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An Analog Neural Network Implementation
in Fixed Time of Adjustable-Order Statistic
Filters and Applications

Mohammed Mestari

Abstract—In this paper, we show a neural network implemen-
tation in fixed time of adjustable order statistic filters, including
sorting, and adaptive-order statistic filters. All these networks
accept an array of N numbers X; = Sx; M. Xi2EXi as input
(where Sx; is the sign of X;, Mx; is the mantissa normalized
to m digits, and Ex is the exponent) and employ two kinds of
neurons, the linear and the threshold-logic neurons, with only
integer weights (most of the weights being just 41 or —1) and
integer threshold. Therefore, this will greatly facilitate the actual
hardware implementation of the proposed neural networks using
currently available very large scale integration technology. An
application of using minimum filter in implementing a special
neural network model neural network classifier (NNC) is given.
With a classification problem of [ classes C;,Cs>,...,C;, NNC
classifies in fixed time an unknown vector to one class using a
minimum-distance classification technique.

Index Terms—Adjustable-order statistic filters (AOSFs), min-
imum-distance classification (MDC) technique, neural networks,
neural network classifier (NNC), sorting filter.

1. INTRODUCTION

RDER statistic filtering is a technique extensively used in
O pattern recognition and image processing (PRIP) applica-
tions [4], [9], [11], [12], [38], [49]-[52], [55], [58], [65], [68],
[71], [79]. During the past decades, considerable efforts have
been devoted to developing special computer architectures for
PRIP applications [7], [41], [42], [54], [63], [66], [69]. Recent
advances in very large scale integration (VLSI) microelectronic
technology have triggered the idea of implementing PRIP al-
gorithms directly in specialized hardware chips. Many attempts
have been made to develop special VLSI devices for such pur-
poses. It is of certain importance and interest to develop a hard-
ware model of high processing speed that can be used as a
building block for implementing any order statistic filter (OSF),
including sorting and adaptive OSFs (called comparison and se-
lection filters [38]). The main task of the order statistic filtering
is to find the kth-order statistic of an input array, defined as
being the kth largest element in the array. This technique finds
application in telecommunications, particularly for controlling
data packet switches [8], [10]-[13]. In [34], a member of the
OSF family shows applications in VLSI auditory and visual sys-
tems, while in [20], another filter of OSF family as an analog
decoder of error-correcting codes is proposed. OSFs are mostly
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implemented in software [4], [6], [19], [24], [28], [30], [43],
[56], [59], [63]. [71], [76], [79], whereas hardware implemen-
tations are designed only for specific members, particularly the
median and maximum filters, of the OSF family [18], [29], [49],
[50], [52], [62], [67], [86].

In this paper, we propose a neural network model, the ad-
justable order statistic filter (AOSF), which is to be used as
a building block for implementation of any member of OSF
family. The function of the AOSF is to find in fixed time the kth
largest element of an array of N numbers X; = Sx, My, 25%:
where S, is the sign of X; and is coded on 1 bit (Sx, = 0if X;
is positive or zero, and Sx, = 1 otherwise); Mx, is the man-
tissa normalized to m digits and is coded on m bits; and Ex, is
the exponent and is coded on p bits; and ¢, k are integers, so that
1<i<Nand1 <k <N.

The approach behind constructing AOSF differs from the
conventional approach used in the field of neural networks
[33], [81]-[85]. To solve a specific problem, instead of taking
a general-purpose network and applying it by learning, we
tailor-make a dedicated network. Our primary concern is how
to organize neurons into a network so that it can solve a specific
problem, with an emphasis on fully utilizing the massive
parallelism property offered by neural networks. This approach
is useful for solving problems where exact analytic solutions
are known or derivable. Two types of neurons are employed in
AOSF (linear and threshold-logic neurons). Both types have
already been implemented in the past using analogue electronic
circuits. They both assume the well-known linear sum neuron
model and differ only in their activation functions. A typical
implementation of the linear neuron uses a linear operational
amplifier [25]. The linear neuron may also be implemented
using summing amplifiers (adders) [17] by restricting the value
range of the inputs to be within the linear range of the amplifier.
As for the threshold-logic neuron, many different schemes of
implementation have been reported. All such neurons have
been used in constructing various kinds of neural networks [3],
[17], [21], [26], [32], [44], [49]-[53].

An important application of using AOSF (k = N) for imple-
menting a special neural network model neural network classi-
fier (NNC) is described. The NNC performs classification using
minimum-distance technique. Minimum-distance classification
(MDQC) is a simple yet powerful technique widely used in sta-
tistical recognition, clustering, and other applications.

All neural networks considered in this paper have a feed-for-
ward structure with two kinds of neurons, linear and threshold-
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Fig. 1. (a) Simplified functional model of an artificial basic neuron cell. (b)
respectively. (¢c) Two possible unipolar transfer characteristics.

logic neurons. These networks have a very simple configura-
tion, the connection strengths between the neurons are all fixed,
most of them being just +1 or —1, which makes hardware im-
plementation easy and straightforward. The modularity and the
regularity of the networks’ architecture make them suitable for
VLSI implementation.

The processing time of each network herein proposed is con-
stant. As the size of the input array increases, only the number
of neurons in each layer increases, not the number of layers
themselves. Therefore, the network’s total processing time re-
mains constant, irrespective of the size of the input array. This
is in contrast with conventional digital hardware implementa-
tion, where the processing time increases along with the input
size. Although constant processing time is achievable using un-
limited fan-in logic gates, the circuit size grows exponentially
as the size of the input increases [15], [23]. The circuit size of
AOSF, however, only grows quadratically.

The rest of the paper is organized as follows. In Section II,
we describe the construction of the basic neural network AOSF.

(©

Schematic representations of the threshold-logic neuron and the linear neuron,

Section III is devoted to the application of the AOSF in imple-
mentation of various order statistic filters, including sorting and
adaptive order statistic filters. An important example of appli-
cation of AOSF (k = N) to implementing an NNC is given at
the end of this section. Section IV contains the conclusion.

II. CONSTRUCTION OF THE AOSF

In this section, we develop the basic neural network, AOSF,
which is essential for construction of all neural networks herein
proposed, but first, we describe the neurons employed here.

A. Neurons Used

AOSF employs two kinds of neurons, both of which are
commonly used in neural network applications [21], [32], [44],
[49]-[53]. The only difference between the two is in their
activation function: one employs the linear activation function
and the other the threshold-logic activation function. Their
schematic representations are shown in Fig. 1(b), where y is
the output.
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Fig. 2. Circuit implementation using resistors and operational amplifiers: (a) linear neuron and (b) threshold-logic neuron.

These two kinds of neurons sum the n weighted inputs and The threshold-logic neuron model [see Fig. 1(b)] uses only
pass the result through a nonlinearity according to the binary (hardlimiting) function [see Fig. 1(c)]. In this model,
a weighted sum of all inputs is compared with a threshold 6. If
y=3a Xn: witi — 0 1) this sgm excieds the thr’e’:shold, the neuron output is set to “high
pt value” or to “low value” according to
where @ is a limiting or nonlinear transfer characteristic, called > def |1, ifz>0 >
an activation function; 6(6 € RR) is the external threshold, also r(z) = 0, otherwise )
called an offset or bias; w; are the synaptic weights or strengths;
z; are the inputs (i = 1,2,...,n), n is the number of inputs, where z = Y i, w;z; — 0, and P is the threshold-logic acti-
and y represents the output [cf. Fig. 1(a)]. vation function or binary activation function [cf. Fig. 1(c)].
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TABLE 1
SERIES OF TESTS CARRIED OUT ON THE ELECTRONIC CIRCUITS IN FIG. 2 (a) AND (b)

Weighted sum of Linear neuron Threshold-logic neuron
input signals, z output voltage yr output voltage yr

4.5468 4.54 4.61351
4.59868 4.60 4.61352
4.64548 4.64 4.61353
4.51857 4.52 4.61351
3.92399 3.93 4.61345
2.44654 2.46 4.61327
0.7389 0.752 4.61307
0.53596 0.547 4.61304
0.14688 0.157 4.61274
0.10087 0.111 4.61207
0.01013 0.0203 4.60012
-0.13846 -0.129 2.77385
-0.21054 -0.201 0.79898
-0.27743 -0.268 0.39852
-0.34042 -0.331 0.38817
-0.40973 -0.401 0.38727
-0.48818 -0.479 0.38701
-0.56451 -0.556 0.38709
-0.71071 -0.703 0.38711
-0.97613 -0.969 0.3871
-1.39248 -1.39 0.38709
-1.75729 -1.76 0.38709

In the case of the linear activation function [see Fig. 1(b)], the
output y is given by

3)

where @, is the linear activation function [see Fig. 1(c)] defined
by Or(z) =z withe = > wiz; — 6.

Both kinds of neurons, threshold and linear, have already been
implemented in the past using analog electronic [17], [25].

Fig. 2(a) shows an example of electronic implementation of a
linear neuron by employing resistors and operational amplifiers.
The output voltage yr, can vary from —V,. to +V,.. Applying
Kirchhoff’s current law (KCL), we obtain

b ()

i=1

with the voltage constraints

lyr| < +Vee. (5)

Equation (4) can be written in the compact form

(6)

n
yL =Y wiz;—0
i=1

where w; = (xR/R;) and 0 = (R/Ryef) Vet

A model of the threshold-logic neuron can be built using tra-
ditional electronic circuit components as shown in Fig. 2(b). The
comparator output voltage yr replaces the output signal of real

neuron. The threshold-logic activation function is naturally pro-
vided by the saturating characteristic of the amplifier used as
comparator. By applying KCL, we obtain the expression

Ve, if Xy (245) @i = (7%) Veer 20
yT:{+ to (e ) T2 0y
0,

This can be written in the compact form

otherwise.

_ ) Ve, ifz >0 )
¥r = 0, otherwise
where z = > wiz; — 0 with w; = +(R/R;) and 0 =

(R/Rref)l/ref\

A series of tests carried out on the electronic circuits in
Fig. 2(a) and (b) (see Table I) has enabled tracing of linear and
threshold-logic transfer characteristics [see Fig. 3(a) and (b)].
Passage from 0 to +V,. of the curve representing the output
comparator voltage yr according to the weighted sum of input
signals z; (1 = 1,2,...,n),x = Y., w;x; — 0 is not instanta-
neous, as foreseen by (8) and the definition of a threshold-logic
neuron; this is essentially due to the hysteresis (positive
feedback) and the slew rate (13 V/us) of the op-amplifier
(11A741) used as comparator, and also to the gain-bandwidth
of op-amplifiers placed before the comparator. We can remedy
this problem by using a current feedback op-amplifier whose
slew rate reaches (1000 V/us), such as AD844 [73].

Current-mode signal processing offers several advantages
when used in neural circuits. One of the most obvious ad-
vantages is that the summing of many signals is most readily
accomplished when those signals are currents. Other advan-
tages are increased dynamic range in future VLSI technologies,
which are expected to see power supply reductions, high-speed
signaling at low impedance nodes due to minimal capacitive
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Fig. 3. Output curves of the linear and threshold-logic neurons, respectively:

(a) linear transfer characteristic and (b) threshold-logic transfer characteristic.

charging/discharging, and extension of linear ranges in tran-
sistor circuits. The amount of linearity can be increased by
representing signals as current differences in transistors and
canceling common-mode nonlinear terms at virtual short inputs
of operational transconductance amplifiers. Increased linearity
is achieved using more complex cells.

In what follows, our primary concern is how to organize the
linear and threshold-logic neurons into a network so that it can
solve a specific problem, with an emphasis on full utilization of
the massive parallelism property offered by neural networks.

B. Some Basic Functions

In this subsection, we introduce special functions that are es-
sential for construction. First, however, we give the representa-
tion employed to represent the elements of input array X.

With a view to making the neural models proposed in this
paper adaptable and to then facilitate their incorporation into
digital calculators, we will employ the coding used in the ma-
jority of present-day computers to represent the elements of
input array X.

Let X; be an element of the input array X (: = 1,2,..., N).
Each element X; of X is represented in a single way by the
triplet (Sx,, Mx,, Ex,), as follows:

X; = Sx, Mx, 25 &)

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 3, MAY 2004

where
* Sx, designating the sign of X7 is coded on 1 bit (Sx, = 0
if X; is positive or zero, and Sx, = 1 otherwise);
* Myx, designating the mantissa normalized to m digits is
coded on m bits (M, is a real number: (1/2) < My, <
1);
» E'x, designating the exponent is coded on p bits (E'x, is a
positive, negative, or zero integer).
The mantissa normalized to m digits M, is represented in (bi-
nary) base 2 by

My, =Y M 27

J=1

(10)

where M3 7 (j = 1,2,...,m) are the digits of mantissa Mx,
in base 2. Mg( € {0, l}forl <j<mandl < i < N.
Agreelng that (1 /2) < My, implies My verifies M5 # 0,
ie., ML X, = = 1.

The exponent Ex, is coded in the form “arithmetic comple-
mented to 2” (necessary to encode the negative exponent)

p—2
E'X1 = ZE%L — SEXq_Zp_l
=0

(11)

where SEY is the sign bit of Ex;, (SEX = 0if Ex, is positive
or zero, and Sg, = 1 otherwise), and Eﬁ € {0,1} for 0 <
7 <p-—2and i < 4 < N (cf. Table II). The exponent Ex,,
given by (11), may be calculated by a single neuron (cf. Fig. 4).

We can then represent any element X; of the input array X
as a (m + p + 1) bit binary number, as follows:

X;

@X Mk, M2,

Definition 1: Let X; and X, be two elements of the input
array X. The comparison function of X; and X is defined as
follows.

If (Sx, # 1 and Sx, # 1i.e., X, and X; are not simultane-
ously negative), then

‘ 1, ifX, > X,
fori < g, comp(X;,X,)= {0 ;qu < X, (13)
) q K]
and
, 1, ifX,> X,
fori >¢q, comp(X;,X,)= {0 ;f Xq z X, (14)
) q = 2

If (Sx, # 0 and Sx, # 0,1i.e., X, and X; are not simultane-
ously positive), then

1, iqu > X;

0, ifx,<x;, I

fori < g, comp(X;, X,)= {
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TABLE II
ARITHMETIC COMPLEMENTED TO TWO
SEX i Eg(: : Eg(:d E}( i E?(i
Encoding of greatest exponent 0 1 1 1 1
Encoding of zero exponent 0 0 0 0 0
Encoding of exponent Ex, = —1 1 1 1 1 1
Encoding of smallest exponent 1 0 0 0 0

Fig. 4. Neural network enabling calculation of exponent Ex (1 < i <

and

1, if X, > X,

0, ifx,<x,. U0

fori > ¢, comp(X;,X,)= {

|
Definition 2: Let X, be an element of the input array X . The
order in the input array X of X, is defined as

ord(X,, X) &' Z comp(X;, Xy) + Z comp(X;, X,) + 1.
i<q i>q

a7

Definition 3: Let X 1) denote the kth largest element of the

input array X. Let X, be an element of the input array X. Then

Xy =Xquy iff ord(X,,X)=E. (18)

|

The task of finding the kth largest element of the input array
X can be done in two phases.

1) Compute the order in the input array X of any element
X,(¢=12,...,N).

2) Select and transfer to output the element of the input array
X corresponding to the order k desired or chosen by de-
cision-markers (designers).

Note that the operation in either of these two phases can be
performed in parallel. This is why it is possible to achieve high
processing speed by utilizing the massive parallelism of neural
networks.

Corresponding to these two phases, the AOSF is composed
of NV order networks, a selection network, and an adjustment
input, which allows choice of the order k& of the element to be
transferred to output.

Proposition 1: ®r(z —1) =z ifz € {0,1}. |

Proof: If x = 0 then ®r(x — 1) = dp(—1) = 0 [cf.
function (2)].
If x = 1, then ®7(z — 1) = ®7(0) = 1 [cf. function (2)]. m

Fig. 5. Neural network enabling calculation of M x,; (1 <@ < N) according
to relationship (19).

Let M y, be the integer associated with Mx, (4
1,2,..., N) according to

My, =2" My, =y M} 2", (19)

=1

Proposition 2: Let V be an operator of the set R= {<, >, <
,>,=}. Let Mx, and Mx, be two integers associated to Mx,
and Mx, respectively, according to (19). Then

MX1VM)((I<:>Z/\ZX1\/Z/M\X‘1. (20)

|
Proof: Let V be an operator of R. e e

If MXi \Y qu , then QmMXi \Y 2meq = Mxi \Y qu [cf.
relationship (19)]. e .

If 1\4‘\'1 \Y M‘\'q , then 2_”1]\4‘\'1 \Y 2_mMXq = ]\4‘\'1 \% MXq
[cf. relationship (19)].

The operator does not change when M, and M, are mul-
tiplied by the positive number 2™ or when ]\//T x, and M X, are
multiplied by the positive number 27" [ |

The integer My, associated with the mantissa My, ac-
cording to (19) is calculated by a linear neuron (cf. Fig. 5), all of
whose weights are integers, which facilitate its implementation
based on VLSI technology.

Let | X;| denote the absolute value of X;; |X;| is represented
by the given couple (Mx,, Ex,) as follows:

|X;| = My, 2P~ (21)

As in (12), | X;| can be represented as an (m + p) bit binary
number

1X;| = (M}(i,Mivi,...,Mf\’?i,SE&,E?Yi,E}(i,...,Ef’gQ).
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Definition 4: Let | X;| and | X | be the absolute value of X;
and X, respectively; we say that | X,| > |X;| if and only if
1) Exq > EXi or
2) Ex, = Ex, and Mx, > My, [or equivalently M X, >
M x; (cf. Proposition 2)]. [ |
Proposition 3: Let | X;| and | X | be the absolute value of X;
and X, respectively. Then

517

if 1 <
coup (1,1 1%, = { 7 1157

ifi>q 23)

where

Sy = by [@T (Ex, — Ex, — 1) — &7 (Ex, — Ex, — 1)
O (— or (Fy, — Fx, — 1)

—&p (Ex, — Ex, — 1)

s (T T 1) 1)
—or (- or (Bx, - Bx, - 1)
~&7 (Ex, — Ex, — 1)

4By (M\Xq. — My, - 1) - 1)
+or (01 (~or (Mx, - My, - 1)
o (i - 1, -1)
~&r (Ex, — Ex, — 1)

—&p (Ex, — Ex, —1) - 1)} (24)

Sy=p [@T (Ex,—Ex,—1)—®7 (Ex, — Ex, —1)
+@7 (— Oz (Bx, ~Ex, ~1) 07 (Ex, — Ex,~1)
+r (Mx, — My, -1) -1)
—<1>T(— o7 (Ey, —Ex, —1)—0r(Ex, — Ex,—1)
n @T(J\/ix —Z\/qu—l)—l)—l}

and @ is defined in (2). [ ]
Proof: (See Appendix I.)

The network for computing the comparison function of | X}
and |X,| is illustrated by the diagram depicted in Fig. 6. This
network is denoted as the absolute value comparison network
(AVCN).

Definition 5: Let |X;| and | X4| be the absolute value of X;
and X, respectively; we say that X, > X; if and only if

1) Sx, =0and Sx, = 1 or

2) Sx, =0and Sx, = 0and | X,| > |X;| or

3) Sx, =1land Sx, = 1and | X | < |X;|. []

Proposition 4: Let | X;| and | X | be the absolute value of X;
and X, respectively. Then

comp(X;, X;) = P (=Sx, —Sx, + comp (| Xi],| X)) —1)
+ &1 (Sx, + Sx, —comp (| X;|, | X,])—2)
+ @7 (-Sx, + Sx,—1). (26)

(25)

|
Proof: (See Appendix II.)

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 3, MAY 2004

Ex

q9

comp(|Xil,| Xq))

+1

+1

"\

0 D) pcomp(iXiiXa)

‘Xq| —>»
x| —»
Sx,

AVCN

comp(X » X )

Fig. 7. Comparison network of X; and X,, CN(¢, q), where AVCN is the
network depicted in Fig. 6.

The network for computing the comparison function of X;
and X, given by (26) is shown in Fig. 7. This network is denoted
as CN (i, q) (comparison network of X; and X,).

C. Order and Selection Networks

The function of the order network ON,,(1 < ¢ < N) is
to compute the order in the input array X of each element X,
(cf. definition 2). The order network ON, computes the order
function (17) and is made up of (N — 1) comparison networks,
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X g CN(Lg) +1
X1 .
X g CN(g-1.0) +1

Xg-1 i ord(Xq,X)
g CN(g+1 ;

X1 (g+1.9)
Xq NN, +1

Xy > NV.9)

Fig. 8. Order network ON,(1 < ¢ < N), where CN(i,q),

te{l,2,....,N} —{q}is the network depicted in Fig. 7.

CN(i,q)i € {1,2,...,
Fig. 8.

The function of the selection network is to select from among
the elements of input array X the element corresponding to the
order fixed by the adjustment input and to transfer it to output.
This network is composed of N equality networks (ENs) and a
detection network (DN), which will be studied hereafter.

1) Equality Network: The EN determines whether the order
of an element is equal or not to a given number k. The number
k(1 < k < N) is fixed via the adjustment input A, according
to

N} —{q}, as shown by the diagram in

27

n—1
.« — q
k= Za(k)Tl
q=0

where a?k)7 a%k), o a?k_)l is the word of command allowing
choice of the order of the element to be sent to output. a‘(lk) €
{0,1} for0<g<n-—-1land1 <k <N.

The function computed by the EN is defined as

773

ord(Xi ,X)

eq[ord(Xi,X),k]

Fig. 9. Equality network EN.

2) If ord(X;,X) < k, then ord(X;,X) — k < —1 and
k—ord(X;,X) > 1= ®r(ord(X;,X)—k—-1) =0,
‘I)T(]i} — OI‘d<4Xi7 X) — ].) = 1and @T(ord(Xi, X) —k—
1)+ @7 (k —ord(X;,X)—1) — 1 = 0 and consequently
@T(@T(ord(Xi,X) — k- 1) + (I)T(k - OI‘d(X,X) -
1) —1) = &7(0) = 1.

3) If ord(X;, X) > k, then ord(X;,X) —k > 1l and k —
ord(X;,X) < -1 = &p(ord(X;, X)) -k —-1) =1,
‘I)T(]i} — OI‘d<4Xi7 X) — ].) = 0 and @T(ord(Xi, X) —k—
1)+ ®7(k —ord(X;,X)—1) — 1 = 0 and consequently
O (Pr(ord(X;, X) —k — 1)+ &p(k — ord(X;, X) —
1) —1) = &(0) = 1.

To summarize: &7 (Pr(ord(X;, X) — k — 1) + &p(k —
ord(X;,X) — 1) = 1) = 0 if ord(X;,X) = k and
Op(Pp(ord(X;, X)—k—1)+Pp(k—ord(X;, X)—1)—1) =
1, otherwise and consequently eqord(X;, X),k]
@T(QT(ord(Xi,X) —k— 1)—|—<I>T(k—0rd(X, ) )
[cf. function (28)].

The EN consists of three threshold-logic neurons, as shown
by the diagram in Fig. 9.

2) Detection Network: The function of the DN is to detect
and send to output the kth largest element X ;) of input array X.

Proposition 6: Let the equation at the bottom of the page [cf.
relationship (12)] be the kth largest element of input array X.
Then

.\_/”

Sx = f(SxssSxmsee s S 30
eq ford (X, X), 4 & [ 0 iford(Xe X) =k o) e d TSR ). G0
1, otherwise. Mf\'(k) =f (Mﬁgl,M‘]\vg, M]\N) ,for1 <j<m (1)
Proposition 5: SEx(k) =f (SEX1 SBxy e SEXN) (32)
Ef]\,m =f (E‘q\,l,Eq\), .,E‘q\,N) ,for0<qg<p-2 (33)
eq ford(X;, X), k] = @7 (®r (ord(X;, X) — k — 1)
+ @7 (k= (ord(X;, X) —1) — 1) where
forl<i<Nand1<kE<N (29
.f(b17b27"'7bN) =
where @ is defined in (2). [ ] N
Proof: Three cases can be distinguished. @T(Z O (b; — eqlord(X;, X), k] — 1) — 1)
1) If ord(Xi, X) = k, then ®p(ord(X;, X) — k — 1) = i=1
Sr(k —ord(X;,X) — 1) = &p(—1) = 0 and con-
sequently @7 (®r(ord(X;, X) — k — 1) + &¢p(k — withbi = (Sx, or M] (1=1,2,...,m)or Sg, or E% (¢ =
ord(X;, X)—1)—1) = dp(-1) = 0. 0,1,...,p— ))fOIL—l 2,...,N. ]
2 m 0 1 —2
Xy = (Sxes Mk M3 MR S By B0 BR L)
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eqlord(X1,X),k]

eqlord(Xi,.X).k]

eq[ord(Xn,X),k]

Fig. 10. Detection network DN.

that

ord(X;, X) =
0 and eqford(X;, X), k] =
{1,2,...,N} — {I}. Therefore

k, then
1Vi €

Proof: Suppose
eq[OI‘d(Xh X) k] =

. (Z O (b; — eqlord(X:, X), k] — 1) — 1)

=1
= O (P (b — eqlord(X;, X), k] —1) = 1)
N
+®r | Y Bp (b —eqlord(Xi, X), k] - 1) — 1
1Sl
= g (Pr(by—0—1)—1)
N
+Or | > Opbhi-1-1)-1
£
1<i<N

=®p(by— 1)+ &7(0— 1) (cf. proposition 1)
= by [cf. proposition 1 and function (2)]

and consequently

f(S\1>SX2 SXN)
M;’;—,:f(Mgs.l,M}\.Q,...,M]\LN),forlgjgm
SEX, :f(SEX17SEX27""SEX )
Egs, f(E'X1 E’q\2 ..... ,E% )./ for0 < g<p-—2.
As Sx; = Sxys ;( = Mf\"(k) for1 < j < m, Sgy, =

Spx,,, and Ej"\l = B%,, for0 < ¢ <p-—2, wehave

Sx, =f(5x1, 5%+ Sxy)

M, = f (M, Mk, M) for1 < <m
SExyy = (SBaysSmay- o SEv, )

E}I((k) =f(E% E%,.....BE%,), for0<qg<p—2.

|

Function (30)—(33) are computed by the network shown by

the diagram in Fig. 10. The selection network is shown in Fig. 11

and is denoted as SN. It transfers only the appropriate element
whose order equals k to the output.
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X1 Xi Xw

k
ord(X1,X) * eqlord(X1,X) k] N

eqord(Xi,X) k] .. Detection 'S X(k)

| Network
eglord(Xn,X)k]
—»

Equality
Networks

ord()'(i,X) >

ord().(N,X) >

Fig. 11.

Selection network SN.

X1 Xi Xnw

Xip! ord(X1,X) ***
: Xi.X) )
X Order _»Wd( Selection
-:’ Networks . Network > X
X N_" ord(Xw,X)

Fig. 12.  Adjustable order statistic filter AOSF, where (a? (ys - afk), ce
a&;l) is the word of command given by the relationship (27).

D. The AOSF

The AOSF is shown in Fig. 12, where the adjustment input Ay
determines which order statistic is to appear at the output. The
network illustrated in Fig. 12 consists of two kinds of neurons
arranged in 11 layers. The number of neurons in AOSF for input
size N is 14N 2+ (m+p—9)N +m+p+2. There are 11 layers
of neurons in the AOSF, thus the processing time is 11 times the
processing time of a single neuron. As the number of elements
of the input array increases, only the number of neurons in each
layer increases, not the number of layers themselves. Therefore,
AOSF’s total processing time remains constant irrespective of
the number of element in the input array. This contrasts with
conventional hardware implementation of order statistic filters
[14], [74], where the processing time increases along with the
number of elements.

The claim that the processing speed of AOSF is independent
of its input size does not take into account limitations in the
hardware implementation. It is based on the assumption that the
processing time of a neuron is independent of its input size. This
assumption, however, is not true in analog circuits. For instance,
as the number of inputs to a neuron increases, the capacitances
of the wires that connect these inputs will increase, causing the
settling time to the required accuracy to increase. Therefore, the
processing speed of the AOSF to some extent depends on the
input size. Even with these limitations, however, the processing
speed of the AOSF will still be high enough to have the advan-
tage of speed.

Technologies used in AOSF implementation are broadly
categorized into silicon [46]-[48], using analog, digital, or
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mixed analog/digital integrated circuits, and optical or elec-
trooptical [1], [5]. No matter which medium is used, the
performance of the AOSF would inevitably be affected by the
current level of the medium’s technology. Here, we address
some problems that might be faced when the AOSF is imple-
mented using analog VLSI circuits. Such problems are also
common to other neural network models; however, because
the AOSF has a simple configuration, its implementation is
less affected.

The first problem is that of poor absolute accuracy in setting
up the values of the connection weights. This problem does not
arise if the AOSF is implemented using monolithic analog VLSI
circuits.

Whatever technology is utilized, the AOSF is not affected by
this problem, since the AOSF has a very simple configuration,
its weights are all fixed, and most of them are just +1 or —1;
they can be set simply by connecting the input to the neuron or
by inverting the input before connection.

The second problem is due to the saturation characteristics
of the amplifiers used in implementing the linear neuron. For
some practical applications, this may not be a serious problem.
For example, in image processing applications, the input to the
AOSF can be easily scaled to fit in the linear range of the am-
plifiers.

III. APPLICATIONS

This section presents important examples of the extension
of the AOSF to sorting and to adaptive order statistic fil-
ters. Finally, an important application of minimum filter for
implementing a special neural network model, the NNC, is
described.

A. Sorting

Sorting has many applications, especially in data analysis and
image processing [80]. Sorting an array is equivalent to giving
all order statistics of the array and arranging them either in as-
cending or descending order.

A more efficient implementation of the sorting network is
shown in the diagram in Fig. 13(a). This sorting network is
equivalent to N AOSFs set up in parallel, whose common
module “order networks” has been merged.

Sorting time is fixed and is only 11 times the processing
time for a single neuron. Merging the common module “order
networks” permits considerable reduction of the size of the
sorting network and a gain of approximately N3 neurons. A
detailed account of a similar implementation can be found in
[49]-[51].

A second implementation of the sorting network consists of
using n separate AOSF networks in parallel, as shown in the
diagram in Fig. 13(b). Sorting time is fixed and does not depend
on the size of the input; it is the same time taken for processing
a single AOSF.

A third implementation is the use of a single AOSF network
[cf. Fig. 13(c)]. By changing the value of k£ from 1 to N, the el-
ements of the sorted array will appear at the output sequentially.
The advantage here is that less neurons are needed; the disad-
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vantage is that the sorting time is proportional to the size of the
input.

Ateach clock pulse [cf. Fig. 13(c)], the counter changes state,
and k goes from one value to the next. The AOSF finally pro-
duces at its output the input array element whose order corre-
sponds to new value of k. The clock frequency must be lower
than AOSF processing speed, i.e., lower than (1/(117)), where
7 is the processing time for a single neuron.

B. Adaptive Order Statistic Filters

This subsection presents an example of implementing in
fixed time of a type of adaptive order statistic filter called
comparison-and-selection (CS) filter [38]. The output of the
CS filter with parameter J at position [ for the input X; =
(s, y 2y ..., Z1ys) is defined as

(s4+1+.7)
y=14" ’
{ $§S+1+J),

is the 4th largest element in the array X, u; and

. (s+1)
>

if ug _.LI}l (34)

otherwise

where :vl(i)
x?sﬂ) are the sample mean and median, respectively, and J is
an integer satisfying 1 < J < N.

Implementation of the CS filter necessitates the calculation

of the sample mean u; according to

1 l+s
= ~ 35
M= 9s j;_fﬂ (35)

where z; = S_,j MT].ZE%' , as in relationship (9).

Proposition 7: Let E,. be the exponent associated with
:Lk(J =1l—s,...,1,...,1+s) according to (11). The expression
27*i can be evaluated as

2r—1_q
2P0 = (1= 8g,,) | >, ®r(E,;—i)27" +1
i=1
op—1
+Sp,, 1= ) ®r (—En; —i) 2 (36)
i=1
where @7 is defined in (2). [ |

Proof:
1) Suppose SEmj =0 (i.e., B;; > 0); then

2r—1_1

> br (B —i)2 41

i=1

(1 - SEmJ‘)

or—!

+8g,, 1= > Op(-E,;—i)2"
i=1

2r—1_1
= > ®p(E.;—i)27 +1
=1

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:52:28 UTC from IEEE Xplore. Restrictions apply.



776

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 3, MAY 2004

; X1 Xi Xw
P Selection X
: Network > X0
g
@ X1 Xi Xw .
ord(X1,X) \ A A8 4
X =P
: d(Xi,X) H .
X, Order |9 Selection
-:’ Networks > Network > X
X~ _» ord(Xn,X) >
x X1 X:iXv o
) Selection X
: Network X
—»
(@)

AOSF X : AOSF X : AOSF
Network l-:’ Network l-:» Network
X N_" X N_.’
Xm X® X
(b)
Clk-p| Binary
counter

Xl AOSF
l-.» Network
Xy

v

X

(©)

(a) Sorting network made up of N AOSF networks in parallel whose common module “order networks” has been merged. (b) Sorting network

Fig. 13.
made up of IV separate AOSF networks in parallel. (c) Sequential sorting network made up of a single AOSF network.
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Two cases can be distinguished.

(@ E,, = 0, then ®p(E,, — i) = 0Vi €
{1,2,...,2°"1 — 1}, and consequently

2r—l_q '
Y @p(B.-i)27 1=
i=1

2rp—l_q

Z 0x 2714
1=1

(b) E,; > 0, then ®1(E,, —i) = 0Yi > E,, and
¢7(E,, — i) = 1 otherwise. Therefore

1= 1=2F=0

2Pl
Z r (B,;—i) 27t +1
E;; 2Pl
= @p (Eyy—i) 27+ > @ (Eny—i) 27t +1
=1 1=FE, +1
2rl g
—Zz”+ > oox27 41
i=F, +1
- Zz“ 41
=1
=285 141
= 255,
2) Suppose SEIJ- =1 (i.e., E;; < 0);then
oPr—1_q .
(1=Se.,) | D ®r(BE—i)27"+1
=1
op—1
Sp,, [ 1= ®p (—Fp;—i) 27
=1
or—1

J _i) 2™

=1-)Y & (-E
iy

=1- Y Oy (-Ey—i)2"
=1

2P—l_q
- Y (B, —i)2
i=—E, j+1
_ET7 2p—1
=1- Z 27 Z 0x27"
i=—E, ;+1

—1— (1—2’51])

= 2E‘t1

|

The expression 252 can be calculated by the network illus-

trated in Fig. 14. The difference between the sample mean w; and
s+1 s+1 I+s

C =Y = (s + ) D -

the median z, , U] —
a;l(s+1) can be calculated by the network illustrated in Fig. 15.

777

E,,

1
u—x

Network for calculating the difference between u; and xfsﬂ), w; —

Fig. 15.
,,l(ngl) — . I+s . (s+1)
€ =(1/(2s+1) X Tg —

q=l—s

Proposition 8: The function (34) can be evaluated as
(1)

Y= (37

where
[L:S+1+(2X(I>T(ul xl(s+1))—1)xj (38)
and @ is defined in (2). [ ]
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Fig. 16. Network for calculating the parameter p defined in Proposition 8 by
relationship (37).

\ 4
x§s+1)
—p{ AOSF
..>
Xi-s > —gy"") [Network
p o L i
4 ig.
Xone > Fig.13 —l
~ 2 )
] Xi
TP»|AOSF >
.’

Fig. 17. Neural network implementation of the CS filter.

Proof: Tf u; > xl(5+1), then O (u; — £§s+1)) = 1 and
=8+ 1+ J. Therefore

s+14J
y1=$§++)-

Ifuy < 27 then ®p(uy — 2 ™) = 0and = s + 1 — J.
Therefore

1-J
Yy = xl(SJ“ ).

s+14J) (s+1)

To summarize: y; = J;l( if wp > m , and
Yy = w§S+I_J) otherwise. ]
The parameter 1 defined in Proposition 8 by relationship (38)
can be calculated by the network illustrated in Fig. 16.
The neural network implementation of the CS filter is shown
in Fig. 17, where u; — xlSH) and g are calculated by the net-

works depicted in Figs. 15 and 16, respectively.

C. Neural Network Classifier

In this subsection, our efforts will center on the hardware de-
sign of the NNC. First, however, the MDC technique is briefly
described.

Consider the classification problem of [ classes Cy, Cs, ... C}
where each pattern class C; has a reference or template pat-
tern 79. An MDC scheme with respect to 70,72, ... T"
classifies the unknown pattern X to class C; if d(X,T7) =
mini<;<i{d(X,T%)}, where d(X,T7) is the distance defined
between X and 77. In statistical pattern recognition, X is a

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 3, MAY 2004

feature vector; in syntactic pattern recognition, X is a structure
such as a string, tree, or graph. o '

Let X = (z1,22,...,2x) and T7 = (t],t},...,t}) be two
points in feature space. The distance measure between X and
T is defined as

K
A(X,T7) = K = dif (wi,t]) (39)
i=1
where
: j 1, ifaz; =t
d ) t‘] = ’ t T 40
if (x ’ ‘) {0, otherwise. “0)

Proposition 9: Let « and 3 be two integers, as follows:
dif(a,B) = 1 (=@r(a—=p—1) = @r(f—a—1)) 4D

where @ is defined in (2). [ |
Proof: Three cases can be distinguished.

) Ifa = p,then &r(a —F—1) = ¢p(f—a—1) =
(I)T(—l) = 0and<I>T(—<I>T(a—/3—1)—<I>T(/3—a—1)) =
or(0) = 1.

2) fa< f,thena—fF< -landff—a>1= &p(a—
ﬂ — 1) = 0, (I)T(ﬂ - — 1) = 1, and @T(—@T(a — ﬂ —
1)=®p(f—a—1))=r(-1) =0.

3)) fa>f,thena—F>1land f— a < -1 = Op(a—
ﬂ - 1) =1, (I)T(ﬁ - — 1) =0and ‘PT(—(I)T(OJ — ﬂ -
1) - (I’T([)) - — 1)) = @T(—l) =0.

To summarize: If « = g, then @7 (—Pr(a—F—-1)— P (8-

a—1)) = 1, otherwise @7 (—Pr(a—pF—-1)—Pr(f—a—1)) =
0. Therefore

dif(a, ) = b1 (~@r(a— f—1) = br(f—a —1)).

|

Functions (41) and (40) may be calculated by the networks il-
lustrated in Figs. 18 and 19, respectively. These networks are de-
noted as BD N (the basic difference network) and DN (z;, ;)
(the difference network of x; and ¥;), respectively.

Proposition 10: Let X = (z1,%2,...,2x) and
Y = (y1,92,-..,yx) be two elements in K-dimensional
space. Let (S,,, M., E,,) and (Sy,, M,,, E,,) be respective
representations of z; and y; [cf. relationship (9)], as follows:

For all 1 <i< K, dif(z;,y:) = @7 (dif (S,,,S,,) + dif

x (M., M,,) +dif (., By,) - 3)
(42)

where ]\//Tl, and M% are the integers associated with M., and
M, according to formula (19), and ® is defined in (2). [ |
Proof: ®p(dif(S,..S,) +  dif(M,.,M,) +
dif(@\m,@&) - 3) = 1 iff (dif(S.,Sy,) = 1 and
dif(My,, M,,) = 1 and dif(F,,,F,,) = 1). We know
the following:
o dif(Sg,,Sy,) = 1iff Sy, = Sy,.
. dif(ﬂa:,,]T/[\%) = 1 iff ﬁm = J\/Zy” or equivalently
M., = M,, (cf. Proposition 2).
o dif(E,,, Ey,) = 1iff E,, = E,.
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Fig. 18. Basic difference network.
S Xi=ppi +1
S BDN
Yi-pl
Mxl'
-» +1 ;
" BDN d’f(xiay i)
M yl.->
E; > +1
Ey. BDN
i

Fig. 19. Difference network of x; and y;, DI\T(Ii. yl), enabling calculation
of expression (40), where BDN is the network shown in Fig. 18.

To summarize

O (dif (Sa,. Sy, ) +dif (]/\4; : Hy) +dif (E,,, E,,) —3)
=1iff (S,, =85,, and M,, = M,, and E,, = E,,)

or again

Oy (dif (Sa,, S, ) +dif (Mx : J\YJ) +dif (B, E,,) —3)

=1 iff Ty =Y;
and consequently

dif(z;, yi) = @p (dif (S,,,Sy,)

+dif (M, M, ) + dif (Ba,, Ey,) - 3)

|

Function (39) is computed by the distance evaluation network
(DEN) illustrated by the diagram in Fig. 20.

The classifier NNC is composed of | DENs already seen
above (cf. Fig. 20) and a transference network, which will
be studied subsequently. For the NNC, [ distances must be
calculated between the input feature vector X and [ reference
vectors 1'*, 12, ..., T, according to (39) and (40). The min-
imum distance among the [ distances to the input feature vector
X, minj<;<;{d(X,T%)} must be selected. The index of the
reference vector, whose distance to the input feature vector X
is equal to mini<;<i{d(X, T%)}, is produced as the class of X,
as follows:

class(X) = ¢qif d(X,T?) = lrgrgll {d(x,TH)}.  43)

779

DN (XIat lj)

X P

| DNGeot! —p-d(X,T”
/) (xst?) (X.1)

£ DN(xK,t )

Fig. 20. Distance evaluation network.

Proposition 11: Let X = (21,22,...,7x) and 17 =
(T{,T3,...,T}) be the input feature and the jth reference
vectors, respectively. The class of X can be evaluated based on

l
class(X) = ) dif [d(X./Tp),lrgigl{d(X,Ti)} p- (44)

|

Proof: Suppose d(X,T?) = miny<;<;{d(X,T%)}, then

class(X) = q [cf. (43)], dif [d(X, T7), min <;< {d(X, T%)}] =

1 and dlf[d(X, Tp)7 Hlinlgigl{d(X, TZ)}] = 0Vp €
{1,2,...,1} — {q}. Therefore

!
. P . i
;dlf {d(X,T ),11%1%11 {d(x,T )}} p

— 7)
= dif {d(X,T ) mzn<1l{d (X, 1" )}}
+ Z dif[ X, T?), mln {d X, T’)}}
p#q
1<p<i
=1xq+ Z Oxp
P#q
1<p<t
=gq.
|
Proposition 12: Let X = (z1,%2,...,2x) and
T = (#),t5,...,t%) be the input and the pth reference
vectors, respectively, where p € {1,2,... 1}, as follows:
q) — Tt q
d(X,T?) = 1IELH<11{d T} <=Vje{l,2,...,K},
i » V| P =
Zldlf [d(X,T ), oin {d(X, T} 27 = 1]
p=
|
Proof:
1) Suppose d(X,T7) = minj<;</{d(X,T%)}, then
dlf[d(X Tq).,minlgigl{d(X7 TL>}] = 1 and
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dlf[d(X, Tp)7min1§i§1{d(X, Tl)}] = 0 Vp S

{1,2,...,1} — {q}. Therefore
Vje{1,2,...,K},
!
. p T
Zdlf [d(X7T ) mzlgl{d (X,T )}]
p=1
= dif [d(X T‘%fg@igl {d(X, Tl)}} 4]
3 p
+ Z dlf|: (X,TP) ,11213211{d )}} A
p#q
1<p<i
=1xtl+ Z 0x
P#q
1<p<l
= t1.
2) Suppose vj € {1,2,...,K},
>y dif[d(X, TP), ming <i< {d(X, T} 47 = 11
Taking into account the fact that
Sy dif[d(X, TP), mim << {d(X, T} = 1
and Vp € 2,...,1}

dif[d(X, T?), min;<;<;{d(X,T%)}] € {0,1}, we have
the equation shown at bottom of page. .
As Yy dif[d(X, ), min i {d(X, T} = 1,
we then have
dif

q i g -
d(X,T ),112212l{d(X,T =1

and then

ay —
d(X,T?) = 112}21{61 (X, 79} .
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|

The function of the transference network is to select and

transfer to output both the class assigned to the input feature

vector X and the reference vector T € {T!,T2,...,T'},
which satisfies

d(X,T) = min {d(X,T)}.

1<i<1 (45)

The transference network (TN) is built by combining a min-
imum filter (i.e., AOSF for k¥ = N), [ DNs, and K + 1 linear
neurons, as shown in Fig. 21. The minimum filter taking as input
the [ distances to the input feature vector X, d(X,T%), i =
1,2,...,1, selects the minimum distance min; <;<;{d(X, T*)}.
The minimum distance min; <;<;{d(X, T")} thus calculated by
the minimum filter is used by the [ DNs and K + 1 linear neu-
rons to identify and transfer to output both the class assigned
to the input feature vector X and the reference vector 7', which
satisfies relationship (45).

The network NNC illustrated in Fig. 22 is constructed out
of two types of neurons, threshold-logic and linear neurons,
arranged in 19 layers. Total processing time is constant, irre-
spective of the number of reference vectors [ and the dimen-
sion of the feature vectors K and is only 19 times that of a
single neuron, in contrast to conventional hardware implemen-
tation, where the processing time for classifying an unknown
vector is proportional to (I x K). Automatic recognition of
handwritten numerals and characters has been an active sub-
ject of research due to its potential for intelligent man—machine
interface, [2], [16], [22], [35]-[37], [39], [40], [45], [57], [60],
[64], [70], [72], [75]. Handwritten numeral and character recog-
nition has been computed via either statistical or syntactic ap-
proaches. In the statistical approach, a pattern is represented by
a set of K -dimensional feature vectors, and the decision-making

]
P . D . z
Vj € {1,2,...,K},I§:1 dif [d(X,T )’112}21{d(X’T

K}, > dif

P#q

1<p<l

= Vje{l,2,...,

+ (dif [d(X T7), min {d (X, T} } —idif[ d(X,T"), min {dX Tl)}D

—=Vje{l,2,. .. K} ; dif [d [min,
pPFq

1<p<l

_ P i i

> dif [d(x 77), min {d(X,T )}} .
pF#q -
1<p<l

—=Vje{l2,. .. K} Zdlf[ win,

P#q

1<p<I

(X,T?), min {d

d(X,T?), min {d(X, Tﬂ}}) t

1<l

l
(Z dlf
p=1

[d(X,Tp , mln {dX Tl ] t

&)J’Q
I
s}

'>}} ’

q_
;=0
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dxXr) dXr?) diXr)
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di d(X,Tf),gg{da,Tf)}}

Fig. 21. Transference network.
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Fig. 22. Neural network classifier.

process is determined by a similarity measure such as a distance
metric or a discrimant function. NNC can thus be applied very
beneficially to the difficult real-world problem of handwritten
numeral and character recognition. NNC is computationaly at-
tractive when compared with a conventional pattern classifier
[78].

IV. CONCLUSION

We have shown a neural network implementation in fixed
time of adjustable order statistic filter AOSF. The AOSF is used
as a building block for implementing in fixed time all members
of the OSF family, including sorting and adaptive order statistic
filters. An application of AOSF (for £k = N) for implementing
in fixed time a special neural network model NNC is given.

All neural networks herein proposed have a feed-forward
structure and consist of two kinds of neurons—Iinear and
threshold-logic neurons. Among all the neurons proposed in

the literature, they are probably the easiest to implement in
hardware. These neural networks have a very simple configu-
ration, which makes hardware implementation less subject to
any problems caused by poor absolute accuracy in setting up
the values of the connection weights. Furthermore, these neural
networks’ architecture is regular and simple: the connection
strengths between the neurons are all fixed, and most of them
are just +1 or —1. Therefore, this will greatly facilitate actual
hardware implementation of proposed neural networks using
currently available VLSI technology.

APPENDIX 1
PROOF OF PROPOSITION 3

e Fort < ¢
) E,>FE,—FE, —FE;, >1landE;, - E, >
—1(as E,, and E,, are integers) = @T(Exq —
EXi — ].) = 1and (DT<EXi — Exq — ].) =0 [Cf
function (2)],
which leads to
<I>T(—<I>T(EX —FEx,—1)-
)+(I)T(M)s - Mx, - 1) - -1) =

o1 (Ex, E)s -
‘I)T((I)T(MX —

M\ —1) )—O(as@T(M\ —MX —1) 2§
—-1), <I>T( @T(E)& —Ex,—1)-%7(FEx, E’)s —
)—l—(I)T(M)& —M)& —1)—1) (I)T((I)T(MX —

M\ —1)—2)—0(as<I>T(M)s —M)s )
2 S —1)) and (I)T((bT( (I)T(M)s X — 1)
®r(Mx, — Mx, —1))-®r(Ex, - Ex, — 1) -
@T(EX - FEx, —1)—1) Or(Dp(— <I>T(M)sq—
MX —1) (I)T(MX —M\' —1)) )iO(aS
Or(— <I>T(MX — M\ -1)- <I>T(M‘\z - Mx, —
) -2 < -1),

and consequently

S; = ®r(1) = 1 [cf. function (2)];

2) B, <E, = E; —E, >land £, — E,, <

—1 (as F,, and F,, are integers) = ®r(Fy, —

EXz — 1) = 0 and (I)T(EX1 — EXq — 1) =1 [Cf.
function (2)],

which leads to

Op(~0r(Ex, — Ex, = 1)~ 0r(Ex, - Ex, -
)+‘I)T(MX —MX — 1) — 1) ‘I)T((I)T(MX —
Mx—l) )_O(as(PT(MX _MX —1) 2§

-1, Q)T( (I>T(EX —FEx,—1)—®p(Fx, EX -

)+‘I)T(MX —MX — 1) — 1) (I)T<(pT(M\ —
MX —1)—2) _O(as<I>T(MX —MX —1)
2 < —1)) and (I)T(CPT< (I)T(MXq — MXz' — 1) —
(DT(M\ — MX — 1))—<I>T(E\v — Ex, ;1) -
(EZ"(EXi_EX —1)—1) O7(Pr(—Pr(Mx, —
MX —1) (DT(MX —MX —1)) )—O(as
Dp(— <I>T(MX —MX -1)- (DT(MX —MX -
1) -2 < —1),

and consequently

S; = ®p(—1) = 0 [cf. function (2)];

3) B,, =E,, = E; ~FE, —-1=FEx,—~Ex,—1=

1= ®r(E,, — E;, — 1) = ®¢(Ex, — Ex, —
1) = 0 [cf. function (2)],
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which leads to
Or(-r(Ex, — Ex, —1) - ®r(Ex, — Ex, —
1/)\+(DT(MXq - MXi - 1)/—\1) = (Dl(q)T(MXq —
MXi — 1) — 1) = (I)T(MX — MX — 1) (Cf
Proposition 1), ®7(-®r(Ex, — Ex, — 1) —
¢r(Ex, — Ex, — )+‘1>T(MX - MXq -
-1 = ‘Ijz(‘I’T(MX - My, -1)-1) =
®p(Mx, — Mx, — 1) (cf. Proposition 1), and
O (Or(—@r(Mx, — My, — 1) — &p(Mx, —
Mx, — 1))—®r(Ex, — Ex, — 1) — (I)TEX“' -
Ex, = 1) = 1) = &r(or(-2r(My,
My, — 1)— (I)T(MX - My, - 1) - 1) =
Or(— @T(MX M\ —1)-®7p(Mx,—Mx,—1))
[cf. Proposition 1]
and therefore e e
51 = @p(Pr(Mx, — My, — 1) — op(Mx, —
qu — 1>+(I)T( ‘I)T(qu — MXi — 1) —
Or(Mx, — M\’ - 1)));
__three cases may be distinguished as follows:
1fM\ >MX,thenM); M\—1>Oand
MY —MY -1< 2(asMX andMy arelntegers)
= @T(MY —M\ — 1) =1, @T(MY —MX —
)—Oand(I)T( (I)T(MX —M\ —1) (I’T(MX, —
A/ZXq —1)) = &7(—1) = 0 [cf. function (2)],
and consequently
Sl = (I)TQ) 1
1fMX > MX,thenMX —MX —1 < —2and
MX MX — 1> 0(as MX and MX are 1ntegers)
— (I)T(MX —MX — 1) =0, (I)T(MX —MX —
1)—1and<I>T( (DT(MX —MX —1) (I)T(MX —
Z\/qu — 1)) = &1 (—1) = 0 [cf. function (2)],
and consequently
51 = <I>T( 1) = 0_
lfMX —M\ ,thenM\ —MX -1 —M\ —MX —
1l =-1—= (I)T(M\ MX — 1) = @T(MX —
My, — 1) = ®r(—1) = 0 and Sy (- dr(My, —
My, —1)=®7p(Mx, — Mx, — 1)) = ®7(0) = 1 [cf.
function (2)],
and consequently
Sl = (I)T(l) =1.
To summarize

1, if (Bx, > Ex,)

or (Kx, = Ex, and M\Xq > My,)
0, if (Ex, = Ex,)

or (Kx, = Ex, and M\Xq < My,).

Taking into account Definition 4 and
Proposition 2, we have

o 1 XX
P70 i) < X

According to Definition 1, we may write

comp(|Xi|7 |Xq|) =5, ifi<yg
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e Fors > ¢
E, . >E,, —~FE,, —E;;, >1and E;, — E, < -1
(as E,, and E,, are integers) = or(E x, — Ex, —
1) = land ®7(Ex, — Ex, — 1) = 0 (cf. function (2)),
which leads to:

Or(— <IJT(EX — Ex, — 1) — &p(FEx, —Exq —

D)+@r(My, - My, — 1) = 1) = op(dr(Mx, —
MX —1)—2)—0(as(I>T(MX —M\’ —1)—2§

-1), (I)T( <I’T(EX —Ex, —1)— 97 (Fy, —Ey —
/)\—|—<I’T(MX — Ms( — 1) 1) = (I)T((I)T(MX
MXq—l) )—O(as<I>T(M\ _MX —1) ZS—l))

and consequently:

Sy = ®7(1 —1) = &7(0) = 1 (cf. function (2))
By, >F,, = FE,, —FE,, >1and E,, — E,, <1
(as E,, and E,, are integers) = <I>T(E’Xq — Ex, —
1) =0and &7 (Ex, — Ex, —1) = 1 (cf. function (2)),

which leads to:

Or(— @T(EX Ex, — 1) — &p(FEx, —/E\Xq —
1)+(I)T(MX - MX - 1) ) = (I)T((I)T(qu —
My, —1) = 2) = 0 (as &p(Mx, — Mx, — 1) — 2
-1), (PT(/:d)T(E/{q —Ex, —1)=®p(FEx, —/E\Xq
D+Or(Mx, — Mx, —1) = 1) = &p(dp(Mx, —
My, —1)=2) = 0(as & (Mx, — Mx, —1)-2 < —1))

and consequently

Sy = ®p(—1—-1) = &p(—2) = 0 (cf. function (2))
Ezq —Exl :>EI$1 _qu —1:Exq _EXi —-1=
1= &p(E,, — E,, —1) = 0r(Ex, —Ex, - 1) =
®p(—1) = 0 (cf. function (2)),

which leads to:

Or(— <I>T(EXq/: Ex, — 1) — &7 (Fx, —Eyq —

)—l—(I)T(M); MX — 1) 1) = (I)T((I)T(qu —

My, -1)-1) = (I)T(MX — My, —1) (cf. Proposition
1), &p(— <I>T(EX — Ex, — 1) — &rFEx, —£Xq —
)+‘I’T(MX - My, = 1) = 1) = o7 (®r(My, -
MXq -1)-1)= CDT(]/\J\Xi —M\Xq —1) (cf. Proposition
1)

and therefore: e e e

Sy = @7 (Pr(Mx,—Mx,—1)— 7 (Mx, —Mx,—
1) —1).

Three cases may be distinguished:

(VAN

— IfMX >MX,thenMX —MX —1 > 0and

MX MX 1< 2(asMX andMX arelntegers)
— @T(qu MXl-_l) = l,andCDT(MXi qu—
1)=0

and consequently

82 <I>T(1 -1)= <I)T(0) 1

— IfMX <MX thenMX—M);—1<—2and

MX - MX —1>0(as MX and MX are 1ntegers)
== ‘I’T(qu ~ My, —1) = 0, &p(My, — Mx, —
=1

and consequently

S/Z\:@T( 1—1)—<I>T( ):0

— If M\’ = MX,then M\f —MX -1 =

MX _MX —1_—1:>(I)T(MX _MX —1):
b (My, — My, — 1) = dp(=1) = 0
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and consequently
Sy = Bp(—1) = 0
To summarize

1, if (EX > Ex,)
g, — OI‘(EX —ES( andMX >M\)
2= 0, (EX < EX )
OI'(E‘\(I = EX1 and MXq S MX,)
Taking into account Definition 4 and Proposition 2,
we have
g [ L if[X[>]X;|
270, if X, <X

According to Definition 1, we may write

comp (| Xif, [Xq[) = 52 if i <g.

|
APPENDIX II
PROOF OF PROPOSITION 4
Four cases can be distinguished.
Sy, = Sx, = 0 = &p(-Sx, — Sx, +

comp(|X;l, [X)—1) = O (comp(|Xi], [X,1) — 1)
comp(|X;|, | Xq|) (cf. Proposmon D), ®r(Sx, + Sx, —
comp(| X, | X,[) —2) = Br(—comp(|X;], | X,[)-2) =
0 (as —comp(|Xi|,[Xq]) — 2 < =2), and
Or(=Sx, +Sx, —1) = p(-1) =0

and consequently

P (—Sx, — S, +comp(|X; . [, ]) -
Six, — comp(|X; . [ X)) -
comp(| X, | X, ).

As X, and X; are simultaneously positive,

X, = X, and |X;|] = X;, we have

Op(—Sx, — Sx; + comp(|X;|, | X,]) = 1)+ @1 (Sx, +
Sx, — comp(|X;1, [X,]) ~ 2)+ @7 (~Sx, +Sx, — 1) =

1)+®7(Sx, +
2)+®r(-Sx, +Sx, — 1) =

comp(X;, X,).
2) SX = SX = 1 = (I)T(—qu — SXi +
comp(| ;1. |X,)—1) = @ (comp(|Xi], | %) ~5) = 0

)—1)

(as comp(|X;|, [ Xq|) =3 < =2), &r(Sx, + Sx, —
comp(| X, [Xy|) — 2)= ®r(—comp(|X;[,[X,])) and
br(—Sx, +Sx, —1) = (1) = 0, and consequently
(see equation at the bottom of the page).

4 Sx, =

783

For: < ¢

1, if|X;| < |X
1= comp (IXil, 1Xql) = {02 xS X
{17 if | X;] > | X
0, if |X;] <X,
=comp(X;, Xg)
(cf. Definition 1 and (15))

and fori > ¢
1 if | X;] <X,
1 — comp (] X;l, | Xq]) = {0 ifIXiI > IXqI
X > X
=0 X < X,

= COHIp(Xi7 Xq)
(cf. Definition 1 and (16))

which results in ®7(—Sx, — Sx, +comp(|X;|,|X,|) —

D+®r(Sx, + Sx, — comp(|X;|,|X,]) -
2)+¢T(_5Xq + SX{ - 1) = COHIp(Xi./Xq)
3) qu = 1 and SXi = 0 (.e., Xq < X;

(cf. Definition 5)) — br(-Sx, — Sx, +
comp(|Xi[, |, ) — 1)= @r(comp(|X|,|X,) ~ 2) = 0
(as comp(| X, | X,]) — 2 < —1)), or(Sx, + Sx, —
comp(|Xil, | X, ]) — 2)= 7 (—comp(|Xi], | X, ) — 1) =
0 (as —comp(|Xi|,|Xq]) — 1 < -1 and
¢r(=Sx, + Sx, — 1) = ®7(=2) = 0 and conse-
quently

O (—Sx, —Sx, +comp(| X, | X,|) = 1)+ D7 (Sx, +
Six, — comp(|Xi),| X, |) - 2)+ (S, +Sx, — 1) =
0 = comp(X;, Xy) (cf. Definitions 1 and 5).
0 and Sx, = 1 (e, X, > X;
(cf. Definition 5)) — br(-Sx, — Sx, +
comp(|Xi[, |, ) — 1)= r(comp(|Xi], | X, ) ~2) = 0
(as comp(|X;|, | Xq|) — 2 < =1), ®r(Sx, + Sx, —
comp(|Xi|, | X,1)~2) = Dy (—comp(| X, | X,[)~1) =
0 (as —comp(|X;|,|Xqy] — 1 < —1)) and
¢r(=Sx, + Sx, — 1) = ®7(0) = 1 and conse-
quently

O (—Sx, —Sx, +comp(| X[, | X,|) = 1)+ D1 (Sx, +
S, - comp(|Xi]. [X,|) - 2)+®r(—Sx, +Sx, - 1) =
1 = comp(X;, Xg) (cf. Definitions 1 and 5).

oy (—Sy,

— Sx, + comp (| X;], | Xq]) — 1) +

&7 (Sx, + Sx, — comp (| X;],|X,]) — 2) +
O (_SXq + Sx, — 1) = @ (—comp (|.X;], | X))

0 ifcomp(|Xi|a|Xq|):
=1 —COmp(|Xi|7|X(I|>

B { 1 if comp (| X;|, | X,q]) =

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:52:28 UTC from IEEE Xplore. Restrictions apply.



784

(1]

[2

—

(3]
[4]

[5

—_

(6]

[7

—

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

REFERENCES

Y. S. Abu-Mostafa and D. Pslatis, “Optical neural computers,” Sci.
Amer., vol. 256, pp. 88-95, Mar. 1987.

F. Ali and T. Pavlidis, “Syntactic recognition of handwritten numerals,”
IEEE Trans. Syst., Man, Cybern., vol. SMC-7, pp. 537-541, July 1977.
J. A. Anderson, “A simple neural network generating an interactive
memory,” Math. Biosci., vol. 14, pp. 197-220, 1972.

E. Ataman, V. K. Aatre, and K. M. Wong, “A fast method for real-time
median filtering,” IEEE Trans. Acoust. Speech, Signal Processing, vol.
ASSP-28, pp. 415-421, Aug. 1980.

T. E. Bell, “Optical computing: A field in flux,” IEEE Spectrum, vol. 23,
pp- 34-57, Aug. 1986.

Y. Ben-Asher, D. Peleg, R. Ramaswami, and A. Schuster, “The power
of reconfiguration,” J. Parallel Distrib. Comput., vol. 13, no. 2, pp.
139-153, 1991.

Y. Ben-Asher and A. Schuster, “Optical splitting graphs,” presented at
the Int. Topical Meeting Optical Computing, Kobe, Japan, 1990.

L. N. Binh and H. C. Chong, “A neural-network contention controller
for packet switching networks,” IEEE Trans. Neural Networks, vol. 6,
pp. 1402-1410, Nov. 1995.

A. C. Bovik, T. S. Huang, and D. C. Munson, “A generalization of me-
dian filtering using linear combinations of order statistics,” IEEE Trans.
Acoust. Speech, Signal Processing, vol. ASSP-31, pp. 1342-1350, 1983.
T. X. Brown, “Neural networks for switching,” IEEE Commun. Mag.,
vol. 27, pp. 72-81, Nov. 1989.

T. X. Brown and K. H. Liu, “Neural-network design of a Banyan net-
work controller,” IEEE J. Select. Areas Commun., vol. 8, pp. 1428-1473,
1990.

T. X. Brown, “Neural-network design for switching network control,”
Ph.D. dissertation, California Inst. Technol., Pasadena, CA, 1990.
—, “Neural networks for switching,” in Neural Networks in Telecom-
munications, B. Yuhas and N. Ansari, Eds. Boston, MA: Kluwer,
1994.

B. D. Calvert and C. A. Marinov, “Another K -winner-take-all analog
neural network,” IEEE Trans. Neural Networks, vol. 11, pp. 829-838,
July 2000.

A. K. Chandra, L. Stockmeyer, and U. Vishkin, “Constant depth re-
ducibility,” SIAM J. Comput., vol. 13, pp. 423-439, 1984.

W. T. Chen, P. Gader, and H. Shi, “Lexicon-driven handwritten word
recognition using optimal linear combinations of order statistics,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 21, pp. 77-82, Jan. 1999.

A. Cichocki and R. Unbehauen, “Neural networks for solving systems
of linear equations and related problems,” IEEE Trans. Circuits Syst.,
vol. 39, pp. 124-138, Feb. 1992.

J. Choi and B. J. Shen, “A high-precision VLSI winner-take-all circuit
for self-organizing neural networks,” IEEE J. Solid-State Circuits, vol.
28, pp. 576-583, May 1993.

H. Elgindy and P. Wegrowicz, “Selection on the reconfigurable mesh,”
in Proc. Int. Conf. Parallel Processing, Aug. 1991, pp. I11.26-111.33.

R. Erlanson and Y. Abu-Mustapha, “Analog neural networks as
decoders,” in Advances in Neural Information Processing System, D. S.
Touretzky, Ed. Los Altos, CA: Morgan Kaufmann, 1991, vol. 3, pp.
585-588.

D. S. Fukushima, “A neural network for visual pattern recognition,”
IEEE Comput., vol. 21, pp. 65-75, Mar. 1988.

K. Fukushima and N. Wake, “Handwritten alphanumeric character
recognition by the neocognition,” IEEE Trans. Neural Networks, vol.
2, pp. 355-365, May 1991.

M. Furst, J. B. Saxe, and M. Sipser, “Parity, circuits and the polyno-
mial-time hierarchy,” in Proc. 22nd IEEE Symp. Foundations Computer
Science, 1981, pp. 260-270.

E. Hao, P. D. MacKenzie, and Q. F. Stout, “Selection on the reconfig-
urable mesh,” in Proc. Frontiers Massively Parallel Computation, Oct.
1992, pp. 38-45.

J. J. Hopfield and D. W. Tank, “Simple ‘Neural’ optimization networks
an A/D converter, signal decision circuit, and a linear programming
circuit,” IEEE Trans. Circuits Syst., vol. CAS-33, pp. 533-541, May
1986.

J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational ability,” in Proc. Nat. Academy Science USA,
vol. 79, Apr. 1982, pp. 2554-2558.

T. S. Huang, Two-Dimensional Digital Signal Processing II: Transforms
and Median Filters. New York: Springer-Verlag, 1981.

T. S. Huang, G.J. Yang, and G. Y. Tang, “A fast two-dimensional median
filtering algorithm,” IEEE Trans. Acoust. Speech, Signal Processing,
vol. ASSP-27, pp. 13-18, Feb. 1979.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 3, MAY 2004

[29]

[30]

[31]
[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]
[52]

[53]

[54]

[55]

L. G. Johnson and S. M. S. Jalaleddine, “MOS implementation
of winner-take-all network with application to content-adressable
memory,” Electron. Lett., vol. 27, no. 11, pp. 957-958, May 1991.

J. Jang and V. K. Prasana, “An optimal sorting algorithm on reconfig-
urable mesh,” J. Parallel and Distributed Computing, vol. 25, pp. 31-41,
Feb 1995.

M. P. Kenedy and L. O. Chua, “Neural networks for nonlinear program-
ming,” IEEE Trans. Circuits Syst., vol. 35, pp. 554-562, May 1988.

T. Kohonen, “Correlation matrix memories,” IEEE Trans. Comput., vol.
C-21, pp. 353-359, 1972.

H. K. Kwan, “One-layer feedforward neural network fast max-
imum/minimum determination,” Electron. Lett., pp. 1583—1585, 1992.
J. Lazaro, S. Ryckebush, M. A. Mahowald, and C. A. Mead, “Winner-
take-all networks of O(N') complexity,” in Advances in Neural Informa-
tion Processing Systems, D. S. Touretzky, Ed. Los Altos, CA: Morgan
Kaufmann, 1989, vol. 1, pp. 703-711.

Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel, “Handwritten zip code recognition with multi-
layer networks,” in Proc. 10th Int. Conf. Pattern Recognition, 1990, pp.
35-40.

S. Lee and J. F. Pan, “Offline tracing and representation of signatures,”
IEEE Trans. Syst., Man., Cybern., vol. 22, pp. 755-771, July/Aug. 1992.
Y. Lee, “Handwritten digit recognition using /X’ nearest-neighbor, radial-
basisfunction, and back-propagation networks,” Neural Comput., vol. 3,
pp. 440-449, 1991.

Y. H. Lee and A. T. Fam, “An edge gradient enhancing adaptive order
statistic filter,” IEEE Trans. Acoust. Speech, Signal Processing, vol.
ASSP-35, pp. 680-695, 1987.

S.Lee and J. C.J. Pan, “Unconstrained handwritten numeral recognition
based on radial basis competitive and cooperative networks with spatio-
temporal feature representation,” IEEE Trans. Neural Networks, vol. 7,
Mar. 1996.

C.H.Leung, Y. S. Cheung, and Y. L. Wong, “A knowledge-based stroke-
matching method for Chinese character recognition,” IEEE Trans. Syst.,
Man., Cybern., vol. SMC-11, pp. 993-1003, Nov./Dec. 1987.

J. Levinson, I. Kuroda, and T. Nishitani, “A reconfigurable processor
array with routing LSI’s and general purpose DSPs,” in Proc. Int. Conf.
Application Specific Array Processors, Oct. 1992.

H. Li and M. Maresca, “Polymorphic-torus network,” IEEE Trans.
Comput., vol. 38, pp. 1345-1351, Sept. 1989.

R. Lin, S. Olariu, J. Schwing, and J. Zhang, “A VLSI-optimal constant
time sorting on reconfigurable mesh,” in Proc. 9th Eur. Workshop Par-
allel Computing, Spain, 1992, pp. 1-16.

R. P. Lippman, “An introduction to computing with neural nets,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. 35, pp. 2-44,
Apr. 1987.

G. L. Martin and J. A. Pittman, “Recognizing hand-printed letters and
digits using backpropagation learning,” Neural Comput., vol. 3, pp.
258-267, 1991.

C. Mead, Analog VLSI and Neural Systems.
Wesley, 1989.

C. Mead and M. Ismail, Analog VLSI Implementation of Neural Sys-
tems. Norwell, MA: Kluwer, 1989.

D. Del Corso, K. E. Grosspietsh, and P. Treleaveng, “Silicon neural net-
works,” Special Issue on a Collection of Good Papers on Digital and
Analog Artificial Neural Networks, IEEE Micro, vol. 9, Dec. 1989.

M. Mestari and A. Namir, “AMAXNET: A neural network implementa-
tion of adjustable MAXNET in fixed time,” in Proc. IFAC-IFIP-IMACS
Int. Conf. Control Industrial Systems, vol. 2, Belfort, France, May
20-22, 1997, pp. 543-549.

——, “MinMaxNet: A neural network implementation of min/max
filters,” in IFIP Proc. Int. Conf. Optimization-Based Computer-Aided
Modeling Design, vol. 1, Noisy-le-Grand, Paris, France, May 28-30,
1996, pp. 26.1-26.4.

——, “AOSNET: A neural network implementation of adjustable order
statistic filters in fixed time,” STAMS J., vol. 36, pp. 509-535, 2000.

, “A neural network implementation of L ., metric partitional clus-
tering in fixed time,” STAMS J., vol. 41, no. 2, pp. 351-380, 2001.

M. Mestari, A. Namir, and J. Abouir, “Switched capacitor neural net-
works for optimal control of nonlinear dynamic systems: Design and
stability analysis,” SIAMS J., vol. 41, no. 3, pp. 559-591, 2001.

R. Miler, V. K. Prasana Kumar, D. I. Reisis, and Q. F. Stout, “Meshes
with reconfigurable buses,” in Proc. MIT Conf. Advanced Research
VLSI, Apr. 1988, pp. 163-178.

Y. Nakagawa and A. Rosenfeld, “A note of the use of local min and
max operations in digital picture processing,” IEEE Trans. Syst., Man,
Cybern., vol. SMC-8, pp. 632-635, 1978.

Reading, MA: Addison-

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:52:28 UTC from IEEE Xplore. Restrictions apply.



MESTARI: AN ANALOG NEURAL NETWORK IMPLEMENTATION IN FIXED TIME

[56]

[57]

[58]

[591

[60]

[61]
[62]

[63]

[64]

[65]
[66]
[67]
[68]
[69]
[70]
[71]

[72]

[73]
[74]1

[75]

K. Nakano, T. Msuzawa, and N. Tokura, “A sub-logarithmic time
sorting algorithm on a reconfigurable array,” IEICE, vol. E-74, no. 11,
pp- 3894-3901, Nov. 1991.

Y. Nakatani, D. Sasaki, Y. Liguni, and H. Maeda, “Online recognition of
handwritten Hiragana characters based upon a complex autoregressive
model,” IEEE Trans. Pattern Anal. Machine Intell., vol. 21, no. 1, pp.
73-76, Jan. 1999.

P. M. Narendra, “A seperable median filter for image noise smoothing,”
IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-3, pp. 20-29, Jan.
1981.

M. Nigam and S. Sahni, “Sorting » numbers on n X n reconfigurable
meshes with buses,” in Proc. Int. Parallel Processing Symp., Apr. 1993,
pp. 174-181.

M. Parizeau and R. Plamondon, “A comparative analysis of regional
correlation, dynamic time warping and skeletal tree matching for sig-
nature verification,” IEEE Trans. Pattern Anal. Machine Intell., vol. 12,
pp. 710-717, July 1990.

O. Y. Pecht and M. Gur, “A biologically-inspired improved MAXNET,”
IEEE Trans. Neural Networks, vol. 6, pp. 757-759, May 1995.

J. Pankove, C. Radehaus, and K. Wanger, “Winner-take-all neural net
with memory,” Electron. Lett., vol. 26, no. 6, pp. 349-350, Mar. 1990.
V. K. Prasana Kumar and C. S. Ragavendra, “Array processor with mul-
tiple broadcasting,” J. Parallel Distrib. Comput., vol. 4, pp. 173-190,
1987.

A. Rajavelu, M. T. Musavi, and M. V. Shirvaikar, “A neural-network ap-
proach to character recognition,” Neural Networks, vol. 2, pp. 387-393,
1989.

D. S. Richrad, “VLSI median filters,” IEEE Trans. Acoust. Speech,
Signal Processing, vol. 38, pp. 145-153, Jan. 1990.

J. Rothsten, “Bus automata, brains, and mental model,” IEEE Trans.
Syst., Man, Cybern., vol. 18, pp. 522-531, Apr. 1988.

G. Seiler and J. A. Nossek, “Winner-take-all cellular neural networks,”
IEEE Trans. Circuits Syst. I1, vol. 40, pp. 184—194, Mar. 1993.

P. Shi and R. K. Ward, “A neural network implementation of median
filtering,” in /IEEE Pacific Rim Conf., Victoria, BC, Canada, 1989.

L. Snyder, “Introduction to the reconfigurable highly parallel computer,”
Comput., vol. 15, no. 1, pp. 47-56, Jan. 1982.

Y. Suganuma, “Learning structures of visual patterns from single in-
stances,” Artif. Intell., vol. 50, pp. 1-36, 1991.

B. W. Suter and M. Kabrisky, “On a magnitude preserving iterative
Maxnet algorithm,” Neural Comput., vol. 4, pp. 224-233, 1992.

C. C. Tappert, C. Y. Suen, and T. Wakahara, “The state of the art in
on-line handwriting recognition,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 12, pp. 787-808, Aug. 1990.

C. Toumazou, F. J. Lidgey, and D. G. Haigh, Analog IC Design: The
Current-Mode Approach. Stevenage, U.K.: Perigrinus, 1990.

K. Urahama and T. Nagao, “ K -winners-take-all circuit with O(N') com-
plexity,” IEEE Trans. Neural Networks, vol. 6, pp. 776778, May 1995.
T. Wakahara, H. Murase, and K. Odaka, “On-line handwriting recogni-
tion,” Proc. IEEE, pp. 1181-1194, July 1992.

[76]

(771

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

785

B. F. Wang, G. H. Chen, and F. C. Lin, “Constant time sorting on a
processor array with a reconfigurable bus systems,” Inform. Processing
Lett., pp. 187-192, 1990.

C. C. Weems and J. H. Burill, “The image understanding architecture
and its programming environment,” in Parallel Architectures and Algo-
rithms for Image Understanding, V. K. Prasana Kumar, Ed. New York:
Academic, 1991.

W. E. Weideman, M. T. Manry, H. C. Yau, and W. Gong, “Comparisons
of a neural network and a nearest-neighbor classifier via the numeric
handprint recognition problem,” IEEE Trans. Neural Networks, vol. 6,
pp. 1524-1530, Nov. 1995.

J. H. Winters and C. Rose, “Minimum distance automata in parallel
networks for optimum classification,” Neural Networks, vol. 2, pp.
127-132, 1989.

J. Wook, M. Nigam, V. K. Prasana, and S. Sahni, “Constant time algo-
rithms for computational geometry on the reconfigurable mesh,” IEEE
Trans. Parallel Distrib. Syst., vol. 8, pp. 1-12, Jan. 1997.

J. . Yang and C. M. Chen, “A general mean based iteration
winner-take-all neural network,” IEEE Trans. Neural Networks, vol. 6,
pp. 14-24, Jan. 1995.

J. F. Yang, C. M. Chen, W. C. Wang, and J. Y. Lee, “An improved gen-
eral mean based iteration winner-take-all neural network,” in Proc. Int.
Symp. Artificial Neural Network, 1994, pp. 429-434.

J. F. Yang and C. M. Chen, “Winner-take-all neural network using the
highest threshold,” IEEE Trans. Neural Networks, vol. 11, pp. 194-199,
Jan. 2000.

J. C. Yen and S. Chang, “Improved winner-take-all neural network,”
Electron. Lett., pp. 662—664, Mar. 1992.

J.C. Yen, F.J. Chang, and S. Chang, “A new winner-take-all architecture
in artificial neural networks,” IEEE Trans. Neural Networks, vol. 5, pp.
838-843, Sept. 1994.

S. Zunino, “Circuit implementation of the K-winner machine,” Electron.
Lett., vol. 35, no. 14, pp. 1172-1173, July 8, 1999.

Mohammed Mestari received the M.A. degree from
ENSET, Mohammedia, Morocco, in 1991 and the
Ph.D. degree in applied mathematics and the Ph.D.
degree in artificial intelligence from Hessan II Uni-
versity, Faculty of Science Ben M’Sik Casablanca,
Casablanca, in 1997 and 2000, respectively.

He is currently an Assistant Professor of Applied
Mathematics at ENSET, Mohammedia, and a
Member of the Fundamental Research Unit (UFR)
of mathematics applied to engineering sciences. His
research interests include neural networks for signal

9

=

processing, neural networks hardware implementation, high-speed and/or
low-power techniques and systems for neural networks, and theoretical issues
directly related to hardware implementation.

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:52:28 UTC from IEEE Xplore. Restrictions apply.



