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Abstract 

In this report, I present the design and implementation of a search engine, named 

Needle. The search engine is designed to handle both text and image search, with a 

flexible architecture that will facilitate scaling up. Each module is independent of each 

other and therefore swappable to improve its own functionality without affecting the 

whole system. More importantly, a new algorithm, Cluster Rank, has been designed and 

fully implemented to achieve similar goal as that of the existing Page Rank [Brin, 1998] 

algorithm while providing similar performance and an additional feature for managing 

similar pages in search result. 
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CHAPTER 1  

INTRODUCTION 

Search Engine technology was born almost at the same time as the World Wide 

Web [Wall 2005a], and has certainly improved dramatically over the past decade and 

become an integral part of everybody’s Web browsing experience, especially after the 

phenomenal success of Google1. 

At the first glance, it appears that Search Engines have been studied very well, 

and many articles and theories including the paper by the founders of Google [Brin 1998] 

have been published to describe and analyze their internal mechanisms. However, in this 

report the author will demonstrate that there are many unsolved problems in Search 

Engines as well as unrevealed implementation details, either due to the immaturity of this 

technology or simply the business nature of their owners. 

1.1 The Basic Components of a Search Engine 

All search engines includes: 

1. A Web crawler. 

2. A parser. 

3. A ranking system. 

4. A repository system. 

                                                

1 http://www.google.com 
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5. A front-end interface. 

These components are discussed individually below. 

The starting point is a Web Crawler (or spider) to retrieve all Web pages: it 

simply traverses the entire Web or a certain subset of it, to download the pages or files it 

encounters and save for other components to use. The actual traversal algorithm varies 

depends on the implementation; depth first, breadth first, or random traversal are all 

being used to meet different design goals. 

The parser takes all downloaded raw results, analyze and eventually try to make 

sense out of them. In the case of a text search engine, this is done by extracting keywords 

and checking the locations and/or frequencies of them. Hidden HTML tags, such as 

KEYWORDS and DESCRIPTION, are also considered. Usually a scoring system is 

involved to give a final point for each keyword on each page. 

Simple or complicated, a search engine must have a way to determine which 

pages are more important than the others, and present them to users in a particular order. 

This is called the Ranking System. The most famous one is the Page Rank Algorithm 

published by Google founders [Brin 1998]. 

A reliable repository system is definitely critical for any application. Search 

engine also requires everything to be stored in the most efficient way to ensure maximum 

performance. The choice of database vendor and the schema design can make big 

difference on performance for metadata such as URL description, crawling date, 

keywords, etc. More challenging part is the huge volume of downloaded files to be saved 

before they are picked up by other modules. 
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Finally, a front-end interface for users: This is the face and presentation of the 

search engine. When a user submits a query, usually in the form of a list of textual terms, 

an internal scoring function is applied to each Web page in the repository [Pandey 2005], 

and the list of result is presented, usually in the order or relevance and importance. 

Google has been known for its simple and straight forward interface, while some most 

recent competitors, such as Ask.com1, provide much richer user experience by adding 

features like preview or hierarchy displaying. 

1.2 Search Engines Available Today 

Other than well-known commercial products, such as Google2, Yahoo3 and 

MSN4, there are many open source Search Engines, for example, ASPSeek5, BBDBot6, 

Datapark Search7, and ht://Dig8. Evaluating their advantages and disadvantages is not the 

purpose of this thesis, but based on reviews and feedbacks from other people [Morgan 

2004], they are either specialized only in a particular area, or not adopting good ranking 

algorithms, or have not been maintained for quite a while. 

Another important fact is that while most current search engines are focused on 

text, there is an inevitable trend that they are being extended to the multi-media arena, 

including dynamic contents, images, sounds and others [Wall 2005b]. None of the open 

                                                

1 http://www.ask.com 
2 http://www.google.com 
3 http://www.yahoo.com 
4 http://www.msn.com 
5 http://www.aspseek.org/ 
6 http://www.searchtools.com/tools/bbdbot.html 
7 http://www.dataparksearch.org/ 
8 http://www.htdig.org/ 
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source engines listed above has multimedia searching modules, and none of them is 

flexible enough to add new ones without significant effort. 

1.3 Issues in Search Engine Research 

Design of Web crawlers: Web crawler, also known as robot, spider, worm, and 

wanderer, is no doubt the first part of any search engine and designing a web crawler is a 

complex endeavor. Due to the competitive nature of the search engine business, there are 

very few papers in the literature describing the challenges and tradeoffs inherent in web 

crawler design [Heydon 1999]. 

Page ranking system: Page Rank [Brin, 1998] is a system of scoring nodes in a 

directed graph based on the stationary distribution of a random walk on the directed 

graph. Conceptually, the score of a node corresponds to the frequency with which the 

node is visited as an individual strolls randomly through the graph. Motivated largely by 

the success and scale of Google’s Page Rank ranking function, much research has 

emerged on efficiently computing the stationary distributions of Web-scale Markov 

chain, the mathematical mechanism underlying Page Rank. The main challenge is that the 

Web graph is so large that its edges typically only exist in external memory and an 

explicit representation of its stationary distribution just barely fits in to main memory 

[McSherry 2005].  

Repository freshness: A search engine uses its local repository to assign scores to 

the Web pages in response to a query, with the implicit assumption that the repository 

closely mirrors the current Web [Pandey 2005]. However, it is infeasible to maintain an 
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exact mirror of a large portion of the Web due to its considerable aggregate size and 

dynamic nature, combined with the autonomous nature of Web servers. If the repository 

is not closely synchronized with the Web, the search engine may not include the most 

useful pages, for a query at the top of the result list. The repository has to be updated so 

as to maximize the overall quality of the user experience.  

Evaluating the feedback from users: Two mechanisms have been commonly used 

to accomplish this purpose: Click Popularity and Stickiness [Nowack 2005]. Click 

Popularity calculates how often a record in the returned list is actually clicked by the 

user, and promote/demote its rank accordingly. Stickiness assumes the longer an end user 

stays on a particular page, the more important it must be. While being straightforward, 

the implementation of these two algorithms can be quite error prone. The data collecting 

the most difficult part, as the server has to uniquely identify each user. This has been 

further complicated by the fact that many people want to manually or programmatically 

promote their own Web sites by exploiting the weaknesses of certain implementations 

[Harpf 2005]. 

Two graduate students at UCCS [Jacobs 2005][Kodavanti 2005] have been 

working on an Image search engine and a text search engine, respectively. Part of their 

work is to adopt the published Page Rank algorithm [Brin 1998], and the results are quite 

promising. However, giving the experimental nature of these two projects, they are not 

suitable for scaling up and not mature enough to serve as a stable platform for future 

research. A complete redesign and overhaul is needed. 
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CHAPTER 2  

PAGE RANK RESEARCH 

2.1 The Original Page Rank algorithm 

Google is known for its famous Page Rank algorithm, a way to measure the 

importance of a Web page by counting how many other pages link to it, as well as how 

important those page themselves are. 

The published Page Rank algorithm can be described in a very simple manner: 

PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn)) 

In the equation above: 

PR(Tn): Each page has a notion of its own self-importance. That’s “PR(T1)” for 

the first page in the web all the way up to PR(Tn) for the last page. 

C(Tn): Each page spreads its vote out evenly amongst all of its outgoing links. 

The count, or number, of outgoing links for page 1 is C(T1), C(Tn) for page n, and so on 

for all pages. 

PR(Tn)/C(Tn): if a page (page A) has a back link from page N, the share of 

the vote page A gets is PR(Tn)/C(Tn). 

d: All these fractions of votes are added together but, to stop the other pages 

having too much influence, this total vote is "damped down" by multiplying it by 0.85 

(the factor d). The definition of d also came from an intuitive basis in random walks on 

graphs. The idea is that a random surfer keeps clicking on successive links at random, but 
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the surfer periodically “gets bored” and jumps to a random page. The probability that the 

surfer gets bored is the dampening factor. 

(1 - d): The (1 – d) bit at the beginning is a probability math magic so the 

"sum of all Web pages" Page Rank is 1, achieved by adding the part lost by the d(....) 

calculation. It also means that if a page has no links to it, it still gets a small PR of 0.15 

(i.e. 1 – 0.85). 

At the first glance, there is a paradox. In order to calculate the PR of page A, one 

must first have the PR of all other pages, whose Page Rank is calculated in the same way. 

The algorithm solves it by first assuming all pages to have the same PR of 1, and at each 

iteration PR is propagated to other pages until all PR stabilize to within some threshold. 

Because the large dataset PR algorithm deals with, measuring the stabilization of 

the PRs can be a difficult job itself. Research indicates that in some cases PR can be 

calculated in as few as 10 iterations [Haveliwala 1999], or it may take more than 100 

iterations [Kamvar 2003]. 

Another important fact is that when a page does not have outgoing links, the 

C(Tn), this page becomes a dangling URL, and must be removed from the whole 

picture. If such “pruning” was not done, the dangling may have critical implications in 

terms of computation. First, Page Rank values are likely to be smaller than they should 

be, and might become all zero in the worst case. Second, the iteration process might not 

converge to a fixed point [Kim 2002]. 
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2.2 Page Rank Calculation Pseudo Code and Complexity 

Based on the discussion earlier, we can easily write the pseudo code to calculate 

the Page Rank. Assume it converges after 40 iterations. 

Initialize: Set all page to have initial page rank of 1 
Loop 40 iterations 

Loop on all pages (M) 
Current page is A 
Get all pages that link to A (N back links) 
Loop on N 

PR(A) = PR(A) + d * PR(Tn) / C(Tn) 
End of loop on back links 
Save PR(A) to database 

End of loop on all pages (M) 
End of loop 40 iterations 
 

Observing the pseudo code above, there are two nested loops: the outer loop 

processes all pages (M), and the inner one loops over the number of links (votes) to each 

page. Therefore the overall complexity can be written as O(MN), where M is the total 

number of pages and N is the average in-degree (incoming links) on a page. 

The process can also be expressed as the following eigenvector calculation, 

providing useful insight into the concept of Page Rank. Let M be the square, stochastic 

matrix corresponding to the directed graph G of the Web, assuming all nodes in G have at 

least one outgoing edge. If there is a link from page j to page i, let the matrix entry mij 

have the value 1/Nj . Let all other entries have the value 0. Also let Rank(p) vector 

represents the importance (i.e., PageRank) of page p. Every iteration corresponds to the 

matrix-vector multiplication M times Rank(p). Repeatedly multiplying Rank(p) by M 

yields the dominant eigenvector Rank* of the matrix M. Because M corresponds to the 

stochastic transition matrix over the graph G, Page Rank can be viewed as the stationary 
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probability distribution over pages induced by a random walk on the Web [Haveliwala 

1999]. 

2.3 Improvements Proposed to Page Rank 

Ever since the original Page Rank algorithm was published [Brin 1998], computer 

scientists have made numerous attempts to improve its performance [Haveliwala 1999] 

[Arasu 2001] [Chen 2002] [Kim 2002] [Lee 2003] [Kamvar 2003]. 

The research can be roughly divided into three categories: 

• Calculate the dominant eigenvector directly and try to swap certain part of 

the matrix between main memory and storage media [Haveliwala 1999] 

[Arasu 2001] [Chen 2002]. 

• Propose slight modification or improvements over the original algorithm 

[Kim 2002] [Lee 2003] [Kamvar 2003] [Gupta 2003] to achieve same or 

similar results in a more efficient way. 

• At each step, rather than communicate their current probability values, 

nodes only the changes in probability value, resulting in much better 

performance especially during updates [McSherry 2005].  

• Parallel calculation in a distributed system [Wang 2004]. 

These researchers have achieved very impressive results. Kamvar [Kamvar 2003], 

for example, was able to finish the calculation of 280,000 nodes with 3 million links in 

about 300 minutes on a single machine without any parallel processing. 
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The research done by Gupta and Acharyya [Gupta 2003] is very similar to the 

approach presented in this report and therefore is worth special attention. They modified 

the graph-independent part of the Page Rank surfer’s behavior so that it does not visit 

pages arbitrarily, instead the surfer is likely to select pages in the same cluster and 

exhaust them before moving to a different cluster depending on the current page. The 

rank of a page now depends not only on its in-links but also by the block rank of the 

cluster to which it belongs; this allows fresh pages to be highly ranked provided they are 

members of “good clusters”. 

Their algorithm is summarized in these steps:  

• Cluster the graph based on some clustering algorithm. The report did not 

give any specifics here, but they did mention it is link based, not content 

based. 

• Compute the local Page Rank for each cluster. 

• Compute the Block Transition Matrices and the Block Rank Vector 

• Merge the result from steps 2 and 3 above to get the final global Page 

Rank. 

They performed experiments on two sets of URLs. One the set is about 30,000 

pages in utexas.edu domain, and the other is a subset of CORA dataset consisting of the 

citation graph of 11754 research papers in the “Artificial Intelligence” category 

[McCallum 2000]. On first set of data, the results produced by the modified algorithm 

and the original Page Rank differ only by 5%, while on the second set they are 
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completely different in that the top pages are dominated by the pages with high block 

rank in the modified algorithm. The performance (wall clock time) results were not given 

in either of the experiments. 
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CHAPTER 3  

DESIGN AND ANALYSIS OF THE CLUSTER RANK ALGORITHM 

3.1 Motivation 

After the very first round of design and implementation of the Needle search 

engine on the UCCS domain, I immediately noticed that two pieces that need 

improvements. First, the Page Rank calculation always took very long time (roughly 4 

hours to process 100,000 pages), and second, the search results were not very pretty from 

end user perspective in that many consecutive result pages were occupied by similar 

URLs. For example, in the UCCS domain there are many calendar links1,2, which present 

several years of events on a calendar. Naturally all these pages are dynamically generated 

and they all have almost identical Page Rank. When users search the word “event” or 

“calendar”, they are presented two or three pages of almost identical URLs and other 

meaningful hits are very difficult to discover. 

Famous search engines solve the second problem by grouping them together, and 

provide a separate link such as “Similar pages” on Google and “More from this site” by 

Yahoo. However the implementation details are not published due to their business 

nature. 

                                                

1 http://tle2.uccs.edu/webcal/month.php 
2 http://easweb.uccs.edu/CS/calendar.php 
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3.2 Design Goals 

Attempting to solve these two problems and inspired by previous research, I 

designed the Cluster Rank algorithm to speed up the Page Rank calculation while 

providing the extra feature of grouping similar pages together.  

It is not my goal to produce an identical mathematical match to the original Page 

Rank algorithm, which will be used as comparison baseline nevertheless, but to provide 

reasonable importance measurements of the URLs as well as a grouping feature that the 

end user can enjoy. 

Keeping the goals in mind, I have taken various intuitive shortcuts and heuristic 

approaches without mathematical proofs. 

3.3 Cluster Rank algorithm 

The Cluster Rank algorithm, which is similar to the research done by Gupta and 

Acharyya [Gupta 2003], has the following steps: 

1. Group all pages into clusters. 

a. Perform first level clustering for dynamically generated pages 
b. Perform second level clustering on virtual directory and graph density 

2. Calculate the rank for each cluster with the original Page Rank algorithm. 
3. Distribute the rank number to its members by weighted average. 

Each step is discussed in detail in the following sections. 
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3.3.1 Clustering 

The first choice is to find a good clustering algorithm and it has to be link-based, 

as parsing each crawled page and finding the similarities among all of them is almost 

computationally impossible. 

3.3.1.1 Traditional clustering algorithms 

Several traditionally well-defined clustering algorithms were considered and even 

briefly experimented, including hierarchical clustering, K-means clustering[Hartigan 

1979] and MCL (Markov Cluster Algorithm) [Dongen. 2000]. The most important reason 

that they were not selected, other than potential performance and complexity reasons, is 

they are too generic in this giving context. These algorithms cluster generic graph whose 

nodes and links do not have any inherited meaning. In our problem space, however, the 

links and the URLs themselves have a lot to tell us. For example, when we see a group of 

URLs like these: 

A. http://www.uccs.edu/~csgi/index.shtml 

B. http://office.microsoft.com/en-us/default.aspx 

C. http://office.microsoft.com/en-us/assistance/default.aspx 

D. http://office.microsoft.com/en-us/assistance/CH790018071033.aspx 

We can immediately tell that URL A belongs to the UCCS domain and it has 

nothing to do with the other three. Without even looking at the links among them, we can 

make an educated guess that URL A should not be in the same cluster as the other three. 

In fact they should never belong to the same cluster, no matter how many links are there 

between them. This is a critical point as our clustering algorithm must not be twisted too 

easily by a malicious attempt where someone makes numerous links to other important 

pages from a new page just created. 
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Similarly, examine the following group: 

A. http://tle2.uccs.edu/webcal/month.php?&year=2006&month=10 

B. http://tle2.uccs.edu/webcal/month.php?&year=2006&month=09 

C. http://tle2.uccs.edu/webcal/month.php?&year=2006&month=08 

We can make a reasonable assumption that they are quite similar, again without 

looking at the links. 

The decision of not using generic clustering algorithms was made because they 

may need a lot of calculation to reveal an already obvious fact, and they have the 

potential to be misled by excessive links. 

3.3.1.2 Non-Link Based Clustering 

Previous research [Zamir, 1997] has also explored the possibility of other 

document content based clustering mechanism. The Word-Intersection Clustering (Word-

IC) presented in the research had O(n2) complexity and it is too slow for users for any 

Web with substantial size. 

3.3.1.3 URL Based Clustering for the Web 

Considering the success of the Page Rank system, one definitive factor is that it 

captured the thinking of a Web page creator --- people make links to other pages only 

when they think those pages are important. After congregating the thoughts of millions of 

minds together, the importance of a page is ultimately presented in Page Rank number. 

While clustering Web URLs together, we can take advantage of a similar 

observation by attempting to capture the mind of Webmasters, because more than likely 

people put similar pages into same virtual directory, or generate them dynamically from 

same base by given different parameters. This fact is quite simple and other people have 
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been using it to manage personal navigation space [Takano 2000], or define logical 

domains [Li 2000a], however it has been ignored by researchers who only look at the 

Web graph from a pure mathematical perspective. 

The intuitive URL based clustering algorithm in this report has two stages: 

1) First level clustering: simply cluster all dynamically generated pages 

together without any calculation; 

2) Second level clustering has three steps: 

a. Calculate a set of proposed clusters by grouping URLs in the same 

virtual directory. 

b. Calculate the graph density of each proposed cluster. 

c. If the density passes a preset threshold t, approve the cluster, 

otherwise, reject it. 

3.3.1.4 Clustering threshold 

In this particular context, the threshold is concluded from the experimental result: 

All details and reasoning are discussed later in this report, section 5.5 Choice of Density 

Threshold. 

3.3.2 Calculating the Cluster Rank 

In this step, the original Page Rank algorithm is executed at cluster level, as if 

each cluster is an indivisible unit. 



27 

 

Before applying the published algorithm, preparation is needed --- the link 

information between individual URLs must be congregated to cluster level. Other than 

this programming effort, there is nothing theoretical new or challenging. 

3.3.3 Distributing Cluster Rank to its members 

While other researchers [Gupta 2003] choose to calculate Local Page Rank within 

the cluster, the distribution algorithm here is again a heuristic one, taking performance as 

a determinant factor. 

Let’s review the very spirit of the Page Rank system --- the importance of a page 

is determined by how many links it receives, and how important the voting pages are. At 

this stage, the Cluster Rank (importance) is already calculated, and what is required is to 

distribute them to the member pages based on the number of links. In another 

straightforward term, the question becomes --- if a cluster has rank of X because it has 

total of Y incoming links as a group, what is the individual contribution of each member 

page? 

Naturally, weighted average is chosen to answer this question: PR = CR * Pi/Ci. 

The notations here are:  

PR : The rank of a member page 

CR : The cluster rank from previous stage 

Pi : The incoming links of this page 

Ci : Total incoming links of this cluster. 
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3.3.4 The Impact of Adding New Pages 

While the Cluster Rank algorithm presented above is quite simple and 

straightforward, it can prevent a malicious way of promoting Web sites. Website 

promotion is not the focus of this report, but we can see that simply adding a new page 

and re-arranging internal structure will not increase the total rank of a Website. Instead 

this attempt might slightly decrease the rank of each page, as the Cluster rank is already 

determined at a higher level, and the more pages share it, the smaller piece each page 

gets.  

To further understand the impact of adding new pages, let’s see the following 

example – assume there are two Websites, each of which has two pages (a title page and 

a content page) linking to each other, and the two title pages also link to each other.  

The Page Rank numbers are calculated by WebWorkShop1, one of many PR 

calculators available to public.  

This extremely simple Web described above and the Page Rank of each URL is 

illustrated in Figure 1: 

                                                

1 http://www.webworkshop.net/Page Rank_calculator.php 
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Figure 1. An extremely simple Web and the Page Rank of each URL 

These numbers are expected as the title pages (A and B) receive more links than 

the content page. Because the two websites have exactly the same structure, all numbers 

are symmetric as well. 

When the Webmaster of A and C adds another page E, and makes link to the 

existing title page A, the first Website grows bigger. The graph and Page Ranks become: 

 

Figure 2. A new page is added to one Website, but not the other 

Now, the title page A of the first Website has higher rank than its counterpart. 

This is also “as designed” in Page Rank system because:  

1) Each page has a minimal Page Rank, including the page just added (E). 

C 

B 

D 

A 
PR of each URL: 
 
A: 1.79 
B: 1.23 
C: 0.66 
D: 0.67 
E: 0.66 
 

E 

C 

B 

D 

A PR of each URL: 
 
A: 1.3 
B: 1.3 
C: 0.7 
D: 0.7 
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2) The more incoming links a page receives, the higher its rank is.  

In the example above, page A naturally becomes the most important page of all 

and notice page B is “downgraded” a little from 1.3 to 1.23. 

This behavior is even more obvious when we add yet another new page to the first 

Website: 

 

Figure 3. Two new pages are added to one Website, but not the other 

Notice the title page B is downgraded even further and it only has about half of 

the rank of A. The Webmaster of the first site has successfully promoted his site without 

touching anything outside.  

From the perspective of the Page Rank algorithm, everything is quite reasonable 

as the first Website is much bigger, and it very likely has a lot more to offer. On the real 

Internet, this way of promoting may not be as effective as in our extremely simplified 

example because of the sheer volume of existing links and Websites and the way they 
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intertwine together, however it is still a potential weakness that could be exploited in 

many ways. 

In the Cluster Rank system presented in this report, the starting point is different, 

but not too far off proportionally: 

 

Figure 4. An extremely simple Web and the new ranks 

The new ranks are calculated by following the new algorithm presented earlier: 

1) Clustering: the two websites both have density of 1, so they are treated as 

two clusters. 

2) Cluster Rank: there are only two clusters linking to each other, therefore 

each has Cluster Rank of 1. 

3) Distribution: Page A receives 2 incoming links, and page C has 1. 

Therefore the rank of A is 2 * (1/3) = 0.66, and the rank of C is 0.33 and 

same logic applies to B and D. 

An important fact is that although all pages have much smaller number than in the 

original Page Rank scheme, they still maintain a roughly equal proportional relation at 
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2:1. The numbers are smaller because there are less “indivisible units”, but if we multiply 

all ranks by 2 (the average number of pages within a cluster), the end result is rather close 

to the original algorithm. 

After performing the same operation of adding a new page to the first website, the 

numbers become: 

 

Figure 5. A new page is added to one Website, and the new ranks 

Let’s walk through the algorithm again to verify the numbers: 

1) Clustering: The first site has density of 0.67 and the second one has 1. 

Two clusters are generated. 

2) Cluster Rank: The same as before. Each cluster has rank of 1. 

3) Distribution: Page A receives 3 incoming links, and each of page C and E 

only has 1. Therefore the rank of A is 3 * (1/5) = 0.6, while C and E each 

ends up with 0.2. Notice B and D has identical rank as before as nothing 

changes for the second Website. 
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Comparing the numbers from Figure 2, we can see the following facts: 

• The proportional relation remains the same --- roughly 3:1 between A and 

its children and 2:1 between B and D. 

• B and D are not affected because of this operation. 

• All pages from the first website are slightly downgraded because the new 

page has not drawn any new attention from outside, and it must share the 

limited resource, the rank of the whole cluster! 

One may argue whether the new scheme is more “fair” than the original; however 

it is quite obvious that if meaningless new pages are added, it does automatically help the 

whole Website. Instead, a slight penalty is imposed if the new page is not important 

enough for other Webmasters to add new links to the group. 

Here is the result of adding two pages. The same conclusion can be made without 

going through the routine calculations, shown in Figure 6. Two new pages are added to 

one Website, and the new ranks. 

The analysis above illustrates the benefit of calculating ranks at a higher level and 

minimizing the impact of individual pages. Again, we must admit that the real Web is 

much more complicated and adding several pages or even several hundreds of pages may 

not make any noticeable ripples. A thorough evaluation of the differences of these two 

algorithms, and how do they perform in various scenarios is far beyond the grasp of 

casual observations and the scope of this report. 
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Figure 6. Two new pages are added to one Website, and the new ranks. 

3.3.5 The Complexity Analysis 

3.3.5.1 First Level Clustering  

The purpose of first level clustering is to group all dynamically generated pages 

and bookmarks together. Its pseudo code looks like: 

Loop on all pages (M) 
Strip the URL (http://website/main.php?id=123) to get a bare URL 
http://website/main.php 
*Check if the bare URL is in the cluster table 
Yes – Mark the URL to have an existing cluster ID 
No - Insert the bare URL to cluster table to create a cluster and 
mark the URL to have the new cluster ID 

End loop 
 

The theoretical Algorithm Complexity is O(M2) because the step of checking the bare 

URL, marked by (*), could be a linear function on M. However, in practice this step is 

implemented with a simple SQL SELECT statement, and the search time does not 

increase in a linear fashion because of the optimization of modern database engines and 

the pre-built indexes [Gilfillan 2001].  

Therefore the complexity is O(M) based on implementation observation. 
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3.3.5.2 Second Level Clustering 

In second level clustering, URLs in the same first level virtual directory are 

examined to see if they belong to the same cluster. For example, assume the algorithm 

works on a group of URLs below: 

http://business.uccs.edu/careers/careers.html 
http://business.uccs.edu/careers/employers.html 
http://business.uccs.edu/careers/employmentsites.html 
http://business.uccs.edu/careers/events.html 

The process is further broken down to three steps. 

Step 1 

Use the same algorithm as first level clustering, to generate a series of proposed 

clusters (total of C). The pseudo code is the same, as well as the complexity O(C) 

Steps 2 and 3 

For a directed graph, its density is defined as: 

 D = E / (V*(V-1)))  

In the equation above, D is Density; E is the number of edges; V is the number of 

vertices. If the graph density is higher than a preset threshold, approve the proposed 

cluster and update all pages with the new cluster id. 

Pseudo code: 

E = 0 
Loop on all proposed clusters (C) 

Loop on all pages in the proposed cluster (K) 
Current page is A 
Get all pages that link to A (N back links) 
Count all links from pages inside of the cluster (EA) 
E = E + EA 

End of the loop 
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D = E / V2 
If D > configured threshold  

Approve the cluster and update all pages in it 
End of loop on all proposed clusters 
 

The theoretical Algorithm Complexity is O(CKN), where C is number of all 

proposed clusters; K is the average number of pages in a cluster; N is average number of 

links to a page. 

3.3.5.3 Cluster Rank Calculation 

The step is nothing more than the original Page Rank algorithm applied at the 

Cluster level. Therefore the complexity is also O(CKN). See detail analysis earlier in this 

report, section: 2.2 Page rank calculation Pseudo code and Complexity. 

3.3.5.4 Rank Distribution 

At this step, weighted average of the Cluster Rank is distributed to all member 

URLs as their own rank. The pseudo code is as following: 

Loop on all clusters (C) 
Total incoming links for a cluster Li = 0 
Loop on all pages in the cluster (K) 

Current page is A, and has (Ai) incoming links 
Li = Li + Ai 

End of the loop 
Loop on all pages in the cluster (K) 

Current page is A, and has (Ai) incoming links 
PR’(A) = (Cluster Rank) * Ai / Li 

End of the loop 
End of loop on all clusters 

 

The complexity is O(CK), where C is number of all proposed clusters; K is the 

average number of pages in a cluster. 
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3.3.5.5 Total Complexity 

Adding the time taken by all the substeps together, the total complexity of the 

new Cluster Rank algorithm is: 

O(M+C+CKN+CKN + CK) 

Obviously, M (total number of pages) equals to C times K, so the complexity 

becomes O(M+C+2MN+MN+M), where C is total number of clusters, and can be 

represented as a linear function of M (total number of pages). Therefore the final 

complexity settles at O(MN). 

Casual observation may lead to a conclusion that the new algorithm is the same or 

slower than the original. However the experiment data indicated that on average there are 

2 to 3 pages per cluster and the new algorithm is working on much less number of “units” 

in the most time consuming step, rank calculation. Fortunately, the time saved here not 

only covers all other preparation and clustering steps, but also results in a 10% to 20% 

improvement overall. All details are discussed later in this report, Chapter 5 Test Results 

and Performance Analysis. 
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CHAPTER 4  

DESIGN OF THE NEEDLE SEARCH ENGINE 

4.1 Database Schema 

The Needle database consists of 15 tables and two views. The brief definitions 

and purposes are listed below and grouped by different modules. For details of each 

tables and view, please see Appendix B, Database Scripts. 

• Global tables for all modules: 

o MediaType: To define media types for all modules, such as text, 

image or other binary files. This table is pre-populated and remains 

untouched after the database creation. 

o URL: The central reference place for the URLs stored in the 

Needle search engine. Important fields are: 

 url_id: The unique index of URLs throughout the entire 

system. 

 url: The complete URL text. 

 in_plink_count: The in-degrees (number of incoming links 

on a page). The number is stored here to improve 

performance rather than having to get the count from other 

tables. 

• Crawler tables: 
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o Crawler: The control table for the crawler. Important fields are: 

 url_id: a foreign key referencing the url_id field in URL 

table. 

 localfullname: The location of the downloaded page. It will 

be used by the text parser and the image processor to read 

the downloaded documents. 

 crawled_date: Keeps track of the exact time this URL is 

crawled for advanced features like repository refreshing. 

o URLLinkStructure: The complete link structure for the Web graph 

being processed. This table is populated by the Crawler and used 

extensively by the Ranking system. Important fields are: 

 from_url_id and to_url_id: These are the head and the tail 

of a link. Two foreign keys referencing the url_id field in 

URL table. 

 anchor_text: The anchor text is defined as the visible text in 

a hyperlink1. This field is a by-product of crawling and will 

be used by text parser. 

• Ranking system: 

o Page Rank: The only table to store the Page Rank result. Important 

fields are: 
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 url_id: a foreign key referencing the url_id field in URL 

table. 

 out_link_count: The out-degree (number of links going out) 

of a page. This field is populated by crawler as its natural 

byproduct. 

 c_date: current date. 

 c_pr: current Page Rank. 

 old_date1, old_pr1, old_date2 and old_pr2: two sets of 

back up of previously calculated Page Rank, for 

comparison and research purpose. 

o Cluster: The master table for Cluster Rank algorithm presented in 

this report. Important fields are: 

 cluster_id: The unique index of a cluster. 

 base_url: The bare URL of a cluster. 

 cluser_rank: The current Cluster Rank. 

 cluster_rank_date: The time when Cluster Rank is 

calculated. 

 out_link_count and in_link_count: The in-degrees and out-

degrees of a cluster. 

                                                                                                                                            

1 http://en.wikipedia.org/wiki/Anchor_text 
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 old_cr1, old_cr1_date, old_cr2 and old_cr2_date: two sets 

of back up of previous calculated Cluster Rank, for 

research purpose. 

 prop_sec_cluster_id: a temporary location to store the 

proposed cluster ID during second level clustering. 

o Page RankByCluster: The final calculated rank for each page in 

Cluster Rank algorithm. Important fields are: 

 url_id: A foreign key referencing the url_id field in URL 

table. 

 c_prc: The calculated rank of a page in Cluster Rank 

system. 

 old_date1, old_prc1, old_date2 and old_prc2: two sets of 

back up of previous data, for research purpose. 

o SecondLvlClusterWork: The work table for second level 

clustering, and saves graph density for each proposed cluster. 

o vwURLLinkCluster: A temporary table to congregate links among 

individual URLs to the cluster level. This is table is created at 

runtime. 
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• Text Parser: 

o Dictionary: The dictionary for all words extracted from text 

documents. The rest parts of the text parser will only reference the 

keyword IDs to optimize the database performance. 

o PageLocation: The definition table for keyword locations, and their 

weights. 

o TextParser: The processing record of text parser, saving which 

URL is processed at which date. 

o KeyWordWork: The work table for text parser to store temporary 

data during calculation. 

o KeyWord: The final calculation result from text parser. Important 

fields are: 

 keyword_id: A foreign key referencing the keyword_id 

field in Dictionary table. 

 url_id: A foreign key referencing the url_id field in URL 

table. 

 total_weight: the weight of the keyword on the page. This 

field will be used by front end to retrieve pages. 

 UNIQUE INDEX ((keyword_id, url_id): unique index is 

enforce to make sure the combination of keyword_id and 

url_id is unique. 
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• Image Processor: 

o ImageProcessor: This module is not currently implemented. 

• Front end: 

o SearchHistory: To store the search history for statistic purpose. 

Important fields are: 

 ip_address: The client’s IP address. 

 host_name: The client host name, if it can be resolved. 

 request_time: The exact time the search request is received. 

 search_words: The exact words the user is searching. 

• Others: 

o vwPRCRComparison: This is a view to compare the Page Rank 

and Cluster Rank of each page for statistic purpose. This is not a 

physical table. 

4.2 Components 

Presented earlier in this report (1.1 The Basic Components of a Search Engine), 

each search engine must have five basic components: crawler, parser, ranking system, 

repository system and front-end. The Needle project is no exception. 
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Flexibility and scalability are the two most important design goals for Needle as it 

must serve as a common platform for current and future research. Keeping these in mind, 

all modules are self contained and operate individually. The only dependency is 

successor modules, such as text parser and ranking system, are expecting the database to 

be populated in certain way they can process, much like programming interfaces among 

different functions. Therefore the system architecture is very straight forward, and there 

is no intertwining of any kind: 

Figure 7. Basic Architecture of the Needle search engine 

The flexibility has allowed the author to perform two sets of ranking calculation 

(the original Page Rank and the new Cluster Rank) in the same system without any 

change to other modules. And at same time, about five other graduate students in UCCS 

are also doing their research projects on this architecture without affecting each other. 
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CHAPTER 5  

TEST RESULTS AND PERFORMANCE ANALYSIS 

5.1 Sample Data 

Calculations are conducted on seven sets of URLs from www.uccs.edu domain, 

ranging from total of 9,325 URL to 105,674 URLs, and one set of 290,561 URLs from 

three Colorado universities. These data are all retrieved by the Needle engine crawler in a 

breadth first fashion. 

Data Set ID Total URLs Average 
Links among 

URLs 

Total 
Clusters 

Average 
Links 

among 
Clusters 

Average 
URLs per 
Cluster 

1 9325 3.26 4053 2.43 2.3 
2 22371 3.32 11603 2.62 1.9 
3 26864 4.65 12685 2.82 2.1 
4 33928 6.05 15817 3.26 2.1 
5 41148 6.57 17054 3.44 2.4 
6 69439 8.21 28764 3.1 2.4 
7 105674 15.3 66699 2.39 1.6 
8 290561 18.5 84142 8.09 3.4 

Table 1. Statistics of URLs and Clusters 

We noticed the fact that the average links among URLs keep growing and there 

could be several reasons for this behavior. First and the most important, the crawler is 

conducting a breadth first traversal, and each time it starts at the same seed 

(www.uccs.edu), therefore it tends to first crawl the higher level pages, whose links are 

pointing to large number of pages yet to be crawled (Unknown dangling, see detail 

discussion in Section 5.2.2 The Rank Numbers in Each System) and can not be included 
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in the calculation. Later when the crawling limit increases, the target pages are retrieved 

and the links in previous pages are included. In future work, we recommend selecting the 

sample data in a better fashion to avoid this potential misleading factor, see detail 

discussion in Section 7.3.1 Better Sample Data. Second reason is that there are certain 

groups of pages in the UCCS domain with very large number of links (more than one 

hundred)1, and they were simply not encountered at the earlier stages. The third reason is 

that probably we have not retrieved a good representation of the UCCS domain. When 

we stopped the crawler after data set 7 is retrieved, there are still more than 148,749 

UCCS URLs in our database to be crawled, which is almost 1.5 times more than the total 

URLs in data set 7. 

Except the last set, the average number of URLs per cluster remains relatively 

stable, although the sample data size has grown more than ten times during the entire 

experiment. This indicates that the outcome of the clustering algorithm is quite reliable. 

Again in the first seven sets of data, the average links among clusters also remains 

relatively stable while the links among individual pages increases about five times. This 

behavior indicates that a very large group of links is actually “internal”, meaning they 

only connect to pages within the same cluster.  

The last set of data covers URLs from three universities, not just the UCCS 

domain, so it shows some different characteristics. As the dataset grows and the graph 

                                                

1 http://tle2.uccs.edu/webcal/month.php 
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gets closer to the real Web, the ratio between internal links and external links should 

remain stable according to a previous research [Bharat 2001] and this needs to be verified 

when larger amount of data become available. 

5.2 Result Comparison 

5.2.1 Top ranked URLs in each system 

The most important questions one may ask is --- how does the new algorithm 

perform, and does it actually give high scores to the “most important” URLs? While the 

importance of a page is a rather subjective opinion, the original Page Rank algorithm 

gives quantitative measurement to it for us to use as a baseline. 

Observations from other people have told us the first twenty hits in the results are 

the most important [Gordon 1999][Hawking 2001]. Therefore using the similar idea as a 

previous research [Gupta 2003], we look at the top 20 pages out of the 105,674 URLs 

according to Page Rank shown in Table 2. Top 20 pages in Original Page Rank (Crawled 

in September, 2006). 

We immediately noticed that six spots are occupied by awfully similar URLs (#1 

and #11 to #15). It is also quite surprising that the number #1 is actually not the root page 

of UCCS domain (www.uccs.edu). Further investigation shows that this page, as its URL 

implies, dynamically links to all press releases of UCCS in the past seven years. From 

each child page, there is a link back to the master list, resulted in an extremely high rank 

and also helped five of its children (#11 to #15) make to the top 20. 
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1 www.uccs.edu/~ur/media/pressreleases/article_list.php                      
2 www.uccs.edu                                                               
3 web.uccs.edu/ur/pr.htm                                                     
4 www.uccs.edu/campusinfo/campusinfo_form.htm                                
5 www.uccs.edu/directory/directoryb.htm                                      
6 tle2.uccs.edu/webcal/month.php                                             
7 www.uccs.edu/~webdept/approved                                             
8 www.uccs.edu/%7Ewebdept/az/azstatic/A.html                                 
9 web.uccs.edu/ur/topnav/topnav.htm                                          
10 web.uccs.edu/library                                                       
11 www.uccs.edu/~ur/media/pressreleases/view_article.php?article_id=357       
12 www.uccs.edu/~ur/media/pressreleases/view_article.php?article_id=358       
13 www.uccs.edu/~ur/media/pressreleases/view_article.php?article_id=359       
14 www.uccs.edu/~ur/media/pressreleases/view_article.php?article_id=356       
15 www.uccs.edu/~ur/media/pressreleases/view_article.php?article_id=354       
16 web.uccs.edu/library/library%20A_Z.htm                                     
17 web.uccs.edu/library/databases/intro.htm                                   
18 library.uccs.edu                                              
19 web.uccs.edu/library/Library%20Information%20and%20Services/staffdir.htm   
20 web.uccs.edu/library/remote.htm    

Table 2. Top 20 pages in Original Page Rank (Crawled in September, 2006) 

This fact certainly does not imply that the creator of the #1 URL wants to promote 

the URL over the UCCS root page. As discussed earlier in this report in section 3.3.4 The 

Impact of Adding New Pages, this is exactly the way how Page Rank should work and 

the behavior is in line with our prediction. 

Let’s look at the top 20’s from Cluster Rank shown in Table 3. Top 20 pages in 

Cluster Rank (Crawled in September, 2006). 

The top position is correctly taken by the root page of UCCS domain and the 

previous #1 is removed from the top 20, because in the new algorithm, internal links do 

not help the rank. The author personally considers this is a more desirable way to rank 

pages; however this question is certainly up for debate for the readers and other computer 

scientists. 
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New Rank Old Rank URL 
1 2 www.uccs.edu                                                              
2 3 web.uccs.edu/ur/pr.htm                                                    
3 4 www.uccs.edu/campusinfo/campusinfo_form.htm                               
4 5 www.uccs.edu/directory/directoryb.htm                                     
5 6 tle2.uccs.edu/webcal/month.php                                            
6 10 web.uccs.edu/library                                                      
7 - web.uccs.edu/wbahn/ECE1021/index.html                                     
8 17 web.uccs.edu/library/databases/intro.htm                                  
9 18 library.uccs.edu                                                          

10 19 web.uccs.edu/library/Library%20Information%20and%20Services/staffdir.htm  
11 20 web.uccs.edu/library/remote.htm                                           
12 7 www.uccs.edu/~webdept/approved                                            
13 19 web.uccs.edu/library/Library%20Information%20and%20Services/hours.htm     
14 16 web.uccs.edu/library/library%20A_Z.htm                                    
15 9 web.uccs.edu/ur/topnav/topnav.htm                                         
16 - www.uccs.edu/%7Ewebdept/az/AZdir.php                                      
17 - www.colorado.edu                                                          
18 8 www.uccs.edu/%7Ewebdept/az/azstatic/A.html                                
19 - web.uccs.edu/rlorch/default.htm                                           
20  library.uccs.edu/search                                                   

Table 3. Top 20 pages in Cluster Rank (Crawled in September, 2006) 

Fifteen out of twenty pages are also in the previous list, which is an accuracy of 

75%, and the top 10 pages achieved accuracy of 90%. This is a satisfying ratio giving the 

simple and intuitive nature of the Cluster Rank algorithm, especially considering the fact 

that the previous list has six similar pages out of twenty. 

However, an important note must be made that it is impossible for us to claim the 

Cluster Rank is “better” than the original Page Rank just based on the naïve comparison 

above. In fact, due to our limited amount of sample data, it is too early to jump into any 

conclusion. 

5.2.2 The Rank Numbers in Each System 

We noticed a fact that the rank numbers in the new system are all significantly 

lower than in the original. There are two explanations for this difference.  
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First, there are much less total points to work with in the new system. For 

example if there are 100 pages to rank, the original algorithm gives initial rank of 1 to all 

pages, which means there are total 100 points. In the new algorithm, if the 100 pages are 

grouped into 50 clusters, and we only calculate the rank at cluster level, obviously there 

are only 50 total points. 

Second, the original algorithm must remove all dangling pages as they may play 

catastrophic roles in the calculation. See details earlier in this report. Section 2.1 The 

Original Page Rank algorithm. This factor can have big impact as it affects the total 

calculation space being dealt with. We noticed there are several kinds of dangling links: 

• True dangling: The page is in fact not pointing to anywhere. This is also 

true when the URL is a binary file such as PDF or DOC. 

• Hidden dangling: The page has complicated scripts to generate links to 

other pages, but the crawler can not figure out. 

• Unknown dangling: The page has not been crawled yet, there the system 

simply does not know where does it link to, if any at all. 

These problem children, however, can be included in the new algorithm provided 

they belong to a cluster that has other members connecting outside, which means as long 

as the whole cluster is not dangling, every member can be included. In our sample data, 

only 28488 URLs out of the total 105674 can be calculated in Page Rank system because 

of the dangling, but 66699 URLs are processed in Cluster Rank. 
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The combined effect of the two factors is that there are more members to share a 

smaller pie, and no doubt everybody gets a much smaller piece. 

Further complications are introduced by congregating the links to cluster level. In 

this step, the links from individual links are merged together and could significantly 

change the structure of the graph as we already have seen earlier in this report. Section 

3.3.4 The Impact of Adding New Pages.  

While mathematical proof is rather difficult as the behavior of Page Rank itself 

also changes depending on the graph structure [Arasu 2001] [Kamvar 2003], we looked 

at the experimental data trying to identify a reasonable relationship: 

1. If the cluster size is 1, meaning a page does not belong to any group and 

just stand alone by itself, the rank number in these two systems are 

relatively the same. We checked total of 8873 pages in this category, and 

find out the average ratio of between the rank numbers is 1.09, with 

standard deviation of 0.11. 

2. For members of a tiny cluster, which has 2 to 10 URLs, its Page Rank 

could be expressed as the new cluster Rank times the size of the clusters it 

belongs to: PR = CR * ClusterSize. We checked the 3289 Pages in this 

category, and the average ratio of between the two sides of this equation is 

1.14, with standard deviation of 0.35. However at this point the deviation 

is almost too large for us to make this statement. We can also consider the 

two scenarios are the same (first one has Cluster Size of 1), however the 
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difference in standard deviation indicates they are very likely differ from 

each other. 

3. The above two scenarios accounted for 43% of the 28488 URLs we can 

compare. For other pages that do not belong to above two cases, we 

cannot recognize any pattern that can be supported mathematically. 

In order to make a convictive statement, we suggest future the research to 

compare the entire rank matrix as well as the relative ratio among URLs in the two 

systems. A much more advanced mathematical model, such as Hidden Markov Model 

could be made to compare the transition probability between the two systems. 

5.3 Performance Comparison 

The Page Rank is implemented strictly following the pseudo code presented in 

Section 2.2 Page Rank Calculation Pseudo Code and Complexity without any 

optimization and tweaking. The Cluster Rank implementation follows the pseudo code in 

Section 3.3.5 The Complexity Analysis. Seven rounds of comparison were made. At each 

round calculation was performed three times and the average time was taken to minimize 

the impact of routine system activities that might be taking place. 

The results are shown in Table 4. Seven rounds of comparison between Page 

Rank and Cluster Rank. 
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Total number 
of URLs 

Page Rank time 
(s) 

Cluster Rank 
time (s) 

Difference 

9325 386.5 340.2 12% 

22371 840.4 916.6 -9% 

26864 1305.9 1130.5 13% 

33928 1968.1 1564.5 20% 

41148 2195.8 1722.6 21% 

69439 4455.6 3251.1 27% 

105674 15914.5 10477.6 34% 

290561 31246.1 26562.54 15% 

Table 4. Seven rounds of comparison between Page Rank and Cluster Rank 

Figure 8 can help us to see the performance data visually. 
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Figure 8: The performance chart between Page Rank and Cluster Rank 

The percentage differences at each data point are illustrated in Figure 9. 

Percentage Difference. 
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Figure 9. Percentage Difference 

In most of the cases, Cluster Rank is 12% to 34% faster, with the average of 17% 

and standard deviation of 0.13. It falls behind of Page Rank at the second data point, 

which is very likely an unusual case and can be safely discarded. 

5.4 Cluster Rank Calculation Break Down 

The Cluster Rank calculation consists of several steps: first and second level 

clustering, data preparation to congregated links among URLs to the clusters and the 

Cluster Rank calculation itself. The final distribution step is not included in calculation as 

the weighted average computing is extremely fast and only counts a very small fraction 

of the total time. The break down table is as following (all numbers are seconds): 
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Total 
URLs 

First Level 
Clustering 

Second Level 
Clustering 

CR 
Preparation 

Cluster 
Rank Total 

9325 18.77 7.27 4.91 309.27 340.22 

22371 112.13 30.76 10.70 763.04 916.63 

26864 167.77 38.20 12.50 912.06 1130.53 

33928 257.57 56.64 15.57 1234.76 1564.54 

41148 283.11 69.60 16.41 1353.47 1722.59 

69439 778.99 165.96 28.95 2277.20 3251.10 

105674 3784.86 1142.76 65.42 5484.56 10477.60 

290561 10706.70 3028.271 180.26 12647.309 26562.54 

Table 5. Cluster Rank time break down for each step 

The break down chart below clearly shows each step increases at a constant pace, 

in line with the observations in Section 3.3.5 The Complexity Analysis. 

5.5 Choice of Density Threshold 

The clustering threshold t must be carefully chosen as the distinction between 

sparse and dense graphs is rather vague. While choosing the density threshold for second 

level clustering, we want to consider two factors: performance and quality. 

If the threshold is too high, almost no proposed clusters can be approved and the 

whole second level clustering would be meaningless. On the other hand if the threshold is 

too low, too many unrelated URLs may be grouped together and generate undesirable 

results. 

The threshold selection process is conducted on a set of 138,430 URLs in UCCS 

domain. The density distribution of clusters on different rank is show below: 
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Graph Density 
Number of Clusters in 

this range 
0.9 ~ 1 5 

0.8 ~ 0.9 38 
0.7 ~ 0.8 36 
0.6 ~ 0.7 57 
0.5 ~ 0.6 97 
0.4 ~ 0.5 57 
0.3 ~ 0.4 65 
0.2 ~ 0.3 326 
0.1 ~ 0.2 423 
0 ~ 0.1 479 

Table 6. The distribution of Clusters on different density range 

The data can be drawn to the following chart to help identify the characteristics: 
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Figure 10, Density distribution of the proposed second level clusters 

Naturally we see the big difference from the third group to forth group, which 

lead us to think threshold of 0.3 is potentially a good choice. 
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5.5.1 Performance 

Experiments are performed at four different potential thresholds, 0.2, 0.3 0.5 and 

0.7. The performance data, as expected, also show a sudden change at threshold of 0.3. 
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Figure 11. The Performance of second level clustering at different thresholds 

5.5.2 Cluster Quality 

Measuring the cluster quality is very important especially for the purpose of this 

algorithm, as we want to know if the clusters generated are truly representing the concept 

of “similar pages” and if it is actually fair to group them together. 

Using cosine value between two vectors to measure the similarities between 

documents has been a well established mechanism and has been one of the most 

commonly used [Zamir, 1997] [Steinbach, 2000].  
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The basic idea is to break the document into distinct words, and then represent the 

whole document with a vector that consists of the frequency of each word. Obviously 

each document has its own vector. By computing the cosine between two vectors that 

representing the two documents, we comfortably say this value is the similarity between 

them and get a quantitative representation rather than casual human observation. When 

two documents are completely identical, the cosine value is 1, and the smaller it is, the 

more differences exist.  

Implementation of above work can be a quite challenging task as it involves 

intensive computing and a process calling “stemming” to distinguish different format of 

the same word such as “like” and “likes”, or “run” and “ran”. Fortunately we are able to 

found a very good Perl module available to public1 to conduct the experiments on our 

data. 

For each cluster, a base URL is chosen and all other URLs are compared against it 

to compute the cosine value using the public available module. The averages of all cosine 

values become the quality of this cluster. We then compute the quality for each cluster in 

a given range. The average of all qualities and the standard deviation can objectively tell 

us the common characteristics of this range, which is what we need to decide where the 

threshold is, and it gives the tangible understanding of cluster quality. 

As in the previous sections, the experiments were performed on five ranges, 0.2, 

0.3, 0.5, 0.7 and 0.9. The results are as following: 

                                                

1 http://www.perl.com/pub/a/2003/02/19/engine.html?page=1 
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Density Range Quality average Standard Deviation 
0.2 ~ 0.3 0.4 0.311 
0.3 ~ 0.4 0.66 0.238 
0.5 ~ 0.7 0.77 0.243 
0.7 ~ 0.8 0.74 0.233 
0.9 ~ 1 0.95 0.011 

Table 7. The Average Quality of Clusters in Each Density Range. 

The chart below can give better visual representation. 
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Figure 12. The Quality Trend and Standard Deviation 

In this context, we see the higher density a cluster has, the higher quality 

(similarity) it also shows. The standard deviation is showing the inversed trend, which 

implies the clusters in the lower density range start to behave too differently. At density 

of 0.9 and above, all cluster members are almost identical. Ideally we would like to see 

all clusters behave this way, but there are only five clusters in this range from our sample 

data.  
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Of all the clusters at density of 0.3 and above, the cosine value (similarity) is 

above 0.5, which is a good choice as threshold following a previous research [Mobasher 

1999]. Also, the sudden change happens at density of 0.3, implying the two groups are 

dramatically different, and also confirmed all the assumptions earlier. We also tested the 

similarity among 100 randomly selected pages from several definitely different groups, 

such as pages from Engineering1, Business2 and CNN website3. The average similarity is 

0.29, with standard deviation of 0.11, which also strengthened the fact that similarity 0.5 

is a comfortable choice. 

To confirm the theory, we performed the following simple experiment on Yahoo4 

and Google5. Using the site specific search feature available from the two engines, we 

performed several simple searches on the UCCS domain. In their result lists, we 

randomly picked five clusters from each engine and calculated the similarity of the top 10 

pages using the same program. For Yahoo, the average similarity is 0.53, with standard 

deviation of 0.16; and for Google, the average similarity is 0.48, with standard deviation 

of 0.08. We noticed that the “similar page” feature in Google can not be limited in one 

site only (i.e. cannot use site specific search and similar page search together). Its results 

have pages from various sites and tend to be less similar.  

Adding all facts together, we finally chose graph density of 0.3 the threshold for 

the clustering algorithm presented in this report. All clusters with density of 0.3 and 

                                                

1 http://eas.uccs.edu/ 
2 http://business.uccs.edu/ 
3 http://www.cnn.com 
4 http://www.yahoo.com 
5 http://www.google.com 
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above have similarity (cosine distance between vectors) of 0.5 or higher, therefore they 

are considered closely related. Lower density clusters are discarded as they may have 

been put in the same virtual folder for other reasons. 

5.6 Subjective evaluation 

After all the computation and processing, when it comes to evaluate how “good” a 

search engine is, there is still nothing better than human eyes. The empty rank numbers 

probably do not mean much to the end users if they fail to find at least several important 

hits on the first or second page of the search results. In this experiment we gather a group 

of 10 people and ask them to answer the ten questions listed in Appendix A. The final 

results are listed below. The scores are on the scale of 1 to 5, 1 being the best. Standard 

deviation is given in parenthesis. Please see the result in Table 8. Subjective comparison 

from ten users. 

 Yahoo Google Needle(CR) Needle (PR) 
Response time (seconds) 0.65 (0.03) 0.26 (0.02) 0.94 (0.1) 0.94 (0.07) 

# of Results 100 ~ 140,000 100 ~ 210,00 8 ~ 3,000 8 ~ 8,000 
First Page Accuracy 1.5 (0.52) 1.8 (0.42) 1.9 (0.31) 1.8 (0.4) 

Second Page Accuracy 2.9 (1.3) 1.1 (0.31) 2.6 (0.84) 2.6 (0.84) 
Order on the first page 1.3 (0.67) 1.5 (0.52) 1.6 (0.52) 1.6 (0.7) 

Order on the second page 3.4 (0.7) 1.4 (0.52) 2.1 (0.31) 2.1 (0.56) 
Related pages 10 ~ 87, 000 10 ~ 50 2 ~ 30,000 N/A 

Related Pages Accuracy 1.5 (0.7) 4.5 (0.52) 1.7 (0.48) N/A 
Overall order of  

importance 
1 (0) 1 (0) 1.5 (0.7) 1.5 (0.7) 

Overall irrelevant hits 26% (0.08) 10% (0.04) 21% (0.08) 21% (0.09) 
Table 8. Subjective comparison from ten users 

It is not Needle’s goal to compete with commercial giants. Based on this primitive 

and subjective evaluation, the Needle search engine performs relatively at the same level 



62 

 

as Yahoo or Google on the UCCS domain, giving the fact it has much smaller problem 

space to deal with, and the fact it is designed and tested on UCCS domain data from the 

beginning. 

More importantly, we observed the two versions of Needle, which run on the two 

different algorithms (Page Rank and Cluster Rank) respectively, perform at the same 

level, which proved the value and design goal of Cluster Rank --- to provide reasonably 

results and the additional feature without performance loss. 
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CHAPTER 6  

LESSONS LEARNED AND PROBLEMS SOLVED 

When started to work on Needle project ten month ago, I only knew a handful of 

empty terms and several simple facts about search engines. As an computer professional, 

I have been using various search engines everyday but never thought about how they 

work and how much efforts their creators have put together to make them work up to 

people’s expectations. In fact, quite often I got mad at search engines because they did 

not give me the correct answer in the first couple of result pages. 

A search engine tries to parse and filter the entire Web, and automatically answer 

any questions that may be brought up by anonymous users. This has proven to be an 

extremely difficult job due to the sheer volume of data and the infinite number of 

possibilities and variations. 

Working the Needle project, I have understood an incredible amount of details 

regarding search engines, from the architecture to all sub-components. Everything I have 

learned in Computer Science, especially Automata, Compiler, Database design, and 

Algorithm analysis, has contributed to the design and implementation process. In fact I 

quickly found myself exhausted and there was simply not enough background knowledge 

to support my research. Thanks to the guidance from Dr Kalita and the committee 

members, I was able to overcome many difficulties and at the same time learn many 

valuable lessons to be discussed in detail below. 
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6.1 Architectural Issues 

My original thought was to create a very thin layer of database handler to transfer 

messages between the real database and all other modules, thinking a level of abstraction 

from the database may help creating a cleaner architecture. The idea was explored and 

abandoned immediately for three reasons: performance, scalability and compatibility. 

Currently there are two modules in the Needle project that are extremely database 

intensive: ranking system and text parser. In future if many users start to use it, the front 

end may become the third one. The speed of database operations has proven to be a 

bottleneck in the ranking calculation already, if another layer is added, the performance 

will only get worse and it could be prone to errors. Considering future growth, it is almost 

impossible to predict what operation each module might need and if the project is 

designed to have a common database handler, the scalability and compatibility can 

quickly become a road block.  

What I would recommend, however, is to create the middleware layer for 

individual modules only when absolutely necessary, such as the case to export the graph 

data to a more efficient format for calculation, or cache front end queries. The lesson here 

is not to follow standard architecture blindly, but to adjust it to fit the need of the 

individual project. 

6.2 Algorithm Choices 

The ranking system is the heaviest part in this project. After all, seeking 

improvements to an already extremely successful algorithm is not easy. Needless to say 
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scientists have already been proposing changes during the past eight years (see Section 

2.3. Improvements Proposed to Page Rank). 

Deciding the idea of clustering is not difficult, but the details after are quite 

challenging. First, I had no almost knowledge of graph theory and clustering algorithms. 

Just to start the learning curve took a great amount of time. Second, it was extremely 

frustrating to find out that traditional clustering algorithms did not perform well in this 

particular context, and the very idea of clustering did not look promising. 

After I stumbled upon the URL based clustering mechanism, the next problem 

was how to prove the whole algorithm was worthy. While the end results seem 

reasonable, I still cannot offer a complete convincing mathematical proof, which is in 

urgent need should the work continues. 

6.3 Database Optimization 

It takes many years to become a database expert and I only want to mention two 

important facts I learned in Needle project.  

The first is to choose the correct data type and pass as few data items as possible 

among different modules. In the implementation of the text parser, a list of keywords 

from each page must be generated and inserted into the database, and later the total 

weight must calculated based on the location they appear. The first implementation was 

to use the keyword as index and pass them back and forth. This was a terrible choice in 

terms of storage space and performance because the handling of strings in a database 

needs much more work than integers. Thanks to the suggestion from fellow students, I 
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switched to creating a dictionary table and only passing the keyword IDs. The 

performance almost doubled while storage space was reduced by half. 

The importance of creating a set of indices can not be reiterated enough. There are 

three tables, URL, Cluster and URLLinkStructure, in the Needle database to store the 

URLs, clusters and the links among them. The clustering ranking system queries these 

tables intensively during the calculation. The first implementation did not have any 

indices on them and the performance was unbearable --- more than 6 hours to calculate 

the Page Rank of 2000 URLs. After two unique indices were created, the speed is 

improved by order of magnitude achieving the numbers today --- a little over 3 hours for 

100,000 URLs. 
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CHAPTER 7  

LIMITATIONS AND FUTURE WORKS 

In the process of designing and implementing the Needle search engine as well as 

the Cluster Rank algorithm, we made exciting progress but also identified many 

limitations that cannot be overcome easily and many virgin areas that we would like to 

cover but simply do not have the bandwidth and knowledge to explore. The following is a 

list of areas to be improved and they are categorized under each basic component of a 

search engine. 

7.1 Crawler 

A primitive implementation was written at very early stage of the project to 

retrieve some data for other modules to work with. While functioning correctly, this 

version rather is plain in terms of features: it is single threaded and does not have 

retrying, repository refreshing, URL hashing, smart checking on dynamic URLs, smart 

recognizing on file types, and avoiding crawler traps, etc. Its speed is also quite 

questionable and can only retrieve about 2000 URLs per hour on a fast network in the 

UCCS lab. Improvements can be made to add the features above and improve its speed. 

Fortunately two UCCS graduate students are already working on this area. 

7.2 Parsers 

Same as the crawler, a simple functional text parser was written to glue the whole 

system together. It only parses certain selected areas of a document such as metadata, 
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title, anchor text, three levels of headers, and a short part at the beginning of each 

paragraph. A complete full text parser with satisfactory performance is in immediate 

need. Image processing is not currently implemented. 

7.3 Ranking System 

Cluster Rank is the most important adventure in this report. While innovative and 

producing reasonable results, the lack of rigid mathematical proof and analysis is the 

weakest point. We see three major areas that need improvements and more works 

discussed below. 

7.3.1 Better Sample Data 

The limited amount and the nature of sample data is a major roadblock in our 

experiments. In Section 5.1 Sample Data, we see the average links among URLs keep 

increasing, indicating certain immatureness of the sample data sets. There are several 

ways to improve the quality of the sample data: 

• Start at a smaller sub-domain of the UCCS domain, such as the 

Engineering website1 and completely crawl all pages in it to get the 

complete representation of this sub-domain. 

• Instead of always starting at the root page of the UCCS domain, each time 

use a different random seed URL, and crawl the same number for URLs 

(for example 10,000) to better reflect the nature of the Internet. 

                                                

1 http://eas.uccs.edu/ 
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• After a very large data set is retrieved (for example one million URLs), 

randomly select a smaller subset (for example 100,000) as the test sample. 

This is similar to the previous approach but not the same in that the 

random selected pages may or may not connect to each other. 

We predict that upon conducting the experiments on a series of better sample 

data, the result will be much more convincing than what is presented in this report. 

7.3.2 Detail Analysis and Result Validation 

As discussed earlier, Page Rank can be viewed as the stationary probability 

distribution over pages induced by a random walk on the Web [Haveliwala 1999]. To 

quantitatively evaluate the relationship between Page Rank and Cluster Rank presented in 

this report, we recommend the future research to create a HMM (Hidden Markov Model) 

to analyze the transition probability among the pages. 

An alternative approach is to implement an automated performance comparison 

mechanism to provide quantitative results, and compare against other commercial search 

engines [Li 2000b]. 

7.3.3 Other Ranking System 

For the past eight years, the Web community has depended on one or another 

static ranking system such as Page Rank. Recently scientists have applied machine 

learning techniques to this area and developed a ranking machine learning algorithm, and 
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achieved higher accuracy [Richardson 2006]. Future work may follow this direction to 

get more exciting results. 

7.4 Front-end 

The current front-end is quite efficient and clean in terms of searching and 

displaying the result. Its behavior and performance, however, is unknown when 

significantly larger amount of data become available. Improvements may not be urgent 

but the following few areas can be investigated: caching of search result to speed up 

duplicated searches, better organizing of the result, and capturing user behavior for future 

research. 

The ability to search multiple words and phrases is also commonly available in 

search engines but yet to be implemented in Needle. 

7.5 Technology 

MySQL is chosen to host the entire engine because it is the most common open 

source database. The implementation language is Perl because of its stellar ability to 

parse text strings, process regular expressions and rich set of modules for various 

purposes. In all other modules except ranking system, this choice proves to be viable and 

efficient. 

However in the computational intensive work such as Page Rank calculation, 

these two technologies to get a little overwhelmed. This module has to make constant 

inquiries to the link information, and even after building indexes, the database querying 
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has always been a big bottleneck. Looking at our performance data in Section 5.3 

Performance Comparison, it is far slower than the work done by other scientists [Kamvar 

2003]. 

Recently scientists have developed a new algorithm to store web graphs by 

exploiting gaps and references at an extremely high compression ratio [Boldi 2005]. For 

instance, they can save and compress a snapshot of about 18,500,000 pages of the .uk 

domain at 2.22 bits per link, and traverse the entire graph in a matter of seconds. 

In future work, it is strongly recommended to export and save link data to this 

system for rank calculation. 
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CHAPTER 8  

CONCLUSION 

The Needle project is a simple yet completely functional search engine currently 

running on University of Colorado Systems. It also has a flexible, scalable and extensible 

architecture for adding new modules as well as improving existing ones. At the time this 

report is written, many other people are already working on the improvements of various 

modules or very close to completion. 

While developing this project, this report also presented a valuable adventure of 

Cluster Rank algorithm, which serves as an alternative of existing Google Page Rank. 

Promising result and an additional feature of “similar pages” can be generated with 

noticeable performance improvement. 

Initial evaluation and comparison are also presented in this report, showing 

satisfying result. However, the definitive comparison between the two algorithms and the 

comprehensive analysis are yet to be made on advanced mathematical models. 

Rising on the horizon of Internet, search engine will no doubt be the focus of 

study for years to come. The Needle project has contributed its share and will continue to 

serve as a solid foundation for future academic works in UCCS. 
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Appendix A Survey Questions to Evaluate Needle 

Perform 20 different searches on Needle (Cluster Rank), Needle (Page Rank), Yahoo 

(site: uccs.edu) and Google (site: uccs.edu). 

1. Response time 

2. Number of results estimated 

3. First Page accuracy (scale 1 to 5, 1 being the best) 

4. Second page accuracy (scale 1 to 5, 1 being the best) 

5. Result Order on the first page (scale 1 to 5, 1 being the best) 

6. Result Order on the second page (scale 1 to 5, 1 being the best) 

7. Click the “similar pages” or “more from this site”, how many hits are returned? 

8. Click the “similar pages” or “more from this site”, and check the first 10 to 20 hits, 

are they truly “related” to the original hit? (scale 1 to 5, 1 being the best) 

9. Overall, are the important pages showing up early? (scale 1 to 5, 1 being the best) 

10. Overall, the percentage in result hits are irrelevant? (Give a percentage) 
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Appendix B Software and hardware environment 

Hardware environment:  
Pentium 4, 2.0G CPU and 1G RAM. 

Software environment: 
Fedora Core 4, MySQL server 5.0.26, Perl v5.8.6. Apache/2.2.3 
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Appendix C Database Scripts 

Creation 
CREATE TABLE MediaType ( 
doc_type_id     TINYINT UNSIGNED NOT NULL auto_increment, 
doc_type        VARCHAR(20) NOT NULL, 
PRIMARY KEY(doc_type_id)); 
 
INSERT INTO MediaType SET doc_type="text"; 
INSERT INTO MediaType SET doc_type="image"; 
INSERT INTO MediaType SET doc_type="OtherBinary"; 
 
CREATE TABLE URL ( 
url_id          INT UNSIGNED NOT NULL auto_increment, 
url             VARCHAR(255) NOT NULL, 
doc_type_id     TINYINT UNSIGNED NOT NULL, 
container_url   INT UNSIGNED, 
title           VARCHAR(255), 
cluster_id   INT UNSIGNED, 
in_plink_count  INT UNSIGNED, 
in_clink_count  INT UNSIGNED, 
INDEX    (url(255)), 
FOREIGN KEY(doc_type_id) REFERENCES  MediaType(doc_type_id), 
FOREIGN KEY(cluster_id) REFERENCES  Cluster(cluster_id), 
PRIMARY KEY (url_id) ); 
 
CREATE TABLE PageRank ( 
url_id          INT UNSIGNED NOT NULL, 
out_link_count  INT UNSIGNED, 
c_date          DATE, 
c_pr            FLOAT ZEROFILL, 
old_date1       DATE, 
old_pr1         FLOAT ZEROFILL, 
old_date2       DATE, 
old_pr2         FLOAT ZEROFILL, 
cal_current_iter    SMALLINT UNSIGNED, 
UNIQUE INDEX (url_id), 
CONSTRAINT FOREIGN KEY(url_id) REFERENCES URL(url_id)  
ON DELETE CASCADE ON UPDATE CASCADE 
); 
 
CREATE TABLE Crawler ( 
url_id          INT UNSIGNED NOT NULL, 
crawled_date    DATE NOT NULL, 
localfullname   VARCHAR(255) NOT NULL, 
size            INT UNSIGNED NOT NULL, 
FOREIGN KEY(url_id) REFERENCES  URL(url_id)); 
 
CREATE TABLE ImageProcessor ( 
url_id                     INT UNSIGNED NOT NULL, 
surrounding_words_before   VARCHAR(255) NOT NULL, 
surrounding_words_after    VARCHAR(255) NOT NULL, 
processed_date             DATE NOT NULL, 
FOREIGN KEY(url_id) REFERENCES  URL(url_id)); 
 
CREATE TABLE URLLinkStructure ( 
link_id         INT UNSIGNED NOT NULL auto_increment, 
from_url_id     INT UNSIGNED NOT NULL, 
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to_url_id       INT UNSIGNED NOT NULL, 
anchor_text     VARCHAR(100), 
update_date     DATE NOT NULL, 
FOREIGN KEY(from_url_id) REFERENCES URL(url_id), 
FOREIGN KEY(to_url_id) REFERENCES URL(url_id), 
UNIQUE INDEX (from_url_id, to_url_id), 
PRIMARY KEY (link_id) ); 
 
CREATE TABLE PageLocation ( 
id              SMALLINT UNSIGNED NOT NULL auto_increment, 
description     VARCHAR(32) NOT NULL, 
htmltag         VARCHAR(32) NOT NULL, 
weight        MEDIUMINT UNSIGNED, 
weight_date     DATE, 
PRIMARY KEY(id)); 
 
CREATE TABLE TextParser ( 
url_id          INT UNSIGNED NOT NULL, 
processed_date  DATE NOT NULL, 
UNIQUE INDEX (url_id), 
FOREIGN KEY(url_id) REFERENCES  URL(url_id)); 
 
CREATE TABLE KeyWordWork ( 
keyword_id      INT UNSIGNED NOT NULL, 
url_id          INT UNSIGNED NOT NULL, 
location_id     SMALLINT UNSIGNED NOT NULL, 
update_date     DATE NOT NULL, 
frequency       MEDIUMINT UNSIGNED, 
UNIQUE INDEX    (keyword_id, url_id, location_id), 
FOREIGN KEY(url_id) REFERENCES  URL(url_id), 
FOREIGN KEY(location_id) REFERENCES  PageLocation(id), 
FOREIGN KEY(keyword_id) REFERENCES Dictionary(id)); 
 
CREATE TABLE KeyWord ( 
keyword_id          INT UNSIGNED NOT NULL, 
url_id              INT UNSIGNED NOT NULL, 
total_weight        INT UNSIGNED NOT NULL, 
total_weight_date   DATE NOT NULL, 
UNIQUE INDEX    (keyword_id, url_id), 
FOREIGN KEY(url_id) REFERENCES  URL(url_id), 
FOREIGN KEY(keyword_id) REFERENCES Dictionary(id)); 
 
CREATE TABLE Dictionary ( 
id              INT UNSIGNED NOT NULL auto_increment, 
word            VARCHAR(32) NOT NULL, 
UNIQUE INDEX (word(32)), 
PRIMARY KEY (id)); 
 
CREATE TABLE Cluster ( 
cluster_id          INT UNSIGNED NOT NULL,  
base_url            VARCHAR(255) NOT NULL,  
cluster_rank        FLOAT ZEROFILL,  
cluster_rank_date   DATE,  
out_link_count      INT UNSIGNED,  
in_link_count       INT UNSIGNED,  
cal_last_update     DATE,  
cal_reserved_by     VARCHAR(255),  
cal_current_iter    SMALLINT UNSIGNED,  
old_cr1             FLOAT ZEROFILL,  
old_cr1_date        DATE,  
old_cr2             FLOAT ZEROFILL,  
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old_cr2_date        DATE,  
prop_sec_cluster_id INT UNSIGNED,  
PRIMARY KEY         (cluster_id),  
cluster_size        INT UNSIGNED, 
FOREIGN KEY(prop_sec_cluster_id) REFERENCES  
SecondLvlClusterWork(sec_cluster_id) 
); 
 
CREATE TABLE SecondLvlClusterWork ( 
sec_cluster_id          INT UNSIGNED NOT NULL, 
sec_base_url            VARCHAR(255) NOT NULL, 
graph_density           FLOAT ZEROFILL, 
PRIMARY KEY         (sec_cluster_id) 
); 
 
CREATE TABLE PageRankByCluster ( 
url_id          INT UNSIGNED NOT NULL, 
c_date          DATE, 
c_prc            FLOAT ZEROFILL, 
old_date1       DATE, 
old_prc1         FLOAT ZEROFILL, 
old_date2       DATE, 
old_prc2         FLOAT ZEROFILL, 
UNIQUE INDEX (url_id), 
CONSTRAINT FOREIGN KEY(url_id) REFERENCES URL(url_id)  
ON DELETE CASCADE ON UPDATE CASCADE 
); 
 
CREATE TABLE SearchHistory ( 
ip_address      VARCHAR(16) NOT NULL, 
host_name       VARCHAR(255), 
request_time    DATE,  
search_words    VARCHAR(255), 
page_number     INT UNSIGNED 
); 
 
 
 
CREATE OR REPLACE VIEW vwPRCRComparison  
AS  
SELECT PageRank.url_id, URL.cluster_id, URL.url, PageRank.c_pr, 
PageRankByCluster.c_prc, PageRank.c_pr/PageRankByCluster.c_prc ratio  
FROM PageRank, PageRankByCluster, URL 
WHERE PageRank.url_id = PageRankByCluster.url_id and PageRank.url_id = 
URL.url_id  
ORDER BY PageRank.url_id; 
 
CREATE OR REPLACE VIEW vwURLCountInCluster 
AS  
SELECT COUNT(url_id) size, cluster_id FROM 
URL  
where cluster_id is not null GROUP BY cluster_id; 
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Cleaning 
DROP VIEW vwPRCRComparison; 
DROP VIEW vwURLLinkCluster; 
DROP TABLE MediaType ; 
DROP TABLE URL; 
DROP TABLE Crawler; 
DROP TABLE ImageProcessor; 
DROP TABLE URLLinkStructure; 
DROP TABLE Page Rank; 
DROP TABLE PageLocation; 
DROP TABLE TextParser; 
DROP TABLE KeyWord; 
DROP TABLE KeyWordWork; 
DROP TABLE Dictionary; 
DROP TABLE Page RankByCluster; 
DROP TABLE SecondLvlClusterWork; 
DROP TABLE Cluster; 
DROP TABLE SearchHistory; 
commit; 
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Appendix D Installing the required Perl Modules 

Several Perl modules being used in Needle program may not be available in a 

standard Perl installation: 

• Bundle::XML 

• Tie::IxHash 

• Time::HiRes 

• HTML::TokeParser 

These modules can be installed by using “cpan” command while logging in as the 

root user.  
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Appendix E Execution Steps 

1. Configuration:  

Almost every aspect of the Needle search engine is controlled by the 

Config.xml, which has six major sections: DB, crawler, textparser, 

ImageProcessing, RankingSystem and FrontEnd. All settings are 

commented with notes to explain their purposes.  

2. Crawling: 

perl unicrawler.pl 

3. Ranking (may choose either one, or both): 

a. Original Page Rank: perl Page Rank.pl 

b. Cluster Rank:  

perl clustering.pl 

perl clusterrank.pl 

4. Text parsting: 

perl textparser.pl 
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Appendix F Using the search engine 

1. Enable Perl CGI configuration for the Apache web server. 

2. To search the Cluster rank result, use: 

http://<hostname > /cgi-bin/search.pl 

3. To search the Original Page Rank, use: 

 http://<hostname > /cgi-bin/oldsearch.pl 


