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Abstract—In todays big data era, all modern applications are
generating and collecting large amount of data. As a result,
data mining is encountering new challenges and opportunities
to make algorithms such that, this voluminous data can be
effectively and efficiently transformed into actionable knowl-
edge . Traditional algorithms were designed to run sequentially
over a single machine. But, as the volume of data increases
computational cost associated with its processing also increases.
This causes problems in analysing data on a single sequential
machine and instead of assisting in data analysis, the processor
serve more like a bottleneck. Parallel and distributed ap-
proaches improve the performance in terms of computational
cost as well as scalability but experience some limitations
during load balancing, data partitioning, job assignment, moni-
toring etc. MapReduce, a parallel programming model is a new
concept which provides seemingly unlimited computing power,
cheap storage as well as, can overcome above limitations. This
makes it a topic of upcoming research interest. A detailed
literature review of some existing methods is given along with
their pros and cons.

1. Introduction

With the advancement in technology, all modern appli-
cations are generating and collecting large amount of data.
Some typical examples include social networking, wireless
sensors network, computer networks etc. As a result, data
mining require more effective and efficient algorithms to
transform this huge data into actionable knowledge. Data
mining can be defined as a process of extracting hidden
patterns and predictive information from large volume of
data. Broadly this hidden knowledge can be extracted using
methods like, Association Rule Mining, clustering, sequence
analysis, classification or forecasting. Association rule min-
ing is one of the important technique used for extracting
interesting patterns and correlations among items in large
dataset [21]. There are two traditional approaches followed
called candidate-generation based (Apriori algorithm) and
Candidate-less (FP-growth algorithm).

The rule mining task can be divided into two computa-
tionally intensive subtasks i.e frequent itemsets generation
and association rule generation. It require the algorithms to

978-1-4673-9354-6/15/$31.00 ©2015 IEEE

be very efficient and scalable. Traditional algorithms were
designed to run sequentially over a single machine. But, as
the volume of data increases computational cost associated
with its processing also increases. This causes problems in
analyzing data on a single sequential machine and instead
of assisting in data analysis, the processor serve more like
a bottleneck. To deal with upcoming issues, due to large
scale data, parallelization of mining algorithms becomes
inevitable. Parallelization of association rule mining tech-
niques can be done either by dividing and distributing data
over multiple nodes and generating association rules locally
followed by merging local results to obtain global asso-
ciation rules. This is called Data-parallelization. Second
approach is, parallelizing algorithm itself called Algorithm-
parallelization.

A detailed literature review of various existing methods
is given along with their pros and cons. Section 2 includes
some background of traditional association rule mining tech-
niques. Section 3 includes the discussion of some existing
research work done for parallelization of association rule
mining. Section 4 explores some of the existing techniques
for implementing association rule mining on MapReduce
with their respective advantages and limitations. Section 5
draws conclusion.

2. Association Rule Mining

Association rule mining can be defined as a process
of extracting correlations and associations among items in
large dataset [21]. Association rule is the implication of
the form X— > Y where X and Y are different items
in transactional or relational database. X— > Y holds
in dataset D, two properties: Support(s)- Total number of
transactions containing both X and Y (X union Y) out of
total present transactions. Equationl.
ie.

support(X—>Y) = P(XUY). (1)

and Confidence(c)- Percentage of transaction containing X,
given that it already has Y Equation2.
i.e.

confidence(X—>Y) = P(Y|X). 2)
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Association rule mining aims to extract frequent item-
sets with support(s) >= Min_sup and Finally generating
association rules from these frequent item set with and
confidence(c)>= Min_conf . Here, Min_sup and Min_conf
are threshold values. Association rule mining techniques can
be divided into two major catagories- Candidate-generation
based techniques and Candidate-less techniques. Number of
algorithms exist under each catagory but importantly Apriori
algorithm is a candidate-generation based approach and FP-
Growth is a candidate-less approach.

Apriori Algorithm [21] uses the prior-knowledge in
terms of properties of frequent itemset. It is an iterative
approach where k-frequent itemsets are extracted using (k-
1)-frequent itemsets. The algorithm exhibits anti-monotonic
property called Apriori property [21], states that ” For a
frequent itemset all its non-empty subsets must also be
frequent.” Apriori can be seen as two step process: Fre-
quent itemset generation and Association rule generation.
Frequent itemset generation can be further divided into
two subtasks called Joining where, l;,_; candidate sets are
joined with itself to generate candidate k-itemsets (Cj,). and
Pruning where, all those candidate frequent itemsets with
support less than Min_sup get pruned off. The working of
apriori can be seen in Figure 1.

Generate K o
Data item sats b Check Support
= candidates (Pruning)
|/ item sets Goin. Stop)
I
T No Ly
The set of
Gk 1:'“ 1 Frequent
itemasct is itemsets
“Null®

Figure 1. Working Flow of Apriori Algorithm [21]

FP-Growth algorithm [20] is candidate-less approach
therefore, do not generate candidate itemset in between.
It uses tree as a data structure which is much compact
and frequent itemsets are mined directly from the tree.
FP-Tree is a composed and compressed representation of
large dataset. This approach require only two database
scans. First scan is required to obtain the support count
of each item in dataset. Infrequent items with support
less than Min_sup are removed and others are arranged in
decreasing order of their support. Second scan over dataset
is made to construct FP-Tree. Finally this tree is used to
extract frequent itemsets directly using bottom-up strategy.
Both traditional approaches can be compared over several
parameters as shown in Table 2.

Traditional algorithms are designed to run sequentially
over single machine [20], [21]. With increase in data vol-
ume, computational intensiveness increases such that it be-
comes impossible for single machine to perform efficiently

[3].

3. Parallelization of Association Rule Mining

Association rule mining can be viewed as two step
process [3] [21]- frequent itemset generation and asso-
ciation rule generation. Being computationally intensive
tasks parallelization is next step required to be taken to
reduce the work load over one sequential machine and
distribute it among several nodes. Parallelization of associ-
ation rule mining can be achieved in two major ways: Data
parallelization- which divide and distribute data over mul-
tiple nodes and generate association rules locally followed
by merging local results to obtain global association rules.
Second is Algorithm parallelization where algorithmic tasks
are distributed over number of nodes. Based on the literature
review done, it can be concluded that most of the research
work is being done on data parallelization.

3.1. Parallelization of Apriori Algorithm

Apriori is most widely used frequent itemset generation
algorithm which, iteratively generate & candidate itemsets
from present (k — 1) frequent itemsets. Several interesting
and effective research work to parallelize the mining of
itemsets can be seen in [11], [12]. Initially Apriori was
implemented on multi-processors and further [1], [2], [13]
implemented them with distributed architecture. Summary
of parallel version of Apriori is defined in [8] as given
below: Count Distribution- can be seen as a most direct form
of parallelization for apriori algorithm. At each node global
candidate itemset as well as frequent itemsets are stored. For
respective local data present on each node, support count
of candidate itemset is calculated using apriori algorithm
and finally, these local results are exchanged among nodes
respectively. Candidate Distribution- here, each node donot
maintain global results but partitions the candidate itemsets
with respect to the partition of dataset. Each node locally
calculate support count of their own candidate itemsets.
Data Distribution- combines the above two approches to-
gether by partitioning both datasets as well as candidate
itemsets at the same time such that, each node can work
independently.

Parallel implementation of finding frequent itemsets fol-
lowed by sequential extraction of association rule depletes
the performance gained so far when the number of generated
frequent itemset is large. Hence, parallelization of second
phase is equally important to enhance the overall perfor-
mance in terms of scalability and efficiency. SeaRum [4] is
one of the initial attempt in our knowledge for developing
both phases of Apriori algorithm in distributed environment.

3.2. Parallelization of FP-Growth Algorithm

Multi-tree approach [10] was one of the initial works
done to parallelize FP-Growth algorithm. Broadly, they used
three steps to achieve parallelism which were followed in
sequence by parallel processing flows. Initially, horizontal
subset of data is analyzed. Secondly local FP-Tree is build
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Comparison of Apriori and FP-Growth

every time. (Slow)

Parameters Apriori FP-Growth
Technique Candidate-based Candidate-less
Time Execution time is more as need to produce candidate | It is much smaller than apriori. (Fast)

Memory usage
space.

Due to large candidate generation require large

Uses tree data structure and donot generate candidate
itemsets, require less memory.

No. of scans

Multiple scans for generating candidate sets

Only two scans are required.

Property

Use apriori property, Prune step, Join step

Conditional frequent pattern tree and base are con-
structed from database, saatisfying min_sup value.

TABLE 1. COMPARATIVE TABLE OF APRIORI AND FP-GROWTH [5]

in parallel and finally, on this local FP-Tree mining pro-
cess is carried out. From every processing flow candidate
patterns are obtained and then merged together. Further,
enhancement were made in merging algorithms using clus-
ter computing environment. Moreover, in [13] certain con-
straints were proposed for massive dataset, which should
be followed in parallel itemset extraction to obtain good
scalability. further improved itemset extraction with better
hardware resource exploitation on multi-core processors. It
proved to be a new innovation in the field which enhanced
the performance of FP-Growth algorithm via improving
the temporary locality for accessing the data at different
levels of memory. In [12] initial effort was made to address
cache-hint optimization using the above technique. Certain
applications were developed [11], implementing the above
for mining itemsets in parallel.

3.3. Limitations of Parallelization of Association
Rule Mining

Implementing sequence of algorithms for association
rule mining in distributed or parallel environment enhances
the performance in terms of scalability and computational
speed-up [20]. But, still persists various limitations while
implementing sequential algorithms in parallel environment
[3], [22] such as: Partitioning and Distribution, Job as-
signment and Monitoring, Load Balancing, Communication
Overhead. All these activities require one central control
which can moniter and maintain other distributed nodes,
this may be prone to failure, costly as well as uneasy
to handle for complex applications. Thus there is scope
to leverage parallelization in a better fashion for further
enhancing performance.

4. Association Rule Mining on MapReduce

Parallel programming model is a new concept which
provide higher computation power and robustness to failure.
MapReduce is one of the promising parallel programming
model discussed in further Sections.

4.1. MapReduce

MapReduce [14] is a parallel programming model which
support distributed computing, required for mining large-
scale data. MapReduce composed of two procedure i.e Map
which basically performs sorting and filtering of data and
Reduce merges the map output to produce final result.
Mapreduce is a framework which can process the paralleliz-
able problems with massive data set by using a large number
of machines. Machines collectively called as cluster which
can take benefit of locality of data.

Driver

Qutput:
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Figure 2. One Phase of MapReduce Computation [14]

Firstly Mapping is done by dividing datasets into subsets
which are distributed as input to each processor where, code
of respective mining algorithm run to obtain local frequent
itemsets. Each processor produce (key/value list) as output
so that next step can use it for further processing. Secondly
Reduce step shuffle the output obtained and provide input
to reduce processors. Reduce code is executed to merge the
local result and obtaining global rules. Finally sorting is
performed to obtain final result. All these steps combatively
called phase of MapReduce as in Figure 2. One or more
phases may be required to obtain desired pattern or action-
able knowledge out of massive database.

Key benefits of MapReduce is that it automatically
handles failures as well as hides the complexity of fault-
tolerance from the programmer [8]. But support a particular
kind of schema for input file hence, do not offer much
space for improvements. However, the MapReduce frame-
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work [18] is not suitable for the frequent itemset mining
algorithm like the Apriori algorithm which have intensive
iterated computation.

4.2. Parallelization of Apriori Algorithm on MapRe-
duce

Several versions of parallellized form of Apriori algo-
rithm to handle issues like improper load balancing, uneven
data distribution, high communication overhead have been
developed and discussed in further Sections

In K-MapReduce Apriori algorithm [23] method extracts
all frequent itemsets from the given dataset using k phases
of MapReduce. Phase ’i’ ran iteratively to obtain frequent
i-itemset where i= 1,2,3,4....k. Improved performance in
terms of scalability and computationally efficiency is ob-
tained. but one MapReduce phase need to wait and schedule
every time for next phase to start, which is pure burden to
the mining task.

The waiting time issue is resolved [7], by using only
a single phase to extract all frequent k-itemsets from the
given data set. But, the performance of method is not much
satisfactory .

In [9] MRApriori stratergy, introduced a new modified
version of Apriori algorithm and requires only two phases of
MapReduce to extract all possible frequent k-itemsets. The
MRApriori performs outstandingly in terms of all desired
deliverables in comparison to other approaches, as only
two phases are required for extracting all possible frequent
k-itemset from entire dataset. But in realistic scenerio, if
number of partial frequent k-itemset generated is huge than
then each node take insignificant amount of time to process
hence, perform inefficiently .

An enhanced variant/MRApriori [3] of MRApriori re-
duced the processing time in case frequent k-itemset gen-
erated is huge [3]. Efficient pruning technique is used for
removing number of partial k-itemsets which are infrequent,
to achieve the computational speed-up. Significant amount
of infrequent itemset get pruned of in phase one itself
which improves the efficiency by removing the case of huge
number of partial frequent itemsets.

4.3. Parallelization of FP-Growth on MapReduce

Initially, efforts were made to parallelize and speed up
Apriori algorithm because of its simplicity. It has been
shown that FP-Growth is much faster than Apriori hence,
logically parallel implementation of FP-Growth will provide
much faster speed up and low cost overhead. Initial parallel
FP-Growth was implemented across multiple-thread and
with shared memory in [10], [11]. But, this approach re-
stricts the percentage of computation that can be parallelized
as well as if dealing with huge dataset, requirement of
huge memory space, high communication cost were another
issue need to be handle. To deal with these limitations
distributed variant of algorithm was designed, which run
over the cluster of machines. [15] applied strategy to solve

the issues like communication overhead, and achieved satis-
factory performance over hundreds of node. But still issues
like scalability, automatic fault-tolerance were hindering the
desired performance.

In [2] Parallel FP-Growth(PFP) method parallelized
the FP-Growth over distributed machines such that each
machine executes independent mining tasks. Such partition
remove the computational dependency which in turn reduces
communication overhead between them. PFP divides the
dataset and save them on different P Nodes. Each part
is called ’Shard’. Parallel counting of support value cor-
responding to each item I’ is performed on each part,
using a MapReduce Pass and store these value in F-list.
All °T’ items are divided into 'Q’ groups (G-List), each
given with unique group Id. Parallel FP-Growth uses another
MapReduce Pass where "Map’ phase produces output as
Key/Value pair and Reducer take output of mappers in form
of group dependent transactions and again correspondingly
group them into shard. Each machine again assigned with
one or more shard to build a local FP-Tree and growth
them recursively. Finally, discover frequent patterns. PFP
is able to achieve ’Near-Linear’ Speed-up and is fairly
suited for query recommendation. But, it do not take load
balancing into consideration, hence limits if data is huge. It
also need multiple database scans as well as inter processor
communication is high.

An improved variant of PFP called Balanced
PFP(BPFP) [1] resolved the issue of load balancing
when dataset is massive. The algorithm proposed additional
estimate work load and dataset into several units on which
association mining is performed to obtain frequent itemsets.
Key Feature of BPFP is Partitioning Mining Task into
quit even subtasks, which in turn produce higher level of
parallelization. BPFP Performs well even with huge data
volume.

Much similar to PFP a stratergy called CPFP [16] was
introduced which improved in terms of inter process com-
munication, a limitation of PFP. The algorithm implements
the separation strategy which simply ask single visit to
local database. Hence, reduces the inter processor and I/O
overhead.

PIFP-Parallelized Incremental FP-Growth [17], a
MapReduce Based strategy developed basically for large-
scale data processing. The periodic updates of database and
change in threshold value require data mining process begin
from the beginning which is an overhead. Here, presents
a scheme which adapt dynamic database (streaming data)
as well as change in threshold value. The strategy realizes
effective and efficient data mining without any repeated
computation. The strategy divides the whole problem into
two parts: firstly updates of the FP-Tree and secondly
frequent itemset mining. Algorithm effectively reduce the
duplicated work and allow to improve the speed-up, by
adding more number of machines. But PIFP suffer from load
balancing problem which effect the overall performance.
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Summary Table
Technique Platform Algorithm Achieved Remark
improved
K-map Apriori [8] | MapReduce Apriori Scalability and works in only K phase High waiting time between two
phases
MR-Apriori [9] MapReduce Apriori Scalability and works in only two phase Perform insignificantly if gener-
ation of k-frequent itemset is
huge, each node take insignificant
amount of time
IMR-Apriori [3] MapReduce Apriori Perform well and much scalable _
PFP [2] Mapreduce FP-Growth Near-Linear speed-up Issue of load balancing, multiple
scanning of dB and I/O overhead
BPFP [1] MapReduce FP-Growth Near-Linear speed-up with load balancing Additional computational overhead
of load estimation
CPFP [16] MapReduce FP-Growth Efficient performance, load balancing and | Not compatable for dynamic
reduced I/O overhead database or change in threshold
PIFP [17] MapReduce Fp-Growth Adopt incremental changes in database and | Load balancing issues still exists
threshold and reduce duplicacy
SeaRum [4] MapReduce Apriori Parallelization of association rule extraction | _
phase and provide SaaS platform
PRAMA [6] MapReduce Fp-Growth/ Near-Linear speed-up, High scalability, re- | Combines Random sampling and
Apriori duce duplicates, Extract rules Directly Parallelization
YAFIM [18] Spark RDD Apriori Faster computation Faster computation than Mapre-
duce
NIMBLE [19] NIMBLE FP-Growth/ Portable, support rapid prototyping Designed for fast and efficient im-
Apriori plementation of MLDM algorithms

TABLE 2. SUMMARY TABLE FOR ABOVE DISCUSSED TECHNIQUES

4.4. Other Approaches

Beside MapReduce, many other research work using
different approaches can be seen, which also ultimately
improves the association rule mining process while using
parallel environment. A cloud based service modelSeaRuM
[4] efficiently extracts association rules from huge frequent-
items. SeaRuM run a number of distributed MapReduce jobs
performing different tasks in cloud. The architecture contain
following jobs Data acquisition, Data Preprocessing, Item
Frequency Computation, Itemset Mining, Rule Extraction,
Rule aggregation and Sorting.

A randomized approach [6], PARMA stands for -A Par-
allel Randomized Algorithm For Approximate Association
Rule Mining. The approach combines the two different
methods named Random Sampling and Parallelization for
extracting association rules out of massively huge amount
of dataset. The overall cost of association rule mining can
be divided into two components: scanning and Mining.The
scanning factor increases very rapidly and dominant mining
and make the whole process unsellable and complex. Hence,
PARMA combines both approaches in a novel fashion, it
mines small random samples in parallel. Each sample is
given as input to MapReduce function running in orthogo-
nal manner. lastly, filtering and aggregation of association
rule from each sample are collected. PARMA can compute
association rules directly and is not limited to frequent
itemset extraction. Significantly outperform and has near-

linear speed Up and good scalability. Able to achieve near
constant runtime because of scaling data and nodes together.

Another stratergy YAFIM(Yet Another Frequent Itemset
Mining) [18], used different approach for using parallel
Apriori algorithm over Spark RDD framework in-spite of
MapReduce. Spark is a specially designed for iterative and
interactive algorithms of data mining. It is basically in-
memory based parallel computing model means all data
is loaded in memory itself. Secondly it do not use fixed
two state model as in MapReduce but provide DAG based
data flow. These features allow speeding up the computation
significantly for the iterative algorithms like Apriori. YAFIM
outperforms in terms of fast computation in comparison to
MapReduce.

A new method called NIMBLE [19], aims to achieve
portability of programming code, for fast and efficient
implementation of the parallel data mining algorithms. The
tool kit allows to build Machine learning and Data Mining
algorithms around reusable building blocks parallely such
that they can be easily utilized by other programming model
as well. This helps to achieve inter-portability. NIMBLE
facilitates the processing of variety of data formats due
to its built-in support as well as simplify the custom
data-format implementations. Strategies for optimization
and abstraction incorporate hand in hand to deliver high
performance runtime. It can be seen as a infrastructure,
providing limited effort parallelization and Support for
rapid prototyping.
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All discussed approaches in Section 4.1, 4.2 and 4.3 can
be summarized in the form of Table 2

5. Conclusion

Association rule mining aims to find the correlations
and associations from the data. Association rules can
be extracted by using either of the two primary ap-
proaches i.e. candidate-generation based (Apriori algorithm)
or candidate-less (FP-Growth). The process of association
rule mining can be further divided into two subtasks frequent
itemset generation and association rule generation. Frequent
itemset generation is computationally very intensive. Hence,
parallelization of traditional approaches becomes inevitable.
Association rule mining techniques can be parallelized in
two ways i.e. data parallelization or algorithmic paralleliza-
tion. Based on the literature review done it can be concluded
that most of the research work has been done using data
parallelization approach but, not much research work is
being done on algorithmic parallelization. Parallelization of
association rule mining techniques over distributed architec-
ture helps us to achieve scalability and computational speed-
up. But, there are many limitations such as data partitioning
problems, uneven data distribution, improper load balancing,
data communication overhead etc. MapReduce, a parallel
programming model is a new concept which seemingly
provides high computational power hence, promises a great
scope to evolve association rule mining techniques in par-
allel environment.
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