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Abstract
Subthreshold analog circuits for MOS implementation of artificial neural networks are
presented with on-chip learning capability. Each synapse circuits consist of a storage

capacitor and 3 analog multiplier, ie. one for signal feed-forward, one for outer-product
synaptic weight adjustments, and one for error back-propagation. While all the 3 multipliers
are used for error back-propagation learning, only the first 2 multipliers are used for Hebbian
learning. Each neuron circuits are composed of a sigmoid circuit and a sigmoid derivative
circuit, which show near ideal sigmoid characteristics and provide external gain-control
capability. All the circuits incorporate modular architecture, and are designed to increase
numbers of neurons and layers with multiple chips. Also the subthreshold operation provides
low power consumption and large scale implementation.

Introduction

Although neural networks is capable of solving complicated pattern recognition and
adaptive control problems, special hardwares are required to fully utilize its inherent massive
paralellism. There have been two approaches on neural hardware developments, with and
without on-chip learning capability. The first approach usually assumes that adaptive
learning has been done by other hardwares, probably by conventional von Neumann
computers. However the training of neural networks for very complicated applications with
large number of neurons, where neural networks has potential advantages over conventional
algorithms and special hardwares are worthwhile to build, requires enormous computational
capability and there exists no other hardware available. There have been approaches to use
conventional hardwares for calculation of the synaptic weight adjustments while the neural
hardwares perform signal feed-forward and possibly error back—propagation. However
computational requirement for the calculation of synaptic weight adjustment is of the same
order with that of signal feed—forward or error back-propagation, and the neural hardwares
can not improve the overall training speed much. Neural hardwares with on-chip learning
capability is essential for practical large-scale implementations.

Recently several attempts have been made to put on-chip learning capability on the
neural hardwares. Both digital and analog circuits have been developed. For high density
and speed we use analog circuits. However, unlike other developments [1], subthreshold
operation on MOS circuits is utilized to provide low power consumption and higher density
synapses. Also outer-product learning algorithm is chosen for popular error back-propagation
and Hebbian learning rules. Without time-multiplexing implementable number of neurons on
a chip is always limited by numbers of pads and package pins, and modular achitecture is
required to provide capability to make larger systems with multiple chips. In this paper we
present a modular analog neuro-chip with subthreshold operation and outer-product learning.

System Architecture and Circuits

Two basic components of our neuro—chip is shown in Fig.l. As shown in Fig.1(a),
each synapse is composed of a voltage storage device and 3 analog multipliers, one for signal
feed—forward, one for outer-products for calculation of synaptic weight adjustments, and one
for error back-propagation. For neural network models with error minimizing learning
algorithms such as (multilayer) Perceptron the outer products are done between input neural
activation and output errors. For Hcobhbhian noural notwerke with unsupervised learning
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algorithms the outer products are done between neural activations of both input and output
layers. Each neuron in Fig.1(b) consists of a sigmoid circuit, sigmoid derivative circuit, and
an analog multiplier. The multiplier is used to get multiplication of the back-propagated
error and sigmoid derivatives.

In synaptic circuits signals are coded as differential currents, which offer high dynamic
range and common-mode noise immunity. The analog multipliers are based on four-quadrant
Gilbert multipliers with differential input and output currents. [2,3] However synaptic weight
is represented as node voltage and adjusted by currents during learning. Capacitors are
selected as synaptic weight storage device for easy fabrication. Charge loss due to leakage
currents may be considered as a part of continuous learning, or should be compensated by
periodic refreshing.
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Fig.1 Basic components of the neuro-chip. (a) synapse; (b) neuron

Current outputs from the synapses are summed at the input node of corresponding
neuron circuits. The range of this summed currents depends upon number of connected
neurons through synapses, and need to be scaled to a fixed value for modular. architectures
with possibly variable number of neurons by multiple chips. A scaling circuit is shown in

Fig2. - The differential output currents of each synapse satisfies  ij+i;=I, and ij-ij=W;x;.
By the principle of translinear array nmormalizer [4] I; and I; in Fig.2 are given as
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Fig.2 Scaling  circuits Fig.3 Current-to-voltage converter
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Since the inputs of the neuron circuits in Fig.1(b) are differential voltages, the current
outputs of the scaling circuits should be converted to differential voltages. As shown in

Fig.3, provided I,»i" and I,»i  were satisfied, the output differential voltage becomes

1 + )‘gVDD
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(i'-i) . V)

Unlike the other circuits this converter circuit is biased to saturation region, and the currents
magnitute conditions are easily satisfied. As shown in Eq.(2) the converted voltage is

inversely proportional to the current I,, and provides a way to effectively control gain of the
sigmoid function.

The circuits for the sigmoid function and its derivative are shown in Figs. 4 and 5,
respectively. Both circuits provide hyperbolic tangent and its derivative up to the first order
approximation [2,5], and their characteristics are shown in Figs. 6 and 7. Several lines in
Fig.6 show sigmoid functions with different gains controlled by I,.
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Fig.4 Circuit for the sigmoid function Fig.5 Circuit for derivatives of the sigmoid function
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Fig.6 Characteristics of the circuit in Fig.4 Fig.7 Characteristics of the circuit in Fig.5

By constructing a board with multiple chips one can easily increase number of neurons
and number of layers. To train multilayer Perceptron one just apply input and target
patterns.  Signal feed-forward, error back-propagation, and weight adjustments all can be
done asynchronously. For unsupervised learning models based on Hebbian learning rule only
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the input patterns need to be applied. = Although the circuits operate asynchronously, external
synchronous control may be necessary to apply input (and target) patterns one by one.

Adaptive Learning Experiment

To show the learning capability the circuits are trained for the XOR pattern classifier.
Transient SPICE analysis is used for this experiment, and the results are shown in Figs. 8
and 9. Evolution of the 3 synaptic weight values are plotted in Fig.8, and output error in
Fig9. Both figures clearly show adaptive learning of the circuits.
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Fig.8 3 synaptic weights vs. learning epoch Fig.9 Error vs. learning epoch
Conclusion

In this paper we presented an on-chip learning circuit with error back-propagation or
Hebbian learning. Due to subthreshold operation of the MOS circuits it consumes much
lower power.  Also its design is based on modular architecture with scaling circuits, which
provides a ‘capability to' construct very complicated systems with multiple chips. The
sigmoid function and its derivatives are implemented up to the first order approximation.
Transient SPICE simulation for the XOR learning is presented, and results of the actual chip
and board will be reported at the conference.
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