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ABSTRACT 
An Off Chip training algorithm for feedforward neural networks is presented. This algorithm has been 

successfully used to train networks with weightprecision as low as I bit. The effect ofreducing the weight 
precision on the generalization ability of the network is presented. The network performance, in the presence 
of hardware non-idealities, has also been investigated It is shown that a network with low precision weights 
can well tolerate the effect of hardware non-idealities if the network is properly trained. 

1. Introduction 

Feedforward neural networks have been 
successfully used in many pattern recognition 
applications. It has been proved that they can 
approximate any continuous function, to any arbitrary 
precision, using only one hidden layer with suEcient 
number of nodes [lo]. However, because of the 
parallel nature of the computations in neural 
networks, simulation of large networks on serial 
computers is slow. Some of the key features of neural 
networks like fault tolerance and the ability to 
compensate hardware non-idealities, make them 
attractive for VLSI implementations. Several chips 
have been introduced, using digital oranalogVLS1 
circuits to implement neural networks [5] 1161. Digital 
circuits are precise and insensitive to hardware non- 
idealities such as noise, offset and component 
variation and can be interfaced easily to peripherals. 
However, digital circuits, in comparison to their 
analog counterparts, are slower and occupy more area. 
Analog circuits can be small, simple and fast at the 
expense of more sensitivity to hardware non-idealities. 
On the other hand, considering the fault tolerance 
feature of neural networks, it is expected that the 
sensitivity of analog circuits to hardware non- 
idealities would not be restrictive. Therefore, when 
designing hardware for analog neural networksthe 
allowable limits of non-idealities are to be known. 

The training method chosen, has a great 
influence on these limits and the minimum allowable 
precision of weights. The existing training methods, 
according to the hardware used to perform the 
required computations, can be divided into three 
categories, namely: On Chip training, Partial On Chip 
training and Off Chip training methods. 

In On Chip training method, all the 
computations including forward and backward 
computations in Back Propagation algorithm, are 

performed by analog hardware. This method, though 
fast , needs high precision for weight representation 
(usually more than 10 bits1) [2][3]. Thisleadsto 
difficulties with the design of the high performance 
circuit components. The convergence of the training 
algorithm, depends also on the low offset of the 
backward computation circuitry [ 1][2]. It is possible to 
increase the complexity of the training algorithm to 
relax the required weight precision [3][4], at the price 
of more complex hardware. In general, this method is 
not appropriate for analog implementations due to its 
high precision requirements. 

In Partial On Chip training method, the 
forward computations are performed by analog 
hardware while a serial computer performs the other 
computations with high precision. As a result, this 
method is slower than On Chip training method 
during the training phase. In many applications, such 
as pattern recognition, the training is performed prior 
to the actual use of the chip and once thechipis 
trained, it can potentially operate at high speed. This 
method can compensate for the hardware non- 
idealities and unlike the previous method, it is 
insensitive to the offset of the analog circuits [5]. 
Using this method, weight precisions as low as 5 or 
6 bits have been reported[5]. 

In Of€ Chip training method, a computer 
performs all the computations with high precision and 
the computed value for the weights areusedinthe 
analog hardware of the forward path. The hardware 
non-idealities that can not be simulated by computer ( 
e.g., component variation), can be put into account by 
performing a final adjustment through a Partial On 
Chip training [6] .  The use of computer for training 
provides the ability of devising algorithms forvery 
low precision weight representation [7] [SI. Therefore, 
simple and small analog circuits can be utilized for 

In this article, sign bit is not counted but is always 
present. 
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multiplication and other operations and the resulting 
hardware can be highly integrated andwillbefast. 
However, hardware simplification through the 
reduction of the weight precision, in an Off Chip 
training method, can not be efficiently done unless the 
following questions are answered. 
1- Using a proper training algorithm, how much can 
the weight precision be reduced ? 
2- How does the reduction of weight precision affect 
the generalization ability of the network? 
3- How much can the trained network tolerate the 
non-idealities in the actual analog hardware? 

2. Training Algorithm 

In Off Chip training specially when 
resolution is very low, the incremental change in 
weights obtained from simple Back Propagation 
learning methods decrease gradually and will become 
smaller than one quantization step. This will stop the 
training progression, i.e., weights will be trapped in 
one of the spurious local minima caused by weight 
quantization. Several solutions addressing this 
problem have been suggested, such as adaptive 
changing of learning rate in order to escape from local 
minima [4][8]. However, to avoid failure, a definite 
method for changing the learning rate is not given. 

A good training method to overcome the 
above problem, should be successful in difficult 
training tasks and must be efficient enough to keep 
the number of hidden nodes as low as possible. An 
algorithm with these properties is given in the 
following steps. 

STEP a) Initially the network is trained with 
floating point weight precision using Back 
Propagation Training Algorithm. Conjugate gradient 
method is used to speed up the convergence. It is also 
necessary that the desired outputs of the network be 
equal to the asymptotic values of the activation 
function. Our experiments showed that this plays an 
essential role in successful network training and 
reducing the network sensitivity to the quantization of 
the weights. 

STEP b) The weights are quantized to n bits, 
after being scaled appropriately by multiplying the 
gain of the activation functions by a scale factor and 
dividing the weights of the input branches of the 
nodes by the same scale factor. A common method 
for optimizing scale factors is to minimize the 
distance between the quantized and original weight 
vectors[8]. In our algorithm, however, these scale 
factors are found such that the error of the network on 
the training set is minimum after scaling and 
quantization of the weights. 

STEP c) The network is then trained using a 
modified version of Back Propagation, QGDR 
(Quantized Gradient Descent Rule), so as toavoid 

spurious local minima. Thisalgorithmmakesuseof 
the sign of the gradient vector obtainedfiomBack 
Propagation. Each weight (Wi) is changed in the 
opposite direction of dE/dWi for an amount equal to 
one quantization step. This change is accepted if it 
decreases the network error ( E ), otherwise it is 
rejected. This process is applied to all of the weights 
in the network until the network error becomes less 
than a predefined value or no further changes in the 
weights are made in one epoch. Our experiments 
showed that QGDR can find a good result in the 
neighborhood of the minimum found in STEP (a), in 
contrast to the adaptive learning rate method which 
has the potential to move the weights away from 
initial minimum. QGDR is also much faster than 
methods like Simulated Annealing or Blind Random 
Search. 

STEP d) The number of bits, n, representing 
quantized weights, is decreased by one and STEPS (b) 
and (c) are repeated until the desired weight precision 
is reached. 

3. Test Vehicles 

To test the performance of the training 
algorithm discussed in the previous section, the 
following problems were used. 

Problem 1 - 6-BitParityProblem: A m e n  
input-one output network with one hidden layer was 
used for which one of the inputs is always set to one 
so as to implement the bias terms. Experiments were 
done separately for 10 and 15 nodes inthehidden 
layer. The training set had 64 members, containing all 
possible states for the input. With the parity problem, 
output changes as the input is changed by one bit and 
also the training set contains all of the possible input 
states. This makes the parity problem a good vehicle 
for testing the power of a training algorithm specially 
when the number of bits representing quantized 
weights is to be low. 

Problem 2 - A simplified version of the 
Persian (Arabic) digit recognition problem: Inthis 
problem a network with one hidden layer was utilized 
which had 100 input nodes corresponding to the 
10x10 matrix representing the digits. The 10 output 
nodes of the network were interpreted on Winner 
Take All basis. The number of hidden nodes were 10, 
15 and 20 for three separate groups of experiments. 
The training set contained 30 members with 3 
samples for each digit. Although this problem is fairly 
simple and can be trained by simpler training 
algorithms, it was selected in order to test the 
generalization ability of the network trained with the 
new algorithm. The test set contained 1200 members, 
obtained by adding 5,10,15 and 20 percent noise, 10 
times, to each member of the training set. 
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Table 1: The Training Results 
(E stands for numbers less than 1E-4 ) 

4. Training Results 

In all of our experiments, the activation 
function was taken as f(x) = tanh(cx) where c was 
unity in the beginning of STEP (a) ofthetraining 
algorithm. Also, the following definition was used for 
Error ( Cost Function) : 

Error = 0.5 x  actual Output g - Desired Output i j )  

( i = All members of the training set, j = All network 

The number of bits, representing the weights, 
were taken equal to 6, after the completion of STEP 
(a). This number was gradually r e d u d  to oneby 
successive application of STEPS (b) and (c). In each 
case the training was stopped, if the error became less 
than 1E-4. 

The training results for problems 1 and 2 
(Table 1) for different number of hidden nodes show 
that in both problems, the ability to learn the training 
set, is quite satisfactory, even with 1 bit precision for 
weights. It can also be concluded from Table1 that the 
learning ability of the network improves as the 
number of hidden nodes is increased. For both 

i j  

outputs) 

g 1 2  4 6 Float 
Number of Bits 

Fig. 1. Generalization Ability in Problem 2 

problems, the final error on the training set for 1 bit 
weight precision, can become as low as the final error 
for floating point weight precision, if the number of 
hidden nodes is large enough. 

The results of testing the network of problem 
2 with the test set and for different number of hidden 
nodes are given in Fig. 1. Fig. 1 shows that decreasing 
the weight precision, reduces the generalization 
ability of the network. But this reduction in the 
generalization ability is negligible for weight 
precisions as low as 2 bits. Fig. 1 also shows that 
despite the improvement in learning ability gained by 
increasing the number of hidden nodes, the 
generalization ability does not necessarily improve. In 
fact, there is an optimum value for the numberof 
hidden nodes for which the generalization power of 
the network is maximum. 

5. Simulation of Hardware Non-Idealities 

Analog hardware s a e r  from several non- 
ideal effects such as noise and offset. Thus , when a 
neural network is implemented using analog 
hardware, questions such as the following arise: How 
these non-idealities affect the network performance? 
To what extent are these effects tolerable? Does 
reducing the number of bits representingquantized 
weights have a si@cant effect on the network 
tolerance to non-idealities? 

To answer these questions, non-ideal effects 
were applied to each of the trained networks of 
previous section (both with 15 hidden nodes) and the 
changes in the network performanceontraining set 
and test set were investigated. The major non-ideal 
effects in analog hardware, i.e., non-linearity, noise, 
offset and component variation, were modeled as 
follows. 

a) Non-linearity - Non-linearity was modeled 
by applying function tanh(/3x)/p to the network inputs 
and the multiplier outputs. This function hasunity 
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Fig. 2. Nonlinearity in Problem 1 
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Fig. 4. Noise in Problem 1 
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Fig. 6. offset in Problem 1 

gain at x==O for all values of p and its non-linearity 
increases as p is increased (more than 50% for p = 2). 

b) Noise - Noise was simulated by a random 
variable with uniform distribution and zero mean for 
which its standard deviation ( Noise RMS value) was 
taken as a simulation parameter. This random 
variable was added to the network inputs to 
investigate the network behavior as a function of the 
Input Equivalent Noise. 

c) offset - Numbers with a constant 
magnitude and random sign was added to each 
network input to model the component offsets referred 
to the input. 

d) Component Variation - Component 
variation was modeled by considering a random 

Fig. 3. Nonlinearity in Problem 2 
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Fig. 5. Noise in Problem 2 

OFFSET IN PERCENT 
Fig. 7. offset in Problem 2 

coefficient with unity mean for each multiplier. The 
standard deviation of this random variable was a 
simulation parameter and is interpreted as component 
variation percentage. 

The results of the experiments are shown in 
Fig. 2 through Fig. 9. In all of these figures, the 
vertical axis is in terms of fault percentage on the 
training set and the horizontal axis  is in terms of one 
of the non-idealities mentioned above. Each figure 
contains three curves corresponding to 6,3 and 1 bit 
precision for weights as specified for each m e .  In 
these experiments, when the non-ideal effects were 
modeled as random variables, the results of ten 
experiments were averaged and used as the final 
result. 
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Fig. 8. Component Variation in Problem 1 

As shown in Fig. 2 and Fig. 3, the effect of 
non-linearity is negligible and in theworstcasethe 
fault percentage on the training set is less than 5% 
(for 3 bits). For noise and offset (Fig. 4 to Fig. 7), 
when less than 12% for problem 1 and 20% for 
problem 2, fault percentage on the training set is less 
than 5% for weight precision down to 1 bit. Fig. 8 and 
Fig. 9 show that large component variations also can 
well be tolerated by the network. Fig. 8 and Fig. 9 
show that the component variation can be higher than 
10% while the fault percentage on the trainingset 
remains less than 5% with weight precision down to 
1 bit. 

The results of the experiments on the 
generalization ability of the network in presence of 
non-idealities are given in Table 2. As shown in Table 
2, the generalization ability of the network on the test 
set does not degrade for the large values of the non- 
idealities applied to the network. 

Therefore, it can be concluded that the 
reduction of weight precision has a negligible effect 
on the non-ideality tolerance of the network, ifthe 
lower precision network can be trained tothesame 
error level as the higher precision network. Failure in 
properly training the low precision network not only 
limits the generalization ability of the network but it 
also increases the sensitivity of the network tothe 
hardware non-idealities. 
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