
 
 

 

  

Abstract — This paper presents a method of realizing 
artificial neural networks (ANNs) hardware implementation 
using field programmable analog arrays (FPAAs). A simplified 
realization for neurons with piecewise linear activation 
functions is used to reduce the complexity of the neural network 
architecture. A feedforward neural network is implemented 
using multi-chip FPAAs. Anadigm’s commercially available 
AN221E04 FPAA chips are adopted as the platform for 
simulation and experiments. The FPAA based ANN classifies 
two groups of data with zero error at a speed of 6.0 Million 
Connections Per Second (MCPS). The result is more than 1400 
times faster than software implementation. The ANN 
architecture is also expandable to perform more complicated 
tasks by incorporating more FPAA chips into the 
implementation. The programmability of the FPAA makes 
rapid prototyping possible.   
 
 

Index Terms — field programmable analog arrays, neural 
network hardware, rapid prototyping 

I. INTRODUCTION 
rtificial neural networks (ANNs) have been playing an 
increasingly important role in areas such as robotics [1], 

process control [2-3], and motor fault detection [4-6]. Both 
software and hardware based approaches have been used for 
implementing ANNs. In general, software instructions 
executed serially cannot take advantage of the inherent 
parallelism of ANN architectures. Hardware implementations 
of neural networks promise higher speed operation when they 
can exploit this massive parallelism. Different hardware 
implements of neural network have been reported [7-25]. 
Other than the FPGA based approaches [10, 11, 18, 24], most 
of the hardware implementations provide no 
programmability. Reconfigurability of an ANN is desirable 
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since many ANN applications, e.g., robots performing 
different tasks in different environments may benefit from 
different neural network topologies (e.g., different number of 
hidden nodes). The best choices for neural network 
implementations that achieve both high speed and rapid 
prototyping appear to be programmable hardware approaches 
like field programmable gate arrays (FPGAs) and field 
programmable analog arrays (FPAAs). Compared to digital 
hardware, FPAAs have the advantage of interacting directly 
with the real world because they receive, process, and 
transmit signals totally in the analog domain (without the 
need to do A/D, D/A conversions) and are suitable for real 
time applications. As reported in [26] on controlling a 
path-tracking unmanned ground vehicle, an FPAA can easily 
outperform the digital hardware by processing the signal 
8,000 times faster.  Other FPAA applications, including a 
voltage-to-frequency converter and a Hodgkin-Huxley 
neuron simulator, have been reported [27-28]. 

Section II of this paper proposes a simple realization of 
layered neural networks appropriate for FPAAs. Section III 
applies the neural network architecture simplification method 
to a multi-chip FPAA based neural network to classify the 
elements of a data set containing two groups of data. Section 
IV analyzes the speed performance of the FPAA 
implementing the ANN by comparing it to software 
implementation. Section V gives some concluding remarks. 

II. NEURAL NETWORK ARCHITECTURE SIMPLIFICATION IN 
FPAA 

A. The piecewise linear activation function 
In the ANN, the output of a neuron is computed by 

applying its activation function to a weighted sum of its 
inputs. Some activation functions such as hyperbolic tangent 
and sigmoid are expensive for digital hardware 
implementation. To reduce the cost for implementation, the 
piecewise linear activation function has been used to 
approximate sigmoid activation function [29]. We chose the 
Piecewise Linear (PL) activation function for the neurons in 
the hidden layer of our neural network architecture because it 
is naturally suited for applying FPAA hardware to the 
problem of interest (to be described in later sections).    

A neural network must be trained to reflect or to generalize 
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a desired relationship between inputs and outputs.  During the 
back propagation training process in a neural network, the 
error signal at the output of the neuron j at iteration n (i.e., 
presentation of the nth training example) is defined by  

)()()( nyndne jjj −= ,  (1) 

where )(nd j  is the desired response of neuron j and is used to 

compute )(ne j , )(ny j  is to the function signal appearing 

at the output of neuron j at iteration n. Let ( )•jϕ  be the 

activation function; then the synaptic weight )(nw ji∆  

change is: 
)()()( nynnw ijji ηδ=∆ ,   (2) 

where  

( )( ) ( ) ( )j j j jn e n v nδ ϕ ′= ,  (3) 

is called the local gradient and  η  is the learning rate. In 
equation (3), 
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and jiw denotes the synaptic weight connecting the output 

neuron i ( there are m inputs) to the input of neuron j at 
iteration n. The PL activation function is given by 
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where 1 2[ , ,... ]T d
dx x x R= ∈x is the input vector and 

3
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T Rwwwwww , with 1+=+w  

and 1−=−w , is the parameter vector that characterizes the 
node function. Figure 1 shows the 3D view of input-output 
relationship of a neuron of 2 inputs with piecewise linear 
activation function. 

Although the PL activation function is less popular than the 
hyperbolic tangent activation function, the piecewise nature 
has attractive features such as ease of implementation and 
amenability to VLSI implementation [30-31]. It is also 
simpler to find ( )'jϕ •  in equation (5) since it requires only 

addition, multiplication and comparison operations in 
contrast to the trigonometric function that must be evaluated 
for the hyperbolic tangent function. 

 
Figure 1. The piecewise linear (PL) activation function for [1,1]T =w  in 

two dimensions. 

B. Implementing the PL function on FPAA 
This section develops a realization of the standard PL 

activation function that uses two gain amplifier functional 
blocks. A standard PL function has the following form: 
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   In a FPAA circuit which saturates symmetrically at V+ 
and V-, where 0,0 00 <−=>= −+ VVVV , a standard PL 
activation function can be obtained with two cascade gain 

stages 1G  and 2G  if V0>1, where 01 2
VVVG =

−
= −+  and 

0
2

12
VVV

G =
−

=
−+

 (which will be explained in the 

following paragraphs). Note that the product of 1G  and G2 is 
unity and 21 1 GG >> . 

   Since the circuit saturates at V+ and V-, the relationship 
between input voltage x and output voltage F1(x) of a 
“through” circuit is: 
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   A gain stage 1G  after F1(x) establishes the following 
relationship between the new output F2(x) and x: 
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   Adding another gain stage 2G  after F2(x) gives the 
following relationship between F3(x) and x: 
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   Thus the standard piecewise linear activation function is 
obtained by inserting these two particular gain stages between 
the input and the output of a through circuit. Figure 2 shows 
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the three functions (with using V0 = 2.5).  

 
Figure 2. Obtaining the PL function using two gain stages. 

C. Merging the gain stages of cascade blocks on the FPAA 
As shown in Figures 3 and 4, the neural network can be 

simplified further by merging the two gain blocks 1G  and 

2G  into the input and output weights of the neurons. 1G  

and 2G  form the standard piecewise linear transfer function 
for neuron j. The neural network architecture in Figure 2 can 
be simplified by multiplying every weight of neuron j by 1G  

and multiplying 1kw by 2G  as shown in Figure 3. As a 
result, addition and multiplication are the only two operations 
required for a neural network implementation on the FPAA. 
The addition operation is performed by inverting sum 
amplifier blocks. The weights that a neuron uses to compute 
the weighted sum of its inputs are realized as the gain 
parameters of the inverting sum amplifiers on the FPAA.  
These weights are obtained from an offline training 
procedure using MATLAB/SIMULINK software to 
accurately simulate the network topology and to optimize the 
weights.  The optimal weights are downloaded to the 
Anadigm FPAA chips for the corresponding real-time 
operation, such as controlling a mobile robot or, in this paper, 
classifying data points. 

 
Figure 3. Neural network architecture with unmerged gain blocks. 

 

 
Figure 4. Neural network architecture with merged gain blocks. 

 
   Note that merging 1G  into wji will not change the input 

to 2G  in Figure 3. In the meantime, merging 2G  into wk1 
will not change the input to the summing junction of kth 
neuron. The merging procedure for 1G  implemented in 
FPAA is depicted in Figure 5. The circuits shown reflexes the 
FPAA circuits except that resistors are replaced by equivalent 
switched capacitors and signals are differential inside the 
actual FPAA. The top circuit is the one before merging and 
the bottom one is after merging.  

   This section explains why voltage saturation at the upper 
and lower limits of circuit does not invalidate our merging 
simplification. In the circuits shown in Figure 5, 1G  is equal 
to 4/5 RR . In all cases the output of the Op Amps saturates at 

0v±  (the Op Amps are assumed to be ideal). 
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Figure 5. Simplifying the FPAA circuit by merging G1 into the inverting 

sum amplifier. 
 
   The output Vout1 of the circuit with unmerged gain blocks 

is  
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   The output Vout2 of the circuit with merged gain blocks is 
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are equivalent. 
 
  Similar proof can be applied to the merging of G2 into the 

subsequent functional blocks of the FPAA. 

III. MULTI-CHIP FPAA BASED NEURAL NETWORK 
CLASSIFYING 2 GROUPS OF DATA 

A. The two classes of data 
The 8-point version of the “alternate labels” problem [32] 

is chosen to demonstrate the speed advantage of using FPAA 
implementation. The problem has two classes of data points. 
Let the two class be A and B. Each class has 4 data points 
alternating with the 4 data points of the other group in two 
dimensions. Each data point is represented in the usual way as 
an ordered pair of numbers as shown in Figure 6; we call the 
elements of the nth pair xn and yn (n = 1, 2, …, 8). All 8 data 
points have the same the y values thus y1 = y2 = …= y8. “a” 
(represented by squares) and “b” (represented by circles) are 
two different real numbers representing the two classes. 
Without loss of generality, we can assume that the interval 
between successive xn’s is constant, say 0.4, and that the 
values of all yn are the same, say 1.0, as shown in Table I.  A 
feedforward neural network with several neurons in the 
hidden layer can generate the decision boundaries.  

Figure 6. Seven decision boundaries separating 8 data points of 2 classes. 
 

B. Classifying the two groups of data 
Table I shows the input and output values of the 8 data 

points used in our simulation and experiment. 
 

TABLE I.  
 TWO CLASSES OF DATA: CLASS A = 0 AND CLASS B = 1. 

Input x 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 
Input y 1 1 1 1 1 1 1 1 
Output z 0 1 0 1 0 1 0 1 

The neural network needs to implicitly generate the desired 
decision boundaries based the input data pairs in order to 
make proper classification. To classify these 8 data points, a 
2-5-1 neural network is trained using the training data in 
Table I in MATLAB to obtain the weights. The neural 
network has 5 neurons in the hidden layer which has the PL 
activation functions and one output neuron to construct a 
linear combination of the outputs of the 5 hidden neurons. 
Before the neural network is mapped onto the FPAA, it is 
simulated in MATLAB/SIMULINK to verify the separation 
capabilities of the network. As a result, the neural network 
achieves 100 percent classification accuracy as shown in 
Figure 7 with the output (z) threshold chosen to be 0.5.  

 
 Figure 7. The output of the trained neural network view in x-z plane at 

y=1. 
(Simulated in MATLAB/SIMULINK from the MathWorks, Natick, MA, 

USA) 

C. Simulation and experimental results 

In this section we map the trained neural network onto the 
FPAA devices. The FPAA used in our simulation and 
experiments is the AN221E04 from Anadigm Inc. The 
AN221E04 is a dynamically reconfigurable analog chip 
composed of op-amps, comparators and switched 
programmable capacitors. FPAA technology enables 
rapid-prototyping of analog circuits by programming the 
configurable analog modules supported by the chip, such as 
gain blocks, inverters, summing inverters, adders, multipliers, 
integrators, quadratic/linear analog filter blocks, and sine 
wave generators. With the aid of design software 
AnadigmDesigner 2, the FPAA can translate complex analog 
circuits into the simple set of system/block level design 
instead of transistor level design, and thus gives designers the 
analog equivalent of an FPGA. Moreover, it places analog 
functions under real-time software control within the system. 

The 2-5-1 neural network with parameters obtained by the 
MATLAB/SIMULINK model was mapped onto the FPAA 
programmed using only Inverting Gain Amplifier functional 
blocks (represented by “Inv G” in the Figure) and Inverting 
Sum Amplifier functional blocks (represented by “Inv Sum” 
in Figure 8). The element “b” in the figure is the trained bias 
input for each neuron. We programmed the Inverting Sum 
Amplifier to accept at most 3 inputs; and several of the 
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Inverting Sum Amplifiers are cascaded between the hidden 
layer and the output layer to realize the sum operation for the 
output neuron. The accumulated sign-flips of Inverting Gain 
Amplifiers are correctly accounted for by additional 
inversions when necessary. For example, in Figure 8, the 
trained weight for the Y input to the first neuron in the hidden 
layer has the negative sign but there are 4 Inverting Sum 
Amplifiers between the input Y and the final output which 
provides a positive sign; thus an Inverting Gain Amplifier is 
needed in the signal path to generate the negative sign. The 
exact location of the Inverting Gain Amplifier in the signal 
path is chosen based on the available programming resources 
of each chip.  

 
Figure 8. Constructing a 2-5-1 neural network using configurable analog 

modules of the FPAA. 
    

Five AN221E04 chips are integrated together to realize the 
2-5-1 neural network as shown in Figure 9. The network is 
decomposed into five modules as shown in Figure 8 and each 
module is encapsulated in one chip. The simulation result 
using AnadigmDesigner 2 is shown in Figure 10. Input Y is a 
test signal of 1v constant voltage and Input X is the triangular 
voltage input peaking at 3v. Setting the output threshold at 
0.5v, the network classifies the data with 100% accuracy. The 
experimental result showing more details of the classification 
is shown in Figure 11, which is the oscilloscope screen shot 
of the experiment result. 

 

Figure 9. The multi-chip FPAA based neural network programmed using 
software AnadigmDesigner 2. 

Figure 10. The simulation results of neural network classifying two classes of 
data. 

Figure 11. Experimental results of neural network classifying two classes of 
data. 

   As shown in Figure 11, the neural network trained from a 
2-5-1 neural network separates the two classes of data into 2 
regions and makes correct classifications of all data points 
with the threshold chosen to be 0.5v. We would also like to 
evaluate the speed performance for our multi-chip neural 
network using the standard neural network hardware 
measuring criteria: Millions of Connections Per Second 
(MCPS) [33]. The measured delay from the network input to 
the network output is 2.5 microseconds and there are 15 
connections, yielding 6.0 MCPS in actual measured speed 
performance. Figure 12 shows the 5 FPAA evaluation boards 
for the experiments. 

 
Figure 12. The five FPAA evaluation boards for the experiment 
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IV. ANALYSIS OF SPEED PERFORMANCE 
To compare the speed performance of neural network 

implementation using FPAA to the software implementation 
(MATLAB on an Intel Celeron 2 GHz machine), neural 
networks with 4 architectures: 2-2-1, 2-3-1, 2-4-1 and 2-5-1 
are implemented using both FPAA and the software. The 
measured implementation time of the neural network (time 
delay from the input to the output of the network) of all four 
architectures is 2.5 microseconds (error bound is below 0.5%) 
on the FPAA, independent of the number of neurons in the 
hidden layer. One the other hand, the software 
implementation time is more than 3.6 milliseconds. As a 
result, the FPAA implements the neural network more than 
1400 times faster than the software implementation. Figure 
13 shows the relationship between the software 
implementation time and the number of the neurons in the 
hidden layer of the network. It is shown that adding neurons 
into the hidden layer increases the overall software 
implementation time. This is because software instructions 
that are executed serially cannot take advantage of the 
inherent parallelism of ANN architectures as FPAA does. 
Note the experiment results are to qualitatively show how the 
implementation time is affected with different neuron 
numbers instead of showing the exact functional relationship 
between software implementation time and the neuron 
numbers. All in all, the FPAA implementation of the neural 
network has superior performance over software 
implementation. 
 

Figure 13. Neural network execution time by software versus number of 
hidden nodes. 

V. DISCUSSION ON THE SCALABILITY OF THE STRUCTURE 

The structure is scalable for the neural network which has 
same number of inputs/outputs and more neurons in the 
hidden layer. More summer blocks are required to obtain the 
final output. The positions of inverting gain blocks may need 
to be adjusted according the signs of the weights. An example 
of scaling is shown in Figure 14.  

 
Figure 14. Scalability of the FPAA based ANN. 

VI. CONCLUSION 
This paper demonstrates the hardware implementation a 

feedforward artificial neural network using low-cost 
commercially available FPAA chips.  We proposed a 
simplified realization for neurons with piecewise linear 
activation functions and thereby reduced the complexity of 
the neural network architecture correspondingly. Our final 
ANN requires only two types of analog function blocks: the 
Inverting Gain Amplifier and the Inverting Sum Amplifier.  
In this effort, we did not require the many other functional 
blocks available on the Anadigm FPAA chip, but these 
additional resources can be combined with ANNs for 
conventional signal processing at the input or output of an 
ANN. The hardware neural network correctly performs a 
classification task at the speed of 6.0 MCPS. We used 5 chips 
to realize a 2-5-1 ANN, but more complicated network 
architectures can be realized by integrating more Anadigm’s 
AN221E04 chips. We found that FPAA-based ANNs are 
convenient to implement, fast to operate and scalable. We 
conclude that the proposed approach to realizing ANNs is 
suitable for real time applications.  
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