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Abstract—Traditional machine learning algorithms and neural
networks implemented using digital architectures such as GPUs,
TPUs, and FPGAs demonstrate high performance, but the power
required to train and predict is too high to be implemented in
energy-constrained systems such as implants and edge devices.
Although analog classifiers offer the possibility to significantly
reduce power consumption by two or three orders of magnitude,
the nonidealities inherent to analog circuits such as noise, drift,
and process variations make it very difficult to implement
accurate analog neural networks. This paper explores the effects
of these nonidealities on classification performance.

Index Terms—Analog circuits, neural networks, ultra-low
power, IoT, voice activity detection, edge computing

I. INTELLIGENT SENSOR PROCESSING

In the age of the “Internet of Things” (IOT), data is
transmitted to and from almost anything imaginable including
phones, televisions, cameras, ovens, and even doorbells. These
connected devices have integrated sensors that collect infor-
mation about their surroundings, including audio, visuals, and
temperature. After collecting the data, so-called smart devices
adjust their performance and cary out tasks based on user
interaction and preferences.

The key to transforming simple transducers into smart
sensors lies in machine learning (ML) and Neural Networks
(NN). In order to reach the impressive performance levels that
consumers come to expect, large datasets of terabytes of data
are processed via billions of multiplications, additions, and
read and write operations are performed on devices made up
of billions of transistors. When the classifier finally reaches
a desired level of functionality, it is deployed and packaged
with appropriate sensors.

While modern implementations of NN architectures and ML
algorithms demonstrate high performance in a wide range of
fields, the energy required to reach this performance has grown
along with the underlying NNs. The process of training can
demand between 100 W and 250 W on a single GPU, with
each training iteration costing at least 200 mJ per image [1]
The energy required to make predictions varies depending on
the architecture, quoted at about 60 mJ and 1180 mJ for state-
of-the-art architectures AlexNet and VGG-16 respectively on
the Nvidia GeForce GTX Titan X GPU [2]. Not only does this
inhibit classifiers from being implemented in power-starved
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IoT edge devices, it goes contrary to the energy-reduction
mantra in an economy focused on a greener future.

In the search for an alternative, many are re-exploring
the possibilities of analog computation. Rather than relying
on digital arithmetic and logic, analog computing uses the
physical properties of hardware devices [3]. An operation such
as multiplication, which requires thousands of transistors in
digital, can be reduced to only a few transistors in analog.
Because of this, analog circuits are comparatively low-power,
faster, and smaller [3]-[14]. Because analog circuits are not
dependent on clocking or shared resources as are digital
computers, they are inherently parallelizable, further enhanc-
ing their speed [12]. A research team at IBM has recently
demonstrated these benefits by employing analog in-memory
computation [15].

The most significant limitation in analog circuits is the
inter-device variability. Due to small inconsistencies in the
fabrication process, voltage sources, and temperature, often
referred to collectively as PVT variation, post-fabrication, de-
vices such as capacitors and resistors can vary up to 25% from
their expected values making it difficult to know their actual
properties and causing offset and mismatch errors [16]-[18].
Analog also has no perfect long-term storage; most storage
methods suffer from leakage, low-precision, or limitations in
writability [12], [13], [19]. For this reason, analog circuits
are not as flexible as their digital counterparts [4], [5], [13],
[16], and training methods such as backpropagation are more
difficult to implement on chip [16], [20]. All these issues
limit analog computation to applications with low- to medium-
precision data [4], [13], [18], [21]. This paper focuses on
demonstrating the effects PVT variations can have on classifier
performance and describe a simple tweak to help reduce them.

II. ANALOG IMPLEMENTATIONS

The standard approach used for training basic NN archi-
tectures is shown in Fig. 1. The incoming information (e.g.,
the training data) is pre-processed to extract desired features
as inputs to the neural network. A forward propagation step
generates a predicted output for each input sample in order
to quantify the current accuracy of the NN. In the back-
propagation step, the strength of the effect of each synaptic
weight on the error (i.e., the gradient) is calculated; the weights
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Fig. 1: Illustration of three common steps in a ML algorithm.

are all adjusted proportional to their respective gradient. This
structure is common in ML algorithms.

When analog computation is introduced into a ML system,
the strategy is normally to partially or completely implement
one or more of the aforementioned steps with analog/mixed-
signal circuits. Analog-enhanced classifiers are commonly
realized via full replacement, acceleration, and deployment.

A. Full Replacement and Acceleration

Introducing analog circuits by full replacement is the effort
to complete the entire machine learning process entirely with
analog blocks. Since all of the needed mathematical functions
can be implemented in analog, it is theoretically possible to
complete the full ML cycle. Unfortunately, the information
learned by these types of classifiers is very difficult to share
and reproduce because each fabricated device can vary signif-
icantly from another. At the same time, each read process will
corrupt the learned weights [18]. Because of this, the classifier
becomes a black box, where very little intuition can be gained
about what has been learned.

Rather than completely do away with the entire digital
system, one can augment the capabilities of the system by
using analog circuits for the most demanding tasks, such
as matrix multiply-and-accumulate functions [15]. However,
while this may accelerate the actual computation, latency and
system complexity and size increase due to the data conversion
between analog and digital domains.

One huge issue with using analog computation in a digital
system is that high linearity and precision are required. For
the acceleration to be useful, there must be a direct translation
from analog circuit to digital model, which requires precise
trimming and control of each data converter and arithmetic
block. This level of precise control is especially required if
the intention is to use the learned weight values in a digital
system or other hardware classifiers for deployment. These
two methods are both very important steps toward low-power
ML, but they have significant hurdles to becoming reality.

B. Deployment

The third method for replacing digital with analog in
machine learning systems is to implement the trained digital
NN as an analog classifier. Training is completed on a digital
system such as a computer, and the learned network char-
acteristics, including feature extraction hyperparameters and
multiplicative weights, are downloaded to the device [3], [7],
[11], [22]-[25]. After the device is programmed, it is ready
for use in its selected application.

However, just as with the other methods, the best set of
parameters for one device is not the best for another. The
trained weights of an ideal system cannot be downloaded to an

analog classifier and produce the same accuracy. To minimize
the performance degradation due to these nonidealities, the
architecture and training algorithm must generalize well to all
variations that could occur within the hardware classifier.

Because of the potential for large-scale production without
needing to overcome the hurdles of on-chip training, the work
in this paper is focused on deployment-only implementations
of analog classifiers. Specifically, the goal is to better under-
stand how various parameter variations affect the accuracy
of deployed NNs to identify how to design analog NNs that
minimize the impact of PVT noise. This concept is explored
in the context of a voice activity detection (VAD) classifier.
This application is well-fit for analog NNs because voice data
tends to perform well in low-precision systems [26].

ITI. CLASSIFIER MODELING

One of the earliest NN architectures implemented in analog
and digital hardware is the multilayer perceptron (MLP); an
example architecture is shown in Fig. 2. The MLP is made up
of a sequence of k fully-connected (FC) layers and nonlinear
activation functions. A FC layer has m inputs and n outputs,
where each output is a linear combination of the inputs. The
outputs of the FC layer undergo a nonlinear activation, such
as the hyperbolic tangent, to generate the neuron outputs,
which then become the inputs to the next layer. The functions
governing the input/output relationship of a general MLP are:

Zy = W1 (D
a; = g(%) ()
ap =, Y= ag 3)

where g(z) is a nonlinear activation such as a hyperbolic
tangent or sigmoid function.

For the VAD classifier in this paper, the inputs = to the
NN are generated by passing the input audio signal through
an array of bandpass filters and one low-pass filter at the
lowest frequency. The envelope of each band is detected. The
background noise level is estimated by tracking the minimum
of the envelope while the voice level is estimated by tracking
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(a) Noise estimator

(b) Signal peak estimator

Fig. 3: Analog circuits used for extracting (a) the estimated noise
level and (b) the estimated signal peak.
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Fig. 4: Example implementation of a three-input neuron. The synaptic
weight is stored as a voltage on the floating gate.

the peaks of the envelope. Simplified schematics for generating
each of these signals are in Fig. 3. The difference of the voice
and noise for each band is the input to the NN.

The NN itself is made up of a series of multipliers and
summation blocks. An example of a translation between a
neuron model and an actual circuit implementation is shown
in Fig. 4, where each synapse is a floating-gate transistor with
the synaptic weight determined by the voltage bias stored
on the floating gate. The currents are summed together and
converted to a voltage to generate the neuron output. The
actual implementation and modeling of the full NN using this
analog hardware neuron are outside the scope of this paper.

A. Adding Noise

There are limitless parameters in an actual circuit imple-
mentation where PVT variations can have an impact. For this
analysis, variations will be added generally to a selection of
defining parameters, namely, the bandpass center frequencies,
Q values and gain, RC time constants used in feature extrac-
tion, and the multiplicative weights of the network.

IV. VARIATION DEGRADATION
A. Methodology for Simulating Variations

NN architectures described as small, medium (med), and
large as in Table I are used in simulation. All classifiers use
the same feature extraction stage with six frequency bands.
Randomness will be introduced to each section of the classifier
individually and then all together. Before adding the noise,
hyperparameters and synaptic weights are learned in order to
result in high performance on training and test data.

Randomized instances of the classifier are represented by
500 vectors with values from a gaussian distribution with a
mean of one and a standard deviation 30 = (.2. Variations
are introduced to the ideal network by multiplying each of
these parameters by their associated random value, and the
new accuracy of the classifier is recorded.

B. Feature Extraction

The first step in the classification task is to generate a set of
features from the incoming audio. The feature extraction step

TABLE I: NEURAL NETWORK LAYERS AND SIZES

Size Inputs  Hidden Layer Sizes  Outputs
Small 6 [6] 1
Med 6 [12,6] 1
Large 6 [18,12,6] 1

introduces a number of manually-tuned hyperparameters such
as number of bandpass channels, bandpass center frequency,
filter order, time constants, and others. Of these parameters,
variations in the bandpass center frequencies, Q values and
gain, and RC time constants used in extracting the band’s
envelope and estimated noise and signal peak levels will likely
have the greatest impact on performance.

Fig. 5 shows the distribution of absolute accuracy for each
NN size after introducing 500 instances of noise; the main box
is the same as it would be in a standard box plot, showing the
main quartiles. The impact of the PVT variations in the feature
extraction stage is reduced in the deeper NNs.

C. Synaptic Weights

To emulate the effect of floating gate transistors storing a
gain value as a voltage on the gate, the learned weight values
from training are translated to a “voltage” such that the weight
value can be reobtained through (4).

w = Atan(cv) 4)
The same voltages are used on all 1000 variations of each
NN, and randomness is applied to the A (maximum gain)
and c (compression) variables. Fig. 6 shows the effects of this
randomness on accuracy when it is applied only to each layer
of weights individually and then all together.

V. DISCUSSION

In this and other simulations repeating this same process,
a definite pattern is observed. Layers with a large number
of synaptic weights (ins X outs) exhibit a larger range of
accuracy variation. Layers further from the output, however,
have reduced variability. The reason for the deeper layers
having less affect on overall accuracy is the activation function.
Though it is mainly intended to introduce nonlinearity to the
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Fig. 5: Distribution of accuracy when introducing noise to the feature
extraction stage. Variance is similar for all three NN sizes.
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Fig. 6: Distribution of accuracy when introducing noise to the
synaptic weights. Layers are numbered according to their position
behind the output. The impact of feature extraction variance is much
less compared to the effects due to the weights.
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Fig. 7: Effect of replacing the tanh activation function with (5). The
median accuracy and variance improve with a compressed activation.

network, it can also help to suppress variations as they traverse
through the network. This is especially true if the activation
function has a limited range, such as the tanh and sigmoid
functions, and the suppression is further enhanced when the
slope of the activation is also reduced.

If we replace the tanh activation with a compressed version
as in (5) in both the training and deployed models, the variance
is noticeably reduced (see Fig. 7). This of course means
that the circuit for the activation function must be carefully
designed to rely heavily on matching techniques in order to
reduce the possible variations in the activation.

0.5tanh(0.5z) + 0.5 5)

The variability due to earlier stages can be limited by
reducing the slope of the activation function, and limiting the
number of inputs to each layer will also help. Since the final
stage in a NN is also commonly the smallest stage, it may
be possible to take advantage of transfer learning, where only
the final stages are retrained after repurposing a NN for a new
task, or in this case, the same task but on different hardware
[27].

While neural networks implemented with analog arithmetic
currently lag behind current capabilities of modern artificial
intelligence, there are still a range of useful tasks, such as
voice activity detection, where analog classifiers can provide
a much-needed boost. With proper training and design, they
can bring all the benefits of artificial intelligence and smart
sensing to realms where they are currently impractical.
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