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Abstract— We present ongoing work on a tool that consists of 
two parts: (i) A raw micro-level abstract world simulator with an 
interface to (ii) a 3D game engine, translator of raw abstract 
simulator data to photorealistic graphics. Part (i) implements a 
dedicated cellular automata (CA) on reconfigurable hardware 
(FPGA) and part (ii) interfaces with a deep learning framework 
for training neural networks. The bottleneck of such an 
architecture usually lies in the fact that transferring the state of 
the whole CA significantly slows down the simulation. We bypass 
this by sending only a small subset of the general state, which we 
call a 'locus of visibility', akin to a torchlight in a darkened 3D 
space, into the simulation. The torchlight concept exists in many 
games but these games generally only simulate what is in or near 
the locus. Our chosen architecture will enable us to simulate on a 
micro level outside the locus. This will give us the advantage of 
being able to create a larger and more fine-grained simulation 
which can be used to train neural networks for use in games.  
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I. BACKGROUND

There have been exciting new results of training neural 
networks with photorealistic imagery from virtual worlds  [1]. 
The training of these neural networks uses rendered images 
from virtual worlds instead of real world data, the two biggest 
advantages of this approach being, firstly, fewer limitations in 
executing potentially difficult or dangerous scenarios, and 
secondly, the ability to accelerate the speed of the simulation 
means faster training of the neural network. 

In recent years, the game industry has spent a lot of effort 
on creating game engines which can output near-photorealistic 
imagery in real time, making it possible to train neural 
networks for real world scenarios using this output. Several 
projects are being developed to make it easier for neural 
network frameworks to interface with these engines [2], [3]. 

Cellular automata (CA) is an effective technique for 
simulating, on a micro level, complex behavior such as 
pedestrian traffic, moving agents [4] or, as in our proof of 
concept, the traffic of narrowboats1 on a system of canals. With 
a simple set of rules, contained in each cell, describing the 

1 Narrowboats were the main transportation system for goods 
at the start of the industrial revolution in the UK 

behavior of passing agents, it is possible to get an 
extraordinarily complex macroscopic view of the flow of 
traffic [4]. 

CA, because of its inherent massive spatial parallelism, 
locality and discrete nature, is a perfect candidate for 
implementation on programmable FPGA (field-programmable 
gate array) technology [5]. FPGAs are reconfigurable hardware 
devices, where the set of rules contained in each cell can be 
described in hardware via lookup tables and flip-flops (for 
storing state), and with every clock cycle the state of all cells 
can be updated in parallel.   

The remainder of this paper describes our current work, in 
which we are implementing a CA for simulating traffic on an 
FPGS, to train neural networks. These trained neural networks 
can be used to create game environments with ‘real world’-like 
behavior. 

II. IMPLEMENTATION OF CA MICROSIMULATION ON FPGA
We are developing a tool which microsimulates traffic in a

virtual world and gives a game engine a limited view of certain 
areas of the world – a ‘locus of visibility’. By limiting the 
amount of data made available for rendering and subsequent 
learning of a neural network, we can increase the size and 
granularity of the simulation, which will make the macro view 
more realistic. 

The data of this locus of view, akin to a torchlight in a 
darkened 3D space, or a traffic camera used to monitor traffic 
on a busy crossing in a city, will be passed on to a game engine 
which will generate a photorealistic video feed of the exposed 
area. This video feed will be used for training a neural network. 
The simulation will run several times faster than it would 
normally do when a game is played, to speed up the training of 
the neural network.  

The simulation uses the cellular automata (CA) method and 
a 'locus of visibility controller' extracts the localized data from 
the simulation and exposes it over the network to one or more 
consumers.   

The CA will be implemented on a FPGA and communicate 
over PCIe to a network card (NIC), exposing it over the 
network. The Unreal Engine captures this data and a neural 
network interfaces with the game engine via UnrealCV [2], an 
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Figure 1. Simulation tool architecture 

 

Unreal Engine plugin for interfacing with deep learning 
frameworks such as Caffe [6]. 

The simulated world is split up into hexagons and each 
individual area has a fixed locality to adjacent hexagons and 
can hold multiple agents. Each hexagon is represented by a cell 
in the CA. The movement of agents and the state of the cell is 
determined by the rule set contained in every individual cell. 

A. Proof of concept: Narrowboat Simulator  
In our first proof of concept we will simulate the traffic of a 

large number of narrowboats on an intricate canal system, 
transporting resources (for example, coal or grain) between 
supply points and delivery points in competing economic areas. 
The flow and density of traffic can be regulated via locks 
(chambered gates used to raise or lower water level, allowing 
boats to move to higher or lower levels of a canal), distributed 
throughout the canal system.  

The neural network first trains itself by observing the traffic 
at several locks. Once trained, the neural network will be used 
to play a game in which it competes against a (human) 
opponent, to bring as many resources as possible to its own 
delivery points, manipulating the traffic by operating the locks. 

FUTURE WORK 
The implementation of the narrowboat simulator will be a 

starting point from which to build more complex simulations of 
growing cities with different transportation systems, interacting 
with each other. This city transport simulator can then be used 
to train neural networks to operate different aspects of the 
simulation, for example, resource management. Both trained 
neural networks and simulator can be used to create games in 
which the environments and elements within them exhibit more 
complex, ‘real world’-like behavior. 
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