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Abstract—In this paper, we present an improved nonparallel
hyperplanes classifier for multi-class classification, termed as IN-
HCMC. As in the nonparallel support vector machine (NPSVM)
for binary classification, the 𝜀-insensitive loss function is adopted
in the primal problems of multi-class classification to improve the
sparseness associated with the nonparallel hyperplanes classifier
for multi-class classification (NHCMC) where the quadratic
loss function is used. Experimental results on some benchmark
datasets are reported to show the effectiveness of our method in
terms of sparseness and classification accuracy.

Index Terms—Multi-class classification; Nonparallel hyper-
planes classifier; Support vector machine

I. INTRODUCTION

Support vector machines (SVMs) are proposed by Vapnik
and his co-workers [1], [11], [12] for classification, regression,
or other problems in machine learning. It is well known
that there are three essential elements which make SVMs so
successful: the principle of maximum margin, dual theory, and
kernel trick. The sequential minimization optimization (SMO)
can be applied to solve the resulting optimization problems
efficiently [10].

In the last decade, some nonparallel hyperplane classifiers
which are different from the standard support vector classifi-
cation have been proposed. The twin support vector machine
(TWSVM) [3] seeks two nonparallel proximal hyperplanes
such that each hyperplane is closest to one of the two classes
and as far as possible to the other class. TWSVMs have been
studied extensively [6], [7], [8], [9].

Note that although TWSVM only solves two smaller convex
quadratic programming problems, the inverse of matrices need
to be computed in the algorithm [8], which tends to be
intractable for problems with large datasets. For the nonlinear
case, the kernel generated surfaces instead of hyperplanes are
considered and two extra primal problems are constructed. In
TWSVM a quadratic loss function is adopted to make the
proximal hyperplane close to one class and a soft-margin loss
function is adopted for the other class, which causes the so
called phenomenon of semi-sparseness [13]. The nonparallel
support vector machine (NPSVM) proposed in [13] has over-
came many drawbacks of TWSVM. The quadratic loss func-
tion in TWSVM is replaced by the 𝜀-insensitive loss function
in NPSVM to improve the semi-sparsity. Experimental results
reported in [13] show the improvement of the sparseness and
classification accuracy of NPSVM.

For the multi-class classification problem, a new multi-
class classifier, termed as nonparallel hyperplanes classifier
for multi-class classification (NHCMC), has been proposed
in [5], which seeks 𝐾 hyperplanes by solving 𝐾 quadratic
programming problems (QPPs). The QPPs are designed to
put the 𝑘-th class as far as possible to the 𝑘-th hyperplane
while the rest points are proximal to the 𝑘-th hyperplanes. To
assign a new point to one class is depending on which of the
𝐾 hyperplanes it lies farthest to. However, NHCMC lost the
sparseness by using a quadratic and a soft-margin loss function
for each class to some extent.

In this paper, we propose an improved nonparallel hyper-
planes classifier for multi-class classification problems (IN-
HCMC). In order to improve the sparsity of NHCMC, we
change the quadratic loss function to the 𝜀-insensitive loss
function as in NPSVM. The numerical experiments indicate
that the classification accuracy is also improved.

This paper is organized as follows. In Section 2, we briefly
introduce the standard support vector classification (SVC),
TWSVM, NPSVM and NHCMC. The INHCMC is presented
in Section 3. Some experimental results are reported in Section
4. We give concluding remarks in Section 5.

II. BACKGROUND

In this section, we introduce the standard C-SVC, TWSVM,
and NPSVM.

A. C-SVM

Consider the binary classification problem with the training
set

𝑇 = {(𝑥1, 𝑦1), . . . , (𝑥𝑙, 𝑦𝑙)},

where 𝑥𝑖 ∈ 𝑅𝑛, 𝑦𝑖 ∈ 𝛾 = {1,−1}, 𝑖 = 1, . . . , 𝑙. The
standard C-SVC formulates the problem as a convex quadratic
programming problem (QPP)

min
𝜔,𝑏,𝜉

1

2
∥𝜔∥2 + 𝐶

𝑙∑
𝑖=1

𝜉𝑖

s.t. 𝑦𝑖((𝜔 ⋅ 𝑥𝑖) + 𝑏) ≥ 1− 𝜉𝑖, 𝑖 = 1, . . . , 𝑙

𝜉𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑙



where 𝜉 = (𝜉1, . . . , 𝜉𝑙)
𝑇 , and 𝐶 > 0 is a penalty parameter.

C-SVC solves its Lagrangian dual problem

min
𝛼

1

2

𝑙∑
𝑖=1

𝑙∑
𝑗=1

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖, 𝑥𝑗)−
𝑙∑

𝑖=1

𝛼𝑖

s.t.
𝑙∑

𝑖=1

𝑦𝑖𝛼𝑖 = 0

0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, . . . , 𝑙.

where 𝐾(𝑥, 𝑥′) is the kernel function, which is also a convex
QPP, and then constructs the decision function accordingly.

B. TWSVM

Consider the binary classification problem with the training
set

𝑇 = {(𝑥1, 1), . . . , (𝑥𝑝, 1), (𝑥𝑝+1,−1), . . . , (𝑥𝑝+𝑞,−1)}, (1)

where 𝑥𝑖 ∈ 𝑅𝑛,𝑖 = 1, . . . , 𝑝 + 𝑞. Let 𝐴 = (𝑥1, . . . , 𝑥𝑝)
𝑇 ∈

𝑅𝑝×𝑛, 𝐵 = (𝑥𝑝+1, . . ., 𝑥𝑝+𝑞)
𝑇 ∈ 𝑅𝑞×𝑛 and 𝑙 = 𝑝 + 𝑞.

For linear classification problem, TWSVM seeks a pair of
nonparallel hyperplanes

(𝜔+ ⋅ 𝑥) + 𝑏+ = 0 and (𝜔− ⋅ 𝑥) + 𝑏− = 0

by solving two smaller convex QPPs

min
𝜔+,𝑏+,𝜉−

1

2

𝑝∑
𝑖=1

((𝜔+ ⋅ 𝑥𝑖) + 𝑏+)2 + 𝑑1
𝑝+𝑞∑

𝑗=𝑝+1

𝜉𝑗

s.t. (𝜔+ ⋅ 𝑥𝑗) + 𝑏+ ≤ −1 + 𝜉𝑗 , 𝑗 = 𝑝+ 1, . . . , 𝑝+ 𝑞

𝜉𝑗 ≥ 0, 𝑗 = 𝑝+ 1, . . . , 𝑝+ 𝑞

min
𝜔−,𝑏−,𝜉+

1

2

𝑝+𝑞∑
𝑖=𝑝+1

((𝜔− ⋅ 𝑥𝑖) + 𝑏−)2 + 𝑑2
𝑝∑

𝑗=1

𝜉𝑗

s.t. (𝜔− ⋅ 𝑥𝑗) + 𝑏− ≥ 1− 𝜉𝑗 , 𝑗 = 1, . . . , 𝑝

𝜉𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑝,

where 𝑑𝑖, i=1, 2 are penalty parameters. For nonlinear clas-
sification problem, two kernel-based surfaces are constructed
and two other primal problem are considered.

C. NPSVM

For training set (1), NPSVM constructs two QPPs as fol-
lows:

min
𝜔+,𝑏+,𝜂

(∗)
+ ,𝜉−

1

2
∥𝜔+∥2 + 𝐶1

𝑝∑
𝑖=1

(𝜂𝑖 + 𝜂
∗
𝑖 ) + 𝐶2

𝑝+𝑞∑
𝑗=𝑝+1

𝜉𝑗

s.t. (𝜔+ ⋅ 𝑥𝑖) + 𝑏+ ≤ 𝜀+ 𝜂𝑖, 𝑖 = 1, . . . , 𝑝

− (𝜔+ ⋅ 𝑥𝑖)− 𝑏+ ≤ 𝜀+ 𝜂∗𝑖 , 𝑖 = 1, . . . , 𝑝

(𝜔+ ⋅ 𝑥𝑗) + 𝑏+ ≤ −1 + 𝜉𝑗 ,

𝑗 = 𝑝+ 1, . . . , 𝑝+ 𝑞

𝜂𝑖, 𝜂
∗
𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑝

𝜉𝑗 ≥ 0, 𝑗 = 𝑝+ 1, . . . , 𝑝+ 𝑞,

min
𝜔−,𝑏−,𝜂

(∗)
− ,𝜉+

1

2
∥𝜔−∥2 + 𝐶3

𝑝+𝑞∑
𝑖=𝑝+1

(𝜂𝑖 + 𝜂
∗
𝑖 ) + 𝐶4

𝑝∑
𝑗=1

𝜉𝑗

s.t. (𝜔− ⋅ 𝑥𝑖) + 𝑏− ≤ 𝜀+ 𝜂𝑖,
𝑖 = 𝑝+ 1, . . . , 𝑝+ 𝑞

− (𝜔− ⋅ 𝑥𝑖)− 𝑏− ≤ 𝜀+ 𝜂∗𝑖 ,
𝑖 = 𝑝+ 1, . . . , 𝑝+ 𝑞

(𝜔− ⋅ 𝑥𝑗) + 𝑏− ≤ 1− 𝜉𝑗 , 𝑗 = 1, . . . , 𝑝

𝜂𝑖, 𝜂
∗
𝑖 ≥ 0, 𝑖 = 𝑝+ 1, . . . , 𝑝+ 𝑞

𝜉𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑝,

where 𝑥𝑖, 𝑖 = 1, . . . , 𝑝 are positive inputs, 𝑥𝑖, 𝑖 = 𝑝+1, . . . , 𝑝+
𝑞 are negative inputs, 𝐶𝑖 ≥ 0, 𝑖 = 1, . . . , 4 are penalty param-
eters, and 𝜉+ = (𝜉1 . . . , 𝜉𝑝)

𝑇 , 𝜉− = (𝜉𝑝+1, . . . , 𝜉𝑝+𝑞)
𝑇 , 𝜂

(∗)
+ =

(𝜂𝑇+, 𝜂
∗𝑇
+ )𝑇 = (𝜂1, . . . , 𝜂𝑝, 𝜂

∗
1 , . . . , 𝜂

∗
𝑝)

𝑇 , 𝜂(∗)− = (𝜂𝑇−, 𝜂
∗𝑇
− )𝑇 =

(𝜂𝑝+1, . . . , 𝜂𝑝+𝑞, 𝜂
∗
𝑝+1, . . . , 𝜂

∗
𝑝+𝑞)

𝑇 , are slack variables.

D. NHCMC

Consider the multiple classification problem with the train-
ing set:

𝑇 = {(𝑥1, 𝑦1), . . . , (𝑥𝑙, 𝑦𝑙)}, (2)

where 𝑥𝑖 ∈ 𝑅𝑛, 𝑖 = 1, . . . , 𝑙, and 𝑦𝑖 ∈ {1, . . . ,𝐾} is the
corresponding class of 𝑥𝑖. For convenience, denote the number
of points belonging to the 𝑘-th class as 𝑙𝑘 and these points are
denoted as 𝐴𝑘 ∈ 𝑅𝑙𝑘×𝑛, 𝑘 = 1, . . . ,𝐾. Then the matrix

𝐵𝑘 = [𝐴𝑇
1 , . . . , 𝐴

𝑇
𝑘−1, 𝐴

𝑇
𝑘+1, . . . , 𝐴

𝑇
𝐾 ]𝑇 (3)

denote all the points except for the points belonging to the
𝑘-th class. NHCMC seeks 𝐾 nonparallel hyperplanes

(𝜔𝑘 ⋅ 𝑥) + 𝑏𝑘 = 0, 𝑘 = 1, . . . ,𝐾 (4)

by solving the following convex QPPs:

min
𝜔𝑘,𝑏𝑘,𝜂𝑘,𝜉𝑘

1

2
𝐶1∥𝜔𝑘∥2 + 1

2
𝜂𝑇𝑘 𝜂𝑘 + 𝐶2𝑒

𝑇
𝑘2
𝜉𝑘

s.t. 𝐵𝑘𝜔𝑘 + 𝑒𝑘1
𝑏𝑘 = 𝜂𝑘

(𝐴𝑘𝜔𝑘 + 𝑒𝑘2
𝑏𝑘) + 𝜉𝑘 ≥ 𝑒𝑘2

𝜉𝑘 ≥ 0.

where 𝜂𝑘 ∈ 𝑅(𝑙−𝑙𝑘) is a variable, 𝜉𝑘 is a slack variable, 𝑒𝑘1
∈

𝑅(𝑙−𝑙𝑘) and 𝑒𝑘2
∈ 𝑅𝑙𝑘 are the vectors of ones, 𝐶1 ≥ 0 and

𝐶2 ≥ 0 are penalty parameters.

III. IMPROVED NONPARALLEL HYPERPLANES CLASSIFIER

FOR MULTI-CLASS CLASSIFICATION (INHCMC)

A. Linear INHCMC

For the multi-class classification problem with the train set
(2), We aim to construct 𝐾 nonparallel hyperplanes (4) by
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Fig. 1. A toy example learned by INHCMC

solving the following convex QPP for each 𝑘:

min
𝜔𝑘,𝑏𝑘,𝜂𝑘,𝜂∗

𝑘,𝜉𝑘

1

2
∥𝜔𝑘∥2 + 𝐶1𝑒

𝑇
𝑘1
(𝜂𝑘 + 𝜂∗𝑘) + 𝐶2𝑒

𝑇
𝑘2
𝜉𝑘

s.t. 𝐵𝑘𝜔𝑘 + 𝑒𝑘1
𝑏𝑘 ≤ 𝜀𝑒𝑘1

+ 𝜂𝑘

−𝐵𝑘𝜔𝑘 − 𝑒𝑘1
𝑏𝑘 ≤ 𝜀𝑒𝑘1

+ 𝜂∗𝑘 (5)

(𝐴𝑘𝜔𝑘 + 𝑒𝑘2
𝑏𝑘) + 𝜉𝑘 ≥ 𝑒𝑘2

𝜂𝑘, 𝜂
∗
𝑘, 𝜉𝑘 ≥ 0.

where 𝜂𝑘, 𝜂∗𝑘 ∈ 𝑅(𝑙−𝑙𝑘) are variables, 𝜉𝑘 is a slack variable,
𝐵𝑘 is given in (3), 𝑒𝑘1

∈ 𝑅(𝑙−𝑙𝑘) and 𝑒𝑘2
∈ 𝑅𝑙𝑘 are the vectors

of ones, 𝐶1 ≥ 0 and 𝐶2 ≥ 0 are penalty parameters.

In order to illustrate the primal problem of INHCMC, we
generated an artificial two dimensional three-class dataset. The
geometric interpretation of above problem with 𝑥 ∈ 𝑅2 is
shown in Figure 1. Take the “ ∗ ” class in Figure 1 as an
example. We hope the hyperplane of the “ ∗ ” class 𝑙1 is far
from the “∗” points and close to the “+” and “∘” points. In
order to minimize the misclassification, the points of the 𝑘-th
class are at distance 1 from the hyperplane, and we minimize
the sum of error variables with soft margin loss.

To obtain the solution to problem (5), we need to derive its
dual problem. The Lagrangian of problem (5) is given by

𝐿(𝜔𝑘, 𝑏𝑘, 𝜂𝑘, 𝜂
∗
𝑘, 𝜉𝑘, 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6)

=
1

2
∥𝜔𝑘∥2 + 𝐶1𝑒

𝑇
𝑘1
(𝜂𝑘 + 𝜂∗𝑘) + 𝐶2𝑒

𝑇
𝑘2
𝜉𝑘

− 𝛼𝑇1 (−𝐵𝑘𝜔𝑘 − 𝑒𝑘1
𝑏𝑘 + 𝜀𝑒𝑘1

+ 𝜂𝑘)

− 𝛼𝑇2 (𝐵𝑘𝜔𝑘 + 𝑒𝑘1
𝑏𝑘 + 𝜀𝑒𝑘1

+ 𝜂∗𝑘)

− 𝛼𝑇3 (𝐴𝑘𝜔𝑘 + 𝑒𝑘2
𝑏𝑘 + 𝜉𝑘 − 𝑒𝑘2

)

− 𝛼𝑇4 𝜉𝑘 − 𝛼𝑇5 𝜂𝑘 − 𝛼𝑇6 𝜂∗𝑘, (6)

where 𝛼1 = (𝛼11, . . . , 𝛼1(𝑙−𝑙𝑘))
𝑇 , 𝛼2 = (𝛼21, . . . , 𝛼2(𝑙−𝑙𝑘))

𝑇 ,
𝛼3 = (𝛼31, . . . , 𝛼3𝑙𝑘)

𝑇 , 𝛼4 = (𝛼41, . . . , 𝛼4𝑙𝑘)
𝑇 , 𝛼5 =

(𝛼51, . . . , 𝛼5(𝑙−𝑙𝑘))
𝑇 , 𝛼6 = (𝛼61, . . . , 𝛼6(𝑙−𝑙𝑘))

𝑇 are the
Lagrange multiplier vectors. From the Karush-Kuhn-Tucker

(KKT) condition for 𝜔𝑘, 𝑏𝑘, 𝜂𝑘, 𝜂∗𝑘, 𝜉𝑘 and 𝛼𝑖(𝑖 = 1, . . . , 6), it
follows

∇𝜔𝑘
𝐿 = 𝜔𝑘 +𝐵𝑇

𝑘 𝛼1 −𝐵𝑇
𝑘 𝛼2 −𝐴𝑇

𝑘 𝛼3 = 0 (7)

∇𝑏𝑘𝐿 = 𝑒𝑇𝑘1
𝛼1 − 𝑒𝑇𝑘1

𝛼2 − 𝑒𝑇𝑘2
𝛼3 = 0 (8)

∇𝜂𝑘
𝐿 = 𝐶1𝑒𝑘1

− 𝛼1 − 𝛼5 = 0 (9)

∇𝜂∗
𝑘
𝐿 = 𝐶1𝑒𝑘1

− 𝛼2 − 𝛼6 = 0 (10)

∇𝜉𝑘𝐿 = 𝐶2𝑒𝑘2
− 𝛼3 − 𝛼4 = 0 (11)

𝐵𝑘𝜔𝑘 + 𝑒𝑘1
𝑏𝑘 ≤ 𝜀𝑒𝑘1

+ 𝜂𝑘 (12)

−𝐵𝑘𝜔𝑘 − 𝑒𝑘1
𝑏𝑘 ≤ 𝜀𝑒𝑘1

+ 𝜂∗𝑘 (13)

(𝐴𝑘𝜔𝑘 + 𝑒𝑘2
𝑏𝑘) + 𝜉𝑘 ≥ 𝑒𝑘2

(14)

𝜂𝑘, 𝜂
∗
𝑘, 𝜉𝑘 ≥ 0. (15)

Since 𝛼4, 𝛼5, 𝛼6 ≥ 0, from (9) − (11) we have

0 ≤ 𝛼1, 𝛼2 ≤ 𝐶1𝑒𝑘1, 0 ≤ 𝛼3 ≤ 𝐶2𝑒𝑘2,

and from (7), we have

𝜔𝑘 = 𝐵𝑇
𝑘 (𝛼2 − 𝛼1) +𝐴𝑇

𝑘 𝛼3. (16)

Then putting (16) into the Lagrangian and using (7)-(15), we
obtain the dual problem of problem (5)

min
𝜋̂

1

2
𝜋̂𝑇 Λ̂𝜋̂ + 𝜅̂𝑇 𝜋̂,

s.t. 𝑒𝑇 𝜋̂ = 0, (17)

0 ≤ 𝜋̂ ≤ 𝐶
where

𝜋̂ = (𝛼𝑇2 , 𝛼
𝑇
1 , 𝛼

𝑇
3 )

𝑇

𝜅̂ = (𝜀𝑒𝑇𝑘1
, 𝜀𝑒𝑇𝑘1

,−𝑒𝑇𝑘2
)𝑇

𝑒 = (−𝑒𝑇𝑘1
, 𝑒𝑇𝑘1

,−𝑒𝑇𝑘2
)𝑇

𝐶 = (𝐶1𝑒
𝑇
𝑘1
, 𝐶1𝑒

𝑇
𝑘1
, 𝐶2𝑒

𝑇
𝑘2
)𝑇 ,

and

Λ̂ =

(
𝑄1 𝑄2

𝑄𝑇
2 𝑄3

)
, 𝑄1 =

(
𝐵𝑘𝐵

𝑇
𝑘 −𝐵𝑘𝐵

𝑇
𝑘

−𝐵𝑘𝐵
𝑇
𝑘 𝐵𝑘𝐵

𝑇
𝑘

)

𝑄2 =

(
𝐵𝑘𝐴

𝑇
𝑘

−𝐵𝑘𝐴
𝑇
𝑘

)
, 𝑄3 = 𝐴𝑘𝐴

𝑇
𝑘 .

For (17), by applying the KKT condition, we can obtain the
following conclusions, which is similar to the corresponding
conclusions in [13], therefore the proofs are omitted.

Theorem 3.1: Suppose that 𝜋̂ = (𝛼𝑇2 , 𝛼
𝑇
1 , 𝛼

𝑇
3 )

𝑇 is a solution
to the problem (17), then for 𝑖 = 1, . . . , 𝑙 − 𝑙𝑘, each pair
of 𝛼1𝑖 and 𝛼2𝑖 cannot be both simultaneously nonzero, i.e.,
𝛼1𝑖𝛼2𝑖 = 0, 𝑖 = 1, . . . , 𝑙 − 𝑙𝑘.

Theorem 3.2: Suppose that 𝜋̂ = (𝛼𝑇2 , 𝛼
𝑇
1 , 𝛼

𝑇
3 )

𝑇 is a solution
to the problem (17). If there exist components of 𝜋̂ with value
in the interval (0, 𝐶), then the solution (𝜔𝑘, 𝑏𝑘) to the problem
(5) can be computed as follows: Let

𝜔𝑘 = 𝐵𝑇
𝑘 (𝛼2 − 𝛼1) +𝐴𝑇

𝑘 𝛼3



and choose a component of 𝛼1, 𝛼1𝑗 ∈ (0, 𝐶1), 𝐵𝑘𝑗 is the 𝑗-th
row of 𝐵𝑘, then let

𝑏𝑘 = −𝐵𝑘𝑗𝜔𝑘 + 𝜀,

or choose a component of 𝛼2, 𝛼2𝑚 ∈ (0, 𝐶1), 𝐵𝑘𝑚 is the𝑚-th
row of 𝐵𝑘, then let

𝑏𝑘 = −𝐵𝑘𝑚𝜔𝑘 − 𝜀,
or choose a component of 𝛼3, 𝛼3𝑢 ∈ (0, 𝐶2), 𝐴𝑘𝑢 is the 𝑢-th
row of 𝐴𝑘, then let

𝑏𝑘 = −𝐴𝑘𝑢𝜔𝑘 + 1.

From Theorem 3.2 it can be seen that the inherent semi-
sparseness in the NHCMC is improved due to the introduction
of 𝜀-insensitive loss function instead of the quadratic loss
function for each class, as pointed out in [14].

Once the solution (𝜔𝑘, 𝑏𝑘) to the problem (5) is obtained
for each 𝑘 = 1, . . . ,𝐾, a new point 𝑥 ∈ 𝑅𝑛 is assigned to the
class by the decision function

𝑓(𝑥) = arg max
𝑘=1,...,𝐾

∣(𝜔𝑘 ⋅ 𝑥) + 𝑏𝑘∣
∥𝜔𝑘∥

where ∣(𝜔𝑘⋅𝑥)+𝑏𝑘∣
∥𝜔𝑘∥ is the perpendicular distance from 𝑥 to the

hyperplane (𝜔𝑘 ⋅ 𝑥) + 𝑏𝑘 = 0, 𝑘 = 1, . . . ,𝐾.

B. Nonlinear INHCMC

As only inner products appear in the dual problem (17),
the kernel functions can be applied directly to the problems
in order to extend the linear INHCMC to the nonlinear case.
The corresponding dual problem to be solved is as follows

min
𝜋̂

1

2
𝜋̂𝑇 Λ̂𝜋̂ + 𝜅̂𝑇 𝜋̂

s.t. 𝑒𝑇 𝜋̂ = 0 (18)

0 ≤ 𝜋̂ ≤ 𝐶,
where

𝜋̂ = (𝛼𝑇2 , 𝛼
𝑇
1 , 𝛼

𝑇
3 )

𝑇

𝜅̂ = (𝜀𝑒𝑇𝑘1
, 𝜀𝑒𝑇𝑘1

,−𝑒𝑇𝑘2
)𝑇

𝑒 = (−𝑒𝑇𝑘1
, 𝑒𝑇𝑘1

,−𝑒𝑇𝑘2
)𝑇

𝐶 = (𝐶1𝑒
𝑇
𝑘1
, 𝐶1𝑒

𝑇
𝑘1
, 𝐶2𝑒

𝑇
𝑘2
)𝑇 ,

and

Λ̂ =

(
𝑄1 𝑄2

𝑄𝑇
2 𝑄3

)
, 𝑄1 =

(
𝐾(𝐵𝑘, 𝐵

𝑇
𝑘 ) 𝐾(−𝐵𝑘, 𝐵

𝑇
𝑘 )

𝐾(−𝐵𝑘, 𝐵
𝑇
𝑘 ) 𝐾(𝐵𝑘, 𝐵

𝑇
𝑘 )

)

𝑄2 =

(
𝐾(𝐵𝑘, 𝐴

𝑇
𝑘 )

𝐾(−𝐵𝑘, 𝐴
𝑇
𝑘 )

)
, 𝑄3 = 𝐾(𝐴𝑘, 𝐴

𝑇
𝑘 ).

Similar conclusions to Theorems 3.1 and 3.2 can be estab-
lished accordingly by using 𝐾(𝑥, 𝑥′) instead of (𝑥 ⋅ 𝑥′). The
INHCMC algorithm is presented as follows.

Algorithm 1
1) Input the training set (2)
2) Choose appropriate kernels 𝐾(𝑥, 𝑥′), appropriate parameters 𝜀 > 0,

𝐶1, 𝐶2 > 0 for problem (18)
3) Construct and solve the convex QPP (18), get the solution

𝜋̂ = (𝛼𝑇
2 , 𝛼𝑇

1 , 𝛼𝑇
3 )𝑇

4) Construct the decision functions
𝑓𝑘(𝑥) = 𝐾(𝑥,𝐵𝑇

𝑘 ) ⋅ (𝛼2 − 𝛼1) +𝐾(𝑥,𝐴𝑇
𝑘 ) ⋅ 𝛼3 + 𝑏𝑘, 𝑘 = 1, . . . ,𝐾,

where 𝑏𝑘 are computed by using Theorem 3.2 for kernel cases;
5) For a new input 𝑥, assign it to the class 𝑘 with

𝑘 = arg max
𝑘=1,...,𝐾

∣𝑓𝑘(𝑥)∣
∥𝜔𝑘∥

IV. NUMERICAL EXPERIMENTS

In this section, in order to validate the performance of
INHCMC, firstly we apply INHCMC to the Iris dataset [2]
which contains three classes (Setosa, Versilcolor, Viginica) and
four attributes (sepal length, sepal width, petal length and petal
width) for an iris. We aim to classify the class of iris based on
the four attributes. The varying percentage of support vectors
corresponding to problem (17) and (18) is recorded in Fig.
2. Note that there are three problems to be solved for linear
or nonlinear case as the number of classes is 3. It can be
seen from the figure that with the increasing 𝜀, the number
of support vectors decreases, therefore the semi-sparseness
(𝜀 = 0) is improved.
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Fig. 2. Increasing of sparseness with the increasing 𝜀

Then we compare the accuracy performance of INHCM-
C with NHCMC on several publicly available benchmark
datasets [2]. These datasets were used in [5] as well. All
samples from the datasets are scaled so that the features
locate in [0, 1] before training. The RBF kernel 𝐾(𝑥, 𝑥′) =

exp(−∥𝑥−𝑥
′∥2

𝜎 ) is adopted for all the datasets, the parameters
𝐶1, 𝐶2 in INHCMC are tuned for best classification accuracy
in the range 2−8 to 212, and the optimal parameter 𝜀 in
INHCMC is obtained in the range [0, 0.5]. The average tenfold
cross-validation results of the two methods on the five datasets



in terms of accuracy are reported in Table I. It can be seen
that the INHCMC produces better accuracy for four out of the
five datasets.

TABLE I
AVERAGE RESULTS FOR SOME BENCHMARK DATASETS

Datasets NHCMC INHCMC
acc(%) acc(%)

Iris 98.45 98.67

Wine 98.62 98.88

Glass 74.55 76.67

Vowel 99.71 98.49

Vehicle 86.91 88.68

V. CONCLUSION

In this paper, we proposed an improved nonparallel hy-
perplanes classifier for multi-class classification, termed as
INHCMC. By using the 𝜀-insensitive loss function instead of
the quadratic loss function in the primal problems constructed
in NHCMC, the semi-sparsity is improved. It can also be re-
garded as an extension of NPSVM into the case of multi-class
classification. Some preliminary experimental results show the
improvement on sparseness and classification accuracy of the
proposed method.
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