Analog Hardware Implementation of the Random Neural Network
Model

Hossam Abdelbaki, Erol Gelenbe Said E. El-Khamy
School of Computer Science Department of Electrical Engineering
University of Central Florida Alexandria University
Orlando, FL 32816 Alexandria, Egypt, 21544
{ahossam, erol}@cs.ucf.edu elkhamy@alex.eun.eg
Abstract

This paper presents a simple continuous analog hardware realization of the Random Neural Network (RNN)
model. The proposed circuit uses the general principles resulting from the understanding of the basic properties
of the firing neuron. The circuit for the neuron model consists only of operational amplifiers, transistors, and
resistors, which makes it candidate for VLSI implementation of random neural networks with feedforward or
recurrent structures. Although the literature is rich with various methods for implementing the different neural
networks structures, the proposed implementation is very simple and can be built using discrete integrated
circuits for problems that need a small number of neurons. A software package, RNNSIM, has been developed
to train the RNN model and supply the network parameters which can be mapped to the hardware structure.
As an assessment on the proposed circuit, a simple neural network mapping function has been designed and
simulated using PSpice.

1 Introduction

One interesting feature of neural networks is that complex tasks like pattern recognition can be performed more
rapidly by animals than by large digital computers even though the processes in digital computers are much faster
than the ionic processes occurring in neural networks. There are three main approaches to perform real-life neural
computations. The first one is the software simulation using sequential computers, the second approach is the
parallel computation using multiprocessor system, and the third is the realization of the network in hardware using
special purpose digital or analog components. The first alternative at present is the most easily accessible because
of the availability of personal computers and developing software tools. Since software programs are designed to
run on single processor computer, this approach contradicts the basic principle of neural network, which lies in its
massive parallelism. In the second approach, a neural network can be emulated by a very large number of simple
processing elements, popular examples are networks of transputers. However, most of the current work involving
parallel processing maintains synchrony by means of a system clock while synchrony is absent from neuron spike
trains in various neural networks. The absence of clocking in neural networks reflects the fact that coding of
information is different from information coding in digital computers. Finally, the designer has to decide between
analog and digital implementation.

The random neural network [1, 2] is a biologically inspired spiked model which differs substantially from existing
deterministic models such as the MLP. The network has a compact closed form solution for network state even
in the recurrent case, this in turn yields efficient numerical algorithms. Typically, a spiked stochastic model will
include some internal representation of each neuron’s state and a probabilistic representation of successive firing
times as a function of state; additionally, rules need to be given about the manner in which the internal state changes
after firing. In this model, the internal state is a nonnegative integer; it rises or falls depending on the excitatory
or inhibitory nature of incoming spikes, and it drops each time the neuron fires. Interfiring are exponentially
distributed. This is a recurrent network model which may have feedback loops of arbitrary topology. The general
training algorithm was presented in [3]. By appropriately mapping external signals and neuron states into certain
physical quantities, the RNN has been successfully applied to several engineering problems [5, 6, 8]

197
0-7695-0619-4/00 $10.00 © 2000 IEEE

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:52:28 UTC from IEEE Xplore. Restrictions apply.

mailto:erol}@cs.ucf.edu

In [4], a digital neuron realization for the RNN has been proposed using discrete logic integrated circuits.
Although that implementation represents clearly the firing mechanism in the RNN neuron, it is so complex to be
built and maintain the synchronization between the different parts of the design. Also, it is dealing with only digital
signals. As it turns out, neural networks by their nature tend to favor the analog approach. In this paper, a simple
analog implementation of the RNN neuron is proposed. This approach needs only the addition and multiplication
operations and for small networks, it can be built with off-the-shelf components. It should be noted here that both
the digital implementation and the proposed analog implementation suppose that the network has been trained off
line using a software program [9] and after convergence, the parameters resulted from the training process are fed
to the model.

The Sections of this paper are organized as follows. Section 2 presents the proposed neuron analog implemen-
tation. In Section 3, a PSpice simulation is carried out to illustrate how the neuron model can be used in a simple
mapping network. Finally, Section 4 gives the conclusions.

2 Analog Modeling of the RNN neuron

Recalling the basic equations of the RNN model from [1, 3] we have:

A
q; = R (1)
where the A} and A;, for i = 1,...,n satisfy the system of non-linear simultaneous equations:
n n
A=A+ gu, AT =N+ Y qwy, (2)
i=1 j=1
n
ri= Y wh+wj (3)
j=1

where g; is the output of neuron ¢ and w* and w™ are the excitatory and inhibitory weights respectively. It is
obvious from the equations that modeling the RNN neuron requires only the addition, multiplication, and division
(subtraction is not needed since all the external and internal quantities involved with the model are positive floating
point numbers). Assuming that the network training has been completed successfully using a computer program,
the resulting inhibitory and excitatory weight matrices can be used to design and implement the network under
consideration. For illustrating the proposed neuron model, a recurrent network consisting of three neurons will be
considered. Figure 1 shows the internal structure of neuron 1 which can be connected in general to the other two
neurons with feedback weights.

The operational amplifier U1C accepts the external inhibitory input A; (lambdasl in the Figure), the outputs
of the other neurons ¢; and gz, and the firing rate ;. ¢ is connected via the inhibitory weight ws; (wm21 in the
Figure), similarly, g3 is connected via the weight w3; (wm31 in the Figure). The rate r; is calculated from the
weights using Equation 3 and its value is represented by the fixed voltage given by V1. The inverted sum output
appears at node 8 of U1C. UlD acts as an unity gain inverting buffer so that it produces A at pin 7 as given in
Equation 2.

In a similar manner, U1C and U1D act as a non inverting summing circuit for the external excitatory input A,
(LAMBDACI in the Figure) and the weighted outputs from the other two neurons. The output at pin 7 of U1B
represents /\;r as given in Equation 2. It should be noted here that every weight is inversely proportional to its
corresponding resistor. As an example, if w;; = 0.5 then, the resistor wm21 will be equal to 10/0.5 = 20K and if
w3, = 0, the resistor wp31 should be ideally an open circuit and in the design, we represent the open circuit with
a relatively large resistance value such as 1 Meg Ohms. The resistors representing the weights and the voltages
representing the rates are expressed as symbolic variables. When using the neuron model in a certain RNN, the
weights and rates under consideration will be passed to the model. This modular design facilitate using the same
neuron model in different RNN structures.

IC U2 acts with the matched transistors as a log - antilog multiplier/divider circuit which can be used to divide
the output of U1B by the output of U1D. The output at pin 14 of U2D represents the output g; of the neuron as

198

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:52:28 UTC from IEEE Xplore. Restrictions apply.

given in Equation 1. Several commercial multipliers such as M PY 100 can also be used as reliable multipliers and
dividers which may help when building networks with small number of neurons.

o1
VEE vee
Q2N22222
X R Qe
l Aw vee O
- V4 W =
v = - 0 a
v
R8 } TLOGE/MC
ANA
Wy
< = 10K R10
° VEE AN
~N 10K
N4
LAMBDACL R wee
Q2
10K Q2M2222A
a2 2
Wy
Gup21
Q@ R
Wy
Swp3l
<
R9
A
WA~
10K Q4
VEE Q2N2222R
lambdasi R4 1
> AN 3 \ TLOGA/MC
10K
RS ou !
AMA
o > R12
va:é vic AN~ 13 f\i TLO64/MC
10K
A ob
@um31 2
" vee -
R7
Ve e vio]
I <0
art 10K
=, 2
= ° vée
0

Figure 1: The proposed analog circuit for a single RNN neuron.

3 Simulation Results

To test the proposed neuron model, a mapping RNN with three neurons is simulated. This simple network accepts
the signal z at its input and produces (—1_:7)5, 0 < x <1, at its output. Although the function to be mapped is
simple, it can be proved that the generalization of this network to calculate —HIT),, and 5%, v > 0, can be used
to approximate any continuous multi variables function ([7], Theorem 5). From ([7] Lemma 2), we can calculate
the network weights and rates as shown in Figure 2. Figure 3 illustrates the PSpice model of the mapping RNN.

Ap =
Ao =

Ag 0.0
A3 0.0

Wi

.5
.0

o

Figure 2: Simple mapping RNN.

199

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:52:28 UTC from IEEE Xplore. Restrictions apply.

ol

LAMBDAC2 LAMBDAC3

>
lanbdas2 / lambdas3 »
a2 q3

ql q1

VOFF = 0.5
VAMPL = O.
FREQ = 1k

a3 q2
neuronz

neuronl neuron)

wp21 =1MBG wpl2 =1MEG wpl3 SIMEG
wm2l =1MEG wml2 = 20k wmi3 = 20K
wpdl =1MEG wp32 =IMEG wp23 = 20K
wm3l =1MEG wm32 =1MEG wm23 = 1MEG

rt =1 r2 = 0.5 r3 = 0.5

Figure 3: PSpice model for the mapping RNN.

Each of the three neuron modules represents the analog circuit shown in Figure 1 The parameters corresponding
to each neuron (external inputs, rate, and weights to other neurons) are passed from the neuron module to the
actual circuit. The network is driven by a 1KHz sine wave source with peak to peak value of 1V and offset of 0.5V.
Although the network of Figure 2 is feed forward, the corresponding PSpice representation, as shown in Figure
3, is drawn as a recurrent network by taking care of the connection weights. For example, the output of neuron
3, g3, is connected to the g3 input of neuron 1 by the weights wp3l = wm31 = 1 Meg Ohms (or equivalently
w3, = w3; ~ 0). The output of each of the three neuron modules is shown in Figure 4.

In the given example the network parameters were calculated from the understanding of the network function
but for large problems, training can be applied to obtain the values of the weights and rates [9], after that the
model can be built and simulated using the individual neuron modules.

PSpice gimulation

+ Vimoduled:gl)

c Vimoduled:q2)

[

ov

T
os 0.5ms 1.0ms 1.5ms 2.0ms 2.5ms 3.0ms 3.5ms 4.0ms 4.5ms 5.0ms
o Vimoduled:q3)

Figure 4: Simulation results for the mapping network.

200

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:52:28 UTC from IEEE Xplore. Restrictions apply.

4 Conclusion

In this paper, an analog circuit implementation for the random neural network is proposed and simulated using
common operational amplifiers and transistors. It is worthy to point out that the implementation using these
inexpensive discrete components, allows a convenient way to construct a prototype circuit to test the functionality
of the neural network under consideration. In this work, verification of the implemented analog circuit has been
proceeded using the PSpice circuit simulator. Given a specific application, the design using discrete components
can be mapped directly to VLSI design. The discrete component design offers high flexibility, low productivity,
large circuit area, high power consumption, and it can be used only for prototyping purposes. On the other hand,
the VLSI approach offers low flexibility, high productivity, very small circuit area, low power consumption, and it
can be used only for practical applications. This hardware realization brings the theoretical model into the practical
applications. Although the proposed neuron design does not represent the transient response of the RNN neuron,
it implements successfully its steady state behavior. One drawback of the hardware model is that it is incapable
of on line training and weights update, but in the majority of practical problems, the training phase needs to be
carried out off line using a dedicated software that runs on a computer [9] and after training, the final network
parameters can be mapped directly into physical hardware components.

References

{1] E. Gelenbe, “Random neural networks with negative and positive signals and product form solution,” Neural
Computation, vol. 1, no. 4, pp. 502-511, 1989.

[2] E. Gelenbe, “Stability of the random neural network model,” Neural Computation, vol. 2, no. 2, pp. 239-247,
1990.

[3] E. Gelenbe, “Learning in the recurrent random neural network,” Neural Computation, vol. 5, no. 1, pp.
154-164, 1993.

[4] C. Cerkez, I. Aybay, and U. Halici, “A digital neuron realization for the random neural network model,”
Proceedings of the International Conference on Neural Networks, Huston, pp.1000-1004, 1997.

[5] V. Atalay and E. Gelenbe, and N. Yalabik, “The random neural network model for texture generation,”
International Journal of Pattern Recognition and Artificial Intelligence, vol. 6, no. 1, pp. 131-141, 1992.

[6] C. Cramer, E. Gelenbe, and H. Bakircioglu, “Low bit rate video compression with neural networks and
temporal sampling,” Proceedings of the IEEE, vol. 84, no. 10, pp. 1529-1543, October 1996.

(7] E. Gelenbe, Z. H. Mao, and Y. D. Li, “Function approximation with spiked random networks,” IEEE Trans.
on Neural Networks, vol. 10, no. 1, pp. 3-9, 1999.

[8] H. Abdelbaki, E. Gelenbe, and S. El-Khamy, “Random neural network decoder for error correcting codes,”
Proceedings of the International Joint Conference on Neural Networks, Washington, DC, July, 1999.

[9] H. M. Abdelbaki, Random Neural Network Simulator (RNNSIM) v.2, Free simulator available at
ftp://ftp.mathworks.com/pub/contrib/v5/nnet /rnnsimv2.

201

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:52:28 UTC from IEEE Xplore. Restrictions apply.

ftp://ftp.mathworks.com/pub/contrib/v5/nnet

