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Abstract 

This paper presents a simple continuous analog hardware realization of the Random Neural Network (RNN) 
model. The proposed circuit uses the general principles resulting from the understanding of the basic properties 
of the firing neuron. The circuit for the neuron model consists only of operational amplifiers, transistors, and 
resistors, which makes it candidate for VLSI implementation of random neural networks with feedforward or 
recurrent structures. Although the literature is rich with various methods for implementing the different neural 
networks structures, the proposed implementation is very simple and can be built using discrete integrated 
circuits for problems that need a small number of neurons. A software package, RNNSIM, has been developed 
to train the RNN model and supply the network parameters which can be mapped to the hardware structure. 
As an assessment on the proposed circuit, a simple neural network mapping function has been designed and 
simulated using PSpice. 

1 Introduction 
One interesting feature of neural networks is that complex tasks like pattern recognition can be performed more 
rapidly by animals than by large digital computers even though the processes in digital computers are much faster 
than the ionic processes occurring in neural networks. There are three main approaches to perform real-life neural 
computations. The first one is the software simulation using sequential computers, the second approach is the 
parallel computation using multiprocessor system, and the third is the realization of the network in hardware using 
special purpose digital or analog components. The first alternative at  present is the most easily accessible because 
of the availability of personal computers and developing software tools. Since software programs are designed to 
run on single processor computer, this approach contradicts the basic principle of neural network, which lies in its 
massive parallelism. In the second approach, a neural network can be emulated by a very large number of simple 
processing elements, popular examples are networks of transputers. However, most of the current work involving 
parallel processing maintains synchrony by means of a system clock while synchrony is absent from neuron spike 
trains in various neural networks. The absence of clocking in neural networks reflects the fact that coding of 
information is different from information coding in digital computers. Finally, the designer has to  decide between 
analog and digital implementation. 

The random neural network [l, 21 is a biologically inspired spiked model which differs substantially from existing 
deterministic models such as the MLP. The network has a compact closed form solution for network state even 
in the recurrent case, this in turn yields efficient numerical algorithms. Typically, a spiked stochastic model will 
include some internal representation of each neuron’s state and a probabilistic representation of successive firing 
times as a function of state; additionally, rules need to  be given about the manner in which the internal state changes 
after firing. In this model, the internal state is a nonnegative integer; it  rises or falls depending on the excitatory 
or inhibitory nature of incoming spikes, and it drops each time the neuron fires. Interfiring are exponentially 
distributed. This is a recurrent network model which may have feedback loops of arbitrary topology. The general 
training algorithm was presented in [3]. By appropriately mapping external signals and neuron states into certain 
physical quantities, the RNN has been successfully applied to  several engineering problems [5 ,  6 ,  81 

197 
0-7695-06 19-4/00 $10.00 0 2000 IEEE 

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:52:28 UTC from IEEE Xplore.  Restrictions apply. 

mailto:erol}@cs.ucf.edu


In [4], a digital neuron realization for the RNN has been proposed using discrete logic integrated circuits. 
Although that implementation represents clearly the firing mechanism in the RNN neuron, it is so complex to be 
built and maintain the synchronization between the different parts of the design. Also, it is dealing with only digital 
signals. As it turns out, neural networks by their nature tend to favor the analog approach. In this paper, a simple 
analog implementation of the RNN neuron is proposed. This approach needs only the addition and multiplication 
operations and for small networks, it can be built with off-the-shelf components. It should be noted here that both 
the digital implementation and the proposed analog implementation suppose that the network has been trained off 
line using a software program [9] and after convergence, the parameters resulted from the training process are fed 
to the model. 

The Sections of this paper are organized as follows. Section 2 presents the proposed neuron analog implemen- 
tation. In Section 3, a PSpice simulation is carried out to illustrate how the neuron model can be used in a simple 
mapping network. Finally, Section 4 gives the conclusions. 

2 Analog Modeling of the RNN neuron 
Recalling the basic equations of the RNN model from [l, 31 we have: 

A+ qi = ___ 
ri + A; 

where the A: and X i ,  for i = 1,. . . , n satisfy the system of non-linear simultaneous equations: 

n n. 

n 

where qi is the output of neuron i and w+ and w- are the excitatory and inhibitory weights respectively. It is 
obvious from the equations that modeling the RNN neuron requires only the addition, multiplication, and division 
(subtraction is not needed since all the external and internal quantities involved with the model are positive floating 
point numbers). Assuming that the network training has been completed successfully using a computer program, 
the resulting inhibitory and excitatory weight matrices can be used to design and implement the network under 
consideration. For illustrating the proposed neuron model, a recurrent network consisting of three neurons will be 
considered. Figure 1 shows the internal structure of neuron 1 which can be connected in general to the other two 
neurons with feedback weights. 

The operational amplifier U1C accepts the external inhibitory input XI (lambdas1 in the Figure), the outputs 
of the other neurons q1 and 4 2 ,  and the firing rate rl. q1 is connected via the inhibitory weight w; (wm21 in the 
Figure), similarly, 43 is connected via the weight w; (wm31 in the Figure). The rate r1 is calculated from the 
weights using Equation 3 and its value is represented by the fixed voltage given by V1. The inverted sum output 
appears at  node 8 of U1C. U1D acts as an unity gain inverting buffer so that it produces A, at pin 7 as given in 
Equation 2. 

In a similar manner, U1C and U1D act as a non inverting summing circuit for the external excitatory input 111 
(LAMBDAC1 in the Figure) and the weighted outputs from the other two neurons. The output at pin 7 of U1B 
represents A t  as given in Equation 2. It should be noted here that every weight is inversely proportional t o  its 
corresponding resistor. As an example, if w l  = 0.5 then, the resistor wm21 will be equal to 10/0.5 = 20K and if 
w& = 0, the resistor wp31 should be ideally an open circuit and in the design, we represent the open circuit with 
a relatively large resistance value such as 1 Meg Ohms. The resistors representing the weights and the voltages 
representing the rates are expressed as symbolic variables. When using the neuron model in a certain RNN, the 
weights and rates under consideration will be passed to the model. This modular design facilitate using the same 
neuron model in different RNN structures. 

IC U2 acts with the matched transistors as a log - antilog multiplier/divider circuit which can be used to divide 
the output of U1B by the output of U1D. The output at  pin 14 of U2D represents the output q1 of the neuron as 
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given in Equation 1. Several commercial multipliers such as MPYlOO can also be used as reliable multipliers and 
dividers which may help when building networks with small number of neurons. 

Figure 1: The proposed analog circuit for a single RNN neuron. 

3 Simulation Results 
To test the proposed neuron model, a mapping RNN with three neurons is simulated. This simple network accepts 
the signal x at  its input and produces 0 5 x 5 1, at its output. Although the function to  be mapped is 
simple, it can be proved that the generalization of this network to  calculate - and l e ,  v > 0, can be used 
to approximate any continuous multi variables function ([7], Theorem 5 ) .  From ([7] Lemma 2), we can calculate 
the network weights and rates as shown in Figure 2. Figure 3 illustrates the PSpice model of the mapping RNN. 

- 
wI3  = 0.5 

41 = x  
1 

1 
42 = (l+s) 

43 = (1+.)2 

A2 = 0.5 
A 2  = 0.0 

A3 = 0.0 
A 3  = 0.0 

Figure 2: Simple mapping RNN 
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Figure 3: PSpice model for the mapping RNN. 

Each of the three neuron modules represents the analog circuit shown in Figure 1 The parameters corresponding 
to each neuron (external inputs, rate, and weights to other neurons) are passed from the neuron module to the 
actual circuit. The network is driven by a lKHz sine wave source with peak to peak value of 1V and offset of 0.5V. 
Although the network of Figure 2 is feed forward, the corresponding PSpice representation, as shown in Figure 
3, is drawn as a recurrent network by taking care of the connection weights. For example, the output of neuron 
3, q 3 ,  is connected to the q3 input of neuron 1 by the weights wp31 = wm31 = 1 Meg Ohms (or equivalently 
w& = w; N 0). The output of each of the three neuron modules is shown in Figure 4. 

In the given example the network parameters were calculated from the understanding of the network function 
but for large problems, training can be applied to obtain the values of the weights and rates [9], after that the 
model can be built and simulated using the individual neuron modules. 
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Figure 4: Simulation results for the mapping network. 
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4 Conclusion 
In this paper, an analog circuit implementation for the random neural network is proposed and simulated using 
common operational amplifiers and transistors. It is worthy to  point out that the implementation using these 
inexpensive discrete components, allows a convenient way to  construct a prototype circuit to test the functionality 
of the neural network under consideration. In this work, verification of the implemented analog circuit has been 
proceeded using the PSpice circuit simulator. Given a specific application, the design using discrete components 
can be mapped directly to  VLSI design. The discrete component design offers high flexibility, low productivity, 
large circuit area, high power consumption, and it can be used only for prototyping purposes. On the other hand, 
the VLSI approach offers low flexibility, high productivity, very small circuit area, low power consumption, and it 
can be used only for practical applications. This hardware realization brings the theoretical model into the practical 
applications. Although the proposed neuron design does not represent the transient response of the RNN neuron, 
it implements successfully its steady state behavior. One drawback of the hardware model is that it is incapable 
of on line training and weights update, but in the majority of practical problems, the training phase needs to  be 
carried out off line using a dedicated software that runs on a computer [9] and after training, the final network 
parameters can be mapped directly into physical hardware components. 
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