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Abstract — This paper presents a method of realizing
artificial neural networks (ANNs) hardware implementation
using field programmable analog arrays (FPAAs). A simplified
realization for neurons with piecewise linear activation
functions is used to reduce the complexity of the neural network
architecture. A feedforward neural network is implemented
using multi-chip FPAAs. Anadigm’s commercially available
AN221E04 FPAA chips are adopted as the platform for
simulation and experiments. The FPAA based ANN classifies
two groups of data with zero error at a speed of 6.0 Million
Connections Per Second (MCPS). The result is more than 1400
times faster than software implementation. The ANN
architecture is also expandable to perform more complicated
tasks by incorporating more FPAA chips into the
implementation. The programmability of the FPAA makes
rapid prototyping possible.

Index Terms — field programmable analog arrays, neural
network hardware, rapid prototyping

I. INTRODUCTION

Artiﬁcial neural networks (ANNs) have been playing an
increasingly important role in areas such as robotics [1],
process control [2-3], and motor fault detection [4-6]. Both
software and hardware based approaches have been used for
implementing ANNs. In general, software instructions
executed serially cannot take advantage of the inherent
parallelism of ANN architectures. Hardware implementations
of neural networks promise higher speed operation when they
can exploit this massive parallelism. Different hardware
implements of neural network have been reported [7-25].
Other than the FPGA based approaches [10, 11, 18, 24], most
of the hardware implementations provide no
programmability. Reconfigurability of an ANN is desirable
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since many ANN applications, e.g., robots performing
different tasks in different environments may benefit from
different neural network topologies (e.g., different number of
hidden nodes). The best choices for neural network
implementations that achieve both high speed and rapid
prototyping appear to be programmable hardware approaches
like field programmable gate arrays (FPGAs) and field
programmable analog arrays (FPAAs). Compared to digital
hardware, FPAAs have the advantage of interacting directly
with the real world because they receive, process, and
transmit signals totally in the analog domain (without the
need to do A/D, D/A conversions) and are suitable for real
time applications. As reported in [26] on controlling a
path-tracking unmanned ground vehicle, an FPAA can easily
outperform the digital hardware by processing the signal
8,000 times faster. Other FPAA applications, including a
voltage-to-frequency converter and a Hodgkin-Huxley
neuron simulator, have been reported [27-28].

Section II of this paper proposes a simple realization of
layered neural networks appropriate for FPAAs. Section III
applies the neural network architecture simplification method
to a multi-chip FPAA based neural network to classify the
elements of a data set containing two groups of data. Section
IV analyzes the speed performance of the FPAA
implementing the ANN by comparing it to software
implementation. Section V gives some concluding remarks.

II. NEURAL NETWORK ARCHITECTURE SIMPLIFICATION IN
FPAA

A. The piecewise linear activation function

In the ANN, the output of a neuron is computed by
applying its activation function to a weighted sum of its
inputs. Some activation functions such as hyperbolic tangent
and sigmoid are expensive for digital hardware
implementation. To reduce the cost for implementation, the
piecewise linear activation function has been used to
approximate sigmoid activation function [29]. We chose the
Piecewise Linear (PL) activation function for the neurons in
the hidden layer of our neural network architecture because it
is naturally suited for applying FPAA hardware to the
problem of interest (to be described in later sections).

A neural network must be trained to reflect or to generalize
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a desired relationship between inputs and outputs. During the
back propagation training process in a neural network, the
error signal at the output of the neuron j at iteration » (i.e.,
presentation of the n” training example) is defined by

e, (n)y=d;(n)—y,;(n), (1)

where d;(n) is the desired response of neuron j and is used to
compute €,(n), y,(n) is to the function signal appearing
at the output of neuron j at iteration n. Let @, (0) be the

activation function; then the synaptic weight Aw (1)

change is:
Aw;,(n) =16, (n)y;(n), 2)

where

5,(m=e,(mp; (v,(n)), 3)
is called the local gradient and 77 is the learning rate. In
equation (3),

v )= w, ()7, () @

and w i denotes the synaptic weight connecting the output

neuron i ( there are m inputs) to the input of neuron j at
iteration n. The PL activation function is given by

T
w W, X+W, 2w,

+9

P;(X) =W X+w,,  w_<w/x+w,<w, O

w., WiX+w, <w.

T d . .
where X' =[x, X,,...x,] € R is the input vector and
w' =[wy, W, w,,w,,w_ 1€ R™ | with w, =+1

and w_ = —1, is the parameter vector that characterizes the

node function. Figure 1 shows the 3D view of input-output
relationship of a neuron of 2 inputs with piecewise linear
activation function.

Although the PL activation function is less popular than the
hyperbolic tangent activation function, the piecewise nature
has attractive features such as ease of implementation and
amenability to VLSI implementation [30-31]. It is also

simpler to find ®; '(0) in equation (5) since it requires only
addition, multiplication and comparison operations in

contrast to the trigonometric function that must be evaluated
for the hyperbolic tangent function.

Figure 1. The piecewise linear (PL) activation function for w’ = [1,1] in

two dimensions.

B. Implementing the PL function on FPAA

This section develops a realization of the standard PL
activation function that uses two gain amplifier functional
blocks. A standard PL function has the following form:

-1 x<-1
PL(x)=1x “1<x <+l (©)
+1 x>+l

In a FPAA circuit which saturates symmetrically at V.
and V_,where VV, =V, >0, V_=-V, <0, astandard PL

activation function can be obtained with two cascade gain

v

stages G, and G, if V¢>1, where G, :%:VO and

:L:l (which will be explained in the
V.-V Vo

following paragraphs). Note that the product of G, and G, is

2

unity and G, >1>G,.

Since the circuit saturates at V, and V_, the relationship
between input voltage x and output voltage Fi(x) of a
“through” circuit is:

-V, x <=V,
F(x)=1x —Vy<x<V,- (7)
v, xzV,

A gain stage G, after Fy(x) establishes the following

relationship between the new output F»(x) and x:

-V, x<-1
F,(x)=F(x)xG, =1G, xx ~1<x<1- ©®
Vs xz1

Adding another gain stage G, after Fy(x) gives the

following relationship between F3(x) and x:

-1 x<-1
F,(x)=F,(x)xG, ={x —1<x<+1- 9
+1 xz+1

Thus the standard piecewise linear activation function is
obtained by inserting these two particular gain stages between
the input and the output of a through circuit. Figure 2 shows
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the three functions (with using V;, = 2.5).

F1ix)
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Figure 2. Obtaining the PL function using two gain stages.

C. Merging the gain stages of cascade blocks on the FPAA
As shown in Figures 3 and 4, the neural network can be
simplified further by merging the two gain blocks G, and

G, into the input and output weights of the neurons. G,
and G, form the standard piecewise linear transfer function
for neuron j. The neural network architecture in Figure 2 can
be simplified by multiplying every weight of neuron j by G,
and multiplying w,, by G, as shown in Figure 3. As a

result, addition and multiplication are the only two operations
required for a neural network implementation on the FPAA.
The addition operation is performed by inverting sum
amplifier blocks. The weights that a neuron uses to compute
the weighted sum of its inputs are realized as the gain
parameters of the inverting sum amplifiers on the FPAA.
These weights are obtained from an offline training
procedure using MATLAB/SIMULINK software to
accurately simulate the network topology and to optimize the
weights. The optimal weights are downloaded to the
Anadigm FPAA chips for the corresponding real-time
operation, such as controlling a mobile robot or, in this paper,
classifying data points.
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Figure 4. Neural network architecture with merged gain blocks.
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Note that merging G, into w;; will not change the input

to G, in Figure 3. In the meantime, merging G, into wy,
will not change the input to the summing junction of k™
neuron. The merging procedure for G, implemented in

FPAA is depicted in Figure 5. The circuits shown reflexes the
FPAA circuits except that resistors are replaced by equivalent
switched capacitors and signals are differential inside the
actual FPAA. The top circuit is the one before merging and
the bottom one is after merging.

This section explains why voltage saturation at the upper
and lower limits of circuit does not invalidate our merging

simplification. In the circuits shown in Figure 5, G, is equal
to R5/ R4 . In all cases the output of the Op Amps saturates at
t v, (the Op Amps are assumed to be ideal).

RS R6
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3
Inverting Sum Amplifier Gl
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Figure 5. Simplifying the FPAA circuit by merging G, into the inverting
sum amplifier.
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Figure 3. Neural network architecture with unmerged gain blocks.
The output Vy, of the circuit with merged gain blocks is
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RV
b B LBz,
R, R R
RV Y RV V . (11)
o=ty BTy,
R, R R R, R R
RV W
7, ARG Loy,
R4 Rl RZ
Since & =V, thus R (ﬁ+ 4 —2)>1 is equivalent to
4 1 2
%(V V)>V0,_1<R(7+V2)<1isequivalent
R, R, R, R, R,

R.R, .
to —p, < (V V)<V and R( Z)S—l is
R, R R, R, R2
equivalent to 5—3 (—1 + ﬁ) <-V,- Thus the two circuits

R, R R,

are equivalent.

Similar proof can be applied to the merging of G2 into the
subsequent functional blocks of the FPAA.

III. MULTI-CHIP FPAA BASED NEURAL NETWORK
CLASSIFYING 2 GROUPS OF DATA

A. The two classes of data

The 8-point version of the “alternate labels” problem [32]
is chosen to demonstrate the speed advantage of using FPAA
implementation. The problem has two classes of data points.
Let the two class be A and B. Each class has 4 data points
alternating with the 4 data points of the other group in two
dimensions. Each data point is represented in the usual way as
an ordered pair of numbers as shown in Figure 6; we call the
elements of the n” pair x, and y, (n =1, 2, ..., 8). All 8 data
points have the same the y values thus y; =y, = ...= ys. “a”
(represented by squares) and “b” (represented by mrcles) are
two different real numbers representing the two classes.
Without loss of generality, we can assume that the interval
between successive x,’s is constant, say 0.4, and that the
values of all y, are the same, say 1.0, as shown in Table I. A
feedforward neural network with several neurons in the
hidden layer can generate the decision boundaries.

y o+
@ | @ =n @ | ®

(y) () ) sy) Gy) () (v

(xp2vy)

\ X

Figure 6. Seven decision boundaries separating 8 data points of 2 classes.

B. Classifying the two groups of data

Table I shows the input and output values of the 8 data
points used in our simulation and experiment.

TABLE L.
TWO CLASSES OF DATA: CLASS A= 0 AND CLASSB= 1.

Input x 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8
Input y 1 1 1 1 1
Output z 0 1 0 1 0 1 0 1

The neural network needs to implicitly generate the desired
decision boundaries based the input data pairs in order to
make proper classification. To classify these 8 data points, a
2-5-1 neural network is trained using the training data in
Table 1 in MATLAB to obtain the weights. The neural
network has 5 neurons in the hidden layer which has the PL
activation functions and one output neuron to construct a
linear combination of the outputs of the 5 hidden neurons.
Before the neural network is mapped onto the FPAA, it is
simulated in MATLAB/SIMULINK to verify the separation
capabilities of the network. As a result, the neural network
achieves 100 percent classification accuracy as shown in
Figure 7 with the output (z) threshold chosen to be 0.5.
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Figure 7. The output of the trained neural network view in x-z plane at
y=1.
(Simulated in MATLAB/SIMULINK from the MathWorks, Natick, MA,
USA)

C. Simulation and experimental results

In this section we map the trained neural network onto the
FPAA devices. The FPAA used in our simulation and
experiments is the AN221E04 from Anadigm Inc. The
AN221E04 is a dynamically reconfigurable analog chip
composed of op-amps, comparators and switched
programmable capacitors. FPAA technology enables
rapid-prototyping of analog circuits by programming the
configurable analog modules supported by the chip, such as
gain blocks, inverters, summing inverters, adders, multipliers,
integrators, quadratic/linear analog filter blocks, and sine
wave generators. With the aid of design software
AnadigmDesigner 2, the FPAA can translate complex analog
circuits into the simple set of system/block level design
instead of transistor level design, and thus gives designers the
analog equivalent of an FPGA. Moreover, it places analog
functions under real-time software control within the system.

The 2-5-1 neural network with parameters obtained by the
MATLAB/SIMULINK model was mapped onto the FPAA
programmed using only Inverting Gain Amplifier functional
blocks (represented by “Inv G” in the Figure) and Inverting
Sum Amplifier functional blocks (represented by “Inv Sum”
in Figure 8). The element “b” in the figure is the trained bias
input for each neuron. We programmed the Inverting Sum
Amplifier to accept at most 3 inputs; and several of the
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Inverting Sum Amplifiers are cascaded between the hidden
layer and the output layer to realize the sum operation for the
output neuron. The accumulated sign-flips of Inverting Gain
Amplifiers are correctly accounted for by additional
inversions when necessary. For example, in Figure 8, the
trained weight for the Y input to the first neuron in the hidden
layer has the negative sign but there are 4 Inverting Sum
Amplifiers between the input Y and the final output which
provides a positive sign; thus an Inverting Gain Amplifier is
needed in the signal path to generate the negative sign. The
exact location of the Inverting Gain Amplifier in the signal
path is chosen based on the available programming resources
of each chip.

Inverting Summer

1
in the Outpuier

*. 4 Inverting Summers
in the Hidden Layer

Figure 8. Constructing a 2-5-1 neural network using configurable analog
modules of the FPAA.

Five AN221E04 chips are integrated together to realize the
2-5-1 neural network as shown in Figure 9. The network is
decomposed into five modules as shown in Figure 8 and each
module is encapsulated in one chip. The simulation result
using AnadigmDesigner 2 is shown in Figure 10. Input Y is a
test signal of 1v constant voltage and Input X is the triangular
voltage input peaking at 3v. Setting the output threshold at
0.5v, the network classifies the data with 100% accuracy. The
experimental result showing more details of the classification
is shown in Figure 11, which is the oscilloscope screen shot
of the experiment result.
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Figure 9. The multi-chip FPAA based neural network programmed using
software AnadigmDesigner 2.
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Figure 11. Experimental results of neural network classifying two classes of
data.

As shown in Figure 11, the neural network trained from a
2-5-1 neural network separates the two classes of data into 2
regions and makes correct classifications of all data points
with the threshold chosen to be 0.5v. We would also like to
evaluate the speed performance for our multi-chip neural
network using the standard neural network hardware
measuring criteria: Millions of Connections Per Second
(MCPS) [33]. The measured delay from the network input to
the network output is 2.5 microseconds and there are 15
connections, yielding 6.0 MCPS in actual measured speed
performance. Figure 12 shows the 5 FPAA evaluation boards
for the experiments.

i =._

Figure 12. The five FPAA evaluation boards for the experiment
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IV. ANALYSIS OF SPEED PERFORMANCE

To compare the speed performance of neural network
implementation using FPAA to the software implementation
(MATLAB on an Intel Celeron 2 GHz machine), neural
networks with 4 architectures: 2-2-1, 2-3-1, 2-4-1 and 2-5-1
are implemented using both FPAA and the software. The
measured implementation time of the neural network (time
delay from the input to the output of the network) of all four
architectures is 2.5 microseconds (error bound is below 0.5%)
on the FPAA, independent of the number of neurons in the
hidden layer. One the other hand, the software
implementation time is more than 3.6 milliseconds. As a
result, the FPAA implements the neural network more than
1400 times faster than the software implementation. Figure
13 shows the relationship between the software
implementation time and the number of the neurons in the
hidden layer of the network. It is shown that adding neurons
into the hidden layer increases the overall software
implementation time. This is because software instructions
that are executed serially cannot take advantage of the
inherent parallelism of ANN architectures as FPAA does.
Note the experiment results are to qualitatively show how the
implementation time is affected with different neuron
numbers instead of showing the exact functional relationship
between software implementation time and the neuron
numbers. All in all, the FPAA implementation of the neural

network has superior performance over software
implementation.
Software (Intel Celeron 2.0 GHz) E xecution tim e Wersus
Hidden hodes
_ 3780
T 3m0 3760
= 3vss
& 3740 TG
& 3720 L
‘é‘ 3660
= 3650
“ 340 . . .
2 3 4 =
Hidden nodesin the neural network

Figure 13. Neural network execution time by software versus number of
hidden nodes.

V. DISCUSSION ON THE SCALABILITY OF THE STRUCTURE

The structure is scalable for the neural network which has
same number of inputs/outputs and more neurons in the
hidden layer. More summer blocks are required to obtain the
final output. The positions of inverting gain blocks may need
to be adjusted according the signs of the weights. An example
of scaling is shown in Figure 14.

SUmMmer

Figure 14. Scalability of the FPAA based ANN.

VI. CONCLUSION

This paper demonstrates the hardware implementation a
feedforward artificial neural network using low-cost
commercially available FPAA chips. We proposed a
simplified realization for neurons with piecewise linear
activation functions and thereby reduced the complexity of
the neural network architecture correspondingly. Our final
ANN requires only two types of analog function blocks: the
Inverting Gain Amplifier and the Inverting Sum Amplifier.
In this effort, we did not require the many other functional
blocks available on the Anadigm FPAA chip, but these
additional resources can be combined with ANNs for
conventional signal processing at the input or output of an
ANN. The hardware neural network correctly performs a
classification task at the speed of 6.0 MCPS. We used 5 chips
to realize a 2-5-1 ANN, but more complicated network
architectures can be realized by integrating more Anadigm’s
AN221E04 chips. We found that FPAA-based ANNs are
convenient to implement, fast to operate and scalable. We
conclude that the proposed approach to realizing ANNs is
suitable for real time applications.
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