2017 Asia Modelling Symposium (AMS)

Analog Implementation of Artificial Neural Networks Using Forward only
Computation

Subha Mada, Srinivas Mandalika

Department of Electrical Engineering
BITS Pilani, Hyderabad Campus
Hyderabad, India.

Email: subhasekhar@gmail.com

Abstract — The algorithm used to train an Artificial Neural
Network (ANN) plays an important role in its
implementation. Analog VLSI implementations of ANN
using back propagation algorithm for multi-layer perceptron
(MLP) architectures were reported earlier. In this paper, we
used an algorithm which uses forward only computation to
update the weights, instead of forward and backward
computation resulting in reduced computation time. The
chosen algorithm, can train all types of architectures in less
time, even where back propagation and other second order
algorithms fail. An analog VLSI implementation of this
algorithm can further reduce the area and power dissipation.
To validate our idea, we designed and implemented a two
input-one hidden layer-one output MLP network. All the
blocks were implemented in CADENCE Virtuoso tool using
the 180nm technology library. The resultant network
architecture was tested successfully for digital applications
like AND, OR and analog applications - compression and
decompression.

Keywords — Feed forward Neural networks, Analog VLSI
design, Forward only computation, weight update, without
back propagation

I. INTRODUCTION

Neural networks have many real time applications. In
realizing the neural networks using analog VLSI blocks,
the training algorithm used to train the neurons in the
network is very critical.

Traditional back propagation algorithm is simple to
implement. The error, the difference between the expected
and actual result is back propagated by updating the
weights and finally the minimum error point is reached at
the convergence point. But it slows down when the
number of outputs of the neural network increases, when
compared to the second order algorithms [1].

The second order Levenberg- Marquardt algorithms
used in the neural network tool box is fast and can train the
neural networks for which EBP algorithm has convergence
problem. But, this also has some disadvantages if the
network has more number of outputs [1].

Analog VLSI implementations that were reported use
back propagation algorithm [2-4]. In this paper, we
implement an algorithm [5] which uses forward only

computation and does not use back propagation to update
the weights in training the neural network.

We propose the design of various blocks to implement
the neural network architecture using this forward only
computation algorithm. The blocks designed were tested
successfully for some of the digital and analog
applications.

A. Simple neural network architecture

The neural network shown in Fig.1 is considered for
implementation using the forward only algorithm. It has 4
neurons and two inputs and one output.

Fig.1. Neural network

The analog VLSI blocks that were used in
implementing the network shown in Fig.1 are listed
below.

1. Four quadrant analog multiplier: to multiply the
updated weights with the inputs.

2. Tan sigmoid function generator: To act as an
activation function and to derive the slopes of the
individual neurons.

3. Delta module: to find the delta matrix entries

4. Gradient vector module : to compute the gradient

5. Capacitor block: to store the present weights.
6. Weight update module: to update the weights.

2376-1172/17 $31.00 © 2017 IEEE 3
DOI 10.1109/AMS.2017.10

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:54:26 UTC from IEEE Xplore. Restrictions apply.

A. Multiplier [6]

The four quadrant analog multiplier shown in Fig.2 is
used to multiply the inputs, with the associated weights.

- 1

: 7dd :
M5 13 h
Iil I
113 I# Yol
nt = M3 HES
i }_,‘i'}'
Wy =W

Fig.2 Multiplier
B. Subtractor

The circuit shown in Fig.3 is used to compute the error
between the actual output and target output [7].

T102 |
111

Fig.3 Voltage subtractor

C. Activation Function with Slope

The circuit in Fig.4, which generates the tan sigmoid
along with its derivative is used as the activation function
in the neural network architecture.

II. CALCULATIONS FOR THE PROPOSED DESIGN

For the network considered in Fig.1, the neural
architecture is designed according to the modified LM
algorithm which uses only forward computation to update
the weights.

Delta matrix is calculated using the equation (1) and
there by the Jacobean and gradient vector are computed as
explained in the section B and C.

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:54:26 UTC from IEEE Xplore. Restrictions apply.

s o] Ta

Fig.4. Activation function with slope

In the delta matrix mentioned in Table I, Sk indicates
the slope of neuron i. &kj is the signal gain between
neurons j and k.

Fyj(y;) is the non-linear relationship between output
node of neuron k and output node of neuron j. Delta is
defined as

_ Ry kg _ wahad Ay

Sy = Bk, R, e (1
= ?Iﬁ ey
Ifk =j, it is the slope (S) of neuron j
g™

A. Calculation of Delta matrix

The delta matrix for the network considered will be as
shown in Table 1.

TABLEIL & MATRIX

Index 1 2 3 4
1 S1 0 0 w7
2 0 S2 0 w8
3 0 0 S3 w9
4 04,1 04,2 04,3 S4

where the entries of the delta matrix are defined by
equations (2),(3), and (4) as:

where S; is the slope of the neuron ‘j’.

B. Calculation of Jacobean matrix

By 'm doomaidy 2)
g Wy Wiedly (3)
g W Ty 4)

The elements of the Jacobean matrix, computed using
the delta matrix entries of section A are shown using
equations (5) — (13).

FIL] = Sy v, Syuy

JE

—;,.'l-JF' .--I'|I |;-:

)
(6)

8]l = Sae i 32 4 (7

A =50 s (®)
18] = S5 Bg.udy)
#l8) = 5, v 3g.is (10)
¥ = 3aay (11)
HlE] = 555 (12)
Y =3, (13)

C. Calculation of Gradient Vector

From the Jacobean matrix calculated in section B,
Gradient vector 1is calculated using the equations (14)-
(22).

I R T R (14)
gl =S,m 0 (15)
#l2] = SpmpSadiny (16)
glt] =Jpmp ipize (17)
gl8) = Fpme Syt (18)
olb =3, m 80000 (19)
2l%l = 3., 0 (20)
ol8l = Jpng v (21)
2l¥ = a0 (22)

D. Weight Update

After the Gradient vector calculation, the weights of
all the neurons are updated using the following weight
update rule shown in equation (23).

Wigag = Mg, =il (23)

Where g, denotes the gradient vector, W, is the
previous weight and Wy, is the updated weight.

IIT. PROPOSED DESIGN FOR THE IMPLEMENTATION OF
NEURAL NETWORK USING FORWARD ONLY ALGORITHM

A. Neural network

In Fig.5, Vi and V; are the inputs to the neural network
and w;, indicate the weights ,S; indicate the slope of the j !
neuron and ‘a;’ indicate the output of the neuron j. The
blocks ‘mult’ and ‘Actfun’ used in the figure indicate the
multiplier and activation function respectively.

Fig.5. Implementation of neural network shown in Fig.1

B. Delta Calculation Block

The equations (2), (3) and (4) which are used to
compute the delta are realized using the multipliers
connected as shown in the Fig. 6.

il muit muit e,
w—d s ’
! mult mult tel
wi—— s— —
N mult [
— . muit el

Fig.6. Delta calculation

After this calculation, these delta values dels;, dels,
and dels; are used to compute the entries of the Gradient
vector g[1] to g[9].

The number of the entries in the gradient vector
depends on the number of outputs of the neural network
and number of neurons used in the network.

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:54:26 UTC from IEEE Xplore. Restrictions apply.

C. Gradient vector calculation Block

I
0l mut malt
11— 2 |
del., 12
1 |mit }—m it .
— o .
de a2 1B
ke mut
1 —— S a3l
dely, J[4
1 mult —_—mut
i —— L= EIE
el ; 151
g mer p———|wut 051
Ol gy JIE]
mule | Imule
iz — B —— zl6]
— .71
R mult AR
al s T —
18]
L J— mult |k EIE'
a2 T
a4 .[%
- madt ls]
33 ——— o —

Fig.7. Gradient calculation block.

D. Weight storage block

The weights are initialized to some predefined values
and are applied in synchronous with the weight

initializing clock. The updated weights are calculated
using Forward only computation method as explained in
previous section. The outputs of weight update block
which is shown in Fig.15 are connected to this storage

block of Fig.8, in synchronous with the weight update
clock.

Fig.8. Weight storage block

All the blocks that were designed and implemented are
connected to build and train the neural network which is
shown in Fig.1. The resultant network was successfully

tested for basic digital applications like AND, OR and

analog applications like Compression and Decompression.
The block diagram of the setup used for testing

compression and decompression is shown in Fig.9.

Compresdion Block Decompression Block:

Fig.9. Block diagram for Compression and Decompression.

IV. CIRCUITS AND SIMULATIONS

The simulations of the multiplier and activation
function are shown in the Fig. 10 and Fig.11 respectively.

‘ T ,Mw m

Fig.10 Transient analy51s of multiplier.

A. Multiplier

B. Acivation Function with Slope

B subbad ekl o | [3) vituss W sin st AEEL

T Momemuntevain... L Vs e, | 0 |

Fig. 11. DC Analysis of Activation function block

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:54:26 UTC from IEEE Xplore. Restrictions apply.

C. Neural Network

The neural network shown in Fig.1 is implemented
using multiplier and activation function blocks as shown
in Fig.5.

The output nodes of multiplier in Fig.2 will itself act
like an adder, and the summation of weight - input
products can be computed at those respective nodes. The
resultant schematic is shown in Fig.12.

Fig. 12 Neural network

D. Delta Calculation Block

Fig. 13 shows the implementation of equations 2, 3 and
4 using which the delta parameters for the network are
computed. The number of delta values to be calculated
depend on the total number of outputs for the network.
Here, as the network shown in Fig.l, is having single
output, only the last row of the delta matrix which is
shown in Table I need to be computed.

E. Gradient calculation

Once the delta values are calculated, the gradient vector
is calculated as shown in Fig. 14. The equations from (14)
to (22) are implemented using this block. The number of
entries in the gradient vector will be equal to the number
of weights that need to be updated in every iteration.

F. Weight update block

Updating the weights is done by the block shown in
Fig. 15 in which the gradient vector is multiplied with a,
the learning constant and is subtracted from the previous
weight to get the updated weight.

The outputs of this block are connected to the
associated weight storage modules and are stored by the
capacitors for further iterations.

Fig. 13 Delta calculation block

G. Implementation of entire neuralnetwork shown in
Fig.1

All the blocks that are necessary to do the computations
were then interconnected as shown in the Fig. 16 to
implement the complete neural architecture.

Delta values computed are applied as the inputs to the
gradient block and outputs from the gradient block used
for updating the weights.

The updated weights are fed to the weight storage
block, in which the weights are stored using capacitors
until the next iteration. Finally once the weights are
converged, we can verify the output of the neural network
at the output neuron.

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:54:26 UTC from IEEE Xplore. Restrictions apply.

?

. _ _.I.__'__Il |
H—H— Hi——1i

Bt

v
il

=

Fig 16. Complete Neural network

V. RESULTS Two input signals i/p1 and i/p2 were applied along with
the expected target to the test circuit of the network that was
The neural network that is designed is tested for the designed by interconnecting all the modules. The results
digital operation AND, OR and analog applications like obtained are shown in Fig. 17, Fig. 18 and Fig. 19.
Compression and Decompression successfully.

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:54:26 UTC from IEEE Xplore. Restrictions apply.

A. AND Operation

Bt

BmEECE

T

SEEEESEERCEEMEE

ae L]

Fig 18. OR Result

C. Compression and Decompression

! compressed o/p

: decompressed
Fig 19. Compression and Decompression Result.
VI. CONCLUSIONS

The neural network shown in Fig.1 was implemented
with Analog modules using forward only computation for

updating the weights (Without using back propagation)
using CADENCE virtuoso tool with 180nm technology
library. The Basic digital operations like AND, OR and
analog applications like Compression and Decompression
were tested successfully.

A more efficient weight update rule can improve the
speed of the architecture but at the cost of additional and
complex circuitry. Similarly, alternate multiplier and
activation functions can be tried for better performance. The
work can be extended for the implementation of multiple
output neural networks, arbitrarily and fully connected
neural networks which can be trained for complex patterns.
Then, comparison studies in terms of area and power
dissipation can be done against the other architectures using
EBP and second order algorithms.

REFERENCES

[1] M T Hagan and M B Menhaj, “Training Feedforward Networks with
the Marquardt Algorithm”, IEEE Transactions on Neural Networks,
VOL. 5,NO. 6, NOVEMBER 1994.

[2] Laurent Gatet, Héléne Tap-Béteille, and Marc Lescure, “Analog
Neural Network Implementation for a Real-Time Surface
Classification ~ Application”,pp 1413-1417, IEEE SENSORS
JOURNAL, VOL. 8, NO. 8, AUGUST 2008.

[3] CPRajP,S.L. Pinjare, “Design and Analog VLSI Implementation of
Neural Network Architecture for Signal Processing”, European
Journal of Scientific Research, Vol.27, No.2, pp.199-216, 2009.

[4] Bapuray. D. Yammenavar, Vadiraj. R. Gurunaik, Rakesh. N.
Bevinagidad and Vinayak. U.Gandage, “Design and Analog VLSI
Implementation of Artificial Neural Network”, International Journal
of Artificial Intelligence & Applications (IJAIA), Vol.2, No.3, July
2011

[5] B M Wilamowski and Hao Yu, “Neural Network Learning without
Back propagation”, IEEE Transactions on Neural networks, VOL.
21,NO. 11, NOVEMBER 2010.

[6] Akshatha B C, A Vijay Kumar, ‘Low Voltage, Low Power, High
Linearity, High Speed CMOS Voltage Mode Analog Multiplier”
Second International Conference on Emerging Trends in Engineering
and Technology, pp 149-154, ICETET-09

[71 Katsuji Kimura, “Voltage Adder/Subtractor Circuit with two
differential transistor pairs”, United States Patent, Patent number:
5,909,137, Date of Patent: Jun 1, 1999

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:54:26 UTC from IEEE Xplore. Restrictions apply.

