CNNA-94 Third IEEE International Workshop on Celiular Neural Networks and their Applications
Rome, italy, December 18-21,19004

AnaloI% Combinatorics and Cellular Automata -
ey Algorithms and Layout Design

Péter L. Venetianer™, Péter Szolgay', Kenneth R. Crounse!,
Taméas Roska® and Leon O. Chual

t Analogical and Neural Computer Laboratory, Computer and Automation Inst,
Hungarian Academy of Sciences, H-1518 Budapest, Hungary
tel: 36-1-2698263 fax: 36-1-2698264 e-mail: venetian@sunserv.sztaki.hu

i Department of Electrical Engineering and Computer Sciences, ERL,
University of California Berkeley, Berkeley, CA 94720, USA

Abstract - This paper demonstrates how certain logic and combinatorial tasks can be
solved using CNNs. The most important epplication generalizes a shortest path algorithm
to design the layout of printed circuit boards. Besides, it is shown how cellular automata
can be simulated on CNN, and tasks, such as sorting, parity analysis, histogram calculation
of black-and-white images, and computing minimum Hamming distance are also solved.

1 Introduction

The Cellular Neural Network (CNN) [1, 2, 3] is a paradigm for locally connected, non-
linear, analog, dynamic computing arrays. In a recent paper [6] it was shown that the
game of life algorithm can be realized by appropriate analog templates (locally interactive
weight patterns). Therefore, any Turing-machine can be realized by CNN. The enormous
implied capability has been evidenced by the development of many applications [3, and
its references).

Here we will show some interesting examples of CNN templates which perform log-
ical operations. We show, theoretically, how simple analog templates can generate logic
functions for determining the time evolution of an arbitrary cellular automata. As a prac-
tical application, we describe the use of the analogic CNN Universal Machine [4] (CNNUM
- a stored-program analogic microprocessor) to perform certain logic and combinatorial
tasks, as opposed to the standard analog ones. Some of these applications, especially the
layout design, outperforms traditional solutions, while others can serve as subroutines of
complex analogic algorithms. ,

In many CNN applications the two saturation values (e.g. +1 and -1) are enough for
detection tasks. However, in other cases the two states corresponding to the saturation
regions |v;] > 1 of the CNN might not be sufficient to represent the different states of

0-7803-2070-0/94/$4.00 © 1994 IEEE 249

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 05:09:56 UTC from IEEE Xplore. Restrictions apply.

a model. In such cases it is straightforward to map some states to values or regions in
the (v—l, +1) interval of the dynamics. However, if simulating a multistep procedure, it is
also important that the different cells of the network reach their new states at the same
time. A possible solution to this problem is to discretize the time in the state equation
of the CNN. We shall call this network a piecewise-linear unity-gain discrete-time cellular
neural network (pwuDTCNN, not to be confused with the original DTCNN [5] which has
a threshold-type output equation).

Section 2 shows how an arbitrary cellular automata can be simulated with a
pwuDTCNN; in Section 3 some useful combinatorial tasks are solved; in Section 4 the
minimum Hamming distance is computed; and finally, Section 5 describes how the layout
of a printed circuit board can be designed.

2 Realization of cellular automata

Cellular automata (7] are a class of dynamical systems which are discrete in space, state,
and time. Each cell holds a state taking on a value from a finite set. The state values
evolve in time according to a state transition rule which gives the next state as a function
of the current states of a cell and its neighbors. For our purposes, we assume that the
transition rule is space invariant. The neighborhood is usually defined by a radius, r, for
which any cell inside this radius is in the neighborhood.

If the set of possible states for a cell is binary and the neighborhood is r = 1,
we will call the cellular automata first order. The two-step approach used in [6] can be
used to show that the pwuDTCNN with arbitrary template nonlinearities can be used to
implement any first order cellular automata. In the first step, the binary current states in
every cell neighborhood of the cellular automata are encoded into a unique integer by the
standard method using powers of two. In the second step these integers are used to index
into a truth table to determine the next state of the cellular automata at each cell. Since
any binary function can be represented by a truth table, this allows any binary function
of the neighborhood to be implemented.

In general, cellular automata can have more than two possible states per cell. It may
be possible to make an argument similar to the first-order case for implementing higher
order cellular automata with pwuDTCNN, but the state table increases exponentially
with the number of states making it quite impractical. However, if the high-order cellular

automata is of a special form, e.g. totalistic, it may be possible to easily design a simple
nonlinearity.

3 Analog combinatorics

CNNs outperform traditional digital solutions in lot of applications. Sometimes this is
not the case, but it is still worth implementing tasks in CNN, because the problems
might occur as part of more complex analogic CNN algorithms and in such cases it is
very important to save the time of AD/DA conversions and to be able to solve these
subproblems on the CNN. This section contains such image processing and combinatorial
tasks that can be solved using pwuDTCNN templates:

e Calculating the histogram of black-and-white images, e.g. shifting black pixels to

the left of each line (Fig. 1).
e Sorting values in the [-1.1] interval in a 1D image (Fig. 2).

250

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 05:09:56 UTC from IEEE Xplore. Restrictions apply.

e Determining the parity of an image, e.g. whether the number of black pixels is even

or odd in a line (Fig. 3).
e Majority vote-taker, deciding whethcr there are more black or white pixels in a line

(Fig. 4)

Figure I: The histogram (right) of a black-and-white tmage (left)

Figure 2: Sorting values in ascending order (input-left, output-right)

aven |odd OUTPUT
s .
number of 3
black pixels 2
in a row 4
1

the parity of
the whole line

Figure 3: Determining the parity of each line, black standing for 1, white for 0

4 Computing minimum Hamming distance

In the theory of information processes it is a common problem that, given a code received
on a noisy channel and the set of legal code words, we have to determine the code word
nearest in some metric to the received one. In the case of binary codes the Hamming
distance is the most common choice to measure the distance. The Hamming distance
of two binary strings is the number of differing bits, e.g. ¢(01001,11011) = 2. The
nearest code word can be computed with a 4-step pwuDTCNN algorithm. In the first
step, the input is compared to all legal code words, then the number of differences are
counted, afterwards the minimum of these differences is computed, and finally the legal
code word(s) having this minimum distance are selected. The whole algorithm requires
(m + n + const) steps, where m is the number of legal code words, and n is their length
(Fig 5).

5 Layout design with CNN

In this section it will be shown how the layout of a printed circuit board.(PCB) can be
designed using a cellular neural network universal machine. A 2-layer model is assumed
where one layer contains only vertical while the other only horizontal wires. The problem
is: given a set of equipotential nodes of a PCB, interconnect them with the minimum

251

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 05:09:56 UTC from IEEE Xplore. Restrictions apply.

more BLACK pixel
more WHITE pixels
Figure {: Majority vote-taker (left-input, right-output)

Hamming
legal codes inputcode gigtances - best match

o

Figure 5: Computing the minimum Hamming distance

wire-length and minimum number of layer crossings, and not crossing any of the already
drawn wires. The algorithm terminates in approximately 6 * wirelength * 7 time, where
7 is the settling time of the analog transient (e.g. around 100ns). Similar methods can
be used for IC mask design.

There are only few theoretically exact layout algorithms. The Lee model [9] is
perhaps the most well known one, providing a solid, theorem based solution, also taking
into account the different technological requirements.

In the procedure of designing the layout of a printed circuit board, a 2-layer model
is assumed, where one layer contains only vertical, while the other only horizontal wires.
This model can easily be extended to more than two layers. A traditional processor is
controlling the algorithm, using a CNNUM as a slave to execute most computing. The
processor reads the PCB description file containing the size of the board, the location of
the devices and the lists of equipotential nodes. It determines, using heuristics, the order
of the design, e.g. which set of equipotential nodes to interconnect first. In our algorithm,
first the longest wires are drawn. One major step of the algorithm deals with a set of
equipotential nodes. These nodes are sent to the CNNUM which interconnects them with
the shortest path, taking into account that restrictions might apply to the position of
the wires. These restrictions are represented in the form of fixed state maps - a concept
extensively used in the algorithm. It means that some cells do not change throughout
the transient. Such restricted locations are the pins of devices and already existing wires
which cannot be crossed by later wires. The main steps of the algorithm are:

1. Generate initial fixed state maps with the digital processor containing the pins of
the components.
2. Interconnect a set of equipotential nodes. This is the key element of the algorithm
which is detailed in the next paragraph.
3. Update fixed state maps by the recently drawn wires (simple logic operation).
4. If more equipotential nodes left, goto step 2.
The key element of this procedure is interconnecting equipotential nodes with the
shortest path and the minimum number of layer crossings. This is done by the well-known
Dijkstra algorithm {8]. It operates in two step. Assume that we want to interconnect two

252

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 05:09:56 UTC from IEEE Xplore. Restrictions apply.

S
1]
O b O
s}
>
it
w
>-]
[}
Sy
"

0.05 1.08

4 } |
- T T
’\ Yii-Yid -0.025 Uij-Ukl

-] e ———

-0.25+

Figure 6: The templates of the shortest path finding algorithm: (a) ezplores all possible
paths from a white source point against black background applying restricted locations to
the fized state map (b) select the shortest path using the result of (a) as input and the
black target point(s) as initial state, using the (b) template and its 3 variants (left, down
right) cyclically

nodes called source and target. In the first step of the algorithm a wave-like propagation
is initiated from the given source point, marking each cell with a value a unit greater than
the mark of the cell from which it was reached. In other words, this step is a breadth-first
search, exploring all routes starting from the source, and marking each cell with a value
corresponding to its distance from the source. In the second step the shortest path has to
be selected. This can easily be done based on the marks of the previous step. It follows
from the method how the cells were marked, that each cell, except for the source, has
exactly one smaller neighbor (a cell with a smaller mark). If we move from a cell to this
smaller neighbor, we get closer to the source. So, starting from an arbitrary point, and
always moving towards a smaller neighbor, we will finally reach the source on the shortest
path. The above algorithm can also be used if having more than two points, finding the
shortest path to one selected point (source) from all others (targets). The templates of
the shortest path finding algorithm are shown in Fig reff:layouttem.
A PCB layout designed with the CNN is shown in Fig 7.

References

[1] L.O.Chua and L.Yang, “Cellular neural networks: Theory”, IEEE Trans. on Circuits
and Systems, Vol.35, pp.1257-1272, 1988.

(2] L.O.Chua and L.Yang, "Cellular neural networks: Applications”, ibid., pp.1273-1290.

(3} L.O.Chua and T.Roska, “The CNN Paradigm”, IEEE Trans. on Circuits and
Systems-I, Vol.40, pp.147-156, 1993. .

[4] T.Roska and L.O.Chua, “The CNN Universal Machine: An Analogic Array Com-
puter”. IEEE Trans. on Circuits and Systems-I, Vol.40, pp.163-173, 1993.

263

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 05:09:56 UTC from IEEE Xplore. Restrictions apply.

[5] H.Harrer and J.A.Nossek, “Discrete time cellular neural networks”, Int.J.Circuit The-
ory and Applications, Vol.20, pp.453-468, 1992.

(6] L.0.Chua, T.Roska and P.L.Venetianer, “The CNN is as Universal as the Turing
Machine”, IEEE Trans. on Circuits and Systems-I, Vol.40, pp.289-291, 1993.

[7] T.Toffoli and N.Margulos, “Cellular Automata Machines: a new environment for
modeling”, Cambridge, Mass., MIT Press, 1987.

(8] E.W.Dijkstra, “A Note on Two Problems in Connexion with Graphs”, Numerische
Mathematik, Vol.1, pp.269-271, 1959.

(9] C.Y.Lee, “An algorithm for path connections and its applications”, IRE Trans on
EC, Vol. EC-10, pp.346-365, 1961.

Figure 7: Layout design with CNN: black squares represent the pins of the componenets:
grey squares are layer crossings, the horizontal and vertical wires are on different layers,
being superimposed on the figure

254

Authorized licensed use limited to: Wikipedia. Downloaded on June 23,2025 at 05:09:56 UTC from IEEE Xplore. Restrictions apply.

