Analog Feedforward Neural Networks with Very Low Precision Weights

Shahram Abdollahi Alibeik, Farid Nemati, Mehrdad Sharif-Bakhtiar
Department of Electrical Engineering
Sharif University of Technology

P.O. Box 11365-

9363, Azadi Ave.

Tehran, IRAN
abdolla2@ee.sharif.ac.ir, neamati@ee.sharif ac.ir

ABSTRACT
An Off Chip training algorithm for feedforward neural networks is presented. This algorithm has been
successfully used to train networks with weight precision as low as I bit. The effect of reducing the weight

precision on the generalization ability of the network

is presented. The network performance, in the presence

of hardware non-idealities, has also been investigated. It is shown that a network with low precision weights
can well tolerate the effect of hardware non-idealities if the network is properly trained.

1. Introduction

Feedforward neural networks have been
successfully used in many pattern recognition
applications. It has been proved that they can
approximate any continuous function, to any arbitrary
precision, using only one hidden layer with sufficient
number of nodes [10]. However, because of the
parallel nature of the computations in neural
networks, simulation of large networks on serial
computers is slow. Some of the key features of neural
networks like fault tolerance and the ability to
compensate hardware non-idealities, make them
attractive for VLSI implementations. Several chips
have been introduced, using digital or analog VLSI
circuits to implement neural networks [5][6]. Digital
circuits are precise and insensitive to hardware non-
idealities such as noise, offset and component
variation and can be interfaced easily to peripherals.
However, digital circuits, in comparison to their
analog counterparts, are slower and occupy more area.
Analog circuits can be small, simple and fast at the
expense of more sensitivity to hardware non-idealities.
On the other hand, considering the fault tolerance
feature of neural networks, it is expected that the
sensitivity of analog circuits to hardware non-
idealities would not be restrictive. Therefore, when
designing hardware for analog neural networks the
allowable limits of non-idealities are to be known.

The training method chosen, has a great
influence on these limits and the minimum allowable
precision of weights. The existing training methods,
according to the hardware used to perform the
required computations, can be divided into three
categories, namely: On Chip training, Partial On Chip
training and Off Chip training methods.

In On Chip training method, all the
computations including forward and backward
computations in Back Propagation algorithm, are

0-7803-2768-3/95/$4.00 © 1995 IEEE

performed by analog hardware. This method, though
fast , needs high precision for weight representation
(usually more than 10 bits}) [2][3]. This leads to
difficulties with the design of the high performance
circuit components. The convergence of the training
algorithm, depends also on the low offset of the
backward computation circuitry [1][2]. It is possible to
increase the complexity of the training algorithm to
relax the required weight precision [3][4], at the price
of more complex hardware. In general, this method is
not appropriate for analog implementations due to its
high precision requirements.

In Partial On Chip training method, the
forward computations are performed by analog
hardware while a serial computer performs the other
computations with high precision. As a result, this
method is slower than On Chip training method
during the training phase. In many applications, such
as pattern recognition, the training is performed prior
to the actual use of the chip and once the chip is
trained, it can potentially operate at high speed. This
method can compensate for the hardware non-
idealities and unlike the previous method, it is
insensitive to the offset of the analog circuits [5].
Using this method, weight precisions as low as 5 or
6 bits have been reported[S].

In Off Chip training method, a computer
performs all the computations with high precision and
the computed value for the weights are used in the
analog hardware of the forward path. The hardware
non-idealities that can not be simulated by computer (
€.g., component variation), can be put into account by
performing a final adjustment through a Partial On
Chip training [6]. The use of computer for training
provides the ability of devising algorithms for very
low precision weight representation [7][8]. Therefore,
simple and small analog circuits can be utilized for

1 In this article, sign bit is not counted but is always
present.

90

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:54:29 UTC from IEEE Xplore. Restrictions apply.

multiplication and other operations and the resulting
hardware can be highly integrated and will be fast.
However, hardware simplification through the
reduction of the weight precision, in an Off Chip
training method, can not be efficiently done unless the
following questions are answered.

1- Using a proper training algorithm, how much can
the weight precision be reduced ?

2- How does the reduction of weight precision affect
the generalization ability of the network?

3- How much can the trained network tolerate the
non-idealities in the actual analog hardware?

2. Training Algorithm

In Off Chip training specially when
resolution is very low, the incremental change in
weights obtained from simple Back Propagation
learning methods decrease gradually and will become
smaller than one quantization step. This will stop the
training progression, i.e., weights will be trapped in
one of the spurious local minima caused by weight
quantization. Several solutions addressing this
problem have been suggested, such as adaptive
changing of learning rate in order to escape from local
minima {4][8]. However, to avoid failure, a definite
method for changing the learning rate is not given.

A good training method to overcome the
above problem, should be successful in difficult
training tasks and must be efficient enough to keep
the number of hidden nodes as low as possible. An
algorithm with these properties is given in the
following steps.

STEP a) Initially the network is trained with
floating point weight precision using Back
Propagation Training Algorithm. Conjugate gradient
method is used to speed up the convergence. It is also
necessary that the desired outputs of the network be
equal to the asymptotic values of the activation
function. Our experiments showed that this plays an
essential role in successful network training and
reducing the network sensitivity to the quantization of
the weights.

STEP b) The weights are quantized to n bits,
after being scaled appropriately by multiplying the
gain of the activation functions by a scale factor and
dividing the weights of the input branches of the
nodes by the same scale factor. A common method
for optimizing scale factors is to minimize the
distance between the quantized and original weight
vectors[8]. In our algorithm, however, these scale
factors are found such that the error of the network on
the training set is minimum after scaling and
quantization of the weights.

STEP c) The network is then trained using a
modified version of Back Propagation, QGDR
(Quantized Gradient Descent Rule), so as to avoid

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:54:29 UTC from IEEE Xplore. Restrictions apply.

spurious local minima. This algorithm makes use of
the sign of the gradient vector obtained from Back
Propagation. Each weight (W;) is changed in the
opposite direction of dE/dWj for an amount equal to
one quantization step. This change is accepted if it
decreases the network error (E), otherwise it is
rejected. This process is applied to all of the weights
in the network until the network error becomes less
than a predefined value or no further changes in the
weights are made in one epoch. Our experiments
showed that QGDR can find a good result in the
neighborhood of the minimum found in STEP (a), in
contrast to the adaptive learning rate method which
has the potential to move the weights away from
initial minimum. QGDR is also much faster than
methods like Simulated Annealing or Blind Random
Search.

STEP d) The number of bits, n, representing
quantized weights, is decreased by one and STEPs (b)
and (c) are repeated until the desired weight precision
is reached.

3. Test Vehicles

To test the performance of the training
algorithm discussed in the previous section, the
following problems were used.

Problem 1 - 6-Bit Parity Problem: A seven
input-one output network with one hidden layer was
used for which one of the inputs is always set to one
so as to implement the bias terms. Experiments were
done separately for 10 and 15 nodes in the hidden
layer. The training set had 64 members, containing all
possible states for the input. With the parity problem,
output changes as the input is changed by one bit and
also the training set contains all of the possible input
states. This makes the parity problem a good vehicle
for testing the power of a training algorithm specially
when the number of bits representing quantized
weights is to be low.

Problem 2 - A simplified version of the
Persian (Arabic) digit recognition problem: In this
problem a network with one hidden layer was utilized
which had 100 input nodes corresponding to the
10x10 matrix representing the digits. The 10 output
nodes of the network were interpreted on Winner
Take All basis. The number of hidden nodes were 10,
15 and 20 for three separate groups of experiments.
The training set contained 30 members with 3
samples for each digit. Although this problem is fairly
simple and can be trained by simpler training
algorithms, it was selected in order to test the
generalization ability of the network trained with the
new algorithm. The test set contained 1200 members,
obtained by adding 5, 10, 15 and 20 percent noise, 10
times, to each member of the training set .

91

Table 1: The Training Results

¢ stands for numbers less than 1E-4

I Problem 1 Problem 2
10 Hidden 15 Hidden 10 Hidden 15 Hidden 20 Hidden
Nodes Nodes Nodes Nodes Nodes
Weight | Error | No. of | Error | No.of | Error | No.of | Error | No.of | Error | No.of
bits Faults Faults Faults Faults Faults
Float € 0 € 0 € 0 € 0 € 0 l
ﬁ 6 [0 € 0 € 0 € 0 € 0
5 [3 0 € 0 3 0 € 0 € 0
I: 4 € 0 € 0 € 0 € 0 € 0
3 6.1E-4 0 € 0 € 0 € 0 € 0
2 1.6E-3 0 € 0 £ 0 € 0 € 0
1 0.5 1 € 0 4.3E-3 0 1.3E-3 0 £ 0
4. Training Results problems, the final error on the training set for 1 bit

In all of our experiments, the activation
function was taken as f(x) = tanh(cx) where ¢ was
unity in the beginning of STEP (a) of the training
algorithm. Also, the following definition was used for
Error (Cost Function) :

Error = 0.5x 3 3 (Actual Output j— Desired Output) *
ij

(i= All members of the training set , j = All network

outputs)

The number of bits, representing the weights,
were taken equal to 6, after the completion of STEP
(a). This number was gradually reduced to oneby
successive application of STEPs (b) and (c). In each
case the training was stopped, if the error became less
than 1E-4.

The training results for problems 1 and 2
(Table 1) for different number of hidden nodes show
that in both problems, the ability to learn the training
set, is quite satisfactory, even with 1 bit precision for
weights. It can also be concluded from Tablel that the
learning ability of the network improves as the
number of hidden nodes is increased. For both

10— : r
o0 { 15 Hidden Nodes
(1] Hi‘dden ques

Percentage of Correct Decisions

80¥./ ;=710 Midden Nddes,
FOpf-d---m-- oo Lo
60 : H :
1 2 4 6 Float
Number of Bits

Fig. 1. Generalization Ability in Problem 2

weight precision, can become as low as the final error
for floating point weight precision, if the number of
hidden nodes is large enough.

The results of testing the network of problem
2 with the test set and for different number of hidden
nodes are given in Fig. 1. Fig. 1 shows that decreasing
the weight precision, reduces the generalization
ability of the network. But this reduction in the
generalization ability is negligible for weight
precisions as low as 2 bits. Fig. 1 also shows that
despite the improvement in learning ability gained by
increasing the number of hidden nodes, the
generalization ability does not necessarily improve. In
fact, there is an optimum value for the number of
hidden nodes for which the generalization power of
the network is maximum.

5. Simulation of Hardware Non-Idealities

Analog hardware suffer from several non-
ideal effects such as noise and offset. Thus , when a
neural network is implemented using analog
hardware, questions such as the following arise: How
these non-idealities affect the network performance?
To what extent are these effects tolerable? Does
reducing the number of bits representing quantized
weights have a significant effect on the network
tolerance to non-idealities?

To answer these questions, non-ideal effects
were applied to each of the trained networks of
previous section (both with 15 hidden nodes) and the
changes in the network performance on training set
and test set were investigated. The major non-ideal
effects in analog hardware, i.e., non-linearity, noise,
offset and component variation, were modeled as
follows.

a) Non-linearity - Non-linearity was modeled
by applying function tanh(8x)/B to the network inputs
and the multiplier outputs. This function has unity

92

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:54:29 UTC from IEEE Xplore. Restrictions apply.

5 T
= :
] RS :
O ,
0 o} 3
] Sl S
-4 '
m 2[7T v
| — :
X :
W ;
D —
0 05
Fig. 2. Nonlinearity in Problem 1
40 T T H
=]
o] e
(o H H p
i : :
= 204-------- E‘ """"" E’ """"""" -
@ ; ‘
TS SR SR 074 SO - .
g :
w
0
0 10 20 30 40
RMS NOISE IN PERCENT
Fig. 4. Noise in Problem 1
40 ¥ e i
= ! : !
& : : :
S 1] SRR S oA .
[nd H H
o : '
z B A, YA, S
(0 : :
5 10 s Ay oo
Z : !
u i
0
0 10 20 30 40

OFFSET IN PERCENT
Fig. 6. Offset in Problem 1

gain at x=0 for all wvalues of B and its non-linearity
increases as P is increased (more than 50% for B = 2).

b) Noise - Noise was simulated by a random
variable with uniform distribution and zero mean for
which its standard deviation (Noise RMS value) was
taken as a simulation parameter. This random
variable was added to the network inputs to
investigate the network behavior as a function of the
Input Equivalent Noise.

¢) Offset - Numbers with a constant
magnitude and random sign was added to each
network input to model the component offsets referred
to the input.

d) Component Variation - Component
variation was modeled by considering a random

Authorized licensed use limited to: Wikipedia. Downloaded on

6,3,1

FAULTS IN PERCENT

05 15

Fig. 3. Nonlinearity in Problem 2

(4]
o

[}

PR R,

[0 S TS B Y
[R e |

[P U J—

—_
o

FAULTS IN PERCENT

(o)

=)

20 60
RMS NOISE IN PERCENT

Fig. §. Noise in Problem 2

[u)]
o

F
[am}

]
o

TP, KN . J U —

FAULTS IN PERCENT

(=]

a0

o

60

20
OFFSET IN PERCENT
Fig. 7. Offset in Problem 2

coefficient with unity mean for each multiplier. The
standard deviation of this random variable was a
simulation parameter and is interpreted as component
variation percentage.

The results of the experiments are shown in
Fig. 2 through Fig. 9. In all of these figures, the
vertical axis is in terms of fault percentage on the
training set and the horizontal axis is in terms of one
of the non-idealitics mentioned above. Each figure
contains three curves corresponding to 6, 3 and 1 bit
precision for weights as specified for each curve. In
these experiments, when the non-ideal effects were
modeled as random variables, the results of ten
experiments were averaged and used as the final
result.

93

June 23,2025 at 04:54:29 UTC from IEEE Xplore. Restrictions apply.

3
]

E E
= H
i :
& a0}
i 13 | e
= 3 15
i) . A A Lm e]
2 20 ;
D 1
T :
w)
U N
0 50 100

MULTIPLIER GAIN VARIATION IN PERCENT
Fig. 8. Component Variation in Problem 1

As shown in Fig. 2 and Fig. 3, the effect of
non-linearity is negligible and in the worst case the
fault percentage on the training set is less than 5%
(for 3 bits). For noise and offset (Fig. 4 to Fig. 7),
when less than 12% for problem 1 and 20% for
problem 2, fault percentage on the training set is less
than 5% for weight precision down to 1 bit. Fig. 8 and
Fig. 9 show that large component variations also can
well be tolerated by the network. Fig. 8 and Fig. 9
show that the component variation can be higher than
10% while the fault percentage on the training set
remains less than 5% with weight precision down to
1 bit.

The results of the experiments on the
generalization ability of the network in presence of
non-idealities are given in Table 2. As shown in Table
2, the generalization ability of the network on the test
set does not degrade for the large values of the non-
idealities applied to the network.

Therefore, it can be concluded that the
reduction of weight precision has a negligible effect
on the non-ideality tolerance of the network, if the
lower precision network can be trained to the same
error level as the higher precision network. Failure in
properly training the low precision network not only
limits the generalization ability of the network but it
also increases the sensitivity of the network to the
hardware non-idealities.

6. References

[1] - " The Effects of Analog Hardware Properties on
Back propagation Networks with On-Chip Learning" ,

80
'._
=
L
& /
e TS
[s
z
93] L
2
]
I
.
0
0 100

MULTIPLIER GAIN VARIATION IN PERCENT

Fig. 9. Component Variation in Problem 2

B.K. Dolenko & H.C. Card , ICNN 1993 , Page 110
[2] -" On-Chip Learning in the Analog Domain with
Limited Precision Circuits" , A.J. Montalov & P.W.
Hollis & J.J. Paulos , IICNN 1992 , Page I - 196

[3] - " Learning with Limited Numerical Precision
Using the Cascade Correlation Algorithm" , M.
Hoehfeld & S.E. Fahlman , IEEE Transactions on
Neural Networks , July 1992, Page 602

[4] - " Effects of Weight Discretization on the BP
Learning Method : Algorithm Design and Hardware
Realization" , D.D. Caviglia & M. Valle & GM.
Bisio, IICNN 1990 , Page IT - 631

[5] - "Back-Propagation Learning and Non-idealities
in Analog Neural Network Hardware" , R.C. Frye &
E.A. Rietman & C.C. Wong, IEEE Transactions on
Neural Networks , January 1991 , Page 110

[6] - "Analog CMOS Implementation of a Multilayer
Perceptron with Nonlinear Synapses" , I.B. Bolt & W.
Guggenbuhl , IEEE Transactions on Neural Networks
, May 1992 , Page 457

[7] - " A Digital Multilayer Neural Network with
Limited Binary Expressions” , K. Nakayama & S.
Inomata & Y. Takeuchi , IJCNN 1990, Page II - 587
[8] - "Design of Multilayer Neural Networks with
Power-of-Two Weights" , M. Marchesi & N.
Benvenuto & G. Orlandi , ISCAS 1990, Page 2951
[9]1 - "Analysis of the Effect of Quantization in
Multilayer Neural Networks Using a Statistical
Model" , Y. Xie & M. A. Jabri , IEEE Transactions on
Neural Networks , March 1992 | Page 334

[10] - " Introduction to the Theory of Neural
Computation"” , J. Hertz & A. Krogh & R.G. Palmer ,
John Wiley & Sons , 1991

Table 2: Effect of Hardware Non-idealities on Generalization Ability in Problem 2

The table shows the

centage of correct decisions on test set).

Weight Ideal Non-linearity Noise Offset Component
Resolution Hardware (B=1) (10 %) (10 %) var. (20 %)
6 90.5 90.5 90 .2 88.7 88.2
3 89.9 89.9 88.2 88.0 88.3

1 80.1 80.1 76 .2 77.2 76 . 1

94

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 04:54:29 UTC from IEEE Xplore. Restrictions apply.

