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Preface

This book is an outgrowth of an association between the authors which started as
fellow graduate students at MIT, was nurtured by a close collaboration at Bell
Laboratories for slightly over 6 years, and has continued ever since as colleagues and
close friends. The spark which ignited formal work on this book was a tutorial paper
on digital representations of speech signals which we prepared for an IEEE Proceed-
ings special issue on Digital Signal Processing, edited by Professor Alan Oppenheim
of MIT. At the time we wrote that paper we realized that the field of digital speech
processing had matured sufficiently that a book was warranted on the subject.

Once we convinced ourselves that we were both capable of and ready to write
such a text, a fundamental question concerning organization had to be resolved. We
considered at least 3 distinct ways of organizing such a text and the problem was
deciding which, if any, would provide the most cohesive treatment of this field. The
3 organizations considered were

1. According to digital representations
2. According to parameter estimation problems
3. According to individual applications areas.

After much discussion it was felt that the most fundamental notions were those
related to digital speech representations and that a sound understanding of such
representations would allow the reader both to understand and to advance the
methods and techniques for parameter estimation and for designing speech process-
ing systems. Therefore, we have chosen to organize this book around several basic
approaches to digital representations of speech signals, with discussions of specific
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parameter estimation techniques and applications serving as examples of the utility
of each representation.

The formal organization of this book is as follows. Chapter 1 provides an
introduction to the area of speech processing, and gives a brief discussion of applica-
tion areas which are directly related to topics discussed throughout the book.
Chapter 2 provides a brief review of the fundamentals of digital signal processing.
It is expected that the reader has a solid understanding of linear systems and Fourier
transforms and has taken, at least, an introductory course in digital signal processing.
Chapter 2 is not meant to provide such background, but rather to establish a notation
for discussing digital speech processing, and to provide the reader with handy access
to the key equations of digital signal processing. In addition, this chapter provides
an extensive discussion of sampling, and decimation and interpolation, key processes
that are fundamental to most speech processing systems. Chapter 3 deals with digital
models for the speech signal. This chapter discusses the physical basis for sound
production in the vocal tract, and this leads to various types of. digital models to
approximate this process. In addition this chapter gives a brief introduction to
acoustic phonetics; that is, a discussion of the sounds of speech and some of their
physical properties.

Chapter 4 deals with time domain methods in speech processing. Included in
this chapter are discussions of some fundamental ideas of digital speech processing—
e.g., short-time energy, average magnitude, short-time average zero-crossing rate,
and short-time autocorrelation, The chapter concludes with a section on a nonlinear
smoothing technique which is especially appropriate for smoothing the time-domain
measurements discussed in this chapter. Chapter 5 deals with the topic of direct
digital representations of the speech waveform—i.e., waveform coders. In this chapter
the ideas of instantaneous quantization (both uniform and nonuniform), adaptive
quantization, differential quantization, and predictive coding (both fixed and adap-
tive) are discussed and are shown to form the basis of a variety of coders from
simple pulse code modulation (PCM) to adaptive differential PCM (ADPCM) coding.

Chapter 6 is the first of two chapters that deal with spectral representations of
speech. This chapter concerns the ideas behind short-time Fourier analysis and
synthesis of speech. This area has traditionally been the one which has received most
attention by speech researchers since some of the key speech processing systems,
such as the sound spectograph and the channel vocoder, are directly related to the
concepts discussed in this chapter. Here it is shown how a fairly general approach to
speech spectral analysis and synthesis provides a framework for discussing a wide
variety of speech processing systems, including those mentioned above. Chapter 7,
the second chapter on spectral representations of speech, deals with the area of
homomorphic speech processing. The idea behind homomorphic processing of speech
is to transform the speech waveform (which is naturally represented as a convolution)
to the frequency domain as a sum of terms which can be separated by ordinary
linear filtering techniques. Techniques for carrying out this procedure are discussed
in this chapter, as are several examples of applications of homomorphic speech
processing.

Chapter 8 deals with the topic of linear predictive coding of speech. This repre-

xiv

sentation is based upon a minimum mean-squared error approximation to the time-
varying speech waveform, subject to an assumed linear system model of the speech
signal. This method has been found to be a robust, reliable, and accurate method for
representing speech signals for a wide variety of conditions.

The final chapter, Chapter 9, provides a discussion of several speech processin'g
systems in the area of man-machine communication by voice. The purpose of t_hls
chapter is twofold: first, to give concrete examples of specific speech processing
systems which are used in real world applications, and second, to show how Fhe
ideas developed throughout the book are applied in representative speech processing
systems. The syster;ls discussed in this chapter deal with computer voice response,
speaker verification and identification, and speech recognition.

The material in this book is intended as a one-semester course in speech process-
ing. To aid the teaching process, each chapter (from Chapter 2 to Chapter 8) con-
tains a set of representative homework problems which are intended to reinforce the
ideas discussed in each chapter. Successful completion of a reasonable percentage
of these homework problems is essential for a good understanding of the mathematical
and theoretical concepts of speech processing. However, as the reader will see, much
of speech processing is, by its very nature, empirical. Thus, some ‘“hands on’’ experi-
ence is essential to learning about digital speech processing. In teaching courses
based on this book, we have found that a first order approximation to this experience
can be obtained by assigning students a term project in one of the following three
broad categories:

1. Aliterature survey and report
2. A hardware design project
3. A computer project

Some guidelines and lists of suggested topics for the three types of projects are gi.ven
at the end of Chapter 9. We have found that these projects, although demanding,
have been popular with our students. We strongly encourage other instructors to
incorporate such projects into courses using this book.
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1

Introduction

1.0 Purpose of This Book

The purpose of this book is to show how digital signal processing techniques
can be applied in problems related to speech communication. Therefore, this
introductory chapter is devoted to a general discussion of questions such as:
what is the nature of the speech signal, how can digital signal processing tech-
niques play a role in learning about the speech signal, and what are some of the
important application areas of speech communication in which digital signal
processing techniques have been used?

1.1 The Speech Signal

The purpose of speech is communication. There are several ways of character-
izing the communications potential of speech. One highly quantitative approach
is in terms of information theory ideas as introduced by Shannon [1}. Accord-
ing to information theory, speech can be represented in terms of its message
content, or information. An alternative way of characterizing speech is in terms
of the signal carrying the message information, i.e., the acoustic waveform.
Although information theoretic ideas have played a major role in sophisticated
communications systems, we shall see throughout this book that it is the speech
representation based on the waveform, or some parametric model, which has
been most useful in practical applications.




In considering the process of speech communication, it is helpful to begin
by thinking of a message represented in some abstract form in the brain of the
speaker. Through the complex process of producing speech, the information in
that message is ultimately converted to an acoustic signal. The message infor-
mation can be thought of as being represented in a number of different ways in
the process of speech production. For example, the message information is
first converted into a set of neural signals which control the articulatory
mechanism (that is, the motions of the tongue, lips, vocal cords, etc.). The
articulators move in response to these neural signals to perform a sequence of
gestures, the end result of which is an acoustic waveform which contains the
information in the original message.

The information that is communicated through speech is intrinsically of a
discrete nature; i.e., it can be represented by a concatenation of elements from
a finite set of symbols. The symbols from which every sound can be classified
are called phonemes. Each language has its own distinctive set of phonemes,
typically numbering between 30 and 50. For example, English can be
represented by a set of around 42 phoniemes. (See Chapter 3.)

A central concern of information theory is the rate at which information
is conveyed. For speech a crude estimate of the information rate can be
obtained by noting that physical limitations on the rate of motion of the articu-
lators require that humans produce speech at an average rate of about 10
phonemes per second. If each phoneme is represented by a binary number,
then a six-bit numerical code is more than sufficient to represent all of the
phonemes of English. Assuming an average rate of 10 phonemes per second
and neglecting any correlation between pairs of adjacent phonemes we get an
estimate of 60 bits/sec for the average information rate of speech. In other
words, the written equivalent of speech contains information equivalent to 60
bits/sec at normal speaking rates. Of course a lower bound on the "true" infor-
mation content of speech is considerably higher than this rate. The above esti-
mate does not take into agcount factors such as the identity and emotional state
of the speaker, the rate of speaking, the loudness of the speech, etc.

In speech communication systems, the speech signal is transmitted,
stored, and processed in many ways. Technical concerns lead to a wide variety
of representations of the speech signal. In general, there are two major con-
cerns in any system:

1. Preservation of the message content in the speech signal.

2. Representation of the speech signal in a form that is convenient for
transmission or storage, or in a form that is flexible so that
modifications may be made to the speech signal without seriously
degrading the message content.

The representation of the speech signal must be such that the information con-
tent can easily be extracted by human listeners, or automatically by machine.
Throughout this book we shall see that representations of the speech signal

(rather than message content) may require from 500 to upwards of 1 million
bits per second. In the design and implementation of these representations, the
methods of signal processing play a fundamental role.

1.2 Signal Processing

The general problem of information manipulation and processing is depicted in
Figure 1.1. In the case of speech signals the human speaker is the information
source. The measurement or observation is generally the acoustic waveform.

-

INFORMATION
SOURCE

MEASUREMENT
OR
OBSERVATION

SIGNAL
REPRESENTATION

SIGNAL
PROCESSING

SIGNAL
TRANSFORMATION

EXTRACTION AND
UTILIZATION OF
INFORMATION

Fig. 1.1 General view of information manipulation and processing.

Signal processing involves first obtaining a representation of the signal based on
a given model and then the application of some higher level transformation in
order to put the signal into a more convenient form. The last step in the pro-
cess is the extraction and utilization of the message information. This step may
be performed either by human listeners or automatically by machines. By way
of example, a system whose function is to automatically identify a speaker from
a given set of speakers might use a time-dependent spectral representation of
the speech signal. One possible signal transformation would be to average spec-
tra across an entire sentence, compare the average spectrum to a stored
averaged spectrum template for each possible speaker, and then based on a
spectral similarity measurement choose the identity of the speaker. For this
example the "information” in the signal is the identity of the speaker.

Thus, processing of speech signals generally involves two tasks. First, it
is a vehicle for obtaining a general representation of a speech signal in either
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waveform or parametric form. Second, signal processing serves the function of
aiding in the process of transforming the signal representation into alternate
forms which are less general in nature, but more appropriate to specific applica-
tions. Throughout this book we will see numerous specific examples of the
importance of signal processing in the area of speech communication.

1.3 Digital Signal Processing

The focus of this book is to explore the role of digital techniques in processing
speech signals. Digital signal processing is concerned both with obtaining
discrete representations of signals, and with the theory, design, and implemen-
tation of numerical procedures for processing the discrete representation. The
objectives in digital signal processing are identical to those in analog signal pro-
cessing. Therefore, it is reasonable to ask why digital signal processing tech-
niques should be singled out for special consideration in the context of speech
communication. A number of very good reasons can be cited. First, and prob-
ably most important, is the fact that extremely sophisticated signal processing
functions can be implemented using digital techniques. The algorithms that we
shall describe in this book are intrinsically discrete-time, signal processing sys-
tems. For the most part, it is not appropriate to view these systems as approxi-
mations to analog systems. Indeed in many cases there is no realizable counter-
part available with analog implementation.

Digital signal processing techniques were first applied in speech processing
problems, as simulations of complex analog systems. The point of view initially
was that analog systems could be simulated on a computer to avoid the neces-
sity of building the system in order to experiment with choices of parameters
and other design considerations. When digital simulations of analog systems
were first applied, the computations required a great deal of time. For example,
as much as an hour might have been required to process only a few seconds of
speech. In the mid 1960’s a revolution in digital signal processing occurred.
The major catalysts were the development of faster computers and rapid
advances in the theory of digital signal processing techniques. Thus, it became
clear that digital signal processing systems had virtues far beyond their ability to
simulate analog systems. Indeed the present attitude toward laboratory com-
puter implementations of speech processing systems is to view them as exact
simulations of a digital system that could be implemented either with special
purpose digital hardware or with a dedicated computer system.

In addition to theoretical developments, concomitant developments in the
area of digital hardware have led to further strengthening of the advantage of
digital processing techniques over analog systems. Digital systems are reliable
and very compact. Integrated circuit technology has advanced to a state where
extremely complex systems can be implemented on a single chip. Logic speeds
are fast enough so that the tremendous number of computations required in
many signal processing functions can be implemented in real-time at speech
sampling rates.

There are many other reasons for using digital techniques in speech com-
munication systems. For example, if suitable coding is used, speech in digital
form can be reliably transmitted over very noisy channels. Also, if the speech
signal is in digital form it is identical to data of other forms. Thus a communi-
cations network can be used to transmit both speech and data with no need to

distinguish between them except in the decoding. Also, with regard to
transmission of voice signals requiring security, the digital representation has a
distinct advantage over analog systems. For secrecy, the information bits can
be scrambled in a manner which can ultimately be unscrambled at the receiver.
For these and numerous other reasons digital techniques are being increasingly
applied in speech communication problems [3].

1.4 Digital Speech Processing

In considering the application of digital signal processing techniques to speech
communication problems, it is helpful to focus on three main topics: the
representation of speech signals in digital form, the implementation of sophisti-
cated processing techniques, and the classes of applications which rely heavily
on digital processing.

The representation of speech signals in digital form is, of course, of fun-
damental concern. In this regard we are guided by the well-known sampling
theorem [4] which states that a bandlimited signal can be represented by sam-
ples taken periodically in time — provided that the samples are taken at a high
enough rate. Thus, the process of sampling underlies all of the theory and
application of digital speech processing. There are many possibilities for
discrete representations of speech signals. As shown in Figure 1.2, these
representations can be classified into two broad groups, namely waveform
representations and parametric representations. Waveform representations, as

REPRESENTATION

OF
SPEECH SIGNALS

PARAMETRIC
REPRESENTATIONS

I

WAVEFORM
REPRESENTATIONS

-

EXCITATION
PARAMETERS

VOCAL TRACT
PARAMETERS

Fig. 1.2 Representations of speech signals.
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Fig. 1.3 Range of bit rates for various t pes of speech representations.
(Aﬁel Flanagan [3])

the mame implies, are concerned with simply preserving the "wave shape" of the
analog speech signal through a sampling and quantization process. Parametric
representations, on the other hand, are concerned with representing the speech
signal as the output of a model for speech production. The first step in obtain-
?ng a parametric representation is often a digital waveform representation; that
is, the speech signal is sampled and quantized and then further processed to
obtain the parameters of the model for speech production. The parameters of
this model are conveniently classified as either excitation parameters (.e.,
related to the source of speech sounds) or vocal tract response parameters (i.e.,
related to the individual speech sounds).!

Figure 1.3 shows a comparison of a number of different representations of
speech signals according to the data rate required. The dotted line, at a data
rate of about 15,000 bits per second, separates the high data rate waveform
representations at the left from the lower data rate parametric representations at
the right. This figure shows variations in data rate from 75 bits per second
(approximately the basic message information of the text) to data rates upward
of 200,000 bits per second for simple waveform representations. This
represents abott a 3000 to 1 variation in data rates depending on the signal
representation. Of course the data rate is not the only consideration in choos-
ing a speech representation. Other considerations are cost, flexibility of the
representation, quality of the speech, etc. We defer a discussion of such issues
to the remaining chapters of this book.

The ultimate application is perhaps the most important consideration in
the choice of a signal representation and the methods of digital signal process-

SPEECH COMMUNICATION
APPLICATIONS
|

DIGITAL SPEECH SPEAKER SPEECH AIDS-TO-THE ENHANCEMENT
TRANszDSSION SYNTHESIS VERIFICATION RECOGNITION HANDICAPPED OF SIGNAL
AND ALITY
STORAGE IDENTIFICATION A

Fig. 1.4 Some typical speech communications applications.

IChapter 3 provides a detailed discussion of parametric speech models.
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ing subsequently applied. Figure 1.4 shows just a few of the many applications
areas in speech communications. Although we have already referred to several
of these areas, it is worthwhile giving a brief discussion of each of these areas
as a means for motivating the techniques to be discussed in subsequent
chapters.

1.4.1 Digital transmission and storage of speech {3

One of the earliest and most important applications of speech processing
was the vocoder or voice coder, invented by Homer Dudley in the 1930°s [5].
The purpose of the vocoder was to reduce the bandwidth required to transmit
the speech signal. The need to conserve bandwidth remains, in many situa-
tions, in spite of the increased bandwidth provided by sattelite, microwave, and
optical communications systems. Furthermore, a need has arisen for systems
which digitize speech at as low a bit rate as possible, consistent with low termi-
nal cost for future applications in the all-digital telephone plant. Also, the pos-
sibility of extremely sophisticated encryption of the speech signal is sufficient
motivation for the use of digital transmission in many applications.

1.4.2 Speech synthesis systems

Much of the interest in speech synthesis systems is stimulated by the
need for economical digital storage of speech for computer voice response sys-
tems [6). A computer voice response system is basically an all-digital,
automatic information service which can be queried by a person from a key-
board or terminal, and which responds with the desired information by voice.
Since an ordinary Touch-Tone® telephone can be the keyboard for such a sys-
tem, the capabilities of such automatic information services can be made
universally available over the switched telephone facilities without the need for
any additional specialized equipment [3]. Speech synthesis systems also play a
fundamental role in learning about the process of human speech production [7].

1.4.3 Speaker verification and identification systems [8]

The techniques of speaker verification and identification involve the
authentication or identification of a speaker from a large ensemble of possible
speakers. A speaker verification system must decide if a speaker is the person
he claims to be. Such a system is potentially applicable to situations requiring
control of access to information or restricted areas and to various kinds of
automated credit transactions. A speaker identification system must decide
which speaker among an ensemble of speakers produced a given speech utter-
ance. Such systems have potential forensic applications.

1.4.4 Speech recognition systems [9]

Speech recognition is, in its most general form, a conversion from an
acoustic waveform to a written equivalent of the message information. The
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nature of the speech recognition problem is heavily dependent upon the con-
straints placed on speaker, speaking situation and message context. The
potential applications of speech recognition systems are many and varied; e.g. a
voice operated typewriter and voice communication with computers. Also, a
speech recognizing system combined with a speech synthesizing system
comprises the ultimate low bit rate communication system.

1.4.5 Aids-to-the-handicapped

This application concerns processing of a speech signal to make the infor-
mation available in a form which is better matched to a handicapped person
than is normally available. For example variable rate playback of prerecorded
tapes provides an opportunity for a blind "reader” to proceed at any desired pace
through given speech material. Also a variety of signal processing techniques
have been applied to design sensory aids and visual displays of speech informa-
tion as aids in teaching deaf persons to speak [10].

1.4.6 Enhancement of signal quality

In many situations, speech signals are degraded in ways that limit their
effectiveness for communication. In such cases digital signal processing tech-
niques can be applied to improve the speech quality. Examples include such
applications as the removal of reverberation (or echos) from speech, or the
removal of noise from speech, or the restoration of speech recorded in a
helium-oxygen mixture as used by divers.

1.5 Summary

In this chapter we have introduced the ways in which digital signal processing
techniques are applied in speech communication. It is clear that we have
selected a very wide range of topics, and to cover them in complete depth
would be extremely difficult. There are a number of ways in which a book of
this type could be organized. For example, it could be organized with respect
to the signal representations of Figure 1.2. Alternatively, a book could be writ-
ten that would emphasize applications areas. Indeed, a book could be written
about each area shown in Figure 1.4. A third possibility, which we have
chosen, is to organize the book with respect to signal processing methods. We
feel that this approach offers the greatest opportunity to focus on topics that
will be of continued importance. As such, the remaining chapters of this book
provide a review of digital signal processing methods (Chapter 2), an introduc-
tion to the digital speech model (Chapter 3), discussions of time domain
representations of speech (Chapter 4), waveform representations (Chapter 5),
short-time spectral representations (Chapter 6), homomorphic representations
(Chapter 7), and linear predictive representations (Chapter 8). These chapters
detail the basic theory of digital speech processing. This theory is widely appli-

cable in many applications areas. To illustrate such applications, the final
chapter (Chapter 9) discusses several examples of man-machine communica-
tions systems which involve extensive use of the digital signal processing
methods discussed in this book.

REFERENCES

1. C. E. Shannon, "A Mathematical Theory of Communication," Bell System
Tech. J., Vol. 27, pp. 623-656, October 1968.

2. 1. L. Flanagan, Speech Analysis, Synthesis, and Perception, 2nd Edition,
Springer Verlag, New York, 1972.

3. 1. L. Flanagan, "Computers That Talk and Listen: Man-Machine Com-
munication by Voice," Proc. IEEE, Vol. 64, No. 4, pp. 416-432, April
1976.

4, H. Nyquist, "Certain Topics in Telegraph Transmission Theory,” Trans.
AIEE, Vol. 47, pp. 617-644, February 1928.

5. H. Dudley, "Remaking Speech," J. Acoust. Soc. Am., Vol. 11, pp. 169-177,
1939.

6. L. R. Rabiner and R. W. Schafer, "Digital Techniques for Computer Voice
Response: Implementations and Applications,” Proc. IEEE, Vol. 64, pp.
416-433, April 1976.

7. C. H. Coker, "A Model of Articulatory Dynamics and Control," Proc.
IEEE, Vol. 64, No. 4, pp. 452-460, April 1976.

8. B. S. Atal, "Automatic Recognition of Speakers from Their Voices," Proc.
IEEE, Vol. 64, No. 4, pp. 460-475, April 1976.

9. D. R. Reddy, "Speech Recognition by Machine: A Review," Proc. IEEE,
Vol. 64, No. 4, pp. 501-531, April 1976.

10. H. Levitt, "Speech Processing Aids for the Deaf: An Overview," IEEE
Trans. on Audio and Electroacoustics, Vol. AU-21, pp. 269-273, June 1973.




Fundamentals
of Digital Signal Processing

2.0 Introduction

Since the speech processing schemes and techniques that we shall discuss in
this book are intrinsically discrete-time signal processing systems, it is essential
that a reader have a good understanding of the basic techniques of digital signal
processing. In this chapter we present a brief review of the important concepts.
This review is intended to serve as a convenient reference for later chapters and
to establish the notation that will be used throughout the book. Those readers
who are completely unfamiliar with techniques for representation and analysis
of discrete-time signals and systems may find it worthwhile to consult a text-
book on digital signal processing {1-3]1 when this chapter does not provide
sufficient detail.

2.1 Discrete-Time Signals and Systems

In almost every situation involving information processing or communication, it
is matural to begin with a representation of the signal as a continuously varying
pattern. The acoustic wave produced in human speech is most certainly of this
nature. It is mathematically convenient to represent such continuously varying
patterns as functions of a continuous variable # which represents time. In this
book we shall use notation of the form x,(t) to denote continuously varying
(or analog) time waveforms. As we shall see, it is also possible to represent
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Fig. 2.1 Representations of a speech signal.

the speech signal as a sequence of numbers; indeed, that is what this book is all
about. In general we shall use notation of the form, x(n), to denote
sequences. If, as is the case for sampled speech signals, a sequence can be
thought of as a sequence of samples of an analog signal taken periodically with
sampling period, T, then we may find it useful to explicitly indicate this by
using the notation, x,(nT). Figure 2.1 shows an example of a speech signal
represented both as an analog signal and as a sequence of samples at a sampling
rate of 8 kHz. In subsequent figures, convenience in plotting may dictate the
use of the analog representation (i.e., continuous functions) even when the
discrete representation is being considered. In such cases, the continuous curve
can simply be viewed as the envelope of the sequence of samples.

In our study of digital speech processing systems we will find a nux_nber gf
special sequences repeatedly arising. Several of these sequences are depicted in

Fig. 2.2. The unit sample or unit impulse sequence is defined as

(n)=1 n=0
=0 otherwise Q.1
The unit step sequence is
u(n) =1 n2=20
=0 n<0 (2.2)
An exponential sequence is of the form
x(n) =a" (2.3)
If ais complex, i.e., a = re’*, then
x(n) = re’®" = r"cos won+j sin won) 2.4)
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Fig. 2.2 (a) Unit sample; (b) unit step; (c) real exponential; and (d)
damped cosine.

If r =1and wg# 0, x(n) is a complex sinusoid; if wg =0, x(n) is real; and if
r < 1 and oy # 0, then x(n) is an exponentially decaying oscillatory sequence.
Sequences of this type arise especially in the representation of linear systems
and in modelling the speech waveform.

Signal processing involves the transformation of a signal into a form
which is in some sense more desirable. Thus we are concerned with discrete
systems, or equivalently, transformations of an input sequence into an output
sequence. We shall depict such transformations by block diagrams such as Fig.
2.3a. Many speech analysis systems are designed to estimate several time-
varying parameters from samples of the speech wave. Such systems therefore

— ) — — 1)

x(n) Y(“)’T[K(“)] x(n}

y{n)

(a) (b)

Fig. 2.3 Block diagram representations of: (a) single input/single output
system; (b) single input/multiple output system.
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have a multiplicity of outputs; i.e., a single input sequence representing the
speech signal is transformed into a vector of output sequences as depicted in
Fig. 2.3b. In this book, we shall discuss both single output and multiple output
speech processing systems.

The special class of linear shift-invariant systems is especially useful in
speech processing. Such systems are completely characterized by their response
to a unit sample input. For such systems, the output can be computed from
the input, x(n), and the unit sample response, #(n), using the convolution
sum expression

y() = x(K)h(n=k) = x(n) %h(n) 2.50)

km=—o0

where the symbol * stands for discrete convolution. An equivalent expression
is

ym) = 3 h()x(n—k) = h(n)%x(n) (2.5b)

km—o0

Linear shift invariant systems are useful for performing filtering opera-
tions on speech signals and, perhaps more importantly, they are useful as
models for speech production.

2.2 Transform Representation of Signals and Systems

The analysis and design of linear systems are greatly facilitated by frequency-
domain representations of both signals and systems. Thus, it is useful to
review Fourier and ztransform representations of discrete-time signals and
systems.

2.2.1 The z-transform

The z-transform representation of a sequence is defined by the pair of
equations

X(z) = i x(n)z™" (2.6a)

n=—0co

x(n) = 2—171_]- _cé X(z) z" 4z (2.6b)

The "ztransform” or "direct transform" of x(n) is defined by Eq. (2.6a). It can
be seen that in general X(z) is an infinite power series in the variable z7',
where the sequence values, x(n), play the role of coefficients in the power
series. In general such a power series will converge (add up) to a finite value
only for certain values of z. A sufficient condition for convergence is

0

Y x|z < e 2.7

Ne=—co
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The set of values for which the series converges defines a region in the com-

?lex z-plane known as the region of convergence. In general this region is of the
orm

R, < |z| <R, 2.8)

To see the relationship of the region of convergence to the nature of the
sequence, let us consider some examples.

2.2.1a Example |

Let x(n) = 8(n—ng. Then by substitution into Eq. (2.6a)
X(@) =27
2.2.1b Example 2

Let x(n) = u(n) = u(n—N). Then
N

N-1 1 -2
X)) =3 ()zr=—%_
=0 1- z_l
In both gf t‘hese cases, x(n) is of finite duration. Therefore X(z) is simply a
polynomial in the variable 27, and the region of convergence is everywhere but

z =0, All finite length sequences have a regj i
. gion of convergence tha
the region 0 < |z| < oo, ’ it feast

2.2.1c Example 3
Let x(n) = a"u(n). Then

X(@) = i a7z "= 1 _

Farre o i<l

In this case the power series is recognized as a geometric series for which a
S:onvgment closed form expression exists for the sum. This result is typical of
infinite duration sequences which are nonzero for n > 0. In this general case
the region of convergence is of the form |z| > R,. ,

2.2.1d Example 4

Let x(n) = — b"u(—n—1). Then

-1
X@) = ¥ prpre L
z 1= bz’
This is _typical of infinite duration sequences that are nonzero for n < 0, where
the. region o( convergence is, in general, |z| < R, The most general case in
which x(n) is nonzero for —o < n < o can be viewed as a combination of

the cases illustrated by Examples 3 and 4. Thu i i
' . s for this case, the
convergence is of the form R; < |z| < R, ' resion of
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f1m=——o00

The "inverse transform" is given by the contour integral in Eq. (2.6b),
where C is a closed contour that encircles the origin of the zplane and lies
inside the region of convergence of X(z). For the special case of rational
transforms, a partial fraction expansion provides a convenient means for finding
inverse transforms [1].

There are many theorems and properties of the ztransform representation
that are useful in the study of discrete-time systems. A working familiarity
with these theorems and properties is essential for complete understanding of
the material in subsequent chapters. A list of important theorems is given in
Table 2.1. These theprems can be seen to be similar in form to corresponding
theorems for Laplace transforms of continuous time functions. However, this
similarity should not be construed to mean that the ztransform is in any sense
an approximation to the Laplace transform. The Laplace transform is an exact
representation of a continuous-time: function, and the ztransform is an exact
representation of a sequence of numbers. The appropriate way to relate the
continuous and discrete representations of a signal is through the sampling
theorem as discussed in Section 2.4.

Table 2.1 Sequences and Their Corresponding z-Transforms

Sequence z-Transform
1. Linearity axy(n) + bx,(n) aX,(2) + 6X,(z)
2. Shift x{n+ng) 20X (z)
3. Exponential Weighting a"x(n) X(a~i2)
4. Linear Weighting nx(n) -z ﬂ;(;z—)—
5. Time Reversal x(=n) X(z7YH
6. Convolution x(m)%h(n) X@H®@
7. Multiplication of Sequences x(myw(n) %j- fé XM W(/v)vldy

2.2.2 The Fourier transform

The Fourier transform representation of a discrete-time signal is given by
the equations

X(e/v) = f: x(n)e~Jer (2.92)
x(n) = % _f" X(e/) e/ (2.9b)

These equations can easily be seen to be a special case of Egs. 2.6).
Specifically the Fourier representation is obtained by restricting the z-transform
to the unit circle of the zplane; i.e., by setting z = e/ As depicted in Fig.
2.4, the digital frequency variable, w, also has the interpretation as angle in the
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Fig. 2.4 The unit circle of the zplane.

zplane. A sufficient condition for the existence of a Fourier transform
representation can be obtained by setting |z| = 1 in Eq. (2.7), thus obtaining

00

Y Ix(n)]| <

N=—oc0

(2.10)

As examples of typical Fourier transforms, we can return to the examples of
Section 2.2.1. The Fourier transform is obtained simply by setting z = e/¢ in
the given expression. In the first two examples, the result is clearly the Fourier
transform since the region of convergence of X(z) includes the unit circle.
However, in Examples 3 and 4, the Fourier transform will exist only if |a| < 1
and |b] > 1 respectively. These conditions, of course, correspond to decaying
sequences for which Eq. (2.10) holds.

An important feature of the Fourier transform of a sequence is that
X(e/) is a periodic function of w, with period 2. This follows easily by sub-
stituting @ + 2 into Eq. (2.9a). Alternatively, since X(e/“) is the evaluation
of X(z) on the unit circle, we can see that X (e/*) must repeat each time we go
completely around the unit circle; i.e., @ has gone through 27 radians.

By setting z = ¢/ in each of the theorems in Table 2.1, we obtain a
corresponding set of theorems for the Fourier transform. Of course, these

results are valid only if the Fourier transforms that are involved do indeed
exist.

2.2.3 The discrete Fourier transform

As in the case of analog signals, if a sequence is periodic with period N )
ie.,

%(n) = x(n+N) (2.11)

then %(n) can be represented by a discrete sum of sinusoids rather than an

integral as in Eq. (2.9b). The Fourier series representation for a periodic
sequence is

=00 < p < o0
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_ _am
0 =8 2me ¥
n=0

Nl 2 kn
HOER S 9 (O
N'k-O

kn

(2.12a)

(2.12b)

This is an exact representation of a periodic sequence. However, the great util-
ity of this representation lies in imposing a different interpretation upon Egs.
(2.12). Let us consider a finite length sequence, x(n), that is zero outside the
interval 0 € n < N—l., Then the ztransform is

N=1
X@) =Y x(mz"

n=0

(2.13)

If we evaluate X(z) at N equally spaced points on the unit circle, ie.,
7 = /TN |k =0,1,..,N—1, then we obtain
gLl N=1 — 2 kn
X@VY =% xtme V" k=0,1,.,N-1
n=0

(2.14)

If we construct a periodic sequence as an infinite sequence of replicas of x (n),

i) = 3 x(n+rN) 2.15)

then, the samples X (e/27%/M) are easily seen from Eqgs. (2.12a) and (2.14) to be
the Fourier coefficients of the periodic sequence %(n) in Eq. (2.15). Thus a
sequence of length N can be exactly represented by a discrete Fourier transform
(DFT) representation of the form

N=l 2
Xk) =3 x(n)e "V k=0,1,...,N-1 2.16a)
n=0
- 2,
xm =L % xwe ™ n=01, ... N1 (2.16b)
N k=0

Clearly the only difference between Egs. (2.16) and (2.12) is a §li.ght
modification of notation (removing the ~ symbols which indicate periodicity)
and the explicit restriction to the finite intervals 0 < &k < IY—I and
0 < n < N-1. It is extremely important, however, to bear in mind vyhe.n
using the DFT representation that all sequences behave as if they were periodic
when represented by a DFT representation. That is, the DFT is reall){ a
representation of the periodic sequence given in Eq. (2.15). An alte{naywe
point of view is that when DFT representations are used, sequence 1n§1ces
must be interpreted modulo N. This follows from the fact that if x(n) is of
length N

3

£(n) =Y x(n+rN) = x(n modulo N)

k=—00
=x((n)) y. (2.17)
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The double parenthesis notation provides a convenient expression of the
inherent periodicity of the DFT representation. This built-in periodicity has a
significant effect on the properties of the DFT representation. Some of the
more important theorems are listed in Table 2.2. The most obvious feature is

that shifted sequences are shifted modulo N This leads, for example, to
significant differences in the discrete convolution.

The DFT representation, with all its peculiarities, is important for a
number of reasons:

1. The DFT, X(k), can be viewed as a sampled version of the z
transform (or Fourier transform) of a finite length sequence

2. The DFT has properties very similar (with modifications due to the

inherent periodicity) to many of the useful properties of z-transforms

and Fourier transforms.

- The N values of X(k) can be computed very efficiently (with time
proportional to N log N) by a set of computational algorithms known
collectively as the fast Fourier transform (FFT) [1-4].

The DFT is widely used for computing spectrum estimates, correlation func-

tions and for implementing digital filters [5-6]. We shall have frequency occa-
sion to apply DFT representations in speech processing.

Table. 2.2 Sequences and Their Corresponding Discrete Fourier Transforms

Sequence N-point DFT
1. Linearity ax)(n) + bxy(n) aX (k) + bX,(k)
PZkng
2. Shift x((n+n,)) 5 e V%
3. Time Reversal x((=m)y X*(k)
N=1
4. Convolution 2 x(m)h((n—m))y X(k)H (k)
m=0
1 A=l
3. Multiplication of Sequences x(n)w(n) ~ T xn W((k=r))
r=0

2.3 Fundamentals of Digital Filters

A digital filter is a discrete-time linear shift-invariant system. Recall that for
such a system the input and output are related by the convolution sum expres-

sion of Egs. (2.5). The corresponding relation between the z-transform of the
sequences involved is as given in Table 2.1,

Y(z2) = H@)X(2) (2.18)

The ztransform of the unit sample response, H(z), is called the system Sunction

of the system. The Fourier transform of the unit impulse response, H(e/%), is
called the frequency response. H(e’*) is in general a complex function of w,
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which can be expressed in terms of real and imaginary parts as

H(e/y = H(e/®) + jH (e’ 2.19)
or in terms of magnitude and phase angle as
H(el®) = |H(e,/w)|e_iarg[H(e"“’)] (2.20)

A causal linear shift invariant-system is one for whif:h h(n) :0 for
n < 0. A stable system is one for which every 'bounded }nput produces a
bounded output. A necessary and sufficient condition for a linear shift-invari-
ant system to be stable is

oo

n=—oco

This condition is identical to Eq. (2.10) and thus is sufficient for the existence
of H(e’¥).

In addition to the convolution sum expre;sion of Eq. (2.5), all linear Shltﬂ
invariant systems of interest for implementation as ﬁltgrs have ;he property
that the input and output satisfy a linear difference equation of the form

N M

y(n) = Y aw(n—k) =3 bx(n—r) (2.22)
k=1 r=0

By evaluating the ztransform of both sides of this equation we can show that

f b,z™"
I R AC — (2.23)
X(2) 1- 2 akz—k
k=1

A useful observation results from comparing Eq. (2.22) 1o Eq. (2.23). ‘Th;alt(ls),
given a difference equation in the form of Eq. (2.22) we can .obgun s 2;)
directly by simply identifying the coefficients of the delayed input in Eq. f.the
with corresponding powers of z7 ! in the nu_nl@rator and cqefﬁcxents 0
delayed output with corresponding powers of z™' in the denominator.

. . -1

The system function, H(z), is in general a rational functngn of z7'. As
such it is characterized by the locations of its poles and zeros in the z-plane.
Specifically H(z) can be expressed as

M
A1l (1—=c,z7h
H(z) = %L_._ (2.29)
II -diz™
k=1

From our discussion of ztransforms, we recall that a causal .system will ha\f a
region of convergence of the form {z|>R . If the system is also gtabl;, t e.ri
R must be less than unity so that the region of convergence contains the um
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circle. Therefore the poles of H(z) must all be inside the unit circle for a
stable and causal system.

It is convenient to define two classes of linear shift invariant systems.
These are the class of finite duration impulse response (FIR) systems and the

c{as; of infinite duration impulse response (IIR) systems. These classes have
distinct properties which we shall summarize below.

2.3.1 FIR systems

If all the coefficients, ay, in Eq. (2.22) are zero, the difference equation
becomes

M
y(n) =Y bx(n—r) 2.25)
r=0

Comparing Eq. (2.25) to Eq. (2.5b) we observe that
h(n)=b, 0 n<M
=0  otherwise (2.26)

EIR systems have a number of important properties. First, we note that
H(z) is a polynomial in 271, and thus H(z) has no nonzero poles, only zeros.
Also, FIR systems can have exactly linear phase. If h(n) satisfies the relation

h(n) =+ h(M~—n) 2.27)
then. H(e/“) has the form
H(e/®) = 4 (e/w)eiwM/2) (2.28)

where A(e/*) is either purely real or imaginary depending upon whether Eq.
(2.27) is satisfied with + or — respectively.

The possibility of exacrly linear phase is often very useful in speech pro-
cessing applications where precise time alignment is essential. This property of
FIR filters also can greatly simplify the approximation problem since it is only
necessary to be concerned with approximating a. desired magnitude response.
The penalty that is paid for being able to design filters with an exact linear
phase response is that a large impulse response duration is required to
adequately approximate sharp cutoff filters.

Based on the properties associated with linear phase FIR filters there have
developed three well known design methods for approximating an arbitrary set
of specifications with an FIR filter. These three methods are:

1. Window design [1,2,5,7]
2. Frequency sampling design [1,2,8]
3. Optimal (minimax error) design [1,2,9-11]

Only the first of these techniques is an analytical design technique, i.e., a closed
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Fig. 2.5 Digital network for FIR system.

form set of equations can be solved to obtain the filter coefficients. The second
and third design .methods are optimization methods which use iterative (rather
than closed form) approaches to obtain the desired filter. Although the window
method is simple to apply, the third method is also widely used. This is in part
due to a series of intensive investigations into the properties of the optimal FIR
filters, and in part due to the general availability of a well-documented design
program which enables the user to approximate any desired set of specifications
[2,10].

In considering the implementation of digital filters, it is often useful to
represent the filter in block diagram form. The difference equation of Eq.
(2.25) is depicted in Fig. 2.5. Such a diagram, often called a digital filter struc-
ture, graphically depicts the operations required to compute each value of the
output sequence from values of the input sequence. The basic elements of the
diagram depict means for addition, multiplication of sequence values by con-
stants (constants indicated on branches imply multiplication), and storage of
past values of the input sequence. Thus the block diagram gives a clear indica-
tion of the complexity of the system. When the system has linear phase,
further significant simplifications can be incorporated into the implementation.
(See Problem 2.7).

2.3.2 IIR systems

If the system function of Eq. (2.24) has poles as well as zeros, then the
difference equation of Eq. (2.22) can be written as

N M

yn) =Y ayn—k) + Y bx(n—r) (2.29)
k=1 r=0

This equation is a recurrence formula that can be used sequentially to compute

the values of the output sequence from past values of the output and present

and past values of the input sequence. If M < Nin Eq. (2.24), H(z) can be

expanded in a partial fraction expansion as in

Ax

H(z) = — (2.30)
Ex 1~d:z™!
For a causal system, it is easily shown (See Problem 2.9) that
N
h(n) = Y, A(d) "u(n) (2.31)
k=1
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Thus, we see that h(n) has infinite duration. However, because of the

recurrence formula of Eq. (2.29), it is often possible to implement an IIR filter

that apprgximates a given set of specifications more efficiently (i.e., using fewer
computations) than is possible with an FIR system. This is particularly true for
sharp cutoff frequency selective filters.

A wide variety of design methods are available for IIR filters. Design
methods for frequency selective filters (lowpass, bandpass, etc.) are generally
based on transformations of classical analog design procedures that are straight-
forward to implement. Included in this class are

Butterworth designs - (maximally flat amplitude)

Bessel designs - (maximally flat group delay)

Chebyshev designs (equiripple in either passband or stopband)
Elliptic designs - {equiripple in both passband and stopband)

Bw -

All the ’above methg@s are analytical in nature and have been widely applied to
the design of IIR digital filters [1,2]. In addition a variety of IIR optimization

x(n} by

y(n}

(o)

Xy wln) fo y(n)
" a, Ebw(n-l) b T
n 0z [;ﬂw(n-Z) LT
" o3 léw(n-& b3 +
04 [:;:iw(n-tl) bs
(b)

Fi.g..Z.G (a) Direct form IIR structure; (b) direct form structure with
minimum storage.
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methods have been developed for approximating design specifications which ar
not easily adapted to one of the above approximation methods [121.

The major difference between FIR and IIR filters is that IIR filters cann
be designed to have exact linear phase, whereas FIR fiiters can have this pr
perty. In exchange, the IIR filter is often orders of magnitude more efficient
realizing sharp cutoff filters than FIR filters [13].

There is considerable flexibility in the implementation of IIR system
The network implied by Eq. (2.29) is depicted in Fig. 2.6a, for the ca
M=N=4 ,This is often called the direct form implementation. The genere
ization to arbitrary M and N is obvious. The difference equation Eq. (2.29) c
be transformed into many equivalent forms. Particularly useful among these
the set of equations

w(n) = ﬁ aw(n—k) + x(n)
k=1

M
y(n)y =3 bwln—r) (2.3
r=0
(See Problem 2.10). This set of equations can be implemented as shown
Fig. 2.6b, with a significant saving of memory required to store the delay
sequence values.

Equation (2.24) shows that H(z) can be expressed as a product of pol
and zeros. These poles and zeros occur in complex conjugate pairs since t.
coefficients a, and b, are real. By grouping the complex conjugate poles a
zeros into complex conjugate pairs it is possible to express H (z) as a product
elementary second-order system functions, of the form
K 1+ b‘szl + b2k2_2
H(z) = A]] - 5

- @3
k=i |1 —auz

- a2kz_

where K is the integer part of (N+1)/2. Each second order system can
implemented as in Fig. 2.6 and the systems cascaded to implement H(z). T
is depicted in Fig. 2.7a for N = M = 4. Again the generalization to higher o
ers is obvious. The partial fraction expansion of Eq. (2.30) suggests s
another approach to implementation. By combining terms involving comp
conjugate poles, H(z) can be expressed as

K
H(z) =3}

1 1 —ayz”

-1
Cok + CriZ

: @

- asz—z

This suggests a parallel form implementation as depicted in Fig. 2.7b for N =

All of the implementations discussed are used in speech processing. .
linear filtering applications, the cascade form generally exhibits superior per!
mance with respect to roundoff noise, coefficient inaccuracies, and stabi
{1,2). All of the above forms have been used in speech synthesis applicatic
with the direct form being particularly important in synthesis from linear pr
iction parameters (See Chapter 8).
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{a)

x{n)

Fig. 2.7 (a) Cascade form; (b) parallel form.
2.4 Sampling

To use digital signal processing methods on an analog signal such as speech, it
is necessary to represent the signal as a sequence of numbers. This is com- |

monly done by sampling the analog signal, denoted x,(1), periodically to pro-
duce the sequence

x(n) =x,(nT) -0 < n <o 2.35)

where #, of course, takes on only integer values. Figure 2.1 shows a speech
waveform and the corresponding set of samples with period T = 1/8000 sec.

2.4.1 The sampling theorem

The conditions under which the sequence of samples in Eq. (2.35) is a
unique representation of the original analog signal are well known and are often
summarized as follows:

The Sampling Theorem: 1f a signal x,(t) has a bandlimited Fourier
transform X,(jQ2), such that X,(j0) =0 for Q > 2w Fy, then
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x,(t) can be uniquely reconstructed from equally spaced samj
x,(nT), —o0 < n < o0, if 1/T > 2Fy.

The above theorem follows from the fact that if the Fourier transform
x,(1) is defined as

oo

X,G0) =  x e~ Q@.
and the Fourier transform of the sequence x(n) is defined g(s) in _Eq. Q!
then if X (e’ is evaluated for frequencies @ = QL T, then X (e/"*7) is relate:

X,GQ) by [1,2]
xeon =1 F xge+i o @

k=—oo0
To see the implications of Eq. (2.37), let us assume that X,(j ) is as show
Fig. 2.8a; i.e., assume that X,(jQ) =0 for (0] > Qy=2mFy. The
quency Fy is called the Nyquist frequency. pr accordlpg to Eq. (2.
X(e/%7) is the sum of an infinite number of replicas of X,(j ), each cente
at integer multiples of 27/7. Fig. 2.8b depicts the case when 1/T > 2F,
that the images of the Fourier transform do not overlap into the base b
|©2] < 27 Fy. Figure 2.8c, on the other hand, shows the case 1/T < 2Fy.

Xq(is)
(o}
1
M 0 n=2wFy 2
X(eH1T)
i (b}
T
2
__2T_7r "ZTE*D-N -Qn o Qy 2"|'lr'ﬂ'N Tw
x{eifT)
1 (¢}
T
oo
oo
1 i 1 |
47 27 [¢] 2r 4n a
R T T

Fig. 2.8 lllustration of sampling.
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this case, the image centered at 27/ T overlaps into the base band. This condi-
tion, where a high frequency seemingly takes on the identity of a lower fre-
quency, is called aliasing. Clearly, aliasing can be avoided only if the Fourier
transform is bandlimited and if the sampling frequency (1/7) is equal to at
least twice the Nyquist frequency (1/T > 2Fy).

Under the condition 1/7 > 2Fy, it is clear that the Fourier transform of
the sequence of samples is proportional to the Fourier transform of the analog
signal in the base band; i.e.,

X(e/97) = lT X6 |ol< X

T
Using this result, it can be shown that [1,2] the original signal can be related to
the sequence of samples by the interpolation formula

% om |snlat=mmyn
x() = ¥ x,,(nT)[ a(t—nT)/T ]

Thus, given samples of a bandlimited analog signal taken at a rate at least twice
the Nyquist frequency, it is possible to reconstruct the original analog signal

using Eq.(2.39). Practical digital-to-analog converters seek to approximate Eq.
(2.39). .

Sampling is implicit in many speech processing algorithms that seek to
estimate basic parameters of speech production such as pitch and formant fre-
quencies. In such cases, an analog function is not available to be sampled
directly, as in the case of sampling the speech waveform itself, However, such
parameters change very slowly with time, and thus it is possible to estimate
(sample) them at rates on the order of 100 samples/sec. Given samples of a
speech parameter, a bandlimited analog function for that parameter can of
course be constructed using Eq. (2.39).

(2.38)

(2.39)

ne=—oo

2.4.2 Decimation and interpolation of sampled waveforms

In many examples that we shall discuss in this book, there arises the need
to change the sampling rate of a discrete time signal. One example occurs
when speech is sampled using one-bit differential quantization at a high sam-
pling rate (delta modulation), and then converted to a multi-bit PCM represen-
tation at a lower sampling rate. Another example is when some parameter of
the speech signal is sampled at a low rate for efficient coding, and then a higher
rate is required for reconstruction of the speech signal. The sampling rate must
be reduced in the first case and increased in the second case. The processes of
sampling rate reduction and increase will henceforth be called decimation and
interpolation.

In discussing both cases, let us assume that we have a sequence of sam-
ples x(n) = x,(nT), where the analog function x,(s) has a bandlimited Fourier
transform such that X,(jQ) =0 for || > 2w Fy. Then we have just seen
that if 1/T > 2Fy, the Fourier transform of x(n) will satisfy
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X(e/0T) = lT oo o<z (2.40)

T
2.4.2a Decimation

Let us suppose that we wish to reduce the sampling rate by a factor M,
i.e., we wish to compute a new sequence corresponding to samples of x,(t)
taken with period T' = MT, i.e.,

, y(n) = x,(nT) = x,(nTM) (2.41)

It is easily seen that

y(n) = x(Mn) (2.42)

That is, y(n) is obtained simply by periodically retaining only one out of every
M samples. From our previous discussion of the sampling theorem we note
that if 1/T" > 2Fy, then the samples y(») will also be adequate to uniquely
represent the original analog signal. The Fourier transforms of x(n) and y(n)
are related by the expression [14]

—oo < pn < o0,

M—-1 j(QT—-2rk)
v(eiory = L Y X M) (2.43)
M k=0

From Eq. (2.43) it can be seen that in order that there be no overl_ap between
the images of X(e/®7), we must have 1/T' > 2Fy. If this condition holds,
then we see that

T ar
Y(ejﬂT')=ﬂX(e M)
1 1 ,
T X,
1 , T T
= -z < = (2.44)
T X, Q) T <0 T

Figure 2.9 shows an example of sampling rate reduction. Figure 2.9a
shows the Fourier transform -of the original analog signal. Figure 2.9b shovxfs
the Fourier transform of x(n) = x,(nT) where the sampling rate (1/7) is
somewhat greater than the Nyquist rate (2Fy). Figure 2.9¢ shqws the case of
sampling rate reduction by a factor of 3; i.e., T'=3T. For this case ahz‘ls!ng
occurs because 1/T' < 2Fy. However, suppose x(n) is filtered with a digital
lowpass filter with cutoff frequency =/T' = «/(3T) producing a sequence
w(n). For our example, the Fourier transform of the output of the }owpass
filter is shown in Figure 2.9d. Aliasing does not occur when the sampling rate
of the filtered signal is reduced by a factor of 3 as depicted in Figure ?.9e; how-
ever, the samples y(n) no longer represent x,(f) but rather a new signal y,,({)
which is a lowpass filtered version of x,(f). A block diagram of a general deci-
mation system is given in Figure 2.10.
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Fig. 2.9 lllustration of decimation.

2.4.2b Interpolation

Now suppose that we have samples of an analog waveform
x(n) = x,(nT). If we wish to increase the sampling rate by an integer factor
L, we must compute a new sequence corresponding to samples of x,(1) taken

with period T" = T/L; i.e.,
y(n) = x,(nT") = x,(nT/L) (2.45)

Clearly, y(n) = x(n/L) for n =0,+L,+2L, ... but we must fill in the unk-
nown samples for all other values of » by an interpolation process {14]. To see
how this can be done using a digital filter, consider the sequence
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| DECREASE
LOWPASS
— SAMPLING
x(n) FILTER [ w{n) |RATE BY M y(n)= winM)

Fig. 2.10 Block diagram representation of decimation.

v(n) = x[—%] n=0,+L+2L, ...

=0 otherwise (2.46)
The Fourier transform of v(n) is easily shown to be (14]
V(e/fT) = X(eiOTD)
= X(e/97). 2.47)

Thus V(e/®7) is periodic with period 27/ T = 2m/(LT’), as well as with period
2w/ T' as is the case in general for sequences associated with a sampling period
T'. Figure 2.11a shows V(e/®T) [and X(e/®7)] for the case T'=T/3. In
order to obtain the sequence

y(n) = x,(nT)

from the sequence v(n), we must ensure that

coy T 1 i i s
Y(ei2T) = - X - T £ 0 < T (2.48)
Assuming that
; 1 . bis T
X == X,(0) -5 <a< 5 (2.49)
VieiftT) = x(elT)
1
I {a}
ez Tz 22 4 62.22 &
TT T T T TOT
Y{elT)
% (b)
-r z Zl_z a2
T T T

Fig. 2.11 Illustration of interpolation.
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INCREASE
SAMPLING LOWPASS
x(n) IRATEBYL | v(n) FILTER y(n)

Fig. 2.12 Block diagram representation of interpolation.

then it is clear from Figure 2.11a that what is required is tha i

X,(jQ) in V(e/27), that are centered at ) = 27r(}Tand ) =t4t7£17 ijrrz:ﬁzf t?g
removed by a digital lowpass filter that rejects all frequency components in the
range /T < Q < /T Moreover, to ensure that the amplitude is correct
for sampling interval 7", the gain of the filter must be L = T/T". That is

Y(e/0T) = H(e/2T) (e/2T) = H(e/0T) x (/07)

= H(e/0T) lT X, 0) (2.50) |

Thus, in order that Y(e/%7) = (1/T) X,(jQ) for Q < w/T' we require that

H(T) =L Jalg lT ;
|
=0 otherwise 2.51) :
The general interpolation system is depicted in Fig. 2.12. ‘

2.4.2c Non-Integer Sampling Rate Changes

It is readily seen that samples corresponding to a sampling perio
T' = MT/L can be obtained by a combination of interpolation by apfactgorpL fol(f
lowed by decimation by a factor M. By suitable choice of the integers Mand L
we can approach arbitrarily close to any desired ratio of sampling rates. B}z
combining Figures 2.9 and 2.11, we observe that a single lowpass filter suffices |
for both the interpolation and decimation filter. This is depicted in Fig. 2.13.

2.4.2d Advantages of FIR Filters

An extremely important consideration in the implementation of decima- |

tors and i.nte.rpolators is the choice of the type of lowpass filter. For these sys-
tems., a significant savings in computation over alternative filter types can be
pbtamed by using finite impulse response (FIR) filters in a standard direct form
implementation. The savings in computations for FIR filters is due to the
observation that for decimators only one of each M output samples needs to be
calculated, while for interpolators, L — 1 out of every L samples of the input
are zero valued, and therefore do not affect the computation. These facts can-
not be fully exploited using IIR filters [14].

INcREASE Lowpass QECREASE
x(n) ~|RATE BY L FILTER l?SAThéps!(N% y(n)

Fig. 2.13 Block diagram representation of sampling rate increase by a

factor of L/M.
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Assuming that the required filtering is being performed using FIR filters,
then for large changes in the sampling rate (i.e, large M for decimators, or large
L for interpolators) it has been shown that it is more efficient to reduce (or
increase) the sampling rate with a series of decimation stages than to make the
entire rate reduction with one stage. In this way the sampling rate is reduced
gradually resulting in much less severe filtering requirements on the lowpass
filters at each stage. The details of multistage implementation of decimation,
interpolation and narrowband filtering are given in Refs. [15-18].

2.5 Summary

In this chapter we have presented a review of the fundamentals of discrete-time
signal processing. The notions of discrete convolution, difference equations,
and frequency domain representations of signals and systems will be used
extensively in this book. Also the concepts of sampling of analog signals and
digital alteration of the sampling rate discussed in Section 2.4 are extremely
important in all types of digital speech processing systems.
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PROBLEMS
Consider the sequence
x(n)=a" n 2 n
=0 n < ng

(a) Find the ztransform of x(n).
(b) Find the Fourier transform of x{n). Under what conditions does
the Fourier transform exist?

The input to a linear, time-invariant system is

x(n)=1 0<nN-1
=0  otherwise
32
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2.5

The impulse response of the system is

Using discrete convolution, find the output, y(n), of the system for
all n.
(b) Find the output using ztransforms.

(a)

Find the ztransform and the Fourier transform of each of the following
sequences. (Each of these are commonly used as "windows" in speech
processing systems.)

(1) Exponential window

win)=a" 0<n<N-1
=0 otherwise
(2) Rectangular window
win) =1 0<nE<N-1
=0 otherwise

(3) Hamming window
wi(n) = 0.54 — 0.46 cos[2mn/(N-1)]
=0

Sketch the magnitude of the Fourier transforms in each case. Hint:
obtain a relationship between Wi(e/*) and W (e/*).

0o<nEN-1
otherwise

The frequency response of an ideal lowpass filter is

HE =1 |o| <o,
=0 o,< |w| <7

(H(e/9) is, of course, periodic with period 2.)

(a) Find the impulse response of the ideal lowpass filter.
(b) Sketch the impulse response for o, = w/4.

The frequency response of an ideal bandpass filter is

H(e/®) =1
=0

() Find the impulse response of the ideal bandpass filter.
(d) Sketch the impulse response for w, = /4 and w, = 3n/4.

wa<|w|<wb
o} < w, and wy < lo| €7,

The frequency response of an ideal differentiator is
H(ei®) = jwe ~/*7

(This response is repeated with period 277.) The quantity 7 is the delay ¢

the system in samples. .

(a) Sketch the magnitude and phase response of this system.

(b) Find the impulse response, #{(n), of this system.
(¢) The impulse response of this ideal system can be truncated to
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2.6

2.7

length N samples by a window such as those in Problem 2.3. Inso
doing the delay is set equal to 7 = (N~1)/2 so that the ideal
impulse response can be truncated symmetrically [1]. If
7=(N-1)/2 and N is an odd integer, show that the ideal impulse
response decreases as 1/a. Sketch the ideal impulse response for the
case N = 11.

(d) In the case that N is even, show that h(n) decreases as 1/nl
Sketch the ideal impulse response for the case N = 10,

The frequency response of an ideal Hilbert transformer(90° phase shifter)
with delay 7 is
H(el®) = —je~lot1 0 < @ < 7
= je~fot - 7<w<0.

Find and sketch the impulse response of this system.

Consider a linear phase FIR digital filter. The impulse response of such a
filter has the property

h(n)

0<nEN-1

h(N=1-n)
0 otherwise

(a) Show that if N is an even integer the convolution sum expression
for the output of such a system can be expressed as

(N=2)/2
ym) =3 ") x(n=k)+x(n—=N+1+k)]
k=0

and if Nis odd

y(n) = "B R e =)+ (1= N1+ (N=1)/D x (—(N—-1)/2)

2.8

k=0

Thus, the number of multiplications required to compute each out-
put sample is essentially halved.

(b) Draw the digital filter structures for each of the above equations.
Consider the first order system

y(n) =ay(n=1) + x(n)

(a)  Find the system function, H(z), for this system.

(b) Find the impulse response of this system.
(c)  For what values of « will the system be stable?

(d) Assume that the input is obtained by sampling with period 7. Find
the value of a such that
h(n) < e7!' for nT < 2 msec

i.e., find the value of « that gives a time constant of 2 msec.

2.9 Consider a system function of the form of Eq. 2.249)

(@) Show that if M < N, H(z) can be expressed as a partial fraction
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expansion as in Eq. (2.30), where the coefficients 4, can be found
from

A, = H()(1-d,z ]| 2=d,,

(b) Show that the z-transform of the sequence A, (d,)"u(n) is
A

1- dkz‘l

and thus k(n) is given by Eq. (2.31).

m=1,2,..,N

|Zl > |dk| »

2.10 Consider tvwo linear shift-invariant systems in cascade as shown in Fig.

P2.10 — i.e., the output of the first system is the input to the second.

hyln}
e vin) i v

Fig. P2.10

(a) Show that the impuise response of the overall system is
h(n) = hy(n)*hy(n).
(b) Show that
h](") *hz(n) = hz(ﬂ) *h,(n)

and thus that the overall response does not depend on the order in

which the systems are cascaded. )
(¢) Consider the system function of Eq. (2.23) written as

M
H(z) = lz b,Z~’]
r=0

N
1 —_ Z akZ_k

k=1
= Hl(Z)'Hz(Z)

ie.. as a cascade of two systems. Write the difference equations for

the overall system from this point of view._ ' .
(d) Now consider the two systems of part {c) in the opposite order; i.e.,

H(Z) = Hz(Z)H‘(Z)
Show that the difference equations of Eq. (2.32) resuit.

2.11 For the difference equation

y(n) = 2c0s(bT)y(n—-1) ~ y(n—=2)
find the two initial conditions y(—1) and y(-2) such that

(a) y(n) =cos(bTn) n 20
(b) y(n) =sin(bTn) n 20
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2.12 Consider the set of difference equatjons
yiln) = dy,(n-1) + By,(n—1) +
YoAn) = Cy,(n-1) + Dyz(n—l) x(

(a) Draw the netw. .
! ork diagram for this
(b) Find the transfer functions system.

Y\(2)
H(z) = 222 and H - L(Z)
X(z 2) X(@)

(c) For the case 4

] =D =rcos@ and C=—~B =g
;r;ngtxlse responses h,(n) and hy(n) that result wher SI?II:, e e
ed by x(n) = 5(n). " e system is

2.13 A causal linear shift invariant system has the system function

H(z) = ; (1+22‘]+z‘2)(1+22‘]+z‘2)
(A++ 7143 ,- 3 14 ]
g ? l622)(1-}-Iz‘+§z“2)

(a) Draw a d] tal netwolk dla ram 01 an llllplelllel'llathﬂ Of llllS S Steln
gl
g Y.

(i) Cascade form
(i) Direct form.,
(b) In this System stable? Explain.
2.14 For the system of Fig. P2.14,

(a) Write the difference e
(b) Find the system funct

quations represented by th
¢ € network.
ion for the network. :

Fig. P2.14

2.15 Find a4, a i
» @) and aj;in terms of b,, and
P2.15 have the same transfer funclgio:ll. 250 that the two networks of Fig

2,16 The system function for a simple resonator is of the form

H(z) = — 1= 2e7%0s(bT) + =27
1 —2e~%os(bT) 2! + 24T, -2
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@D (&)
x(n)
0o %2

y{n)
Fig. P2.15

(a) Find the poles and zeros of H(z) and plot them in the zplane.
(b) Find the.impulse response of this system and sketch it for the con
stants

T=10"*
b = 10007
a = 2007

(c) Sketch the frequency response of this system as a function of analo;
frequency, (.

2.17 Consider the finite length sequence
x(n) = 8(n) +0.58(n-5)

(a) Find the ztransform and Fourier transform of x(n).

(b) Find the N-point DFT of x(n) for N = 50, 10 and 5.

(c) How are the DFT values for N = 5 related to those of the DFT fo
N =507

(d) What is the relationship between the N-point DFT of x(n) and th
Fourier transform of x(n)?

2.18 A speech signal is sampled at a rate of 20000 samples/sec (20 kHz). .
segment of length 1024 samples is selected and the 1024-point DFT i
computed.

(a) What is the time duration of the segment of speech?

(b) What is the frequency resolution (spacing in Hz) between the DF
values?

(c) How do your answers to parts (a) and (b) change if we compute tt
1024-point DFT of 512 samples of the speech signal. (The 512 san
ples would be augmented with 512 zero samples before tt
transform was computed.)
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3

Digital Models
for the Speech Signal

3.0 Introduction

In order tq apply digital signal processing techniques to speech communication
p.roblems, it is essential to understand the fundamentals of the speech produc-
tion process as well as the fundamentals of digital signal processing. This
chapter provnqes a review of the acoustic theory of speech producti;)n and
shows hoyv this theor}: leads to a variety of ways of representing the speech sig-
nal. Specifically, we shall be concerned with obtaining discrete-time models for

representing sampled speech signals. These models will i
esen m| . serve as a
application of digital processing techniques. pasis for

. This chapter plays a role similar to that. of Chapter 2 i i
review of an established area of knowledge. Several expcellerzlt Tefse:?::egs zsroa-‘
vide much more detail on many of the topics of this chapter [1-5]. Particularly
notgworthy are the books by Fant [1] and Flanagan [2]. Fant’s book deals pri-
marily with the acoustics of speech production and contains a great deal of use-
ful data on voc{al system measurements and models. Flanagan’s book, which is
much l?roader in scope, contains a wealth of valuable insights into th; physical
mode!lmg of the.speech production process and the way that such models are
used in representing and processing speech signals. These books are indispens-
able to the serious student of speech communication., P

Before discussing th‘.e acoustic theory and the resulting mathematical
models for speech production, it is necessary to consider the various types of
sounds that make up human speech. Thus, this chapter begins with a very
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brief introduction to acoustic phonetics in the form of a summary of the
phonemes of English and a discussion of the place and manner of articulatior
for each of the major phoneme classes. Then the fundamentals of the acoustic
theory of speech production are presented. Topics considered include sounc
propagation in the vocal tract, transmission line analogies, and the steady state
behaviour of the vocal system in the production of a single sustained sound
This theory provides the basis for the classical approach to modelling the
speech signal as the output of a time-varying linear system (vocal tract) excitec
by either random noise or a quasi-periodic sequence of pulses. This approach i
applied to obtain discreté time models for the speech signal. These models
which are justified in terms of the acoustic theory and formulated in terms o
digital filtering principles, serve as the basis for discussion of speech processing
techniques throughout the remainder of this book.

3.1 The Process of Speech Production

Speech signals are composed of a sequence of sounds. These sounds and the
transitions between them serve as a symbolic representation of information
The arrangement of these sounds (symbols) is governed by the rules o
language. The study of these rules and their implications in human communi
cation is the domain of linguistics, and the study and classification of the sound
of speech is called phonetics. A detailed discussion of phonetics and linguistic
would take us too far afield. However, in processing speech signals to enhanci
or extract information, it is helpful to have as much knowledge as possibl
about the structure of the signal; i.e., about the way in which information i
encoded in the signal. Thus, it is worthwhile to discuss the main classes ¢
speech sounds before proceeding to a detailed discussion of mathematice
models of the production of speech signals. Although this wili be all that w
shall have to say about linguistics and phonetics, this is not meant to minimiz
their importance — especially in the areas of speech recognition and speech syr
thesis.

3.1.1 The mechanism of speech production

Figure 3.1 is an X-ray photograph which places in evidence the importai
features of the human vocal system [6]. The vocal tract, outlined by the dotte
lines in Fig. 3.1, begins at the opening between the vocal cords, or glottis, ar
ends at the lips. The vocal tract thus consists of the pharynx (the connectic
from the esophagus to the mouth) and the mouth or oral cavity. In the avera
male, the total length of the vocal tract is about 17 cm. The cross-section
area of the vocal tract, determined by the positions of the tongue, lips, jaw, ar
velum varies from zero (complete closure) to about 20cm2 The nasal trc
begins at the velum and ends at the nostrils. When the velum is lowered, tl
nasal tract is acoustically coupled to the vocal tract to produce the nasal soun:
of speech.
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Fig. 3.1 Saggital plane X-ray of the human vocal apparatus. (After
Flanagan et al. [6].)

In studying the speech production process, it is helpful to abstract the
important features of the physical system in a manner which leads to a realistic
yet tractable mathematical model. Figure 3.2 shows such a schematic diagram
of the vocal system [6]. For completeness the diagram includes the sub-glottal
system composed of the lungs, bronchi and trachea. This sub-glottal system
serves as a source of energy for the production of speech. Speech is simply the
acoustic wave that is radiated from this system when air is expelled from the
lungs and the resulting flow of air is perturbed by a constriction somewhere in
the vocal tract. As an example of a speech wave, Figure 3.3a shows the
waveform of the utterance, "should we cha(se)," spoken by a male speaker.
The general features of this waveform can be readily explained by a more
detailed consideration of the mechanism of speech production.

Speech sounds can be classified into 3 distinct classes according to their
mode of excitation. Voiced sounds are produced by forcing air through the
glottis with the tension of the vocal cords adjusted so that they vibrate in a
relaxation oscillation, thereby producing quasi-periodic pulses of air which
excite the vocal tract. Voiced segments are labelled /U/, /d/, /w/, /i/ and /e/
in Fig. 3.3a. Fricative or unvoiced sounds are generated by forming a constriction
at some point in the vocal tract (usually toward the mouth end), and forcing air
through the constriction at a high enough velocity to produce turbulence. This
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creates a broad-spectrum noise source to excite the vocal tract. The segment
labelled / | / in Fig. 3.3a is the fricative "sh."” Plosive sounds result from making
a complete closure (again, usually toward the front of the vocal tract), building
up pressure behind the closure, and abruptly releasing it. Plosive excitation is
involved in creating the sound labelled /¢ ] / at the beginning of the fourth line
of Fig. 3.3a. Note the gap (region of very small amplitude) at the end of the
third line which precedes the burst of noise-like waveform. This gap
corresponds to the time of complete closure of the vocal tract.

The vocal tract and nasal tract are shown in Figure 3.2 as tubes of
nonuniform cross-sectional area. As sound, generated as discussed above, pro-
pagates down these tubes, the frequency spectrum is shaped by the frequency
selectivity of the tube. This effect is very similar to the resonance effects
observed with organ pipes or wind instruments. In the context of speech pro-
duction, the resonance frequencies of the vocal tract tube are called formant fre-
quencies or simply formants. The formant frequencies depend upon the shape
and dimensions of the vocal tract; each shape is characterized by a set of for-
mant frequencies. Different sounds are formed by varying the shape of the
vocal tract. Thus, the spectral properties of the speech signal vary with time as
the vocal tract shape varies.

The time-varying spectral characteristics of the speech signal can be graph-
ically displayed through the use of the sound spectrograph [2,7]. This device
produces a two-dimensional pattern called a spectrogram in which the vertical
dimension corresponds to frequency and the horizontal dimension to time. The
darkness of the pattern is proportional to signal energy. Thus, the resonance
frequencies of the vocal tract show up as dark bands in the spectrogram.
Voiced regions are characterized by a striated appearance due to the periodicity
of the time waveform, while unvoiced intervals are more solidly filled in. A
spectrogram of the utterance of Fig. 3.3a is shown in Figure 3.3b. The spectro-
gram is labelied to correspond to the labelling of Fig. 3.3a so that the time
domain and frequency domain features can be correlated.

The sound spectrograph has long been a principal tool in speech research,
and although more flexible displays can be generated using digital processing
techniques (see Chapter 6), its basic principles are still widely used. An early,

MUSCLEI FORCE NASAL TRACT NOSTRIL
— U
—Um P
ks
LUNGS TRACHEA VOCAL  VOCAL TRACT  MOUTH

BRONCHI  CORDS

Fig. 3.2 Schematized diagram of the vocal apparatus (After Flanagan et
al. [6].)
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Fig. 3.3 (a) Waveform of the utterance "Should we cha(se)”; (b)
corresponding spectrogram.

but still very useful, reference on spectrographic representations of speech is
the book Visible Speech [8]. This book, although written for the purpose of
teaching people literally to "read" spectrograms, provides an excellent introduc-
tion to acoustic phonetics.

3.1.2 Acoustic phonetics

Most languages, including English, can be described in terms of a set of
distinctive sounds, or phonemes. In particular, for American English, there are
about 42 phonemes including vowels, diphthongs, semivowels and consonants.
There are a variety of ways of studying phonetics; e.g., linguists study the dis-
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tinctive features or characteristics of the phonemes [9,10]. For our purposes it
is sufficient to consider an acoustic characterization of the various sounds
including the place and manner of articulation, waveforms, and spectrographic
characterizations of these sounds.

Table 3.1 shows how the sounds of American English are broken into
phoneme classes.! The four broad classes of sounds are vowels, diphthongs,
semivowels, and consonants. Each of these classes may be further broken
down into sub-classes which are related to the manner, and place of articulation
of the sound within the vocal tract.

Each of the phonemes in Table 3.1 can be classified as either a con-
tinuant, or a noncontinuant sound. Continuant sounds are produced by a fixed
(non-time-varying) vocal tract configuration excited by the appropriate source.
The class of continuant sounds includes the vowels, the fricatives (both
unvoiced and voiced), and the nasals. The remaining sounds (diphthongs,
semivowels, stops and affricates) are produced by a changing vocal tract
configuration. These are therefore classed as noncontinuants.

3.1.2a Vowels

Vowels are produced by exciting a fixed vocal tract with quasi-periodic
pulses of air caused by vibration of the vocal cords. As we shall see later in
this chapter, the way in which the cross-sectional area varies along the vocal

Table 3.1 Phonemes in American English.

/PHONEMES
Vowels / Consonants
Front Mid Back Diphthongs |
i (Iv) a{A) u (0O} al (Al
1(1) 3 (ER) u{u) al (01
e{E) AQl(UH) 01(0) oU (AU}
@ (AE) a{Ow) el (EI)
oU (ou)
ju LU Stops Whisper
h{H)
) Voiced Unvoiced
Semivowels b (B) o (P) Atfricates
4 (D) T j {DZH)
Liquids  Glides g6 k(K t/{TSH)
w (W) r{R)
1(0) y(n Fricotives
Voiced Unvoiced
Nasals v V) f(F)
m (M) &(TH) 8 (THE)
0N 2 (2) s{S)
n (NG) 2h(zZH) sh,/{SH)

Table 3.1 gives both a phonetic representation and an’ orthographic representation for each
phoneme. The phonetic and orthographic representations are used interchangably throughout this

text.
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tract determines the resonant frequencies of the tract (formants) and thus the
sound that is produced. The dependence of cross-sectional area upon distance
along the tract is called the area function of the vocal tract. The area function
for a particular vowel is determined primarily by the position of the tongue, but
the positions of the jaw, lips, and, to a small extent, the velum also influence
the resulting sound. For example, in forming the vowel /a/ as in "father," the
vocal tract is open at the front and somewhat constricted at the back by the
main body of the tongue. In contrast, the vowel /i/ as in "eve" is formed by
raising the tongue toward the palate, thus causing a constriction at the front and
increasing the opening at the back of the vocal tract. Thus, each vowel sound
can be characterized by the vocal tract configuration (area function) that is used
in its production. It is obvious that this is a rather imprecise characterization
because of the inherent differences between the vocal tracts of speakers. An
alternative representation is in terms of the resonance frequencies of the vocal
tract. Again a great deal of variability is to be expected among speakers pro-
ducing the same vowel. Peterson and Barney {11] measured the formant (reso-
nance) frequencies (using a sound spectrograph) of vowels that were perceived
to be equivalent. Their results are shown in Fig. 3.4 which is a plot of second
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Fig. 3.4 Plot of second formant frequency versus first formant frequency

for vowels by a wide range of speakers. (After Peterson and Barney
1)
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Fig. 3.5 The vowel triangle.

formant frequency as a function of first formant frequency for several vowels
spoken by men and children. The broad ellipses in Figure 3.4 show the approx-
imate range of variation in formant frequencies for each of 'these vowels. Table
3.2 gives average values of the first three formant frequencies pf tl§e vowels for
male speakers. Although a great deal of variation clearl)f e).usts in the vowel
formants, the data of Table 3.2 serve as a useful characterization of the vowels.

Table 3.2 Average Formant Frequencies for the Vowels. (After Peter-
son and Barney [111.)

FORMANT FREQUENCIES FOR THE VOWELS l
Typewritten IPA Typical
f, F
Symbol for Symbol Word fi 2 3
Vowe!
Y i (beet) 270 2290
{ 1 (bit} 390 1990
€ € (bet) 530 1840
AE [ {bat) 660 1720
UH A {but} 520 1190
A a (ot} 730 1090
ow J { bought) 570 840
U U (toot) 440 1020
00 u (boot) 300 870
ER 3 {bird) 430 1350
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Fig. 3.6 The acoustic waveforms for several American English vowels
and corresponding spectrograms.

Figure 3.5 shows a plot of the second formant frequency versus the first for-
mant frequency for the vowels of Table 3.2. The so-called "vowel triangle" is
readily seen in this figure. At the upper left hand corner of the triangle is the
vowel /i/ with a low first formant, and a high second formant. At the lower
left hand corner is the vowel /u/ with low first and second formants. The third
vertex of the triangle is the vowel /a/ with a high first formant, and a low
second formant. Later in this chapter we shall see how vocal tract shape affects
the formant frequencies of vowels.

46

u/

\A/\A/\A/\A/\A/\A/\AAA/\A/\A/\A/A

YV VYV VYV VY

AVA\//\\/{\VA\]/\U/\VA\/\\/AVA\J/\Ur\V/\\j/\\/AVﬂ\//

Y

le 50 msec

Fig. 3.6 (Continued)

The acoustic waveforms and spectrograms for each of the vowels of
English are shown in Fig. 3.6. The spectrograms clearly show a different pat-
tern of resonances for each vowel. The acoustic waveforms, in addition to
showing the periodicity characteristic of voiced sounds, also display the gross
spectral properties if a single "period" is considered. For example, the vowel /i/
shows a low frequency damped oscillation upon which is superimposed a rela-
tively strong high frequency oscillation. This is consistent with a low first for-
mant and high second and third formant (see Table 3.2). (Two resonances in
proximity tend to boost the spectrum.) In contrast the vowel /u/ shows rela-
tively little high frequency energy as a consequence of the low first and second
formant frequencies. Similar correspondences can be observed for all the
vowels in Fig. 3.6.
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Fig. 3.6 (Continued)

3.1.2b Diphthongs

Although there is some ambiguity and disagreement as to what is and
what is not a diphthong, a reasonable definition is that a diphthong is a gliding
monosyllabic speech item that starts at or near the articulatory position for one
vowel and moves to or toward the position for another. According to this
definition, there are six diphthongs in American English including /el/ (as in
bay), /oU/ as in (boat), /al/ (as in buy), /aU/ (as in how), /ol/ (as in boy),
and /ju/ (as in you).

The diphthongs are produced by varying the vocal tract smoothly between
vowel configurations appropriate to the diphthong. To illustrate this point, Fig-
ure 3.7 shows a plot of measurements of the second formant versus the first
formant (as a function of time) for the diphthongs [12]. The arrows in this
figure indicate the direction of motion of the formants (in the (F)—F,) plane)
as time increases. The dashed circles in this figure indicate average positions of
the vowels. Based on these data, and other measurements, the diphthongs can
be characterized by a time varying vocal tract area function which varies
between two vowel configurations.

3.1.2¢ Semivowels
The group of sounds consisting of /w/, /1/, /1/, and /y/ is quite difficult

to characterize. These sounds are called semivowels because of their vowel-like
nature. They are generally characterized by a gliding transition in vocal tract
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area function between adjacent phonemes. Thus the acoustic characteristics of
these sounds are strongly influenced by the context in which they occur. For
our purposes they are best described as transitional, vowel-like sounds, and
hence are similar in nature to the vowels and diphthongs. An example of the
semivowel /w/ is shown in Figure 3.3.

3.1.2d Nasals

The nasal consonants /m/, /n/, and /n/ are produced with glottal excita-
tion and the vocal tract totally constricted at some point along the oral passage-
way. The velum is lowered so that air flows through the nasal t.ract, with sound
being radiated at the nostrils. The oral cavity, although constricted toward the
front, is still acoustically coupled to the pharynx. Thus, the mouth serves as a
resonant cavity that traps acoustic energy at certain natural frequencies. As far
as the radiated sound is concerned these resonant frequencies of the oral cavity
appear as anti-resonances, or zeros of sound transmission [2]. Furthermo.re,
nasal consonants and nasalized vowels (i.e., some vowels preceding or following
nasal consonants) are characterized by resonances which are spectrally broader,
or more highly damped, than those for vowels. The broadening of the nasal

K T T
L~
[
~
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/
{
\~
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Fig. 3.7 Time variations of the first two formants for diphthongs. (After
Hoibrook and Fairbanks [27].)
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Fig. 3.8 Acoustic waveforms and spectrograms for utterances
fUH-M-A/and /UH-N-A/.

resonances is due to the fact that the inner surface of the nasal tract is convo-
luted, so that the nasal cavity has a relatively large ratio of surface area to

cross-sectional area. Therefore, heat conduction and viscous losses are larger
than normal.

The three nasal consonants are distinguished by the place along the oral
tract at which a total constriction is made. For /m/, the constriction, is at the
lips; for /n/ the constriction is just back of the teeth, and for /%/ the
constriction is just forward of the velum itself. Figure 3.8 shows typical speech
waveforms and spectrograms for two nasal consonants in the context vowel-
nasal-vowel. It is clear that the waveforms of /m/ and /n/ look very similar,
The spectrograms show a concentration of low frequency energy with a mid-
range of frequencies that contains no prominent peaks. This is because of the

particular combination of resonances and anti-resonances that result from the
coupling of the nasal and oral tracts [13].
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Fig. 3.8 (Continued)
3.1.2e Unvoiced Fricatives
The unvoiced fricatives /f/, /6/, /s/, and /sh/ are produced by exciting
the vocal tract by a steady air flow which becomes turbulent in the region of a

constriction in the vocal tract. The location of the constriction serves to deter-
mine which fricative sound is produced. For the fricative /f/ the constriction is
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near the lips; for /4/ it is near the teeth; for /s/ it is near the middle of the oral
tract; and for /sh/ it is near the back of the oral tract. Thus the system for pro-
ducing unvoiced fricatives consists of a source of noise at a constriction, which
separates the vocal tract into two cavities. Sound is radiated from the lips; i.e.
from the front cavity. The back cavity serves, as in the case of nasals, to trap
energy and thereby introduce anti-resonances into the vocal output [2,14]. Fig-
ure 3.9 shows the waveforms and spectrograms of the fricatives /f/, /s/ and
/sh/. The nonperiodic nature of fricative excitation is obvious in the waveform
plots. The spectral differences among the fricatives are readily seen by compar-
ing the three spectrograms.

3.1.2f Voiced Fricatives

The voiced fricatives /v/, /th/, /z/ and /zh/ are the counterparts of the
unvoiced fricatives /f/, /6/, /s/, and /sh/, respectively, in that the place of
constriction for each of the corresponding phonemes is essentially identical.
However, the voiced fricatives differ markedly from their unvoiced counterparts
in that two excitation sources are involved in their production. For voiced fri-
catives the vocal cords are vibrating, and thus one excitation source is at the
glottis. However, since the vocal tract is constricted at some point forward of
the glottis, the air flow becomes turbulent in the neighborhood of the constric-
tion. Thus the spectra of voiced fricatives can be expected to display two dis-
tinct components. These excitation features are readily observed in Figure 3.10
which shows typical waveforms and spectra for several voiced fricatives. The
similarity of the unvoiced fricative /f/ to the voiced fricative /v/ is easily seen
by comparing their corresponding spectrograms in Figures 3.9 and 3.10. Like-
wise it is instructive to compare the spectrograms of /sh/ and /zh/.

3.1.2g Voiced Stops

The voiced stop consonants /b/, /d/, and /g/, are transient, noncon-
tinuant sounds which are produced by building up pressure behind a total con-
striction somewhere in the oral tract, and suddenly releasing the pressure. For
/b/ the constriction is at the lips; for /d/ the constriction is back of the teeth,
and for /g/ it is near the velum. During the period when there is a total con-
striction in the tract there is no sound radiated from the lips. However, there is
often a small amount of low frequency energy radiated through the walls of the
throat (sometimes called a voice bar). This occurs when the vocal cords are
able to vibrate even though the vocal tract is closed at some point.

Since the stop sounds are dynamical in nature, their properties are highly
influenced by the vowel which follows the stop consonant [15]. As such, the
waveforms for stop consonants give little information about the particular stop
consonant. Figure 3.11 shows the waveform and spectrogram of the syllable
/UH-B-A/. The waveform of /b/ shows few distinguishing features except for
the voiced excitation and lack of high frequency energy.
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Fig. 3.9 Acoustic waveforms and spectrograms for JUH-F—-A/,
/UH-5~A4/, and [UH—-SH—A/.

3.1.2h Unvoiced Stops

The unvoiced stop consonants /p/, /t/, and /k/ are similar to their voiced
counterparts /b/, /d/, and /g/ with one major exception. During the period of
total closure of the tract, as the pressure builds up, the vocal cords do not
vibrate. Thus, following the period of closure, as the air pressure is released,
there is a brief interval of friction (due to sudden turbulence of the escaping
air) followed by a period of aspiration (steady air flow from the glottis exciting
the resonances of the vocal tract) before voiced excitation begins.

Figure 3.12 shows waveforms and spectrograms of the voiceless stop con-
sonants /p/ and /t/. The "stop gap,” or time interval during which the pressure
is built up is clearly in evidence. Also, it is readily seen that the duration and
frequency content of the frication noise and aspiration varies greatly with the
stop consonant.
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3.1.2i Affricates and /h/

Fig. 3.9 (Continued)

The remaining consonants of American English are the affricates /¢ /and
/i/, and the phoneme /h/. The unvoiced affricate /¢ / is a dynamical sound
which can be modelled as the concatenation of the stop /t/ and the fricative
/ f /. (See Fig. 3.3a for an example.) The voiced affricate /j/ can be modelled
as the concatenation of the stop /d/ and the fricative /zh/. Finally, the
phoneme /h/ is produced by exciting the vocal tract by a steady air flow — i.e.,
without the vocal cords vibrating, but with turbulent flow being produced at the
glottis.2 The characteristics of /h/ are invariably those of the vowel which fol-
lows /h/ since the vocal tract assumes the position for the following vowel dur-
ing the production of /h/.

Note that this is also the mode of excitation for whispered speech.
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Fig. 3.9 (Continued)

3.2 The Acoustic Theory of Speech Production

The previous section was a review of the qualitative description of the soupds
of speech and the way that they are produced. In this section we shz}ll consider
mathematical representations of the process of speech ?roductlon. Spch
mathematical representations serve as the basis for the analysis and synthesis of
speech.
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Fig. 3.10 Acoustic waveforms and spectrograms  for

utterances
/UH—-V~A/ and /UH-ZH—~A/.

3.2.1 Sound propagation

Sound is almost synonymous with vibration. Sound waves are created by
vibration and are propagated in air or other media by vibrations of the particles
of the media. Thus, the laws of physics are the basis for describing the
generation and propagation of sound in the vocal system. In particular, the
fundamental laws of conservation of mass, conservation of momentum, and
conservation of energy along with the laws of thermodynamics and fluid
mechanics, all apply to the compressible, low viscosity fluid (air) that is the
medium for sound propagation in speech. Using these physical principles, a set
of partial differential equations can be obtained that describe the motion of air
in the vocal system [16-20]. The formulation and solution of these equations is
extremely difficuit except under very simple assumptions about vocal tract
shape and energy losses in the vocal system. A detailed acoustic theory must
. consider the effects of the following:
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Time variation of the vocal tract shape.

Losses due to heat conduction and viscous friction at the vocal tract
walls.

Softness of the vocal tract walls.

Radiation of sound at the lips.

Nasal coupling.

Excitation of sound in the vocal tract.
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A completely detailed acoustic theory incorporating all the above effects is
beyond the scope of this chapter, and indeed, such a theory is not yet available.
We must be content to survey these factors, providing references to details

when available, and qualitative discussions when suitable references are una-
vailable.

The simplest physical configuration that has a useful interpretation in
terms of the speech production process is depicted in Figure 3.13a. The vocal
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Fig. 3.12 Acoustic waveforms and spectrograms for utterances
JUH—P—A/and /UH-T-A/.

tract is modeled as a tube of nonuniform, time-varying, cross-section. For fre-
quencies corresponding to wavelengths that are long compared to the dimen-
sions of the vocal tract (less than about 4000 Hz), it is reasonable to assume
plane wave propagation along the axis of the tube. A further simplifying
assumption is that there are no losses due to viscosity or thermal conduction,
either in the bulk of the fluid or at the walls of the tube. With these assump-
tions, and the laws of conservation of mass, momentum and énergy, Portnoff
[18] has shown that sound waves in the tube satisfy the following pair of equa-
tions:

_9p _  8u/A)
ax =P o (3.1a)
_u_ 1 34, 94
o te g (3.1b)
where
p =p(x,t) s the variation in sound pressure

in the tube at position x and time ¢

59




FREQUENCY (KHZ)

Ny

100 msec

X

TIME

Fig. 3.12 (Continued)

is the variation in volume velocity
flow at position x and time &.

is the density of air in the tube.

is the velocity of sound

is the "area function" of the tube;
i.e., the value of cross-sectional area
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Fig. 3.13 (a) Schematic vocal tract; (b) corresponding area function; (c)
x—1¢ plane for solution of wave equation.

normal to the axis of the tube as a
function of a distance along the
tube and as a function of time.

A similar set of equations has been derived by Sondhi [20].

Closed form solutions to Egs. (3.1) are not possible except for the sim-
plest configurations. Numerical solutions can be obtained, however. Complete
solution of the differential equations requires that pressure and volume velocity
be found for values of x and f in the region bounded by the glottis and the lips.
To obtain the solution, boundary conditions must be given at each end of the
tube. At the lip end, the boundary condition must account for the effects of
sound radiation. At the glottis (or possibly some internal point), the boundary
condition is imposed by the nature of the excitation.

In addition to the boundary conditions, the vocal tract area function,
A(x,r), must be known. Figure 3.13b shows the area function for the tube in
Fig. 3.13a, at a particular time. For continuant sounds, it is reasonable to
assume that 4 (x,r) does not change with time; however this is not the case for
noncontinuants. Detailed measurements of A (x) are extremely difficult to
obtain even for continuant sounds. One approach to such measurements is
through the use of X-ray motion pictures. Fant [1] and Perkell [21] provide
some data of this form; however, such measurements can only be obtained on
a limited scale. Another approach is to infer the vocal tract shape from acoustic
measurements. Sondhi and Gopinath [22] have described an approach which
involves the excitation of the vocal tract by an external source. Both of these
approaches are useful for obtaining knowledge of the dynamics of speech pro-
duction, but they are not directly applicable to the representation of speech sig-
nals (e.g. for purposes of transmission). Atal [23} has described investigations
directed toward obtaining A (x,t) directly from the speech signal produced
under normal speaking conditions.
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Fig. 3.14 (a) Uniform lossless tube with ideal terminations; (b)
corresponding electrical transmission line analogy.

The complete solution of Egs. (3.1) is very complicated (18] even if
A(x,1) is accurately determined. Fortunately, it is not necessary to solve the
equations under the most general conditions to obtain insight into the nature of
the speech signal. A variety of reasonable approximations and simplifications
can be invoked to make the solution possible.

3.2.2 Example: uniform lossless tube

Useful insight into the nature of the speech signal can be obtained by con-
sidering a very simple model in which the vocal tract area function is assumed
constant in both x and ¢ (time invariant with uniform cross-section). This
configuration is approximately correct for the neutral vowel /UH/. We shall
examine this model first, returning later to examine more realistic models. Fig-
ure 3.14a depicts a tube of uniform cross-section being excited by an ideal
source of volume velocity flow. This ideal source is represented by a piston
that can be caused to move in any desired fashion, independent of pressure
variations in the tube. A further assumption is that at the open end of the
tube, there are no variations in air pressure — only in volume velocity. These
are obviously gross simplifications which in fact are impossible to achieve in
reality; however, we are justified in considering this example since the basic
approach of the analysis and the essential features of the resulting solution have
much in common with more realistic models. Furthermore we shall show that
more general models can be constructed by concatenation of uniform tubes.

If A(x,t) = 4 is a constant, then the partial differential equations Egs.
(3.1) reduce to the form

_% _p du
ox " A ot (3.2a)
_du_ 4
ox ~ pcl ot (3.2b)
It can be shown (see Problem 3.3) that the solution to Egs. (3.2) has the form
uln = [u*(t=x/c)—u~(t+x/c)) (3.3a)
p(x0) = £ [u*(t—x/e)+u(1+x/ )] (3.3b)
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In Egs. (3.3) the functions u*(t—x/¢) and u~(¢++x/c) can be interpreted as
traveling waves in the positive and negative directions respectively. The rela-
tionship between these traveling waves is determined by the boundary condi-
tions.

Anyone familiar with the theory of electrical transmission lines will recal!
that for a lossless uniform line the voltage v(x,¢) and current i(x,?) on the line
satisfy the equations

Jv Qi

_ov _ & 3.4
P L o1 (3.4a)
9 ov

- =C — 3.4b
dx ¢ ot (3.40)

where L and C are the inductance and capacitance per unit length respectively.
Thus the theory of lossless uniform electric transmission lines [24,25] applies
directly to the uniform acoustic tube if we make the analogies shown in Table
3.3

Table 3.3 Analogies Between Acoustic and Electric Quantities

Analogous Electric Quantity
v - voltage
i- current
L - inductance
C - capacitance

Acoustic Quantity
p - pressure
u - volume velocity
p/ A - acoustic inductance
A/(pc?) - acoustic capacitance

Using these analogies, the uniform acoustic tube behaves identically to a
lossless uniform transmission line terminated in a short circuit (v{/7)=0) at
one end and excited by a current source (i(0,1)=ig(1)) at the other end. This
is depicted in Fig. 3.14b.

Frequency domain representations of linear systems such as transmission
lines and circuits are exceedingly useful. By analogy we can obtain similar
representations of the lossless uniform tube. The frequency-domain
representation of this model is obtained by assuming a boundary condition at
x=0of

u(0,1) = ugt) = UG(Q)ejr“ (3.5

That is, the tube is excited by a complex exponential variation of volume v.elo-
city of radian frequency  and complex amplitude, Ug(Q). Since Equations
(3.2) are linear, the solution u*(¢—x/c) and u~(z+x/c) must be of the form

ut(t—x/c) = Kte/0U-x/0 (3.6a)
u~(t+x/c) = K-el0lx/c) (3.6b)

Substituting these equations into Egs. (3.3) and applying the boundary condi-
tion

pUD) =0 €k}
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at It(he lip end of the thbe and Eq. (3.5) at the glottis end we can solve for the |
unknown constants and K~. The resulting sinusoidal steady stat i
for p(x,t) and u (x,t) are Y state solutions 3

sin[Q (I-x)/c}

p(x0) = jZ, cosI01/e] Ug(Q)e/ (3.8a)
_ coslQ(I-x)/c] -
ulxr) = —COW Ug(Q)e/$ (3.8b)
where

is by analogy called the characteristic acoustic impedance of the tube.

An alternative approach which we will use subsequently avoids solution
for the forward and backward traveling waves by expressing p(x,t) and u(x,t) |
for a complex exponential excitation directly as’

pxt) = P(x, Q)eitt (3.10a)
u(xt) = Ulx, Q)e/V (3.100)

Substitutipg these solutions into Eqs. (3.1) gives the ordinary differential equa-
tions relating the complex amplitudes

dP
Bl zZU (3.11a)
dU
i YpP (3.11b)
where
Z=j0 % (3.12)
can be called the acoustic impedance per unit length and
. A
Y=j0—
J pye; (3.13)

is the acoustic admittance per unit length. The differential equati
. ions of Egs.
(3.11) have solutions of the form ¢ *

P(x, Q) = de”* + Be™* (3.14a)
Ulx, Q) = Ce”+ De 7" (3.14b)

where
y=+ZY =jQ/c (3.14¢)

3 . . .
Henceforth our convention will be to denote time domain variables with lower case letters (e

1[3(()(,r)(;))and their corresponding frequency domain representations with capital letters (ie
- ‘ €.
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Fig. 3.15 (a) Frequency response; and (b) pole locations for a uniform
lossless tube,

The unknown coefficients can be found by applying the boundary conditions
PULO)=0 (3.15a)
U@, Q) = Ugn) (3.15b)

The result is, of course, the same as Egs. (3.8). Equations (3.8) express
the relationship between the sinusoidal volume velocity source and the pressure
and volume velocity at any point in the tube. In particular, if we consider the
relationship between the volume velocity at the lips and the volume velocity
source, we obtain from Eq. (3.8b),

u(lt) = U, Q)e/

_ 1 ife
" cos(Qi/e) Us()e! 3.16)
The ratio
UGLD) _ vy = 1
Ug(Q) VU = Staro G

is the frequency response relating the input and output volume velocities. This
function is plotted in Figure 3.15a for values !/ = 17.5 ¢cm and ¢ = 35000
cm/sec. Replacing Q by s/j, we obtain the Laplace transform or system func-
tion

2 e—sl/c
Note that ¥,(s) has an infinite number of poles equally spaced on the j ) axis
at

V,(s) = (3.18)

Q2n+Dwc
2!

s,=% ] n=0=x1,%2, ... (3.19)
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These pole locations are shown in Fig. 3.15b. The poles of the system function
of a linear time-invariant system are the natural frequencies (or eigenfrequen-
cies) of the system. The poles also correspond to resonance frequencies of the
system. These resonant frequencies are, of course, calied the formant frequen-
cies when considering speech production. As we shall see, similar resonance
effects will be observed regardless of the vocal tract shape.

It should be recalled at this point that the frequency response function
allows us to determine the response of the system not only to sinusoids but to
arbitrary inputs through the use of Fourier analysis. Indeed, Eq. (3.17) has the
more general intepretation that V,(j Q) is the ratio of the Fourier transform of
the volume velocity at the lips (output) to the Fourier transform of the volume
velocity at the glottis (input or source). Thus the frequency response is a con-
venient characterization of the model for the vocal system. Now that we have
demonstrated a method for determining the frequency response of acoustic
models for speech production by considering the simplest possible model, we
can begin to consider more realistic models.

3.2.3 Effects of losses in the vocal tract

The equations of motion for sound propagation in the vocal tract that we
have given were derived under the assumption of no energy loss in the tube.
In reality, energy will be lost as a result of viscous friction between the air and
the walls of the tube, heat conduction through the walls of the tube, and vibra-
tion of the tube walls. To include these effects, we might attempt to return to
the basic laws of physics and derive a new set of equations of motion. This is
made extremely difficult by the frequency dependence of these losses. As a
result, a common approach is to modify the frequency domain representation of
the equations of motion [2,18). We shall survey the results of this approach in
this section.

Let us first consider the effects of the vibration of the vocal tract wall.
The variations of air pressure inside the tract will cause the walls to experience
a varying force. Thus, if the walls are elastic, the cross-sectional area of the
tube will change depending upon the pressure in the tube. Assuming that the
walls are "locally reacting" [17,18], then the area A (x,r) will be a function of
p(x,1). Since the pressure variations are very small, the resulting variation in
cross-sectional area can be treated as a small perturbation of the "nominal" area;
i.e., we can assume that

A(x1) = Ay(xt) + 84 (x,1) (3.20)

where 4(x,t) is the nominal area and 84 (x,f) is a small perturbation. This is
depicted in Fig. 3.16. Because of the mass and elasticity of the vocal tract wall,
the relationship between the area perturbation 84 (x,7), and the pressure varia-
tions, p(x,t), can be modeled by a differential equation of the form

d*(84) d(s4)
v T g + k,(84) = p(x,1) (3.21)
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Fig. 3.16 lllustration of the effects of wall vibration.

where

m,(x) is the mass/unit length of the vocal tract wall
b,(x) is the damping/unit length of the vocal tract walil
k,(x) is the stiffness/unit length of the vocal tract wall.

Neglecting second order terms in the quantities u/4 and pA, we can write Eqs.
(3.1) as

So < (3.220)
X

ou _ 1 049 940 _ 3(s4) 3.9%b

T 9x  pcr ot ARFYRRTY (3.220)

Thus, sound propagation in a soft walled tube such as the vocal tract is
described by the set of equations, Eqgs. (3.20), (3.21) and (3.22).

To examine this effect in more detail let us obtain a frequency domain
representation, as before, by considering a time invariant tube, excited .by a
complex volume velocity source; i.e., the boundary condition at the glottis is

u(0,0) = Ug(Q)e/? (3.23)

Then because the differential equations Egs. (3.21) and (3.22) are linear and
time invariant for this case, the volume velocity and pressure are also of the
form

plx,1) = P(x, Q)e/t (3.24a)
ulet) = Ulx, Q)el® (3.24b)
Substituting Egs. (3.24) into Egs. (3.21) and (3.22) yields the equations
9P _zy (3.250)
dx
-0 _ypyvy,p (3.25b)
dx
where
Z(x, Q) =j0 70’2)(—) (3.26a)
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Fig. 3.17 Frequency response of uniform tube with yielding walls and no
other losses. Terminated in a short circuit (p(/,1)=0). (After Portnoff

[18].)

Y(x0) = jo 2o (3.26b)
pc
and
Y, (x Q) = 1 (3.26¢)

k,(x)

JQm,(x) + b,(x) +

Note that. Egs. (3.25) are identical to Eqs. (3.11) except for the addition of the
wall.admlttance_term Y, and for the fact that the acoustic impedance and
admittances are in this case functions of x. If we consider a uniform tube, then

,(43 ng) )is constant, and Egs. (3.12) and (3.13) are identical to Egs. (3.26a) and
.26b).

Using.estimates obtained from measurements on body tissues [2], the
parameters in Eq. (3.26c) were estimated and the differential equations, Egs.

(3.25), were solved with boundary condition p(/,f) = 0 at the lip end [18,19].
The ratio

) = UiQ)
V.(i0) = U, () (3.27

is plotted as a function of Q in Fig. 3.17 for the case of a uniform tube of
!ength 17.5 cm [18). The results are similar to Fig. 3.15 but different in an
important way. It is clear that the resonances are no longer exactly on the jQ
axis of the s-plane. This is evident since the frequency response no longer is
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infinite at frequencies 500 Hz, 1500 Hz, 2500 Hz, etc., although the response is
peaked in the vicinity of these frequencies. The center frequencies and
bandwidths* of the resonances in Figure 3.17 are given in the associated table.
Several important effects are evident in this example. First we note that the
center frequencies are slightly higher than for the lossless case. Second, the
bandwidths of the resonances are no longer zero as in the lossless case, since
the peak value is no longer infinite. It can be seen that the effect of yielding
walls is most pronounced at low frequencies. This is to be expected since we
would expect very little motion of the massive walls at high frequencies. The
results of this example are typical of the general effects of vocal tract wall
vibration; i.e., the center frequencies are slightly increased and the low fre-
quency resonances are broadened as compared to the rigid wall case.

The effects of viscous friction and thermal conduction at the walls are
much less pronounced than the effects of wall vibration. Flanagan [2] has con-
sidered these losses in detail and has shown that the effect of viscous friction
can be accounted for in the frequency domain representation (Eq. (3.25)) by
including a real, frequency dependent term in the expression for the acoustic
impedance, Z; i.e.,

__Sx) . P
20 ) = 1 on VeI

where S(x) is the circumference of the tube, u is the coefficient of friction,
and p is the density of air in the tube. The effects of heat conduction through

the vocal tract wall can likewise be accounted for by adding a real frequency
dependent term to the acoustic admittance, Y (x, Q); i.e.,

Sx)(n—1) A0 . Adx)
pc? 2¢c,p MEA 2

where ¢, is the specific heat at constant pressure, 7 is the ratio of specific heat
at constant pressure to that at constant volume, and X is the coefficient of heat
conduction [2]. Typical values for the constants in Eqs. (3.28) are given by
Flanagan [2]. For our purposes, it is sufficient to note that the loss due to fric-
tion is proportional to the real part of Z{x, ), and thus to QY2 Likewise the
thermal loss is proportional to the real part of Y(x, ), which in turn is propor-
tional to 22 Using the values given by Eqgs. (3.28) for Z(x, ) and Y(x, Q)
and the values of Y,(x, ) given by Eq. (3.26c), Egs. (3.25) were again solved
numerically [18]. The resulting frequency response for the boundary condition
of p(lt) =0 is shown in Fig. 3.18. Again the center frequencies and
bandwidths were determined and are shown in the associated table. Comparing
Fig. 3.18 with Fig. 3.17, we observe that the center frequencies are decreased
by the addition of friction and thermal loss, while the bandwidths are increased.
Since friction and thermal losses increase with 1 '/2 the higher frequency reso-
nances experience a greater broadening than do the lower resonances.

(3.28a)

Y(x, Q) = (3.28b)

“The bandwidth of a resonance is defined as the frequency interval around a resonance in which
the frequency response is greater than 0.707 times the peak value at the center frequency [26].
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l"‘lg. 3.18 Frequency response of uniform tube with yielding walls, fric-
tion and thermal losses, and terminated in a short circuit (p(/r)=0).
(After Portnoff (18).)

The examples depicted in Figs. 3.17 and 3.18 are typical of the general
effects of losses in the vocal tract. To summarize, viscous and thermal losses
increase with frequency and have their greatest effect in the high frequency
resonances, while wall loss is most pronounced at low frequencies. The yield-
ing walls tend to raise the resonant frequencies while the viscous and thermal
losses tend to lower them. The net effect for the lower resonances is a slight
upward shift as compared to the lossless, rigid walled model. The effect of fric-
tion and thermal loss is small compared to the effects of wall vibration for fre-
quencies below 3-4 kHz. Thus, Egs. (3.21) and (3.22), which neglect these
losses, are nevertheless a good representation of sound transmission in the
\{ocal tract. As we shall see in the next section, the radiation termination at the
!lpS is a much greater source of high frequency loss. This provides further
justification for neglecting friction and thermal loss in models or simulations of
speech production.

)) ) %__>>>

{a) {b)

Fig. 3.19 (a) Radiation from a spherical baffle; (b) radiation from an
infinite plane baffle.
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3.2.4 Effects of radiation at the lips

So far we have discussed the way that internal losses affect the sound
transmission properties of the vocal tract. In our examples we have assumed
the boundary condition p(/,t) = 0 at the lips. In the electric transmission line
analogy this corresponds to a short circuit. The acoustic counterpart of a short
circuit is as difficult to achieve as an electrical short circuit since it requires a
configuration in which volume velocity changes can occur at the end of the
vocal tract tube without corresponding pressure changes. In reality, the vocal
tract tube terminates with the opening between the lips (or the nostrils in the
case of nasals). Thus a reasonable model is as depicted in Fig. 3.19a, which
shows the lip opening as an orifice in a sphere. In this model, at low frequen-
cies, the opening can be considered a radiating surface, with the radiated sound
waves being diffracted by the spherical baffle that represents the head.

The resulting diffraction effects are complicated and difficult to represent;
however, for determining the boundary condition at the lips, all that is needed
is a relationship between pressure and volume velocity at the radiating surface.
Even this is very complicated for the configuration of Fig. 3.19a. However, if
the radiating surface (lip opening) is small compared to the size of the sphere, a
reasonable approximation assumes that the radiating surface is set in a plane
baffle of infinite extent as depicted in Fig. 3.19b. In this case, it can be shown
[2,17,18] that the sinusoidal steady state relation between the complex ampli-
tudes of pressure and volume velocity at the lips is

PUQ)=Z,(Q)U Q) (3.29a)
where the "radiation impedance" or "radiation load" at the lips is approximately
of the form

JQL,R,
R, +jQL,
The electrical analog to this radiation load is a parallel connection of a radiation

resistance, R,, and radiation inductance, L,. Values of R, and L, that provide a
good approximation to the infinite plane baffle are [2]

Z,(Q) = (3.29b)

R, = = .

= (3.30a)

L=22 (3.300)
3mc

where a is the radius of the opening and c is the velocity of sound.

The behavior of the radiation load influences the nature of wave propaga-
tion in the vocal tract through the boundary condition of Egs. (3.29). Note
that it is easily seen from Eq. (3.29b) that at very low frequencies Z; () = 0;
i.e., at very low frequencies the radiation impedance approximates the ideal
short circuit termination that has been assumed up to this point. Likewise, it is
clear from Eq. (3.29b) that for a mid range of frequencies, (when
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Fig. 3.20 Real and imaginary parts of the radiation impedance.

QL, <<R), Z,(Q)=,QL,. At higher frequencies (QL,>> R),
Z,(Q) = R,. This is readily seen in Fig. 3.20 which shows the real and ima-
ginary parts of Z;(Q) as a function of Q for typical values of the parameters.
The energy dissipated due to radiation is proportional to the real part of the
radiation impedance. Thus we can see that for the complete speech production
system (vocal tract and radiation), the radiation losses will be most significant
at higher frequencies. To assess the magnitude of this effect, Egs. (3.25),
(3.26¢) and (3.29) were solved simultaneously for the case of a uniform time
invariant tube with yielding walls, friction and thermal losses, and radiation loss
corresponding to an infinite plane baffle. Figure 3.21 shows the resulting fre-
quency response.

U@ Q)
Ug(Q)

for an input U(0,1) = Ug(Q)e/™ Comparing Figure 3.21 to Figures 3.17 and
3.18 shows that the major effect is to broaden the resonances (increase loss)
and to lower the resonance frequencies (formant frequencies). As expected the
major effect on the resonance bandwidths occurs at higher frequencies. The
first resonance (formant) bandwidth is primarily determined by the wall loss,
while the higher formant bandwidths are primarily determined by radiation loss.
The second and third formant bandwidths can be said to be determined by a
combination of these two loss mechanisms.

V,(iQ) = (3.31)
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Fig. 3.21 Frequency response of uniform tube with yielding walls, fric-
tion and thermal loss. (After Portnoff {18).)

The frequency response shown in Figure 3.21 relates the volume velocity
at the lips to the input volume velocity at the lips. The relationship between
pressure at lips and volume velocity at the glottis may be of interest, especially
if a pressure sensitive microphone is used in converting the acoustic wave to an
electrical wave. Since P(/, Q) and U(/, Q) are related by Eq. (3.29a), the pres-
sure transfer function is simply

i -5 s s
= (@) V(@) (3.32)
20
g of
g: -20}
5—40-
e 1000 2000 3000 2000 5000

FREQUENCY (Hz)

Fig. 3.22 Frequency response relating pressure at lips to volume velocity
at glottis for uniform tube.
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Fig. 3.23 Area function (after Fant [1]) and frequency response (after
Portnoff (18}) for the Russian vowel /a/,

It can be seen from Fig. 3.21 that the major effects will be an emphasis of high
frequencies and the introduction of a zero at. ) = 0. Figure 3.22 shows the
frequency response 20 logyg [H,(Q)| including wall losses and the radiation
loss of an infinite plane baffle. A comparison of Figures 3.21 and 3.22 places in
evidence the zero at £ = 0 and the high frequency emphasis.

3.2.5 Vocal tract transfer functions for vowels

The equations discussed in Sections 3.2.3 and 3.2.4 constitute a detailed
model for sound propagation and radiation in speech production. Using numer-
ical integration techniques, either the time domain or frequency domain forms
can be solved for a variety of vocal tract response functions. Such solutions
provide considerable insight into the nature of the speech production process
and the speech signal.
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As an example [18], the frequency domain equations, Egs. (3.25),
(3.260), (3.28), and (3.29), were used to compute frequency response func-
tions for a set of area functions measured by Fant [1]. Figures 3.23-3.26 show
the vocal tract area functions and corresponding frequency responses
(U(, 2)/Us(Q)) for the Russian vowels /a/, /e/, /i/, and /u/. These figures
illustrate the effects of all the loss mechanisms discussed in Sections 3.2.3 and
3.2.4. The formant frequencies and bandwidths compare favorably with meas-
urements on natural vowels of formant frequencies obtained by Peterson and
Barney [11] and formant bandwidths by Dunn [27].

In summary, we may conclude from these examples and those of the pre-
vious sections that:

1. The vocal system is characterized by a set of resonances (formants)
that depend primarily upon the vocal tract area function, although
there is some shift due to losses, as compared to the lossless case.
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Fig. 3.24 Area function (after Fant {1]) and frequency response (after
Portnoff {18]) for the Russian vowel /e/.
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1OF  reeneree This configuration can be represented as in Fig. 3.27a, which shows two
_ . . branches, one of which is completely closed. At the point of branching the
“g . sound pressure is the same at the input to each tube, while the volume velocity
= s must be continuous at the branching point; i.e., the volume velocity at the out-
< . put of the pharynx tube must be the sum of the volume velocities at the inputs
. . to the nasal and oral cavities. The corresponding electrical transmission line
o : pereeee” . analog is shown in Fig. 3.27b. Note that continuity of volume velocity at the
oms  ° 10 ues 2° junction of the 3 tubes corresponds to Kirchoff’s current law at the junction of
DISTANCE x (cm} the transmission lines.
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2. The bandwidths of the lowest formant frequencies (first and second) = st
depend primarily upon the vocal tract wall loss.’ g 4 A | l
3. The bandwidths of the higher formant frequencies depend primarily 5 o
upon the viscous friction and thermal losses in the vocal tract and the 274
radiation loss. s -8
o -2t
-6t
3.2.6 The effect of nasal coupling 4 20t
! -24
In the production of the nasal consonants /m/, /n/, and /x/ the velum is | -28r
lowered like a trap-door to couple the nasal tract to the pharynx. Simultane- i -2 L Lo
ously a complete closure is formed in the oral tract (e.g., at the lips for /m/). 4 ~3%5 1000 2000 2000 4000 5000
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SWe shall see in Section 3.2.7 that loss associated with the excitation source also effects the lower

Fig. 3.26 Area function (after Fant [1]) and frequency response (after
formants.

Portnoff (18]) for the Russian vowel /u/.
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Fig. 3.27 (a) Tube mode! for production of nasals; (b) corresponding
electrical analog.

minated as for vowels. The speech signal would then be the superposition of
the nasal and oral outputs.

The mathematical model for this configuration consists of three sets of
partial differential equations with boundary conditions being imposed by the
form of glottal excitation, terminations of the nasal and oral tracts, and con-
tinuity relations at the junction. This leads to a rather complicated set of equa-
tions which could in principle be solved, given adequate measurements of area
functions for all three tubes. However, the transfer function of the complete
system would have many features in common with the previous examples.
That is, the system would be characterized by a set of resonances or formants
that would be dependent upon the shape and length of the 3 tubes. An impor-
tant difference results from the fact that the closed oral cavity can trap energy
at certain frequencies, preventing those frequencies from appearing in the nasal
output. In the electrical transmission line analogy, these are frequencies at
which the input impedance of the open circuited line is zero. At these frequen-
cies the junction is short circuited by the transmission line corresponding to the
oral cavity. The result is that for nasal sounds, the vocal system transfer func-
tion will be characterized by anti-resonances (zeros) as well as resonances. It
has also been observed [13] that nasal formants have broader bandwidths than
non-nasal voiced sounds. This is attributed to the greater viscous friction and
thermal loss due to the large surface area of the nasal cavity.

3.2.7 Excitation of sound in the vocal tract

The previous sub-sections have described how the laws of physics can be
applied to describe the propagation and radiation of sound in speech production.
To complete our discussion of acoustic principles we must now consider the
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mechanisms whereby sound waves are generated in the vocal system. Recall
that in our general overview of speech production in Section 3.1.1, we
identified 3 major mechanisms of excitation. These are:

1. Air flow from the lungs is modulated by the vocal cord vibration,
resulting in a quasi-periodic pulse-like excitation.

2. Air flow from the lungs becomes turbulent as the air passes through a
constriction in the vocal tract, resulting in a noise-like excitation.

3. Air flow builds up pressure behind a point of total closure in the vocal
tract. The rapid release of this pressure, by removing the constriction,
causes a transient excitation.

A detailed model of excitation of sound in the vocal system involves the sub-
glottal system (lungs, bronchi, and trachea), the glottis, and the vocal tract.
Indeed, a model which is complete in all necessary details is also fully capable
of simulating breathing as well as speech production! [2]. The first comprehen-
sive effort toward a.detailed physical model of sound generation in the vocal
system was by Flanagan [2,28]. Subsequent research has produced a much
refined model that provides a very detailed representation of the process of
generation of both voiced and unvoiced speech [28-31]. This model, which is
based upon classical mechanics and fluid mechanics, is beyond the scope of our
discussion here. However, a brief qualitative discussion of the basic principles
of sound generation will be helpful in pointing the way toward the simple
models that are widely used as the basis for speech processing.

The vibration of the vocal cords in voiced speech production can be
explained by considering the schematic representation of the vocal system
shown in Fig. 3.28. The vocal cords constrict the path from the lungs to the
vocal tract. As lung pressure is increased, air flows out of the lungs and

through the opening between the vocal cords (glottis). Bernoulli’s law states

that when a fluid flows through an orifice, the pressure is lower in the constric-
tion than on either side. If the tension in the vocal cords is properly adjusted,
the reduced pressure allows the cords to come together, thereby completely
constricting air flow. (This is indicated by the dotted lines in Figure 3.28) Asa
result, pressure increases behind the vocal cords. Eventually it builds up to a
level sufficient to force the vocal cords to open and thus allow air to flow
through the glottis again. Again the air pressure in the glottis falls, and the

A

AIR FLOW Nl

AR FLOW N\

FROM LUNGS . 2\ LIPS
4

TRACHEA
VOCAL TRACT

Fig. 3.28 Schematic representation of the vocal system.
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Fig. 3.29 (a) Diagram of vocal cord mode!; (b) approximate model for
vocal cords.

c_ycle is repeated. Thus, the vocal cords enter a condition of sustained oscilla-
tion. The rate at which the glottis opens and closes is controlled by the air
pressure in the lungs, the tension and stiffness of the vocal cords, and the area
of the glottal opening under rest conditions. These are the control parameters
of a detailed model of vocal cord behavior. Such models must also include the
effects of the vocal tract, since pressure variations in the vocal tract influence
the pressure variations in the glottis. In terms of the electrical analog, the
vocal tract acts as a load on the vocal cord oscillator. A schematic diagram of
the vocal cord model (adapted from {30]) is shown in Figure 3.29a. The vocal
cord model consists of a set of complicated nonlinear differential equations.
The coupling of these differential equations to the partial differential equations
describing vocal tract transmission can be represented by a time varying acous-
tic resistance and inductance as shown [30]. These impedance elements are
functions of 1/45(r). For example, when Ay(r) =0 (glottis closed) the
impedance is infinite and the volume velocity is zero. Thus, the glottal flow is
automatically chopped up into pulses. An example of the signals generated by
such a model is shown in Fig. 3.30 [30]. The upper waveform is the volume
velocity and the lower waveform is the pressure at the lips for a vocal tract

configuration appropriate for the vowel /a/. The pulse-like nature of the glottal
flow is certainly consistent with our previous discussion and with direct obser-
vation through the use of high-speed motion pictures [2]. The damped oscilla-
tions of the output are, of course, consistent with our previous discussion of
the nature of sound propagation in the vocal tract.

Since glottal area is a function of the flow into the vocal tract, the overall
system of Fig. 3.29a is nonlinear, even though the vocal tract transmission and
radiation systems are linear. The coupling between the vocal tract and the
glottis is weak, however, and it is common to neglect this interaction. This
leads to a separation and linearization of the excitation and transmission system
as depicted in Figure 3.29b. In this case ug(r) is a volume velocity source
whose wave shape is of the form of the upper waveform in Fig. 3.30. The glot-
tal acoustic impedance, Zg;, is obtained by linearization of the relations between
pressure and volume velocity in the glottis [2). This impedance is of the form

Zo(Q) =Rs+j0QLg (3.33)

where R and Lg are constants. With this configuration the ideal frequency
domain boundary condition of U(0, ) = Ugz(Q) is replaced by

U@, Q) = Ug(Q2) — PO, Q)/Z5(Q) (3.34)

The glottal source impedance has significant effects upon resonance
bandwidths for the speech production system. The major effect is a broadening
of the lowest resonance. This is because Z;(Q) increases with frequency so
that at high frequencies Z; appears as an open circuit and all of the glottal
source flows into the vocal tract system. Thus, yielding walls and glottal loss
control the bandwidths of the lower formants while radiation, friction, and ther-
mal losses control the bandwidths of the higher formants.

The mechanism of production of voiceless sounds involves the turbulent
flow of air. This can occur at a constriction whenever the volume velocity
exceeds a certain critical value [2,29]. Such excitation can be modeled by
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Fig. 3.30 Glottal volume velocity and sound pressure at the mouth for
vowel /a/. (After Ishizaka and Flanagan [30].)
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inserting a randomly time varying source at the point of constriction. The
strength of the source is made dependent (nonlinearly) upon the volume velo-

city in the tube. In this way, frication is automatically inserted when needed |
{2,29,31}. For fricative sounds, the vocal cord parameters are adjusted so that ‘
the cords do not vibrate. For voiced fricatives, the vocal cords vibrate and tur- |

bulent flow occurs at a constriction whenever the volume velocity exceeds the
critical value. This usually occurs at the peaks of the volume velocity pulses.
For plosives, the vocal tract is closed for a period of time while pressure is built
up behind the closure with the vocal cords not vibrating. When the constric-

tion is released, the air rushes out at a high velocity thus causing turbulent
flow.

3.2.8 Models based upon the acoustic theory

Section 3.2 has discussed in some detail the important features of the

acoustic theory of speech production. The detailed models for sound genera- :
tion, propagation, and radiation can in principle be solved with suitable values |
of the excitation and vocal tract parameters to compute an output speech

waveform. Indeed, it can be argued effectively that this may be the best§
EXCITATION T'MEU',J’E“:; ING | speech
GENERATOR SYSTEM OUTPUT

Fig. 3.31 Source-system model of speech production.

approach to the synthesis of natural sounding synthetic speech [31]. However,
for many purposes such detail is impractical or unnecessary. In such cases the
acoustic theory points the way to a simplified approach, to modeling speech sig-
nals. Figure 3.31 shows a general block diagram that is representative of
numerous models that have been used as the basis for speech processing
These models all have in common that the excitation features are separated
from the vocal tract and radiation features. The vocal tract and radiation effects
are accounted for by the time-varying linear system. Its purpose is to model
the resonance effects that we have discussed. The excitation generator creates a
signal that is either a train of (glottal) pulses, or randomly varying (noise).
The parameters of the source and system are chosen so that the resulting out-
put has the desired speech-like properties. If this can be done, the model may
serve as a useful basis for speech processing. In the remainder of this chapter
we shall discuss some models of this type.

3.3 Lossless Tube Models

A widely used model for speech production is based upon the assumption that
the vocal tract can be represented as a concatenation of lossless acoustic tubes,
as depicted in Fig. 3.32. The constant cross-sectional areas {4}, of the tubes
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Fig. 3.32 Concatenation of § lossless acoustic tubes.

are chosen so as to approximate the area function, 4 (x), of the vocal tract. If
a large number of tubes of short length is used, we can reasonably expect the
resonant frequencies of the concatenated tubes to be close to those of a tube
with continuously varying area function. However, since this approximation
neglects the losses due to friction, heat conduction, and wall vibration, we may
also reasonably expect the bandwidths of the resonances to differ from those of
a detailed model which includes these losses. However, losses can be
accounted for at the glottis and lips, and as we shall see here and in Chapter 8,
this can be done so as to accurately represent the resonance properties of the
speech signal.

More important for our present discussion is the fact that lossless tube
models provide a convenient transition between continuous-time models and
discrete-time models. Thus we shall consider models of the form of Figure
3.32 in considerable detail.

3.3.1 Wave propagation in concatenated lossless tubes
Since each tube in Figure 3.32 is assumed lossless, sound propagation in

each tube is described by Equations (3.2) with appropriate values of the cross-
sectional area. Thus if we consider the k* tube with cross-sectional area, A .

' the pressure and volume velocity in that tube have the form

pe(xt) = *Z—c [uk+(t—x/c) + u;(t+x/c) (3.35a)
K
uxt) = uF(t—x/c) — u(t+x/c) (3.35b)

where x is distance measured from the left-hand end of the & tube (0<x< /)
and u;"() and u, () are positive-going and negative-going traveling waves in

L the k" tube. The relationship between the traveling waves in adjacent tubes
b can be obtained by applying the physical principle that pressure and volume
. velocity must be continuous in both time and space everywhere in the system.

This provides boundary conditions that can be applied at both ends of each
tube.

Consider in particular the junction between the k" and (k+1)¥ tubes as
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Fig. 3.33 Illustration of the junction between two lossiess tubes.

depicted in Figure 3.33. Applying the continuity conditions at the junction
gives

Pillint) = py(0,0) (3.36a)
uk([krt) = qu(O,t) (336b)
Substituting Egs. (3.35) into Eqs. (3.36) gives
A
K (=) + uc () = uda (O + w5 () (3.37)
k
uk+(t_Tk) - uk_(1+1‘k) = uktl - U (’) (3.37b)

where 7, = /,/c is the time for a wave to travel the length of the k™ tube.
From Figure 3.33 we observe that part of the positive going wave that reaches
the junction is propagated on to the right while part is reflected back to the left.
Likewise part of the backward traveling wave is propagated on to the left while
part is reflected back to the right. Thus, if we sotve for uty, (¢) and u;(t+7))
in terms of u;;(¢) and u(t—7,) we will be able to see how the forward and
reverse traveling waves propagate in the overall system. Solving Eq. (3.37b)
for u;(1+7,) and substituting the result into Eq. (3.37a) yields

24,4, Aps1—Ax
+ = |—_— +( i K —
Ut ([) lAk+1+Ak Uy (t Tk) + Ak+1+Ak Uk (’) (3388)
Subtracting Eq. (3.37b) from Eq. (3.37a) gives
_ A1~ Ay 24,
u(t4r) = — |———— uf(t—7) + |—— us (1) (3.38b)
. k AptAc) ¢ « ApsrtAgf <M

It can be seen from Eq. (3.38a) that the quantity
_ Agn = A4

re= m (3.39)
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is the amount of u, (1) that is reflected at the junction. Thus, the quantity r,
is called the reflection coefficient for the k" junction. It is easily shown that
since the areas are all positive (see Problem 3.4),

1<l (3.40)

Using this definition of r,, Egs. (3.38) can be expressed as
uda () = Q+rpuf—1) + reugi (0 (3.41a)
u(t+7) = — raud(t—r) + Q=rous, (1) . (3.41b)

Equations of this form were first used for speech synthesis by Kelly and Loch-
baum [32]. It is useful to depict these equations graphically as in Figure 3.34.
In this figure, signal flow-graph conventions® are used to represent the multipli-
cations and additions of Eqs. (3.41). Clearly, each junction of a system such as
that depicted in Fig. 3.32 can be represented by a system such as Fig. 3.34, as
long as our interest is only in values of pressure and volume velocity at the
input and output of the tubes. This is not restrictive since we are primarily
interested only in the relationship between the output of the last tube and the
input of the first tube. Thus, a 5 tube model such as Fig. 3.32, would have 5
sets of forward and backward delays and 4 junctions, each characterized by a
reflection coefficient. To complete the representation of wave propagation in
such a system we must consider boundary conditions at the "lips" and "glottis"
of the system.

3.3.2 Boundary conditions
Let us assume that there are N sections indexed from 1 to N starting at

the glottis. Then the boundary condition at the lips will relate pressure,
py(Iy.0), and volume velocity, uy(/y,f), at the output of the N tube to the

|

uplt) bELav ] uk(-m) | ualt)  [Oelar ,
o p O Uiet {1~ Tyoy)

x (1+r) ket

& "
1- -

. DELAY| U | DELAY 0 G dteryy)
uilt) Ty ult+7,) | ugalt) That

kth TUBE l (k+1)st TUBE

Fig. 3.34 Signal-flow representation of the junction between two lossiess
tubes.

“See Ref. {33] for an introduction to the use of signal flow graphs in signal processing.
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Fig. 3.35 Termination at lip end of a concatenation of lossless tubes.

radiated pressure and volume velocity. If we use the frequency-domain rela-
tions of Section 3.2.4 we obtain a relation of the form

Py(iy, @) = Zp-Unlln @) (3.42)

If we assume for the moment that Z, is real, then we obtain the time domain
relation

£L [u;(z—w) + uﬁ(t+rN)‘ - zL[u;(t—fN) - uﬁ(t+‘rN)‘ (.43)
Ay

(If Z, is complex Eq. (3.43) would be replaced by a differential equation relat-
ing py(y.1) and un(iy.1).) Solving for uy(t+7y) we obtain

Uﬁ([+7~) = - rLu,Q*(t—‘rN) (344)
where the reflection coefficient at the lips is
pc/An—Zy
- | AN 2 4
ry \pC/AN+ZL (3 5)

The output volume velocity at the lips is

UN(IN,I) uﬁ(t—‘rN) - llﬁ(f'*’TN)
A+run(t=7n) (3.46)
The effect of this termination as represented by Egs. (3.44) and (3.46) is dep-
icted in Fig. 3.35. Note that if Z is complex, it can be shown that Eq. (3.45)
remains valid, but, of course, rp will then be complex also, and it would be

necessary to replace Eq. (3.44) by its frequency-domain equivalent. Alterna-
tively, uy(t+7y) and ug(t—ry) could be related by a differential equation.

(See Problem 3.5.)
The frequency domain relations, assuming that the excitation source is

linearly separable from the vocal tract, are given in Section 3.2.7. Applying this
assumption to the pressure and volume velocity at the input to the first tube we

get

U,0,Q) = Ug(Q) — P,0,0)/Z¢ (347
Assuming again that Zg is real,
() + ui (1)
ut (1) = ui () = ug(0) = % ‘i‘-——z——‘——] (3.48)
1 G
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Fig. 3.36 Termination at glottal end of a concatenation of lossless tubes.

Solving for u " (t) we obtain (see Problem 3.6)

(1+r(;)
5 ug(t) + rgui (¢) (3.49;

uir (1) =

where the glottal reflection coefficient is

ZG—%C:
rG= —
3
Zc+ﬁ-€- (3.50)

533‘;3222031{4?fc;n be depicited as in Fig. 3.36. As in the case of the radiatior
, ¢ is complex, then Eq. (3.50) still hold: :
t . s. However, r; woul
ezirilvslzniomple)i (and Eq. (3.49) would be replaced by its frequency Gdomai:
cauivale I‘c;(r)r :1; A t)thwquld be related to ug(¢) and ui (1) by a differentia
iy . y.the impedances Z; and Z; are taken to be real for simpli
o t:searrln z):lz;?;i);e,s l:g?v r4;‘o.rnpll:<:a.te c;iasg;am representing wave propagation in ¢

in Fig. 3.37. The volume veloci ips i
defined as w;(¢) = u,(I5¢). Writi i e o e b

‘ o(I5,t). Writing the equations for this system in

quency domain, the frequency response of the system can be si,wwn to bt:.l © fre

U.(0)
V(Q) = ———
o Ug(2)

_ 0.5(1+rp) (1+rL)(1+rl)e-jn(rl+rz)
1+ rlrce—jQZ‘rl + rlrLe—j0212+ rLrGe_jnz(,l.h,z) (351)

S;: :’hrobflem 3.7;)I_QS?lveT§al. features of V,(Q) are worth pointing out. First,
e factor e in the numerator. This represents simply the tota
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Fig. 3.37 Complete flow diagram of a two-tube model.
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propagation delay in the system from glottis to lips. The system function of the
system is found by replacing jQ by sin Eq. (3.51), with the result

0.5(1+rg) A+r) (+r)e M

—s2r -52
1+ rrge "+ ryre 4 rprge

V,(s) = (3.52)

—52(ry+1y)

The poles of V,(s) are the complex resonance frequencies of the system. We
see that there will be an infinite number of poles because of the exponential
dependence upon s. Fant [1] and Flanagan {2] show that through proper choice
of section lengths and cross-sectional areas, realistic formant frequency distribu-
tions can be obtained for vowels. (Also see Problem 3.8.)

3.3.3 Relationship to digital filters

The form of V,(s) for the two tube model suggests that lossless tube
models have many properties in common with digital filters. To see this, let us
consider a system composed of N lossless tubes each of length Ax = I/N,

A, A, As Ay Asg Ag Az
-Ax
- Ax Ax fa—Ax >
Ax =
-—Ax > - Ay —>-
GLOTTIS LIPS

Fig. 3.38 Concatenation of (N=7) lossless tubes of equal length.

where [ is the overall length of the vocal tract. Such a system is depicted in
Figure 3.38 for N = 7. Wave propagation in this system can be represented as
in Fig. 3.34 with all the delays being equal to 7 = Ax/c, the time to propagate
the length of one tube. It is instructive to begin by considering the response of
the system to a unit impulse source, ug(¢) = 8(s). The impulse propagates
down the series of tubes, being partially reflected and partially propagated at the
junctions. A detailed consideration of this process will confirm that the impulse
response (i.e., the volume velocity at the lips due to an impulse at the glottis)
will be of the form

V() = agd(t—N7) + 2 ad(t—N1-2k7) (3.53)
k=1
Clearly, the soonest that an impulse can reach the output is N7 sec. Then suc-
cessive impulses due to reflections at the junctions reach the output at multiples
of 2r seconds later. The quantity 27 is the time required to propagate both
ways in one section. The system function of such a system will be of the form

88

A DELAY
—_— Vol t) s
uglt) Nr SEC ut)
(a}
Sm) DELAY
ug(nT) % SAMPLES u lnT)

(b}

Fig. 3.39 (a) Block diagram representation of lossless acoustic tube
model; (b) equivalent discrete-time system.

Va(s) — 2 ake—S(N+2k)T
k=0

= e—SN‘r kzo ake—SZ'rk (354)

The factqr e~V corresponds to the delay time required to propagate through
all N sections. The quantity

V,(s) = T ek (3.55)

k=0
i§ the system function of a linear system whose impulse response is simply
vq(t) = va(t-ifNT). This part represents the resonance properties of the system.
Figure 3.39a is a block diagram representation of the lossless tube model show-

igg( gl;a .separation of the system ¥,(¢) from the delay. The frequency response
; is

V,(Q) = T ayeiakr (3.56)
k=0
It is easily shown that
A 2 A
V(0 + % = V,(Q) (3.57)

"l"his is, of course, very reminiscent of the frequency response of a discrete-
time system. In 'fact, if the input to the system (i.e., the excitation) is bandlim-
ited to frequencies below m/(27), then we can sample the input with period

.T = 27 and filter the sampled signal with a digital filter whose impulse response
is

n)=a, n=20
=0 n<0 (3.58)

For a sampling period of T = 27, the delay of N sec corresponds to a shift of
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Fig. 3.40 (a) Signal flow graph for lossless tube model of the vocal tract;
(b) equivalent discrete-time system; (c) equivalent discrete-time system
using only whole delays in ladder part.

N/2 samples. Thus, the equivalent discrete time system for bandlimited inputs
is shown in Fig. 3.39b. Note that if Nis even, N/2 is an integer and the delay
can be implemented by simply shifting the output sequence of the first system.
If Nis odd, however, an interpolation would be required to obtain samples of
the output of Fig. 3.39a. This delay would most likely be ignored or avoided in
some way (see below) since it is of no consequence in most applications of
speech models.

The ztransform of #(n) is simply V,(s) with e*"replaced by z Thus,

V(i)=Y az* (3.59)
k=0

A signal flow graph for the equivalent discrete-time system can be obtained
from the flow graph of the analog system in an analogous way. Specifically,
each node variable in the analog system is replaced by the corresponding
sequence of samples. Also each 7 sec delay is replaced by a 1/2 sample delay,
since 7 = T/2. An example is depicted in Figure 3.40. Note in particular that

the propagation delay is represented in Fig. 3.40b by a transmittance of z71/2
The 1/2 sample delays in Fig. 3.40b imply an interpolation half-way
between sample values. Such interpolation is impossible to implement exactly.
A more desirable configuration can be obtained by observing that the structure
of Fig. 3.40b has the form of a ladder, with the delay elements only in the
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upper and lower paths. Signals propagate to the right in the upper path and to
the left in the lower path. We can see that the delay around any closed path in
Fig. 3.40b will be preserved if the delays in the lower branches are literally
moved up to the corresponding branches directly above. The overall delay
from input to output will then be wrong but this is of minor significance in
practice and theoretically can be compensated by the insertion of the correct
amount of advance (in general z%/3.” Figure 3.40c shows how this is done for
the three tube example. The advantage of this form is that difference equations
can be written for this system and these difference equations can be used itera-
tively to compute samples of the output from samples of the input.

Digital networks [33] such as Fig. 3.40c can be used to compute samples
of a synthetic speech signal from samples of an appropriate excitation signal
{32]. In such applications, the structure of the network representation deter-
mines the complexity of the operations required to compute each output sam-
ple. Each branch whose transmittance is not unity requires a multiplication.
We see that each junction requires 4 muitiplications and 2 additions. General-
izing from Fig. 3.40c, we see that 4N multiplications and 2N additions are
required to implement an N-tube model. Since multiplications often are the
most time consuming operation, it is of interest to consider other structures
(literally, other organizations of the computations) which may require fewer
multiplications. These can easily be derived by considering a typical junction as
depicted in Fig. 3.41a. The difference equations represented by this diagram
are

ut(n) = (A+r)w*(n) + ru=(n) (3.60a)
w™(n) = — rwr(n) + (A=r)u=(n) (3.60b)
win) arn —ou*(n) win o ot
l y
-r r
- -1 [ -
win) ©u(n) " (")\/u )
-0
(o) (b)
w'(n]/—_'\\; utin)
-t
w(n) o < u{n)

(c)

Fig. 3.41 (a) 4 multiplier representation of lossless tube junction; (b) 2
multiplier configuration; (¢} 1 multiplier configuration.

"Note that we could also move all the delay to the lower branches. In this case, the delay through
the system could be corrected by inserting a delay of N/2 samples.
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These equations can be written as
ut(n) = wr(n) + rw (n) + ru=(n) (3.61a)
w(n) =— rwt(n) — ru=(n) + u=(n) (3.61b)

Noting that the terms rw*(n) and ru™(n) occur in both equations, 2 out of the
4 multiplications in Egs. (3.60) can be eliminated as shown in Fig. 3.41b.
Note that this configuration requires 2 multiplications and 4 additions. Still
another implementation follows from grouping terms involving r as in

ut(n) = wt(n) + rlw*(n)+u=(n)} (3.62a)
w=(n) = u~(n) — riwt(n)+u=(n)] (3.62b)

Now, since the term r[w*(n)+u~(n)] occurs in both equations, this
configuration requires only 1 multiplication and 3 additions as shown in Fig.
3.41c. This form of the lossless tube model was first obtained by Itakura and
Saito [34]. When using the lossless tube model for speech synthesis, the choice
of computational structure depends on the speed with which multiplications and
additions can be done, and the ease of controlling the computation.

3.3.4 Transfer function of the lossless tube model

To complete our discussion of lossless tube discrete-time models for
speech production it is instructive to derive a general expression for the transfer
function in terms of the reflection coefficients. Equations of the type that we
shall derive have been obtained before by Atal and Hanauer [35], Markel and
Gray [36], and Wakita [37] in the context of linear predictive analysis of
speech. We shall return to a consideration of lossless tube models and their
relation to linear predictive analysis in Chapter 8. Our main concern at this
point is the general form of the transfer function and the variety of other
models suggested by the lossless tube model.

Let us begin by noting that we seek the transfer function
U, L(Z)
Uy
To find V(z), it is most convenient to express ¥g(z) in terms of U.(z) and
then solve for the ratio above. To do this, let us consider Figure 3.42 which

depicts a junction in the lossless tube model. The z-transform equations for
this junction are

Uk++1 (2) = (1+rk)z_l/2U:(Z) + rkUk_H (Z) (3.643)
Up(2) = — rz 'UFQ2) + (1-rpz V205, (2) (3.64b)
Solving for U(z) and U; (z) we obtain

V(z) = (3.63)

1/2 kzl/z

r
e Uk++l (Z) - m Uk~+1 (Z) (3658)

+ - -z
Ui = 73
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.Fig. }.42 Flow graph representing relationship among ztransforms at a
Jjunction.
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Equations (3.65) permit us to work backwards from the output of the lossless
tube model to obtain Ug(z) in terms of U (z).

.'1.'0 make the result more compact it is helpful to represent the boundary
condition gt the lips in the same manner as all the junctions in the system.
Toygrd this end, we define Uy, (z) to be the ztransform of the input to a
ﬁctlthus (N+1) * tube that is infinitely long so that there is no negative-going
wave in the (N+1) ¥ tube. An equivalent point of view is that the (N+1)* tube
is terminated in its characteristic impedance. In any case, Ug,(z) = U.(2)
and Uy, (2) =0. Then from Egs. (3.39) and (3.45) we see that if
Ay41 = pc/Z;, we can define ry = ry.

Now, Egs. (3.65) can be expressed in matrix form as

Uk_(Z) = Uk_+l (Z) (365b)

U, =QU;y (3.66)
where
[Uk+(2)
U= Ue(2) (3.67)
and
Z12 - rz'?
1+ Ty 1+ Ty
Q=|(_, ;-1 - (3.68)

l+fk 1+’k

By repeatedly applying Eq. (3.66), it can be easily shown that the variables at

the input to the. first tube can be expressed in terms of the variables at the out-
put by the matrix product

U=Q;-Q; “QMUn4;

N
= kI_Il Qi Uny (3.69)
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From Fig. 3.36 it can be seen that the boundary condition at the glottis can be
expressed as

2 pre) -2 ur (3.70)
Ug(2) (4o Ui T+, Ui
which can also be expressed as
2 2rg
= - U 3.71)
UG(Z) 1+ re ’ 1+ re !
Thus, since
U2 1
UN+] = l LO ] = lol UL(Z) (3.72)
we can at last write
UG(Z) - 2 - 2rG IAi Qk {(1)] (373)
UL(Z) 1 +rG 1+’G k=1

which is equal to 1/V(z).
To examine the properties of V(z), it is helpful to first express Q, as
1 L
1 + Ty 1 + Yk

Qu=1z"2_ ret 27
1 + Ty 1 + Tk
- 212, (3.74)
Thus, Eq. (3.73) can be expressed as
2r N . |1
_1 _ wpl 2 _ A i} [ ] (3.75)
V(Z) z 1+rG' 1+rG kI_Il ko

First, we note that since the elements of the matrices Q are either constapt or
proportional to 2”1, the complete matrix product will reduce to a polynomial in
the variable z~! of order N. For example it can be shown (see Problem 3.9)

that for N = 2,

1 _ 2Q+4rirz ez gz )z (3.76)
76 (+re) (A+r) (1+r)

or 1
. 0.5(1+rg) (1+r) (1+r))z : G377

1+ (r1r2+r,rG)z'l + ferZ—
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In general, it can be seen from Egs. (3.74) and (3.75) that for a lossless tube
model, the transfer function can always be expressed as
N
0.5(0+rg) I (4r )z

_ k=1
V(z) = DG) (3.78a)

where D (z) is a polynomial in z™! given by the matrix

D(z2) = [1,-rgl [_ 1 —”] <

rez7t oz}

—r:,z—l Py [(1)] (3.78b)

It can be seen from Eq. (3.78b) that D(z) will have the form
N
D(E)=1- 3 a,z7*¢ (3.79)

k=1

In other words, the transfer function of a lossless tube model has a delay
corresponding to the number of sections of the model and it has no zeros —

only poles. These poles, of course, define the resonances or formants of the
lossless tube model.

In the special case rs =1 (Z; = =), the polynomial D(z) can be found
using a recursion formula that can be derived from Eq. (3.78b). If we begin by
evaluating the matrix product from the left, we will always be multiplying a
1x2 row matrix by a 2x2 matrix until finally we multiply by the 2x1 column
vector on the right in Eq. (3.78b). The desired recursion formula becomes evi-
dent after evaluating the first few matrix products. Let us define

P1 = [1,"1] [_r}z_l -2—511] = [(1+’12_l), - (r1+Z_l) (380)

If we define
Di(z) =1+ r;z7! (3.81)
then it is easily shown that
P, =[D(2), — z7'Dy(z™)] (3.82)
Similarly, the row matrix P, is defined as

P,=P, [_,12_1 ;f%] (3.83)
If the indicated multiplication is carried out it is easily shown that
Py = [Dy(2), — 272D (z7V)] (3.84)
where
Dy(z) = Dy(z) + ryz72D\(z7Y) (3.85)
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By induction it can be shown that

= [D,(2), — 27D (z7N] (3.86)
where
Dk(Z) - Dk_l(Z) + rkZ—ka_l(Z—l) (387)
Finally, the desired polynomial D(z) is
D) =Py [b] = Dt (3.89)

Thus, we can see that it is not necessary to carry out all the matrix multiplies
but we can simply evaluate the recursion

Do(Z) =] (3893)
Dk(Z) = Dk—l(z) + ka—ka__l(Z—]) k = 1, 2, PR ,N (389b)
D(z) = Dy(2) (3.89¢)

The effectiveness of the lossless tube model can be demonstrated by com-
puting the transfer function for the area function data used to compute Figures
3.23-3.26. To do this we must decide upon the termination at the lips and the
number of sections to use. In our derivations, we have represented the radia-
tion load as a tube of area 4y, which has no reflected wave. The value of
Ay is chosen to give the desired reflection coefficient at the output. This is
the only source of loss in the system (if rg=1), and thus it is to be expected
that the choice of Ay, will control the bandwidths of the resonances of V(z).
For example, Ay, = o gives ry=r; =1, the reflection coefficient for an
acoustic short circuit. This, of course, is the completely lossless case. Usually
A w1 would be chosen to give a reflection coefficient at the lips which produces
reasonable bandwidths for the resonances. An example is presented below.

The choice of number of sections depends upon the sampling rate chosen
to represent the speech signal. Recall that the frequency response of the loss-
less tube model is periodic; and thus, the model can only approximate the vocal
tract behavior in a band of frequencies |F| < 1/(2T), where T is the sampling
period. We have seen that this requires T = 27, where 1 is the one-way propa-
gation time in a single section. If there are N sections, for a total iength, |
then 7 = //(cN). Since the order of the denominator polynomial is N, there
can be at most N/2 complex ¢onjugate poles to provide resonances in the band
|F| < 1/Q2T). Using the above value for 7 with / =17.5 cm and ¢ = 35000

cm/sec, we see that
1 1 Nc N
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Fig. 3..43 (a) Area function for 10 section lossless tube terminated with
r_eﬂecnonless section of area 30 cm?2, (b) reflection coefficients for 10 sec-
tion tube; (c) frequency response of 10 section tube; dotted curve
corresponds to conditions of (b); solid curve corresponds to short-circuit

termination. (Note area data of (a) estimated from data gi
ta
[1] for the Russian vowel /a/.) given by Fant

This implies that there will be about N/2 resonances (f

frequency for a vocal tract of total length 17.5( oéﬁént;)o? ere’l(gg? lI:Z ?{
1/T = 10000 Hz, then the baseband is 5000 Hz. This implies that N shopulé be
10. A glance at If‘lgures 3.21 through 3.26 confirm that vocal tract resonances
seem to occur with a density of about one formant per 1000 Hz. Shorter

overall vocal tract lengths wi . ;
versa, gths will have fewer resonances per kiloHertz and vice

Figure 3.43 shows an example for N = 10
. =10 and 1/T =10 kHz. Fi
3.43a shows the area function data of Fig. 3.23 sampled to give a 10 ltgllll;:
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approximation for the vowel /a/. Figure 3.43b shows the resulting set of 10
reflection coefficients for 4,; = 30 cm? This gives a reflection coefficient at
the lips of ry = 0.714. Note that the largest reflection coeflicients occur where
the relative change in area is greatest. Figure 3.43c shows the frequency
response curves for ry =1 and ry = .714 (dotted curve). A comparison of the
dotted curve of Figure 3.43¢ to Fig. 3.23 confirms that with appropriate loss at
the lip boundary, the frequency response of the lossless tube model is very
much like that of the more detailed model.

3.4 Digital Models for Speech Signals

We have seen in Section 3.2 that it is possible to derive rather detailed
mathematical representations of the acoustics of speech production. Our pur-
pose in surveying this theory is to call attention to the basic features of the
speech signal and to show how these features are related to the physics of
speech production. We have seen that sound is generated in 3 ways, and that
each mode results in a distinctive type of output. We have also seen that the
vocal tract imposes its resonances upon the excitation so as to produce the
different sounds of speech. This is the essence of what we have learned so far.

An important idea should now be emerging from this lengthy discussion
of models. It is simply that a valid approach to representation of speech signals
is in terms of a "terminal analog" model such as depicted before in Fig. 3.31
that is, a linear system whose output has the desired speech-like properties
when controlled by a set of parameters that are somehow related to the process
of speech production. The model is thus equivalent to the physical model at its
terminals (output) but its internal structure does not mimic the physics of
speech production. In particular, we are interested in discrete-time terminal
analog models for representing sampled speech signals.

To produce a speech-like signal the mode of excitation and the resonance
properties of the linear system must change with time. The nature of this time
variation can be seen in Section 3.1. In particular, waveform plots such as Fig.
3.3a show that the properties of the speech signal change relatively slowly with
time. For many speech sounds it is reasonable to assume that the general pro-
perties of the excitation and vocal tract remain fixed for periods of 10-20 msec.
Thus, a terminal analog model involves a slowly time-varying linear system
excited by an excitation signal whose basic nature changes from quasi-periodic
pulses for voiced speech to random noise for unvoiced speech.

The lossless tube discrete-time model of the previous section serves as an
example of what we mean. The essential features of that model are depicted in
Fig. 3.44a. Recall that the vocal tract system was characterized by a set of areas
or, equivalently, reflection coefficients. Systems of the form of Fig. 3.40c can
thus be used to compute the speech output given an appropriate input. We
showed that the relationship between the input and output could be represented
by a transfer function, ¥(z), of the form
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Fig. 3.44 (a) Block diagram representation of the lossless tube model;
(b) terminal analog model.

V() = —ZF (3.91)
1- 2 akZ_k
k=1

where G and {«,) depend upon the area function. (Note that the fixed delay in
Eq._(3.78a) has been dropped.) Insofar as the output is concerned, any system
h.avmg' this transfer function will produce the same output in response to a
given mpu.t.. (This is not strictly true for time-varying systems, but differences
can be minimized by careful implementation.) Thus, discrete-time terminal
a.nalog models take the general form of Fig. 3.44b. This leads to a considera-
tion of alternative implementations of the vocal tract filter.

. In addition to ttge vocal tract response a complete terminal analog model
includes a rqpresentatlon of the changing excitation function and the effects of
sound radiation at the lips. In the remainder of this section we shall examine

each of the model components separately, and then combine them into a com-
plete model.

3.4.1 Vocal tract

The resonances (formants) of speech correspond to the poles of the
transfer function ¥(z). An all-pole model is a very good representation of
vocal tract effects for a majority of speech sounds; however, the acoustic theory
tells us that nasals and fricatives require both resonances and anti-resonances
(poles and zeros). In these cases, we may include zeros in the transfer function
or we may reason with Atal [35] that effect of a zero of the transfer function

can be achieved by including more poles. (See Problem 3.10.) In most cases
this approach is to be preferred.

Since the coeﬁicignts of the denominator of V(z) in Eq. (3.91) are real,
the 'roots of 'the denominator polynomial will be either real or occur in complex
conjugate pairs. A typical complex resonant frequency of the vocal tract is

SSp =— o, + j2nF, (3.92)

The corresponding complex conjugate poles in the discrete-time representation
would be
zk,z:‘ - e—a'k Te +j2nF, T

-ay

= e_“"Tcos(Z‘rrFkT) + je Tsin(27rFkT) (3.93)
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Fig. 3.45 (a) splane; and (b) zplane representations of a vocal tract
resonance.

The bandwidth of the vocal tract resonance is approximately 20, and the center
frequency is 27 F [26). In the z-plane, the radius from the origin to the pole
determines the bandwidth, i.e.,

|zl = e (3.943)
and the z-plane angle is
6,=2nF,T (3.94b)

Thus if the denominator of V(z) is factored, the corresponding analog formant
frequencies and bandwidths can be found using Egs. (3.94). As shown in Fig-
ure 3.45 the complex natural frequencies of the human vocal tract are all in the
left half of the s-plane since it is a stable system. Thus, oy > 0, and therefore
lz ] < 1:ie., all of the corresponding poles of the discrete-time model must be
inside the unit circle as required for stability. Figure 3.45 depicts typical com-
plex resonant frequencies in both the s-plane and the z-plane.

In Section 3.3 we showed how a lossless tube model leads to a transfer
function of the form of Eq. (3.91). It can be shown [35,36] that as long as the
areas of the tube model are positive, all the poles of the corresponding V()
will be inside the unit.circle. Conversely, it can be shown that given a transfer
function, V(z), as in Ea. (3.91), a lossless tube model can be found [35,36].
Thus, one way to implement a given transfer function is to use a ladder struc-
ture as in Fig. 3.40c, possibly incorporating one of the junction forms of Fig.
3.41. Another approach is to use one of the standard digital filter implementa-
tion structures given in Chapter 2. For example we could use a direct form
implementation of V(z) as depicted in Fig. 3.46a. Alternatively, we can
represent V(z) as a cascade of second order systems (resonators); i.e.,

V() =11 Vi@ (3.95)

k=1
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where M is the largest integer in ((N+1)/2), and

Vk(Z) - (1'—2|Zk|COS(2‘n’FkT) + |Zk|2) (3.96)
12|z lcosQma F Dzt + |2, %273 '

The numerator of ¥, (z) is chosen so that the i i
as the lossless tpbe model. Note that at zero fr‘;rc;:il:xcctyv?zu:alv)e tll/le(ls;lr:elga:\
ca'sca_nde .model is depicted in Fig. 3.46b. Problem 3.11 shows 'a nl:)vel w. ; f
elnmlpatlng multiplications in cascade models. Still another approach to i;);al:-
rﬁentmg the system V(z) is to make a partial fraction expansion of ¥ (z) and
thus obtain a parallel form model. This approach is explored in Problem 3.12.

siderelg is inte:esting (;o note that cascade and parallel models were first con-
as analog models. In this context there is a seri imitati i
ious limitation, since
analog §<;.100nd order systgms (resonators) have frequency responses that die
:::;ayu\ivn frequency. Thx; led Fant (1] to derive "higher pole correction" fac-
1o 1 fat were cascaded with the analog formant resonators to achieve proper
Glg]d reguency s_pectral balance. When digital simulations began to be used
inﬁereilnt pcl}r?::ixilc?irtylsfll observedhthat digital resonators had, by virtue of thei;
, the correct high frequency behavior. We h.
already seen this in the context el Thee ) e
1 th of the lossless tube model. Thus no "hi
pole correction” network is required in digital simulations. higher

o~
ugtn) )
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ugln) . N 3|.( )
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2
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Fig. 3.46 (@) Dirgct form implementation of all-pole transfer function;
(b) cascade implementation of all-pole transfer .

functi
(Gy=1- 2|Zk|cosek + |2k|2). unction
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PARAMETERS
VOCAL TRACT RADIATION
—"_)'_’ MODEL MODEL [—3
ugln Viz) udn) Riz} pn)

Fig. 3.47 Terminal analog model including radiation effects.

3.4.2 Radiation

So far we have considered the transfer function V(z) which relates
volume velocity at the source to volume velocity at the lips. If we wish to
obtain a model for pressure at the lips (as is usually the case), then the effects
of radiation must be included. We saw in Section 3.2.4 that in the analog
model, the pressure and volume velocity are related by Egs. (3.29). We desire
a similar z-transform relation of the form

P.(z) = R(2)U.(2) (3.97)

It can be seen from the discussion of Section 3.2.4 and from Fig. 3.20 that pres-
sure is related to volume velocity by a highpass filtering operation. In fact, at
low frequencies it can be argued that the pressure is approximatety the deriva-
tive of the volume velocity. Thus, to obtain a discrete-time representation of
this relationship we must use a digitization technique that avoids aliasing. For
example, by using the bilinear transform method of digital filter design [33] it
can be shown (see Problem 3.13) that a reasonable approximation to the radia-
tion effects is obtained with :

R(z) = Ro(1-2z7H (3.98)

i.e., a first backward difference. (A more accurate approximation is also con-
sidered in Problem 3.13) The crude "differentiation” effect of the first
difference is consistent with the approximate differentiation at low frequencies
that is commonly assumed.

This radiation "load" can be cascaded with the vocal tract model as in Fig.
3.47. V{z) can be implemented in any convenient way and the required
parameters will, of course, be appropriate for the chosen configuration; e.g.,
area function for the lossiess tube model or formant frequencies and
bandwidths for the cascade model.

3.4.3 Excitation

To complete our terminal analog model, we must discuss means for gen-
erating an appropriate input to the vocal tract radiation system. Recalling that
the majority of speech sounds can be classed as either voiced or voiceless, we
see that in general terms what is required is a source that can produce either a
quasi-periodic pulse waveform or a random noise waveform.
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Ip the case of voiced speech, the excitation waveform must appear some-
what hl'<e the upper waveform in Fig. 3.30. A convenient way to represent th
generation of the glottal wave is shown in Fig. 3.48. The impulse train gener:
tor produces a sequence of unit impulses which are spaced by the desired fun-
damental period. This signal in turn excites a linear system whose impulse
response g(n) has the desired glottal wave shape. A gain control, A ’
the intensity of the voiced excitation. + A controls

The choice of the form of g(n) is iti

) . probably not critical as long as its
Fguner transform has the right properties. Rosenberg [39], in a stuc;lyg of the
emect of glottal pulse shape on speech quality, found that the natural glottal
pulse waveform could be replaced by a synthetic pulse waveform of the form

g(n) = % (1 —cos(mn/N)] 0< n<N,.

=COS(7T(I1—N1)/2N2) N1<H <N1+N2

=0 otherwise (3.99)
PITCH PERIOD
IMPULSE GLOTTAL
TRAIN FULSE
AMPLITUDE
CONTROL
Ay

Fig. 3.48 Generation of the excitation signal for voiced speech.

’;‘};195 v\;lave shape is very similar in appearance to the pulses in Fig. 3.30. Figure
v'l S ofij the pulse waveform and its Fourier transform magnitude for typical
alues of Ny and N, It can be seen that, as would be expected, the effect of

the glottal pulse in the fi PR .
effect. requency domain is to introduce a lowpass filtering

Since g(n) in Eq. (3:99) has finite length, its ztransform, G(z), has only
Zeros. An gll-pole model is often more desirable. Good success has ’also been
achieved using a two-pole model for G(z) [36].

.For. voiceless sounds the excitation model is much simpler. All that is
;ti:tqmrgd t:s a source of rapdqm noise and a gain parameter to control the inten-
y of the unvoiced excitation. For discrete-time models, a random number

generator provides a source of flat-spectru i ili i
' noise. The probability distributi
of the noise samples does not appear to bergpitical. Y toution

3.4.4 The complete model

B lfutti.ng all the ingredien}s together we obtain the model of Figure 3.50
y switching between the voiced and unvoiced excitation generators we car;
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Fig. 3.49 (4) Rosenberg approximation to glottal pulse; (b) correspond-
ing Fourier transform.

model the changing mode of excitation. The vocal tract can be modeIe:d in a
wide variety of ways as we have discussed. In some cases it is convenient to
combine the glottal pulse and radiation models into a smg}e system. In fact, we
shall see that in the case of linear prediptive analysis it is convenient to com-
bine the glottal pulse, radiation and vocal tract components all together and
represent them as a single transfer function

H(Gz) =G@VER(QE) (3.100)
of the all-pole type. In other words Figure 3.50 is only a general representa-
tion. There is much latitude for modification.

A natural question at this point concerns the ljmitatioqs of sgch a rpodel.
Certainly the model is far from the partial different'lal equations with w}ngh we
began. Fortunately none of the deficiencies gf this {nqdel severely limits its
applicability. First, there is the question of time variation of the parameters.
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In continuant sounds such as vowels, the parameters change very slowly and
the model works very well. With transient sounds such as stops, the model is
not as good but still adequate. It should be emphasized that our use of transfer
functions and frequency response functions implicitly assumes that we can
represent the speech signal on a "short-time" basis. That is, the parameters of
the model are assumed to be constant over time intervals typically 10-20 msec
long. The transfer function V(z), then, really serves to define the structure of
a model whose parameters vary slowly with time. We shall repeatedly invoke
this principle of quasi-stationarity in subsequent chapters. A second limitation
is the lack of provision for zeros as required theoretically for nasals and frica-
tives. Thisis definitely a limitation for nasals, but not too severe for fricatives.
Zeros can be included in the mode! if desired. Third, the simple dichotomy of
voiced-unvoiced excitation is inadequate for voiced fricatives. Simply adding
the voiced and unvoiced excitations is inadequate since frication is correlated
with the peaks of the glottal flow. A more sophisticated model for voiced frica-
tives has been developed [40] and can be employed when needed. Finally, a
relatively minor concern is that the model of Fig. 3.50 requires that the glottal
pulses be spaced by an integer multiple of the sampling period, T. Winham and
Steiglitz [41] have considered ways of eliminating this limitation in situations
requiring precise pitch control.

PITCH PERIOD
Ay
\MPULSE GLOTTAL
iy PULSE
GENERATOR M&EEL VOCAL TRACT
PARAMETERS
VOICED/ VOCAL RADIATION
UNVOICED  N——>I{TRACT MODEL MODEL |——
SWITCH ugln) viz) R{z) pun
RANDOM
NOISE
GENERATOR
Ay

Fig. 3.50 General discrete-time model for speech production.

3.5 Summary

This chapter has focused upon three main areas: the sounds of speech, the phy-
sics of speech production, and discrete-time models for speech production. Our
review of acoustic phonetics and the acoustic theory of speech production has
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been lengthy but far from complete. Our purpose has been to provide adequate
knowledge about the general properties of speech signals so as to motivate and
suggest models that are useful for speech processing.

The models discussed in Sections 3.3 and 3.4 will be the basis for our dis-
cussion in the remainder of this book. We shall think of these models in two
ways. One point of view is called speech analysis; the other is called speech
synthesis. In speech analysis we are interested in techniques for estimating the
parameters of the model from a natural speech signal that is assumed to be the
output of the model. In speech synthesis, we wish to use the model to create a
synthetic speech signal by controlling the model with suitable parameters.
These two points of view will become intermingled in many cases and will arise
in many problem areas. Underlying all our subsequent discussion will be
models of the type discussed in this chapter. Having reviewed the subject of
digital signal processing in Chapter 3 and the acoustic theory of speech produc-
tion here, we are now ready to begin to see how digital signal processing tech-
niques can be applied in processing speech signals.
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PROBLEMS

. f m p I 3 ws a 500 msec sectio 100 eC lllle
3 l Il]e wavelor l()t ()1 Flg. .1 ShO

(a)
)

Indicate the regions of voic i

ed speech, unvoiced i
(background noise). specch, and silence
For. the vpiced regions estimate the pitch period on a period-by-
period basis and plot the pitch period versus time for this section of

SpeeCh. (Let the perlod be lIldlcaled as zero dullﬂ UIWOlced alld
slleﬂce inter Vals-) g

100

200 -
300

300
400

—
TIME {mSEC)

Fig. P3.1

3.2 The waveform plot of Fig. P3.2 i " "
line of the plot correspondgs tlc?l%)ol smg(:c ?fetlr,eogzjgngimle. Note that each
(a) Indicate the boundaries between the phonemeé- i.e. give the ti
conjesponding to the boundaries /c/a/tt/le/. T © mes
(b) Indicate the point where the voice pitch frequency is (i) the highest;

and (ll) the lOWCSt. w hat are the applOXll!late PltC]l flequeIlClCS at
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Fig. P3.2

(¢) Is the speaker most probably a male, female, or a child? How do
you know? '

3.3 By substitution, show that Egs. (3.3) are solutions to the partial

differential equations of Egs. 3.2).
3.4 Note that the reflection coefficients for t.he juncti'on of two lossless acous-

. tic tubes of aréas A, and A4 can be written as either
At _
Ay

k+1

ry =
+1
K
or '
Ay

Agy

1-

ry = Ak

A

1+

Show that since both 4, and A, are positive,
-1 <!
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3.5 In determining the effect of the radiation load termination on a lossless
tube model, it was assumed that Z; was real and constant. A more realis-
tic model is given by Eq. (3.29b).

(a) Beginning with the boundary condition

PN(INv Q) - ZL'UN(IN' 0)

find a relation between the Fourier transforms of uy(t+75) and
ud (t=1x).

(b) From the frequency domain relation found in (a) and Eq. (3.29b),
show that uy (r+7y) and ug (¢t—1y) satisfy the ordinary differential

equation
duy (t+7y)
pe N N pe -
LR+ Ay dt — + Ay R,MN(I+TN)
dugf (t—1y) ¢
=] |R - REy N TN PC (i
r[ r AN dr AN RruN(t TN)

3.6 By substitution of Eq. (3.50) into Eq. (3.49), show that Eq. (3.48) and
Eq. (3.49) are equivalent.

3.7 Consider the two-tube model of Fig. 3.37. Write the frequency domain
equations for this model and show that the transfer function between the
input and output volume velocities is given by Eq. (3.51).

3.8 Consider an ideal lossless tube model for the production of vowels con-
sisting of 2 sections as shown in Fig. P3.8. Assume that the terminations
at the glottis and lips are completely lossless. For the above conditions
the system function of the lossless tube model will be obtained from Eq.
(3.52) by substituting r; = r, = 1 and

Ay — A,

T v A4

(a) Show that the poles of the system are on the j axis and are
located at values of ) satisfying the equations

cos Q(r+73) + ricos Q(r,—1) =0

—_ u (1)

i-.—h—»m— lz

Fig. P3.8
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()

or equivalently

A tan (Q27,) = cot (Q7))
Ay

where 7, = l/c, T, = ly/¢, and cis the velocity of sound.

The values of Q that satisfy the equations derived in (a) are the for-
mant frequencies of the lossless tube model. By judicious choice of
the parameters I}, [, A1, and A, we can approximate the vocal tract
configurations of vowels, and by solving the above equations obtain
the formant frequencies for the model. The following table gives
parameters for several vowel configurations [2). Solve for the for-
mant frequencies for each case. (Note that the nonlinear equations
must be solved graphically or iteratively.) Use ¢ = 35000 cm/sec.

Vowel Il Al 12 A 2

/il 9cm | 8ecm? | 6cm | 1cm?
ae/ 4cm | 1em? | 13cm | 8 cm?
lal 9cm | 1em? | 8cm | 7 cm?
/A/ 17cm | 6 cm? 0| 6cm?

3.9 By substituting the appropriate matrices Q, and Qz into Eq. (3.75) show
that the transfer function of a two-tube discrete-time vocal tract model is
given by Eq. (3.77).

3.10 Show thatif jal < 1,

lm 1

1-az

and thus, that a zero can be approximated as closely as desired by multi-
ple poles.

3.11 The transfer function of a digital formant resonator is of the form

1 = 2|z|cos 8, + |z |?
1 - 2|z lcos 0,z7" + |z %272

V(z) =

where |z,| = ¢ "% and 8, = 27 F,T.

()
(b)
(©)
@

Plot the locations of the poles of V,(z) in the zplane. Also plot the
corresponding analog poles in the s-plane.

Write the difference equation relating the output, y, (n), of ¥,(z) to
its input, x,(n).

Draw a digital network implementation of the digital formant net-
work with three multipliers.

By rearranging the terms in the difference equation obtained in (b),
draw a digital network implementation of the digital formant net-
work that only requires two multiplications.
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3.12 Consider the system function for a discrete-time vocal tract model

(@)

(b)

©
(d

by

V(z) = "'N—G——
I Q-zzH

k=1
Show that ¥ (z) can be expressed as the partial-fraction expansion
G G*
k 1 + k
1- zk*z_

M
Viz) =3

k=t |1 =z~

1

where M is the largest integer contained in (N+1)/2, and it is
assumed that all the poles of V(z) are complex. Give an expression
for the G,’s in the above expression.

Combine terms in the above partial fraction expansion to show that

M —- -1
V(z) - 2 Bk Ckz
: k=1 1 =2z |cos 8,271 + |z, |22

where z, = |zk|e’0". Give expressions for B, and C, in terms of G

;1)nd z,(.tth;is expression is the parallel form representation of ¥ (z). *
raw the digital network diagram f i

o 11 gital networ g or the parallel form implementa-

For a given all-pole system function V(z) which implementation

would require the most multiplications — the parallel form or the

cascade form as suggested in Problem 3.11?

3.13 The relationship between pressure and volume velocity at the lips is given

P(ls) = Z,(s)U(is)

where P(ls) and U(ls) are the Laplace transforms of p(/¢) and u(lr)

respectively, and

where

SR, L
Z, () = —L
L3S R, + sL,
_ 128 8a
" 9g? and L, Ine

and c is the velocity of sound and a is the radius of the lip opening. In a

dlSCl‘ele-tmle "lodel we deSlle a COIlCSpOl’ldlﬂ lelat O p
>
( ( )) g 1 nShl Of the 101m

PL(Z) - R(Z) U/_(Z)

where P, (z) and U, (z) are ztransforms of
: p.(n) and u; (n), the sam-
pled versions of the bandlimited pressure and volume velocLity.
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One approach to obtaining R (z) is to use the bilinear transformation, {33]
ie.,

R =2,
T

l—z"]

1+z71

(a) For Z,(s) as given above determine R (2).

(b) Write the corresponding difference equation that relates p.(n) and
1273 (n)

() Give the locations of the pole and zero of R ().

(d) If c = 35000 cm/sec, T = 107* sec™!, and 0.5cm < a < 1.3 cm,
what is the range of pole values?

(e) A simple approximation to R{z) obtained above is obtained by
neglecting the pole; i.e.,

R(z) = Ro(1-27YH)
For a=1 cm and T= 10* find Ry such that
R(-D) = Z,(=) = R(-D). | n
(f) Sketch the frequency responses Z.(£2), R (e/ 07 and R(e/®N) asa
function of  fora =1 cmand T=10"*for 0 < O < x/T.

3.14 A simple approximate model for a glottal pulse is given in Fig. P3.14a.
(a) Find the ztransform, G,(z), of the above sequence. (Hint: Note
that g;(n) can be expressed as the convolution of the sequence

pn)=1 0K nEN-1

=0  otherwise
with itself).

gytn) 9,0
N-1 ,
N ,l\ ,
s \ /
/TI” “h\ 4’””
ol N 2N N ol N-1 n
(a} (b)
Fig. P3.14

(b) Plot the poles and zeros of G,(z) in the zplane for N = 10.

(¢) Sketch the magnitude of the Fourier transform of g,(n) as a func-
tion of w.

Now consider the glottal pulse model g2(n) as given in Fig. P3.14b.

(d) Show that the ztransform, G,(z), is given by

N=2
G2 =z1F ()"
n=0

= MY+ (=D
(1-z"1H?
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(Hint: Use the fact that the ~transform of nx(») is —z dX(z) )
dz

(&) Sh?w.that in .general'Gz(z) must have at least one zero outside the
unit circle. Find the zeros of G,(z) for N = 4.

3.15 A commonly used approximation to the glottal pulse is

gn)=na" nz20
= n<0
(a) Find the ztransform of g(n).
(b) Sketch the Fourier transform, G (e/®), as a function of
(c) Show how a should be chosen so that .

20 log | G (¢/%)| — 20 log,o| G (e/™)| = 60 dB.
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4

Time-Domain Methods
for Speech Processing

4.0 Introduction

- . . . in
We have reviewed the most important digital signal proce_ssmg.tecl'nrlrllgu:i:;ullil
Chapter 2, and we discussed the properties of the speec}_x _31gna.l in lso s
in Cphapte; 3. We are now ready to begin to see how digital signal pr
i h signals.
methods can be applied to speec! . ' . r
Our goal in processing the speech signal. is to ob'tam a more cor:;/:;.lnlseir;l :1
more useful representation of the informatxpn f:arrxed by the sptg o infor:
The required precisién of this representation is dictated by the par é(;ses nfor
mation in the speech signal that is to be preserved' or, in some ma; made
more prominent. For example, the purpose of -the digital grocessu;?esponds o
' inati ticular waveform co
ili the determination of whether a par v ] ‘
izzé:;t?)r not. In a similar but somewhat more com‘pllcate;:dt k\;em.,g ::1 ri!;aio\;v;:g
: i i hether a section of the si
ake a 3-way classification as to whet ' o
;(:)eg::h unvoiced speech, or silence (bac?(ground.nmse). Iln suctlllleczs; s, ¢
represe:ntation which discards "irrelevant” information andd;;tz;ci:f:d oo
i i i be preferred over a more en
features clearly in evidence is to . : e de e
i i tion. Other situations R
i at retains all the inherent informa ' ita
:lr(;is:rl:ission) may require the most accurate representatlon of the speech sig
that can be obtained with a given set of constraints. ' . "
In this chapter we shall be interested in a set of processing tgchr;nq;x;:l bat
are reasonably termed time-domain methods. By this we _mealnds_lm;:ly ot ne
processing methods involve the waveform of the speech signal directly.
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in contrast, for example, to the techniques described in Chapters 6-8 which we
classify as frequency-domain methods since they involve (either exnlicitly or
implicitly) some form of spectrum representation. !

Some examples of representations of the speech signal in terms of time-
domain measurements include average zero-crossing rate, energy, and the auto-
correlation function. Such representations are attractive because the required
digital processing is very simple to implement, and, in spite of this simplicity,
the resulting representations provide a useful basis for estimating important
features of the speech signal.

We shall begin this chapter by presenting a general framework for discuss-
ing time-domain processing techniques. Several important methods will be dis-
cussed as examples of the general time-domain representation and processing
approach. Finally we shall discuss a number of schemes for estimating features
of the speech waveform such as voiced/unvoiced classification, pitch, and
intensity from the time-domain representations. Many more examples exist
than can be covered here. Our purpose, however, is to show how time-domain
representations can be used effectively in speech processing — not to provide an
exhaustive survey of such applications.

4.1 Time-Dependent Processing of Speech

A sequence of samples (8000 samples/sec) representing a typical speech signal
is shown in Figure 4.1, It is evident from this figure that the properties of the
speech signal change with time. For example, the excitation changes between
voiced and unvoiced speech, there is significant variation in the peak amplitude
of the signal, and there is considerable variation of fundamental frequency
within voiced regions. The fact that these variations are so evident in a
waveform plot suggests that simple time-domain processing techniques should
be capable of providing useful representations of such signal features as inten-

sity, excitation mode, pitch, and possibly even vocal tract parameters such as
formant frequencies.

The underlying assumption in most speech processing schemes is that the
properties of the speech signal change relatively slowly with time. This assump-
tion leads to a variety of "short-time" processing methods in which short seg-
meants of the speech signal are isolated and processed as if they were short seg-
ments from a sustained sound with fixed properties. This is repeated (usually
periodically) as often as desired. Often these short segments, which are some-
times called analysis JSrames, overlap one another. The result of the processing

‘on each frame may be either a single number, or a set of numbers. Therefore,

1t should be pointed out that in all c
limited and sampled at least at the Nyquist rate. Further




H_______ 256 SAMPLES ————————»

Fig. 4.1 Samples of a typical speech waveform (8 kHz sampling rate).

such processing produces a new time-dependent sequence which can serve as a
representation of the speech signal. ‘ '

Most of the short-time processing techniques tha}t we shall discuss in this
chapter, as well as the short-time Fourier representation of Chapter 6, can be
represented mathematically in the form

0,= Y Tlx(m)w(n—m) 4.1)

1 =—00
The speech signal (possibly after linear filtering to.isolate a desi'red frfaquency
band) is subjected to a transformation, Tt 1, wtglch may be either linear o;
nonlinear, and which may depend upon some aQ;u;table parafneter or set o
parameters. The resulting sequence is then mu_ltlphed by a window seguetr‘lce
positioned at a time corresponding to sample index n. The product is then
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summed over all nonzero values. Usually the window sequence will be of finite
duration, although this is not always the case. The values Q, are therefore a
sequence of local weighted average values of the sequence T[x(m)].

The short-time energy of a signal is a simple example which illustrates the
ideas discussed above. The energy of a discrete-time signal is defined as

E= Y x¥m) @.2)

Such a quantity has little meaning or utility for speech since it gives little infor-

mation about the time-dependent properties of the speech signal. A simple
definition of the short-time energy is

E,= Y x¥m) (4.3)
m=n—N+1

That is, the short-time energy at sample » is simply the sum of squares of the
N samples n — N + 1 through n. In terms of our general expression, Eq.
(4.1), the operation T[ 1 is simply the square, and

wn)=1 0<nN-1
=0  otherwise 4.9

Figure 4.2 depicts the computation of the short-time energy sequence. Note
that the window literally slides along the sequence of squared values (in gen-
eral, T[x(m)]) selecting the interval to be involved in the computation.

We shall discuss the short-time energy of speech in more detail in the
next section, but first we shall point out an important feature of the general
expression, Eq. (4.1). It can be seen that Eq. (4.1) is exactly in the form of a
discrete convolution of the window, w(n), with the sequence, T[x(n)]. Thus,
Q, can be interpreted as the output of a linear time-invariant system with
impulse response, 4 (n) = w(n).? This is depicted in the block diagram of Fig.

/x(m)

nﬂ A/\ l}\f\ A AN\/\ Am
TRV R T R
LT //lem)
.

Fig. 4.2 Iustration of the computation of short-time energy.

n-N+ n

Note that we have used a subscript notation for the values of the short-time representation, i.e.

the output of the filter. Although this may at first be confusing, it should not cause any great
difficulty and in later definitions it will lead to clearer notation.
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Fig. 4.3 General representation of the short-time analysis principle.

is vi i i e clear in the remainder of
importance of this viewpoint will becom: : i
‘t‘h?s c'tl;::tel:n :nd in Chapter 6 where we discuss several different representations

that are of the form of Eq. 4.1).

4.2 Short-Time Energy and Average Magnitude

We have observed that the amplitude of the speech signall Yar;:i ear;;ﬁ;ecr::ﬁgl
ith ti i titude of unvoiced segments 1S
with time. In particular, the amp ‘ re e
i i ts. The short-time energy
than the amplitude of voiced segments. f
ls(;::;h signal provides a convenient representatl.on that reflects these amplitude
variations. In general, we can define the short-time energy as

E,= % l(mwin-ml? @.5)
This expression can be written as
E,= 3 x¥m)-h(n—m) 4.6)
where
h(n) = win) @7

i icted in Fig. 4.4a. That is, the sig-
i 4.6) can thus be interpreted as deplcte .
E:Fit;?r?)(is filtered by a linear filter with impulse response h(n) as given by

Eq. (4.7 . .
The choice of the impulse response, h(n), or eq:u:{alent’lgot:eee zg:?(:;vé
i -ti representation. :
ines the nature of the short nme energy : e
2?0?2? of window affects the short-time energy, let us observe that if h(n)

2 h(n)
x(n) %2 (n) j—’zn

(o)

win}
M
x(n) n bxml - "

(b)

Fig. 4.4 Block diagram representation of (a) the short-time energy; and
(b) the short-time average magnitude.
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Eq. (4.6) were very long, and of constant amplitude, E, would change very lit-
tle with time. Such a window would be the equivalent of a very narrowband
lowpass filter. Clearly what is desired is some lowpass filtering but not so much
that the output is constant; i.e., we want the short-time energy to reflect the
amplitude variations of the speech signal. Thus, we encounter for the first time
a conflict that will arise repeatedly in the study of short-time representations of
speech signals. That is, we wish to have a short duration window (impulse
response) to be responsive to rapid amplitude changes, but a window that is too
short will not provide sufficient averaging to produce a smooth energy function.

The effect of the window on the time-dependent energy representation

can be illustrated by discussing the properties of two representative windows,
i.e., the rectangular window
h(n) =1 0K ng<N-1

=0  otherwise 4.8)

*and the Hamming window

h(n) = 0.54 ~ 0.46 cosQ2mwn/(N-1)), 0<n << N-1

=0 otherwise 4.9)

¥ The rectangular window, as we have seen in Eq. (4.3), corresponds to applying
equal weight to all the samples in the interval (n—N+1) to n. The frequency

response of a rectangular window (impulse response given by Eq. (4.8)) is

 easily shown to be (see Problem 4.1)

H(e/T) = E%)Q—A;T/‘/T? o= iNT(N-1)/2 (4.10)

¥ The log magnitude of this response is shown in Fig. 4.5a for a 51 sample win-

¥ dow (N =51). Note that the first zero of Eq. (4.10) occurs at analog fre-
 quency

F=FJ/N 4.11)

F where Fs;=1/T is the sampling frequency. This is nominally the cutoff fre-
. quency of the lowpass filter corresponding to the rectangular window. The fre-
? quency response of a 51 point Hamming window is shown in Fig. 4.5b. It can

‘be seen that the bandwidth of the Hamming window is about twice the

tbandwidth of a rectangular window of the same length. It is also clear that the

tHamming window gives much greater attenuation outside the passband than the
Fcomparable rectangular window. The attenuation of both these windows is
tessentially independent of the window duration. Thus, increasing the length,
BN, simply decreases the bandwidth.? If N is too small, i.e., on the order of a
itch period or less, E, will fluctuate very rapidly depending on exact details of
fthe waveform. If N is too large, i.e., on the order of several pitch periods, E,

;A detailed discussion of the properties of windows is not required for the short-time representa-
tions of this chapter. Further discussion is given in Chapter 6.
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Fig. 4.5 Fourier transform of (a) rectangular window; (b) Hamming
window.

will change very slowly and thus will not adequately reflect the changing proper-
ties of the speech signal. Unfortunately this implies that no single value of Nis
entirely satisfactory because the duration of a pitch period varies from about 20
samples (at a 10 kHz sampling rate) for a high pitch female or a child, up o
250 samples for a very low pitch male. With these shortcomings in mind,
suitable practical choice for N is on the order of 100-200 for a 10 kHz sampling
rate (i.e., 10-20 msec duration).

Figures 4.6 and 4.7 show the effects of varying the duration of the win-
dow (for the rectangular and Hamming windows, respectively) on the energy
computation for the utterance /What, she said/ spoken by a male speaker. Itis
readily seen that as N increases, the energy becomes smoother for both win-
dows.

The major significance of E, is that it provides a basis for distinguishin
voiced speech segments from unvoiced speech segments. As can be seen it
Figs. 4.6 and 4.7, the values of E, for the unvoiced segments are significantly
smaller than for voiced segments. The energy function can also be used to
locate approximately the time at which voiced speech becomes unvoiced, and

vice versa, and, for very high quality speech (high signal-to-noise ratio), the}

energy can be used to distinguish speech from silence.
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_ Ope_difﬁculty Wi.t!l the short-time energy function as defined by Eq. (4.6)

is thgt it is very sensitive to large signal levels (since they enter the computa-

:t(i)n m.Eq. ((4).6) :s a sqluare), thereby emphasizing large sample-to-sample vari-
ons in x(n). simple way of alleviating this problem is to defi

magnitude function P define an average

oo

M,= ¥ Ix(m)|w(n—m)

M=-—oo

(4.12)

where the weighted sum of absolute values of the signal is computed instead of
thq sum of squares. Figure 4.4b shows how Eq. (4.12) can be implemented as
a llpear filtering operation on |x(n)|. Note that a simplification in arithmetic is
achieved by eliminating the squaring operation.

Figures 4.8 and 4.9 show average magnitude plots corresponding to Figs
4.6 and 4.7. The differences are particularly noticeable in the unvoiced regions.
For the'average magnitude computation of Eq. (4.12), the dynamic range (rati(;
of maximum to minimum) is approximately the square root of the dynamic
range for the standard energy computation. Thus the differences in level

b;tween voiced and unvoiced regions are not as pronounced as for the short-
time energy.
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IFiu. :‘.6 Short-time energy functions for rectangular windows of various
engths.
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Fig. 4.7 Short-time energy functions for Hamming windows of various
lengths.

Since the bandwidth of both the energy and average magnitude function is
just that of the lowpass filter, it is evident that these functions need not be
sampled as frequently as the speech signal. For example, for a window of dura-
tion 20 msec, a sampling rate of about 100 samples/sec is adequate. Clearly,
this means that much information has been discarded in obtaining these short-
time representations. However, it is also clear that information regarding
speech amplitude is retained in a very convenient form.

To conclude our comments on the properties of the short-time energy and
short-time average magnitude it is instructive to point out that the window need
not be restricted to rectangular or Hamming form, or indeed to any function
commonly used as a window in spectrum analysis or digital filter design. All
that is required is that the effective filter provide adequate smoothing. Thus,
we can design a lowpass filter by any of the standard filter design methods
{1,2). Furthermore, the filter can be either an FIR or IIR filter. There is an
advantage in having the impulse response (window) be always positive since
this guarantees that the short-time energy or average magnitude will always be
positive. FIR filters (such as the rectangular or Hamming impulse responses)
have the advantage that the output can easily be computed at a lower sampling
rate than the input simply by moving the window more than one sample
between computations. For example, if the speech signal is sampled at 10000
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sample's/sec, and a window of duration 20 msec (200 samples) is used, the
short-time energy can be computed at a sampling rate of about 100
samples/sec, or once every 100 samples at the input sampling rate.
It is not necessary to use a finite len i i
) ece . gth window. Although this may seem
contradictory, it is possible to implement the filtering implied by an infinite

length window if its ztransform is a ration i i
: al function. A simple i
window of the form pie example is &

h(n)=a" n>20
=0 n<o0 (4.13)

A valge of0<ax<l give; a window whose effective duration can be adjusted
as desired. The corresponding ztransform of the window is

1

HEZ) = ———
z 1—az!

|z| > |a| 4.14)

frorp which it is easily seen that the frequehcy response, H(e/7T), has the
desired lowpass property. Such a filter can be implemented by a simple
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Fig. 4.8 Average magnitude functions for rectangular windows of vari-
ous lengths.
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Fig. 4.9 Average magnitude functions for Hamming windows of various
lengths.

difference equation; i.e., the short-time energy would satisfy the recurrence for-
mula

E, = aE,_; + x¥n) “4.15)

and the average magnitude would satisfy the relation

M, = aM,_, + |x(n)] (4.16) |

To use Egs. (4.15) and (4.16), the quantities E, and M, must be computed at
each sample of the input speech signal, even though a m}lch lower sampling
rate would suffice. Sometimes this is required anyway, as in the case of somme
waveform coding schemes discussed in Chapter 5, and. this recursive method is
then very attractive. However, when a lower sampling rate will suffice, the
nonrecursive method may require less arithmetic. (See Proplem 4.4.)‘ Another
factor of interest is the delay inherent in the lowpass filtering operation. The
windows of Egs. (4.8) and (4.9) have been defined so that thgy correspond.to
causal filters. Because they are symmetric, they have exactly linear phase with

a delay of (N—1)/2 samples. Since they have linear phase, the origin of the |

energy function can be redefined to take this delay into account. For recursive
implementations, the phase is nonlinear and therefore the delay cannot be
exactly compensated.
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s

f 4.3 Short-Time Average Zero-Crossing Rate

In the context of discrete-time signals, a zero-crossing is said to occur if succes-
sive samples have different algebraic signs. The rate at which zero crossings
occur is a simple measure of the frequency content of a signal. This is particu-
larly true of narrowband signals. For example, a sinusoidal signal of frequency

' Fy, sampled at a rate F, has F,/F, samples per cycle of the sine wave. Each

cycle has two zero crossings so that the long-time average rate of zero-crossings

Z = 2F,/F, crossings/sample 4.17)

t Thus, the average zero-crossing rate gives a reasonable way to estimate the fre-
. quency of a sine wave.

Speech signals are broadband signals and the interpretation of average

i zero-crossing rate is therefore much less precise. However, rough estimates of
"~ spectral properties can be obtained using a representation based on the short-
| time average zero-crossing rate. Before discussing the interpretation of zero-
. crossing rate for speech, let us first define and discuss the required
* computations. An appropriate definition is

Z,= i |sgn [x(m)] — sgnlx(m=1)1|w(n—m)

(4.18)
k. where
sgnlx(n)] =1 x(n) 20
=—-1 x(n) <0 4.19)
j and
: W(”)=37V— 0< n < N-1
=0 otherwise (4.20)

t The operations involved in Eq. (4.18) are represented in block diagram form in
" Fig. 4.10. This representation shows that the short-time average zero-crossing
F rate has the same general properties as the short-time energy and the short-

time average magnitude. However, Eq. (4.18) and Fig. 4.10 make the compu-

" tation of Z, appear more complex than it really is. All that is required is to
F check samples in pairs to determine where the zero-crossings occur and then
the average is computed over N consecutive samples. (The division by N is

F N FIRST LOWPASS
— —~ — ! —
x(n) DIFFERENCE Lo FILTER Zn
Fig. 4.10 Block diagram representation of short-time average zero-
crossings.
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Fig. 4.11 Distribution of zero-crossings for unvoiced and voiced speech.

obviously unnecessary as well.} As before, this can be a weighted average, and
if a symmetrical finite length window is used, the delay can be exactly compen-
sated. Alternatively a recursive implementation similar to Egs. (4.15) and
(4.16) can be obtained. (See Problem 4.5.)

Now let us see how the short-time average zero-crossing rate applies to
speech signals. The model for speech production suggests that the energy of
voiced speech is concentrated below about 3 kHz because of the spectrum fall-
off introduced by the glottal wave, whereas for unvoiced speech, most of the
energy is found at higher frequencies. Since high frequencies imply high zero-
crossing rates, and low frequencies imply low zero-crossing rates, there is a
strong correlation between zero-crossing rate and energy distribution with fre-
quency. A reasonable generalization is that if the zero-crossing rate is high, the
speech signal is unvoiced, while if the zero-crossing Tate is low, the speech sig-
nal is voiced. This, however, is a very imprecise statement because we have
not said what is high and what is low, and, of course, it really is not possible to
be precise. Figure 4.11 shows a histogram of average zero-crossing rates (aver-
aged over 10 msec) for both voiced and unvoiced speech. Note that a Gaussian
curve provides a reasonably good fit to each distribution. The mean short-time
average zero-crossing rate is 49 per 10 msec for unvoiced and 14 per 10 msec
for voiced. Clearly the two distributions overlap so that an unequivocal
voiced/unvoiced decision is not possible based on short-time average zero-
crossing rate alone. Nevertheless, such a representation is quite useful in mak-
ing this distinction.

Some examples of average zero-crossing rate measurements are shown in
Fig. 4.12. In these examples, the duration of the averaging window is 15 mse
(150 samples at 10 kHz sampling rate) and the output is computed 100
times/sec (window moved in steps of 100 samples). Note that just as in the
case of short-time energy and average magnitude, the short-time average zero-
crossing rate can be sampled at a very low rate. Although the zero-crossing rate
varies considerably, the voiced and unvoiced regions are quite prominent in
Fig. 4.12.
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Therq are a number of practical considerations in implementing
represeptatlon based on the short-time average zero-crossing rate. Althouy
the basic algorithm for computing a zero-crossing requires only a comparison
signs of pairs of successive samples, special care must be taken in the samplii
process. Clearly, the zero-crossing rate is strongly affected by dc offset in tl
analog-to-digital converter, 60 Hz hum in the signal, and any noise that may |
present in the digitizing system. Therefore, extreme care must be taken in ti
§nalog processing prior to sampling to minimize these effects. For example
is qftep preferable to use a bandpass filter, rather than a lowpass filter, as t’l
gntl-allasing filter to eliminate dc and 60 Hz components in the signal., Adc
tional considerations in the zero-crossing measurement are the sampling perio
T, and the averaging interval, N. The sampling period determines the tin
(‘and freqt_:ency) resolution of the zero-crossing representation; i.e., fine resol
tion requires a high sampling rate. However, to preserve the zero-crossir

infor.mation only 1-bit quantization (i.e., preserving the sign of the signal) is ¢
that is required.

Because of the practical limitations, a variety of similar representatio
have been proposed. All of these variants introduce some feature intended i
rpake the estimate less sensitive to noise, but each has its own set of limit;
tions. Nptable among these is the up-crossing representation studied by Bak«
[3]. This representation is based upon the time intervals between zert
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Fig. 4.12 Average zero-crossing rate for three different utterances.
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Fig. 4.13 Waveform for the beginning of the utterance [eight/. (After
Rabiner and Sambur [6].)

crossings that occur with positive slope. Baker has applied this representation
in phonetic classification of speech sounds [3].

Another application of the zero-crossing representation is as a simple
intermediate step in obtaining a frequency domain representation of speech.
The approach involves bandpass filtering of the speech signal in several contigu-
ous frequency bands. Short-time energy and zero-crossing representations are
then obtained for the filter outputs. These representations together give a
representation that crudely reflects the spectral properties of the signal. Such
an approach was proposed by Reddy, and studied by Vicens [4] and Erman (5]
as the basis for a large-scale speech recognition system.

4.4 Speech vs. Silence Discrimination Using Energy and Zero-Crossings

The problem of locating the beginning and end of a speech utterance in a back-
ground of noise is of importance in many areas of speech processing. In partic-
ular, in automatic recognition of isolated words, it is essential to locate the
regions of a speech signal that correspond to each word. A scheme for locating
the beginning and end of a speech signal can be used to eliminate significant
computation in nonreal-time systems by making it possible to process only the
parts of the input that correspond to speech.

The problem of discriminating speech from background noise is ngt
trivial, except in the case of extremely high signal-to-noise ratio acoustic
environments — e.g., high fidelity recordings made in an anechoic chamber or a
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soundproof room. For such high signal-to-noise ratio environments, the energy
of the lowest level speech sounds (e.g., weak fricatives) exceeds the back-
ground noise energy, and thus a simple energy measurement suffices. How-
ever, such ideal recording conditions are not practical for most applications.

The algorithm to be discussed in this section is based on two simpl¢
time-domain measurements — energy, and zero-crossing rate. Several simple
examples will illustrate some difficulties encountered in locating the beginning
and end of a speech utterance. Figure 4.13 shows an example (the beginnin
of the word /eight/) for which the background noise is easily distinguishe:
from the speech, as denoted in the figure. In this case a radical change in th
waveform energy between the background noise and the speech is the cue t
the beginning of the utterance. Figure 4.14 shows another example (the begin
ning of the word /six/) for which it is easy to locate the beginning of th
speech. In this case, the frequency content of the speech is radically differen
from the background noise, as seen by the sharp increase in zero crossing rat
of the waveform. It should be noted that, in this case, the speech energy at th
beginning of the utterance is comparable to the background noise energy.

Figure 4.15 gives an example of a case in which it is extremely difficult t
locate the beginning of the speech signal. This figure shows the waveform fc
the beginning of the utterance /four/. Since /four/ begins with the weak (lor
energy) fricative /f/, it is very difficult to precisely identify the beginning poin
Although the point marked B in this figure is a good candidate for the begir

MIKE~-SIX
W’WNWWW

BEGIN

| 25 6 msec {

Fig. 4.14 Waveform for the beginning of the utterance Isix/. (After
Rabiner and Sambur [6].)
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Fig. 4.15 Waveform for the beginning of the utterance /four/. (After

Rabiner and Sambur [6].)
ning, point A is actually the beginning. In general, it is difficult to locate the
beginning and end of an utterance if there are:

Weak fricatives (/f/, /th/, /h/) at the bcginni.ng or end.
Weak plosive bursts (/p/, /t/, /k/) at the beginning or end.
Nasals at the end.

Voiced fricatives which become devoiced at the end of words.
Trailing off of vowel sounds at the end of an utterance.

S

In spite of the difficulties posed by the above situations, energy ?nd zel;o-l
crossing rate representations can be combined to serve as the basis o ahusT u-
algorithm for locating the beginning and end qf a speech signal. Ope such a god
rithm was studied by Rabiner and Sambur [6] in the context of an 1solated-}vor
speech recognition system [7]. In this sys_terp a speak'er utters a word durzin% a
prescribed recording interval, and the enurg interval is samp_led.and store . 0:‘
processing. The purpose of the algorithm is to find the begmnmg a.nd en 1(1)
the word so that subsequent processing and pattern matching can ignore the
surrounding background noise. ‘

The algorithm can be described by referen;e to Fig. 4.16. The b(egnc
representations used are the number of zero-crossings per 1(_) msec frame Q.
(4.18)) and the average magnitude (Eq. (4.12)) computgd “{nh a 10 msec wm}
dow. Both functions are computed for the entire recording interval at a rate o
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100 times/sec. It is assumed that the first 100 msec of the interval contains no
speech. The mean and standard deviation of the average magnitude and zero-
crossing rate are computed for this interval to give a statistical characterization
of the background noise. Using this statistical characterization and the max-
imum average magnitude in the interval, zero-crossing rate and energy thres-
holds are computed. (Details are given in [6].) The average magnitude profile
is searched to find the interval in which it always exceeds a very conservative
threshold (ITU in Fig. 4.16). It is assumed that the beginning and ending
points lie outside this interval. Then working backwards from the point at
which M, first exceeded the threshold ITU, the point (labelled N 1 in Fig. 4.16)
where M, first falls below a lower threshold ITL is tentatively selected as the
beginning point, A similar procedure is followed to find the tentative endpoint
N, This double threshold procedure ensures that dips in the average magni-
tude function do not falsely signal the endpoint. At this stage it is reasonably
safe to assume that the beginning and ending points are not within the interval
Ny to N, The next step is to move backwards from N 1 (forward from N,)
comparing the zero-crossing rate to a threshold (IZCT in Fig. 4.16) determined
from the statistics of the zero-crossing rate for the background noise. This is
limited to the 25 frames preceding N | (following Nj). If the Zero-crossing rate
exceeds the threshold 3 or more times, the beginning point N, is moved back
to the first point at which the zero-crossing threshold was exceeded. Otherwise
N is defined as the beginning. A similar procedure is followed at the end.

Figure 4.17 shows examples of how the algorithm works on typical iso-
lated words. In this figure there are 8 plots of the average magnitude function
for 8 different words (for 2 different speakers). Some of the words were
recorded in a noisy computer room (marked Mike) and others were recorded
on analog tape (marked Tape) from a soundproof booth. The markers on each
plot show the beginning point and ending point of each ‘word, as determined by
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Fig. 4.16 Typical example of average magnitude and zero-crossing meas-

urements for a word with a strong fricative at the beginning. (After
Rabiner and Sambur [6).)
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Fig. 4.17 Sequence of average magnitude plots showing how {he end-
point algorithm performed over a variety of words. (After Rabiner and

Sambur [6].)
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the automatic algorithm. For the example of Fig. 4.17a (the word nine), the
average magnitude thresholds were sufficient to locate the boundary points.
For the example of Fig. 4.17b (the word replace), the zero-crossing algorithm
was used to determine the ending point due to the final fricative /s/. It should
be noted that even though the final /s/ has fairly large average magnitude,
since the average magnitude thresholds were set conservatively, this criterion
was not able to find the actual endpoint of the word. Instead, the zero-crossing
algorithm was relied upon in this case. In Fig. 4.17c the final /t/ in the word
delete was correctly located because of the significant zero-crossing rate over the
70 msec burst when the /t/ was released. Thus, even though the average mag-
nitude and zero crossing rate were very small for about 50 msec in the stop
gap, the algorithm was able to correctly identify the endpoint because of the
strength of the burst. On the other hand, if the burst had been weak, the end-
ing point would have been located at the beginning of the stop gap.

In Fig. 4.17d there is an example where the average magnitude of the
noise was significant in two places prior to the beginning of the word subtract,
yet the algorithm successfully eliminated these places from consideration
because of the low zero-crossing rates. In this example a relatively weak burst
in the final /t/ was correctly labelled as the endpoint.

Figures 4.17e-4.17h show examples of words with fricatives at either the
beginning or end of the word. In all cases the algorithm was able to correctly
place the appropriate endpoint so that a reasonable amount of unvoiced dura-
tion was included within the boundaries of the word.

This application of zero-crossings and average magnitude illustrates the
utility of these simple representations in a practical setting. These representa-
tions are particularly attractive since very little arithmetic is required for their
implementation. We shall see ideas similar to those just discussed arising in
later discussions in this chapter.

4.5 Pitch Period Estimation Using a Parallel Processing Approach

Pitch period estimation (or equivalently, fundamental frequency estimation) is
one of the most important problems in speech processing. Pitch detectors are
used in vocoders [8], speaker identification and verification systems [9,10], and
aids-to-the handicapped [11]. Because of its importance, many solutions to this
problem have been proposed {12-19]. All of the proposed schemes have their
limitations, and it is safe to say that no presently available pitch detection
scheme can be expected to give perfectly satisfactory results across a wide range
of speakers, applications, and operating environments.

In this section we discuss a particular pitch detection scheme first pro-
posed by Gold {13} and later modified by Gold and Rabiner [14]. Our reasons
for discussing this particular pitch detector in this chapter are: (1) it has been
used successfully in a wide variety of applications, (2) it is based on purely time
domain processing, (3) it can be implemented to operate very quickly on a gen-
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* eral purpose computer or it can be easily constructed in digital hardware, and
(4) it illustrates the use of the basic principle of parallel processing in speech
processing.

The basic principles of this scheme are as follows:

1. The speech signal is processed so as to create a number of impulse
trains which retain the periodicity of the original signal and discard
features which are irrelevant to the pitch detection process.

2. This processing permits very simple pitch detectors to be used to esti-
mate the period of each impulse train.

3. The estimates of several of these simple pitch detectors are logically
combined to infer the period of the speech waveform.

The particular scheme proposed by Gold and Rabiner [14] is depicted in
Fig. 4.18. The speech waveform is sampled at a rate sufficient to give adequate
time resolution; e.g., sampling at 10 kHz allows the period to be determined
to within T = 1074 sec. The speech is lowpass filtered with a cutoff of about
900 Hz to produce a relatively smooth waveform. A bandpass filter passing fre-
quencies between 100 Hz and 900 Hz may be necessary to remove 60 Hz noise
in some applications. (This filtering can be done either with an analog filter
before sampling or with a digital filter after sampling.)

Following the filtering, the “"peaks and valleys" (local maxima and
minima) are located, and from their locations and amplitudes, several impulse
trains (6 in fig. 4.18) are derived from the filtered signal. Each impulse train
consists of positive impulses occurring at the location of either the peaks or the
valleys. The 6 cases used by Gold and Rabiner [14] are:

! 2 m3(n) PPE 3 Loy FI:AL
PROC R ‘
) °°EF$5° l PITCH= | PITCH

SPEECH x{n
——={FILTER—1 g iGNAL

COMPUTATION| PERIOD
PEAKS L.-l PPE 4 r——, —
4(N)

| PPES |——

mg(n)

PPE 6

SIX INDIVIDUAL PITCH
PERIOD ESTIMATORS

Fig. 4.18 Block diagram of a parallel processing time domain pitch detec-
tor.
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1(n)< \//\ n
my(n} n
mz(n)- "
m;(n)- n
m.(n)- n
ms("; n
ms(n)- n

Fig. 4.19 Input (sinusoid) and corresponding impulse trains generated
from the peaks and valleys.

1. m(n): An impulse equal to the i
: peak amplitude o i
o snch, ceab p ccurs at the location
2. my(n): An impulse equal to the difference between the peak amplitude
and the pregedmg valley amplitude occurs at each peak.
3. my(n): An 1mpu}se equal to the difference between the peak amplitude
ar'ld the grecedmg peak amplitude occurs at each peak. (If this
. dlﬁ“(er;ance is negative the impulse is set to zero.)
. m4n): An impulse equal to the negative of the amplit
occurs at each valley. plitude at a valley
5. ms(n): An impulse equal to the negative of the amplitude at a valley
plus the am;_)htude at the preceding peak occurs at each valley.
6. mg(n): An m}pulse equal to the negative of the amplitude at a valley
plus the ar.nph.tude at the preceding local minimum occurs at each val-
ley. (If this difference is negative the impulse is set to zero.)

Figures 4.19 and 4.20 show two examples — a pure sine wave and a weak fun-
darpental plus a strong second harmonic — together with the resulting impulse
trains as defined above. Clearly the impulse trains have the same fundamental

period as the original input signals, although ms(n) of Fig. 4.20 is close to
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mates are then compared and the value with the most occurrences (within
some tolerance) is declared the pitch period at that time. This procedure pro-
duces very good estimates of the period of voiced speech. For unvoiced speech
there is a distinct lack of consistency among the estimates. When this lack of
consistency is detected, the speech is classified as unvoiced. The entire process
is repeated periodically to produce an estimate of the pitch period and
voiced/unvoiced classification as a function of time.

x(n) \/ \/ \/ \/

my{n)

Although the above description may appear very involved, this scheme
for pitch detection can be efficiently implemented either in special purpose
hardware or on a general purpose computer. Indeed, near real-time operation
(within a factor of 2 times real-time) is possible on present computers.

The performance of this pitch detection scheme is illustrated by Fig. 4.22
which shows the output for a sample of synthetic speech. The advantage of
using synthetic speech is that the true pitch periods are known exactly (since
they were artificially generated) and thus a measure of the accuracy of the algo-
rithm can be obtained. The disadvantage of synthetic speech is that it is gen-
erated according to a simple model, and therefore may not show any of the
unusual properties of natural speech. In any case, testing with synthetic speech
has shown that most of the time, the method tracks the pitch period to within 2
samples. Furthermore it has been observed that at the initiation of voicing,
(i.e., the first 10-30 msec of voicing) the speech is often classified as unvoiced.
This result is due to the decision algorithm which requires about 3 pitch periods
before a reliable pitch decision can be made — thus a delay of about 2 pitch
periods is inherently built into the method. In a recent comparative study of
pitch detection algorithms carried out under a wide range of conditions with

natural speech this method compared well with other pitch estimation methods
that have been proposed [12].

ma(n)

m(n)

[ Lo L.

ma{n)

| L

mgln}

-

N n
mgln)

Fig. 4.20 Input (weak fundamental and second harmonic) and
corresponding impulse trains generated from the peaks and valleys.

being periodic with half the fundamental period. Tl;le pur})(;si :t; gﬁg::i?mni
i ins i it simple to estimate the perio -
these impulse trains 1s to make it simp . ) : 2 short-
i i i d estimators is depicted in rig.
sis. The operation of the simple pitch perio . _ _
ga21 Each impulse train is processed by a mpe. varying nonlmear.sysﬁ;re\
(;:all.ed a peak detecting exponential window circx;:t in [131)_. w::tnt :r: ﬁ;nsalue
i i i in the input, the output is 1€ '
of sufficient amplitude is detected in the inpul o the veloe
i king interval, 7(n) — during
of that impulse and then held for a blan terv R
d of the blanking interval, the output begin
e o o et e 4 ¢ ds the level of the exponentially
cay exponentially. When an impulse exceeds ) .
?ianiingpoutput, the process is repeated. The rate of decay and the blanking

In summary, the details of this particular method are not so important as
the basic principles that are introduced. (The details are available in Ref. [14].)
First, note that the speech signal was processed to obtain a set of impulse trains
which retain only the essential feature of periodicity (or lack of periodicity).
Because of this simplification in the structure of the signal, a very simple pitch
estimator suffices to produce good estimates of the pitch period. Finally,
several estimates are combined to increase the overall reliability of the estimate.
Thus, signal processing simplicity is achieved at the expense of increased logical
complexity in estimating the desired feature of the speech signal. Because the

interval are dependent upon the most recent estimates of pitch period [14!. VARlA?I%‘EE B_FANKING VARIABLED EEA)\(:ONENTIAL
inter ' : . ‘ (el
i i the impulse train, producing a quasl

The result is a kind of smoothing of ( coducing & W y 1 /

iodi hown in Fig. 4.21. The length of each p L -
e nate of the o pulsesias ’ i iod is estimated periodically (e.g. " .

estimate of the pitch period. The pitch period 18 i : - ot e
igo times/sec) by measuring the length of the pulse spanning the sampling ? ‘ - 1 1' \{ |
interval. | | | | |

This technique is applied to each of the six impulse trains tch:r:letgill ec:jbt:lir:‘-l
i i i i i These six estimates are
ng six estimates of the pitch period. esti h
ltwgo of the most recent estimates for each of the six pitch detectors. These estt

TIME

Fig. 4.21 Basic operation of each individual pitch period estimator of the
time domain pitch detector. (After Gold and Rabiner {14].)
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logical operations are carried out at a much lower rate (e.g., 100 times/sec)

1700

than the signal processing, this results in an overall speed-up in processing. A
similar approach was used by Barnwell et al. [15] in designing a pitch detector
a _§ in which the outputs of four simple zero-crossing pitch detectors were com-
z =8 ¥ ® w |2 bined to produce a reliable estimate of pitch.
%8
y uo e ™ [ | § .
% wo X o™ o w IZ :4.6 The Short-Time Autocorrelation Function
L ]
L ]
£ 33 5o x |8 . . . . o
¥ §5 ot < The autocorrelation function of a discrete-time deterministic signal is defined as
; Dp 18 $(k) = T x(m)x(m+k) @.21)
%, T e e
-If‘,s : 18 S If the signal is random or periodic the appropriate definition is
N
N 5 N
L <1 1
8 (k) = lim ——— x(m)x(m+k) (4.22)
18 @ #) = Jm v L,
5 In either case, thg autocorrelation function representation of the signal is a con-
o | § EA venient way of displaying certain properties of the signal. For example, if the
“—;g signal is periodic with period P samples, then it is easily shown that
E (-
° § 8 o(k) = ¢p(k+P) (4.23)
o© _ §§ ie., the autocorrelation function of a periodic signal is also periodic with the
i § § Eh same period. Other important properties of the autocorrelation function are:
-
€ z
g E $8 1. It is an even function; i.e., ¢ (k) = ¢p(—k).
oy IR E 25 2. It attains its maximum value at k = 0; i.e., |¢(k)| < ¢(0) for all k.
T B < 3. The quantity ¢(0) is equal to the energy (Eq. (4.2)) for deterministic
-, B 8 ° a - § § g signals or the average power for random or periodic signals.
o > 8 5
gg: z E g Thus, the autocorrelation function contains the energy as a special case. Even
8, ' .3, :j > more important is the convenient way in which periodicity is displayed. If we
o én < 33 consider Eq. (4.23) together with properties (1) and (2), we see that for
gﬁo 48 EX| periodic signals, the autocorrelation function attains a maximum at samples
;ugo b = 0, £ P, £ 2P .... Thatis, regardless of the time origin of the signal, the
§oS period can be estimated by finding the location of the first maximum in the
B § autocorrelation function. This property makes the autocorrelation function an
> attractive basis for estimating periodicities in all sorts of signals, including
x | g speech. Furthermore, we shall see in Chapter 8 that the autocorrelation func-
i“ x tion contains much more information about the detailed structure of the signal.
2, < 3 Thus it is extremely important to consider how the definition of the autocorre-
3:,, ° lation function can be adapted to obtain a short-time autocorrelation function
P‘ ol .
° %o xg representation of speech.
] 1 1 L ;’ ,‘, i L J, ° Using the same approach that was used to define the short-time represen-
g2 ¢ B N = e ® " tations that we have just discussed, we define the short-time autocorrelation
(ZH) AON3IND3YS
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function as .
R,() =Y x(m)w(n—m)x(m+k)w(n—k—m) (4.249).

me=—oo

This equation can be interpreted as follows: first a segmer_nt ‘of_ speech is selec.ted
by multiplication by the window; then the deterministic autocor'relatlf)ln
definition Eq. (4.21) is applied to the windowed segment of speech. It is easily
verified that ’

Ru(—=K) = R,(K) (4.25)

Using this expression, we can express R,(k) in the form of Eq. (4.10). First
note that

R,(k) = R,(—Kk)

= i x(m)x(m=k) w(n—m)w(n+k—m)) (4.26)
If we define
h(n) = w(n)w(n+k) 4.27)
Then Eq. (4.26) can be written as
R = 3 x(m)x(m—k)h(n—m) (4.28)

Thus the value at time n of the k* autocorrelation "lag" is obtained by ﬁlterin.g
the sequence x(n)x(n—k) with a filter with impulse response, h.(n). Thisis
depicted in Fig. 4.23.

The computation of the short-time autocorrelation function is usually car-
ried out using Eq. (4.24) after rewriting it in the form

R, (k) = i [x(n+m) w' (M) x (n+m+k) w'(k+m)] 4.29

n=—00
where w'(n) = w(—n). Equation (4.29) states that the. time origiq of the input
sequence is effectively shifted to sample n, whereupor} itis m\'xl.uphecfi‘1 by adwm:
dow w' to select a short segment of speech. If the window w' is of m't(e )ur?"
tion as in Egs. (4.8) and (4.9) then the resulting sequence, x(n+m)w'(n) wi

h{n}
o X . Rptk)

DELAY
k x(n-k}

Fig. 4.23 Block diagram representation of the short-time autocorrelation.
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Fig. 4.24 Autocorrelation function for (a) and (b) voiced speech; and (c)
unvoiced speech, using a rectangular window with N = 401,

be of finite duration and Eq. (4.29) becomes

N=l-k

R(k) = % [x(n+m)w' (m)]x(ntm+k)w'(k+m)] (4.30)
m=(

Note that when the rectangular or Hamming windows of Egs. (4.8) and (4.9)

are used for w' in Eq. (4.30) they correspond to a noncausal system in Eq.

(4.28). For finite length windows, this poses no problem since suitable delay

can be introduced into the processing, even in real-time applications.

The calculation of the k' autocorrelation lag using Eq. (4.30) would
appear to require N multiplications for computing x(n+m)w'(m), and (N—k)

- multiplications and additions for computing the sum of lagged products. The

- computation of many. lags as required in estimating periodicity thus requires a
¥ great deal of arithmetic. This can be reduced by taking advantage of some spe-
' cial properties of Eq. (4.30). Several techniques are given in the Appendix.

An alternative to Eq. (4.30) that is useful if only a few lags are required is

| provided by Eq. (4.28). If the window w(n) is properly chosen, R,(k) can be
- computed recursively. (See Problem 4.7.)

Figure 4.24 shows three examples of autocorrelation functions computed

~ for speech sampled at 10 kHz using Eq. (4.30) with N = 401. As shown, the
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Fig. 4.25 Autocorrelation functions for (a) and (b) voiced speech; and
(c) unvoiced speech, using a Hamming window with N = 401.

autocorrelation was evaluated for lags 0 < k < 250. The first two cases are for
voiced speech segments and the third is for an unvoiced segment. For the first
segment, peaks occur approximately at multiples of 72 indicating a period of 7.2
msec or a fundamental frequency of approximately 140 Hz. Note that even a
very short segment of speech differs from a segment of a truly periodic signal.
The "period" of the signal changes across a 401 sample interval and also the
wave shape varies somewhat from period to period. This is part of the reason
that the peaks get smaller for large lags. For the second voiced section (taken
at a totally distinct place in the utterance) similar periodicity effects are seen,
only now the local peaks in the autocorrelation are at multiples of 58 samples
indicating an average pitch period of about 5.8 msec. Finally for the unvoiced
section of speech there are no strong autocorrelation periodicity peaks thus
indicating a lack of periodicity in the waveform. The autocorrelation function
for unvoiced speech is seen to be a high frequency noise-like waveform, some-
what like the speech itself.

Figure 4.25 shows the same examples using a Hamming window. By
comparing these results to those in Fig. 4.24, it can be seen that the rectangular
window gives a much stronger indication of periodicity than the Hamming win-

4In this and subsequent plots, the autocorrelation function is normalized so that R,0) =1.
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dow. This is not surprising in view of the tapering of the speech segment intro-
duced by the Hamming window.

‘ The examples of Figures 4.24 and 4.25 were for a value of N = 401. An
upportant issue is how N should be chosen to give a good indication of periodi-
c.lty. Again we face conflicting requirements. Because of the changing proper-
.tles of the speech signal, N should be as small as possible. On the other hand
it should be clear that to get any indication of periodicity in the autocorrelatior;
function, the window must have a duration of at least two periods of the
wavefprm. In fact, because of the finite length of the windowed speech seg-
ment involved in the computation of R,(k), there is less and less data involved
in the computation as k increases. (Note the upper limit of summation in Eq.
‘(4.30).) This leads to a reduction in amplitude of the correlation peaks as k
increases. This can easily be verified for the case of a periodic impulse train
(see Problem 4.8), and it is easily demonstrated for speech by examples. Fig-
ure 4.26 illustrates the effect for rectangular windows of different lengths. The
dotted lines are plots of the equation

Rky=1—-k/N, |k|<N 4.31)
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Fig. 4.26 Autocorrelation function for voiced speech with {a) N = 401;
(b) N =251; and (c) N = 125. Rectangular window used in all cases,
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which is the autocorrelation function of the rectangular window. Clearly, this is
a good bound on the amplitude of the correlation peaks. In Problem 4.8 it is
shown that for a periodic impulse train, the peaks will lie exactly on such a
straight line. For the present example, the peaks are further away from the line
for N = 401 than for the other two cases. This is due to the fact that the pitch
period and wave shape change more across an interval of 401 samples than
across the shorter intervals. The effects combine to cause a greater reduction.

Figure 4.26c corresponds to a window length of 125 samples. Since the
period for this example is about 72 samples, not even two complete pitch
periods are included in the window. This is clearly a situation to be avoided,
but avoiding it is difficult because of the wide range of pitch periods that may
be encountered. One approach is to simply make the window long enough to
accommodate the longest pitch period, but this leads to undesirable averaging
of many periods when the pitch period is short. Another approach is to allow
the window length to adapt to match the expected pitch period. Still another
approach that allows the use of shorter windows is to modify the definition of
the autocorrelation function.

The modified short-time autocorrelation function is defined as
R, (k)= 3 x(m)wy(n—m)x(m+k)wy(n—m—k) (4.32)
Mme—oa

This expression can be written as

R = x(ntm) b (m)x(nbm+k)wlm+k) (4.33)

m=—co

x(n+m) w (m) =x(n+m) Q,(m)

A {\/\I\[\ {\/\/\A
TNV, m

(b)

o

x{nem) Wp(m)

!\V[\ AA[\A AA:’\A {\/\AA '
A ATRASOA AR A R

N-1+K

[=]

tc)

Fig. 4.27 Illustration of the samples involved in the computation of the
short-time autocorrelation function.
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Fig. 4.28 Modified autocorrelation function for speech segm
.
Fig. 4.24 with N = 401. P gments of

where

wilm) = wi(~m) (4.34a)
and
Walm) = wyl—m) (4.34b)

To'ac.complish our goal of eliminating the fall-off due to the variable upper
limit in Eq. (4.30) we can choose the window W, to include samples outside the
nonzero interval of window Ww,. That is, we define

wm)=1 0<m<N~-1

=0 otherwise (4.35a)
and

Wm)=1 0<m<N-1+K
=0  otherwise (4.35b)

where K is the greatest lag of interest. Thus, Eq. (4.33) can be written as

. N=1
R,(k) = ¥ x(n+m)x(n+m+k) 0< k<K (4.36)

m=0
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Fig. 4.29 Modified autocorrelation function for voiced speech for (a)
N =401, (b) N =251; and () N =125 Example corresponds to
Fig. 4.26.

i.e., the average is always over N samples, and samples from qutside the‘mter-
val nto n + N — 1 are involved in the computation. The dlﬁ'ere'nces in t'he
data involved in the computations of Egs. (4.30) and (4‘.36) are depicted in Fig-
ure 4.27. Figure 4.27a shows a speech waveform and Figure 4.27b shows a seg-
ment of N samples selected by a rectangular window. For a rectapgular win-
dow, this segment would be used for both terms in Eq. (4.30) and it would t?e
the term x(n+m)Ww,(m) in Eq. (4.36). Figure 4.27¢c shows the other term in
Eq. (4.36). Note that K additional samples are included.

Equation (4.36) will be referred to as the modified short-time autoc.orrela-
tion function. Strictly speaking, however, it is the cross-correlation anctlon for
the two different finite length segments of speech, x(n +m? wq(m) gnd
x(n+m)wo(m). Thus R,(k) has the properties of a cross-correlation function,
not an autocorrelation function. For example, R,,(‘—k) = R,,(_k).. Neverthe-
less, R,(k) will display peaks at multiples of the period of a pe_nodxc signal and
it will not display a fall-off in amplitude at large values of k. Figure 4.28 spows
the modified autocorrelation functions corresponding to the_ e).(amples 9f Figure
4.24. Because for N = 401 the effects of waveform varlgtlon dommate.the
tapering effect in Figure 4.24, the two figures look_ much alike. A comparison
of Figure 4.29 with 4.26 shows that the difference is more apparent for smaller
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values of N. It is clear that the peaks in Figure 4.29 are less than the k =0
peak only because of deviations from periodicity over the interval n to
n+ N — 1 + K that is involved in the evaluation of Eq. (4.36). Problem 4.8

shows that for a perfectly periodic impulse train, all the peaks will be the same
amplitude.

4.7 The Short-Time Average Magnitude Difference Function

As we have pointed out, the computation of the autocorrelation function
involves considerable arithmetic, even using the simplifications discussed in the
Appendix. A technique that eliminates the need for multiplications is based
upon the idea that for a truly periodic input of period P, the sequence

d(n) = x(n) — x(n—k) 4.3

would be zero for k=0, £ P, £ 2P, .... For short-segments of voiced
speech it is reasonable to expect that d(n) will be small at multiples of the
period, but not identically zero. The short-time average magnitude of d(n) as
a function of k should be small whenever k is close to the period. The short-
time average magnitude difference function (AMDF) [16] is thus defined as

oo

yulk) = ¥ |x(n+m)wi(m)—x(n+m—k) wy(m—k)| (4.38)
oo

Clearly, if x(n) is close to being periodic in the interval spanned by the win-
dow, then vy ,(k) should dip sharply for k = P,2P, .. .. Note that it is most
reasonable to choose the windows to be rectangular. If both have the same
length, we obtain a function similar to the autocorrelation function of Eq.
(4.30). If wy(n) is longer than w,(n) then we have a situation similar to the
modified autocorrelation of Eq. (4.36). It can be shown [16] that

ya(k) = V2 Bk [R,(0)—R, (k)] (4.39)

It is reported that 8(k) in Eq. (4.39) varies between 0.6 and 1.0 with different
segments of speech, but does not change rapidly with & for a particular speech
segment [16].

Figure 4.30 shows the AMDF function for the speech segments of Fig-
ures 4.24 and 4.28 for the same length window. It can be seen that the AMDF
function does indeed have the shape suggested by Eq. (4.39) and thus, v ,(k)

dips sharply at the pitch period of voiced speech and shows no comparable dips
for unvoiced speech.

The AMDF function is implemented with subtraction, addition, and abso-
lute value operations, in contrast to addition and muitiplication operations for
the autocorrelation function. With floating point arithmetic, where multiplies
and adds take approximately the same time, about the same time is required for
either method with the same window length. However, for special purpose
hardware, or with fixed point arithmetic, the AMDF appears to have the advan-
tage. In this case multiplies usually are more time consuming and furthermore
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Fig. 4.30 AMDF function (normalized to 1.0) for same speech segments
as in Figs. 4.24 and 4.28.

either scaling or a double precision accumulator is required to hold the sum of
lagged products. For this reason the AMDF function has been used in
numerous real-time speech processing systems.

4.8 Pitch Period Estimation Using the Autocorrelation Function

As demonstrated in Section 4.6, the short-time autocorrelation function pro-
vides a convenient representation upon which to base a scheme for determining
the pitch period as a function of time. In this section we shall discuss several
details of implementation of autocorrelation pitch detectors.

One of the major limitations of the autocorrelation representation is that
in a sense it retains too much of the information in the speech signal. (We
shall see in Chapter 8 that the low-time autocorrelation values (0 < k& < 10 or
12) are sufficient to accurately estimate the vocal tract transfer function.) As a
result, we note in Figure 4.26, for example, that the autocorrelation function
has many peaks. Most of these peaks can be attributed to the damped oscilla-
tions of the vocal tract response which are responsible for the shape of each
period of the speech wave. In Figures 4.26a and 4.26b, the peak at the pitch
period has the greatest amplitude; however, in Figure 4.26c, the peak at about
k =15 is actually greater than the peak at k = 72. This occurs in this case
because the window is short compared to the pitch period, but rapidly changing
formant frequencies can also create such a situation. Clearly, in cases when the
autocorrelation peaks due to the vocal tract response are bigger than those due
to the periodicity of the vocal excitation, the simple procedure of picking the
fargest peak in the autocorrelation function will fail.

To avoid this problem it is again useful to process the speech signal so as
to make the periodicity more prominent while suppressing other distracting
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features of the signal. This was the approach followed in Section 4.5 to permit
the use of a very simple pitch detector. Techniques which perform this type of
opgratilon.on a signal are sometimes called "spectrum flatteners" since their
ob'Jec'tlve 1s to remove the effects of the vocal tract transfer function, thereby
prmgmg ea(:'h harmonic to the same amplitude level as in the case of z; periodic
impulse train. Numerous spectrum flattening techniques have been proposed

{17]; however, a technique called "cen ipping"
i h , ter clipping” {17] appear -
geous in the present context, Ppests to be advanta

In the scheme proposed by Sondhi [17], th )
i : . , the center clipped spe i
is obtained by a nonlinear transformation pped speech signal

y(n) = Clx(n)] (4.40)

C(x]

Fig. 4.31 Center clipping function.

whqre C [ ].IS shown in Figure 4.31. The operation of the center clipper is
deplcteq in Fig. 4.32. A segment of speech to be used in computing an auto-
?orrelatxon function is shown in the upper plot. For this segment, the max-
imum amplitude, A4,,,, is found and the clipping level, C;, is set ,equal to a
fixed percentage of A, (Sondhi [17] used 30%.) From Fig,ure 4.31, it can be
seen thgt for samp}es above C,, the output of the center clipper is eqllal to the
Input minus the clipping level. For samples below the clipping level the output

INPUT SPEECH
Amax
+CL

CENTER CLIPPED SPEECH

Fig. 4.32 An example showing how center cl
waveform. (After Sondhi [17].)

ipping affects a speech
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Fig. 4.33 Example of waveforms and correlation function; (a)_ no clip-
ping; (b) center clipped; (c) 3-leve! center clipped. (All correlation func-
tions normalized to 1.0.) (After Rabiner [18])

is zero. The lower plot in Fig. 4.32 shows the output for the above input. In
contrast to the scheme of Section 4.5, where peaks were converted to impulses,
in this case, the peaks are converted to pulses consisting of the part of each
peak that exceeds the clipping level.

Figure 4.33 [18] illustrates the effect of the center clipping operation on
the computation of the autocorrelation function. Figure 4.33a shgws a 300
sample segment (F, = 10 kHz) of voiced speech. Note that.there is a strong
peak at the pitch period in the autocorrelation function for this segment which
is shown on the right. However, it is also clear that there are many peaks that
can be attributed to the damped oscillations of the vocal tract. Figure 4.33b
shows the corresponding center clipped signal where the clipping level was set

as shown in Figure 4.33a. (In this case it was set at 68% of the maximum mag- -

nitude in the first 100 samples.) Note that all that remains in the clipped
waveform are several pulses spaced at the original pitch period. The resulting
autocorrelation function has considerably fewer extraneous peaks to create con-
fusion.
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We shall return to part ¢ of Fig. 4.33 soon. However, first let us examine
the effect of the clipping level. Clearly, for high clipping levels, fewer peaks
will exceed the clipping level and thus fewer pulses will appear in the output,
and therefore, fewer extraneous peaks will appear in the autocorrelation func-
tion. This is illustrated by Fig. 4.34 which shows the autocorrelation functions
for the segment of speech corresponding to Fig. 4.26a, for decreasing clipping
levels. Clearly, as the clipping level is decreased, more peaks pass through the
clipper and thus the autocorrelation function becomes more complex. (Note
that a clipping level of zero corresponds to Fig. 4.26a.) The implication of this
example is that the clearest indication of periodicity is obtained for the highest
possible clipping level. There is a difficulty with using too high a clipping level.
It is possible that the amplitude of the signal may vary appreciably across the
duration of the speech segment (e.g., at the beginning or end of voicing) so
that if the clipping level is set at a high percentage of the maximum amplitude
across the whole segment, there is a possibility that much of the waveform will
fall below the clipping level and be lost. For this reason Sondhi’s original pro-
posal was to set the clipping level at 30% of the maximum amplitude. A pro-
cedure which permits a greater percentage (60-80%) to be used is to find the
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Fig. 4.34 Autocorrelation functions of center clipped speech using
N =401 () C, set at 80% of maximum; (b) 64%; (c) 48%. (Speech
segment same as for Fig. 4.26a.)
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peak amplitude in both the first third and last third of the segment and set the
clipping leve! at a fixed percentage of the minimum of these two maximum lev-
els. (This was the procedure followed in Fig. 4.33b.)

The problem of extraneous peaks in the autocorrelation function can be
greatly alleviated by center clipping prior to computing the autocorrelation func-
tion. However, another difficulty with the autocorrelation representation (that
remains even with center clipping) is the large amount of computation that is
required. A simple modification of the center clipping function leads to a great
simplification in computation of the autocorrelation function with essentially no
degradation in utility for pitch detection [19). This modification is shown in
Fig. 4.35. As indicated there, the output of the clipper is +1 if x(n) > C, and
—1if x(n) < —C,. Otherwise the output is zero. This function will be called
a 3-level center clipper. Figure 4.33c shows the output of the 3-level center
clipper for the input segment of Fig. 4.33a. Note that although this operation
tends to emphasize the importance of peaks that just exceed the clipping level,
the autocorrelation function is very similar to that of the center clipper of Fig.
4.33b. That is, most of the extraneous peaks are eliminated, and a clear indica-
tion of periodicity is retained.

¢[x]

-CL

Fig. 4.35 3-level center clipping function.

The computation of the autocorrelation function for a 3-level center
clipped signal is particularly simple. If we denote the output of the 3-level
center clipper as y(n) then the product terms y{n+m)y{n+m+k) in the auto-
correlation function

—k—

R, (k) = Nz 1y(n+m)y(n-{-m+k) (4.41)

m=0

can have only three different values

y(n+m)y(ntm+k) =0 it y(ntm) =0 or y(ntm+k) =0
=41 if y(n+m) =yn+m+k)
=—1 if y(n+m) = y(ntm+k) (4.42)

Thus, in hardware terms, all that is required is some simple combinatorial logic
and an up-down counter to accumulate the autocorrelation value for each value

of k.
As a further comment on details of implementation we note that the
modified autocorrelation definition of Eq. (4.36) could be used with either
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center clipped or 3-level center clipped speech input, therefore giving an auto-
correlation function whose peaks do not fall off with increasing lag. Likewise,
the input to the AMDF computation of Eq. (4.38) could also be some version
of center clipped signal. Indeed, there are a multitude of combinations that
could be used, some of which may have advantages in specific situations [18].

Numerous algorithms for estimating the pitch period from the short-time
autocorrelation function representation have been proposed and no doubt many
more will be proposed. We shall conclude this section with one example which
has been implemented in digital hardware (19). The details of the algorithm
are depicted in Fig. 4.36 and a summary of the algorithm is given below:

1. The speech signal is filtered with a 900 Hz lowpass analog filter and
sampled at a rate of 10 kHz.

2. Segments of length 30 msec (300 samples) are selected at 10 msec
intervals. Thus, the segments overlap by 20 msec.

3. The average magnitude, Eq. (4.12), is computed with a 100 sample
rectangular window. The peak signal level in each frame is compared
to a threshold determined by measuring the peak signal level for 50
msec of background noise. If the peak signal level is above threshold,
signifying that the segment is speech, not noise, then the algorithm
procedes as follows; otherwise the segment is classed as silence and no
further action is taken.

4. The clipping level is determined as a fixed percentage (e.g., 68%) of
the minimum of the maximum absolute values in the first and last 100
samples of the speech segment.

5. Using this clipping level, the speech signal is processed by a 3-level
center clipper and the correlation function is computed over a range
spanning the expected range of pitch periods.

6. The largest peak of the autocorrelation function is located and the
peak value is compared to a fixed threshold (e.g., 30% of R,(0). If
the peak falls below threshold, the segment is classed as unvoiced and
if it is above, the pitch period is defined as the location of the largest
peak.

This is essentially the algorithm that was implemented in digital hardware (19);
however there is considerable latitude for variation in the details. For example,
steps (4) and (5) could be altered to use the center clipper of Fig. 4.31 and

standard arithmetic for the autocorrelation computation, or center clipping 1

could be completely eliminated. Still another possibility is to use the AMDF
function (and thus search for dips instead of peaks) either with or without
some form of center clipping.

Figure 4.37 shows the outputs (pitch contours) of three variants of the
above algorithm. Figure 4.37(a) is the pitch contour obtained using the auto-
correlation of the speech signal without clipping. Note the scattering of points

that are obviously errors due to the fact that a peak at a short lag was greater ]

than the peak at the pitch period. Also note that the pitch period averages
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Fig. 4.37_ A}xtocorl_'elation pitch detector outputs; (a) no clipping; (b)
center clipping (Fig. 4.31); (c) 3-level center clipping (Fig. 4.35); (d)
nonlinearly smoothed output from (c). (After Rabiner [18].)

betwgen 100 and 150 samples so that the inherent fall-off of the autocorrelation
functhn causes significant attenuation of the peak at the pitch period. Thus
peaks in the autocorrelation function due to the vocal tract response are likelj;
tf’ be greater than those due to periodicity. Figures 4.37b and 4.37¢ are respec-
uyely for the cases when center clipping and 3-level center clipping are used
'thh the autoco‘rrelation function. Clearly, most of the errors have been elim-
n}ated by the inclusion of clipping and furthermore there is no significant
difference between the two results. A few obvious errors remain in both pitch
contours. These errors can be effectively removed by a nonlinear smoothing
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method to be discussed in the next section. An example is shown in Fig.
4.37d.

4.9 Median Smoothing and Speech Processing

In most signal processing applications a linear smoother (or a linear filter) is
generally used to eliminate the noise-like components of a signal. For some
speech processing applications, however, linear smoothers are not completely
adequate due to the type of data being smoothed. An example is the pitch con-
tour of Fig. 4.37c, which has obvious errors that must be brought back into line
with the rest of the data. An ordinary linear lowpass filter would not only fail
to bring the errant points back into line but would severely distort the contour
at the transition between voiced and unvoiced speech (shown as zero period).
For such cases some type of nonlinear smoothing algorithm which can preserve
signal discontinuities yet still filter out large errors is required. Although an
ideal nonlinear smoothing algorithm with these properties does not exist, a
nonlinear smoother using a combination of running medians and linear smooth-
ing (originally proposed by Tukey [20]) can be shown to have approximately
the desired properties [21].

The basic concept of a linear smoother is the separation of signals based !
on their (approximately) nonoverlapping frequency content. For nonlinear

smoothers it is more appropriate to consider separating signals based on
whether they can be considered smooth or rough (noise-like). Thus a signal
x{(n) can be considered to be of the form:

x(n) = Slx(n)] + Rlx(n)] (4.43)

where S[x] is the smooth part of the signal x, and R [x] is the rough part of
the signal x. A nonlinearity which is capable of separating S{x(n)] from

R{x(n)] is the running median of x(n). The output of the running median

smoother, M;[x(n)], is simply the median of the L numbers,

x(n), ..., x(n—L+1). Running medians of length L have the following |

desirable properties for a smoother:

1. Mylax(n)] =a M [x(n)]

2. Medians will not smear out discontinuities in the signal if the signal

has no other discontinuities within L/2 samples.

3. Medians will approximately follow low order polynomial trends in the ‘
signal. It should be reemphasized that running medians, like other |

nonlinear processing algorithms, do not obey the superposition pro-
perty, i.e.,

ML[axl(n)-*'sz(n)] = aML[Xl(n)] + ﬁML[Xz(n)] (444)

Although running medians generally preserve sharp discontinuities in a
signal, they often fail to provide sufficient smoothing of the undesirable noise-
like components of a signal. A good compromise is to use a smoothing algo-
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Fig. 4.38 Block diagram of a nonlinear smoothiny
Rabiner et al. [21].) e sysiem. - (After

rithm ba§ed on a combina_tion of running medians and linear smoothing. Since
the running medians provide some smoothing, the linear smoother can be a low
order system. Usually the linear filter is a symmetrical FIR filter so that delays

can be exactly compensated. For exam : o
. ple a hanning filt
response g filter with impulse

h(n) =1/4 n=0
=12 n=1
=14 n=2 (4.45)

is generally adequate [20]. Figure 4.38a shows a block diagram of a combina-
tion smoother based on running medians and linear smoothing. The signal
y'(n) at the output of the smoother is an approximation to the signal S{x(n)]
S:nce the approximation is not ideal, a second pass of nonlinear smoothing is'
incorporated into the smoothing algorithm as shown in Fig. 4.38b. Since

y(n) = Slx(n)] (4.46)
then
z(n) = x(n) — y(n) = Rlx(n)] (4.47)

The second pass of nonlinear smoothing of z(n) yields a correction signal

which is added to y (1) to give w(n), a refined a imati
; > pproximation to S T
signal w(n) satisfies the relation 0 Slx(n)]. The

w{n) = Slx(n)] + S{Rx(n)]] (4.48)

If z(n) = Rlx(n)] exactly, ie., the nonlinear smoother were ideal, then

x(n) — MEDIAN LINEAR |__ PR y(n)
SMOOTHING |~ [SMOOTHING —{DELAY O

MEDIAN LINEAR
® SMOOTHINGH&\AOOTHING

Fig. 4.39 Nonlinear smoothing system with delay com i
: ensation.
Rabiner et al. [21].) ’ pensation. (After
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S[R[x(r)]] would be identically zero and the correction term would be
unnecessary.

To implement the nonlinear smoother of Fig. 4.38 in a realizable systt_‘.m
requires accounting for the delays in each path of the smpother. Each median
smoother has a delay of (L—1)/2 samples, and each linear smoother ha§ a
delay corresponding to the impulse response used. For e)fample, a running
median of 5§ smoother has a delay of 2 samples, and a 3 point Hamrpmg win-
dow linear filter has a delay of 1 sample. Figure 4.39 shows a block diagram of
a realizable version of the smoother of Fig. 4.38b.

The final issue concerned with the implementation of the nonlinear
smoother of Fig. 4.39 is the question of how the running median of the signal
is defined at the beginning and end of the signal to be smoothed. .Althougb a
variety of approaches are possible, for speech applications extrapolgtmg the sig-
nal backwards and forwards by assuming the signal stays constant is generally a
reasonable solution.

Figure 4.40 shows the results of using several. diﬁergnt smopthers on a
zero crossing representation of a speech signal. The input signal (an. f1.40a1)‘(;s
rough due to the use of a short averaging time. It can be seen in Fig. 4.40d
that the output of the median smoother alone (a 5 point median followed by a
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n
Fig. 4.40 Example of nonlinear smoothing applied to zero-crossing
representation. (After Rabiner et al. [21].)
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Fig. 4.41 Example of nonlinear smoothing of a pitch contour. (After
Rabiner et al. [21].)

3 point median) has a block-like effect due to the presence of high frequency
components in the smoothed output. The output of the linear smoother (a 19
point FIR lowpass filter), shown in Fig. 4.40b, is smeared whenever rapid
changes occurred in the input signal. The output of the combination smoother
{a median of 5 followed by a median of 3 followed by a 3-point hanning win-
dow), shown in Fig. 4.40c, is seen to follow the changes in the input signal
quite well while eliminating most of the noise in the signal.

Figure 4.41 shows an example in which the combination smoother was
used to smooth a pitch period contour for which several obvious errors were
made in the estimate. An important property of median smoothing is that it
can correct isolated errors in the data while combining this operation with the
desired smoothing. As seen in Fig. 4.41 the combination smoother was able to
eliminate the gross measurement errors and adequately smooth the signal,
while leaving the voiced/unvoiced transitions intact.

4.10 Summary

In this chapter we have discussed several representations of speech that are
based primarily on processing carried out directly in the time domain. We have
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discussed these techniques in some detail since they are widely used in speech
processing and we feel that a basic understanding of the properties of these
techniques is essential to their effective utilization. Also included in this
chapter were several examples of speech processing schemes that are based
upon some combination of short-time energy, zero-crossing rate, and autocorre-
lation function representations of speech signals. The purpose of these exam-
ples was to show how speech processing systems can be built up through the
application of simple basic principles of signal processing.

APPENDIX

Short-cuts for Computing Autocorrelations

Computation of X points of the autocorrelation function for an N point window
requires on the order of K-N multiplications and additions. Since, for many
practical applications, both K and N are large (e.g., K = 250 and N = 401), it
is desirable to exploit any properties of the autocorrelation function that are
known to reduce thé computational load. In this section we discuss three
methods for reducing the computation of the autocorrelation function.

The first short-cut, due to Blankenship [22], follows from the realization
that for m # 0, most of the input samples appear twice as multiplicands, e.g.,
for the modified autocorrelation & = 1 we get

R =3 x(m+n)x(msn+1)

m=0

=x(m)x(n+1) + x(n+Dx(n+2) + -+ + x(n+N-Dx(n+N)

=x(n+DIx(M+x(n4+2)] + x(n+) [x(n+2) +x(n+4)] + - - - (Al)

Thus when k # 0, by using an expression of the form of Eq. (4.36) the
number of multiplications can be effectively halved without increasing the
number of additions. Formally the autocorrelation computation can be
expressed in the form

R(k) = B(k) + C(k) (A2)

(suppressing the subscript # from this point on, for convenience) where N is
expressed as

N= 2gk + ak +5b (A3)
even optional
component componemt
with @ = 0, or 1, and b in the range
0<b<k (Ad)
In Eq. (A2),
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-1 &
B(k) = to X X Qk++0 [x Qjk+i) + x Qjk+i420)] (AS)
J=U =
andif @ =0
b
Clk) = ¥ xQqk+)xQqk+i+k) (A6)
i=]
orifa =1

b
Cll) = 3 xQqk+i+k) [x 2qk+i) + xQqk+i+2k)]

i=1

K
+ Y xQgk+)xQgk+i+k) (A7)

imb+1
gfo% :?(a(rxgl)e,afgnmder N =60 with k = 6, 7, and 8. The values for ¢, a, and 5
N =60, k=26, g=5 a=0, b=
N=60, k=7, g=4, a=0, b=4
N=60, k=3, g=3 a=1 p=4
Once values of g, a, and b are obtained, Egs.(A2) and (AS)-(A7) are straight -
forwardly applied to give R (k). It is readily shown that the number of multi-
plications required to compute R (k) satisfies the relation

Ny < % (N+k) (A8)

Thus for k << N, this procedure leads to approximately a 2:1 reduction in the
n_umber of multiplications. When one is interested in only a few autocorrela-
tion values (e.g., in linear prediction methods of Chapter 8) this method is
quite a useful one. For example, Blankenship shows that if K = 12, and
1\{ =128, a total of 1664 multiplications (N (K+1)) would be required ’for a
dlrec_t evaluation of the autocorrelation, whereas only 912 multiplications are
r_equ:red for this modified procedure — a savings of a factor of 1.825 to I in the
time required for multiplications. For computations where a large number of

autocorrelation values are desired, e.g., the examples of Section 4.6, this pro-
cedure leads to very small savings.

A var@ation on the above procedure was given by Kendall [23] for the
autocorrelauoq defined by Eq. (4.30). Denoting the weighted speech sample
x(n)w(n) as %(n), and again suppressing the subscript n, Eq. (4.30) becomes

N-=l-k
R = "3 2(m)%(m+k) (A9)

m=0

which can be expressed as (assuming N even)

(N-K)/2-1
R(k) = i XQm) + 2Qm+k+1)1zQm+1) + 2Qm+k)]

m=0

— A(k) — B(k) k even (A10)
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~mp

(N—k=1)/2-1
R{k) = Y [(xQ2m) + xQm+k+DIx2m+1) + 2Qm+k)]
m=(0
— A(k) — B(k) + X(N=1-K)X(N-1)  k odd (AlD)
where 4 (k) and B(k) are obtained via the recursion relations
Ak) = A(k+2) + X (N=2—k)X(N-1-k), k even (A12)

with initial condition 4 (N) = 0,

A(k) = A(k+1), k odd (A13)
and
B(k) = B(k+2) + 2(k)x(k+1),  k even (A14)
with initial condition B(N) = 0, and

B(k) = B(k+2) + x(k)x(k+1), Kk odd (A15)

with initial condition B(N—1) = 0. Equations (A10) and (A11) show that the
number of multiplications required to compute R (k) is approximately
(N—k-1)/2 —~ i.e., half that normally required in a direct evaluation, whereas
the number of additions is increased by about 50%. Furthermore it is seen that
the reduction in the number of multiplications is valid for all k, not just when
k << N as in the preceding method.

The final method for speeding up the autocorrelation computation is the
well known FFT method in which the autocorrelation is determined as the
inverse DFT of the power density spectrum (the squared magnitude of the
DFT) of the sequence [24,1,2]. For this method two DFT’s and a squared
magnitude are required. To avoid aliasing in the autocorrelation computation, a
2N point DFT (computed using an FFT algorithm) is required in which the N
point data sequence is padded with N zero valued samples. The process of
forming a squared magnitude requires about 2N multiplications, and a 2N point
FFT requires 2N log,(2N) multiplications to give all N points of the autocorre-
lation function. Thus for the FFT method, the total number of multiplications
required is:

Ng= 22N log,(2N) + 2N (A16)

Kendall [23] has shown that the modified direct autocorrelation measurement is
more efficient than the FFT method for values of N € 256, in terms of the
number of multiplications required. If one includes additions in the computa-
tion, the modified direct method is more efficient for N in the vicinity of 128.
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PROBLEMS

The rectangular window is defined as

wg(n) =1 0<ngN-1
=0  otherwise

The Hamming window is defined as
.54 — .46 cos[2mn/(N-1)] 0<nEN-1

=0 otherwise

wy(n)

(a) Show that the Fourier transform of the rectangular window is

sin(wN/2) e~ iw(N=1/2
sin(w/2)
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WR(e'iw) =

(b) Sketch Wg(e’® as a function of . (Disregard the linear phase fac-
tor e—fe(N=1)/2)

(c) Express wy(n) in terms of wg(n) and thereby obtain an expression
for Wy(e’*) in terms of Wg(e'™).

(d) Sketch the individual terms in Wy(e/*). (Disregard the linear phase
factor e~/«{N=D/2 that is common to each term.) Your sketch should

i]lustrate how the Hamming window trades frequency resolution for
increased suppression of higher frequencies.

The short-time energy of a sequence x(n) is defined as

E,= i Ix(m)w(n—m)]?

m=—oa

For the particular choice

wim)=a”" m>=0
=0 m <0

it is possible to find a recurrence formula for E,

(a) Find a difference equation that expresses E, in terms of £,_, and
the input x (n).

(b) Draw a digital network diagram of this equation.
(c) What general property must

h(m) = wi(m)
have in order that it be possible to find a recursive implementation?
The short-time energy is defined as

N
E,= Y h(m)x¥n—m)

m=—-N

Suppose we wish to compute E, at each sample of the input.
(@) Let h(m) be .

h(m) =al"l  |m| < N
=0 otherwise

Find a recurrence relation (i.e., a difference equation) for E,

(b) What is the savings in number of multiplications obtained by using
the recurrence relation rather than directly computing E,?
(c) Draw a digital network diagram of the recurrence formula for E,.

(As defined, #(m) is noncausal. Therefore an appropriate delay
must be inserted.)

Suppose that the average magnitude is to be estimated every L samples at

.the input sampling rate. One possibility is to use a finite length window as
in

M, = 2" |x (m) | wln—m)

m=n-N+1

167



4.5

4.6

4.7

In this case, M, is only computed once for each L samples of the input.
Another approach is to use a window for which a recurrence formula can

be obtained, e.g.,
M,=aM,_, + |x(n)]| .

In this case M, must be computed at each input sample, even though we

may only want it every L samples.

(a) How many multiplies and adds are required to compute M, once for
each L samples with the finite length window?

(b) Repeat (a) for the recursive definition of M,

(¢) Under what conditions will the finite length window be more
efficient?

The short-time average zero-crossing rate was defined in Eqgs. (4.18)-
(4.20) as
Z,= %\’_ Y sgnlx(m)]—sgnlx(m—1]|

m=n—N+1

Show that Z, can be expressed as
Z,y + # |sgn [x (n))—sgn[x (n—1D1} - {sgnlx (n—N))=sgn[x(n—N-1)}|

To demonstrate how a parallel processing pitch detector can combine
several independent pitch detectors, each with a fairly high error probabil-
ity, and give a highly reliable result, consider the following idealized situa-
tion. Assume there are 7 independent pitch detectors, each having a pro-
bability p of correctly estimating pitch period, and probability 1 — p of
incorrectly estimating pitch period. The decision logic is to combine the 7
pitch estimates in such a way that an overall error is made only if 4 or
more of the individual pitch detectors make an error.

(a) Derive an explicit expression for the probability of error of the
paralle] processing pitch detector in terms of p. (Hint: consider the
result of each pitch detector a Bernoulli trial with probability (1—p)
of making an error and probability p of no error.)

(b) Sketch a curve showing the overall error probability as a function of
D.

(c) For what value of pis the overall error probability less than 0.05?

As given by Eq. (4.24) the short-time autocorrelation function is defined

as

R = 3 x(m)w(n—m)x(m+&)w(n—k—m)

(a) Show that T
R,(k) = R,(=k)

i.e., show that R,(k) is an even function of k.
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4.8

- 4.9

——mne

(b) Show that R, (k) can be expressed as

RK) = 3 x(m)x(m—k)hy(nem)

Mmw—co

where

hin) = w(n)w(n+k)
(c) Suppose that

win)=a" n>90
=0 n<0

Find the impulse response, A,(n) i
i » hi(n), for computing the k lag,
@ Find the ztransform of A,(n) in (c) and from it obtain a recursive
1mplementa}tlon for R,(k). Draw a digital network implementation
for computing R, (k) as a function of n for the window of (c)
() Repeat parts (c) and (d) for .

w(n) = ng"
=0

Consider the periodic impulse train

n20
n<o

x(m) = i 8(m—rP)

r=—oo

(@) Using Eq. (4.30), with w'(m) .
N, satisfies a rectangular window whose length,

QP <N-1<(Q+1)P

where Qis an integer, find and sketch R (k) for0 € k <
(b) How would the result of (a) o or0SkSN-1
; change if th i i
© window of the same length? ge It the window is a Hamming
¢) Find and sketch the modified short time au . .
R : - tocorrelation fi
R, (k), given by Eq. (4.36) for the same value of N. unetion,

The long-time autocorrelati i i
' . on function of a random sign iodi
signal is defined as Bnal or 2 periodic

. 1 N
(k) = }/@w N T M‘Z_Nx(m)x(m+k)

The short-time autocorrelation function is defined as

N—El—l
R, (k) = x(n+m)w’(m)x(n+m+k)w'(m+k)

m=0

and the modified short-time autocorrelation function is defined as

. N=1
Ry(k) = 3 x(n+m)x(n+m+k)

m=0
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Show whether or not the following statements are true or false.

(a) If x(n) = x(n+P), —oo < n < oo, then

(D) ¢k) = ¢(k+P) —o0 < k < o0

() R,k = R(k+P)  ~(N-D < k< N-1

i) R,k = R(k+P) —(N-D < k< N=-1
(b)

@ (k) = ¢(k) -0 < k < o

(i) Ig,,(—k) = If,,(k) —(N-) £k N-1

(iii) R,(—k) = R, (k) ~-(N-) £k N-1
(c)

D o) < ¢0 -0 < k < o0

(i) Rk < RO -(N-1)<k<g<N-1

i) R < R0 ~(N-D<kKN-1
(d)

(i)  ¢(0) is equal to the power in the signal.

(i) R,(0) is the short-time energy.

(i)  R,(0) is the short-time energy.

4.10 Consider the signal

(@)

(b)
(©

x(n) =coswgn —o0 < n < o

Find the long-time autocorrelation function, ¢(k), for x(n)
(Eq. (4.21)).

Sketch ¢(k) as a function of k.

Find and sketch the long-time autocorrelation function of the
signal

yn)=1 if x() =0
=0 if x(n) <0

4.11 The short-time average magnitude difference function (AMDF) of
the signal x(n) is defined as (see Eq. (4.38))

(a)

yalk) = -}v Nil |x(n+m)=x(n+m—k)|

m=0

Using the inequality {16)

1 A=t 1 A=l 2‘/2
¥ Y |x(m)] € ~ T |x(m)]|

m=0 m=0

show that

N ~ 1/2
v, (k) < [2(R,,(0)—R,,(k))]
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This result leads to Eq. (4.39)

(b) Sketch y,(k) and the quantity [2(R,(0)—R,(k))]"? for

0 < k < 200 for the signal
x(n) = cos(wgn)
with N = 200, wy= 2002/(10000).

4.12 Consider the signal

x(n) = Acos(wgn)

as input to a three-level center clipper which produces an output

(a)
®)
©

y(”) = l X(n) > CL

=0 Ix(m}| € C,

= -] x(”) < "'CL
Sketch y(n) as a function of n for C, = 0.54, C,=0.754,
and C; = 4. '
Sketch the autocorrelation function for y(n) for the values of
C, in (a). :
Discuss the effect of the setting of C, as it approaches A.
Suppose that A varies with time such that

0<4(n) < 4

Discuss problems that this can cause if C_ is close to A

max

max-
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Digital Representations
of the Speech Waveform

5.0 Introduction

"Watson, if I can get a mechanism which will make a current of electricity vary
its intensity as the air varies in density when sound is passing through it, I can
telegraph any sound, even the sound of speech” — A. G. Bell [1].

This simple idea, so important in the history of human communication,
seems commonplace today. The basic principle embodied in Bell’s great inven-
tion is fundamental to a multitude of devices and systems for recording,
transmission or processing of speech signals in which the speech signal is
represented by reproducing the amplitude fluctuations of the speech waveform.
This is also the case for digital systems, where the speech waveform is often

represented by a sequence of numbers which specifies the pattern of amplitude

fluctuations.
The general nature of digital speech waveform representations is depicted

in Fig. 5.1. As illustrated there, the speech waveform, which can be thought of *

as a continuous function of a continuous time variable, is sampled, generally

periodically in time, to produce a sequence of samples, x,(nT). These samples |

generally would take on a continuum of values. Therefore, it is necessary to
quantize them to a finite set of values in order to obtain a digital representa-
tion; i.e., one that is discrete in both time and amplitude.

As we shall see in this chapter, Fig. 5.1 isa convenient conceptualization

of the process of obtaining a digital representation of the speech waveform. It }
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———eeem—3{  SAMPLER QUANTIZER p——————3
Xo 1) x(n) =xg(nT) E x(n)

CONTINUOUS -TIME

SPEECH SIGNAL SEQUENCE OF

FINITE-PRECISION
SAMPLES

l'_'ig. 5.1 General block diagram depicting digital waveform representa-
tions.

may not always be possible t.o separate-a given representation into two distinct
§tages, however, the two basic features, sampling and quantization, are inherent
in all the schemes that we shail discuss in this chapter.

We shall begin by discussing the sampling process as applied to speech

signals. Th'en we shall discuss a variety of schemes for quantizing the samples
of speech signals.

5.1 Sampling Speech Signals

We have already discussed the sampling theorem in Chapter 2. There it was
spown'that samples of an analog signal are a unique representation if the analog
signal is bz_mdlimited and if the sampling rate is at least twice the Nyquist fre-
quency. Since we are concerned with digital representations of speech signals
we x}eed to consider the spectral properties of speech. We recall from the disi
cussion of Chapter 3 that according to the steady state models for the produc-

L /0/ VOWEL
_BOO 1
@ 5000 10000
h-)
= 0
a C /Ju/ VOWEL
D
£
F L
2 Yooy . i
2 -60 L L L s L s . A A el
8 5000 10000
- 0
75/ SOUND w
_500 I L i N R N L L
5000 10000

FREQUENCY IN Hz

Fig. §.2 Spectra of voiced sounds (/a/ vowel and /u/ vowel) and an
unvoiced sound (/s/) for a 20 kHz sampling rate.
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Fig. 5.3 Frequency response of a typical telephone transmission path.
(After BTL, Transmission Systems for Communication, p. 73.)

tion of vowel and fricative sounds, speech signals are not inherently bandlim-
ited, although the spectrum does tend to fall off rapidly at high frequencies.
Figure 5.2 shows spectra of some typical speech sounds. It is observed that for
of the voiced sounds, the high frequencies are more than 40 dB below the peak
of the spectrum for frequencies above 4 kHz. On the other hand, for unvoiced
sounds, the spectrum has not falien off appreciably even above 8 kHz. Thus,
to accurately represent ail speech sounds would require a sampling rate greater
than 20 kHz. In most applications, however, this sampling rate is not required.
For example, if the sampling operation is a prelude to the process of estimating
the first three formant frequencies of voiced speech, we are only interested in
the portion of the spectrum up to abut 3.5 kHz. Therefore, if the speech is
filtered by a sharp cutoff analog filter prior to sampling, so that the Nyquist fre-

quency is 4 kHz, then a sampling rate of 8 kHz is possible. As another exam-

ple, consider speech that has been transmitted over a telephone line. Figure
5.3 shows a typical frequency response curve for a telephone transmission path.
It is clear from Fig. 5.3 that telephone transmission has a bandlimiting effect on
speech signals, and indeed, a Nyquist frequency of 4 kHz is a realistic assump-
tion for "telephone speech.”

An important point which is often overlooked in discussions of sampling

is that even though the signal waveform may have a bandlimited spectrum, the
signal may be corrupted by wideband random noise, prior to analog-to-digital
conversion. In such cases, the signal plus noise combination should be filtered

with an analog lowpass filter which cuts off sharply above the Nyquist fre-

quency, so that images of the high frequency noise are not aliased into the base
band.

5.2 Review of the Statistical Model for Speech

In discussing digital waveform representations, it is often convenient to assume ;

that speech waveforms can be represented by an ergodic random process.
Although this is a gross simplification, we will see that a statistical point of view
yields useful results thereby justifying the use of such a model.
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If we assume that the signal x,(¢) is a sample function of a continuous-
time random process, then the sequence of samples derived by periodic sam-
pling can likewise be thought of as a sample sequence of a discrete-time ran-
dom process. For many purposes in communication system analysis, an ade-
quate characterization of the analog signal consists of a first order probability

density, p(x), and the autocorrelation function of the random process, which is
defined as

¢ 4(1) = Elx,(1)x,(t+7)] 5.1
where E[ ] denotes the expectation of the quantity within the brackets. The
analog power spectrum is the Fourier transform of ¢ ,(r); i.e.,

0,(Q) = [ ¢,(rei7dr (5.2)

The discrete-time signal obtained by sampling the random signal x,(t) has an
autocorrelation function

o(m) = Elx(n)x(n+m)]
= Elx,(nT)x,(nT+mD)] = ¢ ,(mT) (5.3)

Thus, since ¢{(m) is just a sampled version of ¢,(7), then the power spectrum
of ¢(m) is given by

B(e/07T) = i d(m)e=i0Tm

e
1 oo
=72¢m+%m .4)
Km=—co

Eq. (5.4) shows that for the random process model of speech, the power spec-
trum of the sampled signal is an aliased version of the power spectrum of the
original analog signal.

The prqbability density function for the amplitudes, x (n), is the same as
for the amplitudes, x(t), since x(n) = x,(nT). Thus averages such as mean
and variance are the same for the samples as for the original analog signal.

When applying statistical notions to speech signals, it is necessary to esti-
mate the probability density and correlation function (or the power spectrum)
from speech waveforms. The probability density is estimated by determining a
histogram of amplitudes for a large number of samples; i.e., over a long time.
Davenport [2] made extensive measurements of this kind, and more recently,
Paez and Glisson [3], using similar measurements, have shown that a good

approximation to measured speech amplitude densities is a gamma distribution
of the form

_M3lx|
B DRV R =
plx) = 8o Ix] ] e (5.5)
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1OF
Fig. 5.5 Autocorrelation functions of speech signals; upper curves for
- lowpass speech, lower curves for bandpass speech. (After Noll [4])
2 oaf
r - 1 L—1-m
i o(m) = " 2 x(mx(n+m), 0<|m| <L -1 5.7
L n=0
008 ' where Lisal int A : . .
| 3 s a large in teger, An example of such an estimate is shown in Fig. 5.5
. for an 8 kHz sampling rate [4]. The upper curve shows the correlation for
F . lowpass ﬁltgred speech and the lower curve is for bandpass filtered speech. The
shaded region around each curve shows the variation of the estimate due to
-25
g ~
_30 = —— —— < =
0.01 / \—\
o / N
o
Fig. 5.4 Real speech and theoreticai Gamma and Laplace probability i -4 _\\_
densities. (After Paez and Glisson [3].) 3.~ <
r 3 N~
eo >
. . . . . (= N
A somewhat simpler approximation is the Laplacian density g: %
1 _2lx| ‘ g 50 _\\_
¢ 93w
(x) = e ’x (5.6) 1 0z \
d Vio, g3 oy
) ) i BT e COMPOSITE , 6 MEN \\—
Figure 5.4 shows a measured amplitude density for speech along with gamma | 53 — — — COMPOSITE, 5 WOMEN A%
and Laplacian densities, all of which have been normalized so that the mean is a° ¥\
zero and the variance (o ?) is unity. The gamma density is clearly a better 5 __\_\_
approximation than the Laplacian density, but both are reasonably close. E  -70
The autocorrelation function and power spectrum of speech signals can be
estimated by standard time-series analysis techniques. An estimate of the auto-
correlation function of an ergodic random process can be obtained by estimat- -80
ing the time-average autocorrelation function from a long (but finite) segment 625 125 250 500 1000 2000 4000 8000

of the signal. For example, the definition of the short-time autocorrelation | FREQUENCY (H2)

function (Eq. (4.30) of Chapter 4) can be slightly modified to give the estimate
of the long-time average autocorrelation function

Fig. 5.6 Long-time power density spectrum for continuous speech,
(After Dunn and White [5].)
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Fig. 5.7 (a) Autocorrelation function; and (b} power density estimates
for speech. (After Noli [7].)

different speakers. The correlation is high between .adjacent samples and it )
decreases rapidly for greater spacing. Also evident is the fact that lowpass

filtered speech is more highly correlated than bandpass filtered speech.

The power spectrum can be estimated in a variety of ways. For speech,

one of the earliest results was obtained by measuring the average output of a

set of bandpass filters [S]. Figure 5.6 shows an example. where tt}e power was
averaged over about a minute of continuous speech. This figure indicates ﬂt)?t
the average power spectrum is peaked at about 250-500 Hz and that above t‘ 1s
frequency, the spectrum falls off at about 8-10 dB/octave. An alternative

approach to the estimation of the long-term average power spectrum is to first
estimate ¢(m) as in Eq. (5.7) and then compute

b = B wimd(m)e1onT (59

m=—M
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for a discrete set of frequencies, Qy=27k/T, for k=0,1, ... N— 1, using
the discrete Fourier transform [6] where w(m) is a window (weighting) func-
tion on the autocorrelation function. An example of this method of spectrum
estimation as applied to speech is shown in Fig. 5.7 for w(m), a Hamming win-
dow [7]. Still another approach is to compute the power transfer function of a
recursive digital filter whose output when excited by white noise has the same
spectral properties as the given signal. (See Chapter 8.)

5.3 Instantaneous Quantization

As we have already pointed out, it is convenient to consider the processes of
sampling and quantization separately even though it is often impossible to dis-
tinguish the two separate functions in actual implementations of digital
waveform representations. Thus, let us assume that a speech waveform has
been lowpass filtered and sampled at a suitable rate giving a sequence, {x(n)},
which is known with infinite precision. In most of our discussion in this
chapter we will view this sequence of samples as a discrete-time random pro-
cess. In order to transmit this sequence of samples over a digital communica-
tion channel, or to store them in digital memory or to use them as the input to
a digital signal processing algorithm, the sample values must be quantized to a
finite set of amplitudes so that they can be represented by a finite set of sym-
bols. This process of quantization and coding is depicted in Fig. 5.8. Just as it
is conceptually useful to separate sampling and quantization into two distinct
steps, it is likewise useful to separate the process of representing the samples,
{x(n)}, by a finite set of symbols, {c(n)), into two stages; a quantization stage
which produces a sequence of quantized amplitudes {%(n)} = {Q[x (n)]} and an
encoding stage which represents each quantized sample by a code word, c(n).
This is depicted in Fig. 5.8a. (The quantity A in Fig. 5.8a represents the quant-
ization step size for the quantizer.) Likewise it is convenient to define a
decoder which takes a sequence of code words, {c'(n)}, and transforms it back
into a sequence of quantized samples, {£'(n)}, as depicted in Fig. 5.8b. If the
code words ¢'(n) are the same as the code words c(n), i.e., no errors have
been introduced, then the output of the ideal decoder is identical to the quan-
tized samples; i.e., £'(n) = x(n).

In most cases it is convenient to use binary numbers to represent the
quantized samples. With B-bit binary code words it is possible to represent 25

QUANTIZER

Q ENCODER -— > —————{D)| R
x(n) [ J 2(n) c(n) c'(n} ECcoDE 2m)

A a'
(a) (b)

Fig. 5.8 Process of quantization and coding; (a) coder; (b) decoder.

179



different quantization levels. The information capacity required to transmit or
store the digital representation is therefore:

I = B-F, = Bit rate in bits per second 5.9

where F, is the sampling rate (i.e., samples/second) zfmd B is the numbe1: of
bits/sample. It is generally desirable to maintain the bit rate as low as posglble
while maintaining a required level of quality. For a given speech bandwidth,
the minimum sampling rate is fixed by the sampling theorem.. Therefore the
only way to reduce the bit rate is to reduce the r_)umbe_r of blts/sam_ple. For
this reason we shall now turn to a discussion of a variety of techniques for
quantizing a signal. .

In general, it is reasonable to assume that the samples {x(n)} will fall in a
finite range of amplitudes such that

Ix(n)| € Ximax (5.10)

For convenience, it may be desirable to assume that X, is inﬁpite, as for
example when we assume a particular form for the probapili!y d_ensuy function
of amplitudes of x(n) such as the gamma or Laplacian distribution. prevep
we should bear in mind that the assumption of a finite range of amplitudes is
more realistic. Even if we assume a Laplacian density, it is easy to shqw (see
Problem 5.2) that only 0.35% of the speech samples would fall outside the
range

~40, < x(n) € 4o, (5.11)

Thus, it is convenient to assume that the peak-to-peak range of the speech sig-
nal is proportional to the standard deviation of the signal.

% 1
1"
I —— e
2| 110
a 101
Xz -
. | 100
X4
1 1 1 1 Il KN
X X, X x X X
X-3 X2 011 |30 1 2 3
X1
010
45
001 Jis
000 lie

Fig. 5.9 Input-output characteristic of a 3-bit quantizer.
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Fig. 5.10 Two common uniform quantizer characteristics; (a) mid-riser;
(b) mid-tread. )

The amplitudes of the samples are quantized by dividing the entire ampli-
tude range into a finite set of amplitude ranges and assigning the same ampli-
tude value to all samples falling in a given range. This is shown in Fig. 5.9 for
an 8-level quantizer. For example, we see that for all values of x(n) between
xy and x; the output of the quantizer is x(n) = Q[x(n)] = %,. Each of the
eight quantizer levels is labelled with a 3-bit binary code word which serves as a
symbolic representation of that amplitude level. For example, in Fig. 5.9 the
coded output for a sample whose amplitude is between x; and x, would be the
binary number 101. The particular labelling scheme in Fig. 5.9 is arbitrary.
Any of the 8 factorial possible labelling schemes is a possibility; however, there
are often good reasons for the choice of a particular scheme.

5.3.1 Uniform quantization

The quantization ranges and levels may be chosen in a variety of ways
depending on the intended application of the digital representation. When the
digital representation is to be processed by a digital system, the quantization
levels and ranges are generally distributed uniformly. Thus to define a uniform
quantizer using the example of Figure 5.9, we set

Xi—Xxi1=A (5.12)
and
Xi—Xy=A (5.13)

where A is the quantization step-size. Two common uniform quantizer charac-
teristics are shown in Fig. 5.10 for the case of eight quantization levels. Figure
5.10a shows the case where the origin appears to be in the middle of a rising
part of the staircase-like function. This class of quantizers is called the "mid-
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riser” class. Likewise Fig. 5.10b shows an example of the "mid-tread" class of
quantizers. For the case where the number of levels is a power of 2, as is con-
venient for a binary coding scheme, it can be seen that the mid-riser quantizer
has the same number of positive and negative levels, and these are symmetri-
cally positioned about the origin. In contrast, the mid-tread quantizer has one
more negative level than positive, however, in this case one of the quantization
levels is zero while there is no zero level in the mid-riser case. Code word
assignments are shown in Fig. 5.10 in the manner of Fig. 5.9. In this case, the
code words have been assigned so as to have a direct numerical significance.
For example, in Fig. 5.10a, if we interpret the binary code words as a sign-
magnitude representation with the left most bit being the sign bit, then the
quantized samples are related to the code words by the relationship

4 sign (c(n)) + Ac(n) (5.14)

2
where sign(c(n)) is equal to +1 if the first bit of ¢(n) is 0, and —1 if the first
bit of c{r) is 1. Similarly, we can interpret the binary code words in Fig. 5.10b
as a 3-bit two’s-complement representation, in which case the quantized sam-
ples are related to the code words by the relationship

2{n) = Acln) (5.19

This latter method of assignment of code words to quantization levels is most
commonly used when the sequence of samples is to be processed by a signal
processing algorithm which is implemented with two’s-complement arithmetic
(as on most minicomputers), since the code words can serve as a direct numer-
ical representation of the sample values.

For uniform quantizers (as shown in Fig. 5.10) there are only two param-
eters: the number of levels and the quantization step size, A. The number of
levels is generally chosen to be of the form 2250 as to make the most efficient
use of B-bit binary code words. Together, A and B must be chosen so as to
cover the range of input samples. If we assume that Ix(n)| € Xap then
(assuming a symmetrical probability density function for x(n)) we should set

2X 0y = A28 (5.16)

x(n) =

In discussing the effect of quantization it is helpful to represent the quan-
tized samples x(n) as

£(n) = x(n) + e(n) (5.17
where x(n) is the unquantized sample and e(n) is the quantization error or

noise. It can be seen from both Figs. 5.10a and 5.10b that if A and B are
chosen as in Eq. (5.16), then

e(n) < % (5.18)

By way of example, if we choose the peak-to-peak range of x{(n) to be 8¢, and
if we assume a Laplacian probability density function (as discussed in Section

N

4
2
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5..2), then oqu 0.35% of the samples will fall outside the range of the quan-
¥ tizer. The cl}pped samples will incur a quantization error in excess of + A/2:
4 however, their number is so small that it is common to assume a range on thé
¥ order S(Tx and neglect the infrequent large errors in theoretical calculations [8]
b It is clear that we do not know either x(n) or e(n), but only the uaﬁ-
¥ tized value .x(n). To study quantization effects, it is convenient and use?ul t
) assume a simple statistical model for the quantization noise. This del .
I based on the following assumptions. . ol 8

1. The quantization noise is a stationary white noise process; i.e
A Ty

Ele(Me(n+m)l =02 m=0 (5.19)
=0, otherwise
2. The quantization noise is uncorrelated with the input signal; i.e.,
Elx(n)e(n+m)] =0, forall m (5.20)

3. The fiistribution o.f quantization errors is uniform over each quantiza-
tion interval and since the intervals are all of the same length

-1 A )
p.(e) = AT T3 e < 5 (5.21)
=0, otherwise

'The'se assqmptiqns are clearly unrealistic for some types of signals. For exam
:‘ple if the input is a constant for all n, the above assumptions are r:not appro ri:
"ate. Speech,‘ hqwever, is a complicated signal which fluctuates rapidly amcl:n
gll Fhe quantization levels, and if A is small enough, the amplitude of the si ngl
Lis likely to traverse many quantization steps in going from sample to samgpl:

I this case, experim .
el periments have shown [9] that the above assumptions hold quite

. ,‘A‘n ex.ample. which illustrates the validity of the above statistical assump-
'Elons is deplcyed in Fig. 5.11 {6). Figure 5.11a shows 400 consecutive sam l:s
pf a sfpe}?ch signal. This' sigr}al was quantized by 3- and 8-bit uniform quanptiz—
:rs oht e fgrm ‘shown in Fig. 5.10b. The resulting quantization error signals
jare shown in Figs. 5.11b and 5.11c respectively. It is seen that the error
sequence shows some correlation to the input signal in the case of 3-bit quanti-
“atl‘on; hpwever, no correlation is readily apparent for the 8-bit quantizgr T

erify this observation, the correlation functions for the 3- and 8-bit quan-tizac-)

sur:\pFion that ¢(m) = q}§(m); however, Fig. 5.12a shows a significant
or:e a?qn f0.r m.> 0. This is reflected in the resulting power spectrum esti-
ates (given m.Flgures 5.12b and 5.12d respectively) which show that the 3-bit
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Fig. 5.11 (a) Speech waveform; (b) quantization error for 3-bit quantiza-
tion (same scale as in (a)); (c) quantization error for 8-bit quantization

(magnified 66 times with respect to ).

Note, however, that even for 3-bit quantization, the noise spectrum varies only
6 dB across the entire base band.

With this statistical model for the quantization noise, it is possible to
relate the strength of the noise to the signal strength and the parameters of the
quantizer. For this purpose it is convenient to compute the signal-to-
quantization noise ratio defined as!

: gy 25
ag
X Elx“n __n (522)

SNR = 2 Eled(m) X eXn)

If the peak-to-peak quantizer range is assumed to be 2X e then, for a B-bit

quantizer, we get
2X pax
A=—3% (5.23)
If we assume a uniform amplitude distribution for the noise, we obtain (see
Problem 5.1)

INote we are assuming that x{(n) has zero mean. If this is not the case, the mean value of x{n)

should be subtracted out prior to SNR calculations.
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o2 AT Xi
‘=1 T @2 (5.24)
Substituting Eq. (5.24) into Eq. (5.22) gives
3)2
SNR = 220 (5.25)
max
=

or expressing the signal-to-quantizing noise in dB units

0.2
Ue

X

- X max
6B +4.77 — 20 log.o[ - l (5.26)

if we assume that the quanti i
born s quantizer range is such that X .. = 4o ,, then Eq. (5.26)

SNR(dB) = 6B — 7.2 (5.27)
Equation (5.27), which states that each bit i ‘
. s ! ch bit in the code word i
the signal-to-noise ratio, is valid subject to the assumptions contributes 6 dB to

‘ g
1 Ihe Illpul 81 ]lal ﬂuctuales ma COlllpllcated manner so tllat a Sta“slical

1.0 $imi/o2
08 €0r 10 Iog‘o[ts(em*)/,z]
0.6 4.0
04 -
02 g 20
v} I_ . o ! ' m 0 o . |
-0.2 50 t
(a} -2.0
{b)
10 $(m)/52
0.8
06
04 4.0 ‘: 10 logyy [6((!5‘7"’)/,2]
0.2 2.0
0 . L L L ) m g o] = e
-0.2 l- S0 -2.0 t
(¢) -4.0

(d)

fg 5.12 (a) Normalized aut'ocorrelation estimate for 3-bit quantization;
power spectrum for 3-bit quantization; (c) normalized aulocorrela:

tion estimate for 8-bit quantization; (d power -D1 1-
’
( ) spectrum for 8-bit quant
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N

2. The quantization step size is small enough to remove any possibility of
signal correlated patterns in the noise waveform.

3. The range of the quantizer is set so as to match the peak-to-peak range
of the signal; i.e., so that very few samples are clipped but yet the full
range is utilized.

x{n}
Tt o]
n
ENCODER
cin)
I
[ ] SIGN [x(n)]

(a)

DECODER| ¥(m) I;(n)l (m)

For speech signals, these first two assumptions hold up very well when the
number of quantizer levels is reasonably large, say greater than 265 However,
the third assumption is less valid for speech signals, since the signal energy may
vary as much as 40 dB among speakers and with transmission environment.
Also for a given speaking environment, the amplitude of the speech signal
varies considerably from voiced speech to unvoiced speech and even within
voiced sounds. Since Eq. (5.27) assumes a given range of amplitudes, if the
signal fails to achieve that range, it is as if fewer quantization levels are avail-
able 1o represent the signal; i.e., as if fewer bits were used. For example, it is
evident from Eq. (5.26) that if the input variance is actually only one haif the
range for which the quantizer was designed, the signal-to-noise ratio is reduced
by 6 dB. Likewise, on a short-time basis, the variance of an unvoiced segment
may be 20 to 30 dB below the variance for voiced speech. Thus, the "short-
time" signal-to-noise ratio may be much less during unvoiced segments than
during voiced segments.

In order to maintain a fidelity of representation with uniform quantization
that is acceptable perceptually, it is necessary to use many more bits than might
be implied by the previous analysis in which we have assumed that the signal is
stationary. For example, whereas Eq. (5.27) suggests that B = 7 would provide
about 36 dB SNR which would most likely provide adequate quality in a com-
munications system, it is generally accepted that about 11 bits are required to
provide high quality representation of speech signals with a uniform quantizer.

For all of the above reasons, it would be very desirable to have a quantiz-
ing system for which the signal-to-noise ratio was independent of signal level.

*

cin)

SIGN [ &tn]]

(b}

Fig. 5.13 Block diagram of a logarithmic encoder-decoder
The inverse transformation is

x{(n) = exply (n)]signlx (n)]

' (5.29)
where signlx(#)] is +1 if x(n) i iti i i
e uantined o s H I X0 1s positive, and —1 if x(n) is negative. Now

J(n) = Qliog|x(n)|]

= log|x(n)| + e(n) (5.30)

where we have assumed as befor is i
3 e that e(n
. inverse of the quantized log magnitude 1€s ) is independent of tog () - The

%(n) = exply (n)lsignlx(n)]

= |x(n)|signlx(n)lexple(n)]
= x(n)exple(n)]

That is, rather than the error being of constant variance independent of signal It ) (5.31)
amplitude as for uniform quantization, it would be desirable to have a constant €(n) is small, we can approximate the above equation by
percentage error, This can be achieved using a nonuniform distribution of » £(n) = x(M)[1+e(n)] = x ) +
quantization levels. b here o) n) +e(n)x(n) = x(n) + f(n) (5.32)
b dent n) = x(n)e(n). Thus, since x(n) and €(n) are assumed indepen-
5.3.2 Instantaneous companding  en, P
‘ 20 g252
In order that the percentage error be a constant, the quantization levels F and Tr=oxoe (5.33)
must be logarithmically spaced. Alternatively, the logarithm of the input can ‘
be quantized rather than the input itself. This is depicted in Fig. 5.13 which SNR = 2 2 1
shows the input amplitudes being compressed by the logarithm function prior to 1 = ? = F (5.34)
quantization ar.ld being expanded' by Fhe exppr}ential function after decoding. } That is, the signal-to-noise ratio is N ¢ '
To see that this leads to the desired insensitivity to signal amplitude, assume T only upon the step size atio is independent of signal variance. It depends

that

1 E: IhlS tvpe Ot quantlzatlon p g
; 1S not Iactlcal since the dy"a"llc range (ratio
y( ) l l ( )| (5.28) between lalgest aIld Smallest Values) 1S l!lﬁlllle and thus an lnﬁnlte numb(el Ot
n n;x .
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small input amplitudes since y(n) = 0 when |x(n)| = 0. If u =0, Eq. (5.35)
reduces to

y(n) = x(n), (5.36)

i.e., the quantization levels are uniformly spaced. However, for large u, and
for large |x(n)],

cin)
x{n}

[y (n)]| = Xpaylog]

x(n)
Y | (5.37)

max
Thus except for very low amplitudes, the u-law curve gives a good approxima-

tion to constant percentage error. Figure 5.16 shows the distribution of quanti-

aation levels for the case u = 40 and 8 quantization levels. (The quantizer
characteristic is antisymmetric about the origin.)

x(n)

Fig. 5.14 Block diagram of a compressor/expander system for quantiza-
tion. ‘ ‘ o
er impractical
i The above analysis, howev i
izati vels would be required. he al p . ractee
guantlza:)l:n ;iggests that some approximation to a logarltt}r:;ca;cég}psystem
g mayteris;ic would be desirable. The use of a compn:essorti afed o e,
ﬁharac tization is shown in Fig. 5.14. Smith [10] has investig
or quan

sion characteristic that is called the u-law. In this case
y(n) = Fix(m)]

(n)

*max #=40

1}

O

yd .'

[ l
v

|

|

|

|

I

X3

log

]x(n)]
1+u Y ] ]
=X e ]“‘“ L. signlx(m]1. (5.39)
= A max log o
i lues
f y(n) versus x(n) for different values
ftx:ufrl‘llscs:ti%nyof Eq. (5.35) avoids the problem of

A
Xy

Figure 5.15 shows a fam@ly 0
of p. It is clear that using t

] 1 i i 1
0 x xp X3

Xmax ﬁ‘(")

X

mox - Fig. 5.16 Distribution of quantization levels for a u-law 3-bit quantizer
with u = 40,

Employing the same kind of assumptions that were used to analyze the
¢ uniform  quantization case, Smith (10] derived a formula for the signal-to-
F quantizing noise ratio for a p-law quantizer of the form

SNR(dB) = 6B +4.77 - 20 log olin (1+u)]

yin)=F [x(n)]

max Xmax

MO x

This equation; when compared to Eq. (5.26), indicates a much less severe
dependence of SNR upon the quantity (X mad/@ ). It can be seen that as u
Jincreases, the SNVR becomes less and less sensitive to changes in (X,,/0,);
€., although the term —20 logolln(14+4)] reduces the SNR, the range of
(X na/o,) for which the SNR is constant increases with u. Figures 5.17 and
18 show Egs. (5.26) and (5.38) plotted as a function of the quantity

2
—10 log o]1 + +2

(5.38)

X

—
x man

x(n)

isti ith
Fig. 5.15 Input-output relations for a w-law characteristic. (After Smi

{101
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i ity X .., is @ parameter
e e resp:cttﬁ‘;e}'f)'ve'fgez\;!‘u:;?;tl?tud:?xi.e., the ampli- ’
lipped. The quantity o, is a pa‘rameter I:r ‘
the amplitude of the signal, The ]
n of how the signal is Fnatched to th'e
17 show how the SNR (in dB) of aﬁun; ’

Jo.). We note that for a fixe
maf 2, then the SNR decreases by 6 1

i ratio of about 34 dB can be maintained over a wide range
F Indeed, 7-bit u-law PCM is generally taken as a standard for "toli quality”

L signal variances. As we have just
 the SNR performance that can be
f to the variance of the signal.
f possible to choose the quantiz

ﬂ

dB. We also note that for a fixed value of (X s/ ) the SNR increases 6 dB

for each added bit. This is true for both the uniform and u-law quantizers,
which are shown as solid lines.

A comment regarding the validity of Egs. (5.26) and (5.38) and, thus, the
curves in Figs. 5.17 and 5.18, is in order. One of the assumptions made in
deriving these equations was that the quantizer overload was negligible; i.e., the
probability of a sample exceeding the value X,,, was very small. When the
variance o, becomes on the order of X maw 1-€., Xma/o, = 1, this assumption
is clearly violated. Measured curves of SNR vs. (Xjo/o,) thus show a
dramatic reduction in SNR as (X ma/ ) — 1. Equations (5.26) and (5.38) do
yield a good description of SNR for values of X max/o ) > 8 [10).

The important point that these curves show very clearly is that u-law
quantization can maintain roughly the same SNR over a rather wide range. For

example from Fig. 5.17 it is clear that for the case u = 100, the SNR remains
within 2 dB of the maximum attainable for

8 < % < 30 (5.39)

X

From Fig. 5.18 we see that for & =500 the SNR is within 2 dB of maximum
for

§ < Xmm < 150 (5.40)

Tx
However, a comparison of Figs. 5.17 and 5.18 indicates that the maximum
attainable SNR is about 2.6 dB greater for u = 100 than for # = 500. Thus by
using large amounts of compression we achieve greater dynamic range with a
rather small sacrifice in SNR.

It can be seen from Figs. 5.17 and 5.18 that with B = 7, a signal-to-noise

of input signal levels.

ady noted, a uniform
dynamic range as 7-bit

" log PCM. Figure 5.18, for example, shows that the curve for 11-bit uniform
 quantization exceeds the 7-bit m =500 curve for o, > 01X
L could say that 11-bit uniform quantization should be as good as or b

£ 1+ =500 fog PCM for signal levels that are at least 1% of the quantizer max-
 imum. '

max 1hus, we
etter than

5§.3.3 Quantization for optimum SNR

The u-law quantizer strives to achieve constant SNR over a wide range of
seen, this is achieved at some sacrifice over
achieved if the quantizer step-size is matched
In cases where the signal varijance is known, it is
er levels so as to minimize the quantization error
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variance, and thus, maximize the SNR. The problem was studied by Max (11}
and later by Paez and Glisson [3].

The variance of the quantization noise is
o= EleX(n)] = El(x(n) — x(n))A (5.41)

where %(n) = Qlx(n)]. Generalizing from the example of Fig. 5.9, "w:,l
observe that in general we have M quantization }evels “{hlch can be 1abebe
{X_mp Xomp+v - SRy Xy ,fcM/z}' assuming M is an evendnixml:rl..
The quantization level associated with the 1qterv§1 Xj-110 X; 18 dengte t;clj. ;)1_
a symmetric, zero mean amplitude distnbuthn it is sqnsxb_le to de rlef elce
tral boundary point xo=10 and if the density t:qnctxon is nonzero for falt'ﬁe
amplitudes, such as the Laplacian or gamma densmgs, thc_*,n the extrgmes o g
outer range are set to +o0; i.e., Xyup/2= +oo. With this assumption, we cal

rite
W 0'3= f e2pe(e)de (5.42)

A\

Fig. 5.19 Quantization error e versus signal level x for a nonuniform quantizer.

Figure 5.19 shows a plot of e versus x. It can be seen that cont.ribt_ltior.ls to the
probability density function of e come from each of the quantization intervals
of xin a fairly complicated manner. Since

e=%-x (5.43)
we can make a transformation of variables in Eq. (5.42), of the form
pole) = pG—x) = p;(x/%) & px) (5.44)
giving v
2 i
oi= 3 f Gm0W()ax (5.45)
M

=My Xi-1
=7

i i i i inciudes the errors due to
Note that this formulation of the noise variance incl : _
c(:lipping or "overload.") If p(x) = p(~x) then the optimum quantizer charac
teristic will be antisymmetric so that %;=—%_;and x; = —x_; Thus

Mo,
0222 % | Gr0Bd (5.46)

i=l x;_y
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Now we wish to choose the sets of parameters {x;} and (%] so as to

minimize o2 To do this we differentiate o2 with respect to each parameter

and set the derivative equal to zero obtaining the equations [11]

X;
J Gopxax =0, =128 54
Xi—1
X, = % Gk, P = 1,2,...,42‘— —1 (5.47b)
and by assumption,
xp=0 (5.482)
X 4=+ (5.48b)

+=

=2
Equation (5.47b) shows that the optimum boundary points lie halfway between
the M/2 quantizer levels. Equation (5.47a) shows that the optimum location of
the quantization level X; is at the centroid of the probability density over the
interval x,_; to x, These two sets of equations must be solved simultaneously
for the M — 1 unknown parameters of the quantizer. Since these equations are
generally nonlinear, closed form solutions can only be obtained in some special
cases. Otherwise an iterative procedure must be used. Such an iterative pro-
cedure is given by Max [11]. Paez and Glisson [3] have used this procedure to

solve for optimum boundary points for the Laplace and gamma probability den-
sity functions.

In general, the solution of Eq. (5.47) will result in a nonuniform distribu-
tion of quantization levels. Only in the special case of a uniform amplitude
density will the optimum solution be uniform; i.e.,

.i;,' - )’e,‘_l =X — X1 = A (549)

We can, however, constrain the quantizer to be uniform, and solve for the

value of the step size, A, which gives minimum quantization error variance
and, therefore, maximum SNR. In this case,

x,' = A'i (5.50)
%= ———(2’“21)A (5.51)

and A satisfies the equation

M

— -1 i .
2}: @i-1) f [[% A — x|p(x)dx
(i-DA

i=1

+ M- [[%]A—ip(x)dwo (5.52)
M_ s
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Table 5.1 Optimum Quantizers for Signals with Laplace Density (m,=0, o 2=1).
(After Paez and Glisson {3].)

N 2 4 8 16 32
i MENEREREEEER gl %
1 0 [0.70711.10210.395]0.5040.222|0.266 |0.126 |0.147 | 0.072
2 o |1.810]1.181{0.785]0.566{0.407{0.302{0.222
3 2.28511.576{0.910{0.726|0.467 |0.382
4 oo |2.994/1.317}1.0950.642]0.551
5 1.821{1.54010.82910.732
6 2.499|2.103{1.031]0.926
7 3.605(2.895(1.250]1.136
8 oo 4.316]1.490|1.365
9 1.756|1.616
10 2.055(1.896
i1 2.398{2.214
12 2.804]2.583
13 3.305|3.025
14 3.97813.586
15 5.06914.371
16 oo [5.768
MSE | 05 0.1765 0.0548 0.0154 0.00414
SNRdB| 3.01 1.53 12.61 18.12 23.83

If p (x) is known or assumed (e.g., Laplacian) then the integrations can be per-
formed to yield a single equation which can be solved on a computer using
iterative techniques by varying A until the optimum value is obtained.

Tables 5.1 and 5.2 show optimum quantizer parameters for Laplacian and
gamma densities [3]. (Note that these numbers are derived assuming unit vari-
ance. If the variance of the input is o2, then the numbers in the tables should
be multiplied by o,.) Figure 5.20 shows a 3-bit quantizer for a Laplacian den-
sity. It is clear from this figure that the quantization levels get further apart as
the probability density decreases. This is consistent with intuition, which would
suggest that the largest quantization errors should be reserved for the least fre-
quently occurring samples. A comparison of Figs. 5.16 and 5.20 shows a simi-
larity between the u-law quantizer and the optimum nonuniform quantizer.
Thus, the optimum nonuniform quantizers might be expected to have
improved dynamic range. This is in fact true as discussed in (31

Figure 5.21 shows the optimum step size for uniform quantizers for
gamma and Laplacian densities [3] and a Gaussian density [11]. 1t is clear that,
as expected, the step size decreases roughly exponentially with increasing
numbers of bits. The details of the curves are, of course, attributable to the
differences in the shape of the density functions.

Although optimum quantizers yield minimum mean squared error when
matched to the variance and amplitude distribution of the signal, the nonsta-
tionary nature of the speech communication process leads to less than satisfac-
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Table 5.2 Optimum Quantizers for Si i i
gnals with Gamma Densit =0, o 2=
(After Paez and Gtisson [3].) S (=0 o=

b4

~
LN
-
~
=N
w
N

Vx| % x| 5 x| &% | x| % x| X
1 |20]0.577{1.205{0.30210.504 {0.149[0.2290.072]0.101 0.033
2 e 12.108]1.401(0.859|0.5880.386 [0.252]0.169
3 2.872{1.944(1.045]0.791 |0.429(0.334
4 %0 13.7991.623]1.30010.630[0.523
5 2.372(1.945/0.857(0.737
6 3.407(3.798|1.111]0.976
7 5.05014.015(1.397(1.245
8 o 16.085/1.720{1.548
l90 2.0891.892
= 2.517)2.287
= 3.022(2.747
= 3.633/3.296
= 4.40413.970
= ) 5.4444.838
- 7.0466.050
oo [8.043
MSE| 0.6680 | 0.2326 0.0712 0.0196 0.0052
SNR| 177 6.33 11.47 17.07 22.83

tory' results.. The simplest manifestation of this occurs in transmission system
during pgrxods when no one is talking; i.e., the idle channel condition );n th
case the input to the quantizer is very small (assuming low noise) so. that th
outpu} of. the quantizer will jump back and forth between the lowest magnitud
quant!zat}on levels. For a symmetric quantizer such as Fig. 5.10a, if the lowe:
quantlzatlgn levels are greater than the amplitude of the backérodnd noise tz
output noise of the quantizer will be greater than the input noise. For this,re'
son, .optlmum quantizers of the minimum mean squared error. type are nc
practical When the number of quantization levels is small. Table 5.3 (3} shov(»,i
a comparison of the smallest quantizer levels for several uniform .and nonuni
form optimum quantizers as compared to a u-law quantizer with u = 100unl]
can be seen that the u-law quantizer would produce much lower idle char:m
n01se‘tha.n any of the optimum quantizers. For larger values of u the small :
quantlzathn level would be even smaller. (If i = 255, the minimum quantisS
tion level is 0.031.) For this reason, u-law quantizers are used in practice "
though they provide somewhat lower SNR than optimum designs o

5.4 Adaptive Quantization

Aus wte? have seen iq the previous section, we are confronted with a dilemma ir
gtean !zmlg speech signals. On the one hand we wish to choose the quantizatior
p size large enough to accommodate the maximum peak-to-peak range of the
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plx)

X_4=®

Fig. 5.20 Density function and quantizer characteristic for Laplace den-
sity function and a 3-bit quantizer.

signal. On the other hand we would like to make the qua;t;zzgio?hstep srs'(::tlilos:
‘minimi izati i This is compounded by the non -
as to minimize the quantization noise. d b
ary nature of the speech signal and the speech cqanmumcat:ion ﬂl‘(;)icr:legss(.m’l;g:
i ignal can vary over a wide range depe
amplitude of the speech signa ' wid . ending or, ihe
icati nvironment, and within a given u s
speaker, the communication € e it
i i have seen, one approach to
voiced to unvoiced segments. As we ' I ccomimoda
i i tions is to use a nonuniform quantizer. ‘ ‘
ing these amplitude fluctua : ‘ e e v .
i the quantizer to the level o !
approach is to adapt the properties of > th ' :
n;:l) In this section, we shall discuss some general ;;rmcngle; oft gda;;t:; 8;;111;;
i i i ill show examples of adaptive
zation, and in later sections we wil oW . intizatiol
schem’es in conjunction with linear predlctlon.. .When adaptxvg q\lx)?&zat:osril n:s
used directly on samples of the input system it 1s called adaptive 0
ply, APCM. . . ‘ -
The basic idea of adaptive quantization is to let the step size A (or mfgc:}rlle
eral the quantizer levels and ranges) vary so as to match the variance o
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Fig. 5.21 Optimum step sizes for a uniform quantizer for Laplace,
Gamma, and Gaussian density functions. (Data from [11].)

input signal. This is depicted schematically in Fig. 5.22a. An alternative point
of view, depicted in Fig. 5.22b, is to consider a fixed quantizer characteristic
preceded by a time varying gain which tends to keep the variance constant. In
the first case the step size should increase and decrease with increases and
decreases of the variance of the input. In the case of a nonuniform quantizer,
this would imply that the quantization levels and ranges would be scaled
linearly to match the variance of the signal. In the second point of view, which
applies without modification to both uniform and nonuniform quantizers, the
gain changes inversely with changes in the variance of the input so as to keep
the variance of the quantizer input relatively constant. In either case, it is

necessary to obtain an estimate of the time varying amplitude properties of the
input signal.

Table 5.3 Signal-to-Noise Ratios for 3-bit Quantizers. (After Noli [12]).

Smallest Level
Nonuniform Quantizers SNR (dB) (o,=1)
w-law (X0 = 80, u=100) 9.5 0.062
Gaussian 14.6 0.245
Laplace 12.6 0.222
Gamma 11.5 0.149
Speech 12.1 0.124
Smallest Level
Uniform Quantizers | SNR (a,=1)

Gaussian 14.3 0.293

Laplace 114 . 0.366

Gamma 11.5 0.398

Speech 8.4 0.398
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Fig. 5.22 Block diagram representation of adaptive quantization; (a) vari-
able stepsize representation; (b) variable gain representation.

In discussing the time varying properties of speech signals, it is con-
venient to consider the time scale over which changes take place. In the case
of amplitude changes, we will refer to changes from sample-to-sample or rapid
changes within a few samples as instantaneous chapges, .General tl:endg in _the
amplitude properties, as for example the peak amplitude in an ur}vmced mle1:val
or in a voiced interval, remain essentially unchanged for relatively loqg 'tlme
intervals. Such slowly varying trends are referred to as syllabig varlauqns,
implying that they occur at a rate comparable to the' sylla_\ble rate in spgakmg.
In discussing adaptive quantizing schemes, it will hkeyvnse be c'onvement‘ to
classify them according to whether they are slowly adapting or rapidly adapting;
i.e., syllabic or instantaneous.

A dichotomy has evolved among the existing schemes for adaptive. quant.i-
zation. In one class of schemes, the amplitude or variance of the input is

x(n) of ] X lencooer cln)

STEP-SIZE 1 T
ADAPTATION -
SYSTEM | Alm)

Aln)

(a}

—— > DECODER |———> X' ()
cin)

1

An)

(b}

Fig. 5.23 General representation of feed-forward quantizers; (a) coder;
(b) decoder.

198

estimated from the input itself. Such schemes are called feed-forward adaptive
quantizers. In the other class of adaptive quantizers, the step size is adapted on
the basis of the output of the quantizer, X(n), or equivalently, on the basis of
the output code words, c(n). These are called feedback quantizers. In general,

the adaptation time of either class of quantizers can be either syllabic or instan-
taneous.

5.4.1 Feed-forward adaptation

Figure 5.23 depicts a general representation of the class of feed-forward
quantizers. We assume for convenience in the discussion that the quantizer is
uniform so that it is sufficient to vary a single step size parameter. It is
straightforward to generalize this discussion to the case of nonuniform quantiz-

yin) )
X O o ] L sl enconer|-<t
A
GAIN
ADAPTATION Gin)
SYSTEM
{a)
c'(n) g . A
0 loecoper| ™ § (o= L0
G{n}
G'(n)

(b)

Fig. 5.24 General feed-forward adaptive quantizer with a time-varying
gain; (a) coder; (b) decoder.

ers. The step size A(n), used to quantize the sample x(») in Fig. 5.23a, must
be available at the receiver in Fig. 5.23b. Thus, the code words ¢(n) and the
step size A(n) together represent the sample x(n). If ¢'(n) = ¢(n) and
A(n) =A(n), then £X'(n)=3%(n); however, if c'(n)#cln) or
A'(n) &= A(n), eg., if there are errors in transmission, then %'(n) # %(n).
The effect of errors will depend upon the details of the adaptation scheme. Fig-
ure 5.24 shows the general feed-forward adaptive quantizer represented in
terms of a time varying gain. In this case, the code words c¢(n) and the gain
G(n) together represent the quantized samples.

To see how feed-forward schemes work, it is helpful to consider some
examples. Most systems of this type attempt to obtain an estimate of the
time-varying variance. Then, the step size or quantization levels are made pro-
portional to the standard deviation, or the gain applied to the input can be
made inversely proportional to the standard deviation.
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Fig. 5.25 Example of variance estimate using Eq. (5.56); (a) waveform
x{n) and standard deviation estimate o (n) for a« = 0.99; (b) product of
time-varying gain and waveform. (After Barnwell et al. [13].)

A common approach is to assume that the variance is proportional to the
short-time energy, which, as we have seen, is defined as the output of a ‘

lowpass filter with input, x2(n). That is,

oXn) = 3 xXm)h(n—m) (559 |

me=—co

where h(n) is the impulse response of the lowpass filter. (For a stationary

input signal, it can be easily shown that the expected value of o%(n) is propor- ‘

tional to the variance, o 2 [see Problem 5.7].)
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A simple example is
h(n) =a™, n 321 (5.54)
=0, otherwise
Using this in Eq. (5.53) gives

n—1
o¥n) = Y x¥Um)gn—m-1 (5.55)
It can be shown that o%(n) in Eq. (5.55) also satisfies the difference equation
a¥(n) = acn-1) + xA(n—1) (5.56)

(For stability we require 0 < o < 1.) The step size in Fig. 5.23a would there-
fore be of the form

A(n) = Ay (n) (5.57)
or the time-varying gain in Fig. 5.24a would be of the form?
G
G(n) = % (5.58)
a(n)

The choice of the parameter a controls the effective interval that contri-
butes to the variance estimate. Figure 5.25 shows an example of quantizing in
a differential PCM system [13). Figure 5.25a shows the standard deviation esti-
mate superimposed upon the waveform for the case o = 0.99. Figure 5.25b
shows the product y(n) = x(n) G(n). For this choice of a, the dip in ampli-
tude of x () is clearly not entirely compensated by the time varying gain. Fig-
ure 5.26 shows the same waveforms for the case o = 0.9. In this case the sys-
tem reacts much more quickly to changes in the input amplitude. Thus the
variance of y(n) = G(n)x(n) remains relatively constant even through the
rather abrupt dip in amplitude in x(n). In the first case, with a = 0.99, the
time constant (time for weighting sequence to decay to (™) is about 100 sam-
ples (or 12.5 msec at an 8 kHz sampling rate). In the second case, with
a = 0.9, the time constant is only 9 samples, or about 1 msec at 8 kHz. Thus,
it would be reasonable to classify the system with « = 0.99 as syllabic and the
system with a = 0.9 as instantaneous.

As is evident from Figs. 5.25a and 5.26a, the standard deviation estimate
and its reciprocal, G(n), are slowly varying functions as compared to the origi-
nal speech signal. The rate at which the gain (or step size) control signal must
be sampled depends upon the bandwidth of the lowpass filter. For the cases
shown in Figs. 5.25 and 5.26, the frequencies at which the filter gain is down by
3 dB are about 13 Hz and 135 Hz respectively for a sampling rate of 8 kHz. It
is important to consider the lowest possible sampling rate for the gain, since the
information rate of the digital representation is the sum of the information rate
of the quantizer output and the information rate of the gain function. The gain

The constants 49 and Gy would account for the gain of the filter.
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feed-forward scheme in which the variance estimate was
/n(n)

| - "

3 =_1_n+M—l 3
a(n) Y > x¥m) (5.61)

m=pn

The gain or step size is evaluated and transmitted every M samples. In this
case the system requires a buffer of M samples to permit the quantizer gain or
step size to be determined in terms of the samples that are to be quantized
rather than in terms of past samples as in the previous example.

Table 5.4 shows a comparison of various 3-bit quantizers with a speech
input of known variance.* The first column lists the various quantizer types.
The second column gives the signal-to-noise ratios with no adaptation. The
third and fourth columns give the signal-to-noise ratios for step size adaptation
based upon the variance estimate of Eq. (5.61) with M = 128 and M = 1024
 respectively. It can be readily seen that the adaptive quantizer achieves up to
8.0 dB better SNR for this particular speech material. Similar results can be
" expected with other speech utterances, with slight variations in all the numbers.
- Thus, it is evident that adaptive quantization achieves a definite advantage over
fixed nonuniform quantizers. An additional advantage which is not placed in
- evidence by the numbers in Table 5.4 is that by appropriately choosing A inand

Ay it is possible to achieve the improvement in SNR, while maintaining low
' idle channel noise and wide dynamic range. This is true in general for most
- well-designed adaptive quantization systems. The combination of all these fac-
L tors makes adaptive quantization an attractive alternative to instantaneous com-
- panding or minimum mean squared error quantization.

=

WV T 'V W

(a)

—

x{n)-G{n}

\

Table 5.4 Adaptive 3-bit Quantization with Feed-forward Adaptation. (After Noll [12].)

Fig. 5.26 Variance estimate using Eq. (5.56); (@) x (n) and o(n} for Nonadaptive | Adaprive (M=128) | Adaptive (Mm=1024)
a =09 (b} x(n) G(n). Nonuniform Quantizers SNR (dB) SNR (dB) SNR (dB)
-law (u=100, X, ,,=8c,) 9.5 - -
function (or step size) as used in Figs. 5.24 or 5.23 must be sampled and quan- éaussi;; mex 73 15.0 12.1
tized before transmission. o Laplace ' 9.9 13.3 12.8
To permit quantizing and because of constraints of p_hysncal lmplemer}ta- Umfon:m Quantizers
tions. it is common to limit the variation of the gain function or the step size. Saulssmn g.z };,z } ig
aplace . X .
That ,is we define limits on G (n) and A(n) of the form P .

Gin € G(n) € Gpax (5.59 5.4.2 Feedback adaptation

> Amin € A1) < Bpa (5.60)

It is the ratio of these limits that determines the dynamic range of the syst;m.
Thus to obtain a relatively constant SNR over a range of 40 dB, requires
G yax/ G min = 100 o1 A pad A min = 100 . .
" A: l;xample of the improvement in SNR that can be acgneved by _adapt(nive
quantization is given in a comparative study by Noll {12].3 He considered a |

The second class of adaptive quantizer systems is depicted in Figs. 5.27
and 5.28, where it is noted that the variance of the input is estimated from the
' quantizer output or equivalently from the code words. As in the case of feed-
 forward systems, the step size and gain are proportional and inversely propor-
tional respectively to an estimate of the standard deviation of the input as in
E Egs. (5.57) and (5.58). Such schemes have the distinct advantage that the step
Fsize or gain need not be explicitly retained or transmitted since they can be

i ibe
3This technique was also studied by Croisier [14). He used the term biock companding to descril

ing the gain (or step size) every M samples. J “The results in this table are for quantization of actual speech signals.
the process of evaluating the gain for s v‘
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Fig. 5.27 General feedback adaptation of the time-varying gains; (a)
coder; (b) decoder.

derived from the sequence of code words. The disac_lvantage of such §ystems is
increased sensitivity to errors in the code words, since such errors imply not
only an error in the quantizer level but also in the step size. .
One simple approach is to apply Eq. (5.53) directly to the quantizer out-
put; i.e.,
c¥n) = Y &Um)h(n—m) (5.62)

mmm—o0

In this case, however, it will not be possib}e to use buffering to mllplementz:
noncausal filter. That is, the variance esn‘mate rpust be baseq only on_lptst
values of %(n) since the present value of X(n) will not be ava_llable untlb e
quantization has occured, which in turn must be at:ter the variance pas een
estimated. For example, we could use a filter whose impulse response is

hm)=al, n21
=0 otherwise (5.63)
as in Eq. (5.55). Alternatively the filter might have an impulse response
h(n)=1/M, 1<n<M

=0, otherwise (5.64)
so that

n—=1
oMn) = 2 T xHm)

me=n—-M
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(5.65) |
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Fig. 5.28 General feedback adaptation of the stepsize; {a) coder; (b)
decoder.

This system was studied by Nolt [12], who found that with suitable adjustment
of the constants Agor Goin Eqs. (5.57) or (5.58) a signal-to-noise ratio on the
order of 12 dB could be obtained for a 3-bit quantizer with a window length of
only 2 samples. Larger values of M produced only slightly better results.

A somewhat different approach, based on Fig. 5.28 has been studied
extensively by Jayant [15]. In this method the step size of a uniform quantizer

is adapted at each sample time by the formula

A(n) = PA(n—-1) (5.66)

where the step size multipler, P, is a function only of the magnitude of the pre-
vious code word, |c(n~1)|. This is depicted in Fig. 5.29 for a 3-bit uniform
quantizer. With the choice of code words in Fig. 5.29, if we assume the most

significant bit is the sign bit and the rest of the word is the magnitude, then

2(n) = Alwsi ;(C(")) + A(n)e(n) (5.67)

- where A(n) satisfies Eq. (5.66). Note that since A(n) depends upon the previ-

ous step size and the previous code word, the sequence of code words is all that

' is required to represent the signal. As a practical consideration, it is necessary
' to impose the limits

Amin < Aln) € Apy, (5.68)

 As mentioned before, the ratio A pax/ A min controls the dynamic range of the

quantizer.
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Fig. 5.29 Input-output characteristic of a 3-bit adaptive quantizer.

The manner in which the multiplier in Eq. (5.66) should vary with
|c(n=1)] is intuitively clear. If the previous code word corresponds to either
the largest positive or largest negative quantizer level, then it is reasonable to
assume that the quantizer is overloaded and, thus, that the quantizer step size
is too small. In this case, then, the muitiplier should be greater than one.
Alternatively, if the previous code word corresponds to either the smallest posi-
tive or smallest negative level, then it is reasonable to decrease the step size by
using a multiplier less than one. The design of such a quantizer involves the
choice of multipliers to correspond to each of the 258 code words for a B-bit
quantizer. Jayant [15) has approached this problem by finding a set of step size 1
multipliers that minimizes the mean squared quantization error. He was able to
obtain theoretical results for Gaussian signals, and using a search procedure, he
obtained empirical results for speech. The general conclusions of Jayant’s study }
are summarized in Fig. 5.30, which shows the approximate way in which the
step size multipliers should depend upon the quantity O, defined as

0= 1 +2 [e(n=D)]
28-1

The shaded region in this figure represents the variation in the multipliers to be
expected as the input statistics change or as B changes. The specific multiplier
values should follow the general trend of Fig. 5.30, but the specific values are
not overly critical. It is important, however, that the muitipliers be such that §
step size increases occur more vigorously than step size decreases. Table 5.5
shows the sets of muitipliers for B = 2,3,4 and 5.

(5.69)
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The 1mprpvement in signal-to-noise ratio to be gained using this mode of
adaptive quantization is shown in Table 5.6. The multipliers of Table 5.5 were
used gnd_Ama,/ Ain = 100. Table 5.6 shows a 4-7 dB improvement over u-law
qua.ntxzatlon. A 2-4 dB improvement was also noted over nonadaptive
opt!mum quantizers. In another study, Noll [7] noted signal-to-noise ratios for
3-bit {L-Iaw and adaptive quantizers of 9.4 dB and 14.1 dB respectively. In this
experlmeqt the multipliers were (.8, .8, 1.3, 1.9} in contrast to those used by
Jz}yant which are seen from Table 5.5 to be {.85, 1, 1, 1.5). The fact that such
dnﬁ'e.rem multipliers can produce comparable resuits lends support to the con-
tention that the values of the multipliers are not particularly critical.

5.4.3 General comments on adiptive quantization

_ As Fhe discussion of this section clearly indicates, there are almost unlim-
1t§d possibilities for adaptive quantization schemes. Most reasonable schemes
will y.ield signal-to-noise ratios that exceed the signal-to-noise ratio of u-law
quantlzatiqn, and with a suitable ratio A,/ A min the dynamic range of an adap-
tive q}lantlzer can be fully comparable to that of u-law quantization. Also, by
choosing Amin to be small, the idle channel noise can be made very sr;lall
Thus adaptive quantization has many attractive features. However, it is unrea:
sgnable to expect that further sophistication of quantizer adaptati<;n alone will
yield dramatic savings in bit-rate since such techniques simply exploit our

\\\\\\\\\\\\\\\\\\\\\\\\\n‘-«..-.

Q

Fig. 5.30 General shape of opti ipli ion i
: ptimal multiplier function in speech i-
zation for B > 2. (After Jayant [15}.) P auant
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Table 5.5 Step Size Multipliers For Adaptive Quantization Methods.
(After Jayant [15].)

Coder Type

B PCM DPCM

2 06,22 0.8, 1.6

3 085 1,1, 15 09,09, 1.25 1.75

4 0.8, 0.8, 0.8, 0.8, 0.9, 09, 0.9, 0.9,
1.2, 1.6, 2.0, 2.4 1.2, 16,20, 24

5 0.85, 0.85, 0.85, 0.85, 0.9, 0.9, 0.9, 0.9,
0.85, 0.85, 0.85, 0.85, 0.95, 0.95, 0.95, 0.95,
1.2, 1.4, 1.6, 1.8, 1.2, 1.5, 1.8, 2.1,
20,22, 24,26 2,4,27,3.0,33

Table 5.6 Improvements in Signal-to-Noise Ratio Using Optimum Step Size
Multipliers for Adaptive Quantization. (After Jayant {15].)

Logarithmic PCM Adaptive PCM"
with u-law (u=100) with Uniform
B Quantization Quantization
2 3db 9db
3 8 db 15 db
4 15 db 19 db

knowledge of the amplitude distribution of the speech signal. Thus, we turn
our attention in the next section to exploiting the sample-to-sample correlation
through the techniques of differential quantization.

5.5 General Theory of Differential Quantization

Figure 5.7a shows that there is considerable correlation between adjacent speech
samples, and indeed the correlation is significant even between samples that are
several sampling intervals apart. The meaning of this high correlation is that,
in an average sense, the signal does not change rapidly from sample to sample
so that the difference between adjacent samples should have a lower variance
than the variance of the signal itself. That this is so can be easily verified (see
Problem 5.10). This fact provides the motivation for the general differential
quantization scheme depicted in Fig. 5.31 {16,17]. In this system the input to
the quantizer is a signal

d(n) = x(n) — x(n) (5.70)
which is the difference between the unquantized input sample, x{(n), and an

estimate, or prediction, of the input sample which is denoted %(n). This
predicted valué is the output of a predictor system P, whose input is, as we will

see, a quantized version of the input signal, x(n). The difference signal may
also be called the prediction error signal, since it is the amount by which the *
predictor fails to exactly predict the input. Temporarily leaving aside the ques- °
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af ] 90 _lencoper|— Stnl,

x{n) + ;\? d(n}

Tin) x(n)

(a)

lA
c¢'(m d'(n) x
L0 Sloecoper - (T iy

T'in)

(b)

Fig. 5.31 General differential quantization scheme; (a) coder: (b)
decoder. '

P tion of how the estimate, ¥(n), is obtained, we note that it is the difference

b signal that is quantized rather than the input. The quantizer could be either

 fixed or adaptive, uniform or nonuniform, but in any case, its parameters

should be adjusted to match the variance of d(n). The quantized difference

' signal can be represented as

d(n) = d(n) + e(n) (5.71)

‘ \\(here e(n)' is the quantization error. According to Fig. 5.31a, the quantized
. difference signal is added to the predicted value %(n) to produce a quantized

. version of the input; i.e.,

£(n) = 2(n) + d(n) (5.72)

| Substituting Eqs. (5.70) and (5.71) into Eq. (5.72) we see that

x(n) = x(n) + e(n) (5.73)

'i . .
That is, independent of the properties of the system labeled P, the quantized

«, sl?eech samPle differs from the input only by the quantization error of the
~ difference signal. Tt}us, if the prediction is good, the variance of d(n) will be
' smaller than the variance of x(n) so that a quantizer with a given number of .

“levels can be adjusted to give a smaller quantization error than would be possi-

* ble when quantizing the input directly.
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It should be noted that it is the quantized difference signal that is coded
for transmission or storage. The system for reconstructing the quantized input
from the code words is implicit in Fig. 5.31a. This system, depicted in Fig.
5.31b, involves a decoder to reconstruct the quantized difference signal from
which the quantized input is reconstructed using the same predictor as used in
Fig. 5.31a. Clearly, if ¢'(n) is identical to c(n) then %'(n) = %(n), which
differs from x(n) only by the quantization error incurred in quantizing d (n).

The signal-to-quantizing noise ratio of the system of Fig. 5.31 is, by
definition,

ztilrlxd v:lhose input is thq reco.nstructed (quantized) signal x(n). We also note
at the reconstructed signal is the output of a system whose system function is

-
1- ﬁ akz_k
k=]

. . F. S 3] .
P q 4 ariance fth p dl

o}=Eld*n)] = E[(x(n) — 2(n))]

H(z) = (5.80)

Elx¥m)] _ 93
SNR = SWX 3 - = (5.74)
Ele¥n)] o} -E [lx(n) -3 akf(n—k)P]
which can be written as k=t
2 2 =E|lx(n) - —k) — _
SNR = 2= - 2L = GpSNRg (5.79) kfl ax (n—k) ?51 ae(n—k))? (5.81)
a4 g,
In order to ch i i i
e fn,order (0 ¢ g;);e a set of pged\gctor coefficients {«;}, 1 < j < p, that minimize
7 3> erentiate o ; with respect to each parameter and set the deriva-
o] tives equal to zero, thereby obtaining the set of p equations
SNRg=—5 (5.76) 303
T,
==2E |x(n) = Y a,x(n—k) + e(n— . i i
is the signal-to-quantizing noise ratio of the quantizer, and the quantity 9 l kg ‘ Y+ eln=i - Le(n=p) + eln=)]
6= 22 (57D S LIS (582
P= 2 : Equation (5.82) can be written in the more compact form

Ellx(n) = x(aDx(n=N1 = Eld(n)x(n-P1=0 1</ <p (583

t;x;zms l:vl:llch we m§k§ the imgortant observation that if the predictor coefficients
ch as to minimize o j then the difference signal (prediction error) is

uncorrelated with (i.e., orthogonal to) th
u .., e i i
e past values of the predictor input

is defined as the gain due to the differential configuration.

The quantity SNRy is dependent upon the particular quantizer that is
used, and, given knowledge of the properties of d(n), SNR can be maximized
by using the techniques of the previous sections. The quantity Gp, if greater ’
than unity, represents the gain in SNR that is due to the differential scheme.
Clearly, our objective should be to maximize Gp by appropriate choice of the
predictor system, P. For a given signal, o %is a fixed quantity so that Gp can be
maximized by minimizing the denominator of Eq. (5.77); i.e., by minimizing |
the variance of the prediction error. ]

To proceed, we need to specify the nature of the predictor, P. One
approach that is well motivated by our previous discussion of the model for
speech production and by the fact that it leads to tractable mathematics is to
use a linear predictor. That is, #%(n) is 4 linear combination of past quantized
values ]

Equations (5.82) can be expanded into the set of p equations
Elx(n=)x(m)] + Ele(ni=)x(m)] = 3 a,Elx(n=j)x(n—k)]
k=1

+ k)fl a Ele(n—j)x(n—k)]

+ kf,lakE[x(n—-j)e(n—k)]

#(n) = 3 ak(n—k) (5.78)] + k)”_‘l axEle(n—j)e(n—k)] (5.84)

k=1
The predicted value is thus the output of a finite impulse response filter whose

3 Whele 1 S J S D NOW lf we assume that the uantizatio rea y
»
q n i1s SOIlabl ﬁlle,

£ it can be assumed that e(#n) is uncorrelated with x(n) and that e(n) is a sta-

) = i ot 579 : tionary white noise sequence; i.e.,
P Elx(n—j)e(n—k)) =0, forallm j and k (5.85)
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and

Ele(n—j)e(n—k)] = a %(j—k). (5.86)
Using these assumptions Eq. (5.84) can be simplified to
60) = 3 ard(i—k) + o 26—k

k=1

where ¢(j) is the autocorrelation function of x(_n). If we divide both sides of
the above equations by o 2 and define the normalized autocorrelation as

p(/‘)-=£g;)-

X

then we can express Eq. (5.87) in matrix form as

p=Ca

where

M
0

p ]
p(»)
and

1
1+ ﬁ) p(1)

1
p(1) 1+ m)

p(p—1) p(p=2)

and
ay
a)

Qp

and SNR = oYol Thus the vector of optimum predictor coefficients is

1€j<p (5.87)

(5.88)

(5.89a)
(5.89b)

- p(p-1)

- p(p=2)
(5.89¢)

. 1

e+ p)

(5.89d)

obtained as the solution of the matrix equation (5.89a); i.e.,

a=Clp.
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(5.90)

ix C™ i i ods,
In general, the matrix C~! can be computed by a variety of numerical meth

including methods that take advantage of the fact that C is a Toeplitz matrix
(see Chapter 8). However, Eq. (5.89a) cannot be solved in the most general
case since the matrix C contains terms which depend on the signal-to-noise
ratio, SNR = o /a2 (see Eq. (5.89¢)); but SNR depends on the coefficients of
the linear predictor, which in turn depend upon SNR through Eq. (5.89a). One
possibility is to neglect the term 1/SNR in Eq. (5.89) in order to obtain a solu-
tion. For the case p = 1, however, such an assumption is unnecessary since
Eq. (5.90) can be directly solved to give

o= —211)1— (5.91)

I+ SNR

Eq. (5.91) shows that a; < p(1).

Inspite of the difficulties in solving explicitly for the predictor coefficients,
it is possible to obtain an expression for the optimum Gp in terms of the a/'s.
To do this we solve for o } by rewriting Eq. (5.81) in the form

o= El(x(n) — (m) (x(n) — £(n))]
= El(x(n) — (m)x(m)] — El(x(n) = x()x(n)]  (5.92)

Using Eq. (5.83) it is straightforward to show that for the optimum predictor
coefficients, the second term in the above equation is zero; i.e., the predicted
value is also uncorrelated with the prediction error (see Problem 5.12). Thus
we can write,

o}=El(x(n) — x(n))x(n)]
= Elx¥m)] - E ﬁ o (x(n—k) + e(n-—k))x(n)] (5.93)
k=1

Using the assumptions of uncorrelated signal and noise, we obtain

gl=cl- f, a (k) =a |l — ﬁ akp(k)] (5.94)
k=1 k=1
Thus, from Eq. (5.77),
(Gp gy = ———— (5.95)
1- ﬁ ap(k)
k=1

where the a’s satisfy Eq. (5.89a).
For the case p =1 we can examine the effects of using a suboptimum
value of a on the quantity Gp = o %o 2. From Eq. (5.95) we get

-1
CPow= T

If we choose an arbitrary value for a,, then by repeating the derivation leading
to Eq. (5.94) we get

(5.96)

gi=cl —2ap(1) +afl + ajol 5.97
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or

(Gp) arb = 1 1 (598)

1 - 2ap(D) +af( + W)
The term o #/SNR represents the increase in variance of d(n) due to the feed-
back of the error signal e(n). It is readily shown (see Problem 5.13) that Eq.

(5.98) can be rewritten in the form:

o
SNR,
1 - 2ap) +af

for any value of & (including the optimum value). Thus, for example, if
a, = p(1) (which is suboptimum according to Eq. (5.91)) then

(Gp) arb = (599)

L 2
_ SNRg 1 _ M
(GP) subopt — 1- Pz(l) = ‘ 1— pz(l)] [1 SNRQ‘ (5100)

Thus the gain in prediction obtained without the quantizer, 1/(1 — p(1)), is
reduced by the second factor in Eq. (5.100) due to feedback of the error signal.

To obtain the optimum gain, Eq. (5.99) can be differentiated with respect
to aj to give

d(Gp
da,

which can be solved directly for the optimum value of a.’

For illustrative purposes we make the assumption that we can neglect the
term 1/SNR in Eq. (5.89). Thus for a first order predictor, Eq. (5.91) becomes
a; = p(1), and the gain due to prediction is

1

(Gp) oy = -i-—_;-)z_(l-)— (5.102)
Thus so long as p(1) # 0 there will be some improvement due to prediction.
We have already seen (Fig. 5.5) typical correlation functions for lowpass and
bandpass filtered speech sampled at 8 kHz [4]. The shaded regions in this
figure indicate the range of variation of p(n) over four speakers, and the cen-
tral curve is the average for these four speakers. We see from these curves
that a reasonable assumption is that for lowpass filtered speech sampled at the

Nyquist rate,

0 (5.101)

p(1) > .80 (5.103)
which implies that
(Gp) o > 277 (or 4.43 dB) (5.104)

SWe are indebted to Professor Peter Noil for helpful comments on this analysis.

214

-

\ ,
\\\\\EEQ\\Q\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

(Gp) opt IN dB
o
T

[o] { 1 1 I | 1 1 1
° 5 10
p
(a)
12
- L
h-]
z
5 Sf
s
e
0 1 1 ] 1 ] 1 { 1 L
° 5 10
P
(b

Fig. 5.32 Optimum SNR gain G versus number of predictor coefficients;

gx]) )lowpass filtered speech; (b) bandpass filtered speech. (After Noll

~ Noll (4] has used the data shown in Fig. 5.5 to compute (Gp),, as a func-
tion of p for a 55 second segment of speech that was both lowpass and bandpass
filtered. The results are depicted in Fig. 5.32.° The shaded region shows the

. amount of variation obtained for four speakers, with the central curve

representipg the_ average over four speakers. It is clear that, even with the sim-
plest predictor, l[' is possible to realize about a 6 dB improvement in SNR. This
is of course equivalent to adding an extra bit to the quantizer, however since

F this bit is not actually added, the bit rate remains the same. Note also that in

no case doeg the ggin reach 12 dB, which would be required to achieve the
effect of adding 2 bits. An alternative point of view is that differential quanti-

za.tion permits a reduction in bit rate while keeping the SNR the same. The
{ price paid, of course, is increased complexity in the quantization system.

$Again the sampling rate was 8 kHz; thus nis a multipie of 125 usec.
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Some basic principles of application of the differential quantization
scheme emerge from a consideration of Figs. 5.5 and 5.32. First, it is clear that
differential quantization can yield improvements over direct quantization.
Second, the amount of improvement is dependent upon the amount of correla-
tion. Third, a fixed predictor cannot be optimum for all speakers and for all
speech material. These facts have led to a variety of schemes that are based
upon the basic configuration of Fig. 5.31. These schemes combine a variety of
fixed and adaptive quantizers with a variety of fixed and adaptive predictors to
achieve improved quality or lowered bit rate. We shall now discuss several
examples that represent the range of possibilities.

5.6 Delta Modulation

The simplest application of the concept of differential quantization is in delta
modulation (abbreviated DM) [18-24]. In this class of systems, the sampling
rate is chosen to be many times the Nyquist rate for the input signal. As a
result, adjacent samples become highly correlated. This is evident from the dis-
cussion of Section 5.2, where we showed that the autocorrelation of the
sequence of samples is just a sampled version of the analog autocorrelation;
ie.,

¢(m) = ¢ ,(mT) (5.105)

Given the properties of autocorrelation functions, it is reasonable to expect the
correlation to increase as T — 0. Indeed we expect that except for strictly
uncorrelated signals,

() — a2 asT—0 (5.106)

This high degree of correlation implies that as T tends to zero we should be
better able to predict the input from past samples and as a result, the variance
of the prediction error should be low. Therefore, because of the high gain due
to the differential configuration, a rather crude quantizer can provide acceptable
performance. Indeed, delta modulation systems employ a simple 1-bit (2 tevel)
quantizer. Thus, the bit-rate of a delta modulation is simply equal to the sam-
pling rate.

5.6.1 Linear delta modulation

The simplest delta modulation system is depicted in Fig. 5.33. In this
case the quantizer has only two levels and the step size is fixed. The positive
quantization level is represented by c{n) =0 and the negative by c(n) =1
Thus, d(n) is

d(n) =A if c(n)=0

=—A if cln) =1 (5.107 |

Figure 5.33 also incorporates a simple first order fixed predictor for which the
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x(n) + d{n} 3( )
‘_’_C?’__’ o ] 0 >{ encopeR j—0)

R(n) az-! )

3t =afdm]

A c(n)=0

d{n}
c{n)=1

(o}

c'(n) 5 ()

DECODER X'(n)

Fig. 5.33 Block di ,
domder ock diagram of a deita modulation system; (a) coder; (b)

(b}

optimum prediction gain is

(Gn), = —1L1
Th ( ) P/ opt 1 _ pz(l) (5.108)
us as p(1) =1, (Gp),y — co. This result can be vi i
) - T viewed in only qualitati
terms, bowever, since the assumptions under which the expressiony f?)r (IGa )lve
was derived tend to break down for such crude quantization. o

The effect of quantization error ¢
an be observed from Fig. 5.34a, whi
?::)ws an analog ‘wavefo.rm x,(t) and resulting samples x(n), )g?(n) an)dw)"((lz})1
a given sampling period, 7, and assuming « (the feedback multiplier) is set

to 1.0. It can be seen from Fig. 5 i X i
faronce oo e g. 5.33a that in general, £(n) satisfies the

%(n) = a%(n-1) + d(n) (5.109)

Wi ~ . L - .

th;ihitar 1, this equation is th‘e digital equivalent of integration, in the sense

that | :presents the accumulation of positive and negative increments of mag-
itude A. We also note that the input to the quartizer is

d(n) = x(n) — (n=1) = x(n) — x(n—1) — e(n—1) (5.110)

Thus except for the quantization error in £(n—1), d(n) is a first backward
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Fig. 5.34 Illustration of delta modulation; (a) fixed stepsize; (b) adaptive

stepsize.

wed as a digital approximation to the

; hich can be vie I
difference of x(n), whi of the digital integration process. If we

erivative of the input and the inverse git: )
(cjonsider the maximum slope of the waveform, it is clear that in order for the

sequence of samples {#(n)} to increase as fast as tt}e sequence of samples
{x(n)} in a region of maximum slope of x,(1), we require

() (5.111)
dt

Otherwise, the reconstructed signal will fall behind"as shown in thg left Sldfizgf
Fig. S 34a’ This condition is called "slope O\Eerloacg alr:Id tthe; ;etm::::eg ?;:nmax

\ error i I i ote tha -
i ror is called slope overload distortion ‘nms.e . .
ﬁﬁ?xr:rslope of #(n) is fixed by the step size, Increases and decrease; (m the
sequence X{(n) tend to occur along straight lines. For this reason, t(ix;b qc;?:d
daptive) delta modulation is often called linear delta modulation (abbrevi
LDM). .

The step size, 4, also determines the peak error.when‘ the slo(;.:tel is ;lleg

small. For example, it is easily verified that when the input is ;ero idle cha f
nel c;mdition) the output of the quantizer will be an alternating sequence 0

—A-‘f > max]|
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0’s and 1’s, in which case the reconstructed signal %(n) will alternate about
zero (or some constant level) with a peak-to-peak variation of A. This latter

type of quantization error, depicted on the right in Fig. 5.34a, is called granular
noise.

As we have seen before, there is a need to have a large step size to
accommodate wide dynamic range, while a small step size is required for accu-
rate representation of low level signals. In this case, however, we are con-
cerned with the dynamic range and amplitude of the difference signal (or
derivative of the analog signal). It is intuitively clear that the choice of step
size that minimizes the mean squared quantization error will represent a
compromise between slope overload and granular noise.

Figure 5.35, which is from a detailed study of delta modulation by Abate
[21], shows signal-to-noise ratio as a function of the normalized step size vari-
able A/(E{(x(n) — x(n—1))1) 2 with oversampling index Fy= F/2Fy as a
parameter where F| is the sampling rate of the delta modulator, and Fy is the
Nyquist frequency of the signal. Note that the bit rate is

Bit rate = F,(1 bit) = F, = 2Fy-F, (5.112)

Thus the oversampling index plays the role of the number of bits/sample for a
multi-bit quantizer with sampling at the Nyquist rate. These curves are for flat
spectrum bandlimited Gaussian noise. Somewhat higher SNR values are
obtained for speech since there is greater correlation; however, the shape of the
curves is much the same. It can be seen from Fig. 5.35 that for a given value
of Fy, the SNR curve has a rather sharp peak with values of A above the loca-
tion of the peak corresponding to granular noise and values below the peak
location corresponding to slope overload. Abate {21] gives the empirical for-

mula
Ao = {El(x(n) = x(n—1))A}V?In(2Fy) (5.113)
40
2 "’\
7 30 016 ° o
o 16 o °‘13e
o o
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Fig. 5.35 SNR for deita modulators as a function of the normalized step
size. (After Abate [21).)
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for the optimum step size; i.e, for the location of ;Be psez;l; <:tf‘ ;thfheSIZI:ticr:x:;;
i from Fig. S.
for a given value of Fy It can also be seen ‘ . :
.S?NR i%lcreases at the rate of about 9 dB for each d(;‘ubhgg %t; . :;).mst;ngi d:)altle
i i i ing F,, we note that doubli
bling Fo is equivalent to doubllpg_ o _ e e
i t to PCM where if we dou
increases the SNR by 9 dB. This is in contras " : ;

i i ve a 6 dB increase for
it rate by doubling the number of blts/sample, we ac ie
Zzitc;a:ddzd bit; thus the increase of SNR with bit rate is much more dramatic

for PCM than for LDM. - .
Another important feature of the curves of Fig. 5..35 is the sha_rpnesst t(:f
the peak of the SNR curve, which implies that the SzNR is very sensm\.'e to b:
input level. [Note that E[(x(n) — x(n—=1)3 =20 (1-p(D)] .Thfl‘.ls, it ;acn be
seen from Fig. 5.35 that to obtain an SNR of 35 dB for Ea Nyquni:1 | rerq1tJ: h); o
requi i 200 Kb/sec. Even at this rate, -
3 kHz would require a bit rate of about  how
i intai ther narrow range of inpu
this quality can only be maintained over a rather '
lee:/:éfs iflihz steg size is fixed. To achieve tq]l quah_ty, i.e., quality comparable
to 7-bit log PCM, for speech requires much higher bit rates. .
The main advantage of LDM is its simplicity.. T}'ne system can be 1mple:
mented with simple analog and digital integrated circuits and since only a one

Aln) |STEP-SIZE
LOGIC

c{n)

Aln)

din}
c{n) =1

{~a(n)

{a)

STEP-SIZE
LOGIC

(b

Fig. 5.36 Delta modulator with adaptive stepsize; (a) coder; (b) decoder.
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bit code is required, no synchronization of bit patterns is required between
transmitter and receiver. The limitations on the performance of linear delta
modulation systems stem mainly from the crude quantization of the difference
signal. In view of our previous discussion of adaptive quantization, it is natural
to suppose that adaptive quantization schemes would greatly improve the per-
formance of a delta modulator. Of greatest interest are simple adaptive quanti-

zation schemes which improve performance but do not greatly increase the
complexity of the system.

5.6.2 Adaptive delta modulation

A large variety of adaptive délta modulation (ADM) schemes has been
proposed. Most of these schemes are of the feedback type in which the step
size for the two-level quantizer is adapted from the output code words. The
general form of such systems is shown in Fig. 5.36. Such schemes maintain the
advantage that no synchronization of bit-patterns is required since, in the
absence of errors, the step size information can be derived from the code word
sequence at both the transmitter and the receiver.

In this section we shall illustrate the use of adaptive quantization in delta
modulation through the discussion of two specific adaptation algorithms. There
are many other possibilities which can be found in the literature [20-24].

The first system that we shall discuss has been studied extensively by N.
S. Jayant [22]. Jayant’s algorithm for adaptive delta modulation is a
modification of the quantization scheme discussed in Section 5.4.2. As for the
case of multi-bit quantizer, the step size obeys the rule

Aln) = MA(n-1) (5.114a)
Anin € A(n) < Apy, (5.114b)

In this case, the multiplier is a function of the present and the previous code
words, c¢(n) and c(n—1). This is possible since c(n) depends only on the sign
of d(n) which is given by

d(n) = x(n) — ax(n-1). (5.115)

~ Thus the sign of d(n) can be determined before the determination of the actual

quantized value d(n) which must await the determination of A(#n) from Eq.
(5.114). The algorithm for choosing the step size multiplier in Eq. (5.114a) is

M=P>1 if c(n)=cn-1)
M=0Q<1 if cn)#cn-1 (5.116)

This adaptation strategy is motivated by the bit patterns observed in linear delta
E modulation. For example, in Fig. 5.34a we note that periods of slope overload
 are signaled by runs of consecutive 0’s or 1’s. Periods of granularity are sig-
E naled by alternating sequences of the form ..0 1010 1.... Figure 5.34b shows
b how the waveform in Fig. 5.34a would be quantized by an adaptive delta modu-
lator of the type described by Eqgs. (5.114) and (5.116). For convenience, the
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Fig. 5.37 Signal-to-noise ratios of an adaptive delta modulator as func-
tions of P. (After Jayant [22].)

parameters of the system are set at P = 2, 0 =1/2, a = 1, and the minimum
step size is shown in the figure. It can be seen that the region of large positive
slope still causes a run of 0’s but in this case the step size increases exponen-
tially so as to follow the increase in slope of the waveform. The region of
granularity to the right in the figure is again signaled by an alternating sequence
of 0’s of 1’s but in this case the step size falls rapidly to the minimum (A i)
and remains there as long as the slope is small. Since the minimum step size
can be made much smaller than that required for optimum performance of a
linear delta modulator, granular noise can be greatly reduced. Likewise the
maximum step size can be made larger than the maximum slope of the input
signal so as to reduce slope overload noise.

The parameters of this adaptive delta modulation system are P, Q, Ayin
and A, The step size limits should be chosen to provide the desired dynamic
range for the input signal. The ratio Ap, /Ay, should be large enough to
maintain a high SNR over a desired range of input signal levels. The minimum
step size should be as small as is practical so as to minimize the idle channel
noise. Jayant [22] has shown that Pand Q should satisfy the relation

PO <1 (5.117) 1

for stability; i.e., to maintain the step size at values appropriate for the level of
the input signal. Figure 5.37 shows the results of a simulation for speech sig-
nals with PQ =1 for three different sampling rates. It is evident that the max-
imum SNR is obtained for P = 1.5; however, the peak of all three curves is
very broad with SNR being within a few dB of the maximum for

125 < P <2 (5.118)

The results of Fig. 5.37 are replotted in Fig. 5.38 to compare ADM to

LDM and log PCM. It is noted that with P = 1/Q the condition P =1 =1/Q

implies no adaptation at all; i.e., LDM. The SNR values for this condition and

for P = 1.5 are plotted as a function of bit rate in Fig. 5.38. Also shown there
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is maximum SNR for u = 100 (log PCM) as a function i
. of bit rat
from Eq. (5.38) assuming sampling at the Nyquist rate (2F), = 6.6c ;;;;mputed

Figure 5.38 shows that ADM is superi
( perior to LDM by 8 dB at 2
thg gg’R advantagg increases .to 14 dB at 60 kb/s. For LI);M we obsgrt:/:bi)ﬁ
?\ o lincrease wnth_a dgublmg of sampling rate (and bit rate), whereas with
AOM ht tefcortl;t.espondmg increase is 10 dB. Comparing ADM and log PCM, we
at for bit rates below 40 kb/s, ADM out-performs log P ig
bit rates log PCM has a higher SNR. F mole, Fig. 238 shows o Encr
_ . For example, Fig. 5.38 shows th
ADM system requires about 60 kb/s to i i
: achieve th i -bi
PCM, having a bit rate of about 46 kb/s, © same Quallly as 7-bit log

- Thq lmproved.quaht.y of the ADM system is achieved with only a slight
i etase in complexity. Since the step size adaptation is done using the output
i ts rei.m_), the ADM system ret?ins the basic simplicity of delta modulation
systems; 1.€., no code word framing is required. Thus, for many applications

ADM may be preferred to log P i i
ooy be | g PCM even at the expense of slightly higher

Another example of adaptive ization i i
) : quantization in delta modulation is kn
contgluously variable slope delta modulation (CVSD). (A system of th(i)sw tx;;:
was first proposed by'Gret?ﬂ(es [23].) This system is again based upon Fig. 5.36
with the step size logic being defined by the equations T

A(n) = BA(n=1) + D, if c(n) =c(n—1) = c(n=2) (5.119a)
= BA(n=1) + D, otherwise (5.119b)

35 r
log PCM

30+
25+

20

SNR (dB)

Il
1

5 . , ,
10 20 30 40 50 60
BIT RATE -kb/s

Fig. 5.38 SNR versus bit rate for 3 codi i
g ing schemes using a 6.6 kHz sam-
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where 0 < 8 < 1 and D, >> D, > 0. In this case the minimum and max-
imum step sizes are inherent in the recurrence formula for A(n). (See Prob-

lem 5.14.) . t

The basic principle is, as before, to increase the step size in respons:; 0(}
patterns in the bit stream that indicate slope,overload. In. this case, g ntxo N
three consecutive 1’s or three consecutive 0’s causes an mcrement_ 2d ) e
added to the step size. In the absence of such patterns tht? s?ep size diriz
(because B < 1) until it reaches Ay Thus the stt?p size W.lll n;creas&ix qur g
slope overload conditions and will decre:ase otherwise. Agam,l min 8 durir;:lz
can be chosen to provide desired dynamic range and low granufar (;wltset durire
idle channel conditions. The parameter 8 controls the speed o ahap a lifb !
B is close to 1, the rate of build-up and decay of A(n) is sloyv, w .eregs B
much less than one, the adaptation is muf:h fagter. Thus, this basic adap
scheme can be adjusted to be either syllabic or instantaneous. N

This system has been used in situations requiring low sgnsnuzlty to crl::l::
nel errors with speech quality requirement§ below those requnredh or cczmm er
cial communication channels. In this situation the pargmeters c;; t- e tsys e nare
adjusted to provide syllabic adaptation. Also the predictor coe c1eln ,r 1-(:)‘; S5
at a value considerably less than one so that the eﬂ'ect. of channe edecreased
out quickly. The price paid for insepsntlvc;ty t? errc(;;st ‘:se, :fD crslu;;‘:;em roased

i no errors occur. A major advantage _
(sliltlfxlz::iyo: kilsertlhat it has sufficient flexibility to provide effective tradeoffs between

quality and robustness.
5.6.3 Higher-order predictors in delta modulation

For simplicity, most LDM and ADM systems use a first order fixed pred-
ictor of the form
#(n) = ax(n-1) (5.120)
as shown in Fig. 5.36. In this case, the reconstructed signal satisfies the
difference equation
%(n) = a(n-1) + d(n) (5.121)

which is characterized by the system function

Hi(2) = I__L_jl_ (5.122)

This, we have suggested, is the digital equivalent of 'an integrator (if & =1).
Whe,n a < 1itis sometimes called a "leaky integrator.

The results shown in Figure 5.32 suggest’ that for delta modulation sys-

To be more specific one would have to know exact values of the speech aulocorrelatio:: fjunc:osn
for lags less than 125 usec (corresponding to the higher sampling rates of delta modulation sy

tems) to calculate high order prediction gains.
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tems, a greater SNR is possible with a second order predictor; i.e., with

¥(n) = a i (n-1) + ax(n-2) (5.123)
In this case '
x(n) = ax(n=1) + a2 (n-2) + d(n) (5.124)
which is characterized by
H,(z) = ] = = (5.125)
—aiz7 —ayz

It has been shown empirically [25] that second order prediction gives

improved performance over first order prediction when the poles of H,(z) are
both real; i.e.,

1
H,(z) = , 0<ab<l 5.126
2 (1-az Y (1-bz7Y “ ( )
This is often called "double integration.” Improvements over first order predic-
tion may be as high as 4 dB depending on speaker and speech material [25].

Unfortunately, the use of higher order prediction in ADM systems is not
just a simple matter of replacing the first order predictor with a second order
predictor since the adaptive quantization algorithm interacts with the prediction
algorithm. For example, the idle channel condition will be signaled by different
bit patterns depending on the order of the predictor. For a second order predic-
tor, the bit pattern for the idle channel condition might be ...010101... or
..00110011... depending upon the choice. of ayand a; and the past state of the
system before the input became zero. This clearly calls for an adaptation algo-
tithm based upon more than two consecutive bits if the step size is to fall to its
minimum value for idle channel conditions.

The design of ADM systems with high order predictors has not been
extensively studied. Whether the added complexity in both the predictor and
the quantizer could be justified would depend upon the amount of improve-
ment in quality that could be obtained. The use of multi-bit quantizers of the
type discussed in Section 5.4 simplifies the design somewhat at the expense of
the need for framing the bit stream. We now turn to a discussion of
differential quantization using multi bit quantizers.

5.7 Differential PCM (DPCM)

Any system of the form shown in Fig. 5.31 could be called a differential PCM
(DPCM) system. Delta modulators, as discussed in the previous section, for
example, could also be called 1-bit DPCM systems. Generally, however, the
term differential PCM is reserved for differential quantization systems in which

L the quantizer has more than two levels.

As is clear from Fig. 5.32, DPCM systems with fixed predictors can pro-
vide from 4 to 11 dB improvement over direct quantization (PCM). The
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greatest improvement occurs in going from no prediction to first order predic-
tion with somewhat smaller additional gains resulting from increasing the pred-
ictor order up to 4 or S, after which little additional gain results. As pointed
out in Section 5.5, this gain in SNR implies that a DPCM system can achieve a
given SNR using one less bit than would be required when using the same
quantizer directly on the speech waveform. Thus, the results of Sections 5.3
and 5.4 can be applied to obtain a reasonable estimate of the performance that
can be obtained for a particular quantizer used in a differential configuration.
For example, for a differential PCM system with a uniform fixed quantizer, the
SNR would be approximately 6 dB greater than the SNR for a quantizer with
the same number of levels acting directly on the input. The differential scheme
would behave in much the same manner as the direct PCM scheme; i.e., the
SNR would increase by 6 dB for each bit added to the code words, and the SNR
would show the same dependence upon signal level. Similarly, the SNR of a
p-law quantizer would be improved by about 6 dB by use in a differential
configuration and at the same time its characteristic insensitivity to input signal
level would be maintained.

Figure 5.32 displays a wide variation of prediction gain with speaker and
with bandwidth. Similar wide variations are observed among different speech
utterances. All of these effects are a result, of course, of the nonstationarity of
the speech signal. No single set of predictor coefficients can be optimum for a
wide variety of speech material or a wide range of speakers.

This variation of performance with speaker and speech material, together
with variations in signal level inherent in the speech communication process,
make adaptive prediction and adaptive quantization necessary to achieve best
performance over a wide range of speakers and speaking situations. Such sys-
tems are called adaptive differential PCM systems (ADPCM). We shall first
discuss the use of adaptive quantization with fixed prediction, and conclude
with a discussion of adaptive prediction.

5.7.1 DPCM with adaptive quantization

The discussion of adaptive quantization in Section 5.4 can be applied
directly to the case of DPCM. As Section 5.4 pointed out, there are two basic
approaches to the control of adaptive quantizers.

Figure 5.39 shows how a feed-forward-type adaptive quantizer is used in
an ADPCM system [7]. In schemes of this type, the quantizer step size is pro-
portional to the variance of the input to the quantizer. However, since the
difference signal d(n) will be proportional to the input, it is reasonable to con-
trol the step size either from d(n) or, as depicted in Fig. 5.39, from the input,
x(n). Several algorithms for adjusting the step size are given in Section 5.4.1.
The discussion of Section 5.4.1 indicates that such adaptation procedures can
provide about 5 dB improvement in SNR over standard u-law nonadaptive
PCM. This improvement coupled with the 6 dB that can be obtained from the
differential configuration with fixed prediction means that ADPCM with feed-
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Fig. 5.39 ADPCM system with feed-forward adaptlve quantization; a)
coder, (b) decoder. (

forward adaptive prediction should achieve an SNR t i

than could be obtained with a fixed quantizer with the s:ra;:elrs)ulr?lblei :fB legvrei?er
Figure 5.40 shows how a feedback-type adaptive quantizer can be used in
an ADPCM system [26]. If for example the adaptation strategy described by
Egs. (5.66)-(5.68) is used, we can again expect an improvement of 4-6 dB over
a fixed p-law quantizer with the same number of bits. Thus, both the feed-
forward and feedback adaptive quantizers can be expected to aéhieve about 10-
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Fig. 5.41 ADPCM system with both adaptive quantization and adaptive
prediction; (a) coder; (b) decoder.

12 dB improvement over a fixed quantizer with the same number of levels.

In either case the quantizer adaptation provides improved dynamic range
as well as improved SNR. The main advantage of the feedback control is that
the step size information is derived from the code word sequence, so that no
additional step size information need be transmitted or stored. This, howeve‘r,
makes the quality of the reconstructed output more sensitive to errors in
transmission. With feed-forward control, the code words and the step size
together serve as the representation of the signal. Although this.ir}creases the
complexity of the representation, there is the possibility of transmitting th; step
size with error protection, thereby significantly improving the output quality for
high error rate transmission {27,28].

5.7.2 DPCM with adaptive prediction

So far we have considered only fixed predictors, and have found th.at even
with higher order predictors, we can expect that differential quantization will
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provide, under the best circumstances, about 10-12 dB improvement. Further-
more the amount of improvement is a function of speaker and of speech
material. In order to effectively cope with the nonstationarity of the speech
communication process, it is natural to consider adapting the predictor as well
as the quantizer to match the temporal variations of the speech signal [29]. A
general adaptive DPCM system with both adaptive quantization and adaptive
prediction is depicted in Fig. 5.41. The dotted lines indicate that both the
quantizer adaptation and the predictor adaptation algorithms can be either of
the feed-forward or the feedback type. If feed-forward control is used for the
quantizer or thé predictor, then A(n) or the predictor coefficients,
a(n) = {a,(n)}], (or both) are also required in addition to the code words,
c(n}, to complete the representation of the speech signal.

The predictor coefficients are assumed to be time dependent so that the
predicted value is

() = ¥ ar(mz(n—k) (5.127)
k=1

In adapting the predictor coefficients a(#) it is common to assume that the pro-
perties of the speech signal remain fixed over short time intervals. The predic-
tor coefficients are therefore chosen to minimize the average squared prediction
error over a short time interval. For feed-forward control, the predictor adapta-
tion is based upon measurements on the input signal. (This can be seen to be
equivalent to neglecting the term 1/SNR in the analysis of Section 5.5.) Using
the same type of manipulations that were used to derive Egs. (5.87) and (5.89),
and neglecting the effect of quantization error, it can be shown that the
optimum predictor coefficients satisfy the equations,

RD =3 armR,G=k), j=1,2,..:p (5.128)

k=1
where R,(j) is the short-time autocorrelation function (Eq. (4.24))

RN =% x(m)wh-m)x(+m)w(n-m—j), 0<j<p (5.129)
mem—oo

and w(n—m) is a window function that is positioned at sample » of the input
sequence. A rectangular window, or one with much less abrupt tapering of the
data (e.g., a Hamming window of length N) can be used. Since the parameters
of speech vary rather slowly, it is reasonable to adjust the predictor parameters
a(n) infrequently. For example, a new estimate may be computed every 10-20
msec, with the values being held fixed between estimates. The window dura-
tion may be equal to the interval between estimates or it may be somewhat
larger. In the latter case, successive segments of speech would overlap. As
defined by Eq. (5.129), the computation of the correlation estimates required in
Eq. (5.128) would require the accumulation of N samples of x(n) in a buffer
before computing R,(j). The set of coefficients a(n) satisfying Eq. (5.128) are
used in the configuration of Fig. 5.41a to quantize the input during the interval
of N samples beginning at sample n. Thus, to reconstruct the input from the
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Fig. 5.42 Prediction gains versus number of predictor coefficients for one
female speaker (band from 0-3200 Hz). (After Noll [71)

i i fiicients (and possibly the
uantizer code words we also need the predictor coe : '
guantizer step size) as depicted in Fig. 5.41b._ The details of computing the
time-varying predictor parameters are discussed in Chapter 8.

In order to quantitatively express the benefits of aQaptive prediction, _Noll
[7] has examined the dependence of the prediction gz}m, Gp, upon prgdlctor
order for both fixed and adaptive predictor. Figure 5.428 shows the quantity

2
10 lOg]o[Gp] =10 10810[%] (5.130)

as a function of predictor order, p, for both fixed ar}d adaptive prediction. The
lower curve, obtained by computing a long term estimate of tht? autocorglétxotn
for a given speech utterance and solving foy the set of predictor (’:l(‘)l? cnen:
satisfying Eq. (5.89), shows a maximum gain of about 10.5 dB. e gp;:e

curve was obtained by finding the value of window lquth, L, and the pre éc o;
coefficients «(n) that maximized Gp across the entire utterance for a fixe

value of p. This maximum value is plotted for each value of p. In this cats:,
the maximum gain is about 14 dB. Thus, Noll [T suggests that reasona:' e
upper bounds on the performance of DPCM systerps w1t.h fixed and adz}p F13/e
prediction are 10.5 and 14 dB respectively. Not evident in the curves of Fig.

8The results in this figure are for a single speaker. In addition no error feedback was included in
the system which was studied.
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5.42 is the fact that the optimum fixed predictor is likely to be very sensitive to

speaker and speech material, whereas the adaptive prediction scheme is
inherently less sensitive.

The adaptive predictor tends to remove redundancy from the speech sig-
nal. Indeed, if perfect prediction were possible, the prediction error signal,
d(n), would be completely uncorrelated (white noise). We might say that the
redundancy is removed by incorporating a model for the speech wave. It can
be seen from Fig. 5.42 that little gain results from increasing the order of pred-
iction beyond 4 or 5. Such prediction, however, ignores an important source of
redundancy in speech; namely, the correlation due to the quasi-periodic nature
of voiced speech. One approach to exploitation of this correlation was con-
sidered by Atal and Schroeder (29], who used a two stage predictor of the form

#(n) = B2(n—M) + ¥ a,[f(n—k) — BR(n—k=M)]  (5.131)
k=1

where the predictor parameters 8, M and {a,} are all adapted at intervals of N

samples. Neglecting the effect of quantization error in £(n), we can express
the prediction error as

d(n) = x(n) - x(n) (5.132)

=x(n) — Bx(n—M) — i ailx(n—k) — Bx(n—k—-M)]

k=1
which can be expressed as

d(n) =v(n) - f’ o v(n—k) (5.133)
k=1

where

v(n) = x(n) - Bx(n—M) (5.134)

The computation of the values of 8, M and {a,) that minimize the variance of
d(n) is not straightforward. For this reason, Atal and Schroeder [29] consider
a sub-optimum solution in which the variance of v(n) was first minimized, and
then the variance of d(n) was minimized subject to fixed values of 8 and M.
Thus, the autocorrelation of the input was computed as before, but in this case
R,(j) was determined over a range which would encompass typical pitch
periods of speech. The predictor coefficient 8 was chosen to be a value of the
peak of the normalized autocorrelation over the entire range of lags and M was
set at the position of the peak of R,(j}. Thus, 8 accounts for the variability of
amplitude between consecutive periods, while M is the pitch period (in sam-
ples). Given M and 8, the sequence v(n) can be determined and its autocorre-
lation computed for j = 0,1, ... ,p, from which the prediction coefficients a,
can be obtained from Eq. (5.128) with R,(j) being the short-time autocorrela-
tion of the sequence v(n).

In order to represent speech using such a system, it is necessary to
transmit or store the quantized difference signal, the quantizer step size (if feed
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forward control is used), and the (quantized) predictor poefﬁcients. In the ori-
ginal work of Atal and Schroeder, a one-bit quantizer was used for the
difference signal and the step size was adapted every 5 msec 33 samp}es gt a
6.67 kHz sampling rate), so as to minimize the quantization error. leewmf,
the predictor parameters were also estimated every 5 msec. Although. no expli-
cit SNR data was given, it was suggested that high quality reproduction of the
speech signal could be achieved at bit rates on the order of 10 kb/.s. Jayant [8]
asserts that using reasonable quantization of the parameters, gains of 20 dB
should be possible over PCM.

Unfortunately, no careful study of the limits of performange c_>f adaptive
prediction including pitch parameters has been done. However, .1t is appe'm_ent
that schemes such as this represent the extreme of complexnty_of digital
waveform coding systems. On the other end of the scale would be linear delta
modulation with its simple quantization process and unstructured stream of
one-bit binary code words. The choice of quantizgtion sch_eme depends on a
variety of factors including the desired bit rate:, desired quality, code_r comple).(-
ity, and complexity of the digital representation. In the next st?ctlon we will
summarize some comparative studies that help to place'the w_lde variety of
quantization schemes in perspective. But first, let us consider briefly the ques-
tion of feedback control of the adaptive predictor.

One approach is to base the computation of the corre]ation function upon
the quantized signal £(n) rather than on the input. Thus, in Eq. (5.128) R,(j)
would be replaced by

R,(j)) = i Fmywhn-m)Z(m+)wln-m=j), 0<j<p (5139

mm=—c0
In this case, the window must be of the form
wim)=1, 0€<Lm<<N-1 (5.136)
=0, otherwise

That is, the estimate of predictor coefficients must be ba;ed upon past quan-
tized values rather than future values which cannot be .obtamed }xntll the predic-
tor coefficients are available. As in the case of adaptxye quantizer control, the
feedback mode has the advantage that only the .quantlzer code words need be
transmitted. Feedback control of adaptive predictors, however., hag not b;zen
widely used due to the inherent sensitivity to errors. anq the mfernpr perfor-
mance that results from basing the control upon a noisy input. An 1pt§restmg
approach to feedback control was considered t?y Stroh [30] who studied a gra-
dient scheme for adjusting the predictor coefficients.

5.8 Comparison of Systems

In comparing digital waveform coding systems, it is co.nvenient' to_ usef signal-
to-quantization noise as a criterion. However, the ultimate criterion for sys-
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tems that are to be used for voice communication is a perceptual one. The
question of how well the coded speech sounds in comparison to the original
unquantized speech is often of paramount importance. Unfortunately this per-
ceptual criterion is often the most difficult to quantify and there is no unified
set of results that we can refer to. Thus, in this section we shall briefly sum-
marize the results of objective SNR measurements for a variety of speech cod-

ing systems and then summarize a few perceptual results that appear to be par-
ticularly illuminating.

Noll [7] has performed a very illuminating comparative study of digital
waveform coding schemes. He considered the following systems:

1. p =100 log PCM with X,,,, = 80 ,. (PFCM)

2. Adaptive PCM (optimum Gaussian quantizer) with feed-forward con-
trol. (PCM-AQF)

3. Differential PCM with first order fixed prediction and adaptive Gaus-
sian quantizer with feedback control. (DPCM1-AQB)

4. Adaptive DPCM with first order adaptive predictor and adaptive Gaus-
sian quantizer with feed-forward control of both the quantizer and the
predictor (window length 32). (ADPCM1-AQF)

5. Adaptive DPCM with fourth order adaptive predictor and adaptive
Laplacian quantizer, both with feed-forward control (window length
128). (ADPCM4-AQF)

6. Adaptive DPCM with twelfth order adaptive predictor and adaptive

Gamma quantizer, both with feed-forward control (window length
256). (ADPCM12-AQF)

In all these systems the sampling rate was 8 kHz and the quantizer word length
ranged from 2 bits/sample to S bits/sample. Thus the bit rate ranges from 16
kb/s to 40 kb/s. Signal-to-quantizing noise ratios for all the systems are plotted
in Fig. 5.43. The curves of Fig. 5.43 display a number of interesting features.
First it is seen that the lowest curve corresponds to the use of a 2-bit quantizer
and moving upward from one curve to the next corresponds to adding one bit
to the quantizer word length. Note that the curves are displaced from one
another by roughly 6 dB. Notice also the sharp increase in SNR with the addi-
tion of both fixed prediction and adaptive quantization, and note that almost no
gain results from adapting a simple first order predictor. However, it also is
clear that higher order adaptive prediction offers significant improvements.

For telephone transmission, it is generally accepted that acceptable speech
quality is obtained with a u-law quantizer with 6-7 bits/sample. From Eq.
(5.38), it can be seen that 7-bit # = 100 PCM would have an SNR of about 33
dB. On the basis of Fig. 5.43 it would appear that comparable quality could be
obtained using a S-bit quantizer with adaptive quantization and adaptive predic-
tion. In practice there is strong evidence to suggest that the perceived quality
of ADPCM coded speech is better than a comparison of SNR values would sug-
gest. In a study of an ADPCM system with fixed prediction and feedback con-
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like system 1 of Noll’s study and the
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Table 5.7 Comparison of Objective and Subjective Performance of ADP!
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Fig. 5.43 Signal-to-noise ratio values for quantization wnthct“éo‘bxz ;el:
sample (16 kb/s) up to five bits per sample (40 k.b/s). (:. :r haF
Adaptive quantizer - feed forward; AQB‘- A’(;l'apuve quantiz o
backward; ADPCM, - ADPCM system with r order predictor.

Nolt [71.)

(After Cummiskey, Jayant, and Flanagan {261.)

jecti i Subjective Rating
\T)bje?év)\ellgmmg ;Preference)

7-bit PCM 7-bit PCM (High Preference)
6-bit PCM 4-bit ADPCM

4-bit ADPCM 6-bit PCM

5-bit PCM 3-bit AD&CM

-bi 5-bit PC
i-:‘lt QE;CM 4-bit PCM (Low Preference)
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1., [26] found that listeners pre-
d speech with higher SNR. Th.e
in Table 5.7, where the PCM system is
ADPCM system is like system 3 of Noll’s
hat 4-bit ADPCM is preferred to 6-bit log PCM.

CM and Log-PCM.

Recalling that the SNR improvement for ADPCM with fixed prediction and
adaptive quantization is expected to be on the order of 10-12 dB, or roughly 2-
bits, it is not surprising that the systems would be comparable, but in fact, the
4-bit ADPCM was preferred to the 6-bit log-PCM even though the SNR of 4-
bit ADPCM was somewhat lower.

In their study of adaptive prediction Atal and Schroeder {29] found that
their ADPCM system with a one-bit adaptive quantizer and complex adaptive
predictor yielded} coded speech whose quality was slightly inferior to 6-bit log
PCM. The estimated bit rate for this system was about 10 kb/s in contrast to
the 40 kb/s required for 6-bit PCM at a sampling rate of 6.67 kHz. Especially
in this case, the subjective quality was greater than would be expected from
consideration of the SNR.

A precise explanation of this phenomenon is difficult to obtain; however it
is reasonable to conjecture that it is due to a combination of such factors as
better idle channel performance of the adaptive quantizer and greater correla-
tion between the quantization noise and the signal [7].

5.9 Direct Digital Code Conversion

1t is abundantly clear from the discussion of this chapter that there are limitless
possibilities for quantizing the waveform of speech signals. These schemes
range in complexity from linear delta modulation which is extremely simple to
implement but requires a high bit rate, to a wide variety of adaptive differential
PCM systems which provide good quality at low bit rates but are rather com-
plex signal processing algorithms.

As a result, a problem of major concern is that of direct conversion from
" one digital representation to another without intervening analog processing.
" This problem is important for a number of reasons. (1) In large communica-
tion systems there are likely to be situations such as local communication loops
which call for low terminal cost with information transmission rate being of less
E concern. In other situations such as long distance transmission or storage of
 speech in digital memory, low bit rate may be the overriding consideration. At

interfaces between parts of a communication system where different digital
-~ representations are used, it is very desirable to be able to convert from one
E digital representation to another in a way that avoids degradation of speech
'~ quality. (2) The implementation of low bit rate representations is often
. simplified by using entirely digital techniques. For example, it may be desirable
" to use a simple coding scheme such as linear delta modulation to perform the
- initial A /D conversion and then, though digital processing, convert to a lower
bit rate representation such as PCM or ADPCM. (3) In situations requiring
P processing of the speech signal, it is necessary to have the signal represented in
uniform PCM format so that arithmetic processing (e.g., digital filtering) can be
performed on the samples of the speech signal.

For all these reasons, the problem of direct digital code conversion is very
F important. To illustrate how digital signal processing techniques can be applied
‘ in this important area, we shall discuss two examples.
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Fig. 5.44 Circuit implementation of a linear delta modulator.
(After Baldwin and Tewksbury [31]).

5.9.1 LDM-to-PCM conversion

In order to obtain a high quality representation of 'speech, a linear Qelta
modulator employs a very high sampling rate and a sm_1ple 1-b}t quantlzler.
Such systems are simple to implement \{sing a combination of S.lm]i:e ana log
and digital components. Indeed, an entire LDM coder .can easily be impl -
mented as a single integrated circuit [31]. For exarr}ple Fig. _5.44 shows a tyt;:
cal analog comparator circuit to create a_diﬁ'erence signal, a flipflop to spns; he
polarity of the difference signal, and an mtegratgr tg reconstruct a pred!cge ] sig-
nal to compare to the input. This simple combination of analog and dlgltaf :ﬁ'
cuitry is all that is required to implement a delta modulator. The ;)l.;tl;l}t g' re
flipflop is a train of pulses which correspopd Fo the sequence of 1- it | mz: y
code words that represent the input. A circuit of this type has been imple-

mented as an integrated circuit which is capable of sampling rates up to 17 MHz :

{311 '
The simplicity of such circuits with capabilities of very hlgh. data rat.es
makes LDM an extremely attractive possibility for low cost, high quality

analog-to-digital conversion. The price of this simplicity is of course the }

extremely high data rate required for high quality. ' .
The bit rate can be reduced, however, by using digital signal processing

techniques to convert the LDM code words (1’s and 0’s) into anotl'{er, more |
efficient representation such as PCM or ADPCM. One of the most important :

conversions is from LDM to uniform PCM since uniform PCM is required

whenever numerical processing of the samples of an analog waveform is ;

desired.
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The process of converting the LDM representation to a PCM representa-
tion involves first obtaining a PCM representation at the LDM sampling rate
followed by a reduction in sampling rate to the Nyquist rate. The first step is
accomplished simply by decoding the 1’s and 0’s into numbers with value +A,
and then accumulating the resulting positive and negative increments to obtain
quantized samples of x,(r) at the LDM sampling rate. The resulting sequence
has quantization noise throughout the band Q| < /T, where T is the LDM
sampling period, even though the spectrum of the input speech may be
bandlimited to a much lower frequency. Thus, before reducing the sampling
rate to the Nyquist rate for the input, it is necessary to remove the quantization
noise in the band from the Nyquist: frequency up to one-half the LDM sam-
pling frequency. As discussed in Section 2.4.2, this can be done very efficiently
with an FIR digital lowpass filter [32], whose cutoff frequency is the Nyquist
frequency of the speech signal. The output of the filter is computed only every
M samples, where M is the ratio of the LDM sampling frequency to the PCM
sampling frequency. Thus, an LDM-to-PCM converter is essentially an accu-
mulator or up-down counter whose output is filtered and sampled. As noted in
Fig. 5.45, an LDM-to-PCM converter in conjunction with an LDM system con-

stitutes an analog-to-PCM converter whose implementation is almost com-
pletely digital.

5.9.2 PCM-to-ADPCM conversion

Another example of code conversion is from uniform PCM-to-ADPCM
[33]. Interest in this conversion process stems from the desire to obtain a more
efficient representation than uniform PCM. Figure 5.46 shows a diagram of the
process. It is clear from Fig. 5.46 that the basic approach is to implement the
particular ADPCM algorithm directly on the uniform PCM samples. This can
be done with ordinary digital hardware for the arithmetic and logical operations
depicted in Fig. 5.46. An important consideration in any code conversion pro-
cess is the degradation introduced by further digital processing. Clearly the
PCM input will have some quantization error which we can characterize by a

e a1
| T T T T T T e 7| |
: ! P DIGITAL ! : 8
: )
Xolt) Lom (el : pecoper b3 *n)l owass DECIMATOR Xin
i | *) FILTER by
|
| | |
: | ™ |l
| |1
! b LDM-TO-PCM CONVERTER d
: f
|
L _ _ANALOG-TO-PCM CONVERTER __ 4

‘G—%SAMPLING PERIOD =T m—){SAMPLING PERIOD= MTliv

Fig. 5.45 Analog to PCM converter using an LDM system and ari
LDM-PCM converter.
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ANALOG-TO-| y{n)+ ~_ din} din)

xol!! PCM ¥ ol ] ENCODER

CONVERTER h

c(n}

Fig. 5.46 PCM to ADPCM code converter.

signal-to-noise ratio SNR . Similarly, the ADPCM algc.)rithl wil(lielnnttrc(’);htl;:
izati hat this error is indepen
ther quantization error. If we assume t (
f;l;e siggal and the PCM quantization error, we can approximate the overall
SNR of the system as (see Problem 5.17)

_SMRy (5.137)

SNR = o SNR,

SNR,
where SNR, is the signal-to-noise ratio of the ADP?hM sg%;m. X)c:v :3;&(:}3
i ation that the overall SNR can be no better than I+ rever, the
::l}:;r:g:tion is rather small if SNR, is on the order of SNR,. Specifically, if

SNR = SNR,, we note that SNR is only 3 dB worse than SNR . '

Digital code conversion can be viewed as a means of accurgtq and ef.’[tijxertxt
implementation of a particular waveform coding algorlt‘hm. .If it is posssn9 1e 0
obtain uniform PCM samples — for example as descrl.bed in Sec_tlon . .d‘_
then digital processing can be applied to implementing a particular coding

scheme.

5.10 Summary

This chapter has presented a detailed discussion of digtjltal “\;v;f:\l:l r:;:j(in;g(;
i i hes is possible. We
We have seen that a wide variety of approac . ade no
that have been proposed but have
attempt to cover all the systems B e
i i inci her references on this topic
i d to emphasize basic principles. Furt . . ' .
lfltl)itflg in the rpeview paper by Jayant [8], or in the collection of reprints edited

by Jayant [34].
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PROBLEMS

5.1 The uniform probability density function is defined as

p(x) = %

=0 otherwise

Find the mean and variance of the uniform distribution.

Ix| < a/2

5.2 Consider the Laplacian probability density function

1 e—\/i |x|/:r‘\,
o,

Find the probability that |x| > 4o .

px) =

5.3 Let x(n), the input to a linear shift-invariant system, be a stationary, zer«

mean, white noise process. Show that the autocorrelation function of th¢
output is

d0m) =02 3 (k) h(k+m)

k==—o0

where o ?is the variance of the input and A (n) is the impulse response o
the linear system.

5.4 Consider the design of a high-quality digital audio system. The

specifications are: 60 dB signal-to-noise ratio must be maintained over :
range of peak signal levels of 100 to 1. The useful signal bandwidth mus
be at least 8 kHz.

(a) Draw a block diagram of the basic components needed for 4/D and
D/ A conversion.

(b) How many bits are required in the 4/D and D/A converter?

(c) What are the main considerations in choosing the sampling rate?
What types of analog filters should be used prior to the A4/D con-

verter and following the D/A4 converter? Estimate the lowest sam-

pling rate that would be possible in a practical system.

How would the specifications and answers change if the objective

was only to maintain telephone quality representation of speech?

(d)

| 55 A speech signal is bandlimited by an ideal lowpass filter, sampled at the

Nyquist rate, quantized by a uniform B-bit quantizer, and converted back
to an analog signal by an ideal D/A converter as shown in Fig. P5.5a.
Define y (n) = x(n) + e,(n) where e,(n) is the quantization error.

Assume that the quantization step is A = 84,/2% and that B is large
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SPEECH | Soeass|talt) o] 1oEaL |xmexgeD)] o ) L (o) oA | Yot x(n) = KX(A") “A+xp(n) = x(n) + x,(n)
SAMPLER
FILTER
where x;(n) is the integer part of x(n), and x,(n) is the fractional
(a) part of x(n). Then e(n) can be determined as a function of x (n).
Argue that they cannot be exactly statistically independent.
(b)  Under what conditions is the approximation that x(n) and e(n) are
: shvetER e of ] T statistically independent valid?
Yalt)=¥gli=e) YN Ye (c) Figure P5.6 shows a method which has been suggested for making
e(n) and x(n) statistically independent, even for a small number of
(0) quantization levels. For this case z(n) is a pseudorandom, uni-
Fig. P5.5 formly distributed, white noise sequence with probability density
b function
enough so that we can assume: 2(z) = 1l A <zg A
1. e,(n) is stationary . A 2 2
2. ey(n) is uncorrelated with x(n) Show that in this case the quantization error e(n) = x(n) ~ §(n) is
i niformly distributed white noise sequence ) .. . .
3. efn)is a‘;} 3 y these conditions, the signal-to-quantizing noise statistically mdepem}ent of x(n) for gll val.ues of B . (The noise
We have seen that under ’ sequence, z(n), being added to the signal is called dither noise.)
ratio is
2
o 12 - " -
SNR, = le = _67 .28 x{n)+ ~ y(n)=x{n}+2(n} U»?!F(B)gM yin) X(n)
e QUANTIZER| *°
Now assume that the analog signal y,(¢) is sampled again at the Nyquist |
rate and quantized by an identical B-bit quantizer as shown in Fig. P53.5b. o
(Assume that 0 < € < T i.e., the two sampling systems are not exactly Fig. P5.6
synchronized in time.) e .
Assume that w(n) = y'(n) + e)(n) where e,(n) has identical properties Hint: Look at the range of values for e () for ranges of y(n).
to e (n). ) . L (d) Show that the variance of the quantization error at the output of the
(a) Show that the overall signal-to-noise ratio is B-bit quantizer is greater than the variance of the quantization error
SNR, for the undithered case — i.e., show that
SNR ;= ) 0_31 > 0_3
(b) Generalize the result of (a) to N stages of 4/Dand D/A4 conversion. } where
it i ization error as being indepen-
5.6 Although it is common to treat the quantiza : > i - .
dent of the signal x(n), it can easily be shown that this assumption breaks ey(n) = x(n) — p(n)
down for a small number of quantization levels. . . ] and
(a) Show that e(n) = x(n) — %(n) is not statistically mgz.m;ndem of e(n) = x(n) — 2(n)
% i uantized signal.) Hint: Represent X(n) as ) ' ‘
x(m). (%(n) is the q g (e) Show that by simply subtracting off the dither noise z(n) from the
t(n) = x(m | A+ A quantizer output, the variance of the quantization error
xin A 2 ex(n) = x(n) — (§(n)~z(n)) is the same as the variance of the

where [-] denotes the "greatest integer in,” i.e., the greatest integer

less than or equal to the quantity within the brackets. Also 1

represent x (n) as
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undithered case; i.e., 02 = o2

5.7 A common approach to estimating the signal variance is to assume that it
is proportional to the short-time energy of the signal, defined as
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oXn) = i x¥m)h(n—m)

2

(a) Show that if x(n) is stationary with zero mean and variance o,

then Elo3(n)] is proportional to o 2 @
(b) For o

Ay =e" n20 (o<
=0 n<90
and for
ElxXm)x¥ D1 =B m=1
=0 m#/
i i 2 function of Band a.

determine the variance of o%(n) as a _ ©

(c) Explain the behavior of the variance of a%(n) of part (b) as o varies

from 0 to 1.

Consider the adaptive quantization system.shown ip Fig. P5.'8a.F.Th; 52;1)( ’
quantizer characteristic and code word assignment is sh.own m. ig. P5.8b.
Suppose the step size is adapted according to the following rule:

A(n) = MA(n-1)

where M is a function of the previous codeword ¢(n—1) and

5.8

Furthermore suppose that

M=P if c(n-1) = 01 or 11
=1/P if c(n-1) 00 or 10

Draw a block diagram of the step-size adaptation system.
Suppose that

x(n) = 0 n<Ss
= 20 5€n<13
=0 13<n

Assume that A, =2 and A,,, =30 and P = 2. Make a table of
values of x(n), A(n), c(n) and %(n) for 0 < n < 25. (Assume
thatat n =0, A(n) = A, =2, and c{n) = 00.)

Plot the samples x(n) and %(n) on the same coordinate scale.

5.9 Consider the 2-bit adaptive quantizing system of Problem 5.8. In this
case, however, the step size adaptation algorithm is:

3 LSBlc(n-k)] 3 2

k=]

A(n) = BA(n-1) + D if

= BA(n-1) otherwise

where LSBlc(n—k)] means "least significant bit" of the codeword

cln—k).
. < . . .
Brin < (1) < Bpmax (a) Draw a block diagram of the step-size adaptation system.
(b) In this case the maximum step-size is built into the algorithm for
) . cin) adaptation. Find A, in terms of 8 and D. (Hint: consider the step
Ao af ] ENCODER response of the first equation of this problem.)
(c) Again suppose that
A(n)-___T x(n) = 0 n<5
=20 5€£n<13
SIZE =
BT 0 1<
Logie Also suppose that M =1, 8=10.8, and D = 6. Make a table of
(o) values of x(n), A(n), c(n) and %(n) for 0 < n < 25. (Assume
that at n=0, A(n) =0, and ¢ (n)=00.) Plot the samples x(n) and
(n %(n) on the same coordinate system.
* (d) Find the value of B such that the time constant of the step-size
3A2<n) _—:j_o‘————— adaptation system is 10 msec.
m| 00 . . -
_atn é(z-) ] 5.10 Consider the first order linear prediction
7 (n} x(n)
S bl %(n) = ax(n-1)
] - 34l where x(n) is a stationary, zero mean signal.
) (a) Show that the prediction error
(b
Fig. PS.8 d(n) = x(n) — %(n)
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has variance
gl=c¥1+al- 2a(1)/a )
(b) Show that o} is minimized for
a=¢(1)/cl=p()
(¢} Show that the minimum prediction error variance is
o= o 1-p¥1))
(d) Under what conditions will it be true that ¢} < o 27

5.11 Given a sequence x(n) with long time autocorrelation ¢(m), show that
the difference signal

d(n) =x(n) — x(n—ny)
has lower variance than the original signal x(#) as long as there is reason-
able correlation between x(n) and x(n—ny. (Assume x(n) has zero
mean value.)
(a) State the conditions on ¢(ng) such that

ci< o}

(b) If d(n) is formed as

d(n) = x(n) — ax(n—~ny

where
_ $(n9
Y0)

state the conditions on ¢(ng) such that

03<03

14

5.12 Using Eqs. (5.78) and (5.83), prove the assertion that for the optimum
predictor coefficients

El(x(n)=%(n))x(n)] = Eld(n)x(n)] =0

That is, that the optimum prediction error is uncorrelated with the
predicted signal.

5.13 Consider the difference signal
d(n) = x(n) — a1x(n—1)

where x(n) is the quantized signal in a differential coder.
(a) Show that

ocl=02(1-2ap(1) +a}| +als?
(b) Using the result of (a) show that
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af
ol 1~ SvR
G =ZTx _ 0
’ od I = 2ap(1) +af
where
2
e

5.14 In the CVSD adaptive deita modulator, the step-size adaptation algo-

rithm is

A(n) = BA(n=1) + D, if ¢(n) = cln—=1) = ¢(n=2)
= BA(n—1) + D, otherwise

where 0 < 8 < 1and0 < D, << D,

(a) The maximum step size is attained if the input to the step size
filter is constant at D, as would occur in a prolonged period of
slope-overload. Find A,,,, in terms of Djand g.

(b) The minimum step size would be attained if the pattern
c(n) = c(n—1) = ¢(n—2) does not occur for a prolonged
period as in the idle channel condition. Find A i in terms of
D and B.

5.15 Consider the adaptive delta modulator of Fig. P5.15a. The 1-bit

quantizer is given in Fig. P5.15b. The step size is adapted according
to the following rule

A(n) = MA(n-1)

Aln) STEP-SIZE

Fig. P5.15
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5.16 Consider the two coders shown in Fig. P5.16a and b. Each coder

x{n) of ] Mol copER #1 uses a 2-bit quantizer with input-output characteristic shown in Fig.
- P5.16¢.
(o) Consider the idle channel case, i.e. the case where x{(n) is a low
level noise. For simplicity we assume x (1) is of the form
LIR ey LI PY 3 CODER #2 x(n) = 0.1 cos(mwn/4)
'Y (a) For 0 < n < 20 make a plot of %(n) for both coders,
(b) For which coder would the "idle channel noise" be more objec-
LTI - Rla) tionable in a real communications system? Why?
5.17 Consider the PCM-to-ADPCM code conversion system of Fig. 5.46.
The PCM coded signal, y(n), can be represented as
(b)
y(n) = x(n) + e\(n)
x(m,dtn) where x(n) = x,(nT), and e,(n) is the quantization error in the
PCM representation. The quantized ADPCM signal, y(n), can be
o1 represented as
N
00 J(n) =y(n) + exn)
2 : L 3 dlm) where ey(n) is the ADPCM quantization error.
-t ' (@) Assuming that the quantization errors e (n) and e,(n) are
R B uncorrelated, show that the overall signal-to-noise ratio is
ol
(c) SNR = ol + a?
€l €
Fig. P5.16 (b) Show that SNR can be expressed as
SNR
e SNR = — SRy
1
Ain € Aln) € A 1+ WRZ_
and the step size multiplier is given by where
M=P it c(n)=cln-1) ,
=P if cln)#cln-1) SNR | = ‘7;
. . (e
(a) Draw a block diagram of the step-size logic. ‘
(b) Suppose that and
x(n) = 0 n<S5 o2
=20 S5<n<13 SNRy = —
= 0 13<n €
= ble
Assume Apin=1 A =15, a=1,and P = 2. Makg a tal
of values of x(n),m:?x(n), d(n), A(n), d(n) and X(n) for
0 < n <25 Assume that at n =0, x(0) =0, 0 =1,
d(©) = -1, A(0) = Apin=1, and d(0) = ~1. Plot x(n) and
%(n) for0 €< n £ 25.
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Short-Time Fourier Analysis

6.0 Introduction

In many areas of science and engineering, the representation of signals or ot.her
functions by sums of sinusoids or complex exponentials leads to convenient
solutions to problems and often to greater insight into physical phenomeqa than
is available by other means. Such representations — Fourier representathns as
they are commonly called — are useful in signal processing for two bas.xc rea-
sons. The first is that for linear systems it is very convenient to determine the
response to a superposition of sinusoids or complex exponentiz}ls. The second
reason is that the Fourier representations often serve to place in ewdencg cer-
tain properties of the signal that may be obscure or at least less evident in the
original signal.

Speech communication research and technology are areas where the con-
cept of a Fourier representation has traditionally played a major role.. To see
why this is so, it is helpful to recall that the model for the pr_oductlon.of a
steady state speech sound such as a vowel or fricative simply consists of a lmgar
system excited by a source which is either periodically or randomly varying with
time. In general, the spectrum of the output of such a model would be the
product of the frequency response of the vocal tract system and the spectrum of
the excitation. Thus, it is'to be expected that the spectrum of the output would
reflect the properties of both the excitation and the vocal tract frequency
response. We have seen, however, that speech waveform‘s are generally much
more complicated than simply a sustained vowel or fricative sound. Thus the
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standard Fourier representations that are appropriate for periodic, transient, or
stationary random signals are not directly applicable to the representation of
speech signals whose properties change markedly as a function for time. How-
ever, we have already seen ample evidence that the short-time analysis principle
is a valid approach to speech processing. We have seen, for example, that tem-
poral properties such as energy, zero crossings and correlation can be assumed
fixed over time intervals on the order of 10 to 30 msec. We shall demonstrate

in 'this chapter that spectral properties of speech likewise can be assumed to
change relatively slowly with time.

In order to study spectral properties of speech signals, we shall find it con-
venient to formally introduce the concept of a time-varying Fourier representa-
tion of a signal. We shall define a time-varying Fourier transform and the
operation of synthesis from a time-varying Fourier transform. In so doing, it
will be convenient to consider Fourier analysis in the context of a bank of
filters. This will lead to both theoretical and practical (computational) insights
into time-varying Fourier analysis. We shall also consider other computational
techniques based upon fast computation algorithms for discrete Fourier analysis
(FFT algorithms). Finally, having considered the theoretical and computational
details of time-varying Fourier representations, we shall consider applications to
the analysis/synthesis of speech (vocoders), spectrum displays, and such basic
speech analysis problems as formant analysis and pitch detection.

6.1 Definitions and Properties

In defining a time dependent Fourier representation, we are motivated by the
need for a spectral representation which reflects the time-varying properties of

the speech waveform. A useful definition of the time dependent Fourier
transform is

X.(e/) = ¥ wln—m)x(m)e=ivm 6.1)
M=——oco
In Eq. (6.1), w(n—m) is a real "window" sequence which determines the por-
tion of the input signal that receives emphasis at a particular time index, n.
The time dependent Fourier transform is clearly a function of two variables: the
time index, », which is discrete, and the frequency variable, w, which is con-
tinuous. An alternative. form of Eq. (6.1) is obtained by a change of summa-
tion index which yields the expression

X, (/) = i w(m)x(n—m)e=foln=m
= g Jon i x(n~m)w(m)elom (6.2)
If we define
X, (e = 3 x(n—m)w(m)eiom 6.3)
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Fig. 6.1 Sketches of x(m) and w(n—m) for several values of n.

then X,(e’“) can be expressed as
X, (e/) = e~/on X, (e (6.4)

These equations can be interpreted in two distinct ways. First, if we
assume that n is fixed, we note that X,(e/*) is simply the normal Fourier
transform of the sequence w(n—m)x(m), —eo < m < co. Therefore for fixed
n, X,(e/*) has the same properties as a normal Fourier transform. The second
interpretation follows by considering X,(e’) as a function of the time index n
with o fixed. In this case we observe that both Eq. (6.1) and Eq. (6.3) are in
the form of a convolution. This interpretation leads us naturally to consider
the time dependent Fourier representation in terms of linear filtering. As we
will see, both interpretations lead to useful insights and we shall find it
worthwhile to examine the time dependent Fourier transform in detail from

both viewpoints.
6.1.1 Fourier transform interpretation

To begin, we shall consider X,(e/*) as the normal Fourier transform of
the sequence w(n—m)x(m), —eo < m < oo, for fixed . The time-dependent
Fourier transform is a function of the time index, #, which takes on all integer

values so as to "slide" the window, w(n—m), along the sequence, x(m). This 1

is depicted in Fig. 6.1, which shows x(m) and w(n—m) as functions of m for
several values of n. (Note that the signal and the window are plotted as con-

tinuous functions for convenience even though they are only defined for '

integer values of m and n—m.)
Conditions for the existence of the time-dependent Fourier transform

representation are easily obtained if we recall that a sufficient condition for the 1

existence of the conventional Fourier transform is that the sequence be abso-
lutely summable. In this case, we require that the sequence x(m)w(n—m) be
absolutely summable for all values of n. If, as is often the case, w(n—m) is of
finite duration, then this condition is clearly satisfied.

As in the case of normal Fourier transforms of discrete-time signals, the ‘
time-varying Fourier transform is periodic in o with period 2. This is easily
seen by substituting w + 27 into Eq. (6.1). Also note that it is possible to

express the time-varying Fourier transform in terms of a variety of frequency

variables. For example, if w= T, where Tis the sampling period used to obtain 1
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the sequence x(m), then Q is analog radian frequency. Also, by making the
substitutions w = 2w f or w = 2w FT, we can express the time-varying Fourier
tfansform as a fqnction of either normalized cyclic frequency (f) or conven-
tional analog cyc!xc frequency (F— in Hertz) respectively. We shall have occa-
sion to use a variety of different frequency variables in equations and figures in
this ch.apter and in the remainder of the book. However, there should be n

confusion once the simple relationships become familiar. ' °

’Il‘he faqt that, for a given value of n, X,(e/“) has the same properties as a
normba; Fourier transform leads to a simple proof that the input sequence x (m)
can recovered exactly from the time-varying Fourier transform. Recalling

our earlier observation that X, (e/®) is si i
,, s simply the normal Fourier t
w(n—m)x(m), we can write rensform of

wln—m)x(m) = 51;_— :!; X, (e/“)e/*"dw 6.5)

I(‘Iote t(glat the intggration in Eq. (6.5) could be over any interval of length 27
et%., to 2w) since the entire integrand is periodic with period 27. Now if
w(0) = 0, Eq. (6.5) can be evaluated for m = n, thereby obtaining

B 1 7 o
x(n) = o _f X,(e/9) evndy 6.6)
Tt(lu;, with the rather mild requirement that w(0) be nonzero, the sequence
xfn can be exactly recovered from X,(e/*), if X,(e/%) is known for all values
‘())vews ;;ﬁer one IEc?(mplete period. This is an important theoretical result, which
sl see, takes on practical significance with the impositi ! si ,
additional constraint on the window. position of a simple

- An important property of X,(e/®) concerns its relation to the short-time
autocorrelation function as defined in Chapter 4. Given that X,(e’?) is the

normal Fourier transform of w{(n—m)x(m) fi
or ea o :
seen that ch value of n, then it is easily

S,(e/) = |X,(e/) |2 = X,(e/%) - X*(e/v) 6.7
is the Fourier transform of
R, (k) = Z_ wln—m)x(m)w(n—k—m)x(m+k) (6.8)

II-Eequatlons .(6.7) and (6.8)- thus serve to relate the short-time spectrum
presentation to the short-time correlation as discussed in Chapter 4

Ca The §hort-time Fourier transform, X,(e/*), can be expressed in a variety

of a .ternatlve forms. One particularly simple form is in terms of its real and

imaginary parts,!i.e. "
X,(e/Y) = a,(w) ~ jb,(w) (6.9)

! ( ) i w gImary p 34
Note that a,(w) 15 the real part and b ( ) is minus the ima; inar art of X, (e/® The negative
X N n i ! n i

sign is used for convenience in later discussion. ) l
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For the case when x{(m) and w(n—m) are both real then a,{w) and b,(w) can
be shown to satisfy certain symmetry and periodicity relations (see Problem
6.1). Another representation for X, (e’ is in terms of magnitude and phase as

X, (e/) = |X,,(e-’“’)|e'/”"("') (6.10)

The quantities |X,(e/“)| and 6,(w) can readily be related to a,(w) and b,{(w)
and vice versa. see Problem 6.3). Additional properties of a,(w), b,(w), and
X,(e’*) are emphasized in other problems given at the end of this chapter.

So far we have not considered the role of the window, w(n—m), beyond
its obvious function of selecting the portion of the sequence x(m) to be
analyzed. The shape of the window sequence has an important effect on the
nature of the time-dependent Fourier transform, and the present viewpoint pro-
vides a convenient way to interpret the role of the window sequence, w(n—m).
If X,(e/*) is thought of as the normal Fourier transform of the sequence
w(n—m)x(m), and if we assume that the normal Fourier transforms

X(e/) = i x(m)e=iom (6.1D)

Me=—o0

and

W(eiw) = 3. wlm)e/em 6.12)
=—00
exist, then the normal Fourier transform of win—m)x{(m) (for fixed n) is the
convolution of the transforms of w(n—m) and x(m). Since, for fixed n, the
Fourier transform of w{(n—m) is W(e /%) e /" then

X, (e = == [ Wie= e X (el do 6.13)
2m ¥,
By changing 6 into —8 in Eq. (6.14) we can also write
X,(e) = 2= [ wiememx (el de 619
27 <,

Thus, we observe that the Fourier transform of the sequence
x(m), —oo < m < = is convolved with the Fourier transform of the shifted
window sequence. This result needs to be qualified by recognizing that strictly
speaking the normal Fourier transform of a speech signal does not exist. How-
ever, Eq. (6.14) can be useful if we first recall that the purpose of the window
is to emphasize a finite segment of the speech waveform in the vicinity of sam-
ple n, and to deemphasize the remainder of the waveform. Indeed, typical win-
dow sequences may be such that w(n—m) =0 for m outside a finite interval
around n. Insofar as the final result is concerned, then, it is entirely reasonable
to assume that the properties of x(m) inside the window persist outside the
window. For example, if the speech signal within the window corresponds to a
vowel or other voiced sound, we can just as well consider that the resulting
sequence x(m)w(n—m) arose from a periodic sustained voiced sound. Like-

254

02 HAMMING WINDOW
E
A . Wa W W [\[\Aﬂ A\ A .
: 100 V V de-f W%o" 500"
<
-0.2F
(a)
20t
2000
- 0 v' Vi 10‘00 (el W) 1 L }
; V Uy 3000 4000 5000
% -20
=
>
e
g -0}
o
N
-60}
-80- (b)

Fig. 6.2.Spectrum analysis for voiced speech using a 50 msec (a,b) Ham-
ming window; (c,d) rectangular window. Parts (a) and (c) show time
waveforms; parts (b) and (d) show corresponding spectra.

wise .if the speech within the window is unvoiced, we can assume that the same
upvonc;ed properties exist outside the window. An equally appropriate point of
view is that the signal is simply zero outside the window. This would be
appropriate for the analysis of transient sounds such as plosives.

: .Thus, Eq. (6.14) i§ meaningful if we assume that X (e/%) stands for the
ourier transfqrm. of a signal whose basic properties either continue outside the
window or which is zero outside the window. Thus the time dependent Fourier

transform can b; interpreted as a smoothed version of the Fourier transform of
the part of the signal within the window.

Wlth this point of view, the properties of the window Fourier transform
W(ej-"’), become important. It is clear from Eq. (6.14) that for faithful repro:
duction of the properties of X (e/%) in X,(e’?), the function W<{(e’% should
appear as an impulse with respect to X (e/“). In Chapter 4 we have already dis-
cussed the .properties of the rectangular and Hamming windows. It was shown
that the width of the main lobe of W<(e/®) is inversely proportional to the

length of the window, whereas the levels of the si i
! s e side lobes
independent of the window length. are essentially

B The effects of using windows for speech spectral analysis are shown in
igures 6.2-6.5. Part a of each of these figures shows the windowed signal
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Fig. 6.2 (Continued)

x{(m)w(nn—m) for a Hamming window; part b shovys the lpg magnitude of
X,(e’) (in dB units); part ¢ shows the windoweq signal using a ref:tangular
window, and part d shows the resulting log magnitude spectrum. Figure 6.2
shows results for a window duration of 500 samples (SQ msec for 10 kHz sam-
pling rate) for a section of voiced speech. The perxodlclty. of 'the mgr;al is
clearly seen in Figure 6.2a (the time waveform) as well as in Figure 6.2b in
which the fundamental frequency and its harmonic_s show up as narrow peaks at
equally spaced frequencies in the short-time Fourier transform. The spect:r;\(;gl
of Fig. 6.2b is also seen to consist of a strong first formant peak at about 300-
400 Hz, and a broad peak at about 2200 Hz which corresponds tq the second
and third formants. A fourth formant peak at abou} 3800 Hz is ?lso seen.
Finally the spectrum shows a tendency to fall off at higher frequencies due to
the lowpass nature of the glottal pulse spectrum.

A comparison of the spectra of Fig. 6.2b (}-Igmrping window) and 62§
(rectangular window) shows considerable overall similarity in terms of the: pnt:l
harmonics, formant structure, and gross spectral spape. Differences mf the
spectra can also be seen, the most notable being the increased sh:arpness of the
pitch harmonics of Fig. 6.2d, due to the greater frequency resoluuqn of the drec-
tangular window relative to that of the same length Haxpmmg wmf ow.
Another difference in the spectra is that the }'elauvely large sm}e lobes of the
rectangular window produce a "ragged" or noisy ;pectrum_. This effect occurs
because the side lobes due to adjacent harmonics interact in the space between
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the harmonics — sometimes reinforcing, sometimes cancelling — thereby pro-
ducing a rather random appearing variation between harmonics. This undesir-
able “leakage" between adjacent harmonics tends to offset the benefits of the

narrower main lobe of the rectangular window. As a result, such windows are
rarely used in speech spectrum analysis.

Figure 6.3 shows a similar set of comparisons for a 50 sample (5 msec)
section of voiced speech. For such short windows the time sequences
x(m)w(n—m) (Figures 6.3a, c) do not show the signal periodicity, nor do the
signal spectra. (Figures 6.3b, d). In contrast to Figure 6.2, the spectra of Fig.
6.3 show only a few rather broad peaks at about 400, 1400, and 2200 Hz,
corresponding to the first three formants of the speech section within the win-
dow. Comparison of the spectra of Figures 6.3b and 6.3d again shows the
increased frequency resolution obtained with a rectangular window.

Figures 6.4 and 6.5 show the effects of windows for a section of unvoiced
speech (corresponding to the fricative /sh/) for a 500 sample segment (Figure
6.4) and a 50 sample segment (Figure 6.5). From these figures it is seen that
the spectra show a slowly varying trend with a series of sharp peaks and valleys
superimposed. The ragged appearance of the spectrum (for both windows) is
due to the random nature of unvoiced speech. Finally the use of a Hamming
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Fig. 6.3 Spectrum analysis of voiced speech using a 5 msec (a,b) Ham-
ming window; {c,d) rectangular window. Parts (a) and (c) show time
waveforms; parts (b) and (d) show corresponding specira.
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Fig. 6.4 Spectrum analysis of unvoiced speech using a 50 msec (:,b)
Hamming window; (c,d) rectangular window. Par'ts (a) and (c¢) show
time waveforms; parts (b) and (d) show corresponding spectra.
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Fig. 6.4 (Cominued)v

window is seen to produce a somewhat smoother spectrum than a rectangular
window.,

The examples of Figs. 6.2-6.5 clearly illustrate the basic relationship
between the time duration of the window and the properties of the short-time

¥ Fourier transform. That is, frequency resolution varies inversely with the
length of the window. When we recall that the purpose of the window is to

limit the time interval to be analyzed so that the properties of the waveform do

not change appreciably, we see that a compromise is required. In Fig. 6.2c, for

example, it can be seen that the formant frequencies are obviously changing
across the 50 msec interval. A shorter analysis interval is ‘required in order to

' display this temporal variation. Windows of 5 msec duration positioned at the
 beginning and end of the 50 msec interval would yield distinctly different

0.02[- HAMMING WINDOW
£
; o] 1 ! | L ! m
B 100 200 300 400 500
b <
-002%- {a)

Fig. 6.5 Spectrum analysis of unvoiced speech using a 5 msec (a,b)
Hamming window; (c,d) rectangular window. Parts (a) and (c) show
time waveforms; parts (b) and (d) show corresponding spectra.
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6.1.2 Linear filtering interpretation
_ -a20t It is obvious from Eq. (6.1), that for each value of o, X,(e’) is the con-
£ volution of the sequence w(n) with the sequence x(n)e~/on Thus, for a par-
% ticular value of w, X,(e/“) can be thought of as the output of the system dep-
> -a0fF icted in Fig. 6.6a where w(n) plays the role of the impulse response of a linear
gg shift invariant system. Note that in Fig. 6.6a, the input and output of the linear
9 system are complex. Expressing X,(e’/“) as
-60+F ;
X, (e/) = a,(0) — jb,(w) 6.15)
] (o) then the operations required to obtain a,(w) and b,(w) are shown in Fig. 6.6b
- 80 - where all the sequences are real.
IMPULSE
X RESPONSE p————
Q02 _ﬁw(n)ﬁ Xnlel}
E e-iwn
& L i i 4 m
3 o] 160 200 300 400 500 ta)
€
-0.02}F
IMPULSE
(c) RESPONSE f—————> aplw)
win)
T 1 F
o T y \ 5000
1000 2000 3000 4000 IMPULSE
RESPONSE bnlw}
w(n)
Ty
8 (b)
._"o Fig. 6.6 Linear filtering interpretation of short-time spectrum analysis;
g’ (a) complex operations; (b) real operations only.
& -a0}
To see how the system of Fig. 6.6a operates to form the short-time
(d)

Fourier transform at frequency w, it is helpful to again assume that the normal
Fourier transform of x(n) exists. To avoid confusion of frequency variables,
we denote the Fourier transform of x(n) as X(e’*). (Recall that we are now
b considering w to be a particular value of radian frequency.) Then, as a result of

the modulation process, the Fourier transform of the input to the linear filter is
E X(e/®™ ) Thus the spectrum of x(n) at frequency w is shifted to zero fre-
quency. Since the Fourier transform of the output of the filter is
| X(e/%*)) W(e/%), then if the filter is a lowpass filter with a very narrow
} passband, the output of the filter will depend essentially upon X(e/“). Thus, as
-in the previous interpretation, W(e’%) should be nonzero over a very narrow
p band around zero frequency and as small as possible outside this band. It is

 interesting to note in passing that Eq. (6.14) is exactly the inverse Fourier
 transform of W (e/¥) X (e/ (o)),

Fig. 6.5 (Continued)

short-time Fourier transforms. Thus, good temporal resolqtion requires l: ls;hon
window while good frequency resolution calls for a 'long wn‘ldow.. We fs al l.sc:<f
examples of the use of both types of windows later in our discussion of applica
tions.

We have seen that an interpretation of the t_ime-dependem Fo?rgp
transform as the conventional Fourier transform of a wmdowec} segrfnegt ot f t:
speech signal leads to useful insights into both the Qropertle; otht rein;?lht
dependent Fourier representation and the ro'le of the window. Furthe g| :
will result from the linear filtering interpretation.
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Fig. 6.7 Another interpretation of short-time spectral analysis in terms of
linear filtering; (a) complex operations; (b) real operations only.

Still another interpretation of X,(e’*) in terms of linear filtering is evident
from Eq. (6.2). As shown in Fig. 6.7a, X,(e’*) can also be thought of as the
result of modulating e /“" with the output of a complex bandpass filter whose
impulse response is w(n)e/" If the Fourier transform W (e’") is a lowpass

function then the filter in Fig. 6.7a will be a bandpass filter whose passband is |

centered at frequency w. Figure 6.7b shows the system of Fig. 6.7a in terms of
only real quantities.

A comparison of Figs. 6.6b and 6.7b shows that if both a,(w) and b,(w)
are required, the implementation of Fig. 6.6b is simpler. If, however, only }
|X,(e/¥) | is required, implementation with bandpass filters is simpler. To see °

this note that from Egs. (6.4) and (6.9),

|X,(e79)] = [a2w) + bHe)]"? (6.162) |

= | X, (/)| = [an) + b1 (6.16b)

Figure 6.8a depicts Eq. (6.16a) and Fig. 6.8b depicts Eq. (6.16b). The system ‘

of Fig. 6.8b would in general be simpler.

With the point-of-view that X,(e’*) at a particular value of w is the out-
put of a system as depicted in Figs. 6.6 or 6.7, we can call on a knowledge of

linear systems to help to understand the properties of the time-varying Fourier
representation. For example, it is helpful to recall that the impulse response of

a discrete-time, linear, shift-invariant system can be either of finite (FIR) or”

infinite (ITIR) duration. Similarly we may define two classes of windows for
time-varying Fourier analysis. Also, recall that a linear shift-invariant system

can be either causal or noncausal depending upon whether or not its impulse*
response is zero for n < 0. In like manner we can classify windows as either 3
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causal or noncausal. A causal window is one for which
wn)=0, n<o0 (6.17a)
or equivalently,
win-m) =0, n<m (6.17b)

) t.The Hamming window anq the rectangular window are examples of finite
uration windows. By appropriate choice of time origin they can also be

“defined as causal windows. Such windows are, as we shall see, appropriate for

zase in mplementgtions based upon Figs. 6.6 and 6.7 as well as implementations

us:?‘gl u;;(s)ne;pil dxsc}n;ete Fouril_ir t'ransform. Infinite duration windows are also

use an,d 6p7 1aIny w ;n X, (e’ is computgd using linear filtering as in Figs.

o 7. such cases, we can qbtaxn a recurrence formula that gives
n{€’%) in terms of values at previous times (see Problem 6.6).

6.1.3 Sampling rates of X,(e!) in time and frequency?

e o{;l;hzirsr?eo;st;(t)i:;e Fourlier(tr;msform is a two-dimensional representation of
- al signal x(n). Thatis X,{(e/) is a functio i

. : n of both »n which
represents time, and radian frequency o ;s basi i i
. : . A.basic consideration in the digital
g,n;(::?eir:;e;tla:)t&?‘;] :f systein(si for short-time Fourier analysis is the rate at wtglich
#(e ¢ sampled in both the time and frequency di i
( : ' _ y dimensions to -
vide an unaliased representation of X,(e’?) from which x(n) can be exal::rt(l)y

win) ¢ 7
L
{12 p——n
IXqlel¥)|
win) s
(a)
win) coswn [
—] 1
x{n) [ [ 3 S——.
[Xnle1w)]
win) sinwn ()2

(b)

l‘jig. 6.8 Two impleme',ma(ions for obtaining the magnitude of the short-
time spectrum; (a) using lowpass filters; (b) using bandpass filters.

The material presented in the remainder of Section 6.1 is based on References 1-4
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recovered. This question is by no means a trivial one and requires careful con-
sideration of the factors entering into the computation of X,(e/®) to arrive at
the correct sampling rates in both time and frequency. As will be shown, a
complicating factor in the discussion of the choice of the proper sampling rates
for X,(e/¥) is that sampling rates lower than the theoretically minimum rate
can be used in either the time or frequency dimensions, and x(n) can still be
exactly recovered from the aliased (undersampled) short-time transform. Such
undersampled representations are indeed quite useful for applications in which
one is only interested in short-time Fourier analysis (e.g., spectral estimation,
pitch and formant analysis, digital speech spectrograms etc.) and for vocoder
applications in which minimization of overall bit rate of the system is of prime
importance. For applications in which one is interested in obtaining a short-
time Fourier transform of the signal, performing some modification on the sig-
nal (e.g., linear or nonlinear filtering) and then resynthesizing the modified sig-
nal, it is essential that no aliasing occur in either the time or frequency
domains.

We begin by discussing the required sampling rate of X,(e/*) in the time
dimension. In this case the linear filtering interpretation of the previous section
provides the necessary insight. In that section it was shown that for a fixed
value of o, X,(e/“)} could be shown to be the output of a filter with impulse
response w(n). If we denote the Fourier transform of w(n) as W(e/*) then
we have already shown that for most reasonable windows W (e/*) has the pro-
perties of of a lowpass filter frequency response. Let us denote the effective
bandwidth of the analysis window as B Hz.? Thus the sequence X,(e’/“) has the
same bandwidth as the window, and therefore according to the sampling
theorem, X,(e/®) must be sampled at a rate of at least 2.8 samples/second to
avoid aliasing. For an example consider a Hamming window, i.c.,

w(n) = 0.54 — 0.46%cosQQmn/(L-1)) 0<n <L -1

=0 otherwise (6.18)
Then the approximate bandwidth of W (e/“) in terms of analog frequencies is
2F
B = L’ (Hz) 6.19)

where F is the sampling rate of the signal x(n) and thus the required sampling
rate of X,(e/*) in the time dimension is 2B samples/sec = 4F,/L samples/sec.
Thus for L =100, F;=10000 Hz, we get B = 200 Hz, so that X,(e/“) must
be evaluated 400 times/second — i.e., every 25 samples.

Since X,(e’*) is periodic in w with period 2, it is only necessary to sam-
ple over an interval of length 2. To determine an appropriate finite set of fre-
quencies w, = 2wk/N, k = 0,1,...,.N — 1 at which X,(e/*) must be specified to

3Note that there is a possibility of confusion of frequency variables. Recall that when X, (e/®) is
viewed as a function of time, w is fixed. However, we also use the variable w to denote the fre-
quency variable associated with the time variation of X, (e/*).
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exactly recover x(n), we use the Fourier transform interpretation of X, (e’/*)
.If the window is time-limited, then if X,(e’) is viewed as a Fourier tran;form‘
its inverse transform is time-limited. In this case the sampling theoren;
regunrgs th_at we sample X,(e/®) in the frequency dimension at a rate of at least
twice its "time width." Since the inverse Fourier transform of X.(e/9) is the sig-
nal x(m)w(n—m) and this signal is of duration L samples (again due to the
finite duration window w(#)) then according to the sampling theorem, X, (/%)
must be sampled (in frequency) at the set of frequencies o

2mk »
wk=%, k=0,1,...L—1 (6.20)

in order to exactly recover x(n) from X,(e’). (See Problem 6.8.) Thus for
the example of a Hamming window of duration I = 100 samples, we require

X,,fe{"’) to be evaluated at at least 100 uniformly spaced frequencies around the
unit circle.

Based on the above discussion we can determine the total number of sam-
ples of X,,_(ejm") that must be computed per second to give an unaliased
reprelsfntauon of the original signal x(n). The minimum sampling rate of
X, (e _“) in the time dimension is 2B where B is the frequency bandwidth of
the window, and the minimum number of samples in the frequency dimension

i; (L’,- nfge. time width of the window. Thus the total sampling rate (SR) of
(e’ is

SR =2B-L samples/sec (6.21)

For most practical windows B can be re i
r i presented as a multiple of (F./L) whe
Fi is the sampling frequency of x(n), ie., / *

F;
B=C T (Hz) 6.22)
where Cis the proportionality constant. Thus Eq. (6.21) can be written as
SR = 2CF, samples/sec 6.23)
The ratio of SR to F, is therefore
SR
'E =2C (6.24)

. The quantity 2C indica}es the "oversampling" ratio of the short-time analysis as
7 compared to a conventional sampling representation of x(n).

By way of example, if w(n) is a Hamming window, then 2C = 4 whereas

if w(n) is a rectangular window (and if the bandwidth B is defined to be the

frequency of the first zero of W(e’%)) then 2C = 2. Thus the short-time spec-

f trum representation of x(n) is seen to require on the order of 2 to 4 times as

n:,any samples as required to represent the waveform; however, in return one
ootains a very flexible representation of the signal from which extensive

¥ modifications in both the time and frequency domains can be made.
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In this section we have discussed the required sampling rates of X, (e™
in time and frequency to obtain an unaliased representation of x(n). Although
the sampling rates which were derived are theoretically the minimum rates for
the signal, there exist special cases in which X,,(e"""‘) can be undersampled in
either the time or frequency dimensions, and for which x(n) can be exactly
recovered with no aliasing error. Such cases are of practical importance for the
implementation of systems in which minimum storage (bit rate) of the
representation is of importance, €.g., an analysis-synthesis system, a spectral
display etc. We shall discuss how to design and implement such systems later
in this chapter. First we shall show two distinct ways in which x(n) can be
recovered from a sampled version of X,(e’**) and then we will discuss the
effects of modifications of X, ,,(e'w“) on the resulting reconstructed signal.

6.1.4 Filter bank summation method of short-time synthesis

The first synthesis method is related to the filter bank interpretation of
the short-time spectrum, in which it was shown that for any frequency w,,
X,(e’“¥) is a lowpass representation of the signal in a band centered at w,.
From Eqs. (6.1) and (6.2), X,(e’“*) can be expressed as either

X, = 3 wiln—m)x(m)e " (6.25)
or
X, (™)) = e/ i x(n—m)wi(m)e’ " (6.26)

where w,(m) is the window used at frequency . If we define
he(n) = wln)e'™" (6.27)
then Eq. (6.26) can be expressed as
X, =" Y x(n—m)h(m) (6.28)
me=—00
Since the window w,(n) has the properties of a lowpass filter, Eq. (6.28) can be
interpreted as in Fig. 6.7 as a bandpass filter with impulse response h(n) fol-
lowed by modulation with a complex exponential e /“k" If we define
yi(n) = X,,(ej'"“)ejw"" (6.29)
we see from Eq. (6.28) that
v = % x(n—m)h(m) (6.30)
m

-—00

Thus y(n) is simply the output of a bandpass filter with impulse response
hi(n) as given by Eq. (6.27). The operations of Eqs. (6.28) and (6.29) are
depicted in Fig. 6.9a. Since Egs. (6.25) and (6.28) are equivalent we also note
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(a}
e-jwkn ei“’k"
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x(n) Xple =
{b}
hin} p————>
x(n}) Yiln}

{c)

Fig. 6.9 Methods for implementing synthesis of a single channel in terms
of linear filtering.

that either form for. X,(e’“*) can be used in Eq. (6.29), and in both cases the
overall systfem relatlpg x(fr) to y,(n) is a bandpass filter with impulse response
hi(n). This is depicted in Fig. 6.9, where Fig. 6.9a depicts Eqs. (6.28) and

(6.29) and Fig. 6.9b depicts Egs. (6.25) and (6.29). Fi
. . 6. . (6. .29). Figure 6.9
equivalent bandpass filter for both cases. ’ ¢ shows the

The resul_t summarized in Fig. 6.9 provides the key to a practical method
for rgconstructmg the input signal from its time dependent Fourier transform.
Cons;ﬂer now a set of N frequencies {w,}, kK =0,1,...,N ~ 1, and suppose that
X,(e’") is available for each frequency. Now consider N bandpass filters of
the for'm Eq. (6.27). Suppose for example that w,(n) is the impulse response
of an ideal lowpass filter with cutoff frequency w,. The frequency response
W (el of: such a filter is shown in Fig. 6.10a. The frequency response of the
corresponding  complex  bandpass filter with  impulse  response
h(n) = w(n)ye <" is

Hilel®) = W (e’ ™) (6.31)

as 2shown in Fig. 6.10b. Note that the center frequency is w, and the bandwidth
18 @ ke

We now consider a set of N bandpass filters chosen with their center fre-

%%encies uniformly spaced so that the entire base frequency band is covered
us .

wk=——A—,— k=01...,N-1 (6.32)
We also assume the window is the same for all channels, i.c.,
wiln) =w(n) k=01 ... N-1 (6.33)

4 .
Note that we are now using w as the frequency variable.
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Fig. 6.10 Frequency responses of (a) ideal lowpass; and (b) ideal
bandpass filters.

Then if we consider the entire collection of bandp.ass filters, each havipg the
same input and their outputs added together as in Fig. 6.11, the composite fre-
quency response relating y(n) to x(n) is

N-1 N=1 o

e = 3 Hled) = % W™ (6.34)

k=0 k=0
If W(e’“¥ is properly sampled in frequency (i.e., if N > L where L is the
time duration of the window), then it can be shown that

71\/_ ' we' ) - w (6.35)
=0

for all w. '
The derivation of Eq. (6.35) is as foliows. The inverse Fourier transfonp
of W(e’9) is w(n), the window. If W(e/) is sampled in frequency at N uni-

holn) Yol
+
xn) mn) ALY yin!
t——  hy(n} Tain)

Fig. 6.11 Equivalent linear system relating y,(n) and y(n) to x{(n).
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formly spaced points, the inverse discrete Fourier transform of the sampled
version of W(e’“*) is

1 Nl Ju jogn -
~ T W’ = T win+rN) (6.36)
k=0

i.e., an aliased representation of w(n) is obtained. (See Problem 6.8.) If w(n)
is of duration L samples, then

wn)=0 n<0 nzlL 6.37)

and no aliasing occurs due to sampling in frequency of W(e/“). Thus, in this
case, if Eq. (6.36) is evaluated for n = 0 we get

r=—oo

N=l .
= T W™ = w0 (6.38)
k=0
Eq. (6.35) is readily obtained by noting that W(e’“ %) is a uniformly sam-
pled version of W(e’) evaluated at w — w, rather then w,. According to the
sampling theorem, any set of N uniformly spaced samples is adequate. Thus,
Eq. (6.35) follows from Eq. (6.38) and the sampling theorem.

From Eqgs. (6.38) and (6.35) we see that the impulse response of the
composite system

h(n) = Nil h(n) = Nz_l win)e' " = Nw(0)8(n) (6.39)
k=0 k=0

is simply equal to a scaled unit sample N w(0) 5(n), and thus the composite
output y(n) will be Nw(0)x(n).

Thus for the filter bank summation method, the reconstructed signal is
formed as

N
y(n) =% yln)
k=0

Nt jw fa n
3 X, (e")e’ (6.40)
=0

and we have shown that if X,(e’“%) is properly sampled in frequency, then
y(n) = Nw(0)x(n) independent of the specific shape of w(n). The operations
of analysis and synthesis implied by Eq. (6.40) are depicted in Fig. 6.12 where
the filters are bandpass filters.

We have just shown a very important result; i.e. under the condition that
w(n) has finite duration, L, then the sequence x(n) can be reconstructed
exactly from the time-dependent Fourier transform sampled in both the time
and frequency dimensions. It can also be shown, that if W(e’®) is perfectly
bandlimited in frequency, then x(n) can likewise be reconstructed exactly from
X,(e’*9). Indeed we shall see that numerous possibilities exist for exact recon-
struction of x (n) from the short-time transform.
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Fig. 6.12 Analysis and synthesis operations for short-time spectrum
analysis.

We have shown that to avoid time aliasing, X,(e’“%) must be eva}luated at
least at L uniformly spaced frequencies where L is the window duration. The
bandwidth of a window of duration L samples is generally from 2m/L ffor a
rectangular window) to 4/L (for a Hamming window). Sinc; the analysis fre-
quencies are 2mk/L, the effective bandpass filters overlap in freque'ncy. As
mentioned earlier there is a way in which X,(e’**) can be evaluated in nono-
verlapping bands, and for which x (n) can still be exactly (at least theoretically)
recovered.

To show this we assume that the window length for all bands is L sam-
ples, and that the same window is used for N equally spaced frequency bands
with analysis frequencies
_ 2mk
- N

where N may be less than L. We also assume that w(n) is an ideal lowpass
filter with cutoff frequency

k=01 ... N-1 (6.41a)

@y

w,=Z (6.41b)

This situation is depicted in Fig. 6.13 which shows the composite response for
N = 6 equally spaced ideal filters. For this case Eq. (6.39) becomes

N=l A N2l
hn) = Y wme’ "= wn) T & (6.42)
k=0 k=0
If we define A
pm) =3 =3 W (6.43)
k=0 k=0
270

2 2r . 2n 27 2r 2% 2n 27
N —t N b o N >t N B N N e N — N —a
~w, 0 wy wy wy wy wg, 2n w

Fig. 6.13 Composite frequency response for N = 6 equally spaced ideal
filters.

then A (n) can be written
h(n) = w(n)p(n) (6.44)

The sequence p(n) is easily seen to be periodic with period N. Indeed, p(n)
can easily be shown (see Problem 6.7) to be a periodic train of impulses of
amplitude A, i.e.,

p(n) =N i 8(n—~rN) (6.45)

F==—00

Thus, #(n) is
F) =N 3 w(rN)s(n—rN) (6.46)

Thus the composite impulse response is simply the window sequence sampled
at intervals of N samples. This is depicted in Fig. 6.14. Figure 6.14a shows the
sequence p(n). Figure 6.14b shows the impulse response of an ideal lowpass
filter with cutoff frequency =/N; i.e.,
. s
sin — n
win) = —N (6.47)
mn
It can be seen by comparing Figs. 6.14a and 6.14b that the product
h(n) = p(n)w(n) will be zero everywhere except at n = 0 where the product
is unity. Thus the composite impulse response is

h(n) = 8(n) (6.48)

Although this assumes an ideal lowpass filter, the details of the way p(n) and
w(n) interact to produce the composite response suggest a multitude of ways of
choosing w(n) so that the signal can be reconstructed from the sampled short-
time transform. First of all, note that if w(n) is of finite length L < N and
causal, then the composite impulse response will be as in Eq. (6.39) thus veri-
fying the discussion of the previous section. Figure 6.14¢ shows an example of
this case. Alternatively, a causal window with length greater than N can be
used if w(n) has the properties.

w(n)=—lA—,, n=roN

r=0,+1,+2, ... (6.49a)



pin} T . .

The implication of Eq. (6.49b) is that the composite frequency response
of an analysis/synthesis system such as Fig. 6.12 has a flat magnitude response
and linear phase corresponding to a delay of rolN samples. That is,

I'{(ejm) - e—jwroN
This implies that the output of the analysis/synthesis system is
y(n) =x(n—r,N) 6.51)

Thus, except for a delay of roN samples, the output of the system for time-
dependent Fourier analysis and synthesis is an exact replica of the input
sequence. Therefore we have shown that exact reconstruction of the input is
possible with a number of frequency channels less than that required by the
sampling theorem and with a causal window which permits the realization of
the analysis with causal bandpass or lowpass filters. Thus an important practical
issue is how well we can design digital filters to approximate the behavior
shown in Figure 6.14. We discuss this issue extensively in Section 6.2.

Before proceding to an alternative approach to synthesis from the short-
time spectrum, we must discuss the way in which Eq. (6.40) (the synthesis
equation) is practically implemented since we have shown that X,,(e'w") need

(6.50)

_2N N 0 N 2N 3N 4N n
(o)

win}

/N

hinl=8(n)

win)

T(n}=Nw{0}8(n)

“2N -N only be computed at a rate related to the bandwidth of the window. As such
we assume that the k™ channel is computed once every D, samples of the
input. (For uniformly spaced channels D, = D, independent of k). Assuming
that X,(e’“*) is computed at the sampling rate of the input (although this may
not be the case in practice) we can modify Figs. 6.9a and 6.9b to reflect the fact
that X,(e’“*) need only be sampled at a rate of FJ/ D, by including a decimator

; : - at the output of the analysis and an interpolator at the input to the synthesis as

-2N N depicted in Fig. 6.15. As discussed in Chapter 2, the decimation is simply

(a) implemented by discarding D, — 1 samples out of every Dy, or equivalently, by
win)
-7 |
N - w) w,
Hn) = 8{n-N) eTlun | elwwn
n(m) oegm;:mn | _[inTERPOLATOR
. . ) —— x(n} Xnfelon) K | 1+ D« Xnlelek) yiln)
-2N -N 0 N 2N IN aN 0 : ne ,
(e) ANALYSIS I SYNTHESIS
Fig. 6.14 Typical sequences for p(n) and w(n) for composite filter bank. te) !
h e iwkn : eiukn
then
A(n) = p(n)w(n) = 8(n—ryN) (6.49b) |
. . R =2 In wim DECIMATOR| | |INTERPOLATOR
Figure 6.14d shows an example of a finite durauop window where ro=2.1 S SR P Dy: ' Vo0, o T
fact it is clear that w(n) need be neither time limited or frequency limited in |
order that it be possible to exactly reconstruct a delayed replica of x(n) from ANALYSIS | eSS

X.(¢’“%). All that is required is that Eq. (6.49a) hold for. w(n). There is no o)
re"striction that the window be of finite length as long.as it ha:s equally space'd
zeros. Indeed Fig. 6.14e depicts an infinite duration window with the appropri-

ate properties.

Fig. 6.15 Complete filter bank implementation for a single channel for
short-time spectrum analysis.

m 73




e

,.:% FORM WINDOW L POINTS
win)
r= 1
FORM
wirR-nhx (n})

PAD WITH ZEROS
TO GIVE N
POINT SEQUENCE

N-POINT FFT

MODIFICATIONS TO
SHORT -TIME
SPECTRUM

N-POINT INVERSE
FFT
y{m) =y (m) + y,(m) + INITIALIZE
=n=N+LL y yim =0 ALL m

Fig. 6.16 Flow diagram for overlap addition method.

i i la-
i % D, samples of the input. The interpo
computing X,(e’"%) once every D,
?irc;lri’ is in‘:plemgemgd by filling in D, — 1 zero valued samples'between everly
sample of X, (e'“%) at the reduced rate, and filtering the result with an appropri-
n

ate lowpass filter.

6.1.5 Overlap addition method for short-time synthesis

An alternative method for reconstructing x(n) frorq its short-utrlnetst;?ec‘; ;
trum is based on the normal Fourier transform interpretation of the short-tim i

. Jw . a]
spectrum. Since, as shown eartier, X,(e’™¥) can be considered the norm
discrete Fourier transform of the sequence

y.(m) = x(m)w(n—m) (6.52)

then x(m) can be reconstructed by computing the inver.se §i§crete Four;er '1
transform of X,,(e"""‘) and dividing out the window (assuming it is nonzero for :

all values of m which are considered). In this manner L signa! values of x.(m))
can be reconstructed for for each window (where L is the window duration).

Then the window can be moved by L samples and the process repeated. Based
on the discussion of Section 6.1.3, it can be seen that this procedure uses an 3
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‘undersampled in time" representation of X,(e’“*) and thus is highly suscepti-
ble to aliasing errors. Thus although such a procedure is valid, it has not been
found useful for many applications in which one is interested in reconstructing
the original signal (or a processed version of it). In this section we present a
more robust synthesis procedure similar to the overlap addition method for a
periodic convolution using discrete Fourier transforms.

Assume that the short-time transform is sampled with period R samples
in the time dimension; i.e. we have Y,(e’“) = X,.(¢"“%) were r is an integer
and 0 € & < N — 1. The overlap addition method is based upon the equation

o |1 &l Jagy jw,n
yiny=% N,kE_OY,(e Je (6.53)

r=—co

That is, to reconstruct the signal, the inverse transform of Y,(e’% is computed

' for each value of r giving the sequences

ylm) = x(m)w(rR—m) —oo < m < o (6.54)

E Then the signal at time 7 is obtained by summing the values at time n of all the
sequences y,(m) that overlap at time #. That is,

Y= Ty =x(n) 3 w(rR—n) (6.55)

r=—oc r=—o0

It is readily shown (see Problem 6.8) that if w(n) has a bandlimited Fourier

b transform and if X,(e’“*) is properly sampled in time, i.e. R is small enough to
f avoid time aliasing,’ then

0

Y w(rR—n) = W(e/)/R (6.56)

F=—o0

b regardless of the value of n.

Thus Eq. (6.55) becomes
y(n) = x(n) W(e!/R 6.57)

] showing that the synthesis rule of Eq. (6.53) can lead to exact reconstruction of

¥ x(n) (to within a constant multipler) by adding overlapping sections of the
b waveform.

Figures 6.16 and 6.17 illustrate how the overlap addition method is imple-

' mented for w(n), an L-point Hamming window with R = L/4. Figure 6.16
 gives a flow chart of the method, assuming the signal x(x) is 0 for n < 0.

Since a time overlap of 4 to 1 is required for a Hamming window, to obtain the

F correct initial conditions the first analysis section is positioned to begin at
¥'n=L/4 as shown in Fig. 6.17. The window (assumed to be nonzero for
'0< n < L —1) is used to give the signal y,(m) = w(rR—m)x(m) which is
Fnonzero for rR — L +1 < m < rR. This L-point sequence is padded with

' SFor an L-point Hamming window R < L/4.
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Fig. 6.17 Reconstruction procedure for w{n) using an L-point Hamming
window.

sufficient zeros to account for the effects of modifications of .the short-ftxg;e
spectrum (as discussed in the next seqtion), and then an N-point FFT of the

. . Ja
resulting sequence is used to give Y, (e™"9).

To reconstruct the signal at time n, we use Eq. (6.53). Figure 6.17 illus- ]
trates the operations implied by Eq. (6.53) for a value of » such that ‘

0 < n < R — 1. Note that y(n) consists of the sum of 4 numbers; i.e.
y(n) = x(n)w(R~n) + x(n)w(Q2R-n) + x(myw(3BR—n)

+ x(n)w(@R—n) . (6.58)

Clearly for values of n such that R < n < 2R — 1, the term x(n)w(R—n)
would be teplaced by a term x(n) w(5R—n), etc.

It is interesting to note that the filter bank summation method and the !
overlap addition method are essentially duals of one another; i.e. one depends ?

on a sampling relation in frequency, and one depends on a_sampling relation in
time. The filter bank summation requires that the sampling in frequency be
such that the window transform obeys the relation

k=0
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Nfll W'y = w(0) 6.5%) |

whereas the overlap addition method requires that the sampling in time be such
that the window obeys the relation

oo

Y. w(rR—n) = W(e/)/R (6.59b)

=00

The duality between Eqgs. (6.59a) and (6.59b) is evident.

In order to compare and contrast these two methods of reconstructing a
signal from the short-time transform, the next sections discuss the effects of
modifications of the short-time spectrum on the resulting synthesis.

6.1.6 Effects of modifications to the short-time spectrum
on the resulting synthesis

We have just shown that there are two distinctly different methods for
reconstructing a signal from its short-time spectrum. Both methods have been
shown capable of reconstructing the original signal exactly (to within a scale
factor) in the case when the short-time spectrum is properly sampled in both
time and frequency. For many applications, however, one is interested in
making modifications to the short-time spectrum in order to perform fixed or
dynamic (i.e., time-varying) filtering on the signal being analyzed. In this sec-
tion we show the effects of fixed and time-varying modifications of the short-
time spectrum on the resulting synthesis.

6.1.6a Filter Bank Summation (FBS) Method
We represent a fixed modification to the short-time spectrum as
X, (&™) = X, (™ P(e’™Y (6.60)

where P(e’™) is a frequency weighting function on the short-time spectrum.

We assume that the inverse discrete Fourier transform of P(e’“%) exists, and
we call this sequence p(n) where

1 N1 jo jug n
p(n) = ~ Y, P(e’")e'™ (6.61)
k=0

where N is the number of frequencies at which P(e’*) is evaluated — i.e., the

number of analysis frequencies. The reconstructed signal 7 (#) from the FBS
method is obtained by substituting Eq. (6.60) into Eq. (6.40) giving

5 = F X P(" e
k=0
Nill i w(n—m)x(m)e ' “"|P(e'“)e’*"

k=0 mw=—oco

oo

Y wl—m)x(m) NiI P(e™9e’rtrm

m=—oo k=0

=)

Y wln—m)x(m)Np(n—m)

m=—oo

2m



= Nx(nm)*[w{(n)p(m] (6.62)

Thus, the effect of the fixed spectral modification P(e'“¥) is to convolve the
signal x(n) with the product of the window w(n) and the periodic sequence,
p(n). The motivation for making modifications of the form of Eq. (6.60) to
the short-time Fourier transform is to effect a linear filtering operation on
x(n). That is, it is likely that we would desire that

win)p(n) = h,(n) (6.63)

be the impulse response of a desired linear filter. We should point out that
p(n) is a periodic sequence, so that if w(n) is longer than N, there will be a
kind of repetitive structure in h,,(n). In the next section we shall see that
modifications of this form arise in the design of filter banks using IR filters.
Thus for the filter bank summation method fixed spectral modifications are
strongly affected by the window, and only in the case when p(n) is highly con-
centrated or when a rectangular window is used is it even approximately true
that

h(n) =pn) 0<n<N-1 (6.64)
as might be desired.

For time-varying modifications we model X ,,(e‘iw*) as
£’ = X,(e"™) P, (™) (6.65)

and we define the time-varying impulse response due to the modification,
py(m), as

1 Al fwgy dwgm
p(m) == 3% Ple™e (6.66)
N S
Proceeding as before we solve for §(n), due to the modification, as

N=1 . o
)‘}(n) = 2 Xn(e"wk)Pn(e.lmk)e.IWkn
k=0
N-1 —joyn fw,m jw jwgn
= e Y x(n—m)w(m)e’™*"P,(e™)e ™"
k=0

me=—oco

0o

= ¥ x(n—-m)w(m) Nz—,l P, (e e’ "
k=0

= i x(n—m)w{m) Np,(m)
<N 3 x(n=m)[p,(m)w(m)] (66 |

m=—o0

Eq. (6.57) again shows that for the FBS method the time response of the spec- ;
tral modification is weighted by the window before being convolved with x(n). ’
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In summary, for the filter bank summation method, the effect of a spec-
tral modification (either fixed or time-varying) is to convolve the original signal

with a time-limited, window weighted versi i
) 1 s sion of the time respons
modification. ponse due to the

6.1.6b Overlap Addition (OLA4) Method

Using the representation of Eq. (6.60) for the modificati
; . (6. cation we can
for the reconstructed signal by using Eq. (6.53), giving solve

N o 1 Al jw jwen
Jn)y=Y v Y, (e ) P(e“k) e "
r=—co k=0
1 oo  N—-] oo . . .
- Y T x(Nw(rR—=De kP (e’ ) ¢/ "
r=—00 k=) [m—oo
- L - ( Aot jugy dw(n=1) -
~ /.};mx D) k):o P(e’9e [T wtr-D]
= I_Z_:m x(Npn—-DW (YR (6.68)

or

P(n) = (1/R) W (™ [x(n)xp(n)] (6.69)

Eq. (6.69) shows that j(n) is the convolution of the original signal with the
time response.of the spectral modification — i.e., no window modifications on
p(n) are obtained with this method.® (The reader should realize that appropri-
ate rpodlﬁcati‘ons must be made to the analysis as shown in Fig. 6.16 —~ i.e
Paddmg thg signal with a sufficient number of zeros — to prevent aliasing wﬁe;
implementing the analysis and synthesis operations with FFT’s.)

For the case of a time-varying modification we obtain

~ — 1 Al jw fw faw, n
=3 ~ [k}:0 Y (e"**) P(e"M)] e’k (6.70)

oo
which can be manipulated into the form

. 1 & = SIS
=~ T x() ¥ wGR-D) ':2_;(: P’y (6.71)

0 Fo—so

Using Eq. (6.66) we get

=3 x(0 % w(R=Dp,(n—1) (6.72)

lm—co r=—00

Because of the way Eq (6. 68) 18 lmplelnenled 1€ b)’ computing the output in blocks of sam-
" ) 2
plCS. IJ(") in Eq (6.68) is not periodic but at most only Nsalnp €S l()llg i
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Ifwelet g =n — I, or | = n — gthen Eq. (6.72) becomes

p(n) = i x(n—q) i p(Q)w(rR—n+q) 6.73)

g=—c =00

If we define p by
pn—q.9) = p(mq) = L pLg)w(rR—m) (6.74)

J=—o0

then Eq. (6.72) becomes
$(n) = f‘, x(n—q)p(n—q,q) (6.75)

q-—cc

The interpretation of Eq. (6.74) is that for the ¢* value, p{m,q) is the convolu-
tion of p,(q) and w(r). Thus, each coefficient of the time response due to the
time-varying modification is smoothed (.e., lowpags ﬁltere.d). by the wm@ow.
Thus for the overlap add method, any modification is bfzndllml{ed by the _w:r’tdqw
but the modification acts as a true convolution on the mp.ut signal. T:hlS is in
direct contrast to the filter bank summation method in which the modifications
were time limited by the window, and could change instantaneously.

6.1.7 Additive modifications

We have been discussing the effects of nonrandom multiplicative
modifications to the short-time spectrum. It is also impo‘rtant' to understand the
effects of additive, signal independent (random), m'odlﬁcatlon.s to the shor‘t-
time spectrum as might be expected to occur when 1mplerp§ntlng the anal_ys1s
with finite precision (i.e., roundoff noise), or when quantizing the short-time
spectrum as for a vocoder.

We model such additive modifications to the short-time spectrum as

£, = X, (') + E (e’ (6.76)
where we define the noise sequence corresponding to E,(e’“*) as
N1 e
e(n) = 3 E (/e (6.77)
k=0

(In the case where e(n) is a random noise, then a statistical model for e(n)
and E(e’“® is warranted. The results to be presented are not dependent on
such a statistical model.)

For the FBS method the effect of the additive modification of Eq. (6.76)

5 = 3 L) + E(e™0]e™” ©.18)
k=0

which, by linearity, can be put in the form
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Hm) =y + 3 E (el 6.79)
k=0
or
J(n) =y(n) + e(n) (6.80)

Thus, an additive spectral modification results in an additive component in the
reconstructed signal. The reader should notice that the analysis window has no
direct effect on the additive term in the synthesis.

For the OLA method the effect of the additive modification of Eq. (6.76)
is

oo —1 . . .
)= % LN ':):O(Y,(e-’“k)+E,(e-""~))e-""*" (6.81)

re—o0

which can be put in the form

r=—oco

) N-1 N ,
ﬁ(n) =y(n) + 2 lﬁ 2 Er(e./wk)e/wkn
k=0

=y(n) + i e (n) (6.82)

ra=—co

Thus, for additive modifications the resulting synthesis contains a larger addi-
 tive (noise) signal for the OLA method than for the FBS method due to the

overlap between analysis frames. For a Hamming window with a 4-to-1 over-

~ lap, the additive term in the synthesis will be on the order of 4 times larger for

the OLA method than for the FBS method. As such the OLA method tends to
be more sensitive to noise than the FBS method, and thus would be less useful

- for vocoding applications, etc.

6.1.8 Summary of the method of short-time analysis
and synthesis of speech

In this chapter we have shown that a reasonable definition of the short-

| time Fourier transform of a signal, X(e/), is

oo

X, (/) = ¥ wln—m)x(m)e-iom

m=—oo

L where w(n) is an analysis window which determines the portion of the input
b signal that receives emphasis at time index n. We have shown that X, (e/®) can
. be interpreted in terms of linear filtering as the output of a bandpass filter
' translated to O frequency, or equivalently it can be interpreted as the normal
* Fourier transform of the sequence w(n—m)x(m).

It was then vshown that sampling rates in both time and frequency can be
defined for X,(e/*) based on application of the sampling theorem to both the

b time- and frequency domain representations of the window. The required rate
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of the properly sampled short-time spectrum representation was shown to be
from 2 to 4 times higher than for the equivalent time-domain representation of
the signal itself.

Based on the two interpretations of the short-time analysis, two distinct
synthesis procedures were discussed. The first method, called filter bank
summation, synthesizes the signal as

ol Jjw Jugn
y(n) =Y X (ee™*
k=0
i.e., the outut signal is a sum of the signals from each band of the filter bank,
translated to the original center frequency of the band.
The second synthesis method, called the overlap addition method, syn-
thesizes the signal as

o N=1 ) )
y(n) - z _1_. 2 Y’(elwk)ejwkn
r=—oo N k=0

where Y,(e’*%) = X,z(e’®¥); i.e. windowed segments spaced by R samples in
time and overlapped and added to produce the reconstructed signal.

These two synthesis methods were shown to have certain dual properties
with regard to the synthesis itself, and to the way in which the systems handle
modifications to the short-time spectra.

This concludes our formal discussion of the general properties of methods
for short-time analysis and synthesis of speech. In the following sections we
concentrate our attention on desigh methods for digital filter banks for the
*undersampled in frequency" case (for vocoder type applications), and we dis-

cuss some of the numerous applications of the theory of short-time analysis and

synthesis to speech processing.

6.2 Design of Digital Filter Banks

In this section, we consider some practical methods for designing filter banks

for use with the filter bank summation method of analysis/synthesis. The goal °
here is to design filter banks whose composite frequency response closely 1
approximates the ideal of flat magnitude and linear phase. We shall begin with ?
certain details that are common to the design of filter banks regardless of the *

type of filters used. Then we shall show examples of the use of both IIR and
FIR digital filters.

6.2.1 Practical considerations

Our previous theoretical discussion showed that it is possible to achieve }

exact reproduction of the input signal at the output of a filter bank of equally
spaced filters if the lowpass filter (analysis window), w(n), has zeros equally

spaced at N sample intervals. Therefore to design such a filter bank would |
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seem to require first simply choosing the number of filters (and therefore the
frequency spacing) and then designing a lowpass filter with appropriate fre-
quency resolution and appropriate spacing of zeros in the time domain. Unfor-
tunately, a number of practical considerations arise to complicate this simple
procedure. First, it is often desirable to use a nonuniform spacing of filters;
thus, our previous proof that a perfect composite response can be obtained doe;
npt pr(.>v1.de direct guidance to a practical solution. Second, in practical situa-
tions, it is common to omit certain parts of the spectrum from analysis. It is
then:efore necessary to consider the effect of omission of filters upon thé com-
posite response. Finally, most of the design procedures for lowpass filters do
qot permit simultaneous constraints upon both the frequency response and the
time response. Thus it may be impossible to specify both frequency resolution
and the locations of zeros of the impulse response.

. In order to simply represent some of these speci i i i
aptxcipatiqn of solutions to some of the above pr:blcelfris?oirtlsilg eﬁ:]t:)(;"zls’tgn:ox
S}der a shghtly modified filter bank structure’ in which each complex channel
signal in Fig. 6.11 (o; equivalently 6.12) is multiplied by a complex constant
denoted P, = |P,|e’® This is depicted for a single channel in Fig. 6 18,
Note that §ince each channel is a linear system the multiplier can be apialie& ai
either the input or the output. In Figs. 6.18b and 6.18¢c, the complex constant

Pk
o hin} b—m—
yin)
(o)
emiwyn ! eilwyn+dy)
p
o [Pl
x(n} (
Xp(elwk) helm
ANALYSIS | sYnTHESIS
(b}
e-iwn f /l\e,(mnwk)
Pl
—— hy(n) X | X i
x{n) Xale!x) N ye(n)
|

ANALYSIS SYNTHESIS

(c)

l“ig.~ 6.18 Modified filter bank structure for a single channel (a)
equivalent bandpass filters for analysis-synthesis; (b) implementation

using modulators and lowpass filter; (c) implementation using modula-
tors and bandpass filter.

"This modification is of the general type discussed in Section 6.1.6.
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e

is incorporated into the synthesis part of the channel. Altematively,. if the
complex constant were applied at the input, the output of the. analysis stz}ge
would be P, X,(e’™). In any case, if we consider the composite output of a
system of N complex channels, we obtain

— N=1 e u
y(n) = Nzl Pon) = 3 PX,(e’0e™" (6.83)
k=0 k=0
The composite impuise response of this system is
-1 N-1 o )
h(n) = NE Poh(n) =3 IPklwk(n)e"( s (6.84)
k=0 k=0

. . Jjo .
Thus. in terms of time dependent Fourier analysis/synthesis, X,(e “)fls
weighted by the complex sequence {P), k=01, . N-=1.1In term; 0 :
filter bank, the complex constant P, provides for adjustment of the gain an
phase of the individual filters in the bank.

The first step in design of a filter bank system (or a time-dependgm
Fourier analysis/synthesis system) is to choose the set of aqalyms frequengxes
{w,} for 0 < k < N-1. In this choice, we are normally guided by a require-
ment on frequency resolution. For example, if we wish to resolve' the voice
fundamental and its harmonics, we need to use closely §paqed analy51§ frequen-
cies and lowpass or bandpass filters (equivalently analysis wm'dows) with .narroz
enough bandwidths. In many cases, equally spaced analysis f_req\'Jengua?1 ar'lr
equal bandwidth filters will be desired. Sometgmes, hoquer, it yv:!l e desir-
able to use a nonuniform distribution of analy§ls frequencies. This is the case%
for exarmple, in speech processing systems which attemp_t to take advantag(; 0
the decreasing sensitivity of the ear at higher frequencies. In any case, 1t 18

Hiel?) N=10
L L ! L L L L . - 3
” v ws wa wg we wy wg wyg 27 w
0 .
{a)
fe)
Hie N=15

1 I
A ST ISV NV U SRS ST NOVE SIS ATI GO O
0 w wp wy wg Ws wg wyNwg Wg Wio Wy Wz w3 Ye

(b)

L
2r Y

Fig. 6.19 Distributions of analysis frequencies for (a) Neven; and (b) N
. odd filter banks.
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common to choose the set of frequencies symmetrically across the band
0 < @ < 2m; ie., so that w y_4 = 27 — w,. This is depicted in Fig. 6.19 for N
even and N odd. Note that for N even, a single channel is centered upon
o = 7. If in addition w,(n) = wy_,(n), then we have seen that

X, (e’ = X*(/PTW) = x¥ (e (6.85)

This leads to a simplification of the filter bank so that only real bandpass filters

are needed. Using the assumptions w; =27 —wy_,, P,=Ph_, and
wi(n) = wy_,(n) in Eq. (6.84) it can easily be shown that for Neven

&y,

. 2
h(n) = Powo(n) + ¥ 2|P|w,(n)cos(wn+d,)
k=1
+ Pywpyln)(=1)" (6.86)
P
and for N odd,
Nt

- 2
h(n) = Powo(n) + ¥ 2|P}wi(n)cos(w,n+é,) (6.87)
k=1
Thus for this case, we can consider the filter bank to consist of a lowpass filter,
Pywo(n), and a set of bandpass filters with real impulse responses

hi(n) = 2| P |w,(n)cos(wn+e¢,) (6.88)

When N is even, an additional highpass channel centered at w = = is required
to completely cover the entire frequency range 0 € < 27. The impulse
response of this filter is Py, wy/(n) (=1) "

Except for the constraint that analysis frequencies be placed symmetrically
in the interval 0 € @ < 2, there are no other constraints on the set of fre-
quencies {w,}. Once these frequencies are chosen, we must find a correspond-
ing set of lowpass filters or analysis windows, {w,(n)}, that have the desired
frequency resolution and also provide the desired composite response.

Often it is only necessary to compute X,(e’“¥) at frequencies in a sub-
band of the base frequency band 0 < w < 27. For example, analysis at
w, = 0 is often omitted since this part of the speech spectrum is not of interest
in most speech processing schemes. Similarly, analysis at high frequencies
(wy close to ) is often omitted since in the process of bandlimiting the input
prior to sampling, this part of the spectrum is usually greatly attenuated and
therefore it carries little reliable information.

To see the effect of omitting channels from the composite response let us
return to the case of equally spaced analysis frequencies (w, = 2nk/N). If we
assume identical analysis windows (w,(n) = w(n)) then from Eq. (6.84),

c2n n

h(n) = win) Nz—] Pke'l N (6.89)
k=0
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pln)

Fig. 6.20 Plot of p(n) for a filter bank with N = 15, M = 2.

Thus, if we define

N=1 i 2 4
pn) = X P’ ¥ (6.50)
=0

then

h(n) = wn)p(n) (6.91)

as in Eq. (6.89). As before, p(n) is seen to be periOfiic wi_th pel-'iod N, indegd
the complex channel gains play the role of the coefficients in a discrete Fourier
series. Note thatif P,=1, 0 < k £ N-1, all channels' are included apd Eq.
(6.89) becomes identical to Eq. (6.42). The effect of omitting channels is very

- conveniently observed by setting the appropriate P,’'s equal to zero. For exam-
ple, to exclude the zero frequency channel, Py = 0.. To also exclude all chan-
nels above w 4, = 2w M/N, P, =0 for k > M. In this case,

p(n)=§e"" + e

. 2@ ;2 "
Sk k] (6.92)

This expression can be placed in the more compact form

sin[% QM+1)n]

p(n) = -1 (6.93)

sin[% nl

le, Eq. (6.93) is plotted in Fig. 6.20 for the case N =15 apd
‘;ls :n2.e);in:§is casg, p(n) is clearly periodic with period 15, but instead of sin-
gle unit samples every 15 samples, p(n) now consists of puls.es whose ampli-
tude and width depend upon N and M. It can be seen tl:lal if the channel :dt
zero frequency is included the term —1 on the right hand side of Eq. (6.93) will

disappear. Also
M = (N-1)/2, then p(n) can also be expressed as
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if N is odd so that when all channels are included °

p(n) = Sinlmn) N E 8(n—rN) (6.94)
sin(% n) re=eo ,

That is, only in the case when all the channels are included is the sequence
p(n)} such that a window w(n) with zeros spaced at intervals of N samples will

be sufficient to guarantee that
h(n) = 8(n—reN). (6.95)

This is of course reasonable since not all of the frequency spectrum is included.
However, it is reasonable to suppose that over the range of frequencies
included, the composite magnitude response will be flat and the composite
phase will be linear. Indeed -it should be clear that leaving out the zero fre-
quency channel and a high frequency set of channels is equivalent to bandpass
filtering. We shall see evidence of this in subsequent examples.

A final general consideration stems from the fact that many of the stan-

" dard filter design methods do not permit simultaneous constraints on the fre-

quency response and the time response. Thus, it may not be possible to obtain
a lowpass filter whose impulse response has zeros every N samples. To see the
effect of this, consider Fig. 6.21. Here, we assume for convenience that all

! channels are included so that p(n) is a train of unit samples with period N.

The envelope of the sequence w{n) is shown as a continuous curve. The pro-

Fig. 6.21 lilustration of how to adjust the parameter ng, (a) composite
impulse response for ny = 0; (b) ng chosen to minimize magnitude and
phase ripple (dotted lines indicate movement of individual pulses).
(After Schafer and Rabiner [1].)

287



[Sieil
These functions are sketched in Fig. 6.22 for the case N = 4. It can be seen
that the magnitude of the composite response has a multiplicative error which
in general oscillates with period 2w/N. This is of course the spacing between
fiters. Indeed the peaks of [G(e/®)| occur at the analysis frequencies
wy = (2m/N)k, and the valleys occur half way between, i.e., at the "crossover”
points of the individual bandpass filters. The size of the ripple in the composite
response depends upon the relative sizes of «,; and a3 Likewise the phase
exhibits a deviation from linear that is also periodic in frequency with period
2mw/N. Notice that both the magnitude and phase error disappear when « 3=0,
and the errors are maximum when a; = ay.

Several approaches to reducing this error in the composite response are
suggested by Fig. 6.21. One possibility is to use a somewhat shorter window,
w(n); i.e., make a3 smaller by making w(n) smaller at » = 2N. This unfor-
tunately will have the effect of broadening the Fourier transform of w(n), and
thus the frequency resolution of the individual channels will be sacrificed. A
second similar possibility is to make N larger while keeping w(n) the same. A
third possibility is suggested by Fig. 6.21b. If we simply shift the infinite
sequence of impulses relative to w(n), we obtain a sequence of three impulses
instead of two; i.e.,

arg [E(ei‘“)]

N NN
/\\/ /\\//\\/\/\/ ’

Fig. 6.22 Magnitude and phase of a composite filter bank.

duct of p(n) and w(n) is shown as the samples Iabe!led ay, ay as, etc. Itis
clear in this case that the composite impulse response is approximately

#(n) = ap(n—N) + a6(n-2N) (6.96)
if we neglect the impulses at 3N, 4N, etc. In this case, the composite frequency }

response is of the form '
H(elw) = are™ /N + aze=/oW

fi(n) = ad(n—ng) +ap(n-N—ng) + ad(n—2N—-n)  (6.101)
= The composite frequency response is
H(ei®) = ¢ /@n*N) lae/eN + ay+ aze™oM (6.102)

ae—ioN1 + 23 gmiudy If we define as before
= oy ,

(£ 5] ! ' '
ase=ioN . G(eiv) (697 4 G'(e/) = a—} eV 41 + 33 e~Jol (6.103)
I ] f o a;
where , L then
By = 1 4 23 p-joN 6.98) ’ L it =
G(ej ) =1+ o e J S H(e"") = aye Jjof 0+N)Gl(ejw) . (6.104)

: ~juN
represents the deviation of the composite frequency response from aje™*",

" . . £ N | It can be seen that if a; = a;, then
which would correspond to perfect reproduction of the input with delay o

'

i hase of G(e/¥) are .
sample? alnd a scale factor of «, The magnitude and phase &' (o) = 2i,3 cos ol + 1 (6.105)
respectively 1 o
. aj., o3 N2 (6.99)1 . ’
1Glei)) =1 + (=) + 2('&—)‘505 ® 77  that is, there is no phase error. The amplitude error is plotted in Fig. 6.23 for
2 2 N =4. In the first case the peak-to-peak error is 2ay/a, In the second case,
and F the peak-to-peak error is 4ay/a, Thus, in addition to the fact that the phase
— 2 sinwN  error is zero if ay = ay, if »
«)

2 !
e -7 (6.106)

(2 %] a

arg[G (e/9)] = tan™!

1+ﬂcos oN
ar
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Fig. 6.23 Amplitude for composite filter banks when p{n) is shifted rela- E(
tive to win). 0
then the magnitude error will also be smaller.
The mechanism for shifting p(n) relative to w(n) is available in Eq.
(6.90). To obtain an infinite sequence of impulses shifted by ng, we simply let 0.005 , . 1
i 0 5 10 35 210 1
—-j =k 25 30
Po=e N 0<k<N-1 (6.107) 0 TIME IN MILLISECONDS
in which case, @ (b)
N=t ;2T k(n—ng o &
pm =3 & N T =N 3T sn—ngrN) (6.108) S
=0 Fm—00 (=) -10 -
If some of the channels are omitted by setting some of the Py's to zero, we : E
obtain a shifted pulse train rather than impulses, but in any case by adjusting g
the phase of the channels according to Eq. (6.107) it is possible to shift p(n) E
. . . . . 2
relative to w(n). The phase adjustment can be accomplished as depicted in S 20
Fig. 6.18. s
So far we have discussed some general principles of filter bank design. 3 §
We now consider some examples of IIR and FIR filter banks.
—30
6.2.2 Filter bank design using IIR filters 0 2'0 4‘0 610 810 -
0
. . o ' : 180 FREQUENCY IN HERTZ °
The design of filter banks using IR filters is in Ref. [1] which shows that 3
the general principle of adjusting the phases of the individual channels accord- 120 (c)
ing to Eq. (6.107) can be useful in optimizing the design of IIR filter banks. »
The following example is taken from Ref. {1]. It is assumed that the 3 € 6ol
input sequence is obtained by sampling at a rate of 10000 samples/sec. A filter § g
bank is to be designed with a uniform spacing of 100 Hz (in analog terms) > O
between filters. This implies that N = 10,000/100 = 100 and that the analysis g AN
frequencies are wy = 2wk/100, k =0,1, . ..,M. The range of analysis is to < —60f
be between 100 Hz and 3000 Hz. This means that 30 channels will be required; | a
ie.,, M =30. The objective of flat composite amplitude response and linear ° —120}-
phase is most easily achieved if the individual filters have these same proper- 3
ties. For this reason, Bessel (maximally flat delay) filters were used for the 3 -180 N . '
! ° b 40 60 80 00

individual filters. For this example, a digital lowpass filter was derived from a
6" order Bessel analog filter by the impulse invariance method. Figure 6.24
shows the response properties of the basic analysis filter. The envelope of the
lowpass impulse response is shown in Fig. 6.24a. Note that 30 msec

FREQUENCY IN HERTZ

fg.nﬁ.u .Sixth-order Bessel fiiter characteristics; (a) impulse response;
agnitude response; {c) phase response. (After Schafer and Rabine;

{13y
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corresponds to 300 samples at a 10 kHz sampling rate. Also note that the
phase in Fig. 6.24c is quite linear. The nominal asymptotic cutoff frequency of
the filter is 60 Hz. This filter was used to design a 30 channel filter bank with
100 Hz spacing between channels. The zero frequency channel was omitted.
Using Eq. (6.93) with M = 30 and N=100, we see that

sinl0slmn] _
p(m) = G00tan (6.109)

Note that p(n) is periodic with period N = 100 samples. The resulting compo- i
site response characteristics are shown in Fig. 6.25. The composite impulse
response shows the broadening of the impulse that is to be expected when all
the channels are not included in forming the composite response. Also we see
that since the duration of w(n) is greater than 2N = 200 samples, h(n) exhi-
bits two strong peaks. This leads to significant ripple in the composite magni-
tude and phase response; specifically, about 4 dB ripple in the magnitude and
25 degrees peak-to-peak phase error.
To improve the performance without changing w(n), sufficient delay was?
included to equalize the amplitudes of the first and third peaks. This is shown’
in Fig. 6.26. As seen in Fig. 6.26a, the peak in p(n) at n = 0 has been shifted
129 samples to the right. The resulting composite magnitude and phase are
much improved as seen in Figs. 6.26b and 6.26¢ respectively. In this case the
magnitude ripple is about 0.8 dB and the peak-to-peak phase error is only 0.6
degrees.

The above example suggests a trial and error procedure that will generally}
produce a filter bank with good composite response. 1

1. Determine the filter spacing and number of filters required to covers
the desired analysis band. ‘
2. Design a filter which gives the desired frequency selectivity for each
channel. This yields w(n). . .
3. Evaluate w(n) and determine ng such that o) = a3 as in Fig. 6.21.
4. Evaluate the response. If it is not satisfactory, the filter spacing of
bandwidth must be changed and the process repeated. 1

This procedure is appropriate for uniformly spaced analysis frequencies!
Reference [1] also discusses an approach to the design of nonuniformly space]
filter banks in which the filter bank is broken down into several sub-banks, each
of which is composed of uniformly spaced filters. This approach is reasonabl§
successful; however, vastly superior results can be obtained using FIR filterd
Thus we shall not belabor the question of IR filter bank design further.

6.2.3 Filter bank design using FIR filters

FIR digital filters are attractive for design of speech filter banks for severd
reasons. First, such filters can be designed to have precisely linear phase sin

ply by imposing the constraint
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w(n) =w(L-1-n), 0<n<L-1 (6.110)

(on each individual filter band® where w(n) is the impulse response of the
filter and L is its length in samples. This means that the criterion of linear
phase for the composite filter bank response is trivially met if the individual
filters have identical linear phase characteristics. Therefore, it is possible to
focus attention on achieving arbitrary frequency selective properties for the
individual filters and on obtaining the desired flat response for the composite
filter bank. The second advantage of FIR filters is that there exist a variety of
design methods ranging from the straightforward windowing method to iterative

approximation methods that allow great flexibility in realizing complicated
design specifications.

The window design method [2] appears to have a number of advantages
for design of the lowpass or bandpass FIR filters for use in filter banks. This
method is depicted in Fig. 6.27. Before considering the details of filter bank
design let us review the window design method. First, a desired ideal lowpass

filter of the form
Wilel) =" | < w,

=0 otherwise (6.111)

8t is assumed, for simplicity, that the impulse response of each bandpass filter is of duration L

samples, although it is trivial to remove this restriction by adding appropriate delays for each chan-
nel.
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Fig. 6.28 Resulting lowpass design from windowing. (After Schafer et
al. [2])

is defined by choosing the cutoff frequency w, Note that for simplicity we
have omitted in the figure the lincar phase term e ’“" corresponding to a delay
of n, samples. The value of n, required is n, = (L—1)/2. This means that if L
is even, the delay corresponds to a noninteger number of samples. The ideal
impulse response is therefore

sinlw,(n—n,)]

, alln (6.112)
m(n—ny)

1 3‘ —jwng jwn
= — e e!“dw =
Wd(n) 27T 4
P
This impulse response is infinite in extent and must be truncated to obtain an
FIR filter. This is done by defining

w(n) = dn—npwyn), (6.113)

where d(n) is a filter design window function, and w(n) is the impulse
response of the resulting lowpass filter.? The length of the window, denoted by
L, can be either an even integer (L=2¢) or an odd integer (L=2q+1). Figure
6.27 shows the case when L is odd.

The result of multiplying the ideal lowpass impulse response by the design
window corresponds to a convolution in the frequency domain of the ideal .fre-
quency response and the Fourier transform, D (e/%), of the design window, i.e.,

Wle) = 2 | waempiere—ao 6119

The result of this convolution is depicted in Fig. 6.27c. It can be seen that the :
main effects are the introduction of a smooth transition between the passband

and the stopband and the introduction of ripples in the passband and the stop-

band regions. The properties of this approximation are depicted in Fig. 6..28. If
w, is larger than the width of the "main lobe" of D(e/%), then the following set ?

of properties are generally true:

%1t is important not to become confused with terminology here. We have called d(n) the filter
design window, and w(n) the impulse response of a lowpass filter; w(n) is also the window for

time-dependent Fourier analysis.
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1. The transition region, Aw, is inversely proportional to L.

2. The function W(e’*) is very nearly antisymmetric about the point
(w,=0.5).

3. The peak approximation errors in the passband and stopband are very
nearly equal.

4. The approximation error is greatest in the vicinity of w » and it
decreases for values of o in both directions away from »

The above pr.operties of the windowing design method are true of all the
commonly used windows. However, Kaiser has proposed a family of window

functions.that are very flexible and nearly optimum for filter design purposes
(5]. Specifically, the Kaiser design window is

16[(1'\/ 1"("/”,1) 2]

d(n)= 10((1) '"l < ng

=0 otherwise (6.115)

where n,= (L—1)/2 and Iy[x] is the modified zero order Bessel function of
the first kind. By adjusting the parameter «, one can trade off between transi-
Fion width and peak approximation error. Furthermore, Kaiser [5] has formal-
ized the window design procedure by giving the empirical design formula

—20 log;® — 7.95

[ = ——21 77
1436 AF +1 (6.116a)

whe-re L is the filter order, 8 is the peak approximation error, and Af is the nor-
malized transition width

= Ao
af =32 (6.116b)

To use this fo.rrpula & and Af are fixed at values which provide the desired fre-
quency selectivity. Then Eq. (6.116a) can be used to compute L and the
parameter « can be computed from the equation [5]

a = 0.1102(-20 log,5 — 8.7), for —20 log g3 > 50
= 0.5842(—20 log 8 — 21)%4

+0.07886(—20 log 3 — 21),  for 21 < —20 log;pd < 50 (6.117)

' In the present application of this design method, the choice of § and Af

) gepinds upon the specifications of the bandpass filters that constitute the filter
ank.

Recall that the filter bank consists of a set of bandpass filters with impulse

- responses of the form

hi(n) = Pow(m)e’™" 0 < k < N—1 (6.118)
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Fig. 6.29 Composite frequency response of three ideal nonuniform
bandpass filters.

where w,(n) is a lowpass filter impulse response. Figure 6.29 shows three ideal
bandpass filters whose composite response is perfectly flat over the range
Wmin € @ € wmge In designing the lowpass filters, we choose the set of ;
analysis frequencies {,) and the set of cutoff frequencies {w ) so as to exactly
cover the desired band as depicted in Fig. 6.29. The ideal bandpass filters are ’
then approximated by the window design method.

The choice of peak approximation error for the filter depends upon how b
much stopband attenuation is deemed necessary in a given application. Typical 3
values of —20 log o would most likely be between 40 and 60 dB. Using Eq. 1
(6.117) the appropriate value of « can be computed. Finally, the normalized
transition width Af must be fixed in order to compute L from Eq. (6.116a).
Again the choice of Af (or Aw) is governed by consideration of the desired fre- _
quency selectivity for the individual filters. Clearly, the transition width Aw, 3
should not be more than 2w .

In the filter bank context we shall require that Aw be the same for all 1
filters so that we can take advantage of property 2 discussed above. That is, if A
all the filters have identical transition regions and, furthermore, if these transi- 3
tions are antisymmetric about the crossover points, then we can expect that the "8
sum of the frequency responses will be very close to unity. This implies that *
d(n) should be the same for each filter in the filter bank. “

To see the full implications of choosing the filter design window, d(n), to :
be the same for each frequency channel, let us consider the composite fre- j:
quency response which as we see from Eq. (6.118) is 3

. N-1 o ]
Helw) = 3 P W (") (6.119)1

k=0
Now if the same design window is used for each analysis frequency, we can’

write
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—

Jlo—~w,) _ 1 7 j-w ;
Wile’ ™) = o _f Wa(e' ) p(eit) gg (6.120)

If we substitute Eq. (6.120) into E i
. . (6. q. (6.119) and int
mation and integration, we obtain interchange the order of sum-

" f 1 ! i(—w i
H(e®) = 5= :[; E‘)P,(de(e-’” N DeiMNae  (6.121)
If we define
. Nzl o—o.)
Hye) = 3 P Wyle' ™) (6.122)
k=0
Then Eq. (6.121) can be written as
A 1 - .
(el = 5— _f He D (el 4g (6.123)

The function H,(e/“) is seen to be simply the desired composite frequency
response. If we assume, for example, that Py =1for 0 € k £ N-1, and that
the bandwidths and center frequencies of de(e"(w-""‘ )) are such that the entire
frequency range -7 < w € 7 is covered, then

Hfel) =™ _p<w<n (6.124)
Substituting this into Eq.(6.123) gives
i 1 F - )
He™) = 5 _j:, e "D (eiw ) qp
= d{ne " (6.125)
This implies that the composite impulse response is
h(n) = d(n)s(n—n,) (6.126)

Thus, if sufficient channels are included so that the composite desired fre-
quency response is flat with linear phase, then the actual composite response of
.the filter bapk ‘which uses filters all designed with the same window is also
1(%eal.. That is, independent of how the center frequencies and bandwidths are
filstnbuted, the composite response is ideal no matter what filter design window
is used as long as the same window is used for all the channels. Thus perfect
reprodpcnon of the input is theoretically possible using FIR filters with an arbi-
trary distribution of center frequencies and bandwidths.

<The effect of fai!ing to include portions of the frequency range
-T < w Slrr can be easily seen by noting that Eq. (6.123) holds regardless of
how the Pk.s are chosen in Eq. (6.122). Thus, if both the low and high fre-
Quency regions are omitted from analysis as in Fig. 6.29, then Py=0 and
Py=0 for k > M, where M is the number of channels included. In general

299



the desired composite response will be of the form
Hie) = e wpin < o] < 0m (6.127)

Thus, for a given design window, d(n), and o, and wpn,,, the composite
response will be a bandpass filter with transition regions and passband and stop-
band ripples identical to those of the individual channel filters. This is because
the same filter design window multiplies each individual ideal impulse response.
Thus, the composite response is again independent of the number and distribu-
tion of the individual bandpass filters.

The design of filter banks according to the above principles is illustrated
by the following examples.

6.2.3a Example 1

Suppose that the input sampling rate is 9.6 kHz and that we wish to
design a bank of 15 equally spaced filters that covers the range 200 Hz to 3200
Hz. The cutoff frequency for all of the lowpass filters is

@, _ 3200 — 200

v >(05) = 100 Hz (6.128)
and the center frequencies are
Fo=—X 2200k +100 k=12, ...,15 (6.129)

27T

With this choice of center frequencies and bandwidths, the 15 ideal filters
exactly cover the interval from 200 to 3200 Hz. If we assume that 60 dB
attenuation is required outside the transition regions of each channel, we find
from Eq. (6.117) that o = 5.65326. Since the cutoff frequency is 100 Hz for all
the prototype lowpass filters, the widest transition band that is reasonable is 200
Hz. Using this value and —20 log,¢8 = 60 in Eq. (6.116a) we obtain L =175
as the lowest reasonable value for L. Note that if lower attenuation is
acceptable, then L can be smaller for the same Af

The filter bank designed with the above parameters is shown in Fig. 6.30.
The top part of the figure shows the individual bandpass filters. Note how the
falloff in the upper transition band of a given filter compliments the ascent of
the next filter. Also note that adjacent channels cross at an amplitude value of
0.5. The lower half of the figure shows the composite magnitude response of
the filter bank. The phase is of course linear with n; = (175-1)/2 = 87 sam-
ples delay. It is clear that the filters merge together very well at the edges of
the frequency bands. Indeed the deviation from unity is less than or equal to
the peak approximation error § = 0.001 that was used in designing the proto-
type lowpass filters.

6.2.3b Example 2

A nonuniform spacing of the filters is often used to exploit the ear’s
decreasing frequency resolution with increasing frequency. Suppose that we
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Fig. 6.30 Individual and composite frequency responses of a bank of 15
uniform bandpass filters for L = 175. (After Schafer et al. [2].)

wish to cover the same range 200 Hz to 3200 Hz as in Example 1; however, we
wish to use only four octave band filters. That is, each successive filter will
have a bandwidth twice the bandwidth of the previous filter. This implies that
the f.requency range from 200 Hz to 3200 Hz must be divided into four bands
of width 200, 400, 800, and 1600 Hz with center frequencies 300, 600, 1200
and 2400 Hz, respectively. Again assuming that 60 dB attenuation is required,
we note that the smallest lowpass cutoff frequency is 100 Hz so that the smal:
lest reasonable transition width is 200 Hz. This leads again to a minimum
value of L =175. The filter bank corresponding to these design parameters is
shown in Fig. 6.31. The complementary relationship between the ascending
and descending transitions between adjacent filters is noted at the top part of
the figure. It is seen that since L and « are the same for each of the prototype
lowpass designs, the shape of the curves in the transition region is independent
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Fig. 6.31 Individual and composite frequency responses of a bank of 4
rionuniform bandpass filters for L = 175. (After Schafer et al. [2].)

of the bandwidth. The bottom part of Fig. 6.31 shows the composite response
where the deviation from unity is again less than 0.001. As in Example 1, the
phase is linear corresponding to 87 samples delay.

A comparison of Figs. 6.30 and 6.31 verifies the fact that the same com-
posite response is obtained in both cases.

6.2.3c Example 3

Suppose that all the parameters remain the same as in Example 2 except
that we require narrower transition regions. This means that a larger value of L
is required. In fact Eq. (6.116a) shows that L and Af are roughly inversely pro-
portional. Figure 6.32 shows the filter bank corresponding to the pa{'amet.ers of
Example 2 except that L = 301 and Af = 0.012082 (transition width is 116
Hz). The sharper transitions are apparent in the top part of the figure and the
lower part shows that the composite response remains very flat. In this case the
delay is 150 samples.

n2

6.3 Implementation of the Filter Bank Summation Method
Using the Fast Fourier Transform

In the preceding section we have shown that it is possible, using causal filters,
to design a filter bank whose composite output is identical to the input except
for a delay and scale factor. In particular, we saw that finite impulse response
filters are particularly well suited to this purpose. Since time-dependent Fourier
analysis and synthesis is equivalent to such a filter bank, it is also true that
finite duration analysis windows can be used effectively in the design of
analysis/synthesis systems. One of the major disadvantages of FIR systems is
the extensive computation required to implement them. Fortunately in the par-
ticular context of time-dependent Fourier analysis, there are several methods
for reducing the computation over that required for straightforward implemen-
tation.

6.3.1 Analysis techniques

Consider a time-dependent Fourier analysis/synthesis system with equally
spaced analysis frequencies w, = 2wk/N, 0 < k < N-1. In Section 6.1.3 it
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Fig. 6.32 Individual and composite frequency responses of a bank of 4
nonuniform bandpass filters for L = 301. (After Schafer et al. {2].)
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was shown that the sequences X, ,,(ej “¥) need not be computed at the same rate
as the input sampling rate because each sequence X,,(ej “¥) is effectively the
output of a lowpass filter with digital cutoff frequency #/N. Thus the output
can be computed only once for each N consecutive samples of the input. FIR
systems are especially suited to this application because it is possible to compute
only the desired output samples without computing the intervening N — 1 sam-
ples. With IIR systems, the inherent recursive nature of the implementation
requires that all values of the output be computed.

An additional improvement in computational efficiency can be obtained by
the use of Fast Fourier Transform (FFT) techniques [6]. To see this, we
express the time-dependent Fourier transform as

T S

Xle V)= Y x(m)w(n—m)e ¥
mm=—o0

We observe that if the limits of summation were 0 to N — 1, Eq. (6.130) would
be in the form of a discrete Fourier transform. If w(m) is of finite duration,
Eq. (6.130) can be manipulated into the form of a DFT and thus an FFT algo-
rithm can be employed in computing X,(e/2?™*/N) for 0 < kK < N-1. By a
substitution of variable of summation, Eq. (6.130) becomes

0< k< N-1 (6130

) 2w L,
X,,[ej VI e VTS x(me TN (6.131)
where
x,(m) = x(n+m)w(-m), —co < m < oo (6.132)

That is, the sequence x,(m) is obtained by redefining the origin of the
sequence x(m)w(n—m) to be at sample n, thus focusing our attention on the
sequence in the neighborhood of the time at which X, (e’ 2k/NY is to be com-
puted. Next, by a substituion m=Nr+gq —o0 <r <ec and
0 € ¢ € N-1, we can express Eq. (6.131) as the double sum

2 . 2m - i
wle T NI 613y

p=-—c0

N=1
Y x,(Nr+q)
g=0

Since e—/2™* = 1, we can interchange the order of summations and obtain

2m . 2m . 2An
J &= A —j < kn NZ1 | = ~j =k
X,,le A Y x,(Nr+q@)|e N (6.134)
g=0 |r=—o
If we define u,(q) to be the finite length sequence
u(g) = Y x,(Nr+q), 0< g < N-1 (6.135)

F=—o0

then we observe that X,(e/2"*/) is simply e~/2"¥"/N times the N-point DFT of
the sequence u,(q). Alternatively, X,(e/2"*/V) is the N-point DFT of the
sequence u,(q) after a circular shift of n modulo N. That is,
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Fig. 6.33 Plots of the sequences x (m+n) and w(—m).

7 o ; 2m
N —i == km
X,,(e ] = mZ-O u,((m—n))pye ¥ (6.136)

wherehthe notation _(( )) v means that the integer inside the double set of
pareqt eses is tZ(‘r)r k?fl 1n}erpreted modulo N. Thus, we have succeeded in mani-
pulating X, (e’ ) into the form of an A.point DFT of a finite length

sequence that is derived from the windowed i
/ . ed input sequence.
procedure for computing X, (e/2™*/N) for 0 < k < Nil is: {n summary, the

1. Form the sequence x,(m) as in Eq. (6.132) by multiplying x(m+n)

by the revers i i
B S R R

and an these segmen?s te:gc:thg ;Eégrcs!?r?;n fc? tlsiq(.)f(é?&g;})l t?)/ ;S)arl(r)l:i[ill::
5. Cheutrty s aetey oy oo & L

g ularly shift u, g) by n modulo N to produce u,((m—n)) y,
4, ?Y:z?;l”t’?/"),t}(l)eg Ii\'—goi}r&t_l.DFT of u,((m—n))y to produce

ng




This procedure must be repeated at each value of n at which X,,(eﬂ""/ Ny is
desired; however, it is clear that n can be incremented in any desired manner.
For example X,(e/2™*/¥) can be computed for n = 0,+R,+2R, ...} ie., at
intervals of R samples of the input signal. This, we recall, is justified since
X, (e727k/N) is the output of a lowpass filter whose nominal cutoff frequency is
n/N radians. Thus, as long as R < N, the "samples" of X, (e/27%/N) will suffice
to reconstruct the input signal.

Note that this method gives X,(e/27%/¥) for all values of k. In general,
because of the conjugate symmetry of X,(e/“), at most only about half of the
channels need be computed. Also, as we have seen, often the very low fre-
quency and high frequency channels are not implemented. Thus, the question
arises as to whether the FFT method is more efficient than direct implementa-
tion. To compare, let us assume that we only require X,(e/27%/N} for
1 € k € M Further, assume that the window is of length L. Then to obtain
the complete set of values of X,(e/2"%/N) would require 4 LM real multiplica-
tions and about 2LM real additions using the method of Fig. 6.12. Assuming a
rather straightforward complex FFT algorithm where N is a power of two,'? it
can be shown that the FFT method would require L + 2N log,N real multipli-
cations and L + 2N log,N real additions to obtain all N values of X,(e/27¥/N),
If we take the number of real multiplications as the basis for comparison, and
assume that L = N, then it is easily shown that the FFT method requires less
computation unless

log,N
M< °g22 (6.137)

For example, if N = 128 =27, we see that the FFT method is more efficient "

than the direct method unless M < 3.5; i.e., for fewer than 4 channels. Thus,
in any application where fine frequency resolution is required, it is almost cer-

tain that the FFT method would be most efficient. (Note that if L > N, the ]

comparison is even more favorable to the FFT method.)

6.3.2 Synthesis techniques

The previous discussion of analysis techniques showed that by using a fast
Fourier transform algorithm we can compute all N equally spaced values of }
X,(e/2m*/N) with an amount of computation that is less than that required to _
compute M channels using a direct implementation: By rearranging the compu- §
tations required for synthesis, a similar savings can occur in reconstructing 3
x(n) from values of X,(e/2™/N) which are available at every R samples of ]

x(n), where R < N[7].

From Eq. (6.83) with w, = 27k/N, the output of the synthesis system is |

N=1 Yk ]
y(n) =3 Y,(ke ¥ (6.138) 4
k=0 . ’

0This does not take advantage of the fact that u,((m—n)) is real. This could be used to reduce 9

computation by another factor of 2.
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Fig. 6.34 Samples involved in computing Y, (k).

where

2
Y, (k) = kan(e’ N k] 0< k< N-1 (6.139)

‘ Recall that the complex weighti i i

. ghting coefficients, P,, permit adjustment
| magnitude and phase of the channels. If X,(e/27/N) g ;vailablg soﬁlfyﬂ::
{ mteggr multiples of {Q,.then the intermediate values must be filled in by inter-
) polation. To do this it is helpful to define the sequence

.27
J ==K
V.(k) = PkX,,[e N ) n=0,4+R +2R, ...

=0 otherwise (6.140)

 There is a sequence of tl_ze above form for each value of k. Now, for each
w;flzl:) of ‘k, the intermediate values are filled in by processing the, sequence
a8 with a lowpass filter with a cutoff frequency of #/N radians. If we

denote the unit sample response of thi
‘ ! is filter by A (n), and assume that it i
symmetrical with total length 2RQ — 1, then for each value eofhz;ct “t‘(:i

j0< k < N-1,

n+RO-1
L0 = "8 hem) V), oo < 1 < w0
m=n—RQO+1

(6.141)

Equation (6.141) together with Eq. (6.138) describes the operations required to

compute the output of the synthesis stage when the time dependent Fourier

transform is available at intervals of R samples. This process is illustrated in

which V,,(k) is nonzero, i.e., the points at which X, (e/2%/N) is known. The

fopen circles denote points at which V.(k) is zero, and at which we desire to



interpolate the values of Y,(k). The impu}se response of the interpolz‘mngl
filter (for Q=2) is shown positioned at a partncular time n. Each cl?annel signa
is interpolated by convolution with the impulse response of }he interpolation
filter. As an example, the samples involved in the' computation of Y,(1) are
enclosed in a box. In general, the box indicating .Wthh sam_ples are involved in
computing Y,(k) will slide along the k" row of -Fxg. 6.34, with the f;enler of the
box being positioned at n. Notice tha; each interpolated value is dependerllt
upon 20 of the known values of X,(e/2™/") If we assume that M channels
are available for synthesis, then it easily shown that 2(Q+1) M real multiplica-
tions and 2QM real additions are required to compute each value of the output
sequence, y{(n). |

To see how the output can be computed more efficiently, let us substitute
Eq. (6.141) into Eq. (6.138), obtaining

2
— -1 j = kn
y(n) = Nzl H% h(n—m) V,(k)e' N (6.142)
k=0 m=n—RQ+1
Interchanging the order of summation gives
RQ~1
v = " hn=m)v(n) (6.143)
m=n—RQ+1
where
N-1 j 2n kr 4)
vulr) = 3 Valk)e N (6.14
-0
Using Eq. (6.140) it can be seen that
N=1 ; 2n k] P 2m
ROED> PkX,,,leJ N MY m=0,+R 42R, ...
k=0
=0 otherwise (6.145)

Thus we see that rather than interpolate the time-dependent Fourier transform,

and then evaluate Eq. (6.138), we can instead compute v,(r) at each time at

which X,(e/27%/N) is known (i.e., m = 0,4R, ...), and then interpolate v,(r)
n
as in Eq. (6.143).

It can be seen that v,(r) is in the form of an inverse discrete Fourier

transform, and thus v, (r) is periodic in r with period N. Thus, in Eq: (6.143),
the index » in the term v, (n) must be interpreted modulo N. The mtgrpola—
tion process implied by this is depicted in Fig_. 6.35. Tpe heavy QOts in the
two-dimensional net of points represent the points at which v, (7) is nonzero.

The remaining points in Fig. 6.35 can be interpolated in the same manner

described for interpolation of Y,(k). However, we do not need to interpolate

all these points since all that is required are the values of the one-dimensional |

sequence y{(n). From Eq. (6.143) and the periodic nature of v,(r), it can be

308

4
« 9 0/1 ¢« o @ o o /o\ *» e e+ o -/c‘: tN-i- e o ./T e & e o ./‘i e s o+ ® e o
R R B o o S e S
| / \ } t \ 7 T /
4
/ \ / i / i \ ’ i /
"0 e 8. ® 0 s ele @ o 0 o o Je o 0 ¢« 8.6 & o o @ -*- * o0 .
¥ /,( ¥ Pl " . VI l
o..-‘\.-/o-....o...‘z.o. .‘,..o-.ﬂ\.-c...
N | TR L !
* 8 » v s O & e e o \o 0O & o e \} o ¢ o le o o e \- © o ®
! / / Vo /
\/ 1/ / v/ 1%
-3R -2R -R 0 n R 2R 3R
Vi lr)

Fig. 6.35 The interpolation process for v,,{r). (After Portnoff [7}.)

seen that y(n) is equal to the values of the interpolated sequence along the
“saw tooth" pattern in Fig. 6.35.

In implementing the synthesis system in this manner, the N-point
sequences v,,(r), 0 < r < N—1 can be computed for each value of m at which
X,,(e/2k/N) is known by using a fast Fourier transform algorithm to perform
the inverse DFT computation of Eq. (6.145). Note that a channel can be omit-
ted simply by setting its value equal to zero before computing the inverse
discrete Fourier transform. Likewise, if it is desirable to implement a linear
phase shift by choosing P = ¢ /2*"/N easily shown that the effect is to sim-
ply circularly shift the sequences v,,(r). Thus, multiplications by the factor
¢ 2mko can be avoided by performing the inverse discrete Fourier transform
operation directly upon X,,(e/2™*/N}y and then circularly shifting the result by
the desired n, samples. Once the sequences vn(r) are obtained then the output
can be computed by interpolating v, (r) as in Eq. (6.143). For each value of
y(n), 20 values of v(r) are involved. The samples involved for two different
values of n are shown enclosed in a box in Fig. 6.35. It should be clear that for
R consecutive values of y(n), the values of v,,(r) are obtained from the same

2Q columns. Thus it is convenient to compute the output in blocks of R sam-
ples.

The amount of computation required to implement time-dependent
Fourier synthesis in the above manner can again be estimated by assuming that
Nis a power of 2 and that a straightforward complex FFT algorithm is used to
compute the inverse transforms called for in Eq. (6.145). For this assumption,
the synthesis requires (2QR +2Nlog,N) real multiplications and
@ OR~1+2Nlog,N) real additions to compute a group of R consecutive values
of the output, y(n). The direct method of synthesis requires 2(Q+1) MR real
multiplications and 2QMR real additions to compute R consecutive samples of
the output. If we consider the situation when the direct method requires fewer

. multiplications than the FFT method, we find that

g+ % log,N
M<—1— (6.146)

For typical values of N = 128, Q =2 (interpolation over 4 samples as in Fig.
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6.35), and R = N (the lowest possible sampling rate for X,(e/2™*/N)) then we
see that the direct method is most efficient only when M < 3. Thus for most
applications, the FFT offers significant improvements in the computational
efficiency of the synthesis operation.

6.4 Spectrographic Displays

The notion of a time-dependent Fourier representation of speech was prevalent
long before the advent of digital signal processing techniques for speech
analysis. Indeed, speech researchers have relied heavily upon spectrum analysis
techniques since the 1930’s. One of the earliest embodiments of the time-
dependent Fourier representation was the sound spectrograph, a device that has
become an essential tool in almost every phase of speech research. In this dev-
ice, a short (2 second) speech utterance repeatedly modulates a variable fre-
quency oscillator, The modulated signal is input to a bandpass filter. The aver-
age energy in the output of the bandpass filter at a given time and frequency is
a crude measure of the time-dependent Fourier transform. This energy is
recorded by an ingenious electromechanical system on teledeltos paper. The
result, called a spectrogram, is a two-dimensional representation of the time-
dependent spectrum in which the vertical dimension on the paper represents
frequency and the horizontal dimension represents time. The spectrum magni-
tude is represented by the darkness of the marking on the paper. If the
bandpass filter has a wide bandwidth (300 Hz) the spectrogram displays good
temporal resolution and poor frequency resolution. On the other hand, if the
bandpass filter has a narrow bandwidth (45 Hz), the spectiogram has good
frequency resolution and poor time resolution. Examples are shown in Fig.
6.36.

Figure 6.36a shows a wideband spectrogram of the utterance "Every salt
breeze comes from the sea." This example illustrates a number of characteristic
features of wideband time-dependent spectra. First, we observe that at a partic-
ular time, the spectrum varies with frequency in a manner suggested by Figs.
6.3 and 6.5; i.e., the spectrum consists of a few broad peaks corresponding to
the formant frequencies. The spectrogram clearly displays the variation of the
formant frequencies with time. Another interesting feature of the wideband
spectrogram is the vertical striations that appear in regions of voiced speech.
These are due to the fact that the impulse response of the analyzing filter (e.,
the spectrum analysis window) is of about the same duration as the pitch
period. Thus, the energy in the filter output is maximum when the peak of the
impulse response is aligned with the maximum of each individual pitch period.
At other times, the output energy is significantly less. For unvoiced speech,
which is not, of course, periodic, the vertical striations do not appear and the
spectral pattern is much more ragged.

Figure 6.36b is a narrowband spectrogram of the same utterance. In this

case, the bandwidth of the filter is such that individual harmonics are resolved
in voiced regions. Thus, while formant frequencies are still in evidence, a
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TIME (SEC)
Fig. 6.36 Wideband and narrowband spectrograms of a sentence.

| { f

NARROWBAND

f:ross-section at a particular time is reminiscent of Figs. 6.2 and 6.4. No longer
is the pattern striated in the voiced regions, since the narrow‘bz;nd im uglse
response spans several pitch periods; but, rather, the frequency dimensionpnow
clearly places in evidence the fundamental frequency and its harmonics

g g
UIWOlced regions are dlStlll UIShed by a laCk Ot pellodlClty in t]le “eque"cy

- Thg wideband and the .narrowband spectrograms display a great deal of
Information about the properties of a speech utterance. Indeed, when apparatus
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for displaying such time-dependent Fourier representations first became avail-
able, it was hoped that such displays could provide a new "language” for com-
municating with the deaf. Although this hope was not realized, subsequent
research lead to the book Visible Speech [8] which is still a rich source of infor-
mation on the spectral and temporal properties of speech. In the years since
this early work, many speech researchers have made measurements by hand on
spectrograms to determine speech parameters such as formant frequencies and
fundamental frequency.

Another outgrowth of the invention of the sound spectrograph was the
notion that a speaker’s identity could be revealed by a detailed analysis of a
spectrogram or "voiceprint” of a speech utterance. Although there remains
significant question as to the reliability of voice identification techniques based
upon spectrograms [9], these techniques have gained some acceptance in courts
of law [10].

The sound spectrograph was for a long time the basic analysis tool in
speech research. However, with the availability of computer facilities dedicated
to speech research, this is no longer the case. The previous sections of this
chapter have shown ways to design and implement time-dependent Fourier
representations of much greater sophistication than was ever possible using ana-
log hardware. These representations can, of course, be implemented either as a
special purpose digital hardware or as a program in a general purpose computer.
For example, using the techniques of Section 6.3, we can obtain X, (e/2mkIN)
which is a complex two-dimensional representation of the speech signal which
is discrete in time and frequency and furthermore is periodic in the frequency
dimension. Thus, we are faced with the problem of how to display such a
representation. Generally, all the information is not needed in a display. Often
only |X,(e/2™/N)| would be displayed. Also, since |X,(e/>™*/N)| is even and
periodic in k with period N, it is only necessary to display values in the range
0< k < N/2

When a device such as a graphics oscilloscope or incremental plotter is
available for output from a computer, the time-dependent Fourier transform
can be plotted as simply a sequence of plots of |X,(e/>™*/¥)| as a function of
for fixed values of n. Usually the values of n will be spaced by an amount
corresponding to Nyquist sampling of the spectrum channels. For example, for
narrowband analysis, the spacing in time may be on the order of 10 to 20 msec.
Figure 6.37 [11] shows a sequence of narrowband spectra computed at intervals
of 20 msec. It is clear from Fig. 6.37 that the entire interval of speech is
voiced.

An alternative to displaying the spectra as sections through the surface
defined by |X,(e/27%/N)] is to display that surface in a perspective drawing. An
example of this type of display is shown in Fig. 6.38 [12). Clearly, this plot is

less useful for quantitative measurements, but has the virtue, like the spectro-

gram, of displaying the entire utterance in a compact form.

In view of the demonstrated usefulness and wide acceptance of the spec-

trogram as a basic tool, a digitally generated spectrogram is probably more use-
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FREQUENCY IN k‘Hz

Fig. 6.37 Sequence of narrowband
(After Schafer and Rabiner [11].)

spectra of a voiced section of speech.

(f)lﬁlt ptgims at:i:hlex;j qf the f(l)]rm}fr di'splzzys.2 it; a TV or CRT display is available to
pled images,”" then |X, (e/2"¥/N)| for an appropri i i

' priate sized interval
can be_ thought of as just such a sampled image. A number of researchers have
investigated such outputs and have found that it is possible to duplicate the
appearance of analog spectrograms. Indeed, since the teledeltos paper only has
T Xgr(ayj 2s;::1/lﬁ)range of 12 dB (13], a rather crude quantization of the values of
#e | can be used in the display if the objective is to duplicate spectro-
gram appearance. However, most digital image display systems have a much

greater dynamic range so that more of th i i
: e spectral informati -
trayed than with the analog system. on may be por

Apother advama‘ge of the digital spectrogram is that the spectrum can be
(cjgnvemently shaped in sophisticated ways to enhance the usefulness of the
isplay. An example is the use of high frequency emphasis to counteract the

“Usually this is achieved using a dedicated auxiliar
However, L. R. Morris has discussed techni
memory and output capability of a standard
and Signal Proc., June 1975.)

y memgry frgm which the display is refreshed.
gugs for displaying spectrograms using only the
minicomputer. (IEEE Trans. on Acoustics, Speech,
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Fig. 6.38 Spectrogram of the word "READ" computed from contiguous 8
msec speech segments. (After Tufts, Levinson, and Rao {12])

natural fall-off of the speech spectrum. (This is also used in analog spectro-

graphs.) A simple way to introduce high frequency emphasis is to compute the
spectrum of the first difference of the input signal. (See Problem 6.11)
Another more flexible way is to directly shape the spectrum prior to display.
This latter approach was used by Oppenheim [14] in producing computer gen-
erated spectrograms similar to the one shown in Fig. 6.39. Oppenheim also
points out that one has a great deal of flexibility in displaying the spectrum
data. For example, the frequency and time dimensions can be expanded or
contracted at will.

Still another approach to producing spectrograms by computer is required ;

when no image output capability is available. If a printing device is available
with strikeover capability, it is possible to obtain a gray scale range comparable
to that of an analog spectrogram by representing each darkness level by a set of

superimposed printer chatacters. An example of this type of output is shown in *

Fig. 6.40. The details of procedures for producing such plots are given in [15].

6.5 Pitch Detection

We have seen that in a narrowband time-dependent Fourier representation, the

excitation for voiced speech is manifested in sharp peaks that occur at integer
muitiples of the fundamental frequency. This fact has served as the basis of a |
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Fig. 6.39 An example of a spectrogram produced using the short-time
spectrum and a computer graphics system. (After Oppenheim [14].)

number of pitch.detection schemes. In this section we shall briefly discuss an
exgmple of a pitch detector based upon time-dependent spectrum analysis
This exampl.e illustrates both the basic concepts of using the short-time spec-.
trum for pltcl? detection and the flexibility afforded by digital processing
m(f,thods. It wxhll be clear to the thoughtful reader that many more possibilities
exns} ff)r exploiting the time-dependent Fourier representation in determinin

excitation parameters. (Another example is suggested by Problem 6.14.) *

One approach involves the com i 1
. putation of the ha
(16] ey oproach inv rmonic product spectrum

‘ K
P,e’) = 1T |X,(e/*n) |2 (6.147)

r=|

AMP
|

FREQUENCY (kHz)

6 18 20 22 24 26 28 30 33
TIME (sec.) . . >

f]lg] ;5.40 800-point DFT spectrogram. (Afier Silverman and Dixon
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qu')(,.(eiz"“)l :
fr=t) cially resistant to additive noise, since the contributions of the noise to X,(e/*)

have no coherent structure when viewed as a function of frequency. There-
fore, in Eq. (6.148) the noise components in X,(e/*") also tend to add
incoherently. For the same reason, unvoiced speech will not exhibit a peak in
P,(e’/*). Another important point is that a peak at the fundamental frequency
need not be present in |X,(e/*)| for there to be a peak in P,(e/%). Thus, this
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Fig. 6.41 Representations of terms in the log harmonic product spec-
frum- \J\r'\v\/\-m"ﬁ Py ™ Pt
Taking the logarithm gives the log harmonic product spectrum \'M Psod Py
. K ; ot A i A i J
P,(ei®) =2 Y log| X,(e/n)| (6.148) ™ \
r=1 {991 v
The function 13,,(e-"") is seen to be a sum of K frquency compressed r;plicas \rv-wu""\w" - L Sy
of log}X,(e/)|. The motivation for using the function of Eq. (6.148) is that L
for voiced speech, compressing the frequency scale by.mteger factors should . o
cause harmonics of the fundamental frequency to coincide at the fundamental NG MIGV A \M _ —
frequency. At frequencies between harmonics, some of the frei?u;ncy\ ] . L
i i inci tal will there 6100 300 300 400 500 © 100 200 300 400
compressed harmonics will coincide, but only at the fundgmen 5 , s G 100 200 k0 40 0 o 10 200 o
always be reinforcement. This is depicted schematically in Fig. 6.41. Note that FREQUENCY (1) FREQUENCY ( PREQUENCY (W) rtourey bl

for the continuous function |X,(e/27F7")|, the peak at F, becomes sharper as r {a) (b) (c) @)

increases; thus, the sum of Eq. (6.148) will have a sharp peak at F, with possi-

. Fig. 6.42 Log harmonic product spectra and harmonic product spectra
bly some lesser peaks elsewhere. This technique has been found to be espe-

for (a) and (b) noise free; and (c) and (d) 0 dB SNR. (After Noll {17]1)
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method is attractive for operation on highpass filtered speech such as telephone
speech.

An example of the use of this technique is shown in Fig. 6.42 [16]. The
input speech was sampled at a 10 kHz sampling rate and every 10 msec the sig-
nal was multiplied by a 40 msec Hamming window (400 samples). Then values
of X,(ei2"k/N) were computed using an FFT algorithm with N = 2048. Fig-
ures 6.42a and 6.42b show a sequence of log harmonic product spectra respec-
tively for the case K = 5 in Egs. (6.147) and (6.148). Figures 6.42c and 6.42d
were computed using exactly the same parameters, except that noise was added
to the input signal at a signal-to-noise ratio of 0 dB. The clarity with which the
fundamental frequency stands out is remarkable. It is clear from this figure
that a rather simple pitch estimation algorithm could be designed with the har-
monic product spectrum as input. That such an algorithm should have superior
noise resistance has been verified by Noll [17].

6.6 Analysis-by-Synthesis

In Sections 6.4 and 6.5 we have shown that the basic speech parameters are
clearly in evidence in the time-dependent Fourier representation. In this sec-
tion we shall consider a technique, called analysis-by-synthesis, that has been
useful in estimating formant frequencies and in estimating the glottal waveform
for voiced speech.

The basic idea of analysis-by-synthesis is the following. First it is
assumed that we begin with the speech waveform or some other representation
of the speech signal such as the time-dependent Fourier transform. Then some
form of the speech production model is assumed. This model (e.g., terminal
analog, vocal tract, etc.) has a number of parameters which can be adjusted to
produce different speech sounds. From the model we can derive a representa-
tion of the model that is of the same form as the representation of the speech
signal. For example, if the speech signal is represented by the time-dependent
Fourier transform, then we would likewise obtain a time-dependent Fourier
representation of the model. Then by varying the parameters of the model ina
systematic way, we can, for example, attempt to find a set of parameters that
cause the model to match the speech signal with minimum error. When such a
match is found, the parameters of the model are assumed to be the parameters
of the speech signal. This is a very general approach and not tied to the time-
dependent Fourier transform. However, this principle was first used for speech
analysis in this way {18]. Subsequently the same principle was used in the time
domain by Pinson [19] and with the cepstrum by Oppenheim [20] and later
Olive [21].

Some of the earliest reported applications of the analysis-by-synthesis
principle to speech were done by a group at MIT [22]). In this work, a time-
dependent Fourier representation was obtained using a bank of analog filters.
The filter outputs were sampled and read into a digital computer. The resulting
crude spectrum representation was then matched by an iterative procedure that
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adjusted the parameters of a model for speech production that included spectral
components for the vocal tract transfer function, the glottal wave shape, and
the radiation load. Although the algorithm for adjusting the model pararr;eters
was not completely automatic, this work showed the feasibility of the analysis-

by-syn}hesis principle by producing excellent estimates of formant frequencies
for voiced speech [22].

Possibly the most significant limitation of the scheme described by Bell et
a]..[18] was the use of an analog filter bank for the Fourier analysis. This limi-
tation was not present in the scheme devised by Mathews, Miller, and David
[23].. They began with samples of the speech signal and implemented the
l?ouner analysis using digital computations. Their approach introduced an addi-
upnal new concept into the spectrum analysis of speech; namely the concept of
pitch synchronous analysis of voiced speech. Although the work of Mathews et
al. [23] occurred before many of the important advances in the implementation
and understanding of discrete Fourier analysis, we shall take advantage of such
knowledge in explaining their approach.

6.6.1 Pitch synchronous spectrum analysis

First let us recall from Chapter 3 that our digital model for voiced speech

assumes that a short segment of voiced speech is identical to the same length
segment from the periodic sequence

¥(n) =¥ h(n+mN) (6.149)
m=—00
where h»v(n) represents the convolution of the vocal tract impulse response,
v(n), with the glottal pulse, g(n), and the impulse response of the radiation
load, r(n). That is,
hy(n) = r(n)*v(n)xg(n) (6.150)

The7 quantity N, is tl'{e pitch period in samples. The radiation effects, which
basically appear as a differentiation at low frequencies, are adequately modelled

for most purposes by a simple first difference, for which the ztransform
representation is

R(z)=1-2z"1 (6.151)
The vocal tract is characterized by a transfer function of the form
A
V(z) = o — (6.152)
II (0 =27 cosQuF, Tz + 72741272
k=1

whefe the numbe_r of poles included depends upon the sampling frequency of
the input data. Finally, the glottal pulse is of finite duration, implying that the
ztransform of g(n) is a polynomial in z of the form

N N,
G =Y gm)z=B I[ (U-2,27 (6.153)

n=0 n=1
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where N, is less than N,. From Eq. (6.150) we observe that the z-transform of
h,(n) is

H(z)=R(z) V() -G (6.154)
and the corresponding Fourier transform would be
H,(e/%) = R(e/) V(el) G(e/*) (6.155)

The Fourier transform of the periodic signal %{n) will consist of very sharp
spectral lines at multiples of the fundamental frequency.

The periodic signal %(n) can be represented by a Fourier series of the
form

1 N,—1 - i il—" kn
#(n) = — X(k)e ™ (6.156)
Ny i
where
-
X(k)y=HJe ™) (6.157)
By substituting Eqs. (6.156) and (6.157) into Eq. (6.1) it is easily shown that
1 Ny-1 J TZVL k Jlw— %c—‘i
e == § HEe Yywe M), (6.158)
N, 2

where W,(e’*) is the Fourier transform of the analysis window, w(n—m). We
have seen that the character of the time-dependent Fourier transform is
strongly dependent on the length and shape of the analysis window. We recall
from Figures 6.2 and 6.3 that from the point of view of estimating the parame-
ters of the model (other than pitch), we have a dilemma. If we perform a nar-
rowband analysis (i.e., long analysis window) the spectrum envelope informa-
tion is obscured by the pitch peaks, while if we perform a wideband analysis
(i.e., short analysis window), we find the formant peaks smeared out by convo-
lution with the Fourier transform of the window. Furthermore, Eq. (§.158)
suggests that even though x(n) is periodic, X,(e/*) is a function of the window
position. The approach suggested by Mathews et al. takes advantage of the
fact that the Fourier series coefficients for a periodic signal such as Eq. (6.149)
are simply as given by Eq. (6.157) and can also be computed directly from one
period of x¥(n). Thatis
i3 Nl -3
¥ =Hee )= § xme ¥, 0<k <N~1 (6159
n=0

Thus, by isolating one period of the periodic signal we can compgte sample_s of
H,(e/) at N, equally spaced values. When one uses one "period" of voncgd
speech in place of ¥(n) in Eq. (6.159) the resulting time-dependent Fourier

transform is termed a pitch synchronous time dependent Fourier transform. In

general, this approach to voiced speech analysis is called pitch synchronous

analysis.
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This approach is completely consistent with our general discussion of time
dependent Fourier analysis with only slight modifications. First, the times at
which X,(e’) is computed are dependent upon the voice pitch period. Since
pitch varies with time, this requires a nonuniform sampling in the time dimen-
sion. Also, since the number of values of frequency that are obtained depends
upon the pitch period, the sampling rate in the frequency dimension also is
time dependent. The window used in this case is normally rectangular, i.e., a
single "period" of the speech wave is isolated and then transformed using Eq.
(6.159). As shown in Problem 6.15 this is consistent with Eq. (6.158) because
for a rectangular window of length N,, W(e’) has zeros spaced at multiples of
2m/N,. Thus, if Eq. (6.158) is evaluated at frequencies wy = 2mk/N,, then

- Ly
X,(e " )=H/e ™) 0<k€Np—l (6.160)

This approach avoids the problems of pitch in the frequency domain by
coping with it first in the time domain. Thus, the time ambiguity of the nar-
rowband spectrum is avoided, and the frequency dimension smearing of the
wideband analysis is avoided by being content with an accurate estimate of the
spectrum at only N, samples.

6.6.2 Pole-zero analysis using analysis-by-synthesis

With this pitch synchronous spectrum as a starting point, Mathews et al.
(23] used an iterative procedure to estimate the parameters of the speech
model. They used an analog model for the transfer function of the radiation
load, the vocal tract, and the glottal pulse. This necessitated a higher pole
correction factor which probably would not have been necessary had Eqgs.
(6.151) through (6.154) been used. The basic approach remains the same
regardless of the particular functional form for the speech model, so we shall

continue our exposition using the digital model. Details of the functions used
are given in Ref. [23).

The parameters of H,(e/*) can be determined by an iterativ_e approxima-
tion process. Mathews et al. guessed a set of parameters for H,(e/9), computed

values at frequencies 27rk/N,,, and then evaluated an error function of the
form:

J A Y
E=3 QWliog|H,(e ™ )|~1log|X, (e " )|I2 (6.161)
k
where Q(k) is a weighting function on the spectrum and X,(e’>™™) is the
pitch synchronous spectrum of the speech signal. The parameters were
adjusted in a systematic way so as to minimize the error function. The rules for

adjusting the poles of ¥(z) and the zeros of G(z) are discussed in Ref. [23].

Figure 6.43 shows some examples of spectrum matches obtained by Mathews et

al. [23]. When the error is minimized, the resulting values of the poles of

V{(z) are taken as estimates of the formant frequencies. The zero locations

 give information about the glottal wave.
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6.6.3 Pitch synchronous estimation of the glottal wave

The work reported by Mathews, Miller, anq Dayid was primarily corrl‘-3

cerned with the distribution of zeros of the appfro;(llmatlonsioax:geatstsgzti ;v:ehe
i t of the zeros
made to relate the spacing and arrangemen . e
i Mathews (unpublished) modifie

lottal pulse. Later work by Miiler and '
ga(;lier ‘Zechnique to obtain estimates of the glottal pulse. In this case, the
model was of the form

H,(z2) = R2)G(2)V(2) (6.162)
i i ibuti he spectrum were initially
this case the glottal wave contnbutnon; to t Sp
:1};?;1;% by a fixed transfer function whose equivalent digital form would be

G = o=y

Again, the parameters of V(z) were varied systematically to minimize a similar

i i t
error criterion. The resulting pole locations serve as an estimate of the forman
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1 (6.163) ‘

frequencies. To obtain the glottai wave shape for the particular period of
speech being analyzed, Miller and Mathews computed the quantity

. 2w

I N k

X, (e ")

iy,
Re ™ YV(e )
The values of G(k) for 0 < k < N,~1 are used as the Fourier coefficients of
the glottal pulse, g(n), which is computed using the inverse DFT; i.e.,

Gk) =

0< k<N~ (6.164)

Py

1 L R
B = ¥ Ge ¥ (6.165)
P k=0

Note that this is feasible since &(n) is a finite duration pulse, even though the
N, samples of H,(e/) that are obtained by pitch synchronous analysis would in
general not be adequate to completely specify 4,(n) which is in general longer
than N,. Thus with the aid of the model for speech production it is possible to
extract the component of the convolution which is of finite duration. This
technique was used with considerable success by Rosenberg [24] in a study of
the effect of glottal pulse shape on vowel quality. Figure 6.44 shows an exam-

ple of a speech wave and the corresponding glottal wave that was extracted by
the above procedure.

This technique for estimating the glottal pulse is sensitive to the model
that is assumed. In cases where the model fits the speech signal well, as in the
steady state vowels, the results are excellent. In other situations a more com-
plex model is required. Another factor that affected the results was the way in
which the pitch period was isolated in the speech waveform. It was found that
considerable care was needed in determining the beginning and end of the
period. In fact, the speech signal was interpolated to a higher sampling rate to
facilitate the exact location of the beginning of each cycle. It is not surprising
that this is required in view of the fact that in general it is very unlikely that

the exact point of glottal opening (and closing) would occur at a sampling
instant.

AV
t (MSEC)

w TMSECN_

Fig. 6.44 Speech output (top) and analyzed excitation waveform (bot-
tom) for vowel in HOD. (Afier Rosenberg (24).)
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6.7 Analysis-Synthesis Systems

So far in this chapter, we have discussed the basic theory of t{me-depengen:
Fourier analysis and synthesis, and have .shown that the tlme_-dep.en ;r:
Fourier transform is a useful basis for a var!ety of schemes for .esu'matmgf the
parameters of the model for speech production. However, ap;.)llcau(;)nsT ﬁ 1 'e
most important result of this chapter have S0 far not been considered. ; _1s:
we have not discussed the practical implications of the fact tt}at the speec sig
nal can be exactly recovered from the time-dependent FOU{'IC!‘ repres«entaul(l)r:i
This fact is the basis for an important class of speech co.dmg §cpemes calle
vocoders. The main purpose of vocoder syster'ns is t(? obta!n a digital repre‘s;n-
tation of speech at a much lower bit-rate t.han is possible with wavequn co! 1pg
schemes. Other applications of vocoders mc_lude'the remoyal of additive n<t)|se
or the effects of reverberation, and the modlﬁ.catlon. of basic speech garar;xe ers
to permit alteration of the time or frequency dimensions of a speech signal.

In this section we shall discuss several speech coding systems that are

based on the theoretical principles of Section§ 6.1-6.3. We shall' begin wit'h sys(;
tems that are direct implementations of time-dependent Fourier analysis an

synthesis and then discuss systems, such as the channel vocoder that can be

viewed as approximate implementations. This is opposite to the chronology of

the development of vocoders, however, this approach has the virtue of

highlighting the degradations that result from expediencies in implementation.

6.7.1 Digital coding of the time-dependent Fourier transform

In Sections 6.1 and 6.2, it was shown that speech (in fact any sngngl) ;an ‘
be exactly represented by a set of bandpass channels of _the t.ype deplcte? 1)n 1ge: !
6.45a, where the center frequencies, w,, and analysis windows, w,(n), atr
selected to cover the desired frequency band, and the complex constants, ‘
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Py =|PJe’®, are chosen so that the composite response of the sum of all the
channels is as close as possible to the ideal of perfectly flat amplitude response
and exactly linear phase. In Section 6.1.3, it was shown that since w,(n)
corresponds to the impulse response of a lowpass filter, the time-dependent
Fourier transform at frequency w, can be'sampled at a lower rate than the input
signal. In fact, it was shown that the total required number of samples/sec of
X, (e’ could be made equal to the sampling rate of the input signal. Thus to
reduce the computation rate required to implement the analysis, and to reduce
the bit-rate of the time-dependent Fourier transform representation, the chan-
nel signals are "sampled” at a much lower rate, and quantized and encoded for
transmission or storage. This is depicted for a single channel in Fig. 6.45b.
The analysis operations, which are shown to the left of the dotted line, consist
of a modulator followed by a lowpass filter, followed by a decimator, and then
an encoder. If w,(n) is a finite length sequence, the operation of decimation is
simply incorporated into the linear filtering operation, i.e., the output is simply
computed every D, samples of the input. The encoding of the channel signals
involves quantization and encoding as discussed in Chapter 5. In synthesis, the
digital representation is first decoded, and then a quantized version of X,(e’%)
is computed by interpolation. Note that it is possible to use a lower sampling
rate for synthesis of the output waveform than the original input sampling rate
il high-frequency channels are omitted. Thus, the interpolation factor D, may
be smaller than the decimation factor D;. The quantized time-dependent
Fourier transform channel signal, AA’,,(e’""‘), modulates a complex sinusoid to
produce the signal $,(n) which is then added to the other outputs to produce

-1
=% P (6.166)
k=0

To illustrate the practical considerations in coding speech in this way, we

 will consider an example from Ref. [6]. The computation of X, (e’ was
. implemented using the FFT as discussed in Section 6.3. Since the FFT pro-

gram required that N be a power of 2, the input was sampled at the rather
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Fig. 6.46 Frequency response of the analysis window. (After Schafer and
Rabiner [6].)
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Fig. 6.47 Composite time and frequency response of the filter bank.
(After Schafer and Rabiner [6).)

unusual rate of 12195 samples/sec. The value of N was 128, so that the °
analysis frequencies were o, = 2mwk/128, which correspond to analog frequen-
cies, F, = (95.273k) Hz. The analysis window, w(n) (the same for each chan- _
nel), was the impulse response of a linear phase FIR filter of length 731 sam-
ples that was designed by frequency sampling methods [25}. The frequency °
response of this filter is shown in Fig. 6.46. Note that above 80 Hz, the °
attenuation of the filter is at least 60 dB. Using appropriate complex constants
P,, it was possible to obtain a composite response as shown in Fig. 6.47. Note
that Po=0, and P, = 0 for 28 < k < 100. Since the frequency band covered
by the synthesizer only included frequencies up to about 2690 Hz, a sampling 3
rate of 10004 samples/sec was used at the output. (An output sampling rate as 7
low as about 6000 samples/sec could have been used with a correspondingly °
sharper analog filter at the output.) :

The effect of design parameters is shown in the spectrograms of Fig. 6.48. %
An input speech utterance is shown in Fig. 6.48a and Fig. 6.48b shows the out- ™
put of an analysis-synthesis system consisting of 28 channels of the form of Fig,
6.18b, where the complex constants P, are unity for 1 < k < 28 and}
100 € k < 127 and zero otherwise; i.e., no special phase compensation was
used. The channel signals were sampled at the Nyquist rate (i.e., 160 times per?
second), which assured accurate reconstruction at the synthesizer. Further
more, no quantization was done, i.e., X,(e’"%) was represented with full 16-bi
accuracy. A comparison of the wideband spectrograms (which, of course, have]
good temporal resolution) shows an effect which is consistent with a composi ,‘

MK

!'mpulse response with echoes as in Fij
in Fig. 6.48b is due to the delz;gdpl
perceived as reverberation in the Sp
"hollow barrel” effect when the utt
6.48b were compared. In contrast
cussed in Section 6.2.1 (corresponc’ii

g. 6.25. The fuzziness of the spectrogram
energy of the echo and such distortion is
eech. Careful listening revealed a distinct
érances corresponding to Figs. 6.48a and
with the phase properly adjusted as dis-

in S _ or! ng to Fig. 6.47), the spect
output in Fig. 6.48¢ is undistinguishable from that of the inp:t ?I*EioggrgrgS:)f atxl:g

the i . .
¢ input and output speech signals were likewise perceptually indistinguishable

g g

h St poss
]Iavl]l ven eVldellce t at it i ]ldeed (o]} lb]e to reconstruct the SpeeCh
Slgnal f]onl its time dependent IOUIleI uans‘OInl) let us now tUIu to a con

Tewy g

1

(b}

FREQUENCY (kHz)

TIME (SEC)

Fig. 6.48 Mlustration of un i
] quantized operation (1/7, = 160 ;
input speech; (b) output speech with no phase adjusnl'nen o

speech with best phase adjustment. by

(After Schafer and Rabiner [6].)
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i jasi M coding; lowpass cutoff
Fig. 6.49 lltustration of effect of aliasing for PC .
= 80 Hz; no quantization; (a) 1/T; = 160 Hz; (b) 1/T, = 100 Hz; (c)
1/T, = 80 Hz; (d) 1/T, = 60 Hz. (After Schafer and Rabiner [6].)
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sideration of ways of coding the channel signals for digital transmission or
storage. We recall from Chapter 5 that in coding any waveform, there are two
basic concerns: the sampling rate and the number of bits required per sample.
The product of these two quantities gives the bit-rate, which as a general rule
will. be minimized by using the minimum acceptable sampling rate and the
fewest bits/sample. In this case, the total information rate is the sum of the bit
rates for each complex channe! signal.

Before discussing quantization, it is helpful to consider the effects of
lowering the sampling rate of the channel signals. Recall that the real and ima-
ginary parts of X,(e’“%) are outputs of lowpass filters. Thus in the example Jjust
discussed, where the frequency response of the lowpass filter is shown in Fig.
6.46, it is certain that negligible aliasing will occur if the channel signals are
sampled at a rate of 160 times per second or higher, since the filter response
has at least 60 dB attenuation above 80 Hz. If a lower sampling rate is used
without a corresponding reduction in filter bandwidth, aliasing occurs in the
time dimension. If the bandwidth is reduced without reducing the spacing of
the channels, then the synthesized speech is bound to be more reverberant
since eventually the individual channel responses will not overlap, leaving
'holes" in the spectrum of the synthetic speech. We cannot decrease the chan-
nel spacing without increasing the number of channels so as to cover the same
band of frequencies. Therefore, if we attempt to lower the information rate by
lowering the sampling rate of the channel signals, we must be prepared to
tolerate either aliasing distortion in the time dimension that comes with under-
sampling the channel signals, or increased reverberation distortion that comes
with narrowing the filter bandwidths. These two effects are shown through the
use of spectrograms in Figs. 6.49 and 6.50. Figure 6.49 illustrates the effect of
aliasing due to sampling the short-time spectrum at too low a rate. The sam-
pling rates of the channel signals in this figure are (a) 160 Hz, (b) 100 Hz, (¢)
80 Hz, and (d) 60 Hz. Clearly, there is considerable distortion in cases {c) and
(d), while the effect is much less evident in case (b). By comparing Fig. 6.49d
to the spectrogram of the original speech utterance in Fig. 6.48a, it is apparent
that in cases of severe time-dimension aliasing distortion, the pitch of the
speech utterance becomes severely distorted, while the formant frequencies
remain relatively intact. Figure 6.50 illustrates the effect of narrowing the
bandwidths of the analysis filters, while leaving the spacing of the frequency
channels the same. In all three cases, the sampling rate of the channel signals
was 160 Hz. In Fig. 6.50a, the filter was as shown in Fig. 6.46; that is, above
80 Hz the attenuation of the filter was at least 60 dB. In Fig. 6.50b, the
corresponding cut-off frequency was 53 Hz and in Fig. 6.50c, the corresponding
cut-off frequency was 36 Hz. As expected, the spectrograms in Figs. 6.50b and
6.50c show significant degradation, which can be attributed to the increased
reverberation caused by lengthening the effective duration of the window. It
can also be observed that although the pitch of the signal appears to remain
intact, the formant trajectories are severely damaged by the reverberation that
is introduced by the narrowband filters. It would appear that from the point of
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Fig. 6.50 Illustration of effect of narrowband analysis filters for PCM
coding; no quantization; 1/T; = 160 Hz; towpass cutoff set to (a) 80 Hz;
(b) 53 Hz; (¢) 11 Hz. (After Schafer and Rabiner [6].)

view of intelligibility, then, that time dimension aliasing distortion should be
preferable to the reverberation introduced by narrowing the filter bands.

In order to determine the information rate required for representing
speech using the time-dependent Fourier transform, it is necessary to choose a
quantization scheme. Most of the schemes discussed in Chapter 5 cm_lld be
used to quantize the real and imaginary parts of the complex channel signals.
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Two examples discussed in Reference [6] are the use of adaptive delta modula-
tion, and PCM coding. Using an adaptive delta modulation system described by
Jayant [26], the 28 channels were represented by 1 bit/sample. Thus, the
overall bit rate for the system is 56 times the sampling rate of the channel sig-
nals, since both the real and the imaginary parts of the channel signals must be
encoded. Since the adaptive delta modulation system requires a sampling rate

FREQUENCY (kHz)

(c)

, | b S P
0 .25 .50 .75 1.00 .25 1.50 1.75 200
TIME (SEC)

Fig. 6.51 Adaptive delta modulation coding of the spectrum parameters;
(a) 28 kb/s (1/T\=500 Hz); (b) 21 kb/s (1/T=375 Hz); (c) 14 kb/s
(1/T\=250 Hz). (After Schafer and Rabiner [6].)
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Fig. 6.52 Quantized operation; (a) input speech; (b) 1/Ty =100 Hz.
Total bit rate =16 kb/s. (After Schafer and Rabiner [6].)

on the order of five to ten times the Nyquist rate for good performance, we can
expect that bit rates on the order of 20 to 30 kb/s would be required for good
results. Examples of adaptive delta modulation coding at several bit rates are
shown in Fig. 6.51. In Fig. 6.51a, the total bit rate is 28 kb/s, corresponding to
a sampling rate of 500 Hz. In Fig. 6.51b, the total bit rate is 21 kb/s,
corresponding to a sampling rate of 375 samples/sec, and in Fig. 6.51c, the total
bit rate is 14 kb/s, corresponding to a sampling rate of 250 samples/sec. It is
clear from Fig. 6.51 that good quality is maintained at 28 kb/sec, but that the
quality degrades rapidly for lower bit rates. As an alternative to ADM coding,
it is possible to use APCM coding. This has been utilized by Crochiere [27] in
a nonuniform analysis with from 4 to 5 channels in achieving good quality at
information rates on the order of 16 kb/s.

As an example of the use of PCM coding, the same 28 channel system
was used with a sampling rate of 100 samples/sec for the channel signals (i.e., a
small amount of aliasing distortion was allowed in order to lower the sampling
rate). Instead of coding the real and imaginary parts of the complex channel
signals, it was found to be advantageous to apply the quantization to the loga-
rithm of the magnitude of the time-dependent Fourier transform and to the
phase. Taking advantage of the insensitivity of the auditory system at higher
frequencies, the low frequency channels were represented more accurately than
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the high frequency channels. Using 3 bits for the log magnitude and 4 bits for
the phase of channels 1 through 10 and 2 bits on the log magnitude and 3 bits
for the phase on channels 11 through 28, it was possible to obtain a representa-
tion at a bit rate of 16 kb/s without appreciable distortion. This is depicted in
Fig. 6.52, which shows a wideband spectrogram of the input speech signal in
Fig. 6.52a and 16 kb/s coding in Fig. 6.52b.

The information rates achieved using digital coding of the time-dependent
Fourier transform are moderately high, and are comparable to bit rates that can
be achieved by direct coding of the speech wave using adaptive quantization
techniques. The complexity of the time-dependent Fourier representation is, of
course, much greater than most waveform coding systems. The main advan-
tage of the time-dependent Fourier transform representation is that it affords
additional flexibility in manipulating the parameters of the speech signal. This
will become evident in subsequent discussion.

Let us summarize what we have learned so far about speech coding
schemes based upon the time-dependent Fourier transform. First, we have
seen that if we sample the channel signals at a high enough rate and do not
quantize the samples (12 bits/sample is adequate) then perceptually perfect
reproduction of the input speech is possible. The bit rate required for such a
representation is rather high, however. (For the example discussed, high qual-
ity reproduction of a 3 kHz band required an information rate of approximately
100 kb/s.) To reduce the bit-rate there are two approaches. The straightfor-
ward approach discussed in this section so far is to simply quantize the channel
signals more coarsely and reduce the sampling rate. Using this approach, it is
possible to reproduce the input with slight degradation at bit rates on the order
of 16 kb/s. A second approach is to incorporate some of the properties of the
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Fig. 6.53 Implementation of a single channel of the phase vocoder.
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speech model as fixed components of the analysis or synthesis system, thus
effectively removing some of redundancy of the speech signal. Other degrada-
tions in speech quality result from approximations introduced to simplify the
implementation of the analysis-synthesis system. All of these degradations tend
to be perceived as modifications of speech quality and intelligibility that are dis-
tinct from the type of distortions in waveform coding systems which are gen-
erally modelled as additive (possibly signal correlated) noise. Thus, signal-to-
noise measurements as used in Chapter 5 are almost totally meaningless for
vocoder systems. For this reason it has been necessary to describe vocoder per-
formance by spectrogram comparisons and informal subjective evaluations of
the type of distortion which are perceived by listeners. This will be our
approach throughout the remaining chapters where vocoder systems are dis-
cussed.

6.7.2 The phase vocoder!?

An interesting and novel approach to an analysis-system based on the
short-time spectrum is the phase vocoder (Flanagan and Golden {28]). To
understand how the system operates consider the response of a single channel.
For this purpose it is convenient to depict the system of Fig. 6.45a entirely in
terms of real operations as in Fig. 6.53. Recalling that we normally choose

Wy =27 — wyand P, = P,:,"_k, then we see that the imaginary parts cancel
out leaving only the real parts which can easily be shown to be equal to

RAPy (] = [P || X, (e’ |coslwen + 8,(we) + b, (6.167)

Thus, it is signals such as these that are summed to produce the composite out-
put. Such signals can be interpreted as discrete cosine waves that are both
amplitude and phase modulated by the time-dependent Fourier transform chan-
nel signal. The quantity, |P,|, is generally either one or zero, depending on
whether the channel is included or not. The constant phase parameters, ¢, are
included to maximize the flatness of the composite response.

A useful interpretation of Eq. (6.167) is possible if we introduce the con-

cept of instantaneous frequency. In order to do this it is convenient to consider
an analog time-dependent Fourier transform

X010 = |X,(0, Qe (6.1682)
=a,(t, Q) — jb(1, Q1)) (6.168b)

where
X, (6 Q01 = [a2(t, @) + b2(1, Q)12 (6.1692)

12The phase vocoder was originated and intensively investigated by Flanagan and Golden [28]. The
results in this section are based on the work of these investigators.
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and

(6.169b)

0,(t,Q,) =—tan”! IM]

aa(t, Q k)

This time-dependent, continuous-time, Fourier transform could be defined as

o0

X000 = [ x,@w, (=) dr (6.170)

—oo

where x,(r) is the continuous-time waveform of the speech signal, and wo(7)
is a continuous-time analysis window or, equivalently, the impulse response of
an analog lowpass filter. The quantity

dga(f, 0 k)

dr

called the phase derivative, is the instantaneous frequency deviation of the k™
Fhannel from its center frequency, Q,. The phase derivative can be expressed
in terms of a,(1, ;) and b,(t, Q) as

b1, Qa6 Q) — a1, Qb (1, QY

aX(n Q) + b2 Q)

where the raised dot signifies differentiation. When dealing with discrete-time
signal processing, we assume that x,(¢) and X,(t, Q) are bandlimited, and that

Jw . . . .
X, (e’ is a sampled version of an analog time-dependent Fourier transform;
ie.,

0.1, Q) = 6.171)

0,060, = (6.172)

X" = X,(nT, wJT) (6.173)

Likewise, the "phase derivative"” of X,,(ei‘"*) is defined as a sampled version of
Oa(t, Q) k)* ie.,

bolwdawy) — a,(w)b,(wy)
aMwy) + bHw,)

where in this case, d,(w,) and b,(w,) are assumed to be sequences derived by
sampling corresponding bandlimited analog derivative signals. These derivative
signals can be obtained by digital filtering of the sequences a,(w,) and b,(w,).
(See Problem 6.16.)

To see why phase derivative signals are of interest, consider the situation
where the channel center frequencies are closely spaced. Particularly, consider
the case when the pitch is constant and only a single harmonic of the funda-
mental is in the passband of the k'™ channel. In this case, we would find that
|X,,(e/ “8}| would reflect the slowly varying amplitude response of the vocal
tract at a frequency of approximately w,. The phase derivative would be a con-
stant, which would be equal to the deviation of the harmonic component from
the center frequency. Now if the vocal tract response and pitch vary slowly, as
in the normal speech, it is reasonable to argue that the magnitude and phase

0,(w,) = (6.174)
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derivative will both be slowly varying. Indeed, it is reasonable to argue that the
effects of aliasing in sampling the magnitude and phase derivative signals
should be less severe, perceptually, than the aliasing effects when the real and
imaginary parts of the time-dependent Fourier transform are sampled [28].

It should be noted that for synthesis 8,(z, Q) is obtained from 8,(s, Q,)
by integration; i.e.,

I
8.,(,0) = f 8,(r,00dr +0,(t,, Q) (6.175)
‘o
This equation suggests that 6 ,(w,), which is a sampled version of 6,(z Q,),
should be even smoother and more lowpass than §,(w,). Thus, it might be
supposed that 6,(w,) could be sampled at an even lower rate than 0 ,(w,).
However, this neglects the fact that 8,(w,) is unbounded, and thus unsuitable
for quantization. (This can easily be seen by considering the case of constant
pitch.) A bounded phase can be obtained by computing the principal value; i.e.,
restricting values of 6,(w,) to be in a range 0 to 2m or —m to m. Unfor-
tunately, the principal value phase will be “discontinuous” (i.e., the principal
value of 6,(#, Q) will be a discontinuous function of # and thus it will not be
a lowpass signal. The fact that the principal value of the phase is discontinuous
does not mean that phase cannot be quantized, since all that is required is that
it be possible to reconstruct the corresponding real and imaginary parts of
X,(e’*%) at an appropriate sampling rate. Thus, the sampling rate of 6,(w,)
must be as high as the rate required for a,(w,) and b,(w,). In fact, in the
results described in Section 6.7.1, it was the principal value of phase that was
quantized.

The phase derivative, while appearing to have the advantage of smooth-
ness, is not without disadvantages in an analysis/synthesis system. This can be
seen from Eq. (6.175) which shows that in reconstructing 8 ,(w,) from 6 ,(w,)
we must have an "initial condition”. Normally, such initial conditions will not
be known and arbitrarily assuming zero initial phase results effectively in an
error in the fixed phase angles ¢,. This can cause the composite response of
the complete analysis-synthesis system to deviate appreciably from the ideal flat
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Fig. 6.54 Complete single channel of a phase vocoder analyzer.
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magnitude and linear phase, resulting in synthetic speech that may sound quite
reverberant.

A vocoder analyzer based upon the magnitude and phase derivative is
depicted in Fig. 6.54. Figure 6.54 shows a single channel of the analysis section
for a frequency 0 < w, < m. All other channels have exactly the same form,
although they may differ in the details of the decimation and quantization. The
operations required to transform a,(w,) and b,(w,) into | X,(e’“%)| and 6 ,(w )
are depicted in Fig. 6.55. One approach to synthesis from magnitude and phase
derivative signals is shown in Fig. 6.56. This approach involves conversion to
real and imaginary parts followed by synthesis as in Fig. 6.53. The operations
required to convert from magnitude and phase derivative. signals to real and
imaginary parts are depicted in Fig. 6.57. It can be seen that the phase deriva-
tive signals must be integrated to produce a phase signal. The cosine and sine

cos{wyn+¢y)
MAGNITUDE
DECODE |—>{ TRANSFORM [—>] INTERPOLATE
0
A s
REAL g Re[Puduin]
AND
IMAGINARY
PHASE DECODE [~ PARTS |—={ INTERPOLAT
DERIVATIVE oLATE

sin{wk+ i)

SYNTHESIS

Fig. 6.56 Implementation of the synthesizer for a single channel of the
phase vocoder.
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Fig. 6.57 Conversion from { X (e/*)| and # to @ and b.

of the phase angle are then multiplied by the magnitude function to produce
the real and imaginary parts. An alternative approach to synthesis that avoids
the conversion process is depicted in Fig. 6.58. In this case, the magnitude and
phase derivative signals are interpolated with the resulting magnitude and phase
sequences being used to amplitude and phase modulate the sinusoid. Thus, the
conversion from magnitude and phase derivative to real and imaginary parts is
replaced by the need for a phase modulator. Assuming that the implementation
of such a digital phase modulator is not extremely complicated, it is clear that
the synthesis scheme of Fig. 6.58 is significantly simpler than the scheme dep-
icted in Figs. 6.56 and 6.57.

A detailed study of techniques for sampling and quantizing the magnitude
and phase derivative signals in a phase vocoder has been carried out by.Carlson
[29]. In that study, a 28 channel phase vocoder was implemented with a chan-
nel spacing of 100 Hz. Linear quantizers were used for the phase derivative
parameters and logarithmic quantizers were used on the magnitude parameters.
Bits were distributed nonuniformly among the channels, with more bits being
allocated to represent the lower channels and fewer bits for the upper channels.
Also, more bits were allocated to the phase derivative than to the magnitude
signals. By sampling the magnitude and phase derivative signals only 60 times
per second, and using 2 bits for the lowest magnitude channels and 1 for the
highest channels and 3 bits for the lowest frequency phase derivative channels
and 2 bits for the highest frequency channels, a bit rate of 7.2 kb/s was
achieved. Informal tests showed that speech represented in this way was judged
to be comparable in quality to logarithmic PCM representations at 2 to 3 times
the bit rate.

An additional feature of the phase vocoder and of vocoders in general is
increased flexibility for manipulating the parameters of the speech signal. In
contrast to waveform representations, where the pattern of variations of the
speech signal is represented by a sequence of numbers, vocoders represent the
speech signal in terms of parameters more closely related to the fundament_al
parameters of speech production. For example, as we have already argued, in
the case of a phase vocoder with closely spaced channels, it is reasonable to
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suppose that the magnitude of the complex channel signals represents mainly
information about the vocal tract transfer function, while the phase derivative
signals give information about the excitation. A simple example of the manner
in which basic speech parameters can be modified using a phase vocoder is sug-
gested by Fig. 6.58. Suppose that the phase derivative signal is arbitrarily set to
0, so that the output signal is formed by the product of the magnitude of the
short-time Fourier transform, and a cosine of fixed frequency, w, If we
assume equally spaced channels, then the composite output will appear as a
periodic signal with fundamental frequency equal to the spacing of the chan-
nels. Since the magnitude function varies as a function of time, the output will
not be periodic, but will be slowly varying. This type of synthesis gives a dis-
tinctly monotone output, as would be expected. Alternatively, if the phase
derivative signals were allowed to vary randomly, we would expect resulting
speech to sound like whispered speech

Another more useful application of the flexibility inherent in a phase
vocoder system involves the alteration of the time and frequency dimensions of
the speech signal as described by Flanagan and Golden [28]. Referring again to
Fig. 6.‘58, we recall that the instantaneous frequency of the cosine is
[+ 6,(wg]. Thus, a frequency divided signal can be obtained by simply
dividing w, and 6,(w,) by a constant ¢. If each channel is synthesized in this
fashion, the result is a frequency-compressed signal, where the frequency scale
is compressed by the factor g. The frequency scale of the resuiting signal can
be restored by recording the signal at one speed and playing it back at g times
the speed. Alternatively, one can use a digital-to-analog converter operating at
q times the clock frequency of the sampling frequency of the input. In either
case, the compression of the time scale counteracts the compression of the fre-
quency scale introduced in the synthesis. The result is a signal with the normal
frequency dimension but with a compressed time scale. Similar operations can
be applied to expand the time scale. In this case, the center frequency w, and
the phase angle are multipled by a factor q and the resulting expanded fre-
quency scale is restored by playing back the output signal at a slower rate. The
result in this case is a time-expanded signal with the normal frequency
dimensions. Figure 6.59 (due to Flanagan and Golden [28]) shows an example
of both time-expanded and time-compressed speech produced using the process
just described for a factor ¢ = 2.

el

"
MAGNITUDE Xnleiok) .
————"5{ DECODE INTERPOLATION M.Q(i Re[Pyitn)]

cos [m,n *én(wx) *¢k]

PHASE bl | PHASE
SERIvATVE ] DECODE > INTERPOLATION || INTEGRATOR MODUL ATOR

Fig. 6.58 Alternate form for synthesis.
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Fig. 6.59 An example of (a) time expansion; and (b) time compression
using the phase vocoder. (After Flanagan and Golden {28).)
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6.7.3 The channel vocoder

The oldest form of speech coding device is the channel vocoder which
was invented by Dudley [30]. The channel vocoder is similar in many respects
to the systems that we have discussed in this section so far. It differs primarily
in the fact that the channel vocoder incorporates more of the speech model into
the analysis and synthesis configuration and, for simplicity, a number of
approximations are introduced into the time-dependent Fourier analysis and
synthesis. In order to see how the channel vocoder is related to the time-
dependent Fourier transform representations that we have discussed so far, let
us return to Eq. (6.167). We recall that this expression represents the contri-
bution to the composite output of the k™ channel. We have interpreted this
eXpression as representing a cosine of nominal center frequency w, which is
phase modulated and amplitude modulated, with the amplitude modulation
corresponding to the magnitude of the time-dependent Fourier transform and
the phase modulation corresponding to the phase angle of the time-dependent
Fourier transform. We have also seen that each channel of analysis can be
thought of as a bandpass filter with center frequency w,. This suggests that the
magnitude of the time-dependent Fourier transform can be approximated by
envelope detection on the output of a bandpass filter with center frequency w,.
This is depicted in Fig. 6.60 which shows a bandpass filter with impulse
response  w(n)cos (w,n), followed by a full-wave rectifier (the magnitude
block) which is in turn followed by a lowpass filter. The full-wave rectifier and
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’-—% FILTER 1 MAGNITUDE ——){ FILTER 1 > DECIMATE }'—’ ENCODE [—=

. . . . .
MAGNITUDE
: : : ‘ SIGNALS
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. . . . .
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e b
3 FILTER N MAGNITUDE FILTER N DECIMATE ENCODE
VOICING V/UV SIGNAL
DETECTOR
PITCH PITCH SIGNAL
DETECTOR

Fig. 6.61 Block diagram of channel vocoder analyzer.
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cha.racteristic of periodicity while if the excitation is unvoiced, the spectrum
varies continuously across each band. The resulting speech tends to be highly
reverberant in nature because of complete lack of control over the merging
together of adjacent bands. This can be seen from Fig. 6.63 (due to Flanagan
‘[31]) which shows a comparison of a spectrogram of a speech signal at the
input to a channel vocoder with a spectrogram of the corresponding output of a
15 channel vocoder. It can be seen that because of the coarse spacing of chan-
nels, the formant information appears highly quantized with formant frequency

BANDPASS

(%)

)

TX r FILTER 2
gl

. VOCODER
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ouTPUT
SIGNALS

BANDPASS
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ITCH PULSE NOISE
SIGNAL | GENERATOR GENERATOR

Fig. 6.62 Block diagram of channel vocoder synthesizer.

lowpass filter serve as an approximate envelope detector. Such a system is a
basic component in the channel vocoder. The analyzer consists of a bank of
such channels with analysis frequencies distributed across the speech band of
interest. We have seen, however, that the speech signal cannot be represented
by the amplitude spectrum alone but that the phase derivative signals contain
information about the excitation. We have already argued that if the phase
derivative signals are arbitrarily set to 0, the resulting speech will be entirely
voiced and monotone. In order to represent the proper excitation for the
speech signal, a channel vocoder has an additional analysis component for
determining the mode of excitation, i.e., voiced or unvoiced, and if voiced, the
fundamental frequency of the speech signal. The resulting excitation informa-
tion, together with the amplitude channel signals, forms the representation for
the speech signal. These parameters are sampled and quantized for transmis-
sion and storage in a digital system. The complete channel vocoder analyzer is
depicted in Fig. 6.61. In order to synthesize the output for a channel vocoder,
significant modifications must be made in the synthesizer system. This is dep-
icted in Fig. 6.62. The basic principle of channel vocoder synthesis can be sim-
ply stated. The channel signals control the amplitude of the contribution of a
particular channel, while the excitation signals control the detailed structure of
the output of a given channel. The voiced/unvoiced signal simply serves to
select an appropriate excitation generator, — i.e., random noise for unvoiced
speech and a periodic pulse generator for voiced speech, with the fundamental
frequency of the pulse generator being controiled by the pitch signal. Thus, the
composite output spectrum is built up out of individual segments in which the
amplitude within a given frequency band is roughly constant. In fact, the
amplitudé in a particular band retains the frequency selective shaping properties
of the bandpass filters used for synthesis. If the excitation is voiced, then the
output is composed of contiguous bands in which the fine spectral structure is

S PEE CH COMMUN | TIO N s
Fig. 6.63 An example of a 15 channe! vocoder. (After Flanagan [31]).
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variations being drastically altered in some cases. The result of making the
approximations depicted in Figs. 6.61 and 6.62 is a rather drastic reduction in
information rate with a concomitant increase in distortion. Channel vocoders
typically operate in the range 1200 bits/sec to 9600 bits/sec with roughly 600
bits/sec devoted to the pitch and voicing information and the remaining infor-
mation devoted to the channel signals. The channel vocoder, even more so
than the phase vocoder, permits modification to the speech signal because the
excitation and vocal tract information are represented separately. It is easy to
see, for example, how pitch can be changed independently of the vocal tract
information. For example, if the pulse generator always produces the same
fundamental frequency, that is the pitch information is not utilized, then mono-
tone speech will be produced. If no pulse generator excitation is used, but
rather the excitation is always random noise, then whispered speech may be
produced. Independent variations of the time and frequency scale can also be
achieved using a channel vocoder simply by appropriate scaling of the center
frequencies of the bandpass filters and of the pitch period.

A major contribution to the reduction in bit rate that is achieved with a
channel vocoder is the direct representation of the pitch and voicing informa-
tion. This, however, is one of the weaknesses of the channel vocoder system,
since the detection of pitch and voicing is often a difficult task. Thus, the
phase vocoder or representations more closely following the basic theory laid
down in the earlier sections of this chapter have the advantage that pitch track-
ing is not required.

Both for historical reasons and because of the large number of parameters
(e.g., number of filters, filter spacings, types of filters, etc.), the channel
vocoder has been the subject of a number of intensive investigations. As such,
a fair degree of sophistication in the implementation of channel vocoders has
been obtained. The interested reader is referred to discussions of these results
by Flanagan [31], Schroeder {32], and Gold and Rader [33,34].

6.8 Summary

In this chapter we have presented an intensive analysis of the short-time
Fourier transform as applied to speech signals. We have shown how this
representation of speech can be used effectively to estimate basic speech param-
eters such as pitch period and formant frequencies. Also considered were appli-
cations of the short-time Fourier transform in the design of vocoders such as
the phase vocoder and the channel vocoder.
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PROBLEMS

If the short-time Fourier transform is expressed as
. . i9
X, (/) = a,(w) — jb,(w) = |X,,(e-"")|e'/ "

then prove that if x(n) is real, then

@ a,(0) =a,Qr-w)=a,(-w)

®) b,(0) =—b,Q7—0) = - b,(~w)

© X, (e = |X, (e N)| = | X (e™7)|
@ 0,(0) =-0,Q7—0)=-20,(-w)

If we define the short-time Fourier transform of the signal x(n) as

(w)

X, (e) = ¥ x(m)wln—m)e /"

Show the following properties hold
(a) Linearity -

if v(n) = x(n) + y(n), then V,(e/*) = X, (e/®) + Y,(e/*)
(b) Shifting property - ,

if v(n) = x(n—ng), then V,(e/*) = X,,_,,o(e-’“’)e_"m"°
(c) Scaling property -

if v(n) = ax(n), then V,(e/*) = aX,(e/*)
(d) Exponential weighting -

if v(n) = a"x(n), then V,(e/®) = X, (a"'e/*)
(e) Conjugate symmetry -

if x(n) is real, then X, {(e/®) = X *(e™/*)

By definition
X, (/) = a,(w) — jb,(w) = |X,(e")]e

(a) Obtain expressions for |X,(e/*)| and 8,(w) in terms of a,(w) and
b, (w). _

(b) Obtain expressions for a,(w) and b,(w) in terms of |X,(e/*)| and
6,(w).

If the sequences x(n) and w(»n) have normal Fourier transforms X (e/*)
and W (e’¥), then prove that the short-time Fourier transform

J#,{w)

X,(e/®) = i x(m)wln—m)e™/*m

ny=—oo
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6.5

6.6

6.7

can be put in the form
m

f W(ejO) ejl)nx(ej(w-i-ﬂ) 4o

-

1

JO) - =
X(e™) = —

i.e., X,(e/*} is a smoothed spectral estimate of X (e/) at frequency w.
If we define a short-time power density spectrum of a signal in terms of
its short-time Fourier transform as

S”(ejm) - |X"(ejw)|2
and we define the short-time autocorrelation of the signal as

R, (k) = i wln—m)x(myw{n—k—m)x(m+k)

nym-—oo

then show that if

X, (/) = ¥ x(m)w(n—m)eo”

ny=—o0
R, (k) and S,(e/*) are related as a Fourier transform pair — i.e., show
that S,(e’/*) is the Fourier transform of R, (k) and vice versa.
Suppose that the window sequence, w(n) used in short-time Fourier
analysis is causal and has a rational ztransform of the form

Nz
Y bz

r=0
O —

1- 25 az7k

k=1

(@) What properties should W (z) (or equivalently, W (e/)) have in
order that it be suitable for this application?

(b) Obtain a recurrence formula for X, (e/*) in terms of the signal x (n)
and previous values of X,(e/®),

(c) Consider the case

1
1 ~az”

W(z) = ;
How should a be chosen to obtain a frequency resolution of approxi-
mately 100 Hz at a sampling rate of 10 kHz?

(d) The value of a required in (c) suggests that problems may arise in
implementing very narrowband time-dependent Fourier analysis
recursively. Briefly discuss the nature of these problems.

Prove that
N-1 jl’ik,, oo
eV =N T 8(n—rN).
k=0 pm—oo

=N n= N r=0 =1,..
=0 otherwise
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In proving this result, make use of the identity
N—1 N

«
P l1-a

k l-a

In implementing time-dependent Fourier representations, we employ sam-
pling in both the time and frequency dimensions. In this problem we
investigate the effects of both types of sampling.

Consider a sequence x{(n) with conventional Fourier transform

X(e®) = § x(m)eiom

Hy=—o0

(@) If the periodic function X{(e/®) is sampled at frequencies
w; =2mk/N, k =0,1,...,N — 1, we obtain

ed —jz—"km

¥ =% x(me ¥

npm—oo

These samples can be thought of as the discrete Fourier transform
of the sequence %(n) given by

N=1 _ jz—"'kn
O S (P
N S
Show that

%(n) = i x(n+rN)

r=—co

(b) What are the conditions on x (n) so that no aliasing distortion occurs
in the time domain when X (e/) is sampled?

(¢) Now consider "sampling” the sequence x(n); i.e. let us form the
new sequence

y(n) = x(nM)

consisting of every M™ sample of x{(n). Show that the Fourier
transform of y (n) is
M-1
Y(ejw) - L E X(ej(w—Z'lrk)/M)
M 5

In proving this result you may wish to begin by considering the
sequence

v(n) = x(n)p(n)

where

p) = 3 8(n+rM)

r=—00
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Then note that y(n) = v(aM) = x (nM).
(d) What are the conditions on X(e’*) so that no aliasing distortion in
the frequency domain occurs when x(n) is sampled?

6.9 Consider a window w(n) with Fourier transform W (e/®T) which is
bandlimited to the range 0 < @ < Q,. We wish to show that

oo

Y w(rR—n) = W(e/%/R

independent of n if R is a sufficiently small (nonzero) integer.

(@) Let w(r) = w(rR—n). Obtain an expression for W (e/®T') in terms
of R and W(e/®7) where T is the sampling rate of w(n), and
T'= RT is the sampling rate of w(r). (Hint: Recall the problem of
decimating a signal by an R to 1 factor or see Problem 6.8¢.)

(b) Assuming W(e/®T) =0 for |Q| > Q,, derive an expression for
the maximum value of R (as a function of ,) such that

W(e®) = W(e/®)/R

(c) Recalling that ¥ #(r)e~/*T" = W(e/2T') show that if the condi-

f=—ocn
tions of part (b) are met, then the relation given at the beginning of
this problem is valid.

6.10 (a) Show that the impulse response of the system of Fig. P6.10 is
h(n) = h(n)cos(w,n)

(b) Find an expression for the frequency response of the system of Fig.

P6. 10
cos (wyn} cos{wyn}
X h(n) X
x{n)
+ yi(n)

X h(n) X

sin{wyn) sin (wyn)

Fig. P6.10

6.11 Erpphasis of the high frequency region of the spectrum is often accom-
plished using a first difference. In this problem we examine the effect of
such operations on the short-time Fourier transform.

(@) Let y(n) = x(n) — x(n—1). Show that
Y, (e/*) = X, (e/%) — e~iux,_ (e/®)
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(b) Under what conditions can we make the approximation
Y, (e/) = (1—e™/*) X,(e/®)
In general, x(n) may be linearly filtered as in
N-1
y(n) =3 hlk)x(n—k)
k=0
(c) Show that Y,(e’*) is related to X,(e’“) by an expression of the form
Y, (e/) = X,(e/*)*h,(n)

Find #,(n) in terms of h(n).
(d) Is it reasonable to expect that

Y, (/) = H(e/*) X, (e/®)

6.12 A filter bank design with N filters has the following specifications

1.  The center frequencies of the bands are w,.

2. The bands are symmetric around o =7, ie. w; =27 — 0wy,
Pk = P/:/k_k, Wk(n) = WN_k(n).

3. A channel exists for w; = 0.

For both Neven and N odd:

(a) Sketch the locations of the N filter bands.

(b) Derive an expression for the composite impulse response of the
filter bank in terms of w,(n), w,, P, and N.

6.13 To illustrate the reverberation obtained in filter banks using IIR filters,
consider the composite impulse response

h(n) = a;8(n) + a,86(n—N) + a38(n—2N)

which represents echos spaced N samples apart.
(a) Determine the system function H (e/“) for this example, and show
that the squared magnitude response can be written as

|H (e/9)]2 = (ay+(a;+ay)cos(wN))? + (aj—a3y)isin?(wN)

(b) Show that the phase response of the system can be written as

(a;—ay)sin(oN)

- -1
6(w) wN +tan a; + (o+asz)cos(wN)

(¢) To determine locations of amplitude maxima and minima, |H (¢/¢)}?
is differentiated with respect to » and the result is set to zero. Show
that for |a+a;| << |a;| the locations of the maxima and minima
are

km

w":tT =0,1,2, ...
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(d Using the results of part (c), show that the peak-to-peak amplitude
ripple (in dB) can be expressed as

Yo+
Ry = 20 logo ——:“2_“‘ “’:
a)—a—ay
(e) Solve for R, for the cases
() e =01, ay=10, a;=02
(ll) a1=0.15, [2 5 R 10, a3-0.15
(Ill) al-O.l, [25 Rd 1.0, a3-0.1

(f) By differentiating 8 (w) with respect to w, it can be shown that max-
ima and minima of @ occur at values of w satisfying
a,+a3

cos(wN) = —
)

Show that the peak-to-peak phase ripple is given by
o)—ay
(af - (a)+a;))1?

(g) Solve for R, for the cases of part (). Discuss the effects of varying
a; and 3 on R, and R,.

R, =2tan™ [

6.14 A proposed digital filter bank pitch detector consists of a bank of digital

bandpass filters with lower cutoff frequencies given as

F, = 2*71F, k=12 ..., M
and upper cutoff frequencies given as
Fk+l=2kFl k=1,2,...,M

This choice of cutoff frequencies gives the filter bank the property that if
the input is periodic with fundamental frequency Fy, such that

F, < Fy < Feyy

then the filter outputs of bands 1 to k — 1 will have little energy, the out-

put of band k will contain the fundamental frequency, and bands k + 1 to

M will contain 1 or more harmonics. Thus, by following each filter out-

put by a detector which can detect pure tones a good indication of pitch

can be obtained.

(a) Determine F; and M such that this method would work for pitch
frequency from 50 Hz to 800 Hz.

(b) Sketch the required frequency response of each of the M bandpass
filters.

(c) Can you suggest simple ways to implement the tone detector
required at the output of each filter?

(d) What types of problems would you anticipate in implementing this
method using nonideal bandpass filters?
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6.15

6.16

(e) What would happen if the input speech were bandlimited from 300
Hz to 3000 Hz, e.g., telephone line input? Can you suggest
improvements in these cases?

Consider a periodic sequence

x(n) = 3 h(n+rN,)
r=—c0
representing a voiced speech sound.

(a) Show that the Fourier series for %(n) can be represented as the
Fourier series

1 N-1 - _/'i/—"kn
HOEE 0 (03P
N,
where the Fourier coefficients X (k) are samples of the Fourier
transform of the voiced speech impulse response; i.e.,
X(k)=H,(e 7))

(See Prob. 6.8.)
(b) Show that the short-time Fourier transform of %(n) can be
expressed as
Nyl .12—"k ey
X(e_im) - _1_ i Hv(e N,, )W"(e_/(w ZWI\/N’,))
N, S

where W, (e’*) is the Fourier transform of w(n—m).

() How many different values can X,(e/*) take on for a given fre-
quency, .

(d) For the rectangular window

win) =1 0<nEN, -1
=0  otherwise

find the function W,(e/®),
(e) For the rectangular window of length N,, for what values of n will it
be true that

Ay ey
X,(e " )=H,(e )

Consider the analysis and synthesis of the signal x(n) = cos(wgn). The

analysis network is shown in Fig. P6.16a for the k" channel.

(a) Determine a,{w,) and #,(w,) for the given input signal.

(b) Assuming h(n) is a narrowband lowpass filter, simplify your expres-
sions for a,(w,) and b,(w,) assuming that (w;—w,) falls within the
band of the filter, and that H (¢/) = 1 for such frequencies.
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(c)

(d)
(e)

()]

costwgn)

coslwyn)

Anlawy)

veln)
bplwg)
sin{wyn) sin (wen}

(o) (b)

Fig. P6.16

The signals a,(w,) and b,(w,) are combined to give magnitude,
M, (w,), and phase derivative, ¢,(w,). Determine M,(w,) and
& ,(w,) for this example.

Show that using the synthesis network of Fig. P6.16b, the output
signal is essentially identical to the input signal.

The phase derivative ¢,(w,) is computed using the relation

bn(mk)&n(wk) - an(wk)l;n(wk)

la,(w? + {b,(w,))?
Solve for ¢,(w,) for this example, and compare your results with
those of part (c).

Now assume that the derivatives of part (e¢) are computed using a
simple first difference, i.c.,

&n(wk) =

i) = % (8,0,) = a,-1(@))
where T is the sampling period in the time dimension. Now solve

for ¢,(w,) and compare your results with part (c). Under what con-
ditions are they approximately the same?

354

Homomorphic
Speech Processing

1.0 Introduction

One of the fundamental assumptions that we have used throughout this book is
that speech can be represented as the output of a linear time-varying system
whose properties vary stowly with time. This has led us to the basic principle of
speech analysis which says that if we consider short segments of the speech sig-
nal, then each segment can effectively be modelled as having been generated by
exciting a linear time-invariant system either by a quasi-periodic impulse train
or a random noise signal. As we have seen, the problem of speech analysis is
to estimate the parameters of the speech model and to measure their variations
with time. Since the excitation and impulse response of a linear time-invariant
system are combined inr a convolutional manner, the problem of speech analysis
can also be viewed as a problem in separating the components of a convolution.
This problem is often called "deconvolution." In Chapter 6, we studied tech-
niques for performing such a deconvolution based upon the time-dependent
Fourier representation of speech. In this chapter, we use the theory developed
in Chapter 6 and extend the techniques by the introduction of the concept of
homomorphic filtering. After a brief introduction to the general theory of
homomorphic systems for convolution, we shall then discuss a variety of appli-
cations of homomorphic deconvolution in the analysis of speech signals.
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x(n) L[ ] y(n)=L[l(n)]
X (R} + xn) Clxtnn] + L xatm)]
o x{n} oL[x(n)]

Fig. 7.1 Representation of a system obeying the superposition principle.
7.1 Homomorphic Systems for Convolution

Homomorphic systems for convolution obey a generalized principle of superpo-
sition. The principle of superposition as it is normally expressed for conven-
tional linear systems is given by

Llx(n)] = Llx,(n) + x4(n)]
= Llx(m)] + Lix,(n)]
=yi(n) +yy(n) =y(n) (7.1a)

and
Llax(n)] = aL{x(n)] = ay(n) (7.1b)

where L represents the linear operator. The principle of superposition simply
states that if an input signal is composed of a linear combination of elementar_y
signals, then the output is a linear combination of corresponding output;. This
is depicted in Fig. 7.1, where the + symbol at the input and output implies that
an additive combination at the input produces an additive combination at the
output.

As shown in Chapter 2, a direct result of the principle of superposition is
the fact that the output of a linear time-invariant system can be expressed as
the convolution sum

yn) = ¥ h(n—k)x(k) = h(n) *xx(n) (1.2)
Km=—co

The * symbol will henceforth denote the operation of discrete-time convolu-
tion. By analogy with the principle of superposition for conventional linear sys-
tems, we can define a class of systems which obey a generalized principle of
superposition where addition is replaced by convolution. (It can easily be
shown that convolution has the same algebraic properties as addition [11.) That
is,

Hlx(n)] = Hlx(n)*x(n)]
= Hlx(n)]%H[x5(n)] (1.3)
= y(n)*yy(n) = y(n)

An equation similar to Eq. (7.1b), which expresses scalar multiplication in.the
generalized sense, can also be given [2]; however, the notion of genefahzed
scalar multiplication is not needed for the applications that we shall discuss.
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x{n} H[ ]

y(n)=H[x(n)]

xy{n} % xy(n) H[x,(n)] * H[xz(n)]

Fig. 7.2 Representation of a homomorphic system for convolution.

Systems having the property expressed by Eq. (7.3) are termed "homomorphic
systems for convolution." This terminology stems from the fact that such
transformations can be shown to be homomorphic transformations in the sense
of linear vector spaces [3]. Such systems are depicted as shown in Fig. 7.2,
where the operation of convolution is noted explicitly at the input and output
of the system. A homomorphic filter is simply a homomorphic system having
the property that one component (the desired component) passes through the
system essentially unaltered, while the undesired component is removed. In
Eq. (7.3), for example, if x,(n) were the undesirable component, we would
require that the output corresponding to x(n) be a unit sample, while the out-
put corresponding to x,(n) would closely approximate xy(n). This is entirely
analogous to the situation with conventional linear systems where we are faced
with the problem of separating a desired signal from an additive combination of
signal and noise.

An important aspect of the theory of homomorphic systems is that any
homomorphic system can be represented as a cascade of three homomorphic
systems, as depicted in Fig. 7.3 for the case of homomorphic systems for con-
volution [3]. The first system takes inputs combined by convolution and
transforms them into an additive combination of corresponding outputs. The
second system is a conventional linear system obeying the principle of superpo-
sition as given in Eq. (7.1). The third system is the inverse of the first system;
i.e., it transforms signals combined by addition back into signals combined by
convolution. The importance of the existence of such a canonic form for
homomorphic systems lies in the fact that the design of such systems reduces
to the problem of the design of a linear system. The system D[ ] is called

the characteristic system for homomorphic deconvolution and it is fixed in the
canonic form of Fig. 7.3. Likewise, its inverse is also a fixed system. The
characteristic system for homomorphic deconvolution obeys a generalized
principle of superposition where the input operation is convolution and the out-
put operation is ordinary addition. The properties of the characteristic system
are defined as

D, lx(n)] = D, Lx(n)%x,(n)]

= D, [x(m)] + D, [x,(n)] (7.9)

= x1(n) + %,(n) = 2(n)

* + + + + *

-t
x(n) o ] X{n) ] ] yin) D*[ ] y(n)

x(n) * x,(n)

() + %y(n) Y(0) +5,(m) vi(n) % yy(n)

Fig. 7.3 Canonic form for system for homomorphic deconvolution.
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wl ]

X(2) X{z2)

]

X,(2) Xpl2) X((2) + Xal2) Yik2) +¥5(2) Yyl2) Yz}

o ]

;(1) Y(2)

Fig. 7.4 Frequency domain representation of a homomorphic system for
convolution.

Likewise, the inverse characteristic system D; lis defined as
DS'H ()] = D' y(n) + $y(n)]
= D [51(m)*D M [y(n)] (1.5
= yi(n) ®y,(n) = y(n)

The mathematical representation of the characteristic system is dependent
upon the fact that we require that if the input is a convolution

x(n) = x(n)*x,(n), (7.6)

then the ztransform of the input is the product of the corresponding z
transfor ms.

X(2) = X,(2)-X4(z) .7
o
X RS —— P — '
x{n) : Z[ ] X{z) |Og[ ] X{z) Z-‘[ ] II x(n)
b T T 3

Fig. 7.5 Representation of the characteristic system for homomorphic
deconvolution.

From Eq. (7.4), it is clear that the ztransform of the output of the characteris-
tic system must be an additive combination of ztransforms. Thus, the fre-
quency domain behavior of the characteristic system for convolution must have
the property that if a signal is represented as a product of ztransforms at the
input, then the output must be a sum of corresponding output ztransforms,
One approach to the representation of such a system is depicted in Fig. 7.4.
This approach is based upon the fact that the logarithm of a product can be
defined so that it is equal to the sum of the logarithms of the individual terms.
That is,

X(2) =loglX(2)] = log[X,(2)-X,(2)]
= log[X(2)] + log{X(2)] (1.8)

If we wish to represent signals as sequences, rather than in the frequency
domain as in Fig. 7.4, then the characteristic system can be represented as dep-
icted in Fig. 7.5. Similarly, the inverse of the characteristic system can be
represented as in Fig. 7.6.
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g(n) | Yiz) Y(z)

y{n)

Fig. 7.6 Representation of the inverse of the characteristic system for
homomorphic deconvolution.

The representation of the characteristic system and its inverse as depicted
in Figs. 7.5 and 7.6, respectively, is dependent upon the validity of Eq. (7.8).
That is, the logarithm must be defined so that it has the property that the loga-
rithm of a product is equal to the sum of the logarithms. This is trivially true
for real positive quantities. However, the ztransform is in general a complex
quantity and there are important considerations of uniqueness when dealing
with the logarithm of a complex number. For computational purposes we shall
be primarily concerned with ensuring that Eq. (7.8) is valid when evaluated
upon the unit circle; i.e., for z = /%, A detailed discussion of the problems of
uniqueness for Eq. (7.8) is given in Ref. [2]. For our purposes here, it is
sufficient to state that an appropriate definition of the complex logarithm is

X(el®) = log| X (e/“)| + j arg[ X (e/v] 1.9

In this equation the real part (i.e., log|X(e/“)|) causes no particular difficulty.
However, problems of uniqueness arise in defining the imaginary part (Gie.,
arg[X (e/)]), which is simply the phase angle of the ztransform evaluated on
the unit circle. In Ref. [2] it is shown that one approach to dealing with the
problems of uniqueness of the phase angle is to require that the phase angle be
a continuous odd function of w. With this condition, Eq. (7.8) is satisfied.

Given that it is possible to compute the complex logarithm so as to satisfy
Eq. (7.8), the inverse transform of the complex logarithm of the Fourier
transform of the input is the output of the characteristic system for convolu-
tion, i.e.,

2. 1 f v o jwn
x(n) = ry LX(@’ Yel"d (7.10)

The output of the characteristic system, x(n), is called the "complex cepstrum.”
(The term "cepstrum” was introduced by Bogert et al. [4] and has come to be
accepted terminology for the inverse Fourier transform of the logarithm of the
power spectrum of a signal. The term “complex cepstrum" implies that the
complex logarithm is involved.) We shall use the term "cepstrum” for the quan-
tity

c(n) = %; !flogIX(e-"”)Ie"”"dw (7.11)

(The sequence c(n) can be shown to be equal to the even part of the complex
cepstrum %(n).) (See Problem 7.1.)
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In the above discussion we have defined the characteristic system for
homomorphic convolution and therefore have defined the canonic form for all
homomorphic systems for convolution. All systems of this class differ only in
the linear part of the system. The choice of the linear system necessarily
depends upon the properties of its input signals. Thus, in order to see how to
design the linear system, it is necessary next to consider the nature of the out-
put of the characteristic system; i.e., we must consider the properties of the
complex cepstrum for typical input signals,

7.1.1 Properties of the complex cepstrum

In order to determine the properties of the complex cepstrum, it is
sufficient to consider the case of rational ztransforms. The most general form
that it is necessary to consider is

M, M,
Az TT A—a,z™) I (1=b,2)
X(2) = k=1 k=1

¥ N (7.12)
(I=c,z™) I] (1-d2)
1 k=1

i
k=

where the magnitudes of the quantities a,, b, ¢, and d, are all less than 1.
Thus, the terms (1—a,z™") and (1—c,z~") correspond to zeros and poles inside
the unit circle, and the terms (1—b,z) and (1-d,z) correspond to zeros and
poles outside the unit circle. The factor z' represents simply a shift in the time
origin. Under the assumption of Eq. (7.8), the complex logarithm of X(z) is

M, M,
X(2) = logl4] + loglz'] + Y log(l-a,z™) + Y log(1~4,2)

k=1 k=l
N, N,

- ¥ log(l—cz™) — ¥ log(1-d,2) (7.13)
k=1 k=1

When Eq. (7.13) is evaluated on the unit circle, it can be seen that the term
log[e/="] will contribute only to the imaginary part of the complex logarithm.
Since this term carries only information about time origin, it is generally
removed in the process of computing the complex cepstrum [2]. Thus, we
shall neglect this term in our discussion of the properties of the complex cep-
strum. Using the fact that the logarithmic terms can be written as a power
series expansion, it is relatively straightforward to show that the complex cep-
strum has the form

x(n) = logl4] n=20
N, on M, af
=Z—n"-—2—n— n>0 (7.14)
k=1 k=1
- b"—"—% A <o
k=t N k=1 "
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Equation (7.14) allows us to see a number of important properties of the com
plex cepstrum. First, we observe that, in general, the complex cepstrum i:
nonzero and of infinite extent for both positive and negative n, even thougt
x(n) may be causal, stable, and even of finite duration. Furthermore, it i
apparent that the complex cepstrum is a decaying sequence which is boundec
by

N aln

[2(n)] < B W for |n| — o0 (1.15)
where « is the maximum absolute value of the quantities ay, by, ¢, and d,,
and B is a constant multiplier.

If X(z) has no poles or zeros outside the unit circle (i.e., be=d,=0),
then

x(n)=0 for n<0 (7.16)

Such signals are called "minimum phase" signals [5]. A general result for
sequences of the form Eq. (7.16) is that such sequences are completely
represented by the real parts of their Fourier transforms. Thus, we should be
able to represent the complex cepstrum of minimum phase signals by the loga-
rithm of the magnitude of the Fourier transform alone. This can easily be
shown by remembering that the real part of the Fourier transform is the
Fourier transform of the even part of the sequence; i.e., since log|X (e/9)| is
the Fourier transform of the cepstrum, then

e(n) = ) L2 .17
Using Egs. (7.16) and (7.17), it is easily shown that
%(n) =0 n<0

=c(n) n=0 (7.18)
=2c(n) n>0

Thus, for minimum phase sequences the complex cepstrum can be obtained by
computing the cepstrum and then using Eq. (7.18). Another important result
for minimum phase sequences is that the complex cepstrum can be computed
recursively from the input signal [1,2,5]. The recursion formula is

x(n) =0 n<0
= log[x(0)] n=20 (7.19)
_x(n) _ k. x(n—k)
0 Eo ( n)x(k) o " 0

Similar results can be obtained in the case when X(z) has no poles or
zeros inside the unit circle. Such signals are called "maximum phase." In this
case, it can be seen from Eq. (7.14) that

¥(n) =0, n>0 (7.20)
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If we again use Eq. (7.16) and Eq. (7.17) together, we see that

x(n) =0 n>0
=c(n) n=0 (1.21)
=2c(n) n<0

As in the case of minimum-phase sequences, we can also obtain a recursion
formula for the complex cepstrum, of the form

; x(n) & ki, x(n—k) 0

x(n) = O k-zn,ﬂ ( n)x(k) o " <
= log[x (0)] n=0 (1.22)
=0 n>0

An important special case is that of an input of the form

p(n) = 3 a,5(n—rN,) (7.23)
r=0

i.e., a train of impulses. The ztransform of Eq. (7.23) is

P(z) = { a2 (7.24)
r=0
From Eq. (7.24) it is evident that P(z) is really a polynomial in the variable
2™ rather than z~. Thus, P(z) can be expressed as a product of factors of
the form (1—az ™) and (1—6z") and therefore it is easily seen that the com-
plex cepstrum, p(n), will be nonzero only at integer multiples of N,. For
example, suppose p(n) is

p(n) = 8(n) + ad(n—N,) (7.25)
where 0 < a < 1. Then
P()=1+az ™ (1.26)
and
A - — n N,
P() =log(1+az™™) = ”);1 (—1)rt & 7 (1.27
Therefore, p(n) is an impulse train with impulses spaced by N,
=3 DL (- (7.28)
p(n) =3 (-1 r&(n rN,)

r=1

The fact that the complex cepstrum of a train of uniformly .spaced irppulses is
also a uniformly spaced impulse train with the same spacing is a very 1mportapt
result for speech analysis as we shall see in Section .7.2. Howeve}', before .dxs-
cussing the details of homomorphic speech processing, leF us briefly consider
the implementation of homomorphic filters for convolved signals.
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7.1.2 Computational considerations

The mathematical representations of the characteristic system and its
inverse depicted in Figs. 7.5 and 7.6, respectively, suggest a means for imple-
menting homomorphic systems for convolution. If we restrict our attention to
input sequences that are absolutely summable, ‘then the ztransform of the
input signal will have a region of convergence that includes the unit circle.
That is, the sequence will have a Fourier transform. In such cases, it is
appropriate to replace the z-transform operations in Figs. 7.5 and 7.6 by Fourier
transform operations. In particular, for the important special case of a finite
length input sequence, the mathematical representation of the characteristic
system for convolution is given as

X(e/v) = Nil x(n)e=iwn (7.292)

n=0
X(e/9) = log[X (e/%)] = log| X (e/®)| + j arglX (e/9)] (7.29b)

£(n) =% _f (e el (7.29¢)

Equation (7.29a) is the Fourier transform of the input sequence, Eq. (7.29b)
gives the complex logarithm of the Fourier transform of the input, and Eq.
(7.29¢) is the inverse Fourier transform of the complex logarithm of the
Fourier transform of the input. As we have already observed, there are ques-
tions of uniqueness of this set of equations. In order to clearly define the com-
plex cepstrum by Eq. (7.29), we must uniquely define the complex logarithm of
the Fourier transform. To do this, it is helpful to impose the constraint that
the complex cepstrum of a real input sequence be also a real sequence. Recall
that for a real sequence the Fourier transform is an even function and the ima-
ginary part is odd. Therefore, if the complex cepstrum is to be a real sequence,
we must define the log magnitude function to be an even function of w and the
phase must be defined to be an odd function of w. It can be shown that a
further sufficient condition for the complex logarithm to be unique is that the
phase be computed so that it is a continuous periodic function of w with period
of 2 [1,2]. (This continuity condition is also necessary for X(e/“) to be a
valid Fourier transform.) Algorithms for the computation of an appropriate
phase function have been developed and are described in Refs. [2,6].

Equation (7.29) is still not in a form that is amenable to computation,
since Eq. (7.29) requires the evaluation of an integral. However, we can
approximate Eq. (7.29) by using the discrete Fourier transform. The discrete
Fourier transform (DFT) of a finite length sequence is identical to a sampled
version of the Fourier transform of that same sequence [5]. Furthermore, the
discrete Fourier transform can be efficiently computed by a fast Fourier
transform algorithm {5]. Thus, the approach that is suggested for computing
the complex cepstrum is to replace all of the Fourier transform operations by
corresponding discrete Fourier transform operations. The resulting equations
are given as
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x(n) X(elWY) X{e!WF) foln)
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x(n) X(el %) log IX(ei ™ %) coln)

(b)

Fig. 7.7 Practical implementations of systems for obtaining (a) the com-
plex cepstrum; and (b) the cepstrum.

_ m
X0k =3 x(nye” W N <k < N-1 (7.302)
ne=0
X,(k)=10g [X,(k)] 0< k <N-1 (7.30b)
N1, j 2T g
EXORE 3% A 0<n < N-1 (7.300)

k=0
Equation (7.30c) represents the inverse discrete Fourier transf(_er (IDF’D of
the complex logarithm of the discrete Fourier transform of a finite length input
sequence. The subscript p explicitly denotes the fact that the regultmg
sequence is not precisely equal to the complex cepstrum as defined in Eq.
(7.29). This is due to the fact that the complex logarithm used in the DFT cal-
culations is a sampled version of X(e/*) and thus, the resulting inverse
transform is an aliased version of the true complex cepstrum (see Refs.
{1,2,5].) That is, the complex cepstrum computed by Egs. (7.30) is related to
the true complex cepstrum by [5]

%,(n) = ¥ x(n+N) (1.31)
r=—oo
The computational operations for the implementation of the characteristic sys-
tem for convolution are depicted in Fig. 7.7a.

We have observed that the complex cepstrum involves the use of the
complex logarithm and that the cepstrum, as it has traditionally been deﬁne.d,
involves only the logarithm of the magnitude of the Fourier transform; that is,
the cepstrum c{n) is given by

cln) = 1 f log| X (e/9) |e/*"dw, =~o0 < n < o (7.32)
2r J

An approximation to the cepstrum can be obtained by computing the ir_werse
discrete Fourier transform of the logarithm of the magnitude of the discrete
Fourier transform of the input sequence; i.e.,
S 2w
N-1 J = kn
e)(n) = —lﬁ T loglx, (0]’ ¥ o< n < N-1 (1.33)
k=0
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As before, the cepstrum computed using the discrete Fourier transform is
related to the true cepstrum by

c,(n) = ¥ c(n+rN) (7.34)
Figure 7.7b shows how the computations leading to Eq. (7.34) are implemented
using the DFT and the inverse DFT.

Because of the aliasing inherent in the use of the discrete Fourier
transform for cepstrum computations, it is often necessary to use a rather large
value of N. As discussed in Refs. [1,2,5,6] a large value for N (that is, a high
rate of sampling of the Fourier transform) is also required for accurate compu-
tation of the complex logarithm. However, the existence of fast Fourier
transform (FFT) algorithms makes it feasible to use values of N = 512 or
larger. i

An alternative approach to the computation of the complex cepstrum of a
finite duration sequence without the undesirable aliasing affects discussed above
has recently been proposed [7}. The basic idea is to use Eq. (7.14) directly to
define the complex cepstrum of a sequence in terms of the locations of the
zeros (roots) of the ztransform polynomial. This method presupposes that one
can accurately and efficiently find the roots of high order polynomials (eg.,
polynomials of degree 500 are not unusual for speech applications). However,
when one can perform the required root finding accurately the resulting com-
plex cepstrum is in theory free of the aliasing which is inherent in using finite
length transforms for computation. Good results have been reported on a few
test cases using this method [71.

The mathematical and computational representations of homomorphic
systems for deconvolution have been discussed in this section. We have not
elaborated on the mathematical and computational details of such systems,
since these are adequately covered in other references [1,2,5-7]. We shall now
turn to a discussion of speech analysis applications of homomorphic systems for
convolution.

7.2 The Complex Cepstrum of Speech

The now familiar model for the speech waveform and the time-dependent
analysis principle that we have repeatedly invoked can be combined with the
theory of homomorphic filtering in a very useful way. Recal] that the model
for speech production consists essentially of a slowly time-varying linear system
excited by either a quasi-periodic impulse train or by random noise. Thus, it is
appropriate to think of a short segment of voiced speech as having been gen-
erated by exciting a linear time-invariant system by a periodic impulse train.
Similarly, a short segment of unvoiced speech can be thought of as resulting
from the excitation of a linear time-invariant system by random noise. That is,
a short segment of voiced speech can be thought of as a segment from the
waveform
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s(n) = p(n)kg(nyxv(n)kr(n) = p(n)xh,(n)
= 3 hin=rN) (7.35)

pm—co
where p(n) is a periodic impulse train of period N, samples and #,(n) is the
impulse response of a linear system that combines the effects of the glottal
wave shape, g(n), the vocal tract impulse response, v(n), and the radiation
impulse response, r(n). Similarly, a short segment of unvoiced speech can be
thought of as a segment from the waveform

s(n) = u(n)xv(n)kr(n) = u(n)xh,(n) (7.36)

where u(n) is a random noise excitation and h,(n) is the impulse response of a
system that represents the combined effects of the vocal tract and the radiation.
For the case of voiced speech, the transfer function of the linear system is of
the form

H,(2) = G V(2)R(z) (1.37)

and for unvoiced speech, it is
H,(z2) = V(2)R(2). (7.38)
Let us briefly review the nature of the components of Egs. (7.37) and

(7.38). From Chapter 3, we recall that a general model for the vocal tract
transfer function is of the form

MI Mﬂ
Az7MY (1-az™) Y (1-b,2)
V(z) = k=1 k=1

m (1.39)
Y Q—cz™
k=1

For voiced speech, except nasals, an adequate model includes only poles, i.e.,
a, =0, b,=0, for all k. For nasals and for unvoiced speech, it is necessary to
include both poles and zeros. Some of the zeros may lie outside the unit circle,
but, of course, for stability all the poles, c,, must lic inside the unit circle.
Also, since v(n) is real, all the complex poles and zeros must occur in complex
conjugate pairs. The radiation effects were seen in Chapter 3 to result in a high
frequency emphasis which can be roughly modelled by

R(z)=1-2z7! (7.40)

Finally, for voiced speech, the glottal pulse shape is of finite duration. Thus,
G (2) will have the form

L L,

G@)=B 3 (-ayz™) ¥ (1-8,2) (7.41)
k=1 k=1

where the zeros, a, and 8, can be both inside and outside the unit circle.

Using the above model and the results of Section 7.1.2, we can now begin
to see the general form of the complex cepstrum of a short segment of speech.
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(See Ref. [8] for a detailed development.) For voiced speech, we note that the
combined contributions of the vocal tract, glottal pulse, and radiation will in
general be nonminimum phase, and thus the complex cepstrum will be nonzero
for both positive and negative time. Note from Eq. (7.14) that the complex
cepstrum will decay rapidly for large . Also, note that the contribution to the
complex cepstrum due to the periodic excitation will occur at integer multiples
of the spacing between impulses; i.e., we should expect to see impulses in the
f:omplex cepstrum at multiples of the fundamental period. The example dep-
icted in Fig. 7.8 illustrates the important features for voiced speech. Figure
7.8a shows a segment of voiced speech multiplied by a Hamming window. Fig-
ure 7..8b shows the log magnitude of the discrete Fourier transform. The
periodic component in this function is, of course, due to the periodic nature of
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the input. Figure 7.8c shows the discontinuous nature of the principal value of
the phase, while Fig. 7.8d shows the phase curve without discontinuities. Fig-
ures 7.8b and 7.8d together are the Fourier transform of the complex cepstrum
shown in Fig. 7.8e. Notice the peaks at both positive and negative times equal
to the pitch period, and notice the rapidly decaying low-time components
representing the combined effects of the vocal tract, glottal pulse and radiation.
The cepstrum, which is simply the inverse transform of only the log magnitude
(i.e., the phase is effectively set to zero), is shown in Fig. 7.8f. Note that the
cepstrum also displays the same general properties as the complex cepstrum as
indeed it should, since the cepstrum is the even part of the complex cepstrum.

The sequence of graphs in Fig. 7.8 suggests how homomorphic filtering
can be applied to speech analysis. We note first of all that the impulses due to
the periodic excitation tend to be separated from the remaining components of
the complex cepstrum. This suggests that the appropriate system for
homomorphic filtering of speech is as depicted in Fig. 7.9. That is, a segment
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of speech is selected by the window, w(n);
cgssed in Section 7.1.3; and the desired component is selected by a "cepstrum
wmdpw," /(n). This type of filtering is appropriately termed "frequency invari-
ant l.mear filtering." The resulting windowed complex cepstrum is processed by
.the Inverse characteristic system to recover- the desired component. This is
illustrated in Fig. 7.10. Figures 7.10a and 7.10b show the log magnitude and
phase obtained in the process of implementing the inverse characteristic system
for the case when /(n) is of the form

Hm) =1, |n| < n,

the cepstrum is computed as dis-

. =0, |n|> ngy (7.42)
where 1 is chosen to be less than the pitch period, N,. The corresponding
out'put waveform is shown in Fig. 7.10c. (Note that a constant phase shift of 7
radians has been discarded in the implementation of the cepstrum computa-

Fig. 7.9 Implementation of a s
speech.

ystem for homomorphic filtering of
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tion.) This waveform approximates the impulse response #,(n) deﬁned in Eq.
(7.35). If I(n) is chosen so as to retain the excitation components; i.e.,

I(n) =0, |n| < ng
=1, |n| 2 ng (7.43)

then Figs. 7.10d, e, and f are obtained for the log magnitude, phase,. and'output
respectively. Note that the output approximates an impulse train VYllh the
amplitudes retaining the shape of the Hamming window used to weight the
input signal.

To complete the illustration of homomorphic analysis of speech, let us
consider the example of unvoiced speech given in Fig. 7.11. Figure 7.113
shows a segment of unvoiced speech multiplied by a Hamming window. Figure

7.11b shows the corresponding log magnitude function and Fig. 7.11c shows the
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corresponding cepstrum. Note the erratic variation of the log magnitude func-
tion. This is due to the fact that the excitation is random and thus the Fourier
transform of a short segment contains a random component. In this case it
makes little sense t6 compute the phase. It is clear from Fig. 7.11c that the
cepstrum does not display any sharp peaks as was the case for voiced speech;
however, the low-time portion of the cepstrum does contain information about
H,(e’“). This is illustrated by Fig. 7.11d which shows the log magnitude func-

tion obtained by applying the cepstrum window of Eq. (7.42) to the cepstrum
of Fig. 7.11c.

The previous discussion and examples show that it is indeed possible to
obtain approximations to some of the basic components of the speech
waveform by homomorphic filtering. This approach has not been carried very
far, primarily because in most speech analysis applications, the complete decon-
volution of the speech waveform is not necessary. Rather, we are generally
content with estimates of basic parameters such as pitch period and formant
frequencies. For this purpose, the cepstrum is entirely sufficient. Thus in most
speech analysis applications, we are freed from the burdensome phase
computation. Notice, for example, by comparing Figs. 7.8f and 7.11c¢ that the
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cepstrum provides a way of distinguishing between voiced and unvoiced speech,
and furthermore, the pitch period of voiced speech is placed clearly in evidence
in the cepstrum. Also note that the formant frequencies show up clearly in the
log magnitude of the vocal tract transfer function which can bq gbtalneq by
applying the window of Eq. (7.42) to the cepstrum. In the remaining sections
of this chapter we shall explore the use of the cepstrum in estimating pitch and
formant frequencies and as a basis for a complete vocoder system.

7.3 Pitch Detection

Figures 7.8f and 7.11c suggest a powerful means for pitch estimation based on
homomorphic processing. We observe that for the voiced speech example,
there is a peak in the cepstrum at the fundamental period of the input speech
segment. No such peak appears in the cepstrum for the unvoiced speech seg-
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Fig. 7.11 Homomorphic analysis of unvoiced speech; (a) windowed time
waveform; (b) log magnitude of short-time Fourier transform: {(c) cep-
strum; (d) estimate of H,(e/*).

ment. These properties of the cepstrum can be used as a basis for determining
whether a speech segment is voiced or unvoiced and for estimating the funda-
mental period of voiced speech.

The outline of the pitch estimation procedure based on the cepstrum is
rather simple. The cepstrum, computed as discussed in Section 7.1.3, is
searched for a peak in the vicinity of the expected pitch period. If the cepstrum
peak is above a pre-set threshold, the input speech segment is likely to be
voiced, and the position of the peak is a good estimate of the pitch period. If
the peak does not exceed the threshold, it is likely that the input speech seg-
ment is unvoiced. The time variation of the mode of excitation and the pitch
period can be estimated by computing a time-dependent cepstrum based upon a
time dependent Fourier transform. Typically, the cepstrum is computed once
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every 10-20 msec since the excitation parameters do not change rapidly in nor-
mal speech.

Figures 7.12 and 7.13 show examples due to A. M. Noll [9], who first
described a procedure for estimating pitch using the cepstrum. Figure 7.12
shows a series of log spectra and corresponding cepstra for a male speaker. The
cepstra plotted in this example are the square of c(n) as we have defined it. In
this example, the sampling rate of the input was 10 kHz. A 40 msec (400 sam-
ples) Hamming window was moved in jumps of 10 msec; i.e., log spectra on
the left and corresponding cepstra on the right are computed at 10 msec inter-
vals. It can be seen from Fig. 7.12 that the first seven 40 msec intervals
correspond to unvoiced speech, while the remaining cepstra indicate that the
pitch period increases with time (i.e., fundamental frequency decreases). Fig-

;
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ure 7.13 shows an example for a female talker. In this case, the speech by .
waveform corresponding to this sequence of spectra and cepstra is voiced at the FREQUENCY (kHz) TIME {mSEC)
‘ Fig. 7.12 Series of log spectra and cepstra for a male speaker. (After
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beginning and then becomes unvoiced at the end. It can be seen that at

end of the voiced interval, the pitch period doubles as sometimes occurs at
end of voicing. It can be seen by comparing Figs. 7.12 and 7.13 that the pi
frequency is much higher for the female talker than for the male talker.

These two examples, although impressive in the prominence with wh;
the pitch information is displayed, may lead us to assume that an ove
simplistic algorithm will produce high quality estimates of pitch and voici:
Unfortunately, as is usually the case in speech analysis, there are numero
special cases and trade-offs thay must be considered in designing a cepstru
pitch detection algorithm. Noll [9) has given a flow chart of one su
algorithm; however, a variety of schemes based upon the cepstrum have be
used with success. Rather than give the details of any one procedure here, -
feel that it is more useful to call attention to some of the essential difficulties
using the cepstrum for pitch detection.

First, the presence of a strong peak in the cepstrum in the range 3-
msec is a very strong indication that the input speech segment is voiced. Ho'
ever, the absence of a peak or the existence of a low level peak is not nece
sarily a strong indication that the input speech segment is unvoiced. That i
the strength of or even the existence of a cepstrum peak for voiced speech
dependent on a variety of factors, including the length of the window applied
the input signal and the formant structure of the input signal. It is easily show
(see Problem 7.10) that the maximum height of the “pitch peak" is unity. Th
can be achieved only in the case of absolutely identical pitch periods. This i
of course, highly unlikely in natural speech, even in the case of a rectangul;
window which encloses exactly an integer number of periods. Rectangular wit
dows are rarely used due to the inferior spectrum estimates that result, and i
the case of, for example, a Hamming window, it is clear that both windo
length and the relative positions of the window and the speech signal will hav
considerable effect upon the height of the cepstrum peak. As an extrem
example, suppose that the window is less than two pitch periods long. Clearl
it is not reasonable to expect any strong indication of periodicity in the spec
trum or the cepstrum in this case. Thus, the window duration is usually set s
that, taking account of the tapering of the data window, at least two clearl
defined periods remain in the windowed speech segment. For low pitched mal
speech, this requires a window on the order of 40 msec in duration. For highe
pitched voices, proportionately shorter windows can be used. It is, of course
desirable to maintain the window as short as possible so as to minimize the
variation of speech parameters across the analysis interval. The longer the win
dow, the greater the variation from beginning to end and the greater will be the
deviation from the model upon which the analysis is based. One approach tc
maintaining a window that is neither too short or too long is to adapt the win
dow length based upon the previous (or possibly average) pitch estimate:
{10,11].

Another way in which the signal can deviate from the model is if it i¢
extremely bandlimited. An extreme example is the case of a pure sinusoid. Ir
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this case there is only one peak in the log spectrum. If there is no periodic
oscillation in the log spectrum, there will be no peak in the cepstrum. In
speech, voiced stops are generally extremely bandlimited, with no clearly
defined harmonic structure at frequencies above a few hundred Hertz. In such
cases there is essentially no peak in the cepstrum. Fortunately, for all but the
shortest pitch periods, the pitch peak occurs in a region where the other cep-
strum components have died out appreciably. Therefore, a rather low threshold
can be used in searching for the pitch peak (e.g., on the order of 0.1).

With appropriate window length at input, the location and amplitude of the
cepstrum peak provide a reliable pitch and voicing estimate most of the time.
In the cases where the cepstrum fails to clearly display the pitch and voicing,
the reliability can be improved by the addition of other information such as
zero-crossing rate and energy, and by forcing the pitch and voicing estimates to
vary smoothly [11]. The extra logic required to take care of special cases often
requires considerable code in software implementations, but this part of a cep-
strum pitch detection scheme is a small portion of the total computational effort
and is well worthwhile.

7.4 Formant Estimation

From the examples of Section 7.2 we have seen that it is reasonable to assume
that the low-time part of the cepstrum corresponds primarily to the vocal tract,
glottal pulse and radiation information, while the high-time part is due primarily
to the excitation. This is exploited in pitch and voicing estimation by searching
only the high-time portion for peaks. The examples of Section 7.2 also suggest
ways of using the cepstrum to estimate vocal tract response parameters.
Specifically, recall that the "smoothed" log magnitude functions of Figs. 7.10a
and 7.11d can be obtained by windowing the cepstrum. These smoothed log
spectra display the resonant structure of the particular input speech segment;
i.e., the peaks in the spectrum correspond essentially to the formant frequen-
cies. This suggests that formants can be estimated by locating the peaks in the
“cepstrally smoothed" log spectra.

Consider a model for speech production as given in Fig. 7.14. This very
parsimonious model represents voiced speech by pitch period, amplitude, and
the lowest three formant frequencies and unvoiced speech by simply amplitude
and a single zero and pole. Additional fixed compensation accounts for the
high frequency properties of the speech signal. All of the indicated parameters,
of course, vary with time. A scheme for estimating these parameters is based
on the computation of a cepstrally smoothed log magnitude function once every
10-20 msec [11,12]. The peaks of the log spectrum are located and a voicing
decision is made from the cepstrum. If the speech segment is voiced, the pitch
period is estimated from the cepstrum and the first three formant frequencies
are estimated from the set of peaks in the log spectrum by logic based upon the
model for speech production [11,12]. In the case of unvoiced speech, the pole
is set at the location of the highest peak in the log spectrum and the zero
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located so that the relative amplitude between low and high frequencies
preserved [12].

An illustration of estimation of pitch and formant frequencies for voice
speech is given in Fig. 7.15. The left-hand half of the figure shows a sequenc
of cepstra computed at 20 msec intervals. On the right, the log magnitud
spectrum is plotted with the corresponding cepstrally smoothed log spectrun
superimposed. The lines connect the peaks that were selected by the algorithn
described in Ref. [11] as the first three formant frequencies. It can be seen i
Fig. 7.15 that two formant frequencies occasionally come so close together tha
there are no longer two distinct peaks. These situations can be detected anc
the resolution can be improved by evaluating the ztransform of H,(z) on :
contour that passes closer to the poles. This evaluation is faciliated by a spec
trum analysis algorithm called the chirp ztransform (CZT) [13]. An exampl
of the improved resolution is shown in Figure 7.16.

Another approach to formant estimation from cepstrally smoothed log
spectra was explored by Olive [14], who used an iterative procedure reminiscent
of the analysis-by-synthesis method discussed in Chapter 6 to find a set of poles

for a transfer function to match the smoothed log spectrum with minimum
squared error.

Speech can be synthesized from the formant and pitch data estimated as
described above by simply controlling the model of Fig. 7.14 with the estimated

parameters. In this case, for voiced speech, the steady state vocal tract transfer
function is modelled as

V) = ﬁ 1~ 2 " TcosQnF, T) + ¢ 27

k11— 2 % oosQumF T)z) + ¢ 2% T, 2
This equation describes a cascade of digital resonators which has unity gain at
zero frequency so that the speech amplitude depends only on the amplitude
control, 4,. The first three formant frequencies, Fy, F,, and F 3, vary with time
while F, is fixed at about 4000 Hz and T = 0.0001 sec (i.e., 10 kHz sampling
frequency). The formant bandwidths «, are also fixed at average values for

(7.44)
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Fig. 7.15 Automatic formant estimation from cepstrally smoothed log
spectra. (After Schafer and Rabiner [11].)

speech. The fixed spectral compensation, which approximates the glottal pulse
and radiation contributions, is

(1= e N1 + 7
S(z) =
(1 = =2~ (1 + ¢-07;-1)
where a and b are chosen to provide a good spectral match. Representative
values of @ and b are 4007 and 50007, respectively. More accurate values for a

given speaker may be determined from a long-term average spectrum for that
speaker.

(7.45)

For unvoiced speech, the vocal tract contributions are simulated by a sys-
tem having the steady state transfer function

Vi) = (l—2e“’Tcos(21rF,,T)+e°2’”)(1—2e“’rcos(27erT)z"'+e‘2“z‘z)
(1-2e7#los (27 F,T) 2+~ 2T;-) (1-2e Flos2n F,T) +e~%#7)
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where F, has been chosen as the greatest peak of the smoothed log spectrum
above 1000 Hz and F, satisfies the empirical formula

F, = (0.0065F, + 4.5 —A) (0.014F, + 28) (7.46)

where

A=2 lOgmlHIsz”qu -20 loglolH(e-’O)l (747)

which ensures that the approximate relative amplitude relationship is preserved
[12). That this rather simple model can preserve the essential spectral features
is shown in Figs. 7.17 and 7.18 which show comparisons between the smoothed
log spectrum and the model defined by Fig. 7.14 and Eqs. (7.44)-(7.47) for
both voiced and unvoiced speech, respectively.

An example of speech synthesized using this model is shown in Fig. 7.19.
The upper part of the figure shows the parameters estimated from the utterance
whose spectrogram is given in Fig. 7.19b. Figure 7.19c shows a spectrogram of
synthetic speech created by controlling the model of Fig. 7.14 with the parame-
ters of Fig. 7.19a. It is clear that the essential features of the signal are well
preserved in the synthetic speech. Indeed, even though the representation in
terms of the model is very crude, the synthetic speech is very intelligible and
retains many of the identifying features of the original speaker. In fact, the
pitch and formant frequencies estimated by this procedure formed the basis for
extensive experiments in speaker verification. (See Chapter 9, Section 9.2.)
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Fig. 7.17 Comparisons between cepstrally smoothed log spectra and the
speech model spectra for voiced speech.

An important property of the representation that we have been discussing

is that the information rate can be very low. A complete analysis/synthesis sys-
tem (or formant vocoder) based upon this representation is shown in Fig. 7.20.
The model parameters are estimated 100 times/sec and lowpass filtered to
remove noise. The sampling rate is reduced to twice the filter cutoff frequency
and the parameters are quantized. For synthesis, each parameter is interpolated
back to a rate of 100 samples/sec and supplied to a synthesizer as depicted in
Fig. 7.14.

A perceptual study was performed to determine appropriate system
parameters [15]. The analysis and synthesis sections were first connected
directly to produce references. Then the parameters were lowpass filtered to
determine the lowest bandwidth for which no perceptual difference could be
observed between synthesis with the filtered and unfiltered parameters. It was
found that the bandwidth could be reduced to about 16 Hz with no noticeable
change in quality. The filtered parameters could then be sampled at about 33
Hz (3-to-1 decimation). Then an experiment was performed to determine the
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Fig. 7.18 Comparisons between cepstrally smoothed spectra and the
speech model spectra for unvoiced speech.

required information rate. The formant and pitch parameters were quantized
with.a linear quantizer (adjusted to the range of each parameter), and the
amplitude parameters were quantized with a logarithmic quantizer. A summary
of the results of the perceptual test is given in Table 7.1, Using a sampling rate
of .33 samples/sec and the numbers in Table 7.1, it was found that for the all-
Yonced utterances of the experiment no degradation in quality over the unquan-
tized synthesis occurs for a total bit rate of about 600 bits/sec. (Note that an
additional one-bit voiced/unvoiced parameter transmitted 100 times/sec was
required to adequately present voiced/unvoiced transitions.)

Table 7.1 Results of Perceptual Evaluation of
a Formant Vocoder [15].

Parameter Required Bits/Sample
T 6
F, 3
F, 4
Fy 3
log{4,] 2
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wideband spectrogram of original speech; (c) wideband spectrogram of
synthetic speech generated from the data in (a). (After Schafer and
Rabiner [11].)

Figure 7.21a shows an example of the model parameters estimated from
natural speech at a rate of 100 times/sec. Figure 7.21b shows.these parameters
after smoothing by a 16 Hz linear phase, FIR lowpass .ﬁlte.',r. Figure '7.21c shows
the parameters after decimation by a factor 3, quantlzan’on according to Table
7.1, and interpolation by a factor of 3. Although clear differences are apparent
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among the three representations, there is little or no perceptual difference
between the synthetic speech produced from the three sets of parameters. This
representation of speech at 600 bits/sec has been used in experiments on

speech synthesis for computer voice response [16], as further discussed in Sec-
tion 9.1.3 of Chapter 9.

7.5 The Homomorphic Vocoder

We have seen that time-dependent homomorphic processing leads to a con-
venient representation in which the basic speech parameters are clearly
displayed and isolated from one another; i.e., excitation information in the
high-time region of the cepstrum and vocal tract and glottal waveshape infor-
mation in the low-time region. The time-dependent complex cepstrum, indeed,
retains all the information of the time-dependent Fourier transform, which we
have seen in Chapter 6 is an exact representation of the speech wave. The cep-
strum, however, ignores the phase of the time-dependent Fourier representa-
tion and therefore, the time-dependent cepstrum cannot uniquely represent the
speech waveform. Nevertheless, we have seen that the cepstrum is a con-
venient basis for estimating pitch, voicing, and formant frequencies. The cep-
strum has also been used directly as a representation of speech in a system that
has been called a homomorphic vocoder [171.

In the homomorphic vocoder, the cepstrum is computed once every 10-20
msec. Pitch and voicing are estimated from the cepstrum and the low-time part
of each cepstrum (e.g., approximately the first 30 samples) is quantized and
encoded for transmission or storage. At the synthesizer, an approximation to
the impulse response #,(n) or A,{n) is computed from the quantized low-time
cepstrum and explicitly convolved with an excitation function created at the
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AuTomaTIC| DIGITAL
! DEC. Q INT.

F
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DEC. Q INT.

FORMANT | FORMANT
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Fig. 7.20 Block diagram of a formant vocoder.
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synthesizer from the pitch, voicing and amplitude information. This is depicted
in Fig. 7.22. Figure 7.22a shows the analysis system. The cepstrum is com-
puted as discussed in Section 7.1.3. Then the low-time portion is selected by
the cepstrum window, /(n). In the simulations reported in Ref. [17], the first
26 cepstrum values were retained for quantization. The full cepstrum was also
used to estimate pitch and voicing as discussed in Section 7.3, The excitation
information together with the quantized cepstrum values form a digital
representation with a sampling rate of 50-100 samples/sec. To synthesize an
approximation to the input speech, an impulse response is computed from the
cepstrum. To see how this is done, recall that the cepstrum is an even function
and thus, knowledge of the positive-time part of the cepstrum permits the
reconstruction of the negative-time part at the synthesizer simply by symmetry.
The Fourier transform of the quantized low-time portion of the cepstrum is an
approximation to the log magnitude of the combined vocal tract, glottal pulse,
and radiation system function. However, the phase in this case is zero. In Fig.
7.22b, the transform is exponentiated, producing a real, even transform whose
inverse transform is an “impulse response” which is an even sequence. A zero
phase impulse response produced in this way from the cepstrum of Fig, 7.8f is
shown in Fig. 7.23a. This impulse response can be convolved with an excita-
tion function consisting of impulses spaced by the pitch period for voiced
speech, and uniformly spaced, random polarity, impulses for unvoiced speech.
(In the implementation of Ref. [17], the spacing between impulses was greater
than unity for unvoiced synthesis so as to minimize computation.)
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Fig. 7.22 Block diagram of a homomorphic vocoder; (a) analyzer; (b)
synthesizer.

An impulse response whose log magnitude function is identical to the
zero phase impulse response can be computed by arbitrarily forcing the input,
h(n), to correspond to a minimum phase signal. That is, the cepstrum window
is (see Eq. (7.18))

n) =1 n=0
=2 0<n < ng (748)
=0 otherwise

The transform of the resulting 4 (n) in Fig. 7.22b will be minimum phase [5].
Figure 7.23b shows a minimum phase impulse response which has the same log
magnitude as the zero phase impulse response of Fig. 7.23a. Oppenheim {17}
also considered the case of a maximum phase reconstruction of the impulse
response; i.e.,

n)=1 n=0
=2 —ng<n<o0 (7.49)
=0 otherwise

The corresponding maximum phase impulse response is shown in Fig. 7.23c.
Perceptual tests using all three phases showed the minimum phase synthesis to
be preferred to the other two possibilities. This is reasonable in view of the
fact that the minimum phase is closest to the phase of natural speech.

The homomorphic vocoder was reported to produce "very high quality,
natural sounding speech,” [17] with 26 cepstrum values quantized with 6 bits
and sampled 50 times/sec. Subsequent studies have shown that the informa-
tion rate can be lowered significantly by further transformations on the cep-
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Fig. 7.23 Impulse responses computed from the cepstrum; (a) zero
phase; (b} minimum phase; (c) maximum phase.

strum values before quantization [18]. Other studies have demonstrated the
effectiveness of adapting the duration of the input spectrum window to the
characteristics of the speech wave [19]).

The homomorphic vocoder, as in the case of all vocoder systems which
attempt to separate the speech parameters into excitation and vocal tract param-
eters, achieves low information rate and provides added flexibility in manipulat-
ing the speech signal at the expense of added complexity in the representation
and degradation in quality. This particular system has the advantage that the
cepstrum, which requires the greatest computational expenditure, can be used
in the estimation of both the excitation parameters and the vocal tract parame-
ters. Such a scheme is particularly attractive when a device for computing the
DFT is readily available.
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7.6 Summary

In this chapter we have presented the basic ideas of homomorphic signal pro-
cessing as applied to speech. The main idea of homomorphic speech processing
is the separation or deconvolution of a segment of speech into a component
representing the vocal tract impulse response, and a component representing
the excitation source. The way in which such separation is achieved is through
linear filtering of the inverse Fourier transform of the log spectrum of the sig-
nal, i.e., the cepstrum of the signal. Computational considerations in imple-
menting a homomorphic speech processing system were described. Finally,
some typical methods for estimating speech parameters based on the
homomorphic mode! of speech were discussed.
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PROBLEMS

The complex cepstrum, X(n), of a sequence x(n) is the inverse Fourier
transform of the complex log spectrum
X(e/) = log| X (/)| + J arg[X(e/9)]

Show that the gepstrum, ¢(n), defined as the inverse Fourier transform
of the log magnitude, is the even part of X(#n); i.e., show that

cn) = 20) + 2(=n)
2



7.2

1.3

1.4

15
1.6

Consider an all-pole model of the vocal tract transfer function of the form
1

(A~cizHU~c;z7Y
k=l

V(z) =

where
e
cr=re k.

Show that the corresponding cepstrum is
(r

b =23

k=1

"
cos(8,n)
n
Consider an all-pole model for the combined vocal tract, glottal pulse, and
radiation system of the form

H(z) = -G
1 - t akz“k

k=l
Assume that all the poles of H(z) are inside the unit circle. Use Eg.
(7.22) to obtain a recursion relation between the complex cepstrum,
h(n), and the coefficients {a,!. (Hint: How is the complex cepstrum of
1/H(z) related to h(n)?7)

Consider a finite length minimum phase sequence x(n) with complex cep-
strum %(n), and a sequence

y(n) = a™(n)

with complex cepstrum 5(n).

@@ If0 < a < 1, how will §{n) be related to x(n)?

(b) How should « be chosen so that y(n) would no longer be minimum
phase?

(c) How should « be chosen so that y(n) is maximum phase?

Show that if x(n) is minimum phase, then x(—n) is maximum phase.

Consider a sequence, x(n), with complex cepstrum Xx(n). The =z
transform of £(n) is
X(@2) =lglX@]) = ¥ x(m)z

o
where X(z) is the ztransform of x(n). The ztransform X(z) is sampled
at N equally spaced points on the unit circle, to obtain

2m
L =k VY o<k N-1
Using the inverse DFT, we compute
1 A=t oa j-lekn
2,,(n)=7v—2X‘,(k)e 0<KnEN-1

k=0
392

which serves as an approximation to the complex cepstrum.

(a) Express X,(k) in terms of the true complex cepstrum, X (m).

(b) Substitute the expression obtained in (a) into the inverse DFT
expression for %,(n) and show that

%) = 3 2(n+rN)-

r=—o00

Consider the sequence
x(n) = 8(n) + a8(n—N,)

(a) Find the complex cepstrum of x(n). Sketch your result,

(b}  Sketch the cepstrum, c(n), for x(n).

(c) Now suppose that the approximation X,(n) is computed using Eq,
(7.30). Sketch x,(n) for 0 € n < N — 1, for the case N, = N/6.
What if ¥ is not divisible by N,?

(d Repeat (c) for the cepstrum approximation c,(n)  for
0 < n < N -1, as computed using Eq. (7.33).

(e) If the largest impulse in the cepstrum approximation, c¢,(n), is used
to detect N,, how large must N be in order to avoid confusion?

In order to smooth the log magnitude spectrum of a signal, its cepstrum is
often windowed and Fourier transformed as shown in Fig. P7.8.

Hn)

o)y FOURIER Xte)
TRANSFORM —
Fig. P7.8

(a) Write an expression relating X(e’*) to log| X (/)| and L (e’
where L (e/) is the Fourier transform of /(n).

(b) To smooth log| X (e/“)| what type of cepstral window, /(n), should
be used?

(c) Compare the use of a rectangular cepstral window, and a Hamming
cepstral window. .

(d) How long should the cepstral window be? Why?

Consider a segment of voiced speech to be represented as
s(m) = p(m)*h,(m)
where

p(m) = i 8(m—rN,)

r=—o00

In computing the complex cepstrum (or cepstrum) the first step is to mul-
tiply s (m) by a window, w(m), thereby obtaining the segment.
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We evaluate X (z) at a set of points
=AW [k =01,.M-1

wherg A and W are arbitrary complex numbers. If we make the simple
substitution

x,(m) = s(m)w(n—m)
as the input to the homomorphic processing system.
(a) State the condition under which we can approximate x,(m) as
x(m) = p,(m)*h,(m) = [k~ (k—n)?)
2
then X(z,) can be written in the form

where
2.(m) = p(m)w(n—m)

(b) For the special case n = 0, find the ztransform of po(m) in terms of
the ztransform of w(m).
(c) Express the complex cepstrum, po(m), in terms of W (m).

A=l
X(z) =Plk) ¥ y(n)g(k—n)
n=0
i-e., X(z) is a convolution of y(n) and g(n).

(a) Determine P(k), y(n) and g(n) in terms of x(n), A, and W,
(b)  Sketch the points z; in the z-plane.

(c) Can you suggest how the FFT can be used to evaluate the above
expression for X (z,)?

7.10 In Problem 7.9 it is shown that the periodicity of a windowed segment of
voiced speech can be approximately represented by

p,(m) = p(m)w(n—m)
where

p(m) = ¥ 8(m=rN,)
r=—c0
In this problem we investigate the effect of the window position on the
resulting complex cepstrum p,(m). Assume that the window is a Ham-
ming window of the form

w(m) = .54 — 46 cos(2mm/(2N,)) 0<n<2N,
= otherwise

(a) Sketch p,{(m) as a function of m for n =3N,/4, IN,/8, 5N,/4,
INJ2.

(b) In each of the above cases, give an expression for p,(m) and show
that the corresponding z-transforms are of the form

=N,
P,,(z)=alzN"+a2+a3z 4

(c) In each of the above cases, find and sketch the complex cepstrum
p.(m). (Hint: Use the power series expansion for log[P,(z)].)
Ignore terms of the form log[ziN"].

(d) For what position of the window is
()  the sequence p,(m) minimum phase?

(i) the sequence p,(m) maximum phase?
(iii) the first cepstrum peak largest?
(iv) the first cepstrum peak smallest?

(e) How would your answers to the above questions change if the win-

dow is lengthened? Shortened?

7.11 The ztransform of a signal x(n) is defined as

N-}
X@) =¥ x(n)z

n=0
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8

Linear Predictive Coding
of Speech

8.0 Introduction

One of the most powerful speech analysis techniques is the method of linear
predictive analysis. This method has become the predominant technique for
estimating the basic speech parameters, e.g., pitch, formants, spectra, vocal
tract area functions, and for representing speech for low bit rate transmission or
storage. The importance of this method lies both in its ability to provide
extremely accurate estimates of the speech parameters, and in its relative speed
of computation. In this chapter, we present a formulation of the ideas behind
linear prediction, and discuss some of the issues which are involved in using it
in practical speech applications.

The basic idea behind linear predictive analysis is that a speech sample can
be approximated as a linear combination of past speech samples. By minimiz-
ing the sum of the squared differences (over a finite interval) between the
actual speech samples and the linearly predicted ones, a unique set of predictor
coefficients can be determined. (The predictor coefficients are the weighting
coefficients used in the linear combination.)

The philosophy of linear prediction is intimately related to the basic
speech synthesis model discussed in Chapter 3 in which it was shown that
speech can be modelled as the output of a linear, time-varying system excited
by either quasi-periodic pulses (during voiced speech), or random noise (during
unvoiced speech). The linear prediction method provides a robust, reliable,
and accurate method for estimating the parameters that characterize the linear,
time-varying system.
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Linear predictive techniques have already been discussed in the context of
the waveform quantization methods of Chapter 5. There it was suggested that
a linear predictor could be applied in a differential quantization scheme to
reduce the bit rate of the digital representation of the speech waveform. In
fact, the mathematical basis for an adaptive high order predictor used for
DPCM waveform coding is identical to the analysis that we shall present in this
chapter. In adaptive DPCM coding the emphasis is on finding a predictor that
will reduce the variance of the difference signal so that quantization error can
also be reduced. In this chapter we take a more general viewpoint and show
how the basic linear prediction idea leads to a set of analysis techniques that can
be used to estimate parameters of a speech model.- This general set of linear
predictive analysis techniques is often referred to as linear predictive coding or
LPC.

The techniques and methods of linear prediction have been available in
the engineering literature for a long time. The ideas of linear prediction have
been in use in the areas of control, and information theory under the names of
system estimation and system identification. The term system identification is
particularly descriptive of LPC methods in that once the predictor coefficients
have been obtained, the system has been uniquely identified to the extent that
it can be modelled as an all-pole linear system.

As applied to speech processing, the term linear prediction refers to a
variety of essentially equivalent formulations of the problem of modelling the
speech waveform [1-18]. The differences among these formulations are often
those of philosophy or way of viewing the problem. In other cases the
differences concern the details of the computations used to obtain the predictor
coefficients. Thus as applied to speech, the various (often equivalent) formula-
tions of linear prediction analysis have been:

the covariance method {3]

the autocorrelation formulation [1,2,9]
the lattice method [11,12]

the inverse filter formulation [1]}

the spectral estimation formulation [12]
the maximum likelihood formulation [4,6]
the inner product formulation [1]

Nounewn -

In this chapter we will examine in detail the similarities and differences among
only the first three basic methods of analysis listed above, since all the other
formulations are equivalent to one of these three.

The importance of linear prediction lies in the accuracy with which the
basic model applies to speech. Thus a major part of this chapter is devoted to a
discussion of how a variety of speech parameters can be reliably estimated using
linear prediction methods. Furthermore some typical examples of speech appli-
cations which rely primarily on linear predictive analysis are discussed here, and
in Chapter 9, to show the wide range of problems to which LPC has been suc-
cessfully applied.
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Fig. 8.1 Block diagram of simplified model for speech production.

8.1 Basic Principles of Linear Predictive Analysis

Throughout this book we have repeatedly referred to the basic discrete-time
model for speech production that was developed in Chapter 3. The particular
form of this model that is appropriate for the discussion of linear predictive
analysis is depicted in Fig. 8.1. In this case, the composite spectrum effects of
radiation, vocal tract, and glottal excitation are represented by a time-varying
digital filter whose steady-state system function is of the form

S(z) _ G
U(Z) 1- ﬁ akZ—k
k=1

This system is excited by an impulse train for voiced speech or a random noise
sequence for unvoiced speech. Thus, the parameters of this model are:
voiced/unvoiced classification, pitch period for voiced speech, gain parameter
G, and the coefficients {a,} of the digital filter. These parameters, of course, all
vary slowly with time.

The pitch period and voiced/unvoiced classification can be estimated using
one of the many methods already discussed in this book or by methods based
on linear predictive analysis to be discussed later in this chapter. As discussed
in Chapter 3, this simplified all-pole model is a natural representation of non-
nasal voiced sounds, but for nasals and fricative sounds, the detailed acoustic
theory calls for both poles and zeros in the vocal tract transfer function. We
shall see, however, that if the order p is high enough, the all-pole model pro-
vides a good representation for almost all the sounds of speech. The major
advantage of this model is that the gain parameter, G, and the filter coefﬁcignts
{a,} can be estimated in a very straightforward and computationally efficient
manner by the method of linear predictive analysis.

For the system of Fig. 8.1, the speech samples s(n) are related to the
excitation u(n) by the simple difference equation

si) = 3 ags(n—k) + Guln) .2

k=1

H(z) = @.1n
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A linear predictor with prediction coefficients, a, is defined as a system whost
output is

501 = 3 ags(nk) (8.3)
k=1

Such systems were used in Chapter 5 to reduce the variance of the difference
signal in differential quantization schemes. The system function of a p' order
linear predictor is the polynomial

P(z) = ﬁ azk (8.4)
k=1
The prediction error, e(n), is defined as
e(n) = s(n) — 5(n) = s(n) — ﬁ a;s(n—k) (8.5)
k=1

From Eq. (8.5) it can be seen that the prediction error sequence is the output
of a system whose transfer function is

A(z) =1~ ﬁ azk (8.6)
k=1

It can be seen by comparing Egs. (8.2) and (8.5) that if the speech signal obeys
the model of Eq. (8.2) exactly, and if a = a,, then e(n) = Gu(n). Thus, the
prediction error filter, A(z), will be an inverse filter for the system, H(z), of Eq.
8.1, i.e.,
G
H(z) e 8.7
The basic problem of linear prediction analysis is to determine a set of
predictor coefficients {a,} directly from the speech signal in such a manner as
to obtain a good estimate of the spectral properties of the speech signal through
the use of Eq. (8.7). Because of the time-varying nature of the speech signal
the predictor coefficients must be estimated from short segments of the speech
signal. The basic approach is to find a set of predictor coefficients that will
minimize the mean-squared prediction error over a short segment of the speech
waveform. The resulting parameters are then assumed to be the parameters of
the system function, H(z), in the model for speech production.

That this approach will lead to useful results may not be immediately
obvious, but it can be justified in several ways. First, recall that if « &= dy,
then e(n) = Gu(n). For voiced speech this means that e(n) would consist of
a train of impulses; i.e., e(#) would be small most of the time. Thus, finding
a,’s that minimize prediction error seems consistent with this observation. A
second motivation for this approach follows from the fact that if a signal is gen-
erated by Eq. (8.2) with non-time-varying coefficients and excited either by a
single impulse or by a stationary white noise input, then it can be shown that
the predictor coefficients that result from minimizing the mean squared predic-
tion error (over all time) are identical to the coefficients of Eq. (8.2). A third
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very pragmatic justification for using the minimum mean-squared prediction
error as a basis for estimating the model parameters is that this approach leads
to a set of linear equations that can be efficiently solved to obtain the predictor
parameters. More importantly the resulting parameters comprise a very useful
and accurate representation of the speech signal as we shall see in this chaptet.

The short-time average prediction error is defined as

E,=Y eXm) (8.8)
=Y (s,(m) - 5,(m))? (8.9)
" 2
=Y [s,(m) = ﬁ as,(m—k) (8.10)
m k=1

where s,(m) is a segment of speech that has been selected in the vicinity of
sample n, i.e.,

s,(m) = s(m+n) (8.11)

The range of summation in Eqs. (8.8)-(8.10) is temporarily left unspecified, but
since we wish to develop a short-time analysis technique, the sum will always
be over a finite interval. Also note that to obtain an average we should divide
by the length of the speech segment. However, this constant is irrevelant to
the set of linear equations that we will obtain and therefore is omitted. We can
find the values of a, that minimize E, in Eq. (8.10) by setting

0E,/8a,;=0, i=1,2, ..., p, thereby obtaining the equations
T s m-Ds,(m) = ¥ &, T s,m=Ds,(m=k) 1< i< p (8.12)
m k=1 m

where & are the values of a, that minimize E,. (Since &, is unique, we will
drop the caret and use the notation «, to denote the values that minimize E,)
If we define

¢.(ik) =¥ s,(m—i)s,(m—k) (8.13)
then Eq. (8.12) can be written more compactly as
Y @b k) = 6,300 =12, ... .p (8.14)
k=1

This set of p equations in p unknowns can be solved in an efficient manner for
the unknown predictor coefficients {«,} that minimize the average squared
prediction error for the segment s,(m).! Using Eqs. (8.10) and (8.12), the
minimum mean-squared prediction error can be shown to be

It is clear that the a,’s are functions of n (the time index at which they are estimated) although
this dependence will not be explicitly shown. We shall also find it advantageous to drop the sub-
scripts non E,, s,(m), and ¢,(i.k) when no confusion wili result.
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E, =X skm) - ¥ a, T s,(m)s,(m—k) (8.15)

k=1

and using Eq. (8.14) we can exbress E,as

E=6,0,0 - ¥ a,6,04) (8.16)
k=1

Thus the total minimum error consists of a fixed component, and a component
which depends on the predictor coefficients.

To solve for the optimum predictor coefficients, we must first compute
the quantities ¢,(ik) for 1 < /i < pand 0 < k < p. Once this is done we
only have to solve Eq. (8.14) to obtain the a,’s. Thus, in principle, linear
prediction analysis is very straightforward. However, the details of the compu-
tation of ¢,(ik) and the subsequent solution of the equations are somewhat
intricate and further discussion is required.

So far we have not explicitly indicated the limits on the sums in Eqgs.
(8.8)-(8.10) and in Eq. (8.12); however it should be empbhasized that the limits
on the sum in Eq. (8.12) are identical to the limits assumed for the mean
squared prediction error in Eqgs. (8.8)-(8.10). As we have stated, if we wish to
develop a short-time analysis procedure, the limits must be over a finite inter-
val. There are two basic approaches to this question, and we shall see below
that two methods for linear predictive analysis emerge out of a consideration of
the limits of summation and the definition of the waveform segment s,(m).

8.1.1 The autocorrelation method [1,2,5)

One approach to determining the limits on the sums in Egs. (8.8)-(8.10)
and Eq. (8.12) is to assume that the waveform segment, s,(m), is identically
zero outside the interval 0 < m < N — 1. This can be conveniently expressed
as

5,{m) = s(m+n)w(m) (8.17)

where w(m) is a finite length window (e.g. a Hamming window) that is identi-
cally zero outside the interval 0 < m < N — 1.

The effect of this assumption on the question of limits of summation for
the expressions for E, can be seen by considering Eq. (8.5). Clearly, if s,{(m)
is nonzero only for 0 < m < N — 1, then the corresponding prediction error,
e,(m), for a p™ order predictor will be nonzero over the interval
0 <m < N-1+p Thus, for this case £, is properly expressed as

N+p—~-1
E,= ﬁ el(m) (8.18)
m=0

Alternatively, we could have simply indicated that the sum should be over all
nonzero values by summing from —oo to 4o [2].

Returning to Eq. (8.5), it can be seen that the prediction error is likely to
be large at the beginning of the interval (specifically 0 m <p—1) because we
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are trying to predict the signal from samples that have arbitrarily been set to
zero. Likewise the error can be large at the end of the interval (specifically
N<m <N+ pfl) because we are trying to predict zero from samples that
are nonzero. For this reason, a window which tapers the segment, s,(m), to
zero is generally used for w(m) in Eq. (8.17).

The limits on the expression for ¢,(ik) in Eq. (8.13) are identical to
.those of Eq. (8.18). However, because s,(m) is identically zero outside the
interval 0 < m < N — 1, it is simple to show that

Nip—1
ey = . _ 1<i<g
b (i k) mﬁ_o sulm=i)s,(m=k) S ISP (8.19a)
can be expressed as
(‘k) N=1=(i~k) 1€ig »
= e =
&, mz-o s,(m)s,(m+i—k) 0< k 2 D (8.19b)

Furthermore it can be seen that in this case ¢,(ik) is identical to the short-
time autocorrelation function of Eq. (4.30) evaluated for (i—k). That is

&,(ik) = R, (i~k) ' (8.20)
where
N=l-k
R, (k) =% s,(m)s,(m+k) (8.21)
m=0

The computation of R,(k) is covered in detail in Section 4.6 and thus we shall
not consider such details here. Since R, (k) is an even function, it follows that

(i) = Ry (li=k) L Th2 b (8.22)
Therefore Eq. (8.14) can be expressed as
3 R (i-k) =R,() 1<i<yp (8.23)
k=1

?imilarly, the minimum mean squared prediction error of Eq. (8.16) takes the
orm

E,=R,0) — 3 a.R,(k) (8.24)
k=1
The set of equations given by Eqgs. (8.23) can be expressed in matrix form
as
R, (0) R, R - Rp-D] [a TR,
R, (1) R,0 R, - R(p-D| | ay R,(2)
R,(2) R,(1) R, - - R,(p-3) oy R,(3)
R,(p-1) R, (p-2) R,(p-3) - - R,(0) a, R.,,‘(1'J) (8.25)
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The pxp matrix of autocorrelation values is a Toeplitz matrix; i.e., it is sym-
metric and all the elements along a given diagonal are equal. This special
property will be exploited in Section 8.3 to obtain an efficient algorithm for the
solution of Eq. (8.23).

8.1.2 The covariance method (3]

The second basic approach to defining the speech segment s,(m) and the
limits on the sums is to fix the interval over which the mean-squared error is
computed and then consider the effect on the computation of ¢ ,(i,k). That is,
if we define

N=1
E,= Y eXm) (8.26)
m=0
then ¢ ,{i,k) becomes
) N-1 . 1<i<
$,(ik) = T s,(m=s,(m=k) ¢ 3 k <11]: (8.27)

m=0

In this case, if we change the index of summation we can express ¢,(i,k) as
either

N—=i—- .
$ulik) = "3 si(m)s,(mi=k) PP (8.282)
or
G =3 s m)symek—i) ASISP (8.28b)
¢,,l,,—m=_ks,,ms,,m i 0< k<p .

Although the equations look very similar to Eq. (8.19b), we see that the limits
of summation are not the same. Equations (8.28) call for values of s,(m) out-
side the interval 0 £ m < N — 1. Indeed, to evaluate ¢,(ik) for all of the
required values of / and k requires that we use values of s,(m) in the interval
—p < m< N-—1. If we are to be consistent with the limits on E, in Eq.
(8.26) then we have no choice but to supply the required values. In this case it
does not make sense to taper the segment of speech to zero at the ends as in
the autocorrelation method since the necessary values are made available from
outside the interval 0 < m €< N — 1. Clearly, this approach is very similar to
what was called the modified autocorrelation function in Chapter 4. As pointed
out in Section 4.6, this approach leads to a function which is not a true auto-
correlation function, but rather, the cross-correlation between two very similar,
but not identical, finite length segments of the speech wave. Although the
differences between Eq. (8.28) and Eq. (8.19b) appear to be minor computa-
tional details, the set of equations

Y 0, (k) = 6,0 i=1,2, ....p (8.292)

k=1
has significantly different properties that strongly affect the method of solution
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and the properties of the resulting optimum predictor. In matrix form these
equations become

6.(1,1)  ¢,(,2) ¢,(1,3) -+ ¢,(,p)| |« ¢,(1,0)
6,(2,1)  ¢,2.2 ¢,2,3) - 6,2p) ]| |« ¢,(2,0)
6,31 ¢,32 6,3.3) - 6,630 | ay $,(3,0)

.01 6,02 ¢,0,3) - 9,0 |a, ¢,(p,0) | (8.29b)
In this case, since ¢,(ik)=¢,(ki) (see Eq. (8.28)), the p X p matrix of
correlation-like values is symmetric but nor Toeplitz. Indeed, it can be seen
that the diagonal elements are related by the equation

¢, (i+1,k+1) = ¢,(i k) + 5,(—=i~1)s,(—k—1)
= $,(N=1-0)s5,(N—1—k) (8.30)

The method of analysis based upon this method of computation of
¢ ,(i,k) has come to be known as the covariance method because the matrix of
values {&,(i,k)} has the properties of a covariance matrix [5].2

8.1.3 Summary

It has been shown that by using different definitions of the segments of
the signal to be analyzed, two distinct sets of analysis equations can be
obtained. For the autocorrelation method, the signal is windowed by an N-
point window, and the quantities ¢ ,(/,k) are obtained using a short-time auto-
correlation function. The resulting matrix of correlations is Toeplitz leading to
one type of solution for the predictor coefficients. For the covariance method,
the signal is assumed to be known for the set of values —p € n € N—1. Out-
side this interval no assumptions need be made about the signal, since these are
the only values needed in the computation. The resulting matrix of correla-
tions in this case is symmetric but not Toeplitz. The result is that the two
methods of computing the correlations lead to different methods of solution of
the analysis equations and to sets of predictor coefficients with somewhat
different properties.

In later sections we will compare and contrast computational details and
results for both these techniques as well as for another method yet to be dis-
cussed. First, however, we will show how the gain, G, in Fig. 8.1, can be
determined from the prediction error expression.

8.2 Computation of the Gain for the Model [2]

It is reasonable to expect that the gain, G, could be determined by matching the

*This terminology, which is firmly entrenched, is somewhat confusing since the term covariance
usually refers to the correlation of a signal with its mean removed.
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energy in the signal with the energy of the linearly predicted samples. This

indeed is true when appropriate assumptions are made about the excitation sig-
nal to the LPC system.

It is possible to relate the gain constant G to the excitation signal and the
error in prediction by referring back to Egs. (8.2) and (8.5).% The excitation
signal, Gu(n), can be expressed as

Gu(n) = s(n) = ¥ ays(n—k) (8.31a)

k=1
whereas the prediction error signal e (n) is expressed as

e(n) = s(n) - ﬁ as(n—k) (8.31b)

k=]

In the case where a, = a,, i.e., the actual predictor coefficients, and those of
the model are identical, then

e(n) = Guln) (8.32)

i.e., the input signal is proportional to the error signal with the constant of pro-
portionality being the gain constant, G. A detailed discussion of the properties
of the prediction error signal is given in Section 8.5.

Since Eq. (8.32) is only approximate (i.e., it is valid to the extent that the
ideal and the actual linear prediction parameters are identical) it is generally not
possible to solve for G in a reliable way directly from the error signal itself,
Instead the more reasonable assumption is made that the energy in the error
signal is equal to the energy in the excitation input, i.e.,

N=1 N-1
G2 Y ulm) = Y e¥m) =E, (8.33)

m=0 m=0

At this point we must make some assumptions about u(n) so as to be
able to relate G to the known quantities, e.g., the a,’s and the correlation
coefficients. There are two cases of interest for the excitation. For voiced
speech it is reasonable to assume u(n) = 5(n), i.e., the excitation is a unit
sample at n = 0.4 For this assumption to be valid requires that the effects of
the glottal pulse shape used in the actual excitation for voiced speech be
lumped together with the vocal tract transfer function, and therefore both of
these effects are essentially modelled by the time-varying linear predictor. This
requires that the predictor order, p, be large enough to account for both the
vocal tract and glottal pulse effects. We will discuss the choice of predictor
order in a later section. For unvoiced speech it is most reasonable to assume
that u(n) is a zero mean, unity variance, stationary, white noise process.

Based on these assumptions we can now determine the gain constant G by
utilizing Eq. (8.33). For voiced speech, we have as input G6(n). If we call the
3Note that the gain is also a function of time.

‘Note that for this assumption to be valid requires that the analysis interval be about the same
length as a pitch period.
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resulting output for this particular input 4 (n) (since it is actually the impulse
response of the system with transfer function H(z) as in Eq. (8.1)) we get the
relation

h(n) = 3 ah(n=k) + Go(n) (8.34)
k=1
It is readily shown {Problem 8.1] that the autocorrelation function of h(n),
defined as

R(m) = 3 h(m)h(m+n) (8.35)
n=0
satisfies the relations

R(m) = ﬁ a R (Im—k|) m=1,2, ..., p (8.36a)
k=1
and
RO = 3 aR(K) + G2 (8.36b)
k=1
Since Egs. (8.36) are identical to Eqgs. (8.23) it follows that
Rm)=R(m) 1<m<p (8.37)

Since the total energies in the signal (R (0)) and the impulse response (R (0))
must be equal we can use Eqs. (8.24) , (8.33) and (8.36b) to obtain

G?=R,(0) - ¥ a,R, k) = E, (8.38)
k=1

It is interesting to note that Eq. (8.37) and the requirement that the energy of
the impulse response be equal to the energy of the signal together require that
the first p + 1 coefficients of the autocorrelation function of the impulse
response of the model are identical to the first p + 1 coefficients of the auto-
correlation function of the speech signal.

For the case of unvoiced speech, the correlations are defined as statistical
averages. It is assumed that the input is white noise with zero mean and unity
variance; i.e.,

Elu(m)u{n—-m)] = 8(m) (8.39)

If we excite the system with the random input Gu(n) and call the output g(n)
then

gln) = f, ag(n—k) + Gu(n) (8.40)
k=1
If we now let R (m) denote the autocorrelation function of g{(n), then

R(m) = Elg(n)g(n—m)] = t aElg(n—k)g(n—m)) + E[Gu(n)g(n—m)]
k=1

= f a R (m—k) m#Z0 (8.41)
k=1
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since E{u{n)g(n—m)1=0 for m > 0 because u(n) is uncorrelated with any
signal prior to u(n). For m = 0 we get

RO = 3 a R k) + GElu(n)g(n)]
k=1
=¥ a k) + G2 (8.42)
k=1

since  Elu(n)g(n)) = Elu(n)(Gu(n) + terms prior ton)]l = G . Since the
energy in the response to Gu(n) must equal the energy in the signal, we get

R(m)=R,(m) 0<m< p (8.43)
or

G?=R,(0) — ¥ a,R, (k) (8.44)
k=1

as was the case for the impulse excitation for voiced speech.

8.3 Solution of the LPC Equations

In order to effectively implement a linear predictive analysis system, it is neces-
sary to solve the linear equations in an efficient manner. Although a variety of
techniques can be applied to solve a system of p linear equations in p unk-
nowns, these techniques are not equally efficient. Because of the special pro-
perties of the coefficient matrices it is possible to solve the equations much
more efficiently than is possible in general. In this section we will discuss in
detail two methods for obtaining the predictor coefficients, and then we will
compare and contrast several properties of these solutions.

8.3.1 Cholesky decomposition solution
for the covariance method [3]

For the covariance method, the set of equations which must be solved is
of the form:

f (i k) = ¢,(i,0)

k=1

=12, ...,p (8.45)
or in matrix notation

ba =y (8.46)
where @ is a positive definite symmetric matrix with (i)™ element ¢,(i)),

and @ and ¢ are column vectors with elements o » and ¢,(i,0) respectively.
The system of equations given by Eq. (8.45) can be solved in an efficient
manner since the matrix & is a symmetric, positive definite matrix. The result-

ing method of solution is called the Cholesky decomposition (or sometimes it is
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called the square root method) {3). For this method the matrix ® is expressed
in the form

® = VDV! (8.47)

where V is a lower triangular matrix (whose main diagonal elements are all
1I's), and D is a diagonal matrix. The superscript ¢ denotes matrix transpose.
The elements of the matrices V and D are readily determined from Eq. (8.47)
by solving for the (i)™ element of both sides of Eq. (8.47) giving

¢,(ij) = ﬁ VidiVie 1</ <i-1 (8.48)
k=1
or
i—1
Vidi= 6,0 = 3 VedVi 1<) < i-1 (8.49)
k=]

and, for the diagonal elements

$.00) =Y VidiVy (8.50)
k=1
or i=1
di=¢,i) - Y Vid, 2?2 (8.51)
k=1
with
dy=¢,(1,1) (8.52)

To illustrate the use of Egs. (8.47)-(8.52) consider an example with p = 4, and
matrix elements ¢,(i./) = ¢, Equation (8.47) is thus of the form

b1 b 931 b4

¢ b0 932 da

b3 ¢ b33 ba|

a1 b4y b3 dag

1 0 0 0f (400 0 Of |1 Vy Vy Vy
Va1 0 0 |0 4,0 00 1 ¥y vy
VaVyp 1 0|0 0 4500 0 1 v,
Vi Vo Vs 1] 10 0 0 dyf 0 0 0o 1

To solve for d, to dy, and the Vs we begin with Eq. (8.52) for i = 1 giving
dy=¢y
Using Eq. (8.49) for i = 2,3,4 we solve for ¥y, V3, and ¥, as
Vadi=dy » Vadi=¢3 , Vad =y
Va=duldi, Vi=¢3/d1, Viy=¢uld,

408

Using Eq. (8.51) for i = 2 gives
dy=¢n— Vid,
Using Eq. (8.49) for i = 3 and 4 gives
Vady = b3, — Vyd Vy
Vida = a3 = VydVy

or
Vo= (¢35 Vyd,Vy)/d,
Vi = (ps-Vayd\Vy)/d,

Equation (8.51) is now used for i = 3 to solve for d;, then Eq. (8.49) is used
for i =4 to solve for V43 and finally Eq. (8.51) is used for i = 4 to solve for
ds

Once the matrices V and D have been determined, it is relatively simple

to solve for the column vector a in a two-step procedure. From Egs. (8.46)
and (8.47) we get

VDVia =y (8.53)
which can be written as
VY =y (8.54)
and
DVlia=Y (8.55)
or
Vig =Dy (8.56)

Thus from the matrix V, Eq. (8.54) can be solved for the column vector Y
using a simple recursion of the form

i=1
Yi=g, =3 VyY,  p2iz2 (8.57)
J=1
with initial condition

Yi=4y, (8.58)

Similarly having solved for Y, Eq. (8.56) can be solved recursively for o using
the relation

a=Y/d- 3 Vi, 1<i<p1 (8.59)
J=i+l
with initial condition
a,=Y,/d, (8.60)
It should be noted that the index i in Eq. (8.59) proceeds backwards from
i=p—1downtoi=1,



To illustrate the use of Egs. (8.57)-(8.60) we continue our previous

example and first solve for the Y,'s assuming V and D are now known. In
matrix form we have the equation

1 0 o of [ [u
Vi 10 0 |7, ¥,
Vi V3 10 Ys] - ,'J/a
Vae Vo Vs 1] Y| oy
From Egs. (8.57) and (8.58) we get
Yi=y,
Yy=in— VyY,

Yy=y3— Vy¥ - VyV,
Ya=yu—VaY = VaY,~ VY,
From the Y/swe solve Eq. (8.56) which is of the form
1 Vo Vi Val oy
0 1 Vi Vil ey
00 1 Vgl lag =
00 0 1] |a,
1/dy 0 0 0 Y, Y/d,
0 Yd, 0 0|y [rya,
0 0 1/dy 0| |r|={rya,
0 0 0 ydflr] |rya,
From Egs. (8.59) and (8.60) we get
ay=Y,/d,
ay=Yydy~ Vo,
ay=Yy/dy = Vi~ Vyay
ay=Y/di = Vya,— Vyay— Vya,
thus completing the solution to the covariance equations.

The use of the Cholesky decomposition procedure leads to a very simple
expression for the minimum error of the covariance method in terms of the
column vector Y and the matrix D. We recall that for the covariance method,
the prediction error E, was of the form

Ey=6,0,00 = ¥ aye,0,k) (8.61)
k=1
or in matrix notation
E,=6,0,0 - ay (8.62)
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From Eq. (8.56) we can substitute for a'the expression YD~y giving
E, = ¢,(0,0) = YDV (8.63)
Using Eq. (8.54) we get
E, = ¢,0,0) —~ YD-Y (8.64)
or

E,=,0,00- % vYd, (8.65)
k=1

Thus the mean-squared prediction error E, can be determined directly from the
column vector Y and the matrix D. Furthermore Eq. (8.65) can be used to
give the value of E, for any value of pup to the value of p used in solving the
matrix equations. Thus one can get an idea as to how the mean-squared predic-
tion error varies with the number of predictor coefficients used in the solution.

8.3.2 Durbin’s recursive solution
for the autocorrelation equations [2]

For the autocorrelation method the matrix equation for solving for the
predictor coefficients is of the form

Y R i~k =R, () 1<i<p (8.66)
k=1

By exploiting the Toeplitz nature of the matrix of coefficients, several efficient
recursive procedures have been devised for solving this system of equations.
Although the most popular and well known of these methods are the Levinson
and Robinson algorithms [1], the most efficient method known for solving this
particular system of equations is Durbin’s recursive procedure (2] which can be
stated as follows (for convenience of notation we shall omit the subscript on
the autocorrelation function):

EQ =R (8.67)
i~1
ki=|R() = X af~DR(i—j)|/EGD 1<i<p (868
J=1
af) =k, (8.69)
aft=a D — g =D 1<j<i-1 (870
ED = (Q—kHEGD (8.71)
Equations (8.68)-(8.71) are solved recursively for i = 1,2, ..., pand the final

solution is given as
a;=a’ 1K< p (8.72)

Note that in the progess of solving for the predictor coefficients for a predictor
of order Wtions for the predictor coefficients of all orders less than p
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have also been obtained — i.e., a” is the j™ predictor coefficient for a predic-
tor of order i,

To illustrate the above procedure, consider an example of obtaining the
predictor coefficients for a predictor of order 2. The original matrix equation is
of the form -

RO R Jer] [RQ)
R() RO |as] TIRQ)
Using Eqs. (8.67)-(8.72), we get
E® = R(0)
ki=R(1)/R0)
o= R(1)/R(0)
w - RMO-RX1)
E R ()
_ RQRO)-RY)
RYU0)-RX1)
ol = R(QR0)—R%1)
: RA0)—R*(1)
@ _ ROORO)-RMR(2)

ky

1 R20)—R (1)
ay= al(Z)
ay= az(Z)

It should be noted that the quantity £¢ in Eq. (8.71) is the prediction
error for a predictor of order i Thus at each stage of the computation the pred-
iction error for a predictor of order / can be monitored. Also, if the autocorre-
lation coefficients R (i) are replaced by a set of normalized autocorrelation
coefficients, i.e., r(k) = R(k)/R(0), then the solution to the matrix equation
remains unchanged. However, the error £ is now interpreted as a normalized
error. If we call this normalized error ¥, then

W _ E(i) i
V= = =1~ Y a,r(k) (8.73)
R(O) k=1
with
0< VLl 20 (8.74)

It can be shown that the normalized error for i = p (e, V%% can be written
in the form

vo =1 - kD 8.75)

=1
where the quantities &, are in the range
“1< k<1 (8.76)
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This condition on the parameters k, is important since it can be shown [1,18]
that it is a necessary and sufficient condition for all of the roots of the polyno-
mial 4(z) to be inside the unit circle, thereby guaranteeing the stability of the
system H(z). Unfortunately a proof of this result would take us too far afield;
however, the fact that we do not give a proof does not diminish the importance
of this result. Furthermore, it is possible to show that no such guarantee of
stability is available in the covariance method.

8.3.3 Lattice formulations and solutfons (11]

As we have seen, both the covariance and the autocorrelation methods
consist of two steps: '

1. Computation of a matrix of correlation values.
2. Solution of a set of linear equations.

These methods have been widely used with great success in speech processing
applications. However, another class of methods, called lattice methods, has
evolved in which the above two steps have in a sense been combined into a
recursive algorithm for determining the linear predictor parameters. To see
how these methods are related, it is helpful to begin with the Durbin algorithm.
First, let us recall that at the /" stage of this procedure, the set of coefficients
{af?j=1,2, ..., i) are the coefficients of the i" order optimum linear predic-
tor. Using these coefficients we can define

]
AV(@) =1- 3 afdz (8.77)
k=1
to be the system function of the i”order inverse filter (or prediction error
filter). If the input to this filter is the segment of the signal,
s,(m) = s(n+m)w(m), then the output would be the prediction error,
eNm) = e(n+m), where

e (m) = s(my="Fas(m—k) (8.78)
k=1

Note that for the sake of simplicity we shall henceforth drop the subscript n
which denotes the fact that we are considering a segment of the signal located
at sample n. In terms of z-transforms Eq. (8.78) is

ED(2) = AD(2)S(2) (8.79)

By substituting Eq. (8570) into Eq. (8.77) we obtain a recurrence formula for
AD(2) in terms of 44-V(2); je.,

AD(z) = AYD(2) ~ kzmig =Dz 7Y (8.80)
(See Problem 8.5.) Substituting Eq. (8.80) into Eq. (8.79) we obtain
EDNZ) = 4 D(2)8(2) - kiz7d V(27D S(2) (8.81)
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Fig. 8.2 Illustration of forward and backward prediction using an i
order predictor.

The first term in Eq. (8.81) is obviously the ztransform of the prediction error
for an (i—1) * order predictor. The second term can be given a similar interpre-
tation if we define

BO(z) = z74(z7)8(2) (8.82)
It is easily shown that the inverse transform of B“(z) is
b m) = s(m—i) — 2 afPs(m+k—i) (8.83)
k=1

This equation suggests that we are attempting to predict s(m—i) from the i
samples of the input {s(m—i+k), k=1,2,..,i} that follow s(m—i). Thus
52(m) is called the backward prediction error sequence. In Fig. 8.2 it is
shown that the / samples involved in the prediction are the same ones used to
predict s(m) in terms of i past samples in Eq. (8.78). Now returning to Eq.
(8.81) we see that the prediction error sequence e‘”(m) can be expressed as

eD(m) = e V(m) — kb V(m-1) (8.84)
By substituting Eq. (8.80) into Eq. (8.82) we obtain
BNz) = 274 D)8 (2) - kAI(2)S(2) (8.85)
or
BY(z) = z71BU-1(z) — k,EU-D(z) (8.86)
Thus the i* stage backward prediction error is
b (m) = 5V (m=-1) — k;e~V(m) (8.87)

Now Eqs. (8.84) and (8.87) define the forward and backward prediction error
sequences for an " order predictor in terms of the corresponding prediction
errors of an (i—1)" order predictor. Using a zeroth order predictor is
equivalent to using no predictor at all so that

eO(m) = bO(m) = s(m) (8.88)
Thus we can depict Egs. (8.84) and (8.87) by the flow graph of Fig. 8.3. Such
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a structure is called a lattice network. It is clear that if we extend the lattice to
p sections, the output of the last upper branch will be the forward prediction
error as shown in Fig. 8.3. Thus, Fig. 8.3 is a digital network implementation
of the prediction error filter with transfer function A (z).

At this point we should emphasize that this structure is a direct conse-
quence of the Durbin algorithm, and the parameters k; can be obtained as in
Egs. (8.67)-(8.72). Note also that the predictor coefficients do not appear
explicitly in Fig. 8.3. Itakura [4,6] has shown that the k; parameters can be
directly related to the forward and backward prediction errors and because of
the nature of the lattice structure the entire set of coefficients
ki, i=1,2, ..., p) can be computed without computing the predictor
coefficients. The relationship is [11]

N-1
2 e(i—l)(m)b(i-—l)(m_l)
k: _ m=0

 (N=1 N-1
2 (e Dm)? Y (64V(m-1))2

m=0 m=0

This expression is in the form of a normalized cross-correlation function; i.e., it
is indicative of the degree of correlation between the forward and backward
prediction error. For this reason the parameters k; are called the partial correla-
tion coefficients or PARCOR coefficients [4,6]. It is relatively straightforward
to verify that Eq. (8.89) is identical to Eq. (8.68) by substituting Eqgs. (8.78)
and (8.83) into Eq. (8.89).

It can be seen. that if Eq. (8.89) replaces Eq. (8.68) in the Durbin algo-
rithm, the predictor coefficients can be computed recursively as before. Thus
the PARCOR analysis leads to an alternative to the inversion of a matrix and

e1%%(n) eln) A L) elP)(n)

e(n)

_sim)_|

b(m(n) bm(n) b(Z)(n) b(’-n(n) b(p)(n)

Fig. 8.3 Block diagram of a realizable implementation of the lattice
method.
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gives results identical to the autocorrelation method; i.e., the set of PARCOR
coefficients is equivalent to a set of predictor coefficients that minimize the
mean-squared forward prediction error. More importantly, this approach opens
up a whole new class of procedures based upon the lattice configuration of Fig.
8.3 [11].

In particular, Burg [12] has developed a procedure based upon minimizing
the sum of the mean-squared forward and backward prediction errors in Fig.
8.3;ie.,

EO - Nz_:l [(e(i)(m))Z + (b(’)(m))z] (8.90)
m=0

Substituting Eqs. (8.84) and (8.87) into Eq. (8.90) and differentiating £ with
respect to k,, we obtain

(i) N-1 .
BL = -2 z [e(i—l)(m) _ k,b("‘)(m—l)]b("‘)(m—l)
Ak, Pront
NI ) : )
=2 % [e00m-1) - ke Dm0 (m) 8.91)
m=0

Setting the derivative equal to zero and solving for &, gives

2 NZ_I [e(i—l)(m)b(i—l)(m_l)]

=0
ko= e 5 (8.92)
2 [e(’"”(m)] + 2 [b("”(m—l)]
m=0 m=0
It can be shown [1] that if k; is estimated using Eq. (8.92) then
1<k <1 (8.93)

However, it should be clear that the k,’s estimated using Eq. (8.92) will in gen-
eral differ from those estimated using Eq. (8.89), or equivalently, the auto-
correlation method.

In summary, the steps involved in determining the predictor coefficients
and the k parameters are as follows:

Initially set e D(m) = s(m) = 6@(m),
Compute &, = a{" from Eq. (8.92).
Determine forward and backward prediction errors eV(m) and
5P(m) from Egs. (8.84) and (8.87).
Seti=2.
Determine k; = a ) from Eq. (8.92).
Determine a [ for j = 1,2,...,i — 1 from Eq. (8.70).
Determine ¢'?(m) and 5’(m) from Eq. (8.84) and (8.87).
Seti=i+1.
If iis less than or equal to p, go to step §.
. Procedure is terminated.

hadis e

SWwoNn A
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There are clearly several differences in implementation between the lattice
method and the covariance and autocorrelation implementations discussed ear-
lier. One major difference is that in the lattice method the predictor coefficients
are obtained directly from the speech samples without an intermediate calcula-
tion of an autocorrelation function. At the same time the method is guaranteed
to yield a stable filter without requiring the use of a window. For these reasons
the lattice formulation has become an important and viable approach to the
implementation of linear predictive analysis.

8.4 Comparisons Between the Methods of Solution
of the LPC Analysis Equations

We have already discussed the differences in the theoretical formulations of the
covariance, autocorrelation, and lattice formulations of the linear predictive
analysis equations. In this section we discuss the issues involved in practical
implementations of the analysis equations. Included among these issues are
computational considerations, numerical and physical stability of the solutions,
and the question of how to choose the number of poles and section length used
in the analysis. We begin first with the computational considerations involved
in obtaining the predictor coefficients from the speech waveform.

The two major issues in the computation of the predictor coefficients are
the amount of storage, and the number of multiplications. Table 8.1 (due to
Portnoff et al. [13] and Makhoul [11]) shows the required computation for the
covariance, the autocorrelation and the lattice methods. In terms of storage,
for the covariance method, the requirements are essentially N, locations for the
data, and on the order of p%2 locations for the correlation matrix, where N, is
the number of points in the analysis. For the autocorrelation method the
requirements are N, locations for both the data and the window, and a number
of locations proportional to p for the autocorrelation matrix. For the lattice
method the requirements are 3N, locations for the data and the forward and
backward prediction errors. For emphasis we have assumed that the N, for the
covariance method, the N, for the autocorrelation method, and the N; for the
lattice method need not be the same. We will discuss this question later in this
section. Thus in terms of storage (assuming N, N,, and N; are comparable)
the covariance :&%d\autocorrelation methods require somewhat less storage than
the lattice metho i

The computational requirements for the three methods, in terms of mul-
tiplications, are shown at the bottom of Table 8.1. For the covariance method,
the computation of the correlation matrix requires about Nyp multiplications,
whereas the solution to the matrix equation (using the Cholesky decomposition
procedure) requires a number of multiplications proportional to p3 (Portnoff
et al. give an exact figure of (p +9p24+2p)/6 multiplications, p divides, and p
square roots.) For the autocorrelation method, the computation of the auto-
correlation matrix requires about Njp multiplications, whereas the solution to
the matrix equations requires about p? multiplications. Thus if N| and N, are
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Table 8.1 Computational Considerations in the LPC Solutions

Covariance Autocorrelation Lattice
Method Method Method
(Cholesky Decomposition) | (Durbin Method) (Burg Method)
Storage
Data N, N, 3N,
Matrix proportional to p2/2 proportional to p _
Window 0 N, _
Computation
(Multiplications)
Windowing 0 N,y .
Correlation proportional to Nyp proportional to Nyp _
Matrix Solution proportional to p3 proportional to p? SNy

approximately equal, and with N} >> p, N, >> p, then the autocorrelation
method will require somewhat less computation than the covariance method.
However, since in most speech problems the number of multiplications
required to compute the correlation function far exceeds the number of multi-
plications to solve the matrix equations, the computation times for both these
formulations are quite comparable. For the lattice method a total of SNyp mul-
tiplications are needed to compute the set of partial correlation coefficients.’
Thus the lattice method is the least computationally efficient method for solving
the LPC equations. However, the other advantages of the lattice method must
be kept in mind when considering the use of this method.

Another consideration in comparing these three formulations is the stabil-
ity of the resulting system

G
= — 8.94
H(z2) e (8.94)
This system is stable if all its poles lie strictly inside the unit circle in the z
plane. The poles of the system, H(z), are the zeros of denominator polyno-
mial 4 (z), where

AD =1~ 3 (8.95)
k=1

As we have asserted, for the autocorrelation method all the roots of 4(z) lie
inside the unit circle — i.e., H(z) is guaranteed to be stable. It should be
noted that this theoretical guarantee of stability for the autocorrelation method
may not hold in practice if the autocorrelation function is computed without
sufficient accuracy. In such cases the roundoff encountered in computing the
autocorrelation can cause the matrix to become ill conditioned. Markel and
Gray have shown that these undesirable effects can be minimized by pre-
emphasizing the speech to make its spectrum as flat as possible (1]. With the
use of a pre-emphasizing filter, smaller wordlengths can be used in practice and

5Makhoul has discussed a modified lattice method for obtaining the partial correlation coefficients
with the same efficiency as the normal covariance method [11].
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the resulting predictor polynomials will generally remain stable. The Durbin
algorithm provides a convenient test for stability since it is necessary and
sufficient that the parameters k£, (PARCOR’s) must satisfy the condition

-1k <1 (8.96)

Thus if, in the process of determining the predictor coefficients {a,}, any of the
quantities k; violate Eq. (8.96) then it is known that there are roots of A4(z)
outside the unit circle.

For the covariance method, the stability of the predictor polynomial can-
not be guaranteed. However, in practice, if the number of samples in the
frame is sufficiently large, then the resulting predictor polynomials will almost
always be stable. This is due to the fact that for a large number of samples in
the analysis frame, the covariance and autocorrelation methods yield almost
identical results.

For the lattice method the predictor polynomial is guaranteed to be stable
since the predictor coefficients are obtained from the partial correlation
coefficients which, by definition, satisfy Eq. (8.96). In addition, the stability is
preserved even when the computation is performed using finite word length
computations [1].

In the case when the predictor polynomial stability is uncertain, it is gen-
erally required that the roots of the predictor polynomial be determined and
tested for stability. If a root is found to be outside the unit circle, a simpie
correction procedure is to reflect the root inside the unit circle, thereby ensur-
ing a stable predictor polynomial with the same frequency response as the
unstable polynomial.

Two other considerations in comparing and contrasting the three formula-
tions of the LPC equations are the choice of number of predictor parameters, p,
and the choice of the frame length N. The choice of p depends primarily on
the sampling rate and is essentially independent of the LPC method being used.
Since the speech spectrum being analyzed can generally be represented as hav-
ing an average density of 2 poles (i.e., one complex pole) per kiloHertz due to
the vocal tréct contribution, then a total of F; poles are required to represent
this contribution to the speech spectrum, where F, is the sampling rate in
kiloHertz. ql{)us for a 10 kHz sampling rate, a total of 10 poles is required to
represent the\vocal tract. In addition a total of 3-4 poles is required to ade-
quately represent the source excitation spectrum and the radiation load. Thus
for a 10 kHz simulation, a value of p of about 13 or 14 is required. To verify
this conclusion, Figure 8.4 shows a plot (due to Atal and Hanauer {3]) of the
normalized rms prediction error versus the predictor order p for sections of
voiced and unvoiced speech for a 10 kHz simulation. Although the prediction
error steadily decreases as p increases, for p on the order of 13-14 the error has
essentially flattened off showing only small decreases as p is increased further.
It is interesting to note from this figure that the normalized rms prediction
error for unvoiced speech is significantly higher than for voiced speech. This is
of course as expected since the model for unvoiced speech is nowhere near as
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Fig. 8.4 Variation of the RMS prediction error with the number of pred-
ictor coefficients, p. (After Atal and Hanauer [3].)

accurate as it is for voiced speech. Additional experimental evidence of the
behavior of the prediction error as a function of pis given in the next section.

The choice of section length N is a very important consideration in imple-
mentation of most LPC analysis systems. Clearly, it is advantageous to keep N
as small as possible since the total computation load, for all three methods, is
essentially proportional to N. For the autocorrelation method it has been
shown that N must be on the order of several pitch periods to ensure reliable
results [1,2]. Since a window is used to weight the speech in the autocorrela-
tion method, the section duration must be sufficiently long so that the tapering
effects of the window do not seriously affect the results. Thus analysis
durations from N = 100 to N = 400 samples (at a 10 kHz rate) have been used
in LPC implementations of the autocorrelation method, with most systems
leaning toward the larger values of N, For both the covariance and lattice
methods, the choice of section length is governed by several considerations.
Since no windowing is required, there are no real limitations on how small the
section size can be. If the analysis can be restricted to regions within each pitch
period (i.e., a pitch synchronous analysis is performed) then values of N on the
order of 2p have been used successfully. However if such small values of N are
used and if a pitch pulse occurs within the analysis interval, unsatisfactory
results are obtained. Thus in most practical systems in which it is not possible
to perform a pitch synchronous analysis, values of N for the covariance and lat-
tice methods are comparable to those for the autocorrelation method. In the
next few sections we show results from experimental evaluations of the effects
of section length, and section position on the prediction error for the covariance
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and autocorrelation methods.® We first digress into a brief discussion of the
LPC error signal and the normalized error derived from it.

8.5"The Prediction Error Signal

A by-product of the LPC analysis is the generation of the error signal, e(n),
defined as

e(n) =s(n) — i a,s(n—k) = Gu(n) (8.97)
k=1

To the extent that the actual speech signal is generated by a system that is well
modelled by a time-varying linear predictor of order p, then e(n) is equally a
good approximation to the excitation source. Based on this reasoning, it is
expected that the prediction error will be large (for voiced speech) at the begin-
ning of each pitch period. Thus the pitch period can be determined by detect-
ing the positions of the samples of e(n) which are large, and defining the
period as the difference between pairs of samples of e(n) which exceed a rea-
sonable threshold. Alternatively the pitch period can be estimated by perform-
ing an autocorrelation analysis on e(n) and detecting the largest peak in the

- S——
TS TR TR TH W I T
T TR T L T
N

Hichohochrch Jsohabnhen

Fig. 8.5 Examples of signal (differentiated) and prediction error for
vowels (i, e, a, o, u, y). (After Strube [14).)

SInvestigations by Rabiner et al. [16] have found that a good choice of parameters for the lattice
method are essentially those used for the covariance method. Thus we do not differentiate
between these methods in the following sections.
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Fig. 8.6 Typical signals and spectra for LPC covariance method for a
male speaker. (After Rabiner et al. [16].)

appropriate range. Another way of interpreting why the error signal is valuable
for pitch detection is the observation that the spectrum of the error signal is
approximately flat; thus the effects of the formants have been eliminated in the
error signal.

To illustrate the nature of the error signal Figure 8.5 (due to Strube [14])
shows a series of sections of the waveforms for several vowels, and the
corresponding prediction error signals. For all these simple vowel sounds the
error signal exhibits sharp pulses at intervals corresponding to the pitch periods
of these vowels.

Some further examples of LPC error signals are given in Figures 8.6-8.9.
In each of these figures part (a) shows the section of speech being analyzed,
part (b) shows the resulting prediction error signal, part (c) shows the log mag-
nitude of the DFT of the signal in part (a) (obtained via FFT computation)
with the log magnitude of H(e/“") superimposed, and part (d) shows the log
magnitude spectrum of the error signal (obtained via FFT computation). Fig-
ures 8.6 and 8.7 are for 20 msec of an /i/ vowel (as in we) spoken by a male
speaker (LRR) using the covariance and autocorrelation methods (with a Ham-
ming window) respectively. The error signal is seen to be sharply peaked at the
beginning of each pitch period, and the error spectrum is fairly flat, showing a
comb effect due to the effects of the pitch period. Note the rather large predic-

422

tion error at the beginning of the segment in Fig. 8.7 for the autocorrelation
method. This is, of course, due to the fact that we are attempting to predict
the samples of the signal from the zero valued samples outside the interval
0 < m < 199. The tapering effect of the Hamming window is thus not com-
pletely effective in reducing this error.

Figures 8.8 and 8.9 show similar results for 20 msec of an /a/ vowel (as
in father) for a female speaker (SAW). For this speaker approximately 5 com-
plete pitch periods are contained within the analysis interval. Thus in Fig. 8.8
the error signal displays a large number of sharp peaks during the analysis inter-
val for the covariance method of analysis. However, the effect of the Hamming
window in the autocorrelation method of Fig. 8.9 is to taper the pitch pulses
near the ends of the analysis interval; hence the peaks in the error signal due to
the pitch pulses are likewise tapered.

The behavior of the error signal shown in the preceding figures would
lead one to believe that it would, by itself, be a natural candidate for a signal
from which pitch could simply be detected. Unfortunately the situation is not
quite so clear for other examples of voiced speech. Makhoul and Wolf [5] have

LRR-IY VOWEL

M=14 N=200
AUTOCORRELATION METHOD
HAMMING WINDOW

4485

A /\\W /V\u/\ [\ @
\’\’\/\[ V\M[ SIGNAL
-4944
0 TIME (SAMPLES) 199
1373
(b)
ERROR
/ -1373
/ 0 TIME (SAMPLES) 199
102
SIGNAL SPECTRUM
LOG
(db) (¢
22
0 FREQUENCY SKHz
76
LOG
(db) WW\//\WM)
a1 ERROR SPECTRUM
o] 5KHz

FREQUENCY

Fig. 8.7 Typical signals and spectra for LPC autocorrelation method for a
male speaker. (After Rabiner et al. [16].)
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Fig. 8.8 Typical signals and spectra for LPC covariance method for a
female speaker. (After Rabiner et al. [16].)

S5KHz

shown that for sounds which are not rich in harmonic structure, e.g., liquids
like , /, or nasals such as m, n, the peaks in the error signal are not always very
sharp or distinct. Additionally at the junctions between voiced and unvoiced
sounds, the pitch markers in the error signal often essentially disappear.

In summary, although the error signal e (n) appears to be an ideal candi-
date for a pitch detector, it has its own difficulties in locating pitch markers for
a wide variety of voiced sounds, and thus cannot be relied on exclusively for
this purpose. In Section 8.10.1 we shall discuss one pitch detection scheme
based upon the prediction error signal.

8.5.1 Alternative expressions
for the normalized mean-squared error

The normalized mean squared prediction error for the autocorrelation
method is defined as
N+p—1
ﬁ e2(m)

Vpm 3 ———— (8.982)

S 52m)

m=0
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where e,(m) is the output of the prediction error filter corresponding to the
speech segment s,(m) located at time index n. For the covariance method, the
corresponding definition is

N-1
Y eX(m)

V=28 (8.98b)
Y s m)

m=0

Defining ay = —1, the prediction error sequence can be expressed as

e(m) == 3 aysn(m—k) (8.99)
k=0
Substituting Eq. (8.99) into Eq. (8.98) and using Eq. (8.13) it follows that
- aGJ) (I,J)
1

SAW - AH VOWEL

M= 14  N=200
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Fig. 8.9 Typical signalis and spectra for LPC autocorrelation method for a
female speaker. (After Rabiner et al. [16].)
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and substituting Eq. (8.14) into (8.100) gives

$,0,1) (
=— f— 8.100b)
Va é)"‘ 6,(0,0)
Still another expression for ¥, was obtained in the Durbin algorithm; i.e.,
V=11 -k (8.101)

im1
The above expressions are not all equivalent and are subject to interpretation in
terms of the details of a given linear predictive method. For example, Eq.
(8.101), being based upon the Durbin algorithm is valid only for the autocgr.re-
lation and lattice methods. Also, since the lattice method does not explicitly
require the computation of the correlation functions Egs. (8.10051) and (8.100b)
do not apply directly to the lattice method. Table 8.2 summarizes the abov_e
expressions for normalized mean-squared error and indicates the scope of vali-
dity of each expression. (Note that the subscript n and the superscript p have
been eliminated in the table for simplicity.)

Table 8.2 Expressions for the Normalized Error

Covariance Autocorrelation Lattice
Method Method Method
YeXm)
Vo e Valid Valid* Valid
Y s3(m)
m
- 6D v Valid** Not Valid
VeLlegoo | Ve
- 80 Valid Valid** Not Valid
V=L 300
V=TI 0-&» Not Valid Valid Valid

*This expression is computed using the windowed signal and upper limitis N — 1 + p.
**In these cases ¢(i,j) = R(i—j).

8.5.2 Experimental evaluation of values for the LPC parameters

To provide guidelines to aid in the choice of the LPC parameters p fmd N
for practical implementations, Chandra and Lin [15] performed a sen;s.of
investigations in which they plotted the normalized mean-squared predlcn‘on
error, for a p order predictor versus the relevant parameter for the following
conditions:

1. The covariance method and the autocorrelation method
2. Synthetic vowel and natural speech )
3. Pitch synchronous and pitch asynchronous analysis

where Vis defined as in Table 8.2. Figures 8.10-8.15 show the results obtained
by Chandra and Lin for the above conditions [15]}.
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Fig. 8.10 Variation of prediction error with predictor order, p, for voiced
section of a synthetic vowel—pitch synchronous analysis. (After Chan-
dra and Lin {15].)

Figure 8.10 shows the variation of V with the order of the linear predic-
tor, p, for a section of a synthetic vowel (/i/ in heed) whose pitch period was
83 samples. The analysis section length N was 60 samples beginning at the
beginning of a pitch period — i.e., these results are for a pitch synchronous
analysis. For the covariance method the prediction error decreases monotoni-
cally to 0 at p = 11 which was the order of the system used to create the syn-
thetic speech. For the autocorrelation method the prediction remains at a value
of about 0.1 for values of p greater than about 7. This behavior is due to the
fact that for the autocorrelation method with short windows (N = 60) the pred-
iction errdr at the beginning of the segment is an appreciable part of the total
mean-sqt{ared error. This is, of course, not the case with the covariance

method, where speech samples from outside the averaging interval are available
for predicX’gr;

Figure 8.11 shows the variation of ¥ with the order of the linear predictor
for a pitch asynchronous analysis for the same section of speech as used in Fig.
8.10. This time, however, the section length was N = 120 samples. For this
case the covariance and autocorrelation methods yielded nearly identical values
of V for different values of p. Further the values of V¥ decreased monotonically
to a value of about 0.1 near p = 11. Thus in the case of an asynchronous LPC

analysis, at least for the example of a synthetic vowel, both analysis methods
appear to yield similar results.

Figure 8.12 shows the variation of ¥ with N (section length) for a linear
predictor of order 12 for the synthetic speech section. As anticipated, for
values of N below the pitch period (83 samples) the covariance method gives
significantly smaller values of V than the autocorrelation method. For values of
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Fig. 8.11 Variation of prediction error with predictor order, p, for voiced

section of a synthetic vowel—pitch asynchronous analysis. (After Chan-

dra and Lin [15].)
V at or near multiples of the pitch period, the values of V show fairly large
jumps due to the large prediction error when a pitch pulse is used to excite the
system. However, for most values of N on the order of 2 or more pitch
periods, both analysis methods yield comparable values of V.

Figures 8.13:8.15 show a similar set of figures for the case of a section of
natural voiced speech. Figure 8.13 shows that the normalized error for the

0.25
Synthetic Vowel -heed
Pitch Period ~83 Samples
Sampling Frequency -10 kHz
020 | Prediction Order -p=12

. A - Autocorrelation Method
l o -Covariance Method

015

0.10
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i

0.05 + i’
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- 41 L L
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030 60 90 120 150 180 210 240
FRAME SIZE,N (SAMPLES)

Fig. 8.12 Variation of prediction error with section length, N, for a
voiced section of synthetic speech. (After Chandra and Lin [15}.)
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Fig. 8.13 Variation of prediction error with predictor order, p, for a
voiced section of a natural vowel—pitch synchronous analysis. (After
Chandra and Lin [15).)

covariance method is significantly lower than the normalized error for the auto-
correlation method for a pitch synchronous analysis, whereas Figure 8.14 shows
that for a pitch asynchronous analysis, the values of ¥ are comparable. Finally
Figure 8.15 shows how the values of V vary as N varies for an analysis with
p» = 12. It can be seen that in the region of pitch pulse occurrences, the value
of V for the autocorrelation analysis jumps significantly whereas the value of V
for the covariance analysis changes only a small amount at these points. Also
for large values of N it is seen that the curves of V for the two methods
approach each other.

8.5.3 Variations of the normalized error with frame position

{% have already shown some properties of the LPC normalized error in

ection 8.5.2 — namely its variation with section length N, and with the
number of poles in the analysis, p. There remains one other major source of
variability of V—namely its variation with respect to the position of the analysis
frame. To demonstrate this variability Figure 8.16 shows plots of the results of
a sample-by-sample (i.e. the window is moved one sample at a time) LPC
analysis of 40 msec of the vowel sound /i/, spoken by a male speaker (LRR).
Figure 8.16a shows the signal energy (computed at a 10 kHz rate); Fig. 8.16b
shows the normalized mean-squared error (V) (again computed at a 10 kHz
rate) for a 14 pole (p=14) analysis with a 20 msec (N=200) frame size for the
covariance method; Fig. 8.16c shows the normalized mean-squared error for the
autocorrelation method using a Hamming window; and Fig. 8.16d shows the
normalized mean-squared error for the autocorrelation method using a rec-
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Fig. 8.14 Variation of prediction error with predictor order for a voiced

section of a natural vowel—pitch asynchronous analysis. (After Chandra
and Lin [15].)

tangular window. The average pitch period for this speaker was 84 samples (8.4
msec); thus about 2.5 pitch periods were contained within the 20 msec frame.
For the covariance method the normalized error shows a substantial variation
with the position of the analysis frame (i.e., the error is not a smooth function
of time). This effect is essentially due to the large peaks in the error signal,
e(n), at the beginning of each pitch period as discussed previously. Thus, in
this example, when the analysis frame is positioned to encompass 3 sets of
error peaks, the normalized error is much larger than when only 2 sets of error
peaks are included in the analysis interval. This accounts for the normalized
error showing a fairly large discrete jump in level as each new error peak is
included in the analysis frame. Each discrete jump of the normalized error is
followed by a gradual tapering off and flattening of the normalized error. The
exact detailed behavior of the normalized error between discrete jumps depends
on details of the signal and the analysis method.

Figures 8.16c and 8.16d show somewhat different behavior of the LPC
normalized error for the autocorrelation analysis method using a Hamming win-
dow, and a rectangular window respectively. As seen in this figure the normal-
ized mean-squared error shows a substantial amount of high frequency varia-
tion, as well as a small amount of low frequency and pitch synchronous varia-
tion. The high frequency variation is due primarily to the error signal for the
first p samples in which the signal is not linearly predictable. The magnitude of
this variation is considerably smaller for the analysis using the Hamming win-
dow than for the analysis with the rectangular window due to the tapering of
the Hamming window at the ends of the analysis window. Another component
of the high frequency variation of the normalized error is related to the position
of the analysis frame with respect to pitch pulses as discussed previously for the
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covariance method. However, this component of the error is much less a factor
for the autocorrelation analysis than for the covariance method — especially in
the case when a Hamming window is used since new pitch pulses which enter
the analysis frame are tapered by the window.

Variations of the type shown in Fig. 8.16 have been found typical for
most vowel sounds [16]. The variability with the analysis frame position can be
reduced using allpass filtering and spectral pre-emphasis of the signal prior to
linear predictive analysis [16].

8.6 Frequency Domain Interpretations
of Linear Predictive Analysis

Up to this point we have discussed linear predictive methods mainly in terms of
difference equations and correlation functions; i.e., in terms of time domain
representations. However, we pointed out at the beginning that the coefficients
of the linear predictor are assumed to be the coefficients of the denominator of
the system function that models the combined effects of vocal tract response,
glottal wave shape, and radiation. Thus, given the set of predictor coefficients
we can find the frequency response of the model for speech production simply
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Fig. 8.15 Variation of prediction error with section length for a voiced
section of natural speech. (After Chandra and Lin [15].)
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Fig. 8.16 Prediction error sequences for 200 samples of speech for three
LPC systems. (After Rabiner et al. [16].)
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by evaluating H(z) for z = e’“i.e.,

G __G
1- ﬁ o e Iuk A(e?)
k=1

If we plot H(e’*) as a function of frequency’ we should expect to see peaks at
the formant frequencies just as we have in spectral representations discussed in
previous chapters. Thus linear predictive analysis can be viewed as a method of
short-time spectrum estimation. Indeed such techniques are widely applied out-
side the speech processing field for just this purpose [12]. In this section we
shall present a frequency domain interpretation of the mean-squared prediction
error and compare linear predictive techniques to other methods of estimating
frequency domain representations of speech.

H(e/) =

(8.102)

8.6.1 Frequency domain interpretation
of mean-squared prediction error

Consider a set of predictor coefficients obtained using the autocorrelation

method. In this case, the mean-squared prediction error can be expressed in
the time-domain as

E,= Nf_l eX(m) (8.103a)

m=0

or in the frequency domain (using Parseval’s Theorem) as
E= o [ 18,0249 0 (8.103b)
n In J n .

where S,(e/*) is the Fourier transform of the segment of speech s,(m), and
A(ed¥) is

A =1— 3 ageiok (8.104)
k=1
If we recall that
; G
H(e/) = ——— .105
(e/¥) 1™ (8.105)

thenEq. (8.103b) can be expressed as

|Sa(e?9)]?

- G T IS, (eM)]
E, = o= i B % (8..06)

Since the integrand in Eq. (8.106) is positive it follows that minimizing E,is
equivalent to minimizing the integral of the ratio of the energy spectrum of the
speech segment to the magnitude squared of the frequency response of the
linear system in the model for speech production.

"See Problem 8.2 for a consideration of how to evaluate H (e/*) using the FFT.

433



In Section 8.2 it was shown that the autocorrelation function, R,(m), of
the segment of speech, s,(m), and the autocorrelation function, R (m), of the
impulse response, h(m), corresponding to the system function, H(z), are
equal for the first (p+1) values. Thus, as p — oo the respective autocorrelation
functions are equal for all values and therefore

lim |H(e/9)|? =[S, (e/)|? (8.107)
o

This implies that if p is large enough we can approximate the signal spectrum
with arbitrarily small error with the all-pole model, H(z).

It is interesting to note that even though Eq. (8.107) says that as p — oo,
|[H(e/)|?=|S,(e/*}}% it is not necessarily (or generally) true that
H(e/*) = §,(e/) — ie., the frequency response of the model need not equal
the Fourier transform of the signal. This is so because S,(¢/“) need not be
minimum phase, whereas H(e/“) is required to be minimum phase since it is
the transfer function of an all-pole filter with poles inside the unit circle.

To illustrate the nature of the spectral modelling capability of linear
predictive spectra, Fig. 8.17 (due to Makhoul [7]) shows a comparison between
20 log ol H(e/*)| and 20 logo|S,(e/“)]. The signal spectrum was obtained by
an FFT analysis of a 20 msec section of speech (sampled at 20 kHz), weighted
by a Hamming window as discussed in Chapter 6. The speech sound was the
vowel /ae/. The LPC spectrum was that of a 28-pole predictor (p=28)
obtained by the autocorrelation method [2]. The harmonic structure of the sig-
nal spectrum is clearly seen in this figure. A significant feature of the LPC
spectral modelling can also be seen in this figure. This is the fact that the LPC
spectrum matches the signal spectrum much more closely in the regions of
large signal energy (i.e., near the spectrum peaks) than near the regions of low
signal energy (i.e., near the spectral valleys). This is to be expected in view of
Eq. (8.106) since regions where |S,(e/®)| > |H(e/*)| contribute more to the
total error than regions where |S,(e/“)| < |H(e/*)|. Thus the LPC speciral
error criterion favors a good fit near the spectral peaks, whereas the fit near the
spectral valleys is nowhere near as good.
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Fig. 8.17 28 pole fit to an FFT signal spectrum. (After Makhoul [17].)
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Fig. 8.18 Spectra for /a/ vowel sampled at 6 kHz for several values of
predictor order p.

The above discussion suggests that the order p of the linear pred.tive
analysis can effectively control the degree of smoothness of the resulting spec-
trum. This is illustrated in Fig. 8.18 which shows the input speech segment,
the Fourier transform of that segment and linear predictive spectra for various
orders. It is clear that as p increases, more of the details of the spectrum are
preserved. Since our objective is to obtain a representation of only the spectral
effects of the glottal pulse, vocal tract, and radiation, it is clear that we should

435



choose p as discussed before so that the formant resonances and the general
spectrum shape are preserved.

It should be pointed out that we have assumed in this discussion that the
predictor parameters were computed using the autocorrelation method. This
was necessary because only in this case is the Fourier transform of the short-
time autocorrelation function equal to the magnitude squared of the short-time
Fourier transform of the signal. However this does not preclude the use of H
(e/*) as a spectrum estimate even if the predictor coefficients are estimated by
the covariance method.

8.6.2 Comparison to other spectrum analysis methods

We have already discussed methods of obtaining the short-time spectrum
of speech in Chapters 6 and 7. It is instructive to compare these methods with
the spectrum obtained by linear predictive analysis.

As an example, Fig. 8.19 (due to Zue [10]) shows four log spectra of a
section of the synthetic vowel /a/. The first two spectra were obtained using
the short-time spectrum method discussed in Chapter 6. For the first spec-
trum, a section of 512 samples (51.2 msec) was windowed, and then
transformed (using a 512 point FFT) to give the relatively narrow band spectral
analysis shown at the top of Fig. 8.19. In this spectrum the individual harmon-
ics of the excitation are clearly in evidence due to the relatively long duration
of the window. For the second spectrum the analysis duration was decreased to
128 samples (12.8 msec) leading to a wideband spectral analysis. Now the exci-
tation harmonics are not resolved; instead the overall spectral envelope can be
seen. Although the formant frequencies are in evidence in this spectrum, it is
not a simple matter to reliably locate or identify them. The third spectrum was
obtained by homomorphic smoothing as discussed in Chapter 7. The
unsmoothed spectrum was obtained from a 300 sample (30 msec) section using
the FFT method described above. The smoothed spectrum shown in this figure
was obtained by linear smoothing of the log spectrum. For this example the
individual formants are well resolved and are easily measured from the
smoothed spectrum using a simple peak picker. However, the bandwidths of
the formants are not easily obtained from the homomorphically smoothed spec-
trum due to all the smoothing processes which have been used in obtaining the
final spectrum. Finally the bottom spectrum is the result of a linear predictive
analysis using p = 12 and a section of N = 128 samples (12.8 msec). A com-
parison of the linear prediction spectrum to the other spectra shows that the
parametric representation appears to represent the formant structure very well
with no extraneous peaks or ripples. This is due to the fact that the linear
predictive model is very good for vowel sounds if the correct order, p, is used.
Since the correct order can be determined knowing the speech bandwidth, the
linear prediction method leads to very good estimates of the spectral properties
due to the glottal pulse, vocal tract and radiation.
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Fig. 8.19 Spectra of synthetic vowel /a/. (Afer Zue {10}.)

Figure 8.20 shows a direct comparison of the spectra of a voiced section
from natural speech obtained by both homomorphic smoothing and linear pred-
iction. Although the formant frequencies are clearly in evidence in both plots,
it can be seen that the LPC spectrum has fewer extraneous peaks than the
homomorphic spectrum. This is because the LPC analysis assumed a value of
» = 12 so that at most 6 resonance peaks could occur. For the homomorphic
spectrum no such restriction existed. As noted above, the spectrum peaks from
the LPC analysis are much narrower than the spectrum peaks from the
homomorphic analysis due to the smoothing of the short-time log spectrum.,
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Fig. 8.20 Comparison of speech spectra obtained by (a) cepstrum
smoothing; and (b) linear prediction.

8.6.3 Selective linear prediction

It is possible to apply the above ideas to a selected portion of the spec-
trum, rather than uniformly over the entire spectral range. This idea has been
called selective linear prediction by Makhoul [8]. The reason this method is of
potential value is that one can model only those regions of the spectrum which
are important to the intended application. For example, a sampling rate of 20
kHz is required in many speech recognition applications to adequately represent
the spectrum of fricatives. For voiced sounds one is generally interested in the
region from 0 to about 4 kHz. For unvoiced sounds the region from 4 kHz to
8 kHz is generally of most importance. Using selective linear prediction the
signal spectrum from 0 to 4 kHz can be modelled by a predictor of order py;
whereas the region from 4 kHz to 8 kHz can be modelled by a different predic-
tor of order p,.

The way in which selective linear prediction is implemented is relatively
straightforward. To model only the frequency region from f = f, to f = fg,
all that is required is a simple linear mapping of the frequency scale such that
f=f4is mapped to f'=0 and f = f5 is mapped to f = o'/27 =05 (ie.,
haif the sampling frequency). The predictor parameters are computed by solv-
ing the predictor equations where the autocorrelation coefficients are obtained
from

"o 1 h jw' jw'i g, 1
R(1)=E—;_£|S,,(e-’ )2 e/v'de (8.108)

Figure 8.21 (due to Makhoul [8]) illustrates the method of selective linear
prediction. The signal spectrum is identical to the one of Fig. 8.17. The region
from 0 to 5 kHz is modelled by a 14-pole predictor (p,;=14), whereas the region
from 5-10 kHz is modelled independently by a 5-pole predictor (p,=5). It can
be seen that at 5 kHz, the model spectra show a discontinuity since there is no
constraint that they agree at any frequency.
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8.6.4 Comparison to analysis-by-synthesis methods

As discussed.in Chapter 6, the error measure which is normally used in
analysis-by-synthesis methods is the log of the ratio of the signal power spec-
trum to the power spectrum of the model, i.e.,

. S Joy 2 2
E={ {log |—(—"l” dw (8.109)

“n |H (™|

Thus for analysis-by-synthesis minimization of £’ is equivalent to minimizing
the mean square error between the two log spectra.

A comparisor} between the error measures used for LPC modelling and
analysis-by-synthesis modelling leads to the following observations:

1. Both error measures are related to the ratio of the signal to model
spectra.

2. Both error measures tend to perform uniformly over the whole fre-
quency range.

3. Both. error measures are suitable to selective error minimization over
specified frequency regions.

4. The error criterion for linear predictive modelling places higher weight
on f;eqt;ency regions where [S,(e/)|2> |H(e/*)|? than when
IS,,(e““?I < |H(e’*)|%, whereas the error criterion for analysis-by-
synthesis places equal weight on both these regions.

. The conclusion which is drawn from these observations is that when deal-
ing Yvth signal spectra which are unsmoothed (as in Figure 8.17) the linear
predictive error criterion yields better spectral matches than the analysis-by-
synthesis method [7]. Furthermore the required computation for the linear
predictive modelling is significantly less than for the analysis-by-synthesis
method. If one is modelling smooth signal spectra (as might be obtained at the
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Fig. _8.21 Appl.ication of selective linear prediction to the signal spectrum
of Fig. 8.17 with a 14-pole fit to the 0-5 kHz region and a 5-pole fit to
the 5-10 kHz region. (After Makhoul [2].)
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Fig. 8.22 (a) Lossless tube model terminated in infinitely long tube: (b)
corresponding signal flow graph for infinite glottal impedance.

output of a filter bank) then both the LPC and analysis-by-syntpesis metho@s
give reasonably good fits to the spectra. In practice the analysis-by-synthesis
method is applied aimost always to this type of signal spectrum.

8.7 Relation of Linear Predictive Analysis to Lossless Tube Models

In Chapter 3 we discussed a model for speech production that consisted of a
concatenation of N lossless acoustic tubes as shown in Fig. 8.22. The reflection
coefficients 7, in Fig. 8.22b are related to the areas of the lossless tubes by

ro= Ak+1 - Ak

T A + A
In Section 3.3.4, the transfer function of such a system was derived st{bject to
the condition that the reflection coefficient at the glottis was rg =1, i.e., the
glottal impedance was assumed to be infinite. In Section 3.3.4, the system
function of a system such as shown in Fig. 8.22 was shown to be

N
H (1+rk)Z_N/2

(8.110)

V(o) = 22—ps (8.111)
where D (z) satisfies the polynomial recursion
Dy(z) =1 (8.112a2)
Di(z) = D, (2) + rz %D, (27D (8.112b)
D(z) = Dp(2) (8.112¢)

All of this is very reminiscent of the discussion of the lattice formulation
in Section 8.3.3. Indeed, there it was showr_l that the polynomial
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L

A@) =1= 3 az* (8.113)
k=1

obtained by linear prediction analysis could be obtained by the recursion

A9@) =1 (8.1142)
AD(2) = AU(2) — k274 G-D(27Y (8.114b)
A@2) = AW(2) (8.114¢c)

where the parameters {k;} were called the PARCOR coefficients. By comparing
Eqgs. (8.112) and (8.114) it is clear that the system function

-G
H() = A(z)

obtained by linear prediction analysis has the same form as the system function
of a lossless tube mode! consisting of p sections. If

(8.115)

ri=—k; (8.116)

then it is clear that
D(z) = 4(2) 8.117)

Using Eq. (8.110) and Eq. (8.116) it is easy to show that the areas of the

equivalent tube model are related to the PARCOR coefficients by

1—k;

1+,

A, (8.118)

i+l

Note that the PARCOR coefficient gives us a ratio between areas of adjacent
sections. Thus the areas of the equivalent tube model are not absolutely deter-
mined and any convenient normalization will produce a tube model with the
same transfer function.

It should be pointed out that the "area function" obtained using Eq.
m\cannot be said to be the area function of the human vocal tract. How-
ever, Wakita [17] has shown that if pre-emphasis is used prior to linear predic-
tive analysis to remove the effects due to the glottal pulse and radiation, then
the resulting area functions are often very similar to vocal tract configurations
that would be used in human speech.

8.8 Relations Between the Various Speech Parameters

Although the set of predictor coefficients, « » 1 £ k < p, is often thought of
as the basic parameter set of the linear predictive analysis, it is straightforward
to transform this set of coefficients to a number of other parameter sets, to
obtain alternative representations of speech. Such alternative representations
often are more convenient for applications of linear predictive analysis. In this
section we discuss how other useful parameter sets can be obtained directly
from LPC coefficients [1,2].
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8.8.1 Roots of the predictor polynomial

Perhaps the simplest alternative to the predictor parameters is the set of
roots of the polynomial

AD =1- ¥ apzt= ] U-z27) (8.119)
k=1 k=1

That is, the roots {z; i=1,2,...,p} are an equivalent representation of 4 (z). If
conversion of the zplane roots to the s-plane is desired, this can be achieved by
setting

s, T

z;=¢" (8.120)
where 5; = o, + jQ, is the s-plane root corresponding to z; in the zplane. If
z; = z;, + jz, then

Q-+ tan—*[ﬁ] (8.121)
T Zir
and

=L 24 5
Ti= 35 log(z2 + z) (8.122)

Equations (8.121) and (8.122) are useful for formant analysis applications of
LPC analysis systems.

8.8.2 Cepstrum

Another alternative to the LPC coefficients is the cepstrum of the impulse
response of the overall LPC system. If the overall LPC system has transfer
function H (z) with impulse response 4(n) and complex cepstrum 4 (n) then it
can be shown that #(n) can be obtained from the recursion

i) = ey + T Eioa,, 1< (8.123)
k=1

where

HG) = 3 hn)z "= (8.124)

G
=0 1- ﬁ akz'k
k=1
8.8.3 Impulse response of the all-pole system

The impulse response, A(n), of the all-pole system with the transfer
function of Eq. (8.124) can be solved for recursively from the LPC coefficients
as

h(n) = 3 aeh(n—k) + Gs(n)  0< n (8.125)
k=1
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where 4 (n) is assumed (by definition) to be 0 for n < 0, and G is the ampli-
tude of the excitation.

8.8.4 Autocorrelation of the impulse response

As discussed in Section 8.2, it is easily shown (see Problem 8.1) that the
autocorrelation function of impulse response of the filter defined as

RG) = 3 h(m)h(i—i) = R(=i) (8.126)

satisfies the relations "~
R =¥ a,R(imkD) 1< (8.127)

and -
RO = kf:l @R (k) + G? (8.128)

Equations (8.127) and (8.128) can be used to determine & (i) from the predic-

- tor coefficients and vice versa.

8.8.5 Autocorrelation coefficients of the predictor polynomial

Corresponding to the predictor polynomial, or inverse filter,

A@Z) =1- kf;l gz (8.129)
is the impulse response of the inverse filter
\, a(n) =8(n) - kﬁl a,8(n—k)
The autocorrelation function of the inverse filter impulse response is
R = kiio alalk+)  0<i<p (8.130)

8.8.6 PARCOR coefficients

For the autocorrelation method the predictor coefficients may be obtained
from the PARCOR coefficients using the recursion

a =k, (8.131a)
g/ =gV - kgl 1<t (8.131b)
with Egs. ('8.131a) and (8.131b) being solved for i = 1,2, . .. , p and with the
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final set being defined as ‘
a;=a® 1<j<p (8.131¢)

Similarly the set of PARCORS may be obtained from the set of LPC
coefficients using a backward recursion of the form

ki=a® (8.132a)
() + D, )
a/) = “-/_1"_"_(_2_‘_’_'1 1<j<i~1 (8.132b)
where i goes from p, to p—1, down to 1 and initially we set
aP=0a, 1<;<p (8.132¢)

8.8.7 Log area ratio coefficients

An important set of equivalent parameters which can be derived from the
PARCOR parameters is the log area ratio parameters defined as

1~k
BT+ %,

A

A

g =log 1€<igyp (8.133)

The g, parameters are equal to the log of the ratio of the areas of adjacent sec-
tions of a lossless tube equivalent of the vocal tract having the same transfer
function as the linear predictive model as discussed in Section 8.7. The g;
parameters have also been found to be especially appropriate for quantization
by Makhoul [2] and others [1] because of the relatively flat spectral sensitivity
of the g/s.

The k; parameters may be directly obtained from the g, by the inverse
transformation

8
_1-e"

k,
1+ e%

, 1<i<p (8.134)

8.9 Synthesis of Speech from Linear Predictive Parameters

Speech can be synthesized from the linear predictive analysis parameters in
several different ways. The simplest way is to use a system which is the same
parametric representation as was used in the analysis. Figure 8.23 shows a
block diagram of such a speech synthesizer. The time varying control parame-
ters needed by the synthesizer are the pitch period, a voiced/unvoiced switch,
the gain or rms speech value, and the p predictor coefficients. The impulse
generator acts as the excitation source for voiced sounds producing a pulse of
unit amplitude at the beginning of each pitch period. The white noise generator
acts as the excitation source for unvoiced sounds producing uncorrelated, uni-
formly distributed random samples with unity standard deviation, and zero
mean. The selection between the two sources is made by the voiced/unvoiced

444

PITCH
PERIOD
IMPULSE
GENERATOR VOICED/UNVOICED
CONTROL
G
uln} ()
z—‘

WHITE NOISE =
GENERATOR 77!

a2

%p

Fig. 8.23 Block diagram of linear predictive synthesizer.

control. The gain control G determines the overall amplitude of the excitation.
The synthetic speech samples are determined by

500 = 3 adn—k) + Guln) (8.135)
k=1
A network which realizes Eq. (8.135) is shown in Fig. 8.23. This direct form
network is the most simple and straightforward method for synthesizing speech
from the predictor parameters. A total of p multiplies and p adds are required
to genierate each output sample.

In the synthesis model of Fig. 8.23 the synthesis parameters must be
changed with time. Although the parameters are usually estimated at regular
intervals during regions of voiced speech, the control parameters are changed at
the beginning of each period. For unvoiced speech they are simply changed
once per frame (i.e., every 10 msec for a 100 frame/sec rate). The updating of
control parameters at the beginning of each pitch period (called pitch synchro-
nous synthesis) has been found to be a much more effective synthesis strategy
than the process of updating the parameters once each frame (called asynchro-
nous synthesis). This requires that the control parameters be interpolated to
obtain the values at the beginning of each pitch period. Atal has found that the
pitch and gain parameters should be interpolated geometrically [3] (i.e., linearly
on a log scale); however, due to stability constraints, the predictor parameters
themselves cannot be interpolated. This is due to the fact that interpolation
between two sets of stable predictor coefficients can lead to an unstable interpo-
lated result. One way around this difficulty, according to Atal, is to interpolate
the first p samples of the autocorrelation function of the impulse response of
the filter of Fig. 8.21. Using the relations of Section 8.4, the predictor
coefficients can be obtained from the first p samples of the autocorrelation of
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Fig. 8.24 Equivalent lossless tube models using (a) two multiplier junc-
tions; and (b) one multiplier junction.

the impulse response, and vice versa. Furthermore, the interpolated autocorre-
lation coefficients always lead to a stable filter.®

The synthesizer of Fig. 8.23 has been used in a wide variety of simula-
tions of LPC systems. Its main advantage is its simplicity and ease of imple-
mentation. Its main drawback is that it requires considerable computational
accuracy to synthesize the speech because the structure is basically a direct
form recursive structure which tends to be quite sensitive to changes in the
coefficients. Perhaps the most attractive alternative to synthesis based on the
predictor parameters is the use of the reflection coefficients or the PARCOR
coefficients in a lossless tube equivalent. In other words, this direct form net-
work in Fig. 8.23 can be replaced by a structure such as Fig. 8.22. The advan-
tage of such a structure is that the multipliers are the reflection coefficients,
ri=— k;, which have the property that they are bounded (|k,| < 1), and also
that they can be interpolated directly while maintaining a stable filter. Such
structures are also less sensitive to quantization effects in finite word length
implementations of the synthesizer than the direct form implementation of Fig.
8.23.

0-300Hz 51

VOICED
{n)

';‘I‘"_ﬁgf |—y——)‘AUTOCORRELATION)—>‘ PF:(E::gRHINTERPOLATOR

b UNVOICE

INVERSE
FILTER

ANALYSIS
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FILTER
COEFFICIENTS

Fig. 8.25 Block diagram of the SIFT algorithm for pitch detection.

8Similarly the PARCOR coefficients or the log area ratio coefficients can be interpolated and the
resulting system is guaranteed to be stable if the parameter sets which are being interpolated are
stable.
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It is clear from Fig. 8.22b that to implement a p™ order synthesis filter as
an acoustic tube model requires 4p + 2 multiplications and 2(p—1) additions
per sample as compared to p multiplications and p additions for the direct form.
In Section 3.3.3 it was shown that the four multiplier junctions in Fig. 8.22 can
be replaced by one and two multiplier junctions at the expense of increased
number of additions. By making the substitutions indicated in Fig. 3.41, the
flow graph of Fig. 8.22b can be transformed into those shown in Fig. 8.24. Fig-
ure 8.24a requires 2p — 1 multiplications and 4p — 1 additions while Fig. 8.24b
requires p multiplications and 3p — 2 additions. In using lossless tube models
for synthesis, the choice of the particular form depends on a variety of factors
so that it is not possible to say that any one form is the most efficient.

8.10 Applications of LPC Parameters

As evidenced in the preceding sections of this chapter, the theory of linear
prediction is highly developed. Based on this theory, and its implications, a
large variety and range of applications of linear predictive analysis to speech
processing has evolved. Schemes have been devised for estimating all the basic
speech parameters from linear predictive analyses. Based on such analyses,
vocoders have been studied extensively, leading to an understanding of the
quantization properties of the various LPC representations. Finally these tech-
niques have been used in many speech processing systems for speaker
verification and identification, speech recognition, speech classification, speech
dereverberation, etc. In the following sections and in Chapter 9 we present
outlines of several representative methods for estimating speech parameters
using linear predictive analysis.

~.

>10.1 Pitch detection using LPC parameters

We have already discussed how the error signal e(n) from the LPC
analysis can, in theory, be used to estimate the pitch period directly. Although
this method will generally be capable of finding the correct period, a somewhat
more sophisticated method of pitch detection was proposed by Markel [19].
This algorithm is called the SIFT (simple inverse filtering tracking) method. A
similar method was proposed by Maksym [20].

Figure 8.25 shows a block diagram of the SIFT algorithm. The input sig-
nal s(n) is lowpass filtered with a cutoff frequency of about 900Hz, and then
the sampling rate (nominally 10 kHz) is reduced to 2 kHz by a decimation pro-
cess (i.e., 4 out of every 5 samples are dropped at the output of the lowpass
filter). The decimated output, x(n), is then analyzed using the autocorrelation
method with a value of p =4 for the filter order. A fourth order filter is
sufficient to model the signal spectrum in the frequency range 0-1 kHz because
there will generally be only 1-2 formants in this range. The signal x(n) is then
inverse filtered to give y{(n), a signal with an approximately flat spectrum.®

9The output y(n) is simply the prediction error for the fourth order predictor.
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Fig. 8.26 Typical signals from the SIFT algorithm. (After Markel [19].)

Thus the purpose of the linear predictive analysis is to spectraily flatten the
input signal, similar to the clipping methods discussed in Chapter 4. The
short-time autocorrelation of the inverse filtered signal is computed and the
largest peak in the appropriate range is chosen as the pitch period. To obtain
additional resolution in the value of the pitch period, the autocorrelation func-
tion is interpolated in the region of the maximum value. An unvoiced
classification is chosen when the level of the autocorrelation peak (suitably nor-
malized) falls below a given threshold.

Figure 8.26 (due to Markel [19]) illustrates some typical waveforms
obtained at several points in the analysis. Figure 8.26a shows a section of the
input waveform being analyzed; Fig. 8.26b shows the input spectrum, and the
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reciprocal of the spectrum of the inverse filter. For this example there appears
to be a single formant in the range of 250 Hz. Figure 8.26c shows the spec-
trum of the signal at the output of the inverse filter, whereas Fig. 8.26d shows
the time waveform at the output of the inverse filter. Finally Fig. 8.26e shows
the normalized autocorrelation of the signal at the output of the inverse filter,
A pitch period of about 8 msec is clearly in evidence.
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Fig. 8.27 (a) Spectrogram of original speech; (b) center frequencies of
complex pole locations for 12 order linear predictive analysis. (After
Atal and Hanauer [3].)
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The SIFT algorithm uses the linear predictive analysis to provide a spec-
trally flattened signal to facilitate pitch detection. To the extent that this spec-
tral flattening is successful, the method appears to be a reasonably good one for
pitch analysis. However, for high pitched speakers (such as children) the spec-
tral flattening is generally unsuccessful due to the lack of more than one pitch
harmonic in the band from 0 to 900 Hz (especially for telephone line inputs).
For such speakers and transmission conditions, other pitch detection methods
may be more successful.

8.10.2 Formant analysis using LPC parameters [21-23]

Linear predictive analysis of speech has several advantages, and some
disadvantages when applied to the problem of estimating the formants for
voiced sections of speech. Formants can be estimated from the predictor
parameters in one of two ways. The most direct way is to factor the predictor
polynomial and, based on the roots obtained, try to decide which are formants,
and which correspond to spectral shaping poles {21,22]). The alternative way of
estimating formants is to obtain the spectrum, and choose the formants by a
peak picking method similar to the one discussed in Chapter 7 {23].

A distinct advantage inherent in the linear predictive method of formant
analysis is that the formant center frequency and bandwidth can be determined
accurately by factoring the predictor polynomial. Since the predictor order p is
chosen a priori, the maximum possible number of complex conjugate poles
which can be obtained is p/2. Thus the labelling problem inherent in deciding
which poles correspond to which formants is less complicated for the LPC
method since there are generally fewer poles to choose from than for compar-
able methods of obtaining the spectrum such as cepstral smoothing. Finally
extraneous poles are generally easily isolated in the LPC analysis since their
bandwidths are often very large, compared to what one would expect for
bandwidths typical of speech formants. Figure 8.27 shows an example that
illustrates that the pole locations do indeed give a good representation of the
formant frequencies [3].

The disadvantage inherent in the LPC method is that an all-pole model is
used to model the speech spectrum. For sounds such as nasals and nasalized
vowels, although the analysis is adequate in terms of its spectral matching capa-
bilities; the physical significance of the roots of the predictor polynomial is
unclear. [t is not clear if the roots correspond to the nasal zeros or the addi-
tional nasal poles, or if they are at all related to the expected resonances of the
vocal tract. Another difficulty with the analysis is that although the bandwidth
of the root is readily determined, it is generally not clear how it is related to the
actual formant bandwidth. This is because the bandwidth of the root has been
shown to be sensitive to the frame duration, frame position, and method of
analysis.

With these advantages and disadvantages in mind, several methods have
been proposed for estimating formants from LPC derived spectra using peak
picking methods, and from the predictor polynomial by factoring methods.

450

s(n) LPC | $
ANALYZER CODER CHANNEL ~—IL DECODER [—»{ LPC SYNTHESIZER |—'L
PITCH '
DETECTOR !
— |

TRANSMITTER CHANNEL RECEIVER

RECTANGULAR WINDOW

Fig. 8.28 Block diagram of LPC vocoder.

Once the candidates for the formants have been chosen, the techniques used to
label these candidates — i.e., the assigning of a candidate to a particular for-
mant, are similar to those used for any other analysis method. These include
reliance on formant continuity, a need for spectral pre-emphasis to minimize
the possibility of close formants merging, and the use of an off the unit circle
contour for evaluating the LPC spectrum thereby sharpening the spectral peaks.
Discussion of the various methods is given by Markel [21,22], Atal (3],
Makhoul and Wolf {5], and McCandless [23].

8.10.3 An LPC vocoder — quantization considerations [24-25}

One of the most important applications of linear predictive analysis has
been the area of low bit rate encoding of speech for transmission (the LPC
vocoder) and storage (for computer voiced response systems). Figure 8.28
shows a block diagram of an LPC vocoder. The vocoder consists of a
itter which performs the LPC analysis and pitch detection, and then
codes the parameters for transmission, a channel over which the parameters are
sent, and a receiver which decodes the parameters and synthesizes the output
speech from them. We have already discussed both the analyzer and the syn-
thesizer. We assume, for simplicity, that the channel is an error free transmis-
sion medium. Thus in this section we look at the coder and decoder to see
which set of parameters is most appropriate for encoding at a given bit rate.

The basic LPC analysis parameters are the set of p predictor coefficients,
the pitch period, a voiced/unvoiced parameter, and the gain parameter. Tech-
niques for properly coding pitch, voiced/unvoiced switch, and the gain are fairly
well understood. For the pitch period 6 bit quantization is adequate; for the
voiced/unvoiced switch, 1 bit is required; and for the gain a total of about §
bits distributed on a logarithmic scale are sufficient [3].

Although one could consider direct quantization of the predictor
coefficients, this approach is not recommended because, to ensure stability of
the predictor polynomial, a relatively high accuracy (8-10 bits per coefficient) is
required. The reason for this is that small changes in the predictor coefficients
can lead to relatively large changes in the pole positions. Thus direct quantiza-
tion of the predictor coefficients is generally avoided.

' This leavgs open the question as to an appropriate parameter set for cod-
ing and transmission. Among the proposed parameter sets the most reasonable

451



candidates are the predictor polynomial roots, and the set of reflection
coefficients. The predictor polynomial roots can readily be quantized in a
manner which guarantees that the resulting polynomial is stable. This is
because roots inside the unit circle guarantee stability of the predictor polyno-
mial. Using this approach Atal [3] has found 5 bits per root (i.e., 5 bits for the
center frequency and 5 bits for the bandwidth) are adequate to preserve the
quality of the synthesized speech so as to make it essentially indistinguishable
from speech synthesized from the unquantized parameters.

Using such a coding scheme, the overall bit rate for transmission or
storage is 72-F; bits per second where F, is the number of frames per second
which are stored or transmitted. Typical values for F; are 100, 67, and 33 giv-
ing bit rates of 7200, 4800, and 2400 bits per second respectively.

Another interesting parameter set which can be easily quantized and for
which stability can be guaranteed is the set of PARCOR coefficients, k.. The
stability condition on the k/s is |k;| < 1 which is simple to preserve under
quantization. Makhoul and Viswanathan [25] have found that the distribution
of the reflection coefficients is highly skewed; thus a transformation of these
parameters is required to optimally allocate the fixed number of bits in a rea-
sonable manner. Using a spectral sensitivity measure, Makhoul and
Viswanathan [25] found the optimal transformation to be of the form

Ain
A4

!

1+k;

g = flk) =log = log 1<ig<yp (8.136)

where A, is the area function of a lossless tube representation of the vocal tract.
Thus the optimal parameter for linear encoding is the logarithm of the ratio of
areas of a lossless tube representation of the vocal tract. It is easily seen that
Eq. (8.136) maps the region —1 < k; €1 to —o £ g; € oo, Using this
transformation Atal [27] found that the coefficients g, had a fairly uniform
amplitude distribution, and low inter-parameter correlations; therefore these
parameters were quite good for digital transmission. With this parameter set a
total of about 5-6 bits per log area ratio is necessary to achieve the same quality
synthetic speech as obtained from the uncoded parameters.

In all the above coding schemes it was assumed the parameters were
being encoded using some type of PCM representation. It has recently been
demonstrated by Sambur [26] that the coding techniques discussed in Chapter §
can be applied directly to the various LPC parameter sets leading to further
decreases in the required bit rates for transmission and storage. Using ADPCM
coding of the predictor parameters, Sambur claims good quality speech with bit
rates on the order of 1000-2000 bits per second.

8.10.4 Voice-excited LPC vocoders [27,28]

We have already shown that the weakest link in most vocoders is accurate
estimation and representation of the excitation function. In Chapter 6 we dis-
cussed some vocoder systems which did not require direct estimation of pitch
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Fig. 8.29 Block diagram of a voice-excited LPC vocoder.

and voiced/unvoiced classification, but instead represented the excitation in
terms of the phase (or phase derivative) of the signal. Another approach to
avoiding direct estimation of excitation parameters for a vocoder is the voice-
excited vocoder. Systems of this type have been studied by Atal et al. [27] and
Weinstein {28]. Figure 8.29 shows a block diagram of a voice-excited LPC
yocoder. There are two distinct transmission paths in this system; one produc-
ing a low frequency band of the direct signal, one producing the normal
vocoder parameters (e.g., LPC coefficients, spectral magnitudes, etc.). The low
frequency band, which can be coded using any of the methods described in
Chapter $, is used to generate the excitation signal for the synthesizer by an
appropriate combination of nonlinear distortion and spectral flattening. The
this? procedure is effective is that the low frequency band contains all the

ormation about the excitation — i.e., it is periodic with the correct
period for vgiced speech, and it is noise-like for unvoiced speech. Thus, using
such a schemie to generate the excitation eliminates the need for methods for
estimating pitch, and voiced/unvoiced classification. However, this method has
the disadvantage that additional information must be transmitted over the chan-
nel to accurately describe the low frequency band of the signal; thus voice-
excited vocoders generally require somewhat higher bit rates than conventional
vocoders. For example a voice-excited LPC vocoder requires on the order of
3000-4000 bps or about 1000-2000 bps more than the conventional LPC
vocoder described in the previous section. The benefit obtained from the
higher bit rates is an increased uniformity in the speech quality for different
speakers and transmission conditions, due to the elimination of the pitch and
voiced/unvoiced detector. The details of implementation of voice excited LPC
vocoders are given by Atal et al. [27] and Weinstein [28].

8.11 Summary

In this chapter we have studied the technique of linear prediction of speech.
We have primarily focused on the formulations which provide the most insight
}nto the modeling of the process of speech production. We have discussed the
issues involved with implementing these systems and have tried to compare the
similarities and differences between the basic methods whenever possible.
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PROBLEMS
Consider the difference equation
hin) = k}fl oy h(n—k) + Go(n) .
The autocorrelation function of #(n) is defined as

R(m) = i h(n)h(n+m)

n=0
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(a) Show that R(m) = R{~m)
(b) By substituting the difference equation into the expression for
R (—m), show that

Rim) =¥ a,R(m—k]) m=12,...,p
k=1
8.2 The system function H(z) evaluated at N equally spaced points on the
unit circle is
27
2k
He' VY G 0Kk N-1

= 2w
—j=—kn
1 - f ae N

n=1 P

J=5k
Describe a procedure for using an FFT algorithm to evaluate H(e ¥ ).

8.3 Equation (8.30) can be used to reduce the amount of computation
required to obtain the covariance matrix in the covariance method.
(@) Using the definition of ¢ ,(i,k) in the covariance method, show that

¢ (i+Lk+1) = ¢,(ik) + 5,(=i-D)s,(—k-1) — 5,(N—1—i)s,(N-1~k)

Suppose that ¢,(;,0) is computed for i =0,1,2, ..., p

(b) Show that the elements on the main diagonal can be computed
recursively starting with ¢,(0,0); i.e., obtain a recurrence formula
for ¢, ().

(c) Show that the elements on the lower diagonals can also be computed
recursively beginning with ¢,(i,0).

(d) How can the elements on the upper diagonal be obtained?

8.4 Linear prediction can be viewed as an optimal method of estimating a
linear system, based on a certain set of assumptions. Figure P8.4 shows

e —

i e(n) |

! i

: t
m‘—) hin) win) : y(n)

! i

| 1

\ |

b o e J

Fig. P8.4

another way in which an estimate of a linear system can be made.
Assume that we can observe both x(n) and y(n), and that e(n) is a
white Gaussian noise of zero mean, and variance ch, and e(n) is statisti-
cally independent of x(n). An estimate of the impulse response of the
linear system is desired such that the squared error

€= E[G(n)—h(n)*x(n)?

is minimized, where 2 (n), 0 < n < M — 1 is the estimate of 4 {n).
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8.5

8.6

(a) Determine a set of linear equations for 4(n) in terms of the auto-
correlation function of x(n) and the cross-correlation function
between y(n) and x(n).

(b) How would you implement a solution to the set of Eqs. derived in
part (a)? How is this related to the LPC method discussed in this
chapter?

(c) Derive an expression for €, the minimum mean squared error.

In deriving the lattice formulation, the /" order prediction error filter was
defined as

v i
AWz =1- Y afzk
k=1

The predictor coefficients sa'tisfy
afl=afi— gl 1 <jgi-1
ai(’) =k;

Substitute these expressions for « (7, 1 < j < i into the expression for
A¥(2) to obtain

A(i)(z) = A(i—!)(z) _ k,-z"A (:—1)(2—1) .

;
Given a section of speech, s(n), which is perfectly periodic with Np sam-
ples, then s(n) can be represented as the discrete Fourier series

/'2—" kn - /'E—- kn|

M . .
s(n) =Y [Bke N +Bke
k=1
where M is the number of harmonics of the fundamental (27/Np) which
are present. To spectrally flatten the signal (to aid in pitch detection) we
desire a signal y(n) of the form

2n
M Jo—kn !
yin)y=3% [e Noip g M
k=1

This problem is concerned with a procedure for spectrally flattening a sig-
nal using a combination of LPC and homormorphic processing techniques.
(a) Show that the spectrally flattened signal, y(n), can be expressed as

sin[—— (2M+1)n)

N
y(n) = £ -1
sin[-Z n}
N
Note that this sequence is sketched in Fig. 6.20 for Np=15 and

M=2 '
Now.suppose that an LPC analysis is done on s(n) using a window
that is several pitch periods long and a value p in the LPC analysis
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(b)

(c)

such that p = 2M. From this analysis the system function
1

1 -
T AG)
1 - i akz_k
k=1
is obtained. The denominator can be represented as

A@) =[] A-zzY
k=1

H(z) =

How are the p = 2M zeros of A(z) related to the frequencies

present in s(n)?_ .
The cepstrum, h{n), of the impulse response, #(n), is defined as

the sequence whose z-transform is

H(z) =log H(z) = —log A(2) .
(Note that #(n) can be computed from the a,’s using Eq. (8.123).)
Show that /(n) is related to the zeros of 4 (z) by

ZII
kK oa>o0
n

h(n) =
k=1

Using the results of (a) and (b) argue that
y(n) = nh(n)
is a spectrally flattened signal as desired for pitch detection.

8.7 The "standard” method for obtaining the short-time spectrum of a

section of speech is shown in Fig. P8.7a. A much more sophisti-

win)
x(n} i FFT |
wpomTs > os!

1og Ix (e} ¥4}

{al}
(n) INVERSE | yin) b tog I¥(e! ®4) [ specTraL
L FT sl _

FILTER F og CORRECTION togx(e1 %]
LPC ANALYSIS
25 POLES | «;,0sis25
(b}
Fig. P8.7
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8.8

8.9

cated, and computationally more e'xpensive, method of obtaining
log| X (e/<)| is shown in Fig. P8.7b.

2
(@) Discuss the new method of obtaining log|X (ej i 6! and
explain what the spectral correction network should be.
(b) What are the possible advantages- of this new method? Con-
sider the use of windows, the presence of zeros in the spec-
trum of x(n), etc.

One proposed method for detecting pitch based on LPC processing
is to use the autocorrelation function of the LPC error signal e(n).
Recall that e(n) can be written as

e(n) =5(n) - f a$(n—i)

i=]

and if we define oy = —1, then

e(n) =— ﬁ a$(n—i)
i=0
where the windowed signal $(n) = s(n)w(n) is nonzero for
0<n < N-1,and zero everywhere else.
(a) Show that the autocorrelation function of e(n), R,(m) can be
written in the form

R(m) =% R, (DR (m~1)
J=—o0
where R,(/) is the autocorrelation function of the LPC
coefficients, and R,(/) is the autocorrelation function of §(n).
(b) For a speech sampling rate of 10 kHz, how much computation
(i.e. multiplies and adds) is required to evaluate R,(m) for
values of m in the interval 3 to 15 msec?

We have discussed a number of vocoder systems in this book,
namely

Channel vocoder

Serial formant vocoder
Paraliel formant vocoder
Homomorphic vocoder
Phase vocoder

LPC vocoder

AR bl e

Theoretically speaking, how would you order the quality of the out-
put of these vocoders? Explain your ordering completely. The
issues which should be discussed include dependence on a model,
information lost in analysis, necessity for pitch tracking, etc.
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Fig. P8.10

8.10 Suppose that two talkers are trying to communicate using different
vocoder systems. as depicted in Fig. P8.10. Talker #1 has an LPC
vocoder analyzer of the form discussed in Section 8.10.3 and a
direct-form LPC vocoder synthesizer as discussed in Section 8.9.
Talker #2 has a homomorphic vocoder analyzer and synthesizer as
discussed in Section 7.5.

(a) In order for Talker #1 to communicate with Talker #2, the
LPC representation must be converted to the homomorphic
vocoder representation so that speech can be synthesized using
the homomorphic vocoder synthesizer. Devise a method for
this conversion.

(b) Devise a method of converting from the homomorphic
representation to the LPC representation so that Talker #2 can
communicate with Talker #1.

8.11 Consider two (windowed) speech sequences x(n) and %(n) both
defined for 0 < n < N — 1. (Outside this region the sequences
x(n) and x(n) are defined to be 0). We perform an LPC analysis
(using the autocorrelation method) of each frame. Thus we obtain
autocorrelation sequences R (k) and R (k) defined as

—1-

R(k)= Y kx(n)x(n+k) 0<k<yp
n=0

—1-k

R =% #(nin+k) 0<k < p

n=0

From the autocorrelation sequences we solve for the predictor
parameters a = (ag, @), ...,a,) and & =(d, ...,4a,)
(ao - &0 - —1)

(a) Show that the prediction (residual) error, defined as

. -1 N=l 2
E® = N2+p el(n) = 2+p - f a,x(n—i)]

n=0 n=0 i=0
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can be written in the form
EY = aR,a'
where R, is a (p+1) by (p+1) matrix. Determine R,.
(b) Consider passing the input sequence X (n) through the inverse

LPC system with LPC coefficients a, to give the error signal
&(n), defined as

#(n) =3 a,2(n—i)
=0

Show that the mean squared error £ (”), defined as

- N—-l+p

E® =3 "[a(n))?

n=0
can be written in the form
E® = aRa'

where R; is a (p+1) by (p+1) matrix. Determine R;,

~__ () If we form the ratio

E®
T EWD

what can be said about the range of values of D?

8.12 A proposed measure of similarity between two frames of speech
with LPC sets a and &, and augmented correlation matrices R, and
R, (see Problem 8.11) is

. aR.a’

D(a,a) = -

aR.a

(a) Show that the distance function D(a, &) can be written in the
computationally efficient form

GORO+2 3 bR

- =1
Dia,a) = — '”
aR .a

where b (i) is the autocorrelation of the « array, i.e.

—i
b(i) = t ajay; 0Kigyp
=0
(b) Assume the quantities (i.e. vectors, matrices, scalars) a, &, R,
R, (@R 2}, R & and b are precomputed - i.e. they are avail-
able at the time the distance calculation is required. Contrast
the computation required to evaluate D{(a,a) using both
expressions for D given in this problem.
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9

Digital Speech
Processing
for Man-Machine
Communication by Voice

9.0 Introduction

In the preceding chapters we have focused almost entirely on the essential
theoretical framework which is required to understand most modern techniques
for digital processing of speech signals. We have not yet discussed the broad
area of applications; i.e., the various ways in which the basic models and the
associated parameters derived from them are used in an integrated system
whose purpose is to transmit or to automatically extract information from the
speech signal. This is the purpose of this chapter, i.e., to give representative
examples of digital speech processing systems and to show how digital process-
ing techniques are used in such systems.

We wish to emphasize from the outset that we have made no attempt to
survey the entire field of speech communication for applications. Specifically,
we have selected examples related to man-machine communication by voice.
Thus, systems for digital transmission of voice are not discussed, even though
this is one of the biggest areas of application. There are several reasons for res-
tricting our attention to man-machine communication. First of all, this area is
extremely rich in the use of digital speech processing techniques, and therefore
is illustrative of almost all the processing methods described in the preceding
chapters. Additionally this area is an extremely important and exciting new
applications area which is just developing, and which shows tremendous poten-
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tial for widespread use in the future.! A final consideration in the choice of this
area of applications is the knowledge and experience of the authors in the
details of designing and implementing the various systems to be discussed in
this chapter.

There are generally recognized to be three major areas (modes of com-
munication) within the general area of man-machine communication by voice.
These areas include:

1. Voice response systems
2. Speaker recognition systems
3. Speech recognition systems.

Voice response systems are designed to respond to a request for informa-
tion using spoken messages. Thus voice response systems communicate by
voice in one direction only, i.e. from the machine to man.

On the other hand, areas 2 and 3 in the above list deal with systems in
which communication is by voice from man to machine. For speaker recogni-
tion systems the task of the system is to either verify a speakers identity (i.e., a
yes-no decision as to whether the speaker is who he claims to be), or to iden-

\tirtzathe speaker from some known ensemble. Thus the speaker recognition

area-.js itself broken down into the sub-areas of speaker verification, and
speaker identification. We will discuss further the similarities and differences
between speaker verification and speaker identification later in this chapter.

The last area, speech recognition, can be subdivided into a large number
of sub-areas depending on such factors as the vocabulary size, speaker popula-
tion, speaking conditions, etc. The basic task of a speech recognition system is
either to recognize the entire spoken utterance exactly (e.g., a phonetic or
orthographic speech-to-text typewriter system), or else to "understand” the spo-
ken utterance (i.e., to respond in a correct manner to what was spoken). The
concept of understanding rather than recognizing the utterance is of most
importance for systems which deal with fairly large vocabulary continuous
speech input, whereas the concept of exact recognition is of most importance
for limited vocabulary, small speaker population, isolated word systems. We
will spend some time discussing the various alternatives in speech recognition
systems later in this chapter.

In the remainder of this chapter we will present, and discuss in some
detail, representative systems from each of the areas of man-machine commun-
ication by voice. We will emphasize the digital speech processing parts of the
system so as to reinforce the discussion in the previous chapters. However,
both for completeness and for understanding, we will also discuss the general
information processing aspects of the system since these are often just as
important to the successful operation of the entire system.

For an excellent introduction to this area the reader is referred to the survey paper by J. L.
Flanagan [1].
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Fig. 9.1 Biock diagram of a voice response system.

9.1 Voice Response Systems

Figure 9.1 shows a block diagram of a general computer voice response system.
The elements of a voice response system include:

1. Provision for storage of a vocabulary for the veice response system.
2. Rules for forming messages from elements of the vocabulary.
3. A program for composing voice response messages.

The input to the voice response system is in the form of a message
request, which may be initiated by another information processing system or
directly by a human seeking information from the voice response system. The
output messages are in the form of speech utterances in response to the mes-
sage requests. A simple example wouid be an automated telephone directory
assistance system in which improperly dialed telephone numbers would be
detected, the type of problem determined (e.g., the telephone has been
disconnected, or a new number has been assigned, etc.), and a request for an
appropriate message would be sent to a voice response system. For such a sys-
tem the vocabulary entries are generally entire phrases, as well as a limited
number of isolated words (e.g., the digits with various spoken inflections).

As a second example, consider an information retrieval system such as a
stock price quotation system where a user could key in a code via a TOUCH-
TONE?® telephone, for the price of a desired stock. The system would decode
the touch-tone signals, determine the current price of the stock, and then issue
a request to the voice response system to create the appropriate spoken mes-
sage. For this case the vocabulary would consist of a wide variety of words and
phrases.

There are two main approaches to the implementation of a voice response
system. One approach is to attempt to build a machine with powers of speech
comparable to a human. Such systems (often referred to as speech synthesis-
by-rule systems) are based upon the model for speech production as discussed
in Chapter 3. In this case the vocabulary storage is essentially a pronouncing
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dictionary and the message formation rules must generate the required contro
signals, (e.g., pitch, intensity, and vocal tract response parameters) to control ¢
speech synthesizer based on the speech production model. Such systems are of
interest when an exceedingly large vocabulary is required. The implementation
of such systems is an extremely challenging research problem, and there is
ample opportunity for the application of the signal processing techniques that
we have discussed in the final synthesis stage. However, a major concern in
such systems is the discovery of rules for controlling the synthesizer. Since this
would take us far afield into the domain of linguistics, we shall not attempt to
discuss examples of such systems here. Many papers in this area are available
to the interested reader [2-6].

The second type of computer voice response system is the limited vocabu-
lary system in which the output message is created by concatenating isolated
natural speech elements in the vocabulary storage. Figure 9.2 shows a block
diagram of a digital voice response system in which the vocabulary consists of
isolated words and phrases which are represented in digital form and stored in
digital memory. Messages are created by retrieving the required words and

hrases from storage and reproducing them in the proper sequence. There are
three major considerations in the design of voice response systems of this type.
First, a means of representing and storing the basic vocabulary elements must
be selected and a system designed to permit easy access to each element of the
vocabulary. Second, a means of editing speech recordings to select the desired
vocabulary elements must be provided, along with a means of recording the
vocabulary elements onto the storage medium. The third requirement is a sys-
tem for selecting and reproducing vocabulary elements in prescribed sequence
(i.e., the message composition system).

Since the objective of a voice response system is to produce speech utter-
ances that are useful for communication with humans, intelligibility is of
paramount importance. However, subjective factors such as quality and natur-
alness of the speech utterances have a great effect on the usefulness and accep-
tability of a voice response system. Thus, it is important that the three com-
ponents of the voice response system be designed so that there is maximum
potential for the production of highly intelligible, natural sounding speech.

WeuT | ANALOG=TO- VOCABUL ARY DIGITAL
—————{ DIGITAL PREPARATION STORAGE
CODER SYSTEM
DIGITAL SPEECH —
MESSAGE ‘
REPRE SENTAT ION REQUEST | MESSAGE DIGITAL-TO |
CONTROL SIGNALS — — —a — — = COMPOSITION ANALOG -
YSTEM
ANALOG SPEECH SIGNAL ~———s SYSTE DECODER

Fig. 9.2 Block diagram of an all digital voice response system. (After
Rabiner and Schafer (8].)

465
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Fig. 9.3 Summary of types of speech encoding methods.

9.1.1 General considerations in the design
of voice response systems

Developments in both digital techniques for the representation and pro-
cessing of speech signals and in the area of digital hardware have made it possi-
ble to implement a voice response system using digital techniques throughout,
As depicted in Figure 9.2, a digital system first requires an analog-to-digital
coder; i.e., a system for obtaining a digital representation of a speech signal.
Likewise an appropriate digital-to-analog decoder is required to convert from
the digital representation to an analog signal. Once the vocabulary is
represented in digital form, it can be stored in digital memory. The message
composition system is then required to access the vocabulary entries in the
correct sequence and concatenate them into a digital representation of the
desired message. This digital representation is in turn fed to the digital-to-
analog decoder.

Within this general structure, there is tremendous flexibility in system
design. The key factor in the design of a digital voice response system is the
choice of the form of digital representation for the speech utterances that make
up the vocabulary. We have seen so far that there are abundant possibilities,
ranging from the waveform coding methods of Chapter 5 to the analysis-
synthesis systems discussed in Chapters 6-8. The choice of digital coding
method has a great impact upon the amount and type of digital memory that is
required, and upon the method of message composition.

In considering the choice of digital coding method for voice response
applications it is helpful to consider three factors:

1. The information rate (bit rate) required for acceptable speech quality.

2. The complexity of the coding and decoding schemes.

3. The flexibility of the representation; i.e., the potential for modification
of the vocabulary elements.
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Figure 9.3 shows a comparison of a number of the digital representations
that were discussed in Chapters 5-8 according to the above three factors. The
waveform coding representations clearly require the greatest bit rate and thus
would require the most digital storage for a voice response vocabulary. The
waveform representations are the simplest in terms of the coding/decoding
algorithms. On the other hand, the analysis/synthesis systems, which literally
“take the speech signal apart,” have the greatest potential for modifying the
vocabulary elements in useful ways. The first two considerations, i.e., bit rate
and complexity of implementation of the digital representation, impact mainly
on the economics of the design of an all-digital voice response. To illustrate
these concerns let us consider a typical vocabulary, suitable for many applica-
tions, which might involve about 100 words whose average duration would be
less than 1 second. Thus, as a relatively conservative estimate of storage
quirements, Table 9.1 shows the digital storage required for 100 seconds of
speech material for a wide range of bit rates. Even in the case of log PCM cod-

the more complicated coding systems. In the last column of Table 9.1, the
value of 0.1¢ per bit? is applied to the memory requirements for a 100 second
vocabulary to obtain an estimate of memory cost. Realizing that the memory
can be shared among a multiplicity of output channels, it can be seen that the
cost of the digital coder and decoders must be kept low in order that they not
become the dominant cost consideration. It is clear for example that formant
synthesizers of the type required to produce high quality speech output would
cost significantly more than the cost of the memory for a small vocabulary.

Table 9.1 Memory Requirements For Storage of
Digital Speech Representations

Digital Storage
Coding Required for Approximate
Method Bit Rate | 100 sec (bits) Cost ar 0. 1¢/bit
PCM 40 kb/s 4,000,000 $4000.00
ADPCM | 24 kb/s 2,400,000 2400.00
LPC 2.4 kb/s 240,000 240.00
Formants | 0.6 kb/s 60,000 60.00

Vocabulary preparation and ‘editing is another basic concern in the design
of automatic voice response systems. In this area, digital techniques have the
potential of high efficiency and great flexibility in preparing vocabulary elements
and providing high quality voice output. Typically, the words and phrases mak-
ing up a voice response vocabulary are spoken by a trained speaker and a high
quality audio recording is made. A word or phrase is recorded and then con-
verted to a digital representation by the analog-to-digital coder. The digital
representation (which may be either of the waveform or analysis-synthesis
type) is then stored away temporarily in digital form in the computer. An

This is a conservatively high estimate of the true memory costs.
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automatic scheme is required to find the beginning and end of the utterance so
that the surrounding silence regions can be eliminated. As shown in Chapter 4,
the beginning and end of an utterance can be located quite accurately for high
quality digital recordings. At this point the computer can determine precisely
whether the utterance is of proper duration. Also, the utterance can be played
back to the speaker to check the inflection of the word or phrase. The record-
ing process can be easily repeated until satisfactory duration and inflection is
obtained.

As the final stage in preparing a voice response vocabulary, an automatic
scheme can compare the intensities of all words in the vocabulary and suitably
adjust all levels to some uniform level or according to prescribed levels deter-
mined by the intended usage of each vocabulary entry. This might involve
simply a calculation of peak signal amplitude or a more sophisticated measure
of intensity such as short-time energy could be employed.

Once a word or phrase has been suitably recorded, it is stored in its per-
manent area of the vocabulary memory. This involves simply setting up a sys-
tem of speech files and a directory of memory addresses that are used by the
message composition system to locate the beginning and end of each vocabulary
entry.

Given means for preparation and storage of a vocabulary of words and
phrases, the voice response system is completed by providing a means for com-
posing speech utterances from the vocabulary elements. Here again, the form
of digital representation has a major impact. If a waveform representation is
used, all that needs to be done is to simply concatenate the waveforms of the
vocabulary elements. This may lead to somewhat unnatural sounding speech
utterances if the vocabulary consists mostly of isolated words, but this approach
has the virtue that the message composition system can be extremely simple.
Indeed such a system can easily be implemented using a microprocessor. An
example of such a system is discussed in Section 9.1.2.

On the other hand, representations based on some form of analysis-
synthesis offer increased flexibility for altering the properties of the vocabulary
elements so that the composite utterance retains some of the properties of
natural utterances — e.g., timing, inflection, etc. This advantage is potentially
more important than the lower bit-rates that are also possible with analysis-
synthesis representations. Because the vocabulary entries are represented in
terms of fundamental parameters of speech production, it is possible, for exam-
ple, to alter the pitch and duration of a word so as to make it fit a particular
message context. Even more interesting is the possibility of altering the speech
parameters at word boundaries so as to produce synthetic speech utterances that
sound more like connected natural speech. To do this in even the simplest
situations requires rules for determining appropriate pitch and timing and algo-
rithms for altering the speech parameters to accomplish word duration changes
and merging of word boundaries. Because of the low information rate of the
parametric representation, a microprocessor would be adequate to implement a
fairly sophisticated message composition system based on an analysis-synthesis
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Fig. 9.4 Block diagram of a multiline digital voice response system.
(After Rosenthal et al. [7].)

representation. An example of a simple system of this type is discussed in Sec-
tion 9.1.3.

9.1.2 A multiple-output digital voice response system

Figure 9.4 shows a block diagram of a multiline digital voice response sys-
tem that has been implemented at Bell Laboratories using a small general pur-
pose computer [7,8]. In this System, the vocabulary elements were represented
using ADPCM coding at 24 kb/s. The ADPCM coder and decoders were
implemented in hardware. The beginning and end points of each word were
automatically located by an algorithm which was based upon the computation of
the short-time "energy” of the ADPCM code words [7). The vocabulary was
stored on a fixed head disk for rapid retrieval by the message composition pro-
gram. This part of the system involves mostly logical operations and data
transfers. An important point, however, is that with most computers and
memory systems, there exists the possibility that a single vocabulary memory
can serve the needs of many message channels. The computer receives mes-
sage requests through telephone lines or direct digital interfaces to other com-
puters. The message composition program locates the required vocabulary ele-
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Fig. 9.5 Block diagram of voice response system based upon a formant
representation. (After Rabiner et al. [9].)

ments and retrieves them from memory. The digital representations of the
desired messages are stored in buffers in the random access memory of the
computer. These buffers are accessed by the ADPCM decoders through direct
memory access (DMA) channels. In this way the system is able to provide
voice output simultaneously on many channels. The system implemented at
Bell Laboratories was capable of simultaneous voice response on 10 channels
[7,8]. It has been used in a variety of applications as discussed in Section 9.1.4.

9.1.3 Speech synthesis by concatenation
of formant-coded words [9]

As an example of the use of an analysis-synthesis representation, consider

the block diagram of Figure 9.5. In this case, the vocabulary elements were
processed as described in Section 7.4 to obtain a digital representation in terms
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of pitch period, voiced/unvoiced classification, intensity, and formant frequen-

cies. It was thus possible to store the vocabulary words and phrases using only
600 bits/sec.

In addition to the vocabulary elements, the message composition system
requires means for obtaining appropriate word durations and pitch for the
desired utterance. Given this information, the formant frequencies of adjacent
words are smoothly merged together as occurs in natural connected speech.
Figure 9.6 shows an example of how the formant representation provides the
capability to modify the vocabulary elements to fit a particular situation. Note
in particular that by interpolation, the durations can be changed. Also, note
that at the junction between the second and third words, the formant frequen-
cies are readjusted so as to be continuous across the word boundary as they
would be in natural speech. Finally, note that the original pitch contours of the
vocabulary elements can be discarded in favor of a single pitch contour
appropriate for the complete utterance.
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Fig. 9.6 Typical example of how control parameters are generated from
the word vocabulary store. A message composed of four words is illus-
trated. All parameters are functions of time. (After Rabiner et al. [9].)
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Fig. 9.7 Spectrograms comparing (a) natural spet?ch; (b) isolated word:,
modified for prosodic timing and pitch; and (¢) isolated words, abutted.
(After Levinstone [10}.)

Figure 9.7 shows an example [10] which illustrates the difference begveen
concatenation of waveforms and concatenation of fom}'ant-coded Wf)l:ds. 1%ur?
9.7a shows the spectrogram of a natural utterance of "I am an aspiring obranc?r.
F.igure 9.7¢c shows the spectrogram of the same utterar;ce create? tb}:ze a:) i:]c hu:)gr

indivi - d words with no alteration o
the individually spoken, formant-code  alt ! hor
i indivi lack of continuity of the formants
ration of the individual words. The
glt;vious. Figure 9.7b shows the spectrogram of an utterance created f;]om th;
formant-coded words by merging the formant parametersdsmoghlyeatgtﬂe; \vvvc;e
i i d durations used in Figure 5.

boundaries. The pitch contour and wor .

obtained from data supplied by a speech synthesis-by-rule system developed by
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Coker and Umeda [3,5,6]. Note that the word durations in Figure 9.7b are
quite comparable to those of Figure 9.7a, and the variations of the formants in
Figure 9.7b are very similar to the formant variations in Figure 9.7a.

The system depicted in Figure 9.5 was used to synthesize telephone mes-
sages of the form, "The number is 135-3201" [9]. In this case pitch and timing
rules for the 7-digit number strings were empirically derived from measure-
ments on natural speech. It was found that synthetic speech produced by the
system of Figure 9.5 was superior in communicative effectiveness to speech
produced simply by abutting the individual words. This was true despite the
"machine-like” accent of the synthetic speech. Although such results are
encouraging, much more research is required to define synthesis strategies that
will pr/)duce natural sounding high quality synthetic speech from a vocabulary
of dig(::tally coded words and phrases [11].

inally, it should be noted that there are many possibilities for digital
representations of the vocabulary elements that would offer similar flexibility
for manipulating the parameters of the speech utterance.

9.1.4 Typical applications of computer voice response systems

The flexibility of the voice response system described in Section 9.1.2 has
facilitated its use in a wide variety of experimental applications within Bell

Laboratories. The following systems have been implemented and studied to
date:

—

A system for producing vocal instructions for wiring communications
equipment

A directory assistance system

A stock price quotation system

A data set testing information system

A flight information system

A speaker verification system

A

In this section two of these systems are described.
9.1.4a Application of Voice Response o Wiring Communication Equipment

One of the first applications of the voice response system of Section 9.1.3
was as an aid to wiring communications equipment [12]. Conventionally, a
wireman works from a printed list that contains the information for each wiring
operation. However, in many wiring situations it is awkward for the wireman
to divert his eyes from his work in order to consult such a list. In these cases,
it is more convenient to record the wire list in spoken form on a cassette tape
and allow the wireman to work from a spoken list. Typically, a foot switch is

used to start the playback unit, and recorded tones on the tape automatically
stop the unit after each wiring instruction.
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Wiring lists can, of course, be recorded by a human. However, one per-
son must read the list (which may be several hours long), and another must
monitor the result for errors. These errors must then be edited and corrected.
Even after a wiring list has been recorded successfully, any future updating of
the list requires that this entire process be repeated. This could occur several
times in the course of a few days or weeks. The resulting tedium tends to
increase human errors, making the entire procedure impractical.

Therefore, there are several advantages of using a voice response system
for recording wiring lists. These are the following:

1. Wiring instructions are generally simple commands conveying highly
noncontextual information such as wire color, wire length, beginning
terminal (to which the wire is connected), and ending terminal. Thus,
smooth, connected speech is not required.

2. The instruction can be formed from a relatively small vocabulary — on
the order of 50 words are adequate for specific pieces of equipment; on
the order of 100 words are adequate for all the communications equip-
ment wired by Western Electric using conventional wiring techniques.

3. Wire lists are normally designed by computer — hence they are gen-
erally available in a form amenable for use by a digital voice response
system.

4. Wiring instructions are frequently modified. Thus, the use of a voice
response system simplifies the tedious task of updating wiring lists.

Figure 9.8 shows a block diagram of the overall wire list voice response
system. A deck of computer cards is created on a Western Electric Company
computer for use as input to the wire-list system. On these cards are punched
entries that describe the words to be used in the specific wire list. For example,
a typical wiring instruction might be:

RED-PAUSE-20-7-PAUSE-4-R-PAUSE-7-Z-END

which tells the wireman to wire a 27 inch red wire from terminal 4R to terminal
7Z. Using an appropriate vocabulary, the voice response system composes the
appropriate message, sends it to the ADPCM decoder, and the spoken message
(the wiring instructions) is recorded on a cassette tape recorder.

For this application the telephone line input-output capability of the sys-
tem is not exploited; however, the multiline capability is exploited by either
generating a number of different wiring lists simultaneously, or a long single list
is generated in pieces at a faster rate [7,8].

9.1.4b Information Retrieval Systems
In the application of the voice response system to wiring of communica-
tion equipment, there is essentially no interaction between the eventual user

and the system which composes the output messages. This is because the con-
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Fig. 9.8 Voice response system for automatic generation of spoken wir-
ing instructions. (After Rabiner and Schafer [8].)

ventio\xal TOUCH-TONE® input to the voice response system was replaced by a
prepunched set of computer cards which specified the output messages which
were required. In the application of the voice response system to problems like
directory assistance, credit inquiries, bank balance inquiries, and inventory con-
trol, the basic premise is that the voice response system is capable of accessing
a data bank of information. Therefore, it can find the desired information and
compose the appropriate message to send this information to the user. Figure
9.9 shows a block diagram of such an information retrieval voice response sys-
tem. In this 'system it is assumed that the data bank can be updated from both
an external source, and from the voice response system.

By way of example, suppose that the data bank was an inventory of the
quantity of goods produced by a company and available sale and distribution. If
the voice response system was accessed by salesmen in the field, then each time
a sale was made the voice response system could acknowledge the sale, and
simultaneously reduce the inventory data bank. As more goods are manufac-
tured by the company, the inventory could be externally updated as these goods
become available for sale. In this example, the voice response system not only
helps keep track of inventory, it also prevents the possibility of several sales-
men essentially selling the same item when the inventory of goods is low. It

xTe DATA BANK
hoara- (FILE OF
INFORMATION)
— % VvoIcE
USER REOUESTS =¥ pecoonse [ MESSAGE
FOR : : OUTPUTS
INFORMATION SYSTEM | ’

Fig. 9.9 Block diagram of an information retrieval voice response sys-
tem. (After Rabiner and Schafer [8].)
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Fig. 9.10 General representation of the speaker recognition problem.

also helps the company keep up-to-the-minute statistics on sales, and therefore
be capable of dynamic variations in the manufacturing of goods.

Another interesting computer voice response information retrieval system
is a stock price quotation system. For this system the data bank is the current
market price of any stock, as well as the market price at the close of the preced-
ing business day. The mechanism for externally updating the stock prices could
be a ticker tape, or a high speed paper tape fed directly from the stock
exchange board.

A typical scenario for the use of the stock price quotation system is as fol-
lows. The user dials the system, which then responds: '

“This is the Bell Laboratories stock price quotation system. Prices are quoted as
of the close of the last business day. Please enter market abbreviation of the
stock desired".

The user keys in
A-T-T-*
and the system responds:

"American Telephone and Telegraph, 62-and 3/8, up 1/4"

Providing such information as stock market prices, without the need for
cumbersome teletypes or ticker tapes is one good application of this type of
voice response system. Indeed it is clear that the future holds much promise
for the widespread use of computer voice response systems, and digital speech
processing techniques will no doubt play a key role in the implementation of
such systems.

9.2 Speaker Recognition Systems

In speaker recognition, digital processing techniques are often the first step in
what is essentially-a pattern recognition problem. This is depicted in Fig. 9.10.
As seen in this figure, a representation (pattern vector) of the speech signal is
obtained using digital speech processing techniques which preserve the features
of the speech signal that are relevant to speaker identity. The resulting pattern
is compared to previously prepared reference patterns and subsequent decision
logic is used to make a choice among available alternatives. There are two dis-
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tinct subareas of speaker recognition—speaker verification and speaker
identification. For speaker verification an identity is claimed by the user, and
the decision required of the verification system is strictly binary; i.e., to accept
or reject the claimed identity. In order to make this decision, a set of features
designed to retain essential information about speaker identity is measured
from one or more utterances of the speaker, and the resulting measurements
are compared (often using some highly nonlinear measure of comparison) to a
set of stored reference patterns for the claimed speaker. Thus for speaker
verification only a single comparison between the set (or sets) of measure-
ments, and the reference pattern is required to make the final decision to accept
or reject the claimed identity. Generally a distance measure between the given
measurements and the stored reference distribution is computed. Based on the
relative costs of making the two possible types of error (i.e., verifying an
impostor, or rejecting the correct speaker) an appropriate threshold is set on the
ance function. It is readily shown that the probability of making the two
types of errors described above is essentially independent of N, the number of
referénce patterns stored in the system, since the reference patterns for all
other speakers go into forming the stable distribution which characterizes all
speakers. Stated in more mathematical terms, if we denote the probability dis-
tribution for the measurement vector x for the /" speaker as p,(x), then a sim-
ple decision rule for speaker verification might be of the form:

Verify speaker i if p;(x) > c;p,,(x)
Reject speaker i if p/(x) < ¢;p,,(x) 9.1)

where ¢; is a constant for the i"" speaker which determines the probabilities of
error for the /" speaker, and p,,(x) is the average (over all speakers in the
ensemble) probability distribution for measurement x. By varying the constant
c;, a simple control of the error mix between the two types of errors is readily
obtained.

The problem of speaker identification differs significantly from the speaker
verification problem. In this case the system is required to make an absolute
identification among the N speakers in the user population. Thus instead of a
single comparison between a set of measurements and a stored reference pat-
tern, N complete comparisons are required. The decision rule for such systems
is essentially of the form:

choose speaker i such that p/(x) > p,(x), j=12,...,N, j=i(9.2)
i.e., choose the speaker with the minimum absolute probability of error. In this
case it seems plausible that as the user population gets very large, the probabil-
ity of error must tend to one since an infinite number of distributions cannot
remain distinct in a finite parameter space — i.e., it becomes increasingly likely
that two or more speakers in the ensemble will have measurement distributions
that are extremely close to each other. Under these circumstances, reliable
speaker identification essentially becomes impossible.

It can be seen from the above discussion that there exists a great number
of similarities, as well as differences, between speaker verification and speaker
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Fig. 9.11 Block diagram of a speaker verification system. (After Rosen-
berg [13}.)

identification systems. Each process requires a speaker to utter one or more
test phrases, makes some measurements on these test phrases, and then com-
putes one (or more) distance functions between the measurement vector and
the stored reference vector. Thus, in terms of the signal processing aspects of
these two problems, the methods are quite similar. The major differences occur
in the decision logic. We shall now discuss an example of each type of system
and show some typical results obtained with these systems.

9.2.1 Speaker verification system

Figure 9.11 shows a block diagram of an on-line digital speaker
verification system developed by Rosenberg and others [13-16]. The person
wishing to be verified first enters his claimed identity, and then on request from
the verification system (via a computer voice response system of the type dis-
cussed in Section 9.1.2) utters his verification phrase, and requests some tran-
saction to be made in the event he is verified. For example, the transaction
requested may be access to privileged information from a bank, etc. The spo-
ken utterance is processed to obtain a pattern which is compared to the stored
reference patterns for the claimed identity and then on the basis of the transac-
tion requested which determines the error mix constant (c; in Eq. (9.1)) a deci-
sion to accept or reject the customer is made.

Figure 9.12 shows a block diagram of the signal processing parts of the
speaker verification system. The sample utterance which occurs somewhere
within a preselected time interval must first be accurately pinpointed. This is
the job of the endpoint detection system. In this particular implementation the
time domain endpoint detector described in Chapter 4 was used to locate the
sample utterance. Once the beginning and end of the utterance have been
found, a series of measurements and parameter estimates are made to provide
patterns which represent the utterance. In particular, a pitch detector is used to
measure the pitch contour of the utterance; a short-time energy measurement
is made to give energy contours, an LPC analysis is used to-give predictor
parameter contours, and finally an estimate of the formant locations is made.
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(All the parameters shown in Fig. 9.12 have been used at some time in the
verification system; however, due to the large amount of computation required
for LPC analysis or formant estimation the on-line implementation restricted
the measurement set to pitch and intensity measurements.) To illustrate the
wide range of digital processing that was used in just the analysis phase of the
verification system it is worthwhile mentioning the specific algorithms used by
Rosenberg [13] (and others who have worked on this system) to perform these
measurements. The pitch detector was the parallel processing time-domain
method discussed in Chapter 4. The intensity measurement was the short-time
average magnitude as discussed in Chapter 4. The LPC analysis was the auto-
correlation method discussed in Chapter 8. Finally, the formant analysis used
the homomorphic method described in Chapter 7.

Figures 9.13-9.15 show typical measurement contours for the test utter-
ande "We were away a year ago” spoken by a male speaker. Figure 9.13 shows
the pitch period and intensity contours for the utterance [13]. These data are
estimated 100 times per second and were smoothed by a 16 Hz lowpass, linear
phase, FIR digital filter. There are significantly more variations in the intensity
plot than in the pitch period contour for this particular speaker. Figure 9.14
shows plots of the first three formants along with pitch and intensity for a
different version of the utterance [15]. The formant data were also smoothed
by the same 16 Hz lowpass filter as was used for the pitch period and intensity
contours. Finally, Fig. 9.15 shows plots of the first 8 predictor coefficient con-
tours for a 12-pole LPC analysis {16]. It can be seen from this figure that there
is a significant amount of redundancy in the LPC coefficient contours for this
utterance. Thus in using these data for verification, all the LPC coefficient con-
tours do not give equal contributions to reducing the errors in verification. In
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Fig. 9.12 Signal processing aspects of the speaker verification system.

479



PITCH PERIOD IN MILLISECONDS

GAIN

0 40 80 120 160
MEASUREMENT TIME (CENTISECONDS)

Fig. 9.13 Pitch period and intensity contours of an utterance used in
speaker verification. (After Rosenberg [13).)

fact it has been shown that careful selection of the verification measurements
yields almost as low an error score as using all the measurements with no
regard to their verification efficiency.

After the desired parametric representation has been computed it is neces-
sary to compare it to the corresponding reference patterns for the speaker
whose identity is claimed. It is not straightforward to compare temporal pat-
terns such as pitch, intensity and formant variations since a speaker is generally
not able to speak at precisely the same rate for different repetitions of the
verification phrase. The solution to this difficulty has been to nonlinearly warp
the time scale of the input patterns to obtain the best possible registration
between the stored reference patterns for the claimed speaker, and the meas-
ured patterns for his sample utterance. The process of time warping is an
extremely important one and has been used in a variety of speech processing
applications.

Conceptually the process of time warping is as illustrated in Fig. 9.16.
The idea is to warp the time scale 7 of a reference utterance so that significant
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Fig. 9.16 Illustration of time warping.

events in some measurement contour a(s) line up with the same significant
events in the reference contour r(¢). The warping function is assumed to be of
the form

T=at+ q(r) 9.3)

where ¢ (1) is the nonlinear time warp function, and « represents the average
slope of the time warping function. Note that omission of g (r) corresponds to
simple linear modification. Boundary conditions are imposed to insure that the
beginning and ending points of both the sample and reference utterances line
up properly. These boundary conditions are of the form

(9.4a)
(9.4v)

The remaining problem is the choice of the function ¢ (1) and the constant « so
as to best align the measurement contours. One very simple approach is to
define ¢ () to be a piecewise linear function of  with a finite number of break-
points along the r axis at which the slope of ¢ {(r) changes. The breakpoints and
the slopes of q(s) (as well as the overall slope a) are then determined by a
steepest descent type of optimization in which either a distance measure
between the test and reference contours, or a correlation measure is used to
control the direction of the optimization search.

T =al + q(ll)
Ty=alh+ q(fz)

A significantly simpler, and much faster solution to the time warping
problem 1is to utilize the method of dynamic programming to optimaily choose a
constrained warping function. By imposing a continuity condition on the warp-
ing function, rather than imposing a piecewise linear approximation, it is rela-
tively straightforward to determine the appropriate optimal warping function for
a set of contours [17].

Consider performing the appropriate time warping for a pair of contours
which are sampled at a discrete set of points. Let the points in the measured

contour be labelled » = 1,2, ..., N and let the points in the reference con-
tour be labelled m = 1,2, ... ,M. We then wish to choose a time warping
function w, such that
m = w(n) 9.5)
482

‘\\ wn+1l) — w(n) =0,1,2

The boundary conditions on w(#) are:

w(l) =1
w(N) = M

If a linear warping were used, then the resulting time warping function w would
be of the form

beginning points 9.6)
ending points

win) = “ M'll (n=1) + 1 ©.7)

N-1

For a more general nonlinear warping function we must consider a strategy for
beginning at the point » = 1, m=1 and progressing through the discrete grid
to end up at the point n = N, m = M as required by the boundary conditions.
/To limit the degree of nonlinearity of the warping function it is reasonable to

/ impose the mild continuity condition that the warping function w cannot change

by more than 2 grid points at any index n. More formally we require
if w(n) # win-1) (9.8)
=12 if w(n) = w(n-1)

Tl?u§ the slope of the warping function is either 0, 1, or 2 if at the previous
grid index the warped index changed, or 1 or 2 if at the previous grid index the
warped index stayed constant.

To determine which of the conditions of Eq. (9.8) to use at grid index »
requires the use of a similarity measure between the reference data measured at

CONTINUITY CONDITIONS

win+i) ~w{n)=0,1,2 {win)#w(n-1}
=12 (w(n)=w{n-1)

]
c,):. BEIG”‘:N':\JGI b,
: 5 10 15 N

EI;] )9.17 An example of a typical warping function. (After Itakura
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Fig. 9.18 An example of the effects of time warping on a speech inten-
sity contour. {(After Rosenberg [13].)

grid index »n, and the test data measured at grid index m. The simi_larily meas-
ure (or distance measure) is used to determine the path of the warping fuqctlpn
which locally minimizes the maximum total distance, subject to the continuity
constraints of Eq. (9.8).

The example of Figure 9.17 [17] shows the domain of possible g.rid. coor-
dinates (s#,m) and a typical warping function w(n) (the solid line within the
grid) for warping a 20 point {(N=20) reference to a 15 point (M=l‘5) test utter-
ance. Because of the continuity constraints the warping function must lie
within the heavy parallelogram shown in this figure.

The technique of time warping has been applied both for speaker
verification [13] and for speech recognition [17]. As an example, Fig. 9.18
(due to Rosenberg [13]) shows a set of intensity contours (?f a referepce and a
test utterance both prior to and following nonlinear. .tlme warping. The
improvement in registration of these contours is quite striking for this example.

The final steps in the verification process of Fig. 9.12 are to compute
some overall distance measure (based on the individual distance measures for
the separate measurements), and then to compare the oyerall distance to' an
appropriately chosen threshold. The simplest contour distance measu1:e is a
normalized sum of squares: e.g., for the j" measurement contour, the distance
d; would be of the form

d =¥ [ty = a, (N, O]’ 9.9

where a;,(/) is the value of the j" measurement contour at time /, a; (i) is‘th.e
value of the j" measurement of the reference contour at time j, and oq_,-(/) is
the standard deviation of the j” measurement at time i The overall distance
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function, D, is generally a weighted sum of squares, i.e.,
D=3 wyd
]

where w; is the j weight, chosen on the basis of the effectiveness of the "
measurement in verifying the speaker.

(9.10)

The speaker verification system just discussed has been extensively stu-
died and the results of numerous performance evaluations give an idea of the
potential for practical application of such systems. A wide variety of tests have
been run on the system ranging from high quality utterances by a small set of
speakers 1o telephone bandwidth utterances using a very large set of speakers,
to experiments in which trained professional mimics were hired to "beat the
system.” Tests results have indicated that for high quality speech, the equal
error rate score (i.e., when probability of false rejection and faise acceptance are
de equal) of the system can be made essentially 0 if enough measurements

used, and if the weighting coefficients on the overall distance computation

are carefully selected for each speaker. For such a system, the equal error rate
using professional mimics was about 4.1%. For the operation of the verification
system using telephone quality speech an equal error rate of about 7% was
attained using just the pitch period and intensity measurements. The addition
of more sophisticated measurements, such as formants, or the LPC parameters,
would significantly reduce this error rate.

9.2.2 Speaker identification systems {18-20]

There are many similarities between the problems of speaker verification
and speaker identification. In terms of the signal processing aspects, the two
problems are treated almost identically in that most of the processing shown in
Fig. 9.12 is applied to speaker identification as well as speaker verification. The
main differences in processing involve the choice of parameters used to make
the distance measurements, and the necessity of making N distance measure-
ments (for identification) rather than 1. Of course the final decision for
speaker identification is to choose the speaker whose reference patterns are
closest in distance to the sample patterns, whereas for speaker verification the
final decision is the binary choice of whether to accept or reject the identity

claim based on the magnitude of the distance as compared to some suitably
chosen distance threshold.

Although a simple classical distance measurement of the type given in Eq.
(9.10) is generally appropriate for most speaker verification systems, a some-
what more sophisticated and robust distance measure has been used by Atal
{18,201 and others for speaker identification systems. Recall that the purpose
of the distance calculation is to provide a measure of similarity between the
reference pattern and the input pattern. The distance measure used by Atal can
be derived as follows. Let x be an L-dimensional column vector representing
the input pattern, in which the k* component of x is the k" measurement. It
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is assumed that the joint probability density function of the measurements for
the i speaker is a multi-dimensional Gaussian distribution with mean m; and
covariance matrix W,. Thus, the L-dimensional Gaussian density function for
X is given by

g,(x) = (2#)"/2|W,l”‘/2exp[—;— (x-m)Wlx—m)] (.11

where W' is the inverse of the matrix W, (assuming W, is nonsingular), |W,|
is the determinant of W, and the r denotes the transpose of a vector. The
decision rule which minimizes the probability of error states that the measurement
vector x should be assigned to class i if

p&{x) 2 pgx) forall i#j (9.12)

where p; is the a priori probability that x belongs to the i" class. Since In yisa
monotonically increasing function of its argument y, the decision rule of Eq.
(9.12) can be considerably simplified and rewritten as:

Decide class i if

d(x) = % (x-m,)' Wl (x—m,) + % InlW,} = In p,

< di(x) forall i#j (9.13)

The last two terms on the right side of Eq. (9.13) do not depend on the meas-
urement vector x and can be thought of as a constant term representing a bias
toward the i class. As a practical matter it has been found that for most cases
of interest, the decision rule which includes the bias term does not provide any
significant advantage over a decision rule based exclusively on the first term on
the right side of Eq. (9.13). Thus, instead of the decision rule of Eq. (9.13),
the distance measure d;, defined as

d = (x-m,)'W ' (x-m,) (9.14)
is generally used and the index /is chosen such that 3, is minimized over all i

The decision rule requires the computation of the mean vector m; and the
covariance matrix W, for each class / in the decision set. For a training set of
N, measurement vectors with components x;(n) belonging to class /, the mean
and covariance matrix are defined by the relations

1 o
m, = N El x;{n) (9.15)
and
1 &
W, = a Y x,(m)x/(n) = mm/ (9.16)

n=}

Figure 9.19 shows some typical examples of measured distributions of
speech parameters along with 1-dimensional Gaussian fits to the data. The
quality of the fits is better in some cases than in others.
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Fig. 9.19 Measured distributions of several speech parameters and Gaus-
sian fits to the data. (After Rabiner and Sambur {27].)

Several comments should be made about the assumptions and the
required computation leading to the decision rule of Eq. (9.14). The assump-
tion of a normal distribution for the measurements can be justified from several
considerations. First, for the decision rule to be correct, it is not necessary that
the distribution be exactly normal. In the case of unimodal distributions, it is
sufficient that the distribution be normal in the center of its range — a property
often found to be true for physical measurements. Moreover, as mentioned
earlier, the decision rule is optimum for a class of probability densities which
are related to the Gaussian density through arbitrary monotonic functional rela-
tionships. Finally, the decision rule requires information only about the first
two moments of the distribution. Accurate estimation of higher-order
moments is usually difficult for practical situations.

A major advantage of the distance metric of Eq. (9.14) is that the distance
d; is invariant with respect to any arbitrary nonsingular linear transformation of
the data [20]. This property of the distance metric of being invariant with
respect to arbitrary linear transformations of the measurement space has great
significance in that the results for a single parameter set are identical theoreti-
cally to the results from any linear transformation of the parameter set, e.g.,
Fourier transforms of the data set yield identical results to the data set itself. A
second important property of the distance metric of Eq. (9.14) is that it is par-
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Fig. 9.20 Speaker identification accuracy as a function of the parameter
set. (After Atal {20].)

ticularly effective in weighting the different pattern vector components accord-
ing to their importance [20].

Using the decision rule of Eq. (9.14) Atal has investigated the
effectiveness of different parametric representations of the speech signal in
terms of the speaker identification problem [20). He used a population of 10
speakers, each speaking the same test phrase six times. Each utterance was
divided into 40 equal length segments thus providing a crude time warping.
The average length of each segment was about 50 msec. Then an LPC analysis
was performed on each of the 40 frames for each of the 60 sentences. Thus a
pattern vector of LPC coefficients was obtained for each frame. From these
LPC coefficients an impulse response, an autocorrelation function, a lossless
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tube area function and a cepstrum were obtained as discussed in Chapter 8.
Then speaker identification accuracy was tested by selecting one utterance for
each speaker as test utterances and using the remaining five utterances to form
reference patterns for each speaker. Then the decision rule of Eq. (9.14) was
applied on a frame-by-frame basis for each speaker to obtain an average
identification rate for each of the 40 frames. These results are shown in Fig.
9.20 for each of the equivalent parameter sets. Although all these measure-
ment sets yielded fairly good scores for such a short speech segment, the cep-
strum measurement yielded somewhat higher accuracies than the other meas-
urement sets. By combining several frames to obtain a higher dimensional pat-
tern vector, higher accuracies can be attained. Figure 9.21 shows curves of the
identification accuracy achieved using the cepstrum measurements as a function
of the total duration of the speech interval used in making the distance calcula-
tion. It can be seen in this figure that identification accuracies on the order of
95% were achieved for this limited ensemble of speakers for speech samples of
duration on the order of half a second.

9.3 Speech Recognition Systems [17,21-26}

For speech recognition, as in speaker recognition, digital speech processing
techniques are applied to obtain a pattern which is then compared to stored
reference patterns. In speech recognition, the goal is to determine what word,
phrase, or sentence was spoken.

Unlike the areas of computer voice response, and speaker recognition, in
which the problems are generally quite well defined, the area of speech recogni-
tion is one in which a large number of options must be specified before the
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Fig. 9.21 Speaker identification accuracy (using cepstrum parameters) as
a function of the speech duration. (After Atal [20].)
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problem can even be approached [21]. Examples of these options are the fol-
lowing:

1. Type of speech — e.g., isolated words, continuous speech, etc.

2. Number of speakers — e.g., single speaker system, multiple designated

speakers, unlimited population.

Type of speakers — e.g., cooperative, casual, male, female, child.

4. Speaking environment — e.g., soundproof booth, computer room,
public place.

5. Transmission system — e.g., high quality microphone, close talking
microphone, telephone.

6. Type and amount of system training — e.g., no training, fixed training
set, continuous training.

7. Vocabulary size — e.g., small vocabulary (1-20 words), medium voca-
bulary (20-100 words), large vocabulary {(greater than 100 words).

8. Spoken input format — e.g., constrained text, free spoken format.

w

It can be seen from the above list that a wide variety of options and alter-
natives are available in the specification of a speech recognition system. In this
section we will restrict our attention to three representative speech recognition
systems in which a substantial amount of digital speech processing is used.
These systems are all limited vocabulary, context free, recognition systems.
Although the more sophisticated type of continuous speech recognition systems
[21,22] also use substantial amounts of digital processing in the analysis stages,
a large amount of the effort in implementing these systems has been concerned
with syntactic and semantic analyses of the utterance. Since these areas are
closely allied with linguistic theories of speech, it would take us too far afield to
devote time to such systems. Therefore, the interested reader is referred to the
references for discussions of speech understanding systems.

The three specific recognition systems to be discussed in this section
include a small vocabulary, speaker independent, isolated digit recognition sys-
tem; a small vocabulary, speaker independent continuous digit recognition sys-
tem; and a large vocabulary, designated speaker, isolated word recognition sys-
tem.

9.3.1 Isolated digit recognition system [25]

The system specifications for the isolated digit recognition system were
the following:

Isolated word vocabulary.

U nlimited population of speakers.

Cooperative speakers with no restrictions as to sex or age.
Computer room speaking environment,

Transmission over either a close talking or high quality microphone.
N o system training.

A e M
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Fig. 9.22 Block diagram of isolated digit recognition system. (After
Sambur and Rabiner [25].)

7. Small vocabulary size consisting of the 10 digits (0-9) with 0 pro-
nounced as zero.

8. Single word format with pauses between each spoken input.

Figure 9.22 shows a block diagram of the isolated digit recognition system.
As seen in this figure, the basic analysis consists of endpoint detection (as in
speaker recognition), processing the utterance to give a pattern or a set of
measurements, segmentation of the utterance into intervals, and a preliminary
and then a final class decision as to which digit was spoken.

Although a wide variety of representations are candidates for a general
speech recognition system, in order to be used in a speaker independent system

the measurements must be reasonably robust [25]. Important characteristics
include:

1. The measurements can be made simply and unambiguously.
2. "l"he measurements can be used to grossly characterize a large propor-
tion of speech sounds.

3. The measurements can be conveniently interpreted in a speaker-
independent manner.

Among the candidates for such robust measurements are the ones shown in
Fig. 9.22 which include:

Zero-crossing rate.

Energy.

LPC analysis using p = 2 poles.
LPC residual error.

B
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Measurements 1 and 2 have already been discussed in Chapter 4. Although
Chapter 8 discussed the general issues in LPC analysis, the use of a 2-pole LPC
analysis is somewhat unusual. The choice of a 2-pole LPC analysis was sug-
gested by Makhoul and Wolf [26] as an excellent means of representing the
gross features of the short-time spectrum. The pole frequency indicates the
major energy concentration in the spectrum, whereas the residual error indi-
cates the spread or tilt in the spectrum. By way of illustration, Fig. 9.23 (26}
shows comparisons of the spectra of several speech sounds obtained directly
using FFT spectrum measurements, with the spectra of the two-pole LPC fit to
the spectrum. For a two-pole LPC analysis, the resulting polynomial has either
a single complex-conjugate root, or two real roots. In Fig. 9.23a the spectra for
the sound /sh/ as in the word "short" are plotted. For this example, the two-
pole LPC analysis gave a complex conjugate pole at about 3 kHz — i.e., the
region of maximum energy concentration in the spectrum. In Fig. 9.23b similar
results are shown for the vowel /a/ where the major concentration of energy in
the spectrum is around 800 Hz; In the examples of Figs. 9.23c and 9.23d (a
voice bar or voiced stop and the vowel /i/), the major concentration of spectral
energy is around 0 Hz; thus the two-pole LPC analysis gives two real poles in
the right half zplane. From Fig. 9.23 it can be seen that the computed pole
frequency of the 2-pole LPC analysis gives a fairly good indication of the loca-
tion of the dominant portion of the spectral energy of the sound, and can thus
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Fig. 9.23 Two-pole LPC fits to spectra of several speech sounds. (After
M akhoul and Wolf [26].)
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Fig. 9.24 Speech recognition measurements for the isolated digit /nine/.
(After Sambur and Rabiner [25].)

be effectively used to’ characterize sounds with relatively high-frequency or
low-frequency concentrations of energy. For example, noise-like sounds are
characterized by a relatively high frequency concentration of energy, while
nasals and vowels generally have a much lower frequency for the energy con-
centration.

To illustrate typical analysis measurements, Figs. 9.24 and 9.25 show the
complete set of measurements for spoken versions of the digits nine and six.
Ultimate recognition of these digits is based on making gross determination of
the sound classes (at various points throughout the utterance) for each separate
measurement, and then pooling the separate analyses to make the final deci-
sion. Thus, for example, the initial nasal section of the nine of Fig. 9.24 is
characterized by the low normalized (LPC) error, and the 2-pole location of 0
Hz; whereas the fricative beginning and end of the digit six of Fig. 9.25 are
indicated by the relatively high values of the normalized (LPC) error, the pole
frequency, and the zero-crossing rate (ZCR) measurement.

Using a parallel processing, tree-like decision structure based on separate
indications from each of the measurements, in each of the segmented intervals
of the digits, a reliable recognition strategy was derived by Sambur and Rabiner
[25]. Recognition accuracies of from 94.4 to 97.3% were obtained across 65
speakers.
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Fig. 9.25 Speech recognition measurements for the isolated digit /six/.
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9.3.2 Continuous digit recognition system [27,28]

In this section the more complex problem of recognizing connected digits,
in a speaker independent manner, is illustrated. The specifications for this sys-
tem are almost identical to those of the isolated digit recognition system of Sec-
tion 9.3.1, but with one major exception. Specification number 8 is a connected
word (digit) format in a fixed digit sequence (i.e., 3 digits per utterance) with
no pauses between words.

Although there are a great many similarities between the problems of iso-
lated and continuous digit recognition, the implementations of the recognition
systems are significantly different, particularly in the analysis or signal process-
ing phase. This result is attributable to the necessity of segmenting the con-
tinuous digit string into individuat digits prior to recognition. The segmentation
problem is an extremely difficult one for which no simple solutions are gen-
erally known.
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Figure 9.26 shows a block diagram of the signal processing steps in the
continuous digit recognition system. The recorded digit string is first subjected
to an endpoint analysis to determine where in the recording interval the speech
utterance occurs. The endpoint analysis used is the time domain method
described in Chapter 4. Following endpoint detection, the speech signal is pro-
cessed to given the following measurements (at a rate of 100 times per second).

Zero-crossing rate,

Log energy.

LPC coefficients.

LPC log error.

First autocorrelation coefficient.

The measured parameters were then used as input to a statistical pattern recog-
nition scheme which classified each 10 msec interval as silence, unvoiced
speech, or voiced speech based on a non-Euclidean distance measure (of the
type shown in Eq. (9.14)). Following some simple nonlinear smoothing as as
described in Chapter 4, the voiced/unvoiced/silence contour is used along with
some statistical information about the reliability of the classification of each 10
msec interval, and the speech energy measurements, to segment the connected
digit string into the individual digits. The system requires knowledge of the
number of digits in the input string for proper segmentation. For all examples
to be shown in this section it was assumed that there were exactly three digits
in the input string.

TRAINING
ALGORITHM
V/U/Ss
TRAINING
FILE
s(n) ENDPOINT VOICED- DIGIT DIGIT
—— NVOICED- Pt P TRAININ
LOCATION e ons SEGMENTATION Ve
RECOGNITION |
ALGORITHM

Fig. 9.26 Block diagram of a connected digit recognition system. (After
Rabiner and Sambur [27].)
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Fig. 9.27 Segmentation boundaries for the digit string /721/. (After
Rabiner and Sambur [27).)

The way in which segmentation of the digit string was accomplished was
by using known results about the various measurements for each of the 10
digits to find the digit boundaries. For example, it was known that each inter-
val of nonvoiced speech constituted a boundary region between digits since no
digit has an internal nonvoiced interval of speech. Also, it was known that
strong dips in the energy contour during voiced regions almost always signalled
a digit boundary. Based on these observations a set of simple and straightfor-
ward rules were used to segment the digit string. Although several cases
existed in which accurate segmentation was quite difficult, it was shown possible
to segment digit strings with less than 1% gross errors — i.e., cases in which
auditory verification of the boundaries indicated that part of the preceding or
following digit was included within the boundaries of the current digit.

Figures 9.27 and 9.28 show two examples of digit strings which were seg-
mented by the recognition system. In each of these figures parts a, b, c, and d
show plots of the zero-crossing contour, the log energy contour, a statistical
measure of the certainty of the voiced/unvoiced/silence analysis, and the
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voiced/unvoiced/silence contour of the utterance, respectively. The statistical
parameter shown in part ¢ is a measure of the probability that the decision
made by the voiced-unvoiced-silence analysis is correct, and it varies from 0 to
1.0. The voiced/unvoiced/silence contour of part d is a 3-level contour where
level 1 is silence, level 2 is unvoiced speech, and level 3 is voiced speech.

Figure 9.27 shows the segmentation boundaries for the digit string /721/.
The initial boundary was placed at the beginning of the first unvoiced region,
i.e., the /s/ in seven. The second boundary was placed at the initial interval of
the second unvoiced region, corresponding to the /t/ in two. The third boun-
dary was placed in the region of a local minimum of the log energy contour
within the second voiced region. The exact boundary location is not at the
absolute minimum of the log energy, but instead occurs somewhere within the
region of the minimum. The exact location is determined by a series of com-
plex decisions in the segmentation algorithm. Although the correct location of
the third boundary is not readily determined, it has been found that precise
location of the boundaries within voiced regions is not required for reliable digit
recognition. The final digit boundary is located at the beginning of the last
silence region.
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Fig. 9.28 Segmentation boundaries for the digit string /191/. (Afier
Rabiner and Sambur [27].)
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It should be pointed out that another possible candidate for a boundary
location in Fig. 9.27 is at the strong local minimum in the log energy contour at
the /v/ in seven. However, the segmentation rules were able to eliminate this
case quite readily and instead choose the minimum in the second voiced region.

Figure 9.28 shows a somewhat more complicated digit string — the string
/191/. The input is all voiced; thus there are no convenient boundaries in
unvoiced regions. In addition the local minima in the log energy plot are not
very strong ones (e.g., the energy dips are not large ones), and the widths of
these minima are quite large. Thus the choice of boundary locations was made
using logic rules in the segmentation algorithm. Listening tests showed that the
location of these boundaries within the all-voiced regions was not critical due to
the high degree of coarticulation in the speaking of such all-voiced digit strings.

The next stage in the method is the digit recognition algorithm. For each
segmented digit the region of voiced speech (as obtained from the
voiced/un voiced analysis) is analyzed using a 10-pole LPC analysis. The recog-
nition strategy is a statistical approach in which frames of the test utterance
(LPC parameter sets) are compared to stored frames of the reference digits and
the digit having the greatest similarity (i.e., smallest distance) to the test digit is
chosen.

The digit reference files contain a statistical description of the behavior of
the LPC coefficients for each frame of each digit. Information about the mean
and variation of the LPC coefficients across multiple replications and speakers is
contained in these files. For recognition the test digit must be time warped to
the duration of each of the reference digits. Any of the time warping methods
discussed in Section 9.1 are applicable to this problem. Since all the digits
(with the exception of 7) are monosyllables, linear time warping has been used
in many practical digit recognition systems. For each reference digit an average
distance between its LPC coefficients and those of the test digit is computed,
and the reference digit whose average distance is minimum is chosen as the
spoken digit. The measure of distance between LPC parameter sets is an
important factor in the success of such a recognition system. A variety of LPC
distance metrics have been proposed. In the next section we discuss some LPC
distance measures and show how they are related to the inherent statistical pro-
perties of the LPC coefficients.

Evaluations of systems of the type shown in Figure 9.26 indicate that digit
recognition on the order of 98-100% are attainable for connected digits spoken
by a designated speaker — i.e., one for whom the reference digit patterns were
obtained, and about 95% for a speaker independent system [27-28].

9.3.3 LPC distance measures

We have seen that for both speaker and speech recognition it is necessary
to compare in a quantitative and computationally efficient manner, two frames
of speech for which LPC analyses have yielded different LPC coefficient sets.
Thus we seek a measure D(a,a) where D is the distance between frames of
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§peech ) withA LPCA parameter sets a= (1,a(1), a(2),..,a(p)), and
ia=(1,a(1), a(2,...4(p)). Since D is a distance measure we require that

D(a,a) 20 .17
and

D@@,a)=0 if a=a 9.18)

A fairly sophisticated distance measure D (a,a) was proposed by Itakura
[17]. This distance measure can be obtained by the following reasoning. It can
b.e argued that because of noise, as well as the inexactness of the linear predic-
tion model of speech, it is not possible to measure the true LPC coefficients
associated with a segment of speech. It is only possible to estimate (measure)
the underlying LPC coefficients for the speech segment. Assume we are given
a segment of speech with e¢stimated LPC coefficients 4. The problem is to
determine the probability that & is from a- speech segment with true LPC
coefﬁcjents a. Once this probability is determined, an effective measure for
assessing dissimilarity can be obtained.

. It has.been sho“{n by Mann and Wald [29] that the probability distribu-
txgn governing the estimates of a is a multi-dimensional Gaussian distribution
with mean a and covariance matrix A defined as
R . .

= N (aRa"y (9.19)
where R is the (p+1 by p+1) correlation matrix of the speech segment, N is
the length of the.s.peech frame in samples, and r denotes the vector transpose.
Thus the probability of obtaining the estimate a4 when the underlying LPC

coeflicients are a is
1
P(d/a) = [(2m)??|A| 2] lexp[—0.5(7i—a) A~ (3—a)'] (9.20)

whelre [A] 'is the determinant of the matrix A. An appropriate distance meas-
ure is obtained by taking the logarithm of Eq. (9.20), and neglecting the bias
term due to [A|. The resulting distance measure is

D(a,a) = (a—a)

(9.21)

R .
NﬁRﬁ‘ ] (a—a)’

I.t is readily seen that the greater the probability that & came from the distribu-
thn with underlying LPC coefficients a, the smaller the distance computed
using the metric of Eq. (9.21). Because of computational considerations
Itakura proposed the closely related distance measure

D'(a,a) = log[ aRa‘.]

iRa' (9.22)

. The key assumption in the above analysis is that the ensemble of all pos-
sible speech segments derived from the same speech sound are similar in that
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the underlying LPC coefficients a are identical. The diﬂ'erences'in the meas-
ured LPC coefficients for these speech segments are attributed primarily l'o thf.
effects of statistical sampling. For a wide variety of systems this asst.lmptlon is
quite reasonable. However, for cases in which the LPC coqfﬁcxents vary
because of known effects such as varying speakers, coartlgulatlon, etc., the
underlying or true LPC coefficients are not constant, but instead are better
described in terms of a statistical distribution around some mean value.

Thus for a complete characterization of an LPC frame from a given sound
it is necessary to determine the distribution of a itself. A reasonable assump-
tion is that a is Gaussian with mean m and covariance matrix S, Based on this
total characterization of a the distance relating 4 and a becomes

D(4,a) = (i-m)C~'(i-m)’ (9.23)
where C is the total covariance matrix and is of the form

-1
C=S+ —R—N- (iRd") 9.24)

To use the distance measure of Eq. (9.23) requires measurement of the
quantities m and S for each frame of reference data. The quantity

m= (1,n(1), m(Q2), ..., m(p)) is the average value of the a’s and is defined
as
Ly, (9.25)
m(n)=721a_,«(n) n=12...,p .
i=
where 4,(n), j=1,2, ..., Jis a statistical sampling of frames with the same

underlying distribution a. Similarly the covariance matrix S, with component
s(n,p) is obtained as

snp) = 5 8 4,0a,0) - mwm (o) (9.26)

J=i

9.3.4 Large vocabulary word recognition system

The third word recognition system to be described is one in which the
vocabulary size is significantly larger than in the previous two syst.ems. How-
ever, the tradeoff for the large vocabulary size is tha.t tbe system. is no longer
speaker independent, but instead must be trained a priori by each intended user
of the system.

In terms of our introductory discussion, the specifications for the large
vocabulary word recognition system developed by Itakura {17] were the follow-
ing:

—

Isolated word vocabulary. .

2. Single speaker system, adaptable to any number of speakers with
appropriate system training. o

3. Cooperative speakers with no limitations as to sex or age.
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Fig. 9.29 Block diagram of a large vocabulary, speaker dependent, word
recognition system.

4. No major restrictions on speaking environment.
. Telephone transmission system.

6. System training consisting of 1 or more repetitions of each word in the
vocabulary.

Vocabulary size in the range 100-500 isolated words.
Isolated word format with distinct pauses between consecutive words.

w

®° =

Figure 9.29 shows a block diagram of the processing in the word recogni-
tion system. For maximum efficiency and minimum processing, Itakura used a
sampling rate of 6.67 kHz for the input speech. Since the bandwidth of the
input speech was limited to about 3 kHz by the telephone system, such a sam-
pling rate was entirely adequate for this application.

Following endpoint detection (again using the time domain system of
Chapter 4) an autocorrelation analysis was performed in which the first 8 auto-
correlation coefficients were measured 67 times per second. To compensate for
the spectral shaping due to the telephone line, Itakura computed a long-time
average spectrum by averaging the autocorrelation coefficients on a frame-by-
frame basis and then computing a 2-pole LPC fit to the long-time average spec-
trum. From the 2-pole fit to the long-time average spectrum, the appropriate
inverse filter was computed. The long-time average spectrum was normalized
out of the input by convolving the original autocorrelation coeflicients and the
autocorrelation coefficients of the impulse response of the second order inverse
filter. The first six normalized autocorrelation coefficients were then used both
to make the reference patterns, and as the basis for recognizing unknown
inputs.

After normalizing out the long-time average spectrum the recognition
phase begins. The unknown utterance is compared to each utterance in the
stored reference file. The basis for comparison is the distance measure of Sec-
tion 9.3.3 (Eq. (9.22)). This distance measure is also used for computing the



optimum dynamic time warping pattern of the input utterance to provide the
minimum distance to each stored reference pattern.

Based on the computed distance for each word in the reference catalog,
the word with minimum distance is chosen. If the absolute distance exceeds
some threshold no decision is made. Otherwise the word with the minimum
distance is chosen as the output of the recognition scheme.

This recognition system has been tested with two separate vocabularies.
Using a vocabulary of about 120 distinctly different Japanese cities as input,
Itakura obtained a correct recognition rate of 97.3% with a 1.65% rejection rate.
For a vocabulary consisting of the 26 letters and the digits 0 to 9, a correct
recognition rate of 88.6% was obtained. The much higher error rate (11.4%,
there was a 0% rejection rate} for this vocabulary was attributable to the great
similarity between many of the vocabulary entries — e.g., band d, mand n, or i
and y.

9.4 A 3-Mode Speech Communication System

In order to give a brief look at how man-machine communication might be
used in the future, we conclude this chapter with a brief discussion of a 3-mode
speech communication system which combines voice response, speaker
verification, and speech recognition in a single application. In particular the
system we are referring to is an experimental vehicle that is an airlines informa-
tion an# ticketing service.’? Although this system has been implemented strictly
in the laboratory for experimental purposes, it is felt that such a system
represents a "real-world" application of the concepts discussed in this chapter, as
well as throughout this book.

Rather than describe the system, a simple scenario provides the reader
with a feeling for how such a system can work and provide a useful and valu-
able service. An experimental scenario is as follows:

A frequent credit customer of the airlines dials the computer. The voice
response answers with:

Computer: This is ABC Airlines information and ticketing service. Please
key-in your account number. (Customer does, computer looks it
up, and comes back with):

Computer: Good morning, Mr. XYZ. Please speak your verification phrase for
credit charging. (Customer does, computer churns it and, if result
favorable, comes back with):

Computer: Thank you, Mr. XYZ, I confirm your charge account. Where
would you like to fly to?

Customer: Washington.

3This example is taken from the paper by J. L. Flanagan {1].
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Computer: From what airport would you like to fly to Washington?*
Customer: Newark.
Computer: On what date would you like to fly from Newark?

Customer: (Gives date; or may say no date).

Computer: At what time [on date, or of day] do you wish to depart?

Customer: (Gives time).

Computer: Just a moment, please, I will give you the flights available within
two hours of [time]. (Computer goes to the current airlines timet-
able stored in disc file, looks up flights available, reads them out,
and asks):

Computer: Which flight do you wish to book?

Customer: Flight 123.

Computer: Do you wish First Class or Economy on Flight 123?

Customer: First Class.

Computer: How many First Class seats do you wish?

Customer: One

Computer: A moment, please, while I check availability of one seat.

Computer: 1 am pleased to confirm [reads it all back]. Your ticket will appear
on your teletypewriter within the hour. Your bill will be sent at the
end of the month.

Computer: Do you wish to book further?

Customer: No.

Computer: Thank you for calling ABC Airlines. (Hangs up.)

A variant of this system is already working on an experimental basis at
Bell Laboratories over dialed-up connections and from conventional telephone
sets in the local exchange.

9.5 Summary

We have attempted to show how the techniques discussed throughout this book
can be used in the implementation of a wide variety of useful and interesting
speech processing systems. The more that is learned about digital processing of
speech signals, the more sophisticated the speech processing systems become,
and the greater the potential applications, both in normal human communica-
tion and in communication between humans and machines.
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Projects

The following three broad categories are suggested for term projects in
courses on digital speech processing:

)
(ii)

A literature survey and report
A hardware design project

(i) A computer project

Suggested guidelines for the three types of projects follow.

(i) Literature Survey and Report

In this case the student should choose a topic and consider the following ques-

tions:

S T

‘What is the problem?

‘What is the importance of the problem — e.g., application areas, etc.
‘What have been the basic approaches?

‘What has already been accomplished in this area?

Are new approaches called for?

‘What are the unsolved problems? What needs more work?

‘What are the impediments to further progress — e.g., technological,
lack of basic knowledge, etc.
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Some suggested topics for a literature survey are:

bl S

Pitch detection methods

Voiced/unvoiced analysis methods

The effects of the telephone line on speech analysis

Phonetic feature descriptions of English

Physical characteristics and modelling of the sound source for speech
production

Formant analysis methods

Speech synthesis by rule

Adaptive quantization methods

Vocal tract area function analysis methods

6
7
8
9
10. Speaker identification methods

11. Computer voice response systems

12. Digit recognition by machine

13. Helium speech translation

14. Speech aids for the hearing impaired
15. Speakerphone dereverberation problems
16. Echo suppression methods

17.
18
19
20
21
22
23
24
25

LPC synthesis structures

. Linear prediction and system identification methods
. Applications of homomorphic speech processing

. Speeded up and slowed down speech

. Pole-zero analysis of speech

. Analysis-by-synthesis processing of speech

. Articulatory modelling of speech

. Hardware for waveform coding of speech

. Speech bandwidth reduction systems.

(ii) Hardware Design Project

Such a project could be carried to the hardware stage if possible, but should at
least be advanced to the level of a detailed hardware design — e.g., at the logic
level. Some guidelines for this type of project are:

1.

b

What is the problem that you propose to solve? Note that a project of
this type allows you to use your creativity to think of a new and better
way to do something that may have already been done.

What is available to solve the problem — e.g., theory and technology.
What are the details of the solution? These should be worked out at
as low a level as is feasible with available time.

Is the solution presently feasible? If not, then why not?

What are the hardware requirements for implementations of the sys-
tem?
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6.

If possible a chip count (gates, adders, microprocessors, memory,
other storage) should be given, as should a cost estimate.

Some suggested topics for a hardware project are:

L.
2.
3

>

o R R

Design a code converter for PCM to ADPCM, PCM to ADM etc.
Design a circuit to detect a tone imbedded in speech

Propose a speech processing system which can be implemented on a
commercially available microprocessor

Design a circuit to detect the presence of speech over a noisy tele-
phone line

Design a 4 band speech spectrum analyzer

Design a system to display a speech spectrogram

Design a parallel formant speech synthesizer

Design a speech scrambler or encryption device

Design a digital pitch detector

Design a voiced/unvoiced detector

Design a system for distinguishing speech from noise

(iii) Computer Project

The student should consider this only if he is already facile with an available
computer, and can obtain sufficient computer time for this project. The
requirements for this project are a short description of the problem containing

relevant

mathematical theory and objectives of the project, and a listing (with

thorough documentation and comments) of the program, and a demonstration
that the program works properly. Some suggested topics for a computer project

are.

O 00NN N

Pitch detector—time domain, autocorrelation, cepstrum, LPC, etc.
Voiced/unvoiced detector

Beginning and endpoint detector

Formant analyzer

LPC analysis system—signal to LPC to spectrum

N channel spectral analyzer—phase vocoder, channel vocoder
Waveform coder — e.g. ADM, ADPCM etc.

Area function to vocal tract transfer function

Examine effect of window shape and duration on energy, autocorrela-
tion or speech spectrogram

Speech synthesizer—serial, parallel, direct, lattice

Area function to formants program

. Code converter between any 2 formats
. Cepstrally smoothed spectrum from speech signal
. Transform LPC parameters to alternate parameter sets and show sta-

tistical properties

. Compare LPC, FFT, and cepstrally smoothed spectra
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Acoustic admittance:
due to thermal conduction, 69
of a uniform lossless tube, 64
due to yielding walls, 68
Acoustic impedance:
of a uniform lossless tube, 64
due to viscous friction, 69
Adaptive delta modulation:
continuously variable slope
(CVSD), 223-24
with one bit memory, 221-23
Adaptive differential PCM
(ADPCM), 226-32
Adaptive prediction:
in DPCM, 228-32
feedback control, 229-32
feed-forward control, 232
Adaptive quantization, 195-208
Additive modifications of the
short-time spectrum, 280-81
Affricates, 54
Aids-to-the-handicapped, 8
Aliasing:
in computing the cepstrum, 364-
65, 393
definition, 26
All-pole model for speech, 398

Index

All-pole transfer function, 99
cascade realization, 100
direct form realization, 101
AMDF, 149-50
Analysis-by-synthesis, 318-23
comparison to LPC, 439-40
Analysis frames, 117
Analysis-synthesis systems, 324-44
APCM, 196
Area function, 44
measurements of, 61
Autocorrelation function:
computation of, 162-64
for deterministic signals, 141
for periodic signals, 141
properties of, 141
for random signals, 141
short-time, 141-49
Autocorrelation method of LPC,
401-3
Average magnitude difference
function (AMDF), 149-50

Backward prediction error, 414
Bandwidth:
of Hamming window, 264
of speech signals, 174
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Bit-rate, 180
Boundary condition:

at glottis, 78-82, 86-87

at lips, 71-74, 85-86, 111, 113
Burg’s method, 416

Cascade form implementation, 23
Causal systems, 19, 20
Center clipping, 151-54
three level, 154
Cepstrum, 359
from predictor polynomial, 442
smoothing, 378
window, 369-70
Channel vocoder, 341-44
Characteristic impedance, 64
Characteristic system for homo-
morphic deconvolution, 357-
59
Chirp z-transform, 379, 394-95
Cholesky decomposition, 407-11
Clipping level effect of in pitch
estimation, 153
Companding, 186-91
Comparison of digital coders, 232-
35



Complex cepstrum:
computation of, 363-65
properties of, 360-62
for rational transforms, 360
of speech, 365-72
unvoiced, 370-72
voiced, 367-70
Composite frequency response, 268
Composite impulse response using
real filters, 285
Compressor u-law, 188
Computational requirements in
LPC,417-18
Computer voice response (see Voice
response)
Concatenation of formant-coded
words, 470-73
Continuant sounds, 43
Continuous digit recognition,
494-98
Convolution, descrete, 13
Correlation function:
long term estimate, 177-78
(see also Short-time autocorrela-
tion)
Covariance method of LPC, 403-4
Cross-correlation, 148
CVSD, 223-24
maximum and minimum step
sizes, 247

Decimation and interpolation, 27,
273-74
Deconvolution, 355
Delta modulation, 216-25
adaptive, 221-24
double integration, 225
linear, 216-21
Design of digital filter banks (see
Digital filter bank design)
Differential PCM (DPCM), 225-32
Differential quantization, 208-16
Digital code conversion, 235-38
Digital coding:
of the cepstrum, 388-89
of formants, 382-84
of LPC parameters, 450-53
of the time dependent Fourier
transform, 324-34
using adaptive delta modula-
tion, 331-32
using PCM, 332
Digital filter bank design, 282-302
practical considerations in, 282-90
using FIR filters, 292-302
using IIR filters, 290-92

Digital filters, 18-23
causality of, 19, 20
frequency response of, 18
implementation of, 23
stability of, 19, 20
system function of, 18
Digital transmission of speech, 7
Diphthongs, 48
Direct form implementation, 23
Discrete Fourier transform, 16-18
Discrete-time model for speech,
103-5
Distance measures, 484-85, 498-500
Dithering, 242-43
Double integration delta modula-
tion, 225
DPCM, 225-32
Durbin’s method of solution of the
LPC equations, 411-13
Dynamic range, 187
of u-law quantizer, 191

Encoding of quantized samples,
179-81

Energy, 119

Enhancement of speech quality, 8

Error, quantization, 182

Expander, 188

Exponential sequence, 11

Fast Fourier Transform (FFT).
definition of, 18
use in computing the cepstrum,
363-65
use in short-time Fourier analysis,
303-6
use in short-time Fourier synthesis,
306-10
Feedback adaptation, 203-7
Feedback quantization:
in differential PCM, 227-28
performance of, 207
Feed-forward adaptation, 199-203
in differential PCM, 226-27
performance of, 203
Filter bank summation method,
266-74
implementation of, 303-10
Finite impulse response (see FIR)
FIR systems, 20-21
design of, 20
linear phase, 20
Formant frequencies, 41, 44
quantization of, 382-84
of uniform lossless tube, 65-66
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Formant frequency estimation:
using the cepstrum, 378-85
using LPC, 442-50
Formant vocoder, 382-85
Forward prediction error, 414
Fourier transform, 15-16
Frequency domain interpretation
of LPC, 431-40
Frequency resolution dependence
on window length, 260
Frequency response, 18
Frequency response of telephone
line, 174
Fricative, 40
excitation model, 81-82
unvoiced, 51-52
voiced, 52

Gain computation in LPC, 404-7
Glottis, 39 ’

boundary condition at, 63, 81, 87
Granular noise, 219

Hamming window:
definition of, 121
Fourier transform of, 122
Homomorphic systems for con-
volution, 356-65
canonic form for, 357
characteristic system, 357
implementation of, 363-65
Homomorphic vocoder, 385-90

Idle channel noise, 195
IIR systems, 21-23
design of, 22
implementation:
cascade form 23
direct form, 23
parallel form, 23
Infinite duration impulse response
(see IIR)
Information rate, 180
Information rate of speech, 2
Instantaneous quantization, 179-95
Integrator, 217
Interpolation, 28-29
of LPC synthesis parameters, 445
of short-time Fourier transform,
306-10, 324-34
Isolated digit recognition, 490-93

Laplacian probability density, 176,
241

Lattice formulation of LPC, 413-17

LDM-to-PCM conversion, 236-37

Leaky integrator, 224
Linear delta modulation, 216-21
circuit implementation, 236
Linear filtering interpretation of
time dependent Fourier
analysis, 261-63
Linear phase FIR systems, 20
Linear predictive analysis:
autocorrelation method, 401-3
basic principles, 398-401
covariance method, 403-4
use in speaker identification,
485-89
use in speaker verification, 478-79
use in speech recognition, 491-98
Linear predictive coding (LPC), 367
Linear predictive spectrum, 433
Linear predictive vocoder, 450-53
Linear predictor, 210
Linear shift-invariant systems, 13
Linguistics, 39
Log area ratio, 444
Logarithmic quantization, 186-87
Losses in the vocal tract:
due to thermal conduction, 69
due to viscous friction, 69
due to yielding walls, 66-69
Lossless tube models, 82-98
boundary condition at glottis,
86-87
boundary condition at lips, 86
equivalent discrete-time system,
89-92
from LPC, 440-41
relationship to digital filters, 88-
92
transfer function of, 92-98
recursion formula for, 96
LPC (see Linear predictive coding
and Linear predictive
analysis)
LPC distance measures, 498-500

Maximum phase signals, 361
complex cepstrum of, 361
Median smoothing, 158-61
application to speech processing,
160-61
properties of, 158
Mid-riser quantizer, 181-82
Mid-tread quantizer, 181-82
Minimum phase signals, 361
complex cepstrum of, 361
Modifications to the short-time
spectrum:

Modifications {cont.):
effects of synthesis, 277-81
in FBS method, 277-79
in OLA method, 279-80

Nasals, 49-50
model for production, 76-78

Nasal tract, 39

Noise, quantization, 182

Normalized mean-squared error,
424-26

Normalized prediction error, 412

Nyquist frequency, 25

Optimum quantization, 191-95

Overlap addition method of short-
time Fourier synthesis, 274-77

Oversampling ratio, 265

Parallel form implementation, 23
Parallel processing pitch detector,
135-41
PARCOR coefficients, 415, 443-44
quantization of, 444, 452
relation to reflection coefficients,
441
stability condition for, 419
synthesis from, 446-47
PCM-to-ADPCM conversion, 237-
38
Pharynx, 39
Phase adjustment:
in digital filterbanks, 290
Phase derivative, 335
Phase vocoder, 334-40
Phoneme, 2, 42
classes, 43
Phonetics, 39
Pitch detection (see Pitch period
estimation)
Pitch period estimation:
using the autocorrelation func-
tion, 150-57
algorithm for, 156
using the cepstrum, 372-78
using LPC, 447-49
using parallel processing, 13541
using the short-time Fourier
transform, 314-18, 352
Pitch synchronous estimation of
the glottal wave, 322-24
Pitch synchronous LPC, 427
Pitch synchronous spectrum
analysis, 319-21
Plosive sounds, 41
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Pole-zero analysis, 321-22
Power spectrum:
for speech, 177-78
method of estimation,
Prediction error:
definition, 399
in differential PCM, 20¢
filter, 399
short-time average, 400
signal, 421-24
use in speech recognition
Prediction gain, 210
bounds on, 230
optimum, 213
Principle of superposition
Probability density:
gamma, 175
Laplacian, 176, 241
for speech, 175-76

Quantization:
of the cepstrum, 388-89
of formant parameters,
instantaneous, 179-95
of LPC parameters, 450
of short-time Fourier tr:
324-34
uniform, 181-86
Quantization error, 182
Quantization noise, 182-8
model for, 182
variance of, 185

Radiation:
boundary condition du
71, 86
impedance, 71
load, 71
discrete representatio
of sound at the lips, 71-
Rectangular window:
definition of, 121
Fourier transform of, 1
Reflection coefficient:
definition of, 85

Sampling:
aliasing in, 26
the short-time Fourier t

263-66, 329

speech signals, 173-74
theorem, 24

Sampling rate:
of formant frequencies
increase, 28-29
reduction, 27



Segmentation in speech recognition,
495-98
Selective linear prediction, 438
Semivowels, 48-49
Short-time autocorrelation function,
141-49
definition of, 142
effects of window, 144-46
modified, definition of, 146
relation to short-time Fourier
transform, 253, 348
Short-time average magnitude, 123
Short-time average magnitude dif-
ference function, 149-50
Short-time average zero-crossing
rate, 127-30
Short-time energy, 119-21
use in speaker verification, 478-79
use in speech recognition, 491-98
Short-time Fourier transform (See
Time-dependent Fourier
transform)
SIFT method of pitch detection,
44749
Signal-to-quantization noise ratio
(See SNR)
Silence discrimination, 130-35
Slope overload noise, 218
SNR:
definition, 184
u-law quantizer, 189
uniform quantizer, 185
Solution of LPC equations, 407-17
Cholesky decomposition, 407-11
Durbin’s method, 411-13
lattice solution, 413-17
Sound spectrograph, 310
Speaker identification, 7, 485-89
Speaker recognition systems, 476-89
Speaker verification, 7, 478-85
Spectrogram, 41
Spectrographic displays, 310-14
Spectrum analysis methods, com-
parison of, 436-38
Spectrum flattening, 151, 447-49,
457-58
Speech recognition systems, 7,
489-503
Speech synthesis:
by concatenation, 470-73
from Formant parameters, 379-85
from LPC parameters, 444-47
by rule, 464-65
Speech vs. silence discrimination,
130-35

Speech (Cont.):
algorithm for, 132-35
examples of, 130-32, 134
Stability requirement in LPC, 416,
418-19
Stable systems, 19, 20
Statistical model for speech, 174-79
correlation function, 175
power spectrum, 177-78
probability density, 176
Stops:
voiced, 52
unvoiced, 53
Subjective performance of digital
coders, 234-35
Syllabic variations, 198
Synthesis (see Speech synthesis)
Synthesis from short-time Fourier
transforms;
filter bank summation method,
266-74
overlap add method, 274-77
System function, 18

Temporal resolution dependence
on window length, 260
Terminal analog model, 98
Time-dependent Fourier transform:
definition of, 251
existence of, 252
Fourier transform interpretation,
252-60
linear filtering interpretation,
261-63
periodicity in frequency, 252-53
properties of, 347
recursive implementation, 348
relation to short-time autocorre-
lation, 253, 348
sampling rate for, 263-66
Time varying modifications of the
short-time spectrum, 278-80
Time warping, 480-84
Transmission line analogy, 63
Two’s-complement code words, 182
Two’s-complement representation,
182

Uniform lossless tube:
analogy to electric transmission
line, 63
characteristic impedance of, 64
formant frequencies of, 65-66
solution for, 62-66
Uniform probability density, 241
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Unit sample response, 13

Unit sample (impulse) sequence, 11
Unit step sequence, 11 ‘
Unvoiced sounds, 40

Variance estimate, 243-44
Vocal Chord vibration, 79
Vocal tract, 39
Vocoders (see also Analysis-
synthesis systems):
channel, 341-44
formant, 382-85
homomorphic, 385-90
linear predictive (LDC), 450-53
phase, 334-40
voice excited, 452-53
Voice bar, 52
Voiced sounds, 40
model for excitation, 80-81
Voice response systems, 464-76
applications of, 473-76
design considerations, 466-70
multiple output, 469-70
Vowels, 43-47
Vowel triangle, 45, 46

Wave propagation in the vocal
tract, 56-62
Window design method applied to
filter banks, 295302
Window length:
effect on cepstrum, 377
effect on frequency resolution,
260
effect in LPC, 420, 426-31
effect on temporal resolution, 260
Window position:
effect on cepstrum, 394
effect in LPC, 429-31
Windows:
classes of, 262-63
Hamming, 121
in LPC, 420, 426-31
rectangular, 121
in short-time Fourier analysis,
251, 254-60

Zero-crossing measurements:
comparison of voiced and un-
voiced, 128
practical considerations in, 129
use in speech recognition, 491-98
Z-transform, 13-15
region of convergence of, 14



