
Cellular Automata Simulation on FPGA for Training
Neural Networks with Virtual World Imagery

Olivier Van Acker and Oded Lachish
Department of Computer Science and Information Systems

Birkbeck, University of London
London, United Kingdom

olivier@dcs.bbk.ac.uk, oded@dcs.bbk.ac.uk

Graeme Burnett
Enhyper Ltd.

London, United Kingdom
graeme.burnett@ieee.org

Abstract— We present ongoing work on a tool that consists of
two parts: (i) A raw micro-level abstract world simulator with an
interface to (ii) a 3D game engine, translator of raw abstract
simulator data to photorealistic graphics. Part (i) implements a
dedicated cellular automata (CA) on reconfigurable hardware
(FPGA) and part (ii) interfaces with a deep learning framework
for training neural networks. The bottleneck of such an
architecture usually lies in the fact that transferring the state of
the whole CA significantly slows down the simulation. We bypass
this by sending only a small subset of the general state, which we
call a 'locus of visibility', akin to a torchlight in a darkened 3D
space, into the simulation. The torchlight concept exists in many
games but these games generally only simulate what is in or near
the locus. Our chosen architecture will enable us to simulate on a
micro level outside the locus. This will give us the advantage of
being able to create a larger and more fine-grained simulation
which can be used to train neural networks for use in games.

Keywords— Cellular Automata; FPGA; Simulation; Machine
learning; Neural networks; Unreal Engine

I. BACKGROUND

There have been exciting new results of training neural
networks with photorealistic imagery from virtual worlds [1].
The training of these neural networks uses rendered images
from virtual worlds instead of real world data, the two biggest
advantages of this approach being, firstly, fewer limitations in
executing potentially difficult or dangerous scenarios, and
secondly, the ability to accelerate the speed of the simulation
means faster training of the neural network.

In recent years, the game industry has spent a lot of effort
on creating game engines which can output near-photorealistic
imagery in real time, making it possible to train neural
networks for real world scenarios using this output. Several
projects are being developed to make it easier for neural
network frameworks to interface with these engines [2], [3].

Cellular automata (CA) is an effective technique for
simulating, on a micro level, complex behavior such as
pedestrian traffic, moving agents [4] or, as in our proof of
concept, the traffic of narrowboats1 on a system of canals. With
a simple set of rules, contained in each cell, describing the

1 Narrowboats were the main transportation system for goods
at the start of the industrial revolution in the UK

behavior of passing agents, it is possible to get an
extraordinarily complex macroscopic view of the flow of
traffic [4].

CA, because of its inherent massive spatial parallelism,
locality and discrete nature, is a perfect candidate for
implementation on programmable FPGA (field-programmable
gate array) technology [5]. FPGAs are reconfigurable hardware
devices, where the set of rules contained in each cell can be
described in hardware via lookup tables and flip-flops (for
storing state), and with every clock cycle the state of all cells
can be updated in parallel.

The remainder of this paper describes our current work, in
which we are implementing a CA for simulating traffic on an
FPGS, to train neural networks. These trained neural networks
can be used to create game environments with ‘real world’-like
behavior.

II. IMPLEMENTATION OF CA MICROSIMULATION ON FPGA
We are developing a tool which microsimulates traffic in a

virtual world and gives a game engine a limited view of certain
areas of the world – a ‘locus of visibility’. By limiting the
amount of data made available for rendering and subsequent
learning of a neural network, we can increase the size and
granularity of the simulation, which will make the macro view
more realistic.

The data of this locus of view, akin to a torchlight in a
darkened 3D space, or a traffic camera used to monitor traffic
on a busy crossing in a city, will be passed on to a game engine
which will generate a photorealistic video feed of the exposed
area. This video feed will be used for training a neural network.
The simulation will run several times faster than it would
normally do when a game is played, to speed up the training of
the neural network.

The simulation uses the cellular automata (CA) method and
a 'locus of visibility controller' extracts the localized data from
the simulation and exposes it over the network to one or more
consumers.

The CA will be implemented on a FPGA and communicate
over PCIe to a network card (NIC), exposing it over the
network. The Unreal Engine captures this data and a neural
network interfaces with the game engine via UnrealCV [2], an

IEEE Conference on Computational Intelligence and Games 2017

304978-1-5386-3233-8/17/$31.00 ©2017 IEEE
Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 05:08:41 UTC from IEEE Xplore. Restrictions apply.

Figure 1. Simulation tool architecture

Unreal Engine plugin for interfacing with deep learning
frameworks such as Caffe [6].

The simulated world is split up into hexagons and each
individual area has a fixed locality to adjacent hexagons and
can hold multiple agents. Each hexagon is represented by a cell
in the CA. The movement of agents and the state of the cell is
determined by the rule set contained in every individual cell.

A. Proof of concept: Narrowboat Simulator
In our first proof of concept we will simulate the traffic of a

large number of narrowboats on an intricate canal system,
transporting resources (for example, coal or grain) between
supply points and delivery points in competing economic areas.
The flow and density of traffic can be regulated via locks
(chambered gates used to raise or lower water level, allowing
boats to move to higher or lower levels of a canal), distributed
throughout the canal system.

The neural network first trains itself by observing the traffic
at several locks. Once trained, the neural network will be used
to play a game in which it competes against a (human)
opponent, to bring as many resources as possible to its own
delivery points, manipulating the traffic by operating the locks.

FUTURE WORK
The implementation of the narrowboat simulator will be a

starting point from which to build more complex simulations of
growing cities with different transportation systems, interacting
with each other. This city transport simulator can then be used
to train neural networks to operate different aspects of the
simulation, for example, resource management. Both trained
neural networks and simulator can be used to create games in
which the environments and elements within them exhibit more
complex, ‘real world’-like behavior.

REFERENCES

[1] “Artificial intelligence: Why AI researchers like video games | The
Economist,” The Economist, 11-May-2017. Available:
http://www.economist.com/news/science-and-technology/21721890-
games-help-them-understand-reality-why-ai-researchers-video-games.
[Accessed: 15-May-2017].

[2] W. Qiu and A. Yuille, “UnrealCV: Connecting Computer Vision to
Unreal Engine,” in Computer Vision – ECCV 2016 Workshops, 2016,
pp. 909–916.

[3] H. Kinsley, pygta5: Explorations of Using Python to play Grand Theft
Auto 5. 2017.

[4] V. J. Blue and J. L. Adler, “Cellular automata microsimulation for
modeling bi-directional pedestrian walkways,” Transp. Res. Part B
Methodol., vol. 35, no. 3, pp. 293–312, Mar. 2001.

[5] M. Halbach and R. Hoffmann, “Implementing cellular automata in
FPGA logic,” in Proceedings of the 18th International Parallel and
Distributed Processing Symposium, 2004, p. 258-.

[6] Y. Jia et al., “Caffe: Convolutional Architecture for Fast Feature
Embedding,” in Proceedings of the 22nd ACM International Conference
on Multimedia, New York, NY, USA, 2014, pp. 675–678.

IEEE Conference on Computational Intelligence and Games 2017

305
Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 05:08:41 UTC from IEEE Xplore. Restrictions apply.

