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Further we note thatRJM(H) andRRJM(H) might be inves-
tigated and used in the future in many fields of mathematics and
engineering.
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Bull. Sci. Math., vol. 17, pp. 240–248, 1893.

[2] D. F. Elliot and K. R. Rao,Fast Transforms: Algorithms, Analyzes,
Applications. New York: Academic, 1982.

[3] N. Ahmed and K. R. Rao,Orthogonal Transforms for Digital Signal
Processing. Berlin, Germany: Springer-Verlag, 1975.

[4] M. H. Lee and M. Kaveh, “Fast Hadamard transform based on a simple
matrix factorization,”IEEE Trans. Acoust., Speech, Signal Processing,
vol. ASSP-34, pp. 1666–1667, 1986.

[5] M. H. Lee and Y. Yasuda, “Simple systolic array algorithm for
Hadamard transform,”Electron. Lett., vol. 26, pp. 1478–1480, Aug.
30, 1990.

[6] M. H. Lee, “High speed multidimensional systolic arrays for discrete
Fourier transform,”IEEE Trans. Circuits Syst. II, vol. 39, pp. 876–879,
Dec. 1992.

[7] I. Gohberg, P. Lancaster, and L. Rodman,Matrices and Indefinite Scalar
Products. New York: Birkḧauser Verlag, 1983.
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A Tunable Gaussian/Square Function
Computation Circuit for Analog Neural Networks

Shang-Yi Lin, Ren-Jiun Huang, and Tzi-Dar Chiueh

Abstract—A Gaussian/square function computation circuit suitable
for analog neural networks is proposed. It can realize Gaussian and
square functions when operating in weak and strong inversion region,
respectively. It is shown that the center, width, and peak amplitude of the
dc transfer curve can be controlled separably. Measurement results on
3-�m CMOS fabricated chips confirm theoretical and simulation findings.

Index Terms—Gaussian circuit, similarity measure, squaring circuit.

I. INTRODUCTION

Similarity measure is an essential computation in many neural
network models such as the Hamming-net classifier, associative
memory, and self-organization feature map. Well-known measures
include inner product, directional cosine, Manhattan distance, Eu-
clidean distance, and bell-shape Gaussian-like function, etc. Among
these, Euclidean distance similarity measure is most popular in
neural network systems [1]–[3]. Analog multipliers in principle can
be used for the square function in Euclidean distance similarity
measure. A more efficient way is to design a circuit that performs the
squaring function directly by exploiting the square-law behavior of
MOS transistors [4]–[7].N -dimensional Euclidean distance similarity
measure can be computed by tying the outputs ofN squaring circuits.

Gaussian function finds applications in several successful neural
networks implementations, such as the activation function in radial
basis function networks [8], [9] and the Gaussian (“bump”)-type
similarity measure [10]. For the realization of Gaussian function,
one circuit using the concept of “current correlator” is developed for
weak inversion operation [10]. However, in this circuit the width of dc
transfer curve can not be adjusted. An improved version of this circuit
consists of two parallelly connected differential pairs with different
values of transconductance [11]. The effective transconductance of
the whole circuit can be varied by properly distributing currents
flowing into the two differential pairs. Consequently, one can tune
the width of its dc transfer curve, albeit limitedly. One circuit
[12] exhibits sufficient tuning range, but is too complex for VLSI
implementations. Another tunable Gaussian function circuit working
in strong inversion region contains several differential pairs [13].
Width tuning is achieved by selectively connecting input differential
pairs to the bias current.

In most practical analog neural networks VLSI, flexible tuning of
function parameters is a must due to the inherent learning/adaptive
characteristics of neural networks. In this paper, we propose a
Gaussian/square function computation circuit, in which the center,
width, and peak amplitude of the dc transfer curve can be adjusted
independently. In Section II, the dc characteristics of the proposed
circuit working in weak and strong inversion regions are derived.
Moreover, effect of transistor mismatch is also studied. In Section III,
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implementation and testing results are presented. Finally, conclusions
are drawn in Section IV.

II. CIRCUIT DESCRIPTION

In the analysis, the followingI–V relationship of MOS transistors
are adopted. For strong inversion,

saturated region

IDS =
K

2
(VGS � Vt)

2 (1)

linear region

IDS =K (VGS � Vt)VDS � 1

2
V

2

DS (2)

whereK = �oCOX(W=L): For weak inversion [14]

IDS = Ise
�V =V

(e
�V =V � e

�V =V
) (3)

where Is is proportional toW=L and �—a constant between 0.7
and 1 is the back-gate coefficient describing the effectiveness of gate
voltage change on channel surface potential.

Among all the Gaussian function circuits mentioned previously,
the “bump” circuit using a “current correlator” is the most compact
one [10] [see Fig. 1(a)]. The output current of the “bump” circuit
operating in weak inversion is given by (assuming M1–M6 are
matched and no channel-length modulation effect)

1

2
Ib sech

2 �Vin

2VT
: (4)

However, SPICE simulations [Fig. 1(b)] show that the output curve is
not symmetric, especially in strong inversion region. This is obviously
caused by structural asymmetry in the “current correlator.” Recently,
a symmetric Gaussian function circuit is proposed [see Fig. 1(c)]
[15]. This circuit has symmetricI–V curves when working in strong
inversion region as well as in weak inversion region [see Fig. 1(d)].
Similar circuit has also been applied to the design of the “soft
differential pair” [16].

Assuming M1–M8 are matched, the output current of Fig. 1(c) can
be expressed by (see [10] and Appendix for details)

weak inversion

Io =2
ILIR

IL + IR

= Ib sech
2 �Vin

2VT
(5)

strong inversion

Io �
p
2ILIR �

p
2� 1

2
(IL + IR)

=
1

2
Ib �

p
2

2
KV

2

in : (6)

Equation (5) has been demonstrated to be a Gaussian-like function
[10], and it is also evident that (6) describes a square function.

As to the tunability, the center and peak amplitude can be tuned
by varying V �

in
and Ib; respectively; while the width can not be

tuned, as implied by (5) and (6). Note that ifIL + IR (= Ib) is
kept constant, the width can be tuned independently by changing the
transconductance of the differential pair. To achieve this purpose,
we propose a new Gaussian/square function computation circuit as
depicted in Fig. 2. This circuit differs from Fig. 1(c) in thatIL and
IR are first folded to the outer branches and then fed to the “current
correlator.” In this way,IL + IR in Fig. 2 remains constant(= Ix)

even whenIb is being varied for width adjustment. Note that in order
to get zero output current for large input signal,Ib must be larger
than Ix (m � 1) during the tuning process.

(a)

(b)

(c)

(d)

Fig. 1. (a) The “bump” circuit. (b) Simulation results of (a). (c) A symmetric
version of (a). (d) Simulation results of (c).

A. Strong Inversion Operation

The output current of Fig. 2 can be expressed by

Io �
p
2ILIR �

p
2� 1

2
(IL + IR) (7)

where in this circuit

IL = I1 � Id and IR = I2 � Id (8)
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Fig. 2. The proposed similarity computation circuit.

with Id = (Ib � Ix)=2: The relationship betweenI1; I2; andVin is
given by

Vin = V +

in � V �in =
2I1
K

� 2I2
K

: (9)

After manipulating (7)–(9), we get

Io � 1�
p
2

Ix
2

+
I2b
2

1� K

2Ib
V 2
in

2

� 1

2
(I2b � I2x): (10)

Using Taylor’s expansion atVin = 0; Io can be expressed by

Io =
Ix
2

1�
p
2

2
m � KV 2

in

Ix
+ higher order terms (11)

� Ix
2

1� Vin
Vw

2

(12)

wherem = Ib=Ix: Equation (11) is valid only forIo � 0: The
width (Vw) of the square function can be derived from (11) as

2Ix=(
p
2mK) by omitting the higher order terms. The peak output

current equalsIx and occurs whenVin = 0: Hence, the width can
be tuned bym(Ib) independently of the peak amplitude. Fig. 3(a)
shows the relationship between width andIb: Here, the width is
determined by minimizing the maximum difference between the
simulated curve from SPICE and an optimal square function. Fig. 4
shows the simulated dc transfer curves and the corresponding errors
introduced by higher order terms in (11). The normalized errors are
less than 4% in the operating range of interest.

B. Weak Inversion Operation

TheI–V characteristic of a simple differential pair biased in weak
inversion region can be described by [14]

I1 = Ib
1

1 + e��V =V
; I2 = Ib

1

1 + e�V =V
: (13)

The output current can be derived as

Io =
2ILIR
IL + IR

= Ix m2
sech

2 �Vin
2VT

+ 1�m2

= Ix 1�m2
tanh

2 �Vin
2VT

(14)

which is a Gaussian-like function and is valid only forIo � 0: Again,
peak output current occurs whenVin = 0 and equalsIx: So,� can
be tuned bym(Ib) independently of the peak amplitude as in strong
inversion region. The dependency of� onIb is illustrated in Fig. 3(b).

In both regions, the circuit achieves a wide peak amplitude range
by controlling Ix: The tuning range of width(�) is determined

(a)

(b)

Fig. 3. The dependency of width(�) on Ib: (a) strong inversion region and
(b) weak inversion region.

(a)

(b)

Fig. 4. The characteristic of the square circuit: (a) dc transfer curves for
various width (from SPICE simulations) and (b) the corresponding errors.

by the available maximum and minimum transconductance of the
input differential pair, which in turn depends onIb: The minimum
transconductance allowed can be found by settingIb to Ix because
Ib � Ix: Note that Ib=2 at the top of Fig. 2 is produced by
mirroring half of the current sinkIb: Therefore, if the transistor (Mb)
corresponding to the current source enters linear region, the mirroring
scheme fails, which sets the upper limit of the transconductance
(lower limit of width). Once Mb enters linear region, the tuning of
width and peak amplitude become dependent. As indicated in Fig. 3,
the circuit has better width(�)-tuning efficiency when operating in
weak inversion region than in strong inversion region.
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To estimate the effect of device mismatch, some Monte Carlo
analysis are conducted. In the analysis, the channel length of all
transistors in Fig. 2 are randomly varied according to a Gaussian
distribution with 3� equal to 3% of the nominal value. For weak
inversion operation, 50 simulation trials show that3� offset voltage
is 6.60 mV, and3� peak output current error is 0.22 nA for 2.60-
nA nominal current. Further simulations reveal that a quarter of the
aforementioned voltage and current error can be attributed to the
“current correlator.” For strong inversion operation, the resulting3�

offset voltage is 23.01 mV, and3� peak output current error is 47.70
nA for 649.20-nA nominal current. Also, a quarter of error can be
attributed to the “current correlator.”

Simulations show that asymmetricity is mainly caused by bias
current mismatch between M3 and M4. Assume thatIL = I1�(Id�
�I=2) andIR = I2 � (Id +�I=2): For weak inversion operation,
the output current can be rewritten as

Io +�Io =2

I1 � Id � �I

2
I2 � Id +

�I

2

Ix

) �Io

�I
=

I1 � I2

Ix

=
Ib

Ix
f(Vin) (15)

wheref(Vin) = tanh(�Vin=2VT ): The ratio of input referred error
voltage to�I can be expressed by

�Vin

�I
=

�Io

�I
� @Vin
@Io

= � VT

�Ib
� cosh2 �Vin

2VT
: (16)

For strong inversion operation,

Io +�Io = 2 I1 � Id � �I

2
I2 � Id +

�I

2
�
p
2� 1

2
Ix

) �Io

�I
=

p
2Ib

4
p
ILIR

� g(Vin) (17)

where

g(Vin) =
K

Ib
� KVin

2Ib

2

� Vin:

The ratio of input referred error voltage to�I can be expressed by

�Vin

�I
=

�Io

�I
� @Vin
@Io

= � 1

K

4K

Ib
�
1�K

1

4Ib
V 2

in

1�K
Ib

I2x
V 2

in

: (18)

Unmatched input differential pair leads to some offset voltage.
Mismatch between the four transistors of the “current correlator” and
mismatch between M3 and M4 have minor effect on symmetricity.

MOS transistor characteristics are strongly temperature-dependent,
especially in weak inversion [17]. Here only the temperature effects
in weak inversion are discussed. TheI–V characteristics of MOS
transistor in weak inversion are similar to bipolar transistors, therefore
some known circuit techniques used in bipolar circuits can be adopted
to reduce temperature dependence of the proposed circuit.

In order to reduce the temperature dependency of peak amplitude
and width (�) of the output current, [see (14)],Ix=2 and the
transconductance of M1/M2 must be kept constant over the specified
temperature range. Current sourceIx=2 can be implemented using a

Fig. 5. Microphotograph of the circuit in Fig. 2.

PTAT source and a source with negative temperature coefficient [18].
Another method to achieve stable bias current is current regulation
[19]. The transconductance of M1/M2 can be kept constant by
making Ib a PTAT current source because the transconductance is
proportional toIb=(kT=q):

III. M EASUREMENTS

The circuit in Fig. 2 was fabricated using 3-�m DPSM CMOS
technology. The microphotograph of the circuit is shown in Fig. 5.
A conservative minimal channel length of 15�m is chosen for
reduced channel length modulation effect and larger linear range of
the differential pair. The circuit size is 560� 180 �m2: During
the experiment,�2.5-V power supply is used. Figs. 6(a)–(c) and
7(a)–(c) show the circuit behaviors in weak and strong inversion
regions, respectively. It is clear that the center, width, and peak
amplitude can be controlled independently. From Fig. 6(b), we see
that the measured input offset voltage is around 3–4 mV, within the
3� limit predicted by simulation. Note that (16) and (18) are even
functions ofVin; therefore the output curves are skewed as shown in
Figs. 6(b) and 7(b). Because�Vin=�I is inversely proportional toIb
and directly proportional toVin; the skew in the outermost curves are
more significant than those in the inner curves as shown in Fig. 7(b).
Similar phenomenon can also be found when the circuit operates in
strong inversion region [see Fig. 6(b)].

IV. CONCLUSION

Based on the “current correlator” [10], a new Gaussian/square com-
putation circuit for analog neural networks is proposed. Apart from
analysis of the weak inversion behavior, the circuit is characterized
by detailed formulation and measurements in strong inversion region.
This circuit exhibits independent programmability in center, width,
and peak amplitude. Thanks to this property, in most cases, the input
offset voltage and deviated peak amplitude introduced by channel
length modulation and device mismatch can be removed during the
training process. Furthermore, this circuit is versatile in the sense that
when operating in the strong inversion region, it calculates squared
difference, whereas in the weak inversion region, it realizes Gaussian-
like function. Therefore, it can find applications in various neural
network systems.

APPENDIX

The behavior of the circuit in Fig. 2 in strong inversion region is
formulated as follows: Assuming that the aspect ratios of M1–M8
are matched, and transistors M5/M6 and M7/M8 operate in linear
and strong inversion, respectively. The current through M5 and M7
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(a)

(b)

(c)

Fig. 6. Programmability of the circuit in Fig. 2 in weak inversion region:
(a) center, (b) width, and (c) peak amplitude.

is given by

Io1 =
K

2
(V3 � V2 � jVtpj)

2

=K[(Vdd � V1 � jVtpj)(Vdd � V3)�
1

2
(Vdd � V3)

2
]: (A1)

SubstitutingV1 = Vc +Vid=2 andV2 = Vc�Vid=2 into (A1) yields

Io1 =
K

2
V3 � Vc � jVtpj +

Vid

2

2

=K Vdd � Vc � jVtpj �
Vid

2
(Vdd � V3)�

1

2
(Vdd � V3)

2
:

(A2)

Let V c = Vdd � Vc � jVtpj andV 3 = Vdd � V3: Equation (A2) is
then reduced to

Io1 =
K

2
V c +

Vid

2
� V 3

2

=K V c �
Vid

2
V 3 �

1

2
V

2

3 : (A3)

(a)

(b)

(c)

Fig. 7. Programmability of the circuit in Fig. 2 in strong inversion region:
(a) center, (b) width, and (c) peak amplitude.

Solving for V 3; we obtain

V 3 = V c �

p
2

2
V

2

c � VidV c �
V 2

id

2

1=2

:

When this result is substituted into (A3), we obtain, after somewhat
lengthy manipulations,

Io1 =
K

4
V

2

c � V cVid +
V 2

id

2

+
p
2VidV c 1�

Vid

V c

�
Vid

2V c

2
1=2

: (A4)

Similarly,

Io2 =
K

4
V

2

c + V cVid +
V 2

id

2

+
p
2VidV c 1 +

Vid

V c

�
Vid

2V c

2
1=2

: (A5)
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Adding (A4) and (A5), and using Taylor’s expansion, we have

Io = Io1 + Io2

=
K

2
V

2

c +
V 2
id

2
�
p
2VidV c

Vid

V c

+
3

8

Vid

V c

3

+ � � �

where all terms containing even powers ofVid=V c have been
cancelled. Assume thatVid � V c(= Vdd � Vc � jVtpj); we retain
the first term of the above equation, then

Io �
K

2
V

2

c + (1� 2
p
2)

Vid

2

2

or

Io �
K

4
[(Vdd � jVtpj � V1)

2

+ (Vdd � jVtpj � V2)
2 �

p
2(V1 � V2)

2
]: (A6)

Equation (A6) is the relationship between the output current and the
node voltage(V1 and V2): Since M3 and M4 are diode-connected
transistors, and operate in the saturated region. Thus, the drain
currents of M3 and M4 are given by

IL =
K

2
(Vdd � jVtpj � V1)

2
; IR =

K

2
(Vdd � jVtpj � V2)

2

) Vdd�jVtpj �V1 =
2IL

K
; Vdd�jVtpj �V2 =

2IR

K
: (A7)

When the differential is biased in saturated region, itsI–V relation-
ship is well known as

Vin = V
+

in � V
�

in =
2IL

K
� 2IR

K
(A8)

and

Ib = IL + IR: (A9)

Substituting (A9) into (A8) and solving forIL andIR; we get

IL =
Ib

2
+
Ib

2

KV 2
in

Ib
� K2V 4

in

4I2b
(A10)

IR =
Ib

2
� Ib

2

KV 2
in

Ib
� K2V 4

in

4I2b
: (A11)

Substituting (A7), (A10), and (A11) into (A6), we have

Io =
p
2ILIR �

p
2� 1

2
(IL + IR) =

1

2
Ib �

p
2

4
KV

2

in: (A12)
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Comments on “A High Speed Realization of
a Residue to Binary Number System Converter”

A. Dhurkadas

In the above paper [1], a new residue to binary converter design
based on the theory presented in [2] which uses 4 operand modular
adder to compute the value ofX� is described. An improvement in
which computational simplification ofX� and its realization using 3
operand modular adder is presented.
X� is given by

X
�

= jA+B + C �X1j2 �1 (1)
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