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Abstract—This paper presents analog hardware implementa-
tion of multilayer perceptron (MLP) using operational transcon-
ductance amplifier (OTA) that is implemented and simulated in
CMOS 180nm technology with 1.8V supply. The implemented
circuits using the OTA perform addition, multiplication and ac-
tivation which are the needed operations for any MLP. The com-
ponents count in each circuit is small which allows implementing
larger circuits. These circuits are current-mode (CM) circuits
which makes the addition operation very straightforward and
needs no power consumption using KCL. The power consumption
and bandwidth of the OTA are 6.75µW and 32 KHz, respectively.

Index Terms—neural networks, multilayer perceptron, analog
hardware, activation functions, vector matrix multiplication, low
power

I. INTRODUCTION

In 1990, Carver Mead introduced the term neuromorphic
computing for the first time in the literature [1]. The target was
to implement neural networks (NNs) in hardware. One of the
well-known types of NNs is the multilayer perceptron (MLP).
MLPs were a popular machine learning solution in the 1980s,
finding applications in diverse fields such as speech recogni-
tion, image recognition, and machine translation software [2].
Developers of early systems emphasized that it was possible
to achieve much faster NN computations with custom chips
and circuits [3]. The basic mathematical operations that an
MLP does in order to calculate the output are: multiplication,
addition and activation. To implement an MLP in hardware,
the implemented circuit should perform these mathematical
operations.
The addition operation can be easily implemented in current-
mode circuits using KCL by summing all the current signals
at a node. For the multiplication operation, many analog CM
multipliers were implemented in the literature. Some of them
are implemented for NN applications [4-6]. However, the
circuits implemented in [4,5] had large number of transistors
which makes them unsuitable for implementing larger MLPs.
The circuit implemented in [6] had a relatively high power
consumption and a bad linearity. Other analog CM multipliers
were reported in literature [7-9]. However, their power con-

sumption was relatively high. For the activation, the activation
is defined as the process of calculating the output of a node
in the MLP using nonlinear functions. There are many types
of activation functions for MLPs. Activation functions like
the sigmoid and hyperbolic tangent are popular in MLPs.
However, they contain exponential terms which make their
hardware implementations consumes large amount of power
[10,11]. One of the well-known activation functions is the
rectified linear activation function (ReLU) which is easy to
implement in analog hardware.
In this paper, a low power OTA is implemented. This OTA
is used as a building block for implementing the multiplier
circuit and the ReLU activation function circuit. These two
circuits can implement a complete perceptron which is the
building unit of the MLP.
This paper is organized as follows. The mathematics behind
the MLPs are described in section II. Section III represents the
implemented analog hardware including the components of the
multiplier circuit and the ReLU circuit. Section IV shows the
simulation results of the complete perceptron and comparisons
with other implementations from the literature. Finally, the
paper is concluded in section V.

II. MULTILAYER PERCEPTRON

The target of this section is to have a minimum level of
knowledge about the MLPs and define the required mathe-
matical equations before going into hardware implementation.

A. Perceptron Definition

A perceptron is a node in the MLP that does two mathe-
matical operations to its inputs; summation and activation of
the summation result. The inputs are weighted as each input
is multiplied by a certain value which represents the effect of
an input on the output, i.e., a change in an input with a small
weight has a small effect on the output and vice versa. The
mathematical model of a perceptron is given by the following
equation:

y = f(
n∑

i=1

wi.ai + b) (1)
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Fig. 1. An MLP with four layers of perceptrons

where ai is the ith input, wi is the weight of the ith input,
b is a bias value, n + 1 is the number of inputs including
the bias value, and f is the activation function which is he
ReLU activation function. It is a piecewise linear function that
outputs the input directly if the input is positive, otherwise, the
output is zero. It is represented by the following equation:

f(x) = max(0, x) =

{
x if x ≥ 0,

0 if x ≤ 0.
(2)

B. MLP Definition

An MLP is a type of artificial NNs (ANNs). It consists of
three types of perceptron layers; input layer, output layer, and
hidden layers. It can have many hidden layers depending on
the application. Fig. 1 shows an example of an MLP with four
layers. Each perceprton is connected to all the perceptrons that
precede and succeed it. However, the perceptrons in the same
layer are not connected together and there is no feedback to
the perceptron itself.

C. Forward Propagation

Forward propagation is the process of calculating the output
of the MLP. Equation (1) illustrates the operation of a single
perceptron. To include all perceptrons in one layer and to
model the propagation from layer j to layer j + 1, a vector-
matrix multiplication is utilized as shown in the next equations:

a
(j+1)
0

a
(j+1)
1

.

a
(j+1)
K

 = f(
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(j)
0
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(j)
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.

a
(j)
L

) (3)

where K is the number of perceptrons in the (j + 1)th layer,
L is the number of perceptrons in the jth layer, and w(j)

n,m is
the weight value of the link from the the mth perceptron in
layer j + 1 to the nth perceptron in layer j. Bias values are
represented using extra perceptron in each layer, that is ax0 ,
where x is the layer number.

III. MLP HARDWARE

A. Vector-matrix Multiplier

Vector-matrix multiplier (VMM) is a CM circuit that per-
forms the multiplication of the input vector and the weights

Fig. 2. 1×1 VMM schematic

Fig. 3. Operational transconductance amplifier schematic

matrix It performs one of the two main mathematical opera-
tions in forward propagation of MLPs. The VMM circuit is
implemented using floating gate MOSFET-based current mir-
rors and operational transconductance amplifiers. The vector-
matrix multiplication includes two operations; multiplication
and addition. Since this is a CM circuit, the addition can be
done easily using KCL by summing all the current signals at
one node. For multiplication, a 1×1 VMM is implemented
as shown in Fig. 2. A larger VMM can be implemented by
adding more 1×1 VMMs together. To allow the full quadrant
operation of the circuit, differential signals concept is utilized
[12]. The input current, the weight and the output current are
differential.
The 1×1 VMM is based on two circuits: an OTA and a
Floating gate-based current mirror (FGCM). The implemented
OTA is shown in Fig. 3 including transistors sizing in µm. The
OTA is based on three current mirrors; (M4,M5), (M6,M7),
and (M8,M9). M2 and M3 are the input transistors. The
current mirror formed by M0 and M1 biases the input stage of
the OTA. The reference current is set to 2.5µA. For the FGCM,
it is a current mirror implemented using a MOSFET that has
its gate connected to a capacitor. The capacitor electrically
isolates the gate from any DC path. The charge of the capacitor
controls the voltage of the gate. The idea of controlling the
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Fig. 4. Floating-gate MOSFET Current Mirror schematic

gate voltage allows the circuit to mirror the current with a
scale without changing the dimensions of the MOSFETs. The
FGCM circuit is shown in Fig. 4.
Assuming subthreshold operation of the transistor and Vsd �
100mV , the source to drain DC current is given by the
following equation:

Isd = I0
Wp

Lp
exp (

Vsg − |Vthp
|

nVt
) (4)

where I0 is the pre-exponential current, Wp and Lp are the
width and length of the transistor, respectively, Vthp is the
threshold voltage, n is a technology dependant term, and Vt
is the thermal voltage.
As a result of the negative feedback applied on the OTA shown
in Fig. 4, the relation between source voltages of M0 and M1

is given by equation 5.

Vs1
Vs0

=
Gm

Gm + gm1

(5)

where Gm is the transconductance of the OTA, and gm1
is the

transconductance of M1. From equation 5, the implemented
buffer allow M0 and M1 to have approximately the same
source voltage as long as Gm � gm1 . However, the gate
voltages can be changed via programming the capacitors C0

and C1. Thus, the following equation calculates the output
current of the circuit:

Iout = Iin exp (
VC1
− VC0

nVt
) (6)

where VC0
and VC1

are the voltages applied to the gates of M0

and M1 due to the charge stored in C0 and C1, respectively.
Using (6), the current signals I+out and I−out for the 1×1 VMM
shown in Fig. 2 are given by (7) and (8), respectively:

I+out = I+in exp (
VC1
− VC0

nVt
) + I−in exp (

VC2
− VC0

nVt
) (7)

I−out = I+in exp (
VC2
− VC0

nVt
) + I−in exp (

VC1
− VC0

nVt
) (8)

By subtracting (8) from (7), the differential output current is
given by the following equation:

I+out − I−out = (I+in − I
+
in)(W

+ −W−) (9)

where

W+ = exp (
VC1
− VC0

nVt
),W− = exp (

VC2
− VC0

nVt
) (10)

Fig. 5. ReLU activation function circuit schematic

Fig. 6. Frequency response of the OTA

B. ReLU Activation Function Circuit

Hardware implementation of the ReLU function is very
simple. Unlike sigmoid and hyperbolic tangent activation
functions, the ReLU function does not contain exponential
terms. Since the implemented OTA is biased with a positive
supply and no negative supply exists, the OTA can be used to
have a buffer that can implement the ReLU activation function.
The ReLU activation function circuit schematic is shown in
Fig. 5.

IV. SIMULATION RESULTS

In this section, the circuits introduced in previous section
are simulated using Cadence Virtuoso software with TSMC
180nm technology. Simulation results of the OTA, the 1×1
VMM, and the ReLU circuit are included.
Fig. 6 shows the frequency response of the OTA. The summa-
tion of all currents in the OTA branches is equal to 3.75µA,
because all the current mirrors in the OTA mirror the current
equally, which gives total power consumption of 6.75µW. To
address the linearity of the OTA, the total harmonic distortion
(THD) is measured when applying a ±50mV small signal
input at 10KHz. The THD is calculated using the fast Fourier
transform (FFT) tool in the simulator. The THD is equal to
-38dB. Table II shows all these simulation results.
For the 1×1 VMM, the desired characteristics are linearity and
power consumption. For the linearity, the maximum error in
the ratio between the input and the output is found to be 3%.
For the power consumption, the output current is much smaller
than the current of the OTA circuit. So, the power consumption
is mainly by the OTA. Each 1×1 VMM consumes 13.5µW
because it has two OTAs. The DC characteristics of the circuit
is shown in Fig. 7 for different weight values. The input range
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TABLE I
OTA SIMULATION RESULTS

Parameter Value
Transconductance 35 µS

Small signal voltage gain 31 dB
Phase Margin 89o

3-dB bandwidth 32 KHz
Power Consumption 6.75 µW

Fig. 7. DC characteristics of the 1×1 VMM for different weight values

is ±50nA.
For the ReLU circuit, it contains an OTA-based buffer. It
consumes 6.75µW. From figure 8, it is obvious that for
negative input, the buffer output is zero. For positive input, the
buffer output is the same as the input. These voltage transfer
characteristics are the same as the ReLU function.
Table II shows a comparison of the proposed multiplier and
other works. Thee proposed multiplier has more moderate
number of transistors. However, the power consumption is less
than all the other multipliers. Even for low power circuits in
[4,5], these two circuits had bad linearity and larger number
of transistors. Regarding the activation function, the literature
focuses in implementing other types of activation functions
rather than the ReLU like the sigmoid and hyperbolic tangent
[13]. The exact power consumption of activation functions
implemented in [10,11] is not mentioned directly. However,
form the available results by the latter works. they consume
more power than the circuit implemented in this work.

Fig. 8. DC characteristics of the ReLU activation function circuit

TABLE II
COMPARISON OF THE PROPOSED MULTIPLIER AND OTHER WORKS

Parameter this [4] [5] [6] [7] [8] [9]
work

Process (nm) 180 130 350 180 180 80 180
Supply (V) 1.8 1.2 1.2 1.2 1.2 1.8 2

Power (µW) 13.5 15 23 76.8 630 89.2 146.5
THD (dB) -38 -32.5 -32 -27.5 -42.5 -40 -
Number of 24 40 35 12 40 12 12
transistors

V. CONCLUSION

In this paper, a low power analog hardware implementation
of a VMM and ReLU function circuit is presented. These
two circuits are the main building blocks for implementing
an MLP in hardware. The VMM consumes 13.5µW per one
multiplication. The ReLU function circuit consumes 6.75µW.
These circuits have small number of transistors which allows
the integration in bigger systems. The circuits are implemented
in CMOS 180nm technology.
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