

DESIGN AND IMPLEMENTATION OF A SEARCH ENGINE WITH THE

CLUSTER RANK ALGORITHM

by

YI ZHANG

M.S., Colorado Technical University, 2000

A Thesis Submitted to the Graduate Faculty of the

University of Colorado at Colorado Springs

in Partial Fulfillment of the

requirements for the degree of

Master of Science

Department of Computer Science

2006

ii

© Copyright By Yi Zhang 2006

All Rights Reserved

- iii -

This thesis for the Master of Science degree by

Yi Zhang

has been approved for the

Department of Computer Science

by

Dr. Terry Boult

Dr. C. Edward Chow

Advisor: Dr. Jugal K. Kalita

Date __

- iv -

ACKNOWLEDGEMENTS

Many people have shared their time and expertise to help me accomplish my

thesis. First I would like to sincerely thank my advisor, Dr. Jugal K. Kalita for his

guidance and help. And also many thanks to Dr. Terry Boult and Dr. C. Edward Chow

for their supports.

I wish to pay special tributes to the fellow engineers, Sonali Patankar and Sunil

Bhave, who provided a large set of sample data and make many constructive suggestions.

Finally, I need to acknowledge that all the friends in the research team are the

great help. Thank you!

- v -

DESIGN AND IMPLEMENTATION OF A SEARCH ENGINE WITH THE

CLUSTER RANK ALGORITHM

by

Yi Zhang

(Master of Science, Computer Science)

Thesis directed by Associate Professor Dr. Jugal K. Kalita

Department of Computer Science

Abstract

In this report, I present the design and implementation of a search engine, named

Needle. The search engine is designed to handle both text and image search, with a

flexible architecture that will facilitate scaling up. Each module is independent of each

other and therefore swappable to improve its own functionality without affecting the

whole system. More importantly, a new algorithm, Cluster Rank, has been designed and

fully implemented to achieve similar goal as that of the existing Page Rank [Brin, 1998]

algorithm while providing similar performance and an additional feature for managing

similar pages in search result.

- vi -

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...IV

TABLE OF CONTENTS..VI

FIGURES ..IX

TABLES ... X

CHAPTER 1 INTRODUCTION ... 11

1.1 THE BASIC COMPONENTS OF A SEARCH ENGINE.. 11

1.2 SEARCH ENGINES AVAILABLE TODAY.. 13

1.3 ISSUES IN SEARCH ENGINE RESEARCH.. 14

CHAPTER 2 PAGE RANK RESEARCH ... 16

2.1 THE ORIGINAL PAGE RANK ALGORITHM .. 16

2.2 PAGE RANK CALCULATION PSEUDO CODE AND COMPLEXITY.. 18

2.3 IMPROVEMENTS PROPOSED TO PAGE RANK ... 19

CHAPTER 3 DESIGN AND ANALYSIS OF THE CLUSTER RANK ALGORITHM.................. 22

3.1 MOTIVATION .. 22

3.2 DESIGN GOALS ... 23

3.3 CLUSTER RANK ALGORITHM ... 23

3.3.1 Clustering .. 24

3.3.1.1 Traditional clustering algorithms .. 24

3.3.1.2 Non-Link Based Clustering ... 25

3.3.1.3 URL Based Clustering for the Web .. 25

3.3.1.4 Clustering threshold ... 26

3.3.2 Calculating the Cluster Rank... 26

- vii -

 vii

3.3.3 Distributing Cluster Rank to its members... 27

3.3.4 The Impact of Adding New Pages.. 28

3.3.5 The Complexity Analysis .. 34

3.3.5.1 First Level Clustering... 34

3.3.5.2 Second Level Clustering .. 35

3.3.5.3 Cluster Rank Calculation ... 36

3.3.5.4 Rank Distribution ... 36

3.3.5.5 Total Complexity.. 37

CHAPTER 4 DESIGN OF THE NEEDLE SEARCH ENGINE.. 38

4.1 DATABASE SCHEMA... 38

4.2 COMPONENTS ... 43

CHAPTER 5 TEST RESULTS AND PERFORMANCE ANALYSIS.. 45

5.1 SAMPLE DATA .. 45

5.2 RESULT COMPARISON .. 47

5.2.1 Top ranked URLs in each system .. 47

5.2.2 The Rank Numbers in Each System ... 49

5.3 PERFORMANCE COMPARISON .. 52

5.4 CLUSTER RANK CALCULATION BREAK DOWN... 54

5.5 CHOICE OF DENSITY THRESHOLD.. 55

5.5.1 Performance.. 57

5.5.2 Cluster Quality.. 57

5.6 SUBJECTIVE EVALUATION.. 61

CHAPTER 6 LESSONS LEARNED AND PROBLEMS SOLVED.. 63

6.1 ARCHITECTURAL ISSUES.. 64

6.2 ALGORITHM CHOICES .. 64

6.3 DATABASE OPTIMIZATION... 65

- viii -

 viii

CHAPTER 7 LIMITATIONS AND FUTURE WORKS .. 67

7.1 CRAWLER.. 67

7.2 PARSERS.. 67

7.3 RANKING SYSTEM .. 68

7.3.1 Better Sample Data... 68

7.3.2 Detail Analysis and Result Validation... 69

7.3.3 Other Ranking System .. 69

7.4 FRONT-END... 70

7.5 TECHNOLOGY ... 70

CHAPTER 8 CONCLUSION .. 72

BIBLIOGRAPHY.. 73

APPENDIX A SURVEY QUESTIONS TO EVALUATE NEEDLE.. 81

APPENDIX B SOFTWARE AND HARDWARE ENVIRONMENT .. 82

APPENDIX C DATABASE SCRIPTS .. 83

APPENDIX D INSTALLING THE REQUIRED PERL MODULES.. 87

APPENDIX E EXECUTION STEPS .. 88

APPENDIX F USING THE SEARCH ENGINE... 89

- ix -

 ix

FIGURES

Figure 1. An extremely simple Web and the Page Rank of each URL 29

Figure 2. A new page is added to one Website, but not the other 29

Figure 3. Two new pages are added to one Website, but not the other 30

Figure 4. An extremely simple Web and the new ranks ... 31

Figure 5. A new page is added to one Website, and the new ranks................................. 32

Figure 6. Two new pages are added to one Website, and the new ranks......................... 34

Figure 7. Basic Architecture of the Needle search engine .. 44

Figure 8: The performance chart between Page Rank and Cluster Rank 53

Figure 9. Percentage Difference .. 54

Figure 10, Density distribution of the proposed second level clusters 56

Figure 11. The Performance of second level clustering at different thresholds............... 57

Figure 12. The Quality Trend and Standard Deviation... 59

- x -

 x

TABLES

Table 1. Statistics of URLs and Clusters ... 45

Table 2. Top 20 pages in Original Page Rank (Crawled in September, 2006) 48

Table 3. Top 20 pages in Cluster Rank (Crawled in September, 2006) 49

Table 4. Seven rounds of comparison between Page Rank and Cluster Rank................. 53

Table 5. Cluster Rank time break down for each step .. 55

Table 6. The distribution of Clusters on different density range..................................... 56

Table 7. The Average Quality of Clusters in Each Density Range. 59

Table 8. Subjective comparison from ten users.. 61

11

CHAPTER 1

INTRODUCTION

Search Engine technology was born almost at the same time as the World Wide

Web [Wall 2005a], and has certainly improved dramatically over the past decade and

become an integral part of everybody’s Web browsing experience, especially after the

phenomenal success of Google1.

At the first glance, it appears that Search Engines have been studied very well,

and many articles and theories including the paper by the founders of Google [Brin 1998]

have been published to describe and analyze their internal mechanisms. However, in this

report the author will demonstrate that there are many unsolved problems in Search

Engines as well as unrevealed implementation details, either due to the immaturity of this

technology or simply the business nature of their owners.

1.1 The Basic Components of a Search Engine

All search engines includes:

1. A Web crawler.

2. A parser.

3. A ranking system.

4. A repository system.

1 http://www.google.com

12

5. A front-end interface.

These components are discussed individually below.

The starting point is a Web Crawler (or spider) to retrieve all Web pages: it

simply traverses the entire Web or a certain subset of it, to download the pages or files it

encounters and save for other components to use. The actual traversal algorithm varies

depends on the implementation; depth first, breadth first, or random traversal are all

being used to meet different design goals.

The parser takes all downloaded raw results, analyze and eventually try to make

sense out of them. In the case of a text search engine, this is done by extracting keywords

and checking the locations and/or frequencies of them. Hidden HTML tags, such as

KEYWORDS and DESCRIPTION, are also considered. Usually a scoring system is

involved to give a final point for each keyword on each page.

Simple or complicated, a search engine must have a way to determine which

pages are more important than the others, and present them to users in a particular order.

This is called the Ranking System. The most famous one is the Page Rank Algorithm

published by Google founders [Brin 1998].

A reliable repository system is definitely critical for any application. Search

engine also requires everything to be stored in the most efficient way to ensure maximum

performance. The choice of database vendor and the schema design can make big

difference on performance for metadata such as URL description, crawling date,

keywords, etc. More challenging part is the huge volume of downloaded files to be saved

before they are picked up by other modules.

13

Finally, a front-end interface for users: This is the face and presentation of the

search engine. When a user submits a query, usually in the form of a list of textual terms,

an internal scoring function is applied to each Web page in the repository [Pandey 2005],

and the list of result is presented, usually in the order or relevance and importance.

Google has been known for its simple and straight forward interface, while some most

recent competitors, such as Ask.com1, provide much richer user experience by adding

features like preview or hierarchy displaying.

1.2 Search Engines Available Today

Other than well-known commercial products, such as Google2, Yahoo3 and

MSN4, there are many open source Search Engines, for example, ASPSeek5, BBDBot6,

Datapark Search7, and ht://Dig8. Evaluating their advantages and disadvantages is not the

purpose of this thesis, but based on reviews and feedbacks from other people [Morgan

2004], they are either specialized only in a particular area, or not adopting good ranking

algorithms, or have not been maintained for quite a while.

Another important fact is that while most current search engines are focused on

text, there is an inevitable trend that they are being extended to the multi-media arena,

including dynamic contents, images, sounds and others [Wall 2005b]. None of the open

1 http://www.ask.com
2 http://www.google.com
3 http://www.yahoo.com
4 http://www.msn.com
5 http://www.aspseek.org/
6 http://www.searchtools.com/tools/bbdbot.html
7 http://www.dataparksearch.org/
8 http://www.htdig.org/

14

source engines listed above has multimedia searching modules, and none of them is

flexible enough to add new ones without significant effort.

1.3 Issues in Search Engine Research

Design of Web crawlers: Web crawler, also known as robot, spider, worm, and

wanderer, is no doubt the first part of any search engine and designing a web crawler is a

complex endeavor. Due to the competitive nature of the search engine business, there are

very few papers in the literature describing the challenges and tradeoffs inherent in web

crawler design [Heydon 1999].

Page ranking system: Page Rank [Brin, 1998] is a system of scoring nodes in a

directed graph based on the stationary distribution of a random walk on the directed

graph. Conceptually, the score of a node corresponds to the frequency with which the

node is visited as an individual strolls randomly through the graph. Motivated largely by

the success and scale of Google’s Page Rank ranking function, much research has

emerged on efficiently computing the stationary distributions of Web-scale Markov

chain, the mathematical mechanism underlying Page Rank. The main challenge is that the

Web graph is so large that its edges typically only exist in external memory and an

explicit representation of its stationary distribution just barely fits in to main memory

[McSherry 2005].

Repository freshness: A search engine uses its local repository to assign scores to

the Web pages in response to a query, with the implicit assumption that the repository

closely mirrors the current Web [Pandey 2005]. However, it is infeasible to maintain an

15

exact mirror of a large portion of the Web due to its considerable aggregate size and

dynamic nature, combined with the autonomous nature of Web servers. If the repository

is not closely synchronized with the Web, the search engine may not include the most

useful pages, for a query at the top of the result list. The repository has to be updated so

as to maximize the overall quality of the user experience.

Evaluating the feedback from users: Two mechanisms have been commonly used

to accomplish this purpose: Click Popularity and Stickiness [Nowack 2005]. Click

Popularity calculates how often a record in the returned list is actually clicked by the

user, and promote/demote its rank accordingly. Stickiness assumes the longer an end user

stays on a particular page, the more important it must be. While being straightforward,

the implementation of these two algorithms can be quite error prone. The data collecting

the most difficult part, as the server has to uniquely identify each user. This has been

further complicated by the fact that many people want to manually or programmatically

promote their own Web sites by exploiting the weaknesses of certain implementations

[Harpf 2005].

Two graduate students at UCCS [Jacobs 2005][Kodavanti 2005] have been

working on an Image search engine and a text search engine, respectively. Part of their

work is to adopt the published Page Rank algorithm [Brin 1998], and the results are quite

promising. However, giving the experimental nature of these two projects, they are not

suitable for scaling up and not mature enough to serve as a stable platform for future

research. A complete redesign and overhaul is needed.

16

CHAPTER 2

PAGE RANK RESEARCH

2.1 The Original Page Rank algorithm

Google is known for its famous Page Rank algorithm, a way to measure the

importance of a Web page by counting how many other pages link to it, as well as how

important those page themselves are.

The published Page Rank algorithm can be described in a very simple manner:

PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))

In the equation above:

PR(Tn): Each page has a notion of its own self-importance. That’s “PR(T1)” for

the first page in the web all the way up to PR(Tn) for the last page.

C(Tn): Each page spreads its vote out evenly amongst all of its outgoing links.

The count, or number, of outgoing links for page 1 is C(T1), C(Tn) for page n, and so on

for all pages.

PR(Tn)/C(Tn): if a page (page A) has a back link from page N, the share of

the vote page A gets is PR(Tn)/C(Tn).

d: All these fractions of votes are added together but, to stop the other pages

having too much influence, this total vote is "damped down" by multiplying it by 0.85

(the factor d). The definition of d also came from an intuitive basis in random walks on

graphs. The idea is that a random surfer keeps clicking on successive links at random, but

17

the surfer periodically “gets bored” and jumps to a random page. The probability that the

surfer gets bored is the dampening factor.

(1 - d): The (1 – d) bit at the beginning is a probability math magic so the

"sum of all Web pages" Page Rank is 1, achieved by adding the part lost by the d(....)

calculation. It also means that if a page has no links to it, it still gets a small PR of 0.15

(i.e. 1 – 0.85).

At the first glance, there is a paradox. In order to calculate the PR of page A, one

must first have the PR of all other pages, whose Page Rank is calculated in the same way.

The algorithm solves it by first assuming all pages to have the same PR of 1, and at each

iteration PR is propagated to other pages until all PR stabilize to within some threshold.

Because the large dataset PR algorithm deals with, measuring the stabilization of

the PRs can be a difficult job itself. Research indicates that in some cases PR can be

calculated in as few as 10 iterations [Haveliwala 1999], or it may take more than 100

iterations [Kamvar 2003].

Another important fact is that when a page does not have outgoing links, the

C(Tn), this page becomes a dangling URL, and must be removed from the whole

picture. If such “pruning” was not done, the dangling may have critical implications in

terms of computation. First, Page Rank values are likely to be smaller than they should

be, and might become all zero in the worst case. Second, the iteration process might not

converge to a fixed point [Kim 2002].

18

2.2 Page Rank Calculation Pseudo Code and Complexity

Based on the discussion earlier, we can easily write the pseudo code to calculate

the Page Rank. Assume it converges after 40 iterations.

Initialize: Set all page to have initial page rank of 1
Loop 40 iterations

Loop on all pages (M)
Current page is A
Get all pages that link to A (N back links)
Loop on N

PR(A) = PR(A) + d * PR(Tn) / C(Tn)
End of loop on back links
Save PR(A) to database

End of loop on all pages (M)
End of loop 40 iterations

Observing the pseudo code above, there are two nested loops: the outer loop

processes all pages (M), and the inner one loops over the number of links (votes) to each

page. Therefore the overall complexity can be written as O(MN), where M is the total

number of pages and N is the average in-degree (incoming links) on a page.

The process can also be expressed as the following eigenvector calculation,

providing useful insight into the concept of Page Rank. Let M be the square, stochastic

matrix corresponding to the directed graph G of the Web, assuming all nodes in G have at

least one outgoing edge. If there is a link from page j to page i, let the matrix entry mij

have the value 1/Nj . Let all other entries have the value 0. Also let Rank(p) vector

represents the importance (i.e., PageRank) of page p. Every iteration corresponds to the

matrix-vector multiplication M times Rank(p). Repeatedly multiplying Rank(p) by M

yields the dominant eigenvector Rank* of the matrix M. Because M corresponds to the

stochastic transition matrix over the graph G, Page Rank can be viewed as the stationary

19

probability distribution over pages induced by a random walk on the Web [Haveliwala

1999].

2.3 Improvements Proposed to Page Rank

Ever since the original Page Rank algorithm was published [Brin 1998], computer

scientists have made numerous attempts to improve its performance [Haveliwala 1999]

[Arasu 2001] [Chen 2002] [Kim 2002] [Lee 2003] [Kamvar 2003].

The research can be roughly divided into three categories:

• Calculate the dominant eigenvector directly and try to swap certain part of

the matrix between main memory and storage media [Haveliwala 1999]

[Arasu 2001] [Chen 2002].

• Propose slight modification or improvements over the original algorithm

[Kim 2002] [Lee 2003] [Kamvar 2003] [Gupta 2003] to achieve same or

similar results in a more efficient way.

• At each step, rather than communicate their current probability values,

nodes only the changes in probability value, resulting in much better

performance especially during updates [McSherry 2005].

• Parallel calculation in a distributed system [Wang 2004].

These researchers have achieved very impressive results. Kamvar [Kamvar 2003],

for example, was able to finish the calculation of 280,000 nodes with 3 million links in

about 300 minutes on a single machine without any parallel processing.

20

The research done by Gupta and Acharyya [Gupta 2003] is very similar to the

approach presented in this report and therefore is worth special attention. They modified

the graph-independent part of the Page Rank surfer’s behavior so that it does not visit

pages arbitrarily, instead the surfer is likely to select pages in the same cluster and

exhaust them before moving to a different cluster depending on the current page. The

rank of a page now depends not only on its in-links but also by the block rank of the

cluster to which it belongs; this allows fresh pages to be highly ranked provided they are

members of “good clusters”.

Their algorithm is summarized in these steps:

• Cluster the graph based on some clustering algorithm. The report did not

give any specifics here, but they did mention it is link based, not content

based.

• Compute the local Page Rank for each cluster.

• Compute the Block Transition Matrices and the Block Rank Vector

• Merge the result from steps 2 and 3 above to get the final global Page

Rank.

They performed experiments on two sets of URLs. One the set is about 30,000

pages in utexas.edu domain, and the other is a subset of CORA dataset consisting of the

citation graph of 11754 research papers in the “Artificial Intelligence” category

[McCallum 2000]. On first set of data, the results produced by the modified algorithm

and the original Page Rank differ only by 5%, while on the second set they are

21

completely different in that the top pages are dominated by the pages with high block

rank in the modified algorithm. The performance (wall clock time) results were not given

in either of the experiments.

22

CHAPTER 3

DESIGN AND ANALYSIS OF THE CLUSTER RANK ALGORITHM

3.1 Motivation

After the very first round of design and implementation of the Needle search

engine on the UCCS domain, I immediately noticed that two pieces that need

improvements. First, the Page Rank calculation always took very long time (roughly 4

hours to process 100,000 pages), and second, the search results were not very pretty from

end user perspective in that many consecutive result pages were occupied by similar

URLs. For example, in the UCCS domain there are many calendar links1,2, which present

several years of events on a calendar. Naturally all these pages are dynamically generated

and they all have almost identical Page Rank. When users search the word “event” or

“calendar”, they are presented two or three pages of almost identical URLs and other

meaningful hits are very difficult to discover.

Famous search engines solve the second problem by grouping them together, and

provide a separate link such as “Similar pages” on Google and “More from this site” by

Yahoo. However the implementation details are not published due to their business

nature.

1 http://tle2.uccs.edu/webcal/month.php
2 http://easweb.uccs.edu/CS/calendar.php

23

3.2 Design Goals

Attempting to solve these two problems and inspired by previous research, I

designed the Cluster Rank algorithm to speed up the Page Rank calculation while

providing the extra feature of grouping similar pages together.

It is not my goal to produce an identical mathematical match to the original Page

Rank algorithm, which will be used as comparison baseline nevertheless, but to provide

reasonable importance measurements of the URLs as well as a grouping feature that the

end user can enjoy.

Keeping the goals in mind, I have taken various intuitive shortcuts and heuristic

approaches without mathematical proofs.

3.3 Cluster Rank algorithm

The Cluster Rank algorithm, which is similar to the research done by Gupta and

Acharyya [Gupta 2003], has the following steps:

1. Group all pages into clusters.

a. Perform first level clustering for dynamically generated pages
b. Perform second level clustering on virtual directory and graph density

2. Calculate the rank for each cluster with the original Page Rank algorithm.
3. Distribute the rank number to its members by weighted average.

Each step is discussed in detail in the following sections.

24

3.3.1 Clustering

The first choice is to find a good clustering algorithm and it has to be link-based,

as parsing each crawled page and finding the similarities among all of them is almost

computationally impossible.

3.3.1.1 Traditional clustering algorithms

Several traditionally well-defined clustering algorithms were considered and even

briefly experimented, including hierarchical clustering, K-means clustering[Hartigan

1979] and MCL (Markov Cluster Algorithm) [Dongen. 2000]. The most important reason

that they were not selected, other than potential performance and complexity reasons, is

they are too generic in this giving context. These algorithms cluster generic graph whose

nodes and links do not have any inherited meaning. In our problem space, however, the

links and the URLs themselves have a lot to tell us. For example, when we see a group of

URLs like these:

A. http://www.uccs.edu/~csgi/index.shtml

B. http://office.microsoft.com/en-us/default.aspx

C. http://office.microsoft.com/en-us/assistance/default.aspx

D. http://office.microsoft.com/en-us/assistance/CH790018071033.aspx

We can immediately tell that URL A belongs to the UCCS domain and it has

nothing to do with the other three. Without even looking at the links among them, we can

make an educated guess that URL A should not be in the same cluster as the other three.

In fact they should never belong to the same cluster, no matter how many links are there

between them. This is a critical point as our clustering algorithm must not be twisted too

easily by a malicious attempt where someone makes numerous links to other important

pages from a new page just created.

25

Similarly, examine the following group:

A. http://tle2.uccs.edu/webcal/month.php?&year=2006&month=10

B. http://tle2.uccs.edu/webcal/month.php?&year=2006&month=09

C. http://tle2.uccs.edu/webcal/month.php?&year=2006&month=08

We can make a reasonable assumption that they are quite similar, again without

looking at the links.

The decision of not using generic clustering algorithms was made because they

may need a lot of calculation to reveal an already obvious fact, and they have the

potential to be misled by excessive links.

3.3.1.2 Non-Link Based Clustering

Previous research [Zamir, 1997] has also explored the possibility of other

document content based clustering mechanism. The Word-Intersection Clustering (Word-

IC) presented in the research had O(n2) complexity and it is too slow for users for any

Web with substantial size.

3.3.1.3 URL Based Clustering for the Web

Considering the success of the Page Rank system, one definitive factor is that it

captured the thinking of a Web page creator --- people make links to other pages only

when they think those pages are important. After congregating the thoughts of millions of

minds together, the importance of a page is ultimately presented in Page Rank number.

While clustering Web URLs together, we can take advantage of a similar

observation by attempting to capture the mind of Webmasters, because more than likely

people put similar pages into same virtual directory, or generate them dynamically from

same base by given different parameters. This fact is quite simple and other people have

26

been using it to manage personal navigation space [Takano 2000], or define logical

domains [Li 2000a], however it has been ignored by researchers who only look at the

Web graph from a pure mathematical perspective.

The intuitive URL based clustering algorithm in this report has two stages:

1) First level clustering: simply cluster all dynamically generated pages

together without any calculation;

2) Second level clustering has three steps:

a. Calculate a set of proposed clusters by grouping URLs in the same

virtual directory.

b. Calculate the graph density of each proposed cluster.

c. If the density passes a preset threshold t, approve the cluster,

otherwise, reject it.

3.3.1.4 Clustering threshold

In this particular context, the threshold is concluded from the experimental result:

All details and reasoning are discussed later in this report, section 5.5 Choice of Density

Threshold.

3.3.2 Calculating the Cluster Rank

In this step, the original Page Rank algorithm is executed at cluster level, as if

each cluster is an indivisible unit.

27

Before applying the published algorithm, preparation is needed --- the link

information between individual URLs must be congregated to cluster level. Other than

this programming effort, there is nothing theoretical new or challenging.

3.3.3 Distributing Cluster Rank to its members

While other researchers [Gupta 2003] choose to calculate Local Page Rank within

the cluster, the distribution algorithm here is again a heuristic one, taking performance as

a determinant factor.

Let’s review the very spirit of the Page Rank system --- the importance of a page

is determined by how many links it receives, and how important the voting pages are. At

this stage, the Cluster Rank (importance) is already calculated, and what is required is to

distribute them to the member pages based on the number of links. In another

straightforward term, the question becomes --- if a cluster has rank of X because it has

total of Y incoming links as a group, what is the individual contribution of each member

page?

Naturally, weighted average is chosen to answer this question: PR = CR * Pi/Ci.

The notations here are:

PR : The rank of a member page

CR : The cluster rank from previous stage

Pi : The incoming links of this page

Ci : Total incoming links of this cluster.

28

3.3.4 The Impact of Adding New Pages

While the Cluster Rank algorithm presented above is quite simple and

straightforward, it can prevent a malicious way of promoting Web sites. Website

promotion is not the focus of this report, but we can see that simply adding a new page

and re-arranging internal structure will not increase the total rank of a Website. Instead

this attempt might slightly decrease the rank of each page, as the Cluster rank is already

determined at a higher level, and the more pages share it, the smaller piece each page

gets.

To further understand the impact of adding new pages, let’s see the following

example – assume there are two Websites, each of which has two pages (a title page and

a content page) linking to each other, and the two title pages also link to each other.

The Page Rank numbers are calculated by WebWorkShop1, one of many PR

calculators available to public.

This extremely simple Web described above and the Page Rank of each URL is

illustrated in Figure 1:

1 http://www.webworkshop.net/Page Rank_calculator.php

29

Figure 1. An extremely simple Web and the Page Rank of each URL

These numbers are expected as the title pages (A and B) receive more links than

the content page. Because the two websites have exactly the same structure, all numbers

are symmetric as well.

When the Webmaster of A and C adds another page E, and makes link to the

existing title page A, the first Website grows bigger. The graph and Page Ranks become:

Figure 2. A new page is added to one Website, but not the other

Now, the title page A of the first Website has higher rank than its counterpart.

This is also “as designed” in Page Rank system because:

1) Each page has a minimal Page Rank, including the page just added (E).

C

B

D

A
PR of each URL:

A: 1.79
B: 1.23
C: 0.66
D: 0.67
E: 0.66

E

C

B

D

A PR of each URL:

A: 1.3
B: 1.3
C: 0.7
D: 0.7

30

2) The more incoming links a page receives, the higher its rank is.

In the example above, page A naturally becomes the most important page of all

and notice page B is “downgraded” a little from 1.3 to 1.23.

This behavior is even more obvious when we add yet another new page to the first

Website:

Figure 3. Two new pages are added to one Website, but not the other

Notice the title page B is downgraded even further and it only has about half of

the rank of A. The Webmaster of the first site has successfully promoted his site without

touching anything outside.

From the perspective of the Page Rank algorithm, everything is quite reasonable

as the first Website is much bigger, and it very likely has a lot more to offer. On the real

Internet, this way of promoting may not be as effective as in our extremely simplified

example because of the sheer volume of existing links and Websites and the way they

C

B

D

A

PR of each URL:

A: 2.26
B: 1.18
C: 0.63
D: 0.65
E: 0.63
F: 0.63

E

F

31

intertwine together, however it is still a potential weakness that could be exploited in

many ways.

In the Cluster Rank system presented in this report, the starting point is different,

but not too far off proportionally:

Figure 4. An extremely simple Web and the new ranks

The new ranks are calculated by following the new algorithm presented earlier:

1) Clustering: the two websites both have density of 1, so they are treated as

two clusters.

2) Cluster Rank: there are only two clusters linking to each other, therefore

each has Cluster Rank of 1.

3) Distribution: Page A receives 2 incoming links, and page C has 1.

Therefore the rank of A is 2 * (1/3) = 0.66, and the rank of C is 0.33 and

same logic applies to B and D.

An important fact is that although all pages have much smaller number than in the

original Page Rank scheme, they still maintain a roughly equal proportional relation at

C

B

D

A
Rank of each
URL in the new
system:

A: 0.67
B: 0.67
C: 0.33
D: 0.33

32

2:1. The numbers are smaller because there are less “indivisible units”, but if we multiply

all ranks by 2 (the average number of pages within a cluster), the end result is rather close

to the original algorithm.

After performing the same operation of adding a new page to the first website, the

numbers become:

Figure 5. A new page is added to one Website, and the new ranks

Let’s walk through the algorithm again to verify the numbers:

1) Clustering: The first site has density of 0.67 and the second one has 1.

Two clusters are generated.

2) Cluster Rank: The same as before. Each cluster has rank of 1.

3) Distribution: Page A receives 3 incoming links, and each of page C and E

only has 1. Therefore the rank of A is 3 * (1/5) = 0.6, while C and E each

ends up with 0.2. Notice B and D has identical rank as before as nothing

changes for the second Website.

C

B

D

A
Rank of each
URL in the new
system:
A: 0.6
B: 0.67
C: 0.2
D: 0.33
E: 0.2

E

33

Comparing the numbers from Figure 2, we can see the following facts:

• The proportional relation remains the same --- roughly 3:1 between A and

its children and 2:1 between B and D.

• B and D are not affected because of this operation.

• All pages from the first website are slightly downgraded because the new

page has not drawn any new attention from outside, and it must share the

limited resource, the rank of the whole cluster!

One may argue whether the new scheme is more “fair” than the original; however

it is quite obvious that if meaningless new pages are added, it does automatically help the

whole Website. Instead, a slight penalty is imposed if the new page is not important

enough for other Webmasters to add new links to the group.

Here is the result of adding two pages. The same conclusion can be made without

going through the routine calculations, shown in Figure 6. Two new pages are added to

one Website, and the new ranks.

The analysis above illustrates the benefit of calculating ranks at a higher level and

minimizing the impact of individual pages. Again, we must admit that the real Web is

much more complicated and adding several pages or even several hundreds of pages may

not make any noticeable ripples. A thorough evaluation of the differences of these two

algorithms, and how do they perform in various scenarios is far beyond the grasp of

casual observations and the scope of this report.

34

Figure 6. Two new pages are added to one Website, and the new ranks.

3.3.5 The Complexity Analysis

3.3.5.1 First Level Clustering

The purpose of first level clustering is to group all dynamically generated pages

and bookmarks together. Its pseudo code looks like:

Loop on all pages (M)
Strip the URL (http://website/main.php?id=123) to get a bare URL
http://website/main.php
*Check if the bare URL is in the cluster table
Yes – Mark the URL to have an existing cluster ID
No - Insert the bare URL to cluster table to create a cluster and
mark the URL to have the new cluster ID

End loop

The theoretical Algorithm Complexity is O(M2) because the step of checking the bare

URL, marked by (*), could be a linear function on M. However, in practice this step is

implemented with a simple SQL SELECT statement, and the search time does not

increase in a linear fashion because of the optimization of modern database engines and

the pre-built indexes [Gilfillan 2001].

Therefore the complexity is O(M) based on implementation observation.

C

B

D

A

Rank of each
URL in the new
system:

A: 0.57
B: 0.67
C: 0.14
D: 0.33
E: 0.14
F: 0.14

E

F

35

3.3.5.2 Second Level Clustering

In second level clustering, URLs in the same first level virtual directory are

examined to see if they belong to the same cluster. For example, assume the algorithm

works on a group of URLs below:

http://business.uccs.edu/careers/careers.html
http://business.uccs.edu/careers/employers.html
http://business.uccs.edu/careers/employmentsites.html
http://business.uccs.edu/careers/events.html

The process is further broken down to three steps.

Step 1

Use the same algorithm as first level clustering, to generate a series of proposed

clusters (total of C). The pseudo code is the same, as well as the complexity O(C)

Steps 2 and 3

For a directed graph, its density is defined as:

 D = E / (V*(V-1)))

In the equation above, D is Density; E is the number of edges; V is the number of

vertices. If the graph density is higher than a preset threshold, approve the proposed

cluster and update all pages with the new cluster id.

Pseudo code:

E = 0
Loop on all proposed clusters (C)

Loop on all pages in the proposed cluster (K)
Current page is A
Get all pages that link to A (N back links)
Count all links from pages inside of the cluster (EA)
E = E + EA

End of the loop

36

D = E / V2
If D > configured threshold

Approve the cluster and update all pages in it
End of loop on all proposed clusters

The theoretical Algorithm Complexity is O(CKN), where C is number of all

proposed clusters; K is the average number of pages in a cluster; N is average number of

links to a page.

3.3.5.3 Cluster Rank Calculation

The step is nothing more than the original Page Rank algorithm applied at the

Cluster level. Therefore the complexity is also O(CKN). See detail analysis earlier in this

report, section: 2.2 Page rank calculation Pseudo code and Complexity.

3.3.5.4 Rank Distribution

At this step, weighted average of the Cluster Rank is distributed to all member

URLs as their own rank. The pseudo code is as following:

Loop on all clusters (C)
Total incoming links for a cluster Li = 0
Loop on all pages in the cluster (K)

Current page is A, and has (Ai) incoming links
Li = Li + Ai

End of the loop
Loop on all pages in the cluster (K)

Current page is A, and has (Ai) incoming links
PR’(A) = (Cluster Rank) * Ai / Li

End of the loop
End of loop on all clusters

The complexity is O(CK), where C is number of all proposed clusters; K is the

average number of pages in a cluster.

37

3.3.5.5 Total Complexity

Adding the time taken by all the substeps together, the total complexity of the

new Cluster Rank algorithm is:

O(M+C+CKN+CKN + CK)

Obviously, M (total number of pages) equals to C times K, so the complexity

becomes O(M+C+2MN+MN+M), where C is total number of clusters, and can be

represented as a linear function of M (total number of pages). Therefore the final

complexity settles at O(MN).

Casual observation may lead to a conclusion that the new algorithm is the same or

slower than the original. However the experiment data indicated that on average there are

2 to 3 pages per cluster and the new algorithm is working on much less number of “units”

in the most time consuming step, rank calculation. Fortunately, the time saved here not

only covers all other preparation and clustering steps, but also results in a 10% to 20%

improvement overall. All details are discussed later in this report, Chapter 5 Test Results

and Performance Analysis.

38

CHAPTER 4

DESIGN OF THE NEEDLE SEARCH ENGINE

4.1 Database Schema

The Needle database consists of 15 tables and two views. The brief definitions

and purposes are listed below and grouped by different modules. For details of each

tables and view, please see Appendix B, Database Scripts.

• Global tables for all modules:

o MediaType: To define media types for all modules, such as text,

image or other binary files. This table is pre-populated and remains

untouched after the database creation.

o URL: The central reference place for the URLs stored in the

Needle search engine. Important fields are:

 url_id: The unique index of URLs throughout the entire

system.

 url: The complete URL text.

 in_plink_count: The in-degrees (number of incoming links

on a page). The number is stored here to improve

performance rather than having to get the count from other

tables.

• Crawler tables:

39

o Crawler: The control table for the crawler. Important fields are:

 url_id: a foreign key referencing the url_id field in URL

table.

 localfullname: The location of the downloaded page. It will

be used by the text parser and the image processor to read

the downloaded documents.

 crawled_date: Keeps track of the exact time this URL is

crawled for advanced features like repository refreshing.

o URLLinkStructure: The complete link structure for the Web graph

being processed. This table is populated by the Crawler and used

extensively by the Ranking system. Important fields are:

 from_url_id and to_url_id: These are the head and the tail

of a link. Two foreign keys referencing the url_id field in

URL table.

 anchor_text: The anchor text is defined as the visible text in

a hyperlink1. This field is a by-product of crawling and will

be used by text parser.

• Ranking system:

o Page Rank: The only table to store the Page Rank result. Important

fields are:

40

 url_id: a foreign key referencing the url_id field in URL

table.

 out_link_count: The out-degree (number of links going out)

of a page. This field is populated by crawler as its natural

byproduct.

 c_date: current date.

 c_pr: current Page Rank.

 old_date1, old_pr1, old_date2 and old_pr2: two sets of

back up of previously calculated Page Rank, for

comparison and research purpose.

o Cluster: The master table for Cluster Rank algorithm presented in

this report. Important fields are:

 cluster_id: The unique index of a cluster.

 base_url: The bare URL of a cluster.

 cluser_rank: The current Cluster Rank.

 cluster_rank_date: The time when Cluster Rank is

calculated.

 out_link_count and in_link_count: The in-degrees and out-

degrees of a cluster.

1 http://en.wikipedia.org/wiki/Anchor_text

41

 old_cr1, old_cr1_date, old_cr2 and old_cr2_date: two sets

of back up of previous calculated Cluster Rank, for

research purpose.

 prop_sec_cluster_id: a temporary location to store the

proposed cluster ID during second level clustering.

o Page RankByCluster: The final calculated rank for each page in

Cluster Rank algorithm. Important fields are:

 url_id: A foreign key referencing the url_id field in URL

table.

 c_prc: The calculated rank of a page in Cluster Rank

system.

 old_date1, old_prc1, old_date2 and old_prc2: two sets of

back up of previous data, for research purpose.

o SecondLvlClusterWork: The work table for second level

clustering, and saves graph density for each proposed cluster.

o vwURLLinkCluster: A temporary table to congregate links among

individual URLs to the cluster level. This is table is created at

runtime.

42

• Text Parser:

o Dictionary: The dictionary for all words extracted from text

documents. The rest parts of the text parser will only reference the

keyword IDs to optimize the database performance.

o PageLocation: The definition table for keyword locations, and their

weights.

o TextParser: The processing record of text parser, saving which

URL is processed at which date.

o KeyWordWork: The work table for text parser to store temporary

data during calculation.

o KeyWord: The final calculation result from text parser. Important

fields are:

 keyword_id: A foreign key referencing the keyword_id

field in Dictionary table.

 url_id: A foreign key referencing the url_id field in URL

table.

 total_weight: the weight of the keyword on the page. This

field will be used by front end to retrieve pages.

 UNIQUE INDEX ((keyword_id, url_id): unique index is

enforce to make sure the combination of keyword_id and

url_id is unique.

43

• Image Processor:

o ImageProcessor: This module is not currently implemented.

• Front end:

o SearchHistory: To store the search history for statistic purpose.

Important fields are:

 ip_address: The client’s IP address.

 host_name: The client host name, if it can be resolved.

 request_time: The exact time the search request is received.

 search_words: The exact words the user is searching.

• Others:

o vwPRCRComparison: This is a view to compare the Page Rank

and Cluster Rank of each page for statistic purpose. This is not a

physical table.

4.2 Components

Presented earlier in this report (1.1 The Basic Components of a Search Engine),

each search engine must have five basic components: crawler, parser, ranking system,

repository system and front-end. The Needle project is no exception.

44

Flexibility and scalability are the two most important design goals for Needle as it

must serve as a common platform for current and future research. Keeping these in mind,

all modules are self contained and operate individually. The only dependency is

successor modules, such as text parser and ranking system, are expecting the database to

be populated in certain way they can process, much like programming interfaces among

different functions. Therefore the system architecture is very straight forward, and there

is no intertwining of any kind:

Figure 7. Basic Architecture of the Needle search engine

The flexibility has allowed the author to perform two sets of ranking calculation

(the original Page Rank and the new Cluster Rank) in the same system without any

change to other modules. And at same time, about five other graduate students in UCCS

are also doing their research projects on this architecture without affecting each other.

Crawler

Database and Staging area

Front end Text Parser Ranking

System

Image

45

CHAPTER 5

TEST RESULTS AND PERFORMANCE ANALYSIS

5.1 Sample Data

Calculations are conducted on seven sets of URLs from www.uccs.edu domain,

ranging from total of 9,325 URL to 105,674 URLs, and one set of 290,561 URLs from

three Colorado universities. These data are all retrieved by the Needle engine crawler in a

breadth first fashion.

Data Set ID Total URLs Average
Links among

URLs

Total
Clusters

Average
Links

among
Clusters

Average
URLs per
Cluster

1 9325 3.26 4053 2.43 2.3
2 22371 3.32 11603 2.62 1.9
3 26864 4.65 12685 2.82 2.1
4 33928 6.05 15817 3.26 2.1
5 41148 6.57 17054 3.44 2.4
6 69439 8.21 28764 3.1 2.4
7 105674 15.3 66699 2.39 1.6
8 290561 18.5 84142 8.09 3.4

Table 1. Statistics of URLs and Clusters

We noticed the fact that the average links among URLs keep growing and there

could be several reasons for this behavior. First and the most important, the crawler is

conducting a breadth first traversal, and each time it starts at the same seed

(www.uccs.edu), therefore it tends to first crawl the higher level pages, whose links are

pointing to large number of pages yet to be crawled (Unknown dangling, see detail

discussion in Section 5.2.2 The Rank Numbers in Each System) and can not be included

46

in the calculation. Later when the crawling limit increases, the target pages are retrieved

and the links in previous pages are included. In future work, we recommend selecting the

sample data in a better fashion to avoid this potential misleading factor, see detail

discussion in Section 7.3.1 Better Sample Data. Second reason is that there are certain

groups of pages in the UCCS domain with very large number of links (more than one

hundred)1, and they were simply not encountered at the earlier stages. The third reason is

that probably we have not retrieved a good representation of the UCCS domain. When

we stopped the crawler after data set 7 is retrieved, there are still more than 148,749

UCCS URLs in our database to be crawled, which is almost 1.5 times more than the total

URLs in data set 7.

Except the last set, the average number of URLs per cluster remains relatively

stable, although the sample data size has grown more than ten times during the entire

experiment. This indicates that the outcome of the clustering algorithm is quite reliable.

Again in the first seven sets of data, the average links among clusters also remains

relatively stable while the links among individual pages increases about five times. This

behavior indicates that a very large group of links is actually “internal”, meaning they

only connect to pages within the same cluster.

The last set of data covers URLs from three universities, not just the UCCS

domain, so it shows some different characteristics. As the dataset grows and the graph

1 http://tle2.uccs.edu/webcal/month.php

47

gets closer to the real Web, the ratio between internal links and external links should

remain stable according to a previous research [Bharat 2001] and this needs to be verified

when larger amount of data become available.

5.2 Result Comparison

5.2.1 Top ranked URLs in each system

The most important questions one may ask is --- how does the new algorithm

perform, and does it actually give high scores to the “most important” URLs? While the

importance of a page is a rather subjective opinion, the original Page Rank algorithm

gives quantitative measurement to it for us to use as a baseline.

Observations from other people have told us the first twenty hits in the results are

the most important [Gordon 1999][Hawking 2001]. Therefore using the similar idea as a

previous research [Gupta 2003], we look at the top 20 pages out of the 105,674 URLs

according to Page Rank shown in Table 2. Top 20 pages in Original Page Rank (Crawled

in September, 2006).

We immediately noticed that six spots are occupied by awfully similar URLs (#1

and #11 to #15). It is also quite surprising that the number #1 is actually not the root page

of UCCS domain (www.uccs.edu). Further investigation shows that this page, as its URL

implies, dynamically links to all press releases of UCCS in the past seven years. From

each child page, there is a link back to the master list, resulted in an extremely high rank

and also helped five of its children (#11 to #15) make to the top 20.

48

1 www.uccs.edu/~ur/media/pressreleases/article_list.php
2 www.uccs.edu
3 web.uccs.edu/ur/pr.htm
4 www.uccs.edu/campusinfo/campusinfo_form.htm
5 www.uccs.edu/directory/directoryb.htm
6 tle2.uccs.edu/webcal/month.php
7 www.uccs.edu/~webdept/approved
8 www.uccs.edu/%7Ewebdept/az/azstatic/A.html
9 web.uccs.edu/ur/topnav/topnav.htm
10 web.uccs.edu/library
11 www.uccs.edu/~ur/media/pressreleases/view_article.php?article_id=357
12 www.uccs.edu/~ur/media/pressreleases/view_article.php?article_id=358
13 www.uccs.edu/~ur/media/pressreleases/view_article.php?article_id=359
14 www.uccs.edu/~ur/media/pressreleases/view_article.php?article_id=356
15 www.uccs.edu/~ur/media/pressreleases/view_article.php?article_id=354
16 web.uccs.edu/library/library%20A_Z.htm
17 web.uccs.edu/library/databases/intro.htm
18 library.uccs.edu
19 web.uccs.edu/library/Library%20Information%20and%20Services/staffdir.htm
20 web.uccs.edu/library/remote.htm

Table 2. Top 20 pages in Original Page Rank (Crawled in September, 2006)

This fact certainly does not imply that the creator of the #1 URL wants to promote

the URL over the UCCS root page. As discussed earlier in this report in section 3.3.4 The

Impact of Adding New Pages, this is exactly the way how Page Rank should work and

the behavior is in line with our prediction.

Let’s look at the top 20’s from Cluster Rank shown in Table 3. Top 20 pages in

Cluster Rank (Crawled in September, 2006).

The top position is correctly taken by the root page of UCCS domain and the

previous #1 is removed from the top 20, because in the new algorithm, internal links do

not help the rank. The author personally considers this is a more desirable way to rank

pages; however this question is certainly up for debate for the readers and other computer

scientists.

49

New Rank Old Rank URL
1 2 www.uccs.edu
2 3 web.uccs.edu/ur/pr.htm
3 4 www.uccs.edu/campusinfo/campusinfo_form.htm
4 5 www.uccs.edu/directory/directoryb.htm
5 6 tle2.uccs.edu/webcal/month.php
6 10 web.uccs.edu/library
7 - web.uccs.edu/wbahn/ECE1021/index.html
8 17 web.uccs.edu/library/databases/intro.htm
9 18 library.uccs.edu

10 19 web.uccs.edu/library/Library%20Information%20and%20Services/staffdir.htm
11 20 web.uccs.edu/library/remote.htm
12 7 www.uccs.edu/~webdept/approved
13 19 web.uccs.edu/library/Library%20Information%20and%20Services/hours.htm
14 16 web.uccs.edu/library/library%20A_Z.htm
15 9 web.uccs.edu/ur/topnav/topnav.htm
16 - www.uccs.edu/%7Ewebdept/az/AZdir.php
17 - www.colorado.edu
18 8 www.uccs.edu/%7Ewebdept/az/azstatic/A.html
19 - web.uccs.edu/rlorch/default.htm
20 library.uccs.edu/search

Table 3. Top 20 pages in Cluster Rank (Crawled in September, 2006)

Fifteen out of twenty pages are also in the previous list, which is an accuracy of

75%, and the top 10 pages achieved accuracy of 90%. This is a satisfying ratio giving the

simple and intuitive nature of the Cluster Rank algorithm, especially considering the fact

that the previous list has six similar pages out of twenty.

However, an important note must be made that it is impossible for us to claim the

Cluster Rank is “better” than the original Page Rank just based on the naïve comparison

above. In fact, due to our limited amount of sample data, it is too early to jump into any

conclusion.

5.2.2 The Rank Numbers in Each System

We noticed a fact that the rank numbers in the new system are all significantly

lower than in the original. There are two explanations for this difference.

50

First, there are much less total points to work with in the new system. For

example if there are 100 pages to rank, the original algorithm gives initial rank of 1 to all

pages, which means there are total 100 points. In the new algorithm, if the 100 pages are

grouped into 50 clusters, and we only calculate the rank at cluster level, obviously there

are only 50 total points.

Second, the original algorithm must remove all dangling pages as they may play

catastrophic roles in the calculation. See details earlier in this report. Section 2.1 The

Original Page Rank algorithm. This factor can have big impact as it affects the total

calculation space being dealt with. We noticed there are several kinds of dangling links:

• True dangling: The page is in fact not pointing to anywhere. This is also

true when the URL is a binary file such as PDF or DOC.

• Hidden dangling: The page has complicated scripts to generate links to

other pages, but the crawler can not figure out.

• Unknown dangling: The page has not been crawled yet, there the system

simply does not know where does it link to, if any at all.

These problem children, however, can be included in the new algorithm provided

they belong to a cluster that has other members connecting outside, which means as long

as the whole cluster is not dangling, every member can be included. In our sample data,

only 28488 URLs out of the total 105674 can be calculated in Page Rank system because

of the dangling, but 66699 URLs are processed in Cluster Rank.

51

The combined effect of the two factors is that there are more members to share a

smaller pie, and no doubt everybody gets a much smaller piece.

Further complications are introduced by congregating the links to cluster level. In

this step, the links from individual links are merged together and could significantly

change the structure of the graph as we already have seen earlier in this report. Section

3.3.4 The Impact of Adding New Pages.

While mathematical proof is rather difficult as the behavior of Page Rank itself

also changes depending on the graph structure [Arasu 2001] [Kamvar 2003], we looked

at the experimental data trying to identify a reasonable relationship:

1. If the cluster size is 1, meaning a page does not belong to any group and

just stand alone by itself, the rank number in these two systems are

relatively the same. We checked total of 8873 pages in this category, and

find out the average ratio of between the rank numbers is 1.09, with

standard deviation of 0.11.

2. For members of a tiny cluster, which has 2 to 10 URLs, its Page Rank

could be expressed as the new cluster Rank times the size of the clusters it

belongs to: PR = CR * ClusterSize. We checked the 3289 Pages in this

category, and the average ratio of between the two sides of this equation is

1.14, with standard deviation of 0.35. However at this point the deviation

is almost too large for us to make this statement. We can also consider the

two scenarios are the same (first one has Cluster Size of 1), however the

52

difference in standard deviation indicates they are very likely differ from

each other.

3. The above two scenarios accounted for 43% of the 28488 URLs we can

compare. For other pages that do not belong to above two cases, we

cannot recognize any pattern that can be supported mathematically.

In order to make a convictive statement, we suggest future the research to

compare the entire rank matrix as well as the relative ratio among URLs in the two

systems. A much more advanced mathematical model, such as Hidden Markov Model

could be made to compare the transition probability between the two systems.

5.3 Performance Comparison

The Page Rank is implemented strictly following the pseudo code presented in

Section 2.2 Page Rank Calculation Pseudo Code and Complexity without any

optimization and tweaking. The Cluster Rank implementation follows the pseudo code in

Section 3.3.5 The Complexity Analysis. Seven rounds of comparison were made. At each

round calculation was performed three times and the average time was taken to minimize

the impact of routine system activities that might be taking place.

The results are shown in Table 4. Seven rounds of comparison between Page

Rank and Cluster Rank.

53

Total number
of URLs

Page Rank time
(s)

Cluster Rank
time (s)

Difference

9325 386.5 340.2 12%

22371 840.4 916.6 -9%

26864 1305.9 1130.5 13%

33928 1968.1 1564.5 20%

41148 2195.8 1722.6 21%

69439 4455.6 3251.1 27%

105674 15914.5 10477.6 34%

290561 31246.1 26562.54 15%

Table 4. Seven rounds of comparison between Page Rank and Cluster Rank

Figure 8 can help us to see the performance data visually.

PR and CR By Total URL

0

5000

10000

15000

20000

25000

30000

35000

9325 22371 26864 33928 41148 69439 105674 290561

Total URLs

S
e

c
o

n
d

s

CR

PR

Figure 8: The performance chart between Page Rank and Cluster Rank

The percentage differences at each data point are illustrated in Figure 9.

Percentage Difference.

54

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

9325 22371 26864 33928 41148 69439 105674 290561

Total URL's

P
e
rc

e
n

ta
g

e
 D

if
fe

re
n

c
e

Figure 9. Percentage Difference

In most of the cases, Cluster Rank is 12% to 34% faster, with the average of 17%

and standard deviation of 0.13. It falls behind of Page Rank at the second data point,

which is very likely an unusual case and can be safely discarded.

5.4 Cluster Rank Calculation Break Down

The Cluster Rank calculation consists of several steps: first and second level

clustering, data preparation to congregated links among URLs to the clusters and the

Cluster Rank calculation itself. The final distribution step is not included in calculation as

the weighted average computing is extremely fast and only counts a very small fraction

of the total time. The break down table is as following (all numbers are seconds):

55

Total
URLs

First Level
Clustering

Second Level
Clustering

CR
Preparation

Cluster
Rank Total

9325 18.77 7.27 4.91 309.27 340.22

22371 112.13 30.76 10.70 763.04 916.63

26864 167.77 38.20 12.50 912.06 1130.53

33928 257.57 56.64 15.57 1234.76 1564.54

41148 283.11 69.60 16.41 1353.47 1722.59

69439 778.99 165.96 28.95 2277.20 3251.10

105674 3784.86 1142.76 65.42 5484.56 10477.60

290561 10706.70 3028.271 180.26 12647.309 26562.54

Table 5. Cluster Rank time break down for each step

The break down chart below clearly shows each step increases at a constant pace,

in line with the observations in Section 3.3.5 The Complexity Analysis.

5.5 Choice of Density Threshold

The clustering threshold t must be carefully chosen as the distinction between

sparse and dense graphs is rather vague. While choosing the density threshold for second

level clustering, we want to consider two factors: performance and quality.

If the threshold is too high, almost no proposed clusters can be approved and the

whole second level clustering would be meaningless. On the other hand if the threshold is

too low, too many unrelated URLs may be grouped together and generate undesirable

results.

The threshold selection process is conducted on a set of 138,430 URLs in UCCS

domain. The density distribution of clusters on different rank is show below:

56

Graph Density
Number of Clusters in

this range
0.9 ~ 1 5

0.8 ~ 0.9 38
0.7 ~ 0.8 36
0.6 ~ 0.7 57
0.5 ~ 0.6 97
0.4 ~ 0.5 57
0.3 ~ 0.4 65
0.2 ~ 0.3 326
0.1 ~ 0.2 423
0 ~ 0.1 479

Table 6. The distribution of Clusters on different density range

The data can be drawn to the following chart to help identify the characteristics:

Density distribution

0

100

200

300

400

500

600

0.9 ~ 10.8 ~

0.9

0.7 ~

0.8

0.6 ~

0.7

0.5 ~

0.6

0.4 ~

0.5

0.3 ~

0.4

0.2 ~

0.3

0.1 ~

0.2

0~0.1

Density

N
u

m
b

e
r

o
f

c
lu

s
te

rs

Figure 10, Density distribution of the proposed second level clusters

Naturally we see the big difference from the third group to forth group, which

lead us to think threshold of 0.3 is potentially a good choice.

57

5.5.1 Performance

Experiments are performed at four different potential thresholds, 0.2, 0.3 0.5 and

0.7. The performance data, as expected, also show a sudden change at threshold of 0.3.

10000

10200

10400

10600

10800

11000

11200

T 0.2 T 0.3 T 0.5 T 0.7

Different Thresholds

T
im

e
 (

s
)

Figure 11. The Performance of second level clustering at different thresholds

5.5.2 Cluster Quality

Measuring the cluster quality is very important especially for the purpose of this

algorithm, as we want to know if the clusters generated are truly representing the concept

of “similar pages” and if it is actually fair to group them together.

Using cosine value between two vectors to measure the similarities between

documents has been a well established mechanism and has been one of the most

commonly used [Zamir, 1997] [Steinbach, 2000].

58

The basic idea is to break the document into distinct words, and then represent the

whole document with a vector that consists of the frequency of each word. Obviously

each document has its own vector. By computing the cosine between two vectors that

representing the two documents, we comfortably say this value is the similarity between

them and get a quantitative representation rather than casual human observation. When

two documents are completely identical, the cosine value is 1, and the smaller it is, the

more differences exist.

Implementation of above work can be a quite challenging task as it involves

intensive computing and a process calling “stemming” to distinguish different format of

the same word such as “like” and “likes”, or “run” and “ran”. Fortunately we are able to

found a very good Perl module available to public1 to conduct the experiments on our

data.

For each cluster, a base URL is chosen and all other URLs are compared against it

to compute the cosine value using the public available module. The averages of all cosine

values become the quality of this cluster. We then compute the quality for each cluster in

a given range. The average of all qualities and the standard deviation can objectively tell

us the common characteristics of this range, which is what we need to decide where the

threshold is, and it gives the tangible understanding of cluster quality.

As in the previous sections, the experiments were performed on five ranges, 0.2,

0.3, 0.5, 0.7 and 0.9. The results are as following:

1 http://www.perl.com/pub/a/2003/02/19/engine.html?page=1

59

Density Range Quality average Standard Deviation
0.2 ~ 0.3 0.4 0.311
0.3 ~ 0.4 0.66 0.238
0.5 ~ 0.7 0.77 0.243
0.7 ~ 0.8 0.74 0.233
0.9 ~ 1 0.95 0.011

Table 7. The Average Quality of Clusters in Each Density Range.

The chart below can give better visual representation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 ~ 0.3 0.3 ~ 0.4 0.5 ~ 0.7 0.7 ~ 0.8 0.9 ~ 1

Density Range

Quality average

Standard Deviation

Figure 12. The Quality Trend and Standard Deviation

In this context, we see the higher density a cluster has, the higher quality

(similarity) it also shows. The standard deviation is showing the inversed trend, which

implies the clusters in the lower density range start to behave too differently. At density

of 0.9 and above, all cluster members are almost identical. Ideally we would like to see

all clusters behave this way, but there are only five clusters in this range from our sample

data.

60

Of all the clusters at density of 0.3 and above, the cosine value (similarity) is

above 0.5, which is a good choice as threshold following a previous research [Mobasher

1999]. Also, the sudden change happens at density of 0.3, implying the two groups are

dramatically different, and also confirmed all the assumptions earlier. We also tested the

similarity among 100 randomly selected pages from several definitely different groups,

such as pages from Engineering1, Business2 and CNN website3. The average similarity is

0.29, with standard deviation of 0.11, which also strengthened the fact that similarity 0.5

is a comfortable choice.

To confirm the theory, we performed the following simple experiment on Yahoo4

and Google5. Using the site specific search feature available from the two engines, we

performed several simple searches on the UCCS domain. In their result lists, we

randomly picked five clusters from each engine and calculated the similarity of the top 10

pages using the same program. For Yahoo, the average similarity is 0.53, with standard

deviation of 0.16; and for Google, the average similarity is 0.48, with standard deviation

of 0.08. We noticed that the “similar page” feature in Google can not be limited in one

site only (i.e. cannot use site specific search and similar page search together). Its results

have pages from various sites and tend to be less similar.

Adding all facts together, we finally chose graph density of 0.3 the threshold for

the clustering algorithm presented in this report. All clusters with density of 0.3 and

1 http://eas.uccs.edu/
2 http://business.uccs.edu/
3 http://www.cnn.com
4 http://www.yahoo.com
5 http://www.google.com

61

above have similarity (cosine distance between vectors) of 0.5 or higher, therefore they

are considered closely related. Lower density clusters are discarded as they may have

been put in the same virtual folder for other reasons.

5.6 Subjective evaluation

After all the computation and processing, when it comes to evaluate how “good” a

search engine is, there is still nothing better than human eyes. The empty rank numbers

probably do not mean much to the end users if they fail to find at least several important

hits on the first or second page of the search results. In this experiment we gather a group

of 10 people and ask them to answer the ten questions listed in Appendix A. The final

results are listed below. The scores are on the scale of 1 to 5, 1 being the best. Standard

deviation is given in parenthesis. Please see the result in Table 8. Subjective comparison

from ten users.

 Yahoo Google Needle(CR) Needle (PR)
Response time (seconds) 0.65 (0.03) 0.26 (0.02) 0.94 (0.1) 0.94 (0.07)

of Results 100 ~ 140,000 100 ~ 210,00 8 ~ 3,000 8 ~ 8,000
First Page Accuracy 1.5 (0.52) 1.8 (0.42) 1.9 (0.31) 1.8 (0.4)

Second Page Accuracy 2.9 (1.3) 1.1 (0.31) 2.6 (0.84) 2.6 (0.84)
Order on the first page 1.3 (0.67) 1.5 (0.52) 1.6 (0.52) 1.6 (0.7)

Order on the second page 3.4 (0.7) 1.4 (0.52) 2.1 (0.31) 2.1 (0.56)
Related pages 10 ~ 87, 000 10 ~ 50 2 ~ 30,000 N/A

Related Pages Accuracy 1.5 (0.7) 4.5 (0.52) 1.7 (0.48) N/A
Overall order of

importance
1 (0) 1 (0) 1.5 (0.7) 1.5 (0.7)

Overall irrelevant hits 26% (0.08) 10% (0.04) 21% (0.08) 21% (0.09)
Table 8. Subjective comparison from ten users

It is not Needle’s goal to compete with commercial giants. Based on this primitive

and subjective evaluation, the Needle search engine performs relatively at the same level

62

as Yahoo or Google on the UCCS domain, giving the fact it has much smaller problem

space to deal with, and the fact it is designed and tested on UCCS domain data from the

beginning.

More importantly, we observed the two versions of Needle, which run on the two

different algorithms (Page Rank and Cluster Rank) respectively, perform at the same

level, which proved the value and design goal of Cluster Rank --- to provide reasonably

results and the additional feature without performance loss.

63

CHAPTER 6

LESSONS LEARNED AND PROBLEMS SOLVED

When started to work on Needle project ten month ago, I only knew a handful of

empty terms and several simple facts about search engines. As an computer professional,

I have been using various search engines everyday but never thought about how they

work and how much efforts their creators have put together to make them work up to

people’s expectations. In fact, quite often I got mad at search engines because they did

not give me the correct answer in the first couple of result pages.

A search engine tries to parse and filter the entire Web, and automatically answer

any questions that may be brought up by anonymous users. This has proven to be an

extremely difficult job due to the sheer volume of data and the infinite number of

possibilities and variations.

Working the Needle project, I have understood an incredible amount of details

regarding search engines, from the architecture to all sub-components. Everything I have

learned in Computer Science, especially Automata, Compiler, Database design, and

Algorithm analysis, has contributed to the design and implementation process. In fact I

quickly found myself exhausted and there was simply not enough background knowledge

to support my research. Thanks to the guidance from Dr Kalita and the committee

members, I was able to overcome many difficulties and at the same time learn many

valuable lessons to be discussed in detail below.

64

6.1 Architectural Issues

My original thought was to create a very thin layer of database handler to transfer

messages between the real database and all other modules, thinking a level of abstraction

from the database may help creating a cleaner architecture. The idea was explored and

abandoned immediately for three reasons: performance, scalability and compatibility.

Currently there are two modules in the Needle project that are extremely database

intensive: ranking system and text parser. In future if many users start to use it, the front

end may become the third one. The speed of database operations has proven to be a

bottleneck in the ranking calculation already, if another layer is added, the performance

will only get worse and it could be prone to errors. Considering future growth, it is almost

impossible to predict what operation each module might need and if the project is

designed to have a common database handler, the scalability and compatibility can

quickly become a road block.

What I would recommend, however, is to create the middleware layer for

individual modules only when absolutely necessary, such as the case to export the graph

data to a more efficient format for calculation, or cache front end queries. The lesson here

is not to follow standard architecture blindly, but to adjust it to fit the need of the

individual project.

6.2 Algorithm Choices

The ranking system is the heaviest part in this project. After all, seeking

improvements to an already extremely successful algorithm is not easy. Needless to say

65

scientists have already been proposing changes during the past eight years (see Section

2.3. Improvements Proposed to Page Rank).

Deciding the idea of clustering is not difficult, but the details after are quite

challenging. First, I had no almost knowledge of graph theory and clustering algorithms.

Just to start the learning curve took a great amount of time. Second, it was extremely

frustrating to find out that traditional clustering algorithms did not perform well in this

particular context, and the very idea of clustering did not look promising.

After I stumbled upon the URL based clustering mechanism, the next problem

was how to prove the whole algorithm was worthy. While the end results seem

reasonable, I still cannot offer a complete convincing mathematical proof, which is in

urgent need should the work continues.

6.3 Database Optimization

It takes many years to become a database expert and I only want to mention two

important facts I learned in Needle project.

The first is to choose the correct data type and pass as few data items as possible

among different modules. In the implementation of the text parser, a list of keywords

from each page must be generated and inserted into the database, and later the total

weight must calculated based on the location they appear. The first implementation was

to use the keyword as index and pass them back and forth. This was a terrible choice in

terms of storage space and performance because the handling of strings in a database

needs much more work than integers. Thanks to the suggestion from fellow students, I

66

switched to creating a dictionary table and only passing the keyword IDs. The

performance almost doubled while storage space was reduced by half.

The importance of creating a set of indices can not be reiterated enough. There are

three tables, URL, Cluster and URLLinkStructure, in the Needle database to store the

URLs, clusters and the links among them. The clustering ranking system queries these

tables intensively during the calculation. The first implementation did not have any

indices on them and the performance was unbearable --- more than 6 hours to calculate

the Page Rank of 2000 URLs. After two unique indices were created, the speed is

improved by order of magnitude achieving the numbers today --- a little over 3 hours for

100,000 URLs.

67

CHAPTER 7

LIMITATIONS AND FUTURE WORKS

In the process of designing and implementing the Needle search engine as well as

the Cluster Rank algorithm, we made exciting progress but also identified many

limitations that cannot be overcome easily and many virgin areas that we would like to

cover but simply do not have the bandwidth and knowledge to explore. The following is a

list of areas to be improved and they are categorized under each basic component of a

search engine.

7.1 Crawler

A primitive implementation was written at very early stage of the project to

retrieve some data for other modules to work with. While functioning correctly, this

version rather is plain in terms of features: it is single threaded and does not have

retrying, repository refreshing, URL hashing, smart checking on dynamic URLs, smart

recognizing on file types, and avoiding crawler traps, etc. Its speed is also quite

questionable and can only retrieve about 2000 URLs per hour on a fast network in the

UCCS lab. Improvements can be made to add the features above and improve its speed.

Fortunately two UCCS graduate students are already working on this area.

7.2 Parsers

Same as the crawler, a simple functional text parser was written to glue the whole

system together. It only parses certain selected areas of a document such as metadata,

68

title, anchor text, three levels of headers, and a short part at the beginning of each

paragraph. A complete full text parser with satisfactory performance is in immediate

need. Image processing is not currently implemented.

7.3 Ranking System

Cluster Rank is the most important adventure in this report. While innovative and

producing reasonable results, the lack of rigid mathematical proof and analysis is the

weakest point. We see three major areas that need improvements and more works

discussed below.

7.3.1 Better Sample Data

The limited amount and the nature of sample data is a major roadblock in our

experiments. In Section 5.1 Sample Data, we see the average links among URLs keep

increasing, indicating certain immatureness of the sample data sets. There are several

ways to improve the quality of the sample data:

• Start at a smaller sub-domain of the UCCS domain, such as the

Engineering website1 and completely crawl all pages in it to get the

complete representation of this sub-domain.

• Instead of always starting at the root page of the UCCS domain, each time

use a different random seed URL, and crawl the same number for URLs

(for example 10,000) to better reflect the nature of the Internet.

1 http://eas.uccs.edu/

69

• After a very large data set is retrieved (for example one million URLs),

randomly select a smaller subset (for example 100,000) as the test sample.

This is similar to the previous approach but not the same in that the

random selected pages may or may not connect to each other.

We predict that upon conducting the experiments on a series of better sample

data, the result will be much more convincing than what is presented in this report.

7.3.2 Detail Analysis and Result Validation

As discussed earlier, Page Rank can be viewed as the stationary probability

distribution over pages induced by a random walk on the Web [Haveliwala 1999]. To

quantitatively evaluate the relationship between Page Rank and Cluster Rank presented in

this report, we recommend the future research to create a HMM (Hidden Markov Model)

to analyze the transition probability among the pages.

An alternative approach is to implement an automated performance comparison

mechanism to provide quantitative results, and compare against other commercial search

engines [Li 2000b].

7.3.3 Other Ranking System

For the past eight years, the Web community has depended on one or another

static ranking system such as Page Rank. Recently scientists have applied machine

learning techniques to this area and developed a ranking machine learning algorithm, and

70

achieved higher accuracy [Richardson 2006]. Future work may follow this direction to

get more exciting results.

7.4 Front-end

The current front-end is quite efficient and clean in terms of searching and

displaying the result. Its behavior and performance, however, is unknown when

significantly larger amount of data become available. Improvements may not be urgent

but the following few areas can be investigated: caching of search result to speed up

duplicated searches, better organizing of the result, and capturing user behavior for future

research.

The ability to search multiple words and phrases is also commonly available in

search engines but yet to be implemented in Needle.

7.5 Technology

MySQL is chosen to host the entire engine because it is the most common open

source database. The implementation language is Perl because of its stellar ability to

parse text strings, process regular expressions and rich set of modules for various

purposes. In all other modules except ranking system, this choice proves to be viable and

efficient.

However in the computational intensive work such as Page Rank calculation,

these two technologies to get a little overwhelmed. This module has to make constant

inquiries to the link information, and even after building indexes, the database querying

71

has always been a big bottleneck. Looking at our performance data in Section 5.3

Performance Comparison, it is far slower than the work done by other scientists [Kamvar

2003].

Recently scientists have developed a new algorithm to store web graphs by

exploiting gaps and references at an extremely high compression ratio [Boldi 2005]. For

instance, they can save and compress a snapshot of about 18,500,000 pages of the .uk

domain at 2.22 bits per link, and traverse the entire graph in a matter of seconds.

In future work, it is strongly recommended to export and save link data to this

system for rank calculation.

72

CHAPTER 8

CONCLUSION

The Needle project is a simple yet completely functional search engine currently

running on University of Colorado Systems. It also has a flexible, scalable and extensible

architecture for adding new modules as well as improving existing ones. At the time this

report is written, many other people are already working on the improvements of various

modules or very close to completion.

While developing this project, this report also presented a valuable adventure of

Cluster Rank algorithm, which serves as an alternative of existing Google Page Rank.

Promising result and an additional feature of “similar pages” can be generated with

noticeable performance improvement.

Initial evaluation and comparison are also presented in this report, showing

satisfying result. However, the definitive comparison between the two algorithms and the

comprehensive analysis are yet to be made on advanced mathematical models.

Rising on the horizon of Internet, search engine will no doubt be the focus of

study for years to come. The Needle project has contributed its share and will continue to

serve as a solid foundation for future academic works in UCCS.

73

BIBLIOGRAPHY

[Arasu 2001] Arasu, Arvind, J. Novak, A. Tomkins and J. Tomlin. Page Rank

Computation and the Structure of the Web: Experiments and Algorithms, Technical

Report, IBM Almaden Research Center, Nov. 2001.

[Bharat 2001] Bharat, Krishna, Bay-Wei Chang and Monika Henzinger. Who Links to

Whom: Mining Linkage betweenWeb Sites. In Proc. of the IEEE Intl. Conf. on Data

Mining, pages 51–58, 2001.

[Boldi 2005] Boldi, Paolo and Sebastiano Vigna. Codes for the World−Wide Web.

Internet Math., 2(4):405-427, 2005.

[Brin 1998] Brin, Sergey and Lawrence Page. The Anatomy of a Large-Scale

Hypertextual Web Search Engine. Proceedings of the Seventh International Conference

on World Wide Web 7, Brisbane, Australia, Pages 107 – 117, 1998.

[Chen 2002] Chen, Yen-Yu, Qingqing Gan, and Torsten Suel. I/O-efficient techniques

for computing Page Rank, Technical Report, CIS Department, Polytechnic University,

11/08/2002.

[Chirita 2004] Chirita, Paul - Alexandru, D. Olmedilla, andW. Nejdl. Pros: A

Personalized Ranking Platform for Web Search. Technical Report, L3S and University of

Hannover, Germany, Feb 2004.

74

[Chu 1996] Chu H and M. Rosenthal. Search Engines for the World Wide Web: A

Comparative Study and Evaluation Methodology. In the ASIS’96, 59th American Society

for Information Science and Technology Annual Meeting, Medford, NJ, Information

Today, Inc., Pages 127-135, 1996.

[Dean 1999] Dean, Jeffrey and M. R. Henzinger. Finding Related Pages in the World

Wide Web. Computer Networks, Amsterdam, Netherlands, Volume 31, Numbers 11-16,

Pages 1467–1479, 1999.

[Dongen. 2000] Dongen, S. van. A cluster algorithm for graphs. Technical Report INS-

R0010, National Research Institute for Mathematics and Computer Science, Amsterdam,

The Netherlands, May.

[Fox 1997] Fox, Armando, S. Gribble, Y. Chawathe, E. Brewer and P. Gauthier. Cluster-

Based Scalable Network Services. In Proceedings of the SOSP'97, Symposium on

Operating Systems Principles, St. Malo, France, 1997.

http://www.cs.berkeley.edu/~brewer/papers/TACC-sosp.pdf

[Gilfillan 2001] Gilfillan, Ian. Optimizing MySQL: Queries and Indexes. Visited

November, 2006

http://www.databasejournal.com/features/mysql/article.php/1382791

[Gordon 1999] Gordon, Michael and Praveen Pathak. Finding information on the World

Wide Web: the retrieval effectiveness of search engines. Information Processing and

Management, 35:141-180, 1999

75

[Guillaume 2002] Guillaume, Jean-Loup and Matthieu Latapy. The Web Graph: an

Overview. LIAFA - Universit´e Paris 7, 2, place Jussieu, 75005 Paris, France.

[Gupta 2003] Gupta, Ankur and Sreangsu Acharyya. Cluster Enhanced Page Ranks.

Technical Report. The University of Texas at Austin. December 15, 2003.

[Harpf 2005] Harpf, Lauri. Free website promotion tutorial. Visited Nov, 2005.

http://www.apromotionguide.com/

[Hartigan 1979] J. A. Hartigan, M. A. Wong. A K-Means Clustering Algorithm. Applied

Statistics, Vol. 28, No. 1 (1979), pp. 100-108.

[Haveliwala 1999] Haveliwala, Taher H. Effcient Computation of Page Rank. Technical

Report. Stanford University, California, 1999

http://dbpubs.stanford.edu:8090/pub/1999-31

[Hawking 2001] Hawking, David and Nick Craswell. Measuring search engine quality.

Information Retrieval, 4(1), 33–59,

[Heydon 1999] Allan Heydon, Marc Najork, Mercator: A scalable, extensible Web

Crawler, World Wide Web 2, Pages 219-229, 1999.

[ht://dig 2002] The ht://Dig Group. 2002. Accessed November, 2005.

http://www.htdig.org/

76

[Jacobs 2005] Jacobs, Jing. CatsSearch An Improved Search Engine Design For web

pages in the UCCS Domain. University Of Colorado at Colorado Springs, December,

2005.

[Jansen 2000] Jansen, Bernard, Abby Goodrum and Amanda Spink. Searching for

multimedia: analysis of audio, video and image Web queries. World Wide Web 3, Pages

249-254, 2000.

[Joachims 1997] Joachims, Thorsten, D. Freitag, and T. Mitchell. Webwatcher: A Tour

Guide for The World Wide Web. In Proceedings of the IJCAI’97, Fifteenth International

Joint Conference on Artificial Intelligence, Nagoya, Aichi, Japan, Pages 770–777,

August 1997.

[Johnson 1967] Johnson, S.C. Hierarchical clustering schemes. Psychometrika, 32, pp.

241-253

[Kamvar 2003] Kamvar Sepandar D, Taher H. Haveliwala, Christopher D. Manning, and

Gene H. Golub. Extrapolation methods for accelerating Page Rank computations. The

12th International. Conference on the World Wide Web, pages 261–270, 2003.

[Kim 2002] Kim, Sung Jin and Sang Ho Lee. An improved computation of the Page

Rank algorithm. The European Conference on Information Retrieval (ECIR), pages 73–

85, 2002.

77

[Kodavanti 2005] Kodavanti, Apparao. Implementation of an Image Search Engine.

University Of Colorado at Colorado Springs, December, 2005.

[Lee 2003] Lee, Chris P., Gene H. Golub, and Stefanos A. Zenios. A fast two-stage

algorithm for computing Page Rank. Technical report, Stanford University, 2003.

[Li 2000b] Li, Longzhuang and Yi Shang. A New Method For Automatic Performance

Comparison of Search Engines. World Wide Web 3, Pages 241-247, 2000.

[Li 2000a] Li, Wen-Syan, Okan Kolak, Quoc Vu, and Hajime Takano. Defining Logical

Domains in a Web Site. In Proceedings of the 11th ACM Conference on Hypertext, pages

123 - 132, San Antonio, TX, USA, May 2000.

[Lopresti 2000] Lopresti, Daniel and Jiangying Zhou. Locating and Recognizing Text in

WWW Images. Information Retrieval 2, Pages 177-206, 2000.

[McCallum 2000] McCallum, Andrew, Kamal Nigam, Jason ï Rennie, and Kristie

Seymore. Automating the onstruction of Internet portals with machine learning.

Information Retrieval Journal, 3:127–163, 2000

[McSherry 2005] McSherry, Frank, A Uniform Approach to Accelerated Page Rank

Computation, International World Wide Web Conference, Chiba, Japan, May 10-14,

2005.

78

[McSherry 2005] McSherry, Frank. A Uniform Approach to Accelerated PageRank

Computation. International World Wide Web Conference, Chiba, Japan, May 10-14,

2005.

[Mobasher 1999] Mobasher, Bamshad, Robert Cooley and Jaideep Srivastava. Automatic

personalization based on web usage mining. TR99-010, Department of Computer

Science, Depaul University, 1999.

[Morgan 2001] Morgan, Eric. Comparing Open Source Indexers. O'Reilly Open Source

Software Conference, San Diego, CA, July 23-27, 2001.

http://www.infomotions.com/musings/opensource-indexers/

[Nowack 2005] Nowack, Craig. Using Topological Constructs To Model Interactive

Information Retrieval Dialogue In The Context Of Belief, Desire, and Intention Theory.

Dissertation of Ph.D. Pennsylvania State University, Pennsylvania, 2005.

http://etda.libraries.psu.edu/theses/approved/WorldWideFiles/ETD-848/Dissertation.pdf

[Pandey 2005] Pandey, Sandeep and Christopher Olston, User-Centric Web Crawling,

International World Wide Web Conference, Chiba, Japan, May 10-14, 2005.

[Pitkow 1994] Pitkow, James and Margaret M. Recker. A Simple Yet Robust Caching

Algorithm Based on Dynamic Access Patterns. Proceedings of the Second World Wide

Web Conference (WWW2), Chicago, IL, 1994.

79

[Rasmussen, 1992] E. Rasmussen. Clustering Algorithms. In W. B. Frakes and R. Baeza-

Yates (eds.), Information Retrieval, pages 419-42. Prentice Hall, Eaglewood Cliffs, N. J.,

1992.

[Richardson 2006] Richardson, Matthew, Amit Prakash and Eric Brill. Beyond

PageRank: Machine Learning for Static Ranking. International World Wide Web

Conference, Edinburgh, Scotland, May 23-26, 2006

[Salton 1983] Salton, Gerard, and Michael J. McGill. Introduction to Modern

Information Retrieval. New York: McGraw-Hill Book Co. 1983.

[Smyth 1997] Smyth, P. Clustering Sequences Using Hidden Markov Models, in

Advances in Neural Information Processing 9, M. C. Mozer, M. I. Jordan and T. Petsche

(eds.), Cambridge, MA: MIT Press, 648{654, 1997.

[Steinbach 2000] Steinbach, M., George Karypis and Vipin Kumar, V. 2000. A

comparison of document clustering techniques. 6th ACM SIGKDD, World Text Mining

Conference, Boston, MA.

[Takano 2000] Takano, Hajime and Terry Winograd. Dynamic Bookmarks for the

WWW. In Proceedings of the 1998 ACMHypertext Conference, pages 297–298.

[Wall 2005a] Wall, Aaron. History of Search Engines & Web History. Visited

November, 2005.

http://www.search-marketing.info/search-engine-history/

80

[Wall 2005b] Wall, Aaron. Future of Search Engines. Visited November, 2005.

http://www.search-marketing.info/future-of-search-engines/index.htm

[Wang 2004] Wang, Yuan and David J. DeWitt. Computing Page Rank in a distributed

internet search system. In Proceedings of the 30th VLDB Conference, 2004.

[Zamir, 1997] Zamir, Oren, Oren Etzioni, Omid Madani and Richard M. Fast and

Intuitive Clustering of Web Documents. In Proceedings of the 3rd International

Conference on Knowledge Discovery and Data Mining, pages 287-290, 1997.

81

Appendix A Survey Questions to Evaluate Needle

Perform 20 different searches on Needle (Cluster Rank), Needle (Page Rank), Yahoo

(site: uccs.edu) and Google (site: uccs.edu).

1. Response time

2. Number of results estimated

3. First Page accuracy (scale 1 to 5, 1 being the best)

4. Second page accuracy (scale 1 to 5, 1 being the best)

5. Result Order on the first page (scale 1 to 5, 1 being the best)

6. Result Order on the second page (scale 1 to 5, 1 being the best)

7. Click the “similar pages” or “more from this site”, how many hits are returned?

8. Click the “similar pages” or “more from this site”, and check the first 10 to 20 hits,

are they truly “related” to the original hit? (scale 1 to 5, 1 being the best)

9. Overall, are the important pages showing up early? (scale 1 to 5, 1 being the best)

10. Overall, the percentage in result hits are irrelevant? (Give a percentage)

82

Appendix B Software and hardware environment

Hardware environment:
Pentium 4, 2.0G CPU and 1G RAM.

Software environment:
Fedora Core 4, MySQL server 5.0.26, Perl v5.8.6. Apache/2.2.3

83

Appendix C Database Scripts

Creation
CREATE TABLE MediaType (
doc_type_id TINYINT UNSIGNED NOT NULL auto_increment,
doc_type VARCHAR(20) NOT NULL,
PRIMARY KEY(doc_type_id));

INSERT INTO MediaType SET doc_type="text";
INSERT INTO MediaType SET doc_type="image";
INSERT INTO MediaType SET doc_type="OtherBinary";

CREATE TABLE URL (
url_id INT UNSIGNED NOT NULL auto_increment,
url VARCHAR(255) NOT NULL,
doc_type_id TINYINT UNSIGNED NOT NULL,
container_url INT UNSIGNED,
title VARCHAR(255),
cluster_id INT UNSIGNED,
in_plink_count INT UNSIGNED,
in_clink_count INT UNSIGNED,
INDEX (url(255)),
FOREIGN KEY(doc_type_id) REFERENCES MediaType(doc_type_id),
FOREIGN KEY(cluster_id) REFERENCES Cluster(cluster_id),
PRIMARY KEY (url_id));

CREATE TABLE PageRank (
url_id INT UNSIGNED NOT NULL,
out_link_count INT UNSIGNED,
c_date DATE,
c_pr FLOAT ZEROFILL,
old_date1 DATE,
old_pr1 FLOAT ZEROFILL,
old_date2 DATE,
old_pr2 FLOAT ZEROFILL,
cal_current_iter SMALLINT UNSIGNED,
UNIQUE INDEX (url_id),
CONSTRAINT FOREIGN KEY(url_id) REFERENCES URL(url_id)
ON DELETE CASCADE ON UPDATE CASCADE
);

CREATE TABLE Crawler (
url_id INT UNSIGNED NOT NULL,
crawled_date DATE NOT NULL,
localfullname VARCHAR(255) NOT NULL,
size INT UNSIGNED NOT NULL,
FOREIGN KEY(url_id) REFERENCES URL(url_id));

CREATE TABLE ImageProcessor (
url_id INT UNSIGNED NOT NULL,
surrounding_words_before VARCHAR(255) NOT NULL,
surrounding_words_after VARCHAR(255) NOT NULL,
processed_date DATE NOT NULL,
FOREIGN KEY(url_id) REFERENCES URL(url_id));

CREATE TABLE URLLinkStructure (
link_id INT UNSIGNED NOT NULL auto_increment,
from_url_id INT UNSIGNED NOT NULL,

84

to_url_id INT UNSIGNED NOT NULL,
anchor_text VARCHAR(100),
update_date DATE NOT NULL,
FOREIGN KEY(from_url_id) REFERENCES URL(url_id),
FOREIGN KEY(to_url_id) REFERENCES URL(url_id),
UNIQUE INDEX (from_url_id, to_url_id),
PRIMARY KEY (link_id));

CREATE TABLE PageLocation (
id SMALLINT UNSIGNED NOT NULL auto_increment,
description VARCHAR(32) NOT NULL,
htmltag VARCHAR(32) NOT NULL,
weight MEDIUMINT UNSIGNED,
weight_date DATE,
PRIMARY KEY(id));

CREATE TABLE TextParser (
url_id INT UNSIGNED NOT NULL,
processed_date DATE NOT NULL,
UNIQUE INDEX (url_id),
FOREIGN KEY(url_id) REFERENCES URL(url_id));

CREATE TABLE KeyWordWork (
keyword_id INT UNSIGNED NOT NULL,
url_id INT UNSIGNED NOT NULL,
location_id SMALLINT UNSIGNED NOT NULL,
update_date DATE NOT NULL,
frequency MEDIUMINT UNSIGNED,
UNIQUE INDEX (keyword_id, url_id, location_id),
FOREIGN KEY(url_id) REFERENCES URL(url_id),
FOREIGN KEY(location_id) REFERENCES PageLocation(id),
FOREIGN KEY(keyword_id) REFERENCES Dictionary(id));

CREATE TABLE KeyWord (
keyword_id INT UNSIGNED NOT NULL,
url_id INT UNSIGNED NOT NULL,
total_weight INT UNSIGNED NOT NULL,
total_weight_date DATE NOT NULL,
UNIQUE INDEX (keyword_id, url_id),
FOREIGN KEY(url_id) REFERENCES URL(url_id),
FOREIGN KEY(keyword_id) REFERENCES Dictionary(id));

CREATE TABLE Dictionary (
id INT UNSIGNED NOT NULL auto_increment,
word VARCHAR(32) NOT NULL,
UNIQUE INDEX (word(32)),
PRIMARY KEY (id));

CREATE TABLE Cluster (
cluster_id INT UNSIGNED NOT NULL,
base_url VARCHAR(255) NOT NULL,
cluster_rank FLOAT ZEROFILL,
cluster_rank_date DATE,
out_link_count INT UNSIGNED,
in_link_count INT UNSIGNED,
cal_last_update DATE,
cal_reserved_by VARCHAR(255),
cal_current_iter SMALLINT UNSIGNED,
old_cr1 FLOAT ZEROFILL,
old_cr1_date DATE,
old_cr2 FLOAT ZEROFILL,

85

old_cr2_date DATE,
prop_sec_cluster_id INT UNSIGNED,
PRIMARY KEY (cluster_id),
cluster_size INT UNSIGNED,
FOREIGN KEY(prop_sec_cluster_id) REFERENCES
SecondLvlClusterWork(sec_cluster_id)
);

CREATE TABLE SecondLvlClusterWork (
sec_cluster_id INT UNSIGNED NOT NULL,
sec_base_url VARCHAR(255) NOT NULL,
graph_density FLOAT ZEROFILL,
PRIMARY KEY (sec_cluster_id)
);

CREATE TABLE PageRankByCluster (
url_id INT UNSIGNED NOT NULL,
c_date DATE,
c_prc FLOAT ZEROFILL,
old_date1 DATE,
old_prc1 FLOAT ZEROFILL,
old_date2 DATE,
old_prc2 FLOAT ZEROFILL,
UNIQUE INDEX (url_id),
CONSTRAINT FOREIGN KEY(url_id) REFERENCES URL(url_id)
ON DELETE CASCADE ON UPDATE CASCADE
);

CREATE TABLE SearchHistory (
ip_address VARCHAR(16) NOT NULL,
host_name VARCHAR(255),
request_time DATE,
search_words VARCHAR(255),
page_number INT UNSIGNED
);

CREATE OR REPLACE VIEW vwPRCRComparison
AS
SELECT PageRank.url_id, URL.cluster_id, URL.url, PageRank.c_pr,
PageRankByCluster.c_prc, PageRank.c_pr/PageRankByCluster.c_prc ratio
FROM PageRank, PageRankByCluster, URL
WHERE PageRank.url_id = PageRankByCluster.url_id and PageRank.url_id =
URL.url_id
ORDER BY PageRank.url_id;

CREATE OR REPLACE VIEW vwURLCountInCluster
AS
SELECT COUNT(url_id) size, cluster_id FROM
URL
where cluster_id is not null GROUP BY cluster_id;

86

Cleaning
DROP VIEW vwPRCRComparison;
DROP VIEW vwURLLinkCluster;
DROP TABLE MediaType ;
DROP TABLE URL;
DROP TABLE Crawler;
DROP TABLE ImageProcessor;
DROP TABLE URLLinkStructure;
DROP TABLE Page Rank;
DROP TABLE PageLocation;
DROP TABLE TextParser;
DROP TABLE KeyWord;
DROP TABLE KeyWordWork;
DROP TABLE Dictionary;
DROP TABLE Page RankByCluster;
DROP TABLE SecondLvlClusterWork;
DROP TABLE Cluster;
DROP TABLE SearchHistory;
commit;

87

Appendix D Installing the required Perl Modules

Several Perl modules being used in Needle program may not be available in a

standard Perl installation:

• Bundle::XML

• Tie::IxHash

• Time::HiRes

• HTML::TokeParser

These modules can be installed by using “cpan” command while logging in as the

root user.

88

Appendix E Execution Steps

1. Configuration:

Almost every aspect of the Needle search engine is controlled by the

Config.xml, which has six major sections: DB, crawler, textparser,

ImageProcessing, RankingSystem and FrontEnd. All settings are

commented with notes to explain their purposes.

2. Crawling:

perl unicrawler.pl

3. Ranking (may choose either one, or both):

a. Original Page Rank: perl Page Rank.pl

b. Cluster Rank:

perl clustering.pl

perl clusterrank.pl

4. Text parsting:

perl textparser.pl

89

Appendix F Using the search engine

1. Enable Perl CGI configuration for the Apache web server.

2. To search the Cluster rank result, use:

http://<hostname > /cgi-bin/search.pl

3. To search the Original Page Rank, use:

 http://<hostname > /cgi-bin/oldsearch.pl

