Proceedings of the Fifth International Conference on Machine Learning and Cybernetics, Dalian, 13-16 August 2006

ANALOG CIRCUIT DESIGN AUTOMATION USING NEURAL
NETWORK-BASED TWO-LEVEL GENETIC PROGRAMMING

FENG WANG"?, YUAN-XIANG LI’

IDepartment of Computer Science, Wuhan University, Wuhan, 430072, China
“State Key Lab of Software Engineering, Wuhan University, Wuhan, 430072, China
E-MAIL: wangfengwhu@hotmail.com, yxli@whu.edu.cn

Abstract:

The design of analog circuits starts with a high-level
statement of the circuit’s desired behavior and requires
creating a circuit that satisfies the specified design goals. The
difficulty of the problem of analog circuit design is well known,
and there is no previously known general automated
technique to design an analog circuit from a high-level
statement of the circuit’s desired behavior. This paper
proposes a two-layer evolutionary scheme based on Genetic
Programming (GP) and Neural Network (NN), which uses a
divide-and-conquer approach to design the analog circuits.
Corresponding to the NN-TLGP, a new representation of
circuit has been proposed here and it is more helpful to
generate expectant circuit graphs. This algorithm can perform
the circuits with dynamical size, circuit topology, and
component values. The experimental results on the two design
work show that this algorithm is efficient.

Keywords:
Evolutionary computation; two-level
programming; evolvable hardware; neural network

genetic

1. Introduction

Analog circuit design (ACD) plays an important role
in electronic systems. The techniques for automating analog
circuit design appeared about twenty years ago. By far,
some techniques from intelligent computation, such as the
(NN) have been under studying, and these techniques are
indeed helpful to solve some complex problems [1,2]. Due
to the complexity of the problem, it is very difficult to
design the NN by the conventional methods. While the
distribution of the processing cells of networks is more
complex, it becomes more unfeasible to certify the main
parameters of the NN, including the number of layers, the
number of the cells of each layer and the interactions
among the layers.

Meanwhile, much progression has been made in
automating analog circuit synthesis using optimization
algorithms [3,4]. Some researchers have used the

1-4244-0060-0/06/$20.00 ©2006 IEEE

evolutionary computation, such as the genetic algorithms
(GAs), to automate the NN design of circuits [5]. However,
if the evolving size of the circuit is larger, the evaluation
time is longer consequently. It will affect the efficiency of
the generation of the good circuits. When a neural network
uses a genetic algorithm for training, there is an increase in
computational time, but compared with simple gradient
descent, optimization does not fall into local minimum and
be more accurate in prediction.

In this paper, we propose a NN-TLGP scheme to
design the analog circuits. This scheme which used a
divide-and-conquer approach is a marriage of Genetic
Programming and Neural Network. Section two
concentrates on how the hybrid scheme is applied to
generate common analog circuits, especially on how to
select component values and topology sizes for a given
circuit topology. Section three describes the operations of
the design work. The fitness function is given in section
four. Section five describes two specific applications of the
NN-TLGP scheme with the results and the analyses of them.
Conclusions and plans for the future work are given in
Section six.

2. Neural Network-Based Two-level Genetic
Programming (NN-TLGP)

2.1. Basic Ideas of NN-TLGP

Based on the common GP, we employ a
divide-and-conquer approach [6] to make the -circuit
divided into two levels before evolving, and name this new
method NN-TLGP. The first level is neural network level,
and the second level is the neuron level. In this way, we can
make sure that, while the size of the circuit and its
population become larger, the actual evolving size of the
circuit’s representation and the evolutionary computation
will increase to a lower extent compared to the original
method.

2087

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:54:26 UTC from IEEE Xplore. Restrictions apply.

Proceedings of the Fifth International Conference on Machine Learning and Cybernetics, Dalian, 13-16 August 2006

2.1.1. Neural Network Level

At the beginning of the evolution, we divide the circuit
into different parts according to the sub-functions of the
circuits. After the process of defining the structures of each
neuron to be evolved in the neuron layer, these small
neurons can be connected by some links to form a graph as
the original circuit. All the links in a neural network can be
seen as a linking method at one time. Both the separate
physical component and the small sub-circuit neuron can be
described as a node which represents a logic function set.
These nodes are connected by the linking methods. Those
different linking methods can be trained by the
corresponding training algorithm to form a higher level
topology, and we call each topology a neural network. Once
a fully connected neural network is trained, its weight can
be obtained. That’s to say, if the neurons’ structure is
defined, we can get a more suitable circuit (evaluating by
its fitness) by training the linking methods.

2.1.2. Neuron Level

As we mentioned above, in the circuit design, we
divide the circuit into different parts according to the
sub-functions of the circuits, each sub-function can be seen
as a neuron in a neural network. After encoding each
neuron into a genetic tree, we create more trees to make
every neuron into a small genetic tree population by the
three main operators of GP in the neurons during the
circuit’s evolution. Each individual as a genetic tree stands
for a smaller specific circuit in the population of genetic
trees. Each neuron is evolved according to its own function
and has only one function tree called the main tree. That
means the only output of one neuron is the root node of the
main tree. Neurons are connected by making the output(s)
of one neuron be the input(s) of other neuron(s). In an
analog circuit evolving task, each node can be replaced by
R (resistor), C (capacitor), L (inductor), or transistor
configuration, which can be evolved by the three main
operators of GP during the neuron’s evolution.

As the NN-TLGP scheme mentioned above, an
overview of the analog circuit design process is depicted in
Figure 1.

Circuit Encoding

d

Neuron Evolution

v

Neural Network Training

v

Circuit Simulation and Evaluation

v

Fitness calculation and assignment

Figure 1. Overview of circuit design process
2.2. Circuit Representation and Encoding

One of the most important aspects of Genetic
Programming is the strategy of encoding a solution. The
encoding methods can directly affect the ability of the
iterative process to converge on an appropriate solution. For
a n-component circuit, a reasonable upper bound would be
O(n). Because of the direct relationship between the
evolvable hardware’s population size and the chromosomes’
length, it is very important to shorten the length of the
chromosomes. We also designed an encoding scheme base
on our NN-TLGP. The encoding scheme can be described
as two parts, one is the neural network encoding which
aims at the structure of the circuit. The other is the neuron
encoding which aims at the parameters of the circuit. The
scheme can easily reduce the evolvable circuit’s size to a
much smaller one than it was before.

N

—_—

Input. layer Hidden layers

Output layer

Figure 2. Neural network stucture representation

Figure 2 depicts the structure of a neural network in
our NN-TLGP, each node which represents a neuron was

2088

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:54:26 UTC from IEEE Xplore. Restrictions apply.

Proceedings of the Fifth International Conference on Machine Learning and Cybernetics, Dalian, 13-16 August 2006

connected to form a whole circuit. The nodes are connected
by the linking methods, which would be trained during the
neural network training process. Each node can be
described in a netlist file as: [NodeName: linking methodl,

valuel; linking method2, value 2; ...; linking method n,
value n].
Hewron 5
11 = inductor;
12 = capacitor;
13 = resisztor;
14 = dinode;
Heuron 1 15 = audion;
Heuron 2

External points : O
Internal points : 1,2,3

Figure 3. Neuron representation

Figure 3 depicts an example of the common emitter
amplifier circuit. In this example, the chromosome consists
of two genes. The genes determine the type, values of the
physical characters of the component and links between the
related components. The links are connected by the
connecting points which are also the inputs or outputs of
modules. Each connecting point may be classified as
internal or external. While the former does not serve for any
special purpose, the latter is connected to one of the
following signals: power supply, ground, input signal or
probed output. Supposing we divide the whole circuit into
several parts, each of which is a neuron. The graph we have
shown above is a part of one circuit, which is called neuron
2, and it connects to neuron 1, neuron 3 and ground. So the
resistor R1 and R2 can be represented separately as [(2, 3),
(13, 10Q)] and [(1, 2), (13, 10Q)], while the transistor can
be represented as [(0, 1, 2), (15, -)].

3. Operations of NN-TLGP
3.1. Neural Network Training

Neural networks have an advantage over conventional
technologies because they can solve complex problems that
do not have algorithmic solution or for which an
algorithmic solution is too complex to be found. NNs are
trained by example instead of rules and are automated.
When used in the analog circuit design, they are capable of
rapid identification, analysis in real time.

The most widely used architecture of an NN is that of
a multilayer perceptron (MLP) trained using Back

Propagation (BP) algorithm [7]. It is a gradient descent
algorithm that tries to maximize the weights of the linking
methods of the network. As Figure 2 shows, perceptron
neurons grouped in several layers constitute the network
structure. The first layer is the input layer, in charge of
providing the external activations to the network (for
example, the power supply). Placed on the extremely right
side of the network is the output layer, which returns the
results obtained by processing the input activations.
Between those layers are several hidden layers, composed
of a variable number of neurons. Each neuron in a certain
layer receives its input activations from the neurons in the
preceding layer. Each gives its output to the units in the
next layer.

In the neural network level, the neural network is
trained to optimize the weights of the linking methods by
using the parallel perturbative weight update rule. Here, the
linking methods, which are obtained from the circuit
topology are now normalized and fed as inputs of the
neurons in the neural network. At first, in the circuit
initialization, the weights of the linking methods are
generated randomly with the probability distribution:
exp(—|7|) , 7 €(0,1). This algorithm is based on some

experimental results. And after the convergences of the NN,
we can see that the weights of the linking methods are
normally small, and a part of them are relatively big. It can
make sure that this algorithm can search all the feasible
solutions of the circuit, and enable the optimization does
not fall into local minimum. Then, after the initialization,
all input training weights are applied and the error is
accumulated. This error is then checked to see if it was
higher or lower than the unperturbed iteration. If the error is
lower, the perturbations are kept, otherwise they are
discarded. This process repeats until a sufficiently low error
is achieved.

3.2. Neuron Evolution

In practice, the embryonic circuit is needed to be given
before the operation. And the embryonic circuits should
include some basic characters of the circuit by some
transcendental knowledge. Such as the number of main
functions of the circuit, some physical characters and model
parameters about basic analog components and their initial
evolution probabilities. The evolution probabilities of the
model parameters might be changed during the following
evolution process due to two main aspects: one is the
importance of the correlative parameters; the other is the
difficulties about techniques in the execution of the circuit
components.

In the neuron level, the component state and the

2089

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:54:26 UTC from IEEE Xplore. Restrictions apply.

Proceedings of the Fifth International Conference on Machine Learning and Cybernetics, Dalian, 13-16 August 2006

neuron’s structure can be changed by the following six

operators: mutation, exchange, crossover, creation, upgrade,

pruning.

® mutation : the mutation can be implemented by
changing the physical parameters or the type of the
component. For example, the resistor can be changed
to a capacitor, but the nodes beside them don’t have to
change.

® exchange : swap the sub-trees under the selected nodes
to generate two offspring belonging to the new
population.

® crossover : first select two trees from the whole trees
inside the module , then randomly select one node
from each of these trees, do the same operation as the
exchange operator.

® create : randomly generate a tree according to the
appearance probability of the nodes in various layers.

® upgrade : select a tree whose fitness is the best in the
module , get a sub-tree out of it as a new tree.

® prune : select a tree whose fitness is the worst in the
module , delete one branch of the tree , then put the
new tree into the genetic tree population inside the
module.

4. Fitness Function

A fitness function must be devised for each problem
before evaluation. Here we use a fitness function as,

fitness =max f(x)= f(g,s,t) (1)

flg,s,6)= gclschchS)
where cl, c2 and ¢3 are all nonnegative real numbers. The
sub-object g represents the performance of the evolving
circuit, the sub-object s represents the complexity of the
circuit (which can be also described as the circuit size), and
the sub-object ¢ represents the running time of the circuit

[8].

While the fitness function can be described as three
sub-objects g, s and ¢, these three sub-objects also have
respective meanings. The sub-object g, which represents the
performance of the evolving circuit, can be defined as,

N
g=> o,
©)

N is number of the sub-objects while evaluating the
performance of the circuit, which can also be defined by the
concrete circuit. & can be adjusted adaptively during the
evolutionary process, and apparently they satisfy,

i =1
@

We give each & a normal value due to the
corresponding gi at the beginning of the neuron circuit’s
evolution, and % can adjust during the following evolution
process.

The sub-object s, which represents the complexity of
the circuit, can be defined as,

s=p+q (5)
_ Naud + Ramp N feedback
pP=——— qg=—""—
and Riotal N max (6)

where Blaud is the number of the audions, Zamp is the
number of the operational amplifiers, Hwwi is the total
number of elements in the circuit, Afeedback 1S the number

of the feedback of the circuit, and N max is the
anticipative maximum number of the feedback of the
circuit.

The sub-object ¢, which represents the running time of
the circuit, can also be defined as,

Trotal
f=——0
gen (7)
where Tl is the total time to get the result of the circuit,
including the time for evolving and training and the time
for simulating. gen is the current evolution generation of
the neuron circuit.

In the evaluation of the analog circuit, we use the
public-domain Berkeley SPICE (Simulation Program with
Integrated Circuit Emphasis) circuit simulation program to
simulate our circuits [9].

5. Experimental Results

This section is about the application of NN-TLGP for
the solution of several practical analog circuit applications.
At the beginning of the each evolution of the neuron, a
basic embryo circuit is given as the primitive individual of
the circuit. The embryo circuit is given due to the original
function of the circuit, which is encoded by our two level
encoding scheme.

In the neural network level, we used a particular
multilayer perceptron structure. There are two degrees of
freedom for determining it. These are the network size
(number of layers and number of neurons) and the weights
of the linking methods of the neurons, which convert the
neuron’s input activations. For network size, there is no
deterministic way to find the most suitable structure for
solving a particular problem. In general, the complexity of
the circuit and desired circuit performance will mainly
determine the network size. In the neuron level, the number
of neurons will be changed during the evolving process.
Weather it increases or decreases, the number is determined

2090

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:54:26 UTC from IEEE Xplore. Restrictions apply.

Proceedings of the Fifth International Conference on Machine Learning and Cybernetics, Dalian, 13-16 August 2006

by the fitness of each neuron which evaluated by the fitness
function.

As mentioned above, the fitness function involved
here is f (g, s, t), s and t can be synchronously obtained by
simulation. And some parameters can be initialized as
follows: Pm=0.7, Po=0.1, ki = k=D,

We chose the voltage amplifier and the low-pass filter,
which are the most typical analog circuits, as the
experimental circuits. In our design task, the network size
was determined by the actual circuit, and the population
size of the neuron level was set 1000. An initial circuit
described by the netlist file using the two level encoding
scheme was given before the formal design.

In the amplifier design experiment, we present the
highest performance circuit found across the runs. The goal
was to design an inverting amplifier capable of a dc voltage
gain up to a maximum of 350 dB, while minimizing dc bias
and maximizing linearity over the dc gain. The maximum
gain was set to by using the feedback resistors. An error
value is computed as the sum of the dc gain penalty (the
target gain minus the observed gain), the dc bias (zero dc
bias is ideal), and the degree to which the dc gain is linear.
Figure 4 shows the schematic for the amplifier which has
the highest fitness. Figure 5 shows the frequency response
of the amplifier.

1.000451le+04

R3§ 2.6935982+
2.7810432+8
= R3

3.6429552+04

4.699401e+§4 5.6347142+04
2.5063072-04
| 1
=

l.6562482-04

Rl

Al

V1

Figure 4. The schematic for the highest fitness evolved
amplifier

1.0Hz 10Hz 100Hz 1. 0KHz 10FHz
o Vi) 7 Til)
Freauency

Figure 5. Frequency response of the amplifier

For the filter design experiment, the task had the
specifications that satisfy the voltage gain is 20 dB and
transition frequency is 30 kHz. Fitness was calculated to
promote the regression of the evolved circuit’s frequency
response toward that of the target. Error values were
computed as the absolute value of the difference of the
individual’s output. These error values were summed across
evaluation points and act as a part of the fitness function.
The evolved circuit is shown in Figure 6 and its frequency
response is seen in Figure 7.

Vll +
15V I

R4
d.556898e-

R1

2.008346e-02

1 CZ

1.065423e-02

R&
RS 1.780132e-0

2.46565%9e-03

R3
2.487845e-

Figure 6. The schematic for the highest fitness evolved
low-pass filter

2091

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:54:26 UTC from IEEE Xplore. Restrictions apply.

Proceedings of the Fifth International Conference on Machine Learning and Cybernetics, Dalian, 13-16 August 2006

(1]

v
100Hz 1. 0KHz 10KHz 100EHz 1. 0MHz
a Wiz

Frecuency

Figure 7. Frequency response of the low-pass filter.

In general, both the amplifier and low-pass filter can
be generated quickly. In our evolution environment, whose
PIV is 2.3 G, EMS memory is 1G Bytes and WINXP
operating system, getting the best amplifier circuit merely
cost 36 minutes, as well as 41 minutes for the low-pass
filter, which is much faster than the technique that merely
uses GA [10].

6. Conclusions

In this paper, we propose a scheme based on Neural
Network and Genetic Programming (NN-TLGP), which
uses a divide-and-conquer approach to design the analog
circuit. We have shown that the corresponding circuit
representation, operation strategy and adaptive fitness
function based on the NN-TLGP scheme can automatically
produce circuits in two applications. Detailed simulations
of the designs suggest that the performances of the circuits
are electrically well-behaved and thus are suitable for
physical implementation. The experimental results show
that using this algorithm can automate the analog circuit
design, and it is faster than that just uses genetic algorithms.

Acknowledgements

This work described in this paper was supported by the
National Natural Science Key Foundation of China with the
Grant No.60133010, the National Research Foundation for
the Doctoral Program of Higher Education of China with
the Grant No.2003048604.

(2]

(3]

(4]

(3]

(6]

(7]

(8]

[9]

[10]

2092

References

Koosh V.F., Goodman R.M., “Analog VLSI Neural
Network with Digital Signal Processing”, IEEE
Transactions on Circuits and Systems II, Vol 49, No. 5,
pp- 359-368, 2002.

Erten G., Goodman R.M., “Analog VLSI
Implementation for Stereo Correspondence Between
2-D Images”, IEEE Transactions on Neural Networks,
Vol 7, No. 2, pp. 266-277, 1996.

Gielen G., Sansen W., “Sybolic Analysis for
Automated Design of Analog Integrated Circuits”,
Boston, MA: Kluwer, 1991.

Sussman G.J., Stallman R.M., “Heuristic Techniques
in Computer-Aided Circuit Analysis”, IEEE
Transactions on Circuits and Systems, Vol 22, 1975.
Koosh V., Goodman R., “VLSI Neural Network with
Digital Weights and Analog Multipliers”, Proceedings
of the IEEE International Symposium on Circuits and
Systems (ISCAS-2001), Sydney, Australia, Vol 2, pp.
233-236, 2001.

Torresen J., “A Divide-and-Conquer Approach to
Evolvable Hardware”, in 2nd International Conference
on Evolvable Systems (ICES98), Lecture Notes in
Computer Science, pp. 57-65, 1998.

Alspector J., Meir R., Yuhas B., Jayakumar A., “A
Parallel Gradient Descent Method for Learning in
Analog VLSI Neural Networks. Advances in Neural
Information Processing Systems”, San Mateo, CA:
Morgan Kaufman Publishers, Vol 5, pp. 836-844,
1993.

Wang F., Li Y., “Multi-objective Adaptive Scheme for
Analog Circuit Design Based on Two-layer Genetic
Programming”, International Conference on Neural
Networks and Brain (ICNN&B '05), Vol 1, pp.274 —
278, 2005.

Quarles T., Newton A.R., Pederson D.O., A
Sangiovanni-Vincentelli, SPICE 3 Version 3F5 User’s
Manual, Dept. of Electrical Engineering and Computer
Science, University of California, Berkeley, CA, 1994.
Lohn J.D., Colombano S.P., “A Circuit Representation
Technique for Automated Circuit Design”, IEEE
Transactions on Evolutionary Computation, Vol 3, No.
3, pp- 205 -219, 1999.

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:54:26 UTC from IEEE Xplore. Restrictions apply.

