inst-main.png
NetBSD/amd64 8.0

This menu-driven tool is designed to help you install NetBSD to a hard disk,
or upgrade an existing NetBSD system, with a minimum of work.

In the following menus type the reference letter (a, b, c, ...) to select an
item, or type CTRL+N/CTRL+P to select the next/previous item.

The arrow keys and Page-up/Page-down may also work.

Activate the current selection from the menu by typing the enter key.

Thank you for using NetBSD?

NetBSD-8.0 Install System

Install NetBSD to hard disk|

Upgrade NetBSD on a hard disk
Re-install sets or install additional sets
: Reboot the computer

: Utility menu

: Config menu

i Exit Install System

OEBPS/1019dbc73cc2af10181a10f755bcdd7424b8b0af/inst-confirm.png
You have chosen to install NetBSD on your hard disk. This will change
information on your hard disk. You should have made a full backup before
this procedure! This procedure will do the following things:

a) Partition your disk

b) Create new BSD file systems

©) Load and install distribution sets

@) Some initial system configuration

(After you enter the partition information but before your disk is changed,
you will have the opportunity to quit this procedure.)

Shall we continue?

yes or no?

No

OEBPS/a2711c1ac52060624182ad20de46fd8d86b5bcd6/inst-select-disk.png
On which disk do you want to install NetBSD?

Available disks

wd1l (206, UBOX HARDDISK)
Extended partitioning
¢ Exit

OEBPS/dbade8de0197c4dd91761700372e75659d99b11f/part.gif
BIOS partitions
(MER) Disklabel

1 - NetBSD

jofuos

s

© NetESD slice

d whole disk

OEBPS/f4b6f9f09e197bb1640c9fe7436807cc40d81176/inst-language.png
NetBSD/amd64 8.0

This menu-driven tool is designed to help you install NetBSD to a hard disk,
or upgrade an existing NetBSD system, with a minimum of work.

In the following menus type the reference letter (a, b, c, ...) to select an
item, or type CTRL+N/CTRL+P to select the next/previous item.

The arrow keys and Page-up/Page-down may also work.

Activate the current selection from the menu by typing the enter key.

3

Installation messages in English

Installation auf Deutsch
Mensa jes de instalacion en castellano
Messages d’ installation en fransais
Komunikaty instalacyjne w jezyku polskim

00

OEBPS/c85a64c53f5b9bf7afea3b1434aa71d2b78eb368/inst-bin-packages2.png
Enabling binary packages with pkgin requires setting up the repository. The
following are the host, directory, user, and password that will be used. If
“user” is "ftp”, then the password is not needed.

a: Host £tp.NetBSD.org
b: Base directory pub/pkgsrc/packages/NetBSD
c: Package directory /amd64/8.0/A11

a: User ftp

e: Password

Additional packages: bash treell

OEBPS/df83ea8ef0dabc6be46bf142c8d3d0722e49340e/inst-pkgsrc-source.png
Installing pkgsrc requires unpacking an archive retrieved over the network.
The following are the host, directory, user, and password that will be used.
If “user” is then the password is not needed.

a: Host ftp.NetBSD.org
pkgsre directory pub/pkgsrc/stable
User ftp

4: Password
Proxy

f£: Transfer directory /usr/INSTALL

g: Delete after install No

Quit without installing pkgsrc

x: Fetch and unpack pkgsrc]

OEBPS/f9b538bddb46c448d8785565c2a46f6c590579f3/inst-passwd2.png
Status
Command

Changing local password for root.
New passuord:
Retype new passuord:

OEBPS/8b80bc98553469b34cf6ecf4b688fd26a3f5f074/inst-bin-packages.png
Enabling binary packages with pkgin requires setting up the repository. The
following are the host, directory, user, and password that will be used. If
“user” is "ftp”, then the password is not needed.

: Host £tp.NetBSD.org
: Base directory pub/pkgsrc/packages/NetBSD
Package directory /amd64/8.0/A11

[rtp

Passuord

Pro:
2¢: hdditional packages]

h: Configure netuork

Quit installing binary pkgs

Install pkgin and update package summary

-0 a0 o

OEBPS/4b9d37ea7093f7e76e599c59b970569e7e14323f/inst-completed.png
The installation of NetBSD-8.0 is now complete. The system should boot from
hard disk. Follow the instructions in the INSTALL document about final
configuration of your system. We also recommend reading the afterboot(8)
manpage; it contains a list of things to be checked after the first complete
boot.

At a minimum, you should edit setc/rc.conf to match your meeds. See
setcsdefaults/re.conf for the default values.

it enter to continuel

OEBPS/2fb73ea59a60472eb71eccf227c3f88769ecec3b/inst-reboot.png
NetBSD/amd64 8.0

This menu-driven tool is designed to help you install NetBSD to a hard disk,
or upgrade an existing NetBSD system, with a minimum of work.

In the following menus type the reference letter (a, b, c,

...) to select an

item, or type CTRL+N/CTRL+P to select the next/previous item.

The arrow keys and Page-up/Page-down may also work.

Activate the current selection from the menu by typing the enter key.

Thank you for using NetBSD?

NetBSD-8.0 Install System

a: Install NetBSD to hard disk
b: Upgrade NetBSD on a hard disk

Utility menu
Config menu
x: Exit Install System

Re-install sets or install additional sets

OEBPS/2f294f5c2b59366fe44492fcb1ad76770aff8d7b/up-main.png
NetBSD/amd64 8.0

This menu-driven tool is designed to help you install NetBSD to a hard disk,
or upgrade an existing NetBSD system, with a minimum of work.

In the following menus type the reference letter (a, b, c, ...) to select an
item, or type CTRL+N/CTRL+P to select the next/previous item.

The arrow keys and Page-up/Page-down may also work.

Activate the current selection from the menu by typing the enter key.

Thank you for using NetBSD?

NetBSD-8.0 Install System

Install NetBSD to hard disk

Re-install sets or install additional sets
: Reboot the computer

5 st o

: Config menu

: Exit Install System

OEBPS/845e6f18a3c0bf7773fbfb83366c4320e09a728e/up-fsck.png
Statu: shed|
[FIEYSPEN sbin/fsck_fis —p
Hit enter to continue

/dev/rudoal

/dev/rudOa: DIR 1=64512 CONNECTED. PARENT WAS
/dev/rudOa: UNREF DIR 1-43068 OWNER-root MODE=40755
/dev/rudOa: SIZE=512 MTIME=Sep 19 ©0:49 2007 (RECONNECTED)
/dev/rudOa: DIR 1-43008 CONNECTED. PARENT WAS
/dev/rudOa: UNREF DIR 1-21564 OWNER=root MODE=40755

/dev/rudOa: SIZE=512 MTIME=Sep 19 ©0:49 2007 (RECONNECTED)

/dev/rudOa: DIR 1-21564 CONNECTED. PARENT WAS 1-2

/dev/rudOa: LINK COUNT DIR 1=z OWNER=root MODE=40755

/dev/rudOa: SIZE=512 MTIME=Sep 19 ©0:49 2007 COUNT 6 SHOULD BE 3 (ADJUSTED)
/dev/rudOa: UNREF FILE 1-=3 OWNER=root MODE=100444

/dev/rudOa: SIZE=55252 MTIME=Sep 19 00:49 2007 (RECONNECTED)

/dev/rudOa: FREE BLK COUNT(S) WRONG IN SUPERBLK (SALUAGED)

/dev/rudOa: SUMMARY INFORMATION BAD (SALUAGED)

/dev/rudOa: ? files, 33 used, 943102 free (30 frags, 117884 blocks, ©.0% fragmen
tation)

/dev/rudOa: MARKING FILE SYSTEM CLEAN

OEBPS/54e422b3b29f1eb8d502a3b232148e70f1c0f975/inst-bootblocks.png
Would you like to install the normal set of bootblocks or serial bootblocks?
Normal bootblocks use the BIOS console device as the console (usually the
monitor and keyboard). Serial bootblocks use the first serial port as the
console.

Selected bootblock: BIOS console

Bootblocks selection

a: Use BIOS console]

Use serial port comd
Use serial port coml
Use serial port com2
Use serial port com3
Set serial baud rate
Use existing bootblocks
Exit

OEBPS/c99e6f73e227c6639ddbdd571facf9cde2924111/up-confirm.png
0k, lets upgrade NetBSD on your hard disk. As aluays, this will change
information on your hard disk. You should have made a full backup before
this procedure! Do you really want to upgrade NetBSD? (This is your last
warning before this procedure starts modifying your disks.)

yes or no?

No

OEBPS/f597c6d0d380b14ed5fcb9a6a73a9341b55b9619/up-select-disc.png
On which disk do you want to upgrade NetBSD?

Available disks

wd® (406, QEMU HARDDISK)
Exit

OEBPS/099ad8854c8e969b9684b384466ed6a51a98185b/up-complete.png
The upgrade to NetBSD-8.0 is mow complete. You will now need to follow the
instructions in the INSTALL document as to what you meed to do to get your
system reconfigured for your situation. Remember to (re)read the
afterboot(8) manpage as it may contain new items since your last upgrade.

it enter to continuel

OEBPS/566c744fcc5ba5f0dea0c66f7866aabf1ac7cac1/rf-raidL1-diskdia.png
RAID-1 Pseudo Volume
/dev/{,r}raid[0-9]{c,d}

MIRROR

Component 0 Component T
/deviwdoa /deviwd1a

OEBPS/43071a46a56a8bd41a3ea89d61b0071c50751bd3/inst-install-type.png
The NetBSD distribution is broken into a collection of distribution sets.
There are some basic sets that are meeded by all imstallations and there are
some other sets that are optiomal. You may choose to install a core set
(Minimal installation), all of them (Full installation), or a custom group of
sets (Custom installation).

Select your distribution

Full installation
Installation without X11
Minimal installation

Custom installation|

Abandon installation

OEBPS/d64a19bad7efcbf8b424f4a52e8dc36f0ce62b51/inst-medium.png
Your disk is now ready for installing the kernel and the distribution sets.
As noted in your INSTALL notes, you have several options. For ftp or nfs,
you must be conmected to a network with access to the proper machines.

Sets selected 4, processed 0, Next set kern-GENERIC.

Install from

CD-ROM /-
[0

FTP

NFS
Floppy
Unmounted fs

Local directory

Skip set

: Skip set group
Abandon installation

/install image media

Comz@ w0 a0 o

OEBPS/3ea9c73893802badffa8bb5ca78c009074146d4d/rf-r1r-pp2.png
Step 2

Boot Disk = Disk 0

wdo /
Disko

Channel 0

Controller ~ Controller

o

system

1

Transfer

Bus 0
Channel 0
D1
wd1 /
Diskl
Component0__| Component 1
Bootable RAIDFrame RAID-1
Volume w/ bogus Componento

OEBPS/6d7c18b3872a058a4bc937592e5464d78160546b/rf-r1r-pp3.png
Step 3;
Boot Disk

Disk 1

Channel 0

Controller ~ Controller

o

system

1

Channel 0

Bus 0

wd1/
Disk 1

Copfponent0__| Component 1

" Bootable RAIDFrame RAID-1
Volume w/ bogus Componento

OEBPS/d40ded389e9af5c15bd421fc80687a8bd2f30a00/rf-r1r-pp1.png
Step 1.

Boot Disk = CD-ROM

nstall

NetBSD

Channel 0

system

Controller ~ Controller

o

1

wdo /
Disko

wd /0
Diskl

Channel 0

OEBPS/b97c1d53fa02679e86d207b71c5eec72e74f19b8/inst-disklabel.png
NetBSD uses a BSD disklabel to carve up the NetBSD portion of the disk into
multiple BSD partitions. You must now set up your BSD disklabel

You can use a simple editor to set the sizes of the NetBSD partitions, or
keep the existing partition sizes and contents.

You will then be given the opportunity to change any of the disklabel fields.
The NetBSD part of your disk is 40959 Megabytes. A full installation

requires at least 31 Megabytes without X and at least 81 Megabytes if the X
sets are included.

Choose your installation

Set sizes of NetBSD partitions|

Use existing partition sizes

OEBPS/a099c1bff96a25b9e0427bf1bf843aeee916fadb/rf-awardbios1.png
ROM PCI/ISA BIOS (2A69KD4F)
BIOS FEATURES SETUP
AUARD SOFTUARE, INC.

Uirus Warning : Disabled
CPU L1 Cache Enabled
CPU L2 Cache Enabled
CPU L2 Cache ECC Checking : Enabled
Quick Pover On Self Test : Enabled
Boot Sequence
Suap Floppy Drive Disabled
Boot Up Flappy Seek : Disabled
Boot Up NumLock Status i 0n
Tupenatic Rate Setting Enabled
Tupenatic Rate (Chars/Sec) : 30
Typenatic Delay (Msec) : 250
Security Option : Setup
PCI/UGA Palette Snoop : Enabled
0S Select For DRAM > 64MB : Non-0S2
HDD S.M.A.R.T. Capability : Enabled i Quit “u>< i Select Item
Help PU/PD/+/- Modify
01d Values (Shift)F2 : Color
Load Fail-Safe Settings
: Load Optinal Settings

OEBPS/62a9ed8b055afc6dc165932da97d2d054f12ef25/inst-disklabel-change.png
You can now change the sizes for the system partitions. The default is to
allocate all the space to the root file system. However, you may wish to
have separate susr (additional system files), svar (log files etc) or /home
(users’ home directories) file systems.

Free space will be added to the partition marked with a ’+'.

MB Cylinders Sectors Filesystem
4129 (38911) 8390 8457120 + ¢
2648 4162 4195296 swap
]] © /tmp (tmpfs)
]] 0 susr
]] o svar
0 o © /home

Add a user defined partition
Change input units (sectors/cylinders/MB)
x: Accept partition sizes. Free space 34762 MB, 12 free partitions.

Size for swap in MB? [20481: 4696

OEBPS/e781975d655d23c475856f2338d5fd0517f30915/lvm.png
Volume Group VG 0

PV O PE PE PE PE PE PE PE

LVO

Pvi1i | PE | PE | PE | PE | PE | PE | PE

OEBPS/7c371679cd4376d92af766750b047b0be465c8de/rf-r1r-pp4.png
Step 4
Boot Disk = Disk 0 or Disk 1

system

Controller ~ Controller
o 1

Channel 0 Channel 0

RAD-L

wdo / wdl/
Disk 0 Disk 1

Component 0| Component 1

Bootable RAIDFrame RAID-1
Volume w/ bogus Componento

OEBPS/5ca750fb48b0941fd6b740061d0c72e26f4c8496/inst-bootselect.png
Your configuration requires the NetBSD bootselect code to select which
operating system to use.

It is not currently installed, do you want to install it now?

yes or no?

b: No

OEBPS/eb1549fcce31d93c9980566d1446558ec0bf8887/rf-awardbios2.png
ROM PCI/ISA BIOS (2A69KD4F)
BIOS FEATURES SETUP
AUARD SOFTUARE, INC.

Uirus Warning : Disabled
CPU L1 Cache Enabled
CPU L2 Cache Enabled
CPU L2 Cache ECC Checking : Enabled
Quick Pover On Self Test : Enabled
Boot Sequence
Suap Floppy Drive Disabled
Boot Up Flappy Seek : Disabled
Boot Up NumLock Status i 0n
Tupenatic Rate Setting Enabled
Tupenatic Rate (Chars/Sec) : 30
Typenatic Delay (Msec) : 250
Security Option : Setup
PCI/UGA Palette Snoop : Enabled
0S Select For DRAM > 64MB : Non-0S2
HDD S.M.A.R.T. Capability : Enabled i Quit “u>< i Select Item
Help PU/PD/+/- Modify
01d Values (Shift)F2 : Color
Load Fail-Safe Settings
: Load Optinal Settings

OEBPS/a688d164fc10c8a6855d6ef9c3baf4bcb9c7708c/inst-diskname.png
Please enter a mame for your NetBSD disk [UBOX HARDDISK 1: BSDisk

OEBPS/41fa89189cc30e743f8ca409401828471ade1672/net-pic2.gif
Subet 132.199.1.0,

(Backtone)
15219915
2
2199151
S 132199150
152199152 1521991599
route2 dusk

2199161

i 100 16

OEBPS/660cfa6d2cb56b23edf2ce8ea6455bfc151eac3e/inst-last-chance.png
0k, we are now ready to install NetBSD on your hard disk (ud@). Nothing has
been uritten yet. This is your last chance to quit this process before
anything gets changed.

Shall we continue?

yes or no?

No

OEBPS/828a6216a7a8b5bed35eecb7d777d4863fd5e21f/inst-disklabel-partitions.png
We now have your BSD disklabel partitions as:
This is your last chance to change them

Start MB End MB Size MB FS type Newfs Mount Mount point

) 36862 36863 FFSUZ Yes Yes

36863 40959 4096 swap
[} 40959 40959 NetBSD partition
[} 40959 40960 Whole disk
0 [} © unused

: Show all unused partitions
Change input units (sectors/cylinders/MB)
: Partition sizes ok

OEBPS/48c383efc55261d5614fcf4ade6aa9febb0a56c2/ipv4-en-0bits.png
n netbits

32—n hostbits

OEBPS/1379411a03fe23f3779ea56b877430c598d1612f/inst-disklabel-partition-editor.png
The current values for partition ‘a’ are,
Select the field you wish to change:

MB cylinders sectors

]
36863
36863
Yes
avg file size: 4
block sizi 16384
fragment siz 2048
moun Yes

mount option:
mount point: 2

: Change input units (sector
: Restore original values
: Partition sizes ok

Select the type

: unused

suap
msdos.

LFS

other types
: unchanged

OEBPS/8057f3cc76430d621585ba952eb2a598ee959ad9/net-pic1.gif
o cisco

1291202 2918
sna 5210)
Buosdes 1321991255
e
2113
i
211

Bt 13219915255
Netmisk 2652652550

(s iz

15219915100 1521991599
dawn dusk
1521991598

1521991597
noon

OEBPS/fde706e00b640d2eeff9d564ebf0ca6b5d5bd197/inst-sets.png
The following is the list of distribution sets that will be used.

Distribution set Selected

Kernel (GENERIC) Yes

Kernel modules Yes
Base Yes
Configuration files (setc) Yes
Compiler tools No
Games. No
Manual pages No
Miscellaneous No
Test programs No
Text processing tools No
X11 sets None
Source and debug sets None

: Install selected sets|

OEBPS/54e422b3b29f1eb8d502a3b232148e70f1c0f975/inst-bootblocks.png
Would you like to install the normal set of bootblocks or serial bootblocks?
Normal bootblocks use the BIOS console device as the console (usually the
monitor and keyboard). Serial bootblocks use the first serial port as the
console.

Selected bootblock: BIOS console

Bootblocks selection

a: Use BIOS console]

Use serial port comd
Use serial port coml
Use serial port com2
Use serial port com3
Set serial baud rate
Use existing bootblocks
Exit

OEBPS/43071a46a56a8bd41a3ea89d61b0071c50751bd3/inst-install-type.png
The NetBSD distribution is broken into a collection of distribution sets.
There are some basic sets that are meeded by all imstallations and there are
some other sets that are optiomal. You may choose to install a core set
(Minimal installation), all of them (Full installation), or a custom group of
sets (Custom installation).

Select your distribution

Full installation
Installation without X11
Minimal installation

Custom installation|

Abandon installation

