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Abstract 

Subthreshold analog circuits for MOS implementation of artificial neural networks are 
presented with on-chip learning capability. Each synapse circuits consist of a storage 
capacitor and 3 analog multiplier, i.e. one for signal feed-forward, one for outer-product 
synaptic weight adjustments, and one for error back-propagation. While all the 3 multipliers 
are used for error back-propagation learning, only the first 2 multipliers are used for Hebbian 
learning. Each neuron circuits are composed of a sigmoid circuit and a sigmoid derivative 
circuit, which show near ideal sigmoid characteristics and provide external gain-control 
capability. All the circuits incorporate modular architecture, and are designed to increase 
numbers of neurons and layers with multiple chips. Also the subthreshold operation provides 
low power consumption and large scale implementation. 

Introduction 

Although neural networks is capable of solving complicated pattern recognition and 
adaptive control problems, special hardwares are required to fully utilize its inherent massive 
paralellism. There have been two approaches on neural hardware developments, with and 
without on-chip learning capability. The first approach usually assumes that adaptive 
learning has been done by other hardwares, probably by convcmtional von Neumann 
computers. However the training of neural networks for very complicated applications with 
large number of neurons, where neural networks has potential advantages over conventional 
algorithms and special hardwares are worthwhile to build, requires enormous computational 
capability and there exists no other hardware available. There have been approaches to use 
conventional hardwares for calculation of the synaptic weight adjustments while the neural 
hardwares perform signal feed-forward and possibly error back-propagation. However 
computational requirement for the calculation of synaptic weight adjustment is of the same 
order with that of signal feed-forward or error back-propagation, and the neural hardwares 
can not improve the overall training speed much. Neural hardwares with on-chip learning 
capability is essential for practical large-scale implementations. 

Recently several attempts have been made to put on-chip lesu-ning capability on the 
neural hardwares. Both digital and analog circuits have been developed. For high density 
and speed we use analog circuits. However, unlike other developments [ll, subthreshold 
operation on MOS circuits is utilized to provide low power consumption and higher density 
synapses. Also outer-product learning algorithm is chosen for popular error back-propagation 
and Hebbian learning rules. Without time-multiplexing implementable number of neurons on 
a chip is always limited by numbers of pads and package pins, and modular achitecture is 
required to provide capability to make larger systems with multiple chiips. In this paper we 
present a modular analog new-chip with subthreshold operation and outer-product learning. 

System Architecture and Circuits 

As shown in Fig.l(a), 
each synapse is composed of a voltage storage device and 3 analog multipliers, one for signal 
feed-forward, one for outer-products for calculation of synaptic weight adjustments, and one 
for error back-propagation. For neural network models with error minimizing learning 
algorithms such as (multilayer) Perceptron the outer products are done between input neural 
activation and output mors. For Hebbian neural net”rk2 with unsupervised learning 

Two basic components of our neuro-chip is shown in Fig.1. 
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algorithms the outer products are done between neural activations of both input and output 
layers. Each neuron in Fig.l(b) consists of a sigmoid circuit, sigmoid derivative circuit, and 
an analog multiplier. The multiplier is used to get multiplication of the back-propagated 
error and sigmoid derivatives. 

In synaptic circuits signals are coded as differential currents, which offer high dynamic 
range and common-mode noise immunity. The analog multipliers are based on four-quadrant 
Gilbert multipliers with differential input and output currents. [2,31 However synaptic weight 
is represented as node voltage and adjusted by currents during learning. Capacitors are 
selected as synaptic weight storage device for easy fabrication. Charge loss due to leakage 
currents may be considered as a part of continuous learning, or should be compensated by 
periodic refreshing, 

4 

Fig.1 Basic components of the neuro-chip. (a) synapse; (b) neuron 

Current outputs from the synapses are summed at the input node of corresponding 
neuron circuits. The range of this summed currents depends upon number of connected 
neurons through synapses, and need to be scaled to a fixed value for modular architectures 
with possibly variable number of neurons by multiple chips. A scaling circuit is shown in 
F ig2  The differential output currents of each synapse satisfies i; + ij'= Ib and i; - ij = Wj X i .  

By the principle of translinear array normalizer E41 I; and I; in Fig2 are given as 

Fig2 Scaling circuits 
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Fig.3 Current-to-voltage converter 
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Since the inputs of the neuron circuits in Fig.l(b) are differential voltages, the current 
As shown in outputs of the scaling circuits should be converted to differential voltages. 

Fig.3, provided I,>>i' and I,>>i- were satisfied, the output differential voltage becomes 

Unlike the other circuits this converter circuit is biased to saturation region, and the currents 
magnitute conditions are easily satisfied. As shown in Eq.(2) thie converted voltage is 
inversely proportional to the current I,, and provides a way to effectively control gain of the 
sigmoid function. 

The circuits for the sigmoid function and its derivative are shown in Figs. 4 and 5, 
respectively. Both circuits provide hyperbolic tangent and its derivative up to the first order 
approximation [2,51, and their characteristics are shown in Figs. 6 anid 7. Several lines in 
Fig.6 show sigmoid functions with different gains controlled by I , .  
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Fig.4 Circuit for the sigmoid function Fig.5 Circuit for derivatives of the sigmoid function 
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Fig.6 Characteristics of the circuit in Fig.4 Fig.7 Characteristics; of the circuit in Fig.5 

By constructing a board with multiple chips one can easily increase number of neurons 
and number of layers. To train multilayer Perceptron one just apply input and target 
patterns. Signal feed-forward, error back-propagation, and weight adjustments all can be 
done asynchronously. For unsupervised learning models based on Hebbian learning rule only 
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the input patterns need to be applied. 
synchronous control may be necessary to apply input (and target) patterns one by one. 

Although the circuits operate asynchronously, external 

Adaptive Learning Eweriment 

To show the learning capability the circuits are trained for the XOR pattern classifier. 
Transient SPICE analysis is used for this experiment, and the results are shown in Figs. 8 
and 9. Evolution of the 3 synaptic weight values are plotted in Fig.8, and output error in 
Fig.9. Both fgures clearly show adaptive learning of the circuits. 

iteration 

Fig.8 3 synaptic weights vs. learning epoch Fig.9 Error vs. learning epoch 

Conclusion 

In this paper we presented an on-chip learning circuit with error back-propagation or 
Hebbian learning. Due to subthreshold operation of the MOS circuits it consumes much 
lower power. Also its design is based on modular architecture with scaling circuits, which 
provides a capability to construct very complicated systems with multiple chips. The 
sigmoid function and its derivatives are implemented up to the first order approximation. 
Transient SPICE simulation for the XOR learning is presented, and results of the actual chip 
and board will be reported at the conference. 

Acknowledgement: This research was supported by Korean Ministry of Science and 
Technology through KAIST as an Advanced Essential Technology Project. 

References 

T. Shima, T. Kimura, Y. Kamatani, T. Itakura, Y. Fujita, and T. Iida, ”Neuro Chips with 
On-Chip Back-Propagation and/or Hebbian Learning,” IEEE J. Solid State Circuits, vol.27, 
no.12, 1992. 
C.A. Mead, Analog VLSI and Neural Systems, Addison-Wesley, Reading, 1989. 
M.H. &hen and A.G. Andreou, “Current-Mode Subthreshold MOS Implementation of the 
Herault- Jutten Autoadaptive Network,” IEEE J. Solid State Circuits, vo1.27, no.5, 1992. 
B. Gilbert, ”A Monolithic 16-channel Analog Array Normalizer,” IEEE J. Solid State 
Circuits, vol. SC-19, pp. 956-963, 1984. 
T. Delbruck, ”Bump Circuits for Computing Similarity and Dissimilarity of Analog 
Voltages,” I JCNN, 1991. 

852 

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:54:26 UTC from IEEE Xplore.  Restrictions apply. 


