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ABSTRACT
In recent years, self-supervised learning representation (SSLR) has
shown remarkable performance in low-resource speech recognition.
However, it lacks consideration for the robustness of low-resource
models in noisy environments, making it crucial to enhance their
noise robustness. Speech enhancement is a commonly used de-
noising method, but it suffers from information over-suppression
during training, leading to reduced accuracy in automatic speech
recognition (ASR). To address this issue, this paper proposes an
innovative Iff-wav2vec network architecture. Firstly, the network
architecture integrates voice enhancement, SSLR, and ASR into
one network. Secondly, this article uses interactive feature fusion
methods to fuse noise features and enhanced features to compen-
sate for the lack of information in the enhanced features. Finally,
experimental results on Tujia and Shui languages show that the
proposed method can effectively improve low resource ASR per-
formance under various noise settings, resulting in stronger noise
robustness.
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1 INTRODUCTION
With the advancement of deep neural networks, automatic speech
recognition (ASR) systems have achieved remarkable performance.
Previous research has shown that training ASR systems using large-
scale labeled audio data is highly effective. However, many lan-
guages around the world face language resource scarcity, with
only a limited amount of speech data available, which can lead
to overfitting when training models. Recently, researchers have
acknowledged that self-supervised learning (SSL) can effectively
tackle the problem of overfitting caused by insufficient data. SSL
architectures can be broadly categorized into two types: gener-
ative learning [1–3] and contrastive learning [4–6]. Generative
learning automatically learns the representation of data through
an analysis of its internal structure and distribution. On the other
handontrastive learning, on the other hand, extracts good feature
representations for labelled data by identifying relationships be-
tween sample representations and their transformations. Although
these SSL methods have demonstrated impressive results on var-
ious low-resource ASR tests, there has been limited research on
low-resource ASR systems in complex environments, which is a
crucial aspect for practical applications.

To improve the noise robustness of ASR models, speech enhance-
ment techniques are commonly used to enhance the quality and
intelligibility of speech signals. Traditional methods such as spec-
tral subtraction [7] and Wiener filtering [8] often require specific
assumptions and have limited effectiveness in non-stationary con-
ditions. In recent years, deep learning-based speech enhancement
algorithms [9–11] have gained popularity and are being extensively
researched. One such example is the use of noise suppression
techniques that employ Bidirectional Long Short-Term Memory
(BiLSTM) in [12]. For low-resource speech recognition in complex
environments, HLGAN [14] is proposed to input noisy and clean
audio signals in parallel to fully utilize information from the clean
audio. Another method, SpeechStew [15], trains the model with
mixed data and fine-tunes it with low-resource noisy data to reduce
overfitting problems and quickly learn significant features from
noisy data. Finally, a transformer-based SE model [16] is proposed
and fine-tuned through a two-stage training scheme.
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Figure 1: System architecture of the proposed Iff-wav2vec framework.

It has been observed that speech enhancement does not always
lead to good performance for ASR systems [17, 18] due to the over-
suppression of speech signals. Although scholars have proposed
cascaded frameworks [19] to optimize SE modules and ASR mod-
ules with ASR objectives, this strategy increases the complexity of
the ASR system. To enhance the noise robustness of self-supervised
models, various methods have been proposed. For instance, SPIRAL
[20] utilizes a teacher-student framework to learn denoised repre-
sentations from noisy data. Wav2vec-switch [21] learns context
representations with noise robustness by inputting pairs of origi-
nal and noisy speech into a network and performing contrastive
learning tasks. In [22], a reconstruction module is combined with
the contrastive learning framework of wav2vec 2.0, and multi-task
continuous pretraining is performed on noisy data to improve the
noise robustness of learning speech representations during the
pretraining stage.

This paper aims to enhance the performance of low-resource
ASR systems in complex environments by proposing an ASR model
called Iff-wav2vec. It integrates SE modules, self-supervised learn-
ing representation modules (SSLR), interactive feature fusion mod-
ules (IFF-NET), and ASR modules into a single end-to-end model.
The contributions of this paper are as follows: Firstly, it proposes
an interactive feature fusion framework to address the problem of
over-suppression of speech signals during speech enhancement.
Secondly, it integrates SE, SSLR, and end-to-end ASR into a single
neural network based on joint optimization. Finally, it compares
the effectiveness of the model under different noise environments
to evaluate its robustness.

2 METHOD
This section describes the proposed Iff-wav2vec model architec-
ture, as shown in Figure 1. The model consists of four components:
speech enhancement, wav2vec 2.0, interactive feature fusion, and
speech recognition. The speech enhancement module is designed to

extract clean speech from noisy and polluted audio while maintain-
ing both quality and intelligibility. The wav2vec 2.0 module serves
as the feature extraction module for the overall architecture, aim-
ing to obtain more robust representations. The interactive feature
fusion module is intended to complement the missing information
in the enhanced speech.

2.1 Feature Extraction by Wav2vec 2.0
In this paper, wav2vec 2.0 is employed as the feature extraction
module in the overall architecture. The wav2vec 2.0 system con-
sists of three primary components: convolutional feature encoder,
context network, and quantization block. wav2Vec 2.0 processes
the original audio signal X through a CNN to obtain a latent speech
representation Z, which is then fed into a Transformers model after
applying a random mask to acquire contextual feature representa-
tions for subsequent tasks. Simultaneously, the model transforms
the latent speech representation Z into a discrete vector using the
Gumble softmax operation in the quantization module. Finally,
contrastive loss is computed between the contextual feature rep-
resentations and quantization embeddings, enabling the context
network to identify accurate quantization representations even in
the presence of interference.

The loss during the training process of Wav2vec 2.0 is composed
of two components: contrastive loss !< and diversity loss !3 . This
loss is defined as follows:

! = !< + U!3 (1)

Where U is a hyperparameter that controls the diversity loss.
During the contrastive learning process, the model needs to

select the correct quantized latent representation @̃ ∈ & from a
set of  + 1 candidate quantized representations, where the false
quantized representations @̃/@C are obtained by uniformly sampling
from the same time step. The contrastive loss is defined as:

!< = − log
exp

(
B8< (2C ,@C )

:

)
∑

@̃∼&C
exp

(
B8< (2C ,@C )

:

) (2)
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Figure 2: IFF-NET Network Architecture Diagram

Where B8<(0,1) represents the cosine similarity between the
contextual representation and the quantized latent representation,
and k represents the number of interfering items.

To effectively supervise the clustering process during quantiz
tion, the model utilizes the diversity loss. The goal of the diversity
loss is to maximize the entropy of the average B> 5 C<0G probability
of the fully occupied entries in each codeword group. This loss is
defined as:

!3 = 1
�+

�∑
6=1

+∑
E=1

?̄6,E;>6?̄6,E (3)

Where G represents the number of entries and V represents
the number of cluster centers. ?6,E is the calculation formula for
Gumbel softmax.

2.2 Interactive Feature Fusion Network
The Interactive Feature Fusion Network (IFF-NET) is employed to
address the problem of information loss in speech enhancement.
The network comprises upsampling convolutional blocks, residual
attention (RA) blocks, interactive modules, downsampling modules,
and merging modules.

Upsampling convolution and downsampling convolution:
The Up-conv block and Down-conv block consist of 2D convolu-
tional layers, layer normalization, and ReLU activation functions.
We input the enhanced features and original features into the Up-
conv block for feature extraction. At the end of the model, the
Down-conv block is used to ensure that the channel dimensions of
the interaction features �8= and -8= match the channel dimensions
of the original inputs E and X.

Residual Attention (RA) block: The role of the residual atten-
tion module is to capture both local and global dependencies in the
features. This module is composed of residual blocks, temporal self-
attention blocks, frequency self-attention blocks, and convolutional
layers, as shown in Figure 2 (a). Each residual block contains 2D
convolutions to extract deep local features -'4B . The features -'4B

obtained from the residual blocks are then fed into the temporal
attention module and frequency attention module separately to
obtain global dependencies in both time and frequency. Since the
temporal attention and frequency attention mechanisms are similar,
we will only present the formula for frequency attention, which is

as follows:

- 8
5
= '4Bℎ0?4 5

(
-'4B

)
, 8 ∈ {@, :, E} (4)

(�5 =

(> 5 C<0G

(
-

@

5
∗
(
-:

5

)) )
√
�×�

∗ - E
5

(5)

- �A4@ = -'4B + '4Bℎ0?4 5_8=E
(
(�5

)
(6)

Where C represents the filter index, T represents the frame index,
and F represents the frequency index. '4Bℎ0?4 5 refers to reshaping
the tensor from '�×)×� to '�×(�×) ) along the F dimension, and
'4Bℎ0?4 5 _8=E represents the inverse operation.

Finally, the generated deep features -)4<? and - �A4@ are con-
catenated with -'4B , and then fed into a 2D convolutional layer to
obtain the output -'� .

Interaction Module: The introduction of the interaction mod-
ule is intended to learn complementary information from enhanced
features and original features, as illustrated in Figure 2 (b). This
module consists of two directions: enhanced to noise (e2n) and
noise to enhanced (n2e). The computation process in these two
directions is similar, with the only difference being the exchange
of ”Feature-1” and ”Feature-2” as shown in Figure 2 (b).

The process depicted in Figure 2 (b) is the n2e flow.To begain
with, the enhanced (�'�) and original audio features (-'�) are
concatenated and fed into a 2D convolutional layer. Then, a ge
nerated mask "# is used to determine whether the information
in -'� is to be removed or preserved. Next, the residual features
are obtained by synthesizing -'� and"# . Finally, '# 2� and �'�
are concatenated to obtain an enhanced version of the enhanced
features ��" .

Merge Module: The merge module is utilized to further inte-
grate the interaction features of the enhanced and original branches,
as illustrated in Figure 2 (c). To begin, the initial inputs X and E,
along with the interaction features, are concatenated and fed into
the merge module. Following this, a 2D convolutional layer and
temporal attention module are applied to obtain a mask M, which
controls the retention of the interaction features. The final fused
feature Z is represented as follows:

/ = �8= ∗" + -8= ∗ (1 −") (7)
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Table 1: Dataset Statistics

Language Audio data Labeled data
Tujiayu 7h8m59s 7h8m59s
Shuiyu 8h40m23s 7h2m29s

2.3 E2E ASR by Joint CTC/Attention
This paper presents a speech recognition model that combines CTC
and attention-based encoder-decoder [27]. The model architecture
includes Conformer encoder, CTC, and Transformer decoder, as
shown in the figure below:

& = �>=5 >A<4A (/ ) (8)

��)� = �)� (&) (9)
��CC = )A0=B 5 >A<4A�42 (&) (10)

Where ��)� and ��CC denote the estimates derived from the
CTC and Transformer decoder, respectively. During decoding,
a combination of posteriors from both decoders is employed in
conjunction with beam search.

The ASR model is optimized based on the sum of the following
two objective functions:

!�(' = U!>BB�)� + (1 − U) !>BB�CC (11)

Where U is a hyperparameter, and !>BB�)� and !>BB�CC are
the posterior distributions from CTC and decoder, respectively.
The CTC objective function enforces alignment between features
and transcription during training, mitigating mislocalization in
attention-based encoder-decoder.

3 EXPERIMENTS
3.1 Dataset
For low-resource speech recognition of clean corpora, we used
Tujia and Shui languages. Both of the two low-resource languages
used in this paper belong to the Sino-Tibetan language family, and
both suffer from limited audio data due to the relatively large age
of most native speakers and small number of users. The detailed
information about the dataset is shown in Table 1. Among them,
the Tujia language includes 300 core spoken vocabulary words,
2000 major spoken vocabulary words, and 27 spoken phrases, with
a total duration of 7 hours, 8 minutes, and 59 seconds. The Shui
language includes 2474 sentences, 7514 vocabulary items, and 1171
exemplary characters, with a total duration of 8 hours, 40 minutes,
and 23 seconds.

For noisy speech recognition, we selected the MUSAN dataset
[23] to synthesize noisy audio by mixing it with clean audio. The
MUSAN dataset contains three categories of noise: 1) Music data,
including various types such as jazz and rap; 2) Noise data, includ-
ing sounds like car horns and thunder; 3) Speech data, including
recordings of hearings and debates. Noisy audio is obtained by
mixing clean speech data with any noise from the MUSAN dataset.

3.2 Experimental Setup
All experiments were implemented using the fairseq and ESPnet
toolkits. The proposed IFF-wav2vec model consists of four modules:
SE module, IFF-NET module, wav2vec 2.0, and decoder. The SE

module consists of 3 layers of bidirectional long short-termmemory
(BLSTM), a linear layer, and ReLU activation function to predict
noise magnitude feature masks. The IFF-NET module contains 4
RA blocks and 64 filters. The Transformer used is based on the
configuration of BASE in fairseq, and the decoder consists of 6
transformer layers.

During the pre-training phase, we trained the wav2vec 2.0 mod-
els separately for the Tujia and Shui languages using the fairseq
toolkit. We used the Adam optimizer with a learning rate of . The
diversity loss function was set to 0.1 during the computation of the
loss function. In the fine-tuning phase, our model was implemented
using the espnet toolkit. In this phase, we mixed noise into the
clean data to obtain the noisy audio. The same Adam optimizer was
used with a learning rate of 5. Additionally, for multitask learning,
we set the weight of the enhancement loss to 0.3.

3.3 Experimental Results and Analysis
To better evaluate the effectiveness of the proposed method in
this paper, we selected three models from pre-vious works as our
baseline models for comparison. The SE module and ASR module in
our model use the same architecture. The baseline models chosen in
this paper are as follows: 1) an end to end speech recognition system
that combines the SE module and the conformer module; 2) the IFF-
NET model that integrates interactive fusion of enhanced speech
and noisy speech; 3) the wav2vec 2.0 model based on contrastive
learning.

Table 2 presents the ASR performance under noisy environments,
which is evaluated by mixing clean test sets with audio segments
of various types of noise at different signal to noise ratios (SNRs)
and then assessing the model.

From Table 2, it can be observed that compared to the cascade
SE and ASR method, IFF-NET compensates for missing information
during the speech enhancement process by introducing interactive
feature fusion, resulting in a relative reduction of 3.49 and 10.45 in
CER for Tujia and Shui languages, respectively. The contrastive self-
supervised pretraining model, wav2vec 2.0, without using a speech
enhancement module, achieved a relative reduction of 4.77 and
13.73 in CER for the two languages, respectively. The experimental
results indicate that wav2vec 2.0, trained on a large amount of
unlabeled data through self-supervised learning, can obtain more
robust speech representations for improved ASR performance. It is
observed that the proposed IFF-wav2vec achieves the best results,
with a respective CER improvement of 2.11 and 0.35 compared to
the best performing wav2vec 2.0.

To understand the impact of different types of noise on ASR
performance, we conducted experiments using three types of noise
from the MUSAN dataset. During the experiments, the noise was
mixed with clean audio at the same signal to noise ratio (0-10dB).
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Table 2: Performance Comparison of All Models at Different SNRs

Noisy(0dB) Noisy(10dB) Noisy(20dB) Original
Tujiayu Shuiyu Tujiayu Shuiyu Tujiayu Shuiyu Tujiayu Shuiyu

SE+Conformer[24] 51.6 45.3 44.8 38.9 37.8 33.9 33.3 21.2
IFF-NET[22] 45.4 32.7 38.3 27.6 33.8 23.9 26.6 16.3
Wav2vec 2.0[14] 36.5 19.1 35.5 15.3 26.2 10.9 18.5 9.3
IFF-wav2vec(ours) 33.1 16.2 26.1 14.7 22.6 10.7 18.1 8.6

Table 3: Performance Comparison of Various Models in Different Noise Environments

Music Noisy Speech Original
Tujiayu Shuiyu Tujiayu Shuiyu Tujiayu Shuiyu Tujiayu Shuiyu

SE+Conformer[24] 47.6 40.3 40.8 31.9 63.4 59.1 33.3 21.2
IFF-NET[22] 41.4 28.7 33.9 25.6 53.8 51.2 26.6 16.3
Wav2vec 2.0[14] 33.5 13.1 26.4 13.6 41.2 30.7 18.5 9.3
IFF-wav2vec(ours) 27.1 12.2 23.1 10.4 36.5 18.3 18.1 8.6

Table 4: CER% Results for Different Data Mixtures

Different Types of Data Fusion IFF-NET IFF-wav2vec(Ours)
Tujiayu SE+Noisy 31.8 25.6

SE+Clean 26.6 17.5
Shuiyu SE+Noisy 23.9 12.5

SE+Clean 10.7 9.2

From Table 3, it can be observed that IFF-wav2vec effectively im-
proves ASR performance under different types of noise. However,
the CER is highest when the noise type is ”speech” with values of
36.5 and 18.3 for Tujia and Shui languages, respectively. The reason
for this is that the presence of speech in the noise confuses the
model, making it difficult to distinguish the true speaker’s voice,
leading to a decrease in recognition accuracy.

From Tables 2 and 3, it can be observed that in the case of the
same total duration, the recognition accuracy of Shui language is
higher than that of Tujia language. The reason may be that the
duration of each audio in Tujia language is longer than that of Shui
language, resulting in more noise features in the fused features of
Tujia language, which leads to a decrease in recognition accuracy.
Therefore, in this study, the original audio in the fusion process
was replaced with clean audio for experimentation. The test set
consisted of various noise types mixed with clean audio at SNRs
ranging from 0 to 20 dB. The experimental results are shown in
Table 4.

From Table 4, it can be seen that when replacing the noise audio
features with clean features in the fused features, IFF-NET and the
proposed method in this paper showed improvements in CER for
Tujia language by 5.2 and 8.1, respectively, and for Shui language by
12.2 and 3.3, respectively. This indicates that although the original
audio in the feature fusion process helps to supplement some miss-
ing information during enhancement, it also reintroduces noise
into the features, ultimately leading to a decrease in recognition
accuracy.

Figure 3: Spectrums of (a) clean , (b) noisy, and ASR input of
(c) Cascaded SE and ASR System, (d)IFF-NET,(e)IFF-wav2vec.

To further demonstrate the contribution of the proposed IFF-
wav2vec method in handling noise, we present the mel spectro-
grams of ASR inputs for different methods, as shown in Figure
3 From (a) and (b), it can be observed that there is a significant
amount of noise in the features. Then, comparing with methods
(c-d), it is observed that the proposed IFF-wav2vec method can
effectively reduce more background noise while preserving richer
clean information.
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4 CONCLUSIONS
In this paper, a new framework called IFF-wav2vec is proposed to
enhance the performance of low-resource ASR systems in complex
environments. The model’s performance is analyzed by simulating
different noise environments. The results demonstrate that the
proposed mod-el architecture can effectively improve the recogni-
tion accuracy of low-resource languages in complex environments.
The proposed method achieves a CER improvement of 8.6 on low-
resource settings.
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