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Abstract

Analog implementations of neural networks have been
used for a wide variety of tasks especially in the area of
image processing. Typically, implementations of analog
neural networks have been based on the use of either
current or charge as the variable of computation. This
work introduces a new class of analog neural network
circuits based on the concept of conductance-mode
computation.  In this class of circuits, accumulated
weighted inputs are represented as conductances, and a
conductance-mode neuron is used to apply nonlinearity and
produce an output. The advantages of this class of circuits
are twofold: firstly, conductance-mode computation is fast
- we have developed circuits based on these principles
which compute at 5-10 MHz secondly, because
conductance-mode computation requires the minimum
charge necessary to compare two conductances, its energy-
consumption is self-scaling depending on the difficulty of
the decision to be made - we have a working prototype
which consumes 166fJ per connection. The computing
precision of these circuits is high: test results on a small
test structure indicate an intrinsic precision of 8-9 bits. We
have developed a larger test circuit which is able to
perform computation with 1056 binary-valued inputs.
Initial measurements in this large test structure indicate a
more limited computing precision of 6+ - 8+ bits
depending on the common mode of the input signal.

1: Introduction

Artificial neural networks have been successfully applied
to problems such as speech or character recognition, and
texture analysis [1, 2, 4, 6]. In the classification phase the
network parameters are fixed and the network executes the
recognition or the analysis starting from the information
contained in the topology and in the weights. The base
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operation executed by the single neuron during
classification is the application of a non-linearity function
to the weighted sum of the inputs:

where X are the inputs to the neuron, W the weights, and
out is the result of the “activation function.” In the
hardware implementation of neural networks it is important
to consider flexibility and power consumption in order to
satisfy a wide range of applications. Our approach has been
to focus on circuits which consume very littie power per
connection allowing for a high number of connections
(> 1k) per neuron.

Analog  implementations of Neural Network
Architectures provide a framework for computation which
is more efficient than standard digital techniques for certain
problems. The purpose of this work is to explore the
viability of this approach on a large scale using novel
techniques based on Flash-EEPROM technology. One of
the most attractive features of our circuit is that it
implements synapses by a simple circuit based on a pair of
floating-gate  transistors, providing both  analog
multiplication and weight storage with low power
consumption and high density (16um x 4.4um per synapses
- 0.7um CMOS technology). Both the weight storage and
analog multiplication are implemented concurrently in a
pair of floating gate of transistors.

The neuron consists of a conductance comparator which
senses the difference between the synapses separated in
positive and negative weights; this approach allows to
achieve a computation with low power consumption (166
fJ for each connection), high precision (8 bit) and high
speed (5 - 10MHz). We have implemented in a CMOS
testchip our conductance mode neuron circuit. This novel
conductance mode neuron is a suitable building block for
large-scale  array-based  analog neural network
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implementations and has been designed using a mixture of
analog and digital subcircuits (mixed-mode).

The neuron circuit uses analog weighting and analog
computation internally to reduce silicon area and power
consumption while the data inputs and outputs are digital; a
chip in which I/O is digital greatly simplifies integration at
the system level.

2: Neuron Chip and Synapses

The use of floating gate technology for efficient long-
term analog storage is well explored, especially in neural
network implementations [3, 4, 5]. In this work we use a
single pair of Flash-EEPROM devices for both analog
storage and analog computation. Essentially, the core
computational concept we are exploiting is to make use of
a floating-gate device as a programmable switched
conductance. By storing one analog value as the threshold
of a floating gate device and applying a second digital
value on the gate of the device, the conductance of the
devices can be either zero (off) or a pre-programmed
analog value (fig.1).
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Figure 1. ldeal schematic concepts of Flash
device functionality as a programmable
switched conductance.

The use of a differential input scheme consisting of two
conductance summing lines allows weights (conductance)
to be either “positive” or “negative.” A conductance
comparison neuron can then compare total “positive”
conductance to total “negative” conductance and make a
decision on the polarity of the total weighted inputs
(conductance) as shown in fig. 2. The conductance or
weight of these synapses are determined by the threshold
(Vt) programmed on the device and the precision to which
this threshold can be controlled gives the effective bit-
equivalent precision of the synapse weight. It is possible to
program the threshold of a floating gate device to a
precision of 64mV[3]. This corresponds to 5 bits (32
levels) over our 2V input dynamic. The use of two devices
adds a sign bit for a total of 6 bits per weight. Fig.3 shows
the design of a standard Flash-EEPROM used as a
conductance-mode synapse; each synapse occupies a
l16umx4.4um area rendering very compact the area
occupied and allowing high density of computational
elements.
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Figure 2. Electrical representation of Neuron
functionality .

We use a conductance comparator as a neuron to apply
the “activation function” of the neuron because comparing
the two conductances allows us to compute with very little
energy, reducing the overall power. The circuit that
performs the neuron computation is shown in fig.4. The
circuit is a conductance comparator that consists of three
principal blocks: a current buffer to de-couple the synapses
from the neuron, the neuron to perform the comparison,
and a latch to digitise the output. The current buffer is
shown in fig. 4.a.
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Figure 3. Conductance-mode Synapse

Each synapse is a conductance element implemented by
a floating gate device; this presents several design
constraints to the current buffer: firstly to minimise disturb
programming it is important keep the drain voltage as low
as possible (< 100mV); secondly as we intended to use
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Figure 4. Neuron Conductance Comparator

many synapses (O(1k)) and each has parasitic- drain
capacitance on the order of 2fF, the drain node will respond
slowly if it must undergo large voltage swings. To have a
neuron with a large dynamic range output voltage and high
speed, it is necessary to de-couple the drain node from the
neuron.

To reduce the power consumption in the computation it
is better that all the devices implementing synapses work in
the triode region; for this reason we need a reference
voltage to fix the device Vds under the overdrive. The
buffer function is realised by the M1 and M2 devices
connected with a common gate, while the device M3 in
diode configuration fixes the Vds of the synapse devices.
The fig.4.b shows the design of the neuron. The neuron is a
conductance sensing circuit that performs a comparison
between two different conductances coming from the
synapse devices. The aim of the design is to solve the
problem of the common mode range from 1 to 1000
synapses on during a computation with a solution that
guarantees low power consumption, small silicon area, and
high precision.

Consider an input to the neuron consisting of two
currents (+ and -), the circuit is able to subtract the
common mode current and discriminate the line of
synapses with the minimum conductance using a cross
mirror and positive feedback: this allows the circuit to
achieve high precision over a wide range of input current.
The speed of the circuit changes with the overall current: to
optimise the speed performance and to digitise the output
we use a standard latch structure.

3: Experimental results

An implementation of the neuron can be seen in fig.5
which shows a layout of a test structure. The neuron
measure 200um x 32pm and it is fabricated in 0.7um
CMOS technology double poly, double metal, and contains
18 transistor total. The aim of the precision test on this
structure is to estimate the computing precision of the
comparator. The test structure contains two pairs of
transistors connected to the neuron (fig. 6). One pair of the
transistors are very big (B=800/2) and represent the
common mode signal for the positive and negative
synapses; the other pair of transistors are small (§=0.8/2 =
B/2'° ) like the minimum flash devices and represents the
variable input signal. After offset compensation between
the two large “common mode” transistors we apply a
common mode voltage to them and find the minimum input
signal needed to control the output via the pair of small
transistors.

Figure 5. Layout of the test structure

A measurement was made to characterise the percentage
of times the output was correctly controlled by the input
over 1000 cycles using a “001100...” input pattern. With
the maximum Vcommon fixed to 0.9V (100-200 mV
above Vt) we measured the statistical output as a function
of delta Vinput between the two “small” transistors. Fig. 8
shows a loss of precision starting at Vinput = 120mV; the
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Figure 6. Schematic of the test structure
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correspondence between this measurement and precision
depends critically on the precise threshold of the devices:
for our process we know Vt is between 0.7V and 0.8V
which in the worst case means 8 bits and in the best case 9
bits of precision. This analysis is based on drawn transistor
dimensions making exact precision characterisation
following fabrication difficult.

We have realised another test structure (fig.7) to estimate
the computing precision of the neuron comparator. The test
structure contains 1k flash devices (0.8um/2pm) for
common mode input whose inputs are controlled by a shift
register and 32 flash devices for differential input whose
inputs are controlled by a latch. The circuit also contains
programming and erasing drivers for the flash devices. The
entire 1k flash represents the common mode signal for the
positive and the negative synapses; 16 compensation flash
are able to compensate the programming error and the
remaining 16 input flash are used to apply the input signal
to measure the overall precision. After all the flash devices
have been programmed to Vi= 2.5 V we fill the shift
register with “1”’s. The gate voltage is fixed for all the flash
to Vt + LSB (we tested the precision for different LSB
voltages). Applying a Vt + LSB voltage to the flash gate
means fixing a common mode signal for the positive and
the negative synapses (as has done by the big transistors of
the previous test structure). After compensation we apply a
sequence of “00110011...” to 1 to 16 of the inputs testing
for the correct output over 1 million cycles.
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Figure 7. Block Diagram of new test structure

Figure 9 shown the percentage of correct output as a
function of the number of inputs applied (1 to 16). It is
clear that as the number of inputs increases the percentage
of correct outputs increases, approaching 100% for 6 inputs
with a LSB=32mV. This correspond to a precision of 7+
bits [log,(1k/6) = 7+]. Figure 11 shows the precision in
function of the LSB voltage: increasing the LSB to 128mV
we loose 1 bit precision (6+ bits). The effective precision
of the circuit depends critically on the common mode
signal. Figure 10 shows the same test using only 0.5k flash
devices (reduced common mode); in this case the input
needed for 100% correct output is 2 and the effective
precision is close to 8 bits [log,(0.5k/2)=8bits].
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Fig. 12 shows a measurement at 10MHz clock of the
neuron functionality; limitations comes from individual
PAD drivers which have a maximum speed of 10 MHz
(simulation shows a peak speed 30MHz of for the neuron
computation).

Figure 13 shows power consumption of the neuron over
one computation: the consumption is equal to 166pJ at 5 V
of power supply at a frequency of 1.7MHz. This
correspond to 166f] per input multiply-accumulate
operation (1k inputs).

4: Conclusion

We have designed and characterised a conductance-mode
analog neural circuit for the implementation of artificial
neural networks. The circuit is based on a dense
implementation of multiplying synapses which consist of a
single pair of flash-eeprom devices for storage of a 6-bit
fixed weight and multiplication by a 1 bit input. A small
test circuit has been characterised and demonstrates an
inherent neuron precision of 8-9 bits. A large test structure
based on this circuit and suitable for neural network
computation with up to 1k inputs has been developed and
preliminary testing results indicate a computing precision
of 8 bits. This conductance-mode computing circuit is
small (200x32um/neuron, 4.4pmx16pum/synapse - 0.7pum
process), fast (5-10MHz) and very power -efficient
(166pJ/computation).
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8-9 bits of precision
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Figure 8. Intrinsic Precision curve of test
structure.
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Fig 12. 10 Mhz clock diagram of neuron
functionality.

PRECISION GRAPH

100.0
90.0 :’I T3 sb = 64 mV
/L s s s = 32 MV
Vil s——fisb = 128 mv
a ‘/
w 8.0 )
; s
8 7
s 700 7 =
& g
or 7 %
= : =
50.0° B s Gl TN R S ! 1
lO 20 30 40 50 60 7.0 80 8.0 100110120

# input
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common mode.
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Figure 13. Power Consumption measurement
at 5V op power supply. Current through 9k
ohm resistor integrated.
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