Data Encryption Using Non-uniform 2-D Von Neumann Cellular Automata
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Abstract— This paper presents a new method for data
encryption. Its encryption scheme is based on replacement
of the data values. The data values are replaced using a
progressive cellular automata (CA) substitution. In the
progressive CA substitution, the key stream is generated
from the non-uniform 2-D NXN von Neumann cellular
automata, that is a special type of discrete cellular neural
networks (CNN). The characteristics of the proposed
encryption method are loss-less, symmetric private key
encryption, very large number of security Kkeys,
key-dependent permutation, and key-dependent pixel value
replacement. Simulation results for color images show that
the proposed data encryption method satisfies the
properties of confusion and diffusion due to the CA
substitution is wonderful.
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I. INTRODUCTION

With the ever-increasing growth of multimedia applications,
security is an important issue in communication and storage of
images, and encryption is one the ways to ensure security.
Image encryption has applications in inter-net communication,
multimedia systems, medical imaging, telemedicine, and
military communication. There already exist several data and/or
image encryption methods. They include IDEA method [1] and
RSA method [2] for data encryption; SCAN-based methods [3],
chaos-based methods [4], tree structure-based methods [5], and
other miscellaneous methods [6] for image encryption; [7, 8] for
encryption of compressed images. However, each of them has
its strength and weakness in terms of security level, speed, and
resulting stream size metrics. The proposed encryption method
is based on replacement of the pixel values. The data values are
replaced using a progressive CA substitution with a key stream
that is generated from the CA evolution rules. The proposed
encrypted system is loss-less, key-dependent permutation, and
key-dependent pixel value replacement. Additionally, it is a
symmetric private key security, meaning that the same key is
needed for encryption and decryption; both sender and receiver
must know the key.

Reasons that we used CA for data encryption are described as
follows. (a) CA has been applied successfully to several
physical systems, processes, and scientific problems where local
interactions are involved, such as image processing [9], data
encryption [9], byte error correcting code [10], and as
pseudorandom number generators for VLSI built-in self-test
[11]. (b) The number of CA evolution rule is very large; we
hence have very large number of ways to produce a sequence of
CA data for image encryption and decryption. (c) Progressive
CA substitution is integer arithmetic and/or logic operation,

which is an easy and simple computation.

This paper is organized as follows. Section II describes the
proposed encryption method. Simulation results are drawn in
Section III. Finally, section IV gives the discussions and
conclusions.

II. THE PROPOSED ENCRYPTION METHOD

A. CA Encryption/Decryption Scheme
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Fig. 1 2-D von Neumann CA, (a) 2-D von Neumann CA space,
(b) the structure of 1-bit PCA

In 2-D CA space, the specified node P, with its four nearest
neighbors form the von Neumann neighborhood. Fig. 1a shows
the 2-D von Neumann CA space. The state of the given node at
time step (t+1) will be determined from the states of nodes
within its neighborhood at time step t. Using a specified rule,
the states are updated synchronously in time steps for all cells.
Let a(i, j,t) represent the state of (i,j)th cell at time t, whose

von Neumann neighborhoods are in the states: a(i—l, j,t),
ali,j—11), ali+1,/,t),and a(i,j+1,). Then the rule of

2-D von Neumann CA evolution way can be expressed as

ali, j,t+1)=F(ali+1, j.1)ali, j—1,1),

= - Cou A, M
ali, j,t),ali, j+1,t),a(i-1, j,t))

where F is a Boolean function that defines the rule.

The hardware implementation of Equation (1) for 1-bit 2-D

von Neumann CA is shown in Fig. 1b. Such a structure is

referred as a programmable CA (PCA). Using the 1-bit 2-D von

Neumann PCA structure, one can build the desired
non-uniform N XN -bit cellular automata. Due to the
non-uniform 2-D N XN -bit cellular automata uses

4N +32N* + N’ input pins to set boundary condition, rule
control, and initial data, it shall cost many input pads, we

therefore use three separated memories to reduce the input pads.
The architecture of non-uniform 2-D N X N von Neumann CA
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generator for hardware implementation is shown in Fig. 2.
Given a N XN -cell dual-state von Neumann 2-D CA runs

27N initial
results

over T time steps, it has 2% =2 rules,
configurations, 2*' boundary conditions, and
in2¥2¥*¥+*¥ CA evolution ways for generating TXN N-bit

generalized CA data. Consequently, cyclic boundary conditions
were imposed on a 2-state/3-site/ N X N -cells CA to generate
the states of the automata. The CA generating scheme shown in
dash-line block of Fig. 3, which is controlled by CA key to

generate a sequence of N-bit CA dataC4, () o<i<L -1 for

CA substitution. In order to change the data values to achieve
CA encryption, the CA encrypted substitution is progressive.
The scheme of CA encryption/decryption scheme is shown in
Fig. 3. For CA encryption, the pin of encryption/decryption
control is set to be 1; at the same time, the input is a sequence of
N-bit data and the output of progressive CA encrypted
substitution is a sequence of N-bit encrypted data.
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Fig. 2 The architecture of non-uniform 2-D NxN CA generator

Let F(i,0<i<L -1 be a sequence of N-bit input data
andC4, (i,0<i<L -1 be a sequence of N-bit CA data. Then

the progressive CA encrypted substitution is defined as

CA encryption:
E(0)=F(0) 5
E()=[F()+ Gear(gG-1) ca,(@))lmod 2* 1<i< L -1 2
The GCAT(E(i-1),CA,(i)) means that E(i-1) and CA, (i)
execute the generalized CA transform. GCAT(E(i—l), C4, (z))

can be expressed as

Type 1: EXOR(E(i-1),C4, (i)= E(i-1)® C4, (i), 3)
Type 2: NEXOR(E(i—1), C4,(i))= EG-1)® C4, (), )
Type 3:
ARITH _1(E(i-1), €4, ()= (E(-1)xC4, ())mod 2%, (5)
Bpe 4:
ARITH _2(E(i-1), €4 (i))= (G —1)+1)x C4, () mod 2", (6)
Bpe 5:

ALU _1(E(i-1), ¢4, ()= (EG-1)+1)@ C4, () mod 2V, (7)
7szpe 6:

ALU _2(E(i-1) ¢4, ()= (EG-1)+1)®C4, ) mod 2" . (8)

Type 1 and 2 are the logic exclusive OR and the not exclusive
OR operation respectively. Type 3 and 4 are arithmetic
operations. As for type 5 and 6, they are the combination of the

arithmetic and the logic operations. We use Type Selection Bus
in Fig. 2 to decide the type of GCAT(E(i~1),C4, (i)).
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Fig.3 Scheme of CA encryption/decryption

The proposed progressive CA encrypted substitution satisfies
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both confusion and diffusion properties. The confusion and
diffusion properties are achieved by transforming the
sequence  F(i),0<i<L -1 into the sequence

E(),0<i<L -1 wusing Equation (2). The sequence
E(),0<i<L —1 gets uniformly distributed pixels because
the pseudo random sequence C4,, (,0<i<L ~1 isusedinthe
transformation. Therefore, the sequence E(i),0<i< L -1 gets
confusion property. The sequence E (z), 0<i<L -1 gets
diffusion property because a single change in value F(i)
changes E(}) which changes E(i+1) which changes
E (i + 2) and changes propagate up to the end of the sequence.
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Fig. 4 Block diagram of the progressive CA encrypted/decrypted
' substitution
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The progressive CA decryption is the reversing operation
of progressive CA encryption. In Fig. 4, the pin of
encryption/decryption control is set to be 0, which causes the
scheme of CA encryption/decryption to perform the progressive
CA decryption. Let E(i)0<i<L —1 be a sequence of N-bit
encrypted data. Then the progressive CA decrypted substitution
can be expressed as

CA decryption:
{ D(0)= E(0)

D(i)= [EG)- GeaT(E(i-1), 4 ()] mod 2*,1<i< 1, -1 S

In CA decryption, the GCAT(E(i—1), CA, (i) is identical to

that for encryption. The block diagram of the progressive CA
encryption/decryption substitution is shown in Fig. 4. When
encryption/decryption control is set to be 1, it performs
progressive  CA  encryption  substitution. = Whereas,
encryption/decryption control is set to be 0, it works progressive
CA  decryption  substitution. Due to the CA
encryption/decryption scheme is loss-less, the sequence of N-bit
decrypted data D(i),0<i<L, -1 is the identification of the

original sequence F (l) 0<i<L -1.

B. The proposed Encryption System

The proposed encryption system is shown in Fig. 5. The
security keys for encryption and decryption consist of three
components, namely, iteration key, type selection key and CA
key. These keys are identical and are known to both the sender
and the receiver before the communication of encrypted data.
Iteration key is used for repeating encryption process a specified
times to get more random encrypted data. Type selection key is

used for selecting the type of GCAT(E(i-1)C4, () to

perform progressive CA encryption/decryption substitution.
Whereas, the CA key is used for deciding CA rule number,
initial data, boundary conditions, and linear permutation to
generate a sequence of CA data for CA substitution.

In the sender site, suppose it has iteration key, type selection
key, CA key, and input data. The CA encryption replaces the
data values to produce a sequence of N-bit encrypted
data E(i), 0<i < L, —1. These processes are repeated until the

specified iterations are finished. The receiver site performs
inverse operation of the sender site. Suppose receiver has
received iteration key, type selection key, CA key, and a
sequence of N-bit encrypted data. The progressive CA decrypted
substitution performs CA decryption to generate the sequence of
N-bit decrypted data D(i),0<i<L,—1. These processes are
repeated a specified iterations to produce the N’ decrypted
image.

Fig. 5 The proposed encryption system

III.  SIMULATION RESULTS

The proposed encryption system performed well encryption
not only the general text data but also compressed images and
uncompressed images. Several simulations were conducted to
test various properties of the proposed image encryption system
that include confusion and diffusion properties. Note that in all
the following experiments, all images are of size 256 x 256 . Fig.
6a shows a YUV formatted color Lena image that is used for
testing the performance of the proposed image encryption
system. The data type for encryption and decryption is 8-bit, and
non-uniform 2-D 8x8 -cell von Neumann CA is selected. The
CA key consist of the rule control data OFFEFF2F

16 ?
6C,, uniform initial states, zero boundaries with cyclic

boundary at right down corner, and linear permutation with
00,,. It is clear that the rule control data is OFFEFF2F,,,
which means that the 2-D 8x8 -cell dual-state von Neumann
CA evolution is controlled by a specified set of functions that
was stored in memory 2. Once the initial data, boundary
condition data, and rule control data were decided, the 2-D von
Neumann CA run over 8192 time steps to generate the
generalized CA data of size 65536. Then 8-bit permutation
control data 00, guides the system to do linear permutation
from the first 8-bit data of the CA initial state (1% time step) to
generate the pseudo random sequence of CA data. We used type
1 GCAT to perform the progressive CA encryption and
decryption substitutions. The iteration is set to 1, for the reason
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of simplification. Encrypted images of Lena are shown in Fig.
6b. Y-signal histograms of the Lena image (blue line) and the
encrypted Lena image (green line) were shown in Fig. 7. It
shows that the encrypted Lena image gets uniformly distributed
pixels. This fact illustrates that the proposed encryption system
satisfies the confusion property. This encrypted image performs
the process of decryption to produce the decrypted image. The
decrypted image is exactly identical to the original Lena image.
This fact shows that the proposed image encryption system
works well as our expectation.

(@ (b)
Fig. 6 (a) Test image (Lena, (b) Encrypted Lena image
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Fig.7 Y-signal histogram of the original and the encrypted Lena
image, blue line shows the original, whereas green line shows
the encrypted.

In order to determine the diffusion property of the proposed
system with respect to images, the Y-signal of Lena image was
modified by incrementing the value of one randomly chosen
pixel by 1. The value of pixel (0, 0) was incremented from 161
to 162. Both the original Lena and the modified Lena were
encrypted using the same secret keys. The pixel-wise absolute
difference of two encrypted images is displayed in Fig. 7, which
shows that the two encrypted images have no similarities even
though their original images differ by only one pixel. Thus, it
proves the diffusion property of the proposed system with
respect to images.

IV. DISCUSSIONS AND CONCLUSIONS

. . . 32N*+N°+4N
As previous mention, we have possible 27V V"

groups of XN N-bit CA data in our simulation. Thus, for
compressed images are of size N’ 8-bit bytes, T
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becomes 8X N '/ N? , it has a high volume of security keys with

the order of [1 0™ X(Si]’:l :
N2

This paper presented a new encryption system based on the
non-uniform 2-D von Neumann CA. The encryption method is
based on replacement of the data values. The data values are
replaced using a progressive CA substitution. We summarize the
characteristics of the proposed encryption system are:

(a) Loss-less encryption of data.

(b) Symmetric security system.

(c) Security key consists of iteration key, type selection key,
and CA key, which is variable length with huge number of
possible of security keys.

(d) Confusion and diffusion properties are satisfied. Almost
perfect guess of encryption key makes decryption
impossible.

(e) Encryption/ decryption scheme uses integer arithmetic and
logic operations, it can be easily hardware implemented.
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