

	
		netbsd.org
		 (2025-05-11)
		NetBSD Internals

		The NetBSD Developers

	

	



XXX: This chapter is extremely incomplete.  It currently
  contains supporting documentation for Chapter 2, File system internals but nothing else.




1.1. The UVM virtual memory manager



UVM is the NetBSD's virtual memory manager.



An UVM object — or also known as
      uobj — is a contiguous region of virtual
      memory backed by a specific system facility.  This can be a file
      (vnode), XXX What else?.

In order to understand what "to be backed by"
      means, here is a review of some basic concepts of virtual memory
      management.  In a system with virtual memory support, the system
      can manage an address space bigger than the physical amount of
      memory available to it.  The address space is broken into chunks
      of fixed size, namely pages, as is the
      physical memory, which is divided into page
      frames.

When the system needs to access a memory address, it can
      either find the page it belongs to (page hit) or not (page fault).
      In the former case, the page is already stored in main memory so
      its data can be directly accessed.  In the latter case, the page
      is not present in main memory.

When a page fault occurs, the processor's memory management
      unit (MMU) signals the kernel through an exception and asks it
      to handle the fault: this can either result in a resolved page
      fault or in an error.  Assuming that all memory accesses are
      correct (and hence there are no errors), the kernel needs to bring
      the requested page into memory.  But where is the requested page?
      Is it in the swap space?  In a file?  Should it be filled with
      zeros?

Here is where the backing mechanism enters the game.  A
      backing object defines where the pages should be read from and
      where shall them be stored after modifications, if any.  Talking
      about implementation, reading a page from the backing object is
      preformed by a getpages function while writing to it is done by a
      putpages one.

Example: consider a 32-bit address space, a page size of
      4096 bytes and an uobj of 40960 bytes (10 pages) starting at the
      virtual address 0x00010000; this uobj's backing object is a vnode
      that represents a text file in your file system.  Assume that the
      file has not been read at all yet, so none of its pages are in
      main memory.  Now, the user requests a read from offset 5000 and
      with a length of 4000.  This offset falls into the uobj's second
      page and the ending address (9000) falls into the third page.  The
      kernel converts these logical offsets into memory addresses
      (0x00011388 and 0x00012328) and reads all the data contained in
      between.  So what happens?  The MMU causes two page faults and the
      vnode's getpages method is called for each of them, which then
      reads the pages from the corresponding file, puts them into main
      memory and returns control to the caller.  At this point, the read
      has been served.

Similarly, pages can be modified in memory after they have
      been brought to it; at some point, these changes will need to be
      flushed to the backing store, which happens with the backing
      object's putpages operation.  There are multiple reasons for the
      flush, including the need to reclaim the least recently used page
      frame from main memory, explicitly synchronizing the uobj with its
      backing store (think about synchronizing a file system), closing a
      file, etc.








1.2. Managing wired memory



The malloc(9) and free(9) functions provided by the
    NetBSD kernel are very similar to their userland counterparts.  They
    are used to allocate and release wired memory, respectively.  



Malloc types are used to group different allocation blocks
      into logical clusters so that the kernel can manage them in a more
      efficient manner. 

A malloc type can be defined in a static or dynamic fashion.
      Types are defined statically when they are embedded in a piece of
      code that is linked together the kernel during build time; if they
      are part of a standalone module, they are defined
      dynamically.

For static declarations, the MALLOC_DEFINE(9) macro is
      provided, which is then used somewhere in the global scope of a
      source file.  It has the following signature:




	MALLOC_DEFINE(
	
type, 
	 



	 
	
short_desc, 
	 



	 
	
long_desc);
	 




struct malloc_type *type;
const char *short_desc;
const char *long_desc;




The first parameter takes the name of the malloc type to be
      defined; do not let the type shown above confuse you, because it
      is an internal detail you ought not know.  Malloc types are often
      named in uppercase, prefixed by M_.  Some
      examples include M_TEMP for temporary data,
      M_SOFTINTR for soft-interrupt structures,
      etc.

The second and third parameters are a character string
      describing the type; the former is a short description while the
      later provides a longer one.

For a dynamic declaration, you must first define the type as
      static within the source file.  Later on, the
      malloc_type_attach(9) and malloc_type_detach(9)
      functions are used to notify the kernel about the presence or
      removal of the type; this is usually done in the module's
      initialization and finalization routines, respectively.









This chapter describes in great detail the concepts behind
  file system development under NetBSD.  It presents some code examples
  under the name of egfs, a fictitious file system that stands for
  example file system.

Throughout this chapter, the word file is
  used to refer to any kind of object that may exist
  in a file system; this includes directories, regular files, symbolic
  links, special devices and named pipes.  If there is a need to mention
  a file that stores data, the term regular file
  will be used explicitly.

Understanding a complex body of code like the storage
  subsystem can be difficult.  This chapter begins with a structural
  overview, explaining how specific file systems and the virtual file
  system (VFS) code interact.  It continues with a description of both
  the vnode interface (the interface to files;
  Section 2.2, “vnode interface overview”) and the VFS
  interface (the interface to whole file systems; Section 2.3, “VFS interface overview”) and then summarizes the existing file
  systems.  These sections should be read in order; they provide a
  general outline for the whole storage subsystem and a foundation
  for reading and understanding existing code.

The subsequent sections of this chapter dig into specific
  issues and constructs in detail. These sections may be read in any
  order, and are heavily cross-linked to one another to ease
  navigation.  These later sections should be considered a reference
  guide rather than an introduction.

At the very end there is a section that summarizes, based on
  ready-to-copy-and-paste code examples, how to write a file system
  driver from scratch.  Note that this section does not contain
  explanations per se but only links to the appropriate sections where
  each point is described.



The storage subsystem is divided into four basic parts.
    First and highest level is the VFS-level code, file system
    independent code that performs common functions on behalf of
    the rest of the kernel.  This portion sits on top of the 
    second part, the individual file systems.  The third part,
    common or generic implementations of file system level logic,
    sits at the same conceptual level as file systems themselves
    but is file system independent and shared rather than being
    part of a single file system.  The fourth part is lower level
    support code that file systems call into.  This code is also
    file system independent.  (A fifth portion, device drivers for
    storage buses and hardware, is not discussed in this chapter.)
     

The interface between the VFS-level code and the file
    systems is very clearly defined.  It is made up of two parts, the
    vnode interface and the VFS
    interface, described in more detail in the next two
    sections.  The other interfaces are much less clear, as is the
    upper interface that the VFS-level code provides to the system
    call layer and the rest of the kernel.  Work is ongoing to
    clarify these interfaces.

Confusingly, the VFS-level code, the combination of the VFS
    and vnode interfaces, and the VFS interface alone are all
    sometimes referred to as "the VFS layer".






2.2. vnode interface overview



A vnode is an abstract representation of an active file
    within the NetBSD kernel; it provides a generic way to operate on
    the real file it represents regardless of the file system it lives
    on.  Thanks to this abstraction layer, all kernel subsystems only
    deal with vnodes.  It is important to note that there is a
    unique vnode for each active file.

A vnode is described by the struct vnode
    structure; its definition can be found in the
    src/sys/sys/vnode.h file and information about
    its fields is available in the vnode(9) manual page.  The
    following analyzes the most important ideas related to this
    structure.

As the rule says, abstract representations must be specialized
    before they can be instantiated.  vnodes are not an exception: each
    file system extends both the static and dynamic parts of an vnode as
    follows:


	The static part — the data fields that represent the
        object — is extended by attaching a custom data structure
        to an vnode instance during its creation.  This is done through
        the v_data field as described in Section 2.2.1, “The vnode data field”.


	The dynamic part — the operations applicable to the
        object — is extended by attaching a vnode operations
        vector to a vnode instance during its creation.  This is done
        through the v_op field as described in Section 2.2.3, “The vnode operations vector”.








2.2.1. The vnode data field



The v_data field in the struct
      vnode type is a pointer to an external data structure used
      to represent a file within a concrete file system.  This field
      must be initialized after allocating a new vnode and must be set
      to NULL before releasing it (see Section 2.8.4, “Deallocation of a vnode”).

This external data structure contains any additional
      information to describe a specific file inside a file system.  In
      an on-disk file system, this might include the file's initial
      cluster, its creation time, its size, etc.  As an example, the
      NetBSD's Fast File System (FFS) uses the in-core memory
      representation of an inode as the vnode's data field.





A vnode operation is implemented by a function that follows
      the following contract: return an integer describing the operation's
      exit status and take a single void * parameter that
      carries a structure with the real operation's arguments.

Using an external structure to describe the operation's
      arguments instead of using a regular argument list has a reason:
      some file systems extend the vnode with additional, non-standard
      operations; having a common prototype makes this possible.

The following table summarizes the standard vnode
      operations.  Keep in mind, though, that each file system is free
      to extend this set as it wishes.  Also note that the operation's
      name is shown in the table as the macro used to call it (see Section 2.2.4, “Executing vnode operations”).


Table 2.1. vnode operations summary








	Operation
	Description
	See also




	VOP_LOOKUP
	Performs a path name lookup.
	See Section 2.10, “Path name resolution procedure”.



	VOP_CREATE
	Creates a new file.
	See Section 2.11.1, “Creation of regular files”.



	VOP_MKNOD
	Creates a new special file (a device or a named
              pipe).
	See Section 2.14, “Special nodes”.



	VOP_LINK
	Creates a new hard link for a file.
	See Section 2.11.2, “Creation of hard links”.



	VOP_RENAME
	Renames a file.
	See Section 2.11.4, “Rename of a file”.



	VOP_REMOVE
	Removes a file.
	See Section 2.11.3, “Removal of a file”.



	VOP_OPEN
	Opens a file.
	 



	VOP_CLOSE
	Closes a file.
	 



	VOP_ACCESS
	Checks access permissions on a file.
	See Section 2.11.8, “Access control”.



	VOP_GETATTR
	Gets a file's attributes.
	See Section 2.11.6.1, “Getting file attributes”.



	VOP_SETATTR
	Sets a file's attributes.
	See Section 2.11.6.2, “Setting file attributes”.



	VOP_READ
	Reads a chunk of data from a file.
	See Section 2.11.5.4, “The read and write operations”.



	VOP_WRITE
	Writes a chunk of data to a file.
	See Section 2.11.5.4, “The read and write operations”.



	VOP_IOCTL
	Performs an ioctl(2) on a file.
	 



	VOP_FCNTL
	Performs a fcntl(2) on a file.
	 



	VOP_POLL
	Performs a poll(2) on a file.
	 



	VOP_KQFILTER
	XXX
	 



	VOP_REVOKE
	Revoke access to a vnode and all aliases.
	 



	VOP_MMAP
	Maps a file on a memory region.
	See Section 2.11.5.3, “Memory-mapping a file”.



	VOP_FSYNC
	Synchronizes the file with on-disk
              contents.
	 



	VOP_SEEK
	Test and inform file system of seek
	 



	VOP_MKDIR
	Creates a new directory.
	See Section 2.13.1, “Creation of directories”.



	VOP_RMDIR
	Removes a directory.
	See Section 2.13.2, “Removal of directories”.



	VOP_READDIR
	Reads directory entries from a directory.
	See Section 2.13.3, “Reading directories”.



	VOP_SYMLINK
	Creates a new symbolic link for a file.
	See Section 2.12.1, “Creation of symbolic links”.



	VOP_READLINK
	Reads the contents of a symbolic link.
	See Section 2.12.2, “Read of symbolic link's contents”.



	VOP_TRUNCATE
	Truncates a file.
	See Section 2.11.6.2, “Setting file attributes”.



	VOP_UPDATE
	Updates a file's times.
	See Section 2.11.7, “Time management”.



	VOP_ABORTOP
	Aborts an in-progress operation.
	 



	VOP_INACTIVE
	Marks the vnode as inactive.
	See Section 2.8.1, “vnode's life cycle”.



	VOP_RECLAIM
	Reclaims the vnode.
	See Section 2.8.1, “vnode's life cycle”.



	VOP_LOCK
	Locks the vnode.
	See Section 2.8.5, “vnode's locking protocol”.



	VOP_UNLOCK
	Unlocks the vnode.
	See Section 2.8.5, “vnode's locking protocol”.



	VOP_ISLOCKED
	Checks whether the vnode is locked or not.
	See Section 2.8.5, “vnode's locking protocol”.



	VOP_BMAP
	Maps a logical block number to a physical block
              number.
	See Section 2.11.5.5, “Reading and writing pages”.



	VOP_STRATEGY
	Performs a file transfer between the file system's
              backing store and memory.
	See Section 2.11.5.5, “Reading and writing pages”.



	VOP_PATHCONF
	Returns pathconf(2) information.
	 



	VOP_ADVLOCK
	XXX
	 



	VOP_BWRITE
	Writes a system buffer.
	 



	VOP_GETPAGES
	Reads memory pages from the file.
	See Section 2.11.5.2, “Getting and putting pages”.



	VOP_PUTPAGES
	Writes memory pages to the file.
	See Section 2.11.5.2, “Getting and putting pages”.















2.2.3. The vnode operations vector



The v_op field in the struct
      vnode type is a pointer to the vnode operations vector,
      which maps logical operations to real functions (as seen in Section 2.2.2, “vnode operations”).  This vector is file system specific as
      the actions taken by each operation depend heavily on the file
      system where the file resides (consider reading a file, setting
      its attributes, etc.).

As an example, consider the following snippet; it defines
      the open operation and retrieves two
      parameters from its arguments structure:

int
egfs_open(void *v)
{
        struct vnode *vp = ((struct vop_open_args *)v)->a_vp;
        int mode = ((struct vop_open_args *)v)->a_mode;

        ...
}

The whole set of vnode operations defined by the file system
      is added to a vector of struct
      vnodeopv_entry_desc-type entries, with each entry being the
      description of a single operation.  The purpose of this vector is
      to define a mapping from logical operations such as
      vop_open or vop_read to real
      functions such as egfs_open,
      egfs_read.  It is not directly used
      by the system under normal operation.  This vector is
      not tied to a specific layout: it only lists operations available
      in the file system it describes, in any order it wishes.  It can
      even list non-standard (and unknown) operations as well as lack
      some of the most basic ones.  (The reason is, again, extensibility
      by third parties.)

There are two minor restrictions, though:


	
The first item always points to an operation used in
          case a non-existent one is called.  For example, if the file
          system does not implement the vop_bmap
          operation but some code calls it, the call will be redirected
          to this default-catch function.  As such, it is often used to
          provide a generic error routine but it is also useful in
          different scenarios.  E.g., layered file systems use it to
          pass the call down the stack.

It is important to note that there are two standard
          error routines available that implement this functionality:
          vn_default_error and
          genfs_eopnotsupp.  The latter correctly
          cleans up vnode references and locks while the former is the
          traditional error case one.  New code should only use the
          former.



	The last item always is a pair of null pointers.





Consider the following vector as an example:

const struct vnodeopv_entry_desc egfs_vnodeop_entries[] = {
        { vop_default_desc, vn_default_error },
        { vop_open_desc, egfs_open },
        { vop_read_desc, egfs_read },
        ... more operations here ...
        { NULL, NULL }
};

As stated above, this vector is not directly used by the
      system; in fact, it only serves to construct a secondary vector
      that follows strict ordering rules.  This secondary vector is
      automatically generated by the kernel during file system
      initialization, so the code only needs to instruct it to do the
      conversion.

This secondary vector is defined as a pointer to an array of
      function pointers of type int (**vops)(void *).  To
      tell the kernel where this vector is, a mapping between the two
      vectors is established through a third vector of struct
      vnodeopv_desc-type items.  This is easier to understand
      with an example:

int (**egfs_vnodeop_p)(void *);
const struct vnodeopv_desc egfs_vnodeop_opv_desc =
        { &egfs_vnodeop_p, egfs_vnodeop_entries };

Out of the file-system's scope, users of the vnode layer
      will only deal with the egfs_vnodeop_p and
      egfs_vnodeop_opv_desc vectors.






2.2.4. Executing vnode operations



All vnode operations are subject to a very strict locking
      protocol among several other call and return contracts.
      Furthermore, their prototype makes their call rather complex
      (remember that they receive a structure with the real arguments).
      These are some of the reasons why they cannot be called directly
      (with a few exceptions that will not be discussed here).

The NetBSD kernel provides a set of macros and functions
      that make the execution of vnode operations trivial; please note
      that they are the standard call procedure.  These macros are named
      after the operation they refer to, all in uppercase, prefixed by
      the VOP_string.  Then, they take the list of
      arguments that will be passed to them.

For example, consider the following implementation for the
      access operation:

int
egfs_access(void *v)
{
        struct vnode *vp = ((struct vop_access_args *)v)->a_vp;
        int mode = ((struct vop_access_args *)v)->a_mode;
        struct ucred *cred = ((struct vop_access_args *)v)->a_cred;
        struct proc *p = ((struct vop_access_args *)v)->a_p;

        ...
}

A call to the previous method could look like this:

result = VOP_ACCESS(vp, mode, cred, p);

For more information, see the vnodeops(9) manual page,
      which describes all the mappings between vnode operations and
      their corresponding macros.








2.3. VFS interface overview



The kernel's Virtual File System (VFS) subsystem provides
    access to all available file systems in an abstract fashion, just as
    vnodes do with active files.  Each file system is described by a
    list of well-defined operations that can be applied to it together
    with a data structure that keeps its status.




2.3.1. The mount structure



File systems are attached to the virtual directory tree by
      means of mount points.  A mount point is a redirection from a
      specific directory[1] to a different file
      system's root directory and is represented by the generic
      struct mount type, which is defined in
      src/sys/sys/mount.h.

A file system extends the static part of a struct
      mount object by attaching a custom data structure to its
      mnt_data field.  As with vnodes, this happens
      when allocating the structure.

The kind of information that a file system stores in its
      mount structure heavily depends on its implementation.  Generally,
      it will typically include a pointer (either physical or logical)
      to the file system's root node, used as the starting point for
      further accesses.  It may also include several accounting
      variables as well as other information whose context is the whole
      file system attached to a mount point.





A file system driver exposes a well-known interface to the
      kernel by means of a set of public operations.  The following table
      summarizes them all; note that they are sorted according to the
      order that they take in the VFS operations vector (see Section 2.3.3, “The VFS operations structure”).


Table 2.2. VFS operations summary









	Operation
	Description
	Considerations
	See also




	fs_mount
	Mounts a new instance of the file system.
	Must be defined.
	See Section 2.6, “Mounting and unmounting”.



	fs_start
	Makes the file system operational.
	Must be defined.
	 



	fs_unmount
	Unmounts an instance of the file system.
	Must be defined.
	See Section 2.6, “Mounting and unmounting”.



	fs_root
	Gets the file system root vnode.
	Must be defined.
	See Section 2.9, “The root vnode”.



	fs_quotactl
	Queries or modifies space quotas.
	Must be defined.
	 



	fs_statvfs
	Gets file system statistics.
	Must be defined.
	See Section 2.7, “File system statistics”.



	fs_sync
	Flushes file system buffers.
	Must be defined.
	 



	fs_vget
	Gets a vnode from a file identifier.
	Must be defined.
	See Section 2.8.3, “Allocation of a vnode”.



	fs_fhtovp
	Converts a NFS file handle to a vnode.
	Must be defined.
	See Section 2.15, “NFS support”.



	fs_vptofh
	Converts a vnode to a NFS file handle.
	Must be defined.
	See Section 2.15, “NFS support”.



	fs_init
	Initializes the file system driver.
	Must be defined.
	See Section 2.5, “Initialization and cleanup”.



	fs_reinit
	Reinitializes the file system driver.
	May be undefined (i.e., null).
	See Section 2.5, “Initialization and cleanup”.



	fs_done
	Finalizes the file system driver.
	Must be defined.
	See Section 2.5, “Initialization and cleanup”.



	fs_mountroot
	Mounts an instance of the file system as the root
              file system.
	May be undefined (i.e., null).
	 



	fs_extattrctl
	Controls extended attributes.
	The generic vfs_stdextattrctl
              function is provided as a simple hook for file systems that
              do not support this operation.
	 








The list of VFS operations may eventually change.  When that
      happens, the kernel version number is bumped.






2.3.3. The VFS operations structure



Regardless of mount points, a file system provides a
      struct vfsops structure as defined in
      src/sys/sys/mount.h that describes itself
      type is.  Basically, it contains:


	A public identifier, usually named after the file
          system's name suffixed by the fs string.
          As this identifier is used in multiple places — and
          specially both in kernel space and in userland —, it is
          typically defined as a macro in
          src/sys/sys/mount.h.  For example:
          #define MOUNT_EGFS "egfs".


	A set of function pointers to file system operations.
          As opposed to vnode operations, VFS ones have different
          prototypes because the set of possible VFS operations is well
          known and cannot be extended by third party file systems.
          Please see Section 2.3.2, “VFS operations” for more details on the
          exact contents of this vector.


	
A pointer to a null-terminated vector of struct
          vnodeopv_desc * const items.  These objects are listed
          here because, as stated in Section 2.2.3, “The vnode operations vector”, the system uses them to construct the real vnode
          operations vectors upon file system startup.

It is interesting to note that this field may contain
          more than one pointer.  Some file systems may provide more
          than a single set of vnode operations; e.g., a vector for the
          normal operations, another one for operations related to named
          pipes and another one for operations that act on special
          devices.  See the FFS code for an example of this and Section 2.14, “Special nodes” for details on these special
          vectors.






Consider the following code snipped that illustrates the
      previous items:

const struct vnodeopv_desc * const egfs_vnodeopv_descs[] = {
        &egfs_vnodeop_opv_desc,
        ... more pointers may appear here ...
        NULL
};

struct vfsops egfs_vfsops = {
        MOUNT_EGFS,
        egfs_mount,
        egfs_start,
        egfs_unmount,
        egfs_root,
        egfs_quotactl,
        egfs_statvfs,
        egfs_sync,
        egfs_vget,
        egfs_fhtovp,
        egfs_vptofh,
        egfs_init,
        NULL, /* fs_reinit: optional */
        egfs_done,
        NULL, /* fs_mountroot: optional */
        vfs_stdextattrctl,
        egfs_vnodeopv_descs
};

The kernel needs to know where each instance of this
      structure is located in order to keep track of the live file
      systems.  For file systems built inside the kernel's core, the
      VFS_ATTACH macro adds the given VFS
      operations structure to the appropriate link set.  See GNU ld's
      info manual for more details on this feature.

VFS_ATTACH(egfs_vfsops);

Standalone file system modules need not do this because the
      kernel will explicitly get a pointer to the information structure
      after the module is loaded.








2.4. File systems overview






2.4.1. On-disk file systems



On-disk file systems are those that store their contents on
      a physical drive.


	Fast File System (ffs): XXX


	Log-structured File System (lfs): XXX


	Extended 2 File System (ext2fs): XXX


	FAT (msdosfs): XXX


	ISO 9660 (cd9660): XXX


	NTFS (ntfs): XXX










2.4.2. Network file systems





	Network File System (nfs): XXX


	Coda (codafs): XXX










2.4.3. Synthetic file systems





	Memory File System (mfs): XXX


	Kernel File System (kernfs): XXX


	Portal File System (portalfs): XXX


	Pseudo-terminal File System (ptyfs): XXX


	Temporary File System (tmpfs): XXX










2.4.4. Layered file systems





	Null File System (nullfs): XXX


	Union File System (unionfs): XXX


	User-map File System (umapfs): XXX










2.4.5. Helper file systems



Helper file systems are just a set of functions used to
      easily implement other file systems.  As such, they can be
      considered as libraries.  These are:


	fifofs: Implements all operations used to deal with
          named pipes in a file system.


	genfs: Implements generic operations shared across
          multiple file systems.


	layerfs: Implements generic operations shared across
          layered file systems (see Section 2.4.4, “Layered file systems”).


	specfs: Implements all operations used to deal with
          special files in a file system.












2.5. Initialization and cleanup



Drivers often have an initialization routine and a
    finalization one, called when the driver becomes active (e.g., at
    system startup) or inactive (e.g., unloading its module)
    respectively.  File systems are subject to these rules too, so that
    they can do global tasks as a whole, regardless of any mount
    point.

These initialization and finalization tasks can be done from
    the fs_init and fs_done
    hooks, respectively.  If the driver is provided as a module, the
    initialization routine is called when it is loaded and the cleanup
    function is executed when it is unloaded.  Instead, if it is built
    into the kernel, the initialization code is executed at very early
    stages of kernel boot but the cleanup stuff is never
    run, not even when the system is shut down.

Furthermore, the fs_reinit operation is
    provided to... XXX...

These three operations take the following prototypes:




Note how they do not take any parameter, not even a mount
    point.

As an example, consider the following functions that deal with
    a malloc type (see Section 1.2.1, “Malloc types”) defined for a
    specific file system:

MALLOC_JUSTDEFINE(M_EGFSMNT, "egfs mount", "egfs mount structures");

void
egfs_init(void)
{

        malloc_type_attach(M_EGFSMNT);

        ...
}

void
egfs_done(void)
{

        ...

        malloc_type_detach(M_EGFSMNT);
}






2.6. Mounting and unmounting



The mount operation, namely fs_mount, is
    probably the most complex one in the VFS layer.  Its purpose is to
    set up a new mount point based on the arguments received from
    userland.  Basically, it receives the mount point it is operating on
    and a data structure that describes the mount call
    parameters.

Unfortunately, this operation has been overloaded with some
    semantics that do not really belong to it.  More specifically, it is
    also in charge of updating the mount point parameters as well as
    fetching them from userland.  This ought to be cleaned up at some
    point.

We will see all these details in the following
    subsections.




2.6.1. Mount call arguments



Most file systems pass information from the userland mount
      utility to the kernel when a new mount point is set up; this
      information generally includes user-tunable properties that tell
      the kernel how to mount the file system.  This data set is
      encapsulated in what is known as the mount arguments structure
      and is often named after the file system, prepending the
      _args string to it.

Keep in mind that this structure is only used to communicate
      the userland and the kernel.  Once the call that passes the
      information finishes, it is discarded in the kernel side.

The arguments structure is versioned to make sure that the
      kernel and the userland always use the same field layout and size.
      This is achieved by inserting a field at the very beginning of the
      object, holding its version.

For example, imagine a virtual file system — one that
      is not stored on disk; for real (and very similar) code, you can
      look at tmpfs.  Its mount arguments structure could describe the
      ownership of the root directory or the maximum number of files
      that the file system may hold:

#define EGFS_ARGSVERSION 1
struct egfs_args {
        int ea_version;

        off_t ea_size_max;

        uid_t ea_root_uid;
        gid_t ea_root_gid;
        mode_t ea_root_mode;

        ...
}





XXX: To be written.  Slightly describe how a userland mount
      utility works.






2.6.3. The fs_mount operation



The fs_mount operation is called whenever
      a user issues a mount command from userland.  It has the following
      prototype:




	int vfs_mount(
	
mp, 
	 



	 
	
path, 
	 



	 
	
data, 
	 



	 
	
ndp, 
	 



	 
	
p);
	 




struct mount *mp;
const char *path;
void *data;
struct nameidata *ndp;
struct proc *p;




The caller, which is always the kernel, sets up a
      struct mount object and passes it to this routine
      through the mp parameter.  It also passes the
      mount arguments structure (as seen in Section 2.6.1, “Mount call arguments”) in the data
      parameter.  There are several other arguments, but they do not
      important at this point.

The mp->mnt_flag field indicates what
      needs to be done (remember that this operation is semantically
      overloaded).  The following is an outline of all the tasks this
      function does and also describes the possible flags for the
      mnt_flag field:


	
If the MNT_GETARGS flag is set in
          mp->mnt_flag, the operation returns the
          current mount parameters for the given mount point.

This is further detailed in Section 2.6.3.1, “Retrieving mount parameters”.



	
Copy the mount arguments structure from userland to
          kernel space using copyin(9).

This is further detailed in Section 2.6.3.2, “Getting the arguments structure”.



	
If the MNT_UPDATE flag is set in
          mp->mnt_flag, the operation updates the
          current mount parameters of the given mount point based on the
          new arguments given (e.g., upgrade to read-write from
          read-only mode).

This is further detailed in Section 2.6.3.3, “Updating mount parameters”.



	
At this point, if neither MNT_GETARGS
          nor MNT_UPDATE were set, the operation sets
          up a new mount point.

This is further detailed in Section 2.6.3.4, “Setting up a new mount point”.









2.6.3.1. Retrieving mount parameters



When the fs_mount operation is called
        with the MNT_GETARGS flag in
        mp->mnt_flag, the routine creates and
        fills the mount arguments structure based on the data of the
        given mount point and returns it to userland by using
        copyout(9).

This heavily depends on the file system, but consider the
        following simple example:

if (mp->mnt_flag & MNT_GETARGS) {
        struct egfs_args args;
        struct egfs_mount *emp;

        if (mp->mnt_data == NULL)
                return EIO;
        emp = (struct egfs_mount *)mp->mnt_data;

        args.ea_version = EGFS_ARGSVERSION;

        ... fill the args structure here ...

        return copyout(&args, data, sizeof(args));
}






2.6.3.2. Getting the arguments structure



The data argument given to the
        fs_mount operation points to a memory
        region in user-space.  Therefore, it must be first copied into
        kernel-space by means of copyin(9) to be able to access it
        in a safe fashion.

Here is a little example:

int error;
struct egfs_args args;

if (data == NULL)
        return EINVAL;

error = copyin(data, &args, sizeof(args));
if (error)
        return error;

if (args.ea_version != EGFS_ARGSVERSION)
        return EINVAL;






2.6.3.3. Updating mount parameters



When the fs_mount operation is called
        with the MNT_UPDATE flag in
        mp->mnt_flag, the routine modifies the
        current parameters of the given mount point based on the new
        parameters given in the mount arguments structure.






2.6.3.4. Setting up a new mount point



If neither MNT_GETARGS nor
        MNT_UPDATE were set in
        mp->mnt_flag when calling
        fs_mount, the operation sets up a new mount
        point.  In other words: it fills the struct mount
        object given in mp with correct data.

The very first thing that it usually does is to allocate a
        structure that defines the mount point.  This structure is named
        after the file system, appending the _mount
        string to it, and is often very similar to the mount arguments
        structure.  Once allocated and filled with appropriate data, the
        object is attached to the mount point by means of its
        mnt_data field.

Later on, the operation gets a file system identifier for
        the mount point being set up using the vfs_getnewfsid(9)
        function and assigns.

At last, it sets up any statvfs-related information for
        the mount point by using the set_statvfs_info
        function.

This is all clearer by looking at a simple code
        example:

emp = (struct egfs_mount *)malloc(sizeof(struct egfs_mount), M_EGFSMOUNT, M_WAITOK);
KASSERT(emp != NULL);

/* Fill the emp structure with file system dependent values. */
emp->em_root_uid = args.ea_rood_uid;
... more comes here ...

mp->mnt_data = emp;
mp->mnt_flag = MNT_LOCAL;
mp->mnt_stat.f_namemax = MAXNAMLEN;
vfs_getnewfsid(mp);

return set_statvfs_info(path, UIO_USERSPACE, args.ea_fspec, UIO_SYSSPACE, mp, p);








2.6.4. The vfs_unmount function



Unmounting a file system is often easier than mounting it,
      plus there is no need to write a file system dependent userland
      utility to do an unmount.  This is accomplished by the
      fs_unmount operation, which has the following
      signature:




	int fs_unmount(
	
mp, 
	 



	 
	
mntflags, 
	 



	 
	
p);
	 




struct mount *mp;
int mntflags;
struct proc *p;




The function's outline is similar to the following:


	Ask the kernel to finalize all pending I/O on the given
          mount point.  This is done through the vflush(9)
          function.  Note that its last argument is a flags bitfield
          which must carry the FORCECLOSE flag if the
          file system is being forcibly unmounted — in other
          words, if the MNT_FORCE flag was set in
          mntflags.


	Free all resources attached to the mount point —
          i.e., to the mount structure pointed to by
          mp->mnt_data.  This heavily depends on
          the file system internals.


	Destroy the file system specific mount structure and
          detach it from the mp mount point.





Here is a simple example of the previous outline:

int error, flags;
struct egfs_mount *emp;

flags = (mntflags & MNT_FORCE) ? FORCECLOSE : 0;

error = vflush(mp, NULL, flags);
if (error != 0)
        return error;

emp = (struct egfs_mount *)mp->mnt_data;
... free emp contents here ...

free(mp->mnt_data, M_EGFSMNT);
mp->mnt_data = NULL;

return 0;








2.7. File system statistics



The statvfs(2) system call is used to retrieve
    statistical information about a mounted file system, such as its
    block size, number of used blocks, etc.  This is implemented in the
    file system driver by the fs_statvfs operation
    whose prototype is:




	int fs_statvfs(
	
mp, 
	 



	 
	
sbp, 
	 



	 
	
p);
	 




struct mount *mp;
struct statvfs *sbp;
struct proc *p;




The execution flow of this operation is quite simple: it
    basically fills sbp's fields with appropriate
    data.  This data is derivable from the current status of the file
    system — e.g., through the contents of
    mp->mnt_data.


      It is interesting to note that some of the information returned
      by this operation is stored in the generic part of the
      mp structure, shared across all file
      systems. The copy_statvfs_info function
      takes care to copy this common information into the resulting
      structure with minimum efforts.  Among other things, it copies
      the file system's identifier, the number of writes, the maximum
      length of file names, etc.
    

As a general rule of thumb, the code in
    fs_statvfs manually initializes the following
    fields in the sbp structure:
    f_iosize, f_frsize,
    f_bsize, f_blocks,
    f_bavail, f_bfree,
    f_bresvd, f_files,
    f_favail, f_ffree and
    f_fresvd.  Details information about each field
    can be found in statvfs(2).

For example, the operation's content may look like:

... fill sbp's fields as described above ...

copy_statvfs_info(sbp, mp);

return 0;








2.8.1. vnode's life cycle



A vnode, like any other system object, has to be allocated
      before it can be used.  Similarly, it has to be released and
      deallocated when unused.  Things are a bit special when it comes to
      handling a vnode, hence this whole section dedicated to explain
      it.

XXX: A graph could be excellent to have at this point.

A vnode is first brought to life by the
      getnewvnode(9) function; this returns a clean vnode that can be
      used to represent a file.  This new vnode is also marked as
      used and remains as such until it is marked
      inactive.  A vnode is inactivated by calling releasing the last
      reference to it.  When this happens, VOP_INACTIVE
      is called for the vnode and the vnode is placed on the free list.

The free list, despite its confusing
      name, contains real, live, but not currently used vnodes.  It is
      like a big LRU list.  vnodes can be brought to life again from this
      list by using the vget(9) function, and when that happens, they
      leave the free list and are marked as used again until they are
      inactivated.  Why does this list exist, anyway?  For example, think
      about all the commands that need to do path lookups on
      /usr.  Anything in
      /usr/bin, /usr/sbin,
      /usr/pkg/bin and
      /usr/pkg/sbin will need the
      /usr vnode.  If it had to be regenerated from
      scratch each time, it could be slow.  Therefore, it is kept around
      on the free list.

vnodes on the free list can also be
      reclaimed which means that they are effectively
      killed.  This can either happen because the vnode is being reused
      for a new vnode (through getnewvnode) or
      because it is being shut down (e.g., due to a
      revoke(2)).

Note that the kern.maxvnodes sysctl(9)
      node specifies how many vnodes can be kept active at a time.





vnodes are tagged to identify their type.  The tag attached
      to them must not be used within the kernel; it is only provided
      to let userland applications (such as pstat(8)) to print
      information about vnodes.

Note that its usage is deprecated because it is not
      extensible from dynamically loadable modules.  However, since they
      are currently used, each file system defines a tag to describe its
      own vnodes.  These tags can be found in
      src/sys/sys/vnode.h and vnode(9).






2.8.3. Allocation of a vnode



vnodes are allocated in three different scenarios:


	Access to existing files: the kernel does a file name
          lookup as described in Section 2.10.2, “The lookup algorithm”.
          When the vnode lookup operation finds a match, it allocates a
          vnode for the chosen file and returns it to the system.


	Creation of a new file: the file system specific code
          allocates a new vnode after the successful creation of the new
          file and returns it to the file system generic code.  This
          can happen as a result of the vnode create, mkdir, mknod and
          symlink operations.


	Access to a file through a NFS file handle: when the
          file system is asked to convert an NFS file handle to a vnode
          through the fhtovp vnode operation, it may need to allocate
          a new vnode to represent the file.  See Section 2.15, “NFS support”.





It is important to recall that vnodes are unique per file.
      Special care is taken to avoid allocating more than one vnode for
      a single physical file. Each file system has its own method to
      achieve this; as an example, tmpfs keeps a map between file system
      nodes and vnodes, where the former are its keys.

However, please do note that there may be files with no
      in-core representation (i.e., no vnode).  Only active and inactive
      but not-yet-reclaimed files are represented by a vnode.

A simple example that illustrates vnode allocation can be
      found in the tmpfs_alloc_vp function of
      src/sys/fs/tmpfs/tmpfs_subr.c.

XXX: I think fs_vget has to be described in this
      section.






2.8.4. Deallocation of a vnode



The procedure to deallocate vnodes is usually trivial: it
      generally cleans up any file system specific information that may
      be attached to the vnode.

Keep in mind that there is a single
      place in the code where vnodes can be detached from
      their underlying nodes and destroyed.  This place is in the vnode
      reclaim operation.  Doing it from any other place will surely
      cause further trouble because the vnode may still be active or
      reusable (see Section 2.8.1, “vnode's life cycle”).

Note that the v_data pointer must be set
      to null before exiting the reclaim vnode operation or the system
      will complain because the vnode was not properly cleaned.

This function is also in charge of releasing the underlying
      real node, if needed.  For example, when a file is deleted the
      corresponding vnode operation is executed — be it a delete
      or a rmdir — but the vnode is not released until it is
      reclaimed.  This means that if the real node was deleted before
      this happened, the vnode would be left pointing to an invalid
      memory area.

Consider the following sample operation:

int
egfs_reclaim(void *v)
{
        struct vnode *vp = ((struct vop_reclaim_args *)v)->a_vp;

        struct egfs_node *node;

        node = (struct egfs_node *)vp->v_data;

        cache_purge(vp);
        vp->v_data = NULL;
        node->en_vnode = NULL;

        if (node->en_nlinks == 0)
                ... free the underlying node ...

        return 0;
}

However, keep in mind that releasing (marking it inactive) a
      vnode is not the same as reclaiming it.  The real reclaiming will
      often happen at a much later time, unless explicitly requested. 
      The operations that remove files from disk often execute the
      reclaim code on purpose so that the vnode and its associated disk
      space is released as soon as possible.  This can be done by using
      the vrecycle(9) function.

As an example:

int
egfs_inactive(void *v)
{
        struct vnode *vp = ((struct vop_inactive_args *)v)->a_vp;

        struct egfs_node *node;

        node = (struct egfs_node *)vp->v_data;

        if (node->en_nlinks == 0) {
                /* The file was deleted from the disk; reclaim it as
                 * soon as possible to free its physical space. */
                vrecycle(vp, NULL, p);
        }

        return 0;
}






2.8.5. vnode's locking protocol



vnodes have, as almost all other system objects, a locking
      protocol associated to them to avoid access interferences and
      deadlocks.  These may arise in two scenarios:


	
In uniprocessor systems: a vnode operation returns
          before the operation is complete, thus having to lock the
          vnode to prevent unrelated modifications until the operation
          finishes.  This happens because most file systems are
          asynchronous.

For example: the read operation prepares a read to a
          file, launches it, puts the process requesting the read to
          sleep and yields execution to another process.  Some time
          later, the disk responds with the requested data, returning it
          to the original process, which is awoken.  The system must
          ensure that while the process was sleeping, the vnode suffers
          no changes.



	In multiprocessor systems: two different CPUs want to
          access the same file at the same time, thus needing to pass
          through the same vnode to reach it.  Furthermore, the same
          problems that appear in uniprocessor systems can also appear
          here.





Each vnode operation has a specific locking contract it must
      comply to, which is often different from other operations (this
      makes the protocol very complex and ought to be simplified).
      These contracts are described in vnode(9) and
      vnodeops(9).  You can also find them in the form of
      assertions in tmpfs' code, should you want to see them expressed
      in logical notation.

As regards vnode operations, each file system implements
      locking primitives in the vnode layer.  These primitives allow to
      lock a vnode (vop_lock), unlock it
      (vop_unlock) and test whether it is locked or
      not (vop_islocked).  Given that these
      operations are common to all file systems, the genfs pseudo-file
      system provides a set of functions that can be used instead of
      having to write custom ones.  These are
      genfs_lock, genfs_unlock
      and genfs_islocked and are always used except
      for very rare cases.

It is very important to note that
      vop_lock is never used
      directly.  Instead, the vn_lock(9) function is
      used to lock vnodes.  Unlocking, however, is in charge of
      vop_unlock.







As described in Section 2.10, “Path name resolution procedure”, the kernel does all
    path name lookups in an iterative way.  This means that in order to
    reach any file within a mount point, it must first traverse the
    mount point itself.  In other words, the mount point is the only
    place through which the system can access a file system and thus it
    must be able to resolve it.

In order to accomplish this, each file system provides the
    fs_root hook which returns a vnode
    representing its root node.  The prototype for this function
    is:




	int fs_root(
	
mp, 
	 



	 
	
vpp);
	 




struct mount *mp;
struct vnode **vpp;









2.10. Path name resolution procedure



XXX Write an introduction.




2.10.1. Path name components



A path name component is a non-divisible part of a complete
      path name — one that does not contain the slash
      (/) character.  Any path name that includes one
      or more slashes in it can be divided in two or more different
      atoms.

Path name components are represented by struct
      componentname objects (defined in
      src/sys/sys/namei.h), heavily used by several
      vnode operations.  The following are its most important
      fields:


	cn_flags: A bitfield that describes
          the element.  Of special interest is the
          HASBUF flag, which indicates that this
          object holds a valid path name buffer (see the
          cn_pnbuf field below).


	
cn_pnbuf: A pointer to the buffer
          holding the complete path name.  This is only valid if the
          cn_flags bitfield has the
          HASBUF flag.

In most situations, this buffer is automatically
          allocated and deallocated by the system, but this is not
          always true.  Sometimes, it is necessary to free it in some of
          the vnode operations themselves; vnodeops(9) gives more
          details about this.



	cn_nameptr: A pointer within
          cn_pnbuf that specifies the start of the
          path name component described by this object.  Must
          always be used in conjunction with
          cn_namelen.


	cn_namelen: The length of this path
          name component, starting at
          cn_nameptr.










2.10.2. The lookup algorithm



To resolve a path name (or to
      lookup a path name) means to get a vnode that
      uniquely represents based on a previously specified path name, be
      it absolute or relative.

The NetBSD kernel uses a two-level iterative algorithm to
      resolve path names.  The first level is file system independent
      and is carried on by the namei(9) function, while the second
      one relies on internal file system details and is achieved through
      the lookup vnode operation.

The following list illustrates the lookup algorithm.  Lots
      of details have been left out from it to make things simpler;
      namei(9) and vnodeops(9) contain all the missing
      information:

XXX: <wrstuden> I think you simplified the description
      too much.  You left out lookup(), and ascribe certain actions to
      namei() when they are performed by lookup().  While I like your
      attempt to keep it simple, I think both namei() and lookup() need
      describing.  lookup() takes a path name and turns it into a vnode,
      and namei() takes the result and handles symbolic link
      resolution.

XXX: <jmmv> I currently don't know very much about the
      internals of lookup() and namei(), so I've left the simplified
      description in the document, temporarily.


	namei constructs a
          cnp path name component (of type
          struct componentname as described in Section 2.10.1, “Path name components”); its buffer holds the
          complete path name to look for.  The component pointers are
          adjusted to describe the path name's first component.


	
The namei operation gets the vnode
          for the lookup's starting point (always a directory).  For
          absolute path names, this is the root directory's vnode.  For
          relative path names, it is the current working directory's
          vnode, as seen by the calling userland process.

This vnode is generally called dvp,
          standing for directory vnode
          pointer.



	namei calls the vnode lookup
          operation on the dvp vnode, telling it
          which is the component it has to resolve
          (cnp) starting from the given
          directory.


	
If the component exists in the directory, the vnode
          lookup operation must return a vnode for its respective
          entry.

However, if the component does not exist in the
          directory, the lookup will fail returning an appropriate error
          code.  There are several other error conditions that have to
          be reported, all of them appropriately described in
          vnodeops(9).



	
namei updates
          dvp to point to the returned vnode and
          advances cnp to the next component, only if
          there are more components to look for.  In that case, the
          procedure continues from 3.

In case there are no more components to look for,
          namei returns the vnode of the last entry
          it located.






There are several reasons behind this two-level lookup
      mechanism, but they have been left over for simplicity.  XXX: The
      4.4BSD book gives them all; we should either link to it or explain
      these here in our own words (preferably the latter).





One of the arguments passed to the lookup algorithm is a
      hint that specifies the kind of lookup to execute.  This hint
      specifies whether the lookup is for a file creation
      (CREATE), a deletion
      (DELETE) or a name change
      (RENAME).  The file system uses these hints to
      speed up the corresponding operation — generally to cache
      some values that will be used while processing the real operation
      later on.

For example, consider the unlink(2) system call whose
      purpose is to delete the given file name.  This operation issues
      a lookup to ensure that the file exists and to get a vnode
      for it.  This way, it is able to call the vnode's remove
      operation.  So far, so good.  Now, the operation itself has to
      delete the file, but removing a file means, among other things,
      detaching it from the directory containing it.  How can the remove
      operation access the directory entry that pointed to the file
      being removed?  Obviously, it can do another lookup and traverse
      a potentially long directory.  But is this really needed?

Remember that unlink(2) first got a vnode for the entry
      to be removed.  This implied doing a lookup, which traversed the
      file's parent directory looking for its entry.  The algorithm
      reached the entry once, so there is no need to repeat the process
      once we are in the vnode operation itself.

In the above situation, the second lookup is avoided
      by caching the affected directory entry while the lookup operation
      is executed.  This is only done when the DELETE
      hint is given.

The same situation arises with file creations (because new
      entries may be overwrite previously deleted entries in on-disk
      file systems) or name changes (because the operation needs to
      modify the associated directory entry).







XXX: Write an introduction.




2.11.1. Creation of regular files



XXX: To be written.  Describe vop_create.






2.11.2. Creation of hard links



XXX: To be written.  Describe vop_link.






2.11.3. Removal of a file



XXX: To be written.  Describe vop_remove.





XXX: To be written.  Describe vop_rename.






2.11.5. Reading and writing



vnodes have an operation to read data from them
      (vop_read) and one to write data to them
      (vop_write) both called by their respective
      system calls, read(2) and write(2).  The read operation
      receives an offset from which the read starts, a number that
      specifies the number of bytes to read (length) and a buffer into
      which the data will be stored.  Similarly, the write operation
      receives an offset from which the write starts, the number of
      bytes to write and a buffer from which the data is read.

There is also the mmap(2) system call which maps a file
      into memory and provides userland direct access to the mapped
      memory region.



The struct uio type describes a data transfer
        between two different buffers.  One of them is stored within the
        uio object while the other one is external (often living in
        userland space).  These objects are created when a new data
        transfer starts and are alive until the transfer finishes
        completely; in other words, they identify a specific
        transfer.

The following is a description of the most important
        fields in struct uio (the ones needed for basic
        understanding on how it works).  For a complete list, see
        uiomove(9).


	uio_offset: The offset within the
            file from which the transfer starts.  If the transfer is a
            read, the offset must be within the file size limits; if it
            is a write, it can extend beyond the end of the file —
            in which case the file is extended.


	uio_resid (also known as the
            residual count): Number of bytes
            remaining to be transferred for this object.


	A set of pointers to buffers into/from which the data
            will be read/written.  These are not used directly and hence
            their names have been left out.


	A flag that indicates if data should be read from or
            written to the buffers described by the uio object.





This may be easier to understand by discussing a little
        example.  Consider the following userland program:

char buffer[1024];
lseek(fd, 100, SEEK_SET);
read(fd, buffer, 1024);

The read(2) system call constructs an uio object
        containing an offset of 100 bytes and a residual count of 1024
        bytes, making the uio's buffers point to
        buffer and marking them as the data's target.
        If this was a write operation, the uio object's buffers could be
        the data's source.

In order to simplify uio object management, the kernel
        provides the uiomove(9) function, whose signature
        is:




	int uiomove(
	
buf, 
	 



	 
	
n, 
	 



	 
	
uio);
	 




void *buf;
size_tn;
struct uio *uio;




This function copies up to n bytes
        between the kernel buffer pointed to by buf
        into the addresses described by the uio
        instance.  If the transfer is successful, the uio object is
        updated so that uio_resid is decremented by
        the amount of data copied, uio_offset is
        increased by the same amount and the internal buffer pointers
        are updated accordingly.  This eases calling
        uiomove repeatedly (e.g., from within a
        loop) until the transfer is complete.






2.11.5.2. Getting and putting pages



As seen in Section 2.11.5.1, “uio objects”, data transfers are
        described by a high-level object that does not take into account
        any detail of the underlying file system.  More specifically,
        they are not tied to any specific on-disk block organization.
        (Remember that most on-disk file systems store data scattered
        across the disk (due to fragmentation); therefore, the transfers
        have to be broken up into pieces to read or write the data from
        the appropriate disk blocks.)

Breaking the transfer into pieces, requesting them to the
        disk and handling the results is a (very) complex operation.
        Fortunately, the UVM memory subsystem (see Section 1.1, “The UVM virtual memory manager”) simplifies the whole task.  Each vnode has a struct
        uvm_object (as described in Section 1.1.1, “UVM objects”) associated to it, backed by a vnode.

The vnode backs up the uobj through its
        vop_getpages and
        vop_putpages operations.  As these two
        operations are very generic (from the point of view of managing
        memory pages), genfs provides two generic functions to implement
        them.  These are genfs_getpages and
        genfs_putpages, which will usually suit the
        needs of any on-disk file system.  How they deal with specific
        file system details is something detailed in Section 2.11.5.5, “Reading and writing pages”.






2.11.5.3. Memory-mapping a file



Thanks to the particular UBC implementation in NetBSD (see
        Section 2.11.5.2, “Getting and putting pages”), a file can be
        trivially mapped into memory.  The mmap(2) system call is
        used to achieve this and the kernel handles it independently
        from the file system.

The VOP_MMAP method is used to only
	inform the file system that the vnode is about to be memory-mapped
	and ask the file system if it allows the mapping to happen.

After the file is memory-mapped, file system I/O is handled
	by UVM through the vnode pager and ends up in
	vop_getpages and vop_putpages.
	In a sense this is very much like regular reading and writing,
	but instead of explicitly calling vop_read
	and vop_write, which then use
	uiomove, the memory window is accessed
	directly.






2.11.5.4. The read and write operations



Thanks to the particular UBC implementation in NetBSD (see
        Section 2.11.5.2, “Getting and putting pages”), the vnode's
        read and write operations (vop_read and
        vop_write respectively) are very simple
        because they only deal with virtual memory.  Basically, all they
        need to do is memory-map the affected part of the file and then
        issue a simple memory copy operation.

As an example, consider the following sample read
        code:

int
egfs_read(void *v)
{
        struct vnode *vp = ((struct vop_read_args *)v)->a_vp;
        struct uio *uio = ((struct vop_read_args *)v)->a_uio;

        int error;
        struct egfs_node *node;

        node = (struct egfs_node *)vp->v_data;

        if (uio->uio_offset < 0)
                return EINVAL;

        if (uio->uio_resid == 0 || uio->uio_offset >= node->en_size)
                return 0;

        if (vp->v_type == VREG) {
                error = 0;
                while (uio->uio_resid > 0 && error == 0) {
                        int flags;
                        off_t len;
                        void *win;

                        len = MIN(uio->uio_resid, node->en_size -
                            uio->uio_offset);
                        if (len == 0)
                                break;

                        win = ubc_alloc(&vp->v_uobj, uio->uio_offset,
                            &len, UBC_READ);
                        error = uiomove(win, len, uio);
                        flags = UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0;
                        ubc_release(win, flags);
                }
        } else {
                ... left out for simplicity (if needed) ...
        }

        return error;
}






2.11.5.5. Reading and writing pages



As seen in Section 2.11.5.2, “Getting and putting pages”, the genfs_getpages and
        genfs_putpages functions are enough for
        most on-disk file systems.  But if they are abstract, how do
        they deal with the specific details of each file system?  E.g.,
        if the system wants to fetch the third page of the
        /foo/bar file, how does it know which
        on-disk blocks it must read to bring the requested page into
        memory?  Where does the real transfer take place?

The mapping between memory pages and disk blocks is done
        by the vnode's bmap operation, vop_bmap,
        called by the paging functions.  This receives the file's
        logical block number to be accessed and converts it to the
        internal, file system specific block number.

Once bmap returns the physical block number to be
        accessed, the generic page handling functions check whether the
        block is already in memory or not.  If it is not, a transfer is
        done by using the vnode's strategy operation
        (vop_strategy).

More information about these operations can be found in
        the vnodeops(9) manual page.








2.11.6. Attributes management



Within the NetBSD kernel, a file has a set of standard and
      well-known attributes associated to it.  These are:


	A type: specifies whether the file is a regular file
          (VREG), a directory
          (VDIR), a symbolic link
          (VLNK), a special device
          (VCHR or VBLK), a named
          pipe (VFIFO) or a socket
          (VSOCK).  The constants mentioned here are
          the vnode types, which do not necessarily match the internal
          type representation of a file within a file system.


	An ownership: that is, a user id and a group id.


	An access mode.


	A set of flags: these include the immutable flag, the
          append-only flag, the archived flag, the opaque flag and the
          nodump flag.  See chflags(2) for more information.


	A hard link count.


	A set of times: these include the birth time, the change
          time, the access time and the modification time.  See Section 2.11.7, “Time management” for more details.


	A size: the exact size of the file, in bytes.


	A device number: in case of a special device (character
          or block ones), its number is also stored.





The NetBSD kernel uses the struct vattr type
      (detailed in vattr(9)) to handle all these attributes all in
      a compact way.  Based on this set, each file system typically
      supports these attributes in its node representation structure
      (unless they are fictitious and faked when accessed).  For
      example, FFS could store them in inodes, while FAT could save only
      some of them and fake the others at run time (such as the
      ownership).

A struct vattr instance is initialized by using
      the VATTR_NULL macro, which sets its vnode
      type to VNON and all of its other fields to
      VNOVAL, indicating that they have no valid
      values.  After using this macro, it is the responsibility of the
      caller to set all the fields it wants to the correct values.  The
      consumer of the object shall not use those fields whose value is
      unset (VNOVAL).

It is interesting to note that there are no vnode operations
      that match the regular system calls used to set the file
      ownership, its mode, etc.  Instead, nodes provide two operations
      that act on the whole attribute set:
      vop_getattrs to read them and
      vop_setattrs to set them.  The rest of this
      section describes them.




2.11.6.1. Getting file attributes



The vop_getattr vnode operation
        fetches all the standard attributes from a given vnode.  All it
        does is fill the given struct vattr
        structure with the correct values.  For example:

int
egfs_getattr(void *v)
{
        struct vnode *vp = ((struct vop_getattr_args *)v)->a_vp;
        struct vattr *vap = ((struct vop_getattr_args *)v)->a_vap;

        struct egfs_node *node;

        node = (struct egfs_node *)vp->v_data;

        VATTR_NULL(vap);

        switch (node->en_type) {
        case EGFS_NODE_DIR:
                vap->va_type = VDIR;
                break;
        case ...:
        ...
        }
        vap->va_mode = node->en_mode;
        vap->va_uid = node->en_uid;
        vap->va_gid = node->en_gid;
        vap->va_nlink = node->en_nlink;
        vap->va_flags = node->en_flags;
        vap->va_size = node->en_size;
        ... continue filling values ...

        return 0;
}






2.11.6.2. Setting file attributes



Similarly to the vop_getattr
        operation, vop_setattr sets a subset of
        file attributes at once.  Only those attributes which are not
        VNOVAL are changed.  Furthermore, the
        operation ensures that the caller is not trying to set
        unsettable values; for example, one cannot set (i.e., change)
        the file type.

Of special interest is that the file's size can be changed
        as an attribute.  In other words, this operation is the entry
        point for file truncation calls and it is its responsibility to
        call vop_truncate when appropriate.  The
        system never calls the vnode's truncate operation
        directly.

A little sketch:

int
egfs_setattr(void *v)
{
        struct vnode *vp = ((struct vop_setattr_args *)v)->a_vp;
        struct vattr *vap = ((struct vop_setattr_args *)v)->a_vap;
        struct ucred *cred = ((struct vop_setattr_args *)v)->a_cred;
        struct proc *p = ((struct vop_setattr_args *)v)->a_p;

        /* Do not allow setting unsettable values. */
        if (vap->va_type != VNON || vap->va_nlink != VNOVAL || ...)
                return EINVAL;

        if (vap->va_flags != VNOVAL) {
                ... set node flags here ...
                if error, return it
        }

        if (vap->va_size != VNOVAL) {
                ... verify file type ...
                error = VOP_TRUNCATE(vp, size, 0, cred, p);
                if error, return it
        }

        ... etcetera ...

        return 0;
}







Each node has four times associated to it, all of them
      represented by struct timespec objects.  These times
      are:


	Birth time: the time the file was born.  Cannot be
          changed after the file is created.


	Access time: the time the file was last accessed.


	Change time: the time the file's node was last changed.
          For example, if a new hard link for an existing file is
          created, its change time is updated.


	Modification time: the time the file's contents were
          last modified.





Given that these times reflect the last accesses to the
      underlying files, they need to be modified extremely often.  If
      this was done synchronously, it could impose a big performance
      penalty on files accessed repeatedly.  This is why time updates
      are done in a delayed manner.

Nodes usually have a set of flags (which are only kept in
      memory, never written to disk) that indicate their status
      to let asynchronous actions know what to do.  These flags are
      used, among other things, to indicate that a file's times have to
      be updated.  They are set as soon as the file is changed but the
      times are not really modified until the vnode's update operation
      (vop_update) is called; see vnodeops(9)
      for more details on this.

vop_update is called asynchronously by
      the kernel from time to time.  However, a file system may opt to
      execute it on purpose as it wishes; such a situation may be when
      it is mounted synchronously, as it will be updating the times as
      soon as the changes happen.





The file system is in charge of ensuring that a request is
      valid or not, permission-wise.  This is done with the vnode's
      access operation (vop_access), which receives
      the caller's credentials and the requested access mode.  The
      operation then checks if these are compatible with the current
      attributes of the file being accessed.

The operation generally follows this structure:


	If the file system is mounted read only, and the caller
          wants to write to a directory, to a link or to a regular file,
          then access must be denied.


	If the file is immutable and the caller wants to write
          to it, access is denied.


	At last, vaccess(9) is used to check all remaining
          access possibilities.  This simplifies a lot the code of this
          operation.





For example:

int
egfs_access(void *v)
{
        struct vnode *vp = ((struct vop_access_args *)v)->a_vp;
        int mode = ((struct vop_access_args *)v)->a_mode;
        struct ucred *cred = ((struct vop_access_args *)v)->a_cred;

        struct egfs_node *node;

        node = (struct egfs_node *)vp->v_data;

        if (vp->v_type == VDIR || vp->v_type == VLNK || vp->v_type == VREG)
                if (mode & VWRITE &&
                    vp->v_mount->mnt_flag & MNT_RDONLY)
                        return EROFS;
        }

        if (mode & VWRITE && mode->tn_flags & IMMUTABLE)
                return EPERM;

        return vaccess(vp->v_type, node->en_mode, node->en_uid,
            node->en_gid, mode, cred);
}








2.12. Symbolic link management






2.12.1. Creation of symbolic links



XXX: To be written.  Describe vop_symlink.






2.12.2. Read of symbolic link's contents



XXX: To be written.  Describe vop_readlink.








2.13. Directory management



A directory maps file names to file system nodes.  The
    internal representation of a directory depends heavily on the file
    system, but the vnode layer provides an abstract way to access them.
    This includes the vop_lookup,
    vop_mkdir, vop_rmdir and
    vop_readdir operations.

For the rest of this section, assume that the following simple
    struct egfs_dirent describes a directory entry:

struct egfs_dirent {
        char ed_name[MAXNAMLEN];
        int ed_namelen;
        off_t ed_fileid;
};




2.13.1. Creation of directories



XXX: To be written.  Describe vop_mkdir.






2.13.2. Removal of directories



XXX: To be written.  Describe vop_rmdir.






2.13.3. Reading directories



The vop_readdir operation reads the
      contents of directory in a file system independent way.  Remember
      that the regular read operation can also be used for this purpose,
      though all it returns is the exact contents of the directory; this
      cannot be used by programs that aim to be portable (not to mention
      that some file systems do not support this functionality).

This operation returns a struct dirent object
      (as seen in dirent(5)) for each directory entry it reads from
      the offset it was given up to that offset plus the transfer
      length.  Because it must read entire objects, the offset must
      always be aligned to a physical directory entry boundary;
      otherwise, the function shall return an error.  This is not always
      true, though: some file systems have variable-sized entries and
      they use another metric to determine which entry to read (such as
      its ordering index).

It is important to note that the size of the resulting
      struct dirent objects is variable: it depends on the
      name stored in them.  Therefore, the code first constructs these
      objects (settings all its fields by hand) and then uses the
      _DIRENT_SIZE macro to calculate its size,
      later assigned to the d_reclen field.  For
      example:

struct egfs_dirent de;
struct egfs_node *node;
struct dirent d;

... read a directory entry from disk into de ...
... make node point to the de.ed_fileid node ...

switch (node->ed_type) {
case EGFS_NODE_DIR:
        d.d_type = DT_DIR;
case ...:
...
}

d.d_namlen = de.ed_namelen;
(void)memcpy(d.d_name, de.ed_name, de.ed_namelen);
d.d_name[de.ed_namelen] = '\0';
d.d_reclen = _DIRENT_SIZE(&d);

With this in mind, the operation also ensures that the
      offset is correct, locates the first entry to return and loops
      until it has exhausted the transmission's length.  The following
      illustrates the process:

int
egfs_readdir(void *v)
{
        struct vnode *vp = ((struct vop_readdir_args *)v)->a_vp;
        struct uio *uio = ((struct vop_readdir_args *)v)->a_uio;
        int *eofflag = ((struct vop_readdir_args *)v)->a_eofflag;

        int entry_counter;
        int error;
        off_t startoff;
        struct egfs_dirent de;
        struct egfs_node *dnode;
        struct egfs_node *node;

        if (vp->v_type != VDIR)
                return ENOTDIR;

        if (uio->uio_offset % sizeof(struct egfs_dirent) > 0)
                return EINVAL;

        dnode = (struct egfs_node *)vp->v_data;

        ... read the first directory entry into de ...
        ... make node point to the de.ed_fileid node ...

        entry_counter = 0;
        startoff = uio->uio_offset;
        do {
                struct dirent d;

                ... construct d from de ...

                error = uiomove(&d, d.d_reclen, uio);

                entry_counter++;
                ... read the next directory entry into de ...
                ... make node point to the de.ed_fileid node ...
        } while (error == 0 && uio->uio_resid > 0
            && de is valid)


        /* Important: Update transfer offset to match on-disk
         * directory entries, not virtual ones. */
        uio->uio_offset = entry_counter * sizeof(egfs_dirent);

        if (eofflag != NULL)
                *eofflag = (de is invalid?);

        return error;
}

File systems that support NFS take some extra steps in this
      function.  See vnodeops(9) for more details.  XXX: Cookies
      and the eof flag should really be explained here.







File system that support named pipes and/or special devices
    implement the vnode's mknod operation
    (vop_mknod) in order to create them.  This is
    extremely similar to vop_create.  However, it
    takes some extra steps because named pipes and special devices are
    not like regular files: their contents are not stored in the file
    system and they have specific access methods.  Therefore, they
    cannot use the file system's regular vnode operations vector.

In other words: the file system defines two additional vnode
    operations vectors: one for named pipes and one for special devices.
    Fortunately, this task is easy because the virtual fifofs
    (src/sys/miscfs/fifofs) and specfs
    (src/sys/miscfs/specfs) file systems
    provide generic vnode operations.  In
    general, these vectors use all the generic operations except for a
    few functions.

Because the on-disk file system has to update the node's times
    when accessing these special files, some operations are implemented
    on a file system basis and later call the generic operations
    implemented in fifofs and specfs.  This basically means that those
    file systems implement their own vop_close,
    vop_read and vop_write
    operations for named pipes and for special devices.

As a little example of such an operation:

int
egfs_fifo_read(void *v)
{
        struct vnode *vp = ((struct vop_read_args *)v)->a_vp;

        ((struct egfs_node *)vp->v_data)->tn_status |= TMPFS_NODE_ACCESSED;
        return VOCALL(fifo_vnodeop_p, VOFFSET(vop_read), v);
}

Remember that these two additional operations vectors are
    added to the vnode operations description structure; otherwise, they
    will are not initialized and therefore will not work.  See Section 2.3.3, “The VFS operations structure”.

For more sample code, consult
    src/sys/fs/tmpfs/fifofs_vnops.c,
    src/sys/fs/tmpfs/fifofs_vnops.h,
    src/sys/fs/tmpfs/specfs_vnops.c and
    src/sys/fs/tmpfs/specfs_vnops.h.





XXX: To be written.  Describe vop_fhtovp and vfs_vptofh.






2.16. Step by step file system writing




	Create the src/sys/fs/egfs
        directory.


	
Create a minimal
        src/sys/fs/egfs/files.egfs file:

deffs fs_egfs.h EGFS
file fs/egfs/egfs_vfsops.c egfs
file fs/egfs/egfs_vnops.c egfs



	
Modify src/sys/conf/files to include
        files.egfs.  I.e., add the following
        line:

include "fs/egfs/files.egfs"



	
Define the file system's name in
        src/sys/sys/mount.h.  I.e., add the
        following line:

#define MOUNT_EGFS "egfs"



	
Define the file system's vnode tag type.

See Section 2.8.2, “vnode tags”.



	Add the file system's magic number in the Linux
        compatibility layer,
        src/sys/compat/linux/common/linux_misc.c
        and
        src/sys/compat/linux/common/linux_misc.h,
        if applicable.  Fallback to the default number if there is
        nothing appropriate for the file system.


	
Create a minimal
        src/sys/fs/egfs/egfs_vnops.c file that
        contains stubs for all vnode operations.

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: netbsd-internals.html,v 1.109 2025/03/30 14:57:25 maya Exp $");

#include <sys/param.h>
#include <sys/vnode.h>

#include <miscfs/genfs/genfs.h>

#define egfs_lookup genfs_eopnotsupp
#define egfs_create genfs_eopnotsupp
#define egfs_mknod genfs_eopnotsupp
#define egfs_open genfs_eopnotsupp
#define egfs_close genfs_eopnotsupp
#define egfs_access genfs_eopnotsupp
#define egfs_getattr genfs_eopnotsupp
#define egfs_setattr genfs_eopnotsupp
#define egfs_read genfs_eopnotsupp
#define egfs_write genfs_eopnotsupp
#define egfs_fcntl genfs_eopnotsupp
#define egfs_ioctl genfs_eopnotsupp
#define egfs_poll genfs_eopnotsupp
#define egfs_kqfilter genfs_eopnotsupp
#define egfs_revoke genfs_eopnotsupp
#define egfs_mmap genfs_eopnotsupp
#define egfs_fsync genfs_eopnotsupp
#define egfs_seek genfs_eopnotsupp
#define egfs_remove genfs_eopnotsupp
#define egfs_link genfs_eopnotsupp
#define egfs_rename genfs_eopnotsupp
#define egfs_mkdir genfs_eopnotsupp
#define egfs_rmdir genfs_eopnotsupp
#define egfs_symlink genfs_eopnotsupp
#define egfs_readdir genfs_eopnotsupp
#define egfs_readlink genfs_eopnotsupp
#define egfs_abortop genfs_eopnotsupp
#define egfs_inactive genfs_eopnotsupp
#define egfs_reclaim genfs_eopnotsupp
#define egfs_lock genfs_eopnotsupp
#define egfs_unlock genfs_eopnotsupp
#define egfs_bmap genfs_eopnotsupp
#define egfs_strategy genfs_eopnotsupp
#define egfs_print genfs_eopnotsupp
#define egfs_pathconf genfs_eopnotsupp
#define egfs_islocked genfs_eopnotsupp
#define egfs_advlock genfs_eopnotsupp
#define egfs_blkatoff genfs_eopnotsupp
#define egfs_valloc genfs_eopnotsupp
#define egfs_reallocblks genfs_eopnotsupp
#define egfs_vfree genfs_eopnotsupp
#define egfs_truncate genfs_eopnotsupp
#define egfs_update genfs_eopnotsupp
#define egfs_bwrite genfs_eopnotsupp
#define egfs_getpages genfs_eopnotsupp
#define egfs_putpages genfs_eopnotsupp

int (**egfs_vnodeop_p)(void *);
const struct vnodeopv_entry_desc egfs_vnodeop_entries[] = {
        { &vop_default_desc, vn_default_error },
        { &vop_lookup_desc, egfs_lookup },
        { &vop_create_desc, egfs_create },
        { &vop_mknod_desc, egfs_mknod },
        { &vop_open_desc, egfs_open },
        { &vop_close_desc, egfs_close },
        { &vop_access_desc, egfs_access },
        { &vop_getattr_desc, egfs_getattr },
        { &vop_setattr_desc, egfs_setattr },
        { &vop_read_desc, egfs_read },
        { &vop_write_desc, egfs_write },
        { &vop_ioctl_desc, egfs_ioctl },
        { &vop_fcntl_desc, egfs_fcntl },
        { &vop_poll_desc, egfs_poll },
        { &vop_kqfilter_desc, egfs_kqfilter },
        { &vop_revoke_desc, egfs_revoke },
        { &vop_mmap_desc, egfs_mmap },
        { &vop_fsync_desc, egfs_fsync },
        { &vop_seek_desc, egfs_seek },
        { &vop_remove_desc, egfs_remove },
        { &vop_link_desc, egfs_link },
        { &vop_rename_desc, egfs_rename },
        { &vop_mkdir_desc, egfs_mkdir },
        { &vop_rmdir_desc, egfs_rmdir },
        { &vop_symlink_desc, egfs_symlink },
        { &vop_readdir_desc, egfs_readdir },
        { &vop_readlink_desc, egfs_readlink },
        { &vop_abortop_desc, egfs_abortop },
        { &vop_inactive_desc, egfs_inactive },
        { &vop_reclaim_desc, egfs_reclaim },
        { &vop_lock_desc, egfs_lock },
        { &vop_unlock_desc, egfs_unlock },
        { &vop_bmap_desc, egfs_bmap },
        { &vop_strategy_desc, egfs_strategy },
        { &vop_print_desc, egfs_print },
        { &vop_islocked_desc, egfs_islocked },
        { &vop_pathconf_desc, egfs_pathconf },
        { &vop_advlock_desc, egfs_advlock },
        { &vop_blkatoff_desc, egfs_blkatoff },
        { &vop_valloc_desc, egfs_valloc },
        { &vop_reallocblks_desc, egfs_reallocblks },
        { &vop_vfree_desc, egfs_vfree },
        { &vop_truncate_desc, egfs_truncate },
        { &vop_update_desc, egfs_update },
        { &vop_bwrite_desc, egfs_bwrite },
        { &vop_getpages_desc, egfs_getpages },
        { &vop_putpages_desc, egfs_putpages },
        { NULL, NULL }
};
const struct vnodeopv_desc egfs_vnodeop_opv_desc =
        { &egfs_vnodeop_p, egfs_vnodeop_entries };



	
Create a minimal
        src/sys/fs/egfs/egfs_vfsops.c file that
        contains stubs for all VFS operations.

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: netbsd-internals.html,v 1.109 2025/03/30 14:57:25 maya Exp $");

#include <sys/param.h>
#include <sys/mount.h>

static int egfs_mount(struct mount *, const char *, void *,
    struct nameidata *, struct proc *);
static int egfs_start(struct mount *, int, struct proc *);
static int egfs_unmount(struct mount *, int, struct proc *);
static int egfs_root(struct mount *, struct vnode **);
static int egfs_quotactl(struct mount *, int, uid_t, void *,
    struct proc *);
static int egfs_vget(struct mount *, ino_t, struct vnode **);
static int egfs_fhtovp(struct mount *, struct fid *, struct vnode **);
static int egfs_vptofh(struct vnode *, struct fid *);
static int egfs_statvfs(struct mount *, struct statvfs *, struct proc *);
static int egfs_sync(struct mount *, int, struct ucred *, struct proc *);
static void egfs_init(void);
static void egfs_done(void);
static int egfs_checkexp(struct mount *, struct mbuf *, int *,
    struct ucred **);
static int egfs_snapshot(struct mount *, struct vnode *,
    struct timespec *);

extern const struct vnodeopv_desc egfs_vnodeop_opv_desc;

const struct vnodeopv_desc * const egfs_vnodeopv_descs[] = {
        &egfs_vnodeop_opv_desc,
        NULL,
};

struct vfsops egfs_vfsops = {
        MOUNT_EGFS,
        egfs_mount,
        egfs_start,
        egfs_unmount,
        egfs_root,
        egfs_quotactl,
        egfs_statvfs,
        egfs_sync,
        egfs_vget,
        egfs_fhtovp,
        egfs_vptofh,
        egfs_init,
        NULL, /* vfs_reinit: not yet (optional) */
        egfs_done,
        NULL, /* vfs_wassysctl: deprecated */
        NULL, /* vfs_mountroot: not yet (optional) */
        egfs_checkexp,
        egfs_snapshot,
        vfs_stdextattrctl,
        egfs_vnodeopv_descs
};
VFS_ATTACH(egfs_vfsops);

static int
egfs_mount(struct mount *mp, const char *path, void *data,
    struct nameidata *ndp, struct proc *p)
{

        return EOPNOTSUPP;
}

static int
egfs_start(struct mount *mp, int, struct proc *p)
{

        return EOPNOTSUPP;
}

static int
egfs_unmount(struct mount *mp, int, struct proc *p)
{

        return EOPNOTSUPP;
}

static int
egfs_root(struct mount *mp, struct vnode **vpp)
{

        return EOPNOTSUPP;
}

static int
egfs_quotactl(struct mount *mp, int cmd, uid_t uid, void *arg,
    struct proc *p)
{

        return EOPNOTSUPP;
}

static int
egfs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
{

        return EOPNOTSUPP;
}

static int
egfs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
{

        return EOPNOTSUPP;
}

static int
egfs_vptofh(struct vnode *mp, struct fid *fhp)
{

        return EOPNOTSUPP;
}

static int
egfs_statvfs(struct mount *mp, struct statvfs *sbp, struct proc *p)
{

        return EOPNOTSUPP;
}

static int
egfs_sync(struct mount *mp, int waitfor, struct ucred *uc, struct proc *p)
{

        return EOPNOTSUPP;
}

static void
egfs_init(void)
{

        return EOPNOTSUPP;
}

static void
egfs_done(void)
{

        return EOPNOTSUPP;
}

static int
egfs_checkexp(struct mount *mp, struct mbuf *mb, int * wh,
    struct ucred **anon)
{

        return EOPNOTSUPP;
}

static int
egfs_snapshot(struct mount *mp, struct vnode *vp, struct timespec *ctime)
{

        return EOPNOTSUPP;
}



	
Define a new malloc type for the file system and modify
        the egfs_init and
        egfs_done hooks to attach and detach it in
        the LKM case.

See Section 2.5, “Initialization and cleanup”.



	
Create the src/sys/fs/egfs/egfs.h
        file, that will define all the structures needed for our file
        system.

#if !defined(_EGFS_H_)
#  define _EGFS_H_
#else
#  error "egfs.h cannot be included multiple times."
#endif

#if defined(_KERNEL)

struct egfs_mount {
        ...
};

struct egfs_node {
        ...
};

#endif /* defined(_KERNEL) */

#define EGFS_ARGSVERSION 1
struct egfs_args {
        char *ea_fspec;

        int ea_version;

        ...
};



	Create the src/sbin/mount_egfs
        directory.


	
Create a simple
        src/sbin/mount_egfs/Makefile file:

.include <bsd.own.mk>

PROG= mount_egfs
SRCS= mount_egfs.c
MAN= mount_egfs.8

CPPFLAGS+= -I${NETBSDSRCDIR}/sys
WARNS= 4

.include <bsd.prog.mk>



	
Create a simple
        src/sbin/mount_egfs/mount_egfs.c program
        that calls the mount(2) system call.

XXX: Add an example or link to the corresponding
        section.



	Create an empty
        src/sbin/mount_egfs/mount_egfs.8 manual
        page.  Details left out from this guide.


	
Fill in the egfs_mount and
        egfs_unmount functions.

See Section 2.6, “Mounting and unmounting”.



	Fill in the egfs_statvfs function.
        Return correct data if possible at this point or leave it for a
        later step.


	Set the vop_fsync,
        vop_bwrite and
        vop_putpages operations to
        genfs_nullop.  These need to be defined and
        return successfully to avoid crashes during sync(2) and
        mount(2).  We will fill them in at a later stage.


	Set the vop_abortop operation to
        genfs_abortop.


	
Set the locking operations to
        genfs_lock,
        genfs_unlock and
        genfs_islocked.  You will most likely need
        locking, so it is better if you get it right from the
        beginning.

See Section 2.8.5, “vnode's locking protocol”.



	
Implement the vop_reclaim and
        vop_inactive operations to correctly
        destroy vnodes.

See Section 2.8.4, “Deallocation of a vnode”.



	Fill in the egfs_sync function.  In
        case you do not know what do put in it, just return success
        (zero); otherwise, serious problems will arise because it will
        be impossible for the operating system to flush your file
        system.


	
Fill in the egfs_root function.
        Assuming you already read the file system's root node from disk
        (or whichever backing store you use) and have it in memory,
        simply allocate and lock a vnode for it.

See Section 2.8.3, “Allocation of a vnode”.

int
egfs_root(struct mount *mp, struct vnode **vpp)
{

        return egfs_alloc_vp(mp, ((struct egfs_mount *)mp)->em_root, vpp);
}



	Improve the mount utility to support standard options (see
        getmntopts(3)) and possibly some file system specific options
        too.


	
Implement the egfs_getattr and
        egfs_setattr functions operations.  As a
        side effect, implement egfs_update and
        egfs_sync too.  For the latter, you only
        need an stub that returns success for now.

See Section 2.11.6, “Attributes management”.



	
Implement the egfs_access
        operation.

See Section 2.11.8, “Access control”.



	
Implement the egfs_print function.
        This is trivial, as all it has to do is dump vnode information
        (its attributes, mostly) on screen, but it will help with
        debugging.

See Section 2.11.8, “Access control”.



	
Implement a simple egfs_lookup
        function that can locate any given file; be careful to conform
        with the locking protocol described in vnodeops(9), as this
        part is really tricky.  At this point, you can forget about the
        lookup hints (CREATE,
        DELETE or RENAME); you
        will add them when needed.

See Section 2.10, “Path name resolution procedure”.



	
Implement the egfs_open function.  In
        the general case, this one only needs to verify that the open
        mode is correct against the file flags.

int
egfs_open(void *v)
{
        struct vnode *vp = ((struct vop_open_args *)v)->a_vp;
        int mode = ((struct vop_open_args *)v)->a_mode;

        struct egfs_node *node;

        node = (struct egfs_node *)vp->v_data;

        if (node->en_flags & APPEND &&
            mode & (FWRITE | O_APPEND)) == FWRITE)
                return EPERM;

        return 0;
}



	Implement the egfs_close function.
        In the general case, this one needs to do nothing aside
        returning success.


	
Implement the egfs_readdir operation
        so that you can start interacting with your file system.  After
        you add this function, you should be able to list any directory
        in it, and check that the files' attributes are shown correctly.
        And most likely, you will start seeing bugs ;-)

See Section 2.13.3, “Reading directories”.



	
Implement the egfs_mkdir operation.
        You may need to modify the egfs_lookup
        function to honour the CREATE hint.

See Section 2.10.3, “Lookup hints”.



	
Implement the egfs_rmdir operation.
        You may need to modify the egfs_lookup
        function to honour the DELETE hint.  Note
        that adding an operation that removes stuff from the file system
        is tricky; problems will certainly pop up if you have got bugs
        in your vnode allocation code or in the
        egfs_inactive or
        egfs_reclaim functions.

See Section 2.10.3, “Lookup hints” and Section 2.8.4, “Deallocation of a vnode”.



	Implement the egfs_create operation
        to create regular files (VREG) and local
        sockets (VSOCK) .


	Implement the egfs_remove operation
        to delete files.


	Implement the egfs_link operation to
        create hard links.  Be sure to control the file's hard link
        count correctly.


	Implement the egfs_rename operation.
        This one may seem complex due to the amount of arguments it
        takes, but it is not so difficult to implement.  Just keep in
        mind that it has to manage renames as well as moves and in which
        situation they happen.


	
Implement the egfs_read and
        egfs_write operations.  These are quite
        simple thanks to the indirection provided by the vnode's UVM
        object.

See Section 2.11.5, “Reading and writing”.



	
Redirect the egfs_getpages and
        egfs_putpages to
        genfs_getpages and
        genfs_putpages respectively.  Should be
        enough for most file systems.

See Section 2.11.5.2, “Getting and putting pages”.



	
Implement the egfs_bmap and
        egfs_strategy operations.

See Section 2.11.5.5, “Reading and writing pages”.



	Implement the egfs_truncate
        operation.


	Redirect the egfs_fcntl,
        egfs_ioctl, egfs_poll,
        egfs_revoke and
        egfs_mmap operations to their corresponding
        ones in genfs.  Should be enough for most-filesystems; note that
        even FFS does this.


	
Implement the egfs_pathconf
        operation.  This one is trivial, although the documentation in
        pathconf(2) and vnodeops(9) is a bit
        inconsistent.

int
egfs_pathconf(void *v)
{
        int name = ((struct vop_pathconf_args *)v)->a_name;
        register_t *retval = ((struct vop_pathconf_args *)v)->a_retval;

        int error;

        switch (name) {
        case _PC_LINK_MAX:
                *retval = LINK_MAX;
                break;
        case ...:
        ...
        }

        return 0;
}



	
Implement the egfs_symlink and
        egfs_readlink operations to manage symbolic
        links.

See Section 2.12, “Symbolic link management”.



	
Implement the egfs_mknod operation,
        which adds support for named pipes and special devices.

See Section 2.14, “Special nodes”.



	
Add NFS support.  This basically means implementing the
        egfs_vptofh,
        egfs_checkexp and
        egfs_fhtovp VFS operations.

See Section 2.15, “NFS support”.













This chapter describe processes and threads in NetBSD. This includes
    process startup, traps and system calls, process and thread creation 
    and termination, signal delivery, and thread scheduling.

CAUTION! This chapter is an ongoing work: it has not been 
    reviewed yet, neither for typos, nor for technical mistakes





On Unix systems, new programs are started using the 
      execve system call. If successful, 
      execve replaces the currently-executing program
      by a new one. This is done within the same process, by reinitializing 
      the whole virtual memory mapping and loading the new program binary in 
      memory. All the process's threads (except for the calling one) are
      terminated, and the calling thread CPU context is reset for executing
      the new program startup.

Here is execve prototype:




	int execve(
	
path, 
	 



	 
	
argv, 
	 



	 
	
envp);
	 




const char *path;
char *const argv[];
char *const envp[];




path is the filesystem path to the new 
      executable. argv and envp 
      are two NULL-terminated string arrays that hold the new program 
      arguments and environment variables. execve is
      responsible for copying the arrays to the new process stack.






3.1.2. Overview of in-kernel execve code path



Here is the top-down modular diagram for execve
      implementation in the NetBSD kernel when executing a native 32 bit ELF 
      binary on an i386 machine:

	

        src/sys/kern/kern_exec.c: 
        sys_execve
	

	

          src/sys/kern/kern_exec.c: 
          execve1
	  


	

            src/sys/kern/kern_exec.c: 
            check_exec
            


	
              src/sys/kern/kern_verifiedexec.c: 
              veriexec_verify
              

	

              src/sys/kern/kern_conf.c: 
              *execsw[]->es_makecmds 
              

	

                src/sys/kern/exec_elf32.c:
                exec_elf_makecmds
                


	
                  src/sys/kern/exec_elf32.c:
                  exec_check_header
                  

	
                  src/sys/kern/exec_elf32.c:
                  exec_read_from
                  

	

                  src/sys/kern/exec_conf.c:
                  *execsw[]->u.elf_probe_func
                  

	
                    src/sys/kern/exec_elf32.c:
                    netbsd_elf_probe
                    





	
                  src/sys/kern/exec_elf32.c:
                  elf_load_psection
                  

	
                  src/sys/kern/exec_elf32.c:
                  elf_load_file
                  

	

                  src/sys/kern/exec_conf.c:
                  *execsw[]->es_setup_stack
                  

	
                    src/sys/kern/exec_subr.c:
                    exec_setup_stack
                    



















	

          *fetch_element 
          

	
	    src/sys/kern/kern_exec.c:
            execve_fetch_element
            





	

          *vcp->ev_proc
          


	
	    src/sys/kern/exec_subr.c:
            vmcmd_map_zero
            

	
	    src/sys/kern/exec_subr.c:
            vmcmd_map_pagedvn
            

	
	    src/sys/kern/exec_subr.c:
            vmcmd_map_readvn
            

	
	    src/sys/kern/exec_subr.c:
            vmcmd_readvn
            






	

	  src/sys/kern/exec_conf.c:
          *execsw[]->es_copyargs 
          

	
	    src/sys/kern/kern_exec.c:
            copyargs
            





	
	  src/sys/kern/kern_clock.c:
          stopprofclock
          

	
	  src/sys/kern/kern_descrip.c:
          fdcloseexec
          

	
	  src/sys/kern/kern_sig.c:
          execsigs
          

	
	  src/sys/kern/kern_ras.c:
          ras_purgeall
          

	
	  src/sys/kern/exec_subr.c:
          doexechooks
          

	

	  src/sys/sys/event.h:
          KNOTE
          

	
	    src/sys/kern/kern_event.c:
	    knote
            





	

	  src/sys/kern/exec_conf.c:
          *execsw[]->es_setregs
          

	
	    src/sys/arch/i386/i386/machdep.c:
            setregs
            





	
	  src/sys/kern/kern_exec.c:
          exec_sigcode_map
          

	
	  src/sys/kern/kern_exec.c:
          *p->p_emul->e_proc_exit (NULL)
          

	
	  src/sys/kern/kern_exec.c:
          *p->p_emul->e_proc_exec (NULL)
          












execve calls execve1
      with a pointer to a function called fetch_element,
      responsible for loading program arguments and environment variables
      in kernel space.
      The primary reason for this abstraction function is to allow fetching
      pointers from a 32 bit process on a 64 bit system.

execve1 uses a variable of type
      struct exec_package (defined in 
      src/sys/sys/exec.h) to share information
      with the called functions.

The makecmds is responsible for checking
      if the program can be loaded, and to build a set of virtual memory
      commands (vmcmd's) that can be used later to setup the virtual memory
      space and to load the program code and data sections. The set of
      vmcmd's is stored in the ep_vmcmds field of the 
      exec package. The use of these vmcmd set allows cancellation of the
      execution process before a commitment point.






3.1.3. Multiple executable format support with the exec switch



The exec switch is an array of structure struct execsw
      defined in src/sys/kern/exec_conf.c: 
      execsw[].
      The struct execsw itself is defined in 
      src/sys/sys/exec.h.

Each entry in the exec switch is written for a given executable 
      format and a given kernel ABI. It contains test methods to check if
      a binary fits the format and ABI, and the methods to load it and start
      it up if it does. One
      can find here various methods called within execve
      code path.


Table 3.1. struct execsw fields summary







	Field name
	Description




	es_hdrsz
	The size of the executable format header



	es_makecmds
	A method that checks if the program can be executed,
              and if it does, create the vmcmds required to setup the virtual 
              memory space (this includes loading the executable code and
              data sections).



	
u.elf_probe_func
u.ecoff_probe_func
u.macho_probe_func
              
	Executable probe method, used by the
              es_makecmds method  
              to check if the binary can be executed. 
              The u field is an union that contains 
              probe methods for ELF, ECOFF and Mach-O formats



	es_emul
	The struct emul used for handling different
              kernel ABI. It is covered in detail in 
             Section 3.2.2, “Multiple kernel ABI support with the emul switch”.



	es_prio
	A priority level for this exec switch entry. This field
              helps choosing the test order for exec switch entries



	es_arglen
	XXX ?



	es_copyargs
	Method used to copy the new program arguments and
              environment function in user space



	es_setregs
	Machine-dependent method used to set up the initial
              process CPU registers



	es_coredump
	Method used to produce a core from the process



	es_setup_stack
	Method called by es_makecmds 
              to produce a set of vmcmd for setting up the new process stack.
              








execve1 iterate on the exec switch entries,
      using the es_priority for ordering, and calls the
      es_makecmds method of each entry until it gets
      a match.

The es_makecmds will fill the exec package's
      ep_vmcmds field with vmcmds that will be used later
      for setting up the new process virtual memory space. See 
      Section 3.1.3.2, “Virtual memory space setup commands (vmcmds)” for details about the vmcmds.




3.1.3.1. Executable format probe



The executable format probe is called by the
        es_makecmds method. Its job is simply to check
        if the executable binary can be handled by this exec switch entry.
        It can check a signature in the binary (e.g.: ELF note section), 
        the name of a dynamic linker embedded in the binary, and so on.

Some probe functions feature wildcard, and will be used as 
        last resort, with the help of the es_prio field.
        This is the case of the native ELF 32 bit entry, for instance.






3.1.3.2. Virtual memory space setup commands (vmcmds)



Vmcmds are stored in an array of struct exec_vmcmd
        (defined in src/sys/sys/exec.h) in the 
        ep_vmcmds field of the exec 
        package, before execve1 decides to execute or
        destroy them.

struct exec_vmcmd defines,
        in the ev_proc field, a pointer to the
        method that will perform the command, The other fields are 
        used to store the method's arguments.

Four methods are available in 
        src/sys/kern/exec_subr.c


Table 3.2. vmcmd methods







	Name
	Description




	vmcmd_map_pagedvn
	Map memory from a vnode. Appropriate for handling 
                demand-paged text and data segments.



	vmcmd_map_readvn
	Read memory from a vnode. Appropriate for handling 
                non-demand-paged text/data segments, i.e. impure objects 
                (a la OMAGIC and NMAGIC).



	vmcmd_readvn
	XXX ?



	vmcmd_zero
	Maps a region of zero-filled memory








Vmcmd are created using new_vmcmd, 
      and can be destroyed using kill_vmcmd.






3.1.3.3. Stack virtual memory space setup



The es_setup_stack field of the exec switch
        holds a pointer to the method in charge of generating the vmcmd
        for setting up the stack space. Filling the stack with arguments and
        environment is done later, by the es_copyargs
        method.

For native ELF binaries, the 
        netbsd32_elf32_copyargs 
        (obtained by a macro from elf_copyargs method 
        in src/sys/kern/exec_elf32.c) is used. It calls the
        copyargs (from 
        src/sys/kern/kern_exec.c) for the part of the 
        job which is not specific to ELF.

copyargs has to copy back the arguments 
        and environment string from the kernel copy (in the exec package) 
        to the new process stack in userland. Then
        the arrays of pointers to the strings are reconstructed, and finally,
        the pointers to the array, and the argument count, are copied to the
        top of the stack. The new program stack pointer will be set to 
        point to the argument count, followed by the argument array pointer,
        as expected by any ANSI program.

Dynamic ELF executable are special: they need a structure 
        called the ELF auxiliary table to be copied on the stack. The
        table is an array of pairs of key and values for various things
        such as the ELF header address in user memory, the page size, or
        the entry point of the ELF executable

Note that when starting a dynamic ELF executable, the ELF
        loader (also known as the interpreter: 
        /usr/libexec/ld.elf_so) is loaded with the
        executable by the kernel. The ELF loader is started by
        the kernel and is responsible for starting the executable itself
        afterwards.






3.1.3.4. Initial register setup



es_setregs is a machine 
        dependent method responsible for setting up the initial 
        process CPU registers. On any machine, the method will 
        have to set the registers holding the instruction pointer, 
        the stack pointer and the machine state. Some ports will need
        more work (for instance i386 will set up the segment registers,
        and Local Descriptor Table)

The CPU registers are stored in a struct trapframe,
        available from struct lwp.






3.1.3.5. Return to userland



After execve has finished his work,
        the new process is ready for running. It is available in the run
	queue and it will be picked up by the scheduler when 
        appropriate.

From the scheduler point of view, starting or resuming a
        process execution is the same operation: returning to userland.
        This involves switching to the process virtual memory space, 
        and loading the process CPU registers. By loading the machine
        state register with the system bit off, kernel privileges are
        dropped.

XXX details










3.2. Traps and system calls



When the processor encounter an exception (memory fault, division
    by zero, system call instruction...), it executes a trap: control
    is transferred to the kernel, and after some assembly routine in 
    locore.S, the CPU drops in the 
    syscall_plain
    (from src/sys/arch/i386/i386/syscall.c on i386) for
    system calls, or in the
    trap function 
    (from src/sys/arch/i386/i386/trap.c on i386) for
    other traps.

There is also a syscall_fancy system call
    handler which is only used when the process is being traced by 
    ktrace.





3.2.2. Multiple kernel ABI support with the emul switch



The struct emul is defined in 
        src/sys/sys/proc.h. It defines various methods
        and parameters to handle system calls and traps. Each kernel ABI
        supported by the NetBSD kernel has its own struct emul.
        For instance, Linux ABI defines emul_linux in
        src/sys/compat/linux/common/linux_exec.c,
        and the native ABI defines emul_netbsd, in
        src/sys/kern/kern_exec.c.

The struct emul for the current ABI is obtained
        from the es_emul field of the exec switch entry 
        that was selected by execve. The kernel holds a 
        pointer to it in the process' struct proc (defined in
        src/sys/sys/proc.h).

Most importantly, the struct emul defines the
       system call handler function, and the system call table.






3.2.3. The syscalls.master table



Each kernel ABI have a system call table. The table maps system
      call numbers to functions implementing the system call in the kernel
      (e.g.: system call number 2 is fork). The
      convention (for native syscalls) is that the kernel function
      implementing syscall foo
      is called sys_foo. Emulation syscalls have
      their own conventions, like linux_sys_ prefix for the Linux emulation.
      The native system call table can be found in 
      src/sys/kern/syscalls.master.

This file is not written in C language. After any change, it
      must be processed by the Makefile available 
      in the same directory. syscalls.master processing
      is controlled by the configuration found in 
      syscalls.conf, and it will output several 
      files:


Table 3.3. Files produced from syscalls.master







	File name
	Description




	syscallargs.h
	Define the system call arguments structures, used
              to pass data from the system call handler function to the
              function implementing the system call.



	syscalls.c
	An array of strings containing the names for 
              the system calls



	syscall.h
	Preprocessor defines for each system call name and 
              number — used in libc



	sysent.c
	An array containing for each system call an entry with
              the number of arguments, the size of the system call arguments
              structure, and a pointer to the function that implements the
              system call in the kernel








In order to avoid namespace collision, non native ABI have 
      syscalls.conf defining output file names prefixed
      by tags (e.g: linux_ for Linux ABI).

system call argument structures (syscallarg for short) are 
      always used to pass arguments to functions implementing the system
      calls. Each system call has its own syscallarg structure. This 
      encapsulation layer is here to hide endianness differences.

All functions implementing system calls have the same prototype:
      




	int syscall(
	
l, 
	 



	 
	
v, 
	 



	 
	
retval);
	 




struct lwp *l;
void * v;
register_t *retval;




l is the struct lwp
      for the calling thread, v is the
      syscallarg structure pointer, and retval
      is a pointer to the return value. The function returns the error
      code (see errno(2)) or 0 if there was no error.  Note that
      the prototype is not the same as the “declaration”
      in syscalls.master. The declaration in
      syscalls.master corresponds to the
      documented prototype for the system call. This is because system
      calls as seen from userland programs have different prototypes,
      but the sys_...
      kernel functions implementing them must have the same prototype
      to unify the interface between MD syscall handlers and MI
      syscall implementation. In syscalls.master, the
      declaration shows the syscall arguments as seen by
      userland and determines the members of the syscallarg structure,
      which encapsulates the syscall arguments and has one member for
      each one.

While generating the files listed above some substitutions
      on the function name are performed: the syscalls tagged as
      COMPAT_XX are prefixed by
      compat_xx_, same for the syscallarg structure
      name. So the actual kernel function implementing those syscalls
      have to be defined in a corresponding way. Example: if
      syscalls.master has a line


97	COMPAT_30	{ int sys_socket(int domain, int type, int protocol); }



	the actual syscall function will have this prototype:
        




	int compat_30_sys_socket(
	
l, 
	 



	 
	
v, 
	 



	 
	
retval);
	 




struct lwp *l;
void * v;
register_t *retval;





	and v is a pointer to struct
	compat_30_sys_socket_args, whose declaration is the
	following:
 	

struct compat_30_sys_socket_args {
        syscallarg(int) domain;
        syscallarg(int) type;
        syscallarg(int) protocol;
};


	Note the correspondence with the documented prototype of the
	socket(2) syscall and the declaration of
	sys_socket in
	syscalls.master. The types of syscall
	arguments are wrapped by syscallarg
	macro, which ensures that the structure members will be padded
	to a minimum size, again for unified interface between MD and
	MI code. That's why those members should not be accessed
	directly, but by the SCARG macro, which
	takes a pointer to the syscall arg structure and the argument
	name and extracts the argument's value. See
	below for an example.
      






3.2.4. System call implementation in libc



The system call implementation in libc is autogenerated
      from the kernel implementation. As an example, let's examine the
      implementation of the access(2) function in libc. It can be
      found in the access.S file, which does not
      exist in the sources — it is autogenerated when libc is
      built. It uses macros defined in
      src/sys/sys/syscall.h and
      src/lib/libc/arch/MACHINE_ARCH/SYS.h:
      the syscall.h file contains defines which
      map the syscall names to syscall numbers. The syscall function
      names are changed by replacing the sys_
      prefix by SYS_. The
      syscall.h header file is also autogenerated
      from src/sys/kern/syscalls.master by
      running make init_sysent.c in
      src/sys/kern, as described above. By
      including SYS.h, we get
      syscall.h and the
      RSYSCALL macro, which accepts the syscall
      name, automatically adds the SYS_ prefix,
      takes the corresponding number, and defines a function of the
      name given whose body is just the execution of the syscall
      itself with the right number.  (The method of execution and of
      transfer of the syscall number and its arguments are machine
      dependent, but this is hidden in the
      RSYSCALL macro.)
      

 To continue the example of access(2),
      syscall.h contains


#define SYS_access      33



      so 

RSYSCALL(access)

 will result
      in defining the function access, which will
      execute the syscall with number 33. Thus,
      access.S needs to contain just:


#include "SYS.h"
RSYSCALL(access)



      To automate this further, it is enough to add the name of this
      file to the ASM variable in
      src/lib/libc/sys/Makefile.inc and the file will be
      autogenerated with this content when libc is built.

The above is true for libc functions which correspond exactly
      to the kernel syscalls. It is not always the case, even if the
      functions are found in section 2 of the manuals. For example the
      wait(2), wait3(2) and waitpid(2) functions are
      implemented as wrappers of only one syscall, wait4(2). In
      such case the procedure above yields the
      wait4 function and the wrappers can
      reference it as if it were a normal C function. 






3.2.5. How to add a new system
    call



Let's pretend that the access(2) syscall does not exist
    yet and you want to add it to the kernel. How to proceed?
    


	
add the syscall to the
    src/sys/kern/syscalls.master list:
    

33      STD             { int sys_access(const char *path, int flags); }




	
	Run make init_sysent.c under
	src/sys/kern. This will update the
	autogenerated files: syscallargs.h,
	syscall.h,
	init_sysent.c and
	syscalls.c.
      

	

	Implement the kernel part of the system call, which will have
	the prototype:
	




	int sys_access(
	
l, 
	 



	 
	
v, 
	 



	 
	
retval);
	 




struct lwp *l;
void * v;
register_t *retval;





	as all other syscalls.
	To get the syscall arguments cast
	v to a pointer to struct
	sys_access_args and use the SCARG
	macro to retrieve them from that structure. For example, to get the
	flags argument if uap is a
	pointer to struct sys_access_args obtained by
	casting v, use:
	

SCARG(uap, flags)

 The type
	struct sys_access_args and the function
	sys_access are declared in
	sys/syscallargs.h, which is autogenerated from
	src/sys/kern/syscalls.master. Use
	

#include <sys/syscallargs.h>

 
        to get those declarations.
      

Look in
      src/sys/kern/vfs_syscalls.c for the real
      implementation of sys_access. 



	
	Run make includes in
	src/sys/sys. This will copy the
	autogenerated include files (most importantly,
	syscall.h) to
	usr/include under
	DESTDIR, where libc build will find them in
	the next steps.
      

	
	Add access.S to the
	ASM variable in
	src/lib/libc/sys/Makefile.inc.
      





    This is all. To test the new syscall, simply rebuild libc
    (access.S will be generated at this point) and
    reboot with a new kernel containing the new syscall. To make the
    new syscall generally useful, its prototype should be added to an
    appropriate header file for use by userspace programs — in
    the case of access(2), this is unistd.h, which is found in
    the NetBSD sources at src/include/unistd.h.
    






3.2.6. Versioning a system call



If the system call ABI (or even API) changes, it is
      necessary to implement the old syscall with the original semantics
      to be used by old binaries. The new version of the syscall has a
      different syscall number, while the original one retains the old
      number. This is called versioning.

The naming conventions associated with versioning are
      complex. If the original system call is called
      foo (and implemented by a
      sys_foo function) and it is changed after the
      x.y release, the new syscall will be named
      __fooxy, with the function implementing it
      being named sys___fooxy. The original syscall
      (left for compatibility) will be still declared as sys_foo in
      syscalls.master, but will be tagged as
      COMPAT_XY, so the function will be named
      compat_xy_sys_foo. We will call
      sys_foo the original version,
      sys___fooxy the new version and
      compat_xy_sys_foo the compatibility version
      in the procedure described below.

Now if the syscall is versioned again after version
      z.q has been released, the newest version
      will be called __foozq. The intermediate
      version (formerly the new version) will have to be retained for
      compatibility, so it will be tagged as
      COMPAT_ZQ, which will change the function
      name from sys___fooxy to
      compat_zq_sys___fooxy. The oldest version
      compat_xy_sys_foo will be unaffected by the
      second versioning.
      

HOW TO change a system call ABI or API and add a
      compatibility version? Let's look at a real example: versioning
      of the socket(2) system call after the error code in case
      of unsupported address family changed from
      EPROTONOSUPPORT to
      EAFNOSUPPORT between NetBSD 3.0 and 4.0.
      


	tag the old version
	  (sys_socket) with the right
	  COMPAT_XY in
	  syscalls.master. In the case of
	  sys_socket, it is
	  COMPAT_30, because NetBSD 3.0 was the
	  last version before the system call changed.
	  

	
add the new version at the end of
	  syscalls.master (this effectively allocates a
	  new syscall number). Name the new version as described
	  above. In our case, it will be sys___socket30:
    

394	STD		{ int sys___socket30(int domain, int type, int protocol); }




	The function implementing the socket syscall now
	  needs to be renamed from sys_socket to
	  sys___socket30 to match the change
	  above. Ideally, at this moment the change which requires
	  versioning would be made. (Though in practice it happens
	  that a change is made and only later it is realized that it
	  breaks compatibility and versioning is needed.)
	  

	
Implement the compatibility version, name it
	  compat_xy_sys_... as described above. The implementation belongs
	  under src/sys/compat and it shouldn't be a
	  modified copy of the new version, because the copies would
	  eventually diverge. Rather, it should be implemented in terms of
	  the new version, adding the adjustments needed for compatibility
	  (which means that it should behave exactly as the old
	  version did).
	  

In our example, the compatibility version would be
	  named compat_30_sys_socket. It can be found in
	  src/sys/compat/common/uipc_syscalls_30.c.
	  



	Find all references to the old syscall function in the
	  kernel and point them to the compatibility version or to the new
	  version as appropriate. (The kernel would not link
	  otherwise.) For example, many of the compatibility syscalls
	  or the syscalls.master tables
	  for various emulations under
	  src/sys/compat used to refer to
	  sys_socket. Decision if the references
	  should be changed to the compatibility version or to the new
	  version depend on the behavior of the OS that we intend to
	  emulate. E.g., FreeBSD uses the old error number, while
	  System V uses the new one.
	  





      Now the kernel should be compilable and old statically linked
      binaries should work, as should binaries using the old
      libc. Nothing uses the new syscall yet. We have to make a new
      libc, which will contain both the new and the compatibility
      syscall:
      


	in
	  src/lib/libc/sys/Makefile.inc, replace
	  the name of the old syscall by the new syscall
	  (__socket30 in our example). When libc is
	  rebuilt, it will contain the new function, but no programs use
	  this internal name with underscore, so it is not useful yet. Also,
	  we have lost the old name.

	
To make newly compiled programs use the new syscall
	  when they refer to the usual name
	  (socket in our example), we add a
	  __RENAME(newname) statement after the
	  declaration of the usual name is declared. In the case of
	  socket, this is
	  src/sys/sys/socket.h:


int     socket(int, int, int)
#if !defined(__LIBC12_SOURCE__) && !defined(_STANDALONE)
__RENAME(__socket30)
#endif



	  Now, when a program is recompiled using this header,
	  references to socket will be replaced
	  by __socket30, except for compilation
	  of standalone tools (basically bootloaders), which define
	  _STANDALONE, and libc compat code itself,
	  which defines __LIBC12_SOURCE__. The
	  __RENAME causes the compiler to emit
	  references to the __socket30 symbol
	  when socket is used in the source. The
	  symbol will be then resolved by the linker to the new
	  function (implemented by the new system call). Old binaries
	  are unaware of this and continue to reference
	  socket, which should be resolved to the
	  old function (having the same API as before the change). We
	  will re-add the old function in the next step.
	  



	To make the old binaries work with the new libc, we
	  must add the old function. We add it under
	  src/lib/libc/compat/sys, implementing
	  it using the new function. Note that we did not use the
	  compatibility syscall in the kernel at all, so old programs
	  will work with the new libc, even if the kernel is built
	  without COMPAT_30. The compatibility
	  syscall is there only for the old libc, which is used if the
	  shared library was not upgraded, or internally by statically
	  linked programs. 





      We are done — we have covered the cases of old binaries,
      old libc and new kernel (including statically linked binaries),
      old binaries, new libc and new kernel, and new binaries, new
      libc and new kernel.
      






3.2.7. Committing changes to syscall tables



When committing your work (either a new syscall or a new
      syscall version with the compatibility syscalls), you should
      remember to commit the source
      (syscalls.master) for the autogenerated files
      first, and then regenerate and commit the autogenerated
      files. They contain the RCS Id of the source file and this way,
      the RCS Id will refer to the current source version. The assembly
      files generated by
      src/lib/libc/sys/Makefile.inc are not kept in
      the repository at all, they are regenerated every time libc is
      built.






3.2.8. Managing 32 bit system calls on 64 bit systems



When executing 32 bit binaries on a 64 bit system, care must be
      taken to only use addresses below 4 GB. This is a problem at 
      process creation, when the stack and heap are allocated, but also for
      each system call, where 32 bits pointers handled by the 32 bit process
      are manipulated by the 64 bit kernel.

For a kernel built as a 64 bit binary, a 32 bit pointer is
      not something that makes sense: pointers can only be 64 bit long. 
      This is why 32 bit pointers are defined as an u_int32_t
      synonym called netbsd32_pointer_t
      (in src/sys/compat/netbsd32/netbsd32.h).

For copyin and copyout,
      true 64 bits pointers are required. They are obtained by casting the
      netbsd32_pointer_t through the 
      NETBSD32PTR64 macro.

Most of the time, implementation of a 32 bit system call is just
      about casting pointers and to call the 64 version of the system call.
      An example of such a situation can be found in 
      src/sys/compat/netbsd32/netbsd32_time.c:
      netbsd32_timer_delete. Provided that the 32 bit
      system call argument structure pointer is called uap, 
      and the 64 bit one is called ua, then helper macros
      called NETBSD32TO64_UAP, 
      NETBSD32TOP_UAP, 
      NETBSD32TOX_UAP, and
      NETBSD32TOX64_UAP can be used. Sources in
      src/sys/compat/netbsd32 provide multiple examples.
     








3.3. Processes and threads creation






3.3.1. fork, clone, and 
      pthread_create usage



XXX write me






3.3.2. Overview of fork code path



XXX write me






3.3.3. Overview of pthread_create code path



XXX write me








3.4. Processes and threads termination






3.4.1. exit, and 
      pthread_exit usage



XXX write me






3.4.2. Overview of exit code path



XXX write me






3.4.3. Overview of pthread_exit code path



XXX write me










3.5.1. Deciding what to do with a signal



XXX write me






3.5.2. The sendsig function



For each kernel ABI, struct emul defines a 
      machine-dependent sendsig function, which 
      is responsible for altering the process user context so that it calls a 
      signal handler.

sendsig builds a stack frame containing
      the CPU registers before the signal handler invocation. The CPU
      registers are altered so that on return to userland, the process
      executes the signal handler and have the stack pointer set to the
      new stack frame.

If requested at sigaction call time, 
      sendsig will also add a struct siginfo
      to the stack frame.

Finally, sendsig may copy
      a small piece of assembly code (called a "signal trampoline") to
      perform cleanup after handling the signal.  This is detailed in
      the next section. Note that modern NetBSD native programs do not
      use a trampoline anymore: it is only used for older programs,
      and emulation of other operating systems.






3.5.3. Cleaning up state after signal handler execution



Once the signal handler returns, the kernel must destroy the
      signal handler context and restore the previous process state. This
      can be achieved by two ways.

First method, using the kernel-provided signal trampoline:
      sendsig have copied the signal trampoline on 
      the stack and has prepared the stack and/or CPU registers so that the
      signal handler returns to the signal trampoline. The job of the 
      signal trampoline is to call the sigreturn
      or the setcontext system calls, handling a pointer
      to the CPU registers saved on stack. This restores the CPU registers
      to their values before the signal handler invocation, and next time the
      process will return to userland, it will resume its execution where it
      stopped.

The native signal trampoline for i386 is called 
      sigcode and can be found in 
      src/sys/arch/i386/i386/locore.S. Each emulated ABI
      has its own signal trampoline, which can be quite close to the native 
      one, except usually for the sigreturn system call
      number.

The second method is to use a signal trampoline provided by libc.
      This is how modern NetBSD native programs do. At the time the
      sigaction system call is invoked, the libc stub 
      handle a pointer to a signal trampoline in libc, which is in charge
      of calling setcontext.
      


      sendsig will use that pointer as the return address
      for the signal handler. This method is better than the previous one, 
      because it removes the need for an executable stack page where the
      signal trampoline is stored. The trampoline is now stored in the code
      segment of libc. For instance, for i386, the signal trampoline 
      is named __sigtramp_siginfo_2 and can be found in 
      src/lib/libc/arch/i386/sys/__sigtramp2.S.










        NetBSD 5.0 introduced a new scheduling API that allows for
        different scheduling algorithms to be implemented and selected
        at compile-time. There are currently two different scheduling
        algorithms available: the traditional 4.4BSD-based scheduler
        and the more modern M2 scheduler.
      


        NetBSD supports the three scheduling policies required by POSIX
        in order to support the POSIX real-time scheduling extensions:
        


	
              SCHED_OTHER: Time sharing (TS), the default on NetBSD
            


	
              SCHED_FIFO: First in, first out
            


	
              SCHED_RR: Round-robin
            






        SCHED_FIFO and SCHED_RR are predefined scheduling
        policies, leaving SCHED_OTHER as an implementation-specific
        policy.
      


        Currently, there are 224 different priority levels with 64 being
        available for the user level. Scheduling priorities are
        organized within the following classes:

        


Table 3.4. Scheduling priorities









	Class
	Range
	# Levels
	Description




	Kernel (RT)
	192..223
	32
	Software interrupts.



	User (RT)
	128..191
	64
	
                  Real-time user threads (SCHED_FIFO and SCHED_RR policies).
                



	Kernel threads
	96..127
	32
	
                  Internal kernel threads (kthreads), used
                  by I/O, VM and other kernel subsystems.
                



	Kernel
	64..95
	32
	Kernel priority for user processes/threads,
                temporarily assigned when entering kernel-space and blocking.



	User (TS)
	0..63
	64
	
                  Time-sharing range, user processes and threads (SCHED_RR policy)
                










        Threads running with the SCHED_FIFO policy have a fixed
        priority, i.e. the kernel does not change their priority
        dynamically. A SCHED_FIFO thread runs until
        


	completion


	voluntary yielding the CPU


	blocking on an I/O operation or other
          resources (memory allocation, locks)


	preemption by a higher priority real-time
          thread







        SCHED_RR works similar to SCHED_FIFO, except that such threads
        have a default time-slice of 100ms.
      


        For the SCHED_OTHER policy, both schedulers currently use the
        same run queue implementation, employing multi-level feedback
        queues. By dynamically adjusting a thread's priority to
        reflect its CPU and resource utilization, this approach allows
        the system to be responsive even under heavy loads.
      


        Each runnable thread is placed on one of the runqueues,
        according to its priority. Each thread is allowed to run
        on the CPU for a certain amount of time, its time-slice or
        quantum. Once the thread has used up its time-slice, it is
        placed on the back on its runqueue. When the scheduler
        searches for a new thread to run on the CPU, the first
        thread of the highest priority, non-empty runqueue is
        selected.
      




3.6.1.1. The 4.4BSD Scheduler




          The 4.4BSD scheduler adjusts a thread's priority
          dynamically as it accumulates CPU-time. CPU utilization is
          incremented in hardclock each time
          the system clock ticks and the thread is found to be
          executing. An estimate of a thread's recent CPU
          utilization is stored in l_estcpu,
          which is adjusted once per second
          in schedcpu via a digital decay
          filter. Whenever a thread accumulates four ticks in its
          CPU utilization, schedclock invokes
          resetpriority to recalculate the
          process's scheduling priority.
        






3.6.1.2. The M2 scheduler




          The M2 scheduler employs a traditional time-sharing approach
          similar to Unix System V Release 4 and Solaris.
        








          The common scheduler API is implemented within the file
          src/sys/kern/kern_synch.c. Additional
          information can be found in csf(9). Generic run-queues
          are implemented
          in src/sys/kern/kern_runq.c. Detailed
          information about the 4.4BSD scheduler is given in
          [McKusick]. A description of the SVR4
          scheduler is provided in [Goodheart].
        









This chapter describes code modules related to core
  networking.  It begins with a discussion on core networking
  components: the routing code, sockets and mbufs.  After this
  attention is given to the TCP/IP suite.  Information on
  services provided by the networking stack, including various
  pseudo devices, can be found from the chapter on
  networking services
  .

This chapter describes only the involved interfaces and is
  meant to give an overview for people wishing to work with the
  code.  A line-by-line discussion on most parts of the networking
  subsystem can be found from TCP/Illustrated, Vol2.  It is still
  mostly accurate these days, and this chapter does not attempt
  to rewrite what was already written.



The routing code controls the flow of all packets within
    the networking subsystem.  It makes the decision of where a
    packet with a given destination address should be sent next.
    The current routing table can be dumped using the command
    netstat -r; going over the normal table
    contents may be beneficial for the following discussion.

For example, in TCP/IP networking the routing module
    forwards the packets to the correct addresses and is involved
    in choosing the network interface through which the packets
    should go.  The decision whether to send to an intermediate
    gateway or directly to the target is made here.  And, finally,
    link layer lookups are done, which in the case of Ethernet and
    IPv4 would be ARP.

One important concept in the routing subsystem is cloning
    routes.  These routes are "cloned" to create a more specific
    route each time they are resolved; copy-on-read if it makes
    any sense.  A natural example is an interface route to the
    local Ethernet.  Any packet sent through this link will get a
    cloned route entry for ARP resolution.  This enables the caching
    of ARP responses without adding any explicit support for it on
    the routing layer.

The routing code can be thought to consist of three separate
    entities.  An overview will be given now and a more dedicated
    discussion can be found later.

      


	The routing database backend is implemented in
	  net/radix.c.  As hinted by the name,
	  the internal structure is a radix tree.
	  


	The route query and control interface is located in
	  net/route.c.  This module is accessed
	  from within the kernel and parameters are passed mainly
	  using the struct route and the
	  struct rtentry structures.


	The routing socket interface is located in
	  net/rtsock.c.  It is used to control
	  the routing table entries from userspace and is accessed
	  by opening a socket in the protocol family
	  PF_ROUTE.






It is good to keep in mind that routing control messages
    can come either from a process in the operating system
    (user running /sbin/route, gated,
    etc.) or from the network (e.g. ICMP).  This explains why
    internally some portions are controlled and parameters passed
    using a fashion similar to what the routing socket uses.




4.1.1. Network Routing DB Backend



This section describes the interface to the radix tree
      routing database.  The actual internal operation of the radix
      code is beyond the scope of this document and can be found,
      for example, in TCP/IP Illustrated Vol2.  Much of the complexity
      of this module is due to its aspiration to be as generic as
      possible and adaptable to any networking domain.

A radix tree is accessed mostly through the member
      functions in struct radix_node_head
      (but there are some exceptions).  These function pointers
      are initialized after a radix tree is created with
      rn_inithead called from each networking
      domain's initialization routine.  The head is then stored in
      the global array rt_tables using the domain
      type as the indexing value.

As arguments the radix tree functions take void *'s,
      which point to a struct sockaddr
      type of data structure.  But since the radix tree layer treats
      the arguments as opaque data and a struct
      sockaddr contains header data (such as the
      sockaddr family sa_family or,
      specific to IP, the port sin_port)
      before the actual network address, each networking domain
      specifies a bit offset where the network address is located.
      This offset is given in struct domain
      by dom_rtoffset and used when testing
      against the supplied void *'s.  Additionally,
      the radix tree expects to find the length of the structure
      underlying the void * at the first byte of the
      provided argument.  This also matches the (BSD)
      struct sockaddr layout.


      Most of the interface methods are located in the struct
      radix_node_head accessible through
      rt_tables.  Theoretically the jump through the
      function pointer hoop is unnecessary, since the pointers are
      initialized to the same values for all trees in
      net/radix.c.  Not all of the members of the
      structure are ever used and only the ones used are described
      here.  Included in the description are also the ones not
      provided through function pointers, but accessed directly.
      They can be differentiated by looking at the function prefix:
      ones inside radix_node_head start with
      rnh, while directly accessed ones start
      with rn.

      


Table 4.1. struct radix_node_head interfaces







	name
	description




	rnh_addaddr
	Adds an entry with the given address and netmask to
		     the database.  The storage space for the database
		     structures is provided by the caller as an argument
		     (usually these are part of struct
		     rtentry, as we will see later).
		     The route target is already prefilled
		     into the storage space by the caller.
		     



	rnh_deladdr
	Removes an address with a matching netmask from
		     the given radix database.



	rnh_matchaddr
	Locate the entry in the database which provides
		     the best match for the given address.  "Best match"
		     is defined as the match having the longest prefix of
		     1-bits in the netmask.



	rnh_lookup
	Locate the most exact entry in the database for the
		     given address with the netmask of the entry matching
		     the argument given.



	rnh_walktree
	Walks the database calling the provided function for
		     each entry.  This is useful e.g. for dumping the
		     entire routing table or flushing routes cloned from
		     a certain parent entry.



	rn_search
	Returns the leaf node found at the end of the bit
		     comparisons.  This is either a match or the leaf in the
		     the tree that should be backtracked to find
		     a match.



	rn_refines
	Compares two netmasks and checks which one has more
		     bits set, i.e. which one is "more exact".



	rn_addmask
	Enters the supplied netmask into the netmask tree.














      The route interface implemented in net/route.c
      is used by the kernel proper when it requires routing services to
      discover where a packet should be sent to.

The argument passing to this modules revolves around, in
      addition to struct sockaddr and the
      radix structures mentioned in the previous chapter, two structures:
      struct route and struct
      rtentry.
      

The structure struct route contains
      a struct rtentry in addition to a
      struct sockaddr signalling the destination
      address for the route.  The destination is decoupled from the
      routing information so that multiple destinations could share
      the same route structure; think outgoing connections routed to
      the gateway, for example.
      

The routing information itself is contained in
      struct rtentry defined in
      net/route.h.  It consists of the
      following fields:

      


Table 4.2. struct rtentry members








	type
	name
	description




	struct radix_node [2]
	rt_nodes
	radix tree glue



	struct sockaddr *
	rt_gateway
	gateway address



	int
	rt_flags
	flags



	u_long
	rt_use
	number of times the route was used



	struct ifnet *
	rt_ifp
	pointer to the interface structure of the route
		     target



	struct ifaddr *
	rt_ifa
	Pointer to the interface address of the route
		     target.  The sockaddr behind this pointer can
		     be for example of type struct sockaddr_in
		     or struct sockaddr_dl.



	const struct sockaddr *
	rt_genmask
	Cloning mask for struct sockaddr.



	caddr_t
	rt_llinfo
	Link level structure pointer.  For example, this
		     will point to struct llinfo_arp
		     for Ethernet.



	struct rt_metrics
	rt_rmx
	The route metrics used by routing protocols.
		     This includes information such as the path MTU
		     and estimated RTT and RTT variance.



	struct rtentry *
	rt_gwroute
	In the case of a gateway route, this contains
		     (after it is resolved) the route to the gateway.
		     For example, on IP/Ethernet, the route containing
		     the gateway IP address will have a pointer to the
		     gateway MAC address route here.



	LIST_HEAD(, rttimer)
	rt_timer
	Misc. timers associated with a route.  This queue
		     is accessed through the rt_timer*
		     family of functions declared in
		     net/route.h.



	struct rtentry *
	rt_parent
	The parent of a cloned route.  This is used for
		     cleanup when the parent route is removed.









Routes can be queried through two different interfaces:
      

	void rtalloc(struct route *ro);
	struct rtentry *rtalloc1(const struct sockaddr *dst, int report);
      


      The difference is that the former is a convenience function which
      skips the routing lookup in case the rtentry
      contained within struct route already
      contains a route that is up.  As an example, struct
      route is included in struct
      inpcb to act as a route cache.  It helps especially
      for TCP connections, where the endpoint does not change and
      therefore the route remains the same.

The latter is used to lookup information from the
      routing database.  The report parameter
      is overloaded to control two operations: whether to create
      a routing socket message in case there is no route available
      and whether to clone a route in case the resolved route is
      a cloning route (quite clearly both of these conditions cannot be
      true during the same lookup, so the only possibility for
      ambiguity is for the programmers).

After routing information (struct
      rtentry) is no longer needed, the routing entry
      is to be released using rtfree.  This takes
      care of appropriate reference counting and releasing the underlying
      data structures.  Notice that this does not delete a routing table
      entry, it merely releases a route entry created from a routing
      table entry.





Routing sockets are used for controlling the routing
      table.  The routing socket kernel portion is implemented
      in the file net/rtsock.c.

 While in BSD systems the routing code is within the
      kernel, the decisions on the routing table entries are
      controlled from outside, usually from a userspace routing
      daemon.  The routing socket (simply a socket of type
      PF_ROUTE) enables the communication between
      the user and kernel portions.  For simpler systems, such as
      normal desktop machines with essentially the default gateway
      address being the only routing information, the routing socket
      is used to set the gateway address.  Smart routers will use
      this interface for programs such as routed.

The routing socket acts like any other socket: it is
      possible to write to it or read from it.  Writing (from the
      userland perspective) is handled by
      route_output, while data is transferred
      to userspace using the raw_input call
      giving raw data and the routing socket addressing identifiers
      as the parameters.

The data passed through the routing socket is described
      by a structure called struct rt_msghdr,
      which is declared in net/route.h.  The message
      type field in the header identifies the type of activity taking
      place, e.g. RTM_ADD means adding a new route
      and RTM_REDIRECT means redirecting an existing
      route.  In the latter case, the input comes from the network
      e.g. in the form of an ICMP packet.

The addresses involved with the routing messages are
      handled in a somewhat non-obvious way within the file
      net/rtsock.c.  They are passed as binary
      data in the message, read into a structure called struct
      rt_addrinfo, and used like local variables throughout
      the file because of preprocessor magic such as the following:
      

#define dst     info.rti_info[RTAX_DST]


To be compatible with the routing socket and its
      propagation of information, networking subsystems should
      support the rtrequest interface.  It
      is called through the if_rtrequest
      member in struct ifaddr.  Examples include
      arp_rtrequest for Ethernet interfaces
      and llc_rtrequest in the OSI ISO stack.
      Rtrequest methods handle the same requests as what are
      communicated via the routing socket (RTM_ADD,
      RTM_DELETE, ...), but the actual routing socket
      message layout is handled within the routing socket code.







The Berkeley abstraction for a communication endpoint is
    called a socket.  From the userspace perspective, the handle
    to a socket is an integer, no different from any other descriptor.
    There are differences, such as support for interface calls reserved
    only for sockets (getsockopt,
    setsockopt, etc.), but on the basic level, the
    interface is the same.

However, under the hood things diverge quickly.  The integer
    descriptor value is used to lookup the kernel internal file
    descriptor structure, struct file, as
    usual.  After this the socket data structure, struct
    socket is found from the pointer
    f_data in struct
    file.

When discussing sockets it is important to remember that
    they were designed as an abstraction to the underlying
    protocol layers.




4.2.1. Socket Data Structure



Inside the kernel, a socket's information is contained within
      struct socket.  This structure is not
      defined in sys/socket.h, which mostly deals with
      the user-kernel interface, but rather in
      sys/socketvar.h.
      



Table 4.3. struct socket members








	type
	name
	description




	short
	so_type
	The generic socket type.  Well-known examples
		     are SOCK_STREAM and
		     SOCK_DGRAM




	short
	so_options
	socket options.  Most of these, such as
		SO_REUSEADDR, can be set using
		setsockopt.  Others, such as
		SO_ACCEPTCONN as set using other
		methods (in this case calling listen)
		



	short
	so_linger
	Time the socket lingers on after being closed.
		Used if SO_LINGER is set.  An example
		user is TCP.



	short
	so_state
	internal socket state flags controlled by the
		kernel.  Some, however, are indirectly settable
		by userspace, for example SS_ASYNC
		to deliver async I/O notifications.



	const struct protosw *
	so_proto
	socket protocol handle.  This is used to attach
		the socket to a certain protocol, for example IP/UDP.
		The socket protocol requests, such as
		PRU_USRREQ used for sending packets,
		are accessed through this member.  See also
		section on socket
		protocol support.



	short
	so_timeo
	connection timeout, not used except as a wakeup()
		address(?)



	u_short
	so_error
	an error value.  This field is used to store
		error values that should be returned to socket routine
		callers once they are executed/scheduled.



	pid_t
	so_pgid
	the pgid use to identify the target for
		socket-related signal delivery.



	u_long
	so_oobmark
	counter to the oob mark



	struct sockbuf
	so_snd, so_rcv
	Socket send and receive buffers, see
		section on socket
		buffers for further information.



	void (*so_upcall)
	so_upcall
	In-kernel upcall to make when a socket wakeup
		occurs.  The canonical example is nfs, which uses
		sockets from inside the kernel for network
		request servicing.



	caddr_t
	so_upcallarg
	argument to be passed so_upcall.
		



	int (*so_send)
	so_send
	socket receive method.  This is always currently
		sosend (which eventually leads to
		so_proto's
		PR_USRREQ), but might change in the
		future.



	int (*so_receive)
	so_receive
	socket receive method.
		Same holds as for so_send.
		



	struct mowner *
	so_mowner
	owner of the mbuf's for the socket, used to track
		mbufs other than socket buffer mbufs.  This can be
		used to debug mbuf leaks.  Available only when the
		kernel is compiled with options
		MBUFTRACE.



	struct uidinfo *
	so_uidinfo
	socket owner information.  This is currently used to
		limit socket buffer size.










      Additionally, so_head,
      so_onq, so_q0,
      so_q, so_qe,
      so_qlen and
      so_qlimit are use to queue and
      control incoming partial connections and handle aborts.
      





The socket buffer plays a critical role in the operation
      of the networking subsystem.  It is used to buffer incoming data
      before it is read by the application and outgoing data before it
      can be sent to the network.  As noted above, a
      struct socket contains two socket buffers,
      one for each direction.  A socket buffer is described by
      struct sockbuf in
      sys/socketvar.h.



Table 4.4. struct sockbuf members








	type
	name
	description




	struct selinfo
	sb_sel
	Contains the information on which process
		     (if any) wants to know about changes in the
		     socket, for example poll
		     called with POLLOUT on the
		     socket.



	struct mowner *
	sb_mowner
	Used to track owners of the socket buffer
		     mbufs, tracking enabled by options
		     MBUFTRACE.



	u_long
	sb_cc
	counter for octets in the buffer.



	u_long
	sb_hiwat
	high water mark for the socket buffer



	u_long
	sb_mbcnt
	bytes allocated as mbuf memory in the socket
		buffer.  This is the sum of regular mbufs and
		mbuf externals.



	u_long
	sb_mbmax
	maximum amount of mbuf memory that is allowed to
		be allocated for the socket buffer.



	long
	sb_lowat
	low watermark for socket buffer.  Writing is
		disallowed unless there is more than the low watermark
		space in the socket and conversely reading is disallowed,
		if there is less data than the low watermark.



	struct mbuf *
	sb_mb, sb_mbtail,
		     sb_lastrecord
	mbuf chains associated with the socket buffer



	int
	sb_flags
	flags for the socket buffer, such as locking
		and async I/O information



	int
	sb_timeo
	time to wait for send space or receivable data.



	u_long
	sb_overflowed
	statistics on times we had to drop data due to
		the socket buffer being full.









Socket buffers are manipulated by the sb*
	family of functions.  Examples include sbappend,
	which appends data to the socket buffer (it assumes that relevant
	space checks have been made prior to calling it) and
	sbdrop, which is used to remove packets from
	the front of a socket buffer queue.  The latter is used also
	by e.g. TCP for removing ACKed data from the send buffer (recall
	that "original" TCP requires to ACK data in-order).
      





A socket is created by making the system call
      socket, which is handled inside the
      kernel by sys__socket30 in
      kern/uipc_syscalls.c
      (sys_socket is reserved for compat30
      ABI).   First, a file descriptor structure is allocated for
      the socket using fdalloc.  Then, the
      socket structure itself is created and initialized in
      socreate in
      kern/uipc_socket.c.

socreate reserves memory for the socket data
      structure from a pool and initializes the members that were
      discussed in the section Socket
      Data Structure.  It also calls the socket's protocol's
      pr_usrreq method with the
      PRU_ATTACH argument.  This allows to do
      protocol-specific initialization, such as reserve memory for
      protocol control blocks.





Sockets are handled through the so* family
      if functions.  Some of them map directly to system calls, such
      as sobind and soconnect,
      while others, such as sofree are meant for
      kernel internal consumption.

Socket control routines take data arguments in the form
      of the memory buffers (mbufs) used in the networking stack.  The
      callers of these functions must be prepared to handle mbufs,
      although usually this can arranged for with a calls to
      sockargs.  It should be noted, that the comment
      above the function takes an attitude towards this behaviour:
      

/*
 * XXX In a perfect world, we wouldn't pass around socket control
 * XXX arguments in mbufs, and this could go away.
 */


      Note: In case a perfect world is some day being planned, the author
      should also be contacted, since he can contribute a whole lot of
      ideas for that goal.

The critical socket routines are sosend
      and soreceive.  These are used for transmitting
      and receiving network data.  They make sure that the socket is in
      the correct state for data transfer, handle buffering issues and
      call the socket protocol methods for doing data access.  They
      are, as mentioned above in the socket member discussion, not called
      directly but rather through the so_send
      and so_receive members.






4.2.5. Socket Destruction



Sockets are destroyed once they are no longer useful.  This
      is done when their reference count in the file descriptor
      table drops to zero.  The socket is first disconnected, if
      it was connected at all.  Then, if the socket option
      SO_LINGER was set, the socket lingers around
      until either the timer expires or the connection is closed.  After
      this the socket is detached from its associated protocol and
      finally freed.





Each protocol (e.g. TCP/IP or UDP/IP) has operations which
      depend on its functionality.   These are controlled through the
      so_proto member in
      struct socket.  While the member provides
      many different interfaces, the socket is interested in two:
      pr_ctloutput, which is used for control output
      and pr_usrreq, which is used for user
      requests.  Additionally, the socket code is interested in the flags
      set for the protocol pointed to by so_proto.
      These flags are defined in sys/protosw.h, but
      examples include PR_CONNREQUIRED and
      PR_LISTEN, both of which the TCP protocol sets
      but UDP sets neither.

Control output is used to set or get parameters specific to
      the protocol.  These are called from the kernel implementations of
      setsockopt and getsockopt.
      If the level parameter for the calls is set appropriately,
      the calls will trickle to the correct layer (e.g. TCP or IP)
      before taking action.  For instance, tcp_ctloutput
      checks if the request is for itself and proceeds to query
      the IP layer if it discovers that the call should be passed down.

The user request method handles multiple types of different
      requests coming from the user.  A complete list is defined
      in sys/protosw.h, but examples include
      PRU_BIND for binding the protocol to an address
      (e.g. making data received at an address:port UDP pair accepted),
      PRU_CONNECT for initiating a protocol level
      connect (e.g. TCP handshake) and PRU_SEND for
      sending data.







The data structure used to pass data around in the networking
    code is known as an mbuf.  An mbuf is described by
    struct mbuf, which is defined in
    sys/mbuf.h.  However, it is not defined in
    the regular fashion, but rather through the macro
    MBUF_DEFINE.  To understand the need for this
    trickery, we need to first look at the structure of an mbuf.

To accommodate for the needs of networking subsystem, an
    mbuf needs to provide cheap operations for prepending headers
    and stripping them off.  Therefore an mbuf is structured as a
    list of constant-size struct mbufs, of
    which each consist of a structure header and optional secondary
    headers or data.

this is mostly TODO, still










Services built on top of the core networking functionality
  are described here.  They include, for example, the IEEE 802.11
  subsystem and the IPsec subsystem.  Additionally, networking pseudo
  devices and their operation is described.
  



The net80211 layer provides functionality required by
    wireless cards.  It is located under sys/net80211.
    The code is meant to be shared between FreeBSD and NetBSD and therefore
    NetBSD-specific bits should be attempted to be kept in the source file
    ieee80211_netbsd.c (likewise, there is
    ieee80211_freebsd.c in FreeBSD).

The ieee80211 interfaces are documented in Chapter
    9 of the NetBSD manual pages.  This document does not attempt
    to duplicate information already available there.


    The responsibilities of the net80211 layer are the following:
      


	MAC address based access control


	crypto


	input and output frame handling


	node management


	radiotap framework for bpf/tcpdump


	rate adaption


	supplementary routines such a kernel diagnostic output,
	  conversion functions and resource management






The ieee80211 layer positions itself logically between
    the device driver and the ethernet module, although for
    transmission it is called indirectly by the device driver instead
    of control passing straight through it.  For input, the ieee80211
    layer receives packets from the device driver, strips any
    information useful only to wireless devices and in case of data
    payload proceeds to hand the Ethernet frame up to
    ether_input.



The way to describe an ieee80211 device to the ieee80211 layer
      is by using a struct ieee80211com, declared
      in sys/net80211/ieee80211_var.h.
      It is used to register a device to the ieee80211 from the
      device driver by calling ieee80211_ifattach.
      Fields to be filled out by the caller include the
      underlying struct ifnet pointer, function
      callbacks and device capability flags.  If a device is detached,
      the ieee80211 layer can be notified with the call
      ieee80211_ifdetach.
      





A node represents another entity in the wireless network.
      It is usually a base station when operating in BSS mode, but can
      also represent entities in an ad-hoc network.  A node is described
      by struct ieee80211_node, declared in
      sys/net80211/ieee80211_node.h.  Examples
      of fields contained in the structure include the node unicast
      encryption key, current transmit power, the negotiated rate set
      and various statistics.

A list of all the nodes seen by a certain device is
      kept in the struct ieee80211com
      instance in the field ic_sta and
      can be manipulated with the helper functions provided in
      sys/net80211/ieee80211_node.c.  The
      functions include, for example, methods to scan for
      nodes, iterate through the nodelist and functionality
      for maintaining the network structure.





Crypto support enables the encryption and decryption of
      the network frames.  It provides a framework for multiple
      encryption methods such as WEP and null crypto.  Crypto keys
      are mostly managed through the ioctl interface and inside
      the ieee80211 layer, and the only time drivers need to worry
      about them is in the send routine when they must test for
      an encapsulation requirement and call
      ieee80211_crypto_encap if necessary.







IPSec is collection of security-related protocols: Authentication
    Header (AH) and Encapsulated Security Payload (ESP).  This section,
    however, is TODO.






5.3. Networking pseudo-devices



A networking pseudo-device does not have a physical
    hardware component backing the device.  Pseudo devices can be roughly
    divided into two different categories: pseudo-devices which
    behave like an interface and devices which are controlled
    through a device node.  An interface built on top of a
    pseudo-device acts completely the same as an interface with
    hardware backing the interface.

Since there is no backing hardware involved, most of
    these interfaces can be generated and destroyed dynamically at
    runtime.  Interfaces that can dynamically de/allocate themselves
    known as cloning interfaces.  They are created and destroyed
    by the ifconfig tool by using ifconfig
    create and ifconfig destroy,
    respectively.  Additionally, the interface names available for
    cloning can be requested by ifconfig -C.

The list of networking pseudo-devices with short descriptions
    is presented below.

    


Table 5.1. Available networking pseudo-devices







	name
	description




	bpfilter
	Berkeley Packet filter, bpf(4).  Can be used to capture
		   network traffic matching certain pattens.



	loop
	The loopback network device, lo(4).  All output is
		   directed as input for the loopback interface.



	npf
	NetBSD Packet Filter, npf(7).  Used to filter IP traffic.
		   



	ppp
	Point-to-Point Protocol, ppp(4).  This interface allows
		   to create point-to-point network links.



	pppoe
	Point-to-Point Protocol Over Ethernet, pppoe(4).
		   Encapsulates PPP inside Ethernet frames.



	sl
	Serial Line IP, sl(4).  Used to transport IP over
		   a serial connection.



	strip
	STarmode Radio IP, strip(4).  Similar to SLIP, except
		   uses the STRIP protocol instead of SLIP.



	tap
	A virtual ethernet device, tap(4).  The tap[n] interface
		   is attached to /dev/tap[n].  I/O on the device node
		   maps to Ethernet traffic on the interface and vice versa.
		   



	tun
	Tunneling network device, tun(4).  Similar to tap, except
		   that the packets handled are network layer packets instead
		   of Ethernet frames.



	gre
	Encapsulating network device, gre(4).  The gre device
		   can encapsulate datagrams into IP packets in multiple
		   formats, e.g. IP protocols 47 and 55, and tunnels
		   the packets over an IP network.



	gif
	the generic tunneling interface, gif(4).  gif can
		   encapsulate and tunnel IPv{4,6} over IPv{4,6}.



	faith
	IPv6-to-IPv4 TCP relay interface, faith(4).  Can use used,
		   in conjunction with faithd, to relay
		   TCPv6 traffic to IPv4 addresses.



	stf
	Six To Four tunneling interface, stf(4).  Tunnels
		   IPv6 over IPv4, RFC3056.



	vlan
	IEEE 802.1Q Virtual LAN, vlan(4).  Supports Virtual LAN
		   interfaces which can be attached to physical interfaces
		   and then be used to send virtual lan tagged traffic.



	bridge
	Bridging device, bridge(4).  The bridging device is used
		   to attach IEEE 802 networks together on the link layer.
		   











In the distant past, the number of pseudo-device instances
      for each device type was hardcoded into the kernel configuration
      and fixed at compile-time.  This, while the fastest method
      for implementation, was wasteful because it allocated resources
      based on a compile-decision and limiting because it required
      recompilation when wanting to use the n+1'th device.  Cloning
      devices allow resource allocation and resource release
      dynamically at runtime.

This discussion will concentrate on cloning interfaces,
      i.e. cloners which are created using ifconfig.

Most of the work behind in cloning in interface is handled
      in common code in net/if.c in the
      if_clone family of functions.  Cloning
      interfaces are registered and deregistered using
      if_clone_attach and
      if_clone_detach, respectively.  These
      calls are usually made in the pseudo-device attach and
      detach routines.  Both functions take as an argument a pointer
      to the if_clone structure, which
      identifies the cloning interface.

struct if_clone is initialized
      by using the IF_CLONE_INITIALIZER macro:

	

struct if_clone cloner =
    IF_CLONE_INITIALIZER("clonername", cloner_create, cloner_destroy);



      The parameters cloner_create and
      cloner_destroy are pointers to functions
      to be called from the common code.  Create is responsible
      for allocating resources and attaching the interface to the
      rest of the framework while destroy is responsible for the
      opposite.  Of course, destroy must preserve normal system
      semantics and not remove resources which are still in use.
      This is relevant with for example the tun device, where users
      open the /dev/tun[n] when using
      tun interface n.

A create or destroy operation coming from userspace
      passes through sys_ioctl and
      soo_ioctl before landing at
      ifioctl.  The correct struct
      if_clone is found by searching the names of the
      attached cloners, i.e. doing string comparison.  After this
      the function pointers in the structure are used.






5.3.2. Pseudo Interface Operation



The operation and attachment to the rest of the operating
      system kernel for a pseudo device depend greatly on the device's
      functionality.  The following are some examples:

      


	
	  The vlan interface is always attached to a
	  parent device when operational.  It sends packets by vlan
	  encapsulating them and enqueueing them onto the parent
	  device packet send queue.  It receives packets from
	  ether_input, removes the vlan
	  encapsulation and passes it back to the parent interface's
	  if_input routine.
	


	
	  The gif interface registers itself as an interface to the
	  networking stack by using if_attach and
	  gif_output as the output routine.  This
	  output routine is then called from the network layer output
	  routine, ip_output and the output
	  routine eventually calls ip_output again
	  once the packet has been encapsulated.  Input is handled
	  by in_gif_input, which is called via
	  the struct protosw input routine
	  from the encapsulated packet input function.
	


	
	  The tap interface registers itself as a network interface
	  using if_attach.  When a packet is
	  sent through it, it notifies the device node listener
	  or, if corresponding device is not open, simply drops
	  all packets.  When a packet is written to the device node,
	  it gets injected into the networking stack through
	  the if_input routine in the associated
	  struct ifnet.
	












In principle there are two pseudo devices involved
    with packet filtering: npf is involved in filtering network traffic,
    and bpf is an interface to capture and access raw network traffic.
    All will be
    discussed briefly from the point of view of their attachment
    to rest of the kernel; the packet inspection and modification
    engines they implement are beyond the scope of this document.

npf is implemented using
    pfil hooks, while bpf is
    implemented as a tap in all the network drivers.




5.4.1. Packet Filter Interface



pfil is a purely in-kernel interface to support packet
    filtering hooks.  Packet filters can register hooks which should
    be called when packet processing taken place; in its essence
    pfil is a list of callbacks for certain events.  In addition
    to being able to register a filter for incoming and outgoing
    packets, pfil provides support for interface attach/detach and
    address change notifications.  pfil is described on the pfil(9)
    manual page and is used by NPF to hook to the packet stream for
    implementing firewalls and NAT.





NPF, found in sys/net/npf,
      is a multiplatform packet filtering device useful for
      creating a firewall and Network Address Translation (NAT).
      Operation is controlled through device nodes with userland tools.
      NPF is documented on multiple different manual pages:
      npf(7), npf.conf(5) and npfctl(8) are good starting points.
      






5.4.3. Berkeley Packet Filter



The Berkeley Packet Filter (bpf)
      (sys/net/bpf.c) provides link layer
      access to data available on the network through interfaces
      attached to the system.  bpf is used by opening a device
      node, /dev/bpf and issuing
      ioctl's to control the operation of
      the device.  A popular example of a tool using bpf is
      tcpdump.
      

The device /dev/bpf is a cloning
      device, meaning it can be opened multiple times.  It is in
      principle similar to a cloning interface, except bpf provides
      no network interface, only a method to open the same device
      multiple times.

To capture network traffic, a bpf device must be attached
      to an interface.  The traffic on this interface is then passed
      to bpf to evaluation.  For attaching an interface to an open
      bpf device, the ioctl BIOCSETIF is used.
      The interface is identified by passing a
      struct ifreq, which contains the
      interface name in ASCII encoding.  This is used to find the
      interface from the kernel tables.  bpf
      registers itself to the interfaces struct
      ifnet field if_bpf
      to inform the system that it is interested about traffic on
      this particular interface.
      The listener can also pass a set of filtering rules to capture
      only certain packets, for example ones matching a given host and port
      combination.

bpf captures packets by supplying a tapping interface,
      bpf_tap-functions, to link layer drivers
      and relying on the drivers to always pass packets to it.  Drivers
      honor this request and commonly have code which, along both the
      input and output paths, does:
      

#if NBPFILTER > 0
		if (ifp->if_bpf)
			bpf_mtap(ifp->if_bpf, m0);
#endif



      This passes the mbuf to the bpf for inspection.  bpf inspects
      the data and decides is anyone listening to this particular
      interface is interested in it.  The filter inspecting the data
      is highly optimized to minimize time spent inspecting each
      packet.  If the filter matches, the packet is copied to await
      being read from the device.
      

The bpf tapping feature looks very much like the
      interfaces provided by pfil, so a valid is question is debating
      the necessity of both.  Even though they provide similar services,
      their functionality is disjoint.  The bpf mtap wants to access
      packets right off the wire without any alteration and possibly
      copy it for further use.  Callers linking into pfil want to
      modify and possibly drop packets.











	