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Abstract — It would be desirable if computers
could solve problems without the need for a
human to write the detailed programmatic steps.
That is, it would be desirable to have a domain-
independent automatic programming technique in
which "What You Want Is What You Get"
("WYWIWYG" - pronounced '"wow-eee-wig").

Genetic programming is such a technique. This
paper surveys three recent examples of problems
(from the fields of cellular automata and
molecular biology) in  which genetic
programming evolved a computer program that
produced results that were slightly better than
human performance for the same problem.

This paper then discusses the problem of
electronic circuit synthesis in greater detail. It
shows how genetic programming can evolve both
the topology of a desired electrical circuit and the
sizing (numerical values) for each component in a
crossover (woofer and tweeter) filter. Genetic
programming has also evolved the design for a
lowpass filter, the design of an amplifier, and the
design for an asymmetric bandpass filter that was
described as being difficult-to-design in an article
in a leading electrical engineering journal.

I. INTRODUCTION

Automatic programming is one of the central goals of
computer science. Paraphrasing Arthur Samuel (1959), the
problem of automatic programming concerns the question of
How can computers be made to do what needs to
be done, without being told exactly how to do it?

John Holland's pioneering Adaptation in Natural and
Artificial Systems (1975) described how an analog of the
naturally-occurring evolutionary process can be applied to
solving scientific and engineering problems using what is
now called the genetic algorithm.

The books Genetic Programming: On the Programming
of Computers by Means of Natural Selection (Koza 1992) and
Genetic Programming 1l: Automatic Discovery of Reusable
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Programs (Koza 1994a) describe an extension to Holland's
genetic algorithm in which the genetic population consists of
computer programs (that is, compositions of primitive
functions and terminals). Genetic programming starts with a
primordial ooze of randomly generated computer programs
composed of the available programmatic ingredients and then
applies the principles of animal husbandry to breed a new (and
often improved) population of programs. The breeding is
done in a domain-independent way using the Darwinian
principle of survival of the fittest, an analog of the naturally-
occurring genetic operation of crossover (sexual
recombination), and occasional mutation. The crossover
operation is designed to create syntactically valid offspring
programs (given closure amongst the set of ingredients).
Genetic programming combines the expressive high-level
symbolic representations of computer programs with the near-
optimal efficiency of learning of Holland's genetic algorithm.
A computer program that solves (or approximately solves) a
given problem often emerges from this process. (See also
Koza and Rice 1992 and Koza 1994b).
Genetic programming breeds computer programs to solve
problems by executing the following three steps:
(1) Generate an initial population of random compositions of
the functions and terminals of the problem.
(2) Iteratively perform the following substeps until the
termination criterion has been satisfied:
(A) Execute each program in the population and assign it
a fitness value using the fitness measure.
(B) Create a new population of computer programs by
applying the following operations. The operations are
applied to computer program(s) chosen from the
population with a probability based on fitness.
(1)Reproduction: Copy an existing program to the new
population.
(i1)Crossover: Create new offspring program(s) for the
new population by recombining randomly chosen parts
of two existing programs.
(1i1) Mutation. Create one new offspring program for
the new population by randomly mutating a randomly
chosen part of one existing program.
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(3) The program that is identified by the method of result
designation (e.g., the best-so-far individual) is designated as
the result of the genetic programming system for the run.
This result may be a solution (or approximate solution) to
the problem.

Sections II, ITI, and IV of this paper briefly describe three
examples of problems where genetic programming has
produced a result that is slightly better than human
performance on the same problem. Section V then discusses,
in greater detail, how genetic programming can be used to
automate the process of electronic circuit synthesis for a
crossover (woofer and tweeter) filter. Section VI then briefly
shows a genetically evolved lowpass filter, a difficult-to-
design asymmetric bandpass filter, and an amplifier.

II. CELLULAR AUTOMATA

It is difficult to program cellular automata. This is especially
true when the desired computation requires global
communication and integration of local information across
great distances in the cellular space. Various human-written
algorithms have appeared in the past two decades for the
majority classification task for one-dimensional cellular
automata. Genetic programming with automatically defined
functions has evolved a rule for this task with an accuracy of
82.326% (Andre, Bennett, and Koza 1996). This level of
accuracy exceeds that of the original Gacs-Kurdyumov-Levin
(GKL) rule, all other known subsequent human-written rules,
and all other known rules produced by automated approaches
for this problem. The genetically evolved rule is qualitatively
different from all previous rules in that it employs a larger
and more intricate repertoire of domains and particles to
represent and communicate information in the cellular space.

I1I. TRANSMEMBRANE DOMAINS

The goal in the transmembrane segment identification
problem is to classify a given protein segment (i.e., a
subsequence of amino acid residues from a protein sequence)
as being a transmembrane domain or non-transmembrane area
of the protein (without using biochemical knowledge
concerning hydrophobicity typically used by human-written
algorithms for this task). Four different versions of genetic
programming have been applied to this problem (Koza 1994a,
Koza and Andre 19962, 1996b). The performance of all four
versions using genetic programming is slightly superior to
that of algorithms written by knowledgeable human
investigators.

IV. PROTEIN MOTIFS

Automated methods of machine learning may prove to be
useful in discovering biologically meaningful information
hidden in the rapidly growing databases of DNA sequences and
protein sequences. Genetic programming successfully
evolved motifs for detecting the D-E-A-D box family of
proteins and for detecting the manganese superoxide dismutase
family (Koza and Andre 1996c). Both motifs were evolved
without prespecifying their length. Both evolved motifs
employed automatically defined functions to capture the
repeated use of common subexpressions. The two genetically
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evolved consensus motifs detect the two families either as
well as, or slightly better than, the comparable human-written
motifs found in the PROSITE database.

V. AUTOMATED CIRCUIT SYNTHESIS

The problem of circuit synthesis involves designing an
electrical circuit that satisfies user-specified design goals.
Considerable progress has been made in automating the
design of certain categories of purely digital circuits; however,
the design of analog circuits and mixed analog-digital circuits
are not as amenable to automation (Rutenbar 1993).

A complete specification of an electrical circuit includes
both its topology and the sizing of all its components. The
topology of a circuit consists of the number of components
in the circuit, the type of each component, and a list (i.e., the
netlist) of the connections between the leads (interface points)
of the components. The sizing of a circuit consists of the
component value(s) associated with each component.

V.1. Automated Analog Design Tools

Hemmi, Mizoguchi, and Shimohara (1994) and Higuchi et al.
(1993) have applied genetic methods to the design of digital
circuits using a hardware description language (HDL).

The design of analog circuits and mixed analog-digital
circuits has not proved to be as amenable to automation. In

DARWIN (Kruiskamp and Leenaerts 1995), CMOS opamp

circuits are designed using the genetic algorithm. In
DARWIN, the topology of each opamp is picked randomly
from a preestablished hand-designed set of 24 topologies in
order to ensure that each circuit behaves as an opamp.

V.2. The Mapping between Electrical
Circuits and Program Trees

Genetic programming breeds a population of rooted, point-
labeled trees (i.e., graphs without cycles) with ordered
branches. There is a considerable difference between the kind
of trees bred by genetic programming and the labeled cyclic
graphs encountered in the world of electrical circuits.

Electrical circuits are cyclic graphs in which every line
belongs to a cycle. The primary label on each line identifies
the type of electrical component. The secondary label(s), if
any, on each line specify the value(s) of the component.

Genetic programming can be applied to circuits if a
mapping is established between the kind of point-labeled trees
found in the world of genetic programming and the line-
labeled cyclic graphs employed in the world of circuits.
Developmental biology provides the motivation for this
mapping. In Cellular Encoding of Genetic Neural Networks,
Frederic Gruau (1992) described an innovative technique,
called cellular encoding, in which genetic programming is
used to concurrently evolve the architecture of a neural
network, along with all weights, thresholds, and biases of the
neurons in the network. In this technique, genetic
programming is applied to populations of network-
constructing program trees in order to evolve a neural network
capable of solving a problem.

The growth process used herein for circuit synthesis
begins with a very simple embryonic electrical circuit and
builds a more complex circuit by progressively executing the
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functions in a circuit-constructing program tree. The result is
the topology of the circuit, the choice of the type of
component that is situated at each location within the
topology, and the sizing of all components.

Each program tree can contain (1) connection-modifying
functions that modify the topology of the circuit (starting
with the embryonic circuit), (2) component-creating functions
that insert particular components into locations within the
topology of the circuit in lien of wires (and other

* components) and whose arithmetic-performing subtrees
specify the numerical value (sizing) for each such component,
and possibly (3) automatically defined functions.

Program trees conform to a constrained syntactic structure.
Each component-creating function in a program tree has zero,
one, or more arithmetic-performing subtrees and one or more
construction-continuing subtrees. Each connection-modifying
function has one or more construction-continuing subtrees.
The arithmetic-performing subtree(s) of each component-
creating function consists of a composition of arithmetic
functions and numerical constant terminals that together yield
the numerical value for the component. The construction-
continuing subtree specifies how the construction of the
circuit is to be continued.

Both the random program trees in the initial population
(generation 0) and all random subtrees created by the mutation
operation in later generations are created so as to conform to
this constrained syntactic structure. This constrained
syntactic structure is preserved by using structure-preserving
crossover with point typing (Koza 1994a).

The bottom of figure 1 shows the embryonic circuit for a
one-input, two-output circuit. The energy source is a 2 volt
sinusoidal voltage source USOURCE whose negative (-) end
is connected to node O (ground) and whose positive (+) end is
connected to node 1. There is a source resistor RSOURCE
between nodes 1 and 2. There is a modifiable wire (i.e., a
wire with a writing head) Z@ between nodes 2 and 3, a second
modifiable wire Z1 between nodes 2 and 6, and third
modifiable wire Z2 between nodes 3 and 6. There is an
isolating wire ZBUT1 between nodes 3 and 4, a voltage
probe labeled DOUT1 at node 4, and a fixed load resistor
RLOAD1 between nodes 4 and ground. Also, there is an
isolating wire ZOUT2 between nodes 6 and 5, a voltage
probe labeled DOUT2 at node 5, and a load resistor
BLOAD2 between nodes 5 and ground. The resistors are
0.00794 Kilo Ohms. All of the above elements of this
embryonic circuit (except Z8, Z1, and Z2) are fixed forever;
they are not subject to modification during the process of
developing the circuit. Note that little domain knowledge
went into this embryonic circuit. Specifically, (1) the
embryonic circuit is a circuit, (2) this embryonic circuit has
one input and two outputs, and (3) there are modifiable
connections Z@, Z1, and Z2 providing full point-to-point
connectivity between the one input (node 2) and the two

outputs DOUTT and DOUT2 (nodes 4 and 5).

Figure 1 One-input,
electrical circuit.

A circuit is developed by modifying the component to
which a writing head is pointing in accordance with the
associated function in the circuit-constructing program tree.
The figure shows L, C, and C functions just below the LIST
and three writing heads pointing to Z@, Z1, and Z2. The L,
C, and C functions will cause Z8,Z1, and Z2 to be
changed into an inductor and two capacitors, respectively.

V.3. Component-Creating Functions

Each individual circuit-constructing program tree in the
population generally contains component-creating functions
and connection-modifying functions.

Each component-creating function inserts a component
into the developing circuit and assigns component value(s) to
the inserted component. Each component-creating function in
a program tree points to an associated highlighted component
(i.e., a component with a writing head) in the developing
circuit and modifies the highlighted component in some way.
Each component-creating function spawns one or more
writing heads (through its construction-continuing subtrees).
The construction-continuing subtree of each component-
creating function points to a successor function or terminal in
the circuit-constructing program tree.

The arithmetic-performing subtree of a component-
creating function consists of a composition of arithmetic
functions (addition and subtraction) and random constants (in
the range —1.000 to +1.000). The arithmetic-performing
subtree specifies the numerical value of the component by
returning a floating-point value that is, in turn, interpreted as
the value for the component in a range of 10 orders of
magnitude (using a unit of measure that is appropriate for the
particular type of component involved). The floating-point
value is interpreted as the value of the component as described
more fully in Koza, Andre, Bennett, and Keane 1996.

The two-argument capacitor-creating C function causes the
highlighted component to be changed into a capacitor. The
value of the capacitor in nano Farads is specified by its
arithmetic-performing subtree.

The two-argument inductor-creating L function causes the
highlighted component to be changed into an inductor. The
value of the inductor in micro-Henrys is specified by its
arithmetic-performing subtree.

two-output embryonic
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The functions in the group of three-argument transistor-
creating QT functions cause a transistor to be inserted in place
of one of the nodes to which the highlighted component is
connected (while deleting the highlighted component). Each
QT function creates five new nodes and three new modifiable
wires. After execution of a QT'n, there are three writing heads
that point to three new modifiable wires. Figure 2 shows a
resistor R1 (with a writing head) connecting nodes 1 and 2.
Figure 3 shows the result of applying the 9TO function to
R1, thereby creating transistor 6.
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Figure 2 Circuit with resistor R 1.

Figure 3 Result of applying QTO0 function.

V.4. Connection-Modifying Functions
The topology of the circuit is determined by the connection-
modifying functions. Each connection-modifying function in
a program tree points to an associated highlighted component
and modifies the topology of the developing circuit in some
way. Each connection-modifying function spawns zero, one,
or more writing heads.

The one-argument polarity-reversing FLIP function
attaches the positive end of the highlighted component to the
node to which its negative end is currently attached and vice
versa. After execution of the FLIP function, one writing
head points to the now-flipped original component.

CZ'J—‘lO 124!‘_
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Figure 4 Result of applying SERIES.

The three-argument SERIES division function operates
on one highlighted component and creates a series
composition consisting of the highlighted component, a copy
of the highlighted component, one new modifiable wire, and
two new nodes. After execution of the SERIES function,
there are three writing heads pointing to the original
component, the new modifiable wire, and the copy of the

original component. Figure 4 shows the result of applying
the SERIES division function to resistor R1 from figure 2.
First, the SERIES function creates two new nodes, 3 and 4.
Second, SERIES disconnects the negative end of the original
component (R1) from node 1 and connects this negative end
to the first new node, 4 (while leaving its positive end
connected to the node 2). Third, SERIES creates a new wire
(called Z6 in the figure) between new nodes 3 and 4. The
negative end of the new wire is connected to the first new
node 3 and the positive end is connected to the second new
node 4. Fourth, SERTES inserts a duplicate (called R7 in the
figure) of the original component (including all its
component values) between new node 3 and original node 1.
The positive end of the duplicate is connected to the original
node 1 and its negative end is connected to new node 3.
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Figure 5 Result of applying PSs.

The four-argument parallel division function PSS operates
on one highlighted component to create a parallel
composition consisting of the original highlighted
component, a duplicate of the highlighted component, two
new wires, and two new nodes. After execution of PSS,
there are four writing heads. They point to the original
component, the two new modifiable wires, and the copy of
the original component. First, the parallel division function
PSS creates two new nodes, 3 and 4. Second, PSS inserts a
duplicate of the highlighted component (including all of its
component values) between the new nodes 3 and 4 (with the
negative end of the duplicate connected to node 4 and the
positive end of the duplicate connected to 3. Third, PSS
creates a first new wire Z6 between the positive (+) end of
R1 (which is at original node 2) and first new node, 3.
Fourth, PSS creates a second new wire Z8 between the
negative (-) end of R1 (which is at original node 1) to second
new node, 4. Figure 5 shows the results of applying the PSS
function to resistor R1 from figure 2. The negative end of the
new component is connected to the smaller numbered
component of the two components that were originally
connected to the negative end of the highlighted component.
Since C4 bears a smaller number than C5, new node 3 and
new wire Z6 are located between original node 2 and C4.
Since €2 bears a smaller number than C3, new node 4 and
new wire Z8 are located between original node 1 and C2.
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Eight two-argument functions (called VIAO, ..., VIA7)
and the two-argument GND ("ground") function enable distant
parts of a circuit to be connected together. After execution,
writing heads point to two modifiable wires.

The VIA functions create a series composition consisting
of two wires that each possesses a successor writing head and
a numbered port (called a via) that possesses no writing head.
The port is connected to a designated one of eight imaginary
layers (numbered from O to 7) of an imaginary silicon wafer.
If one or more parts of the circuit connect to a particular
layer, all such parts become electrically connected as if wires
were running between them.

The two-argument GND function is a special "via"
function that establishes a connection directly to ground.

The one-argument NOP function has no effect on the
highlighted component; however, it delays activity on the
developmental path on which it appears in relation to other
developmental paths in the overall program tree. After
execution of NOP, one writing head points to the original
highlighted component.

The zero-argument END function causes the highlighted
component to lose its writing head.

12
L ca

Figure 6 Result of applying the Y1 function.

We describe two other functions (not used herein) to
illustrate that numerous other connection-modifying functions
can be employed in this process. The functions in the group
of three-argument Y division functions operate on one
highlighted component (and one adjacent node) and create a Y-
shaped composition consisting of the highlighted component,
two copies of the highlighted component, and two new nodes.
The Y functions insert the two copies at the "active" node of
the highlighted component. For the Y1 function, the active
node is the node to which the negative end of the highlighted
component is connected. Figure 6 shows the result of
applying Y1 to resistor R1 of figure 2.

13]

Figure 7 Result of applying DELTA1 function.
The functions in the group of six-argument DELTA
functions operate on one highlighted component by
eliminating it (and one adjacent node) and creating a triangular
A—shaped composition consisting of three copies of the
original highlighted component (and all of its component

values), three new modifiable wires, and five new nodes.
Figure 7 illustrates the result of applying the DELTA1
division function to resistor R1 of figure 2 when the active
node (node 1) is of degree 3.

V.5. Preparatory Steps for an Example

A crossover (woofer and tweeter) filter is a one-input, two-
output filter that passes all frequencies below a certain
specified frequency to its first output port and that passes all
higher frequencies to a second output port. The goal here is
to design a crossover filter at a frequency of 2,512 Hertz.

Before applying genetic programming to a circuit
synthesis problem, the user must perform seven major
preparatory steps, namely (1) identifying the terminals of the
to-be-evolved programs, (2) identifying the primitive
functions contained in the to-be-evolved programs, (3)
creating the fitness measure for evaluating how well a given
program does at solving the problem at hand, (4) choosing
certain control parameters (notably population size and the
maximum number of generations to be run), (5) determining
the termination criterion and method of result designation, (6)
determining the architecture of the overall program, and (7)
identifying the embryonic circuit that is suitable for the
problem. We first discuss items (7) and (6).

V.5.1 The Embryonic Circuit
The embryonic circuit (figure 1) is suitable for this problem.

V.5.2 Program Architecture
No automatically defined functions are to be used in this
problem. Thus, the architecture of the overall program tree
consists of three result-producing branches joined by the
connective LIST function. Thus, the embryonic circuit
initially has three writing heads — one associated with each
result-producing branch.
V.5.3 Function and Terminal Sets
The function set, Faps, for the arithmetic-performing subtree
associated with a component-creating function contains the
arithmetic functions of addition and subtraction. That is,
Faps = {+, -},

The terminal set, Taps, for the arithmetic-performing
subtree consists of
Taps = {%},
where R represents floating-point random constants between
-1.000 and +1.000.

The function set, Fccg, for the construction-continuing
subtree of each component-creating function is
Fecs = {C, L, SERIES, PSS, FLIP, NOP, GND, VIAO,

VIAl, VIAZ2, VIA3, VIA4, VIAL, VIASG,
VIAT7}.

The terminal set, T¢cg, for the construction-continuing
subtree consists of
Tees = {END}.
V.5.4 Fitness Measure
The evaluation of fitness for each individual circuit-
constructing program tree in the population begins with its
execution. This execution applies the functions in the
program tree to the very simple embryonic circuit thereby
developing the embryonic circuit into a fully developed
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circuit. A netlist describing the circuit is then created. The
netlist identifies each component of the circuit, the nodes to
which that component is connected, and the value of that
component. Each circuit is then simulated to determine its
behavior. The 217,000-line SPICE simulator was modified
to run as a submodule within the genetic programming
system. SPICE (an acronym for Simulation Program with
Integrated Circuit Emphasis) is a massive program written
over several decades at the University of California at
Berkeley for the simulation of analog, digital, and mixed
analog/digital electrical circuits. The input to a SPICE
simulation consists of a netlist describing the circuit to be
analyzed and certain commands that instruct SPICE as to the
type of analysis to be performed and the nature of the output
to be produced (Quarles et al. 1994).

The fitness measure may incorporate any calculable
characteristic or combination of characteristics of the circuit,
including the circuit's behavior in the time domain, its
behavior in the frequency domain, its power consumption, the
number of components, cost of components, surface area
occupied by its components, or sensitivity to temperature or
other variables. Since we are designing a filter, the focus is
on the behavior of the circuit in the frequency domain.

The starting point for the design of a filter is the
specification by the user of the frequency ranges for its
passband and stopband, its maximum passband ripple (i.e.,
the small variation that is tolerated within the passband) and
its minimum szopband attenuation (i.e., the large degree of
blockage of the signal that is demanded in the stopband).

The SPICE simulator is requested to perform an AC small
signal analysis and to report the circuit's behavior at two
probe points, DOUTT and DOUT2, for each of 101
frequency values chosen from the range between 10 Hz to
100,000 Hz. Each of these four decades of frequency are
divided into 25 parts (using a logarithmic scale) giving 101
fitness cases for each probe point.

Fitness is measured in terms of the sum, over these 101
frequency values, of the absolute weighted deviation between
the actual value of voltage in the frequency domain that is
produced by the circuit at the first probe point UBUTT and
the target value for voltage for that first probe point plus the
sum, over these 101 frequency values, of the absolute
weighted deviation between the actual value of voltage that is
produced by the circuit at the second probe point WOUT2 and
the target value for voltage for that second probe point. The
smaller the value of fitness, the better. A fitness of zero
represents an ideal filter.

Specifically, the standardized fitness, F(?), is

100
F (1) :E} [W.d fofodcfy -

Wody fo. fody fo]

where f{i) is the frequency (in Hertz) of fitness case i; dj(x) is
the difference between the target and observed values at
frequency x for probe point DOUTT; d2(x) is the difference
between the target and observed values at frequency x for

probe point WOUT2; W1 (y,x) is the weighting for difference
y at frequency x for probe point POUTT; andWo(y,x) is the
weighting for difference y at frequency x for probe point
pouT2.

The fitness measure does not penalize ideal values; it
slightly penalizes every acceptable deviation; and it heavily
penalizes every unacceptable deviation.

Consider the woofer (lowpass) portion and DOUTT first.
The procedure for each of the 58 points in the desired
passband from 10 Hz to 1,905 Hz is as follows: If the voltage
is between 970 millivolts and 1,000 millivolts, the absolute
value of the deviation from 1,000 millivolts is weighted by a
factor of 1.0. If the voltage is less than 970 millivolts, the
absolute value of the deviation from 1,000 millivolts is
weighted by a factor of 10.0. This arrangement reflects the
fact that the ideal voltage in the passband is 1.0 volt, the fact
that a 30 millivolt shortfall satisfies the design goals, and the
fact that a voltage below 970 millivolts in the passband is
not acceptable. For the 38 fitness cases representing
frequencies of 3,311 and higher in the intended stopband, the
procedure is as follows: If the voltage is between O millivolts
and 1 millivolts, the absolute value of the deviation from 0
millivolts is weighted by a factor of 1.0. If the voltage is
more than 1 millivolts, the absolute value of the deviation
from O millivolts is weighted by a factor of 10.0. This
arrangement reflects the fact that the ideal voltage in the
stopband is 0.0 volt, the fact that a 1 millivolt ripple above 0
millivolts is acceptable, and the fact that a voltage above 1
millivolt in the stopband is not acceptable.

For the two fitness cases at 2,089 Hz and 2,291 Hz, the
absolute value of the deviation from 1,000 millivolts is
weighted by a factor of 1.0. For the fitness case at 2,512 Hz,
the absolute value of the deviation from 500 millivolts is
weighted by a factor of 1.0. For the two fitness cases at 2,754
Hz and 3,020 Hz, the absolute value of the deviation from 0
millivolts is weighted by a factor of 1.0.

The fitness measure for the tweeter (highpass) portion
involving DOUT2 is a mirror image of the arrangement for
the woofer portion.

Hits are defined as the number (10 to 202) of fitness cases
for which the voltage is acceptable.

Some circuits that are randomly created for the initial
random population and that are created by the crossover and
mutation operations in later generations are so bizarre that
they cannot be simulated by SPICE. Circuits that cannot be
simulated by SPICE are assigned a high penalty value of
fitness (108).

V.5.5 Control Parameters

The population size, M, is 640,000. The crossover
percentage was 89% (producing 569,600 offspring); the
reproduction percentage was 10%; and the mutation
percentage was 1%. A maximum size of 200 points was
established for each of the three result-producing branches in
each overall program. The other minor parameters were the
default values in Koza 1994a (appendix D).
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V.5.6 Parallel Computer System

This problem was run on a medium-grained parallel Parystec
computer system consisting of 64 Power PC 601 80 MHz
processors arranged in a toroidal mesh with a host PC
Pentium type computer. The so-called distributed genetic
algorithm was used with a population size of O = 10,000 at
each of the D = 64 demes. On each generation, four boatloads
of emigrants, each consisting of B = 2% (the migration rate)
of the node's subpopulation (selected on the basis of fitness)
were dispatched to the four toroidally adjacent processing
nodes. See Andre and Koza 1996.

V.6. Results

The worst individual program trees from generation 0 create
circuits that are so pathological that SPICE is incapable of
simulating them. The best circuit (figure 8) from generation
0 has a fitness of 159.0 and scores 85 hits (out of 202). Its
frequency domain behavior is shown in figure 11.
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Figure 9 Best circuit of generation 20.
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Figure 10 Best-of-run circuit from generation

137.

SPICE cannot simulate many of the bizarre circuits
created by genetic programming.  About 98.5% of the
programs of generation O for this problem produce circuits
that cannot be simulated by SPICE. However, the percentage
of unsimulatable programs drops to 84.9% by generation 1,
75.0% by generation 2, and an average of 9.6% thereafter.

This observation supports the general principle that the
individuals in the population in intermediate generations of a
run of genetic programming (and random subtrees picked from
them) differ markedly from the individuals (and their randomly
picked subtrees) in the randomly created population of
generation O of the same run. That is, crossover fragments
from intermediate generations of a run of genetic
programming are very different from the randomly grown
subtrees provided by the mutation operation. It is
experimental evidence, for this non-trivial problem, that the
population serves a vital role in the genetic algorithm -
namely that of providing a reservoir of useful fragments to
rapidly advance the search.

In embarking on this project of trying to evolve electronic
circuits using genetic programming, one of our major
threshold concerns was whether any significant percentage of
the randomly created circuits of generation O in this highly
epistatic search space would be simulatable at all by SPICE.
A second concern was whether the crossover operation would
create any significant percentage of simulatable circuits.
Neither of these issues materialized on this problem.
Darwinian selection apparently is very effective in quickly
steering the population on successive generations into the
portion of the search space where parents can successful sire
simulatable offspring by means of crossover.

The best-of-generation individual from generation 20
(figure 9) has a fitness of 38.8 and scores 125 hits (out of
202). Its frequency domain behavior is shown in figure 12.

The best-of-run circuit (figure 10) from generation 137 has
a fitness of 0.7807 and 192 hits (out of 202). Its frequency
domain behavior is shown in figure 13.

V.7. Comparison with Butterworth
Filters

The Butterworth filters are a graded series of benchmark
"ladder" filters parameterized by n, where n is the number of
inductors and capacitors in the circuit.

Figure 14 shows the frequency domain response of this
combination of two Butterworth filters of order 3. When we
apply our fitness and hits measures to a combination of
lowpass and highpass Butterworth 3 filters, the combined
circuit scores 162 hits (out of 202). Figure 15 shows the
frequency domain response of two Butterworth 5 filters
(which corresponds to a score of 184 hits) and figure 16
shows two Butterworth 7 filters (with 190 hits).

The best-of-run circuit from generation 137 described
above scores 192 hits and thus can be said to deliver a
response that is slightly better than the combination of
lowpass and highpass Butterworth filters of order 7.

The lowpass part of the best-of-run circuit has the same
topology as Butterworth (but not the Butterworth component
values). The highpass part has an extra capacitor and a
sharper boundary around the crossover frequency of 2,512 Hz.
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Figure 11 Frequency domain behavior of the best
circuit of generation 0.
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Figure 12 Frequency domain behavior of the
best of gemeration 20.
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Figure 13 Frequency domain behavior of the
best-of-run circuit from generation 137.

VI. OTHER GENETICALLY EVOLVED
CIRCUITS

The above techniques have recently been successfully applied
to a variety of other problems of circuit synthesis.

VI.1. Lowpass "Brick Wall" Filter

Consider the problem of designing a lowpass filter with
passband below 1,000 Hz and a stopband above 2,000 Hz (as
described more fully in Koza, Bennett, Andre, and Keane
1996). The voltages in the passband are to be between 970
millivolts and 1 volt (i.e., the passband ripple is 30
millivolts) and the voltages in the stopband between 0 volts
and 1 millivolt. Figure 17 shows the 100% compliant
circuit that was evolved in one run. This genetically evolved
lowpass filter has a recognizable "ladder" topology of a
Butterworth or Chebychev filter and consists of a series
composition inductors with capacitors as shunts.

In another run, a 100% compliant recognizable "bridged
T" arrangement was evolved (involving capacitors C3 and
C15 and inductor L11 in conjunction with L14), as shown
in figure 18.
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Figore 14 Frequency domain behavior of two

Butterworth 3 filters.
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Figure 15 Frequency domain behavior of two
Butterworth 5 filters.
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Figure 16 Frequency domain behavior of two
Butterworth 7 filters.

Figure 19 shows a 100% compliant circuit from
generation 212 of another run with a novel topology that no
electrical engineer would be likely to create.

VI.2. An Asymmetric Bandpass Filter

In the Analog Integrated Circuits and Signal Processing
journal, Nielsen (1995) presented specifications for a
difficult-to-design asymmetric bandpass filter. Using a
standard bandpass filter on his problem would require a tenth-
order elliptic function.

Nielsen's bandpass filter (1995) is targeted for a modem
application where one band of frequencies (31.2 to 45.6
kilohertz) must be isolated from another (69.6 to 84.0 KHz).
Nielsen specifies that it would be ideal if the relative voltage
within the passband were in the narrow region between —0.6
dB and 0.6 dB (i.e., the passband ripple around 0 dB is less
than 0.6 decibels) and all the relative voltages outside the
passband were below —120 dB (i.e., the stopband attenuation
were at least 120 dB). These ideal characteristics are depicted
by the dark region in figure 21 (which exaggerates the height
of the ripple band). Nielsen also defined a set of acceptable
characteristics (depicted by the light shading in figure 21).
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Because of the importance of isolating the band of frequencies
between 69.6 and 84.0 KHz, the attenuation there should be
at least 73 dB (i.e., the relative voltage is below =73 dB).

Less stringency is demanded elsewhere. The attenuation
for frequencies below 20 KHz should be at least 38 dB (i.e.,
the relative voltage is below —38 dB). The relative voltages
in the frequency band between 20 KHz and 31.2 KHz and in
the band between 45.6 KHz and 69.6 KHz should be below
0 dB. The relative voltages in the band above 84.0 KHz
should be below —55 dB.

In one run (as described more fully in Koza, Andre,
Bennett, and Keane 1996), several fully compliant circuits
were evolved between generations 132 and 199. Figure 20
shows the best-of-run circuit from generation 199 and figure
21 shows its behavior in the frequency domain.
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VI.3. An Amplifier using Transistors

Now consider the problem of designing an amplifier with an
amplification factor of 3.5 over the frequency range of 20 Hz
to 20,000 Hz. Amplifiers are active circuits and require
active components (e.g., transistors) in the function set.
Figure 22 shows a genetically evolved 5 dB amplifier. The
boxes highlight a recognizable voltage gain stage and a
recognizable Darlington emitter follower section (inverted).

VII. CONCLUSION

We have surveyed four fields in which genetic programming
has evolved computer programs that are competitive in
performance with human-written programs.
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Figure 17 Seven-rung ladder circuit from
generation 32.
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from generation 45.
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