On the Existence of Feature Bundles and their
Effect on Symbolic Regression Algorithms

Kourosh Neshatian*, Lucianne Varn
*Department of Computer Science and Software Engineering
University of Canterbury
Christchurch, New Zealand
kourosh.neshatian @canterbury.ac.nz

Abstract—In this paper, we consider a special subset of the
features in a regression learning problem that, while being
relevant to the problem, its strict subsets do not show any sign
of relevance. We discuss the presence of such subsets of features,
which we call *feature bundles’, and examine the challenges they
pose in feature selection and learning. We demonstrate the effect
of these feature bundles on the performance of commonly-used
symbolic regression algorithms.

Index Terms—symbolic regression, feature selection, genetic
programming

I. INTRODUCTION

The regression problem is concerned with finding a com-
putable model that describes the relationship between a group
of input variables (or features) and an output variable. The
model is often used for the prediction of the output variable on
unseen data. Finding the right model often involves a search, or
more specifically solving an optimization problem. The search
space is a set (or collection) of functions, and the job of the
learning algorithm is to find the right function from this set.

The representation of the search space varies depending
on the algorithm. In linear regression, the search space is
a set of weight (or coefficient) vectors, and the job of the
learning algorithm is to find the optimal weight vector. A
good algorithm for learning linear regression would exploit
the properties of the search space (for example, its convexity)
in order to find a solution efficiently.

Symbolic regression is another approach to regression where
the search space is a set of expressions (that can be constructed
from a set of variables and functions). Like other methods,
the job of the symbolic regression learning algorithm is
to find the right expression. However, because the search
space in symbolic regression is complex (and many notions,
such as distance and locality, are not defined), the learning
algorithm has to resort to (meta-)heuristic techniques, such as
evolutionary search. Prominent symbolic regression learning
algorithms, in order of commonality, are genetic programming
and gene expression programming.

Genetic programming (GP) is a hyper-heuristic search algo-
rithm that evolves computer programs [1]-[3]. GP is capable
of dynamically building logical and mathematical expressions
[4], and classification models [5], [6]. GP is the most promi-
nent tool used in symbolic regression [7]—it has been used

in many application areas, ranging from industry [8], [9] to
finance [10], [11].

Gene Expression Programming (GEP) is another evolution-
ary paradigm for symbolic regression [12]. GEP is population-
based and the candidate solutions (or individuals) are repre-
sented as fixed-length chromosomes. As in GP, the compo-
nents of the chromosomes are terminals and primitive func-
tions, and like many other evolutionary search mechanisms,
various operators (including the crossover and mutation oper-
ators) are applied to the members of the population in order
to direct the search towards better candidate solutions [13].

A. Related work and research goals

There have been many efforts in improving GP-based
symbolic regression learning. Various capabilities have been
introduced, including generalization [14], parallelism [15], and
autonomy [16].

Recent advances have also been made in using GP-based
symbolic regression on high-dimensional problems. In [17],
an embedded feature construction mechanism is introduced
to dynamically augment the terminal set. In [18], the authors
propose a multi-stage feature selection mechanism that can be
used to solve high-dimensional symbolic regression problems.

There are also limitations or difficulties in using evo-
lutionary symbolic regression learning. These include high
computational cost, bloating, finding suitable values for search
parameters (including various evolutionary operators, popu-
lation size, maximum number of generations, limits on the
size of individuals, etc.) [19], [20]. More specific to symbolic
regression is the problem of finding appropriate numeric
constants in an efficient way [12].

Another concern is the scalability of learning algorithms.
In [21], the scalability of GP with respect to the number of
examples is studied analytically and with respect to the number
of features is studied empirically. The results show that while
GP scales very well (linearly) with respect to the number of
training examples, it scales poorly with respect to the number
of features on some problems. In the experiments conducted in
the paper, it was shown that even on some linearly separable
classification problems, the amount of computation required
to find a solution increases exponentially with the number of
features.

978-1-5386-2726+HoHZA($ Bk @281 ik Eo: Wikipedia. Downloaded on June 22,2024 at 15:19:20 UTC from IEEE Xplore. Restrictions apply.

In this paper, we focus on the presence of feature bundles—
subsets of relevant features with a special property— in
symbolic regression, and their effect on the performance of
the learning algorithm. We will show that despite the power of
some algorithms (such as GP) in automatically and implicitly
selecting features [22], in the presence of large feature bundles,
canonical symbolic regression algorithms (namely GP and
GEP) cannot perform very well.

B. Organization

This paper is organized as follows. In Section II, we provide
an overview of the problem and introduce the concept of
feature bundles. In Section III, we describe the design of the
experiments, including the simulation and search processes.
In Section IV, we present the results of our simulation experi-
ments and discuss the observed trends. We conclude the paper
in Section V.

II. FEATURE BUNDLES AND THEIR EFFECT ON
REGRESSION LEARNING

A. Regression Problems

Regression learning involves finding a function A* : X —
Y—which maps an input space X to an output space)—that
minimizes some risk function R, i.e.

h* = arg irélqr_[l R(h) , (1

where H is the set of possible predictor functions or candidate
solutions. The learning algorithm is tasked with finding the
optimal function ~* in the set 7, which given an input vector
x € X, predicts the best possible output y €).

The nature of the elements of H depends on the regression
method being used. In linear regression, the elements are
weight vectors; each element specifies a line (or hyperplane)
in X x). In symbolic regression, the elements of H are
expression trees made of primitive functions and terminals.

The risk function in (1) is defined as the expected loss
over all points in the space X x), where “loss” is some
measure of the deviations of the predicted values from the
actual values [23]. Let [(h(X),Y) denote the loss function for
a given predictor function h, such that [: Y x) — R, where
X € X denotes the vector of input variables, and Y €), the
output variable. Here, X and Y are assumed to be random
variables with some joint probability distribution Fxy. Then,
for a given predictor function h, the risk or expected loss
function is

R(h) = Bi(h(X),Y)] = / [(h(x),y) dFxy (x,9) . (2)

A commonly-used loss function in linear regression is the
squared error loss function [(f(X),Y) = (f(X)—Y)2, which
has desirous properties such as being infinitely divisible and
convex. For the squared error loss function, the predictor
function or expression that yields the minimum risk is the

conditional expected value of Y, given the input X, i.e.
h*=E[Y | X =x] [24].

To compute the risk, the joint distribution Fxy must be
known, which is rarely the case, and therefore, an approx-
imation of the risk function, known as the empirical risk
function, is minimized to find the optimal predictor function.
The empirical risk function, denoted by R,,, is defined as the
estimated expected loss:

m

1
Ry (h) = E;Mh(xi),m : 3)
1=
computed over the training dataset, denoted by

{X1,Y1),...,(Xm,Ym)}, which is assumed to be an
independent and identically distributed random sample from
the probability distribution Fxy. The predictor function
obtained by minimizing the empirical risk function is denote
by h;, to emphasize its dependence on a training dataset
of cardinality m. For a given predictor function h € H, the
difference between the empirical risk R,,(h) in (3) and the
true risk R(h) in (2) decreases as the cardinality m of the
training dataset increases [25].

B. Partial Solutions in Symbolic Regression

All prominent symbolic regression algorithms are iterative
search algorithms. The idea is that an initial, randomly-
generated candidate solution (or a population of candidate
solutions) is gradually improved during the search. Throughout
the search different operators are applied to the existing
candidate(s) in order to derive new (and hopefully better)
candidates. In a genetic search (e.g. GP and GEP), common
choices of these operators are mutation and crossover.

For most non-trivial symbolic regression problems, it is
extremely unlikely for an algorithm to arrive at the solution
purely by chance and without progressively going through
some intermediate partial solutions. All symbolic regression
leaning algorithms rely on gradually improving these partial
solutions.

Definition 1. A function h (or an expression representing it)
is a partial solution iff R(h) < R(E[Y]).

A partial solution performs better than a constant model
that is merely the expected value of the target variable Y,
completely independent of any input features. Candidates that
are not partial solutions receive low fitness and are not likely to
survive during the execution of the learning algorithm. Partial
solutions are important because they act as stepping stones
towards better solutions. For a sequence of partial solutions to
the learning problem, the corresponding risks are in decreasing
order. That is, the risks associated with a sequence of partial
solutions leading to the final and best solution h* satisfy the
following inequality:

R(h1) > R(hy) > -+ > R(hi) = R(h*) |

for 1 <k < oo.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:20 UTC from IEEE Xplore. Restrictions apply.

A partial solution (or expression) that is not a perfect
solution (i.e. any partial solution that is not h*) falls in one
of the following two categories:

1) the partial solution contains all the features that must
appear in the final solution, but the primitive functions
(i.e. the internal nodes of the expression tree) are not of
the correct type or in a correct hierarchy; or

2) the partial solution does not contain all the necessary
features.

In this section, we will show that there are regression
problems for which there is no partial solution in the second
category—that is, any partial solution to the problem must
include all the features that need to appear in the final solution.

We begin with an example where a partial solution can
belong to any of the two categories, and then present an
example where the partial solution can only belong to the first
category, which leads us to the concept of a feature bundle
(introduced in the next section).

Example 1. A regression problem that allows partial solutions
in both categories

Consider a regression problem with n mutually independent
and identically distributed input features X, Xo,..., X,,
where X; ~ U(—1,1), for all i € {1,...,n}, and the
target function is Y =)", X;. Since noise and irrelevant
features are absent in this example, the perfect solution is
h(x) = 20, @i

For the case where n = 2, the function y = 21 + x2 has
been plotted in Fig. 1 (top). The best prediction in the absence
of any features is E[Y] = 0, which is the zero-height plane,
the x;-xo plane, cutting across the middle of the target surface.
Half of the target plane is above this plane and half of it below.

The risk of this constant prediction (using the squared error
loss function) is

R(0))?] = E[(X1 + X3)?]

—E[(Y 0
Lot 1 2)
:/_1 /_1(3'}1 +x2)21dx1dx2 = g

where fx,x,(z1,22) = 3 3 = 1, Vo, 25 € (—1,1), is the

uniform joint density function of the two independent input
features X7 and Xo, and is computed as the product of the
individual marginal densities. Note that, the risk function in
(4) is the variance of Y = X, + X5, which reduces to the sum
of the variances of X; and X (since they are independent,
and therefore, uncorrelated).

When the only available feature is X7, the projection of the
target plane (onto the x2-y plane) is plotted in Fig. 1 (bottom)
over the range of x;. Note that, this is no longer a function,
since for each value of 1, multiple values of y are possible,
all equally likely. The best prediction (or solution) in this case
is h(x) = x1. This is a line that goes through the middle of

aE— 7]
 avaveverardi gl
B '
7 0
Ay 0
=z g
vy 2

<
L5
T T T T T T

0.5

x1

Fig. 1. The target plane x1 + x5 in [—1,1]? (top), and its projection where
the only available input feature is 21 (bottom).

the projected plane. Its risk is given by

R(h) = B[(Y — X1)%] = E[(X1 + X5 — X1)?] = E[X3]
:/_1x%%dx2:§ ,

which is the variance of X5, since E[X5] = 0.

The predictor function h(x) = z is a partial solution, since
R(h) < R(0) = R(E[Y]). It is not a perfect solution, but it
performs better than the constant prediction E[Y] = 0. Since
its error or risk is lower than that of constant or other irrelevant
functions, it is more likely to survive during the search (or
evolution), and since it has one of the necessary features of
the perfect solution h*(x) = 1 + 2, it is likely to contribute
towards finding the best solution.

The prediction function h(x) = z is in fact not the only
function of z; that is a partial solution. Many other functions
of z1, such as Lz and @1 + 3, perform better than a constant
prediction, and can all contribute towards finding the best
solution.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:20 UTC from IEEE Xplore. Restrictions apply.

Example 2. A regression problem that allows partial solutions
only in the first category

We now turn our attention to a regression problem where
there is no partial solution of proper (or strict) subsets of
features (that is, partial solutions belonging to the second
category).

Consider a regression problem with n mutually independent
and identically distributed input features Xi, Xo,..., X,,
where X; ~ U(—1,1), for all i € {1,...,n}, and the target
function is Y = [[;_, X;. This example is identical to the
previous example, except that summation has been replaced by
product. Here, the perfect solution (since noise and irrelevant
features are absent) is h*(x) =[], ;.

For the case where n = 2, the function y = zjx, has
been plotted in Fig. 2 (top). Again, the best prediction in the
absence of any features is E[Y] = 0. The risk of this constant
prediction, using the squared error loss function, is given by

R(0) = E[(Y - 0)%] = E[(X1X2)’]

1 1 21 1
:[1 /_1(1‘1372) Zdl‘ldl‘gzg .

x1

Fig. 2. The plane x1x2 in [—1,1]2 (top), and its projection where the only
available input feature is x1.

When the only available feature is X, the projection of
the target plane (onto the xo-y plane) is plotted in Fig. 2
(bottom) over the range of z;. In this example, the projection
is symmetric with respect to the line y = 0, and therefore, the
best predictor when only the feature X; is available, is still
the constant function h(x) = 0.

In fact, any function of x; that slightly deviates from 0 will
have a higher risk (or error) than h(x) = 0. For instance, the
risk for the function h(x) = x; is

R(h) = E[(Y — X))]:E[(Xlxg—)ﬁ)?]

/ / T1Xg — 1131) déﬂldfﬂQ = - .

Therefore, R(h) > R(0) = R(E[Y]) in this example, which
implies that the prediction function h(x) = 1 is not a partial
solution. This is counter-intuitive, because in a symbolic
regression setting, the expression x; is one step closer to
the best solution, but its error is higher than that of the
constant prediction E[Y] = 0, which does not use any of
the input features. In fact, if this problem had an irrelevant
feature ,,is¢, then the symbolic expression T,pise — Tnoise
would perform better than z;. This may guide the search (or
evolution) in a wrong direction. In conditions like this, partial
solutions are a subset of functions that use all the relevant
features. For instance, the prediction function h(x) = éxlxg,
having risk R(h) = 36, is a partial solution in this problem,
since R(h) < R(E[Y]).

From a syntactic point of view, Y ., z; and [[_, z; are
very similar. Changing the + to x in the expression tree that
solves the first problem, will solve the second problem. In
fact, the number of expression trees whose phenotype is the
first expression (the sum problem), is equal to the number
of expression trees whose phenotype is the second expression
(the product problem). However, the second problem is much
harder to learn because partial solutions are sparse.

One must note that, this is not simply the difference between
linear and non-linear problems. Many non-linear problems do
allow partial solutions form the second category. In fact, in
the product example, if the ranges of the features are, for
instance, all [0, 1], the projections become non-symmetric, and
therefore, expressions containing smaller numbers of relevant
features can contribute towards reducing the risk.

C. Feature Bundles

This section formalizes the phenomenon that was observed
in the examples of the previous section.

Let H be the hypothesis space in a symbolic regression
problem, i.e. the set of all expressions constructed from a set
of terminals and primitive functions (to a maximum depth). Let
F be the set of available features and let symvars : H — F
be a function that takes an expression as input, and returns
the set of features (or variable terminals) that are used in that
expression. For instance, symvars(z? — x3) = {z1,73}. The

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:20 UTC from IEEE Xplore. Restrictions apply.

set of relevant features, which we denote by)V, can then be
defined as
V = symvars(h*) |

where h* is the best solution and is obtained from (1).
Definition 2. A feature bundle is a set B C V, such that
min R(h) > R(E[Y]) ,VSCB ,
heHs

where Hs = {h € H : symvars(h) = S}.

That is, the smallest risk associated with the candidate
solutions h € Hg, constructed from any strict subset S of the
feature bundle B, is at least as large as the risk associated with
the constant function E[Y]. Therefore, by definition, there are
no partial solutions that use only a proper subset of a feature
bundle. All the elements of a feature bundle must be present
in an expression for the expression to have an error lower than
that of the constant prediction, and therefore, have a chance
of survival in the search for the best solution.

A search process (e.g. an evolutionary symbolic learning
algorithm) will behave in a manner similar to a random search
until it (accidentally) finds a partial solution that contains all
the features in the feature bundle. This implies that problems
with large feature bundles can become difficult to solve.

In the following section, we will demonstrate how the size
of a feature bundle can affect the chance (or probability) of
finding a solution.

III. EXPERIMENTAL DESIGN

In the previous section, we showed that in symbolic regres-
sion, in the presence of feature bundles, the search algorithm
has to first (randomly) arrive at an entire feature bundle in
order to have a partial (or complete) solution. We saw that
there is no fitness gain for any function that uses only a strict
subset of a feature bundle.

In this section, we describe a set of experiments that we used
to examine how the likelihood of finding a feature bundle is
affected by the number of features and the size of the feature
bundle in the problem.

A. Problems

For most “real” regression problems (or datasets), the cor-
rect solution, relevant features, size of feature bundles, and
other properties are not known. Therefore, since the goal of
our experiments is to see how an evolutionary process for
finding symbolic expressions performs with respect to the size
of feature bundles, we use a number of “synthetic” problems
in which the sizes of the feature bundles are known.

In each problem, we have |F| features (see Table I for the
specified values). All the relevant features in the problem are
part of a single feature bundle of size |B|. Various values
of |F| and |B| yield a total of 20 problems. The problems
are constructed such that there is no redundancy between
the relevant features in each problem. Also, all the relevant
features in a given problem are “noise”’-free; that is, the target

function is a deterministic function of the input features, and
thus, their discovery is not hindered by anything other than
the search strategy. We also assume that the target variable is
independent of features in the set F \ B, which is the set of
available features in the problem that are not in the feature
bundle; that is, all features not included in the feature bundle
are pure “noise” and irrelevant.

B. Search Process

Since the most common way of conducting the search for
symbolic expressions is evolution (both in genetic program-
ming and gene expression programming), we have adopted
an evolutionary search over the expression trees. The average
number of terminals in expression trees is correlated with the
average depth of trees. For this reason, we have increased the
maximum depth for problems with larger numbers of features.

We assume that all the primitive functions required to
construct the perfect solution are known and available in the
function set. The arity of the functions and the maximum depth
are set well above the level that is required to construct a
perfect solution.

We have used three standard operators: the crossover op-
erator, the mutation operator, and the reproduction operator.
The rate of these operators and various other settings of the
experiments are available in Table I.

TABLE I
SIMULATION SETTINGS

Parameter Symbol Value(s)

Number of features | F| {10, 20, 50, 100}

Size of feature bundle |B] 10%, 30%, 50%, 80%, and
100% of the number of fea-
tures

Number of problems possible numbers of features
X possible sizes of feature
bundles = 20

Population size 1000

Max num. of generations 500

Max depth set based on the number of
features in the problem

Crossover rate 0.9

Mutation rate 0.01

Reproduction rate 1—-0.9-0.01 =0.09

Runs 50

The search (or evolution) process is terminated when either
the maximum number of generations is reached or as soon
as an expression is found that contains all the features in the
feature bundle (or more). Note that, finding all the features in
a feature bundle does not necessarily mean that the regression
problem is solved, since the internal nodes (or primitive func-
tions) of the expression must also be of the correct type and
order. However, finding the feature bundle makes it possible to
have partial solutions which, due to higher fitness (i.e. lower

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:20 UTC from IEEE Xplore. Restrictions apply.

error/risk), will have a higher chance of survival, and therefore,
a higher chance of leading to the final solution.

The simulations were repeated 50 times in order to obtain a
reliable enough estimate of the number of evaluations required
in order to arrive at a feature bundle.

C. Remarks

We have made a number of assumptions in our experiments
for the purpose of simplification. However, since the goal
of this research is to highlight some limitations of canonical
symbolic regression methods in special situations (i.e. in the
presence of feature bundles), the simplifying assumptions do
not weaken our conclusions.

The experiments are designed in a way that the results
provide a notion of upper bound for the probability of finding
a solution. In more “real” scenarios and applications where
some of these conditions are not met, the actual performance
of canonical symbolic regression algorithms will be worse than
what is being reported here (and hence, our bounds will still
hold).

IV. RESULTS AND DISCUSSION

The results of our simulation experiments, for various
numbers of features (| F|) and various sizes of feature bundles
(|B]), are presented in Table II. The maximum depth has been
set manually to increase as the number of features in the
problem increases. Deeper expression trees allow more leaves
(or variable terminals), but they also allow more internal nodes
(or primitive functions), which adds to the complexities of the
search space.

The fourth column in Table II is the average number of
evaluations required to reach a solution that contains all the
features in the feature bundle. Since any partial or complete
solution must contain all of the features in a feature bundle,
these numbers are lower bounds for the number of evaluations
required for an optimal solution to be found.

Note that, the average number of evaluations can be viewed
as the estimated expected value or mean of a random variable
Z having a geometric distribution, i.e. Z counts the number
of Bernoulli (success or failure) trials until the first success
is observed. This geometric distribution has probability mass
function P(Z = 2) = (1 —p)*~1p, for z € N, with expected
value p = %, where p € [0,1] is the probability of success
in each of the independent Bernoulli trials. Therefore, the
average number of evaluations required to find the first subset
of features that includes the desired feature bundle is i = Z,
an estimator of the mean u.

The last column of Table II indicates the proportion of runs
in which the algorithm managed to find the desired feature
bundle.

Even though the averages (of the numbers of evaluations)
reported in Table II are very optimistic, note that, as the
number of features and the size of the feature bundle in a
problem grow, the amount of computation required to find
a (partial) solution soon moves beyond reach. The chance of

TABLE II
PROBLEMS AND SIMULATION RESULTS
|F| | |B] | depth | < evaluations > | success rate
10 1 4 1.82 1.0
10 3 4 5.28 1.0
10 5 4 23.14 1.0
10 8 4 330.72 1.0
10 10 4 2168.76 1.0
20 2 5 3.2 1.0
20 6 5 38.18 1.0
20 10 5 889.78 1.0
20 16 5 129395.98 1.0
20 20 5 - 0.14
50 5 6 38.06 1.0
50 15 6 204294.58 0.98
50 25 6 - 0.0
50 40 6 - 0.0
50 50 6 - 0.0
100 10 7 2118.24 1.0
100 30 7 - 0.0
100 50 7 - 0.0
100 80 7 - 0.0
100 | 100 7 - 0.0

discovering a feature bundle with over 20 features is extremely
low. In almost all the cases, none of the runs were able to
find one. Note that, in Table II, for the case where all the 20
features in the problem were part of the feature bundle, only
14% of the runs were successful in finding the feature bundle,
and therefore, a reliable estimate of the average number of
evaluations could not be obtained. It can also be seen that in
all cases as the ratio % approaches 1 the computational effort
required to find the feature bundle increases exponentially.
The average number of evaluations in Table II, can be used
to estimate the probability of success—that is, the probability
of finding a set of features that contains a feature bundle—
for each problem, for a given number of evaluations. The
estimated probability for each Bernoulli trial, which is defined
as whether or not a set containing the feature bundle was found
in a given evaluation (or trial), is p = %t where [i is the
average number of evaluations. The probability of achieving
success within ¢ evaluations is computed using the cumulative
probability distribution function of the geometric distribution,
which is given by
P{success} =P{Z <t} =1—-P{Z > t}
=1-(1-p),
for t € N, where (1 — p)! represents the probability that
all ¢ evaluations end in failure. Note that, for a fixed ¢, this
probability is an increasing function of the probability p of

success in each evaluation, and for a fixed p, it is an increasing
function of the number of evaluations ¢.

&)

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:20 UTC from IEEE Xplore. Restrictions apply.

Problem with 10 Features

Q| r__,_._._._._._._._._______________._..
..—"'—_. Bl= 1
© .- |Bl= 3
@ .- Bl= 5
X - - [B=8
q&) : R — - |Bl= 10
.
8 «© : -’
2 ° : 4
s : N
z . 7
5 <] | 7
§°] [4 -
g L _——T
5 -
I ——
o 1 7 —
-
[/ -
l. ////
o] -
° T T T T T T
0 200 400 600 800 1000
number of evaluations
Problem with 50 Features
o]
— B=5
© Bl= 15
@ ---- |Bl= 25
<—- |Bl= 40
2 — - [Bl= 50
i}
8 o |
2 ©
kS
2
3 <
© O
Q
[
Q
(8]
i
o
2 — =
T T T T T T
0 200 400 600 800 1000

number of evaluations

Problem with 20 Features

o
— B=2
- IBl= 6
@ <o |Bl= 10
-~ |Bl= 16
2 — - B 20
(0] N
@ .
S o |
2 ©
k)
2
3 < |
® O
Q
[
Q
[sV)
8
o e e e e e s e e
S s— : : : : :
0 200 400 600 800 1000

number of evaluations

Problem with 100 Features

Q|
— |B]= 10
© Bl= 30
@ <o+ |Bl= 50
- |Bl= 80
] — - |B]= 100
@D
Q
S © |
2 ©
S
2
3 <
® O
Q
<
Q
N
o
o - S S —
o

T T T T T
0 200 400 600 800 1000

number of evaluations

Fig. 3. The estimated probability of success in finding feature bundles, plotted as a function of the number of evaluations, for various numbers | F| of features
and various sizes |B| of feature bundles, where |F| € {10, 20, 50, 100}; and |B| € {r|F| : r € {10%, 30%, 50%, 80%, 100%} }.

To estimate the probability of success in (5), we use p
derived from the results in Table II. The estimated probability
P{success} = 1 — (1 — p)’ is, as a function of the number
of evaluations ¢, plotted in Fig. 3, for various values of |F]|
and |B| (which yield different p values). The four plots in
the figure correspond to the different numbers of features (i.e.
values of |F| from Table II), and the curves within each plot
correspond to the different sizes of the feature bundles (i.e.
corresponding values of |B| from Table II).

Notice that, within each plot in Fig. 3, the probability of
success at any t, is a decreasing function of |BJ; that is, the
probability curve corresponding to a lower value of |B| is,
for all ¢, greater than the probability curve corresponding to a
higher value of |B|. Also, for each |F|, the probabilities are
decreasing functions of the ratio %.

For higher numbers of features, for instance, |F| = 50
or |F| = 100, the success probabilities for most sizes of
the feature bundles are effectively zero—this can be seen
in the cluster of probability curves close to the bottom of
the corresponding plots. (Note that, although the number of

evaluations is a discrete variable, i.e. t € N, we have plotted
the probability functions as continuous curves, in order to
reduce clutter and more clearly demonstrate the trends.)

As stated earlier, these numbers are upper bounds. That is,
the actual probabilities of success can be lower than what is
presented in the plots, as the actual numbers of evaluations
required to reach a feature bundle can be higher than those
averaged in Table II.

V. CONCLUSIONS

In this paper, we showed, through construction, that there
are problems where there is no function of subsets of a set
of relevant features that would perform any better than the
constant prediction, the expected value of the target variable.
We called these subsets of features ’feature bundles’ and
showed that as the size of a feature bundle increases, the
probability of finding it becomes increasingly difficult.

It has been known that noise and irrelevant features are
challenging issues in learning, but we showed that even in the
absence of such issues, and in cases where the target function

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:20 UTC from IEEE Xplore. Restrictions apply.

is completely deterministic and noise-free, finding a feature
bundle is still challenging.

Finding feature bundles is important, because without them,
there is no survivable partial solution and the evolutionary
process (or any other meta-heuristic algorithm) reduces to a
random search.

To illustrate this, we showed how finding a symbolic regres-
sion model that is as simple as the product of input features,
becomes very challenging when there is no partial solution
before finding (or rather randomly arriving at) all the relevant
features.

The limitations presented in this paper provide opportunities
for new research in this area. One possible research direction
is to identify a classification of symbolic regression problems
and their hardness.

REFERENCES

[1] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[2] ——, Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. Cambridge Massachusetts: MIT Press, May 1994.

[31 ——, Genetic programming IlI: Darwinian invention and problem
solving. Morgan Kaufmann Pub, 1999.

[4] M. F. Korns, “Large-Scale, Time-Constrained symbolic Regression-
Classification,” in Genetic Programming Theory and Practice V.
Springer US, 2008, pp. 53-68.

[5] J. K. Kishore, L. M. Patnaik, V. Mani, and V. K. Agrawal, “Application
of genetic programming for multicategory pattern classification,” IEEE
Transactions on Evolutionary Computation, vol. 4, no. 3, pp. 242-258,
2000.

[6] G. Patterson and M. Zhang, “Fitness functions in genetic programming
for classification with unbalanced data,” in Al 2007: Advances in
Artificial Intelligence. Springer, 2007, pp. 769-775.

[7]1 D. A. Augusto and H. J. Barbosa, “Symbolic regression via genetic
programming,” in Neural Networks, 2000. Proceedings. Sixth Brazilian
Symposium on. 1EEE, 2000, pp. 173-178.

[8] F. Castillo, A. Kordon, and C. Villa, “Genetic programming transforms
in linear regression situations,” Genetic Programming Theory and Prac-
tice VIII, pp. 175-194, 2011.

[9] T. McConaghy, T. Eeckelaert, and G. Gielen, “Caffeine: Template-
free symbolic model generation of analog circuits via canonical form
functions and genetic programming,” in Design, Automation and Test in
Europe, 2005. Proceedings. 1EEE, 2005, pp. 1082-1087.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

M. E. Korns, “Abstract expression grammar symbolic regression,” Ge-
netic Programming Theory and Practice VIII, pp. 109-128, 2011.

R. Riolo, T. Soule, and B. Worzel, Genetic programming theory and
practice vi. Springer Science & Business Media, 2008.

C. Ferreira, “Function finding and the creation of numerical constants
in gene expression programming,” in Advances in soft computing.
Springer, 2003, pp. 257-265.

——, “Gene expression programming in problem solving,” in Soft
computing and industry. Springer, 2002, pp. 635-653.

Q. Chen, M. Zhang, and B. Xue, “Improving generalisation of genetic
programming for symbolic regression with structural risk minimisation,”
in Genetic and Evolutionary Computation Conference, 2016. Proceed-
ings. ACM Press. Dever, Colorado, USA., 2016, pp. 709-716.

G. F. Smits, E. Vladislavleva, and M. E. Kotanchek, “Scalable symbolic
regression by continuous evolution with very small populations,” in
Genetic Programming Theory and Practice VIII. Springer, 2011, pp.
147-160.

M. Oltean and L. Diogan, “An autonomous gp-based system for regres-
sion and classification problems,” Appl. Soft Comput., vol. 9, pp. 49-60,
January 2009.

Q. Chen, M. Zhang, and B. Xue, “Genetic programming with embedded
feature construction for high-dimensional symbolic regression,” in The
20th Asia Pacific Symposium on Intelligent and Evolutionary Systems
(IES). Springer, 2016, pp. 87-102.

——, “Feature selection to improve generalisation of genetic
programming for high-dimensional symbolic regression,” [EEE
Transactions on Evolutionary Computation, vol. 21, no. 5, pp. 792-806,
2017. [Online]. Available: https://doi.org/10.1109/TEVC.2017.2683489
P. G. Espejo, S. Ventura, and F. Herrera, “A survey on the application
of genetic programming to classification,” Trans. Sys. Man Cyber Part
C, vol. 40, pp. 121-144, March 2010.

S. Luke and L. Panait, “A comparison of bloat control methods for
genetic programming,” Evol. Comput., vol. 14, pp. 309-344, September
2006.

R. Hunt, K. Neshatian, and M. Zhang, “Scalability analysis of
genetic programming classifiers,” in Proceedings of the IEEE
Congress on Evolutionary Computation, CEC 2012, Brisbane,
Australia, June 10-15, 2012, 2012, pp. 1-8. [Online]. Available:
https://doi.org/10.1109/CEC.2012.6256520

B. Xue, M. Zhang, W. Browne, and X. Yao, “A survey on
evolutionary computation approaches to feature selection,” Evolutionary
Computation, IEEE Transactions on, vol. 20, no. 4, pp. 606-626, 2016.
[Online]. Available: https://doi.org/10.1109/TEVC.2015.2504420

R. T. Trevor Hastie and J. Friedman, The Elements of Statistical
Learning. Springer Series in Statistics, Springer New York Inc., 2001.
A. C. Rencher and G. B. S. (2nd ed.), Linear Models in Statistics. John
Wiley & Sons, Inc., 2008.

[25] V. Vapnik, Statistical Learning Theory. Wiley-Interscience, 1998.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:20 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

