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Abstract— This paper presents the development and 

simulation of an analog artificial neural network (ANN) aimed 

at improving energy efficiency and processing speed for 

machine learning tasks. We detail the architectural design of the 

ANN, encompassing input, hidden, and output layers, along 

with the incorporation of resistors and operational amplifiers as 

key components. Through hardware implementation, the ANN 

utilizes continuous voltage generators for input representation 

and resistance values for storing weights and biases. Our 

simulations demonstrate the model's accuracy and minimal 

error margins compared to expected outcomes. Additionally, we 

explore the implementation of activation functions such as 

ReLU and Sigmoid using specific components to further 

minimize energy consumption, showcasing the potential of 

analog ANNs in future machine learning hardware. 

Keywords—Analog Artificial Neural Networks, ANN, ReLU, 

Sigmoid, Transistor, Intensity 

I. INTRODUCTION (HEADING 1) 

In the rapidly evolving field of machine learning and 
artificial intelligence, the quest for more efficient 
computational models has become increasingly crucial. 
Traditional digital computation, while versatile and powerful, 
often struggles with the high energy consumption and slower 
processing speeds when dealing with complex algorithms and 
large datasets [1]. This challenge has spurred interest in 
alternative computing paradigms, among which analog 
artificial neural networks (ANNs) stand out as a promising 
solution. 

Analog computation, leveraging continuous signal 
processing, offers a pathway to significantly reduce energy 
consumption while accelerating data processing tasks. The 
inherent parallelism and energy efficiency of analog circuits 
align well with the operational principles of neural networks, 
making them an ideal candidate for hardware implementation 
of machine learning models [2]. This paper delves into the 
development and simulation of an analog ANN designed for 
machine learning applications, aiming to harness these 
advantages. 

Our exploration begins with a brief overview of the 
fundamental differences between analog and digital 
computation, particularly in the context of neural network 
implementation. We then present the architecture of our 
proposed analog ANN, which includes innovative approaches 
to represent inputs, compute weights, and apply activation 
functions using analog components. The motivation behind 
this research is rooted in the growing demand for more 

efficient AI applications, where reducing power consumption 
and improving computational speed are paramount. By 
offering a detailed simulation study, we aim to demonstrate 
the feasibility and benefits of analog ANNs, paving the way 
for their broader adoption in future machine learning hardware 
solutions. 

The development of this analog ANN model reflects a 
broader shift towards energy-efficient and high-speed 
computing methodologies. As we push the boundaries of 
what's possible with analog circuits, this paper seeks to 
contribute to the ongoing discourse on the role of analog 
computation in the next generation of machine learning 
technologies. 

II. BACKGROUND AND RELATED WORK 

The exploration of analog computing in the domain of 
artificial intelligence is not a novel concept but has gained 
renewed interest due to modern technological advances and 
the increasing demands for energy efficiency and processing 
speed in AI applications [3]. Analog computation, 
characterized by its use of continuous signals for processing 
information, presents a contrasting approach to the binary 
nature of digital computation. This section reviews the 
evolution of analog computing, its integration into neural 
network models, and the current state of research in this area, 
highlighting both the historical context and recent 
advancements. 

A. Historical Perspective 

The idea of analog computing dates back to the early 20th 
century, with the development of mechanical and electronic 
analog computers used for a variety of scientific and military 
applications [4]. Despite the shift towards digital computing 
in the latter half of the century, the principles of analog 
computation have remained relevant, particularly in 
specialized applications where the nuances of continuous data 
processing can be leveraged for more naturalistic and efficient 
computation. 

Many implementations of image processing have been 
realized on hardware systems such as Field Programmable 
Gate Array (FPGA) that demonstrate their efficiency in term 
of precision, processing speed and energy efficiency [5][6] 

B. Analog Computation in Neural Networks 

In the context of neural networks, analog computation 
offers a potential solution to some of the inherent limitations 
faced by digital systems, such as high-power consumption and 
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latency in data processing [2][4]. The parallel nature of analog 
circuits, coupled with their ability to handle continuous 
signals, aligns well with the operational requirements of 
neural networks, which often process complex, 
multidimensional data. Recent research has focused on 
harnessing these properties to develop analog neural network 
models that can operate more efficiently than their digital 
counterparts. Studies have shown that analog ANNs can 
achieve significant reductions in power consumption while 
maintaining competitive accuracy levels in tasks such as 
image recognition, signal processing, and pattern recognition 
[7]. 

C. Advancements in Analog ANN Technologies 

The resurgence of interest in analog ANNs has been fueled 
by advancements in semiconductor technologies and 
fabrication techniques, allowing for more precise and reliable 
analog circuits [8]. Innovations such as floating-gate 
transistors, memristors, and other non-volatile memory 
technologies have opened new pathways for implementing the 
synaptic weights and activation functions critical to neural 
network operations in an analog format. Furthermore, 
research into hybrid systems that combine the best aspects of 
analog and digital computing presents a promising avenue for 
overcoming the scalability and variability challenges 
traditionally associated with analog circuits [9]. These hybrid 
models aim to leverage the energy efficiency and speed of 
analog processing for certain computations while relying on 
digital components for tasks requiring high precision and 
flexibility. 

D. Challenges and Future Directions 

Despite the potential advantages, the development of 
analog ANNs faces several challenges, including issues 
related to the variability of analog components, the difficulty 
of precisely controlling and updating synaptic weights, and the 
integration of analog circuits with existing digital 
infrastructure. Ongoing research efforts are directed towards 
addressing these challenges, with a focus on developing more 
robust, scalable, and adaptable analog neural network 
architectures. The exploration of new materials, circuit 
designs, and computational models, alongside advances in 
machine learning algorithms, holds the promise of further 
enhancing the performance and applicability of analog ANNs. 
As the field progresses, it is expected that analog neural 
networks will play an increasingly significant role in the next 
generation of energy-efficient and high-speed AI systems. 

III. SYSTEM ARCHITECTURE AND DESIGN 

The analog artificial neural network (ANN) presented in 
this work is structured around a simplified yet effective 
architecture designed to exploit the advantages of analog 
computation. The architecture consists of three main layers: 
an input layer, a single hidden layer, and an output layer. This 
design choice is informed by our objective to demonstrate the 
feasibility and efficiency of analog computation in executing 
neural network tasks, with a focus on optimizing for both 
energy consumption and processing speed. 

The simulated Artificial Neural Network (ANN) is 
presented in the figure Fig. 1. 

 

Fig. 1. The simulated Artificial Neural Network (ANN) 

Training and validation of our analog artificial neural 
network (ANN) were conducted in an offline environment, 
utilizing computational resources to optimize the network's 
weights and biases before their application in the analog 
model. This approach allows for the thorough and efficient 
calibration of the network, ensuring that it is finely tuned to 
perform its designated tasks with high accuracy and reliability. 

• Offline Training Process: The network's training 
was carried out using a digital simulation on a 
computer, where a dataset representative of the 
problem space was used to iteratively adjust the 
network’s synaptic weights and biases. This process 
employed backpropagation and gradient descent 
algorithms to minimize the error between the 
network’s outputs and the expected outcomes. By 
performing these computations in a digital 
environment, we could leverage the computational 
power and precision of digital processors, facilitating 
a more controlled and flexible training phase. 

• Application of Weights and Biases: Upon the 
completion of the training phase, the optimized 
weights and biases were directly translated into the 
analog domain. The weights were implemented using 
programmable resistors, while biases were 
implemented using a DC voltage in series with a 
resistor. This direct application method ensures that 
the analog ANN accurately reflects the learned 
parameters, allowing it to perform as intended based 
on the training it received. 

Our analog ANN model incorporates a total of three 
layers, each serving a distinct function within the neural 
network: 

• Input Layer: Comprising 3 neurons, the input layer 
is tasked with receiving the analog signals that 
represent the data to be processed. These signals are 
then forwarded to the hidden layer. The use of three 
neurons corresponds to the dimensionality of the 
input data, ensuring that each input feature can be 
directly mapped to a neuron. 

• Hidden Layer: The hidden layer, consisting of 4 
neurons, plays a crucial role in the network's ability to 
learn and model complex relationships. Each neuron 
in this layer is connected to all neurons in the input 
layer, allowing it to synthesize the input signals in a 
manner that captures the underlying patterns and 
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dependencies. The decision to use a single hidden 
layer with four neurons strikes a balance between 
computational simplicity and the network's learning 
capability. 

• Output Layer: The network culminates in an output 
layer with a single neuron, responsible for producing 

the final output of the ANN. This output represents 
the network's prediction or decision based on the input 
data it has processed. 

The analog ANN network scheme is presented in the 
figure Fig. 2. 

 

 

Fig. 2. The analog ANN architecture 

Analog circuits simulate activation functions to introduce 
necessary non-linearity. Specifically, the network utilizes 
CMOS Technology for ReLU functions in the hidden layer, 
allowing it to effectively capture complex data patterns in an 
energy-efficient manner (Fig.3). The sigmoid activation 
function used in the output layer was simulated using Spice 
code. 

 

Fig. 3. Analog ReLU activation function scheme 

IV. METHODOLGY 

The methodology behind the development, training, and 
validation of our analog artificial neural network (ANN) 
model is designed to ensure that the model is both accurate in 
its predictions and efficient in its operation. This section 
outlines the comprehensive approach taken from the model's 
conceptualization to its final implementation and testing. 

Our focus is developing an analog ANN to tackle a 
regression task characterized by the equation: 

 y = f(X) = W*X + b (1) 

where X denotes the input vector (x1, x2, x3), W is the 
layers weights, and b the layers biases. 

This model encapsulates the network's ability to predict 
continuous values, demonstrating the efficacy of ANNs in 
mapping complex input patterns to a numerical output. The 
backbone of our model's training regime is a dataset composed 
of 1000 entries, each consisting of a three input values and 
their respective numerical output. This substantial dataset 
enables the precise adjustment of the network’s weights (W) 
and bias (b), ensuring the model’s adeptness at capturing and 
predicting the underlying trends in the data. 

A. Model development 

A crucial part of our methodology is the offline training 
process, which leverages the computational advantages of 
digital systems for the precise optimization of the model's 
parameters. 

The training involved adjusting the synaptic weights and 
biases using algorithms like backpropagation and gradient 
descent to minimize the error between the network's outputs 
and the expected results. This approach allowed for a detailed 
and controlled optimization process, essential for the success 
of the analog implementation. 

• Data Preparation: Prior to training, the dataset was 
preprocessed to ensure compatibility with the analog 
model's input requirements. This included adapting 
the data to match the voltage levels used in the analog 
inputs. 

• Parameter Optimization: The training process 
involved iterative adjustments to the model's 
parameters to achieve optimal performance. This 
was facilitated by a simulation environment that 
closely mimicked the analog network's behavior. 
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• Transfer to Analog Domain: After the training 
phase, the optimized parameters were translated into 
their analog equivalents. Weights were implemented 
using programmable resistors, while biases were set 
using voltage offsets. 

B. Analog Implementation 

Following the offline training, the next step was the 
physical implementation of the trained model in the analog 
domain. This involved setting up the analog circuitry to reflect 
the trained network's structure and parameters accurately. 
Each neuron's behavior was emulated using resistors crossbar 
and operational amplifiers. Where weights are represented as 
resistor values, operational amplifiers are used to perform 
various necessary operations on the electrical signal output 
from the cell. 

The output of each neuron is represented by the current I, 
where : 

� =  ���
1

��

+  �
�
1

�


 (2) 

The weight values generated by the training are not 
directly implemented in the circuit, but go through two 
transformations. The first is a positive shift and the second is 
the inversion of the values to obtain the corresponding value 
of the resistors. 

As far as the biases are concerned, we carry out a single 
transformation by inverting the bias values to obtain the 
resistor values. For the negative bias, we use a DC voltage 
generator with a value of -1 volts (-b=(-1)/R) [10]. 

C. Model Validation and Testing 

The final phase of our methodology focused on validating 
and testing the analog ANN model to ensure its accuracy and 
efficiency. Using a separate dataset, the model's performance 
was evaluated to assess its generalization capabilities and 
accuracy in new, unseen scenarios. We will use the same 
inputs for both analog and digital prediction to compare them 
and especially the effectiveness of the analog calculation. 

V. IMPLEMENTATION AND SIMULATION RESULTS 

In this work, we have successfully simulated an analog 
artificial neural network (ANN) architecture, targeting 
hardware acceleration for Machine Learning applications.  

A. Implementation 

Our approach utilizes DC voltage generators to represent 
inputs, capturing the nuances of real-world data in an efficient 
analog format. Weight and bias parameters are ingeniously 
stored as resistor values within the circuit, enabling dynamic 
adjustment essential for the training and operation of the 
ANN.  

To address the inherent challenge of incorporating 
negative weight values in analog circuits, we devised a novel 
solution by translating the weight values in each layer. This is 
achieved by adding a constant value to all weights, thus 
eliminating negative values without compromising the 
model's integrity. Post-computation and prior to the activation 
function, the constant is subtracted to preserve the original 
behavior of our model. This translation technique is pivotal, 
ensuring the analog system accurately reflects the 
computational model. 

The selection of the translation constant is critical to the 
system's performance; in our implementation, we settled on a 
value of 1, equivalent to 1 KOhm, guided by the average 
weight values across the network. This choice is instrumental 
in maintaining the balance between operational integrity and 
the practicalities of hardware implementation, highlighting 
our commitment to developing a robust and efficient analog 
computing solution for machine learning acceleration. 

The implementation of the ReLU activation function can 
be achieved using operational amplifier-based circuits. 
However, we opt for a CMOS technology-based 
implementation utilizing four transistors (two PMOS and two 
NMOS) to reduce energy consumption in our circuit [11]. As 
for the sigmoid activation function, we implement it using 
Spice code, even though an implementation using operational 
amplifiers or MOSFET transistors is feasible. However, these 
approaches fail to replicate the sigmoid function's behavior 
accurately. In our circuit, we also employ two additional 
blocks: a current-to-voltage converter (CVC) to convert the 
current output from the resistors into a voltage used by other 
parts of the circuit, and an inverting amplifier, since the 
current-to-voltage converter generates a low inverse voltage. 
Finally, we perform a transient simulation to observe the 
output of our ANN. The simulation yields a voltage value in 
millivolts, aligning with the values obtained via the Python 
API with an error on the order of 10-6. 

B. Simulation results 

After simulating the ANN network, we attempted to 
observe the behavior of our analog circuit based on 3 
simulations. The following table presents the input values, the 
desired output, the simulated output, and the error. In the first 
part of the simulation, we used a function written in Spice 
code to simulate the ReLU and Sigmoid activation functions. 

TABLE I.  RESULTS OF ANN SIMULATIONS USING SPICE CODE FOR 

RELU AND SIGMOID FUNCTIONS 

N° Input 
Desired  

Output 

Simulated 

Output (mV) 
Error 

1 

0.874071773 

0.4556881487369 455.68922 1.07E-06 0.249668953 

0.263247347 

2 

0.000653390 

0.6063608527183 606.35519 5.66E-06 0.870669034 

0.792594813 

3 

0.627328935 

0.4828004539012 482.80108 6.26E-07 0.750265764 

0.152048567 

In the second part of the simulation, we simulated the 
ReLU function with CMOS analog components and the 
Sigmoid function in Spice code. 

TABLE II.  PERFORMANCE COMPARISON OF ANN SIMULATIONS WITH 

CMOS COMPONENTS FOR RELU AND SPICE CODE FOR SIGMOID FUNCTION 

N° Input 
Desired  

Output 

Simulated 

Output 

(mV) 

Error 

1 

0.874071773 

0.4556881487369 476.21387 
2.05E-
02 

0.249668953 

0.263247347 

2 

0.000653390 

0.6063608527183 513.68099 
9.27E-
02 

0.870669034 

0.792594813 

3 

0.627328935 

0.4828004539012 476.16714 
6.63E-
03 

0.750265764 

0.152048567 
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These simulations help illustrate the effectiveness and 
accuracy of our ANN's analog implementation in processing 
and predicting outcomes based on input data. The two 
approaches to simulating activation functions—Spice code for 
ReLU and Sigmoid, and CMOS components for ReLU—
show distinct performance characteristics, as highlighted by 
the results and errors recorded in each scenario. 

C. Simulation analysis 

The simulation results from the artificial neural network 
(ANN) implemented with analog components reveal 
significant insights into the model's performance and 
accuracy. In the initial simulations, which utilized Spice code 
for both ReLU and Sigmoid activation functions, the ANN 
demonstrated exceptional precision, as indicated by the 
minimal errors observed across all three simulations. The 
errors were remarkably low, on the order of 10-6 to 10-7, 
suggesting that the model's output closely aligns with the 
desired values. This high level of accuracy highlights the 
effectiveness of using Spice code to simulate activation 
functions in an analog ANN context. 

In contrast, the second set of simulations, which employed 
CMOS components for the ReLU function and Spice code for 
the Sigmoid function, showed a noticeable increase in error 
rates. Although the errors remained relatively small, they were 
significantly higher than those observed in the first set of 
simulations, reaching up to 9.27E-02 in one instance. This 
increase suggests that while the CMOS-based implementation 
of ReLU is innovative and energy-efficient, it may not achieve 
the same level of precision as the purely Spice code-based 
approach. 

The two simulation approaches underscore the trade-offs 
between energy efficiency and accuracy in analog ANN 
implementations. The use of CMOS components for 
activation functions like ReLU is promising for reducing 
energy consumption, a critical consideration for hardware 
acceleration in machine learning. However, this may come at 
the cost of slightly reduced precision, as demonstrated by the 
comparative analysis of simulation results. 

Overall, these simulations provide valuable insights into 
the potential and challenges of analog ANNs for machine 
learning applications. The choice between Spice code 
simulation and CMOS components for activation functions 
will depend on the specific requirements of the application, 
including the need for precision versus energy efficiency. 
Future work could explore optimizing the CMOS-based 
implementation to improve accuracy while maintaining its 
energy-saving benefits. 

 

VI. CONCLUSION 

This investigation into the implementation of an analog 
artificial neural network (ANN) for machine learning has 
highlighted the potential and challenges of analog 
computation. Our study focused on simulating the ANN's 
performance, emphasizing how inputs are represented, and 
how weight and bias values are intricately stored and 
manipulated within the circuit, using analog components like 
CMOS transistors for activation functions and operational 
amplifiers for signal processing. 

The results from our simulations, particularly those 
concerning the handling of weights, biases, inputs, and 

outputs, underscore the delicate balance required to achieve 
high accuracy and efficiency in analog ANNs. By managing 
negative weight values through value translation and utilizing 
DC voltage generators for input representation, we 
demonstrated the model's capability to closely mimic desired 
outputs with minimal error margins. These simulations not 
only affirmed the precision of our analog model but also 
illuminated the critical role of component selection and circuit 
design in optimizing ANN performance. 

Reflecting on the broader implications, our work suggests 
that analog ANNs can offer significant advantages in terms of 
energy efficiency and processing speed. However, achieving 
these benefits without compromising accuracy necessitates 
innovative solutions, such as the ones we've explored for 
weight and bias management. This research contributes to a 
deeper understanding of the operational dynamics of analog 
ANNs and lays a foundation for future explorations aimed at 
enhancing their practicality for machine learning applications. 

Future research directions should aim at refining the 
implementation of weights and biases in analog circuits, 
further reducing the error in input-output simulations, and 
exploring the scalability of these models for more complex 
tasks. Additionally, investigating the integration of analog and 
digital components could provide a hybrid solution that 
leverages the strengths of both realms, potentially leading to 
groundbreaking advancements in hardware acceleration for 
machine learning. 
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