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Abstract: 
The design of analog circuits starts with a high-level 

statement of the circuit’s desired behavior and requires 
creating a circuit that satisfies the specified design goals. The 
difficulty of the problem of analog circuit design is well known, 
and there is no previously known general automated 
technique to design an analog circuit from a high-level 
statement of the circuit’s desired behavior. This paper 
proposes a two-layer evolutionary scheme based on Genetic 
Programming (GP) and Neural Network (NN), which uses a 
divide-and-conquer approach to design the analog circuits. 
Corresponding to the NN-TLGP, a new representation of 
circuit has been proposed here and it is more helpful to 
generate expectant circuit graphs. This algorithm can perform 
the circuits with dynamical size, circuit topology, and 
component values. The experimental results on the two design 
work show that this algorithm is efficient.  
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1.  Introduction 

Analog circuit design (ACD) plays an important role 
in electronic systems. The techniques for automating analog 
circuit design appeared about twenty years ago. By far, 
some techniques from intelligent computation, such as the 
(NN) have been under studying, and these techniques are 
indeed helpful to solve some complex problems [1,2]. Due 
to the complexity of the problem, it is very difficult to 
design the NN by the conventional methods. While the 
distribution of the processing cells of networks is more 
complex, it becomes more unfeasible to certify the main 
parameters of the NN, including the number of layers, the 
number of the cells of each layer and the interactions 
among the layers.  

Meanwhile, much progression has been made in 
automating analog circuit synthesis using optimization 
algorithms [3,4]. Some researchers have used the 

evolutionary computation, such as the genetic algorithms 
(GAs), to automate the NN design of circuits [5]. However, 
if the evolving size of the circuit is larger, the evaluation 
time is longer consequently. It will affect the efficiency of 
the generation of the good circuits. When a neural network 
uses a genetic algorithm for training, there is an increase in 
computational time, but compared with simple gradient 
descent, optimization does not fall into local minimum and 
be more accurate in prediction. 

In this paper, we propose a NN-TLGP scheme to 
design the analog circuits. This scheme which used a 
divide-and-conquer approach is a marriage of Genetic 
Programming and Neural Network. Section two 
concentrates on how the hybrid scheme is applied to 
generate common analog circuits, especially on how to 
select component values and topology sizes for a given 
circuit topology. Section three describes the operations of 
the design work. The fitness function is given in section 
four. Section five describes two specific applications of the 
NN-TLGP scheme with the results and the analyses of them. 
Conclusions and plans for the future work are given in 
Section six. 

2.  Neural Network-Based Two-level Genetic 
Programming (NN-TLGP) 

2.1.  Basic Ideas of NN-TLGP  

Based on the common GP, we employ a 
divide-and-conquer approach [6] to make the circuit 
divided into two levels before evolving, and name this new 
method NN-TLGP. The first level is neural network level, 
and the second level is the neuron level. In this way, we can 
make sure that, while the size of the circuit and its 
population become larger, the actual evolving size of the 
circuit’s representation and the evolutionary computation 
will increase to a lower extent compared to the original 
method. 
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2.1.1.  Neural Network Level 

At the beginning of the evolution, we divide the circuit 
into different parts according to the sub-functions of the 
circuits. After the process of defining the structures of each 
neuron to be evolved in the neuron layer, these small 
neurons can be connected by some links to form a graph as 
the original circuit. All the links in a neural network can be 
seen as a linking method at one time. Both the separate 
physical component and the small sub-circuit neuron can be 
described as a node which represents a logic function set. 
These nodes are connected by the linking methods. Those 
different linking methods can be trained by the 
corresponding training algorithm to form a higher level 
topology, and we call each topology a neural network. Once 
a fully connected neural network is trained, its weight can 
be obtained. That’s to say, if the neurons’ structure is 
defined, we can get a more suitable circuit (evaluating by 
its fitness) by training the linking methods. 

2.1.2.  Neuron Level 

As we mentioned above, in the circuit design, we 
divide the circuit into different parts according to the 
sub-functions of the circuits, each sub-function can be seen 
as a neuron in a neural network. After encoding each 
neuron into a genetic tree, we create more trees to make 
every neuron into a small genetic tree population by the 
three main operators of GP in the neurons during the 
circuit’s evolution. Each individual as a genetic tree stands 
for a smaller specific circuit in the population of genetic 
trees. Each neuron is evolved according to its own function 
and has only one function tree called the main tree. That 
means the only output of one neuron is the root node of the 
main tree. Neurons are connected by making the output(s) 
of one neuron be the input(s) of other neuron(s). In an 
analog circuit evolving task, each node can be replaced by 
R (resistor), C (capacitor), L (inductor), or transistor 
configuration, which can be evolved by the three main 
operators of GP during the neuron’s evolution.   

As the NN-TLGP scheme mentioned above, an 
overview of the analog circuit design process is depicted in 
Figure 1.  

  
Figure 1. Overview of circuit design process 

2.2.  Circuit Representation and Encoding 

One of the most important aspects of Genetic 
Programming is the strategy of encoding a solution. The 
encoding methods can directly affect the ability of the 
iterative process to converge on an appropriate solution. For 
a n-component circuit, a reasonable upper bound would be 
O(n). Because of the direct relationship between the 
evolvable hardware’s population size and the chromosomes’ 
length, it is very important to shorten the length of the 
chromosomes. We also designed an encoding scheme base 
on our NN-TLGP. The encoding scheme can be described 
as two parts, one is the neural network encoding which 
aims at the structure of the circuit. The other is the neuron 
encoding which aims at the parameters of the circuit. The 
scheme can easily reduce the evolvable circuit’s size to a 
much smaller one than it was before. 

 
Figure 2. Neural network stucture representation 

 
Figure 2 depicts the structure of a neural network in 

our NN-TLGP, each node which represents a neuron was 

Circuit Encoding 

Neuron Evolution  

Circuit Simulation and Evaluation  

Neural Network Training 

Fitness calculation and assignment
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connected to form a whole circuit. The nodes are connected 
by the linking methods, which would be trained during the 
neural network training process. Each node can be 
described in a netlist file as: [NodeName: linking method1, 
value1; linking method2, value 2; …; linking method n, 
value n]. 

  
Figure 3. Neuron representation 

 
Figure 3 depicts an example of the common emitter 

amplifier circuit. In this example, the chromosome consists 
of two genes. The genes determine the type, values of the 
physical characters of the component and links between the 
related components. The links are connected by the 
connecting points which are also the inputs or outputs of 
modules. Each connecting point may be classified as 
internal or external. While the former does not serve for any 
special purpose, the latter is connected to one of the 
following signals: power supply, ground, input signal or 
probed output. Supposing we divide the whole circuit into 
several parts, each of which is a neuron. The graph we have 
shown above is a part of one circuit, which is called neuron 
2, and it connects to neuron 1, neuron 3 and ground. So the 
resistor R1 and R2 can be represented separately as [(2, 3), 
(13, 10Ω)] and [(1, 2), (13, 10Ω)], while the transistor can 
be represented as [(0, 1, 2), (15, -)]. 

3.  Operations of NN-TLGP 

3.1.  Neural Network Training  

Neural networks have an advantage over conventional 
technologies because they can solve complex problems that 
do not have algorithmic solution or for which an 
algorithmic solution is too complex to be found. NNs are 
trained by example instead of rules and are automated. 
When used in the analog circuit design, they are capable of 
rapid identification, analysis in real time.  

The most widely used architecture of an NN is that of 
a multilayer perceptron (MLP) trained using Back 

Propagation (BP) algorithm [7]. It is a gradient descent 
algorithm that tries to maximize the weights of the linking 
methods of the network. As Figure 2 shows, perceptron 
neurons grouped in several layers constitute the network 
structure. The first layer is the input layer, in charge of 
providing the external activations to the network (for 
example, the power supply). Placed on the extremely right 
side of the network is the output layer, which returns the 
results obtained by processing the input activations. 
Between those layers are several hidden layers, composed 
of a variable number of neurons. Each neuron in a certain 
layer receives its input activations from the neurons in the 
preceding layer. Each gives its output to the units in the 
next layer.  

In the neural network level, the neural network is 
trained to optimize the weights of the linking methods by 
using the parallel perturbative weight update rule. Here, the 
linking methods, which are obtained from the circuit 
topology are now normalized and fed as inputs of the 
neurons in the neural network. At first, in the circuit 
initialization, the weights of the linking methods are 
generated randomly with the probability distribution: 

|)|exp( r−   , r ∈(0,1). This algorithm is based on some 
experimental results. And after the convergences of the NN, 
we can see that the weights of the linking methods are 
normally small, and a part of them are relatively big. It can 
make sure that this algorithm can search all the feasible 
solutions of the circuit, and enable the optimization does 
not fall into local minimum. Then, after the initialization, 
all input training weights are applied and the error is 
accumulated. This error is then checked to see if it was 
higher or lower than the unperturbed iteration. If the error is 
lower, the perturbations are kept, otherwise they are 
discarded. This process repeats until a sufficiently low error 
is achieved.  

3.2.  Neuron Evolution 

In practice, the embryonic circuit is needed to be given 
before the operation. And the embryonic circuits should 
include some basic characters of the circuit by some 
transcendental knowledge. Such as the number of main 
functions of the circuit, some physical characters and model 
parameters about basic analog components and their initial 
evolution probabilities. The evolution probabilities of the 
model parameters might be changed during the following 
evolution process due to two main aspects: one is the 
importance of the correlative parameters; the other is the 
difficulties about techniques in the execution of the circuit 
components. 

In the neuron level, the component state and the 
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neuron’s structure can be changed by the following six 
operators: mutation, exchange, crossover, creation, upgrade, 
pruning. 
z mutation : the mutation can be implemented by 

changing the physical parameters or the type of the 
component. For example, the resistor can be changed 
to a capacitor, but the nodes beside them don’t have to 
change. 

z exchange : swap the sub-trees under the selected nodes 
to generate two offspring belonging to the new 
population. 

z crossover : first select two trees from the whole trees 
inside the module , then randomly select one node 
from each of these trees, do the same operation as the 
exchange operator. 

z create : randomly generate a tree according to the 
appearance probability of the nodes in various layers. 

z upgrade : select a tree whose fitness is the best in the 
module , get a sub-tree out of it as a new tree. 

z prune : select a tree whose fitness is the worst in the 
module , delete one branch of the tree , then put the 
new tree into the genetic tree population inside the 
module. 

4.  Fitness Function 

A fitness function must be devised for each problem 
before evaluation. Here we use a fitness function as,   

( )max ( ) , ,fitness f x f g s t= =          (1) 
321),,( ccc tsgtsgf −−=                 (2) 

where c1, c2 and c3 are all nonnegative real numbers. The 
sub-object g represents the performance of the evolving 
circuit, the sub-object s represents the complexity of the 
circuit (which can be also described as the circuit size), and 
the sub-object t represents the running time of the circuit 
[8]. 

While the fitness function can be described as three 
sub-objects g, s and t, these three sub-objects also have 
respective meanings. The sub-object g, which represents the 
performance of the evolving circuit, can be defined as,  

,
1
∑

=

=
N

i
igg ια

                 (3) 
N is number of the sub-objects while evaluating the 

performance of the circuit, which can also be defined by the 
concrete circuit. ια  can be adjusted adaptively during the 
evolutionary process, and apparently they satisfy,  

1
1

=∑
=

i

N

i

α
                     (4) 

We give each ια  a normal value due to the 
corresponding gi at the beginning of the neuron circuit’s 
evolution, and ια can adjust during the following evolution 
process. 

The sub-object s, which represents the complexity of 
the circuit, can be defined as, 

qps +=                         (5) 

and  total

ampaud

n
nnp +=

, maxN
nq feedback=

             (6) 
where audn  is the number of the audions, ampn  is the 
number of the operational amplifiers, totaln  is the total 
number of elements in the circuit, feedbackn  is the number 
of the feedback of the circuit, and maxN  is the 
anticipative maximum number of the feedback of the 
circuit.   

The sub-object t, which represents the running time of 
the circuit, can also be defined as, 

totalTt
gen

=
                      (7) 

where totalT  is the total time to get the result of the circuit, 
including the time for evolving and training and the time 
for simulating. gen is the current evolution generation of 
the neuron circuit. 

In the evaluation of the analog circuit, we use the 
public-domain Berkeley SPICE (Simulation Program with 
Integrated Circuit Emphasis) circuit simulation program to 
simulate our circuits [9]. 

5.  Experimental Results  

This section is about the application of NN-TLGP for 
the solution of several practical analog circuit applications. 
At the beginning of the each evolution of the neuron, a 
basic embryo circuit is given as the primitive individual of 
the circuit. The embryo circuit is given due to the original 
function of the circuit, which is encoded by our two level 
encoding scheme. 

In the neural network level, we used a particular 
multilayer perceptron structure. There are two degrees of 
freedom for determining it. These are the network size 
(number of layers and number of neurons) and the weights 
of the linking methods of the neurons, which convert the 
neuron’s input activations. For network size, there is no 
deterministic way to find the most suitable structure for 
solving a particular problem. In general, the complexity of 
the circuit and desired circuit performance will mainly 
determine the network size. In the neuron level, the number 
of neurons will be changed during the evolving process. 
Weather it increases or decreases, the number is determined 
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by the fitness of each neuron which evaluated by the fitness 
function.  

As mentioned above, the fitness function involved 
here is f (g, s, t), s and t can be synchronously obtained by 
simulation. And some parameters can be initialized as 
follows:  0mP =0.7, 0cP =0.1, 1k  = 2k =2.  

We chose the voltage amplifier and the low-pass filter, 
which are the most typical analog circuits, as the 
experimental circuits. In our design task, the network size 
was determined by the actual circuit, and the population 
size of the neuron level was set 1000. An initial circuit 
described by the netlist file using the two level encoding 
scheme was given before the formal design.  

In the amplifier design experiment, we present the 
highest performance circuit found across the runs. The goal 
was to design an inverting amplifier capable of a dc voltage 
gain up to a maximum of 350 dB, while minimizing dc bias 
and maximizing linearity over the dc gain. The maximum 
gain was set to by using the feedback resistors. An error 
value is computed as the sum of the dc gain penalty (the 
target gain minus the observed gain), the dc bias (zero dc 
bias is ideal), and the degree to which the dc gain is linear. 
Figure 4 shows the schematic for the amplifier which has 
the highest fitness. Figure 5 shows the frequency response 
of the amplifier. 

 
Figure 4. The schematic for the highest fitness evolved 

amplifier 

 
Figure 5. Frequency response of the amplifier 

 
For the filter design experiment, the task had the 

specifications that satisfy the voltage gain is 20 dB and 
transition frequency is 30 kHz. Fitness was calculated to 
promote the regression of the evolved circuit’s frequency 
response toward that of the target. Error values were 
computed as the absolute value of the difference of the 
individual’s output. These error values were summed across 
evaluation points and act as a part of the fitness function. 
The evolved circuit is shown in Figure 6 and its frequency 
response is seen in Figure 7. 

 
Figure 6. The schematic for the highest fitness evolved 

low-pass filter 
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Figure 7. Frequency response of the low-pass filter. 
 
In general, both the amplifier and low-pass filter can 

be generated quickly. In our evolution environment, whose 
PIV is 2.3 G, EMS memory is 1G Bytes and WINXP 
operating system, getting the best amplifier circuit merely 
cost 36 minutes, as well as 41 minutes for the low-pass 
filter, which is much faster than the technique that merely 
uses GA [10]. 

6.  Conclusions 

In this paper, we propose a scheme based on Neural 
Network and Genetic Programming (NN-TLGP), which 
uses a divide-and-conquer approach to design the analog 
circuit. We have shown that the corresponding circuit 
representation, operation strategy and adaptive fitness 
function based on the NN-TLGP scheme can automatically 
produce circuits in two applications. Detailed simulations 
of the designs suggest that the performances of the circuits 
are electrically well-behaved and thus are suitable for 
physical implementation. The experimental results show 
that using this algorithm can automate the analog circuit 
design, and it is faster than that just uses genetic algorithms. 
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