
ARM Instructions

A
ri
th
m
e
ti
c

ADDcdS† reg, reg, arg add

SUBcdS reg, reg, arg subtract

RSBcdS reg, reg, arg subtract reversed operands

ADCcdS reg, reg, arg add both operands and carry �ag

SBCcdS reg, reg, arg subtract both operands and adds carry �ag− 1

RSCcdS reg, reg, arg reverse subtract both operands and adds carry �ag− 1

MULcdS regd, regm, regs multiply regm and regs, places lower 32 bits into regd

MLAcdS regd, regm, regs, regn places lower 32 bits of regm · regs + regn into regd

UMULLcdS reglo, reghi, regm, regs multiply regm and regs place 64-bit unsigned result into {reghi, reglo}

UMLALcdS reglo, reghi, regm, regs place unsigned regm · regs + {reghi, reglo} into {reghi, reglo}

SMULLcdS reglo, reghi, regm, regs multiply regm and regs, place 64-bit signed result into {reghi, reglo}

SMLALcdS reglo, reghi, regm, regs place signed regm · regs + {reghi, reglo} into {reghi, reglo}

B
it
w
is
e

lo
g
ic

ANDcdS reg, reg, arg bitwise AND

ORRcdS reg, reg, arg bitwise OR

EORcdS reg, reg, arg bitwise exclusive-OR

BICcdS reg, rega, argb bitwise rega AND (NOT argb)

C
o
m
p
-

a
ri
so
n

CMPcd reg, arg update �ags based on subtraction

CMNcd reg, arg update �ags based on addition

TSTcd reg, arg update �ags based on bitwise AND

TEQcd reg, arg update �ags based on bitwise exclusive-OR

Data movement
MOVcdS reg, arg copy argument

MVNcdS reg, arg copy bitwise NOT of argument

M
e
m
o
ry

a
cc
e
ss

LDRcdB‡ reg, mem loads word/ byte/ half from memory into a register

STRcdB reg, mem stores word/ byte/ half to memory from a register

LDMcdum reg!, mreg loads into multiple registers

STMcdum reg!, mreg stores multiple registers

SWPcdB regd, regm, [regn] copies regm to memory at regn, old value at address regn to regd

B
ra
n
ch
-

in
g

Bcd imm24 branch to imm24 words away

BLcd imm24 copy PC to LR, then branch

BXcd reg copy reg to PC, and exchange instruction sets (T �ag := reg[0])

SWIcd imm24 software interrupt
† S = set condition �ags ‡ B = byte, can be replaced by H for half word(2 bytes)

cd: condition code

AL or omitted always (ignored)
EQ equal Z = 1
NE not equal Z = 0
CS carry set (same as HS) C = 1
CC carry clear (same as LO) C = 0
MI minus N = 1
PL positive or zero N = 0
VS over�ow V = 1
VC no over�ow V = 0
HS unsigned higher or same C = 1
LO unsigned lower C = 0
HI unsigned higher C = 1 ∧ Z = 0
LS unsigned lower or same C = 0 ∨ Z = 1
GE signed greater than or equal N = V
LT signed less than N 6= V
GT signed greater than Z = 0 ∧ N = V
LE signed less than or equal Z = 1 ∨ N 6= V

um: update mode

FA / IA ascending, starting from reg

EA / IB ascending, starting from reg + 4

FD / DB descending, starting from reg

ED / DA descending, starting from reg − 4

reg: register

R0 to R15 register according to number

SP register 13

LR register 14

PC register 15

arg: right-hand argument

#imm8 immediate on 8 bits, possibly rotated right

reg register

reg, shift register shifted by distance

shift: shift register value

LSL #imm5 shift left 0 to 31

LSR #imm5 logical shift right 1 to 32

ASR #imm5 arithmetic shift right 1 to 32

ROR #imm5 rotate right 1 to 31

RRX rotate carry bit into top bit

LSL reg shift left by register

LSR reg logical shift right by register

ASR reg arithmetic shift right by register

ROR reg rotate right by register

mem: memory address

[reg,#±imm12] reg o�set by constant

[reg,±reg] reg o�set by variable bytes

[rega,±regb,shift] rega o�set by shifted variable regb
†

[reg,#±imm12]! update reg by constant, then access memory

[reg,±reg]! update reg by variable bytes, then access memory

[reg,±reg,shift]! update reg by shifted variable, then access memory †

[reg],#±imm12 access address reg, then update reg by o�set

[reg],±reg access address reg, then update reg by variable

[reg],±reg,shift access address reg, then update reg by shifted variable †

† shift distance must be by constant

1


