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Abstract 
 
      CMOS technology miniaturization limits have provided new alternative technologies, 
Quantum cellular automata (QCA) is a new technology in nanometer scale as one of the 
alternatives, QCA technology has large potential in terms of high space density and power 
dissipation with the development of faster computers and lower power consumption. This paper 
proposes the use of Hopfield neural network design of simple QCA cells and study device level 
uncertainties like stable polarization at the output cell, near to ground state configuration of 
QCA cells. This study is helpful to synthesize the QCA system thereby to achieve high speed and 
errorless circuit.   
 
1. Introduction 
 
     Quantum-dot Cellular Automata (QCA) is an emerging technology that offers a 
revolutionary approach to computing at nano-level [1]. The fundamental unit of QCA is QCA 
cell created with four quantum Dots positioned at the vertices of a square [2]. [3]. The electrons 
in the cell that are placed adjacent to each other will interact; as a result the polarization of one 
cell will be directly affected by the polarization of its neighboring cells [4]. This interaction 
forces between the neighboring cells able to synchronize their polarization.[5]. Therefore an 
array of QCA cells acts as wire and is able to transmit information from one end to another [6] 
[7]. The majority gate is the fundamental gate of QCA produces an output that reflects the 
majority of the inputs [8]. In order to create an AND gate we simply fix one of the majority gate 
input to 0 (P = -1). To create OR gate we fix one of inputs to 1 P = +1. The inverter or NOT 
gate is also simple to implement using QCA [9][10]. Clocking is the requirement for 
synchronization of information flow in QCA circuits. It requires a clock not only to synchronize 
and control information flow but clock actually provides power to run the circuit [11] [12] [13]. 
The cells are not powered from any other external source apart from the clock. These clocks 
have been proposed to control the potential barriers between the dots [14]. This paper discuss 
about neural network based simple QCA circuit modeling (latches, not, majority gates) to get 
stable polarization of the circuit. We have considered layout model of QCA circuits from [23], 
Since QCA technology is based on charge transfer rather than electron flow, the unpolarization 
of a circuit results in wrong output, so it is essential to simulate simple qca circuit with respect 
to its polarization. Following this, session II speaks about Hopfield neural network based QCA 
cell simulation for stable polarization of the output cell and to find the unstable points at the 
center of state space (unpolarization state).  
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2. NEURAL NETROK BASED QCA CIRCUIT SIMULATION 
 

QCA circuit simulation based on neural network can be used efficiently to synthesize 
at circuit level. In this paper we propose neural network based simulation of QCA circuits. 
This in turn useful for synthesis of QCA circuits by evolutionary algorithms like genetic 
algorithms etc [15][16][17][18].  QCA circuits can be successfully optimized in terms of its 
construction (no of cells), energy minimization of the output cell using neural networks. Figure 
1 shows Hopfield neural network with connections between three neurons. QCA cell 
simulation depends on nature of input configuration and temperature, we assume standard 
temperature of 10k for all simulation and simple input configurations. 

  
 
Figure 1 Hopfield neural networks with connections between 
three neurons 
 This network can be trained to get information about device uncertainties like ground 
state configuration of output cell (least polarization of the cell), steady state polarization and 
minimum energy required for output cell in QCA logic circuits. The network structure and 
synaptic weights depends on specification of problem. Output signal is generated when each 
neuron just adds the signal sent by other neurons and multiplied by synaptic weights. The 
weighted sum of input and output signal is called input and output potentials. The energy 
function for the network is defined as  
 
E = - 1/ 2 ∑m  ∑m

  Wij Pi Pj   (1) 
                          i = 1  j = 1 

Where Wij (i,j = 1 …m) is the synaptic weight between neurons j and i. The set of values of Wij 
forms symmetric matrix that contains synaptic weights and these weights corresponds to the 
energy value of a cell ranges between 2.96 milli eV to 4.34 milli eV [19] to minimize the 
energy of the network, the input potential is defined by 
 
Vi = - ∆ E / ∆ Pi (I = 1…..m)  (2) 
 
Vi = ∑m

  Wij Pi    (3) 
       i = 1   
Each neuron represents one cell of a QCA circuit, and have a value ranges between -1 to +1 in 
its polarization. Figure 2 shows QCA circuit with three cells as three neurons as in figure 1. 
 A                                                 Y             
 

 
 
     
   CLK 0       CLK 1       CLK 2 
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Figure 2 Three QCA cells in serial with three clock zones 0, 1, 
2 
       Hopfield network that represents a neuron 1 corresponds to first cell in QCA, second 
neuron represents second cell and third represents third cell. We initially design Hopfield 
network with target stable points to get polarization of QCA cells at ground state configuration 
(one state of Polarization either +1 or -1). The behaviors of the Hopfield network for different 
initial conditions are studied. Finally network designed should give two stable points defined 
by target vectors as [+1, +1; -1, +1; -1,-1]. In QCA terminology when one cell polarized to +1 
the other cell get effected due to tunneling between them and hence the other electron also get 
polarized, now the goal of the simple Hopfield network is to find the stable polarization given 
initial (assumed) stable points. Figure 2 shows the QCA AND logic circuit with inputs a, b and 
control input: y be output, given the polarization of input a and b  [20],the output polarization 
of Y can be calculated through majority voting scheme. In Hopfield Neural network three 
inputs are given with clocking, figure 3 shows the stable points of QCA cell b [+1 to –1]. If the 
clock is not given, the network cannot respond to the input.  

 
 
Figure 3 QCA Cell Hopfield Figure 4 QCA Majority gate 
network state space.     
(stable points are shown at the corners for input b cell [-1, + 
1]) 
           In this network all possible states of 2N Hopfield neural network are contained 
within the plot boundaries. We used the function newhop that creates Hopfield 
network with given stable points. Newhop(T) takes one input argument, let T the 
matrix of R multiplied with Q (target vector) and returns a new Hopfield recurrent 
neural network with stable points at the vectors in T. We check that the network is 
stable at these points by using them as initial stable conditions.  If the network is stable 
we would expect that the outputs Y will be the same. Hence QCA Cell output is same 
as per majority logic. Suppose the network gets wrong inputs: then the network can be 
used to correct the corrupted input vector which moves to the nearest target vector, 
similarly the polarization of the output cells can be made near to the ground state 
configuration. Simple QCA AND,OR circuit being simulated using Hopfield network, 
given input vector of a [+1], b[ -1] and control input [+1], code is written based on 
majority logic and also if control input is +1 it is logic OR operation and -1 for AND 
operation. We used new hop(T) function to view the stable output at y. Figure 4 shows 
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the simulation of QCA Hopfield network for OR operation and y output cell ( neuron) 
reaches to a ( +1)  so output y = a ( +1), blue line indicates the output cell reflects one 
of the inputs a to its full polarization. Suppose randomly generate a point in between 
+1 and –1, the network ends up at the corner as shown in figure 4.We repeat the 
simulation for 25 more randomly generated initial conditions between +1 to –1 of two 
cell QCA. These points were exactly between two target stable points. The result is 
that the network ends up with designed stable corner points (polarizations) as shown in 
figure 5. 
 

 
Figure 4 Hopfield QCA network Figure 5 Hop field QCA network 
ends up with stable points at with 25 randomly generated points 
the corners.                   
          
           The polarization of electrons in QCA cell between its targets ( + 1 to –1) being 
specified, then Hopfield QCA network shows undesired stable points that exists at the center 
of the state space or given unstable state the network ends up with stable points. These 
unstable points are due to higher or lower columbic interaction between cells. Clocking 
problems tends to unpolarize the QCA cells in turn affects neighboring cells, so there is a 
chance for output cell to go unpolarized. We can study from this hopfield QCA network 
simulation, the undesirable points exist between the cells in a circuit and as well as the 
polarization of the output cell. Suppose the Hopfield QCA network with exactly the stable 
points and some unstable points of given target say  
T = [ 1.0  -1.0  -0.5  1.00  1.00  0.0; ... 
      0.0   0.0   0.0  0.00  0.00 0.0; ... 
     -1.0   1.0   0.5 -1.01 -1.00  0.0]; T vector has two cell interaction polarizations 
            We tested the network with above points for three QCA cells of figure 2, the result is 
undesirable points move into the center of the state space. It is easy to find unstable cells for 
given stable polarization. We validate our model with the already available bistable and 
coherent simulator by Walus etal [1] [2] [5] [6], our QCA Hopfield network shows the similar 
results in term of its polarization values. 

 
3 Conclusion 
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              We have designed QCA network based on Hopfield neural network for AND and OR 
majority logic gates. QCA Hopfield simulation results being compared with other simulator 
referenced here, our simulator shows same results with others in addition, there is a possibility 
of study of undesirable stable points (unpolarized cells in the network) and these points are 
brought to stable polarizations. Undesirable points in the network can be identified by 
simulating the QCA Hopfield network and it shows the unstable points are at the center space 
of the Hopfield state space. The simulation result shows the response can be made near to 
linear and useful to study the error due to clocking etc in a circuit. We conclude that evolution 
algorithm like neural network algorithms and genetic algorithms can be used to simulate 
device level uncertainties exists in nanodevices. This study may be useful for synthesizing the 
QCA system using evolutionary algorithms. 
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