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PREFACE

This book grew out of my frustrations with not being able to explain algorithms clearly.
Like many other teachers, I discovered that not only is it hard for some students to solve
(what seemed to me) simple problems by themselves, but it is also hard for them to
understand the solutions that are given to them. I believe that these two parts — the
creation and the explanation — are related and should not be separated. It is essential to
follow the steps leading to a solution in order to understand it fully. It is not sufficient to
look at the finished product.

This book emphasizes the creative side of algorithm design. Its main purpose is to
show the reader how to design a new algorithm. Algorithms are not described in a
sequence of ‘‘problem X, algorithm A, algorithm A’, program P, program P’,”’ and so on.
Instead, the sequence usually (although not always) looks more like ‘‘problem X, the
straightforward algorithm, its drawbacks, the difficulties overcoming these drawbacks,
first attempts at a better algorithm (including possible wrong turns), improvements,
analysis, relation to other methods and algorithms,’’ and so on. The goal is to present an
algorithm not in a way that makes it easier for a programmer to translate into a program,
but rather in a way that makes it easier to understand the algorithm’s principles. The
algorithms are thus explained through a creative process, rather than as finished products.
Our goals in teaching algorithms are to show not only how to solve particular problems,
but also how to solve new problems when they arise in the future. Teaching the thinking
involved in designing an algorithm is as important as teaching the details of the solution.

To further help the thinking process involved in creating algorithms, an
‘‘old—new’’ methodology for designing algorithms is used in this book. This
methodology covers many known techniques for designing algorithms, and it also
provides an elegant intuitive framework for explaining the design of algorithms in more
depth. It does not, however, cover all possible ways of designing algorithms, and we do
not use it exclusively. The heart of the methodology lies in an analogy between the
intellectual process of proving mathematical theorems by induction and that of designing
combinatorial algorithms. Although these two processes serve different purposes and
achieve different types of results, they are more similar than they may appear to be. This
analogy has been observed by many people. The novelty of this book is the degree to
which this analogy is exploited. We show that the analogy encompasses many known
algorithm-design techniques, and helps considerably in the process of algorithm creation.
The methodology is discussed briefly in Chapter 1 and is introduced more formally in
Chapter S.
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Consider the following analogy. Suppose that you arrive at an unfamiliar city, rent
a car, and want directions to get to your hotel. You would be quite impatient if you were
told about the history of the city, its general layout, the traffic patterns, and so on. You
would rather have directions of the form ‘‘go straight for two blocks, turn right, go
straight for three miles,”” and so on. However, your outlook would change if you
planned to live in that city for a long time. You could probably get around for a while
with directions of the second form (if you find someone who gives you those directions),
but eventually you will need to know more about the city. This book is not a source of
easy directions. It does contain explanations of how to solve many particular problems,
but the emphasis is on general principles and methods. As a result, the book is
challenging. It demands involvement and thinking. I believe that the extra effort is well
worthwhile.

The design of efficient nonnumeric algorithms is becoming important in many
diverse fields, including mathematics, statistics, molecular biology, and engineering.
This book can serve as an introduction to algorithms and to nonnumeric computations in
general. Many professionals, and even scientists not deeply involved with computers,
believe that programming is nothing more than grungy nonintellectual work. It
sometimes is. But such a belief may lead to straightforward, trivial, inefficient solutions,
where elegant, more efficient solutions exist. One goal of this book is to convince
readers that algorithm design is an elegant discipline, as well as an important one.

The book is self-contained. The presentation is mostly intuitive, and technicalities
are either kept to a minimum or are separated from the main discussion. In particular,
implementation details are separated from the algorithm-design ideas as much as
possible. There are many examples of algorithms that were designed especially to
illustrate the principles emphasized in the book. The material in this book is not
presented as something to be mastered and memorized. It is presented as a series of
ideas, examples, counterexamples, modifications, improvements, and so on. Pseudo-
codes for most algorithms are given following the descriptions. Numerous exercises and
a discussion of further reading, with a relevant bibliography, follow each chapter. In
most chapters, the exercises are divided into two classes, drill exercises and creative
exercises. Drill exercises are meant to test the reader’s understanding of the specific
examples and algorithms presented in that chapter. Creative exercises are meant to test
the reader’s ability to use the techniques developed in that chapter, in addition to the
particular algorithms, to solve new problems. Sketches of solutions to selected exercises
(those whose numbers are underlined) are given at the end of the book. The chapters
also include a summary of the main ideas introduced.

The book is organized as follows. Chapters 1 through 4 present introductory
material. Chapter 2 is an introduction to mathematical induction. Mathematical
induction is, as we will see, very important to algorithm design. Experience with
induction proofs is therefore very helpful. Unfortunately, few computer-science students
get enough exposure to induction proofs. Chapter 2 may be quite difficult for some
students. We suggest skipping the more difficult examples at first reading, and returning
to them later. Chapter 3 is an introduction to the analysis of algorithms. It describes the
process of analyzing algorithms, and gives the basic tools one needs to be able to perform
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simple analysis of the algorithms presented in the book. Chapter 4 is a brief introduction
to data structures. Readers who are familiar with basic data structures and who have a
basic mathematical background can start directly from Chapter 5 (it is always a good idea
to read the introduction though). Chapter 5 presents the basic ideas behind the approach
of designing algorithms through the analogy to induction proofs. It gives several
examples of simple algorithms, and describes their creation. If you read only one chapter
in this book, read Chapter 5.

There are two basic ways to organize a book on algorithms. One way is to divide
the book according to the subject of the algorithms, for example, graph algorithms,
geometric algorithms. Another way is to divide the book according to design techniques.
Even though the emphasis of this book is on design techniques, I have chosen the former
organization. Chapters 6 through 9 present algorithms in four areas: algorithms for
sequences and sets (e.g., sorting, sequence comparisons, data compression), graph
algorithms (e.g., spanning trees, shortest paths, matching), geometric algorithms (e.g.,
convex hull, intersection problems), and numerical and algebraic algorithms (e.g., matrix
multiplication, fast Fourier transform). I believe that this organization is clearer and
easier to follow.

Chapter 10 is devoted to reductions. Although examples of reductions appear in
earlier chapters, the subject is unique and important enough to warrant a chapter of its
own. This chapter also serves as an opening act to Chapter 11, which deals with the
subject of NP-completeness. This aspect of complexity theory has become an essential
part of algorithm theory. Anyone who designs algorithms should know about NP-
completeness and the techniques for proving this property. Chapter 12 is an introduction
to parallel algorithms. It contains several interesting algorithms under different models
of parallel computation.

The material in this book is more than can be covered in a one-semester course,
which leaves many choices for the instructor. A first course in algorithm design should
include parts of Chapters 3, 5, 6, 7, and 8 in some depth, although not necessarily all of
them. The more advanced parts of these chapters, along with Chapters 9, 10, 11, and 12,
are optional for a first course, and can be used as a basis for a more advanced course.
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CHAPTER 1

INTRODUCTION

Great importance has been rightly attached to this process
of ‘‘construction,’ and some claim to see in it the
necessary and sufficient condition of the progress of the
exact sciences. Necessary, no doubt, but not sufficient!
For a construction to be useful and not mere waste of
mental effort, for it to serve as a stepping-stone to higher
things, it must first of all possess a kind of unity enabling us
to see something more than the juxtaposition of its
elements.

Henri Poincaré, 1902

The Webster’s Ninth New Collegiate dictionary defines an algorithm as ‘‘a procedure for
solving a mathematical problem (as of finding the greatest common divisor) in a finite
number of steps that frequently involves a repetition of an operation; or broadly: a step-
by-step procedure for solving a problem or accomplishing some end.”” We will stick to
the broad definition. The design of algorithms is thus an old field of study. People have
always been interested in finding better methods to achieve their goals, whether those be
starting fires, building pyramids, or sorting the mail. The study of computer algorithms is
of course new. Some computer algorithms use methods developed before the invention
of computers, but most problems require new approaches. For one thing, it is not enough
to tell a computer to ‘‘look over the hill and sound the alarm if an army is advancing.”’
A computer must know the exact meaning of ‘‘look,”” how to identify an army, and how
to sound the alarm (for some reason, sounding an alarm is always easy). A computer
receives its instructions via well-defined, limited primitive operations. It is a difficult
process to translate regular instructions to a language that a computer understands. This
necessary process, called programming, is now performed on one level or another by
millions of people.
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Programming a computer, however, requires more than just translating well-
understood instructions to a language a computer can understand. In most cases, we need
to devise totally new methods for solving a problem. It is not just learning the weird
language in which we “‘talk’” to a computer that makes it hard to program; it is knowing
what to say. Computers execute not only operations that were previously performed by
humans; with their enormous speed, computers can do much more than was ever
possible. Algorithms of the past dealt with dozens, maybe hundreds of items, and, at
most, with thousands of instructions. Computers can deal with billions, or even trillions,
of bits of information, and can perform millions of (their primitive) instructions per
second. Designing algorithms on this order of magnitude is something new. It is in
many respects counterintuitive. We are used to thinking in terms of things we can see
and feel. As a result, there is a tendency when designing an algorithm to use the
straightforward approach that works very well for small problems. Unfortunately,
algorithms that work well for small problems may be terrible for large problems. It is
easy to lose sight of the complexity and inefficiency of an algorithm when applied to
large-scale computations.

There is another aspect to this problem. The algorithms we perform in our daily
life are not too complicated and are not performed too often. It is usually not worthwhile
to expend a lot of effort to develop the perfect algorithm. The payoff is too small. For
example, consider the problem of unpacking grocery bags. There are obviously less
efficient and more efficient ways of doing it, depending on the contents of the bags and
the way the kitchen is organized. Few people spend time even thinking about this
problem, much less developing algorithms for it. On the other hand, people who do
large-scale commercial packing and unpacking must develop good methods. Another
example is mowing the lawn. We can improve the mowing by minimizing the number of
turns, the total time for mowing, or the length of the trips to the garbage cans. Again,
unless one really hates mowing the lawn, one would not spend an hour figuring out how
to save a minute of mowing. Computers, on the other hand, can deal with very
complicated tasks, and they may have to perform those tasks many times. It is
worthwhile to spend a lot of time designing better methods, even if the resulting
algorithms are more complicated and harder to understand. The potential of a payoff is
much greater. (Of course, we should not overoptimize, spending hours of programming
time to save overall a few seconds of computer time.)

These two issues — the need for counterintuitive approaches to large-scale
algorithms and the possible complexities of these algorithms — point to the difficulties in
learning this subject. First, we must realize that straightforward intuitive methods are not
always the best. It is important to continue the search for better methods. To do that, we
need of course, to learn new methods. This book surveys and illustrates numerous
methods for algorithm design. But it is not enough to learn even a large number of
methods, just as it is not enough to memorize many games of chess in order to be a good
player. One must understand the principles behind the methods. One must know how to
apply them and, more important, when to apply them.

A design and implementation of an algorithm is analogous to a design and
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construction of a house.! We start with the basic concepts, based on the requirements for
the house. It is the architect’s job to present a plan that satisfies the requirements. It is
the engineer’s job to make sure that the plan is feasible and correct (so that the house will
not collapse after a short while). It is then the builder’s job to construct the house based
on these plans. Of course, all along the way, the costs associated with each step must be
analyzed and taken into account. Each job is different, but they are all related and
intertwined. A design of an algorithm also starts with the basic ideas and methods.
Then, a plan is made. We must prove the correctness of the plan and make sure that its
cost is effective. The last step is to implement the algorithm for a particular computer.
Risking oversimplification, we can divide the process into four steps: design, proof of
correctness, analysis, and implementation. Again, each of these steps is different, but
they are all related. None of them can be made in a vacuum, without a regard to the
others. One rarely goes through these steps in linear order. Difficulties arise in all
phases of the construction. They usually require modifications to the design, which in
turn require another feasibility proof, adjustment of costs, and change of implementation.

This book concentrates on the first step, the design of algorithms. Following our
analogy, the book could have been entitled The Architecture of Algorithms. However,
computer architecture has a different meaning, so using this term would be confusing.
The book does not, however, ignore all the other aspects. A discussion of correctness,
analysis, and implementation follows the description of most algorithms — in detail for
some algorithms, briefly for others. The emphasis is on methods of design.

It is not enough to learn many algorithms to be a good architect and to be able to
design new algorithms. One must understand the principles behind the design. We
employ a different way of explaining algorithms in this book. First, we try to lead the
reader to find his or her own solution; we strongly believe that the best way to learn how
to create something is to try to create it. Second, and more important, we follow a
methodology for designing algorithms that helps this creative process. The methodology,
introduced in Manber [1988], provides an elegant intuitive framework for explaining the
design of algorithms in more depth. It also provides a unified way to approach the
design. The different methods that are encompassed by this methodology, and their
numerous variations, are instances of the same technique. The process of choosing
among those many possible methods and applying them becomes more methodical. This
methodology does not cover all possible ways of designing algorithms. It is useful,
however, for a great majority of the algorithms in this book.

The methodology is based on mathematical induction. The heart of it lies in an
analogy between the intellectual process of proving mathematical theorems and that of
designing combinatorial algorithms. The main idea in the principle of mathematical
induction is that a statement need not be proven from scratch: It is sufficient to show that
the correctness of the statement follows from the correctness of the same statement for
smaller instances and the correctness of the statement for a small base case. Translating
this principle to algorithm design suggests an approach that concentrates on extending

' The two wonderful books by Tracy Kidder, The Soul of a New Machine (Little Brown, 1981). and House
(Houghton Mifflin, 1985), inspired this analogy.



4 Introduction

solutions of small problems to solutions of large problems. Given a problem, if we can
show how to solve it by using a solution of the same problem for smaller inputs, then we
are done. The basic idea is to concentrate on extending a solution rather than on building
it from scratch. As we will show in the following chapters, there are many ways of doing
this, leading to many algorithm design techniques.

We use mathematical induction mainly as a tool for explaining and designing
high-level algorithms. We make little attempt to formalize or axiomize the approach.
This has been done by several people, including Dijkstra [1976], Manna [1980], Gries
[1981], Dershowitz [1983], and Paull [1988], among others. This book complements
these other books. Our goal is mainly pedagogical, but of course whenever something
can be explained better it is usually understood better. Among the proof techniques we
discuss are strengthening the induction hypothesis, choosing the induction sequence
wisely, double induction, and reverse induction. The significance of our approach is
two-fold. First, we collect seemingly different techniques of algorithm design under one
umbrella; second, we utilize known mathematical proof techniques for algorithm design.
The latter is especially important, since it opens the door to the use of powerful
techniques that have been developed for many years in another discipline.

One notable weakness of this approach is that it is not a universal approach. Not
all algorithms can or should be designed with induction in mind. However, the principle
of induction is so prevalent in the design of algorithms that it is worthwhile to
concentrate on it. The other principles are not ignored in this book. A common criticism
of almost any new methodology is that, although it may present an interesting way to
explain things that were already created, it is of no help in creating them. This is a valid
criticism, since only the future will tell how effective a certain methodology is and how
widely used it becomes. I strongly believe that induction is not only just another tool for
explaining algorithms, but it is necessary in order to understand them. Personally, even
though I had a good experience in developing algorithms without following this
methodology, I found it helpful, and, at least in two cases, it led me to develop new
algorithms more quickly (Manber and McVoy [1988], Manber and Myers [1989)).

Notation for Describing Algorithms

In addition to describing the algorithms through the creative process of their
development, we also include pseudocodes for many algorithms. The purpose of
including programs is to ent.ance the descriptions. We have not made a great effort to
optimize the programs, and we do not recommend simply copying them. In some cases,
we made a conscious decision not to include the most optimized version of the program,
because it introduces additional complexity, which distracts from the main ideas of the
algorithm. We sometimes do not explain in detail how we translate the algorithmic ideas
into a program. Such translations sometimes are obvious and sometimes are not. The
emphasis in this book, as we mentioned, is on the principles of algorithm design.

For the most part, we use a Pascal-like language (sometimes even pure Pascal). In
many cases, we include high-level descriptions (such as ‘‘insert into a table,”’ or ‘‘check
whether the set is empty’’) inside a Pascal code to make it more readable. One notable
exception we make to the rules of Pascal is the use of begin and end to encompass
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blocks. We include these statements only at the beginning and end of the programs, and
let the indentation separate the blocks. This convention saves space without causing
ambiguities. We usually do not include precise declarations of variables and data types
in cases where such declarations are clear (e.g., we may say that G is a graph, or that T is
atree).

Exercises

Exercises whose numbers are underlined have solutions at the back of the book. Exercises that are
marked by a star are judged by the author to be substantially more difficult than other exercises.

The exercises in this chapter do not require any previous knowledge of algorithms. They address
relatively simple problems for specific inputs. The reader is asked to find the answers by hand.
The main purpose of these exercises is to illustrate the difficulty in dealing with a very large
number of possibilities. In other words, one of the goals of these exercises is to cause frustration
with straightforward methods. The problems given here will be discussed in the following
chapters.

1.1 Write down the numbers 1 to 100 each on a separate card. Shuffle the cards and rearrange
them in order again.

1.2 Write down the following 100 numbers each on a separate card and sort the cards. Think
about the differences between this exercise and Exercise 1.1.

32918 21192 11923 4233 88231 8312 11 72 971 8234 22238 49283 3295
29347 3102 32883 20938 2930 16 823 9234 9236 29372 2218 9222 21202
83721 9238 8221 30234 93920 81102 1011 18152 2831 29133 9229 10039
9235 48395 2832 37927 73492 8402 48201 38024 2800 32155 2273 82930
2221 3841 311 3022 38099 29920 28349 74212 7011 1823 903 2991 9335
29123 28910 29281 3772 20012 70458 30572 38013 72032 28001 83835
3017 92626 73825 29263 2017 262 8362 77302 8593 3826 9374 2001
83261 48402 4845 79794 27271 39992 22836 444 2937 37201 37322
49472 11329 2253

1.3 Consider the following list of numbers. Your job is to erase as few of those numbers as
possible such that the remaining numbers appear in increasing order. For example, erasing
everything except the first two numbers leaves an increasing sequence; erasing everything
except for first, third, sixth, and eighth numbers, does the same (but fewer numbers are
erased).

944 32127423492353741820278364612839932917 131455
2166722373991288773658384625117468767867 7569 7022
71242526

1.4 Solve Exercise 1.3, such that the remaining numbers are in decreasing order.

1.5 Suppose that in a strange country there are five types of coins with denominations of 15, 23,
29, 41, and 67 (all cents). Find a combination of these coins to pay the sum of 18 dollars
and 8 cents (1808 cents). You have enough coins of each type in your pocket.
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1.6

1.7

1.8
1.9

1.10

Introduction

The input is a list of pairs of integers given below. The meaning of a pair (x, y) is that x is
waiting for an answer from y. When x is waiting, it cannot do anything else, and, in
particular, it cannot answer any questions from others that may be waiting for it. The
problem is to find a sequence of pairs (x| x3), (X X3), ***, (X %), (X, X ), for some k > 1
(any k will do). If such a sequence exists, then there is a deadlock. No one can proceed,
since everyone is waiting for someone else.

You can use a pencil and a piece of paper, and make any kind of computation, involving
numbers (e.g., comparisons, creating tables); however, you cannot draw any kind of a
figure. (You may draw figures, unrelated to this particular input, to help you design a
general method of solving such a problem.)

116,221,225, 222,23 50,2347,24 1,25 10, 357, 36 45, 36 37, 38 42,
3941,1237,1223,123,1220, 14 25,41 9,42 3,43 5,43 22, 292, 30 48,
3115,3217,645,61,535,520,528,511,48 4,48 10,49 32,7 31,74,
533,629,612,611,63,617,4527,47 34,48 20,7 40,7 34,8 11, 919,
1130, 114, 1122,1125,2024,2123,2146,2247,23 49,3 39,3 34,4
14,437,542,58,152,1550,154,1537,16 13, 17 38, 18 28, 19 8, 26
15,26 42,27 18, 28 35, 13 36, 13 50, 13 34, 13 22, 29 34, 29 38, 29 30, 29
16, 44 33,44 36,44 7, 44 3, 44 32,44 21,339, 33 21, 33 35,33 19, 33 41,
26 10, 26 44,26 16, 26 39, 26 17

The input is the two-dimensional 15 by 15 table given in Fig. 1.1. The ith row and the ith
column (for any /) correspond to the same place. Each entry in the table indicates the direct
distance between the places in the corresponding row and column. The ‘-’ symbol
indicates that there is no direct link between the two places. The direct distance may not be
the shortest distance. There may be a shorter path between two places going through a third
place (or several places). For example, the shortest route between 1 and 6 is through 5 and
12. Find the shortest route between 1 and 15, between 4 and 3, and between 15 and 8.

Consider the table in Fig. 1.1. Find the shortest route between S and all other places.

Consider the graph shown in Fig. 1.2. Find a closed route along the edges of the graph
which includes every vertex exactly once. (This graph corresponds to the edges of a
dodecahedron; this puzzle was first described by the Irish mathematician Sir William R.
Hamilton, and we discuss it further in Section 7.12.)

The following is a regular maze problem, with the exception that the maze is given in
numeric representation (rather than a picture). The maze is contained in a rectangle with 11
rows and columns, numbered from O to 10. The maze is traversed along the rows and
columns — up, down, right, or left. The starting point is 0,0 and the target is 10,10. The
following points are obstacles you cannot traverse through:

(3.2) (6,6) (7.0) (2,8) (5,9) (8,4) (2,4) (0,8) (1,3) (6,3) (9,3) (1.9) (3.0) (3,7)
(4.2) (7.8) (2.2) (4,5) (5:6) (10,5) (6,2) (6,10) (4,0) (7.5) (7.9) (8,]) (5.7)
4.4) (8,7)(9,2) (10,9) (2,6)

a. Find a path from the starting point to the target that does not include any of the obstacles.

b. Find a shortest path from the starting point to the target that does not include any of the
obstacles.
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1| 2|3 (4|56 |7 |8 9|10 |1 | 12|13 |14]15
1 023 - 1191621 7 4 2 8 3 -
217|102 -]-]-]|-1]2[1]6®6 9 1 7 2 8
3 |8|-/]018|9(3|6|8]5] 7 - 8 - 3 -
4 |- |81 -10|-15]|4]|-]- 1 1 9 - 8 -
s (9|-|8|-10]|3[|2|7]|5] 8 - 1 - 4 2
6 |32 |-13|6[0]|S5|3]|2 8 7 2 - 8
7012 -|-12|8|-{0|6|2]| - 8 8 2 - 4
s [ 1|1 |-|-]12]|3|8]|]0]- 1 1 - 2 7 -
9 |4 | -[9]|-|2!9]|-|2|0] 4 9 3 - - -
10-f(--1-11]8-[7]1 0 3 - - - 2
m |3 (8|7 (1 f{-}{-13]|8]- - 0 2 9 2 1
2|3 (-1 |2(8|1|1]-]S5 9 0 2 - 9
Bl7-13|1]6]|-|-]2]- - 9 0 2 -
“|2(9(6(-[7|-19]|-13] - 1 1 9 0 -
5 12(9 2|1 }|-]-|1]-14/]S3 6 5 1 - 0

Figure 1.1 The table for Exercises 1.7 and 1.8.

1.11  Find the greatest common divisor of 225277 and 178794. (The greatest common divisor
of two integers is the largest number that divides both of them.)

.12 Compute the value of 2%. Try to find a way to minimize the number of multiplications.

Figure 1.2 Hamilton’s puzzle.
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Alabama
Arkansas
Connecticut
Georgia
Illinois
Kansas
Maine
Michigan
Missouri
Nevada

New Mexico
North Dakota
Oregon

South Carolina
Texas
Virginia
West Virginia

Alaska
California
Delaware
Hawaii
Indiana
Kentucky
Maryland
Minnesota
Montana
New Hampshire
New York
Ohio
Pennsylvania
South Dakota
Utah
Washington
Wisconsin

Arizona
Colorado
Florida

Idaho

Iowa
Louisiana
Massachusetts
Mississippi
Nebraska
New Jersey
North Carolina
Oklahoma
Rhode Island
Tennessee
Vermont

The following list represents the number of electoral votes for each state in the 1988
Presidential election (the candidate receiving the majority of the votes in a state collects all
the electoral votes for that state). There are altogether 538 electoral votes. Determine
whether it is (mathematically) possible for the election to end up in a tie. (This problem is
known as the partition problem, and it is a special case of the knapsack problem
discussed in Section 5.10.)

8
21

10
13

16
13
8
4
11
3

Washington, D.C. 3

Wyoming

3



CHAPTER 2

MATHEMATICAL INDUCTION

No one believes an hypothesis except its originator, but
everyone believes an experiment except the experimenter.

Anon

Obviousness is always the enemy of correctness.
Bertrand Russell (1872-1970)

2.1 Introduction

We will see in the following chapters that induction plays a major role in algorithm
design. In this chapter, we present a brief introduction to mathematical induction through
examples. The examples range from easy to quite difficult. Readers who have not seen
many induction proofs may find this chapter to be relatively hard. We claim that the
processes of constructing proofs and constructing algorithms are similar, and thus
experience with induction proofs is very helpful.

Mathematical induction is a very powerful proof technique. It usually works as
follows. Let T be a theorem that we want to prove. Suppose that T includes a parameter
n whose value can be any natural number (a natural number is a positive integer).
Instead of proving directly that T holds for all values of n, we prove the following two
conditions:

1. Tholds forn=1
2. Forevery n > 1, if T holds for n — 1, then T holds for n

The reason these two conditions are sufficient is clear. Conditions 1 and 2 imply directly
that T holds for n=2. If T holds for n =2, then condition 2 implies that T holds for n =3,
and so on. The induction principle itself is so basic that it is usually not proved; rather, it



10 Mathematical Induction

is stated as an axiom in the definition of the natural numbers.

Condition 1 is usually simple to prove. Proving condition 2 is easier in many cases
than proving the theorem directly, since we can use the assumption that T holds for n— 1.
This assumption is called the induction hypothesis. In some sense, we get the induction
hypothesis for free. It is enough to reduce the theorem to one with smaller value of n,
rather than proving it from scratch. We concentrate on this reduction. Let’s start right

away with an example.
O Theorem 2.1
For all natural numbers x and n, x" — 1 is divisible by x — 1.

Proof: The proof is by induction on n. The theorem is trivially true for n=1. We
assume that the theorem is true for n — 1; namely, we assume that x"~' — 1 is divisible by
x —1 for all natural numbers x. We now have to prove that x" —1 is divisible by x—1.
The idea is to try to write the expression x" — 1 using x"~' — 1, which, by the induction
hypothesis, is divisible by x — 1:

X"=l=x@" =D+ -1).

But the left term is divisible by x — 1 by the induction hypothesis, and the right term is
justx—1. a

The induction principle is thus defined as follows:

If a statement P, with a parameter n, is true for n=1, and if, for every n > 1,
the truth of P for n— 1 implies its truth for n, then P is true for all natural
numbers.

Instead of using n—1 and n, we sometimes use n and n+1, which is completely
equivalent:

If a statement P, with a parameter n, is true for n=1, and if, for every n 21,
the truth of P for n implies its truth for n+ 1, then P is true for all natural
numbers.

The proof of Theorem 2.1 illustrates a simple application of induction. Over the years,
many variations of induction have been developed. For example, the following variation,
called strong induction, is very common.

If a statement P, with a parameter n, is true for n =1, and if, for every n > 1,
the truth of P for all natural numbers < n implies its truth for n, then P is
true for all natural numbers.

The difference is that we can use the assumption that the statement is true for all numbers
<n in proving the statement for n. In many cases, this stronger assumption can be very
useful. Another simple variation is the following:
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If a statement P, with a parameter n, is true for n=1 and for n=2, and if,
for every n > 2, the truth of P for n—2 implies its truth for n, then P is true
for all natural numbers.

This variation ‘‘works’’ in two parallel tracks. The base case for n =1 and the induction
step imply P for all odd numbers; the base case for n =2 and the induction step imply P
for all even numbers. Another common variation is the following:

If a statement P, with a parameter n, is true for n=1, and if, for every n > 1,
such that n is an integer power of 2, the truth of P for n/2 implies its truth
for n, then P is true for all natural numbers that are integer powers of 2.

This variation follows from the first one by writing the parameter n as 2¥, and carrying
out the induction for the parameter k (starting from & =0).

Induction can also be used in many different ways to prove properties of structures
other than numbers. In most cases, the induction is on some number » that measures the
size of the instance of the problem. Finding the right measure to which the induction
should be applied is not straightforward. (For example, we could have applied induction
to x in the previous example, rather than to n; this would have made the proof much
more complicated.) Sometimes, this measure is not natural, and it has to be invented just
for the purpose of the induction. The common thread to all these proofs is the extension
of claims for smaller structures to claims for larger structures.

2.2 Three Simple Examples

The problem is to find the expression for the sum of the first » natural numbers
S(n)=1+2+ -+ +n. We prove the following theorem.

O Theorem 2.2

The sum of the first n natural numbers is n(n+1)/2.

Proof: The proof is by induction on n. If n=1, then the claim is true because
S()=1=1-(1+1)/2. We now assume that the sum of the first n natural numbers S (n)
is n(n+1)/2, and prove that this assumption implies that the sum of the first n + I natural
numbers is S(n+1)=(n+1)(n+2)/2. We know from the definition of S(n) that
S(n+1)=S(n)+n+1. But, by the assumption, S(n)=n(n+1)/2, and therefore
S(n+1)=n(n+1)/2+4n+1 = (n+2)(n+1)/2, which is exactly what we wanted to
prove. Od

We continue with a slightly more complicated sum. Suppose that we want to
compute the sum T(n)=8+13+18+23+ - +(3+5n). The sum in the previous
example, S (n), is equal to n2/2+n/2. Each of the elements in the current example is
slightly more than five times the corresponding element in the previous example. Hence,
it is reasonable to guess that 7'(n) is also a quadratic expression. Let’s try the implicit
guess G(n)=c,n’+c,n+c;. That is, we introduce the parameters ¢, c5, and 3, and
determine their values when it is convenient to do so. For example, we can determine the
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parameters by checking the first few terms. If n =0, the sum is 0, so ¢; must be 0. For
n =1 and n=2, we get the following two equations:

(1) lc;+1¢c,=8

2 4¢c;+2:c,=13+8

If we multiply (1) by 2 and subtract it from (2), we get 2c, =5, which implies that
¢,=25, and ¢,=5.5. We therefore guess that G(n)=2.5n*+5.5n is the right
expression. We now try to prove that G(n)=T(n) by induction. We have already
verified a base case. We assume that G(n)=T(n), and we try to prove that
Gn+1)=T(n+1):

T(n+1)=T(n)+5(n+1)+3 = (by induction) G (n)+5(n+1)+3
=2.5n2+551+5n+8=2.5n2+5n+2.5+5.5n+5.5

=25+ 1) +55(n+1)=G(n+1).

We have proved the following theorem.

O Theorem 2.3
The sum of the series
8+ 13+18+23+ --- +(3+5n)
is 2.5n% +5.5n. a

We end this section with another simple example.

O Theorem 2.4
If n is a natural number and 1+x >0, then

A+x)"21+nx. 2.1
Proof: The proof is by induction on n. If n=1, then both sides of (2.1) are equal

to 1+x. We assume that (1+x)">1+nx for all x such that 1+x >0, and consider the
case of n+1. We have to prove that (1+x)"*! > 1+ (n + 1)x, for all x such that 1 +x > 0:

(1+x)"*" = (1 +x)(1 +x)" 2 (by induction) (1 +x)(1 +nx)

=l+m+Dx+nmx?21+@m+1x

Notice that we were able to multiply the inequality (implied by the induction) by (1 +x)
because of the assumption that 1+x>0. The last step was possible because nx? is
clearly nonnegative. g
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2.3 Counting Regions in the Plane

A set of lines in the plane is said to be in general position if no two lines are parallel and
no three lines intersect at a common point. The next problem is to compute the number
of regions in the plane formed by n lines in general position. Good hints for the right
guess can be obtained from small cases. When n =1, there are 2. Two intersecting lines
form 4 regions; three lines that do not intersect at a point form 7 regions. It seems, at
least for i <3, that the ith line adds i regions. If this is true for all i, then the number of
regions can be easily computed from § (), which was computed in the previous section.
Therefore, we concentrate on the growth of the number of regions when one more line is
added. The claim we are trying to prove is the following:

Guess: Adding one more line to n—1 lines in general position in the plane
increases the number of regions by n.

As we have already seen, the guess is true for n <3. We can now use the guess as our
induction hypothesis, and try to prove that adding one line to » lines in general position
increases the number of regions by n+1. Notice that the hypothesis does not deal
directly with the number of regions, but rather with the growth of the number of regions
when one line is added. Even if the hypothesis is true, we will still need to compute the
total number of regions, but this part will be straightforward.

How can a new line increase the number of regions? Consider Fig. 2.1. Since all
lines are in general position, a line cannot just touch a region at the border; it can either
cut a region into two parts (in which case one more region is formed), or be disjoint from
it. Consequently, we need only to prove that the (n+1)th line intersects exactly n+1
existing regions. It is possible to prove the theorem directly at this point, but we want to
illustrate another technique of induction proofs. Let’s remove for the moment the nth
line. By the induction hypothesis, without the nth line, the (n+ 1)th line is adding n new
regions. Thus, we need only to prove that the presence of the nth line causes the (n + 1)th
line to add one additional region. Let's put the nth line back. Since all lines are in
general position, the nth and (7 + 1)th lines intersect at a point p, which must be inside a

the nth line

the (n+1)th line

Figure 2.1 n+1 lines in general position.
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region R. Both lines thus intersect R. Each line separately cuts R into two pieces, but
together they cut R into four pieces! So, the addition of the (n + 1)th line, when the nth
line is not present, cuts R into two regions. But, the addition of the (n+ 1)th line, when
the nth line is present, affects R by adding two more regions (R is cut from two to four
regions) instead of just adding one. Furthermore, R is the only region so affected, since
the two lines meet at only one point. Hence, the n + Ith line adds n regions without the
presence of the nth line, but it adds n+ 1 regions with the nth line, and the proof is

complete.
0 Theorem 2.5

The number of regions in the plane formed by n lines in general position is
nn+1)/2+1.

Proof: We have already proved that the nth line adds n more regions. The first
line introduces two regions; hence, the total number of regions (for n>1) is
2+2+3+4+5+ - +n. We have seen in the previous section that
14243+ -+ +n=n(n+1)/2; therefore, the total number of regions is n(n+1)/2+1. O

Comments There are two interesting points in this proof. First, the hypothesis dealt
with the growth of the function we were after, rather than directly with the function. As
a result, the induction proof concentrated on the growth of the growth of the function.
There is no need to define the hypothesis such that it proves the theorem directly. We
can achieve the proof in two or more steps. As long as we are learning more about the
situation, we are making progress. There is no need to hurry, or to attempt too much too
quickly. Patience usually pays. Second, the same induction hypothesis was used twice
in two different configurations: once for the nth line and once for the (n+ 1)th line
‘‘acting’’ as an nth line. This double use is not uncommon, and the lesson it teaches is
that we should utilize our assumptions to their fullest.

2.4 A Simple Coloring Problem

Consider again n distinct lines in a plane, this time not necessarily in general position.
We are interested in assigning colors to the regions formed by these lines such that
neighboring regions have different colors (two regions are considered neighbors if and
only if they have an edge in common). We will say that ‘‘it is possible to color’’ the
regions if we can follow this rule, and we call the assignment of colors a valid coloring.
In general, it is possible to color any planar map with four colors (the proof of this fact
has occupied mathematicians for about a hundred years, and was found only recently).
The regions formed by (infinite) lines, however, have special characteristics, as is shown
in the next theorem.

O Theorem 2.6

It is possible to color the regions formed by any number of lines in the plane
with only two colors.
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Proof: We use the natural induction hypothesis.

Induction hypothesis: It is possible to color the regions formed by < n
lines in the plane with only two colors.

It is clear that two colors are necessary and sufficient for n=1. Assume the induction
hypothesis, and consider n lines. Again, the only question is how to modify the coloring
when the nth line is added. Divide the regions into two groups according to which side
of the nth line they lie. Leave all regions on one side colored the same as before, and
reverse the colors of all regions on the other side. To prove that this is a valid coloring,
we consider two neighboring regions R | and R,. If both are on the same side of the nth
line, then they were colored differently before the line was added (by the induction
hypothesis). They may have the reverse colors, but they are still different. If the edge
between them is part of the nth line, then they belonged to the same region before the line
was added. Since the color of one region was reversed, they are now colored differently.

O

Comments The general method illustrated in this example is the search for
flexibility, or for more degrees of freedom. The idea is usually to stretch the hypothesis
as much as possible in order to get the most out of it. In this case, the key idea was that,
given a valid coloring, we can reverse all colors and still have a valid coloring. This idea
was used to handle the formation of new regions by the added line.

2.5 A More Complicated Summation Problem

The next example is more complicated. Consider the following triangle.

1 = 1

3 +°5 = 8

7 + 9 + 11 = 27
13+ 15+ 17+ 19 = 64
21+ 23+ 25+ 27+ 29 = 125

The problem is to find an expression for the sum of the ith row, and prove its correctness.
The sums of the rows seem to follow a regular pattern; They look like a sequence
of cubes.

Induction hypothesis: The sum of row i in the triangle is i>.

The problem and the hypothesis are defined in terms of a picture. It is not easy to define
the problem precisely, let alone to solve it. In practice, it is not uncommon for problems
to be vaguely defined. A major part of any solution is to extract the right problem.
Therefore, we will make some assumptions that are consistent with the picture, and solve
the problem accordingly. (It is possible to make other assumptions.) The ith row
contains i numbers. The numbers are the odd numbers in order. Again, let’s concentrate
on the difference between two consecutive rows. To prove that the sum of row i is
indeed i®, we need only to show that the difference between row i+1 and row i is
(i + 1)} — i® (we have already seen that the hypothesis is true for i <4).
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What is the difference between the first number in row i + | and the first number in
row i? Since the numbers are the odd numbers in order and there are i of them in row i,
the difference is 2i. This is also the difference between the second number in row i+ 1
and the second number in row i, the third number, the fourth number, and so on. Overall,
there are i differences, each of size 2i. There is also the last element at the end of row
i+ 1, which is not matched to any number in the previous row. Hence, the difference
between the two rows is 2i 2 plus the value of the last number in row i+ 1. Since
i+1)}-id= 3i2+3i+ 1, we need only to prove that the value of the last number in row
i+1is3i2+3i+1-2i>=i?+3i+1. This is where the guess that the sum is i3 comes to
play. We have reduced the problem of finding the sum to a problem of finding an
element. We prove the last statement again by induction.

Nested induction hypothesis: The last number inrow i + 1 isi® + 3i + 1.

The claim is true for i =1. Now, it is sufficient, by induction, to check only the
differences. That is, we have to prove that the difference between the last number in row
i+ 1 and the last number in row i is equal to

243 +1]-[G-1D*+3(G-D+1]=2i+2.

But we already know that the difference between any corresponding numbers in row i + 1
and i is 2i. The guess has thus been established.

Comments This proof illustrates again that we should not always try to achieve the
whole proof in one step. It is a good policy to advance in stages, as long as we are
making progress. This proof also illustrates the method of ‘‘going backward’’ to arrive
at a proof. Instead of starting from a simpler problem and working our way toward the
final problem, we start with the final problem and simplify it by reducing it to simpler and
simpler problems. This is a very common method (not only in mathematics).

2.6 A Simple Inequality

In this section, we prove the following inequality.

O Theorem 2.7
2 4 8 ’ (2.2)

foralln>1!

Proof: We want to prove the theorem by induction. The theorem is clearly true
for n=1. We assume that (2.2) is true for n, and we consider n+1. The only
information we get from the induction hypothesis is that the sum of the first n terms is

'This inequality is usually written as a fact about convergence of infinite series, but we do not assume any
knowledge of series; this formulation is completely finite.
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less than 1. How can we extend it to include the n + 1th term? Adding 1/2"*! to the left
hand side may potentially increase the sum to more than 1. The trick here is to apply the
induction in a different order. Given the sum

JLEDPR SO SRV S S
2 4 8 on 2n+|’

we look at the /ast n terms:

L, yr v v o 1 1
4 8 P LAl 212 4 8 2" 2

by the induction hypothesis. But now we can add 1/2 to both sides and get the expression
2.2) forn+1. O

Comments It is not necessary to consider the last element as the (n + 1)th element in
the induction proof. Sometimes it is easier to consider the first element. There are other
instances where it is better to let the (n + 1)th element be a special element satisfying
some special properties. If you run into problems, be flexible, and consider as many
options as you can. The following examples extend this notion further.

2.7 Euler's Formula

The next proof is for a theorem known as Euler’s Formula. Consider a connected
planar map with V vertices, E edges, and F faces. (A face is an enclosed region. The
outside region is counted as one face, so, for example, a square has four vertices four
edges and two faces.) The map in Fig. 2.2 has 11 vertices, 19 edges, and 10 faces. Two
vertices of a map are said to be connected if it is possible to go from one vertex to the
other by traversing edges of the map. A map is called connected if every two vertices in
it are connected. Intuitively, a map is connected if it consists of one part.

O Theorem 2.8

The number of vertices (V), edges (E), and faces (F) in an arbitrary
connected planar map are related by the formulaV + F = E + 2.

Figure 2.2 A planar map with 11 vertices, 19 edges, and 10 faces.
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Proof: We will prove this theorem by a variation of induction known as double
induction. The induction proceeds first on the number of vertices and then on the
number of faces.

Consider first a map with only one face. Such a map does not contain a cycle
because, otherwise, the cycle would form at least one face and the outside would form
another face. A connected map without a cycle is called a tree. We first prove that, for
all trees, V+ 1 =E +2.

First induction hypothesis: A tree with n vertices has n — 1 edges.

The base case is trivial. Assume that trees with n vertices have n — 1 edges, and consider
trees with n+ 1 vertices. There must be at least one vertex v connected to only one edge.
Otherwise, if all vertices are connected to at least two edges and if we traverse the tree
along the edge, starting from any vertex, then we are guaranteed to return to a vertex
already visited without getting stuck. But this means that there is a cycle, which is a
contradiction. We can remove the vertex v along with the edge connected to it. The
resulting map is still connected; thus, it is still a tree. But it has one less vertex and one
less edge, which implies the claim.
This serves as a base case for an induction on the number of faces.

Main induction hypothesis: Any planar map with n faces has E edges and
V vertices such thatV + n=F + 2.

Consider a map with n + 1 faces. It must have a face f, which is a neighbor of the outside
face. Since fis a face, it is surrounded by a cycle. Removing one edge of this cycle will
not disconnect the map. We remove one of the edges that separates f from the outside.
We now have one less face and one less edge and the theorem follows. O

Comments This theorem included three parameters. The proof used induction on
one parameter (the number of faces), but the base case required another induction on
another parameter (the number of vertices). The proof shows that we have to be careful
about choosing the right sequence of induction. Sometimes, the induction switches from
one parameter to another; sometimes, it is based on a combined value of several
parameters; and sometimes, it is applied to two different parameters at the same time.
Choosing the right sequence can make a big difference in the difficulty of the proof. As
we will see in the following chapters, choosing the right sequence of induction can also
make a big difference in efficiency of algorithms.

2.8 A Problem in Graph Theory

We first need to introduce some basic concepts of graph theory (these concepts are
discussed in detail in Chapter 7). A graph G =(V, E) consists of a set V of vertices and a
set E of edges. Each edge corresponds to a pair of distinct vertices. A graph can be
directed or undirected. The edges in a directed graph are ordered pairs: The order
between the two vertices the edge connects is important. In this case, we draw an edge
as an arrow pointing from one vertex (the tail) to another (the head). The edges in an
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undirected graph are unordered pairs. We deal with directed graphs in this section. The
degree of a vertex v is the number of edges incident to v. A path is a sequence of
vertices v, vy, ..., v, that are connected by the edges (v, V3), ("2, V3), ooy (Ve_p, Vi)
(these edges are also usually considered to be part of the path). Vertex u is said to be
reachable from vertex v if there is a path from vto u. Let G=(V, E) be a graph, and U a
set of vertices U c V. The subgraph induced by U is a subgraph H = (U, F) such that F
consists of all the edges in E both of whose vertices belong to U. An independent set S
in a graph G =(V, E) is a set of vertices such that no two vertices in S are adjacent.

O Theorem 2.9

Let G=(V, E) be a directed graph. There exists an independent set S(G) in
G such that every vertex in G can be reached from a vertex in S(G) by a
path of length at most 2.

Proof: The proof is by induction on the number of vertices.

Induction hypothesis: The theorem is true for all directed graphs with < n
vertices.

The theorem is trivial for n<3. Let v be an arbitrary vertex in V. Let N(v) = {v} )
{we V| (v,w)e E}. N(v) is the neighborhood of v. The graph H induced by the set of
vertices V—-N(v) has fewer vertices than does G; thus, we can use the induction
hypothesis for H. Let S(H) be the independent set of H implied by the induction
hypothesis. There are two cases.

1. S(H) U {v} is independent. In this case, we can set S(G) to be S(H) U (v},
because every vertex in N(v) is reachable from v with distance 1. The vertices not
in N(v) are reachable from a vertex in S(H) with distance at most 2 by the
induction hypothesis.

2. S(H) U {v} is not independent. In this case, there must be a vertex w € S (H) that
is adjacent to v. Now, we S(H) implies that we V —N(v), which implies that
(v, w) is not an edge of G. But, since we assumed that w is adjacent to v, (w, v)
must be an edge of G. In that case, however, every vertex in N (v) can be reached
from w (through v) with distance at most 2. We can set S(G) to be S (H) () {w},
which completes the proof. a

Comments The amount of ‘‘reduction’” in this proof was not fixed. That is, we
reduced the size of the problem from »n to a smaller number depending on the instance of
the problem. Furthermore, the smaller problem was not an arbitrary problem of smaller
size. It depended heavily on the particular larger problem. We removed just enough
vertices to make the proof feasible. There is a very fine balance in such proofs between
removing too many vertices, in which case the hypothesis is too weak, and removing too
few vertices, in which case the hypothesis is too strong. Finding this balance is, in many
cases, the heart of the induction proof. Notice also that we used the strong induction
principle, because it was required to assume the theorem for all instances of smaller size.
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2.9 Gray Codes

We are given a set of n objects and we want to name them. Each name is represented by
a unique string of bits. There may be many different objectives for a ‘“‘good’’ naming
scheme. We deal with only one objective in this example. We would like to arrange the
names in a circular list such that each name can be obtained from the previous name by

changing exactly one bit. Such a scheme is called a Gray code.> There are several
applications of Gray codes. For example, a sensor may scan some objects. It is better to
be able to change representations quickly from one object to the next. The purpose of
this section is to find out whether it is possible to construct a Gray code for any number
of objects. The objects themselves play no part in the problem; we care only about their
number.

A good way to visualize the relationship between the names is by using graphs.
The names correspond to the vertices of the graph, and two names are connected if they
differ by only one bit. A Gray code corresponds to a cycle containing all the vertices.

We start by trying small values of n. The cases of n=1 and n =2 are trivial. What
about n=3? It is not hard to see that it is impossible to find a Gray code of length 3. If
we start with any string and change one bit twice, we either get the same string or another
string with a two-bit difference; we cannot get the same string after three changes. In
fact, this observation implies that it is impossible to construct a Gray code of any odd
length. What about n =4? The following is a Gray code of length 4: 00, 01, 11, 10. The
corresponding graph is of course a square. We are now ready for our first attempt.

O Theorem 2.10

There exists a Gray code of length 2k for any positive integer k.

Proof: The proof is by induction on k. The case of k=1 is trivial. Assume that
there exists a Gray code of size 2k and consider 2(k +1). Let s,,55,...,55 correspond to
a Gray code of size 2k. Clearly, if we add a leading 0 or a leading 1 to all the strings, the
result is still a Gray code. The following is thus a Gray code of size 2k +2 (see Fig. 2.3):

OS|, |S|, 152,052,053,054, veey OSzk. 0

Although the proof is complete, the construction is not very satisfactory. The
length of each string in the code is at least one-half of the number of objects. In general,
it is possible to represent n objects with [log,n] bits. Can we construct Gray codes of
size n with fewer than n/2 bits? To achieve a logarithmic number of bits, we need to add
one bit whenever the number of objects is doubled. Let’s assume that we know how to
construct Gray codes for all even numbers 2k, such that k <n. Given 2n objects, we try
to construct the code from two smaller codes each of size n.

We immediately run into a problem. Although 21 is even, and thus there is a Gray
code of that size, n may be odd, and there is no odd-size Gray code. Consequently, we

? Gray codes usually refer to the case where the number of objects is a power of 2. We use it for all values of n.
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Figure 2.3 Constructing a Gray code of size 2k.

may not be able to use the induction hypothesis whenever n is odd. Let’s restrict
ourselves to values of n that are powers of 2. We assume that we know how to construct
short (we will see later how short) Gray codes for all powers of 2 less than n, and
consider n. Let 5,,s,,...,5,» correspond to a Gray code of size n/2. We can again add
leading Os or 1s, such that the two sequences 0s,0s,,...,0s,,,, and 1s,1s,,...,15,,, also
correspond to Gray codes. We can then merge these two sequences into one in the
following way (see Fig. 2.4):

15,,0s5,,0s3,...,05,,2,05 1,15, 15,2, 1S,/2-15-.s 155.

For example, we can extend the Gray code for n =4 to a Gray code for n =8 as follows.
The two sequences are 000, 001, 011, 010, and 100, 101, 111, 110. The combined
sequence is 101, 001, O11, 010, 000, 100, 110, 111. We constructed a Gray code for n
with only one more bit than we used for the Gray code for n/2. Hence, the length of each
string will be log,n.

Figure 2.4 Constructing a Gray code from two smaller ones.
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How do we extend this construction to any even value of n? Recall that the

problem with constructing odd Gray codes was that it was impossible to close the cycle.
Looking back at Fig. 2.4, we can see that it is not necessary to have two closed cycles; it
is sufficient to have two open sequences. If we can construct an open Gray code
(namely, one with exactly two names that differ by more than one bit) of odd length, then
it may be sufficient for the general construction. We now have two cases.

00 Theorem 2.11

There exist Gray codes of length [logyk| for any positive integer k. The
Gray codes for the even values of k are closed, and the Gray codes for odd
values of k are open.

Proof: We prove both cases with one stronger induction hypothesis.

Induction hypothesis: There exist Gray codes of length [log,k| for all
values k < n. If k is even, then the code is closed, if k is odd, then the code
is open.

The base of the induction is trivial. We now construct a Gray code of size n. There are
two cases:

1.

n is even: The reduction in this case is similar to the reduction for the case where n
was a power of 2. By the induction hypothesis, there exists a Gray code of length
n/2 (either open or closed). We can construct two copies of this code, one with
leading Os and one with leading 1s, and connect them into a cycle (as in Fig. 2.4).
Also by the induction hypothesis, the number of bits in the smaller codes is
[log,(n/2)]. We add one bit and double the number of objects; thus, the number of
bits for the new code is [log,(n/2)] + 1 =[log,n)].

n is odd: Let n=2k + 1. Construct two Gray codes of size k, and connect them in
the same way as before. If 2k is not a power of 2, then there are some strings of
length [log,(2k)], which have not been used as names. One of these strings is
connected to one of the strings that has been used. We can now break the cycle of
length 2k by adding this new string, resulting in an open path of length 2k +1 (see
Fig. 2.5). The number of bits satisfies the condition. If 2k is a power of 2, there
are no unused strings left, and we need to add one more bit to the code. The total
number of bits is thus [logy(2k)|+1. But since 2k is a power of 2,
[logy(2k)] = log,(2k), and log,(2k) + 1 =[log, (2k + 1)]. O

Comments In this example, we had a theorem with two distinct cases. The natural
thing to do is to consider each case separately. However, this is not always the best thing
to do. Even though the two cases were different, it was easier to consider them together
and to include both of them in one induction hypothesis. This way, the solution of one
case benefited from the induction hypothesis concerning the other case. It is much like
climbing with two feet. We do not plan the steps of each foot separately. Each foot
benefits from the steps taken by the other foot. It is sometimes better to define the
induction hypothesis such that it covers a more general problem. In this example, the
generalized problem merely included two cases. In the next section, we present an
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Figure 2.5 Constructing an open Gray code.

example where it is easier to solve the problem by solving an extended problem dealing
with more general structures. The advantage to working on a more general problem is
that the induction hypothesis is stronger and can be used more effectively. There is an
obvious tradeoff. We need to prove the induction statement for n + 1 assuming that the
statement for »n is correct. If the statement for n is stronger, then it is easier to use it in
the proof. But, on the other hand, there is more to prove. We discuss this issue further in
the next section and in Section 5.10. Notice also that we included in the hypothesis all
values less than 2n, rather than just 2n —2.

2.10 Finding Edge-Disjoint Paths in a Graph

Let G=(V, E) be a connected undirected graph. Two paths in G are said to be edge
disjoint, if they do not contain the same edge. Let O be the set of vertices in V with odd
degrees. We first claim that the number of vertices in O is even. To prove this claim, we
notice that, by summing up the degrees of all vertices, we get exactly twice the number
of edges (since each edge is counted twice). But, since all vertices of even degree
contribute an even number to this sum, there must be an even number of vertices of odd
degree. We now prove the following theorem.

O Theorem 2.12

Let G=(V, E) be a connected undirected graph, and let O be the set of
vertices with odd degrees. We can divide the vertices in O into pairs and
find edge-disjoint paths connecting vertices in each pair.

Proof: The proof is by induction on the number of edges. The theorem is clearly
true form=1.

Induction hypothesis: The theorem is true for all connected undirected
graphs with < m edges.
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Consider a connected undirected graph G with m edges, and let O be the set of odd
vertices. If O is empty, then the theorem is trivially true. Otherwise, take any two
vertices in O. Since G is connected, there is a path connecting them. Remove the whole
path from G. The remaining graph has fewer edges. We would like to use the induction
hypothesis, to find the paths for the rest of the odd vertices, and to complete the proof.
The problem, however, is that, by removing the path, we may have disconnected the
graph. The induction hypothesis applied only to connected graphs. We have to be very
careful about using the induction hypothesis correctly. We can avoid this difficulty in
this case in an ingenious way — we will change the hypothesis and adapt it to our needs!

The problem we encountered was with the connectivity requirement. Let’s remove
it. We now have the following induction hypothesis:

Revised induction hypothesis: The theorem is true for all undirected
graphs having < m edges.

This is obviously a stronger theorem. Its proof, on the other hand, is simpler. Consider
again an undirected graph with m edges, and O as before. The graph may not be
connected. In this case, the graph is partitioned into several connected components. We
will take two odd vertices from the same component. Since each component is a
connected graph by itself, it must have an even number of odd vertices. Hence, if there
are any odd vertices, we can find two of them in the same component. So now we are
basically done. Since the two chosen vertices are in the same component, we can
connect them by a path. We then remove the path. The graph has now less than m
edges, and we can use the induction hypothesis because it does not require connectivity.
Thus, in the remaining graph, we can pair the odd vertices in edge disjoint paths. We can
then add the path we removed and complete the proof.

We actually proved a stronger theorem than the one we sought! We proved that
the connectivity requirement is unnecessary. And the proof was easier. O

Comments This is an example of a very powerful technique we call strengthening
the induction hypothesis. It is similar in some sense to the method used in the previous
section. The main trick is to change the hypothesis to fit our needs. Even though the
theorem becomes stronger, the proof may be easier to obtain. Polya calls this principle
the inventor paradox (Polya [1954]). The reason we can achieve this apparent paradox
is that, although we attempt to prove more, we have more on which to base the proof,
because the induction hypothesis is also stronger. We will see additional examples of
this method of strengthening the induction hypothesis throughout the book. This method
is very important.

2.11 Arithmetic versus Geometric Mean Theorem

The next example is a beautiful proof, attributed to Cauchy, of the arithmetic versus
geometric mean theorem. It employs an elegant nonstandard use of induction, which we
will use later.
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O Theorem 2.13

If x|, X3, ..., x, are all positive numbers, then

1
— Xy x4
R L o 2.3)

Proof: The proof is by induction on n. The induction hypothesis is identical to
(2.3). The interesting part of the proof comes from the fact that the induction proceeds
backward. Instead of proving a base case and then extending an assumption for smaller
values of n to one for larger values of n, we use the following reversed induction
principle:

If a statement P is true for an infinite subset of the natural numbers, and if
its truth for n implies its truth for n—1, then P is true for all natural
numbers.

This principle holds because the fact that the statement holds for an infinite set
guarantees that for every natural number £, there is a greater number m in the set; we can
then use the reversed induction step to go backward from m to k.

We will prove the theorem in two steps. In the first step, we use regular induction
to prove the theorem only for values of n that are powers of 2. The powers of 2 is the
infinite set we need. In the second step, we use reversed induction to prove the theorem
for all n. Consider first all values of n that are powers of 2. The theorem is trivial for
n=1. Consider n=2. The claim becomes

X tx,

2 A
which we can verify easily by squaring both sides. Assume now that (2.3) is true for
n=2* and consider 2n =2**'. We rewrite the left-hand side of (2.3) as follows:

XXy <

+ L 2.4)

1
. 2 _
(Xjxg et xg,) ™ = \/(x.Xz Xp) " et Xna2 " X2) "

We can now use the theorem for n=2 with y, =(x;x; - -x,)"", and

Y2 =Xy Xnsa - - X2,)"". The expression (2.4) becomes
1
2 Yi+Yy2
(g xg,) ™ =y y2 < —
But, by the induction hypothesis for n, we have
Xy +x+ o0 + X, Xppp T X4+ 000 F Xy,
+
+
Yitys < n n ‘
2 2

and the claim follows immediately.
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We are now ready to use reversed induction to prove the theorem for all n.
Assume that (2.3) is true for an arbitrary n, and consider n — 1. Define

Xptxa+ o X,
7=

n—1
The theorem is assumed to be true for any n positive numbers, so, in particular, it is true
for x| ,X2,..,Xn-1,2. Thatis,

1
o Xitxyt X t2 (n-1z+z
(X1 xg "Xy 2) " S =

n n

(z was chosen especially to “‘collapse’’ the right-hand side of this expression.) Hence,

we have
1

(pxgrxpm2)" <z,
which implies that
XXy Xy 252",

and
1

(rixg = xy) "

1 Xy t+x+ 0 X,

<z=

)

n-1

which is exactly the same as (2.3) for n —1. O

2.12 Loop Invariants: Converting a Decimal Number
to Binary

Induction is very useful for proving correctness of algorithms. Consider a program that
contains a loop that is supposed to compute a certain value. We want to prove that the
result of executing the loop is indeed the intended result. We can use induction on the
number of times the loop is executed. The induction hypothesis should reflect the
relationships between the variables during the loop execution. Such an induction
hypothesis is called a loop invariant. We illustrate the use of loop invariants with the
algorithm in Fig. 2.6, which converts a decimal number n into a binary number
represented by the array b (which is initially zero).

Algorithm Convert_to_Binary consists of one loop with three statements. The first
statement increments &, which is an index to the array . The second statement computes
t mod 2, which is the reminder of the division of ¢ by 2 (namely, 1 if ¢ is odd, and 0
otherwise). The third statement divides t by 2, using an integer division (namely,
ignoring fractions).

O Theorem 2.14

When Algorithm Convert_to_Binary terminates, the binary representation
of nis stored in the array b.
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Algorithm Convert_to_Binary (n) ;
Input: 7 (a positive integer).
Output: b (an array of bits corresponding to the binary representation of n).

begin
t :=n; { we use a new variable t to preserve n }
k:=0;
while t > 0 do
k:=k+1;
blk] :=tmod 2 ;
t:=tdiv2;
end

Figure 2.6 Algorithm Convert_to_Binary.

Proof: The proof is by induction on k, the number of times the loop is executed.
The induction hypothesis does not have to be the same as the theorem statement. It can
apply to only a part of the algorithm. In this case, the main part is the loop, and we use
the induction hypothesis to verify the execution pattern of the loop. The hypothesis, in
this case, can be thought of as an invariant. It is a statement about the variables that is
correct independent of the number of times we execute the loop. The most difficult part
of the proof is finding the right induction hypothesis. Consider the following hypothesis.

Induction hypothesis: If m is the integer represented by the binary array
b(l.k),thenn=t-2*+m.

The expression ¢ -2¥ +m is the heart of the loop invariant, and is also the heart of the
algorithm. The hypothesis states that the value of this expression is independent of the
number of times the loop is executed. It captures the idea behind the algorithm. At step
k of the loop, the binary array represents the k least significant bits of n, and the value of
1, when shifted by k, corresponds to the rest of the bits.

To prove the correctness of this algorithm, we have to prove three conditions: (1)
the hypothesis is true at the beginning of the loop, (2) the truth of the hypothesis at step &
implies its truth for step k + 1, and (3) when the loop terminates, the hypothesis implies
the correctness of the algorithm. At the beginning of the loop, k =0, m =0 (by definition,
since the array is empty), and n =¢. Assume that n =t - 2X +m at the start of the kth loop,
and consider the corresponding values at the end of the kth loop. There are two cases.
First, assume that ¢ is even at the start of the kth loop. In this case, t mod 2 is 0. Thus,
there is no contribution to the array (namely, m is unchanged), 1 is divided by 2, and & is
incremented. Hence, the hypothesis is still true. Second, assume that m is odd. In this
case, b [k +1] is set to 1, which contributes 2* to m, ¢ is changed to (r—1)/2, and & is
incremented. So, at the end of the kth loop, the corresponding expression is
(—1)/2- 2" 4m+2* = (1=1)-2+m+2* = 1-2* +m=n, which is exactly what we
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need to prove. Finally, the loop terminates when ¢ =0, which implies, by the hypothesis,
that n=0-2k+m=m. -

2.13 Common Errors

We finish this chapter with a few warnings and examples of common traps one can easily
fall into by using induction hastily. Many wrong proofs come from strong convictions.
If one believes strongly in the theorem, one tends to take as evident certain seemingly
trivial ‘‘facts’’ implied by it. In induction proofs, this phenomenon often takes the
following form. Since the theorem is ‘‘evident,”’ one sometimes implicitly adds to the
hypothesis several evident *‘facts.’ The proof of the step from n to n+1 uses these
assumptions. Thus, the induction hypothesis is implicitly strengthened, but the stronger
assumptions are never proven. For example, one may overlook the fact that the graphs in
the theorem were assumed to be connected, and forget to check the reduced graphs for
connectivity. Such an omission could be very subtle, and, of course, could lead to a very
wrong proof. It is important to state the induction hypothesis precisely.

Another common error is the following. The main step in an induction proof is
showing that the truth of the theorem for » implies its truth for n + 1. We can either start
with the n + 1 instance and show that it follows from the n instance, or start with the n
instance and show that it implies the n+1 instance. Both approaches are valid.
However, the n + | instance must be an arbitrary instance! The proof will be wrong if
we start with an n instance and extend it to an n+1 instance that has some special
properties. For example, consider the following wrong proof of Theorem 2.8. We start
with an arbitrary map with n faces, and assume, by induction, that V+n=F +2. We take
an arbitrary face and add a new edge with two new vertices that cuts the face in two.
Adding two new vertices ‘‘cuts’’ two old edges, each one into two new edges. Overall,
we added one more face, three more edges, and two more vertices. But,
V+2+n+1=E+3+2, and the claim is true for n+1 faces. The reason this is not a
valid proof is that the addition of the edge was done in a special way. An edge can also
be added between existing vertices, or between one existing vertex and one new vertex.
In fact, the graphs we get by adding edges only between new vertices have vertices only
of degree 3 or less, so they are very special indeed. In general, it is safer to start with an
arbitrary instance and try to prove it using the induction hypothesis, rather than the other
way around.

Another dangerous trap involves exceptions to the theorem. It is common to have
minor exceptions of the form n >3, or ‘‘n is not a prime less than 30.”” The induction
principle depends on the ability to imply the hypothesis for n =2 from the hypothesis for
n =1, the hypothesis for n =3 from the hypothesis for n =2, and so on. If even one of
these steps fails, the whole proof fails. We present two examples of this trap. The first
example is a simple amusing anecdote; the second example is a more serious one.
Consider the following claim.

Ridiculous claim: Given n lines in the plane, no two of which are parallel
to each other, all lines must have one point in common.
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This claim is clearly wrong, but let’s look at a “‘proof’’ of it. The claim is obviously true
for one line. Let’s even be a little more careful and consider two lines; the claim is still
true. Assume that the claim is true for n lines, and consider n+1 lines. By the
hypothesis, the first n lines have a point in common. But, also by the hypothesis, the last
n lines (including the (n + 1)th line) have a point in common. The common point of the
first n lines and the last n lines must be common to all n +1 lines, because lines having
two points in common are equal. But, in that case, the (n + 1)th line passes through the
same point, and the claim is proven.

What is wrong with this proof? Actually very little. The only wrong step is that
the proof unintentionally (or in this case very intentionally) ignores the fact that n must
be at least 3 for the argument to work. That is, the claim is true for n =1, n =2, and also,
if it is true for n=3,4, - - -, then it is true for n +1=4,5, - - -. The only problem is the
step from n =2 to n =3. This small exception is enough to make the whole proof, and the
claim in this case, very wrong. The reader may think that this example is too obvious to
miss. Let’s look at another example that is not so obvious

Consider the following claim:

n=’\/17+(n—l) l+n\/l+(n+l)\/1+(n+2)---. 2:5)

(The expression goes to infinity.) Here is a proof of (2.5) by induction. First, we have to
show that the expression converges for all n, so that the claim is meaningful. We omit
this part (it is correct). If n=1, then (2.5) becomes 1= V1+0( - - - ), which is true (since
the expression in parenthesis converges). Assume that (2.5) is correct for n, and consider
n+ 1. If we square both sides of (2.5) we get

Z=14+(m-1) 1+n\/l+(n+l)\/l+(n+2)-~-.

Rearranging terms, we get

2

':1 _ll =n+l= \/l +n\/l +(n+DN1+(+2)-- -,

which is exactly (2.5) for n+1. The proof is now complete. Or is it? The only wrong
step was dividing by n — 1 without verifying that this value is not 0. But, n —1=0 when
n=1, which is the first step in the induction! Again, everything works except for one
implication — the one that goes from n =1 to n =2 — and this is enough to invalidate the
whole proof. In this case, by the way, the claim is correct, but the proof is not that easy.

2.14 Summary

Mathematical induction is a rich technique. We have seen many variations of induction,
and explored some of the methods for using it. The first step is to define the induction
hypothesis. We have to decide to which parameter we apply the induction. In many
cases, there is only one parameter, and the choice is clear. In other cases, however, we



30 Mathematical Induction

have a fair amount of flexibility. The parameter may be even a newly defined one,
introduced especially for the proof. As we have seen, the induction hypothesis does not
always follow directly from the theorem statement. Sometimes, we apply induction in
several steps, each leading us closer to the proof. At other times, we strengthen the
hypothesis such that it implies a stronger theorem.

There are two steps in every induction proof: the base case and the reduction step.
The base case is usually, but not always, easy. Because it is easy, there is a tendency to
ignore it. The reduction step is the heart of the induction proof. There are many ways to
achieve the reduction. The most common way is to reduce a claim involving n to the
same claim involving n—1. It is also common to *‘go’’ from n+1 to n. A strong
induction reduces a claim involving n to one or several claims involving values smaller
than n (but not necessarily n—1). Other variations include going from 2n to n, and
reversed induction, in which the claim for n is implied from a claim for n + 1 and a base
case consisting of an infinite set is proved. The key to any reduction is that it must
preserve the exact statement of the claim. No additional assumptions can be made about
the reduced claim, unless they are specifically included in the induction hypothesis.

The reduction step can also be regarded as an extension step. We extend the claim
from a smaller value of the parameter to a larger value. We have to ensure that the
extension ‘‘covers’’ all possible values of the parameter, and that the extended claim is a
general claim of the theorem without any additional assumptions or constraints. In
Chapter 5, we will see that there is a direct analogy between the variations of induction
introduced in this chapter and several algorithm design techniques.

Bibliographic Notes and Further Reading

The discovery of the mathematical induction principle is attributed to the Italian
mathematician Franciscus Maurolycus (b. 1494). The history of mathematical induction
is described in Bussey [1917] (see also Vacca [1909]). It is interesting to note that a
principle very similar to mathematical induction was used in the 12th century in
interpretation to the Talmud (this observation is due to J. Gillis). The problem was to
interpret a rule that specifies a date as ‘*3 days before a holiday.”” At the time of the
writing of the Talmud, it was not uncommon, when one said *‘x days before a holiday,”’
to include the holiday itself as part of the x days. The question was whether or not the
holiday should be included as part of the 3 days specified in the rule. The interpretation
was that the 3 days do not include the holiday because doing so would lead to
ambiguities. An inductive argument was used to arrive at that conclusion. The base case
was | day. It makes no sense to say ‘‘1 day before a holiday’’ when we mean the
holiday itself. Therefore, ‘‘1 day before a holiday’’ does not include the holiday. Now,
*‘2 days before a holiday’’ must also exclude the holiday, because otherwise it will have
the same meaning as ‘1 day before a holiday.’”” Therefore, ‘‘3 days before a holiday’’
does not include the holiday. This is-clearly an inductive argument.

The summation problem given in Section 2.5 is from Polya [1957]. A brilliant
discussion on the generalization of Euler’s formula to three-dimensional objects is given
by Lakatos [1976]. It is warmly recommended. The example in Section 2.8 is from
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Lovdsz [1979]. Gray codes were introduced by Gray [1953]. More on coding theory can
be found in Hamming [1986]. The proof of the arithmetic versus geometric mean
theorem is due to Cauchy (see, for example, Polya and Szego [1972] or Beckenbach and
Bellman [1961]). A bibliography for graph theory is given in Chapter 7. More on loop
invariants can be found in Gries [1981]. The example of the proof of (2.5) was shown to
us by Darrah Chavey.

Further material on mathematical induction can be found in Polya’s wonderful
books [1954; 1957; 1981]. Additional examples can be found in Sominskii [1963],
Golovina and Yaglom [1963], and, of course, throughout this book.

Exercises

2.1  Provethatx"—y" is divisible by x — y for all natural numbers x, y (x #y), and n.

22 Extend the solution in Section 2.2 to general arithmetic sums. That is, find the sum
a,+a,+ '+ +a,, wherea,=c,n+c,, and c,c, are constants.

2.3 Find the following sum and prove your claim:

1:24+2:3+ - +n(n+1).

2.4  Find the following sum and prove your claim:

L SO
8

Ly
2 "

NS

2.5  Find the sum of the squares of the first n natural numbers and prove your claim.
2.6  Prove that
12222437 -4 + DR = DR R+ 172

2.7  Given a set of n + 1 numbers out of the first 2n natural numbers 1,2,...,2n, prove that there
are two numbers in the set, one of which divides the other.

28  Leta,b, and n be positive integers. Prove that

2""'(@" +b") 2 (@ +bY'.

2.9  Prove by induction that a number, given in its decimal representation, is divisible by 3 if and
only if the sum of its digits is divisible by 3.

2.10  Find an expression for the sum of the ith row of the following triangle, which is called the
Pascal triangle, and prove the correctness of your claim. The sides of the triangle are Is,
and each other entry is the sum of the two entries directly above it.
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2.12

2.13

[}
—
w

2.19

2.20

221

222

Find an expression for the sum of the ith row of the following triangle, and prove the
correctness of your claim. Each entry in the triangle is the sum of the three entries directly
above it (a nonexisting entry is considered 0).

Prove that, foralln > 1,
L W SO B
n+l  n+2 2n = 24°

Prove that, foralln > 1,

1o 1k
— 4 — 4 o —=—,
I+2*3 nm

where & is an odd number and m is an even number.

Consider the following series, 1, 2, 3, 4, 5, 10, 20, 40, ..., which starts as an arithmetic
series, but after the first 5 terms becomes a geometric series. Prove that any positive integer
can be written as a sum of distinct numbers from this series.

Consider the following series, 1, 2, 3, 6, 12, 24, 54, 84, 114, ..., which starts as an arithmetic
series, after the first 3 terms it becomes a geometric series, and then, after 3 more terms, it
becomes an arithmetic series again. Does your proof of Exercise 2.14 fit this problem? If it
does, find the error in it since, for example, 81 cannot be written as a sum of distinct
numbers this series. What is the subtle point in the proof of Exercise 2.14?

Consider n 23 lines in general position in the plane. Prove that at least one of the regions
they form is a triangle.

Consider n >3 lines in general position in the plane. Prove that these lines form at least
n -2 triangles.

Given a set of n points in the plane such that any three of them are contained in a unit-size
cycle, prove that all n points are contained in a unit-size cycle.

Prove that the regions formed by n circles in the plane can be colored with two colors such
that any neighboring regions are colored differently.

Prove that the regions formed by n circles in the plane, each with one chord (see Fig. 2.7),
can be colored with three colors such that any neighboring regions are colored differently.

Prove that the regions formed by a planar map all of whose vertices have even degree can be
colored with two colors such that no two neighboring regions have the same color.

Prove that a planar map can be colored with three colors, such that every two neighboring
regions are colored with different colors, if and only if each region has an even number of
neighboring regions. Two regions are considered neighbors if they have an edge in
common.
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Figure 2.7 Circles with one chord.

*2.23 The lattice points in the plane are the points with integer coordinates. Let P be a polygon
that does not cross itself (such a polygon is called simple) such that all of its vertices are
lattice points (see Fig. 2.8). Let p be the number of lattice points that are on the boundary of
the polygon (including its vertices), and let ¢ be the number of lattice points that are inside
the polygon. Prove that the area of the polygon is p/2+g —1.

2.24 We can define anti-Gray codes in the following way. Instead of minimizing the difference
between two consecutive strings, we can try to maximize it. Is it possible to design an
encoding for any even value of objects such that each two consecutive strings differ by &

Figure 2.8 A simple polygon on the lattice points.
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2.25

*
227

2.28

2.30

231

232

2.33

bits (where is k is the number of bits in each string)? How about k — 1 bits (or k -2, k-3,
etc.)? If itis possible, find an efficient construction.

Given a tree T and k subtrees of T such that each pair of subtrees has at least one vertex in
common, prove that there is at least one vertex in common to all the subtrees.

Letd,,d,, ..., d,, n 22, be positive integers. Prove that, if
dl +d2+ et +d,, =2n—2,
then there exists a tree with n vertices whose degrees are exactly d,, d,, ..., d,.

Put n points on the boundary of a circle, and connect each point to all the others by a line
segment. Assume that no three line segments meet at a point. Calculate the number of
regions formed by these line segments inside the circle, and prove your claim.

Let T=(V, E) be an undirected tree. Let f be a function that maps vertices to vertices,
which satisfies the following condition: If (v, w) is an edge in E, then either (f (v), f (w)) is
an edge in E or f (v)=f (w). In other words, the function either maps an edge to an edge, or
it contracts an edge to a single vertex. Prove that there exists either a vertex v in V such that
f(v) = v, or an edge (v, w) in E such that f (v) = w and f (w) = v (in other words, there is
either a vertex or a edge that the function maps to itself).

The pigeonhole principle (in its simplest variation) states the following: If n+1 balls (n 2 1)
are put inside n boxes, then at least one box will contain more than one ball. Prove this
principle by induction.

A complete binary tree is defined inductively as follows. A complete binary tree of height
0 consists of 1 node which is the root. A complete binary tree of height 4 + 1 consists of
two complete binary trees of height & whose roots are connected to a new root. Let T be a
complete binary tree of height 4. The height of a node in T is 4 minus the node’s distance
from the root (e.g., the root has height h, whereas a leaf has height 0). Prove that the sum of
the heights of all the nodes in T is 2"*' —h - 2.

Let F(n) be the nth Fibonacci number, which is defined inductively as follows:
F(D)=F@2)=1. F(n)=F(n-1)+Fn-=2), for n>2. Prove that F(n)> + F(n+1)® =
F(2n+1). (Hint: Strengthen the induction hypothesis by proving two seemingly separate
theorems at the same time, as is done in the section on Gray codes.)

Let n and m be integers such that 1 <m <n. Prove by induction that
n?—mm+1)+2n+m?® < n?+n.

(Hint: Use a “‘two sided’’ induction on m. Prove two base cases, m=1 and m =n, and go
either forward from m = 1 or backward from m = n.)

A bridge in an undirected graph is an edge whose removal disconnects the graph. Let
G=(V,E) be a connected undirected graph without a bridge. Prove that G has the
following ‘‘ear decomposition’’ (see Fig. 2.9). The edges of G can be partitioned into
disjoint sets E |, E,, ..., E, such that E| is a cycle, and, for each i, | <i <k, E; is a path
whose endpoints are vertices that already appear in a previous E;, j <i, and its other
vertices (if any) have not appeared in previous E;s. (The path may be a closed one, in
which case it includes only one previous vertex.)
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Figure 2.9 An ear decomposition.

*24_1 Let K, denote the complete undirected graph with n vertices (namely, every two vertices are
connected), and let n be an even number. Prove that the edges of K, can be partitioned into
exactly n/2 spanning trees. (A spanning tree is a connected subgraph that contains all
vertices and no cycles.)

2.35 Given an undirected graph G =(V, E), a matching is a set of edges no two of which have a
vertex in common. A perfect matching is one in which all vertices are matched. Construct
a graph G with 2n vertices and n? edges such that G has exactly one unique perfect
matching.

236 Leta,,as,,...,a, be positive real numbers such thata, a, - - - a, = 1. Prove, without using
the arithmetic versus geometric inequality, that

(I+a))(1+ay) - (1+a,)22".

(Hint: Try a reduction by introducing another variable that replaces two specially chosen
numbers from the sequence.)

2.37 Consider the recurrence relation for Fibonacci numbers F (n)=F (n — 1)+ F (n —2). Without
solving this recurrence, compare F(n) to G(n) defined by the recurrence
G(n)=G(n-1)+G(n-2)+1. It seems obvious that G (n) > F (n) (because of the extra 1).
Yet the following is a seemingly valid proof (by induction) that G (n)=F(n)-1. We
assume, by induction, that G (k)=F (k)—1 for all k such that 1 <k <n, and we consider
G(n+1):

Gn+l) =GMm)+Gn-1)+1 = Fn)-1+F(mn-D-1+1 = Fn+1)-1.
What is wrong with this proof?

The following is another proof of the arithmetic versus geometric mean inequality. The
proof has a major weakness, which makes it incomplete in general. Describe this weakness
and then define the restrictions on the theorem that are needed to make this proof correct.

l.

[}
W
oo

Let S=x, +x,+ - +x,. To find a contradiction to the theorem, we need to exhibit n
numbers whose sum is S and whose geometric mean is larger than S/n. It makes sense to
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2.39

240

look for a set of numbers whose sum is § and whose product is maximum over all such sets.
In other words, we fix the sum (S) and try to maximize the product. Let {x,x,,...,.x,} be a
set that maximizes the product, and whose sum is S. If x| #.x,, then we can replace both x
and x, with their average (x, +x,)/2. The sum remains the same, but the product grows,

because

2
X +x,
X1Xo <

with equality holding only if x, =x,. If all the numbers are equal, then the theorem holds.
Otherwise, this is a contradiction to the maximality assumption of the set.

Design an algorithm to convert an binary number to a decimal number. The algorithm
should be the opposite of algorithm Convert_to_Binary (see Fig. 2.6). The input is an array
of bits b of length &, and the output is a number n. Prove the correctness of your algorithm
by using a loop invariant.

Modify algorithm Convert_to_Binary (see Fig. 2.6) such that it converts a number given in
base 6 to a binary number. The input is an array of base-6 digits, and the output is an array
of bits. Prove the correctness of your algorithm by using a loop invariant.



CHAPTER 3

ANALYSIS OF ALGORITHMS

It does not depend on size, or a cow would catch a rabbit.

Pennsylvania German Proverb

He is a fool who looks at the fruit of lofty trees,
but does not measure their height.

Quintus Curtius Rufus

3.1 Introduction

The purpose of algorithm analysis is to predict the behavior, especially the running time,
of an algorithm without implementing it on a specific computer. The advantages of
doing so are clear. It is much more convenient to have simple measures for the
efficiency of an algorithm than to implement the algorithm and test the efficiency every
time a certain parameter in the underlying computer system changes. Furthermore, a
complicated program usually includes many different ‘‘small’’ algorithms. It would be
too much work to test thoroughly all different alternatives for each part of the program.

Unfortunately, it is usually impossible to predict the exact behavior of an
algorithm. There are too many influencing factors. Instead, we try to extract the main
characteristics of the algorithm. We define certain parameters and certain measures that
are the most important for the analysis. Many details concerning the exact
implementation are ignored. The analysis is thus only an approximation; it is not
perfect. On the other hand, even a rough approximation can yield significant information
about the algorithm. Most important, using this analysis, we can compare different
algorithms to determine the best one for our purposes. We can use an analogy to car
mileage claims, and attach a disclaimer saying ‘‘Use for comparison only — your
running times may vary.”’
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In this chapter, we describe one methodology for predicting the approximate
running times of algorithms and for comparing different algorithms. The main feature of
this approach is that we ignore constant factors and concentrate on the behavior of the
algorithm as the size of the input goes to infinity. For example, if the input is an array of
size n, and if the algorithm consists of 100n steps, then we ignore the constant 100 and
say that the running time is approximately n (we will introduce precise notation shortly).
If the number of steps is 2n2 +50, then we ignore the constants 2 and 50 and say that the
running time is approximately n?. Since n? is larger than n, we say that the second
algorithm is slower, even though for n =5, for example, the first algorithm requires 500
steps, whereas the second one requires only 100 steps. This approximation is valid,
however, if n is large enough. The second algorithm is indeed slower than the first one
for all n>50. On the other hand, suppose that the running time of the first algorithm was
100n'®. Again, the first algorithm seems better, since n'? is smaller than n2. In this
case, however, n will have to be approximately 300,000,000 for 100n'® to be smaller
than 2n%+50. Fortunately, most algorithms have small constants in the expression of
their running times. Thus, even though the asymptotic approach can be misleading
sometimes, it works well in practice. In most cases, looking at only the asymptotic
behavior is sufficient as a first approximation and indication of efficiency.

The result of our analysis should indicate how long the algorithm in question is
expected to run for a particular input. However, we cannot list the precise running times
for all inputs, unless the algorithm is very simple. The number of different possibilities
of inputs is enormous, and most algorithms behave differently for different inputs.
Instead, we attach a measure to the input, called the size of the input, and present analysis
relative to that size. The algorithm will not behave exactly the same for all inputs of
equal size, but we hope that the variation will be reasonable. The size is usually defined
as a measure of the amount of space required to store the input. We will not try to
introduce one general definition of size of the input for all algorithms, because we will be
mainly interested in comparing different algorithms for the same problem. In most cases,
the definition of size will be straightforward. We will see some examples shortly.
Unless specified otherwise, the size will be denoted by n.

Given a problem and a definition of size, we want to find an expression that gives
the running time of the algorithm relative to the size. (The precise definition of ‘‘running
time’’ will be given in Section 3.3.) As we said earlier, there is usually not just one value
for all inputs of equal size. Consequently, we must choose, among all inputs of the same
size, the input we want to use as our indicator. The most common choice is the worst-
case input. This may seem peculiar. Why not use the best input, or the average input?

The best input is usually ruled out because, in most cases, it is not representative;
there is usually an input for which the problem is trivial. The average-case input may be
a good choice, but it is sometimes very hard to measure effectively. First, it is generally
not clear what an ‘‘average’’ input is. We can average over many different parameters in
many different ways. If we are not careful, the average can contain many cases that
never occur in practice, thus making this measure irrelevant. Another serious problem
with taking the average case is the mathematical difficulty in analyzing average-case
performance. We are still very far from having comprehensive, relatively easy-to-use
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techniques for average-case analysis. We will discuss average-case analysis for few
problems, but we will mainly resort to worst-case analysis. Choosing the worst input as
an indicator turns out to be very useful. In some cases, the worst input is very close to
the average input and to experimental observations. In other cases, even though the
worst input is substantially different from the average input, the algorithm that achieves
the best performance for the worst input also performs very well for all cases. Unless
specified otherwise, we will use worst-case analysis throughout this book.

In summary, both asymptotic analysis and worst-case analysis are only
approximations of the running time of a particular algorithm under a particular input.
They definitely do not give the whole story. They are, however, very good indicators in
most cases.

3.2 The O Notation

As we have already said, our approach will be to ignore constant factors when trying to
evaluate the running time of a particular algorithm. To do that effectively we need
special notation. We say that a function g(n) is O(f (n)) for another function f (n)
(pronounced ‘‘Oh,’’ or sometimes ‘‘Big Oh,’’ of f (n)), if there exist constants ¢ and N,
such that, for all n>N, we have g (n)<cf (n). In other words, for large enough n, the
function g (n) is no more than a constant times the function f (n). The function g (n) may
be less than ¢f (n), even substantially less; the O notation bounds it only from above. For
example, 5n2+15=0(n?), since 5n’+15<6n* for n>4. At the same time,
5n%+15=0(n?), since 5Sn* +15<n* for all n 6.

The O notation allows us to ignore constants conveniently. Although we can
include constants within the O notation, there is no reason to do that. We always write
O (n) instead of, say, O (5n+4). Similarly, we write O (logn) without specifying the
base of the logarithm, because changing bases changes the logarithm only by a constant.
We write O (1) to denote a constant. We can also use the O notation if we want to
specify the constants only in parts of the expression. For example, we may write
T(n)=3n%+0(n), or S (n)=2nlog,n+5n+0(1).

In general, determining whether a certain function g (n) is O (f (n)) may not be
easy. Most of the functions involved in the analysis of algorithms in this book are
relatively simple. With some simple rules, we can cover the majority of (but not all)
cases. The most useful rule is the following: We say that a function f(n) is
monotonically growing if n, > n, implies that f (n,)2f (n,).

O Theorem 3.1

For all constants ¢ > 0 and a > I, and for all monotonically growing
functions f(n),

f ) =0(@™m).

In other words, an exponential function grows faster than does a
polynomial function. O
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This rule can be used to compare many functions. For example, if we substitute n for
f(n)in Theorem 3.1, we get that, for all constants ¢ >0anda > 1,

n‘=0@a"). (3.1)
Another example comes from substituting log,n for f (n). For all constants ¢ >0 and
a>1

(log,n) =0 (@®"y=0(n). (3.2)

We can add and multiply with the O notation using the following rules.
O Lemma 3.2

1.If fin) = O(s(n)) and g(n) = O(r(n)) then f(n) + g(n) = O(s(n) + r(n)).
2) If fin) = O(s(n)) and g(n) = O(r(n)) then f(n)-g(n) = O(s(n)-r(n)).

Proof: By definition, there are constants ¢;, N, ¢,, and N,, such that
f)<ces(n)fornzN,, and g(n)<c,r(n)forn2N,. The largest of ¢, and c,, and the
largest of N and N, can be used to show both claims. O

Since the O notation corresponds to the ‘‘<’’ relation, however, it is not possible to
subtract or divide. That is, it is not true in general that f(n)=0(s(n)) and
g(n)=0(@r(n)) imply that f(n)—g(n) = O(s(n)—r(n)) or that f(n)/g(n) =
O(s(n)/r(n)) (see Exercises 3.15 and 3.16).

The importance of concentrating on the asymptotic behavior is illustrated in Table
3.1, which contains several typical running times and the time the corresponding
algorithms consume for a problem of size n=1000 for different computer speeds. The
speeds differ by a constant of 2 from column to column, from 1000 steps per second to
8000 steps per second. We can clearly see the improvements we gain by speeding up the
computer (or the algorithm) by a constant factor versus the improvements we gain by
changing to a faster asymptotic algorithm (i.e., going up the table). An exponential
algorithm will require astronomical time (billions and billions of years) to handle
n =1000 (unless the base is very close to 1).

The O notation is used to denote upper bounds on the running times of algorithms;
however, using only upper bounds is not sufficient. All the algorithms in this book, for
example, have running times of O(2"). That is, they do not require more than
exponential time. However, O (2") is a very crude upper bound for most of these
algorithms — they are much faster than that. We are interested not only in upper bounds,
but also in an expression that is as close to the actual running time as possible. In cases
where it is too difficult to find the exact expression, we would like to find at least upper
and lower bounds for it. Obtaining lower bounds is more difficult than is obtaining upper
bounds. An upper bound on the running time of an algorithm implies only that there
exists some algorithm that does not use more time than indicated. A lower bound must
imply that no algorithm can achieve a better bound for the problem. It is impossible, of
course, to consider all possible algorithms one by one. We need mechanisms to model
problems and algorithms in a way that enables us to prove lower bounds. Lower bounds
are discussed further in Section 6.4.6. There is a similar notation to handle lower bounds
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time | time, time 3 time 4
running times 1000 steps/sec 2000 steps/sec 4000 steps/sec 8000 steps/sec
logyn 0.010 0.005 0.003 0.001
n 1 0.5 0.25 0.125
nlogyn 10 5 25 1.25
n'3 32 16 8 4
n’ 1,000 500 250 125
n? 1,000,000 500,000 250,000 125,000
11" 10% 10¥ 10% 10*

Table 3.1 Running times (in seconds) under different assumptions (n=1000).

while ignoring constants. If there exist constants ¢ and N, such that for all n2N the
number of steps T (n) required to solve the problem for input size » is at least cg (n), then
we say that T(n) =Q(g(n)). So, for example, n?=Q(n*-100), and also n=Q(n"?).
The Q notation thus correspond to the ‘>’ relation.

If a certain function f (n) satisfies both f (n)=0(g(n)) and f (n)=Q(g (n)), then
we say that f (n)=0(g(n)). For example, 5nlogyn—10=0(nlogn). (The base of the
logarithm can be omitted in the expression @(n log n), since different bases change the
logarithm only by a constant factor.) The constants used to prove the O part and the Q
part need not be the same.

The 0, Q, and © correspond (loosely) to “*<’’, *“>’’, and ‘*="". Sometimes we
need notation corresponding to ‘‘<’” and ‘*>’’. We say that f (n) = 0 (g (n)) (pronounced
*‘f (n) is little oh of g (n)”’) if

lim £ _g
n—e g(n)
For example, n/logyn =0(n), but n/10#0(n). Similarly, we say that f (n)=w(g (n)) if
g(n)=o(f (n)).
We can strengthen Theorem 3.1 by replacing big O with little o:

O Theorem 3.3

For all constants ¢ >0 and a > 1, and for all monotonically growing
functions f(n), we have (f (n))* =o(a’™). In other words, an exponential
function grows faster than does a polynomial function. O

The @0 Symbol

The O notation has received a lot of criticism over the years. The main objection to it is,
of course, that in reality constants do matter. The wide use of the O notation makes it
convenient to forget about constants altogether. It is essential to remember that the O
notation gives only a first approximation. As such, it serves a useful purpose, and its use
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has prompted the development of many algorithms that are practical by all measures. It
was also instrumental in the development of complexity theory, which sheds light on
many aspects of algorithm efficiency.

It is, however, important to distinguish between the case where the constants
ignored by the O notation are prohibitively large and the case where ihey are small and
the corresponding algorithm is efficient in practice. To make this distinction, we
introduce in this book a new symbol. It is not meant to be a precise mathematically
defined notation — it is meant only to replace some prose that accompanies (or at least
should accompany) some algorithms whose running times, as measured by the O
notation, are of theoretical value only. We suggest to denote by D(f(n)) (pronounced
““Oh Oh of f(n)’’) a function that is O (f (n)), but with constants that are too large for
most practical uses. (This notation should be easy to remember since it resembles a big

The use of the (D notation should be left to the judgment of the writer. Whether or
not a certain constant leads to a ‘‘practical use’’ is not well defined. We have no
intention of attempting to tighten our definition. The main purpose is to indicate to the
reader the opinion of the writer in a concise form. Another goal in introducing this
symbol is to stress that the O notation is not the whole story.

3.3 Time and Space Complexity

How do we analyze an algorithm’s running time without running the algorithm? We
need to count the number of steps the algorithm performs. The problem is that there are
many different types of steps, and each may require a different amount of time. For
example, a division may take longer to compute than an addition does. One way to
analyze an algorithm is to count the number of different steps separately. But listing all
the types of steps separately will be, in most cases, too cumbersome. Furthermore, the
implementation of the different steps depends on the specific computer or the
programming language used in the implementation. We are trying to avoid that
dependency.

Instead of counting all steps, we focus on the one type of step that seems to us to
be the major step. For example, if we are analyzing a sorting algorithm, then we choose
comparisons as the major step. Intuitively, comparing elements is the essence of sorting;
all the rest can be regarded as overhead. Of course, we have to make sure that
comparisons indeed constitute the major part of the algorithm. Since we will ignore
constant factors anyway, it suffices to check that the number of all other operations is
proportional to the number of comparisons. If this is true, and if O (f (n)) is a bound for
the number of comparisons, then O (f (n)) is also a bound for the total number of steps.
We say that the time complexity of the algorithm, or the running time, is O (f (n)).
This approach also solves the problem of different steps that require different
computation time, as long as the difference is no more than a constant.

The space complexity of an algorithm indicates the amount of temporary storage
required for running the algorithm. In most cases, we do not count the storage required
for the input or for the output as part of the space complexity. This is so, because the
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space complexity is used to compare different algorithms for the same problem, in which
case the input/output requirements are fixed. Also, we cannot do without the input or
output, and we want to count only the storage that may be saved. We also do not count
the storage required for the program itself, since it is independent of the size of the input.
Like time complexity, space complexity refers to worst case, and it is usually denoted as
an asymptotic expression in the size of the input. Thus, an O (n)-space algorithm
requires a constant amount of memory per input primitive. An O (1)-space algorithm
requires a constant amount of space independent of the size of the input.

Counting the number of major steps may not be easy. In the next sections we
discuss briefly several mathematical techniques for computing running times. In
contrast, estimating the space complexity of a particular algorithm is usually
straightforward, and, in most cases, we will not discuss it.

3.4 Summations

If an algorithm is composed of several parts, then its complexity is the sum of the
complexities of its parts. In many cases, this is not as simple as it sounds. The algorithm
may consist of a loop executed many times, each time with a different complexity. We
need techniques for summing expressions in order to analyze such cases. Probably the
simplest case is a loop of size n, such that the ith step (i <n) requires i operations. The
total number of operations is thus 1+2+ -+ +n. We denote sums with the sigma

n
notation. The above sum is written as Y, i, which means ‘‘sum of the term i, where /
i=l
goes from 1 to n.”” As we have seen in Section 2.2, this sum is equal to n(n+1)/2. We
can compare this sum to the case where each step requires exactly n operations, and we
observe that, by cutting the running time of the ith step from » to i, we save a factor of

about 2.
O Example 3.1

Consider now the case of executing a loop in which the ith step requires i 2 operations. In
other words, we are looking for the summation

Sy(n) = iiz.
i=1

It is clear that S,(n)<n?, since n* is equal to running the loop for n? operations in each
step. Judging from this example, we can guess that the differences between S,(n) and n3
are within a constant. We can prove our guess, and find the constants, by induction. We
guess that S,(n)=P (n)=an>+bn’+cn+d. P(n) must satisfy P(1)=1 and the
induction step P(n+1)=P(n)+(n+ 1)2. The induction step implies that

an+ 1)’ +b(n+ 12 +c(n+1)+d —(an®+bn? +cn+d)=n’+2n+1,

which implies (since coefficients of the same power of n must be equal) that
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da+b-b=1 the coefficient of n?,

3a+2b+c—c =2 the coefficient of n ,

and

a+b+c+d—d=1 the coefficient of 1.
These equations imply that a=1/3, b=1/2, and ¢ =1/6. The value of d comes from the
initial condition (P (1)=1), which implies that a +b +c +d =1. Hence d =0. Combining
all the terms, we get

3 2
n n n nn+1)2n+1)
=Tt t = 33
$20=73 45 %% 6 3.3)
Again, it is interesting to note that by reducing the size of the ith step from n?toi?, we
save a factor of about 3. O

There is another way to arrive at expression (3.3). It is a general technique that we
will use several times. If we guess that S,(n) is a third-degree polynomial, then we can
try to express S,(n) as a combination of such polynomials. We then arrive at the solution
for §,(n) by solving an equation involving it and other explicit polynomials. Consider
the sum

Sym=3 i’. (34)
i=l
We will first write (3.4) in a different way:

n n n-I1 n-I|
S3m)=Yi* = T (-1+1P=F@+1)>= Y (*+3i2+3i + 1). (3.5)
i=l i=l i=0 i=0
In other words, we shift the summation, so that the sum goes from 0 to n— 1 instead of
from 1 to n. This shift is illustrated in Fig. 3.1. We can now equate the left side and the
right side of (3.5), and expand:

n n—l

§i3= };O(P +3i2+3i + 1). (3.6)

The i* terms for i ranging from 1 to n— 1 are common to both sides of (3.6), and can be
canceled. We then write an equation involving the rest of the terms from both sides.

13 + 22 + +  (n-1)? + n

O+ + (+1)* + @+ o+ +  (n=1+1)

Figure 3.1 Computing a summation by shifting.
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n-1
n*=0"+ Y (3i2+3i +1).
i=0
n-1 n-1
We already know that i =n(n—1)/2, and it is clear that Ziz =S,(n)—n? (the only
i=0 i=0
difference is in the nth term). Hence,

n= 3(Sz(n)—n2) +3n(n-1)/2+n.
We can now solve for S,(n):

n3=3n(n-1)/2-n=3(S,(n)-n?),
which implies that

3_ _ _ 3 2
Sz(n)=n 3n(n-1)/2 n+n2=n_+3n + n(n+1)2n+1)

n
3 3 6 6 6 ’
which is, of course, exactly the same expression as (3.3).

The main trick in this derivation was to use a particular sum (§3(n) in this
example) in two different ways, such that they mostly cancel each other. Many other
sums exhibit the same behavior. If we consider the difference between a sum
fi+tfo+ - +f, and a shifted sum f,+f3+ - - +f,,;, we see that most of the
coefficients cancel each other. Only the boundary terms are left. We present three more
examples of this technique.

O Example 3.2

We want to compute the following sum:
n .
F(n)=Y2 =142+4+ - +2".
i=0

We would like to compare F (n) to another expression involving F (n) by shifting terms
and by canceling most of them. The difference between consecutive terms in F (n) is a
factor of 2, so let’s multiply the whole expression by 2 (which will allow us to shift):

2F(n)=2+4+8+ -+ +2"+2"*",
We can now get an expression involving F (n):

2F(n)-F(n)=2"*" - 1.
But, this implies that F (n)=2"*' —1. O
O Example 3.3

Consider now the following slightly more difficult sum:

n
Gm=Yi2=12"+2-22+3-2+ -+ +n-2",

i=l

We can apply the same technique:
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2G(n)=l-22+2-23+3-24+ +n.2n+l

(we simply incremented the power). By subtracting the two expressions, we eliminate
the effect of the i factor:

Gm)=2G(n)-G(n)=n-2""' = (12" + 122+ .-+ +12")
=p- 2 2" =) =(n-1)2"*" + 2.

0O Example 3.4

Finally, we consider the following sum, which will appear in Section 6.4.5 in the analysis
of heapsort:

Gny=Yi2" =1-2""142:2"243-2"3 4 - - 4020

i=l
We can apply the same technique:

2G(n)=1-2"+2-2"""+3-2"24 .-+ +n-2".
Again, by subtracting the two expressions, we eliminate the effect of the i factor:

G(n)=2G(n)-G(n)=2"+12""+12"2+ --- +12' = n20.

=2t _2_p

3.5 Recurrence Relations

A recurrence relation is a way to define a function by an expression involving the same
function. Probably the most famous recurrence relation is the one defining the Fibonacci
numbers

F(n)=F(n-1)+F(n-2), F()=1, F2)=1. 3.7

This expression uniquely defines the function. We can compute from this expression the
value of the function at every number k. For example, F(3)=F(2)+F (1)=2,
F(4)=F (3)+F (2)=3, and so on. However, if we compute the value of the function by
following the definition, we would need k —2 steps to compute F (k). It is much more
convenient to have an explicit (or closed-form) expression for F (n). That would enable
us to compute F(n) quickly, and to compare F (n) to other known functions. This is
called solving the recurrence relation. We sometimes call a recurrence relation simply a
recurrence.

Recurrence relations appear frequently in the analysis of algorithms. We briefly
discuss here a useful technique for solving recurrence relations, and present general
solutions of two classes of recurrences that are among the most common recurrences
involved in analyzing algorithms. These recurrences will be used later in the book.
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3.5.1 Intelligent Guesses

Guessing a solution may seem like a nonscientific method, but, keeping our pride aside, it
works very well for a wide class of recurrence relations. It works even better when we
are trying to find not the exact solution, but only an upper bound. The main reason that
guessing is useful is that proving that a certain bound is valid is easier than computing the
bound. Consider the following recurrence which is defined only for values of » that are
powers of 2:

TR2n)<2T(n)+2n-1, TR2)=1. (3.8)

We wrote this recurrence as an inequality rather than equality. This is consistent with
our modest goal of finding only an upper bound (in the form of the O notation), and with
the fact that the right-hand side represents the worst case. We want to find a function
f (n) such that T (n) = O (f (n)), but we also want to make sure that f (n) is not too far
from the actual T (n).

Given a guess for f (n), say f (n) =n?, we prove that T (n) = O (f (n)) by induction
on n. First, we check the base of the induction. In this case, T(2)=1<f(2)=4. We then
prove that T (n) < f (n) implies that T (2n) < f (2n). We need to prove that

T(n)<n* implies T(2n)<(2n)’.
The proof is as follows:

T(2n)<2T(n)+2n-1, (by the definition of the recurrence)
<2n%+2n-1, (by the induction hypothesis)

< (2n)?,

which is exactly what we wanted to prove. Thus, T(n)=0 (n?). Is n? a good estimate
for T(n)? In the last step of the proof, 2n%+2n — 1 was substituted by the greater 4n?.
But there is a substantial gap (about 2n2) between these two expressions, which gives us
a hint that maybe n? is a high estimate for T (n).

Let’s try a smaller estimate, say, f (n)=cn for some constant c. It is clear,
however, that cn grows more slowly than T (n) does, since ¢ 2n=2cn, and there is no
room for the extra 2n — 1. Hence, T (n) is somewhere between cn and n?.

Let’s try now T (n)<nlog,n. Clearly, T (2) < 2log,2. Assume that T (n)<n log,n,
and consider T (2n):

T(2n)<2T(n)+2n-1, (by the definition of the recurrence)
<2nlogyn +2n—-1, (by the induction hypothesis)

< 2n(log,2n),

which is exactly what we wanted to prove. The leeway in the proof is only 1 now, so we
are very close. Later, we will prove that this is actually the exact solution to within a
constant.
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The recurrence relation (3.8) is defined only for values of n that are powers of 2.
We can define a similar recurrence for all values of » in the following way:

T(n)<2T(Ln/2])+n-1, TQ)=1. 3.9)

(Notice that the floor symbol is necessary, because T (n) is defined only for integers.)
The recurrence relation (3.9) is more general than (3.8), since it is defined for all values
of n, but, for values of n that are powers of 2, (3.9) is exactly the same as (3.8).
Therefore, we already know that, for values of n that are powers of 2, T (n)=0 (n logn).
We now show that the same bound applies to all values of T (n). It is clear that T'(n) is a
monotonically increasing function. If n is not a power of 2, T (n) is no more than T (2¥),
where 2¥ is the first power of 2 that is greater than n. That is, let 27! < n < 2%; clearly,
TR "Y<ST@)< T(2*). We proved that T (2*)<¢2*log,2* for some constant ¢. Hence,

T(n) < c2¥log,2* < c(2n)log,(2n) < ¢ nlog;n.

for another constant ¢, which implies that T(n)=0 (nlogn) for all n. It is usually
sufficient to assume that n is a power of 2 when we are looking for an asymptotic
expression.

Let’s summarize the steps used in an inductive proof of a solution to a recurrence
relation. Suppose that we have a general recurrence relation of the following form:

T(g(n))=E(T, n), (3.10)

where g (n) is a function of n (which defines the growth of the recurrence), and E is some
expression involving T(n) and n. For example, in (3.8), g(n)=2n, and E(T, n) =
2T (n)+2n—1. Suppose further that we guess that T (n) < f (n), for some function f (n).
To prove our guess, we need to substitute g (n) for n in f (n), then to substitute f (n) for
each occurrence of T(n) in E. We then have to show that f (g (n)) is greater than or
equal to the value substituted for E (T, n). In other words, we have to prove that

f(gn)ZE(f, n). (3.11)

For example, in (3.8) we guessed that f(n)=nlog,n; thus, we had to show that
(2n)(log,(2n)) 2 2(n logyn) +2n —1.

A common mistake is to try to prove the opposite — that is, to replace ‘‘greater
than’’ with “‘less than.”” An intuitive, and easy to remember, explanation is the
following. We are trying to prove that f (n) grows more quickly than T (n) does. Hence,
if we substitute g (n) for n in f (n), we should get a value larger than what we get by
substituting g (n) for n in T(n). But, T(g(n))=E (T, n) (this is exactly the recurrence
relation); thus, we can replace T(g(n)) with E(f, n). This process may have to be
repeated several times with different functions (guesses) until the proof of the inequality
becomes reasonably tight.

Another common mistake is to use the O notation when guessing. That is, we
guess that the solution is O (f (n)), and we try to substitute O (f (n)) for n. However, the
O notation cannot be used in that way. The problem with using the O notation is that,
even though we do not care about the constants at the end, we cannot ignore them
through the proof. For example, if we try to prove that the solution of (3.8) is O (n), by
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substituting O (n) for n, we get the following (the base case is trivial):

T(2n)<2T(n)+2n-1, (by the definition of the recurrence)
<0((n)+2n-1, (by the induction hypothesis)

=0 (n),

which is wrong, as we have seen earlier. The error lies in the fact that different constants
were used (or rather ignored) at different stages of the ‘‘proof.”’ The correct approach is
to include the constants explicitly. When we want to guess that the solution is O (f (n)),
we guess that it is ¢f (n) for some constant ¢, and determine the value of c later.

Let’s try now to solve the Fibonacci relation by guessing. Again, we are given that

F(n)y=F(n-1)+F(@n-2), F(1)=1, F2)=1. 3.12)

Since the value of F (n) is the sum of two previous values, a reasonable guess would be
that F (n) is doubled every time; namely, it is approximately 2". Let’s try F(n)=c?2".
Substituting ¢2" in (3.12), we get

c2"=c2" 4272,

This equality is clearly impossible, since c is canceled and the left side is always greater
than the right side. So we learned that ¢2" is too large, and that the multiplicative
constant ¢ plays no role in the induction step.

The next attempt could be another exponential function, but with a smaller base.
Instead of guessing different bases, it is easier to introduce a parameter as a base and to
compute its value through the verification. We will try F (n)=a", where a is a constant.
Substituting a” in (3.12), we get

a" =an—| +an—2
which implies that
a’=a+1. (3.13)

The two solutions for (3.13) are a |, =(1 + \/5)/2 anda,=(1- \/§)/2. So, in particular, we
now know that F(n)=0 ((a,)"), since (a,)" satisfies the recurrence, and we can easily
find a constant ¢ such that c¢(a )" is greater than the given values for n=1and n=2.

If we want to find the exact value for F (n), we will need to consider the initial
values more carefully. Since both (a,)" and (a,)" solve the recurrence, any linear
combination of them does. So the general solution of the recurrence is

ci(a)) +cqay)".

We need to compute the values of ¢ and ¢, so that the expression fits the values of F (1)

and F (2). It is a simple exercise to verify that ¢ = l/\/g, and ¢, =-1 /\/5. Therefore, the
exact solution of the Fibonacci relation is
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|2 B2 )

The equation a = a + 1, which we encountered in our search for a solution to the

recurrence relation (3.12), is called the characteristic equation of the recurrence
relation. The same technique is the basis for solving any recurrence of the form

F(n)=b|F(n—l)+b2F(n—2)+ +bkF(n—k)

for a constant k.

3.5.2 Divide and Conquer Relations

In a divide-and-conquer algorithm, the problem is divided into smaller subproblems, each
subproblem is solved recursively, and a combine algorithm is used to solve the original
problem. Assume that there are a subproblems, each of size 1/b of the original problem,
and that the algorithm used to combine the solutions of the subproblems runs in time cn*,
for some constants a, b, ¢, and k. The running time T (n) of the algorithm thus satisfies

T(n) =aT (n/b) + cn*. (3.14)

We assume, for simplicity, that n =b", so that n/b is always an integer (b is an integer
greater than 1). We first try to expand (3.14) a couple of times to get the feel of it:

T(n) =a(aT (n/b*)+c(n/b)*)+cn* =a (@@l (n/b>)+c(nib®*) +c(n/b)*) +cn”.
In general, if we expand all the way to n/b™ =1, we get
Tn)=a(a(: - Tn/b™ +c(n/b™ "))+ - ) +cn.

Let’s assume that T(1)=c (a different value would change the end result by only a
constant). Then,

T(n)=ca™ +ca™'b* + ca™2b?* + - -+ +cb™,

which implies that

m o m ki
T(n)=cYa™ " b* = ca’"Z(b—) .
i=0 i=0 9

But, this is a simple geometric series. There are three cases, depending on whether
(b"/a) is less than, greater than, or equal to 1.

Casel: a > b*

In this case, the factor of the geometric series is less than 1, so the series converges to a
constant even if m goes to infinity. Therefore, T(n) =0 (a™). Since m =log,n, we get
a™ =a'"®" = n'®* (the last equality can be easily proven by taking logarithm of base b
of both sides). Thus,

T(n) =0 (n'"*%).
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Case2: a=bh*
In this case, the factor of the geometric series is 1, and thus 7'(n) = O (a™ m). Notice that
a = b* implies that log,a = k and m = O (log n). Thus,

T(n) = O (n*logn).

Case3: a <b*

In this case, the factor of the geometric series is greater than 1. We use the standard
expression for summing a geometric series. Denote h*/a by F (F is a constant). Since
the first element of the series is a™, we obtain

m+l _ ) i
T =a" L =0@"FM=0(H" =0 (™H =0

These three cases are summarized in the following theorem.

O Theorem 3.4

The solution of the recurrence relation T (n) = aT (n/b) + cn*, where a and
b are integer constants,a 21, b 22, and ¢ and k are positive constants, is

0(n'®%) ifa>b*
T(n)=< O(n*logn) ifa=b*.
on*) if a <b*
g
The result of Theorem 3.4 applies to many divide-and-conquer algorithms. It
should be memorized. This result is also very helpful in the design stage, since it can be
used to predict the running time. Generalizations of this formula are given in the
exercises.

3.5.3 Recurrence Relations with Full History

A full-history recurrence relation is one that depends on all the previous values of the
function, not just on a few of them. One of the simplest full-history recurrence relations
is

n-I|
T(n)=c+ Y, T(), (3.15)
i=1
where ¢ is a constant and T (1) is given. We can solve this recurrence by using the same
method we used to compute sums. We will try to write the recurrence in such a way that
most of the terms will be canceled. (This method is sometimes called elimination of
history.) For the recurrence (3.15), we compare T(n+1)to T(n):

n
T(n+)=c+3YT3). (3.16)

i=1
If we subtract (3.15 ) from (3.16), we get T(n+1)=T (n) =T (n). So, T(n+1)=2T (n),
which clearly implies that T(n+1)=T(1)2". (This claim is true for 7(1), and, by
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induction, if the claim is true for T (n), then it is true for T (n + 1), since we double the
value every time.)

This argument may be ‘‘clear,”” but it is incorrect! We can, for example, set
T(1)=1 and c =35, and see that T(2)=6#2T(1). This is another example of carelessly
going through an induction proof ignoring the base case. The error results from the fact
that the proof does not work for T (2), since T (1) is not necessarily canceled by c. One
should be very suspicious when a parameter (c in this case) that appears in the expression
does not appear in the final solution. To solve this problem correctly, we note that
T(2)=T(1)+c (by definition), and that the proof above is correct for all n>2. Hence,
T(n+1)=(T(1)+c)2".

This recurrence is very simple. The next one is not so simple, but it is very
important. It appears in the analysis of the average case of quicksort which we discuss in
Section 6.4.4. The recurrence relation is

n-1
T(n)=n—l+% Y. T(i), (forn=2). T(1)=0. (3.17)
i=l
We use the shifting and canceling terms technique. We want to cancel most of the T (i)
terms. Let’s look at the corresponding expression for T (n + 1):

2
(n+1)

YT@) (n22). (3.18)

i=1

Tn+l)=(n+1)-1+

For convenience, we multiply both sides of (3.17) by n, and both sides of (3.18) by n + 1:

n-1
nT(n)=n(n-1)+2 ¥ T() (n22). 3.19)

i=l
n+)T(n+1)=(n+1)n+2 iT(i) (n22). (3.20)
i=l
We can now subtract (3.19) from (3.20), and obtain
(n+DT(n+1)—nT(n)=(n+Dn—-nn-1)+2T(n)=2n+2T(n) (n22),

which implies that

+2 2n
T+h=222T >2).
(b= T+ 7 02D
This recurrence is easier to solve. First, we substitute 2 for 2: T and get a close
approximation:
T(n+1)< ::f T(n)+2 (n22). (3.21)

If we expand (3.21), we get



n+1 n n—1 4
T(n)<2+ " [2+n_1[2+n_2[ Em

n+l n+l n n+l n n-1
=2(1+ + +
n n n-l n n-1 n-=2

n+1 n+l n+l n+l
=21+ + + + 0+
n n—1 n-2 3

=2(n+1)

+1 n n-1 3

1 1 1 l]
— + — + + DY + —
n

=2(n+1)H(@n+1)-15),

3.6 Useful Facts 53

where H(n)=1+1/2+1/3+ - - - +1/nis the Harmonic series. The Harmonic series has
a simple approximation, which we will not prove, H(n)=Inn +7y+ O (1/n), where

v=0.577.. is Euler’s constant. Hence, the solution for T (n) is

T(n)<2(n+1)(Inn+y-1.5)+0 (1) =0 (nlogn).

3.6 Useful Facts

In this section, we present, without proof, several equalities and inequalities that are

useful in analyzing algorithms.

Arithmetic series

nn+1
1+2+3+ - +n=—(———).
2
More generally, if a, =a,_, + ¢, where c is a constant, then
”(an+al)
a,+a,+az+ - +a,,=T.

Geometric series

14244+ -+ +2"=2"" -,
More generally, if a, =ca,_,, where c#1 is a constant, then

c"—1
c-1"

a,t+ay+az+ - +a,=a,

If 0 < ¢ < 1, then the sum of the infinite geometric series is

(3.22)

(3.23)

(3.24)

(3.25)
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Xai= l1-c¢’

i=1

Sum of squares

1 n(n+1)2n+1)

.2_
E' - 6

Harmonic series

=lnn+y+0(1/n),

x|

n

H,=%

k=1

where Y=0.577.. is Euler’s constant.

Basic rules involving logarithms

bloga.\' - xlogab.
Sum of logarithms

3 Llogyi] = (n+1)| logyn] — 28" *! 4 2= ©(nlog n).

i=l

Bounding a summation by an integral

If f (x) is a monotonically increasing continuous function, then

x=n+l

Sris [ fdr,
i=l =l

Stirling’s approximation

n'!=\2nn H (1+0(1/n)).

In particular, Stirling’s approximation implies that log,(n!) = ©(n log n).

(3.26)

3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)
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3.7 Summary

Niels Bohr once said that *‘it is very hard to predict; especially the future.”’ It is not that
hard to predict the behavior of an algorithm, but it is far from being easy. The main
method we use is approximation. We ignore many details and attempt to extract only the
most important characteristics of the algorithm. The O notation is useful in that respect,
but we must never forget that it is only a first approximation. On the other hand, the
difficulty in analyzing algorithms should not deter the algorithm designer from
attempting this task. It is essential to get at least some indication of the efficiency of an
algorithm.

In many cases, especially when recursion is used, we get a recurrence relation.
The first thing we should do with a recurrence relation is to look at the first few terms.
This will give us some idea of the behavior of the relation, but it is by no means enough.
The first few terms help in making the first pass at guessing a solution. Another useful
step is to expand the recurrence several times, as we did in Section 3.5.2. Guessing and
verifying is a good technique for solving recurrence relations, but it is usually just a first
step. We must be careful not to ‘‘overguess’’ — that is, to try an upper bound that is
correct, but too pessimistic. There are many other techniques. Fortunately, most
algorithms that appear in practice lead to one of a very few classes of recurrence
relations, most of which are described in this chapter. It is usually sufficient to assume, as
a first step, that » has a special form — in particular, that n is a power of 2.

Bibliographic Notes and Further Reading

The idea of asymptotic analysis was promoted in the early 1970’s, and it was met with
some resistance. It is by now the major measure for algorithm efficiency. There are
several books — mainly on discrete mathematics and combinatorics — that cover
techniques for evaluating summations, recurrence relations, and other expressions needed
for analyzing algorithms. Brualdi [1977], Bavel [1982], Roberts [1984], and Graham,
Knuth, and Patashnik [1989] are just a few examples. There are fewer books that are
devoted entirely to algorithm analysis. Knuth [1973a] provides a rich source of material.
Additional books and survey papers include Greene and Knuth [1982], Lueker [1980],
Purdom and Brown [1985a], Flajolet and Vitter [1987], and Hofri [1987].

Knuth [1976] discusses the relatives of the O notation. Additional techniques for
solving recurrence relations can be found in Lueker [1980], and Bentley, Haken, and
Saxe [1980]. (The latter contains the solutions to Exercises 3.23 and 3.24.) Tarjan
[1985] discusses amortized complexity, which is an elegant method for analyzing the
running times of certain algorithms in a more precise way; if a certain part of the
algorithm is performed several times, each time with a different running time, then,
instead of taking the worst case every time, we amortized the different costs. The
recurrence relation in Exercise 3.19 is from Manber [1986]. Exercise 3.21 is from
Purdom and Brown [1985a].
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’ Drill Exercises
3.1  Prove that, if P(n) is a polynomial in n, then O (log (P (n))) = O (log n).
3.2 Prove that, if f (n)=0(g(n)), then f (n)=0 (g (n)). Is the opposite true?
3.3  Prove, by using Theorem 3.1, that

n(logyn)* =0 (n'?).
3.4  Prove, by using Theorem 3.1, that for all constants a, b >0

(log,n)? = O (n®).
3.5 Compare the following pairs of functions in terms of order of magnitude. In each case, say

whether f (n)=0 (g (n)), f (n)=C(g (n)), and/or f (n)=0O(g (n)).

fn) g(n)
a. 1001 +logn n+(logn)?
b. logn log (n?)
2
c. n n (log n)?
logn
log n n

d. (logn) logn

e. n* (logny’

f' n 211 31,
3.6 Solve the following recurrence relation. Give an exact solution.

T(ny=T(n-1)+n/2; T(1)=1.
3.7 Solve the following recurrence relation. Give an exact solution.

T(n)=8T(n-1)-15T(n-2); T()=1; T(2)=4.
3.8 Prove that T (n), which is defined by the recurrence relation

T(n)=2T(|n/2) )+ 2nlogyn, T(2)=4,

satisfies T (n) = O (n log?n).
3.9  The following recurrence relation describes the running time of a recursive algorithm for

matrix multiplication ([Pan 1978]). What is the asymptotic running time of this algorithm?
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T (n) = 143640T (n/70) + O (n?), T(1)=1.

3.10 Find the mistake in the following analysis. Let A be an algorithm that works on complete
binary trees (namely, binary trees in which all the leafs are at the same depth). Suppose that
A performs O (k) steps for each leaf in the tree, where k is a parameter that has to do with
the amount of information stored in the leafs (but is otherwise independent of the tree), and
constant time ¢ per each internal node. We claim that the total running time of the
algorithm is O (k).

Wrong proof: The ‘‘proof’’ is by induction on n, the number of nodes in the tree. If n=1,
then the total number of steps is obviously O (k). Assume that the claim is true for all
complete binary trees with < n nodes, and consider a tree with n nodes. Such a tree consists
of a root and two subtrees, each of size (n — 1)/2. By the induction hypothesis, the running
time for the two subtrees is O (k). Hence, the running time for the tree is O (k)+O (k)+c.
But this is equal to O (k), and the proof is complete.

3.11 Solve the following full-history recurrence relation:
T (n)=max {T()},
where T(1)=1.

3.12  Solve the following full-history recurrence relation:

n-1

T(n)y=n+ Y TG),

i=1
where T(1)=1.

3.13  Use (3.34) to prove that, for every positive integer &,

Zik = O(nk+l )
i=l

3.14  Use (3.34) to prove that, for every positive integer ,

Y i*log,i = O (n**' logn).

i=1

Creative Exercises

3.15 Find a counterexample to the following claim: f (n)=0 (s(n)) and g(n)=0 (r(n)) imply
that f (n)—g(n)=0(s(n)-r(n)).

3.16 Find a counterexample to the following claim: f (n)=0(s(n)) and g(n)=0 (r(n)) imply
that f (n)/ g(n)=0(s(n)/ r(n)).
*m Find two functions f (n) and g (n), both monotonically increasing, such that f (n)# O (g (n))

and g (n)# 0 (f(n)).
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3.18

3.23

3.24

Consider the recurrence relation
T(n)=2T(n/2)+1, T(2)=1.

We try to prove that T(n)=0 (n) (we limit our attention to powers of 2). We guess that
T (n)<cn for some (as yet unknown) constant ¢, and substitute cn in the expression (see
Section 3.5.1). We have to show that cn 22¢ (n/2)+ 1. But this is clearly not true. Find the
correct solution of this recurrence (you can assume that n is a power of 2), and explain why
this attempt failed.

Find the asymptotic behavior of S (n), which satisfies the following recurrence relation:
S (mn)<cmlog,mS(n)+ O (mn), S2)=1,
where m and ¢ are constant parameters. (The solution should be a function of n, m, and c.)
Prove that the asymptotic solution for the recurrence relation
T(n)=2T(n-c)+k,
where both ¢ and & are integer constants, is T(n) =0 (d") for some constant d.

The following recurrence relation appears in divide-and-conquer algorithms in which the
problem is divided into unequal size parts:

T(n)= i a;T(n/b;) +cn.
i=1
All the g;s and b;s are constants, and they satisfy
1- i a;/b; > 0.
i=l
Find the asymptotic behavior of this recurrence relation (by guessing and verifying).

Solve the following two recurrence relations. It is sufficient to find the asymptotic behavior
of T'(n).

a. T(n)=4TH\/'7U +1; TQ)=1.

b. T(n)=2T H«/;TU +2n; TQ)=1.
(Hint: Substitute another variable for n.)

Prove that the solution of the recurrence relation
T(n)=kT(n/2)+f(n), T()=c

is
T =n""(c+g@)+g@+ ~ +g(n),

where g (m) is defined as f (m)/m'®**. You can assume that 7 is a power of 2. (This is a

more general solution than the one given in Section 3.5.2, since it applies to any function

fn))

Prove that the solution of the recurrence relation



3.26

3.27

3.28

3.30

3.31
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T(n)=kT(n/d)+f(n), T(1)=c,
is
T(n)=n"*"(c +gd)+g@)+ - +gn)),

where g (m) is defined as f (m)/m'*®

. You can assume that n is a power of d.

Find the asymptotic behavior of the function T (n) defined by the recurrence relation
T()y=Tm/2)+T(\Nn))+n, T(1)=1, TQ)=2.

You can consider only values of » that are powers of 2.

Find the asymptotic behavior of the function T (n) defined by the recurrence relation
T(n)=Tn/2)+n, T(1)=1.

You can consider only values of n that are powers of 2.

Find the asymptotic behavior of the function T (n) defined by the recurrence relation

”nH +n (n>2), TH=1, TQ)=2.
2

T(n)=T(n/2)+ TH
lo;

You can consider only values of n that are powers of 2.

Find the solution of the following recurrence relation. It is sufficient to find the asymptotic
behavior of T(n). You should give convincing evidence that the function f (n) you find
satisfies f (n) =O(T (n)).

T(n)=2TH X J
log,n

Although in general it is sufficient to evaluate recurrence relations only for powers of 2, that
is not always the case. Consider the following relation:

T(n/2)+1 if n is even
T(n)=

+3n (n>2), T(H=1, TQ)=2.

2T ((n-1)/2) if nisodd,
withT(1)=1.
a. Prove that the solution of this recurrence for powers of 2 is T(2¥)=k + 1 (namely, for
powers of 2, T (n)= 0 (log n)).

b. Show that, for an infinite number of values of n, T(n)=Q(n). Discuss why the usual
assumption about the relative behavior for powers of 2 and nonpowers of 2 breaks down
for this recurrence.

Use (3.34) to prove that
S(n) = X [loga(n/i)]
i=1

satisfies S (n)=0 (n).

Compute the following sum precisely:
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n

S(n) =X [loga(n/i)].

i=1
You can assume that n is a power of 2.

3.32 The Fibonacci numbers F(n) can be extended to negative values of n using the same
definition: F(n+2)=F(n+1)+F(n), and F(1)=1, F(0)=0 (e.g., F(-1)=1, F(-2)=-1,
and so on). Let G (n) be defined as F(-n). Write a recurrence relation for G (n), and
suggest a way to solve it.

3.33 Prove that G (n) = (=1)"*'F (n).



CHAPTER 4

A BRIEF INTRODUCTION TO
DATA STRUCTURES

Science is nothing but trained and organized common sense.
T.H. Huxley, 1878

I hate intellectuals; they are from the top down;
I am from the bottom up.

Frank Lloyd Wright (1869-1959)

4.1 Introduction

Data structures are the building blocks of computer algorithms. A design of an algorithm
is like a design of a building. One has to put all the rooms together in a way that is the
most effective for the intended use of the building. To do that, it is not enough to know
about functionality, efficiency, form, and beauty. One needs a thorough knowledge of
construction techniques. Putting a room in midair may achieve the desired effect, but it
is not possible. Other ideas may be possible, but too expensive. In the same way, a
design of an algorithm must be based on a thorough understanding of data structure
techniques and costs.

In this short chapter, we review only the basic data structures used throughout the
book. We do not intend this chapter to provide a comprehensive treatment of data
structures. That would require (at least) a whole book, and indeed, there are many
excellent such books. We expect that most readers have already studied data structures
in some depth. This chapter is intended mostly for quick review.
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A useful notion in the study of data structures is that of an abstract data type.
Normally, when we write a program, we have to specify the data type (e.g., integers,
reals, characters). But, in some cases, the data type is not important for the design of the
algorithm. For example, we may want to maintain a first-in first-out (FIFO) queue of
items. The required operations are insertions of items into the queue, and removals of
items from the queue. In case of removals, the items must be removed in the same order
in which they were inserted. It is more convenient and more general to design the
algorithms for these operations without specifying the data type of the items. We specify
only the required operations. We call the abstract data type that supports these operations
a FIFO queue. The most important part of an abstract data type is a list of operations that
we want to support. Another example of an abstract data type is a queue in which the
items have priorities. The removals are not according to the order of insertions, but
according to the priorities. That is, the first item to be removed in each step is the item of
highest priority among the items in the queue. This abstract data type is called a priority
queue. Again, we do not specify the data type of the items. (In this case, we do not even
have to specify the data type of the priorities; we need only to assume that the priorities
are totally ordered and that we can determine that order.)

By concentrating on the operational nature of a data structure, and not on a precise
implementation for a particular problem, we make the design more general. The
techniques for implementing a priority queue, for example, are for the most part
independent of the exact data type. If we realize that our needs correspond to the
definition of the abstract data type, we can immediately use it. Abstract data types allow
us to make the algorithm-design process more modular.

4.2 Elementary Data Structures

4.2.1 Elements

We use the notion of an element throughout this book as a generic name for an
unspecified data type. An element can be an integer, a set of integers, a file of text, or
another data structure. We use this term whenever the discussion is independent of the
type of data. Consider, for example, sorting algorithms. If the only steps the algorithm
takes are comparing elements and moving them around, then the same algorithm can be
used for sorting integers or names (strings of characters). The implementation (that is,
the program) may be slightly different, but the ideas are the same. Since we often
concentrate on the ideas rather than on the implementation, it is reasonable to ignore the
types of the elements.
The only assumptions we make about elements are the following:

1. Elements can be compared for equality.

2. Elements are taken from a totally ordered set, and it is possible to tell whether one
element is ‘‘less than’’ another. We usually are not concerned with the exact
definition of the relation ‘‘less than,’’ as long as it is a valid total order.

3. Elements can be copied.
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All these operations are counted as taking one unit of time. Although the unit is relative
to the size of the actual elements, we usually will regard these operations as taking
constant time. Most of the time, it is easier to think of an element simply as an integer,
even though the algorithm may also work for more complicated structures.

4.2.2 Arrays

An array is a row of elements of the same type. The size of an array is the number of
elements in that array. This size must be fixed. Since the size of the array is fixed, and
all the elements are of the same type, the amount of memory that should be allocated to
store the array is known a priori. For example, if the elements are names with 8
characters each, if each character requires 1 byte of storage, and if the size of the array is
100, then 800 bytes are required to store the array. The storage for an array is always
consecutive. If the first byte of the array is stored at location x in memory, then the kth
byte of the array is stored at location x +k — 1. Consequently, it is easy to compute the
starting location of the storage of each element in the array. In our example, if the
starting location of the array is at 10000, then the 55th name starts at the 433rd byte,
which is stored at location 10432, assuming locations are numbered by bytes. (This
calculation can be easily modified if locations are numbered differently.)

Arrays are very efficient and very common data structures. Every element of an
array can be accessed in constant time. The algorithm designer who uses a high-level
language is rarely concerned with location calculations — they are done by the compiler.
As a rule of thumb, arrays should be used whenever possible. The main drawbacks for
using arrays are their restrictions. Arrays cannot be used to store elements of different
types (or sizes), and the size of an array cannot be changed dynamically. We deal with
these two restrictions in the following subsections.

4.2.3 Records

Records are similar to arrays, except that we do not assume that all elements are of the
same type. A record is thus a list of elements of different types. The exact combination
of types is fixed. Like that of an array, the storage size of a record is known in advance.
Each element in a record can be accessed in constant time. This is accomplished by
keeping an array with the same number of elements, such that for each element the array
contains its starting location. This array is needed only to enable a constant time access
to any record element. Such access is achieved by consulting the array for the location of
the element. The exact program that maintains the array is created automatically by the
compiler.

For example, a record may consist of 2 integers, 3 arrays of 20 integers each, 4
more integers, and 2 names each containing 12 characters. (Note that the two array types
in the record are considered now to be elements by themselves.) This record is defined in
Fig. 4.1. The array stored with the record contains the starting relative locations of all the
elements. Thus, if each integer is stored in 4 bytes, Int6, which is the ninth element in the
record, starts at byte number 261 (2:4+3-20-4+3-4+1). Since the sizes of all the
elements in the records are known, it is possible to compute the location of each element
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record examplel
begin
Intl : integer ;
Int2 : integer ,
Arl :array [1.20] of integer ;
Ar2 :array [1.20] of integer ;
Ar3 :array [1.20] of integer ;
Int3 : integer ;
Int4 . integer ;
Int5 : integer ;
Int6 : integer ;
Namel : array [1..12] of character ;
Name?2 : array [1..12] of character
end

Figure 4.1 Definition of a record.

in constant time. Like that for arrays, the storage for a record is always consecutive;
similarly, it is not possible to add elements dynamically.

4.2.4 Linked Lists

There are many applications in which the number of elements is changing dynamically as
the algorithm progresses. It is possible to define all the elements as arrays (or records)
large enough to ensure sufficient storage space. This is often a good solution, but, of
course, it is not very efficient to demand storage according to the worst case (and, in
many cases, the worst case is unknown). Furthermore, there are cases where there is a
need for insertions and deletions in the middle of the list. If we use arrays and we need to
insert an element in the middle, we have to shift all other elements. This inefficiency is
inherent in the consecutive representation of arrays; thus, arbitrary insertions and
deletions are very costly for large arrays. For these cases we need dynamic data
structures. We use dynamic data structures extensively throughout this book; a
familiarity with them is essential.

Linked lists are the simplest form of dynamic data structures. Suppose we have a
list of elements and we want to be able to insert new elements and to delete old elements
efficiently. The idea is to abandon the consecutive representation of arrays. Instead,
each element is represented separately, and all elements are connected through the use of
pointers. A pointer is simply a variable that holds as its value the address of another
element. A linked list is a list of pairs, each consisting of an element and a pointer, such
that each pointer contains the address of the next pair. Each such pair is represented by a
record. A linked list can be scanned by following the addresses in the pointers. Such a
scan must be a linear scan. That is, it is not possible to access each element directly —
we must traverse the list in order.
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There are two major drawbacks to the linked-list representation. First, it requires
more space. There is one additional pointer per element. Second, if we want to look at
the 30th element, for example, we need to start at the beginning and look at 29 pointers,
one at a time. With arrays, we could make a simple calculation and find the 30th element
directly. On the other hand, there is one major advantage to this representation. Suppose
that we find the 30th element and we now want to insert a new 31st element.! All we
need to do is to set the pointer associated with the new 31st element to the address of the
previous 31st element (this address is stored in the 30th pointer), and set the 30th pointer
to point to the new 31st element (see Fig. 4.2). Only two operations are required. With
arrays, all elements following the 30th element would need to be moved. A delete
operation is also simple. If we want to delete the 31st element, we simply set the 30th
pointer to point to the 32nd element, by copying the address stored at the 31st pointer
(see Fig. 4.3). Only two operations are required.

The discussion of insertions and deletions in linked lists has ignored several
important details that tend to make the implementation of linked lists a little more
complicated. The main problem is how to detect the end of the list. Usually, a special

30th

[ 3+ 3+ 4 [+ ooo —{ [4H 4~

30th
L[4+ 3+ [9+ [5= ooo 5

Figure 4.2 Inserting a new element into a linked list.

30th

4 3+ 3o [4~ ooo —{ [+ [4H ==

30th

[ [GH 3 3[4~ ocoo HV EpllE

Figure 4.3 Deleting an element from a linked list.

' The number system is consecutive in nature. It is thus confusing to talk about the new 31st and the old 31st
element. We often uses **30a’’ to denote an insertion after 30. This notation causes many problems. If we in-
sert again after the 30th, we may run out of notation (30a,?). This is a good example of the need for dynamic
data structures.
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address, called nil, is provided, such that a nil pointer is a pointer to nowhere; it can be
used to indicate an end of a list. Another possibility is to introduce a regular record, but
to include in it a key that will guarantee that the search will end there. This additional
record, sometimes called a dummy record, makes the program simpler, since there are
fewer special cases. Dummy records are useful for a variety of data structures.

4.3 Trees

The only structure that arrays and linked lists can capture is the order of the elements
they represent. There are numerous applications that require more structure. Trees
represent hierarchical structures. They can also serve as a more efficient data structure
for certain operations on linear structures. In this section, we will be concerned with only
hierarchical trees, also known as rooted trees or arborescences. A rooted tree is a set of
elements, which we call nodes (or vertices), together with a set of edges that connect the
elements in a special way (see Fig. 4.4). One node is the root of the tree (the top of the
hierarchy). The root is connected to other nodes, which are at level 1 of the hierarchy;
they, in turn, are connected to nodes at level 2, and so on. All the connections are thus
between nodes and their direct unique ‘‘supervisors’® (usually called parents after
genealogical trees). Only the root has no parent. The main property of trees is that they
do not have cycles. As a result, there is a unique path between any two nodes of a tree.

A node is connected to its parent and to several underlings (again, following the
genealogical terminology, we will call the latter children). The maximal number of
children of any node in the tree is called the degree of the tree. We usually order the
children of every node, then identify them by their index in that order (the first, second,
and so on). In the special case of trees of degree 2, called binary trees, we identify the
children by left (for first) and right (for second). A node with no children is called a leaf
(this time, the terminology comes from real trees). A node that is not a leaf is called an
internal node. The height of a tree is the maximal level of the tree, namely, the

Figure 4.4 A rooted tree.
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maximal distance between the root and a leaf. Each node has a key, which comes from a
totally ordered set (for example, a real number or an integer). We will interchangeably
refer to the key and the node as the same when no confusion can arise. For convenience,
we assume that we deal with unique keys. Otherwise, we can link together all the
elements with the same key in a linked list and have one node with a pointer to that list.
Each node usually has a data field containing the data (or a pointer to the data) that is
associated with the node. The data field depends on the application, and we will
generally not deal with it.

In this section, we concentrate on two uses of trees: search trees, and heaps. In
both cases, binary trees are used. We start with a discussion of the representation of trees
in memory.

4.3.1 Representation of Trees

There are two main representations of trees, an implicit representation and an explicit
representation. In the explicit representation, the connection of one tree node to another
is done by a pointer. A node with k children is a record containing an array of k pointers.
(In some applications, a node also contains a pointer to its parent.) It is usually more
convenient to have all the nodes of the same type. Hence, all nodes have m pointers,
where m is the maximal number of children in the tree. Alternately, it is possible to
associate only two pointers per node in the following way. The first pointer points to the
first child, and the second pointer points to the next sibling. Figure 4.5 illustrates the two
representations of the same tree. The main drawback of the second representation is that,
to get hold of all the children of a node, we have to traverse a linked list.

No pointers are used in the implicit representation. An array is used to store all the
nodes of the tree, and the connections are implied by the positions of the nodes in the
array. The most common way of implementing an implicit tree representation is the
following. Consider a binary tree T. The root of T is stored in A[1]. The left and right
children of the root are stored in A [2] and A [3]; the two children of the left child of the
root are stored in A [4] and A [5]; and so on. The array represents a traversal of the tree

-

Figure 4.5 Binary representation of a nonbinary tree.
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from left to right, level by level. We can define the representation by induction: (1) The
root is stored at A [1] (the base case). (2) The left child of a node v that is stored in A [i]
is stored in A[2i], and v’s right child is stored in A[2i+1]. The advantage of this
representation is that no pointers are required, which saves storage. On the other hand, if
the tree is unbalanced, namely, if some leaves are much farther away from the root than
others are, then many nonexisting nodes must be represented. An unbalanced tree is
shown in Fig. 4.6; the numbers below each node indicate its position in the array. An
array of size 30 is needed to represent 8 nodes. The implicit representation thus may or
may not save storage, depending on the tree. Also, since arrays are used, dynamic
operations in the middle of the tree are costly. On the other hand, dynamic operations
can be reasonably supported if they are limited to nodes that correspond to the end of the

array.

4.3.2 Heaps

A heap is a binary tree whose keys satisfy the following heap property:

The key of every node is greater than or equal to the key of any of its
children.

By the transitivity law, the heap property implies that the key of every node is greater
than or equal to the keys of all that node’s descendants. Heaps are useful in
implementing a priority queue, which is an abstract data type defined by the following
two operations:

Insert(x): insert a key x into the data structure.
Remove(): remove the largest key from the data structure.

Heaps can be implemented with either the explicit or the implicit tree representation. We
will use the implicit representation, since we can ensure that the heaps will be balanced.
We assume that the array is A[1..k], where k is an upper bound on the number of
elements the heap will ever contain (if an upper bound is not known, then a linked

30

Figure 4.6 Implicit representation of an unbalanced tree.
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representation is required). Let n denote the current number of elements in the heap;
namely, only the array A [1..n] is of interest at any moment. We now proceed to describe
how to implement insert and remove efficiently with the use of heaps.

We start with the Remove operation. By the heap property, the node with the
largest key in a heap is the root, A[1]. So, a Remove operation always removes the key
from the root. The problem is to restore the heap property after the key of the root has
been deleted. We now have an array A [2..n ], which corresponds to two separate heaps.
We first take the leaf A [n ], delete it, and put it in place of the root. That is, we let A [1]
:= A[n], and decrement the value of n by one. Denote the value of the new A [1] by x.
We still have two separate heaps plus a value on top, which may or may not satisfy the
heap property. (The only way for x to satisfy the heap property at this point is if the
whole path from the root to where x was contained the value x.) To restore the heap
property, we now propagate x down the tree, until it reaches a subtree for which it is a
maximum. This is done by comparing x with the values of its two children (A [2] and
A [3)) and, if x is not the maximal among the three, by exchanging A [1] with the largest
of them. Assume that A [2] is the maximal. Then, A [2] is clearly the maximal key in the
whole heap, so it can be put in the root position. Furthermore, the subtree rooted at A [3]
remains unchanged, and thus it also satisfies the heap property. We have to worry only
about the subtree rooted at A[2] (because now it has x in its root). But now we can
continue inductively in the same way. Assume that we continue for i steps, and that the
key x is now at A [j]. Only the tree rooted at A [j ] may not satisfy the heap property. We
again compare x to its two new children, A[2j] and A[2j+1] (if they exist), and
exchange if x is not the maximal. The algorithm terminates either when x becomes the
maximal of a subtree, or when it reaches a leaf. The maximal number of comparisons
required for a deletion is 2[ log,n]|, which is twice the height of the tree. The algorithm
for removing a maximum element from a heap is given in Fig. 4.7.

An Insert operation is similar. We first increment n by one, and insert the new key
as the new leaf A [n]. We then compare the new leaf with its parent, and exchange if the
new leaf is larger than its parent. At this point, the new key is the maximal of its subtree
(since the parent was the maximal and it was found to be larger). We assume,
inductively, that the tree rooted at A [j] (initially A [n]) satisfies the heap condition, and
that if we remove this tree the rest of the heap satisfies the heap property. We continue
this process, promoting the new key up the tree, until the new key is not larger than its
parent (or until it reaches the root). At this point, the whole tree is a valid heap. The
maximal number of comparisons required for an insertion is [ logyn|, which is the height
of the tree. The algorithm for inserting an element into a heap is given in Fig. 4.8.

Overall, we can perform any sequence of Insert and Remove operations in time
O (log n) per operation. On the other hand, it is not possible to perform other operations
efficiently with a heap. For example, if we want to search for a given key, the hierarchy
given by the heap is not useful. A Heap is a good example of an implementation of an
abstract data type. A heap supports a limited number of specific operations very
efficiently. Whenever we need these particular operations, we can impose the heap
structure on the data whatever its type is.
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Algorithm Remove_Max_from_Heap (A, n) ;

Input: A (an array of size n representing a heap).

Output: Top_of the_Heap (the maximal element of the heap), A (the new
heap), and n (the new size of the heap; if n = 0, then the heap is empty).

begin
if n =0 then print "the heap is empty"
else
Top_of the_Heap := A[l1] ;
All)}:=Aln];
n:=n-1;
parent := 1 ;
child := 2 ;
while child<n - I do
if A[child] < A[child+1] then
child := child + 1 ;
if A[child] > A[parent] then
swap(A[parent], A[child]) ;
parent := child ;
child := 2*child ;
else child := n { to stop the loop }
end

Figure 4.7 Algorithm Remove_Max_from_Heap.

Algorithm Insert_to_Heap (A, n, x) ;
Input: A (an array of size n representing a heap), and x (a number).
Output: A (the new heap), and n (the new size of the heap).

begin
n:=n+1;{we assume that the array does not overflow }
Aln]:=x;
child := n ;

parent :=ndiv 2 ;
while parent 2 I do
if A[parent] < A[child] then
swap(A[parent], A[child]) ; { see also Exercise 4.6 }
child := parent ;
parent := parent div 2 ;
else parent := 0 { to stop the loop }
end

Figure 4.8 Algorithm Insert_to_Heap.
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4.3.3 Binary Search Trees

Binary search trees implement efficiently the following operations:

search(x): find the key x in the data structure, or determine that x is not
there (for simplicity, we will assume that each key appears at most once).

insert(x): insert the key x into the data structure (unless it is already there).
delete(x): delete the key x from the data structure if it is there.

Abstract data types that handle these three operations are called dictionaries. Binary
search trees implement dictionaries efficiently, as well as other more complicated
operations. We will use the explicit representation of trees in this section, since dynamic
insertions and deletions are important parts of binary search trees. We do not want to
limit ourselves to a given upper bound for the number of elements. We assume that each
node in the tree is a record containing at least three fields: key, left, and right, such that
key holds the key associated with the node, and left and right are pointers to other nodes
(or to nil). Binary search trees are more complicated than heaps, because in heaps only
leaves are added or removed and keys exchanged, whereas in binary search trees, any
node may be removed and the pointers may be manipulated in many other ways. For
simplicity, we assume that all keys are distinct.

Search

As its name suggests, a search tree is a structure to facilitate searching. The structure
becomes clear once the search procedure is understood. Assume that we have a key x
and we want to know whether it is currently a key of a node in the tree, and if it is, we
want to find that node. This operation is called a search. We first compare x against the
root of the tree, whose value is, say, r. If x=r, then we are done. If x <r, then we
continue the search from the left child; otherwise, we continue the search from the right
child. Each key in the search tree serves to divide the range of the keys below it: the
keys in the left subtree are all smaller than it, and the keys in the right subtree are all
greater than it. This rule defines search trees. We say that the tree is consistent if all the
keys satisfy this condition. A simple recursive program for searching in a binary search
tree is presented in Fig. 4.9.

Insertion

Insertions into binary search trees are also quite simple. Given a key x to insert, a search
for x is performed first. If x is already in the tree, then it will be found and the insertion
will be aborted. (We assume that we do not want several nodes with the same key.)
Otherwise, the search ends (unsuccessfully) at a leaf. A node containing the new key can
then be inserted below that leaf (as either a right child or a left child, depending on the
value of x). The tree remains consistent, since subsequent searches for x will get to the
same leaf and through it to the new node. The search program must be changed slightly
so that we find the leaf. We use this opportunity to write a nonrecursive search program,
which is given in Fig. 4.10.
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Algorithm BST_Search (root, x) ;
Input: root (a pointer to a root of a binary search tree), and x (a number).
Output: node (a pointer to the node containing the key x, or nil if no such
node exists).
begin
if root = nil or root”.key = x then node := root
{ root” is the record that the pointer root is pointing to. }
else
if x < root".key then BST Search(root”.left, x)
else BST Search(root".right, x)
end

Figure 4.9 Algorithm BST _search.

Algorithm BST _Insert (root, x) ;

Input: root (a pointer to a root of a binary search tree), and x (a number).

Output: The tree is changed by inserting a node with the key x pointed to by
the pointer child, if there is already a node with key x, then child = nil.

begin
if root = nil then
create a new node pointed to by child ;

root := child ;

root”.key := x
else

node := root ;

child := root ; { to initialize it so that it is not nil }
while node # nil and child # nil do
if node”.key = x then child := nil
else
parent := node ;
if x < node”.key then node := node’.left
else node := node’.right ;
if child # nil then
create a new node pointed to by child ;
child”key := x ;
child’left := nil ; child’right := nil ;
if x < parent”.key then parent’left := child
else parent”.right := child
end

Figure 4.10 Algorithm BST _insert.
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Deletion

Deletions are generally more complicated. It is easy to delete a leaf, we need only to
change the pointer to it to be nil. It is also not hard to delete a node that has only one
child; the pointer to the node is changed to point to its child. However, if the node we
want to delete has two children, then we need to find a place for the two pointers. Let B
be a node with two children whose key we want to delete (see Fig. 4.11). In the first step,
we exchange the key of B with a key of another node X, such that (1) X has at most one
child, and (2) deleting X (after the exchange) will leave the tree consistent. In the second
step, we delete X, which now has the key of B which we wanted to delete. We can easily
delete X, because it has at most one child. To preserve the consistency of the tree, the
key of X must be at least as large as all the keys in the left subtree of B, and must be
smaller than all the keys in the right subtree of B. Notice that the key of X in Fig. 4.11
satisfies these constraints: it is the largest among the keys in the left subtree of B. X is
called the predecessor of B in the tree. X cannot have a right child, since otherwise it
would not have the largest key in that subtree. The deletion algorithm is presented in Fig.
4.12.

Complexity The running times of search, insert, and delete depend on the shape of
the tree and the location of the relevant node. In the worst case, the search path would
take us all the way to the bottom. All the other steps in the algorithms require only
constant time (e.g., the actual insertion, the exchange of keys in the deletion). So, the
worst-case running time is the maximal length of a path from the root to a leaf, which is
the height of the tree. If the tree is reasonably balanced (we will define balance shortly),
then its height is approximately log,n, where n is the number of nodes in the tree. All the
operations are efficient in this case. If the tree is unbalanced, then these operations are
much less efficient.

If the keys are inserted into a binary search tree in a random order, then the
expected height of the tree is O (log n) — more precisely, 2/n n. In this case, the search
and insert operations are efficient. In the worst case, however, the height of the tree can
be n (when the tree is a simple linked list). Trees with lcng paths can result, for example,
from insertions in a sorted, or close to sorted, order. Also, deletions may cause problems
even if they occur in a random order. The main reason for that is the asymmetry of
always using the predecessor to replace a deleted node. If there are frequent deletions,

X

Figure 4.11 Deleting a node with two children.
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Algorithm BST_Delete (root, x) ;
Input: root (a pointer to a root of a binary search tree), and x (a number).
Output: The tree is changed by deleting a node with the key x, if it exists.

{ We assume that the root is never deleted, and that all keys are distinct }

begin
node := root ;
while node # nil and node”.key # x do
parent := node ;
if x < node”.key then node := node".left
else node := node".right ;
if node = nil then print("x is not in the tree") ; halt ;
if node # root then
if node’.left = nil then
if x < parent”.key then
parent’”left := node .right
else parent”.right := node”.right
else if node’.right = nil then
if x < parent”.key then
parent”left := node”.left
else parent”.right := node".left
else {the two children case }
nodel := node’.left ;
parentl := node ;
while nodel ".right # nil do
parentl := nodel ;
nodel := nodel ".right ;
{ now comes the actual deletion }
parentl “.right := nodel "left ;
node”.key := nodel ".key
end

Figure 4.12 Algorithm BST _delete.

followed by insertions, the tree may have a height of O (\/; ), even for random insertions
and deletions. This asymmetry can be avoided if, instead of always choosing the
predecessor of the deleted node, we alternate between the predecessor and the successor
(which is a smallest key in the right subtree). Fortunately, there are ways to prevent the
creation of long paths in binary search trees. We describe one such method in the next

section.
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4.3.4 AVL Trees

AVL trees (named after Adel‘son-Vel‘skii and Landis [1962]) were the first data
structures to guarantee O (logn) running time for search, insert, and delete in the worst
case (n is the number of elements). The main idea in AVL trees (and in most other tree
structures that achieve logarithmic bounds) is to spend additional time when inserting and
deleting to balance the tree, such that the height of the tree is always bounded by
O (logn). The time devoted to balancing must not exceed O (logn), or else insertions
and deletions will be too expensive. The idea is to define balance in such a way that it is
easy to maintain.

Definition: An AVL tree is a binary search tree such that, for every node,
the difference between the heights of its left and right subtrees is at most 1
(the height of an empty tree is defined as 0).

This definition guarantees a maximal height of O (log n), as is shown in the next theorem.
O Theorem 4.1
The height h of an AVL tree with n internal nodes satisfies

h < 1.4404 log,(n+2)—0.328.

Proof: Left as an exercise. O

This theorem implies that search in an AVL tree requires O (logn) comparisons. The
problem is how to perform insertions and deletions and still to maintain the AVL
property. We start with insertions; again, we assume that all the keys are distinct.

Let x be a new key that we wish to insert into an AVL tree. First, we insert x at the
bottomn of the tree in the usual way. If, after the insertion, the tree remains an AVL tree,
then we are done. Otherwise, we need to rebalance the tree. There are four possibilities
— two of them are illustrated in Fig. 4.13; the other two are symmetric (to the right).

In part (a) of Fig. 4.13, the new node was inserted into the left subtree, making the
height of B equal to h +2, whereas the height of C is 4. To remedy this unbalance, we
perform a rotation: We move B to the top and change the rest of the tree according to the
binary search property (Fig. 4.14). The height of the new subtree, rooted at B, is now
h+2, which is the same as the height of the original subtree before the insertion. As a
result, no more balancing is required. This rotation is called a single rotation. It will not
help in part (b) of Fig. 4.13; a double rotation is required (Fig. 4.15). Again, the new
subtree has the same height as the original one, so no more balancing is required. An
important property of AVL trees is that one rotation (single or double) is always
sufficient after an insertion. We omit the proof.

The node A in both examples is called the critical node. It is the root of the
smallest subtree that becomes a non-AVL subtree as a result of the insertion. To perform
the insertion, we have to find the critical node and to determine which of the cases is
involved. We maintain in each node a balance factor, which is equal to the difference
between the heights of the left and right subtrees of this node. For AVL trees, the
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(a) (h)

Figure 4.13 Insertions that invalidate the AVL property.
balance factor of each node is 1, —1, or 0. An insertion into a subtree requires
rebalancing if the balance factor was either 1 or —1, and the insertion increases the height
of a subtree in the ‘‘wrong’’ direction. That implies that the critical node must have a
nonzero balance factor. Moreover, if a lower node has a nonzero balance factor, then,

after balancing, the heights from that node will be the same as they were before the

A

{ A hAL

new

new

(a) (h)

Figure 4.14 A single rotation: (a) Before. (b) After.
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(a) (b)

Figure 4.15 A double rotation: (a) Before. (b) After.

insertion (recall that the balancing retains the old heights from the critical node). Hence,
the critical node is the lowest ancestor of the new node with nonzero balance factor. On
the way down the tree, we look at the balance factors, remembering the last nonzero one.
When we reach the leaf, we can easily determine whether we insert to the ‘‘right’’ or
“‘wrong’’ direction. We then make another pass (either bottom up or top down —
preferably bottom up, since that usually involves less nodes), readjust the balance factors,
and perform a rotation if necessary. We omit the details.

Deletions are, as usual, more complicated. It is no longer true that the tree can be
rebalanced with only one single or double rotation after a deletion. There are cases
where O (logn) rotations are required, where n is the number of nodes in the tree.
Fortunately, each rotation requires only constant number of steps; thus, the worst-case
running time of a deletion is still O (logn). Again, we omit the details.

Comments AVL trees form an efficient data structure. They perform well in the
worst case, requiring at most 45% more comparisons than optimal trees, and even better
in the average case. Empirical studies have shown the average search time to be
approximately logyn +0.25 comparisons (see Knuth [1973], pp. 460]). The main
disadvantages of AVL trees are the need for extra storage for the balance factors, and the
fact that the program that implements them is rather complicated. Many other schemes
for balanced-search trees have been proposed, including 2-3 trees, B-trees, weight-
balance trees, and red-black trees.
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4.4 Hashing

Hashing is one of the most (if not the most) useful data structures for computer
algorithms. Hashing is used mainly for insertions and searches, and some variations of it
can also be used for deletions. The idea behind hashing is simple. Designing a data
structure for storing data with keys numbered from 1 to n is easy: The data can be stored
in an array of size n, such that key i is stored at location i. Any key can thus be accessed
immediately. If there are n unique keys in the range 1 to 2n, for example, then it is still
usually best to store them in an array of size 2n, even though the storage utilization is
now only 50 percent. The access is so efficient that it is usually worth the extra space.
However, if the keys are integers, say, in the range 1 to M, where M is the maximal
integer that can be represented in the particular computer, we cannot afford to allocate
space of size M. For example, if there are 250 students identified by their social-security
number, we will not allocate an array of size 1 billion to store information about them
(there are 1 billion possible social-security numbers). Instead, we can use the last three
digits of the numbers, in which case we need only an array of size 1000. This is not a
foolproof method. There may be students with the same last three digits (in fact, with
250 students, the probability of that is quite high). We will show how to handle such
duplicates shortly. We can also use the last four digits, or the last three digits and the first
letter of the student’s name, to minimize duplicates even further. However, using more
digits requires a larger-size table and results in a smaller utilization.

We assume that we are given a set of n keys taken from a large set U of size M,
such that M is much larger than n. We want to store the keys in a table of size m, such
that m is not much larger than n. The idea is to use a function, called a hash function, to
map the keys, which are in the range 1 to M, to new keys in the range 1 to m, so we can
store everything in an array of size m. Taking the last three digits of a large integer is
such a function. It maps a large set U of size 1 billion to a set of size 1000. Each
possible key is thus given a place (index) in a table of size m. We will attempt to store
the key in that particular place in the table. If the function is easy to compute, then
accessing the key is also easy. However, since the set U is large and the table is small,
no matter what function we use, many keys will be mapped into the same place in the
table. When two keys are mapped to the same location in the table, we call it a collision.
We are thus faced with two problems: (1) finding a hash function that minimizes the
likelihood of collisions, and (2) handling collisions.

Even though the set U is much larger than the size of the table, the actual set of
keys we handle is usually not too large. A good hash function should map the keys
uniformly in the table. Of course, no hash function can map all possible sets of keys
without collisions. If the size of U is M and the size of the hash table is m, then there
must be at least M/m keys that are mapped into the same place. If the mapping is
uniform, each location will have approximately M/m keys mapped into it. Hash
functions should transform a set of keys uniformly to a set of random locations in the
range | to m. The uniformity and randomness are the essence in hashing. For example,
instead of taking the last three digits of the social-security number, we could take the last
three digits of the student’s year of birth. It is clear that this is an inferior hash function,
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since it is much more likely that many students were born in the same year than it is that
many students have the same last three digits of the social-security number.

Hash Functions

We assume that the keys are integers, and that the size of the hash table is m. A simple
and effective hash function is h (x) = x mod m, where m is a prime number. If the size of
the table cannot be adjusted easily to be a prime (it is convenient sometimes to have a
size that is a power of 2, for example), then the following hash function can be used:
h(x) = (x mod p ymod m, where p is a prime, and p >m (p should be sufficiently larger
than m to be effective, but it should also be sufficiently smaller than |U |).

As we have already mentioned, no hash function can be good for all inputs. Using
primes as described is fairly safe, since most data in practice have no structure related to
prime numbers. On the other hand, it is always possible (although unlikely) that, in a
certain application, one will want to store results of some experiments made on integers
all of which are of the form r +kp for a constant . All these numbers of course will have
the same hash values if p is used as described. We can take the idea of scrambling data
with hashing one step further, and use a random procedure to select a hash function! For
example, the prime p can be selected at random from a list of primes in the appropriate
range. Finding a large list of primes, however, is not easy. Another possibility is the
following: At random, select two numbers a and b, such that a, b <p, and a #0, and let
h(x)=[ax+b modp]modm. This function is more complicated to compute than the
previous one is, but it has the advantage that it is very good on the average for all inputs.
Of course, the same hash function must be used for all accesses to the same table. In
many cases, however, there is a need for many independent tables, or tables that are
created and destroyed frequently. In those cases, a different hash function can be used
every time a different table is created. The random hash functions described above have
certain other desirable properties.

Handling Collisions

The simplest way to handle collisions is to use a method called separate chaining. Each
entry in the hash table serves as a head of a linked list cnntaining all the keys that are
hashed into that entry. To access a key, we hash it and then perform linear search on the
appropriate linked list. A new key can be inserted into the beginning of the list (but the
list must be searched to ensure that the key is not a duplicate). A search may be
inefficient if some lists are long. The lists will be long if the size of the table is small
compared to the actual number of keys or if the hash function is bad. Thus, hashing is
not a good dynamic structure. It is important to have a good estimate on the number of
keys. The main problem with separate chaining is that it requires dynamic memory
allocation and more space for the pointers (even if the number of keys is not too large,
and the pointers are not used). On the other hand, if for some reason the estimate of the
appropriate table size is wrong, separate hashing will still work, whereas other static
methods will fail.

Another simple method is linear probing. The size of the table is fixed, and there
are no pointers. The hash function determines the place of the key in the table. If that
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place is already occupied, that is, if a collision occurs, then the first empty place after it is
taken instead. A search for the key follows the same procedure. (The table is considered
in a cyclic order; if the last place is reached and it is full, then the first place is considered
next.) An unsuccessful search thus ends at the first empty place. When the table is
relatively empty, this simple method works well. If the table is relatively full, there will
be many secondary collisions, which are collisions that are caused by keys with different
hash values. We cannot avoid collisions with keys that have the same hash function,
because such keys are mapped into the same place. We should, however, try to minimize
secondary collisions. Let’s look at an example. Suppose that the ith place is full and that
the (i + 1)th place is empty. A new key, which is mapped to i, will cause a collision, and
will be inserted into i+ 1. This case is efficient, since the collision is resolved with
minimal effort. However, if a new key is now mapped to i + 1, there will be a secondary
collision and i +2 will become full (if it is not full already). Any new key mapped to i, to
i+1, or to i +2 will not only encounter secondary collisions, but will also increase the
size of the full segment, causing more secondary collisions later. This effect is called
clustering. When the table is almost full, the number of secondary collisions with linear
probing will be very high, and the search will degrade to linear search.

Deletions cannot be implemented efficiently with linear probing. If an insertion
‘‘passes’’ through a key on its way to an empty slot, and if that key is later deleted, then a
future search will be unsuccessful, since it will stop in the new empty slot. If deletions
are required, we must have a collision-resolution scheme using pointers.

The clustering effect can be reduced with double hashing. When a collision
occurs, a second hash value #,(x) is computed. Instead of searching in a linear order,
namely, i + 1, i +2, and so on, we search the places i + h,(x), i +2h,(x), and so on (all in
a cyclic order). When another key y is mapped to, say, i/ +/,(x), the next attempt will be
at i+h,(x)+h,y(y), instead of at i+2h,(x). If h,(x) is independent of h,(y), then
clustering is eliminated. We must be careful, however, to choose the second hash value
such that the sequence i+h,(x), i +2h,(x)...,i +nh,(x) spans the whole table (which
will happen if the numbers /,(x) and n are relatively prime).

The main disadvantage of double hashing is that it requires more computation
(namely, the selection of a second hash value) for the search. One way to save extra
computation is to select a second hash value that is not completely independent of the
first hash value, but that still reduces clustering. One such method is to set h,(x) = 1 if
hi(x)=0, and h,(x) = m—h,(x) otherwise (we assume that m is prime and that
h1(x) =x mod m).

4.5 The Union-Find Problem

The union-find problem (also known as the equivalence problem) is a good example of
the use of nonstraightforward data structures to improve the efficiency of algorithms.
The problem is the following. There are n elements x,, x,, ..., x,. The elements are
divided into groups. Initially, each element is in a group by itself. There are two kinds
of operations performed on the elements and the groups in an arbitrary order:
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find (i): returns the name of the group that contains x;

union (A, B): combines group A with group B to form a new group with a
unique name (any name distinct from the other names will do).

The goal is to design a data structure that will support any sequence of these two
operations as efficiently as possible.

Since all the elements are known ahead of time (and they are indexed from 1 to n),
it is possible to allocate an array X[l..n] for them. The straightforward method of
solving the problem is to store the identity of the group containing the ith element in
X[i]. A find operation is thus trivial — we simply look at the array. A union operation
takes more time. Assume that union(A, B) results in a combined group called A. Then, it
is necessary to change all the entries containing B to A.

We now present a different approach to this problem. Instead of making the find
operation simple, we make the union operation simple. We use indirect addressing.
Each entry in the array is a record with the identity of the element and a pointer to
another record. Initially all pointers are nil. We perform the operation union(A, B) by
changing the pointer in the record for B to point to the record containing A, or vice versa
(we will discuss this choice shortly). After several unions, the data structure is a set of
trees as in Fig. 4.16. Each tree corresponds to a group, and each node corresponds to an
element. The element at the root of each tree serves as the name of the group. To find the
group that contains element G, we follow the path from G’s pointer until we reach the
root, which is a record whose pointer is nil. This process is similar to someone changing
addresses — instead of notifying everyone, it is simpler to leave a forwarding address.
Of course, finding the right address is more difficult now, namely, the find operations are
less efficient. They are especially inefficient if the union operations form tall trees.

The idea behind the efficient union-find data structure is to balance and collapse
the trees. We have already seen that it is worthwhile to expend additional effort to
balance the data structure. Consider union(A, B) in Fig. 4.16. We have two possibilities.
We can set B’s pointer to point to A, or we can set A’s pointer to point to B. It is clear
that the first option leads to a more balanced tree. This idea is formalized in the

A nil B nil E nil

G D

Figure 4.16 The representation for the union-find problem.
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following way. We store with each record that corresponds to a root not only the name
of the group, but also the number of elements in it.

Balancing: when a union operation is performed, the pointer of the smaller
group is set to point to the record of the larger group (ties are broken
arbitrarily). The size of the combined group is also computed and placed in
the appropriate field in the root.

If the union operation utilizes balancing, then the height of the trees is never more than
log,n, as is shown in the following theorem.

0O Theorem 4.2

If balancing is used, then any tree of height h must contain at least 2k
elements.

Proof: The proof is by induction on the number of union operations. The theorem
is clearly true for the first union, which results in a tree of height 1 with two elements.
Consider union(A, B), and assume that A is the larger group, so that B will point to A.
Denote by h(A) and h(B) the heights of the trees corresponding to groups A and B,
respectively. The height of the combined tree is the maximum of #(A) and A (B)+1. If
h(A) is larger, then the combined tree has the same height as A’s tree with even more
elements; hence, the theorem obviously holds. Otherwise, the combined tree has at least
twice as many elements as B’s tree (since B was assumed to be smaller than A), and its
height is one more than B’s original height. Again, the theorem is satisfied. O

Theorem 4.2 implies that a find operation never follows more than log,n pointers. A
union operation always take constant time. Consequently, any sequence of m either find
or union operations, such that m 2 n, takes at most O (m log n) steps.

It is possible to improve the efficiency of the union-find data structure with the
following idea. Consider again the mail-forwarding analogy. If several changes of
addresses occur, then the mail will go from one address to another until it reaches the
final destination. At that point, it would be a good idea to notify all the forwarding
stations about the final destination, so that they can forward the mail directly. After we
traverse the pointers from a record to the root of its tree, we change those pointers on the
path to point directly to the root (see Fig. 4.17). This is called path compression.
Traversing the path again only doubles the number of steps; therefore, the asymptotic
time complexity of a find operation remains the same. We can use path compression
every time a find operation is performed. The following theorem, which we will not
prove, gives a good bound on the worst case complexity.

O Theorem 4.3

If both balancing and path compression are used, then the total number of
steps in the worst case for any sequence of m 2 n operations (either find or
union) is O (mlog n), where log'n is the iterated logarithm function,
defined below. O
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Figure 4.17 Path compression: (a) Before. (b) After.

The function log”n is defined recursively as follows. log"1 = log"2 = 1. For any n >2,
log"n = 1 +log"(logyn]). For example, log"4 = 1 +log"2 = 2, log 14 = 1 +log"4 = 3, and
log"60000 = 1+log"16 = 4. For any number n, such that n <2%%%, which covers
virtually all practical purposes, we have log"n <5. Thus, the complexity of any sequence
of unions and finds is almost linear (and is linear in practice). Notice that one particular
find operation may still require O (logn) steps, but, overall, O (n) of them require
O (nlog"n) steps. This is an excellent example of amortized analysis, which involves
counting all steps together rather than bounding each step separately. Whether it is
possible to design a linear time algorithm for this problem is still an open problem.

4.6 Graphs

We devote a whole chapter (Chapter 7) to graph algorithms. In this section, we discuss
the data structures used to represent graphs. A graph G =(V, E) consists of a set V of
vertices (also called nodes), and a set E of edges. Each edge corresponds to a pair of
vertices. The edges represent relationships among the vertices. For example, the graph
may represent a set of people, and the edges may connect any two persons who know
each other. A graph can be directed, or undirected. The edges in a directed graph are
ordered pairs — the order between the two vertices the edge connects is important. In
this case we specify an edge as an arrow pointing from one vertex (the tail) to another
(the head). The edges in an undirected graph are unordered pairs. Trees are simple
examples of graphs. If we want to indicate a hierarchy in a tree, we can orient all the
edges to point away from the root. Such trees are sometimes called rooted trees, since it
is enough to specify the root in order to define the direction of all the edges. We can also
consider undirected trees (sometimes called free trees), which do not correspond to a
hierarchy.



84 Data Structures

We will use two main representations of graphs in this book. The first
representation uses the adjacency matrix of a graph. Let |V |=n. The adjacency
matrix of G is an n X n matrix A such that g;;=1 if and only if (v;, v;) € E. The ith row of
the matrix is thus an array of size n which has a 1 in the jth position if there is an edge
leading from v; to v;, and a O otherwise. Adjacency matrices have one major drawback
— they require space of size n’ no matter how many edges are in the graph. For
example, the number of edges in a tree is n — 1, and these edges can be represented by
one or two pointers per vertex (depending on whether we want to go up or down the
tree). With adjacency matrices, each vertex has an associated array of size n. In other
words, if the number of edges is small, most of the entries in the adjacency matrix will be
Os.

Instead of having an explicit representation for all of those Os, we can link the
actual number of s (representing the edges) in a linked list. There will be one pointer
per edge. This second representation is called the adjacency list. In the adjacency-list
representation, each vertex is associated with a linked list consisting of all the edges
adjacent to this vertex. This list is usually sorted according to the labels of the heads of
the corresponding edges. The whole graph is represented by an array of lists. Each entry
in the array includes the label (or index) of the vertex, and a pointer to the beginning of
its list of edges. If the graph is static — that is, if no insertions or deletions are allowed
— the lists can be represented by arrays in the following way. We assign an array of size
[V |+|E|. The first |V | entries correspond to the vertices (in order). Each such entry
contains the index in the array where the list of edges emanating from this vertex is
started. For example, if there are 20 vertices and 50 edges and vertex 1 has 4 edges
emanating from it, then the first entry will be 21 (it is always |V | +1), and the second
entry will be 25. The entries corresponding to the edges contain the heads of these edges.
In the example above, if the second edge of the second vertex points to the fifth vertex,
then entry 26 is equal to 5. The edges are usually stored in a sorted order, although this is
not always required. All three representations are illustrated in Fig. 4.18. Adjacency
matrices are usually easier to handle than are adjacency lists, and the programs using
them are usually simpler. However, adjacency lists are more efficient when the graph
has few edges. In practice, most graphs have much fewer than the maximal n(n —1)/2
undirected or n (n — 1) directed edges. Thus, adjacency lists are more common.

4.7 Summary

Data structures can be divided into static and dynamic structures. Arrays are static
structures. The size of an array, or at least a good bound on it, has to be known before
we start using it, and it cannot be extended. On the other hand, accessing an array is very
efficient. Linked lists are dynamic. They can easily be extended and reduced in size.
They can support any size (within the constraints of the total available memory).

Data structures can also be divided into one-dimensional structures and
multidimensional structures. Arrays and linked lists are one-dimensional. The only
structure they represent is the possible order among the elements. Trees represent a little
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Figure 4.18 Graph representations.

more than one-dimensional structure — they represent hierarchy. Graphs can represent
even more elaborate structures. Of course, we can also build multidimensional arrays or
multidimensional linked lists.

The concept of abstract data types is very useful. It allows us to concentrate on the
operations required from the data structure, and to postpone implementation details that
are dependent on the specific data type. We have described implementations for
dictionaries, priority queues, and union-find data structures.

If we need only to store data without any structure imposed on them, then hashing
is the best option. Hashing cannot be used if the access depends on something besides
the explicit key of the element. For example, if we wish to find the minimal key in a
hash table, then the whole table must still be scanned.

Bibliographic Notes and Further Reading

The study of data structures is now considered a basic part of computer science
education. As a result, many books on data structures have been written. Knuth [1973a]
and Knuth [1973b] contain a wealth of information about data structures. Other books
include Standish [1980], Aho, Hopcroft, and Ullman [1983], Reingold and Hansen
[1983], Gonnet [1984], and Wirth [1986]. A more advanced monograph on data
structures and algorithms is by Tarjan [1983].
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A comparative study of many data structures for priority-queues was done by
Jones [1986]. Jones’s paper also includes a comprehensive bibliography on priority
queues. The algorithms for insertions and deletions in binary search trees were
described, among others, by Hibbard [1962]. This paper proved that the average path
length after n random insertions is 2Inn. For more information, see Knuth [1973b]. An
empirical study on the effects of random insertions and deletions in binary search trees
was performed by Eppinger [1983], who conjectured that the length of the average path
may be as high as 0(log3n). Culberson [1985] proved that, under certain conditions,
random deletions and insertions cause the length of the average path to be 0(\/;). A
comparison between different balancing schemes is presented in Baer and Schwab
[1977]. Balanced trees are also described in Knuth [1973b] and Tarjan {1983]. Sleator
and Tarjan [1985] present several new methods for maintaining self-adjusting trees.
The idea is to adjust the tree by moving the most currently accessed node to the top after
every access. Although the trees are not always balanced, they exhibit good performance
characteristics in the amortized sense; namely, a single operation may be slow, but over a
long period, the average time for each operation is small.

More information about hashing can again be found in Knuth [1973b], and in
Gonnet [1984]. A book by Vitter and Chen [1987] describes in great detail one strategy
called coalesced hashing. Classes of random hash functions called universal hash
functions are described by Carter and Wegman [1979]. Several interesting applications
of this concept can also be found in Wegman and Carter [1979], Karlin and Upfal [1986],
and Kurtz and Manber [1987]. There are also extendible hashing schemes that allow
dynamic growth of the tables; see, for example, Fagin, Nievergelt, Pippenger, and Strong
[1979] and Litwin [1980].

The union-find data structure was first studied by Galler and Fischer [1964], and
also by Fischer [1972], and Hopcroft and Ullman {1973] (who obtained the result
mentioned in Theorem 4.3), among others. Tarjan [1975] improved the running time to
O (mo(m, n)), where a(n) is the inverse Ackerman’s function, which grows even slower
than log”n. Tarjan and van Leeuwen [1984] studied several simpler variations of path
compression that achieve the same running time. For information on graphs, see Chapter
7 and its bibliography.

Drill Exercises

4.1  Write a program to delete an element from a linked list.

4.2 Write a program to reverse the direction of a given linked list. In other words, the pointers
should all point backward.

4.3 Convert the simple recursive search procedure for binary search trees to a nonrecursive
procedure.

4.4  Design an algorithm to list in order all the keys in a given binary search tree.
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Let A[1..16] be an array that represents a heap (using the implicit representation). What is
the minimal number of heap elements that can occupy an array of size 16?

Algorithm Insert_to_Heap may swap elements many times up the heap. Modify the
algorithm so that at most one swap will be performed (O (logn) comparisons are still
allowed).

Suppose that we want to use AVL trees as a priority-queue data structure. What is the
complexity of all the operations?

Show the AVL tree formed by inserting the numbers 1 to 20 in order.

Show an AVL tree with a node whose deletion results in a non-AVL tree, such that the
resulting tree cannot be made an AVL tree by only one (single or double) rotation. Draw
the tree, specify the node, and explain why the resulting tree cannot be balanced with one
rotation.

Creative Exercises
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Design an implementation of an abstract data type that supports the following operations:

Insert(x): the insertion should be performed even if x is already in the data
structure. In other words, the data structure should hold duplicates.

Remove(y): remove any element from the data structure and assign it to y.
Again, any element will do. If there are several copies of the same element
only one of them should be removed.

This abstract data type is called a pool (or a bag). It is useful for storing jobs, for example.
New jobs are generated and inserted into the pool, and when a worker becomes available a
job is removed. All the operations should take O (1) time.

Modify the pool data type of Exercise 4.10 in the following way: Assume now that every
element can appear at most once in the data structure. An insertion must now check for
duplicates. Implement the same operations as before, but with duplicate checking. What is
the complexity of each operation in the worst case? What is a good data structure for the
average case?

Another variant of the pool data type (see Exercises 4.10 and 4.11) is the following: Assume
now that all the elements are identified by integers in the range 1 to n, and that » is small
enough that you can allocate memory of size O (n). Each element can appear at most once.
Design algorithms for insert and remove (as defined in Exercise 4.10) that work in O (1)
time.

Design an algorithm to construct one heap that contains all the elements of two given heaps
of sizes n and m, respectively. The heaps are given in a linked-list representation (each
node has links to its two children). The running time of the algorithm should be
O (log (m + n)) in the worst case.

Design an algorithm to construct one heap that contains all the elements of k given heaps.
What is the complexity of the algorithm?
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Design an implementation of an abstract data type that supports the following operations:
Insert(x): insert the key x into the data structure only if it is not already there.
Delete(x): delete the key x from the data structure (if it is there).

Find_Next(x): find the smallest key in the data structure that is greater than x.

All these operations should take O (log n) time in the worst case, where » is the number of
elements in the data structure.

Design an implementation of an abstract data type that supports the following operations:
Insert(x): insert the key x into the data structure only if it is not already there.
Delete(x): delete the key x from the data structure (if it is there).
Find_Smallest(k): find the kth smallest key in the data structure.

All these operations should take O (logn) time in the worst case, where » is the number of
elements in the data structure.

Design an implementation of an abstract data type that supports the following operations:
Insert(x): insert the key x into the data structure only if it is not already there.
Delete(x): delete the key x from the data structure (if it is there).

Find Next(x, k): find the kth “‘right’’neighbor smallest key among the keys
in the data structure that are larger than x.

All these operations should take O (log n) time in the worst case, where » is the number of
elements in the data structure.

*
4.18 The AVL algorithms that were presented in Section 4.3.4 require balanced factors with three

4.19

421

4.22

possible values, 1, 0, or —1. To represent three values we need 2 bits. Suggest a method for
implementing these algorithms (with only a slight modification) with only 1 extra bit per
node.

A concatenate operation take two sets, such that all the keys in one set are smaller than all
the keys in the other set, and merges them together. Design an algorithm to concatenate two
binary search trees into one binary search tree. The worst-case running time should be
O (h), where h is the maximal height of the two trees.

Design an algorithm to concatenate (as defined in Exercise 4.19) two AVL trees into one
valid AVL tree. The worst-case running time should be O (h), where h is the maximal
height of the two trees.

Consider an AVL tree formed by a fairly random sequence of insertions and deletions.
Assume that each possible balance factor appears with the same probability (namely, a
probability of 1/3 for each possibility). Prove that the average length of the path from the
critical node to the place of insertion is a constant independent of the size of the tree.

Determine the general structure of the AVL tree formed by inserting the numbers 1 to 7 in
order. What is the height of this tree?

Find the ‘‘worst AVL tree.”” That is, construct an AVL tree of height 4 with the minimal
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number of nodes. Use this worst AVL tree to prove Theorem 4.1 (Section 4.3.4) regarding
the maximal height of an AVL tree with n nodes. (Hint: Try a recursive construction.)

Let T and T, be two arbitrary trees, each having n nodes. Prove that it is sufficient to apply
at most 2n rotations to T so that it becomes equal to T,.

A join of two undirected graphs G =(V, E) and H =(U, F) is a new graph J =(W, D) such
that W =V U (namely, the vertices of the new graph include the vertices of both graphs),
and D=E\F |V xU (namely, the edges include all the previous edges plus an edge
from each vertex in V to each vertex in U). Suggest a good representation for graphs that
allows join operations to be performed efficiently.

Let S = {sy, s, ..., S, } be a very large set, and assume that § is partitioned into k blocks.
Assume that you have a procedure called which_block such that given an element s;,
which_block(s;) = number of the block that contains s;; which_block works in constant time
(e.g., S may correspond to all street addresses in the United States, and the blocks may
correspond to zip codes). You want to maintain a small subset of S, T, and to perform the
following operations on T:

Insert(s;).
Delete(s;).
Delete_block(j): delete all elements in T that belong to block ;.

Initially, T is empty. Each operation should take O (log n) time in the worst case, where # is
the number of elements currently in T. Delete_block only removes (disconnects) the
elements from the data structure; it need not physically remove each and every one of them.
Both m and & are too large, so you cannot afford to use a table of size m or k. However, n is
relatively small, and you can use O (n) space.

Let A[1..n] be an array of real numbers. Design algorithms to perform any sequence of the
following two operations:

Add(i, y): add the value y to the ith number.
Partial_sum(i): return the sum of the first i numbers, Y A [i].
1

Notice that the number of elements remains fixed (there are no insertions or deletions); the

only changes are to the values. Each operation should take O (logn) steps. You can use
one more array of size n as a work space.

Extend the data structure for the problem in Exercise 4.27 to support insertions and
deletions. Each element now has a key and a value. An element is accessed by its key. The
addition operation applies to the values (but the elements are accessed by their keys). The
Partial_sum operation is different.

Partial_sum(y): return the sum of all the elements currently in the set whose
value is less than y, Y x;.
i<y
The worst-case running time should still be O(nlogn) for any sequence of O (n)
operations.
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429 Design a data structure to maintain a set of elements, each with a key and a value. The
T following operations should be supported:
Find_value(x): find the value associated with the element x (nil if x is not in the

set).

Insert(x, y).

Delete(x).

Add(x, y): add the value y to the current value of the element with key x.

Add_all(y): add the value y to the values of all the elements in the set.
The worst-case running time should be O (log ) for each of these operations.

430 (True story.) A programmer named Guy once encountered an error message from a new
compiler he was using indicating that the compiler had run out of memory space while
compiling a program. The programmer was baffled, since the program did not use much
space. He was able to pinpoint the problem to a certain case statement, which is given
below. Without this case statement, the program compiled flawlessly. With it, the compiler
ran out of space. Determine what data structure the compiler was using that was causing
the problem. (The case statement is correct and valid; the problem lies with the compiler,
which was unable to compile the case statement.)

case / of

1: Statement(1) ;
2: Statement(2) ;
4: Statement(3) ;

256: Statement(4) ;
65535: Statement(5) ;



CHAPTER 5

DESIGN OF ALGORITHMS
BY INDUCTION

Nothing is more important than to see the sources of
invention, which are, in my opinion, more interesting
than the inventions themselves.

G. W. Leibniz (1646-1716)

Invention breeds invention.
R. W. Emerson (1803-1882)

5.1 Introduction

In this chapter, we introduce our approach to algorithm design using the analogy to
mathematical induction. We include relatively simple examples, and present the basic
principles and techniques on which the method is based. The analogous induction
techniques have been described in Chapter 2. When appropriate, we repeat the
discussion here to make this chapter self contained.

Mathematical induction is based on a domino principle. Imagine that we have a
line of upended dominoes, and that we wish to knock down all of them by knocking
down only the first. To make sure that all dominoes will fall down, we need only to
verify that we have pushed the first one and that each domino will topple the next one as
it falls. We need not collapse the whole arrangement every time we add a new domino to
verify that the new arrangement will work. The same principle can be applied to
algorithm design.
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It is not necessary to design the steps required to solve the problem
from scratch; it is sufficient to guarantee that (1) it is possible to solve a
small instance of the problem (the base case), and (2) a solution to every
problem can be constructed from solutions of smaller problems (the

inductive step).

With this principle in mind, we should concentrate on reducing the problem to a smaller
problem (or to a set of smaller problems). The trouble is that it is usually not easy to find
a way to reduce the problem. In this chapter, we present several techniques to facilitate
this process. The examples in this chapter were chosen not because of their importance
(some of them have limited applicability), but because they are simple and yet they
illustrate the principles we want to emphasize. We will present numerous other examples
of this approach throughout the book.

5.2 Evaluating Polynomials

We start with a simple algebraic problem — evaluating a given polynomial at a given
point.

The Problem Given a sequence of real numbers a,, a,_,, ...,a,,ay,
and a real number x, compute the value of the polynomial P,(x) = a,x"
+a,_ x" '+ - vax+a,.

This problem may not seem to be a natural candidate for an inductive approach.
Nevertheless, we will show that induction can lead directly to a very good solution to the
problem. We start with the most simple (almost trivial) approach, then find variations of
it that lead to better solutions.

The problem involves n+2 numbers. The inductive approach is to solve this
problem in terms of a solution to a smaller problem. In other words, we try to reduce the
problem to one with smaller size, which we then solve recursively, or, as we call it, by
induction. The first natural attempt is to reduce the problem by removing a,. We are left
with the problem of evaluating the polynomial

Pioi)=a, 1 x" " +a,,x" 2+ -+ +a,x+aq.

This is the same problem, except that it has one less parameter. Therefore, we can solve
it by induction.

Induction hypothesis: We know how to evaluate a polynomial represented
by the input a,_,, ..., a,, Ay, at the point x (i.e., we know how to compute
Pn—] (x))'

We can now use the hypothesis to solve the problem by induction. First, we have to
solve the base case, which is computing a; this is trivial. Then, we must show how to



5.2 Evaluating Polynomials 93

solve the original problem (computing P, (x)) with the aid of the solution to the smaller
problem (which is the value of P,_;(x)). This step is straightforward in this case; simply
compute x", multiply it by a,, and add the result to P,,_; (x):

P,(x)=P,_1(x)+a,x".

At this point it may seem that the use of induction in this problem is frivolous — it
just complicates a very simple solution. The algorithm implied by the preceding
discussion is merely evaluating the polynomial from right to left as it is written. In a
moment, however, we will see the power of our approach.

Although the algorithm is correct, it is not efficient. It requires
n+n—1+n-2+ -+ +1=n(n+1)/2 multiplications and »n additions. We now use
induction a little differently to obtain a better solution.

We make the first improvement by observing that there is a great deal of redundant
computation: The powers of x are computed from scratch. We can save many
multiplications by using the value of x"~' when we compute x". We make this change
by including the computation of x* in the induction hypothesis.

Stronger induction hypothesis: We know how to compute the value of the
polynomial P, _,(x), and we know how to compute x"~".

This induction hypothesis is stronger, since it requires computing x"~', but it is easier to
extend (since it is now easier to compute x"). We need to perform only one
multiplication to compute x”, then one more multiplication to get a,, x", then one addition
to complete the computation. (The induction hypothesis is not too strong, since we need
to compute x"~' anyway.) Overall, there are 2n multiplications and n additions. It is
interesting to note that, even though the induction hypothesis requires more computation,
it leads to less work overall. We will return to this point later. This algorithm looks good
by all measures. It is efficient, simple, and easy to implement. However, a better
algorithm exists. We discover it by using induction in yet another different way.

Reducing the problem by removing the last coefficient, a,, is the straightforward
step, but it is not the only possible reduction. We can also remove the first coefficient,
dy. The smaller problem becomes the evaluation of the polynomial represented by the
coefficients a,,, a,_,, ..., a|, which is

2

P’n—l(x) =anx"_l +an—lx"_ +oo +al.

(Notice that a, is now the (n — 1)th coefficient, a,_; is the (n—2)th coefficient, and so
on.) So we have a new induction hypothesis.

Induction hypothesis (reversed order): We know how to evaluate the
polynomial represented by the coefficients a,,a,_,,....a, at the point x (i.e.,
we know how to compute P’,,_;(x)).

This hypothesis is more suited to our purposes, because it is easier to extend. Clearly,
P,(x)=xP’,_,(x)+a,. Therefore, only one multiplication and one addition are
required to compute P,(x) from P’,_;(x). The complete algorithm can be described by
the following expression:
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ax"+a,x" M+ taxt+ag = (( (@x A, )X +a,) )X +a)x +ag,
n

This algorithm is known as Horner’s rule after the English mathematician W.G. Horner.
(It was also mentioned by Newton, see [Knuth 1981], page 467.) The program to
evaluate the polynomial is given in Fig. 5.1.

Algorithm Polynomial_Evaluation (a, x) ;

Input: a=ag,a,, a,, ..., a, (coefficients of a polynomial), and x (a real
number).

Output: P (the value of the polynomial at x).

begin
P :=a,;
Jori:=1tondo
P:=x*P+a,_;
end

Figure 5.1 Algorithm Polynomial_Evaluation.

Complexity The algorithm requires only n multiplications, » additions, and one extra
memory location. Even though the previous solutions seemed very simple and very
efficient, we have found it worthwhile to pursue a better algorithm. Not only is this
algorithm faster than those described previously, but also its corresponding program is
simpler.

Comments Induction allows us to concentrate on extending solutions of smaller
subproblems to those of larger problems. Suppose that we want to solve P (n), which is a
problem P that depends on a parameter n (usually its size). We start with an arbitrary
instance of P (n), and try to solve it by using the assumption that P (n — 1) has already
been solved. There are many possible ways to define the induction hypothesis and many
possible ways to use it. We will survey several of these methods, and will show their
power in designing algorithms.

This simple example illustrates the flexibility we have when we use induction. The
trick that led to Horner’s rule was merely considering the input from left to right, instead
of the intuitive right to left. Another common possibility is comparing top down versus
bottom up (when a tree structure is involved). It is also possible to go in increments of 2
(or more) rather than 1, and there are numerous other possibilities. Moreover, sometimes
the best induction sequence is not the same for all inputs. It may be worthwhile to design
an algorithm just to find the best way to perform the reduction. We will see examples of
all these possibilities.
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5.3 Maximal Induced Subgraph

Consider the following problem. You are arranging a conference of scientists from
different disciplines and you have a list of people you want to invite. You assume that
everyone on the list will agree to come under the condition that there will be ample
opportunity to exchange ideas. For each scientist, you write down the names of all other
scientists on the list with whom interaction is likely. You would like to invite as many
people on the list as possible, but you want to guarantee that each one will have at least k
other people with whom to interact (k is a fixed number, independent of the number of
invitees). You do not have to arrange the interactions; in particular, you do not have to
make sure that there is enough time for them to occur. You just want to lure everyone to
the conference. How do you decide whom to invite? This problem corresponds to the
following graph-theoretic problem. Let G =(V, E) be an undirected graph. An induced
subgraph of G is a graph H=(U, F) such that UC V and F includes all edges in E both of
whose incident vertices are in U. A degree of a vertex is the number of vertices adjacent
to that vertex. The vertices of the graph correspond to the scientists, and two vertices are
connected if there is a potential for the two corresponding scientists to exchange ideas.
An induced subgraph corresponds to a subset of the scientists.

The Problem Given an undirected graph G =(V, E) and an integer
k, find an induced subgraph H=(U, F) of G of maximum size such that
all vertices of H have degree 2 k (in H), or conclude that no such in-
duced subgraph exists.

A direct approach to solving this problem is to remove vertices whose degree is <k. As
vertices are removed with their adjacent edges, the degrees of other vertices may be
reduced. When the degree of a vertex becomes less than k, that vertex should be
removed. The order of removals, however, is not clear. Should we remove all the
vertices of degree <k first, then deal with vertices whose degrees were reduced? Should
we remove first one vertex of degree <k, then continue with affected vertices? (These
two approaches correspond to breadth-first search versus depth-first search, which are
discussed in detail in Section 7.3.) Will both approaches lead to the same result? Will
the resulting graph be of maximum size? All these questions are easy to answer; the
approach we will describe makes answering them even easier.

Instead of thinking about our algorithm as a sequence of steps that a computer has
to take to calculate a result, think of proving a theorem that the algorithm exists. We do
not suggest attempting a formal proof (at least not at this first stage). The idea is to
imitate the steps we take in proving a theorem, in order to gain insight into the problem.
We need to find the maximum induced subgraph that satisfies the given conditions. Here
is a **proof”’ by induction.
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Induction hypothesis: We know how to find maximum induced subgraphs
all of whose vertices have degrees 2 k, provided that the number of vertices
is<n.

We need to prove that this ‘‘theorem’’ is true for a base case, and that its truth for n—1
implies its truth for n. The first nontrivial base case occurs when n =k + 1, because if
n <k, then all the degrees are less than k. If n=k +1, then the only way to have all the
degrees equal to k is to have a complete graph (namely, all vertices are connected),
which we can detect. So, assume now that G =(V, E) is a graph with n > k +1 vertices.
If all the vertices have degrees >k, then the whole graph satisfies the conditions and we
are done. Otherwise, there exists a vertex v with degree <. It is obvious that the degree
of v remains < k in any induced subgraph of G; hence, v does not belong to any subgraph
that satisfies the conditions of the problem. Therefore, we can remove v and its adjacent
edges without affecting the conditions of the theorem. After v is removed, the graph has
n—1 vertices — and, by the induction hypothesis, we know how to solve the problem.

We are now done. The algorithm and the answers to the questions we raised
earlier are now clear. Any vertex of degree < k can be removed. The order of removals
is immaterial. The graph remaining after all these removals must be of maximum size
because these removals are mandatory. It is also clear that the algorithm is correct,
because we designed it by proving its correctness!

Comments The best way to reduce a problem is to eliminate some of its elements.
In this example, the application of induction was straightforward, mainly because it was
clear which vertices we should eliminate and how we should eliminate them. The
reduction follows immediately. In general, however, the elimination process may not be
straightforward. We will see examples of combining two elements into one, causing the
number of elements to be reduced (Section 6.6); of eliminating restrictions on the
problem rather than eliminating parts of the input (Section 7.7); and of designing a
special algorithm to find which elements can be eliminated (Section 5.5). Another
example of eliminating the right elements is presented next. It is interesting to note that,
if we replace ‘‘>’" with ‘‘<’’ in the statement of the problem (that is, if we look for a
maximal induced subgraph all of whose degrees are ar most k), the problem becomes
much more difficult (see Exercise 11.12).

5.4 Finding One-to-One Mappings

Let f be a function that maps a finite set A into itself (i.., every element of A is mapped
to another element of A). For simplicity, we denote the elements of A by the integers 1 to
n. We assume that the function f is represented by an array f [1..n] such that f [i] holds
the value of f (/) (which is an integer between 1 and n). We call f a one-to-one function
if, for every element j, there is at most one element i that is mapped to j. The function f
can be represented by a diagram, as shown in Fig. 5.2, where both sides correspond to the
same set and the edges indicate the mapping. The function in Fig. 5.2 is clearly not a
one-to-one function.



5.4 Finding One-to-One Mappings 97

i i
2 o2
3 3
4 4
5 5
6

Figure 5.2 A mapping from a set into itself (both sides represent the same set).

The Problem Given a finite set A and a mapping f from A to itself,
find a subset SC A with the maximum number of elements, such that (1)
the function f maps every element of S to another element of S (i.e., f
maps S into itself), and (2) no two elements of S are mapped to the same
element (i.e., f is one-to-one when restricted to S).

If fis originally one-to-one, then the whole set A satisfies the conditions of the problem,
and A is definitely maximal. If, on the other hand, f (i)=f (j) for some i#j, then S
cannot contain both i and j. For example, the set S that solves the problem given in Fig.
5.2 cannot contain both 2 and 3 since f (2)=f (3)=1. The choice of which one of them
to eliminate cannot be arbitrary. Suppose, for example, that we decide to eliminate 3.
Since 1 is mapped to 3, we must eliminate 1 as well (the mapping must be into S and 3 is
no longer in S). But if 1 is eliminated, then 2 must be eliminated as well (for the same
reason). But, this subset is not maximal, since it is easy to see that we could have
eliminated 2 alone. (The solution for Fig. 5.2 is the subset {1,3,5}.) The problem is to
find a general method to decide which elements to include.

Fortunately, we have some flexibility in deciding how to reduce the problem to a
smaller one. We can reduce the size of the problem by finding either an element that
belongs to S or an element that does not belong to S. We will do the latter. We use the
straightforward induction hypothesis.

Induction hypothesis: We know how to solve the problem for sets of n —1
elements.

The base case is trivial: If there is only one element in the set, then it must be mapped to
itself, which is a one-to-one mapping. Assume now that we have a set A of n elements
and we are looking for a subset S that satisfies the conditions of the problem. We claim
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that any element i that has no other element mapped to it cannot belong to S. (In other
words, an element 7 in the right side of the diagram, which is not connected to any edge,
cannot be in S.) Otherwise, if i € S and S has, say, k elements, then those k elements are
mapped into at most k —1 elements; therefore, the mapping cannot be one-to-one. If there
is such an i, then we simply remove it from the set. We now have a set A"=A-{i} with
n —1 elements, which f maps into itself; by the induction hypothesis, we know how to
solve the problem for A”. If no such i exists, then the mapping is one-to-one, and we are
done.

The essence of this solution is that we must remove i. We proved that i cannot
belong to S. This is the strength of induction: Once we remove an element and reduce
the size of the problem, we are done. We have to be careful, however, that the reduced
problem is exactly the same (except for size) as the original problem. The only condition
on the set A and the function f was that f maps A into itself. This condition is still
maintained for the set A-{i}, since there was nothing that was mapped to i. The
algorithm terminates when no more elements can be removed.

Implementation We described the algorithm as a recursive procedure. In each
step, we found an element such that no other element is mapped to it, removed it, and
continued recursively. The implementation, however, need not be recursive. We can
maintain a counter ¢ [i ] with each element i. Initially, ¢ [i ] should be equal to the number
of elements that are mapped to i. We can compute ¢ [i ], for all , in n steps by scanning
the array and incrementing the appropriate counters. We then put all the elements that
have a zero counter in a queue. In each step, we remove an element j from the queue
(and the set), decrement ¢ [f (j)], and, if ¢ [f(j)]=0, we put f(j) in the queue. The
algorithm terminates when the queue is empty. The algorithm is given in Fig. 5.3.

Complexity The initialization part requires O (n) operations. Every element can be
put on the queue at most once, and the steps involved in removing an element from the
queue take constant time. The total number of steps is thus O (n).

Comments In this example, we reduced the size of the problem by eliminating
elements from a set. Therefore, we tried to find the easiest way to remove an element
without changing the conditions of the problem. Because the only requirement we made
was that the function maps A into itself, the choice of an element to which no other
element is mapped is natural.

5.5 The Celebrity Problem

The next example is a popular exercise in algorithm design. It is a nice example of a
problem that has a solution that does not require scanning all the data (or even a
significant part of them). Among n persons, a celebrity is defined as someone who is
known by everyone but does not know anyone. The problem is to identify the celebrity,
if one exists, by asking questions only of the form, ‘*Excuse me, do you know the person
over there?’’ (The assumption is that all the answers are correct, and that even the
celebrity will answer.) The goal is t0 minimize the number of questions. Since there are
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Algorithm Mapping (f, n) ;
Input: f(an array of integers whose values are between 1 and n).
Output: S (a subset of the integers from 1 to n, such that fis one-to-one on S).

begin
S :=A; { A is the set of numbers from 1 to n }
forj:=1tondo c[j]:=0;
for j:=1tondo increment c[f [j]];
forj:=1tondo
if c[j] =0 then put j in Queue;
while Queue is not empty do
remove i from the top of the queue;
S:=5-{i};
decrement ¢ [f [i]];
ifc[f[i]]1=0 then put f [i] in Queue
end

Figure 5.3 Algorithm Mapping.

n(n-1)/2 pairs of persons, there is potentially a need to ask n(n—1) questions, in the
worst case, if the questions are asked arbitrarily. It is not clear that we can do better in
the worst case.

We can use a graph-theoretical formulation. We can build a directed graph with
the vertices corresponding to the persons and an edge from person A to person B if A
knows B. A celebrity corresponds to a sink of the graph (no pun intended). A sink is a
vertex with indegree n—1 and outdegree 0. Notice that a graph can have at most one
sink. The input to the problem corresponds to an n X n adjacency matrix (whose ij entry
is 1 if the ith person knows the jth person, and 0 otherwise).

The Problem Given an n xn adjacency matrix, determine whether
there exists an i such that all the entries in the ith column (except for the
iith entry) are 1, and all the entries in the ith row (except for the iith en-
try) are 0.

The base case of two persons is simple. Consider as usual the difference between the
problem with n—1 persons and that with n persons. We assume that we can find the
celebrity among the first n — 1 persons by induction. Since there is at most one celebrity,
there are three possibilities: (1) the celebrity is among the first n— 1, (2) the celebrity is
the nth person, and (3) there is no celebrity. The first case is the easiest to handle. We
need only to check that the nth person knows the celebrity, and that the celebrity does not
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know the nth person. The other two cases are more difficult because, to determine
whether the nth person is the celebrity, we may need to ask 2(n — 1) questions. If we ask
2(n — 1) questions in the nth step, then the total number of questions will be n(n—1)
(which is what we tried to avoid). We need another approach.

The trick here is to consider the problem *‘backward.’’ It may be hard to identify a
celebrity, but it is probably easier to identify someone as a noncelebrity. After all, there
are definitely more noncelebrities than celebrities. If we eliminate someone from
consideration, then we reduce the size of the problem from n to n — 1. Moreover, we do
not need to eliminate someone specific; anyone will do. Suppose that we ask Alice
whether she knows Bob. If she does, then she cannot be a celebrity; if she does not, then
Bob cannot be a celebrity. We can eliminate one of them with one question.

We now consider again the three cases with which we started. We do not just take
an arbitrary person as the nth person. We use the idea in the last paragraph to eliminate
either Alice or Bob, then solve the problem for the other n—1 persons. We are
guaranteed that case 2 will not occur, since the person eliminated cannot be the celebrity.
Furthermore, if case 3 occurs — namely, there is no celebrity among the n — 1 persons —
then there is no celebrity among the n persons. Only case 1 remains, but this case is easy.
If there is a celebrity among the n — 1 persons, it takes two more questions to verify that
this is a celebrity for the whole set. Otherwise, there is no celebrity.

The algorithm proceeds as follows. We ask A whether she knows B, and eliminate
either A or B according to the answer. Let’s assume that we eliminate A. We then find
(by induction) a celebrity among the remaining n — 1 persons. If there is no celebrity, the
algorithm terminates; otherwise, we check that A knows the celebrity and that the
celebrity does not know A.

Implementation As was the case with the algorithm in the previous section, it is
more efficient to implement the celebrity algorithm iteratively, rather than recursively.
The algorithm is divided into two phases. In the first phase, we eliminate all but one
candidate, and in the second phase we check whether this candidate is indeed the
celebrity. We start with n candidates, and, for the purpose of this discussion, let’s
assume that they are stored in a stack. For each pair of candidates, we can eliminate one
candidate by asking one question — whether one of them knows the other. We start by
taking the first two candidates from the stack, and eliminating one of them. Then, in each
step, we have one remaining candidate, and, as long as the stack is nonempty, we take
one additional candidate from the stack, and eliminate one of these two candidates.
When the stack becomes empty, one candidate remains. We then check that this
candidate is indeed the celebrity. The algorithm is presented in Fig. 5.4 (notice that the
stack is implemented explicitly by the use of the indices i, j, and next).

Complexity At most 3(n - 1) questions will be asked: n—1 questions in the first
phase to eliminate n— 1 persons, and then at most 2(n — 1) questions to verify that the
candidate is indeed a celebrity. Notice that the size of the input is not n, but rather
n(n—1) (the number of entries of the matrix). This solution shows that it is possible to
identify a celebrity by looking at only O (n) entries in the adjacency matrix, even though
a priori the solution may be sensitive to each of the n (n — 1) entries.
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Algorithm Celebrity (Know) ;
Input: Know (an nx n Boolean matrix ).
Output: celebrity.

begin
i:=1;
j = 2 ,.
next := 3 ;

{ in the first phase we eliminate all but one candidate }
while next <n+1do
if Knowl[i, j] then i := next
else j := next ;
next := next + 1 ;
{ one of either i or j is eliminated }
ifi=n+1then
candidate := j
else
candidate :=i ;
{ Now we check that the candidate is indeed the celebrity }
wrong := false ;
k:=1;
Know[candidate, candidate] := false ;
{ a dummy variable to pass the test }
while not wrong and k <n do
if Know[candidate, k] then wrong := true ;
if not Know[k, candidate] then
if candidate + k then wrong := true ;
k:=k+1;
if not wrong then celebrity := candidate
else celebrity := 0 { no celebrity }
end

Figure 5.4 Algorithm Celebrity.

Comments The key idea in this elegant solution is to reduce the size of the problem
from n to n—1 in a clever way. This example shows that it sometimes pays to expend
some effort (in this case — one question) to perform the reduction more effectively. Do
not start by simply considering an arbitrary input of size n — 1 and attempting to extend
it. Select a particular input of size n—1. We will see more examples where we spend
substantial time just constructing the right order of induction — and that time is well
Spent.
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5.6 A Divide-and-Conquer Algorithm: The Skyline
Problem

So far, we have seen examples from graph theory and numerical computation. This
example deals with a problem of drawing shapes.

The Problem Given the exact locations and shapes of several rec-
tangular buildings in a city, draw the skyline (in two dimensions) of
these buildings, eliminating hidden lines.

An example of an input is given in Fig. 5.5(a); the corresponding output is given in Fig.
5.5(b). We are interested in only two-dimensional pictures. We assume that the bottoms
of all the buildings lie on a fixed line (i.e., they share a common horizon). Building B; is
represented by a triple (L;, H;, R;). L; and R; denote the left and right x coordinates of the
building, respectively, and H; denotes the building’s height. A skyline is a list of x
coordinates and the heights connecting them arranged in order from left to right. For
example, the buildings in Fig. 5.5(a) correspond to the following input:

(1,11,5), (2,6,7), (3,13,9), (12,7,16), (14,3,25), (19,18,22), (23,13,29), and
(24,4,28).

(The numbers in boldface type are the heights.) The skyline in Fig. 5.5(b) is represented
as follows:

(1,11,3,13,9,0,12,7,16,3,19,18,22,3,23,13,29,0).

(Again, the numbers in boldface type are heights.)

The straightforward algorithm for this problem is based on adding one building at a
time to the skyline. The induction hypothesis is the simple one. We assume that we
know how to solve the problem for n —1 buildings, and then we add the nth building.

-

V) 10 15 20 25 30 1 5 10 1s 20 25 30

(a) (b)
Figure 5.5 The skyline problem: (a) The input. (b) The skyline.
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The problem is trivial for one building. To add a building B, to the skyline, we need to
intersect it with the existing skyline (see Fig. 5.6). Let B, be (5,9,26). We first scan the
skyline from left to right to find where the left side of B, fits (i.e., we search for the
appropriate x coordinate — 5 in this example). In this case, the horizontal line that
‘‘covers’” 5 is the one from 3 to 9, and its height is 13. We can now scan the skyline,
looking at one horizontal line after another, and adjusting whenever the height of B, is
higher than the existing height. We stop when we reach an x coordinate that is greater
than the right side of B,.. For this example, we do not adjust the height from 3 to 9, but
we do adjust it all the way from 9 to 19, then adjust it once more from 22 to 23. The new
skyline is represented by

(1,11,3,13,9,9,19,18,22,9,23,13,29,0).

This algorithm is clearly correct, but it is not necessarily efficient. In the worst case, the
scan for B, requires O(n) steps. Hence, the total number of steps will be
O(m)+0(n-1+ - +0(1)=0(n?).

To improve the performance of this algorithm, we use a well-known technique
called divide and conquer. Instead of using the simple induction principle of extending
the solution for n —1 to a solution for n, we extend a solution for n/2 to a solution for n.
(Again, the base case of one building is trivial.) Divide-and-conquer algorithms divide
the inputs into smaller subsets, solve (conquer) each subset recursively, and merge the
solutions together. Generally, it is more efficient to divide the problem into subproblems
of about equal size. As we saw in Chapter 3, the solution of the recurrence relation
T(n)=T(n-1)+0(n) is T(n)=0(n?), whereas that of T(n)=2T(n/2)+0(n) is
T(n)=0 (nlogn). Therefore, if we divide the problem into two equal-sized
subproblems, then combine the solutions in linear time, the algorithm runs in time
O (nlogn). The divide-and-conquer technique is very useful, and we will see many
examples of it.

1 5 10 15 20 25 30

Figure 5.6 Addition of a building (dotted line) to the skyline of Figure 5.5(b) (solid lines).



104 Design of Algorithms by Induction

The key idea behind the divide-and-conquer algorithm in this example is the
observation that, in the worst case, it takes linear time to merge one building with the
skyline, and also linear time to merge two different skylines. In about the same time, we
achieve more using the latter approach. Two skylines can be merged with basically the
same algorithm that merges one building into a skyline (Fig. 5.7). We scan the two
skylines together from left to right, match x coordinates, and adjust heights when
necessary. The merge can be achieved in linear time, and therefore the complete
algorithm runs in time O(nlogn) in the worst case. This algorithm is similar to
mergesort, which is discussed in detail in Section 6.4.3. Therefore, we do not give the
precise algorithm for the skyline algorithm here.

Comments Always try to get more for your money. There is nothing mysterious or
technical about this principle. If the algorithm includes a step that is more general than
required, consider applying this step to a more complicated part of the problem. The
reason the divide-and-conquer approach is so useful is that it uses the combine step to its
fullest. The recurrence relations given in Section 3.5.2 cover the most common divide-
and-conquer algorithms. You should memorize these recurrence relations.

5.7 Computing Balance Factors in Binary Trees

Let T be a binary tree with root r. The height of a node v is the distance between v and
the farthest leaf down the tree. The balance factor of a node v is defined as the
difference between the height of the node’s left subtree and the height of the node’s right
subtree (we assume that the children of a node are labeled by left or right). In Chapter 4,
we discussed AVL trees, in which all nodes have balance factors of —1, 0, or 1. In this
section, we consider arbitrary binary trees. Figure 5.8 shows a tree in which each node is
labeled with numbers representing h/b, where h is the node’s height and b is its balance
factor.

i 5 10 15 20 25 30

Figure 5.7 Merging two skylines.
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3/0
2/0 2/-2

1/1 1/-1 1/1

Figure 5.8 A binary tree. The numbers represent h/b, where 4 is the height and b is the
balance factor.

The Problem Given a binary tree T with n nodes, compute the bal-
ance factors of all the nodes.

We use the regular inductive approach with the straightforward induction hypothesis.

Induction hypothesis: We know how to compute balance factors of all
nodes in trees that have < n nodes.

The base case of n =1 is trivial. Given a tree with n > 1 nodes, we remove the root, then
solve the problem (by induction) for the two subtrees that remain. We chose to remove
the root because the balance factor of a node depends on only the nodes below that node.
We now know the balance factors of all the nodes, except for the root. The root’s
balance factor, however, depends not on the balance factors of the root’s children, but
rather on their height. Hence, simple induction does not work in this case. We need to
know the heights of the children of the root. The idea is to include the height-finding
problem within the original problem:

Stronger induction hypothesis: We know how to compute balance factors
and heights of all nodes in trees that have < n nodes.

Again, the base case is trivial. Now, when we consider the root, we can determine its
balance factor easily by calculating the difference between the heights of its children.
Furthermore, we can also determine the height of the root — it is the maximal height of
the two children plus 1.

The key to the algorithm is that it solves a slightly extended problem. Instead of
computing only balance factors, we also compute heights. The extended problem turns
out to be an easier one to solve, because the heights are easy to compute. In many cases,
solving a stronger problem is easier. With induction, we need only to extend a solution
of a small problem to a solution of a larger problem. If the solution is broader (because
the problem is extended), then the induction step may be easier, since we have more with
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which to work. It is a common error to forget that there are two different parameters in
this problem, and that each one should be computed separately. We will present several
examples of such errors later in the book.

5.8 Finding the Maximum Consecutive Subsequence

The following problem is from Bentley [1986] (it also appeared in Bates and Constable
[1985)).

The Problem Given a sequence x|, x5, ..., x, of real numbers (not
necessarily positive) find a subsequence x;, X;,, ..., x; (of consecutive
elements) such that the sum of the numbers in it is maximum over all
subsequences of consecutive elements.

We call such a subsequence a maximum subsequence. For example, in the sequence (2,
-3, 1.5, -1, 3, -2, -3, 3), the maximum subsequence is (1.5, —1, 3); its sum is 3.5. There
may be several maximum subsequences in a given sequence. If all the numbers are
negative, then the maximum subsequence is empty (by definition, the sum of the empty
subsequence is 0). We would like to have an algorithm that solves the problem and reads
the sequence in order only once.

The straightforward induction hypothesis is as follows:

Induction hypothesis: We know how to find the maximum subsequence in
sequences of size <n.

If n=1, then the maximum subsequence consists of the single number if that number is
nonnegative, or the empty subsequence otherwise. Consider a sequence
§=(xy,x3,...,x,) of size n>1. By induction, we know how to find a maximum
subsequence in §"=(x, x, ..., X,_;). If that maximum subsequence is empty, then all the
numbers in §” are negative, and we need to consider only x,. Assume that the maximum
subsequence found by induction in §” is §"y = (x;, X;41, ..., X;), for certain i and j such that
1<i<j<n-1. If j=n-1 (namely, the maximum subsequence is a suffix), then it is easy
to extend the solution to S: If x, is positive, then it extends S’y,; otherwise, $’y, remains
maximum. However, if j<n—1, then there are two possibilities. Either '), remains
maximum, or there is another subsequence, which is not maximum in §’, but is maximum
in § when x,, is added to it.

The key idea here is to strengthen the induction hypothesis. We first illustrate
the technique by using it to solve the maximum-subsequence problem, then discuss it in
more generality in the next section. The problem we had with the straightforward
induction hypothesis was that x, may extend a subsequence that is not maximum in §’,
and thus may create a new maximum subsequence. Knowing only the maximum
subsequence in §” is thus not sufficient. However, x, can extend only a subsequence that
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ends at n—1 — that is, a suffix of §". Suppose that we strengthen the induction
hypothesis to include the knowledge of the maximum suffix, denoted by
S,E = (,rk,,rk+|,...,.r,,_l )

Stronger induction hypothesis: We know how to find, in sequences of size
< n, a maximum subsequence overall, and the maximum subsequence that is

a suffix.

If we know both subsequences, the algorithm becomes clear. We add x,, to the maximum
suffix. If the sum is more than the global maximum subsequence, then we have a new
maximum subsequence (as well as a new suffix). Otherwise, we retain the previous
maximum subsequence. We are not done yet. We also need to find the new maximum
suffix. It is not true that we always simply add x, to the previous maximum suffix. It
could be that the maximum suffix ending at x, is negative. In that case, it is better to take
the empty set as the maximum suffix (such that later x,,, will be considered by itself).
The algorithm for finding the sum of the maximum subsequence is given in Fig. 5.9.

Algorithm Maximum_Consecutive_Subsequence (X, n) ;
Input: X (an array of size n).
Output: Global_Max (the sum of the maximum subsequence).

begin
Global Max :=0;
Suffix_Max :=0;
Jori:=1tondo
if x[i] + Suffix_Max > Global_Max then
Suffix_Max := Suffix Max + x[i];
Global_Max := Suffix_Max
else if x[i] + Suffix_Max > O then
Suffix_Max := x[i] + Suffix_Max
else Suffix_Max :=0
end

Figure 5.9 Algorithm Maximum_Consecutive_Subsequence.

3.9 Strengthening the Induction Hypothesis

Strengthening the induction hypothesis is one of the most important techniques for
proving mathematical theorems with induction. When attempting an inductive proof, we
often encounter the following scenario. Denote the theorem by P. The induction
hypothesis can be denoted by P (< n), and the proof must conclude that P (< n)=> P (n).
In many cases, we can add another assumption, call it Q, under which the proof becomes
easier. That is, it is easier to prove [P and Q)(<n) = P(n) than it is to prove
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P (< n)=>P(n). The assumption seems correct, but it is not clear how we can prove it.
The trick is to include Q in the induction hypothesis. We now have to prove that [P and
Q](<n) = [P and Q](n). P and Q is a stronger theorem than just P, but often stronger
theorems are easier to prove. This process can be repeated and, with the right added
assumptions, the proof becomes tractable. The maximum-subsequence problem is a
good example of how this principle is used to improve algorithms.

A nice analogy to this principle is a well-known phenomenon: It is easier to add $1
million to profits that are based on $100 million of sales, than it is to add $1 thousand to
profits that are based on $10 of sales.

The most common error people make while using this technique is to ignore the
fact that an additional assumption was added and to forget to adjust the proof. In other
words, they prove that [P and Q](<n) = P(n), without even noticing that Q was
assumed. This oversight corresponds to forgetting to compute the new maximum suffix
in the maximum-subsequence example. In the balance factors example, it corresponds to
forgetting to compute the heights separately — which, unfortunately, is a common error.
We cannot overemphasize this fact:

It is crucial to follow the induction hypothesis precisely.

We will present more complicated examples of strengthening the induction hypothesis in
Sections 6.11.3, 6.13.1, 7.5, 8.3, and 12.3.1 (among others).

5.10 Dynamic Programming: The Knapsack Problem

Suppose that we are given a knapsack and we want to pack it fully with items. There
may be many different items of different shapes and sizes, and our only goal is to pack
the knapsack as full as possible. The knapsack may correspond to a truck, a ship, or a
silicon chip, and the problem is to package items. There are many variations of this
problem; we consider only a simple one dealing with one-dimensional items. Other
variations of the knapsack problem are presented in the exercises, and in Chapter 11.

The Problem Given an integer K and n items of different sizes such
that the ith item has an integer size k;, find a subset of the items whose
sizes sum to exactly K, or determine that no such subset exists.

We denote the problem by P (n, K), such that n denotes the number of items and K
denotes the size of the knapsack. We will implicitly assume that the n items are those
that are given as the input to the problem, and we will not include their sizes in the
notation of the problem. Thus, P (i, k) denotes the problem with the first i items and a
knapsack of size k. For simplicity, we first concentrate on only the decision problem,
which is to determine whether a solution exists. We start with the straightforward
induction approach.
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Induction hypothesis (first attempt): We know how to solve P (n -1, K).

The base case is easy; there is a solution only if the single element is of size K. If there
is a solution to P (n—1, K) — that is, if there is a way to pack some of the n—1 items
into the knapsack — then we are done; we will simply not use the nth item. Suppose,
however, that there is no solution for P (n—1, K). Can we use this negative result? Yes
— it means that the nth item must be included. In this case, the rest of the items must fit
into a smaller knapsack of size K —k,. We have reduced the problem to two smaller
subproblems: P(n—1,K) and P(n—1,K—k,). To complete the solution, we have to
strengthen the hypothesis. We need to solve the problem not only for knapsacks of size
K, but also for knapsacks of all sizes at most K.

Induction hypothesis (second attempt): We know how to solve P(n—1, k)
forall0<k<K.

The previous reduction did not depend on a particular value of K; it will work for any k.
We can use this hypothesis to solve P (n, k) for all 0<k <K. The base case P (1, k) can
be easily solved: If k =0, then there is always a (trivial) solution. Otherwise, there is a
solution only if the first item is of size k. We now reduce P (n, k) to the two problems
P(n—1,k)and P(n—1,k—k,). If k—k, <0, then we ignore the second problem. Both
problems can be solved by induction. This is a valid reduction, and we now have an
algorithm; however, the algorithm may be inefficient. We reduced a problem of size n to
two subproblems of size n—1! (We also reduced the value of & in one subproblem.)
Each of these two subproblems may be reduced to two other subproblems, leading to an
exponential algorithm.

Fortunately, it is possible in many cases to improve the running time for these
kinds of problems. The main observation is that the total number of possible problems
may not be too high. In fact, we introduced the notation of P (i, k) especially to
demonstrate this observation. There are n possibilities for the first parameter and K
possibilities for the second one. Overall, there are only nK different possible problems!
The exponential running time resulted from doubling the number of problems after every
reduction, but if there are only nK different problems, then we must have generated the
same problem many many times. The solution is to remember all the solutions and never
solve the same problem twice. This approach is a combination of strengthening the
induction hypothesis and using strong induction (which is using the assumption that all
solutions to smaller cases, and not only that for n — 1, are known). Let’s see now how to
implement this approach.

We store all the known results in an n X K matrix. The (i, k)th entry in the matrix
contains the information about the solution of P (i, k). The reduction from the second-
attemnpt hypothesis basically computes the nth row of the matrix. Each entry in the nth
row is computed from two of the entries above it. If we are interested in finding the
actual subset, then we can add to each entry a flag that indicates whether the
corresponding item was selected in that step. This flag can then be traced back from the
(n, K)th entry, and the subset can be recovered. The algorithm is given in Fig. 5.10.
Figure 5.11 shows the complete matrix for a given input.
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Algorithm Knapsack (S, K) ;

Input: S (an array of size n storing the sizes of the items),
and K (the size of the knapsack).

Output: P (a two-dimensional array such that P [i, k ).exist = true if there
exists a solution to the knapsack problem with the first / elements and a
knapsack of size k, and P {i, k ].belong = true if the ith element belongs
to that solution).

{ See Exercise 5.15 for suggestions about improving this program. }

begin
P |0, O).exist := true ;
fork:=1toKdo
P[0, k ).exist := false ;
{ there is no need to initialize P [i, O] for i 2 1, because it will
be computed from P [0, 0] }
Jori:=1tondo
Jork :=0toKdo
P i, k).exist := false ; { the default value }
if P{i—1, k).exist then
P i, k].exist := true ;
P i, k).belong := false
elseif k—S[i] 20 then
ifPli—1,k—S[i]]).exist then
P i, k].exist := true ;
Pli, k).belong := true

end
Figure 5.10 Algorithm Knapsack.
ofjt1|[2(3[4|s]|el7 89101 ]12{13[14]15]16
k=20 -[1]- - - -1
k=3[0 ]|-lo]1 T -1-1-1-1-1-1-1-1-71-1-
k=5 | O OO0 O | - I I - I - - - - - -
k=6 |lo|-]o]o olr{ofolrlo |1 [-|1]1]-1]T1

Figure 5.11 An example of the table constructed for the knapsack problem. The input
consists of four items of sizes 2, 3, 5, and 6. The symbols in the table are the following:
"I": a solution containing this item has been found; "O": a solution without this item has
been found; "-": no solution has not yet been found. (If the symbol "-" appears in the
last line, then there is no solution for a knapsack of this size.)
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The method we just used is an instance of a general technique called dynamic
programming. The essence of dynamic programming is to build large tables with all
known previous results. The tables are constructed iteratively. Each entry is computed
from a combination of other entries above it or to the left of it in the matrix. The main
problem is to organize the construction of the matrix in the most efficient way. Another
example of dynamic programming is presented in Section 6.8.

Complexity There are nK entries in the table, and each one is computed in constant
time from two other entries. Hence, the total running time is O (nK). If the sizes of the
items are not too large, then K cannot be too large and nK is much better than an
exponential expression in n. (If K is very large or if the sizes are real numbers, then this
approach will not work; we discuss this issue in Chapter 11.) If we are interested only in
determining whether a solution exists, then the answer is in P [n, K ]. If we are interested
in finding the actual subset, then we can trace back from the (n, K)th entry, using, for
example, the belong flag in the knapsack program, and recover the subset in O (1) time.

Comments The dynamic programming approach is effective when the problem can
be reduced to several smaller, but not small enough, subproblems. All possible
subproblems are computed. We do this computation by maintaining a large matrix.
Hence, dynamic programming can work only if the total number of possible subproblems
is not too large. Even then, dynamic programming requires building large matrices, and
thus it usually requires a large space. (In some cases, as in the program in Fig. 5.10, it is
possible to use less space by storing only a small part of the matrix at any moment.) The
running times are usually at least quadratic.

5.11 Common Errors

In this section, we briefly mention some common errors in the use of induction to design
algorithms. We have already discussed common errors in induction proofs in Section
2.13. All those errors have analogous errors here. For example, forgetting the base case
is common. In the case of a recursive procedure, a base case is essential to terminate the
recursion. Another common error is to extend a solution for n to a solution of a special
instance of the problem for n + 1, instead of an arbitrary instance.

Changing the hypothesis unintentionally is another common mistake. Here is a
typical example of it. A graph G =(V, E) is called bipartite if its set of vertices can be
partitioned into two subsets such that there is no edge connecting two vertices from the
same subset. If the graph is connected and bipartite, then the partition is unique (we omit
the proof of this fact).

The Problem Given a connected undirected graph G =(V, E),
determine whether it is bipartite and, if it is, partition the vertices ac-
cordingly.
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A wrong solution: Remove a vertex v and partition the rest of the graph, if possible, by
induction. We call the first subset red, and the second subset blue. If v is connected to
only red vertices, add it to the blue subset. If v is connected to only blue vertices, add it
to the red subset. If v is connected to vertices from both subsets, then the graph is not
bipartite (since the partition is unique).

The main error in this attempted solution, and the one we want to illustrate, is that
after we have removed a vertex the graph may not be connected. Hence, the smaller
instance of the problem is not the same as the original instance, and induction cannot be
used. Had we removed a vertex that does not disconnect the graph, this solution would
have been valid. This problem has a better solution, which does not depend on the graph
being connected; we leave that solution to the reader (Exercise 7.32). For a similar
example and further discussion of this common error, see Section 7.5. A result related to
this incorrect algorithm is included in Exercise 5.24.

Changing the hypothesis is sometimes very tempting. If the hypothesis is
something of the form ‘‘we know how to find such and such,’’ then we are tempted to
think that we can find other simple things with the same effort. But we cannot use any
such assumption unless it is included specifically in the induction hypothesis. One way
to avoid changing the hypothesis unintentionally is to think of it as a black box. Do not
make any changes to that black box, unless you are ready to open it (namely, to redefine
it explicitly).

5.12 Summary

Several techniques for designing algorithms, all of which are variations of the same
approach, were introduced in this chapter. These are by no means all the known methods
for designing algorithms. Additional techniques and numerous examples are presented in
the following chapters. The best way to learn these techniques is to use them to solve
problems. The rest of this book is devoted to precisely that purpose. The principles
presented in this chapter are as follows:

o We can use the principle of induction to design algorithms by reducing an instance
of a problem to one or more of smaller size. If the reduction can always be
achieved, and the base case can be solved, then the algorithm follows by induction.
The main idea is to concentrate on reducing a problem, rather than on solving it
directly.

] One of the easiest ways to reduce the size of a problem is to eliminate some of its
elements. That technique should be the first line of attack. The elimination can
take many forms. In addition to simply eliminating elements that clearly do not
contribute (as in Section 5.3), it is possible to merge two elements into one, to find
elements that can be handled by special (easy) cases, or to introduce a new element
that takes on the role of two or more original elements (Section 6.6).

° We can reduce the size of the problem in many ways. Not all reductions, however,
lead to the same efficiency. As a result, all possibilities for reductions should be
considered. In particular, it is worthwhile to consider different orders for the
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induction sequence. We have seen examples where it is better to take the largest
element first. Sometimes, it is better to take the smallest element first. We will see
examples of starting from the middle (Section 6.2). We also will see examples of
induction on trees in which the root is removed first (top down), and examples in
which the leaves are removed first (bottom up) (Section 6.4.4).

° One of the most efficient ways to reduce the size of a problem is to divide it into
two (or more) equal parts. Divide and conquer works effectively if the problem
can be divided such that the output of the subproblems can easily generate the
output for the whole problem. Divide-and-conquer algorithms are given in
Sections 6.4, 6.5, 8.2, 8.4,9.4, and 9.5.

° Since a reduction can change only the size of the problem, but not the problem
itself, we should look for smaller subproblems that are as independent as possible.
For example, the problem of finding some ordering among several items can be
reduced to finding (and removing) the item that is first in the order; the relative
order of the rest of the items is independent of the first item (see Sections 6.4 and
7.5).

° There is one way, however, to overcome the limitation that the reduced problem
must be identical to the original problem: Change the problem statement. This is a
very important method that we will use often. Sometimes, it is better to weaken
the hypothesis and to arrive at a weaker algorithm, which can be used as a step in
the complete algorithm (see Section 6.10).

o Finally, we can use all these techniques together, or in various combinations. For
example, we can use the divide-and-conquer approach with strengthening the
induction hypothesis, so that the different subproblems become easier to combine
(see Section 8.4).

Bibliographic Notes and Further Reading

The method presented in this chapter was developed by the author (Manber [1988]). It is
by no means new. The use of induction, and in general mathematical proof techniques,
in the algorithms area has its origin in the flowcharts of Goldstine and von Neumann (see
von Neumann [1963]), but was first fully developed by Floyd [1967]. Dijkstra [1976],
Manna [1980], Gries {1981], and Dershowitz [1983] present methodologies similar to
ours to develop programs together with their proof of correctness. Their approach
addresses program design in a much more rigorous and detailed fashion than the
presentation in this chapter. The use of loop invariants, described in Section 2.12, can be
considered, in some sense, to be equivalent to the use of induction in this chapter.
Recursion, of course, has been used extensively in algorithm design (see, for example,
Burge [1975] and Paull [1988]).

The celebrity problem was first suggested by Aanderaa (see Rosenberg [1973]). It
is possible to save an additional | log,n| questions by being careful not to repeat, in the
verification phase, questions asked during the elimination phase (King and Smith-
Thomas [1982]). Strengthening the induction hypothesis is probably a very old trick.
Polya [1957] calls this technique the inventor’s paradox (because it is easier to invent,
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or prove, something that is stronger). It is also sometimes called generalization.
Dynamic programming was introduced and formalized by Bellman [1957]. It has
numerous applications, and many variations. For a detailed description of dynamic
programming see, for example, Dreyfus and Law [1977], or Denardo [1982]. The
observation leading to Exercise 5.24 was pointed out to us by Tom Trotter.

Drill Exercises

5.1

5.2

5.6

5.7
5.8
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Design a divide-and-conquer algorithm for polynomial evaluation. How many additions
and multiplications does your algorithm require? Can you think of an advantage this
algorithm has over Homer’s rule?

Try to follow the steps of inductive reasoning that were used in Section 5.3 to solve the
following maximal induced subgraph problem: Given a graph G =(V, E), we are looking
for the maximal induced subgraph G’ such that all the degrees in G’ are at most k (as
opposed to ‘‘at least’’ in the problem in Section 5.3). This version is much more difficult
than the original version, and the approach taken for the original version does not work
here. Discuss why it does not work. (See Chapter 11 for a discussion of this problem for
the simple case of k =0.)

Consider algorithm Mapping (Fig. 5.3). Is it possible that the set S will become empty at the
end of the algorithm? Show an example, or prove that it cannot happen.

Write the appropriate loop invariant for the first while loop in algorithm Celebrity (Fig. 5.4).

You are given a binary tree T. T is called an AVL tree (see also Section 4.3.4) if the
balance factors of all its nodes are 0, 1, or —1. Assume that the nodes do not have enough
space to store the balance factor. Design an efficient algorithm to solve the following
decision problem. Given a tree T, the algorithm should determine whether or not T is an
AVL tree. The answer should be only yes or no.

Modify algorithm Maximum_Consecutive_Subsequence (Fig. 5.9) such that it finds the
actual subsequence and not only the sum.

Write a program to recover the solution to a knapsack problem using the belong flag.

In algorithm Knapsack, we first checked whether the ith item is unnecessary (by checking
Pli—1,j]). If there is a solution with the i—I items, we take this solution. We can also
make the opposite choice, which is to take the solution with the ith item if it exists (i.e.,
check P[i, j—k;] first). Which version do you think will have a better performance?
Redraw Fig. 5.11 to reflect this choice.

A given knapsack problem may have many different solutions. What are the special
characteristics of the solution obtained from algorithm Knapsack? What separates this
solution from all the rest? How does your answer change if the choice is made according to
the policy of Exercise 5.7?
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Creative Exercises

5.18

5.19

Solve the following extended skyline problem. Suppose that the buildings in the skyline
have roofs. Each building is a rectangle with a triangular roof on top. (You can assume for
simplicity that all the roofs have 45-degree angles with the buildings.) Again, all the
buildings have a common horizon. Design an algorithm to draw the skyline in this case.

Suppose that there are two different (maybe proposed) skylines: One is projected on a
screen with a blue color, and the other is superimposed on the first one with a red color.
Design an efficient algorithm to compute the shape that will be colored purple. In other
words, compute the intersection of two skylines.

Let x,, x5, ..., X, be a sequence of real numbers (not necessarily positive). Design an O (n)
algorithm to find the subsequence x;, x;., ..., x; (of consecutive elements) such that the
product of the numbers in it is maximum over all consecutive subsequences. The product of
the empty subsequence is defined as 1.

Suppose that a given tree is not an AVL tree. We call a node an AVL node if its balance
factor is 0, 1, or -1. Design an algorithm to mark the nodes in T that are not AVL nodes, but
all of whose descendents are AVL nodes.

Let G =(V, E) be a binary tree with n vertices. We want to construct an n X n matrix whose
ijth entry is equal to the distance between v; and v;. (Since the tree is undirected, the matrix
will be symmetric.) Design an O (n?) algorithm to construct such a matrix for a tree that is
given in the adjacency-list representation.

Let G =(V, E) be a binary tree. The distance between two vertices in G is the length of the
path connecting these two vertices (neighbors have distance 1). The diameter of G is the
maximal distance over all pairs of vertices. Design a linear-time algorithm to find the
diameter of a given tree.

Improve the space utilization in algorithm Knapsack (Section 5.10). Is there a need for a
complete n x K matrix? What is the space complexity of the improved algorithm?

Solve the following variation of the knapsack problem: The assumptions are identical to
those of Section 5.10, except that there is an unlimited supply of each item. In other words,
the problem is to pack items of given sizes in a given-sized knapsack, but each item may
appear many times.

Here is another variation of the knapsack problem: The assumptions are the same as in
Exercise 5.17 (n items, unlimited supply, fixed-sized knapsack), but now each item has an
associated value. Design an algorithm to find how to pack the knapsack fully, such that the
items in it have the maximal value among all possible ways to pack the knapsack.

Here is the most common variation of the knapsack problem: The assumptions are the same
as in Exercise 5.17 (n items with sizes and values, unlimited supply, fixed-sized knapsack,
and the goal of maximizing the value), but now we are not restricted to filling the knapsack
exactly to capacity. We are interested only in maximizing the total value, subject to the
constraint that there is enough room for the chosen items in the knapsack.
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n
Let x, X3, ..., X, be a set of integers, and let § =Y x;. Design an algorithm to partition the
i=l

set into two subsets of equal sum, or determine that it is impossible to do so. The algorithm
should run in time O (nS).

Suppose that you are given an algorithm as a black hox — you cannot see how it is designed
— that has the following properties: If you input any sequence of real numbers, and an
integer k, the algorithm will answer *‘yes’’ or ‘‘no,”” indicating whether there is a subset of
the numbers whose sum is exactly k. Show how to use this black box to find the subset
whose sum is &, if it exists. You should use the black box O (n) times (where # is the size of
the sequence).

The towers of Hanoi puzzle is a standard example of a nontrivial problem that has a simple
recursive solution. There are n disks of different sizes arranged on a peg in decreasing
order of sizes. There are two other empty pegs. (see Fig. 5.12). The purpose of the puzzle
is to move all the disks, one at a time, from the first peg to another peg in the following
way. Disks are moved from the top of one peg to the top of another. A disk can be moved
to a peg only if it is smaller than all other disks on that peg. In other words, the ordering of
disks by decreasing sizes must be preserved at all times. The goal is to move all the disks in
as few moves as possible.

a. Design an algorithm (by induction) to find a minimal sequence of moves that solves the
towers of Hanoi problem for n disks.

b. How many moves are used in your algorithm? Construct a recurrence relation for the
number of moves, and solve it.

c. Prove that the number of moves in part b is optimal; that is, prove that there cannot exist
any other algorithm that uses less moves.

Write a nonrecursive program for the towers of Hanoi problem (defined in Exercise 5.22).

The following is a variation of the towers of Hanoi problem (see Exercise 5.22). We no
longer assume that all the disks are initially on one peg. They may be arbitrarily distributed
among the three pegs, as long as they are ordered in decreasing sizes on each peg. The
purpose of the puzzle remains to move all disks to one specified peg, under the same
constraints as the original problem, with as few moves as possible. Design an algorithm to
find a minimal sequence of moves that solves this version of the towers of Hanoi problem
for n disks.

A A A
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|

I I ] l ]

Figure 5.12 The towers of Hanoi puzzle.
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5.25 This exercise is related to the wrong algorithm for determining whether a graph is bipartite,
described in Section 5.11. In some sense, this exercise shows that not only is the algorithm
wrong, but also the simple approach cannot work. Consider the more general problem of
graph coloring: Given an undirected graph G =(V, E), a valid coloring of G is an
assignment of colors to the vertices such that no two adjacent vertices have the same color.
The problem is to find a valid coloring, using as few colors as possible. (In general, this is a
very difficult problem; it is discussed in Chapter 11.) Thus, a graph is bipartite if it can be
colored with two colors.

a. Prove by induction that trees are always bipartite.

b. We assume that the graph is a tree (which means that the graph is bipartite). We want to
find a partition of the vertices into the two subsets such that there are no edges connecting
vertices within one subset. Consider again the wrong algorithm for determining whether
a graph is bipartite, given in Section 5.11: We take an arbitrary vertex, remove it, color
the rest (by induction), and then color the vertex in the best possible way. That is, we
color the vertex with the oldest possible color, and add a new color only if the vertex is
connected to vertices of all the old colors. Prove that, if we color one vertex at a time
regardless of the global connections, we may need up to 1+log,n colors. You should
design a construction that maximizes the number of colors for every order of choosing
vertices. The construction can depend on the order in the following way. The algorithm
picks a vertex as a next vertex and starts checking the vertex’s edges. At that point, you
are allowed to add edges incident to this vertex as you desire, provided that the graph
remains a tree, such that, at the end, the maximal number of colors will be required. You
cannot remove an edge after it is put in (that would be cheating the algorithm, which has
already seen the edge). The best way to achieve this construction is by induction.
Assume that you know a construction that requires <k colors with few vertices, and build
one that requires k + | colors without adding too many new vertices.
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CHAPTER 6

ALGORITHMS INVOLVING
SEQUENCES AND SETS

Order is a lovely thing;
on disarray it lays its wing,
teaching simplicity to sing.
Anna Hempstead Branch (1875-1937)

6.1 Introduction

In this chapter, we deal with inputs that are either finite sequences or finite sets. The
difference between sequences and sets is that in sequences the order in which the
elements are given is important whereas in sets it is not. Also, in sets we assume that an
element does not appear more than once, whereas there is no such assumption for
sequences. Since inputs are usually given in some order, we can regard them as
sequences. Nevertheless, we may call an input a set when we are not interested in the
given order. Throughout this chapter, unless specified otherwise, the representation of
the input is assumed to be an array, and we assume that the size of the array is known.
The elements in the sequences or sets are assumed to be taken from a totally ordered set
(e.g., integers, reals), so that they can be compared. In this chapter, we consider
problems in which the elements are all of the same type. We study issues such as
maximality, order, special subsequences, data compression, and similarities of sequences.

This chapter contains many different algorithms with a variety of applications.
Our purpose is to give more examples of the design methodology introduced in Chapter
S, and, at the same time, to describe some important algorithms. We include algorithms
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that are very important and universally applicable (binary search and sorting, for
example), algorithms that are very important but have specific applications (file
compression and sequence comparisons), and algorithms that are not very important but
illustrate interesting techniques (finding the two largest elements in a set, and the
stuttering-subsequence problem).

The first example in this chapter is binary search — a basic and elegant algorithm
that comes in many forms and appears in many situations. We then discuss sorting —
one of the most extensively studied algorithmic problems — order statistics, data
compression, two problems involving text manipulation, and probabilistic algorithms.
We end this chapter with several examples of elegant algorithms illustrating interesting
design techniques.

6.2 Binary Search and Variations

Binary search is to algorithms what a wheel is to mechanics: It is simple, elegant, and
immensely important, and it is rediscovered frequently. The basic idea behind binary
search is to cut the search space in half (or approximately so) by asking only one
question. In this section, we describe several variations of binary search and show its
versatility.

Pure Binary Search

The Problem Let x|, x,, ..., x, be a sequence of real numbers such

that x; <x,< --- <x,. Given a real number z, we want to find whether
z appears in the sequence, and, if it does, to find an index i such that
X;=2Z.

For simplicity, we look for only one index i such that x;=z. In general, we may be
interested in finding all such indices, the smallest one, the largest one, and so on. The
idea is to cut the search space in half by checking first the middle number. Assume, for
simplicity that n is even. If z is less than x,,2,,, then z is clearly in the first half of the
sequence; otherwise,  is in the second half. Finding z in either half is a problem of size
n/2, which can be solved by induction. We handle the base case of n=1 by directly
comparing z to the element. The algorithm is given in Fig. 6.1.

Complexity Each time a comparison is made, the range is cut by one half; therefore,
the number of comparisons required to find a given number in a sequence of size n with
binary search is O (logn). This version of binary search delays the equality comparisons
to the end. The alternative is to check equality with - in each step. The disadvantage of
the version we present is that there is no hope for stopping the search early; the
advantage is that only one comparison is made in every step (instead of one equality
comparison and one inequality comparison). This search is thus usually faster. Although
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Algorithm Binary_Search (X, n, z) ;

Input: X (asorted array in the range 1 to n), and z (the search key).
Output: Position (an index i such that X [i ] =z, or 0 if no such index exist).

begin
Position := Find(z, 1, n) ;
end

function Find (z, Left, Right) : integer ;
begin
if Left = Right then
if X [Left] = z then Find := Left
else Find := 0
else
Middle :=['/(Left +Right)] ;
if z < X [Middle ] then
Find := Find (z, Left, Middle-1)
else
Find := Find (z, Middle, Right)
end

Figure 6.1 Algorithm Binary_Search.

it is more convenient to write the program as a recursive program, we can easily convert
it to a nonrecursive program. Binary search is not as effective for small values of n as it
is for large ns. If n is small, then it is better simply to search the sequence linearly.

Binary Search in a Cyclic Sequence

A sequence x|, x,, ..., X, is said to be cyclically sorted if the smallest number in the
sequence is x; for some unknown /, and the sequence x;, X; |, ..., Xp, X1, ..., Xj_| is sorted
in increasing order.

The Problem Given a cyclically sorted list, find the position of the
minimal element in the list (we assume, for simplicity, that this position
is unique).

To find the minimal element x; in the sequence, we use the idea of binary search to
eliminate half the sequence with one comparison. Take any two numbers x; and x,,, such
that k <m. If x; <x,,, then i cannot be in the range k <i <m, since x; is minimal in the
whole sequence. (Notice that we cannot exclude x;.) On the other hand, if x; > x,,, then i
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must be in the range k <i<m, since the order is switched somewhere in that range.
Thus, with one comparison, we can eliminate many elements. By choosing k and m
appropriately, we can find / in O (log n) comparisons. The algorithm is given in Fig. 6.2.

Algorithm Cyclic_Binary_Search (X, n, z) ;

Input: X (a cyclicaliy sorted array in the range 1 to n of distinct elements).
Output: Position (the index of the minimal element in X).

begin
Position := Cyclic_Find(1, n) ;
end

Sunction Cyclic_Find (Left, Right) : integer ;
begin
if Left = Right then Cyclic_Find := Left
else
Middle := "> (Left +Right)| ;
if X[Middle] < X [Right ] then
Cyclic_Find := Cyclic_Find (Left, Middle)
else
Cyclic_Find := Cyclic_Find (Middle+1, Right)
end

Figure 6.2 Algorithm Cyclic_Binary_Search.

Binary Search for a Special Index

In the following search problem, the key is not given; instead, we are looking for an
index that satisfies a special property.

The Problem Given a sorted sequence of distinct integers
a,,a,, ..., a,, determine whether there exists an index i such that a; =1.

Pure binary search is not applicable here, because the value of the searched element is
not given. However, the property we seek is adaptable to the binary search principle.
Consider the value of a,, (assume again that n is even). If this value is exactly n/2, then
we are done. Otherwise, if it is less than n/2, then, since all numbers are distinct, the
value of a,,,_; is less than n/2—1, and so on. No number in the first half of the sequence
can satisfy the property, and we can continue searching the second half. The same
argument holds if the answer is ‘‘greater than.”” The algorithm is given in Fig 6.3.
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Algorithm Special_Binary_Search (A, n) ;

Input: X (a sorted array in the range 1 to n of distinct integers).
Output: Position (the index satisfying A [Position ] = Position, or 0 if no
such index exists).

begin
Position := Special_Find(1, n) ;
end

Sfunction Special_Find (Left, Right) : integer ;
begin
if Left = Right then
if A[Left] = Left then Special_Find := Left
else Special_Find := 0 { unsuccessful search }
else
Middle := [ '/2(Left +Right)] ;
if A[Middle] < Middle then
Special_Find := Special_Find ( Middle + 1, Right )
else
Special_Find := Special_Find ( Left, Middle )
end

Figure 6.3 Algorithm Special_Binary Search.

Binary Search in Sequences of Unknown Size

Sometimes we use a procedure much like binary search to double the search space rather
than to halve it. Consider the regular search problem, but suppose that the size of the
sequence is unknown. We cannot halve the search range, since we do not know its
boundaries. Instead, we look for an element x; that is greater than or equal to z. If we
find such an element, then we can perform binary search in the range 1 to i. We first
compare z to x|. If z<x, then z can only be equal to x,. Assume, by induction, that we
know that z > x; for some j 2 1. If we compare z to x,;, then we double the search space
Wwith one comparison. If z<x,;, then we know that x; <z<x,; and we can find z with
O (log j) additional comparisons. Overall, if { is the smallest index such that z <x;, then it
takes O (logi) comparisons to find an x; such that z<x;, and another O (logi)
comparisons to find i.

The same algorithm can also be used when the size of the sequence is known, but
we suspect that i is very small. This algorithm is an improvement over regular binary
search in such cases because its running time is O (log i) rather than O (log n). However,
there is an extra factor of 2 in the running time of this algorithm, since we perform two
binary search like procedures. Therefore, this algorithm is better only when i =0 (\/; ).
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The Stuttering-Subsequence Problem

The principle of binary search appears even in problems that do not seem to require any
search. Let A and B be two sequences of characters from a finite alphabet
A=a,a;, "*a,and B=b b, - - - b,, such that m <n. We say that B is a subsequence of
A if there are indices i} <iy < - ** <iy, such that, for all j, I<j<m, we have b;=gq;. In
other words, B is a subsequence of A if we can embed B inside A in the same order but
with possible holes. It is simple to determine whether B is a subsequence of A. We scan
A until we find the first occurrence (if any) of b, continue from there until we find b,,
and so on. The proof that this algorithm is correct is easy by induction, and we leave it as
an exercise. Since the algorithm involves one linear scan of A and B, its running time is
clearly O (m+n). Given a sequence B, we define B' to be the sequence B with each
character appearing i times consecutively. For example, if B=xyzzx, then
B? =xxxyyyzzzzzzxxx.

The Problem Given two sequences A and B, find the maximal
value of i such that B' is a subsequence of A.

This problem is called the stuttering-subsequence problem. It may seem difficult at
first, but it can be solved easily with binary search.

For each given value of i, we can construct the sequence B’ easily. Hence, we can
determine whether B’ is a subsequence of A for any specific value of i. Furthermore, if
B/ is a subsequence of A, then B' is a subsequence of A, for 1<i<j. The maximal value
of i that needs to be considered cannot exceed n/m, since in that case the sequence B’
would be longer then A. So, we can use binary search. We first set i =[n/m]/2, and
check whether B’ is a subsequence of A. We then continue with binary search,
eliminating the lower range if the answer is yes and the upper range otherwise. It will
take [log,(n/m)| tests to determine the maximal i. The overall running time is thus
O((n+m)log(n/m)) = O (nlog(n/m)). Sequence comparison problems are also
discussed in Section 6.8.

This solution suggests a general technique. Whenever we are looking for the
maximal i that satisfies some property, it may be sufficient to find an algorithm that
determines whether a given i satisfies that property. We can do the rest by binary search
if we have an upper bound for i, and if the property is such that, whenever i satisfies it,
then j satisfies it, for 1 <j<i. If we do not know an upper bound for i, we can use the
doubling scheme. That is, we can start at i = | and double the value of i until we find the
right range. This search will take longer, but, unless the desired i is extremely large, it
will still be efficient. The resulting algorithm, however, may not be optimal. In many
cases, such as the stuttering-subsequence problem, it is possible to eliminate the extra
O (log n) factor.
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Solving Equations

This subject area does not conform to the subject of this chapter, but it deserves a short
mention here. Suppose that we want to find a solution to the equation f (x) =0, where fis
a continuous function which we can compute. We are given that x is in the range [a, b]
(i.e., a<x<bh), and that f (a)'f (b) <0 (i.e., one of f(a) and f (b) is positive and the
other one is negative). We want to find a solution to the equation within a given
precision.

Since the function is continuous, a solution must exist in the range [a, b]. We can
use a variation of binary search, known as bisection or the Bolzano method, which
works as follows. The function f is evaluated at x| =(a +b)/2. If f (x;)=0 (within the
required precision), then we have a solution. Otherwise, we can select one of the
subranges [a, x|] or [x, b], each being one half the size of the original, in which a
solution is guaranteed to exist. The selection is done such that the values of the function
are positive at one end and negative at the other. We continue in this way until the
desired precision is achieved. After k steps, the size of the region that contains a solution
is (b-a)/2*.

6.3 Interpolation Search

In binary search, the search space is always cut in half, which guarantees the logarithmic
performance. However, if during the search we find a value that is very close to the
search number z, it seems more reasonable to continue the search in that
*‘neighborhood’’ instead of blindly going to the next half point. In particular, if z is very
small, we should start the search somewhere in the beginning of the sequence instead of
at the halfway point.

Consider the way we open a book when we are searching for a certain page
number. Say the page number is 200 and the book looks like an 800-page book. Page
200 is thus around the one-fourth mark, and we use this knowledge as an indication of
where to open the book. We will probably not hit page 200 on the first try; suppose that
we get page 250 instead. We now cut the search to a range of 250 pages, and the desired
page is at about the 80 percent mark between page 1 and 250. We now try to go back
about one-fifth of the way. We can continue this process until we get close enough to
page 200, that we can flip one page at a time. This is exactly the idea behind
interpolation search. Instead of cutting the search space by a fixed half, we cut it by an
amount that seems the most likely to succeed. This amount is determined by
interpolation, which is illustrated in Fig. 6.4. The first guess is at X [8], which turns out to
be larger than z. Another interpolation leads to X [5], and then another finally leads to
X |4). The algorithm, including the precise expression used for the interpolation, is given
in Fig. 6.5.

Complexity The performance of interpolation search depends not only on the size of
the sequence, but also on the input itself. There are inputs for which interpolation search
checks every number in the sequence (see Exercise 6.4). However, interpolation search
is very efficient for inputs consisting of relatively uniformly distributed elements (the
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Figure 6.4 Interpolation search.

Algorithm Interpolation_Search (X, n, z) ;

Input: X (a sorted array in the range 1 to n), and z (the search key).
Output: Position (an index i such that X [i ] =z, or 0 if no such index exist).

begin
ifz<X[1]orz> X[n] then Position := 0
{ unsuccessful search }
else Position := Int_Find(z, 1, n)
end

Sfunction Int_Find (z, Left, Right) : integer ;
begin
if X[Left] = = then Int_Find := Left
else if Left = Right or X [Left] = X [Right | then
Int_Find :=0
else

z—X[Left])(Right —Left) |
X [Right]-X [Left] '
if z < X[Next_Guess] then
Int_Find := Int_Find (z, Left, Next_Guess — 1)
else
Int_Find := Int_Find (z, Next_Guess, Right)

Next_Guess := | Left + ¢

end

Figure 6.5 Algorithm Interpolation_Search.
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pages of a book are, of course, uniformly distributed). It can be shown that the average
number of comparisons performed by interpolation search, where the average is taken
over all possible sequences, is O (loglogn). Although this seems to be an order of
magnitude improvement over the performance of binary search (due to the extra
logarithm), interpolation search is not much better than binary search in practice for two
main reasons. First, unless n is very large, the value of log,n is small enough that the
logarithm of it is not much smaller. Second, interpolation search requires more elaborate
arithmetic.

6.4 Sorting

Sorting is one of the most extensively studied problems in computer science. It is the
basis for many algorithms, and it consumes a large proportion of computing time for
many typical applications. There are numerous variations of the sorting problem, and
dozens of sorting algorithms. We cannot cover in this section even a small part of this
subject. We mention only several common techniques. As usual, we concentrate on the
principles behind the algorithms that can be useful for other problems. We will go into
more detail than usual in this section.

The Problem Given n numbers x,, x5, ..., x,, arrange them in in-
creasing order. In other words, find a sequence of distinct indices
1<iy, iy, ..., 1,<n,such thatx; <x; <--- <x;.

For simplicity, unless specified otherwise, we assume that the numbers are distinct. All
the methods described in this section are valid for nondistinct numbers as well. A sorting
algorithm is called in-place if no additional work space is used besides the initial array
that holds the elements.

6.4.1 Bucket Sort and Radix Sort

Perhaps the simplest sorting technique is the ‘‘mailroom’” sort: allocate a sufficient
number of ‘‘boxes” — we call them buckets — and put each element in the
corresponding bucket. This method is called bucket sort. If the elements are letters and
they need to be sorted according to states, for example, then allocating one bucket per
state is sufficient and the resulting algorithm is very efficient. On the other hand, if the
letters need to be sorted by zip codes (with 5 digits), then this method requires 100,000
boxes and a very large mailroom. Thus, bucket sort works very well only for elements
from a small, simple range that is known in advance. A more detailed description of
bucket sort follows.

We assume that there are n elements, all of which are integers in the range 1 to m.
We allocate m buckets, and then, for each i, we put x; in the bucket corresponding to its
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value. At the end, we scan the buckets in order and collect all the elements. The
complexity of this simple algorithm is obviously O (m +n). If m=0 (n), then we get a
linear-time sorting algorithm. On the other hand, if m is very large relative to n (as may
be the case with zip codes), then O (m) is too large. In addition, the algorithm requires
O (m) storage, which is an even more serious problem for large m.

A natural extension of this idea is radix sort. Consider the zip-code example
again. Using bucket sort for zip codes is not effective because the range of zip codes is
too large to handle. Can we do something to reduce the range? We use induction on the
range in the following way. We use several stages. First, we use 10 buckets and sort
everything according to only the first digit of the zip code. Each bucket now covers
10,000 different zip codes (corresponding to the remaining four digits). The running
time for this stage is O (n). At the end of the first stage, we have 10 buckets, each with
elements corresponding to a smaller range. We can now solve the problem for each
bucket by induction. Since we reduce the range by a factor of 10 in each stage, and since
all zip codes have 5 digits, only 5 stages will be required. Once the buckets are sorted, it
is easy to put them together into a sorted list. We leave the details of this algorithm to the
reader (Exercise 6.5), since we want to show another variation of the same idea. We note
that the range can be divided in any convenient way. In the zip-code example, the range
is divided according to the zip codes’ decimal representation. If the keys are strings of
characters that need to be sorted in a lexicographic order, we can consider one character
at a time, leading to a lexicographic sort. Both algorithms are similar. The version of
radix sort presented here (namely, a left to right scan) is known as radix-exchange sort.

A straightforward recursive implementation of radix-exchange sort requires
temporary buckets (about 50 buckets will be needed in the zip-code example; see also
Exercise 6.5). Another way to achieve radix sort is to apply the induction in the opposite
order. That is, the sorting is done from right to left, starting with the least significant
parts instead of the most significant parts. We assume that the elements are large integers
represented by k digits, and each digit is in the range O to d — 1. The induction hypothesis
is the straightforward one.

Induction hypothesis: We know how to sort elements with < k digits.

The difference between this method and the previous radix-exchange sort is the way we
extend the hypothesis. (This idea of applying induction in the opposite order is similar to
the one for Horner’s rule in Section 5.2.) Given elements with k digits, we first ignore
the most significant digit and sort the elements according to the rest of the digits by
induction. We now have a list of elements sorted according to their k — 1 least significant
digits. We scan all the elements again and use bucket sort, on the most significant digit,
with d buckets. Then, we collect all the buckets in order. This algorithm is called
straight-radix sort. We want to argue that the elements are now sorted according to k
digits.

We claim that two elements that are put in different buckets in the last step are
arranged in the right order. We do not even need the induction hypothesis for this case,
since, by the lexicographic ordering, the most significant digit is the one that determines
the order regardless of the other digits. On the other hand, if two elements have the same
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most significant digit, then, by the induction hypothesis, they are in the right order before
the last step. Thus, we have to make sure that they stay in the right order. This is the
only subtle part of the algorithm, and it is a good example of the use of the inductive
approach to make sure the algorithm is correct. It is essential that elements that are put in
the same bucket remain in the same order. This can be achieved by using a queue for
each bucket, and by appending the d queues at the end of a stage to form one global
queue of all elements (sorted according to the i least significant digits). The precise
algorithm is given in Fig. 6.6.

Algorithm Straight_Radix (X, n, k) ;

Input: X (an array of integers, each with k digits, in the range 1 to n).
Output: X (the array in sorted order).

begin
We assume that all elements are initially in a global queue GQ ;
{ We use GQ for simplicity; it can be implemented through X }
Jori:=1toddo
{ d is the number of possible digits; d =10 in case of decimal numbers }
initialize queue Q [i ] to be empty ;
Sfor i := kdownto I do
while GQ is not empty do
pop x from GQ ;
d := the ith digit of x ;
insert x into Q [d] ;
fort:=1toddo
insert Q [t] into GQ ;
fori:=1tondo
pop X [i] from GQ
end

Figure 6.6 Algorithm Straight Radix.

Complexity It takes n steps to put all the elements in the queue GC, and d steps to
initialize the queues Q[i]. The main loop of the algorithm, which is executed k times,
pops each element from GC and pushes it into one of the Q [i]s. It also concatenates all
the Q [i ]s together. The overall running time of the algorithm is O (nk).

In the remainder of this section, we consider sorting techniques that use direct
comparisons between the elements without regard to the ‘‘structure’’ of their keys. Each
comparison will thus involve the whole key. These algorithms are more general since
they make no assumptions about the types of elements, except that two elements can be
compared.
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6.4.2 Insertion Sort and Selection Sort

We use a straightforward induction. Suppose that we know how to sort n — 1 numbers
and we are given n numbers. We can sort the n — 1 numbers and then put the nth number
in its correct place by scanning the n — | sorted numbers until the correct place to insert is
found. This procedure is appropriately called insertion sort. It is simple and effective
for small values of n. However, it is not an efficient algorithm for large n. In the worst
case, the nth number is compared to all the previous n — 1 numbers. The total number of
comparisons for sorting n numbers may be as high as 142+ - +n-1 =
Yy(n—1)(n—-2) = O(n?). Furthermore, inserting the nth number in its correct place
involves moving other elements. In the worst case, n — 1 elements are moved in the nth
step; hence, the number of element movements is also O (n%). We can improve insertion
sort by storing the elements in an array, and using binary search on the n—1 sorted
numbers to find the correct place to insert. The search takes only O (logn) comparisons
per insertion, leading to O (n log n) comparisons overall. However, the number of data
movements remains unchanged, so this is still a quadratic-time algorithm.

We can improve the straightforward induction by selecting a special nth number.
For example, we can select the maximal number as the nth number. The maximal is a
good choice because we know where to put it — it belongs at the end of the array. The
algorithm consists of first selecting the maximal, then putting it in the right place (by
swapping it with whatever is there), and then recursively sorting the rest. This algorithm
is called selection sort. The advantage of selection sort over insertion sort is that only
n —1 data movements (swaps in this case) are required versus O (n?) in the worst case for
insertion sort. On the other hand, since it takes n — 1 comparisons to find the maximal
element (finding the maximal is discussed in Section 6.5), the total number of
comparisons is always O (n2), whereas insertion sort with binary search requires only
O (n log n) comparisons.

It is also possible to use balanced trees for efficient insertion or selection (see
Chapter 4). Using AVL trees, for example, each insertion requires O (logn) time.
Scanning an AVL tree to get a list of its numbers in order takes O (n) time. If we assume
by induction that we know how to build an AVL tree for n — 1 numbers, then all we need
to do is to insert, which takes O (log n) time. Overall, it takes O (n log n) time to insert n
numbers into an empty AVL tree, and O (n) time at the end to list them in sorted order.
For large n, this is a much better solution than insertion sort or selection sort, but it
requires more space to hold the pointers. It is clearly not an in-place algorithm. It is also
quite complicated, and it is not as good as the algorithms we present next. The programs
for insertion and selection sorts are simple and are left as exercises.

6.4.3 Mergesort

To improve the efficiency of insertion sort, we notice that in the time it takes to scan the
sorted numbers to find the correct place to insert one number, we can find the correct
place for many numbers. We have already used this idea in Section 5.6. If we have two
sets of numbers that are already sorted, we can merge them together with one scan. The
merge involves considering the numbers of the second set in order and finding the correct
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place in the first set for the smallest number, the second smallest, and so on. More
precisely, denote the first set by a, a», ..., a,, and the second set by b,, b, ..., b,,, and
assume that both sets are sorted in increasing order. Scan the first set until the right place
to insert b, is found, and insert it; then continue the scan from that place until the right
place to insert b, is found, and so on. Since the bs are sorted, we never have to go back.
The total number of comparisons, in the worst case, is the sum of the sizes of the sets.
What about data movements? It is inefficient to move elements each time an insertion is
performed, since the same elements will be moved many times. Instead, since the merge
produces the elements one by one in sorted order, we copy them to a temporary array;
each element is copied exactly once. Overall, merging two sorted sequences of sizes n
and m can be done with O(n+m) comparisons and data movements (provided that
additional storage is available).

The merge procedure that we just described can be used as a basis for a divide-
and-conquer sorting algorithm, known as mergesort. The algorithm works as follows.
First, the sequence is divided into two equal or close-to-equal (in case of an odd size)
parts. Second, each part is sorted separately recursively. Third, the two sorted parts are
merged into one sorted sequence, as described above. The precise algorithm is given in
Fig. 6.7. An example of mergesort is shown in Fig. 6.8 (the copying is not shown).

Complexity Let T(n) be the number of comparisons required by mergesort in the
worst case. Let’s assume, for simplicity, that n is a power of 2. To calculate T (n), we
need to solve the following recurrence relation:

T(2n)=2T(n)+0(n), T2)=1.

The solution of this recurrence relation is T (n) = O (n log n) (see Chapter 3), which is
asymptotically better than the O (n?) running time required for insertion sort or selection
sort. The number of data movements is also O (n logn), which is more than the O (n)
data movements required by selection sort.

Although mergesort is better than insertion sort for large n, it still has several
drawbacks. First, mergesort is not as easy to implement. Second, the merging step
requires additional storage to copy the merged set. Thus, mergesort is not an in-place
algorithm. (There are more complicated versions of mergesort that use only constant
amounts of extra storage; see the bibliography section.) This copying must be done
every time two smaller sets are merged, which makes the procedure slower.

6.4.4 Quicksort

Mergesort and its analysis demonstrate the efficiency of divide and conquer. If we can
divide the problem into two equal-sized subproblems, solve each subproblem separately,
and combine the solutions, we can get an O (n log n) algorithm, provided that the division
step and the combining step take O (n). The problem with mergesort was the need for
extra storage, since the merging is arbitrary and we cannot predict where each element
will end up in the order. Can we somehow perform a different divide and conquer so that
the position of the elements can be determined? The idea of quicksort is to spend most of
the effort in the divide step and very little in the conquer step.
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Algorithm Mergesort (X, n) ;
Input: X (an array in the range | to n).
Output: X (the array in sorted order).

begin

M Sort(1, n)

end

procedure M_Sort(Left, Right) ;

begin

if Right - Left = I then
{ checking for this case is not necessary, because it will be handled
correctly anyway, but it makes the program more efficient }

if X[Left] > X[Right] then swap (X[Left], X[right] )

else if Left # Right then

end

Middle :=[ /> (Left +Right)] ;

M Sort(Left, Middle-1) ;

M_Sort(Middle, Right) ;

{ we now merge the two sorted sequences above into one sorted

sequence }
i:=Left;
J :=Middle ;
k:=0;
while (i < Middle — 1) and (j < Right) do
k:=k+1;
ifX[i1<X[j] then
TEMP[k]:=X[i].
i=i+1
else
TEMP (k] :=X[j].
Jji=j+1;

if j > Right then
{ move the rest of the left side to the end of the array }
{ ifi 2 Middle, then the right side is already in the right place }
Jort :=0toMiddle —1-ido
X[Right—t] := X [Middle -1 -1t] ;
{ we now copy TEMP back into X }
Jort:=0tok-1do
X[Left+1t] := TEMPt)

Figure 6.7 Algorithm Mergesort.
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Figure 6.8 An example of mergesort. The first row is in the initial order. Each row il-
lustrates either an exchange operation or a merge. The numbers that are involved in the
current operation are circled.

Suppose that we know a number x such that one-half of the elements are greater
than or equal to x and one-half of the elements are smaller than x. We can compare all
elements to x and partition the sequence into two parts according to the answer. This
partition requires n — 1 comparisons. Since the two parts are equal in size, one part can
occupy the first half of the array and the other the second half. Furthermore, this
partition can be accomplished without additional space, as will be shown shortly. This is
the divide step. We can now sort each subsequence recursively. The combine step is
trivial since the two parts already occupy the correct positions in the array. Therefore, no
additional space is required.

Thus far, we have assumed that we know the value of x, which we usually do not.
It is easy to see, however, that the same algorithm will work no matter which number is
used for the partition. We call the number used in the partition the pivot. Our purpose is
to partition the array into two parts, one with numbers greater than the pivot and the other
with numbers less than or equal to the pivot. We can achieve this partition with the
following algorithm. We use two pointers to the array, L and R. Initially, L points to the
left side of the array and R points to the right side of the array. The pointers ‘‘move’’ in
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opposite directions toward each other. The following induction hypothesis (or loop
invariant) guarantees the correctness of the partition.

Induction hypothesis: At step k of the algorithm, pivot 2x; for all i such
that i <L, and pivot < x; for all j such that j > R.

The hypothesis is trivially true at the beginning (since no i or j satisfies the conditions).
Our goal is to move either L to the right or R to the left at step k + 1 without invalidating
the hypothesis.

When L =R, the partition is almost completed except possibly for x;, with which
we deal later. Let’s assume that L <R. There are two cases. If either x; <pivot or
xg > pivot, then the corresponding pointer(s) can move and the hypothesis is preserved.
Otherwise, we have x; > pivot and xi <pivot. In this case, we can exchange x; with xg
and move both pointers inward. Both cases involve the movement of at least one of the
pointers; hence, the pointers will eventually meet and the algorithm will terminate.

We are left with the problems of choosing a good pivot and dealing with the last
step of the algorithm in which the two pointers meet. Divide-and-conquer algorithms
work best when the parts have equal sizes, which suggests that the closer the pivot is to
the middle, the faster the algorithm runs. It is possible to find the median of the sequence
(we discuss median finding in the next section), but it is not worth the effort. As we shall
see in the analysis, choosing a random element from the sequence is a good choice. If
the sequence is in a random order, then we might as well choose the first element as the
pivot. We make this choice, mainly for simplicity, in the algorithm presented in Fig. 6.9.

Algorithm Partition ( X, Left, Right) ;

Input: X (an array), Left (the left boundary of the array), and Right
(the right boundary).

Output: X and Middle such that X [i ] <X [Middle ] for all i <Middle
and X [j] > X [Middle ] for all j > Middle.

begin
pivot := X [Left] ;
L :=Left; R :=Right;
while L < R do
while X [L] < pivot and L< Rightdo L :=L + I ;
while X [R] > pivotand R 2 LeftdoR :=R - 1 ;
if L <R then
exchange X [L] with X[R] ;
Middle := R ;
exchange X [Left ] with X [Middle |
end

Figure 6.9 Algorithm Partition.
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When the first element is chosen as the pivot, we can exchange it with x; at the last
step of the partition, which will put the pivot in the middle of the partition as required.
We mention other policies in the complexity discussion. In any case, any pivot chosen
from the sequence can be exchanged with the first element, and then the algorithm in Fig.
6.9 can be used.

An example of algorithm Partition is given in Fig. 6.10. The pivot is the first
number (6). The circled numbers are those that have just been exchanged. After three
exchanges, p, points to X [6]=1, and p, points to X [7]=12. The last exchange involves
the middle point (1) and the pivot (6). After this exchange, everything to the left of the
pivot is less than or equal to it, and everything to the right is greater than it. The two
subsequences (from 1 to 6 and from 7 to 16) can be sorted recursively. Quicksort is thus
an in-place algorithm. The algorithm for quicksort is given in Fig. 6.11, and an example
of it is presented in Fig. 6.12.

Complexity The running time of quicksort depends on the particular input and on
the selection of the pivot. If the pivot always partitions the sequence into two equal parts,
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Figure 6.10 Partition of an array around the pivot 6.

Algorithm Quicksort (X, n) ;
Input: X (an array in the range 1 to n).
Output: X (the array in sorted order).

begin
Q Sort(1,n)
end

procedure Q_Sort(Left, Right) ;
begin
if Left < Right then
Partition(X, Left, Right) ;
Q _Sort(Left, Middle — 1) ;
Q_Sort(Middle + 1, Right)
end

Figure 6.11 Algorithm Quicksort.
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Figure 6.12 An example of quicksort. The first line is the initial input. A new pivot is
selected in each line. The pivots are circled. When a single number appears between
two pivots it is obviously in the right position.

then the recurrence relation is T(n)=2T(n/2)+0(n), T(2)=1, which implies
T(n)=0(nlogn). We will see that we get an O (n log n) running time even under much
weaker conditions. However, if the pivot is very close to one side of the sequence, then
the running time is much higher. For example, if the pivot is the smallest element in the
sequence, then the first partition requires n — 1 comparisons and places only the pivot in
the right place. If the sequence is already in increasing order, and we always select the
first element as the pivot, then the running time of the algorithm is O(n%). We can
eliminate the quadratic worst case for sequences that are sorted or almost sorted by
comparing the first, last, and middle elements, and then taking the median of these three
(namely, the second largest) as the pivot. An even safer method is to choose pivots from
among the elements in the sequence at random. The running time of quicksort will still
be O (n?) in the worst case, because there is still a chance that the pivot is the smallest
element in the sequence. However, the likelihood that this worst case occur is very
small. We now analyze this case.

We assume that each of the x; has the same probability of being selected as the
pivot. The running time T (n) of quicksort if the ith smallest element is the pivot is

T(n)=n-1+T@-1)+T(n-i).

(It takes n — 1 comparisons for the partition, and we need to sort two smaller sequences of
sizes i —1 and n —i.) If each element has the same probability of being selected, then the
average running time is



6.4 Sorting 137

T(n)=n-1+ % i(T(i—l)+T(n—i))
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This is a recurrence relation with full history. We discussed this particular relation in
Section 3.5.3, and its solution was shown there to be T'(n)=0 (n log n). Hence, quicksort
is indeed quick on the average.

In practice, quicksort is very fast, so it well deserves its name. A major reason for
its quickness, besides the elegant divide and conquer, is that many elements are
compared against the same element (the pivot). The pivot is thus stored in a register and
there is no need for a data movement from memory. In most computers, this saves
considerable time.

One way to improve the running time of quicksort is to use a technique we call
choosing the base of the induction wisely. The idea is to start the induction not always
from 1. Quicksort, as described above, is called recursively until the base case, which
consists of sequences of size 1. However, simple sorting techniques, such as insertion
sort or selection sort, perform very well for small sequences, whereas the efficiency of
quicksort shows only for large sequences. Therefore, we can define the base case for
quicksort to be of size larger than 1 (it seems that 10 to 20 is a good size, but that
depends on the specific implementation), and handle the base case by insertion sort. (In
other words, we replace the check ‘‘if Left < Right’’ by *‘if Left < Right - Threshold’’
and add an ‘‘else’’ part which runs insertion sort.) This change leads to an improvement
of the running time of quicksort by a small constant. In Section 6.11.3, we will see how
to use the principle of selecting the base of the induction to improve asymptotically the
running time of an algorithm.

6.4.5 Heapsort

Heapsort is another fast sorting algorithm. In practice, it is usually not quite as fast as
quicksort for large n, but it is not much slower. On the other hand, unlike quicksort, its
performance is guaranteed. Like mergesort, the worst-case running time of heapsort is
O (nlogn). Unlike mergesort, heapsort is an in—place sorting algorithm. In this section,
we emphasize one part of heapsort — building the heap. The algorithm for building the
heap illustrates the way design and analysis of algorithms should be interleaved.

Heaps were discussed in Chapter 4. We assume here an implicit representation;
specifically, the elements are given in an array A[l..n], which corresponds to a tree in
the following way: The root of the tree is stored in A[1], and the children of any node
A [i] (if there are any) are stored in A [2i] and A [2i + 1]. Such an array satisfies the heap
Property if the value of each node is greater than or equal to the values of its children.
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Heapsort works as follows. The input is an array A[l..n]. First, the elements in
the array are rearranged to form a heap. We will discuss how to build a heap later. If A
is a heap, then A [1] is the maximal element of the array. We exchange A [1] with A[n]
so that A [n] now contains the correct element. We then consider the array A[l..n—1].
Again, we rearrange the array to form a heap (we have to worry only about the new
A[1]), exchange A[1] with A [n—1], and continue with A [1..n —2]. Overall, there is one
initial step of building a heap, and n — 1 steps of exchanging elements and rearranging the
heap. Rearranging the heap after an exchange is basically the same as algorithm
Remove_Max_from_Heap, given in Section 4.3.2. Building a heap is an interesting
problem on its own, and it is described in detail below. Overall, the running time of
heapsort is O (n logn) (O (log n) per exchange), plus the running time of the algorithm
for building the heap. Heapsort is clearly an in-place sorting algorithm. The algorithm
for heapsort is given in Fig. 6.13.

Algorithm Heapsort (X, n) ;
Input: X (an array in the range 1 to n).
Output: X (the array in sorted order).

begin
Build Heap (X) . { see text below }
Jor i := ndownto 2 do
swap (A[1],A[i]);
Rearrange_Heap (i —1)
{ basically the same procedure as Remove_Max_from_Heap
inFig. 4.7 }
end

Figure 6.13 Algorithm Heapsort.

Building a Heap

We now concentrate on the problem of building a heap from an arbitrary array.

The Problem Given an array A[l1..n] of elements in an arbitrary
order, rearrange the elements so that the array satisfies the heap proper-

ty.

There are two natural ways to build a heap — top down and bottom up. They correspond
respectively to scanning the array representing the heap either from left to right or from
right to left. Figure 6.14 illustrates both methods. We first describe both methods with
the use of induction. We then show that there is a substantial difference in performance
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Figure 6.14 Top down and bottom up heap construction.

between the two methods.
Consider scanning the array from left to right (corresponding to top down).

Induction hypothesis (top down): The array A[1..i] is a heap.

The base case is trivial, since A[1] by itself is always a heap. The main part of the
algorithm is to incorporate A [i + 1] into the heap A [1..i]. But, this is exactly the same as
inserting A [ + 1] into the heap (see Chapter 4). A[i+1] is compared to its parent, and
exchanges are made until the new parent is larger. The number of comparisons in the
worst case is | log, (i +1)].

Consider now scanning the array from right to left (corresponding to bottom up).
We would like to say that the array A[i+1..n] is a heap and to consider adding the
element A [i]. But the array A [i + 1..n] does not correspond to one heap; it corresponds
to a collection of heaps. (Note that we consider A [i +1..n] as part of the tree represented
by A[l..n], and not as an array by itself.) Therefore, the induction hypothesis is slightly
more complicated.

Induction hypothesis (bottom up): All the trees represented by the array
A[i+1..n] satisfy the heap condition.

A[n] by itself is obviously a heap, so the base case is satisfied. We can do better,
however. The whole array A[| n/2| +1..n] represents leaves in the tree. Hence, the
trees corresponding to A[|n/2| +1..n] are all singletons, so they satisfy the heap
property trivially. We need to start the induction process only at | n/2|. This is a good
hint that the bottom-up approach may be better. After all, half the work is trivial. (This
is also another example for the importance of selecting the base of the induction with
care.)

Consider now A[i]. It has at most two children (A[2i+1] and A[2i]), both
serving as roots to valid heaps (by the induction hypothesis). Incorporating A [i] into a
heap is straightforward. A[i] is compared to the maximal of its children, and, if
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necessary, it is exchanged with the larger child. This is similar to a deletion in a heap
(see Chapter 4). The exchanges continue down the tree until the old value of A[i]
reaches a place where it is larger than both its children. A bottom-up construction is
illustrated in Fig. 6.15. Since the height of A[i] is [logy(n/i)], the number of
comparisons in the worst case is 2| log,(n/i)].

Complexity (top down) The ith step requires at most [log,i| <|log,n]
comparisons; hence, the running time is O (nlogn). Moreover, O(nlogn) is not an
overestimation of the running time, as the following argument shows.

il_logzij > ﬁ’, | logai| 2 n/2|logy(n/2)] = Q(nlogn).

i=1 i=n/?2

Complexity (bottom up) The number of comparisons involved in each step is at
most twice the height of the corresponding node (since each node may have to be
compared with its two children, exchanged, and so on down the tree). Therefore, the
complexity is at most twice the sum of the heights of all nodes in the tree. We want to
evaluate this sum. Let’s look at complete trees first, and denote by H (i) the sum of
heights of all nodes in the complete binary tree of height i. We can derive a recurrence
relation for H (i), noting that a tree of height i consists of two trees of height i —1 and a
root. Hence, H(i)=2H (i —1)+i, and H(0)=0. We can verify (by induction) that the
solution of this recurrence is H(i)=2"*'—(i+2). Since the number of nodes in a
complete binary tree of height i is 2'*' -1, it follows that the complexity of bottom-up
heap construction is O (n) for complete binary trees (namely, heaps with 2* —1 nodes).
The complexity for a heap with n nodes such that 2¥<n <2¥*' —1 is no more than that
for a heap with 2%+1 _1 nodes, which is still O (n). (A more careful analysis shows that
the constant is not increased; see Exercise 6.32.) The reason the bottom-up approach is

I5®l410®l26573@4ll8l

Figure 6.15 An example of building a heap bottom up. The numbers on top are the in-
dices. The circled numbers are those that have been exchanged on that step.
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faster than the top-down approach is that there are many nodes at the bottom of the tree
and few at the top. Thus, it is better to minimize the work for the bottom nodes rather
than to minimize the work for the top nodes.

This is another example where trying a different order of induction leads to a better
algorithm. The top-down method is the more straightforward and intuitive, but the
bottom-up method turns out to be superior.

Comments It is hard to summarize sorting in one paragraph. The main techniques
that were described in this section are variations of divide and conquer. We have seen
that it is worthwhile to spend time for the divide in order to make the conquer easier. In
the induction analogy, this translates into trying different orders of induction, and, in
particular, applying the induction to special subsets rather than to arbitrary elements. We
have also seen that the analysis must go hand in hand with the design. With some
experience one learns to develop intuition about efficiency of algorithms even before the
analysis is performed. This intuition is helpful in directing the search for a better
algorithm. The truth is usually (but not always!) not far removed from the intuition.

6.4.6 A Lower Bound for Sorting

We have started with an O (n?) algorithm for sorting and improved it to an O (n logn)
algorithm. Is it possible to improve it even further? A lower bound for a particular
problem is a proof that no algorithm can solve the problem better. It is much harder to
prove a lower bound, since we have to address all possible algorithms and not just one
approach. We need to define a model that corresponds to an arbitrary (unspecified)
algorithm and to prove that the running time of any algorithm that fits the model must be
higher than or equal to the lower bound. In this section, we discuss one such model
called a decision tree. Decision trees model computations that consist mainly of
comparisons. Decision trees are not general models of computation, as are Turing
machines or random-access machines — hence, lower bounds using them are weaker —
but they are simpler in many respects and are easier to work with. There are many
variations of decision trees, and many known lower bound proofs utilizing them.

We define decision trees as binary trees with two types of nodes — internal nodes
and leaves. Each internal node is associated with a query whose outcome is one of two
possibilities, each associated with one of the emanating branches. Each leaf is associated
with a possible output. We assume that the input is a sequence of numbers x|, X5, ..., X,.
The computation starts at the root of the tree. At each node, the query is applied to the
input and, according to the outcome of the query, either the left or the right branch is
taken. When a leaf is reached, the output associated with the leaf is the output of the
computation. The worst-case running time associated with a tree T is the height of T,
which is the maximal number of queries required by an input. A decision tree thus
corresponds to an algorithm. Although decision trees cannot model every algorithm (for
example, we cannot compute a square root of a number with a decision tree), they are
reasonable models of comparison-based algorithms. A lower bound obtained for
decision trees implies that no algorithm of that form can perform better. We now use
decision trees to prove a lower bound for sorting.
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O Theorem 6.1
Every decision tree algorithm for sorting has height Q(n log n).

Proof: The input for sorting is a sequence x|, x,, ..., x,. The output is the same
sequence in the sorted order. Another way to look at the output is that it is a permutation
of the input; namely, the output indicates how to rearrange the elements such that they
become sorted. Every permutation is a possible output, since the input can be in any
order. A sorting algorithm is correct if it handles all possible inputs. Thus, every
permutation (rearrangement) of (1, 2, ..., n) should be represented as a possible output in
the decision tree for sorting. The output in a decision tree is associated with the leaves.
Since two different permutations correspond to different outputs, they must be associated
with different leafs. Therefore, there must be at least one leaf for every possible
permutation. The total number of permutations on n elements is n!. Since we assume
that the tree is a binary tree, the height of the tree is at least log,(n!). By Stirling’s
formula

n!=\2nn (%)" (1+0(1/n)).

Hence, log,(n!) = Q(n log n), which completes the proof. 0O

This kind of a lower bound is called an information-theoretic lower bound,
because it does not depend at all on the computation (notice that we have not even
defined the kind of queries we allow), but only on the amount of information contained in
the output. What the lower bound says in this case is that every sorting algorithm
requires Q(n logn) comparisons in the worst case, since it needs to distinguish between
n! different cases and it can distinguish between only two possibilities at a time. We
could have defined a decision tree as a tree with three children (corresponding, for
example, to ‘‘<,”” ‘‘=."" and ‘*>’’). In this case, the height would have been at least
logzn!, which is still Q(n logn). In other words, the Q(n log n) lower bound applies to
any decision tree with constant number of branches per node.

This lower bound proof implies only that no comparison-based sorting algorithm
can be faster than Q(n logn). It may be possible to sort more quickly by utilizing special
properties of the keys and performing algebraic manipulations on the keys. For example,
if there are n elements, all integers with values between 1 and 4n, then bucket sort will
produce a sorted list in O (n) time. This is not a contradiction to the lower bound, since
bucket sort does not use comparisons. It uses the fact that the values of the numbers can
be used efficiently as addresses (buckets).

When discussing decision trees, we usually ignore their sizes, and concentrate only
on their heights. As a result, even simple linear-time algorithms may correspond to
decision trees with an exponential number of nodes. The size is not important, since we
do not intend actually to construct the tree. We use the tree only as a tool for lower
bound proofs. Ignoring the size makes the proofs more powerful, since they may apply
to programs of exponential size. On the other hand, the technique may be too powerful,
rendering it useless for deriving lower bounds for problems that cannot be solved by
practical-sized programs, but can be solved with an exponential-sized program (e.g., a
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program with a table for all the possible solutions). Decision trees are nonuniform
models of computation. The tree depends on n, the size of the input. We can potentially
build different trees for different values of n. This is not just a whimsical worry. It turns
out that we can build decision trees of polynomial height — but exponential size — for
problems that probably require exponential running time, so decision trees are too
optimistic sometimes. That is, a decision tree lower bound may fall far below the actual
complexity of the problem. On the other hand, if the lower bound is equal to the upper
bound of a particular algorithm — as is the case with sorting — then the lower bound
implies that even if we use a lot more space, we cannot improve the algorithm.

It is interesting to note that the average running time of any comparison based
sorting algorithm is also €(nlogn). We omit the proof, which is much more
complicated (see for example Aho, Hopcroft, and Ullman [1974]).

6.5 Order Statistics

Given a sequence S =x,, X», ..., X, of elements, we say that x; has rank & in S if x; is the
kth-smallest element in S. We can easily determine the ranks of all elements in a
sequence by sorting the elements. However, there are many questions about ranks that
can be answered without sorting. In this section, we deal with such questions. We start
with the problem of finding the maximum and minimum elements, then consider the
general problem of finding the kth smallest element.

6.5.1 Maximum and Minimum Elements

Finding the maximum or the minimum element of a sequence is straightforward. If we
know the maximum of a sequence of size n—1, then we need only to compare this
maximum to the nth element to find the maximum of a sequence of size n (finding the
maximum of a sequence of size 1 is trivial). This process takes one comparison per
element, starting with the second element; hence, the number of comparisons is n — 1.
Suppose now that we want to find both the maximum and the minimum elements.

The Problem Find the maximum and minimum elements in a given
sequence.

The straightforward solution is to solve both problems independently. The total number
of comparisons will be 2n—3: n—1 to find the maximum and then n—2 to find the
minimum (because the maximum need not be considered). Can we do better? Consider
again an inductive approach. Assume that we know how to solve the problem for n—1
elements, and that we want to find the solution for n elements (the base case is trivial).
We have to compare the additional element to the maximum and minimum elements
found so far. This requires two comparisons, which implies that the total number of
comparisons will again be 2n —3, since no comparison is required for the first element,
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and only one comparison is required for the second element. We cannot improve the
solution by scanning the elements in a different order, because the position of the
elements in the sequence is irrelevant to the problem.

The next attempt can be to extend the solution by more than one element at a time.
Let’s try to extend the solution by two elements at a time. That is, assume that we know
how to solve the problem for n —2 elements, and try to solve it for n. (For this approach
to be complete, we need two base cases, n=1 and n=2, so that extending by two will
cover all natural numbers.) Consider x,_; and x,, and let MAX (min) be the maximum
(minimum) of the first n —2 elements (known by induction). It is easy to see that finding
the new maximum and minimum requires only three comparisons. We first compare x,,_,
to x,, then compare the larger of these two values to MAX, then compare the smaller of
them to min. So, overall, we have an algorithm with approximately 3n/2 comparisons
instead of 2n comparisons! Can we do better by adding three (or four) elements at a
time? Following the same approach leads to the same number of comparisons. It turns
out that we cannot reduce the number of comparisons for this problem by any method. It
is interesting to note that a divide-and-conquer approach also leads to about 3n/2
comparisons (Exercise 6.14).

6.5.2 Finding the kth-Smallest Element

We now consider the general problem.

The Problem Given a sequence S=x,, x5, ..., x, of elements, and
an integer k such that 1 <k <n, find the kth-smallest element in S.

This problem is called order statistics or selection. If k is very close to 1 or very close
to n, then we can find the kth-smallest element by running the algorithm for finding the
minimum (maximum) element k times. This approach requires approximately kn
comparisons. Sorting would be better than this naive algorithm, unless & is O (log n) or
n—=0 (logn). There is, however, another algorithm that finds efficiently the kth smallest
element for any value of .

The idea is to use divide and conquer in the same way as it is done in quicksort,
except that only one subproblem has to be solved. In quicksort, the sequence is
partitioned by a pivot into two subsequences. The two subsequences are then sorted
recursively. Here, we need only to determine which subsequence contains the kth
smallest element, and then to continue the algorithm recursively only for this

subsequence. The rest of the elements can be ignored. The algorithm is given in Fig.
6.16.

Complexity As in quicksort, choosing poor pivots leads to a quadratic algorithm.
Since only one subproblem has to be solved in each recursive call, the running time of
this algorithm is lower than that of quicksort. The average number of comparisons is
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Algorithm Selection (X, n, k) ;
Input: X (an array in the range 1 to n), and k (an integer).
Output: S (the kth smallest element; the array X is changed).

begin
if (k <1)or (k> n)then print "error"”
else
S :=Select(1, n, k)
end

procedure Select (Left, Right, k) ;
begin
if Left = Right then
Select := Left
else
Partition (X, Left, Right) ; { see Fig. 6.9 }
Let Middle be the output of Partition ;
if Middle —Left+1 2k then
Select (Left, Middle, k )
else
Select (Middle + 1, Right, k — (Middle — Left + 1))
end

Figure 6.16 Algorithm Selection.

O (n), but we will not prove that here. It is also possible to find the kth smallest in O (n)
steps in the worst case. However, in practice, the algorithm presented in Fig. 6.16 is
more efficient.

Comments Most applications of order statistics require finding the median, that is,
the n/2-smallest element. Algorithm Selection is an excellent median-finding algorithm.
There is no simpler algorithm for finding only medians. In other words, extending the
median-finding problem to finding any kth-smallest element makes the algorithm
simpler! This is another example of strengthening the induction hypothesis since the
recursion requires arbitrary values of k.

6.6 Data Compression

Data compression is an important technique for saving storage. Given a file, which we
consider as a string of characters, we want to find a compressed file, as small as possible,
such that the original file can be reconstructed from the information in the compressed
file. Data compression is useful, for example. when access to the file is infrequent, so the
work involved in compressing and uncompressing is justified by the storage savings. It is



146 Algorithms Involving Sequences and Sets

also important in communication problems where the cost of sending information is
greater than the cost of processing it. Data compression has many more applications, and
it is a very developed field. In this section, we describe only one algorithm for one
particular aspect of data compression.

For simplicity the file is assumed to be a sequence of English letters. Each of the
26 characters is represented by a unique string of bits, called the encoding of the
character. If the length of all encodings is the same (as is the case for most standard
encodings), the number of bits representing the file depends only on the number of
characters in that file. On the other hand, it is possible to choose smaller bit
representations for characters (such as A) that appear more often and larger
representations for characters (such as Z) that appear rarely. For example, in ASCII
(American Standard Code for Information Interchange), all characters are represented by
bit strings of size 7. A is represented by the bit string 1000001, B by 1000010, and so on.
(There is room for 128 characters, including lower-case and special characters.) The
word ‘‘AND’’ (and any other word with three letters) requires 21 bits. If we change the
representation of A to, say 1001, we save 3 bits every time A appears. However, not
every set of encodings is valid. There may be ambiguities. For example, we cannot
choose 1001 as an encoding for A and leave the encoding of M as 1001101, because
when we read 1001 we cannot determine whether it is A or is part of M. We could use
special delimiters to separate characters, but that would only add to the representation. In
general, the prefixes of an encoding of one character must not be equal to a complete
encoding of another character. We call this constraint the prefix constraint. Whenever
we shorten the encoding of one character, we may have to lengthen the encodings of
others. The problem is to find the best balance, assuming we know the frequency of
appearances of the different characters.

The Problem Given a text (a sequence of characters), find an en-
coding for the characters that satisfies the prefix constraint and that
minimizes the total number of bits needed to encode the text.

First, we have to compute the number of times each character appears in the text; we call
this value the frequency of the character. (In many cases, we can use standard frequency
tables computed for typical texts, instead of computing the exact frequency table for the
particular text.) Denote the characters by C, C,, ..., C,, and denote their frequencies by
f1.f2, ..s fy. Given an encoding E in which a bit string S; of length s; represents C;, the
length of the file F compressed by using encoding E is

LE.F) =Y s f
i=l

Our goal is to find an encoding E that satisfies the prefix constraint and minimizes
L(E, F).
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The prefix constraint is needed to make the decoding unambiguous, so let’s look at
a decoding procedure. We need to scan the sequence of bits one by one until we get a
sequence that is equal to an encoding of one of the characters. Consider a binary tree in
which each node has either two emanating edges labeled by 1 and 0, or no emanating
edges. The leaves in this tree correspond to the characters. The sequence of Os and 1s on
the path from the root to a leaf corresponds to the character’s encoding (see Fig. 6.17).
The prefix constraint says that all characters must correspond to leaves. When the
encoded file is scanned and a leaf is reached, we can safely determine the corresponding
character. Our problem is to construct such a tree that minimizes L (E, F). The tree
representation is not necessary in order to solve the problem. It is useful, however, to
have a graphic illustration of the problem (and its constraints).

The algorithm is based on a reduction of a problem with n characters to a problem
with n—1 characters (the base case is trivial). As usual, the main difficulty is how to
define the induction hypothesis and in which order to eliminate characters. The reduction
here is different from the ones we have seen so far. Instead of simply eliminating one
character from consideration, we introduce a new ‘‘artificially made’’ character in place
of two existing characters. This technique is a little more complicated, but it serves the
same purpose — the size of the input is reduced. Let C; and C; be two characters with
minimal frequency (if there are more than two such characters, then ties are broken
arbitrarily). We claim that there exists a tree that minimizes L (E, F) in which these
characters correspond to leaves with the maximal distance from the root. Otherwise, if
there is a character with higher frequency lower in the tree, it can be exchanged with C;
or C; decreasing L(E, F). (If its frequency is equal, it can still be exchanged without
changing L (E, F).) Since each node in the tree has either two children or no children (or
else we can shorten the tree), we can assume that C; and C; are together. We now
replace C; and C; with a new character, called C;;, whose frequency is the sum f; +f;.

The problem now has n — 1 characters (n —2 old and one new), and as such can be
solved by the induction hypothesis. We obtain the solution of the original problem by
substituting an internal node in the reduced problem with two leaves corresponding to C;
and C; in place of the leaf corresponding to C;;. We leave the proof of optimality as an
exercise.

01

010 011

Figure 6.17 The tree representation of encoding.
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|mplementation The operations required for Huffman’s encoding are (1) insertions
into a data structure, (2) deletions of the two characters with minimal frequency from the
data structure, and (3) building the tree. A heap is a good data structure for the first two
operations, each of which requires O (logn) steps in the worst case. The algorithm is
given in Fig. 6.18. This compression technique is known as Huffman’s encoding after
D. Huffman [1952], who proposed this algorithm.

Algorithm Huffman_Encoding (S, f) ;
Input: S (a string of characters), and f (an array of frequencies).
Output: T (the Huffman tree for S).

begin
insert all characters into a heap H according to their frequencies ;
while H is not empty do
if H contains only one character X then
make X the root of T
else
pick two characters X and Y with lowest frequencies
and delete them from H ;
replace X and Y with a new character Z whose frequency is
the sum of the frequencies of X and Y ;
insertZtoH ;
make X and Y children of Z in T { Z has no parent yet }
end

Figure 6.18 Algorithm Huffman Encoding.

O Example 6.1

Suppose that the data contains six characters A, B, C, D, E, and F, with frequencies 5, 2,
3,4, 10, and 1, respectively The Huffman tree corresponding to these characters is given
in Fig. 6.19. The internal nodes are numbered according to the time they were created. O

Complexity Building the tree takes constant time per node. Insertions and deletions
take O (log n) steps each. Overall, the running time of the algorithm is O (n log n).

6.7 String Matching

Let A=a,a, -+ a, and B=h, b, - b,,, m<n, be two strings of characters. We
assume that the characters come from a finite set. (It is convenient to think of English
characters, although it is not necessary.) A substring of a string A is a consecutive
sequence of characters a;a;.; *** 4a; from A We denote by A (i) (B(i)) the special
substringa,a, -~ a; (b, by * - bj).
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Figure 6.19 The Huffman tree for example 6.1.

The Problem Given two strings A and B, find the first occurrence
(if any) of B in A. In other words, find the smallest & such that, for all i,
1<i<m, we have a;,; =b;.

The most obvious example of this problem is a search for a certain word or pattern in a

text file.' Any text editor must contain commands to find patterns. The problem also has
applications to other areas — including molecular biology, where it is useful to find
certain patterns inside large RNA or DNA molecules.

This problem seems simple at first. We can try to match B inside A by starting at
the first character of A that matches b, and continuing (comparing to b, and so on) until
we either complete the match or find a mismatch. In the latter case, however, we must go
back to the place from which we started and start again. This process is illustrated in Fig.
6.20 by an example that we will use throughout this section. In this example,
A =xyxxyxyxyyxyxyxyyxyxyxx, and B =xyxyyxyxyxx. The first mismatch occurs at ay
since by #a,. We now must start comparing b, to a,, which leads to a mismatch right
away. Next, we start at @3, which is a match, but a4 #b,. The next attempt is more
promising: We have a match from a4 to a;, only to have a mismatch at ag. Now, we
need to backtrack several steps and to compare b, to a5 (mismatch), then b, to a4, and
so on. Eventually, we find a match starting at a 3. We may have to backtrack and
compare again a substantial number of times, leading to O (mn) number of comparisons

'At least, that is the most obvious one to me, as I am currently editing a text file.
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A = XYXXYXYXYyXYXyxyyxyxyxx. B =xyxyyxyxyxx.

23456789 1011121314151617181920212223
Xy X Xyxyxyyxyxyxyyxyxyzxx
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12: X
13: Xy xXyyxyxyxux

Figure 6.20 An example of a straightforward string matching.

in the worst case. Notice that a lot of the work is redundant. For example, we find twice
that the subpattern xyxy fits inside A starting at @, (lines 6 and 11). In the example of
finding a word in a text file, the number of backtracking steps will be very small, since
most of the time the mismatch will occur early on. This simple algorithm is fairly good
for such applications. In other cases, where the alphabet is small and the patterns have
many repetitions, the number of backtracking steps may be large. The algorithm above
may compare the same subpattern to the same place in the text many times. We would
like to find an algorithm that avoids such worst cases. The problem is to arrange the
information we learn throughout the algorithm such that it can be used efficiently later on
when the same matches occur in other places.

To improve the straightforward algorithm we must first understand the reasons for
its inefficiency. The bad case we discussed was caused by the need to backtrack. A
particular bad case will occur if the pattern is yyyyyx and the text is yyyyyyyyyyyyx. We
will compare the five ys in the pattern to the text, find the mismatch with the x, move one
step to the right, and make four redundant comparisons again and again. (This simple
case is easy to handle, but it illustrates the general problem.) On the other hand, consider
the pattern xyyyyy. To match this pattern in the text, we look for occurrences of x
followed by five ys. If the number of ys is not sufficient, there is no need to backtrack.
We will need to find the next x, and all the matched ys will not help. The straightforward

algorithm, adapted to the pattern xyyyyy, runs in linear time since no backtracking is
needed.
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Let’s return now to the original pattern B =xyxyyxyxyxx. Suppose that a mismatch
occurs when the fifth character of B is scanned (as it is when ag is compared to it in line
4 of Fig. 6.20). The preceding two characters in A must have been xy (since they
matched). But, xy are also the first characters of B. We now want to ‘‘slide’’ B to the
right and compare the current character in A to some character in the middle of B (taking
into account the previous matches). We would like to slide B as far to the right as
possible (to save comparisons) without bypassing potential matches. In this case, we can
slide B two steps to the right. We continue the match by comparing the same character in
A that caused the mismatch (ag in the example) to b3, since we already know that b, and
b, matched. (In fact, that is exactly what we did later on, in line 6 of Fig. 6.20, except
that it took us three more redundant comparisons — x in line 5, and xy at the beginning of
line 6 — to get there.) Notice that this whole discussion is completely independent of A!
We know the last few characters in A since they have matched B so far.

In the following discussion, we will not assume that there are only two characters
in the text (and pattern), even though, for simplicity, the examples will contain only two
characters. It is possible (and that is the subject of Exercise 6.45) to make the algorithm
even more efficient in this case.

Let’s look at another example by continuing the match. The mismatch at line 6 of
Fig. 6.20 is at the last character of B, b,,. We can now do a lot more sliding. Consider
the subpattern B (10)=b, b, - ** bjy. We know that B(10) is exactly the same as the
preceding 10 characters in A; that is, B (10)=A[6..15], because they matched. We want
to determine exactly how many steps B can be shifted to the right until there is some
hope of another match. We determine this number by looking for a maximum suffix of
B (10) that is equal to a prefix of B. In this case, that suffix is of length 3 (xyx), as is
illustrated in Fig. 6.21. In the figure, B(10) is shifted, one step at a time, and is
compared to itself, until a prefix matches a suffix. (The last character, b,, is ignored
since it is the cause of the mismatch.) Since we know that B[1..3]=B[8..10], we can
continue by comparing a ¢ to b4, and so on, until the complete match occurs. We save
all the comparisons on lines 7 to 12 and half those on line 13. The only difference
between Fig. 6.21 and Fig. 6.20 is that the information in Fig. 6.21 depends only on B.
This is important because we can preprocess B once, and find all the relevant information
about it regardless of the text A. We now can take advantage of all the matches done in
line 6 of Fig. 6.20; none of them will be repeated.

B= x y x y y x y x y x x
x - - .

Figure 6.21 Matching the pattern against itself.
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The preprocessing of B is the essence of the improved algorithm. We will study all
the repeating patterns of B and devise a way to handle mismatches when they occur
without backtracking. Our scheme is the following. The string A is always scanned
forward; there is no backtracking in A, although the same character of A may be
compared to several characters of B (when there are mismatches). When a mismatch is
encountered, we consult a table to find how far in B we must backtrack. There is an entry
in the table for each character in B corresponding to the amount of backtracking (or the
number of shifts) required when there is a mismatch involving this character. In a
moment, we will show how to construct this table efficiently. We first define the table
precisely and show how we use it for the string-matching problem.

The idea behind the table should be clear now. For each b; we want to find the
largest suffix of B (i — 1) that is equal to a prefix of B (i —1). If the length of this suffix is
Jj, then the mismatched character in A can be matched against b, directly, without going
through all the other redundant matches. We already know that the most recent j
characters in A match the beginning of B. Furthermore, since this suffix is the largest
among those that are equal to a prefix, we know that B cannot fit into A any farther to the
left. The table is called next, and here is a precise definition of the values of its entries:

next (i) = the maximum j (0<j<i-1) such that b,_jb;,_j,; - bi_; =
B (j), and O if no such j exists.

For convenience we define next (1)=-1 to distinguish this case. It is clear that nexr (2) is
always equal to O (since there is no j satisfying 0 < j <2—1). The values of the next table
for the pattern B in Fig. 6.21 are given in Fig. 6.22. These values can be computed in a
brute force way, as was done in Fig. 6.22. However, there is an elegant way to compute
all these values in time O (m). Let’s first assume that the values of next are given to us,
and see how to perform the matching. Afterwards, we will describe how to compute
next.

The matching proceeds as follows. The characters in A are compared to those in B
until there is a mismatch. At that point, say at b;, the next table is consulted and the same
character in A is compared against b, (since the first next (i) characters already
match). If this is a mismatch too, then the next comparison is against by prexr(iys1)+1- and
so on. The only exception to this rule is when the mismatch is against b,; in this case,

i= 1 2 3 4 5 6 7 8 9 10 11
B= X 'y x y y x y x 'y X X
next= -1 0 O 1 2 0 1 2 3 4 3

Figure 6.22 The values of nexr.
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we want to proceed in A. This case can be determined by the special value of next (1),
which is —1. The program for string matching is given in Fig. 6.23.

Algorithm String_Match (A, n, B, m) ;
Input: A (a string of size n), and B (a string of size m).

{ We assume that next has been computed; see Fig. 6.25 }
Output: Srart (the first index such that B is a substring of A starting

at A [Start)).
begin

ji=li=1;

Start :=0;

while Start = 0 and i < n do
ifBjl=Al[i] then

j=j+1;
i=i+1
else
Jji=mnext[jl+1;
if j =0 then
j=1;
i=i+1;

ifj=m+ I then Start :=i-m
end

Figure 6.23 Algorithm String Match.

It remains to find an algorithm to compute the values of the next table. We use
induction. As we mentioned, next (2) =0, which takes care of the base case. We assume
that the values of next for 1, 2, ..., i — 1 have been computed, and we consider next (i). At
best, next (i) can be next(i—1)+1, which will happen if b;,_; =b,eyi-1)+1- In other
words, the largest suffix that is equal to a prefix is extended by b;_,. This is the easy
case. The difficult case is when b;_) #b,.yi-1)+1. We need to find a new suffix that is
equal to a prefix. However, we already know how to fit the largest suffix of B (i —2): It
fits in by by byeyi-1) (see Fig. 6.24). But having b;_) #b,eqi-1)+1 18 exactly the
same as having a regular mismatch at b, ;_1)+;! And we already know what to do
about that. If there is a mismatch at index j, we go to next (j). So, we have a mismatch
at index next (i— 1)+ 1, and we go to next (next (i —1)+1). That is, we try to match b;_,
10 by nexti-1)+1)+1- If they match, we set next (i) = next (next (i — 1) + 1) + 1. Otherwise,
we continue in the same fashion until we either get a match or we return to the beginning.

O Example 6.2

Let B = xyxyyxyxyxx (the same as in Fig. 6.21), and consider next(11). We first look at
next (10), which is 4, and compare by to bs. If they had been the same, then the largest
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next()+1  ‘next(i-1)+1 il i

{ 1 J

Figure 6.24 Computing next(i).

prefix that is equal to a suffix would have been 5, but they are not. So, we have a
mismatch at bs, and we look at next (5) which is 2. We now compare b g to b3, and they
happen to be the same. Hence, next (11)=3, which can easily be verified by hand. 0

The algorithm for computing the next table is difficult to understand, but it is not difficult
to implement. The program is given in Fig. 6.25.

Algorithm Compute_Next (B, m) ;
Input: B (a string of size m ).
Output: next (an array of size m).

begin
next(l) :=-1;
next(2) :=0;
Jori:=3tomdo
Ji=next(i=1)+1;
while b;_, # b; and j >0 do
Ji=next(j)+1;
next (i) == j
end

Figure 6.25 Algorithm Compute Next.

Complexity A character of A may be compared against many characters of B. If
there is a mismatch, then the same character of A is compared against the character of B
pointed to by the next table. If there is another mismatch, then we continue comparing
against the same character of A until there is either a match or we reach the beginning of
B. Nevertheless, we claim that the running time of this algorithm is still O (n). How
many times can we backtrack for one character from A, say ;7 Let’s assume that the
first mismatch involved b;. Since each backtrack leads us to a smaller index in B, we can
backtrack only k times. However, to reach b, we must have gone forward k times
without any backtracking! If we assign the costs of backtracking to the forward moves,
then we at most double the cost of the forward moves. But there are exactly n forward
moves, so the number of comparisons is O (n).
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This algorithm was developed by Knuth, Morris, and Pratt [1977], and it is known
as the KMP algorithm. Another fast algorithm for this problem was developed by
Boyer and Moore [1977]. We sketch it briefly. The difference between the algorithms is
that the Boyer—Moore algorithm scans B from the end rather than from the beginning.
That is, the first comparison will be of b,, against a,,. If there is a match, then the next
comparison will be of b,,_; against a,,_,, and so on. If there is a mismatch, we use the
information, much as we did in the previous algorithm, to shift the whole pattern to the
right. For example, if a,, = ““Z,”’ and Z does not appear at all in B, then the whole
pattern can be shifted to the right by m steps, and the next comparison will be of a,,
against b,,. If Z does appear in B, say at b;, then we can shift by m —i steps. The
decision how much to shift becomes more complicated when there are several partial
matches. On the one hand, we want to utilize the matches already found. On the other
hand, it is more efficient to shift the whole pattern as far as possible, even if the same
comparisons may have to be performed twice. We omit the details. The interesting
characteristic of this algorithm is that it is likely to make fewer than n comparisons (in
regular text)! This is because one bad mismatch allows us to shift, without any more
comparisons, by m.

6.8 Sequence Comparisons

The subject of sequence comparisons has received a lot of attention lately. The main
reason for that attention is the applications to problems in molecular biology. We
concentrate here on only one problem — finding the minimum number of edit steps
required to change one string into another. The main technique used throughout this
section is dynamic programming (discussed in Section 5.10).

Let A=a;a, - a, and B=b, b, -+ b,, be two strings of characters. We
assume that the characters come from a finite set (English characters, for example). We
would like to change A character by character such that it becomes equal to B. We allow
three types of changes (or edit steps), and we assign a cost of 1 to each: (1) inserr —
insert a character into the string, (2) delete — delete a character from the string, and (3)
replace — replace one character with a different character. For example, to change the
string abbc into the string babb, we can delete the first a, forming the string bbc, then
insert an a between the two bs (babc), and then replace the last ¢ with a b for a total of
three changes. However, we can also insert a new b at the beginning (forming babbc),
and then delete the last c, for a total of two changes. Our goal is to minimize the number
of single-character changes.

The string-edit problem has also applications to file comparisons and revisions
Maintenance. We may have a text file (or a program) and another file that is a
Mmodification of the first one. It is convenient to extract the differences between the two
files. There may be several versions of the same program, and, if the versions are similar
and they need to be archived, it is more efficient to store only the differences instead of
Storing the whole programs. In such cases, we may allow only insertions and deletions.
In other cases, we may assign different costs to each of the edit steps.
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There are quite a few possible changes, and it seems difficult to find the best one.
As usual, we try induction. We denote by A (i) (B (i)) the prefix substrings a,a, - - - q;
(by by -+ bi). Our problem is to change A (n) to B (m) with a minimum number of edit
steps. Suppose that we know the best way to change A (n—1) to B(m) by induction.
(There may be several different best solutions; we assume only that we know one of
them.) With one more deletion, that of a,, we have a way to change A (n) to B (m). But
this may not be the best way of doing it. It could be that it is better to replace a, with b,,,
or better yet, a, may even be equal to b,,.

We need to consider all the different possibilities of constructing the minimum
change from A to B with the aid of the best changes of smaller sequences involving A and
B. Denote by C (i, j) the minimum cost of changing A (/) to B (j). Let’s assume for now
that we are interested only in finding the cost of changing A to B and not in the change
itself. We are interested in finding a relation between C (n, m) and C (i, j)s for some
combination of smaller is and js. It is not hard to see that there are four possibilities,
corresponding to the three different edit steps and to doing nothing:

delete: if a, is deleted in the minimum change from A to B, then the
scenario above holds. The best change would be the one from A (n-1) to
B(m) and then one more deletion. In other words,
Cinym)=C(n-1,m)+1.

insert: if the minimum change from A to B involves insertion of a character
to match b,,, then we have C (n, m)=C (n, m—1)+1. That is, we find (by
induction) the minimum change from A(n) to B(m—1) and insert a
character equal to b,,,.

replace: if a, is replacing b,, then we first need to find the minimum
change from A (n - 1) to B (m — 1) and then to add 1 if a,, #b,,.

match: if a, is equal to b,,, then C (n, m)=C(n—-1,m—1).

Denote

0 ifa;=b,
€D =11 ifa b,

We can now combine these four cases into the following recurrence relation.

Cn-1,m)+1 ( deleting a,,)
C(n,m) = ming C(n,m—-1)+1 (inserting for b,,)
Cn=1,m=1)+c(n, m) (replacing V matching a,),

with C (i, 0)=i for all i, 0<i<n, and C(0, j)=j forall j, 0<j<m.

It is not difficult to prove that these possibilities are the only ones. Consider a,,. It
must be handled somehow. It is either deleted, which is handled by the first case, or it is
mapped into some character in B. In the latter case, either a, is mapped into b,,, which is
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handled by the third or fourth case, or it is mapped into a character appearing before b,,,
in which case something must be inserted after a,,.

The problem with this approach is that we used induction too many times! We
reduced a problem of size (n, m) to three problems of only slightly smaller sizes. If we
use recursion separately for each smaller problem, we triple the work every time we
reduce the size by a constant. That leads to an exponential algorithm. Fortunately, in
this case there is no need to solve each subproblem separately. The key to this
observation is that there are not too many different subproblems altogether. Each
possible subproblem involves computing C (i, j) for some i and j in the ranges 0<i<n,
and 0<j<m. There are nm combinations of such is and js, so there should not be a need
for more than nm subproblems. This is the same phenomenon we observed in the
knapsack problem (Section 5.11). To overcome it, we use strong induction. Instead of
just extending a problem of size n -1 to a problem of size n, we extend all subproblems
of size <n to the problem of size n. This is a two-dimensional problem, so we have to
extend all subproblems of sizes <(n, m) to the problem of size (n, m). The notation
<(n, m) means ‘‘any combination of (i, j) such that at least one of these values is less
than the corresponding bound and the other one is no greater than its bound.”’

We will be able to use strong induction if the solutions of all the subproblems are
available to us. We create a table with the results of all subproblems. Consider Fig. 6.26.
To compute the value of C (i, j), we need the three other values indicated by shading in
the figure. We want to scan the matrix so that, whenever we arrive at an entry, we have
already visited the three other entries necessary for its computation. In this case, a row-
order traversal (i.e., row by row from left to right) is sufficient. This two-dimensional
version of the approach is an example of dynamic programming.

Implementation We maintain a matrix C[1..n, 1..m ). Each entry C|[i, j] of the
matrix holds the value of C (i, j). Let M [i, j] denote the last move (change) that leads to
the minimum value of C[i, j]. The reason we need only the last change is that we can
backtrack and find all the changes from the matrix. This move is any one of delete(i),

i C(i )

Figure 6.26 The dependencies of C (i, j)-
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insert(j), or replace(i, j). To compute C [i, j], we need to know the values of C[i -1, j],
Cli, j—1],and C[i-1, j—1]. The last change can be determined according to which of
the possibilities leads to the minimum value for C[i, j]. The algorithm is given in Fig.
6.27.

Algorithm Minimum_Edit_Distance (A, n, B, m) ;
Input: A(a string of size n), and B (a string of size m).
QOutput: C (the cost matrix).

Begin
Jori:=0tondoCli, 0] :=i;
forj=1ltomdoC|[0,j]:=j;
fori:=1tondo
Jorj:=1tomdo
x:=Cli-1,j]1+1;
y=Cli,j-1]1+1;
ifaj=b; then
z:=Cli-1,j-1]
else
z2:=Cli-1,j-11+1;
Cl[i, j] :=min (x, y, z)
{ M i, j] can be set appropriately }
end

Figure 6.27 Algorithm Minimum_Edit_Distance.

Complexity It is clear from the program in Fig. 6.27 that the running time is O (nm).
One major drawback is the need for an O (nm) space as well.

Comments Dynamic programming is useful in cases where the solution of a
problem depends on many solutions of slightly smaller problems. The use of a table to
store previous results is common in dynamic programming. The table is usually scanned
in some order (usually row order), which leads to at least quadratic running times. Thus
the dynamic programming approach is usually less efficient than, say, the divide-and-
conquer approach.

6.9 Probabilistic Algorithms

The algorithms we discussed so far were deterministic — every step was predetermined.
If we use a deterministic algorithm twice for the same input, we will get two identical
execution patterns and results. Probabilistic algorithms are different. They include steps
that depend not only on the input but also on results of some random events. There are
many variations of probabilistic algorithms. We will discuss two of them. We start with
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a simple example and continue with a more formal treatment.

Suppose that we have a set of numbers x|, x5, ..., x,, and we want to select one of
them that belongs to the ‘‘upper half’’ (i.e., it is greater than or equal to the median). For
example, we may want to select a “‘good’’ student according to her or his grades. One
option is to select the maximum (which is, of course, always in the upper half). We have
already seen that finding the maximum requires n — 1 comparisons. Another possibility is
to start the maximum-finding algorithm and to stop just after the halfway point is
reached. A number that is greater than one-half of the numbers is definitely in the upper
half. This algorithm requires about n/2 comparisons. Can we do better? It is not difficult
to prove that it is impossible to guarantee that a number belongs to the upper half by
making less than n/2 comparisons. So, it may seem that we found an optimal algorithm.

This algorithm, however, is an optimal algorithm only if we insist on a guarantee.
In many cases, a guarantee is not required; a good likelihood that the solution is correct is
enough. For example, in hashing we could not guarantee that no collisions would occur,
but we were able to handle them if they did. (Hashing can also be considered a
probabilistic algorithm, as will become apparent shortly.) If we do not insist on a
guarantee, then a better algorithm exists for finding an element in the upper half. Let’s
take two random numbers from the set, x; and x;, such that i # j. Assume that x; 2.x;. The
probability that a random number from the set belongs to the upper half is at least 1/2 (it
will be more than 1/2 if many numbers are equal to the median). So, the probability that
both x; and x; do not belong to the upper half is at most 1/4. But, since x; 2x;, this
probability is the same as the probability that x; does not belong to the upper half. Thus,
the probability that x; belongs to the upper half is at least 3/4.

Being correct with a probability of 3/4 is usually not good enough. However, the
same principle can be easily extended. We can select k numbers at random and pick the
maximal among them. By the same argument, the probability that the maximal of the k
elements belongs to the upper half is at least 1 —27. For example, if k=10, we have a
success probability of 0.999. If k=20, we have a success probability of 0.999999. If
k =100, the probability of error is, for all practical purposes, negligible. The probability
of a programming error, of a hardware error, or of an earthquake for that matter, exceeds
that. We now have an algorithm that selects a number in the upper half, with
overwhelming probability, using at most 100 comparisons regardless of the size of the
input. (We assume that choosing an element at random can be done in one operation; we
discuss random-number generation in Section 6.9.1.)

This type of algorithm is sometimes called a Monte Carlo algorithm. It may give
a wrong result with very small probability, but its running time may be better than that of
the best deterministic algorithm. Another type of a probabilistic algorithm is one that
Never gives a wrong result, but its running time is not guaranteed. It may terminate
Quickly or it may run for an arbitrarily long time. This type of algorithm, which is
sometimes called a Las Vegas algorithm, is useful if its expected running time is low. In
Section 6.9.2, we show a Las Vegas algorithm that solves a certain coloring problem. In
Section 6.9.3, we describe an elegant technique for transforming some Las Vegas
algorithms into deterministic algorithms. We apply the technique to obtain an efficient
deterministic algorithm for the coloring problem of Section 6.9.2. This technique,
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however, cannot transform every efficient Las Vegas algorithm into an efficient
deterministic algorithm.

The idea of probabilistic algorithms has direct analogies to mathematical proof
techniques. Using probability to prove combinatorial properties is a powerful technique.
In a nutshell, the idea is to prove that, among a set of objects, the probability that an
object has certain properties is greater than 0, which is an indirect proof that there exists
an object with these properties. This method translates to algorithms in the following
way. Suppose that we are searching for an object with certain properties, and we know
that if we generate a random object it will satisfy the desired properties with nonzero
probability (this is a probabilistic proof that the desired object exists). We try to follow
the probabilistic proof by generating random events when appropriate, then finding the
object with some positive probability. We can repeat this process many times until we
succeed. If the probabilities work in our favor, we end up with an effective Las Vegas
algorithm.

6.9.1 Random Numbers

Probabilistic algorithms require that we select numbers at random. We must find
efficient methods for doing that. However, any deterministic procedure will generate
numbers according to some fixed scheme, depending on the steps of the procedure. If the
scheme is completely deterministic, then the numbers generated cannot be random in the
true sense of the word. They will relate to one another in a specific way. Fortunately, this
is not a major practical problem. In practice, it is sufficient to use pseudorandom
numbers. These numbers are generated by a deterministic procedure — and thus are not
truly random — but the procedure makes any relationship among the numbers
unnoticable by most applications.

It is beyond the scope of this book to discuss this issue in depth. We restrict the
discussion to one very effective method, called the linear congruential method, for
generating pseudorandom numbers. The first step is to choose an integer seed r (1),
which is a number selected at random by some external means (e.g., the current time in
microseconds, the current record of one’s favorite team). The rest of the numbers are
computed according to the following rule:

r(iy)=@@-1-b+1)modz,

where b and t are constants. The selection of b and ¢ must be done carefully. Knuth
[1981] suggests the following guidelines:  should be quite large, in the millions at least,
and can be a power of 2 (or 10) if that is convenient; b should be about one digit less than
1, and its decimal representation should end with x21, with x even. These (strange)
guidelines are designed to avoid hitting some bad cases that cause many repetitions of the
same numbers. The numbers generated by the linear congruential method are in the
range 0 to r—1. We can achieve a different range by multiplying the numbers by the
appropriate factor (r should be chosen to be a multiple of that range).
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6.9.2 A Coloring Problem

Let S be a set with n elements, let S|, S5, ..., S; be a collection of distinct subsets of S,
each containing exactly r elements, such that k <2" 2.

The Problem Color each element of S with one of two colors, red
or blue, such that each subset S; contains at least one red and at least one
blue element.

A coloring that satisfies this condition is called a valid coloring. It turns out that, under
the given conditions on the subsets, there is always a valid coloring. We present a simple
probabilistic algorithm that is adapted from a probabilistic proof of existence of such a
coloring. The algorithm is almost as simple as possible:

Take every element of S and color it either red or blue at random (with
probability 1/2) independently of the coloring of the other elements.

This algorithm obviously does not always lead to a valid coloring. Let’s calculate the
probability of failure. The probability that all elements of S; are colored red is 27". The
probability that at least one of the k subsets is colored only red is no more than
k27" < 1/4 (because of the bound on k). Hence, the probability that a random coloring is
not valid is at most 1/2 (since there is also a probability of at most 1/4 of a subset entirely
colored blue). This is a proof that a valid coloring always exists (otherwise the
probability of failure must be exactly 1). It also implies that the random algorithm is
very good. We can easily test the validity of a particular coloring. We simply check the
elements of each subset until we find two of different colors. We have a 50-50 chance of
success. If we fail, we simply try again. The expected number of times we need to run
the algorithm to get a valid coloring is 2. The algorithm is clearly a Las Vegas algorithm,
because we check each coloring and terminate only when we find a valid one. This is a
simple application of probabilistic methods. Unfortunately, probabilistic algorithms are
often not so simple. Next, we show that this algorithm can be modified such that it finds
a valid coloring deterministically.

6.9.3 A Technique for Transforming Probabilistic Algorithms
into Deterministic Algorithms?

We now show how to use induction to transform the probabilistic coloring algorithm into
a deterministic algorithm. The technique we present does not work for every Las Vegas
algorithm. We do not believe that it is possible to transform efficiently every Las Vegas
algorithm into a deterministic algorithm. This technique is interesting, however, because

* This section can be skipped at first reading.
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it employs the idea of strengthening the induction hypothesis in a powerful way. The
resulting algorithm will not only be efficient and deterministic, but will also solve a more
general problem, removing some of the restrictions imposed on the original problem.

Let S be again a set of n elements, and S, S, ..., S; be a collection of distinct
subsets of S. The probabilistic algorithm was based on the fact that the probability that
we get a valid coloring by coloring each element at random is at least 1/2. Suppose that
we can color an element either blue or red such that the probability that we get a valid
coloring of the rest of the elements by a random coloring is nonzero. We claim that this
will lead to an algorithm by induction on n. If we can color one element such that
probability of success remains nonzero, then we can color all elements by induction.

Since we are trying to handle one element at a time, we must strengthen the
induction hypothesis such that we no longer require that all subsets be of the same size.
The most important condition is that the probability of success remain nonzero. Let s;
denote the size of subset S;. The probability that S; is colored with only one color is
27%*' The probability of failure (i.e., the probability that a random coloring of all
elements is not a valid coloring) is no more than

k
F(n) - Z 2—x,+l'
i=l
This probability F (n) is a function of the sizes of the sets, but we write it as a function of
n for convenience. We are on solid grounds as long as F (n) < 1. Let’s try the following
induction hypothesis.

Induction hypothesis: We know how to color a set S with < n elements,
provided that F(n) < .

If one of the subsets has only one element, then this element contributes 1 to F (n), so
F (n) cannot be less than 1. If n=2, then, since the subsets are assumed to be distinct,
there can be only one subset with the two elements, and we can color one element blue
and one element red. Hence, the base case is established. We now try to reduce the
coloring problem for n elements to one for n — 1 elements.

Let x be an arbitrary element of S. There are two possible ways to color x — blue
or red. Suppose that x is colored blue. What is the probability that a random coloring of
the other n—1 elements is valid? A subset S; that does not include x has the same
probability of failure — namely 27" A subset S; that includes x has one fewer
element, and it only needs to have at least one red-colored element (it already has a
blue-colored element). Thus, the probability of failing to color subset S; is 27D,
Notice that this probability is the same as it was before we colored x! Therefore, F (n)
remains less than 1, and we now have to color only n — 1 elements. Does that mean that
we now have an algorithm? No. It means only that the first choice can be made
arbitrarily. After the first choice is made, the problem is different.

We can no longer use the same induction hypothesis, because, after we color the
first element, some of the subsets need to be colored with two colors, and some of them
need to be colored with only one color. We have to strengthen the induction hypothesis
further to reflect this change. Suppose that some elements are already colored. A subset



6.9 Probabilistic Algorithms 163

may be in one of four states: (1) the subset has red and blue elements, in which case we
do not have to consider it any further; (2) the subset has at least one red element but no
blue elements, in which case at least one of the uncolored elements must be colored blue;
(3) the subset has at least one blue element but no red elements, in which case at least one
of the uncolored elements must be colored red; and (4) the subset has no colored
elements. We call a subset in state (2) a red subset, a subset in state (3) a blue subset,
and a subset in state (4) a neutral subset. Let u; be the number of uncolored elements of
subset S;. If S; is in state (1), then it is already colored successfully. If S; is red or blue,
then the probability of failure in coloring it randomly is 27“. If S; is neutral, then the
probability of failure in coloring it randomly is 2% Let f; denote the probability of
failure in coloring subset S; randomly. We have to maintain the property that

k
Fim)=Y f <1. (6.1)

The induction hypothesis must reflect the status of all subsets. We extend the
problem to include arbitrary red, blue, and neutral subsets. In other words, the input is
now a collection of subsets, each labeled red, blue, or neutral. We assume that condition
(6.1) is satisfied.

The Problem Color each element of S with one of two colors, red
or blue, such that each red subset contains at least one blue element,
each blue subset contains at least one red element, and each neutral sub-
set contains at least one red element and at least one blue element.

The induction hypothesis is the straightforward hypothesis for this (nonstraightforward)
extension of the problem.

Induction hypothesis: We know how to color a set S with < n elements to
satisfy the conditions of the problem, provided that (6.1) is satisfied.

The base case is similar to the previous base case. Given a set S with n elements such
that (6.1) is satisfied, we need to color one element of S and to leave (6.1) satisfied.

We again pick an arbitrary element x € S. There are two possible ways to color x,
each leading to different statuses of the subsets. If we color x red, then all red subsets
containing x remain red (but with one less uncolored element), all blue subsets containing
x become successfully colored (and can be removed), and all neutral subsets containing x
become red subsets. Subsets that do not contain x are not changed. Coloring x blue leads
to similar changes. We can now compute the value of F(n— 1), which we denote by
Fg(n—1), to indicate that we color x red. We also denote by Fg(n — 1) the corresponding
value of F(n—1) in the case when x is colored blue. The key to the algorithm is the
following lemma.
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O Lemma 6.2

Let F(n) be the probability of failure initially, let Fg(n—1) be the
probability of failure after coloring x red, and let Fg(n—1) be the
probability of failure after coloring x blue. Then, Fr(n—1) +
Fg(n—1)<2F (n).

Proof: A subset that does not contain x remains unchanged. Its contribution to
Fr(n—1), Fg(n-1), and F (n) is the same, which is consistent with the claim. We
consider now the subsets that contain x. There are three possibilities, according to the
subset status. (1) A red subset contributes nothing to Fg(n—1), because it is now
successfully colored; its contribution to Fg(n—1) is twice as much as that to F(n),
because it has one fewer element. Again, this is consistent with the claim. (2) The case
of a blue subset is the same as that of a red subset. (3) A neutral subset with u; elements
contributes 27" to F (n). This subset becomes either red or blue with one less element.
Thus, it contributes 27D 4o both F r(n—=1) and Fg(n—-1). In either case, its
contribution to F (n), Fg(n —1), and Fg(n — 1) is the same, establishing the claim. O

Lemma 6.2 leads directly to the algorithm. The base case of one element is simple,
because, for (6.1) to be satisfied, there can be only one red or one blue subset containing
the element. If there is only one subset, then we can color the element with the other
color. If Fr(n—1)+Fg(n—1)<2F (n), then either Fr(n—1)<F (n) or Fg(n—1)<F (n)
(or both). We can compute these values and color x blue if Fg(n—1) is less than
Fgr(n—1), and color x red otherwise. By Lemma 6.2, condition (6.1) in the induction
hypothesis is satisfied, and the algorithm follows. We leave the implementation of this
algorithm to the reader.

6.10 Finding a Majority

Let E be a sequence of integers x|, x5, ..., x,. The multiplicity of x in E is the number of
times x appears in E. A number z is a majority in E if its multiplicity is greater than n/2.

The Problem Given a sequence of numbers, find the majority in the
sequence or determine that none exists.

For example, an integer can represent a vote in an election, and the problem is to find
whether someone won the election. If the number of candidates is small, then bucket sort
can be used effectively to solve the problem in O (n) time. However, if the number of
possible candidates is very large (the sign of the times), then bucket sort cannot be used.
We assume here that there is no limit on the number of possible candidates, and that they
are represented as arbitrary integers. Voting is also performed in computer systems, for
example, to achieve consistency of decisions.
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This problem is an excellent example of a straightforward problem whose
straightforward solutions are not as efficient as an elegant solution that requires some
thinking but is more efficient and simpler to implement. We first discuss several
straightforward approaches to the problem, and then present the elegant algorithm.

The most straightforward way to solve this problem is to use sorting. Once the
votes are sorted, it is easy to count how many votes each candidate got. Sorting,
however, requires O (nlogn) comparisons in the worst case. We will see that it is
possible to do better. We can also use a median-finding algorithm. If there is a majority,
then it must be equal to the median (the median is the (n/2)th smallest element, and the
majority appears more than n/2 times). Therefore, once the median is found, we can
count the number of times it appears, and if the median is not a majority, then there is no
majority. Since finding the median is easier than sorting, this is a better approach.
Another approach is to use a probabilistic algorithm. We can pick a small random
sample of the votes, take the majority of the sample, and count the number of times this
sample majority appears in the whole list. However, although it is easy to verify that a
given vote is a majority, it is impossible with this algorithm to prove that there is no
majority. The outcome of such an algorithm may be ‘‘undecided.”’ (This is the method
used for public-opinion polls; some election predictions are indeed *‘too close to call.’’)
It is also not easy to determine the appropriate size of the sample.

We now present a linear-time algorithm to find a majority that can handle any
number of candidates. The algorithm is faster and simpler than the median-finding
algorithm. As we did in the algorithm for finding a celebrity (Section 5.5), we first try to
eliminate as many elements as we can from being candidates for majority. It turns out
that we can eliminate all but one element. Finding this one candidate is helped by the
following observation, which allows us to reduce the problem to a smaller one:

If x; # x; and we eliminate both of these elements from the list, then the
majority in the original list remains a majority in the new list.

(Notice that the opposite is not true: the list 1,2,5,5,3 has no majority, but if we remove 1
and 2, then S becomes a new majority.)

So, if we find two unequal votes, we eliminate both, find the majority in the smaller
list, and check whether it is a majority in the original list. What if we do not find unequal
votes? If we scan the votes and they are all equal, then we have to keep track of only one
possible candidate; once we find a vote that is not equal to this one candidate, we can use
the observation above. If all the remaining votes are equal, then we have to check only
one candidate. This is the seed of the idea; we now show how to implement it.

The votes are scanned in the order they appear. We use two variables, C
(candidate) and M (multiplicity). When we consider x;, C is the only candidate for
majority among x|, X,,..,X;_;, and M is the number of times C appeared so far
excluding the times C was eliminated. In other words, the votes x|, x5, ..., x;_; can be
divided into two groups of sizes 2k and M, such that 2k +M =i -1, the first group
contains k pairs of unequal votes (which can be eliminated by the observation), and the
second group contains C appearing M times. If there is a majority among x|, x5, ..., x;_|,
then it must ‘‘survive’’ this elimination scheme, and so it must be equal to C. (Notice
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again that the opposite is not true; C may survive the elimination without being the
majority.) When we consider x; we compare it to C, and either increment or decrement
the multiplicity depending on whether or not x; is equal to C. We also have to take care
of the case of having no candidate (which will happen, for example, at x; if x, #x).
This case occurs when M is equal to 0, and we simply set C =x; and M =1. At the end,
we have only one candidate C, and we can count the number of times C appears in the
list and determine whether it is the majority or whether there is no majority. The
algorithm is given in Fig. 6.28.

Algorithm Majority (X, n) ;
Input: X (an array of size n of positive numbers).
Output: Majority (the majority in X if it exists, or —1 otherwise).

begin
C:=XI[1];
M=1;

{ first scan; eliminate all but one candidate C }
Jori:=2tondo
if M = 0 then
C:=XIi],
M:=1
else
ifC=X[i]thenM :=M + |
elseM :=M-1;
{ second scan; check whether C is a majority }
if M = 0 then Majority := -1
else
Count :=0;
fori:=1tondo
ifX[i] = C then Count := Count + 1 ;
if Count > n/2 then Majority := C
else Majority := -1
end

Figure 6.28 Algorithm Majority.

Complexity We use n— 1 comparisons to find a candidate and n — 1 comparisons, in
the worst case, to determine whether this candidate is a majority. Thus, overall, there are
at most 2n—2 comparisons. It is possible to reduce the number of comparisons to
3n/2+1, and that is optimal (Fischer and Salzberg [1982]). In any case, since there are
constant number of other operations per comparison, the overall running time is O (n).
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6.11 Three Problems Exhibiting Interesting Proof
Techniques?®

In this section, we present three unrelated problems involving sequences and multisets.
Each algorithm is an example of a different proof technique. The first algorithm utilizes
the principle of strengthening the induction hypothesis. We strengthen the induction
hypothesis four times during the development of this solution, leading to an efficient
algorithm. The second algorithm is an example of an obvious technique — improving
the ‘‘theorem’’ by eliminating all unnecessary assumptions. The example shows that this
principle is not always straightforward. This third example shows how to improve an
algorithm by choosing the base of the induction wisely.

6.11.1 Longest Increasing Subsequence

Let S be a sequence of distinct integers x|, x5, ..., X,. An increasing subsequence (IS)
of § is a subsequence x; , x; , ..., X;,, With i} <iy < **+ <y, such that, for all 1 <j <k, we
have x; <x; . A longest increasing subsequence (LIS) of S is an increasing
subsequence of maximum length.

The Problem Find a longest increasing subsequence of a given se-
quence of distinct integers.

The algorithm we develop in this section is an excellent example of the principle of
strengthening of the induction hypothesis. We will strengthen the hypothesis several
times, each time as a result of problems encountered in the previous attempt. Consider
first the straightforward induction.

Induction hypothesis (first attempt): Given a sequence of size < m, we
know how to find a longest increasing subsequence of it.

The base case consists of sequences of size 1 for which the problem is trivial. Given a
sequence of size m, we find an LIS of its first m — 1 elements, and consider x,,. If x,, is
greater than the last element in the LIS, given by the induction, then x,, can be appended
to the LIS, creating a new longer LIS, and we are done. Otherwise, however, it is not
clear how to proceed. For example, there may be several different LISs and x,, may
extend one of them, but not necessarily the one found by the induction. The next step
seems to be a strengthening of the induction hypothesis as follows:

Induction hypothesis (second attempt): Given a sequence of size < m,
we know how to find all the longest increasing subsequences of it.

* This section can be skipped at first reading.
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The base case is still trivial. We use induction in the same way, except that now we can
check x,, against all of the LISs and find whether a longer IS exists. This attempt solves
the previous problem, but it introduces another problem — we now have to find a// LISs.
If x,, cannot extend any LIS, then there may still be an IS of length 1 less than the
longest, and x,, can extend it, which will create a new LIS. It seems that we have gotten
ourselves into a hole, because we now have to find all ISs of largest and second largest
length. But to find all the second largest ISs, we will need to find all the third largest ISs,
then all fourth largest, and so on. This is a good example where strengthening the
induction hypothesis is overdone.

Let’s look back at the stronger induction hypothesis. Do we really need all LISs?
We need only to know whether x,, can extend one of them. Can we somehow find the
“‘best’’ one in terms of potential of extension? The answer is positive. The best LIS is
the one that ends with the smallest number! If we can extend any LIS, we can surely
extend this one. (There may be several different LISs that end with the same number,
and they are all equivalent in terms of extension potential. For simplicity, we talk about
‘“‘the best one’’ instead of ‘‘an arbitrary best one.”’) Let’s try another induction
hypothesis, this one a little weaker than the last one:

Induction hypothesis (third attempt): Given a sequence of size < m, we
know how to find a longest increasing subsequence of it, such that no other
longest increasing subsequence of it has a smaller last number.

The base case is still trivial. Given x,,, we can determine whether it can be appended to
the LIS found by the induction. Assume that the LIS is of length s. If x,, can be added,
then we have a new LIS, which is longer than the previous one; thus, this new LIS is
unique, so it is definitely the ‘‘best’’ one, and we are done. Otherwise, we know that no
longer increasing subsequence exists. But we are still not done. It may be the case that
X, cannot be added to the best LIS (since it is smaller than the last number in that LIS),
but it can be added to an IS of length s — 1, making the latter an LIS with a smaller last
number. To account for this possibility, we need to know the best IS of length s — 1. But
then again, if the induction hypothesis states that we know the best IS of length s—1,
then x,, may extend an IS of length s —2 making it the new best IS of length s—1. We
will have to be able to determine whether x,, extends such an IS in order to proceed with
the induction. So, we will need to know the best IS of length s —2, s — 3, and so on down
to the best IS of length 1, which is simply the smallest number in the sequence so far.
(Even without using induction, one can see that shorter ISs cannot be discarded
arbitrarily — there is always the possibility that one of these ISs is the start of the final
LIS.)

Yet again we try to strengthen the induction hypothesis. We denote by BIS(k) the
best increasing subsequence of length K — namely, the one that ends with the smallest
number (if there is more than one such subsequence we take an arbitrary one). We
denote by BIS(k)./ast the last number in the sequence BIS(k).

Induction hypothesis (fourth attempt): Given a sequence of size < m, we
know how to find BIS(k) for all k < m — 1, if they exist.
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The base case remains trivial. Given x,,, we have to find which of the BISs it can
change. x,, extends a certain BIS(k) if and only if the following two conditions occur: (1)
x, > BIS(k).last, so x,, can be added to BIS(k), and (2) x,, < BIS(k + 1)./ast, so BIS(k)
with x, at the end is better than BIS(k +1). We claim that BIS(1)./ast < BIS(2).last <

- < BIS(s).last, where s is the size of the LIS. This claim is true because, if
BIS(j).last < BIS(j — 1).last for some j, then the first j— 1 numbers of BIS(j) would be
better than BIS(j—1). The algorithm proceeds as follows. Given x,,, we look at the
values of BIS(i).last, for i=s, s—1,s-2, and so on, until we find one, say BIS(j)./ast,
which is smaller than x,,. If no such j exists, then x,, is the smallest number in the
sequence so far, and it becomes BIS(1). If j=s, then we extend BIS(s) with x,,, creating
a new BIS(s+1). (The previous BIS(s) remains unchanged.) Otherwise, we have
BIS(j).last < x,,, < BIS(j + 1).last. We then replace BIS(j + 1) with BIS(j)x,,.

This is basically the whole algorithm, and it is quite simple once we use the right
induction. Notice that the search can be performed by binary search, because we are
searching a sorted set. Hence, each x,, adds at most O (log m) comparisons, and the total
running time is O (nlogn). We leave it to the reader to complete the details of this
algorithm, which is not a straightforward task.

6.11.2 Finding the Two Largest Elements in a Set

A common technique, which is important in proving almost any theorem, is to search the
proof thoroughly for assumptions or steps that are not essential. Removing such
assumptions results in a better theorem. Having inessential assumptions is also
sometimes an indication that the proof may be wrong. Quoting Polya and Szego [1927]:
“‘One should scrutinize each proof to see if one has in fact made use of all the
assumptions; one should try to get the same consequence from fewer assumptions . . . and
one should not be satisfied until counterexamples show that one has arrived at the
boundaries of the possibilities.”” The same is true for algorithms. This principle sounds
simple, but many times it is not, as seen in the next example.

The Problem Given a set S of n numbers x|, x5, ..., X,, find the first
and second largest of them.

We are looking for an algorithm that minimizes only the number of comparisons of
elements from the set. We ignore other operations. Furthermore, for simplicity, we
assume that n is a power of 2.

We try the usual divide-and-conquer technique, by dividing the set S of size n into
two subsets P and Q of size n/2. If we use straightforward induction, we assume that we
know the first and second largest elements of P and Q, denote them by p |, p,, and q,, ¢>
respectively, and we try to find the first and second largest elements of S. It is easy to see
that two more comparisons are necessary and sufficient to find the first and second largest
elements of S. One comparison is between the two maximals p, and ¢, and the other
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one is between the ‘‘loser’’ and the second largest of the *‘winner’’ (see Fig. 6.29). This
approach leads to the recurrence relation 7'(2n)=2T (n)+2, T(2)=1, whose solution is
T (n)=3n/2-2. This is better than the straightforward 2n — 3 comparisons, and it is very
similar to the problem of finding the maximal and minimal elements presented in Section
6.5.1. We want to do even better.

If the two comparisons are necessary for the inductive step, then how can we
improve the total number of comparisons? Looking carefully at the comparisons in Fig.
6.29, we see that g, will not be used further in the algorithm. Therefore, the computation
leading to its discovery was unnecessary. If we can avoid this computation, then we will
save significant number of comparisons. However, until we compare p, to ¢, we do not
know whether p, or g, can be ignored. If we had known which subset was going to
“‘lose,”” then we could have used the regular maximum-finding algorithm for this subset,
saving many comparisons. So, we suspect that quite a few comparisons can be avoided,
but we do not know which ones they are.

The trick is to delay the computation of the second largest element until the end.
We keep only a list of candidates for second largest, and we do not assume that we know
the second largest element in the induction hypothesis:

Induction hypothesis: Given a set of size < n, we know how to find the
maximum element and a *‘small’’ set of candidates for the second maximum
element.

We have not defined a value for ‘‘small’’ in the hypothesis. We will discover the
appropriate value when we develop the algorithm.

The algorithm proceeds as follows. Given a set S of size n, we divide it into two
subsets P and Q of size n/2. By the induction hypothesis, we know the largest elements
of the two sets, p, and q, plus a set of candidates for the second largest, Cp and Cy. We
compare p, and g, and take the largest, say p,, to be the maximum of S. We then

P

9y

Py

[ )
9

Figure 6.29 Finding the largest and second largest elements (the dashed lines
correspond to the comparisons).
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discard Cy, since all elements of Cy, are less than g, which is at most the second largest,
and add only g, to Cp. At the end, we get the largest element and a set of candidates
from which we choose the second largest element directly. The number of comparisons
for finding the maximum satisfies the recurrence relation T(n) =2T (n/2)+1, T(2)=1,
which implies that T(n)=n—1. It is easy to see that log,n is a sufficient size for the
candidate set, because we add one more element to the candidate set when we double the
size of the set we consider. Therefore, finding the second largest element requires
logon—1 additional comparisons. The total number of comparisons is thus
n—1+logy,n—1, which, incidently, is the best possible (see [Knuth 1973b]). The
induction hypothesis, for the case when 7 is equal to a power of 2, is thus as follows.

Induction hypothesis: Given a set of size < n, we know how to find the
maximum element and a set of at most log,n candidates for the second
maximum element.

Comments Once an algorithm is constructed, it is a good idea to examine it
carefully for parts that do not contribute to the final result. Often, these parts can be
eliminated. Even if the redundant operations cannot be eliminated, they may be replaced
by simpler operations, which are more efficient.

6.11.3 Computing the Mode of a Multiset

Let S =(x,, x5, ..., X,) be a multiset of (not necessarily distinct) elements from a totally
ordered set. A mode of a multiset is defined as an element that occurs most frequently in
the multiset (there may be more than one mode). The number of times an element occurs
is called its multiplicity. The mode is thus the element with the highest multiplicity.

The Problem Find a mode of a given multiset S.

Our goal is to minimize the number of comparisons. One possible way to find the mode
is to use sorting. Once the elements are sorted, we can scan the sorted sequence and
count the multiplicities (equal elements will be consecutive in the sorted sequence). We
will see that sorting is not always necessary. The reason for thinking that sorting may not
be required is that finding the majority (Section 6.12) can be done in linear time, whereas
sorting requires O (n log n) time. This leads us to suspect that, if the multiplicity of the
mode is high, then there may be a fast way of finding it without sorting.

Let’s try the straightforward induction approach. We assume that we know the
mode of a multiset with n — 1 elements, and try to find the mode of an n element multiset.
This is not easy since there may be several elements with the highest multiplicity; the nth
element may break the tie. Suppose that the induction hypothesis states that we know all
the elements with the highest multiplicity. Then, we can determine whether the nth
element breaks the tie, but it may also increase the multiplicity of another number, which
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now has to be added to the list. We have already seen (Section 6.13.1) that keeping track
of all different ‘‘best’’ solutions is possible, but the cost will probably be too high. On
the other hand, it is not necessary that the nth element be arbitrary — we can choose a
special one. Suppose that the nth element is the maximum element. We still have
basically the same problems as before, but now we are closer to a solution. We can
reduce the size of the problem by removing not one but all occurrences of the maximal
element. We then solve the reduced problem, and compare the multiplicity of the mode
of the reduced multiset with the multiplicity of the maximal element.

We now have an algorithm, but unfortunately, it is still too slow. Finding the
maximum of a multiset of n elements requires n — | comparisons. If the multiset contains
quite a few distinct elements, then too many maximum computations will have to be
performed. In particular, if the multiset is in fact a set (i.e., all the elements are distinct),
then this algorithm is basically the same as the O (n?) selection sort.

To improve the performance of the algorithm, we resort to the divide-and-conquer
technique. Instead of using one element or a small set of elements in the induction, we
try to divide the multiset into two parts of about the same size. The two parts should be
disjoint, so that they lead to independent subproblems. How do we divide a multiset into
two approximately equal disjoint parts? We can first find the median of the multiset and
then split the multiset into three parts — less than, equal to, and greater than the median.
We have already seen how to find a median in O (n) expected number of comparisons
(Section 6.5). It is also possible to find the median in O (n) time in the worst case,
although we have not proved this result. We use the median-finding algorithm as a step
in our algorithm. Given a multiset of size n, we first find the median and perform the
splitting, then solve two subproblems of size no more than n/2. The mode of the original
multiset can be easily determined from the modes of the two smaller multisets, since the
smaller multisets are disjoint. Since finding the median and splitting can be done in
linear time, we get the familiar recurrence relation

T(n)<2T (n/2)+0(n), T2Q)=1,

which implies that T(n)=0 (nlogn). But this is no better than sorting. In fact, if the
splitter element is chosen at random instead of being the exact median, then this
algorithm is basically the same as quicksort.

We now come to the heart of this algorithm. To improve the performance, we look
at the base of the induction. Suppose that the multiplicity of the mode is M. We claim
that we can start the induction from submultisets of size M. In other words, we do not
have to continue splitting the multiset into parts smaller than M. Since all parts are
disjoint, one of the parts of size M must contain only the mode. At this point, the mode
will be discovered because the multiplicity of all other elements cannot exceed M.
Therefore, there is no need to divide the multiset any further.

The implementation of this algorithm is not straightforward. We cannot use
recursion, because we do not know beforehand how far to carry out the recursion. The
recursion should be terminated when the size of the multiset becomes at most M, but the
value of M is found during the execution of the algorithm by checking all the smaller
multisets. In each step, all the submultisets are checked, and, if none of them contains
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only one distinct element, then all of them are further divided. If any of the submultisets
contains only one distinct element, then we can terminate. We leave the implementation
details to the reader.

Complexity The resulting recurrence relation is modified only in its base:
T(n)<2T(n/2)+0 (n), TM)=0 M),

which implies that the number of comparisons is O (nlog(n/M)). An intuitive
explanation of this expression is that the recursion is carried out only until a multiset of
size M is encountered, which is a total of log(n/M) times. Each time it takes a linear
number of comparisons to divide and check all subproblems. In particular, if M =cn for
some constant c, then this is a linear-time algorithm. If M is a constant, then this is an
O (nlog n) algorithm. This algorithm is thus superior to sorting only if M is fairly high
and if the cost of comparisons is also high (there is a significant overhead for
remembering subproblems).

6.12 Summary

We touched on quite a few subjects in the this chapter — searching, sorting, order
statistics, data compression, string manipulation, probabilistic algorithms, and others.
We presented only one or two basic problems in each subject. In practice, problems are
often not as clean and simple to define as are the problems presented in this chapter. One
should therefore try to abstract the main parts of a given problem. The techniques that
we employed in this chapter are quite similar to those introduced in Chapter S. Induction
again plays a major role.

Many of the problems discussed in this chapter have straightforward solutions that
can be obtained with little effort — linear search and selection sort are two examples. If
the size of the input is small, these solutions are most often not only good enough, but
they are also better than sophisticated solutions. Whenever the size of the input is not
small (e.g., over 100), it is important to attempt to find better solutions. The use of
linear-search and quadratic-sorting algorithms, for example, is quite common.

Unfortunately, these and other inefficient algorithms are used too often for large inputs.*

Bibliographic Notes and Further Reading

A wealth of material about sorting and searching, including their history, can be found in
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algorithm is presented. The average performance of interpolation search was studied by
Perl, Itai, and Avni [1978], and some empirical results are given by van der Nat [1979].

Mergesort was probably first developed by von Neumann in 1945, and it was one
of the first stored programs to be implemented. An in-place version of mergesort was
first developed by Kronrod [1969]; see also Huang and Langston [1988], and Dvorak and
Durian [1988]. Quicksort is due to Hoare [1962]. A detailed study of quicksort appears
in Sedgewick [1978]. Heapsort was developed by Williams [1964]. A wonderful film
containing descriptions of nine major sorting techniques all shown with beautiful
animation was produced by the computer graphics group at the University of Toronto
[1981]. Even though sorting has been studied extensively for many years, there are still
many open problems. The exact number of comparisons required for sorting n numbers
is still unknown. The algorithm outlined in Exercise 6.30 is by Ford and Johnson [1959].
It was the ‘‘champion’’ for some time in terms of number of comparisons, but it was
proved not to be optimal by Manacher [1979]. Another widely used sorting algorithm is
shellsort invented by Shell [1959]. Shellsort is simple and very easy to implement.
However, its complexity is still unknown; see Incerpi and Sedgewick [1987] for recent
results and empirical observations. Decision trees have been used successfully to prove
lower bounds for several basic problems; Moret [1982] presents a survey of their uses.

An analysis of the probabilistic selection algorithm was given by Floyd and Rivest
[1975]. A linear-time deterministic algorithm for order statistics was first developed by
Blum, Floyd, Pratt, Rivest, and Tarjan [1972]. However, the running time is in fact
@(n) since the constant is very high. Schonhage, Paterson, and Pippenger [1976]
presents a median finding algorithm with at most 3n comparisons. The best-known lower
bound (on the number of comparisons) for finding the median is 2n (Bent and John
[1985]). This paper contains results for the general order statistic problem; the
expressions for the general lower bounds are more complicated.

Data compression has been studied widely due to its great importance. The
algorithm in Section 6.6 is due to Huffman [1952] (see also Knuth [1973a]). Variations
of Huffman’s algorithm that use only one pass are described by Knuth [1985] and Vitter
[1985]. Another effective and popular algorithm is due to Ziv and Lempel [1978]. More
on data compression in general can be found in Lynch [1985].

The string-matching algorithms presented in Section 6.7 are due to Knuth, Morris,
and Pratt [1977], and to Boyer and Moore [1977]. Galil [1979] improved the worst-case
running time of the Boyer—Moore algorithm. More on the complexity of the
Boyer—Moore algorithm can be found in Guibas and Odlyzko [1980] and in Schaback
[1988]. Empirical comparisons between various string matching algorithms can be found
in Smit [1982]. A probabilistic string matching algorithm was developed by Karp and
Rabin [1987]. This algorithm uses the idea of fingerprinting to make short
representations of large strings so that they can be compared efficiently. It can also be
used with two-dimensional patterns. The string matching problem can be extended to
look for patterns more complicated than just strings. For example, ‘‘wild cards’’ are
useful; we may want to search for all occurrences of strings of the form B*C, where B
and C are given strings and * denotes any string. A more general problem is to look for
any regular sets of strings. For more on these problems see Aho and Corasick [1975].
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Another important problem is to search for strings in a fixed text that has been
preprocessed. Suffix trees (Weiner [1973], McCreight [1976]) and Suffix Arrays
(Manber and Myers [1990]) allow fast search.

Sequence comparisons and their many applications are covered in a book edited by
Sankoff and Kruskal [1983]. Various problems involving strings are included in a book
edited by Apostolico and Galil [1985]. The algorithm given in Section 6.8 is due to
Wagner and Fischer [1974]. This algorithm can be improved in many ways, including
savings of storage (Hirschberg [1975]), improved running times when the alphabet is
very large (Hunt and Szymanski [1977]), and when the sequences are close (Ukkonen
[1985] and Myers [1986]). A survey of relevant results appears in Hirschberg [1983].

The probabilistic algorithm that finds an element in the upper half is due to Yao
[1977]. Random number generation is covered in detail in Knuth [1981]. The
probabilistic coloring algorithm given in Section 6.9.2 is based on a probabilistic proof of
existence given in Bollobds [1986]. The technique for converting probabilistic
algorithms to deterministic algorithms, which was illustrated in Section 6.9.3, is due to
Raghavan [1986]. The use of this technique to solve the coloring problem of Section
6.9.2 was pointed out to us by K. Pruhs. The general problem of finding a valid coloring
for arbitrary-sized subsets is NP-complete (Lovasz [1973]). Erdos and Spencer [1974]
present many examples of probabilistic techniques for proving combinatorial properties.

The majority problem was studied, for example, by Misra and Gries [1982]. Using
a more sophisticated data structure than the one presented in Section 6.10, Fischer and
Salzberg [1982] showed that the number of comparisons (but not the number of other
steps) can be reduced to 3n/2+ 1 in the worst case, and that this bound is optimal.

An excellent description of a solution to the longest increasing subsequence
problem (from which we borrowed heavily) is given by Gries [1981]. Erdos and
Szekeres [1935] proved, by a very elegant use of the pigeonhole principle, that every
sequence of distinct elements of length n>+1 must have either an increasing or a
decreasing subsequence of length n + 1. The problem of finding the largest and second
largest elements in a set was first suggested, in the context of arranging tennis
tournaments, by Lewis Carroll (see [Knuth 1973b]). Another algorithm for finding the
mode is given in Dobkin and Munro [1980] (see also Gonn 't [1984]).

The solution to Exercise 6.27 is discussed in Aho, Hopcroft, and Ullman [1974].
Exercise 6.34 is from Karp, Saks, and Wigderson [1986]. A solution to Exercise 6.39 is
given in Rodeh [1982]. The subject of Exercise 6.42 is discussed in Choueka. Fraenkel,
Klein, and Perl [1985]. The notion of realizable sequences (Exercise 6.64) was
introduced by Ryser [1957].

Drill Exercises

6.1 Design a good strategy for the following well-known game: One player thinks of a number
in the range 1 to n. The other player attempts to find the number by asking questions of the
form *‘is the number less than (greater than) 2" The object is to ask as few questions as
possible. (Assume that nobody cheats.)
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Find a strategy to the guessing game in Exercise 6.1 when the range of choice is unknown
— that is, the chosen number may be any positive number.

Suppose that you are using a program that handles large texts, for example, a word
processing program. The program takes as input a text, represented as a sequence of
characters, and produces some output. Once in a while, the program encounters an error
from which it cannot recover. Not only that, but it cannot even indicate what error it is, or
where it is. In other words, the only action the program takes is to halt and to output
*‘Error.”” Assume that the error is local; in other words, it results only from a particular
string in the text which the program, for some unknown reason, does not like. The error is
independent of the context in which the offending string appears. Suggest a strategy to
locate the source of the error.

Construct an example for which interpolation search will use (n) comparisons for
searching in a table of size n.

Write the complete program for radix-exchange sort. The input is a sequence of » integers,
each with k digits. Each digit is in the range 1 to m. You can assume that O (m) space is
available. First, write the program as a recursive procedure. Determine the amount of extra
space required by the recursive procedure. Then, design a nonrecursive program and try to
minimize the amount of extra space.

Write the complete programs for insertion sort (with linear search and binary search) and
selection sort.

Count the number of comparisons used to sort the input in Fig. 6.8 (by mergesort), and in
Fig. 6.11 (by quicksort). Compute the number of comparisons for the same input for
insertion sort and selection sort.

Prove, by using a loop invariant, that the first if statement in algorithm Mergesort (Fig. 6.7)
i< not necessary. In other words, prove that the result of the algorithm will not change if we
remove this if statement, and start the algorithm with the if statement ‘‘if Left # Right.”’

Compare mergesort with the solution to the skyline problem in Chapter 5. Try to formalize
the similarities. Will it be possible to use one solution almost as a *‘black box’’ to solve the
other problem?

Write the appropriate loop invariant for the main loop in Algorithm Partition (Fig. 6.9), and
prove the correctness of the algorithm.

Construct an example for which quicksort will use Q(n2) comparisons when the pivot is
chosen by taking the median of the first, last, and middle elements of the sequence.

In some cases, the input for a sorting algorithm is already almost sorted, which means that
the number of out-of-order elements is small. Describe how the different sorting algorithms
suggested in Section 6.4 perform for almost sorted inputs. Which algorithm would you use?
(You are encouraged to design your own.)

Construct a table similar to that in Fig. 6.15 for building a heap top down.

Design a divide-and-conquer algorithm to find the minimal and maximal elements in a set.
The algorithm should use at most 3n/2 comparisons (for n=2%). Can you pinpoint the
reason this algorithm requires less than the straightforward 2n — 3 comparisons algorithm?
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Build the Huffman tree for the set of characters in this question. Include all characters.
How many bits are saved in the storage of this question using Huffman trees versus a
storage based on a fixed-length encoding?

Construct the next table (Section 6.7) for the string aabbaabababbaabbaabb.

Construct the matrices C and M obtained by comparing the sequences aabcchbaabca to
baacbabaccaba using algorithm Minimum_Edit_Distance of Fig. 6.27.

Write the appropriate loop invariant for the first loop in Algorithm Majority (Fig. 6.28), and
prove the correctness of the first phase of the algorithm.

Creative Exercises

Unless specified otherwise, sequences and sets are assumed to be of size n, and to consist of
elements that are real numbers. Algorithms are said to run in linear time if they run in time O (n).
All the running times are worst case.

6.19

6.23

6.24

6.25

Given an array of integers A[l.n], such that, for all i, 1<i<n, we have
JAli]-A[i+1]]<1.Let A[1]=x and A [n] =y, such that x <y. Design an efficient search
algorithm to find j such that A [j]=z for a given value z, x<z<y. What is the maximal
number of comparisons to z that your algorithm makes?

Prove by using decision trees that the algorithm you developed for Exercise 6.19 is optimal
in the worst case (or improve your algorithm until you can prove that it is optimal).

The input is a set S with n real numbers. Design an O (n) time algorithm to find a number
that is not in the set. Prove that Q(n) is a lower bound on the number of steps required to
solve this problem.

The input is a set S containing n real numbers, and a real number x.

a. Design an algorithm to determine whether there are two elements of § whose sum is
exactly x. The algorithm should run in time O (n log n).

b. Suppose now that the set S is given in a sorted order. Design an algorithm to solve this
problem in time O (n).

Given two sets S, and S ,, and a real number x, find whether there exists an element from S,
and an element from §, whose sum is exactly x. The algorithm should run in time
O (n log n), where n is the total number elements in both sets.

Design an algorithm to determine whether two sets are disjoint. State the complexity of
your algorithm in terms of the sizes m and n of the given sets. Make sure to consider the
case where m is substantially smaller than n.

Design an algorithm to compute the union of two given sets, both of size O (n). The sets are
given as arrays of elements. The output should be an array of distinct elements that form
the union of the sets. No element should appear more than once. The worst-case running
time of the algorithm should be O (n log n).
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The input is a sequence of real numbers x,, X5, ..., X,, such that n is even. Design an
algorithm to partition the input into n/2 pairs in the following way. For each pair, we
compute the sum of its numbers. Denote by s, 55, ...,5,, these n/2 sums. The algorithm
should find the partition that minimizes the maximum sum.

Modify lexicographic sort to work for variable-length strings. In other words, you can no
longer assume that all numbers have exactly & digits. Some numbers may be long and some
short. It is possible of course to ‘‘pad’’ all numbers by adding ‘‘dummy’’ (0) digits to make
them all of the same length. Find an algorithm that avoids doing that and achieves a
running time linear in the total number of digits.

The input is a sequence x,, X, ..., X, of integers in an arbitrary order, and another sequence
a,,as,, .., a, of distinct integers from 1 to n (namely a,, a,, ..., a, is a permutation of
1,2, ..., n). Both sequences are given as arrays. Design an O (n log n) algorithm to order
the first sequence according to the order imposed by the permutation. In other words, for
each i, x; should appear in the position given in a;. For example, if x=17,5,1,9,and a =
3,2, 4, 1, then the outcome should be x =9, 5, 17, 1. The algorithm should be in-place, so
you cannot use an additional array.

The input is d sequences of elements such that each sequence is already sorted, and there is
a total of n elements. Design an O (n log d) algorithm to merge all the sequences into one
sorted sequence.

The following is a brief and incomplete description of a sorting algorithm known as the Ford
and Johnson sorting.

1. Arbitrarily form n/2 distinct pairs of elements

2. Compare the elements in each pair

3. Recursively sort the n/2 larger elements

4. Insert in some order the n/2 remaining elements into the sorted list of larger elements

This algorithm uses fewer comparisons than almost any other algorithm, provided that the
insertions in step 4 are done in a ‘‘good’’ order. Consider the cases of n = 5, 6, and 8. Find
a good order in which to insert in step 4. You should end up with an optimal sorting
algorithm (in terms of the number of comparisons) for these values of n (in fact, you will
get an optimal algorithm for any n < 12 with this algorithm).

The input is a sequence of n integers with many duplications, such that the number of
distinct integers in the sequence is O (log n).

a. Design a sorting algorithm to sort such sequences using at most O (n loglogn)
comparisons in the worst case.

b. Why is the lower bound of Q(n log n) not satisfied in this case?

Prove that the sum of the heights of all nodes in a balanced binary tree with n nodes is at
most n—1. (A balanced binary tree with n nodes is one that corresponds to an implicit
representation using an array of size n.) Show a tree whose sum of heights is exactly n — 1.

The sum of the heights of all nodes in a heap (see Section 6.4.5) can also be computed
directly by noting that the height of the node corresponding to position i in the array (of size
n) is at most [ log,(n —i +1)]. Find the sum of heights by using this method.
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The input is a heap of size n (in which the largest element is on top), given as an array, and a
real number x. Design an algorithm to determine whether the kth largest element in the
heap is less than or equal to x. The worst-case running time of your algorithm should be
O (k), independent of the size of the heap. You can use O (k) space. (Notice that you do
not have to find the kth largest element; you need only determine its relationship to x.)

The weighted selection problem is the following. The input is a sequence of distinct
numbers x,, X,, ..., X, such that each number x; has a positive weight w (x;) associated with
it. Let W be the sum of all weights. The problem is to find, given a value X, 0< X <W, the
number x; such that

> w) < X,

Xi>x,
and

wip)+ Y wx) 2 X.

X >x,

Design an efficient algorithm to solve the weighted selection problem. (Notice that when
all weights are 1, this problem becomes the regular selection problem.)

Let A be an algorithm that finds the kth largest of n elements by a sequence of comparisons.
Prove that A collects enough information to determine which elements are greater than the
kth largest and which elements are less than it. (In other words, you can partition the set
around the kth largest element without making more comparisons.)

Consider the problem of finding the kth largest element, and suppose that we are interested
only in minimizing space. Each element fills one memory cell. The input is a sequence of
elements, given one at a time, inserted into a fixed cell C. That is, in the ith input step x; is
put into C (and C’s previous content is erased). You can perform any computation between
two input steps (including, of course, moving the content of C to a temporary location).
The purpose is to minimize the extra number of cells required by the algorithm. Give an
upper bound and a lower bound on the number of memory cells needed to find the kth
largest element.

The goal of this problem is to find the kth smallest element, as in Exercise 6.37, but this time
we want to minimize the running time as well as to use very little space (although not
necessarily minimal space). The input is again a sequence of elements x,, x5, ..., x,, given
one at a time. Design an O (n) expected time algorithm to compute the kth smallest element
using only O (k) memory cells. The value of k is known ahead of time (so that sufficient
amount of memory can be allocated), but the value of n is not known until the last element
is seen.

Let A and B be two sets, both with n elements, such that A resides in computer P and B in Q.
P and Q can communicate by sending messages, and they can perform any kind of local
computation. Design an algorithm to find the nth smallest element of the union of A and B
(i.e., the median). You can assume, for simplicity, that all the elements are distinct. Your
goal is to minimize the number of messages, where a message can contain one element or
one integer. What is the number of messages in the worst case?

Given a set of integers S = {x,, X2, ..., X, }, find a nonempty subset R S, such that
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Y. x; = 0 (modulo n).

xj€R

Use the idea of the information-theoretic bound to prove a lower bound of Q(logn)
comparisons for the problem of finding the value of i such that x;=i in the sequence
X1, X2, -.es Xy, OF determining that no such i exists. (This problem is discussed in Sections
6.2 and 6.4.6.)

Suppose that you want to use Huffman’s encoding but that you do not use a programming
language that lets you access bits. You can read the sequence of bits as a sequence of bytes
(or any other blocks of size k depending on the machine). Each byte (block) corresponds to
an integer, and the encoding thus corresponds to a sequence of integers (each less than 2%).
Design a method to translate the sequence of integers such that you can use the Huffman
tree and decode the corresponding sequence of bits. Do it by building a table of size k x 2%,
where k is the size of the block (8 in the case of bytes). The table depends on the tree
(which is given to you). You can use only multiplication, addition, and subtraction of
integers; you cannot use bit operations. The table should allow you to access any bit in a
number / taken from the sequence of integers. Now solve the problem again, but this time
use a table of size 2 x 2%,

Assume that a Huffman’s encoding has been applied to a certain text. The Huffman tree has
been constructed and it is available to you. The frequencies of all characters in the text are
also known. Assume now that the text has been changed slightly such that the frequency of
one (existing) character X has been increased by 1. You want to update the tree so that it
remains optimal for the modified text. A friend makes the following suggestion for an
algorithm to modify the tree.

First, he notes that an important property of a Huffman tree is that the frequencies
associated with the nodes are nondecreasing as the nodes are closer to the root. (In other
words, a node with lower frequency cannot be higher in the tree than a node with higher
frequency.) The frequency of an internal node v is defined as the sum of all the frequencies
of the characters associated with external nodes that are descendants of v. Consequently, he
suggests checking whether the increased frequency still satisfies that property by checking
the next higher level. If there is no node in the next higher level with a frequency smaller
than the frequency of X, then leave X in its place. Otherwise, replace X with the character at
the higher level whose frequency is now smaller than that of X. This algorithm may
sometimes work, but it is generally incorrect. Describe why it is incorrect and how it can be
corrected. You should mention not only what is missing in the algorithm but, more
important, discuss why the algorithm does not work, as is, in general. That is, either
construct a counterexample under which this algorithm does not construct an optimal tree,
or show that, had the algorithm been correct, it would have led to a contradiction (or to
some highly suspicious implications). It is not enough to point out that the algorithm does
not deal with some cases. It could be that those cases can be ignored. You need to show
that the algorithm is definitely wrong.

The input is two strings of characters A=a,a, --- a, and B=b, b, -+ b,. Design an
O (n) time algorithm to determine whether B is a cyclic shift of A. In other words, the
algorithm should determine whether there exists an index k, 1<k<n such that
a; = b4 riymoan- forall i, 1<i <n.

The KMP string matching algorithm can be improved for binary strings in the following
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way: When constructing the next table, in addition to looking at the suffix of the string seen
so far, we can add the mismatched character. That is, we look for the longest suffix of
B(i- l)b_,» that matches a prefix of B. (b—,- is the complement character of b;.) That way,
every character in A is compared to a character in B exactly once.

a. Give a precise definition of the modified next table, and show its new values for the
example in Fig. 6.21.

b. Modify the string matching algorithm to take advantage of this change.

An on-line string matching algorithm: Suppose that the pattern is input one character at a
time at a relatively slow pace (e.g., by typing), but the text is already given. We would like
to proceed with the matching as much as we can, without waiting until all the pattern is
known. In other words, when the kth character is input, we would like to be at the first
place in the text that matches the first k —1 characters in the pattern. Modify the KMP
algorithm to achieve that goal.

Modify the KMP string matching algorithm to find the largest prefix of B that matches a
substring of A. In other words, you do not need to match all of B inside A; instead, you
want to find the largest match (but it has to start with b ).

Let T and P be two sequences ¢, {5, ..., !, and p,, p,, ..., px of characters, such that k<n.
Design an O (n) algorithm to determine whether P is a subsequence of T. (P is a
subsequence of T if there exist a sequence of indices 1 <i; <i, < - ** <i,<n such that for
all j, 1<j<k wehavet; =p;.)

Design an algorithm for Exercise 6.48 such that, if there are many subsequences in T that
are equal to P, then the algorithm finds the subsequence whose sum of indices is maximum.
That is, find the sequence of indices 1 <i, <i, < ‘- <iy<nsuch that for all j, 1<j<k, we
k
have ; =p;, and Y i; is maximized.
j=1
Consider Exercise 6.48; assume that the ith character of T has a positive cost ¢ (i) associated
with it. Find the matching subsequence that maximizes the sum of costs. That is, find the
sequence of indices 1<i, <i, < -+ <iy<n such that for all j, 1<j<k, we have t; =p;,
k
and Y'c(i;) is maximized.
j=1
The largest common subsequence (LCS) of two sequences T and P is the largest sequence
L such that L is a subsequence of both T and P. The smallest common supersequence
(SCS) of two sequences T and P is the smallest sequence L such that both T and P are
subsequences of L.

a. Design efficient algorithms to find the LCS and SCS of two given sequences.

b. Let d(T, P) be the smallest edit distance between T and P such that no replacements are
allowed (in other words, we have to insert and delete). Prove that
d(T, P)=|SCS(T, P)| — | LCS(T, P) |, where | SCS(T,P)| (|LCS(T,P)|) is the
size of the smallest SCS (LCS) of T and P.

Generalize the minimal-edit-distance problem presented in Section 6.8 to the case where
insertions at the beginning or the end of one of the sequences are not counted. In other
words, if B fits inside A, then we do not count the insertions needed to enlarge B; we count
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only the edit distance of B to the subsequence of A to which it fits. (Notice that, if you
insert at the beginning of B without cost, you must count the insertions at the end of A, and

vice versa.)

The sequence comparison problem can be generalized to three (or more) sequences in the
following way. In each step, we are allowed to insert, delete, or replace characters from any
of the sequences. The cost of a step is O if the corresponding characters in all sequences are
equal, and 1 otherwise (even if two sequences match and only one insertion or deletion is
necessary). For example, suppose that the sequences are aabb, bbb, and chb. One possible
edit sequence is inserting a in front of bbb and chb (which costs 1), replacing a b in bbb and
a ¢ in chb with an a, and then the rest matches; the total cost is 2. Design an O (n?)
algorithm to find the minimal edit distance between three given sequences.

LetA=a,a, --- a,andB=b, b, ‘- - b, be two strings of characters. Denote by A [i] the
string ag;a;,, - a, (namely, the ith suffix of A). Let d; be the minimal edit distance
between B and A [i]. Design an O (n?) algorithm to find the minimum value of d; (among
alli, 1<i<n).

The input is a sequence of numbers x,, X3, ..., x,. Prove that any deterministic algorithm
that selects a number from the set which is in the upper half (i.e., greater than or equal to the
median) must make at least| /2 n| comparisons.

Determine the expected number of steps required by the probabilistic coloring algorithm of
Section 6.9.2, in terms of both & and r.

Assume that you have a procedure for generating random numbers in the range 1 to %, for
every k <n. Design an algorithm to generate a random permutation of n numbers. Each
possible permutation should be selected with equal probability.

Public-opinion polls are examples of probabilistic algorithms. Suppose that there are two
candidates and n voters. A common algorithm is to ask k random voters and take the
average response. Assume that exactly one-half of the voters favor each of the candidates.
What is the probability that the results of the survey (with k voters) are in the range of 45
percent to 55 percent? (The result should be an expression with n, k, and the percentages as
parameters.)

The results of public-opinion polls are usually given with an ‘‘error’’ range. For example,
they may indicate that candidate X has x percent of the vote, and add that the poll has a £3
percent margin of error. Discuss why stating the bounds on the percentage of error as
absolute bounds is not precise. What would be the precise way to define the error?

The purpose of this exercise is to compare Monte Carlo algorithms to Las Vegas algorithms.
In a nutshell, Monte Carlo algorithms guarantee the running time, but cannot guarantee
correctness; Las Vegas algorithms, on the other hand, guarantee correctness, but cannot
guarantee the running time. Suppose that the problem we consider is a decision problem, so
the answer is either yes or no. Assume that the error probability in the Monte Carlo
algorithm is at most 1/4. (This is enough since we can simply run the algorithm many times
and take the majority as the answer, thereby reducing the probability of error significantly.)
Which type of algorithm is more powerful? In other words, is it possible to convert one
type of algorithm to the other?

Design an algorithm that, given a list of »n elements, finds all the elements that appear more
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than n/4 times in the list. The algorithm should use O (n) comparisons. (Hint: Modify the
majority algorithm.)

You are asked to design a schedule for a round-robin tennis tournament. There are n =2
players. Each player must play every other player, and each player must play one match per
day for n — 1 days. Denote the players by P,P,,..,P,. Output the schedule for each player.
(Hint: Use divide and conquer in the following way. First, divide the players into two equal
groups and let them play within the groups for the first n/2 -1 days. Then, design the
games between the groups for the other n/2 days.)

* . . . . .
6.63 Design an algorithm to arrange a round-robin tennis tournament (see Exercise 6.62) for any

number of players. If the number of players is odd, then in each round one player does not
participate.

* . .
6.64 Letr,,r,,..,r,andc,,c,, ..., c, be two sequences of integers whose sum is equal; namely,

Such sequences are called realizable if there is an n X n matrix all of whose elements are
either 0 or 1, such that, for all i, the sum of the ith row is exactly r; and the sum of the ith
column is exactly c;. Not all sequences are realizable. For example, the two sequences 0,2
and 0,2 are not realizable since only the second element of the second row can be nonzero,
but it cannot be more than 1. Design an algorithm to determine whether two given
sequences are realizable, and construct a matrix with the corresponding row and column
sums if they are. (Hint: First, strengthen the induction hypothesis to extend the problem to
n x m matrices. Then, use induction on n (the number of rows). Try to place 1s in the first
row so that the problem for the other n —1 rows can be solved if and only if the original
problem can be solved.)






CHAPTER 7

GRAPH ALGORITHMS

A shortcut is the longest distance between two points.

Anon

7.1 Introduction

In the previous chapter, we discussed algorithms involving sets and sequences of objects.
The relationships we studied were limited to ordering, multiplicities, overlappings, and so
on. In this chapter, we discuss more involved relationships among objects. We use
graphs to model these relationships. Graphs can model a large variety of situations, and
they have been used in diverse fields ranging from archaeology to social psychology. We
present several important basic algorithms to manipulate graphs and to compute certain
graph properties.

First let’s see examples of modeling by graphs.

Finding a good route to a restaurant in a city is a graph-theoretical problem. The
streets correspond to the edges (directed edges in the case of one-way streets), and
the intersections to the vertices. Each vertex and each edge (street segment) can be
associated with an expected time delay, and the problem is to find the ‘‘quickest’’
path between two vertices.

Some programs can be partitioned into states. From each state the program may
have several possibilities to proceed. Some of the states may be considered
undesirable. The problem of finding which states can lead to an undesirable state
is a graph-theoretical problem in which the states correspond to the vertices and an
edge indicates a possible move from one state to another.

The problem of scheduling classes in a university can be viewed as a graph-
theoretical problem. The vertices correspond to the classes, and two classes are
connected if there is a student who wishes to take them both or they are both taught
by the same professor. The problem is to schedule the classes such that the
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conflicts are minimized. This is a difficult problem and good solutions to it are

hard to find.

4.  Consider a computer system with several user accounts. Each user has a security
permission to access his or her account. Users may want to cooperate and to give
one another permission to use their account. However, if A has permission to use
B’s account, and B has permission to use C’s account, then A may be able to use
C’s account as well. The problem of identifying which users can access which
accounts is a graph-theoretical problem. The users correspond to the vertices in
this case, and there is a directed edge from user A to user B if A gives B
permission to use his or her account.

There are quite a few textbooks on graph theory (see the Bibliography section), and

numerous other applications.

Representations of graphs were discussed in Section 4.6. For the most part, we
will use the adjacency list representation, which is more efficient for sparse graphs (i.e.,
graphs with relatively few edges). We begin by introducing standard terminology. A
graph G =(V, E) consists of a set V of vertices (also called nodes), and a set E of edges.
Each edge corresponds to a pair of distinct vertices. (Sometimes self-loops, which are
edges from a vertex to itself, are allowed; we will assume that they are not allowed.) A
graph can be directed or undirected. The edges in a directed graph are ordered pairs;
the order between the two vertices the edge connects is important. In this case, we draw
an edge as an arrow pointing from one vertex (the tail) to another (the head). The edges
in an undirected graph are unordered pairs; we draw them simply as line segments. A
multigraph is a graph with possibly several edges between the same pair of vertices (i.e.,
E is a multiset). Graphs that are not multigraphs are sometimes called simple graphs.
Unless specified otherwise, we will assume that the graphs we deal with are simple. The
degree d(v) of a vertex v is the number of edges incident to v. In a directed graph, we
also distinguish between the indegree, which is the number of edges for which v is the
head, and the outdegree, which is the number of edges for which v is the tail.

A path from v, to v; is a sequence of vertices v, v, ..., v; that are connected by
the edges (v|, v;), (v, v3), ..., (vk_1, V&) (these edges are also usually considered to be
part of the path). A path is called simple if each vertex appears in it at most once.
Vertex u is said to be reachable from vertex v if there is a path (directed or undirected,
depending on the graph) from v to u. A circuit is a path whose first and last vertices are
the same. A circuit is called simple if, except for the first and last vertices, no vertex
appears more than once. A simple circuit is also called a cycle. (Circuits are sometimes
called cycles even if they are not simple; we will assume that cycles are always simple.)
The undirected form of a directed graph G=(V, E) is the the same graph without
directions on the edges. A graph is called connected if (in its undirected form) there is a
path from any vertex to any other vertex. A forest is a graph that (in its undirected form)
does not contain a cycle. A tree is a connected forest. A rooted tree (also known as an
arborescence) is a directed tree with one distinguished vertex called the root, such that
all the edges are pointing away from the root.

A subgraph of a graph G=(V, E) is a graph H=(U, F) such that UV and
F CE. A spanning tree of an undirected graph G is a subgraph of G that is a tree and
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that contains all the vertices of G. A spanning forest of an undirected graph G is a
subgraph of G that is a forest and that contains all the vertices of G. A vertex-induced
subgraph of a graph G =(V, E) is a subgraph H =(U, F) such that U cV and F consists
of all the edges in E both of whose vertices belong to U. A vertex-induced subgraph is
usually simply called an induced subgraph. If a graph G =(V, E) is not connected, then
it can be partitioned in a unique way into a set of connected subgraphs called the
connected components of G. A connected component of G is a connected subgraph of
G such that no other connected subgraph of G contains it. In other words, a connected
component is a maximal connected subgraph. A bipartite graph is a graph whose
vertices can be divided into two sets such that all edges connect vertices from one set to
vertices in the other set. A weighted graph is a graph with weights (or costs, or lengths)
associated with the edges.

Many definitions for directed and undirected graphs are similar, except for some
obvious differences. For example, directed paths and undirected paths are defined in
exactly the same way, but, of course, the directions of the edges in directed paths are
specified. When we discuss one type of graph we will not specifically use a different
notation. So, for example, when we talk about paths in the context of directed graphs we
will mean directed paths.

We start with a simple example that is considered to be the first problem in graph
theory — walking the bridges of Konigsberg. We then discuss how to traverse a graph,
how to order a graph, how to find shortest paths in a graph, how to partition the graph
into blocks satisfying certain properties, and other problems. Chapter 10 includes a
discussion on the relationships of graph algorithms and matrix algorithms. Several more
graph algorithms are presented there.

7.2 Eulerian Graphs

The notion of Eulerian graphs is involved in what is considered to be the first solved
problem of graph theory. The Swiss mathematician Leonhard Euler encountered the
following puzzle in 1736. The town of Konigsberg (now Kaliningrad) lay on the banks
and on two islands of the Pregel river, as is shown in Fig. 7.1. The city was connected by
seven bridges. The question (which many townspeople attempted to solve) was whether
it was possible to start walking from anywhere in town and return to the starting point by
crossing all bridges exactly once. The solution is obtained by abstracting the problem.
The graph in Fig. 7.2 is equivalent, for the purpose of the problem, to the layout of Fig.
7.1. The question becomes the graph-theoretical problem of whether it is possible to find
a circuit in the graph that contains each edge exactly once. Another way to pose the
question is to ask whether it is possible to draw the graph in Fig. 7.2 — and end at the
same place from which we started — without lifting the pencil. Euler.solved this
problem by proving that such a traversal is possible if and only if the graph is connected
and all its vertices have even degrees. Such graphs are called Eulerian graphs. Since
the graph in Fig. 7.2 contains vertices of odd degrees, it follows that the Konigsberg
bridges problem is impossible to solve. A proof of this theorem by induction, which
corresponds to an efficient algorithm for constructing the closed path, is given next.
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Figure 7.1 The Konigsberg bridges problem.

A

B

Figure 7.2 The graph corresponding to the Konigsberg bridges problem.

The Problem Given an undirected connected graph G =(V, E) such
that all the vertices have even degrees, find a closed path P such that
each edge of E appears in P exactly once.

It is easy to prove that all vertices must have even degree for such a closed path to exist:
When traversing a closed path, we enter and leave each vertex the same number of times.
Since each edge is used exactly once, the number of edges adjacent to each vertex must
be even. To prove by induction that the condition is sufficient, we first have to decide
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which parameter to apply the induction. The first consideration is to be able to reduce the
problem without changing it. If we remove a vertex or an edge, the resulting graph may
not satisfy the even-degree property. We should remove a set of edges S such that, for
each vertex v in the graph, the number of edges from S adjacent to v is even (possibly 0).
Any circuit satisfies this requirement, so the question is whether an Eulerian graph
always contains a circuit. Suppose that we start traversing the graph, without going
through any edge more than once, from an arbitrary vertex v in an arbitrary order. We
claim that the traversal will eventually return to v because, whenever we enter another
vertex, we reduce the degree of that vertex by I, making it odd, and therefore we can
always leave it. (Note that this circuit may not include all the edges.)
We are now ready to state the induction hypothesis and prove the theorem.

Induction hypothesis: A connected graph with < m edges, all of whose
vertices have even degrees, contains a closed path that includes each edge
exactly once, and we know how to find that path.

(It is easier to state the induction hypothesis in terms of the number of edges rather than
the number of closed paths, even though the induction is performed on paths.) Consider
a graph G =(V, E) with m edges. Let P be a closed path in G. Let G’ be the graph
resulting from removals of all the edges of P from G. The degrees of all vertices in G’
must be even, since the number of removed edges adjacent to any vertex is even. But we
cannot simply apply the induction hypothesis yet, since G’ may not be connected. Let
G',,G’5,...,G’; be the connected components of G’. In each component, the degrees of
all vertices are even. Furthermore, the number of edges in each component (indeed, in
all of them together) is <m. Hence, we can now apply the induction hypothesis to each
component. That is, by the induction hypothesis, each component has a closed path that
includes every edge exactly once, and we know how to find it. Denote these k closed
paths by P,P,,...,P;. We now need to merge all these paths to one closed path covering
the whole graph G. We start with any vertex in P and traverse P until we meet the first
vertex v; belonging to one of the components G’;. At this point, we traverse the path P,
returning to v;. We can continue this way, traversing the paths of the components the
first time we meet them, until we return to the starting vertex. At this point, all edges will
have been traversed exactly once. This closed path is called an Eulerian circuit. The
algorithm is not yet complete. We still need to find an efficient method to identify the
connected components, and an efficient method to traverse the graph. Both of those
issues are discussed next. The implementation of the Eulerian circuit algorithm is left as
an exercise.

7.3 Graph Traversals

The first problem we encounter when trying to design a graph algorithm is how to look at
the input. This was a trivial problem in the previous chapter because of the one-
dimensionality of the input — sequences and sets can be easily scanned in linear order.
Scanning a graph, or traversing it, as we call it, is not straightforward. We present two
traversal algorithms — depth-first search (DFS), and breadth-first search (BFS). Most
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of the algorithms in this chapter depend, in one way or another, on one of these
techniques.

7.3.1 Depth-First Search

The depth-first search algorithms for directed graphs and undirected graphs are almost
identical. However, since we also want to explore several graph properties that are
different in directed graphs and in undirected graphs, we divide the discussion into two

parts.

Undirected Graphs

Suppose that the undirected graph G =(V, E) corresponds to an art gallery consisting of
an arrangement of corridors where the paintings are hung. The edges of G correspond to
the corridors, and the vertices correspond to the intersections of the corridors. We want
to walk through the gallery and see all the paintings. We assume that we can see both
sides of a corridor when we walk through it in any direction. If the graph is Eulerian,
then it is possible to walk throughout the gallery visiting each corridor exactly once. We
do not assume here that the graph is Eulerian, and we allow each edge to be traversed
more than once (as it turns out, each edge will be traversed exactly twice). The idea
behind depth-first search is the following. We walk through the gallery trying to enter
new corridors whenever we can. The first time we visit an intersection, we leave a
pebble there, and we continue from another corridor (unless it is a deadend). When we
arrive at an intersection that already has a pebble, we return through the same corridor
from which we came, and try another corridor. If all the corridors leading from the
intersection have already been visited, then we remove the pebble from this intersection,
and return through the corridor from which we first entered. We will not visit this
intersection again. (Removing the pebbles is done only to clean the gallery; it is not an
essential part of the algorithm.) We always try to explore new corridors; we return from
the corridor from which we first entered an intersection, only if we tried all other
corridors. We call this approach depth-first search (DFS) to indicate that we first try to
visit new edges (going deeper into the gallery). The main reasons for the usefulness of
DFS is the way it divides the graph and its adaptability to recursive algorithms.

The description we gave of DFS was in terms of walking and putting down
pebbles. Let’s see now how DFS is implemented for undirected graphs given in the
adjacency list representation. The traversal is started from an arbitrary vertex r, which is
called the root of the DFS. The root is marked as visited. An arbitrary (unmarked)
vertex r, connected to r, is then picked and a DFS starting from r; is performed
(recursively). The recursion stops when it reaches a vertex v such that all the vertices
connected to v are already marked. If, after the DFS for r| terminates, all the vertices
adjacent to r are marked, then the DFS for r terminates. Otherwise, another arbitrary
unmarked vertex r, connected to r is picked, a DFS starting from r, is performed, and so
on.

There is generally a purpose for traversing the graph. To incorporate different
applications with the DFS framework, we associate two types of work, preWORK and
postWORK, with visiting a vertex or an edge; preWORK is performed at the time the
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vertex is marked, and postWORK is performed after we backtrack from an edge or find
that the edge leads to a marked vertex. Both preWORK and postWORK depend on the
application of DFS. This notation allows us to present several applications by defining
only preWORK and postWORK. The DFS program is given in Fig. 7.3. The starting
vertex of the recursive call is v. For simplicity, we first assume that the graph is
connected. An example is given in Fig. 7.4, where the numbers associated with the
vertices indicate the order in which the vertices could be traversed by DFS.

Algorithm Depth_First_Search (G, v) ;
Input: G =(V, E) (an undirected connected graph), and v (a vertex of G).
Output: depends on the application.

begin
mark v ;
perform preWORK on v ; { preWORK depends on the application of DFS }
for all edges (v, w) do
if w is unmarked then Depth_First_Search(G, w) ;
perform postWORK for (v, w)
{ postWORK depends on the application of DFS; it is sometimes
performed only on edges leading to newly marked vertices. }
end

Figure 7.4 Algorithm Depth_First_Search.

O Lemma 7.1

If G is connected, then all its vertices will be marked by algorithm
Depth_First_Search, and all its edges will be looked at at least once during
the execution of the algorithm.

Figure 7.4 A DFS for an undirected graph.
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Proof: Suppose the contrary, and let U denote the set of unmarked vertices
remaining at the end of the algorithm. Since G is connected, at least one vertex from U
must be connected to at least one marked vertex. But this situation cannot happen, since
whenever a vertex is visited, all the unmarked vertices adjacent to it are visited (hence
marked) too. Since all vertices are visited, and since whenever a vertex is visited all its
edges are considered, all edges are considered. O

If a graph G =(V, E) is not connected, we have to modify DFS slightly. If all
vertices are marked after the first try, then the graph is connected and we are done.
Otherwise, we start with an arbitrary unmarked vertex, perform another DFS, and so on.
Thus, we can use DFS to determine whether or not a graph is connected and to find its
connected components. The corresponding algorithm is given in Fig 7.5. We will
generally consider only connected graphs, because otherwise we can usually deal with
each connected component separately. Thus, we will use DFS as it is described in Fig.
7.3, without specifically mentioning that it may have to be run several times as in Fig.
7.5.

Algorithm Connected_Components (G ) ;

Input: G =(V, E) (an undirected graph).

Output: v.Component is set to the number of the component containing v,
for every vertex v.

begin
Component_Number := 1 ;
while there is an unmarked vertex v do
Depth_First_Search(G, v) ;
( using the following preWORK:
v.Component := Component_Number ;)
Component_Number := Component_Number + |
end

Figure 7.5 Algorithm Connected_Components.

Complexity It is easy to see that each edge is looked at exactly twice (once from
each end). Therefore, the running time is proportional to the number of edges. However,
since the graph may contain many vertices that are not connected to anything (and all of
them must be examined), we must include O(|V |) in the expression for the running
time. Therefore, the overall running time is O (|V | + | E |).

Constructing the DFS Tree

Next, we present two simple uses of DFS — numbering the vertices with DFS numbers,
and building a special spanning tree, called the DFS tree. The DFS numbers and the
DFS tree exhibit special properties that are useful for many algorithms. Even if the tree
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is not built explicitly, it is easier to understand many algorithms by considering it. To
describe these algorithms, we need only to describe either preWORK or postWORK. The
algorithm for numbering the vertices with DFS numbers is given in Fig. 7.6, and the
algorithm for building the DFS tree is given in Fig. 7.7. These two algorithms need not
be performed separately.

Algorithm DFS_Numbering (G, v) ;
Input: G =(V, E) (an undirected graph), and v (a vertex of G).
Output: for every vertex v, v.DFS is set to the DFS number of v.

Initially DFS_Number := 1 ;
Use DFS with the following preWORK :
preWORK::

v.DFS := DFS_Number ;

DFS _Number := DFS_Number + 1 ;

Figure 7.6 Algorithm DFS_Numbering.

Algorithm Build_DFS_Tree (G, v) ;
Input: G =(V, E) (an undirected graph), and v (a vertex of G).
Output: T (a DFS tree of G; T is initially empty).

Use DFS with the following postWORK :
postWORK :
if w was unmarked then add the edge (v, w)to T ;
{ the statement above can be included in the if statement (line 4) of
algorithm Depth_First_Search }

Figure 7.7 Algorithm Build DFS Tree.

A vertex v is called an ancestor of a vertex w in a tree T with root r, if v is on the
unique path from w to r in T. If v is an ancestor of w, then w is called a descendant of v.

0O Lemma 7.2 (The main property of undirected DFS trees)

Let G =(V, E) be a connected undirected graph, and let T=(V, F) be a DFS
tree of G constructed by algorithm Build DFS Tree. Every edge ecE
either belongs to T (i.e., e€ F), or connects two vertices of G, one of which
is the ancestor of the other inT.

Proof: Let (v, ) be an edge of G, and suppose that v is visited by DFS before .
After v is marked, we perform DFS starting from all neighbors of v that have not been
marked yet. Since u is a neighbor of v, the DFS will either start from u, in which case
(v, u) will belong to T, or the DFS will visit u before it backtracks from v, in which case
u is a descendant of vin T. O
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In other words, DFS avoids cross edges, which are edges connecting vertices
sideways across the tree. Avoiding cross edges is important for recursive procedures
performed on the graph, as we will see later.

Since DFS is a very important program, we also include its nonrecursive version.
The main tool for implementing a recursive program is a stack, which keeps information
needed to ‘‘unfold’’ the recursive calls. A compiler maintains all the local data
associated with every instance of the recursive procedure on the stack. Hence, when one
recursive instance ends, we can get back to the exact point (with the exact information) in
the calling procedure (which may be another instance of the same recursive procedure).
Frequently, not all local data need to be maintained on the stack, which is one reason
why using nonrecursive procedures is more efficient. The nonrecursive version we give
next is a good example of a translation from a recursive to a nonrecursive program.

One major difficulty we face in translating a recursive version into a nonrecursive
version is that we need explicit bookkeeping. We called DFS recursively inside a for
loop, and expected the program to remember the right place in the loop from which to
continue after the end of the recursive call. In a nonrecursive version, we must maintain
this information explicitly. We assume that each vertex v has a linked list of its incident
edges in a certain order (DFS will follow this order). The list is pointed to by v.First.
Each item in the list is a record containing two variables: Vertex and Next. Vertex is the
name of the vertex on the other side of the edge, and Next points to the next item. Next of
the last edge on the list points to nil. DFS proceeds as before, traversing down the tree
until no new vertices are found. A stack is maintained throughout the search. The stack
contains all the vertices on the path from the root to the current vertex (in the order of the
path). Between every two vertices Parent and Child, the stack contains a pointer to the
edge from Parent that is the next one DFS traverses when it backtracks from Child. The
nonrecursive version of DFS is given in Fig. 7.8.

Directed Graphs

The procedure for DFS for directed graphs is identical to that for undirected graphs.
However, directed DFS trees have different properties. It is no longer true that there are
no cross edges, as can be seen in Fig. 7.9. There are now four types of edges — tree
edges, back edges, forward edges, and cross edges. The first three types of edges
connect two vertices one of which is a descendant of the other in the tree: Tree edges
connect parents to children in the tree, back edges connect descendants to ancestors, and
forward edges connect ancestors to descendants. Only cross edges connect vertices not
“‘related’’ in the tree. Cross edges, however, must cross from ‘‘right to left,”” as is
shown in the next lemma.

0O Lemma 7.3 (The main property of directed DFS trees)

Let G =(V, E) be a directed graph, and let T=(V, F) be a DFS tree of G. If
(v, w) is an edge in E such that v.DFS_Number < w.DFS_Number, then w
is a descendant of v in the tree T.
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Algorithm Nonrecursive_Depth_First_Search (G, v) ;
Input: G =(V, E) (an undirected connected graph), and v (a vertex of G).
Output: depends on the application.

{ We use the Pascal pointer symbol “ explicitly here;

we will not do that in the rest of this chapter. }

begin
while there is an unmarked vertex v do
mark v ;
perform preWORK on v ;
Edge := v.First ;
push v and Edge to the top of the stack ;
Parent :=v ;
{ initialization up to here; now comes the main loop of the recursion }
while the stack is not empty do
remove Edge from the top of the stack ;
while Edge # nil do
Child := Edge’.Vertex ;
if Child is unmarked then
mark Child ;
perform preWORK on Child ;
push Edge”.Next to the top of the stack ;
{ so that we can return to the next edge when we are done
with Child }
Edge := Child.First ;
Parent := Child ;
push Parent to the top of the stack ;
else { Edge is a back edge }
perform postWORK for (Parent, Child) ;
{ this step is skipped if we perform postWORK only on
tree edges }
Edge := Edge”Next ;
remove Child from the top of the stack ;
if the stack is not empty then
{ the stack becomes empty when Child is the root }
let Edge and Parent be at the top of the stack ;
{ do not remove them }
perform postWORK for (Parent, Child)
end

Figure 7.8 Algorithm Nonrecursive_Depth_First_Search.
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Figure 7.9 A DFS tree for a directed graph.

Proof: Since the DFS number of w is greater than that of v, w was visited after v.
Since (v, w) is an edge in E, (v, w) must be considered during the DFS of v. If at that
time w was unmarked, (v, w) would be added to the tree; hence, (v, w)€ F, and the
condition is satisfied. Otherwise, w was marked after v during the recursive call of DFS
from v. Hence, w must be a descendant of v in the tree T. (]

DFS for connected undirected graphs, starting from any vertex, traverses the whole
graph. This is not so for directed graphs. Consider the directed graph in Fig. 7.10. If
DFS starts at a, for example, then only the left column will be traversed. DFS will
traversed the whole graph of Fig. 7.10 only if it starts at v. If v and its two incident edges
are deleted from the graph, then there is no vertex from which a DFS traverses the whole
graph. We must start again from an unmarked vertex, and continue doing so until all
vertices are marked. Therefore, whenever we talk about DFS for directed graphs, we
assume that it is run until all the vertices are marked and all the edges are considered.

a Vv
*- o °
P < é
o ¢ &

Figure 7.10 An example of a directed DFS that does not traverse the whole graph.
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As an example, we show how to use DFS to determine whether or not a graph is
acyclic.

The Problem Given a directed graph G =(V, E), determine wheth-
er it contains a (directed) cycle.

0O Lemma 7.4

Let G =(V, E) be a directed graph, and let T be a DFS tree of G. Then, G
contains a directed cycle if and only if G contains a back edge (relative to
T).

Proof: If there is a back edge, then it leads to a vertex higher up in the tree, so it
completes a cycle. Conversely, let C be a cycle in G and let v be the vertex in C with the
lowest DFS number. We claim that the edge (w, v) leading to v in C is a back edge. It
cannot be a forward or a tree edge, since it leads from a higher DFS-numbered vertex to
a lower DFS-numbered vertex. Suppose that v is not an ancestor of w in the tree, and let
u be the lowest common ancestor of v and w. Since v has a lower DFS number than that
of w, it is in a subtree of u that was visited before the subtree of u that contains w. This
implies that the only way to reach w from v is through u or an ancestor of u (since it is
impossible to go ‘‘from left to right’’). But, C contains a path from v to w, and C cannot
contain an ancestor of v since v has the lowest DFS number in C. a

The algorithm for determining whether a directed graph is acyclic is given in Fig. 7.11.

Algorithm Find_a_Cycle (G) ;
Input: G =(V, E) (a directed graph).
Output: Find_a_Cycle (true if G contains a cycle and false otherwise).

Use DFS, starting from an arbitrary vertex, with the following preWORK
and postWORK :

preWORK::

v.on_the_path := true ;
{ x.on_the_path is true if x is on the path from the root to the current vertex }
{ initially x.on_the_path = false for all vertices, and Find_a_Cycle is false }

postWORK :
if w.on_the_path then Find_a_Cycle := true ; halt ;
if w is the last vertex on V's list then v.on_the_path := false ;

Figure 7.11 Algorithm Find_a_Cycle.
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7.3.2 Breadth-First Search

Breadth-first search (BFS) traverses the graph in what seems like a more organized order
— it does so level by level. If we start from a vertex v, then all v’s children are visited
first. The second level includes a visit to all the ‘‘grandchildren,”” and so on (see Fig.
7.12). The traversal is implemented similarly to the nonrecursive implementation of
DFS, except that the stack is replaced by a queue. We can associate BFS numbers with
vertices similarly to DFS numbers. That is, a vertex w has BFS number £ if it was the kth
vertex to be marked by BFS. We can build a BFS tree by including only edges that lead
to newly visited vertices. The BFS algorithm is given in Fig. 7.13. (The notion of
postWORK is not as well defined for BFS as it is for DFS, since intuitively the search
does not proceed ‘‘down and up,’’ but only down; we therefore omit it.)

O Lemma 7.5

If an edge (u,w) belongs to a BFS tree, such that u is a parent of w, then u
has the minimal BFS number among vertices with edges leading to w.

Proof: The claim follows from the first-in-first-out property of the queue. O

O Lemma 7.6

For each vertex w, the path from the root to w in T is a shortest path from
the roottow in G.

Proof: Left to the reader. O

The level of a vertex w is the length of the path in the tree from the root to w. BFS
traverses the graph level by level.

Figure 7.12 A BFS tree for a directed graph.
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Algorithm Breadth_First_Search (G, v) ;
Input: G =(V, E) (an undirected connected graph), and v (a vertex of G).
Output: depends on the application.

begin
mark v ;
put v in a queue { First In First Out };
while the queue is not empty do
remove the first vertex w from the queue ;
perform preWORK onw ;
{ preWORK depends on the application of BFS }
Jor all edges (w, x) such that x is unmarked do
mark x ;
add (w, x) to the tree T ;
put x in the queue
end

Figure 7.13 Algorithm Breadth_First Search.

0O Lemma 7.7

If (vw) is an edge in E that does not belong to T, then it connects two
vertices whose level numbers differ by at most 1.

Proof: Left to the reader. O

Now that we know how to traverse a graph, we present several algorithms involving
graphs. We again use the design-by-induction technique very heavily.

7.4 Topological Sorting

Suppose that there is a set of tasks that need to be performed one at a time. Some tasks
depend on other tasks and they cannot be started until the other tasks are completed. All
the dependencies are known, and we want to arrange a schedule for performing the tasks
which is consistent with the dependencies (i.e., every task is scheduled to be performed
only after all the tasks on which it is dependent are completed). We want to design a fast
algorithm to generate such a schedule. This problem is called topological sorting. We
can associate a directed graph with the tasks and their dependencies in the following
way. Each task is associated with a vertex and there is a directed edge from task x to task
y if y cannot start until x is finished. Obviously, the graph must be acyclic; otherwise,
some tasks can never be started.
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The Problem Given a directed acyclic graph G =(V, E) with n ver-
tices, label the vertices from 1 to n such that, if v is labeled £, then all
vertices that can be reached from v by a directed path are labeled with
labels >k.

The straightforward induction hypothesis is the following.

Induction hypothesis: We know how to label all directed acyclic graphs
with < n vertices according to the conditions above.

The base case of one vertex is trivial. As usual, we consider a graph with n vertices,
remove one vertex, apply the induction hypothesis, and try to extend the labeling. We
are free to choose any vertex as the nth vertex. Therefore, we should choose a vertex that
will simplify our work. We need to label vertices. Which vertex is the easiest to label?
It is clearly a vertex (task) with no dependencies — namely, a vertex whose indegree is
zero. This vertex can be labeled 1 without any problems. Can we always find a vertex of
indegree zero? The answer is intuitively yes, since we must be able to start somewhere.
The following lemma establishes this fact.

O Lemma 7.8
A directed acyclic graph always contains a vertex with indegree 0.

Proof: If all the vertices had positive indegrees, then we could traverse the graph
‘‘backward’’ and never have to stop. Since there are finitely many vertices, however, we
must go through a cycle, which is impossible in an acyclic graph. (By the same
argument, there is a vertex with outdegree 0.) O

We will see shortly how to find a vertex with indegree 0. Once we find it, we label
it 1, remove it with its adjacent edges, and label the rest of the graph — which is still
acyclic, of course — with labels 2 to n. (To be completely precise, the induction
hypothesis assumed labels of 1 to n -1 instead of 2 to n, but this causes no problems.)
Notice that once we decided to select a vertex of indegree O for the reduction, the
algorithm followed with little effort.

Implementation The only implementation problems are how to find a vertex with
indegree 0 and how to adjust the indegrees when a vertex is removed. We associate a
variable Indegree with each vertex, such that initially v./ndegree is equal to v’s indegree.
The Indegree variables can be initialized by traversing all the edges in any order (using
DFS, for example), and incrementing w./ndegree whenever an edge (v, w) is traversed.
The vertices with indegree 0 are put in a queue (a stack will do just as well). By Lemma
7.8, there is at least one vertex v with indegree 0. It is easy to find v — it is simply
removed from the queue. Then, for each edge (v, w) coming out of v, the counter of w is
decreased by 1. When a counter becomes 0, the vertex is put on the queue. A removal of
v leaves the graph still acyclic. Therefore, by Lemma 7.8, there must be at least one
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vertex of indegree O in the remaining graph. The algorithm terminates when the queue
becomes empty, in which case all the vertices have been labeled. The algorithm is given
in Fig. 7.14.

Complexity Initializing the Indegree variables requires O(|V |+ |E|) time.
Finding a vertex with indegree O takes constant time (accessing a queue). Each edge
(v, w) is considered once (when v is taken from the queue). Thus, the number of times
the variables need to be updated is exactly equal to the number of edges in the graph.
The running time of the algorithm is therefore O (|V | + | E |), which is linear in the size
of the input.

7.5 Single-Source Shortest Paths

In this section, we deal with weighted graphs. Let G =(V, E) be a directed graph with
nonnegative weights associated with the edges. We will call the weights lengths in this
section, because traditionally the problem is called the shortest path problem (rather than
the lightest path problem). (Length of a path also sometimes denotes the number of
edges in the path; we will be careful to avoid confusion.) If the graph is undirected, we
can think of it as a directed graph such that each undirected edge corresponds to two
directed edges (in opposite directions) with the same length. Thus, the discussion in this
section applies to undirected graphs as well. The length of a path is the sum of the
lengths of its edges.

Algorithm Topological_Sorting (G) :
Input: G =(V, E) (a directed acyclic graph).
Output: The Label field indicates a topological sorting of G.

begin
Initialize v.Indegree for all vertices ; { e.g., by DFS }
G _label := 0 ;

Jori:=1tondo
if vi.Indegree = 0 then put v; in Queue ;
repeat
remove vertex v from Queue ;
G_label := G_label + I ;
v.label := G_label ;
Jor all edges (v, w) do
w.Indegree := w.Indegree - | ;
if w.Indegree = 0 then put w in Queue ;
until Queue is empty
end

Figure 7.14 Algorithm Topological_Sorting.
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The Problem Given a directed graph G =(V, E) and a vertex v, find
shortest paths from v to all other vertices of G.

For simplicity, we discuss only how to find the length of the shortest paths. The
algorithms can be extended to find the actual paths. There are many examples of shortest
path problems. For example, the graph may correspond to a road map, and the length of
a segment may correspond to its actual length, to the expected time it takes to travel
through it, or to the cost of constructing it, depending on the problem.

The Acyclic Case

Let’s first assume that the graph G is acyclic. The problem is easier in this case, and its
solution will help us to find a solution to the general case. We try induction on the
number of vertices. The base case is trivial. Let |V |=n. We can use topological
sorting as discussed in the previous section. If the label of v is &, then all vertices with
labels <k need not be considered. There is no way to reach these vertices from v.
Furthermore, the order imposed by the topological sorting is a good order for the
induction. Consider the last vertex, namely, the vertex z with label n. Suppose
(inductively) that we already know the shortest paths from v to all vertices except for z.
Denote the length of the shortest path from v to w by w.SP. To find z.SP, we need only to
check those vertices w with edges leading to z. Since the shortest paths to all other
vertices are already known, z.SP is equal to the minimum, over all w with an edge to z, of
w.SP +length (w, z). Are we done? We have to be careful that adding z does not shorten
the distance to other vertices. But, since z is the last vertex in the topological order, no
other vertex in the graph can be reached from z, so no other path is affected. Therefore,
by removing z, computing the shortest paths without it, then putting it back, we have
solved the problem. The corresponding induction hypothesis is the following.

Induction hypothesis: Given a topological ordering, we know how to find
the lengths of the shortest paths from v to the first n — 1 vertices.

Given an acyclic graph with n vertices in a topological order, we remove the nth vertex,
solve the reduced problem by induction, then take the minimum of the values
w.SP +length (w, z) over all w such that (w, z) € E. The algorithm is given in Fig. 7.15.
We now improve the algorithm such that the topological order can be found hand in hand
with the shortest paths. In other words, we want to combine the two passes, one for the
topological sorting and one for the shortest paths, into one pass.

Consider the way the algorithm will be executed recursively (after the topological
order is found). Assume, for simplicity, that the label of v in the topological order is 1.
The first step is the call to the recursive procedure. It will call itself repeatedly until v is
reached. At that time, the length of the shortest path to v is set to 0, and the recursion
starts to unfold. The vertex u with label 2 will be considered next, and the length of its
shortest path will be set to the length of the edge from v to u if it exists; otherwise, there
is no path from v to u. The next step will be to check the vertex x with label 3. In this
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Algorithm Acyclic_Shortest_Paths (G, v, n) ;
Input: G =(V, E) (a weighted acyclic graph), v (a vertex),
and n (the number of vertices).
Output: For every vertex w € V, w.SP is the length of the shortest path
from v to w.
{ We assume that a topological sort has already been performed. An improved
algorithm, which computes the topological order as well, is given in Fig. 7.16. }

begin
let z be the vertex labeled n { in the topological order };
ifz #vthen
Acyclic_Shortest Paths (G—z,v,n—1);
{ G —z results from removing z with its incident edges from G }
Jor all w such that (w, z) € E do
if wSP + length(w, z) < z.SP then
2.8P := w.SP + length(w, z) ;
else v.SP :=0
end

Figure 7.15 Algorithm Acyclic_Shortest Paths.

case, there may be edges to x from v and/or from u, and the corresponding paths will be
compared. Instead of applying recursion in some sense ‘‘backward,”” we now try to
execute the same steps in increasing order of labels.

The induction is applied in increasing order of labels starting from v. This order
will eliminate the need to know the labels in advance, and we will be able to run both
algorithms at the same time. We assume that the lengths of the shortest paths to vertices
labeled 1 to m are known, and we consider the vertex labeled m + 1, call it z. To find the
shortest path to z, we need to check all edges coming into z. The topological order
guarantees that all such edges come from vertices with smaller labels. By the induction
hypothesis, these vertices have already been considered; hence, the lengths of the shortest
paths to them are already known. For each such edge (w, z), we know the length of the
shortest path to w, w.SP, hence the shortest path through this edge to z is w.SP +
length (w, z). Therefore, the length of the shortest path to z is the minimum, over all w,
of wSP + length(w, z). Furthermore, as before, we need not worry about adjusting
shortest paths to vertices with lower labels, since there is no way to reach any of them
from z. The improved algorithm is given in Fig. 7.16.

Complexity Each edge is checked once in the initialization of the indegrees and
once when its tail is removed from the queue. The queue is accessed in constant time.
Each vertex is considered only once. Therefore, the worst-case running time is
O(IVI+IED.
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Algorithm Improved_Acyclic_Shortest_Paths (G, v) ;

Input: G =(V, E) (a weighted acyclic graph), v (a vertex of G).

Output: For every vertex w, w.SP is the length of the shortest path from v to w.

{ This is a nonrecursive version of the previous algorithm, and it includes
topological sorting }

begin
Jor all vertices w do
W.SP ;=00 ;
Initialize v.indegree for all vertices ; { e.g., by DFS }
fori:=1tondo
if v;.indegree = 0 then put v; in Queue ;
vSP:=0;
repeat
remove vertex w from Queue ;
Jor all edges (w, z) do
if wSP + length(w, z) < z.SP then
2.8P := w.SP + length(w, z) ;
z.indegree := z.indegree — 1 ;
if z.indegree = 0 then put z in Queue ;
until Queue is empty
end

Figure 7.16 Algorithm Improved_Acyclic_Shortest_Paths.

The General Case

When the graph is not acyclic, there is no such thing as a topological order, and the
algorithms we just discussed cannot be applied directly. It may be possible, however, to
use the ideas of these algorithms for the general case. The simplicity of the algorithms
we presented is a result of the following feature of topological order:

If z is a vertex with label k, then (1) there are no paths from z to vertices
with labels < k, and (2) there are no paths from vertices with labels > k to
z.

This feature enables us to find the shortest path from v to z without having to consider the
vertices that are after z in the topological order. Can we somehow define an order on the
vertices of a general graph that will allow us to do something similar?

The idea is to consider the vertices of the graph in the order imposed by the lengths
of their shortest paths from v. We do not know these lengths initially, of course; we will
find them during the execution of the algorithm. First, we check all the edges coming out
of v. Let (v, x) be the edge of minimum length among them. Since all lengths are
positive, the shortest path from v to x is the edge (v, x). All other paths from v are at least
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as long. So, we know the shortest path to x, and this can serve as the base case for the
induction. Let’s try one more step. How can we find the shortest path to one more
vertex? We choose the vertex that is second closest to v (x is the first closest). The only
paths we need to consider are other edges from v or paths consisting of two edges — the
first edge is (v, x) and the second is an edge from x. We choose the minimum of
length (v, y) (y #x) or length(v, x) + length(x, z) (z#v). Again, we do not need to
consider any other paths, since this is the shortest way to get out of v (except to x). Here
is the general induction hypothesis.

Induction hypothesis: Given a graph and a vertex v, we know the k
vertices that are closest to v and the lengths of the shortest paths to them.

Notice that the induction is on the number of vertices whose shortest paths have already
been computed and not on the size of the graph. Furthermore, it assumes that these are
the closest vertices to v and that we can identify them. We know how to find the closest
vertex (x above), so the base case, with k=1, is solved. When k= |V | —1, the complete
problem is solved.

Denote the set containing v and the k closest vertices to v by V. The problem is to
find a vertex w that is closest to v among the vertices not in V,, and to find the shortest
path from v to w. The shortest path from v to w can go through only the vertices in V,. It
cannot include vertices not in V,, since they would then be closer to v than w. Therefore,
to find w, it is sufficient to consider only edges connecting vertices from V; to vertices
not in V,; all other edges can be ignored for now. Let (u, z) be an edge such that u is in
V, and z is not. Such an edge corresponds to a path from v to z, which consists of the
shortest path from v to u (already known by induction) and the edge (1, z). We need only
to compare all such paths, and take the shortest among them.

The algorithm implied by the induction hypothesis is the following. At each
iteration, a new vertex is added. It is the vertex w such that the length

:'ren‘r/l‘ (u.SP + length (u, w)) (7.1)
is the minimal over all w not in V;. By the arguments above, w is indeed the (k + 1)th
closest vertex to v; thus, adding it extends the induction hypothesis.

The algorithm is complete now, but its efficiency can be improved. The main step
of the algorithm involves finding the next closest vertex. This is done by computing the
minimal path length according to (7.1). However, it is not necessary to check all the
values u.SP + length (u, w) in every step. Most of these values are not changed when a
new vertex is added; only those that correspond to paths that go through the new vertex
may change. We can maintain the lengths of the known shortest paths to all vertices in
Vi, and update them only when V; is extended. The only way to find better shortest
paths when w is added to V, is to go through w. Therefore, we need to check all edges
coming out of w to vertices not in V.. For each such edge (w, z), we check the length of
w.SP + length (w, z), and update z.SP if necessary. Thus, each iteration involves finding
a vertex with minimum SP value, and updating the SP values of some of the remaining
vertices. This algorithm is known as Dijkstra’s algorithm.
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Implementation We need to be able to find a minimum among a set of path lengths,
and to update path lengths frequently. A heap is a good data structure for finding
minimum elements and updating lengths of elements. Since we need to find the vertex
with minimum path length, we keep all vertices not yet in V; in a heap with their current
known shortest path lengths from v as their keys. Initially, all but one of the path lengths
are o, so the heap is ordered in no particular order (except that v is on top). Finding w is
easy; we can simply take it from the top of the heap. All the edges (w, u) can be checked
and the path lengths can be updated without difficulty. However, when a path length to,
say, z is updated, z’s place in the heap may change. We need to be able to modify the
heap accordingly. To do that, we need to know z’s position in the heap. (Remember that
a heap is not a search structure; it does not provide any facilities to locate an element.)
Locating z in the heap can be done with another data structure connected to the heap.
Since the identities of all vertices are known ahead of time, we can put them in an array
with pointers to their location in the heap. Finding a vertex in the heap thus requires only
accessing the array. Since the elements of the heap are the vertices of the graph, the
space requirement is only O (| V |), which is reasonable. Path lengths only decrease. If
an element of the heap becomes smaller than its parent, it can be exchanged and moved
up until its appropriate position is found. This is exactly the same as the regular heap
maintenance procedures (e.g., insert). The shortest paths algorithm is given in Fig. 7.17.

Algorithm Single_Source_Shortest_Paths (G, v) ;

Input: G =(V, E) (a weighted directed graph), and v (the source vertex).

Output: for each vertex w, w.SP is the length of the shortest path from v to w.
{ all lengths are assumed to be nonnegative. }

begin
for all vertices wdo
w.mark := false ;
W.SP ;=00
v.SP:=0;
while there exists an unmarked vertex do
let w be an unmarked vertex such that w.SP is minimal ;
w.mark := true ;
Jor all edges (w, z) such that z is unmarked do
if w.SP + length(w, z) < z.SP then
2.SP := w.SP + length(w, 2)
end

Figure 7.17 Algorithm Single_Source_Shortest_Paths.

Complexity Updating the length of a path takes O (log m) comparisons, where m is
the size of the heap. There are |V | iterations, leading to |V | deletions from the heap.
There are also at most |E | updates (since each edge can cause at most one update),
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leading to O(|E |log |V |) comparisons in the heap. Hence, the running time is
OWIE|+|V])log|V]). Notice that this algorithm is slower than the same algorithm
for acyclic graphs, since the next vertex in the latter algorithm was taken from the
(arbitrarily ordered) queue, and no updates were required.

0O Example 7.1

An example of algorithm Single_Source_Shortest_Paths is given in Fig. 7.18. The first
line includes only paths of one edge from v. The shortest path is chosen, in this case,
leading to vertex a. The second line shows the update of the paths including now all
paths of one edge from either v or a, and the shortest path now leads to ¢. A new vertex
is chosen in each line, and the current known shortest paths from v are listed to every
vertex. The circled distances are those that are known to be the shortest. a

Comments This type of algorithm is sometimes called priority search — each
vertex is assigned a priority (e.g., the current known distance from the source), and
vertices are traversed according to that priority. When a vertex is considered, all its
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Figure 7.18 An example of the single-source shortest-paths algorithm.
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adjacent edges are checked. That check may trigger a change in some priorities. The
procedure for making that change is what distinguishes one priority search from another.
Priority search is more expensive than regular search. It is useful for problems involving
weighted graphs.

We found the shortest paths from v to all other vertices by finding one path at a
time. Each additional path was identified by one edge, which led from a previously
known shortest path to a new vertex. All those edges together form a tree with v as its
root (Exercise 7.6). This tree, called the shortest path tree, is important in dealing with
a variety of path problems.

7.6 Minimum-Cost Spanning Trees

Consider a network of computers connected through bidirectional links. There is a
positive cost associated with sending a message on each of the links. We assume that the
cost of sending a message on a specific link does not depend on the direction. We want
to broadcast a message to all the computers starting from an arbitrary computer. We
assume that the cost of the broadcast is the sum of the costs of the links used to forward
the message. (Another possible definition of cost is the time it takes to complete the
broadcast; see Exercise 7.63.) The network can be represented by an undirected graph
with positive costs on the edges. The problem is to find a fixed connected subgraph
(corresponding to the links used in the broadcast), containing all the vertices, such that
the sum of the costs of the edges in the subgraph is minimum. It is not difficult to see
that this subgraph must be a tree. If any cycle had been present, then we could have
broken it by deleting one of its edges; the graph would still be connected, but the cost
would be smaller since all costs are positive. This subgraph is called the minimum-cost
spanning tree (MCST), and it has many uses besides broadcasts. Our goal is to find an
efficient algorithm to find an MCST.! For simplicity, we assume that the costs are
distinct. This assumption implies that the MCST is unique (Exercise 7.11), which makes
the problem easier to discuss. The algorithm remains the same without this assumption,
except that, when equal-cost edges are encountered, any one of them can be chosen (i.e.,
ties are broken arbitrarily). The proof of correctness is more complicated in this case.

The Problem Given an undirected connected weighted graph
G =(V, E), find a spanning tree T of G of minimum cost.

(Notice that we now call the weights costs.) The straightforward induction hypothesis is
the following.

' We assume here that the whole graph is known to us. The complete topology of a communication network
and all current costs are usually unknown only at the local sites; therefore, a distributed algorithm is needed.
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Induction hypothesis 1: We know how to find the MCST for connected
graphs with < m edges.

The base case is trivial. Given the MCST problem with m edges, how do we reduce it to
a problem with <m edges? We claim that the minimum-cost edge must be included in
the MCST. If it is not included, then adding it to the MCST would create a cycle;
removing any other edge from this cycle creates a tree again, but with smaller cost,
which is a contradiction to the minimality of the MCST. So, we now know one edge that
belongs to the MCST. We can remove this edge from the graph, and apply induction to
the rest of the graph, which now contains less edges. Is that a valid use of induction?

This is not a valid use of induction, because, after we remove an edge, the problem
we need to solve is not the same as the original problem. First, the selection of one edge
limits the selection of other edges. Second, after we remove an edge, the graph may not
be connected any more. We cannot emphasize this issue too strongly — the induction
hypothesis has to be precisely defined and followed.

The solution is to adjust the induction hypothesis. We know how to select the first
edge, but we cannot simply remove it and forget about it, since the rest of the selections
depend on it. Therefore, instead of removing it, we mark it as being selected and use this
fact (its selection) for the algorithm. The algorithm proceeds by selecting one edge at a
time to the MCST. Thus, the induction is not on the size of the graph, but rather on the
number of edges already selected in a given fixed graph.

Induction hypothesis 2: Given a connected graph G =(V, E), we know
how to find a subgraph T of G with k edges (k < |V | =1), such that T is a
tree that is a subgraph of the MCST of G.

We have already discussed the base case for this hypothesis, which is choosing the first
edge. We assume that we have already found the tree T satisfying the induction
hypothesis, and we need to extend T by one more edge. How can we find another edge
that is guaranteed to be in the MCST? We apply the same argument that was used to find
the first edge. T is already known to be part of the MCST. Hence, there must be at least
one edge in the MCST connecting T to vertices not in 7. We will try to find one such
edge. Let E; be the set of all edges connecting T to vertices not in T. We claim that the
edge with minimum cost in E; belongs to the MCST. Denote this edge by (u, w) (see
Fig. 7.19). Since the MCST is a spanning tree, it contains a unique path from u to w
(there exists a unique path between every two vertices in a tree). If (u, w) does not
belong to the MCST, then it is not included in that path from u to w. But, since u does
belong to 7 and w does not belong to T, there must be at least one edge (x, y) in this path
that connects T to a vertex not in T. The cost of this edge is higher than the cost of
(u, w), since (4, w) has the minimum cost among all such edges. But now we can use the
same argument that we applied to the first selected edge. If we add (4, w) to the MCST
and remove the edge (x, y), we get another spanning tree with smaller cost, which is a
contradiction.

Implementation This algorithm is very similar to the single-source shortest-path
algorithm presented in the previous section. The first chosen edge is the edge with
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Figure 7.19 Finding the next edge of the MCST.

minimum cost. T is then defined as a tree with only this edge. In each iteration, we need
to find the minimum-cost edge connecting T to vertices outside of 7. In the shortest-path
algorithm we found the minimum-length path leading outside of 7. Hence, the only
difference between the MCST algorithm and the shortest-path algorithm is that the
minimum is taken not on the length of a path but on the cost of an edge. Tue rest of the
algorithm is virtually the same. We maintain, for each vertex w not included in T, the
minimum-cost edge leading to w from a vertex in T (or e if no such edge exists). In each
iteration, we choose the minimum-cost edge and connect the corresponding vertex w to
T. We then check all the edges incident to w. If the cost of any such edge (w, z) (for z
not in T) is smaller than the cost of the current best edge leading to z, we update z’s cost.
The algorithm is presented in Fig. 7.20.

Complexity The complexity of this algorithm is identical to that of the single-source
shortest-path algorithm presented in the previous section. The worst-case running time is
OWIVI+IE])log|V]).

O Example 7.2

An example of algorithm MCST is illustrated in Fig. 7.21. The vertex in the first column
of the table is the one that is added at that step. The first vertex is v, and the edges
connected to v are listed along with their costs. The vertex with the minimum-cost edge
is chosen in each line. The current best edges (and their costs) leading to unmarked
vertices are updated at each step (only the tails of the edges are listed). O

Comments The algorithm for finding an MCST is an example, although not a pure
one, of a method called the greedy method. Suppose that we are dealing with a set of
elements, each with an associated cost, and that we are interested in finding the set of
elements with maximum (or minimum) cost satisfying some constraints. In the MCST
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Algorithm MCST (G) ;
Input: G (a weighted undirected graph).
Output: T (a minimum-cost spanning tree of G).

begin

Initially T is the empty set ;

Jor all vertices w do
w.Mark := false ; { w.Mark is true ifwisinT }
w.Cost ;= oo ;

let (x, y) be a minimum cost edge inG ;

x.Mark := true ; { y will be marked in the main loop }

for all edges (x, z) do
2.Edge := (x, z) ; { a minimum cost edge from T to z }
z.Cost := cost(x, z) ; { the cost of z.Edge }

while there exists an unmarked vertex do
let w be an unmarked vertex such that w.Cost is minimal ;
if w.Cost = o then

print "G is not connected" ;

halt

else
w.Mark := true ;
addw.EdgetoT ;

{ we now update the costs of unmarked vertices connected to w }
for all edges (w, z) do
if not z.Mark then
if cost(w, z) < z.Cost then
z.Edge :=(w, z) ;
z.Cost := cost(w, z)
end

Figure 7.20 Algorithm MCST.

problem, the elements were the edges of the graph, and the constraint was that the edges
correspond to a spanning tree. The greedy method is to be greedy and take the
maximal-cost possible element at any step. In the MCST algorithm, we introduced some
more constraints on the selection of edges, specifically, we considered only edges that
were connected to the current tree. Therefore, the MCST algorithm is not purely greedy.
We can also, however, find the MCST by selecting, at each step, the minimum-cost edge
anywhere in the graph, provided that this edge does not form a cycle (Exercise 7.59).
The greedy method does not always lead to an optimal solution. It is usually just a
heuristic to find suboptimal solutions. Sometimes, however, as in the MCST example,
the greedy method does lead to the best solution.
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Figure 7.21 An example of the minimum-cost spanning-tree algorithm.

7.7 All Shortest Paths

We now consider the problem of computing shortest paths between all pairs of vertices
in a graph.

The Problem Given a weighted graph G =(V, E) (directed or un-
directed) with nonnegative weights, find the minimum-length paths
between all pairs of vertices.

Again, since we are talking about shortest paths, we refer to the weights as lengths. This
problem is called the all-pairs shortest-paths problem. For simplicity, we discuss how
to find only the lengths of the shortest paths, rather than the paths themselves. We
assume that the graph is directed; the same arguments hold for undirected graphs. We
assume throughout this section that all weights are nonnegative; Exercise 7.73 deals with
negative lengths.
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As usual, let’s start with straightforward induction. We can use induction either on
the edges or on the vertices. What is involved in terms of shortest paths in adding a new
edge, say (u, w), to a graph? First, the edge may form a shorter path between u and w.
Furthermore, there may be other shorter paths that use (#, w). In the worst case, we need
to check, for every pair of vertices v| and v,, whether the length of the shortest path
from v, to u plus the length of (#, w) plus the length of the shortest path from w to v, is
shorter than the known path from v, to v,. Overall, for every new edge, we may have to
make O (|V |?) checks, leading to a worst-case running time of O (|E | |V |2). (Since
the number of edges may be as large as O (|V |2), thisisan O (|V |*) algorithm.)

What is involved in terms of shortest paths in adding a new vertex u to a graph?
We first need to find the lengths of the shortest paths from u to all other vertices and from
all other vertices to u. Since all shortest paths that do not involve u are already known,
we can find the shortest path from u to w in the following way. We need only to
determine the first edge out of « in this path. If this edge is (, v), then the length of the
path from u to w is the length of (u, v) plus the length of the shortest path from v to w
(which is already known). We therefore compare these lengths for all vertices adjacent
to u, and take the minimum length. The shortest path from w to u can be found similarly.
But again, this is not enough. We still have to check, for any pair of vertices, whether
there exists a shorter path between the two using the new vertex u. For each pair of
vertices v and w, we check the length of getting from v to u plus the length of getting
from u to w, and we compare this length to the length of the previously known shortest
path. Overall O (|V |?) comparisons and additions are needed for each added vertex,
leading to an O (|V ) algorithm. The induction on vertices is thus better than the
induction on edges, but there exists an even better induction method for this problem.

The trick is to leave the number of edges and vertices fixed, and to put restrictions
on the type of paths allowed. The induction addresses the removals of these restrictions
on the paths until, at the end, all possible paths are considered. We label the vertices
from 1 to |V |. A path from u to w is called a k-path if, except for u and w, the highest-
labeled vertex on the path is labeled k. In particular, a 0-path is an edge (since no other
vertices can appear on the path).

Induction hypothesis: We know the lengths of the shortest paths between
all pairs of vertices such that only k-paths, for some k < m, are considered.

The base of the induction is m = 1, in which case only direct edges can be considered and
the solution is obvious. We assume the induction hypothesis for m, and we try to extend
itto m+1. We now have to consider all k-paths such that k <m+ 1. So, the only new
paths that we need to consider are m-paths. We have to find the shortest m-paths
between all pairs of vertices, and to check whether they improve on the k-paths for k < m.
Denote by v,, the vertex labeled m. Any shortest m-path must include v,, exactly once.
The shortest m-path between u and w is the shortest k-path (for some k < m) between u
and v,, appended by the shortest j-path (for some j <m, where j need not be equal to k)
between v,, and w. By induction, we already know the lengths of all shortest k-paths for
k <m; hence, we need only to sum the two lengths above to find the shortest m-path
between u to w. Not only is this algorithm faster (by a constant factor) than the one using
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the straightforward induction on vertices, but it is also simple to program. The algorithm
is given in Fig. 7.22.

Algorithm All_Pairs_Shortest_Paths (Weight) ;
Input: Weight (an n x n adjacency matrix representing a weighted graph).
{ Weight [x, y] is the weight of the edge (x, y) if it exists, or e otherwise;
Weight [x, x ] is O, for all x }
Output: At the end, the matrix Weight contains the lengths of the
shortest paths.

begin
Jorm:=1tondo | the induction sequence }
forx:=1tondo
fory :=1tondo
if Weight[x, m] + Weight[m, y] < Weight[x, y] then
Weight[x, y] := Weight[x, m] + Weight[m, y]
end

Figure 7.22 Algorithm All_Pairs_Shortest Paths.

The inner two loops of the algorithm are used to check all pairs of vertices. Notice
that this check can be applied to the pairs of vertices in any order, since each check is
independent of the others. Such flexibility is important, for example, for parallel
algorithms.

Complexity For each m, the algorithm involves only one sum and one comparison
per pair of vertices. The induction sequence is of length |V |, so the total number of
additions (and comparisons) is at most |V |>. Recall that the running time of the single-
source algorithm is O (|E | log |V |). If the graph is dense such that the number of edges
is Q(n?), then using this algorithm is better than using the single-source algorithm for
every vertex. Although it is possible to implement the single-source algorithm in time
O (|V |?) (Exercise 7.43.), which will lead to an O (|V |?) algorithm for all-pairs shortest
paths, the algorithm in this section is better for dense graphs because it is so simple to
implement. On the other hand, if the graph is relatively sparse, then the running time of
O(|E| |V |log|V]), resulting from using the single-source algorithm |V | times, is
better.

7.8 Transitive Closure

Given a directed graph G =(V, E), the transitive closure C=(V, F) of G is a directed
graph such that there is an edge (v, w) in C if and only if there is a directed path from v to
w in G. The transitive closure is related, for example, to the user-accounts security
problem mentioned at the beginning of this chapter. The vertices correspond to the users,
and the edges correspond to permissions. The transitive closure identifies for each user
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all the other users with permission (either directly or indirectly) to use his or her account.
There are many other applications of the transitive closure, and so finding it efficiently is
important.

The Problem Given a directed graph G =(V, E), find its transitive
closure.

We solve this problem by using a reduction. That is, we transform any instance of the
transitive closure problem to an instance of another problem that we already know how
to solve. We then transform the solution of the other problem to a solution of the
transitive closure problem. The reduction is from the all-pairs shortest-paths problem.

Let G'=(V, E’) be a complete directed graph (i.e., all vertices are connected in
both directions). Each edge e in E’ is assigned the length 0 if e € E, and 1 otherwise. We
now solve the all-pairs shortest-paths problem for G’. If there is a path from v to w in G,
then its length in G’ is 0, since all edges of G have length 0 in G’. Therefore, there is a
path between v and w if and only if the length of the shortest path between v and w in G’
is 0. Thus, an answer to the all-pairs shortest-paths problem can be transformed directly
into an answer for the transitive closure problem.

The idea of using reductions between two problems is explored in detail in Chapter
10. We used reduction here mainly to illustrate the technique with a simple example. It
is easy to modify the all-pairs shortest-paths algorithm directly to a transitive closure
algorithm, as is shown in Fig 7.23.

Algorithm Transitive_Closure (A) ;
Input: A (an n Xn adjacency matrix representing a directed graph).
{ A[x, y]is true if the edge (x, y) belongs to the graph, and false otherwise;
A [x, x] is true for all x }
Output: At the end, the matrix A represents the transitive closure of the graph.

begin
Jorm:=1tondo | the induction sequence }
forx:=1tondo
fory:=1tondo
ifAlx,m])and Alm,y] then A[x, y] := true
{ this step is improved in the next algorithm }
end

Figure 7.23 Algorithm Transitive_Closure.

The fact that we can reduce one problem to another means that the solution of the
first problem is general enough to embody the solution of the other. But, more general
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solutions are usually more expensive. We have seen cases where a more general
problem is easier to solve; in many cases, however, the more you get the more you have
to pay for it. When a reduction is used we should always try to improve the resulting
solution by using the special characteristics of the problem.

Consider the main step of the algorithm: the if statement. It consists of two checks,
for A[x,m] and for A[m, y]. An action is taken only if both of these checks are
satisfied. This if statement is performed n times for each pair of vertices. Any
improvement of this statement would lead to a substantial improvement of the algorithm.
Do we really need to perform the two checks all the time? The first check depends on
only x and m, whereas the second check depends on only m and y. Therefore, we can
perform the first check only once for a certain x and a certain m. If the first check fails,
then there is no need to perform the second check for any value of y. If the first check
succeeds, then there is no need to perform it again. This change is incorporated in the
(improved) algorithm presented in Fig. 7.24. The asymptotic complexity remains
unchanged, but this algorithm will run about twice as fast.

Algorithm Improved_Transitive_Closure (A) ;

Input: A (an n xn adjacency matrix representing a directed graph).

{ Alx, y]is true if the edge (x, y) belongs to the graph, and false otherwise;
A [x, x] is true for all x }

Output: At the end, the matrix A represents the transitive closure of G.

begin
Jorm:=1tondo { theinduction sequence }
Jorx:=1tondo
ifA(x, m] then
Jory:=1tondo
ifAlm,y]then A(x, y] := true
end

Figure 7.24 Algorithm Improved_Transitive_Closure.

Implementation The implementation of the algorithm is straightforward. Notice,
however, that the last line has the same effect as an or operation on the xth row of the
matrix. Each entry (x, y) in the xth row is set to the value of itself or that of (m, y).
These operations are equivalent to setting the xth row to be the or of the xth row and the
mth row. Since many computers can perform an or operation on many bits at the same
time, a row or operation can be performed faster than several bit-by-bit operations. So,
in practice, the number of steps for this algorithm is O (n3/w), where w is the word size
(the number of bits that can be or’d together in one step). This is a very simple example
of a parallel algorithm. This issue is also discussed in Section 9.5.3.
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7.9 Decompositions of Graphs

We have already seen one form of graph decomposition — the partition into connected
components. In general, the idea of graph decomposition is to partition the graph into
subgraphs such that each of the subgraphs satisfies a certain desirable property. Then,
when we need to design an algorithm that manipulates the graph, it may be possible to
consider each subgraph separately and to use its desirable property. For example, we
have seen several algorithms that require that the graph be connected. By partitioning the
graph into its connected components, we were able to apply these algorithms to each
component separately, and thus to avoid many complications. This section presents two
other decompositions — biconnected components and strongly connected components.
The first one applies to undirected graphs and the second one to directed graphs. Both
are useful in designing algorithms. In particular, both decompositions depend heavily on
the cycles in the graph (undirected and directed cycles respectively). Therefore,
whenever there is a problem that involves cycles in one way or another (and many graph
problems involve cycles), it is a good idea to consider these decompositions. They are
not always useful, but they should at least be considered. We assume throughout this
section that the graphs are connected.

7.9.1 Biconnected Components

The notion of biconnectivity extends the regular connectivity concept in a natural way.
An undirected graph is connected if there is a path from every vertex to every other
vertex. An undirected graph is biconnected if there are at least two vertex disjoint paths
from every vertex to every other vertex. Biconnected graphs thus exhibit a higher level
of connectivity: If for some reason one of the paths connecting two vertices can no
longer be used, then the two vertices are still connected. It turns out that, if a graph is not
biconnected, then it can be partitioned into subgraphs, each of which is biconnected. We
will be mainly interested in that partition. In general, an undirected graph is called k-
connected if there are at least k vertex disjoint paths between every two vertices. We
first study several properties of k-connected graphs.

The first important property of k-connected graphs is a theorem due to Menger
[1927] that relates the number of vertex disjoint paths between vertices to the number of
vertices required to disconnect the graph.

O Menger’s Theorem

Let G =(V, E) be an undirected connected graph, and let u and v be two
nonadjacent vertices in G. The minimum number of vertices whose removal
from G disconnects u from v is equal to the maximal number of vertex
disjoint paths from u to v. (When a vertex is removed, all its incident edges
are removed as well.) O

A simple corollary of Menger’s theorem is the following, due to Whitney [1932].
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0O Whitney’s Theorem

An undirected graph is k-connected if and only if at least k vertices must be
removed in order to disconnect the graph. a

Since the condition in Whitney’s theorem is equivalent to the condition defining k-
connectivity, we can use either one of these conditions. For a proof of these theorems,
see for example Chartrand and Lesniak [1986]. (One side of the theorems is clear: If
there are k vertices whose removal disconnects the graph, then there cannot be more than
k vertex disjoint paths; the other direction is more complicated.)

Menger’s theorem is one of the most important theorems in graph theory. For our
purposes, the main implication of the two theorems is that a graph is not biconnected if
and only if there is a vertex whose removal disconnects the graph. Such a vertex is
called an articulation point. Figure 7.25 illustrates the structure of a nonbiconnected
graph. Such a graph contains one or more articulation points. The blocks, ‘‘between’’
the articulation points, which are highlighted in the figure, are by themselves
biconnected. These blocks form the biconnected components of the graph. We make
this notion more precise next.

Definition: A biconnected component is a maximal subset of the edges
such that its induced subgraph is biconnected (namely, there is no subset
that contains it and induces a biconnected graph).

A biconnected component is defined as a set of edges. A vertex can belong to several
components. Indeed, each articulation point belongs to more than one component. (In

Figure 7.25 The structure of a nonbiconnected graph.
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fact, this description provides another characterization of articulation points.) The set of
edges of every graph can be partitioned into biconnected components in a unique way.
Each edge belongs to exactly one component. The following two claims prove the
existence of the partition and its uniqueness.

0O Lemma 7.9

Two edges e and f belong to the same biconnected component if and only if
there is a cycle containing both of them. (Note that a biconnected
component may consist of only one edge; this claim addresses only
biconnected components with at least two edges.)

Proof: First, we show that a cycle is always entirely contained in one biconnected
component. If the cycle contains edges from more than one biconnected component,
then we can extend each of these components by adding the rest of the cycle. The
extended subgraph is still biconnected since a cycle cannot be disconnected by one
vertex. This contradicts the maximality of the component. For the other side of the
theorem, if the two edges belong to the same biconnected component, then we can obtain
the cycle containing them in the following way. We add two new (artificial) vertices to
the ‘‘middle’’ of e and f. (That is, if e=(v, w), we add a new vertex z and replace e by
the two edges (v, z) and (z, w); we do the same for f.) The component, as a subgraph,
remains biconnected since it still contains no articulation points. (Removing any of the
new vertices is the same as removing the old edges, which cannot disconnect the
component; removing an old vertex has the same effect as before.) Therefore, there are
two vertex-disjoint paths between the two new vertices, but these paths exactly complete
a cycle containing e and f. a

0O Lemma 7.10
Each edge belongs to exactly one biconnected component.

Proof: Each edge definitely belongs to at least one biconnected component
(possibly containing only itself). It cannot belong to more than one biconnected
component, since there would be cycles containing it and edges from both components.
A combination of the two cycles is one larger cycle containing edges of two components.
We have already seen that this is impossible. a

We want to find the partition into biconnected components. Let’s start as usual
with the straightforward induction hypothesis.

Induction hypothesis: We know how to find the biconnected components of
connected graphs with < m edges.

A connected graph with one edge is biconnected. Consider a graph with m edges and
pick an arbitrary edge x. We remove x from the graph and find, by induction, the
biconnected components. We now have to determine what effect adding x would have
on the partition. The easiest case is when x connects two vertices from the same
component (for example the edge (a, n) in Fig. 7.25). In this case, adding x has no effect
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on the partition (it only makes that one particular component even more connected).
Another easy case is when x completely disconnects the graph (for example the edges
(h, i) and (n, 0) in Fig. 7.25). In this case, it is clear that both of x’s endpoints are
articulation points and, as a result, x is a biconnected component by itself. (Such an edge
is appropriately called a bridge.) Obviously, none of the other components is changed.
The difficult case is when x does not disconnect the graph and connects vertices from two
different components. An example of such an edge is edge (b, €) in Fig. 7.25. We also
illustrated this case in Fig. 7.26(a). It is clear that x merges the two components it
connects, plus several other components that are ‘‘in between,”” into one larger
component. The problem is thus to find all the *‘in-between’’ components and to merge
them efficiently.

Looking back at Fig. 7.25 and Fig. 7.26, we can see that the biconnected
components define a tree in the following way. Each biconnected component is
associated with a node (we call them nodes to distinguish them from the original
vertices). We start with an arbitrary component R as the root of the tree (the component
containing a, b, and 4 in Fig. 7.25). The children of R are those biconnected components
that have common articulation points with R; the grandchildren are those biconnected
components that have not been included in the tree yet, which have common articulation
points with the children, and so on. In other words, we construct the trees in a breadth-
first fashion. We cannot simply say that two biconnected components are connected if
they have an articulation point in common, because an articulation point may be common
to more than two biconnected components, and we do not want to form cycles. It is not
difficult to prove that a tree is always formed by this construction (Exercise 7.17). This

(a) (b)

Figure 7.26 An edge that connects two different biconnected components. (a) The com-
ponents corresponding to the graph of Fig. 7.25 with the articulation points indicated. (b)
The biconnected component tree.



7.9 Decompositions of Graphs 221

tree is called the biconnected tree. Figure 7.26(a) shows the biconnected components of
the graph in Fig. 7.25, and Fig. 7.26(b) shows the corresponding biconnected tree. The
edge x in Fig. 7.26 illustrates the addition of an edge; it can correspond, for example, to
an edge connecting a and £ in the original graph.

If we think of the biconnected tree now, we see that an edge connecting vertices
from two different components generates a cycle in the tree. All the nodes
(corresponding to components) in that cycle must be merged into one component. So we
now have an algorithm. We add to the induction hypothesis the assumption that we
know how to construct the tree, and then we can handle each of the three cases we
discussed earlier. We omit the details because there is a better algorithm.

The problem with the algorithm we just described is the time it takes to find the
cycle generated by the added edge in the biconnected tree. Finding a cycle in a tree may
require traversing the whole tree, which in the worst case requires looking at all the edges
of the tree. There may be as many as O (|V |) edges in the tree, and we have to perform
this step for each edge of the original graph. Thus, this algorithm may require
O(|V |- |E|) time (this is not a precise analysis). We would like to avoid searching for
a cycle in each step.

One common way to improve a straightforward inductive algorithm is to choose
carefully the order of induction. In the preceding discussion, we picked an arbitrary
edge. We may be able to improve the algorithm if we pick the edges in an order that will
make it easier to handle the biconnected tree. A natural first attempt would be to use a
good graph traversal. It turns out, as we shall see in a moment, that DFS is excellent for
this purpose. Consider again Fig. 7.25. Assume that DFS starts at vertex a, and consider
the articulation point b. Let B be the component ‘‘below’’ b which the DFS visits first
after visiting b. (In Fig 7.25, this component consists of the edges connecting vertices b,
¢, d, e, f, and g.) How can we determine that b is indeed an articulation point? By
definition, if all paths from B to the rest of the graph pass through b, then b is an
articulation point. So, we want to determine whether there are any edges coming out of
B to the rest of the graph.

Assume that the vertices in B are visited next by the DFS. If there are no edges out
of B, the traversal will be local to B. All of B’s edges will be traversed and b will be
reached again. Furthermore, since DFS eliminates cross edges, the only edges that may
connect B to the rest of the graph are back edges. In other words, b disconnects B if and
only if there are no back edges out of B that reach the tree above b. (The only exception
to this rule occurs at the root of the DFS tree; we discuss this case later.) Let’s see now
how we can determine this fact.

We want to know how high in the DFS tree we can reach from a subtree. We
traverse the graph using DFS. At each vertex v, we first visit one whole subtree below v,
then another, and so on. Let T be a subtree rooted at a child of v such that the DFS
visits this child first. Suppose that we find not only all the biconnected components in
T, but also the highest vertex in the tree that is connected to T by a back edge. (This is
really just strengthening the induction hypothesis, as will be seen in a moment.) Let’s
denote by High (v) the highest vertex in the DFS tree that is connected, by a back edge,
to either v or a descendent of v (in the DFS tree). Assume that the children of v in the
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DFS tree are w, w, ..., w; (see Fig. 7.27). We can easily compute High (v) if we know
High (w;) for all w;: It is simply the highest among all High (w;) and among all the back
edges from v. (We will describe shortly how to determine efficiently whether one vertex
is higher than another.) So, if we perform DFS, we can easily compute all the High
values. For example, in Fig. 7.27, High(w)=r, High(w,)=v, and High(w3)=w3; the
highest back edge from v goes to g, hence High (v)=r.

Now suppose that we have computed all the High values. We claim that a vertex v
is an articulation point if and only if there is a child w; of v such that High (w;) is not
higher than v. Indeed, if such w; exists, then there are no edges from vertices in the
subtree rooted at w; to vertices higher than v in the tree; hence, v is an articulation point.
(The beauty of DFS is that it traverses the graph in exactly the right order for our
purposes.)

Computing the High values goes hand in hand with the DFS, according to the
following induction hypothesis.

Induction hypothesis: When we visit the kth vertex by DFS, we know how
to find the High values of vertices that have already been visited and are
below this vertex.

The order of the induction follows the order of DFS. When we reach a vertex v, we
perform (recursively) a DFS for all children of v, find (by induction) their High values,
and compute High(v) according to the definition. At the same time, we can decide
whether a vertex is an articulation point.

Figure 7.27 Computing the High values.
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The root of the DFS tree presents a special case. Obviously, no High value can
exceed the root. It is easy to see that the root is an articulation point if and only if it has
more than one child in the DFS tree. Of course, this is easy to determine.

The key to the efficiency of the algorithm for computing the High values is that all
the necessary information is available when DFS is performed. The only problem we
have is how to decide whether one vertex is higher than another in the DFS tree. We use
DFS numbers to make this determination. All the vertices involved in the computation of
the High values are ancestors in the tree. Therefore, they already have a DFS number.
Furthermore, the higher an ancestor is, the lower its number is! This is not true for
vertices that are not related in the tree; fortunately, however, we care only about back
edges. So, a practical way to manipulate the High values is to use the DFS numbers. We
define High (v) as before, except that it refers not to the highest vertex itself, but to that
vertex’s DFS number. It is confusing to describe the algorithm in terms of DFS numbers,
because higher vertices correspond to lower DFS numbers. Therefore, we define
decreasing DFS numbers: the root has a DFS number of |V | and the number is
decreased every time we visit a new vertex. We can also use negative numbers: we
assign the root a DFS number of —1, and we decrement the number every time we visit a
new vertex. The advantage of the latter scheme is that the value of |V | need not be
known in advance.

The only remaining task is to find the actual biconnected components. We could
find them by brute force, but there is also an elegant way. Let’s look back at Fig. 7.25.
Notice that, at the point where the algorithm determined that b is an articulation point, the
edges of B were the most recent to be traversed. During the traversal, we put the new
vertices on a stack and add the edges as they are encountered. When a vertex is found to
be an articulation point, we can remove from the stack all the top edges going back in the
stack until that vertex is reached. This is exactly the biconnected component! We can
now remove those edges from the graph and continue in the same way. The complete
program for biconnected components is given in Fig. 7.28. (The algorithm can be
defined merely in terms of preWORK and postWORK of DFS, but, for completeness, we
present it fully.)

Complexity Clearly, the extra amount of work, in addition to the work involved in
the DFS, is constant per vertex. Hence, the running time of this algorithm is
O(|V |+ |E|). The space requirements are also O (|V | + |E |) since the components
must be remembered as they are traversed.

O Example 7.3

An example of algorithm Biconnected_Components for the graph in Fig. 7.25, which is
repeated here, is given in Fig. 7.29. The first line gives the vertices and the second line
gives their (decreasing) DFS Numbers. Each successive line presents the High numbers
as updated when a new call to the recursive procedure is made. A vertex is circled when
it is discovered to be an articulation point. 0O
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Algorithm Biconnected_Components (G, v, n)

Input: G =(V, E) (an undirected connected graph), v (a vertex serving as
the root of the DFS tree), and n (the number of vertices in G).

Output: the biconnected components are marked and the High values are
computed.

begin
for every vertex v of G do
v.DFS_Number := 0 ;
{ the DFS numbers will also serve to indicate whether or not the
corresponding vertices have been visited }

DFS N:=n;
{ we use decreasing DFS numbers; see the explanation in the text. }
BC(v)

end

procedure BC(v) ;

begin

v.DFS_Number := DFS N ;
DFS N:=DFS N-1;
insert v into Stack ; { Stack is initially empty }
v.High := v.DFS_Number ; { initial value }
Jor all edges (v, w) do
insert (v, w) into Stack ;
{ each edge will be inserted twice (for both directions) }
if w is not the parent of v then
if w.DFS_Number = O then
BC(w);
if w.High < v.DFS_Number then
{ v disconnects w from the rest of the graph }
remove all edges and vertices from Stack until v is
reached, and mark the subgraph they form
as a biconnected component ;
insert v back into Stack ;
{ v is part of w’s component and possibly others }
v.High := max ( v.High ,w.High )
else { (v, w) is a back edge or a forward edge }
v.High := max ( v.High ,w.DFS_Number )
end

Figure 7.28 Algorithm Biconnected_Components.
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Figure 7.29 An example of computing High values and biconnected components.
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7.9.2 Strongly Connected Components

In this section, we discuss only directed graphs. A directed graph is strongly connected
if, for every pair of vertices v and w, there is a path from v to w and a path from w to v.
In other words, it is possible to reach any vertex from any other vertex.

Definition: A strongly connected component is a maximal subset of the
vertices such that its induced subgraph is strongly connected (i.e., there is
no subset that contains it and induces a strongly connected graph).

Notice that, unlike biconnected components, a strongly connected component is defined
as a set of vertices. The vertices of every graph can be partitioned into strongly
connected components in a unique way. Each vertex belongs to exactly one component.
An edge in the graph may belong to one component, or it may connect two separate
components. We prove the existence of the partition by the following two claims, which
are similar to the biconnected component case in the previous section.

0O Lemma 7.11

Two vertices belong to the same strongly connected component if and only
if there is a circuit containing both of them. (Recall that a circuit is a
closed directed path that is not necessarily simple; that is, it may include a
vertex more than once. A cycle is a simple circuit.)

Proof: A circuit is by itself strongly connected. A strongly connected component
cannot include only a subset of the vertices of a circuit, since it would not be maximal
(we can add all the other vertices of the circuit to the component). Now, given any two
vertices v and w from the same strongly connected component, we claim that they are
contained in a circuit. By the definition of strong connectivity, there is a path from v to w
and a path from w to v. Putting together these two paths results in a circuit (but not
necessarily in a cycle, since the paths may not be vertex disjoint). a

O Lemma 7.12
Each vertex belongs to exactly one strongly connected component.

Proof: If a vertex v belongs to more than one strongly connected component, then
there are circuits containing v and vertices from the other components. However,
combining those circuits results in another circuit, which, by Lemma 7.11, must be
contained in only one strongly connected component. This is a contradiction. a

We can define the strongly connected component (SCC) graph similarly to the
biconnected component tree. (This graph is also called a condensation graph.) The
nodes of the SCC graph (we call them nodes to distinguish them from the original
vertices) correspond to the strongly connected components; there is a directed edge from
node a to node b if there is a directed edge (in the original graph) from any vertex in the
component that corresponds to a to any vertex in the component that corresponds to b.
The SCC graph is acyclic since cycles cannot involve more than one component. Figure
7.30 presents a directed graph G and its SCC graph.
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Figure 7.30 A directed graph and its strongly connected component graph.

As was the case with biconnected components, we can design an algorithm by
induction.

Induction hypothesis: We know how to find the strongly connected
components of graphs with < m edges, and how to construct their SCC
graphs.

The base case is trivial. Consider a graph with m edges and pick an arbitrary edge x. We
remove x from the graph and find, by induction, the strongly connected components. We
now have to determine what effect adding x would have on the partition. Again, the easy
case is when x connects two vertices from the same component. In this case, adding x
has no effect on the partition or on the SCC graph. The difficult case is when x connects
vertices from two different components. This case is illustrated in Fig. 7.31, in which an
edge x is connecting two components in the SCC graph of Fig. 7.30. Clearly, x merges
these two components if and only if it completes a (directed) cycle in the SCC graph. In
this case, all the components corresponding to the nodes in the cycle are combined into
one component, and we are done. If x does not complete a cycle in the SCC graph, then
no changes are made to the component. As was the case with biconnected components,
we can improve this algorithm by considering the edges in a particular order. Again,
DFS plays a major role.

Let’s try to follow the same steps as we did in the biconnected component
algorithm, and modify them when necessary. When we visit a vertex through DFS, we
want to determine whether it is part of a circuit with other vertices — in particular,
vertices that are higher than it in the DFS tree. The notion of High values can be used in
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Figure 7.31 Adding an edge connecting two different strongly connected components.

a similar way. We are looking for vertices such that there is no way to reach other parts
of the graph from them or from their descendants. We need a mechanism by which we
can identify the ‘‘breakpoints’’ in a similar way to the articulation points. Consider the
DFS tree. The strongly connected components occupy connected parts of the tree
(Exercise 7.88). That is, all the vertices in a strongly connected component must belong
to one connected subtree of the DFS tree. For a given component, consider its highest
vertex in the tree; we call this vertex the root of the component. The root is the first
vertex of the component to be visited by the DFS. (For example, the roots in Fig. 7.30
are a, d, g, and i.) If we can identify the roots similarly to the way we identified
articulation points, then we can find the partition. We will see that the roots are similar to
articulation points.

The algorithm is based on induction that follows the order of DFS. Let r be the
root of the first component visited in its entirety by the DFS. It is the lowest leftmost
component in the usual picture of DFS (r =d in Fig. 7.30). The component must consist
of all of r’s descendants in the tree (none of the descendants can belong to a smaller
component, since that component’s traversal would have been completed first). If,
during the DFS, we can identify r as the first root, then we can identify the component,
remove it from the graph, and continue by induction. This is not as simple as we stated
it, but this is the main idea. Let’s first see if we can identify r.

First, for a vertex r to be a root of a component, there cannot be any back edges
leading from a descendant of r to a vertex higher than r. Such a back edge completes a
cycle with the higher vertex, which implies that the higher vertex belongs to the same
component as r. We can determine whether such back edges exist similarly to the
biconnected component case — using the High values. However, we need to be more
careful here since DFS in directed graphs does not eliminate cross edges. Consider Fig.
7.32. Vertex g does not have any back edges, but it has a cross edge to e, which is
contained in a cycle with a higher vertex h. Consequently, g’s parent () is not a root of a
component, even though there is no back edge from any of its descendants. Thus, we
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Figure 7.32 The effect of cross edges.

must consider the cross edges as well.

What is the effect of cross edges? Cross edges must go from right to left; in other
words, they must point to vertices that have already been visited. Remember that we are
looking for the first root. If there is a cross edge from g to e and the root has not been
found yet, then we claim that it cannot be f. It must be a vertex which is an ancestor of
both f and e. If it had not been an ancestor of f, then it would have been discovered
before we reached f. In particular, the fact that the component containing e has not been
discovered yet means that there is a way to go higher from e. So, a cross edge from g to
a vertex that was visited before f implies that f is not a root. But this is just as easy to
take into account as a back edge — we need only to consider DFS numbers! When
considering the effect of the edge from g to e, it is not important whether this edge is a
back edge. Only the DFS number of e (and its value relative to that of f) is important.
We can define the High values as in the biconnected component case by looking for an
edge leading to a vertex with the lowest DFS number. The High value of a vertex is the
highest among those of its children and among its back edges or cross edges. A vertex is
the first root if it is the first vertex whose High value is not higher than itself. Notice that
the High values do not really point to the highest vertices.- The High value of g will be
the DFS number of e, even though it is possible to reach b from e (and thus from g). We
care only whether we can reach a vertex higher than g (or f); it is not important to know
the identity of the highest vertex. (Nor do we want to chase pointers once a back edge is
encountered.)

Once we find the first root, we can find the first strongly connected component — it
consists of all the descendants of the root in the DFS tree. We can then remove this
component from the graph. This is done by deleting all the component’s vertices and
edges, and all the edges that point to them from other vertices. We can ignore edges
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from other vertices, since there is no way to get outside of the component. The rest can
be done by induction since we now have a smaller graph! (The reader should carefully
verify that all the assumptions are still valid.) Notice that the definition of the High
values is dynamic. Since we remove the edges pointing to the newly discovered
component, they will play no part in the computation of the High values later. (This is
different from the ‘‘static’’ definition of the High values for the biconnected component
case, which did not depend on any of the previous components.) In practice, there is no
need to actually remove either vertices or edges. We can simply mark the vertices of
each component as they are discovered, and later on ignore edges pointing to marked
vertices. The strongly connected component algorithm is given in Fig. 7.33 (we use
decreasing DFS numbers again to avoid confusion).

Complexity The algorithm is similar to the biconnected component algorithm and its
complexity is the same. The time and space complexities are O (|V | + |E |).

0O Example 7.4

An example of algorithm Strongly_Connected_Components for the graph in Fig. 7.32,
which is repeated here, is given in Fig. 7.34. The first line gives the vertices and the
second line their (decreasing) DFS numbers. Each successive line presents the High
numbers as updated when a new call to the recursive procedure is made. A vertex is
circled when it is discovered to be a root of a strongly connected component. a

7.9.3 Examples of the Use of Graph Decomposition

In this short section, we present two examples where the use of graph decomposition
significantly simplifies the solutions. The first problem involves undirected graphs and
the second one involves directed graphs.

The Problem Given a connected undirected graph G =(V, E),
determine whether it contains a cycle of even length.

We have seen that a cycle must be contained in a biconnected component. Hence, we
can first partition the graph into its biconnected components, then consider each
component separately. In other words, we can now assume that the graph is biconnected!
If the graph is biconnected and it contains more than one edge, then it contains at least
one cycle (in fact, every two edges are contained in a cycle). Let’s find an arbitrary cycle
C\ =v,vy, .., v, v,. If k is even, we are done. If there are no more edges — that is,
the graph consists of exactly one odd cycle — then the answer is obviously negative.
Otherwise, there is an edge not in the cycle such that one of its vertices is in the cycle.
Let that edge be (v;, w). Since the graph is biconnected, the edges (v;, w) and (v;, Vi+1)
are contained in another cycle C,. We traverse C, starting at w until we meet C, again
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Algorithm Strongly_Connected_Components (G, v, n)

Input: G =(V, E) (a directed graph), v (a vertex serving as the root
of the DFS tree), and n (the number of vertices in G).

Output: marking the strongly connected components, and computing
the High values.

{ As is always the case with directed DFS, this procedure may

have to be called several times until all vertices have been visited. }

begin
for every vertex v of G do
v.DFS_Number := 0 ;
v.Component := 0 ;
Current_Component := 0 ;
DFS N:=n;
{ we use decreasing DFS numbers, see the explanation in Section 7.9.1. }
while there exists a vertex v such that v.DFS_Number = 0 do
SCC(v)
end

procedure SCC(v) ;

begin
v.DFS _Number := DFS N ;
DFS N:=DFS N-1;
insert v into STACK ;
v.High := v.DFS_Number ; { the initial value }
Jor all edges (v, w) do
if w.DFS_Number = O then
SCC(w) ;
v.High := max ( v.High , w.High )
else
if w.DFS_Number > v.DFS_Number and w.Component = 0 then
{ (v, w) is a cross edge or a back edge that we need to consider }
v.High := max ( v.High , w.DFS_Number ) ;
if v.High = v.DFS_Number then { v is a root of a component }
Current_Component := Current_Component + 1 ;
repeat { mark the vertices of the new component }
remove x from the top of STACK ;
x.Component := Current_Component ;
untilx = v
end

Figure 7.33 Algorithm Strongly Connected_Components.
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a b c d e f g h i j k
1n 10 9 7 6 5 4 3 2 1
a 11 - - - - - - - - - -
S 1
c 11009 - - . . oo
d 11 10 09 8 - - - - - . .
e 11 10 9 8 10 - - - - . -
d 1110 09 10 10 - - - - - -
c 11 10 10 10 10 - - - - - -
f 11 10 10 10 10 6 - - - - -
g 11 10 10 10 10 6 7 - - - -
f 11 10 10 10 10 7 7 - - - -
¢ 11 10 10 10 10 7 7 - - - -
(® 1 w0 w0 w0 w077 - - -
a 11 10 10 10 10 7 7 - - - -
h 11 10 10 10 10 7 7 4 - - -
i 110 10 10 10 7 7 4 3 - -
i 1m0 10 10 1007 7 4 3 11 -
i 110 10 10 1007 7 4 11 11 -
& 1 10 10 10 107 7 4 w11
i 110 10 10 10 7 7 4 11 11 1
h 11 10 10 10 10 7 7 11 11 11 1
G 110 10 10 1007 7 w111

Figure 7.34 An example of computing High values and strongly connected components.
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at, say, v; (see Fig 7.35). Clearly, v; #v;. The path v;, w, ..., u, v; defines two cycles, as is
shown in Fig. 7.35. It is easy to see that one of the three cycles in the figure must be
even. We have proved the following theorem.

0O Theorem 7.13

Every biconnected graph that has more than one edge and is not merely an
odd-length cycle contains an even-length cycle.

The second problem is a similar one, but for directed graphs.

The Problem Given a directed graph G =(V, E), determine wheth-
er it contains a (directed) cycle of odd length.

Again, we know that a cycle must be contained in a strongly connected component, so
we might as well assume that the graph is strongly connected. We perform DFS starting
from an arbitrary vertex r and we mark vertices with either even or odd. We mark r as
even, then, for each edge (v, w), we mark w with the opposite mark of v. Since r can be
reached from any vertex (by the strong-connectivity assumption), we claim that there is a
cycle of odd length if and only if we try to mark a vertex that is already marked by the
opposite mark (the most notable example is if we reach r again and try to mark it as odd).
We leave the proof of this fact to the reader. It is strongly dependent on the strong
connectivity assumption.

Both of these problems are much more difficult to solve without the
decomposition. Since both decompositions can be achieved efficiently in linear time, it is
usually worthwhile to start thinking about a given problem with the extra assumption that
the graphs in questions are either biconnected or strongly connected. This is especially

Vi V2

Vi

Vigl

Figure 7.35 Finding an even-length cycle.
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true for problems that involve cycles. It is interesting to note that the problem of
efficiently determining whether a directed graph contains an even-length cycle is still
open (see the Bibliography section).

7.10 Matching

Given an undirected graph G =(V, E), a matching is a set of edges no two of which have
a vertex in common. The reason for the name is that an edge can be thought of as a
match of its two vertices. We insist that no vertex belongs to more than one edge from
the matching so that it is a monogamous matching. A vertex that is not incident to any
edge in the matching is called unmatched. We also say that the vertex does not belong
to the matching. A perfect matching is one in which all vertices are matched. A
maximum matching is one with the maximum number of edges. A maximal matching,
on the other hand, is a matching that cannot be extended by the addition of an edge.
Problems involving matching occur in many situations (besides social). Workers may be
matched to jobs, machines to parts, and so on. Furthermore, many problems that seem
unrelated to matching have equivalent formulations in terms of matching problems.

Matching in general graphs is a difficult problem. In this section, we limit our
discussion to two specific matching problems. The first problem is not so important; it
involves finding perfect matchings in special very dense graphs. The solution to this
problem, however, illustrates an interesting approach, which we then generalize to solve
an important problem concerning matching in bipartite graphs.

7.10.1 Perfect Matching in Very Dense Graphs

In this example, we consider a very restricted case of the perfect matching problem. Let
G =(V, E) be an undirected graph such that |V | =2n and the degree of each vertex is at
least n. We present an algorithm to find a perfect matching in such graphs. As a
corollary, we show that, under these conditions, a perfect matching always exists.

We use induction on the size m of the matching. The base case, m =1, is handled
by taking any arbitrary edge as a matching of size one. We will show that we can extend
any matching that is not perfect either by adding another edge or by replacing an existing
edge with two new edges. In either case, the size of the matching is increased, and the
result follows.

Consider a matching M in G with m edges such that m <n. We first check all the
edges not in M to see whether any of them can be added to M. If we find such an edge,
then we are done. Otherwise, M is a maximal matching. Since M is not perfect, there are
at least two nonadjacent vertices, v, and v,, that do not belong to M. These two vertices
have at least 2n distinct edges coming out of them. All of these edges lead to vertices
that are covered by M, since otherwise such an edge could be added to M. Since the
number of edges in M is <n and there are 2n edges from v, and v, adjacent to them, at
least one edge from M — say (u;, u;) — is adjacent to three edges from v, and v;.
Assume, without loss of generality, that those three edges are (u,,v;), (&1, v,), and
(#2,vy) (see Fig. 7.36(a)). It is easy to see that, by removing the edge (u, u,) from M
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u) Us

Figure 7.36 Extending a matching.

and adding the two edges (4, v;), and (u,, v,), we get a larger matching (Fig. 7.36(b)).

We leave the implementation of this algorithm as an exercise (7.21). This
algorithm is another example of a greedy approach. At most three edges were involved
in each step in the extension of one matching to a larger one. This was sufficient in this
case, but, in general, finding a good matching is more difficult. A choice of one edge
may affect choices of other edges far away in the graph. Next, we show how to
generalize this approach to other matching problems.

7.10.2 Bipartite Matching

Let G =(V, E, U) be a bipartite graph, such that V and U are two disjoint sets of vertices,
and E is a set of edges connecting vertices from V to vertices in U.

The Problem Find a maximum-cardinality matching in a bipartite
graph G.

We can formulate this problem in terms of real matching: V is a set of girls, U is a set of
boys, and E is a set of ‘‘possible’’ pairings; we want to match boys to girls so as to
maximize the number of matched boys and girls.

A straightforward approach is to try to match according to some strategy until no
more matches are possible, in the hope that the strategy will guarantee optimality, or at
least come close. We can try different strategies. For example, we can try a greedy
approach by first matching the vertices with small degrees, hoping that the other vertices
will be more likely to have unmatched partners later on. (In other words, first match the
boys that are the most difficult to match, and worry about the rest later.) Instead of trying
to analyze such strategies (which is hard), we try the approach used in the previous
problem. Suppose that we start with a maximal matching, which is not necessarily a
maximum matching. Can we somehow improve it? Consider Fig. 7.37(a), in which the
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matching is depicted by bold lines. It is clear that we can improve the matching by
replacing the edge 2A with the edges /A and 2B. This is similar to the transformation we
applied in the previous problem. But we are not restricted to replacing one edge with two
edges. If we find a similar situation where k edges can be replaced by k + 1 edges, then
we have an improvement. For example, we can improve the matching further by
replacing the edges 3D and 4E with the edges 3C, 4D, and SE (Fig. 7.37(b)).

Let’s study these transformations. Our goal is to add more matched vertices. We
start with an unmatched vertex v and try to find a match for it. If we already have a
maximal matching, then all of v’s neighbors are already matched, so we must try to break
up a match. We choose another vertex u, adjacent to v, which was previously matched
to, say, w. We match v to u and break up the match between u and w. We now have to
find a match for w. If w is connected to an unmatched vertex, then we are done (this was
the first case above); if not, we can continue this way by breaking matches and trying
rematches. To translate this attempt into an algorithm, we have to do two things. First,
we have to make sure that this procedure terminates, and second, we have to show that, if
there is an improvement, then this procedure will find it. First, we formalize this idea.

An alternating path P for a given matching M is a path from a vertex vin V to a
vertex u in U, both of which are unmatched in M, such that the edges of P are
alternatively in £ —M and in M. That is, the first edge (v, w) of P does not belong to M
(since v does not belong to M), the second edge (w, x) belongs to M, and so on, until the
last edge of P, (z, u), which does not belong to M. Notice that alternating paths are
exactly what we used already to improve a matching. The number of edges in P must be
odd since P starts in V and ends in U. Furthermore, there is exactly one more edge of P
in E —M than there is in M. Therefore, if we replace all the edges of P that belong to M
by the edges that do not belong to M, we get another matching with one more edge. For
example, the first alternating path we used to improve the matching in Fig. 7.37(a) was
(1A, A2, 2B), which was used to replace the edge A2 with the edges /A and 2B; the
second alternating path was (C3, 3D, D4, 4E, ES5), which was used to replace the edges
3D and 4E with the edges C3, D4, and ES.

1 2 3 4 5 6 1 2 3 4 5 6
A B C D E F A B C D E F
(a) (b)

Figure 7.37 Extending a bipartite matching.



7.10 Matching 237

It should be clear now that, if there is an alternating path for a given matching M,
then M is not maximum. It turns out that the opposite is also true.

O Alternating-Path Theorem
A matching is maximum if and only if it has no alternating paths. O

This claim will be proved, in the context of a more general theorem, in the next section.

The alternating path theorem immediately suggests an algorithm, because any
matching that is not maximum has an alternating path and any alternating path can extend
a matching. We start with the greedy algorithm, adding as many edges to the matching
as possible, until we get a maximal matching. We then search for an alternating path,
and modify the matching accordingly until no more alternating paths can be found. The
resulting matching is maximum. Since each alternating path extends a matching by one
edge and there are at most n/2 edges in any matching (where n is the number of vertices),
the number of iterations is at most n/2. The only remaining problem is how to find
alternating paths. We solve this problem as follows. We transform the undirected graph
G to a directed graph G’ by directing the edges in M to point from U to V and directing
the edges not in M to point from V to U. Figure 7.38(a) shows the matching obtained for
the graph in Fig. 7.37(a), and Fig. 7.38(b) shows the directed graph G’. An alternating
path corresponds exactly to a directed path from an unmatched vertex in V to an
unmatched vertex in U. Such a directed path can be found by any graph-search
procedure, for example, DFS. The complexity of a search is O (|V | + | E |); hence, the
complexity of the algorithm is O (|V | (|V | + | E |)).

An Improvement

Since a search can traverse the whole graph in the same worst-case running time that it
traverses one path, we might as well try to find several alternating paths with one search.
We have to make sure, however, that these paths do not modify one another. One way to
guarantee the independence of such alternating paths is to restrict them to be vertex

U U
1 2 3 4 5 6 1 2 3 4 5 6
A B C D E F A B C D E F
1% 1%
(a) (b)

Figure 7.38 Finding alternating paths.
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disjoint. If the paths are vertex disjoint, they modify different vertices, so they can be
applied concurrently. The new improved algorithm for finding alternating paths is the
following. First, we perform BFS in G’ from the set of all unmatched vertices in V, level
by level, until a level in which unmatched vertices in U are found. Then, we extract from
the graph induced by the BFS a maximal set of vertex disjoint paths in G’ (which are
alternating paths in G). This is done by finding any path, removing its vertices, finding
another path, removing its vertices, and so on. (The result is not a maximum set, but
merely a maximal set.) We choose a maximal set in order to maximize the number of
edges added to the matching with one search (each vertex-disjoint alternating path adds
one edge to the matching). Finally, we modify the matching using this set of alternating
paths. This process is repeated until no more alternating paths can be found (i.e., the new
directed graph G disconnects the unmatched vertices in V from the unmatched vertices

in U).

Complexity It turns out that the number of iterations of the improved algorithm is
O(N|V|) in the worst case. We omit the proof, which is due to Hopcroft and Karp
[1973]. The overall worst-case running time is thus O ((|V | + |E |)V|V |).

7.11 Network Flows

The problem of network flows is a basic problem in graph theory and combinatorial
optimization. It has been studied extensively for the last 35 years, and many algorithms
and data structures have been developed for it. It has many variations and extensions.
Furthermore, many seemingly unrelated problems can be posed as network-flow
problems. The basic variation of the network-flow problem is defined as follows. Let
G=(V,E) be a directed graph with two distinguished vertices, s (the source) with
indegree 0, and ¢ (the sink) with outdegree 0. Each edge e in E has an associated positive
weight ¢ (e), called the capacity of e. The capacity measures the amount of flow that can
pass through an edge. We call such a graph a network. For convenience we assign a
capacity of 0 to nonexisting edges. A flow is a function f on the edges of the network
that satisfies the following two conditions:

l.  0<f(e)<c(e): The flow through an edge cannot exceed the capacity of
that edge.
2. For all veV - {s, 1}, Zf(u, v)-Zf(v w): The total flow entering a

vertex is equal to the total flow exmng this vertex (except for the source and
sink).

These two conditions imply that the total flow leaving s is equal to the total flow entering
t. The problem is to maximize this flow. (If the capacities are real numbers, then it is not
even clear that maximum flows exist; we will show that they indeed always exist.) One
way to visualize this problem is to think of the network as a network of water pipes. The
goal is to push as much water through the pipes as possible. If too much water is pushed
to the wrong area, the pipes will burst.
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First, we show that the problem of bipartite matching, discussed in the previous
section, can be posed as a network-flow problem. This may seem to be a fruitless
exercise, since we already know how to solve the matching problem, but we do not know
how to solve the network-flow problem (namely, the reduction is in the wrong direction).
The reason we present this wrong-order reduction is that the techniques for solving the
network-flow problem are similar to those for solving the bipartite matching problem.
Understanding the similarities can be helpful in understanding network-flow algorithms.

Given a bipartite graph G =(V, E, U) in which we want to find a maximum-
cardinality matching, we add two new vertices s and ¢, connect s to all vertices in V, and
connect all vertices in U to t. We also direct all the edges in E from V to U (see Fig.
7.39, in which all edges are directed from left to right). We now assign capacities of 1 to
all the edges, and we have a valid network-flow problem on the modified graph G’. Let
M be a matching in G. There is a natural correspondence between M and a flow in G’.
We assign a flow of 1 to all the edges in M and to all the edges connecting s or ¢ to
matched vertices in M. All the other edges are assigned a flow of 0. The total flow is
thus equal to the number of edges in the matching. It turns out that M is a maximum
matching if and only if the corresponding flow is a maximum flow in G’. One side is
clear: If the flow is maximum and it corresponds to a matching, then we cannot have a
larger matching, since it would correspond to a larger flow. For the other side of the
claim we somehow have to adapt the idea of alternating paths to network flows, and to
show that, if there are no alternating paths, then the corresponding flow is maximum. We
proceed to do just that.

An augmenting path with respect to a given flow f is a directed path from s to ¢
which consists of edges from G, but not necessarily in the same direction; each of these
edges (v, u) satisfies exactly one of the following two conditions:

1. (v, u) is in the same direction as it is in G, and f (v, u) <c(v, u). In this
case, the edge (v, u) is called a forward edge. A forward edge has room for

Figure 7.39 Reducing bipartite matching to network flow (the directions of all the
edges are from left to right).
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more flow. The difference ¢ (v, u)—f (v, u) is called the slack of the edge.

2. (v, u) is in the opposite direction in G (namely, (¥, v)€ E), and f (1, v)>0.
In this case, the edge (v, u) is called a backward edge. It is possible to
borrow some flow from a backward edge.

Augmenting paths are extensions of alternating paths, and they serve the same
purpose for network flows as alternating paths do for bipartite matching. If there exists
an augmenting path with respect to a flow f (we say that f admits an augmenting path),
then f is not maximum. We can modify f by moving more flow through the augmenting
path in the following way. If all the edges of the path are forward edges, then more flow
can be moved through them, and all the constraints are still satisfied. The extra flow in
that case is exactly the minimum slack of the edges in the path. The case of backward
edges is a little more complicated. Consider Fig. 7.40. Each edge is marked with two
numbers a/b, such that a is the capacity and b is the current flow. It is clear that no more
flow can be pushed forward, since there is no path from s to r that consists of only
forward edges. However, there is a way to extend the flow.

The path s—v—u—-w—t is an augmenting path. An additional flow of 2 can reach u
from s through this path (2 is the minimum slack over all forward edges until ). We can
deduct a flow of 2 from f (w, u). The conservation constraint is now satisfied for u, since
u had an additional flow of 2 coming in through the augmenting path, and a flow of 2
deducted from the backward edge. We now have an extra flow of 2 at w that needs to be
pushed, which is exactly what we want. We can continue pushing flow from w in the
same way, pushing it forward on forward edges, and deducting it from backward edges.
In this case, there is one forward edge (w, ¢) that reaches ¢, and we are done. Since only
forward edges can leave s and enter ¢, the total flow is increased. The increase is equal to
the minimum of either the minimal slack of forward edges or the minimal current flow
through backward edges. Figure 7.41 shows the same network with the modified flow.
(This flow is in fact maximum.)

9o
SIS 312
s 7y . .
6/5 171
5/5

Figure 7.40 An example of a network with a (nonmaximum) flow.
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5/5 w

Figure 7.41 The result of augmenting the flow of Fig. 7.40.

The arguments above establish that if there is an augmenting path, then the flow is
not maximum. The opposite is also true:

O The Augmenting-Path Theorem
A flow f is maximum if and only if it admits no augmenting path.

Proof: We have already shown one direction of the theorem — if the flow admits
an augmenting path, then it is not maximum. Let’s assume now that a flow f admits no
augmenting path, and prove that fis maximum. We use the concept of cuts. Intuitively,
a cut is a set of edges that separate s from . More precisely, let A be a set of vertices of
V such that s € A and ¢ ¢ A. Denote the rest of the vertices by B=V —A. A cut is the set
of edges {(v, w)€ E} such that ve A and w € B. The capacity of the cut is defined as the
sum of the capacities of its edges. It is clear that no flow can exceed the capacity of any
cut. (If you disconnect the pipes, no water can flow through them.) Hence, if we find a
flow whose value is equal to the capacity of a (any) cut, then this flow must be maximum.
We proceed to prove that, if a flow admits no augmenting paths, then it is equal to the
capacity of a cut, and hence it is maximum.

Let f be a flow that admits no augmenting path. Let A cV be the set of vertices
such that for each v € A there is an augmenting path, with respect to the flow f, from s to
v. Clearly, se A, and ré¢ A (since we assumed that f admits no augmenting path).
Therefore, A defines a cut. We claim that, for all edges (v,w) in that cut,
f (v, w)=c(v, w). Otherwise, (v, w) would be a forward edge and there would be an
augmenting path to w, contrary to our assumption that w ¢ A. By the same argument,
there cannot be an edge (w, v) such that wé A and v € A, and f (w, v) > 0 (since it would
be a backward edge and it could extend an augmenting path). Hence, the value of the
flow fis equal to the capacity of the cut defined by A, and fis maximum. O



242 Graph Algorithms

We have proved the following fundamental theorem.
O Max-Flow Min-Cut Theorem

The value of a maximum flow in a network is equal to the minimum capacity
of acut. a

The augmenting-path theorem also implies the following theorem.
O The Integral-Flow Theorem

If the capacities of all edges in the network are integers, then there is a
maximum flow whose value is an integer.

Proof: The theorem follows directly from the augmenting-path theorem. In fact,
any algorithm that uses only augmenting paths will lead to an integral flow if all the
capacities are integers. This is obvious since we start with a flow of 0, and each
augmenting path adds an integer to the total flow. O

We now return to the bipartite-matching problem. Clearly, any alternating path in
G corresponds to an augmenting path in G’, and vice versa. The augmenting-path
theorem implies the alternating-path theorem given in the previous section. If M is a
maximum matching, then there is no alternating path for it, which implies that there is no
augmenting path in G’, which implies that the flow is maximum. On the other hand,
there is a maximum integral flow, and it clearly corresponds to a matching since each
vertex in V is connected by only one edge (with capacity 1) to s; hence, each vertex of V
can support a flow of only 1. The same argument holds for the vertices of U. This
matching must be maximum since, if it could be extended, then there would be a larger
flow.

The augmenting-path theorem immediately suggests an algorithm. We start with a
flow of 0, search for augmenting paths, and augment the flow accordingly, until there are
no more augmenting paths. We are always making progress since we are increasing the
flow. Searching for augmenting paths can be done in the following way. We define the
residual graph, with respect to a network G=(V, E) and a flow f, as the network
R =(V, F) with the same vertices, the same source and sink, and the same edges, but with
possibly different directions and different capacities. The edges in the residual graph
correspond to the possible edges in an augmenting path. Their capacities correspond to
the possible augmenting flow through those edges. More precisely, an edge (v, w)
belongs to F if it is either a forward edge, in which case its capacity is ¢ (v, w)—f (v, w),
or a backward edge, in which case its capacity is f (v, w). An augmenting path is thus a
regular directed path from s to ¢ in the residual graph. Constructing the residual graph
requires | E | steps since each edge has to be checked exactly once.

Unfortunately, selecting augmenting paths in an arbitrary way may lead to a very
slow algorithm. The worst-case running time of such an algorithm may not even be a
function of the size of the graph. Consider the network in Fig. 7.42. The maximum flow
is obviously 2M. However, one might start with the path s —a —b —t, which can support a
flow of only 1. Then, one might take the augmenting path s—bh—a—t, which again
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s
Figure 7.42 A bad example of network flow.

augments the flow by only 1. This process can be repeated 2M times, where M may be
very large, even though the graph has only four vertices and five edges. (Since the value
of M can be represented by O (logM) bits, this algorithm is exponential, in the worst
case, in the size of the input.)

Although the scenario above may be unlikely, we have to take precautions to avoid
it. Furthermore, we want to minimize the number of augmentations in order to speed up
the algorithm. Edmonds and Karp [1972], for example, suggested (among other things)
selecting the next augmenting path by taking the augmenting path with the minimum
number of edges. They proved that, if this policy is maintained, then at most
(VIP-|1V])/4 augmentations are required. This leads to an algorithm whose worst
case is polynomial in the size of the input. Many different algorithms have been
suggested since then. Some are complicated; others are relatively simple (none are really
simple). An upper bound of O(|V |*) on the complexity of network flow has been
achieved by several of these algorithms. We will not describe these algorithms here
(references are given in the Bibliography section).

7.12 Hamiltonian Tours

We started this chapter with a discussion of a tour containing all edges of a graph. We
end the chapter with a discussion of a tour containing all the vertices of a graph. This is
also a famous problem, named after the Irish mathematician Sir William R. Hamilton,
who designed a popular game based on this problem in 1857.

The Problem Given a graph G=(V, E), find a simple cycle in G
that includes every vertex of V exactly once.
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Such a cycle is called a Hamiltonian cycle. Graphs containing such cycles are called
Hamiltonian graphs. The problem has a directed and an undirected version; we will
consider only the undirected version.

Unlike the Eulerian-tour problem, the problem of finding Hamiltonian cycles (or
characterizing Hamiltonian graphs) is very difficult. It belongs to the class of NP-
complete problems discussed in Chapter 11. In this section, we present a simple example
in which we find Hamiltonian cycles in only special graphs that are very dense. The
most interesting part of this example is the use of an interesting technique called
reversed induction.

7.12.1 Reversed Induction

We have already seen reversed induction in Section 2.11. The idea is to use an infinite
set S (e.g.,S = {2¥},k=1,2,..) as the base case for the induction. That is, we prove that
the theorem P (n) holds for all values of » that belong to S. Then, we go ‘‘backward,’’
proving that the validity of P(n) implies the validity of P(n—1). Usually in
mathematics, going from n to n—1 is not easier than going from n—1 to n, and proving
an infinite base case is much more difficult than a simple one. When designing
algorithms on the other hand, it is almost always easy to go from n to n— 1, namely, to
solve the problem for smaller inputs. For example, we can introduce ‘‘dummy’’ inputs
that do not affect the outcome. As a result, it is sufficient in many cases to design the
algorithm not for inputs of all sizes, but only for sizes taken from an infinite set. The
most common use of this principle is designing algorithms only for inputs of size n which
is a power of 2. It makes the design much cleaner and eliminates many *‘dirty’’ details.
Obviously, these details will have to be resolved eventually. But it is more convenient to
solve the main problem first. We use the assumption that n is a power of 2 in several
algorithms throughout the book (e.g., Sections 8.2, and 9.4).

The same method is also useful when there is a bound on the number of possible
elements. The base case of the theorem can be the instance with the maximal number of
elements (rather than the minimal number). The proof can then ‘‘go backward.”” For
example, suppose that we want to prove a theorem about graphs and we want to apply
induction on the number of edges. We can start with the complete graph, which has the
maximal number of edges for a fixed number of vertices. We can then prove that the
theorem continues to hold even if we remove an edge (as opposed to the usual adding of
an edge). This gives us extra flexibility in applying induction. The next algorithm
illustrates this principle.

7.12.2 Finding Hamiltonian Cycles in Very Dense Graphs

Let G=(V, E) be a connected undirected graph, and let d(v) denote the degree of the
vertex v. The following problem involves finding Hamiltonian cycles in very dense
graphs. We will show that the conditions of the problem guarantee that the graph is
Hamiltonian. We introduce the problem to illustrate the principle of reversed induction.
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The Problem Given a connected undirected graph G =(V, E) with
n 23 vertices, such that each pair of nonadjacent vertices v and w
satisfies d (v) +d(w) 2 n, find a Hamiltonian cycle in G.

The algorithm is based on reversed induction on the number of edges. The base case is
the complete graph. Every complete graph with at least three vertices contains a
Hamiltonian cycle and it is easy to find one (put all vertices in an arbitrary order and
connect them in a cycle).

Induction hypothesis: We know how to find a Hamiltonian cycle in graphs
satisfying the given conditions with > m edges.

We have to show how to find a Hamiltonian cycle in a graph with m —1 edges that
satisfies the conditions of the problem. Let G =(V, E) be such a graph. Take any pair of
nonadjacent vertices v and w in G, and consider the graph G’, which is the same as G
except that v and w are connected. By the induction hypothesis, we know how to find a
Hamiltonian cycle in G’. Let x|, x5, ..., X,, X; be such a cycle in G’ (see Fig. 7.43). If
the edge (v, w) is not included in the cycle, then the same cycle is contained in G and we
are done. Otherwise, without loss of generality, we can assume that v=x; and w =x,,.
By the conditions given for G, d(v)+d(w)2n. The stage is now set to find a new
Hamiltonian cycle.

Consider all the edges in G coming out of v and w. There are at least n of them (by
the conditions of the problem). But G contains n —2 other vertices. Therefore, there are
two vertices x; and x;,;, which are neighbors in the cycle, such that v is connected to x;
and w is connected to x;. Using the edges (v, x;,;) and (w, x;), we can now find a new
Hamiltonian cycle that does not use the edge (v,w). It is the cycle
V(EX1), Xjsls Xis2s oo W(=Xp), Xiy Xi_15 ..., V (se€ Fig. 7.43).

w v

Xit1 i

Figure 7.43 Modifying Hamiltonian cycles.
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|mplementation The straightforward implementation of this proof starts with the
complete graph and replaces one edge at a time. We can do better by starting with a
much smaller graph as follows. Take the input graph G, find a large path (e.g., by DFS),
and add the edges (not from G) necessary to complete this path to a Hamiltonian cycle.
We now have a larger graph G’, which has a Hamiltonian cycle. Usually, only few edges
will be added. However, even in the worst case, at most n — 1 edges will be added. We
can apply the proof above iteratively, starting with G’, until a Hamiltonian path is
obtained for G. The total number of steps to replace an edge is O (n). There are O (n)
edges to replace; hence, the algorithm runs in time O (n?).

7.13 Summary

Graphs are used to model relationships among pairs of objects. Since most algorithms
require an examination of the whole input, the first issue involved in graph algorithms is
frequently graph traversal. We studied two types of graph traversals: depth-first search
(DFS), and breadth-first search (BFS). We saw several examples where DFS was more
suitable than BFS. Therefore, we suggest trying DFS first (although there are many
examples where BFS is superior). DFS is especially suited for recursive algorithms on
graphs. BFS also usually requires more space (although again, this is not a rule — it
depends on the graph). We have also seen an example of priority search, which was
used to compute shortest paths from a single source. Priority search is more expensive
than regular search. It is useful for optimization problems involving weighted graphs.

Cycles usually cause major difficulties for graph algorithms. Therefore, algorithms
for trees or directed acyclic graphs are usually much easier to design and faster to
execute. It is important to realize that graphs with even a small number of edges can
have many different cycles (Exercise 7.54). Algorithms that require checking all or a
large fraction of the cycles in a graph can be very slow for most graphs.

Graph decomposition is very useful. Fortunately, it is also usually reasonably
inexpensive. We have seen decompositions into connected components, biconnected
components, and strongly connected components. Decomposition basically allows us to
assume certain properties (such as connectivity), even though the graphs under
consideration may not have them.

Another useful technique for graph algorithms is reduction. Since graphs can be
represented by matrices there is a natural relationship between graph and matrix
algorithms. We discuss this relationship and reductions in general in Chapter 10.
Network-flow problems and matching problems are excellent source for reductions.
Reductions also help us to determine whether a problem is difficult. In Chapter 11, we
discuss a class of problems, called NP-complete problems, which probably cannot be
solved by algorithms whose running times are polynomial in the size of the input in the
worst case. This class includes numerous graph problems. The differences between easy
problems and hard problems sometimes seem minuscule. For example, we have seen an
efficient algorithm to determine whether a directed graph contains a simple cycle of odd
length; the same problem with the extra constraint that the cycle contains a given vertex
(or edge) is NP-complete. It is essential to understand and develop an intuitive feeling
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for these differences. Thus, the material in Chapter 11 is very important for
understanding graph algorithms.

Bibliographic Notes and Further Reading

Graph theory is a relatively new field in mathematics. Most of the basic results were
discovered only in this century. Nevertheless, by now graph theory is a developed and
well-understood field, with thousands of results. Many books on graph theory have been
published, among them Berge [1962], Ore [1963], Harary [1969], Berge [1973], Deo
[1974], Bondy and Murty [1976], Chartrand [1977], Capobianco and Molluzzo [1978],
Bollobas [1979], Tutte [1984], and Chartrand and Lesniak [1986]. There are also several
books devoted to graph algorithms, including Even [1979], Golumbic [1980] (which
emphasizes perfect graphs and related classes of graphs), Gondran and Minoux [1984]
(which emphasizes optimization problems), Gibbons [1985], Nishizeki and Chiba [1988]
(which is devoted to planar graphs), and a survey paper by van Leeuwen [1986].

The notion of Eulerian graphs is due to Euler [1736], and it is regarded as the first
result in graph theory. An algorithm for finding Eulerian paths can be obtained quite
easily from the proof (see, for example, Even [1979] or Ebert [1988]). Depth-first search
was first described by Lucas [1882] (describing work by Trémaux) and Tarry [1895],
where it was used to design algorithms to traverse a maze. The importance of depth-first
search was made evident in the work of Tarjan [1972], who also presented the algorithms
for biconnected and strongly connected components.

The minimum-cost spanning tree problem has been studied extensively. The
algorithm presented in Section 7.6 (although not its implementation) is due to Prim
[1957]. Another algorithm (which is the subject of Exercise 7.59) is due to Kruskal
[1956]). Other algorithms for finding the minimum-cost spanning tree were developed by
Yao [1975], Cheriton and Tarjan [1976], Fredman and Tarjan [1987], and Gabow, Galil,
Spencer, and Tarjan [1986]

The algorithm for single-source shortest paths presented in Section 7.5 was
developed by Dijkstra [1959]. The implementation using a heap is due to Johnson [1977]
(see also Tarjan [1983]). When the graph is sparse, as is usually the case in practice, this
is a fast algorithm. If the number of edges is proportional to |V |2, then the running time
of this algorithm is O (|V |210g |V |. A better implementation for dense graphs, with a
running time of O (|V |?), is the subject of Exercise 7.43. The best-known asymptotic
running time for this problem (using quite complicated data structures) is
O(|E|+|V|log|V|), a result due to Fredman and Tarjan [1987]. The all-pair
shortest-paths algorithm presented in Section 7.7 is due to Floyd [1962]. It works
correctly for weighted graphs with possibly negative weights, provided that there are no
negative weight cycles (Exercise 7.73). It is possible to find all the shortest paths faster
on the average — Spira [1973] presented an algorithm whose average running time is
O(|V |%10g?|V |), and Moffat and Takaoka [1987] used a hybrid of Spira’s algorithm
and an earlier algorithm by Dantzig [1960] to obtain an algorithm whose average running
time is O(|V |%log |V |). For more information on shortest-path algorithms see the
survey by Deo and Pang [1984] (which includes, among other things, 222 references).
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The transitive closure algorithm presented in Section 7.8 is due to Warshall [1962].

The augmenting-path theorem and its application to network flows were
discovered by Ford and Fulkerson [1956]. An excellent description of the data structures
and combinatorial algorithms for network flows is given in Tarjan [1983]. A new
algorithm for network flow was recently developed by Goldberg and Tarjan [1988].
More information on the network-flow problem and many of its extensions can be found
in Ford and Fulkerson [1962], Hu [1969], Christofides [1975], Lawler [1976], Minieka
[1978], Papadimitriou and Steiglitz [1982], and Gondran and Minoux [1984]. A book by
Lovéasz and Plummer [1986] covers both the mathematical foundations of matching
theory and algorithms for various matching problems. Galil [1986] presents a survey of
matching algorithms in bipartite and general graphs. The algorithm in Section 7.12.2 for
finding Hamiltonian cycles in dense graphs is based on a theorem (and its proof) by Ore
[1960].

Two important subjects in graph algorithms were not discussed here: planarity and
graph isomorphism. The problem of characterizing planar graphs and embedding them
in the plane is one of the oldest problems in graph theory. Early algorithms for this
problem were developed by Auslander and Parter [1961] and Lempel, Even, and
Cederbaum [1966]. A linear-time algorithm to determine whether a graph is planar was
developed by Hopcroft and Tarjan [1974]. It uses a linear-time (DFS-based) algorithm to
decompose a graph into 3-connected components (Hopcroft and Tarjan [1973]). This
algorithm motivated the development of many other algorithms and data structures. A
polynomial-time algorithm for graph isomorphism has not been found yet. Graph
isomorphism is one of the very few major problems whose status (either polynomial or
NP-hard) is still unknown (more on that in Chapter 11). For a discussion on this topic
see, for example, Hoffman (1982], or Luks [1982].

A discussion on de Bruijn sequences (Exercise 7.28) can be found in Even [1979].
Exercise 7.46 is from Sedgewick and Vitter [1986]. Exercise 7.55 is motivated by an
exercise from Bollobds [1986], and Exercise 7.58 is motivated by an exercise from
Lovdsz [1979]. Ford [1956] contains an algorithm that satisfies the requirements of
Exercise 7.75. The algorithm for transitive closure hinted in Exercise 7.81 is from
Warren [1975]. Exercise 7.97 is from Lovdsz and Plummer [1986]. Gabow and Tarjan
[1988] present an efficient algorithm for the bottleneck problem in Exercise 7.100. The
theorem presented in Exercises 7.101 and 7.102 is known as Gomory’s theorem.
Exercise 7.105 is from Lovdsz [1979]. Exercise 7.121 is related to a problem of
designing space-efficient routing tables, which is solved in Manber and McVoy [1988].

Drill Exercises l

7.1 Consider the problem of finding balance factors in binary trees discussed in Section 5.8.
Solve this problem using DFS. You need only to define preWORK and postWORK.

7.2 LetG =(V, E) be a connected undirected graph, and let T be a DFS tree of G rooted at v.
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a. Let H be an arbitrary induced subgraph of G. Show that the intersection of T and H is
not necessarily a spanning tree of H.

b. Let R be a subtree of T, and let S be the subgraph of G induced by the vertices in R.
Prove that R could be a DFS tree of S.

The input is a connected undirected graph G =(V, E), a spanning tree T of G, and a vertex v.
Design a algorithm to determine whether T is a valid DFS tree of G rooted at v. In other
words, determine whether T can be the output of DFS under some order of the edges
starting with v. The running time of the algorithm should be O (|1E | + |V |).

Characterize all undirected graphs that contain a vertex v such that there exists a DFS
spanning tree rooted at v that is identical to a BFS spanning tree rooted at v. (Two spanning
trees are identical if they contain the same set of edges; the order in which they are
traversed is immaterial here. However, both trees must have the same root v.)

Modify algorithm Topological Sorting (Fig. 7.14) in the following way. Assume that you
no longer know whether or not the graph is acyclic. Obviously, if the graph is cyclic, a
topological sort is impossible. Design an algorithm that will output the topological-sort
labeling if the graph is acyclic, and will output a cycle if the graph is not. The running time
of the algorithm should be O (|1E | + |V |).

Consider algorithm Single_Source_Shortest_Paths (Fig. 7.17) Prove that the subgraph
consisting of all the edges that belong to shortest paths from v, found during the execution
of the algorithm, is a tree rooted at v.

Let G =(V, E) be an undirected weighted graph, and let T be the shortest-paths tree rooted at
a vertex v (Exercise 7.6). Suppose now that all the weights in G are increased by a constant
number c¢. Is T still the shortest-paths tree from v?

Prove or show a counterexample: Algorithm Single Source_Shortest_Paths (Fig. 7.17)
works correctly for weighted graphs some of whose edges have negative weights, provided
that there are no negative-weight cycles. /,’
Let G =(V, E) be an undirected weighted graph. Prove that, if all the costs are distinct, then
there exists exactly one unique minimum-cost spanning tree.

Modify algorithm MCST (Fig. 7.20) to find a maximum-cost spanning tree.

Prove or show a counterexample: algorithm MCST (Fig. 7.20) works correctly for weighted
graphs some of whose edges have negative costs.

a. Give an example of a weighted connected undirected graph G =(V, E) and a vertex v,
such that the minimum-cost spanning tree of G is the same as the shortest-path tree
rooted at v.

b. Give an example of a weighted connected undirected graph G =(V, E) and a vertex v,
such that the minimum-cost spanning tree of G is very different from the shortest path
tree rooted at v. Can the two trees be completely disjoint?

Describe the changes in the biconnected components and biconnected tree resulting from
deleting the vertex ¢ from the graph in Fig. 7.25.

a. Run the biconnected components algorithm on the graph in Fig. 7.44. The algorithm
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should follow the DFS numbers that are given in the figure. Show the High values as
computed by the algorithm in each step.

b. Add the edge (4,8) to the graph and discuss the changes this makes to the algorithm.

Prove that the definition of a biconnected tree in Section 7.9.1 is valid. You have to show
that there are no cycles, and that the set of all biconnected components are connected.

a. Run the strongly connected components algorithm on the graph in Fig. 7.45. The
algorithm should follow the DFS numbers that are given in the figure. Show the High
values as computed by the algorithm in each step.

b. Add the edge (4,1) to the graph and discuss the changes this makes to the algorithm.

Let G =(V, E) be a strongly connected graph and let T be a DFS tree in G. Prove that, if all
the forward edges in G, with respect to T, are removed from G, the resulting graph is still
strongly connected.

Figure 7.45 A directed graph with DFS numbers for Exercise 7.16.
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a. Prove the correctness of the algorithm for finding an odd length cycle in a directed graph
(Section 7.9.4).

b. Show an example of a graph that is not strongly connected for which the algorithm does
not work.

Show an implementation of the algorithm discussed in Section 7.10.2 to find a perfect
matching in a graph with 2n vertices, each with degree at least n. Your algorithm should
run intime O (|V | + | E |) in the worst case.

This exercise generalizes somewhat the proof of existence of perfect matchings in dense
graphs. Suppose that you are given a graph with 2n vertices such that not all of them have
high degree, but, for any two nonadjacent vertices, the sum of their degrees is at least 2n. Is
it still true that a perfect matching always exists? Is the algorithm obtained in Exercise 7.19
still valid?

Creative Exercises

7.21

122

7.23

7.25

Unless specified otherwise, we assume that the graphs are given in an adjacency-lists
representation. Such a representation requires O (| V | + | E |) space; hence, we say that an
algorithm runs in linear time if its running time is O(|V |+ |E|). Unless specified
otherwise, all the running times are worst case. In some cases, a particular running time is
given and the exercise requires achieving that time; in other cases, we ask only for an
‘‘efficient algorithm.”’ In the latter case, the reader should try to find the best possible
algorithm. In practice, of course, the best running time is unknown when a problem is
encountered.

Given an undirected graph G =(V, E) and an integer k, find the maximum induced subgraph
H of G such that each vertex in H has degree > k, or determine that it does not exist. (An
induced subgraph of a graph G =(V, E) is a graph H=(U, F) such that UcV, and F
includes all edges in E both of whose vertices are in U.) The algorithm should run in linear
time. (This problem is discussed in Section 5.3.)

Let G =(V, E) be a connected undirected graph. We want to pick a vertex of degree 1 of G,
remove it and its incident edge from G, and continue this process (i.e., taking another vertex
of degree 1 in the remaining graph, removing it, and so on) until all edges are removed. If
this procedure is always possible for certain graphs, then designing algorithms by induction
for these graphs may be easier. Characterize connected undirected graphs that satisfy these
conditions. In other words, find necessary and sufficient conditions for a graph G on which
the procedure described above is possible.

Describe an efficient implementation of the Eulerian graph algorithm discussed in Section
7.2. The algorithm should run in linear time and space.

Let G =(V, E) be an undirected graph such that each vertex has an even degree. Design a
linear-time algorithm to direct the edges of G such that, for each vertex, the outdegree is
equal to the indegree.

A directed Eulerian circuit is a directed circuit that contains each edge exactly once. Prove
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that a directed graph contains a directed Eulerian circuit if and only if the indegree of each
vertex is equal to its outdegree, and the underlying undirected graph is connected. Design
an efficient algorithm to find such an Eulerian circuit if it exists.

Let G =(V, E) be an undirected connected graph with & vertices of odd degrees.
a. Prove that k is even.

b. Design an algorithm to find k/2 open paths such that each edge in G is included in
exactly one of these paths.

Design an algorithm to find a vertex in a connected undirected graph whose removal does
not disconnect the graph. The algorithm should run in linear time. (Do not use the
biconnected components algorithm.) As a consequence, prove that every connected graph
contains such a vertex.

A binary de Bruijn sequence is a (cyclic) sequence of 2" bits a, a, - - - a,* such that each
binary string s of size n is represented somewhere in the sequence; that is, there exists a
unique index i such that s = a; a;,, *** a;,,-, (Where the indices are taken modulo 2"). For
example, the sequence 11010001 is a binary de Bruijn sequence for n=3. Let G,=(V, E)
be a directed graph defined as follows. The vertex set V corresponds to the set of all binary

strings of size n—1 (]V | =2"""). A vertex corresponding to the string a, a, - - a,_, has
an edge leading to a vertex corresponding to the string b, b, - b,_, if and only if
azas ‘' a,y =byby -+ b,,. Prove that G, is a directed Eulerian graph, and discuss

the implications for de Bruijn sequences.

Design an efficient algorithm for the following problem: Given n positive integers
d,,d,,..,d, such that d, +d,+ --- +d, =2n-2, construct a tree with n vertices of
degrees exactly d,, d,, ..., d,.

Let (iy, 0,), (i3, 03), ..., (i,,, 0,) be a sequence of pairs of integers such that

a. i;=0,andiy=1for 1 <k<n

n
b. Y o;=n-1
j=1
Find a rooted tree with n vertices such that the indegree of vertex  is i, and its outdegree is
0. The algorithm should run in time O (n).

Let G =(V, E) be a directed graph (not necessarily acyclic). Design an efficient algorithm
to label the vertices of the graph with distinct labels from 1 to |V | such that the label of
each vertex v is greater than the label of at least one of v’s predecessors (if v has any), or to
determine that no such labeling is possible. (w is a predecessor of v if (w, v) € E.)

An undirected graph G =(V, E) is said to be k-colorable if all the vertices of G can be
colored using k different colors such that no two adjacent vertices have the same color.
Design a linear-time algorithm to color a graph with two colors or determine that two colors
are not sufficient.

Let G=(V, E) be an undirected graph that can be colored with two colors. It may be
possible to color G with two colors in several different ways. Use the algorithm in Exercise
7.32 to prove that the coloring of G is unique (except for interchanging the colors, which
can always be done) if and only if G is connected.
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Let T be an undirected tree (not necessarily binary) whose root is r. Each vertex in T is
associated with a character taken from a fixed finite alphabet. The tree is represented by
adjacency lists. Let P be a partern string (represented by an array of characters). Design an
algorithm to find whether the pattern appears at least once in a path from the root to a leaf.
The algorithm should run in time O (n+m) in the worst case, where n is the number of
vertices in the tree and m is the size of the pattern.

Given a connected undirected graph G =(V, E) that contains exactly one cycle, direct the
edges such that the indegrees of all vertices are at most 1. (Such directed graphs are called
injective since they correspond to injective functions.) What is the complexity of your
algorithm?

Let G=(V, E) be an undirected graph. Design an algorithm to determine whether it is
possible to direct the edges of G such that the indegree of every vertex is at least 1. If it is
possible, then the algorithm should show a way to do it.

Given a connected undirected graph G =(V, E), direct its edges such that the following two
conditions are satisfied:

a. The resulting directed graph contains a rooted tree (i.e., a tree all of whose edges point
away from the root).

b. Any edge, which does not belong to the tree above, completes a directed cycle with
edges of the tree.
What is the complexity of your algorithm?

Given a directed acyclic graph G =(V, F), find a simple (directed) path in G that has the
maximum number of edges among all simple paths in G. The algorithm should run in linear
time.

a. Solve the problem in Exercise 7.38 for the case of weighted graphs. That is, you are now
looking for a path whose weight is the maximum over all paths.

b. Will your algorithm work for negative cost edges?
c. Will your algorithm work for general (not necessarily acyclic) graphs?

Let G =(V, E) be a directed acyclic graph, and let k& be the maximal number of edges in a
path of G. Design an algorithm to divide the vertices into at most k + 1 groups such that for
each two vertices v and w in the same group there is no path from v to w and there is no path
from w to v. The algorithm should run in linear time.

Let G =(V, E) be a directed graph with the following property. G consists of an acyclic
subgraph H, which contains all of G’s vertices, and additional back edges, such that every
simple path in G contains at most one back edge. Design a linear-time algorithm to find all
shortest paths from a fixed source to all other vertices of G. (Note that the identity of H is
not known.)

Let G =(V, E) be a directed graph and let v and w be two vertices in G. Design a linear-
time algorithm to find the number of different shortest paths (not necessarily vertex disjoint)
between v and w. (There are no weights on the edges.)

Design an implementation of algorithm Single_Source_Shortest_Paths (Fig. 7.15) which
requires running time of O (|V |2) in the worst case (for any size of E).
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Let G =(V, E) be a weighted directed graph. Design an algorithm to find a cycle in G of
minimum weight. The algorithm should run in time O (|V |?).

The algorithms for finding shortest paths described in Section 7.5 break ties arbitrarily.
Discuss how to modify these algorithms such that, if there are several different paths of the
same length, then the one with the minimum number of edges (hops) will be chosen. You
can use O (| E |) additional space. (Ties between several paths of the same length and the
same number of edges can be broken arbitrarily.)

A Euclidean graph is an undirected weighted graph such that each vertex corresponds to a
point in the plane and the weight of an edge is equal to the distance between the points it
connects. The following heuristic has been suggested to find the shortest path between two
given vertices s and ¢ in a Euclidean graph. Use Dijkstra’s algorithm for single-source
shortest paths, except that, at each iteration, choose the next previously unchosen vertex x
that minimizes the sum dist (s, x) + Euclid_dist (x, t), where dist corresponds to the shortest
path and Euclid_dist corresponds to the Euclidean distance (which is assumed to be given).
When 1 is chosen, then the shortest path from s to  is found.

a. How would you implement this algorithm? You have to mention only the differences
from the implementation of Dijkstra’s algorithm.

b. Explain why this method will not work for general (non-Euclidean) graphs.

c. Give an example where this heuristic is much faster (by more than a constant) than
Dijkstra’s algorithm, and an example where it is not faster. What is the worst-case
running time in terms of the number of vertices?

The input is a directed graph G =(V, E) with a distinguished vertex v, such that there is a
positive cost ¢(w) associated with each vertex w. The cost of a directed path
k

Vo), Xay Xy, i is defined as Y c(y;). The costs of the two endpoints v and u are ignored,
i=1

so if (v, u) € E, the cost of getting from v to « is 0. Design an efficient algorithm to find the

minimum-cost paths from v to all other vertices.

Let G =(V, E) be a directed weighted graph such that all the weights are positive. Let v and
w be two vertices in G and k < |V | be an integer. Design an algorithm to find the shortest
path from v to w' that contains exactly k edges. The path need not be simple.

There is a large class of problems, called bottleneck problems, which have the following
form. The input is a weighted graph. We are interested a certain property of the graph (in
this case, shortest paths). We define the bottleneck weight of a subgraph as the weight of
the maximum-weight edge in that subgraph, as opposed to the usual definition of sum of the
weights. (This maximum-weight edge is the bottleneck.) In this problem, we consider
bottleneck shortest paths (i.e., the cost of the path is defined as the maximum cost of an
cdge in the path).

a. Design an algorithm to solve the single-source shortest-paths problem where the path
costs are defined as above. Can you say something special about the tree of shortest
paths obtained by this algorithm?

b. Design an algorithm to solve the all-pairs shortest-paths problem where the path costs are
defined as above.
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Let G =(V, E) be a weighted acyclic directed graph with possible negative weights. Design
a linear-time algorithm to solve the single-source shortest-paths problem from a given
source v.

Let d(v) denote the degree of a vertex v. Design a linear-time algorithm to sort all the
adjacency lists of a given directed graph G =(V, E) by increasing vertex degrees. That is, if
d(u) < d(v), then edges to u precede edges to v in all the adjacency lists that contain both.
Ties are broken arbitrarily. The algorithm can use linear space.

Find necessary and sufficient conditions under which the set of edges E of an undirected
graph G =(V, F) can be partitioned into disjoint subsets E,,...,E; such that each E;
corresponds to a simple cycle. Design an efficient algorithm to find such a partition in
graphs that satisfy these conditions.

Given an undirected connected graph G =(V, E), find a simple cycle of minimum length (no
weights). The length of the smallest cycle in a graph is called the girth of the graph.

Prove that there are undirected graphs with n vertices and O (n) edges that contain 2%
different cycles. (This claim implies that even sparse graphs may have an exponential
number of cycles; therefore, an algorithm that requires checking all the cycles is inherently
inefficient for general graphs.)

Design an algorithm to solve the following problem:

Input: A directed graph G =(V, E) with n+1 vertices and n edges, whose underlying
undirected graph is a tree, where each edge (u, w) is labeled with a unique integer A(u, w)
intherange 1,2, ..., n.

Output: A function S from vertices to subsets of {1, 2, ..., n} such that the following two
conditions are satisfied:

1. If (u, w)€ E, then S(w)=Su)\{ Mu, w)}

2. Ifu#w, then S(u)#S(w)
(Note: S(u) can be any subset of {1, 2, ..., n} including the empty set or the whole set.)

Consider again the problem in Exercise 7.55. Prove that the problem cannot be solved for
any graph (and any labeling) which contains a cycle (not necessarily directed). In other
words, prove that the restriction of the problem to trees is necessary.

A kernel in a directed graph G =(V, E) is a subset V' = V such that no two vertices in V' are
connected by an edge, and for every vertex w g V' there is an edge (v, w) such that v e V’.
The input is a directed graph G =(V, E) with n +1 vertices and n edges, whose underlying
undirected graph is a tree. Design an algorithm to find a kernel in G or determine that no
kernel exists.

Lket G =(V, E) be a directed graph and let f be a function defined on all edges of G such that

Y fle,)=0if ey, ..., e is acircuit in G. Find a function p on the vertices of G such that for
i=1

each edge (v, w), we have f (v, w)=p (w)—p(v).

Here is a sketch of a different MCST algorithm. Instead of keeping one tree and enlarging it
one edge at a time, we keep a collection of disjoint trees (which are all part of the MCST)
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and combine them, adding one edge at a time. Initially, all the vertices are considered as
disjoint trees of size 0. In each step, the algorithm finds the minimum-cost edge that
connects two separate trees, and combines these two trees by adding the edge. Prove that
such an approach is feasible and correct. Describe an implementation of an algorithm based
on this approach. What is the complexity of your algorithm? (Hint: The Union-Find data
structure is helpful here.)

Let G =(V, E) be an undirected weighted graph, and let F be a subgraph of G that is a forest
(i.e., F does not contain any cycles). Design an efficient algorithm to find a spanning tree in
G that contains all the edges of F, and that has minimum cost among all spanning trees
containing F.

Let G =(V, E) be a connected weighted undirected graph, and let T be a minimum-cost
spanning tree of G. Suppose that the cost of one edge e in G is changed. Discuss the
conditions under which T is no longer an MCST. Design an efficient algorithm either to
find a new MCST or to determine that T is still an MCST. (e may or may not belong to T.)

Consider a communication network that can be modeled as a weighted undirected connected
graph G =(V, E). Each site in the network is represented as a vertex and each line of
communication is bidirectional and has a cost associated with it. The cost may correspond
to the expected delay on the line, or to the tariff for using this line. Each site has only local
information; that is, it knows only the edges (and vertices) adjacent to it. An MCST of the
network can be used to broadcast messages to all sites. If we broadcast the messages by
using only the edges of the MCST, then the total cost is minimized. Assume that such an
MCST is computed by some method and that each site knows which of the edges adjacent
to it belong to the MCST. Assume now that sites in a certain subset U cV share between
them the information that is known to all of them. In other words, every site in U knows
not only about the edges and vertices adjacent to itself, but it also knows all the edges and
vertices adjacent to all vertices in U. Furthermore, assume that the partial MCST restricted
to U is connected (i.e., it is a tree). Consider an edge e € U, which belongs to the MCST,
whose cost has just changed.

a. Find the conditions under the change in e’s cost is guaranteed not to affect the MCST.
Consider only conditions that can be checked with the information known to the sites in
U. In other words, how can the sites in U determine that no action needs to be taken to
modify the MCST after the change?

b. Find the conditions under which the modified MCST is different from the original one
only in edges that belong to U (hence, the change can be handled locally). Consider only
conditions that can be checked with the information known to the sites in U.

c. Describe briefly an algorithm to check for the conditions in parts a and b (again only
within U), and to modify the MCST accordingly. The algorithm does not need to handle
the case where the change to the MCST may be outside U.

Consider the problem of broadcasting in a network, but assume now that the main interest is
fast dissemination of information rather than minimum cost. In other words, the costs
correspond to the time it takes to forward a message, and we want to minimize the elapsed
time of broadcast. A message can be sent concurrently on separate links. Assume that one
message is sent from a fixed source and is forwarded to all other sites such that each site
receives only one copy of the message. You can assume that you are a controller with full
information about the topology of the network.
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a. Design an algorithm to determine the optimal forwarding, assuming that the only delays
are associated with the links.

b. Design an algorithm to determine the optimal forwarding when there are also delays
associated with the sites. It takes ¢ (v) units of time for site v to forward a message to one
of its neighbors. If v forwards the message to k neighbors, then it takes k¢ (v) time. (The
values of #(v) are known for all v.)

Let G=(V, E) be a connected undirected weighted graph. Assume for simplicity that the
weights are positive and distinct. Let e be an edge of G. Denote by T (¢) the spanning tree
of G that has minimum cost among all spanning trees of G that contain e. Design an
algorithm to find T (e) for all edges e € E. The algorithm should run in time O (|V |?).

Design an efficient algorithm to find the minimum bottleneck weight spanning tree of a
weighted connected undirected graph. (Recall that a bottleneck weight is defined as the
maximum weight of an edge in the subgraph.) In other words, you are asked to find a
spanning tree in which the maximum weight is minimized.

Solve a variation of the problem in Exercise 7.65 for directed graphs: The input is a
weighted directed graph G =(V, E) with a distinguished vertex v. Find a rooted spanning
tree, with v as the root, such that the maximum-cost edge in the tree is minimized. (Recall
that in a rooted tree the directions of all edges are away from the root.)

Let G =(V, E) be an undirected weighted graph, and let 7 be an MCST of G. Suppose now
that all the weights in G are increased by a constant number c. Is T still an MCST? If not,
how difficult is it to modify T into an MCST?

7.68 Let G=(V, E) be a connected weighted undirected graph, and let T be an MCST of G.

7.69

Suppose that we now add a new vertex v to G, together with some weighted edges from v to
vertices of G. Design a linear-time algorithm to find a new MCST that includes v.

Suppose that the cost of a spanning tree is not the sum of the costs of the tree’s edges but
rather the product of their costs (all costs are positive). Design an efficient algorithm to find
a maximum-cost spanning tree under this assumption. (You can assume that all costs are
distinct.)

Let G=(V, E) be a connected undirected graph with n vertices numbered from 1 to n.
Design an efficient algorithm to find the smallest k¥ such that successively deleting the
vertices numbered 1,2, ..., k (in that order) results in a graph all of whose connected
components contain at most n/2 vertices. Deleting a vertex also includes deleting all the
edges incident to it. (Hint: Use the union-find data structure.)

Let G =(V, E) be an undirected graph. A set F c E of edges is called a feedback-edge set if
every cycle of G has at least one edge in F. Design an algorithm to find a minimum-size
feedback-edge set.

Let G =(V, E) be a weighted undirected graph with positive weights. Design an algorithm
to find a feedback-edge set (defined in Exercise 7.71) of G of minimum weight.

Prove that algorithm All_Pairs_Shortest_Paths given in Fig. 7.22 works correctly for
weighted graphs with possibly negative weights provided that there are no negative-weight
cycles.
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Let G =(V, E) be a weighted directed graph such that some of the weights may be negative
but there are no negative-weight cycles (i.e., there are no cycles in which the sum of the
edge weights is negative). Let T be a spanning tree of G rooted at v. Design a linear-time
algorithm to determine whether the tree T contains only shortest paths from v to all other
vertices of G. You need to output only yes or no.

The following are hints for an algorithm to compute single-source shortest paths in weighted
graphs with negative weights but no negative-weight cycles. The algorithm starts with an
arbitrary rooted spanning tree, as in Exercise 7.74. It then applies the algorithm in that
exercise to determine whether the tree is the shortest path tree. The algorithm obtained in
Exercise 7.74 should provide some evidence in case the tree is not the desired tree. This
evidence is used to make a modification to the tree, and the same procedure is applied until
the tree becomes the shortest-path tree.

a. Describe in more detail the exact algorithm.
b. Prove that the algorithm terminates after O (|V | - | E |) steps.

c. Suggest a way to improve the algorithm by selecting a good initial tree. The
improvement need not change the worst case, only the ‘‘common’’ case.

Let G =(V, E) be a weighted directed graph such that some of the weights may be negative.
Design an efficient algorithm to determine whether the graph contains a negative-weight
cycle. You need to output only yes or no.

a. Let G =(V, E) be a directed graph, and let v be a vertex of V. Each edge of E is colored
either black or red. Design a linear-time algorithm to determine whether G has a simple
cycle, which includes v, with alternating colors — namely, each red (black) edge in the
cycle has two black (red) neighbors. If such a cycle exists, then the algorithm should
find at least one.

b. Solve this problem without the restriction that the cycle has to include the special vertex.

Given a connected undirected graph G =(V, E), find a spanning tree of G with minimum
height. (The height of a tree is the maximum distance from a root to a leaf.)

A Hamiltonian path is a simple path that includes all the vertices of the graph. Design an
algorithm to determine whether a given acyclic directed graph G =(V, E) contains a
Hamiltonian path. The algorithm should run in linear time.

Algorithm Improved_Transitive_Closure given in Fig 7.24 has three nested loops. The first
one (the outer one) chooses a column, the second one chooses a row, and the third one
operates on the chosen row. Suppose that we exchange the first two loops such that the first
one chooses a row and the second one chooses a column. In other words, we simply
exchange the first two lines in the program, as is shown in algorithm
WRONG _Transitive_Closure in Fig. 7.46. Show that this modification does not work, by
giving an example for which the transitive closure is not computed.

Exchanging the order of scanning the matrix for the transitive closure algorithm (which was
attempted unsuccessfully in Exercise 7.80) is desired for the following reason. If the matrix
is very large and thus cannot be stored in main memory, we need to access it from
secondary memory. Assume that the matrix is stored by rows such that each row occupies a
page. We want to minimize the number of pages that need to be fetched from secondary



7.82

7.83

7.86

Creative Exercises 259

Algorithm WRONG _Transitive_Closure (A) ;

Input: A (an n X n adjacency matrix representing a weighted graph).

{ A[x, y]is true if the edge (x, y) belongs to the graph, and false otherwise;
A[x, x] is true for all x }

Output: At the end, the matrix A represents the transitive closure of the graph.

begin
for x := 1 tondo
form:=1tondo
if A[x, m] then
fory:=1tondo
if A[m, y] then A [x, y] :=true

Figure 7.46 Algorithm WRONG Transitive_Closure.

memory. If the first loop scans the matrix by columns, then we need to bring all the rows to
look at each column. On the other hand, if we exchange the first two loops and we find that
a certain entry (x, y) is false, then there is no need to fetch the yth row in the next step.
Therefore, if the matrix is sparse (i.e., if it contains only a few 1s), fewer pages need to be
fetched. The algorithm in Fig. 7.46 is wrong as is, but it can be fixed.

a. Show that, if we run this algorithm O (logn) times, then it computes the transitive
closure correctly.

b. Show that, in fact, it is sufficient to run the algorithm only twice.

Let G =(V, E) be a multigraph, namely, an undirected graph that may have more than one
edge between a pair of vertices. E is in this case a multiset, and | E | is the total number of
edges. Design an O (|E | + |V |) algorithm to delete each vertex v of degree 2 by replacing
the edges (u, v) and (v, w) by an edge (u, w), and to eliminate multiple copies of edges by
repacing them with a single edge. (Note that removing multiple copies of an edge may
create a new vertex of degree 2, which has to be removed, and removing a vertex of degree
2 may create multiple edges, which must be removed too.)

A connected undirected graph G =(V, E) is called edge-biconnected if removal of any one
edge leaves the graph connected. Design a linear-time algorithm to determine whether a
graph is edge-biconnected.

Given a connected undirected graph G =(V, E), and three edges, a, b, and ¢, find whether
there exists a cycle in G that contains both a and b but does not contain ¢. The algorithm
should run in linear time.

Let G =(V, E) be a connected undirected graph and let T=(V, F) be a spanning tree of G.
Prove that the intersection of F' with the set of edges of any biconnected component is a set
of edges that forms a spanning tree of the component.

A biconnected extension of a graph G =(V, E) is a biconnected graph G’ = (V, E’) such that
E cE’. Given an undirected graph G =(V, E), find the minimum biconnected extension;
that is, find a biconnected extension with the minimum number of edges. (Hint: Start by
considering very simple graphs, and work your way up to general graphs.)
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Suppose that you are given an undirected graph with a list of all the articulation points.
Show how to find the biconnected components without resorting to running the whole
biconnected component algorithm.

Let G =(V, E) be a directed graph, and let T be a DFS tree of G. Prove that the intersection
of the edges of T with the edges of any strongly connected component of G form a subtree
of T.

A High value computed by algorithm Strongly_Connected_Components (Fig. 7.33) does not
actually point to the ‘‘highest’’ vertex reachable from the vertex under consideration. It
serves only as an indication whether a strongly connected component has been found.
Design a linear-time algorithm to find, for each vertex v in the graph, the vertex with the
largest DFS number (based on a fixed DFS tree with decreasing DFS numbers) reachable
from v.

Let G=(V, E) be a connected undirected graph. Design a linear-time algorithm to
determine whether the edges of G can be oriented such that the resulting directed graph is
strongly connected. The algorithm should find such an orientation if it exists.

a. Prove the following theorem: A directed graph G =(V, E) is strongly connected if and
only if there is a circuit in G that includes every edge at least once. (Note that an edge
may appear more than once in that circuit.)

b. Design an efficient algorithm to find such a circuit in a given strongly connected graph
G=(V,E).

A vertex basis of a directed graph G =(V, E) is a minimum-size subset B cV with the
property that, for each vertex v in V, there is a vertex b in B such that there is a path of
length 0 or more from b to v. Prove the following two claims, and then use them to design a
linear-time algorithm to find a vertex basis in general directed graphs.

a. A vertex that is not on a cycle and has nonzero indegree cannot be in any vertex basis.
b. An acyclic directed graph has a unique vertex basis, and it is easy to find it.

A directed graph G = (V, E) is called unilateral if, for any two vertices v and w in G, at least
one of them is reachable from the other. In particular, every strongly connected graph is
unilateral. On the other hand, there are many unilateral graphs that are not strongly
connected. For example, a graph that consists of two vertices connected by one edge is
unilateral, but it is not strongly connected. Design a linear-time (and linear-space)
algorithm to determine whether a given directed graph is unilateral. (Hint: Consider the
strongly connected components graph.)

A directed graph G =(V, E) is called unipathic if, whenever w is reachable from v, there is
only one simple path from v to w. Design an efficient algorithm to determine whether a
given graph G =(V, E) is unipathic. (Hint: Solve the problem first for acyclic graphs.)

Design a linear-time algorithm for finding a maximum matching in a tree.

Prove the alternating-paths theorem directly without the use of network flows or cuts. (Hint:
Given two matching M, and M, study the properties of the symmetric difference between
them; namely, the set of all edges that appear in exactly one of them.)
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Let G be an undirected bipartite graph, and let M be an arbitrary matching in G.

a. Prove the following theorem: There exists a maximum matching in G that covers all the
vertices that M covers. (A vertex is covered by a matching M if it is incident to one of
the edges of M.)

b. Convert the proof in part a to an algorithm for finding such a maximum matching when
G and M are given.

Prove that the running time of Hopcroft and Karp bipartite matching algorithm (the
improved algorithm in Section 7.10) is O ((m +n)\/r7 ) in the worst case.

Suppose that we want to find a nonmonogamous matching in a graph. In other words,
instead of looking for disjoint edges, we are looking for disjoint star graphs, which are
trees with one vertex (the root) connected to all other vertices. One edge is a special case of
a star graph, but one vertex alone with no edges is a trivial graph which we do not consider
to be a star graph. Let G =(V, E) be an undirected connected graph. The goal is to design
an algorithm that finds a collection of vertex-disjoint stars in G, each with at least two
vertices. Each vertex should be included in one of the stars, but not all the edges need to be
included. In other words, the stars should cover all the vertices, but not necessarily all the
edges. (There are no minimality or maximality constraints.)

a. Find the error in the following algorithm both by pointing out the wrong argument and
by exhibiting a counterexample.

Wrong algorithm: We use induction. The induction hypothesis is that we know how to
solve the problem for a graph with <n vertices. Given a graph G =(V, E) with n
vertices, we first pick an arbitrary vertex v and remove v with all its neighbors from the
graph. The remaining graph may not be connected, but we can consider each connected
component separately and apply the same algorithm by induction.

b. Design an efficient (and correct) algorithm for this problem.

Consider the following bottleneck problem. The input is a weighted bipartite graph
G =(V, E) with n vertices and m edges. We define the bottleneck weight of matching M to
be the weight of the maximum-weight edge in M. Design an algorithm to find, among all
maximum matchings, one with minimum bottleneck weight. The algorithm should run in
time O (\/;m log n).

Consider an N XN board of alternating black and white squares (such as a chess board).
Prove, by using the alternating-path theorem, that if one removes one arbitrary black square
and one arbitrary white square, then the rest of the board can be covered by dominoes (of
size 2x 1).

Prove the theorem in Exercise 7.101 by finding a Hamiltonian cycle in a graph defined by
the board in the following way: The vertices are the squares and any two neighboring
squares are connected.

Let G =(V, E) be a connected undirected graph. Given two spanning trees T and R of G,
find the shortest sequence of trees T,,T,,...,T;, such that To=T, T,=R, and each tree
differs from the previous one by an addition of one edge and a deletion of one edge.
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Assume that a round-robin tournament-is played among n players. That is, each player plays
once against all n —1 other players. There are no draws, and the results of all games are
given in a matrix. It is not possible in general to sort the players, since A may beat B, B may
beat C, and C may beat A (in other words, the results are not necessarily transitive). We are
interested in a ‘‘weak’’ sorting as follows. Design an algorithm to arrange the players in an
order P, P,, ..., P, such that P, beat P,, P, beat P3, and so on (concluding with P, _,
beating P,), given the matrix of results. The worst-case running time of the algorithm
should be O (n logn). (Any entry in the matrix can be accessed in constant time.)

Given n integers 0<d, <d,< - -+ <d,, such thatd, +d, + - - +d, is even, and, for every
2<i<n, we have d; <d,+d, + -+ +d,;_;. Construct an undirected multigraph with n
vertices of degrees exactly d,,d,, ...,d,. Prove the correctness of the algorithm which
implies, in particular, that such a multigraph always exists.

*7.106 An edge coloring of a graph is an assignment of colors to the edges (one color per edge),
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such that two edges incident to the same vertex have different colors. Design an algorithm
to find an edge coloring with k colors for undirected bipartite graphs all of whose vertices
have degree k such that k is a power of 2. The running time of the algorithm should be
O (|E | logk).

An edge cover of an undirected graph G =(V, E) is a set of edges such that each vertex in
the graph is incident to at least one edge from the set. Design an efficient algorithm to find
a minimum-size edge cover for a given bipartite graph.

A vertex cover of an undirected graph G =(V, E) is a set of vertices U such that each edge
in the graph is incident to at least one vertex from U. Design an efficient algorithm to find a
minimum-size vertex cover for a given tree. (Vertex covers in general graphs are discussed
in Chapter 11.)

Let G =(V, E) be a tree with weights associated with the vertices such that the weight of
each vertex is equal to the degree of that vertex. Design an algorithm to find the
minimum-weight vertex cover of G, i.e., a vertex cover with minimum weight.

Design an efficient algorithm to find a minimum-size vertex cover for a given bipartite
graph. (Hint: Find a relationship to minimum cuts in the graph.)

Let G =(V, E) be an undirected graph. An independent set in G is a set of vertices no two
of which are connected. Design an efficient algorithm to find a maximum-size independent
set in a given bipartite graph. (Independent sets in general graphs are discussed in Chapter
11.) (Hint: Find a relationship to Exercise 7.110.)

Design an algorithm to find a maximal independent set (see Exercise 7.111) in a given
undirected graph G =(V, E). The set need not have the maximum size over all independent
sets. It is only required to be maximal in the sense that it cannot be extended by the
addition of more vertices to it and still remain independent.

Let G=(V, E) be a tree such that each vertex v has an associate weight w(v). Design a
linear-time algorithm to find an independent set in G (see Exercise 7.111) with maximum
weight.

Let G =(V, E) be a connected undirected graph. Design an algorithm to determine whether
G contains a vertex cover (see Exercise 7.108) with at most k vertices, all of which are
independent (i.e., no two vertices from the cover are adjacent).
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Design an algorithm to determine whether an undirected graph G =(V, E) has a set of
vertices U, such that U is a minimum vertex cover and a maximum independent set at the
same time. The algorithm should find such a set if it exists.

An interval graph is an undirected graph whose vertices correspond to intervals on the real
line and two vertices are connected if the corresponding intervals intersect. Let G =(V, E)
be an interval graph such that the corresponding intervals are known. Design an efficient
algorithm to find a maximum independent set in G.

An undirected graph G =(V, E) is a split graph if its vertex set can be partitioned into two
disjoint subsets U and W such that the graph induced by U has no edges and the graph
induced by W is a complete graph (i.e., all the edges are present). Design a linear-time
algorithm to determine whether a given graph is a split graph.

a. Design an algorithm to determine whether a given undirected graph G =(V, E) contains a
triangle as a subgraph. The running time of the algorithm should be O ( iVI-1ED.

b. Can your algorithm find all the triangles contained as subgraphs in G?

a. Design an algorithm to determine whether a given undirected graph G =(V, E) contains a
square as a subgraph (i.e., a cycle of length 4). The running time of the algorithm should
be O (|V ).

b. Improve your algorithm to run intime O (|V | - | E |).
You can use the adjacency matrix representation or the adjacency list representation,
whichever is more convenient.

Prove that there is no algorithm that finds all squares that are subgraphs of a given
undirected graph G =(V, E) whose running time in the worst case is O(|V | - |E |).

*
7.121 Let T be a rooted directed tree, not necessarily binary. There is a weight associated with
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each vertex, such that the weight of a vertex is greater than the weight of the vertex’s parent
(in other words, the weights satisfy the heap condition with the minimal weight on top).
Each vertex can be designated as either a regular vertex or a pivot vertex. The cost of a
pivot vertex is the same as its weight. Regular vertices get discounts, however — their cost
is their weight minus the weight of the closest ancestor that is a pivot vertex. Thus,
selecting a vertex as a pivot vertex may increase its cost, but it will also decrease the costs
of some of its descendants. There is no limit on the number of pivot vertices. Design an
efficient algorithm to designate every vertex as either a regular vertex or a pivot vertex, such
that the total cost of all vertices is minimized.

Let T be a complete binary tree of height 4, and n =2" — 1 vertices. We want to embed T in
the plane in the following way. Each vertex corresponds to a unique lattice point (i.e., a
point with integral coordinates), adjacent vertices are connected by straight line segments,
and no two line segments intersect. Embedding graphs in the plane in this way is an
important problem in integrated chip design and especially VLSI design. Our objective in
this exercise is to minimize the area enclosing the layout. We define this area to be the
minimum-area rectangle along lattice points (which are not occupied) that contains the
layout. So, for example, a straight chain with k vertices would be enclosed in a rectangle of
area 2(k +1). It is clear that for any graph with n vertices the minimal possible area is of
size Q(n).
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a. Describe a layout for T that requires O (n) area. (Hint: Use divide and conquer; each
complete binary tree consists of two smaller complete binary trees, both connected to a
new shared root. Assume that you know how to embed trees of height 4 — 1, and find the
layout of a tree of height 4.)

b. Design an algorithm to compute, for each vertex in T, its coordinates in the layout
obtained in part a.



CHAPTER 8

GEOMETRIC ALGORITHMS

I paint objects as I think them, not as I see them.
Pablo Picasso (1881-1973)

8.1 Introduction

Geometrical algorithms play an important role in many areas of computer science,
including computer graphics, computer-aided design, VLSI design, robotics, and
databases. There may be thousands or even millions of points, lines, squares, and circles
in a computer-generated picture; a robot may have to make thousands of moves; a design
of a computer chip may involve millions of items. All these problems involve the
manipulation of geometric objects. Since the size of the input for these problems may be
quite large, it is essential to develop efficient algorithms for them.

There are two somewhat separate areas in which geometric algorithms arise;
unfortunately, they are both called computational geometry. One of them mainly deals
with continuous aspects of geometric objects; the other one mainly deals with discrete
properties of geometric objects. The distinction is not strong, and there are many similar
problems and techniques. Our emphasis will be on discrete computational geometry. In
this chapter, we discuss several basic geometric algorithms. As in other chapters, the
scope of this chapter is necessarily limited. We include some of the basic algorithms that
appear as building blocks in the design of more complicated algorithms, and that
illustrate interesting techniques. We will limit the discussion to two-dimensional objects.

The objects appearing in this chapters are points, lines, line segments, and
polygons. The algorithms manipulate these objects and compute certain properties of
them. We start with basic definitions and a discussion of data structures used to represent
the different objects. A point p is represented as a pair of coordinates (x, y) (we assume
a fixed coordinate system throughout this chapter). A line is represented by a pair of
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points p and ¢ (which can be any two distinct points on the line), and it is denoted by
—-p—-q—. A line segment is also represented by a pair of points p and g, but in this case
we assume that the points are the segment’s endpoints, and we denote the line segment
by p-q- A path P is a sequence of points py,p,,..,p,, and the line segments
p1=P2, P2=P3» - Pk-1—Px connecting them. We will sometimes call the line segments
in a path edges. A closed path is a path whose last point is the same as its first point. A
closed path is also called a polygon. The points defining the polygon are also called the
vertices of the polygon. For example, a triangle is a polygon with three vertices. A
polygon is represented as a sequence rather than as a set of points because the order in
which the points are given is very important. Changing the order, even without changing
the points themselves, may result in a different polygon. A simple polygon is one whose
corresponding path does not intersect itself; that is, no edges of the polygon intersect
except for neighboring edges at their common vertex. A simple polygon encloses a
region in the plane. We will call this region the inside of the polygon. A convex
polygon is a polygon such that any line segment connecting two points inside the
polygon is itself entirely inside the polygon. A convex path is a path of points
P1,D2s - Dy sSuch that connecting p, with p, results in a convex polygon.

We assume that the reader is familiar with basic analytic geometry. For example,
we will need to compute the intersection point of two line segments, determine whether a
given point lies on a certain side of a given line, and compute the distance between two
given points. All these operations can be done in constant time with basic arithmetic
operations. (We assume for now that square roots can be computed in constant time; we
discuss this issue in Section 8.3.)

One inconvenient characteristic of many geometric algorithms is the existence of
numerous ‘‘special cases.”’ For example, two lines in the plane usually intersect at one
unique point, except when the lines are parallel or when they are the same. When we
perform a computation on two given lines, we need to consider all three possibilities.
More complicated objects can lead to many other types of special cases, requiring special
care. Usually, most of these special cases can be handled in a straightforward manner,
but the need to consider them makes the design and the description of geometric
algorithms tedious sometimes. We occasionally ignore details that are not essential for
understanding the main ideas of the algorithm.

8.2 Determining Whether a Point Is Inside a Polygon

We start with a simple problem.

The Problem Given a simple polygon P and a point ¢, determine
whether the point is inside or outside the polygon.

This problem may seem trivial at first, but when complicated nonconvex polygons are
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considered, as is the case in Fig. 8.1, the problem is definitely not simple. Trying to solve
a problem by hand first is always a good idea. The first intuitive approach is to try
somehow to reach the outside boundary from the given point. When we try this approach
we see that it is sufficient to count the number of intersections with edges of the polygon
until the outside is reached. For example, in Fig. 8.1, going northeast from the given
point (following the dashed line in the figure) results in two intersections with the
polygon before the outside is reached. Since the first intersection from the outside brings
us inside the polygon and the second intersection brings us back outside, the point is
outside the polygon. In general (ignoring special cases for the moment), the point is
inside the polygon if and only if the number of intersections (as described above) is odd.
We now have a sketch of an algorithm, which is presented in Fig. 8.2.

As we mentioned in Section 8.1, there are usually several special cases that need
attention. Let s be a point outside the polygon, and let L be the line segment connecting g
to s. We are trying to determine whether g is inside P according to the number of
intersections of L with edges of P. The line L, however, may overlap some edges of P.
When one edge overlaps another one, do we call this an intersection? Two intersections?
In this case, we clearly do not want to count overlaps as intersections. Another special
case is the intersection of L with a vertex of P. Figure 8.3(a) gives an example in which
the intersection of L with a vertex of P should not count, and Fig. 8.3(b) gives an
example in which it should count as an intersection. We leave it to the reader to
characterize these cases and to find how to handle them (Exercise 8.1).

In the development of this algorithm, we implicitly assumed that we are looking at
pictures. When the input is given as a list of coordinates, as is usually the case in a
computer application, the task is different. For example, when we do the work by hand,
and we see the polygon with our eyes, it is easy to find a good path (i.e., one with few
intersections) from the point to the outside. This is not an easy task, however, when the

Figure 8.1 Determining whether a point is inside a polygon.
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Algorithm Point_in_Polygon_1 (P, q) ; { first attempt }

Input: P (a simple polygon with vertices py, p,, ..., p,, and edges
e, €y, .., €,),and g (a point).

Output: Inside (a Boolean variable that is set to true if g is inside P and false
otherwise).

begin
Pick an arbitrary point s outside the polygon ;
Let L be the line segment q—s ;
count :=0;
for all edges e; of the polygon do
if e; intersects L then { We assume that the intersection is not at a
vertex nor is the line L overlapping with e;; see the text }
increment count ;
if count is odd then Inside := true
else Inside := false
end

Figure 8.2 Algorithm Point_in_Polygon_1.

Q

[~

(a) (b)
Figure 8.3 Special cases for determining whether a point is inside a polygon.

polygon is stored as a series of coordinates. Counting the number of intersections is easy
to do visually, but again, it is not as easy when only the coordinates are given. The
polygon of Fig. 8.1 is given as a list of coordinates in Fig. 8.4. (The given point is
centered at | 368 308 | .) The reader is encouraged to solve the problem now by looking
only at Fig. 8.4. Clearly, the bulk of the work is computing all the intersections. This
work can be substantially simplified if the line g—s is parallel to one of the axes — for
example, the vertical axis. The number of intersections with this special line may be
much more than that with the optimal line, but we do not need to find the optimal line
(which is actually a much more difficult problem — see Exercise 8.3), and computing
each intersection is much easier. The modified algorithm is presented in Fig. 8.5.
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320.00 368.00 | 320.00 384.00 | 288.00 384.00 | 288.00 380.00 | 308.00 380.00 |
308.00 376.00 | 280.00 376.00 | 280.00 392.00 | 332.00 392.00 | 332.00 364.00 |
364.00 364.00 | 364.00 352.00 | 256.00 352.00 | 256.00 404.00 | 224.00 404.00 |
224.00 332.00 | 352.00 332.00 | 352.00 288.00 | 224.00 288.00 | 224.00 312.00 |
320.00 312.00 | 320.00 300.00 | 256.00 300.00 | 256.00 296.00 | 328.00 296.00 |
328.00 320.00 | 208.00 320.00 | 208.00 280.00 | 384.00 280.00 | 384.00 340.00 |
240.00 340.00 | 240.00 396.00 | 248.00 396.00 | 248.00 348.00 | 416.00 348.00 |
416.00 272.00 | 320.00 272.00 | 320.00 256.00 | 448.00 256.00 | 448.00 320.00 |
432.00 320.00 | 432.00 340.00 | 452.00 340.00 | 452.00 224.00 | 256.00 224.00 |
256.00 244.00 | 320.00 244.00 | 320.00 248.00 | 248.00 248.00 | 248.00 216.00 |
224.00 216.00 | 224.00 240.00 | 232.00 240.00 | 232.00 256.00 | 288.00 256.00 |
288.00 264.00 | 224.00 264.00 | 224.00 272.00 | 192.00 272.00 | 192.00 416.00 |
428.00 416.00 | 428.00 384.00 | 416.00 384.00 | 416.00 400.00 | 424.00 400.00 |
424.00 408.00 | 384.00 408.00 | 384.00 384.00 | 400.00 384.00 | 400.00 396.00 |
388.00 396.00 | 388.00 404.00 | 408.00 404.00 | 408.00 372.00 | 352.00 372.00 |
352.00 404.00 | 264.00 404.00 | 264.00 368.00 |

Figure 8.4 The polygon of Fig. 8.1, given as a sequence of coordinates.

Algorithm Point_in_Polygon_2 (P, q) ; { second attempt }
Input: P (a simple polygon with vertices p |, py, ..., p,, and edges
e, ey, ....e,), and g = (xg, yo) (a point).
Output: Inside (a Boolean variable that is set to true if g is inside P and false

otherwise).
begin
count :=0;

Jor all edges e; of the polygon do
if the line x=x intersects e; then
{ We assume that the intersection is not at a vertex nor is the
line x=x overlapping with e; }
Let y; be the y coordinates of the intersection between
the line x=x, and e; ;
if yi <y then { the intersection is below q }
increment count ;
if count is odd then Inside := true
else Inside := false
end

Figure 8.5 Algorithm Point_in_Polygon 2.

As an example, let’s try to determine whether the point ¢ with coordinates
(368, 308) is inside or outside of the polygon given in Fig. 8.4. We count the number of
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intersections with a line segment starting at ¢ and going straight down. We need to look
at all the edges, and check, for those edges whose y coordinates are below 308, whether
the x coordinate cross 368. There are four edges that cross the line:

(208, 280)-(384, 280) ;
(416, 272)~(320, 272) ;
(320, 256)—(448, 256) ;
(452, 224)~(256, 224).

Hence, the point is outside the polygon.

Complexity It takes constant time to perform an intersection between two line
segments in the plane. The algorithm computes n such intersections (where n is the size
of the polygon), and performs other operations that take constant time. Hence, the total
running time of this algorithm is O (n).

Comments In many cases, a simple approach originating from a solution obtained
by hand (or eye) calculations is not efficient for large inputs. In some cases, however,
such an approach is not only simple, but also efficient. Starting with an ‘‘easy-to-
visualize’’ method is always a good idea. There are several observations that can be
achieved this way. In this case, by looking at the picture, we observed that we could
solve the problem by following some path from the point to the outside, disregarding
everything else. This was really the main observation that led to the algorithm.

8.3 Constructing Simple Polygons

A set of points in the plane defines many different polygons, each depending on the order
of the points. In this section, we concentrate on finding a simple polygon defined by a set
of points.

The Problem Given a set of n points in the plane, connect them in a
simple closed path.

There are several methods to construct simple polygons. We present a method
corresponding to the way we would probably approach this problem if we had to solve it
by hand. Consider a large circle C that contains all the points. Scan the area of C by a
rotating line originating from the center of C (see Fig. 8.6). Let’s assume for now that
the rotating line never touches more than one point from the set at a time. It seems that,
if we connect the points in the order they are encountered in the scan, we get a simple
polygon. Let’s try to prove this claim. Denote the points, as they appear in the order
imposed by the rotating line, by py,p,, ..., p, (the first point is chosen arbitrarily). For
all i, 1 <i <n, the edge p;—p;, is included in a distinct region of the circle; hence, it does
not intersect with any other edge. However, this is not enough to prove that the resulting
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Figure 8.6 Scanning the points.

polygon is simple — in fact, it may not be. The angle between some p; and p;,; may be
greater than 180 degrees, in which case the region corresponding to the edge p;—p;.,
consists of more than one-half of the circle. Thus, the edge p;—p;,, cuts into the other
regions, and it may intersect other edges. (To see that it may, we can consider a circle
that is centered somewhere outside of the circle of Fig. 8.6.) This is a good example of
the kind of ‘‘special cases’’ that arise often in geometrical problems. We have to be
careful to make sure that all cases are considered. (Of course, we must do that for any
kind of algorithm, but this problem is more prevalent in geometric algorithms.)

We can overcome this obstacle quite easily. For example, we can take any three
points from the set and choose, as a center of the circle, a point inside the triangle formed
by these three points. This choice will ensure that the circle does not contain a segment
of more than 180 degrees without any points from the set. Another solution, which is the
one we will use, is to choose one of the points from the set as the center of the circle. We
will choose the point z with the largest x coordinate (and the smallest y coordinate, if
there is more than one point with the largest x coordinate). We now use basically the
same algorithm. We sort the points according to their position in the circle centered at z.
These positions can be computed by sorting the angles between a fixed line (e.g., the x
axis) and the lines from z to the other points. If two (or more) points have the same
angle, they are further sorted according to their distance from z. We then connect z to the
point with the smallest angle and to the point with the largest angle, and connect the other
points in order. Since all other points lie to the left of z, the bad case we mentioned
earlier cannot occur. (There is still one more special case that occurs when all the points
lie on a line; in that case, any polygon through the points will have overlapping edges.)
The simple polygon obtained by this method for the points in Fig. 8.6 is given in Fig.
8.7.
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Figure 8.7 Constructing a simple polygon.

We can improve this method in two ways, which share the same principle. First,
we do not have to compute the exact angles. We use the angles only to find the order for
connecting the points. But the same order is imposed by the slopes of the lines (that is,
by the ratios of the y differences to the x differences). Computing the slopes is easier
than computing the angles (there is no need to compute arctangents). Second, using the
same argument, we can avoid computing distances when two points have the same slope.
It is sufficient to compute the square of the distances! Therefore, there is no need to
compute square roots. The algorithm is presented in Fig 8.8.

Algorithm Simple_Polygon (p,p3,....0n ) ;

Input: p,,p,, ..., p, (points in the plane).
Output: P (a simple polygon whose vertices are p |, p», ..., p, in some order).

begin
fori:=2tondo
compute the angle o; between the line —p ,—p;,— and the x axis ;
{ it is sometimes more desirable to take an extreme point instead of
D1, e.g., apoint from the set with the largest x coordinate
(and smallest y coordinate if there are several points with the
same largest x coordinate) }
Sort the points according to the angles oy, ..., O, ;
{ break ties according to distances fromp | }
P is the polygon defined by the list of points in sorted order
end

Figure 8.8 Algorithm Simple_Polygon.

Complexity The running time of this algorithm is dominated by the sorting, which
requires O (n log n) time.



8.4 Convex Hulls 273

8.4 Convex Hulls

The convex hull of a set of points is defined as the smallest convex polygon enclosing all
the points. We would like the convex hull to be represented as a regular polygon,
namely, the vertices should be listed in cyclic order.

The Problem Compute the convex hull of n given points in the
plane.

Dealing with convex polygons is easier than handling arbitrary polygons. The convex
hull serves, in some sense, as the smallest ‘‘convenient’’ region encompassing a set of
points. The vertices of the convex hull are points from the set. We say that a point
belongs to the hull if it is a vertex of the hull. A convex hull can contain as little as three
and as many as all the points as vertices. Convex hulls have many uses, and
consequently, numerous algorithms have been developed to compute them.

8.4.1 A Straightforward Approach

As usual, we start with a straightforward inductive approach. We can easily find the
convex hull of three points. We assume that we know how to compute the convex hull of
< n points, and we try to find the convex hull of n points. How can the nth point change
the convex hull formed by the first n — 1 points? There are two cases: Either the extra
point is inside the convex hull, in which case the hull is unchanged, or the point is outside
the hull, in which case the hull is ‘‘stretched’’ to reach that point (see Fig. 8.9). So, we
need to solve two subproblems. We have to determine whether a point is inside the hull,

Figure 8.9 Stretching a convex polygon.
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and we have to be able to stretch the hull if the point is outside of it. These problems are
not easy. We have enough experience by now with the straightforward inductive
approach to try some improvements right away. The first improvement is to choose a
special nth point rather than an arbitrary one. It is tempting to choose a point inside the
hull, so no work will be required to extend the hull. But, of course, some points must
belong to the hull, and in some cases all points belong to the hull. Another possible
choice, which worked well for the previous problem, is an extreme point — namely,
some sort of maximal or minimal point.

We choose again the point with the maximal x coordinate (and the minimal y
coordinate, if there are several points with the same maximal x coordinate). Denote this
point by g. It is clear that g is guaranteed to be a vertex of the convex hull. Thus, the
only problem is how to modify (stretch) the hull to include g. We first need to find the
vertices of the old hull that are now inside the new hull (p; and p, in Fig. 8.9) and to
remove them; then, we must insert the new point as a new vertex between two existing
vertices (p, and ps in Fig. 8.9). A supporting line of a convex polygon is a line that
intersects the polygon at exactly one vertex of the polygon. The polygon thus lies
entirely on one side of a supporting line. Consider now the supporting lines —g—p,— and
—q—-ps— (see Fig. 8.9). Usually, only two vertices of the polygon have lines to ¢ which
are supporting lines. (We will ignore the special case of two or more points that are on
the same line with q.) The polygon lies between the two supporting lines, and that is
exactly the way we want to modify it. The supporting lines have the maximal and
minimal angles, with, say, the x axis, among all other lines from points in the polygon to
q. To find these two vertices, we need to consider the lines from ¢ to all the vertices
P1,P2, - Dpn, to compute the angles, and to pick the maximal and minimal (see also
Exercise 8.4). Once the identity of the two extreme vertices is known, the modified hull
can be constructed. (There are several other approaches to modifying the hull, and this is
not necessarily the best one; we chose it for its simplicity.) We omit the details
concerning this algorithm because we will present a faster algorithm shortly.

Complexity For each point, we need to compute angles to all the previous points, to
find the maximal and minimal angles, and to delete and insert points from the list. Thus,
the work involved in processing the kth point is O (k), and we have already seen that the
solution of the recurrence relation T(n)=T(n—1)+0(n) is O(n?). Therefore, the
running time of this algorithm is O (n?). The algorithm also requires sorting, but the
running time is dominated by the other operations.

8.4.2 Gift Wrapping

How can we improve this algorithm? When we extend the polygon point by point, we
spend a lot of time building convex polygons containing points that may be internal to the
final convex hull. Can we avoid doing that? Instead of considering convex hulls of
subsets of the set of points, we can start with the whole set and build the hull directly.
That is, we can start with an extreme point (which must be on the hull), find its neighbors
in the hull by finding the supporting lines, and continue from these neighbors in the same
way. This algorithm is known as the gift wrapping algorithm for obvious reasons. We
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start with one vertex of the ‘‘gift,”’ and wrap the hull around the gift by finding neighbor
after neighbor. The algorithm is given in Fig 8.10. It can be modified to work for higher
dimensions as well.

The gift-wrapping algorithm is a straightforward application of the following
induction hypothesis (on k):

Induction hypothesis: Given a set of n points in the plane, we can find a
convex path of length k < n that is part of the convex hull of this set.

With this hypothesis, the emphasis is on extending a path rather than on extending the
hull. Instead of finding convex hulls of smaller sets, we find a part of the final convex
hull.

Algorithm Gift_Wrapping (p\,p>, ..., P,) ;
Input: p,,p,, ..., p, (asetof points in the plane).
Output: P (the convex hullof py, ps, ..., p,).

begin
set P to be the empty set ;
Let p be the point in the set with the largest x coordinate
(and the smallest y coordinate, if there are several points
with the same largest x coordinate) ;
AddptoP;
Let L be the line containing p which is parallel to the x axis ;
while P is not complete do
let q be the point such that the angle between the line —-p—q—and L
(in counterclockwise fashion) is minimal among all points ;

addqtoP
L :=line -p—q-;
p'=q

end

Figure 8.10 Algorithm Gift Wrapping.

Complexity To add the kth point to the hull, we find the minimum and maximum
angles among n —k lines. Therefore, the running time of the gift-wrapping algorithm is
O (n?), which is not better than the stretching algorithm.

8.4.3 Graham's Scan

We now show an algorithm to compute the convex hull in time O(nlogn). The
algorithm starts by ordering the points according to angles, similarly to the construction
of simple polygons described in Section 8.3. Let p, be the point with the maximal x
coordinate (and the minimal y coordinate, if there are several other points with the same x
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coordinate). For each point p;, we compute the angle of the line —p | —p;— with the x axis,
and sort the points according to these angles (see Fig. 8.11). We now scan the points in
the order they appear in the polygon and, as before, try to find the vertices of the convex
hull. As in the gift-wrapping algorithm, we will maintain a path consisting of a subset of
the points scanned so far. This path will be a convex path whose corresponding convex
polygon encloses all the points scanned so far. (The corresponding convex polygon is
the one formed by connecting the first and last points of the path.) Hence, when all the
points are scanned, we find the convex hull. The main difference between this algorithm
and the gift-wrapping algorithm is that the convex path we maintain is not necessarily
part of the final convex hull. It is only part of the convex hull of the points that were
scanned so far. The path may contain points that are not on the final convex hull; these
points will be eliminated later. For example, the path from p, to ¢, in Fig. 8.11 is
convex, but g,, and ¢,,_, clearly do not belong to the convex hull. This discussion leads
to an algorithm, based on the following induction hypothesis.

Induction hypothesis: Given a set of n points in the plane, ordered
according to algorithm Simple_Polygon (Section 8.3), we can find a convex
path among the first k points whose corresponding convex polygon encloses
the first k points.

The case of k =1 is trivial. Denote the convex path obtained (inductively) from the first k
points by P=¢q,,q,,...,q,. We now have to extend the hypothesis to k+1 points.
Consider the angle between the lines —q,,_;—¢,,— and —q,,—px,,— (see Fig. 8.11). If the
angle is less than 180 degrees (where the angle is measured from the inside of the
polygon), then p,,, can be added to the existing path (since the path with it is still
convex), and we are done. Otherwise, we claim that g,, is inside the convex polygon
obtained by removing g, from P, adding p,,, to P, and connecting p; ., to p,. This is so
because the points were ordered according to their angles. The line —p ,—p;,,— is on the

Figure 8.11 Graham’s scan.
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**left’’ side of the first k points. Hence, ¢,, must be inside the convex polygon defined
above, ¢, can be removed from P, and p;,, can be added. Are we done? Not quite.
Although g, can be eliminated, the modified path is not necessarily convex. Indeed, Fig.
8.11 shows clearly that other points may have to be eliminated as well. For example,
gm-1 Mmay now be inside the polygon defined by the modified path. We must continue
checking the last two edges of the path until we find two that form an angle of less than
180 degrees. The path is then convex, the hypothesis has been extended to k + 1 points,
and we are done. The detailed algorithm is presented in Fig 8.12.

Algorithm Graham’s_Scan (p ,p,, ....,p,) ;
Input: p,,p,, ..., p, (asetof points in the plane).
Output: ¢q,, 95, ..., g, (the convex hull of p |, p5, ..., p,).

begin
Let p | be the point in the set with the largest x coordinate
(and smallest y coordinate if there are several points
with the same largest x coordinate) ;
Use algorithm Simple_Polygon to arrange the points around p |
in sorted order ; let the order be p \,py, ...,P, ;

q:, =Dy
q2 ‘=p2;
q3 '=P3;
{ P initially consists of p\,p,,and ps }
m:=3;

Jork:=4tondo
while the angle between —q,,_1—q,,— and —q,,—p;— is 2 180 degrees do
m:=m-1;
m:=m+1;
dm -= Pk
end

Figure 8.12 Algorithm Graham’s_Scan.

Complexity The complexity of the algorithm is dominated by the sorting. All the
other steps require only O (n) time. Each point in the set is considered exactly once in
the induction step as py,;. At that time, the point is always added to the convex path.
The same point will be considered later (possibly more than once) to verify its inclusion
in the current convex path. We call this phase a backward test. The number of points
involved in a backward test may be high, but all these points except for two (the current
point and the point that is found to still belong to the convex path) are eliminated! So, we
spend only a constant time to eliminate each point, and a constant time to add it. Overall,
O (n) steps are required for this phase. The total running time of the algorithm is thus
O (n log n) due to the sorting.
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8.5 Closest Pair

Suppose that we are given the locations of n objects and we want to check that no two of
the objects are too close to each other. The objects may correspond, for example, to parts
in a computer chip, to stars in a galaxy, or to irrigation systems. In this section, we
discuss a variation of this problem, which is an example of a large set of proximity
problems.

The Problem Given a set of n points in the plane, find a pair of
closest points.

Other proximity problems include finding, for each point in the set, the closest point to it
or the k closest points to it, and finding the closest point to a new given point.

A Straightforward Approach

A straightforward solution is to check the distances between all pairs and to take the
minimal one. This solution requires n(n —1)/2 distance computations and n(n—1)/2-1
comparisons. The straightforward solution using induction would proceed by removing a
point, solving the problem for n — 1 points, and considering the extra point. However, if
the only information obtained from the solution of the n—1 case is the minimum
distance, then the distances from the additional point to all other n—1 points must be
checked. As a result, the total number of distance computations T(n) satisfies the
recurrence relation T(n)=T(n—-1)+n-1, (T(2)=1), and we have already seen that
T(n)=0 (n?). In fact, these two straightforward solutions are identical. We want to find
a more efficient algorithm for large n.

A Divide-and-Conquer Algorithm

Instead of considering one point at a time, we divide the set into two equal parts. The
induction hypothesis can stay the same, but instead of reducing the problem of n points to
the problem of n -1 points, we reduce it to two problems with n/2 points. We assume,
for simplicity, that n is a power of 2, so that it is always possible to divide the set into two
equal parts. There are many ways to divide a set of points into two equal parts. We are
free to choose the best division for our purposes. We would like to get as much useful
information as we can from the solution of the smaller problems; thus, we want as much
of that information to be still valid when the complete problem is considered. It seems
reasonable to divide the set by dividing the plane into two disjoint parts, each containing
one-half of the set. After we find the minimal distance in each part, we have to be
concerned only with the distances between points close to the boundaries of the sets. The
easiest way of dividing the set is to sort all the points according to their x coordinates, for
example, and then to divide the plane by the vertical line that bisects the set (see Fig.
8.13). (If several points lie on the vertical line, then we divide them arbitrarily.) We
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Figure 8.13 The closest pair problem.

choose this division to minimize the work of combining the solutions of the smaller
problems. The sorting needs to be performed only once.

For simplicity, we concentrate on finding only the minimal distance among the
points. Identifying the actual two closest points will be straightforward from the
algorithm. If the set has only two points, then we find their distance directly. Let P be a
set of n points, and assume that n is a power of 2. We first divide P into two equal-sized
subsets, P, and P,, as described above. We find the closest distance in each subset by
induction. Let the minimal distance in P, be d,, and in P, be d,, and assume, without
loss of generality, that d; <d,. We need to find the closest distance in the whole set;
namely, we have to see whether there is a point in P with a distance <d to a point in
P,. First, we notice that it is sufficient to consider only the points that lie in a strip of
width 2d, centered around the vertical separator of the two subsets (see Fig. 8.13). No
other point can be of distance less than d, from points in the other subset. Using this
observation, we can usually eliminate many points from consideration, but, in the worst
case, all the points can still reside in the strip, and we cannot ‘‘afford’’ to use the
straightforward algorithm for them.

Another less obvious observation is that, for any point p in the strips, there is only
a small number of points on the other side whose distance to p can be smaller than d,.
This is so because all the points in each strip are at least d, apart. If p is a point in the
strip with y coordinate y,, then only the points on the other side with a y coordinate y,
such that |y, -y, | <d, need to be considered. There could be at most six such points on
one side of the strip (see Fig. 8.14 for the worst case). As a result, if we sort all points in
the strip according to their y coordinates, and scan the points in order, we need to check
each point against only a constant number of its neighbors in the order (instead of against
all n— 1 points). A sketch of the algorithm is given in Fig 8.15.
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Figure 8.14 The worst case of six points d apart.

Algorithm Closest_Pair_1 (p,p,, ....p,) ; { first attempt }
Input: p,p,, ..., p, (asetof npoints in the plane).
Output: d (the distance between the two closest points in the set).

begin
Sort the points according to their x coordinates ;
{ this sorting is done only once at the beginning }
Divide the set into two equal-sized parts ;
Recursively, compute the minimal distance in each part ;
Let d be the minimal of the two minimal distances ;
Eliminate points that lie farther than d apart from the separation line ;
Sort the remaining points according to their y coordinates ;
Scan the remaining points in the y order and compute the distances of
each point to its five neighbors ;
if any of these distances is less than d then
update d
end

Figure 8.15 Algorithm Closest_Pair 1.

Complexity It takes O (n log n) steps to sort according to the x coordinates, but this
sorting is done only once. We then solve two subproblems of size n/2. Eliminating the
points outside of the strips can be done in O (n) steps. It then takes O(n log n) steps to
sort according to the y coordinates. Finally, it takes O (n) steps to scan the points inside
the strips and to compare each one to a constant number of its neighbors in the order.
Overall, to solve a problem of size n, we solve two subproblems of size n/2 and use
O (n log n) steps for combining the solutions (plus O (n log n) steps once at the beginning
for sorting the x coordinates). We obtain the following recurrence relation:
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T(n)=2T(n/2)+O0O(nlogn), T(2)=1.

We leave it to the reader to verify that the solution of this recurrence relation is
T(n) = O (nlog®n). This is asymptotically better than a quadratic algorithm, but we still
want to do better than that.

An O(n log n) Algorithm

The key idea here is to strengthen the induction hypothesis. The reason we have to spend
O (n log n) time in the combining step is the sorting of the y coordinates. Although we
know how to solve the sorting problem directly, doing so takes too long. Can we
somehow solve the sorting problem at the same time we are solving the closest-pair
problem? In other words, we would like to strengthen the induction hypothesis for the
closest-pair problem to include sorting.

Induction hypothesis: Given a set of < n points in the plane, we know how
find the closest distance and how to output the set sorted according to the
points’ y coordinates.

We have already seen how to find the minimal distance if the points are sorted in each
step according to their y coordinates. Hence, the only thing that we need to do to extend
this hypothesis is to sort the set of n points when the two subsets (of size n/2) are already
sorted. But, this sorting is exactly mergesort (Section 6.3.2). The main advantage of this
approach is that we do not have to sort every time we combine the solutions — we only
have to merge. Since merging can be done in O (n) steps, the recurrence relation
becomes T (n) =2T(n/2) + O (n), T(2)=1, which implies that T(n) = O (nlogn). The
revised algorithm is given in Fig 8.16.

8.6 Intersections of Horizontal and Vertical Line
Segments

Intersection problems are common in computational geometry, and they have many
applications. We are sometimes interested in computing the intersection of several
objects, and we are sometimes interested only in detecting whether the intersection is
nonempty. Detection problems are usually easier, although not always substantially
easier. In this section, we present one intersection problem that illustrates an important
technique of computational geometry. The same technique can be applied to other
intersection problems (and to other problems as well), some of which are given as
exercises.

The Problem Given a set of n horizontal and m vertical line seg-
ments in the plane, find all the intersections among them.
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Algorithm Closest_Pair_2 (p\,p,, ..., pn) ; { An improved version }
Input: py,p,, ..., p, (a set of n points in the plane).
Output: d (the distance between the two closest points in the set).

begin
Sort the points according to their x coordinates ;
{ this sorting is done only once at the beginning }
Divide the set into two equal-sized parts ;
Recursively do the following:
compute the minimal distance in each part ;
sort the points in each part according to their y coordinates ;
Merge the two sorted lists into one sorted list ;
{ Notice that we must merge before we eliminate ; we need to
supply the whole set sorted to the next level of the recursion }
Let d be the minimal of the minimal distances ;
Eliminate points that lie further than d apart from the separation line ;
Scan the points in the y order and compute the distances of each
point to its five neighbors ;
if any of these distances is less than d then
update d
end

Figure 8.16 Algorithm Closest_Pair 2.

This problem is important, for example, in the design of VLSI circuits. A circuit may
contain hundreds of thousands of ‘‘wires,”’ and the designer has to make sure that there
are no unexpected intersections. It is also important in the context of hidden-line
elimination. (The hidden-line elimination problem is usually more complicated, because
the lines are not only either horizontal or vertical.) For simplicity, when there is no
ambiguity, we call the line segments simply lines in this section. An example of the
problem is given in Fig. 8.17.

Finding all intersections among either all the vertical lines or all the horizontal
lines is a simple problem, which is left as an exercise. We assume, for simplicity, that
there are no intersections between two vertical lines or between two horizontal lines. If
we try to reduce the problem by removing one line (either vertical or horizontal) at a
time, then the removed line will have to be compared against all other lines, and the
resulting algorithm will involve O (mn) comparisons. In general, there may be as many
as mn intersections, and the algorithm may require O (mn) time just to report them. But
the number of intersections may be much smaller than mn. We would like to find an
algorithm that performs very well when there are few intersections and not too poorly
when there are many. We achieve it by combining two of our favorite techniques:
choosing a special order of induction and strengthening the induction hypothesis.
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Figure 8.17 Intersections of horizontal and vertical lines.

The order of induction is determined by an imaginary line (an infinite line, not a
segment) that ‘‘sweeps’’ the plane from left to right; the line segments are considered in
the order in which they intersect with this imaginary line. In addition to computing
intersections, we also keep some information about the line segments that we have seen
so far. This information will be helpful for computing the next intersections more
efficiently. This technique is called the line-sweep technique.

Let the imaginary line be a vertical line that sweeps the plane from left to right. To
achieve this sweeping effect, we sort all the endpoints of the segments according to their
x coordinates. The two endpoints of a vertical line have the same x coordinates, so we
need only one of them. We must use, however, the two endpoints of each horizontal line.
After all the endpoints are sorted, we consider them one by one in that order. As usual in
an inductive approach, we assume that we have already computed the intersections
among the previous line segments and have maintained some additional information, and
we now try to handle the next line segment and to update the information. The structure
of the algorithm is thus as follows. We consider one endpoint at a time in the left-to-right
order. We use the information gathered so far (which we have not yet specified) to
process the endpoint, find some intersections that it causes, and update the information to
be used for the next endpoint. The main part of the algorithm is the definition of the
information that we maintain. Let’s attempt to run the algorithm and to discover what is
needed.

One feature of the induction hypothesis, which seems natural to have, is the
knowledge of all the intersections that occurred to the left of the current position of the
sweeping line. Is it better to check for intersections when a vertical line is considered or
when a horizontal line is considered? It seems better to choose the former. When we
look at a vertical line, the horizontal lines that can intersect it are still under consideration
(since we have not yet reached their right endpoint). On the other hand, when we look at
either the left endpoint or the right endpoint of a horizontal line, we either have not yet
seen the vertical lines that intersect it, or we have forgotten about them. Assume that the
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sweeping line is currently at the x coordinates of the vertical line L (see Fig. 8.17). What
kind of information is required to find all intersections involving L? Since all
intersections to the left of the current sweeping line are assumed to be already known,
there is no need to consider a horizontal line any further if its right endpoint is to the left
of the sweeping line. Hence, only those horizontal lines whose left endpoints are to the
left of the sweeping line and whose right endpoints are to the right of the sweeping line
should be under consideration (there are six such lines in Fig. 8.17). The list of these
horizontal lines should be maintained. When L is encountered, it should be checked for
intersection against all these horizontal lines. The important point here is that we need
not check the x coordinates to determine intersections with L! We already know that all
horizontal lines in the list have x coordinates that match that of L. We have to check only
the y coordinates of the horizontal lines in the list to see whether they match the y
coordinates of L. We are now ready to try an induction hypothesis.

Induction hypothesis: Given a list of k sorted x coordinates as described
(with x; being the rightmost x coordinates), we know how to report all
intersections among the corresponding lines that occur to the left of x;, and
to eliminate those horizontal lines that are to the left of x;.

We call the horizontal lines that are still under consideration candidates. (These are the
horizontal lines whose left endpoints are to the left of the current x coordinate, and whose
right endpoints are to the right or at the current x coordinate.) We maintain a data
structure containing the set of candidates. The implementation of this data structure will
be discussed shortly.

The base case for this induction hypothesis is easy. To extend the hypothesis, we
need to handle the (k + 1)th endpoint. There are three cases:

1. The (k+1)th endpoint is a right endpoint of a horizontal line, in which case we
simply eliminate the line from the set of candidates. As we said, intersections are
detected when vertical lines are considered, so we lose no intersections by
eliminating the horizontal line. This step thus extends the induction hypothesis.

2. The (k +1)th endpoint is a left endpoint of a horizontal line, in which case we add
the line to the set of candidates. Since the line’s right endpoint has not been
reached yet, the line should not be eliminated, so, by the arguments above, this is a
proper way to extend the induction.

3. The (k+1)th endpoint is a vertical line. This is the main part of the algorithm. We
can find the intersections involving this vertical line by checking the y coordinates
of all the horizontal lines in the set of candidates against the y coordinates of the
vertical line.

The algorithm is now complete. The number of comparisons will usually be much
smaller than mn. Unfortunately, in the worst case, this algorithm still requires O (mn)
comparisons, even if the actual number of intersections is small. If all the horizontal
lines stretch from left to right, for example, then each vertical line must be checked
against all horizontal lines, resulting in an O (mn) algorithm. This bad case will hold
even if no vertical line intersects with a horizontal line.
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To improve the algorithm, we need to minimize the number of comparisons
between the y coordinates of a vertical line and those of the horizontal lines in the set of
candidates. Let the y coordinates of the vertical line we are currently considering be y,
and yg, and let the y coordinates of the horizontal lines in the set of candidates be
Y1.Y2, - Yi- Suppose that the horizontal lines in the set of candidates are given in sorted
order according to their y coordinates (namely, y,, y,, ..., y is in increasing order). We
can find the horizontal lines that intersect with the vertical line by performing two binary
searches, one for y, and one for yg. Suppose that y; <y, <y;;; <y;<yg<yj,. The
horizontal lines that intersect with the vertical line are exactly y;.y, yi42, ..., ;. We can
also perform only one binary search, say, for y,, and then scan the y coordinates until we
find y;. Even though the original problem involves two dimensions, finding y;,, ..., y; is
a one-dimensional problem. Searching for numbers in a given one-dimensional range (in
this case, y; to yg) is called a one-dimensional range query. If the numbers are sorted,
then the running time for a one-dimensional range query is proportional to the search
time plus the number of items that are found. But, of course, we cannot afford to sort the
horizontal lines every time we encounter a vertical line.

Let’s review the requirements. We need a data structure that allows us to insert a
new element, to delete an element, and to perform a one-dimensional range query
efficiently. Fortunately, there are several data structures — for example, balanced trees
— that can perform insertions, deletions, and searches in O (log n) per operation (n being
the number of elements in the set), and linear scans in time proportional to the number of
elements found. The algorithm is presented in Fig 8.18.

Complexity Sorting according to x coordinates requires time O ((m +n)log (m +n)).
Since each insert and delete operation requires O (logn) steps, the running time for
handling the horizontal lines is O (n log n) overall. Handling the vertical lines requires a
one-dimensional range query, which can be performed in time O (logn +r), where r is
the number of intersections involving this vertical line. The running time of the
algorithm is thus O ((m +n) log (m +n)+R), where R is the total number of intersections.

8.7 Summary

In some sense, geometric algorithms seem less abstract than, say, graph algorithms, since
we are used to seeing and handling geometric objects. But, appearances are sometimes
misleading. Dealing with huge number of objects is different from looking at small
pictures, and we must be careful that the picture that we have in the back of our minds
does not lead us to wrong conclusions. We must deal with many special cases, and make
sure that we can cover all of them. The algorithm for determining whether a point is
inside a polygon (Section 8.2) is a good example. We usually do not think of a polygon
as being like the one given in Fig. 8.1. Furthermore, it is easy to overlook the special
cases that may occur. Therefore, special caution must be exercised when designing
geometric algorithms.

The techniques for designing (discrete) geometric algorithms are similar to the
techniques that we have studied in the previous chapters. Induction plays an important
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Algorithm Intersection ( (v, v,, ..., vy), (hy, ha, ..., b)) ;
Input: v, v,, ..., v, (a set of vertical line segments),
and h |, h,, ..., h, (a set of horizontal line segments),
Output: The set of all pairs of intersecting segments.
{ y8(v;) (yr(v;)) denote the bottom (top) y coordinates of line v; }

begin
sort all x coordinates in increasing order and place them in Q ;
V=09,

{ V is the set of horizontal lines that are currently candidates for
intersection ; it is organized as a balanced tree according to the
y coordinates of the horizontal lines }
while Q is not empty do
remove the first endpoint p from Q ;
if p is the right endpoint of h; then
remove hy from V
else if p is the left endpoint of h; then
insert hy into'V
else if p is the x coordinate of a vertical line v; then
perform a one-dimensional range query for the range
yg(v;) to yr(v;) inV
end

Figure 8.18 Algorithm Intersection.

role. The line-sweep technique, which is based on induction, is common to several
geometric algorithms (one was presented in Section 8.5). The divide-and-conquer
approach is also quite common. Geometric algorithms (except for simple ones) seem to
require complicated data structures, and many sophisticated and ingenious data structures
have been developed for that purpose. We have not covered here any of these special
data structures.

Bibliographic Notes and Further Reading

We have seen only a small sample of geometric algorithms in this chapter. Even though
discrete computational geometry is a relatively new field, there exists an extensive
literature in this area, spanning the last 15 years. Several books concentrate on
computational geometry. Preparata and Shamos [1985] and Edelsbrunner [1987] present
numerous techniques, examples, and a comprehensive bibliography. Additional books
include Mehlhorn [1984] and Toussaint [1984].

The gift-wrapping algorithm for convex hulls is due to Chand and Kapur [1970].
Graham’s algorithm is due to Graham [1972]. A bibliography containing 268 papers on
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convex hull algorithms and other problems of convexity was published by Ronse [1987].

The algorithm for finding the closest pair is due to Shamos and Hoey [1975]. An
O (nlogn) algorithm that uses the line-sweep technique is due to Hinrichs, Nievergelt,
and Schorn [1988]. A probabilistic algorithm for finding the closest pair, whose expected
running time is O (n), was developed by Rabin [1976] (see also Fortune and Hopcroft
[1979]). A general technique for proximity problems involves the construction of
Voronoi diagrams. A Voronoi diagram for a given set of points is a division of the
plane into regions such that each region contains all points that are closest to one of the
points from the set. Voronoi diagrams can be constructed in O (n logn) time (Shamos
and Hoey [1975]). They are useful for a variety of proximity problems.

The algorithm for reporting intersections among vertical and horizontal lines
(presented in Section 8.6) is due to Bentley and Ottmann [1979]. The running time of
O (nlog n+R) of this algorithm is the best possible in the worst case (see Preparata and
Shamos [1985]). An algorithm for determining whether there are any intersections
among an arbitrary set of line segments was developed by Shamos and Hoey [1976]. It
also uses the line-sweep technique. This problem can also be solved by a divide-and-
conquer algorithm with strengthening the induction hypothesis (Guting and Wood
[1984]). There is a large body of literature on intersection problems, and the reader is
referred to one of the books listed above. Exercise 8.16 is from Bentley, Faust, and
Preparata [1982], and Exercises 8.17-8.18 are discussed in Preparata and Shamos
[1985].

Drill Exercises

8.1  Complete algorithm Point_In_Polygon_I (Fig. 8.2) by addressing the special cases that arise
when the line L intersects a vertex of the polygon or overlaps an edge of the polygon.

8.2  Design an algorithm to determine whether n given points in the plane are all on one line.
What is the complexity of your algorithm?

8.3  Let S be an arbitrary set of points in the plane. Is there only one unique simple polygon
whose vertices are the set S? Either prove the uniqueness, or show an example of two
different simple polygons with the same set of vertices.

8.4  The first algorithm we presented for computing the convex hull (Section 8.4) proceeds by
computing the supporting lines from an extreme point to the hull formed by the rest of the
points. Suppose that the only thing we know about the extra point g is that it is outside the
hull. It may be above the hull, below the hull, or anywhere else. We can still try to find the
two supporting lines from ¢ to the hull by computing the angles to all other points, but it is
not clear any more how to select the minimum and maximum angle, because these angles
can be in any range. Find a method to determine which of the lines from ¢ to points in the
hull is a supporting line.

85 Letp,,p,,....p, be a set of points that are ordered cyclically according to a circle whose
center is somewhere inside the convex hull of these points. Modify Graham’s scan to work
(without additional sorting) on this set of points.
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Graham’s scan is applied to a set of points in a certain order. We used algorithm
Simple_Polygon (Fig. 8.8) to sort the points in the following way. We started with an
‘‘extreme’’ point p (which was guaranteed to be on the hull) and sorted all other points
according to the angles between a fixed line (e.g., the x axis) and the line segments
connecting the points to p. Prove (by showing a counterexample) that not every point p can
be used for that purpose. In other words, show a set of points S and another point p, not in
the set, such that sorting the points relative to p (using the angles from p to the points in the
set) and then applying Graham’s scan does not lead to the correct convex hull.

Show, by an example, that it is possible for algorithm Graham’s_Scan (Fig. 8.12) to reject p
points in a row, one at a time, for every value of p. (In other words, the loop can be
executed for p steps without changing the value of m.)

Show an example of n points in the plane with distinct x coordinates, for which algorithm
Closest_Pair_2 (Fig. 8.16) will take Q(n log n) steps.

Given a set of n horizontal line segments in the plane, find all the intersections among them.
The algorithm should run in time O (n log n) in the worst case.

Creative Exercises

8.10

8.11

8.14

The input is a set of n points in the plane and a line. Design a linear-time algorithm to find a
line that is parallel to the given line and that separates the set of given points into two
equal-sized subsets (if a point lies on the line, then it can be counted as being on either
side).

Let P be a simple (not necessarily convex) polygon enclosed in a given rectangle R, and ¢
be an arbitrary point inside R. Design an efficient algorithm to find a line segment
connecting ¢ to any point outside of R such that the number of edges of P that this line
intersects is minimum. (This question is motivated by the algorithm for determining
whether a point is inside or outside a polygon; see Section 8.2.)

Let P be a convex polygon given by an array of its vertices in cyclic order. Design an
algorithm to determine whether a given point g is inside P. The running time of the
algorithm should be O (log n) in the worst case.

Many convex-hull algorithms are based on or are similar to sorting algorithms. You are
asked to develop a convex-hull algorithm that is similar to an efficient insertion sort. In
each iteration, one more point should be considered and possibly should be inserted to the
current convex hull, which should consist of the convex hull of the points seen so far. The
points should be considered in an arbitrary order (i.e., no sorting should be done initially).
The algorithm should be based on an efficient data structure to determine whether a given
point is inside a given convex polygon. What is the worst-case running time of your
algorithm? (You do not have to supply all the details for all the special cases.)

Consider the idea of computing the convex hull by stretching the hull one point at a time
with the use of supporting lines (see Section 8.4). Design an O (nlogn) algorithm for
computing the convex hull based on this idea.
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Assume that you have a black box that finds the convex hull of the union of two disjoint
convex polygons P, and P, in time O (|P, |+ |P,|) (| P;| denotes the number of points in
P;). Design an algorithm that uses this black box to find the convex hull of a given set of n
points in the plane. The running time of the algorithm should be O (n log n).

A d-approximate convex hull of a set of points P is a convex polygon all of whose vertices
are from P, such that all points in P are either inside it or within distance d from it. (We
define the distance of a point from a polygon as the minimum over all lengths of line
segments connecting the point to anywhere in the polygon.) Let P be a set of n points such
that the maximal difference between the x coordinates of any two points in P is X. Design
an algorithm to compute a d-approximate convex hull of P, which runs in time and space
O(n+X/d).

Let P be a set of n points in the plane. We define the depth of a point p in P as the number
of convex hulls that need to be ‘‘peeled’’ (removed) for p to become a vertex of the convex
hull. Design an O (n?) algorithm to find the depths of all points in P. (Notice that the
straightforward algorithm that finds convex hulls and removes them may run for
O (n? log n) time, since all hulls may have a constant number of vertices.)

a. A point p in the plane is said to dominate another point ¢ if both the x coordinate and y
coordinate of p are greater that or equal to those of g. A point p is a maximal point in a
given set of points P if no point in P dominates it. Design an O (n logn) algorithm to
find all maximal points of a given set P with n points.

b. Solve the corresponding problem for three dimensions (the definition of dominance is
extended to include all dimensions).

Let S be a set of points in the plane. For each p € S, we define D (p) to be the set of points
in S that are dominated by p (see Exercise 8.18). Design an algorithm to compute the sizes
of the sets D (p) for all p e S. The running time of the algorithm should be O (n logn) in
the worst case.

Given n points in the plane, find the pair of points such that the line segment connecting
them has the maximal slope. The running time of the algorithm should be O (n log n) in the
worst case.

The input is a set of n points in the plane, represented as an array of linked lists in the
following way. Each entry in the array has two fields: X, which gives the x coordinates, and
Next, which points to a (nonempty) linked list of all the points in the set whose x
coordinates are equal to X, sorted according to their y coordinates. The array is sorted
according to the x coordinates. Design an algorithm to find the closest pair of points whose
x coordinates are either equal or consecutive in the array. The algorithm should run in time
O (n) in the worst case. Is it necessary to compute square roots in this algorithm? Does
your algorithm find the closest pair (without any restrictions)?

The input is a set of line segments in the plane such that all segments are horizontal, vertical,
or have a 45-degree angle with the horizon. You are asked to extend the algorithm for
reporting all intersections among a set of vertical and horizontal line segments to this case
without increasing the asymptotic worst-case running time.

Design an algorithm to compute all the intersections among a set of horizontal and vertical
line segments by using a divide-and-conquer approach. The running time of the algorithm
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should be the same as the algorithm discussed in Section 8.6. That is, all intersections
should be reported in time O ((m+n)log(m+n)+R) (where R is the number of
intersections found).

The input is a set of n arbitrary line segments in the plane. Design an algorithm to
determine whether any two of the line segments intersect. The algorithm needs to output
only yes or no. The running time of the algorithm should be O (n log n) in the worst case.
(Hint: Use the line-sweep method similarly to the horizontal and vertical case, but maintain
different information.)

A grid polygon is a simple polygon all of whose edges are parallel to either the x axis or the
y axis. Design an efficient algorithm to compute the intersection of two given grid polygons
(i.e., the area common to both of them). The polygons are given by their vertices in a cyclic
order.

The input is a set of intervals on a line, which are represented by their two endpoints.
Design an algorithm to identify all intervals that are contained in another interval from the
set. The algorithm should run in time O (n log ) in the worst case.

The input is a set of n rectangles all of whose edges are parallel to the axes. Extend the
algorithm obtained in Exercise 8.26 to mark all the rectangles that are contained in other
rectangles. Can you obtain a running time of O (n log n)?

The input is a set of n rectangles all of whose edges are parallel to the axes. Design an
algorithm to find the intersection of all the rectangles.

The input is a set of n circles in the plane. Design an algorithm to detect whether there are
any two circles in the set with nonempty intersection. The algorithm does not need to
compute the intersection, only output yes or no. The running time of the algorithm should
be O (n log n) in the worst case.

The input is a set of n polygons, each with k vertices. Design an algorithm to detect whether
there are any two polygons in the set with nonempty intersection. The algorithm does not
need to compute the intersection, only output yes or no. What is the worst-case running
time?

The input is two convex polygons given by their lists of vertices (in a cyclic order). Design
a linear-time algorithm to compute the intersection of these polygons. The output, which is
also a convex polygon, should be represented by a list of vertices in a cyclic order.

The input is two convex polygons given by their lists of vertices (in a cyclic order). Design
a linear-time algorithm to compute the union of the two polygons (i.e., the area enclosed by
at least one of the polygons).

The input is a set of n rectangles all of whose edges are parallel to the axes. Design an
algorithm to compute the union of all the rectangles. The union is obviously a polygon. It
should be represented by its list of vertices in counterclockwise order. (This problem is an
extension to the skyline problem in chapter 5.)

The input is a set of n triangles in the plane, given by their vertices. Design an O (n logn)
algorithm to compute their intersection (i.e., the area common to all of them).
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The input is a convex polygon given by its list of n vertices in cyclic order. Design a
linear-time algorithm to find n triangles whose intersection is the given polygon.

The input is a set of n points in the plane. Design an O (n?logn) algorithm to determine
whether there exist four points in the set that are vertices of a square.

The input is a set of n points in the plane. Design a polynomial-time algorithm to determine
whether there are k points in the set (for some k <n) that are the vertices of a regular
polygon. (A regular polygon is a polygon with equal-sized edges and angles.)

The input is a set of n points all of which have integer coordinates. We are interested in
finding a set of parallel lines such that all the points are contained in at least one of the lines
in the set. The lines must either be parallel to the axes or have a 45-degree angle with the
axes. Design an O (n logn) algorithm to find a minimum-size set of lines satisfying these
conditions. Again, the lines must all be parallel, so, in particular, if one of the lines has a
45-degree angle with the coordinates, then all of them do.

A line divides the plane into two half-planes. The intersection of any number of half-planes
is a convex polygon (half-planes are convex and the intersection of convex objects is always
convex). The problem is to compute the intersection of n given half-planes and output it as
a convex polygon. That is, the output should include the list of the vertices in the cyclic
order in which they appear in the polygon. The half-planes are given by the linear
inequality that defines them. Design an O (n log n) algorithm to compute this intersection.

The input is 2n points in general position in the plane (i.e., no three points lie on a common
line), such that n points are colored red and n points are colored blue. Design an algorithm
to match the blue points to the red points such that (1) each point has a unique match, and
(2) none of the line segments connecting matched points intersect. The algorithm need not
make use of any graph-matching techniques. It is not evident that such a matching always
exists, but it is true. The algorithm should run in polynomial time. (Hint: Use induction:
Try to find a red point and a blue point whose connecting line segment poses no problems;
if that fails, try to divide the set of points by a straight line such that the problem is divided
into two smaller problems.)
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CHAPTER 9

ALGEBRAIC AND NUMERICAL
ALGORITHMS

One plus one is two.

Two plus two is four.

Four plus four is eight.

Eight plus eight is more than ten.

A child’s poem

9.1 Introduction

Whenever we perform an arithmetic operation, we are in fact executing an algorithm.
We are usually so familiar with these operations that we take the corresponding
algorithms for granted. However, whether it is multiplication, division, or a more
complicated arithmetic operation, the straightforward algorithm is not always the best
when very large numbers or large sequences of numbers are involved. The same
phenomenon that we have seen in the previous chapters occurs here as well: Some
algorithms that are good for small input become inefficient when the size of the input
grows.

As we have done in previous chapters, we will measure the complexity of an
algorithm by the number of ‘‘operations’’ that the algorithm executes. For the most part
we will assume that basic arithmetic operations (such as addition, multiplication, and
division) take one unit of time. This is a reasonable assumption when the operands can
be represented by one or two computer words (e.g., integers that are not too large,
single-precision or double-precision real numbers). There are cases, however, when the
operands are huge (e.g., 2000 digit integers). In such cases, we have to take into account

LY.
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the size of the operands, or at least to be aware that the basic operations are not simple.
It is possible to design algorithms that look very efficient ‘‘on paper,’” but are in fact very
inefficient, because the sizes of the operands are ignored.

The meaning of the *‘size of the input’’ is confusing sometimes. Given an integer
n on which we want to perform an arithmetic operation, it is natural to think of the value
n as the size of the input. However, this is contrary to our usual convention of using the
storage requirements of the input for defining its size. The distinction is very important.
Adding two 100-digit numbers can be done quickly, even by hand. On the other hand,
counting to a value represented by a 100-digit number cannot be done in reasonable time
even by the fastest computer. Since a number n can be represented by [log,n] bits, its
size is defined as [log,n]. For example, an algorithm that requires O (log n) operations
when n is the input (for example, an algorithm for computing 2n) is considered linear,
since O (logn) is a linear function of the size of the input, whereas an algorithm that
requires O(\/; ) operations when n is the input (for example, factoring n by trying all
numbers less than or equal to \/; ) is considered exponential.

As usual, we concentrate in this chapter on interesting techniques for designing
algorithms. We first discuss how to compute powers of a given number. We then
present what is probably the oldest known nontrivial algorithm: Euclid’s algorithm for
finding the greatest common divisor. It is quite amazing that modern computers use a
2200-year old algorithm. We then discuss algorithms for polynomial multiplication and
matrix multiplication, and we end the chapter with one of the most important and most
beautiful algorithms — the fast Fourier transform.

9.2 Exponentiation

We start with a basic arithmetic operation.

The Problem Given two positive integers n and k, compute n*.

1 k k-1

We can easily reduce the problem to that of computing n*~', since nf=n-n
Therefore, the problem can be solved by induction on , and the resulting straightforward
algorithm is given in Fig. 9.1. We have reduced the value of , but not its size. The
straightforward algorithm requires k iterations. Since the size of k is log, &, the number of
interation is exponential in the size of k (k =2'°®). This is not bad for very small values
of k, but it is unacceptable for large values of k.

Another way to reduce the problem is to use the fact that n* =(n*'2)2. With this
observation, we reduce the problem to one with n and k/2. Reducing the value of k by
half corresponds to reducing its size by a constant. Thus, the number of multiplications
will be linear in the size of k. We now have the skeleton of the algorithm — repeated
squaring. The simplest case is for k =2/ for some integer
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Algorithm Power (n, k) ; { first attempt }
Input: r and k (two positive integers).
Output: P (the value of n*).

begin
P:=n;
fori:=1tok-1do
P :=n*P
end

Figure 9.1 Algorithm Power.

pten = (o)) | imes

But what if & is not a power of 2? Consider again the reduction we just used. We started
with two parameters n and k, and reduced the problem to a smaller one with n and k/2.
This reduction is not always valid since /2 may not be an integer. If k/2 is not an
integer, the reduced problem does not satisfy the conditions of the original problem. But
if k/2 is not an integer, then (k—1)/2 is an integer, and the following reduction is
appropriate:

2
nk=n [”(k-l)/ZJ ‘

We now have an algorithm. If & is even, we simply square the solution for k/2. If k is
odd, we square the solution for (k—1)/2 and multiply by n. The number of
multiplications is at most 2log,k. The algorithm is given in Fig. 9.2.

Complexity The number of multiplications is O(logk). As the algorithm
progresses, however, the numbers become larger. Therefore, the multiplications become
more costly. We leave it to the reader (Exercise 9.12) to analyze the complexity of this
algorithm under a more realistic measure for the cost of the multiplications. We now
present an application of this algorithm in which the numbers do not grow during the
execution of the algorithm.

An Application to Cryptography

The study of cryptography is beyond the scope of this book, and we discuss it briefly.
Encryption schemes usually rely on complete secrecy. Any two participants who want to
exchange secret messages must agree on the encryption—decryption algorithm and must
use secret keys known only to themselves. We want to avoid this need to exchange
secret keys between every pair of participants. The following is known as the RSA
public-key encryption scheme (after Rivest, Shamir, and Adleman [1978], who
developed it). The scheme can be used by a group of participants (e.g., computer users)
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Algorithm Power_by_Repeated_Squaring (n, k) ;
Input: nand k (two positive integers).
Output: P (the value of n*).

begin
ifk=1thenP :=n
else
z := Power_by Repeated_Squaring (n, k div 2) ;
if k mod 2 = 0 then

P :=z¥%z
else
P := n*z¥z

end

Figure 9.2 Algorithm Power_by Repeated_Squaring.

who want to communicate by encrypted messages. Each participant has only two keys,
one for encryption and one for decryption (independent of the number of other
participants). These keys are chosen as follows. A participant P in the RSA scheme
selects two very large prime numbers p and ¢ and computes their product n =pq. He then
chooses another very large integer d, such that d and (p —1)(¢ —1) have no common
divisor. (See the next section for an algorithm to verify that fact; if d is a random
number, then the condition above is likely to occur.) From p, ¢, and d, it is possible
(although not easy) to compute the value of a number e that satisfies

e-d=1(mod(p-1)g-1). 9.1)

As we shall see next, e will be the encryption key and d the decryption key. The values
of n and e are publicized by P in a central directory that everyone can read. (We assume
the availability of a trusted directory such that no other person can forge P’s keys.) The
value of d, as well as the values of p and g, which are not needed anymore, are kept
secret by P.

Let M be an integer that corresponds to a message that P wants to encrypt (every
message can be translated to a sequence of bits, which can be translated to an integer).
Assume that M is smaller than n; otherwise M can be broken into several small messages
each smaller than n. The encryption function Ep that P uses is very simple:

Ep(M)=M* (mod n).

Since both £ and e are made public, everyone can encrypt messages and send them to P.
The decryption function Dp is just as simple (but it can be performed only by P, since the
value of d is secret):

Dp(C) = C? (mod n).
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One can prove that (9.1) guarantees that Dp(Ep(M))=M, hence these are valid
encryption and decryption functions. Both algorithms thus consist of computing only one
power (M¢ or C“) and one division (for the congruence), although these operations are
performed on very large numbers. The modulo n operation can be applied at any step of
the algorithm, and not necessarily at the end. This is true because

x +y(mod n) = [ x(mod n) - y(mod n) J(mod n),

for all integers x, y, and n. Applying the modulo n operation in each step of the
computation is very important, since this way the values of the operands do not grow
above n. If we use algorithm Power_by Repeated-Squaring of Fig. 9.2, not only do we
require only O (loge) (or O (logd)) multiplications and divisions for computing the
power, but each multiplication and division involves numbers that are less than n. We
need to modify algorithm Power_ by Repeated-Squaring by only changing each
multiplication to a multiplication modulo n. Thus, applying the RSA scheme requires
only O (log n) multiplications and divisions of numbers that are less than n.

There is no known algorithm that can factor a very large number (e.g., of 1000
digits) in a reasonable time (e.g., our lifetime). Thus, the knowledge of the value of n
does not imply the knowledge of p and q. It is commonly believed (although there is no
known proof of this fact) that it is impossible to compute the function Dp efficiently
without the knowledge of any one of d, p, or q.' Therefore, by keeping d, p, and ¢ secret,
P can receive encrypted messages from anyone without compromising the secrecy of the
messages. There are several other advantages of this scheme, which is called a public-
key cryptosystem.

9.3 Euclid’s Algorithm

The greatest common divisor of two positive integers n and m, denoted by GCD(n, m),
is the unique positive integer k such that (1) k divides both n and m, and (2) all other
integers that divide both n and m are smaller than k.

The Problem Find the greatest common divisor of two given posi-
tive integers.

As usual, we try to reduce the problem to one of smaller size. Can we somehow make n
or m smaller without changing the problem? Euclid noticed the obvious positive answer:
If k divides both n and m, then it divides their difference! If n >m, then GCD(n, m) =
GCD(n —m, m), and we now have a smaller problem. But, again, we reduced the values

"It is known that an algorithm for computing d from n and e would lead to an efficient probabilistic algorithm
for factoring n, which is a strong evidence that d cannot be compromised (see Bach, Miller, and Shallit [1986]).
Potentially, however, there may be another way to compute Dp without the knowledge of 4.
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of the numbers in question, and not their sizes. For the algorithm to be efficient, we must
reduce the sizes. For example, if n is very large (say 1000 digits) and m =24, we will
need to subtract 24 from n approximately n/24 times. This computation will take O (n)
steps, which is exponential in the size of n.

Let’s look at this algorithm again. We subtract m from » and apply the same
algorithm to n—m and m. If n—m is still larger than m, we subtract m again. In other
words, we keep subtracting m from n until the result becomes less than m. But this is
exactly the same as dividing n by m and looking at the remainder. Division can be done
quickly. This leads directly to Euclid’s algorithm, which is presented in Fig. 9.3.

Complexity We claim that Euclid’s algorithm has linear running time in the size of
n +m; specifically, its running time (counting each operation as one step independent of
the size of the operands) is O (log(n+m)). To prove this claim, it is sufficient to show
that the value of a is reduced by half in a constant number of iterations. Let’s look at two
consecutive iterations of algorithm GCD. In the first iteration, a and b (a >b) are
changed into b and a mod b. Then, in the next iteration, they are changed into @ mod b
and b mod(a modb). So, in two iterations, the first number a is changed to @ mod b.
But, since a > b, we have a mod b < a/2, which establishes the claim.

9.4 Polynomial Multiplication

n-1 . n-1 .

Let P=3 pix',and Q=Y g;x', be two polynomials of degree n—1. A polynomial is
i=0 i=0

represented by its ordered list of coefficients.

Algorithm GCD (m, n)
Input: m and n (two positive integers).
Output: gcd (the gcd of m and n).

begin
a:=max(h,m);
b:=min(n,m);
r:=1;
whiler > O do { ris the remainder }
r:=amodb;

a=b;
b:=r;
ged :=a

end

Figure 9.3 Algorithm GCD.
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The Problem Compute the product of two given polynomials of de-
gree n—1.

PQ = [Pn-lx"_l + +Po] [‘In-lx"_l + +‘Io] = 9.2)

2n-2 i
PniGnaXx™" "+ 4 [pn—lqi+l+pn—24i+2+ +p,-+lqn_1]x"*'+ =t +Ppoqo-

We can compute the coefficients of PQ directly from (9.2). It is easy to see that, if we
follow (9.2), then the number of multiplications and additions will be O (n?%). Can we do
better? We have seen by now so many improvements of straightforward quadratic
algorithms that it is not surprising that the answer is positive. A complicated O (n logn)
algorithm will be discussed in Section 9.6. But first, we describe a simple divide-and-
conquer algorithm.

For simplicity, we assume that n is a power of 2. We divide each polynomial into
two equal-sized parts. Let P=P,+x"2P,,and Q =Q, +x"2Q,, where

/2-1 n/2-1

Pi=po+p X+ 4Py X", Py=pua+ppyrax+ cc +p,_x ,

and

n/2-1 n/2-1

Q1=qo+q\x+ " +qurX s Q2=qu2Hquan X+ Hqu X

We now have
PQ = (P, +Pyx"?)(Q,+Qx"?) = P10 +(P1Q1+P20 ) x"? + P,0, x".

The expression for PQ now involves products of polynomials of degree n/2. We can
compute the product of the smaller polynomials (e.g., P,Q) by induction, then add the
results to complete the solution. Can we use induction directly? The only constraints are
that the smaller problems be exactly the same as the original problem, and that we know
how to multiply polynomials of degree 1. Both conditions are clearly satisfied. The total
number of operations T (n) required for this algorithm is given by the following
recurrence relation:

T(n)=4T(n/2)+ 0 (n), T()=1.

The factor 4 comes from the 4 products of the smaller polynomials, and the O (n) comes
from adding the smaller polynomials. The solution of this recurrence relation is O (n?)
(see Section 3.5.2), which means that we have not achieved any improvement (see
Exercise 9.4).

To get an improvement to the quadratic algorithm we need to solve the problem by
solving less than four subproblems. Consider the following multiplication table (the
reason we use such an elaborate table for this simple notation will become apparent in the
next section).
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X Pl P2
0, | A |B
0, C D

We want to compute A + (B +C)x™? +Dx". The important observation is that we do not
have to compute B and C separately; we need only to know their sum! If we compute
the product E=(P,+P;,)(Q,+Q,), then B+C=E-A-D. Hence, we need to
compute only three products of smaller polynomials: A, D, and E. All the rest can be
computed by additions and subtractions, which contribute only O (n) to the recurrence
relation anyway. The new recurrence relation is

T(n)=3T(n/2)+ O (n),

which implies T (n) = 0(n'*¥?) = 0(n"%).

Notice that the polynomials P, +P, and Q,+Q, are related to the original
polynomials in a strange way. They are formed by adding coefficients whose indices
differ by n/2. This is quite a nonintuitive way to multiply polynomials, yet this algorithm
reduces the number of operations significantly for large n.

0O Example 9.1

Let P =1-x+2x?—x3, and Q =2+x-x2+2x>. We compute their product using the
divide-and-conquer algorithm. We carry the recursion only one step.

A=(1-x)"Q+x)=2-x—-x2,

D =(2-x)"(-14+2x)=-2+5x - 2x?%,
and
E=(3-2x)-(1+3x)=3+7x-6x’.
From E, A, and D, we can easily compute B+C=E —A —B:
B+C =3+3x-3x2.
Now,P-Q =A +(B+C)x"? + Dx", and we have
P-Q=2-x-x?+3x?+3x% - 3x* - 2x* +5x5 - 26

=2-x+2x24+3x3 = 5x* + 5x5 = 2x5.

Notice that we used 12 multiplications compared to 16 in the straightforward algorithm,
and 12 additions and subtractions instead of 9. (We could have reduced the number of
multiplications to 9 if we had carried the recursion one more step.) The savings are, of
course, much larger when n is large. (The number of additions and subtractions remains
within a constant factor of that in the straightforward algorithm, whereas the number of
multiplications is reduced by about n%4) O
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9.5 Matrix Multiplication

The product C of two n x n matrices A and B is defined as follows:

Cij= X ajby;. 9.3)
k=1

The Problem Compute the product C =A x B of two n X n matrices
of real numbers.

The straightforward way (and seemingly the only way) to compute matrix product is to
follow (9.3), which requires using n* multiplications and (n — 1)n? additions. Notice that
n represents the number of rows and columns in the matrix, rather than the size of the
input, which is n2. We now present two different schemes that show the possibilities for
improvements.

9.5.1 Winograd's Algorithm

Assume, for simplicity, that n is even. Denote

nl2 nl/2
Ai=Y ajn_1'aiy, and B;=Y by by
k=1 k=1

After rearranging terms, we get

n/2

Cij= kz (@igk-1 b ) (@ 2 +by-1j) — A = Bj.
=1

But the A;s and B;s need to be computed only once for each row or column. To compute
all the A;s and Bjs requires only n? multiplications. The total number of multiplications
has thus been reduced to “4n>+n?%. The number of additions has increased by about
an3. This algorithm is thus better than the straightforward algorithm in cases where
additions can be performed more quickly than multiplications.

Comments This algorithm shows that rearranging the order of the computation can
make a difference, even for expressions, such as matrix multiplication, which have a
simple form. The next algorithm carries this idea much farther.

9.5.2 Strassen’s Algorithm

We use the divide-and-conquer method in a way similar to the polynomial multiplication
algorithm in Section 9.4. For simplicity, we assume that n is a power of 2. Let
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B\, B,
By, Bj,

Cl‘l CI.Z
Ciy Cop

’ - ’

Al A
T Az Az

J,and C=

where the A; s, B;;s, and C; s are n/2xn/2 matrices. We can use the divide-and-
conquer approach and reduce the problem to computing the C; ;s from the A; ;s and the
B, js. That is, we can treat the n/2 x n/2 submatrices as elements and consider the whole
problem as one of computing a product of two 2 x 2 matrices of elements. (We have to
be careful when we substitute elements for submatrices; this is the subject of Exercise
9.23.) The algorithm for the 2 X 2 product can be converted to an n X n product algorithm
by substituting a recursive call each time a product of elements appears. The regular
algorithm for multiplying two 2x2 matrices uses 8 multiplications. Substituting each
multiplication by a recursive call, we get the recurrence relation T (n)=8T (n/2)+0 (n?),
which implies that T(n)=0 (n*®%)=0 (n3). This is not surprising since we are using
the regular algorithm. If we could only compute the product of two 2 x2 matrices with
less than 8 multiplications, we would get an algorithm that is asymptotically faster than
cubic.

The most important part of the recursion is how many multiplications are required
to compute the product of two 2x2 matrices. The number of additions is not as
important since they always contribute O (n%) to the recurrence relation, which is not a
factor in determining the asymptotic complexity. (It does affect the constant factor,
however.) Strassen found that 7 multiplications are sufficient to compute the product of
two 2x2 matrices. Instead of simply writing down the equations leading to Strassen’s
algorithm, we sketch a method that could have been used by Strassen to find it. This
method can be used for similar problems.

Computing the product

YirEe

is equivalent to computing the product
a b 0o [e

p
cdoo| | |r
00ab| |g s| 04
t

00cd| |h

We write (9.4) as A-X=Y. We are looking for ways to minimize the number of
multiplications required to evaluate Y. Let’s look for special matrix products that are
easy to compute. As it turns out, we need four types of such special products (the last
two of which are very similar). They are as follows:

Type Product No. of Multiplications

a alle a(e+f)
) aal|lf = ae+f) 1
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(a alle ae+f)

R A 1
[ a olfe] [ ae

YV lazb bllf] = |ae+b(f-e) 2
(a b-a|le] [a(e-f)+bf

® o be= bf ] 2

We now look for ways to divide the general matrix product given in (9.4) into several
steps of the types listed above. Since these types of products use less than the nominal
number of multiplications, we may be able to save something at the end. It takes a lot of
trial and error to reach the right combinations. This process is hardly straightforward or
even clear, but it is somewhat less than magic. Let

bb0O 0000
bb0O 0000
B=looool> €=|0o0cc|
0000 00cc
0 00 0 asb 0 0 0
c=b 00 c—b 0 d=b 0 b-c
=lb-c00b-cl"® E=l.p 0 a=c 0
0 00 0 0 0 0 d-c

Then, A=(B+C+D+E) and therefore AX=BX+CX+DX+EX. All the products
above, except for EX, can be computed with one multiplication using types o or B. The
only problem is to compute EX. But E can be divided into two matrices E =F +G, such
that F is of type yand G is of type &:

a=b0 0 0 0000
000 0 0 d=b 0 b—c
F=lecboa—col 9=lo 0 0 o
000 0 0 0 0d—c

So, overall, AX=(B+C +D +F +G)X, and we need two products of type o, and one
product each of types B, v, and 8, with a total of 7 multiplications (see also Exercise
9.10).
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Complexity We use 7 products of matrices of half the original size, and a constant
number of additions of matrices. The additions are less important than the products,
because addition of two n x n matrices can be done in time O (n?), which is basically a
linear time in the size of the matrices. The O (n?) term is not the dominant factor in the
recurrence relation, which is T(n)=7T(n/2)+0(n2). The solution of this recurrence
relation is T(n)=0 (n'°®"), which is approximately O (n%'). If we use the derivation
described above, we obtain 18 additions (see Exercise 9.10). It is possible to reduce the
number of additions to 15 (Winograd [1973]), but this reduction does not change the
asymptotic running time.

Comments There are three major drawbacks to Strassen’s algorithm:

1. Empirical studies indicate that n needs to be at least 100 to make Strassen’s
algorithm faster than the straightforward O (n?) algorithm (Cohen and Roth
[1976]).

2. Strassen’s algorithm is less stable than the straightforward algorithm. That is, for
similar errors in the input, Strassen’s algorithm will probably create larger errors in
the output.

3. Strassen’s algorithm is obviously much more complicated and harder to implement
than the straightforward algorithm. Furthermore, Strassen’s algorithm cannot be
easily parallelized, whereas the regular algorithm can.

Nevertheless, Strassen’s algorithm is important. It is faster than the regular
algorithm for large n, and it can be used for other problems involving matrices, such as
matrix inversion and determinant computation. We will see in Chapter 10 that several
other problems are equivalent to matrix multiplication. Strassen’s algorithm can be
improved in practice by using it only for large matrices and stopping the recursion when
the size of the matrices become smaller than about 100. This is similar to the idea of
selecting the base of the induction with care, which we discussed in Section 6.4.4 and
Section 6.11.3. Strassen’s algorithm also opened the door to other algorithms and raised
many questions about similar problems that seemed unsolvable.

9.5.3 Boolean Matrices

In this section, we consider the special case of computing the product of two nXxn
Boolean matrices. All elements are 0 or 1, and the sum and product aré defined by the
following rules (which correspond to or and and respectively):

+ 0 [1 x |0 1
001 010 (O
1 [1]1 10 1

These definitions of sum and product are of course different from the usual integer sum
and product; hence, algorithms designed for integers normally cannot be used for
Booleans. One problem with the definition of a Boolean sum is that subtraction is not
well defined (both 0+1 and 1+1 are defined as 1; hence, 1—1 can be both 1 and 0).
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Therefore, Strassen’s algorithm cannot be used for Boolean matrices, because it requires
subtraction. However, there is a trick that allows us to use Strassen’s algorithm. We
consider every bit as an integer modulo n + 1, where n is the size of the matrices, and we
use the rules of addition and multiplication of such integers. So, for example, if n=4,
then 1+1=2, 1+1+1=3,and 1+1+1+1+1=0. It turns out that, if we compute the
matrix product according to these rules and if we substitute every nonzero entry in the
final result by a 1, then we get the Boolean product. This is so, essentially, because we
will not ‘‘overflow’’ the number n + 1 (we omit the proof). (More precisely, the integers
modulo k form a ring, which is an algebraic structure with definitions of sums and
products that satisfy certain properties; Strassen’s algorithm can be applied to any ring;
see Aho, Hopcroft, and Ullman [1974] for more details.) Thus, the complexity of
Boolean matrix multiplication is also O(n*?'). The use of Strassen’s algorithm,
however, requires integer operations rather than Boolean operations. Next, we present
two algorithms that utilize the properties of Boolean operations to improve the running
time of Boolean matrix multiplication. These algorithms are more practical in most
situations than Strassen’s algorithm for Boolean matrix multiplication.

Since Boolean operands require only one bit of storage, we can store k operands in
one computer word of size k. In particular, since we assume that n is stored in one
computer word, we can store k bits for k <log,n in one word. The regular algorithm for
matrix multiplication consists of n? row-by-column products (or inner products), as

n

defined in (9.3). The ijth inner product consists of computing Y’ @, * b,;. Assume, for

m=1
simplicity, that k divides n. We can divide each inner product into a sum of n/k products,
each of which involves Boolean vectors of size k. Finding the inner product of two
Boolean vectors of size k is simpler than, say, multiplying two k-bit integers. We assume
that a multiplication of k-bit integers takes one unit of time; thus, it is not unreasonable to
assume that computing an inner product of two Boolean vectors of size k takes one unit
of time. (For example, an inner product can be computed in two steps: first, we compute
the and of the two vectors, then we check whether the result is all 0s.) Nevertheless, we
usually do not want to make the algorithm dependent on special assumptions concerning
the computer primitives (besides the four basic arithmetic operations). Next, we show
how to avoid the need for such assumption. Then, we combine this idea with another
idea to improve Boolean matrix multiplication even further. Both ideas illustrate
interesting techniques for algorithm design.

The first idea is to precompute all possible Boolean inner products of size k. There
are 2% possible products, since they involve two Boolean vectors of size k. We can
compute all of them in time O (k 2% ) (we can actually do better than that; see Exercise
9.24), and store all the results in a two-dimensional table of bits of size 2% x2%. The
product of the two vectors a and b is stored at entry (i,, i,), where i, is the integer
represented by the k bits of @ and i, is the integer represented by the k bits of b. From
now on, we will not make a distinction between i, and a (or i, and b), since they are
represented in exactly the same way. Thus, given two Boolean vectors of size £, we can
compute their product by simply looking at the table. If we can access a table of size 2%
in O (1) time, then each inner product of size k can be computed in constant time (once
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the table is constructed). For example, let k=|logyn/2|. In that case, the size of the
table is O (n), and constructing it requires O (n logn) time. The assumption that we can
access a table of size O (n) in constant time is not unusual. We have already made this
assumption (implicitly) many times before. We usually assume that, if » is the size of the
input, then we can store a number with log,n bits in one computer word (or a constant
number of computer words). Once the table is constructed, we can compute a Boolean
inner product of size n in time O (n/k) = O (n/logn). Notice that the table depends only
on the value of & and not on the matrices. So, computing the product of two Boolean
matrices can be done in time O (n>/logn) and extra storage of O(n). We can also
choose k to be | logn], in which case the table size is O (n?), but we save an extra factor
of 2 in the multiplication algorithm. However, if we can afford an extra space of size
O (n?), we can find a faster algorithm.

Consider two nxn Boolean matrices A and B. The usual way to view matrix
multiplication is as defined in (9.3): We perform n? inner products, each involves a row
of A and a column of B. We can also multiply the two matrices by multiplying columns
of A with rows of B in the following way. Denote the rth column of A by Ac[r ], and the
rth row of B by Bg[r]. Consider Ac[r] as an nx 1 matrix, and Bg([r] as a 1 xn matrix.
The product of Ac[r] with Bg[r] is an n X n matrix, whose ijth entry is the product of the
ith entry of Ac[r] with the jth entry of Bg[r] (see Fig. 9.4). It is easy to see that

n
A-B =3 Aclr]-Bglr]. 9.5)
r=1
The expression (9.5) is equivalent to (9.3) in the sense that the same products and
additions are performed, but they are performed in a different order.
We now partition the columns of A and the rows of B into n/k equal-sized groups.
(We assume for simplicity that n/k is an integer; otherwise, there will be an extra smaller
group.) In other words, we divide A into A, A,, ..., A, such that each A; is an nxk
matrix, and we divide B into B, B, ..., B,, such that each B; is an k xn matrix. It is
easy to see that
nlk

A‘B=3Y A;'B;. (9.6)
i=1
T T : o :
i Bglk]
E AC[k] E , |
L Ll ; b ;
A B C

Figure 9.4 Multiplying matrices columns by rows.
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The problem now is how to compute C;=A; B; efficiently. We describe this
computation by an example (see Fig. 9.5).

The first row of C; is exactly the same as the third row of B;, because the first row
of A; has a 1 only in column 3. Similarly, the second row of C; is the Boolean sum of the
second and third rows of B;. It is easy to see that the jth row of C; is a Boolean sum of
rows of B, according to the jth row of A;. Instead of computing each row of C; in a
straightforward way, we use a method, similar to the algorithm we described earlier, for
precomputing all possibilities. There are k entries in each row of A;, so there are 2¢
possible combinations of rows of B;. Let k =log,n, and assume again that £ is an integer.
We precompute all 2¢ = 218" = combinations, and store the results in a table. In
contrast to the first algorithm, this table contains n rows rather than »n bits; thus, the
storage requirement is O (n2). Also, this table depends on B;, and must be constructed
for each B;. To find row j of C;, we look at row j of A; and see the combination of rows
of B; that need to be added. This combination can be represented as an integer
corresponding to the binary representation of row j of A; (e.g., the first row of A; in Fig.
9.5 corresponds to 1, the second row corresponds to 3, the third row corresponds to 4,
and so on). This integer is the address in the table where row j of C; is stored. It takes
O (1) time to find a row of C; in the table, and O(n) time to copy this row to the
appropriate row in C;. Thus, computing C; can be done in time O (n?).

We now show that all the combinations of sums of rows of B; can be computed in
time O (n - 2¥). Each combination of rows corresponds to a k-bit integer. We assume, by
induction, that we know how to compute the sums of combinations of rows
corresponding to integers that are less than /. Computing the sum corresponding to O is
trivial. Assume that the binary representation of / — 1 is xxxx011111 — namely, its least
significant O is followed by j 1s. The sum of rows corresponding to i is equal to the sum
of rows corresponding to xxxx 000000 plus the row corresponding to 0000100000. Since
xxxx 000000 is less than i, we know its corresponding sum by induction, and we need
only to add one row to it. It takes n Boolean additions to add a row, and we have 2k
combinations. Hence, all the precomputing can be done with O (n - 2¥) operations. If
k =log,n, then the running time is O (n?). This algorithm is known as the four-Russians

00 1 I 1010110 01 110000
01 1 1001 1101 I 1111101
1 00 01 110000 I 1010110
10 1 11110110
110 B; 110111 11
111 L1111
100 11010110
00 1 01 110000
A; C,=A;B;

Figure 9.5 Boolean matrix muitiplication.
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algorithm (Arlazarov et al. [1970]), after the nationality and number of its inventors.
The algorithm is given in Fig. 9.6.

Algorithm Boolean_Matrix_Multiplication (A, B, n, k) ;
Input: A, B (two n X n Boolean matrices), and & (an integer).
Output: C (the product of A and B).

{ we assume, for simplicity, that k divides n }

begin
Initialize the matrix C to 0 ;
fori:=0ton/k-1do
Construct Table; ;
{ Table; is an 2* array of Boolean vectors of size n which contains
all possible combinations of sums of k rows of B;, see the text }
m:=i*k;
forj:=1tondo
Let Addr be the k-bit number
Alj,m+11A[j,m+2] - Alj,m+k];
add Table;[Addr] to row jin C
end

Figure 9.6 Algorithm Boolean_Matrix_Multiplication.

Complexity To compute A -B we have to compute the n/k products A;-B;. Since
each such product takes O (n?) time and constructing the table takes O (n -2%) time, the
total running time of the algorithm is O (n3/k +n?-2*/k). If k =log,n, then the running
time is O (n3/log n).

Next, we show how to combine the ideas of the first algorithm with the ideas of the
second algorithm to improve the running time by another O (log n) factor. The main step
in algorithm Boolean_Matrix_Multiplication (Fig 9.6) involves additions of a row from a
table to C. We can perform this addition in time O (n/m) by using the same trick of
precomputing all possible additions. (This may not be necessary if a Boolean addition is
a primitive operation that can be performed quickly; the algorithm, however, does not
depend on this assumption.) We first construct a two-dimensional table Add_Table of
size 2™ x2™ that includes all possible additions of two Boolean vectors of size m. In
other words, the (i, j)th entry in Add_Table is the Boolean sum of i and j. (Again, i and j
are used both as integers and as Boolean vectors.) It is easy to see that Add_Table can be
constructed in time and space O (m-2*"). Notice that, unlike the tables we used in
algorithm Boolean_Matrix_Multiplication (Fig. 9.6), Add_Table is independent of A and
B; it depends only on the value of m. We now divide each row of B; into n/m groups,
each of size m (we assume again, for simplicity, that m divides n). We consider each
group as a m-bit integer; thus, each row of B; is represented by an n/m-tuple of integers.
All the steps of the algorithm will be performed on these tuples.
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To add two vectors of size n, we use Add_Table to add the corresponding two
n/m-tuples in n/m steps. Each step consists of taking two m-bit numbers and fetching the
corresponding entry in Add_Table (which contains their sum). Such a step can be
performed in constant time, as long as the size of the computer word is at most 2m. We
use this trick both for constructing the tables for the regular four-Russians algorithm, and
for adding the rows during the execution of the algorithm. If we select m to be
approximately equal to | log,n/2], then 2*" =0 (n) and, since we assume that we can
represent n in one computer word, we can represent a 2m-bit number in one word. For
this choice of m, the running time of the improved algorithm is O (n3/log?n).

Comments We presented an interesting method of computing all possibilities
instead of the usual wisdom of computing only what is needed. We also demonstrated
that changing the order of the computation can lead to a better algorithm. The trick of
computing all possible combinations can be applied in the same manner to other
algebraic functions on bit strings that cannot be performed directly by the hardware.

9.6 The Fast Fourier Transform

As an introduction to the fast Fourier transform, we quote from John Lipson’s excellent
book:

An algorithm may be appreciated on a number of grounds; on technological
grounds because it efficiently solves an important practical problem, on
aesthetic grounds because it is elegant, or even on dramatic grounds
because it opens up new and unexpected areas of applications. The fast
Fourier transform (popularly referred to as the ‘‘FFT’’), perhaps because it
is strong on all of these departments, has emerged as one of the ‘‘super’’
algorithms of Computer Science since its discovery in the mid sixties.
(Lipson [1981], page 293.)

The FFT algorithm is by no means simple, and its development is not straightforward.
We concentrate on only one application of the FFT — polynomial multiplication.

The Problem Given two polynomials p (x) and g (x), compute their
product p (x) - q (x).

The problem, as stated above, is not well defined. We have not specified the
representation of the polynomials. We usually represent a polynomial
P=a, x"" +a,,x" %+ -+ +a;x+a, by the list of its coefficients in increasing
order of degrees. This representation is definitely adequate, but it is not the only one
possible. Consider, for example, a polynomial of degree 1, which is a linear function
a,x+ag. This linear function is usually specified by the two coefficients a, and aq.
But, since the function corresponds to a line in the plane, it can also be specified by any
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two (nonequal) points on that line. In the same way, any polynomial of degree n is
uniquely defined by n+1 points. For example, the second-degree polynomial
p(x)=x2+3x+l is defined by the points (1,5), (2,11), and (3,19), and it is the only
second degree polynomial that includes all those points. These three points are not the
only three points that define this polynomial; any three points on the corresponding curve
will do.

This representation is attractive for polynomial multiplication because multiplying
the values of points is easy. For example, the polynomial q(x)=2x>—x+3 can be
represented by (1,4), (2,9), and (3,18). We right away know that the product p (x) - g (x)
has the values (1,20), (2,99), and (3,342). These three points are not enough to represent
p(x)-q(x) since it has degree 4. We can overcome this problem by requiring five points
from each of the smaller polynomials; for example, we can add the points (0,1) and
(-1, -1)to p(x), and (0, 3) and (-1, 6) to g (x). We can then easily obtain five points that
belong to the product — (1, 20), (2, 99), (3, 342), (0, 3), and (-1, —6) — by making only
five scalar multiplications! Using this idea, we can compute the product of two
polynomials of degree n, given in this representation, with only O (n) multiplications.

The main problem with this approach is that we cannot simply change the
representation to fit only one application. We must be able, for example, to evaluate the
polynomial at given points. This is much harder to do for this representation than it is
when the coefficients are given. However, if we could convert efficiently from one
representation to another, then we would have a very good polynomial multiplication
algorithm. This is what the FFT achieves.

Converting from coefficients to points can be done by polynomial evaluation. We
can compute the value of a polynomial p (x), given by its list of coefficients, at any given
point by Horner’s rule (Section 5.2) using n multiplications. We need to evaluate p (x) at
n arbitrary points, so we require n’> multiplications. Converting from points to
coefficients is called interpolation, and it also generally requires O (n?) operations. The
key idea here (as in so many other examples in this book) is that we do not have to use n
arbitrary points; we are free to choose any set of n distinct points we want. The fast
Fourier transform chooses a very special set of points such that both steps, evaluation and
interpolation, can be done quickly.

The Forward Fourier Transform

We first consider the evaluation problem. We need to evaluate two n—1 degree
polynomials, each at 2n—1 points, so that their product, which is a 2n-2 degree
polynomial, can be interpolated. However, we can always represent an n—1 degree
polynomial as a 2n —2 degree polynomial by setting the first n — 1 (leading) coefficients

to zero. So, without loss of generality, we assume that the problem is to evaluate an
n-1
arbitrary polynomial P = ¥ a;x’ of degree n—1 at n distinct points. We want to find n
i=0
points for which the polynomials are easy to evaluate. We assume, for simplicity, that n
is a power of 2.
We use matrix terminology to simplify the notation. The evaluation of the

polynomial P above for the n points xg, x|, ..., x,_; can be represented as the following
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matrix by vector multiplication:

1 xg (o) )" [ag] [Pxo)]
1 x (x1)2 ce )t a, P(xy)
DXy o) 0 )™ (Gn| [P ()
The question is whether we can choose the values of xg, x|, .., x,_, in a way that

simplifies this multiplication. Consider two arbitrary rows i and j. We would like to
make them as similar as possible to save multiplications. We cannot make x;=x;,
because the values must be different, but we can make ()c,-)2=()cj)2 by letting x;=~x;.
This is a good choice, because every even power of x; will be equal to the same even
power of x;. We may be able to save one-half of the multiplications involved with row j.
Furthermore, we can do the same for other pairs of rows. Our goal is to have n special
rows for which the computation above requires only n/2 vector products. If we can do
that, then we may be able to cut the problem size by half, which will lead to a very
efficient algorithm. Let’s try to pose this problem in terms of two separate subproblems
of half the size.

We want to divide the original problem into two subproblems of size n/2,
according to the scheme described above. This is illustrated in the following expression.

Ioxo (or e I
a0 X0
1 X (x )2 8% )n-l
| 'l l al P(xl)
[ P ()‘n/z—l)2 C (-xn/Z—l)n—]
- : 9.7)
1 -xo  (=xp)? (=xo)""!
Io=x; (xy)? (=x,)""!
an- P(—xn/Z—l)
1 Xpomt (Kaz-))? * 0 X)) T T -

The n x n matrix in (9.7) is divided into two submatrices, each of size n/2 xn. These two
matrices are very similar. For each i, such that 0<i <n/2, we have x;=-x,,5,;- The
coefficients of the even powers are exactly the same in both submatrices, so they need to
be computed only once. The coefficients of the odd powers are not the same, but they
are exactly the negation of each other! We would like to write the expressions for P (x;)
and P (-x;) for 0<i < n/2 in terms of the even and odd coefficients:

n/2-1 Y n/2-1 ”
P(X)=E+0= Z ariX '+ Z ajziy1 X 'H.
i=0 i=0

The ‘‘even’’ polynomial (E) can be written as a regular polynomial of degree n/2-1



312 Algebraic and Numeric Algorithms

with the even coefficients of P:
n/2-1 .
E=Y ay@x® =P,(x?%.
i=0
The ‘‘odd’’ polynomial (O) can be written in the same way:
n/2-1

0=x Y aya(x?) =xP,(x?).
i=0

So, overall, we have the following expression:
P(x) =P, (x?) +x Po(x?), 9.8)

where P, (P,) are the n/2—1 degree polynomials with the coefficients of the even (odd)
powers of P. When we substitute —x for x in (9.8), we get P(—x) = P,(x%) + (-x) P,(x?%).
To evaluate (9.7), we need to compute P (x;) and P (-x;), for 0<i <n/2. To do that, we
need to compute only #n/2 values of P.(x?) and n/2 values of P,(x?), and to perform n/2
additions, n/2 subtractions, and n multiplications. So, we have two subproblems of size
n/2, and O (n) additional computations.

Can we continue with the same scheme recursively? If we could, then we would
get the familiar recurrence relation T (n) =2T(n/2) + O (n), resulting in an O (nlogn)
algorithm. But this is not so easy. We reduced the problem of computing P (x) (a
polynomial of degree n—1) at n points to that of computing Pe(xz) and P,,(xz) (both
polynomials of degree n/2—1) at n/2 points. This is a valid reduction, except for one
small thing. The values of x in P(x) can be chosen arbitrarily, but the values of x2,
which are needed, for example, in P,(x?), can only be positive. Since we obtained this
reduction by using negative numbers, this poses a problem. Let’s extract from (9.7) the
matrix that corresponds to the computation of Pe((x,-)2):

1 () (x)* x0)"2 1 [a0] [ Puxo) |

1) () ()2 a, P.(x))
a,

Ll Cn2-1)? Gn-)® *  Gpm)" 2| | @02 Po(Xn/2-1)

If we try the same trick on this subproblem, we need to set (x,,,4)2 = —(xo)z. Since
squares are always positive, this seems impossible. But it is not impossible if we use
complex numbers which include V-1. We again divide the problem into two parts and
let x; /4 = \/—_lxj, for 0<j < n/4. This partition satisfies the same properties as did the
first partition. Hence, we can solve the problem of size n/2 by solving two subproblems
of size n/4 and O (n) additional computation.

If we want to carry this process one step further, we need a number that is equal to

V\[—_l; that is, a number z such that z8=1, and z/#1 for 0 < <8 (which implies that
z%=-1, and z%= \/——1 ). In general, we need a number that satisfies the condition above
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for n rather than for 8. Such a number is called a primitive nth root of unity. We
denote it by ®. (We do not include » in the notation for simplicity; we will use the same
n throughout this section.) ® satisfies the following conditions:

0"=1, and o #1for0<j<n. 9.9)
The n points that we choose as x¢, X1, ..., X,_; are 1, , @7, ..., ®""'. Therefore, we want
to compute the following product:

1 1 1 1 ] [a] [ pPa]
1 o o ! a P (o)
o @ X . P(w?)
1 (on—l (o(n—l)'Z .. (o(n—l)-(n—l) a,_, P((Dn—l)
This product is called the Fourier transform of (ay,a, ...,a,_;). First, we notice that

indeed for any j, 0<j <n/2, we have xj,,, = o"? Xj=—X;j.

i+ So the reduction that we
applied initially to the problem of size n is still valid. Furthermore, the subproblems
resulting from that reduction have n/2 points, which are 1, @, ®%, ..., ®" 2. But this is
exactly the problem of size n/2 in which we substitute ®* for @. The conditions in (9.9)
imply that ®? is a primitive (n/2)th root of unity. Therefore, we can continue
recursively, and the complexity of the algorithm is O (nlogn). A high-level view of the

algorithm is presented in Fig. 9.7.

Algorithm Fast_Fourier_Transform (n,ay,a,, ...,a,_,, ®,varV);
Input: # (an integer), ag, a,, ..., a,| (a sequence of elements whose type

depends on the application), and ® (a primitive nth root of unity).
Output: V (an array in the range [0..n — 1] of output elements ).
{ we assume that n is a power of 2 }

begin
ifn=1then
V0] :=agq
else
Fast_Fourier _Transform(n/2, aq a,, ..., a,_,, o, U);
Fast_Fourier_Transform(n/2,a, as;, ...,a,_,, o, W);
forj:=0ton/2—1do {follow (9.8) forx=w’ }
Vl:=Ull+o W[l
Vj+n/21:=U[j]- o W[j]
end

Figure 9.7 Algorithm Fast_Fourier_Transform.
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0 Example 9.2

We show how to compute the Fourier transform for the polynomial (0, 1, 2, 3,4, 5, 6, 7).
To avoid confusion, we denote the subproblems by P; ;  .(xg,Xi,...xs), Where

jo»J1s - Jx denote the coefficients of the polynomials, and xg, xy, ..., x; denote the
values for which we need to evaluate the polynomials. So, in particular, this example

-----

vvvvvv

P3sq(1, o?, o*, ®®). We continue recursively and reduce Py 46(1, 0%, 0*, ©®) to
Po4(1,@*) and Py 6(1, @*). Po,(1, @*) is then reduced to P (1), which is clearly 0, and
P 4(1), which is clearly 4. We can now combine the results to get

Pos(1)=Po(1)+1-P4(1)=0+1-4=4,
and
Po4(0%) = Po(0*) + 0*P4(0") = 0 + @* - 4.

Since o* =-1, we get P0'4(0)4) =—4, and, overall, Pg4(1, ®*) = (4, —4). In the same
manner, we get P ¢(1, ©*) = (8, —4).
We now combine the two vectors above to compute P ; 4 6(1, 0%, 0, 0®):

P0'2'4'6(l)=P0‘4(1)+ 1 ’P2'6(1)=4+8= 12.
P02.46(0) =Py 4(0%) + 02 P, 6(00") = 4 + 0* (—4).
Po246(@*) =P 4(0¥) + 0*  Pyg(@¥)=Pg 4(1) = 1-P,e(1) =4 -8 =—4.

P02.46(0%) =P 4(0?) +0° Py g(@'?) = Py 4(0*) — 0 - Py g(00*) = —4 — 0?(—4).
So, overall

Poaas(l, 0%, 0, @) = (12, -4(1+w?), 4, -4(1 - 0?)).
In the same way, we find that

Pi3sq(1, @, @, 0®) = (16, —4(1+0?), -4, —4(1 - @?) ).

------
-----------
------

------

to the reader. O

The Inverse Fourier Transform

The algorithm for the fast Fourier transform solves only half of our problem. We can
evaluate the two given polynomials p (x) and ¢ (x) at the points 1, o, ..., """ quickly,
multiply the resulting values, and find the values of the product polynomial p (x) - g (x) at
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those points. But we still need to interpolate the coefficients of the product polynomial
from the evaluation points. Fortunately, the interpolation problem turns out to be very
similar to the evaluation problem, and an almost identical algorithm can solve it.

Consider again the matrix notation. When we are given the coefficients
(ag,ay,....a,_1) of the polynomial, and we want to compute the values of the
polynomial at the n points 1, ®, ®?, ..., @""!, we compute the matrix by the following
vector product:

11 I 1 ] [a] [P

1 o o ! a, P (o)
o @2 Ay . P (®?)

1 wn—l o)(n—l)~2 .. m(n—l)~(n—l) a,_ P(O)"_l)

On the other hand, when the values of the polynomial (P (1), P (®), WwP@ ") =

(vo, vy, ..., Vo1 ) are given, and we want to compute the coefficients, we need to solve the
0 V1 n-1 g p
following system of equations forag, ay, ..., a,_;:
1 1 1 - 1 Jfa] [Vo]
1 o o o"! a; Vi
o o2 AR . 12
= . 9.10)
1 mn-l m(n-l)'Z .. w(n-l)~(n-l) a,_, Vool

Solving systems of equations is usually quite time consuming (O (n*) for the general
case), but this is a special system of equations. Let’s write this matrix equation as
V(w)-a=v, where V(w) is the matrix in the left side, a =(aq,qay,...,a,_,), and
v=(vg, Vy, ..., Vu—1)- The solution for a can be written as a = V]!, provided that
V(w) has an inverse. It turns out that V(w) always has an inverse; furthermore, its
inverse has a very simple form (we omit the proof):

O Theorem 9.1

vor' = v, O
n ()]

Therefore, to solve the system of equations (9.10), we need to compute only one matrix
by vector product. This task is greatly simplified by the following theorem.

0O Theorem 9.2

If ® is a primitive nth root of unity, then 1/ is also a primitive nth root of
unity. O
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Therefore, we can compute the product V(1/w)V by using the algorithm for the fast
Fourier transform, substituting 1/ for @. This transform is called the inverse Fourier

transform.

Complexity Overall, the product of two polynomials can be computed with
O (nlogn) operations. Notice that we need to be able to add and multiply complex

numbers.

9.7 Summary

The algorithms presented in this chapter are a small sample of known algebraic and
numerical algorithms. We have seen again that the straightforward algorithms are not
1ecessarily the best. Strassen’s algorithm is one of the most striking examples of a
nonintuitive algorithm for a seemingly simple problem. We have seen several more
examples of the use of induction, and, in particular, of the use of divide-and-conquer
algorithms.

The four-Russians algorithm suggests an interesting technique, which is not based
on induction. The main idea is to compute all possible combinations of certain terms,
even if not all of them are needed. This technique is useful in cases where computing all
(or many) combinations together costs much less than computing each one separately.
Another technique, which is common particularly for problems involving matrices, is the
use of reductions between problems. This method is described, with examples, in
Chapter 10.

Bibliographic Notes and Further Reading

The best source for arithmetic and algebraic algorithms is Knuth [1981]. Other books
include Aho, Hopcroft, and Ullman [1974], Borodin and Munro [1975], Winograd
[1980], and Lipson [1981].

The algorithm for computing powers by repeated squaring is very old; it appeared
in Hindu writings circa 200 B.C. (see Knuth [1981] page 441). The RSA public-key
encryption scheme is due to Rivest, Shamir, and Adleman [1978]. The idea of public-
key encryption schemes was introduced by Diffie and Hellman [1976]. Euclid’s
algorithm appeared first in Euclid’s Elements, Book 7 (circa 300 B.C.), but it was
probably known even before then (see Knuth [1981], page 318). The divide-and-conquer
algorithm for multiplying two polynomials was developed by Karatsuba and Ofman
[1962] (in the context of multiplying two large numbers).

Winograd’s algorithm appeared in Winograd [1968] (see also Winograd [1970]).
Strassen’s algorithm appeared in Strassen [1969]. The constant ¢ in the asymptotic
running time O (n) for matrix multiplication has been reduced several times since 1969
(first by Pan [1978]). The best-known algorithm at this time — in terms of asymptotic
running times — is by Coppersmith and Winograd [1987], and its running time is
@(n*37%). Unfortunately, as the (D notation indicates, this algorithm is not practical.
For more on the complexity of matrix multiplication and related topics see Pan [1984]. A
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discussion on the implementation of Strassen’s algorithm can be found in Cohen and
Roth [1976].

The four-Russians algorithm is due to Arlazarov, Dinic, Kronrod, and Faradzev
[1970]. The improvement of the four-Russians algorithm by using addition tables has
probably been observed by many people; it is mentioned, without details, in Rytter
[1985], where a similar technique is used for context-free language recognition. The
same idea was also used to improye sequence comparisons algorithms (Masek and
Paterson [1983], Myers [1988]). The solution of Exercise 9.26 appears in Atkinson and
Santoro [1988]. Fischer and Meyer [1971] showed a reduction between Boolean matrix
multiplication and the transitive-closure problem.

The algorithm for the fast Fourier transform was introduced by Cooley and Tuckey
[1965], although the origins of the method can be traced to Runge and Konig [1924]. For
more information on the fast Fourier transform, see Brigham [1974] and Elliott and Rao
[1982].

Drill Exercises

9.1 Discuss the relationship between algorithm Power_by Repeated Squaring (Fig. 9.2) for
computing n* and the binary representation of .

9.2 Algorithm Power_by Repeated Squaring (Fig. 9.2) for computing n* does not necessarily
lead to the minimal number of multiplications. Show an example of computing n* (k > 10)
with fewer number of multiplications.

9.3  Let x be a positive rational number that is represented by the pair (a, b) such that x =a/b.
Design an algorithm to compute the smallest representation of x; that is, the representation
(a, b) with the smallest possible values of a and b. For example, if x =24/84=6/21=2/17,
then (2, 7) is the smallest representation of x.

9.4  Prove that the straightforward divide-and-conquer algorithm for polynomial multiplication
that computes all four products of the smaller polynomials makes exactly the same
operations as does the straightforward algorithm that follows (9.1). Assume that n is a
power of 2.

9.5 Find the product P(x)-Q(x), by hand, using the divide-and-conquer polynomial
multiplication algorithm presented in Section 9.4.

P)=x+2x3+3x%+ -+ +15x'5,

Q(x)=16+15x + 14x2 + -+ + 2" 4+ x5
How many operations are required overall?

9.6 A divide-and-conquer technique can be used to multiply two binary numbers. Describe
such an algorithm, and discuss the differences between it and the polynomial multiplication
algorithm.
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9.7
9.8

9.9

Algebraic and Numeric Algorithms

Use the algorithm discussed in Exercise 9.6 to multiply 10011011 by 10111010.

A divide-and-conquer technique can be used to multiply two numbers in any base b (not
only »=2). Use it to perform the decimal multiplication 4679 x 7114. Carry the recursion
down all the way to 1-digit numbers.

Design an algorithm to multiply two complex numbers (a +bi)(c +di) with only three
multiplications. (i is the square root of —1.)

Derive the explicit expressions for Strassen’s 22 matrix multiplication scheme described
in Section 9.5.2.

Suppose that you find an algorithm to multiply 4 x 4 matrices with k multiplications. What
would be the complexity of a general matrix multiplication algorithm based on the this
algorithm? What is the maximal value of k that will lead to an asymptotic improvement
over Strassen’s algorithm?

FCreative Exercises

9.12

9.13
9.14

9.15

9.1

Consider the two algorithms for computing n* given in Section 9.2 (simple iteration, and
repeated squaring). Let n be an integer with d digits. Assume that integer multiplications
are performed by the regular algorithm, which requires d, - d, steps to multiply two integers
with d, and d, digits. What is the number of steps required to compute n* by the two
algorithms? (You can assume that k is a power of 2, and that a product of two integers with
d, and d, digits is another integer with d, +d, digits.)

Design an algorithm to find the GCD of & integers.

The least common multiple (LCM) of m and n is the smallest integer that is a multiple of
both n and m. Design an algorithm to find the LCM of two given integers.

Design an algorithm to find the LCM of k given integers. (The LCM of k integers is the
smallest integer that is a multiple of all of them.)

The Fibonacci numbers are defined by the following recurrence relation:
F()=1, FQ)=1, Fm)=F(n-1)+F(n-2) (n>2).
a. Prove that every integer n >2 can be written as a sum of at most log,n Fibonacci
numbers.
b. Design an algorithm to find such a representation for a given number n.
Let P(x) and Q(x) be two polynomials. We say that a polynomial D (x) divides P (x) if
there exists another polynomial S (x) such that P (x) =D (x)-S(x). Similarly, we say that
Q()=R(x)mod P (x) if R(x) has a smaller degree than P(x), and there exists a
polynomial D (x) such that Q (x)=D (x)- P (x)+R (x). The GCD of two polynomials P (x)

and Q (x) is a polynomial R (x) such that R (x) is the highest-degree polynomial that divides
both P (x) and Q (x).

a. Show that the GCD of two polynomials is uniquely defined.

b. Extend Euclid’s algorithm to find the GCD of two given polynomials.
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9.20

9.21
9.22

9.24

9.25

9.26
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Modify the polynomial multiplication algorithm described in Section 9.4 by dividing each
polynomial into three equal parts (instead of two), and minimizing the number of
multiplications involving smaller parts. You can assume that the size of the problem is a
power of 3. What is the complexity of the algorithm?

Modify the polynomial multiplication algorithm described in Section 9.4 by dividing each
polynomial into four equal parts, and minimizing the number of multiplications involving
smaller parts. You can assume that the size of the problem is a power of 4. What is the
complexity of the algorithm?

Hamilton’s quaternions are vectors of the form a + bi +cj +dk, where a, b, c, and d are
real numbers, and i, j, and k are special symbols. We add and subtract quaternions
componentwise, and multiply them by using the following rules:

2 _ 2 2

i‘=j*= k¢ = -1

ij =—ji =k
jk = —kj =i
ki = —ik = j

(the symbols i, j, and k¥ commute with real numbers and with themselves). How many
multiplications of real numbers are required by the ordinary procedure for quaternion
multiplication? Give an algorithm that reduces the number of multiplications to 12.

Show how to compute the square of a 2 X2 matrix with only five multiplications.

A permutation matrix is an n X n matrix such that each row and each column has exactly
one nonzero entry that is equal to 1. A permutation matrix can be represented by an array P
such that P [i] = j if the ith row contains a 1 in the jth column.

a. Prove that the product of two permutation matrices is another permutation matrix.

b. Design a linear-time algorithm to multiply two permutation matrices given by the array
representation. The outcome should also be given in an array representation.

Consider the following suggestion to modify Strassen’s algorithm. We can use Winograd’s
algorithm to compute the product of two kxk matrices with approximately k*/2
multiplications. We can then use this product as the basis for the divide-and-conquer
strategy instead of the one using 2x2 matrices. If k is large enough we get a better
asymptotic time than Strassen’s algorithm. What is wrong with this suggestion?

Design an algorithm to compute all possible Boolean inner products of two Boolean vectors
of size k (see Section 9.5.3). The algorithm should create a table of size 2%, The product of
the two vectors a and b should be stored at entry i, where i is an integer respresented by 2k
bits such that the k most significant bits of i are those of a and the & least significant bits are
those of b. The running time of the algorithm should be O (2%).

Complete the program for Boolean matrix multiplication (Fig. 9.6). Show how to build the
tables explicitly, and how to handle the case where n/k is not an integer without a
significant loss of efficiency.

Design an algorithm for Boolean matrix multiplication that divides the matrices into
submatrices of size k x k, and uses the idea of precomputing all possible products between
such submatrices. The running time of the algorithm should be O (n3/(logn)'*), and it
should require extra space of O (nlogn). You can assume that you can perform basic
operations on numbers with up to log,n bits in one step.
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9.27

9.28
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Let A and B be two n xn random Boolean matrices; each entry in each matrix is randomly
chosen (independently) to be either 0 or 1 with probability 4. Design an algorithm to find
the product of A and B, such that the expected number of operations will be O (n 2.

Let A and B be two 2n x2n Boolean matrices that represent open Gray codes (see Section
2.9) in the following way. The rows of each matrix correspond to the strings in the Gray
code, such that two consecutive rows differ by exactly one bit (the first row and the last row
may differ by more than one bit). Design an O (n?) algorithm to find the product of the two
matrices.

Let M|, M,, ..., M, be n matrices of real numbers. The dimensions of M; are a; xa;,,, so
the product of M;-M,,, is defined for each 1<i<n. We want to compute the product
M, xM,x -+ xM,. Let’s assume that it takes a;a;,, a;,, operations to multiply an
a; X a;,, matrix by an a;,, Xa;,, matrix. The problem is to find the right order in which to
carry out the multiplications. For example, let n =3, and let the matrices be of dimensions
10x2, 2x5, and 5x3. Finding the product of the first two matrices takes 10-2-5
operations resulting in a matrix of dimensions 10x5. Finding the product of this matrix
with the third one takes 10- 5 - 3 operations — overall, 250 operations. On the other hand, if
we first find the product of the last two matrices and multiply the first matrix with that
product, we end up with only 90 operations. Design an algorithm to find the optimal order
of carrying out the matrix product above.



CHAPTER 10

REDUCTIONS

Knowledge is of two kinds.
We know a subject ourselves,
or we know where we can find
information upon it.

Samuel Johnson, 1775

10.1 Introduction

We start this chapter with an old joke. A mathematician and her husband are asked the
following question: ‘‘Suppose that you are in the basement and you want to boil water,
what do you do?”’ The mathematician says that she will go up to the kitchen and boil
water there; her husband answers similarly. Now they are both asked the following
question: ‘‘Suppose that you are in the kitchen and you want to boil water, what do you
do now?’’ The husband says ‘‘it’s easier — I'll just fill the kettle and boil the water.”’
The mathematician answers ‘‘it’s even easier than that — I'll go down to the basement
and I already know how to solve that problem.’’

In this chapter, we will concentrate on the idea of reduction. We will show that
besides being funny sometimes, reductions can be extremely useful. Here is another
example of a reduction, this time a real one. When you send a package by Federal
Express from uptown New York City to downtown New York City, the package will be
routed through Memphis. Federal Express routes all packages through Memphis, so
when they are faced with the special situation of delivering packages across town they
‘‘already know how to solve the problem.’’ In this case, the solution makes sense. It
may be much more difficult to identify a special situation and to build a mechanism to
handle that situation more efficiently. It may be easier, and overall cheaper, to handle
everything equally. This is also often true in algorithm design. When we encounter a
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problem that can be posed as a special case of another problem, whose solution is already
known, then the known solution can be used. Such a solution may sometimes be too
general or too expensive. But in many cases, using a general solution is the the easiest,
the fastest, and the most elegant way to get a solution. We use this principle every day.
For some computing problems — for example, a database query — it is usually not
necessary to write a program that solves only this problem; it is sufficient to use
general-purpose software that handles more general problems. The general-purpose
solution may not be the most efficient solution, but it is much easier to use.

Suppose that we are given a problem P that seems complicated, but that also seems
similar to a known problem Q. We can try to solve P from scratch, or we can try to
borrow some of the methods used to solve Q and apply them to P. There is, however, a
third way. We can try to find a reduction (or transformation) between the two problems.
Loosely speaking, a reduction is a solution of one problem using a ‘‘black box’’ that
solves the other problem. Reductions can achieve one of two goals depending on the
direction in which they are done (i.e., which black box is used to solve which problem).
A solution of P that uses a black box for Q can be translated into an algorithm for P if we
know an algorithm for Q. On the other hand, if P is known to be a hard problem, or, in
particular, if we know a lower bound for P, then the same lower bound may be applied to
Q. In the former case, the reduction is used to obtain information about P, whereas, in
the latter case, it is used to obtain information about Q.

For example, in Section 10.4.2, we discuss the problems of matrix multiplication
and matrix squaring (i.e., multiplying the matrix with itself). Clearly, we can square a
matrix with a matrix multiplication algorithm; therefore, the problem of matrix squaring
can be reduced to the problem of matrix multiplication. We show in Section 10.4.2 that
it is possible to multiply two matrices with the use of a matrix squaring algorithm;
therefore, matrix multiplication is reduced to matrix squaring. The purpose of the latter
reduction is to show that computing the square of a matrix cannot be done faster (by
more than a constant) than computing the product of two arbitrary matrices (under some
conditions that are discussed in Section 10.4.2)

We will see several examples of the use of reductions in this chapter. Finding a
reduction between two problems is useful even if it does not lead directly to new upper or
lower bounds on the complexity of the problem. The reduction helps us to understand
both problems. The reduction may be used to find new techniques for attacking the
problem or variations of it. For example, the reduction may be used to design a parallel
algorithm for the problem.

An effective way to use reductions is to define a general problem to which many
problems can be reduced. Finding such a general problem is not easy. This problem
should be general enough to cover a wide variety of problems, but it must also be simple
enough to have an efficient solution. We discuss one such problem, called linear
programming, in Section 10.3.

We have already seen several examples of reductions in this book — for example,
the reduction of the transitive-closure problem to the all-pairs shortest-paths problem
(Section 7.8). Reductions are important enough, however, to deserve a special chapter.
Reductions are also the cornerstone of the next chapter.
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10.2 Examples of Reductions

In this section, we present four examples of using reductions to obtain efficient
algorithms.

10.2.1 A Simple String-Matching Problem

We start with a simple variation of the string-matching problem.

The Problem Let A=aga, - a,., and B=byh, - - b,_, be
two strings of size n. Determine whether B is a cyclic shift of A.

The problem is to determine whether there exists an index k, 0Sk<n -1, such that
a; = b yriymoan for all i, 0<i<n-1. We call this problem CSM (for cyclic string
matching), and we call the original string-matching problem (Section 6.7) SM. We can
solve CSM, for example, by modifying the Knuth-Morris-Pratt algorithm that was
described in Section 6.7. But there is a better way to arrive at a solution. The idea is to
pose CSM as a regular instance of SM. In other words, we look for a certain text T and a
certain pattern P such that finding P in T is equivalent to finding whether B is a cyclic
shift of A. If we can do this, then a solution to SM involving T and P can be applied to
solve CSM involving A and B. If one thinks about the problem in these terms it is easy to
see the solution: We define the text T as AA (namely, A concatenated to itself). Clearly,
B is a cyclic shift of A if and only if B is a substring of AA. Since we already know how
to solve SM in linear time, we have a linear-time algorithm for CSM.

10.2.2 Systems of Distinct Representatives

Let S, S5, ..., S; be a collection of sets. A system of distinct representatives (SDR) is
asetR={r,,rs,..rc} such that r;€ S;, for all i, 1 <i <k, (notice that, since we require
R to be a set, the r;s must be distinct). In other words, R includes exactly one
representative from each set. It is not always possible to find an SDR of a given
collection of sets. For example, an SDR for the collection of sets S| = {1,2}, §, =
{2,3,4}, 55 =1{1,3},and §4 = {1,2,3} is {1,4,3,2}, but there is no SDR for the collection
of sets S| ={1,2},5,=1{2,3,4},S3={1,3},S4={1,2,3},and S5 = {2,3}.

The Problem Given a finite collection of finite sets, find an SDR
for the collection (any SDR will do), or determine that none exists.

There is a very elegant theorem, due to P. Hall, that gives necessary and sufficient
conditions for the existence of SDRs. Let card(S) be the number of elements of S.
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O Hall’s Theorem

Let S|,S,,...,S¢ be a collection of sets. This collection has an SDR if and
only if the following condition is satisfied.:

card [S,-] us, U US,-"J >m

for every subset {iy,iy,...in} of {1,2,3,..,k}. In other words, every
subcollection of m sets must contain altogether at least m distinct elements,
for every 1 <m <k. O

It is clear that the condition is necessary since, if there are m sets with altogether less than
m elements, then they cannot have m distinct representatives. That the condition is also
sufficient is harder to prove, and we leave it as an exercise.

Hall’s theorem provides simple conditions but, unfortunately, they cannot be
directly checked efficiently. We will have to check all possible subcollections, and there
are 2 of them. We need another approach. The idea is to pose this problem as a
bipartite matching problem. Let G =(V, U, E) be a bipartite graph such that there is a
vertex v; in V for each set S;, and there is a vertex 7} in U for each possible element (i.e.,
for each element in the union of the sets). Each element is connected to all the sets
containing it; that is, (v;, #;) € E if and only if u; € §;. It is now easy to see that an SDR
is simply a matching in G of size k. We can apply the algorithm discussed in Section
7.10 to solve this problem. Furthermore, the proof of Hall’s theorem can be obtained
from the properties of bipartite matching and network flows.

10.2.3 A Reduction Involving Sequence Comparisons

Consider the sequence-comparison problem discussed in Section 6.8: A=a,a, - a,
and B=b, b, - b, are two strings of characters, and we want to edit A, character by
character, until it becomes equal to B. We allow three types of edit steps, each involving
one character — insert, delete, and replace. The cost of each of these steps is given, and
our goal is to minimize the cost of the edit. The solution given in Section 6.8 was to
construct a table of size n by m, where each entry corresponds to a partial edit. The ijth
entry contains the cost of editing the first / characters of A into the first j characters of B.
The goal is thus to compute the ‘‘bottom-right’* entry (nm) of the table. We showed that
each entry can be computed from only three other ‘‘previous’’ entries corresponding to
the three different edit steps.

Another way to look at this problem is by considering the table as a directed graph.
Each entry in the table corresponds to a vertex in the graph. A vertex thus corresponds to
a partial edit. There is an edge (v, w) if the partial edit corresponding to w' has one more
edit step than the partial edit corresponding to v. An example of such a graph is given in
Fig. 10.1, where A =caa and B =aba. The horizontal edges correspond to insertions, the
vertical edges to deletions, and the diagonal edges to replacements. For example, the
shaded path in Fig. 10.1 corresponds to a deletion of ¢, a match of a, an insertion of b,
and another match of a. In the basic problem, the cost of each edge is 1 except for
diagonal edges that correspond to equal characters (i.e., no replacement is necessary)
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Figure 10.1 The graph corresponding to the sequences A =caa and B =aba.

whose cost is 0. The problem now becomes a regular single-source shortest-paths
problem. Each edge is associated with a cost (which is the cost of the corresponding edit
step), and we are looking for the shortest path from vertex [0, 0] to vertex [n, m]. We
have reduced the string-edit problem to the single-source sortest-paths problem.

Finding shortest paths in general is not easier than solving this problem directly.
Nevertheless, this reduction is useful. Consider, for example, the following variations of
the sequence-comparison problem. The cost of editing is not necessarily per character.
The cost of inserting a block of characters in the middle of another string may not be the
same as that of inserting the same number of characters, one by one, in different places.
The same may be true for deletions. In other words, instead of assigning a cost per
insertion, deletion, and replacement, we may want to assign a cost per blocks of
insertions, or deletions, regardless of their sizes. Alternately, we may want to assign a
cost of say, I +ck, for inserting a block of k characters, where / is the ‘‘start-up’ cost,
and c is a cost per subsequent character. There are many other useful metrics. We can
model them more easily by using the shortest-path formulation than by modifying the
original problem. We can add edges anywhere we want and assign any cost to them,
without changing the problem.

10.2.4 Finding a Triangle in Undirected Graphs

There is a strong correlation between graphs and matrices. A graph G =(V, E) with n
vertices can be represented by its adjacency matrix A, which is an n X n matrix in which
the ijth entry is 1 if and only if (v; ,v;) € E. If G is undirected, then A is symmetric. If G
is a weighted graph, then we define A as an n X n matrix such that the ijth entry is equal
to the weight of edge (v;, v;) or to O if this edge is not in the graph. There are other ways
to associate a matrix with a graph. For example, the incidence matrix of a graph
G =(V, E) with n vertices and m edges is an n X m matrix in which the ijth entry is 1 if
and only if the ith vertex is incident to the jth edge.
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The correlation goes beyond mere representation. Many properties of graphs can
be better understood by looking at the corresponding matrices. Similarly, many
properties of matrices can be discovered by looking at the corresponding graphs. Not
surprisingly, many algorithmic problems can be resolved by making use of this analogy.
Here is one example.

The Problem Let G =(V, E) be a connected undirected graph with
n vertices and m edges. Design an algorithm to determine whether G
contains three vertices all connected to one another.

The straightforward solution is to check all subsets of three vertices. There are

('3')=n(n— 1)(n—2)/6 subsets of three vertices, and each subset can be checked in
constant time, so the running time of the resulting algorithm is O (n*). It is possible to
design an algorithm whose running time is O (mn) (Exercise 7.118), which is better if the
graph is sparse. Can we do better than that? We proceed to show an algorithm, which is
asymptotically faster, but is far from being intuitive. The main purpose of this discussion
is to illustrate the relationships between graph algorithms and matrix algorithms.

Let A be the adjacency matrix of G. Since G is undirected, A is symmetric.
Denote by A? the square of the matrix A, namely, A2 = A x A (the product is the usual
matrix product). We want to study the relationships between the entries of A% and the
graph G. By definition of matrix multiplication,

n
AMi, j1=X Ali, k]-Alk, j).
k=1

Therefore, A2[i, J1>0 if and only if there exists an index k such that both A [/, k] and
Ak, j]are 1. In terms of the graph, A2[i, j]> 0 if there exists a vertex k, such that k #1,
and k#j, and both i and j are connected to k. (We assume that the graph does not
contain self loops; hence, A [i, i]=0 for all i.) However, that means that there exists a
triangle involving / and j if and only if i is connected to j and A2[i, j]1>0. Thus, there
exists a triangle in G if and only if there are i and j such that A [i, j]1=1, and A%[i, j]>O.

The discussion above implies an algorithm. We first compute A% and then check
the condition above for each pair i and j. It costs O (n2) to check all pairs, so the running
time of the algorithm is dominated by the running time of matrix multiplication. We
have thus reduced the problem of finding a triangle in a graph to that of Boolean matrix
multiplication (more precisely to matrix squaring, but we will see in Section 10.4.2 that
these two problems are equivalent). We can now use Strassen’s algorithm for matrix
multiplication and obtain an algorithm for finding a triangle whose running time is
O(n*%"). We can also use the algorithm in Section 9.5.3 for Boolean matrix
multiplication, and obtain a practical algorithm for finding a triangle with a running time
of O(n®/(logn)?). We have reduced this graph problem to Boolean matrix
multiplication, so, in general, the complexity of this graph problem is O (M), where M is
the complexity of Boolean matrix multiplication.
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10.3 Reductions Involving Linear Programming

The previous section included examples of reductions from different areas of algorithm
design. We tried to map one problem to another so that we could use a known algorithm.
This section also presents reductions, but with a slightly different approach. Instead of
looking for a candidate for a reduction whenever a new problem arises, we explore some
‘‘super-problems,’’ to which many problems can be reduced. One such super-problem,
perhaps the most important one. is linear programming. There are efficient algorithms
for solving linear programming, although they are not simple. A thorough discussion of
linear programming is beyond the scope of this book. In this section, we only define
some variations of the problem, and show several examples of reductions to it.

10.3.1 Introduction and Definitions

There are many problems that involve maximizing or minimizing a certain function
subject to certain criteria. For example, the network-flow problem involves maximizing
the flow function subject to the capacity constraints and to the conservation constraints.
Linear programming is a general formulation of such problems in cases where the
function is a linear function and the constraints can also be written using linear functions
in the following way. Let x=(x,,x,, ..., x,) be a vector of variables. An objective
function is defined as a linear function involving the variables of x;
n
¢(x)= Y cix;, where the ¢;s are constants. (10.1)
i=1
The goal of linear programming is to find the values of x that satisfy some constraints
(listed below) and maximize the value of the objective function. We shall see later that, if
necessary, it is easy to replace the maximization objective with a similar minimization
objective. First, we define a general form of linear programming with three types of
constraints, not all of which are needed for all problems. Later, we will show that the
general problem can itself be reduced to a problem with only two types of constraints.
Leta,, a,, ..., a; be vectors of real numbers, each of length n, and let b, b,, ..., b;
be real numbers. The inequality constraints are as follows:

5|'bel
az'Xsz

(10.2)

Zik .Y Sbk

(Except for X, all other symbols are constants.)
The equality constraints are similar:
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E| '.Y=dl
?2 .Y —dz

(10.3)
2, X=dy,

where e, €, ..., e, are also vectors of size n,and d,, d>, ..., d,, are real numbers.
We also usually add the following nonnegative constraints separately (even
though they can be represented as a special case of the previous constraints).

x;20, forall je P, (10.4)

where P is a given subset of {1, 2, ..., n}.

The linear programming problem can be formulated as follows: maximize the
function ¢ (x) (10.1) subject to the inequality constraints (10.2), the equality constraints
(10.3), and the nonnegative constraints (10.4). Of course, not all constraints must be
used in all instances of the problem.

We first show that we can get rid of either the equality or the inequality constraints,
but not both, without a loss of generality. Let

e'x=d; (10.5)

be an arbitrary equality constraint. We can substitute for (10.5) the following two
inequality constraints:

E,"XSG’,‘, (106)
and
—?,-'x S—d[. (10.7)

Alternately, we can replace the inequality constraints with equality constraints.
Given a general inequality constraint

a;*x<b;, (10.8)
we can introduce a new variable, y;, and replace (10.8) with the following:
a;*x+y;=h;, andy; >0. (10.9)

Such a variable is called a slack variable. A linear program with only equality
constraints is said to be in standard form.

In both of these cases, replacing one set of constraints with another set of
constraints may cause the number of constraints to increase. Therefore, it is not always a
good idea to perform these transformations.

We will not describe any algorithm for solving linear programming. We only note
here that the existing algorithms for linear programming are quite fast in practice, and
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thus a reduction to linear programming is not just an exercise but a good way to solve the
problem.

10.3.2 Examples of Reductions to Linear Programming

Problems in real life are seldom given directly in linear programming formulation. One
has to introduce the right definitions to make the problem fit this formulation. Here is one
example.

The Network-Flow Problem

(This problem is discussed in detail in Section 7.11.) Let the variables x, x5, ..., x,
represent the values of the flow for all the edges (n is the number of edges here). The
objective function is the value of the total flow in the network
((.Y ) = ZX,’,
ieS
where S is the set of edges leaving the source. The inequality constraints correspond to
the capacity constraints:

x;i <¢; foralli, 1<i<n,

where ¢; is the capacity of edge i. The equality constraints correspond to the
conservation constraints:

Y x - Y x;=0 forallve V-{s,t}.

X, leaves v X, enters v

Finally, the nonnegative constraints apply to all variables (i.e., the set P, as defined in
(10.4), is the whole set {1, 2, ..., n}). We leave it to the reader to verify that the values of
x that maximize the objective function under these constraints correspond indeed to a
maximum flow.

A Static Routing Problem

Let G =(V, E) be an undirected graph representing a comrmunication network. Suppose
that each node v; in the network has a limited buffer space, and can receive only B;
messages in one unit of time (we assume, for simplicity, that all messages have the same
size). Suppose further that there is no limit on the number of messages that can be
transmitted through any link, and that each node has an infinite supply of messages. The
problem is to decide how many messages each edge should carry in one unit of time in
order to maximize the total number of messages on the network. (This is a static routing
problem, since we assume that all nodes always want to transmit; usually, transmission
needs are dynamically changing.) In a graph-theoretic formulation, the problem is to
assign weights to the edges such that the sum of the weights of all edges incident to node
v; is £B;, and the total sum of weights is maximized.

This graph-theoretic problem can be easily formulated as a linear programming
problem. We can associate a variable x; with each edge e;=(v, w), indicating the
number of messages passing through e;. The objective function is ¢(x)=Y x;. The

1
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constraints are as follows:

> x;<B;, forallveV,

e, is incident to v,

and
x; 20, foralli.

The Philanthropist Problem

Suppose that there are n organizations that want to contributed money to k computer-

science departments. Each organization / has a limit of s; on its total contribution for the

year, as well as a limit @;; on the amount it is willing to contribute to department j (e.g.,
k

a;; may be 0 for some departments). In general s; is smaller than 3 a;;; therefore, each
j=1

organization has to make some choices. Furthermore, suppose that éach department j has
a limit of ¢; on the total amount of money it can receive (this constraint may be
unrealistic, but it is interesting nevertheless). The goal is to design an algorithm that
maximizes the total contributions (with no regard to fairness).

This problem is a generalization of the matching problem introduced in Section
7.10. It can be solved by matching techniques, but it also has a simple linear
programming formulation. There are nk variables x;;, 1 <i<n, 1<j<k, representing the
amount of money organization / is willing to contribute to department j. The objective
function is

C(E)=ZXU.
ij

The constraints are the following:

Xij < aj for all 4, j,

k
3> x;<s; foralli,
j=1

and

n
inj < tj for all j
i=1

In addition, of course, all variables must be nonnegative.

The Assignment Problem

Let’s change the philanthropist problem slightly by insisting that each organization
donate money to only one department and that each department accepts money from only
one organization. In other words, we make it a standard matching problem, but with
weights. Each possible match has a dollar amount attached to it, and we want to find not
only a perfect matching, but also one that maximizes the total donations. This problem is
a bipartite weighted matching problem, or, as it is usually called, an assignment
problem.
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The variables for. this problem must be different from those of the previous
problem. We somehow have to capture the notion of a matching. We must insist that
exactly one edge is connected to each node. We do so by assigning a variable x;; for
each edge (i, j) with a value of 1 when the edge is selected, and of 0 otherwise. The
objective function becomes

c(x) =X a;x;. (10.10)
ij
The constraints are the following:

k
Y x;j=1 forall i,
j=1

and

n

3 x;=1 forallj.

i=1
These constraints guarantee that no more than one edge is selected for each node. In
addition, all variables must be nonnegative.

This formulation has one major deficiency. The variables represent a yes or no
choice, but their optimal values may be real numbers! We have to add constraints that
limit the values of the variables to either O or 1. This is generally very hard to do. Linear
programs whose variables must be integers are called integer linear programs. Solving
them involves integer programming. Many of the problems discussed in the previous
chapters can be naturally formulated as integer linear programming problems. However,
although linear programs can be efficiently solved, integer linear programs are usually
(but not always) very difficult. We discuss this issue in the next chapter. (The
assignment problem, by the way, can be solved efficiently by linear programming; see,
for example, Papadimitriou and Steiglitz [1982].)

10.4 Reductions for Lower Bounds

If we can show that an algorithm for problem A can be modified — without adding too
much to the running time — to solve problem B, then a lower bound for problem B
applies to problem A as well. We present three examples of the use of reductions for
lower bound proofs. Another example is presented in the next section, which deals with
common errors in the use of reductions.

10.4.1 A Lower Bound for Finding Simple Polygons

Consider the problem of connecting a set of points in the plane by a simple closed
polygon (see Section 8.3). We have seen how to solve this problem using sorting. It is
also true that, under certain assumptions, this problem cannot be solved more quickly
than sorting. Therefore, the algorithm we presented for the simple closed polygon
problem cannot be improved without improving sorting. (When we say *‘improvement,”’
we mean an improvement by more than a constant factor.)
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O Theorem 10.1

It is possible to sort in time O (T +n), given a (black-box) algorithm for the
simple polygon problem that runs in time O(T).

Proof: Consider n points on a circle (see Fig. 10.2). The only way to connect
these points into a simple polygon is to connect each point to its neighbor on the circle.
Otherwise, if two points that are not neighbors are connected, the connecting line
separates the rest of the points into two groups that cannot be connected without
intersecting this line. Consider now an input x|, x5, ..., X, to the sorting problem. If we
had a black box for the simple polygon problem, we could use it to sort in the following
way: The input x|, x5, ..., X, is first converted to y,, y, ..., yn, such that the y;s are angles
in the range —180 to 180 degrees, with the same relative order as the x;s. The angles are
then converted to points all lying on the unit circle. The point corresponding to x; is-the
point on the circle with angle y; to some fixed line crossing the circle. These conversions
can be done in linear time. We can now use the black box for constructing a simple
polygon from a set of points in time O (T). As we mentioned, this simple polygon must
connect each point to its neighbor on the circle. But that means that we can scan the
points in order and find the sorted order of the original sequence in time O (T +n). O

To obtain a lower bound for the simple polygon problem, we have to be careful
about the model of computation that we assume. The (n log n) lower bound for sorting
that was proved in Section 6.4.6 assumed the decision-tree model. To use this lower
bound for the simple-polygon problem, we must use the same model. That is, we first
must assume that the black box that solves the simple polygon problem uses O(T)
comparisons in a way that is consistent with the decision-tree model. The theorem must
include this assumption. We then have to show that the reduction is also consistent with
the decision-tree model. In this case, the reduction is valid since the proof of the lower
bound for sorting did not make any restrictions on the type of queries allowed in the
decision tree. Thus, a comparison involving the x or y coordinates of the point

b‘ Ys

Ya

Figure 10.2 The conversion from numbers to points.



10.4 Reductions for Lower Bounds 333

corresponding to the angle y; is still counted as one comparison in the decision tree. A
decision tree that solves the simple-polygon problem can be transformed into a decision
tree that solves sorting, without significant change in height.

O Corollary 10.2

Under the decision-tree model, the problem of finding a simple polygon
connecting a set of given points in the plane requires €(nlogn)
comparisons in the worst case. O

This reduction establishes the fact that sorting is really at the heart of solving the simple
polygon problem.

10.4.2 Simple Reductions Involving Matrices

In Section 9.5, we saw very nonintuitive ways to multiply two matrices. Symmetric
matrices (i.e., matrices in which the ijth entry is equal to the jith entry) occur commonly
in practice. It is natural to ask whether it is easier to multiply symmetric matrices. It is
entirely possible that symmetry helps in finding better expressions for multiplying, say, 3
by 3 matrices. This may lead to a better asymptotic algorithm for multiplying symmetric
matrices. We now show that this is not the case. We prove that multiplying two
symmetric matrices is as hard, to within a constant factor, as is multiplying two arbitrary
matrices.

Let’s denote the problem of computing the product of two arbitrary matrices by
ArbM, and that of computing the product of two symmetric matrices by SymM. It is
obvious that SymM is not harder than ArbM (since SymM is a special case of ArbM).
Suppose now that we have an algorithm that solves SymM. We show that we can use this
algorithm as a black box to solve the more general problem ArbM. Let A and B be two
arbitrary matrices. Denote by A7 the transpose of A (i.e., the matrix obtained from A by
exchanging every entry ij with the entry ji). We utilize the following expression,
involving a product of two 2n X 2n matrices, which is easy to verify:

0 A| [0 BT AB 0

AT o| |B O] = |0 aTBT| (10.1)
(The Os stand for n x n matrices all of whose entries are 0.) The reduction follows from
the fact that the two matrices on the left side are symmetric. We can find their product by
using the algorithm for the problem SymM. But the upper-left side of their product

contains exactly the product AB. Hence, we can solve ArbM by using the algorithm for
SymM on two matrices of twice the size. This leads to the following theorem.

0O Theorem 10.3

If there is an algorithm that computes the product of two symmetric nxn
real matrices in time O (T (n)), such that T 2n)=0 (T (n)), then there is an
algorithm to compute the product of two arbitrary nxn real matrices in
time O (T (n)+n?).
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Proof: Given two arbitrary n xn matrices, we use the assumed algorithm to
compute their product as shown in (10.11). It takes O (n?) steps to compute AT and BT
and to construct the two symmetric matrices, and 7 (2n) to multiply them. The theorem
follows. O

The assumption that T(2rn)=0 (T (n)) is not overly restrictive; for example, any
polynomial satisfies it. This reduction is good only for establishing a lower bound. We
do not suggest using it in practice to multiply. Theorem 10.3 tells us that it is impossible
to utilize the symmetric properties of a matrix for a matrix multiplication algorithm that
is faster asymptotically. Here is another similar reduction.

0 Theorem 10.4

If there is an algorithm that computes the square of an n Xn real matrix in
time O (T (n)), such that T (2n)=0 (T (n)), then there is an algorithm to
compute the product of two arbitrary nXxn real matrices in time
O (T (n)+n?).

Proof: As in the proof of Theorem 10.3, we need to find a matrix whose square
contains enough information to obtain the product of two arbitrary matrices. This is done
by the following expression:

0 Al? AB 0
BO| = |0 BA| (10.12)

The theorem follows immediately. O

10.5 Common Errors

Reductions should be used with care. The following are examples of common errors one
can make when attempting a reduction. The most common error is to apply the reduction
in the wrong order. This mistake is more prevalent in reductions for lower bounds. The
reduction should establish in this case that one problem P is at least as hard as another
problem Q whose complexity we already know. We need to start with an arbitrary
instance of Q and to show that it can be solved with a black-box solution for P.
Consider, for example, the following attempt to reduce the problem of data compression
via Huffman’s encoding (Section 6.6) to the problem of sorting. The goal is to prove a
lower bound of Q(n log n) for the complexity of Huffman’s encoding.

The main observation is that, if the frequencies of the characters are wide apart,
then the tree becomes so unbalanced that it can be used for sorting (see Fig. 10.3). In that
case, the characters will appear in the tree in decreasing order of frequencies (with the
highest-frequency character at the top of the tree). But that means that Huffman’s
encoding can be used to sort these frequencies. Therefore, building the tree is at least as
hard as sorting, and a lower bound of Q(n log n) seems to be implied.

The error in this argument comes from the fact that we started with a special case
of the sorting problem. We considered only those frequencies that that are wide apart.
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2 1
Figure 10.3 A Huffman tree for frequencies that are wide apart.

To prove a lower bound for sorting, we must start with an arbitrary instance of sorting.
After all, the proof should show that Huffman’s encoding can be used to perform any
sorting. We must start with arbitrary numbers and show that these numbers can be sorted
by the Huffman’s encoding algorithm. We will discuss this error further in the next
chapter.

As it turns out, we can modify the arguments above and save the proof. The trick
is to spend some time changing the input of the sorting problem (which must be
arbitrary) so that it conform with our goals. Let the input be a sequence of distinct
positive integers X = (x, x5, ..., x,). We can assume that the numbers are distinct,
because the lower bound for sorting applies to distinct numbers as well (in fact, the lower
bound was proved for distinct integers). The Huffman’s encoding corresponding to
frequencies that are equal to the numbers in X can be any general tree; thus, thc
arguments above cannot be used. However, we can replace each x; with, say, y; =2".
Since, for any positive integer m, we have 2" > ¥ 2, the Huffman tree will have the

r<m

form shown in Fig. 10.3. So, it is possible to use the Huffman’s encoding algorithm to
sort the y;s. We now must make sure that the extra computation involved in the
reduction (computing the y;s from the x;s, in this case) is not prohibitive. Computing
powers can be quite expensive, but that is irrelevant in this case, because the lower bound
for sorting involves only comparisons. We made no assumptions about the number of
other operations (see again Section 6.4.6). Therefore, we established that building the
Huffman’s encoding requires Q(nlogn) comparisons in the worst case under the
decision-tree model. (It may be possible to build the tree more quickly with an algorithm
that does not conform to the decision-tree model.)

We also have to be careful that the reduction does not impose significant
inefficiency. Consider the knapsack problem discussed in Section 5.11, and the
extension to it addressed in Exercise 5.17. (The extension was to solve the knapsack
problem where each item can be included in the knapsack an unbounded number of
times.) A straightforward reduction of the extended problem to the original problem (in
which each item appears at most once) is the following. Let the size of the knapsack be



336 Reductions

K. An item of size s; cannot be included more than K/s; times. So, we can replace each
item in the extended problem with | K/s;] items of the same size in the original problem.
Although this reduction is correct, it is not very efficient, since we have increased the size
of the problem considerably. This problem can be solved more efficiently.

10.6 Summary

It is always a good idea to look for similarities between problems. By studying
differences and similarities between two problems, one usually gains insight into both
problems. Given a new problem, the first thought should be (in almost all cases), *‘Is this
problem similar to a known problem?’’ Sometimes, the similarities between two
problems become apparent only after complicated reductions are exhibited. The
reductions between matrix and graph algorithms are especially interesting. We have seen
several examples of reductions in this chapter, and we will see more examples in the next
chapter.

Linear and integer programming were described too briefly in this chapter. They
are very important and should be studied in detail by anyone interested in algorithms.
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Exercises

10.1

10.2

<
W

5

10.7

Prove Hall’s theorem by using the techniques developed in the sections on network flows
and bipartite matching.

Solve the following variation of the sequence-comparison problem. The input is two
sequences A and B, and the goal is to edit B so that it becomes equal to A. The edit steps are
the usual ones: insert, delete and replace (or match). The cost of a step, however, depends
on the position in the sequence of the corresponding characters. The cost of inserting a
character at the ith position in B is ci, where ¢ is a constant, and the cost of deleting the jth
character of B is ¢j. The cost of replacing a character with another character is still 1. The
algorithm should find the minimum-cost edit sequence.

Find a reduction (in some direction) between the problem of finding maximal points in the
plane (Exercise 8.18) and that of marking intervals on the line for containment (Exercise
8.26).

Department D at University X administers a qualifying examination for its Ph.D. students.
The examination consists of Q questions divided into n areas such that there are ¢; questions

n
in area i (3 q; = Q). There are k professors P, P,, ,..., P (these are not their real names)
i=1
who write questions for the examination. Suppose that each professor P; has overall p;
k

questions that can be used, and that )" p; > Q. A committee is responsible for selecting the
i=l

questions for the examination from the questions supplied by the professors. We assume
that all the questions are unique, and that they are all good. Assume, furthermore, that each
professor insists that no more than r (where r is a constant independent of the professor) of
his or her questions will be used (so that he or she can use the remaining questions in later
years). Design an efficient algorithm to select the questions for the examination under these
constraints, or to determine that it is impossible to do so.

Consider the following variation of the bipartite matching problem. Suppose that there are
2n students who want to be admitted to n universities. Consider the bipartite graph formed
by having the students and the universities as the two sets of vertices and including an edge
between a student and a university if the university agrees to admit that student. Find an
algorithm to maximize the number of students that are admitted, such that no more than two
students are admitted to each university (there are no preferences). Solve the problem by
exhibiting a reduction to the regular bipartite matching problem.

Here is another variation of the bipartite matching problem. Suppose now that there are n
training courses and n trainees. As usual, we consider the graph in which the courses and
the trainees are the vertices and there is an edge between a trainee and a course if the trainee
is qualified for the course. Each course can have at most two trainees, and each trainee can
take at most two courses. Design an algorithm (by a reduction to a known problem) to
maximize the registration. (Again, no preferences are given, and there are no scheduling
problems.)

Let G =(V, E) be an undirected graph such that each vertex v is associated with an integer




338

10.8

10.9

10.10

10.11
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10.13

10.14

10.15

10.16
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b(v)<degree(v). A b-matching in G is a set of edges of E such that each vertex v has no
more than b(v) edges incident to it. (If b(v)=1 for all v, then this is exactly the regular
matching problem.) A maximum b-matching is one with maximum number of edges.
Reduce the problem of finding a maximum b-matching to that of finding a maximum
matching.

Let G=(V, E) be an acyclic directed graph. Design an algorithm to find a minimum
number of vertex-disjoint paths that include all vertices of G.

Let G =(V, E) be a network with source s and sink ¢. Assume that G is planar, namely, it
can be laid out in the plane such that no edges intersect. Assume furthermore that such a
layout is given to you (in a reasonable representation), and that both the source and the sink
lie on the outside of the layout. Design an algorithm to find a minimum-cost cut in G
without using the maximum-flow algorithm.

Exercise 8.40 can be solved by reducing the problem to that of minimum-weight matching.
(In this case, the reduction leads to an inferior algorithm since minimum-weight matching is
harder than a direct solution.) Show the reduction and prove its validity (i.e., prove that the
corresponding minimum-weight matching satisfies the conditions of the problem).

Reduce the problem of finding an MCST in an undirected graph to a bottleneck shortest-
path problem. (A bottleneck problem is a minimization problem in which we try to
minimize the maximum value, rather than the sum of values; so, a bottleneck shortest-path
problem involves paths whose maximal-cost edges are minimized, rather than the cost of
the whole path.) As a result, show that the MCST problem can be solved by shortest-paths
techniques. (Although shortest-paths algorithms are usually more expensive than MCST
algorithms, the reduction can be helpful for parallel algorithms.)

The input is a directed graph G =(V, E) with a distinguished vertex v, such that there is a
positive cost c¢(w) associated with each vertex w. The cost of a directed path
k

V, X1, X3, ..., X, U is defined as Y ¢(x;). The costs of the two endpoints v and u are ignored,
i=1

so if (v, u) € E, the cost of getting from v to u is 0. Design an efficient algorithm to find the

minimal-cost paths from v to all other vertices. (This exercise is identical to Exercise 7.47,

but here we insist on a solution by reduction.)

An even more general formulation of linear programming than the one given in Section 10.3
allows two types of inequality constraints: The first type imposes the *‘<"’ relations, and the
second type imposes the ‘‘>’’ relations (of course, with different coefficients). Show that
this formulation can be reduced to the one in Section 10.3.

Suppose that you have a linear programming algorithm that can only handle nonnegative
variables. (Recall that in our definition of linear programming not all variables were
restricted to be nonnegative.) Show how to reduce the general problem to this one.

Show, by exhibiting a bad example, that constraints of the type a -Xx # b should not be
allowed in a linear programming formulation.

Suppose that there are n people in a scientific conference whose goal is to maximize
exchange of ideas. Not everyone can exchange ideas with everyone else. We represent the
conference by an undirected graph, with the vertices associated with the people such that i is
connected to j if i can exchange ideas with j. (One can also define a directed version.)
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Suppose further that the number of hours for talking is limited. For simplicity, we assume
that there is one global bound of 4 hours. That is, every person can spend at most 4 hours
talking. We are not concerned here with scheduling. We assume that time is also spent on
other activities, so there is sufficient flexibility to arrange any possible meeting. For
example, suppose that there are three people, each *‘connected’’ to the others, and let A =1.
If two of them talk to each other for the whole hour, then there is only 1 hour of
conversation. If, on the other hand, each one talks to each other for half an hour, then
everyone exhausts his or her time and there is 1.5 hours of conversation. We want to
maximize the total conversation time. Formulate this problem in terms of linear
programming, or reduce it to another problem that we have already discussed.

Consider again the philanthropist problem of Section 10.3.2. Suppose that there are no
limits on the amount of money each department is willing to accept. Solve this variation of
the problem.

Consider the problem of arranging n players in an order consistent with the results of a
round-robin competition (Exercise 7.104). Prove a lower bound of Q(nlogn) for this
problem by reducing sorting to it. Show that a reduction to sorting can also be helpful in
finding a good algorithm for this problem.

Let S be a set of n points that are vertices of an arbitrary convex polygon. The points are
given in an arbitrary order. Prove that it takes Q(n log n) time to arrange the points into the
standard polygon representation (i.e., in consecutive order).

We have seen in Section 9.5.2 that 7 multiplications (instead of the nominal 8) are sufficient
to compute the product of two arbitrary 2 X2 matrices, and that this fact leads to a better
matrix multiplication algorithm. It is possible to compute the square of an 2 x 2 real matrix
with only 5 multiplications (Exercise 9.21). Discuss why this observation does not
contradict Theorem 10.4.

A lower triangular matrix is a square matrix (a;;) such that, if j >, then ;=0 (in other
words, all nonzero entries are on or below the main diagonal). An upper triangular
matrix is defined similarly, except that the nonzero entries are on or above the main
diagonal. Prove that, if there exists an algorithm to multiply an n xn lower triangular
matrix by an n X n upper triangular matrix, whose running time is O (T (n)), then there exists
an algorithm to multiply two arbitrary n x n matrices whose running time is O (T (n)+n?).
You can assume that T (¢n)=0 (T (n)) for any constant c.

Prove that if there exists an algorithm to multiply two n X n lower triangular matrices whose
running time is O (T (n)), then there exists an algorithm to multiply two arbitrary n xn
matrices whose running time is O (T (n)+n2). You can assume that T (cn)=0 (T (n)) for
any constant ¢.

10.23 The transitive closure A* of an n X n matrix A is defined as follows:

A'=1+A+A%+ - +A",
where [ is the n x n identity matrix.

a. Prove that, if A is a Boolean matrix corresponding to an adjacency matrix of a graph,
then A" corresponds to the adjacency matrix of the transitive closure of the graph.
(Assume that multiplication is performed according to the Boolean rules.)
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b. Prove that, if the transitive closure can be computed in time T (n), where T(n) is a
polynomial in », then matrix multiplication can be computed in time O (T (n)). You can
assume that T (¢n)=0 (T (n)) for any constant c.

10.24 Let S be a set of n points in the plane. The points define a weighted undirected graph in the
- following way. The graph is the complete graph (i.e., every two vertices are connected),
and the weight of an edge is equal to the Euclidean distance between the two corresponding
points. Show a lower bound of Q(n logn) for the running time of an MCST algorithm for

this case.

*10.25 Let S be a set of points in the plane. The diameter of S is the maximal distance between
two points in S. Denote the problem of finding the diameter by DM. Let A and B be two
sets of n real numbers. Denote the problem of deciding whether A and B are disjoint by DJ.
Prove that, if there exists an algorithm for DM that uses O (T (n)) arithmetic operations (you
can assume any reasonable operations), then there exists an algorithm for DJ that uses
O (T (n)+n) operations.



CHAPTER 11

NP-COMPLETENESS

Give me where to stand, and I will move the earth.
Archimedes (287-212 B.C.)

11.1 Introduction

This chapter is quite different from other chapters. In the previous chapters, we mainly
studied techniques for solving algorithmic problems and applied them to specific
problems. It would be nice if all problems had elegant efficient algorithms that can be
discovered by a small set of techniques. But life is rarely that simple. There are still
many problems that do not seem to succumb to the techniques that we have learned so
far. It is possible that we just have not tried hard enough, but we strongly suspect that
there are problems that have no good general efficient solutions. In this chapter, we
describe techniques for identifying some of these problems.

The running times of most of the algorithms that we have seen so far were bounded
by some polynomial in the size of the input. We call such algorithms efficient algorithms,
and call the corresponding problems tractable problems. In other words, we say that an
algorithm is efficient if its running time is O (P (n)), where P (n) is a polynomial in the
size of the input n. Recall that the size of the input is defined as the number of bits
required to represent that input. The class of all problems that can be solved by efficient
algorithms is denoted by P (for polynomial time). This may seem to be a strange
definition. Surely, algorithms that run in time O (n'®) are not efficient by any standard
(for that matter, algorithms that run in time 107 are not efficient, even though they are
linear). Nevertheless, this definition is valid for two reasons. First, it allows the
development of the theory, which we are about to explore; second, and most important,
it simply works in practice. It turns out that the vast majority of the tractable problems
have practical solutions (of course, some are better than others). In other words, the
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running times of polynomial algorithms that we encounter in practice are mostly small-
degree polynomials (seldom above quadratic). The opposite is also usually true:
Algorithms whose running times are larger than any polynomial are not usually practical
for large inputs.

There are many problems for which no polynomial-time algorithm is known.
Some of these problems may be solved by efficient algorithms that are yet to be
discovered. We strongly suspect, however, that many problems cannot be solved
efficiently. We would like to be able to identify such problems, so that we do not have to
spend time searching for a nonexistent algorithm. In this chapter, we discuss how to deal
with problems that are not known to be in P. In particular, we discuss one special class
of problems, called NP-complete problems. We can group these problems in one class
because they are all equivalent in a strong sense — there exists an efficient algorithm for
any one NP-complete problem if and only if there exist efficient algorithms for all NP-
complete problems. There is a general belief that there is no efficient algorithm for any
NP-complete problem, but no proof of that belief is known. Even if there were efficient
algorithms for NP-complete problems, they would surely be very complicated, since they
have eluded researchers for many years. So far, hundreds (maybe even thousands) of
problems have been found to be NP-complete, which is why this subject is so important.

The chapter consists of two parts. First, we define the class of NP-complete
problems and show how to prove that a problem belongs to the class. Then, we present
several techniques and examples for solving NP-complete problems approximately.
These solutions may not be optimal, and they may not always work, but they are better
than nothing.

11.2 Polynomial-Time Reductions

We will restrict ourselves in this section to decision problems; that is, we consider only
those problems whose answer is either yes or no. This restriction makes the discussion
and the theory simpler. Most problems can be easily converted to decision problems.
For example, instead of looking for the size of the maximum matching in a given graph,
we can ask whether there exists a matching of size > k. If we know how to solve the
decision problem, we can usually solve the original problem — for example, by binary
search.

A decision problem can be viewed as a language-recognition problem. Let U be
the set of all possible inputs to the decision problem. Let L S U be the set of all inputs
for which the answer to the problem is yes. We call L the language corresponding to the
problem, and we use the terms problem and language interchangeably. The decision
problem is to recognize whether or not a given input belongs to L. We now introduce the
notion of polynomial-time reduction between languages, which is the main tool we use in
this chapter.

Definition: Let L, and L, be two languages from the input spaces U, and
U,. We say that L, is polynomially reducible to L, if there exists a
polynomial-time algorithm that converts each input u, € U, to another
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input u; € U, such that u, € L, if and only if u, € L,. The algorithm is
polynomial in the size of the input #,. We assume that the notion of size is
well defined in the input spaces U and U ,, so, in particular, the size of u,
is also polynomial in the size of u .

The algorithm mentioned in the definition converts one problem to another. If we have
an algorithm for L ,, then we can compose the two algorithms to produce an algorithm for
L,. Denote the conversion algorithm by AC, and denote the algorithm for L, by AL,.
Given an arbitrary input u, € U we can use AC to convert & to an input u, € U,; we
then use AL, to determine whether u, belongs to L,, which will tell us whether u
belongs to L. In particular, we have the following theorem.

0O Theorem 11.1

If L, is polynomially reducible to L, and there is a polynomial-time
algorithm for L, then there is a polynomial time algorithm for L .

Proof: The proof follows from the preceding discussion. O

The notion of reducibility is not symmetric; the fact that L, is polynomially
reducible to L, does not imply that L, is polynomially reducible to L. This asymmetry
comes from the fact that the definition of reducibility requires that any input of L, can be
converted to an equivalent input of L,, but not vice versa. It is possible, and in many
cases likely, that the inputs of L, involved in the reduction are only a small fraction of all
possible inputs for L,. Thus, if L is polynomially reducible to L,, then we regard L, to
be the harder problem.

Two languages L and L, are polynomially equivalent, or simply equivalent, if
each is polynomially reducible to the other. In particular, all nontrivial tractable
problems are equivalent because all have polynomial-time algorithms (we leave the
precise proof of this fact as an exercise). The relation of ‘‘polynomial reducibility’’ is
transitive, as is shown in the next theorem.

O Theorem 11.2

If L, is polynomially reducible to L, and L, is polynomially reducible to
L5, then L is polynomially reducible to L.

Proof: We can compose the two conversion algorithms to form a conversion
algorithm from L to L5. An input 4, in L; will be converted first to an input u; in L,
and then to an input u5 in L. Since we use polynomial reductions and a composition of
two polynomial functions is still a polynomial function, the result is a polynomial-time
conversion algorithm. (This is one of the reasons we chose to use polynomials.) O

The essence of the method we present in this chapter is to look for equivalent problems
when an efficient algorithm cannot be found. When we are given a problem that we
cannot solve efficiently, we try to find whether it is equivalent to other problems that are
known to be hard. The class of NP-complete problems encompasses hundreds of such
equivalent problems.
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11.3 Nondeterminism and Cook’s Theorem

The theory of NP-completeness started with a remarkable theorem of Cook [1971].
Before we state the theorem, we must explain several notions. We will try to keep the
discussion intuitive and will skip several technical details. An excellent reference book
for this area is Garey and Johnson [1979]. The theory of NP-completeness is part of a
large theory, called computational complexity, most of which is beyond the scope of
this book. We limit the discussion to some parts that help us to use the theory.

We have not gone into great detail describing in precise mathematical terms what
an algorithm is. This is not important for describing practical algorithms, as long as we
use reasonable steps that are supported by all computers (e.g., additions, comparisons,
memory accesses). A precise definition of an algorithm is very important, however, for
proving lower bounds. (We have used decision trees to prove lower bounds in Chapter 6,
but this is a very restricted model.) The most fundamental model of computation is a
Turing machine. Another commonly used model is that of a random access machine.
Fortunately, these and other reasonable models are equivalent for our purposes, because
we can transform an algorithm from one model to another without changing the running
time by more than a polynomial factor. Cook’s theorem, for example, was proved with
the use of Turing machines, but it is valid for other models as well. We will not use any
specific model here, since we will not go into any details that require one.

We first need to discuss the notion of nondeterminism. This notion is rather non-
intuitive, which leads many people to think that NP-completeness is something of a
mystery. One should think of a nondeterministic algorithm as an abstract notion, and not
as a realistic goal. Nondeterminism is more important to the development of the theory
and the explanation of the existence of this class than it is to the techniques for using the
theory. A nondeterministic algorithm has, in addition to all the regular operations of a
deterministic algorithm, a very powerful primitive, which we will call nd-choice. As the
name suggests, the nd-choice primitive is used to handle choices, but it does so in an
unusual way. This primitive is associated with a fixed number of choices, such that, for
each choice, the algorithm follows a different computation path. We can assume,
without loss of generality, that the number of choices is always two. Let L be a language
that we want to recognize. Given an input x, a nondeterministic algorithm performs
regular deterministic steps interleaved with uses of the nd —choice primitive, and, at the
end, it decides whether or not to accept x. The key difference between deterministic and
nondeterministic algorithms lies in the way they recognize a language.

We say that the nondeterministic algorithm recognizes a language L if the
following condition is satisfied:

Given an input x, it is possible to convert each nd—choice encountered
during the execution of the algorithm into a real choice such that the
outcome of the algorithm will be to accept x, if and only if x € L.

In other words, the algorithm must provide at least one possible way for inputs belonging
to L to arrive at an accept outcome, and it must not provide any way for inputs not
belonging to L to arrive at an accept outcome. Notice the asymmetry in the definition.
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An input x€ L may have many paths to a reject outcome. We require only that the
algorithm has at least one ‘‘good’’ sequence of choices for every x € L. On the other
hand, for every input x ¢ L, we must reach a reject outcome, no matter which choices we
substitute for the nd —choices. The nd—choice primitive is sometimes called guessing for
obvious reasons. The running time for an input x € L is the length of a minimum
execution sequence that leads to an accept outcome. The running time of a
nondeterministic algorithm refers to worst-case running time for inputs x € L (inputs not
belonging to L are ignored).

Let’s see an example of a nondeterministic algorithm. Consider the problem of
deciding whether a given graph G =(V, E) has a perfect matching. The following is a
nondeterministic algorithm for this problem. We maintain a set M of edges, which is
initially empty. We examine all the edges of G, one edge e at a time, and use an
nd—choice corresponding to whether or not we include e in M. When we are done
examining all the edges, we check to see whether M is a perfect matching. The checking
can be done in linear time, since we have to determine only whether M contains exactly
| V | /2 edges and whether each vertex is incident to exactly one edge from M. The output
of the algorithm is yes if M is a perfect matching, and no otherwise. This is a correct
nondeterministic algorithm for perfect matching because (1) if a perfect matching exists,
then there is a sequence of choices that will put it in M; and (2) the algorithm outputs yes
only if the existence of a perfect matching was proved (because of the checking). We
will see more examples of nondeterministic algorithms in the next section.

Nondeterministic algorithms are very powerful, but their power is not unlimited.
Not all problems can be solved efficiently by a nondeterministic algorithm. For example,
suppose that the problem is to determine whether the maximum matching in a given
graph is of size exactly k. We can use the nondeterministic matching algorithm to find a
matching of size k if it exists, but we cannot easily determine (even nondeterministically)
that there is no matching of a larger size.

The class of problems for which there exists a nondeterministic algorithm whose
running time is a polynomial in the size of the input is called NP. It seems reasonable to
believe that nondeterministic algorithms are much more powerful than deterministic
algorithms. But are they? One way to prove that they are is to exhibit an NP problem
that is not in P. Nobody has been able to do that yet. In contrast, if we want to prove that
the two classes are equal (i.e., P = NP), then we have to show that every problem that
belongs to NP can be solved by a polynomial-time deterministic algorithm. Nobody has
proved that either (and few believe it to be true). The problem of determining the
relation between P and NP is known as the P = NP problem.

We now define two classes, which not only contain numerous important problems
(all equivalent to one another) that are not known to be in P, but also contain the hardest
problems in NP.

Definition: A problem X is called an NP-hard problem if every problem in
NP is polynomially reducible to X.

Definition: A problem X is called an NP-complete problem if (1) X
belongs to NP, and (2) X is NP-hard.
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The definition of NP-hardness implies that, if any NP-hard problem is ever proved to
belong to P, then that proof would imply that P = NP.

Cook [1971] proved that there exist NP-complete problems; in particular, he
exhibited one such problem, which we will describe shortly. Once we have found an
NP-complete problem, proving that other problems are also NP-complete becomes
easier. Given a new problem Y, it is sufficient to prove that Cook’s problem, or any other
NP-complete problem, is polynomially reducible to Y. This follows from the next

lemma.
0O Lemma 11.3

A problem X is an NP-complete problem if (1) X belongs to NP, and (2') Y
is polynomially reducible to X, for some problem Y that is NP-complete.

Proof: By condition 2 in the definition of NP-completeness, every problem in NP
is polynomially reducible to Y. But since Y is polynomially reducible to X and
reducibility is a transitive relation, every problem in NP is polynomially reducible to X as
well. a

It is much easier to prove that two problems are polynomially reducible than it is to prove
condition 2 directly. Thus, Cook has found the anchor for the whole theory. And there is
more good news. As we find more and more problems that are NP-complete we have
more choices for proving condition 2’. Shortly after Cook’s result became known, Karp
[1972] found 24 important problems that he proved to be NP-complete. Since that time,
hundreds of problems (maybe even thousands, depending on how we count variations of
the same problem) have been discovered to be NP-complete. In the next section, we
present five examples of NP-complete problems with their NP-completeness proof. We
also list several other NP-complete problems without proof. The most difficult part of
such proofs is usually (but not always) to verify condition 2 (or 2).

We now describe the problem that Cook proved to be NP-complete, and mention
the idea of the proof. The problem is known as satisfiability (SAT). Let S be a Boolean
expression in conjunctive normal form (CNF). That is, S is the product (and) of
several sums (or). For example, S =(x+y +2z)*(x +y +z)* (x +y +2), where addition and
multiplication correspond to the and and or Boolean operations, and each variable is
either O (false) or 1 (true). (Any Boolean expression can be transformed into CNF.) A
Boolean expression is said to be satisfiable if there exists an assignment of Os and 1s to
its variables such that the value of the expression is 1. The SAT problem is to determine
whether a given expression is satisfiable (without necessarily finding a satisfying
assignment). For example, the expression S is satisfiable, since the assignment x=1,
y=1, and z=0 satisfy it. We call an assignment of Os and s to the variables of a
Boolean expression a truth assignment.

The SAT problem is in NP because we can guess a truth assignment and check that
it satisfies the expression in polynomial time. The idea behind the proof that SAT is NP-
hard is that a Turing machine (even a nondeterministic one) and all of its operations on a
given input can be described by a Boolean expression. By ‘‘described’’ we mean that the
expression will be satisfiable if and only if the Turing machine will terminate at an
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accepting state for the given input. This is not easy to do, and such an expression
becomes quite large and complicated, yet its size is no more than a polynomial in the
number of steps the Turing machine makes. Therefore, any NP algorithm can be
described by an instance of a SAT problem.

O Cook’s theorem:
The SAT problem is NP-complete. O

11.4 Examples of NP-Completeness Proofs

In this section, we prove that the following five problems are NP-complete: vertex cover,
dominating set, 3SAT, 3-coloring, and clique. Each of these problems is described in
more detail below. The techniques we use for proving NP-completeness are typical, and
they are summarized at the end of the section. To prove NP-completeness of a new
problem, we must first prove that the problem belongs to NP, which is usually (but not
always!) easy, then reduce a known NP-complete problem to our problem in polynomial
time. The reduction order used for the five problems in this section is illustrated in Fig.
11.1. To make them easier to understand, we present the proofs in order of difficulty
rather than the tree order. This order is indicated in Fig. 11.1 by the numbers of the
edges.

SAT
4 3
Clique 3SAT
1 S
Vertex -
Cover 3-Colorability
2
Dominating
Set

Figure 11.1 The order of NP-completeness proofs in the text.
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11.4.1 Vertex Cover

Let G =(V, E) be an undirected graph. A vertex cover of G is a set of vertices such that
every edge in G is incident to at least one of these vertices.

The Problem Given an undirected graph G =(V, E) and an integer
k, determine whether G has a vertex cover containing < k vertices.

O Theorem 11.4
The vertex-cover problem is NP-complete.

Proof: The vertex-cover problem belongs to NP, since we can guess a cover of
size <k and check it easily in polynomial time. To prove that the vertex-cover problem is
NP-complete we have to reduce an NP-complete problem to it. We choose the clique
problem, which is described next (the proof that the clique problem is NP-complete will
be given in Section 11.4.4). Given an undirected graph G=(V, E), a clique C in G is a
subgraph of G such that all vertices in C are connected to all other vertices in C. In other
words, a clique is a complete subgraph. The clique problem is to determine, given a
graph G and an integer k, whether G contains a clique of size 2 k. We have to transform
an arbitrary instance of the clique problem into an instance of the vertex-cover problem
such that the answer to the clique problem is positive if and only if the answer to the
corresponding vertex-cover problem is positive. Let G=(V, E) and k represent an
arbitrary instance of the clique problem. Let G =(V, E) be the complement graph of G;
namely, G has the same set of vertices and two vertices are connected in G if and only if
they are not connected in G. We claim that the clique problem is reduced to the vertex-
cover problem represented by the graph G and n — k (where n is the number of vertices in
G). Suppose that C =(U, F) is a clique in G. The set of vertices V —U covers all the
edges of G, because in G there are no edges connecting vertices in U (they are all in G).
Thus, V- U is a vertex cover in G. Therefore, if G has a clique of size k, then G has a
vertex cover of size n—k. Conversely, let D be a vertex cover in G. Then, D covers all
the edges in G, 50 in G there could be no edges connecting vertices in V —D. Thus, V-D
generates a clique in G. Therefore, if there is a vertex cover of size k in G, then there is a
clique of size n -k in G. This reduction can obviously be performed in polynomial time,
since it requires only the construction of G’ from G (and the computation of n —k). O

11.4.2 Dominating Set

Let G =(V, E) be an undirected graph. A dominating set D is a set of vertices in G such
that every vertex of G is either in D or is adjacent to at least one vertex from D.
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The Problem Given an undirected graph G =(V, E) and an integer
k, determine whether G has a dominating set containing < k vertices.

0O Theorem 11.5
The dominating-set problem is NP-complete.

Proof: The dominating-set problem belongs to NP since we can guess a set of size
<k and check that it is a dominating set easily in polynomial time. We reduce the
vertex-cover problem to the dominating-set problem. Given an arbitrary instance (G, k)
of the vertex-cover problem, our goal is to construct a new graph G’ that has a
dominating set of a certain size if and only if G has a vertex cover of size <k. We start
with G, and add |E | new vertices and 2|E | new edges to it in the following way (see
Fig. 11.2). For each edge (v, w) of G, we add a new vertex vw and two new edges
(v, vw) and (w, vw). In other words, we transform every edge into a triangle. Denote the
new graph by G’. Itis easy to construct G’ in polynomial time.

We now claim that G’ has a dominating set of size m if and only if G has a vertex
cover of size m. Let D be a dominating set of G’. If D contains any of the new vertices
vw, then it can be replaced by either v or w and the set will still be a dominating set (both
v and w cover all the vertices that vw covers). So, without loss of generality, we can
assume that D contains only vertices from G. But, since D dominates all the new
vertices, it must contain at least one vertex from each original edge; hence, it is also a
vertex cover for G. Conversely, if C is a vertex cover for G, then each edge is covered
by C, so all the new vertices are dominated. The old vertices are also dominated since all

the edges are covered. 0O
w
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Figure 11.2 The dominating-set reduction.



350 NP-Completeness

11.4.3 3SAT

The 3SAT problem is a simplification of the regular SAT problem. An instance of 3SAT
is a Boolean expression in which each clause contains exactly three variables.

The Problem Given a Boolean expression in CNF such that each
clause contains exactly three variables, determine whether it is
satisfiable.

0O Theorem 11.6
3SAT is NP-complete.

Proof: This problem seems easier than the regular SAT problem because there is
the additional requirement of three variables per clause. We will show that a solution to
3SAT can be used to solve the regular SAT. First, 3SAT clearly belongs to NP. We can
guess a truth assignment and verify that it satisfies the expression in polynomial time.
Let E be an arbitrary instance of SAT. We will replace each clause of E with several
clauses, each of which has exactly three variables. Let C=(x;+x,+ - -- +x;) be an
arbitrary clause of E such that k >4. We write each variable in its ‘‘positive’’ form (i.e.,
we do not use ;,-) only for convenience of notation. We now show how to replace C with
several clauses, each with three variables. The idea is to introduce new variables
Y1,Y2+ ---Yr-3 that transform the clause into a 3SAT formulation without affecting its
satisfiability. We use new (and different) variables for each clause. C is transformed
into C’ such that

C'=(x +x3+y 1) (X3 +y +Y2) (g +y2+y3) -+ (g X +Y3)-

We claim that C” is satisfiable if and only if C is satisfiable. If C is satisfiable, then one of
the x;s must be set to 1. In that case, we can set the values of the y;s in C’ such that all
clauses in C” are satisfied as well. For example, if x3 =1, then we set y, =1 (which takes
care of the first clause), y, =0 (the second clause is okay since x3 =1), and the rest of the
yis t0 0. In general, if x;=1, then we set y,, y, ..., ¥j_» to be 1, and the rest to be 0,
which satisfies C’. Conversely, if C’ is satisfiable, then we claim that at least one of the
X;s  must be l_ Indeed, if all x;s are 0, then the expression becomes
O @1+y2) a+ys) - _(yk__3). This expression is clearly unsatisfiable.

Using this reduction, we can replace any clause that has more than three variables
with several clauses, each with exactly three variables. It remains to transform clauses
with one or two variables. If C has only two variables, namely, C = (x| +x7), then

C'=(x|+x, +2) (x| +x,+72),
where z is a new variable. Finally, if C =x, then
C'=(x+y+z) (X +y+2) (x| +y +2) - (x, +y +2),

where both y and z are new variables.
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Thus, we have reduced a general instance of SAT into an instance of 3SAT such
that one instance is satisfiable if and only if the other one is. The reduction can clearly be
done in polynomial time. O

11.4.4 Clique

The clique problem was defined in Section 11.4.1, when we discussed the vertex-cover
problem.

The Problem Given an undirected graph G =(V, E) and an integer
k, determine whether G contains a clique of size 2 k.

O Theorem 11.7
The clique problem is NP-complete.

Proof: The clique problem belongs to NP since we can guess a subset of >k
vertices and check that it is a clique in polynomial time. We reduce SAT to the clique
problem. Let E be an arbitrary Boolean expression in CNF, E=E-E, - E,.
Consider the clause E;=(x+y+z+w) (we use four variables only for illustration
purposes). We associate a ‘‘column’’ of four vertices with the variables in E; even if
they also appear in other clauses. That is, the graph G will have a vertex for each
appearance of each variable. The question is how to connect these vertices such that G
contains a clique of size 2k if and only if E is satisfiable. Notice that we are free to
choose the value of k because we want to reduce SAT to the clique problem, which
means that we want to solve SAT using a solution of the clique problem. A solution of
the clique problem should work for every value of k. This is an important flexibility that
is used often in NP-completeness proofs. We will choose & to be equal to the number of
clauses m.

The edges of G are as follows. Vertices from the same column (i.e., vertices
associated with variables of the same clause) are not connected. Vertices from different
columns are almost always connected unless they correspond to the same variable
appearing in complementary form. That is, the only time we do not connect two vertices
from different clauses is when one corresponds to a variable x and the other to x. An
example, which corresponds to the expression E =(x+y+2)-(x+y+z)-(y+2), is
presented in Fig. 11.3. G can clearly be constructed in polynomial time.

We now claim that G has a clique of size >m if and only if E is satisfiable. In fact,
the construction guarantees that the maximal clique size does not exceed m independent
of E. Assume that E is satisfiable. Then, there exists a truth assignment such that each
clause contains at least one variable whose value is 1. We will choose the vertex
corresponding to this variable for the clique. (If more than one variable in a clause is set
to 1, we choose one arbitrarily.) The result is indeed a clique, since the only time two
vertices from different columns are not connected is when they are the complement of
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Figure 11.3 An example of the clique reduction for the expression
(x+y+2) (x+y+2) - (y+2).

each other, which of course cannot happen in a consistent truth assignment. Conversely,
assume that G contains a clique of size 2m. The clique must contain exactly one vertex
from each column (since two vertices from the same column are never connected). We
assign the corresponding variables a value of 1. If any variables are not assigned in this
manner, they can be assigned arbitrarily. Since all the vertices in the clique are
connected to one another, and we made sure that x and x are never connected, this truth
assignment is consistent. O

11.4.5 3-Coloring

Let G =(V, E) be an undirected graph. A valid coloring of G is an assignment of colors
to the vertices such that each vertex is assigned one color and no two adjacent vertices
have the same color.

The Problem Given an undirected graph G =(V, E), determine
whether G can be colored with three colors.

O Theorem 11.8
3-coloring is NP-complete.

Proof: The 3-coloring problem belongs to NP since we can guess a 3-coloring and
check that it is a valid coloring easily in polynomial time. We reduce 3SAT to the 3-
coloring problem. This is a more complicated proof for two reasons. First, the two
problems deal with different objects (Boolean expressions versus graphs). Second, we
cannot just replace one object (e.g., vertex, edge) with another (e.g., clause); we have to
deal with the whole structure. The idea is to use building blocks and then to tie them
together. Let E be an arbitrary instance of 3SAT. We have to construct a graph G such
that E is satisfiable if and only if G can be 3-colored. First, we build the main triangle M.
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Since M is a triangle, it requires at least three colors. We label M with the ‘‘colors’’ T
(for true), F (for false), and A (see the bottom triangle in Fig. 11.4). These colors are
used only for the proof; they are not part of the graph. We will later associate these
colors with the assignment of truth values to the variables of E. For each variable x, we
build another triangle M, whose vertices are labeled x, X, and A, where A is the same
vertex in M. So, if there are k variables, we will have k +1 triangles, all sharing one
common vertex A (see Fig. 11.4). The idea is that, if x is colored with the color 7, then X
must be colored with F (since they are both connected to A), and vice versa. "This is
consistent with the meaning of x.

We now have to impose the condition that at least one variable in each clause has
value 1. We do that with the following construct. Assume that the clause is (x +y +2).
We introduce six new vertices and connect them to the existing vertices, as shown in Fig
11.5. (The labels are consistent, so that there is only one vertex in the whole graph
labeled T, and one vertex for each x, y, or z.) Let’s call the three new vertices connected
to T and x, y, or z the outer vertices (they are labeled by O in the figure), and the three
new vertices in the triangle the inner vertices (labeled by [ in the figure). We claim that
this construct guarantees that, if no more than 3 colors are used, then at least one of x, y,
or z must be colored 7. None of them can be colored A, since they are all connected to A
(see Fig. 11.4). If all are colored F, then the three new vertices connected to them must
be colored A, but then the inner triangle cannot be colored with three colors! The
complete graph corresponding to the expression (x+y+7)-(x+y+z) is given in Fig.
11.6.

We can now complete the proof. We have to prove two sides: (1) if E is
satisfiable, then G can be colored with three colors; and (2) if G can be colored with three
colors, then E is satisfiable. If E is satisfiable then there is a satisfiable truth assignment.
We color the vertices associated with the variables according to this truth assignment (T
if x=1, and F otherwise). M is colored with T, F, and A as indicated. Each clause must
have at least one variable whose value is 1. Hence, we can color the corresponding outer
vertex with F, the rest of the outer vertices with A, and the inner triangle accordingly.
Thus, G can be colored with three colors. Conversely, if G can be colored with three

x X

T F

Figure 11.4 The first part of the construction in the reduction of 3SAT to 3-coloring.
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Figure 11.5 The subgraphs corresponding to the clauses in the reduction of 3SAT to 3-
coloring.

\"\i A

Figure 11.6 The graph corresponding to (x +y +7) - (x +y +2).

colors, we name the colors according to the coloring of M (which must be colored with
three colors). Because of the triangles in Fig. 11.4, the colors of the variables correspond
to a consistent truth assignment. The construct in Fig. 11.6 guarantees that at least one
variable in each clause is colored with T. Finally, G can clearly be constructed in
polynomial time, which completes the proof. Od



11.4 Examples of NP-Completeness Proofs 355

11.4.6 General Observations

We discuss here briefly some general methods for proving that a problem Q is NP-
complete. The first condition — showing that Q belongs to NP — is usually easy (but
not always). Then, we have to select a known NP-complete problem that seems related
or similar to Q. It is hard to define this ‘‘similarity’’ goal, since sometimes the problems
look very different (e.g., the clique problem and SAT). Finding the right problem from
which to reduce is sometimes a difficult task, which can be learned only by experience.
It is a good idea to try several reductions with several problems until a successful one is
found.

We stress that the reduction is done from an arbitrary instance of the known NP-
complete problem to Q. The most common error in such proofs is to perform the
reduction backward. One way to remember the right order is to ensure that the NP-
complete problem can be solved by a black-box algorithm for Q. This is a little
counterintuitive. The natural thing to do when given a problem Q is to try solve it. Here,
however, we try to show that we can solve another problem (the NP-complete problem)
using the solution of Q. We are not trying to solve Q!

There are several degrees of freedom that can be used in the reduction. For
example, if Q includes a parameter, then its value can be set in any convenient way. (In
contrast with the parameter in the problem that is reduced to Q, which cannot be fixed!)
Again, Q is just a tool to solve the NP-complete problem; therefore, we can use it in any
way we wish. Q can be restricted to special cases in other ways, besides fixing its
parameter. For example, we may want to use only a certain types of input (e.g., regular
graphs, biconnected graphs) for 0. Another important flexibility we have is the fact that
the efficiency of the reduction is unimportant, as long as the reduction can be done in
polynomial time. We can ignore not only constants and, for example, double the size of
the problem, but we can also square the size of the problem! We can introduce
polynomially many new variables, we can replace each vertex in a graph by a new large
graph, and so on. There is no need to be efficient (within the bounds of a polynomial),
since the reduction is not meant to be converted into an algorithm (at least not until P is
found to be equal to NP, if ever).

There are some common techniques used in the construction of the reductions
(again, Garey and Johnson [1979] provides many examples). The simplest one is
showing that an NP-complete problem is a special case of Q. If it is, then the proof is
immediate, since solving Q implies solving the NP-complete problem. For example,
consider the set-cover problem. The input to the problem is a collection of subsets
S$.,8,,..,5, of aset U, and an integer k. The problem is to determine whether there
exists a subset W S U, with at most £ elements, which contains at least one element from
each set S;. We can see that the vertex-cover problem is a special case of the set-cover
problem in which U corresponds to the set of vertices V, and each set S; corresponds to
an edge and contains the two vertices incident to that edge. Thus, if we can solve the
set-cover problem for arbitrary sets, then we can solve the vertex-cover problem.

We must be very careful, however, when using this approach. It is not true, in
general, that adding more requirements to a problem makes that problem more difficult.
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Consider the vertex-cover problem. Suppose that we add a constraint that the vertex
cover must not include two adjacent vertices. In other words, we are looking for a small
set of vertices that forms a vertex cover and an independent set at the same time. (An
independent set is a set of vertices that are not adjacent to one another.) This problem
seems more difficult than either the vertex-cover or the independent-set problem, because
we have to worry about more requirements. In fact, however, this problem is an easier
problem, and it can be solved in polynomial time (Exercise 7.115). It turns out that the
extra requirements limit the candidate sets to such an extent that the minimum can be
found easily.

Another relatively easy technique involves local reductions. In this case, an
object in one problem is mapped into an object of the other problem. The mapping is
done in a local manner, independently of the other objects. The NP-completeness proof
of the dominating set problem followed that pattern. We replaced each edge in one graph
by a triangle in the other graph. These local replacements were sufficient to reduce the
problem. The difficulty in this technique is to define the objects in the best way.

The most complicated technique is to use building blocks as we did, for example,
in the NP-completeness proof of the 3-coloring problem. The blocks usually depend on
one another, and designing each one separately is impossible. We have to consider all
the objectives of the problems in order to coordinate the design of the different blocks.

11.4.7 More NP-Complete Problems

The following list contains some more NP-complete problems that are useful as a basis
for other reductions (e.g., the ones in the exercises). A very large list is given in Garey
and Johnson [1979]. Finding the right problem for the reduction is sometimes more than
half the work.

Hamiltonian cycle: A Hamiltonian cycle in a graph is a simple cycle that contains
each vertex exactly once. The problem is to determine whether a given graph contains a
Hamiltonian circuit. The problem is NP-complete for both undirected and directed
graphs. (Reduction from vertex cover.)

Traveling salesman: Let G =(V, E) be a weighted complete graph. A traveling-
salesman tour is a Hamiltonian cycle. The problem is to determine, given G and a
number W, whether there exists a traveling-salesman tour such that the total length of its
edges is < W. (Straightforward reduction from Hamiltonian cycle.)

Hamiltonian path: A Hamiltonian path in a graph is a simple open path that
contains each vertex exactly once. The problem is to determine whether a given graph
contains a Hamiltonian path. The problem is NP-complete for both undirected and
directed graphs. (Reduction from vertex cover.)

Independent set: An independent set in an undirected graph G =(V, E) is a set of
vertices no two of which are connected. The problem is to determine, given G and an
integer k, whether G contains an independent set with > k vertices. (Straightforward
reduction from clique.)

3-dimensional matching: Let X, Y, and Z be disjoint sets of size k. Let M be a set
of triples (x, y, z) such that x€ X, y € Y, and z € Z. The problem is to determine whether
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there exists a subset of M that contains each element exactly once. The corresponding
two-dimensional matching problem is the regular bipartite matching problem.
(Reduction from 3SAT.)

Partition: The input is a set X such that each element x € X has an associated size
s(x). The problem is to determine whether it is possible to partition the set into two
subsets with exactly the same total size. (Reduction from 3-dimensional Matching.)

(Notice that this problem, as well as the next problem, can be solved efficiently by
algorithm Knapsack (Section 5.10) if the sizes are all small integers. However, since the
size of the input is the number of bits required to represent that input, such algorithms,
which are called pseudopolynomial algorithms, are exponential in the size of the input.)

Knapsack: The input is a set X such that each element x € X has an associated size
s(x) and value v(x). The problem is to determine whether there is a subset B S X whose
total size is < s and whose total value is 2 v. (Reduction from partition.)

Bin packing: The input is a sequence of numbers a,a,, ...,a,, and two other
numbers b and k. The problem is to determine whether the set can be partitioned into k
subsets such that the sum of numbers in each subset is < b. (Reduction from partition.)

11.5 Techniques for Dealing with NP-Complete
Problems

The notion of NP-completeness is a basis for an elegant theory that allows us to identify
problems for which no polynomial algorithm is likely to exist. But proving that a given
problem is NP-complete does not make the problem go away! We still need to solve it.
The techniques for solving NP-complete problems are sometimes different from the
techniques that we have previously seen. .We (most probably) cannot solve an NP-
complete problem precisely and completely with a polynomial-time algorithm. So, we
have to compromise. The most common compromises concern the optimality,
robustness, guaranteed efficiency, or completeness of the solution. There are other
alternatives as well, all of which sacrifice something. The same algorithm may be used
in different situations, resulting in different compromises.

An algorithm that may not lead to the optimal (or precise) result is called an
approximation algorithm. Of particular interest are approximation algorithms that can
guarantee a bound on the degree of imprecision. We will see three examples of such
algorithms later.

In Section 6.11, we discussed probabilistic algorithms that may make mistakes.
The most famous such algorithms are the ones for primality testing, a problem that is not
known to be in P, but is not believed to be NP-complete either. We will not describe
primality-testing algorithms, because they requires knowledge of number theory. It is
commonly believed that NP-complete problems cannot be solved by a polynomial-time
probabilistic algorithm that make mistakes with low probability for all inputs. Therefore,
such algorithms are more likely to be effective for problems that are not known to be in P
but are not believed to be NP-complete. Such problems are not common. Probabilistic
algorithms can be used as part of other strategies — for example, as part of
approximation algorithms.
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Another compromise involves the requirement for polynomial worst-case running
times. We can try to solve NP-complete problems in polynomial time on the average.
The problem with this approach is defining average. For example, it is difficult to
exclude inputs for which the particular problem is trivial (e.g., a graph with only isolated
vertices) from participating in the average. Such trivial inputs may lower the average
significantly. Algorithms designed for certain types of random inputs can be useful if the
actual distribution of inputs follows their assumption. Finding the right distribution,
however, is usually very difficult. A major difficulty in designing algorithms that work
well on the average is analyzing them, which is usually very complicated.

Finally, we can also compromise on the completeness of the algorithms; namely,
we can allow the algorithm to work efficiently for only some special inputs. For
example, the vertex-cover problem can be solved in polynomial time for bipartite graphs
(Exercise 7.110). Therefore, when we abstract a problem from a real-life situation we
should make sure that any extra condition involving the input is included in the abstract
definition. Another example is algorithms whose running times are exponential, but they
work reasonably well for small inputs, which may be sufficient.

We describe several of these techniques and illustrate them with examples in this
section. We start with two general and useful techniques called backtracking and
branch-and-bound. These techniques are similar. They can be used as a basis for either
an approximation algorithm or an optimal algorithm for small inputs. We then give
several examples of approximation algorithms.

11.5.1 Backtracking and Branch-and-Bound

We describe these techniques through an example. Consider the 3-coloring problem,
which involves assigning colors, under certain constraints, to n vertices of a graph. This
is an example of a problem that requires finding optimal values (colors in this case) for n
parameters. In the 3-coloring example, there are three possible values for each parameter
corresponding to the three colors. Therefore, the number of potential solutions is 3",
which is the number of all possible ways of coloring n vertices with three colors. Of
course, unless there are no edges in the graph, the number of possible valid solutions will
be quite a bit smaller than 3", because the edges impose constraints on the possible
colorings. To explore all possible ways of coloring the vertices, we can start by
assigning an arbitrary color to one of the vertices and continue coloring the other vertices
while maintaining the constraints imposed by the edges — namely, that adjacent vertices
must be colored with different colors. When we color a vertex, we try all possible colors
that are consistent with the previously colored vertices. This process can be performed
by a tree-traversal algorithm, which is the essence of the backtracking and branch-and-
bound techniques. To avoid confusion between the vertices of the graph and the tree, we
will call the vertices of the tree nodes.

The root of the tree corresponds to the initial state of the problem, and each branch
corresponds to a decision concerning one parameter. Denote the three colors by R(ed),
B(lue), and G(reen). Initially, we can pick any two adjacent vertices v and w and color
them, say with B and G. Since they will be colored differently in any valid coloring, it is
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not important which colors we choose (we can always permute the final coloring), which
is why we can start with coloring two vertices instead of one. The coloring of these two
vertices corresponds to the initial state of the problem, which is associated with the root.
The tree is constructed as it is being traversed. At each node ¢ of the tree, we select the
next vertex u of the graph to color, and add one, two, or three children to ¢ according to
the number of colors that can be used to color u. For example, if our first choice (after v
and w) is u, and if u is adjacent to w (which has already been colored G), then there are
two possible ways of coloring u, B or R, and we add two corresponding children to the
root. We then pick one of these children, and continue this process. After a vertex is
colored, there is less flexibility in coloring the rest of the vertices; therefore, the number
of children is likely to be smaller as we go deeper in the tree.

If we manage to color all the vertices of the graph, then we are done. More likely,
however, we will reach a vertex that cannot be colored (since it has three adjacent
vertices already colored with the three colors). At that point, we backtrack — we go up
the tree and explore other children. An example of a graph and the corresponding 3-
coloring backtrack tree is given in Fig. 11.7. Notice that, in this case, once the colors of
vertices 1 and 2 are fixed, there is only one way to color the rest of the graph (which is
found through the rightmost path in the tree).

We can think of this tree-traversal algorithm as an algorithm based on induction.
We have to strengthen the hypothesis slightly to include coloring graphs some of whose
vertices have already been colored. In other words, the induction hypothesis will have to
deal not with coloring graphs from scratch, but with completing a partial 3-coloring:

Induction hypothesis: We know how to complete the 3-coloring of a graph
that has < k vertices that are not already colored, or to determine that the
3-coloring cannot be completed.

1B, 2G
4
3R 3B
3
5 4G 4B 4R 4G
2
SR
1
(a) (b)

Figure 11.7 An example of backtracking for 3-coloring. (a) The graph (b) The back-
track tree.
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Given a graph with k vertices that are not yet colored, we pick one of them and find all
possible colors that can be assigned to it. If all colors have already been used for its
neighbors, then the 3-coloring cannot be completed. Otherwise, we color the vertex with
the possible colors (one at a time) and solve the remaining problems (which now have
k —1 uncolored vertices) by induction. The algorithm is given in Fig. 11.8.

Algorithm 3-coloring (G, var U) ;

Input: G =(V, E) (an undirected graph), and U (a set of vertices that have
already been colored together with their colors). { U is initially empty }

Output: An assignment of one of three colors to each vertex of G.

begin
if U =V then print "coloring is completed”; halt
else
pick a vertex v notin U ;
JorC :=1t3do
if no neighbor of v is colored with color C then
add v to U with color C ;
3-coloring(G, U)
end

Figure 11.8 Algorithm 3-coloring.

It is not hard to come up with a graph and an order of traversal for the 3-coloring
problem that results in a tree with an exponential number of nodes (Exercise 11.34). This
is quite common in backtracking algorithms. Our hope is that, by traversing the tree in a
**good’’ order, we will find the solution early enough. The algorithm we described so far
does not specify how to pick the next vertex. Since any vertex can be chosen next, we
have a degree of freedom that we can use to design heuristics. We will return to this
point shortly.

Branch-and-bound is a variation of backtracking for problems involving finding the
minimum (or maximum) of some objective function. Consider the general coloring
problem — we are now interested in finding the minimum number of colors required to
color the graph rather than just a yes or no answer for 3-coloring. We can build a tree
similar to the one for 3-coloring, but the number of branches may be quite large. Each
new vertex can be colored either by one of the colors already used (unless one of its
neighbors already uses that color), or by a new color. The 3-coloring algorithm is thus
modified in two ways: (1) the constant 3 is replaced by the maximal number of colors
used so far, and (2) the algorithm does not terminate when V = U, since there may be
better ways to color the graph.

The problem is that this algorithm backtracks only when a leaf is reached (i.c.,
V =U), since a new color can always be assigned to the vertex. Thus, the algorithm is
almost guaranteed to have poor performance (unless the graph is very dense). We can
improve the performance of this algorithm by the following observation, which is the
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basis of the branch-and-bound method. Suppose that we traverse the tree all the way to a
leaf and find a valid coloring with k colors. Suppose further that, after backtracking
several steps up the tree, we traverse another path and reach a vertex that requires color
number k +1. At this point, we can backtrack, since we already know a better solution.
Thus, k serves as a bound for backtracking. At each node, we compute a lower bound on
the best solution that can be found farther down the tree. If that lower bound is greater
than a known solution, we backtrack. One key to making a branch-and-bound algorithm
efficient is computing good lower bounds (or upper bounds, if we want to maximize the
objective function). Another key is finding a good traversal order so that good solutions
are found fast, in which case we can backtrack earlier.

We illustrate this idea through the problem of integer linear programming
(which is also mentioned in Section 10.3). The problem is similar to linear programming,
but with the extra constraints that the values of the variables are integers. Let
x=(x,, x,, ..., X,) be the vector of variables; a,, a,, ..., a; be vectors of real numbers,
each of size n; and b, b,, ..., by and ¢, ¢, ..., ¢; be real numbers. The problem is to
maximize the value of the linear objective function

Z=C X +CaXxy+ * +Cp X, (11.1)

under the integrality constraints of x and the following constraints
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(All a_,s and b;s are constants.) Many NP-complete problems can be easily posed as
integer programming problems (we show one example below). Therefore, integer
programming is NP-hard. It is in fact NP-complete, but the proof that it belongs to NP is
quite complicated.

The following is an integer linear programming formulation of the clique problem.
(The problem here is to find the maximal clique, rather than to decide whether a certain
sized clique exists.) There are n variables x, x5, ..., x,, corresponding to the vertices,
such that x; =1 if v; belongs to the maximum clique, and x; =0 otherwise. The objective
function is

Z=X1+Xx+ 0+ Xy,

which implies that we want to select as many vertices as we can. There is one constraint
per vertex

0<x;<1 forall 1<i<n,
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and one constraint for each pair of nonadjacent vertices
x; +x; <1 for each pair of vertices v; and v; such that (v;,v;) ¢ E.

The first set of constraints restrict the variables to either O or 1. The second set of
constraints guarantee that two vertices that are not adjacent cannot both be selected;
therefore, the vertices that are selected form a clique.

Integer linear programming can be solved with branch-and-bound by using the
corresponding linear program (which is the same problem without the restriction to
integers) to compute the bounds. The solution of the linear program may consist of only
integers, in which case we are done. More likely, however, the solution will include
some noninteger values. For example, assume that the solution of the linear program
associated with the clique problem is (0.1, 1,...,0.5) and z=7.8. Since the linear
program maximizes the objective function with less restrictions than the integer linear
program, the maximum it finds is an upper bound on the maximum possible for the
integer linear program. Therefore, we cannot hope for a clique of size greater than 7.
This kind of information can be helpful farther down the tree. As in regular
backtracking, we make some choices as we go down the tree, and a node lower in the
tree corresponds to a subproblem of the original problem. For example, the subproblem
may correspond to selecting v and w to the clique, and eliminating « and x, in which case
we are trying to find the maximal clique that includes v and w and excludes « and x. If at
that point the solution of the linear program gives us a bound that is /ess than a size of an
already-known clique, then we can backtrack. This is the essence of the branch-and-
bound method. We are trying to find upper bounds (or lower bounds, if the objective
function is supposed to be minimized) that will allow us to backtrack as early as possible.

We can also use the result of the linear program to help us choose the branching.
For example, since v, =1 in the noninteger solution, we may guess that x, =1 is the
integer solution as well. This may not be a good guess, but it is an example of the kind of
heuristics that we are looking for. We try to increase the probability of finding the
optimal solution quickly. (We know that being ‘‘right’’ all the time is probably
impossible, since the problem is NP-complete.) We can set x, = 1, update the constraints
(e.g., set the values of all vertices not adjacent to v, to 0), and solve the resulting linear
program. If at some point the modified linear program has a maximal value of z=a,
where a is smaller than the maximal clique known so far, we can backtrack.

“ Thus, the linear program serves two purposes: It gives upper bounds and thus
allows us to backtrack, and it also hints at which choices to make next. We hope that,
when we are done with the ‘‘most likely to succeed’’ subproblem, we will be able to
prune the other subproblems substantially. The amount of pruning — and the efficiency
of the whole algorithm — depends on the heuristic to divide the problems and to choose
the next subproblem to explore. This heuristic depends on the particular application.
Extensive research has been done in this area.

Branch-and-bound algorithms lead to the optimal solution when all subproblems
are explored or pruned. If this takes too long, we can terminate the algorithm and obtain
an approximation that consists of the best solution found so far. The traversal of the tree
can be done by breadth-first search, depth-first search, or a combination. An extreme



11.5 Techniques For Dealing with NP-Complete Problems 363

example of terminating early is taking the first path (chosen by a certain heuristic) that
leads to a feasible solution (usually at a leaf) as the outcome of the algorithm. For
example, in the coloring algorithm, we can color the vertices in reverse order of degree
(the idea being that we lose less flexibility by fixing the color of a small-degree vertex).
This is a simple greedy algorithm.

11.5.2 Approximation Algorithms with Guaranteed
Performance

In this section, we discuss approximation algorithms for three NP-complete problems:
vertex cover, bin packing, and the Euclidean traveling salesman problem. All these
approximation algorithms have guaranteed performance. That is, we can prove that the
solution they produce is not too far from the optimal solution.

Vertex Cover

We start with a simple approximation algorithm for finding the minimum vertex cover of
a given graph. The algorithm is guaranteed to find a cover that contains no more than
twice the number of vertices contained in a minimum cover. Let G =(V, E) be a graph
and let M be a maximal matching in G. Since M is a matching, its edges have no vertex
in common, and since M is maximal, all other edges have one vertex in common with at
least one of the edges in M.

O Theorem 11.9

The set of all vertices incident to the edges of a maximal matching M is a
vertex cover with no more than twice the number of vertices of a minimum-
size vertex cover.

Proof: The set of vertices that belong to M forms a vertex cover, because M is
maximal. Every vertex cover must cover all the edges — in particular, the edges of M.
But, since M is a matching, a vertex of M cannot cover more than one edge of M.
Therefore, at least half of the vertices of M must belong to every vertex cover. O

We can find a maximal matching by simply collecting edges until all edges are covered.
Since the vertex cover includes all the vertices in the matching, we would like to find a
small maximal matching. Unfortunately, the problem of finding the minimum maximal
matching (i.e., a maximal matching with smallest number of edges) is also NP-complete
(Garey and Johnson [1979], problem [GT10]). Exercise 11.35 discusses another
approximation algorithm with guaranteed performance for the vertex-cover problem.

One-Dimensional Bin Packing

The bin packing problem is concemned with packing different-sized objects into fixed-
sized bins using as few of the bins as possible. For example, we may want to move the
contents of a house using as few cars (or the same car as few times) as possible by
packing the cars as densely as possible. Moving is a 3-dimensional problem, but we will
concentrate on the one-dimensional version. We will also assume for simplicity that all
the bins have size 1.
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The Problem Let x;,x5,..,x, be a set of real numbers each
between 0 and 1; partition the numbers into as few subsets as possible
such that the sum of numbers in each subset is at most 1.

The one-dimensional bin packing problem arises, for example, in memory-management
problems in which there are requests for many different-sized blocks of memory, and the
blocks need to be allocated from several large chunks of available memory. Bin packing
is an NP-complete problem (Exercise 11.8).

One heuristic for this problem is to put x; in the first bin, and then, for each i, to
put x; in the first bin that has room for it, or to start a new bin if there is no room in any of
the used bins. This algorithm is called the first fit algorithm. First fit is not ‘‘too bad’’ in
the worst case, as is shown in the next theorem.

O Theorem 11.10

The first fit algorithm requires at most 20PT bins, where OPT is the
minimum number of bins.

Proof: First fit cannot leave two bins less than half full; otherwise, the items in the
second bin could be placed in the first bin. Therefore, the number of bins used is no more
than twice the sum of the sizes of all items (rounded up). The theorem follows from the
fact that the number of bins in the best solution cannot be less than the sum of all the
sizes (in which case all items are perfectly packed). O

It turns out that the bound given by Theorem 11.10 is quite conservative. The constant of
2 in the theorem can be reduced to 1.7, by a much more complicated analysis. The 1.7
constant is tight, since there exist cases in which first fit requires 1.7 times the optimal.

First fit can be improved with the following simple modification. The worst case
occurs when many small numbers appear at the beginning. Instead of placing the
numbers in the bins in the order they appear, we sort them first in decreasing order, and
then use first fit. This modified algorithm is called decreasing first fit, and, in the worst
case, its solution comes within a constant of about 1.22 from the optimal (we omit the
proof).

O Theorem 11.11

The decreasing first fit algorithm requires at most %1 OPT + 4 bins, where
OPT is the minimum number of bins. o

This constant is also tight. First fit and decreasing first fit are both simple heuristics.
There are other methods leading to better constants. In most cases, the analysis is
complicated.

The strategies we described are typical of heuristics algorithms. They present
natural approaches corresponding to what one would probably do by hand. We have
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seen many times, however, that straightforward approaches can perform quite poorly for
large inputs. Therefore, it is very important to analyze the performance of these
algorithms.

Euclidean Traveling Salesman

The traveling salesman problem (TSP), is an important problem with many
applications. We discuss here a variation of TSP with the additional constraint that the
weights correspond to Euclidean distances:

The Problem Let C,,C,,...,C, be a set of points in the plane
corresponding to the location of » cities; find a minimum-distance Ham-
iltonian cycle (traveling salesman tour) among them.

The problem is still NP-hard, but we will see that the Euclidean assumption helps in
designing an approximation algorithm for the problem. (We can relax this assumption
somewhat by assuming only that the distances satisfy the triangle inequality, which
states that the direct distance between any two points is shorter than any route through
other points.)

The algorithm starts by computing the minimum-cost spanning tree (here, cost =
distance), which is a much easier problem (see Section 7.6). We claim that the cost of
the tree is no more than the length of the best TSP tour. This is so because a TSP tour is
a cycle containing all vertices; therefore, removing any edge from a TSP tour makes it a
spanning tree, whose cost is thus at least that of the minimum-cost spanning tree.

A spanning tree, however, does not correspond directly to a TSP tour. We need to
modify it. First, consider the circuit that consists of a depth-first search traversal of the
tree (starting from any city), and includes an edge in the opposite direction whenever the
search backtracks. (This circuit corresponds, for example, to traversing a tree-shaped
gallery, with exhibits on both sides of every hall, by always going to the right.) Every
edge will be traversed exactly twice, so the cost of this circuit is twice the cost of the
minimum-cost spanning tree, which is no more than twice the cost of the minimum TSP
tour. We can now convert this circuit into a TSP tour by taking direct routes instead of
always backtracking (see Fig. 11.9). That is, instead of backtracking using the same
edge, we go directly to the first new vertex. The assumption that the distances are
Euclidean is important, because it guarantees that the direct route between any two cities
is always at least as good as the nondirect route. The length of the resulting TSP tour is
thus still no more than twice the length of the minimum TSP tour, although it is often less
than that.

Complexity The running time of this algorithm is dominated by the running time of
the minimum-cost spanning tree algorithm, which, in the case of Euclidean graphs, is
O (n log n) (see, for example, Preparata and Shamos [1985]).
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(a) (b)

Figure 11.9 (a) A spanning tree. (b) A TSP tour obtained from the tree by starting at the
middle point, and going right first.

Improvement

The algorithm we have just described can be improved in the following way. The
‘‘sloppiest’’ part of the algorithm is the conversion from the tree traversal into a TSP
tour. Another way to look at this conversion is that it builds an Eulerian circuit on top of
the tree, by repeating each edge twice. We then obtain the TSP tour by taking shortcuts
from the Eulerian circuit. We can convert the tree into an Eulerian graph more
effectively. An Eulerian graph must include only even-degree nodes. Consider all the
odd-degree nodes in the tree. There must be an even number of them (otherwise, the
total sum of all degrees would be odd, which is impossible, since this sum is exactly
twice the number of edges). If we add enough edges to the tree to make the degrees of
all nodes even, then we get an Eulerian graph. Since the TSP tour will consist of the
Eulerian circuit (with some shortcuts) we would like to minimize the length of the
additional edges. Let’s abstract the problem.

We are given a tree in the plane and we want to add edges to it, minimizing their
total length, such that the resulting graph is Eulerian. We must add at least one edge to
each vertex of odd degree. Let’s try to add exactly one. Suppose that there are 2k
vertices of odd degree. If we add k edges, each connecting two odd-degree vertices, then
all vertices will have even degree. The problem thus becomes a matching problem. We
want to find a minimum-length matching that covers all odd-degree vertices. Finding a
minimum-weight perfect matching can be done in O(n?) for general graphs (see Gabow
[1976] or Lawler [1976]). There is a recent algorithm, due to Vaidya [1988], that works
for the special case of Euclidean distances in time O (n%> (log n)*). (Whether this is a
better algorithm in practice is not clear.) The final TSP tour is then obtained from the
Eulerian graph (which includes the minimum-length spanning tree plus the minimum-
length matching) by taking shortcuts. The TSP tour obtained by this algorithm for the
tree in Fig. 11.10 is given in Fig. 11.11.
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(a) (b)

Figure 11.11 The minimum Eulerian circuit and its corresponding TSP tour. (a) The
spanning tree plus the matching. (b) The tour obtained from the Eulerian circuit.

O Theorem 11.12

The improved algorithm produces a TSP tour whose length is at most 1.5
times the length of the minimum TSP tour.

Proof: We will ignore the shortcuts (since there may not be any in the worst case),
and will concentrate on the length of the Eulerian circuit. The circuit consists of the tree
and the matching. We have already seen that the length of the tree is at most the length
of a minimum TSP tour; hence, it is sufficient to prove that the length of the matching is
at most half the length of a minimum TSP tour. Let Q be a minimum TSP tour. Q is a
cycle containing all vertices. Let D be the set of odd-degree vertices in T. We can obtain
two disjoint matchings of D such that the sum of their lengths is no more than that of Q in
the following way (see Fig. 11.12). We start with an arbitrary vertex v of D and match it
to a vertex of D that is its closest neighbor clockwise in Q. We then continue matching in
a clockwise direction. If the matched vertices are not neighbors in Q, then the distance
between them is no more than the length of the path connecting them in Q (by the
triangle property). This process gives us one matching. The second matching is obtained
by repeating the same process counterclockwise. The sum of the lengths of both
matchings is at most the length of Q, as is shown in Figure 11.12. But, since M was a
minimum-weight matching of D, its length is at most half the length of Q. O

Finding a minimum-weight perfect matching takes much longer than finding a
minimum-cost spanning tree, but it results in a better bound. It is still an open problem
whether it is possible either to improve the constant of 1.5, or to find a faster algorithm
achieving this constant. This algorithm illustrates one of the main characteristics of this
type of algorithm: We abstract an easier problem — or relax some parts of the original
problem —- and then design the heuristic accordingly.
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Figure 11.12 Two matchings whose sum is at most that of the TSP tour.

11.6 Summary

The previous chapters should have generated some deserved optimism about our ability
to design good algorithms. This chapter should bring us closer to reality. There are many
important problems that unfortunately cannot be solved with elegant, efficient algorithms.
We have to be able to recognize these problems and to solve them with a less than
optimal solution. When a problem is given to us, we have two possible lines of attack.
We can try to use the techniques introduced in the previous chapters to solve the
problem, or we can try to use the techniques introduced in this chapter to show that the
problem is NP-complete. To avoid making many wrong turns before we take the right
approach, we need to develop an intuition for the difficulty of problems.
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whether all problems in NP are either NP-complete or are in P. This question was
partially answered by Ladner [1975] who proved that, unless P = NP, there are infinitely
many classes in between.

An algorithm that runs in polynomial time on the average for the Hamiltonian
cycle problem is described in Angluin and Valiant [1979], and one for satisfiability is
described in Purdom and Brown [1985b]. An approximation algorithm for the weighted
vertex-cover problem is given in Bar-Yehuda and Even [1981]. The algorithm finds a
vertex cover whose weight is at most twice that of the minimum-weight cover. Gusfield
and Pitt [1986] present a more intuitive explanation of this algorithm. Heuristics for
coloring graphs with k colors (for fixed k) are given by Brélaz [1979], and by Turner
[1988]. These heuristics are proven successful for ‘‘almost all’’ graphs (see Turner
[1988] for a precise definition). In fact, Wilf [1984] proved that the average size of the
simple backtrack tree for graph k-coloring (for a fixed k) is a constant independent of n.
(It is less than 200 for k =3, and is 1 million for k =5.) However, it is likely that the good
performance of these algorithms are due more to the definition of the average than to the
strength of the algorithms (see, for example, Franco [1986]). The best known guaranteed
bound for approximate graph coloring is given by Wigderson [1983]. Backtrack
techniques are described in Golomb and Baumert [1965] (see also Bitner and Reingold
[1975] and Horowitz and Sahni [1978].) Knuth [1975] describes a technique for
estimating the running time of backtrack programs. A general discussion on heuristics is
given by Pearl [1984].
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The bounds on the performance of first fit and decreasing first fit given in Section
11.5.2 are proved in Johnson et al. [1974]. For another heuristic that comes very close to
an optimal solution of the bin-packing problem, see Karmarkar and Karp [1982].

The traveling salesman problem is probably the most studied NP-complete
problem in terms of proposed solutions. An approximation algorithm for the general
problem is given by Lin and Kemighan [1973]. The algorithm achieving the bound of
1.5 for the Euclidean problem, which is the best bound currently known for a polynomial
algorithm, is due to Christofides [1976]. A book edited by Lawler, Lenstra, Rinnooy
Kan, and Shmoys [1985] contains 12 articles covering most aspects of this problem,
including heuristics and their analysis, branch-and-bound algorithms, special cases, and
applications.

Drill Exercises

You can complete these exercises using only the NP-complete problems discussed in the text or in
other exercises from this chapter.

11.1  Prove that all problems in P are polynomially equivalent according to the definition given in
Section 11.2.

11.2  Prove that the definition of how a nondeterministic algorithm recognizes a language does
not allow one algorithm to recognize two different languages.

11.3  Consider the following algorithm to determine whether a graph has a clique of size k. First,
we generate all subsets of the vertices containing exactly k vertices. There are O (n*)
subsets altogether. Then, we check whether any of the subgraphs induced by these subsets
is complete. Why is this not a polynomial-time algorithm for the clique problem, which
implies that P = NP?

11.4  Write the 3SAT expression that is obtained from the reduction of SAT to 3SAT (given in
Section 11.4.3) for the expression

(XY +Z+HWHUHV) (AT +2+W+U+V) (X +Y+T+WHU+T) (X +)).
11.5  Draw the graph that is obtained from the reduction of SAT to the clique problem (given in
Section 11.4.4) for the expression
(X+F+2) (x+y+7) (x+y+2) - (x + +7).
11.6  Draw the graph that is obtained from the reduction of 3SAT to the 3-coloring problem
(given in Section 11.4.5) for the expression

(X+¥+2) (X +y+2)- (x+y +2).

11.7  Prove that the knapsack problem is NP-complete.
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Prove that the bin packing problem is NP-complete.

Pose the 3-coloring problem as an integer linear program.

Creative Exercises

You can complete these exercises using only the NP-complete problems discussed in the text or in
other exercises from this chapter.

11.10

11.13

11.14

11.15

11.16

11.17

Prove that the following problem is NP-complete: Given an undirected graph G =(V, E) and
an integer k, determine whether G contains a spanning tree T such that each vertex in T has
degree <k.

Prove that the vertex-cover problem remains NP-complete even if all the vertices in the
graph are restricted to have even degree.

Consider again the problem of finding large induced subgraphs discussed in Chapter S.
Suppose that, instead of the requirement that each vertex in the induced subgraph has
degree > d, we require that its degree be < d. Here is the formulation of the problem in
terms of a decision problem. Given an undirected graph G =(V, E), and two integer
parameters d and k, determine whether G contains an induced subgraph H with at least &
vertices, such that the degree of each vertex in H is < d. Prove that this problem is NP-
complete.

Prove that the following problem is NP-complete: Given an undirected connected graph
G=(V, E) and an integer k, determine whether G contains a clique of size k and an
independent set of size k.

Prove that the following problem is NP-complete: Given an undirected graph G =(V, E) and
an integer k, determine whether G contains a subset of k vertices whose induced subgraph is
acyclic.

Let E be a CNF expression such that each variable x appears exactly once as x and exactly
once as x. Either find a polynomial-time algorithm to determine whether such expressions
are satisfiable or prove that this problem is NP-complete.

Prove that the following variation of 3SAT, called 1-in-3SAT, is NP-complete. The input is
the same as the one for 3SAT. The problem is to determine whether there exists a satisfying
assignment such that in every clause exactly one of the 3 variables is true.

Prove that 2-in-4SAT is NP-complete: The input is a Boolean expression in CNF with
exactly 4 variables per clause, and the problem is to determine whether there exists a
satisfying assignment such that in every clause exactly 2 of the 4 variables are true. (Hint:
Use Exercise 11.16.)

* . .
11.18 The input is again a Boolean expression in CNF. The problem is to determine whether

there exists a satisfying assignment such that every clause contains an odd number of
variables whose values are 1. For example, if the input is a 3SAT input, then we are
looking for assignments such that, in every clause, either 1 or 3 variables have value 1.
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(Another way to look at this problem is that the or operations are replaced with exclusive or
operations.) This may seem like another variation of the problems in Exercises 11.16 and
11.17, but in fact this problem can be solved in polynomial time! Find a polynomial-time
algorithm for it.

11.19 The input is an undirected regular graph (i.e., a graph in which all vertices have the same
degree). Prove that the clique problem remains NP-complete for regular graphs.

11.20 The exact cover by 3-sets (X3C) problem is the following. The input is a set S with 3n
elements and a collection of subsets of S, §,,S,, ..., S, each containing exactly three
elements. The problem is to determine whether there exists a subcollection of subsets
Si.»Si.»...» S;, such that each element of S is contained in exactly one subset §; . Prove that

X3C is NP-complete.

11.21 Prove that the following problem is NP-complete: Given an undirected graph G =(V, E)
with 3n vertices, determine whether the vertices of G can be partitioned into n groups, such
that each group contains three elements, each connected to each other. In other words, the
question is to determine whether the graph can be partitioned into # triangles.

11.22 Let G =(V, U, E) be a bipartite graph such that V is the set of vertices on one side, U is the
set of vertices on the other side, and E is the set of edges connecting them. V corresponds to
a set of machines and U to a set of parts. A machine v; is connected to a part u; if the
machine is used to work on that part. Suppose that a room can accommodate at most K
machines and unlimited number of parts (for simplicity, we assume that all machines have
the same size). We assume that we have as many rooms as needed, but we want to
minimize the movements of parts from one room to another. Each edge (v, p)) is
associated with a cost ¢ (v;, p;), which is the cost of moving part u; to machine v; if the part
and the machine are not in the same room. We define the cost of a partition of machines
and parts into rooms as the sum of the costs of the edges connecting parts to machines that
are not in the same room. Prove that the following problem is NP-complete: Given the
graph G, the parameter K, and another parameter C, determine whether it is possible to
partition the machines and parts into rooms with cost <C. (In other words, the set of
vertices should be partitioned into subsets, each with at most K vertices from V, such that
the sum of the costs associated with the edges that connect vertices in two different subsets
does not exceed C.)

1123 Let S be a set, and C = {C,,C,, ..., C;} be a collection of subsets of S each with four
elements. Two subsets of S are said to be connected if they contain a common element. A
collection C is said to be a cycle if C; is connected to C;,, for all i, 1<i<k-1,and C, is
connected to C;. An subcollection C’SC is called acyclic if it does not contain a cycle.
Prove that the following problem is NP-complete: Determine whether a given collection C
contains an acyclic subcollection C’ such that (1) every two subsets in C’ have at most one
element in common, and (2) every element of S is included in at least one subset of C’.

11.24  Assume that the Hamiltonian path problem for undirected graphs is NP-complete. Prove
that the Hamiltonian cycle problem for undirected graphs is also NP-complete. (Both
problems are defined in Section 11.4.)

11.25 The input is an undirected graph G =(V, E) and two distinguished vertices v and w in G.
Prove that there is no polynomial-time algorithm to determine whether G contains a
Hamiltonian path whose end vertices are v and w unless P = NP.

|
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Consider again the problem of determining whether a graph G=(V, E) contains a
Hamiltonian path with given end vertices v and w (see Exercise 11.25). Let G’ be the graph
obtained by adding two new vertices v and w and two new edges (v, v) and (w, w). If G’
contains a Hamiltonian path, then its two end vertices must be v and w. Therefore, such a
path corresponds to a Hamiltonian path in G with the end vertices v and w. What have we
just proved?

Prove that graph k-coloring is NP-complete. The problem is to determine, given an
undirected graph G =(V, E) and an integer k, whether G can be colored with at most &
colors.

Prove that, if there is a polynomial-time approximation algorithm that can color any graph
with less than 4/3 times the minimal number of colors required to color that graph, then
P=NP.

Prove that the following problem, called feedback edge set, is NP-complete: Given a
directed graph G =(V, E) and an integer parameter k, determine whether G contains a set F
of at most k edges such that every directed cycle in G contains at least one edge from F.

Let O be some NP-complete problem involving undirected graphs. Suppose that you find a
polynomial-time algorithm that solves Q for some particular restricted class of graphs (e.g.,
planar graphs, graphs containing perfect matchings, Eulerian graphs). Does this algorithm
imply that all NP-complete problems involving undirected graphs can be solved in
polynomial time when restricted to that class?

Let G =(V, E) be an undirected graph, and let (v, w,), (v, w3), ..., (v, w;) be k pairs of
distinct vertices of G. Prove that the following problem is NP-complete: Determine
whether there exist k paths in G such that path i connects v; to w;, and all paths are vertex
disjoint.

Let G =(V, E) be an undirected graph, such that each vertex is associated with some task.
Two vertices are connected if the corresponding tasks cannot be performed at the same time
(e.g., they need the same resource). This is the only limit on concurrency. Any set of tasks
such that no two of them are connected can be performed in one step. Prove that the
following problem is NP-complete: Given a graph G =(V, E), and an integer parameter k,
determine whether all corresponding tasks can be performed in at most & steps.

*l 1.33 Let G=(V, E) be an undirected graph such that the edges incident to each vertex are

11.34

11.35

ordered in a cyclic order. There is no relationship between ordering at different nodes.
Suppose further that G is Eulerian. The problem is to find an Eulerian tour covering G that
satisfies the following ‘‘noncrossing’’ property: If the tour enters a vertex v at an edge e,
then the next edge in the tour must be adjacent to e in the cyclic order imposed on the edges
incident to v (from either side of ). One way to view this property is to look at a road map.
The goal is to travel through all the edges (road segments) such that an intersection (vertex)
is never crossed except from one edge to its neighbor. Prove that determining whether such
an Eulerian tour exists for a given graph and cyclic orderings is NP-complete. (The
problem remains NP-complete for planar graphs, but the proof is more difficult.)

Show an example in which the simple backtracking algorithm described in Section 11.5 for
3-coloring a graph results in exponential number of nodes.

The following is a simple heuristic for finding a vertex cover. In each step of the algorithm,
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11.37

11.38
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the vertex of highest degree (ties are broken arbitrarily) is added to the cover, then it is
removed from the graph together with all its incident edges. The algorithm terminates when
no more edges remain. Since an edge is removed only after a vertex incident to it is
included in the cover, the algorithm indeed finds a vertex cover. This is a greedy algorithm
since it always selects the vertex with the highest ‘‘payoff.”’ The worst-case behavior of
this algorithm is not very good. Show an example of a grap