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�� INTRODUCTION

Automatic recognition of human speech by computers has been a topic of research
for more than forty years �paraphrasing Rabiner and Juang �������	 At its core

speech recognition seems to require searching extremely large
 weighted spaces
 and
so naturally leads to algorithmic problems	 Furthermore
 speech recognition tasks
algorithmdesigners to devise solutions that are not only asymptotically e�cient�to
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handle very large instances�but also practically e�cient�to run in real time	 We

nd little if any coverage of speech recognition in the algorithms literature
 however	
A sizable speech recognition literature does exist
 but it has developed in a separate
community with its own terminology	 As a result
 algorithm designers interested
in the problems associated with speech recognition may feel uncomfortable	 Such
potential researchers
 however
 bene
t from a lack of preconceptions as to how
e�ective �that is
 accurate
 robust
 fast
 etc	� speech recognition should be realized	
We aim in this paper to summarize speech recognition
 distill some of the current

major problems facing the speech recognition community
 and present them in terms
familiar to algorithm designers	 We describe our own understanding of speech
recognition and its associated algorithmic problems	 We do not try to solve the
problems that we present in this paper� rather we concentrate on describing them
in such a way that interested computer scientists might consider them	
We believe that speech recognition is well suited to exploration and experi�

mentation by algorithm theorists and designers	 The general problem areas that
are involved�in particular
 graph searching and automata manipulation�are well
known to and have been extensively studied by algorithms experts	 While some
very tight theoretical bounds and even very good practical implementations for
some of the speci
c problems �e	g	
 shortest path 
nding and 
nite state automata
minimization� are already well known
 the manifestations of these problems as they
arise in speech recognition are so large as to defy straightforward solutions	 The
result is that most of the progress in speech recognition to date is due to clever
heuristic methods that solve special cases of the general problems	 Good character�
izations of these special cases
 as well as theoretical studies of their solutions
 are
still lacking
 however	 There is much room for both experiments in characterizing
various special cases of general problems and also for theoretical analysis to provide
more than empirical evidence that deployed algorithms will perform in guaranteed
manners	 Furthermore
 practical implementations of any algorithms are critical
to the deployment of speech recognition technology	 The interested algorithm ex�
pert
 therefore
 has a wide range of stimulating problems from which to choose
 the
solutions of which are not only of theoretical but also of practical importance	
Although this paper is not a formal survey
 we do introduce the dominant

speech recognition formalisms to help algorithm designers understand that liter�
ature	 While we want to consider speech recognition from as general a perspective
as possible
 for sake of clarity as well as space we have chosen to present the topic
from the dominant viewpoint found in the literature over the last decade or so�
that of maximum likelihood as the paradigm for speech recognition	 We cannot
stress enough that while reading this paper
 one should not assume that this is in
fact the correct way to address speech recognition	 While the maximum�likelihood
paradigm has found recent success in some recognition tasks
 it is not clear that
this model will be the best one over the long term	

In Section �
 we informally introduce some of the notions behind speech recog�
nition	 In Section �
 we formalize these ideas and state mathematically the goal of
speech recognition	 We continue in Section � by introducing hidden Markov models
and Markov sources for modeling the various components of a speech recognition
system	 In Section �
 we outline the Viterbi algorithm
 which solves the main equa�
tion presented in Section � using hidden Markov models	 In Section �
 we present
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Fig� �� Block diagram of a speech recognizer� Input speech is digitized into a sequence of feature
vectors� An acoustic�phonetic recognizer transforms the feature vectors into a time�sequenced
lattice of phones� A word recognition module transforms the phone lattice into a word lattice�
with the help of a lexicon� Finally� in the case of continuous or connected word recognition� a
grammar is applied to pick the most likely sequence of words from the word lattice�

the A� algorithm
 originally developed by the arti
cial intelligence community
 and
a related general optimization paradigm for searching large
 weighted graphs and
discuss how these can be used in speech recognition	 In Section �
 we describe an�
other approach to speech recognition
 based on 
nite�state transducers	 In Section
�
 we discuss determinization and minimization of weighted lattices and automata

computational problems that are common to the two approaches �hidden Markov
models and 
nite�state transducers�	 Finally
 we conclude with some discussion
in Section �	 Throughout the paper
 we introduce relevant research areas that we
think will be interesting to algorithm experts as well as critical to the advancement
of automatic speech recognition	 We summarize these in Appendix A	 Appendix
B gives pointers to some relevant sources of code
 data
 etc	 Appendix C provides
a glossary of abbreviations used throughout the paper	

�� AN INFORMAL VIEW OF SPEECH RECOGNITION

Speech recognition is the process of reconstructing the text of a spoken sentence
from the continuous acoustic signal induced by the associated utterance	 A speech
recognizer usually operates in phases
 as shown in Figure �� Pereira and Riley ������
refer to this pipeline as the recognition cascade	 By means of signal processing
 the
acoustic waveform is 
rst transformed into a sequence of discrete observations over
some unbounded alphabet F 	 We call the sequence of discrete observations the
observation or input sequence	 Its symbols
 referred to as feature vectors
 are de�
signed to preserve relevant acoustic information from the original signal� in the most
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general setting
 the feature vectors will also have a probability distribution associ�
ated with them	 �It is also possible to consider continuous
 rather than discrete

observations
 and we discuss this issue brie�y in Section �	�	� We have chosen to
focus on the later computational aspects of processing this discrete sequence	 While
the signal processing and acoustics issues are equally important
 they are beyond
the scope of this paper	 Rabiner and Juang ������ give an extensive treatment of
how the transformation from the acoustic signal to a sequence of feature vectors is
obtained	

Because di�erent users
 or the same user at di�erent times
 may utter the same
sentence in di�erent ways
 the recognition process is stochastic	 At a very high
level
 we can divide the speech recognition area into two branches� isolated word
recognition �IWR� and continuous speech recognition �CSR�	

In IWR
 the recognizer takes as input the observation sequence of one word at
a time �spoken in isolation and belonging to a 
xed dictionary� and for each input
word outputs
 with high probability
 the word that has been spoken	 The two main
algorithmic components are the lexicon and the search algorithm	 For now
 we dis�
cuss these components informally	 The lexicon contains the typical pronunciations
of each word in the dictionary	 An example of a lexicon for English is the set of
phonetic transcriptions of the words in an English dictionary	 From the phonetic
transcriptions
 one can obtain canonical acoustic models for the words in the dic�
tionary	 These acoustic models can be considered to be Markov sources over the
alphabet F 	 The search algorithm compares the input sequence to the canonical
acoustic model for each word in the lexicon	 It outputs the word that maximizes
a given objective function	 In theory
 the objective function is the likelihood of
a word� given the observation sequence� In practice
 however
 the computation of
the objective function is usually approximated using heuristics
 the e�ectiveness of
which are established experimentally� i	e	
 no theoretical quanti
cation is available
on the disparity between the heuristic solution and the optimal solution	 Such an
approximation is justi
ed by the need for fast responses in the presence of large dic�
tionaries and lexicons	 As we will see
 several aspects related to the representation
of the lexicon in�uence the search heuristics	
In CSR
 the recognizer takes as input the observation sequence corresponding

to a spoken sentence and outputs
 with high probability
 that sentence	 The three
algorithmic components are the lexicon
 the language model or grammar
 and the
search algorithm	 Again
 for now
 we discuss these components informally	 The
lexicon is exactly as in IWR
 whereas the language model gives a stochastic de�
scription of the language	 That is
 the language model gives a syntactic description
of the language
 and
 in addition
 it also provides a �possibly probabilistic� descrip�
tion of which speci
c words can follow another word or group of words� e	g	
 which
speci
c nouns can follow a speci
c verb	 The lexicon is obtained as in the case of
IWR
 whereas the language model is built using linguistic as well as task�speci
c
knowledge	 The search algorithm uses the language model and
 for each word
 the
acoustic models derived from the lexicon
 to �match� the input sequence
 trying
to 
nd a grammatically correct sentence that maximizes a given objective func�
tion	 As an objective function
 here again one would like to use the likelihood of a
sentence given the observation sequence� Even for small languages
 however
 this
is not possible or computationally feasible	 �The reasons will be sketched in the
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technical discussion	� Therefore
 the search algorithms use some reasonable ap�
proximations to the likelihood function
 and
 even within such approximate search
schemes
 heuristics are used to speed the process	
At 
rst
 IWR seems to be a special case of CSR	 Therefore
 from the algorithmic

design point of view
 one could think of devising e�ective search techniques for
the special case
 hoping to extend them to the more general case	 Unfortunately

this approach does not seem viable
 because the nature of the search procedures
for IWR di�ers from the nature of the corresponding procedures for CSR	 We now
brie�y address the disparities in high�level terms
 along with an example	

In IWR
 all the needed acoustic informationmodeling the words in the dictionary
is available to the search procedure	 That is
 for each word in the dictionary there
is a canonical acoustic model of that word in the lexicon	 Thus
 the search problem
becomes one of pattern recognition
 in the sense that the search procedure tries to

nd the canonical model that best matches the input observations	
In CSR
 the acoustic information modeling the sentences in the language is given

only partially and implicitly in terms of rules	 That is
 there is no canonical acoustic
model for each sentence in the language	 The only canonical acoustic models that
are available are those in the lexicon that correspond to the words in the language	
The search procedure must therefore assemble a sequence of canonical acoustic mod�
els that best match the observation sequence
 guided by the rules of the language	
Such an assembly is complicated by the phenomenon of inter�word dependencies�
when we utter a sentence
 the sounds associated with one word in�uence the sounds
associated with the next word
 via coarticulation e�ects of each phone on successive
phones	 �For example
 consider the utterances
 �How to recognize speech
� and

�How to wreck a nice beach	�� Since these inter�word dependencies are not com�
pletely modeled and described by the lexicon and the language model �otherwise

we would have a canonical acoustic model for each sentence in the language�
 the
search procedure for CSR faces the additional di�cult task of determining
 using
incomplete information
 where a word begins and ends	 In fact
 for a given ob�
servation sequence
 the search procedure usually postulates many di�erent word
boundaries
 which may in turn lead to exponentially many ways of decoding the
input sequence into a sequence of words	
Figures � and � demonstrate the di�erences between the IWR and CSR tasks	

Each 
gure displays
 top�to�bottom
 an acoustic waveform
 a spectrogram
 and
labelings for the sentence
 �Show me a �ight to Boston	� In Figure �
 the words
are spoken in isolation� in Figure �
 the sentence is spoken �uently	 The acoustic
waveform displays signal amplitude as a function of time	 The spectrogram displays
energy as a function of time and frequency� darker bands represent more energy
at a given frequency and time	� The acoustic waveform and spectrogram were
hand�segmented into phones	 The top set of labels shows the ending time of each
phone
 and the bottom set of labels shows the ending time of each word	 �The
phones are transcribed in ARPABET �Shoup �����	� Notice that the isolated�word
case contains distinct
 easy�to�detect boundaries
 without coarticulation e�ects on
boundary phones	 In the continuous�speech case
 however
 the word boundaries

�A black�and�white spectrogram is not� in fact� very useful� except to show where various acoustic
features begin and end� which is our purpose�
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Fig� �� Acoustic waveform� spectrogram� and labelings for the sentence� �Show me a �ight to
Boston� with each word spoken in isolation�
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Fig� �� Acoustic waveform� spectrogram� and labelings for the sentence� �Show me a �ight to
Boston� spoken �uently�
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are not clear
 and phones at word�boundaries display coarticulation e�ects	 In
an extreme case
 the �t� of ��ight� and the �t� of �to� have elided	 Thus
 in
CSR
 not only does one face the problem of 
nding word boundaries
 but also
 due
to coarticulation e�ects
 the acoustic models for each word in the lexicon do not
necessarily re�ect the actual utterance of the word in the sentence	

�� FUNDAMENTAL EQUATIONS FOR SPEECH RECOGNITION

In this section
 we discuss two major paradigms for speech recognition� the stochas�
tic approach�in particular
 maximum likelihood�and the template�based approach	
While the remainder of this paper concentrates on the former
 due to its dominance
in current technology
 we brie�y discuss the latter to demonstrate alternatives	

��� The Stochastic Approach

Let L denote the language composed of the set of sentences that the system has
to recognize
 and let D denote the associated dictionary	 The task of the speech
recognizer is the following	 Given an observation sequence X corresponding to some
unknown sentence W 
 output the sentence �W that
 according to some criterion
 best
accounts for the observation sequence	 When the dictionary and�or the language
are large
 the criterion that has become dominant in making this choice ismaximum
likelihood �Bahl et al	 ����� Jelinek et al	 �����
 as follows	
Assume that for each sentence W � w� � � �wg � L
 we know the probability

Pr�W � of uttering W 	 We ignore for now how to compute this quantity	 Let
Pr�W jX� be the probability that the sentence W was spoken
 given that the ob�
servation sequence X has been observed	 Then
 the recognizer should pick the
sentence �W such that

Pr� �W � � max
W

fPr�W jX�g � ���

Using Bayes� formula
 the right hand side of Equation � can be rewritten using

Pr�W jX� �
Pr�XjW � Pr�W �

Pr�X�
� ���

Since the maximization in Equation � is over a 
xed X
 we have from Equations
� � a reduction of the problem to determining a sentence �W such that�

�W � argmax
W

fPr�W � Pr�XjW �g � ���

Given a generic probability distribution Pr
 let Cs � � logPr	 For instance

Cs �W � � � logPr�W �
 and Cs �XjW � � � logPr�XjW �	 The 
rst term is the cost
of generating W and the second is the cost of �matching� the observation sequence
X with the sentence W 	 The term �cost� does not refer to computational complex�
ity but rather to an alternative to probabilities as a measure of the likelihood of an
event	 Probabilities are referred to as scores in the speech recognition literature	

�argmaxx ff�x�g! "x such that f�"x� ! maxx ff�x�g � Similarly de�ne argminx�
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We use costs in order to describe later search algorithms in terms of shortest paths	
With this convention
 Equation � can be rewritten as

�W � argmin
W

fCs �W � ! Cs �XjW �g � ���

Since we have decided to base the design of speech recognition systems on the
computation of Equations � �
 we need to develop tools to determine
 for a given
language
 Pr�W � and Pr�XjW �	 Such tools belong to the realm of language mod�
eling and acoustic modeling
 respectively
 and we present them in the next section	

��� Template�Based Approaches

As we have said
 the maximum�likelihood criterion has become dominant for the
design of speech recognition systems in which the dictionary and�or language model
are large	 For small dictionaries and mainly for IWR
 the template�based approach
has been successful	 While it is beyond the scope of this paper to provide details
on this approach
 we brie�y outline it here to demonstrate that alternatives to
the maximum likelihood paradigm exist	 Rabiner and Juang �����
 Ch	 �� give a
thorough tutorial on template�based methods
 and Waibel and Lee �����
 Ch	 ��
give examples of practical applications of this approach	
As discussed in Section �
 consider the output from the signal processing module

of a speech recognizer to be a sequence of feature vectors	 In the template�based
approach to speech recognition
 one 
rst builds a collection of reference templates

each itself a sequence of feature vectors that represents a unit �usually a whole word�
of speech to be recognized	 Then
 the feature vector corresponding to the current
utterance is compared with each reference vector in turn
 via some distance measure	
Various distance measures �e	g	
 log spectral distance
 cepstral distance
 weighted
cepstral distance
 and likelihood distortions� have been the subject of research and
application	 Additionally
 methods for resolving the di�erence between the number
of feature vectors in the input and those of the individual reference templates have
been studied	
The template�based approach has produced favorable results for small�dictionary

applications
 again mainly for IWR	 In particular
 the modeling of large utterances
�words instead of phones� avoids the errors induced by segmenting inputs into
smaller acoustic units	 On the other hand
 as the units to be modeled grow in
size
 the number of such units explodes	 Comparing an input against all reference
templates then becomes too time�consuming� even collecting enough reference tem�
plates to build a complete system becomes impractical once the vocabulary exceeds
a few hundred units	
Therefore
 the template�based approach does not seem extensible to IWR and

CSR when the dictionary and language model are large	 In these cases
 the stochas�
tic approach based on maximum likelihood is applied	 A very challenging long�term
research goal is to establish whether stochastic approaches other than the one sum�
marized by Equation � can underly e�ective speech recognition systems	

�� MODELING TOOLS FOR SPEECH RECOGNITION

In this section we introduce the main tools that are used for acoustic and language
modeling in speech recognition systems	 They are based on hidden Markov models



�� � A� L� Buchsbaum and R� Giancarlo

�HMMs� and Markov sources �MS s�	 Intuitively
 these are devices for modeling
doubly stochastic processes	 States tend to represent some physical phenomenon
�e	g	
 moment in time
 position in space�� actions or outputs occur at states and
model the outcome of being in a particular state	 As we discuss the formal de
ni�
tions of HMMs and MS s
 it will be useful to have an example in mind	

Example� Consider a magician who has three hats �red
 blue
 and yellow� and
�randomly� chooses an object �a hare
 a guinea pig
 or a parrot�
out of one hat during a show	 From show to show
 he chooses 
rst
among the hats �to vary the performance for repeat observers�

reaches into the hat to pull out an animal
 and then replaces the
animal	 We can use a HMM to model the hat trick
 as we shall see
below	

��� Hidden Markov Models

Here we formally de
ne hidden Markov models and the problems related to them
whose solutions are essential for speech recognition	 Rabiner ������ provides a
thorough tutorial	
Let " be an alphabet of M symbols	 A hidden Markov model is a quintuple

� � �N�M�A�B� ��
 where

�N is the number of states
 denoted by the integers �� � � � � N 	 In the magic ex�
ample
 N � �
 and the states correspond to which hat �red
 blue
 or yellow� the
magician is about to use	

�M is the number of symbols that each state can output or recognize	 M � � in
the magic example
 as each symbol corresponds to an animal �hare
 guinea pig

or parrot� that can be pulled out of a hat	

�A is an N �N state transition matrix such that aij is the probability of moving
from state i to state j
 � � i� j � N 	 We must have that the sum

P
j aij �

�� �i	 For our example
 the transition matrix represents the probability of using
a particular hat in the next performance
 given the hat that was used in the
current one� e	g	
 a�� �rsp	
 a��
 a��� is the probability of using hat � �rsp	
 �
 ��
next time
 given that hat � was used currently	

�B is an observation probability distribution such that bj��� is the probability
of recognizing or generating the symbol � when in state j	 It must be thatP

��� bj��� � �� �j	 In our example
 bj represents the probability of pulling a
particular animal out of hat j	

�� is the initial state probability distribution such that �i is the probability of
being in state i at time �	 It must be that

P
i �i � �	 In our example
 � re�ects

the probability of using a particular hat in the 
rst show	

The state transition matrix induces a directed graph
 with nodes representing
states
 and arcs between states labeled with the corresponding transition probabil�
ities	 Figure � shows the graph for the magic example	 For the purposes of this
example
 we label the states R
 B
 and Y �for the colors of the hats�
 and the
outputs H
 G
 and P �for the animals�	 Table � gives the transition and output
probabilities	 �Assume that � gives an equal probability of starting with any hat	�
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Fig� �� Graph induced by the state transition matrix for the magic example�

Transition Probabilities

R B Y

R �� ��� ���
B ��� � ���
Y ��� ��� �

Output Probabilities

H G P

R ��� �� ���
B �� �� ��
Y �� �� ��

Table �� Transition and output probabilities for the magic example� In the left table� each row
gives the probabilities of choosing the next hat based on the given current hat� In the right table�
each row gives the probabilities of choosing a certain animal out of a given hat�

The transition probabilities suggest that the magician favors the red hat
 and the
output probabilities show that he prefers the guinea pig	
The term �hidden� comes from the fact that the states of the Markov model

are not observable	 In fact
 the number of states
 output symbols
 as well as the
remaining parameters of the hidden Markov model are estimated by observing the
phenomenon that the unknown Markov chain describes	 Rabiner and Juang ������
overview such estimation procedures	 In the magic example
 it is as if the hats were
not colored �i	e	
 not distinguishable to the observer� and the magician picks one
before the show	 In this situation
 over time the observer of many shows sees only
a sequence of animals produced by the magician� he has no idea which hat is used
during which show
 and in fact he has no idea how many hats exist at all	

It is also possible to model continuous rather than discrete observations
 with�
out somehow quantizing the input	 In this case
 B is a collection of continuous
probability density functions such that for any j


R
bj��� d� � �	 The bj �s must

be restricted to allow consistent reestimation
 and typically they are expressed as

nite mixtures of
 e	g	
 Gaussian distributions	 For the purpose of illustrating the
search problems in later sections
 we will concentrate on discrete observations	

�	�	� Hidden Markov Models as Generators� The HMM just de
ned can be used
as generator of sequences of "�	 Let X � x� � � �xT � "�	 It can be generated by a
sequence of states Q � q� � � �qT as follows	

��� Set i� �
 and choose the initial state qi according to the initial state probability
distribution �	
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��� If in state qi �having generated x� � � �xi���
 output xi according to the proba�
bility function bqi 	

��� If i � T 
 then set i� i! �
 enter state qi according to probabilities A�qi��� � �
N �
 and then repeat at step ���� otherwise
 stop	

In the magic example
 the magician starts with hat R
 B
 or Y with probability
��� each	 If he has chosen the red hat
 then he picks the hare with probability
	��
 the guinea pig with probability 	�
 and the parrot with probability 	��� then he
next uses the red hat with probability 	� and the blue and yellow hats each with
probability 	��	 If instead he starts with the blue hat
 then he picks the hare �rsp	

guinea pig
 parrot� with probability 	� �rsp	
 	�
 	�� and next uses the red �rsp	

blue
 yellow� hat with probability 	�� �rsp	
 �
 	���	 And if he starts with the yellow
hat
 then he picks the hare �rsp	
 guinea pig
 parrot� with probability 	� �rsp	
 	�

	�� and next uses the red �rsp	
 blue
 yellow� hat with probability 	�� �rsp	
 	��

��	 He continues picking animals and choosing hats in this way
 and over time
 the
observer sees a succession of animals being picked out of hats	 Correspondingly

the Markov model generates a sequence of animals	

�	�	� Hidden Markov Models as Matchers� A HMM can also be used as a prob�
abilistic matcher of sequences of "�
 in the sense that it gives a measure
 in terms
of probability mass
 of how well the HMM � matches or observes X�

Pr�Xj�� �
TY
t��

NX
i��

Pr�qt � i�bi�xt� ���

where

Pr�qt � j� �

�
�j t � �PN

i�� Pr�qt�� � i�aij t � �
�

HMM � induces an unbounded
 multipartite directed graph as follows	 There
are N rows
 corresponding to the N states of �
 and for all t 	 �
 columns t and
t ! � form a complete
 directed bipartite graph
 with arcs directed from vertices
in column t to vertices in column t ! �	 �This graph is commonly referred to as
a trellis� see
 e	g	
 Soong and Huang ������	� In this way the match consists of
superimposing X along all paths
 starting at vertices in column �
 of length T in
the trellis	 For a given vertex i in column t on a given path
 the measure of how
well it matches symbol xt is composed of two parts� the probability of being in that
state �Pr�qt � i�� and the probability that the state outputs xt �bi�xt��	
In the magic example
 we can calculate how likely it is that the magician 
rst

picks the parrot
 then the guinea pig
 then the hare	 The probability of picking
the parrot 
rst is about 	��� ���� chance of using the red hat times 	�� chance
of picking the parrot from the red hat
 and so on�	 From � and the transition
probability matrix
 the probability of using the red �rsp	
 blue
 yellow� hat second
is about 	��� �rsp	
 	���
 	����� thus the probability of picking the guinea pig second
is ����� ��! ����� ��! ����� ��
 ����	 The probability of using the red �rsp	
 blue

yellow� hat third �and last� is about 	��� �rsp	
 	���
 	����� thus the probability of
picking the hare last is ���� � ��� ! ���� � �� ! ���� � �� 
 ����	 Therefore
 the
probability that the magician picks 
rst the parrot
 then the guinea pig
 and then
the hare is approximately 	���	
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�	�	� Problems for Hidden Markov Models� Problems �	� and �	� are two inter�
esting problems for HMMs that are strictly related to the search phase of speech
recognition	

Problem ���� Given an observation sequence X � x� � � �xT � compute the prob�
ability Pr�Xj�� of the model � generating �or matching� the sequence X�

This problem can be solved inO�NT�	max� time
 where 	max is the maximumin�
degree of any state in the HMM
 using the forward procedure �Baum and Eagon �����
Baum and Sell �����
 which solves Equation �	 The forward procedure generalizes
the computation that calculated the probability of the magician pulling 
rst a
parrot
 then a guinea pig
 then a hare out of hats	 It is a dynamic programming
algorithm that maintains a variable 
t�i�
 de
ned as


t�i� � Pr�x� � � �xt� qt � ij���

i	e	
 the probability that at time t
 we have observed the partial sequence x� � � �xt
and ended in state i	 The procedure has three phases	

��� Initialization	


��i� � �ibi�x��� � � i � N�

��� Induction	


t���j� �

�
NX
i��


t�i�aij

�
bj�xt����

� � t � T � �
� � j � N

�

��� Termination	

Pr�Xj�� �
NX
i��


T �i��

Research Area ���� The forward procedure has the following direct applica�
tion	 Given an utterance and a set of HMMs that model the words in a lexicon�

nd the word that best matches the utterance� This forms a rudimentary isolated
word recognizer� The speed of the forward procedure �or any algorithm computing
the same result� bounds the size of the lexicon that can be employed� Faster algo�
rithms to compute the matching probability of a HMM therefore will 
nd immediate
applications in isolated word recognizers� A particular direction for experimenta�
tion is to determine how the topology of the graph underlying a HMM a�ects the
performance of the forward procedure �or subsequent similar algorithms��

Problem ���� Compute the optimal state sequence Q � �q�� � � � � qT � through �

that matches X�

The meaning of optimal is situation dependent	 The most widely used criterion
is to 
nd the single best state sequence Q that generates X
 i	e	
 to maximize
Pr�QjX��� or
 equivalently
 Pr�Q�Xj��	 This computation is usually performed
using the Viterbi recurrence relation �Viterbi �����
 which we discuss in Section �	
Brie�y
 though
 the Viterbi algorithm computes
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��� the probability along the highest probability path that accounts for the 
rst t
observations and ends in state i


�t�i� � max
q������qt��

Pr�q�� � � � � qt��� qt � i� x� � � �xtj���

and

��� the state at time t� � that led to state i at time t along that path
 denoted by
�t�i�	

The computation is as follows	

��� Initialization	

���i� � �ibi�x��
���i� � �

� � � i � N

��� Induction	

�t�j� � max��i�Nf�t���i�aijgbj�xt�
�t�j� � argmax��i�Nf�t���i�aijg

�
� � t � T

� � j � N

��� Termination	

P � max
��i�N

f�T �i�g

qT � argmax
��i�N

f�T �i�g

��� Backtracking	

qt � �t���qt���� t � T � �� � � � � �

The Viterbi algorithm
 however
 may become computationally intensive for mod�
els in which the underlying graph is large	 For such models
 there is a great number
of algorithms that use heuristic approaches to approximate Pr�Q�Xj��	 The main
part of this paper is devoted to the presentation of some of the ideas underlying
such algorithms	

�	�	� Application to Speech Recognition� HMMs have a natural application to
speech recognition at most stages in the pipeline of Figure �	 Each of the post
signal�processing modules in that pipeline takes output from the previous module
as well as precomputed data as input and produces output for the next module �or
the 
nal answer�	 The precomputed data can easily be viewed as a HMM	

For example
 consider the lexicon	 This model is used to transform the phone
lattice into a word lattice by representing possible pronunciations of words �along
with stochastic measures of the likelihoods of individual pronunciations�	 In a HMM
corresponding to the lexicon
 the states naturally represent discrete instances during
an utterance
 and the outputs naturally represent phones uttered at the respective
instances	 The HMM can then be used to generate �or match� words in terms of
phones	
In the rest of this section and Sections � and �
 we give more details on the

application of HMMs to speech recognition	
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��� Markov Sources

We now de
ne Markov sources �MS�
 following the notation of Bahl
 Jelinek
 and
Mercer ������	 Let V be a set of states
 E be a set of transitions between states

and �" � " � f
g be an alphabet
 where 
 denotes the null symbol	 We assume
that two elements of V 
 sI and sF 
 are distinguished as the initial and 
nal state

respectively	 The structure of aMS is a one�to�one mappingM fromE to V ��"�V 	
If M �t� � ��� a� r�
 then we refer to � as the predecessor state of t
 a as the output
symbol of t
 and r as the successor state of t	 Each transition t has a probability
distribution z associated with it such that ��� zs�t� � � if and only if s is not a
predecessor state of t
 and ���

P
t zs�t� � �
 for all s � V 	 A MS thus corresponds to

a directed
 labeled graph with some arcs labeled 
	 The latter are null transitions
and produce no output	 With these conventions
 a MS is yet another recognition
and�or generation device for strings in "�	

As can be easily seen
 HMMs and MS s are very similar� HMMs generate output
at the states
 whereas MS s generate outputs during transitions between states	
Furthermore
 a MS can represent any process that can be modeled by a HMM�
there is a corresponding state for each state of the HMM
 and a transition �i� �� j�
with zi�i� �� j� � aijbi���
 for all � � i� j � N and � � "	 It is not necessarily the
case
 however
 that there is an equivalent HMM for a given MS	 The reason is that
MS s allow for the output symbol and transition probability distributions of a given
state to be interdependent
 whereas the output symbol probability distribution at
any state in a HMM is independent of the transition probability for that state	 For
example
 a three�state MS might allow symbols � and � to be output on transitions
from state � to state � but only symbol � to be output on transition from state
� to state �� no HMM can model the same phenomenon	 We could extend the
de
nition of HMMs to include null symbols and then allow such interdependencies
by the introduction of intermediate states	 This approach
 however
 a�ects the
time�synchronous behavior ofHMMs as sequence generators�matchers
 and whether
or not the two machines �the original MS and the induced HMM� are equivalent
becomes application dependent	
We introduce both HMMs and MS s
 because in most speech recognition systems


they are used to model di�erent levels of abstraction
 as we will see in the next
section	 The only notable exceptions are the systems built at IBM �Bahl et al	
�����	

��� Acoustic Word Models via Acoustic Phone Models

In this section we describe a general framework in which one can obtain acoustic
models for words for use in a speech recognition system	
From the phonetic point of view
 phonemes are the smallest units of speech

that distinguish the sound of one word from that of another	 For instance
 in
English
 the �b� in �big� and the �p� in �pig� represent two di�erent phonemes	
Whether to refer to the phonetic units here as �phonemes� or simply �phones� is
a matter of debate that is beyond the scope of this paper	 We shall use the term
�phone� from now on	 American English uses about �� basic phones	 �Shoup ������
provides a list	� The exact number of phones that one uses depends on linguistic
considerations	
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/b/

/ae/

/n/ /n/ /t/

/t/

/eh/

/d/ /l/ /d/ /g/

/d/

bed bell bad bag ban bat

bend bent

Fig� �� A trie representing common pronunciations of the words �bed� �bell� �bend� �bent� 
�bad� �bag� �ban� and �bat� 

Let P denote the alphabet of phones �
xed a priori�	 With each word w � D we
associate a 
nite set of strings in P� �each describing a di�erent pronunciation of
w�	 This set �often unitary� can be represented
 in a straightforward way
 using a
directed graph Gw
 in which each arc is labeled with a phone	 The set fGwjw � Dg
forms the lexicon	 Usually the lexicon is represented in a compact form by a trie
over P	 Figure � gives an example	
As de
ned
 the lexicon is a static data structure
 not readily usable for speech

recognition	 It gives a written representation of the pronunciations of the words
in D
 but it does not contain any acoustic information about the pronunciations

whereas the input string is over the alphabet F of feature vectors
 which encode
acoustic information	 Moreover
 for w � D
 Gw has no probabilistic structure

although
 as intuition suggests
 not all phones are equally likely to appear in a
given position of the phonetic representation of a word	 The latter problem is
solved by using estimation procedures to transform Gw into a Markov source MSw
�necessitating estimating the transition probabilities on the arcs�	
Let us consider a solution to the former problem	 First
 the phones are expressed

in terms of feature vectors	 For each phone f � P
 one builds �through estimation
procedures� a HMM
 denoted HMMf 
 over the alphabet " � F 	 Typically
 each
phone HMM is a directed graph having a minimum of four and a maximum of
seven states with exactly one source
 one sink
 self�loops
 and no back arcs
 i	e	

arcs directed from one vertex towards another closer to the source	 �See Figure
��a�	� HMMf gives an acoustic model describing the di�erent ways in which one
can pronounce the given phone	 Intuitively
 each path from a source to a sink
in HMMf gives an acoustic representation of a given pronunciation of the phone	
In technical terms
 HMMf is a device for computing how likely it is that a given
observation sequence X � F� acoustically matches the given phone� this measure is
given by Pr�XjHMMf � �which can be computed as described in Sections �	� �	��	
Notice that this model captures the intuition that not all observation sequences
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(a)

d/1

ae/.6

ey/.4 t/.2

dx/.8

ax/1

(b)

/d/

/ae/

/ey/ /t/

/dx/

/ax/

.6

.4 1

1 .8

.2 1

1

(c)

Fig� �� �a� Topology of a typical seven�state phone HMM 	Bahl et al� ����� Lee ����
� Circles
represent states� and arcs re�ect non�zero transition probabilities between connected states� Prob�
abilities as well as output symbols �from the alphabet of feature vectors� depend on the speci�c
phone and are not shown� �b� A Markov source for the word �data� taken from Pereira� Riley�
and Sproat 	����
� Circles represent states� and arcs represent transitions� Arcs are labeled f���
denoting that the associated transition outputs�recognizes phone f � P and occurs with prob�
ability �� The phones are transcribed in ARPABET 	Shoup ����
� �c� A hidden Markov model
for the word �data� built using the Markov source in �b�� with the individual phone HMMs of
�a� replacing the MS arcs� Each HMM is surrounded by a box marked with the phone it out�
puts�recognizes� Transition probabilities� taken from �b�� are given on arcs that represent state
transitions between the individual phone HMMs� Other probabilities as well as the individual
�feature vector� outputs from each state are not shown�
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are equally likely to match a given phone acoustically	 We also remark that the
observation probability distribution associated with each state is the probability
distribution associated with F 	
Once the HMM for each phone has been built
 we can obtain the acoustic model

for a word w by replacing each arc labeled f � P of MSw with HMMf 	 The result
is a HMM providing an acoustic model for w �which we denote HMMw�	 We will
not describe this process explicitly	 We point out
 however
 that it requires the
introduction of additional arcs and vertices to connect properly the various phone
HMMs	 �See Figure ��b� �c�	�
Although the approach we have presented for obtaining acoustic word models

may seem quite specialized
 it is quite modular	 In one direction
 we can specialize
it even further by eliminating phones as building blocks for words and by com�
puting directly from training data the HMMs HMMw
 for w � D	 This approach
is preferable when the dictionary D is small	 In the other direction
 we can in�
troduce several di�erent layers of abstraction between the phones and the words	
For instance
 we can express phones in terms of acoustic data
 syllables in terms
of phones
 and words in terms of syllables	 Now
 the HMMs giving the acoustic
models for syllables are obtained using the HMMs for phones as building blocks

and
 in turn
 the HMMs giving acoustic models for words are obtained using the
HMMs for syllables as building blocks	 In general
 we have the following layered
approach	 Let Pi be the alphabet of units of layer i
 i � �� � � � � k
 with Pk � D	
The lexicon of layer i is a set of directed graphs	 Each graph corresponds to a unit
of Pi and represents this unit as a set of strings in P�i��
 i 	 �	 We obtain acoustic
models as follows	

��� Using training procedures
 build HMM acoustic models for each unit in P�
using the alphabet of feature vectors F 	

��� Assume that we have the HMM acoustic models for the units in layer Pi��

i 	 �	 For each graph in the lexicon at level i
 compute the corresponding
MS	 Inductively combine these Markov sources with the HMMs representing
the units at the previous layer �i � �� to obtain the acoustic HMM models for
the units in Pi	

A few remarks are in order	 As discussed earlier
 HMMs and MSs are essentially
the same objects	 The layered approach introduced here
 however
 uses an HMM
for its base layer and then MSs for subsequent layers	 The reason is convenience	
Recall that the alphabet of feature vectors is not bounded	 To use a MS to model
phones
 its alphabet should be " � F 
 and therefore the out�degree of each vertex
in the MS would be unbounded
 causing technical problems for the use of the MS
in practical recognizers
 in that the graphs to be searched would be unbounded	
The problem of unbounded out�degree does not arise with HMMs
 however� The
alphabet is associated to the states
 and
 even if it is unbounded
 no di�culties
arise as long as the observation probability function b can be computed quickly for
each symbol in F 	
Notice also that the acoustic information for layer Pi is obtained by substituting

lexical information into the Markov sources at level i with acoustic information
known for the lower level i�� �through hidden Markov models�	 These substitutions
introduce a lot of redundancy into the acoustic model at all levels in this hierarchy of
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layers	 For instance
 the same phone may appear in di�erent places in the phonetic
transcription of a word	 When building an acoustic model for the word
 the di�erent
occurrences of the same phone will each be replaced by the same acoustic model	
The end result is that the graph representing the 
nal acoustic information will be
huge
 and the search procedures exploring it will be slow	

Research Area ���� One of the recurring problems in speech recognition is to
determine how to alleviate this redundancy� A critical open problem� therefore� is
to devise methods to reduce the sizes of HMMs and lattices� and we discuss this in
more detail in Sections � and 
�

Limited to phones and words
 this layered acoustic modeling
 or variations of it

is used in a few current systems	 �Kenney et al	 ������ and Lacouture and Mori
������ are good examples	� In its simplest form
 the lexicon is a trie de
ned over
the alphabet of phones
 with no probabilistic structure attached to it �Lacouture
and Mori �����
 whereas in other approaches
 the trie structure as well as the
probabilistic structure is preserved �Kenny et al	 �����	 Even in such specialized
layered acoustic modelings
 there is the problem of redundancy
 outlined above	 The
approaches that are currently used to address this problem are heuristic in nature

even when they employ minimization techniques from automata theory �Hopcroft
and Ullman �����
 ignoring the probability structure attached to HMMs	

Finally
 the above approach does not account for coarticulatory e�ects on phones	
That is
 the pronunciation of a phone f depends on preceding and following phones
as well as f itself	 For instance
 contrast the pronunciations of the phones at word
boundaries in Figure � with their counterparts in Figure �	 How to model these
dependencies is an active area of research	 �Lee ������ gives a good overview	�
One solution is to use context�dependent diphones and triphones �Bahl et al	 �����
Jelinek et al	 ����� Lee ����� Schwartz et al	 �����	 Rather than build an acoustic
model for each phone f � P
 we build models for the diphones 
f and f� and the
triphones 
f�
 for 
� � � P	 The diphones model f in the contexts of a preceding

 and a following �
 respectively
 and the triphones model f in the mutual context
of a preceding 
 and a following �	 The diphone and triphone models are then
connected appropriately to build word HMMs	 Two problems arise due to the
large number of diphones and triphones� memory and training	 Storing all possible
diphone and triphone models can consume a large amount of memory
 especially
considering that many models may be used rarely
 if ever	 Also due to this sparsity
of occurrence
 training such models is di�cult� usually some sort of interpolation
of available data is required	

��� The Language Model

Given a language L
 the language model provides both a description of the language
and a means to compute Pr�W �
 for each W � L	 Pr�W � is required for the
computation of Equations � �	 Let W � w� � � �wk	 Pr�W � can be computed as

Pr�W � � Pr�w� � � �wk� � Pr�w�� Pr�w�jw�� � � �Pr�wkjw� � � �wk����

It is infeasible to estimate the conditional word probabilities Pr�wjjw� � � �wj���
for all words and sentences in a language	 A simple solution is to approximate
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Pr�wjjw� � � �wj��� by Pr�wj jwj�K�� � � �wj���
 for a 
xed value of K	 A K�gram
language model is a Markov source in which each state represents a �K � ���tuple
of words	 There is a transition between state S representing w� � � �wK�� and state
S� representing w� � � �wK if and only if wK can follow w� � � �wK��	 This transition
is labeled wK 
 and it has probability Pr�wKjw� � � �wK���	 Usually K is � or �

and the transition probabilities are estimated by analyzing a large corpus of text	
�Jelinek
 Mercer
 and Roukos ������ give an example	�
A few comments are in order	 First
 by approximating the language model by

a K�gram language model
 the search algorithms that use the latter model are
inherently limited to computing approximations to Equations � �	 Moreover
 the
accuracy of these approximations can only be determined experimentally	 �We do
not know Pr�W �	� Another problem is that for a typical language dictionary of
��
��� words and for K � �
 the number of vertices and arcs of a ��gram language
model would be over four hundred million	 The size of the language model may
thus be a serious obstacle to the performance of the search algorithm	 One way
to alleviate this problem is to group the K�tuples of words into equivalence classes
�Jelinek et al	 ����� and build a reduced K�gram language model in which each state
represents an equivalence class	 This division into equivalence classes is performed
via heuristics based on linguistic as well as task�speci
c knowledge	 Jelinek
 Mercer

and Roukos ������ provide a detailed description of this technique	

Analogous to coarticulatory e�ect on phones
 we can also consider modeling inter�
word dependencies�how the pronunciation of a word changes in context�in the
language model	 One approach is to insert boundary phones at the beginnings and
endings of words and connect adjacent words accordingly	 �Bahl et al	 ������ and
Jelinek
 Bahl
 and Mercer ������ give examples	� This approach makes the language
model graph even larger
 a�ecting future search algorithms
 and also contributes
to the redundancy problem outlined in the previous section	

��� Use of Models

Here we brie�y discuss how the modeling tools are actually used in speech recog�
nition	 Recall from Section � that
 given an observation sequence X
 we have to
compute the sentence �W � L minimizing Equation �	 In principle
 this compu�
tation can be performed as follows	 We can use the �layered approach� described
in Section �	� to build a HMM for the language L	 That would give a canonical
acoustic model for the entire language	 Then
 we could use either the forward or
Viterbi procedure �cf	 Section �	�� to perform the required computation �or an ap�
proximation of it�	 Unfortunately
 the HMM for the entire language would be too
large to 
t in memory
 and
 in any case
 searching through such a large graph is
too slow	
The approach that is currently used instead is the one depicted in Figure �
 in

which the search phase is divided into pipelined stages	 The output of the 
rst
stage is a phone lattice
 i	e	
 a directed acyclic graph �DAG� with arcs labeled by
phones	 Each arc has an associated weight
 corresponding to the probability that
some substring of the observation sequence actually produces the phone labeling
the arc	 This graph is given as input to the second stage and is �intersected� with
the lexicon	 The output is a word lattice
 i	e
 a DAG in which each arc is labeled
with a word and a weight	 Figure � gives an example	 The weight assigned to an
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0

1what/0

2
which/1.269

3
flights/0

4
flights/0

5

depart/0

6departs/6.423

depart/0
7

from/0

8

in/0.710

9from/0

10/13.27
baltimore/0

11/13.27

baltimore/0

12/13.27baltimore/0

to/1.644

to/1.718

Fig� �� A word lattice produced for the utterance� �What �ights depart from Baltimore# Arcs
are labeled by words and weights� each weight is the negated log of the corresponding transition
probability� Final states are in double circles and include negated log probabilities of stopping in
the corresponding state�

arc corresponds to the cost that a substring of phones �given by a path in the phone
lattice at the end of the previous stage� actually produces the word labeling the
arc	 Finally
 the word lattice is �intersected� with the language model to get the
most likely sentence corresponding to the observation sequence	
Each stage of the recognition process depends heavily on the size of the lattice

received as input	 In order to speed up the stage
 each lattice is pruned to reduce
its size while �hopefully� retaining the most promising paths	 To date
 pruning has
been based mostly on heuristics	 �See for instance
 Ljolje and Riley ������
 Riley
et al	 ������
 and the literature mentioned therein	� As we will see
 however
 very
recent results on the use of weighted automata in speech recognition �Mohri ����b�
Pereira et al	 ����� Pereira and Riley ����� have provided solid theoretical ground
as well as impressive performance for the problem of size reduction of lattices	
In Sections � � we will present the main computational problems that so far have

characterized the construction of pipelined recognizers	 Then
 in Sections � � we
will outline a new approach to recognition and its associated computational prob�
lems	 The novelty of the approach consists of considering the recognition process as
a transduction	 Preliminary results are quite encouraging �Pereira and Riley �����	

�� THE VITERBI ALGORITHM

One of the most important tools for speech recognition is the Viterbi algorithm
�Viterbi �����	 Here we present a general version of it in the context of IWR
 and
we state a few related open problems	
Let GD be the lexicon for D	 Assume that GD is a directed graph
 with one

designated source node and possibly many designated sink nodes
 in which each
arc is labeled with a phone� multiple arcs connecting the same pair of nodes are
labeled with distinct phones	 We say that a path in the graph is complete if it starts
at the source and ends at a sink	 For each word in D
 there is a complete path in
GD that induces a phonetic representation of the word	 Let MSD be the Markov
source corresponding to GD� i	e	
 MSD has the same topological structure as does
GD and
 in addition
 a probability structure attached to its arcs	 We can transform
MSD into a hidden Markov model HD by applying to MSD the same procedure
that transforms MSw
 w � D
 into HMMw	 �See Section �	�	� We remark that the
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output alphabet of HD is F 	 Notice that both MSD and HD are directed graphs
with one source	 For example
 in Figure ��c�
 the 
rst �leftmost� state of the HMM
for the phone �d� is the source
 and the last �rightmost� state for the phone �ax�
is the only sink	 Assume that HD has N states	
The problem is the following� Given an input string X � x� � � �xT � F

� �cor�
responding to the acoustic observation of a word�
 we want to compute Equation
�
 where W is restricted to be one word in the dictionary	 Cs �W � is given by the
language model	 �If not available
 Cs �W � is simply ignored	� Thus
 the computa�
tion of Equation � reduces to computing Cs �Xjw�
 for each w � D	 Since the only
acoustic model available for w is HMMw
 we can consider Cs �Xjw� to be the over�
all cost Cs �XjHMMw� of the model HMMw generating X	 �Since Cs �XjHMMw�
depends on Pr�XjHMMw�
 we are simply solving Problem �	� of Section �	�
This approach
 however
 would be too time consuming for large dictionaries	

Moreover
 it would not exploit the fact that many words in D may have common
phonetic information
 e	g	
 a pre
x in common	 We can exploit these common pho�
netic structures by estimating Cs �XjHMMw� through the shortest complete path
in HD that generates X	 Since this path ends at a sink
 it naturally corresponds
to a word �w � D
 which approximates the solution to Equation �	 It is an approx�
imation of the cost of �w
 because it neglects other
 longer paths that also induce
the same word	 The validity of the approximation is usually veri
ed empirically	
For example
 in Figure ��c�
 a complete path generates an acoustic observation

for the word �data	� If we transform the arc lengths into the corresponding negative
log probabilities
 then the shortest complete path gives the optimal state sequence
that generates such an acoustic observation	 That path yields an approximation to
the �best� acoustic observation of the word �data
� i	e	
 the most common utterance
of the word	
We note that here we see the recurrence of the redundancy problem mentioned in

Research Area �	�	 In this case
 we want to remove as much redundancy from the
lexicon as possible while trying to preserve the accuracy of the recognition proce�
dures	 Indeed
 we have compressed the lexicon fGwjw � Dg and the corresponding
set fHMMwjw � Dg by representing the lexicon by a directed labeled graph	 On
the other hand
 we have ceded accuracy in the computation of Cs �XjHMMw� by
approximating it	 Assuming that experiments demonstrate the validity of this ap�
proximation
 the computation of Equation � has been reduced to the following
restatement of Problem �	�	

Problem ��� Given an input string X � x� � � �xT � F
�� compute a complete path

Q � q� � � � qT that minimizes Cs �QjX�HD� or� equivalently� Cs �Q�XjHD��

We will compute a path Q that minimizes the latter cost	 For the remainder of
this section we will work with HD	 Let in�s� be the set of states that have arcs
going into s �states s� such that as��s � ��
 and let Vt�s� be the lowest cost of a
single path that accounts for the 
rst t symbols of X and ends in state s	

Vt�s� � min
q������qt��

fCs ��q�� � � � � qt��� qt � s�� �x�� � � � � xt�jHD�g �

Letting ctr�s�� s�� be the cost of the transition between states s� and s�
 co�s� x�
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the cost for state s to output x
 and ci�s� the cost for state s to be the initial state
�

one can express Vt�s� recursively	

V��s�� � ci�s�� ! co�s�� x��� for source state s�� ���

Vt�s� � min
s��in�s	

fVt���s
�� ! ctr�s

�� s�g! co�s� xt�� s � ����N �� t � �� ���

It is easy to see that
 using these equations
 we can determine the best state path in
O�jEjT � operations
 where E is the set of arcs in the graph underlying HD	 �Refer
back to the discussion of Problem �	� in Section �	�	�	�

Research Area ���� The major open problem regarding the computation of
equation Equation � is to derive faster algorithms that either compute Equation �
exactly or yield a provably good approximation to it� As with Research Area ����
a direction for experimental work is to investigate how to characterize and exploit
the topologies of the relevant graphs to achieve faster search algorithms� i�e�� tailor
search algorithms to handle these particular special cases of graphs�

In what follows
 we describe two current major lines of research directed at
Research Area �	�	

��� Graph Theoretic Approach

We 
rst introduce some notation	 We denote the class of classical shortest�path
problems on weighted graphs as CSP	 �Cormen
 Leiserson
 and Rivest ������ sum�
marize such problems	� Recall that the length of a path is the number of arcs in
it	 We refer to the shortest�path problem solved by the Viterbi algorithm as VSP
and
 for each vertex v
 to the shortest path to v computed by the Viterbi algorithm
at iteration t as vpath�v� t�	 We would like to establish a relationship between CSP
and VSP	
In CSP
 the contribution that each arc can give to the paths using it is 
xed once

and for all when the graph G is speci
ed	 Exploiting this cost structure and�or the
structure of graph G
 one can obtain fast algorithms for problems in CSP �Cormen
et al	 �����	
At a very high level
 the paradigm underlying e�cient algorithms for solving

special cases of the single�source shortest path problem is the following	 At each
iteration
 maintain a partition of the vertices into two sets� DONE and ACTIVE	
For each vertex x in DONE
 the algorithm has computed the shortest path to x

and is sure that it will not change	 For the vertices in ACTIVE
 only estimates of
the shortest paths are available	 Examples of this scheme are Dijkstra�s algorithm
�Dijkstra ����� �which exploits the fact that the graph has nonnegative arc weights�
and the algorithm for directed acyclic graphs �which exploits the topological struc�
ture of the graph�	 Unfortunately
 the partition cannot be e�ciently maintained
for arbitrary graphs with negative weights	

In VSP
 the contribution that each arc �u� v� of HD can give to the vpaths using
it has two main parts� the cost of the arc and the cost of how well a given input

�I�e�� using the de�nition of HMMs in Section ���� ctr�s�� s�� ! � logas��s� � co�s� x� ! � log bs�x��
and ci�s� ! � log�s�
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symbol matches the symbols that state u can output	 Whereas the 
rst cost is 
xed
once and for all
 the second depends on the time t that arc �u� v� is traversed
 since t
determines which input symbol we are matching	 Thus
 the cost of traversing an arc
�u� v� when solving VSP is dynamic	 In general
 with this dynamic cost structure
 it
does not seem possible to maintain e�ciently a partition of the vertices of HD into
two classes
 as a Dijkstra�type algorithm requires	 Indeed
 even if the costs on the
arcs and vertices of HD are nonnegative
 the fact that they change depending on
when they are traversed implies that the cost of vpath�v� t� may change from time t
to t!�	 That is
 we can be sure that we have computed the best�cost path to v only
at time T 	 Informally
 the way in which this dynamicity of costs in VSP a�ects the
computation of vpaths is similar to the way in which the introduction of negative
arc weights a�ects the computation of shortest paths in CSP	 Indeed
 there is a
striking similarity between the Viterbi and Bellman�Ford algorithms for shortest
paths �Bellman ����� Ford and Fulkerson ������ the structure of the computation is
essentially the same
 except that the length of the vpath is bounded by T in Viterbi
whereas the length of the shortest path is bounded by jV j in Bellman�Ford	
Another technique that has proven successful for CSP is scaling �Edmonds and

Karp ����� Gabow ����� Gabow and Tarjan �����	 There is no analog to this
technique in the speech recognition literature	 Intuitively
 scaling transforms a
general CSP problem into an equivalent and computationally simpler problem on
a graph with nonnegative arc weights	

Research Area ���� Devise a technique analogous to scaling that would trans�
form VSP into an equivalent and computationally simpler problem�

As mentioned previously
 an interesting avenue to explore is how the computation
of Equation � depends on the topological structure ofHD	 For instance
 the vertices
are processed in an arbitrary order for any given step of the computation of Equation
�	 An analysis of the structure of the HMM may suggest more e�ective processing
orders for the vertices	

��� Language Theoretic Approach

Let Q be a deterministic 
nite�state automaton that accepts strings from a language
L	 It is well known that
 starting from Q
 we can compute a minimal automaton
Q�
 i	e	
 the one with the smallest number of states
 that accepts strings from L

�Hopcroft and Ullman �����	 One can think of Q� as the �most e�cient� deter�
ministic automaton that supports the membership operation for the language L	
Q� is obtained by de
ning an equivalence relation R on the strings of "� and the
states of Q� xRy if and only if 	�q�� x� � 	�q�� y�
 where q� and 	 are the initial
state and the transition function of Q
 respectively	 The states of Q� are the equiv�
alence classes obtained by applying R to the states of Q	 The states of Q� can be
suitably connected so that Q� still recognizes L
 because one can show that R is
right invariant� i	e	
 xRy implies that xzRyz	

Continuing
 HD can be seen as some kind of 
nite automaton that supports
the operation� Given input string x of length t
 
nd the best vpath�v� t�
 v �
V 	 Analogous to the membership operation de
ned for languages
 we would like
to build a �minimal� H�

D that supports the operation just de
ned for HD	 To
be useful
 H�

D should have substantially fewer states than HD
 and the Viterbi
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computation on H�
D should run substantially faster than on HD	 That is
 we

would like to eliminate some of the redundancy in HD to avoid the repetition of
the Viterbi computation on similar parts of the graph underlying HD	 This is a
restatement of Research Area �	�	 The above problem requires investigation at
both the de
nitional and computational levels	 Indeed
 variations of the stated
minimization problem may turn out to be more relevant to speech recognition	
That HD is not deterministic must also be considered	 �Here again we see the
theme of elimination of redundancy versus accuracy of recognition	�

We now explore some of the di�culties that one may face in trying to de
ne such
H�
D	 We would like to obtain an H�

D that preserves the Viterbi computation of HD

�i	e	
 yields the same solution
 or a good approximation
 to Equations � �� but that
has fewer states than HD	 For a string x of length t
 let

vstate �x� � fs � ����N � j vpath�s� t� � vpath�s�� t�� s� � ����N �g �

i	e	
 vstate �x� is the set of states fsg of HD such that vpath�s� t� is minimumwhen
computed over input string x	 Let R be the following equivalence relation
 de
ned
over the strings of "� of length t� xRy if and only if vstate �x� � vstate �y�	 R

induces a partition of the states of HD into equivalence classes	 One can easily
build an example showing that R is not right invariant
 however	 Therefore
 we
cannot obtain an automaton �equivalent to� HD based on such an equivalence
relation
 because we cannot �connect� the equivalence classes to obtain a HMM
H�
D	
The natural question here is to identify right�invariant equivalence relations over

the states of HD that try to achieve the goal of eliminating the redundancy from
HD while trying to preserve the Viterbi computation on HD	 That is
 it would
be interesting to obtain a HMM H�

D that is not necessarily minimal but that ap�
proximates well and fast the behavior of HD with respect to the computation of
Equation �	 Some research related to this question has already been performed	
�Kenny et al	 ������ provide an example	� We will revisit this issue in Section �	
Another approach that has been used to speed the Viterbi computation is to

introduce a certain amount of nondeterminism into HD	 That is
 in some cases
�Bahl et al	 ����� Kenny et al	 �����
 HD is augmented with ��transitions	 The
e�ect of these transitions is to reduce the size of HD and therefore to speed the
computation of VSP	

	� A STRUCTURED APPROACH TO IWR

Another fundamental tool for speech recognition tasks is the A� algorithm
 a com�
putational paradigm for solving optimization problems that involve searching large

weighted graphs	 Hart
 Nilsson
 and Raphael ������ originally introduce and give
an extensive treatment of this paradigm	 Here we 
rst reformulate Problem �	� as
an optimization problem over the lexicon GD	 �We refer to the new problem as
Problem �	�	� Then we outline how the A� algorithm can be used to 
nd a feasible
solution to Problem �	�
 and we also provide a general framework for studying a
wide class of optimization problems that are related to Problem �	�	 Finally
 we
outline some general principles used in IWR to design good algorithms for such
optimization problems� many of these principles extend to CSR as well	
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	�� An Optimization Problem on GD

Let f be a sequence of phones corresponding to a path in MSD
 starting at the
source	 We call f a transcript and say that it is complete when the corresponding
path is complete	
Recall from Section � that a solution to Problem �	� consists of 
nding a complete

path Q inHD that minimizes Cs �Q�XjHD�	 In that section
 we also outline how to
obtain HD fromMSD by substituting phones with the associated HMMs	 Since the
complete path Q in HD minimizing Cs �Q�XjHD� starts at the source and ends at
a sink
 it naturally corresponds to a complete path in MSD that induces a sequence
of phones f � f� � � �fk	 This sequence of phones is the one that �best accounts� for
the input sequence X	 Therefore
 Problem �	� can be restated as

Problem ���� Given a string X � x� � � �xT � F
�� compute

argmin
f complete transcript

Cs �f � XjMSD�� ���

	�� The A� Algorithm

We outline an algorithm that will 
nd a feasible solution to Problem �	�
 i	e	
 a
complete transcript f that accounts for the input string X	 If additional conditions
are veri
ed
 f will be an optimal transcript
 i	e	
 a real solution to Equation �	
We 
rst introduce some notation	 For each transcript f and string Y � F�
 let
PCs �f � Y � be as Cs �f � Y jMSD�
 except that f need not be a complete transcript	
PCs is the cost of �matching� Y along the path given by f 	 Let EECs �f � Z�

Z � F�
 be the estimated cost of extending transcript f into a complete transcript
fg such that g �matches� Z	 This heuristic estimate is performed over all possible
extensions of f	 We assume the heuristic is known but leave it unspeci
ed	 Finally

let ECs �f � X� � PCs �f � X�� ! EECs �f � X��
 where X � X�X� and f �matches�
X�
 be the estimated cost of transcript f being a pre
x of the optimal solution to
Equation �	 At each step
 the algorithm keeps transcripts in a priority queue


QUEUE sorted in increasing order according to the value of the ECs function	 Let
DEQUEUE be the operation that removes and returns the item of highest priority
�lowest estimated cost� from the queue
 and let ENQUEUE �x� p� be the operation
that inserts a new item x into the queue according to its priority p	

Algorithm A�

�	 QUEUE � 
� ENQUEUE �f �ECs �f � X��
 where f is the empty transcript	

�	 while f � DEQUEUE is not a complete transcript do
�	� Using the lexicon
 compute all legal one�phone extensions fg	
For each such fg
 ENQUEUE �fg�ECs �fg�X��	

�	� done	

�	 done	

The above algorithm is guaranteed to 
nd the complete transcript f that mini�
mizes Cs �f � XjMSD�
 provided that the estimated cost ECs is admissible� that is


�In the speech recognition literature� priority queues are often simply called stacks�
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ECs �f � X� � CS�fg� XjMSD� holds
 for all possible extensions g of f such that fg
is complete �Hart et al	 �����	

	�� A General Optimization Problem

We now cast Problem �	� into a general framework	 Let G � �V� E� be a directed

labeled graph with one source and possibly many sinks	 The labels on the arcs of
G come from a 
nite alphabet #	 There is a match function M that measures how
well the label on a given arc e of G matches a string y � "�
 where " is another
alphabet	 Formally
M � "��E � R	 In general
M is not computable in constant
time	 We de
ne a cost function C
 which
 for each vertex v of G and each string
y� � � �yt � "�
 gives the cost of matching the string with a path in G that ends in v	

C�y� � � �yt� v� � min
k��

uj� ��j�k

k��X
i��

M�yti�� � � �yti�� � �ui� ui���� ���

subject to the conditions ��� � � t� � t� � � � � � tk�� � tk � t� ��� �ui� ui��� �
E � � � i � k� and ��� u� is the source
 and uk � v	 Moreover
 we assume that

for each v � V and t� � t
 C�y� � � �yt� � v� � C�y� � � �yt�yt���� v�	 We derive the
following	

Problem ���� Given a string X � x� � � �xT � "�� compute

min
v�sink�G	

C�X� v�� ����

The following algorithm 
nds a feasible solution to Problem �	�
 and
 if additional
conditions are veri
ed
 the solution will be optimal� feasible and optimal are de
ned
as in Section �	�
 with respect to Equation ��	 Let EC �v� be an estimate of the
cost of a feasible solution to Equation �� that passes through v	 This estimate will
continually be updated by the algorithm	 Moreover
 let EEC �Y�w�
 Y � "� and
w � V
 be a predictor of how well the paths of G starting at w and ending at sinks
will match Y 	 This predictor is a heuristic function and is used to estimate and
update EC �w�	 THR is a threshold that is continually updated
 as we will discuss
below	 A vertex whose estimated cost rises above THR is eliminated from future
computation	 Initially
 THR gets an arbitrarily high value	 QUEUE is a priority
queue containing vertices sorted according to the values of their estimated costs	

Algorithm SEARCH

�	 EC �v� � THR� �
 for each v � V	 ENQUEUE �v��EC �v��� for source v�	

�	 While v �� DEQUEUE is not a sink do
�	�	 For each vertex w such that e � �v� w� � E and EC �v� � THR
 compute

�H � min��t�t��T C�x� � � �xt� v� !M�xt�� � � �xt� � e� ! EEC �xt��� � � �xT � w�	

�	�	 If �H � minfTHR�EC �w�g
 set EC �w� � �H
 and ENQUEUE �w� �H�	
Update the threshold THR	

�	�	 done	

�	 done	

The threshold THR constrains the search by eliminating paths that have high
costs	 It is a dynamic value that is set according to the cost of the �best comparable
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path	� The notion of thresholds and �best comparable paths� derives from beam
searching as applied to the Viterbi algorithm �Bahl et al	 ����� Lowerre and Reddy
�����	 In Viterbi beam searching
 a common de
nition of best comparable path
involves considering all paths with the same number of arcs as a class and de
ning
THR for each path in a particular class relative to the cost of the best path in that
class	 The relative di�erence between THR and the cost of the best comparable
path is called the beam width� How to set the beam width is another active area
of research	 A basic problem is that the correct path can easily be locally bad at
certain points in the computation� if the beam width is too narrow
 the correct path
will thus be eliminated from further exploration and never found as the solution	
The condition that guarantees the optimality of SEARCH is the admissibility

of EC�EC �w� must be a lower bound to the cost of any of the paths containing w
that are feasible solutions to Equation ���and THR�the correct path must not
fall outside the beam at any point in the computation	 What is important to notice
is that the above optimization problem requires a dynamic evaluation of the cost
of traversing an arc of G during the search	 In general
 one cannot assume that this
evaluation can be performed in constant time	 Moreover
 Step �	� of SEARCH
requires the computation of C and EEC 	 Again
 one cannot assume that these
computations can be done in constant time
 as we will see in the next section	

Research Area ���� Most if not all of the heuristics in the literature for speed�
ing computation of the A� and SEARCH algorithms either fail to guarantee actual
speedups or fail to guarantee accuracy of approximations� That is not to say that
the algorithms perform poorly� simply that the results are only derived empirically�
A natural open problem� therefore� is to ��� devise admissible heuristics that will
signi
cantly speed computation of the A� and SEARCH algorithms and ��� pro�
vide theoretical analysis proving both admissibility and computational speedup� A
related problem is to determine how to measure theoretically the error rates of fast
but inadmissible heuristics�

	�� Putting the Concepts Together

Let us apply SEARCH to solve Problem �	�	 In the IWR case
 G � GD
 # � P

and " � F 	 For an arc e labeled with phone f � P and a string y� � � �yt � F

�

M�y� � � �yt� e� is the cost of the best path in HMMf matching y� � � �yt plus the
cost of the transition corresponding to e in MSD	 For a vertex v and a string
y� � � �yt � F

�
 C�y� � � �yt� v� is de
ned as in Equation �	
The predictor function EEC depends on the heuristic that is implemented	 Usu�

ally
 the heuristic is chosen so that it can be computed e�ciently and in such a way
that the search converges rapidly to the solution	
With the above choices of C and M
 the computation of Step �	� of Algo�

rithm SEARCH is time consuming	 Indeed
 M�xt�� � � �xt� � e� is computed via
the Viterbi algorithm
 and C�x� � � �xt� v� must be computed over all paths that
start at the source of GD and end in v	 A few general ideas are used to speed the
computation of this inner loop of SEARCH	

�	�	� Heuristic Match Functions� De
ne a new match function M� that can be
computed quickly	 This function approximates M	 De
ne a new cost function �C

analogous to C
 but that uses M� and is possibly restricted to some privileged



Algorithmic Aspects in Speech Recognition� An Introduction � �


paths	 SEARCH is then used in two possible ways	

��� With the new functions M� and �C
 run SEARCH to get a set of promising
words D�	 Use M and C to run SEARCH on graph GD� to get the best word
from D� matching X	

��� Restrict the set D� above to be only one word
 which is output as a feasible
solution	

Usually
 the function M� is obtained by simplifying the hidden Markov mod�
els for all the phones	 That is
 for each phone f 
 HMMf is transformed into an
�equivalent� HMM�

f that is usually much smaller than HMMf 	 Then
 M� is still
computed via the Viterbi algorithm but using the new HMMs	 The reduction from
HMMf to HMM�

f usually eliminates the admissibility of SEARCH in the sense
that the set D� may not contain the word w corresponding to a complete transcript
f that solves Problem �	�	 We remark that
 once again
 we 
nd that the study of
minimization techniques for hidden Markov models �Research Area �	�� is central
to the development of fast algorithms for speech recognition	 The ideas outlined
above have been extracted from several papers by Bahl et al	 �����
 ����
 �����	

�	�	� Model Compression� In a preprocessing step
 compute a graph G�
D corre�

sponding to a compressed version of GD	 Perform SEARCH on G�
D
 restricting

also C and EEC to G�
D	 Usually
 the HMMs for the phones do not change� i	e	
M

is still computed via the Viterbi algorithm on HMMf 
 f � P	
Usually
 G�

D is obtained via standard automata minimization techniques	 The
equivalence relation R used for the minimizationmay
 however
 be weaker than that
used to minimize GD in the automata theoretic sense	 The probability structure
imposed on GD by the Markov source MSD is ignored in computing G�

D	 That is

each arc of G�

D is considered equally likely to be traversed	 The omission of this
probability structure is
 once again
 due to the fact that no minimization techniques
exist for hidden Markov models	 This omission may compromise the admissibility
of SEARCH
 however	 Some of the above ideas have been used by Kenny et al	
������ and Lacouture and Mori ������	

�	�	� Boundary Detection� The ideas presented so far are oriented towards a
speed�up of SEARCH by changing the global structure of GD and�or the HMMs
for the phones	 Another idea
 which is more local to the procedure
 is to develop
tools to produce good estimates of the values of t and t� that yield the minimum
�H of Step �	�	 Then compute �H only for such values of t and t�	
The development of such tools reduces to understanding which times t
 � � t � T 


are most likely to correspond to phone boundaries in X � x� � � �xT 	 In general

the problem of identifying word and phone boundaries in an input string X is very
di�cult and requires knowledge of acoustics and signal processing� see Section �	

�� SPEECH RECOGNITION AS A TRANSDUCTION

In this section we present a new approach to speech recognition
 developed by
Pereira et al	 �����
 �����
 in which recognition is seen as a composition of several
transductions	 We recall two de
nitions from the theory of rational transductions
and languages	 �Berstel ������
 Berstel and Reutenauer ������
 Eilenberg ������

and Elgot and Mezei ������ extensively discuss this theory and its correspondence
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to automata	� Given two alphabets " and # and a semiring �K�
��� �� ��
 a
transduction is a function T � "� � #� � K	 Intuitively
 a transduction assigns
a weight to each pair of strings in "� � #�	 A weighted language is a function
L � "� � K	 Intuitively
 a weighted language assigns a weight to each string in "�	

Assume that we take one alphabet as F �the alphabet of observation �symbols��
and the other as the dictionary of wordsD �fromwhich the language L is generated�	
Consider now Equation � and for the time being
 let us ignore the term Cs �W �

W � D�	 Recall that X � F�	 If we interpret Cs �XjW � as the weight of the
pair �X�W �
 then the cost function de
ned for each pair of strings in F� � D� is
a transduction	 Since X is 
xed when we solve Equation �
 this latter problem
reduces to the process of computing �W � D� such that the transduction �X� �W � is
the best possible	
The use of transductions allows a novel application of the pipelined approach to

speech recognition	 �Again
 see Figure �	� Indeed
 in Sections �	� we show that the
solution to Equation � can be seen as the �composition� of several transductions	
The �composition� operation that we use is associative	 Associativity allows the
stages of the recognition process depicted in Figure � subsequent to signal processing
to be run in any order	 In turn
 this processing�order freedom allows a substantial
reduction in the size of the search space	

��� Fundamental Equations for Speech via Composition of Transductions

Consider a generic commutative semiring �K�
��� �� ��	 Given two transductions
S � "� � #� � K and T � #� �$� � K
 their composition S � T is de
ned�

S � T �x�w� �
M
y���

S�x� y� � T �y� w�� ����

We say that transduction S is applied to weighted language L to yield a weighted
language S�L� over #
 where S�L��y� �

L
x��� L�x� � S�x� y�	

We need to introduce some terminology that relates weighted languages and
transductions	 That will allow us to consider composition and application as the
same operation	 Transduction S has two weighted languages associated with it� its

rst and second projections
 
� and 
�	 
��S� � #

� � K is such that 
��S��y� �L
x��� S�x� y�	 
� is de
ned similarly	 On the other hand
 a weighted language

L is the identity transduction restricted to L	 That is
 L�x�� x�� � L�x�� if and
only if x� � x�� otherwise
 L�x�� x�� � �	 Now
 it can be easily shown �Pereira and
Riley ����� that the application operation is 
��L � S�	 From now on
 � will also
denote application �implemented via projection and composition�	 We refer to this
operation as generalized composition	
We now show how to use those tools to express Equation � as a generalized com�

position of transductions	 Our starting point is the term Cs �XjW � from Equation
�	 Recall that in the layers of abstraction we introduced in Section �	�
 X � F�

can be transformed into a string over the alphabet P�	 This latter string can be
transformed into a string over the alphabet P�
 and so on until we get strings over
the alphabet Pk � D of words	 Without loss of generality
 we assume that we have
only two layers of abstraction	 Now
 P� is the alphabet of phones
 and P� is the
alphabet of words	 Using strings over the alphabet of phones
 Cs �XjW � can be
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rewritten as

Cs �XjW � � min
Y �P�

�

Cs �XjY � ! Cs �Y jW �� ����

A few remarks are in order	 If we interpret Cs ��j�� as a weight
 then Cs �XjY � is
a transduction for each pair of strings �X�Y � � F� � P�� 	 Observe that the lattice
of feature vectors output by the signal processing module in Figure � is a weighted
language
 which we denote by LF 
 that assigns weight � to the observation sequence
X and zero to any other string in F�	 The precomputed acoustic models that are
input to the phonetic recognition module in Figure � also comprise a transducer

which we denote by LA	 Then the above transduction Cs �XjY � is the composition
LF � LA
 which is computed by the phonetic recognition module in Figure �	
Similarly Cs �Y jW � is a transduction for each pair of strings �Y�W � � P�� �P

�
� 	

This transduction is computed by the word recognition box in Figure �	 We have
already observed that Cs �XjW � is a transduction	 Recalling Equation �� and
assuming that we are working with the min�sum semiring ����min�!��� ��
 we
have from Equation �� that the transduction �X�W � is the composition LF �LA �
LD
 where LD is the transducer induced by the lexicon	 Now
 denote by LM the
precomputed grammar that is input to the task recognition box in Figure �� i	e	

LM is the language model �a weighted language�	 We thus reduce solving Equation
� to computing the sentence �W of minimum weight in the language


��LF � LA � LD � LM �� ����

Since � is associative
 we can compute Equation �� in several ways	 One that
corresponds to the pipelined stages outlined in Section �	� is 
����LF �LA� �LD� �
LM �	 Notice that LF �LA gives
 for each phone sequence
 the best cost of generating
X	 Similarly
 �LF � LA� � LD gives
 for each word w
 the best cost of generating
X	 For each sentence in the language
 the best cost of generating X is given by
��LF � LA� � LD� �M 	
There may be more pro
table ways of computing Equation ��
 however
 and


as pointed out by Pereira and Riley ������
 the fastest approach is application
speci
c	 �The size of intermediate results can depend heavily on the recognition
task at hand	�
By using probabilities instead of costs and the sum�times semiring ����!� �� �� ��


we could obtain Equation �� from Equation �	 The elementary operations on which
generalized composition is based when working with the sum�times semiring are
di�erent than those used when working with the min�sum semiring
 however	 This
di�erence is important in practice
 since the techniques that e�ectively reduce the
sizes of lattices guarantee reductions only when working with the min�sum semiring	
�See the discussion at the end of Section �	�	� Therefore
 although Equation � and
Equation � are dual
 it seems more pro
table to solve the latter	

��� Implementation Issues

The reduction of the solution of Equation � to the evaluation of Equation �� raises
several issues	 First
 we need to implement the generalized composition operation
between two transductions	 As we will brie�y outline
 this problem is solved by
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using the correspondence between transductions and weighted automata	 Second

we need a software package for experimentation to establish which evaluation order
for Equation �� works best	 �This point depends heavily on the task for which we
have built the recognizer	� We brie�y discuss those issues here	

As is well known
 some classes of transductions and weighted languages can be
characterized by weighted automata	 �See for instance Kuich and Salomaa ������	�
We de
ne weighted automata in Section � when we discuss some computational
problems relevant to their use in speech recognition	 For the time being
 we can
think of a weighted automaton as a directed graph with one source and one sink	
Each arc of the graph is labeled with a symbol and has a weight	 For instance
 the
word lattice in Figure � is a weighted automaton	 �The multiple 
nal nodes can be
appropriately uni
ed into a single sink	� In general
 any lattice can be seen as a
weighted automaton	 Informally
 a string z is accepted by the automaton if there
is a path from the source to the sink such that z is obtained by the catenation of
the labels on the arcs of the path	 The weight �cost� of z is the minimum among
the sums of the labels on each path accepting z	 �Again
 we assume that we are
working with the min�sum semiring	�

Pereira et al	 �����
 ����� have shown that
 given two transductions and the corre�
sponding weighted automata
 their generalized composition can be implemented via
the �intersection� of the corresponding two automata	 This intersection
 referred
to as generalized intersection
 is a nontrivial extension of the intersection operation
de
ned on nondeterministic 
nite automata	 �Hopcroft and Ullman ������ describe
this latter operation	� The generalization works roughly as follows	 Assume that
we have two automata that correspond to two transductions
 S and T 
 to be com�
posed	 If we use the ordinary intersection operation for those two automata
 we
would obtain an intersection automaton that assigns the wrong weights to the pair
of strings in the transduction S � T 	 In order to obtain the correct weights
 one
needs to 
lter out some paths from the intersection automaton	 Pereira and Riley
������ give details	

Now
 let us return to the pipelined stages of Section �	�	 We have seen that the
output of each stage is given by the �intersection� of a lattice �for instance
 the
word lattice� with some canonical model �for instance
 the language model�	 Using
the approach of Pereira et al	 �����
 ����� those �intersections� are generalized
intersections of weighted automata
 where one automaton is the lattice and the
other is the model	 But
 by the remarks following Equation ��
 we can compute
those intersections in any order
 rather than in the order given in Section �	�	

In order to experiment with various alternatives
 the operations on weighted au�
tomata de
ned by Pereira et al	 �����
 ����� have been implemented by means of
a library of functions
 each working on an abstract weighted automaton data type	
Moreover
 there is also a set of composable shell commands for fast prototyping
and experimentation	 In conclusion
 there is a software package that
 for any given
�reasonable� recognition task
 will generate the code corresponding to the various
evaluations of Equation ��	 In turn
 that code can be used to determine experimen�
tally which evaluation order works best for the recognition task at hand	 �Appendix
B describes how to obtain this software	�
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�� SIZE REDUCTION OF LATTICES

Notice that both the pipelined recognizers described in Section �	� and the modu�
lar ones described in Section � can exploit size reductions in lattices and weighted
automata before performing �intersection� operations	 The following problem is
therefore important to both types of recognizers� Given a weighted automaton

compute the smallest equivalent weighted automaton	 Unfortunately
 the weighted
automata we wish to minimize for speech recognition are nondeterministic	 There�
fore
 we 
rst need to determinize them �when possible� and then minimize them
�again
 when possible�	 We 
rst de
ne weighted automata and then discuss those
two issues	
A weighted 
nite automaton is a quadruple A � �Q� q��%� 	� such that Q is

the set of states
 q� is the initial state
 % is the set of labels �strings over some

nite alphabet "� and 	 is the set of transitions	 A transition t � 	 is a quadruple
�q�� y�m� q�� with the following interpretation� Given that the automaton is in state
q� and it is given in input y
 it can move to state q� assigning to y the weightm	 We
assume that the weights are taken from a semiring �K�
��� �� ��	 In general
 the
automaton is nondeterministic	 There may be another transition t� � �q�� y�m

�� q���
and
 given the input y
 the automaton can move to both q� and q�� �when in state
q��	 It is convenient to specify a single 
nal state qf 	 Obviously
 the automaton
can be represented as a directed graph
 and a path from initial state to 
nal state
naturally corresponds to a sequence of transitions	 Analogous to the de
nition in
Section �
 a path p that starts at the start state and ends at the 
nal state is a
complete path	 A path p of k arcs induces a string z � "� if and only if there is a
partition of z � z� � � �zk such that the i�th arc �from left� in p has label zi	 The
weight W�p� of a path p is given by combining the weights of its arcs according
to the � operation	 A string z � "� is accepted by A if there exists at least one
complete path p that induces z	 The weight of z is given by

L
W�p�
 where

L
is

taken over all complete paths p that induce z	

��� Determinization

Determinization is the following problem	 Given a weighted automatonA
 compute
an automaton A� accepting the same set of strings with the same weights as A

such that
 given any state q� of A�
 there is only one transition out of q� that can
be taken with a given input symbol	 We refer to this deterministic automaton as
a sequential weighted automaton	 Determinization of weighted automata turns out
to be challenging from the theoretical point of view and relevant for its applications
to speech	 From the theoretical point of view
 not all weighted automata can be de�
terminized	 It is therefore natural to seek conditions under which a given weighted
automaton can be determinized	 Elaborating on results obtained by Cho�rut ������
and Weber and Klemm ������ in the realm of string�to�string transduction
 Mohri
�����a
 ����b� identi
es those conditions and provides an algorithm that checks
whether they hold� the algorithm is constructive in the case that the input au�
tomaton can be determinized	 For an arbitrary automaton A
 the algorithm takes
time exponential in the number of states in A	 As we will see
 however
 it tends
to perform extremely well on lattices arising in speech recognition tasks	 We now
brie�y discuss the algorithm and its performance	
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Fig� �� �a� A nondeterministic weighted automaton� �b� The result of applying Mohri
s de�
terminization algorithm to the automaton of �a�� This is derived from Figures ��$�� of Mohri
	����a
�

Intuitively
 the determinization algorithm devised by Mohri �����a� is a general�
ization of the determinization procedure for nondeterministic 
nite automata	 We
brie�y outline the algorithm on an example assuming that we are working with the
min�sum semiring
 although the algorithm will work for any commutative semiring	
Consider the weighted automaton in Figure ��a�� its determinization proceeds as
follows	 From the initial state q�
 we can reach states q� and q� using the input
symbol a	 Analogous to the determinization of 
nite�state automata
 we establish a
new state fq�� q�g reachable from q� with input symbol a	 Since we are interested in
minimumweight paths
 we assign weight � to the new arc	 Now
 however
 we have
remainder weights of � for transition q�� q� and � for the transition q� � q�	 We
save those remainders in the new state by encoding it as f�q�� ��� �q�� ��g	 Similarly

from state q� in the original automaton
 we can reach states q� and q� via symbol b	
Again the minimum weight among these transitions is �
 so we assign this weight
to the new arc
 and encode the remainder weights �� and �
 respectively� in the
new state f�q�� ��� �q�� ��g	 Now
 consider state f�q�� ��� �q�� ��g in the new machine
and input symbol b	 Notice that
 in the automaton of Figure ��a�
 we can reach
state q� from both q� and q�	 For each such original arc
 we consider the sum of
the weight of the arc and the remainder associated with the original source state
encoded in state f�q�� ��� �q�� ��g in the new machine� taking the minimum among
those values gives us the weight of � for the new arc	 Since there is only one desti�
nation state �q�� in the original machine
 there is no new remainder
 so we encode
the new destination state as f�q�� ��g	 Similarly
 we construct an arc with weight
� on symbol b from f�q�� ��� �q�� ��g to f�q�� ��g	 The end result is shown in Figure
��b�	
The relevance to speech recognition of this algorithm is as follows	 Consider

the word lattice in Figure �
 and assume that we are working with the min�sum
semiring	 This word lattice comes from the output of the word recognition module
in Figure � for the utterance
 �What �ights depart from Baltimore&� �That the
lattice is illegible is partly the point� we hope to reduce its size via determinization	�
The lattice must be intersected with the language model to obtain the 
nal answer	
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Fig� �� A word lattice produced for the utterance� �What �ights depart from Baltimore# 
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Fig� ��� The lattice resulting from the application of Mohri
s determinization algorithm to the
word lattice of Figure ��

Among the many paths in the lattice that induce a given sentence
 the path of min�
imum weight contains the critical information	 If we consider the other paths that
induce the same sentence in Figure � to be redundant
 then part of this redundancy
can be eliminated by determinization	 �We give an intuitive explanation of this phe�
nomenon below	� Figure �� shows the result of applying Mohri�s determinization
algorithm to the word lattice of Figure �	 The determinization of the given lat�
tice produces a smaller word lattice that preserves the critical information of the
original lattice
 as desired	 Obviously
 if we use the smaller lattice
 the intersection
with the language model will be faster	 Extensive experiments have shown that

when applied to lattices resulting from the various phases of speech recognition
 the
determinization algorithm of Mohri �����a� tends to run in linear time and produce
smaller lattices than the ones it takes in input	 These time and reduction proper�
ties derive from the fact that the Mohri�s determinization process nicely captures
the intuitive meaning of redundancy for those graphs	 Indeed
 when we ignore the
weights on the arcs of the lattice in Figure �
 we obtain a directed acyclic graph
that has many isomorphic subgraphs	 Moreover
 since we are interested only in
keeping minimum paths
 we can keep
 among isomorphic subgraphs
 the �lightest�
one	 Matters are even further simpli
ed because the topological structure of the
acyclic graph is very much like that of a tree	 The choice of the semiring is also
very important	 Indeed
 for the determinization of the lattice in Figure �
 we are
using the min�sum semiring	 Therefore
 for each string z accepted by the lattice

only the path of minimum cost that induces z is relevant
 and the other paths can
be discarded	 An analogous fact does not hold for the sum�times semiring	

Research Area ���� Determine when and why determinization of sequential
weighted automata can be performed e�ciently� That is� characterize the essential
properties of the automata that allow e�cient determinization� In particular� give
formal proof that Mohri�s algorithm will always work well for lattices arising in
speech recognition �or show where it might produce a blowup in automata size��

��� Minimization

Minimization is the following problem	 Given a weighted automaton A
 compute
the �smallest� automaton equivalent to A	 Here matters are somewhat unclear
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and much work is still needed	 We 
rst review the state of the art for string�to�
string transducers
 of which weighted automata comprise a special case	 Given a
string�to�string transducer T 
 Reutenauer and Sch'utzenberger ������ have devised
a method to construct a new transducer that performs the same transduction as
T and that is minimal with respect to certain constraints	 Roche ������ presents a
di�erent approach that leads to a transducer with an exponentially smaller number
of states than that of Reutenauer and Schutzenberger	 Mohri ������ also gives
a minimization procedure
 but his works only for special �although important�
classes of transducers	 The methods of Roche and Mohri have been used with
demonstrated success in natural language processing� Roche ������
 for example

uses his methods to produce a small representation of a French dictionary	 Mohri�s
algorithm
 however
 is the only one with proven asymptotic results	 �Breslauer
������ gives recent improvements to this algorithm	� As an aside
 we note that
methods for the representation of dictionaries and phonetic rules is a very active
area of experimentation �Roche ����� Silberztein �����	 It is also worth mentioning
that the minimization algorithm of Roche ������ is based on the computation of an
approximate solution to an NP�Hard problem	 Therefore
 it is a natural candidate
for experimentation	 For weighted automata
 Mohri �����a� provides an algorithm
that works for sequential weighted automata� it is a specialization of his algorithm
for the minimization of string�to�string transducers �Mohri �����	 We now brie�y
discuss the algorithm and its performance	
Given a weighted sequential automaton A
 the minimization algorithm devised

by Mohri �����a� consists of two stages	 One is extraction	 During this phase
a new weighted sequential automaton A� is built� A� di�ers from A only in the
weights on its transitions	 Then
 A� is treated as a deterministic automaton with
arcs labeled by elements of two alphabets
 one of strings and the other of weights	
The standard minimization procedure for automata is applied to A� �Hopcroft and
Ullman �����	 One can show �Mohri ����a� that the result is the most compact
weighted automaton equivalent to A	 Figure � actually results from applying the
minimization algorithm to the word lattice in Figure ��	
We brie�y outline the extraction phase	 For each state q of A
 let d�q� be the

minimum among the weights of all strings w that reach the 
nal state from q	 The
new automaton A� is de
ned in exactly the same way as A
 except that the weight
on the transition �q� a� is given by �!��d�q�	 � is the weight on the transition �q� a�
of A
 and � � d�	�q� a��	 One can easily show �Mohri ����a� that extraction reduces
to the computation of a single�source shortest path with nonnegative arc lengths
�the source being the 
nal state�	 Therefore
 we can use standard algorithms for
this problem �Cormen et al	 �����	
It should be clear that minimization of weighted sequential automata is relevant

to speech recognition for the same reasons as is determinization
 although the lat�
tice size reductions achieved by minimization do not seem as impressive as those
obtained by determinization	

Research Area ���� The minimization algorithm of Mohri �����a� �and also
Breslauer ������� produces automata that are the smallest possible but only for
special classes of transducers� The algorithm of Roche ������ is more general but
lacks proven asymptotic results� Can these results be uni
ed�
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��� Comparison to Viterbi Searching

In the previous sections we have outlined methods for reducing the size of a given
lattice while preserving the relevant information�i	e	
 the minimum cost source�
to�sink path	 Those methods work because the lattice is given a priori	 Moreover

the strings that such a lattice accepts form a 
nite
 albeit large set	 We are there�
fore in a static situation
 in which the elimination of redundancy�i	e	
 irrelevant
information�consists of eliminating
 for any string x accepted by the lattice
 the
paths that induce x and that are not guaranteed to be minimal	 Technically
 this
intuition can yield a de
nition of a right invariant equivalence relation that we can
use to minimize the lattice �Mohri ����a�	
Now recall from Section �	� that we have formulated the problem of minimizing

a HMM HD so that the minimized HMM H�
D preserves the Viterbi computation	

The di�erence between minimization of lattices and the corresponding problem for
HMMs is that
 while the former are static objects
 HMMs are used as dynamic
objects	 That is
 the Viterbi computation must provide an optimal path for any
string x given as input	 That string is usually given on�line
 and the number of
strings matched by an HMM is in
nite	
When we discussed the graph theoretic approach to the Viterbi computation in

Section �	�
 we noted that a fundamental di�erence between Dijkstra�type shortest�
path algorithms and Viterbi�type shortest�path algorithms is that the costs of arcs
in the former are 
xed a priori
 whereas the costs of arcs in the latter vary with the
input	 An analogous situation seems to hold for the language theoretic approach	
That is
 lattices are used as static objects
 while HMMs are used as dynamic ones	

�� DISCUSSION

We have formulated some core problems in speech recognition as search problems
on very large
 weighted graphs	 We conclude here with some general comments
about this viewpoint� in Appendix A
 we review some of the speci
c open problems
mentioned in this paper	
If one uses the layered approach of Section �	�
 one can consider speech recogni�

tion as follows	 There is a very large
 static collection of vertices	 Each utterance
induces a set of weighted
 labeled arcs on the vertex set	 The task is to 
nd �or
approximate �well�� the shortest path through the graph	 The problem is that the
graph is enormous and also contains redundancies�indeed nested redundancies�
that result in repetition of the same shortest�path computations in many di�erent
places in the graph	 How to reduce the graph or otherwise direct the search so as
to avoid most of the graph that does not contribute to the solution
 as well as how
to exploit the redundancies
 are key problems	
If one simply computes directly on the individual HMMs rather than ��atten�

ing� the graph as above
 one faces the problem that arc weights are dynamic with
respect to the input sequence	 Furthermore
 the arcs in each model represent dis�
tinct portions of a hypothetical input
 whereas the input sequence itself is not
explicitly partitioned	 Therefore
 some mechanism
 incurring additional computa�
tional complexity per arc traversal
 must determine the best ways to match arcs
to subsequences of the input	 How to speed computation over the HMMs
 perhaps
exploiting their topologies
 is a key problem	
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Pereira et al	 �����
 ����� consider speech recognition as a composition of weighted

nite�state transducers	 In their approach
 the search problem becomes one of com�
puting on�line multiway �joins� of automata
 each of which models various phases
in the recognition process	 Here again
 the transducers become extremely large
and contain information that is mostly redundant	 Techniques to determinize and
minimize these transducers are critical	
Finally
 we revisit the decision to concentrate mainly on search issues at the

expense of signal processing and acoustics	 Consider the approximation

Pr�AjW � � Pr�A�jW�� � � �Pr�AkjWk� Pr�W�� � � � �Wk�� ����

where A � �A�� � � � � Ak� andW � �W�� � � � �Wk�	 That is
 the probability of observ�
ing some sequence A of acoustic feature vectors given that utterance W has been
spoken can be approximated by the product of the corresponding probabilities for
each unit in the utterance and the joint probability of all the units	 �For example

the utterance could be a sentence
 and we could regard the words as individual
units	� Approximation �� is crucial to the maximum likelihood paradigm
 in that
even the fastest
 most accurate algorithms for solving Equations � � depend on the
validity of this approximation to guarantee good results	 Boothroyd and Nittrouer
������
 building on the work of Fletcher and Galt ������ and of Boothroyd ������

show that Approximation �� is valid when the units are allophones
 which are de�
coded by the human auditory system before meaning is extracted �in the words of
Allen �������	 Unfortunately
 it is not known yet how to model allophones robustly

so parameterized models �banks�of�
lters
 linear predictive coding �LPC� coe��
cients
 LPC cepstral coe�cients
 weighted cepstral coe�cients
 etc	� have been
developed instead� the signal processing module then provides the parameters to
plug into the model	 Devising such models is a crucial application of signal pro�
cessing and acoustics to speech recognition	 Again we refer the reader to Rabiner
and Juang ������ for an extensive treatment of these issues	
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APPENDIX

A� SUMMARY OF RESEARCH AREAS

Here we summarize the earlier statements of open algorithmic problems	 We give
page numbers for reference back to the full problem statements	

Research Area ���
 page ��	 Devise faster methods to compute the probability
that a HMM matches a given observation	 In particular
 can the topology of the
HMM be exploited towards this end&

Research Area ���
 page ��	 Devise algorithms to reduce the size of a HMM	
This is analogous to the determinization and minimization problems on 
nite�state
automata	

Research Area ���
 page ��	 Devise faster search algorithms to solve the Viterbi
equation �Equation ��	 As with Research Area �	�
 investigate how to characterize
and exploit the particular graph topologies that arise in speech recognition	

Research Area ���
 page ��	 Devise an analogue to the CSP scaling technique
that would apply to VSP	

Research Area ���
 page ��	 Investigate the potential for admissible heuristics
that will signi
cantly speed computation of the A� and SEARCH algorithms
 or
determine how to measure theoretically the error rates of fast but inadmissible
heuristics	

Research Area ���
 page ��	 Characterize the essential properties of sequential
weighted automata that permit e�cient determinization	

Research Area ���
 page ��	 Unify the results given by Mohri and Breslauer
�provably good minimization for special cases of sequential weighted automata�
with those of Roche �minimization for more general cases of sequential weighted
automata without proven asymptotic size reductions�	

B� SOURCES OF CODE AND DATA

In this section we give some pointers to sources of code
 data
 etc	
 of interest
to anyone who wants to experiment with speech recognition	 Rather than list
points of contact for individual data sets
 programs
 etc	
 we instead give pointers
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to bigger and therefore presumably more durable collections of information	 Note
that development of speech products is now a business� collection of speech and
text corpora is also extremely labor intensive	 Therefore
 most programs and data
are not available without cost	

B�� Code

Most commercially available speech recognition products are tailored more towards
applications developers than researchers	 One product
 though
 called HTK
 pro�
vides a more low�level toolkit for experimenting with speech recognition algorithms
in addition to an application�building interface	 It is available from Entropic Re�
search Lab
 Inc	

http���www�entropic�com�htk�

The 
nite�state toolkit developed by Pereira et al	 �cf	 Section �	�� can be ob�
tained by sending electronic mail to

fsm�research�att�com�

B�� Data

A large variety of speech and text corpora is available from the Linguistic Data
Consortium	

http���www�ldc�upenn�edu�

Paying a membership fee to join the LDC entitles one to free corpora that were
released during that year �and reduced prices on corpora from prior years�� non�
members pay more for corpora	 The following are some of the commonly used
speech corpora that they have	

TIMIT Acoustic�Phonetic Continuous Speech Corpora	

RM Resource Management Corpora	

ATIS Air Travel Information System	

CSR Continuous Speech Recognition	

SWITCHBOARD Switchboard Corpus of Recorded Telephone Conversations	

Among the commonly used text corpora they have are the following	

PENN TREEBANK The Penn Treebank Project
 Release �	

UN United Nations Parallel Text Corpus �Complete�	

SPANISH NEWS Spanish News Text Collection	

Another source of speech data is the Oxford Acoustic Phonetic Database on
CDROM
 published by Pickering and Rosner ������	 It is a set of two CDs that con�
tain digitized recordings of isolated lexical items plus isolated monophthongs from
each of the following eight languages�dialects� American English
 British English

French
 German
 Hungarian
 Italian
 Japanese
 and Spanish	
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B�� Commercial Products

As mentioned above
 most commercial speech recognition products are tailored
more towards applications developers than researchers	 Still
 those wishing to ex�
periment with the human factors issues of speech recognition �which we did not
discuss at all in this paper� might be interested in the following products	

��� AT(T Watson Advanced Speech Applications Platform	
http���www�att�com�aspg�blasr�html

��� BBN Speech Products	
http���www�bbn�com�speech prods�

��� DragonDictate from Dragon Systems
 Inc	
http���www�dragonsys�com�

B�� General Information

Finally
 two free
 on�line source of information are of interest	 First is the USENET
newsgroup

comp�speech�

While the signal�to�noise ratio of most USENET newsgroups is pretty low
 the
comp�speech list of frequently asked questions �FAQ�
 which is posted at least
monthly
 does provide an extensive
 well�maintained list of pointers to other on�line
sources of information on speech processing	 The current version of the FAQ can
be found at

http���www�speech�cs�cmu�edu�comp�speech��

Second is the Free Speech Journal
 at

http���www�cse�ogi�edu�CSLU�fsj�home�html�

an on�line
 peer�reviewed journal covering human language technology	

C� GLOSSARY

ARPABET Standard phonetic alphabet used in ARPA projects	

CSP Classical shortest�path problems	

CSR Continuous speech recognition	

DAG Directed
 acyclic graph	

HMM Hidden Markov model	

IWR Isolated word recognition	

LPC Linear predictive coding	

MS Markov source	

VSP Shortest�path problem as solved by the Viterbi algorithm	


